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% Alchemy is the science of breaking down the matter to rebuild it
again, everything can be broken down in its alchemic components and
then recomposed to create new things. But to gain something an equal

value must be lost : that is the equivalent exchange rule. *
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Abstract

Software configuration and adaptation are becoming key as-
pects of Computer Science; programs are executed in stages
in very complicated lifetime cycles starting from development
to their execution. Various forms of Meta-programming have
been developed to support program evolution over time, dur-
ing development and execution. Virtual machines have greatly
encouraged this trend since programs are annotated with meta-
data that can be easily analysed by meta-programs. In this
thesis we investigate a particular class of programs capable
of evolving their own structure over time in order to adapt to
particular execution conditions and to the user. We investi-
gate this class of programs in the context of computer games,
programs with great need for adaptivity both in terms of pro-
gram specialisation for optimisation and content generation.
In any case the program transformation is performed at run-
time since it depends upon data available only while execut-
ing. Our work is based on programs written for Common
Language Runtime and available in the form of intermediate
language.
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Chapter 1

Introduction

Once programs were written to solve problems, either numerical or data
manipulation, and their lifecycle was simple as write—debug—run. Com-
puters have changed the role they occupy in the society, and programs
have changed their structure, keeping data-management and algorithm
at their core, but also including support for configuration and adaptation
to a world made of heterogeneous architectures capable of parallel and
distributed execution of programs. The cloud computing term has been
adopted to indicate part of this infrastructure, in which something that
is perceived as a program is in fact the result of complex interactions
among a large number of interacting software entities.

Program infrastructures, while preserving their traditional structure
oriented to functionality (as widely discussed in the aspect oriented ap-
proach), have developed to address the problems posed by the new soft-
ware systems. In the last fifteen years programming systems based on
Virtual Machines (VM) such as the Java Virtual Machine or the .NET
Common Language run-time, have literally exploded and are now the
basis for an ever growing amount of programs. It is not by chance that
Microsoft has built its high performance computing platform using these
technologies instead than relaying on more traditional programming lan-
guages such as C or C++.

In such a scenario software has continued to grow in size and its man-
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agement has become a relevant problem on a large scale. The term class
library term has been replaced by the Framework term in order to acknowl-
edge the change in nature of reusable code. A Framework is needed
when objects and patterns are required to develop a software since the
base class library (we will refer it as BCL) and the software itself are so
big that some facility must be provided to interact with it. Famous tech-
nologies are STL, C5, Cocoa, Java, .NET.

A major contribution of wide adoption of the Java run-time system
has been the redefinition of what a program is. Instead of being a num-
ber of segments of machine code a Java program is a set of classes loaded
dynamically and whose methods are defined in terms of the bytecode of
a virtual machine. A program is not anymore a monolithic piece of ma-
chine language, instead is made of types, annotated so that the virtual
execution system can not only execute but also inspect and manipulate
the program itself. Reflection is one of the building blocks of these exe-
cution environments, and one of the key aspects of the notion of meta-
programming. With .NET also the run-time code generation has been
officially supported by the BCL, featuring an environment in which it
is natural to write programs that manage, create and execute other pro-
grams. In this way Web Services interfaces can be synthesised from their
XML description, and code fragments such as regular expressions can
be optimised by compiling them on the fly instead of resorting to inter-
pretation. Program manipulation is sometimes iterated, in the sense that
a program generates another program which in turn generates another
one.

Someone may think that many if not all these considerations can be
applied to the LISP system, which is true if we consider only expres-
sivity aspects of the system. But these virtual machines have been op-
timised to generate on the fly machine language code targeting specific
architectures. The virtual machine bytecode is compiled at run-time into
machine language thanks to Just in time compilation. In the .NET frame-
work the component responsible for the compilation of the bytecode into
native code is called JIT (Ayc03; SNS03); the JIT is also able to perform
optimisation specific to the target machine so that the same code pattern

2



can be transformed in different ways and with different optimisation
strategies. Virtual machines provide also memory management strate-
gies through garbage collectors; those are specific to target machines as
we can see with the NET framework and all its flavours (Compact, Mi-
cro, Full, XBox360).

Traditionally program specialisation has always been rooted in the s-
m-n theorem proved by Kleene and foundation of the idea that we can
optimise a program if some of its inputs become known before run-time.
Several techniques have been developed in the area of partial evalua-
tion and program specialisation; however, the focus has always been the
specialisation before run-time. There are several reasons for this: first of
all program manipulation at run-time costs, and only recently hardware
has become so powerful to make this approach viable in many contexts;
moreover, program manipulation in binary form has always been not so
easy, making difficult to express even the simplest transformation.

Recent works in the area of aspect oriented programming (see Section 2.3)
and, more generally, meta-programming have introduced general pur-
pose tools capable of performing program transformations according to
well defined metaphors! hiding many of the details involved in the pro-
gram manipulation. The CodeBricks (ACKO03) library has shown that
it is possible to define a general purpose operation for expressing code
generation at run-time by mixing fragments of pre compiled code and
expressing multi stage and homogeneous program transformations. A
particular class of meta programs is the class of self-evolving programs
(HLLO6; SE06), which are programs that change their own definition by
rewriting themselves during execution. This class includes the set of pro-
grams capable to specialise themselves depending on the user input.

In this thesis we are interested in studying the potential impact that
this class of programs may have on the nature of programs. We are also
investigating the models and tools needed to support this evolutionary
process. It is important to notice that we are not restricting ourselves to

IEvery approach in meta-programming is designed starting from a transformation mo-
del that is characteristic. Intentional Programming, Aspect Oriented Programming, Tem-
plate Meta-programming use different strategies and metaphors.
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the problem of program optimisation, but we are willing also to explore
other forms of program evolution.

Our studies will be discussed in the context of computer games, an
applicative domain which is challenging because of the execution envi-
ronment and the huge amount of data processed in real time. This do-
main is also resorting to virtual machines to govern the complexity, and
several frameworks for programming computer games are now based
on Virtual Machines (a relevant example is the XNA framework (Gou08)
that Microsoft has developed to program games also for the XBox360
game system).

The contribution of this work is to study program analysis and trans-
formations in program expressed in intermediate language (i.e. byte-
code); in particular we will focus our studies on three aspects of the game
application:

e optimisation of general purpose mathematical library
e procedural content engineering

o game logic generation by means of software compositions

1.1 Optimisation of General Purpose Mathemat-
ical Library

One of the most critical components of a game engine is the library which
deals with math and linear algebra: graphics, simulation and content rely
heavily on math related data structures and algorithms (see Appendix B).
Due to the pervasion of this code both space and time complexity are
extremely relevant however, on the other hand, generality and main-
tainability are very strong requirements. Approaches like Boost (boo)
and Blitz++ (bli) take advantage of the compilation process to perform
advanced optimisations based on the expression tree evaluation to spe-
cialise the code.

In scenarios involving VMs such as the CLR the impact on the execu-
tion is a very complex problem as the garbage collector will deal with
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memory allocations, object creations and destruction. Execution and
allocation patterns will alter the GC behaviour (see Appendix A) and
therefore the overall run-time performance of the application. The JIT
however will try to perform optimisation but with a restricted amount
of time (a significantly lower time budget than the one available to a
C++ compiler) preventing any major optimisations of the code. Another
issue complicating this scenario is related to the fact that general purpose
optimisations are not the optimal solution since the domain (rendering,
simulation, Al etc.) can be used to adopt more efficient and specific code
transformations.

1.2 Procedural Content Engineering

In a game application most of the content is composed of 3D models
and other geometric objects used to populate the screen. In a disc based
scenario the game data is usually compiled into a very concise binary
format, this approach when applied to consoles means that we can have
a single continuous block of data on the storage. Such a data represen-
tation affords the ability to load a large sequential chunk of bytes from
the storage medium and have all of the information ready to be used
by the application code (GMC'06a). Making a concise representation of
the data? is crucial for this scenario so that the application can start pre-
senting coarse representations of content while waiting for the fine grain
data to load and be prepared for presentation (different level of detail in
different moments).

To use this strategy coarser representations of the game content are
built providing a faster start up and affording memory usage optimi-
sation at run-time. Using simplified data to boost the performance of
the application has a cost: the cost of extra space on the storage to save
simplified data along with the high quality content, and a smart lookup
strategy.

Bandwidth is a factor that is quite important when a next generation
game is loading live from a media like DVD. Smart caching techniques

2Coarser representation of a data are called Level of Detail or LOD.
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can be used to address this problem but are applicable only on specific
hardware, another way to reduce bandwidth is to generate the data on-
the-fly and to store/transmit only the function and the inputs to produce
them. Instead of storing a cube in an explicit manner, usually 3D model
data are stored as a set of faces and vertices, we store the geometric prim-
itive as a position and set of parameters that can be used to generate the
unique instance. This provides a potentially significant saving over the
amount of storage space required for the explicit alternative.

Computational cycles are far less expensive than the bandwidth to
deliver the content, a procedural generation from a very concise repre-
sentation can lead to a drastic requirement relaxation for streaming based
applications. Procedural generation of content (and we will refer to this
technique as procedural content generation) is a set of input values and the
code to build the destination data. Given G the set of generator functions
the procedural content is defined as:

U {g(s)| Vs € Domain(g)}

geg

in a specific point the procedural content is represented by the couple
(g,s) where g € G and s € Domain(g).

In our case, the chosen family of generators must output data dis-
playable on screen. So the co-domain of the generators is the set of the,
so called, renderable mesh) defined as:

RM = {(m, g) : mis a graphics material, g is the geometry}
and the generator, called inflator, is represented by
inflator; : Domain(inflator;) — RM

Designing and engineering procedural content is quite important be-
cause the amount of data can increase (especially from a semantic per-
spective) whilst keeping the occupied space constant or at least bounded.
A lot of digital content creation tools (we will refer them as DCC) store user
files in a way that the content affords easy manipulation instead of an
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optimised raw data set. Quite often data are kept as extensive as possi-
ble in the content production pipeline and get finalised once built for the
final application. This finalisation process usually entails the generation
of coarser granularity levels of detail and the computation of final layout
on storage. This can be thought of as storing data as a program with an
input set until ready for the final build where the target product will use
the program’s output with the given input set. Most of the strategies for
content simplification deal with the final content and not with the content
generation procedure where the static output is needed to obtain coarser
version of the data. Changing the perspective from data to program can
lead to a different paradigm for content engineering, more related to the
data synthesis than to the data representation itself.

The video game Crackdown® from Realtime Worlds* uses procedural
built cities and road, this means that, on the disc, data are represented
by the code to generate the content and the input data for the procedure
and the rendering step.

1.3 Game logic Generation

Most games are composed of a sequence of levels the player traverses,
once the completion condition for a level is met a transition is triggered
to a new level (or to the final screen if the game is beaten). Sometimes
the word level is used also to refer missions (in games like Grand Theft
Auto °) or quests (as in World of Warcraft °); more generally a level can
be seen as a particular node inside a finite abstract state machine (AST)
modelling the game story (a game can contain forests of AST) and the
player must satisfy at least one of the node conditions to execute a tran-
sition toward another state’.

3Crackdown at http: //crackdownoncrime . com.

4Realtime Worlds at http://www.realtimeworlds.com.

5GTAathttp://en.wikipedia.org/wiki/Grand_Theft_Auto_ (series)

6WoW at http://en.wikipedia.org/wiki/World_of_Warcraft

7AST can be used to model both the game status or the player status; some games do
not have a “story” so cannot have AST associated with the game logic, examples of such a
games are typically MMORPGs like of World of Warcraft, APB, etc.
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The life span for a game is determined by the engagement® of the
player which is very important as it drives the revenue of the company.
One of the most common approach for extending the life is the provision-
ing of additional content (usually called expansion pack, mission pack)
to revive the interest of the players.

Pack creation has a cost for the company since designers have to work
on new content and new logic; as the pack creation effort is meant to
maintain the player base and attract new consumers, statistics and feed-
back are used to drive the new content creation. The release cycle for
video games can be formalised as shown in Figure 1.

Figure 1: Life Cycle for games

RN

Release —— | Review ——— > Pack Termination

In video game development levels are usually created by formalis-
ing the set of features that can be used by level Designers to assemble
the level. Game Developers are responsible for creating the code behind
the formal abstraction so that the game can load the instance variables
created by Game Designers and then use them to initialise the level in-
stance. Using reflection and meta-programming techniques it is possible
to make the Review step automatic, in such a scenario the game can use
the metrics to generate new levels and reuse them at run-time.

8Generally the engagement is built on either emotional connection or knowledge of the
rules of the game world; game designers uses those two elements to maximise the time
players spend with the game and their satisfaction.
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1.4 Organisation and Reading Plans

The goal of the thesis is to provide capabilities to program (and thus
programmers) to allow software to evolve and adapt at run time. The
domain knowledge can be used to perform transformations that can im-
prove different sections of the program with different approaches. Real
world applications are generally created with different domains co exist-
ing inside the code base, games for example are composed of:

e mathematic domain

algebraic domain

geometric domain

physic domain

graph theory domain
e Al domain
e rendering domain

Multiple domains inside the application code base can benefit from
different programming patterns, abstractions and optimisations.

In Chapter 2 we present the state of the art and the technologies used
to design our approach. The Chapter introduces the meta-programming
field focusing on Aspect Oriented Programming, Virtual Machines and
Strongly Typed Execution Environment are described as well. The VM
adoption in software is increasing as the byte code retains information
that common compilers lose during the translation from source code to
executable. Aspect Oriented Programming is interesting because its mo-
del is based on code injection at specific points. Most of the AOP imple-
mentations are source to source transformations which are infeasible in
real world scenarios where source is usually unavailable. Focusing on
byte code manipulation is more interesting since it allows targeting of all
the languages available for the VM.

9



Chapter 3 will be describing the run-time code generation approach
we propose and the code query technique. The VM dynamic loading
allows code transformations to be performed at load time, this will avoid
the need to process the entire code base and to focus on loaded modules
only. As described in the chapter byte code can be inspected obtaining
also run time behaviour information (like real local variable usage, code
access security changes), along with type and execution aspect of the
software transformations can be performed safely from both type and
execution perspective.

In Chapter 4 we present the experimental result we obtained apply-
ing our technique to the problem introduced in the Introduction. The
chapter shows how meta-programming with run time code generation
support can impact the performance, the design, and the development
cycle of video game software. The experiments described will provide
a quick glimpse about using domain knowledge to create an application
capable to adapt and evolve at run time.

Appendix A will provide information about the garbage collection
strategy in the INET framework. This is relevant to understand the prob-
lematic that a GC can introduce in realtime applications.

Appendix B describes the software architecture behind video games
and the core software components involved in development.

The details about garbage collection and game software architecture
are provided so that the reader can see how game engines are actually a
specific targeted implementation of VM as JVM and CLR.

Appendix C is focused on realtime rendering and a meta-programming
based approach to improve it, this is one of the most relevant issues for
video games and some of the argumentations in Chapter 2 will be refer-
ring to it.

Finally Appendix D contains code snippet with details about Chap-
ter 4 experiments.
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Chapter 2

State of the Art and
Technologies

This chapter has the goal to introduce the state of the art and the tech-
nologies relevant to our meta-programming model. The Virtual Machine
scenario is introduced giving an over view of its features. Particular at-
tention is paid to reflection and code generation capability of Virtual Ma-
chines, their type systems and execution model.

Since our approach is based on Microsoft. NET more details are pro-
vided on features like function objects and byte code structure. We will
be introducing the .NET delegate type, this is quite relevant to our work
since is the way .NET lifts functions to types (even if this is not the same
concept of functional language as F# (5GC07)).

Meta-programming is introduced as well with a section giving de-
tails on Aspect Oriented Programming and some of the most interest-
ing implementations with respect to our goal. The section about meta-
programming and AOP is supported with code examples from the ap-
proaches we present.
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2.1 Virtual Machines

2.1.1 Strongly Typed Execution Environments

In the last few years the number of languages based on virtual machines
has substantially increased. There are several reasons for this trend:
hardware is becoming ever faster and we can afford to pay some over-
head for more reusability, security and robustness from our programs;
programming has become a harder task requiring an ever increasing
number of services.

Garbage collection (see Appendix A for details), libraries of pre built
functionality (base class libraries, we will refer them as BCL) are often
considered a requisite for a programming language. Programming lan-
guages based on virtual machines allow programs to be run across dif-
ferent platforms at only the cost of porting the execution environment
rather than having to recompile every program. Virtual machines also
offer the opportunity of achieving better security: the execution engine
mediates all accesses to resources made by programs verifying that the
system can not be compromised by running applications.

Java is a successful programming language based on a virtual ma-
chine that has been considered closer to compiled languages such as
C++ rather than to interpreted languages such as Perl. In the past other
programming languages with the same architecture, essentially p-code
(PD83), have been proposed (see for instance the introduction of (Kra98))
but Java was the first to have a huge impact on the programming main-
stream. Nowadays Microsoft is pushing virtual-machine programming
languages based on the Common Language Infrastructure (CLI) (stan-
dardised by ECMA (ECMb) and ISO (ISOb)). The core of CLI is the
virtual execution system also known as Common Language run-time
(CLR).

Both JVM (bTLY99) and CLR (ECMb) implement a multi-threaded
stack-based virtual machine, that offers many services such as dynamic
loading, garbage collection, Just In Time (JIT) compilation, and stack in-
spection. When a virtual machine is stack-based the operations read val-
ues from a stack of operands and push the result on the stack.
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Many other languages adopt a stack based virtual machine: OCaml
(OCV), Python (pvm), TEA (tvm), XSLTVM (xvm), are but few exam-
ples. An alternative to stack-based virtual machines are register-based
virtual machines, these offer the abstraction of registers instead of a stack
of operands to pass the values to the instructions; an example of register
based virtual machine is the Perl virtual machine implementation called
Parrot (par). Although both stack-based and register-based machines are
Turing equivalent there is a fervent debate among the implementers of
which model can offer better performance. In (DP), for instance, is pro-
posed an alternative interpreter for Python which is register-based.

In this thesis we focus our attention on stack-based virtual machines.
In particular we are interested in virtual machines which are type ori-
ented. JVM and CLR are examples of such machines whereas CVM, the
virtual machine of OCaml, it is not. CVM does not provide the ability
of defining types: it provides simple operations and the only types other
than strings and numbers are closures and word blocks.

Our interest relies in those execution environments that contain in-
formation about the program types, and their structure. In particular we
require that the environment is able to reflect types and their methods to
running programs. The JVM and CLR are good examples of these envi-
ronments. We do not strictly require support for inheritance; we rather
should be able to close a value to a function.

A Strongly Typed Execution Environment (we will refer it as STEE) is
an execution environment which implements a virtual machine that pro-
vides an extensible type-system, reflection capabilities, and the execution
model which guarantees that type of values can always be established
and values are accessed only using the operators defined on them. The
results presented in this thesis can be extended to stack-based STEEs like
JVM and CLR. Most of the details and the model are built around CLI
because it is a standard. Nonetheless JVM and CLR are quite similar and
the results can be expressed in the same way.

Recently VMs are taking the abstraction level higher, trying to hide
the concepts of thread, process, and even machine to the programmer.
CLR does this through the BCL thanks to the task oriented programming
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and the service model of .NET Remoting and WCEFE. That HW abstraction
is anyway not enough to cover some of the techniques that today are
prevalent in High Performance Computing (HPC) such as the usage of
GPU (Fer04; RF05; Ngu07) (or other specialised processing units).

One problem with CPU-GPU interaction is that the GPU capabilities
are defined by the accelerator model and brand, therefore the code must
deal with a set of possible scenarios (different shading language version,
number of instructions, set of instructions). Cuda (NVI), OpenCL (ocl),
and RapidMind (RPM) offer to C++ a compile time support and a run-
time dispatcher to deal with such scenario. Even if tools can provide a
configuration facility the programmer must provide all the implemen-
tation for the target platforms potentially involved in the computation
(RapidMind provide a BCL to handle GPU, multi core and CELL scenar-
ios).

Compiler extensions and compile time approaches make scalability
and performance boosting quite complex in heterogeneous hardware and
deployment scenarios, programming abstractions are not enough to ad-
dress this problem while a joint action of language, VM and run-time
transformations (including JIT) could make this programming paradigm
more accessible and easier to design for and engineer.

2.1.2 Structure of a STEE

A STEE is a type driven execution system. Its input is a program ex-
pressed in a language which is called intermediate language. The CLR
provides the Common Intermediate Language (CIL or IL), the JVM ex-
ecutes bytecode. The intermediate language is shipped in binary form,
though usually is platform independent. In Figure 1.2 is shown a typical
state model for an EE such as the JVM or CLR.

The intermediate language expresses a program executed by a thread:
the execution begins from a method which may invoke other methods.
Each method invocation corresponds to the addition of a stack frame
which contains the local variables and the input arguments. Both JVM
and CLR share essentially the same structure of the stack frame from the
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IL standpoint.

A STEE can interpret the IL language or compile it using a Just In
Time compiler into machine language. The JVM is an interpreter that
could rely on a JIT compiler to improve execution speed; CLR assumes
that the IL is always compiled before execution. In this thesis we assume
this level of detail of the execution system which is the model of the vir-
tual machine. This is a convenient model to work with: it hides many
details such as registers, stack and heap implementation. This is the rea-
son for many researchers decision to work at the level of IL/bytecode
although this may introduce some overhead (CTHL01; TSDNP02; MY01;
Ses).

2.1.3 Delegates in CLR

The CLR provides a special mechanism for having function objects: dele-
gates. Although a delegate is treated ad-hoc inside the execution engine,
from an IL standpoint this is nothing more than a class that derives from
System.MulticastDelegate. Each delegate class is characterised by
an Invoke method whose signature is the same of the class of methods it
describes. Let us consider for instance the C# declaration:

1| delegate int F (int a, int Db);

O O 0 N QU WIN

This declaration corresponds to the following class:

sealed class F : System.Delegate {
public F (object o, IntPtr m) {}
public virtual
System.IAsyncResult BeginInvoke (int32 a, int32 b,
System.AsyncCallback callback, object o) {}
public virtual
int32 EndInvoke (class System.IAsyncResult r) {}
public virtual
int32 Invoke (int32 a, int32 b) {}
}

As explained in section 13.6 of Partition II of ECMA standard 335 (ECMb),
a delegate class should define a constructor and three methods, namely
BeginInvoke, EndInvoke and Invoke. These methods do not have a
body because of their special handling. When a delegate is created the
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constructor requires two arguments: an object 0 and a pointer m to the
code of a method that should satisfy the following requirements:

e 0 cannot be null unless m is a pointer to a static method

e if 0 is an instance of class c then m should be a pointer to a method
of the same class c

o the signature of m should be the same of Invoke

When the method Invoke of a delegate is called the execution en-
vironment invokes the method referred by m on the object o (if m is an
instance method). Delegates can be represented in Java as interfaces with
single methods. Although the run-time is unaware of the notion of dele-
gate so the implementation would be less efficient. Peter Sestoft in (Ses)
describes a possible implementation of delegates in Java. A hand-written
schema for having anonymous functions is used by DynJava (OMY01) to
run code generated at run-time.

2.1.4 Reflection in STEE

Reflection is often considered an essential feature of a modern program-
ming language. Component systems are easier to use as long as it is
possible to query the structure of a component at run-time instead of at
compile time: it is possible to write generic components capable of deal-
ing with other components by inspecting their structure at run-time. The
evolution of both COM (Rog97) and CORBA (Lew98) has been towards
the support of metadata associated with components and accessible at
run-time.

A system is reflective if it is able to access its own internal execution
state and possibly manipulate it. Reflection can be implemented at dif-
ferent levels of complexity (KCCO00):

o Introspection: the program can access a representation of its own
internal state. This support may range from knowing the type of
values at run-time to having access to a representation of the whole
source program.
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o Intercession: the representation of the state of the program can be
changed at run-time. This may include the set of types used, values
and the source code.

Both introspection and intercession require a support, called reifica-
tion, to expose the execution state of a program as data. Despite its great
expressivity, support for reflection may have a significant impact on the
performance of program execution. Traditionally compiled languages
offer little reflection support: the source program and its abstractions are
no longer available at run-time. C++, for instance, supports run-time
type identification (RTTI) that allows a program to have exact informa-
tion about type of objects at run-time. Stroustrup (Str94) strongly encour-
age the use of compile-time type checking relying on RTTI only in abso-
lutely necessary cases. Interpreted languages tend to offer rich reflection
support because the execution system holds information that compiled
languages throw away during compilation'. Interpreters have exact in-
formation about type of values and may also interpret code generated
at run-time. ECMA Script (ecmc), which is the standard for Javascript,
supports introspection of both data types and source code.

Reification exposes an abstraction of some elements of the execution
environment. These elements may include programming abstractions
such as types or source code; they may also include other elements, like
the evaluation stack (as in 3-LISP (SdR84)), that are not modelled by the
language. Each element is exposed with a set of abstract operations to
manipulate it. For compiled languages it could be harder to reflect ele-
ments of the source language: the object program runs on a machine that
usually is far from the abstract machine of the source language. Enabling
RTTIin C++, for instance, requires that the run-time support contains ad-
ditional code to keep track of types at run-time. Besides, the programmer
would expect abstractions compatible with the structure of the program-
ming languages abstract machine (unless he is interested in manipulat-
ing the state of the machine which is target of the compilation).

In NET and Java is it also possible to extend type information adding custom element
metadata to a type or assembly, this mechanism is grained on member level such as fields,
properties, methods.
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STEEs require information on types in order to enforce type safety at
run-time?. It is easy to expose them to running programs as objects and
it comes for free.

The CLR exposes its reflection system through the classes contained
in the System.Reflection namespace. Classes are described by in-
stances of System. Type class and accessed through the static method
Type.GetType () or the instance method GetType () inherited by Sys-
tem.Object.The JVM adopts the same structure with different names.
Using this support it is possible to inspect the types of a program as well
as changing fields of objects and invoking methods.

Languages that generate code for a STEE tend to expose types of the
execution environment as types within the language. This assists the
programmer in reusing their libraries as well as the base class libraries
that are part of the system. An example of this is SML.NET (sml), an im-
plementation for NET of SML: the language has been extended to allow
manipulating CLR types. Thus from the SML.NET programmer stand-
point the reflection is limited only to the types of the execution engine,
other types are not easily accessible (perhaps because they are mapped
to non trivial CLR types). Though method bodies are part of the type
definition usually they are not available through the reflection interface.
There are several reasons for this choice:

o Execution engine knows only their compiled version and the source
code is no longer available. The only form available is the list of the
abstract machines instructions, which are unknown at the source
language level

o It would be possible to support only introspection of code: allow-
ing changes to the running code would have impact on systems
performance. Moreover the execution environment enforces prop-
erties such as type safety and protection mechanisms that would be
harder to guarantee if intercession on method bodies was allowed

2Type safety can be enforced relying only on type-checking performed at compile time
(as it happens in ML), though type safety depends on the compiler. STEE enforce type
safety at run-time through run-time types.
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e Program source could be made available within metadata, but of-
ten companies or programmers do not like to distribute their source
code

In synthesis an appropriate abstraction for code is available such that
programs can use it in a profitable way. In this dissertation we introduce
an appropriate abstraction for representing code executed by a STEE.
We introduce the notion of code value: a value which represents a well
defined piece of code. Method bodies can be represented by such val-
ues, though this is a weak form of reflection: it is possible to manip-
ulate method bodies without being able to access their structure. This
extension does not introduce any additional overhead into the execution
engine and it is able to support meta-programming and multi-stage lan-
guages.

2.1.5 Bytecode analysis

Virtual machines use an intermediate language for several reasons:

e Security and verification: the loading model based on dynamic
loading of types requires metadata to be available at run-time and
bytecode allows for verification of programs

o Adaptation: continual hardware evolution asks for a better sepa-
ration between programs and computing architectures in order to
better exploit the capabilities of new components

e Rich set of services: programs are instrumented with a number of
services including memory management, security, network com-
munications, graphics, interoperability, and many others. These
services are exposed either as core services or through the base class
library.

Intermediate language analysis allows us to extract relevant informa-
tion about program structure that can be used to analyse and transform
programs in binary form. The opportunity to transform programs in
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their binary form allows several varieties of program specialisation rel-
evant to software adaptation. In particular it is possible to mimic meta-
programming patterns typical of generative programming and based on
C++ template metaprogramming.

Describing a type-system is a complex task. In Partition II of Com-
mon Language Infrastructure standard (ECMb; ISOb) the metadata for-
mat used by .NET assemblies is defined. A single assembly describes a
set of types and may contain references to other assemblies. Thirty-six
tables are used to describe all the types contained in the assembly and
their relation with types contained in other assemblies.

Metadata contains all of the information related to types and their
structure (with additional custom information provided by the program-
mer). Both in JVM and CLR binary formats it is possible to include extra
information to metadata®. Method bodies are defined using the interme-
diate language, though they are not accessible through reflection abili-
ties. Nevertheless several libraries have been developed to address this
issue; in our system based on .NET we used CLIFileRW library (Cis).

The choice to represent types and code in intermediate language form,
rather than machine code, is somewhat constrained because of design
goals. Without information on types it is almost impossible to have gen-
eral support for dynamic loading of modules (one weakness of COM
(Rog97) was the incomplete type system), reducing reusability of the
software. The ability to verify that types are used correctly helps to avoid
memory corruption through misuse of programming abstractions: this
contributes to reduce the corruption of the execution state and imple-
ment security checks.

Types are good for software reuse because they are one of the founda-
tions of modern programming languages. Traditionally run-times, like
the C run-time or even the ML (OCV) run-time, share a little amount of

3In .NET the ability to annotate using metadata is exposed in programming languages
such C# (ECMa; ISOa): all programming elements exposed through reflection (types, meth-
ods, assemblies and so on) can be annotated by means of custom attributes (NV02). Java
bytecode (LiY99) is also able to contain custom information (class file attributes) though
this feature is not exposed to the language: it was conceived to support programming tools
like debuggers.
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programming abstraction with the programming language: in C numer-
ical values are the same as used by the processor, in ML there is slightly
more similarity. When types become a shared abstraction between the
execution environment and the programming language a larger amount
of information is made available about the program to the run-time and
to all the other programs interested in code analysis. Partial evaluators
and programs alike can even execute these binaries with different se-
mantics from the one of the execution environment. The simplicity of
manipulating intermediate language and metadata makes code analy-
sis possible that would be hard to perform in other contexts. In (MY01;
TSDNPO02; Cis03) are reported examples of analysis and manipulation of
binaries for CLR and JVM.

Besides ordinary code analysis, the fact that types are shared between
the execution environment and the programming language implies that
it is possible to provide libraries without implementation. The program-
mer makes use of such libraries and its invocation to library methods and
types are used as placeholders into the binary format for further process-
ing. After compilation programs may manipulate the output looking for
special patterns inside the intermediate language, types and metadata.
The post processing may be done for several reasons: in (Cis03) it is done
for run-time code generation; a post processor would optimise patterns
deriving from the use of domain specific operators; some aspect could be
woven into the code; the executable is translated into an executable for a
different platform.

2.1.6 CLR components

The CLR virtual Machine has to deal with several management aspects
during a programs execution. Those aspects are important components

in program transformation where metaprogramming behaviours are moved
inside the run-time itself. The CLR Host management components are:

¢ Assembly loading management: Enables the host to customise the
locations from which assemblies are loaded, the way versions are
managed, and the formats from which assemblies can be loaded.
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For example, assemblies could be loaded from a database instead
of from files on the hard disk

o Policy management: Enables the host to specify the way program
failures are handled, to support different reliability requirements

e Memory management: Enables the host to control memory alloca-
tion by providing replacements for the operating system functions
that the CLR uses to allocate memory

o Garbage collection management: Enables the host to implement
methods to receive notification of the beginning and end of garbage
collection. Enables the host to initiate collections, to collect statis-
tics, and to specify some characteristics of collection

e Debug management: Enables the host to discover whether a de-
bugger is attached, to provide additional debugging information,
and to customise debugging tasks

¢ CLR event management: Enables a host to register for notification
of the events like domain unloading, stack overflows

e Task management: Enables the host to be notified whenever a
thread makes a transition between managed and unmanaged code.
Allows the host to control thread affinity, when tasks are started
and stopped, and how they are scheduled

o Thread pool management: Enables the host to implement its own
thread pool for the run-time to use

e Synchronisation management: Enables the host to implement its
own synchronisation primitives for the run-time to use. The host
can provide events, critical sections, and semaphores

e I/O completion management: Enables the host to implement its
own implementation of asynchronous input/output

Thanks to the set of services exposed by the CLR it is possible to analyse
and react to the behaviour of the application. A common tool which can
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be created using these features is a profiler. Other common programs re-
alised using the hosting apis are the sandbox environments, they are very
useful in security and policy enforcement scenarios (like code execution
in browsers, etc.).

2.2 Meta-programming

Meta-programming is a general idea driving those programs (called meta-
programs) which manipulate other programs ( called object-programs). Meta-
programming has been studied in various forms and aspects, ranging
from compilers, to partial evaluation and specialisation. Recently meta-
programming techniques have focused mainly on software engineering,
in particular aspect-oriented programming, a research area where pro-
grams have been considered as slices of code that are rearranged by the
so-called aspect-weaver into the final program. Another relevant area
in which metaprogramming techniques have been adopted is generative
programming, in particular for domain specific languages, where pro-
grams are optimised depending on how domain operators are used.

As reported in (She(01) an object-program is any sentence in a formal
language. Meta-programs include things like compilers, interpreters,
type checkers, theorem provers, program generators, transformation sys-
tems, and program analysers. In each of these a program (the meta-
program) manipulates a data-object representing a sentence in a formal
language (the object-program).

In the following section of this chapter meta-programming techniques
will be exposed with more details and particular focus on techniques that
uses VM and byte code level manipulation.

2.2.1 Reflection, Meta-Programming and Run-Time Code
Generation

The current programming model is based on an execution paradigm
which does not seem to scale well. As pointed out in (CE00) program-
mers are forced to reimplement functionality daily to provide more a op-
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timal solution than existing implementations. We are incapable of writ-
ing perfectly reusable software though many reuse mechanisms have
been prevalent for a long period of time.

The reuse mechanisms we can rely upon are ultimately based on the
notion of procedure: a fragment of code that can be reused many times
during the execution of a program. We have built many programming
abstractions but the primitive notion is still the function, or method, or
procedure or any other of the many names used for it.

If programs were made only by functions we would have probably
achieved better reuse. Unfortunately programs need to represent data
structures and manipulate those through functions. The notion of reuse
implies that data types and functions provide interfaces that are general
enough to be reused. Within this need for generic interfaces lies the main
problem with code reuse models based on reusing prewritten function-
ality.

If we assume that we want to reuse a function we should make design
choices with the smaller number of constraints in its usage. Although in
this way we reduce the number of assumptions on which we rely upon
affecting dramatically the performance of a program. In many applica-
tion domains standard libraries are avoided in favour of highly efficient,
hand-written, non generic libraries. An evident example of this trend is
three dimensional graphics (Ang06): the rendering pipeline is based on
matrix operations. All 3D libraries provide their own matrix implemen-
tation rather than reusing a general purpose, full fledged matrix library.
Why? Because a general purpose library for numeric computation can-
not assume fixed size matrices with few operations. Thus a matrix library
for 3D graphics will be faster than a generic one.

The problem is that whenever we offer an option to the programmer
we almost surely add at least a test in our code. The goal of genera-
tive programming (CEQ0) is to provide this reusable set of functional-
ity in a way that specialise libraries and components when the options
are specified by the programmer. To achieve real code optimisation we
need to generate programs whenever some information becomes avail-
able that allows us to employ better algorithms or reducing the number
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of tests needed by the program. A number of programming techniques
are discussed in the research community to achieve the same ultimate
goal. run-time code generation (LL94; MY01; LL96b; BDB00; OMY01;
GMP*00; CN96; PA02; Eng96; LL96a), Meta-programming (She01; SJ02;
Vel98; TS97), Partial evaluation (JGS93; JG02; She01). It is interesting to
notice that the goal of specialising components requires some abilities:

o Analysis of components usage

o Generation of the code representing the optimised version of some
portion of a program

o Iterated program specialisation in order to make use of information
when it becomes available during its life cycle.

Every aspect of the problem influences programming systems at all
levels, we need programming constructs for controlling the generation
process and the specialisation of programs; the code analysis and gener-
ation support should be included in run-time libraries so that programs
can rely upon.

2.2.2 What kind of meta-programs are there?

Meta-programs fall into two categories: program generators and pro-
gram analysers. A program generator (a meta-program) is often used to
address a whole class of related problems, with a family of similar solu-
tions, for each instance of the class. It does this by constructing another
program (an object-program) that solves a particular instance. Usually
the generated (object) program is specialised for a particular problem
instance and uses less resources than a general purpose, non-generated
solution.

A program analysis (a meta-program) observes the structure and en-
vironment of an object-program and computes some value as a result.
Results can be data- or control- flow graphs, or even another object-
program with properties based on the properties of the source object-
program. Examples of these kind of meta-systems are: program trans-
formers, optimisers, and partial evaluation systems. In addition to this
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view of meta-programs as generators or analysers (or a mixture of both),
there are several other important distinctions.

e Static vs. run-time. Program generators come in two flavours:
static generators, which generate code which is then written to disk
and processed by normal compilers etc. and run-time code gener-
ators which are programs that write or construct other programs
and then immediately execute the programs they have generated.
If we take this idea to the extreme, letting the generated code also
be a run-time code generator, we have multi-stage programming.
Examples of run-time program generators are the multi-stage pro-
gramming language MetaML (OS99; TeaBS98), run-time code gen-
eration systems as the Synthesis Kernel (Mas92; CPI88), "C (PHEK99),
and Fabius (LL). An example of a static program generator is Yacc
(Joh75).

e Manually vs. automatically annotated. The body of a program
generator is partitioned into static and dynamic code fragments.
The static code comprises the meta-program, and the dynamic code
comprises the object-program being produced. Staging annota-
tions are used to separate the pieces of the program. We call a
meta-programming system where the programmer places the stag-
ing annotations directly a manually staged system. If the stag-
ing annotations are place by an automatic process, then the meta-
programming system is an automatically staged system. Histori-
cally, the area of partial evaluation pioneered both the technique
and terminology of placing the staging annotations in an automatic
way without the intervention of the programmer. Write a normal
program, declare some assumptions about the static or dynamic
nature of the programs inputs, and let the system place the stag-
ing annotations. Later, it became clear that manually placing the
annotations was also a viable alternative.

e Homogeneous vs. heterogeneous. There are two distinct kinds
of metaprogramming systems: homogeneous systems where the
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meta-language and the object-language are the same, and hetero-
geneous systems where the meta-language is different from the
object-language. Both kinds of systems are useful for representing
programs for automated program analysis and manipulation. But
there are important advantages to homogeneous systems. Only ho-
mogeneous systems can be n-level (for unbounded n), where an n-
level object-program can itself be a meta-program that manipulates
n+1-level object-programs. Only in a homogeneous meta-system
can a single type system be used to type both the meta-language
and the object-language. Only homogeneous meta-systems can
support reflection, where there is an operator (run or eval) which
translates representations of programs, into the values they rep-
resent in a uniform way. This is what makes run-time code gen-
eration possible. Homogeneous systems also have the important
pedagogical and usability property that the user need only learn a
single language.

2.3 Aspect Oriented Programming

Amongst all the approaches for metaprogramming we found Aspect Ori-
ented Programming a very interesting flavour to be investigated further.
For a complete overview of the meta-programming techniques we sug-
gest to see (CE00) and (She01). The choice of AOP as starting point for
our work is motivated by the transformation model that AOP uses to re-
alise meta-programming. In AOP piece of code called aspects are injected
in specific points (pointcuts) of other programs matching an expression
(join point).

Aspect Oriented Programming (AOP) is a direction in programming
originally proposed by researches from Xerox Palo Alto Research Cen-
ter (asp). The main observation that lies behind AOP is that, though
the separation of concerns is a fundamental engineering principle, pro-
gramming languages do not provide full support for it. Programming
languages tend to stress the functional aspect of the program, where the
behaviour of a program depends on the execution of a lot of procedures.
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Since first year courses it is said that a problem should be decomposed in
smaller problems and solved separately and the outcome recombined in
the final solution. Kiczales et. al. noticed that this approach to problem
decomposition focuses only on separating its functional aspects.

It is well known that there are programming aspects which are or-
thogonal to program functionality but are essential. Thus, with the ex-
ception of toy programs, we cannot really separate all the concerns of a
program. The goal of AOP is to provide methods and techniques for de-
composing problems into a number of functional components as well as
a number of aspects that crosscut functional components, and then com-
pose these components and aspects to obtain system implementations.
The activity of adding an aspect to a component is called weaving.

An aspect oriented system provides a means for identifying join points,
which are the points in a program that can be used to refer points in the
program where effects can be performed by an appropriate mechanism.
Aspect weaving is performed by an aspect weaver that is responsible for
following advices at given join point matches (pointcuts). The way join
points are defined depends on the join point model adopted which may
allow defining syntactic patterns as it happens in systems like Aspect]
(asp), or characterise in a more semantic join points manner. Advices
indicate the actions to be performed at specified join points and usually
allow inserting before or after the join point code. Again the weaving
process can be performed at source code level or on the executable. Al-
though the second approach has been used the most effective has been
the former since advices need to refer to objects where the advice code
must be inserted, and their specification is more understandable if per-
formed on the source code.

2.3.1 Aspect]

Aspect] (asp) is the first of the AOP systems and it is often considered
as a reference in the field. The approach of the tool is rather syntactic
since it is implemented mostly as a source-to-source code transformation
system based on the Java programming language. Aspect] is also capable
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of weaving aspects when classes are loaded, though the expressiveness
of the join point model used for defining join points at load time is a strict
subset of the model available when weaving is performed at source code
level.

As discussed in (DFS]08; EL03) Aspect] can use the polymorphism to
extend the flexibility and the expressivity of aspects. The Aspect] com-
piler is also integrated in the Eclipse IDE to support the programmer
providing different views of the program as a result of the crosscutting
of different concerns.

Listing 2.1: Aspect] sample Program

public class BankAccount {
private String name;
private float deposit;
public BankAccount (String name, float deposit) {
super () ;
this.name = name;
this.deposit = deposit; }
public boolean withdraw (float amount) {
if (deposit > amount) { deposit —-= amount; return true;}
else { return false; }
}
public String getName () { return name; }
public void setName (String name) { this.name = name; }
public float getDeposit () { return this.deposit; }

}
public aspect AccountNameCheck {

private boolean CheckAccountName (String name) {
return (name == "Danisio");}

pointcut WithDraw (BankAccount account, float amount):
target (account) && args (amount) &&
execution (boolean withdraw (float));

boolean around (BankAccount account, f£float amount) :
WithDraw (account, amount) {
if (CheckAccountName (account.getName()) ) {
return proceed(account, amount); }
else { return false; }

Advice '—
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The code in Listing 2.1 defines a class BankAccount with a method
which can perform withdrawal if the deposit is positive; with the aspect
we want to add a check to test if the Name of that account is permitted to
perform withdrawals. The aspect matches the BankAccount type and
its subclasses surrounding the execution of the join point with some extra
code (the original code is executed when the proceed instruction is fired).
Marching the execution instead of the call makes a difference in the ad-
vice step, in this example the classs method is the one woven, while in a
call pointcut all the calls to the method are the woven. Aspect] pointcuts
are quite expressive and we can also express some more detailed aspect.
For example we can formulate the aspect to be matched when the deposit
field is changed inside the code of the BankAccount method.

This is very helpful when dealing with types and their subtypes (in
the case of a virtual implementation of the withdrawal method) as can
occur in the case where the method has been overridden. The with-
incode () pointcut uses the lexical structure of the program and so the
infrastructure needs to be able to weave the source code.

Aspect] can perform the weaving process at load time for dynamic
aspects and so can involve the evaluation of expression with values at
run-time. The problem comes with introductions (in Aspect] introduc-
tions are called inter type declarations): they are static aspects of a type
in Aspect] so the weaving is performed at compile time therefore we
must be careful with the aspects definition if we want to be executable at
run-time.

A pointcut is a program element that picks out join points and exposes
data from the execution context of those join points. Pointcuts are used
primarily by advice. They can be composed with boolean operators to
build up other pointcuts. The primitive pointcuts and combinators pro-
vided by the language are:

o call(MethodPattern) : Picks out each method call join point whose
signature matches MethodPattern.

o execution(MethodPattern) : Picks out each method execution join
point whose signature matches MethodPattern.
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o get(FieldPattern) : Picks out each field reference join point whose
signature matches FieldPattern®*.

o set(FieldPattern) : Picks out each field set join point whose signa-
ture matches FieldPattern®.

o call(ConstructorPattern) : Picks out each constructor call join point
whose signature matches ConstructorPattern.

e execution(ConstructorPattern) : Picks out each constructor execu-
tion join point whose signature matches ConstructorPattern.

e initialization(ConstructorPattern) : Picks out each object initiali-
sation join point whose signature matches ConstructorPattern.

o preinitialization(ConstructorPattern) : Picks out each object pre-
initialisation join point whose signature matches ConstructorPat-
tern.

o staticinitialization(TypePattern) : Picks out each static initialiser
execution join point whose signature matches TypePattern.

o handler(TypePattern) : Picks out each exception handler join point
whose signature matches TypePattern.

¢ adviceexecution() : Picks out all advice execution join points.

o within(TypePattern) : Picks out each join point where the execut-
ing code is defined in a type matched by TypePattern.

o withincode(MethodPattern) : Picks out each join point where the
executing code is defined in a method whose signature matches
MethodPattern.

4Note that references to constant fields (static final fields bound to a constant string
object or primitive value) are not join points, since Java requires them to be inlined.

5Note that the initialisations of constant fields (static final fields where the initialiser
is a constant string object or primitive value) are not join points, since Java requires their
references to be inlined.

31



withincode(ConstructorPattern) : Picks out each join point where

the executing code is defined in a constructor whose signature matches

ConstructorPattern.

cflow(Pointcut) : Picks out each join point in the control flow of
any join point P picked out by Pointcut, including P itself.

cflowbelow(Pointcut) : Picks out each join point in the control flow
of any join point P picked out by Pointcut, but not P itself.

this(Type or Id) : Picks out each join point where the currently exe-
cuting object (the object bound to this) is an instance of Type, or of
the type of the identifier Id (which must be bound in the enclosing
advice or pointcut definition). Will not match any join points from
static contexts.

target(Type or Id) : Picks out each join point where the target object
(the object on which a call or field operation is applied to) is an
instance of Type, or of the type of the identifier Id (which must
be bound in the enclosing advice or pointcut definition). Will not
match any calls, gets, or sets of static members.

args(Type or 1d, ...) : Picks out each join point where the arguments
are instances of the appropriate type (or type of the identifier if
using that form). A null argument is matched iff the static type of
the argument (declared parameter type or field type) is the same
as, or a subtype of, the specified args type.

Pointcutld(TypePattern or Id, ...) : Picks out each join point that
is picked out by the user-defined pointcut designator named by
Pointcutld.

if(BooleanExpression) : Picks out each join point where the boo-
lean expression evaluates to true. The boolean expression used can
only access static members, parameters exposed by the enclosing
pointcut or advice, and thisJoinPoint forms. In particular, it cannot
call non-static methods on the aspect or use return values or excep-
tions exposed by after advice.
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o | Pointcut : Picks out each join point that is not picked out by
Pointcut.

o Pointcut0 && Pointcutl : Picks out each join points that is picked
out by both Pointcut0 and Pointcutl.

o Pointcut0 ||Pointcutl : Picks out each join point that is picked out
by either Pointcut0 or Pointcut1.

o (Pointcut ) : Picks out each join points picked out by Pointcut.
Aspect] supports the following advices:

e before

o after

e around

The after advice has three variations:

o after

o after returning

e after throwing

While before advice is relatively unproblematic, there can be three in-

terpretations of after advice: After the execution of a join point completes
normally, after it throws an exception, or after it performs either. Aspect]
allows after advice for any of these situations, see Listing 2.2.
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Listing 2.2: After advice

aspect A {

pointcut publicCall(): call (public Object x(..));

after () returning (Object o): publicCall() {
System.out.println ("Returned normally with " + o);

}

after () throwing (Exception e): publicCall() {
System.out.println("Threw an exception: " + e);

}

after(): publicCall () {
System.out.println("Returned or threw an Exception");

}

33




RN Ul W N =

We now proceed to show the application and limitations in the ren-
dering scenario described in Appendix C. Let us assume that the applica-
tion needs to build PVS from the SceneGraph before rendering the visible
objects. We showed that the basic structure for SceneGraph and PVSs is
the collection. But we would be able to specify which collection imple-
mentation we would like to use in the software we are designing, thus
we need to advice that our PVS is built using an internal container with
a specific implementation.

Before defining the internal container we are able to describe what
happens when we add an element to the PVS. We can use an abstract as-
pect to introduce the fact that we want to weave the PVS class inserting a
field that is the internal collection implementation (lets say we are using
a sorted list actually) and then we append to the constructor the code
to initialise the collection. Introductions in Aspect] are implemented in
a way that allows the definition of fields related to the aspect or to the
target, thus means that we can add fields and methods (including con-
structors) to the target object. The following example defines the collec-
tion type but because we need to specify the body of the Add method we
need to give the code inside the aspect definition.

Listing 2.3: Sorted List Collection

aspect SortedListCollection ({
private interface ICollection {}
declare parents: (PVS || SceneGraph) implements ICollection;

private SortedList ISortedListCollection.items;
public void ISortedListCollection.Add(element obj)
{ items.Add(obj); }

Because we are performing an introduction this aspect needs to be woven
before the compiler execution. There is no way to modify a type struc-
ture at run-time and thus is clear that we cannot use run time values to
drive the weaving process. If we introduced an abstract method in the
previous aspect we could then extend the aspect with one which carries
the final implementation of the Add method with the right comparison
and sorting strategy.
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Another issue arises if we define what to be done with the Add method
of the sorted list when it is contained as field of PVS, in this case we need
to be sure of the order used to weave aspects in the target types. For
example we would like to use the around advice for the pointcut which
will exists after the SortedListCollection aspect has been woven
on the PVS type.

What is still missing in the approach is that we always assume that
the original type system is made of almost empty classes and that we
have a basic set of advices defined to implement the base implementa-
tion of the code. In such a scenario the final user will have to deal with
the source code of the aspect library to remove what is no longer needed
before starting the introduction of both new aspect and specialised ver-
sions for already existing classes.

Another way to achieve our goal could be to combine the AOP tech-
nique with a skeleton design pattern () EGH]JV94) where the purpose of
a lot of new methods introduced is to behave like some kind of barrier or
code block annotation. In the example of the ComputePVS we expect to
be presented with code like the following;:

Listing 2.4: ComputePVS

Pair<PVS, PVS> ComputePVS (camera c) {
PVS transparent = new PVS (), solid = new PVS();
foreach (mesh in CurrentScene)
if (IsVisible (mesh,c))
if (mesh.Alpha)
FillTheTransparentPVS (transparent, mesh);
else
FillTheSo0lidPVS(solid, mesh);
return new Pair<PVS, PVS>(solid, transparent);
}

We can target the execution of FillTheTransparentPVS and Fill-
TheSo0lidPVS methods with an aspect describing the technique we wish
to use. We cannot reach the full goal we discussed in the introduction,
even if the Fil1TheTransparentPVS is an empty method we are per-
forming the if test for every object in the SceneGraph. A more accurate
version of the skeleton would lead us to a code like the following:

Listing 2.5: ComputePVS variant
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Pair<PVS, PVS> ComputePVS (camera c) {
PVS transparent = new PVS (), solid = new PVS();
foreach (mesh in CurrentScene)
if (IsVisible (mesh,c))
FillThePVSs (solid, transparent, mesh);
return new Pair<PVS, PVS>(solid, transparent);

}

We can describe the F111ThePVSs methods with an aspect which intro-
duce the right skeleton and then other aspects to deal with the execution
of FillTheTransparentPVS and FillTheSolidPVS within the code
of the F111ThePVSs methods. Taking this path will lead to very com-
plex and potentially unreadable code, class design will be misleading
as we are now introducing methods to describe the algorithm of other
methods or a sub section of another algorithm. This can also transform
crosscut aspects in no more cross cutting characteristic of a program and
thus deceive the AOP definitions and goals.

2.3.2 Aspect NET

In Aspect.NET the reflection support provided by .NET is used exten-
sively: custom attributes (annotations that are available at run-time) are
used to implement an AOP system targeting the .NET platform. A lan-
guage called Aspect. NET ML is used to describe aspects, and it is subse-
quently transformed into a C# class by a preprocessor, then the C# code
is compiled and used for the weaving process. The class generated by
the preprocessor extends the Aspect class. Let us consider the following
example:

%$instead \%call xBankAccount.withdraw (float) && args(..)
\%action
public static float WithdrawWrapper (float amount)
{
BankAccount acc = (BankAccount)TargetObject;
if (isLicenceValid (TargetMemberInfo.Name))
{
return acc.withdraw (amount) ;
}
Console.WriteLine ("Withdraw operation is not allowed");
return acc.Balance;
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In this example we are defining a join point by pattern match over the
intermediate language. Every call to the withdraw method in the byte-
code is replaced by the static method WithdrawWrapper. The join point
model of Aspect.NET allows matching only on the semantic elements
available in the bytecode.

Modules are translated as static public methods of the Aspect while
the rules are implemented using a custom attribute AspectAction so that
they can be manipulated by the reflection and metadata facilities of the
.NET run-time. The process of aspect weaving consists of two phases:

e scanning (finding join points within the target application)
o weaving the calls of the aspect actions into the join points found.

The weaving step in Aspect.NET is performed at NET assembly (MSIL
code + metadata) level. The resulting assembly can be further processed
by standard .NET tool such as ildasm, or debugger.

Since Aspect.NET weaving is performed on the bytecode it is possi-
ble to constrain a join point pattern to be restricted within boundaries
like a method implementation, in this way Aspect. NET.ML can control
the scan phase. Due to the interactive nature of the process the approach
followed by Aspect.NET is is integrated in Microsoft Visual Studio and
the developer interacts with the GUI to control the aspect weaving. The
current implementation works through static methods of the Aspect de-
rived type, there is some restriction when using the %instead rule should
be targeting a static method of the target object. Another point is the fact
that the aspect can only access public fields of the targets, because the
weaving is performed after compilation even access to internal members
will be prevented.

It is important to notice that in the bank account example that the As-
pect project needs to know about the BanckAccount class to perform
the cast and proceed with the invocation of the withdraw method and
access the Balance field. We can solve the invocation using the reflection
object TargetMemberInfo but how can we be sure that a class match-
ing the pointcut has a Balance field. Using an introduction pointcut will
not solve this issue because it will introduce a static field shared by all the
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woven classes. We can solve this using reflection again but in that case
we will complicate the Aspect modelling too much for the programmer.

The approach of weaving bytecode can be performed at load time,
this would allow us to incrementally generate new specialised types and
use them at run-time. The current implementation of the system, how-
ever, does not allow such a form of weaving, it is not a conceptual limit
but a technological one. The advice model provided by Aspect.NET al-
lows us either to replace method calls or insert before (or after) a method
call the invocation of the woven aspect.

2.3.3 Spring.NET

Spring is a framework for Java (Spra) and .NET (sprb) enterprise appli-
cation development. The framework provides the facilities needed for
AOQOP oriented development. There is no custom language for aspect and
point-pointcutcuts definition, the framework uses interfaces and classes
to implement AOP concepts. The weaving phase is performed at run
time. Using a technique similar to object activation with the remoting
framework proxies are emitted to intercept calls and weave advices in the
appropriate pointcut. The interaction between the proxy and the target
object is modelled within the containment relationship they are (proxy
can be thought implementing a classic Decorator pattern). Spring.NET’s
pointcut model enables pointcut reuse independent of advice types. It is
possible to target different advice using the same pointcut.

The Spring.Aop.IPointcut interface is the central interface, used
to target advices to particular types and methods. Basic building blocks
are:

public interface IPointcut

{

ITypeFilter TypeFilter { get; }
IMethodMatcher MethodMatcher { get; }
}

public interface ITypeFilter
{

bool Matches (Type type);

}
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public interface IMethodMatcher

{

bool Isrun-time { get; }

bool Matches (MethodInfo method, Type targetType);

bool Matches (MethodInfo method, Type targetType, object[] args);
}

pointcuts can be specified by matching an attribute type that is associated
with a method. Advice associated with this pointcut can then read the
metadata associated with the attribute to configure itself. The class At -
tributeMatchMethodPointcut provides this functionality. The fol-
lowing sample will match all methods that have the attribute CacheAt -
tribute.

<object
id="cachePointcut"
type="Spring.Aop.Support.AttributeMatchMethodPointcut,
Spring.Aop">
<property
name="Attribute"
value="Spring.Attributes.CacheAttribute, Spring.Core"/>
</object>

This can be used with a DefaultPointcutAdvisor as shown be-
low

<object
id="cacheAspect"
type="Spring.Aop.Support.DefaultPointcutAdvisor,
Spring.Aop">
<property name="Pointcut">
<object
type="Spring.Aop.Support.AttributeMatchMethodPointcut,
Spring.Aop">
<property

name="Attribute"
value="Spring.Attributes.CacheAttribute, Spring.Core"/>
</object>
</property>
<property name="Advice" ref="aspNetCacheAdvice"/>
</object>

where aspNetCacheAdvice is an implementation of an IMethodIn-
terceptor that caches method return values. As a convenience the
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class AttributeMatchMethodPointcutAdvisor is provided to de-
fine an attribute based Advisor as a somewhat shorter alternative to us-
ing the generic DefaultPointcutAdvisor. An example is shown be-
low.

<object id="AspNetCacheAdvice"
type="Spring.RAop.Support.AttributeMatchMethodPointcutAdvisor,
Spring.Aop">
<property name="advice">
<object type="Aspect.AspNetCacheAdvice, Aspect"/>
</property>
<property name="attribute"
value="Framework.AspNetCacheAttribute, Framework" />
</object>

Spring NET advices can be shared across all advised objects, or can be
unique to each advised object. This corresponds to “per class” or "per
instance” advice. Per-class advice is used most often. It is appropriate
for generic advice such as transaction advisors. These do not depend on
the state of the proxied object or add new state; they merely act on the
method and arguments. Per-instance advice is appropriate for introduc-
tions, to support mixins. In this case, the advice adds state to the proxied
object. It is possible to use a mix of shared and per-instance advice in
the same AOP proxy. The most fundamental advice type in Spring.NET
is interception around advice. Spring.NET is compliant with the AOP
Alliance interface for around advice using method interception. Around
advice is implemented using the following interface:

public interface IMethodInterceptor : IInterceptor({
object Invoke (IMethodInvocation invocation);

}

The IMethodInvocation argument to the Invoke method exposes the
method being invoked, the target join point, the AOP proxy, and the ar-
guments to the method. The Invoke method should return the invoca-
tion’s result: the return value of the join point. A simple IMethodIn-
terceptor implementation looks as follows:

1| public class DebuglInterceptor : IMethodInterceptor {
2| public object Invoke (IMethodInvocation invocation) {

3

Console.WritelLine ("Before: invocation=[{0}]", invocation);
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object rval = invocation.Proceed();
Console.WriteLine ("Invocation returned");
return rval;

}

}

Note the call to the IMethodInvocation’s Proceed method. This pro-
ceeds down the interceptor chain towards the join point. Most intercep-
tors will invoke this method, and return its return value. However, an
IMethodInterceptor, like any around advice, can return a different
value or throw an exception rather than invoke the Proceed method.

Thanks to the per-instance advice, introductions, and the Proceed
method the Spring. NET framework would partially solve the issues in
the BankAccount case shown in the Section 2.3.2. To solve it completely
we need to know that the target of the interceptor is the same of the
introduction for the Balance field (or more probably a property), we need
some advanced form of the C++ forward declaration. Supported advices
are:

o Before advice: Advice that executes before a join point, but which
does not have the ability to prevent execution flow proceeding to
the join point (unless it throws an exception).

o After returning advice: Advice to be executed after a join point
completes normally: for example, if a method returns without throw-
ing an exception.

o After throwing advice: Advice to be executed if a method exits by
throwing an exception.

o After (finally) advice: Advice to be executed regardless of the means
by which a join point exits (normal or exceptional return).

e Around advice: Advice that surrounds a join point such as a method
invocation. This is the most powerful kind of advice. Around ad-
vice can perform custom behaviour before and after the method
invocation. It is also responsible for choosing whether to proceed
to the join point or to shortcut the advised method execution by
returning its own return value or throwing an exception.
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Spring.NET allows you to add new methods and properties to an ad-
vised class. This would typically be done when the functionality you
wish to add is a crosscutting concern and want to introduce this func-
tionality as a change to the static structure of the class hierarchy. For
example, you may want to cast objects to the introduction interface in
your code. Introductions are also a means to emulate multiple inheri-
tance. Introduction advice is defined by using a normal interface decla-
ration that implements the tag interface IAdvice. Introduction advice
is not associated with a pointcut, since it applies at the class and not the
method level. As such, introductions use their own subclass of the inter-
face IAdvisor, namely IIntroductionAdvisor, to specify the types
that the introduction can be applied to.

public interface IIntroductionAdvisor : IAdvisor
{

ITypeFilter TypeFilter { get; }

Type[] Interfaces { get; }

void ValidateInterfaces();

}

The TypeFilter property returns the filter that determines which tar-
get classes this introduction should apply to. The Interfaces property
returns the interfaces introduced by this advisor. The ValidateInter-
faces () method is used internally to see if the introduced interfaces
can be implemented by the introduction advice.

Spring.NET provides a default implementation of this interface (the
DefaultIntroductionAdvisor class) that should be sufficient for the
majority of situations when you need to use introductions. The most sim-
ple implementation of an introduction advisor is a subclass that simply
passes a new instance to the base constructor. Passing a new instance is
important since we want a new instance of the mixin classed used for
each advised object.

public class AuditableAdvisor : DefaultIntroductionAdvisor
{
public AuditableAdvisor () : base(new AuditableMixin()) { }
}

Other constructors let you explicitly specify the interfaces of the class
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that will be introduced. We can apply this advisor programmatically,
using the IAdvised.AddIntroduction (), method, or within XML
configuration files using the IntroductionNames property on the type
ProxyFactoryObject, which will be discussed later.

Unlike the AOP implementation in the Spring Framework for Java,
introduction advice in Spring.NET is not implemented as a specialised
type of interception advice. The advantage of this approach is that intro-
ductions are not kept in the interceptor chain, which allows some signifi-
cant performance optimisations. When a method is called that has no in-
terceptors, a direct call is used instead of reflection regardless of whether
target method is on the target object itself or one of the introductions.
This means that introduced methods perform the same as target object
methods, which could be useful for adding introductions to fine grained
objects.

2.3.4 Blueprint

The Blueprint (CP07b; CP07a; Pin07) aspect-oriented language permits
the selection of the join points of interest by describing their supposed
location in the application through a UML activity diagram representing
patterns on the application behaviour, called join point blueprint. These
join point blueprints are not subsets of the application design informa-
tion. They do not describe the application behaviour, rather they de-
scribe the desired properties and behaviours we are looking for in the
application. The Blueprint framework foresees a matching and unifica-
tion phase that permits to perform queries such as ”print the value of a
variable used in a loop test condition and modified in the loop body”.
This kind of query is expressed describing the context we would like to
get and the position where we would like to raise effects.

To carry out this kind of query the description must be compared
with the source code of the base-program during the weaving process.
There is no need to use position qualifiers such as before and after advice
to indicate where to insert the concern inside the base code. Because we
describe the context we can either locate the join points exactly where we
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want to insert the new code or to highlight the portion of behaviour we
want to replace.

The Blueprint pointcut can address even a single statement, which is
already a significant change in the joint point model (JPM) if compared to
most of the AOP implementations. More important is that the blueprint
name comes from the ability to express a join point as a template to be
matched in the application code. A blueprint (which is the name of a
blueprint pointcut) is modelled as UML Activity Diagram, this can then
model a joint point as a behaviour we want to find inside an application
rather than a mere method or constructor call.

The Blueprint weaving process consists of the following phases:

o Pre-weaving phase: the abstraction level of the join point blueprint
and of the Java bytecode is equalised

e Matching phase: the matching is performed by traversing the mod-
el/graph of the blueprint and the model/graph of the program in
parallel

o Advice weaving phase: the advice code is inserted at the captured
join points

Pre-Weaving Phase. The base program and the join point blueprints
are at different levels of abstraction. To fill this gap and allow the weav-
ing, it is necessary to build a common representation for the base pro-
gram and the join point blueprints. The abstract syntax tree (AST) per-
fectly fits the problem; both source code (through its control flow graph)
and join point blueprints can be represented by AST-like descriptions.

Matching Phase. After obtaining the same level of abstraction for
source code and blueprints, the next step is to find all matches among
each Blueprint_Graphs, generated in the previous phase and the applica-
tion AST.

Advice Weaving Phase. This is the last step of the weaving phase.
During this step the advice code is inserted into the application. This fi-
nal step starts only when the previous step obtains a sure matching for
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the considered blueprint. To develop this step, the framework uses all in-
formation about join points and unifications stored during the matching
phase and the advice source code.

2.3.5 AOX approach

In the AOX programming environment, a software system is modelled as
a collection of features. A feature is an entity that encapsulates a specific
concern of the system. It is implemented by one or more elements called
artefacts. The artefacts are organised in a tree structure via an element
called a group. When features are woven, a group and an artefact are
mapped to a file and a directory in a file system, respectively.

A feature can modularise concerns that crosscut the file boundaries.
This is done by the well-known advice-pointcut join point mechanism
used in conventional AOP languages. In the model presented in (PHO09),
an artefact consists of a text, join points and pieces of advice. Here, a
join point represents a specific location (offset) in the text and a piece of
advice represents a text fragment that can be copied to the join points. A
pointcut is defined as a named group of join points. These three elements
are associated as shown in Figure 2.

Figure 2: Object diagram shows relationships among join points, pointcuts
and pieces of advice
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In Figure 2, six join points scattered in three artefacts and two features
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are captured by three pointcuts. Among them, one pointcut is advised by
two pieces of advice defined in the third feature. Features interact with
each other only via crosscutting interfaces, each of which consists of re-
lated pointcuts. This idea is inspired by the idea of XPI (GSS*06). A fea-
ture can implement a crosscutting interface by declaring join points and
associating them with the pointcuts in the interface. Similarly, the inter-
face can be used by creating pieces of advice that advise some pointcuts
in the interface.

The features, artefacts and interfaces are all represented in XML files
stored in a hierarchy of directories in a file system that we call a reposi-
tory. Specifically, inside an XML file for an artefact, a join point is repre-
sented by a <joinpoint> tag. The location of the join point is implicitly
determined to be the point where the tag appears in the text. Similarly,
<advice></advice> tag denotes a piece of advice. Any text other than
the XML tags is considered source code and is not interpreted by AOX.
Their approach has the following design goals:

o Language independence: An operating system commonly consists
of various types of artefacts written in different programming lan-
guages. Core functionality are usually written in C or C++, while
machine-level functionality, such as context switching, initialisa-
tion and interrupt handling are written in assembly languages. In
addition, makefiles are used to define software build processes,
and linker scripts are employed to specify the memory layout of the
target hardware. In order to modularise concerns that are scattered
on such artefacts, we need to make the aspect model independent
of languages used.

o Fine-grained join points: Due to performance constraints, operat-
ing systems often require highly optimised code. As a result, func-
tions and data structures are deeply intertwined beyond module
boundaries. For example, a function that creates a new process usu-
ally contains code fragments for seemingly unrelated features, such
as context management, synchronisation, signal, file and memory
management. An interrupt handler array may contain elements for
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different devices. In order to enable such optimisation, our aspect
model needs to support fine-grained join points.

o Advice ordering and replacement: Programmers have to be able
to decide the advising order of pieces of advice if a single pointcut
is advised by multiple pieces of advice (NBAO5). This is particu-
larly important since the execution order of program statements,
the placement order of fields in a structure and the order of ele-
ments in an array have important meanings in operating systems
design. Along with the advice ordering, developers have to be able
to replace existing pieces of advice with new ones. This is needed
when developers want to design default pieces of advice that can
be overridden by other pieces of advice. This effectively reduces
the size of an operating system since replaced pieces of advice are
removed.

Given these design requirements, their approach proposes the follow-
ing solutions.

e XML annotations: The AOP language, an artefact is annotated by
predefined XML tags. As the text that surrounds the tags is not
parsed or interpreted, our model can be applied to artefacts writ-
ten in any programming language. Also, this model achieves fine
grained join points since the tag for a join point can be declared
anywhere in an artefact without restriction. We are well aware that
our model may be unsafe since it does not prevent programmers
from declaring join points in inappropriate places or writing pieces
of advice with illegal instructions. To overcome this drawback, the
programming programming environment automatically performs
weaving and compilation as a background task and immediately
notifies programmers of errors caused by such unsafe join points
and pieces of advice.

o Timestamp-based advice arrangement: In order to support the ad-
vice ordering and replacement, they devise the time stamp based
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advice arrangement mechanism, in which ordering and replace-
ment relationships among pieces of advice are represented in a
two-level list structure. We store this structure in the most recently
modified piece of advice to ensure that the ordering and replace-
ment information is always up-to-date. To determine the most re-
cently modified one, we associate each piece of advice with a time
stamp value that is updated when its ordering or replacement rela-
tionship has been changed.

Using this technique they implemented an embedded operative sys-
tem , the approach and toolset they developed requires access to source
code representation of every artefact used in the composition. The use of
XML to implement the AOP language and the choice to be cross language
while acting on source code level makes the system non homogeneous
and not so easy to integrate in off the shelf pipelines. Similar approach is
used in Microsoft Windows Embedded (mse) where the features weav-
ing process was driven by a macro based technique.

2.3.6 AOP at Virtual Machine Level

The article (SHH09) shows an approach for AOP based on extensions to
VM. The machine model used to implement several programming lan-
guage approaches to modularising crosscutting concerns has been intro-
duced in (aop07). Core features of the model pertain to the representa-
tion of application entities, and that of join points. The latter are regarded
as loci of late binding, and hence of virtual functionality dispatch, where
dispatch is organised along multiple dimensions. Each dimension is one
possible way to choose a particular binding of a piece of functionality
to a join point, e. g., the current object, the target of a method call, the
invoked method, the current thread, etc.

Objects are, using a prototype-based object-oriented environment, rep-
resented as "seas of fragments” (Piu05) : each object is visible to others
only in the form of a proxy. Messages sent to an object are received by
its proxy and delegated to the actual object. Classes are represented like-
wise: each class is a pair of a proxy and an object representing the actual
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class. Each object references its class by delegating to the class’s proxy.

The granularity of the supported join point model is that of mes-
sage receptions. Member field access is also mapped to messages. A
join point’s nature as a locus of late binding is realised by inserting ad-
ditional proxy objects in between the proxy and the actual object, or in
between the class object’s proxy and the actual class-representing object.
That way, a message passed on along the delegation chain can be inter-
preted differently by various proxies understanding it, establishing late
binding of said message to functionality.

Weaving—both static and dynamic—is realised by allowing for the
insertion and removal of proxy objects into and from delegation chains.
The model is able to represent control flow dependent advice and dy-
namic introductions in very natural and simple ways (aop07). Along
with the VM and JIT, a set of programming languages has been mod-
elled to be supported, we are not describing them here but more details
can be seen in (SHH09).

2.4 Conclusion on Metaprogramming

While the AOP metaphor is very interesting to us we found that in gen-
eral it is prone to be implemented in a way that prevents general multi
staging. In general a weaver takes aspect definitions and programs as in-
put and produces a new program as output, the new output can be used
again in the weaving process as input to achieve multi staging but it is
quite to include aspects as output as well. Most of the AOP implemen-
tations are non homogeneous and this complicates the idea of bringing
aspect generation to the same level as the program modification through
the weaver. The biggest limitation we found is that even if the AOP im-
plementation allows run-time weaving the set of aspects must be avail-
able, there is no way to “extract” aspects from existing code and use them
in the weaving process, this makes most of the AOP techniques unfit in
multistage scenarios.

Most of the frameworks we have introduced in this chapter uses a
different language to express either aspects or joint point (as 2.3.6, 2.3.5,
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2.3.2, and 2.3.1), this choice prevents us from attaining an unbound mul-
tistage approach even where multistage can be achieved. The most con-
straining characteristic with respect to the flexibility of the approach is
that almost all the models to express join points are “punctual” (from
there the pointcut term for the match) and limited to method calls. Such
a limitation in the model will force programmers to work in a stressed
skeleton design pattern in order to facilitate the application of advice in
almost any point of their code. The majority of methods will therefore
be short and made mainly of calls to other small methods, this makes
the code harder to maintain and the compile time optimisation will ex-
tremely limited. Another possible effect of an exaggerated skeleton pat-
tern usage is related to parameter passing when they are “values” and
thus copies of them will be involved.

Implementations such as 2.3.3, even if homogeneous and with run
time weaving, can bring some serious performance problem as they typ-
ically rely on proxy objects. In .NET proxy objects (and the dynamic
type) perform methods invocation through reflection which is the most
expensive call which can be performed at run-time.

Run-time approaches are far more interesting than those requiring
the availability of source code. In VM scenarios working at bytecode
level means that we have been able to load the elements before trans-
forming them thus leverage the verification step of VM so that a lot of
possible bugs due to errors in the new generated code can be detected
and avoided.

The limitation of AOP join point model being “punctual” and able
to intercept calls to methods is defiled by the Blue Print approach; it is
different as it allows selection of trees of calls, but still it is limited to
static manipulations.

2.5 The CodeBricks Approach

CodeBricks (ACKO03) is a framework for metaprogramming that provides
a different perspective from AOP while maintaining some of the basic
concepts.
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The framework relies on the fact that programs compiled for an inter-
mediate language, such as the JVM bytecode or the NET Common In-
termediate Language (CIL), retain enough information about high-level
types that a correspondence between high-level and low-level manipu-
lations can be retained. Consequently type checking and verification can
be performed, guaranteeing that the code generated by the framework is
well typed (Cis03). When an intermediate language common to several
languages is used, as in our current implementation based on CIL, code
fragments even from different languages can be combined.

Differently from other approaches to metaprogramming which oper-
ate at the source level and require a language processor to be available at
run time to run the resulting program, our approach operates directly on
pre-compiled executable versions of programs. A similar technique of
combining pre-compiled binary fragments is used in Tempo templates
(CE00), which are filled in at run time with constant values.

Code manipulation primitives are provided through a library rather
than as a language extension, allowing cross language code generation as
well as a more robust and maintainable approach than language exten-
sions. Programs can be specialised more than once, for instance as more
information becomes available to the program. Since no language pro-
cessor is involved, specialisation can happen at different stages through
the lifetime of a program, even beyond the program build: for instance at
installation time, at load time, or on the client side in a multi-tier applica-
tion. If we can realistically assume that each stage is capable of running
code for the same VM, the framework can be used as support for real
multistage programming.

The framework has been implemented as a class library, called Code-
Bricks, on the Microsoft. NET platform (.ne). Code generation is fast
since no compiler invocation is involved and produces efficient code.
The benefits of the approach can be summarised as follows:

o the generated code is expressed and manipulated in a high-level
language

o efficient binary code is produced and code generation overhead is

51



minimal

e no high-level language processor is required to run the generated
code

e the solution is not tied to a programming language

o generated code can be involved in further code generation and can
itself generate code, providing full multi stage capabilities

CodeBricks extends the type system introducing the Brick type which
represents a set of type safe and stack safe il instructions. This type can
be extracted from method objects and can be used to create new meth-
ods. The metaphor of code manipulation by means of brick assembling
is extremely powerful as it can be combined with the reflection and code
generation capabilities of the .NET platform to implement other meta-
programming techniques (such partial evaluation, Aspect Oriented Pro-
gramming, Feature Oriented Programming, etc.) keeping homogeneity
of languages and adding features like unbound multi staging and run
time execution support. We found the CodeBricks approach the key sup-
port to realise our framework presented in Chapter 3
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Chapter 3

Run-time Code
Manipulation

In our work we will study how programs can change their own struc-
ture, possibly at run-time, to evolve their behaviour for performance or
adaptation reasons. Both aspects are crucial to the gaming application
domain where these techniques may lead to significant improvements to
the state of the art. In this chapter we focus on the meta-programming
tools we will use in the rest of our work. Part of these have been devel-
oped, both formally and technically, in the context of this work and are to
be considered as one of the results. In particular the definition of a query
model for IL programs based on the same ideas of the CodeBricks work
allows to have a complete algebra for manipulating programs expressed
in intermediate form, a tool that can be implemented efficiently and it is
more expressive than AOP tools (in particular because it is possible to
match code regions rather than just join points).

According to the taxonomy presented in (She(1) the transformation
model we propose in this thesis is homogeneous, indeed the main design
trait of our proposal is to have the object-program and the meta-program
sharing the same language. A design requirement behind our work has
been to avoid introducing a new programming language: although use-
ful for theoretical research, new programming languages, or custom vari-
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ants of existing ones, are rarely adopted in the real world and it is difficult
to have a measure of results in application domains such as gaming. We
already made a bet that virtual-machines based programming environ-
ment will arise as the dominant paradigm in a domain actually domi-
nated by C++. Several indicators (for instance Microsoft XNA! (Gou08;
KHO09) for programming XBox, PC and Zune platforms) let us believe
that this will be the natural consequence of the current trends, thus more
abstract systems or languages would have been harder to validate. We
followed a number of design principles in defining and realising the code
manipulation support:

e homogeneous metaprogramming approach (transformation of the
program in its intermediate form)

e no assumption about programming languages other than the inter-
mediate language

o type sound and stack safe transformation only

e code generation only through composition of already existing code
fragments

e program transformations can be performed at run-time
o transformations must be available at program level

e time and space efficiency

o possibility to express multistage computations

e no instrumentation is needed to use the transformation model

We borrowed several concepts from Aspect Oriented Programming,
though the actual systems are less expressive than ours, in particular be-
cause AOP weaving is often performed with the program in its source
form (there are also bytecode based implementations), and however the

IMicrosoft XNA Game Studio available at http://msdn.microsoft.com/en-us/
xna/default.aspx
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program manipulation operations are point wise. Nonetheless, the AOP
weaving process has been a major source of inspiration for our rewrite
system. We felt the need for a new rewriting system because even sys-
tems such as (sprb) feature homogeneous implementation of AOP, they
relay heavily reflection comes to take the execution cost at its maximum.
As discussed in (ACKO03) reflection is the most expensive call methodol-
ogy inside .NET framework and thus largely avoided in any time sensi-
tive application, so we decided that the execution cost of our approach
should avoid to bring any heavy weight to target applications. Another
idea we took from AOP is the pointcut and jointpoint but we want those to
be used in both extraction and injection, in our idea only valid code snip-
pet can be used for injection and so need to be able to select portions of
code (adequately expanded), those needs lead us to think of approaches
like (CP07a; CP07b).

3.1 Code Fragment Selection

Selection of byte code snippet for later manipulation is a task that must
be executed carefully in order to produce a transformation that will lead
to a valid result. Intercepting and replacing calls is a very basic opera-
tion and to be properly performed it is important to expand the selection
to the minimum portion of bytecode that will lead to a safe stack status.
Starting with a method call as target will be a good scenario to under-
stand and to show that any arbitrary portion of byte code can be the
target of code manipulation as long as we can compute the signature of
the snippet.

3.1.1 Calls as Placeholder

Using methods calls as a placeholder is the starting point for our tech-
nique. Choosing method calls instead of mere instructions has been
driven by the fact that methods in a framework models a DSL and thus
are far more meaningful than an add operation. In (ACC04) we used that
technique to generate code for Lego™Mindstorm VM using a .NET as-
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sembly as a source. Intercepting a method call inside the byte code can
be performed by search for a set of specific instructions provided by the
CLR as:

e Call used to invoke static method calls, instance method calls,
and virtual method calls with a resolution scope limited to the type
used for the invocation

e Calli used to perform native calls

e Callvirt used to perform instance method calls, late-bound method

calls

In (ACC04) we used types to model class of Lego"™hardware and meth-
ods were used to express hardware specific functions like turning mo-
tors on or off, reading from specific type of sensors, configuring sensors
and concurrent tasks. All the basic operations of the Lego™VM can be
mapped 1:1 with operators of any VM; operations like add, sub, div and
similar were of no particular interest.

Intercepting a call does not mean to be able to perform any valid op-
eration with that, we must be able to capture all the context needed by
the call such as parameters and return values®.

The first important difference between static and instance method call
is the first argument to be loaded on the stack, in instance calls it is re-
quired to pass the instance’s reference to be used for the invocation and
then all the arguments from 1 to N. When the call is executed on the this
reference the IL block generated will always be in a pattern like the one
shown in 3.1.

Listing 3.1: IL Pattern for an instance method call

ldarg.o

callvirt ...
// something could have been pushed on the stack

2In the CLR a method execution will be responsible to push at most one element on the
stack.
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In [a]C# (CCCO05) static method calls with a void (void) signature have
been used to annotate code fragment. Using method calls as placehold-
ers is really safe since the C# compiler will not be removing static calls
to methods defined in another assembly and also the calls will not be re-
ordered since they can cause side effects unknown to the compiler. On
such basis we have been able to design and implement [a]C# using calls
to mimic the usage of custom attributes to mark portion of code inside a
method. In [a]C# a code snippet like:

public void SomeMethod ()
{

[AnnotationA]

{
}
[AnnotationB]

{

}

would have been realised by the following C# block:

[AnnotationA (1), AnnotationB(2)]
public void SomeMethod ()
{

Annotation.Begin (1) ;

Annotation.End(1);
Annotation.Begin (2);

Annotation.End(2);

The method calls used in [a]C# are very easy to be detected. The problem
we are going to face now is about what kind of transformation we want
to operate over the selection we are marking in the IL code since, unless
we are constrained to work only with void (void) signatures, we have to
take care of the status of the execution stack on the caller side.
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3.1.2 Stack Abstract Interpretation

As mentioned in 3.1.1 any operation we perform over the IL body of a
method must preserve the execution stack health. To be able to hold the
stack health we have to perform an abstract interpretation of the stack.
The .NET assembly does not contain such information even if the meta-
data portion of the assembly is very rich. Anyway the assembly format
and its metadata are what we need to interpret the execution stack of any
method body defined in the assembly.

Abstract Interpretation (Cou97; CC77; CC79) is a theory for formally
constructing conservative approximations of the semantics of program-
ming languages. In program analysis an abstract domain is defined, and
each program instruction affects the abstract state. The abstract inter-
preter is capable of performing the execution of the program in terms of
the abstract state which is computable statically allowing for before-run-
time property checking.

Abstract interpretation has been successfully employed in the context
of virtual machines for type-checking a program in its intermediate form.
The virtual machine features a stack-based machine in which operations
manipulate the stack of operands by pushing and popping values. The
Java bytecode and a subset of CIL is verifiable (ECMb) in the sense that
the intermediate language program can be interpreted statically to sim-
ulate the behaviour of the operand’s stack ensuring that operations and
type of values are compatible with respect to the type system. For each
intermediate language instruction a stack behaviour in terms of the types
of the values used as arguments and the type of the value returned. The
behaviour of loops in the abstract domain of types does not depend on
the iterations, thus the program can be analysed statically and the verifi-
cation becomes decidable.

It is worth noting that the ultimate goal of the analysis is security
and there are additional properties checked during the verification phase
(when the program gets loaded by the virtual machine), for instance an
additional constraint imposed by CLI standard is that the height (in ad-
dition to the types of its content) of operands” stack should be the same
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whatever path is followed by the control flow. This imposes, for instance,
that the behaviour of code of a conditional branch should be the same in-
dependently by the value of the condition; or the body of a while loop
should not change the structure of the operands’ stack since it may be
skipped altogether.

Abstract stack interpretation has been used to check many program
properties (RRWO05) and in the context of CLI programs there are several
examples of interpreters such as the shared source implementation pro-
vided by Microsoft (rot), the Mono implementation (cec), the CLIFileRW
developed at University of Pisa (Cis), the RAIL project (CMS05). The first
two libraries are designed as part of the virtual machine implementation,
the others are research projects developed to study binary program anal-
ysis.

An example of the abstract interpretation process is given by the fol-
lowing Factorial method implementation:

.method public hidebysig static int32 Factorial (int32 n)
cil managed
{
// Code size 16 (0x10)
.maxstack 8
IL_0000: ldarg.0
IL_0001: brtrue.s IL_0005
IL_0003: 1ldc.id.1
IL_0004: ret
IL_0005: ldarg.o0
IL_0006: ldarg.0
IL_0007: 1ldc.i4.1
IL_0008: sub
IL_0009: call int32 Example::Factorial (int32)
IL_000e: mul
IL_000f: ret
} // end of method Example:: Factorial

First of all we note the .maxstack directive which states that the
maximum height of the operands’ stack will be of 8 values (if during
the abstract interpretation this constraint is violated the program is con-
sidered not valid). The rest of the program is easy to understand: the
first argument of the method (the n parameter) is checked for zero and
in case the constant 1 is returned, otherwise recursive invocation takes
place. Instructions IL_0005-IL_000e are worth of further discussion.
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The equivalent C# of the expression nxFactorial (n-1) loads ar-
guments in a way that is typical of IL programs: instruction IL_0005
loads the argument Oth (the n argument) on the stack, then the n - 1
sub-expression gets computed (instructions IL_0006-IL_0008) and its
result left on top of the stack as argument for the subsequent call in-
struction.

The mul instruction will find values on the stack loaded by I1._0005
and IL_0009 instructions, and pushes the result of the product on top of
the stack. If we follows the abstract interpretation of the stack we obtain
the following trace:

Initial stack: []

IL_0000: [ (int, IL_0000) 1

IL_0001: []

IL_0003: (int, IL_0003) ]

IL_0004: []

IL_0005: (int, IL_0005) 1

IL_0006: (int, IL_0005) (int, IL_0006) ]

(int, IL_0006) (int, IL_0007) ]

[

[

[ )

[ )
IL_0007: [ (int, IL_0005)

[ )

[ )

[ )

[

IL_0008: (int, IL_0005) (int, IL_0008) ]
IL_0009: (int, IL_0005) (int, IL_0009) ]
IL_000e: (int, IL_000e) 1

IL_000f: []

We will later use graphs like Figure 3 to show the effect of code mod-
ification on the stack.

Figure 3: Stack size evolution over execution
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We have reproduced the abstract stack state after the execution of
each instruction. The example shows a typical behaviour of stack based
computations: intermediate results are accumulated onto the stack in a
way that is very regular and suited for automatic pattern recognition of
program fragments.

For the purpose of this work we are interesting at finding method
invocation and statements. As shown in the previous example a single
line of a high level programming language maps down into several inter-
mediate language instructions. Since different programming languages
compile down to CIL we must give a reasonable definition of statement
that is language independent and that can be found by program analysis.

Definition (statement): A statement is a sequence of CIL instructions
such that the height of the abstract stack is zero before the first instruc-
tion and zero after the last instruction, which should not be a conditional
branch.

In the previous example there is a statement at instructions IL_0003-
IL_0004 (corresponding to aC# statement return 1)and another state-
ment at IL_0005-IL_000f (corresponding to the statement return n
* Factorial (n-1);).

Method calls are easier to define though more difficult to match pre-
cisely. A method call takes place wherever a call, calli or callvirt
instructions occurs (see 3.1.1). The problem is that the actual arguments
of the method call are loaded by instructions preceding the call instruc-
tion, depending on the method target of the call. At the call site there
must be an entry on the stack for each argument, so by means of abstract
stack interpretation it is possible to track the instructions that have gen-
erated each argument in the same way we did in the example.

We can also recursively perform the analysis and reconstruct the whole
tree of a method call, including method calls performed to compute inter-
mediate results. The ability to recognise compositions of method calls is
important when implementing explicit support for domain specific lan-
guages as discussed in (CE00). In particular we are interested in spotting
the utilisation of those primitives that are critical in the performance of a
computer game.
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Let us consider the following C# (equivalent IL in Listing D.1 and
Listing D.2) code snippet:

Listing 3.2: Triangle’s normal calculation

//compute triangle normal

Vector3Df el = pl - pO0;

Vector3Df e2 = p2 - pO0;

Vector3Df n = Vector3Df.cross(el,e2);
n.Normalise () ;

N ON Ul s W N =

In this example the method calls can be seen as abstract operations
that are recognised and replaced with the following optimised code:

Listing 3.3: Triangle’s normal calculation

1 -

2 //compute triangle normal

3 float elx = pl.X - p0.X;

4 float ely = pl.Y - p0.Y;

5 float elz = pl.Z - p0.%7;

6

7 float e2x = p2.X - p0.X;

8 float e2y = p2.Y - p0.Y;

9 float e2z = p2.2 - p0.%;

10

11 float nx = elyxe2z - elz*ely;

12 float ny = elzxe2x - elxxe2z;

13 float nz = elxxely - ely*e2x;

14

15 float m = Math.Max (nx, Math.Max(ny,nz));
16 nx /= m;

17 ny /= m;

18 nz /= m;

19

20 m = Math.Sqrt (nx*nx + ny*ny +nz=*nz);
21

22 nx /= m;

23 ny /= m;

24 nz /= m;

25

26 Vector3Df n = new Vector3Df (nx,ny,nz);
27

We used the abstract stack interpretation support featured by CLI-
FileRW library (Cis), and contributed to improve it. The library pro-
vides a cursor to enumerate CIL instructions of a given method, and if
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requested the abstract stack is interpreted as the cursor advances. We
contributed to the arguments parsing of a method call so that when such
instruction is found information about arguments is already available.
The complexity of the algorithm is linear.

3.1.3 Signature of IL fragments

Once we perform a selection over a stack safe block of instruction it is
possible to compute the signature of the block. That portion of code
can be replaced with an equivalent method call that satisfy the execu-
tion stack. The C# code snippet in Listing 3.4 can be replaced with
any method call as long as the method executed has a signature int
(void), we can preserve the execution stack if we transform Listing 3.4
in the code in Listing 3.5.

The C# examples are easier to read for a reader not familiar with the
IL code but, from now on, we will move most of the example of this sec-
tion to IL since it is easy to understand the code manipulation operations
we are going to show. The previous example is then represented by the
transformation of Listing 3.6 in Listing 3.7; in the IL snippet is quite easy
to see that the execution stack has gone through a safe transformation
(anyway there is nothing to guarantee the semantic equivalence). The
section we are looking at is starting loading two strings on the stack, then
pops them and push back the concatenation, after that the new string is
popped to invoke the property accessor which will push an integer on
the stack.

Now it quite clear that the instruction block is equivalent to a method
call with signature int (void) since the code starts pushing values on
the stack, then consumes them all and push an int, no previous loaded
values are used by the snippet.

Listing 3.4: Source Fragment

string a

= "first string";
string b = "second string";
int 1 = (a + b).Length;
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Console.WriteLine (1) ;

Listing 3.5: Fragment Replaced
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int 1 = ReturnAnlInteger();

Console.WriteLine (1) ;

Listing 3.6: IL Source Fragment
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IL_0079: 1ldstr "first string"

IL_007e: stloc.s a

IL_0080: ldstr "second string"

IL_0085: stloc.s b

IL_0087: ldloc.s a

IL_0089: 1ldloc.s b

IL_008b: call string [mscorlib]
System.String::Concat (string, string)

IL_0090: callvirt instance int32 [mscorlib]
System.String: :get_Length ()

IL_0095: stloc.s 1

IL_0Obe: ldloc.s 1
IL_00c0: call void [mscorlib]
System.Console: :WriteLine (int32)

Listing 3.7: IL Fragment Replaced

OO 0N O\ Ul W~
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IL_008b: call int32 [myassmely]
Test .Program: :ReturnAnInteger ()
IL_0095: stloc.s 1

IL_0Obe: ldloc.s 1
IL_00c0: call void [mscorlib]
System.Console: :WriteLine (int32)

The signature computation is quite relevant since can be used to deter-
mine the similitude amongst IL snippet from a stack safety perspective.
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Another relevant feature about the signature computation is that we can
also compute the minimum set of permission required by the IL portion
we are dealing with, in such a way it is possible to perform manipu-
lations that can satisfy the code access security policy though the stack
inspection as shown in (BBR"04). To obtain the signature is the key step
we have to perform before being able to manipulate the bytecode just to
give a quick example we can always remove any void(void) signature
block being sure that the removal will be always stack safe (without any
guarantee from a semantic point of view, the signature is not enough to
foresee side effects of the snippet).

3.1.4 Code Fragments

In this work we are interested in program transformation, possibly at
run-time, in order to specialise and evolve program definition over time.
We introduce a formal definition of program transformations involved in
this process in order to precisely define how we identify and change its
fragments even if expressed in intermediate form. We will express pro-
gram transformations in terms of program fragments that can be searched
and manipulated using a set of general purpose transformations.

In our dissertation we will leverage on former work on Code Bricks
(ACKO03) that introduces a well defined notion of code fragment together
with the Bind operation allowing for their manipulation. Nevertheless,
we should extend the model since we need not only to build code frag-
ments out of code fragments, but also be able to look for particular code
fragments in a program.

A code fragment, or brick, is an element of the set

CF : Sign x Env x Code

Where Sign is the set of signatures, Env an environment for values
bound to the code, and a body in the form of a sequence of intermediate
language instructions.

The body of a code fragment should be consistent with respect to
the stack behaviour as indicated by ECMA CLI specification (ECMb),
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moreover the behaviour should be compatible with the related signature.
We assume that the bind operation is defined in the CF set as discussed
in (Cis03).

Each code fragment can easily know where it belongs, i.e. the location
into an executable file, since it is obtained through a query (a mechanism
which will generalise the original creation operation based on methods),
an operation that will be introduced in the next section. The FragmentLo-
cation function allows retrieving the location of a specific code fragment:

FragmentLocation : CF — MethodInfo x Loc

where MethodInfo is the set of method descriptors featured by the re-
flection and Loc is the set of location within a method body.

3.1.5 Code selection through query

As witnessed by the AOP community an essential element of a program
transformation system is the ability to select appropriate locations in the
code where some change is desirable. The AOP tradition focuses on the
notion of join point which is a point in a program where an aspect can be
woven.

Several languages have been adopted by various aspect weavers, a
great number of them is based on the analysis of the program in its source
form (though there are restricted form of join point matching on binary
files (asp)).

The original definition of Code Bricks introduced a simple mech-
anism to lift actual methods into the code fragment values represent-
ing them. We are interested in extending the original mechanism pro-
vided by the framework into a generalised form that allows us to specify
queries against a program. Nevertheless, we are interested to preserve
the original approach taken by Code Bricks at providing the feeling that
code is manipulated at source level, even though the actual program
transformation is performed when the program is in its intermediate
form. The query mechanism we are introducing is different from AOP
join points since we will be able to capture a region of code and not just
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a single point within the program. Another distinctive feature of this ap-
proach is that a query in our framework can be expressed at source level
language and then compiled into the query that gets executed.

A query is an operation defined on a code fragment:

A :CF x CF — (CF x CF™")™

The operation requires a code fragment which where another code
fragment should be searched for. Since the query is a code fragment it
has a signature which can be considered as the arguments that should be
matched within the query fragment. This approach is a form of query by
example (Z1075) a well known approach that is easy to understand for
people writing queries.

As we will discuss shortly queries will be expressed in intermediate
language (as they are code fragments) but for the sake of exemplification
we will use C# to show simple queries.

Queries with parameters allows to express exact match, for instance
the following query looks for expressions adding two integer values:

int QueryAdd(int x, int y) {
return x + y;

}

A code fragment will match the query if has a signature compatible
with that of the query and adds two integer values. The two arguments
acts as type-safe placeholders and the code fragments representing x and
y are part of the result of the query match.

Consider the following method:

Matrix MatrixSum (Matrix a, Matrix b) {
var res = new Matrix (a.RowCount, a.ColCount);
for (int i = 0; i < a.RowCount; i++)
for (int j 0; J < a. ColCount; j++)
res[i][3] = alil(3] + bIil[3];

The result of
A(MatrixSum,QueryAdd)

67




Ul W N =

N ON O s W N =

is the following3:

(ald][5] + bl][5]; ald] 5] bl][4])

Where the first match is the code fragment matching the query and
the second and the third the two values captured by its argument. If an
expression can be matched several times the query operation will return
all of them, we will introduce derived operations to select the largest
match for a particular query.

A parameter less query is used to express exact match:

void ParameterlessQuery () {
Console.WriteLine (" *x*xxxxkxxxxxxxxxxx");
Console.WriteLine (" Welcome");
Console.WriteLine (" *x*xxkkkxxxxxxxxxxx");
}

In this case we are looking for a given sequence of instructions with-
out any variant inside. This kind of queries are useful to identify join
points, and in particular method calls.

A more interesting type of query are the high order queries, i.e. those
queries that allow to match code fragments of variable length. Let us
consider the following example:

delegate void Cmd () ;
void MatchLock (object o, Cmd body) {
lock (o) {
body () ;

}
}

Here we are looking for all the places in which there is a code frag-
ment with the signature

void — void

which is protected by a lock statement. Here the high order argument*
is used to as a placeholder within the query’s body for a sequence of

3We will use a line over a code fragment to indicate the code fragment value represent-
ing the corresponding code.

4C# delegates represent signatures of methods that are invoked without other knowl-
edge other than the invocation behaviour.
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instructions with the given behaviour. In this way it is possible not only
to match a point in the code, but also its surroundings, imposing extra
requirements about the context in which a code fragment is situated.

Now we introduce some useful schema that we will use in the rest
of the thesis without having to resort to the base operation definition.
We finally discuss how queries can be defined in terms of intermediate
language instructions and implemented.

Querying assemblies

The A operation is always defined on code fragment, and methods are
code fragments. We extend the operation definition to an assembly a,
which is a collection of types containing methods, in the following straight-
forward way:

A@a)= |  amq
méeMethods(a)
where Methods is a function returning all the methods defined inside
an assembly (which is the content of the Method table inside the logical
definition of the assembly (ECMa; ECMb; MR03)).

Largest fragment match

The query operation has been designed to return all the possible matches
for the given query against a code fragment, this definition allows cap-
turing all possible instances of compatible code fragments. This behaviour,
though expressive, sometimes makes complicate to find the largest match
which is often the one we are interested into. Let us consider the Mat ch-
Lock query when executed against the following code fragment that we
will refer as C:

lock (connection) {
var cursor = connection.Select (dbquery);
lock (storage) {
foreach (row in cursor)
storage.save (row) ;
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8
9
10

lock (buffer) {
buffer.LastUpdate = DateTime.Now;
}

11] }

12

V/

There are three possible matches for the given query since the 1ock
statement has been used thrice. Moreover, one match includes the other
two, thus the operation

A(C,MatchLock)

will return the three matches

[(1..11, (2..10)), (3..6, (4..5)), (8..10, (9..9))]

where numbers refer to line numbers of the previous listing. Accord-
ing to the definition of the query operator for each match we find a list of
captures identified by the query arguments. Note how easy is to check
whether two matches are nested since each code fragment knows the po-
sition within the program, so that checking for nesting of code fragments
is reduced to checking for integer intervals containment.

Often we are interested at the outermost match so we will use a vari-
ant of the query operation which is greedy in the same way the tradi-
tional Unix regular expressions are. We will define a variant of the query
operation as follows:

A(CF,q) =letR = A(CF,q) in
{res| Ar € Rs.t. res C 1}
The result of the query

A(C,MatchLock)

will be
[(1..11, (2..10))]

which is the enclosing 1ock statement.
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Operators sequence match

Another situation that is interesting to capture during code analysis is
the sequence of operator’s application. It is well known (CE00) that li-
braries often expose non-optimised versions of operators because of their
ability to be composed. Matrix addition, for instance, can be optimised
by avoiding the allocation of a temporary matrix while adding two ma-
trices; moreover the whole operation can be done with just a nested loop
for adding a number of matrices at once.

We introduce a variant for the query operation to match a sequence
of matches of the same query, so that it is possible to easily find program
regions that can be optimised or rewritten. Let us consider the following
query®

Matrix MatrixAdd (Matrix a, Matrix b) {
return a + b;

}

If we consider a sequence of applications of the addition operation
a+bt+ct+d+..

the standard query operation would match all applications of the addi-
tion operation. But in order to be able to optimise the addition we must
be able to recognise that all the matches intersects pair wise and recon-
struct the sequence.

The A, operation does this for us:

A;(CF,q) =letR = a(CF,q) in

{res|¥m,n € R(m C res) A SameBegin(n,res)}

The SameBegin function is assumed to be true if two code fragments
share the same beginning in the code. Because of the stack based na-
ture of the intermediate language the sequence of operation application

5In this example we explicitly use the Mat rix type to capture additions between two
matrices. An alternative query would have been to define a high order type to indicate an
expression returning a Mat rix.
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results in an iterated application of the function starting at the same in-
struction.

For instance the application of the addition operator would result into
a sequence such as:

N O\ U1 = W —

1d a
1d b
add
1d ¢
add
1d d
add

where the 1d instruction is assumed to be the appropriate instruction
to refer the name a after the compilation (i.e. either a field, an argument
or a local variable).

The A, operator allows us to easily find sequence of application of
one or more operations.

3.1.6 Definition of the query operator at IL level

In this section we will outline a possible implementation of the query op-
eration to search for code fragments of programs expressed in interme-
diate language. The matching procedure has been inspired from regular
expression theory and in fact can be considered a natural extension. But
before delving into details it is important to discuss a little bit about the
relation between the code snippets we have shown so far and the their
counterparts expressed in intermediate language.

In defining the query operation we followed the same approach used
in CodeBricks providing an operator functioning at the IL level, but that
can be perceived at the level of a programming language. This is because
compilers implement a translation function that is consistent and, due to
the expressivity of the IL with respect to a traditional assembly language,
which maps constructs over the same IL fragments. Moreover compilers,
even optimising ones, tend to be consistent during translation, so that a
C# while loop is always translated in the same way. Moreover method
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calls, which are perhaps the most important elements in pattern recogni-
tion, are expressed in a well defined and unambiguous way.

Queries, as code fragments, are always compiled into intermediate
language and the query operation is defined when programs are in their
intermediate form. The query process can be considered as an exten-
sion of regular expression matching in the sense that the sequence of IL
instructions representing a query are considered as symbols of an alpha-
bet. However, sequence of instructions are different from sequence of
symbols since we associate a semantics that corresponds to the program
execution. In particular our matching is intended to be type-aware and a
match is valid only if the abstract stack interpretation of the query code
fragment is compatible with that of the match found.

Suppose that we are interested to match the expression 1 + x where
x is an argument of the query, the associated IL will be:

ldc.i4.1
ldarg.0
add

In our interpretation we are interested in a sequence of IL which
pushes the constant 1 on top of the operand stack, then it loads an in-
teger value from somewhere (that will be a local, an argument or a field)
and then these two values are added.

The program we are interested to search is the following (we assume
x is an input argument):

int y = 0;
if (dbisopen)
y =1+ x;
else
y = -1;
Y/

The equivalent IL program (as translated by the C# compiler) is the
following:

ldc.14.0

stloc.2 //y=0
ldloc.0

ldc.14.0

ceq // !dbisopen?
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brtrue.s ToElse
ldc.i4d.1
ldloc.1
add
stloc.2
br.s EndIf
ToElse:
ldc.id4.ml
stloc.2
EndIf:

Lines ranging from 7 to 9 included represent the code fragment we are
looking for, although we do not really know that variable x corresponds
to the local variable whose index is 1. The matching process can proceed
as if the code is a sequence of symbols, each for instruction, looking for
the instruction 1dc.i4.1 and then check if the sequence is compatible
with the one of the query. In this respect this process is analogous to the
usual regular expression matching, and this is important because we can
adapt algorithms from literature to our approach. We can also borrow
performance and complexity results.

If the search process recalls the regular expression matching, we need
a broader notion of match for instructions in order to be able to match
fragments. In our example the first instruction of the query fully matches
with the instruction at line 7 of the input program, but this is not true for
the second line. In this case we need to know that the 1darg. 0 instruc-
tion in the query should be considered as a placeholder for an instruction
which loads an integer value on top of the operands’ stack. In practice
we are introducing a binding between the variables defined within the
query (local and arguments) and those used by the code processed by
the search algorithm. In our example the first argument of the query will
be bound to the local variable 1 of the program, and if the match will be
successful the binding will be returned as part of the query results.

Local variables and arguments in queries

What is the interpretation we should give to local variables and argu-
ments used by an IL fragment used as a query? We already said that
input arguments of a query should be considered as the matches we are
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interested to find within a code snippet having the structure defined by
its body. Thus we are authorised to associate a location of the same type,
thus if during the match a load instruction is found the allocation class
will be associated with the argument (i.e. an argument, a local variable
or a field). The only exception is the use of delegates whose role will be
discussed in the next section.

Local variables are treated as input arguments during the matching
process, the only difference is that they are not returned as part of the
result. The following two queries are equivalent, the only difference is
that only in the first case a binding found will be returned along with the
result of the query:

int Queryl (int x) {
return 1 + x

}

int Query2 () {
int x = 0; //Variable should be initialized otherwise the compiler will complain
return 1 + x;

}

Access to arrays, property accessors and other amenities is not ach-
ieved through the direct use of this capture and should be made explicit
through appropriate instructions. For instance if the location of a value
is an array the type of the input argument should be array of the appro-
priate type.

Arguments and local variables play another important role too: they
consent to express identity of a location. If a variable is set multiple
times we must ensure that the binding is preserved in order to avoid
invalid matches in which this identity is not preserved. Once a bind is
established during the matching process, it is preserved until the current
match is refused or accepted.

Delegates as a type-safe star operation

The Kleene star is one of the most important operators of regular expres-
sions, allowing to express an arbitrary sequence of symbols taken from
an appropriate subset. In our query language we have a similar opera-
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10
11
12
13
14

16
17

tor which allows to express arbitrary sequences of IL instructions with
a well defined behaviour with respect to the operand stack. We use the
delegate type as a mean for expressing an arbitrary code fragment within
the query. Let us consider the following query:

delegate void Cmd();

void Query (Cmd c) {
string s1 = "", s2 = "";
Console.WriteLine (sl);
c();
Console.WriteLine (s2);

We are interested in matching all the code sequences delimited by
a call to the Console.WriteLine method, thus we are looking for a
sequence of instructions whose behaviour with respect to the operands
stack is the same as that of a delegate call. In this case we are looking for a
sequence of instructions leaving the stack height unchanged. Protection
blocks (i.e. exception handling) should be consistent between the query
and the matched code.

Suppose we are now interested in searching for the query in the fol-
lowing code fragment:

V/

int attempts = 5;

Console.WritelLine ("Begin reading data...");
while (attempts > 0)
try {
// Read data
for (int i = 0; 1 < 1024; i++)
Console.WriteLine ("Read byte {0}", Console.ReadKey());
} catch (Exception e) {
Console.WritelLine ("Error while reading...");
attempts——;
Thread.Sleep (1000);
}

Console.WriteLine ("Done");

V/a

In this case we have a single match between instructions 4 and 16,
since the instruction 11 is within a protection block and the stack of
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operands does not satisfy the stack consistency constraint imposed be-
fore.

Since the delegate within the query is used as a parameter a code
fragment corresponding to the match should be returned, as we already
discussed. Now, we may be tempted to assume that the signature of
the code fragment returned by our match has the same signature of the
delegate we used as a placeholder. The code fragment in our example
would be:

while (attempts > 0)
try {
// Read data
for (int i = 0; 1 < 1024; i++)
Console.WriteLine ("Read byte {0}", Console.ReadKey());
} catch (Exception e) {
Console.WritelLine ("Error while reading...");
attempts——;
Thread.Sleep(1000);
}

This is not a well formed code fragment since it refers to the at-
tempts variable which is not available anymore. We could have as-
sumed a semantics similar to lexical closures and assume that the local
variable is captured somehow, but our query system is designed to anal-
yse code statically so that there is no way to close a particular activation
of a method call. Therefore, the resulting code fragment of the match will
have an argument for any variable that is not accessible once the code has
been extracted from its context.

In the same code fragment the local variable i needs not to be lifted
into the code fragment signature since it is local to the whole code frag-
ment matched (i.e. its scope is fully contained inside the code fragment).
It is important to notice that in IL scope of local variables is lost since
local variables are all lifted as local variables of a method. However, it
is possible to obtain an approximation of the scope by looking for read-
/write access to the variable (as discussed in (DCD07)).

Lifted arguments in a code fragment are annotated with the original
source so it is possible to compare for identity of a location in different
match results.
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Since we use delegates as a mean to indicate a well defined pattern
on the operands stack before and after a sequence of IL instructions, we
can also match expressions in the very same way we matched a sequence
of statements. Consider, for instance, the following query:

delegate double Exp();

void Query (Exp e) {
double x = 1.0 + e();
}

it matches all the double expressions adding left-wise the constant
1.0 toit. Note that in the expression 1.0 + 1.0 + 1.0 we have three
possible matches returned by the query operation (consider associativ-

ity).

3.1.7 Queries and Regular Expressions

Our query system has been designed after regular expressions, but there
are operations that are not directly expressible in a single query. A reg-
ular language is built around the Kleene star operation, as well as the
alternative operation that allows picking strings from two different sets.

As we already discussed the Kleene star operation is obtained through
the use of delegates as a star operation on a stream of IL instructions with
the additional constraint that the static analysis of the operands stack
should be compatible with the signature of the given delegate.

The alternative is not directly expressible within a query, in principle
we could have used code-level annotations to label special if statements
to be considered at the meta level rather than something to look for, but
this would have made the query difficult to read and we would have
drifted away from the query by example approach we followed. Besides,
the alternative can be obtained by multiple applications of the A opera-
tor with the results that are joined together. An efficient implementation
may take advantage of this information to perform multiple queries at
once, but this is an optimisation of the implementation. Thus the alter-
native query equivalent to the regular expression e;|e; is expressed as:
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A(c,q1)|A(c,q2) = A(c,q1) U A(c,q2)

In the rest of this dissertation, when useful, we will use convenient
notations that are drawn from regular expressions syntax and can be eas-
ily mapped in the query operations.

As it happened for regular expressions after the Perl’s implementa-
tion, also for our code querying system there are several variants that
can be introduced to allow more compact representations of queries, but
for the purpose of this thesis the language is expressive enough.

Although we usually express queries at language level (most in C#) it
must always been considered that they are a compact representation for a
stream-based analysis of code when programs and queries are compiled
down to sequences of IL instructions.

3.2 Manipulation of code snippets

We will introduce now the set of operations to perform code transfor-
mations, before we explain the operators it is important to clearly state
the overall concept we used to design the manipulation model. Our ap-
proach follows the philosophy of CodeBricks (ACK03), we can manipu-
late IL fragments that have been selected inside existing assemblies. The
choice we made implies that we can not generate any arbitrary set of in-
structions as it is possible with Reflection.Emit, on the other side the
limitation imposed on the model force the system to work only on valid
and safe portion of code (thanks to the stack abstract interpretation 3.1.2,
the signature computation 3.1.3, and the stack inspection(BBR " 04))

3.2.1 Extrude Evaluate Inject

The transformation model we investigated is built on three main opera-
tions:

e Extrusion

e Evaluation
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o Injection

Those operations are responsible for the code transformation, a joint point
model will be provided later to support the Injection. A delete operation
is not provided since it can be expressed by the Injection as we will show
later.

Extrusion

The Extrusion operator is responsible for the extraction of an IL snippet
(we will refer the extruded snippet as Fragment) and is defined as

«: CF — CF

We will refer the method where snippet is located as Host while the
type owning the method will be addressed as Host Owner. A Fragment
is identified by the IL code of the selected snippet, its signature, its lo-
cal variables set, its security set (if required), and its parameter binding
(this is optional and used by the Evaluation pass as described in 3.2.1). A
Fragment can be immediately transformed in a delegate ad used directly
as shown in (CCCO05) where the case study example demonstrate how the
extruded Fragment is transformed into a delegate in order to realise pa-
rallel computation through the asynchronous execution of a Delegate.
The IL selection can use values coming outside the boundaries as

o fields of the Host Owner

e external (static members, or members of other references)
e local variables

e parameters of the Host signature

all such references will be promoted to the Fragment signature which is
indeed extremely important since it will be used to perform the binding
between open variables of the Fragment and values. The extrusion is
performed against a selection of IL that has been expanded enough to be
stack safe (this guarantees that the delegate creation and the code execu-
tion will not corrupt the run-time health). The Extrusion is responsible
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to compute the local variable set of the Fragment and some optimisation
can be performed to reduce the set. If a local variable is used ina st loc
instruction and only one 1dloc is later loading the variable on the stack
they can be both removed unless the instruction responsible for pushing
on the stack the value used by the st1loc a call (because there can be
side effects and thus instruction reordering can alter the behaviour of the
snippet). Following that rule the code in Listing 3.8 can be optimised as
Listing 3.9 during the extrusion operation without creating a local vari-
able set for the Fragment.

Listing 3.8: IL Snippet

ldstr "first string"

stloc.s a

ldstr "second string"

stloc.s Db

ldloc.s a

ldloc.s b

call string [mscorlib]
System.String::Concat (string, string)

callvirt instance int32 [mscorlib]
System.String::get_Length ()

Listing 3.9: IL Extruded Fragment

ldstr "first string"
ldstr "second string"
call string [mscorlib]

System.String::Concat (string, string)
callvirt instance int32 [mscorlib]
System.String::get_Length ()
ret

If a local variable is used in more than one 1dloc then must be added
to the local variable set of the Fragment. When a local variable is used
only in 1dloc instructions without any stloc inside the snippet then it
is promoted to the Fragment signature.

There is a particular scenario when inside the snippet a local vari-
able occurs only in stloc instructions since we have two options. If
no call instruction is involved in the stack loading for the st 1oc then
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all the instructions involved can be removed along with the st 1oc, oth-
erwise if call is involved we must preserve it and the st 1oc can be
replaced by a pop operation. In this scenario can be possible to follow
another approach because potentially the st1oc was saving values for
later use, then we can promote the st 1oc targets to the Fragment signa-
ture with the out modifier. When extruding attention must be paid to
the treatment of ret instructions since they are responsible for leaving
the execution of the fragment and loading the return value stored on the
stack.

In our approach the extrusion will change ret operation with uncon-
ditional jumps to the end on the IL code of the fragment, this is important
for the Injection since injecting ret instructions will alter dramatically
the behaviour of the Target. The Extrusion is working in a similar fash-
ion to the approach described in (GGO08).

The extrusion operation can be easily defined in terms of the A op-
eration by using a delegate match that will behave as expected by this
operation when lifting unclosed variables into the code fragment signa-
ture.

Binding

Binding is used to realise partial evaluation over Fragments and to con-
nect them with the environment on the injection point and the available
Binding operators are

e Binding; ,.,; to bind against a local variable of the Target
o Bindingp,,qmeter t0 bind against a parameter of the Target
o Binding ., to bind against a member

o Bindingc,,siructor t0 bind against a type constructor

o Bindingc,,stan: to bind against a constant value

e Binding,;; to bind against a method call

e Bindingp,.,gmens to bind against another Fragment
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e Binding,,, to bind against a cast operation

e Bindingy,,,,, to bind against an array creation and initialisation
with values

The Fragment defines a list of bindings called ParameterBindings
and one binding called TargetBinding, they are used by both Evalua-
tion 3.2.1 and Injection 3.2.1 to both perform optimisation (through par-
tial evaluation and inlining) and to connect the Fragment signature with
the Target environment. All the binding operator derive from Binding
and they implement the Get Cursor method (Binding is contract defined
in Listing 3.10) in order to provide a cursor over the IL code to be used
in place of the occurrences of the parameter bound; the contract is not
enough and there is the BindingMode attribute to be used on Binding
sub types so that the usage of the Binding can be constrained to parame-
ters, Target or both.

Listing 3.10: Binding contract definiton

public abstract class Binding

{
\\Gets the Binding Mode.
public BindingMode {get{...}}

\\Gets the Fragment to be
\\inlined with the bound parameter.
public abstract Fragment GetCursor();

The various form of binding are obtained as a variant to the basic
Bind operation provided by CodeBricks. Since we are simply changing
the variable sites the programs transformations remain type-safe as in the
original model. Moreover this notion is already available in the current
implementation of the library.

Evaluation

The Evaluation step is the core component for obtaining optimisation in
the snippet before proceeding with the Injection step. The definition of
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the Evaluation function is:
v:CF — CF

In 3.2.1 a small optimisation is performed to reduce the local vari-
able set and to remove meaningless st 1oc and 1d1oc operations but the
stand alone Fragment cannot be optimised any further without knowl-
edge about the environment surrounding the injection point in the target
method (we will refer this as Target and the type containing the method
as Target Owner). The evaluation step is of no use for any Fragment with
a signature having no input parameters since there will be no binding
with values coming from outside the Fragment. The binding behaves
like described in (ACKO03) and allows us to perform a binding between
parameters of the signature and:

e local variables of the Target

e constant values

o parameters of the Target

e members of the Target Owner
e method calls

o other Fragments

. The description of the binding operation will be discussed in 3.2.1 we
will focus now on the effects that some particular binding can have on
the evaluation step. The Idea of the evaluation comes from the partial
evaluation theory and it is used here to perform something smarter than
mere inlining. The bindings relevant to the evaluation are those involv-
ing

e constant values
o other Fragments
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N =

. Let us assume that we are working with a non trivial code fragment
which contains conditional branches, branches can have also additional
local variables defined inside theirs scope so they contribute to both code
size and working set of the Fragment. If the condition of some branching
is depending only on external values coming from the signature of the
Fragment (quite possible for statements like switch) the binding to a
constant can be used to remove all the unnecessary portion of both code
and local variables before we proceed with the Injection operation. This
extends to also the case of properties of a constant value that can be stat-
ically computed; for example let be the binding be against a parameter
named sParam of type st ring with a constant value as ”String Value”,
we can now compute expressions like Listing 3.11 at evaluation time.

Listing 3.11: IL Extruded Fragment

int wordCount = sParam.Split (’0’) .Lenght;

The scenario of binding occurring against another code fragment is the
most relevant for the Evaluation for it is built using the code manipula-
tion model itself. Before proceeding with the evaluation the Fragment
of the binding must be evaluated because if the signature is not without
parameter (or closed by other bindings) every open parameter must be
included in the signature of the Fragment produced as output of the eval-
uation step. The code of the Fragment used in the binding will be used
to load the stack instead of the 1darg instruction related to the parame-
ter that has been bound. If the Fragment used in the binding definition
is without parameters (or the signature is completely bound) then the
evaluation can perform an optimisation storing the stack loaded by the
Fragment in a local variable and reuse the variable in every place where
the 1darg instruction was used with the parameter being bound. The
process will be recursively applied to any code fragment used to bind a
code fragment’s signature parameter.
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Injection

This is the final step of the proposed transformation model and as 3.2.1
has to deal with the stack alteration of the Target. The binding (discussed
in 3.2.1) is responsible to prepare the stack before the injection but it is
also in charge for leaving the stack after the injection point in the same
state as in the Target without any injection. The definition of the Injection
is:

»: (CF x Mode x CF) — CF

where this first F is the source Fragment, Mode is a value amid
e before
e after
e replace

and the last term is the injection point inside the Target defined as an
element of the F domain.

The injection point is computed in the same way as the extraction
point is and can therefore represent a set of instructions inside the Target.
If no bindings are defined in the Fragment the Injection must check that
the stack before it is matching the Fragment signature, once the check is
positively passed a set of binding will be built and an Evaluation step
will be performed to optimised further the Fragment IL before it is in-
jected in the Target. A stack compatibility check must be performed also
for the IL code immediately after the injection point to ensure that the
signature of the Fragment is not compromising the stack. Since the in-
jection point is represented by an IL instruction or a sequence of of it we
can use the signature of the injection point to perform the compatibility
test with the signature of Fragment to be injected (after evaluation). The
signature of the injection point needs some extra care when computed
since it could involve selections containing ret instructions or being op-
erated over empty methods. If the injection point’s IL ends with a ret
instruction then the return type of the selection is the return type of the
Target and the Fragment must respect this contract. It can happen that
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Fragment and injection point have mismatching return types and this
situation must be resolved in order to make the injection pass the stack
and type compatibility check. In the scenario where the injection is re-
turning a void type while the Fragment is not the problem can be easily
solved appending a pop instruction after the last instruction of the Frag-
ment, in the more general situation of return type mismatch the binding
technique is used to address the problem and such binding is called Tar-
getBinding. Due to the nature of the TargetBinding it is limited to binding
towards:

e local variables of the Target

o parameters of the Target (if marked as out or ref)

members of the Target Owner
e constructor call
e cast

When injecting in an empty Target or at the very beginning of the Target
body the Fragment parameters (after Evaluation) must be either unam-
biguously matching the Target’s ones or be an empty list. Since the In-
jection will offset instructions in the Target all the branches targets must
be fixed to reflect the new instruction set. Branches fixing requires a first
scan before injection to track the target of branches in the Target and a
scan over the Fragment’s branches as well, once the Evaluation and the
Injection are performed a new scan over the generated IL is executed so
that all the branches can be restored by pointing to new position of tar-
geted instructions. As the final result of Injection is a new Fragment it
can be used to obtain a Dynamic Method and so executed through a
delegate or reflection invocation, more interesting application is the as-
sembly rewriting since the application of the code transformation will
be static and thus the use of the new assembly will not be overloaded
by any extra run-time support since our approach needs it only when
transformation are performed.
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It is important to introduce a special Fragment : the Empty Fragment

or Fragment which is a indispensable building block in our frame-

null’
work. Thank to Fragment,,,;; it is possible to define the Delete operation
as:

4 (F) =» (Fragment,,,; ), replace, F)

The delete operation is essential to perform some of the code transforma-
tions that the eval step requires.
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Chapter 4

Analysis of experiment’s
results

In this chapter we present the results we obtained applying our method
to game technology. We must thank Realtime Worlds 1td (RTW) for their
support during our research. Before showing the experiments and their
result we need to introduce the main factors that made us go for a .NET
based solution instead of using the classic C++ approach and, in this task,
the help and support from RTW has been very precious.

Performance in C++ usually sacrifices code readability and program-
mer productivity on the altar of execution time. The usage of template
based programming is generally a big source of productivity issues as
they can trigger long compilation phases even for a small change, this is
even more dramatic when they are used in core libraries and so a poten-
tially huge code base can be dependant on such source files.

A serious project can take something like 20 to 40 minutes to compile
and link (we have been facing this scenario in more than one company
with very skilled C++ programmers) and in a typical 8 hour working day
during a major debug step something realistically only 3 hours may be
spent actually working.

On average the performance loss with C# is around 10%* but the per-

IThe performance is not related to the language used but it is due to the run-time sup-
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formance gap between C# and C++ is getting smaller and smaller at ev-
ery run-time release from Microsoft with improved versions of the JIT
and GC, making .NET more affordable from a production point of view.
As well as the work Microsoft is doing on the CLR and its languages, the
Mono version of .NET is bringing the standard on other platforms like
MacOS, Linux, iPhone, Nintendo Wii, and many others thereby crown-
ing .NET as a cross language and cross platform framework.

As proposed in (Swe(6) the introduction of a VM and higher level
support in a language can help the development process in a very signif-
icant way and can offset the performance loss on the final product. Static
and run-time analysis of programs is becoming a key factor in software
design and development and game engines are becoming VM (leaving
the JIT out of the discussion for licensing and technical restrictions?).

port of the VM and the GC.

2Usually a console provides a very strict security policy and license agreements pre-
venting developers from deploying VM and JIT compilations, some hardware also enforces
memory protection so that code memory is read only after the program has been loaded.
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4.1 Domain driven Optimisation for math library

The problem of a general purpose math library inside a video game is
extremely relevant for game performance. Being able to optimise this
portion of code and its usage patterns will impact both the simulation
and the render step (see Appendix B and Appendix C). In CLR VM the
debate between using class or struct to model mathematic domain
objects is a very hot topic because the choice will bring to memory allo-
cation savings or garbage collector activity saving (BD05).

Beside the performance problem we had to face code maintainabil-
ity issues : the math library is usually piece of the foundation block of
a game platform, using explicit optimisations would not be an overall
benefit. Most of the experiment results reported here are based on a code
base we developed as part of experimentation with the .NET framework
at Realtime Worlds Itd and we want to thank them for the great support
they provided to our research topic.

To design a math library in a STEE is a serious challenge since we
have to deal with performance on one hand and with the type seman-
tic on the other. The first thing we struggle with is the type system as
in geometry some operations can not have a meaning whilst it is in the
mathematical domain, as a quick example of the problem let us mention
the tuples and points. It is possible to add tuples and we will obtain a
new tuple however in geometry, there is no meaning for adding points
together. The only time we see something like that is when the centre
of mass is computed for a volume®. The difference is quite subtle since
in the centre of mass computation we are not adding points at all, we
are adding point x mass entities and only after averaging the result we
obtain back a point entity. This leads to a design making a difference
between the mathematic, physics and geometric domains when defining
operations and algorithms.

Another good example of domain specific behaviours is given by the
multiplication between matrices and vectors and the multiplication be-

5In a realtime application the math is modelled with a discreet approach so volumes
and surfaces are manipulated as a finite set of points in the space
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tween matrices and points. In the former case the translation component
of the matrix is not used whilst in the latter it is, along with the semantic
difference there is a performance and implementation alteration.

With domain modelling problems we face design issues when pro-
viding implementations for algorithms. If we think for example at the
code responsible for intersection between geometric entities we need to
face the choice between instance operators and static operators®.

Choosing the instance operators approach the code will be more easy
to write as every entity will expose all the functionality related to it, this
will lead to a lot of code replication since we will need to provide meth-
ods for sphere intersecting boxes in the sphere object and the same code
will appear in the box objects as well®.

Following the static function approach can lead to a smaller code base
and better performance but will put more pressure in development and
code architecture design since types will be just data structure with no
functionality and developers must have a quick way to access the code
they need.

A lot of details about this type of problem can be found in (Ebe06)
and since it is not exactly the goal of our experiment we will not pursue
this any further unless required further illumination on the research we
are reporting here. The domain of an application is not only a semantic
aspect of math operations, it is also a redefinition of optimisation goals
and techniques as we can drive the improvement on at least three fronts:

e precision
e execution time

e memory consumption

4Since we are working with a strongly object oriented language we do not have the
ability to define single functions.

5In the real world the implementation of instance function uses the code of static opera-
tors, if this can solve code maintainability issues we will be facing a penalty at run-time as
an instance and a static call must be performed.
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4.1.1 Optimising Vector Algebra

The code we presented in Listing 3.2 is generally used when 3D meshes
are generated to compute a normal vector for every triangle of the mesh
(see 4.2) and, usually, it can be source of performance problems in a VM
scenario. While executing the small code snippet three vectors are cre-
ated for every triangle adding pressure on the managed heap (since our
vector is a class and not a structure).

In some of the experiments we ran at Realtime Worlds we observed
that the temporary vector creation was adding an overhead of almost 100
MB of memory allocation trashing Geng and thus raising the thread pri-
ority of the GC eventually even above the mesh creation thread priority.
The optimisation realised in Listing 3.3 has multiple objectives

e Mimic struct behaviour so that access to the point components is
inlined later by the JIT

o Avoid temporary vector creation in order to produce no additional
stress on the memory manager and GC

o Avoid external calls so that the loop execution can be made as fast
as possible

As we can see from Figure 4 and Figure 5 graphs we are increasing the
.maxstack directive since the snippet in Listing 3.2 has a value of 2 and
the code in Listing 3.3 increases it to 3 but this resource usage is paid on
the method working set and it is constant over the entire loop and not
related to the number of triangles of the mesh.

The substitution we performed behaves like a classic inlining tech-
nique at first sight but goes further than that: in the C# snippet List-
ing 3.3 it is evident that the calls to Cross and Normalise are removed,
inlining the IL body of the two invoked ones, but we are performing even
more than mere inlining. The domain is known (algebra over vectors and
points) so the code optimisation also inlines the components® avoiding
object creation at the small cost of new local variables of type £1oat32.

®This behaviour can be observed at JIT time when dealing with st ruct types.
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Figure 4: Stack for original code

< 4
2 3
4 2
g
mOHHH SEalS

01 2 3 45 6 78 9101112
Instruction

This technique is not a silver bullet, attention to the stack size must
be paid since the size of the stack frame is extremely relevant in recursive
calls (when they are not tail calls). Table 1 shows the result we obtained
with the code optimisation was used in iterative loops over 1000000 tri-
angles.

In this scenario the query in Listing 4.1 is executed to find where the
pattern is used, the code in Listing 4.13 will return a match and the extru-
sion over it will capture the point local variables loading as the fragment
surrounding (signature). The programmer has already provided the op-
timised fragment as he knows the domain specific goal of the optimisa-
tion. Both fragment signatures match so the surrounding of the query
result are used to populate the bindings of the optimised snippet before
injecting. The transformation is so expressed as

» (Y(OptimisedNormal), replace, A(method, NormalQuery))

Listing 4.1: Normal Computation Query

Vector3Df NormalQuery (Point3Df a, Point3Df b, Point3Df c) {
Vector3Df el = b - aj;
Vector3Df e2 = ¢c - a;
Vector3Df n = Vector3Df.cross(el,e2);
n.Normalise () ;
return n;
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Table 1: Experiment result for triangle normal computation with 3000000
vertices over 1000 test runs

Original Optimised
Code length 13 IL 109 IL
.maxstack 2 3
Execution time 180 ms 40 ms
Allocation 24436.9921875 MB/s 11884.66796875 MB/s
% Time in GC 27.1% - 5.8% 9.7% - 3.1%

Figure 6: Triangle normal computation
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Figure 7: Vector allocation hit in triangle normal computation
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Figure 8: Triangle normal computation with smart inlining
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4.1.2 Expression Trees Manipulation

Expression trees can be evaluated and optimised, the next experiment
focusses on optimising code for matrix multiplication as to avoid matrix
creation obtain a constant memory allocation. The pattern to be identi-
fied in this scenario is not simple the occurrence of an operator, we are
looking now for a repetition of the operator with a number of occur-
rences greater than a threshold. We are about to show an experiment we
ran on matrix multiplication, multiplication is the most frequent matrix
operation in graphics and geometry as it is used to chain transformation
along a kinematic chain (or model hierarchy).

Code as Listing D.3 triggers a temporary matrix creation at every
multiplication operator occurrence and thus potentially leads to Gen0
thrashing in the GC; such problems can be avoided by transforming List-
ing D.3 in Listing D.4 obtaining the results shown in Table 2. Despite of
the large increase in instructions (optimised version is almost 20 times
the size of the original code) we observe a 300% boost in performance.
Both codes use the same accessor for extracting and setting the compo-
nents of every matrix which leads us to the conclusion that the improve-
ments come from the reduced time spent in creating temporary matrices.

The optimisation introduces the cost of creating an array for contain-
ing references to all of the matrices involved in the expression and that
is the reason why we search for patterns with more than 2 matrices in-
volved. We look for matches in the code where the optimisation leads to
a real performance gain; the stack size is changed as well and it increased
from two to six (see Figure 13 and Figure 14 to have a better view of the
impact of the transformation).

As the results show the original code spends 6.768% of 0.0016 ms
(7.2% of the 94% spent in multiplication, as shown Figure 9)in construc-
tor execution and it will increase the stress on GC and allocation, while
the optimised code spends only 2.6% of 0.0005 ms (Figure 10) in con-
structor execution. Of course the optimised version is more demanding
at JIT time but the cost is amortised over the number of executions.

There is a further peculiarity about expression tree matching: most of
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the optimisations we were testing can be performed at compile time but
the code for both the normal computation and the matrix multiplication
can be boosted further by hardware dependant optimisations like SIMD
instructions(MY02) or multi core leveraging variants.

Table 2: Experiment result for matrix multiplication with 11 matrices over
1000 test runs

Original Optimised
Code length 15 IL 247 1L
.maxstack 2 6
Execution time 0.0016ms  0.0005 ms

Figure 9: Matrix Multiplication

TestCode.MatrixMultiplication

AR 111 Hit count 1,000
Matrixf.op_Multiply 94.0%
[T ] Hit count 10,000
Matrixf.ctor 7.2%
[ Hitcount 10,000

As clearly visible from Figure 11 and Figure 12 the 1000 iterations pro-
duces 10011 hits on the Matrix constructor code for the original approach
and only 1011 for the optimised code, 11 hits are due to the 11 matrices
constructor so they are irrelevant to the goal of the experiments. What is
worth more attention is that the original approach has a resource usage
proportional to the length of the expression while the optimised version
is constant in resource consumption.
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Figure 10: Matrix Multiplication with smart inlining
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Figure 11: Matrix allocation hit
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Figure 12: Matrix allocation hit after optimisation
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The transformation for matrix multiplication is therefore expressed
as
» (MulOptFragment, replace, As(m, MatrizMul))

where MulOptFragment has the code of Listing D.4 from line 2 to line 43
and the signature MatrixF (Matrixf[]), a Binding Array Operator is
used to bind the input parameter with an array initialised with the ma-
trices involved in the operation surrounding (or the code responsible for
their load on the stack since bindings can be composed).

The MulOptFragment is computed from the fragment returned from
the

A (m, MatrizMul)

query over the fragment m that represents an entire method body, the
query is similar to the one presented in Section 3.1.5.

It is possible to optimise complex expression trees (see Chapter 10 of
(CE00) for more details), if we have expressions such as

a+b+ct+d+(ex fxg)+h+a+b+c+..

matching the sum sequence we will obtain a fragment with six elements
in the signature (the extrusion operation will promote only unique values
to the signature):

® a

L))

eex fxg
o h

Due to the expression a+b+c occurring twice it will be pre computed
and the final code will be similar to Listing 4.2

102



Figure 14: Stack for MatrixMulOpt 1 of 3
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Figure 15: Stack for MatrixMulOpt 2 of 3
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Figure 16: Stack for MatrixMulOpt 3 of 3
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Listing 4.2: Expression Optimisation

W N =

Matrx m =
Matrix n =
Matrix res

a+ b+ c;
e x £ g;
=m+d+n+ h + m;
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4.1.3 Articulated problem with Object Oriented Bound-
ing Box Computation

The experiments illustrated so far are extremely punctual and while they
achieved the goal they are simply building blocks for more articulated
portions of code. More interesting and significant examples can be pro-
vided by a function computing an Object Oriented Bounding Box (OOBB)
for a section of geometry.

An OOB for a 3D mesh is the minimum volume box containing the
mesh and aligned with its principal axis, such a structure is important for
rendering culling (see Appendix C) and for collision detection in physic
simulation.

Listing 4.3 shows the computation of the OOBB using the math li-
brary.

Listing 4.3: OOBB Computation

Vector3Df up; //Y axis
Vector3Df dir;//Z axis
Vector3Df right;//Xaxis
Point3Df baricentre = Geom.ComputeBaricentre (m.Vertices);
Alg.ComputeMajorAxis (m.Vertices, out right, out up, out dir);
float w,h,d;
w = float.Max;
h = float.Max,
d = float.Max;
float W,H,D;
W = float.Min;
H = float.Min;
D = float.Min;
foreach (var vertex in m.Vertices) {
Point3Df p = vertex - baricentre;

W = Math.Max (W, Math.Abs (p.DotProduct (right));
H = Math.Max (H, Math.Abs (p.DotProduct (up)));

D = Math.Max (D, Math.Abs (p.DotProduct (dir)));

w = Math.Min(w, Math.Abs (p.DotProduct (right)));
h = Math.Min(h, Math.Abs (p.DotProduct (up)));

d = Math.Min(d, Math.Abs (p.DotProduct (dir)));

}

OOBBox box = new OOBBox (baricentre,
w! HI DI
w, h, d,
right, up, dir);
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The loop (line 14 to line 22) presents a pattern not too different from
the optimisation in Section 4.1.1. The optimisation we will adopt here
as a result is very similar to the one shown before: we will avoid the
creation of the point p (line 15) and the dot product computation will be
inlined.

The interesting pattern in this example is represented by line 4 and
line 5. The code for baricentre calculation is already optimised and it is as
in Listing D.5, there is no temporary point creation and the loop is done
with a foreach statement over a Point 3Df array so that no boundary
check is performed”. In the case where the baricentre calculation was
not optimised already we would apply a query to find the pattern in
Listing 4.4.

Listing 4.4: Baricentre Query

Point3Df BaricentreQuery (Point3Df[] vertices)
{

Point3Df b = new Point3Df ();

foreach (var v in vertices)

{

b += v;

}

b /= vertices.Lenght;

return b;

The implementation of the ComputeMa jorAxis method can be found
in Listing 4.5. The method call at line 6 is something we wish to investi-
gate further.

Listing 4.5: Major Axis Extraction

public static void ComputeMajorAxis (Point3Df[] vertices,
out Vector3Df right,
out Vector3Df up,
out Vector3Df direction)

Matrix m = ComputelInertiaTensorMatrix (vertices);
Math.EigneenVectors (m,

out right,

out up,

7This is another optimisation that can be performed to help the JIT in creating more
efficient native code.
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out direction);
right.Normalise () ;
up.Normalise () ;
direction.Normalise();
Alg.OrderWithWorld (Matrix.Identidy,

out right,

out up,

out direction);

Inertia tensor is a matrix defined as

Soimi(yP 4+ 27) = mitiyi =D Mz
H=| =Y, myz; Y ,mi(z2+a?) — > MYz
— > % =S mizys Y ma(ad + 7))

or in a more compact form

X
H=1la
b

o <o
No o

where
X = "mi(y} +27)

3

V= Y m )

Z:Zmz(x?—l—yf)

K2

a=- E miTiYi
i

b=— E m;x;z;
i

c= - E miziYi
i

The code to compute the inertia tensor is therefore as shown in List-
ing 4.6 where the m; term is set to 1.
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Listing 4.6: Inertia Tensor Computation

1| public static Matrix ComputeInertiaTensorMatrix (Point3Df[]
2| {

3 float X,Y,Z,a,b,c;

4 foreach (var vertex in vertices)

5 {

6 float x = vertex.X;

7 float y = vertex.Y;

8 float z = vertex.Z;

9 X += y*y + z*z;

10 Y += z%z + X*X;

11 Z += X*xxX + y*y;

12 a += - (x*y);

13 b += - (xxz);

14 c += —(z*y);

15 }

16 return new Matrix(X,a,b,a,Y,c,b,c,2);
17| }

vertices

As we can see the inertia tensor and the baricentre computation will be

performing a loop over the vertices of the mesh. Since both code perform

a readonly access on the vertices collection we want them to share one
foreach loop. Executing A(m, Q01), where m is the fragment containing
the code in Listing 4.3 and Q01 is the query in Listing 4.7, we will obtain

a match for
e ml at Line 4
e m2 at Line 5

e m3 from Line 14 to Line 22

When the matches are extruded the surroundings of m2 and m3 will show

a RAWS condition between them, the same behaviour appears also be-

tween ml and m3.

Listing 4.7: Query

1| delegate void pIt (ICollection<Point3Df> p);

2

3| delegate wvoid pFunc(ICollection<Point3Df> p);
4

5| void Q01 (ICollection<Point3Df> pI,plt it) {

8Read After Write.
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6 it (pI);

71}

8

9| void Q02 (ICollection<Point3Df> pI,pFunc pf) {
10 foreach (var p in pI) {

11 pf (p)
12 }

We are interested in all the matches of Q01 that do not have depen-
dencies between them, those matches are potentially forearch loops of
calls to functions which perform loops over the collection of Point3Df
and we want to recombine them so that we can minimise the number of
iterations over the collection.

A(ml1,Q02)and A(m2,002) will not produce any match but A(m1,001)
and A(m2,001) will capture the calls to Geom.ComputeBaricentre
and Alg.ComputeMajorAxis in the surrounding of the matches.

The process will be repeated until we find at least two distinct matches
for 002, once this condition is met we can proceed with the transforma-
tion replacing line 4 and 5 of Listing 4.3 with a new fragment FELoop.

FELoop is the result of « (A(Q02,002)) where the parameter pF will
by bound with the fragment obtained from the operationmBaricentre+
mInertia, where the + operator combines by appending the fragments
that matched Q02 over the bodies of

e Geom.ComputeBaricentre
e Alg.ComputeMajorAxis

The FELoop fragment has the code of Listing 4.8 and it will be in-
jected after being combined with the remaining code of the method A1g. Com-
puteMajorAxis replacing the method calls and, finally, obtaining the
code reported in Listing 4.9.

Listing 4.8: Fore Each Loop Fragment

1| float X,Y,%,a,b,c,bx,by,bz;

2| float count = vertices.Count;

3| foreach (var vertex in vertices) {
4 // Baricentre

5 bx += x / count;
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by +=y / count;
bz += z / count;

// InertiaTensor

float x = vertex.X;
float y = vertex.Y;
float z = vertex.Z;
X += y*xy + z%z;

Y += zxz + X*X;
Z += xXxX + y*y;
a t= —(xxy);
b += —(x*xz);
c += —(z*y);

}

Point3Df Baricentre = new Point3Df (bx,

by, bz);

Matrix InertiaTensor = new Matrix(X,a,b,a,Y,c,b,c,2);

Listing 4.9: Loop usage optimisation

Vector3Df up; //Y axis
Vector3Df dir;//Z axis
Vector3Df right;// X axis

float X,Y,%Z,a,b,c,bx,by,bz;
float count = vertices.Count;
foreach (var vertex in vertices) {
// Baricentre
bx += x / count;
by += y / count;
bz += z / count;

// InertiaTensor

float x = vertex.X;
float y = vertex.Y;
float z = vertex.Z;
X += yxy + zxz;

Y += zxz + X*X;
Z += XxX + y*y;
a += —(x*y);
b += —(xxz);
c += —(zxy);

}

Point3Df Baricentre = new Point3Df (bx,

by, bz);

Matrix InertiaTensor = new Matrix(X,a,b,a,Y,c,b,c,2);

Alg.EigneenVectors (InertiaTensor,
out right,
out up,
out dir);

right .Normalise () ;
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up.Normalise () ;
direction.Normalise();
Alg.OrderWithWorld (Matrix.Identidy,

out right,

out up,

out dir);

float w,h,d;

w = float.Max;

h = float.Max,

d = float.Max;

float W,H,D;

W = float.Min;

H = float.Min;

D float .Min;

foreach (var vertex in m.Vertices)

Point3Df p = vertex - baricentre;

= Math.Min
= Math.Min

, Math.Abs (p.DotProduct (up)));
, Math.Abs (p.DotProduct (dir)));

W = Math.Max (W, Math.Abs (p.DotProduct (right)));
H = Math.Max (H, Math.Abs (p.DotProduct (up)));

D = Math.Max (D, Math.Abs (p.DotProduct (dir)));

w = Math.Min ( )));
h (

d (

H
D
w, Math.Abs (p.DotProduct (right
h
d

}

OOBBox box = new OOBBox (baricentre,
W! HI Dl
w, h, d,
right, up, dir);

Now that the code is optimised with respect to memory allocation
and loop iterations there is another step that we can perform: if the hard-
ware is a multi core processor we can replace the foreach blocks with
the extension method Parallel.Foreachof System. Threading names-
pace. Before proceeding we need to leverage the code generation capa-
bilities of .NET to correctly address the concurrent access to the variables
written in the loops.

We are using increment operators in the first loop while the second
uses the Math.Max and Math.Min to compare the store value and the
current, this in not something that we want to resolve using Inter-
locked methods as they will cause a serialisation of every thread. We
need to use the local storage of the thread and combine only upon the
exit of each thread.

The Parallel.Foreach method lets us achieve the goal but allows
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for only one object to be returned forcing an aggregation, this means that
we need to create new types to contain all the values we need to return.
In the first loop we will create the class in Listing 4.10 while the second
loop will use the one in Listing 4.11, those classes are created using the
surroundings of the fragments that A(mOtp, 002) matched against List-
ing 4.9.

Listing 4.10: State object for Baricentre and InertiaTensor Loop

public class SharedStateOl {
public float bX { get; set; }
public float bY { get; set; }
public float bZ { get; set; }

public float X { get; set; }
public float Y { get; set; }
public float Z { get; set; }
public float a { get; set; }
public float b { get; set; }
public float c { get; set; }

Listing 4.11: State object for extents loop

private class SharedState02 {
public float W { get; set;
public float D { get; set;

}
}
public float H { get; set; }
public float w { get; set; }
public float d { get; set; }
public float h { get; set; }

public SharedState02() {
w = float.MaxValue;

= float.MaxValue;

= float.MaxValue;

float .MinValue;

= float.MinValue;

= float.MinValue;

U =a0
I

Once the state objects are generated we need to modify the foreach
loops with the call to Parallel.Foreach methods and the code frag-
ments must be extruded to create the delegates for the body. The code
of the body is also used as a template to generate the delegates for the
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accumulation step of the loop using a lock statement. Listing 4.12 shows
the final stage of the optimisation process where all the fragments are
correctly bound to the state objects.

Listing 4.12: Parallel version

Vector3Df up; //Y axis
Vector3Df dir;//Z axis
Vector3Df right;// X axis

var acc0l = new SharedStateO0l();
Parallel.ForEach<Point3Df, SharedStateOl> (points,
() => new SharedStateOl (),
(p, state, it, acc) => {
float x = p.X;
float v = p.Y;
float z = p.7Z;

float count = (float) (points.Length);

acc.bX += x / count;

acc.bY += y / count;
acc.bZ += z / count;
acc.X +=y * y + z * z;
acc.Y += z x z + X * X;
acc.zZ += x * x + y * y;
acc.a +t= —(x * y);
acc.b += —(x * z);
acc.c +t= —(z * y);

return acc;
}l
(local) => {
lock (acc01l) {
acc0l.bX += local.bX;
acc0l.bY += local.by;
acc0l.bZ += local.b?Z;

acc0l.X += local.X;
acc0l.Y += local.Y;
acc01.Z += local.z;

accOl.a += local.a;

accO0l.b += local.b;
accO0l.c += local.c;
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Point3Df baricentre = new Point3Df (acc0l.bX, acc0l.bY, acc0l.bZz);
Matrix m = new Matrix(acc0l.X,

acc0O0l.a,

acc0l.b,

accO0l.a,

acc0l.Y,

accOl.c,

acc0l.b,

accOl.c,

acc01.2);
Alg.EigneenVectors (m, out right, out up, out dir);
right.Normalise () ;
up.Normalise () ;
dir.Normalise () ;
Alg.OrderWithWorld (Matrix.Identity, out right, out up, out dir);
var acc02 = new SharedState02();
Parallel.ForEach<Point3Df, SharedState02> (points,

() => new SharedState(02 (), (vertex, state, it, acc) => {
Vector3Df p = vertex - baricentre;

acc.W = Math.Max (acc.W, Math.Abs (p.DotProduct (right)));
acc.H = Math.Max (acc.H, Math.Abs (p.DotProduct (up)));
acc.D = Math.Max (acc.D, Math.Abs (p.DotProduct (dir)));
acc.w = Math.Min(acc.w, Math.Abs (p.DotProduct (right)));
acc.h = Math.Min(acc.h, Math.Abs (p.DotProduct (up)));
acc.d = Math.Min(acc.d, Math.Abs (p.DotProduct (dir)));

return acc;
s
(local) => {
lock (acc02) |
acc02.W = Math.Max (acc02.W, local.W);
acc02.H = Math.Max(acc02.H,local.H);

acc02.D = Math.Max(acc02.D, local.D);
acc02.w = Math.Min(acc02.w, local.w);
acc02.h = Math.Min(acc02.h, local.h);
acc02.d = Math.Min (acc02.d, local.d);

}
1)

OOBBox box = new OOBBox (baricentre,
acc02.W, acc02.H, acc02.D,

acc02.w, acc02.h, acc02.d,

right, up, dir);

Table3 reports the results we obtained with a substantial performance
boost, the parallel version is executed on a quad core processor and the
System.Threading namespace is responsible to allocate the correct
number of threads over the available cores. It is important to notice that
we kept the original algorithmic process which implies that all the per-
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formance we gained is due to fewer allocations, loop sharing, and simple
multithreaded support.

Table 3: Execution times for 1000000 triangles with 1000 iterations

Original Optimised Optimised parallel
Execution time (ms) 394.93 233.87 179.79

The final version of the code executes 216.7% faster than the original
code with the ability to adapt to the current hardware configuration and
computational load of the machine. This is an important result as the
debug process would not have been trivial on the parallel variant of the
algorithm, even with sophisticated debugging facilities.
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4.1.4 Considerations

The optimisation we introduced so far are not meant to just rewrite the
math library, they are driven by specific code provided by the program-
mers with specific knowledge of the application domain. There can be
portion of the application that could not be improved by inlining since
this could increase the size of the method too much and so be ignored
by optimisation rules of the JIT. Since our example are obtained with IL
modified by other IL execution rather than being performed by a com-
piler, metadata can be used to tag code that want to perform optimisa-
tions.

Listing 4.13 shows a snippet of C# where the method is tagged with
a custom attribute which specifies the intent of the programmer to opti-
mise the code.

Listing 4.13: Method tagged for optimisations

[Optimisation (typeof (ReduceVectorAllocation)) ]
public void CreateMesh ()
{

// create triangles and their normals

Vector3Df el = pl - pO0;

Vector3Df e2 = p2 - pO0;

Vector3Df n = Vector3Df.cross(el, e2);
n.Normalise () ;

The attribute is used to add to the strategy intended for optimisation
to metadata of the method. This can be used in conjunction with other
optimisations as the type and the assembly can provide other optimisa-
tions with a broader scope. This way the method is selected for optimi-
sation and the ReduceVectorAllocation strategy will be used first,
subsequent stages can apply other optimisation to the new CreateMesh
method before it is processed by the JIT.

Although these results are compelling we must further consider the
outcomes of these experiments. The code without inlining will be com-
piled quickly by the JIT and the code of the mathematical library will be
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compiled only once so the Table 4 shows the number of times a function
of the mathematical library must be compiled.

Table 4: JIT executions

Original Optimised

Usage number (unique methods) 7000 7000
Inlined calls 0 3000
JIT 1 3001

The Table 4 shows how many times the JIT will go over the code of
a function F of the mathematical library per unique method using it at
least once in its body, this result only impacts the application bootstrap
and thus does not affecting run-time performance. To reduce the over-
head in bootstrapping it is possible to cache the native image and avoid
compilation in future executions. The experiment concerning the com-
putation of triangle normals shows a speed up of 640% when inlined,
the result is even more important if we look at the time spent in execut-
ing the Vector3Df constructor.

The optimised version spends only 12.5% of its execution time in cre-
ating new vectors while the original code uses 28% of the execution time
(which is 6.4 times greater already) in constructor execution. This also
impacts the GC behaviour as we can see from Table 1 : 25% of the orig-
inal code execution time is spent in the GC because of the amount of
overhead introduced by temporary vector creation.

We referred to our transformation as smart inlining as it behaves dif-
ferently to inlining in C/C++. In C/C++ the inline keyword is used to
suggest to the compiler to inline every call to the function while, in our
approach, inlining is specified at usage points. To move the inlining/op-
timisation on the caller means that code bloating can be avoided and
that the programmer is aware of the effect of the optimisation. This helps
during debugging and code maintenance as the optimisations can be dis-
abled without recompiling the entire application.

In the latest example the transformation is quite articulated but it
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is worth mentioning that it is not performed by a generic optimisation
strategy. When coding the algorithms we kept them factored for a good
maintainability and debugging, this is the most important step in soft-
ware engineering for companies where the code base is the main asset or
product. The programmers, however, knew what patterns are likely to
occur and how to improve them by shuffling and translations.

With our framework they were able to write code to look for specific
behaviours and to provide efficient refactoring for them. It would have
been of no use to develop using low performance algorithms and then to
switch to more sophisticated alternatives as this could alter other aspects
of the applications behaviour. The goal was exactly to “improve existing
functionality” instead of debugging a prototype and shipping something
different.

119



4.2 Procedural content Design by means of Meta-
Programming techniques

Procedural content is content which can be computed from a function
and a set of parameters. Digital Content is created through tools called
DCC (Digital Content Creation tool). Procedural content is widely dif-
fused in all the scenarios where community (or user) created content is
a component of the game play (APB?, Spore'?, Little Big Planet'!) as the
immediate benefit gained by having procedural content is a huge sav-
ing in storage. Table5 shows a quick sample of storage usage to store
a cube and the compression rate achieved with procedural content is
quite high. Data compression is realtively important as it will save both

Table 5: Data storage need for a 3D cube

Procedural Static
Position 3 float 3 float
Size 1 float 0 float
Vertices 0 float 72 float
Normals 0 float 72 float
UVs 0 float 48 float

Total Size 16 Bytes 780 Bytes

storage and bandwidth (crucial element in network streaming scenar-
ios), saving space has another implication for games, it can affect the
performance and the user experience. In (CCH09) a technique based on
AQP and annotations (similar to (CCC05)) is used to model procedural
content as combination of code and parameters, the technique has been
revisited since annotations can be removed as stated in Section 3.1.5. We
will revisit the procedural wall example presented in (CCH09) giving
more details about he content pipeline and the stages of code generation.

9Realtime Worlds APB www . apb . com
0EA Spore http://www.spore.com/ftl
11Media Molecule Little Big Planet http://www.littlebigplanet.com/
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During the content design an artist uses a set of software and tools
tailored for the task, both DCC tools and applications share a set of sig-
natures used to express data generation procedures'?. At the DCC stage
the content is created and represented as a data flow where computing
and data nodes are object defined in the application type system. Such an
approach is quite common in DCC tools and Figure 17 shows the object
model behind 3D content in Maya'®.

Figure 17: Maya Hypergraph for content representation
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Analysing the procedural wall in Figure 18 we can see that is is gener-
ated using a PolyLine entity to model the path (Figure4.20(a)), aPoly-
Line object to express the profile (Figure4.20(b)), then a Ext rude func-
tion creates the wall geometry (Figure 4.20(c)). Instead of using the final
mesh as an output of the DCC a class will be generated and it is equiv-
alent to Listing 4.15 where the class ProceduralContent provides the
contract as described n Listing 4.14.

To complete the code in order to create the final style of the wall

12Profile extrusion is one of the generation procedures and others are CreateBox, Create-
Sphere, and so on.

13Maya isa DCC tool from Autodesk (http://usa.autodesk.com/adsk/servlet/
index?id=7635018&siteID=123112),itis largely used in video game content creation
and digital movies.
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Figure 18: Procedural Wall

Figure 19: From a polyline to Complete Wall.

(a) polyline segment (b) profile to be extruded  (c) extruded polygon (d) cylindrical pole (e) lamppost

(f) wall section (g) full wall
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the Create method will be as Listing 4.16; the final output of the DCC
will be the ProceduralWall class and the Path data while all the other
members of the class will be initialised in the initialise method. The
class we have just created is in Editable form as the code is not optimised,
every call to generator function is explicit and every input is represented
by members of the class itself. This is done in order to allow for recre-
ation of the object graph and state inside the DCC tool for further modi-
fications.

When stored in the game data (or game servers in a network stream-
ing scenario) the ProcedurallWall class is contained in a stand alone
assembly, without any other content generators, and versioning is ap-
plied. The application will use only use the latest versions and the Path
definition is loaded separately. Separation between state and code allows
the code to be cached and used against all the Wall entities loaded. The
first time a content generator is loaded it is transformed in a new class
where the calls to generator functions are inlined and optimisations as
described in 4.1 are applied to the new Create method.

Class members not marked with the input attribute (see line 5 in
Listing 4.15 and line 5 in Listing 4.16) are closed in the Create method as
they are used as constant values in the algorithm and so CLR value types
are moved from the managed heap onto the stack. Generator functions
are represented in the code library with more than one implementation
the choice of which to use is left to the application as it can have hardware
or user setting dependent behaviour (GPU code, multicore, etc). Closing
values alos has an impact on the Initialise method as the body of
this method can be reduced once we fix numeric constants (like the float
used to computed a point along a segment).

The run-time code generation in the content scenario is quite impor-
tant since it is not possible to model upfront all of the possible content en-
tities that the user will interact with. This is more evident when content
can be edited and created after the application release or deployment.
Some video games use dynamic languages and interpreters to deal with
the late binding of specific implementations for content generation code
howver this leads to execution overhead and potential code injection se-
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curity issues. Other benefits of the separation between content data and
content generators in network streaming scenarios are

o if only content data is changed content generators do not need to
be downloaded and generated again

e if the content generator is updated the content data cached is still
valid

Listing 4.14: Procedural Content Contract

public class abstrc ProceduralContent

{
public abstract void Initalise();

public abstract Mesh Create();

Listing 4.15: Procedural Wall Class

public class ProceduralWall : ProceduralContent
{

public PolyLine Profile {get;set;}

[Input]

public Polyline Path {get;set;}

public virtual void Initalise()
{

// create  Profile and Path objects
}

public virtual Mesh Create()
{

return Extrude (Profile, Path);

Listing 4.16: Create method

public class ProceduralWall : ProceduralContent
{
public PolyLine Profile {get;set;}
[Input]
public Polyline Path {get;set;}
public float CylinderRadius {get;set;}
public float CylinderHeight {get; set;}
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public int CylinderSteps {et;set;}
public float LightRelPos {get;set;}

public Vector3f LightOffset {get;set;}

public virtual void Initalise()

{
// create  Profile and Path objects

// set radius, steps, and height for cylinder

// set rel position and offset for light

}

public virtual Mesh Create ()
{

Mesh m = Extrude (Profile, Path);
foreach (var Vertex in Path)
{

Mesh ¢ = Cylinder (vertex,

CylinderrHeight,
m.Append (c) ;
}

foreach (var Segment in Path)
{
Point3f pos =
+ LightOffset;
Mesh 1 =
m.Append(l) ;
}

return m;

CilinderRadius,
CylinderSteps);

Segment .GetPoint (LightRelPos)

CreateLight (pos) ;

In (CCHO09) we stated that code as representation for content can help
in content simplification so to achieve Level Of Detail (LOD) creation
(PS97); this is a very sensitive task as automatic data reduction appro-
aches can lead to unpleasant results on the screen. Within our framework
it is possible to address the problem with two strategies

o custom definition of LOD as new generators
e custom strategies for generator simplifications

While adopting the former strategy we simple reiterate the process
for generator creation the latter is more interesting for our experiments.
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At the same time the DCC user is creating the wall definition the user
can also define simplification methodologies for every aspect of the wall
creation. For example the content creator can indicate in the DCC that
the action (Fragment) in Listing 4.17 can be ”“simplified” by means of
substitution with the action in Listing 4.18.

Listing 4.17: Extrude fragment

Mesh m = Extrude (Profile, Path);

Listing 4.18: Extrude simplification fragment

Mesh m = new Mesh({();
float height = MaxY (Profile);
foreach (var Segment in Path)
{
m.Append ( Quad (Segment.PO,
(Segment .P1 + new Vector (0,height,0)) );

So we will end with having a set of Simplificator objects that will
perform

» (ExtrudeSimplifiedFragment, replace, A(WallAssembly, ExtrudeFagment))

to simplify extrude operations in WallAssembly rewriting the procedu-
ral wall class to obtain an LOD generator. Line 2 in Listing 4.18 will be
optimised further as the Profile object is not an input of the wall gen-
eration and this will be the only line where it is used. The code will be re-
placed with the value of the computation at evaluation time for the new
method body fragment. Procedural Content Generation is particularly
interesting as it requires multi staging capabilities and can be schema-
tised as the procedure in Listing 4.19.

Listing 4.19: Multistaging in Procedural Content Generation

// Create the target assembly

var targetAssembly;

// create the Lod0

var currentLod = Generate (description);
targetAssembly.Add (LodO0) ;

for (int i = 1; i < maxLod; i++)

{
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// Simplify the generator
currentLod = Simplify (currentLod);
// Add the new genetator to the assembly
targetAssembly.Add (currentLod) ;
}
// Now perform optimisations
Optimise (targetAssembly)
// Now finalise the assembly on the disk
targetAssembly.Write (path) ;

In 4.2.1 we want to show a peculiar content generation problem, ter-
rain generation. This involves a slightly different approach than the one
applied to more general procedural content as shown earlier in this sec-
tion.

4.2.1 Procedural terrain

Terrain generation and rendering is a quite interesting scenario due to
the fact that it must be always present in the scene and the data needed
for high quality images can grow quite large. The basic idea is to use a
grid tessellated as triangles, every vertex is raised according to a value
read from an height map and finally a texture is used to apply the colour
information to the mesh (see Figure20).

The rendering technique in interactive usage of 3D terrain is usually
implemented having a fixed grid while the height map and the texture
will slide as the camera moves around the scene, it is easy to understand
that the height map sliding requires the Y component of every point to
be updated and this means geometry creation. The geometry creation is
avoided using a multi stream technique which is realised with the algo-
rithm in Code 4.20.

Listing 4.20: Algorithm for terrain mesh generation

create the grid mesh with Y values set to O
while the camera moves

{

slide the height map

create an height stream with Y values only

}
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Figure 20: Wireframe rendering of 3D terrain
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Then the rendering program will be adding the height stream values to
the grid mesh Y values in the rendering pipeline. The code to compute
the height values is executed in the logic update loop so that code can
leverage the cores on a machine by partitioning the height map in slices.
This kind of optimisation can be performed only at deploy time to prop-
erly compute the number of slices and threads to be used. The same
optimisation can be applied to the LOD computation.

LOD for terrain can be computed without the use of extra memory to
store them if the grid mesh is treated as an indexed primitive. Indexed
primitives are composed by only the unique vertices of the mesh and the
triangle tessellation is expressed as an array of indices. The quad in Fig-
ure 21 is made of two triangles and that means six vertices if represented
as a plain mesh, if represented as an indexed primitive it will be made of
four vertices and six indices.

We can then obtain LODs for grid mesh simply dropping indices and
sharing the same grid mesh vertices among all the LODs (see Figure 22),
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Figure 21: Triangulated Quad

Indexed Quad Plain Quad

that means that when the camera moves a new set of indices must be
computed if a LOD definition is dropped. The LOD dropping computa-
tion is performed in the logic update step and therefore the same consid-
erations we used for the height stream computation apply here.

Figure 22: Triangulated Quad with two LOD definition
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For terrain the information about normal vectors is not stored in the
vertex, that is for the grid mesh used to represent the terrain is never
transformed (both position and normal are already in world space). We
can therefore store the normal data in a normal map texture and access
it later at rendering time (this help in reducing the number of unique
vertices). The implications of such a choice are quite relevant:
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¢ Normal maps are constant in size and shared amongst all LODs
o Lighting will be consistent while rendering different LODs

As we described since here we have data that can be loaded just once
in the application and shared amongst multiple LODs:

e NormalMap
e HeightMap

The main problem comes when dealing with the textures used for the
colour information since they must have mipmap levels (Wil83) for sam-
pling issues (ali) and this doubles the size of the file which is also further
influenced by the coverage we want to achieve mapping image pixels to
the real size of the terrain. What is more important to notice about ter-
rain textures is that is possible to generate HD images using high quality
piece of images to create them, so if we have a good set of grass, soil,
stones, sands images we can reproduce with a good approximation any
terrain type.

Using a texture splatting technique it is possible to create the land
textures using a finite set of high quality samples and a composition de-
scription; in Figure 23 a linear combination of samples is used to create a
new image using another image as coefficient for the combination. This
approach is just to illustrate quickly the basic concept behind the solu-
tion but is not what we are aiming for as it requires a large portion of
space (storage and bandwidth) to be represented.

The approach in (And(07) shows an implementation for texture gener-
ation accelerated by the video card, this is beneficial as the newly created
texture is already in video memory and thus it does not require any mem-
ory transfer and is immediately available for rendering of the terrain.

We target a scenario where content can be manipulated so we repre-
sent the final texture as a set of bi dimensional polygons with a set of
generators id associated. Every generator id refers to one or more im-
age source to provide variation in the final image. The polygons used to
describe the image partitioning have coordinates (x,y) where = € [0, 1]
and y € [0, 1] as they must be mapped inside the space defined by every
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Figure 23: Texture splatting via linear combination
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terrain fraction (assuming they are square shaped). The content creator
now can change the look of a terrain editing the polygons defining the
composition boundaries creating a data representation compacted and
significantly smaller than the final texture.

On the program side the texture generation occurs only at terrain
loading and we can have different strategies to face its computation:

e using sequential code one texture is computed at time

o using graphics accelerators to minimise the transfer and use k frames
to create £ terrain textures

e using a multicore approach (since there is no race condition) and
build k textures at once and then load them into video memory

the best technique for any given scenario can be only decided at run time
as the choice involves both the hardware configuration and user prefer-
ences. In this example the choice will impact any of three separate areas
of the code generation. Table 6 is a quick recap of terrain generation pro-
cess.

To decide which is the right combination of implementations is left
to the application itself: once the user express the desired behaviour of
the application the hardware configuration is used to compute the best
implementation combination to achieve the users desire.

This makes the configuration step easier removing the need for the
user to provide parameters for a lot of low level details about which fea-
tures to enable and which to disabled. Another factor to be computed is
the background activity of the system as many other services and appli-
cations can be running (for example: antivirus, email clients, download
managers, etc.).

On a very busy system the application will prefer GPU based imple-
mentations!* to achieve performance goals because such a choice will
minimise the interleaved access to resource shared with other processes

4This technique is becoming a common practice and a standard even is OS software.
Apple provides facilities through the OpenCL framework so that a GPU can help CPU
even if task not graphics related.
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(as cores and memory). This configuration adaptation is not just a de-

ploy time operation as the software needs to collect enough information

to profile the user “behaviour” regarding the computational pressure on

the hardware he uses.

Table 6: Terrain generation

Implementations

Steps Frequency Sequential Multicore GPU
Grid mesh Once per applica- v v v
generation tion bootstrap
Height When camera v v
stream movement re-
generation quires terrain

sliding
Index buffer When camera v v
generation movement re-

quires an LOD

swap
Texture gen- The first time the v v v

eration

texture is required
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4.3 Extending game life with code generation

Games the such as World of Warcraf'®, Dark age of Camelot!®, Star Wars
Galaxies!” are based on quest completion. A quest is a set of tasks a
player has to accomplish in order to gain a reward and progress in the
game, every quest has a different complexity level and usually a gamer
is able to pick up quests within a range of difficulty that includes the
player’s character level.

The following is the quest Raene’s Cleansing from World of Warcraft:

% Asmexionor, a long time friend of mine is also aiding
the Sentinels here in Ashenvale, but he has yet to return. He
had leads on finding an item that he thought could slow the
furbolg attacks on our people ...a rod created by a now-dead,
evil wizard. Before he left here, he mentioned seeking out a
gem for the rod. He mentioned the gem possibly being hid-
den at the shrine in Lake Falathim at the base of the mountain
to the west. The gem was being held there before it was over-
run. Find my friend, Asmexionor, please. *

The quest is for level 18 characters and requires a player to find and inter-
act with the body of a dead NPC (non player character) in Ashenvale (a
location in the game world), on completion the player is rewarded with
an amount of XP (experience points, used to increase character skills)
and reputation point against Darnassus faction (reputation points un-
locks features). The quest activation can be formalised as the code in
Listing 4.21

Listing 4.21: Quest activation

if (player.Level > 18 and !IsActive) {
SpawnCharacter (CharacterState.Dead,
new Charater ("Teronis", Race.Elf),
GetLocation ("Ashenvale"));
IsActive = true;

Bhttp://wow/.com
http://www.darkageofcamelot . com/
7nttp://starwarsgalaxies.station.sony.com/players/index.vm
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At every action of the player the action and its context is used to check
every active quests (a player can have more than one quest activated at
the same time) for state changes due to a quest’s goal match. A quest can
be modelled as the state machine in Figure 24 where:

e a quest is created (spawned) and its state is set as Inactive
e when a player accept the quest it is moved into Active state

o the quest remains Active until every success condition are met or
the player abort it

e if all conditions are met the quest moves into Completed state
e if a quest is abandoned then its state is changed in Closed

e when a quest state moves from Completed to Closed the reward is
applied

Figure 24: Quest as ASM

— | Inactive —| Active —|{ Completed —{ Closed

SN S

Quests are fundamental objects as they are the way the game is ex-
pressed and the player makes progress within it. Once a quest is exe-
cuted is no longer available to the player (but can be for other players)
so a set of equivalent complexity quests must be available so that players
taste can be met. The problem here is that quests are created by game
designers and this has a serious impact on the budget required to create
a world class MMORPG'S.

Reusing the same quest across all the players makes the world of the
game static as actions have no real effect on the game world but only on

IB8MMORPG stands for Massive Multiplayer On line Role Play Game
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the character progression. The players perception of a game can affect
the life span of the game as players can get bored of always performing
the same set of quests. Another aspect of the problem is that not all the
quests can meet the player’s preferences and are therefore avoided.

The set of actions that the player can perform in the game is a finite set
of features in the game code and as the quest completion conditions are
defined over the action set this set can be expressed with a finite number
of expressions as well. The quest Raene’s Cleansing action check can be
expressed as the code in Listing4.22 and the quest object has a structure
as shown in Listing 4.24, the return clause at 27 will be explained later.

Listing 4.22: Quest action check

if (!condition) {

condition = (action.Player.Location == GetLocation ("Ashenvale"))&&
(action.Type == actions.Interact)&&
action.Target.Id == GetId(Charater.Find("Teronis", Race.Elf));

}

Listing 4.23: Quest base class type

public class abstract Quest {
public Status Status = Status.Created;

public virtual void ActivateQuest (Player player) {
if (Status == Status.Inactive) {
if (MatchRequirements (player)) {
Spawn (player);
Status = Status.Active;
player.AddQuest (this) ;
P}

public bool MatchRequirements (Player player) {...}

public void CompleteQuest (Player player) {

if (Status == Status.Completed){ Reward(player); }
Status = Status.Closed;

}

public virtual void CheckAction (Action action) {
if (Status != Status.Active) return;

}

public void CheckQuest () {
Status = CheckConditions() ? Status.Completed : Status }
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}

public virtual void Spawn (Player player) {}
public virtual bool CheckConditions () { return false; }

public virtual void Reward(Player player) {}

Listing 4.24: Quest type

[QuestConstraints (Level = 18)]
public class RaeneQuest0Ol : Quest {

public bool condition0l = false;

public void CheckConditionO1l (Action action) {

condition0l = (action.Player.Location == GetLocation ("Ashenvale")
&&

(action.Type == actions.Interact)

&&

action.Target.Id == GetId(Charater.Find("Teronis", Race.Elf));

}

public void SpawnConditionO1l (Player player) {
SpawnCharacter (CharacterState.Dead,
new Charater ("Teronis", Race.Elf),
GetLocation ("Ashenvale"));

}

public override void Spawn (Player player) {
SpawnConditionO1 (player) ;
}

public override void CheckAction (Action action) {
if (Status != Status.Active) return;

if (!conditionO01) {

CheckConditionO1 (action) ;

if (condition01){ return; }

H}

public override bool CheckConditions () {
bool expr = condition01;
return expr;

}

public override void Reward(Player player) {

// give the player the reward scaling the XP amount

//with the difference between the required level

//and the actual level , higher levels will get less XP

AddXP (player,1000 % ScaleOnLevel (18, player.Level));
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AddFactionPoints (player, GetFaction ("Darnassus"), 1000);

While Raene’s Cleansing is a single objective quest there are many oth-
ers with more than on goal to achieve, multiple goals can be combined
with boolean AND and OR operators. The code in Listing 4.25 shows a
quest with three objectives that must be satisfied all together in order to
complete it.

Listing 4.25: Quest type with three objectives

[QuestConstraints (Level = 20)]

public class MultiObjectiveQuest : Quest

public bool condition0l1 = false;0<§)0bjective 01
public bool condition02 = false;

public bool condition03 = false;

public void CheckConditionO1l (Action action){...}O<§]Objective 01
..}

public void CheckCondition02 (Action action){.
public void CheckConditionO3 (Action action) {...}

public void SpawnConditionOl (Player player){...}O<§)ijective 01
..}

public void SpawnCondition02 (Player player) {.
public void SpawnCondition03 (Player player){...}

. . L .
public void RewardConditionOl (Player player){...)O<§DObjeCtlve 01
public void RewardCondition02 (Player player) {...}
public void RewardCondition0O3 (Player player){...}

public override void Spawn (Plaver plaver
SpawnCondition01 (player) ;.<0 Objective 01
SpawnCondition02 (player) ;

SpawnCondition03 (player) ;
}

public override void CheckAction (Action action) {
if (Status != Status.Active) return;

if (!conditionO01) {

CheckCondition01 (action); 0<§)ijective 01

if (conditionO01) {return;}

}

if (!condition02) {
CheckCondition02 (action) ;
if (condition02){ return; }
}

if (!condition03) {
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CheckCondition03 (action);
if (condition03){ return; }
}
}

public override void CheckConditions

bool expr = condition0l && O<§DC%jective 01
condition02 &&
condition03;

return expr;

}

public override void Reward(Player plaver
RewardCondition01 (player) ;O<o Objective 01
RewardCondition02 (player) ;
RewardConditionO03 (player);

}

}

In Listing 4.25 we highlighted the portion of the quest being influ-
enced by one of the three objectives, we do so to emphasise the fact that
a quest can be formalised as a set of objectives where each objective is
defined as spawn, check, and reward functions. With a compositional
representation of quests it is possible to generate new quests using pre
existent quest fragments as building blocks.

When creating a quest class out of an objective set (we will refer it as
QuestDesciptor and itis defined as in Listing 4.26) we have to create a
new type before progressing with method code manipulation. It is quite
clear from Listing 4.25 and Listing 4.23 that for each objective a boolean
field is introduced, the field is used for two goals:

e stop checking once a condition has been successfully matched
e model the quest state so it can be serialised and de-serialised

New methods are injected inside the quest class and they are created
using the spawn, check, and reward functions of every objective. After
the injection of the new elements the other virtual methods are rewritten:

o The Spawn method is rewritten injecting a call to each spawn method
so that the spawn action of every objective is executed
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o The CheckAction method is rewritten keeping the original code
checking for the quest to be active, then for each objective the check
function call is injected using a fragment containing such call and
bound with a TargetBinding (see 3.2.1) to the correspondent
boolean field; at line 27 in Listing 4.24 the return instruction in-
side the conditional branch is used so that an action is checked only
once a positive match occurs no other condition is checked against
the action

o The Reward method is rewritten injecting a call to the reward func-
tion of every objective

e The CheckConditions method is rewritten injecting the boolean
expression over all the boolean fields caching each condition state

When the quest has as objective with multiple iterations like "Kill 25
smurfs” the objective is represented by 25 condition “Kill a smurf” where
all of them are composed in an boolean expression combining all the the
conditions with AND operators, we choose such approach for we wanted
the state part of the quest object to be easy to generate.

Now that the structure of a quest is clear and we also have a way to
create them we need a way to create new quests automatically in order to
replace consumed quests with equivalent ones. It is important to notice in
Listing 4.25 that we never performed inlining but kept objective as set of
methods and calls to them have been injected. The choice is relevant as
it enables inspection of the quests so that it is possible to obtain instances
of QuestDescriptor from quest types.

Listing 4.26: Quest Descriptor

public class QuestDescriptor{

public QuestConstraints Constraints {get;set;}
public IEnumerable<QuestObjective> Objectives{get;}
public ObjectiveExpression {get;set;}

}

When a quest is completed it is possible to use the metadata por-
tion of the type to collect other quests with similar constraints. Now for
each quest type we obtain the QuestDescriptor; from a collection of
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descriptors a new one is created by means of combining QuestObjec-
tive (defined as described in Listing 4.27) objects in a new instance of
the ObjectiveExpression, with the new descriptor a quest type is
synthesised. It is important to notice that every newly created quest will
be available later as a new potential generator source for further quests.

Listing 4.27: Quest Objective

public class QuestObjective({
public Fragment Spawn {get;set;}
public Fragment Check {get;}
public Fragment Reward {get;set;}
}

The system for automatic quest generation is implemented through
the following operators

QuestGenerator : QuestDescriptor — Quest

DescriptorExtractor : Quest — QuestDescriptor
ConstratinsExtractor : Quest — QuestConstraints
Recombinator : {d : where d is QuestDescriptor} — QuestDescriptor
GetSimilarQuests : QuestConstraints — {q : where ¢ is Quest}

At this point we need to define some metric to measure the player
satisfaction when taking part in quests. For simplicity we will provide
the user the ability to refuse quests, this will be an indicator of the players
displeasure. When a quest @)y is completed we will follow these steps:

o ConstratinsExtractor(Qo) to obtain the quest constraints set Cy

o for every quest Q; returned by GetSimilarQuests(Cj) we extract the
descriptors using DescriptorExtractor(Q;) creating a set of descrip-
tors D

e anew quest (); is generated by Recombinator(D)

e () is removed from the available quests set and (); is inserted
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When a quest is rejected by the player we follow the same steps de-
scribed above but instead of starting with Qo we will select a quest (),
where the intersection between the descriptor sets is lower then the set
of (o, then will will proceed with a new quest generation step.

This framework which enables software to extend itself using met-
rics and domain specific generators is not representable with AOP ap-
proaches as while aspects can be used to assemble quests there is no way
to generate aspects from quest types. In such a scenario quest design-
ers would have to define all the possible objectives as aspects and then
generate quests which is not realisable as matter of cost and effort.
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Chapter 5

Conclusions

In this thesis we studied the class of programs capable of change their
structure during execution. A run-time environment must include a
query language, a support for homogeneous code transformations, and
a incremental loading model. Strongly typed execution environments
provide most of the required features, and the CodeBricks composition
model adds the ability to mix existing code fragments. The query system
introduced in chapter 3 was the missing tile of the puzzle: it is possible
to indicate where code transformations should happen in the compiled
program.

Using these tools we have been able to tackle two different prob-
lems in the Computer Games application domain: an optimisation prob-
lem, and a content generation problem. The former shows how program
specialisation can be performed at run-time achieving performance im-
provements by adapting the program to data that is available only then.
The latter focuses about adapting the program behaviour with the goal
to the user behaviour by generating content during program lifetime.

At the beginning of this thesis we put a quote on the subject of alchemy
which states:

% Alchemy is the science of breaking down the matter
to rebuild it again, everything can be broken down in its al-
chemic components and then recomposed to create new things.
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But to gain something an equal value must be lost : that is the
equivalent exchange rule. *

While it is obvious that alchemy is more of a philosophy than a sci-
ence we wanted to use the alchemic process as a metaphor for our ap-
proach®. The technique we implemented is able to decompose software
in blocks that can then be recombined to generate new features and to
change the behaviour of the application. The design choices we took
bring some limitations since our approach is not able to synthesise new
types and new methods, however this is not a real limit as we can lever-
age the code generation relying on the performance of compiled code
instead of having to deal with interpreter based designs or skeleton pat-
terns or access to source code.

Another advantage of our technique over bytecode is that optimisa-
tions can be performed to provide the JIT with code that can be quickly
analysed and optimised when translated into native executables since,
as we have discussed, the JIT has a very constrained time to perform
optimisations and compilation.

The query language can be extended to capture more sophisticated
patterns, this is the core of our approach as it models the joint point of it.
It could be interesting, for example, to be able to capture calls to methods
which contain security checks when they are occurring in loops. Such
queries can be used to perform expensive security and policy checks out
of the loop and then inlining the method body of the match inside the
loop.

The framework provides byte code manipulation facilities but it needs
reflection and code emission capabilities to inspect and generate classes.
With this support we were able to mimic the AOP approach for meta-
programming. It can however be used as a building block to realise other
flavours such as Feature Oriented Programming and so on, bringing un-
bound multistage support to them.

The homogeneous nature of the method has been crucial in our work
as it assists developers while designing the software, they have been able

We use the code name Vitriol for the framework, which is a powerful solvent in
alchemy.
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to express with the same language and tools the transformations they
wish to apply when particular situations are met. This is important to
give the program the ability to adapt to a broad set of parameters that
can depend on

e execution environment
e user model or feedback
e resource availability (as clouds, network, etc.)

The experiments reported in Chapter 4 cover different scenarios for
the code transformation model we just presented in this thesis.

The experiment regarding optimisations and math libraries models a
situation where the code manipulation is happening at deploy or load
time; in that scenario the input needed for the manipulation is the code
structure and the execution environment capabilities.

The procedural content and quest generation experiments require run
time transformations since they depend not only on the hardware accel-
eration features of the execution environment; to perform the specialisa-
tions we need feedback and interaction with the user. In the procedural
content experiment the content is created and modified at any time by the
content creator, so it is unfeasible to precompute all the possible content
for a deploy time code manipulation. For the quest generation experi-
ment we use the user’s preferences and rating to create new quests, this
is a constraint for run time manipulation only.

Beside the video game scenario that we presented in this chapter
there is another application for our framework in the domain of “Trust
Worthy Experimentation”. Microsoft?, Google®> and Amazon provide
frameworks to run live experiments on web applications (EQvCDO08)
with the goal to help companies developing large software to achieve
the best performance and experience for their users. These frameworks
let the developer define variations of the application and metrics (CIi08)
to measure the impact of each variation, then the experiment is run live

2Microsoft Experimentation Platform http: //exp-platform.com/d
3Google Web Optimizer http://www.google.com/websiteoptimizer/
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against real users. In this way the outcome of application changes are
statistically significant and not related to the "HiPPO” (Highest Paid Per-
son Opinion) so that errors can be avoided saving a lot of money for the
companies.

The variation granularity goes from an entire page down to a single
component or web service logic, multiple experiments can be run in pa-
rallel so that interaction between variation can be measured. A lot of
Microsoft web sites are actually under constant experimentation using
such a system due to the high number of users on a single web site (like
MSN, the Microsoft Home page, etc) and the improvements every single
team is testing.

The framework is able to assemble the application using the user as
an input at the combination step which generally performed server side
at the request time. Unfortunately this model is not usable on all web ap-
plications as platforms like Microsoft Silverlight and Adobe Flash cannot
be assembled as html components. Microsoft Silverlight is based on the
.NET CLR and using our framework it would be possible to extend the
experimentation support to Silverlight and client applications.

As we mentioned in the introduction, software and applications are
growing in size and deployment while unit testing and integration test-
ing are still fundamental practices for software quality and they can not
face failure at market. Failing for even a few days can compromise the
revenue stream and company asset value even if the software is proven
to be state of the art from engineering and technology point of view. The
need for different tests to improve user conversion* is becoming a relevant
feature of the development process and to be trusted the values must be
realistic. All of the existing frameworks rely on statistical analysis of the
data collected from real users.

Just few weeks of execution can produce statistically significant re-
sults and in some of the experiments the outcome has helped to avoid
potentially large losses (millions of dollars in less then a year) due to un-
advisable choices even if perfectly suitable from technological point of

4User conversion is the term used to identify the fact that a user has produced real
revenue, this conversion depends on the nature of the software and is a per case definition.
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view.

Another important scenario where our technique can be adopted is
that of power consumption aware applications (GM02; CKM™01). In realtime
application in scenarios like robotics, smart dust, mobile and embedded
systems the impact of an algorithm on the battery life is extremely rele-
vant. The battery level changes over time so the need for code changes
at run time is even more important. It is possible to measure the power
consumption of different versions of an algorithm and store this infor-
mation in the metadata of optimisation strategies. Later, at run time,
the program can decide to rewrite portions of its code adopting the best
choice for battery life improvement.

Within the embedded systems scenarios deployment is as important
as power consumption. The .NET framework has a large footprint so a
fine grained deployment unit is more valuable than deploying assem-
blies. Using our approach is possible to refactor assemblies deploying
only the used types with all the method bodies empty, then method bod-
ies can be provided on demand so that the only code deployed on the
board is just the one realising the features needed by the application.
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Appendix A

Garbage Collection in the
Video Game World

All commercial game engines realise their own memory management,
garbage collection, and object pool. Since vide games are close to real
time paradigm object creation is a sensitive task to perform since it will
affect the frame rate but, on the other side, consoles come with a limited
amount of memory compared to actual PCs’ equipment. Leaving ob-
ject pool strategies to game developers GC and allocation is handled by
the NET framework making the interaction between application execu-
tion and run-time support crucial. Before diving into GC details memory
spaces and their relation to types must be clarified so that implementa-
tion choices done in software development can be understood.

A.1 Managed Heap and Stack memory spaces

.NET deals with type differently in memory allocation whether the type
is a reference type (class) or a value type (struct and primitive types
like int) using different rules for space and life time. Value Types are
created on the stack and their life is related to their scope, such types do
not need garbage collection activity and are passed by value when used
in method calls. Since value types requires almost no run-time work for
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their creation and disposal they are a great choice for performance but
their by-value marshalling can be a problem in size for the stack. On the
contrary reference types are allocated on the managed heap and their life
time is controlled by the GC, when used as parameters their reference is
passed without the need of copies (and therefore really stack friendly).
When designing object models the choice between reference and value
types is the hard core since the choice has implication on the memory
usage, GC pressure, and marshalling behaviour when using PInvoke.
Value types can be anyway allocated on the managed heap when

o part of a reference type
e boxed because of cast operation

e contained in collections

A.2 Generational Collection

A generational GC divides objects into generations and, on most cycles,
will place only the objects of a subset of generations into the initial white
(condemned) set. Furthermore, the run-time system maintains knowl-
edge of when references cross generations by observing the creation and
overwriting of references. When the garbage collector runs, it may be
able to use this knowledge to prove that some objects in the initial white
set are unreachable without having to traverse the entire reference tree. If
the generational hypothesis holds, this results in much faster collection
cycles while still reclaiming most unreachable objects. In order to im-
plement this concept, many generational garbage collectors use separate
memory regions for different ages of objects. When a region becomes
full, those few objects that are referenced from older memory regions are
promoted (copied) up to the next highest region, and the entire region
can then be overwritten with fresh objects. This technique permits very
fast incremental garbage collection, since the garbage collection of only
one region at a time is all that is typically required. Generational garbage
collection is a heuristic approach, and some unreachable objects may not
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be reclaimed on each cycle. It may therefore occasionally be necessary to
perform a full mark and sweep or copying garbage collection to reclaim
all available space. In fact, run-time systems for modern programming
languages (such as Java and the .NET Framework) usually use some hy-
brid of the various strategies that have been described thus far; for ex-
ample, most collection cycles might look only at a few generations, while
occasionally a mark-and-sweep is performed, and even more rarely a full
copying is performed to combat fragmentation. The terms “minor cycle”
and “major cycle” are sometimes used to describe these different levels
of collector aggression. A generational garbage collector (also known as
an ephemeral garbage collector) makes the following assumptions:

o The newer an object is, the shorter its lifetime will be.
o The older an object is, the longer its lifetime will be.

o Newer objects tend to have strong relationships to each other and
are frequently accessed around the same time.

o Compacting a portion of the heap is faster than compacting the
whole heap.

A.2.1 Allocation, Collection, and Finalisation in .NET

The Microsoft. NET common language run-time requires that all resources
be allocated from the managed heap. When a process is initialised, the
run-time reserves a contiguous region of address space that initially has
no storage allocated for it. This address space region is the managed
heap. The heap also maintains a pointer, which is referred as Next0O-
bjPtr. This pointer indicates where the next object is to be allocated
within the heap. Initially, the NextObjPtr is set to the base address of
the reserved address space region.

An application creates an object using the new operator. This oper-
ator first makes sure that the bytes required by the new object fit in the
reserved region (committing storage if necessary). If the object fits, then
NextObjPtr points to the object in the heap, this object’s constructor is
called, and the new operator returns the address of the object.
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Figure 25: Managed Heap
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At this point, NextOb jPtr is incremented past the object so that it
points to where the next object will be placed in the heap. Figure 25
shows a managed heap consisting of three objects

o A
e B
e C

The next object to be allocated will be placed where NextObjPtr
points (immediately after object C).

In a C-run-time heap, allocating memory for an object requires walk-
ing though a linked list of data structures. Once a large enough block
is found, that block has to be split, and pointers in the linked list nodes
must be modified to keep everything intact. For the managed heap, al-
locating an object simply means adding a value to a pointer this is blaz-
ingly fast by comparison. In fact, allocating an object from the managed
heap is nearly as fast as allocating memory from a thread’s stack.

When an application calls the new operator to create an object, there
may not be enough address space left in the region to allocate to the
object. The heap detects this by adding the size of the new object to
NextObjPtr. When it happens that NextObjPtr is beyond the end of
the address space region, then the heap is full and a collection must be
performed.

In reality, a collection occurs when generation 0 is completely full. Sep-
arating objects into generations can allow the garbage collector to collect
specific generations instead of collecting all objects in the managed heap.
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Collection

The garbage collector checks to see if there are any objects in the heap
that are no longer being used by the application. If such objects exist,
then the memory used by these objects can be reclaimed. (If no more
memory is available for the heap, then the new operator throws an Out -
OfMemory exception.) The garbage collector is able to identify unused
object through the root set.

Every application has a set of roots. Roots identify storage locations,
which refer to objects on the managed heap or to objects that are set to
null. For example, all the global and static object pointers in an appli-
cation are considered part of the application’s roots. In addition, any
local variable/parameter object pointers on a thread’s stack are consid-
ered part of the application’s roots. Finally, any CPU registers containing
pointers to objects in the managed heap are also considered part of the
application’s roots. The list of active roots is maintained by the just-in-
time (JIT) compiler and common language run-time, and is made acces-
sible to the garbage collector’s algorithm.

When the garbage collector starts running, it makes the assumption
that all objects in the heap are garbage (none of the application’s roots re-
fer to any objects in the heap). Now, the garbage collector starts walking
the roots and building a graph of all objects reachable from the roots. For
example, the garbage collector may locate a global variable that points to
an object in the heap.

Figure 26 shows a heap with several allocated objects where the appli-
cation’s roots refer directly to objects A, C, D, and E. All of these objects
become part of the graph. When adding object D, the collector notices
that this object refers to object H, and object H is also added to the graph.
The collector continues to walk through all reachable objects recursively.

Once this part of the graph is complete, the garbage collector checks
the next root and walks the objects again. As the garbage collector walks
from object to object, if it attempts to add an object to the graph that it
previously added, then the garbage collector can stop walking down that
path. This serves two purposes. First, it helps performance significantly
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Figure 26: Allocated Objects in Heap
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since it does not walk through a set of objects more than once. Second,
it prevents infinite loops should you have any circular linked lists of ob-
jects.

Once all the roots have been checked, the garbage collector’s graph
contains the set of all objects that are somehow reachable from the ap-
plication’s roots; any objects that are not in the graph are not accessible
by the application, and are therefore considered garbage. The garbage
collector now walks through the heap linearly, looking for contiguous
blocks of garbage objects (now considered free space). The garbage col-
lector then shifts the non-garbage objects down in memory (using the
standard memcpy function), removing all of the gaps in the heap. Of
course, moving the objects in memory invalidates all pointers to the ob-
jects. So the garbage collector must modify the application’s roots so that
the pointers point to the objects’ new locations. In addition, if any object
contains a pointer to another object, the garbage collector is responsible
for correcting these pointers as well. Figure 27 shows the managed heap
after a collection.

After all the garbage has been identified, all the non-garbage has
been compacted, and all the non-garbage pointers have been restored,
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Figure 27: Managed Heap after Collection
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the NextObjPtr is positioned just after the last non-garbage object. At
this point, the new operation is tried again and the resource requested by
the application is successfully created.

As we can see, a GC generates a significant performance hit, and
this is the major downside of using a managed heap. However, keep in
mind that GCs only occur when the heap is full and, until then, the man-
aged heap is significantly faster than a C-run-time heap. The run-time’s
garbage collector also offers some optimisations that greatly improve the
performance of garbage collection. In the common language run-time,
the managed heap always knows the actual type of an object, and the
metadata information is used to determine which members of an object
refer to other objects.

Finalisation

The garbage collector offers an additional feature to handle resource clean-
ing: finalisation. Finalisation allows a resource to gracefully clean up
after itself when it is being collected. By using finalisation, a resource
representing a file or network connection is able to clean itself up prop-
erly when the garbage collector decides to free the resource’s memory.
Here is an oversimplification of what happens: when the garbage col-
lector detects that an object is garbage, the garbage collector calls the
object’s finalisation method (if it exists) and then the object’s memory is
reclaimed. The code in Listing A.1 shows a simple type with the finalisa-
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tion method implemented:

Listing A.1: Simple finalisation

public class BaseObj {
public BaseObj() {
}

public "Finalize() {
// Perform resource cleanup code here ...
// Example: Close file /Close network connection
Console.WriteLine ("In Finalise.");

Some time in the program execution, the garbage collector will deter-
mine that this object is garbage. When that happens, the garbage collec-
tor will see that the type has a finaliser method and will call the method,
causing “In Finalise” to appear in the console window and reclaiming
the memory block used by this object.

When designing a type it is best to avoid implementing the finalisa-
tion and there are several reasons for this:

o Objects get promoted to older generations when finalisable, which
increases memory pressure and prevents the object’s memory from
being collected when the garbage collector determines the object is
garbage. In addition, all objects referred to directly or indirectly by
this object get promoted as well

e objects with finalisation code take longer to allocate

e Forcing the garbage collector to execute a finalisation method can
significantly impact on the application performance.

¢ Finalisable objects may refer to other (non-finalisable) objects, pro-
longing their lifetime unnecessarily.

o There is no control over when the finalisation will execute happen.
The object may hold on to resources until the next time the garbage
collector runs.

155




When an application terminates, some objects are still reachable and
will not have their finalisation method called. This can happen if back-
ground threads are using the objects or if objects are created during ap-
plication shutdown or AppDomain unloading. In addition, by default,
finalisation methods are not called for unreachable objects when an ap-
plication exits so that the application may terminate quickly. All operat-
ing system resources will be reclaimed, but any objects in the managed
heap are not able to clean up gracefully. The default behaviour can be
changed by calling the System.GC type’s RequestFinalizeOnShut-
down method. However, this strategy should be used carefully since call-
ing it means that we are controlling a policy for the entire application.
The run-time does not make any guarantees as to the order in which
finalisation methods are called. For example, let us say there is an ob-
ject that contains a pointer to an inner object. The garbage collector has
detected that both objects are garbage. Furthermore, say that the inner
object’s finalisation method gets called first. Now, the outer object’s fi-
nalisation method is allowed to access the inner object and call methods
on it, but the inner object has been finalised and the results may be un-
predictable. For this reason, it is strongly recommended that finalisation
methods not access any inner, member objects.

If a type must implement a finalisation method, then we should have
the code executed as quickly as possible. Avoid all actions that would
block the finalisation method, including any thread synchronisation op-
erations. Also, if any exception occurs while executing finalisation method
without being handled, the system just assumes that the finalisation method
returned and continues calling other objects’ finalisation methods.

When an application creates a new object, the new operator allo-
cates the memory from the heap. If the object’s type contains a finali-
sation method, then a pointer to the object is placed on the finalisation
queue. The finalisation queue is an internal data structure controlled
by the garbage collector. Each entry in the queue points to an object that
should have its finalisation method called before the object’s memory can
be reclaimed. Figure 28 shows a heap containing several objects. Some
of these objects are reachable from the application’s roots, and some are

156



not. When objects C, E, F, I, and ] were created, the system detected that
these objects had finalisation methods and pointers to these objects were
added to the finalisation queue.

Figure 28: Heap with Many Objectsn
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When a GC occurs, objects B, E, G, H, I, and ] are determined to
be garbage. The garbage collector scans the finalisation queue looking
for pointers to these objects. When a pointer is found, the pointer is re-
moved from the finalisation queue and appended to the freachable queue
(pronounced “F-reachable”). The freachable queue is another internal
data structure controlled by the garbage collector. Each pointer in the
freachable queue identifies an object that is ready to have its finalisation
method called.

After the collection, the managed heap looks like Figure 29. Here, you
see that the memory occupied by objects B, G, and H has been reclaimed
because these objects did not have a finalisation method that needed to
be called. However, the memory occupied by objects E, I, and J could not
be reclaimed because their finalisation method has not been called yet.

There is a special run-time thread dedicated to execute finalisation.
When the freachable queue is empty (which is usually the case), this
thread sleeps. But when entries appear, this thread wakes, removes each
entry from the queue, and calls each object’s finalisation method. Be-
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Figure 29: Managed Heap after Garbage Collection
Managed Hea Finalization Queue

ROOTS
{streng
references]

Globals
Statistics
Freachable Quene

Locals

chu
Reglsters

Dbject |
Object E

cause of this, you should not execute any code in a finalisation method
that makes any assumption about the thread that is executing the code.
For example, avoid accessing thread local storage in the Finalize method.
The interaction of the finalisation queue and the freachable queue is quite
fascinating. First, let me tell you how the freachable queue got its name.
The f is obvious and stands for finalisation; every entry in the freachable
queue should have its finalisation method called. The “reachable” part
of the name means that the objects are reachable. To put it another way,
the freachable queue is considered to be a root just like global and static
variables are roots. Therefore, if an object is on the freachable queue,
then the object is reachable and is not garbage. In short, when an ob-
ject is not reachable, the garbage collector considers the object garbage.
Then, when the garbage collector moves an object’s entry from the final-
isation queue to the freachable queue, the object is no longer considered
garbage and its memory is not reclaimed. At this point, the garbage col-
lector has finished identifying garbage. Some of the objects identified
as garbage have been reclassified as not garbage. The garbage collector
compacts the reclaimable memory and the special run-time thread emp-
ties the freachable queue, executing each object’s finalisation method.
The next time the garbage collector is invoked, it sees that the fi-
nalised objects are truly garbage, since the application’s roots do not
point to it and the freachable queue no longer points to it. Now the
memory for the object is simply reclaimed. The important thing to un-
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Figure 30: Managed Heap after Second Garbage Collection
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derstand here is that two GCs are required to reclaim memory used by
objects that require finalisation. In reality, more than two collections may
be necessary since the objects could get promoted to an older generation.
Figure 30 shows what the managed heap looks like after the second GC.

A.2.2 Generation in .NET implementation

The Microsoft. NET framework uses a generational garbage collector where
the generations are three. When initialised, the managed heap contains
no objects. Objects added to the heap are said to be in generation 0, as
you can see in Figure 31. Stated simply, objects in generation 0 are young
objects that have never been examined by the garbage collector.

Now, if more objects are added to the heap, the heap fills and a garbage
collection must occur. When the garbage collector analyses the heap, it
builds the graph of garbage (shown here in purple) and non-garbage
objects. Any objects that survive the collection are compacted into the
left-most portion of the heap. These objects have survived a collection,
are older, and are now considered to be in generation 1 (Figure 32).

As even more objects are added to the heap, these new, young objects
are placed in generation 0. If generation 0 fills again, a GC is performed.
This time, all objects in generation 1 that survive are compacted and con-
sidered to be in generation 2 (see Figure 33). All survivors in generation
0 are now compacted and considered to be in generation 1. Generation 0
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Figure 31: GC with only Gen0
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currently contains no objects, but all new objects will go into generation
0.

Figure 33: GC with Gen0, Gen1 and Gen2
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Currently, generation 2 is the highest generation supported by the
run-time’s garbage collector. When future collections occur, any surviv-
ing objects currently in generation 2 simply stay in generation 2. There
is another portion of memory which is called Large Object Heap (LOH)
where big object, according to heuristics, are stored. While the genera-
tions are compacted during collection the LOH space is not compacted
and therefore we can have fragmentation issues when dealing with this
portion of memory.

A.3 Garbage Collection impact in Game appli-
cation

.NET is becoming a very interesting platform to be used in game de-
velopment. Microsoft is promoting the adoption of XNA Game Studio!
and Mono is helping the diffusion covering other platform not covered
by .NET. Memory management and garbage collection have a terrific im-

IXNA Developer Center http://msdn.microsoft.com/en-us/xna/default.
aspx
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pact on the productivity but this come to a cost and the effects they pro-
duce at run-time must be considered carefully while designing the soft-
ware. When collection happens on the Gen2 section, or when objects are
promoted and then destroyed? the application execution will be paused.
While Gen0 and Genl are per-thread generations Gen2 and the Large
Object heap are shared, this implies that when a collection is performed
on shared generations all the threads must be paused.

The GC process has a priority that increases as the available system
memory goes down, this means that allocation strategies are important.
The support for finalisable objects should be used with caution since
there is no guarantee on when they will finalised, also the finalisation
thread will have to execute all the finalisation methods before returning
control to application threads.

Buffers are things to be carefully inspected since big arrays will be
allocated on the Large Object Heap memory. This portion of memory is
never compacted and this means that a wrong allocation pattern can lead
to fragmentation and thus to out of memory exceptions. The problem is
even more frequent when the buffers are made by large reference types
or value types. In the case of Big value types they will be allocate on
the large object heap and this can accentuate the fragmentation problem.
With value types we will be facing another issue since the size in byte of
the storage for the array will be the number of elements times the size in
bytes of the type.

For more details about .NET Garbage Collector performance hints see
http://msdn.microsoft.com/en-us/library/ms973837.aspx.

2This problem is known as almost long living object.
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Appendix B

Software Engineering and
Architecture in Game
development

A video game application is usually built with code that can be parti-
tioned as in Figure 34.

Figure 34: Typical Game code structure

Specific Game Code

Game Middleware

Game Engine Code

At the moment most of the game products are based on C++ lan-
guage, VM based products are jumping in the market these days thanks
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to Microsoft. NET and Novell Mono!

The ”Specific Game Code” section contains code that is specific to a
game title, here is where code realise the specific game design. Usually
this portion of the code is not completely reusable unless developing se-
quels or extremely similar games. At this level the hardware machine is
usually completely hidden since the level beneath should be providing
cross platform implementations. Machine independent game code is a
main goal for multi platform developer since it will reduce the develop-
ment costs for n target platforms to the cost of almost 1.5 platforms.

Game Middlewares are libraries that realise physic simulation, Al,
high level networking (chat system for example), quite famous frame-
works are

e Havok?

PhysX 3

Digital Molecular Matter *

Ailmplant °

Euphoria ©

Middleware are reusable software components and even if a lot of them
are "off the shelf” companies can use them to create their own specific
middleware. Sometimes proprietary components are developed for in-
ternal use and later transformed into stand alone products. The frame-
works we cited are not tied to any specific game engine and, beside sim-
ulation code, they can bring specific implementation in order to lever-
age the hardware. PhysX for example is capable to use GPU to increase

Mono platform is adopted by game industry thanks to the Unity game engine, at the
moment platform supported are Pc, Mac, iPhone and Nintendo Wii

2Havok http://www.havok.com

3Ageia Physx by Nvidia http://www.nvidia.com/object/physx_new.html

4DMM softwarehttp: //www.pixeluxentertainment .com/

5AiImplant http://www.presagis.com/products/simulation/aiimplant/

6Euphoria engine http://www.naturalmotion.com/
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performance (and accuracy since it is a physic engine) while Havok is
oriented on multi core architectures’.

Generally the goal of Game middlewares is to provide functionality
with high level abstractions, cross platform capabilities, execution model
and high performance. The co existence of middleware and game engine
in the same application is not easy since the game engine will be already
hiding the hardware details, that is why game engine developers and
middleware developers provide “certification” about the interoperability
between products and adaptor to combine them.

Amongst game engines the most popular and definitely state of the
art are:

e Unreal Engine 8

Gamebryo ’

e Cryengine 10

e Torque !

Unity 12

A game engine provides all the abstractions needed to interact with
the hardware machine and so memory, disk access, graphic drivers, in-
put devices, processors, cores and threads are remodelled and hidden in
its code. A game engine is a very complex framework since it is provid-
ing features and technologies crucial to the development process.

Since most of the engines are based on C++ they usually provides
support for features not present in C++ run-time as:

"Havok company works in collaboration with Intel and their synergy let them realise
state of the art performance in physic simulation without the need of additional accelera-
tors.

8Epi(:Gameshttp://www.unrealtechnology.com/

%Emergent Game Technology http://www.emergent.net/en/Products/
Gamebryo/

10Cry’(ek http://www.crytek.com/technology/cryengine-3/
specifications/

11Garage Games http://www.garagegames.com/

12Qver The Edge http://unity3d.com/
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o custom allocators for object creation
e object pools

e garbage collection

o reflection support

e object serialisation

o BCL for math, algebra and geometry

The features above combined with HW abstractions are generally the
common set of functionality provided by Virtual Machines the likes of
Java and .NET. Every engine provides a type system root that must be
used in order to leverage the run time features of the engine.

On top of the mentioned components every engine realises execu-
tion model, plug in interface (used to connect middlewares), rendering
abstractions, game logic object support (like checkpoints, missions, lev-
els, quests, etc.). Engines comes with scripting languages that is imple-
mented using the reflection capabilities of the engine and its type sys-
tem!S.

Because of massive use of C++ templates and the size of the code
base engines are distributed as source code, developers tailor them in the
game development process investing a huge amount of resources since
every time the engine is modified a full build of game and tools must be
performed. Tools provided with the engine are built on the engine code
base as well, this help the process since the object model is shared be-
tween the tools and the final game giving a huge boost to the production
pipeline.

Efficiency in memory, execution and precision are crucial in the foun-
dational components of the game engine such as mathematic libraries
since they will be used to implement every other piece of code in the
engine itself, middlewares, and games. Wrong design and bugs in foun-
dational libraries will affect every aspect of the application code.

13 NET provides scripting capabilities thanks to the DLR, a framework for implementing
dynamic languages that leverage .NET reflection and light weight code generation at run-
time. The DLR offers a great flexibility since it is language independent.
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Appendix C

Rendering in Real Time
Application

One of the most critical aspects of the game main loop is represented
by the rendering step. Every cycle the current frame must be computed
from the internal representation of the state of the world held, in com-
puter games featuring 3D graphics, into appropriate data structures. An
essential data structure widely adopted by computer games is the scene
graph (Ebe06; scg), a graph where nodes represent the state of the vari-
ous elements of the world and arcs the relations among them. Rendering
is the process of visiting the data contained in the scene graph. Since
the scene graph holds the whole state of the world, it may also contain
objects that are not visible (either because out of the field of view or oc-
cluded by other objects) given the current position of the camera.

An obvious optimisation of this process would be to avoid the elab-
oration of these invisible objects, which can be significant in number if
the world is large enough. The Z test (depth buffer test) is used to de-
cide which pixel is to be displayed on the final picture and it uses the
distance from of a point from the camera in the 3D space to decide the
closest visible fragment to be shown. To have a depth sorted version of
the scene can (potentially) avoid some drawing to happen because of a
wrong order in rendering (zbu) and view frustum test can avoid sorting
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something out of sight.

Rendering with a wrong order make the pixels to be drawn more than
once, thus impacting on the fill rate, in this example the marked region
is drawn three times because the cubes passes the depth test and so the
new pixel is to be drawn in front of the previous.

Given this information we can think about a rendering algorithm as
follows:

foreach (mesh in CurrentScene) {
if (IsVisible (mesh))
CameraSortedList.Add (mesh) ;
}
foreach (mesh in CameraSortedList)
mesh.Render () ;

The approach is an improvement is the time consumed for the boost and
the rendering of the selected objects is less than the time the execution
of a complete scene rendering would consume. The culling algorithms
employed by the 3D pipeline would avoid the rendering of unnecessary
primitives, but there would be a greater overhead due to the requests of
unneeded graphic primitives. Moreover at the application level there is
more semantic information that can be used to get rid of entire objects
due to considerations possible only at this level. Often semitransparent
objects have to be rendered and we must extend the basic structure of the
rendering to take into account the fact that several objects are viewable
along the same direction because of the alpha blending.

A simple approach to address the problem of transparent objects con-
sists in having a distance sorted list where the first element is the further
and the last one the closest to the camera. More advanced techniques
adopt depth peeling strategies, since sorting object is not enough for ac-
curate rendering; a complete and correct solution would involve sorting
all the triangles (or even small tessellation element (CCC87)) defining
objects, though it is not feasible in real time because computationally too
expensive. The algorithm that deals with transparent objects is extended
as follows:

foreach (mesh in CurrentScene)

2| if (IsVisible (mesh))
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if (mesh.Alpha)
CameraSortedList_Transparent .Add (mesh) ;
else
CameraSortedList_Solid.Add (mesh) ;

foreach (mesh in CameraSortedList_Solid)
mesh.Render () ;

foreach (mesh in CameraSortedList_ Transparent)
mesh.Render () ;

The data structure CurrentScene holds the SceneGraph, which is,
in its simplest form a collection of every object of the game (3D mod-
els). In the algorithm we assumed that the initialisation of the Camera-
SortedList_Transparent and the CameraSortedList_Solid col-
lections are responsible for deciding the sorting strategy, and that it is
performed during the execution of the Add method. Usually the scene
graph is adapted to the specific game logic to obtain maximum perfor-
mance since it is a very large data structure and it affects the performance
in accessing data. A number of techniques to treat the geometric and
topological description of the game world are used, such as quadtree
(Ebe06), octree (Ebe06), sector, c-bdam (GMC'06b), p-bdam (CGG'03).
A common practice is to separate the collection filling from the drawing
step; this is because collections are updated after the simulation code and
the drawing step at time t can be performed in parallel with the simula-
tion step at time t+1.

Just to give some performance hint, even a simple game usually has
thousands of object inside the scene graph and even in the best case the
opacity test condition must be evaluated, and all of these tests happen at
least 30 time per second (though in reality it should not be less than 60
frame per second in a high quality commercial game). Commercial game
engines are commonly used for developing products (Swe06); the most
important features of these libraries are the SceneGraph and the main
loop (which involves the update step and the rendering one).

While AOP and FOP can be used for defining most of the piece of the
game (such as the SceneGraph) these approaches do not work as well
for the rendering strategy. Although the assumption that the minimal
acceptable implementation of a SceneGraph is a simple collection, this
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cannot be assumed for the rendering strategy where the basic assump-
tion includes the complete scenario and the code has to deal with both
solid and transparent objects. The ability to discover that the dataset of
the game contains only one kind of objects would allow us to remove
both the unnecessary code and data structures. This would lead us to
some significant results:

o No conditional tests must be performed to discover the object type,
thus conditional branches will be avoided

o The binary code for the method is the minimal set of instructions
needed reducing impact on the memory hierarchy and instruction
cache miss

e The working set of the method is reduced to the minimum

o Often those data structures are used inside critical section, the fewest
must be touched the shortest they last

In order to achieve these results game engine ships both in binary and
source code, so that developers can change the engine to fit their needs.
The usual approach followed is through #ifdef preprocessor directive
to compile an ad hoc version of the engine. The data driven optimisation
is so human performed at the game design step. In such scenario there
is the need for a technique to describe code evolution even by removing
unused features and aspects from an existing program.

Having those facilities and the ability to perform the transformation
at run time would lead to both performance boost and easy maintenance
of the final program, without the need to change the source code of the
engine. Modifications to the game engine often involve a full rebuild of
the whole system that can have a significant impact to the development
process, For instance a Play Station Portable game compilation phase
takes around 40 minutes to complete on a dual core architecture with
2 GB of memory, time that a developer needs to face every debugging
session.

In the rest of this paper we will consider two examples from game
rendering and we will discuss how these problems can be addressed us-
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ing state of the art generative programming techniques. Our goal is to
show that existing approaches are not capable of describing and han-
dling these examples without a significant amount of workarounds to
describe them, with a significant overhead.

The two problems are related to the configuration of a data struc-
tures used to describe the Potentially Visible Set (PVS) (pvs) and the scene
graph. Here we are interested in controlling the structure of a type as
well as the code responsible for inserting objects into the PVS. Let us
assume that we start with a basic implementation of the scene graph,
which is just a class defining the interface needed to build the PVS given
a camera:

public class SceneGraph{

public Pair<PVS, PVS> ComputePVS (camera c) {}
}
A typical implementation of the ComputePVS method is the follow-
ing:
Pair<PVS, PVS> ComputePVS (camera c) {
PVS transparent = new PVS(), solid = new PVS();
foreach (mesh in CurrentScene)
if (IsVisible (mesh,c))
if (mesh.Alpha)
transparent.Add (mesh) ;
else
solid.Add (mesh) ;
return new Pair<PVS, PVS>(solid, transparent);
}

The PVS data structure collects meshes and its definition is the following;:

public class PVS {
void Add (Mesh m) {
}

}

The data structure used by the PVS to store the Mesh objects may vary
depending on the kind of objects inserted using the Add method. This
method is responsible for implementing the insertion policy, for instance
the solid objects must be sorted from the nearest to the farthest, whereas
for transparent objects the sorting order is the reverse.
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Insertion strategy is not the only dimension of the problem: differ-
ent organisations may suit better for different objects and possibly with
a non homogeneous interface (the same problem arises for the scene
graph depending on the kind of nodes and the semantics intended for
the collection as discussed in (Ebe06)). Using generative programming
techniques it is possible to synthesise the appropriated version of PVS
for a given kind of objects. It would desirable to adapt PVS at run-time
avoiding costs of interpretation because of the large number of objects
manipulated by the set.

Ideally we would like to be able to first define the internal structure
of scene graph and of the PVS with respect to the actual type of objects
that must be stored in it. Once the structure has been decided it is also
necessary to define the code to initialise and manage data stored within
these structures. Since both scene-graph and PVS are subject to change
during execution we would like to be able to adapt these components
during run-time, with the goal of maximising performance. This is a
form of program specialisation that takes place at run-time, and it can
be convenient because the potential overhead due to code generation is
amortised by the intensive work performed by the data structures.
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Appendix D

Experiments Code

Listing D.1: IL code for normal computation

1 .maxstack 2

2 Ce

3 IL_003f: 1ldloc.1

4 IL_0040: 1ldloc.O0

5 IL_0041: call class Point3Df Vector3Df::op_Subtraction (
6 class Vector3Df,

7 class Vector3Df)

8 IL_0046: stloc.3

9 IL_0047: 1ldloc.2

10 IL_0048: 1ldloc.O0

11 IL_0049: call class Point3Df Vector3Df::op_Subtraction (
12 class Vector3Df,

13 class Vector3Df)

14 IL_004e: stloc.s V_4

15 IL_0050: 1ldloc.3

16 IL_0051: ldloc.s V_4

17 IL_0053: call class Vector3Df Vector3Df::cross(

18 class Vector3Df,

19 class Vector3Df)
20 IL_0058: stloc.s V_5
21 IL_005a: ldloc.s V_5
22 I1_005c: callvirt instance void Vector3Df::Normalise ()
23

Listing D.2: IL code for normal computation inlined
1 .maxstack 3
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IL_003f:
IL_0040:
IL_0045:
IL_0046:
IL_004b:
IL_004c:
IL_004d:
IL_004e:
IL_0053:
IL_0054:
IL_0059:
IL_005a:
IL_005c:
IL_005d:
IL_0062:
IL_0063:
IL_0068:
IL_0069:
IL_0O06b:
IL_006c:
IL_0071:
IL_0072:
IL_0077:
IL_0078:
IL_007a:
IL_007b:
IL_0080:
IL_0081:
IL_0086:
IL_0087:
IL_0089:
IL_008a:
IL_008f:
IL_0090:
IL_0095:
IL_0096:
IL_0098:
IL_00%a:
IL_009c:
IL_009d:
IL_009f:
IL_0OOal:
IL_00a2:
IL_00a3:
IL_00a5:
IL_00a7:
IL_00a9:
IL_0Oaa:
IL_0Oab:
IL_0O0ad:

ldloc.1

callvirt instance
ldloc.0

callvirt instance
sub

stloc.3

ldloc.1

callvirt instance
ldloc.0

callvirt instance
sub

stloc.s V_4
ldloc.1

callvirt instance
ldloc.0

callvirt instance
sub

stloc.s V_5
ldloc.2

callvirt instance
1ldloc.0

callvirt instance
sub

stloc.s V_6
ldloc.2

callvirt instance
ldloc.0

callvirt instance
sub

stloc.s V_7
ldloc.2

callvirt instance
ldloc.0

callvirt instance
sub
stloc.s
ldloc.s
ldloc.s
mul
ldloc.s
ldloc.s
mul

sub
stloc.s
ldloc.s
ldloc.s
mul
ldloc.3
ldloc.s V_8
mul

|<\< < <<
-~ o 0 > 00

<< <
o U ©

float32

float32

float32

float32

float32

float32

float32

float32

float32

float32

float32

float32
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Point3Df:

Point3Df:

Point3Df:

Point3Df:

Point3Df:

Point3Df:

Point3Df:

Point3Df:

Point3Df:

Point3Df:

Point3Df:

Point3Df:

tget_X()

tget_X()

tget_Y ()

tget_Y ()

tget_7()

tget_7()

tget_X()

tget_X()

tget_Y ()

tget_Y ()

tget_7()

tget_7()




100
101
102

IL_OOae: sub

IL_00af: stloc.
IL_00bl: 1dloc.
IL_00b2: 1ldloc.

IL_00b4: mul

IL_00b5: 1ldloc.
IL_00b7: 1ldloc.

IL_00b9: mul
IL_00ba: sub

IL_00bb: stloc.
IL_00bd: 1ldloc.
IL_00bf: 1ldloc.
IL_00cl: 1ldloc.

S
S
S

S

v_11
V_9

V_10
v_11

IL_00c3: call float32

float32,
float32)

IL_00c8: call float32

float32,
float32)

IL_00cd: stloc.
IL_00cf: 1ldloc.
IL_00dl: 1ldloc.

IL_00d3: div

IL_00d4: stloc.
IL_00d6: 1ldloc.
IL_00d8: 1ldloc.

IL_00da: div

IL_00db: stloc.
IL_00dd: 1ldloc.
IL_00df: 1ldloc.

IL_00el: div

IL_00e2: stloc.
IL_0O0e4: 1ldloc.
IL_00eb6: ldloc.

IL_00e8: mul

IL_00e9: ldloc.
IL_00eb: 1ldloc.

IL_00ed: mul
IL_00ee: add

IL_00ef: 1ldloc.
IL_00fl: 1dloc.

IL_00£f3: mul
IL_00f4: add

IL_00f5: conv.r8
IL_00f6: call floato64
IL_00fb: conv.r4d
IL_00fc: stloc.s V_12
IL_00fe: 1ldloc.s V_9
IL_0100: 1ldloc.s V_12

IL_0102: div

V_11
v_11

[mscorlib] System.Math: :Max (

[mscorlib]System.Math: :Max (

[mscorlib]System.Math::Sqrt (float64)

175




103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

IL_0103: stloc.s V_9
IL_0105: 1ldloc.s V_10
IL_0107: 1ldloc.s V_12
IL_0109: div
IL_010a: stloc.s V_10
IL_010c: 1ldloc.s V_11
IL_010e: 1ldloc.s V_12
IL_0110: div
IL_0111: stloc.s V_11
IL_0113: 1ldloc.s V_9
IL_0115: 1ldloc.s V_10
IL_0117: 1ldloc.s V_11
IL_0119: newobj instance wvoid Vector3Df::.ctor(

float32,

float32,

float32)

Listing D.3: Matrix multiplication

1[Matrix3Df m =

ml » m2 x m3 * m4d * m5 * m6;

Listing D.4: Matrix multiplication specialised

1| Matrixf[] ms = new Matrixf[]{ml,m2,m3,m4,m5, m6};
2| Matrixf res = new Matrixf();

3

4| for (int i = 0; i < ms.Length; i++)
5[ {

6 float[,] m = ms[i].m_matrix;
7 float c00 = m([0, 0];

8 float c01 = m[O0, 1];

9 float c02 = m[0, 2];

10 float c03 = m[0, 31];

11

12 float cl10 = m[1l, 0];

13 float cll1l = m[1, 1];

14 float cl12 = m([1, 2];

15 float cl13 = m[1l, 3];

16

17 float c20 = m[2, 0];

18 float c21 = m[2, 1];

19 float c22 = m[2, 2];

20 float c23 = m[2, 3];

21

22 float c30 = m[3, 0];

23 float c31 = m[3, 1];

24 float c32 = m[3, 2];

25 float ¢33 = m([3, 3];
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26

27 for (int r = 0; r < 4; r++)

28 {

29 float r0 = res.m_matrix[r, 0];

30 float rl = res.m_matrix[r, 1];

31 float r2 = res.m _matrix[r, 2];

32 float r3 = res.m_matrix[r, 3];

33

34 res.m_matrix[r, 0] = (r0 * c00) + (rl % cl0)
35 + (r2 * c20) + (r3 =
36 res.m_matrix[r, 1] = (r0 * c01l) + (rl % cll)
37 + (r2 * c2l1) + (r3 =
38 res.m_matrix([r, 2] = (r0 x c02) + (rl = cl2)
39 + (r2 * c22) + (r3 =
40 res.m_matrix[r, 3] = (r0 * c03) + (rl % cl3)
41 + (r2 * c23) + (r3 =
42 }

43

441 }

c30);

c31);

c32);

c33);

Listing D.5: Baricentre Computation

1| Point3Df ComputeBaricentre (Point3Df[] vertices)
2| {

3 float n = vertices.Lenght;
4 float x,vy,z;

5 foreach (var v in vertices)
6 {

7 x+= v.X / n;

8 y+= v.Y / n;

9 z+= v.Z / n;

10 }

11 return new Point3Df (x,vy,2z);
12| }
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