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Abstract

This dissertation consists of two parts. In the first part (Chapters 1-3) we
study the notion of cooperative game theory and its applications to network
engineering problems. The tools of cooperative game theory are shown to
be advantageous for obtaining high-performance and good results in terms
of fairness, and stability. In particular, the first part describes a theoretical
framework for the design and analysis of resource allocation algorithms for
wireless networks using OFDMA technology in uplink transmission. The
resource allocation issue is modeled as a cooperative game in which every
user terminal is assigned to a set of subcarriers, and then chooses its transmit
power so as to achieve its demanded data rate exactly. The power distribution
is obtained by a dynamic learning algorithm based upon Markov modeling.
Simulation results show that the average number of operations of the proposed
iterative algorithm are much lower than K.N, where N and K are the number

of allocated subcarriers and of mobile terminals.

The second part (Chapters 4-6) deals with the information theoretic issues
around multi hop communication where some nodes act as intermediate relays.
We present the advantages and limitations of different relaying strategies. We
first review point-to-point communication assisted by one relay, and derive
the upper bounds on the capacity of memoryless AWGN relay channel. We
bound the capacity region of the channel using, the max-flow min-cut (cutset)
theorem and find achievable rate regions for the amplify and forward, decode
and forward, and compress and forward protocols. Then, we aim at studying
the capacity of AWGN channels assisted by multiple parallel relay channels.

We are interested in two cooperation models involving point-to-point and



iv

ABSTRACT

multiple access (multiple transmitters and single receiver). We derive the
capacities of AWGN channels for different relaying techniques. In addition,
we study a reliable network wherein some relays perform decode and forward
strategy and others relays as compress and forward. We show that the
improvement of the overall data rate strongly depends on the combination
of relays’ positions and relaying strategy. Also, we will show that a multiple
parallel relayed communication achieves its maximum capacity by either only
one relay or all relays together. Adding a new relay/transmitter does not
necessarily expand outer capacity region, and can even degrade the capacity
of the network.
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Introduction

Motivation

Wireless networks have come a long way in a remarkably short time. Evolution
of wireless access technologies for cellular communications is about to the
reach its fourth generation (4G). Looking past, wireless access technologies has
followed different evolutionary paths towards a unified target: performance
and efficiency in high mobility environment. Mobile and wireless commu-
nication systems have been successfully and extensively deployed since the
1980s. In the first generation (1G), different analogue systems were deployed
mainly in the developed regions of the world to support voice telephony
services for mobile subscribers. 2G introduced the global system for mobile
communication (GSM), which was deployed internationally from 1991. In the
beginning, the main objective of GSM was the support of voice telephony and
international roaming with a single system across Europe. In parallel with
the fast growth of 2G mobile communication, third generation (3G) systems
were developed from about 1998 and deployed globally since 2002. 3G has
quest for data at higher speeds to open the gates for good “mobile broadband”
experience. It is considered broad because multiple types of services can be
provided across the wide band at high speeds, and mobile broadband, on the
other hand, launches these services on mobile platforms.

The great interest for higher data rates exhibited by users of mobile wireless
services exhibits an exponential increase. Long term evolution (LTE) tech-
nology seeks to improve voice quality and expand broadband data services,

to deliver high-definition video and audio and other on-demand and real-
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time services on a “anything-anywhere-anytime” basis. The Release-10 LTE-
Advanced (LTE-A) is a major enhancement of the LTE standard developed
by the 3rh Generation Partnership Project (3GPP), and LTE-A was ratified
by the International Telecommunication Union (ITU) as an IMT-Advanced
(4G) technology in November 2010. The 4G objective is to meet challenges
presented by the ever increasing use of “smart” wireless devices that require
significantly higher spectral resources than conventional cell phones. LTE-A
addresses those challenges by targeting peak data rates 1 Gb/s with up to
100 MHz supported spectrum bandwidth.

In the short space of just a few years, wireless services have been transformed
far more than in the previous decades. Mobile communication systems enable
many new applications and allow more flexibility for users and thereby an
improvement of quality of life and efficiency of business processes. From
serving voice communication only, the advent of new high-definition and
affordable/free-to-air entertainment services such as IPTV and web browsing
on new powerful cell phones, has demanded unprecedented wireless quality
of service (QoS) requirement. This justifies the need for wideband, high-
capacity wireless communication technologies that use the available band-
width efficiently and provide data rates close to channel capacity [1]. While
the peak data rate continues to be important from a marketing perspective,
the end-user experience is more closely associate with the achieved degree
of uniformity of service provision. The trend of increasing demand for high
quality of service at the user equipment, coupled with the shortage of wireless
spectrum imply that future enhancements will be needed to augment cell edge
data rates rather than simply peak rates. In comparison to wireline channel,
the radio channel is time variant, and transmission should be adapted to
channel quality as well as to service requirements. With user mobility, this
imposes several challenges in providing effective communications. Multicar-
rier access techniques such as orthogonal frequency-division multiple access
(OFDMA) [2] can be exploited to increase data rates in a multi-user environ-
ment, by dividing a frequency-selective broadband channel into a multitude

of orthogonal narrowband flat-fading subchannels.
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We are seeing that mobile broadband technologies are reaching a common-
ality in the air interface and networking architecture; they are converging
towards an IP-based network architecture with OFDMA based technology.
Although network evolution has not yet reached the point of true and full
convergence, wireless access networks is being designed to support ubiquitous
delivery of multimedia services via inter-networking. First worldwide debut
of IP-OFDMA-based mobile broadband is with worldwide interoperability for
microwave access (WiMAX) technology. The spread spectrum radio technol-
ogy used in 3G systems, is abandoned in all 4G candidate systems and replaced
by OFDMA transmission schemes, making it possible to transfer very high bit
rates despite extensive multi-path radio propagation. Applying (multi-carrier)
OFDMA make it even feasible to provide a full range of multiuser /multirate
services, all with different QoS and performance requirements. Due to the
concurrent access in multiuser environment, and the large degree of freedom
when it comes to the allocation of a large number of subcarriers, an efficient
radio resource management is of paramount importance for such systems. The
goal of resource allocation can be either the maximization of the overall data
rate or minimization of the total transmit power, at the base station or at
the individual wireless terminal, in the downlink or uplink direction. Though
significant progress has been made for the resource allocation in OFDMA, a
“standard” and optimum approach is still not available. In fact, it is quite
unlikely we would arrive at a generic approach for the resource allocation in
wireless networks due to the inherent multi-faceted nature of the problem in
question.

Regardless of being uplink or downlink communication, resource allocation
in OFDMA consists of two sub-problems: subcarrier selection for each in-
dividual user, and transmit power over every subcarrier. An intelligent and
scalable joint power and bandwidth allocation mechanism is crucial to ensure
QoS to the consumer at a reasonable cost [2]. A well devised algorithm
for subcarrier selection can significantly increase signal-to-interference-plus-
noise ratio (SINR), that is necessary for throughput enhancement in dynamic

access. Moreover, transmit power in wireless cellular networks is a key de-
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gree of freedom in the management of interference, energy, and connectivity.
Energy efficiency is an area of increasing importance due to the rising cost
of energy and enviromental concerns. “The 3G chipsets that are available to
semiconductors work reasonably well except for power. They are real power
hogs, so as you know, the handset battery life used to be 5-6 hours for GSM,
but when we got to 3G they got cut in half. Most 3G phones have battery
lives of 2-3 hours”: said Steve Jobs! in the early days of universal mobile
telecommunications system (UMTS). Whilst “integrated circuits will double
in performance every 18 months” according to Moore’s law, but batteries
have not improved hardly at all. There are deep physical limits. The energy
capacity is only doubling every 10 years, as battery industry foresees. This
justifies the necessity of an energy efficiency resource allocation technique in

modern wireless networks.

The limited resources and the increasing number of the users are inevitably
accentuating the relevance of good management of the wireless network re-
sources. In recent years, game theory has appeared as an expedient tool
for network engineers to address competition among user terminals, and
also wireless service providers. Besides, it might be possible that network
equipment, e.g. wireless terminals and base-station, cooperate each other to
access the resources, and through this cooperation effectively achieve a robust
allocation strategy which promises significant benefits such as higher through-
put, fairness, better QoS, and lower network interference. The cooperation
upon which such networking concepts are based, may also be a key to realizing
higher-order scalability. Cooperative game theory is a branch of game theory
which is dedicated to model the various aspects of cooperative and interactive
behavior. The requirement of applying cooperative game theory in wireless
networks is to implement network equipment policies as a set of (social)
strategies to be applied in a given scenario. In such environments, subcarrier

selection policy, the amount of transmit power, time, space, network selection,

1Steve Jobs (1955-2011) is best known as the co-founder, chairman, and chief executive

officer of Apple Inc.
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security, etc. can be considered as set of strategies. It is obvious that such an
implementation would be efficient if social rules (strategies) satisfy individual
interests of end-users and network service provider.

Mobile broadband networks deployments span scenarios from very dense
urban areas to remote rural areas, operating in a large range of carrier fre-
quencies with different propagation characteristics and different coverage lev-
els. With the ever growing demand of data applications, traditional cellular
networks face the challenges of providing enhanced system capacity, extended
cell coverage, and improved minimum throughput in a cost effective manner.
The cost of the backhaul to the various network nodes has been identified as
an essential cost component in the deployment of cellular networks, especially
for future deployment of micro- and pico-cells for which the site acquisition
cost is expected to be lower than that for macro-cells. Therefore, the ability
to deploy network nodes not relying on a wired backhaul is an appealing
option to reduce total network deployment cost and operating costs. Co-
operative communications through wireless relay stations is a technology to
enhance network throughput/coverage without incurring high site acquisition
and backhaul costs. In order to provide economic coverage and higher capac-
ity, new deployment schemes such as relay-based or multi hop systems are
getting much attention in the research community.

LTE-A features relay system concepts, with the ultimate goal of designing
a system that is drastically enhanced in both cell capacity and coverage.
Relaying also provides higher deployment flexibility for operators by introduc-
ing low-power nodes without requiring additional wired backhaul. This new
technique is already bringing significant performance benefits to Release LTE-
A. These include increased capacity and spectral efficiency, improvement of
throughput actually experienced by the user, fairness or throughput provision,
reduction of cost per bit, and energy saving.
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Main contributions

The main focus of this thesis is twofold: the applications of cooperative game
theory to wireless communications and especially in OFDMA, and cooperative
communications. Firstly, we review existing OFDMA resource allocation
techniques in the literature. Then, we show that cooperative game theory
is an appealing tool to tackle different problems in wireless engineering. The
main focus of the first part is the application of cooperative games to resource
management in the uplink of OFDMA infrastructure wireless networks. Due
to the large number of subcarriers, there is a great freedom to resource
assignment in a multiuser network. Low complexity, fairness from both end-
user and wireless service provider viewpoint, and energy efficient approaches
are the key requirements of the devised cooperative game-theoretic model.
The main contributions of the first part of this thesis are as follows:

e In our fairness approach, each wireless terminal achieves its own data

rate demand exactly;

e two different approaches to assign different subcarriers among wireless
terminals are described. Our model allows each subcarrier to be shared

by more wireless terminals;

e existence of the solution of the cooperative resource allocation game, the
core set solution, is proved by means of the analytical tools of coalitional

game theory;

e a dynamic learning algorithm for reaching one of the core set solutions
of the power expenditure scheme is derived, and its convergence is

demonstrated based on Markov modeling;

e the performed simulations show that the derived framework outperforms
the results available in the literature in terms of complexity, power

consumption, and utilization of the spectrum.

The second part of this dissertation is focused on the computation of the

capacity of Gaussian channels when assisted by one or multiple parallel relays.
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Two relays are said to be parallel if there is no cooperation among themselves,
while both have direct-link from the source(s) and to the destination(s). We
present the information-theoretic perspective, and outer range capacity of dif-
ferent relayed communication scenarios, using the max-flow min-cut (cutset)
theorem, and also applying known relaying protocols: amplify and forward
(AF), decode and forward (DF), and compress and forward (CF). We show
that choosing the best cooperative approach can increase significantly the
network channel capacity.

The contributions of the second part of this thesis are as follows:

e applying cutset theorem in a relay assisted communication between a
transmitter and an out of coverage destination. We calculate the best
transmit power at the transmitter and the relay to achieve the highest

end-to-end capacity;

e the outer range capacity in a relayed point-to-point communication

applying different relay strategies is calculated;

e we explore the capacity of different relaying techniques with two case

studies;

e the outer range capacity in a multiple parallel relayed point-to-point
communication applying different relay strategies is calculated. Our

upper bound capacity is lower than that in the existing literature;

e the outer range capacity of a network communication consisting of mul-
tiple sources, multiple parallel relays, and one destination is calculated.
The upper bound capacity is lower than that in the existing literature;

e we describe a new information-theoretic perspective for CF technique
based on distributed Wyner-Ziv (WZ) source coding;

e we show that using relays can significantly increase upper bound capac-

ity conditional upon the relays positions;
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e we show networks wherein adding a new relay or transmitter degrades

the overall data rate.

Outline of the dissertation

The remainder of this thesis is organized in two parts. The first part is devoted
to introduce a resource allocation technique in OFDMA based on cooperative
game and is structured as follows:

In Chapter 1, after a brief introduction of OFDM(A) technology, we re-
view the existing techniques in the literature for radio resource allocation in
OFDM and its multi-user version (OFDMA), where the “resources” can be
bandwidth and transmit power. We then discuss the relevant features of each
technique and we identify why a new fairness approach and resource allocation
in OFDMA is needed.

In Chapter 2, we introduce the basic concepts of cooperative game theory
and we try to extend it in order to apply it in wireless networks. To this
end, we provide motivating examples for the application of cooperative game
theory to network engineering problems, and we outline the trends in research
into cooperative game theory applications to wireless networks.

In Chapter 3, we introduce the resource allocation problem for OFDMA-
based wireless networks as a cooperative game. Firstly, we propose two dif-
ferent subcarrier allocation techniques. We then formulate the power control
scheme using a fairness approach. Next, we prove the existence of the core
solution(s) of the proposed game, and we describe an iterative algorithm to
reach one of the core sets in a centralized fashion. We conclude this chapter
with comparing of the simulation results to existing solutions in the literature.

This chapter is a revised and extended form of the following published papers:

1. F. Shams, G. Bacci, M. Luise, “A coalitional game-inspired algorithm
for resource allocation in orthogonal frequency division multiple access,”

in Proc. FEuropean Wireless Conference,, Lucca, Italy, Apr. 2010.

2. F. Shams, G. Bacci, M. Luise, “Low complexity resource allocation
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for OFDMA based on coalitional game theory,” in Proc. Int. Work-
shop Game Theory in Communication Networks (GameComm), Paris,
France, May 2006.

3. F. Shams, G. Bacci, M. Luise, “An OFDMA resource allocation algo-
rithm based on coalitional games,” EURASIP J. Wireless Communica-
tions and Networking, vol. 2011, no. 1, 2011:46, July 2011.

The second part of this thesis is focused on the study of cooperative com-
munications, and it is structured as follows:

In Chapter 4, we summarize a background literature that contributes his-
torical notes on cooperative communications. We then introduce the system
model of peer-to-peer relayed communication. We detail the mathematical
model of different relaying schemes (i.e., amplify and forward, decode and
forward, and compress and forward) and introduce a capacity upper bound
of each of them.

In Chapter 5, we treat the upper bound capacity of a peer-to-peer commu-
nication with multiple parallel relays wherein there is no cooperation among
relays. We will show that in such a reliable network, the upper bound capacity
is achieved by either only one relay or by all relays together.

In Chapter 6, we extend the previous chapter and investigate a network
consists of multiple sources, multiple parallel relays, and one destination. We
introduce the upper bound channel capacity of different relaying strategies.

Finally, Chapter 7 summarizes our conclusions for this thesis and discuss
open issues and further areas for these research fields.

In principle all the theorems without references are firstly proven by the

author of this dissertation.
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Chapter 1

A survey omn resource

allocation techniques in
OFDM(A)

Interest in orthogonal frequency-division multiplexing (OFDM), has grow
steadily, as it appears to be the most efficient air-interface for wireless com-
munications primarily due to its inherent resistance to frequency-selective
multipath fading and the flexibility it offers in radio resource allocations.
One of the crucial issues in OFDM transmission is the allocation of the power
resources to the available subchannels.

This chapter reviews the existing resource allocation techniques in OFDM
and its multiuser version, OFDMA. We start with historical notes in the
following section. Then, we provide a description of resource allocation issue
in OFDM in Sect. 1.2. In Sect. 1.3, we describe different fashions of allocation
of radio resources in OFDMA. We continue with exploration of three classic
power allocation solutions of water-filling, max-min fairness, and weighted
proportional fairness in Sects. 1.4,1.5, and 1.6, respectively. Sects. 1.7 and 1.8
discuss about two important resource allocation issues in multi service traffic
networks: utility maximization, and cross layer. Different solutions based on
game theory are reviewed in Sect. 1.9. Finally, we summarize key features of

the existing solutions in Sect. 1.10.
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1.1 OFDM(A) modulation and channel access

The principle of transmitting data by dividing it into several interleaved
bit streams, and using these to modulate several carriers, is a concept that
helps reducing the detrimental effects of multi path fading in communication
systems. It was proposed for the first time by Doelz et al. for the U.S.
military HF communication applications in 1957 in the pioneering Collins
Kineplex system [3]. The contribution of Doelz et al. led to a few orthogonal
frequency division multiplexing (OFDM) schemes in the 60s, which were
proposed by Saltzberg [4] and Chang [5]. In the late 1960s, the multicarrier
concept was adopted in some military applications such as KATHRYN [6]
and ANDEFT [7]. These systems involved a large hardware complexity since
parallel data transmission was essentially implemented through a bank of
oscillators, each tuned to a specific subcarrier. In 1970, the first patent was
granted on OFDM [8].

OFDM is a parallel transmission scheme, where a high-rate serial data
stream is split up into a set of low-rate sub-streams with generally equal
bandwidth, each of which is modulated on a separate subcarrier (called also
sub-channel or tone). Thereby, the bandwidth of the subcarriers becomes
small compared with the coherence bandwidth of the channel; that is, the
individual subcarriers experience flat fading, which allows for simple equal-
ization. This implies that the symbol period of the sub-streams is made long
compared to the delay spread of the time-dispersive radio channel. While each
subcarrier is separately modulated by a data symbol, the overall modulation
operation across all the sub-channels (multicarrier modulation) results in a
frequency multiplexed signal.

OFDM is extremely effective in a time dispersive environment where signals
can have many paths to reach their destinations, resulting in variable time
delays. With classical modulations, these time delays cause one symbol to
interfere with the next one (inter symbol interference) at high bit-rates. The
major contribution to OFDM scheme came after realization of the results

of Weinstein and Ebert [9]. They demonstrated that using discrete Fourier
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transforms (DFT) to perform the baseband modulation and demodulation
considerably increases the efficiency of modulation and demodulation pro-
cessing. All of the sinc (sinus cardinal) shaped sub-channel spectra exhibit
zero crossings at all of the remaining subcarrier frequencies and the individual
sub-channel spectra are orthogonal to each other. The orthogonality among
different tones ensures that the subcarrier signals do not interfere with each
other, when communicating over perfectly distortionless channels.

While the problems of inter symbol interference (ISI) is mitigated by the
guard space between consecutive OFDM symbols and the raised-cosine fil-
tering OFDM imposes, it is not ecliminated. The adoption of OFDM is
facilitated by the efficient implementation of fast Fourier transform (FFT)
and inverse FFT (IFFT) algorithms in DSP chips. To attain perfect orthog-
onality between subcarriers in a time dispersive channel, Peled and Ruiz [10]
introduced the notion of cyclic prefix (CP). The guard space is filled with a
cyclic extension of each time domain OFDM symbol, in order to overcome
the inter-OFDM symbol interference due to the channel memory. The CP
performs the circular convolution by the channel under the assumption that
the channel impulse response is shorter than the length of the CP, thus
preserving the orthogonality of subcarriers. Using a CP extension, OFDM
exhibits a high resilience against the ISI. The CP has made OFDM both
practical and attractive to the radio link designer. Although addition of
the CP causes power/spectrum efficiency loss, this deficiency was more than
compensated by the ease of receiver implementation.

The idea of transmission over dispersive parallel sub-channels using OFDM
scheme has been of enduring interest ever since. OFDM has been adopted
by many European and American telecommunication standards. In the con-
text of wired environment, OFDM was applied for high speed digital voice
services, e.g. asymmetric digital subscriber lines (ADSL) [11], and in wireless
communication, OFDM technique is the fundamental building block of the
IEEE 802.16 standards and it has been considered as a solution to mitigate
multi path harmful effect in broadband multimedia broadcasting, e.g. digital

video broadcasting for terrestrial television (DVB-T), digital audio broad-



16 A survey on resource allocation techniques in OFDM(A)

casting (DAB), 3G mobile communication (3GPP-LTE). This wide interest
in OFDM technique is due the following advantages:

e High spectral efficiency.

Interference suppression capability through the use of the CP.

Protection against narrowband interference and inter carrier interference

(ICI).

Efficient implementation using FFT.

Flexible spectrum adaptation.

Separated subcarrier modulation. Different constellations can be ap-
plied on individual subcarriers, which allows numerous resource alloca-

tion strategies.

Even though the concept of multicarrier transmission is simple in its basic
principle, the design of practical OFDM systems is far from being a trivial
task. Synchronization, channel estimation and radio resource management
are only a few examples of the numerous challenges related to multicarrier
technology. As a result of continuous efforts of many researchers, most of
these challenging issues have been studied and several solutions are currently
available in the open literature. Besides its significant advantages, OFDM

suffers from the following disadvantages:

e High peak-to-average power ratio (PAPR), which requires high linear

amplifiers and consequently high power consumption [12].
o Sensitivity to Doppler effect and carrier frequency offset [13].

e Sensitivity to phase noise and time and frequency synchronization prob-
lems. Synchronization of an OFDM signal requires finding the symbol

arrival time, and carrier frequency offset [14].

e Loss in data rate due to the guard interval insertion.



1.1 OFDM(A) modulation and channel access

17

OFDM is also good from the standpoint of multiple access opportunities.
Compared to single carrier systems, OFDM is a versatile modulation and
channel access scheme for multiple access systems in that it intrinsically facil-
itates both time-division multiple access and frequency-division (or subcarrier-
division) multiple access. In a multi user scenario the available bandwidth
must be shared among several users. Each user may experience different
conditions in terms of path loss, and shadowing. Furthermore, each may have
different requirements in terms of quality of service. An acceptable design of
the network should therefore take into account the different user conditions
while providing fairness, without a drastic reduction in the overall spectral
efficiency. A higher spectral efficiency is actually the main goal of all radio
interface design. In 1998 a combination of OFDM and frequency division
multiple access (FDMA) called orthogonal frequency-division multiple access
(OFDMA) was proposed by Sari et al. for cable TV (CATV) networks [15].

OFDMA is a promising multiple access scheme that has attracted interest
for wireless MANs. OFDMA is based on OFDM and inherits its immunity to
ISI and frequency selective fading. Furthermore, in OFDMA systems different
modulation schemes can be employed for different users. For instance, each
user, according to its distance to base station, can invoke different order of
modulation scheme (either high- or low-order modulation) to increase its data
rate. Its implementational flexibility, the low complexity equalizer required
in the transceiver, as well as the attainable high performance make OFDMA
a highly attractive candidate for high data rate communications over time-
varying frequency selective multi user radio channels. Compared to classic
FDMA, OFDMA presents higher spectral efficiency by avoiding the need for
large guard bands between users’ signals. The main advantages of OFDMA
are the increased flexibility in resource management and the ability for dy-
namic channel assignment. OFDMA can exploit channel state information to
provide users with the best subcarriers (in terms of channel condition between
transmitter and receiver over different subcarriers) that are available, thereby
leading to remarkable gains in terms of achievable data throughput. Thanks
to its favorable features, OFDMA is widely recognized as the technique for
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fourth generation broadband wireless networks. An ongoing research activity
is currently devoted to study MIMO-OFDMA as promising candidates for 4G
wireless broadband systems.

Today, it can now be implemented using powerful integrated circuits opti-
mized for performing DFT. Because of its increasingly widespread acceptance
as the modulation scheme of wireless networks of the future, it attracts a lot of
research attention, in areas like resource allocation, time-domain equalization,
PAPR reduction, phase noise mitigation and pulse shaping. We will concen-
trate on resource allocation techniques which includes subcarriers selection
and power allocation. In multiuser environment, a good resource allocation

scheme leverages multiuser diversity and channel fading.

1.2 Problem formulation in OFDM

The research interest on resource allocation in multicarrier systems was en-
couraged by the successfully development of ADSL services in the nineties.
This technology employs a digital multitone (DMT) modulation for high-
speed wireline data transmissions. Due to crosstalk from adjacent copper
twisted pairs, the ADSL channel is characterized by strongly frequency-selective
noise. One of the attractive features of OFDM scheme is flexibility to allocate
individual power and modulation on different subcarriers. Different criteria
can be performed depending upon whether the network is trying to maxi-
mize the overall data rate under a total power constraint or to minimize the
overall transmit power given a fixed data rate or bit error rate (BER). The
optimum adaptation algorithm, called the water-filling criterion [16], tends to
allocate more information bits onto the highest signal-to-noise ratios (SNRs)
carriers. Note that the number of bits determines the constellation size as:
1 bit corresponds to binary phase-shift keying (BPSK) modulation, 2 bits to
quadrature phase-shift keying (QPSK) modulation, 4 bits to 16-quadrature
amplitude modulation (16-QAM), and so on. In some situations a number of

subcarriers may even be left unassigned if the respective SNR is too low for



1.2 Problem formulation in OFDM

19

reliable data transmission.

In the literature, the problem of efficiently allocating information bits on the
available sub-channels and using the best modulation is referred to as either bit
loading, adaptive modulation or link adaptation. In OFDM communication,
the unique transmitter k spending power py,, < Dy,, over the nth subcarrier,
achieves the number of bits Ry, that is calculated by the Shannon channel

capacity formula as [17, Eq. 1]:

(1.1)

2
Ri, =lo 1+
82 ( ('Ymargin + F) : 03;)

where |H kn|2 is the amplitude of the Gaussian complex frequency response
(channel condition) of subcarrier n and o2 is the noise power spectral den-
sity on the subcarrier. The performance margin Ymargin is an additional
amount of noise (in dB) that the system can tolerate, even if the noise level
is increased by a factor of Vmargin. The parameter I', called as the SNR
gap (also known as the normalized SNR), is used to evaluate the relative
performance of a modulation scheme versus the theoretical capacity of the
channel [18]. Therefore, by increasing the value of Ymargin W€ can improve
the system robustness against noise, and hence have the new operating point
of the constellations at a distance of (Ymargin + I') dB from the Shannon limit.
There are many theoretical works whose results show a sub-optimal adaptive
bit loading. In the following we cite some of the pioneering and well-known
bit loading algorithms in OFDM.

e Hughes-Hartogs in 1987 [19] designed a greedy algorithm for approxi-
mating the water-filling (e.g. see [16]) for twisted-pair channels over an
additive white Gaussian noise (AWGN) channel with ISI. The goal of
this discrete loading algorithm is minimization of the transmit power
under a BER and data rate constraints for each tone. It accomplishes
this end by successively assigning bits to carriers, each time choosing the
carrier that requires the least incremental power, until the given target

rate is reached. Bingham in [20] proposes to apply sinc functions for each
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individual spectra instead of using quadrature amplitude shift keying
(QASK) in [19]. Applying this technique make separating signals at
receiver easier using efficient FFT techniques. The complexity burden of
the proposed algorithm is very expensive to be implemented in practice,

specifically in high speed wireless networks.

The principle of adaptive modulation and power over OFDM was rec-
ognized in 1989 by I. Kalet [21]. Kalet simulates a twisted pair OFDM
modulation and power control in which for each subcarrier uses QAM
to maximize the bit rate. Total transmit power division is based on
water-filling solution under the assumption that all subcarriers have the
same BER. Furthermore, multi carrier QAM performance is about 9 dB

worse than the channel capacity, independent of the channel response.

Chow et al. in [17] propose an iterative bit loading algorithm which
offers a significant applicability advantages over the earlier Hughes-
Hartogs algorithm [19] and water-filling method. The simulation results
of ADSL service show a degradation of 1.3 dB SNR only. Even though
the proposed algorithm is faster than that Hughes-Hartogs, it is not
optimal from number of iterations and computational load points of

view.

A. Czylwik [22] in 1996 simulates an OFDM transmission system with
time-variant channel functions measured with a wideband channel sounder
composed of fixed carrier frequency antennas. The simulation results
show that with the proposed subcarrier adaptive modulation the re-
quired signal power at BER = 1072 can be reduced by 515 dB depends
upon SNR and propagation scenario. Different modulation formats of
BPSK, QAM and no modulation can be selected such that the BER is

minimized under a constant data rate constraint.

Fischer et al. in 1996 [23] propose a bit loading algorithm to reduce
the computational complexity of Hughes-Hartogs and Chow algorithms.

This algorithm distributes bits and transmit power in order to maximize
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the SNR in each carrier. Van-der Perre et al. in [24] apply Fischer’s algo-
rithm to simulate the performance of OFDM-based high speed wireless
LAN. The simulation results show that the proposed adaptive loading
strategy improves the system performance considerably, as an SNR, gain
of 14 dB, under BER = 103 constraint and using 4-QAM modulation.

All link adaptation studies have demonstrated that a performance improve-
ment is attained in OFDM system applying individual power and data rate

adjusting over each subcarrier in order to exploit channel frequency selectivity.

1.3 Taxonomy of problem types in OFDMA

A typical case of multiple access channel is the uplink of a cellular system.
In general, in the OFDMA uplink scenario, each user will receive a channel
assignment and power allocation from the base station (BS) that consists
of a (usually exclusive) subset of subcarriers and power levels on each of
them, that make up an OFDM symbol in the available frequency band. In
an OFDMA network, the BS has to optimally allocate power and bits over
different subcarriers based on instantaneous channel conditions of different
active wireless terminals. The only requirement is that the fading rate is not
too fast, as instantaneous resource allocation is hardly usable in the presence
of rapidly-varying transmission channels of mobile terminals. Other diffi-
culties with wireless terminals include interference effects and limited media
resource such as bandwidth and transmission power. This makes the link
adaptation task much more challenging than in single-user systems. It is clear
that, in comparison to a point-to-point, single-user OFDM-based connection,
a multi user OFDMA link adaptation is much more complicated and hardly
scalable [25]. Now, we start to review the main concepts behind bit and power
loading in OFDMA-based transmissions.

Generally, a resource allocation algorithm can either be centralized or dis-
tributed. In centralized schemes like [26,27], the algorithm is run by a central

unit (like the radio base station) that is aware of the channel conditions



22

A survey on resource allocation techniques in OFDM(A)

and the demands of all mobile terminals. In a distributed model (such
as [28]), cach mobile terminal tries to accomplish its own (minimum) QoS
autonomously. In general, centralized techniques show better performance
at the expense of a higher signaling between terminals and central unit, and
lower scalability. In the context of distributed algorithms, several cross-layer
approaches [29] (discussed in Sect. 1.8) to reduce the total power consumption
and to support different services and traffic classes, mostly for the downlink
of an OFDMA system. Maximizing the power efficiency in uplink OFDMA
has also been tackled in [27,30,31] using different formulations for the joint
resource allocation problem.

One of the main problems with multiuser OFDM is the large amount of
feedback required from the users when applying centralized schemes. Since
different users can be scheduled on different frequency subcarriers, users must
feed back measurement information about every subcarrier. Consider a net-
work with K active OFDM mobile terminals and N overall available subcar-
riers. The scheduler requires channel state information about the different
users. The full channel state information consists of K - N complex numbers
(the values of the channel frequency response at each subcarrier for every
user). This feedback information represents a very large overhead if there
are many users and subcarriers in the system. Cimini et al. [32] propose to
group adjacent subcarriers into (so-called) clusters and feedback the informa-
tion about the best cluster(s) in terms of channel quality. In [33,34], it is
shown that sending back only heavily quantized channel status information
dramatically reduces the feedback needs without sacrificing the essential of
the scheme performance. P. Svedman et al. [35] show that the cluster-size is
an important design parameter to achieve a good downlink throughput. A
suitable cluster-size depends upon the average channel delay spread of the
users. Since it is compulsory to use the same cluster-size for different users,
an arrangement that attains good performance for most expected channels is
a suitable choice.

The problem of subcarrier and power assignment in OFDMA has been ex-

tensively considered in the literature during the last few years. The proposed
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solutions mainly fall into two different categories: margin-adaptive and rate-
adaptive methods. The goal of margin adaptive schemes [36] is to minimize the
total transmit power expenditure given a set of fixed user data rates and BER
requirements. Algorithms based on the rate-adaptive criterion [37] aim on the
contrary at achieving the maximum total sum (continuous) rate over all users
subject to different QoS constraints, e.g. power expenditure. In addition,
in some broadband systems e.g. code division multiple access (CDMA),
ultra-wideband (UWB), and multi carrier CDMA (MC-CDMA)!, a resource
allocation strategy, the so-called mean BER minimization, was studied where
the robustness of the system is enhanced by allocating bits and powers to
subcarriers in such a way that the error rate of an entire symbol is minimized
for a given target bit rate. This scheme is not a major interest of OFDMA
systems, since in (almost) all OFDMA resource allocation techniques, as it will
be seen in the next sections, each subcarrier is not permitted to be assigned
to more users. This means that a well devised algorithm for total data rate
maximization also results in minimization of users’ BER.

The first resource allocation strategy that is formulated here is the min-
imization of the OFDM system power expenditure for a given target data

rate. The margin-adaptive optimization problem is formulated as:

K
min 33 pi
NS nEN,
st. > Rwm>R, Vkek
neNg (12)

and Z DPin < Dy, Vkelk
'neNk

and Ny NNz =0 Vk,mek

wherein k € K = [1,..., K| denotes the index of the wireless terminal which

transmits with power py = [pm, ey Dhny - - ,pkN] over subcarriers which are

1Unlike OFDMA, in the CDMA, UWB, and MC-CDMA systems, whole bandwidth is

shared by all active wireless terminals.
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represented by the set of N = [1,...,n,...,N]. Let N}y C N be the set of
subcarriers assigned to user k, and Ry, the achieved channel capacity by user
k over the nth subcarrier. The sets of assigned subcarriers are disjoint and
this means that each subcarrier is not allowed to be shared by more than one
terminal. Each user k wishes to attain its target rate R, under the constraint
of p,, as individual total transmit power. It is clear that for each terminal £
and every n ¢ N, we have py, = 0, and accordingly Ry, = 0. The overall
data rate of each user is obtained by the Shannon capacity formula as:

o | Hin|?
Ro= Y Ro= Y log, (1+u> (1.3
w

neNg neN

wherein |H ;m|2 denotes the amplitude of the Gaussian complex path gain of
user k on subcarrier n. The parameter o2, is the variance of the AWGN zero
mean Gaussian noise on each subcarrier. Two levels of decomposition are
necessary to turn this NP-hard problem into the set of sub-problems of [38]
subcarrier allocation and power control. In fact, the exclusive assignment
of subcarriers to users is a way to reduce the complexity computation of
optimization equation. On the other hand, as users are not allowed to share
a common subcarrier, the allocation process boils down to a combinatorial
optimization problem for which no optimal greedy solution exists. Kivanc et
al. [39] develop a computationally inexpensive method for OFDMA resource
assignment which achieves a comparable performance at reduced computa-
tional complexity. However, this approach did not provide a fair opportunity
so that some users may be dominant in resource occupancy even when the

minimum rate requirement is not satisfied for the others.

The most common optimization problem for OFDMA systems is the rate-
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adaptive or maximization of bit rate which is instead formulated as:

K
max Z Ryn
{p, N} k=1 neNy
st. > R >R, Vkek
and Zpkngﬁk Vkek
neNy

and Ny N Nozp =0 Vk,mek

The objective of this problem is to distribute bits and power among different
subcarrier in such a way that the overall data rate of the system is maximized.
Most algorithms focus on the downlink scenario, with constraints on the
total power transmitted by the radio base station. In the uplink scenario,
the restrictions apply on an individual basis to each user terminal, and the
simplest solution to maximize channel capacity of mobile devices under a

power constraint is the water-filling (WF) criterion [40].

1.4 Water-filling solution

Cheng and Verdu in [41] pioneered to apply WF solution in an uplink OFDMA
network scenario and derive capacity region and the optimal power alloca-
tion of individual users. In rate-adaptive optimization, the channel capacity
is obtained by maximizing the right-hand-side of Eq. 1.3 with respect to
ZnENk Prn < Py, V k € KC, and assigned the channel gains |H;m|2, ie.

i Z 1 1+ Pin |Hk’n|2 (1 5)
max 0gy _ :
{p, N} k=1 neN} 0-12‘}

Since the objective function in (1.5) is convex in the variables {py}, the
optimum power allocation under the convex constraints of overall transmit
power can be found using Lagrangian methods. The optimal strategy to (1.4)

is such that the user with the largest channel gain is first selected, i.e., on
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each subcarrier n € N select the best terminal as:
k +— arg max |Hp,|? (1.6)
kek

The resulting optimal power allocation for user k is given by:

1 o2 !
"= - 1.7
b [Ak 2 |H,m|2] 4o

where [z]" = max{z,0}, and the Lagrangian parameter )\ (“water-level”)

is chosen such that the sum of the allocated powers satisfies the total power

constraint p,,. )
Wil (- o

A = 2 (pk. + ng\:[k |Hkn|2> (1.8)

WEF is a greedy power allocation scheme with which channel capacity is

increased when every subcarrier is assigned to the user with the best path

gain, and the power is distributed according to the WF criterion of Eq. 1.7.

However, the WF solution is highly unfair, since only users with the best

channel gains receive an acceptable channel capacity, while users with bad

channel conditions achieve very low data rates. More information-theoretic

discussions on related topics can be found in [42]. To derive fair resource

allocation schemes, we resort to other techniques, described in the following.

1.5 Max-min fairness criterion

In a multiuser OFDM network, one possible approach to overcome the un-
fairness of WF is described in [43]. This alternative formulation aims at the
maximization of the minimum user’s data rate. This enforced a notion of
maz-min rate-mazimization fairness, so that the starvation of some users can

be avoided.

Definition 1 A feasible flow rate vector R = [Ry,..., Ry, ..., Rk] is defined
to be max-min fair if any rate Ry cannot be increased without decreasing some
B2k, which is smaller than or equal to Ry,.
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In the max-min power control, roughly speaking, the objective is to optimize
the performance of the worst link amongst all users for fixed QoS-based power
control approaches. The idea behind the max-min fair approach is to treat
all users as fairly as possible by making all rates as large as possible [44]. The
work of Rhee et al. in [43] is an extension of [45] which is a dual problem of
minimizing total transmit power for given data rate requirements. The given
problem is formulated as the following convex optimization problem [43]:

max min E R,
ke
{p, N} ke e

st > Pea <Dy Vkek (1.9)
neNg

and N NNz, =0 Vk, mek

The Lagrangian relaxation algorithm proposed in [43,45] approaches the
solution by slowly increasing the power level for each user. In contrast to
WF result, the rationale behind max-min fairness solution is to assign more
power to users exhibiting poor channel conditions so that they can achieve a
data rate comparable to that of other users with better channel quality. It
is worthwhile to note that the max-min fair rate allocation is unique when
the number of resources and flows, i.e., subcarriers and of wireless terminals,
are both finite [44]. Unfortunately, due to the nonlinear nature of the integer
problem, the algorithm proposed in [43,45] is computationally very expensive.

In the paper [43, Eq. 2], formulation (1.9) is also extended to:

max min Z tin Rin
, k
{p, N} keKk =y

K
st. Y tm <1l VneN (1.10)
k=1

and Z Pkn <D, VkeK
ne./\fk

wherein the positive coefficient tx,, € [0, 1] introduces the percentage of time

each subcarrier is used by a given user. With parameter ¢, each sub-channel
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can be shared by different users in TDMA fashion. Clearly, the assumption
behind this approach is that the users’ channel responses do not change
significantly over a timing interval. However, in the simulation results of [43],
it is assumed that K < N and no sub-channel is shared among users, i.e. {g,
is a binary value and Zkeic ten = 1V n € N, or equivalently A}, ﬁNm7sk = 0.
In addition, determining the best values for tx, € (0, 1) and indicating a
time-sharing allocation policy is not always feasible for K > N, as reported
in [46]. Here we stick to the original problem formulation (1.9).

B. Bertsekas et al. in [47, p. 527] propose a simple iterative algorithm for
computing a sub-optimal max-min fair rate vector which is simply extendable
for an OFDMA network as:

1) Zero Initialization: Supposing K < N, the algorithm starts with an all
zero data rate vector: Ry, =0and N, =0 VEkeK.

2) Round-robin fashion at once: Assign every user k € K the subcarrier n
whose channel gain |H ;m|2 is the best for it, and uniformly increase the
respective data rate as:

n <— arg max |Hy,|*:
neN
Ni = N U {n}; N — N\ {n};
B )
1/N 5 [Hen
R = RN =log, <1+7N —— )

w

At this point, every user k € K is assigned to one subcarrier.

3) Best user rate updating: Find the user k with the smallest attained data
rate, i.e. k < arg mingcx Ry, and then assign the subcarrier n € A/ with
the best channel condition |Hy,|?, and update the respective data rate as:

k < arg min Ry;
ke

n «— arg max |Hyn |*;
neN

Ni = N U {n}; N+ N\ {n};
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Ry = Ry + RN

4) Ezit condition: If there exists some unassigned subcarrier then go to step
(3), else exit.

In addition, to achieve a max-min fairness data rate vector, F. Kelly [48]
suggests the problem formulation as:

K R «@
ma; — (=1 K 1.11
e ( e < B >> -

wherein « > 1 is a constant parameter and /3 is a positive number satisfying:
R, < 8 < oo ¥V k € K. Furthermore, [48] defines the following alternative

criterion instead of choosing the best user with the smallest data rate in step

(3):
a—1
k+— ar%en’éax {]—% . <log2 (}%)) R,lc{]N} (1.12)

For o — 00, the condition became:
k <— arg min Ry, (1.13)
ke
which coincides with the original strategy of max-min fairness to allocate a
subcarrier to the user with the minimum achieved data rate.

Although in the max-min criterion is attained at the cost of a reduction of
the overall throughput of the cell. Although in the max-min criterion all users
are treated fairly, this solution cannot practically be used. This is because,
in general, the number of allocated bits may not correspond to any practical
modulation scheme [49]. Furthermore, the results show that under the max-
min fair solution, some users may consume significantly more bandwidth than
others [50].

1.6 Weighted proportional fairness criterion

Achieving traffic fairness and efficiency are two conflicting goals. Hence,

the optimization of the radio resource utilization tends to penalize terminals



30

A survey on resource allocation techniques in OFDM(A)

with low SINR, independently of their traffic level performance. Max-min
fairness scheme is inappropriate when different users have different priorities.
Generally, the problem is how to balance between fairness and the utilization
of resources. This led F. Kelly et al. to formulate in [51] the notion of weighted
proportional fairness. Under a proportional maximization rate constraint,
the rate of each user should adhere to a set of predetermined proportionality

constants which make a concrete way of assigning priorities to the users.
Ry: - tRp:- :Rgk=@1: Qg : QK (1.14)
wherein ¢ps are proportion constants.

Definition 2 A vector data rate R = [R1, ..., Rk] is proportional fair if it is
feasible and for any other feasible rate vector R = [Rll, ceey R'K] the aggregate
of proportional change is non positive:

K ,
Zckak%kR’“ <0. (1.15)
k=1

This method is also useful for service level differentiation, which allows for
flexible allocation mechanisms for different classes of users with separable
constraints. The proportional fair objective of (1.15) is continuously differ-
entiable, monotonically increasing and strictly concave, therewith admitting
a convex optimization formulation. F. Kelly et al. [51] suggested an algo-
rithm that converges to the proportionally fair rate vector. It is shown that
considering the Kuhn—Tucker conditions for problem (1.4), proportional fair
resource assignment is a maximizer of the sum of the logarithms of the long-
run average data rates provided to the users. They show that to achieve

proportional fairness rate allocation, the problem formulation should be:

K
max log, (R, 1.16
P ]; or logy (Rk) ( )

over all feasible rate allocations. Thus, since a logarithm function is strictly

concave, it may be derived that proportional fair rates are unique [52, Sec.
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6.7]. The logarithmic utility function indicates that users with low average
rates benefit more in utility from being scheduled than users with high average
rates. The iterative algorithm for computing proportionally max-min fair rate
vectors is like that for max-min fairness, except for choosing of the best user

in step (3) that follows the following criterion instead:

1/N
k +— arg max —kn_ (1.17)
kek i

wherein R%N is the same formula in step (2) in the max-min fairness algo-
rithm. This is basically the maximum throughput scheduling, but weighted
by the inverse of the achieved data rate. If a user has been given channel
access recently and therefore has a high past throughput, it will need a very
high channel quality R}JLN to be scheduled. This gives a compromise between
multiuser diversity and fairness.

The time-update of the historical data rate Ry can be done in different ways.
A low complexity update equation that also has low memory requirements is
defined in [52, Sec. 6.7] which keeps track of the average throughput Ry of
each user in an exponentially weighted time-window of length ¢, as:

Ry = (1 — %) Ry + %R}W/LN m =k;

Rk:(l_t%)Rk m # k.

(1.18)

wherein user k is the best preferred user for the next updating round, and
m is the selected user for the current round. The update Eq. 1.18 is an
exponentially weighted filter that includes all historical rates in the average
rate. With a very large time-scale t., the rate updating (1.18), is equivalent
to maximization problem of the Eq. 1.16 [52, Sec. 6.7].

For OFDMA, some other instantaneous sum-rate maximization methods
with proportional rate constraints have been studied previously in [53-55].
The main emphasis of these papers, in terms of formulation, is the maximiza-
tion of the data rates with instantaneous proportional rate constraints, ex-

clusive subcarrier assignment, and given limited total transmit power. These
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works propose integer programming solution methods with time complexity
(the number of time steps in the iterative algorithm) of O (NKlog, N) or
higher. The notion of weighted proportional fairness has been extended by J.
Mo et al. in [56]. They observed some particular TCP network traffics with
which the total throughput of weighted proportional fairness is not optimum
in terms of spectral efficiency, however it outperforms max-min fair solution.
Let o be a non negative constant and ¢ = [¢1, ..., k] be a positive weight
vector. A vector of R is said to be (¢, «) proportionally fair if:

Definition 3 A vector data rate R = [R1, ..., Rk] is (¢, ) proportional fair

if it is feasible and for any other feasible rate vector R = R;, cee R,K :

K ’
R, — Ry,
S ot <o (1.19)

k=1 Ri®
Obviously, if a =1, Def. 3 reduces to the weighted proportional fairness
definition (2) and as o« — oo it approaches to that of the max-min rate
vector [56, Lemma 3]|. In other words, this generalization includes arbitrarily
close approximation of max-min fairness. Unfortunately, the challenge of
choosing the best value of o makes this framework (almost) impractical. Fur-
ther examination clarifies that (¢, o > 1) proportional fairness maximizes [56,

Lemma 2]:
K
Y on(l—a) RO (1.20)
k=1

over all feasible data rate vectors.

Mathematically, Eq. 1.19 is a twice continuously differentiable and strictly
concave function. Algorithms for computing (¢, a) proportionally fair rates
have been developed in [56]. Here, each transmitter adapts its window size
based on the total delay. The main drawback of the proportionally fair rate
allocation is that utility (maximization) functions are commonly assumed
as concave. Lee et al. [57] showed that if the above mentioned algorithms
developed for concave utility functions are applied to non concave utility

functions, the system can be unstable and can cause excessive congestion in
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the network. Since the rate adaptive functions of some real-time applications
are not concave [58], those applications cannot be dealt with in this system.
For example, a multimedia communication user corresponds to a S-shaped?
utility function [59] because his contentment is at a maximum if the allowed
data rate is larger than the encoding rate, and is at a minimum if the allowed

rate is smaller than the encoding rate.

1.7 Utility maximization scheme

Max-min fairness and weighted proportional fairness consider a same QoS
requirements among network users with a strictly concave rate adaptive func-
tion. In some systems, e.g. real-time applications, the rate maximization
functions are not concave. Furthermore, the above mentioned contexts are
not able to formulated real-time constraints requirement, e.g. delay. In
the seminal work [60], Cao et al. overcome these disadvantages of the above
mentioned schemes. They introduce wutility maximization (application layer
performance) whose aim is providing individual QoS requirements for each
user with a non necessarily concave function for rate maximization. A utility
function is used to mathematically describe the QoS characteristics of an
application. Utility maximization guarantees the application specific demand
which can be characterized by bandwidth, delay and delay jitter or time spent
to complete data deliveries. The drawback in [60] is a high delay in the
communication network among users. Cao et al. in [61] extend their previous
paper to overcome the limitation of the delay and propose a control-theoretic
utility max-min flow control algorithm which solves the problems of [60], and
showed that the algorithm converges to a utility max-min fair rate vector by
using Dewey and Jury’s stability criterion [62].

The utility maximization fairness scheme can be formulated in different ways

according to the goal of the system. For instance, power control for optimal

2 An increasing function is S-shaped if there is a point below which the function is convex,

and above which the function is concave.
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SNR assignment is formulated as:

K
max Z Uk (Yen)
{p, N} k=1 neN}
and > <P Vhek (1.21)
nENk

and Ny N Npzr =0 Vk,mek

wherein g, denotes the SNR on the nth carrier of the user k at the BS.
Ug(.) is an individual maximization function of the user k. The maximization

function can be represented as a greedy function for each user:

max Z Uk (Yen) Vkek (1.22)
(o, b 8

C. Zhou et al. [63] introduce a new scheduling and resource allocation prob-
lem in an OFDMA system wherein an approach based on utility functions
results in a discrete optimization problem with non-differentiable non-convex
objective with minimum data rate constraint. The idea is to transform the
discrete problem in a suitable weighted max-min fairness problem which is
easy to implement. Authors of [64] present a general utility-based frame-
work for joint uplink/downlink optimization where user overall satisfaction
is modeled by two different utility functions; one for the uplink and another
for the downlink direction. The resource allocation is formulated as a max-
imization problem with an objective based on the sessions’ utility functions
and allocation probabilities as scheduling constraints that are solved via dual
optimization techniques.

Even though the utility maximization approach has made advances in deal-
ing with congestion control and resource allocation, it also exhibits a serious
limitations. As already mentioned, there exists a tradeoff between average
throughput and fairness in the system. Sometimes there exists a conflict
between the QoS balance and the utility maximization. If users select utility
functions based on their real QoS requirements, then the optimal achieved

data rate may result in a totally unfair resource allocation within the network.
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Applying advanced optimization methods of geometric programming [65], and
majorization theory [66] may achieve an admissible tradeoff between fairness
and overall throughput [67, 68].

1.8 Cross-layer scheme

So far, we talked about the design of an OFDM(A) system based on classic
link-level approach. The wireless link-level primarily addresses two challenges
that arise from the physical medium: channel fading and multiple access
interference (MAI). Advances in link design for wireless channels have led
to different modulation and channel coding schemes that provide increased
robustness to MAI and multi path and thereby, enhance link-level or radio
band capacity. While OFDM(A) provides a powerful physical layer engine for
broadband communications, applying it without thorough application level
considerations may lead to disappointing results. In high speed data networks,
traffic is highly diverse with distinct QoS parameters; e.g. channel conditions
may vary dramatically over a short time scale. However, the traditional
decoupled layer design cannot meet such requirements. For instance, if the
MAC layer does not interact with upper layers, it cannot obtain information
regarding the type of service and the associated QoS parameters. As a con-
sequence, MAC has no ability to adjust itself to the changing characteristics
of traffic.

An OFDMA radio allocation module can be designed to be both channel-
aware and application-aware through cross-layer interactions [69]. Cross-
layer solutions break the traditional layered paradigm of communication since
they rely on the concept of joint optimization across multiple layers. The
cross-layer approach allows different layers to be grouped and/or assumes the
existence of protocols that work with more than one layer, thus optimizing
the protocol stack. With cross-layer techniques, decision making can be more
accurate, bringing forth several benefits to the performance of the proposals

that use such technique.
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In the context of cross-layer design, joint scheduling-routing-flow control
algorithms have been proposed and shown to achieve utility maximization
approach while guaranteeing network stability. Sometimes the differences
between cross-layer and utility maximization fairness schemes blur away since
cross-layer schemes may require to improve their performance applying a non
concave utility function, and utility maximization functions may consist of the
parameters of different layers. Cross-layer multiuser techniques maximize the
rate delivered on the radio channel, guarantee a fair allocation of resources
among users belonging to the same traffic class, consider the dynamics of
traffic sources by limiting the delay of data packets in the queues, and help
to maximize QoS at the application layer. The common idea behind cross-
layer schemes is to use properly maintained packet queues to make dynamic
decisions about new packet transmission as well as rate allocation. Some
pioneering works in the field of resource allocation in OFDMA using cross-
layer design have appeared in [70-72].

Papers [29, 73, 74] propose some feasible solutions to resource allocation
problems in downlink multiuser OFDM system with the goal not only to
maximize system throughput under QoS guarantee, but also to reduce com-
putational complexity. These works use a number of simplifications to find
out the optimal frequency and power distribution for a given set of Lagrangian
relaxations. The results show that the users with very low SINR achieve a
good performance. However, in the case where the channel conditions and QoS
requests vary significantly between successive frames, a new set of multiplier
values must be found in each frame. The necessity of getting best values for

Lagrangian multipliers may reveal an impractical issue.

1.9 Game theory solution

In the utility maximization and cross-layer schemes, different utility functions
apply for different users. Sometimes the interests of wireless terminals are

not aligned and they compete for the scarce wireless resources, bandwidth
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and power. Each user’s interest could be also in conflict with others. In this
situation, the wireless terminals can decide to behave in altruistic or egoistic
manner. In both cases, the related problems can be formulated applying game
theory. Depending on the interaction rules, there exist various types of games.
For instance, if the users are allowed to exchange their proper interests and
information before the game in order to form coalitions and coordinate their
actions, the game is said to be cooperative (coalitional game theory). If coor-
dination is not present, the game is said to be non-cooperative. The players
act according to their strategies. The strategy of a player can be a single move
or a set of moves during the game. For games in wireless communication ,
each transmitter represent a player whose strategy space covers the choices
of modulation level, coding rate, transmit power, transmission frequency, etc.
Another factor that identify different types of games is the number of time
that users interact. If they play the game over multiple rounds the game
is said to a repeated game. Contexts where the users only interact once are
referred to as static games [75,76].

In a multiuser OFDM network, there are multiple interacting users which
use a fraction of the whole bandwidth and they must also decide the amount
of transmit power on each subcarrier taking into account that the decisions
and interests of each mobile terminal that affect the others. The resource
allocation problem in OFDMA can be analyzed within the framework of game
theory. In network resource allocation one of the challenges is to achieve a
Pareto optimal rate vector. A rate allocation vector is Pareto optimal when
there exists no other rate allocation that leads to higher performance for some
users without degrading the performance of some other users.

Non-cooperative game theory has been vastly applied to wireless commu-
nication problems, and much progress has been made on distributed power
control in Gaussian interference channels. In [77], Wu et al. investigate a
joint power and exclusive subcarrier assignment scheme in single cell uplink
OFDMA systems based on non-cooperative game theory. The aim of the
utility function is to maximize the rate-sum capacity with the minimum

power. They prove the existence and uniqueness of the Nash equilibrium
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(NE) point. Instead, Yu et al. [28] apply a different convex utility functions
in the same scenario whose objective is maximization of the power efficiency.
In the utility function, a (transmit) power pricing factor (multiplier) [78] is
introduced to overcome the near-far effect reaching a (nearly) Pareto optimal
NE point. The fairness of both approaches [28,77] is experimentally showed
among small number of users.

Kwon et al. in [79] aim to maximize the weighted sum rate of the users with
less transmit power in a multi-cell scenario. This objective, together with
power and rate constraints defines the non-cooperative game. The system
performance takes into account the intra-cell co-channel interference in an
uplink OFDMA network. The simulation results show that the performance
of the proposed algorithm strictly depends on the power price coefficient
which represents the cost imposed on each base station for the co-channel
interference generated by it as well as its power consumption.

Z. Han et al. in [27] analyze the previous mentioned works aimed to max-
imization of data rate under a bounded transmit power constraint. They
show that the pure non-cooperative game may have in some undesirable NE
points with low system and individual performance. The authors suggest to
introduce a centralized “virtual referee” whose role is to prevent users having
high co-channel interference to share one subcarrier or to reduce the infeasible
required transmission rates. Even though the results significantly outperforms
WF solution in terms of reducing transmit power and increasing data rate,
the proposed algorithm suffers from high computational complexity.

The problem of resource allocation is extended in [80,81] to a multi cell
OFDMA system. The authors of [80] devise a non-cooperative potential
game [82] aimed at maximizing the users’ energy efficiency. Results clearly
show that the proposed game brings performance improvements in terms
of goodput (error-free delivery) for each unit of energy. In [81] the same
purpose is accomplished by a centralized subcarrier allocation procedure and
a distributed non-cooperative power control game. The simulation results
in a realistic multi cell network scenario show that the proposed algorithm

achieves an acceptable performance and computational complexity burden.
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Recently, several other methods which use various heuristics based on co-
operative (coalitional) game theory [75,76] has been proposed to address
the problem of fair resource allocation for OFDMA systems using either
centralized or distributed algorithms. Nash bargaining solution (NBS) [75]
is the most refired technique applied to wireless resource allocation problems
in a multiuser OFDM network. The NBS proves the existence and uniqueness

of NE point of the following convex utility function:

K
max Ry — R
[, kl;[l( K — Ry)
st. Rp> R, Vkelk (1.23)
and Zp;mgﬁk Vkel
neNy

and Ny NNz =0 Vk,meck

wherein R, =3, . ~, Ben- In other words, the goal is to maximize the prod-
uct of the excesses of the transmitter’s rates over their own minimum demands.
The NBS guarantees each user to achieve its own demand, thus providing an
individual rationality to the resource allocation. The important result of
applying NBS is that the final rate allocation vector is Pareto optimal. When
R, = 0V k € K, taking into consideration the strictly concave increasing
property of a logarithm function, we can transform the utility maximization
of NBS into the same problem with the following objective function:
K
e ;;l% (Rx) (1.24)

Clearly, when R, = 0, NBS fairness scheme is the same as the weighted
proportional fairness at ¢ = 1.

Z. Han et al. in [26] introduce a distributed algorithm for an OFDMA
uplink based on the NBS and the Hungarian method [83] to maximize the
overall system rate under individual power and rate constraints. The un-

derlying idea is that once the minimum demands are provided for all users,
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the rest of the resources are allocated proportionally to different users ac-
cording to their own conditions. The proposed algorithm shows a complexity
O (K?Nlog, N + K*), without considering the expensive computational load
to solve the (convex) equations of the NBS. In [84], Lee et al. resolve two sub-
problems of exclusive subcarrier assignment and power control in an OFDMA
network aiming at the maximization of NBS fairness. The simulation results
show an overall end-to-end rate between the nodes comparable to [26].

One main drawback of applying NBS in resource allocation problems is that
this scheme guarantees minimum requirements of the users, but it does not
impose any upper bound constraint. In fact, the achieved data rate may
be much higher than the initial demands and this is an unsatisfactory from
wireless network provider viewpoint. One of the most prominent alternatives
to the NBS is the Raiff-Kalai-Smorodinsky bargaining solution (RBS), defined
by Raiffa [85] and characterized by Kalai and Smorodinsky [86]. RBS requires
that a user’s payoff data rate should be proportional not only to his minimal
rate but also to his maximal rate. Whereas NBS takes into account the
individuals gain, RBS emphasizes the importance of one’s gain and others’
losses. For an OFDMA resource allocation problem, the RBS bargaining

outcome is the solution to:

K
1 —
max H Ry — R, + —— Z Ry, — Ry,
{p, N} k=1 K—1 k#meK
st. R, <Ri <Ry Vkek (1.25)
and Y prn <Dy Vkek
neNy

and N NNz, =0 Vk mek

wherein R}, denotes the upper bound of the transmission rate of the each user.
When applying RBS, if the channel quality of a terminal improves, it will get
a better capacity without any reduction to that of the other users (individual
monotonicity). The existence and uniqueness of RBS were shown, but for

more than two players a Pareto optimal NE point is not always attained as
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Roth stated in [87]. The utility maximization of RBS is transformed into the

same problem with the following objective function:

II{aX Zl 08, (Rk - ﬁi) (1.26)

RBS is a point at which each individual’s gain is proportional to its maximum
gain. When B, =0Vke€Kand Ry :---: Rg = Ry : -+ : Rg, RBS achieves
the same result of max-min fairness criterion.

In [88], Chee et al. propose a centralized algorithm for the OFDMA downlink
scenario based on RBS. RBS guarantees data rate achieved by each user to
be bounded to a minimum and a maximal rate. The results show a good
performance only when the gap between the maximum and the minimum
rate is (very) large. Even though the subcarriers are assigned in an exclusive
manner, the computational complexity of this algorithm is O (K N+ K 2).

Auction methods are another cooperative game scheme which has recently
drawn attention in the resource allocation research literature. In [89], Noh
proposes a distributed and iterative auction-based algorithm in the OFDMA
uplink scenario with incomplete information. The time complexity of the
algorithm is experimentally revealed as O (KN log, K). However, the sim-
ulation parameters are not realistic (three users and subcarriers), and it is
thus hard to estimate the computational complexity when using real-world
network parameters. For multi cellular scenario, Yang et al. [90] propose
an auction solution to OFDMA resource allocation in an uplink direction.
The proposed distributed (among base stations) algorithm converges to sub-
optimal weighted sum rate result. The number of the users and subcarriers in
the simulation are small and it is not clear how the computational complexity

considerations extend to a realistic network.

1.10 Discussion

It is a matter of controversy whether the OFDMA resource allocation tech-

niques in the literature are actually usable in the practice. All the men-
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tioned schemes, which represent, to the author’s knowledge, the most relevant
algorithms for OFDMA resource allocation with cooperative game theory,
exhibit a good trade-off between overall system rate and fairness. The fairness
schemes in the solutions based on cooperative game theory are extended
approaches of that in classic solutions of: max-min fairness, and weighted
proportional fairness schemes. Unfortunately, they also present a number of

common problems:

1) In almost all algorithms the utility function is restricted to either be convex

or strictly concave;

2) Most algorithms are based on non-linear programming, which is compu-
tationally intensive and hardly scalable when considering thousands of
subcarriers and tens of users. Thus, they are not suitable for a cost-

effective real-time implementation by network designers;

3) Although the resource apportionment turns out to be fair from the users
point of view, the achieved QoS may be much larger than demanded.
This implies a waste of network resources from a network service provider

perspective, which is often overlooked by previous works;

4) To reduce the computational complexity, each subcarrier is allocated to
mobile terminals in an exclusive manner, although this may limit the

number of concurrent connections in the uplink channel,

5) To reduce the computational complexity, the power constraint is usually
defined as the overall energy consumption of each user over all subcarriers
rather than individual limitation on each subcarrier, and this may result

in impractical spectral power distribution.

After reviewing cooperative game theory in Chapter 2, in Chapter 3 we will
introduce an algorithm based on cooperative games to overcome most of the
above mentioned disadvantages of the existing schemes. We aim at designing

a low-complexity algorithm that achieves each users QoS requirement in terms
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of target transmit rates, with the best utilization of the network resources, so

as to satisfy both the users and the network service provider.






Chapter 2

Cooperative game theory

Game theory is the study of decision making in an interactive environment.
Cooperative games fulfill the promise of group efficient solutions to problems
involving strategic actions. Formulation of optimal player behavior is a fun-
damental element in this theory. This chapter comprises a self-instructive
didactic means indicating how cooperative game theory tools can provide a
framework to tackle different network engineering problems.

This chapter is divided into nine sections. After a brief motivation in the
following section, Sect. 2.2 provides an introductory discussion of cooperative
game theory. We systematically study fundamental definitions and conditions
of cooperative games: superadditivity and convexity. Then, Sect. 2.3 and the
sub-section inside discuss the core set solution as the most known solution
for payoff distribution. Sect. 2.4 is devoted to a study of a strong payoff
distribution, the so-called Shapley value. In Sect. 2.5 we present a systematic
study of two others reward division called the kernel and nucleolus. Then,
in Sect. 2.6, we extend the concept of Nash equilibria in cooperative games.
Sect. 2.7 is an investigation of the concept of coordinated equilibria where
players of game are admitted to pre-communicate among themselves at once.
Finally, Sect. 2.8 helps a reader to understand the basic concepts and im-
portance of dynamic learning in cooperative games. Every sections contain
some motivation examples that are expedient to understand how different
communication networks problems can be modeled as cooperative game. We

conclude this chapter in Sect. 2.9.
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2.1 Motivation

The increase of the number of wireless services, combined with demand for
high definition multimedia communications, have made the radio resources,
and particularly the spectrum and power, a very precious and scarce resource,
not because of their unavailability but because they are used inefficiently.
For licensed spectrum, the measurements by Shared Spectrum Company [91]
shows that the maximal usage of the spectrum is a low percentage of the
whole licensed. While the number of users and the spectrum usage steadily
increase, the amount of spectrum is still considered a limited resource. Beside,
to differentiate between the true signal and background noise is complex for
a radio equipment. Generally, this complex process enforces terminals to
transmit strong version of signals, that wastes energy of a transmitter.

The modern wireless entities, i.e. wireless terminals and base stations, have
considerable capacities to execute dynamic processes. This capability encour-
ages wireless service providers to consider wireless entities as autonomous
agents which could cooperate and negotiate with each other to achieve an
efficient resource allocation in different situations. Cooperation among wire-
less terminals is usually intended to achieve a fair radio resource allocation.
Cooperation between base stations can be devised to mitigate interference,
and promote soft handover where channel gain is varying rapidly which is a
challenge in LTE [92].

Game theory is the most prominent tool to analyze interaction issue in social
sciences wherein often cooperation amongst autonomous agents is essential
for successful task completion. In many settings, groups of competing agents
are simultaneously concerned of both individual and overall benefits. In the
game theory literature, this branch is known as cooperative (coalitional) game
[75,76]. The players, as the main decision making entities in the game, are
considered to negotiate with each other to determine a binding agreement
among them. If we assume that all users act rationally and we know what the
behavior of the users are, it is possible to determine the overall performance

of a system since the actions of one user becomes part of the circumstances for
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another user. Thus, we are interested in individual performance and overall
system performance under a specific set of rules. To fully develop the different
possibilities within a game for cooperation among players we have to address
which groups the players can achieve collectively. Indeed, if a player assesses
that within a certain group it does not receive what it is able to get by itself,
then it might decide to abandon the cooperation and pursue an alternative
allocation by itself. Cooperative game theory offers the opportunity to extend
and expand the treatment of the players in traditional non-cooperative games,
especially where selfish players compete over a set of resources.

In the last few years, cooperative game theory has been successfully ap-
plied to communications and networking. The current literature is mainly
focused on applying cooperative games in various applications such as dis-
tributed/centralized radio resource allocation [88,93,94], power control [95,
96], spectrum sharing in cognitive radio [97,98], cooperative automatic repeat
request (ARQ) mechanism [99], cooperative routing [100], and cooperative
communications [101,102]. These problems in wireless networks can be mod-
eled as a cooperative game since it is highly likely that each wireless user
can obtain a better utility value by forming groups and controlling resources
cooperatively rather than individually. It has been shown that cooperation
can result in an enhanced QoS in terms of throughput expansion, bit error
rate reduction, or energy saving [103].

Cooperation can be realized at various layers of the network. At the physical
layer, different separate antennas can constitute a cluster and then cooperate
with each other to exploit multiple-input multiple-output (MIMO) gains. At
the MAC sublayer, some wireless terminals can cooperate with each other
to share a common wireless medium in an efficient manner and consequently
mitigate the interference hazard. There is also the possibility of cooperation of
physical and application layers among individual terminals to adapt channel
and source codings in multimedia communications. The altruistic decision of
cooperation with others network entities may result in an improvement on
overall network performance, and concurrently achieve an egoistic interest of

self improvement.
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2.2 Preliminaries

Game theory deals with the study, through mathematical models, of conflict
situations in which two or more rational players make decisions that will
influence each other’s welfare. The theory of cooperative games [75, 76] also
assumes that binding agreements may be established among the players in the
course of the conflict situation. In transferable utility (TU) games, agreement
may be reached by any subset of the players, and the gain obtained from
this agreement is a real number and it is transferable among these players.
In non-transferable utility (NTU) games, agreement may be reached by any
subset of the players, but the gain may be non-transferable. The main focus
of this dissertation will be on the study of TU games.

A TU game is a pair G = (K,v), where L = [1,..., K] denotes the set of
players and v the coalition (characteristic) function which is interpreted as
the maximum outcome (a real number) to each coalition (subset of K) whose
players can jointly produce. An NTU game is a pair G = (I, V) where V
is a mapping which for each coalition A, defines a characteristic set, V (A),
satisfying:

1. V(A) is non-empty and closed subset of RIAI,
2. For each k € A there is a Vi, € R such that V ({k}) = (—o0, Vi,

3. V (A) is comprehensive, i.e. for all u € V (A) and for all u’ € R |
if W'[k] <ulk]VEkeAthenu €V (A),

4. The set V (A) N {u' € RAI[u'[k] > Vi, V k€ A} is bounded.
The characteristic set, V' (A), is interpreted as the set of achievable outcomes
the players in A can guarantee themselves without cooperating with the

players in K\A. In particular, an NTU-game G = (K,V) is called a TU

game when the characteristic set for each coalition A, takes the form:

V(A) = {ueR'Al : ZukSV(A)} (2.1)

ke A
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where u = [u1,...,u4)] € RM! and uy is the payoff of player k in A and
v:28 — R, If A is a coalition (subset) of K formed in G, then its members
get an overall payoff v (A), zero for the empty set. Each coalition can be
represented as a pure strategy in non-cooperative game theory.

An important property of interest in characteristic form TU games is super-
additivity, which, if present, implies that the value of the union of any two

disjoint coalitions is at least as big as the sum of their values.
Definition 4 A TU game G is superadditive if
v(AUA) >v(A)+rv(A) YA,A CK st. ANA =0 (2.2)

In a superadditive TU game there are positive synergies and the players prefer
to join each other rather than act alone. Under superadditivity condition, the
players are willing to form the grand coalition (the set K).

Convez, or alternatively supermodular coalitional games were introduced
by L. Shapley [104]. They model cooperative situations where the marginal

contribution of a player to a coalition increases as the coalition becomes larger.

Definition 5 A TU game G is convez or supermodular if for all k € K:
v(AU{k}) —v(A) <v(A;Ulk}) —v(A;) YA CA c K\{k} (2.3)
Equivalently:
Definition 6 A TU game G is convex or supermodular if:
v(A)+v(A) < v(AinA)+r(AUA) YA,A CK (2.4)

Convexity means that there are increasing returns to scale. Note that a convex
game is superadditive. To better understand the importance of convexity
approach in network probems, we verify the convexity condition in a K-user
channel access game. The payoff of each coalition of players (transmitters) is
defined as the outer MAC capacity region. [105, Lemma 1] shows that in a
multiple access channel scenario, the inequality (2.4) is not met. This means
the game is not convex, and thus adding a new player does not give benefit

to others transmitters.
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2.3 The core solution

A central question in a coalitional game is how to divide the extra earnings (or
cost savings) among the members of the formed coalition. In a TU game, an
allocation is a function u from K to R that specifies for each player k € K the
payoff u;, € R that this player can expect when it cooperates with the other
players. The payoff of each player can show the cost borne by the player, the

power of influence, and so on depending on the problem setting.

Definition 7 Let IC be the set of K players of the superadditive TU game G,
and let v be the payoff of the game. The set of all “imputations” of G is the

set:
i) u=v(K)
T(K,v)={ uecRX: kek (2.5)
i) uxp >v({{k}) Vkek
where U = [uy,...,ur,...,ux] € RX is the imputation vector of the players.

The former condition is called the “feasibility”, and the latter “individually

rational” condition.

The core concept was introduced in [106] and is the most attractive and
natural way to define a payoff distribution: if a payoff distribution is in
the core, no agent has any incentive to be in a different coalition. The
core of a TU game is the subset of all imputations u € Z (K, v) that no
other imputation directly dominates, that is Au’ € I (K, v) s.t. u) > uy
Vk € K. As can be seen, for cooperative games as well as non-cooperative
games, the notion of dominance is essentially equivalent; the payoffs under
the various situations are compared and one situation dominates the others
if these payoffs are higher. The core actually presents a condition stronger
than Nash equilibrium in non-cooperative game: no group of agents should
be able to profitably deviate from a configuration in the core. Equivalently,
no set of players can benefit from forming a new coalition, which corresponds
to the group rationality assumption.

In an NTU game G = (K, V), the core apportionment is defined as:
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Definition 8 Let I be the set of K players of the superadditive NTU-game
G, and let V be the payoff of the game. The core of G is the set

SK,V)={ueV(K): VU eV(A) TkeA st up>u,} (26

where u is the payoff distribution across players, and uy, € u if and only if no
coalition can improve upon uj.

In a TU game G = (K, v), the core apportionment is defined as follows:

Definition 9 Let K be the set of K players of the superadditive TU game G,
and let v be the payoff of the game. The core of G is the sel

i) Zuk:V(IC)

S(K,v)={ ueR¥: ek 2.7
(K, v) i) Y w>v(A) VACK 27)
keA
where u = [u, ..., Uy, ...,ux] € RE is the payoff distribution across players,

and ur € u if and only if no coalition can improve upon up. The second

condition is called “non-blocking” condition.

The core consists of the set of allocations that can be blocked by any coalition
of agents. If for some set of agents A, the non-blocking condition does not
hold, then the agents in A have an incentive to collectively deviate from the
coalition structure and to divide v (A) among themselves. In general, the core
of a given TU game (K, v) is found by linear programming (LP) as:

min Z Ug ; s.t. Z up, >v(A) VACK (2.8)

]RK
UERT ek kcA

Madiman in [107] introduces some intuitive applications of core solution to
information theory contexts e.g. source coding and multiple access channel,
and summarize some of its limitations in multi user scenarios. Li et al. in [108]
show that the cooperation among wireless nodes and core apportionment can
increase spectrum efficiency in a TDMA cooperative communication. In [109],
Niyato et al. applies the core solution in a cooperative among different wireless

access networks to offer a stable and efficient bandwidth allocation.
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Indeed, there is a number of realistic application scenarios, in which the
emergence of the grand coalition is either not guaranteed, or might be per-
ceivably harmful, or is plainly impossible [110]. For a non-superadditive
coalitional game, the coalition formation process does not lead the players
to form the grand coalition. In this case, Def. 9 does not apply. Let us
redefine the core set in a general (not necessarily superadditive) coalitional
formation TU game. Let ¢ = [Ay, Ag, ..., Ay] denote a partition of the set
K wherein A;NA; =@ fori#j, U, Ai=Kand A #@ fori =1,...,m,
and let W denote the set of all possible partitions . Let us also define
F =[A1,As,..., Ay], such that J;_, A =K and A, # @ fori=1,...,n, as

a family of (not necessarily disjoint) coalitions.

Definition 10 A “core apportionment” u € RX is a payoff distribution with

the following property:

i) Zuk = gleai’cz v(A)

S(K,v)={{ ueRX: hek Aey 2.9
fvi=qu i) S u>v(4) VACK 2
ke A

Note that, if G i dditive, th =v (K).
ote that, if G is superadditive, then glgg%u(A) v (K)

The core allocation set can be found through linear programming and its
existence, in general, depends upon the feasibility of (2.8). Unfortunately,
the core is a strong notion, and there exist many games where it is empty.
We can study the non-emptiness of the core without explicitly solving the

core equation. The following notation helps to simplify the dual of (2.8).

Definition 11 A superadditive TU game G for a family F of coalitions is
“totally balanced” if, for any A € F, the inequality

> na v (A) £ v (K) (2.10)
AcF
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holds, where pua is a collection of numbers in [0,1] (balanced collection of
weights) such that

> pala=1x (2.11)
der

with 14 € RE denoting the characteristic vector whose elements are

1, i€ A
(1a)[t] = (2.12)
0, otherwise

The following pathbreaking result in the theory of TU games was indepen-
dently gave by Bondareva [111] and L. Shapley [112].

Lemma 1 ([75]) A totally balanced TU game has a non-empty core set.

Where forming the grand coalition is not guaranteed, the following notation

is applied.

Definition 12 A (not necessarily superadditive) TU game G for a family F
of coalitions is totally balanced if, for every balanced collection of weights 4,
and for any A € F,

Z pa - v (A) < max v(A) (2.13)

¥
AeF VeV Ay

So, if a TU game is totally balanced, then the core is non empty and therefore
it is a convenient solution concept on the class of totally balanced TU games.

There is an interesting relation between convex and balanced games.

Lemma 2 ([76]) A convex game is totally balanced, but the converse is not

necessarily true.
The other key feature of cooperative convex games is

Lemma 3 (L. Shapley [104]) The core set of a convex game is unique.
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Fig. 2.1: The network allocates power among three players according to their will
to cooperate with each other. A selfish player receives zero, a pair of cooperative

players receive 0.8 mW , and the network supply 1 mW to the grand coalition.

Now, we illustrate an intuitive example of power distribution based on core
set solution. This example is an extended form of the example established
by [113, Ch. 12]. The network sketched in Fig. 2.1 wishes to allocate power
among three players I = {ki, ko, k3}, according to their will to cooperate
with each other. A power of 1 mW is provided to the network if three players
decide to cooperate, or equivalently if the grand coalition will form. If only
one player refuses to cooperate, a power of 0.8 mW will be assigned to the

pair of cooperating nodes. The coalition game of Fig. 2.1 is defined by:

0 if |Al=1;
v(A) =408 if |A]=2 (2.14)
1 if A =3

The players of each coalition will cooperate with each other. The player of a
singleton coalition will be isolated.

FEach player receives a positive payoff if it decides to cooperate, whereas
all players receive zero if no agreement is bound. To divide the total payoff
(power) in some appropriate way, we rest on the core set definition. It is
straightforward to show that the cooperative TU game defined by (2.14) is
superadditive. From Eqs. 2.3 and 2.4, it is easy to show that TU game (2.14)
is not convex (supermodular). To check whether the core set of TU game
(2.14) is empty or not, we resort to the balanced solution. TU game (2.14)

is not balanced even though assigning the balanced weights as pyq = 1 for
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singleton coalitions, and p4 = 0 otherwise, inequality (2.10) holds. By using
the fact that there exists other balanced collection of weights in which p g = %
for |A| =2, and p4 = 0 otherwise, the game is not balanced, and its core set
may be empty. Note that, this result does not mean that the core set of the
game is surely empty.

Now, we heuristically find a core apportionment studying various possible
networks. When there is no cooperation among players, the players are not
provided with any power. That is, F = [{k1}, {ko}, { k3 }] with payoff
distribution:

Uy = Uy = Upy =0
If only one player decides to stay alone, the payoff 0.8 is equally divided
between the two cooperative players and the isolated player gets zero. That
is, for instance, F = [{ k1, k2 } , { k3 }]| with payoff distribution:

Uks = 0
Uk, = Uk, = 0.4

Now, we suppose a player, for example, ks decides to cooperate with both
ki1 and ks, but the two players k; and k3 do not bind an agreement to
mutually cooperate. It is reasonable to suppose that the player ky can act
as a relay between k; and k3 and it must be provided more power. That is
F=[{k1, ka}, {ka,ks}] with payoff distribution:
Uk, = Uk, = 0.2
{ U, = 0.6

Finally, in the complete network each player receives the same payoff. That
is F = [{ k1, ko, ks }] with payoff distribution:

Uy = Uy, = Uky = 1/3

As can be easily seen, the above argument satisfies feasibility and non-
blocking conditions of the core set apportionment in Def. 9. It is worthwhile to
note that the core set definition does not imply an even division of the whole
payoff across players. Thus, it is clear that this game consists of multiple core

sets.



56

Cooperative game theory

2.3.1 On core stability

The goal of the network Fig. 2.1 is to allocate power among players in order
to stimulate all of them to cooperate. Obviously, each player tries to get the
highest possible payoff. Let us predict the behavior of the players after having
known the definition of the game. Suppose that the players k1 and ks find
an opportunity to meet each other. Obviously, they quickly take advantage
to cooperate and achieve payoff distribution u = [0.4, 0.4,0]. Then, it is
profitable for player ky to invite player ks to join and therefore, improving its
own payoff from 0.4 to 0.6 and that of player k3 from zero to 0.2. On the
other hand, this new agreement causes a decreasing payoff of player ko from
0.4 to 0.2, and now the players ky and ks have an incentive to cooperate and
increase their proper payoff from 0.2 to 1/3. Note that this agreement makes
the player k1’s payoff dcrease from 0.6 to 1/3. The unfavorable decision of
player ko would tempt player k; to retaliate. A negotiation between k1 and k3
to release cooperation with ks results increasing their payoffs and boiling down
ko’s payoff to zero. The result of above argument concerns: The network is
sustained by only one pair cooperation under the threat of: “If you cooperate
with the third player, then I will do the same”.! It is fairly clear that the
players would seek to cooperate only as pairs for the purpose of negotiation,
and not cooperate in the grand coalition framework, even though the game
is superadditive. This is due to fact of being superadditive but not balanced.
The pairs can be changed as time goes on. In fact, the core apportionment
suffers the lack of “farsighted” (i.e., long-term) stability.

A coalition structure based on core set, is not adequately farsighted to avoid
the elusiveness of negotiation structure. At first sight, the core appears to be
an extremely myopic notion, requiring the stability of a proposed allocation
to deviations or blocks by coalitions, but not examining the stability of the
deviations themselves. In general, the stability requirement is that the out-
come be immune to deviations of a certain sort by coalitions. To provide the

formal definition of farsighted stability, we need some additional notation.

I Two is cooperation, three is a crowd.
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Definition 13 For u,u’ € Z(K,v), u “ndirectly dominates” u’, which
is denoted by u' < u, if there exist a finite sequence of imputations u’ =
ug, Us, ..., W, = u and a finite sequence of nonempty coalitions Ay, As, ..., A
such that for each j =1, 2,...,m—1:1) by the deviation of Aj, the imputation
of uj is replaced to w1, and i) ujlk] < ulk| for all k € A;.

Condition %) says that each coalition .A; has the power to replace imputation
u; by imputation u;i, and the condition i) says that each player in A;
strictly prefers imputation u to imputation u;. It is clear that the indirect

dominance relation contains the direct dominance relation.

Definition 14 Let G = (K, v) be a TU game. A subset J of T (K, v) is a
“farsighted stable” set if: i) for allu,u’ € J, neither u < u’ nor v’ < u, and
ii) for allu’ € Z(K, v)\J there exists u € J such that u' < u. Conditions

i) and ii) are called “internal stability” and “external stability”, respectively.

By internal stability, there is no imputation in J that is dominated by
another imputation in J. By external stability, an imputation outside a
stable set J is unlikely to be attained. Let us introduce three other different

payoff distribution concepts which capture foresight of the players.

2.4 Shapley value

The Shapley value is an alternative solution for the payoff distribution in
TU games. The Shapley value has long been a central solution concept in
cooperative game theory. It was introduced by L. S. Shapley in the seminal
paper [114] and it was seen as a reasonable way of distributing the gains of
cooperation, in a fair and unique way, among the players in the game. In the
Shapley solution, those who contribute more to the groups that include them
are paid more. Let us denote ¢y () as the Shapley value of player &k in the
TU game defined by v. The surprising result due to Shapley is the following

theorem.
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Theorem 1 There is a unique single-valued solution to TU games satisfying
efficiency, symmetry, additivity and dummy. It is the well-known Shapley

value, the function that assigns to each player k the payoff:

o) = 3 AUV EZAN g avry) @)

VACK Kl
s.t. ke A
The expression v (A) — v (A\{k}) is the marginal payoff of player k to
the coalition A. The Shapley value can be interpreted as the expected
marginal contribution made by a player to the value of a coalition, where the
distribution of coalitions is such that any ordering of the players is equally
likely. That makes the Shapley value exponentially hard to compute. Shapley
characterized such value as the unique solution that satisfies the following four

axioms:

1. Efficiency: The payoffs must add up to v (K) , which means that all the

grand coalition surplus is allocated. That is:

S 6 (v) = v (K)

kek
In the absence of superadditivity, instead we use: qula‘if Z v(A).
€
Aey

2. Symmetry: This axiom requires that the names of the players play no
role in determining the value. If two players are substitutes because they
contribute the same to each coalition, the solution should treat them

cqually. That is:
v(AU{k) =v(AUu{i}) = o (v) =¢i(v).

3. Additivity: The solution to the sum of two TU games must be the sum of

what it awards to each of the two games. That is:

ok (V+w)=¢p (V) +ér(w)  VEkeK.
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4. Dummy player: The player k is dummy (null) if v (AU {k}) =v (A) for
all A not containing k. If a player k£ is dummy, the solution should pay it
nothing; i.e. ¢y (v) =0.

The Shapley value is a feasible allocation, but need not be individually
rational. Whenever the TU game is superadditive, the Shapley value is feasible
and individually rational, but need not be in the core and hence can be directly
dominated by another imputation. Reference [104] shows that the Shapley
value of a supermodular TU-game is a core imputation, that is, the Shapley
value is not dominated. For a superadditive TU game The Shapley value is an
internal and external stable imputation, and for NT'U games, it is formulated
in [115,116]. To make an example, let us calculate the Shapley value of the

players in the power distribution game of Fig. 2.1:

0 {ki}, {ka}, {ks};
v=140.8 {ki, ko }, {ki, b3}, {ko, b3}y =
1 {ki, ko, ks}.

bk, (V) = bk, (V) = Py (V) =
11! 111! 21.0!
0+ T(0.8—0)+T(0.8—0)+T(1—0.8): 1/3.
Young in [117] defines an equivalent definition for Shapley value. He with-

draws the additivity axiom, and instead, adds an axiom of marginality.

1. Marginality: If the marginal contribution to coalitions of a player in two
games is the same, then the the award of the player must be the same.
That is, if:

v(Ai) —v (AN} =w(A4)) —w(A\{k}) VA €Ev and VA; €w,
then ¢ (v) = ¢ ().

Marginality is an idea with a strong tradition in economic theory. In Young’s
definition, marginality is assumed and additivity is dropped. Young in [117]

shows that the Shapley value is unique.
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Theorem 2 (Young [117]) There exists a unique single-valued solution to
TU games satisfying efficiency, symmetry and marginality, and this solution

is the Shapley value.

In the network engineering literature, S. Kim in [118] proposes an energy
efficient routing protocol based on the Shapley value. The concept of Shapley
value is used by Khouzani et al. [119] to achieve a fair aggregate cost of link
sharing, among primary and secondray users in a cognitive network. Using the
Shapley value, a suitable network resource sharing among multimedia users

is fairly achievable, as Park et al. propose in [120].

2.5 The kernel and nucleolus

Let G = (K,v) be a coalitional game with transferable payoff. The excess of
the coalition A with respect to the payoff vector u € RX is defined as

e(A,u)=v(A) — Z g, (2.16)

kcA
A positive excess can be interpreted as an incentive for a coalition to generate
more utility. Using the excess notion, the core apportionment in a TU game

can be redefined as:
{ueRX: ¢(K.u)=0 ,and e(4A,u)<0 VACK} (2.17)
The mazimum excess of player k against i is defined as
s (u) =max{e(A,u) |ACK, ke A, iec K\A} (2.18)

If player k departs from u, the most it can hope to gain (the least to lose)
without the consent of player ¢ is the amount of maximum excess. Extensions
of the excess for NTU games is formalized in [121].

As defined by Osborne and Rubinstein [75, Ch. 14|, a coalition 4; is an
objection of k against ¢ to u, if A; includes k but not ¢ and u; > v ({i}).

Equivalently, A; is a coalition that contains k, excludes ¢ and which gains too
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little. A coalition A; is a counter-objection to the objection A; of k against
i, if A; includes i but not k and e (A, u) >e(A;, u). Equivalently, A; is a
coalition that contains i and excludes k and that gains even less. Objections
and counter-objections are exchanged between members of the same coalition
in A;.

The idea captured by the kernel is that if at a non empty imputation u
the maximum excess of player k against any other player i is less than the
maximum excess of player ¢ against the player k, then player k should get
less. Of course, the players cannot get less than their individual worths if u

is an imputation. The definition of the kernel follows:

Definition 15 The kernel is the set of all imputations u with the property
that for every objection A; of any player k against any other player i to u

there is a counter-objection of i to A; such that:
a) sgi(u) = s (u); or

b) spi(u) < sip(u) and up=v({k}); or
¢) spi(u) > s (u) and u; = v ({i}).

The kernel is the set of imputations u such that for any coalition A;, for
each objection A; of a user k € A; over any other member i € A;, there is
a counter-objection of i to A;. The kernel is contained in the (nonempty)
core in any assignment game v [122, Th. 1]. In Fig. 2.1, the unique kernel
element is the equal split u=[1/3, 1/3, 1/3], otherwise for the single player
coalition objection of the player with the minimum payoff, there is no any
counter-objection.

The last type of a stable imputation we will study is the nucleolus. With
the nucleolus no confusion regarding the player set can arise. The basic
motivation behind the nucleolus is that one can provide an allocation that
minimizes the excess of the coalitions in a given cooperative game G = (K, v).
For a TU game G = (K,v) and the payoff vector u € RE | let us denote
Ew =[>e(Ad,u)> : 0#A#K] as a 2K —2 dimensional vector
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whose components are the values of the excess function for all A C K,
arranged in a non-increasing order. The nucleolus of a game is the imputation
which minimizes the excess with respect to the lexicographic order ? over the
set of imputations. The nucleolus of G with respect to Z (K, v) is given by:

{ueZ(K,v)|E() =2, E(W) VU eZ(K,v)} (2.19)

The definition of the nucleolus of a cooperative game in characteristic func-
tion form entails comparisons between vectors of exponential length. Thus, if
one attempts to compute the nucleolus by simply following its definition, it
would take an exponential time. In the network engineering literature, Han
and Poor in [123] apply the Shapley value, excess and nucleolus solutions to
study a possible cooperative transmission among intermediate nodes to help
relay the information of wireless users.

This defining property makes the nucleolus appealing as a fair single-valued
solution. It is easy to see that, whenever the core of a game is nonempty,
the nucleolus lies in it [76]. Moreover, the nucleolus always belongs to the
kernel and satisfies the symmetry and dummy axioms of Shapley: dummy
players receive zero payoffs. If a null player is removed from the game, the
payoff allocation of the remaining players is uninfluenced by its departure.
Because of these desirable properties, the nucleolus solution has found a lot
of applications in cost sharing and resource allocation as Maschler in [124]
reports. However, the nucleolus possesses certain features that makes it less
agreeable. The original definition treats the excesses of any two coalitions
as equally important, regardless of coalition sizes and coalition composition.
Some unappealing features of utility distribution, derived with the nucleolus
are listed in [117]. For instance, the nucleolus lacks many monotonicity
properties. That is, if a game changes so that some player’s contribution
to all coalitions increases then the player’s allocation should not decrease.
Monotonicity states that as the underlying data of game change, the utility

must change in a parallel fashion.

2The lexicographic order between two vectors u and u’ is defined by u <., u’, if there
exists an index k such that u[l] = u’[l] for all I < k, and u[k] < u’[k].
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2.6 Cooperative Nash equilibria

Coalitional games aim at identifying the best coalitions of the agents and a
fair distribution of the payoff among the agents. The classic core solution is
an extension of the Nash equilibrium, since the coalitions bind agreements of
agents with each other and earns a vector value rather than a real number.
In [125, Sec. 7.6] it is shown that the core set of an underlying coalitional
game, if it exists, asymptotically coincides with the set of Nash equilibria of
the repeated game, in the long run. The result of the Nash equilibrium is
not always a satisfactory outcome for an external observer (e.g., prisoner’s
dilemma game). R. Aumann® in [126] and Bernheim et al. [127] introduce a
stronger notion of Nash equilibria based on coalitional game theory. First, let
us review the definition of the Nash equilibrium where each pure strategy in
a static game is presented as a coalition in a cooperative game. Thus, each

player belongs to only one coalition.

Definition 16 A pure strategy (coalition) combination ¢ = [A1, As, ..., An]
wherein A; (VAj2 =0, U~ A; = K and a payoff distribution u = [uy, ..., uk]
is a pure Nash equilibrium if there does not exist a player k € K whose unilat-
eral deviation to a different coalition (pure strategy) yields a new distribution

u' = [ul,...,u] such that uj > .

In other words, in a Nash equilibrium no agent is motivated to deviate from
its coalition (strategy) given that the others do not deviate. As an example,
we study the forwarder’s dilemma game [128] presented in Fig. 2.2. This game
is intended to represent a basic wireless relay operation between two different
wireless terminals. These two agents, represented by players k; and ko, are
supposed to operate a direct link that enables them to communicate without
intermediaries. Each players wants to send a packet to its destination, d
and dy respectively, in each time step using the other player as a forwarder.
We assume that each forwarding has a energy cost 0 < ¢ < 1. If player

3Robert Aumann has received in 2005 the Nobel prize in economy for his contributions

to game theory, together with Thomas Schelling.
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Fig. 2.2: The network scenario of the forwarder’s dilemma game.

ko

kq

u= [uk’l?uk’z]

Tab. 2.1: The strategic form in the forwarder’s dilemma game. In each cell, the

first value is the payoff of player ki, whereas the second is that of ko.

ky forwards (F) the player’s ko packet, player ko gets a reward 1 and vice
versa. Each player’s utility is its reward minus the cost. Each player is
allured to drop (D) the received packet for saving energy. The strategic
form of this game is depicted in Tab. 2.1. In the cooperative representation
of the forwarder’s dilemma game there are two coalitions ¢ = [Ap ., Ap]
and each player in K = {k;1, k2} must choose one coalition. For instance,
v =[Ar ={k1, ka}, Ap = ()] is equivalent to the strategy profile (F, F') and
Y = [Ap={k2}, Ap={k1}] corresponds to the strategy profile (D, F), and
SO on.

Unilateral deviation of player ki from ¢ = [Ap = {k1, k2}, Ap = 0] to
= [Ap = {k2}, Ap = {k1}] increases its own payoff, and therefore the pure
strategy profile (F, F') is not a Nash equilibrium point. The same applies to
the departure of player ko from 1 = [Ap = {k1, k2}, Ap = 0] to the pure
strategy ¢ = [Ap = {k1}, Ap = {k2}]. We can casily check the different
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combinations of 1) = [Ap = {ki}, Ap = {k2}], ¥ = [Ar = {ka}, Ap = {k1}],
and finally v = [Ar =0, Ap = {k1, k2}]. The unilateral move of user k;
(resp. ko) from the strategy profile ¢ = [Ap =0, Ap = {k1, k2}] to ¥ =
[Ap = {k1}, Ap = {k2}] (resp. to ¢ = [Ap = {ka}, Ap = {k1}]), does not
yield any benefit. This game has a unique Nash equilibrium at the pure joint
strategy ¢ = [Ar = 0, Ap = {k1, k2}] with unsatisfactory payoff distribution
u = [0, 0]. At the Nash equilibrium point either players choose the “com-
petetive” and “egoistic” strategy D.

In many games, there are opportunities for joint deviations that are mutually
beneficial for a subset of players. This led Aumann [126] to propose the
idea of strong Nash equilibrium which ensures a more restrictive stability
than the conventional Nash equilibrium. Strong Nash equilibrium reflects the
unprofitability of coalition deviations. It is a strategy profile that is stable
against deviations not only by single players but by all coalitions of players.
A strong equilibrium is defined as a strategic profile for which no subset of
players has a joint deviation that strictly benefits all of them, while all other

players (in the subset) are expected to maintain their equilibrium strategies.

Definition 17 A strategy (coalition) combination ¢ = [A1, Az, ..., Ay, ] where
AiNAjzi =0 and U~ A; = K with payoff distribution u = [u1, ..., uk] is a
strong Nash equilibrium if there do not exist a coalition A; € 1 whose deviation
yields a new distribution u' = [u}, ..., u] such that uj, > ur Yk € A; and
Jk € A; such that uj, > uy.

This definition of strong equilibrium is actually slightly different from those
of [126] and [127]. Def. 17 allows a coalition to deviate from a strategy profile
that strictly increases the payoffs of some of its members without decreasing
those of the other members, whereas the original definition allows only devia-
tions that strictly increase the payoffs of all members of a deviating coalition.
We note that if a game implements a strategy for strong equilibrium, it does
not necessarily implement it for Nash equilibrium. Both interpretations of

strong Nash equilibrium are prominent in the literature, and in most games
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the two definitions lead to the same sets of strong Nash equilibria; however,
the one that we use here is slightly more appealing in the context of network-
formation games (see, e.g., [129]). Network formation games involve a number
of independent players that interact with each other in order to form a suited
graph that connects them.

Now, we restudy the forwarder’s dilemma game and try to find strong Nash
equilibria profile. We will show that the game possesses strong Nash equilibria
which are not equivalent to the Nash equilibrium. We pick different coalition
combination and test whether there exist any coalition whose deviation sat-

isfies its own members or not.

1. ¢ =[Ar = {k1}. Ap = {k2}] is not strong Nash equilibrium because the

deviation of A increases its member’s payoff.

2. ¢ =[Ar ={ke}, Ap = {k1}] is not strong Nash equilibrium because the

deviation of Ap renders its member’s payoff higher.

3. v=[Ap =0, Ap = {k1, k2}] is not strong Nash equilibrium because the

deviation of both players from Ap to Ap increases payoff distribution.

4. y = [Ap ={k1, ka}, Ap =] is strong Nash equilibrium because the
departure of one or both players from Ar to Ap decreses at least one

player’s payoff.

The unique strong Nash equilibrium is the strategy profile (F', F') which
corresponds to coalition set of ¢ = [Ap = {k1, ka}, Ap = )], since no devi-
ation can better off the payoff distribution vector u =[1—c¢, 1 —¢]. In fact,
at the strong Nash equilibrium, both players choose the “cooperative” and
“altruistic” strategy of F' in spite of the energy transmission cost.

In network problems, Zhong et al. show that using strong Nash equilibria
context makes possible a collusion-resistant routing in non-cooperative wire-
less ad hoc networks [130]. Altman et al. in [131] examine a dynamic random

access game with orthogonal power constraints in which the probability of



2.6 Cooperative Nash equilibria

67

transmission of a terminal in each slot depends on the amount of energy left
prior to that slot. They show the existence of a strong Nash equilibrium point.

Conventional Nash equilibrium is concerned with the possibilities of only
one step deviation by any player. The notion of strong Nash equilibrium
requires an agreement not be subject to an improving (one step) deviation
by any coalition of players given that all others coalitions be inert. This
notion is stronger than Nash equilibrium, but it is not resistant to further
deviation by sub-coalitions (the subsets of a coalition). Recognizing this
problem, Bernheim et al. [127] introduced the notion of coalition-proof Nash
equilibrium, which requires only that an agreement be immune to improving
deviations which are self-enforcing. The definition of a self-enforcing deviation

is recursive.

Definition 18 For a singleton coalition, a deviation is self-enforcing if it
mazximizes the player’s payoff. For a coalition of more than one player, a
deviation is self-enforcing if: i) it is profitable for all its members, and i) if
there is no further self-enforcing and improving deviation available to a proper

sub-coalition of players.

Generally, a deviation by a coalition is self-enforcing if no sub-coalition
has an incentive to initiate a new deviation. In the forwarder’s dilemma
game, the Nash equilibria is upset by a deviation of the coalition of both
players k1 and ko. At the pure strategy Nash equilibrium where each player
choose strategy D, they each obtain a payoff of 0. By jointly deviating
(both choosing F instead) ki and ko each earn a payoff 1 — ¢. This devi-
ation is not self-enforcing even thought the movement to the pure strategy
Y =[Ar = {k1, k2}, Ap = 0] is profitable for both players. At strong Nash
pure strategy (F', F), the player k1 tempts to move to strategy (D, F) to get
more payoff, and player ks to that (F', D). Thus, the strong Nash equilibrium
is not immune against self-enforceability.

This notion of self-enforceability provides a useful means of distinguishing
coalitional deviations that are viable from those that are not resistant to

further deviations. With the concept of self-enforceability, our notion of
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coalition-proofness is easily formulated.

Definition 19 In a one player game, a strategy is a coalition-proof Nash
equilibrium if it maximizes the player utility. In a game with more than one
player, a combination strategy is coalition-proof Nash equilibrium, if no sub-

coalition has a self-enforcing deviation that makes all its members better off.

This solution concept requires that there is no sub-coalition that can make
a mutually beneficial deviation (keeping the strategies of non-members fixed)
in a way that the deviation itself is stable according to the same criterion.
In the forwarder’s dilemma game, the strong Nash equilibrium profile (F', F)
is not equivalent to coalition-proof Nash equilibrium. This is due to the
fact that, the deviation of {ki} C Ap = {k1, k2} to the strategy (D, F)
increases payoff of k;. In this game there does not exist any coalition-proof
Nash equilibrium, due to the fact that all pure strategies have at least one
self-enforcing deviation.

Bernheim et al. [127] note that for 2-person games the set of coalition-proof
equilibria coincides with the set of Nash equilibria that are not Pareto domi-
nated by any other Nash equilibrium. However in n-person games (K > 3) the
equilibrium concepts are independent. At coalition-proof Nash equilibrium,
the deviations are restricted to be stable themselves against further deviations
by sub-coalitions. Moldovanu in [132] discusses the situations of a 3-player
game, wherein coalition-proof Nash equilibrium is equivalent to the core set.
The conditions under which the set of coalition-proof Nash equilibria coincides
with the set of strong Nash equilibria, are formulated by H. Konishi et al.
in [133].

In the network engineering literature, Félegyhdzi et al. in [134] apply the
concept of coalition-proof Nash equilibria to achieve a stable and fair channel
allocation solution in a competitive multi-radio multi-channel wireless cog-
nitive network. Gao et al. investigate multi-radio multi-channel allocation
in multi-hop ad-hoc networks [135]. To better understand the concepts of
self-enforceability and coalition-proof Nash equilibrium, let us introduce an

intuitive subcarrier allocation game in an OFDMA network. Let us focus on
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three wireless transmitters K = {ki1, k2, k3} and an OFDMA base-station
with two subcarriers NV = {1, 2}. Every subcarrier n € A has a frequency
spacing Af. Each user k € IC experiences a Gaussian complex-valued channel
gain |Hg,|* on the nth subcarrier to the base station. We assume that each
subcarrier can be shared among more than one transmitter. The payoff of
each player (transmitter) is defined as the achieved Shannon channel capacity.
Each user k£ € K is allowed to either spend a certain power B, on only one
choosen subcarrier, or equally divide it among both subcarriers. In the pure
strategy ai, player k transmits with the maximum power p;,, on subcarrier
n = 1 and does not transmit any information on subcarrier n = 2. The
strategy ao is contrary to ay, i.e. exclusively transmitting on subcarrier n = 2
with maximum power. Finally strategy as equally divides its power on two
subcarriers and exploits transmitting on both tones. The terminal k achieves

a channel capacity:

Ry =3 Rin (2.20)
neN
where Ry, is the Shannon capacity achieved by user k on the nth subcarrier:
|Hk7l |2 Pkn
D ktickc \Hin | pin + 02,

Ry, = Af - log, <1 + (2.21)
wherin pg, represents the power allocated by terminal k& over the nth subcar-
rier and where the interference term 3 kick |Hip, |2 Din 1s appriximated with a
Gaussian random variable of equal mean and variance. Chooisng the strategy
a1 means selecting pr1 = p, and pra = 0._ For the strategy ag, pr1 = 0 and
Pra = Py, and for strategy as, pr1 =pr2= Pr The parameter o2 is the power
of the additive white Gaussian noise (AWGN). Note that, in an OFDMA
system, there is no interference between adjacent subcarriers. Hence, Rp,
considers only intra-subcarrier noise, that occurs when the same subcarrier is
shared by more terminals.

Tab. 2.2 reports the simulation results obtained after 100 random realizations

of a network with terminals distributed at a distance between 3m and 50m
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ks (a1) ks (as) ks (a3)
ko ko ko
ay az as ay a2 as ay a2 as

ail 8, 5, 611,11, 7| 9, 11, 6| |12, 7, 10|15, 10, 10| 11, 10, 9| | 9, 5, 10|12, 9, 10| 9, 10, 9

ki1 a212, 8, 6|8, 7, 10| 9,11, 8| |11, 11, 8| 7, 6, 6 | 8 11, 7| |13, 9, 11| 8, 6, 11| 8, 10, 10

az| 15, 6, 6| 14, 8, 8| 13,10, 7| |14, 8, 9|15, 6, 7| 13, 9, 7| |14, 6, 10|14, 7, 10| 12. 9, 10

u= [uk1 » Uky 5 uka]

Tab. 2.2: Subcarrier allocation in OFDMA network game in strategic form. The
three strategies for three players ki, k2 and ks are: Transmitting with the mazimum
power only on subcarrier number 1 (a1), transmitting with the mazimum power only
on subcarrier number 2 (a2) and equal division of the mazimum power among both

subcarriers (as). The player’s payoff is the achieved channel capacity in kb/s.

from the base-station. In the pure strategy matrix form of Tab. 2.2, player
k1 chooses the row, player ks chooses the column, and player ks chooses the
matrix. Each payoff reports the (rounded) value of the achieved Shannon
channel capacity in kb/s. We consider the following parameters for our
simulations: the maximum power of each terminal k is p;,, = 10mW; the
power of the ambient AWGN noise on each subcarrier is 02 = 100pW, and
finally the carrier spacing is Af = 7#0: MHz.* The path coefficients |H, inls
corresponding to the frequency response of the multipath wireless channel, are
computed using the 24-tap I'TU modified vehicular-B channel model adopted
by the IEEE 802.16m standard [136].

It is easy to show that the (pure) Nash equilibrium strategies of Tab. 2.2 are
(as, ag, ag) equivalent to ) = [A,, =0, Ag, =0, Ag, = K] and (a1, ag, az)
to ) = [Ag, ={k1}. Ag ={ka, ks}, Ay, =0]. The Nash equilibrium
strategy (as, as, ag) is neither coalition-proof nor strong. With deviation of
the coalition A,, to the strategy profile (as, a1, a3) all players profit more
with payoft distribution [13,9, 11]. This change is no longer valid since,
there exists a self-enforceability for player k; to transit to the strategy profile

4This is the carrier spacing of each subcarrier at a base station with 10 MHz bandwidth

and 1024 subcarriers.
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(as, a1, ag). This transition is not favorable for players ko and k3. The player
ko is tempted to transit to the Nash equilibrium point to earn a higher payoff.
Whereas, the Nash equilibrium strategy profile (a1 , as, az) with payoff vector
[15, 10, 10] is a strong and coalition-proof Nash equilibrium. This is due to
the fact that, in ¢ = [As, = {ki}, A, = { k2, k3 }, Aq, = 0] there is no
deviation and self-enforceability that can improve the payoff distribution. As
can be seen, all players prefer to stay at the coalition-proof Nash equilibrium
rather than the pure Nash equilibrium strategy (as. as, as). Note that, a
strong or coalition-proof Nash equilibrium does not necessarily coincide with
a Nash equilibrium strategy profile, and the result of Tab. 2.2 is an exception.

In general, the existence of a pure cooperative or non-cooperative Nash equi-
librium for subcarrier allocation game in OFDMA network is not guaranteed.
Given different parameters approaches to quite different channel capacities
and this may results a matrix form without any type of Nash equilibrium.
There even might exist a Nash equilibrium which is Pareto-dominated by an-
other strategy profile. This shows that in OFDMA networks, an appropriate
resource allocation technique is needed.

2.7 Coordinated equilibrium

The most common solution concept in (non-cooperative) game theory, Nash
equilibrium, assumes that players take mixed actions independently of each
other. Cooperative games allow players to coordinate each other to find out
possible equilibria and (joint) optimizations that the players can perform on
their own. Unlike evolutionary games [75, Ch. 3], in coordinated games the in-
teraction between players is implemented once, among all players by a central
authority, to increase their throughput. The notion of correlated equilibrium
was introduced by R. Aumann [137]. Correlated equilibria are defined in a
context where there is an intermediator who sends random (private or public)
signals to the players. An intermediator needs not have any intelligence or

knowledge of the game. These signals allow players to coordinate their actions,
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ko

w 0,0 0,1—¢
ky

A 1-¢,0 —c, —¢

u= [ukl?ukz]

Tab. 2.3: The multiple access game in strategic form. The two moves for each

player are: access (A) or wait (W).

and, in particular, to perform joint randomization over strategies. “Correlated
strategies are familiar from cooperative game theory, but their applications
in non-cooperative games are less understood”, says R. Auman [137]. This
is because, the players of a coordination game, are not totally isolated and
without a communication between them, achieving to coordinated strategy
profile is not possible.

Let us start with an intuitive example. Consider the multiple access game
(128, Table III] described in Tab. 2.3. The players k1 and ke wish to send
some packets to their receivers sharing a common resource, i.e., the wireless
medium. They are in the sight of each other and accordingly, they interferer
if transmitting at the same time. The users have two possible pure strategies:
access (A) and wait (W). In this game two identical transmitters must
simultaneously decide whether to access to channel or wait. The transmission
of each packet has an energy cost of 0 < ¢ < 1. Each player earns a payoff 1
if it succeeds to transmit its packet without collision with the other. Waiting
does not bring neither cost nor reward for the player. Each player’s utility
is its reward minus the cost. This game has three Nash equilibria: (4, W),
(W, A) and a mixed strategy Nash equilibrium where each player transmits
with the probability 1 — ¢ [128, Sec. 2.3, 2.4]. The utilities of Nash equilibria
strategies are: (1—c, 0), (0, 1—c) and (0, 0), respectively. It is clear that the
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ks

w A

W 104-32¢ 11-16¢
64 32

k1

A 11—16¢ 10432¢

32 64

u= [uk1 :ukz]

Tab. 2.4: The strategic form matriz of the multiple access game with preplay

agreement.

mixed strategy is not resistant to an improving deviation. In the following,
we give the possibility of preplay communication to achieve a stable Nash
equilibria.

In the game with “cheap conversation”, each player simultaneously and pub-
licly announces whether it decides to access or wait. Following the announce-
ments each player makes its choice. Suppose the players agree to participate
to the game binding the following agreement: each player announces A with
probability 2. If the profile of announcements is either (A, W) or (W, A),
then each player plays its own announcement. Otherwise, each player plays
A with probability % Note that no further communication is possible. The
use of joint deviation requires the unanimity of all members of the deviating
coalition. A player agrees to be a part of a joint deviation if given its own
information the deviation is profitable. Thus, if a joint deviation is used, it
is common knowledge that each deviator believes that deviation is profitable.
This tradeoff results in an expected payoff for each player of % > 0,
while in the mixed Nash equilibrium of the original game each player has an
expected payoff of 0. In this coordinated Nash equilibrium of the game, the
players effectively play the correlated strategy [137,138] (of the original game)
given in Tab. 2.4, in order to face a higher utility in strategy profiles (4, W)
and (W, A). It is important to note that, this joint probability distribution is
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replacemen

(far player)

Fig. 2.3: The network scenario in the near-far effect game.

not the product of its marginal distributions and therefore cannot be achieved
from a mixed strategy profile of the game without correlation among players.

As can be seen, the proposed correlated deviation from the mixed strategy
equilibrium makes both players better off. Note that the players are allowed
to bind an agreement only on the space of feasible outcomes. In the correlated
multiple access game the outcome is feasible since the correlated results are
in the range between the smallest and highest possible payoff. In fact, the set
of correlated equilibria contains those equilibria from which no coalition has

a self-enforcing deviation making all members better off.

Let us describe a more complicated correlated equilibrium. We study the
near-far effect game established by G. Bacci et al. in [139, Fig. 6]. The
basic idea of near-far effect game scheme is depicted in Fig. 2.3. Two wireless
terminals k; and ko, are placed close to and far from a certain access point
(AP), respectively, in a code division multiple access (CDMA) network with
high SINR regime. The strategy of each player is either to transmit with the
maximum power p, or with a weakened level np, where 0 < 7 < 1. Due to the
interference at the AP, the throughput (the amount of delivered information)
of each player depends on the strategies chosen by both players. Transmit-
ting with a higher power increases the BER, and this results decreasing the
throughput. Each player is rewarded w if it successfully delivers its packet
and a reduced du, if it delivers a corrupted version of the packet, where
0 < n < < 1. If the near player k; decides to transmit with the power p,
the farther player ko will not be able to deliver any information to the AP.

This results in no benefit for k3 and causes a power consumption cost equal
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ko
np p
np du —mne, —ne ou—mnc, du—c
k1
]_) u—c, —nc u—c, —C

u= [uk17uk2]

Tab. 2.5: Payoff matriz for the near-far effect game with power control and variable

throughput.

to —nc if ko chooses strategy np and —c otherwise, where ¢ < u. Obviously,
transmitting with power p for ki, results in a complete information delivery.
This concerns a payoff equal to reward minus power consumption cost, i.e.
u — ¢, irrespective of the kg strategy. The packets of player ko are successfully
delivered if it chooses the maximum power p, and player ki that reduced np.
On the other hand, if both players decide to transmit with reduced power 7p,
the near player takes the payoff du — nc > 0, whilst the farther player ko will

not successfully deliver any packet and suffers only a power cost —nc.

The payoff matrix of the near-far effect game is depicted in Tab. 2.5. As can
be seen, the unique pure strategy of this game is represented by the strategy
(p, np) with benefits © — ¢ and —nc for ki and ks, respectively. This means
that, at the Nash equilibrium point, the farther player is not able to send any
information. On the other hand, the Pareto optimal solution of the game are
the strategies (p, #p) and (np, p). This is an unsatisfactory outcome for the
far player ko, while the near player k; takes the highest possible payoff. Now,
let us find the mixed strategy of the game. We denote a; the probability with
which the near player ki decides to transmit with the maximum power p and

ag the same probability for the far player k. The payoffs of the players ky
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and ko are represented by:

U, = a1<(1 —0u — (1—mn) ) + (du —ne) (2.22a)
Uy = a2< (1—ay)du — (1—mn) c) —ne (2.22b)

Both players want to maximize their own payoff. As can be seen, uy, takes
its maximum value v — ¢ with a; = 1. On the other hand, with o = 1,
the far player ko earns a negative payoff whatever as € [0, 1]. Instead, with
a1 = 0 the near player k1 gains du — nc, and the player ko setting up ag =1
achieves the payoff of Ju — ¢. Thus, the best values for oy and ay are 0 and
1, respectively. The conclusion is that the mixed strategy is equivalent to the
pure strategy (np, p) with payoff u = [du — nc, du — ¢]. In this game there
is no (totally) mixed strategy and that is equal to the one of the pure Pareto
optimal points.

The near player earns the highest possible payoff at the Nash equilibrium,
hence, it does not leave this strategy profile. The highest possible payoff
for the far player is on the contrary du — c. We show that an appropriate
agreement among players can satisfy both of them at correlated equilibrium.
Players k1 and ks can guarantee an expected payoff of u = [u — ¢, du — ¢| by

playing the correlated strategy profile:

Gome PP+ (1" (I%?%;{g) (5, D) (2.23)

This is a plausible end, since both players earn their own highest possible
payoff. The correlated strategy (2.23) is derived from the fact that, picking
any real number k in the expression k- (P, 7p) + (1 — k) - (P, D) is indifferent
for the near player kqp, since it gets its own highest possible payoff, u — ¢ as
well. To satisfy the far player ks, it is enough to solve the following equation
for ug,:

kB np)+(1— k) (B, 7) = [u—c, ou—c| (2.24)

Supposing k = < 1, the correlated strategy (2.23) means that the

ou
(I-mn)c

near player always transmits at its highest power level p, and the far player
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)
np D
np 0,0 0,0
k1
_ (6u—c) (6u —¢)
p ) H(u—c) 1—k,(1—-k) =0

u = [ug, , ug, ] normalized to 1

Tab. 2.6: The strategic form matriz of the near-far effect game with preplay
u

t d with Kk = ——.
agreement, and with Kk T—ne

ou
transmits at that reduced np with probability T and the maximum
c

power p otherwise. Actually, the near and far players effectively play the
matrix form game of Tab. 2.6.

Bonneau et al. in [140] show that the coordination among mobile users
can significantly increase the performance of access to a common channel
in ALOHA setting. A coordination mechanism is also considered by Bonneau
et al. in [141] to achieve the optimal power allocation in a wireless network
wherein each terminal knows only its own channel state. The concept of
correlated equilibrium is also introduced in a multi-user interference channel
context in [142]. Different types of coordination is deeply discussed and widely
used in [138].

2.8 Dynamic learning

Until now, we have realized that the Nash equilibrium suffers from the lack of
farsighted stability, i.e., the relative results can be unsatisfactory and because
of this any player can have incentive to improve its outcome by moving to
another strategy. The existence of the strong and coalition-proof Nash equi-

librium is not guaranteed and even if so, when the number of pure strategies
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is large, finding such solutions is very complicated. The challenge of finding
a profitable accord among players is persistent in coordinated equilibria so-
lution. In this section, the main question we seek an answer to is: How can
the players be led to a stable joint pure strategy gaining an acceptable payoff ¢
This question is important, even if multiple equilibrium points with the same
payoff have been identified, since each player may autonomously decide to
stay in a different strategy.

Dynamic learning [143] has been widely used in order to get rid of the
anarchy derived from the conflicts between selfish decisions. Learning is a joint
adaptive process for agents to converge and to get the best final response. The
agents either have a common interest like a team work, or each agent has its
own greedy goal. Generally, there are three learning process types: individual
learning, joint-action learning and stochastic learning. In individual learning
process, the independent agents cannot observe one another’s actions; i.e.
for each players the opponents are passive agents. Instead, during joint-
action learning process, the notion of the “optimality” is improved by adding
the observation of other concurrent learners to accomplish a stable optimal
solution. The stochastic learning framework, having Markovian property and
a stochastic inter-state transition rule, enables each player to observe the
opponents’ actions history.

In the network engineering literature, Schaar et al. in [144] introduce a
stochastic learning process among autonomous wireless agents for the op-
timization of dynamic spectrum access given QoS of multimedia applications.
A reconfigurable multi-hop wireless network is studied by Shiang et al. [145]
wherein a decentralized stochastic learning process optimizes the transmission
decisions of nodes aimed at supporting mission-critical applications. In [146],
Lin et al. propose a reinforcement learning among agents of a multi-hop wire-
less network based on Markov decision process. Each terminal autonomously
adjust transmission power in order to maximize the network utility, in a
dynamic delay-sensitive environment.

Here, we study a well-known individual reinforcement learning task, namely

the so-called Q-Learning [147]. We assume a set of players K, and each
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player k has a finite set of individual actions Ajy. Each agent k individually
chooses a pure joint action (strategy) to be performed ax = (a1,...,ax) €
A; X ... x Ak from the available joint strategy space. Q-learning enables the
individual learners to achieve optimal coordination from repeated trials. Q-
learning introduces a certain value @ as the immediate reward obtained after
having moved to the new strategy. Each player individually updates a ) value
for each of its actions. In each time step and after having selected the new
joint action aj, the values of @} is individually updated. In particular, the
value of Q4" (ay) estimates the utility of performing the joint strategy aj, for
user k. In the seminal paper of Watkins et al. [147], the @ value is updated

by the following recursion:
Qi t(ar) «— (1= fi™) - Qilan) + f™ - (e + 6 Qilar))  (2:25)

where 5 € (0,1) is a discount factor and wuy is a reward of the joint action
ay for the respective player, and fi is a function of ¢ which is related to
“learning rate”. Watkins et al. showed that given bounded rewards, learning
rate 0 < ff < 1, and

Zf}i:oo, and Z(f,ﬁ)2<oo Yk e K (2.26)
t=1 t=1

all @y values updating (2.25) converge a common joint pure strategy with
probability one. The reward wuy is defined by a learning policy and it is not
necessarily equal to the payoff defined by the game. The learning policy is
greedy with respect to the @ value, i.e. the particular action a; will be selected
in long-run if it makes @ value better off. Q-learning is guaranteed to converge
to an optimal and stable joint strategy regardless of the action selection policy.
Q-learning is not applicable where the strategy space is continuous or the
number of strategies is not finite. Claus et al. [148] establish a simplified
version of the @ recursion (2.25) which updates the @ value by the following

recursion:

W) «— Q(ar) + 0 - (ur — Q(ar)) (2.27)
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For the sake of simplicity, we apply the @ recursion (2.27). In a multi
learners scenario, a major challenge of Q-learning is strategy selection. When
the number of strategies and players are large, the number of time step to
achieve an optimal joint action exponentially increases. It is fairly clear that
the best manner is to start with “exploration” of different strategies and then
focus on “exploitation” of the strategies with the best value of Q). Kaelbling
et al. in [149] recall Boltzmann function as an efficient strategy selection to
strike a balance between exploration and exploitation. Boltzmann functions
define a probability distribution among different joint actions. At each time
step t + 1, every player will individually select the joint strategy a; with the
probability p(ay):

eQilar) /T
play) = (2.28)

Y /T

va,e X Ay
VkeK

The T is a function which provides a randommness component to control
exploration and exploitation of the actions. Practically, the “temperature
function” T is a decreasing function over time to decrease the exploration
and increase exploitation. High values of T yields a small p(ay) value and this
encourages exploration, whereas a low T makes Q(aj) more important, and
this encourages exploitation. At time ¢ = 0, each player randomly chooses a
strategy and assign a random number to its own () value. At time step t, after
having been updated funtion 7', each concurrent agents’ experience consists

of a sequence of stages [148]:
1) Computing p(ay) for all ay € x Ay,
VkeK
2) Generating a random number & uniformly distributed in [0, 1], and then
choosing the best joint strategy ay, i.e. the highest p(aj) such that & >

plag). If & < p(ag) for all ay € x Ay, then the learner randomly picks
vkek
a strategy,

3) Updating the Q! value according to (2.27). If QY grows, then the learner
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moves to selected joint strategy ay, otherwise it stays in the current joint

action and do not update Q.

Despite the individual best strategy selection of the learners, this process
reach a common stable joint strategy such that all players stay there forever,

i.e. no player deviates from the (common) achieved joint strategy.

2.9 Discussion

This chapter has provided a unified reference for network engineers inves-
tigating the applicability of cooperative game theory to practical problems.
Different approaches such as core solution, Shapley value, kernel and nu-
cleolus, were shown to provide a strong foundation for finding possible and
stable resource/cost sharing arrangements. The results confirm the apparent
analogy between the definition of Nash equilibrium in non-cooperative and
cooperative game theory: both strong and coalition-proof Nash equilibria
reflect on unprofitability of coalition deviations rather than an individual
player deviation. In a network wherein informational exchange is possible,
either through a central controller or among players themselves, the concept
of coordinated equilibrium arises. The results of intuitive examples show a
significantly improvement in coordinated equilibrium when compared with
non-cooperative schemes. When the number of agents or strategies is large,
the ability of jointly reach a consensus through environmental learning guar-

antees convergence to the best joint action.






Chapter 3

A resource allocation

cooperative game in
OFDMA

Following what discussed in Chapter 1, various attempts have been made to
standardize a certain protocol for resource allocation in OFDMA, but all have
fallen into disuse largely because of their over-complexity, and unfairness from
the network service provider point of view. We also showed that cooperative
game theory is a suitable tool to face resource allocation problems, especially
when altruism and fairness play crucial roles.

The focus of the first part of this thesis is to introduce a scheme for resource
allocation in OFDMA based on cooperative games, wherein applicability and
fairness are target criterions. This chapter investigates a fair adaptive resource
management criterion for the uplink of an OFDMA network populated by
mobile users with constraints in terms of target data rates. We aim at fulfilling
each users QoS requirement in terms of target transmit rates eractly with
the best utilization of the network resources, so as to satisfy both the users
and the wireless service provider. We also aim at designing a low-complexity
algorithm that allows a centralized solution for the joint power and bandwidth
allocation for OFDMA uplink channels to be achieved in a few steps using

typical network parameters. In our approach, we allow every subcarrier to
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be possibly shared among more than one user, and we add a constraint on
the maximum number of used subcarriers per terminal. This is achieved by
dividing the available bandwidth into a number of disjoint blocks of consecu-
tive subcarriers, and forcing each terminal to use at most one subcarrier per
block. The motivation of this is twofold: we wish to i) increase the signal-
to-interference-plus-noise ratio (SINR) on the used subcarriers, which also
simplifies channel estimation; and ii) exploit frequency diversity across carriers
used by one user to increase the performance of forward error correction (FEC)
techniques.

In Sect. 3.1 we propose two methods to allot subcarriers to mobile terminals,
in a possibly shared assignment. Next, the inherent optimization problem
is tackled with the analytical tools of cooperative game theory aiming at
accomplishment of data rate demanded exactly. The definition of the players,
coalitions and utility function are formally discussed, and we prove the exis-
tence of the core set solution by means of the analytical tools of cooperative
game theory. To accomplish data rate demanded we propose a utility function
which is neither convex nor concave. Sect. 3.2 proposes a dynamic learning
algorithm based on Markov modeling to achieve optimum transmit power
over each subcarrier at each individual wireless terminal. Simulation results
in Sect. 3.3 show that the average number of operations of the proposed
algorithm is much lower than K - N, where N and K are the number of
subcarriers and users. We also show that the transmit power is comparable
to the remarkable existing power effective literature results. Low-complexity,
efficient use of available spectrum, and low power consumption bring promise
to usability of the proposed scheme in each time slot at physical layer in the

4th generation (4G) of cellular networks.
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S
N/L subcarriers

Fig. 3.1: Block partitioning of the available bandwidth.

3.1 Problem formulation

Let us consider the uplink of a single-cell infrastructure OFDMA system
with total bandwidth W, subdivided in N subcarriers with frequency spacing
Af = W/N. The cell is populated by K mobile terminals, each terminal
k € K = [1,...,K] experiencing a complex-valued channel gain Hy, on
the nth subcarrier to the base station and having a data rate requirement
R, (in bit/s). We assume that fulfilling such constraints simultaneously by
all terminals is feasible. To exploit frequency diversity, the subcarriers set
N =[1,...,N] is grouped in L blocks of N/L contiguous subcarriers NV =
[%(l— 1)+1,...,%l] C N, with 1 <[ < L, as shown in Fig. 3.1. Each
terminal is allowed to take at most one subcarrier per each subblock.

Our resource allocation strategy consists in finding a vector of transmit
powers py, where pp = [pkl,..., pkN], with pg, representing the power
allocated by terminal k over its nth subcarrier, that allows the QoS constraint
R; to be satisfied. We decouple the problem into the subsequential resolution

of subchannel assignment and (subsequent) power allocation.

3.1.1 Subchannel assignment

We describe here two different options to perform this function:

Best-carrier assignment

For every subblock NV, every terminal k € K is assigned its best subcarrier
ng) = arg max,c o | Hin |2. The probability of assigning the same subcarrier

to multiple mobile terminals is non-null.
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Vacant-carrier assignment

In a sequential manner, for every subblock N, every terminal k € K is
assigned its best subcarrier ng) = arg max,, oy |H kn|2. But, if k < N/L, we
would like to ensure exclusive use of each subcarrier n € N to better exploit
the available bandwidth W (i.e., to reduce the multiple access interference).
So, if n,(f) has been already assigned to some other terminal ¢ < k, then
terminal k is assigned the nearest vacant (unassigned) subcarrier to ng) within
the channel coherence bandwidth. Clearly, this is not considered if k > N/L,
so that terminal k is assigned its best subcarrier in the subblock anyway. Note
that the ordering of IC has a negligible impact on system performance when
N is sufficiently high and, as usual, N > K (e.g., 2048 subcarriers in LTE).
Both assignment strategies can be easily extended to the case in which each
terminal is allowed to have a different number of assigned subcarriers (different
L for each mobile terminal), based on its own data rate requirement R;,
without any change in the strategy that we describe below. For the sake of

simplicity, we consider the same L for all terminals.

3.1.2 Power allocation

To derive a stable solution to the power allocation subproblem, we consider
it as a coalitional game, in which each subchannel ng) € N is identified as
a player in the game. To model the coalitional game, we build K coalitions
P = [A1,...,Ak], to be assigned to the K terminals. Each coalition Ay,
k € K, contains the L players ng): A = [n,(cl), . ,n,(cL)]. Note that i) the
members of each coalition are fixed, since one player cannot move from one
coalition to another; and ii) since a subcarrier n € N can be shared among
multiple users, there exist virtual copies of it belonging to different coalitions.
For the sake of notation, we will identify with a generic n € A any of the
subcarriers assigned to terminal k. The strategy of each player n € Ay is
represented by the optimal power expenditure py, < Dj,. Note that i) if
n ¢ Ag, prn = 0; and ii) if n € Ag, we can also have pg, = 0, which means

that the kth terminal does not transmit on the nth subcarrier, and it thus
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bears an actual number of active subcarriers Lj < L.

The system under investigation aims at fulfilling the QoS requirement of
every terminal k in terms of target rate R;. For simplicity, we estimate the
achieved data rate as the Shannon capacity Ry of terminal k, that can be

approached by using suitable channel coding techniques [150]:

R =) Rin (3.1)
neN
where Ry, is the Shannon capacity achieved by terminal k on subcarrier n:
|Hkn |2 Pkn
Zm;ﬁk |H’lnn|2p7nn + O',LZU

Rin = Af - log, (1 + (3.2)
Clearly, Ry, = 0 if n ¢ Ay, since pg,, = 0. If n € Ay, Ry, depends on
the received SINR at the base station on subcarrier n, which is a function
of the strategy (i.e., the transmit power) chosen by player n (i.e., one of the
L subcarriers assigned to the kth terminal), of the transmit power of other
terminals on the same subcarrier (if n ¢ A, pmn = 0), of the corresponding

channel gains, and of the power of the additive white Gaussian noise (AWGN)

2
w*

o Note that, in an OFDMA system, there is no interference between
adjacent subcarriers. Hence, Ry, considers only intra-subcarrier noise, that
occurs when the same subcarrier is shared by more terminals. Each player
n € Ay causes interference only to its virtual copies, i.e. to the players of other
coalitions such that n%’) =n¢€ A, withm #k and for any I, 1 < I’ < L.
The network service provider are satisfied at most when each mobile terminal
k achieves its own data rate requirement exactly: Ri = R;. In view of this
goal, we can force all players in each coalition A to select their strategies
(i.e., the power allocation for terminal k over the available bandwidth W) so

as to maximize a utility function for the kth coalition Ay, defined as:

1 X
v(Ag) = WH —5'U<1—Rk/Rk> (3:3)

where u (+) is the unit step function, with u(y) = 1if y > 0 and u(y) =0
otherwise (see Fig. 3.2).
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payoff function v (Ay)

Y *
Ry — R,

Fig. 3.2: Shape of the ulility as a function of the Shannon capacity.

If Ry = R,,, Ay earns the highest possible payoff v (Ay,) = 4+o00. If Ry, > Ry,
Ap gets a positive payoff, whereas it obtains a negative payoff if Ry < R;.
The factor 8 is a positive constant (much) greater than zero that ensures
v (Ag) to be negative when Ry < R,. This is expedient to let the players
distinguish a capacity Ry that is lower/upper than R,:, only by knowing their
own coalition’s payoff. Note that, in practice, +o0o can be represented by the
largest countable number available (e.g., 25 — 1) in a given computational
platform.

The payoff of each coalition is a real number and, in our formulation, the
most important parameter is the gain of each coalition, whereas the outcome
of each player does not matter at all. Therefore, this game is a transferable
utility (TU) one [75,76]. The specific shape of our utility function (3.3) is
actually immaterial, and was chosen to ensure fast convergence of the iterative
algorithm that will be introduced later on. We could have considered any
utility function which increases as its argument moves from +oo to 0, just to
make sure that, for any Ry # R;, each coalition has an incentive to move
towards R = R;.

To provide further insight into the problem, we investigate now some prop-
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erties of the proposed game G. As a first step, we note that the players in
G = (K = Upex Ak, v) with the utility function (3.3), do not tend to form the
grand coalition. This is because every player n € Ay, can not leave its coalition
Ap: the members of each coalition are fixed and do not change during the
game. This may appear inappropriate to the notion of a coalitional game.
However, our assumption is fairly common in economic problems like the
study of a bargaining game between two corporations when each corporation
has its own business branches [151]. In this case the members (branches) of
cach coalition (corporation) are fixed.
A relevant result for our game is the following:

Theorem 3 The core of the game G = (K = U, cxc Ar, v) with utility function
(3.8) is not empty.

Proof The number of coalitions and the number of players in each coalition
are both fixed. Since each player belongs just to one coalition, the unique
balanced collection of weights (pa)aew is pa =1 YA € 9. To conclude the
proof, we must verify that > ., v (A) < maxyew ) 4, ¥ (A). Since the
target rates of all terminals are assumed to be feasible, then every coalition
expects Ry to approach R;. Therefore, every coalition is allowed to earn the

highest possible payoff. |

In the following section, we will show how the fundamental properties of our

game lead to a practical allocation algorithm.

3.2 The best-response algorithm

We are interested in answering questions like: How do the players set their
proper transmit powers? Dynamic learning models provide a framework for
analyzing the way the players may set their proper strategies. A player
adopts a certain power amount if and only if this matches its coalition’s
interests, and this goal can be achieved through a best-response iterative

algorithm [152] based on Markov modeling [153]. Each player takes its own
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decisions individually, myopically, and concurrently with the others, so as to
lead its own coalition’s payoff toward +oo (Ry = R,). At each (discrete)
time step of the algorithm, the (autonomous) players simultancously adjust
their transmit powers based on a model to increase the payoff of their own
coalitions. Although this leads to interference when virtual copies of the same
subcarriers simultaneously change their powers, we show that this dynamic
myopic procedure guarantees the maximum payoff to each coalition.

The process starts up at time step ¢ = 0 with an arbitrary assignment of
the transmit powers pﬁo to all K - L players in the game (that are grouped
in K coalitions with players n € A with n = ng)7 1 <1< L) At the
generic time step £, our system is in the state w! = (¢!, v?), where 9! is the
set [AL, ..., AL ], and v = [V (A}),...,v (AL)] € RE contains the payoffs of
the coalitions in . The evolution of the Markov chain is then dictated by
the strategy of the game. The strategy of each player n € Ay is to find the
best power amount pj,, that leads to an increase in the payoff v (A}) of its
own coalition Ag. In practice, player n € Ax decides whether to change its
power allocation, making its coalition better off, or to keep transmitting at the
same power level (e.g., when its coalition’s payoff is infinite). The following
pseudocode shows how each player n € Aj takes its decision at time step t:

if v(AL) = 4oo, then pit! =pi , exit;
else //setting correct power range
if v (A})<0, then Pr,=pl,. P> =Dp,;
else prn=0, pEax=pl ;
repeat
Pkn = Dkn; //saving tentative power
compute Z/(Ak); //tentative payoff
Appy, = unif [O,A_pkn] ; //random power step
Pkn = Dkn + APkn; //tentative power
until (v(Ag) > v (A})) or (Brn > D)

it (v(Ag)>v (AL), then phil=pr,; /accept

else pz:l :pZn; //discard
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In this algorithm, v(Ay) is the “trial” value of the current payoff of the
coalition when the tentative power p, is adopted: it is computed with pp,, =
pt., for all n € N and for any m # k, and pg, = prn. At cach step of the
update process, the power step Apyg,, is the particular outcome (value) of a
random variable uniformly distributed between 0 and Ap,,,, with Ap,, <
Drn- As better detailed in Sect. 3.3, optimal values for Ap,,, can be found in
order to minimize the algorithm computational load, based on experimental
results. If v (A}) <0, then Ry < R;, and the best strategy for player n € Ay
is to increase its current transmit power so as to increase its coalition’s payoff.
As a result of the random power stepping, the tentative power is a random
number in the interval [p, .D;,]. Player n € Ay accepts this value if and
only if the coalition payoff v (A}) increases, otherwise it ends up transmitting
at its previous value. If 0 < v (A}) < oo, player n € Ay’s best strategy is
on the contrary to decrease pf, , and thus the tentative (random) transmit
power belongs to the interval [0, pf, ]. At the end of each time step ¢, the base
station computes the payoff v (A,),Vk € K with updated power amounts. As
shown in the pseudocode, a uniformly distributed random power stepping is
adopted to increase the probability of picking the best adjustment value, and
thus both to reduce the convergence time of the algorithm and to possibly
minimize the overall power consumption. As is apparent, the convergence
speed of the algorithms depends not only on the parameters of the network,
but also on the choice of the maximum update step Apy,,.

As already stated, two copies n € A and n € A, (the virtual copies of the
same subcarrier n) may happen to wish to adjust their transmit powers in a
conflicting (and thus incompatible) way. If we assume that each player just
follows the decision rules listed in the pseudocode above, then the probability
of conflicting decisions will be high. To reduce the occurrence of this event,
we modify our algorithm by requesting each player not to update its transmit
power at every step of the game with a probability A € [0,1]. At each time
step ¢, every player n € Ay, selects a random number ¢}, uniformly distributed
in [0,1]. If &, > A, then the player applies the algorithm and (possibly)

t+1 t+1

update p,[*, otherwise p, * = pi = (i.e., during time step ¢, it skips the update
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process, and the value of p},, is kept). If X is close to 1, then the probability of
conflicting decisions tends to 0, but the algorithm will have a large convergence
time, since the probability of updates is low. In addition to the conflicts
described above, another potentially disruptive condition may arise between
different subcarriers belonging to the same coalition: if both (myopic) players
simultaneously increase their powers p > 0 and pf,, > 0, it may occur
that Ry > R,;. To optimize the update mechanism and to cope with both
negative kinds of events, we could consider a variable and adaptive threshold
Ai, for each virtual copy of the same subcarrier (each player). However,
to reduce the complexity of the algorithm, we assume A, = X > 0 for all
the players (i.e., virtual copies of the subcarriers). As better detailed in
Sect. 3.3, the optimal value of A must be selected as a suited trade-off. Note
that the value of A is common knowledge among the players at every step
of the algorithm. Nevertheless, interference between concurrent, conflicting
decisions may prevent the coalitions from achieving the expected payoff. If all
coalitions earn less than the previous time step, all players assign the previous
power amount for the next time step. There may exist network configurations
in which the iterative algorithm is not guaranteed to converge. To account for
these situations, we place a maximum number of operations ©, beyond which
the algorithm is stopped, and the sum of the users demands is thus labeled
as unfeasible.

We show now that our proposed algorithm reaches a stable state at which
no player attempts to change its own transmit power. Moreover we show
that the stable state corresponds to the core apportionment of the game. We
model the evolution of the algorithm as the output of a finite-state Markov
chain with state space Q@ = {w = (¢,v)[¢p € ¥,v € RE}. For all time
steps t, ' = 1) belongs to the subset of all possible disjoint coalitions ¥
with exactly L members, and remains fixed for the whole duration of the
algorithm. The time evolution of the algorithm as a Markov chain is due to
the time variability of v, which depends on the power levels p}, . chosen by
the players in the coalitions collected by 1f. We use this notation for the sake

of convenience, to emphasize that v? is directly connected to 1¢.
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The Markov process asymptotically tends towards a stable coalition struc-
ture state, where no player has any incentive to change its power. In other
words, all coalitions get their maximum payoffs. Our algorithm guarantees
that, when ¢ — oo, this Markov chain tends towards a singleton steady state
with probability 1.

Definition 20 ([153]) A set ® C Q is an ergodic set if, for any w € ® and
w' & @, the probability of reaching the state w' starting from w is zero. Once
the Markov chain falls into a state belonging to an ergodic set, it never leaves
that set, and it wavers between the stales in that ergodic set from then on.

The probability of reaching any state in the ergodic set is strictly positive.

Lemma 4 ([153]) In any finite Markov chain, no matter which state the
process starts from, the probability of ending up into an ergodic set tends to 1

as time tends to infinity.
Definition 21 ([153]) Singleton ergodic sets are called absorbing states.

If @ is an absorbing state and w € &, the probability of ending up into
state w when beginning from w is one. In fact, absorbing states individually
represent points of equilibrium.

Lemma 5 The state w = (¢,v) is an absorbing state of the best-response

process if and only if
v(Ag) =+o0 VA, €9 (3.4)

Proof This condition ensures that no player has any incentive to change its
power amount. If this condition is met, then no coalition can get a higher
payoff by deviating from state w = (¢,v). Since all the target rates are

feasible, this condition is also necessary. |

Theorem 4 The best-response process has at least one absorbing state.
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Proof Since the best-response algorithm is a Markov process, Lemma 4
ensures that the best-response process reaches an ergodic set . To conclude
the proof, it is enough to show that @ is singleton. Suppose that the number
of states in the ergodic set is |®| > 1. Then all players revise their strategies
without conflicting decisions with a non-null probability. As a consequence,
the Markov process moves to a new state, in which all coalitions’ payoff
are higher than those achieved in the previous state. This means that the
probability of going back to the previous state is null, which contradicts the
notion of an ergodic set. |

Note that Theorem 4 does not ensure the uniqueness of the ergodic set in
the best-response process. There may exist some different combinations of the
power allocation for the players to reach to a steady state. It means that the
game possesses multiple equilibria. The major finding of Theorem 4 is that,
according to the way the players adjust their strategies, the best-response
process leads to one of the steady states, in which no player has any incentive

to revise its power allocation.

Theorem 5 The set of payoffs associated to an absorbing state of the best-

response process coincides with the set of core allocation:
i) if w = (¢Y,v) is an absorbing state, then v is a core allocation.
it) if v is a core allocation, then all w = (¢, v) are absorbing states.

Proof Part i) Suppose w = (1, ) is an absorbing state but v is not a core
allocation. In this case, there exist some coalitions that can obtain a higher
payoff. This is contradictory, since the game reaches an absorbing state when
every coalition gets the maximum payoff.

Part ii) If v is a core allocation, then no coalition can earn by letting its
member change their powers. This implies that the state will not move to a

new state, and thus the current state is absorbing. |

Coalitional games aim at identifying the best coalitions of the agents and a

fair distribution of the payoff among the agents. Interestingly, in this game
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the absorbing state coincides with one of the Nash equilibria [75] of the game.
Suppose there are K = 2 mobiles connected to a base station with N = 1
subcarrier only. In this case, the K = K- N = 2 copies of the subcarrier, each
constituting a coalition, are engaged in a 2 x 2 game. Every player has two
strategies: either p, = 0 or pr, = P, It is straightforward to verify that, in this
game, a mixed (vs. pure) Nash equilibrium exists which satisfies the stability
of the static game. With due attention to the notation, we can extend this

result to a general case.

Theorem 6 The set of absorbing states in the best-response process and the
set of Nash equilibria of the static game are asymptotically (in the long run)

equivalent.

Proof Let us consider the coalitions in the best-response process as players in
a static game. Lemma 4 ensures that this process reaches an ergodic set in the
long run. According to Theorem 4, this set is singleton, and thus its member
is an absorbing state. Hence, no coalition (i.e., no player in the static game)
has any incentive to revise its strategy. In static games, this is the definition

of a Nash equilibrium. [ |

We can now conclude that the absorbing state is an extension of the Nash
equilibrium, since the coalitions bind agreements with each other as economic
agents and earn a vector value rather than a real number. Once the coalitions
reach the absorbing state, their payoff is the highest possible (+00), and no
coalition is willing to revise its current strategy. In general, as follows from
Theorem 6, the Nash equilibrium of the game is Pareto-optimal (efficient),

since no other strategy can achieve a payoff greater than +oco.

3.3 Numerical results

In this section, we evaluate the performance of the best-response algorithm

presented in Sect. 3.2. We consider some cases with different numbers of
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mobile terminals, target data rates, and subcarriers, showing that our sug-
gested scheme reaches a steady state after a few steps only. To increase the
convergence speed of the algorithm, we introduce a tolerance parameter ¢ in
our utility function, such that, if |R;c / R; — 1| < €, then we assume that the
payoff is +00. We can possibly set an asymmetric range [1,e2] such that
g1 < (Rk/R,*€ — 1) < &9, so as to favor solutions with Ry > R;.

We consider the following parameters for our simulations: the maximum
power of each terminal k on each subcarrier n is p,,, = p = 3 pW; the power
of the ambient AWGN noise on each subcarrier is 02 = 100nW, and the
constant number in (3.3) is 8 = 5000. We also set © = 10K - N as the stopping
criterion of the iterative algorithm, where K and N depend on the network
parameters of the simulation. The path coefficients |H k.,,l|2, corresponding
to the frequency response of the multipath wireless channel at the carrier
frequency nAf, are computed using the 24-tap I'TU modified vehicular-B
channel model adopted by the IEEE 802.16m standard [136]. To account for
the large-scale path loss, we assumed the terminals to be uniformly distributed
between 3 and 100 m. Based on numerical optimizations, the parameter A\ that
reduces the probability of conflicting decisions among members of different
coalitions for different number of terminals, subcarriers, and signal bandwidth,
is A = 0.97. The initial power allocation is pg, = 0 Vk € K and ¥n € A/. This
experimentally provides the minimal power consumption at the steady state,
and in most cases the minimum number of steps of the algorithm.

Fig. 3.3 reports the behavior of the achievable rate Ry as a function of the
time step ¢t in a network with K = 10 terminals, N = 1024 subcarriers, and
bandwidth W = 10 MHz using the vacant-carrier assignment scheme. The
target rates, reported in Fig. 3.3 with solid markers on the right axis, are
assigned randomly to each terminal using a uniform distribution in the range
[100,250] kb/s. Further parameters are: tolerance e; = 0,62 = 0.01, power
update step Apy, = Prn/25 = 120nW, and number of subblocks L = 32.
Numerical results show the convergence of Ry to the respective target rates
R; after 31 steps of the best-response algorithm.

In the remainder of this section, we will evaluate by simulation the aver-
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Fig. 3.3: Achieved rates as functions of the iteration step.

age performance of our proposed algorithm in terms of power expenditure
and computational burden using realistic system parameters and extensive
simulation campaigns. Note that we are not able to compare our technique
with the joint resource allocation techniques available in the literature and
reviewed in Chapter 1.9, mainly due to the unfeasible algorithmic complexity
of the implementation of the latter when using tens of terminals, hundreds of
subcarriers, and high data rates (on the order of Mb/s). As a consequence,
in the following we will compare our measured results with the theoretical
performance provided by the literature.

Figs. 3.4 and 3.5 report the simulation results obtained after 500 random
realizations of a network with R, = R* = 200kb/s Vk € K, N = 1024,
W = 10MHz, and 1 = 0,e2 = 0.04 again with the vacant-carrier assignment
strategy. Solid lines represent the case Apy,, = Py, /5 = 600nW, whereas
dashed lines depict the case A_p,m = Prn/25 = 1200W. Circles, squares, upper

triangles and lower triangles correspond to L = {8, 16, 32,64}, respectively.

Fig. 3.4 shows the average normalized power expenditure (; at the steady

state as a function of K, computed by averaging ¢, = + D onen f_;’l:% over all

terminals. This serves as a measure for the average total power consumption
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normalized to the maximum power expenditure available to each terminal.
As can be noticed, (i increases for K > N/L, since the number of shared
subcarriers increases and the terminals must spend more power to overcome
the intra-subcarrier noise. Interestingly, the power expenditure of the pro-
posed centralized algorithm shows higher efficiency than the distributed and
cross-layer schemes available in the literature (e.g., see [27,30,31,154]). For
instance, when considering 500 random realizations of a system with band-
width W = 10 MHz and N = 1024 subcarriers, and using the vacant-carrier
assignment model, we find that, in the case of a total sum-rate demand of
20 Mb/s (i.c., with a spectral efficiency of 2b/s/Hz) and R, = R" = 200kb/s
(i.e., K = 100 terminals), the maximum power consumption per user is
31 W and the average power consumption of the system is 0.53mW. In
the multicell scenario of [27], the average power expenditure for each cell
is 8mW when the achievable data rate is 40 Mb/s. When considering the
cross-layer algorithm proposed in [154], the average power expenditure per
mobile terminal is 0.4 W with maximal spectral efficiency of 2b/s/Hz, whereas
the average power expenditure per mobile terminal required by the energy-
efficient techniques proposed in [31] is 0.4 and 1.2 W when the achieved data
rate is equal to 40 and 140kb/s, respectively.

Fig. 3.5 shows the computational complexity of our algorithm expressed in
terms of the average number of operations per terminal required to reach the
steady state as a function of the number of terminals K with the vacant-carrier
assignment model. The number of operations is measured experimentally by
counting the number of steps required by the subchannel assignment plus the
total number of trials required to update the transmit power according to
the best-response algorithm. As can be seen, the complexity increases as L
increases. This can be justified since increasing L increases the number of
players K - L, which yields an increase in the number of conflicting decisions.
Note that the proposed algorithm is able to provide a spectral efficiency
higher than 1b/s/Hz, which occurs, for instance, when we assume more than
K = 50 users with rates R, = 200kb/s over a bandwidth W = 10 MHz

in the proposed scenario, with a linear computational burden at the base
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station using appropriate values for the parameters. In this particular ex-
ample, a good tradeoff between performance and complexity is L = {8,16}
and Ap,,, = 600nW. Using these values, the number of operations of the
proposed algorithm is experimentally lower than the product K - N, and
so considerably lower than the complexity of the schemes available in the
literature (e.g., see [26,88,89]). Our experiments with different data rate
demands show that a smaller data rate reduces also the number of operations
significantly. To further reduce the number of operations, we can also increase
the tolerance parameters (e.g., with £5 = 0.1, we experience a complexity
reduction on the order of 20 <+ 30%). Note also that the spectral efficiency
achieved by the proposed fair resource allocation method, while showing a
linear computational burden, is comparable with that provided by sum-rate
maximizing algorithms (e.g., see [155]). In the practice, a reasonable value
for the maximum spectral efficiency achieved by the network in the region of
linear complexity in all simulated scenarios (not reported here for the sake of
brevity) is slightly lower than 2b/s/Hz. For higher spectral efficiencies, no
parameter selections can achieve the optimal resource allocation with linear
complexity, and the number of operations appears to increase exponentially
with the number of mobile terminals. However, note that the solutions can
be found in most cases.

Figs. 3.6 and 3.7 depict the simulation results of a network with R; =R =
200kb/s Vk € KK, N = 1024, W = 10MHz, and 1 = 0,9 = 0.04 using the
best-carrier assignment model. Solid lines represent the case Ap,,, = Py, /5 =
600nW, whercas dashed lines depict the case Apy, = Prn/25 = 120nW.
Squares, upper triangles and lower triangles correspond to L = {16,32,64},
respectively. Fig. 3.6 shows the average normalized power expenditure (i
at the steady state as a function of K. As can be seen, the average power
expenditure using the best-carrier assignment model is lower than with the
vacant-carrier assignment, since the terminals having better channel condi-
tions spend less power.

A drawback of the best-carrier assignment is an increased complexity of the

algorithm. Fig. 3.7 shows the average number of operations per terminal
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Fig. 3.8: FEaperimental average number of operations as a function of K, with
W = 10MHz, N = 512, and R,: =R =500 kb/s Vk € K in the case of vacant-

carrier assignment model.

required to reach the steady state as a function of the number of terminals
K. As can be seen, the best-carrier assignment model has a computational
complexity higher than vacant-carrier assignment model, since the number of
shared subcarriers in the best-carrier assignment model is larger than in the
vacant-carrier assignment, which increases the probability of interference be-
tween simultaneous decisions in the best-reply algorithm. Note that, using the
best-carrier assignment model, the case L = 8 appears to be computationally
expensive.

Fig. 3.8 shows the average number of operations per terminal in the case
of a network with parameters R,Z = R = 500 kb/s Vk € K, N = 512,
W = 10MHz, and ¢; = 0,e2 = 0.04 using vacant-carrier assignment model.
Solid and dashed lines represents the cases Apy,, = 3 uW and Ap,,, = 600nW,
respectively, whereas circles, squares, upper triangles and lower triangles
depict L = {8,16,32,64}, respectively. Even in this case, with more severe
requirements in terms of target data rates, the number of operations is shown

to be lower than K - N, again using spectral efficiencies higher than 1b/s/Hz.
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Finally, Fig. 3.9 shows the average number of operations per terminal in the
case of a network with parameters W = 20 MHz, N = 2048, R; = 2Mb/s,
€1 = 0, and 2 = 0.04 with vacant-carrier assignment model. Solid and
dashed lines represents the cases A_p,m =3 uW and A_p,m = 600nW, respec-
tively, whereas circles, squares and upper triangles depict L = {64, 128,256},
respectively. The complexity is again lower than K - N.

As can be seen in Fig. 3.5, 3.7, 3.8, and 3.9, due to the random behavior of the
proposed algorithm, there is a strict relation between the average number of
operations, the network parameters, and the algorithm parameters (including
the channel assignment model). Depending on the parameter selection, we
see different shapes (linear or exponential behavior) for the average number
of operations. Thus, estimating the analytical complexity function for the
best-response algorithm is hard to do. However, for all tested scenarios (not
reported here for the sake of brevity), there exist properly tuned values (such

as L, Apy,,) that provide an average number of operations for the proposed
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algorithm that are lower than the product K - N, even with high data rate
demands like in the cases of Figs. 3.8 and 3.9. The parameter that most
impacts on the number of operations is L. Our experiments show that, for
the optimal parameter selection (i.e., when the number of operations scales
linearly with N and K), the average number of used subcarriers per terminal
(i.e., those which bear pg,, > 0) is approximately L/2 when the vacant-carrier
model is adopted. This rule-of-thumb can be used as a design criterion for
the proposed algorithm. Let us consider Fig. 3.10, that reports the average
number of assigned subcarriers to each mobile terminal as a function of the
achieved rate R, in the linear complexity regime and using Apy,,, = 600nW.
Dashed and solid lines depict the cases W = {10,20} MHz, respectively,
whereas circles, squares and upper triangles represent N = {512,1024, 2048},
respectively. For instance, when W = 20 MHz, N = 512, and R =500 kb/s,
the average number of used subcarriers is 4. If we look back at Fig. 3.8, we
can verify that the linear complexity can be achieved using L = 8. Note that

the number of assigned subcarriers in the case of W = 10 MHz is higher than
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in the case W = 20 MHz, since the subcarrier spacing is halved.

3.4 Discussion

This chapter described a computationally inexpensive centralized algorithm
based on coalitional game theory to address the issue of fair optimal resource
allocation (in terms of subcarrier assignment and power control) for the uplink
of an infrastructure OFDMA wireless network. The scheme derived here
is designed to meet the required data rates exactly, thus ensuring a fair
performance apportionment to both users and service providers, with the best
utilization of the network resources (minimum power expenditure and good
spectral efficiency). The proposed algorithm can be analyzed as a Markov
model that converges to an absorbing state with unitary probability in the
long run. Our criterion also allows us to tradeoff system performance and
computational burden of the algorithm, based on the number of subblocks
used to apportion the available bandwidth and the data rate requirements of
the terminals. Simulations show that the target rates are achieved with a low
complexity procedure, even in the case of populated networks and stringent
QoS requirements. The (greedy) best-carrier assignment rule results into a
higher complexity but a lower power expenditure compared to the case with
full use of the available subcarriers. The presented coalition-based strategy
appears to be a good tradeoff between computational complexity and power
efficiency in comparison with the schemes available in the literature, and

achieves a spectral efficiency larger than 1b/s/Hz.
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Chapter 4

Basics of cooperative

communications

Cooperative communication enables single-antenna mobiles in a multi-user
environment to share their antennas and generate a virtual multiple-antenna
transmitter, and consequently exploit some of the benefits of multiple-input
multiple-output (MIMO) systems. Cooperative transmission can increase the
data rate, save transmission power, and extend the coverage range of the
network. As a result, it is considered to be a key-technique in the develop-
ment of a robust and efficient communication system [156]. The first idea
of cooperative transmission can be traced back to the proposal of the relay

channel model, which consists of one source, one destination and one relay.

In the following, we will provide a brief literature overview of relay com-
munication. In Sect. 4.2, we study relay assisted communication between a
transmitter and a far destination which is out of its transmission range. Then,
we extend the first scenario to a network wherein the direct-link between the
transmitter and destination is indeed available. We next present an upper
bound on the cutset capacity of relay communications in Sect. 4.3. The
next three sections are devoted to the three well-known relaying strategies:
the amplify and forward (AF), decode and forward (DF), and compress and
forward (CF). We formally define these relaying protocols and calculate the

upper bound capacity for each of them. We illustrate our results in Sect. 4.7,
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and then conclude in Sect. 4.8.

4.1 Introduction

In wired networks, using multiple wired connections that follow diverse paths,
can significantly increase the end-to-end capacity of a link and establish a
stable connection. A wireless network is traditionally viewed as a set of nodes
trying to communicate with each other. Contrary to the inherent point-to-
point wireless connection, wireless channel is by its nature of broadcast type
and this causes multipath problem in a communication between two wireless
devices. In wireless communication, cooperative diversity can exploit the
broadcast nature of wireless transmission in order to increase the channel
capacity of a link. The key idea is to have users cooperate in transmitting
their messages to the destination, instead of operating independently and
competing with each other for channel resources, as happens in conventional
networks. The third party which acts as a relay node, receives the information
from the source and deliver it to a destination via a channel that is indepen-
dent from the (direct) source-destination link, the chances for a successful
transmission would be better, thus improving the overall performance. The
problems of reliable information transfer are in most cases intertwined with
the problems of allocating the sparse resources available for use. Multiuser
techniques try to optimize whole systems, by combining the multiple-access
and information transmission aspects.

The three-terminal relay channel was introduced in 1971 by Van-der Meulen
[157] and was initially investigated in the context of information theory. In
his seminal paper, Van-der Meulen introduced upper and lower bounds for
the capacity of a relay channel. Meanwhile, Sato [158] also looked at the
relay channel in the framework of the ALOHA protocol. But, the booming
interest in cooperative communications was initiated by the paper of Cover
and El Gamal [159]. They evaluated the improvement of upper bound channel

capacity of a point-to-point connection, placing one assistant node as relay
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and applying two different coding strategies of block Markov (decode and
Jorward) and side information encoding (compress and forward). They also
mixed these two strategies in [159, Th. 7]. Another relaying strategy proposed
in the literature is amplify and forward [160] which augments the received

signal without generating a new code at the relay.

M. R. Aref in his Ph.D. dissertation [161] formulated the max-flow min-cut
(cutset) upper bound for the case of point-to-point connection through multi-
ple relays. He also established the capacity of a degraded! relay network and
in particular a cascade of degraded relay channels. Then, El Gamal and Aref
in [162] established the capacity of the semi-deterministic relay channels where
the received signal at the relay is a deterministic function of the emitted signals
at the source and relay nodes. Zhang in [163] established the capacity of the
relay channel when the channel from the relay to the destination is a noiseless
channel of fixed capacity allowing the relay sending additional information
to the destination. Gastpar et al. in [164] introduce information theoretic
aspects of a point-to-point connection using multiple parallel relays wherein
each transceiver has multiple antennas. Borade in [165] applies the cutset
theorem [161] to the problem of network information flow involving multiple
sources and multiple destinations and derives an information theoretic aspect
of the upper bound capacity. S. Zahedi in his Ph.D. thesis [166] studied
an energy efficient reliable communication. He showed that the capacity of a
class of discrete-memoryless relay channels with orthogonal channels from the
sender to the relay receiver and from the sender and relay to the destination
is equal to the cutset upper bound.

The AWGN channel with relays has been widely studied in the literature.
Schein and Gallager in [167] present upper and lower bounds to capacity of a
couple of out of sight nodes through two parallel relays. Gupta and Kumar
in [168] present an information theoretic look at the achievable capacity

1In relay networks composed of degraded relay channels, the received signals at relay
nodes (Y1,Ya,...,YR) are conditionally distributed as a Markov chain: Y5 — Y3 — -+ —
Yr = Yi.
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of arbitrary size and architecture of wireless networks. Many well-known
capacity defining achievable rate regions of cooperation coding, e.g. peer-to-
peer network coding in broadcast or multiple access channels, can be derived
as special cases of the proposed scheme in [168]. Then, Gastpar and Vetterli
in [169] focus on the network presented by Gupta et al. [168], but wherein
there is only one active transmitter-destination link, and all others nodes
act as intermediate relays. They derive lower and upper bounds capacity by
allowing arbitrarily complex network coding.

Gupta et al. in [170] also discuss the throughput of each randomly placed
wireless terminal in an arbitrarily large network. The results should be impor-
tant for designers to define the number of wireless terminals and the proper
range to achieve the highest throughput. Papers [171] and [172] by Sendonaris
et al. are particularly relevant. They show that cooperation among mobile
terminals can help establishing a robust connection irrespective of channel
variations, and achieving high channel capacity. The work of Scaglione et
al. [173] proposes an interaction between the physical layer link and the
network layer. A “propagating wave” of relay transmissions is produced from
the transmitter to the destination, allowing efficient flooding of a wireless
network. Suraweera et al. in [174] compute the error performance of amplify
and forward technique in a reliable communication. In addition, in recent
years, with the advances in MIMO [175], interest in reliable point-to-point
reliable MIMO communication has arisen [176].

It is reasonable to assume that relaying is not necessary if the demanded
QoS is achievable through the direct-link to destination. In large reliable
networks, the questions of “to relay or not to relay” and “the best relay
node(s) election policy” is usually based on efficiency of channel parameters.
Shan et al. in [177] devise a cross-layer protocol to choose the beneficial relays
which are able to increase network throughput as much as possible. In [178],
the authors propose to choose the best relay depending on its geographic
position, are specifically based on the geographic random forwarding (GeRaF)
protocol proposed in [179]. Papers [180] in a single relay cooperative network,

and [181,182] in multi AF relays communications are some noteworthy works
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which seek an answer to these questions applying game theory tools.

Notation 1 Some general notation is needed in the following. Upper case
letters X;,Y; represent the output and input random vector variables of node
i, respectively, and X;[b] is the bth entry of a random vector. The notations
Var (X), E{X}, H(X), and I(X,;Y) are used to denote variance, expectation
value, entropy, and mutual information, respectively. For the sake of simplic-
ity we will assume that our channels are real-valued. The notation h;; is used
for the real-valued channel gain of the link between nodes i and j. The symbol
sent by transmitter k in block index b is represented by wz. We use calligraphic
letters X, Y, W to indicate (finite) alphabel spaces and lower case letters x;,y;
for channel distributions. The conventions X 4 and x4 denote joint vector
variable and channel distribution, respectively of the indices belonging to set A.
A€ represents the complementary set of A. The sign " is used for estimated
parameters, and the notation d(X ,5\( ) is the average distortion measure be-
tween two sequences. The notation C(v;j) = %logQ (14 7ij;) denotes Shannon
channel capacity between nodes i and j with signal-to-noise ratio (SNR) ~;;
at the receiver. The symbol C is used for the outer region channel capacity.
Moreover, we use the symbol A" to denote a strongly typical set as defined
in [16, p. 59]. To briefly review aspects of network information theory in the
context of our problem, see Appendiz B.

Notation 2 Throughout this thesis, the power gain of the radio link between
two nodes i and j at a distance d;;, is scaled by

2o\’

wherein Gy, = G = 1 are the transmit and receive antennas gains assumed
omnidirectional, the parameter \g = 0.12m represents carrier wave length,
and the path loss exponent is a = 2. Consequently, if the node i is placed
close to node j and far from node k then: hij > h.
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Fig. 4.1: One source, one relay, one far destination network.

4.2 Relayed point-to-point communication

The relays are able to outperform a direct-link communication and even ac-
tualize some otherwise impossible scenario. For example, Fig. 4.1 depicts the
simplest cooperative (relay) communication model to realize a communication
between two hidden terminals. The source k wishes to send a message to the
far destination d which is out of sight. We assume there is no fading on the
wireless channels. One solution is to use an intermediate node. The source k
sends a message to the relay r and the received noisy version of the original
message is re-transmitted to the far destination node. We assume that the
relay is accessible to both the source and destination nodes. In the example,
the relay does not do any processing (encoding, decoding, ...) on the receive
signal, but its duty is to make possible the information exchange from k to d.
This simple two-hop model enlarges significantly the range of the network.

The relaying function between the source and destination nodes can be
done in two different signaling ways: half-duplex and full-duplex mode. In
half-duplex mode, the transmission from source to destination is done in
two different stages and in each stage the relay acts either as receiver or
transmitter. In the first stage, k£ transmits a stream of information and r
operates as a receiver and d is idle. In the second stage, the channel between
k and r is kept idle and d is active to receive data from the intermediate
node r which acts only as a transmitter. On the other hand, in full-duplex
mode, both wireless channels are simultaneously busy and the relay plays the
role of a receiver and a transmitter at the same time. The function of the
intermediate node is feasible using two distinct antennas, one as receiver and

one as transmitter using two orthogonal frequency band. In spite of the the
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difficulties to apply the full-duplex manner in wireless networks, in this work,
we concern with this model for didactic issues. Our goal is to determine
how much data we can reliably get from source to destination, placing no
importance on delay or computational complexity.

In the scenario of Fig. 4.1, the power expenditure of k and r, p; and p,,
respectively can be set a priori or can be adjusted given the orthogonal power
constraints p,, and p, and to the path gain values hy, and h,q4. The objective
of the power control is to approach the maximum Shannon channel capacity
between source and a (far) destination. According to the max-flow min-cut
theorem (also referred to as the cutset bound), the maximum end-to-end
channel capacity in Fig. 4.1 is achieved when the capacity of the source-relay

link is the same as that of the relay-destination link, i.e.

C(yer) = C(vra) (4.2)

We assume that the noises Z, and Z, are Gaussian random variables (0, 02)).

The power optimization problem becomes to the equation :
hkrpk = h/rdpr (43)

We study the final equation in four different cases:

L. if (hgr < hya) and (P, <D,) then pr =D, .,  pr= 7P
T
. — — _ hkr’_
2. if (hgr < hra) and (P, > P,) then pr =D, .,  pr= hPr
. — — hrd_ —
8. AF (hyr 2 hya) and (py > p,) then pe=3=Py  »  Pr=Dr;
hy
4. if (hgyr > hygq) and (P, < D,) then py = #pk , Pr =Dy, -
kr

Case (1) is the situation in which the maximum capacity of the source-relay
link is less than that relay-destination link. The source exploits the maximum
capacity of the source-relay link, i.e. pr = Dy. To adjust p, it is enough to

satisfy Eq. 4.3, because the relay-destination channel capacity is limited to
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Fig. 4.2: One source, one relay, one destination network scenario.

the maximum capacity of source-relay link. The same derivation applies to
case (3). In case (2) there is no exact relation between the maximum channel
capacity of the two channels. Assigning px = p,, bounds the source-relay
capacity to hg,p, that is less than the maximum capacity of the source-relay
link. At this point it is easy to satisty Eq. 4.3. Case (4) is similar to (2).
Cooperative communication can be efficient also when a direct-link between
the source node k and destination d is available. In the network illustrated by
Fig. 4.2, when the source node k broadcasts, a noisy version of the data comes
to the relay r and another corrupted version of data approaches the destination
d. Using an intermediate node is sensible when the received data at d is too
weak to be decoded. In this situation, a relay can help communication by
transmitting a new version of its own received signal. The direct-link signal
is used to help decoding the stronger version of original data sent by relay.
The cooperative network in Fig. 4.2 consists of four finite random spaces:
X, at the transmitter, ), and A&, at the relay node, and )y at the destina-
tion. The source node wants to transmit a message w, to the destination
through direct and reliable links. The original message w, is split in a
sequence of sub-messages w;,. .. ,wz, . 7w,{,3 each uniformly and indepen-
dently drawn from a set with alphabet size m and length Ry, represented
by Wy = {0,1,...,2"8 —1}. The encoder at the transmitter is a function
Wi — X which maps w? to X[b] ('w,l;). We assume that the decoder
generates a sequence of B Gaussian random codewords given a constraint on
average power as E {X?} < Pj. We also assume E{X;} = 0. In each block
with index b, the source k broadcasts the encoded symbols and each X[b] (wz)
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experiences two different paths to approach the relay and destination. The

relay observes Y,.[b] as:
Yo [b] = Vb X[b) (w)) + Zvs Zp ~ N (0,02) (4.4)

The receive signals at r and d are different but statistically correlated. In
full-duplex mode, the relay processes the received signal in the previous block
index and generates the information X, [b] (wz_l), to be sent into the relay-
destination channel. The information X, [b] (wz_l) is a re-generated version
of Y.[b — 1] and it is the output of the relay r’s deterministic function whose

input is the sequence of the previous received signals:
Xo[b] (wy™h) = £ (Yoo =10, Y, b= 2, Y, [1)); (4.5)

The function f depends on the specific cooperative strategy as will be specified
later on. Each symbol sequence { X, [b] (wp ')} is such that E {X?} <p,,and

E{X,} = 0. The destination receives a superposition of two different signals:
Yd[b] =\ hkka[b] (’11)2,) + h/rdXT[b] (wl];—l) + Zd; Zd ~ N (0,0’12”) (4.6)

It is seen that, the destination node receives information both about w,’; and
wz_l. It means, the destination receives two different versions of w,’; in two
broadcast and multiple-access stages. The decoder at the destination decodes
the message 1, canceling the effect of Xj,[b—1] (w) ') from X, [b] (w) '). In
particular, the decoding function is a mapping function from )y — W;. The

probability of error for the destination’s decoder is defined as:

Pmo= g B Z Pr {1, # wy,|w, was sent} (4.7)

w),

which is defined based on the assumption that the messages are independent
and uniformly distributed over the alphabet space. The rate Ry, is achievable
if there exists a sequence of codes (m, QmRk) for which P is arbitrarily close

to zero when m — oo.
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4.3 Cutset upper bound

In this section we derive the upper bound capacity of max-flow min-cut or
“cutset”. The cutset upper bound is used as a reference to compare the
upper bound of the realistic models. M. R. Aref in [161, Th. 3.4] pioneered
to establish the cutset bound in a general reliable network with multiple
relays. S. Zahedi in [166, Th. 2.2] presents another proof to the cutset
upper bound in the one relay case like Fig. 4.2. The following proposition
shows that a cooperative system can be decomposed into a broadcast channel
from viewpoint of the source node, and a multiple-access channel from the

destination point of view.

Prop. 1 [166, Th. 2.2] For any relay channel (X X X, p(ya yr | ¥ xr), Yo X
Vi) the cutset capacity is upper bounded by

Ccutset(k;r; d) = sup min {I(Xk ; Yd }/;er) 3 I(Xk Xr 5 Yd)} (48)
p(mk@r)
where the supremum is computed over all joint distributions on Xj X X,

complying with individual power constraints.

The first term is the mutual information of broadcasting X}, toward r and d
with transition probability p(yq y»|zr). The second term is the mutual infor-
mation of multiple-access of r and k at the destination node with transition
probability p(yq|xk x,). Thus, in general, random variables y4 and y, are
statistically related to both inputs xy and x, through p(yq y. | zx x,).

(g, zr) is a joint Gaussian distribution on X x X, with a cross correlation
E{X,X,}

VE{XEHE{X?}

p(xk) - p(x,). We pause at this point to recall some useful statistics equalities

coefficient of p = . In the case of p = 0 we have: p(x, z,) =

related to Fig. 4.2. To review the algebraic manipulation of the following
formulas, see Appendix A.

Var (Yy) = hxaDy + hrab, + 20/ hiabrhedb, + 0 (4.9a)
Var (Xi|X,) =P, (1= p?) (4.9b)
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Var (Y, |X,) = hiy, (1 — p?) + 03 (4.9¢)
Var (Ya|X,) = hiapy, (1= p°) + 02, (4.9d)
BV X,] = (hia + hie) By, (1= p°) + 02, (see (A.10)) (4.9¢)

Reference [183, Proposition 2] shows that the Ceytset(k;7;d) is attained by
Gaussian channels. The following theorem presents the capacity of the AWGN
relay channel.

Theorem 7 The AWGN cutset capacity of a point-to-point relayed commu-

nication is upper bounded to:

2
Ow

Ceutset(k;7;d) = sup  min {C(

~1<p<t
C (hkdﬁk + NrdDy + 204/ hkdﬂ%d@) }
)

(hia + hier) Dy, (1 — 02)>

UU}
Proof The mutual information terms are calculated using Egs. 4.9.

1 SYYX,] 1. SYaYX]
(X : VY. X,) = = log, —moddrldel 1, Zl¥alelde]
(Xi 3 Ya¥r | Xo) = 5 logy SV X XA 2 08T o2

_c ((hkd + hier) By, (1 — P2)> :

2
O

Var (Yy) 1 Var (Yy)

1 [ S AN
2 B IVIXL X, 2 82T o2

w

_c (hkdpk + hpdD, + 2p\/hiapph rdl%»)
= 2

(%)

I(Xk X Yd)

Performing the maximization over p, we can easily obtain the upper bound.
In other words, under average power constraints, a jointly Gaussian input
distribution simultaneously maximizes both mutual information terms. The

important result of Theorem 7 is: If g, > 7.4 (i.e. the relay node is in a
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good position to receive signals from the transmitter rather than to deliver
symbols to the destination) then the cutset upper bound capacity is achieved
by the maximization of the multiple-access term (the second term), otherwise
it is achieved by the broadcast term.

In the AWGN cutset upper bound capacity, when p > 0, the broadcast term,
I(Xk ; YaY,|X,), is decreasing function of p, while the multiple-access term,
I( Xk X, ; Yy), is increasing. Thus, the maximum of Ceytser (k; 73 d) is taken at

the point at which two terms are equal:

(hier + hia) Br, 0° + 28/ hiabphrapy p + (hrab, — hieDy) = 0 (4.10)

We analyze the Eq. 4.10 in different cases. First, we assume the parameter
p > 0 is fixed and it is possible for the source and relay nodes to adjust the
transmission powers. Then, we assume the source and relay transmit at the

maximum power and the network can tune the value of p.

1) We assume AXj, and X, are statistically independent; i.e. p = 0. The
capacity region of Ceytset(k;r;d) achieves its maximum with adjusting
the power expenditure of the source and relay nodes. In Eq. 4.10 with
p = 0, it is enough to satisfy h,qp, — hr-pr = 0, that is equal to the
maximum capacity problem of Fig. 4.1 and Eq. 4.3. With fixed p = 0 and

an appropriate power control, the Ceyser(k;7; d) takes:

h Rrdpr
Coutoen (i3 d) = C ((hm T ) p—’;) e (Wk—W) (4.11)

2
w O

The relation hg.pr = h.qp, means that the data rate of the channel
between the source and relay nodes is equal to that between the relay
and destination. In this case, the & — r — d path has the maximum
possible efficiency. Choosing two independent random spaces for X}, and
X, guarantees minimum processing for relaying’s data process. Suppose
the destination node consists of two different antennas with orthogonal
frequencies which are used simultaneously for receiving data from the

source and relay nodes. Thus, there is no interference between the r — d
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and k — d links. So, it results:

hiapr + hrapr
o5

Ccutset(k; T d) =C ( ) =C (ﬂ)/kd + ’Yrd) . (412)

Therefore, when p is equal to zero, the requirements to achieve the upper
bound cutset capacity is an appropriate power control, and an adder
component at destination to sum the received SNRs. Equivalently, the
reliable communication form a parallel channel between relay and direct-
links.

If the sequences of X and Y, are drawn from two correlated code spaces
with a strictly positive correlation (p > 0), the necessary condition for the
power control to achieve the capacity Ceytser(k;7r;d) is: g > Yra. This
means the data rate of r — d channel is less that &k — r link. Hence,
there must be a delay between sending the broadcast message and the

multiple-access message.

Finally, we suppose that the source and relay nodes transmit at maximum
power and the network is able to tune the correlation parameter. The

appropriate value of p is found by resolving Eq. 4.10 for p.

. —/hiabphraD, + \/PirDy (hiaDy, + hie By, — hrdb,.)
(hka + hir) Dy,

p (4.13)

on the condition that A = (hgq + hkr) Dy, — hrap, > 0 and 0 < p* < 1.
If on the contrary A < 0, then the maximum capacity of 7 — d is higher
than that of the broadcast channel. This means that the channel between
relay and destination must be kept idle for receiving the broadcast message
and therefore using the links is not highly efficient. Instead, the condition
A > 0 means the broadcast capacity is higher than maximum » — d
channel data rate. Using an appropriate memory at the relay node, all
channels get busy.

For strictly negative p, from the formula of Ceyrser(k;7;d) in Theorem 7,

it is derived that reducing coefficient p toward —1 yields decreasing either
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broadcast and multiple-access capacities. The solution to compensate the
affect of a negative p is to raise significantly the upper bound limits of the

source and relay power consumption.

4.4 Amplify and forward technique

In the AF technique, the transmit message w,, is a sequence of B sub-messages
w,lg,...,wz,...,wf which are independently and uniformly drawn from the
message set Wy, = {0,1,...,2m8 — 1}, Each sub-message w? is separately
encoded to X [b] (w}) under the constraint that E {X?} < Py. In each block
index b, the source node broadcasts Xp[b] (wZ), and at the same time the
relay just increase the amplitude of the analog observed signal Y;.[b — 1] to

result a normalized transmit X,.[b] (w} ') as:

X, (0] (wp') = EpLY[b— 1] (4.14)
= B (Ve Xulb = 1] () + 2, |

wherein F is amplification factor and is chosen to satisfy the relay’s power

limit. The relay node has its own power constraint as E {X?2} < p,. so that:
o[ — (4.15)
0'121, + hkrpk
For simplicity, we assume E[b] = E in every block. As can be observed, if
02 + hg Dy, > P, the effect of the relay is negligible. Combining Egs. 4.6 and
(4.14) gives:

26 = VhiaXi[b] (w}) + |E[.A hirhra Xilb — 1) (wi™Y) + |B|N hvaZe + Zg
(4.16)
By Eq. 4.16, the maximum capacity of AF scheme turns out to be:

CAF(k;"'§d):C(( hia + |E|. V/ hirh rd) m) (4.17)

The relay node does not regenerate any new code, and consequently the

complexity of this scheme is low. Since the relay node amplifies whatever it



4.5 Decode and forward technique 123

receives, including noise, it is mainly useful in high SNR, environments. When
the channel between the transmitter and the relay is very noisy, increasing the
amplification factor E increases the noise at the destination. The relay should
thus not always transmit with maximum power. [184, p. 46] demonstrates that
under the condition

|E] < Yer (4.18)

the Cap(k;r;d) outperforms the capacity of the maximal ratio combining
(MRC) technique that is:

Ver Vrd
Carre(k;r;d :C< ,d—i—i) 4.19
Mro( ) Yk e & Yrd ( )
Comparing (4.17) and (4.19) we find that the MRC technique performs
better than AF under the following condition:

Vkr Vkd

< |E]*.h 4.20
Yir + Vkd BT hra ( )

4.5 Decode and forward technique

Decode and forward (DF) is a block transmission strategy. There are four
Gaussian alphabet spaces: Xj at source’s encoder, X, and ), at relay’s
encoder and decoder respectively and finally J; at destination’s decoder. In
reqular encoding, the two codebooks X} and X, are independent with the same
size, but in irreqular coding there is a correlation between two codebooks e.g.
Superposition encoding [159]. Here we study a well known regular encoding
called Block Markov encoding. The transmit message w, is a sequence of
B sub-messages wy}, ...,w,l;, e w,? € W, and each sub-message is separately
encoded. The encoder at the transmitter a block memory whose size depends
upon the decoding strategy at the destination node. The decoder at the

destination node applies one of the following two strategies:

1) Sliding- Window decoding proposed by Xie et al. in [185]. The source code-

word in block b is a Gaussian random codebook represented by X, [0] (wz).
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In block b, the source node broadcasts X [b] (w}) to the relay and destina-
tion nodes and signal Y,.[b] approaches the relay node. At the same time,
the relay attempts to decode Y,.[b — 1] to @? !, and then re-encode @ *
and transmit it toward the destination. The decoding process at the relay
is correctly done if 7y, is sufficiently high. The relay decodes the previous
received signal using ). This is accomplished by removing the effect of
the received sub—message in the signaling block number b — 2. The relay
node then encodes @) ' to X, [b] (¥} ') using X, and transmit it to the

destination.

Yalb] = /hia Xi[b] (w}) + er[b] (&) + Za (4.21a)
Y.l = v/ Xl (u) + (a2t

At the destination, decoding of wz is done in block b+ 1 using the received
signals Yy[b] and Yy[b + 1] that depend on w? and w!, respectively. Of
course in most cases w) = ?. The transmission is completed after B+1 th
block index. The authors of [185] claim that it is almost impossible to

extend this decoding type to a multiple-relays network.

Backward decoding proposed by Willems in [186, Ch. 7]. In backward
decoding the source broadcasts a multiplexed Gaussian random value as-
signed to X;[b] (wh ', w?). The relay’s encoder/decoder process is the

same as the sliding-window encoding/decoding. So:

Yalb] = v/ hia Xi[b (wk L) + v/ hea X, [b] (wk Y+ Z4 (4.22a)
Y, [b] = /Ry Xi[0]) (wi ™t wh) + Z, (4.22b)

The destination’s decoder will start to reconstruct message w,, after having
collected whole sequence Yg[1],...,Yy[B + 1]. The process starts from the
last block and continue backward toward the first block. The delay of
sliding-window is therefore much less than that of backward decoding.

Backward decoding can be generalized to multiple relays and sources.
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The relay’s encoder does not care about the type of the combined encod-
ing/decoding strategy at the source/destination. The sub-message w? is fully?
decoded/re-encoded to one existing index in ),./X, with zero probability
if [166, Sec. 2.3.1]:

Ry, <1(X),;Y,|X,) (4.23)

In fact, an error occurs when Y, is so corrupted that there no index exists in
the encoder alphabet space. The Markov chains Xi <+ X, and X + Y| X,

form a unique jointly typical index at relay’s encoder according to pmf:
P @k, Yr, Tr, ya) = p (k) -p (2| wk) -p (yr| e 22) (4.24)

Then, the relay sends X, [b + 1](@%) in block b + 1. In fact, the whole
transmission of B sub-messages is done in B+ 1 blocks and the relay transmits
the sequence: 1,..., X, [b+ 1](w?), ..., X;[B + 1](wf). Therefore, the overall
data rate is RkBL;l per use, and obviously it is efficient for B — +oo.

In each block index b, two types of errors can occur at the destination’s
decoder: 1) an error occurs because of a very noisy receive information sent
by the relay, and 2) an error occurs in the information sent by the source in
previous block index. Thus, a bound to the destination data rate is:

Ry <T1(X,:;Yy) +1(Xp; YalX,) =1(Xp X, : o) (4.25)

and this guarantees the existence of an index at the destination’s decoder.
According to the Markov chain (X, X,.) > Yy, the probability of a confusing

index error at destination’s decoder is prevented if:
p (:Eka Yry Loy Z/d) =P (xk’ﬂ x"“) -p (yd|$k$7‘) (426)

The following theorem presents the upper bound capacity of DF technique:

2For generalized block Markov encoding, wherein instead the intermediate relay node

only decodes part of the message transmitted by the source node see [166, Sec. 2.3.2].
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Theorem 8 The capacity of point-to-point relayed communication applying

the DF technique is upper bounded to:

Cpr(k;r;d) = sup min {I(Xy; Yo |X,), (X X, ; Ya)} (4.27)
p(Tr,r)
where supremum is over individual power constraints of source node and
relay node and all joint distribution p (zk,x,) .p (zr|2k) -p (Ya yr|xrz,) that is
obtained by combination of Fqs. 4.24 and 4.26.

This means that the broadcast data rate of DF technique is limited by the
k — r channel, and the multiple-access capacity term is the same as that
cutset. The DF strategy takes the maximum capacity when the decoding
process at the relay is correctly done. Thus, the following relation can be
stated:

Cpr(k;r;d) = limmccutset(k:; r;d) (4.28)

Yir—>+
Equivalently, the upper bound capacity of the DF strategy is achieved by
that cutset where the relay node is located close to source node. The AWGN
upper bound capacity of DF strategy is introduced by following theorem.

Theorem 9 The AWGN DF capacity is upper bounded by:

hi Py, (1 — p?
Cop(kirid) = sup min {c (M)

—1<p<l o

o (hkdﬁk + hrap, +2p+/ hkdﬁkhrdpr> }

o5

Proof The AWGN of mutual information terms are calculated using Eqgs. 4.9.

1 Var (Y,|X,) 1 Var (Y| X,)

( ks | ) 2 0gs E[Yr|Xer] 2 0go 0'721;
iy, (1 — p?
=C< kpk(2 P)>;
UU}

I(Xy X, ; Yq) was proved in Theorem 7. [ |
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Theorem 9 implies that, in a reliable network wherein the reception signal
level from the source node at destination is stronger than that from the source
node at relay, or equivalently hg,. < hgq, the direct-link channel capacity
outperforms the upper bound capacity of DF strategy.

4.6 Compress and forward technique

In a network where the relay may not be able to correctly decode the message
transmitted by the sender, the DF strategy is not efficient. In this sub-
section we introduce a strategy for a situation wherein the relay observes a
more corrupted signal than that observed at the destination. In compress
and forward (CF) technique the relay should choose the best X, to transmit
in order to facilitate the source’s transmission. CF is a block-transmission
and side information encoder strategy. When the relay node has received a
(very) noisy signal, instead of decoding it like the DF strategy, it extracts
and estimates useful information from its received sequence and re-encodes
this estimated signal toward the destination. The destination node will use
this additional information as side information to help decode the original
message received from the direct channel. In CF strategy the sender does
not know about the estimated message, i.e. the source and relay does not
cooperate. The CF method achieves its maximum capacity when the signal

X, approaches to the destination with infinite precision. So:

CCF(k; T d) = lim  Ceutset (k7 T d) (429)

Yrd—+00

The CF strategy exploits the fact that the received signals at relay and
destination nodes are statistically correlated, since they are both noisy ver-
sions of the same signal transmitted by the source node. The relay node, for
instance, uses source coding with distortion to compress/quantize the received
signal into an index. This index can then be channel coded and sent to the
destination node.

The Wyner-Ziv scheme (see Sect. B.2) is the most efficient source coding

technique. Wyner-Ziv source coding can be applied to perform rate distor-
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tion coding of the relay observation. We suppose the original message w;
is a sequence of B sub-messages wyj, ... ,w,l;, e ,w,]fg € W and each sub-
message is separately and fully encoded. There are four code spaces: the
X and X, codebooks respectively at the source and relay’s encoders, the
estimation codebook JA)T at the relay node, and finally the alphabet space
Yy at the destination’s decoder. The encoder at the source node in block b
produces a Gaussian random codeword represented by Xy [b] (w},). The relay
and destination receive Y,.[b] and Yy[b], respectively. Neither the destination
nor the relay attempt to decode this information. The destination stores the
received signal, whereas the relay, using JAJT, estimates/quantizes the previous
received Y, [b— 1] to Y, [b— 1] (k") where k* € {0,1, ..., 2mR 1} is an estima-
tion/quantization index. The estimation index can be introduced as either the
input of an estimation/compression function e.g. Hash function, or the index
of a quantization table. Then, the relay encodes the estimated/compressed
signal ?r[b — 1] (k*) using the Gaussian codebook X, and transmit it to the
destination. For the last block, the source transmits a termination code word

X(1).
Yalt) = v/hwa Xelo) (w}) + Viea X, 0] (Vo= 1] (%)) + Za (4.300)

Y lb—1] — Y, [b— 1] (k%) (4.30D)
Yo [ = Vi Xilb] (w)) + Z, (4.30¢)

The following factorization of the joint probability distribution function
prevents from errors at the relay’s encoder [166, Th. 2.5]:

P (Tky Ty Yry Ury Ya) = (1) - 0 (YrlTr 28) - 2 (G |y 1) (4.31)

This is due to the Markov condition X < Y;|X, < }A/, for encoding and
quantization processes. The decoding process at destination is perfectly done
if the transmit signal X, is successfully conveyed to the destination and there
exists a unique joint decode index for the side information Yy|X, and the

already received signal X} in the previous block index, i.e. X + Yyl X,

P (Tks Trs Yr, Uryya) = p (2r) - p (2r) - p (Yalwr ) (4.32)
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Combining Eqs. 4.31 and 4.32 the pmf is given as:

P (@, Try Yy Ury ya) = 0 () - (20) -0 (e |yr ) - p (Ya yrlzre ©)  (4.33)

In the following theorem we illustrate a relation between compression data
rate and later process of encoding and transmitting data rate at the relay.
This theorem established in the work of Cover and El. Gamal [159, Th. 6].

Here, we present a different proof based on Wyner-Ziv source coding.

Theorem 10 Suppose that the full-duplex relay complies with CF strategy.
For each joint pmf p(xy).p (x.) .p (Jrlyrxr) .0 (Yayr|Trz,) there exists a se-
quence of | Xy (w,), X, (2).Y, (k|z)) whose symbols are randomly derived
from the code books w, € {0,1,..,2mf — 1}, 2 € {0,1,...,2"”§ -1}, k €
{0,1,...,2m8 — 1}, such that P, (w, # wy,) — 0 as m — +oo if:

B <1(Xp: Ya¥olX, ) (4.34a)
Subject to: 1(X,; Yy) >1 (ff L Y| X, Yd) . (4.34b)

Proof For this theorem, [166, Th. 2.5] and [159, Th. 6] present a demon-
stration based on block Markov encoding. Here, we look at this theorem as
a bit rate encoding problem with side information. The relay node in block
b generates the estimate message ?T[b — 1] that is related to sub-message
w?™!. Then ?}[b — 1] is encoded and transmit to the destination in block
b and at the destination’s decoder it will be joined with Yy[b — 1]. Suppose
the destination’s decoder is able to correctly decode the received message.
The question is the smallest allowable encoding rate at the relay node. We
emulate this problem by the following Wyner-Ziv problem: The destination’s
decoder has side information Yy[b — 1] given X,.[b]. The relay is going to
encode Y, [b—1] given X, [b]. There is a tradeoff in terms of correlation between
Y, [b—1] and Yy[b—1]. The network is trying to exploit the side information at
the destination’s decoder and accordingly, we do not care about the amount

of distortion. From the result of Wyner-Ziv we know that the minimum
quantization rate Ris (Eq. B.32): R =inf [I (}/}T ; YT|XT) — 1 (?T ; Yd|XT)]
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where Yy ¢ Y, ¢ Y,. The decoding at the destination is correctly done if :
R <I(X,; Yy). Therefore:

~

(X, ; Y)>R>1 (Y mX,,,) . I(f/,,; Yd|X,,,)
— (Vv X)) 1V X, ) - 1V Valx, )
~1(Vi v X ) 1Yo Ve X,
—1(Vs 2 YaX,) = 1(V: Ya X,
:I(ﬁ';Y;'|XrYd>

The equalities follows from the chain rule. After having received the infor-
mation Y,[b — 1] about X;[b — 1] given X,.[b], the destination’s decoder uses
(Yd[b —1], Y, [p—1] | Xr[b]) to decode the message w). Decoding will be
correct if the achievable rate Ry is upper bounded by:

Ry gI(Xk;Yd)+I(Xk; fmxr) :I<Xk; Yd?r|Xr).

|

The inequality (4.34b), physically means that the compressing rate Y, — }A’T,
must be smaller than the rate used to transmit data from the relay to the
destination. Correspondingly, the h,4 channel condition has to be sufficiently
good to reliably convey the compressed signal ?T The CF protocol has at
least two interesting properties: 1) It does not require the relay to be in a
better reception condition than the destination, and 2) the broadcast capacity
reaches that the cutset bound when Y, = Y, (inequality 4.34a).

The amount of information extracted and forwarded to the destination de-
pends on the r — d channel capacity. The relay transmits z;, = }/}r[b] (kb“) to
destination, in block b+1, via X, [b+1] (z3). The error probability of decoding
X, at destination vanishes if the data rate between relay and destination is
bounded to: R <1(X, ; Yg). The value z, is about Xj|b] (w}) and the relay
does not decode the received signal. Therefore: Ry < ]/%, otherwise the r — d
channel is not able to transmit all signals. Now, we can derive the upper

bound capacity of CF scheme with the following theorem.
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Theorem 11 An upper bound of the capacity of the CF relay channel is given
by:

Cop(k;r;d)= sup min {I(Xy; Ya V. |X,), I(X,; Yo} (4.35)

p(xr,xr)
where the supremum is over individual power constraints of source node and

relay node and all joint distributions p (xg) .p (xr) .p (Gr|yr 2r) .0 (Ya yr|Tk 1)

Theorem 11 results: the multiple-access capacity of the CF strategy is
limited to the r — d channel data rate, whereas the broadcast capacity is
equal to that cutset. The AWGN capacity is formulated as:

Theorem 12 The AWGN CF capacity is upper bounded by:

o2

w

Cor(k;r;d) = sup min {C’ (

—1<p<1
C (hkdf_?kPZ + hprdD, + 204/ hkdﬁkhrdﬁr> }

(hka + hir) Dy (1 — 02)>

hiapy, (1 = p*) + o3,

Proof The broadcast term was proved in Theorem 7. The multiple access

term is calculated using Eqs. 4.9.

1

I(X,; Yy = 5

log, Var (Yy) ) _c <Var(Yd) — Var (Yd|XT)> _

Var (Yy| X Var (Yy] X;-)

_c (hkd]_?kp2 + hedD, +2p+/ hkd@hd@)

hiapy (1 —p?) + 02,

If the relay node is located close to the destination, i.e. g, < 7,4, the upper
bound capacity is achieved by the broadcast term and with p = 0. On the
other hand if the relay node has good reception condition, i.e. yg, > vrq the

upper bound capacity is achieved by the second term and with p = 1.
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Fig. 4.3: A single relay communication network scenario.

4.7 Case study

In this section, we exemplify the various outer region bounds presented so
far in this chapter. We consider a point-to-point relayed communication with
Gaussian channels wherein the transmitter k, relay r, and sink d are located
as sketched in Fig. 4.3. We assume a vertical distance of d,- between the relay
and the £ — d direct-link. The path condition values hg, = hrq = hgg =1
are scaled with respect to Notation 2. First, we experiment a high SNR
environment and suppose the source and destination are located at a distance
of drg = 1m, and the relay is located at a vertical distance of d, = 0.1 m
and it is horizontally moving from dp, = —0.5m to dg, = 1.5m. Fig. 4.4
plots various data rates for P, = P, = 100mW, and o2 = 1W. The curve
labeled AF shows the outer region of AF strategy with the largest possible
scaling factor ' in Eq. 4.15. The curve labeled p plots a particular value of
the correlation coefficient we tried for this example. It is important to note
that, changing the correlation function meaningfully results in change of the
curves labeled cutset, DF, and CF (strategies).

In our particular case study, the AF and MRC techniques show a very good
performance. This is due to the fact of the short distances result in a high
SNR. As the relay moves toward the destination (dg,. — 1), the achieved
signal at the relay becomes weaker and this significantly decreases the AF
data rate. Generally, the AF and MRC techniques would be useful when
the relay is located so as to be able to perfectly receive and deliver signals,

or equivalently, the relay is equidistant from the transmitter and the sink
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Rate [b/s/Hz]

relay off
15F b
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-0.5 0 0.5 1 15

diy [m]

Fig. 4.4: Rates for one relay with p, =B, = 100mW, 02, = 1 uW, dra = 1m, and
d- = 0.1m.

(dkr — 0.5).
As the relay moves toward transmitter (dg, — 0), the rates of cutset, DF,

and CF become:

2
Ow

hiaDrp? + hrdD, + 2p+/ hkdﬁkhrd@)

hiaDy, + hrdD, + 2p+/ hkdl_?khrdl_?r>

Ceutset (k~ r d) = CDF(k; s d) —C (

Cor(k;r;d) = C
orlkirid) ( hkaPy (1 — p?) + o3,

and the DF strategy shows better performance. Correspondingly, as the relay

is placed close to the destination (d, — 1), the various data rates become:

her Dy (1 - 102)>

2
O

CDF(k;T;d) — C <

(hid + hir) By (1= p?) )

2
O

Ccutset(k; T d) = CCF(k; L d) —C (
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Rate [b/s/Hz|
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Fig. 4.5: Rates for one relay with B, = P, = 100mW, 02, = 1puW, drg = 500m,
and d, = 10m.

and the CF technique achieves a higher capacity. In the following chapters
we will show that these limiting principles are also generalizable in a multiple
sources, multiple parallel relays network.

Now, we consider a point-to-point relayed connection in a low SNR regime.
The transmitter and the destination are placed at a distance of diq = 500 m,
and the relay is moving in a range of di, = —100 = 600 m with a vertical
distance of d, = 10 m. We set the same FE as the previous simulation. Fig. 4.5
plots various data rates for p, =P, = 100mW, and 02, = 1 uW.

We draw a different experimental function for correlation value which is the
curve labeled p. From Fig. 4.5, it is clearly derived that the AF technique is
not quite useful in a low SNR network, whereas the MRC technique performs
much better than AF. This is because the received signal at the relay is very
noisy, and also the scaling factor is higher than that in the previous scenario.
In this situation (almost) no signal perfectly approaches to the destination.
The unique point that hold Eq. 4.18 is at dg, = 0. Our experiments in

a given scenario with different parameters result reducing the amplification
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factor does not effect the AF data rate.

As can be seen, in low SNR, the DF and CF coding techniques show signif-
icantly higher rates than in the direct-link. Like the previous scenario, when
the relay is close to the source node, the DF strategy achieves the cutset
bound, and instead, when the relay is close to the destination CF technique

is much better.

4.8 Summary

The data rate of a relayed communication is a function of both relaying
strategy and positions of the nodes. The DF capacity achieves the cutset
bound when the channel between the source and relay is sufficiently good,
i.e. the relay is close to the source, and accordingly the received information
is perfectly decoded at the relay. The CF scheme can outperform DF when
decoding is less reliable at the relay node and the channel between the relay
and destination is sufficiently good, i.e. the relay is closer to the destination
and more information can be conveyed to the destination through the relayed
channel. Moreover, CF also provides a more general form of compression
compared to the simple analog scaling done in AF. In a low SNR environment,
DF and CF technique achieve a significantly high data rate, whereas AF shows

a good performance in high SNR regime.






Chapter 5

Multiple parallel relayed
point-to-point

communication

In this chapter, we investigate the upper bound capacity of point-to-point
cooperative communication assisted by more than one relay in particular
by a bank of R “parallel” relays. As the number of relays increases, more
radio resources and more degrees of freedom can be jointly utilized to assist
the source’s transmission. However, to exploit these advantages, one must
overcome the challenges posed by the individual power constraints. We will
show that increasing the number of relays does not necessarily raise the
upper bound of the capacity region, and may even deteriorate data rate and
harmfully increase the network cost in terms of power expenditure.

The main focus of this chapter is to derive the highest achievable data rate
of the transmitter, applying different strategies at the relay nodes. First, in
Sect. 5.1 we describe the channel model of a multiple parallel relayed point-to-
point communication. The cutset theorem is used in Sect. 5.2. The following
three sections study the three relay strategies. Sect. 5.3 is devoted to AF
strategy, Sect. 5.4 to DF, and Sect. 5.5 to CF. In Sect. 5.6 we suppose some
relay adopt the DF strategy and the others relays apply CF technique. We
exemplify the results in Sect. 5.7. Finally, we conclude in Sect. 5.8.
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w
- @ Encoder KX

Fig. 5.1: One source, multiple parallel relays, one destination cooperative commu-

nication network.

5.1 System model

We study a cooperative network that consists of one source k, one desti-
nation d, and an arbitrary number of parallel relays belonging to set R =
[1,...,r,...,R]. We assume there is no link between relays and the com-
munication is full-duplex mode, so that relay assisted transmissions must be
conducted over one phase and all channels are always busy. The cooperative
network of Fig. 5.1 consists of 2R+ 2 alphabet spaces: X, at the transmitter’s
encoder, X, and ), at each relay r, and finally )y at destination’s decoder.
The sent message w, is a sequence of sub-messages w,...,w?, ..., wE uni-
formly drawn from a message set with size m and rate Rj represented by
Wi = {0,1,...,2m8 — 1}, First, the transmitter encodes the message w,
in a symbol sequence X;[1] (w) ..., Xp[b] (w}), ..., Xy[B] (w?) under the
constraint that E {X?} < P, with E{X;} = 0. Each Xy[b] (w}) represents
the bth random Gaussian codeword in the alphabet space A%. In each block
with index b, the Xj[b] (w}) is broadcast to the destination and to all relays.

A noisy version of the transmitted signal approaches the relay r as:

Yo [b] = Vi Xilb] (wh) + Z, (5.1)
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where Z, ~ N (O,afv) is additive white Gaussian noise at the proper relay.
At the same time, each relay r executes a function of ), — X,.. That is, every
relay r processes the received signal in the previous block index, generates a
new signal and then forward the new symbol X,.[b] (wh ") to destination.
The information X,[b] (wz_l) is the output of the relay r’s deterministic
function that depends on the specific cooperative strategy whose inputs are

the previous received signals:
X0} (wh) = fRY b 1], Yoo~ 2, Yo 1)) (52)

Each relay r has its own individual power constraint as E {Xf} < p,.
The symbol X,.[b] (wh ") is forwarded to the destination simultaneously with
broadcasting a new symbol by the source. The receive signal at the destination

is given by:

Yalb] = VieaXulb] (w}) + > V/hea X, [b] (wl ) + Za (5.3)

reR

where Zg ~ N (0,02,). The decoding function at the destination is a Gaussian

de-mapping function of )V; — W, with error probability:

P =2 M Z Pr {w;, # w,|w;, was sent} (5.4)

Wy

based on the assumption that the messages are independent, and uniformly
distributed over the alphabet space W;. The minimum rate Ry, is achievable
if there exists a sequence of code (m, 2™#) for which P/ is arbitrarily close
to zero when m — oo.

To go on with our analysis, we define the parameter py, as the correlation

between the output sequences of Xj and X, where r € R, ie. pp, =
E{XX,}

VE{XZIE{XZ}

eter 7,; as the correlation between the outputs of two relay nodes r,j € R,

, and using a similar formulation, we represent the param-

i.e. the statistical correlation between X, and X;.
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5.2 Cutset upper bound

To compute the achievable cutset capacity of one source, multiple parallel
relays, one destination cooperative network, we resort on the general repre-
sentation of M. R. Aref’s tool [161, Th. 3.4] .

Prop. 2 [161, Th. 3.4] A network consisting of one transmitter, multiple
relays, and one destination satisfies:
Ceutset(k;R;d) = sup  min {I(Xp X7; Yy Yre|X70o)} (5.5)

plog,zr) TER

where mazimization is subject to the power constraints defined by the network,

and the channel condition p(yqyr |z TR).

The aim of Prop. 2 is to find the minimum data flow between the source
and receiver via one of the % (%) possible relay selections. There are 2%
possibilities to select subset 7 C R, known as network cuts. In Eq. 5.5, let us
suppose the mutual information term achieves its minimum with an A C R,
ie. Ceutset(k;R;d) = sup I(XpXa; YaYac|X 4c). This means that the

p(zr.2R)
members of A are in a sufficiently good conditions to (perfectly) receive signals

from the transmitter rather than to deliver signals to the destination. On the
other hand, the relays in A® are in a good positions to (error freely) convey
signals to the destination.

The relation stated in Prop. 2 was proved in a general case where the
relays are physically connected to each other. For the cooperative network
scenario of Fig. 5.1, where there is no cooperation among the relays, ref-
erences [183,187,188] represent remarkable contributions which concern the
maximum achievable capacity. In [188, Sec. 5.4] and [187, Sec. 3.2.2] only two
broadcast (7 = 0) and multiple-access (7 = R) cuts have been considered and
the power constraint was not identified for each node. Here, for the scenario
of Fig. 5.1, first we demonstrate that Ceysset (k; R; d) takes the maximum when
the Gaussian variables X are fully correlated, i.e. 7., =1 Vr,j € R. Then,

we approach the upper bound capacity considering all 2% network cuts.
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Theorem 13 In the network of Fig. 5.1, the Ceutset(k; R; d) takes the mai-

mum value when the Gaussian variables X are fully correlated.
Proof We expand Eq. 5.5 as:
I(Xe X713 YaYre|X7e) =H(YyYrce|X7c) —H(Ya Y| XrXk) -

In the second term, H(Y;Y7rc|XzX}) is not a function of 7,;. To prove
the theorem, it is enough to show that the maximum of H (Y, Y7¢|X7c)
is achieved when 7,.; = 1 Vr,j € R, irrespective of the value pj,. This is
somehow obvious for Gaussian random variables because conditioning reduces
entropy except the case of fully correlated given variables condition. That is
H(A|B) > H(A|B, C) , with equality whenever B and C' are fully correlated,
or A is conditionally independent of C' given B, i.e. A <> B« C. |

The following results can be derived from Theorem 13. First, it is reasonable
if we assume the same correlation coefficient between X, and every X,.s. Thus,
in the rest of this chapter, we suppose p = pgr V7 € R. The second result is
that X[Y| Xr] = Var(Y]X,).

In the following, we find a general formula, considering all 27 cuts, for a
relayed communication consisting of one source, multiple parallel relays and

one destination where each node has its own individual power constraint.

Theorem 14 For one source, multiple parallel relays, one destination net-

work, the cutset upper bound of Prop. 2 is shortened to:

Ceutset(k; R;d) = sup min {min {I(Xp; Ya Yo | Xo) b T( Xk X ; Yd)}
p(ri,zR) re€R

(5.6)

Proof The second term is the multiple-access capacity of all relays and the
source node at destination, i.e. 7 = R. To prove the theorem, it is enough
to show that the following equality holds:

7@2% {I (Xk X’T; YdYTclec)} = Hél}zl {I (Xk; Yd YT|XT)}.
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The expansion of the left-hand side gives:

1(X, X7 YaYre|Xge) =1(X7; YaYre|Xye)+ 1(Xp; Yo Yoo |XR)

(1)=0 (2)
1 Y[ Yy Yye| Xqe]
1): I(X7; Y3 Y¢|X =-1 =
( ) ( T, Id TC| Tc) ) Og2 E[YdYTchR]
_ Ly, Zl¥aYro|Xere]
2 2 B[Y, Yro| X, erc]

(2) : I(Xk; Yd YTC|XR) = I(Xk; Yd Y7—C|X7«)

=0.

Until now, we demonstrated that:
71%;1% {I1(Xe X7;YaYre|Xge)} = 71%1% {I1(Xk; YaYre|X,)}
Since 7 is every strictly subset of R, it is clear to conclude that:
7I’ngu7lz {I(Xk; YaYre|X,)} = %17121{1 (Xp:; YV | X))
|

The result of Eq. 5.6 is the minimum value between R+ 1 mutual information
terms. The first term of the Coyrset(k; R;d) is the broadcast capacity from
the source node to the destination and the relay with which has the minimum
information flow rate. The second term is the multiple-access capacity of all
relays and the transmitter at destination. The novel result of Theorem 14
is: the upper bound cutsel capacity of a point-to-point multiple parallel relayed
network is achieved either using one relay only or using all relays together.
If all relays are in good conditions to transmit signals to the destination
rather than to receive signals from the source, Coyiset (k; R; d) = Ceutset (K315 d)
wherein 7 is the relay with which the source node achieves the smallest
broadcast capacity of I (Xy; Yy Y, |X,). In such a network the existence of
all others relays is useless. On the other hand, if all relays are in good
conditions to receive data from the transmitter rather than to convey signals

to the destination, the Ceytser(k; R;d) is achieved with maximization of the
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multiple-access capacity of all relays and the source node at the destination,
ie. I(XgXnr;Yy). As can be seen, the capacity of the broadcast term of
Ceutset(k; R; d) is much less than that presented by [187, Sec. 3.2.2] and [188,
Sec. 5.4]. This is because, [187] and [188] consider only two broadcast and
multiple-access cuts rather than all 27 possible cuts.

At this point, we recall some useful equalities relevant to the equations of
Fig. 5.1, with 7,; = 1 Vr,j € R. To review the algebraic manipulation of the
following formulas see Appendix A.

Var (Ya) = heaD, + 207/ heaDyheab, + > Y \/hwdDohjaD; + 0%

reR reER JER
(5.7a)
B[Xi| XR] = Var (Xi|X,) =P, (1—p?) VreRr (5.7b)
B, |XR] = Var (Y| X,) = hiBy, (1 — p?) + 02 (5.7¢)
B[Yy|Xr] = Var (Y4 X,) = hiaby, (1 — p?) + 0o (5.7d)
BYaY,| Xr] = BYaY, | X,] = (hia + hir) By, (1 = p%) + 02, (5.7¢)

In the following we introduce the capacity of the cooperative framework

depicted by Fig. 5.1 with Gaussian channels.

Theorem 15 The AWGN cutset upper bound of the capacity one source,

multiple parallel relays is:

9
Ccutset(k;R; d) = sup min {Hél% {C (E[Ydyvrer] qu) } ,

—1<p<l o

o(m)

which is calculated using Eqgs. 5.7.

Proof
1 SV X] 1. S[YaYlX,]
I(Xp: YoV, X)) = = logy —mmorierl D 2
(Xoes Yool Xo) = g loge e ] ~ 21982 — 2
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(1) is derived from the fact that X[Y;Y,| X, X;] = Z[VyY, | XrXk] and
YY,. | Xz X} is a function of independent variables Z; and Z,..

1 Var (Y2) 1. Var(Y)
UX: X - V) = = log, ——xa) 1 Yar(Ya)
(Xk X ; Ya) = 5 logy SValXe Xr] 2 827 o2
c Var (Yy) — 02
o

If all relays are much closer to the destination than source node, or equiv-
alently vir < Vra V7 € R, then Ceytset(k;R;d) = Ceutser(k;7;d) wherein r
is the relay with the weakest v, channel. This means that the others relays
make only “crowd” and increase the overall power consumption. In such a
relay assisted network the supremum is achieved with p = 0. On the other
hand, if all relays are located in the contrary positions, i.e. they are much
closer to the transmitter than destination, Ceyrset (k; R; d) is achieved with the
multiple-access term (the second term) and the supremum is achieved when
X and Xx are fully correlated, i.e. p = 1.

In a multiple parallel relay network wherein all relays are well located to cor-
rectly receive signals from the transmitter, i.e. Yi, > Ypg, the Ceurset (k; R; d)
dominates the parallel channels capacity that is C(yxa + ZreR ~vra). This
is because Gaussian variables X are fully correlated. In such a reliable
network, adding a new relay, always close to the source node, expands the
upper bound of the cutset capacity region, up to the number of relays until
which the multiple-access capacity does not exceed that broadcast (the first
term).

Another interesting result of the Theorem 15 is: adding a new relay does
not always increase the cutset upper bound capacity. In a one source-multiple
parallel relays-one destination system, locating a new relay very close to the
destination may decrease the upper bound capacity, and adding a new relay
very close to the transmitter may do not change upper bound capacity.

Let us start to study different relaying strategies in a point-to-point multiple

parallel relayed network. First, we try to calculate the upper bound capacity
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of the simplest relaying strategy, i.e. amplify and forward (AF) technique.

5.3 Amplify and forward technique

In a reliable network applying AF technique, the relays do not have any code
space. There exist two Gaussian codebooks: X}, at the source’s encoder, and
Ya at the destination’s decoder. Suppose a transmit message w, which is

a sequence of B sub-messages w,ﬁ, e wz, . w}? and each sub-message w,ﬁ is

uniformly drawn from Wy = {0,1,...,2™% — 1}, Each sub-message w? is
separately encoded to X[b] (w}) under the constraint that E {X?} <p,. In
each block index b, each relay r scales the amplitude of the analog observed

signal Y,.[b — 1] as:
Xo[B] (wpt) = B LY, [b - 1]

5.8
= E,[b]. (\/h_erk[b— 1] (wg—1)+zr) (58)

wherein the amplification factor E, is chosen so as to satisfy the proper
relay’s power constraint. Each relay node has its own power constraint as
E {X?} < D,. We assume all channels are slow time-varying. So that we can
assume F, [b] = E, and

|2 < Z_?r

B R— 5.9
N 0-'12H + hk?'l'pk ( )

|Ey
As can be seen, if 02 + hyP, > P, the (amplification of the) relay r is

useless. Replacing Eq. 5.8 into (5.3), the received signal at the destination is:

Yalb] = v/hia Xi[b] (w}) + ) 1BV her hea Xi[b— 1] (w) 1)+

reR
+ > B hra Ze + Za (5.10)
reR
The relay nodes do not regenerate any new code, and consequently the

complexity of this scheme is low. Since every relay node amplifies whatever
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it receives, including noise, it is mainly useful in high SNR environments. In-
creasing the amplification factor E increases the noise of ISI at the destination,
and also significantly increase the noise of ICI where there is only one antenna
at the destination. The relay should thus transmit with an appropriate power
where the network is able to adjust the power of the relay. By Eq. 5.10, the

maximum data rate of the AF scheme is formulated as:
Car(k;R;d) =

2 —
c ( hkd+Z|Er|\/hkrhM> ( D (5.11)

reR L+ er |E"'|2h"'d) o

(184, p. 46] demonstrates that under the condition
[Er| < Yk (5.12)

the Cap(k; R;d) outperforms the capacity of the maximal ratio combining
(MRC) technique that is:

Cornc(kRid) = C [ g+ Y L drd (5.13)
% Ver + Yrd

5.4 Decode and forward technique

Here we study a well known regular encoding called Block Markov encoding,
that is concerned with 2R + 2 Gaussian code spaces: Xj at the transmitter’s
encoder, ), and X, Vr € R at the relays’ decoders and encoders respectively,
and finally Y; at the destination’s decoder. The transmit message w, is
a sequence of B sub-messages wy,...,w?, ..., wP. Bach sub-message w? is
uniformly drawn from alphabet space Wy, = {0, 1, 2B 1}, and then
it is separately and fully encoded to a Gaussian code.

The encoder at the transmitter has one block memory that, applying multi-
plex coding, assigns a Gaussian random number X [b](wh ', w}) to each w?.
In each block b, the source node broadcasts X}, [b](w,’;_l, w?) to all relays and
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to the destination. Each relay r receives the signal:

= hir Xi[D] “)k wk) + Z, (5.14)

As the communication is performed in full-duplex mode, every relay decodes
and then re-encodes the previous received message and sends it to the des-
tination. Each relay r € R tries to correctly and fully decode the received
message using the code space )., and then re-encodes it using X,.. A DF
reliable channel can achieve the highest possible capacity when the decoding
processes at all relays are done with vanishing small BER. To this end, for
every k — r channel it must guaranteed that:

R, <1(Xp;V,|X,) Vremr. (5.15)

At each relay r, an error occurs when Y, is corrupted such that there exist
no index in encoder alphabet space X,.. The Markov chains X <+ X,.Vr € R
and Xj <> V3| X, Vr € R form a unique jointly typical index at every relays’
encoders with the probability function:

p(@x yro 2R, ya) = p(2r) - [[ p@le). T p eler ) (5.16)
rerR reR
The destination tries to re-construct the sent message w, using backward

decoding. The source transmits the sequence

Xp[1](0, wh), .., Xp[b)(wl ™ wh), .. Xi[Bl(wP = wh), Xp[B + 1](w?,0)

in B+ 1 blocks. The destination collects the sequence Yy[1],...,Yy[B+1] as:
b = v/ hiea X [0 (wp ™ w) + DV hea Xo[D)(0] 1) + Za (5.17)
rer

The destination’s decoder starts from the last block index and proceeds

+1

backward to the first block. Suppose it has properly decoded 'wb . It can

then decode w? from Yy[b — 1] if the multiple-access data rate guarantees:

R <I1(XkXg; Yq) (5.18)
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The error probability at the destination’s decoder is prevented if all inputs,
i.e. the outputs of all relays and the source node, are error-free received.
According to the Markov chain (X, Xg) > Yy, and taking into account
that p (yalzr) = p (yalx,), the probability of an index error at destination’s

decoder vanishes if:
P (T, YR, TR, Ya) = P (Tk, TR) - P (Yalvr k) (5.19)
All above discussion summarizes in the following theorem:

Theorem 16 The capacity of DF technique for a network consisted by one

source, multiple parallel relays and one destination is upper bounded to:

Cpr(k;R;d)= sup min {min {I( Xk Yo | X)), (X, XR s Yd)}
p(Tw,2R) reR
where the supremum is over individual power constraints of the source node

and all relays, with joint pmf:

p(ee,mr) - [] p@eler) - [] p@elee o) - p (yalee zi) -
rER rerR
The result is that in a multiple parallel relay network the transmission rate
of DF strategy is limited by the worst channel between the source node and
the relays. In the following, we introduce capacity of Gaussian channels in a

cooperative framework based on DF technique.

Theorem 17 The AWGN DF upper bound of one source, multiple parallel

relays, one destination achieves the rate:

_ A2
Cpp(k;R;d) = sup min {min{c(var(er) %)}7

—1<p<i reR

which is calculated using Eqgs. 5.7.
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Proof
1 Var (Y| X,) 1 Var (Y| X;)
I( Xy VX)) ==logy =———= == — =
( ks | ) 2 082 E[Y;lXTXk] 2 0go J%U
. (Var (21%,) - oi) |
U'w
(X, Xr ; Yy) was proved in Theorem 15. [ |

Substituting Eq. 5.7¢ in the first term of Theorem 17 implies that: in a
(k; R;d) reliable network wherein there exists a relay v such that Ve, < Yed,
the direct-link channel capacity outperforms the upper bound capacity of DF
strategy. In such a network, the relays make only “crowd” and reduce the

capacity of the direct-link between the transmitter and destination.

5.5 Compress and forward technique

In decode and forward technique, the broadcast capacity is limited. In com-
press and forward (CF) technique, each relay uses a source coding framework
to estimate (or compress or quantize) the received signal with a certain dis-
tortion, and then uses channel coding to forward it to the destination. What
may happen instead is that the broadcast limitation of DF disappears and
multiple-channel access capacity will be restricted to the source coding rate.

In the CF relaying, there are 2R + 2 Gaussian code books: & ,j)\,« at every
relay, X at the source’s encoder, and the ); at the destination’s decoder.
The transmit message w, is a sequence of B sub-messages w}, ..., w?, ..., wg,
and each sub-message wz € Wy = {0,1,...,2mf% — 1} is separately en-
coded. In block index b, the transmitter broadcasts the encoded message
Xi[b](w?) toward relays and the destination. Each relay r and destination
receive Y, [b] and Yy[b] respectively. Neither the destination nor the relays
attempt to decode the received information. At the same time, each relay
independently estimates its own previous observed signal and then encodes
it and transmits toward the destination. In block index b, each relay r using
Y, ={0,1,..., gmBy _ 1} estimates the received signal Y, [b—1] to ¥,.[b—1] (kb)
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where kb € {0,1, ...,Qmér — 1} is the estimation index of the relay in the
block index b. Then, every relay using the proper codebook A encode the
}//\}[b —1] (kfi) and re-converge it to the destination. For the last block, the

source transmits a default X;(1). The following formulas apply:

= Vhir Xi[b)(w}) + (5.20a)

Yr[b —1] — Y. b-1](k ) (5.20b)
= VIa Xulb) () + >V X, [0 (Vb= 1] (k) ) + Za - (5.200)
rerR

The network applies a distributed Wyner-Ziv coding with multiple sources
and a common decoder at the destination. The input of each individual
Wyner-Ziv source coder is its observed signal Y;.. An auxiliary random }A’T € JA/T
is drawn such that }//\} and Y, be jointly typical, conventionally (37}, Y,) e A",
according to p (gr|xg). The side information of the Wyner-Ziv network is
the already collected signal (in the previous block index) at the destination.
By using the fact that the side information values Yy and Y, are statistically
correlated, we can state the Markov condition Yy <> Y, <> ?r. This condition
applies other restriction to }Af at cach relay. The estimation variable 17} must
be drawn to satisfy (Y,,Y,) € A" for a given (Yy,Y,) € A”. Accordingly,
the Markov condition guarantees (Yd,Y,,,Y,,) A!". Using induction it is
straightforward to show that (Yg, 17'1, cee }A/R,Yl, ..., Yg) € A™. Moreover,

for every relay there exists a function g,(-) such that:
E{d(Xe, 9-(Ya, Vi, V) } < D, (5.21)

We do not concern about the amount of distortion D,., justifying that the
decoder is trying to exploit the side information as much as possible.

An error event may be that the encoders do not find any pair of jointly
typical codewords. This is prevented if [16, Lemma 10.6.2]:

R, >1(Y,: Y,|X,) Vrewr (5.22)

This results show that there is a Markov condition of X < Y, |X, < }Afr at

each relay r, for encoders and quantization processes. Thus, an error event
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at all relays’ encoders is prevented if:

p (e, xR, yr, Ur) = p () - [[ p Welzezn). T p (0rlyear) (5.23)
rer reER

Now, we find a channel probability distribution that prevents from errors

at destination’s decoder. In each block index b, the decoder uses the receive

symbols of X to decode the already received symbol Xj in block b — 1. De-

coding is successfully accomplished if all X are error free at the destination.

Next, Yq[b — 1] given Xg[b] is exploited as the side information to decode

Xi[b—1]. The error of assigning a unique index at the decoder is prevented

if (X, Y4|XRr) = (Xk, Y4|X,) € A, These conditions are satisfied with a
probability of:

p (TR, YR, YR Ya) = P (¥x) - P (TR) - P (YalTHT1) (5.24)

The combination of error probabilities of Eqs. 5.23 and 5.24 gives the pmf
of CF technique in a (k; R;d) network as:

P (TR, YR, YR, Yd) =

p (*Lk) “p(eR) P ydl*Lk*Lr H p yr|*LT*Lk H p (gr|yrl7) (5'25)

rer reR
Another type of error that occurs whenever the decoding is mistaking with
another existing index in the alphabet space V. There is a condition under
which this error event occurs with arbitrary small probability, as stated by

the following theorem.

Theorem 18 The destination’s decoder will not mistake the correct index

with any other admissible one if:
R, —R, < I(ﬁ;mxr) VreR (5.26)

Proof The variable Yy is a function of Xz and Xj. A very corrupted received
X, harms the decoding process. We assume an error at the decoder events due

to a very noisy received symbols from the relays belonging to 7 C R, while
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the sent signals from the relays in 7¢, and the side information Y| X are
correctly approached. To find the error probability at the decoder, we resort
to [16, Lemma 10.6.2], and we extend the proof of the joint AEP theorem [16,
Th. 7.6.1], especially equations (7.51)-(7.53).

Pr{(ffR, Yd|XR> c A;_"} <
H 2—m(1~%7-—1$.,‘) ] H 2—m(H(5A/7»)—€) ) 2—m(H( (YalXRr), }A’TC)—e) )

reT reT
Cgm(H((YalXR) , Yy, Y7 )+e)

The above inequality is an extension of [16, Eq. 7.52] (see also Eq. B.18, and
Sect. B.1.2). So, as m tends toward infinity, the decoding error probability
caused by relays 7 C R is arbitrarily small if:

> (ke-R) <

reT
< S H(%)+H((VilXR), Yre) - H((ValXr), Yre . V7 )

reT
- S H (A) - H(?T | (Yd|XR),f/Tc)
reT
= H Ar) - ZH (ﬁ 1Yoty Yooy, (Yol XR) ,?TC)
reT reT
= 31T Vo, Vea o, (ValXR) Ve )
reT
21 (Vs valxr )
(V7 valx,)

Equality (2) comes from the Markov chain condition: Yy, <> Y, <> )A/} at every
relays, and equality (3) comes from the fact that X5 are fully correlated. The
proof concludes noting that Eq. 5.26 is satisfied V7T C R. [ |

The combination of Egs. 5.22 and 5.26 implies:

R, > I(}Z;Y;|Xr> —I(}AfT;Yd|XT) VreRr (5.27)
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This means a (k,R,d) network applying CF technique forms a distributed
Wyner-Ziv source coding network wherein each relay acts as an individual
source coder whose input and side information are Y,.|X, and Yy| X, respec-
tively. Following the steps in Theorem 10 we get:

R, > I(}Afr; YT|XTYd) VreR (5.28)

Consequently, it is possible to establish an expanded form of Theorem 10
for multiple parallel relays. The following theorem states that the data rate
in every  — d link must be higher than the source coding rate at the proper

relay.

Theorem 19 Suppose that the full-duplex relay complies with CF strategy.

For each joint pmf p (xx) -p (xr) - p (yalwrz,) - [[ p welzewr) - [] p (rlyras)
rerR reR

there exist a sequences of code books (Xk (w,), Xr (2r) .Y, (kr|zr)) whose
symbols are chosen from sets w,, € {0,1,...,2mF—1} 2. € {0,1, ..., 2m§r—1},
and k, € {0,1,...,2mF—1} Vr € R such that P, (w,, # ) — 0 asm — +o0
if:

. < mi . A,,. )3 .
Ry, < min I(Xk LYY |X ) (5.29a)
Subject to: 1(X,: Yy) >1 (f/ Y| X, Yd) VreR (5.29D)

The upper capacity bound of a multiple parallel CF relays is given by the
following theorem:

Theorem 20 For one source, multiple parallel relays, one destination net-

work, the CF capacity is upper bounded by:
Cor(k;R;d) = sup min {min{I (Xp; YaYo | X)) I(XR; Yd)}
p(xk, R) rER

where the supremum is over individual power constraints of every nodes, and

pmf represented in Theorem 19.
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Proof After having broadcast a message by the source node, the relays
compress their observations in a distributed and individual manner. The
destination’s input is a combination of the received message on the direct-
link, and the relayed versions of the previous sent message. The received

signal at the destination can be perfectly decoded if:
RkSI(Xk;Yd)-FI(Xk;Kﬂ|Xr):I(Xk;Yd}/r|Xr) VreR

Thus, the broadcast data rate is not limited to the relays’ encoders data rate.
Each relay sends the channel coded of its own received signal towards the
destination. To do so, the relays converge them onto multiple-access channel
after having done estimation and encoding. In the meantime, the destination
has already received X [b—1] (wz_l), and the capacity is limited by the relays’
multiple-access channel, i.e. Ry <I1(Xg; Yy). [ |

The result is that in a point-to-point multiple parallel relayed network the
transmission rate of CF strategy is limited by the multiple-access capacity of
the relays at the destination. If all relays are closer to the destination than
the source node, the upper bound capacity is achieved by only one relay and
others relays can be turned off. The following theorem evaluates the AWGN
upper bound capacity.

Theorem 21 The AWGN CF wupper bound of one source, multiple parallel

relays, one destination achieves the rate:

Cor(k;Rid) = sup min{min{C <E[YdY o Xo] — w)} 7

—1<p<1 reR 0‘120
C Var (Yd) — Var (Yd | Xr)
Var (Yq | X,)

that is calculated using Eqs. 5.7.

Proof The broadcast term was proved in Theorem 15. For the second term

we have:

[(Xr:Yy) = Var (Yq) c (Var (Yy) — Var (Yd|XT)> .

l R ..
2% Var (Va1 X,) Var (Yy | X,)
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If all relays are closer to the source node than the destination, or equivalently
Vir > Yrd V1 € R, the minimum term is the multiple-access term (the second
term), and the supremum is achieved by p = 1. In such a network, a negative
value for correlation p significantly reduces the upper bound capacity. In such
a network adding a new relay, near to the source node, improves the upper
bound capacity as long as the multiple-access capacity has not outperformed
the broadcast capacity (the first term). On the other hand, if v, < 74
Vr € R, the minimum term is the broadcast term and the supremum is
achieved by p = 0. In such a network, placing a new relay near to the
destination can even deteriorate the upper bound capacity.

5.6 Mixed DF & CF techniques

In this section, we study a multiple parallel relays network wherein the relays
in T C R act as Block Markov DF relays and others relays belonging to
T¢ =R\ T perform CF technique. The network comprises 2R + 2 code
spaces. The code space X} at source node’s encoder, X, Vr € R at every
relay’s encoder, ), Vr € T at DF relays’ decoders, JA/T Vr € T¢ at CF
relays’ estimators, and ); code space at the destination’s decoder. The
transmit message w, is a sequence of B sub-messages of w}, ..., w},...,wp.
Each w,l; is independently and randomly drawn from the alphabet space
We ={0,1,...,2mF — 11 and each sub-message is separately encoded. The
encoder at the transmitter has one block memory that applying multiplex
coding assigns a Gaussian random number Xy, [b](wz_l, w?) to each wl. The

transmission is done in B + 1 blocks and the source transmits the sequence:

Xi[1](0, wi), -, X[o)(wy ™" wp), o, Xoo[B](wy ™t wil ), Xi[ B + 1] (wil, 0)

In each block b, the source node broadcasts X [b](w? ™!, w?) to all relays and

destination. All relays r € R receive the signal:

Yo [b] = Vi Xi[bl(w) ' w}) + 2, (5.30)
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At the same time, every relay independently performs its processing function
(DF or CF) on the previous received signal. The CF relays estimate their own
previous received signal and then encodes it to X,.[] (57, b—1] (kf’)) . The DF
relays separately decode and fully re-encode the previous observed message
to X,.[b] (’wz_l). Then, all relays simultaneously converge the result signal in
multiple-access mode at the destination. The destination collects the sequence
Ya[l],...,Yy[B + 1] as

= Vhia Xi[D) (W} w}) +Z\/_X [b] (w

reT

+Z\/_X[b]< b—1] (k )>+Zd (5.31)

re7c

The decoding processes at the DF relays are done with arbitrary small error
probability if:
Ry <1(Xy; Yy X,) re’T (5.32)

For the CF relays, Ry is not limited to the relays’ encoders process data rate;
i.c.
Ry <1(Xy;Y;Y,|X,) reT® (5.33)

Therefore, the broadcast message data rate in the decode-compress and for-

ward technique is limited to:
Ry, < min{min{I (X ; Y,|X,)}, min {I(Xx; Y3V X)}} (5.34)
reT re7c

If there exists a DF relay r € T such that i, < g4, the result of Eq. 5.34
is less than the direct-link channel capacity. In such a network the existence
of all relays is harmful.

At the destination, a multiplex decoding process starts after having collected
B+ 1 samples of Yy[b]. The decoding starts from the last block and proceeds
backward to the first block. For each Y;[b], the destination uses the alphabet
space YV, for multiplex them and calculate 71)2_1. If the destination’s decoder

b—1

has properly decoded w; ", then the decoding of Yy[b] is correctly done.
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According to Theorem 16, the pmf of the channels of DF relays is:

p (mk’a TR, YR, :'}R?yd) =

p(arer)- [ p@ o) - [Te@le o) - pyalee o) (5.35)
reT reT

Equality (5.25) allows to evaluate the joint pmf of the CF channels as:

P (xka TR, YR, ﬁ'Rv yd) =

p(x)-p(@r) - p(yalesz,) - T[] p@elzrae) - 1] 2 @elyrzr)  (5.36)
reT? reT¢

The combination of Egs. 5.35 and 5.36 yields the pmf of the decode-compress
and forward technique in a network consisted by one source, multiple parallel

relays and one destination as:

P (Tr, TR, YR, UR, Yad) =

p(zk, ZR) - p (YalzKz,) - H p(@r|zk) - H p (Grlyrar) - H p (yr|zr k)
reT reT¢ reR

(5.37)

According to Theorem 16 the MAC channel capacity of the relays belong to
T is upper bounded by:

Theorem 20 shows that the MAC channel capacity of the CF relays is upper
bounded to:
Ry <I(Xge: Yy) =1(Xr ; Ya) (5.39)

Therefore, the MAC channel message data rate in the decode-compress and

forward technique is limited by:
Ry < min{I(Xk Xz Yy, I(XR ; Yd)} (5.40)

If p = 1 then the two terms are equal, otherwise the minimum term is the

second term. In a (k;R;d) reliable network wherein all relays are close to
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the transmitter with p # 1, the decode-compress and forward (DCF) upper
bound capacity is equal to that the CF strategy, i.e. that is limited to the
multiple access capacity of (only) all relays at the destination.

With the above discussion, it is straightforward to derive the upper bound

capacity of a DCF reliable communication as in the following theorem.

Theorem 22 For one source, multiple parallel relays, one destination net-
work, wherein the relays in subset T C R perform DF technique and the

others relays perform CF technique, the upper bound capacity is:
CDCF(kZ; R; d) = min {CDF(k; T; d) y Ccp(k; TC; d)}

where supremum of each term is over individual power constraints of source

node and each relay node and the joint pmf presented by Fq. 5.37.

This means, the Cpor(k; R:d) fails both Cpr(k; T:d) and Cop(k; TC;d).
The capacity achieves its maximum if all DF relays are (very) close to the
transmitter and all CF relays are (very) close to the destination. In such a
network wherein all relays are close to the transmitter, the upper bound ca-
pacity is limited to the multiple access capacity of all relays at the destination.
If all relays are close to the destination the outer region capacity is bounded

by the most weak channel between the transmitter and DF relays.

5.7 Case study

Here we illustrate the various outer region bounds of a point-to-point multiple
relayed communication with Gaussian channels wherein the transmitter k,
two relays r, and the destination d are located as depicted in Fig. 5.2. We
assume a vertical equidistance of d,. between two relays and the k — d direct-
link. The path condition values hg,. = h.q = hxq = 1 are scaled with respect
to Notation 2. First, we experiment a high SNR environment and suppose
that the source and destination are located at a distance of dig = 1m,

and the relays are located in vertical distances of d, = 0.1 m and they are
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Fig. 5.2: Point-to-point two relayed communication network scenario.
simultaneously and horizontally moving from dg, = —0.5m to d, = 1.5m.

Fig. 5.3 plots various data rates for p,, = p,, = 100mW, and o2 = 1uW.
The curve labeled AF shows the outer region of AF strategy with the largest
possible scaling factor E, in Eq. 5.9. The curve labeled p plots a particular
value of the correlation coefficient which is the same as Fig. 4.4. Like the one-
relay case, as the relays moves toward the transmitter the DF strategy shows
better performance, and the CF technique instead performs better where the
relays are closer to the destination. As the relays moves toward the destination
the received signal at the relay becomes weaker and this significantly reduces
AF data rate. The comparison of Fig. 5.3 to Fig. 4.4 reveals that when
the relays are close to the transmitter, the data rates of two-relays network
exhibits almost 25% higher performance. On the contrary, when the relays
are close to the destination, data rates of cutset, DF, and CF techniques are
equal to that of the one-relay network. This is because, in such a situation
the maximum data rate of coding techniques is achieved by one relay only.

Now, we consider a point-to-point relayed connection in a low SNR regime.
The transmitter and the destination are placed at a distance of djq = 500 m,
and the relays are simultaneously and horizontally moving in a range of
dgr = —100 =+ 600 m with vertical distance of d,, = 10m. Fig. 5.4 plots various
data rates for p, = p, = 100mW, 02 = 1uW, and the same E, as the
previous simulation.

We draw a different experimental function for correlation value which is the
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Fig. 5.3: Rates for two relays with p;, = P, = 100mW, 02, = 1uW, drg = 1m,
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Fig. 5.4: Rates for one relay with B, = P, = 100mW, o2 = 1 uW, drq = 500m,
and d,, = 10 m.
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curve labeled p, and that is the same as the correlation function in Fig. 4.5.
From Fig. 5.4, it is clearly derived that, like in the one-relay network, the AF
technique is not quite useful in a low SNR network, whereas MRC technique
performs much better than AF. Our experiments in a given scenario with
different parameters reveals that reducing the amplification factor does not
increase the AF data rate. The comparison between Fig. 5.4 and (4.5) shows
that the data rates of coding techniques in two-relays network is almost 50%
higher than those of one-relay network. This means that adding a new relay
in a low SNR network is much more useful than that in a high SNR network.
Like one-relay case in the previous chapter, in a low SNR scene, the DF and

CF coding techniques show significant higher rates than the relay off mode.

5.8 Summary

We studied point-to-point communication aided by multiple parallel relays
with full-duplex signaling and AWGN channels. We focused on finding the
maximum achievable capacity applying three well-known relay strategies: AF,
DF, and CF. First, we showed that the maximum data rate is achieved when
the output signals of the relays are fully correlated. The first interesting result
is that the maximum source to destination flow rate is approached by either
only one relay or all relays together.

Like in the single-relay networks, the performance of multiple parallel relays
channels basically depends upon both the strategy of the relays and their
positions. If all relays are located so as to perfectly receive signals from the
source the DF strategy is useful, and the maximum capacity is limited by the
weakest source-to-relay channel data rate. In this situation, the others relays
can be turned off. Placing a DF relay very far from the source node can even
decrease the source to destination direct-link capacity. On the other hand,
the CF strategy is useful when all relays are located so as to perfectly deliver
signals to the destination, and the maximum capacity is equal to the multiple-

access capacity of all relays at the destination. In such a network, adding a
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new relay may expand the outer region of capacity. We further showed that,
in a multiple parallel relays network, applying the same strategy at every

relays achieves larger data rate, rather than applying different strategies.



Chapter 6

Multiple sources, parallel

relays, one destination

Up to now, we have focused on cooperative systems where a pair of nodes is
allowed to communicate with each other, while all of the other nodes act as
parallel relays of the source. However, in wireless multiuser systems, multiple
sources may be accessing the cooperative channel simultaneously. In this
chapter, we study a cooperative network scenario wherein multiple sources,
without cooperating together, transmit to one destination via multiple parallel
relays. The main focus of this chapter is to derive the upper bound capacity of
each transmitter and of the entire network, applying different relay strategies.
We will examine whether multiple parallel relays can significantly increase
the maximum capacity region of a multiuser network. We will address such
questions as: Is increasing the number of relays always helpful? Does adding
a new source node always increase the overall flow data rate?

First, in Sect. 6.1 we describe the channel model of a multiple parallel relayed
multiple-access communication. The cutset theorem is used in Sect. 6.2 to
introduce the largest possible data rate regardless of the relaying strategy.
Sect. 6.3 is devoted to AF strategy, Sect. 6.4 to DF, and Sect. 6.5 to CF. In
Sect. 6.6 we suppose some relays acting DF strategy and the others relays
apply CF technique. Then, we illustrate the results in Sect. 6.7, and finally

we conclude in Sect. 6.8.
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Multiple sources, parallel relays, one destination
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Fig. 6.1: Multiple sources, multiple parallel relays, one destination communication

network scenario.

6.1 System model

In this chapter, we will study a reliable network that consists of multiple
sources belonging to set K = [1,...,k,..., K] which transmit to the unique
destination d via a direct-link, and are assisted by an arbitrary number of
relays represented by the set R = [1,...,7,..., R]. We assume there is no
connection between relays and no cooperation among source nodes. The
source node transmissions are simultaneous. All transmitters are connected to
all relays, and the destination node is in sight of all source nodes and relays.
The communication is performed in full-duplex mode, so that cooperative
communication must be carried on over one phase, and all channels are
always busy. All wireless channels are time invariant and frequency flat. The
cooperative network of Fig. 6.1 consists of K +2R+1 alphabet spaces denoted
by X) at each transmitter’s encoder, X, and ), at each relay r, and finally
Y4 at destination’s decoder. Every relay is shared by all source nodes and
thus all transmitters’ outputs interferer at every relay nodes. This scenario

is suggestive of the uplink of a cell in a cellular network, within a number
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of wireless mobile terminals separating the sources, and another (idle) set
playing the role of relays.

FEach source node k possesses its own individual message set Wy, with size m
and rate Rj. BEach source node k chooses its message w,, which is a sequence
of sub-messages wy, ... ,w,lz,, e ,w}? which are going to be reliably conveyed
to the unique destination d. All the w,s are independent and uniformly
distributed over their respective alphabet sets Wi = {0,1,2,...,2m8 — 1}
Each source node’s encoder is a function Wy — X which maps a Gaussian
random codeword X [b] (w}) to each sub-message w}. Each symbol sequence
Xe[1] (wf) ..., Xk[b] (w}), ..., Xi[B] (wf) is bounded to an individual av-
erage power of E{X?} < P,. with E{X,} = 0. In each block index b, all
transmitters in K simultaneously broadcast encoded sub-messages X [b] (w})
to all relays and the destination. Since all source nodes interfere at all relays,

the receive message at the relay r is:

Vo[l =Y Vi Xilb] (w}) + 2, (6.1)
kel

where Z, ~ N (O, U?U) is additive white Gaussian noise at the respective relay.
The receive signal Y,.[b] at the relay r is composed of the sent symbols by all
transmitters. The received signals at the relays and destination are statisti-
cally correlated. Since the data transfer is done in full-duplex mode, at the
same time, each relay r performs a relaying function ), — AX,.. That is, every
relay r € R processes the proper received signal in the previous block index

and generates the information X, [b] (wj ') where wi ' = (wi™', ..., wi ),

and then converge it into the » — d link. The symbol X,.[b] (wi ') is a re-
generated version of Y,.[b— 1] and it is the output of the relay r’s deterministic

function whose inputs is the previous received signals:
X[ (i) = fAV D — 1, Yo — 20, Vi [1): (6.2)

The function f depends on the specific cooperative strategy. Each symbol
sequence X.[1](1),..., X,.[b] ('w,bc_l) vy Xp[B+1] (wf) is generated under
a limitation on average power E{Xf } < P,, supposing that E{X,.} = 0.
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In each block index, the destination receives a combination of the signals
Xp[b] (wh) Vk € K and X,.[b] (wi ') V7 € R over multiple-access channel:

Yalb] = > Vhwa Xi[b] (w}) + Y Vhra X, [b] (w}) + Za (6.3)

kel reER

where Zy ~ N (0,02). In fact, each received Yy[b] is a linear combination of
the sent signals about w?, ... ,wl}( over the direct channels, and R different
relayed signals about w,bc_l.

The destination’s decoder tries to precisely reconstruct the whole B se-
quences of wy = (wy,...,wy). The decoding process is a (Gaussian) joint
de-mapping function Y; — Wi X -+ X Wg. The decoder at the destination
jointly estimates the messages Wy = (W,,...,wWy). The decoding function

b=1"or can be

can be executed either in each block index b to estimate w
done after having collected the whole sequence of Yy[1],...,Yy[B + 1]. The

probability of error at destination’s decoder is formulated as:

P = H 2 —m Rk Z Pr {wy # wy|w was sent} (6.4)
ke w)c:(wl7""wK)

which is based on the assumption that the messages are independent, and
uniformly distributed over their respective alphabet ranges. The K-tuple
(Rq,...,Rk)is achievable if there exists a sequence of code spaces of (m, gmAiL
..., 2m8x) for which P;™ is arbitrarily close to zero when m — oo. The des-
tination’s decoder reveals all sent messages through a joint decoding function.
Thus, each received signal affects decoding process and a very noisy channel
can make to perfectly detecting of all messages even impossible.

We have to consider the joint statistics between outputs of different nodes.
We define the parameter pg, = \/% as the correlation coefficient
between the outputs X and X, for £k € I and » € R. With a similar
formulation, we define 7,; as the correlation between the outputs of two relays
r,j € R, and finally let oy, be the correlation between the outputs of two
source nodes k,m € K. For instance, pg- = 0 statistically means p(zy , x,) =

p(zk) - p(ar).
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6.2 Cutset upper bound

To find the cutset outer region of a network with multiple sources, multi-
ple parallel relays and one destination, first and foremost, we establish an
extended version of general M. R. Aref’s seminal formula [161, Th. 3.4].

Theorem 23 For the general discrete memoryless reliable network with mul-
tiple sources, multiple relays and one sink, represented by (K, R,d), the max-
imum possible flow rate is upper bounded by:
Rk sup mm {I (Xk XT, Yd Y7—C|X7—C X{k}c)} (6.5)
placzr) T
for each transmitter k, and for the whole network:
Ceutset ;R d) = sup  min {I(Xk X7; Yy Yrc|X70)} (6.6)
plec,ar) TER
where mazimization is subject to the power constraints defined by the network

and channel condition p(y4Yr | T TR)-
Proof For K =1, we know [161, Th. 3.4] [183, Prop. 1]:

Ceutset(K ={k}; R;d) = sup min {1 (Xy X7; YeYre|X7e)}
plar.ar) TER

For K > 1, the combination of the “General multi terminal networks” [16,
Sec. 15.10] and “Multiple-access channel” [16, Th. 15.3.6] theorems tells
us that the maximum capacity of each transmitter in a multiple sources,
multiple relays and one destination is the closure of the achievable rate that
is characterized by:

Rir < sup min {I (XkXT; Yo Yre|Xrc X{k}c)} Vke K

p(zc,xr) TER

Consequently, the outer region of the achievable rate by all sources turns out
to be (see Sect. B.1.3):

Coutser (K;R3d) = Y R < sup min {1 (Xx X7 YaYre|Xpc)}.
keK CIR)
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The goal of Eq. 6.6 is finding a subset 7 C R such that the average mutual
information between the transmitters {K, 7} and the receivers {d, TC} is
the minimum. Then, mutual information is maximized under a given pmf.
The general multi terminal networks theorem (Sect. B.1.3) is established for a
general network with arbitrary connections between intermediate nodes. Our
framework is a network with parallel relays. In the next theorem we show
that the supremum of C.,¢set (K; R; d) is achieved when there is no cooperation

among transmitters themselves, and outputs of the relays are fully correlated.

Theorem 24 In the reliable network of Fig. 6.1, Ceytset(IC; R; d) achieves the
mazimum capacity when the Gaussian output variables Xy are statistically

independent, and X are fully correlated.

Proof The expansion of Eq. 6.6 yields:
I( Xk X713 YaYre|Xqe) =H(YaYre|X7e) —H(YyYre | XrXi)

The second term H (Yy Y7¢| Xz Xx) is a function neither 7,; nor oy,,. To
conclude the proof, it is enough to show that the entropy H (Y Y7¢|X¢) is
maximized when 7,.; =1Vr,j € R and oy, = 0Vk,m € K, regardless of the
value of pg,. This is true because H (A|B) > H (A, C|B, D) with equality iff
A and C are statistically independent and also B and D are fully correlated.

|

Since 7; = 1 Vr,j € R and opy = 0 VEk,m € K, it is reasonable if we
assume the same correlation coefficient between X, and all Xz. So, in the
rest of this work, for each k € K, we suppose pr = pr, Vr € R. A full uncor-
relation between variables Xy statistically results: p(zx) = [[,ccp(@r). A
full correlation between variables X% results: 3[Y] X ] = Var(Y]X,) Vr € R.

The results of Theorem 24 allow to simplify the cutset upper bound repre-
sented by Theorem 23:
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Theorem 25 In a (K;R;d) network, the cutset upper bound of each source

node k 1is:
Rir < sup min {min {I (Xk; Ya Y X, X{k,}c)} , I(XkXR; Yd|X{k,}c)}
p(zic.zr) rerR

Proof As aresult of Theorem 24, the second term is equal to the cutset bound
with 7 = R. Taking into account the correlation coefficients 7, =1 Vr,j € R
and ok, = 0VEk,m € K, Eq. 6.5 with every T C R simplified to:

I (Xk XT; Yd YTC|XTC X{k}c) ==
=1(X7; YaYro|X7e Xpge) + 1(Xp; Ya Yro|Xr Xypye)

(1)=0 (2)

1 E[YdYTc|X7-CX{k}c]
1):I(X7:YyYrc|X7e Xgpye) = = log =
(1) : I(X7: YaYre|X7e Xgo) 28 SV, Yye [ Xn X ]

1 2[Ya Yre|X,ere Xppe] 0

= —log
? 2 [YaYre|Xere Xppye]

2
(2) o1 (Xk Yd YTC|XR X{k}c) = I(Xk; Yd Y7—c|X7» X{k}c) .

Until now we demonstrated that:

Rk < sup min{min {I (Xk;YdYTC|XTX{k}C)},I(XkXR;Yd|X{k}C)}
Pz, zR) TGR

Since T is a strict subset of R, it is obvious that the minimum of Ry is

achieved with:

R < sup : min {Irlél% {I (Xk; YdY,,,|X,,X{k.}c)} , I(Xk.XR; Yd|X{k}c)}.

p(xic, TR

Each data rate Ry is decomposed into R 4+ 1 mutual information terms.
The novel result of Theorem 25 is that the term Ry achieves its maximum

either by virtue of only one relay or by virtue of all relays together. In
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the general network of Fig. 6.1 wherein the nodes are located in a random
position, the minimum mutual information term of Ry, is found by calculating
of R 4+ 1 mutual information terms: R broadcast terms, and one multiple
access term. If all relays are able to deliver symbols without errors to the
destination, i.e. they are (very) close to destination, the minimum of the
mutual information terms is one of the first terms which is the broadcast
capacity of the source node k to the destination d and the relay r with which
the broadcast capacity is the minimum, while the other senders {k}“ may not
be sending any information. Instead, in the very special case when all relays
are in such positions so as to perfectly receive symbols, i.e. the relays are
(very) close to the source node k, the minimum of the terms is the multiple-
access channel capacity of all relays, and the source k at the destination,
while others source nodes may be silent. The following theorem introduce
a simplified version of formula (6.6) as the cutset upper bound of a whole
network (KC; R;d):

Theorem 26 The cutset upper bound of a (K;R;d) network, Eq. 6.6, is

shortened to:

Ceutset (K;R;d) =  sup  min {12%1{1 (Xk; YaYo | X))}, 1 ( Xk XRr 5 Yd)}

p(zK,TR)

Proof The proof mirrors that of Theorem 25. |

The cutset upper bound Ceyiset (K; R; d) is achieved either by virtue of one
relay only, or by all relays together. Like Ry, the minimum mutual information
term of Ceytset(K;R;d) is found by calculating R + 1 mutual information
terms. If all relays are in good positions to perfectly deliver symbols to the
destination, i.e. they are (very) close to the destination, the minimum of
mutual information terms is equal to the broadcast capacity of all transmitters
K to d and the relay r with which the broadcast capacity is the minimum (the
first term). Instead, in a very special case when all relays are in such positions
50 as to receive sent symbols from all source nodes, i.e. the relays are (very)

close to all source nodes, the minimum of R + 1 terms is equal to the second
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term which is the multiple-access channel capacity of all relays R and all
source nodes K from the destination viewpoint.

Here, we give some useful equalities which are derived from the formulas
pertinent to Fig. 6.1, and the results of Theorem 24. These equalities will be
used to compute the capacity of Gaussian channels. To review the algebraic
manipulation of the following equalities, see Appendix A.

Var Yd Z hkdpk + Z Z 2Pk hk'dpk por +

keK keK reR
+ > \/heab,hidp; o (6.7a)
reRjER
B[Ya|Xr] = Var (Ya| X,) = > hwaBy, (1= p}) + 0 (6.7D)
ke
3 ([Yal X gy ] = hraby, + Z 20K/ hiaPphrap,+
reR
+ Z Z \/ hrdDyhjap; + | 1 — Z pgn . Z hydD, + 03, (6.7¢)
rER j#T me{k}C rcR
SV X, Xack] = Z hiwDi (1= p}) + 0% (6.7d)
ke AC
BYa Yol Xy Xack] = Y (har + hea) B, (1= p7) + 0 (6.7¢)
ke AC

From Eq. 6.7d the following equalities are derived:

B[V X, X(pye] = haeDy, (1= p}) + o (6.7f)
Var (Y| X,) Z hieDi (L= p7) + 02 (6.7g)
kek

From Eq. 6.7e the following equalities are derived:

B(Ya Y| X0 Xiye] = (har + hia) B (1= p}) + 03 (6.7h)
S[Ya Yo Xy ] = Z (hier + hia) By (1= p}) + 00, (6.71)
kex

The following two theorems introduce the AWGN cutset upper bound of

each transmitter, and all transmitters together in a multiple access channel
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by way of multiple parallel relays.

Theorem 27 The AWGN cutset upper bound of each transmitter in a mul-

tiple sources, multiple parallel relays, one destinalion network is:

S|Y,;Y, X, X, — o2
Ry, < sup min { min< C [ a ¥l 3 {k}c] w ,
—1<p1,...,px <1 rer 0w

. (E[Yd|X{,€2}c] - a2> }
U’U}

that is computed using equalities (6.7).

Proof

1 E[Ya Y| Xy X e ]
Y[Ya Y| X, Xk]

S[Ya Ve Xp X gyc]

(X5 YaYr Xy Xqpye) =

w

o <E[Yd Y| X, Xpye] — afv>

w

(1) follows from the fact that 2[Yy V| X, Xk] = X[Ys Y| Xr Xk] and multi-
variate Yy Y| Xr X is a function independent variables Z,. and Z.

1 EalXye] 1 B[Vl X(ye]
I(Xy XR ;5 Ya| Xye) = §log2 SV Xx Xn] 510g2 —— =
<E[Yd|X{k}c] —O’i)
=C 5 .
O‘U/

The interesting result is: in a (K;R;d) network wherein g, < v.q V7 € R,
i.e. the data rate of every k — r channel is smaller than that at the r — d
channel for all relays, the minimum term of Ry, is equivalent to the broadcast
term (one of the first terms) which is achieved by the relay r which has the

smallest hp,py, (1 — pi) As can be seen, the power constraint of P, does
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not play any role, and the best correlation value is pr = 0. Instead, in a
network wherein v, > v-¢ V7 € R, the minimum term of Ry is equal to the
multiple-access term (the second term), and it is maximized with p, = 1, and
pmzk = 0. In such a network it should be satisfied: Y7, ., p7, < 1.

Theorem 28 The overall AWGN cutset upper bound capacity of a network

consisting of multiple sources, multiple parallel relays, and one destination is
bounded by:

_ 2
Ceutset (K;R;d) = sup min {min {C’ <E[de|Xr] U“’)} ,

—1<p1,...,pr <1 r€R w

that is computed applying the equalities (6.7).

Proof
[(Xx 5 Ya¥p|X,) = = logy mmanrl 2l @ 2 e 2R 2rI0r]
(X YalrlXo) =5 loe Sp v X — 29 o2
o (EMaYilX] - o
=

(1) follows from the fact that X[Y; Y| X, Xx]| = 2[Y; Y, | Xz Xk] and mul-

tivariate Yy Y| X'r X is a function independent variables Z, and Z,.

1 Var (Yy) 1 Var (Yy)
Xk Xn: V) = = log, ——2xWd) 2 _
(X X ; Ya) = 5 logy SVa X Xr] 2 0827 52
_c (Var(de) —ai) .
O-'LU

|

In a (K;R;d) network wherein g, < 7.4 Vk € K, Vr € R, the upper bound
capacity Ceutset(K; R;d) is achieved by the relay r € R with the minimum
> kexc PkrDy, (1 — pi) The P, does not play any role. In such a reliable
network, the activity of all others relays is useless and the AWGN upper

bound of the whole network is supremum with pi = 0 for all £ € K. Instead,
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in a (K:R;d) network, wherein vg, > v.q Vk € K, V7 € R, the AWGN upper
bound capacity is the multiple-access channel capacity of all relays and source

nodes at the destination, and the best correlation value is p, =1 VEk € K.

6.3 Amplify and forward technique

In this approach, there is no regeneration code at relay nodes. There are
K + 1 Gaussian code spacfes: X} at each source node and )y at the desti-
nation’s decoder. Each source k wishes to transmit the message w;, which
is a sequence of B sub-messages w;{,, ...,wz, w,?. Each sub-message w,’é S
Wi = {0,1,...,2mF — 1} is separately and fully encoded by the respective
transmitter. In each block index b, each relay r scales the amplitude of the

analog observed signal Y,.[b — 1] as:

Xr[b] (wlbc_l) = Er[b] : Yr[b - 1]

= Er[b] . (Z \/h_erk[b— 1] (w2_1) + Zr> (6.8)

kek
wherein FE,. is chosen to satisfy the proper relay’s power constraint. Each relay
node has its own power constraint as E { X?} < p,. Hence, in AWGN mode,
it must be fulfilled:
D
o+ Dkerc PrrPr

So, we can suppose E,[b] = E,. As can be seen, if o2 + Y, o iy > D,

B, [b)]* <

(6.9)

the AF technique performance is equal to the relay r off mode. Combining
Eqgs. 6.3 and (6.8) yields the observed signal at the destination as:

Ya[b] = Z \/ka[b] (wz) + Z Z |Er| v/ ey Brg Xi [ — 1] (’wz_l)-i-

kel keKreR

+ > BN hea Ze + Za - (6.10)

rER

The relay nodes do not regenerate any new code, and consequently the

complexity of this scheme is low. Since every relay node amplifies whatever
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it receives, including noise and interference, and noting that all source nodes
interferer at every relays, AF technique is mainly useful in sufficiently high
SNR environments. Increasing the amplification factor F, increases ISI noise
at the destination, and also significantly increase the noise of ICI where there
is only one antenna at the destination. If the network is able to adjust the
power of the relay, the relay should thus transmit with a properly fine-tuned
power. The challenge of adapting the best value of E, makes AF technique
almost useless when there are a large number of source nodes and relays.

Each wireless terminal &k can look at Y;[b] as:

Yalb) = Vhia Xie + > [Bel /iy hra X +

reR
(1)

+ Z thde+Z Z |Er|\/hm'rh'r'de+

k#meK rcR k#mekK

(2)

+ Z | B\ hrd Zr + Zgq (6.11)

reR

(3)
where (1) can be described as signal term, (2) as that multiple access inter-

ference (MAI), and (3) as Gaussian thermal noise. Consequently, in AWGN

mode, the flow rate of every transmitter & is calculated as:

Ry =
2
( hia + Z |Ey v/ hkrhm> Di
rER
2
Z ( homa + Z |E'r| hmrhrd> D + <1 + Z |Er|2hrd> 'JLQU
m#k reR reR

(6.12)

By Eq. 6.10, the overall capacity of AF scheme is formulated as:
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Car(KC;R;d) =

c (Z hkdﬁk+ZZ|E,,,|m> ( )

kek keEK rER 1+ ZreR |ET|2hrd) oy,

(6.13)

According to [184, p. 46], if the condition

Bl < e (6.14)
ke
holds, then the CAp(IC; R; d) outperforms the capacity of the maximal ratio
combining (MRC) technique that is:

Cure(KiRid) =C (Z Ykd + Z w) (6.15)

kek reR ZkG’C Vhr T Yrd

6.4 Decode and forward technique

Here, like Sect. 5.4, we study a well known regular encoding called block
Markov encoding, that is concerned with K 4+ 2R + 1 Gaussian code spaces:
X, at every transmitter’s encoder, respectively ), and X, at the proper relay’s
decoder and encoder, and finally )J; at the destination’s decoder. FEvery
source node k wishes to transmit a message w, which is a sequence of B sub-
messages w., ...,'w,l;, - wf. Each sub-message 'wz eW, ={0,1,...,2mF 1}
is separately and fully encoded by the proper source node.

The encoder at each transmitter has one block memory that using multiplex

coding maps a Gaussian random number Xj [b](wz_l,wZ) to each w,l;. In

each block b, every source node k emits X [b](w) ™, w?) to all relays and the

destination. Each relay r receives the signal:
Yolo] = > Vhie Xelb) () w}) + Z, (6.16)
kek

Since the communication is performed in full-duplex mode, every relay de-

codes and then re-encode the previous received message, and then transmits it
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toward the destination. Each relay r € R tries to correctly and fully decodes
the received signal using ), and then re-encode it using A,.. A DF reliable
channel can achieve to the highest possible capacity when decoding processes
at all relays are correctly done. To this end, and taking into account that the
transmissions from the relays are simultaneously done, every k& — r link data

rate is limited to:
Ry < I(Xk; YT|X,~X{k}c) VreR (6.17)

Each Ry is achieved maximum while others transmitters { k}C are not trans-
mitting. This inequality allows all relays to precisely decode the received
signals. At each encoder of the relay r, error occurs when Y,. is such noisy
that the decoding process can not be correctly performed and then therefore
there exists no index in encoder alphabet space X,. The Markov chains
(X1,...,Xk) & X, and (X1,...,Xk) & Y| X, at every relays form a unique

jointly typical index at each relay’s encoder according to the following pmf:

p(xK, YR, TR, Ya) = P (TK) - H p(wr|xK) - H P (yrlor zx) (6.18)
rER rER

Fach source k transmits the sequence:
Xp[1](0, wh), .., Xp[b] (Wl wh), .o Xi[Bl(wP ™ wp), Xp[B + 1] (w?,0)

in B + 1 blocks. The DF relaying strategy is useful when B — oo. The

destination collects the sequence of Yy[1],...,Yy[B + 1] as:
Yalbl = > Vhwa X[}, wl) + > Vhea X Bl(g Y) + Za (6.19)
ke reER

At the destination, the decoding process starts from the last block and
proceeds backward to the first block. If the destination has properly decoded
w,ﬁ“. It can then decode w? from Yy[b — 1] if the multiple-access data rate

achieves to:

Ry, < Z I(Xe Xo; Yol Xpye) =1( Xk Xr 5 Ya| Xpyo) (6.20)
rcR
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The decoding function at the destination considers all received signals from
all relays and source nodes. Accordingly, the error probability at the decoder
vanishes if all inputs received error free. According to the Markov chain
(Xx, XRr) < Yy, the probability of occurring a confusing index error at the

destination’s decoder is prevented if:

p(xk. Yr, TR, Ya) = p (Tx, R) - P (yalzr 2K) (6.21)
Note that p (ya|ler k) = p (yalz, ). All above discussion results:

Theorem 29 The upper bound capacily of each source k in a (IC;R;d) reli-
able network applying DF technique is limited by:

Ry < sup min {Hlill {I(Xk 3 Y X, X{k}c)}, I(Xy Xr 5 Yd|X{k}c)}
p(xc,zR) TER

where the supremum is over individual power constraints of the nodes, with

joint pmf: p(xxc,zr) - [[ p(@rlzc) - [] p welzr 2c) - p Walz, k).
reR reR

The number of relays and their positions significantly influence Ry. The

overall DF capacity of a (K;R;d) network is upper bounded to:

Theorem 30 The capacity of DF technique for a whole (K;R;d) network is
upper bounded by:

Cpr(K;R;d)= sup min {IIéi%{I(X}Cg Yo X)), I Xk Xr ; Yd)}

p(zc,2zR)

where the supremum is over individual power constraints of the nodes, with

joint pmf: p(zx,2r) - [[ p (@ lzx) - [] pelzr @) - p(yalz, o).
r€ER reER

Proof Since Cpr(IC;R;d) = Z Ry, and applying Ry from Theorem 29, the

kek
proof is somehow obvious. |

The first term shows that the upper bound capacity is limited by the smallest

multiple-access capacity from all source nodes at the relays. Equivalently, if
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all relays are well located to deliver signals without errors to the destination,
the conditions of direct-links between the transmitters and destination do
not matter at all. In such a reliable network, the upper bound capacity of
Cpr(K;R;d) is equal to the one of the broadcast terms of Theorem 30 which
depends only on one relay. The second term (the multiple-access term) of
Cpr(K;R;d) is equal to that Ceyrset(K;R;d). This means that if all relays
are able to perfectly receive and precisely decode the transmitted symbols by
all source nodes, the DF capacity approaches the cutset upper bound capacity.
In the following, we introduce the capacity of cooperative framework based
on DF technique for a network with Gaussian channels.

Theorem 31 The AWGN DF upper bound of a source node k, in a multiple

sources, multiple parallel relays, one destination achieves the rate:

XY X, X — o2
Ry < sup min < min<{ C AR 2{’“}0] w 7
—1<p1,...,px <1 reR o2

. (E[Yd|X{,;}c] - ai> }
O.U)

that is computed applying the equalities (6.7).

Proof

1 > Yr|XrX k}©
I(Xk 5 Yol Xr Xpyo) = 5 logy g[Y X ){(Ii] ]
1. SV |X, Xye]

=5 log, -2

o <z[m|XrX{k}c] —ﬁ,)

T8
For AWGN of the second term , [(X), Xr ; Ya|X(z)c), see Theorem 27. B

The first term implies that, if there exists a relay r such that hg,. < hgq,
then the direct £k — d channel capacity dominates Rj. This means, in such a

network it is reasonable to inactivate all relays.
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Theorem 32 The AWGN upper bound of a (KC;R;d) reliable network apply-

ing DF technique achieves the rate:

YrXr — o2
Cpr(K;R;d) = sup min {min{C’ (Var( [Xr) 0w>} ,

reR

that is computed using the equalities (6.7).

Proof

110 Var (Ve |X,) 1 Var (Y, | X,)
2

g2 2[Y7|X, X}C] - 2 082 0.2

w

o (Var (Y.|X,) — aﬁ,)

2
Ow

[(Xk; V| Xy) =

The AWGN of the multiple-access capacity term, I(Xx Xz ; Ya), was
proved in Theorem 28. |

Consequently, in a reliable network wherein all relays are in good positions
to error freely deliver signals to the destination, the Cpp(K; R;d) is achieved
by the relay r € R with which Zkelc Rir Dy, (1 — p%) is the minimum. In
such a reliable network, the supremum of Cpr(K; R;d) is achieved by pr = 0
Vk € K. Correlation between X;s and X,.s decreases the capacity. As can be
derived, adding a new transmitter, always near others transmitters and with
correlation value pgr # %1, increases the upper bound capacity of the whole
network. Adding a new relay (very) far from all transmitters can even degrade
the total capacity. On the other hand, if the minimum AWGN capacities is
equal to the second term, adding a new transmitter, always well located to
perfectly deliver symbols to all relays with pr > 0, also expands the outer
region of Cpr(KC; R; d). In such a reliable network, adding a new relay, always
close to all transmitters, also increase the upper bound capacity of the whole
network. In such a network, a negative correlation value for p, degrades the

overall data rate.
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6.5 Compress and forward technique

Applying compress and forward (CF) technique, each relay uses a source
coding scheme to compress (or estimate) the received signals with a certain
distortion to a joint index, and then use channel coding to transmit it to the
destination. Therefore, the multiple-channel access capacity must guarantee
required source coding rate. This technique is useful where the decoding
process at relays can not be error freely done.

There are K +2R+1 finite Gaussian code books: X, JA/T at the proper relay’s
encoder and estimation space, respectively, A} at the respective source node’s
encoder, and ); at the destination’s decoder. The transmit message w,, of the
transmitter k is a sequence of B sub-messages w,lc, wz, s wf . Each w,’; is
uniformly drawn from Wy, = {0, 1, ..., omBE 1}, and it is separately encoded.
In each block b, every source nodes simultaneously emit the proper message
X1 [0](w?) toward relays and the destination. Each relay r and the destination
receive Y, [b] and Y, [b], respectively. Neither the destination nor the relays try
to decode the received signals. At the same time, each relay independently
estimates its own previous observed signal to an index, and then encode it and
transmit toward the destination. In the block index b, each relay r using the
alphabet space Y, = {0,1, ..., gmit. _ 1}, estimates the received signal Y;.[b — 1]
to a symbol Y,[b— 1] (k?) where k2 € {0,1,...,2™% — 1} is the individual
estimation/quantization parameter of the proper relay in the block index b.
Then, every relays using the proper codebook X, encode the Y, [b— 1] (k?) to
an index and simultaneously transmit them to the destination. For the last
block, the sources broadcast a termination codeword Xy (1). The following

formulas apply:

Yo[b] = Ve XilBl(w}h) + 2, (6.22a)

kel
Yo[b—1] — Yo — 1] (k) (6.22b)

Yaltl = 3 ViwaXelt] (wh) + > VIraXolt] (Voo =11 (k?)) + Za' (6.22¢)

ke reER
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A (K;R;d) network applying CF technique, applies distributed Wyner-Ziv
coding with multiple sources and a common decoder at the destination. The
input of each individual Wyner-Ziv source coder is its observed signal Y,.. An
auxiliary random }Af, c )7,‘ is drawn such that )A’, and Y, to be jointly typical
with respect to p (§,|xx). The side information of the Wyner-Ziv network is
the already received signal (in the previous block index) at the destination. By
using the fact that in every block index the side information Y; and Y, are sta-
tistically correlated, the Markov conditions Yy <+ Y, < }7} are formed. This
condition applies other restriction to f@ at each relay. The estimation variable
Y, € Y, must be drawn to satisfy (V,,Y;) € A™ for a given (Yy,Y,) € A™.
Accordingly, the Markov condition guarantees (Yj, f@, Y,) € A", Using
induction it is straightforward to show that (Y, )A/l, . ,}A’R, Yi,...,Yr) € A,
Moreover, for every relay there exists a function g,(-) such that:

E{d(Xla"'aXKv gr(de/Y\ia~"a?R))} SDT (623)

Whereas the network tries to exploit the side information as much as possible,
we do not care the amount of distortion D,..

The destination’s decoding process is a function Vg — Xy X -+ X X. If it
finds a unique K-tuple index in ), space, it calculates (wy,...,w;,.... Wg).
The condition:

R >1 (ff YT|XT) VreR (6.24)

guarantees to find a jointly typical codewords at relay r’s encoder [16, Lemma

10.6.2]. Thus, an error event at all relays’ encoders is prevented if:

p(xK, TR, YR, YR) = H p (7). H P (Yr|TrEK). H P (Ur|yrzs) (6.25)
kEK rer reER
That is derived from uncorrelated output signals Xys, and the probability of
the Markov condition Xx « Y| X, < ?T at each relay r, for encoders and
quantization processes.
Now, we find a channel probability joint distribution for impeding error at
the destination’s decoder. In each block index b, the decoder uses the receive

symbols X% to decode the already received symbols X in block b — 1. The
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decoding process is successfully fulfilled if all messages X are successfully
approached the destination. Next, Yy[b — 1] given Xg[b] is exploited as the
side information to decode Xc[b — 1]. The error of assigning a unique index
at the decoder is prevented if (X, Yy|Xz) € A™. Taking into account that

X.s are uncorrelated, these conditions are satisfied with probability:

p(ex, or,yr, 9rva) = [ [ p (@) - p(@R) - p (valTica,) (6.26)
kel

The combination of error probabilities of Eqgs. 6.25 and (6.26) achieves the
probability mass function of CF technique in a one source, multiple parallel

relays and one destination network as:

p (K, TR, YR, YR, Yd) =
[Ir@s) p@e) - I p@lerac) - ] p@rlyrar) - p (valzcz,)  (6.27)
kek rer rer
Other type of error at the destination’s decoder may occur is confusing
with other existing index in alphabet space V4. There is a condition under
which this error event occurs with arbitrary small probability, as stated by

the following theorem.

Theorem 33 The destination’s decoder will not mistake the correct index

with any other admissible one if:
R.— R, < I(?T;Yd|XR)=I(?T;Yd|Xr) VreR
Proof The same proof of Theorem 18. ]

Consequently, the same results of Theorem 19 are derived. In a (K, R,d)
reliable network applying CF technique, each relay acts as an individual
Wyner-Ziv source coder whose input and side information respectively are
Y, | X, and Y| Xx. Following the steps in Theorem 10 approaches:

R, > 1(2; YT|X,,Yd) VreRr (6.28)

So, for a (K; R; d) reliable network scenario, an extension of Theorem 10 can

be established as follows:
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Theorem 34 Suppose that the full-duplex relay complies with CF strategy.

For the pmf [[ p(xx) -p(@R) - [[ 0 Welwezic) - [] 0 Grlyrwr) - p (yalwr)
kex reR rER

there exist sequences of code books (Xk. (wg) . X (%) Y, (k:r|z,)) Vr € R

V k € K, whose symbols are independently and uniformly derived from the

w, €{0,1,...,2mRx —1}, 2, €{0,1,...,2"F 1}, and k, € {0,1,...,2mFr _1}

such that Pe ((wy, ..., wy,...,wg) # (W,..., W, ..., Wg)) = 0 as m = +00
if:
< 3 . % .
Ry, < min I(Xk : YdYT|XT), Vkek (6.292)
Subject to: 1(X,5 Ya) 2 1(V,5 ;[ X,Ya)  VreR  (6.29b)

The following two theorems introduce the upper bound capacities.

Theorem 35 The CF capacity of each source k in a reliable network consisted

by multiple sources, multiple parallel relays, one destination is limited to:

R < sup min {min {I (Xk; Yy YT|XTX{,C}c)} (X R Yd)}
p(zx, TR) rcR
where supremum is given over individual input constraints, and the channel
probability distribution (6.27).

Proof After having broadcast a message from the source node k, while the
others transmitters in {k}c are silent, the relays compress their proper ob-
servations in a distributed and individual manner. The destination receives a
message from k and the relayed messages of the previous sent symbol. Thus,
the broadcast data rate is limited to:

Rk < 1 (Xk N Yle{k}C) + ?él%zl {I (Xk ) K|X,X{k}c)}
= %17121 {I (Xk; Yd Y,«|XTX{]€}C)}

That means, the broadcast data rate is not limited to the relays’ encoders
data rate. Next, each relay sends the channel coded of its own received signal

towards the destination. To do so, the relays map them onto r — d channels
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after they have accomplished the estimation and encoding. Whereas, the
) and the data rate is limited
to the relays’ multiple-access channel, i.e. R <1(Xg; Yy). |

destination has already received Xp[b— 1] (w}

Theorem 36 The overall capacity of CF technique for a (K;R;d) network
is upper bounded by:

Cor(K;R;d) = sup min {min{I(X;C s YV | X)), I Xk Yd)}
p(TK,zR) rER

where the supremum is given over individual input constraints, and the prob-

ability channel distribution (6.27).

Proof The proof is somehow obvious because: Cop(K;R;d) Z Ry, and

kel
Ry, is derived from Theorem 35. [ |

Theorem 36 implies that the maximum achievable capacity of a (K;R;d)
network applying CF strategy is limited by the multiple-access capacity of all
relays at the destination. In such a reliable network, wherein all relays are
in such conditions so as to perfectly receive signals from all source nodes, i.e.
all relays are very close to all source nodes, increasing the number of relays,
always close to the transmitters, yields making upper bound capacity better
off, up to the number of relays with which the multiple-access capacity (the
second term) dominates the first term. From this moment on, the overall
capacity is equal to the broadcast term which is achieved by only one relay.

The AWGN capacities are calculated using the following theorems:

Theorem 37 The AWGN CF upper bound of each source node k, in a (IC; R; d)

network can be achieved the data rate:

1YY X, X — 02
Ry < sup min ¢ min < C [ Y| - {k}c] Ow ’
—1<p1,...,px <1 reR oL

()

that is calculated using Eqs. 6.7.
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Proof The broadcast term was proved in Theorem 27.

Var (Yd) o Var (Yd) — Var (Yd | Xr)
) ‘C( Var (Va| X,) ) |

1
I(Xr; Yy) = zlogy ———<—
( R d) 2 082 Var (Yd|Xr

Theorem 38 The AWGN upper bound of the entire (K;R;d) CF network

achieves the data rate:

_ 2
Cor(K;R;d) = sup min {min {C (E[Ydyrl)sr] 0“’)} .
—1<p1,pr <1 reR Tw
o Var (Yy) — Var (Y| X,.)
Var (Ya | X,)

that is calculated using Eqs. 6.7.

Proof The broadcast term was proved in Theorem 28 and the multiple-access

term in Theorem 37. |

In a reliable network wherein v, < vrq Vk € KC, V7 € R, the Cor(IC; R; d)
is achicved by the relay r with which Y7, i hi, Py (1 — p}) is the minimum.
Setting up pr = 0V k € K, significantly increases the upper bound capacity.
In such a network, adding a new transmitter k, always vi, < vrq VI € R,
expands the upper bound capacity of the whole network. On the other hand,
in a network wherein Vg, > v,.q Vk € K, Vr € R, adding a new transmitter
may expand the total data rate, on the condition that p, > 0 Vk € K. In
such a network with p = 0, increasing the number of transmitters significantly

degrades the overall data rate of the network.

6.6 Mixed DF & CF techniques

In this section, we study a multiple parallel relays network wherein the relays
in 7 C R execute block Markov DF strategy, and others relays belonging to
T¢ = R\ T perform CF technique. The network consists of K + 2.R + 1
code spaces. The alphabet space Xy Vk € KC at every transmitter’s encoder,
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X, Vr € R at each relay’s encoder, ). Vr € T at DF relays’ decoders, fr
Vr € T¢ at CF relays’ estimators, and ), code space at the destination’s
decoder. The transmit message of each source node w, is a sequence of B
sub-messages w}, ..., w?, ..., wP and each w! is independently and uniformly
drawn from the respective alphabet space W, = {0,1,...,2™% — 1} and
then it is fully encoded separately. The encoder at each transmitter & has
one block memory that applying multiplex coding assigns a Gaussian random
number X [b](w) ™, w?) to each w?. The transmission is done in B+ 1 blocks

and each source node k transmits the sequence:

Xe[1(0,wh), - ooy Xp b (bt wh), .o Xi[Bl(we ™ wf), Xp[B + 1] (wf,0)

In each block b, the source node broadcasts X [b](w? ™, w?) to all relays and

destination. All relays r € R receive the signal:

Vool = > Vb Xi[b (w7t w}) + 2, (6.30)
ke

At the same time, every relay independently performs its processing func-
tion (DF or CF) on the previous received signal. The CF relays indepen-
dently estimate their own previous received signal and then encode it to
X, [b] (}/}T b—1] (kzlﬁ)), as it was explained in the previous section. Every DF
relay separately decodes and fully re-encode the previous observed message
to X,[b] ('w,bc_l). Then, all relays simultaneously converge the result signal in
multiple-access mode at the destination. The destination collects the sequence

Ya[l],...,Yq[B +1] as:

Yalb] = > Vhia Xelb)(wp ™t wl) + Y Vi Xl (w} )+

kek reT
+ 3 Vi X, 0] (}Afr[b— 1] (kﬁ)) Y Z4 (6.31)
re7c

The decoding processes at the DF relays are successfully accomplished if:

Ry SI(Xk; YT|X7~X{k}C) VreT (6.32)
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For the CF relays, Ry is not limited to the relays’ encoders process data

rate, and it is limited to:
Ry, <1(Xp: YaYy X, X (c) VreT¢ (6.33)

Therefore, each transmitter’s broadcast message data rate in the decode-

compress and forward technique is limited to:

Ry < min{iréi;_l {I(Xk; Vo X X(ppe) ), Iél%_lé {I(Xp: Ya Ve | X X(3yc) } }
(6.34)
Consequently,

Coer (K R;d) < min {min {I(Xx ; ¥, X)}, min {T(Xk; YaYr|Xr)}}
(6.35)

If there exists a DF relay r € T such that >, Ver < > pcxc Yrd: then
Eq. 6.35 results that it is better to turn off all relays and using direct-link
connections.

At the destination, a multiplex decoding process starts after having col-
lected B + 1 samples of Yy[1],...,Y4[B + 1]. The decoding starts from the
last block and proceeds backward to the first block. For each Yy[b], the
destination uses the alphabet space ), for multiplex them and calculate

lil,bc_l = ('zbl{_l, o ,’d)l;{l). If the destination’s decoder has properly decoded
wit = (it wh ), then the decoding of Yy[b] is successfully accom-

plished. According to Theorem 16 the pmf of the channels of the DF relays

1S:

p(TK, TR, YR, YR, Yd) =
p(@x,zr). [ pelax) [ ple zc).p(yalz, xx)  (6.36)
reT reT
Eq. 5.25 allows to evaluate the joint pmf of the CF channels as:

p (@K, TR, YR, YR, Ya) = H p(zx) - p(@7c) - p (YalKTr) -
kek

: H P (yr|zrEK) - H p(gr|yr$r) (637)

reTC reTc
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The combination of Eqgs. 6.36 and 6.37 yields the pmf of the decode-compress
and forward technique in a network consisted by one source, multiple parallel

relays and one destination as:

P (T, TR, YR, YR, Ya) = P (Tx, TR ) - p (YalTKw,) -

’ H p (Jrlyrxs) - H p(yrlzr o) (6.38)
reTc rerR
According to Theorem 16 the MAC channel capacity of the relays belong to
the 7 is upper bounded to:

Ry <I(Xy X7 Yle{k}c) =X, Xz ; Yle{k}c) (6.39)

Theorem 20 shows that the MAC channel capacity of the CF relays is upper
bounded to:

R <I(Xgc; Yy)=1(Xr; Yy) (6.40)

Therefore, the MAC channel message data rate in the decode-compress and
forward technique is limited to:

R < min {I(Xx X ; Yol Xpe) , I(Xr 5 Ya) } (6.41)
Consequently,
CDCF(]C; R; d) S Hg}%{I(XK X'R N Yd) s I(XR ; Yd)} (6.42)

If pp =1 Vk € K, then the two terms are equal, otherwise the minimum
term is the second term. In a (K;R:d) reliable network wherein all relays
are in good reception conditions from all transmitters with py # 1 VEk € K,
the mixed DF and CF (DCF) upper bound capacity is equal to that the CF
strategy, i.e. that is limited to the multiple access capacity of (only) all relays
at the destination.

With the above discussion, it is straightforward to derive the upper bound

capacity of a DCF reliable communication as in the following theorem.
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Fig. 6.2: Multiple access multiple relayed communication network scenario.

Theorem 39 For one source, multiple parallel relays, one destination net-
work, wherein the relays in subset T C R perform DF technique and the

others relays perform CF technique, the upper bound capacity is:
Cpep(K;Ryd) = min {Cpp(K;T;d) , Cop(K; T d)}

where supremum of each term is over individual power constraints of source

nodes and each relay node and the joint pmf presented by Fq. 6.38.

This means, the Cpcor (K; R; d) reduces both Cpp(K; T d) and Cop(K; T4d).
The Cpor(K; R; d) achieves its maximum if all DF relays are in good condition
to perfectly decode the proper observed signals and all CF relays error freely
deliver signals to the destination. In a network wherein all relays are close
to all source nodes, the upper bound capacity is limited to the multiple
access capacity of all relays at the destination. If all relays are close to the
destination, the outer region capacity is bounded by a DF relay at which the

multiple-access capacity of all transmitters is the minimum.

6.7 Case study

Now, we illustrate the various outer region bounds of a multiple access multi-

ple relayed communication with Gaussian channels wherein two transmitters
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k, two relays r, and one destination d are located as depicted in Fig. 6.2. We
assume a vertical distance of di between transmitters and the destination, and
a vertical distance of d, between the relays and the destination. The path
condition values hy, = h.q = hpqg = 1 are scaled with respect to Notation 2.
First, we experiment a high SNR environment and suppose a horizontal
distance of dpgy = 1m, and a vertical distance of dr = 0.05m between
the source nodes and the destination. The relays are located in vertical
distances of d, = 0.1 m from the destination, and they are simultaneously
and horizontally moving from dy, = —0.5m to dg, = 1.5m. Fig. 6.3 plots
various data rates for p, =P, = 100mW, and o2 = 1 uW. The curve labeled
AF shows the outer region of AF strategy with the largest possible scaling
factor E, in Eq. 6.9. The correlation coefficient p;, = p is the same as that in
Fig. 5.3. Like the one-relay case, as the relays moves toward the transmitter
the DF strategy exhibits better performance, and the CF technique instead
performs better when the relays are closer to the destination. The overall
capacity of the network in the relays off mode is calculated using Eq. B.26.
The comparison of Fig. 6.3 to Fig. 5.3 reveals that the overall data rates of two
transmitters shows almost 20% better performance than that one transmitter.
Now, we consider a multiple-access multiple relayed communication in a low
SNR regime. The transmitters and the destination are placed at horizontal
distances of dry = 500m, and vertical distances of dy = 5m. The relays
are simultaneously and horizontally moving in a range of dg, = —100 -+ 600 m

with vertical distances of d, = 10m from the destination. Fig. 6.4 plots
2

w

various data rates for p, = p, = 100mW, oy, =1 W, and the same E, as
the previous simulation.

The correlation coefficient pp, = p is the same as that in Fig. 5.4. The
comparison between Fig. 6.4 and (5.4) shows the overall data rate of AF
technique in a low SNR network is almost 4 times higher than that in a
point-to-point two relayed network. Adding new relays increases MAI at the
destination and this reduces the performance of AF technique. For cutset,
DF, CF, and MRC schemes, the comparison between Fig. 6.4 and (5.4) shows

that the overall data rates of two transmitters aided by two relays are at most
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Overall rate [b/s/Hz]

diy [m]

Fig. 6.3: Owverall rates of two transmitters relayed by two relays with p, = D, =
100mW, 02 = 1uW, dgg = 1m, di. = 0.05m, and d, = 0.1 m.

X107
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dkr [m]

Fig. 6.4: Overall rates of two transmitters aided by two relays with D, = D, =
100mW, 02 = 1uW, dpg = 500m, dp, = 5m, and d, = 10m.
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50% higher than those of point-to-point two relayed network. Like in low
SNR scenes in the previous chapters, the DF and CF coding techniques show

significant higher rates than the relay off mode.

6.8 Summary

We studied multiple-access communication through an arbitrary number of
multiple parallel relays, with full-duplex signaling and AWGN channels. We
focused on finding the maximum achievable flow rate applying three well-
known relay strategies of AF, DF and CF. First, we showed that the infor-
mation rate achieve the maximum when the output signals of the relays are
fully correlated, whereas the output of the transmitters are fully uncorrelated.
The first interesting result is that the maximum channel capacity region is
approached by either only one relay or all relays together.

Like in the one-relay networks, the performance of a multiple sources, multi-
ple parallel relays, and one destination network basically depends upon both
relays strategy and the their positions. If all relays are located so as to
perfectly receive signals from all source nodes the DF strategy is useful, and
the maximum capacity is limited by a relay at which the multiple-access
capacity of all source nodes is the minimum. In this situation, the others
relays can be turned off. Placing a DF relay at a distance of very far from
all source nodes can even achieve a total data rate less than that the sources-
to-destination direct-links. On the other hand, if all relays are appropriately
placed to perfectly deliver signals to the destination the CF strategy is useful,
and the maximum capacity is limited to the multiple-access capacity of all
relays at the destination. In such a network, adding a new source node can
even degrade the outer region capacity of the entire network, whereas adding
a new relay may expand the outer region of capacity.

We further showed that, in a multiple sources, multiple parallel relays, and
one destination network, applying the same strategy at every relays achieves

larger data rate, rather than applying different strategies.






Chapter 7

Summary and perspective

In the first part of this thesis, we used cooperative game theoretic solutions to
different wireless network engineering problems, focusing in particular on the
issue of fairness. In particular, we studied resource allocation techniques in the
uplink direction of orthogonal frequency division multiple access (OFDMA)
systems.

The main concern in the identification of the game has been the best utiliza-
tion of the network resources applying a low complexity algorithm. This has
led us to introduce a utility function with which each active wireless terminal
achieves its request data rate exactly. This fairness criterion satisfies the
expectation of both the wireless service provider and each user’s terminal.
To cope with the non-convexity and non-concavity of the utility function
we proposed a dynamic learning algorithm. The algorithm enforces every
terminal to adapt its transmit power to approach the maximum value of
the utility function. The proposed algorithm approaches a distribution of
transmit powers over different assigned subcarriers for each user from which
no terminal wishes to unilaterally deviate (the core set). We demonstrated
that the core set coincides with a Nash equilibrium point. The convergence
and stability of the algorithm was proved based on Markov modeling, and the
complexity of the algorithm favorably compared to the existing literature.

The second part of this dissertation has investigated the role of relaying in
communication networks. We started from the simplest relaying communi-

cation in which a couple of terminals communicate with each other through
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one relay, and then we extended it to deal with large networks consisting
of multiple sources and multiple parallel relays. We assume the signaling is
performed in full-duplex mode.

Firstly, we studied the simplest example of a communication network with
three nodes, i.e. a relay channel where one intermediate relay node facilitates
the communication from the transmitter to the receiver. We studied different
relaying strategies, amplify and forward (AF), block Markov decoding and
forward (DF), and compress and forward (CF). We established upper bounds
on the capacity of these channels subject to average power constraints. With
two different case studies we also showed that the AF scheme is only useful
in practice in high SNR regime. When the relay is close to the transmitter
the DF technique is to be preferred, and instead when the relay is close to the
destination the CF technique achieves higher performance. When the relay
is very far from the transmitter, the capacity of DF relaying strategy can
even be less than that of the direct-link. These rules are also valid in a large
reliable network with multiple relays and multiple transmitters.

We have extended in fact the previous scenario to point-to-point communi-
cation aided by multiple parallel relays. We proved that the largest capacity
is achieved when the relays output symbols are fully correlated. Then, we
showed that the capacity of such a network is upper bounded by either only
one relay or all relays together. When all relays are in a good condition to
deliver signals to the destination with low BER, the cutset upper bound ca-
pacity is equal to the broadcast capacity of the source node to the destination
and to the relay with the weakest channel condition. In such a network, the
other relays can be turned off. Instead, when all relays are located so as
to receive signals from the transmitter with good quality, the cutset upper
bound capacity is equal to the multiple access capacity of all relays and the
transmitter at the destination. The DF capacity is limited by the link between
the transmitter and the relay with the minimum data rate. The CF capacity
is bounded by the multiple access capacity of all relays at the destination.
A point-to-point communication assisted by multiple parallel relays which

perform CF technique form a distributed Wyner-Ziv coding network with
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different but correlated inputs, and a common decoder at the destination.
We also showed that adding a new relay does not necessarily result expanding
the upper bound capacity.

Finally, we extended the previous scenario to the multiple access channel
with multiple parallel relays, i.e. multiple transmitters communicate to a
single sink aided by multiple parallel relays. We proved that the largest
capacity is achieved when the relays output symbols are fully correlated, and
the output of the source nodes are fully independent. Similarly, we showed
that the cutset is upper bounded by either only one relay or all relays together.
As before, adding a new relay does not necessarily result in expanding the
upper bound capacity, and adding a new transmitter can even degrade the
overall data rate. The overall upper bound capacity of DF technique is limited
by the relay at which the multiple access capacity of all transmitters is the
minimum. The overall upper bound capacity of CF technique is limited to
the multiple access capacity of all relays at the destination.

For the future work, we plan a cooperative resource allocation game in a
multiple-access OFDMA wireless network consisting of multiple terminals and
multiple relays. The algorithm consists of subcarrier assignment and power
allocation at each node for maximizing the frequency spectral efficiency at
the minimum cost of power consumption. The communication is full-duplex
mode. At the relays and the base-station each subcarrier is allowed be shared
by more terminals. There are different subcarrier assignments at each trans-
mitter, and the relays are not constrained to transmit the same subcarriers
over which receive the symbols. There are also separate power constraints on
each subcarrier at every nodes. Taking into account the relaying strategy, we
introduce a condition under which source nodes discern the needed subcarriers
to be assisted. The transmitted symbols by the source nodes achieve the base-
station and all relays. Each relay decodes/estimates the received signals on

poor channels, encodes them, and forwards toward the base-station.






Appendix A

Multivariate (Gaussian

distribution

The multivariate Gaussian (normal) distribution of a M-dimensional real-

valued random vector X = [X1,...,X| can be written in the following
notation:
X NN(;“‘? %), (A1)
with M-dimensional mean vector:
E{X1}
= : € RM, (A.2)
E{Xwm}
and M * M-dimensional covariance matrix:
Y= [Cov(X;, X;)] e RMM =1 ... M; j=1,....M. (A.3)
The entropy of X is formulated as:
1
H(X) = 3 log, (2me. det{%}) (A4)
If we consider another multivariate Gaussian random Y = [Y7,...,Yy]

jointly Gaussian with X, then mean vector and covariance matrix of XY

is identified by mean vector:

M x1
= l px ] with sizes [ : ] (A.5)
nwy N1
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and covariance matrix:

b by M«M MxN
Y= XX ZXY ith sizes . * (A.6)
ZYX EYY N x M N x N
where
Yxy = [Cov(X;, Yj)] e RM*N j=1,... M; j=1,...,N. (A.7)

and similarly for ¥ x x, Yyx and Zyy.
Then, the conditional distribution of X|Y = vy is a multivariate Gaussian

distribution N (7z, %), where:

px +Exy- (Syy) (¥ — py) (A.8)
= Sxx — Zxy Cyvy) ' Syx (A.9)

M =

To compute (conditional) mutual information, we need the statistical pa-

rameter:

S[X|Y] £ det{XZ} (A.10)
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Some known results in

information theory

B.1 Memoryless channels

In this section we give some basic definitions and theorems mainly on capacity
for memoryless channels. A discrete memoryless channel consists of six en-
tities, grouped into: transmitter, channel, and destination. The transmitted
symbol w,, is selected in a randomly and equiprobable manner from an input
alphabet set W, = {0,1,...,2™m% — 1}. As sketched in Fig. B.1, we add an
encoder before the channel and a decoder after it. The encoder encodes the
source message w,;, into a transmitted message X}, adding redundancy to
the original message in some way. When the signal is transmitted through
the channel, it is distorted in a random way which depends on the channel
characteristics. As such, the signal received may be different from the signal
transmitted. A simple model for wireless transmission is the channel that

adds noise Z to the transmitted message, yielding a received message Y.

Yy =/ hea Xi + Z (B.1)

where hyg represents the value of channel condition between source and desti-
nation. The decoder uses the known redundancy introduced by the encoding

system to infer both the original signal w, and the added noise.
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Fig. B.1: The basic communication system.

Even though the source and the channel are memoryless, the channel input
sequence Xj is not a sequence of independent and identically distributed
(i.i.d.) random variables in general. The encoder is a function Wy — X and
its outputs Xjs are usually a sequence of zero mean (Gaussian) random values
with a bounded variance E {X?} < P,. The sequence of {X}} is produced
with a probability (mass) function of p(xz). The parameter P, is defined as
the physical power constraint on the channel, that the transmitter can spend
to convey the data symbol to receiver. The decoder is a function of Y — W
that maps the received signal Y; to an estimated symbol w,. The average

probability of error is defined as:
P, = Pr{w, # 1 | w, was sent} (B.2)
A transmit rate R}, is said to be achievable if:

lim 27" Pr{w, # b,
m—r o0

wy, was sent} =0 (B.3)
A discrete memoryless channel is defined as:

Definition 22 Let X and Y be discrete alphabets, and p(y|z) be a transition
matriz from X to Y. A discrete channel p(y|x) is a single-input single-output
system with input random variable Xy, taking values in X and output random

variable Yy taking values in Y such that:
Pr{Xy =, Yy =y} =Pr{Xy =2}pylz)
forall (z,y) in X x Y.

The fundamental starting point of digital communication is entropy that is

defined as the measure of the uncertainty of a multidimensional set of discrete



B.1 Memoryless channels 203

random variables.
H(X,...,Xg)=— Z p(x1, ..., xx)logy p(x1, ..., TK)
X1 X X Xk (B4)
= —E {log, p(1,...,2x)}

where (X1,...,Xk) follow the probability function p(z1,...,zx), and X} is
the limited support set of the random variables Xj. The chain rule for joint
entropy states that:
K
H(Xp, .. Xk) =Y H(Xi|Xi 1, X 9,..., X1) (B.5)
i=1
For continuous-valued random variables, definition (B.4) is replaced by that
of “differential entropy” that we do not report here. In the particular case
of Gaussian variables, as usual it is assumed in digital communication, the

(differential) entropy of a Gaussian random variable X is equal to:
1
H(X) = 3 log, (2me. Var(X)) (B.6)

Shannon also introduced the notion of the (average) mutual information

between the two random variables as follows:

ot z)p(y )p(y)
(B.7)
= H(X}) + H(Yy) — H(X}, Ya)

= H(Xy) — H(Xg|Ya) = H(Yy) — H(Ya|Xx)

where the conditional entropy of Xy given Y is defined as:
H(Xg | Ya) == > pla,y)log, p(zly) = — E {log, p(x|y)} (B.8)

X xY
Mutual information also satisfies a chain rule:
K

I(Xh AR 7XK ) Yd) = ZI(X77 Yd | Xi—laxi—Qv e 7X1) (Bg)

i=1
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Shannon in 1948 [189] has shown that, theoretically, it is possible to transmit
information over a given channel with an arbitrary small error probability if

the data rate is not greater than the channel capacity (information rate).

Definition 23 (Shannon channel capacity function) The capacity function of

a single-input, single-output channel is calculated as:

C= sup I(Xw; Ya)
X E{ X2} <P,
Therefore, the channel capacity is the ultimate limit of the data rate for
reliable communication. Channel capacity is the maximum rate of informa-
tion for which an arbitrary small error probability can be achieved. For the

Gaussian random input signal X, the Shannon channel capacity is equal to:

1 1
C=1(Xy; Yy = 3 log, (2me. Var(Yy)) — 3 log, (2me. Var(Yy| X))

B llo Var(Yy)
=252 Var (Ya X5

(B.10)
bit/use

We assume Z is an additive white Gaussian noise (AWGN) of A(0,02)), and
also E{X}} = 0. Hence, the Shannon channel capacity is equal to:

2
w

1 hidD
—log, <1 + kdpk) bit/use (B.11)
2 o

We will indicate the capacity of a Gaussian memoryless channel as a function

of the signal-to-noise ratio (SNR) by the C-function:
1
Cly) = 3 log, (1 +7) bit/use (B.12)

In other words, there is a maximal rate, called the capacity of the channel C,
for which this can be done: if one attempts to communicate at rates above
the channel capacity, then it is impossible to drive the error probability to
Zero.

In communication engineering, we are interested in conveying messages re-

liably through a noisy channel at the maximum possible rate. However, if we
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allow P, to be any small quantity, Shannon showed that there exists a block
code whose coding rate is arbitrarily close to H(X%) when m is sufficiently
large. This is the direct part of Shannon’s source coding theorem, and in this

sense the source sequence Xy, is said to be reconstructed almost perfectly.

Theorem 40 (AEP) [16, Theorem 3.1.2] If the sequence {X}} is generated
with probability mass function p(x), the following holds for any small ¢ > 0,
and m sufficiently large:

2~ m(H(Xk)+e) < p(z) < 9—m(H(X))—e)

The joint AEP will enable us to calculate the probability of error for jointly
typical decoding for the various coding schemes:

Theorem 41 (Joint AEP) [16, Theorem 7.6.1] If the sequence {(X1, X2)} is
generated with probability function p(x1,x2), the following holds for any small
€ >0, and m — oo:

2—m(H(X1,X2)+e) S P S 2—m(H(X1,X2)—e)

(z1,72)

Let {(X1, X2)} be sequences of length m drawn i.i.d. according to the joint
probability distribution p(x1,x2) = p(a1).p(as), i.e. X1 and X5 are indepen-
dent with the same marginal as p(x1,x2). Then, the probability of jointly
typical m — +oo sequences of {(X1, X2)} is bounded to [16, Eq. 7.53]:

P?”{(Xl, X2) c A:n} S 2—m(H(X1)—e)'2—m(H(X2)—€).2m(H(X1,Xg)—i—e)

— 9—m(I(X1; X2)—3¢) (B.13)

where the typical set (i.e., the set of jointly typical sequence) A is defined
by:

Definition 24 The set A7 of jointly e-typical m sequences of (X1,..., Xk)

with respect to the distribution p (x1,..., Tx) is defined as follows:

A, = {(Xa e Xie) € 20 s [ o ple) 1O | < )
(B.14)
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whatever X C {Xi,..., X}, and where x represents the ordered set of

sequence {xy,..., i} corresponding to X.

In the memoryless channel of Fig. B.1, the joint AEP theorem tells us that
the probability that X and Yy are jointly typical at destination’s decoder
is 27 m(I(Xx;Ya)=3¢)  Hence, by sending 2"*F* codes over the channel, the
probability that every independent sent codeword Xy is jointly typical with
received Yy is bounded to [16, Eq. 7.78]:

Pr{(Xg, Yy) € A™} < 2mBr 9=mI(Xk;Ya)=3¢) (B.15)
which goes to zero as m — +o0 if:
Ry < I(Xk; Yd). (B.lﬁ)

Suppose that a finite collection of discrete random variables Xx = (X1, ..., Xk)
is generated on the space set of X X - - - X X with some fixed joint distribution
p (zx). The following holds for any arbitrary small € > 0, and m — oo [16, Th.
15.2.1):
2~ mHX)te) < () < 27 H(Xx) =€) (B.17)

If the variables of X are drawn independently with the same marginal, i.e.

(Xx) ~plax) = H p (xr), then the joint AEP theorem is extended to:
kek

Pr{(Xx) e A7} < [[ 2w [ 27t gmXota (B.18)
ke kel

B.1.1 Broadcast communication

A broadcast channel consists of a single broadcaster and more receivers, for
example, communication from a satellite to several ground stations. The prop-
erties of the channel are defined by a conditional distribution p (y; ...yp | z).
Again, in the Gaussian channel for every signal X}, transmitted by the broad-

caster, receiver d receives:

Yao=Vhea Xp +Za  Za~N(0, 02) (B.19)
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Fig. B.2: Broadcast communication network.

A simple benchmark for such a channel is given by time-sharing (time divi-
sion multiplexing, TDM). That is, devoting a fraction of the transmission
time to each channel. Reference [16, Ch. 15.1.3] introduces a degraded
channel which can do better than TDM. In a degraded broadcast channel the
conditional probabilities are such that the random variables have the structure
of a Markov chain, X <> Y7 < Y5 < .-+, i.e. Yy is a further degraded version
of Y;_1. In this special case, it turns out that whatever information is getting

through to receiver d can also be recovered by receiver d — 1.

The capacity region of a degraded broadcast channel is computed in [16,
Ch. 15.1.3] for D = 2. Cousider hereafter, without loss of generality, that
hi1 > hie. The source randomly selects two codewords w,, € Wy k = 1,2
where Wy = {0,1,...,2mF* — 1} for transmission to the respective destina-
tions. The idea is to divide the total power constraint p;, into two fractions
p1 = apy, and pa = (1 —a)p, ,a € (0,1) and to construct two independent
Gaussian codebooks for the two destinations with powers p; and ps, respec-
tively. To send two independent messages, one codeword is chosen from each
codebook, and their sum is transmitted. Because Y5 is a degraded version of
Y1, the codeword intended for Y5 can also be decoded by Y;. Each individual
decoding function YVg—p — Wy k = 1,2 de-maps the received signal Yy into
an estimated message w,. A transmission rate pair (R;, R2) [bits/symbol] is
said to be achievable if there exists a sequence of codes (m, 2™, 2mEz2) for

which no errors occur:
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P™ =
2
: —mRy, RS _
ml_l)IEOOk 12 .( Z )Pr {(Wq,19) # (wy,wy)] (wy,wy)was sent} =0
= Wq,Wey

(B.20)

The capacity region of the Gaussian broadcast channel with source power

constraint P, and noise power o2 at both receivers is:

R <C (hk1p1>

2
Ow

hiap2
R <C|—=—"—
2= (03, + hk2p1>

B.1.2 Multiple-access communication

(B.21)

Consider a noisy channel with several inputs and one output, for example,
a shared telephone line. Users cannot communicate with each other, and
they cannot hear the output of the channel. A simple system model has
K > 2 inputs X; € Aj and an output Yy equal to the sum of the inputs.
Every X}, is the encoded of codeword w;, which belong to the proper alphabet
space Wy, = {0,1,...,2™  — 1} under constraint that E{X?} < p,. Each
encoder consists of an individual function of W) — AX). The destination

receives:
K

Yy = Z VhiaXe + Zg (B.22)

k=1
A joint function of Y3 — Wi x -+ x Wk at the receiver’s decoder reveal
K-tuple of symbols w, = (@, ...,W) for the sent w, = (wy,...,wy). The
code space Y, consists of 2% code words. The probability transition matrix

is p (yalx1 ... xk ). The error probability for each received signal is defined as:
P. = Pr{w, # w,|w, was sent} (B.23)

A transmission K-tuple (Rq,..., Rx) is said to be achievable if there exists
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Fig. B.3: Multiple access communication network.

a sequence of codes (m, 2mfr . 2mRK) for which:
K
P = lim H g m B, g Pr{w, # w;|w, was sent} =0
m—ro0
k=1 W, =(wWy .., W)

(B.24)
All source nodes interferer at the destination and obviously each transmitter
achieves its maximum data rate while others transmitters are not sending

signals. The capacity of the Gaussian multiple-access channel is:

Prop. 3 [16, Sec. 15.5.6] The capacity of a multiple-access channel described

by | x Xk, p(yalxi), Va | given individual source power constraints p,, and
ke

noise power o2, is the closure of the convex hull of all Ry satisfying:

D R <1(Xa:YalXy0) VACK (B.25)
ke A

for some product distribution Hp(ask) on X Xp. The sum-rate of the
keK
ke

Y RrRe<cC (Z h’;‘f’“> (B.26)

keA keA w

channel obeys:

As can be derived from Eq. B.22, a very noisy channel affects decoding of the
others codewords sent. Assume that the receiver’s decoder can not de-map
the received signal Yy to a jointly typical of (X1, ..., Xk ). Let us suppose that
a subset of signals A C { X} caused this error because their SNR condition
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is very weak. Whatever transmit symbols (w, ..., wg), at the decoder, the
jointly typical error probability caused by the sources A is bounded to [16, Eq.
7.52]:

Pr{(Xg,Ys) € A} <
[T 2 oo L2~ m(H(XraYa) =) om(H(XxYa)+e) (B o7)
ke A

For a sequence of m — oo number of {(X1,...,Xk)}, the probability of
finding a jointly typical index at destination’s decoder is defined by:

Pr{(Xk,Ya) € A"} <
H 2—m(Rd—Rk) . H 2—7n(H(Xk)—E) . 2—77l(H(X}C\A Yd)—e) . 2m(H(X}C Yd)-f—e)

ke A ke A
(B.28)

where R, indicates the data rate process at destination’s decoder. Conse-
quently, the decoding process can guarantee of finding a jointly typical index
if the following formula holds for every A C K:

> (Ra—FRy) < 3 H(Xp) +H (XpoaYa) - H(XcYa)  (B.29)
ke A ke A

B.1.3 General multi node network

Now, we consider a general multi terminal network consisting of one source
k, one receiver d, and a finite number of intermediate nodes represented by
R =11,...,7...,R]. The network can be considered as a graph where each
intermediate node represents a potential transmitter or receiver. A cut is a
partition of the intermediate node set R into two subsets 7 and 7¢ = R\ T
that separates the network into two disjoint parts {k, 7} and {d, T}. The
flow across a cut is just the sum of the capacities of the links that the cut cuts.
It is shown in [190], that the maximum value of the flow from the source node

k to the sink node d (the “max-flow”) equals the minimum capacity among
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all T C R cuts (the “min-cut”), often referred to as the max-flow min-cut
theorem.

A general upper bound on the capacity was given by M.R. Aref [161, Th. 3.4].
We assume that all intended messages of the source node are independently
and uniformly drawn from the alphabet space Wy, = {0,1,...,2m% — 1},
Suppose each intermediate node r € R observes Y, and transmits X, with
an arbitrary coding scheme. The theorem established by M.R. Aref can be
stated as follows:

Theorem 42 For the general discrete memoryless network described by
(Xk X Xy, p(Wayr|zr zr) , Ya X yr> and satisfying the network input
reR reR
(power) constraints by all nodes, the mazimum capacity between source k and
destination d is bounded by:
Ry < sup min {I(XpX7; YaY7c|X7c)} (B.30)

p(yayr|zrer) TER

The goal to find a subset 7 among 2% different subsets of R, such that the
rate of information flow from the transmitters {k, 7} to the receivers {d, 7}
is the minimum. The supremum is achieved under a given probability (mass)
function (pmf).

Theorem 42 can be easily extended to a general case where there are several
transmitters represented by K = [1,...,k,..., K], and several destinations

denoted by D = [1,...,d,...,D]. Each node has its own input constraint.
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In the general network scenario of Fig. B.4, we assume that all intended
messages wy, from source k£ to the receiver d, which are going to be trans-
mitted over R network uses, are uniformly derived from the respective set
Wia ={0,1,...,2m0a — 1}, where R;q) represents the rate at which trans-
mitter k transmits symbols to destination d. A cut separates the network in a
way that one half contains all sources K and the other half all destinations D.
Again, there exist 27 different cuts. Applying Eq. B.30 it is straightforward
to introduce the general cutset upper bound theorem as [16, Sec. 15.10]:

Theorem 43 Suppose {R(kd)} be achievable data rales in a general discrete
memoryless network | X Xip X X, p(ypyr|rcxr), X Vi X yr) and
ke rer deD reR
satisfying the network input constraints by all nodes. The sum of the data
rates between sources and destinations is a bounded above by:
> > Ry < sup min {I(XxX7; YpYrc|X7c)}  (B.31)

kekK deD P(YpyYr|zKcTR) TER

where mazximization is subject to the power constraints defined by the network.

B.2 Wyner-Ziv source coding

Here we briefly review the general set-up and some results about Wyner-
Ziv (WZ) [191] coding. Wyner-Ziv coding is a special case of Slepian-Wolf
(SW) coding theorem [16, Ch. 15.4], which is sometimes called “binning”. In
general, a Wyner-Ziv coding scheme is obtained by adding a quantizer and a
de-quantizer to the Slepian-Wolf coding scheme.

A rate Ry > H (w,) is sufficient to encode w; € Wy = {0,1,...,2m% — 1}
with marginal distribution p (x1). What if the Wi xWh 3 (wy, ws) ~ p (21, x2)
must be separately distinguished for a user who intends to reconstruct w, and
wy? Slepian-Wolf theorem is concerned with lossless source coding with side
information at the decoder. The surprising result of Slepian-Wolf theorem
is that the total rate Rgw = H (w;,w,) suffices for separate encoding and
joint decoding of X; and X, like depicted in Fig. B.5. In fact, when the
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Fig. B.5: Slepian-Wolf source coding scheme.
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Fig. B.6: Wyner-Ziv source coding scheme.

side information wy is correctly available, the compress rate of w, is upper
bounded to H (w |w,).

The Wyner-Ziv theorem determines instead how many bits are needed to
encode w, € Wy = {0,1,...,2"™* —1} under an average distortion constraint
E {d(w,,w,)} < D on the set Wy, x W, and under assumption that the side
information w, € W; is available at the decoder but not at the encoder and
the decoder reconstructs only the sequence W, as an estimation of w,. As a
mnemonic of remembering the above, we can think of w,, w, as being gener-
ated by the configuration in Fig. B.6. When the decoder has the knowledge
of a signal correlated with the source, the latter can be encoded at a lower
rate for a given distortion. The intuitive difference between Wyner-Ziv and
Slepian-Wolf theorem is that encoding of w, to Xj is lossy with a distortion
measure rather than lossless. Wyner and Ziv in [191, Formula 15] give the
rate distortion function for this problem as:

Ry z(D) = min min [I(w,; w,) — I(w,; w,)] (B.32)

p(zlz) g
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where w, € W, is an auxiliary random variable sequence satisfying:

Z p(x,y,2) =Pr{w, =2, w, =y},
=il (B.33)

where p (z,y,2) = Pr{w, = 2z, w, =y} - p(z|z)

and w, and w, are conditionally independent given w,, and p (z|z) is transition
probability of a channel whose input is w, and whose output is w,. The

minimization in (B.32) is performed over all g : Wy x W, — w satisfying:
E{d(wy, g(ws,w,))} <D (B.34)

It means there is a general rate loss in comparison to the Slepian-Wolf prob-
lem. When D is close to zero, Wyner-Ziv degenerates to Slepian-Wolf. If w, is
an auxiliary random variable which creates the Markov chain w, <> w;, < w,,
ie. w,, w, are conditionally independent given w,, formula (B.32) can be
expressed as [191, Formula 16]:

Rwz(d) = min min I(w; w,|w,) (B.35)
p(zlz) 49

The distortion constraint Ry z(d) < D is achievable if and only if [188, Th.
1.10]:

Rwz(D) < Ry < sup I(Xk; Yy) (B.36)
E{X?} <P

So that we in back to lossless encoding, the probability of an error at the

decoder is bounded to [16, Lemma 10.6.2]:

Pr {(wy. 1) € A} < ¢ (772 wI)

(B.37)
which goes to zero as m — oo if:

Ry, > T(wy; wy,) + € (B.38)
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