
IMT Institute for Advanced Studies, Lucca

Lucca, Italy

Specification and Analysis of
Systems with Dynamic Structure

PhD Program in Computer Science and Engineering

XXV Cycle

By

Andrea Vandin

2012

http://www.imtlucca.it
mailto:andrea.vandin@imtlucca.it

The dissertation of Andrea Vandin is approved.

Program Coordinator: Prof. Rocco De Nicola, IMT Institute for Advanced
Studies, Lucca

Supervisor: Dr. Alberto Lluch Lafuente, IMT Institute for Advanced
Studies, Lucca

Supervisor: Prof. Fabio Gadducci, University of Pisa

Tutor: Dr. Alberto Lluch Lafuente, IMT Institute for Advanced Studies,
Lucca

The dissertation of Andrea Vandin has been reviewed by:

Prof. Arend Rensink, University of Twente

Prof. Stefan Leue, University of Konstanz

IMT Institute for Advanced Studies, Lucca

2012

http://www.imtlucca.it

The preparation of this thesis is the last step of a fantastic
experience full of challenges and satisfaction which began on
March 2010. It has been a great privilege to spend three years
at IMT Institute for Advanced Studies, Lucca.

First of all I must thank Alberto Lluch Lafuente, my co-super-
visor, but above all a great friend whose constant support has
been critical to my growth. The same shall be said about Fabio
Gadducci, who has supervised me since I started working on
my Master thesis.

Many other people shall be thanked, comprising Ugo Monta-
nari and Rocco De Nicola, respectively, the former and current
coordinator of the PhD Program in Computer Science and
Engineering at IMT, together with the academic and adminis-
trative members of IMT, the co-authors with whom I had the
pleasure to work, and the members of the European project
ASCENS.

Last but not least, a special thanks goes to my family, to
Lavinia and to her family, that were always by my side.

To conclude, I quote a phrase already used in my Master thesis:
“Graduation is not a point of arrival but a point of departure”.

Contents

List of Figures x

Acknowledgements xiii

Vita, Publications and Presentations xiv

Abstract xix

1 Introduction 1
1.1 Contribution . 8
1.2 Structure of the thesis . 14

I Technical contribution 16

2 Counterpart semantics for quantified modal logics 18
2.1 Running example . 19
2.2 Introducing counterpart models 20

2.2.1 Many-sorted algebras 20
2.2.2 Labelled transition systems with state structure . . 22

2.3 Syntax of a quantified µ-calculus 24
2.4 Counterpart semantics . 27

2.4.1 Sets of assignments 27
2.4.2 The semantic model 30

2.5 Semantics at work . 34
2.6 Monotony and decidability results 39

vii

2.6.1 Monotony . 40
2.6.2 Decidability of model checking for finite models . . 42

3 Approximating the behaviour of structured systems 45
3.1 Running example . 46
3.2 Counterpart model approximations 46
3.3 Reductions for counterpart models 49

4 Sound approximated model checking of infinite-state systems 53
4.1 Preservation and reflection of formulae 54
4.2 Approximated semantics and model checking 58
4.3 Dealing with untyped formulae 63
4.4 Soundness proofs . 65

II Tool support 71

5 A gentle introduction to rewriting logic and Maude 74
5.1 Informal discussion . 74
5.2 Detailed discussion . 76

6 An explicit-state counterpart model checker for finite models 82
6.1 System specification . 83
6.2 Counterpart model generation 91
6.3 Formulae evaluation . 92

7 Tool support for c-reductions 94

8 Model checker at work 106
8.1 Leader election system . 106
8.2 Dining philosophers with disposable forks 120

III Closing part 137

9 Discussion 138
9.1 Quantified modal logics . 139

viii

9.2 Techniques and tools for the verification of visual specifica-
tion formalisms . 143

10 Conclusions 153

References 156

ix

List of Figures

1.1 A model with a component i in a state and none in the other 5
1.2 Schematic unfolded transition t from state s to state s’ . . . 7
1.3 Two models: an infinite-state one (left) and a finite one (right) 11

2.1 An execution of an erroneous leader survivor algorithm . . 19
2.2 Three graphs: G0 (left), G1 (middle) and G2 (right) 21
2.3 A counterpart model with three sequential worlds 24

3.1 An infinite-state counterpart model 46
3.2 Approximations . 48
3.3 A model (left) and its c-reduction (right) 52

4.1 A formula (ψ) preserved by a simulation (R). 54
4.2 Over-approximated semantics. 59
4.3 Approximated semantics . 60

8.1 State-space sizes (left) and time necessary for their genera-
tion (right) at the varying of system size 110

8.2 Reduced state-space sizes (left) and time necessary (right)
at the varying of system size 114

8.3 State-space sizes (left) and time necessary (right) at the
varying of system size, reducing with compactNames . . 115

8.4 An illustration of the dining philosophers problem 121
8.5 State-space sizes (left) and time necessary for their genera-

tion (right) at the varying of system size 132

x

Listings

6.1 The Maude code to define the graph signature 84

6.2 The Maude code to define the initial state of the leader
election system . 86

6.3 The Maude code to define the dynamics of the leader elec-
tion system . 87

6.4 The global rule which applies the system-specific local rules 90

7.1 An enriched global rule to support c-reductions 96

7.2 The Maude code to exploit compactNames (1) 98

7.3 The Maude code to exploit compactNames (2) 99

7.4 The Maude code to exploit freeTransps (1) 102

7.5 The Maude code to exploit freeTransps (2) 103

7.6 The implementation of the canonizer freeTransps 104

8.1 The code to exploit the composition of freeTransps with
compactNames . 113

8.2 The counterpart model for four processes reduced with
canonizer freeTransps◦compactNames 116

8.3 The Maude code to connect the counterpart model genera-
tor with the model checker 117

8.4 Evaluating formulae against the model of Listing 8.2 118

8.5 The Maude code to define the signature of the dining
philosophers . 125

8.6 The Maude code to define the initial state of the dining
philosophers system . 127

xi

8.7 The Maude code to specify the dynamics of the dining
philosophers system . 129

8.8 The Maude code to exploit freeTransps rotations

and compactNames(1) . 134
8.9 The Maude code to exploit freeTransps rotations

and compactNames(2) . 135

xii

Acknowledgements

As discussed in the Introduction, part of the material pre-
sented in this thesis has been previously published in several
co-authored papers.

In particular, Chapter 2 is based on (GLV10) and (GLV12a),
a joint work with Fabio Gadducci, University of Pisa, and
Alberto Lluch Lafuente, IMT Institute for Advanced Studies,
Lucca. Chapters 3 and 4 are instead based on (GLV12b), co-
authored by Fabio Gadducci and Alberto Lluch Lafuente, and
on (LMV12), co-authored by Alberto Lluch Lafuente, and José
Meseguer, University of Illinois, Urbana Champaign. Finally,
Part II is in part based on (LV11), co-authored by Alberto Lluch
Lafuente.

xiii

Vita

December 07, 1984 Born, La Spezia, Italy.

September 2003 - December 2006 Bachelor Degree in Computer Science,
University of Pisa, Italy,
Final mark 110/110 cum laude.

September 2005 - January 2006 Visiting Student,
Queen Mary College of London, UK,
Granted by the Erasmus program.

January 2007 - October 2009 Master Degree in Computer Science,
University of Pisa, Italy,
Final mark 110/110 cum laude.

December 2009 - March 2010 Designer of software systems,
ION Trading.

March 2010 - Now PhD Student,
IMT Lucca, Italy.

March 2010 - Now Active member of the European FP7-ICT
Integrated Project 257414 ASCENS.

January - June 2012 Visiting Student and Teaching Assistant,
University of Leicester, UK.

June 2012 Mentor,
AWASS2012 Awareness Summer School,
Edinburgh Napier University, UK.

xiv

Publications

Journal papers:
1. Counterpart semantics for a second-order mu-calculus, Fabio Gadducci,

Alberto Lluch Lafuente, Andrea Vandin, Fundamenta Informaticae, volume
118, pages 177-205, ISSN 0169-2968, 2012;

Conference papers:
2. State Space c-Reductions of Concurrent Systems in Rewriting Logic, Al-

berto Lluch Lafuente, José Meseguer, Andrea Vandin, 14th International
Conference on Formal Engineering Methods (ICFEM’12), Springer LNCS,
volume 7635, 2012;

3. Exploiting over- and under-approximations for infinite-state counterpart
models, Fabio Gadducci, Alberto Lluch Lafuente, Andrea Vandin, 6th Inter-
national Conference on Graph Transformation (ICGT’12), Springer LNCS,
volume 7562, 2012;

4. A Conceptual Framework for Adaptation, Roberto Bruni, Andrea Corra-
dini, Fabio Gadducci, Alberto Lluch Lafuente, Andrea Vandin, 15th Inter-
national Conference on Fundamental Approaches to Software Engineering
(FASE’12), Springer LNCS, volume 7212, 2012;

5. Counterpart semantics for a second-order mu-calculus, Fabio Gadducci,
Alberto Lluch Lafuente, Andrea Vandin, 5th International Conference on
Graph Transformation (ICGT’10), Springer LNCS, volume 6372, 2012;

Workshop papers:
6. Adaptable Transition Systems, Roberto Bruni, Andrea Corradini, Fabio

Gadducci, Alberto Lluch Lafuente, Andrea Vandin, to appear in the post-
proceedings of the 21st International Workshop on Algebraic Development
Techniques (WADT’12), Springer LNCS;

7. Modeling and analyzing adaptive self-assembling strategies with Maude,
Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch Lafuente,
Andrea Vandin, 9th International Workshop on Rewriting Logic and its
Applications (WRLA’12), Springer LNCS, volume 7571, 2012;

8. Towards a Maude Tool for Model Checking Temporal Graph Properties,
Alberto Lluch Lafuente, Andrea Vandin, 10th International Workshop
on Graph Transformation and Visual Modeling Techniques (GT-VMT’11),
EASST ECEASST, volume 41, 2011;

xv

Extended abstracts:

9. Towards the Specification and Verification of Modal Properties for struc-
tured systems, Andrea Vandin, Doctoral Symposium of ICGT’12, Springer
LNCS, volume 7562, 2012;

10. A Lewisian Approach to the Verification of Adaptive Systems, Fabio Gad-
ducci, Alberto Lluch Lafuente, Andrea Vandin, Another world is possible
(Conference on David Lewis), Rivista Italiana di Filosofia Analitica Junior,
volume 2, number 2, ISSN 2037-4445, 2011;

11. On a Counterpart Semantics for predicate modal mu-Calculus, Fabio Gad-
ducci, Alberto Lluch Lafuente, Andrea Vandin, 12th Italian Conference on
Theoretical Computer Science (ICTCS’10).

xvi

Presentations

Invited talks:

1. Specification and Analysis of Systems with Dynamic Structure, ETH Zurich,
CH, September 2012;

2. Self-Assembling Strategies, case study mentor at AWASS2012 Awareness
Summer School, Edinburgh Napier University, UK, June 2012;

3. Towards the Specification and Analysis of Systems with Dynamic Structure,
PhD Seminar Series, University of Leicester, UK, December 2011.

Conference talks:

4. State Space C-Reductions of Concurrent Systems in Rewriting Logic, 14th
International Conference on Formal Engineering Methods Kyoto Research
Park, Japan, November 2012;

5. Specification and Analysis of Systems with Dynamic Structure, Doctoral
Symposium of the 6th International Conference on Graph Transformation,
University of Bremen, Germany, September 2012;

6. Exploiting Over- and Under-Approximations for Infinite-State Counterpart
Models, 6th International Conference on Graph Transformation, University
of Bremen, Germany, September 2012;

7. Modelling and Analyzing Adaptive Self-Assembling Strategies in Maude,
9th International Workshop on Rewriting Logic and its Applications, RWTH
AACHEN University, Tallin, Estonia, March 2012;

8. A Lewisian Approach to the Verification of Adaptive Systems, Another
World is Possible (Conference on David Lewis), University of Urbino Carlo
Bo, Italy, June 2011;

9. Towards a Maude Tool for Model Checking Temporal Graph Properties,
10th International Workshop on Graph Transformation and Visual Modeling
Techniques, Saarland University, Saarbrucken, Germany, April 2011;

10. Counterpart Semantics for a Second-Order mu-calculus, 5th International
Conference on Graph Transformation, University of Twente, Netherlands,
October 2010;

11. Counterpart Semantics for a Second-Order mu-calculus, 12th Italian Con-
ference on Theoretical Computer Science, University of Camerino, Italy,
September 2010.

xvii

Other talks:

12. Modelling and Analyzing Adaptive Self-Assembling Strategies in Maude,
6th meeting of the EU project ASCENS, University of Florence, Italy, March
2012;

13. Status of the integration of Maude in the SDE, 6th meeting of the EU project
ASCENS, University of Florence, Italy, March 2012;

14. On Graph-Based Verification of Evolving Structures, 5th meeting of the EU
project ASCENS, Verimag - CTL, Grenoble, France, July 2011.

xviii

Abstract

In many areas of Computer Science we face systems with dy-
namic structure, i.e. where components and resources may
dynamically join and leave, or even get combined. When ana-
lyzing these systems one is not only interested in properties
about global behaviours (e.g. correctness or safety), but also
about the evolution of single components or of their inter-
relations. In order to achieve this, logic-based specification
languages and techniques equipped with a neat handling of
components and their dynamicity are needed.

Our solution belongs to the family of quantified µ-calculi, i.e.
languages combining quantifiers with the fix-point and modal
operators of temporal logics, for which we propose a novel
approach to their semantics. We use counterpart models as
semantic domain, i.e. labeled transition systems where states
are algebras, and transitions are enriched with counterpart
relations (partial morphisms) between states, explicitly encod-
ing the evolution of components. Formulae are interpreted as
sets of assignments, associating formula variables to state com-
ponents. Our proposal allows to deal with the peculiarities of
the considered systems, and avoids limitations of existing ap-
proaches, often enforcing restrictions of the transition relation.

Unfortunately, dynamicity may easily lead to infinite-state
systems, paradigmatic examples being those with unbounded
creation of components. Verification can become intractable,
calling for approximation techniques. In this direction, we
propose a general notion of model approximation, and exploit
it by resorting to a type system which denotes formulae as
reflected or preserved, together with an approximated model
checking technique based on sets of approximations.

xix

Chapter 1

Introduction

The increasing complexity of software systems is making more and more
necessary the development of automatic techniques for their analysis.
Commonly, in order to reason about a software system we first define
an abstract mathematical model of it, where only relevant informations
and properties are highlighted. Then, different techniques can be applied
to analyze such models, one of the most successful of which is model
checking (CGP99). When analyzing a system with model checking, we
actually ask if a given property holds in its model. In order to answer to
this question, we exhaustively explore all the possible executions of a
system, that is the graph of the states reachable in its model starting from
a given initial state.

Depending on the kind of systems to be analyzed, and on the proper-
ties to be checked, different kinds of models and property specification
languages exist, providing different levels of abstraction. In the models
used with traditional (i.e. propositional) model checking, the internal
structure of system states is abstracted away, replaced by sets of boolean
propositions which are used to provide informations about states. The
property specification mechanisms commonly used in propositional mo-
del checking are propositional temporal logics, a family of rigorous, com-
pact, expressive and natural languages. On the one hand these languages
allow to reason about system states by expressing boolean formulae, com-

1

posed using state propositions as building blocks. On the other hand,
those languages allow to reason about system evolutions, thanks to tem-
poral operators which can be used to express formulae regarding the
value of propositions in some future states.

Thanks to these abstractions, propositional model checking is very
successful in managing closed systems with a fixed number of compo-
nents, for example hardware circuits, communication protocols with a
fixed number of partners, and programs without dynamic resource allo-
cation (e.g. generation of new objects). However, in this thesis we focus
on systems with dynamic structure, that is systems whose components
and their interrelations may vary over time. This kind of systems can be
found in many areas of Computer Science, like service-oriented and cloud
computing, or in multi-agent environments, where system components
and resources may dynamically join and leave the system, or even get
combined during its evolution. Other examples are dynamic architectures
and workflows, as well as dynamic data structures like the heap for object
oriented languages where objects can be dynamically created.

In such dynamic scenarios, where components are created or deleted,
and relations between them are established or broken, one is not only
interested in proving properties of global behaviours, like e.g. system
correctness (the system will never reach a given bad state) or safety (the system
will always reach a given good state). In fact, in those scenarios one may be
interested in reasoning about finer properties on the evolution of single
components, or of groups of them. For example, one could be interested
in verifying if in a certain state there exists a particular component (e.g. a
process) that will lead the system to a particular bad or good behaviour (a sort of
individual liveness property). Similarly, we could search for sets of unrelated
components which will establish some kind of relation (e.g. a collaboration) in the
future. Moreover, we can be interested on checking that stored messages
are consumed with given policies, e.g. FIFO for queues or LIFO for stacks.

Propositional model checking is not enough to perform this kind
of analysis, because it is not possible to keep track of the evolution of
single components, as the internal structure of system states is abstracted
away. Richer models and non propositional logics are necessary. For

2

what regards the models, a solution is to enrich states with an algebraic
structure, explicitly representing state components and the interrelations
between them. An example is graph transformation (Roz97; EEKR99;
EEPT06), where graphs are used to represent the internal structure of
each state. Moreover, since we are interested in reasoning about the
evolution of single components and of the inner topology of each state,
we also need a mechanism to identify components in different states.

For what regards the logics, (i) we need to be able to reason about
the components of a state, and we can do this thanks to variables and
quantifiers, (ii) we need to be able to reason about the evolution of a
system, and for this we can exploit temporal operators, and finally, (iii)

we need to be able to reason about the evolution of components across
the evolution of the system. This last requirement can be achieved by
allowing to freely mix the use of quantifiers and temporal operators, so
that we can select components in a state (with quantifiers), and then
study their evolution (thanks to temporal operators). Hence we need
quantified temporal logics, which are equipped with a finer handling
for individual components, together with specific techniques taking into
account dynamicity. Such logics have been proposed by several authors
in the context of software analysis, for example to reason about the life
of components (e.g. (DRK02)), allowing to answer to questions like has a
component been allocated or deallocated?, or has it been created in the current
state?

However, before analyzing a system it is necessary to define an abstract
mathematical representation of it. Several system specification formalisms
have been proposed in the literature. Visual specification formalisms, in
particular, are nowadays widely used in almost the whole spectrum of
software and hardware development activities. In the particular case of
analysis and verification activities, visual specifications are complemented
with appropriate property specification languages and tools for checking
and verifying properties. Actually, it can be considered as a common
sense remark that any assessment on the usability of a (visual) formalism
for the specification of software systems should rely on the existence of
languages for expressing properties, as well as on the availability of tools

3

for their verification.

A prominent example of visual specification formalism supported by
suitable property specification languages and tools are graph transfor-
mation systems (GTSs), temporal graph logics and the corresponding
verification tools, which are used to reason about the possible transforma-
tions in a graph topology. Considering the area of graph transformation,
a state of a software system is represented by a graph of some flavour (e.g.
directed, edge-labeled and/or node-labelled), and each of its elements,
namely nodes and edges, usually bears some relevance for the system.
System dynamics are instead specified as sets of (graph) transformation
rules. The application of a rule to a graph representing a state s generates
a new graph representing a state s′ successor of s, in which some elements
of s may have been deleted, merged, renamed or new ones may have
been created.

For the specific area of graphs, the issue of defining a suitable prop-
erty specification language has been strongly advocated in the semi-
nal research of Courcelle on Monadic Second-Order logic for graphs
(MSO) (CE12; Cou90; Cou89). After these works, suitable variants of
graph logics have been investigated and their connection with topological
properties of graphs thoroughly investigated (e.g. (Cou97; DGG07)).

Coming to the area of graph transformation, the need to reason about
the possible changes in a graph topology has successively led to the idea of
combining temporal and graph logics. Before that, many authors studied
decidability and complexity of first-order temporal logics, developed for
reasoning about the evolution of individual components within a software
system. Unfortunately, such logics are in general not decidable (see
e.g. (FT03; HWZ01) and the references therein). As a consequence, many
efforts have been devoted to the definition of logics (or the identification
of fragments) that sacrifice expressiveness in favour of computability and
efficiency, thus providing verification tools where logics become effective
specification mechanisms.

The first approaches to combine temporal and graph logics consisted
in propositional temporal logics whose state observations were limited to
pure graph formulae. The impossibility to interleave the graphical and

4

•i

s0 // s1gg

Figure 1.1: A model with a component i in a state and none in the other

temporal dimensions was thus forbidding to reason about the evolution of
individual components within a graph. More recent approaches (BCKL07)
propose variants of quantified µ-calculi, a combination of the fix-point
and modal operators of temporal logics with the Monadic Second-Order
one. Albeit less expressive than full second-order proposals, because the
class of admissible predicates is restricted to first-order equality and set
membership, these logics fit at the right level of abstraction for graph
transformation: if state systems are graphs, and state components are thus
graph elements, one is not only interested in the topological structure of
each reachable graph alone, but on the evolution and fate of its individual
elements as well.

Unfortunately, the semantical models for such logics are not clearly
cut. Consider for instance the simple model shown in Figure 1.1 with two
states s0 and s1, a transition from s0 to s1, a transition from s1 to s0, and
an element i that appears in s0 only. Is the same element i being destroyed
and (re)created again and again at every iteration of the loop? Or is i just
an identifier that is being reused to represent newly created elements?

From a philosophical point of view, the issue is denoted in the litera-
ture as the trans-world identity problem (see (Haz04) as well as (Bel06) for
a survey of the related philosophical issues). From a practitioner point
of view, a typical solution follows the so-called “Kripke semantics” ap-
proach. Roughly, a set of universal (graph) elements is chosen, and its
elements are used to form each state. It is then obvious how it is possible
to refer to the same element across states, and in fact elements are syntac-
tically identified across different states. This solution is the most widely
adopted, and it underlines most of the proposals we are aware of (as they

5

are surveyed in Chapter 9). For example, it is implicitly used also in the
approach discussed in (BCKL07).

However, Kripke-like solutions are not perfectly suited to reason on
the evolution of system components, for systems where they can be
dynamically allocated, deallocated, reallocated, renamed and merged.
Consider again the example of Figure 1.1. The problem is that element i
belongs to the universal domain, and hence it is exactly the same i after
every deallocation. But, intuitively, every instance of i should instead
be considered to be distinct, even if syntactically equivalent. Similar
considerations can be done for the renaming or merging of elements. In
fact, Kripke-like structures are not suitable to deal with the possibility
that elements might be merged: if each element is universal, how does
one account for the coalescing of two of them?

Those problems are often solved by restricting the class of admissible
evolution relations, so to avoid name reusing after deallocation, renaming
and merging of elements, but in this case we would not be able to model
those classes of systems. For example, in (DRK02; Ren06a; MP05a) it is
forbidden to merge components. Alternatively, as done e.g. in (BCKL07),
those problems are dealt by considering infinite universal domains and
by unfolding transition systems so to ensure uniqueness of element iden-
tifiers. Intuitively, cycles in the transition systems are replaced with
transitions towards new states where newly created elements have fresh
names, thus giving rise to infinite transition systems.

Unfortunately, such solutions tend to hamper either the usability of
the transformation technique in the first case, or the intuitive meaning of
the logic in the second.

Consider again the case of (BCKL07), and two states s and s′ of an
unfolded transition system connected by a transition t as depicted in
Figure 1.2. Then the relation between the elements of s and s′ consists in
an injective partial inclusion, meaning that elements may get deallocated
by t (depicted in Figure 1.2 as the area inside the square with label “d”,
which appears only in s), while others (with fresh names) can be created
(depicted in Figure 1.2 as the area inside the hexagon with label “n”,
which appears only in s’). The preserved elements have instead to remain

6

Figure 1.2: Schematic unfolded transition t from state s to state s’

unchanged (depicted in Figure 1.2 as the grey area with label “p” which
appears both in s and s’). Moreover, names of deallocated elements cannot
be reused in any of the successor states of s′.

The above mentioned limitations of Kripke-like structures in presence
of merging or (de/re)allocation are worsened when it comes to defining
the semantics of logics with recursive operators, such as quantified µ-
calculi. While it is obvious that a closed formula should be evaluated
as the set of states where it holds, consider instead the open formula
µZ.(p(x) ∨ �Z). Once the value of x is chosen in a state, how is such
value passed to the states denoted by the fix-point variable Z? In general,
similar problems arise during the evaluation of formulae with temporal
operators and free (i.e. unquantified) variables, where those variables will
refer to elements of the different states met during the evaluation of the
temporal operators.

Alternative solutions to Kripke models are the ones based on Lewis’s
Counterpart Theory (Lew68). Those proposals exploit counterpart relations,
namely (partial) functions among states, explicitly relating elements of
different states, which are in principle all different. Here element names
have meanings local to single states, in the sense that two elements sharing
the same name and residing in different states do not necessarily represent
the same element.

Thanks to this intuition we are able to avoid the unique domain and
the trans-world identity. The above mentioned limitations of Kripke-like
models are thus mitigated.

As a matter of fact, similar approaches have been considered by vari-
ous authors (e.g. (DRK02; YRSW06)) as a semantic domain for temporal

7

logics to reason about the evolution of individual components of a soft-
ware system. Our contribution belongs to this tradition.

1.1 Contribution

In this section we summarize the contribution presented in the thesis.

Counterpart-like semantics. In (GLV10) we introduced a novel seman-
tics for quantified µ-calculi, based on the counterpart paradigm, and we
instantiated our proposal by considering a simple second-order syntax
reminiscent of (BCKL07).

In our models, named counterpart models, system states are worlds
labelled with algebras of a signature that is fixed for the whole model, and
the evolution relation is given by a family of partial morphisms between
accessible worlds. Intuitively, those morphisms represent our notion of
counterpart relations. Clearly, since there exist several variants of many-
sorted signatures for graphs, we obtain worlds labelled with graphs as
particular case. However, our framework is more general, in the sense
that we can choose any many-sorted signature.

More importantly, and surely one of the most original components
of our work, open formulae are interpreted over sets of pairs (w, σ), for
w a world of the considered model, and σ a substitution associating the
variables occurring in the formula to individual elements of the (alge-
bra labelling) the world w. In other words, a pair (w, σ) belongs to the
evaluation of a formula if the formula is satisfied in the world w under
the variable assignment σ mapping the free variables of the formula to
elements of the algebra labelling w.

The choice of a counterpart-based semantics allows for the creation
(allocation), deallocation, renaming and merging of elements by the coun-
terpart relations labelling the transitions. Considering two worlds w, w′,
and a transition t from w to w′, then t is labelled with a partial morphism
cr representing the counterpart relation from the elements of w to the ones
of w′ following transition t. Intuitively, the elements of w for which cr is
undefined are deallocated by t, while the elements of w′ not in the image

8

of cr are newly created. The counterpart relation cr does not necessarily
need to be injective, so that elements of w can be merged by it.

Finally, it may be worth to mention that our models faithfully take
into account also the presence of cycles in the evolution relation, even in
presence of name reusing, thus dispensing with the reformulation of the
evolution relation (e.g. unfolding of the transition system).

In (GLV12a) we extended our original proposal in two main directions.
The first research thread concerns expressiveness. Our original proposal
aimed at providing a logic with a streamlined and intuitive semantics.
However, it adopted a purely counterpart solution, discarding in the
evaluation of the modal operator those worlds where elements previously
assigned to a variable got deallocated. In other terms, it essentially repre-
sented a logic to reason about the evolution of living entities, even if their
deallocation might be somehow modelled via the introduction of ad-hoc
constants in each world.

The solution proposed in (GLV12a), and here discussed in Chapter 2,
dispenses with the use of ad-hoc constants. Instead, substitutions belong-
ing to the evaluation of an open formula might now be partial with respect
to the set of (first-order) variables occurring free in the formula. Partiality
is then interpreted as the deallocation of a resource explicitly addressed by
the formula. This solution slightly departs from the canonical counterpart
paradigm, yet it falls in line with the standard practice of graph logics.

In the rest of the thesis we will consider the semantics of (GLV12a). The
interested reader can easily understand the differences between the two
proposed semantics by comparing the revised set of properties discussed
in Section 2.5 with the original presentation in (GLV10, Section 5).

The second line of inquiry considered in (GLV12a) concerns the de-
cidability of our logic. Summing up, Proposition 2.2 here reported in
Section 2.6, and whose proof is in Section 2.6.2, states that the validity of a
formula may be established against a counterpart model as long as its set
of worlds is finite, and each world is in turn labelled with a finite algebra.

Notice that this restriction is less severe than it may seem. For instance,
visual specification languages are usually concerned with finite structures,
equipped with an upper bound to the number of elements that is linked

9

with the complexity of the initial state. More in general, a wide class
of software systems are resource-bounded, meaning that the number of
elements in each of their states is bounded by some constant. This enables
the use of automated verification via name-reuse techniques. These state-
space reduction techniques are based on a sort of garbage collection
mechanism of identifiers that guarantees finiteness of the state-space of
resource-bounded systems.

As we discuss in the next paragraph, and in Chapters 3 and 4, this is
an important aspect of our proposal, since in (GLV12b) and (LMV12) we
enriched it with state-space reduction techniques which always lead to
finite models for the particular case of resource-bounded systems, together
with a framework based on counterpart model approximations that can be
applied also to other kinds of systems. Then, the necessary requirements
(finite worlds with algebras of finite dimension) for decidability seem
quite convenient.

State-space reductions and approximations. As mentioned in the pre-
vious paragraph, in (LMV12) and (GLV12b) we enriched our framework
with state-space reduction techniques which allow us to obtain finite be-
haviourally equivalent models for the particular case of resource-bounded
systems, together with a general framework to exploit counterpart model
approximations.

Those contributions, discussed in detail in Chapters 3 and 4, are fun-
damental components of our framework, since software systems with
dynamically evolving components often have huge or infinite state-spaces
even for very simple cases. For such systems, verification can become
intractable, thus calling for the development of approximation techniques
that may ease the verification at the cost of losing in preciseness and
completeness.

Consider the trivial but infinite-state system modelled in the left of
Figure 1.3. The initial state s0 is composed by only one component u0,
which is deallocated in the transition towards s1 to be replaced by a new
component u1. The system then computes an infinite sequence of steps
in which the component residing in the current state is deallocated to be

10

•u0
•u1

•u2
. . .

s0 // s1 // s2 // . . .

•u

s ZZ

Figure 1.3: Two models: an infinite-state one (left) and a finite one (right)

replaced by a new component which will be deallocated in the following
transition. Looking at the right part of Figure 1.3, we instead see a system
with only one state s containing a component u, and whose transition
relation is composed by only a self-loop on s.

If we consider the model in Figure 1.3 (right) as a Kripke model, then
we would have an (idle) system which evolves without affecting its own
state, that is preserving its only component u. Considering instead the
model in Figure 1.3 (right) as a counterpart model whose transition is
labelled with an empty counterpart relation, then we would have that at
each step u is deallocated, and it is replaced by a new distinct one (even
if sharing the same name). Hence, in this second case, it is intuitive and
easy to see that the two models of Figure 1.3 express the same behaviours.

Notice that adopting Kripke models, due to the trans-world identity
problem, it is not possible to finitely represent the above mentioned model
of Figure 1.3 (right). A sort of state-space unfolding is necessary. Moreover
the components have to be uniquely identified by their names in all the
states of the model, hence each state has to explicitly contain different
names for different components, forbidding name reusing. Intuitively, the
model in Figure 1.3 (left) would be obtained.

More in detail, in (LMV12) we proposed a state-space reduction tech-
nique for Kripke models capturing symmetry reduction (WD10), name
reusing, and name abstraction. The technique is based on the idea of
canonical reductions, abbreviated in c-reductions, as a generic means
to reduce a Kripke model K by exploiting some equivalence relation ∼
on the states of K which is also a bisimulation on K (i.e. between K

and itself). Then, the concept of state canonizers is introduced, that is
functions mapping states in the (possibly not unique) representative of
their equivalence class, modulo an equivalence which is also a bisimula-

11

tion (e.g. a canonical permutation of names of processes with identical
behavior).

As a consequence, a model reduced exploiting a canonizer is bisimilar
to the original one.

Moreover, c-reductions easily allow to obtain an on-the-fly reduction
technique by applying canonizers to each newly generated state, directly
during the generation of the state-space. Intuitively, we do not require to
build the original state-space to reduce it, but we instead directly generate
the reduced one. This allows to apply our reduction also to infinite-state
models. In Chapter 3 we lift this proposal to counterpart models.

In (GLV12b) we proposed a general formalization of counterpart mo-
del approximations based on standard behavioural preorders for transi-
tions systems (i.e. similarities) which we extended to counterpart models.

We consider under-approximations, namely models that express less
behaviours than the original one, and over-approximations, namely models
that express more behaviours than the original one. Intuitively, considering
three models M , M and M , we say that M is an under-approximation
of M if M is similar to M , because M simulates M . Conversely, we say
that M is an over-approximation of M if M is similar to M , because
M simulates M . In the particular case in which a model is bisimilar to
the original one, then it is both an under- and an over-approximation,
and it represents exactly the same behaviours of the original one, as it is
intuitively for the two models of Figure 1.3.

Building on the concepts of under- and over-approximation, we then
proposed a sound approximated model checking procedure based on a
partial type system that types formulae as preserved or reflected by an
approximation. The procedure approximates the evaluation of formulae
in a model M , exploiting sets of its under- and over-approximations.

It is worth to note that our type system, which generalizes the one
presented in (BCKL07), becomes complete for bisimilar models, in which
case it types every formula as strongly preserved, that is preserved and
reflected. In particular, it can be proved that our logic characterizes our
notion of bisimilarity, meaning that we can freely analyze models reduced
up-to bisimilarity.

12

This contribution is discussed in detail in Section 3.2 and in Chapter 4.

Tool support. In (LV11) we instantiated our approach implementing a
prototypal explicit-state model checker for our logic. We implemented it
in Maude (CDE+07), a high-performance formal language and execution
environment based on equational and rewriting logic.

The tool has been implemented to test our semantics and its feasibility,
and has to be intended as our first step towards the development of a tool
framework supporting our proposal. Part II details and exemplifies our
efforts in this direction.

Currently, the tool supports both the original semantics proposed
in (GLV10) and the one proposed in (GLV12a). And, in particular, it
allows to specify systems, to automatically generate a counterpart model
starting from a system specification, and to check properties of our second-
order µ-calculus against finite counterpart models.

The tool is parametric with respect to the signature Σ of the (algebras
assigned to the) worlds of the models, representing the internal structure
of the states of the systems. In order to fix the signature, the user has
only to list its sorts and operation names. Once the signature Σ is fixed,
systems are specified by an initial state (i.e. a Σ-algebra), and by a set of
behavioural rules specifying the dynamics.

More recently, as detailed in Chapter 7 and exemplified in Chapter 8,
we integrated our c-reductions approach (Section 3.3) in our prototypal
model checker. As discussed, c-reductions allow to reduce counterpart
models in behaviourally equivalent (i.e. bisimilar) ones. Interestingly,
many infinite counterpart models, and in particular the class of resource-
bounded ones, can be reduced to finite counterpart models. This, together
with the fact that every formula of our logic is preserved and reflected in
bisimilar models (Chapters 3 and 4), allows to exploit our model checker
to analyze possibly infinite-state systems by checking formulae against
their c-reductions, provided suitable state canonizers.

Summing up, this thesis proposes a novel approach to the semantics
of quantified µ-calculi which solves problems of some existing proposals,

13

and that is well suited to reason about the evolution of system compo-
nents.

Then we complement the logic with a general formalization of model
approximations, with a sound approximated model checking technique
for infinite-state systems, and with a state-space reduction technique to
reduce systems in bisimilar ones with smaller state-spaces.

By exploiting our framework we can approximate the evaluation
of formulae in infinite-state systems by resorting to under- and over-
approximations, that is similar systems representing, respectively, less and
more behaviours. As particular case we have that the logic preserves our
notion of bisimilarity, meaning that we can always reason with models
minimized up-to it. Interestingly, we can always reduce infinite-state
resource bounded systems to bisimilar finite-state state-spaces, allowing
for their (not approximated) analysis.

In this thesis we defined and studied a general framework for the
analysis of systems with dynamically evolving structure, based on a very
expressive logic. This opens other possibly future interesting lines of
research, like the definition of proper model checking algorithms, or of
less expressive logics encodable in the presented one, so that we will be
able to reuse all the proposals and results presented in this thesis.

1.2 Structure of the thesis

The thesis is structured in an introduction (this section) followed by three
parts.

Part I. This part discusses in detail our technical contribution. Chapter 2
introduces our novel approach to the semantics of quantified µ-calculi.
Chapter 3 first presents a general notion of counterpart model approxi-
mation based on behavioural preorders, and then proposes a state-space
reduction technique based on state canonizers which captures symmetry
reduction and name reusing. Finally, in Chapter 4 we study how the se-
mantics of our logic is related to counterpart model approximations, and

14

basing on this we propose a sound approximated model checking proce-
dure which exploits sets of approximations to estimate the evaluation of a
formula in a model.

Part II. This part discusses our efforts in developing a tool framework
to support our proposal. Chapter 5 introduces rewriting logic (Mes12),
and its instantiation in Maude (CDE+07), on which our tool framework is
based. Clearly, this chapter does not represent a contribution of our thesis,
however it is necessary to make more accessible the following chapters.
Chapter 6 presents a prototypal model checker which evaluates formu-
lae of our logic against finite-state counterpart models, while Chapter 7
discusses how we extended it to implement our c-reductions approach.
Finally, Chapter 8 validates our tool against some interesting systems.

Part III. The thesis is concluded by a closing part. Chapter 9 technically
discusses how our contribution is related to existing proposals, while
Chapter 10 contains the conclusive remarks and future works.

15

Part I

Technical contribution

16

This part of the thesis discusses the technical contributions.
Chapter 2 introduces our novel approach to the semantics of quantified

µ-calculi, instantiating it to a simple second-order syntax.
Chapter 3 proposes a general formalization of counterpart model

approximation, together with a state-space reduction technique to obtain
behaviourally equivalent (i.e. bisimilar) models.

Chapter 4 complements Chapter 3 by providing a sound approxi-
mated model checking procedure exploiting sets of over- and under-
approximations of a counterpart model.

17

Chapter 2

Counterpart semantics for
quantified modal logics

Quantified µ-calculi combine the fix-point and modal operators of tempo-
ral logics (such as µ-calculus, CTL, LTL) with (existential and universal)
quantifiers, and they allow to reason about the possible behaviour of
individual components within a software system.

In this chapter we introduce our novel approach to the semantics
of such calculi: we consider as semantic models a sort of labelled tran-
sition systems called counterpart models, inspired by Graph Transition
Systems (BCKL07) and Lewis Counterpart Theory (Lew68). In counter-
part models, states are algebras and transitions are defined by counterpart
relations (a family of partial morphisms) between states.

Formulae are interpreted over sets of state assignments, namely fami-
lies of partial substitutions, associating formula variables to state compo-
nents.

Our proposal allows us to model and reason about the creation and
deletion of components, as well as about their merging. Moreover, it
avoids the limitations of existing approaches, usually enforcing restric-
tions of the transition relation: the resulting semantics is a streamlined
and intuitively appealing one, yet it is general enough to cover most of
the alternative proposals we are aware of. The chapter concludes with

18

Figure 2.1: An execution of an erroneous leader survivor algorithm

some considerations about expressiveness and decidability aspects.

2.1 Running example

For a better illustration of our concerns, we will use a simple running
example throughout this chapter.

The example is inspired by the classical circle elimination games such
as the chair dance, bang bang and the electric chair. It consists of a sort of
distributed leader survivor game, in which a set of processes is connected
through communication ports forming a ring topology. The game evolves
performing a series of elimination rounds. After each round the loser is
eliminated from the game: it abandons the ring and its neighbours should
be connected so to close the ring again. The game ends when there is only
one process left: the winner (leader, survivor) of the game.

We actually abstract away from the algorithms used in each round, and
focus instead on the evolution of the communication topology. Figure 2.1
illustrates a possible execution of some wrong algorithm for the leader
survivor game. The initial state (left) consists of five participants. The
first round eliminates participant 5 in an ill-manner: instead of closing
the circle again, a shortcut between 2 and 4 is introduced. The system
evolves until the end state (right) where two processes (1 and 3) remain
and claim to be the winners. This is a typical situation one might want to
characterize and avoid.

As a matter of fact, depending on the algorithm used in each round,
the evolution of the topology might exhibit different properties that one

19

might want to check. We enumerate a set of properties that will be used
throughout this chapter:

p1: “Will a leader be elected in all possible executions?”;

p2: “Can two distinct leaders be elected in the same execution?”;

p3: “Is there a process that necessarily becomes the leader?”;

p4: “In which states do we have a leader?”;

p5: “For which processes does an execution leading to its election exist?”;

p6: “Which communication ports will eventually merge?”;

p7: “Are processes connections correctly updated after each round?”.

In Section 2.5 we will see how to express formulae stating these and
other properties, and how they are evaluated against a model of one pos-
sible game instance. In Chapter 8 we will instead see how these properties
are evaluated using a prototypal model checker that we developed for
our logic.

2.2 Introducing counterpart models

In this section we define the class of models over which our logic is
interpreted.

2.2.1 Many-sorted algebras

We begin by recalling the definition of many-sorted algebras and their
(possibly partial) morphisms, which lies at the basis of the structure of
our worlds.

Definition 2.1 (Many-sorted algebra) A many-sorted signature Σ is a pair
(SΣ, FΣ) composed by a set of sorts SΣ = {τ1, · · · , τm} and by a set of function
symbols FΣ = {fΣ : τ1 × . . . × τn → τ | τi, τ ∈ SΣ} typed over S∗Σ. A
many-sorted algebra A with signature Σ (a Σ-algebra) is a pair (A,FA

Σ) such
that

20

e0

zz
zz

""DD
DD

e3

zz
zz

!!DD
DD

e5

oo?>=<89:;n0 ?>=<89:;n1 ?>=<89:;n3 ?>=<89:;n4 ?>=<89:;n5

e1

DD
DD

OO

e2

||zz
zz

e4

zzzz
aaDDDD

?>=<89:;n2

Figure 2.2: Three graphs: G0 (left), G1 (middle) and G2 (right)

• the carrier A is a set of elements typed over SΣ;

• FA
Σ = {fA

Σ : Aτ1 × . . .× Aτn → Aτ | fΣ : τ1 × . . .× τn → τ ∈ FΣ} is
a family of functions on A typed over S∗Σ.

Where Aτ = {a ∈ A | a : τ} is the subset of τ -typed elements of A, and to each
typed function symbol fΣ ∈ FΣ, called fundamental operations of A, corresponds
a function fA

Σ in FA
Σ .

Given two Σ-algebras A and B, a (partial) morphism % is a family of
(possibly partial) functions {%τ : Aτ ⇀ Bτ | τ ∈ SΣ} typed over SΣ

(mapping elements of sort τ ∈ A in elements of the same sort in B), such
that for each typed function symbol fΣ : τ1 × . . .× τn → τ ∈ FΣ and list
of elements a1, . . . , an, if each function %τi is defined for the element ai of
type τi, then %τ is defined for the element fA

Σ (a1, . . . , an) of type τ and the
elements %τ (fA

Σ (a1, . . . , an)) and fB
Σ(%τ1(a1), . . . , %τn(an)) coincide.

Note that our morphisms can be partial, possibly decreasing the do-
main of definition of a function and thus modeling the removal of world
elements.

Example 2.1 (Graph algebra) As an instance of many-sorted algebras we
adopt a very simple unary algebra, the one for ordinary directed graphs. More
precisely, the signature for directed graphs is (SGr, FGr). The set SGr consists of
the sort of nodes τN and the sort of edges τE , while the set FGr is composed by the
function symbols s : τE → τN and t : τE → τN which determine, respectively,
the source and the target node of an edge.

In Figure 2.2 we find the visual representations for three graphs: G0, G1, and
G2. The first of these graph algebras is given by G0 = (N0] E0, {sG0 , tG0}),

21

where N0 = {n0, n1, n2}, E0 = {e0, e1, e2}, sG0 = {e0 7→ n0, e1 7→ n2, e2 7→
n1} and tG0 = {e0 7→ n1, e1 7→ n0, e2 7→ n2}. We omit the definitions of G1

and G2, since these are already clear from their visual representations.
As we will see in Example 2.2, each graph can be understood as the commu-

nication topology of a state of our running example (Section 2.1). Thus, edges
represent processes participating in the leader survivor game, source and target
functions denote the communication ports, respectively, of the processes, and
nodes are the communication channels (port attachments).

We will make use of terms with variables. For this purpose we take
into account signatures ΣX obtained by extending a many-sorted signa-
ture Σ with a denumerable set X of variables typed over SΣ. We let Xτ

denote the τ -typed subset of variables and with xτ or x : τ a variable with
sort τ . Similarly, we let ετ or ε : τ indicate a τ -sorted term.

Definition 2.2 (Terms) Let Σ be a signature, let X be a (denumerable) set of
individual variables typed over SΣ, and let ΣX denote the signature obtained
extending Σ with X . The (many-sorted) set T (ΣX) of terms obtained from ΣX
is the smallest set such that

X ⊆ T (ΣX)

f : τ1 × . . .× τn → τ ∈ FΣ, ∀i ∈ [1, n]. εi : τi ∈ T (ΣX)

f(ε1, . . . , εn) : τ ∈ T (ΣX)

We omit the sort when it is clear from the context or when it is not
necessary.

2.2.2 Labelled transition systems with state structure

We now introduce the notion of counterpart model. The origin of the name is
due to the “Counterpart Theory” (Lew68) of David Lewis, where entities
reside in just one world and have explicit counterparts in other worlds, as
opposed to the trans-world identity of Kripkean models.

Definition 2.3 (Counterpart model) Let Σ be a signature, and A the set of
algebras over Σ. A counterpart model M is a triple (W, , d) such that

• W is a set of worlds;

• d : W → A is a function assigning to each world w ∈W a Σ-algebra;

22

• ⊆ (W ×(A⇀ A)×W) is the accessibility relation overW , enriched
with (partial) morphisms (counterpart relations) between the algebras of
the connected worlds.

The elements of are defined such that, for every (w1, cr, w2) ∈ , we
have that cr : d(w1)→ d(w2) is a (partial) morphism. In particular, each
component “cr” of explicitly defines the counterparts in (the algebras
assigned to) the target world of (the algebras assigned to) the source
world. In the following we may use w1

cr w2 for (w1, cr, w2) ∈ .
In standard terminology, we are considering a transition system la-

beled with morphisms between algebras, as an immediate generalization
of graph transition systems (BCKL07).

The counterpart relations allow to avoid the trans-world identity, i.e.
the implicit identification of elements of (the algebras of) different worlds
sharing the same identifier, meaning that two elements with the same
identifier but residing in different worlds does not necessarily represent
the same entity. As a consequence, the identifiers of the elements have
a meaning that is local to the world where they reside. For this reason,
as we will see, the counterpart relations allow for the creation, deletion,
renaming and merging of elements in a type-respecting way. Duplication
is forbidden, because no cr can associate an element of d(w1) to more than
one element of d(w2).

Should Σ be a signature for graphs, a counterpart model is visually a
two-level hierarchical graph: at the higher level the nodes are the worlds
w ∈W , and the edges are the evolution steps labeled with the associated
counterpart relation; at the lower level, each world w contains an algebra
over Σ, hence a graph, which represents its internal structure.

In the rest of the thesis we will consider counterpart models without
deadlock worlds, i.e. worlds without outgoing transitions. This is not a
limitation since a counterpart model not satisfying this condition can be
transformed into one satisfying it by introducing self-loops (w, idw, w) to
 for each w without outgoing transitions. In particular idw represents
the identity-preserving counterpart relation. This is a standard technique
in Model Checking to define the semantics of temporal logics.

23

e0

zz
zz

""DD
DD

// e3

zz
zz

!!DD
DD

1 // e5

��

oo?>=<89:;n0 ;;
?>=<89:;n1 --?>=<89:;n3 ::

?>=<89:;n4 ;;
?>=<89:;n5 [[

e1

DD
DD

OO

e2

||zz
zz

// e4

zzzz
aaDDDD 2

33

?>=<89:;n2

??

Figure 2.3: A counterpart model with three sequential worlds (w0, w1, w2)

Example 2.2 The counterpart model in Figure 2.3 illustrates two possible exe-
cutions of our running example (Section 2.1) instantiated with three processes
(edges). The model is made of three worlds, namely w0, w1, and w2, that are
mapped into the graph algebras G0, G1, and G2 of Figure 2.2, respectively. The
counterpart relations (drawn with dotted lines, possibly numbered in order to
remove any ambiguity) reflect the fact that at each transition one process (edge)
is discarded and its source and target channels (nodes) are merged: e1 from w0 to
w1, and either e3 or e4 fromw1 tow2. In particular the model contains three tran-
sitions: one from w0 to w1 and two from w1 to w2. The transition (w0, cr0, w1)
deletes edge e1 and merges nodes n0 and n2 into n3, while all the other graph
items are simply renamed. Similarly for (w1, cr1, w2) and (w1, cr2, w2), their
difference (as witnessed by the dotted arrows numbered with either 1 or 2) being
the edge they decide to remove. Finally, (w2, cr3, w2) is a simple cycle preserving
both e5 and n5, denoting that the system is idle, yet alive.

2.3 Syntax of a quantified µ-calculus

Before presenting the syntax of our logic, we introduce the notions of
second-order variables (Y ∈ X) and fix-point variables (Z ∈ Z). Formally,
a variable of the second-order Yτ with sort τ ∈ SΣ ranges over sets of
elements of sort τ . Given a counterpart model M (Definition 2.7), we
will see that an assignment σw, defined for a world w in M , associates
variables of first- and of second-order to elements and to sets of elements,
respectively, of the algebra d(w) underlying w. Fix-point variables will
range over the set of pairs (w, σw), for w a world and σw an assignment
for w. Whenever clear from the context, the subscript world w may be

24

omitted from the assignment.

Definition 2.4 (Quantified modal formulae) Let Σ be a signature, Z a set
of fix-point variables, and X , X (denumerable) sets of first- and second-order
variables typed over SΣ, respectively. The set FΣ of formulae of our logic is
generated by the rules

ψ ::= tt | ε ∈τ Y | ¬ψ | ψ ∨ ψ | ∃τx.ψ | ∃τY.ψ | ♦ψ | Z | µZ.ψ

where x ∈ X , Y ∈ X , ε is a term over ΣX , ∈τ is a family of membership
predicates typed over SΣ indicating that (the evaluation of) a term with sort τ
belongs to (the evaluation of) a second-order variable with the same sort τ , ∃τ
allows to quantify over elements (sets of elements for the second-order case) with
sort τ , ♦ is the “possibility” one-step modality, Z ∈ Z , and µ denotes the least
fixed point operator.

Whenever clear from the context, subscripts and types may be omitted.
In this sense, we implicitly require for terms and second-order variables
appearing in predicates ∈τ to have sort τ (ε : τ ∈τ Yτ). As it is standard,
we restrict to monotonic formulae, i.e. such that each fix-point variable
Z occurs under the scope of an even number of negations. This is a
necessary condition for fixed points to be well-defined.

An equivalence operator. Note that the logic is simple, yet reasonably
expressive. Other than the standard boolean connectives ∧,→,↔, and
the universal quantifiers ∀τ , we can derive other useful operators. For
instance “=τ”, the family of binary equivalence operators typed over SΣ,
stating the equality of terms with sort τ , can be derived as ε1 =τ ε2 ≡
∀τY. (ε1 ∈τ Y ↔ ε2 ∈τ Y).

Some temporal operators. We can derive as usual the greatest fix-point
operator “ν” as νZ.ψ ≡ ¬µZ.¬ψ, and the “necessarily” one-step modality
� as �ψ ≡ ¬♦¬ψ (ψ holds in all the next one-steps).

Moreover, in the next sections we use the standard universal temporal
operators AG, AF , and AU : they are derived as AGψ ≡ νZ.(ψ ∧�Z) (for
all departing paths, ψ always holds), AFψ ≡ µZ.(ψ ∨�Z) (for all departing

25

paths, ψ eventually holds), and A(ψ1Uψ2) ≡ µZ.[ψ2 ∨ (ψ1 ∧ �Z)] (for all
departing paths, ψ1 holds at least until a state is eventually met where ψ2 holds).

Finally, we also use the standard existential temporal operators EG,
EF , and EU : they are derived as EGψ ≡ νZ.(ψ ∧ ♦Z) (there exists a
departing path such that ψ holds always), EFψ ≡ µZ.(ψ ∨ ♦Z) (there exists
a departing path such that ψ eventually holds), and E(ψ1Uψ2) ≡ µZ.[ψ2 ∨
(ψ1 ∧ ♦Z)] (there exists a departing path such that ψ1 holds at least until a state
is met where ψ2 holds). The assumption in Definition 2.3 grants that all the
paths are infinite.

Example 2.3 (Some properties) Consider again the running example, the
graph signature, the counterpart model of Figure 2.3, and the typed predicates
presentτ (x) ≡ ∃τy.x =τ y expressing the presence of an entity with sort τ
in a world (the typing is usually omitted). Moreover, consider the predicate
leader(x) ≡ s(x) = t(x) ∧ present(x) characterizing leader processes.

The following formulae, omitting the typing informations, express different
properties of our running example: ψ1 ≡ µZ.[∃x.(leader(x)) ∨ �Z], also
expressed as AF [∃x.(leader(x))], states that for all departing paths from a
world, eventually there will be a leader (property p1 of Section 2.1); while
formula ψ2 ≡ ∃x.[µZ.(leader(x) ∨�Z)], expressed also as ∃x.[AF leader(x)],
states that (in a world) there is a process that, for all departing paths, will
eventually become the leader (property p3 of Section 2.1).

Intuitively, ψ1 is satisfied by those worldsw such that, for each path departing
from w, a world is reached where a leader (self-closed edge) is present. Instead,
ψ2 is satisfied by those worlds w which contain a process (edge) that is a leader
(i.e. its source and target ports coincide) or that will become a leader in a world
reachable after some finite number of steps following any path departing from w.

Formula ψ2 has thus quite a different meaning than ψ1: in ψ2 the sub-
formula AF (leader(x)) is inside the scope of the existential quantifier which
fixes the element associated to x (the potential leader) in the source world to keep
track of its evolution.

Finally, ψ3 ≡ µZ ′.(ψ2∨�Z ′), also expressed asAF (ψ2), represents another
particular flavour of property p3 (and a variant of property p1 of Section 2.1),
stating that for any execution, eventually there will be a state containing a
process that will become the leader. This property is satisfied by those worlds
w that (for any possible execution) reach a world where there is a process that is
the leader, or that will later on evolve in the leader following any departing path.

In Example 2.5 we will see how these three properties are evaluated against
the counterpart model of Figure 2.3. In particular, in that counterpart model,

26

ψ1 and ψ3 actually coincide, but this does not happen in general (e.g. the two
formulae may differ in scenarios with participants joining the game dynamically).

We now introduce the notion of context, used for decorating formulae
with relevant variable-related informations. For the sake of simplicity, in
the rest of the paper we fix a signature Σ and denumerable sets X,X ,Z
of first-order, second-order, and fix-point variables, respectively.

Definition 2.5 (First- and second-order context) A first-order context Γ
is a finite subset of X , while a second-order context ∆ of X .

For a first-order context Γ and a variable x not contained in Γ, we
write Γ, x to indicate Γ ∪ {x} and Γ \ x to indicate Γ \ {x}. Similarly for
second-order contexts and variables.

Our semantics does not evaluate naked formulae, but formulae-in-
context, that is formulae decorated with informations about their free
variables. This requirement is going to be pivotal in the definition of the
semantics, as it is shown in Section 2.4.

Definition 2.6 (Formula-in-context) A formula-in-context is defined asψ[Γ;
∆], where ψ is a formula in FΣ, Γ is a first-order context and ∆ is a second-order
context, containing, respectively, at least the free first- and second-order variables
of ψ.

2.4 Counterpart semantics

In this section we introduce the semantic domain of our logic, together
with the rules for evaluating a formula-in-context as a set of assignments
on a counterpart model. Once more, for the sake of simplicity, in the rest
of the thesis we fix a counterpart model M .

2.4.1 Sets of assignments

Our first step is to define the semantic domain of our formulae, which are
sets of assignments.

27

Definition 2.7 (Assignments) A (variable) assignment σw = (σ1
w, σ

2
w) for

a world w ∈M is a pair of partial functions typed over SΣ such that σ1
w : X ⇀

d(w) and σ2
w : X ⇀ 2d(w).

Now, let ΩM denote the set of pairs (w, σw), for σw an assignment over the
world w. A (fix-point variable) assignment is a partial function ρ : Z ⇀ 2ΩM .

Given a term ε and an assignment σ = (σ1, σ2), we freely write σ(ε)

or σ1(ε) to denote the lifting of σ1 to the set of terms over ΣX . Intuitively,
it indicates the evaluation of the term ε under the assignment σ for its
variables. If σ is undefined for any of the variables in ε, then also σ(ε) is
undefined.

In the following, we write Ω whenever the referred counterpart mo-
del is clear from the context. We also denote by Ω[Γ;∆] the set of pairs
(w, (σ1

w, σ
2
w)) such that the domain of definition of σ1

w is contained in Γ

(σ1
w is defined for a subset of Γ), and such that the domain of definition

of σ2
w is exactly ∆. Moreover, Ωw ⊆ Ω denotes the subset of pairs over

a world w (i.e. those pairs whose first component is the world w), and
similarly for the subset Ω

[Γ;∆]
w ⊆ Ω[Γ;∆]. As we will see, the evaluation

function of our formulae-in-context is strongly based on the definitions of
Ω

[Γ;∆]
w and Ω[Γ;∆].

Note the asymmetry in the definition: an assignment σ may be un-
defined over the elements of Γ, yet not over those of ∆: intuitively, σ(x)

may be undefined if the element it was denoting has been deallocated,
while we can always assign the empty set to σ(Y), should all its elements
be removed. We hence use partial first-order assignments to treat item
deallocations.

The definition below addresses the need of either extending or restrict-
ing the domain of definition of (a set of) assignments.

Definition 2.8 (Restrictions and extensions) Let [Γ; ∆] be a context, and x
a first-order variable not in Γ. Given an assignment σ = (σ1, σ2), such that
(w, σ) ∈ Ω[Γ,x;∆], its restriction σ ↓x is the assignment (σ1 ↓x, σ2), such that
(w, σ ↓x) ∈ Ω[Γ;∆], obtained by removing x from the domain of definition of σ1.

Vice versa, let a ∈ d(w) be an element of the world w. Given an assignment
σ = (σ1, σ2), such that (w, σ) ∈ Ω

[Γ;∆]
w , its extension σ[a/x] is the assignment

(σ1[a/x], σ2), such that (w, σ[a/x]) ∈ Ω
[Γ,x;∆]
w , obtained by extending the do-

28

main of definition of σ1 with the first-order variable x by assigning the element a
to it.

The notation above (as well as the one introduced below) is analo-
gously and implicitly given also for second-order variables.

Definition 2.9 (Powerset lifting) Let [Γ; ∆] be a context and x 6∈ Γ a first-
order variable. The function 2↓x : 2Ω[Γ,x;∆] → 2Ω[Γ;∆]

lifts ↓x to sets of pairs.
Vice versa, let ↑x: Ω[Γ;∆] → 2Ω[Γ,x;∆]

be the function mapping each (w, σ) ∈
Ω

[Γ;∆]
w to the set {(w, σ[a/x]) | a ∈ d(w)} ⊆ Ω

[Γ,x;∆]
w . The function 2↑x :

2Ω[Γ;∆] → 2Ω[Γ,x;∆]

lifts ↑x to sets.

Intuitively, by extending the set Ω[Γ;∆] with respect to a variable xτ 6∈ Γ,
we extend the assignment of every pair (w, σw) ∈ Ω[Γ;∆] denoting the
variable xτ with all elements of sort τ in w. Note that the extensions may
shrink the set of assignments, should the algebra associated to the world
have no element of the correct type. In general terms, given a variable
xτ /∈ Γ and a pair (w, σ), the cardinality of 2↑xτ ({(w, σ)}) is the cardinality
of d(w)τ , i.e. the cardinality of the set of elements of type τ in d(w).

The corresponding functions ↓Y , 2↓Y , ↑Y , and 2↑Y , with respect to a
second-order variable Y 6∈ ∆, are defined in the same way.

Example 2.4 (Assignments) Consider the counterpart model of Figure 2.3,
and let us denote by λ = (λ1, λ2) the empty assignment, regardless of the world.
Then, each set Ω

[∅;∅]
wi simply corresponds to {(wi, λ)}, and consequently Ω[∅;∅]

corresponds to
{

(w0, λ), (w1, λ), (w2, λ)
}

. If we extend Ω
[∅;∅]
w1 including the

first-order variable x with sort τE , we obtain

2↑x(Ω[∅;∅]
w1

) =
{(
w1, (λ1[e3/x], λ2)

)
,
(
w1, (λ1[e4/x], λ2)

)}
which is in turn equal to

{(
w1, ({x 7→ e3}, λ2)

)
,
{(
w1, ({x 7→ e4}, λ2)

)}
.

As a final step, we define when two assignments are compatible with
a counterpart relation.

Definition 2.10 (Counterpart assignment) Let M = (W, , d), (w, cr, w′)
∈ , and σw an assignment for w. Then the counterpart assignment of σw rela-
tively to cr is the assignment σw′ (forw′) obtained applying cr to the components
of σw, denoted as cr ◦ σw, that is σ1

w′ = cr ◦ σ1
w, and σ2

w′ = 2cr ◦ σ2
w, for 2cr

the lifting of cr to sets.

29

In the following, we may use σw
cr σw′ to indicate that σw′ is the

counterpart assignment of σw relatively to cr. Moreover, given any (pos-
sibly partial) morphism φ : d(w) → d′(w′), we use φ ◦ σw to denote the
assignment (for w′) obtained applying φ to the components of σw.

It is interesting to understand which cases may arise for the first-
order. Consider a first-order variable x in Γ. Intuitively, should σw(x)

be undefined, we want σw′(x) to be undefined as well: the meaning is
that if σw(x) refers to an element deallocated in w, then we want σw′(x)

to represent an element deallocated in w′. Should σw(x) be defined, but
cr(σw(x)) undefined, then σw(x) has been deallocated in the evolution
from w to w′ through the considered transition, hence we want σw′(x) to
be undefined. Whenever both σw(x) and cr(σw(x)) are defined, we want
σw(x) to evolve in σw′(x) accordingly to cr.

Considering the second-order case, for each variable Y ∈ ∆, the
elements in σw(Y) that are preserved by cr are mapped in σw′(Y). Hence
if σw(Y) is defined, then σw′(Y) is also defined, with a cardinality equal
or smaller to the one of σw(Y), due to the fusion or deletion of elements
in σw(Y) induced by cr.

2.4.2 The semantic model

We are now ready to introduce the semantic evaluation of our logic in
a model M . The evaluation of formulae is a mapping of formulae-in-
context ψ[Γ; ∆] into sets of pairs contained in Ω[Γ;∆]. Hence, the domain
of the assignments in these pairs must be, respectively, contained in Γ

for the first-order component, and exactly equal to ∆ for the second-
order component. Intuitively, a pair (w, σ) belongs to the semantics of
a formula-in-context ψ[Γ; ∆] if the formula-in-context holds in w under
the assignment σ for its free variables. For the sake of presentation, we
assume that all the bound variables are different among themselves, and
from the free ones.

Definition 2.11 (Semantics) Let ψ[Γ; ∆] be a formula-in-context. Let x and
Y be a first- and second-order variable, and let Z be a fix-point variable. The
evaluation of a formula ψ[Γ; ∆] in M under assignment ρ : Z → 2Ω[Γ;∆]

is

30

given by the function J·KMρ : F [Γ;∆] → Ω[Γ;∆]

Jtt[Γ; ∆]KMρ = Ω
[Γ;∆]
M

J(ε ∈τ Y)[Γ; ∆]KMρ = {(w, σw) ∈ Ω
[Γ;∆]
M | σw(ε) is defined and σw(ε) ∈ σw(Y)}

J¬ψ[Γ; ∆]KMρ = Ω
[Γ;∆]
M \ Jψ[Γ; ∆]KMρ

Jψ1 ∨ ψ2[Γ; ∆]KMρ = Jψ1[Γ; ∆]KMρ ∪ Jψ2[Γ; ∆]KMρ
J∃τx. ψ[Γ; ∆]KMρ = 2↓x ({(w, σw) ∈ Jψ[Γ, x; ∆]KM

(2↑x◦ρ) | σw(x) is defined})
J∃τY. ψ[Γ; ∆]KMρ = 2↓Y (Jψ[Γ; ∆, Y]KM

(2↑Y ◦ρ)
)

J♦ψ[Γ; ∆]KMρ = {(w, σw) ∈ Ω
[Γ;∆]
M | ∃w cr w′. (w′, cr ◦ σw) ∈ Jψ[Γ; ∆]KMρ }

JZ[Γ; ∆]KMρ = ρ(Z)

JµZ.ψ[Γ; ∆]KMρ = lfp(λY.Jψ[Γ; ∆]KM
ρ[Y /Z]

)

We now comment in detail each single equation defining the evalua-
tion function of our formulae. We omit M .

Trivial cases. The formula-in-context tt[Γ; ∆] holds in any pair definable
for M given the context [Γ; ∆]. The predicate ∈τ regards the membership
of (the evaluation of) a term ε : τ to (the evaluation of) a second-order
variable with the same sort. Hence ε ∈τ Y [Γ; ∆] is satisfied by those pairs
(w, σ) such that σ(ε) is defined, and belongs to σ(χ). A formula with ¬ψ
is satisfied by those pairs not satisfying ψ, while the disjunction ψ1 ∨ ψ2

of two formulae is evaluated as the union of the pairs satisfying the two
disjuncts ψ1 and ψ2 (keeping the same context). The evaluation of Z[Γ; ∆]

and µZ.ψ[Γ; ∆] follows the standard definitions.

Quantifiers. More interesting is the case of formulae with a quantifier
as main operator. Evaluating such formulae one is usually interested in
finding an item (a set of items for the second-order case) that, if assigned to
the quantified variable, would satisfy the subformula where the variable
is replaced by the value determined by the assignment. We follow the
same idea: considering ∃τx.ψ[Γ; ∆], we first evaluate ψ extending the
context with x (which occurs free in ψ). The resulting set of pairs is
hence included in Ω[Γ,x;∆]. Dropping those pairs whose assignment is not
defined for x, we obtain exactly the set of pairs whose worlds contain an
item that assigned to x satisfies ψ. The last step is the restriction of x in
the assignments of the filtered set of pairs. The restricted set thus contains
pairs in Ω[Γ;∆].

31

The second-order case is similar, except for the fact that we do not have
to check for the assignments to be defined for the second-order variables,
since (differently from the first-order case) the second-order assignments
are defined for all the variables in the second-order context.

Note that during the evaluation of quantifiers it is pivotal to require
that also the assignment ρ is modified, in order to account for the exten-
sions to the newly introduced variables: it allows for a proper sorting
of ρ(Z), since it must belong to the subsets of Ω[Γ,x;∆] (Ω[Γ;∆,Y] in the
second-order case).

In sum, in order to give a meaningful existential semantics to the
first-order case, we consider only those pairs in Jψ[Γ, x; ∆]K(2↑x◦ρ) whose
assignments actually relate x with a concrete entity (the required existing
one), discarding thus the pairs whose assignments are not defined for
x. By doing so we grant that a pair (w, σ) belongs to the semantics of a
formula ∃τx.ψ only if d(w) actually contains at least an entity e with sort
τ , such that (w, σ[e/x]) belongs to the semantics of ψ.

Modal operator. Another interesting case is that of formulae whose top
operator is the modal one. More precisely, in the evaluation of ♦ψ[Γ; ∆]

we search for pairs (w, σw) such that there exists an outgoing transition
w cr w′ and an assignment σw′ for w′, such that the pair (w′, σw′) belongs
to the evaluation of ψ[Γ; ∆]. Moreover, in order to relate the relevant items
in w with the ones in w′, we require that σw′ is the counterpart assignment
of σw relatively to cr (Definition 2.10). In other words, we require that
σw′ respects the relation induced by cr between the (involved) items of
the source and destination worlds. We impose this condition because
items are not implicitly identified across worlds of the model, but they
are instead correlated by the counterpart relations.

Finally note that the evaluation of a closed formula, i.e. of a formula
ψ[∅; ∅] with an empty context, is just a set of pairs (w, λ), for λ the empty
variable assignment. Hence, such an evaluation characterises a set of
worlds: this ensures that our proposal properly extends the standard
semantics for propositional modal logics.

32

In proposition 2.1, ensuring the existence of suitable solutions to fix-
points equations, we state the well-definedness of the semantics.

Example 2.5 (Evaluation of formulae-in-context) We now exemplify the
evaluation of the formulae proposed in Example 2.3 against the model of Fig-
ure 2.3, namely ψ1[∅; ∅] ≡ µZ.[∃x.(leader(x)) ∨ �Z][∅; ∅], and ψ2[∅; ∅] ≡
∃x.[µZ.(leader(x) ∨ �Z)][∅; ∅]. We omit the typing information as done in
Example 2.3. For easiness of presentation we use (w0,1,2, λ) to denote the set
{(w0, λ), (w1, λ), (w2, λ)}.

Recall that formula ψ1, also written AF [∃x.(leader(x))], states that for all
departing paths from a world, eventually there will be a leader, identified by a
self-closed edge (property p1 of Section 2.1). Then, we intuitively expect that the
formula holds for all worlds (paired with the empty assignment), i.e. (w0,1,2, λ),
because w2 contains the process (edge) e5 which is a leader, w1 evolves into w2,
and w0 into w1.

According to the semantics, fixed an assignment ρ, we have to evaluate the
least fixed point of λY.J∃x.(leader(x)) ∨�Z[∅; ∅]Kρ[Y /Z]. Consider ρ being the
empty assignment.

According to Kleene’s theorem, we first evaluate the function with Y = ∅
(i.e. with ρ[Y /Z] the function (Z 7→ ∅) assigning the empty set to Z), i.e.
J∃x.(leader(x)) ∨�Z [∅; ∅]K(Z 7→∅). This clearly evaluates in {(w2, λ)}, in fact
only w2 contains a self-closed edge (e5), and hence only the pair (w2, λ) satisfies
ψx ≡ ∃x.(leader(x)), and J�ZK(Z 7→∅) does not add any other pair.

We now consider the case of Y = {(w2, λ)}, that is J∃x.(leader(x)) ∨
�Z[∅; ∅]K(Z 7→{(w2,λ)}), evaluated as {(w1, λ), (w2, λ)}, because (w1, λ) and
(w2, λ) belong to J�ZK(Z 7→{(w2,λ)}).

As third step we consider the function with Y = {(w1, λ), (w2, λ)}, that is
J∃x.(leader(x))∨�Z[∅; ∅]K(Z 7→{(w1,λ),(w2,λ)}), which is this time evaluated as
the set (w0,1,2, λ), since now also (w0, λ) belongs to J�ZK(Z 7→{(λ,w1),(λ,w2)}).

Finally, we fix Y as the set of pairs (w0,1,2, λ). Then, it is easy to see
that J∃x.(leader(x)) ∨ �Z[∅; ∅]K(Z 7→(w0,1,2,λ)) is evaluated as (w0,1,2, λ). As
expected, this means that the set of pairs (w0,1,2, λ) is the least fixed point of the
function.

Different is the case for ψ2[∅; ∅] ≡ ∃x.[µZ.(leader(x) ∨�Z))][∅; ∅]. Recall
that the formula ψ2, also written ∃x.[AF (leader(x))], states that (in a world)
there exists a process (edge) that, for all departing paths, will eventually become
the leader, identified by a self-closed edge (property p3 of Section 2.1). Intuitively
we expect that the formula holds only for the world w2 (and empty assignment),
i.e. {(w2, λ)}, because w2 contains the process (edge) e5 which is a leader. The

33

world w1 contains the processes e3, e4, each of which will become leader (e5) only
following one of the two outgoing paths. The same reasoning can be applied to e0

and e2 of the world w0.
According to the semantics, fixed an assignment ρ, we first have to evaluate

the set JµZ.(leader(x) ∨ �Z)[{x}; ∅]K(2↑x◦ρ), and then to apply the function
2↓x to those pairs belonging to the resulting set whose assignments are defined
for x. Considering ρ being the empty assignment, 2↑x ◦ ρ remains the empty
assignment.

Applying the semantics of the µ operator, we have to evaluate the least fixed
point of the function λY.Jleader(x) ∨ �Z[{x}; ∅]K∅[Y /Z]. Following Kleene’s
theorem, we first evaluate the function with Y = ∅, i.e. Jleader(x)∨�Z[{x}; ∅]
K(Z 7→∅), which clearly is (considering only the pairs with assignment defined for
x) {(w2, (x 7→ e5))}, in fact e5 is the only self-closed edge of the model, and
J�ZK(Z 7→∅) does not add any other pair. Then we consider the function with Y =
{(w2, (x 7→ e5))}, that is Jleader(x) ∨ �Z[{x}; ∅]K(Z 7→{(w2,(x 7→e5))}), which
again is evaluated as {(w2, (x 7→ e5))}. This tells us that {(w2, (x 7→ e5))}
is indeed the least fixed point of the function. Finally, 2↓x(w2, {(x 7→ e5)}) =
{(w2, λ)}, as we intuitively expected.

2.5 Semantics at work

This section illustrates the use of our logic to express properties of the
evolution of systems and of their components. Most examples are drawn
from the literature reviewed in Chapter 9. In order to make the syntax
lighter, we do not indicate the contexts of the formulae and the types of
the variables and of the quantifiers.

Deallocation. The creation and destruction of entities has attracted the
interest of several authors (e.g. (DRK02; YRSW06)) as a means for reason-
ing about the allocation, deallocation and preservation of resources or
processes. Our logic does not offer an explicit mechanism for this purpose.
Nevertheless, as we have shown in Example 2.3, we can easily derive
the predicate present(x), expressing the presence of an entity in a certain
world. Using this predicate in conjunction with the next-time modalities,
we can reason about the preservation of entities after a transition of the sys-

34

tem as possiblyPreserved(x) ≡ present(x)∧♦present(x), for entities pre-
served by at least an outgoing transition, and necessarilyPreserved(x) ≡
present(x) ∧�present(x), for entities preserved by every outgoing tran-
sition. We similarly reason about the deallocation of entities after a transi-
tion as possiblyDeallocated(x) ≡ present(x)∧♦¬present(x), for entities
deallocated by at least a transition, and necessarilyDeallocated(x) ≡
present(x)∧�¬present(x), for for entities deallocated by every outgoing
transition.

Moreover, if we are interested in reasoning about the preservation
or deallocation of entities during a generic execution of a system, we
can require that an entity is always preserved by every execution with
AgloballyPreserved(x) ≡ present(x) ∧ AGpresent(x), or by at least an
execution with EgloballyPreserved(x) ≡ present(x)∧EGpresent(x). Fi-
nally, we require for an entity to be eventually deallocated in at least
a departing execution with EeventuallyDeallocated(x) ≡ present(x) ∧
EF¬present(x), or in all the possible departing executions with the for-
mula AeventuallyDeallocated(x) ≡ present(x) ∧AF¬present(x), to ex-
press properties like “the message msgi will be eventually delivered”, assum-
ing messages to be deallocated only after their delivery.

In our original proposal (GLV10) we adopted a purely counterpart
solution, where the evaluation of the modal operator did not consider
those worlds where graph items previously assigned to a variable were
deleted. In this setting, the semantics of the predicates regarding the
presence and absence of entities might have not been meaningful. For
instance, under the scope of the next-time modality, predicates over x
should have been intended as “as long as x is present”, so that formulae
like �present(x) could have accepted assignments for x in worlds that
could have evolved by deleting x. The key point of our original proposal
was its use to reason about living entities and to faithfully follow Lewis
Theory. However, their deallocation might have been modeled via the
introduction of ad-hoc constants in each world. The current solution dis-
penses with the use of ad-hoc constants, allowing for an easier definition
of these kind of predicates.

35

Birth, growth and preservation. When reasoning about entity creation,
it is interesting to distinguish new from old entities. Our logic has no
built-in mechanism (like e.g. in (DRK02)) for this purpose, yet one can
assume that this information is provided by the model (by using new and
old values and a function from entities into those values). Still, in the rest
of this paragraph we see first how it is possible to state bounds on the
number of components in a system, and then how it is possible to define
modalities to capture the preservation and the creation of entities.

Our logic is well suited to express properties about the growth of a
system. For instance, a growth bound of 2 is stated with at-most-2 ≡
∀x.∀y.∀z.x = y ∨ y = z ∨ z = x as in (DRK02) and it is required as an
invariant with AG at-most-2.

More interestingly, we can express properties along entity preserving
behaviours. For instance, a modality restricted to (i.e. considering only)
transitions preserving at least an item of the source state (i.e. a one-
preserved modality) is defined as 〈one-preserved〉(ψ) ≡ ∃Y.∃x.[x ∈ Y ∧
♦(x ∈ Y ∧ ψ)], with neither x nor Y appearing in ψ. Intuitively, the
idea here is that the subformula ♦(x ∈ Y ∧ ψ) can be satisfied only if at
least an item of the source state is preserved. In the same line we can
define a modality restricted to transitions preserving a given number n
of components of the source state. For example, a modality considering
transitions preserving (at least) two of the items of the source state can
be defined as 〈pairs-preserved〉(ψ) ≡ ∃Y.∃x.∃y.[x ∈ Y ∧ y ∈ Y ∧ x 6=
y ∧ ♦(x ∈ Y ∧ y ∈ Y ∧ ψ)]. If we are instead interested in behaviours
creating at least an element, we can define the modality 〈one-new〉(ψ) ≡
∀Y.♦(∃x.x 6∈ Y ∧ψ). Finally, an abbreviation for transitions deallocating at
least an element is 〈one-deallocated〉(ψ) ≡ ∃Y.∃x.[x ∈ Y ∧♦(x /∈ Y ∧ψ)].

Intuitively, fixing the formula ψ ≡ tt and the empty context, we can
use these derived modalities to express behaviours regarding preservation
and creation of elements. Consider 〈one-preserved〉(tt)[∅; ∅]. Evaluating
it we obtain the states from which it is possible to execute a transition
preserving at least an item.

Moreover, using these derived ♦-modalities, e.g. 〈one-preserved〉
and 〈one-new〉, we can derive other standard temporal operators like

36

EGone-preserved(ψ) ≡ νZ.[ψ ∧ 〈one-preserved〉(Z)], and EFone-new(ψ) ≡
µZ.[ψ ∨ 〈one-new〉(Z)]. Intuitively, these operators are similar to the stan-
dard EG and EF ones, but consider only transitions which, respectively,
preserve at least an item, and create at least a new one. Other temporal
operators can be similarly defined. Fixing again the formula tt, with
EGone-preserved(tt) we can now ask for those states from which (at least)
a path departs where at each transition at least an element is preserved.
While, more generally, with EFone-new(ψ) we ask for those states from
which a path departs creating a new element after every transition, such
that eventually ψ will hold.

It is also possible to define the �-versions of the above introduced
♦-modalities. For example we define [one-preserved](ψ) ≡ ∃Y.∃x.[x ∈
Y ∧�(x ∈ Y ∧ψ)]. In this case we consider only states having an element
preserved following any of the outgoing transitions.

Entity evolution. Apart from the growth in the number of entities, our
logic can asses their evolution in general. A typical example is the mobility
of objects (as in the message propagation example of (BCKL07)). Assum-
ing an algebra of objects and locations with a function symbol loc denoting
the location of an object, we can express location change for an object
x with the predicate moves(x, ψ) ≡ ∃y.[y = loc(x) ∧ �(loc(x) 6= y ∧ ψ)].
Then we can express that x never remains in the same location with
νZ.moves(x, Z).

Along the same lines, we can define other typical individual safety
and liveness properties. For instance, individual mutual exclusion (used
e.g. in (YRSW06)) can be stated with formula νZ.[(loc(x) 6= loc(y)) ∧
�Z], also written as AG(loc(x) 6= loc(y)), which requires that x and
y will never be in the same location. Another example is represented
by individual responsiveness properties, like requiring two entities to
eventually meet whenever they are in separate locations: νZ.[loc(x) 6=
loc(y) → µZ ′.(loc(x) = loc(y) ∨ ♦Z ′) ∧ �Z], or AG[loc(x) 6= loc(y) →
EF (loc(x) = loc(y))].

Example 2.6 (Semantics at work on the running example) Making use of
the operators derived in this section, we can formalize the properties of our run-

37

ning example enumerated in Section 2.1. We will in particular refer to their
evaluation over the counterpart model of Figure 2.3. In the following examples
we will consider two first-order edge and node variables, respectively xE , yE , and
xN , yN , but we will omit the typing informations when clear from the context.

We start with property p1 of Section 2.1, i.e. the necessity of the existence of
(at least) a leader. As shown in Example 2.3, considering the predicate leader(x),
we express the property, intended as for all departing paths from a world,
eventually there will be a leader, as AF [∃x.(leader(x))]. Evaluating the
formula (with empty context) against the model of Figure 2.3, we obtain the set
of pairs {(w0, λ), (w1, λ), (w2, λ)}, with λ the empty context, meaning that the
property is satisfied in every world of the model.

Next we might be interested in proving the uniqueness of the leader (p2 of
Section 2.1). In order to do so we first define a predicate denoting states with zero
or one leaders (a “correct” number of leaders) as: atMostOneLeader(x, y) ≡
[(leader(x) ∧ leader(y)) → x = y]. In order to check that all the states of the
model satisfy property p2, we evaluate the negation of this predicate. Evaluating
the formula with context composed by the two first-order (edge) variables x and y,
we obtain the expected empty set of pairs. Notice that this formula does not just
tell us which are the erroneous states (i.e. states with more than a leader), but it
also tells us which are those multiple leaders of the state. In fact the formula has
two free variables x and y. Hence, in case of erroneous states, we would obtain
variable assignments from the two variables, to the different leaders found in the
state. If we are instead interested only in knowing which are the erroneous states,
then we could alternatively express the property by resorting to the existential
quantification: ∃x.∃y.[¬atMostOneLeader(x, y)]. Of course, the formula (this
time with empty context) is again evaluated as the empty set of pairs.

Property p3 of Section 2.1, which states that (in a world) there is a process
that, for all departing paths, will eventually become the leader is formalized
with ∃x.[µZ.(leader(x) ∨ �Z)], or ∃x.[AF (leader(x))]. In Example 2.5 we
already evaluated this formula (ψ2).

Considering property p4 of Section 2.1, with ∃x.leader(x) we check “in
which states do we have a leader?”. The formula (with empty context) is
evaluated as a set containing only a pair composed by the empty assignment
and the world w2. With the formula leader(x) we instead check for “which
process of which state is a leader” (a variant of property p4 of Section 2.1).
The formula (with context containing only x) is evaluated as a pair composed by
the assignment mapping x to e5, paired with the world w2, which indeed is the
only world with a leader.

Another interesting formula is EF (leader(x)), i.e. “for which process
does there exist an execution leading to its election?” (property p5 of Sec-

38

tion 2.1). The formula (with context composed by the variable x) is evaluated as
the set {(w0, x 7→ e0), (w0, x 7→ e2), (w1, x 7→ e3), (w1, x 7→ e4), (w2, x 7→
e5)}, as the only process never elected is e1 of world w0.

We now move our attention to the evolution of entities with sort node, repre-
senting the communication ports between connected processes. We can for exam-
ple be interested in knowing “which ports will eventually (for any possible
path) merge” (property p6 of Section 2.1), written (x 6= y) ∧ AF [present(x)∧
present(y) ∧ (x = y)]. The formula (with context composed by the two node
variables) is evaluated as the set {(w0, (x 7→ n0, y 7→ n1)), (w0, (x 7→ n0, y 7→
n2)), (w0, (x 7→ n1, y 7→ n2)), (w1, (x 7→ n3, y 7→ n4))}, plus, of course, the
symmetric pairs with inverted assignments for x and y. In fact, all the nodes get
merged in the node n5 of world w2 for any execution. To be noticed is the fact
that n1 and n2 (and n0) of w0 get merged in n5 after two transitions through n3

and n4 of w1.
Considering the property p7 of Section 2.1 “are the connections between

processes correctly updated after each round?”, with present(xE)∧ (xN =
s(xE))∧ (yN = t(xE))∧♦[(¬present(xE))∧ (xN 6= yN)] we search for states
that can evolve deallocating a process without merging its communication ports.
We hence search for configurations possibly leading to the problem mentioned
in Section 2.1, and represented in Figure 2.1. Evaluating this formula over
the model of Figure 2.3, with context containing the three involved first-order
variables, we obtain the empty set.

Finally, the last property we consider regards the necessary deallocation
of at least a process per transition. In particular, we check that our running
example actually deallocates (at least) a process per transition, except in final
states. We can express such property with the derived predicate allPreserved ≡
∀x.�present(x). By instantiating the predicate with sort edge (e.g. allEdges
Preserved), and evaluating it with empty context against the counterpart model
of Figure 2.3, we obtain the world w2 paired with the empty assignment, stating
that the property “there exists a state which can evolve without deallocating
any process” holds just in final states.

2.6 Monotony and decidability results

In this section we state two important properties for our logic, namely we
first state that its semantics is well-defined, and then we prove that its
model checking problem is decidable for finite models.

39

2.6.1 Monotony

The next proposition ensures the existence of suitable solutions to fix-
points equations, stating the well-definedness of the semantics. In particu-
lar, we state that function λY.Jψ[Γ; ∆]Kρ[Y /Z] is monotonic, for ψ a formula
where all occurrences of fix-point variables are positive, and any suitable
Γ, ∆ and ρ.

Proposition 2.1 (Monotony) Let ψ be a (naked) formula such that all occur-
rences of fix-point variables are positive. Then the function λY.Jψ[Γ; ∆]Kρ[Y /Z]

is monotonic in the lattice (Ω[Γ;∆],⊆) for any choice of context [Γ; ∆] (such that
ψ[Γ; ∆] is well-formed), of fix-point variable Z, and of assignment ρ (such that ρ
is undefined on Z).

Proposition 2.1 tells us that the restriction to formulae where all oc-
currences of fix-point variables are positive guarantees that any function
λY.Jψ[Γ; ∆]Kρ[Y /Z] is monotonic in the lattice (Ω[Γ;∆],⊆). Therefore, by
Knaster-Tarski theorem, fixed points (and thus our semantics) are well-
defined.

Proof: Given a formula ψ, we prove that for any two sets Ω1,Ω2 ⊆
Ω[Γ;∆], we have that Ω1 ⊆ Ω2 implies Jψ[Γ; ∆]Kρ[Ω1/Z] ⊆ Jψ[Γ; ∆]Kρ[Ω2/Z]

for any (consistent) choice of Γ, ∆, Z and ρ. The proof is done by structural
induction on ψ.

The proposition trivially holds whenever Z is not a free variable of ψ,
as in the formulae tt and ε ∈τ Y .

[ψ ≡ ¬ψ′] By definition, J¬ψ′[Γ; ∆]Kρ[Ωi/Z] = Ω[Γ;∆] \ Jψ′[Γ; ∆]Kρ[Ωi/Z]

for i ∈ {1, 2}. Now, Z appears under an odd number of negations in
ψ′ (i.e. all Z-occurrences are negative). We can prove a dual propo-
sition stating the anti-monotonicity in those cases. Mutual reference
can be ruled out by structural induction on the formulae. Thus, we
can assume Jψ′[Γ; ∆]Kρ[Ω1/Z] ⊇ Jψ′[Γ; ∆]Kρ[Ω2/Z]. Therefore, by the
properties of set complement we obtain Ω[Γ;∆] \ Jψ′[Γ; ∆]Kρ[Ω1/Z] ⊆
Ω[Γ;∆] \Jψ′[Γ; ∆]Kρ[Ω2/Z]. Following the definition we close the proof
for this case, i.e. J¬ψ′[Γ; ∆]Kρ[Ω1/Z] ⊆ J¬ψ′[Γ; ∆]Kρ[Ω2/Z].

40

[ψ ≡ ψ1 ∨ ψ2] Let us now consider the case when ψ is ψ1 ∨ ψ2. By def-
inition, Jψ1 ∨ ψ2[Γ; ∆]Kρ[Ωi/Z] is Jψ1[Γ; ∆]Kρ[Ωi/Z] ∪ Jψ2[Γ; ∆]Kρ[Ωi/Z].
We can then apply the induction hypothesis on both ψ1 and ψ2.
Hence we have that Jψ1[Γ; ∆]Kρ[Ω1/Z] ⊆ Jψ1[Γ; ∆]Kρ[Ω2/Z] and that
Jψ2[Γ; ∆]Kρ[Ω1/Z] ⊆ Jψ2[Γ; ∆]Kρ[Ω2/Z]. We can finally conclude that
Jψ1 ∨ ψ2[Γ; ∆]Kρ[Ω1/Z] ⊆ Jψ1 ∨ ψ2[Γ; ∆]Kρ[Ω2/Z].

[ψ ≡ ∃τx. ψ′] Following the semantics, we evaluate the expressions
J∃τx. ψ′[Γ; ∆]Kρ[Ωi/Z] as set 2↓x({(w, σ) ∈ Jψ′[Γ, x; ∆]K2↑x◦ρ[Ωi/Z] |
σ(x) is defined}) for i ∈ {1, 2}. We can apply the induction hypoth-
esis on ψ′ (even if context and assignment are changed): noting
that also 2↑x is monotone, we have that Jψ′[Γ, x; ∆]K2↑x◦ρ[Ω1/Z] ⊆
Jψ′[Γ, x; ∆]K2↑x◦ρ[Ω2/Z]. Finally, note that 2↓x is monotonic as well,
hence by applying the definition we obtain J∃τx. ψ′[Γ; ∆]Kρ[Ω1/Z] ⊆
J∃τx. ψ′[Γ; ∆]Kρ[Ω2/Z].

[ψ ≡ ∃τY. ψ′] The proof is similar to the first-order case.

[ψ ≡ ♦ψ′] The expressions J♦ψ′[Γ; ∆]Kρ[Ωi/Z] are defined as {(w, σw) ∈
Ω[Γ;∆] | ∃w cr w′. (w′, cr ◦ σw) ∈ Jψ′[Γ; ∆]Kρ[Ωi/Z]} for i ∈ {1, 2}.
By induction hypothesis on ψ′ we assume that Jψ′[Γ; ∆]Kρ[Ω1/Z] ⊆
Jψ′[Γ; ∆]Kρ[Ω2/Z]. Given that ρ(Z) has no influence in cr ◦ σw, we
clearly have that (w′, cr ◦ σw) ∈ Jψ′[Γ; ∆]Kρ[Ω1/Z] implies (w′, cr ◦
σw) ∈ Jψ′[Γ; ∆]Kρ[Ω2/Z]. Hence, we conclude J♦ψ′[Γ; ∆]Kρ[Ω1/Z] ⊆
J♦ψ′[Γ; ∆]Kρ[Ω2/Z].

[ψ ≡ Z] The proof is trivial, since by definition JZ[Γ; ∆]Kρ[Ω1/Z] is equal
to ρ(Z) = Ω1, and JZ[Γ; ∆]Kρ[Ω2/Z] is equal to ρ(Z) = Ω2. We thus
have JZ[Γ; ∆]Kρ[Ω1/Z] ⊆ JZ[Γ; ∆]Kρ[Ω2/Z].

[ψ ≡ µZ ′.ψ′] The last case of this set regards the monotony of fixed
points, i.e. when we have ψ ≡ µZ ′.ψ′ for some Z ′ 6= Z. By
definition, JµZ ′.ψ′[Γ; ∆]Kρ[Ωi/Z] is lfp(λY.Jψ′[Γ; ∆]Kρ[Y /Z′ ,Ωi/Z]) for
i ∈ {1, 2}. By induction hypothesis we assume that the functions
F ′ = λY ′.Jψ′[Γ; ∆]Kρ[Y ′/Z′ ,Ω/Z] and F = λY.Jψ′[Γ; ∆]Kρ[Ω/Z′ ,Y /Z]

are monotonic for any possible Ω. So, let us consider the values

41

Ω′i = lfp(λY ′.Jψ′[Γ; ∆]Kρ[Y ′/Z′ ,Ωi/Z]). Then, by the monotonicity of
F we have Jψ′[Γ; ∆]Kρ[Ω/Z′ ,Ω1/Z] ⊆ Jψ′[Γ; ∆]Kρ[Ω/Z′ ,Ω2/Z] for any pos-
sible Ω, so by properties of the least fixed points we get Ω′1 ⊆ Ω′2. By
the monotonicity of F and F ′ we now have Jψ′[Γ; ∆]K

ρ[Ω
′
1/Z′ ,

Ω1/Z]
⊆

Jψ′[Γ; ∆]K
ρ[Ω
′
2/Z′ ,

Ω1/Z]
⊆ Jψ′[Γ; ∆]K

ρ[Ω
′
2/Z′ ,

Ω2/Z]
. So, we conclude

lfp(λY ′.Jψ′[Γ; ∆]Kρ[Y ′/Z′ ,Ω1/Z]) ⊆ lfp(λY ′.Jψ′[Γ; ∆]Kρ[Y ′/Z′ ,Ω2/Z]).

�

We now turn our attention towards the use of our logic as a specifica-
tion language in an automated verification setting like model checking.

2.6.2 Decidability of model checking for finite models

As we have already mentioned in the Introduction, most model checking
problems for the family of non-propositional modal logics (to which our
logic belongs) are in general undecidable. Intuitively, the reasons lie
behind the desire of keeping track of elements in highly dynamic systems
where components can be allocated and deallocated at any time, giving
rise to infinite state-spaces.

Fortunately, the are many such systems which are resource bounded.
That is, even if new elements can be created infinitely often, the number of
elements per state is bounded by some constant. In these cases, resource
reallocation techniques (for instance, based on the reuse of resource iden-
tifiers) can be applied to reduce the infinite state-space of the system into
a finite (semantically equivalent) one, enabling thus the use of automated
verification via model checking.

In the next chapters we will define the concept of over- and under-
approximations for counterpart models, and that of sound approximated
model checking exploiting them. However, intuitively, thanks to the
locality of the identifiers, a resource bounded system can be modeled
with a finite counterpart model, i.e. counterpart models whose set of
worlds is finite, and whose algebras have finite domains. In addition we
shall consider finite formulae-in-context, i.e. finite formulae with finite

42

contexts, and finite assignments, i.e assignments with finite domains and
codomains.

It is not trivial that evaluating a finite formula over a finite counterpart
model is decidable because of the need to compute fixed points in the
semantics of formulae with recursion. Computing them by iteration,
for instance, may result in endless loops. However, as the following
proposition shows, the problem is indeed decidable, intuitively due to the
fact that the functions for which one has to compute the fixed points are
monotonic (c.f. Proposition 2.1) and have finite domain.

Proposition 2.2 (Decidability) Let M be a finite counterpart model and ψ a
(naked) formula. Then establishing the validity of the predicate ∈ Jψ[Γ; ∆]Kρ,
i.e. solving a local model checking, is decidable in M for any choice of context
[Γ; ∆] (such that ψ[Γ; ∆] is well-formed) and of assignment ρ.

Proof: Being M a finite model means that it has a finite set of worlds,
and that the algebra underlying each world is finite: hence the underlying
transition system is finitely branching and Ω[Γ;∆] is a finite set for any
pair Γ, ∆ (since both are finite sets by definition). Hence, also Jψ[Γ; ∆]Kρ
is finite as well as ρ(Z) for any fix-point variable Z. Given a formula ψ,
we need to prove that for any (w, σ) the statement (w, σ) ∈ Jψ[Γ; ∆]Kρ can
be verified for any (consistent) choice of Γ, ∆, and ρ. The proof is done by
structural induction on ψ.

The proposition trivially holds for the formulae Z and tt (their value
being a finite set, as noted before), as well as, by resorting to simple
induction, for the boolean connectives ¬ and ∨.

We provide the proofs for the rest of the cases.

[ψ ≡ ε ∈τ Y] Since any possible interpretation of Y is a finite set, then
decidability boils down to verify if an element σ(ε) belongs to the
finite set σ(Y), which is clearly decidable.

[ψ ≡ ∃τx. ψ′] To check if (w, σ) belongs to J∃τx. ψ′[Γ; ∆]Kρ it is first
necessary to check if (w, σ[a/x]) belongs to Jψ′[Γ; ∆]K2↑x◦ρ for at
least one element a of sort τ in the world w. Being the carrier
of the underlying algebra finite, though, we need again only to

43

verify a finite number of instances of the predicate on ψ′, which is a
decidable procedure.

[ψ ≡ ∃τY. ψ′] The proof is similar to the first-order case.

[ψ ≡ ♦ψ′] To check if (w, σ) belongs to J♦ψ′[Γ; ∆]Kρ it is necessary to
check if (w′, σ′) belongs to Jψ′[Γ; ∆]Kρ for at least a pair (w′, σ′) such
that w cr w′, and σ′ is the counterpart assignment of σ via cr. Being
M finite means that also the number of outgoing transitions from
w is finite, hence we need again only to verify a finite number of
instances of the predicate on ψ′, which is a decidable procedure.

[ψ ≡ µZ.ψ′] Note that the fixed point of lfp(λY.Jψ′[Γ; ∆]Kρ[Y /Z′]) can
be computed as the sequence of values Ω0 = λY.Jψ′[Γ; ∆]Kρ[∅/Z],
Ω1 = λY.Jψ′[Γ; ∆]Kρ[Ω0/Z], . . . , with Ωi ⊆ Ωi+1. Since Ω[Γ;∆] is a
finite set, the sequence is going to reach a fixed point after a finite
number of iterations. And since (w, σ) ∈ lfp(λY.Jψ′[Γ; ∆]Kρ[Y /Z]) if
and only if there exists an j such that (w, σ) ∈ Ωj , the predicate for
ψ is decidable.

�

44

Chapter 3

Approximating the
behaviour of structured
systems

Software systems with dynamic resource allocation are often infinite-state.
For such systems, verification can become intractable, thus calling for the
development of approximation techniques that may ease the verification
at the acceptable cost of losing in preciseness and completeness.

Both over- and under-approximations have been considered in the
literature, respectively offering more and less behaviors than the orig-
inal system. At the same time, properties of the system may be either
preserved or reflected by a given approximation.

In this chapter we first propose a general notion of counterpart model
approximation based on behavioural pre-orders. Then we present a state-
space reduction technique based on state canonizers (LMV12), capturing
symmetry reduction and name reusing. In the next chapter we will then
see how the semantics of our logic is related to model approximations.

45

•u // •u // •u //

�� ��

. . .

e1

��

// e1 e2 <<
** . . .

•v // •v // •v // . . .

w0 w1 w2 . . .

Figure 3.1: An infinite-state counterpart model

3.1 Running example

For a better illustration of our concerns, we will use a very simple model
as running example of this chapter.

Figure 3.1 depicts an infinite-state counterpart model M . The model is
made of an infinite sequence of worlds wi, where world wi is essentially
associated to a graph d(wi) with i edges between nodes u and v. The
counterpart relations (drawn with dotted lines) reflect the fact that each
transition (wi, cri, wi+1) is such that cri is the identity for d(wi), meaning
that all nodes and edges are preserved, while a new edge “ei+1” is created.

In the rest of this chapter we will provide a simple example of over-
approximation of this model, where we collapse edges of a world, and
an example of under-approximation, where we stop the generation of the
model after a few steps. These examples are simple enough to clarify the
concepts introduced in this chapter and in the following one.

3.2 Counterpart model approximations

In this section we lift classical behavioural preorders and equivalences
for transition systems to counterpart models. Once more, for the sake of
presentation, we fix two models M = (W, , d) and M ′ = (W ′, ′, d′).

We define relations R from M to M ′ as sets of triples (w, φ,w′) formed
by a world w ∈ W , a world w′ ∈ W ′ and a morphism φ : d(w) → d(w′)

relating their respective structures.

46

Definition 3.1 (Simulation) Let R ⊆W × (A⇀ A)×W ′ be a set of triples
(w, φ,w′), with φ : d(w) → d′(w′) a morphism. Then R is a simulation
from M to M ′ if for every (w1, φ1, w

′
1) ∈ R we have that w1

cr w2 implies
w′1

cr′ w′2 for some w′2 ∈ W ′, with (w2, φ2, w
′
2) ∈ R and φ2 ◦ cr = cr′ ◦ φ1.

If R−1 = {(w′, φ−1, w) | (w, φ,w′) ∈ R} is well defined, and it is also a
simulation, then R (as well as R−1) is called bisimulation.

Notice how, due to the well-definedness of R−1, the φ components of
bisimulations are forcibly injections. We call “iso” a bisimulation whose
φ components are total surjections, and hence (total) isomorphisms. We
may abbreviate (w, φ,w′) ∈ R in wRw′ if φ is irrelevant.

As usual, we define (bi)similarity as the greatest (bi)simulation, and
say that M is similar to M ′ or that M ′ simulates M , written M vR M ′

(where we may omit R), if there exists a simulation R from M to M ′

such that, for every w ∈ W , there exists at least a w′ ∈ W ′ with wRw′.
Similarly, we say that two models are doubly similar, written M w M ′,
if M vM ′ and M ′ vM , and, finally, we say that they are (iso-)bisimilar,
written M ∼ M ′ (M ∼i M ′), if there exists an (iso-)bisimulation R such
that M vR M ′ and M ′ vR−1 M .

Given a set of pairs ω ⊆ ΩM and a simulation R from M to M ′ we
use R(ω) to denote the set {(w′, φ ◦ σw) | (w, σw) ∈ ω ∧ (w, φ,w′) ∈ R}.
Moreover, in the following, with an abuse of notation we use R ◦ ρ to
indicate the composition of R with the fix-point assignment ρ, defined as
R ◦ ρ = {(Z 7→ R(ω)) | (Z 7→ ω) ∈ ρ}.

Note that R−1 is not always well-defined since the morphisms in
the triples (w, φ,w′) may not be injective. However, we often use the
pre-image R−1[·] of R, defined for a set of pairs ω′ ⊆ ΩM ′ as R−1[ω′] =

{(w, σw) ∈ ΩM | ∃(w, φ,w′) ∈ R. (w′, φ ◦ σw) ∈ ω′}.

Definition 3.2 (Under- and over-approximations) Let M , M and M , be
counterpart models, and R, R be, respectively, simulations from M to M and
from M to M such that M vR M vR M . Then M and M are, respectively, an
under- and over-approximation of M .

Example 3.1 Figure 3.2 depicts three counterpart models: M (center), M (top)
and M (bottom).

47

w0
///o/o/o w1

�� H�
S�e%

o/y9�K
�V

•u // •u
tt

e

��

xx

•v // •v
tt

w0 ///o/o/o
φ0

KS

w1 ///o/o/o/o
φ1

KS

w2 ///o/o/o/o
φ2SSS

SSS

em SSSS
SSSS

. . .

φi
hp YYYYYYYYYYYYYYYYYYY

YYYYYYYYYYYYYYYYYYY

•u // •u // •u //

�� ��

. . .

e1

��

// e1 e2 <<
** . . .

•v // •v // •v // . . .

w0 ///o/o/o
φ0

KS

w1 ///o/o/o/o
φ1

KS

w2

φ2

KS

•u // •u // •u

�� ��

e1

��

// e1 e2

•v // •v // •v

Figure 3.2: A model M (center), an over-approximation M (top) and an
under-approximation M (bottom)

The model M , taken from Section 3.1 and Figure 3.1, is infinite-state. The
finite-state models M and M can be understood, respectively, as over- and under-
approximations of M . Indeed, we have relations R and R (denoted with double
arrows) such that M vR M vR M .

Intuitively, M is a truncation of M considering only the first two transitions
of M . Every tuple (w, φ,w) in R is such that φ : d(w)→ d(w) is the identity.

On the other hand, the over-approximation M can be seen as “M modulo the
fusion of edges”. That is, every tuple (w, φ,w) inR is such that φ : d(w)→ d(w)
is a bijection for nodes (in particular, the identity restricted to the nodes of d(w))
and a surjection on edges mapping every edge ei into edge e.

48

3.3 Reductions for counterpart models

In (LMV12) we presented “c-reductions” (canonical-reductions), a
state-space reduction technique based on canonizers, namely functions
mapping worlds to a (non necessarily unique) canonical representative
of their equivalence class (given by a bisimulation). The approach is
general enough to recast in it other reduction techniques like symmetry
reduction (WD10), name reusing and name abstraction.

We proposed the technique for systems whose states are specified as
multisets of concurrent, interrelated and distributed components, and
whose dynamics is given as term rewrite rules. The obtained models
belong to the class of Kripke models, where, as previously mentioned,
in contrast to counterpart models no explicit structure is provided to
relate components of different states (i.e. transitions are not labelled with
counterpart relations). State components are hence implicitly syntactically
identified across different worlds.

We implemented the approach in the setting of rewriting logic (Mes12)
and the Maude framework (CDE+07), which provides automatization
of the reduction infrastructure via meta-programming features, and rea-
soning support for checking correctness of the reduction (with respect
to the original model) through its toolset, comprising the Maude LTL
Model Checker (EMS03), the Invariant Analyzer (Inv), the Inductive
Theorem Prover (CPR06; ITP) and the Church Rosser and Coherence
Checker (DM10)).

We evaluated our approach considering an ample set of examples
showing some interesting results: with respect to previous works we
observed performance gains in some cases (including previous implemen-
tations of symmetry reductions in Maude (Rod09)), and more flexibility
in the definition of reductions, allowing us to subsume a wide range of
them, including permutation and rotation symmetries, name reuse and
name abstraction, which have interesting applications, for example in the
implementation of the operational semantics of languages with dynamic
features such as resource allocation. A preliminary version of our tool is
available for download (CRe).

49

In this section we see how c-reductions can be extended to reduce
counterpart models.

Intuitively, we actually do not modify c-reductions themselves, but
rather the way they are applied to a model. Namely, when applying a
c-reduction to a world of a counterpart model, we also apply the induced
components’ renaming to the counterpart relations labelling the involved
transitions.

We now introduce canonical-reductions (c-reductions) as a generic
means to reduce a counterpart model M by exploiting an iso-bisimulation
R on it (i.e. between M and itself). We start by defining canonizer func-
tions, used to compute the representative of the equivalence class of (the
structure associated to) a world, modulo R.

Definition 3.3 (canonizer functions) Let M = (W, , d) be a counterpart
model, and let R be an iso-bisimulation on M , that is among M and itself. A
function c : W →W is an R-canonizer (resp. strong R-canonizer) if for every
w ∈ W we have exactly one (w, φ,c(w)) ∈ R (resp. (w, φ,c(w)) ∈ R, and
wRw′ implies c(w) = c(w′)).

From the fact that R is an iso-bisimulation we know that its φ components
are total isomorphisms. Intuitively, φ can be thought of as the renaming
induced by the application of c to the components of d(w) to obtain the
ones of d(c(w)). In the following we will use αc(w) to indicate such
renaming.

Canonizer functions are used to compute smaller but semantically
equivalent (i.e. iso-bisimilar) counterpart models by applying canonizers
after each transition. We distinguish among strong and weak canonizers.

Strong canonizers provide unique representatives for the equivalence
classes of worlds, meaning that they collapse each equivalence class of
worlds in a world, providing hence the maximal reduction given an
equivalence relation. Well known examples of strong canonizers are
based on enumeration strategies (DM06) which generate the complete set
of worlds of an equivalence class, and then apply some function over it
(e.g. based on a total ordering for worlds) to choose the canonical one (e.g.
the minimal one for a given ordering for worlds).

50

Consider systems where some class of processes exhibit a full symmetry,
of which a well-known example is the Peterson’s mutual exclusion proto-
col (Lyn96). Here we can safely swap the names of any two processes in a
state. Then an enumeration strategy canonizer just generates all structures
resulting from permuting (symmetric) processes, and then selects one
according to some total order (e.g. a lexicographical-like ordering for the
structures). Of course, as detailed in (BDH01; BDH02), canonizers can be
obtained in more efficient and smarter ways.

In the case of weak canonizers, we might have different representatives
for equivalent worlds. Weak canonizers provide weaker space reductions
but may enjoy advantages over strong ones, like easiness of definition
and analisys, and less expensive computation.

Examples of weak canonizers can be found for instance in (BDH01;
BDH02) where the rough idea is to consider an ordering of the states that
depends on part of their structure only, resulting in a partial ordering.

As concrete examples, in Chapter 7 we present and discuss two can-
onizers which perform two particular flavours of symmetry reduction,
namely the full one and the rotational one. When we apply the canonizers
to an algebraic structure labelling a world, all the structures symmetric
to the original one are generated, and the minimal one (provided an or-
dering) is returned. Intuitively, if the considered ordering is total, then
those canonizers are strong, otherwise they are weak, as two symmetric
structures may be mapped to distinct minimal structures. More details
are provided in Chapter 7.

We obtain the c-reduction of a counterpart model applying the canon-
izer to worlds after each transition.

Definition 3.4 (c-reduction of a counterpart model) Let M = (W, , d)
be a counterpart model, and c : W → W an R-canonizer function for an
iso-bisimulation R on M . We call Mc = (W, (;c), d) the c-reduction of
M , whose (composed) transition relation is defined as ;c = {(w1, αc(w2) ◦
cr,c(w2)) | (w1, cr, w2) ∈ }.

Intuitively, by composing with the canonizer c, we map the worlds
of a model in the ones obtained applying the canonizer to them.

51

•u1
•u2

•u3
. . .

w0 ///o/o/o/o w1 ///o/o/o/o w2 ///o/o/o/o . . .

•u1

w0YY�H
�S %e /o 9y K�

V�

Figure 3.3: A model (left) and its c-reduction (right)

Practically, we can easily obtain an on-the-fly reduction technique dur-
ing the generation of a counterpart model by simply applying a canonizer
to every newly generated world, before storing it. This aspect will be
better discussed in Chapter 7.

An important result shown in (LMV12) for Kripke models is that
c-reductions preserve bisimulations. We now state that c-reductions
preserve iso-bisimulations when applied to counterpart models.

Proposition 3.1 (∼-preservation) Let M be a counterpart model, R be an
iso-bisimulation on M , and c be a R-canonizer. Then M ∼i Mc.

Proof: The proof is straightforward, and is hence only sketched. Let
M = (W, , d) and Mc = (W, (;c), d). From Definition 3.3 we know
that there exists an iso-bisimulation R such that for any w ∈W we have
wRc(w). In particular, we can define a relation Rc = {(w,αc(w),c(w)) |
w ∈W}, which is clearly an iso-bisimulation from M to Mc. Finally, we
notice that for each world in M there exists an Rc-bisimilar world in Mc,
and that for each world in Mc there exists an R−1

c -bisimilar world in M ,
which implies M ∼i Mc. �

Example 3.2 (c-reduction of a counterpart model) Consider the simple, but
still infinite-state, model M of Figure 3.3 (left), where each state has only a com-
ponent, which is deallocated and replaced by a new one after each transition.

Then one could easily define a canonizer c that maps the name of the compo-
nent of each state to the same one.

Figure 3.3 (right) shows the c-reduction Mc, containing only a state, and a
transition relation consisting of a self-loop with empty counterpart relation. This
is a very simple example, more interesting ones will be proposed in Chapter 8.

52

Chapter 4

Sound approximated model
checking of infinite-state
systems

In the previous chapter we defined the concept of approximation of a
counterpart model, and we exemplified a technique to obtain them.

In this chapter we study how we can exploit such approximations by
analyzing how the semantics of our logic is related to them. In particular,
in Section 4.1 we first define the concepts of preservation and reflection of a
formula by an approximation, and present a partial type system to type
formulae as preserved and/or reflected. Then, in Section 4.2 we define a
sound approximated model checking procedure which exploit our type
system to estimate the evaluation of a formula, based on sets of under-
and over-approximations. In Section 4.3 we extend our approximated
model checking procedure to deal with part of the untyped formulae.
Finally, for the sake of presentation we provide all the soundness proofs
in Section 4.4.

53

Figure 4.1: A formula (ψ) preserved by a simulation (R).

4.1 Preservation and reflection of formulae

Intuitively, if a model M ′ is an approximation of a model M , then the
evaluation of formulae in M can be only approximated resorting to M ′.
We hence introduce the usual notions of preserved formulae, those whose
“satisfaction” in M implies their “satisfaction” in M ′, and reflected formu-
lae, those whose “satisfaction” in M ′ implies their “satisfaction” in M . Of
course, since the semantic domain of our logic are assignment pairs, the
notion of “satisfaction” corresponds to the existence of such pairs.

Definition 4.1 (Preservation and reflection) Let R be a simulation from M
to M ′ (i.e. M vR M ′), ψ[Γ; ∆] a formula, and ρ an assignment. We say that
ψ is preserved under R (written ψ :R⇒) if Jψ[Γ; ∆]KM

′

R◦ρ ⊇ R(Jψ[Γ; ∆]KMρ);
reflected under R (written ψ :R⇐) if R−1[Jψ[Γ; ∆]KM

′

R◦ρ] ⊆ Jψ[Γ; ∆]KMρ ; and
strongly preserved under R (written ψ :R⇔) if ψ :R⇒ and ψ :R⇐.

Note that the choice of ρ, Γ, and ∆ is irrelevant. In the definition of
ψ :R⇐we use R−1[·] rather than R−1 because the latter is not always de-
fined. Moreover, by resorting to R−1[·] we obtain a stronger (i.e. stricter)
property rather than resorting to R−1. In fact, if ψ :R⇐, then we addi-
tionally have that R(J¬ψ[Γ; ∆]KMρ) ∩ Jψ[Γ; ∆]KM

′

R◦ρ = ∅, i.e. that a pair in

Ω
[Γ;∆]
M \ Jψ[Γ; ∆]KMρ cannot be “similar” to any pair in Jψ[Γ; ∆]KM

′

R◦ρ.
Figure 4.1 exemplifies a formula (ψ) preserved by a simulation (R).

In particular, the two big circles on the left and on the right of the figure
represent the set of pairs of the two models, i.e. respectively, Ω

[Γ;∆]
M and

Ω
[Γ;∆]
M ′ . Instead, the two ellipses therein contained represent the evaluation

54

of ψ in M (Jψ[Γ; ∆]KM) and M ′ (Jψ[Γ; ∆]KM
′
). Finally, we know that the

formula is preserved because R(Jψ[Γ; ∆]KM), depicted in the figure as a
dotted ellipse, is contained in Jψ[Γ; ∆]KM

′
.

Example 4.1 Consider the model M of Figure 3.1, and its over- and under-
approximationsM andM of Example 3.1 shown in Figure 3.2, i.eM vR M vR
M , and let r, z, x, y be first-order variables. As stated in the previous chapters,
in our logic it is easy to define a predicate regarding the presence of an entity
with sort τ in a world as presentτ (z) ≡ ∃τr. z = r. The predicate evaluates in
pairs (w, ({z 7→ a}, λ2)), with a being an element of the algebra assigned to the
world w. Now, the predicate (omitting typings) p(x, y) ≡ present(z) ∧ s(z) =
x ∧ t(z) = y regards the existence of an edge (the one assigned to z) connecting
two nodes x and y.

Evaluating p(u, v) in M , having the concrete nodes u and v in its worlds,
we obtain pairs whose assignment components map z to edges connecting u
to v. In particular, considering the context [{z}; ∅], we obtain Jp(u, v)KM =
{(w1, ({z 7→ e1}, λ2)), (w2, ({z 7→ e1}, λ2)), (w2, ({z 7→ e2}, λ2)), . . . }, where
λ2 is the empty second-order variable assignment.

Now, it is easy to see that p(u, v) is strongly preserved under both R and
R. In fact, we have that Jp(u, v)KM = {(w1, ({z 7→ e1}, λ2)), (w2, ({z 7→
e1}, λ2)), (w2, ({z 7→ e2}, λ2))}, and hence R(Jp(u, v)KM) is {(w1, ({z 7→
e1}, λ2)), (w2, ({z 7→ e1}, λ2)), (w2, ({z 7→ e2}, λ2))}, which is clearly con-
tained in Jp(u, v)KM . Moreover we also have that R−1[Jp(u, v)[Γ; ∆]KM] ⊆
Jp(u, v)[Γ; ∆]KM . We hence have that p(u, v) :R⇔.

Similarly, we have that Jp(u, v)KM = {(w1, ({z 7→ e}, λ2))}, and that
R(Jp(u, v)KM) = {(w1, ({z 7→ e}, λ2))}. Both conditions are again satisfied,
and hence we have p(u, v) :R⇔.

Of course, determining whether a formula is preserved (or reflected)
cannot be done in practice by performing the above check, since that
would require to calculate the evaluation of the formula in the (possibly
infinite) original model M , which is precisely what we want to avoid.
Moreover, note that determining wheter a formula is preserved (and the
same occurs for being reflected) is an undecidable problem, since our
logic subsumes that of (BKK03).

Fortunately, we can apply the same approach of (BKK03) and define a
(partial) type system that approximates the preservation and reflection of

55

formulae. In particular, our type system generalizes the one of (BKK03)
in several directions:

1. Our type system is agnostic with respect to the approximation tech-
nique adopted, and it is parametric with respect to the properties
of the (morphisms of the) simulations R. While the original one is
given for graph morphisms that are total and bijective for nodes and
total and surjective for edges, we exploit the injectivity, surjectivity
and totality of the morphisms of R for each sort τ ;

2. We consider counterpart models, a generalization of graph transi-
tion systems;

3. We use the type system to reason on all formulae, while the original
proposal restricts to closed ones;

4. We exploit over- and under-approximations of a model to obtain
more precise approximated formulae evaluations;

5. As for the original proposal, not all formulae can be dealt by our type
system. However, thanks to our enriched approximated semantics
(Section 4.3), we are able to handle part of the untyped formulae.

It may be useful to comment on Point 1, where we state that the type
system is parametric with respect to the properties of R. In particular,
we actually consider the properties of the morphism components of R.
Namely, for each sort τ , we distinguish τ -total (τt), τ -surjective (τs) or
τ -bijective (τb). To ease the presentation, we say “τprop R”, with prop ∈
{t, s, b}, whenever all (w, φ,w′) ∈ R are such that φ is τ -prop. Moreover,
we shall consider the case in which R is an iso-bisimulation.

Definition 4.2 (Type system) Let R be a simulation from M to M ′ (that is
M vR M ′), ψ a formula, and T = {←,→,↔} a set of types. We say that ψ

56

has type d ∈ T if ψ : d can be inferred using the following rules

tt :R ↔

d=

{
→ for τt R
← for τb R

ε∈τY :R d
ψ :R → ψ :R ←

ψ :R ↔
ψ :R ↔
ψ :R d

ψi :R d
ψ1∨ψ2 :R d

ψ :R d with d=

{
→ for τt R
← for τs R

∃τx.ψ :R d and ∃τY.ψ :R d
ψ :R d
¬ψ :R d−1

Z :R ↔

ψ :R d with d=

{
→ for anyR
← forR an iso-bisimulation

♦ψ :R d
ψ :R d

µZ.ψ :R d

where it is intended that→−1=←,←−1=→ and↔−1=↔.

The type system is not complete, meaning that some formulae cannot
be typed: if ψ cannot be typed, we then write ψ :R ⊥. However, the next
proposition, proved in Section 4.4, states its soundness.

Proposition 4.1 (Type system soundness) Let R be a simulation from M to
M ′ (i.e. M vR M ′) and ψ a formula. Then

(i) ψ :R→ implies ψ :R⇒;

(ii) ψ :R← implies ψ :R⇐;

(iii) ψ :R↔ implies ψ :R⇔.

As we already noted, our type system can be instantiated for graph
signatures, in order to obtain the one of (BKK03) as a subsystem. In fact,
the authors there consider only simulation relations R that are total on
both sorts, as well as being (τN)b (that is, bijective on nodes) and (τE)s

(surjective on edges).
Another instance is for iso-bisimulations. This is the case of the analy-

sis of graph transition systems up to isomorphism (e.g. as implemented
in (Ren06b)). In this case the type system is complete and correctly types
every formula as ψ :↔.

Example 4.2 Consider the models M vR M vR M shown in Figure 3.2,
and the formula p(u, v) of Example 4.1, where we saw that p(u, v) :R⇔ and

57

p(u, v) :R⇔. Our type system provides the types p(u, v) :R↔ and (since R is
not injective on edges) p(u, v) :R→. Note that the type for R is exactly inferred,
while for R it is only approximated as we get preserved while it is actually
strongly preserved.

4.2 Approximated semantics and model check-
ing

Model approximations can be used to estimate the evaluation of formulae.
Consider the case of three models M , M and M , with M vR M vR M ,
as in Figure 3.2, where M and M are under- and over-approximations of
M , respectively. Intuitively, an approximated evaluation of a formula ψ
in M or M may provide us a lower- and upper-bound, defined for either
M or M , of the actual evaluation of ψ in M . We call under- and over-
approximated evaluations the ones obtained using, respectively, under-
(e.g. M), and over-approximations (e.g. M).

Exploiting approximated evaluations, we may address the local model
checking problem: “does a given assignment pair belong to the evaluation of
the formula ψ in M?”. Formally, (w, σ) ∈ Jψ[Γ; ∆]KMρ .

Given that our approximated semantics compute lower- and upper-
bounds, we cannot define a complete procedure, i.e. one answering either
true or false. A third value is required for the cases of uncertainty. For
this purpose we use a standard three valued logic (namely the Kleene’s
one) whose domain consists of the set of values K = {T ,F , ?} (where ?

reads “unknown”), and whose operators extend the standard Boolean
ones with T ∨ ? = T , F ∨ ? = ?, ¬? = ? (i.e. where disjunction is
the join in the complete lattice induced by the truth ordering relation
F < ? < T). Moreover, we also consider a knowledge addition (binary,
associative, commutative, partial) operation ⊕ : K × K ⇀ K defined as
T ⊕ T = T , F ⊕ F = F and x⊕? = x for any x ∈ K. Notice how we
intentionally let undefined the case of contradictory knowledge addition
“F ⊕ T”, a case that, as we will prove, in our framework cannot arise.

We first consider the case of over-approximations, and then, similarly,
the case of under-approximations.

58

Figure 4.2: Over-approximated semantics.

Definition 4.3 (Over-approximated semantics) Let R be a simulation from
M to M (i.e. M vR M) and ρ an assignment. Then the over-approximated
semantics of J·KMρ in M via R is given by the function {[·]}Rρ : F [Γ;∆] →
(Ω

[Γ;∆]

M
→ K), defined as {[ψ[Γ; ∆]]}Rρ = {(p, k(p, ψ[Γ; ∆], R)) | p ∈ Ω

[Γ;∆]

M
},

where

k(p, ψ[Γ; ∆], R) =

{
T if ψ :R← and p ∈ Jψ[Γ; ∆]KM

R◦ρ

F if ψ :R→ and p /∈ Jψ[Γ; ∆]KM
R◦ρ

? otherwise

Intuitively, given a formula ψ, with our approximated semantics we
group the pairs of an approximating model (in this case M) in three
distinct sets: the ones associated with T , the ones associated with F , and
the ones associated with ?. In particular, as depicted in Figure 4.2 (where
we omit the informations about the fix-point assignment), the boolean
value associated to any of the pairs p ∈ Ω

[Γ;∆]

M
depends on the type of ψ.

If it is typed as reflected, then the pairs in Jψ[Γ; ∆]KM
R◦ρ are mapped to T ,

since their counterparts in M do certainly belong to the evaluation of ψ
(top arrow of Figure 4.2). Nothing can be said about the rest of the pairs,
which are hence mapped to ? (middle arrow of Figure 4.2).

Dually, if ψ is typed as preserved, then the pairs that do not belong to
Jψ[Γ; ∆]KM

R◦ρ are mapped to F because we know that their counterparts
in M do certainly not belong to the evaluation of ψ (bottom arrow of
Figure 4.2). Again, nothing can be said about the rest of the pairs, which
are hence mapped to ? (middle arrow of Figure 4.2).

Finally, if ψ cannot be typed, then all the pairs in Ω
[Γ;∆]

M
are mapped to

? (middle arrow of Figure 4.2).

59

{[p(u, v)]} {[¬p(u, u)]} {[p(u, v) ∨ ¬p(u, u)]} +{{[[p(u, v) ∨ ¬p(u, u)]]}}
(w0, λ), (w1, λ) F T ? T
(w1, (z 7→ e, λ2)) ? T ? T
(w0, λ),(w1, λ),(w2, λ) F T T T
(w1, (z 7→ e1, λ2) T T T T
(w2, (z 7→ e1, λ2) T T T T
(w2, (z 7→ e2, λ2) T T T T
(w2, (z 7→ e2, λ2)) |=R J·K ? T ? T
(w2, (z 7→ e2, λ2)) |=R J·K T T T T
(w2, (z 7→ e2, λ2)) |=RR J·K T T T T

Figure 4.3: Approximated semantics and checks for some formulae and pairs

Notice how, in practice, we rarely have to explicitly compute R ◦ ρ. In
fact, formulae of our logic are thought to be evaluated under an initial
empty assignment for fix-point variables, which is manipulated during
the evaluation. Clearly R ◦ ∅ = ∅ for any R, and it can be shown that
the rules of the semantics manipulating the fix-point assignment are
consistent with respect to the it.

We can use the over-approximated semantics to decide whether an
assignment pair belongs to the evaluation of a formula in M or not, as
formalized below.

Definition 4.4 (Over-check) Let R be a simulation from M to M (i.e. M vR
M) and ρ an assignment. The over-approximated model check (shortly,
over-check) of J·KMρ in M via R is given by the function · |=R J·KMρ : Ω

[Γ;∆]
M ×

F [Γ;∆] → K, defined as

p |=R Jψ[Γ; ∆]KMρ =
∨

p∈R(p)

{[ψ[Γ; ∆]]}Rρ (p)

Example 4.3 Consider again the predicate p(x, y) of Example 4.1 stating the
existence of an edge (the one assigned to the variable z) connecting node x to
node y, and the models M and M with M vR M of Example 3.1 shown in
Figure 3.2.

In the first group of lines of Figure 4.3 we exemplify the over-approximated
semantics in M via R of Jp(u, v)KM , J¬p(u, u)KM , and Jp(u, v) ∨ ¬p(u, u)KM ,
considering the pairs Ω

[z;∅]
M

= {(w0, λ), (w1, λ), (w1, (z 7→ e, λ2))}. We recall
from Example 4.2 that p(u, v) :R→, and, hence, ¬p(u, u) :R← and p(u, v) ∨

60

¬p(u, u) :R ⊥. Moreover, from Example 4.1 we know Jp(u, v)KM = {(w1, (z 7→
e, λ2))}, while it is easy to see that J¬p(u, u)KM = Ω

[z;∅]
M

, because no edge
exists in M with same source and target u (this is actually true for any node).
Following Definition 4.3, we hence have that (w0, λ) and (w1, λ) are mapped
to F for p(u, v), and to T for ¬p(u, u), while (w1, (z 7→ e, λ2)) is mapped to ?
and to T . Different is the case of p(u, v)∨¬p(u, u): the formula cannot be typed
and its approximated semantics hence maps the three pairs to ?.

In the third group of lines of Figure 4.3 we find the over-check “· |=R J·K” of
(w2, (z 7→ e2, λ2)) in M via R for the three formulae. Note that R((w2, (z 7→
e2, λ2))) = (w1, (z 7→ e, λ2)), hence the over-checks of p(u, v) and of p(u, v) ∨
¬p(u, u) give ?, because no pair in R((w2, (z 7→ e2, λ2))) is mapped to either
T or F . Instead, given that {[¬p(u, u)]}((w1, (z 7→ e, λ2))) = T , then we have
(w2, (z 7→ e2, λ2)) |=R J¬p(u, u)K = T .

With the next proposition, proved in Section 4.4, we state that the
above described check is sound.

Proposition 4.2 (Soundness of over-check) Let R be a simulation from M
to M (i.e. M vR M), ψ[Γ; ∆] a formula, and ρ an assignment. Then

(i) p |=R Jψ[Γ; ∆]KMρ = T implies p ∈ Jψ[Γ; ∆]KMρ ;

(ii) p |=R Jψ[Γ; ∆]KMρ = F implies p 6∈ Jψ[Γ; ∆]KMρ .

Now, we can define the under-approximated semantics in a specular
way.

Definition 4.5 (Under-approximated semantics) Consider R being a sim-
ulation from M to M (i.e. M vR M) and ρ an assignment. Then, the under-
approximated semantics of J·KMρ in M via R is the function {[[·]]}Rρ : F [Γ;∆] →
(Ω

[Γ;∆]
M → K), defined as {[[ψ[Γ; ∆]]]}Rρ = {p 7→ k(p, ψ[Γ; ∆], R) | p ∈ Ω

[Γ;∆]
M },

where

k(p, ψ[Γ; ∆], R) =

{
T if ψ :R→ and p ∈ Jψ[Γ; ∆]KM

R−1[·]◦ρ
F if ψ :R← and p /∈ Jψ[Γ; ∆]KM

R−1[·]◦ρ
? otherwise

Intuitively, as for the over-approximated case, the pairs of Ω
[Γ;∆]
M are

mapped depending on the type of ψ.

61

If ψ is preserved, then all pairs in Jψ[Γ; ∆]KM
R−1[·]◦ρ are mapped to T ,

since we know that their counterparts in M do certainly belong to the
evaluation of ψ. Nothing can be said about the rest of the pairs, which are
hence mapped to ?.

Dually, if ψ is reflected, then all pairs in Ω
[Γ;∆]
M \ Jψ[Γ; ∆]KM

R−1[·]◦ρ are
mapped to F , because we know that their counterparts in M do certainly
not belong to the evaluation of ψ. Again, nothing can be said about the
rest of the pairs, which are hence mapped to ?.

Finally, if ψ is not typable, then all pairs are mapped to ? since nothing
can be said about the pairs in M .

As for over-approximations, we actually do not have to explicitly
compute R−1[·] ◦ ρ in practice.

We can define an under-approximated model checking procedure as
follows.

Definition 4.6 (Under-check) Let R be a simulation from M to M (that is
M vR M) and ρ an assignment. The under-approximated model check
(shortly, under-check) of J·KMρ in M via R is given by the function · |=R J·KMρ :

Ω
[Γ;∆]
M ×F [Γ;∆] → K, defined as

p |=R Jψ[Γ; ∆]KMρ =

{
? ifR−1[p] = ∅∨
p∈R−1[p]

{[[ψ[Γ; ∆]]]}Rρ (p) otherwise

The next proposition, proved in Section 4.4, states the soundness of
the under-check procedure.

Proposition 4.3 (Soundness of under-check) Let R be a simulation from
M to M (i.e. M vR M), ψ[Γ; ∆] a formula, and ρ an assignment. Then

(i) p |=R Jψ[Γ; ∆]KMρ = T implies p ∈ Jψ[Γ; ∆]KMρ ;

(ii) p |=R Jψ[Γ; ∆]KMρ = F implies p 6∈ Jψ[Γ; ∆]KMρ .

We finally show how to combine the informations obtained from sets
of under- and over-approximations.

Definition 4.7 (Approximated model checking) Let {R0 . . . Rn} be simu-
lations from the under-approximations {M0 . . .Mn} to M , and {R0 . . . Rm}

62

be simulations from M to the over-approximations {M0 . . .Mm}, i.e. Mi vRi
M vRj Mj for any i ∈ {0 . . . n} and j ∈ {0 . . .m}. Then, the approximated
model checking (approximated check in brief) of J·KMρ in {M0 . . .Mn} and

{M0 . . .Mm} via {R0 . . . Rn} and {R0 . . . Rm} is the function · |={R0...Rm}
{R0...Rn}

J·KMρ : Ω
[Γ;∆]
M × F [Γ;∆] ⇀ K, defined such that p |={R0...Rm}

{R0...Rn}
Jψ[Γ; ∆]KMρ is

equal to ⊕
0≤j≤m

(p |=Rj Jψ[Γ; ∆]KMρ) ⊕
⊕

0≤i≤n

(p |=Ri
Jψ[Γ; ∆]KMρ)

Note that, even if ⊕ is partial, the approximated check is well-defined
since Propositions 4.2 and 4.3 ensure that we never have to combine
contradictory results (e.g. T ⊕ F). It is also easy to see that the soundness
results of Propositions 4.2 and 4.3 allows us to conclude the soundness of
the approximated check.

Theorem 4.1 (Soundness of approximated check) Letψ[Γ; ∆] be a formula,
and ρ be an assignment. Let {R0 . . . Rn} be a set of simulations from the under-
approximations {M0 . . .Mn} to M and {R0 . . . Rm} be a set of simulations
from M to the over-approximations {M0 . . .Mm}, that is Mi vRi M vRj Mj

for any i ∈ {0 . . . n} and j ∈ {0 . . .m}. Then

(i) p |={R0...Rm}
{R0...Rn}

Jψ[Γ; ∆]KMρ = T implies p ∈ Jψ[Γ; ∆]KMρ ;

(ii) p |={R0...Rm}
{R0...Rn}

Jψ[Γ; ∆]KMρ = F implies p 6∈ Jψ[Γ; ∆]KMρ .

4.3 Dealing with untyped formulae

Notice how our approximated semantics and approximated check allow
us to approximate the evaluation of any formula, even though this ap-
proximation may not be meaningful. Intuitively, we may obtain empty
lower-bounds or unbounded upper-bounds as particular instances, that
is when all the pairs are assigned to ? by the approximated semantics.
Indeed, this is the case of formulae that cannot be typed with our type sys-
tem. In order to obtain a more significant approximation also in the cases

63

of untyped formulae, we may try to enrich our approximated semantics
by rules exploiting the structure of formulae.

We can thus extend both under- and over-approximated semantics
(Definitions 4.3 and 4.5). In the following we present the enrichment for
over-approximated semantics only, with the under-approximated case
treated similarly.

Definition 4.8 (Enriched over-approximated semantics) Let R be a sim-
ulation from M to M (i.e. M vR M), ρ an assignment, and {[·]}Rρ the
over-approximated semantics of J·KMρ in M via R. Then, the enriched over-
approximated semantics of J·KMρ in M via R is given by the function +{{[[·]]}}Rρ :

F [Γ;∆] → (Ω
[Γ;∆]

M
→ K) defined as

+{{[[ψ[Γ; ∆]]]}}Rρ =


+{{[[ψ1[Γ; ∆]]]}}Rρ ∨

+{{[[ψ2[Γ; ∆]]]}}Rρ if ψ :R ⊥ and ψ ≡ ψ1 ∨ ψ2

¬+{{[[ψ1[Γ; ∆]]]}}Rρ if ψ :R ⊥ and ψ ≡ ¬ψ1

{[ψ[Γ; ∆]]}Rρ otherwise

Intuitively, looking at the type system of Definition 4.2, and in par-
ticular at the rule regarding disjunction, we see that it is not possible to
type disjunctions whose disjunct have (defined) opposite type, e.g. if we
have ψ1 :R d and ψ2 :R d−1, then it is not possible to type their disjunc-
tion ψ1 ∨ ψ2. With enriched approximated semantics we are instead able
to handle those cases by dealing separately with ψ1 and ψ2, and then
afterwards combining the obtained informations.

Example 4.4 Consider again the predicate p(x, y) of Example 4.1, and the
models M and M with M vR M of Example 3.1 shown in Figure 3.2. In
Example 4.3 we have seen that the over-approximated semantics of Jp(u, v) ∨
¬p(u, u)KM in M via R does not provide us any information. This happens
because p(u, v) :R→ and ¬p(u, u) :R←, and hence p(u, v)∨¬p(u, u) :R ⊥. In
particular, as depicted in the third column of the first group of lines of Figure 4.3,
all the pairs in Ω

[z;∅]
M

are assigned to ?.
The enriched over-approximated semantics is instead more significative. Fol-

lowing Definition 4.8, we evaluate separately the (enriched) over-approximated
semantics of the two disjuncts (first and second column of the first group of
lines of Figure 4.3), and then combine the so-obtained informations as shown

64

in the last column of Figure 4.3 with the Kleene’s logic disjunction. Consid-
ering for example the pair (w0, λ), we have +{{[[p(u, v)[z; ∅]]]}}Rρ ((w0, λ)) = F ,
and +{{[[¬p(u, u)[z; ∅]]]}}Rρ ((w0, λ)) = T , from which we obtain +{{[[p(u, v)) ∨
¬p(u, u)[z; ∅]]]}}Rρ ((w0, λ)) = F ∨ T , which evaluates in T . Considering in-
stead (w1, (z 7→ e, λ2)), we have +{{[[p(u, v)) ∨ ¬p(u, u)[z; ∅]]]}}Rρ ((w1, (z 7→
e, λ2))) = ? ∨ T which evaluates in T .

Definition 4.9 (Enriched over-check) Let R be a simulation from M to M
(i.e. M vR M) and ρ an assignment. Then, the enriched over-approximated
model check (shortly, enirched over-check) of J·KMρ in M via R is given by
the function ·+|=R J·KMρ , defined as

p+|=R Jψ[Γ; ∆]KMρ =
∨

p∈R(p)

+{{[[ψ[Γ; ∆]]]}}Rρ (p)

We may enrich both the under-approximated semantics and under-
approximated check exactly in the same way, and thus straightforwardly

define an enriched version “·+|={Rj}{Ri} J·KMρ ” of the approximated checking
by replacing approximated under- and over-checks with their enriched
variants. It is also easy to verify that enriched approximated check is
sound.

4.4 Soundness proofs

In this section we prove the three Propositions 4.1, 4.2 and 4.3, implying
consequently also Theorem 4.1.

We first prove that Proposition 4.1 holds, stating the soundness of
our type system with respect to Definition 4.1. Namely, we show that if
our type system assigns a type to a formula, then it is coherent with the
preservation and/or reflection of the formula.

Proposition 4.1 (Type system soundness). Let R be a simulation from M to
M ′ (i.e. M vR M ′) and ψ a formula. Then

(i) ψ :R→ implies ψ :R⇒;

(ii) ψ :R← implies ψ :R⇐;

(iii) ψ :R↔ implies ψ :R⇔.

65

Proof: We focus on the points (i) and (ii), since point (iii) follows directly
from them. Rephrasing Definition 4.1, what we have to show is: for
every (w1, φ1, w

′
1) ∈ R, if (i) ψ :R→, then (w1, σw1

) ∈ Jψ[Γ; ∆]KMρ implies
(w′1, φ1 ◦ σw1) ∈ Jψ[Γ; ∆]KM

′

R◦ρ; while, if (ii) ψ :R←, then (w′1, φ1 ◦ σw1) ∈
Jψ[Γ; ∆]KM

′

R◦ρ implies (w1, σw1) ∈ Jψ[Γ; ∆]KMρ . The proof is done on struc-
tural induction on ψ.

The proposition trivially holds for the cases tt, Z and ψ1 ∨ ψ2.

[ψ ≡ ε ∈τ Y :R→] Following the semantics, we have Jε ∈τ Y [Γ; ∆]KMρ =

{(w, σ) ∈ Ω
[Γ;∆]
M | σ(ε) is defined and σ(ε) ∈ σ(Y)}. Hence there exists

an a : τ ∈ d(w1) such that a = σw1(ε), and a ∈ σw1(Y). Clearly, φ1(a) ∈
φ1 ◦σw1

(Y). A term ε is a variable or an operation applied to a term. From
our type system we know that ε ∈τ Y has type → for τtotal R, which,
together with the fact that morphisms preserve terms’ operations, allows
us to conclude φ1 ◦ σw1

(ε) = φ1(a).

[ψ ≡ ε ∈τ Y :R←] From (w′1, φ1◦σw1) ∈ Jε ∈τ Y [Γ; ∆]KM
′

R◦ρ ≡ {(w′, σ′) ∈
Ω

[Γ;∆]
M ′ | σ′(ε) is defined and σ′(ε) ∈ σ′(Y)}, we know that there exists an

a′ : τ ∈ d′(w′1) with a′ = φ1 ◦ σw1
(ε), and a′ ∈ φ1 ◦ σw1

(Y). From our type
system we know that R is τbijective, hence there exists an a ∈ d(w1) such
that φ1(a) = a′. Clearly, a ∈ σw1

(Y), and σw1
(ε) = a.

[ψ ≡ ¬ψ′ :R→] We want to prove that (w′1, φ1 ◦ σw1
) ∈ J¬ψ′[Γ; ∆]KM

′

R◦ρ,

knowing that (w1, σw1
) ∈ J¬ψ′[Γ; ∆]KMρ ≡ Ω

[Γ;∆]
M \ Jψ′[Γ; ∆]KMρ . In par-

ticular, (w′1, φ1 ◦ σw1) may belong either to Jψ′[Γ; ∆]KM
′

R◦ρ or to Ω
[Γ;∆]
M ′ \

Jψ′[Γ; ∆]KM
′

R◦ρ. By absurd consider (w′1, φ1 ◦ σw1) ∈ Jψ′[Γ; ∆]KM
′

R◦ρ. From
our type system we know that ψ′ :R←, which, by induction hypothesis,
implies (w1, σw1

) ∈ Jψ′[Γ; ∆]KMρ , obtaining a contradiction.

[ψ ≡ ¬ψ′ :R←] This case is specular to the ψ :R→ one.

[ψ ≡ ∃τx.ψ′ :R→] Following the semantics, we know that (w1, σw1
) ∈

J∃τx. ψ′[Γ; ∆]KMρ = 2↓x({(w, σ) ∈ Jψ′[Γ, x; ∆]KM2↑x◦ρ | σ(x) is defined}).

66

From the type system we know that R is τtotal, hence φ1 ◦ σw1(x) is
defined if and only if σw1

(x) is defined, allowing to reduce the prob-
lem in: showing that (w1, σw1

) ∈ 2↓x(Jψ′[Γ, x; ∆]KM2↑x◦ρ) implies (w′1, φ1 ◦
σw1

) ∈ 2↓x(Jψ′[Γ, x; ∆]KM
′

2↑x◦ρ′). We also know that ψ′ :R→, hence, by
induction hypothesis, (w1, σ2w1) ∈ Jψ′[Γ, x; ∆]KM2↑x◦ρ implies (w′1, φ1 ◦
σ2w1) ∈ Jψ′[Γ, x; ∆]KM

′

2↑x◦ρ′ , with σ2w1 ∈ Ω
[Γ,x;∆]
w1 . Noting that 2↑x and 2↓x

are monotone, we have that (w1, σw1
) ∈ 2↓x(Jψ′[Γ, x; ∆]KM2↑x◦ρ) implies

2↑x((w1, σw1
)) ⊆ Jψ′[Γ, x; ∆]KM2↑x◦ρ, and (w1, σ2w1

) ∈ Jψ′[Γ, x; ∆]KM2↑x◦ρ im-
plies 2↓x((w1, σ2w1)) ∈ 2↓x(Jψ′[Γ, x; ∆]KM2↑x◦ρ). It is now easy to see that
for every (w1, σw1) ∈ 2↓x(Jψ′[Γ, x; ∆]KM2↑x◦ρ) there exists a (w1, σ2w1) ∈
Jψ′[Γ, x; ∆]KM2↑x◦ρ such that (w1, σw1

) = 2↓x((w1, σ2w1
)), for which in turn

there exists a (w′1, φ1◦σ2w1
) ∈ Jψ′[Γ, x; ∆]KM

′

2↑x◦ρ′ such that (w′1, φ1◦σw1
) =

2↓x((w′1, φ1 ◦ σ2w1
)), closing this case.

[ψ ≡ ∃τx.ψ′ :R←] What we want to prove is that (w′1, φ1 ◦ σw1
) ∈

J∃τx. ψ′[Γ; ∆]KM
′

R◦ρ implies (w1, σw1
) ∈ J∃τx. ψ′[Γ; ∆]KMρ . Clearly, φ1 ◦

σw1(x) can be defined only if also σw1(x) is defined, hence we can again
reduce the problem to (w′1, φ1 ◦ σw1

) ∈ 2↓x(Jψ′[Γ, x; ∆]KM
′

2↑x◦ρ′) implies
(w1, σw1

) ∈ 2↓x(Jψ′[Γ, x; ∆]KM2↑x◦ρ). Moreover, from the type system we
know that ψ′ :R←, hence, by induction hypothesis, (w′1, φ1 ◦ σ2w1) ∈
Jψ′[Γ, x; ∆]KM

′

2↑x◦ρ′ implies (w1, σ2w1
) ∈ Jψ′[Γ, x; ∆]KM2↑x◦ρ, with σ2w1

∈
Ω

[Γ,x;∆]
w1 . The rest of the proof is similar to the (∃τx.ψ′ :R→) case.

[ψ ≡ ∃τY.ψ′ :R↔] The proofs are similar to the first-order cases.

[ψ ≡ ♦ψ′ :R→] We are trying to prove that for every (w1, φ1, w
′
1) ∈

R, if ψ :R→, then (w1, σw1) ∈ J♦ψ′[Γ; ∆]KMρ implies (w′1, φ1 ◦ σw1) ∈
J♦ψ′[Γ; ∆]KM

′

R◦ρ. From the semantics, (w1, σw1
) ∈ J♦ψ′[Γ; ∆]KMρ implies

the existence of a w2 ∈ W such that w1
cr w2 and (w2, cr ◦ σw1

) ∈
Jψ′[Γ; ∆]KMρ . Following Def. 3.1, there exists a transition w′1

cr′ w′2, with
(at least) an (w2, φ2, w

′
2) ∈ R and φ2 ◦ cr = cr′ ◦ φ1. We apply the in-

duction hypothesis: (w, φ,w′) ∈ R and (w, σw) ∈ Jψ′[Γ; ∆]KMρ implies
(w′, φ ◦ σw) ∈ Jψ′[Γ; ∆]KM

′

ρ′ . Hence, (w′2, φ2 ◦ cr ◦ σw1
) ∈ Jψ′[Γ; ∆]KM

′

ρ′ . All

67

remains to prove is that φ2 ◦ cr ◦ σw1 = cr′ ◦ φ1 ◦ σw1 , which follows from
φ2 ◦ cr = cr′ ◦ φ1.

[ψ ≡ ♦ψ′ :R←] From the type system of Definition 4.2 we know that R
is an iso-bisimulation, hence R−1 ≡ {(w′, φ−1, w) ∈ R−1 | (w, φ,w′) ∈ R}
is defined, and is a simulation from M ′ to M . What we want to prove is
(w′1, φ1 ◦ σw1

) ∈ J♦ψ′[Γ; ∆]KM
′

R◦ρ implies (w1, σw1
) ∈ J♦ψ′[Γ; ∆]KMρ . From

the ♦ψ′ :R→ case we know that (w′1, φ1 ◦ σw1) ∈ J♦ψ′[Γ; ∆]KM
′

R◦ρ implies
(w1, φ

−1
1 ◦ φ1 ◦ σw1

) ∈ J♦ψ′[Γ; ∆]KMR−1◦R◦ρ. It is easy to see that for a
bisimulation R, φ−1

1 ◦φ1 ◦σw1
= σw1

and R−1 ◦R ◦ ρ = ρ, closing the case.

[ψ ≡ µZψ′ :R↔] Consider the functions F = λY.Jψ′[Γ; ∆]KMρ[Y /Z], and

F ′ = λY ′.Jψ′[Γ; ∆]KM
′

ρ′[Y ′/Z]
as done in the proof of Proposition 2.1. By

definition, JµZ.ψ′[Γ; ∆]KMρ = lfp(F). We are proving (w1, φ1, w
′
1) ∈ R

implies (w1, σw1
) ∈ lfp(F) iff (w′1, φ1 ◦ σw1

) ∈ lfp(F ′). We apply the
induction hypothesis onψ′: for any Y ,Y ′with Y ′ = R◦Y , then (w, φ,w′) ∈
R implies (w, σw) ∈ F (Y) iff (w′, φ ◦ σw) ∈ F ′(Y ′), from which we have
F ′(Y ′) = R ◦ F (Y). From Kleene’s theorem, lfp(F) = sup(Fn(∅) | n ∈ N),
computable as the first Yn such that Yn = Yn−1, with Y0 = ∅, and Yi =

F (Yi−1). Clearly ∅ = R ◦ ∅, implying Y ′1 = F ′(∅) = R ◦ F (∅) = R ◦ Y1.
Iterating, F ′(lfp(F ′)) = R ◦ F (lfp(F)), closing the case.

�

We now prove that Proposition 4.2 holds, stating the soundness of our
over-approximated model checking procedure.

Proposition 4.2 (Soundness of over-check). Let R be a simulation from M
to M (i.e. M vR M), ψ[Γ; ∆] a formula, and ρ an assignment. Then

(i) p |=R Jψ[Γ; ∆]KMρ = T implies p ∈ Jψ[Γ; ∆]KMρ ;

(ii) p |=R Jψ[Γ; ∆]KMρ = F implies p 6∈ Jψ[Γ; ∆]KMρ .

Proof: We first focus on case (i). From Definition 4.4, p |=R Jψ[Γ; ∆]KMρ =

T iff there exists a p ∈ R(p), such that {[ψ[Γ; ∆]]}Rρ (p) = T . This in turn
implies that ψ :R← and p ∈ Jψ[Γ; ∆]KM

R◦ρ. Finally, from Definition 4.1 and

68

Proposition 4.1, we can conclude that all the pairs in R
−1

[p] (including p)
belong to Jψ[Γ; ∆]KMρ .

We now consider case (ii). From Definition 4.4, p |=R Jψ[Γ; ∆]KMρ = F

iff there exists a p ∈ R(p), such that {[ψ[Γ; ∆]]}Rρ (p) = F , and does not exist
any pair p′ ∈ R(p), such that {[ψ[Γ; ∆]]}Rρ (p) = T . This in turn implies that
ψ :R→ and p /∈ Jψ[Γ; ∆]KM

R◦ρ. From Definition 4.1 and Proposition 4.1, we

know that R(Jψ[Γ; ∆]KMρ) ⊆ Jψ[Γ; ∆]KM
R◦ρ. Finally, since p /∈ Jψ[Γ; ∆]KM

R◦ρ,

then no assignment pair in R
−1

[p] (including p) belongs to Jψ[Γ; ∆]KMρ .
�

We now prove that Proposition 4.3 holds, stating the soundness of our
under-approximated model checking procedure.

Proposition 4.3 (Soundness of under-check). Let R be a simulation from
M to M (i.e. M vR M), ψ[Γ; ∆] a formula, and ρ an assignment. Then

(i) p |=R Jψ[Γ; ∆]KMρ = T implies p ∈ Jψ[Γ; ∆]KMρ ;

(ii) p |=R Jψ[Γ; ∆]KMρ = F implies p 6∈ Jψ[Γ; ∆]KMρ .

Proof: We first focus on case (i). From Definition 4.6, p |=R Jψ[Γ; ∆]KMρ =

T iff there exists a p ∈ R−1[p], such that {[ψ[Γ; ∆]]}Rρ (p) = T . This in turn
implies that ψ :R→ and p ∈ Jψ[Γ; ∆]KM

R−1[·]◦ρ. Finally, from Definition 4.1
and Proposition 4.1, we can conclude that all the assignment pairs in R(p)

(including p) belong to Jψ[Γ; ∆]KMρ .

We now consider case (ii). From Definition 4.6, p |=R Jψ[Γ; ∆]KMρ = F

iff there exists a p ∈ R−1[p], such that {[ψ[Γ; ∆]]}Rρ (p) = F , and does
not exist any pair p′ ∈ R−1[p], such that {[ψ[Γ; ∆]]}Rρ (p′) = T . This in
turn implies that ψ :R← and p /∈ Jψ[Γ; ∆]KM

R−1[·]◦ρ. From Definition 4.1

and Proposition 4.1, we know that R−1[Jψ[Γ; ∆]KMρ] ⊆ Jψ[Γ; ∆]KM
R−1[·]◦ρ.

Finally, since p /∈ Jψ[Γ; ∆]KM
R−1[·]◦ρ, then R(p) ∩ Jψ[Γ; ∆]KMρ = ∅, hence, no

pair in M similar to p (including p) belongs to Jψ[Γ; ∆]KMρ .
�

69

Finally, we now prove that Theorem 4.1 holds, stating the soundness
of our approximated model checking procedure.

Theorem 4.1 (Soundness of approximated check). Let ψ[Γ; ∆] be a for-
mula, and ρ be an assignment. Let {R0 . . . Rn} be a set of simulations from
the under-approximations {M0 . . .Mn} to M and {R0 . . . Rm} be a set of sim-
ulations from M to the over-approximations {M0 . . .Mm}, that is Mi vRi
M vRj Mj for any i ∈ {0 . . . n} and j ∈ {0 . . .m}. Then

(i) p |={R0...Rm}
{R0...Rn}

Jψ[Γ; ∆]KMρ = T implies p ∈ Jψ[Γ; ∆]KMρ ;

(ii) p |={R0...Rm}
{R0...Rn}

Jψ[Γ; ∆]KMρ = F implies p 6∈ Jψ[Γ; ∆]KMρ .

Proof: We first focus on case (i). From Definition 4.7, p |={R0...Rm}
{R0...Rn}

Jψ[Γ; ∆]KMρ = T iff there exist at least anRj ∈ {R0 . . . Rm} such that p |=Rj

Jψ[Γ; ∆]KMρ = T , or an Ri ∈ {R0 . . . Rn} such that p |=Ri
Jψ[Γ; ∆]KMρ = T .

From Proposition 4.2 and Proposition 4.3 this implies that p belongs to
Jψ[Γ; ∆]KMρ .

A specular reasoning can be done for case (ii).
Moreover, it may be worth to note that from Propositions 4.2 and 4.3

we know that we never have to combine contradictory results (e.g. T ⊕F).
�

70

Part II

Tool support

71

The use of visual specification formalisms is nowadays diffused in
almost the whole spectrum of software and hardware development activ-
ities. In the particular case of analysis and verification activities, visual
specifications are complemented with appropriate property specification
languages and tools for checking and verifying properties. An example
are graph grammars, temporal graph logics and the corresponding verifi-
cation tools, which are used to reason about the possible transformations
in a graph topology.

In this part we present our first steps towards the development of
a tool support for our approach, aiming in particular at assessing the
feasibility of our approach, and at preparing the ground for an efficient
framework for verifying interesting properties of systems with dynam-
ically evolving structure, that is where system components and their
interrelations may vary over time (e.g. via (de)allocation, merging and
renaming of components, and creation and breaking of relationships).
The current implementation is tailored to our needs, leaving for future
works concerns about efficiency and usability.

We developed our tool in Maude (CDE+07), which we introduce in
Chapter 5, a high-performance formal language and execution environ-
ment based on equational and rewriting logic.

In our implementation we use algebras of a given signature to model
the internal structure of system states, and sets of behavioural rules (i.e.
rewrite rules) to specify systems dynamics. In Chapter 6 we present an
implementation of SPO-like rewriting over algebras of a given signature,
encoded in Maude’s conditional term rewriting. This allows us to com-
positionally specify concurrent systems, in the sense that we may specify
the global behaviour of a system by specifying the local behaviour of its
components. Moreover, it also allows to keep trace of the evolution of
system components across the system evolution. In the case in which
we fix the signature of graphs, then system specifications are essentially
graph transformation systems.

Basing on this machinery, in Chapter 6 we also introduce a prototypal
model checker for finite counterpart models that can be used to check
quantified µ-calculus formulae against system specifications. As far as we

72

know, our tool is one of the few model checkers for a quantified µ-calculus
and one of the few ones inspired by Counterpart Theory, allowing for a
neat analysis of the evolution of individual components.

Then, Chapter 7 shows how we extended our tool to support our
c-reductions approach, and discusses some state canonizers currently im-
plemented in the tool. As discussed in Section 3.3, c-reductions are a
technique that we developed to reduce (Kripke and) counterpart models
in behaviourally equivalent (i.e. bisimilar) ones. Interestingly, many infi-
nite counterpart models, and in particular the class of resource-bounded
ones, can be reduced to finite counterpart models. This, together with
the fact that (from Chapters 3, 4) every formula of our logic is preserved
and reflected in bisimilar models, allows us to use our model checker to
analyze possibly infinite-state systems by checking formulae against their
c-reductions.

Finally, in Chapter 8 we validate our tool against some systems taken
from the literature. Namely, the leader election system presented in
Section 2.1, and an infinite-state variant of the well-known dining philoso-
phers problem (Dij71) as presented in (DRK02). We would like to stress
the fact that the aim of Chapter 8 is not that of demonstrate the efficiency
and scalability of our prototypal tool framework. We instead rather want
to focus on the wide applicability of our tool support, on the expressivity
of our logic, and on the advantages brought by our efforts on state-space
reduction techniques and sound approximated model checking.

Unfortunately, we currently do not fully support our sound approxi-
mated model checking. So far, we only deal with bisimilar models reduced
following our c-reductions approach. However, even this partial support
is quite interesting, since from the results of Chapters 3, 4 we know that
we can freely analyze c-reduced models, rather than the original ones,
meaning that we can reason on systems of greater size, and on infinite
models, in case their reduction is finite.

73

Chapter 5

A gentle introduction to
rewriting logic and Maude

We have decided to rely our machinery on rewriting logic (Mes12), and
on its instantiation in Maude (CDE+07), due to:

• its well-developed theory based on the idea of computation as logi-
cal deduction,

• its expressiveness and generality witnessed by notable encodings of
programming languages, and

• its performant, easily extensible tool support.

In this chapter we introduce some concepts related to rewriting logic.
In Section 5.1 we provide an informal discussion in order to improve the
accessibility of the more detailed one provided in Section 5.2.

5.1 Informal discussion

We already discussed the fact that worlds of our models are labelled with
algebras of a given signature Σ, which fixes the set of sorts and of opera-
tion names used to represent worlds’ internal structure. Actually, in our
tool the worlds of our models are labelled with an explicit representation

74

of such Σ-algebras, defined by means of sets of elements, and by sets of
operations (i.e. functions) among elements.

If we fix Σ as the signature provided in Example 2.1, then Σ-algebras
are actually unlabelled directed graphs. An example of explicit represen-
tation in our framework of a Σ-algebra (for Σ the signature of unlabelled
directed graphs) is

e(3) e(4) n(3) n(4)
s: ({e(3)} |-> n(3), {e(4)} |-> n(4))
t: ({e(3)} |-> n(4), {e(4)} |-> n(3))

Intuitively, the represented graph has two edges (e(3) and e(4)) and
two nodes (n(3) and n(4)). While the operations source (s:) and target
(t:) are specified such that n(3) is the source of e(3) and the target
of e(4), while n(4) is the source of e(4) and the target of e(3). We
obtain hence a graph connected in a ring topology, and in particular G1

of Figure 2.2.

In order to explicitly represent Σ-algebras, we resort to an extension
of the predefined object-like signature of Configurations provided by
Maude, where a configuration is a set of objects. More precisely, such
signature provides the sort Configuration which we use to represent
Σ-algebras. A term with sort Configuration can be the empty configu-
ration none, a singleton object (in our case elements of the algebra), as the
sort Object is declared as a subsort of Configuration, or the set union
(denoted with juxtaposition) of several objects. The signature provides
also the sort of messages (Msg), which we however do not exploit.

In particular, we defined the sorts Element and Operation as sub-
sorts of Object. Indeed, Element can be thought of as a kind of super-
sort for all the sorts which will be defined by Σ to represent its elements, in
the sense that every sort defined by Σ to represent the elements of a state
of a system (e.g. edges and nodes for the case in which Σ is the signature
of graphs) will be defined as subsorts of Element. A Σ-operation (e.g.
source and target in the case in which Σ is the signature of graphs) is
instead represented by a term with sort Operation, namely a mapping
from an element (or sequences of n elements for n-ary operations) to
another element.

75

Such signature of extended configurations will be further refined for
every modelled system, by listing the set of sorts and of operation names
of the considered Σ.

Last, the dynamics of a system are specified as sets of rewrite rules in
SPO-like style, encoded on top of Maude’s term rewriting. This chapter
does not discuss in detail rules, as they are treated in Section 6.1 with the
help of a running example.

Then, it is easy to understand that the structure labelling a world, i.e.
a Σ-algebra representing the internal structure of a state of a system, is
actually a term of sort Configuration of an extension of the Maude
Configurations, which are further extended by the system-specific
signature Σ. In particular, a representation of a Σ-algebra is composed
by a set of terms whose sort is subsort of Element (i.e. Edge and Node),
and by a set of terms with sort Operation.

This is discussed and exemplified in Section 6.1, where we provide
a step-by-step specification of the leader election system considered in
Section 2.1.

To conclude this informal discussion, a system specification is given
by three components: the signature Σ of the algebraic structures used
to represent its states (and that will label the worlds of our models), a
specification of the initial state of the system (i.e. a Σ-algebra), and a set
of rewriting rules in SPO-like style encoded in Maude’s term rewriting.
However, system specifications are actually given by means of Maude’s
operations (which can be thought of as functions of other programming
languages), equations and rules. Intuitively, a system specification is in
fact a rewrite theory, which is then executed by Maude in order to generate
the counterpart model representing the state-space of the considered
system. Hence, as we will see, in our framework counterpart models are
terms generated by a rewrite theory.

5.2 Detailed discussion

A rewrite theoryR is a tuple 〈Ψ, E,R〉where

76

• Ψ is a signature, specifying the basic syntax (function symbols)
and type machinery (sorts, kinds and subsorting) for terms, e.g.
counterpart models and their constituents (like worlds, Σ-algebras,
accessibility relation, etc);

• E is a set of possibly conditional equations which induce equiva-
lence classes of terms, and possibly conditional membership predi-
cates which refine the typing information;

• R is a set of possibly conditional term rewrite rules.

The Maude framework (CDE+07) instantiates rewriting logic (Mes12)
providing a language for describing rewrite theories by means of modules,
and a tool built upon a rewrite engine for executing and analysing them. A
very powerful functionality offered by Maude is that of theory composition,
meaning that a module can import, extend and compose other modules.

Our implementation strongly depends on this composition functional-
ity. In fact, it is important to notice that the signature Σ of the structures
representing the states of our systems, and the signature Ψ of a rewrite
theory are two distinct concepts.

Intuitively, our tool can be thought of as a specification of a generic
rewrite theory of counterpart models, parametric in Σ and in the system
specification. This means thatR provides the machinery and the signature
of counterpart models, which users refine and extend with their system
specifications, providing informations about the structures labelling the
worlds of the model, an initial state of the system, and its dynamics.
However, the following discussion holds for any rewrite theory.

Once again, this concept is illustrated in Section 6.1, where we provide
and thoroughly discuss a step-by-step specification of the leader election
system considered in Section 2.1, and shown in Figures 2.1 and 2.3.

In the following, we shall use Maude’s syntax, introducing the syn-
tactic ingredients as we use them. Moreover, in order to distinguish from
Maude’s signatures and operations, we shall use the terms “Σ-operation”
and “Σ-element” for referring to the explicit representations of the struc-
tures labelling the worlds of our models.

77

The signature Ψ and the equationsE of a rewrite theory form a member-
ship equational theory 〈Ψ, E〉, whose initial algebra is TΨ/E . Indeed, TΨ/E

is the state-space of a rewrite theory, i.e. its generated elements (e.g. in
our case counterpart models) are equivalence classes of Ψ-terms t modulo
the least congruence induced by the axioms in E (denoted by [t]E or just t
for short).

This means that several counterpart models could be generated out of
a rewrite theory, given a system specification. Intuitively, a counterpart
model is generated by exploring the state-space of a system, and assigning
system states (i.e. Σ-algebras) to its worlds. Depending on the strategy of
rule application, the generated models may be syntactically different, yet
clearly all isomorphic.

Maude operators, which can be thought of as elements constructors,
and as the equivalent of functions of other programming languages, are
declared in Maude notation as

op f : TL -> T [a] .

Where f is the name of the operator (possibly given in mixfix notation
where argument placeholders are denoted with underscores), TL is a
(possibly empty, blank separated) list of sorts defining the domain of the
operator, and T is the sort of the co-domain of the operator. Finally, a is a
set of equational attributes (e.g. associativity, commutativity).

For example, without giving too many details, the operator to define a
counterpart model (following Definition 2.3) can be sketched as

op _ _ _ : Set{World} Map{World,Configuration} Set{RCEntry}
-> CounterpartModel .

Hence a counterpart model is defined as the juxtaposition of a term
with sort Set{World}, that is the set of worlds of the model, by a term
with sort Map{World,Configuration}, that is an associative array
assigning a term with sort Configuration (which in our framework
will stand for a Σ-algebra) to every world of the model, and by a term
with sort Set{RCEntry}, that is the accessibility relation of the model,
composed by a set of entries relating a target and a source state, via a
counterpart relation.

78

It may be interesting to notice that Set and Map are predefined para-
metric data structures, which, exactly as c++ Templates and Java Generics,
can be instantiated for a specific sort. For example, Set{World} stands
for the sort of set of worlds, for World defined as

sort World .
op w : Nat -> World .

The main equations of the theories that we use allow us to treat collec-
tions of Σ-elements and Σ-operations as multisets, i.e. modulo associa-
tivity, commutativity, and identity (all treated as equational attributes),
therefore axiomatising their algebraic-theoretic nature.

Equations that cannot be declared as equational attributes must be
treated as functions defined by a set of confluent and terminating (possibly
conditional) equations of the form

ceq t = t’ if c

where t and t’ are Ψ-terms, and c is an application condition. When the
application condition is vacuous, the simpler syntax eq t = t’ can be
used.

Roughly, an equation ceq t = t’ if c can be applied to a term
t’’ if we find a match for t at some place in t’’ such that c holds (after
the application of the substitution induced by the match). The effect is
that of substituting the matched part with t’ (after the application of the
substitution induced by the match).

One major advantage of Maude is that it includes tools for checking
confluence, termination and completeness of equational logic specifica-
tions.

A membership predicate is of the form

cmb t : T if c

where t is a Ψ-term of some supersort T’ of T and c is a predicate over t
conditioning the membership statement. When the application condition
is vacuous, the simpler syntax mb t : T can be used.

79

Roughly, a membership predicate states that if we are able to match
a term t’ with t such that c holds then t’ has sort T. Hence, mem-
bership predicates provide a subtyping mechanism that we can use, for
instance, to check conformance with respect to a certain meta-model (e.g.
a typegraph).

Rewrite rules are of the form

crl t => t’ if c

where t and t’ are Ψ-terms, and c is an application condition, namely
either a predicate on the terms involved in the rewrite, or further rewrites
(whose result can be used), or membership predicates. When the ap-
plication condition is vacuous, the simpler syntax rl t => t’ can be
used.

Matching and rule application are similar to the case of equations
with the main difference being that rules are not required to be confluent
and terminating (as they represent possibly non-deterministic concurrent
actions). Equational simplification has precedence over rule application
in order to simulate rule application modulo equational equivalence.
Finally, as previously mentioned, rewrite rules can be used to program the
behaviour of a system in a declarative way (e.g. in graph transformation
style).

Σ-algebras as object collections. We summarize the previously men-
tioned algebra of object collections (Configurations) that is used to
represent system states.

In our setting, a system configuration (i.e. a system state) is a collection
of Σ-elements and of explicit representations of Σ-operations among
them. Maude provides a signature for representing system states as
multiset of objects, called Configurations (CDE+07), which we partly
use and extend (e.g. with the previously mentioned sorts Element and
Operation, defined as subsorts of objects).

Each Σ-element has one of the sorts provided by Σ, which has to be
defined as subsort of Element, and represents an entity (an individual
component of a system state), while Σ-operations are terms with sort

80

Operation, which can be thought of as associative arrays mapping
sequences of Σ-elements (n for n-ary operations) in another Σ-element.

For example, as shown in Section 6.1, fixing the signature of graphs
for Σ, we have sorts Edge (whose elements are defined as e(0), e(1)),
Node (whose elements are defined as n(0), n(1)), and the operations
source and target mapping an Edge, respectively, in its source and
target Node.

Sorts, ad-hoc constructors of Σ-elements (i.e. Maude operations to
build them) and names of Σ-operations will be provided in the system-
specific code. A possible example of constructor for the sort Edge is
op e : Nat -> Edge, allowing to generate edges providing natural
numbers, e.g. e(0) and e(1) are examples of edges.

In Section 8.2 we will see how it is possible to encode elements with
attributes in our framework (e.g. the status of a philosopher in the well-
known dining philosophers problem).

To conclude, configurations representing Σ-algebras are essentially
sets of objects (Σ-elements and Σ-operations). As sketched in Section 5.1,
the sort for configurations is called Configuration and its constructors
are the empty configuration (none), singleton objects (in our case terms
with sort Element, subsort of Object), as Object is in turn declared as
subsort of Configuration, and set union (denoted with juxtaposition).

Finally, in order to distinguish a system state from the collection of
Σ-elements and Σ-operations that forms it, we wrap configurations into a
State with the operation << >> : Configuration -> State .

81

Chapter 6

An explicit-state
counterpart model checker
for finite models

In this chapter we present a prototypal tool for the verification of finite
counterpart models, that is counterpart models whose set of worlds is
finite, and whose algebras have finite domains. In addition we shall
consider finite formulae-in-context, i.e. finite formulae with finite contexts.
As stated in Section 2.6.2, our model checking problem is decidable under
those assumptions.

The tool allows to check quantified temporal properties based on our
counterpart-like semantics for second-order µ-calculi. The tool can be
considered as an instantiation of our approach to counterpart semantics
which, as previously stated, allows for a neat handling of the evolution of
system components in systems with dynamic structure.

We implemented the tool in the Maude framework (CDE+07), which
we introduced in Chapter 5, a language based on equational and rewriting
logic, together with a rewrite engine for executing it.

The tool offers two main features:

• the automatic generation of a counterpart model provided a descrip-
tion of a system, specified by the initial state of the system, that is an

82

algebra of a given signature, and by a description of the dynamics
of the system, namely a set of SPO-like rewrite rules. We discuss
this system specification language in Section 6.1;

• the evaluation of logical formulae of our second-order µ-calculus
in the automatically generated counterpart model. As specified by
the semantics of our logic (Definition 2.11), formulae are evaluated
as sets of assignments for each state, associating sorted variables to
elements with the same sort.

Actually, our tool implements two different semantics for our logic. In
fact, by setting a flag to true or false, it considers either the original seman-
tics given in (GLV10), or the one proposed in (GLV12a) and discussed in
Chapter 2.

In (LV11) we presented an early version of our tool considering the
semantics of (GLV10), while in (GLV12a) and in this chapter (and in
general in the whole thesis) we focus on the newer semantics.

Informally, as sketched in Section 2.5, the main difference between the
two semantics consists in the evaluation of formulae having ♦ as main
operator. In fact, in order to be adherent to Lewis Counterpart Theory, in
the original semantics we do not consider (i.e. we ignore) transitions that
do not preserve all the elements relevant for the formula.

6.1 System specification

In order to specify a system we need to feed the tool with three informa-
tions:

1. the signature of the system;

2. the initial state of the system;

3. the dynamics of the system.

Signature specification. Our tool is parametric with respect to the sig-
nature Σ of the structures associated to the states of the systems. However,

83

Listing 6.1: The Maude code to define the graph signature
1 --- This module provides the sorts and the operation names of a signauture
2 mod GRAPH-SIGNATURE is
3
4 pr CT-MODEL-SORTS .
5
6 sorts Edge Node . --- The sorts
7 --- Element is a "supersort" used to obtain code independent from the

actual signature
8 subsort Edge Node < Element .
9

10 op Edge : -> Cid [ctor] .
11 op Node : -> Cid [ctor] .
12
13 op e : Nat -> Edge [ctor] . --- e(0), e(1) are edges
14 op n : Nat -> Node [ctor] . --- n(0), n(1) are nodes
15
16 --- The operations s and t are hash tables from an "NAryArgument" to an "

Element".
17 op s:_ : Map{NAryArgument,Element} -> Operation [ctor] .
18 op t:_ : Map{NAryArgument,Element} -> Operation [ctor] .
19
20 --- I conservatively apply the renaming induced by cr to source and

target
21 var source target : Map{NAryArgument,Element} .
22 var cr : CounterpartRelation . var conf : Configuration .
23 eq conservativelyApplyToOperations(cr, s: source conf)
24 = conservativelyApplyToOperations(cr, conf)
25 s: applyToOperationIfDefined(cr, source) .
26
27 eq conservativelyApplyToOperations(cr, t: target conf)
28 = conservativelyApplyToOperations(cr, conf)
29 t: applyToOperationIfDefined(cr, target) .
30
31 endm

we designed the tool so that almost all of its code is independent from the
choice of Σ. Intuitively, we only have to provide the tool with (a Maude
module containing) informations about the sorts and the names of the
operations of the signature.

Listing 6.1 provides the module necessary to specify the signature of
unlabelled directed graphs, shown in Example 2.1. Line 6 provides the
sorts of the signature (i.e. Node and Edge). In order to obtain most of
the code of the tool independent from the particular used signature, as
discussed in Chapter 5 we defined a kind of supersort Element, of which
every element is subsort (line 8).

84

For the same reason, as shown in lines 10-11, every sort should have
associated a corresponding operation with the same name and with co-
domain Cid, a predefined Maude sort standing for class identifiers. As
it will be clear in the next sections, those are needed to be able to restrict
some computation to a subset of the sorts.

Lines 13-14 provide the constructors to build elements of the defined
sorts: e(0) and e(1) are examples of edges.

Finally, in lines 17-18 are specified the names of the operations of
the signature, that is source s: and target t:, while in lines 23-29 it is
specified how a counterpart relation is conservatively applied to the Σ-
operations of a configuration. This is used during the generation of a
new state, and is discussed in paragraph Dynamics specification of this
section. Intuitively, we only have to specify the names of the operations.

Notice that Maude provides variables that can be used as placeholders
for Σ-elements or Σ-operations in the definition of equations. For example,
the variables source and target represent two hash tables from n-
ary sequences of Σ-elements to a Σ-element, which we use to explicitly
represent Σ-operations.

We are actually currently working on a GUI to automatize the genera-
tion of this module and of the others discussed in the following.

Initial state specification. Once the signature Σ of system states has
been fixed, it is necessary to provide to the tool the initial state of the
considered system, that is a Σ-algebra.

Listing 6.2 shows a possible definition of two Maude operations to ob-
tain the initial state of the leader election system considered in Section 2.1,
and shown in Figures 2.1, 2.3. More detailed informations are provided
in Section 8.1.

Intuitively, initLE2 (lines 7-10) generates an initial state (that is an
unlabelled directed graph) with two edges (e(3), e(4)) and two nodes
(n(3), n(4)) (line 8). In lines 9-10 are specified the operations source
and target. Namely, n(3) is the source of e(3) and the target of e(4),
while n(4) is the source of e(4) and the target of e(3). We obtain hence
a graph connected in a ring topology, and in particular G1 of Figure 2.2.

85

Listing 6.2: The Maude code to define the initial state of the leader election
system

1 mod INSTANCES-LE is
2
3 pr GRAPH-SIGNATURE .
4
5 var m size : Nat .
6
7 op initLE2 : -> Configuration .
8 eq initLE2 = e(3) e(4) n(3) n(4)
9 s: ({e(3)} |-> n(3), {e(4)} |-> n(4))

10 t: ({e(3)} |-> n(4), {e(4)} |-> n(3)) .
11
12 op initLE : NzNat -> Configuration .
13 eq initLE(size)
14 = initLE-Elements(size) initLE-Operations(size,size) .
15
16 op initLE-Elements : NzNat -> Configuration .
17 eq initLE-Elements(s(m)) = e(m) n(m) initLE-Elements(m) .
18 eq initLE-Elements(0) = none .
19
20 op initLE-Operations : NzNat NzNat -> Configuration .
21 eq initLE-Operations(size,size)
22 = s: initSource(size,size) t: initTarget(size,size) .
23
24 op initSource : NzNat NzNat -> Map{NAryArgument,Element} .
25 eq initSource(s(m), size)
26 = initSource(m , size), {e(m)} |-> n(m) .
27 eq initSource(0, size) = empty .
28
29 op initTarget : NzNat NzNat -> Map{NAryArgument,Element} .
30 eq initTarget(s(m), size)
31 = initTarget(m , size), {e(m)} |-> n(s(m) rem size) .
32 eq initTarget(0, size) = empty .
33
34 endm

Lines 12-32 define the operation initLE (and the necessary utility
operations), which takes as parameter a non-zero natural number n, and
generates an unlabelled directed graph connected in a ring topology with
n nodes and edges. The graphs in Figure 2.2 are actually three possible
states of the system.

Dynamics specification. The last information that we have to provide
to the tool is the dynamics of the system.

Listing 6.3 shows the specification of the dynamics of the leader elec-
tion system. Intuitively, at every step, an edge is non-deterministically

86

Listing 6.3: The Maude code to define the dynamics of the leader election
system

1 mod BEHAVIOUR-LE is
2
3 pr GRAPH-SIGNATURE .
4
5 var e1 : Edge . vars ns nt : Node .
6 vars source target : Map{NAryArgument,Element} .
7 var cr : CounterpartRelation .
8
9 crl [executeStep] :

10 ns e1 nt
11 s: (source, {e1} |-> ns)
12 t: (target, {e1} |-> nt)
13 =>
14 {cr}(
15 ns
16 s: applyToOperationIfDefined(cr,source)
17 t: applyToOperationIfDefined(cr,target)
18)
19 if cr := (ns |˜> ns, nt |˜> ns) .
20
21 endm

chosen (represented at line 10 with the placeholder variable e1) and
deallocated, and its source and target nodes (ns and nt) are collapsed
to maintain the ring topology. Clearly operations have to be accordingly
updated to account for the deallocation of e1, and for the merging of
ns and nt. Operations not matched by the application of a rule will be
automatically, silently, updated.

By referring to the example in Listing 6.3, we now discuss in detail
how the dynamics of a system can be specified in our tool as sets of
behavioural rules.

The dynamics of a system are specified by a set of term rewrite rules
given in SPO-like formalism, which we implemented on top of Maude’s
term rewriting by enriching the rules with the counterpart relation (similar
to the trace morphism).

An example of such rules is provided in Listing 6.3. The main idea is
that each rule has a left-hand side pattern (LHS), shown in lines 10-12,
and a right-hand side pattern (RHS), shown in lines 14-18. Both the LHS
and the RHS of a rule are possibly composed by a set of elements (e.g.

87

nodes and edges) and by a set of operations (e.g. source and target) of Σ,
hence they can be thought of as incomplete Σ-algebras.

Notice that a rule is defined with the keyword crl (line 9), which
may be possibly followed by the name of the rule surrounded by square
brackets (e.g. executeStep), while the LHS and the RHS are divided by
the keyword => (line 13).

Intuitively, the system performs a computation step by applying a rule
to a state, hence each rule specifies a particular kind of evolution step
which can be performed by the system. The RHS of a rule also contains
a partial mapping from the elements in the LHS to the ones of the RHS
(the cr of lines 14 and 19). This mapping, which is actually a partial
morphisms from the LHS to the RHS of the rule, explicitly specifies how
the elements of a state evolve upon the application of the rule, and it is
used to build the trace morphism, which in our setting amounts to the
counterpart relations labelling the transitions generated by the rule.

In our tool we implement a two-level rule scheme: at the lowest level
we have a set of system-specific local rules (e.g. the one in Listing 6.3),
while at the top level we have a uniquely defined global rule that takes
care of local rule application at the global level, in order to extend the
counterpart relation (generated applying a local rule to only part of a state)
with the (preserved) elements not considered by the local rule. Intuitively,
this two-level infrastructure allows to specify the behaviour of a system
by specifying the (local) behaviour of its components, or of sets of them.

A local rule r can be applied to a (part of a) state s of the system (i.e. a
Σ-algebra) only if it is possible to find a total matching m for the items of
the LHS of r with part of the ones in s. The matching m has to be injective
(the items in the LHS have to be associated to distinct items of s) and has
to respect sorts and operations of Σ, i.e. it has to preserve them. In other
words, m is a total injective morphism from the LHS of r to s.

By applying the local rule r to s via m we obtain a new (incomplete)
Σ-algebra defined applying m to the RHS of r, labelled by a counterpart
relation obtained composing the mapping component of r (e.g. the cr of
line 19 of Listing 6.3) with m.

The role of the global rule is that of lift to the global level, i.e. to the

88

whole state, the application of a local rule to part of a state. Hence, the
global rule can be applied to a state s whenever a local rule can be applied
to part of it.

In particular, the application of the global rule to a state s consists in
first applying a local rule r to part of s via a matching m. Then, the state
s′ successor of s computed applying r to s via m is obtained by removing
from s its items matched by m, and by adding to it the ones obtained
applying m to the RHS of r.

As we will see, during the generation of the model, the so-obtained
(this time total) Σ-algebra s′ is used to label a new world of the model (e.g.
w′). Moreover, a new transition will be added to the model from the world
labelled by s to w′. Such transition will be labelled with the counterpart
relation obtained extending the one generated by the application of the
local rule r (obtained composing the mapping component of r with m),
extended with the identity for all elements of s not matched by m.

We recall once more that cr correlates the items of s preserved by the
transition from w to w′, allowing for their renaming and merging. More-
over, cr is undefined for the items of s deallocated during the transition,
while its image does not contain the newly created items of w′.

Looking back at Listing 6.3 it is now easy to understand the behaviour
of the system. By applying the rule to a state of the system, we match an
edge with e1 and two nodes with ns and nt (line 10). Moreover, from
line 11 we have that ns is the source of e1, while from line 12 we have
that nt is its target. Then, from the definition of cr (line 19) we see that
e1 is deallocated, while ns and nt are merged in a node with the name
of ns.

In lines 16-17 we update the two Σ-operations to account for the
deallocation of e1. Namely, we remove the entries regarding source and
target of e1. Moreover, in those two lines we also conservatively apply
cr to the two Σ-operations, to account for possible renamings induced by
cr. In this particular case it is necessary to change any reference to the
node matched by nt in ns.

Thanks to the global rule, cr is extended with the identity for all the
items not considered by executeStep, meaning that they are preserved.

89

Listing 6.4: The global rule which applies the system-specific local rules
1 --- This module defines how a system can evolve. It contains a rule

regarding the whole state. Such rule utilizes the system-specific rules
provided by the user

2 mod GLOBAL-RULE is
3
4 pr CT-MODEL .
5
6 var cr extendedCR : CounterpartRelation .
7 vars conf conf3 conf4 remainingConf : Configuration .
8
9 crl [global] : << conf >> => {extendedCR}<< conf3 conf4 >>

10 if conf => (remainingConf ({cr}conf3))
11 /\ conf4 := conservativelyApplyToOperations(cr, remainingConf)
12 /\ extendedCR := extend(cr,remainingConf) .
13
14 endm

Moreover, the global rule will also take care of applying cr to the other
Σ-operations possibly not matched by the local rule.

We conclude this paragraph by discussing a simplified version of our
above mentioned global rule, where we omit the automatic assignment
of names to newly generated Σ-elements, and the application of state
canonizers, which, following our c-reduction approach of Section 3.3,
allows to obtain reduced state-spaces. The first aspect will be exempli-
fied in Section 8.2, while the second aspect is treated in Chapter 7, and
exemplified in Sections 8.1, 8.2.

The simplified global rule is provided in Listing 6.4. From line 9 we
know that a state (i.e. a Σ-algebra) matched by conf evolves in the state
conf3 conf4, with counterpart relation extendedCR.

In particular, conf3 is obtained by the application of a local rule (e.g.
executeStep) to part of the state matched by conf, with counterpart
relation cr.

The variable remainingConf matches the part of conf not matched
by the application of the local rule, hence the Σ-elements (and the Σ-
operations) in remainingConf are not affected by the application of the
local rule, and should then be preserved. For this reason we compute
extendedCR by extending cr with the identities for the Σ-elements in
remainingConf.

90

Finally, we obtain conf4 by conservatively applying the counterpart
relation cr to remainingConf. This allows to apply the renamings
imposed by cr to the Σ-operations in remainingConf, if any. By saying
conservatively, we mean that only references to Σ-elements for which cr is
defined are updated, while the other are left unchanged. Intuitively, this
corresponds to applying extendedCR, but it is more efficient.

6.2 Counterpart model generation

The tool does not perform on-the-fly model checking: it first generates the
(finite) counterpart model for a given rule-based specification, and then
evaluates formulae over such model.

The procedure of generation of a counterpart model is quite intuitive.
It starts from a counterpart model composed by a world associated to an
algebraic structure representing the initial state of the system, and by the
empty accessibility relation. Then it keeps adding worlds and entries of
the accessibility relation to the model, up to completion of the state-space.
This is done by applying exhaustively the global rule to the algebraic
structures labelling the generated worlds.

As previously discussed, the application of the global rule to a Σ-
algebra s generates a new Σ-algebra s′ and a counterpart relation cr. In
particular, two cases can arise after the application of the rule, supposing
that s labels the world w:

1. the model does not already contain a world labelled with s′, in
which case a new world w′ labelled with s′ it is added to the model.
Moreover, also an accessibility relation entry from w to w′ labelled
with cr is added to the model;

2. the model already contains a world labelled with s′, thus only the
corresponding accessibility relation entry is added, if not already
present.

It is worth to mention that, other than identifying syntactically identi-
cal algebras, we could exploit techniques to reduce the size of the state-
space obtaining equal (i.e. bisimilar) or approximated (i.e. similar) models.

91

For example, when creating new elements we could reuse names of previ-
ously deallocated elements, allowing to obtain finite counterpart models
for infinite-state systems with bounded resource allocation. Moreover,
also more powerful strategies, based e.g. on identifying symmetric states
could be applied.

In (LMV12) we studied how to apply some of those state-space re-
duction techniques to Kripke models, developing an approach named
c-reductions, based on state canonizers. In Section 3.3 we lift these re-
sults to counterpart models, while in Chapter 7 we present some state
canonizers currently implemented in our tool.

Moreover, by studying how the semantics of our logic is related to
model approximations, in Chapter 4 we gave the formal relation between
the evaluation of formulae in the original models and reduced ones.

6.3 Formulae evaluation

Given a counterpart model M and an assignment for fix-point variables
(we usually initially fix the empty one), our tool evaluates a formula-in-
context as the set of pairs (w, σw) satisfying it under the semantics defined
in Section 2.4 1. With w being a world of M , and σw a variable assignment
for w defined for a subset of the variables in the first-order context, and
exactly for the variables in the second-order context of the formula.

The set of pairs satisfying the formula is computed by relying on the
function valid, taking as arguments a formula-in-context, a pair, a fix-
point variable assignment and a counterpart model. A call to function
valid(ψ, (w, σw), ρ,M) returns true if the pair (w, σw) validates the for-
mula ψ inM under fix-point variable assignment ρ, and false otherwise.
Finally, we evaluate the semantics of a formula-in-context with a function
J K , taking as arguments a formula-in-context ψ[Γ; ∆], an initial state w0

of the system (from which the counterpart model will be built), and an
assignment ρ for fix-point variables. The operation generates all the pairs

1Or the one proposed in (GLV10). However, as previously mentioned, we will focus on
the semantics proposed in Section 2.4.

92

in the set Ω[Γ;∆], and adds to the semantics of the formula only those pairs
for which valid(ψ, (w, σw), ρ,M) is true.

Note that the described procedure is a simple brute-force algorithm
implementing the semantics of Section 2.4. However, as we previously
explained, our aim was to develop a tool to test and debug our semantics,
and to demonstrate the feasibility of our approach, rather than to provide
an efficient verification engine.

So far we focused on developing techniques to generate and exploit
smaller models, which is a very important aspect, since the complexity
of any model checking procedure depends on the size of the considered
state-spaces.

Indeed, in Chapter 7 we see how it is possible to extend the tool we
presented to support c-reductions.

In (LV11) we have tested our tool over a system implementing the
well-known stable marriage problem (GI89). Moreover, the properties
discussed in Example 2.5 and in Example 2.6 have been checked auto-
matically using our tool. In Chapter 8 we will consider other interesting
cases.

93

Chapter 7

Tool support for
c-reductions

In Section 3.3, we presented c-reductions, a state-space reduction tech-
nique for counterpart models. The approach is based on state canonizers,
namely functions mapping the worlds of a model in a (non necessarily
unique) canonical representative of their equivalence class, provided by
an iso-bisimulation. The approach is general enough to allow for recast-
ing in it other reduction techniques like name reusing and symmetry
reduction.

In this chapter we discuss how our prototypal model checker pre-
sented in Chapter 6 has been extended to support c-reductions, and
sketch some currently implemented canonizers.

Then, in Chapter 8, with the help of appropriate running examples,
we will discuss in more detail the implemented canonizers, and we will
exemplify how them, and their combinations, can be exploited to enhance
system analysis capabilities.

We recall that canonizers are functions applied to the Σ-algebras la-
belling the worlds of our counterpart models in order to compute smaller
but semantically equivalent (i.e. iso-bisimilar) models, provided an iso-
bisimulation.

Intuitively, the c-reduction of a counterpart model, that is the reduced

94

model resulting from the application of a canonizer to its worlds, cor-
responds to the model obtained by (partly) collapsing the equivalence
classes of its worlds.

We distinguish between strong and weak canonizers. Strong canoniz-
ers provide unique representatives for each equivalence class of worlds
(i.e. all equivalence classes are collapsed in single worlds) and, hence,
the maximal reduction which can be obtained for a given equivalence.
In the case of non-strong (weak) canonizers, we might have different
representatives for equivalent worlds (i.e. equivalence classes are possibly
not collapsed in single worlds). Weak canonizers can hence be thought of
as heuristic canonizers providing weaker state-space reductions.

However, weak canonizers may enjoy advantages over strong ones,
like easiness of definition, and less expensive computations. Meaning
that in some cases they are easier to be defined, and that their exploitation
can be more computationally efficient in terms of runtime cost.

Strong canonizers provide smaller models, while weak canonizers
require less computations. Depending on the different computation re-
quirements and reduction ratios, we may have that the generation of a
counterpart model reduced with a weak canonizer may require either
more or less time than with a strong canonizer.

We now move our attention on how we can exploit c-reductions in the
tool presented in Chapter 6. Practically, we obtain an on-the-fly reduction
technique (i.e. computed during the generation of a counterpart model)
by simply applying a canonizer to every newly generated world (and
to the counterpart relation generated with it), before storing it. Notice
that we directly build the reduced model, meaning that we can generate a
reduced model if it is finite, independently on the finiteness of the original
model.

Listing 7.1 shows how we easily extend the global rule depicted in
Listing 6.4 in order to support c-reductions.

Notice how the rule of Listing 6.4 has been extended to obtain the one
of Listing 7.1. In Listing 6.4 we generate the Σ-algebra conf3 conf4

with counterpart relation extendedCR. In Listing 7.1 we instead further
apply the function reducer to the result of the former, obtaining the

95

Listing 7.1: An enriched global rule to support c-reductions
1 mod GLOBAL-RULE is
2
3 pr CT-MODEL .
4
5 var cr extendedCR crRed : CounterpartRelation .
6 vars conf conf3 conf4 remainingConf confRed : Configuration .
7
8 crl [global] : << conf >> => {crRed}confRed
9 if conf => (remainingConf ({cr}conf3))

10 /\ conf4 := conservativelyApplyToOperations(cr, remainingConf)
11 /\ extendedCR := extend(cr,remainingConf)
12 /\ {crRed}confRed := reducer({extendedCR}<< (conf3 conf4) >>).
13
14 endm

Σ-algebra confRed and the counterpart relation crRed (line 12).
Where reducer can be thought of as a generic canonizer (having as

domain and co-domain Σ-algebras labelled with a counterpart relation),
defined as

op reducer : LabelledState -> LabelledState .

By resorting to the extended rule of Listing 7.1, we can easily exploit
any provided concrete canonizer, just by adding a simple equation con-
necting the generic and the concrete canonizers. For example, suppose
to have defined a concrete canonizer compactNames. Then, by provid-
ing the following equation, we obtain counterpart models reduced with
compactNames:

var lState : LabelledState .
eq reducer(lState) = compactNames(lState) .

In our tool we currently implemented three state canonizers:

1. compcatNames,

2. freeTranps and

3. rotation

For easiness of presentation, we now only informally sketch the three
canonizers, as we will discuss them in more detail in Chapter 8, with the
help of the system specifications there provided.

96

Canonizer compactNames . The canonizer compactNames is defined
such that, for each sort provided by Σ, it simply renames the elements of
a Σ-algebra by compacting their names towards the bottom of a provided
ordering for the identifiers of elements of that sort. This canonizer may
be useful to compact names after elements deallocation, merging and
renaming, implementing a sort of garbage collection of identifiers, and
facilitating the reuse of currently unused ones.

Intuitively, the canonizer is based on total orderings for elements
names (one for each sort), and simply pushes down elements names
towards the bottom of the orderings, starting from the minimal one.

In Section 6.1 we have seen how it is possible to specify the leader
election system of Section 2.1. Then, suppose to have an ordering for
Edge identifiers such that e(i)<e(j) if i<j, having hence e(0) as
bottom. Suppose moreover to have a state of the system composed by the
three edges {e(1),e(3),e(4)}. Applying the canonizer to this state
we obtain that e(1) is renamed in e(0), e(3) is renamed in e(1), and
e(4) is renamed in e(2). The same procedure is applied to the elements
of every sort.

As discussed in Section 8.1, this generates a huge reduction of the size
of the state-space of the leader election system. In particular, every state
with three edges will contain the edges {e(0),e(1),e(2)}. However,
notice that this does not imply that all the states with the same number
of elements are identified, because states are Σ-algebras, and hence we
also have operations among elements. Consider the simple example of
the two graph algebras:

e(1) n(1) n(3) s: ({e(1)} |-> n(1)) t: ({e(1)} |-> n(3))
e(1) n(1) n(3) s: ({e(1)} |-> n(3)) t: ({e(1)} |-> n(1))

Then, if we apply compactNames to them we obtain the two distinct
Σ-algebras:

e(0) n(0) n(1) s: ({e(0)} |-> n(0)) t: ({e(0)} |-> n(1))
e(0) n(0) n(1) s: ({e(0)} |-> n(1)) t: ({e(0)} |-> n(0))

We do not provide the code implementing such canonizer. Instead, it
may be interesting to show the code that the user has to provide in order

97

Listing 7.2: The Maude code to exploit compactNames (1)
1 mod CODEFOR-NAME-COMPACT-LE is
2
3 pr COMPACT-NAMES .
4 pr ABSTRACTIONS .
5 pr GRAPH-SIGNATURE .
6
7 vars el1 el2 : Element . var i j : Nat .
8 var source target : Map{NAryArgument,Element} .
9

10 --- Sorts to be compacted
11 eq CLASSES-2BECOMPACTED = (Edge,Node) .
12 eq getCid(e1:Edge) = Edge .
13 eq getCid(n1:Node) = Node .
14
15 --- minimal name
16 eq minId-2CompactAndAllocate(Edge) = e(0) .
17 eq minId-2CompactAndAllocate(Node) = n(0) .
18
19 --- next name
20 eq successor-2CompactAndAllocate(e(i)) = e(i + 1) .
21 eq successor-2CompactAndAllocate(n(i)) = n(i + 1) .
22
23 --- Name comparison
24 eq e(i) <#El e(j) = i < j .
25 eq n(i) <#El n(j) = i < j .
26
27 --- propagation of compacting to operations
28 eq (s: source)[el1 -> el2] = s: compactOp(source,el1,el2) .
29 eq (t: target)[el1 -> el2] = t: compactOp(target,el1,el2) .
30
31 endm

to use this canonizer. As done in Section 6.1, we will again consider the
case of the leader election system.

Listings 7.2 and 7.3 provide the Maude code necessary to exploit
the canonizer compactNames. As result, the tool will generate models
reduced with the canonizer compactNames.

The listings provide two modules: CODEFOR-NAME-COMPACT-LE

and TEST-COUNTERPARTMODELGENERATION-LE. In the first one we
provide the informations necessary to the canonizer, while the second
one imports all the modules necessary to the generation of a counterpart
model, and specifies the possibly used canonizer.

We first consider Listing 7.2. In lines 3-4 we import the modules
defining the canonizer, while in line 5 we import the signature of graphs.

98

Listing 7.3: The Maude code to exploit compactNames (2)
1 mod TEST-COUNTERPARTMODELGENERATION-LE is
2
3 pr BEHAVIOUR-LE .
4 pr INSTANCES-LE .
5 pr CT-MODEL-BUILDER .
6 pr META-CONNECTOR .
7 pr CODEFOR-NAME-COMPACT-LE .
8
9 var lState : LabelledState .

10
11 --- which reduction you want to use
12 --- eq reducer(lState) = lState . --- use this for none
13 eq reducer(lState) = compactNames(lState) .
14
15 endm

In line 11we specify the sorts to which we want to apply the canonizer.
For efficiency reasons, here should be listed only the sorts of elements
which are deallocated (and relloacted), merged and renamed, because
those are the only cases in which it makes sense to compact their names.
In this case both Edge and Node, because the first ones are deallocated,
while second ones are merged. For the same reasons, lines 12-13 provide
the equations to obtain the class corresponding to the sorts that we want
to compact. As previously mentioned, this is a redundant information
provided to make it easier to write code independent from the considered
Σ.

Lines 16-25 provide informations about the orderings of the names
of edges and nodes. In particular, in lines 16-17 we provide the minimal
names, in lines 20-21 we state how it is possible to generate the next
name in the ordering, while in lines 24-25 we specify how to compare
two names.

Finally, in lines 28-29 we specify how the compacting is propagated to
the elements referenced by Σ-operations. Intuitively, we need an equation
for every operation.

The only interesting line of the module Listing 7.3 is 13, where we
specify the canonizer to be used. Interestingly, the unreduced state-space
is obtained decommenting line 12, and commenting 13.

99

Canonizers freeTransps and rotations. The other two canoniz-
ers freeTransps and rotations implement a state-space reduction
technique well known in the field of model checking, namely symmetry
reduction (WD10). In particular, freeTranps allows to reduce systems
characterized by full symmetry, while rotations allows to reduce sys-
tems presenting rotational symmetry.

This deserves some comments. In the context of symmetry reduc-
tion (WD10) there exist several possible kind of symmetries. The most
general one is the so called full symmetry, where we can freely transpose
(i.e. pairwise swap) the names of symmetric entities, obtaining an equiv-
alent (i.e. an iso-bisimilar) state. Intuitively, this is the case of systems
composed by several replications (copies) of components independently
performing the same computations, as for example the processes (i.e the
edges) of our leader election system.

Clearly, in a state with n of such components, n distinct steps can be
performed towards distinct but symmetric states, depending on which
component executes.

Then it is possible to consider only one state for every equivalence class
of symmetric states, e.g. a minimal one for a given total ordering, which
can be obtained from every state in the equivalence class by applying a
sequence of transpositions.

In the other cases of symmetries, constraints are imposed on the kind
of manipulation that can be done to the names of the elements. The well
known dining philosophers problem that we treat in Section 8.2 is an
emblematic example of rotational symmetry, where the transposition of
names could possibly lead to not bisimilar states. Instead, by rotating
them all at once, we obtain bisimilar states. The intuition is that it is
not important the absolute position of a philosopher in the table, what
matters is instead its relative position with respect to its neighbours (the
two philosophers with which it shares its two forks), in the sense that
they have to be preserved, so that it will not happen that two eating
philosophers become neighbours.

The canonizer freeTransps transposes (i.e. swaps pairwise) the
names of the elements (preserving sorts), in order to obtain a minimal state.

100

The canonizer rotations instead computes all the possible rotations of
names (which are actually n for systems with n rotationally symmetric
elements), and computes the minimal state.

Hence, for those two canonizers we do not only require an ordering
among elements names, but also among system states. A very intuitive
one may be the one in which we order states lexicographically, in the sense
that we first compare a Σ-operation of the two states (e.g. source), and if
they are equal we compare another Σ-operation (e.g. target), and so on.
In order to compare two Σ-operations, we again follow a lexicographical
approach, i.e. we compare pairs of entries starting from the minimal ones
(e.g. the ones regarding the minimal elements).

Notice that it is not important to compare elements, since all the states
resulting from a transposition or from a rotation have the same elements.

For example, the following equation (where <#Conf is the ordering
for Σ-algebras, while <#Op is the ordering for Σ-operations) sketches an
ordering for Σ-algebras:

eq (s: s1 t: t1 conf1) <#Conf (s: s2 t: t2 conf2)
= if s1 <#Op s2

then true
else if s1 == s2

then t1 <#Op t2
else false
fi

fi .

We recall that compactNames does not collapse the two following
Σ-algebras

e(1) n(1) n(3) s: ({e(1)} |-> n(1)) t: ({e(1)} |-> n(3))
e(1) n(1) n(3) s: ({e(1)} |-> n(3)) t: ({e(1)} |-> n(1))

In fact, they have the two distinct minimal representatives

e(0) n(0) n(1) s: ({e(0)} |-> n(0)) t: ({e(0)} |-> n(1))
e(0) n(0) n(1) s: ({e(0)} |-> n(1)) t: ({e(0)} |-> n(0))

If we instead apply the freeTranps canonizer to the resulting Σ-
algebras, then they are collapsed in the following minimal representative

e(0) n(0) n(1) s: ({e(0)} |-> n(0)) t: ({e(0)} |-> n(1))

101

Listing 7.4: The Maude code to exploit freeTransps (1)
1 mod CODEFOR-STATE-ORDERING-LE is
2
3 pr STATES-ORDERING . pr ABSTRACTIONS . pr GRAPH-SIGNATURE .
4
5 vars conf conf2 : Configuration . var i j size : Nat .
6 var source target source2 target2 : Map{NAryArgument,Element} .
7
8 --- State comparison
9 eq (s: source t: target conf) <#Conf (s: source2 t: target2 conf2) =

10 if source <#Op source2
11 then true
12 else if source == source2 then target <#Op target2 else false fi
13 fi .
14
15 --- Compare two elements
16 eq e(i) <#El e(j) = i < j .
17 eq n(i) <#El n(j) = i < j .
18
19 endm
20
21 mod CODEFOR-TRANSPOSTIONS-LE is
22
23 pr TRANSPOSITIONS . pr ABSTRACTIONS . pr GRAPH-SIGNATURE .
24
25 var conf : Configuration . vars el1 el2 : Element .
26 var source target : Map{NAryArgument,Element} .
27
28 --- Sorts to be transposed
29 eq CLASSES-OF-SORTS-TO-BE-TRANSPOSED = (Edge,Node) .
30 eq getCid(e1:Edge) = Edge . eq getCid(n1:Node) = Node .
31
32 --- Application of transposition to the state
33 eq (s: source t: target conf)[el1 <-> el2]
34 = s: applyTranspToOperation(source,el1,el2)
35 t: applyTranspToOperation(target,el1,el2) conf .
36
37 endm

This leads to the idea of combining canonizers. For example we just
exemplified the combined canonizer obtained combining freeTranps

with compactNames.
We obtain the canonizer freeTranps◦compactNames which first

compacts the names of a Σ-algebra, and then transposes them. Interest-
ingly, for the case of graphs (i.e. when we fix as Σ the signature of graphs
presented in Example 2.1), with this composed canonizer we consider the
equivalence class of isomorphic states, and map each graph in a minimal
isomorphic one, obtaining thus isomorphism reduction.

102

Listing 7.5: The Maude code to exploit freeTransps (2)
1 mod TEST-COUNTERPARTMODELGENERATION-LE is
2
3 pr BEHAVIOUR-LE .
4 pr INSTANCES-LE .
5 pr CT-MODEL-BUILDER .
6 pr META-CONNECTOR .
7
8 pr CODEFOR-STATE-ORDERING-LE .
9 pr CODEFOR-TRANSPOSTIONS-LE .

10 pr STATE-ORDERING-TRANSPOSESOMESORTS .
11
12 var lState : LabelledState .
13
14 eq reducer(lState) = freeTransps(lState) . --- the canonizer to be used
15
16 endm

Other combinations of canonizers are possible. In Chapter 8, and in
particular in Section 8.2, we show some interesting examples.

We now exemplify the code necessary to exploit freeTranps, while
we will exemplify the one for rotations in Section 8.2.

Listings 7.4 and 7.5 provide the Maude code necessary to exploit the
canonizer freeTransps for the case of the leader election system. As
result, the tool will generate models reduced with this canonizer.

The listings regard three modules. CODEFOR-STATE-ORDERING-LE
is the first one, which provides informations necessary to compare Σ-
algebras. The second one is CODEFOR-TRANSPOSTIONS-LE, providing
informations about transpositions. Finally, the third one imports all the
modules necessary to the generation of a counterpart model, and specifies
the used canonizer (TEST-COUNTERPARTMODELGENERATION-LE).

We first focus on Listing 7.4. Lines 3-4 import the modules defining
the canonizer, while line 5 imports the signature of graphs. In lines 9-13
we provide an equation to order Σ-algebras, while in lines 16-17 we order
elements names.

In module CODEFOR-TRANSPOSTIONS-LE we first indicate the sorts
to which we want to apply the canonizer (lines 29-30), and then we
specify how transpositions are propagated to the operations of a Σ-algebra
(lines 33-35).

103

Listing 7.6: The implementation of the canonizer freeTransps
1 mod STATE-ORDERING-TRANSPOSESOMESORTS is
2
3 pr STATES-ORDERING .
4 pr TRANSPOSITIONS .
5
6 vars conf : Configuration . var cr : CounterpartRelation .
7 var cid : Cid . var otherCid : Set{Cid} . vars el1 el2 : Element .
8
9 --- Minimize a state transposing names

10 op freeTransps : LabelledState -> [LabelledState] .
11
12 eq freeTransps({cr}<< conf >>)
13 = $freeTransps({cr}<< conf >>, CLASSES-OF-SORTS-TO-BE-TRANSPOSED) .
14
15 op $freeTransps : LabelledState Set{Cid} -> [LabelledState] .
16
17 ceq $freeTransps({cr}<< el1 el2 conf >>,(cid,otherCid))
18 = $freeTransps({cr[el1 <-> el2]}<< el1 el2 (conf[el1 <-> el2]) >>,(cid,

otherCid))
19 if getCid(el1) == cid /\ getCid(el2) == cid
20 /\ el1 <#El el2
21 /\ ((conf[el1 <-> el2]) <#Conf (conf)) .
22
23 eq $freeTransps({cr}<< conf >>,otherCid) = {cr}<< conf >> [owise] .
24
25 endm

The only interesting line of Listing 7.5 is 14, where we specify the
canonizer to be used.

We conclude the chapter by sketching the implementation of the can-
onizer freeTransps. Listing 7.6 sketches the implementation of the
above considered canonizer freeTransps. In line 3 we import a mod-
ule (partially) defining the operations to compare Σ-algebras, while in line
4 we import the module (partially) defining the operations to apply trans-
positions to configurations, Σ-operations, Σ-elements and counterpart
relations.

Line 10 defines the canonizer, which is then implemented in lines 12-
13. In particular, the canonizer is reduced in $freeTransps, to which
it is provided the set of sorts to which the canonizer should be applied
(CLASSES-OF-SORTS-TO-BE-TRANSPOSED).

Line 15 defines $freeTransps, which is implemented in lines 17-
23. Intuitively, we see that the canonizer keeps on pairwise swapping

104

elements of a state, as long as it is possible to obtain a smaller state.
In particular, at each iteration a Σ-algebra is matched by the vari-

ables el1 el2 conf, where el1 and el2 are two Σ-elements, while the
counterpart relation generated with the state is matched by cr.

From line 19 we know that the sorts of the two matched elements are
equal and belong to the set of sorts considered by the canonizer. From
line 20 we know that the element matched by el1 is minor than the
one matched by el2. This is necessary in order to avoid infinite cyclic
repetitions of applications of opposite transpositions.

Finally, in line 21 we actually check if the state obtained after the
transposition is minor than the matched one.

If all of those conditions hold, then the transposition is applied to the
matched labelled state, which is used as argument of the next iteration of
the canonizer.

Line 23 provides the base case of the canonizer. Namely, the flag
owise, standing for otherwise, tells Maude to apply this equation if it
is not possible to apply any other equation to reduce $freeTransps,
i.e. if it is not possible to obtain a state minor than the current one by
transposing its names. The resulting labelled state {cr}<< conf >> is
the reduction of the original state, and it is actually the one considered
during the generation of the counterpart model.

Notice that with this canonizer we reduce a state in the minimum of
its equivalence class, where the considered equivalence class is given by
all the states which can be obtained by transposing elements names.

In particular, we transpose only parts of the elements (the ones whose
sorts are specified by CLASSES-OF-SORTS-TO-BE-TRANSPOSED). In-
stead, depending on the user-provided implementation of the state com-
parison operator, either the whole state, or part of it is considered to
compare a state with the transposed one.

Then, depending on the ordering provided by the user, this canonizer
can be either strong if the provided ordering is total (i.e. if the the whole
state is considered in the ordering), or weak if the ordering is partial (i.e.
if only part of the state is considered in the ordering).

105

Chapter 8

Model checker at work

In this chapter we validate our tool support over some well known sys-
tems, or particular versions of them. We consider the leader election
system presented in Section 2.1, and an infinite-state implementation of
the well known dining philosophers problem (Dij71) where, as proposed
in (DRK02), forks are consumed and recreated upon usage. In this last
case we only focus on the performances in the generation of the counter-
part models.

Once more, the aim of this chapter is not to demonstrate the efficiency
and scalability of our prototypal tool, but rather that of showing the wide
applicability of our framework, the expressivity of our logic, and the
performance gains brought by our efforts in defining techniques to reduce
the sizes of the considered state-spaces and in dealing with reduced
systems.

8.1 Leader election system

System description. In this section we discuss the running example of
Chapter 2, that is a simple system modelling a leader election algorithm.
The system has been presented in Section 2.1, and further discussed in
Chapters 2 and 6. We recall that it consists in a sort of leader survivor
game, in which there are a set of processes connected in a ring topology

106

via input and output ports. The game evolves via elimination rounds,
in which a process is deallocated, and its ports are merged to maintain
the ring topology. The game ends with the election of a leader, that is the
only remaining process, which hence has same input and output ports.
Figure 2.3 shows two possible executions of a leader election system with
three processes (e0, e1 and e2) connected via the three communication
ports n0, n1 and n2. We actually abstract from the particular algorithm
used at each round to choose the process to be deallocated, and we focus
instead on the evolution of the topology.

System specification. We already exemplified the specification of the
system in our tool in Chapter 6. In particular, as shown in Listing 6.1, we
represent states of the system as unlabelled directed graphs. Processes
are modelled as edges (e.g. e(0), e(1)), while communication ports are
modelled as nodes (e.g. n(0), n(1)). Intuitively, the source and target
nodes of an edge represent, respectively, its input and output ports.

In Listing 6.2 it is instead shown the Maude operation initLE which
allows us to generate initial states of the system. Given a natural num-
ber n, the operation generates a graph with n edges and n nodes con-
nected in ring topology. As shown in lines 13-14 of Listing 6.2, a call to
initLE(size), where size is the natural number specifying the ini-
tial number of edges and nodes, reduces to initLE-Elements(size)
initLE-Operations(size). As shown in lines 16-18, the first one
generates size edges and nodes, namely e(0) n(0) . . .e(size-1)
n(size-1).

As shown in lines 20-32, initLE-Operations(size) generates
the operations source and target of the size created edges, assigning,
respectively, nodes n(i) and n(i+1) as source and target of edge e(i).
We actually defined initSource (lines 24-27) and initTarget (lines
29-32) to generate the two operations.

Finally, in Listing 6.3 we find the definition of the dynamics of the
system. In lines 9-19we provide the simple rule governing the behaviour
of the system. Namely, at each step, an edge and its source and target
nodes are selected, i.e. they are matched respectively with e1, ns and nt.

107

Then (the edge matched with) e1 is deallocated, i.e. it does not appear
neither in the right-hand side of the rule (the part of the rule following
=>) nor in the counterpart relation cr labelling the rule.

Different is the case of nt. Even if it does not appear in the right part
of the rule, it is not deallocated. In fact, as indicated in cr (line 19), it is
merged with ns. Hence, in the target states obtained applying this rule,
will exist a node which represents both the one matched with nt and the
one matched with ns.

As a last note, line 11 tells us that the node matched with ns is the
source of the edge matched with e1, while line 12 tells us that the node
matched with nt is its target. Then, in lines 16-17, we update the oper-
ations source and target to reflect the deallocation of e1, and the fusion
of nt and ns. In particular, the entries related to e1 are removed, and cr

is conservatively applied to the remaining parts of the operations, so to
rename any reference to the node matched by nt to the one matched by
ns.

Interesting properties. In Section 2.1 we enumerated several interesting
properties of the leader election system which, as shown in Section 2.5, are
expressible in our logic. We recall that we considered seven properties:

p1: Will a leader be elected in all possible executions?;

p2: Can two distinct leaders be elected in the same execution?;

p3: Is there a process that necessarily becomes the leader?;

p4: In which states do we have a leader?;

p5: For which processes does an execution leading to its election exist?;

p6: Which communication ports will eventually merge?;

p7: Are processes connections correctly updated after each round?.

We already provided the formulae expressing those properties in
Examples 2.3 and 2.6. In particular, we first defined the derived predicates
presentτ (x), regarding the presence of an entity with sort τ in a world,

108

and leader(x) characterizing edges with same source and target node, i.e.
leader processes. Then, by resorting to the temporal operators derived in
Section 2.3, we expressed the listed properties as

p1 ≡ AF [∃x.(leader(x))],

p2 ≡ ∃x.∃y.[¬atMostOneLeader(x, y)],

p3 ≡ ∃x.[AF (leader(x))],

p4 ≡ ∃x.(leader(x)),

p5 ≡ EF (leader(x)),

p6 ≡ (x 6= y) ∧ AF [present(x) ∧ present(y) ∧ (x = y)],

p7 ≡ present(xE)∧(xN = s(xE))∧(yN = t(xE))∧♦[(¬present(xE))∧
(xN 6= yN)].

In Example 2.6 we discussed in detail the actual meaning of these
formulae, and the used derived operators.

In the next paragraphs we will use our model checker to evaluate those
formulae against an instance of an automatically generated counterpart
model. As we will see, due to the size of the state-space, we are not able
to build models with size greater than 15. Fortunately, by resorting to
our c-reductions we are able to handle systems up-to size equal to 100.
However, for easiness of presentation we will evaluate these formulae
against a model with size fixed to 4 initial edges. In fact, fixing this size
we obtain a model small enough to allow to depict it and its pairs.

Counterpart model generation. As discussed in Sections 6.2 and 6.3,
our prototypal model checker does not perform on-the-fly model check-
ing. It first generates the (finite) counterpart model of a given system
specification, and then evaluates formulae over such a model. Thanks to
the Maude attribute memo, which let store the result of the reduction of a
function for a given set of parameters, the counterpart model is generated
only once, and then it is stored and reused for every formula evaluated
against it.

109

Figure 8.1: State-space sizes (left) and time necessary for their generation
(right) at the varying of system size

In this paragraph we hence first discuss the performances of our tool
in generating the counterpart models coming from system specifications
with a varying initial number of edges (i.e. size). In particular, due to the
size of the state-space, we are not able to build models with size greater
than 15. However, by resorting to our c-reductions, we are able to gener-
ate the counterpart model for much greater size. In particular, we exploit
the canonizer compactNames, and freeTransps◦compactNames (i.e.
the composition of compcatNames with freeTransps) of Chapter 7.

We considered the size of the system varying from 5 to 100, however
we report data from 5 to 70 (actually 100 for the compactNames case).

Figure 8.1 (left) reports informations about the number of worlds
of the counterpart models generated at the varying of the size of the
system (i.e. the initial number of edges), ranging from 5 to 70, while
Figure 8.1 (right) reports informations about the time necessary to gen-
erate such models. The graphics regard three cases: the original (unre-
duced) counterpart models (not reduced), the ones obtained resorting to
the canonizer compactNames, and the ones obtained by exploiting the
canonizer freeTransps◦compactNames (depicted as freeTransps(
compactNames)).

Before analyzing the performances obtained in generating the counter-
part models, it is interesting to discuss about the size of the state-space of

110

this system. The dynamics of the leader election system are quite simple.
From every state, an edge is non-deterministically selected and deallo-
cated, while its source and target nodes are merged (having assigned the
name of the source node).

Then, a state with n edges can perform n different one-step evolutions
in n distinct states containing n− 1 edges, that is all the edges except the
one selected for deallocation. Each of those states with n− 1 edges will
generate n− 2 states, and so on (even if with there will be repeated states).
Then it is easy to understand that the size of the state-space of a system
with size initial edges is 2size − 1.

The previous analysis is confirmed by the curve not reduced in
the graphic on the left of Figure 8.1. Where, for size = 5 we have a
counterpart model with 31 worlds, for size = 10 we have 1023 worlds,
while for size = 15 we obtain 32767 worlds. Then it is not surprising that
we are not able to generate (in a reasonable amount of time on a standard
laptop) the counterpart model for size = 20, consisting of more than a
million of worlds.

The situation changes dramatically by resorting to the two mentioned
canonizers. We recall from Chapter 7 that the canonizer compactNames
simply compacts the names of the elements in a state. Intuitively, the
canonizer is based on total orderings for elements names (one for each
sort), and simply pushes down elements names towards the bottom of
the orderings, starting from the minimal one.

As we will discuss, the application of the canonizer compactNames
generates a huge reduction of the state-space of this system specification,
because all the n − 1 states reachable from a state with n edges will
have the same sets of elements. However, as discussed in Chapter 7, the
application of the canonizer to the states having n − 1 edges could still
results in several distinct states, due to the fact that states are algebras,
and hence we also have operations among elements. Consider the simple
example of the two graph Σ-algebras proposed in Chapter 7:

e(1) n(1) n(3) s: ({e(1)} |-> n(1)) t: ({e(1)} |-> n(3))
e(1) n(1) n(3) s: ({e(1)} |-> n(3)) t: ({e(1)} |-> n(1))

Then, if we apply compactNames to them we obtain the two distinct

111

Σ-algebras:

e(0) n(0) n(1) s: ({e(0)} |-> n(0)) t: ({e(0)} |-> n(1))
e(0) n(0) n(1) s: ({e(0)} |-> n(1)) t: ({e(0)} |-> n(0))

The two Σ-algebras have same elements, namely e(0), e(1), and
n(1), but distinct operations. In fact, in the first algebra the source and
target of e(0) are n(0) and n(1), while in the second one are inverted,
i.e. n(1) and n(0).

Clearly, by swapping the names of the two nodes in the second Σ-
algebra, we would obtain the first one. As discussed in Chapter 7, this is
actually what the canonizer freeTransps does, searching for the mini-
mal state which can be obtained by applying sequences of transposition,
given an ordering for Σ-algebras.

In fact, by applying freeTransps to the two Σ-algebras reduced by
compactNames (considering the ordering provided in Listing 7.4), we
obtain the unique minimal representative

e(0) n(0) n(1) s: ({e(0)} |-> n(0)) t: ({e(0)} |-> n(1))

In particular, it should be easy to understand that the composition
of the two canonizers allows to collapse all the states of the considered
system having the same number of edges (and nodes). Moreover, since
in every evolution step of the system we deallocate an edge, and the
game ends when there remains only one edge, then the c-reduced coun-
terpart model of this system under freeTransps◦compactNames has
size worlds, where size is the initial number of edges.

Interestingly, for the case in which Σ is the signature of graphs, we
have that the reduction obtained with freeTransps◦compactNames
corresponds to reducing the state-space up-to isomorphic graphs.

In Chapter 7 we exemplified the system-specific code that is necessary
to exploit both compactNames (Listings 7.2 and 7.3) and freeTransps

(Listings 7.4 and 7.5). The code necessary to exploit the composite can-
onizer consists in the modules defined in the four listings, except for the
module TEST-COUNTERPARTMODELGENERATION-LE, whose new ver-
sion is in Listing 8.1. The only noteworthy line is 21, where we specify
the canonizer to be used. In the case depicted in the listing we adopt

112

Listing 8.1: The code to exploit the composition of freeTransps with
compactNames

1 mod TEST-COUNTERPARTMODELGENERATION-LE is
2
3 pr BEHAVIOUR-LE .
4 pr INSTANCES-LE .
5 pr CT-MODEL-BUILDER .
6 pr META-CONNECTOR .
7
8 pr CODEFOR-NAME-COMPACT-LE .
9

10 pr CODEFOR-STATE-ORDERING-LE .
11
12 pr CODEFOR-TRANSPOSTIONS-LE .
13 pr STATE-ORDERING-TRANSPOSESOMESORTS .
14
15 var lState : LabelledState .
16
17 --- which reduction you want to use
18 --- eq reducer(lState) = lState . --- use this for none
19 --- eq reducer(lState) = freeTransps(lState) .
20 --- eq reducer(lState) = compactNames(lState) .
21 eq reducer(lState) = freeTransps(compactNames(lState)) .
22
23 endm

the composed canonizer freeTransps◦compactNames. Instead, by
commenting line 21 and uncommenting, respectively, lines 18, 19, or
20, we would obtain the unreduced model, the model reduced with
freeTransps or the model reduced with compactNames.

We can now discuss the graphics of Figure 8.1, where we notice that
we are able to generate the unreduced counterpart model up-to systems
with initially 15 edges (and nodes), obtaining 32767 states in 1500 seconds.

For what regards the models obtained exploiting the two canonizers,
the graphics show instead informations up-to size 70, for which we obtain,
respectively, 70 worlds in 52500 seconds and 138 worlds in 4021 seconds
for the freeTransps◦compactNames, and compactNames canonizers.
In particular we notice a linear growth of the sizes of the counterpart
models, and much better time performances.

In order to better understand the different performances obtained with
the two canonizers, in Figure 8.2 we propose the same graphics omitting
the informations regarding the unreduced counterpart models.

113

Figure 8.2: Reduced state-space sizes (left) and time necessary (right) at the
varying of system size

Here we notice that both canonizers provide a linear growth of the
sizes of the models at growing of the size of the system. More pre-
cisely, as expected (since we first apply compactNames, and then we
further reduce with freeTransps), the composed canonizer offers bet-
ter reductions, even if this gain is not enough to compensate for the
extra computation introduced by freeTransps. As result, the canonizer
compactNames offers slightly worse reductions but with much better
performances.

In both the cases, the amount of time necessary to build counterpart
models appears to grow exponentially, even if it grows much slower in
the compactNames case.

In Figure 8.3 we focus on the canonizer compactNames, and we
show informations about the generation of counterpart models with size
varying from 5 to 100.

System analysis. We conclude this section by checking the considered
properties against an instance of the leader election system. For easiness
of presentation, we consider the model obtained fixing the initial number
of edges to 4, reduced with canonizer freeTransps◦compactNames.

The Maude term representing such model is provided in Listing 8.2.
Following Definition 2.3, the term is divided in three parts: the set of

114

Figure 8.3: State-space sizes (left) and time necessary (right) at the varying
of system size, reducing with compactNames

worlds W of the model (line 1), the function d assigning a Σ-algebra to
each world (lines 3-12) and the accessibility relation over W , enriched
with the counterpart relations (lines 14-29).

In order to give an example of an entry of d, from lines 9-11 we know
that the world w(2) has assigned the Σ-algebra containing the edges
e(0) and e(1), and nodes n(0) and n(1). The operation source (line
10) is defined such that n(0) is the source of e(0), and n(1) is the
source of e(1). Conversely, the operation target (line 11) is defined such
that n(0) is the target of e(1), and n(1) is the target of e(0).

In order to give an example of an entry of , from lines 26-27 we
see that the world w(1) evolves in w(2) by renaming e(1) in e(0) and
e(2) in e(1). Interestingly, n(0) and n(1) are merged in n(0), while
n(2) is renamed in n(1), i.e. it is reused the name n(1) which has
just become free. Moreover, notice that from line 6 we know that w(1)
contains an edge e(0) for which the counterpart relation is undefined.
Hence edge e(0) is deallocated by the transition. Notice moreover that
the only state with a leader is w(3) (line 12), which has an edge e(0)
with same source and target (n(0)). Finally, notice that, as required in
Section 2.2.2 for the definition of derived temporal operators, the model
has no deadlock worlds, i.e. worlds without outgoing transitions. In fact
we added a self-loop on w(3) which preserves all its elements.

115

Listing 8.2: The counterpart model for four processes reduced with canonizer
freeTransps◦compactNames

1 w(0), w(1), w(2), w(3)
2
3 w(0) |-> << e(0) e(1) e(2) e(3) n(0) n(1) n(2) n(3)
4 s: {e(0)} |-> n(0), {e(1)} |-> n(1), {e(2)} |-> n(2), {e(3)} |-> n(3)
5 t: {e(0)} |-> n(1), {e(1)} |-> n(2), {e(2)} |-> n(3), {e(3)} |-> n(0) >>,
6 w(1) |-> << e(0) e(1) e(2) n(0) n(1) n(2)
7 s: {e(0)} |-> n(0), {e(1)} |-> n(1), {e(2)} |-> n(2)
8 t: {e(0)} |-> n(1), {e(1)} |-> n(2), {e(2)} |-> n(0) >>,
9 w(2) |-> << e(0) e(1) n(0) n(1)

10 s: {e(0)} |-> n(0), {e(1)} |-> n(1)
11 t: {e(0)} |-> n(1), {e(1)} |-> n(0) >>,
12 w(3) |-> << e(0) n(0) s: {e(0)} |-> n(0) t: {e(0)} |-> n(0) >>
13
14 w(0) = e(0) |˜> e(0), e(1) |˜> e(1), e(3) |˜> e(2),
15 n(0) |˜> n(0), n(1) |˜> n(1), n(2) |˜> n(2), n(3) |˜> n(2) => w(1),
16 w(0) = e(0) |˜> e(0), e(2) |˜> e(1), e(3) |˜> e(2),
17 n(0) |˜> n(0), n(1) |˜> n(1), n(2) |˜> n(1), n(3) |˜> n(2) => w(1),
18 w(0) = e(0) |˜> e(2), e(1) |˜> e(0), e(2) |˜> e(1),
19 n(0) |˜> n(2), n(1) |˜> n(0), n(2) |˜> n(1), n(3) |˜> n(2) => w(1),
20 w(0) = e(1) |˜> e(0), e(2) |˜> e(1), e(3) |˜> e(2),
21 n(0) |˜> n(0), n(1) |˜> n(0), n(2) |˜> n(1), n(3) |˜> n(2) => w(1),
22 w(1) = e(0) |˜> e(0), e(2) |˜> e(1),
23 n(0) |˜> n(0), n(1) |˜> n(1), n(2) |˜> n(1) => w(2),
24 w(1) = e(0) |˜> e(1), e(1) |˜> e(0),
25 n(0) |˜> n(1), n(1) |˜> n(0), n(2) |˜> n(1) => w(2),
26 w(1) = e(1) |˜> e(0), e(2) |˜> e(1),
27 n(0) |˜> n(0), n(1) |˜> n(0), n(2) |˜> n(1) => w(2),
28 w(2) = e(0) |˜> e(0), n(0) |˜> n(0), n(1) |˜> n(0) => w(3),
29 w(2) = e(1) |˜> e(0), n(0) |˜> n(0), n(1) |˜> n(0) => w(3),
30 w(3) = e(0) |˜> e(0), n(0) |˜> n(0) => w(3)

So far we focused on the generation of counterpart models. However,
before analyzing properties against the generated models we have to
provide a further module to connect the counterpart model generator with
the model checker itself.

Intuitively, the formulae of our logic are parametric with respect to
the signature Σ of the structures assigned to the worlds of the model, i.e.
in this case graphs. Hence we have to provide informations about the
first- and second-order variables and the other terms which can appear
in formulae. In particular where we define the first- and second-order
variables and the terms for the signature of graphs.

We exemplify the module, named TEST-CTMODELCHECKER-LE, in
Listing 8.3. For easiness of presentation we omit irrelevant details.

116

Listing 8.3: The Maude code to connect the counterpart model generator
with the model checker

1 mod TEST-CTMODELCHECKER-LE is
2
3 pr TEST-COUNTERPARTMODELGENERATION-LE .
4
5 eq NOVEL-SEMANTICS = true . --- if true, then uses the novel semantics
6
7 *** --- First-order variables with sort
8 sorts FONodeVariable FOEdgeVariable .
9 subsorts FONodeVariable FOEdgeVariable < FOVariable .

10 op xE : Nat -> FOEdgeVariable [ctor] .
11 op xN : Nat -> FONodeVariable [ctor] .
12
13 *** --- Second-order variables with sort
14 sorts SONodeVariable SOEdgeVariable .
15 subsorts SONodeVariable SOEdgeVariable < SOVariable .
16 op XN : Nat -> SONodeVariable [ctor] .
17 op XE : Nat -> SOEdgeVariable [ctor] .
18
19 *** --- terms with sort
20 sorts NodeTerm EdgeTerm .
21 subsorts NodeTerm EdgeTerm < Term .
22 subsorts Node FONodeVariable < NodeTerm .
23 subsorts Edge FOEdgeVariable < EdgeTerm .
24
25 --- Compound terms
26 sort CompoundNodeTerm .
27 subsort CompoundNodeTerm < NodeTerm .
28 subsort CompoundNodeTerm < CompoundTerm .
29 ops s t : EdgeTerm -> CompoundNodeTerm [ctor] .
30
31 vars xe1 xe2 xe3 xe4 : FOEdgeVariable . vars xn1 xn2 : FONodeVariable .
32 op presentEdge : FOEdgeVariable FOEdgeVariable -> Formula .
33 eq presentEdge(xe1,xe2) = exists xe2 . xe1 = xe2 .
34 op presentNode : FONodeVariable FONodeVariable -> Formula .
35 eq presentNode(xn1,xn2) = exists xn2 . xn1 = xn2 .
36
37 op leader : FOEdgeVariable FOEdgeVariable -> Formula .
38 eq leader(xe1,xe2) = presentEdge(xe1,xe2) and s(xe1) = t(xe1) .
39
40 op atMostOneLeader : FOEdgeVariable FOEdgeVariable FOEdgeVariable

FOEdgeVariable -> Formula .
41 eq atMostOneLeader(xe1,xe2,xe3,xe4)
42 = ((leader(xe1,xe3) and leader(xe2,xe4)) -> (xe1 = xe2)) .
43
44 endm

In line 5 we choose the semantics to be used, i.e. either the novel
semantics of Section 2.4.2, or the original one of (GLV10).

The informations regarding the variables of the logic are provided in
lines 8-17. Intuitively, we define first- and second-order variables for the
sort Edge (FOEdgeVariable and SOEdgeVariable) and for the sort
Node (FONodeVariable and SONodeVariable). For example, xE(0)

117

and XE(0) are, respectively, examples of first- and second-order Edge
variables.

Informations regarding the terms that may appear in the member-
ship operator are instead provided in the lines 20-23. As it may be
expected, in line 20 we define terms for edges and for nodes, respectively
EdgeTerm and NodeTerm. Clearly, elements with sort Node and first-
order node variables are NodeTerm (line 22), and similarly for edges
(line 23). Moreover, we can also have compound terms, namely the source
and the target of a term with sort EdgeTerm are (compound) NodeTerm
(lines 26-29). Finally, in lines 31-42 we define some derived opera-
tors from Example 2.6 which will help us in defining the seven con-
sidered formulae. Namely, present (presentEdge and presentNode

of lines 32-35), leader (leader of lines 37-38), and atMostOneLeader
(atMostOneLeader of lines 40-42).

We can now finally evaluate the seven mentioned properties. By
evaluating p1 ≡ AF [∃x.(leader(x))] we search for those worlds such that
for all departing paths from them, eventually a world containing a leader
is met. Evaluating the formula with empty context we expect to obtain
the set of pairs composed by all the worlds (paired with empty context).
In fact, from every world there exists a path to w(3). This is confirmed in
the lines 1-4 of Listing 8.4.

By evaluating p2 ≡ ∃x.∃y.[¬atMostOneLeader(x, y)] we search for
erroneous states, namely for states having more than a leader. We expect
to obtain the empty set of pairs, meaning that no world of the model falls
in this case. This is confirmed by Listing 8.4, lines 5-8.

By evaluating p3 ≡ ∃x.[AF (leader(x))] we search for those worlds
having a process which will eventually become leader following any of
the outgoing transitions. The only such state is w(3), which has a leader
(e(0)), and self-loop preserving it as unique outgoing transition. This is
confirmed by the lines 9-12 of Listing 8.4.

By evaluating p4 ≡ ∃x.(leader(x)) we search for those worlds having
a leader. As confirmed in lines 13-16 of Listing 8.4, the only world having
assigned a structure with a leader is w(3).

118

Listing 8.4: Evaluating formulae against the model of Listing 8.2

1 *** p1
2 red in TEST-CTMODELCHECKER-LE :
3 [| AF exists xE(0) . leader(xE(0),xE(1)) |] << initLE(3) >> .
4 result: (w(0), empty), (w(1), empty), (w(2), empty), (w(3), empty)
5 *** p2
6 red in TEST-CTMODELCHECKER-LE :
7 [| exists xE(0) . exists xE(1) . not atMostOneLeader(xE(0),xE(1)) |] <<

initLE(3) >> .
8 result: (empty).Set{Pair}
9 *** p3

10 red in TEST-CTMODELCHECKER-LE :
11 [| exists xE(0) . AF(leader(xE(0),xE(1))) |] << initLE(3) >> .
12 result: (w(3), empty)
13 *** p4
14 red in TEST-CTMODELCHECKER-LE :
15 [| exists xE(0) . leader(xE(0),xE(1)) |] << initLE(3) >> .
16 result: (w(3), empty)
17 *** p5
18 red in TEST-CTMODELCHECKER-LE :
19 [| EF(leader(xE(0),xE(1))) |] << initLE(3) >> .
20 result: (w(0), (xE(0) |-> e(0))), ... (w(0), (xE(0) |-> e(3))),
21 (w(1), (xE(0) |-> e(0))), ... (w(1), (xE(0) |-> e(2))),
22 (w(2), (xE(0) |-> e(0))), (w(2), (xE(0) |-> e(1))),
23 (w(3), (xE(0) |-> e(0)))
24 *** p6
25 red in TEST-CTMODELCHECKER-LE :
26 [| (xN(0) =/= xN(1)) and (AF(presentNode(xN(0),xN(2)) and
27 presentNode(xN(1),xN(3)) and (xN(0) = xN(1)))) |] << initLE(3) >> .
28 result: (w(0), (xN(0) |-> n(0), xN(1) |-> n(1))),
29 (w(0), (xN(0) |-> n(0), xN(1) |-> n(2))),
30 (w(0), (xN(0) |-> n(0), xN(1) |-> n(3))),
31 (w(0), (xN(0) |-> n(1), xN(1) |-> n(2))),
32 (w(0), (xN(0) |-> n(1), xN(1) |-> n(3))),
33 (w(0), (xN(0) |-> n(2), xN(1) |-> n(3))), ...
34 *** p7
35 red in TEST-CTMODELCHECKER-LE :
36 [| presentEdge(xE(0),xE(1)) and (xN(0) = s(xE(0))) and (xN(1) = t(xE(0)))
37 and <>((not presentEdge(xE(0),xE(1))) and (xN(0) =/= xN(1))) |] <<

initLE(3) >> .
38 result: (empty).Set{Pair}

From the evaluation of p5 ≡ EF (leader(x)) we expect to find those
processes for which there exists an execution leading to their election to
leader. For every process there exists a path leading to its election. Hence
we expect to obtain a set of pairs whose assignment components map the
variable to each of the edges in the model. This is confirmed by Listing 8.4,
lines 17-23

Evaluating p6 ≡ (x 6= y) ∧ AF [present(x)∧present(y)∧ (x = y)] we
search for worlds having two nodes which will collapse for any possible
outgoing path. All the nodes get merged in the node n(0) of world w(3),

119

hence for each world, all the nodes will eventually merge. Evaluating the
formula (with context composed by the two node variables) we obtain, for
each world, the set of pairs whose assignment components map the two
node variables to all the possible pairs of nodes. In lines 24-33 of 8.4 we
exemplify only the pairs having w(0) as first component (and moreover
we omit the symmetric pairs with inverted assignments for the two node
variables).

Finally, evaluating p7 we search for worlds that can evolve deallocat-
ing a process without merging its communication ports. Hence we search
for erroneous evolutions in which communication ports (nodes) are not
correctly updated after the deallocation of a process (i.e. an edge). As
depicted in lines 34-38 of 8.4, the formula is evaluated as the empty set
of pairs, meaning that no world of the model falls in this case.

8.2 Dining philosophers with disposable forks

System description. In this section we consider as test case a particular
version of the well-known dining philosophers problem (Dij71) along the
lines of the case study used in (DRK02), where Allocational Temporal Logic,
a first-order extension of LTL, is proposed to reason about the allocation
and dealloactionn of entities.

The dining philosophers problem is a classical example often used
to illustrate the synchronization issues of concurrent algorithms, where
participants compete for the exclusive use of resources. Following the
classical formulation, the problem consists of five philosophers that sit at
a table. On the table there are five forks, and each philosopher has one on
right and one on left. Intuitively, the two forks on the left and on the right
are shared, respectively, with the neighbour philosopher on the left and
on the right. This configuration is illustrated in Figure 8.4 1.

The evolution of the system consists in the philosophers alternately
thinking and eating, with the requirement that a philosopher can eat only
when he/she owns both the left and the right forks. Each fork can be
owned by only one philosopher at time, hence a philosopher can grab one

1From http://en.wikipedia.org/wiki/Dining_philosophers_problem

120

http://en.wikipedia.org/wiki/Dining_philosophers_problem

Figure 8.4: An illustration of the dining philosophers problem

of its two left and right forks only if it is not currently used by another
philosopher.

Initially all the philosophers think, and the forks are on the table. Once
a philosopher owns two forks, he/she eats for a while, and then puts back
the forks on the table, making them available to neighbour philosophers,
and starts thinking. In particular, a philosopher can grab a fork on right or
left as soon as they are available, but he/she can’t start eating yet, because
he/she has to wait to get both of them.

The amount of food in each plate is considered to be infinite, however,
considering the status of the philosophers (i.e. think, wait and eat),
and the number and distribution of forks on the table, it is easy to see that
the system has only a finite number of distinct states which are possibly
repeated infinitely often.

Then, the problem is that of defining a concurrent algorithm that
guarantees that no philosopher will starve, i.e. that each philosopher will
alternate between eating and thinking infinitely often, hence avoiding
deadlock states, that is states from which a philosopher will not be able to
evolve. Intuitively, this happens in the case in which all the philosophers
own a fork, and are waiting for the second one.

121

The variant proposed in (DRK02) regards as usual philosophers and
forks. However, forks have their own identifier, and are considered as
messages which are consumed every time they are grabbed by a philoso-
pher. In particular, the action of taking a fork from the table performed by
a philosopher is represented by the destruction of the fork, while putting
the fork back on the table is modelled by creating a new fork. Newly
generated forks are actually new entities, meaning that once a fork is used,
it is destroyed, as the original purpose of (DRK02) was to reason about
dynamic resource allocation.

Due to the creation of infinitely many new forks, this version of the
dining philosopher problem has an infinite number of distinct states,
leading to infinite-state models, which hence at first sight appear not
verifiable in our framework.

However, fortunately, following our approach it is possible to precisely
represent this infinite-state system with a finite model. The intuition is
very simple: in our setting names are local to single states, meaning that
the same name does not identify entities (e.g. forks) across different states.
Even more importantly, names may represent distinct entities even in the
same state of a model, all that matters is the counterpart relation of the
considered incoming transition.

Consider the example of Figure 3.3 (right), where it is depicted a
counterpart model having only one state w0 containing only one element
u1, and a loop on w0 with empty counterpart relation as unique transition.
Then, it is easy to understand that, thanks to the empty counterpart
relation, this model actually represents an infinite-state system which
evolves by deallocating the current element (u1), and creating a new
distinct one, to which it is reassigned the name u1.

We can hence model the state-space of the above discussed variant
of the dining philosophers problem by assigning the names of the pre-
viously deallocated forks to the newly generated ones. Note that the
represented behaviour is exactly the discussed one. Namely, forks are
consumed after usage, and new ones are created to replace them. As we
will see, intuitively, we defined a total ordering among forks names (e.g.
fork(i) < fork(j) if i < j), and a minimal one (e.g. fork(0)). Then,

122

every time we create a new fork, we assign to it the minimal currently
unused fork name.

Notice moreover that the system is resource bounded, as a new fork
can be created only after that another one has been previously deallocated,
and in particular there will never be more than n forks, with n the number
of philosophers. This, together with the mentioned reusing of forks
names, guarantees the finiteness of the model, which is hence amenable
to verification.

As we will see, we can also further exploit other name reusing tech-
niques to reduce the obtained model. In a system with n philosophers
we can have at most n forks with names ranging from the minimal one,
to its n successors. At each step, at most a fork can be consumed by a
philosopher. Then we can use the compactName canonizer, adopted also
for the leader election case, to compact the names of the forks. By resort-
ing to this technique we obtain a model such that in a state with m forks
we will have their names going from the minimal one, to its m successors
(rather than to n), independently from which forks have been previously
deallocated.

More interestingly, the system presents a couple of regularities (i.e.
symmetries) that can be exploited in the form of c-reductions and that
happen to yield bisimulations which we can exploit to further reduce the
size of the state-space of the model. Namely, the full symmetry of forks,
and the rotational symmetry of philosophers.

The names of the forks do not play any role in the definition of the
dynamics of the system. Hence we can freely transpose them, obtaining
bisimilar states. Moreover, the dining philosopher problem is an emblem-
atic example of rotational symmetry, where the transposition of the names
of the philosophers could possibly lead to not bisimilar states. Instead,
by rotating them all at once, we obtain bisimilar states. The intuition is
that it is not important the absolute position of a philosopher in the table,
what matters is instead its relative position with respect to its neighbours
(the two philosophers with which it shares its two forks), in the sense that
they have to be preserved.

123

System specification. We can easily represent states of this system as al-
gebras of the signature used for the leader election case, that is unlabelled
directed graphs. We use nodes to represent philosophers, and edges to
represent forks. The two philosophers surrounding a fork are actually
represented as the source and target nodes of the fork. Intuitively, for one
of the two philosophers it will be the left fork, while for the other it will
be the right one.

Then, the initial state of the system is, as for the case of the leader
election example, a graph where edges are connected in a ring topology.
During the execution of the system, edges (forks) are deallocated and
reallocated. Hence, differently from the leader election case, during the
evolution of the system the ring topology will get broken.

Actually, we have to encode also the statuses of the philosophers in
the state representation. Namely, thinking when it is idle, waiting
when it owns a fork and it is waiting for the other one, and eating

when it owns two forks, and can hence eat. In the current version of our
framework we treat plain algebras, hence we do not have entities with
attributes (e.g. we cannot directly model attributed graphs). In order to
encode statuses informations we extend the signature of graphs with a
third sort Status whose elements are {think,wait,eat}, and with an
unary operation status going from the sort of nodes (philosophers) to
the one of statuses.

Notice that statuses are now first-class elements exactly as nodes
and edges. Hence we can express properties regarding them. Notice
moreover that statuses will be preserved by every transition. This shows
the generality of our approach.

Finally, for implementation choice, we decided to explicitly encode
informations regarding the left- and right-neighbours of a philosopher. We
then further extended the considered signature with two unary operations
leftNeighbour and rightNeighbour going from the sort of nodes to
the one of nodes (i.e. between philosophers).

As done in sections 8.1 and 6.1 for the case of the leader election
system, we now discuss in detail the Maude code that has to be provided
to define the above described system.

124

Listing 8.5: The Maude code to define the signature of the dining philoso-
phers

1 mod DP-SIGNATURE is
2
3 pr CT-MODEL-SORTS .
4
5 --- the sorts: nodes = philosophers, edges = forks
6 sorts Node Edge Status .
7 subsorts Node Edge Status < Element .
8 ops Node Edge Status : -> Cid [ctor] .
9

10 --- elements constructors
11 op e : Nat -> Edge [ctor] .
12 op n : Nat -> Node [ctor] .
13 ops think wait eat : -> Status [ctor] .
14
15 --- the names of the five operations
16 ops s:_ t:_ : Map{NAryArgument,Element} -> Operation [ctor] .
17 op st:_ : Map{NAryArgument,Element} -> Operation [ctor] .
18 ops lN:_ rN:_ : Map{NAryArgument,Element} -> Operation [ctor] .
19
20 var source target : Map{NAryArgument,Element} .
21 var statuses lNeigh rNeigh : Map{NAryArgument,Element} .
22 var cr : CounterpartRelation . var conf : Configuration .
23
24 --- Conservatively apply cr to the operations
25 eq conservativelyApplyToOperations(cr, s: source conf)
26 = conservativelyApplyToOperations(cr, conf)
27 s: applyToOperationIfDefined(cr, source) .
28 eq conservativelyApplyToOperations(cr, t: target conf)
29 = conservativelyApplyToOperations(cr, conf)
30 t: applyToOperationIfDefined(cr, target) .
31 eq conservativelyApplyToOperations(cr, st: statuses conf)
32 = conservativelyApplyToOperations(cr, conf)
33 st: applyToOperationIfDefined(cr, statuses) .
34 eq conservativelyApplyToOperations(cr, lN: lNeighbours conf)
35 = conservativelyApplyToOperations(cr, conf)
36 lN: applyToOperationIfDefined(cr, lNeighbours) .
37 eq conservativelyApplyToOperations(cr, rN: rNeighbours conf)
38 = conservativelyApplyToOperations(cr, conf)
39 rN: applyToOperationIfDefined(cr, rNeighbours) .
40
41 --- Singleton with sort SystemInfo providing the size of the system (i.e

number of philosophers). It is necessary to exploit rotational
symmetry.

42 sort SystemInfo . subsort SystemInfo < Element .
43 op SystemInfo : -> Cid [ctor] .
44 op info : NzNat -> SystemInfo [ctor] .
45
46 endm

Listing 8.5 shows the Maude code necessary to define the discussed
signature for dining philosophers. As discussed in Chapter 6, we provide
the sorts of the signature (lines 6-8), namely nodes (philosophers), edges
(forks) and the statuses of the philosophers.

125

Then lines 11-13 provide the constructors of the elements of the al-
gebras. Terms e(0), e(1) and n(0), n(1) exemplify possible edges
and nodes. The constructors for statuses (line 13) are actually the three
constants think, wait and eat, meaning that those are the only existing
elements with sort Status.

The rest of the module regards the operations of the signature. The
names of the operations of graphs are provided in lines 16 (source and tar-
get), while lines 17-18 provide the names of the three newly introduced
operations, namely st (i.e. status), associating a status to each philoso-
pher, and lN and rN (i.e. leftNeighbour and rightNeighbour) associating
to each philosopher, respectively, its left and right neighbour.

Finally, the simple equations in lines 25-39, one for each operation,
specify how a counterpart relation is conservatively applied to a configu-
ration (i.e. a state of the system). As discussed in Chapter 6, this is used
during the generation of a new state, and, intuitively, we again only have
to specify the names of the operations.

The module concludes with lines 42-44, providing the definition of the
sort SystemInfo, and the constructor info, taking as argument a non-
zero natural number. This sort is meant to be instantiated by a singleton
providing the size of the system, that is the number of philosophers in the
system. This is not important right now, as we will use it to exploit the
rotational symmetry of the philosophers.

The next step in defining the system is that of providing the neces-
sary Maude module to specify its initial state. An example is proposed
in Listing 8.6. Lines 7-10 define the operation initDP which takes as
parameter a natural number size greater than 2, and generates the initial
state of the discussed dining philosophers system with size philoso-
phers. We actually defined initDP-Elements (lines 12-14) to generate
size philosophers, size forks, the three statuses think, wait and eat,
and the singleton info(size).

In order to build the Σ-operations of the algebras, in lines 16-20
we defined initDP-Operations, which in turn resorts on the utilities
initSource, initTarget, initStatus, initLNeighbours, as well
as initRNeighbours, specified in the rest of the module (lines 22-43).

126

Listing 8.6: The Maude code to define the initial state of the dining philoso-
phers system

1 mod INSTANCES-DP is
2
3 pr DP-SIGNATURE .
4
5 var m size : Nat .
6
7 op initDP : NzNat -> Configuration .
8 ceq initDP(size)
9 = initDP-Elements(size) initDP-Operations(size,size) info(size)

10 if size > 2 .
11
12 op initDP-Elements : NzNat -> Configuration .
13 eq initDP-Elements(s(m)) = e(m) initDP-Elements(m) n(m) .
14 eq initDP-Elements(0) = think wait eat .
15
16 op initDP-Operations : NzNat NzNat -> Configuration .
17 eq initDP-Operations(size,size)
18 = s: initSource(size) t: initTarget(size,size)
19 lN: initLNeighbours(size,size) rN: initRNeighbours(size,size)
20 st: initStatus(size) .
21
22 ops initSource initStatus : NzNat -> Map{NAryArgument,Element} .
23 op initTarget : NzNat NzNat -> Map{NAryArgument,Element} .
24 op initLNeighbours : NzNat NzNat -> Map{NAryArgument,Element} .
25 op initRNeighbours : NzNat NzNat -> Map{NAryArgument,Element} .
26
27 eq initSource(s(m)) = initSource(m), {e(m)} |-> n(m) .
28 eq initSource(0) = empty .
29
30 eq initTarget(s(m),size)
31 = initTarget(m,size), {e(m)} |-> n(s(m) rem size) .
32 eq initTarget(0, size) = empty .
33
34 eq initStatus(s(m)) = initStatus(m), {n(m)} |-> think .
35 eq initStatus(0) = empty .
36
37 eq initRNeighbours(s(m),size)
38 = initRNeighbours(m,size), {n(m)} |-> n(s(m) rem size) .
39 eq initRNeighbours(0, size) = empty .
40
41 eq initLNeighbours(s(m),size)
42 = initLNeighbours(m,size), {n(s(m) rem size)} |-> n(m) .
43 eq initLNeighbours(0, size) = empty .
44
45 endm

We already discussed initSource and initTarget in the case of
the leader election system: we now focus on the newly introduced ones.
With initStatus (lines 34-35) we assign the status think to every
philosopher, while with initLNeighbours and initRNeighbours

(lines 37-43) we assign to each philosopher the following one as right
neighbour, and the preceding one as left neighbour. Where, considering

127

philosopher n(m), by following we mean the philosopher n(m+1) (and
n(0) for the last philosopher). Conversely, by preceding we mean
n(m-1) (or n(size-1) for n(0)).

Notice that, differently from other formalizations of the problem, the
choice of the neighbourhood and of the names of the forks is arbitrary,
as we do not use names of elements to implicitly indicate their positions.
We instead explicitly represent this information in the operations of the
algebra. For this reason, the forks present full symmetry, meaning that
we can freely transpose their names without affecting the behaviour of
the system. This allows us to exploit the canonizer freeTransps for the
sort of forks.

Finally, the five rules specifying the dynamics of the system are given
in Listing 8.7.

The first four are intuitively pairwise symmetric. The first two re-
gard the acquisition of the first fork by a philosopher in status think.
In particular, with the first one (think2wait-source) a philosopher
matched with the variable ns grabs the fork of which it is the source
node, while with the second one (think2wait-target), a philosopher
matched with nt grabs the fork of which it is the target node. Intuitively,
in a case the philosopher will grab its left fork, while in the other he will
grab its right one.

We discuss in more detail only think2wait-source. In order to
apply the rule on a state it is necessary to match ns with a node, and
el with an edge (line 11). More precisely, from statuses, ns |->

think of line 11, we know that the matched node has to be in status
think. Moreover, from line 12 we know that the node has to be the
source of the edge el.

Then, in line 14 we see that the application of the rule involves the
deallocation of el, and the changing of the status of ns in wait. In line
15 we see that the operations source and target are updated to handle
the deallocation of el. Notice that, in general, it is necessary to explicitly
handle only the operations matched by the LHS of a local rule, while the
others are automatically updated by the application of the global rule.
Finally, from line 16 we see that ns is preserved.

128

Listing 8.7: The Maude code to specify the dynamics of the dining philoso-
phers system

1 mod BEHAVIOUR-DP is
2 pr DP-SIGNATURE .
3 var e1 : Edge . vars ns nt nr : Node . var cr : CounterpartRelation .
4 vars source target : Map{NAryArgument,Element} . vars i l : Nat .
5 vars statuses lNeigh rNeigh : Map{NAryArgument,Element} .
6
7 eq minId-2CompactAndAllocate(Edge) = e(0) .
8 eq successor-2CompactAndAllocate(e(i)) = e(i + 1) .
9

10 crl [think2wait-source] :
11 ns e1 st: (statuses, {ns} |-> think)
12 s: (source, {e1} |-> ns) t: (target, {e1} |-> nt)
13 => {cr}(
14 ns st: (statuses, {ns} |-> wait)
15 s: (source) t: (target))
16 if cr := (ns |˜> ns) .
17
18 crl [think2wait-target] :
19 nt e1 st: (statuses, {nt} |-> think)
20 s: (source, {e1} |-> ns) t: (target, {e1} |-> nt)
21 => {cr}(
22 nt st: (statuses, {nt} |-> wait)
23 s: (source) t: (target))
24 if cr := (nt |˜> nt) .
25
26 crl [wait2eat-source] :
27 ns e1 st: (statuses, {ns} |-> wait)
28 s: (source, {e1} |-> ns) t: (target, {e1} |-> nt)
29 => {cr}(
30 ns st: (statuses, {ns} |-> eat)
31 s: (source) t: (target))
32 if cr := (ns |˜> ns) .
33
34 crl [wait2eat-target] :
35 nt e1 st: (statuses, {nt} |-> wait)
36 s: (source, {e1} |-> ns) t: (target, {e1} |-> nt)
37 => {cr}(
38 nt st: (statuses, {nt} |-> eat)
39 s: (source) t: (target))
40 if cr := (nt |˜> nt) .
41
42 crl [eat2think] :
43 n(i) st: (statuses, {n(i)} |-> eat)
44 lN: ({n(i)} |-> n(l), lNeigh) rN: ({n(i)} |-> nr, rNeigh)
45 s: source
46 t: target
47 => {cr}(
48 n(i) new(Edge,0) new(Edge,1) st: (statuses, {n(i)} |-> think)
49 lN: ({n(i)} |-> n(l), lNeigh) rN: ({n(i)} |-> nr, rNeigh))
50 if l < i --- i == (size -1)
51 then s: (source, {new(Edge,0)} |-> n(l), {new(Edge,1)} |-> n(i))
52 t: (target, {new(Edge,0)} |-> n(i), {new(Edge,1)} |-> nr)
53 else s: (source, {new(Edge,0)} |-> n(i), {new(Edge,1)} |-> n(l))
54 t: (target, {new(Edge,0)} |-> nr, {new(Edge,1)} |-> n(i)) fi
55 if cr := (n(i) |˜> n(i)) .
56 endm

129

The rules wait2eat-source and wait2eat-target are very sim-
ilar to, respectively, think2wait-source and think2wait-target,
the only difference being that those rules model the acquisition of the
second fork, rather than of the first one. In fact, looking at the rules, the
only differences are that the statuses of the matched nodes have to be
wait, and are updated to eat. Hence, the application of these two rules
change the status of a philosopher from waiting for the second fork to
eating.

More interesting is the last rule eat2think of lines 42-55. The ap-
plication of this rule allows an eating philosopher to get back to status
think, and to release the two forks. Actually, as previously discussed,
forks are not released, because they get destroyed when a philosopher
grabs them. Instead, two new forks are created and laid on the table.

From line 43we see that the application of the rule involves a matching
of n(i) with a node in status eat. Notice that here the variable to be
matched is i. While from line 44 we know that the two neighbours of (the
node matched by) n(i) are the ones matched by n(l) and nr. Notice
that here we match n(l) with the left neighbour, and nr with the right
one. Here the matched variables are l and nr.

Then, from line 48 we know that the application of the rule involves
the creation of two new forks, in fact new can be thought of as a function
that creates a new element with sort provided as parameter. The chosen
name will be the least currently unused one, hence we will reuse one of
the names of the forks previously deallocated. The second parameter of
new (i.e. a natural number) is used to distinguish the many elements that
could be created by a single rule, and the ones with smaller parameter
will have assigned a smaller name, because will be treated first. From line
48 we also now that the status of n(i) is changed in think.

Also lines 50-54 are important: there we update the operations source
and target to account for the creation of the two new edges. Intuitively,
n(i) will be the source of one edge and the target of the other one,
while one of its two neighbours will be the source of one, and the other
neighbour will be the target of the other one.

Intuitively, any (admissible) combination could be chosen without

130

affecting the behaviour of the system. However, in order to obtain smaller
state-spaces, we use the if then else fi statement to obtain states
where edges are ordered from the one having the minor node as source to
the one having the greater one as target, as it happens for the initial state
(considering the order given by the indexes of the names of the elements,
e.g. n(i) < n(j) and e(i) < e(j) if i < j).

From the definition of initLNeighbours and initRNeighbours

of Listing 8.6, we know that a node is minor than its left neighbour except
for one limit case: the one in which n(i) is matched with n(size-1),
whose left neighbour is the smaller n(0). Hence, the then case (for l
< i) corresponds to the case in which n(l) is matched with n(0) (and
hence n(i) is matched with n(size-1)). Conversely, the else case
corresponds to the other cases.

Finally, in line 53 we see that we leave unmodified lN and rN, while
the counterpart relation defined in line 62 preserves n(i).

We still have to discuss the two equations in line 7-8 of Listing 8.7.
Those are two equations that have to be provided for every sort of which
new elements can be created as result of the application of a rule. As we
just discussed, the only elements which are created (rule eat2think, line
48) are edges.

We previously intuitively explained that every time we create a new el-
ement, the application of the global rule assigns to it the minimal currently
unused name for its sort. Then, it should be provided a (total) ordering
for the names of the interested sorts.

In the first equation (minId-2CompactAndAllocate, line 7) we
provide the minimal name of the sort Edge, in this particular example
e(0). While with the equation of line 8 we provide the successor name
of the one given as parameter, in this particular example we simply
increment by one the index of the name given as parameter.

It may be worth to point out that the dynamics of Listing 8.7 (as well
as the ones proposed in (DRK02)) implement a naive solution to the
dining philosopher problem, where deadlocks are not prevented. In fact,
if every philosopher grabs a fork, and changes its status in wait, then no
philosopher will be anymore able to evolve, and the system will be in

131

Figure 8.5: State-space sizes (left) and time necessary for their generation
(right) at the varying of system size

deadlock.
The problem of dining philosophers is very well studied, and has

several solutions. However this is not the aim of this section, as we just
want to show how it is possible to model such scenario in our framework.

Counterpart model generation. In this paragraph we discuss the per-
formances of our tool in generating the counterpart models at the varying
of the size of the system, i.e. the number of philosophers. In particular,
due to the size of the state-space, we are not able to build unreduced mod-
els with size greater than 6, by using with a standard laptop. However, by
resorting to our c-reductions, we are able to generate counterpart models
for greater sizes. In particular, we exploit the canonizers compactNames,
freeTransps, rotations and their combinations.

Figure 8.5 (left) reports informations about the number of worlds
of the counterpart models generated varying the size of the system
from 3 to 10. While, Figure 8.5 (right) reports informations about the
time necessary to generate such models. The graphics regard five cases:
the unreduced counterpart models (not reduced), the ones obtained re-
sorting to the canonizer compactNames to compact the names of the
forks (compactF), the ones obtained by first compacting the names of
the forks and then transposing forks and statuses, resorting to canonizer

132

freeTransps◦compactNames (transpFScompactF), the ones obtained by
first compacting the names of the forks and then rotating philosophers, re-
sorting to canonizer rotations◦compactNames (rotatePcompactF), and,
finally, the ones obtained applying the three reductions, i.e. by using
freeTransps◦rotations◦compactNames (transpFSrotatePcompactF).

Before discussing the graphics of Figure 8.5, in Listings 8.8 and 8.9
we provide the system-specific code to exploit the three canonizers. For
easiness of presentation we focus on the canonizer rotations, as in
Chapter 7 and Section 8.1 we already provided the (similar) code to
exploit the other two canonizers for the case of the leader election system.

In Chapter 7, and more precisely in Listings 7.4 and 7.5, we have seen
that in order to exploit the canonizer freeTransps for the leader elec-
tion system, we have to provide a module to compare states (CODEFOR-
STATE-ORDERING-LE), a module to provide informations about transpo-
sitions (i.e. CODEFOR-TRANSPOSITIONS-LE), and a module importing
all the necessary modules and specifying the canonizer to be used. As
depicted in Listings 8.8 and 8.9, the case of rotations is specular. We in fact
provide a module to compare states (CODEFOR-STATE-ORDERING-DP),
a module to provide informations on rotations (CODEFOR-ROTATIONS-
DP), and the module TEST-COUNTERPARTMODELGENERATION-DP im-
porting the necessary modules and specifying the used canonizer.

We first focus on Listing 8.8. We do not report the body of CODEFOR-
STATE-ORDERING-DP, as it is similar to the one of the leader election
case. In module CODEFOR-ROTATIONS-DP we first indicate the sorts to
which we want to apply the canonizer, in this case Node (lines 20-21).
Then we specify how rotations are applied to single elements (line 24),
and how they are propagated to a state (lines 27-32). Intuitively, in this
last case we only have to specify the operations composing a state of the
dining philosophers system.

Considering module TEST-COUNTERPARTMODELGENERATION-DP of
8.9, the only interesting lines are 19-28, where we choose which canonizer
(or their combination) we want to use. In the case depicted in Listing 8.9
we use the combination of the canonizer compactNames with the canon-
izer rotations (line 26).

133

Listing 8.8: The Maude code to exploit freeTransps rotations and
compactNames(1)

1 mod CODEFOR-NAME-COMPACT-DP is
2 ...
3 endm
4
5 mod CODEFOR-STATE-ORDERING-DP is
6 ...
7 endm
8
9 mod CODEFOR-TRANSPOSTIONS-DP is

10 ...
11 endm
12
13 mod CODEFOR-ROTATIONS-DP is
14 pr ROTATIONAL-SIMMETRY . pr DP-SIGNATURE .
15
16 vars i nSymElts nextRot : Nat . var cid : Cid . var conf : Configuration.
17 var source target statuses lNeigh rNeigh : Map{NAryArgument,Element} .
18
19 --- Sorts to be transposed
20 eq CLASS-OF-SORTS-TO-BE-ROTATED = Node .
21 eq getCid(n1:Node) = Node .
22
23 --- Application of rotations to elements
24 eq rotateElement(nextRot,nSymElts,cid,n(i)) = n((i + nextRot) rem

nSymElts) .
25
26 --- Application of rotations to states
27 eq rotateConfiguration(nextRot,nSymElts,cid,(s: source t: target st:

statuses lN: lNeigh rN: rNeigh conf))
28 = s: rotateOperation(nextRot,nSymElts,cid,source)
29 t: rotateOperation(nextRot,nSymElts,cid,target)
30 st: rotateOperation(nextRot,nSymElts,cid,statuses)
31 lN: rotateOperation(nextRot,nSymElts,cid,lNeigh)
32 rN: rotateOperation(nextRot,nSymElts,cid,rNeigh) .
33 endm

We can now discuss the graphics of Figure 8.5, where we notice that
we are able to generate the unreduced counterpart model up-to systems
with 6 philosophers, obtaining 47527 states in 3783 seconds.

Considering the reduced models, we see that we are able to generate
the model up-to size 7 (19034 states in 1407 seconds) for the compactF
case. By combining the canonizers compactNames and rotations

(case rotatePcompactF), we instead manage to generate the model up-to
8 philosophers (26819 states in 4517 seconds). In the case transpFScom-
pactF, where we combine freeTransps and compactNames, we spend

134

Listing 8.9: The Maude code to exploit freeTransps rotations and
compactNames(2)

1 mod TEST-COUNTERPARTMODELGENERATION-DP is
2
3 pr BEHAVIOUR-DP .
4 pr INSTANCES-DP .
5 pr CT-MODEL-BUILDER .
6 pr META-CONNECTOR .
7
8 pr CODEFOR-NAME-COMPACT-DP .
9 pr CODEFOR-STATE-ORDERING-DP .

10 pr CODEFOR-TRANSPOSTIONS-DP .
11 pr STATE-ORDERING-TRANSPOSESOMESORTS .
12 pr CODEFOR-ROTATIONS-DP .
13
14 eq ROOTMODULENAME = ’TEST-COUNTERPARTMODELGENERATION-DP .
15
16 var lState : LabelledState . var size : Nat .
17 var cr : CounterpartRelation . var conf1 : Configuration .
18
19 --- 1) non reduced
20 *** eq reducer(lState) = lState .
21 --- 2) compact edges
22 *** eq reducer(lState) = compactNames(lState) .
23 --- 3) compact edges + transpose edges & status
24 *** eq reducer(lState) = minimize-LexicographicalOrdering-

TransposingSomeSorts(compactNames(lState)) .
25 --- 4) compact edges + rotate nodes
26 eq reducer({cr}<< info(size) conf1 >>) = rotations(compactNames({cr}<<

info(size) conf1 >>), CLASS-OF-SORTS-TO-BE-ROTATED, size) .
27 --- 5) compact edges + transpose edges & status + rotate nodes
28 *** eq reducer({cr}<< info(size) conf1 >>) = minimize-

LexicographicalOrdering-TransposingSomeSorts(minRotation(compactNames
({cr}<< info(size) conf1 >>), CLASS-OF-SORTS-TO-BE-ROTATED, size)) .

29
30 endm

22523 seconds to generate the model with 10 philosophers, containing
59048 states. Finally, by composing the three canonizers (case transpFS-
rotatePcompactF) we are again able to generate the model regarding 10

philosophers, but in this case we obtain, roughly, half of the states in half
of the time with respect to the transpFScompactF case (33828 states in 10953

seconds).
From these experimental results we notice that the canonizers allow

to generate counterpart models with greater size in much less time. In
particular, we can argue that compactNames is less effective than for
the leader election case, as it allows to generate the model with only

135

one more philosopher (7, case compactF) with respect to the unreduced
model. However, we can obtain better performances by resorting to
composed canonizers. For example, by combining compactNames with
rotations and then with freeTransps we are able to generate the mo-
del for the double of the philosophers with respect to the unreduced case
(10, case transpFSrotatePcompactF). However, we still have an exponential
(but slower) growth of the number of worlds of the generated models.

136

Part III

Closing part

137

Chapter 9

Discussion

In this thesis we proposed a framework based on a novel approach to
the semantics of quantified µ-calculi inspired by Counterpart Theory of
David Lewis (Lew68). Our logic allows to reason about several kinds of
evolutions of system components.

We proposed counterpart models as semantic domain for our logic,
namely transition systems where states are algebras, and transitions are
labeled with partial morphisms between the algebras of the source and
target state. Our models come as a direct generalization of graph transi-
tions systems, where states are labelled with graphs. Counterpart models
are well-suited to model systems with dynamic structure, that is systems
whose components and their interconnections may vary over time.

Then we proposed a general formalization of counterpart model ap-
proximations, together with a sound approximated model checking pro-
cedure which exploits sets of under- and over-approximations to approxi-
mate the evaluation of formulae in a model.

Moreover, we presented a state-space reduction technique to reduce
counterpart models to smaller behavioural equivalent ones.

Finally we validated our approach through a prototypal tool frame-
work.

Following the structure of the thesis, in this chapter we first critically
overview some quantified modal logics proposed in the literature to

138

reason about the evolution of system components (Section 9.1).
Then, in Section 9.2 we discuss some techniques and tools to enable

verification of visual specification formalisms in general, and graph trans-
formation in particular.

9.1 Quantified modal logics

As we mentioned in the Introduction, many authors considered quanti-
fied modal logics and have addressed their decidability and complexity
issues. For instance, many efforts have been focused on defining logics (or
identifying fragments) that sacrifice expressiveness in favour of efficient
computability.

This section reviews some proposals for quantified modal logics, try-
ing to sum up the differences with our own contribution, with a specific
focus on those approaches developed for the verification of visual specifi-
cation formalisms in general. We will treat in more detail the approaches
related to graph transformation in Section 9.2.

Description logics. Logics for reasoning about knowledge change (e.g.
temporal description logics) have been proposed by various authors (see
e.g. (FT03; HWZ01)), either as first-order extensions of classical linear-
and branching-time temporal logics such as LTL and CTL (HWZ01), or
as extensions of the modal µ-calculus (FT03). The semantics is typically
given in Kripke-style with a unique domain of interpretation that allows
neither for the merging nor for the renaming of elements.

Decidability results are given for some fragments, e.g. the monodic
ones, roughly consisting of equality-free formulae with a restricted num-
ber of free variables under temporal operators.

Our current approach to decidability focuses instead on the class
of models considered (essentially finite-state) rather than on the logic
fragments that guarantee decidability for any possible class of models. For
this reason we discussed how it is possible to obtain finite-state models
for the important class of resource-bounded systems. This can in fact

139

be obtained by resorting on state-space reduction techniques based on
name-reusing, captured by our c-reductions (Section 3.3).

In the future works we might consider to extend our work to identify
decidable fragments to enable verification even for some infinite-state
models. In the same way, we could define less expressive logics encodable
in the one proposed in this thesis, so to be able to reuse all the here
presented results and techniques.

Graph transformation logics. Another interesting setting where quan-
tified temporal logics have raised interest are graph transformation sys-
tems (Roz97; EEKR99; EEPT06), where software systems exhibiting fea-
tures such as component or resource allocation, deallocation, reallocation
or fusion are conveniently modelled using graph morphisms.

An example can be found in (GL07), where a graph logic was devel-
oped for encoding a spatial logic for the π-calculus (Cai04) in a graph-
based setting. The logic extends the µ-calculus with a node-binding modal
operator “♦〈p,Y 〉”, basically stating that the transition between worlds is
caused by a specific rule p, that may create a chosen set Y of new elements.
The logic also concerns quantifiers and other ingredients along the ones
in (Cou97) to describe the graphical structure of configurations. Merging
and renaming is allowed for some restricted cases only.

Several other approaches exist. In Section 9.2 we discuss the ones
proposed in the two research lines of (BCK04; BCKL07), and (BRKB07;
Ren03), related, respectively, to the tools Augur and GROOVE.

Software model checking. Some of the authors of (BRKB07) have in-
vestigated first-order temporal logics for various other structures as well,
other than graphs.

For example, in (Ren06a) they propose an extension of CTL with
first- and (monadic) second-order quantification. The semantics is given
in terms of algebra automata, i.e. automata enriched with an algebraic
structure of states, and with a morphism-like transition relation that
allows for renaming elements, but not for their merging.

140

The model checking problem over finite automata is shown to be re-
ducible to the ordinary model checking of CTL formulae over Kripke
structures, while preserving the necessary structure to exploit name sym-
metries. However two transformations have to be applied in order to
check a property against an automata: to the formula and to the automata.
The transformation on the formula is done to remove quantifiers, and
leads to a blow up of the size of the formula linear in the number of quan-
tifiers and temporal operators. The automaton is instead transformed
via a skolemization which may result in an exponential blow-up in the
maximum size of the algebras of the automata and in the nesting depth of
the quantifiers in the formula.

A similar approach is followed in (DRK02), but based on LTL and
including predicates to reason about allocation, deallocation and realloca-
tion of objects. The notion of name-equipped automata allows for injective
renaming, but forbids merging. The idea follows the tradition of HD-
automata (MP05b), which enable name reuse for the sake of verification
and bisimulation checks.

As in our proposal, the semantics of the next time modality does
not discard accessible worlds where elements assigned to variables are
deleted. The assignments of deallocated variables become undefined,
so that the logic allows for expressing deallocation. However, equality
over undefined variables become false (even the simple case x = x),
leading to a non-reflexive equivalence predicate. We follow the same
idea, that is the membership predicate (which is our only predicate) is
falsified over undefined variables. However, since equality is derived
as ε1 =τ ε2 ≡ ∀τY. (ε1 ∈τ Y ↔ ε2 ∈τ Y), we have that our equality
predicate is reflexive.

Another similar proposal can be found in (DKR04), concerned with
the approximation of special kinds of graphs and the verification of a
similar logic to analyze pointer structures on the heap.

Finally, evolution logic (YRSW06), a first-order extension of LTL, is
another interesting logic to reason about the dynamics featured in object-
oriented programming languages. The model checking approach focuses
on abstract interpretation.

141

Dynamic logic. Another interesting trend of research centres around
dynamic logic (HKT00), a modal logic for which both propositional and
first-order extensions exist.

Recent works consider the study of propositional fragments of dy-
namic logics with quantifiers (e.g. (Lei08)) and the application to graph
transformations systems (BEH10). In particular, aiming to reason about
data-structures defined by means of pointers, and processes manipulating
them, the work in (BEH10) tries to fill the lack of appropriate termgraph
rewriting proof methods, in order to take full advantage of the expres-
sivity of termgraphs. A termgraph is a ground term with possibly cycles
and sharing of sub-terms, able to model data structures with pointers like
circular lists and doubly-linked lists. Termgraph rewrite rules can hence
intuitively model manipulations of such data structures.

The authors propose an extension of dynamic logic tailored to fit term-
graph rewriting, whose modal formulae are capable to specify termgraphs
and rewrite rules’ matching and application. The logic is shown to be
undecidable in general, but a few decidable fragments are presented.

Spatio-temporal logics. Spatio-temporal logics form another track of
formalisms for describing the evolution of processes and data structures.

Early works aimed at reasoning about networks of processes (e.g. the
multiprocess network logic of (RS85)), and were based on extensions of
classical linear- and branching-time logics with first-order quantifiers.
In these works, the set of processes was considered to be fixed (i.e. no
dynamic creation or deletion was considered) so that the elimination of
quantifiers was possible.

In the last years spatial logics evolved, and have been mostly de-
fined for algebraically presented systems. We cite among others spatial
logics for process calculi like the π-calculus (Cai04; CC03; CC02; LV10)
and mobile ambients (CG00), for protocol specification languages like
Promela (Llu07), for rewrite theories (Mes08; BM10), for graph-based
computational models like bigraphs (CMS07), and for data structures
like graphs (CGG02; HLT06; FL06), heaps (Rey02; BDL09; BDL08), and
trees (CGG03; CG04).

142

The common idea in such approaches is to mix temporal modalities
with spatial operators that represent the dual of the operators of the
algebra, like parallel (de)composition of processes or graphs, and various
forms of (name) quantification. Renaming and merging of elements
is typically restricted to some special cases like α-renaming and name
extrusion.

To conclude this section, in our current work we developed a general
framework based on the notion of counterpart relations, counterpart
models and counterpart model approximations. We instantiated the
approach with a simple µ-calculus syntax, and an intuitive and stream-
lined semantics, leaving for future works concerns about efficiency. One
of our future goal is hence that of defining ad-hoc and less expressive
logics in the same line of the one presented in (Ren03), and encodable in
our µ-calculus, so that we will be able to lift all our current proposals and
results to them.

9.2 Techniques and tools for the verification of
visual specification formalisms

In this section we discuss some techniques and tools to make more effec-
tive the verification of visual specification formalisms, focusing on graph
transformations.

Graph transformation systems. By resorting to graph transformation
as system specification mechanism it is possible to model systems with
infinite state-space, high degree of dynamism, dynamic creation and dele-
tion of components, mobility and variable topology. Concrete examples
are pointer structures on the heap, distributed, concurrent and mobile
systems, and network protocols with varying number of participants.
Moreover, graph transformation is nowadays widely used in the context
of model transformation, where the model of a system is manipulated
in order, for example, to reflect updates in the actual system, or in its
specifications.

143

Attracted by these features, various authors proposed to verify soft-
ware systems using graph transformation. The idea is that of modelling a
system by a so-called graph transformation system (GTS), and then verify
it with suitable ad-hoc logics, techniques and tools.

This is a challenging and active research area because, as it usually
happens, a high level of expressiveness makes verification problematic.

Several approaches to graph rewriting exist, among which we find
the algebraic one, divided in several sub-approaches, with double- and
single- pushout (CMR+97; EHK+97) being the most common ones. In
our prototypal model checker presented in Chapter 6 we implement an
SPO-like formalism built on top of Maude’s term rewriting by enriching
the rules with the counterpart relation (similar to the trace morphism). An
example of such rules is provided in Listing 6.3. However, our results are
independent from the particular approach used, since the results apply to
models, independently from how they have been generated.

In order to model a system as a graph transformation system it is
necessary to define a graph representation of its initial state, and a set of
graph rewrite rules specifying its behaviour in a declarative way. Apply-
ing a rewrite rule we create a new graph out of an original one, modeling
the state obtained after the evolution step defined by the rule.

The state-space of a graph transformation system is computed apply-
ing exhaustively its rules starting from the initial state, obtaining graph
transition systems (BCKL07). Those models are transition systems whose
states are labelled with graphs, and transitions with partial morphisms be-
tween the graphs of the source and target state. As previously discussed,
our counterpart models can be seen as a direct generalization of graph
transition systems.

For a given initial state and a given set of rewrite rules, the generated
graph transition system can have a finite or infinite state-space. Different
approaches and techniques have been proposed to obtain efficient GTS
verification, depending on the finiteness of the state-space of the systems.

Standard model checking. For finite-state systems it has been first pro-
posed to encode graph transformation systems into the input language of

144

existing, optimized model checkers (BRRS08; DFRdS03; Var02), with the
advantage of using their power. Unfortunately existing model checkers
usually do not handle efficiently dynamic allocation and deallocation
of system components, because often their logics are propositional and
their algorithms are tuned for finite-state systems, while dynamism can
easily lead to infinite state-spaces. Some partial solutions exist, like pre-
computing the maximal number of nodes in all reachable graphs, and
then reusing node names. Otherwise infinitely many nodes might be
generated, obtaining infinite state-spaces. This technique is applicable
only for systems with bounded resource allocation.

Another solution to model check graph transformation systems con-
sists in applying reduction techniques like partial-order reduction, or
symmetry reductions, decreasing the size of the state-space. The next
paragraphs discuss some of the approaches falling in this category.

Unfolding-based approach. In graph transformation, the state-space
explosion problem is mainly caused by the high level of concurrency and
dynamism characterizing the systems modelled with GTSs. Intuitively,
every different combination in the interleaving between concurrent events
generate a different state. Partial-order reduction (Pel98) is a technique
aiming at decreasing the degree of concurrency, thus reducing the state-
space of concurrent systems. The idea is to not consider all possible
interleavings of concurrent events, but to (partially) order them, and to
consider only one of them (i.e. the minimal one).

The already mentioned approach of (BCKL07) and (BKK03) actually
correspond to partial-order reduction, and aims at building a verification
setting where graph transformation systems are abstracted into Petri
graphs, an extension of Petri nets with additional graph structure.

The property specification language is a logic that mixes the modal
µ-calculus with Monadic Second-Order logic for graphs (Cou97). The
syntax of our logic is reminiscent of the one proposed in this approach.

Systems are specified as graph transformation systems, and the se-
mantical domain of the logic is given in terms of graph transition systems.
Actually, strong constraints are imposed on the class of admissible models.

145

In fact, the admissible graph transition systems are not allowed to intro-
duce merging or renaming of graph items, and moreover, the semantics is
defined over the unravelling of a graph transition system, that is a tree that
represents the unfolded state-space and that guarantees some additional
properties such as no-reuse of item names.

Intuitively, the unfolding of a graph transition system is an acyclic
branching structure representing the possible computations of the system
beginning from the initial graph, where cycles are expanded, then leading
to infinite trees.

The tool support for the approach of (BCKL07) is under development.
As far as we know, the tool AUGUR2 (KK08; aug) is limited to the propo-
sitional fragment of the logic only: quantifiers are allowed but cannot
be interleaved with modal or fixpoint operators, resulting hence in state
propositions.

The key technique of this approach is the approximated unfolding tech-
nique, described in (BCK01). Essentially the idea is that, given a graph
transformation system, a Petri graph is obtained, that is a Petri net with
additional graph structure. Then, it is shown that the graph transition
system generated from the Petri graph is an over-approximation of the
one obtained from the original graph transformation system. Intuitively,
every graph reachable from the original model can be mapped homomor-
phically to a corresponding one in the approximated unfolding, but not
necessarily vice-versa. Therefore, if a property over graphs is reflected by
graph morphisms, then if it holds on the approximated unfolding it also
holds in the original model.

Our framework for the approximation of counterpart models took
inspiration from the work of (BCKL07), and generalized it. As a result,
our concepts of over-approximation coincide. Hence, we could easily lift
this technique to our framework.

In (BCK04), the authors of (BCKL07) show that in the case of finite-
state graph transformation systems, it is possible to compute a finite prefix
of its unfolding (i.e. the unfolding of its graph transition system), which
is enough to represent all reachable graphs. The obtained approximated
model is actually an over-approximation of the original one. The idea

146

behind this technique is based on cut-off events. Intuitively, an event is
a cut-off if there is another event with a smaller history that generates an
isomorphic graph. Then, the unfolding can be pruned after cut-offs.

Using this technique, unfoldings can be much smaller than the state-
space of the system, especially if the system has a high degree of con-
currency. The approach is inspired by early works on unfolding and
complete prefix techniques for Petri Nets (BCM+92; ERV96).

Symmetry reduction of graph transition systems. In (Ren03) it is pro-
posed another interesting graph-based approach. Here formulae of a
second-order linear-time logic are evaluated against (executions paths
and assignments defined over) a kind of graph transition systems where,
differently from the graph algebra we give in Example 2.1, states are
labelled directed graphs. Our states are parametric with respect to the sig-
nature Σ, hence we can obtain labelled directed graphs by simply adding
the sort “τL” (for labels), and the operation “label : τE → τL” to the graph
algebra presented in Example 2.1.

In order to navigate through the graph structure of a state, the logic
provides regular path expressions (evaluated in sequences of labels of
connected edges) and set expressions (evaluated in sets of nodes). Exam-
ples of set expressions are first- and second-order node variables. The
logic also provides a set expression to evaluate the set of nodes reachable
from a set of source nodes (defined by a set expression) through a set of
paths (defined by a path expression).

As for our proposal, the logic presented in (Ren03) has (only) the
membership predicate, used to establish if (the evaluation of) a first-order
variable belongs to (the evaluation of) a set expression. Moreover, the
logic is decidable for finite-state models. Finally, the logic has first- and
second-order node quantifiers, the standard boolean connectives, and
LTL’s temporal operators.

There are hence quite a few similarities with our approach, even if we
treat also edges (and elements of any other sort possibly defined in Σ)
as first-class entities, allowing to quantify and evaluate predicates over
them. Moreover we do not restrict just to the case of graphs, but allow for

147

different structures as states (depending on Σ).

In the line of research of (Ren03) falls the development of the tool
GROOVE (GdMR+12; gro), a state-space generator and model checker
for graph transformation systems. Among the features supported by the
tool, one that surely inspired our work is reduction up-to-isomorphism.
The technique, in turn inspired by research on HD-Automata (MP05b),
allows to generate state-spaces up-to-isomorphism. Namely, during the
generation of the state-space, before storing a new state it is first checked
if an isomorphic one has been already considered (Ren06b). As known,
isomorphism check is expensive, hence heuristics based on hashing-like
graph certificates have been introduced to reduce the number of compar-
isons (Ren06b). Interestingly, in the formalism used to model systems
in GROOVE (i.e. a particular flavour of graph transformation), we have
that a system reduced up-to-isomorphism is bisimilar to the original one,
meaning that we can use the reduced model to check properties of stan-
dard logics like CTL or LTL on the original one. Clearly, this gives rise
to an automatic state-space reduction technique which can be applied to
any system modelled in GROOVE.

Our approach to state-space reduction is instead based on c-reductions,
and it is realized via state canonizers that map states in the (not necessarily
unique) representative of their equivalence class, given an equivalence
which is also a bisimulation. In Chapter 7 we presented three canonizers
to obtain full symmetry reduction (freeTransps) and rotational symme-
try reduction (rotations) for two particular systems, and a technique
that compacts the names of the states (compactNames).

In particular, considering the case in which we use graphs to model
the states of a system (i.e. we fix as Σ the signature of graphs presented in
Example 2.1), in Chapter 7 we have shown how it is possible to combine
the canonizers freeTranps and compactNames to obtain a canonizer
for the equivalence class of states with isomorphic graphs. Then, iso-
morphic states are mapped in a minimal isomorphic one, obtaining thus
isomorphism reduction. However, in order to exploit the reduced models
for verification we need that the equivalence class induced by the com-
bined canonizer is also a bisimulation. Namely that the dynamics of the

148

system are preserved by isomorphism reduction. Intuitively, this surely
happens when the rules specifying the dynamics of the system (e.g. the
ones in Listing 6.3 for the leader election system) does not depend on
the identities of the elements of the states, but only on the interrelations
between them (i.e. only on the structure of the graphs labelling the states
rather than on the names of their edges and nodes). This is exactly what
happens in GROOVE.

To sum up, since the composed canonizer has been defined once and
for all, if we restrict to the modelling language of GROOVE, then we
have a completely automatic technique for isomorphism reduction. The
main difference is that rather than checking if an isomorphic graph has
been already considered, we apply state canonizers to each newly created
state, and then we check if the canonized state has been already considered.
Noteworthy, isomorphism reduction is only one of the reductions that we
can obtain with c-reductions, as the user can define its own canonizers to
exploit the regularities of each modeled system.

Approaches based on abstract graph transformation and shape analy-
sis. In order to deal with infinite state-space systems, it has been pro-
posed to import to graph transformation techniques based on abstract
interpretation (CC77). Namely, it has been introduced the concept of
abstract graph transformation (BRKB07; RD05), where, intuitively, given
some equivalence relation, graphs are quotiented into abstract graphs of
bounded, finite size.

Then, from abstract graph transformation, and from shape analy-
sis (SRW02), a technique where groups of similar states are abstracted
in shapes, derives another interesting state-space reduction technique
implemented in GROOVE, i.e. neighbourhood abstraction (BBKR08; RZ10).

The idea is to abstract infinitely many graphs by a finite number of
shapes, where a shape is a graph enriched with a node (edge) multiplicity
function indicating, for each node (edge) of the shape, how many nodes
(edges) it summarises. In order to do so, edges and nodes are collapsed
modulo neighbourhood similarity. For example, edges with the same source
node, and ending into nodes in the same group (or, respectively, edges

149

with the same target node, and starting in nodes in the same group) cannot
be distinguished. Only the number of such edges is indicated with the
help of the edge multiplicity functions of the shape.

The obtained model is an over-approximation of the original one. By
increasing the radius of the considered neighbourhood (i.e. edges are
collapsed if all their neighbours distant at most radious are equal), it is
possible to obtain more precise approximations at the cost of bigger state-
spaces. Still, in (BRKB07) it is shown that shapes can themselves be further
abstracted.

Other than neighbourhood abstraction, in the literature there exist
other contributions for abstract graph transformation inspired by the
shape analysis of (SRW02). A recent one is proposed in (SWW11). Since
the proposal is inspired by shape analysis techniques, abstract graphs are
called shape graphs (as for the case of neighbourhood abstraction). As for
the original proposal of (SRW02), shape graphs are enriched with shape
constraints, namely first-order predicate formulae which provide further
informations about the concrete graphs represented by a shape.

The main difference with respect to (SRW02) lies in the transformation
handling. In fact the authors of (SWW11) defined an automatic sound and
complete transformation system (execution steps) on abstract graphs. This
means that they capture exactly the transformations on the concrete graph
level. In this way, as discussed by the authors, an effectively computable
best transformer for abstract graphs is obtained, which can be employed in
verification techniques for GTSs based on abstraction.

We are confident that our framework for counterpart model approxi-
mation may provide interesting insights for techniques based on abstract
graph transformation like the ones in (BBKR08; SWW11). In fact, shape
graphs can be easily seen as graph algebras extended with multiplicity
operations. Moreover, the abstraction morphisms that are used to coalesce
nodes and edges of concrete states in abstract states according to some
notion of similarity are actually surjective graph morphisms, similar to
the morphisms of our notion of counterpart model simulation.

The logic adopted in (BBKR08) appears less expressive than ours
(as well as of the one used in (BCKL07)), as it does not have temporal

150

modalities, but it offers the advantage that all formulae are strongly
preserved by the approximation.

More recently, the authors of (RZ10), proposers of neighbourhood
abstraction, developed a novel abstraction technique based on abstract
graph transformation, named pattern-based graph abstraction (RZ12).

The novelty introduced with respect to neighbourhood abstraction is
that now the concept of shape is not used to represent abstract graphs, but
abstract pattern graphs. A pattern is a simple graph describing structures of
interest that should be preserved by the abstraction. Then, pattern graphs
are just layered graphs obtained by hierarchical composition of patterns.

Similarly to how graphs were abstracted to shape graphs, here pattern
graphs are abstracted to pattern shapes by collapsing equivalent patterns.
The difference stands in the fact that neighbourhood abstraction collapses
only simple nodes and edges.

This flexibility in specifying which structures should be collapsed
actually represents the main novelty and advantage of the pattern-based
abstraction with respect to the neighbourhood one. As previously men-
tioned, it is possible to tune the precision of neighbourhood abstraction
by modifying its radius parameter (the maximal distance up to which
neighbours are considered in neighbourhood similarity). However, this
radius is then applied indistinctly to all the nodes and edges. The pattern-
based method allows instead for a finer tuning of the precision of the
approximation, because patterns provide greater informations rather than
neighbourhood, and more importantly, several distinct patterns can be
used to compute a similarity. In particular, the authors claim that a
neighbourhood abstraction with a given radius can be simulated by a
corresponding pattern abstraction, from which it follows that the latter
may generalize the former.

Backward anlysis. Another approach to the analysis of infinite-state
graph transformation systems relies on a technique named backward anal-
ysis (ABC+08; JK08; SWJ08). The idea is that of doing a backward search
starting from error graphs, taking note of the encountered graphs by sym-
bolically representing them. The result is a symbolically representation of

151

all graphs reachable by this backward search. Then it is sufficient to check
whether the start graph is represented. If the start graph is represented,
then it means that the start graph can reach an error graph.

Summary. As far as we know, existing graph transformation tools are
not yet equipped with model checking capabilities for quantified modal µ-
calculus, or more generally for quantified temporal logics. Amongst them,
the already cited GROOVE and AUGUR2 seem the most promising ones,
since their authors have already produced very interesting contributions
to the theoretical foundations of model checking systems with dynamic
structure using quantified temporal logics.

Our (theoretical) contribution represents a further step in this direction.
Moreover, we have discussed how some of the techniques proposed in
the research lines regarding the two tools are related to our proposals.
Hence we are confident that our proposal may also help in integrating the
results belonging to the research lines.

It may be worthwhile to state once more that the tool presented in
Part II has to be intended as a proof-of-concept tool, mainly aimed at as-
sessing the feasibility of our approach. It should be intended as preparing
the ground for an efficient framework for verifying interesting proper-
ties of systems with dynamically evolving structure, that is where sys-
tem components and their interrelations may vary over time (e.g. via
(de)allocation, merging and renaming of components, and creation and
breaking of relationships). The current implementation is tailored to our
needs, leaving for future works concerns about efficiency and usability.
Needless to say, from a comparative analysis it results that our tool is
outperformed by GROOVE. It could anyhow be interesting to integrate
some of our proposals in such a mature tool.

152

Chapter 10

Conclusions

In this thesis we presented a framework for the analysis of systems with
dynamically evolving components and resources: they may join or leave
the system, or even get combined during its evolution. We refer to this
kind of systems as “systems with dynamic structure”.

We proposed a novel approach to the semantics of quantified µ-calculi,
that is languages combining quantifiers with the fix-point and modal
operators of temporal logics, inspired by Counterpart Theory of David
Lewis (Lew68). With respect to other approaches, including those com-
mented in Chapter 9, our proposal allows for a mathematically elegant
definition of the semantic universe by means of counterpart models, i.e. la-
beled transition systems where states are algebras representing their struc-
ture (their components and the relations between them), and transitions
are labeled with counterpart relations (partial morphisms) between states,
which provide informations about the evolution of system components.
The idea of associating sets of pairs of states and variable assignments
to (open) formulae, instead of just states, allows for a straightforward
interpretation of fixed points and for their smooth integration with the
evaluation of quantifiers, which often asked for a restriction of the class of
admissible models. Moreover, our logic allows to reason about allocation,
deallocation, renaming and merging of components, and it is hence well
suited to reason about systems with dynamic structure.

153

Unfortunately, systems with dynamic structure often have huge or
infinite state-spaces even for very simple cases. Verification can hence be-
come intractable, calling for the development of state-space reduction and
approximation techniques that may ease the verification at the acceptable
cost of losing in preciseness and completeness.

In this direction, we proposed c-reductions, a state-space reduction
technique for counterpart models capturing symmetry reduction, name
reusing and name abstraction. The technique is based on state canonizers,
namely functions mapping states in the (possibly not unique) represen-
tative of their equivalence class, given an equivalence which is also a
bisimulation. Then, a model is bisimilar, i.e. behaviourally equivalent, to
its c-reduction.

However, in order to exploit state-space reduction (or approximation)
techniques, it is first necessary to understand how the semantics of the
logic is related to reduced or approximated models. For this reason we
proposed a general notion of counterpart model approximation based on
standard behavioural pre-orders for transition systems, and in particular
to similarities, which we extended to counterpart models. We considered
both under-approximations, namely models that express less behaviours than
the original one, and over-approximations, namely models that express
more behaviours than the original one. Intuitively, an under-approximation
M is simulated by the original model M (i.e. M is similar to M), while
an over-approximation M simulates M (i.e. M us similar to M). In the
particular case in which a model is bisimilar to M , as it is the case of
the ones obtained with c-reductions, then it is both an under- and an
over-approximation, and it represents exactly the same behaviours of the
original one.

Interestingly, our type system is complete for bisimilar models, in
which case it assigns the type strongly preserved to every formula, that is
preserved and reflected.

Our approach to model approximations can be seen as an evolution
of the verification technique for graph transformation systems based
on temporal graph logics and unfoldings (BKK03; BCKL07), which is
extended on the kind of models and of simulations under analysis. We are

154

also confident that our proposal may provide interesting insights for other
approximation techniques, such as neighbourhood abstraction (BBKR08),
where states are shapes (i.e. graph algebras extended with an operation for
abstraction purposes), and suitable abstraction morphisms (i.e. surjective
graph morphisms, similar to the morphisms of our simulations) coalesce
nodes and edges of concrete states according to their neighbourhood
similarity. The logic adopted is less expressive than ours (as well as of the
one used in (BCKL07)), but it offers the advantage that all formulae are
strongly preserved by the approximation.

Finally, we instantiated our approach implementing a prototypal
explicit-state model checker for our logic, with support for c-reductions.
The tool has been implemented to prove the feasibility of our approach,
and to prepare the ground to build an efficient tool framework for it.

Our general framework for the analysis of systems with dynamically
evolving structure opens other possible future interesting lines of research.

As a start, we would like to investigate if the correspondence results
between quantified µ-calculi and Petri nets logics proposed in (BCKL07)
could be lifted to our framework, and its richer family of counterpart
relations. We would also like to better understand the relationship with
spatial logics, along the lines of (GL07), possibly adopting a family of
labeled counterpart relations, and the richer modal operators ♦〈p,Y 〉, ba-
sically stating that the transition between worlds is caused by a specific
action p (e.g. a rule in rewriting-based settings), that may create a chosen
set Y of new elements.

Then, it would be interesting to define less expressive logics encodable
in the one presented in this thesis, allowing to define effective model
checking algorithms, and at the same time reuse all the results presented
in this thesis.

Finally, we would like to further investigate the enrichment of our
approximated semantics (Section 4.2), in order to deal with more untyped
formulae. An interesting question in this regard is whether we can use
both an under- and an over-approximation simultaneously, by translating
assignment pairs back and forth via the composition of the corresponding
abstraction and concretization functions.

155

References

[ABC+08] Parosh Aziz Abdulla, Ahmed Bouajjani, Jonathan Cederberg,
Frédéric Haziza, and Ahmed Rezine. Monotonic abstraction for
programs with dynamic memory heaps. In Proceedings of the 20th
international conference on Computer Aided Verification (CAV’08), LNCS,
pages 341–354. Springer, 2008. 151

[aug] AUGUR2, www.ti.inf.uni-due.de/research/augur/. 146

[BBKR08] Jörg Bauer, Iovka Boneva, Marcos E. Kurbán, and Arend Rensink.
A modal-logic based graph abstraction. In Hartmut Ehrig, Reiko
Heckel, Grzegorz Rozenberg, and Gabriele Taentzer, editors, ICGT,
volume 5214 of LNCS, pages 321–335. Springer, 2008. 149, 150, 155

[BCK01] Paolo Baldan, Andrea Corradini, and Barbara König. A static analy-
sis technique for graph transformation systems. In Kim Larsen and
Mogens Nielsen, editors, CONCUR, volume 2154 of LNCS, pages
381–395. Springer, 2001. 146

[BCK04] Paolo Baldan, Andrea Corradini, and Barbara König. Verifying finite-
state graph grammars: An unfolding-based approach. In Philippa
Gardner and Nobuko Yoshida, editors, CONCUR, volume 3170 of
LNCS, pages 83–98. Springer, 2004. 140, 146

[BCKL07] Paolo Baldan, Andrea Corradini, Barbara König, and Alberto Lluch
Lafuente. A temporal graph logic for verification of graph transfor-
mation systems. In José Luiz Fiadeiro and Pierre-Yves Schobbens,
editors, WADT, volume 4409 of LNCS, pages 1–20. Springer, 2007. 5,
6, 8, 12, 18, 23, 37, 140, 144, 145, 146, 150, 154, 155

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and
Computation, 98:142–170, June 1992. 147

156

www.ti.inf.uni-due.de/research/augur/

[BDH01] Dragan Bosnacki, Dennis Dams, and Leszek Holenderski. A heuris-
tic for symmetry reductions with scalarsets. In International Sym-
posium of Formal Methods Europe on Formal Methods for Increasing
Software Productivity (FME’01). Springer, 2001. 51

[BDH02] Dragan Bosnacki, Dennis Dams, and Leszek Holenderski. Symmet-
ric SPIN. International Journal on Software Tools for Technology Transfer
(STTT), 4(1):92–106, 2002. 51

[BDL08] Rémi Brochenin, Stéphane Demri, and Etienne Lozes. On the
almighty wand. In Michael Kaminski and Simone Martini, editors,
Proceedings of the 17th Annual Conference of the EACSL on Computer Sci-
ence Logic (CSL’08), volume 5213 of LNCS, pages 323–338. Springer,
2008. 142

[BDL09] Rémi Brochenin, Stéphane Demri, and Etienne Lozes. Reasoning
about sequences of memory states. Annals of Pure and Applied Logic,
161(3):305–323, 2009. 142

[BEH10] Philippe Balbiani, Rachid Echahed, and Andreas Herzig. A dynamic
logic for termgraph rewriting. In Hartmut Ehrig, Arend Rensink,
Grzegorz Rozenberg, and Andy Schürr, editors, Proceedings of the 5th
International Conference on Graph Transformations (ICGT’10), volume
6372 of LNCS, pages 59–74. Springer, 2010. 142

[Bel06] Francesco Belardinelli. Quantified Modal Logic and the Ontology of
Physical Objects. PhD thesis, Scuola Normale Superiore of Pisa, 2006.
5

[BKK03] Paolo Baldan, Barbara König, and Bernhard König. A logic for
analyzing abstractions of graph transformation systems. In Radhia
Cousot, editor, SAS, volume 2694 of LNCS, pages 255–272. Springer,
2003. 55, 56, 57, 145, 154

[BM10] Kyungmin Bae and José Meseguer. The linear temporal logic of
rewriting maude model checker. In Peter Csaba Ölveczky, editor,
Proceedings of the 8th International Workshop on Rewriting Logic and
its Applications (WRLA’10), volume 6381 of LNCS, pages 208–225.
Springer, 2010. 142

[BRKB07] I.B. Boneva, A. Rensink, M.E. Kurban, and J. Bauer. Graph abstrac-
tion and abstract graph transformation. Technical Report TR-CTIT-
07-50, University of Twente, 2007. 140, 149, 150

157

[BRRS08] Luciano Baresi, Vahid Rafe, Adel Torkaman Rahmani, and Paola
Spoletini. An efficient solution for model checking graph transfor-
mation systems. Electr. Notes Theor. Comput. Sci., 213(1):3–21, 2008.
145

[Cai04] L. Caires. Behavioral and spatial observations in a logic for the π-
calculus. In I. Walukiewicz, editor, Proceedings of the 7th International
Conference on Foundations of Software Science and Computation Struc-
tures (FOSSACS’04), volume 2987 of LNCS, pages 72–87. Springer,
2004. 140, 142

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A uni-
fied lattice model for static analysis of programs by construction
or approximation of fixpoints. In Robert M. Graham, Michael A.
Harrison, and Ravi Sethi, editors, POPL, pages 238–252. ACM, 1977.
149

[CC02] Luı́s Caires and Luca Cardelli. A spatial logic for concurrency (part
ii). In Lubos Brim, Petr Jancar, Mojmı́r Kretı́nský, and Antonı́n
Kucera, editors, CONCUR, volume 2421 of Lecture Notes in Computer
Science, pages 209–225. Springer, 2002. 142

[CC03] L. Caires and L. Cardelli. A spatial logic for concurrency (part I).
Information and Computation, 186(2):194–235, 2003. 142

[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Nar-
ciso Martı́-Oliet, José Meseguer, and Carolyn L. Talcott. All about
Maude, volume 4350 of LNCS. Springer, 2007. 13, 15, 49, 72, 74, 77,
80, 82

[CE12] B. Courcelle and J. Engelfriet. Graph structure and monadic second-
order logic, a language theoretic approach. Cambridge University Press,
2012. 4

[CG00] Luca Cardelli and Andrew D. Gordon. Anytime, anywhere: Modal
logics for mobile ambients. In Proceedings of the 30th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’00),
pages 365–377, 2000. 142

[CG04] Luca Cardelli and Giorgio Ghelli. TQL: A query language for
semistructured data based on the ambient logic. Mathematical Struc-
tures in Computer Science, 14(3):285–327, 2004. 142

[CGG02] L. Cardelli, Ph. Gardner, and G. Ghelli. A spatial logic for querying
graphs. In Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales
Bueno, Matthew Hennessy, Stephan Eidenbenz, and Ricardo Conejo,

158

editors, Proceedings of the 30th International Colloquium on Automata,
Languages and Programming (ICALP’02), volume 2380 of LNCS, pages
597–610. Springer, 2002. 142

[CGG03] L. Cardelli, Ph. Gardner, and G. Ghelli. Manipulating trees with
hidden labels. In A. Gordon, editor, Proceedings of the 6th International
Conference on Foundations of Software Science and Computation Struc-
tures (FOSSACS’03), volume 2620 of LNCS, pages 216–232. Springer,
2003. 142

[CGP99] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model
checking. MIT Press, Cambridge, MA, USA, 1999. 1

[CMR+97] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig,
Reiko Heckel, and Michael Löwe. Algebraic approaches to graph
transformation - part i: Basic concepts and double pushout approach.
In Rozenberg (Roz97), pages 163–246. 144

[CMS07] Giovanni Conforti, Damiano Macedonio, and Vladimiro Sassone.
Static bilog: a unifying language for spatial structures. Fundamenta
Informaticae, 80(1-3):91–110, 2007. 142

[Cou89] Bruno Courcelle. The monadic second-order logic of graphs, ii:
Infinite graphs of bounded width. Mathematical Systems Theory,
21(4):187–221, 1989. 4

[Cou90] Bruno Courcelle. The monadic second-order logic of graphs. i. recog-
nizable sets of finite graphs. Information and Computation, 85(1):12–75,
1990. 4

[Cou97] B. Courcelle. The expression of graph properties and graph trans-
formations in monadic second-order logic. In G. Rozenberg, editor,
Handbook of Graph Grammars and Computing by Graph Transformation,
pages 313–400. World Scientific, 1997. 4, 140, 145

[CPR06] Manuel Clavel, Miguel Palomino, and Adrián Riesco. Introduc-
ing the ITP tool: a tutorial. Journal of Universal Computer Science,
12(11):1618–1650, 2006. 49

[CRe] C-Reducer, http://sysma.lab.imtlucca.it/tools/
c-reducer. 49

[DFRdS03] Fernando Luı́s Dotti, Luciana Foss, Leila Ribeiro, and Osmar Marchi
dos Santos. Verification of distributed object-based systems. In
Elie Najm, Uwe Nestmann, and Perdita Stevens, editors, FMOODS,
volume 2884 of Lecture Notes in Computer Science, pages 261–275.
Springer, 2003. 145

159

http://sysma.lab.imtlucca.it/tools/c-reducer
http://sysma.lab.imtlucca.it/tools/c-reducer

[DGG07] Anuj Dawar, Philippa Gardner, and Giorgio Ghelli. Expressive-
ness and complexity of graph logic. Information and Computation,
205(3):263–310, 2007. 4

[Dij71] Edsger W. Dijkstra. Hierarchical ordering of sequential processes.
Acta Informaticae, 1:115–138, 1971. 73, 106, 120

[DKR04] D. Distefano, J.-P. Katoen, and A. Rensink. Who is pointing when
to whom? In K. Lodaya and M. Mahajan, editors, Proceedings of
the 32nd International Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’04), volume 3328 of LNCS,
pages 250–262. Springer, 2004. 141

[DM06] Alastair F. Donaldson and Alice Miller. A computational group
theoretic symmetry reduction package for the SPIN model checker.
In Algebraic Methodology and Software Technology, pages 374–380, 2006.
50

[DM10] Francisco Durán and José Meseguer. A Church-Rosser Checker
Tool for Conditional Order-Sorted Equational Maude Specifications.
In Peter Csaba Ölveczky, editor, Proceedings of the 8th International
Workshop on Rewriting Logic and its Applications (WRLA’10), volume
6381 of LNCS, pages 69–85. Springer, 2010. 49

[DRK02] Dino Distefano, Arend Rensink, and Joost-Pieter Katoen. Model
checking birth and death. In Ricardo A. Baeza-Yates, Ugo Montanari,
and Nicola Santoro, editors, Procedings of the 2nd IFIP International
Conference on Theoretical Computer Science (TCS’02), volume 223 of
IFIP Conference Proceedings, pages 435–447. Kluwer, 2002. 3, 6, 7, 34,
36, 73, 106, 120, 122, 131, 141

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors.
Handbook of graph grammars and computing by graph transformation:
vol. 2: applications, languages, and tools. World Scientific Publishing
Co., Inc., River Edge, NJ, USA, 1999. 3, 140

[EEKR12] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz
Rozenberg, editors. Graph Transformations - 6th International Confer-
ence, ICGT 2012, Bremen, Germany, September 24-29, 2012. Proceedings,
volume 7562 of Lecture Notes in Computer Science. Springer, 2012. 162,
165

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of
Algebraic Graph Transformation (Monographs in Theoretical Computer
Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006. 3, 140

160

[EHK+97] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and
A. Corradini. Algebraic approaches to graph transformation. Part II:
single pushout approach and comparison with double pushout approach,
pages 247–312. World Scientific Publishing Co., Inc., River Edge, NJ,
USA, 1997. 144

[EMS03] Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The
Maude LTL model checker and its implementation. In SPIN, pages
230–234, 2003. 49

[ERV96] Javier Esparza, Stefan Römer, and Walter Vogler. An improvement
of McMillan’s unfolding algorithm. In Proceedings of the 2nd Interna-
tional Workshop on Tools and Algorithms for Construction and Analysis
of Systems, pages 87–106. Springer, 1996. 147

[FL06] Gianluigi Ferrari and Alberto Lluch Lafuente. A logic for graphs
with QoS. In Fabio Gadducci and Maurice ter Beek, editors, Proceed-
ings of the 1st International Workshop on Views on Designing Complex
Architectures (VODCA’04), volume 142 of ENTCS, pages 143–160.
Elsevier, 2006. 142

[FT03] E. Franconi and D. Toman. Fixpoint extensions of temporal descrip-
tion logics. In Diego Calvanese, Giuseppe De Giacomo, and Enrico
Franconi, editors, Proceedings of the 16th International Workshop on
Description Logics (DL’03), volume 81 of CEUR Workshop Proceedings.
CEUR-WS.org, 2003. 4, 139

[GdMR+12] Amir Hossein Ghamarian, Maarten de Mol, Arend Rensink, Ed-
uardo Zambon, and Maria Zimakova. Modelling and analysis using
GROOVE. Software Tools for Technology Transfer, 14(1):15–40, 2012.
148

[GI89] Dan Gusfield and Robert W. Irving. The Stable Marriage Problem:
Structure and Algorithms. MIT Press, 1989. 93

[GL07] Fabio Gadducci and Alberto Lluch Lafuente. Graphical encoding of a
spatial logic for the π-calculus. In Till Mossakowski, Ugo Montanari,
and Magne Haveraaen, editors, Proceedings of the 2nd International
Conference on Algebra and Coalgebra in Computer Science (CALCO’07),
volume 4624 of LNCS, pages 209–225. Springer, 2007. 140, 155

[GLV10] Fabio Gadducci, Alberto Lluch Lafuente, and Andrea Vandin. Coun-
terpart semantics for a second-order µ-calculus. In Hartmut Ehrig,
Arend Rensink, Grzegorz Rozenberg, and Andy Schürr, editors, Pro-
ceedings of the 5th International Conference on Graph Transformation

161

(ICGT’10), volume 6372 of LNCS, pages 282–297. Springer, 2010. xiii,
8, 9, 13, 35, 83, 92, 117

[GLV12a] Fabio Gadducci, Alberto Lluch Lafuente, and Andrea Vandin. Coun-
terpart semantics for a second-order -calculus. Fundam. Inform.,
118(1-2):177–205, 2012. xiii, 9, 13, 83

[GLV12b] Fabio Gadducci, Alberto Lluch Lafuente, and Andrea Vandin. Ex-
ploiting over- and under-approximations for infinite-state counter-
part models. In Ehrig et al. (EEKR12), pages 51–65. xiii, 10, 12

[gro] GROOVE, http://groove.cs.utwente.nl/. 148

[Haz04] Allen Hazen. Counterpart-theoretic semantics for modal logic. The
Journal of Philosophy, 76(6):319–338, 2004. 5

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT
Press, Cambridge, 2000. 142

[HLT06] Dan Hirsch, Alberto Lluch Lafuente, and Emilio Tuosto. A logic for
application level QoS. In Proceedings of the 3rd Workshop on Quantita-
tive Aspects of Programming Languages (QAPL’05), volume 153(2) of
ENTCS, pages 135–159. Elsevier, 2006. 142

[HWZ01] I. M. Hodkinson, F. Wolter, and M. Zakharyaschev. Monodic frag-
ments of first-order temporal logics: 2000-2001 a.d. In Robert
Nieuwenhuis and Andrei Voronkov, editors, Proceedings of the 8th
International Conference on Logic for Programming, Artificial Intelligence
and Reasoning (LPAR’01), volume 2250 of LNCS, pages 1–23. Springer,
2001. 4, 139

[Inv] The Maude Invariant Analyzer Tool (InvA), camilorocha.info/
software/inva. 49

[ITP] Maude Interactive Theorem Prover, maude.cs.uiuc.edu/
tools/itp/. 49

[JK08] Salil Joshi and Barbara König. Applying the graph minor theorem to
the verification of graph transformation systems. In Proceedings of the
20th international conference on Computer Aided Verification (CAV’08),
pages 214–226. Springer, 2008. 151

[KK08] Barbara König and Vitali Kozioura. Augur 2 - a new version of a
tool for the analysis of graph transformation systems. Electr. Notes
Theor. Comput. Sci., 211:201–210, 2008. 146

162

http://groove.cs.utwente.nl/
camilorocha.info/software/inva
camilorocha.info/software/inva
maude.cs.uiuc.edu/tools/itp/
maude.cs.uiuc.edu/tools/itp/

[Lei08] Daniel Leivant. Propositional dynamic logic with program quanti-
fiers. In Andrej Brauer and Michael Mislove, editors, Proceedings of
the 24th Conference on the Mathematical Foundations of Programming
Semantics (MFPS XXIV), volume 218 of ENTCS, pages 231–240. Else-
vier, 2008. 142

[Lew68] David Lewis. Counterpart theory and quantified modal logic. Journal
of Philosophy, 65:113–126, 1968. 7, 18, 22, 138, 153

[Llu07] Alberto Lluch Lafuente. Towards model checking spatial proper-
ties with SPIN. In Dragan Bosnacki and Stefan Edelkamp, editors,
Proceedings of the 14th International SPIN Workshop on Model Checking
Software (SPIN’07), volume 4595 of LNCS, pages 223–242. Springer,
2007. 142

[LMV12] Alberto Lluch Lafuente, José Meseguer, and Andrea Vandin. State
space c-reductions of concurrent systems in rewriting logic. In
Toshiaki Aoki and Kenji Taguchi, editors, ICFEM, volume 7635 of
Lecture Notes in Computer Science, pages 430–446. Springer, 2012. xiii,
10, 11, 45, 49, 52, 92

[LV10] Étienne Lozes and Jules Villard. A spatial equational logic for the
applied π-calculus. Distributed Computing, 23(1):61–83, 2010. 142

[LV11] Alberto Lluch Lafuente and Andrea Vandin. Towards a Maude tool
for model checking temporal graph properties. In Fabio Gadducci
and Leonardo Mariani, editors, GT-VMT, volume 42 of ECEASST.
EAAST, 2011. xiii, 13, 83, 93

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publish-
ers Inc., 1996. 51

[Mes08] José Meseguer. The temporal logic of rewriting: A gentle introduc-
tion. In Pierpaolo Degano, Rocco De Nicola, and José Meseguer,
editors, Concurrency, Graphs and Models, Essays Dedicated to Ugo Mon-
tanari on the Occasion of His 65th Birthday, volume 5065 of LNCS,
pages 354–382. Springer, 2008. 142

[Mes12] José Meseguer. Twenty years of rewriting logic. J. Log. Algebr. Pro-
gram., 81(7-8):721–781, 2012. 15, 49, 74, 77

[MP05a] Ugo Montanari and Marco Pistore. History-dependent automata: An
introduction. In Marco Bernardo and Alessandro Bogliolo, editors,
SFM, volume 3465 of Lecture Notes in Computer Science, pages 1–28.
Springer, 2005. 6

163

[MP05b] Ugo Montanari and Marco Pistore. Structured coalgebras and min-
imal hd-automata for the π-calculus. Theoretical Computer Science,
340(3):539–576, 2005. 141, 148

[Pel98] Doron Peled. Ten years of partial order reduction. In Alan J. Hu
and Moshe Y. Vardi, editors, CAV, volume 1427 of Lecture Notes in
Computer Science, pages 17–28. Springer, 1998. 145

[RD05] Arend Rensink and Dino Distefano. Abstract graph transformation.
In Proceedings of the 3rd International Workshop on Software Verification
and Validation (SVV’05). ENTCS, 2005. 149

[Ren03] A. Rensink. Towards model checking graph grammars. In
M. Leuschel, S. Gruner, and S. Lo Presti, editors, AVOCS, volume
2003-2 of DSSE-TR. University of Southampton, 2003. 140, 143, 147,
148

[Ren06a] A. Rensink. Model checking quantified computation tree logic. In
Christel Baier and Holger Hermanns, editors, CONCUR, volume
4137 of LNCS, pages 110–125. Springer, 2006. 6, 140

[Ren06b] Arend Rensink. Isomorphism checking in GROOVE. In Albert
Zündorf and Daniel Varró, editors, GraBaTs, volume 1 of ECEASST.
EAAST, 2006. 57, 148

[Rey02] J. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of the 17th IEEE Symposium on Logic in
Computer Science (LICS’02), pages 55–74. IEEE Computer Society,
2002. 142

[Rod09] Dilia E. Rodrı́guez. Combining techniques to reduce state space
and prove strong properties. In Proceedings of the 7th International
Workshop on Rewriting Logic and its Applications (WRLA 2008), volume
238(3) of ENTCS, pages 267 – 280, 2009. 49

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Com-
puting by Graph Transformations, Volume 1: Foundations. World Scien-
tific, 1997. 3, 140, 159

[RS85] John Reif and A. P. Sistla. A multiprocess network logic with tem-
poral and spatial modalities. International Journal of Computer and
System Sciences, 30(1):41–53, 1985. 142

[RZ10] Arend Rensink and Eduardo Zambon. Neighbourhood abstraction
in GROOVE. In Juan de Lara and Daniel Varró, editors, GraBaTs,
volume 32 of ECEASST. EAAST, 2010. 149, 151

164

[RZ12] Arend Rensink and Eduardo Zambon. Pattern-based graph abstrac-
tion. In Ehrig et al. (EEKR12), pages 66–80. 151

[SRW02] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric
shape analysis via 3-valued logic. ACM Trans. Program. Lang. Syst.,
24(3):217–298, 2002. 149, 150

[SWJ08] Mayank Saksena, Oskar Wibling, and Bengt Jonsson. Graph gram-
mar modeling and verification of ad hoc routing protocols. In Pro-
ceedings of the Theory and practice of software, 14th international confer-
ence on Tools and algorithms for the construction and analysis of systems
(TACAS’08), LNCS, pages 18–32. Springer, 2008. 151

[SWW11] Dominik Steenken, Heike Wehrheim, and Daniel Wonisch. Sound
and complete abstract graph transformation. In Adenilso
da Silva Simão and Carroll Morgan, editors, SBMF, volume 7021 of
Lecture Notes in Computer Science, pages 92–107. Springer, 2011. 150

[Var02] Dániel Varró. Towards symbolic analysis of visual modelling lan-
guages. In Paolo Bottoni and Mark Minas, editors, Proc. GT-VMT
2002: International Workshop on Graph Transformation and Visual Mod-
elling Techniques, volume 72 (3) of ENTCS, page 57–70, Barcelona,
Spain, October 11-12 2002. Elsevier, Elsevier. 145

[WD10] Thomas Wahl and Alastair F. Donaldson. Replication and abstrac-
tion: Symmetry in automated formal verification. Symmetry, 2(2):799–
847, 2010. 11, 49, 100

[YRSW06] Eran Yahav, Thomas W. Reps, Shmuel Sagiv, and Reinhard Wilhelm.
Verifying temporal heap properties specified via evolution logic.
Logic Journal of the IGPL, 14(5):755–783, 2006. 7, 34, 37, 141

Unless otherwise expressly stated, all original material of whatever
nature created by Andrea Vandin and included in this thesis, is
licensed under a Creative Commons Attribution Noncommercial
Share Alike 2.5 Italy License.

Check creativecommons.org/licenses/by-nc-sa/2.5/it/ for the legal
code of the full license.

Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
mailto:andrea.vandin@imtlucca.it

	List of Figures
	Acknowledgements
	Vita, Publications and Presentations
	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Structure of the thesis

	I Technical contribution
	2 Counterpart semantics for quantified modal logics
	2.1 Running example
	2.2 Introducing counterpart models
	2.2.1 Many-sorted algebras
	2.2.2 Labelled transition systems with state structure

	2.3 Syntax of a quantified -calculus
	2.4 Counterpart semantics
	2.4.1 Sets of assignments
	2.4.2 The semantic model

	2.5 Semantics at work
	2.6 Monotony and decidability results
	2.6.1 Monotony
	2.6.2 Decidability of model checking for finite models

	3 Approximating the behaviour of structured systems
	3.1 Running example
	3.2 Counterpart model approximations
	3.3 Reductions for counterpart models

	4 Sound approximated model checking of infinite-state systems
	4.1 Preservation and reflection of formulae
	4.2 Approximated semantics and model checking
	4.3 Dealing with untyped formulae
	4.4 Soundness proofs

	II Tool support
	5 A gentle introduction to rewriting logic and Maude
	5.1 Informal discussion
	5.2 Detailed discussion

	6 An explicit-state counterpart model checker for finite models
	6.1 System specification
	6.2 Counterpart model generation
	6.3 Formulae evaluation

	7 Tool support for c-reductions
	8 Model checker at work
	8.1 Leader election system
	8.2 Dining philosophers with disposable forks

	III Closing part
	9 Discussion
	9.1 Quantified modal logics
	9.2 Techniques and tools for the verification of visual specification formalisms

	10 Conclusions
	References

