
IMT Institute for Advanced Studies, Lucca

Lucca, Italy

Recommendation Techniques

for Web Search and Social Media

PhD Program in CSE

XXIV Cycle

By

Hossein Vahabi

July 2012

The dissertation of Hossein Vahabi is approved.

Programme Coordinator: Prof. Rocco De Nicola, IMT, Lucca, Italy

Supervisor: Prof. Ricardo Baeza-Yates, VP of Yahoo! Research Europe

and Latin America & Full professor at UPF, Barcelona, Spain

Supervisor: Dr. Fabrizio Silvestri, ISTI-CNR, Pisa, Italy

Tutor: Eng. Leonardo Badia, University of Padova

The dissertation of Hossein Vahabi has been reviewed by:

Dr. Berkant Barla Cambazoglu, Yahoo! Research Lab, Barcelona, Spain

Prof. Arjen P. de Vries, Delft University of Technology, Delft,

Netherlands

IMT Institute for Advanced Studies, Lucca

July 2012

I would like to dedicate this Doctoral dissertation to my family.

Table of Contents

Table of Contents vii

List of Figures xi

List of Tables xv

Acknowledgments xix

Publications xxi

Abstract xxiii

1 Introduction 1

1.1 Thesis Contributions . 1

1.1.1 Recommending Correct Tags 2

1.1.2 Recommending Queries 2

1.1.3 Recommending Tweets 4

1.1.4 Recommending Touristic Points of Interest 4

1.2 Outline . 5

2 Background: an Overview of Recommender Systems 7

2.1 Introduction . 7

2.2 Recommendation Techniques 8

2.2.1 Collaborative Filtering Based Recommendation . . 9

2.2.2 Demographic Recommendation 12

vii

2.2.3 Content-Based Recommendation 13

2.2.4 Knowledge-Based Recommendation 17

2.2.5 Hybrid Methods . 18

3 Recommending Correct Tags 21

3.1 Introduction . 21

3.2 Related Work . 24

3.3 Model Description . 25

3.4 Experiments . 28

3.5 Summary . 33

4 Recommending Queries 35

4.1 Introduction . 36

4.2 Related Work . 40

4.2.1 Center-Piece Subgraph 40

4.2.2 Query Recommendation 40

4.2.3 Rare Query Recommendation 42

4.2.4 Limitations . 43

4.3 The TQ-Graph Model . 44

4.3.1 Query Suggestion Method 44

4.4 The TQ-Graph Effectiveness 46

4.5 The TQ-Graph Efficiency . 51

4.6 Scaling Up TQ-Graph Suggestion Building 60

4.7 The TQ-Graph Contributions and Drawbacks 62

4.8 Orthogonal Queries . 65

4.8.1 Finding Orthogonal Queries 65

4.8.2 Identifying a Range of Result Overlap 66

4.8.3 Finding Interesting Orthogonal Queries 68

4.8.4 Algorithm . 71

4.9 Effectiveness of Orthogonal Query Recommendation . . . 71

4.9.1 Experimental Setup 72

4.9.2 Orthogonal Query Cache Policy 73

4.9.3 Comparison . 77

viii

4.9.4 User Study Evaluation 79

4.9.5 Some Examples . 81

4.10 Summary . 81

5 Recommending Tweets 85

5.1 Introduction . 85

5.2 Related Work . 87

5.3 Problem Definition . 89

5.4 Interestingness Estimation 93

5.4.1 Exploiting Textual Similarities 93

5.4.2 Enhancing Precision for Passive Users 95

5.4.3 User Authority . 96

5.5 Experiments . 97

5.5.1 Dataset . 97

5.5.2 Evaluating intλ Quality 99

5.5.3 TWEETREC vs. INTERESTS-SPANNING TWEETREC . 106

5.6 Summary . 109

6 Recommending Touristic Points of Interest 111

6.1 Introduction . 111

6.2 Related Work . 113

6.3 A Graph-Based Model of Touristic Itineraries 115

6.4 RWR-based PoIs Recommendation 116

6.5 Experimental Evaluation . 118

6.6 Summary . 124

7 Conclusions and Future Work 127

Bibliography 131

ix

x

List of Figures

2.1 Restaurants decision tree based on profile of a fixed user. . 15

2.2 Nearest neighbor classification method. 16

2.3 Case-Based Reasoning problem solving cycle.[1] 18

3.1 A depiction of portion of a tags co-occurence graph. 22

3.2 (a)-top Number of distinct tags by varying the tag frequency,

(b)-bottom Number of edges by varying the edge weight. 29

3.3 Misspelled tags (%) estimation by varying the cumulative

term frequency. We report the upper and lower bound. . . 30

3.4 (a)-top Upper and lower bound of the average tag fre-

quency by varying top-r most important neighbors, (b)-

bottom misspelled tags (%) by varying cumulative edge

frequency. 31

3.5 Precision and recall (%) by varying the tag frequency (log).

(a)-top r = 10, ℓ = 1, δ = 1, k > 0, (b)-bottom r = 10, ℓ = 2,

δ = 1, k > 0. 32

4.1 Frequency in the corresponding log of all the queries in

the two testbeds. 48

4.2 Dissimilarity (in percentage) for the top-5 suggestions as a

function of the pruning threshold p, measured on the MSN

(top) and Yahoo! (bottom) query logs. The curves refer to

different values of the parameter α used in the RWR. . . . 52

xi

4.3 Average bits per entry on the MSN query log as a function

of ǫ (p = 20, 000). 57

4.4 Miss ratio of our cache as a function of its size for different

values of p. Results obtained on both the two query logs

MSN (top) and Yahoo! (down) are reported. 61

4.5 A graphical illustration of the difference between tradi-

tional query recommendation and orthogonal query rec-

ommendation [2]. The dots represent webpages. The oval

represent the set of pages that are relevant to the user’s

needs. The pages containing the user’s keywords are rep-

resented in the green, nearly-horizontal stab. Results sets

using traditional query recommendation are shown us-

ing the dashed stabs. An orthogonal result set is repre-

sented using the orange stab, appearing perpendicular to

the original result set. 64

4.6 Orthogonal queries [2] within our model of search result

evaluation: the dots represent web pages and the stars rep-

resent highly ranked pages. Our goal is to detect a high

quality page that satisfies the user’s informational needs. . 66

4.7 Result overlap versus average term overlap in a query log

of 5, 000 queries. At the right we show the result over-

lap values in the range (0, 1], while at the left the result

overlap values in the range (0, 0.2]. The lines represents

the moving average of period two, and the Bézier curve

of degree 352 [3]. We also show the standard deviation σ.

The graphs show a positive correlation between result and

term overlap.[2] . 69

xii

4.8 Term overlap versus average result overlap in a query log

of 5, 000 queries. At the right we show the average re-

sult overlap values in the range (0, 1], while at the left

the values in the range (0, 0.2]. The lines represents the

moving average of period two, and the Bézier curve of de-

gree 36 [3]. We also show the standard deviation σ. The

graphs show a positive correlation between results and

term overlap.[2] . 70

4.9 Percentage of S-30min query hits, normalized by the max-

imum number of hits reachable with a cache of infinite size. 75

5.1 Statistical data on our Tweets Stream. 98

5.2 P@k (a), S@k (b), and MRR (c) of intλ by varying λ. 101

5.3 Number of distinct interests (i.e. lists) present in the top-k

recommended tweets. 107

6.1 Normalized frequency of the top-10 most frequent PoIs in

the Flickr photo albums for the three cities considered. . . 120

6.2 NP@5 varying the α parameter in RWR. 121

6.3 Normalized Precision NP@k as a function of k. 122

xiii

xiv

List of Tables

2.1 A depiction of a user-items rating matrix for a movie data

set of 5 users and 4 items. Values in the matrix are ratings

by a user on a particular item. 10

2.2 A restaurant items database. 13

4.1 Statistics of the two query logs and TQ-Graphs. Total num-

ber of queries and terms. Number of query nodes and

term nodes. Percentage of dangling nodes. Number of

arcs from terms to queries and from queries to queries,

and corresponding average degrees. Number of queries

and terms with frequency 1. 47

4.2 TQ-Graph effectiveness on the two different set of queries

and query logs, by varying α. 49

4.3 TQ-Graph and QFG effectiveness on the two different testbeds.

49

4.4 User study results on unseen, dangling and others queries. 50

4.5 Top-5 query suggestions for lower heart rate. 51

4.6 Average dissimilarity (in percentage) between the sets of

top-5 suggestions computed with or without pruning as

a function of p. The same measure computed by restrict-

ing to suggestions that have been considered “useful” or

“somewhat useful” is reported between parenthesis. 55

xv

4.7 Average bits per entry for our bucketing method (ǫ = 0.95)

and the baseline (between parenthesis) by varying p and α. 56

4.8 Average dissimilarity (in percentage) between the sets of

top-5 suggestions computed by resorting or not to bucket-

ing (with ǫ = 0.95) as a function of p. The same measure

computed by restricting to suggestions that have been con-

sidered “useful” or “somewhat useful” is reported between

parenthesis. 59

4.9 Effectiveness of the suggestions provided with pruning

and bucketing as a function of p for ǫ = 0.95 and α = 0.9. . 60

4.10 Examples of query pairs and their Term Overlap (T.O.)

and Result Overlap (R.O.) scores. 68

4.11 Statistics of the query log. 72

4.12 Table of acronyms. 74

4.13 Last session query hits percentage, normalized by the max-

imum number of hits for each session with an infinite cache

size. The columns indicates different types of test sessions,

and the rows are different techniques used to fill the cache. 75

4.14 S@10 in percentage of orthogonal query recommenda-

tions for S-1min and S-30min. The columns indicate dif-

ferent cache sizes (number of query entries), and rows are

different policies used to fill the cache. 76

4.15 S@10 as a percentage, both for all queries and for long tail

queries. In each case, the techniques are sorted in order of

effectiveness. 78

4.16 Overlap percentage of the successful orthogonal recom-

mendations with our the successful baseline query recom-

mendations. The columns indicate the different types of

test session lengths and the rows are our baselines. 79

4.17 User study results, which compare the effectiveness of OQ

with the baseline techniques, sorted in order of effective-

ness (useful + somewhat). 80

xvi

4.18 Top-5 recommendations, if found, for OQ and our baselines. 82

5.1 Statistics regarding our tweet corpus. 99

5.2 Comparison of int0.9 with Cosine, LDA, and Hashtags. . . 102

5.3 Comparison of int0.9 with Cosine, LDA, and Hashtags on

a subset of highly related users. 103

5.4 User study results for int0.9 and Cosine for Active and Pas-

sive users separately. We consider a tweet annotated as E,

G, or F as useful. 105

5.5 Percentage of Excellent, Good, Fair and Bad judgments in

the top-k tweets suggested to Passive and Active users. . . 106

5.6 Results of pairwise comparison of TWEETREC and INTERESTS-

SPANNING TWEETREC, as judged by the assessors. 108

5.7 An example of pairwise comparison, where the top-5 tweets

from INTERESTS-SPANNING TWEETREC were preferred over

TWEETREC. (Tweets shortened for lack of space). 108

6.1 Statistics regarding the three datasets used in our experi-

ments. 119

6.2 PoI recommendations in Florence, Glasgow, and San Fran-

cisco. 123

xvii

xviii

Acknowledgments

I would like to express my gratitude to my supervisors: Fabrizio Silvestri

and Ricardo Baeza-Yates. I would like to thank all my colleagues in Pisa,

Lucca and Barcelona. I am also very grateful to all my co-authors, with-

out whom this work would have been impossible. An infinite thanks to

Aida for her Love and constant support.

xix

xx

THESIS RELATED PUBLICATIONS

1. Ophir Frieder, Franco Maria Nardini, Fabrizio Silvestri, Hossein Vahabi,

and Pedram Vahabi,"On Tag Spell Checking", in SPIRE’10, Proceedings of

the 17th international conference on String processing and information re-

trieval, Springer-Verlag, 2010.

2. Francesco Bonchi, Raffaele Perego, Fabrizio Silvestri, Hossein Vahabi, and

Rossano Venturini, "Recommendations for the long tail by term-query

graph", in WWW ’11 (Companion Volume), Proceedings of the 20th in-

ternational conference on World Wide Web, pp. 15-16, ACM, 2011.

3. Claudio Lucchese, Raffaele Perego, Fabrizio Silvestri, Hossein Vahabi, and

Rossano Venturini, "How Random Walk Can help Tourism", in ECIR’12,

34th European Conference on IR Research, Springer, 2012.

4. Francesco Bonchi, Raffaele Perego, Fabrizio Silvestri, Hossein Vahabi, and

Rossano Venturini, "Efficient Query Recommendations in the Long Tail via

Center-Piece Subgraphs", SIGIR ’12: Proceedings of the 35th annual inter-

national ACM SIGIR conference on Research and development in informa-

tion retrieval, ACM, 2012.

5. Marco Pennacchiotti, Fabrizio Silvestri, Hossein Vahabi, and Rossano Ven-

turini, "Making Your Interests Follow You on Twitter", in CIMK’12, Pro-

ceedings of the 21th ACM international conference on Information and

knowledge management, ACM, 2012.

6. Francesco Bonchi, Ophir Frieder, Franco Maria Nardini, Fabrizio Silvestri,

Hossein Vahabi, "Interactive and Context-Aware Tag Spell Check and Cor-

rection", in CIMK’12, Proceedings of the 21th ACM international confer-

ence on Information and knowledge management, ACM, 2012.

7. A Chapter on "recommender systems" in the forthcoming book "Mining of

User Generated Content and Its Applications" to be published by Tailor &

Francis (CRC Press).

xxi

THESIS RELATED PRESENTATIONS

1. Hossein Vahabi, "Folksonomy", ISTI-CNR, Pisa, 1 February 2010.

2. Hossein Vahabi, "Folksonmies in Social Networks: Models, Algorithms

and Applications", Summer School on Social Networks, Lipari, Italy, 6 July

2010.

3. Hossein Vahabi, "Recommendations for the long tail by term-query

graph", Proceedings of the 20th international conference on World Wide

Web, Hyderabad, India, 28 March 2011.

4. Hossein Vahabi, "How Random Walk Can help Tourism", 34th European

Conference on IR Research, Barcelona, Spain, 3 April 2012.

5. Hossein Vahabi, "How Random Walk Can help Tourism", IMT Lucca, Italy,

7 March 2012.

6. Hossein Vahabi, "Efficient Query Recommendations in the Long Tail via

Center-Piece Subgraphs", 35th Annual SIGIR Conference, Portland, USA,

14 August 2012.

xxii

Abstract

"It is often necessary to make choices without sufficient personal experience of

the alternatives. In everyday life, we rely on recommendations from other peo-

ple either by word of mouth, recommendation letters, movie and book reviews

printed in newspapers, or general survey such as Zagat’s restaurant guides.",

Paul Resnick.

Recommenders aim to solve the information and interaction over-

load. A recommender system is a tool that identifies highly relevant

items of interest for a user.

In this thesis we aim to harness the information available through the

Web to build recommender systems. In particular we study a number

of different recommendation problems: "correct tag recommendation",

"query recommendation", "tweet recommendation", and "touristic points

of interest recommendation". For each problem, we describe effective

solutions using novel efficient techniques.

xxiii

xxiv

Chapter 1

Introduction

Over the last two decades there has been an enormous increase on Web
usage. Nowadays the Web has become the most powerful platform for
working, studying, being in touch with our friends, searching informa-
tion, and much more. Inevitably this growth is accompanied by an expo-
nential growth of the available information. Users may get overwhelmed
by the quantity of information available. Recommenders are particu-
lar systems that aims to solve the information and interaction overload
problems. A recommender system (RECSYS) is a type of filtering pro-
cess that aims to identify highly relevant items of interest for a particular
user. It can be built using a variety of different techniques using data
from various sources, related to users and items which can be recom-
mended. In this thesis we aim to harness Web data to build recommender
systems. We will consider four different types of web data: web search
query logs, folksonomy related data (e.g. Delicious), social network data
(e.g. Twitter), and social content data (e.g. Wikipedia). In particular,
we will face a number of recommendation problems: "correct tag rec-
ommendation", "query recommendation", "tweet recommendation" and
"touristic points of interest recommendation". For each problem, we will
suggest one or more solutions.

1.1 Thesis Contributions

In this section we aim to illustrate the main contributions of this thesis in
the field of RECSYSs.

1

1.1.1 Recommending Correct Tags

The first contribution of the thesis is a tag spelling correction method us-
ing a graph model representing co-occurrences between tags. Tags from
YouTube’s resources are collected and represented on a graph. Edges of
such a co-occurrence graph is then used in combination with an edit dis-
tance and term frequency to extract a list of right candidates for a given
possibly misspelled term. We show a precision of up to 93% with a re-
call (i.e., the number of errors detected) of up to 100% on the basis of an
experimentation done on real-world data.

1.1.2 Recommending Queries

The second contribution of the thesis is a set of two query recommen-
dation techniques: TQ-Graph and Orthogonal Query Recommendation.
TQ-Graph is a graph-based query recommendation method. The graph
has two set of nodes: Query nodes, which are connected among them
on the basis of the query reformulations observed in a historical query
log [4], and Term nodes, which have only outgoing links pointing at the
nodes corresponding to the queries in which the terms occur. Recom-
mendation for a new query is performed by splitting it into terms, and by
extracting the center-piece subgraph [5] from this terms. The TQ-Graph
contributions are:

• A novel method for query recommendation based on center-piece
graph computation over the TQ-Graph model. Being term-centric,
our center-piece-based method does not suffer from the prob-
lem of sparsity of queries, being able to generate suggestions for
previously-unseen queries as far as terms have been previously
seen. Empirical assessment confirms that our method is able to
generate suggestions for the vast majority (i.e., 99%) of queries and
with a quality that is comparable to (and in some cases better than)
the state-of-the-art method based on Query Flow Graph [4].

• A term-centric perspective which allows us to provide a framework
enabling suggestions to be efficiently generated on the fly during
query processing. In fact, after having proved the effectiveness of
our method, we are faced with its major but only apparent draw-
back: any suggestion pass through the computation of the center-
piece subgraph from query terms. Given the very large size of
the underlying graph, this task is clearly unfeasible for any system

2

claiming to be real-time. We overcome this limitation by introduc-
ing a novel and efficient way to compute center-piece subgraphs.
This comes at the small cost of storing precomputed vectors that
need to be opportunely combined to obtain the final results. The
data structure we use is inverted list-based and thus it is particu-
larly suitable for web search environments.

• An inverted-list-based data structure that is compressed by using
a lossy compression method able to reduce the space occupancy
of the uncompressed data structures by an average of 80%. Even
if the compression method is lossy, we have evaluated through a
user study the loss in terms of suggestion quality, and we have
found that this loss is negligible. Furthermore, a term-level caching
is used to enable scalable generation of query suggestions. Being
term-based, caching is able to attain hit-ratios of approximately
95% with a reasonable footprint (i.e., few gigabytes of main mem-
ory.)

It should be noted that the last two research results, beyond enabling our
model to be real-time, represent a more general achievement for what
concerns the computation of center-piece subgraphs in very large graphs.
TQ-Graph is a query recommendation method that generates sugges-
tions based on the exact terms that was composed the original query.
However, when the query is sufficiently ill-posed, the user’s information
need is best met using entirely different keywords, and a small pertur-
bation of the original result set is bound to fail. The second technique
that we present is the Orthogonal Query Recommendation. Orthogonal
Query Recommendation is a new technique based on identifying orthog-
onal queries in the cache. In contrast to previous approaches, we inten-
tionally seek out only queries that are moderately similar to the original.
The contributions of Orthogonal Query Recommendation are multiple:

• Orthogonal queries aim to detect different interpretations of the
user’s query that go beyond the scope of the user-provided key-
words.

• The approach requires no training, is computationally efficient, and
can be easily integrated into any search engine with a query cache.

• Queries recommended by Orthogonal Query Recommendation
have low intersection with the results of other techniques. As
such, integrating orthogonal query recommendation with previous

3

methods will lead to even better results than any other technique
individually.

1.1.3 Recommending Tweets

The third contribution of the thesis is a set of two methods for recom-
mending tweets to Twitter users. The most direct practical application of
the proposed method is to provide a social media user with a new time-
line containing messages strongly matching her interests but that have
not been posted by any of her friends. The benefits of having this addi-
tional timeline are twofold:

• The user will not miss messages that she may retain relevant.

• Authors of recommended tweets may be considered worthy of be-
ing followed by the user who receives the recommendation; thus
the tweet recommendation system may indirectly serve as a mech-
anism to implicitly recommend accounts to follow.

The recommendation method is based on the idea of building a user pro-
file from a weighted combination of her tweets and tweets posted by her
friends, and to match this profile on incoming tweets. The contributions
of this model are twofold:

• The definition of two novel models for tweet recommenda-
tion: TWEETREC aims to recommend the most interesting tweets;
INTERESTS-SPANNING TWEETREC aims to recommend a set of
tweets, minimizing overlapping informative content. As a result,
INTERESTS-SPANNING TWEETREC provides more diverse recom-
mendations.

• The proposal of an effective measure to estimate level of interest by
considering the content of tweets posted by the user herself, and
also by her friends in higher roles of authority.

1.1.4 Recommending Touristic Points of Interest

The fourth contribution of the thesis is a novel algorithm for planning
travel itineraries based on a recommendation model mined from folk-
sonomy related data (Flickr), and social content data (e.g. Wikipedia).

4

The model is based on a graph-based representation of the knowledge,
and extracts the centerpiece subgraph [5] to select the most relevant PoIs
for a particular user. The contributions of this model are multiple:

• A new RECSYS which relies on an initial set of PoIs to be used
as query places. Query places are important because they represent
contextual information identifying tourists guts.

• A very effective ranking of points of touristic interest obtained by
resorting to combinations of Random Walks with Restart, i.e., cen-
terpiece subgraph extraction. The resulting ranking can be used
to suggest a touristic points of the user interest as function of the
already chosen PoIs.

• A combination of multiple sources of knowledge (Flickr and
Wikipedia) that increase the effectiveness of a RECSYS for Touris-
tic Points of Interest.

1.2 Outline

This thesis is organized as follows: Chapter 2 provides an overview
of recommender systems, and the main recommendation techniques.
Chapter 3 presents a tag spell checker using a graph-based model. In
particular we present a novel technique to recommend the right spell
of a tag based on the graph of tags associated with objects made avail-
able by on-line sites such as Youtube. Chapter 4 presents two novel
query recommendation methods: TQ-Graph that solves efficiently the
query recommendation problem for the long-tail queries, and Orthogo-
nal Query Recommendation, that solves efficiently the query recommen-
dation problem for the poorly formulated queries. In Chapter 5 we intro-
duce the of tweet recommendation, i.e., the problem of suggesting tweets
that match a user’s interests or likes. In Chapter 6 we propose a novel al-
gorithm for the interactive generation of personalized recommendation
of touristic places of interest based on the knowledge mined from Flickr
and Wikipedia. Finally, in Chapter 7 we present some conclusions and
discuss future works.

5

6

Chapter 2

Background: an Overview
of Recommender Systems

This Chapter provides an overview of recommender systems (REC-
SYSs), which are at the basis of many web tools applications. Their de-
scription is useful to understand better the choices made in Chapters 3,
4, 5, and 6 for the analysis, model and implementation of applications
in the fields of RECSYSs. The Chapter serves as an introduction into
general related work covering the subarea of this thesis. Additionally,
in each Chapter we will describe related work specifically relevant to the
particular problem contained in the respective Chapter. In Section 2.1 we
introduce RECSYSs. In Section 2.2 we will describe the fundamental rec-
ommendation techniques: Collaborative Filtering recommender (Subsection
2.2.1), Demographic recommender (Subsection 2.2.2), Content-Based recom-
mender (Subsection 2.2.3), Knowledge-Based recommender (Subsection 2.2.4
), and Hybrid recommender (Subsection 2.2.5).

2.1 Introduction

The explosive growth of the web has generated a vast and heterogeneous
repository of publicly available data. Users may be overwhelmed by
the volume of available information. Let us consider for instance the
social network context. Users may face interaction overload [6] due to
the high number of messages generated by their friends, or due to the

7

large number of voters or commenters on a particular web page and they
may face information overload [7] due to the vast quantity of social media
data available such as shared photos, video, bookmarks etc. To overcome
these problems several methods have been proposed, such as Information
Retrieval, Information Filtering and RECSYSs.

Information Retrieval (IR) [8, 9, 10, 11, 12, 13, 14] is a process through
which a user’s need of information is converted into a useful collection
of reference [15]. Traditionally IR [16, 17, 18, 19, 20, 21, 22, 23, 24] refers to
textual documents extracted from a collection of documents. Nowadays
an IR system is a software which aims to extract any type of item such as
video, image, audio etc.

Information Filtering (IF) is a method for delivering relevant informa-
tion to people who need it [25, 26, 27]. Information filtering is designed
for semi-structured or unstructured data, in contrast to database system.
It is designed to work with a large amounts of data, and typically the fil-
tering process is based on a user’s profile, i.e., the user demographic in-
formation or the user interests etc. While the filtering process (IF system)
main goal is the removal of data from an incoming stream, the retrieval
(IR system) process focuses on finding relevant data in a stream. How-
ever the two research fields (IF, IR) share many features, for a detailed
description we refer the reader to [26].

RECSYSs [28] are another method to solve the overload of informa-
tion and interaction that users face. The RECSYSs assists the natural
process of everyday life where a user has to decide based on little or no
personal information. The goal of RECSYSs is suggesting items based
on users profile and items content, in order to direct users to the items
that best meet their preferences and profile. RECSYSs have their origin
in IF systems, however they differ in the fact that RECSYSs are based
on identifying interesting items and to add them to the stream of infor-
mation, while IF systems are based on removing items from the stream.
Several related papers have been published about RECSYSs, in section
2.2 we will give a brief description of the RECSYSs techniques.

2.2 Recommendation Techniques

Recommender (Rc) systems [28], are tools that have "the effect of guid-
ing the user in a personalized way to interesting or useful objects in a
large space of possible options" [29]. The main goal of RECSYSs is to

8

suggest items to be of use to a user [30, 31, 29, 32]. Items are the ob-
jects that are recommended, they could have different features that are
extracted based on a particular recommendation technique. Movies, im-
ages, videos, friends are some example of items. We could also have
more complex items such as travel, jobs, financial investments etc.. [33].
The Users for whom recommendation are generated, may have different
characteristics. Modeling users profile and understanding their interests
is not an easy task. In particular it depends highly on the particular type
of recommendation technique [34].

Formally, a RECSYS [35] (utility based definition) is composed by a
set of users U , a set of items I , and a utility function f : U×I → R, where
R is a totally ordered set. Given a user u ∈ U , we want to choose ī ∈ I
that maximize the user’s utility [35]:

∀u ∈ U, ūi = argmaxu∈Uf(u, i)

u ∈ U indicates a generic user, but more precisely it indicates a profile
of a user that could contain: age, gender, interests, etc.. i ∈ I indicates a
generic item that has a set of features, such as: price or color of a prod-
uct, keywords, etc.. The features selected or the definition of the utility
function depends on the particular recommendation technique. Based on
Burke’s works [29, 32] we could divide the traditional recommendation
approaches into five types: collaborative filtering based recommend (sec-
tion 2.2.1), demographic recommendation (section 2.2.2), content-based rec-
ommend (section 2.2.3), knowledge-based recommendation (section 2.2.4),
hybrid recommendation methods (section 2.2.5). In the following sections
we will give a brief description of the traditional recommendation ap-
proaches.

2.2.1 Collaborative Filtering Based Recommendation

Arguably, collaborative filtering is the most familiar, and most widely
implemented recommendation technology [36, 29] .

Collaborative filtering is a "people-to-people" [37] recommendation
technique. In other words it tries to automate the process of word of
mouth. Collaborative filtering RECSYSs aggregates users’ ratings on
items, tries to find a set of similar users based on their ratings, and rec-
ommend items based on similar users [29, 38]. Instead of users’ rates it is
possible to use: clicks, purchases and in general any explicit or implicit
data that may represent a user’s interest in a particular item. In contrast

9

Movie 1 Movie 2 Movie 3 Movie 4
user 1 - 1 - 5
user 2 2 - 4 -
user 3 3 - 5 1
user 4 3 - 5 -
user 5 3 3 - 4

Table 2.1: A depiction of a user-items rating matrix for a movie data set
of 5 users and 4 items. Values in the matrix are ratings by a user on a
particular item.

with Content-based RECSYSs 2.2.3, Collaborative filtering systems do
not consider items contents, characteristic that render them particularly
useful for complex items such as movie, video, music, etc.

Formally, given a user u and an item t, that is not rated by u, a col-
laborative filtering system tries to predict rating on item t for user u. The
prediction process is composed by two steps: 1. firstly, it tries to find a
set of users Uu with similar taste (based on items rated) to u; 2. secondly,
it aggregates ratings assigned to item t by the users in Uu [39]. Another
approach is to look at the items similar to t [40] (instead of similar users
to u), and to aggregate ratings assigned by u to similar items.

Figure 2.1 shows a depiction of a user-item rating matrix for a movie
dataset. Rows represent users and Columns represent movies. The
empty space indicate that the user has not yet rated that movie. Col-
laborative filtering tries to predict unassigned values.

Before going deeper into the description of a number of categories of
Collaborative filtering algorithms, it is useful to emphasize the main ad-
vantages and drawbacks of collaborative filtering RECSYSs[30]. Collab-
orative filtering is a simple and effective technique that can deal with any
types of items (also complex). Another advantage of collaborative filter-
ing is that it do not suffer from the over-specialization, in contrast with
the content-based RECSYS that risks to suggest items too similar to the
user’s profile. The main drawbacks of collaborative filtering RECSYSs
are: recommendation for new users, recommendation of new items, and
data sparsity. Collaborative filtering rely on the set of items rated by a
user to generate recommendation. Due to this for a new user or a not
active user it cannot recommend items. Similarly for a new item that is
not rated. The RECSYS is not able to recommend not rated items. A so-

10

lution to these issues (new item and new user) are the hybrid RECSYS,
that we will briefly describe in section 2.2.5. The data sparsity problem
will be discussed in the memory-based collaborative filtering category.

In the following we will give a brief description of two categories of
Collaborative filtering algorithms: memory-based collaborative filtering and
mode- based collaborative filtering.

Memory-based collaborative filtering. Memory-based method is based
on the entire user-items rating matrix (e.g. Figure 2.1, a depiction of a
user-items rating matrix). Given a user u and an item t (not rated by u),
the first step of recommendation is the selection of the top-k neighbors

of u, Uu
(k). It is necessary to define a user similarity function. The sec-

ond step of recommendation is the rate aggregation on t over the set of

neighbors Uu
(k). It is necessary to define a rating aggregation algorithm.

Cosine based similarity (cos) [41] and Pearson Correlation Coefficient
(PCC) [39] are two user-similarity measures. Given a user-items ma-
trix R, where rij ∈ R is the rating on item j by user i, we define the
Cosine based similarity (cos) and Pearson Correlation Coefficient (PCC)
between two users u and v as:

cos(u, v) =
∑

i∈I
ruirvi

2
√∑

i∈I
r2
ui

2
√∑

i∈I
r2
vi

PCC(u, v) =
∑

i∈I
(rui−ru)(rvi−rv)

2
√∑

i∈I (rui−ru)2 2
√∑

i∈I (rvi−rv)2

with rv and ru the arithmetic mean rate of user u and v. Given a user u
and an item t (not rated by u) and the set of neighbors Uu

(k),a simple rat-

ing aggreagation function is the mean arithmetic rate over Uu
(k) on item

t: In 1995 Goldman [42] proposed a weighted mean: weighted majority
voting. The improved version (of rating aggregation function) multiplies
each rate of a neighbor by the similarity value between u and the respec-
tive neighbor. Other proposals also try to scale the neighbors ratings, by
considering the mean rate of the neighbor.[43]

Once we have defined the user similarity function, and the rating ag-
gregation function, we have to deal with the data sparsity problem in
memory based collaborative systems. One of the main problem of the
memory-based collaborative filtering system is the data sparsity in user-
items matrix. In the large scale systems users’ ratings only few items
w.r.t. number of available items. Consequently the items in common be-
tween two users are fews. The small intersection of items leads to a poor
prediction rating. Many solutions have been proposed to solve the data

11

sparsity problem, for instance: default voting that extends each user’s rat-
ing history with the clique’s averages [44], Effective missing data prediction
[45] which combines users information and items information. In 2009
Garcin et. el. compares the accuracy of three different aggregation func-
tions: the mean, median and mode. Results shows that median can sig-
nificantly improve recommendation accuracy and robustness w.r.t. mean
[46]. Bell and Koren proposed a very fast prediction method, where
the weight determination is seen as an optimization problem, solved by
linear-regression.

Model-based collaborative filtering. The model-based collaborative fil-
tering constructs a predictive model based on training data. In contrast
with memory-based collaborative filtering, the model-based collabora-
tive filtering do not need to store the user-items rating matrix. To rec-
ommend items, model-based systems need only to apply the derived
model. Many algorithms have been proposed to find the derived model
[43]. Singular Value Decomposition is a well known matrix factoriza-
tion technique, which provides the best lower rank approximations of
a matrix [47, 48]. Bilsus and Pazzani proposed to use SVD to reduce
the dimensionality of the user-items rating matrix [47, 48], this can solve
the data sparsity. Hofmann and Puzieha proposed a probabilistic ap-
proach to collaborative filtering. They propose two models, a probabilis-
tic latent space model which aims to model the user preference factors,
and a two-sided clustering model, which aims to extract groups of users
and items [49]. Chen et. el. proposed Orthogonal Nonnegative Matrix
Tri-Factorization (ONMTF) in order to cluster simultaneously users and
items. For more detail on model-based collaborative filtering we refer
the reader to [30].

2.2.2 Demographic Recommendation

In this section we aim to describe another type of RECSYS: demographic
recommendation.

Demographic RECSYSs aim to categorize people based on personal
demographic attributes [29, 32], and to recommend items based on user
demographic profile. The assumption is that users within same demo-
graphic class, would have similar interests [30]. Suggestion may be cus-
tomized based on user age, country, language etc.. Rich in her article in
1979 [50] presented a book recommendation system, by gathering per-
sonal information and matching them against manually created classes
of users. Pazzani in his article in 1999 [51] extracted users features from

12

Restaurant Cuisine Service Cost Rating
1 French Table Med Positive
2 French Counter High Positive
3 Italian Counter Low Negative
4 Italian Table Low Positive
5 Mexican Counter Low Positive
...

Table 2.2: A restaurant items database.

their home page. The users features are used to obtain a classifier (using
machine learning techniques) based on demographic data.

In particular, demographic RECSYSs forms a people-to-people [37]
recommendation correlation like collaborative filtering 2.2.1. One of the
main advantages of the demographic RECSYSs is that they partially
solve the cold-start recommendation problem [52, 53, 54]. A drawback
is the difficulty to collect users’ demographic data. In 1997 Krulwich
[55] presented a method to generate user profiles based on a large-scale
database of demographic data.

2.2.3 Content-Based Recommendation

In this section we aim to describe another recommendation technique:
Content-based recommendation [25, 56, 26, 29, 57]. Content-based
recommenders could be seen as an extension of the works in 1990’s
[58, 59, 60] for identifying interesting web sites or recommending arti-
cles based on the content of articles or web sites that a particular user’s
likes or not. The goal of content-based RECSYSs is to process the con-
tent of the items, and to recommend items based on user’s profile. In
contrast with CF systems, in content-based RECSYSs the users’ profile
is based on the content of the items that user’s likes or dislikes.

The representation of an item through the selection of attributes and
the choices of attributes’ values is not a trivial task at all [57]. Typi-
cally items are stored on databases. Table 2.2 reports a restaurant items
database. Each row is a restaurant’s representation. Columns represent
attributes of each restaurant [61]. This is an example of the structured,
and domain discrete data. Items might be also complex and of differ-
ent types. For instance we could have a free text review of a hotel, or a

13

description of a product. An observation is that in the case of not well
defined attributes values of items, it is preferable to use IR or IF systems
rather than content-based RECSYSs [54]. One way of representing the
content of items is to use the Vector Space Model [12]. An item in this
model is represented as a weighted vector. A typical weighting repre-
sentation is the TF-IDF weighting, defined as:

w(t, i) = tf t,i × idf t

where t is a term or attribute value, i is an item or document, tf t,i is
the frequency of t in i, idf t is the inverse document frequency of term t
[14, 62].

In order to make a suggestion of items, a RECSYS requires to define a
representation model for the user’s profile. Representing the user’s pro-
file by the set of rated items is not a trivial task. The user’s preferences on
items could be asked explicitly or it could be extracted by using implicit
data. An example of explicit data collection are the web forms that al-
lows users to select among a set of known values of attributes values(for
instance the cost of a restaurant). Explicit data are less noisy than implicit
data, but collecting explicit data is not easy, and usually is composed by
few entries.

The representation of the user’s profile, often is a function of the
learning phase adopted by the content-based RECSYS. The system then
exploits the items database, match them against the user’s profile, and
generate a ranked list of items. The learning phase makes use of a learn-
ing classification algorithm, that is based on the features of items that
user’s rates. Many of the learning classification algorithms will build a
function that estimates the probability of interestingness of a new item for
a user [57]. Some content-based RECSYSs try to predict user rating in-
stead of the interestingness probability estimation [43, 57].

Formally, we could define a binary learning classifier (in this context)
as follows: given a user’s profile u, a set Iu of items rated positively or
negatively by u, the learning classification algorithm build a classifier
Cu for u based on the content of the items contained in Iu. Given an
item i is recommended to u if by using the classifier Cu, i is judged to
be positive. In other words, the the classification process is used for the
recommendation purpose.

Before proceeding into the description of a number of algorithms
used in the learning phase, it is useful to emphasize the main advan-
tages and drawbacks of content-based RECSYSs[30]. The main advan-

14

Figure 2.1: Restaurants decision tree based on profile of a fixed user.

tages of the content-based RECSYSs are: 1. It is possible to explain in-
tuitively (using item features) why an item has been recommended; 2. A
new items do not need a learning phase to be recommended.The main
drawbacks of the content-based RECSYSs are: limited content analy-
sis and over-specialization. Limited content analysis from user could be
for privacy issue, or for the low quality of the item’s content etc. Over-
specialization means that the system may always recommend similar
items, which means there is not diversification and serendipity [63] in
the suggested items. To avoid over-specialization [64] propose to add
some randomness, [65, 66] propose to filter items that are too similar to
the user profile. For a more detailed solutions we suggest the reader to
refer Ricci’s handbook [30].

In the following lines we will give a brief description of a number of
classification learning algorithms.

Decision Tree. Decision tree learners are used in content-based REC-
SYSs to learn the user’s profile [67]. A decision tree is obtained by par-
titioning user data based on attributes values. For each user we build a
decision tree that describes his/her preferences.

Figure 2.1 shows a decision tree of the data partially reported in table
2.2. The data, and the corresponding decision tree refers to a single user
u. Given a new low cost Mexican restaurant, we could recognize by using
the decision tree that the user would consider it positively.

Decision trees could become computationally intensive thus affect-
ing the efficiency of the technique. Decision trees are particularly useful
for the structured data. However, it is worth mentioning some machine
learning papers that tries to do automatic feature selection in unstruc-

15

Figure 2.2: Nearest neighbor classification method.

tured data [68, 69, 70].

Nearest Neighbor Methods. The nearest neighbor learners are classifier
used in content-based RECSYSs to learn the user’s profile[57]. In partic-
ular, for each user u a list of the items that he rated Iu is maintained by
the classifier. When an item i has to be classified, a similarity function is
used to compare it against the items contained in the list Iu. The output
of this process is a set of k (k ≥ 1) nearest neighbors of i w.r.t. u. This
items are than suggested to the user u.

Figure 2.2 shows the profile of a user with 11 items rated. Six out of 11
items are rated positively. The new item content is compared against the
rated items content. In particular, for k = 3 (the shortest circle of figure
2.2) the nearest neighbors of the new item are composed by 2 negative
and 1 positive items, the classification of the new item would be nega-
tive. For k = 5 (the shortest circle of figure 2.2) the nearest neighbors
of the new item are composed by 2 negative and 3 positive items, the
classification of the new item would be positive.

Other Methods. Rocchio proposed [71] an algorithm exploiting user’s
relevance feedback to refine an initial query. The intuition is to recur-
sively refine the initial query of a user, where each iteration is a learning
step based on user’s feedback. Rocchio’s algorithm is a information re-
trieval oriented algorithm. However, researchers in [56, 70, 72] used a
variation of this algorithm in machine learning context for text classifica-
tion. There are other probabilistic and machine learning approaches, for
more details we suggest the reader to refer to [57, 30, 73].

16

2.2.4 Knowledge-Based Recommendation

In this section we aim to describe a particular type of RECSYS:
Knowledge-based recommendation [74]. Knowledge-based recommender
(KBr) systems are considered to be complementary to the other recom-
mendation techniques [29, 75]. KBr is based on a specific domain of
knowledge. Knowledge-based recommendation systems are based on
rules, patterns and on a functional knowledge of how a fixed item meet
a particular user need [29]. Let us for instance consider an e-commerce
system. Knowledge about the product, such as the categories which a
product belongs to could be used to better meet user’s preference.

The advantage of a KBr system is that it could solve partially the cold-
start problem [52, 53] of the RECSYSs, and usually the recommended
items are intuitively explainable. There are two drawbacks on (KBr) sys-
tems: the first is on the suggestion ability, which is static [29], and the
second is on the pruning techniques errors in the knowledge extraction
process. In the rest of this subsection we will describe two KBr sys-
tems: case-based recommender systems, and constraint-based recommender
systems.

Case-based recommendation. Case-based reasoning [75, 76, 77, 78] is a
computational model that tries to solve problems based on past problem-
solution experiences. When a new problem is presented the system tries
to find similar problems that have been solved before. The solution of the
retrieved problem, is adapted to the new problem. The case is stored in
a data-store for future usage. A case model is an entry in the data-store,
with problem and solution descriptions. Figure 2.3 shows a depiction of
the case-based reasoning systems problem solving cycle. Case-based rea-
soning is a cyclic process, composed by five steps: retrieve, reuse, revise,
review, and retain. Revise and review steps are also called adaptation
phase steps [75]. The goal of the revise step is to adapt the solution of an
old problem to a new problem. The adapted solution is than evaluated
by the review step of the case-based reasoning systems problem solving
cycle. The retrieving step goal is to find given a new problem a similar
problem that has been solved in the past. Once that the new problem
is solved, the adaptation of the original solution and the new problem
are stored for next usage. The case model is one of the most important
issue of case-based reasoning systems. It requires an appropriate repre-
sentation language, and an appropriate choice of the attributes to store.
Comparison-based retrieval [79], compromise-driven retrieval [80], and
order-based retrieval [81] are typical methodologies for the case-based

17

Figure 2.3: Case-Based Reasoning problem solving cycle.[1]

reasoning RECSYSs.

Constraint-based recommendation. Constraint-based recommendation
systems are another type of case-based recommendation systems [82, 30].
While traditional RECSYSs are often focused on recommending simple
items, such as: cds, books, videos, etc., constraint-based recommenda-
tion systems focuses on complex products, such as recommending finan-
cial investment. Given a new problem, the case-based systems tries to ex-
tract similar problems based on similarity metrics to the previous cases,
instead the constraint-based systems tries to solve the problem based on
predefined rules.

2.2.5 Hybrid Methods

Hybrid methods combine multiple recommendation techniques to com-
pensate for limitations of single recommendation techniques. Burke in
[29] proposed a taxonomy for hybrid RECSYSs classifying them into
seven categories: weighted, mixed, switching, feature combination, feature
augmentation, cascade, and meta-level.

1. In a weighted recommender, the score of each item is computed from

18

the results of each recommendation technique in the system. For
instance, the final score of an item can be a linear combination of the
scores computed by each different recommendation technique. In
order to build a weighted RECSYS, it is necessary to follow three
steps: 1) selection of multiple recommendation techniques; 2) gen-
eration of a set of candidates by using the recommendation tech-
niques; 3) scoring of the candidates with the weighted combination
of individual scores. Computing the final score as a combination
of scores of each recommendation technique can be implemented
very easily. However, it might be possible that a specific recom-
mendation technique has different strength in different parts of the
item space. For instance a collaborative filtering recommender can-
not recommend items that have not been rated yet. A solution to
this problem is to use the switching hybridization technique.

2. In a switching recommender, the system uses some criterion to
switch from one recommendation technique to another based on
the current context. For instance it might select a specific recom-
mendation technique based on users’ profiles. In order to build
a switching RECSYS, it is necessary to deploy a three-steps pro-
cess: 1) selection of the recommendation technique on the basis of
the switching criteria; 2) generation of the candidates using the se-
lected recommendation technique; 3) rating of the candidates on
the basis of the chosen technique.

3. In a mixed recommender, the system returns simultaneously the
items suggested by different techniques. The main issue to solve
in order to build a mixed RECSYS, is homogenizing and normal-
izing the scoring functions used by the different techniques.

4. In a feature combination recommender, the system uses a single tech-
nique in order to compute recommendations. However, the output
from other recommendation techniques are used to enrich the set of
features associated with items or the user.For instance, the output
of a collaborative filtering recommender may be injected as input
to a content-based recommender.

5. A feature augmentation recommender is composed by two compo-
nents: contributing recommender, and actual recommender. It is similar
to a feature combination recommender, with two main differences:
i) for each step there two components instead of one are used; ii)
the input of each step is used only by the contributing recommender
component. In order to build a feature augmentation RECSYS, it

19

is necessary to follow three steps: 1) the training data is used by the
contributing recommender, and the output (augmented training data)
is used as input to the actual recommender; 2) the user profile is used
by the contributing recommender, and the output (augmented pro-
file) is used as input to the actual recommender; 3) the candidates are
used by the contributing recommender, and the output (augmented
candidate representation) is used as input to the actual recommender
to obtain the overall score of the candidates.

6. A cascade recommender requires a hierarchical hybridization. A
cascade recommender is composed at each step by a primary, and
a secondary recommender. In order to build a cascade RECSYS, it
is necessary to follow three steps: 1) the training data is used as in-
put by both components; 2) the primary recommender generates the
candidates based on user profile; 3) for each candidate the primary
recommender generates a score, the secondary recommender uses this
score and the candidate to compute the overall score of the candi-
dates.

7. A meta-level recommender uses a model learned from one recom-
mender component as input for another component. A meta-level
recommender has two components: contributing recommender, and
actual recommender. In order to build the RECSYS, it is necessary to
follow three steps: 1) the contributing recommender uses the training
data to generate a learned model that is used by the actual recom-
mender in the training phase; 2) the contributing recommender uses
the user profile to generate a learned model that is used by the
actual recommender in the candidate generation phase; 3) for each
candidate the actual recommender (alone) generates a score.

20

Chapter 3

Recommending Correct
Tags

Collaborative content creation and annotation creates vast repositories
of all sorts of media, and user-defined tags play a central role as they are
a simple yet powerful tool for organizing, searching and exploring the
available resources. In this Chapter we present a tag spell checker using
a graph-based model. In particular, we present a novel technique based
on the graph of tags associated with objects made available by on-line
sites such as YouTube. We show the effectiveness of our approach by an
experimentation done on real-world data. We show a precision of up to
93% with a recall (i.e., the number of errors detected) of up to 100%.

3.1 Introduction

Collaborative tagging services are one of the most distinguishing fea-
tures of Web 2.0. Flickr, YouTube, del.icio.us, Technorati, Last.fm, or Ci-
teULike – just to mention a few – allow their users to upload a photo, to
publish a video, to share an interesting URL or a scientific paper, and pro-
vide them the capability of assigning tags, i.e., freely chosen keywords,
to these resources. Such a collaborative content creation and annotation
effort creates vast repositories of all sort of media, and user-defined tags
play a central role as they are a simple yet powerful tool for organizing,
searching and exploring the resources. Various applications aimed at im-

21

Figure 3.1: A depiction of portion of a tags co-occurence graph.

proving user experience can be built over tags, with tag cloud being prob-
ably the most known one, but also tag-based search and exploration [83],
tag-based results clustering [84, 85, 86], and more.

Obviously, all these applications need to assume that tags are “cor-
rect”. This assumption however is not assumable in the real world as
tags are noisy, contain typos, and many different spellings can be used
for the same concept (e.g., the term “hip hop” and its variants “hip-hop”,
“hiphop”, or “hip_hop”). It is thus important to develop systems to help
users provide correct tags, so as to improve the overall quality of anno-
tations. This, in turns, helps future queries by other users, as well as all
the applications that could be built over the tagged repository. For in-
stance correcting “hip hop” as “hip-hop”, when the latter is more frequent
than the former, is useful because this keeps the labeling of the concept
uniform, allowing a better organization, search and exploration of the
associated resources.

A parallel can be drawn with query spell-checkers in the context of
Web search engines. The rationale beyond query correction is to avoid
the situation in which the user receives a partially useless or incom-
plete result page. Search engines spell-checkers use sophisticated mod-
els, which are usually based on query traces [87]. One of the key features
in this context is the position of words in the submitted queries. Take,
for example, the query “apple str”. Exploiting the fact that “store” usually
follows “apple” more than other words, the above query can be easily
corrected in “apple store”.

While query correction exploits the position of words within the

22

query, in the case of tag systems words position is not meaningful, as
an annotation is a set of tags and not a sequence. What is meaningful
instead is the context in which a tag is used, that is, the other tags in
the annotation of a resource. If we know that people tagging an object
with “apple” is more likely to tag “store” instead of “str”, then we could
suggest the former as a possible spell correction for the latter.

In this Chapter, we model the “wisdom” of all the users of a col-
laborative tagging system by means of a weighted co-occurrence graph
model to develop a context-aware tag spelling corrector able to interac-
tively check and emend terms to the user. Consider Figure 3.1 in which
it is depicted a portion of a tags co-occurrence graph, in which nodes
are tags, and edges connecting co-occurring tags are weighted with the
number of resources in which the two tags co-occurred. Given the tags
used, we can imagine this to be a portion of tags co-occurrence graph of
YouTube.

In this depiction we have the tag “brittny” in two different contexts.
On the left hand side, the context is {Circus, Pop, V ideo}, while on the
right hand side the context is {HappyFeet, Music}. The depiction shows
how the same tag can be corrected in two different ways depending on
the context. In the first case, the user is clearly referring to Britney Spears,
as one of the tag (“Circus”) is the title of a Britney Spears song. While
in the second case the user is referring to the actress and singer Brit-
tany Murphy, who gave voice to one of the penguins in the computer-
animated movie “Happy Feet”, singing also two songs for the movie.
Note that, beyond correcting the misspelled tags, context-awareness in a
tags co-occurrence graph, might also be used to suggest other meaning-
ful tags, e.g., “Spears” in the first context, and “Murphy” in the second.

We exploit the collective knowledge of users to build a spell checking
system on tags. The main challenge is to enable tag spell checkers to
manage sets of terms (with their relative co-occurrence patterns) instead
of strings of terms, namely, queries.

Much previous work is devoted to query spell checking. Differing
from queries, namely short strings made up of two or three terms, tags
are sets of about ten terms per resource. We exploit this relatively high
number of tags per resource to provide correct spelling for tags. Indeed,
our method exploits correlation among tags associated with the same
resource. We are able to detect and correct common variations of tags by
proposing the “right”, i.e., the most commonly used, versions.

We evaluate our method through a user study on a set of tagged re-

23

source coming from YouTube. Note that our experiments are fully re-
producible. Instead of using proprietary data sources, as search engines’
query logs, we leverage publicly available resources.

The Chapter is organized as follows. Section 3.3 formalize our ap-
proach to the spelling correction problem using tags. Section 3.4 dis-
cusses our evaluation based on precision and recall computed on our
proposed method; Section 3.5 draws some conclusions.

3.2 Related Work

Research on spell checking has focused either on non-word errors or on
real-word errors [88]. Non-word errors such as ohuse for house can eas-
ily be detected by validating each word against a lexicon, while real-
world errors, e.g., out in I am going our tonight, are difficult to detect.
Current context-sensitive spelling correctors that are required for real-
world errors mainly rely on two kinds of features: collocation, and co-
occurrences [89] [90]. Both approaches generate a high-dimensional fea-
ture space. They have been used only for short lists of commonly con-
fused words. Cucerzan et al. [91] investigate the use of implicit and ex-
plicit information about language contained in query logs for spelling
correction of search queries. They present an approach that uses an it-
erative transformation of the input query string into sequence of more
likely queries according to statistics extracted from query logs. Zhang et
al. [92] propose an approach to spelling correction based on Aspell. The
method re-ranks the output of Aspell and then a discriminative model
(Ranking SVM) is employed to improve upon the initial ranking, using
additional features as edit distance, letter-based n-grams, phonetic simi-
larity, and noisy channel model. The paper also presents a new method
for automatically extract training samples from query log chains. The
results showed that the system outperforms Aspell, and other off-the-
shelf spelling correction systems. Shaback et al. [93] propose a multi-level
feature-based framework for spelling correction via machine learning. In
order to use as much information as possible, they include features from
character level, phonetic level, word level, syntax level, and semantic
level. These are evaluated by a support vector machine to predict the cor-
rect candidate. Their method allows to correct both non-word errors, and
real-word errors simultaneously using the same feature extraction meth-
ods. Authors test the correction capabilities of their system by compar-
ing it with others spelling correctors (i.e. Microsoft Word, Google, Hun-

24

spell, Aspell, FST) showing that their system outperforms in recall by at
least 3% even if confined to non-word errors. Ahmad et al. [94] apply
the noisy channel model to search query spelling corrections. This ap-
proach requires an error model and a language model. The error model
relies on a weighted string edit distance measure. The weights can be
learned from pairs of misspelled words and their corrections. Authors in-
vestigate the Expectation Maximization algorithm to learn edit distance
weights directly from search query logs, without relying on a corpus of
paired words. Echarte et al. [95] study the application of two classical pat-
tern matching techniques, Levenshtein distance for the imperfect string
matching, and Hamming distance for perfect string matching to identify
syntactic variations of the tags. They perform the analysis over a large
dataset in two different ways: i) identifying pattern-candidate combina-
tions, and ii) new tags. Experiments shows that both techniques provide
similar results for some syntactic variation types as typographic errors
and simple plurals/singulars, but Levenshtein distance gets significantly
better results than Hamming identifying variations based in the transpo-
sition of adjacent characters.

Unlike previous approaches, we cannot rely on information about se-
quences of terms, or n-grams. We must, thus, find another way to contex-
tualize tags within other tags that are used in association with the same
resource.

3.3 Model Description

In tagging objects, users associate a set of words, i.e., tags, with a re-
source, e.g., a video, a photo, or a document, having in mind a precise se-
mantic concept. Actually, tagging is the way users allow their resources
to be found. Based on this hypothesis, our spell checker and corrector
presents two important features: i) it is able to identify a misspelled tag,
ii) it proposes a ranked list of “right”, i.e., most likely to come to users’
minds, tags associated with the misspelled tag.

We use a weighed co-occurrence graph model to capture relation-
ships among tags. Such relationships are exploited to detect a misspelled
tag and to identify a list of possibly correct tags.

Let R be a set of resources. Let Σ be a finite alphabet. Let T ⊆ Σ∗ be
a set of tags associated with each resource. Let γ : R → T be a function
from resources to set of tags mapping a resource with its associated set

25

of tags. Furthermore, let T ∗ = ∪ {γ(r), ∀r ∈ R} be the union of all tags
for all resources in R.

Let G = (V,E) be an undirected graph. V is the set of nodes where
each node represents a tag t ∈ T ∗, and E is the set of edges defined
as E = V × V . Given two nodes, u, v, they share an edge if they are
associated at least once with the same resource. More formally, E =
{(u, v)|u, v ∈ V , and ∃r ∈ R|u, v ∈ γ(r)}. Both edges and nodes in the
graph are weighted. Let u, v ∈ V be two tags. Let we : E → R be
a weighting function for edges measuring the co-occurrence of the two
tags, namely, the number of times the two tags appear together for a
resource. For a given node v ∈ V , wv : V → R associates a tag with its
weight.

Given two nodes u, v ∈ V , let Pu,v be the set of all paths of any length
between u and v. Let σ : V × V → R, where σ(u, v) = minpathlengthPu,v

be the function providing the length of the shortest path between the two
nodes u, v.

Given a tag t ∈ V , and a threshold value for shortest path ℓ, we define
“neighbor nodes” the set of nodes N ℓ

t = {t1 ∈ V |σ(t1, t) ≤ ℓ}. “Neighbor
nodes” are then filtered by using the tag frequency. For each node in
N ℓ

t , we select from the set of nodes having a frequency greater than the
frequency of the tag t.

Let NGℓ
t = {t1 ∈ N ℓ

t |wv(t1) > wv(t)} be the set of neighbors of t at
maximum distance ℓ having a frequency greater than the tag t. Given
two nodes u, v, let d(u, v) be a function returning the edit distance of the

two tags u, v. By applying d to a tag t and tags in its neighborhood, NGℓ
t ,

we define the “candidate neighbor nodes” as follows.

Definition 1. Given a tag t ∈ V , and a threshold value for the edit distance δ,
we define Ft = {t1 ∈ NGℓ

t |d(t1, t) ≤ δ} as the “candidate neighbor node”
set.

We use the candidate neighbor node set to check if the tag t is misspelled
and, if needed, to find better tags to be used instead of t. We assume that,
if Ft is empty then t is a right tag, and it does not need any correction.
This approach allows us to have high effectiveness due to relationships
between neighbor nodes. The method is also very efficient as we explore
only a part of the graph in order to find candidate neighbor nodes.

Our approach to the spelling correction problem using tags is defined
as:

26

Algorithm 1 FindCorrectTag

1: Input: G = (V,E) co-occurrence graph, a tag t ∈ V , a threshold level
for shortest path ℓ > 0, and a threshold value for edit distance δ > 0,
the number of top nodes to consider r ∈ N, node and edge threshold
weights f, k.

2: Output: a list Ft of correct tags for t.
3: Ft = {}, Temps = {}, s = t, Vf,k = {}, Ef,k = {}
4: for all t ∈ V do
5: if (wv(t) > k) then
6: Vf,k = Vf,k ∪ {t}
7: end if
8: end for
9: for all e ∈ E do

10: if (we(e) > f) then
11: Ef,k = Ef,k ∪ {e}
12: end if
13: end for
14: LevelwiseBreadthF irst(Gf,k, t, ℓ, 1);
15: for all t1 ∈ Vf,k in Temps do
16: if (wv(t1) > wv(t)) ∧ (d(t1, t) > δ) then
17: Ft = Ft ∪ {t1}
18: end if
19: end for

TAGSPELLINGCORRECTION: Given s ∈ Σ∗, find s′ ∈ T ∗ such that
d(s, s′) ≤ δ and P (s′|s) = maxt∈T∗:d(s,t)≤δR(t|s), where, d(s, t) is a dis-
tance function between the two tags, δ is a threshold value, P (s′|s) is
the probability of having s′ as a correction of s, and R(t|s) = 1 if t ∈ Fs,
or 0, otherwise.

Algorithm (1) solves the TAGSPELLINGCORRECTION problem pro-
viding a list of possible right tags for a given tag t. It filters the co-
occurrence graph by sorting “neighbor nodes” by their importance, and
by considering only the top-r most frequent ones.

Given a node t ∈ V , and a natural number r ∈ N, we define a
function Tp : V × N → O taking the top-r most important nodes of
a node t, where O = {vi ∈ N1

t , i = 1, ..., r|we(vj) ≥ we(vj+1), and
we(v1) = maxt∈Nℓ

t
(we(t)) with j ∈ 1, ..., r − 1}.

27

Algorithm 2 LevelwiseBreadthF irst(G, t, ℓ, state)

1: Input: Gf,k a filtered co-occurrence graph, a tag t ∈ V , a threshold
level for shortest path ℓ, the current state

2: Output: a set of nodes.
3: if state < ℓ then
4: Temps = Temps∪{Tp(s, r) as set}. {get the top-r neighbors nodes

of s at distance 1.}
5: for all t1 ∈ V in Temps do
6: LevelwiseBreadthF irst(G, t1, ℓ, state+ 1)
7: end for
8: end if

3.4 Experiments

To evaluate our spelling correction approach we built a dataset of tags
from YouTube. In particular, we crawled 568,458 distinct YouTube videos
obtaining a total of 5,817,896 tags. We remove from the dataset noisy tags
(i.e. the ones having a very low frequency). 1 We thus obtain 4,357,971
tags, and 434,156 of them are unique. Figure 3.2 (a) shows the distribu-
tion of the term frequency, while in Figure 3.2 (b) we plot the distribution
of the edge weights. Such distributions are both zipfian. Furthermore, In
order to show that our method is effective in identifying and providing
corrections to misspelled tags we run Algorithm (1) obtaining different
vocabularies of wrong/misspelled tags each one associated with a list
of corrections for each tag. Each run of the Algorithm (1) uses a differ-
ent set of parameters thus providing a different vocabulary. We evaluate
precision and recall by varying the vocabulary used. Finally, we want
to point out that we do not compare our method with others for several
reasons. First of all, to the best of our knowledge there are not other tag
spell checkers and we retain a comparison with query spell checkers not
to be a fair one. Second, we obtain a precision level of 93%, which is a
satisfactory value per se.

Precision and recall are evaluated by means of a user-study to get the
percentage of good corrections. We asked assessors to evaluate four com-
plete vocabularies produced by four different runs of the Algorithm (1).
The four runs differed from the set of parameters used to produce the
vocabulary.

1Due to efficiency reasons, we were interesting in building a small dictionary of wrong
and right tags.

28

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

term frequency (log)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000

Edge weight (log)

Figure 3.2: (a)-top Number of distinct tags by varying the tag frequency,
(b)-bottom Number of edges by varying the edge weight.

In order to compute recall, we need the total number of misspelled
tags in the complete dataset. Such number cannot be derived from a
user-study because: i) our collection of tags is composed by 434, 156 el-
ements, and it is almost impossible to evaluate all of them, ii) there are
tags that are syntactically correct for an human assessor, but they will
not be present in a real dictionary. Let, for example, consider the tag “hip
hop”. While it is correct, and it should be contained in a dictionary, is the

29

 0

 5

 10

 15

 20

 0 20 40 60 80 100

cumulative term frequency

Upper bound
Lower bound

Figure 3.3: Misspelled tags (%) estimation by varying the cumulative
term frequency. We report the upper and lower bound.

variation “hip-hop” of this tag really a wrong/misspelled tag?

To compute recall we performed an estimation of the total number of
wrong tags in the collection. We avoided performing a user-study over
all the collection of tags by taking samples of dimension n = 101 and
by computing their average values. The sample was chosen with the
Mersenne-Twister algorithm. We computed the confidence interval [96]
with α = 0.05, and the tstudent values equal to 1.984.

Figure 3.3 shows the results of our misspelled tags estimation by
varying the cumulative tag frequency.

Figure 3.4(a) shows the percentage of detected misspellings by vary-
ing the top-r most weighted edges of each node. Generally, it decreases
as the threshold on the tag frequency increases. Figure 3.4(b) shows the
percentage of estimated misspelled tags by varying the cumulative edge
weight. It decreases as the threshold on edge weights increases. This
means that by removing edges with an associated weight less than k,
the percentage of misspelled tags (not isolated nodes) in the whole set
decreases.

30

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14

m
is

sp
el

le
d

ta
gs

 (
%

)

r

Upper bound
Lower bound

 0

 5

 10

 15

 20

 0 20 40 60 80 100

m
is

sp
el

le
d

ta
gs

 (
%

)

cumulative edge weight

Upper bound
Lower bound

Figure 3.4: (a)-top Upper and lower bound of the average tag frequency
by varying top-r most important neighbors, (b)-bottom misspelled tags
(%) by varying cumulative edge frequency.

Figure 3.5(a) shows values for precision and recall by varying the
threshold on cumulative term frequency. Such a threshold works as a
filter on low frequency tags. This evaluation uses only the first level
of neighbors of tags (ℓ = 1). Precision is high (up to 90%), and recall
improves significantly (up to 100%) putting a threshold on the tag fre-
quency to values close to 10. On the other hand, by fixing such thresh-

31

 0

 20

 40

 60

 80

 100

 1 10 100

pr
ec

is
io

n
an

d
re

ca
ll

(%
)

cumulative term frequency (log)

Precision
Recall

 0

 20

 40

 60

 80

 100

 1 10 100

pr
ec

is
io

n
an

d
re

ca
ll

(%
)

cumulative term frequency (log)

Precision
Recall

Figure 3.5: Precision and recall (%) by varying the tag frequency (log).
(a)-top r = 10, ℓ = 1, δ = 1, k > 0, (b)-bottom r = 10, ℓ = 2, δ = 1, k > 0.

old to values greater than 20, our method starts losing precision. Fig-
ure 3.5(b) shows values for precision and recall by varying the threshold
on cumulative term frequency when the evaluation uses two levels of
neighbors of a tag (ℓ = 2). Precision is still high (up to 90%), while re-
call improves significantly (up to 100%) by putting a threshold on tag
frequency to values close to 4.

32

3.5 Summary

In this Chapter, we have presented a tag spelling correction method us-
ing a graph model representing co-occurrences between tags. Tags from
YouTube’s resources had been collected and represented on a graph.
Such a co-occurrence graph was then used in combination with an edit
distance and term frequency to obtain a list of right candidates for a given
possibly misspelled term. Experiments have shown that this collabora-
tive spell checker yields a precision up to 93%, with a recall of 100% (in
many cases).

Future Work. A possible extension of this model is to build a context-
aware, interactive, tag spelling correction. The context of a tag is the set
of tags previously introduced by the user for the same resource. The tag-
ging process is progressive, when a user annotates a resource with a set
of tags those tags are introduced one at a time. Therefore, when, say, the
fourth tag is introduced a knowledge represented by the previous three
tags, i.e., the context in which the fourth tag is embedded, is available
and exploitable for generating potential correction of the current tag. It
is then possible to consider this context together with the available co-
occurrences of tags in all the resources of the repository to provide an
interactive tag spell correction.

33

34

Chapter 4

Recommending Queries

In this Chapter we present two different query recommendation
methods: one for the long-tail queries, namely, TQ-Graph and the
second for the poorly formulated queries, namely, Orthogonal Query
Recommendation[2].

TQ-Graph is a recommendation method based on the well-known
concept of center-piece subgraph, which allows for the time/space efficient
generation of suggestions also for rare, i.e., long-tail queries. The method
is scalable with respect to both the size of datasets from which the model
is computed and the heavy workloads that current web search engines
have to deal with. Basically, we relate terms contained in queries with
highly correlated queries in a query-flow graph. This enables a novel
recommendation generation method able to produce recommendations
for approximately 99% of the workload of a real-world search engine.
The method is based on a graph having term nodes, query nodes, and
two kinds of connections: term-query and query-query. The first con-
nects a term to the queries in which it is contained, the second connects
two query nodes if the likelihood that a user submits the second query
after having issued the first one is sufficiently high. On such large graph
we need to compute the center-piece subgraph induced by terms con-
tained in queries. In order to reduce the cost of the above computation,
we introduce a novel and efficient method based on an inverted index rep-
resentation of the model. We experiment our solution on two real-world
query logs and we show that its effectiveness is comparable (and in some
case better) than state-of-the-art methods for head-queries. More impor-

35

tantly, the quality of the recommendations generated remains very high
also for long-tail queries, where other methods fail even to produce any
suggestion.

Another important challenge of current search engines is to satisfy
the users’ needs when they provide a poorly formulated query. When
the pages matching the user’s original keywords are judged to be unsat-
isfactory, query recommendation techniques are used to alter the result
set or propose alternative queries. These techniques search for queries
that are similar to the user’s original query, often searching for keywords
that are similar to the keywords given by the user. However, when the
original query is sufficiently ill-posed, the user’s informational need is
best met using entirely different keywords, and a substantially different
query may be necessary.
Orthogonal Query recommendation is a novel approach that is not based
on the keywords of the original query. We intentionally seek out orthogo-
nal queries, which are related queries that have low similarity to the user’s
query. The result sets of orthogonal queries intersect with the result set
of the original query on a small number of pages. An orthogonal query
can access the user’s informational need while consisting of entirely dif-
ferent terms than the original query. We illustrate the effectiveness of our
approach in two ways. First, using this technique to generate query sug-
gestions we outperform several known popular approaches. Second, we
show that our approach can also be used to recommend related results.

4.1 Introduction

Over the last seventeen years there has been enormous progress on Web
search. Starting from the text-based ranking algorithms of 1995, we
now have complex ranking algorithms that use hundreds of features
and many functionalities based on usage data, such as spelling correc-
tion, query completion and query recommendations. Due to these ad-
vances, search engines usually satisfy a user’s informational need on
well-formulated queries. However, an important remaining challenge is
to satisfy the users’ informational need when they provide vague, poorly
formulated or long tail queries.

When the pages matching the user’s original keywords are judged
to be unsatisfactory, query recommendation algorithms are a common
method for helping users to find the information they need. Suggestions
by these algorithms aim to provide queries that are, at least somewhat,

36

similar to the original [14]. The key idea behind query recommendation is
that of exploiting the so-called “wisdom of the crowds”, i.e., the knowledge
mined from search engine query logs which store all the past interactions
of users with the search system. For this reason query recommenders
are more effective when the information need of the user is a popular
one, i.e., the same query has been been frequently submitted by other
users in the past. Using common wording, these queries are head queries
indicating that they are usually appearing in the head of the power-law-
like curve typical of query popularity distribution.

In this Chapter we introduce two novel recommendation methods:
TQ-Graph and Orthogonal Query Recommendation.

TQ-Graph is a novel recommendation method based on computing
the center-piece subgraph [5] on a large graph-model. TQ-Graph presents
several enhancements with respect to the state-of-the art. Firstly, the
method is scalable and efficient. It is scalable as the generation of the
model is easily parallelizable and the model itself can be stored in a com-
pressed form. Furthermore, we represent the model in an inverted index
and we show that several engineering practices used for inverted indexes
are inherited by our model as well. The inverted index representation
has several advantages as, for instance, the possibility of exploiting the
existing index processing infrastructure of search engines with small, or
no, modifications. The suggestion generation time, also, is comparable
to that taken by the query processing phase. Thus, generating recom-
mendations does not represent a bottleneck even when rare, uncached
queries are processed. Interestingly, the quality of the suggestions pro-
duced by our system is stable, almost independently of the frequency of
the query in the query log used to learn the model. This is a key prop-
erty which does not hold for the query flow graph. Query flow graph
is, indeed, not able to generate suggestions for previously unseen or rare
queries. More in details, a TQ-Graph (Term-Query Graph) extends the
well-known Query Flow Graph [4] by considering two distinct sets of
nodes: Term and Query nodes. Arcs connect a term node to all the query
nodes containing it, while arcs between two query nodes expresses the
likelihood that a user submits the second query after having issued the
first one. We design such a structure so that we are able to generate
recommendations for a query by extracting the center-piece subgraph [5]
associated with terms of the query itself. It is important to remark that
since we do not require a query to be present in the TQ-Graph, but only
its terms, our method is able in principle to provide recommendations
even for a never-seen-before query.

37

An alternative approach w.r.t. query recommendation is to use query
expansion [14], where the goal is to find keywords that, while syntac-
tically different to varying degrees, have the same semantics as the key-
words in the original query. Query recommendation can be seen as query
expansion where we limit the query universe to those queries that have
been previously input by some user.

Using query recommendation techniques, the new result set is a per-
turbation of the original result set. When the query is sufficiently well
composed a small perturbation would be sufficient; in those cases, there
is a highly ranked page relevant to the user’s needs that appears in the re-
sult set of the new query, whereas the result set of the original query did
not contain such results. Traditional approaches to query recommenda-
tion play an important and necessary role in helping correct queries that
require minor adjustment. However, when the query is sufficiently ill-
posed, the user’s informational need is best met using entirely different
keywords, and a small perturbation of the original result set is bound to
fail. Interestingly, in this case, the higher the query similarity used for the
perturbation, the less likely that the recommendation would succeed.

Users cannot always pick the most appropriate keywords. This is not
surprising, because some queries are launched precisely because users
wish to learn a subject with which they have little familiarity. Con-
sider the following simple example: a user is interested in information
on the actress Catherine Bach, and while he/she may not recall her
name, he/she remembers that the actress had played the character of
Daisy Duke. The user’s informational needs are better represented by
the query “Catherine Bach” than the query provided. The challenge is
that the queries “Daisy Duke” and “Catherine Bach” consist of entirely
different keywords.

Orthogonal Query Recommendation is a new approach that does not
directly rely on the original keyword set, and indeed does not rely on
queries that are highly similar to the original. We intentionally seek out
orthogonal queries, which are related queries that have low similarity to the
user’s query. Orthogonal queries provide insightful alternative interpre-
tations that are not reachable by using small variations on the keyword
set. An orthogonal query contains keywords that are semantically differ-
ent from the keywords in the original query. Such a query can access
the user’s informational need while consisting of entirely different terms
than the original query.

The challenge (similarly to TQ-Graph) is to find orthogonal queries
in a computationally efficient manner that proves useful in practice. We

38

take advantage of the complex features already present in search engines
today. Search engines’ usage traffic has grown to the extent that even
the query cache [97] has significant size. We find orthogonal queries by
taking advantage of the vast amounts of data that search engines col-
lect, finding queries with low similarity in the query cache. We illustrate
the effectiveness of this approach by proposing a query recommendation
method derived from these observations, and demonstrate its effective-
ness on a large query log against other existing query recommendation
techniques. As a result of our evaluation, to the best of our knowledge,
we present the most extensive comparison of query recommendation al-
gorithms.

The use of the query cache benefits the less proficient query com-
posers by allowing them to benefit from the query terms chosen by oth-
ers. The query cache also enables us to take advantage of temporal lo-
cality. By making use of a query cache for finding orthogonal queries,
results to these queries automatically reflect current events and trends,
thus increasing the likelihood that the user’s informational need is met.
For example, in January 2010, an orthogonal query for the query “Haiti"
led to a page on the American Red Cross Haiti earthquakes relief effort,
a result that was absent from the original result set.

The outline of this Chapter is as follows. In Section 4.2, we discuss
prior approaches to query recommendation. In Section 4.3, we introduce
the TQ-Graph model and present the methods used to compute sugges-
tions. In Section 4.4 we assess the quality of the recommendations com-
puted by TQ-Graph method and we compare our results with state-of-
the-art QFG. In Sections 4.5 and 4.6 we present and experimentally eval-
uate our scalability and efficiency enhancing techniques. In Section 4.7,
we discuss the contributions and drawbacks of TQ-Graph .

In Section 4.8, we introduce our notion of orthogonal queries in a
formal manner and we discuss how we compute those queries using a
particular notion of query similarity. In Section 4.9, we evaluate the effec-
tiveness of our query recommendation algorithm with respect to others.
In it, we describe in detail our experimental setup, including the cache
policy we used and how it was chosen. Then we follow this with a user
study (including TQ-Graph)using the standard TREC Web diversifica-
tion track test bed, showing again that our algorithm is the best one.

Finally, we conclude with a summary of TQ-Graph and Orthogonal
Query Recommendation results in Section 4.10.

39

4.2 Related Work

In this section we describe the center-piece subgraph technique and we
review briefly the state-of-the-art of query recommendation.

4.2.1 Center-Piece Subgraph

Hanghan et al. in [5] propose the Center-Piece Subgraph, as the sub-
graph that best captures the connections of a set of nodes in a graph.
The computation of the Center-Piece Subgraph is based on the Hadamard
(i.e., component-wise) product of a set of vectors, where each vector is
obtained by doing a random walk with restart from a single node. Due
to the long processing time of random walks with restart, the method is
unfeasible for real-time application on large graph. The authors them-
selves propose a way to speed up the process by precomputing a n × n
matrix, where n is the number of nodes in graph. This technique helps
on small graphs, but is unfeasible for large graphs due to space require-
ments. This Chapter describes a novel way to compute efficiently center-
piece sub-graphs on large graphs. The technique requires to precompute
probability distributions and storing them in an inverted index that need
to be opportunely processed to obtain center-pieces. Moreover, several
optimizations, namely pruning, bucketing, and compression can be ap-
plied in order to reduce the memory footprint.

4.2.2 Query Recommendation

Query recommendation algorithms address the problem of recommend-
ing good queries to Web search engine users, and thus the solutions and
evaluation metrics are tailored to the Web search domain. Recently, many
different approaches have arisen to solve this problem, but they all share
a common element: the exploitation of usage information recorded in
query logs [98, 99, 100, 101].

One subset of these recommendation algorithms use clustering to
determine groups of similar queries that lead users to related docu-
ments [102, 101, 103]. Each cluster has a set of “most representative”
queries, which are returned as suggestions. In the case of [101], the rec-
ommended queries might have completely different terms to the origi-
nal query, like the algorithm proposed in this Chapter. Additional ap-
proaches include altering the user’s query based on previous users’ re-

40

formulations [104], or suggesting frequent queries that lead past users
to retrieve similar results [105].

Fonseca et al. [106] exploit chains of queries stored in query logs and
use an association rule mining algorithm to devise frequent query pat-
terns.These patterns are inserted in a query relation graph which allows
“concepts” (queries that are synonyms, specializations, generalizations,
etc.) to be identified and suggested.

Baeza-Yates et al. [101] propose to compute groups of related queries
by running a clustering algorithm over the queries with their associated
information recorded in the logs. The problem of sparseness of the query
space that may affect clustering is addressed by means of a similarity
measure which considers the sharing of terms not only between query
strings but also in the documents clicked by users. Query suggestions are
ranked according to two principles: i) the similarity of the queries to the
input query, and ii) the support of the suggested query, which measures
how much the answers returned in the past to this query have attracted
the attention of users.The solution is evaluated by using a small query
log containing 6,042 unique queries from the TodoCL search engine, and
the quality of suggestions generated by the algorithm for 10 different
queries are evaluated by means of a user study.

In follow-up study Baeza-Yates et al. [107] further exploit click-
through data as a way to provide recommendations. The method is
based on the concept of Cover Graph (CG). A CG is a bipartite graph of
queries and URLs, where a query q and an URL u are connected if a user
issued q and clicked on u that was an answer for the query. Suggestions
for a query q are thus obtained by accessing the corresponding node in
the CG and by extracting the related queries sharing more URLs.

Another approach, similar to the previous one, called user frequency-
inverse query frequency (UF-IQF), was introduced by Deng et al. [108]
and is based on entropy models.

Boldi et al. introduce the Query Flow Graph [4] (QFG) model, which is
a Markov chain-based representation of a query log. A QFG is a directed
graph in which nodes are queries, and an edge e = (q1, q2) exists if at least
a user has issued q2 after q1. Furthermore, e is weighed by the probability
of a user to issue q2 after q1. Given a query q, suggestions are generated
by means of random walks from q on the QFG [109, 110]. The query
recommendation process is based on reformulations of search missions.
Each reformulation is classified into query reformulation types. Authors
use four main reformulations: generalization, specialization, error correction,

41

and parallel move. An automatic classifier is trained on manually human-
labeled query log data to automatically classify reformulations.

4.2.3 Rare Query Recommendation

The importance of rare query classification and suggestion recently at-
tracted a lot of attention. Generating suggestions for rare queries is in
fact very difficult due to the lack of information in the query logs. As it
was pointed out by Downey et al. [111] trough an analysis on search be-
haviors, rare queries are very important, and their effective satisfaction
is very challenging for search engines. The authors also study transitions
between rare and common queries highlighting the difference between
the frequency of queries and their related information needs.

Mei et al. propose a novel query suggestion algorithm based on rank-
ing queries with the hitting time on a large scale bipartite graph [112].
The rationale of the method is to capture semantic consistency between
the suggested queries and the original query. Empirical results on a
query log from a real world search engine show that hitting time is effec-
tive to generate semantically consistent query suggestions. The authors
show that the proposed method and its variations are able to boost long
tail queries, and personalized query suggestion. Also a recent work by
Yang et al. [113] proposes an optimal framework for rare-query sugges-
tion leveraging on implicit feedbacks from users mined from the query
logs.

Broder et al. [114] proposes an efficient and effective approach for
matching ads against rare queries. The approach builds an expanded
query representation by leveraging offline processing done for related
popular queries. Xu and Xu [115] designs a way to learn similarity
functions that are well suited for rare queries. The method leverages
the knowledge extracted from past queries and build a locality sensitive
hashing function through which similarity of rare queries is estimated.
Jain et al. [116] modifies the terms in rare queries in order to match more
frequent queries in the query log.

The same year, Baraglia et al. [117] introduced a technique called
search short cuts (SC). Their approach defines query recommendations
as follows: recommend queries that allowed similar users (those in the
past that followed a similar search process) to successfully find the in-
formation they were looking for. Szpektor et al. [118] propose to extract
rules between query templates rather than individual query transitions,
as currently done in session-based models. The method applies general
rules learned from the log to rare queries fitting the rule. As an example,

42

if the template < city > hotels → < city > restaurants holds strongly
in the log, and Montezuma is recognized as a city in the rare query Mon-
tezuma hotels, then Montezuma restaurants is generated as possible query
recommendation, even if it was not present it the training log.

4.2.4 Limitations

The previous proposals suffer from a main limitation which regards
the granularity of the atomic items represented in the recommendation
model. In the literature the granularity is always at the query level, and
thus the suggestion algorithms can provide recommendations only to
queries already seen in the past and present in the training log.

Another important limitation common to some of the previous pro-
posals is on efficiency. Query suggestions for most popular queries can
be cached with query results themselves, but the time needed to gener-
ate relevant suggestions for queries that are not cached must necessar-
ily be comparable to the query processing time. This need makes prac-
tically unusable all the methods requiring complex computations over
large graphs, e.g., random walks over a huge QFG [109, 110].

In this Chapter we propose two different solutions for query recom-
mendation that could be used also for the long tail queries: TQ-Graph
and Orthogonal Query Recommendation.

TQ-Graph is a query recommendation method in which the knowl-
edge learned from the query log is coded at the granularity of the single
terms present in the queries used for training. As a consequence, dif-
ferently from competitors, our solution can generate suggestions even
for queries not occurring in the training log and never submitted in the
past. The only constraint is in fact on the presence in the training log of
the terms used for expressing the query. Focusing on terms instead of
queries makes TQ-Graph a novel solution to compute efficiently center-
piece sub-graphs on large graphs.

While Orthogonal Query Recommendation differs from previous ap-
proaches in that we deliberately seek out queries that are only slightly
similar to the user’s original query. In this way, we avoid the pitfall of
recommending queries that are simple reformulations of the original, as
this would do very little to bring the user closer to their informational
need if the original query was poorly formed or has few results as is the
case with long tail queries. Focusing on cache data allow the Orthogonal
Query Recommendation to be highly efficient.

43

4.3 The TQ-Graph Model

Let Q = 〈q1, . . . , qn〉 be a query log, i.e., a set of queries each annotated
with an anonymized userid and timestamp representing when the query
has been submitted.

TQ-Graph is a digraph G = (V,E) with vertices V and arcs E defined
as follows. Let T be the set of all the distinct terms appearing in queries
of Q. V contains a node for each term t ∈ T and for each query q ∈ Q. In
particular, let VT be the set of Term nodes and VQ be the set Query nodes,
then V = VT ∪ VQ. Likewise, E is the union of two different sets of arcs
EQ and ETQ. Arcs in EQ are defined as in QFG [4] and connect only
nodes in VQ. ETQ contains arcs (t, q) where t ∈ T is a term contained
in query q ∈ Q. Finally, let w : E → (0..1] be a weighting function as-
signing to each arc (u, v) ∈ E a value w(u, v) defined as follows. For arcs

(t, q) ∈ ETQ, w(t,q)=1
d

where d is the number of distinct queries in which
the t occurs, i.e., the number of outlinks of t. For arcs (q, q′) ∈ EQ we
follow QFG weighting scheme. In the original QFG paper, Boldi et al. [4]
describe two distinct weighting schemes, namely chaining probability and
relative frequencies. In the case of arc weighting it has been shown that
chaining probability is the most effective scheme. Therefore, we resort to
chaining probability for arcs in EQ. To estimate such chaining probabil-
ity, we extract for each arc (q, q′) ∈ EQ a set of features. Such features
are aggregated over all sessions in which queries q and q′ appear consec-
utively and in this order. Finally, the chaining probability is computed
by using logistic regression. Noisy arcs, i.e., arcs having a probability
of being traversed lower than a minimum threshold value, are removed.
In other words, query reformulations that are not likely to be made are
not considered. For further details regarding the features and the model,
we refer to the original work of Boldi et al. [4]. In particular, we have
used the settings suggested in the original paper [4] for the values of the
various parameters involved in QFG building.

4.3.1 Query Suggestion Method

Given our TQ-Graph G, the query suggestions for an incoming query
q composed of terms {t1, . . . tm} ⊆ T are generated from G by extract-
ing the center-piece subgraph [5] starting from the m Term nodes corre-
sponding to terms t1, . . . , tm. Given a directed graph and m of its nodes,
the center-piece subgraph is informally defined as a small subgraph that
best captures the connections between the m nodes. In our case the

44

center-piece subgraph represent the set of queries that better represent
terms of the original query q. It is important to point out, here, the fol-
lowing important fact: in order to build a center-piece subgraph from q is not
necessary that q is contained in the TQ-Graph.

The center-piece subgraph for a query q composed of terms
{t1, . . . tm} ⊆ T is obtained by performing a Random Walk with Restart
(RWR) from each one of the m term nodes corresponding to terms in q.
The resulting m stationary distributions are then multiplied component-
wise. More formally, given an incoming query q = {t1, . . . , tm} we com-
pute m RWRs from the m query-terms of q to obtain m vectors of sta-
tionary distribution rt1 , . . . , rtm . Then, we compute the Hadamard (i.e.,
component-wise) product of the m vectors rt1 ◦rt2 ◦ . . .◦rtm to obtain the
final scoring vector rq . Following the definition of Hadamard product,

the i-th component of rq , i.e. rq (i), is given by rq (i) =
m
∏

j=1

rtj (i). Since

each dimension of r corresponds to a query in Q, the TQ-Graph rec-
ommendation algorithm suggests the k queries having the k highest
scores, where k is a parameter determining the maximum number of
recommendations we want to show for each query. The reason for re-
sorting to the product of the entries (namely, Center-piece) instead of
their sum (namely, Personalized PageRank) is that we are interested in
discovering queries that are “strongly” related to “most of the terms” in
the starting query instead of queries that are highly related even to just
few of them1 It is also worth being remarked that, while Personalized
PageRank could have been computed directly on the QFG, computing
the center-piece subgraph related to the query terms can be done only
on the TQ-Graph. Computing center-piece starting from the queries in
QFGcontaining those terms, in fact, would prevent those queries them-
selves to be returned as suggestions. Obviously, this is not the case for
the QFG-based model.

The following toy example shows how suggestions are computed us-
ing the center-piece-based TQ-Graph model. Consider a query log con-
taining only two queries, q1, q2, made up from a vocabulary of three
terms, t1, t2, t3. Suppose that the RWR procedure described above leads
to the following three stationary distributions: rt1 = [0.9, 0.1]; rt2 =
[0.3, 0.5]; rt3 = [0.09, 0.91]. Finally, let k be equal to 1. According to this
model, when a user submits a query containing terms (t1, t3) the system
would compute the vector of scores rq = [0.081, 0.091]. Thus q2, i.e., the

1For the sake of completeness, a comparison of the suggestions produced by RWR from
query nodes containing term queries and our TQ-Graph-based model is discussed in Sec-
tion 4.4.

45

top-1 center-piece subgraph, would be chosen as suggestion since, in this
case, its score is greater than q1 score.

4.4 The TQ-Graph Effectiveness

Ideally, a recommendation model has to produce high quality recom-
mendations for the largest number of queries possible. The fraction of
queries for which a method is able to generate recommendations, hence-
forth referred to as coverage, is of paramount importance in order to sat-
isfy as much users requests as possible. It turns out that coverage is one
of the major weak points of previously proposed solutions. As we shall
see in the following our method is extremely robust w.r.t. this problem,
and it is able to generate (useful) recommendations for a very large frac-
tion of users’ queries.

Unfortunately, defining and measuring quality of recommendations
is not an easy task. It turns out to be, in fact, a subjective matter, usu-
ally measured on the basis of user-studies comparing a given method
with some baselines. Following the prevailing custom, we will rely on
an extensive user-study to assess effectiveness. Finally, to let the reader
to appreciate the quality of our methods, we will discuss some anecdotal
evidences on a small set of user-queries.

Query logs. We use two different query logs coming from two popular
web search engines, namely Yahoo! and MSN.

• Yahoo! query log consists of approximately 600 millions of
anonymized queries sampled from Yahoo! USA queries sub-
mitted within a short period of time in spring 2010. The TQ-
Graph built on the Yahoo! log consists of 6, 261, 105 term nodes
and 28, 763, 637 query nodes. The number of term-query arcs is
83, 808, 761 whereas the number of arcs between query nodes is
56, 250, 874.

• MSN is the Search Spring 2006 Query Log, released in the context
of the 2009 Workshop on Web Search Click Data2, containing ap-
proximately 15 millions queries from the USA search volume. The
TQ-Graph built on this log consists of 2, 014, 547 term nodes and
6, 488, 713 query nodes, 19, 740, 312 term-query arcs, and 5, 051, 843
query-query arcs.

2http://research.microsoft.com/en-us/um/people/nickcr/wscd09/

46

http://research.microsoft.com/en-us/um/people/nickcr/wscd09/

Yahoo! MSN
#queries 580, 797, 850 14, 899, 247
#terms 1, 343, 988, 549 35, 697, 149
|VQ| 28, 763, 637 6, 488, 713
|VT | 6, 261, 105 2, 014, 547
dang. 14.5% 35.2%
|ETQ| 83, 808, 761 19, 740, 312
|EQ| 56, 250, 874 5, 051, 843

dTQ 13.38 9.79

dQ 1.95 0.77
#queries freq = 1 162, 221, 967 5, 099, 145
#terms freq = 1 4, 992, 180 1, 633, 729

Table 4.1: Statistics of the two query logs and TQ-Graphs. Total number
of queries and terms. Number of query nodes and term nodes. Per-
centage of dangling nodes. Number of arcs from terms to queries and
from queries to queries, and corresponding average degrees. Number of
queries and terms with frequency 1.

Table 4.1 reports some statistics on the two TQ-Graphs.

On coverage. Before describing recommendation effectiveness we dis-
cuss query coverage. As we have discussed before, the main advantage
of our proposal over the state of the art, is the capability of providing
useful recommendations also for “difficult” queries (i.e., rare or never-
seen-before). Let us recall that, in order to produce recommendations for
a given query, our method needs all the terms contained in the query
to belong to the TQ-Graph. Or in other terms, our model fails to give a
recommendation only when it receive a never-seen-before term. While
unique queries are quite frequent, unique terms are not. For instance, out
of the 580.8 million of queries contained in the Yahoo! query log about
162.2 million of them are unique, in the same log the number of unique
term is, instead, 5.1 million (see Table 4.1). Therefore, on this query log
the coverage of our model is more than 99%, while the maximum cover-
age of QFG is 73% (i.e. the percentage of repeated queries).

User-study. Having pointed out the almost perfect coverage of our
method, we next focus on evaluating the quality of the recommenda-
tions produced, evaluated by conducting a user-study. As a baseline for
comparison we used recommendations provided by the state-of-the-art
method QFG. To produce recommendations from the QFG we follow the

47

method presented in [110]: recommendations are based on the probabil-
ity of being at a certain node after performing a random walk over the
QFG. This random walk starts at the node corresponding to the input
query. At each step, the random walker either remains in the same node
with probability 0.9, or follows one of the out-links with probability 0.1.
in the latter case the links are followed with probability proportional to
w(i, j).

The user study was conducted on two different sets of queries. The
first one is the composed by the 50 queries of the standard TREC Web
diversification track testbed3 that we use for the MSN query log. The
second is a set of 100 queries randomly chosen from the Yahoo! query
log. Figure 4.1 reports the distribution of the frequency of the queries
in the two sets in the corresponding query log. We can observe that 8
queries in the TREC testbed do not appear at all in the MSN query log.
The assessment was conducted by a group of 10 assessors (researchers
not working on related topics). To reduce the load on our assessors we
conducted only two, out of the four (2 query logs × 2 testbeds) possi-
ble user-studies. In particular we pair the Yahoo! set of queries up with
the TQ-Graph and QFG models built over the same log (obviously the
queries were randomly drawn by a portion of the log not used to build
the suggestion models). Whereas, we pair TREC queries up with the
models built on the MSN query log. In fact, the period from which TREC
topics come, is close to the period in which MSN queries were collected.

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50

F
re

qu
en

cy
 o

n
M

S
N

Query TREC

 1

 10

 100

 0 20 40 60 80 100

F
re

qu
en

cy
 o

n
Y

ah
oo

Random Queries

Figure 4.1: Frequency in the corresponding log of all the queries in the
two testbeds.

We generated the top-5 recommendations for each query by using
both the QFG and the TQ-Graph-based method with different parame-
ters setting. Using a web interface each assessor was presented a ran-

3http://trec.nist.gov/data/web09.html

48

http://trec.nist.gov/data/web09.html

TREC on MSN useful somewhat not useful
α = 0.9 57% 16% 27%
α = 0.5 32% 13% 55%
α = 0.1 22% 12% 66%

100 queries on Yahoo! useful somewhat not useful
α = 0.9 48% 11% 41%
α = 0.5 41% 20% 39%
α = 0.1 37% 20% 43%

Table 4.2: TQ-Graph effectiveness on the two different set of queries and
query logs, by varying α.

TREC on MSN useful somewhat not useful
TQ-Graph α = 0.9 57% 16% 27%
QFG 50% 9% 41%

100 queries on Yahoo! useful somewhat not useful
TQ-Graph α = 0.9 48% 11% 41%
QFG 23% 10% 67%

Table 4.3: TQ-Graph and QFG effectiveness on the two different testbeds.

dom query followed by the list of all the different recommendations pro-
duced. Recommendations were presented shuffled, in order for the as-
sessor to not be able to distinguish which system produced them. We
give assessors the possibility to observe the search engine results for the
original query and the recommended query that was being evaluated.
The assessor was asked to rate a recommendation using one of the fol-
lowing scores: useful, somewhat useful, and not useful4.

In first instance we evaluate the impact of the α parameter (we recall
here that α is the restart value of the RWR, from each term of the query
to be recommended). Table 4.2 shows the effectiveness of our method
when varying α among three different values α = 0.1, 0.5, 0.9. Results

4The following very broad instruction was given to assessors: A useful recommendation
is a query such that, if the user submits it to the search engine, it provides new results that were not
available using the original query, and that agree with the inferred user intent of the original query.
Of course there is a great deal of subjectivity in this assessment as the original intent is not
known by the assessor.

49

TREC on MSN (unseen) useful somewhat not useful
TQ-Graph α = 0.9 46% 10% 44%
QFG 0% 0% 100%

TREC on MSN (dangling) useful somewhat not useful
TQ-Graph α = 0.9 60% 30% 10%
QFG 0% 0% 100%

TREC on MSN (others) useful somewhat not useful
TQ-Graph α = 0.9 59% 17% 24%
QFG 61% 13% 26%

Table 4.4: User study results on unseen, dangling and others queries.

show that the best quality is achieved when α = 0.9. Table 4.3 reports
the results of the user study comparing effectiveness of the TQ-Graph-
based and QFG-based recommendations. TQ-Graph-based recommen-
dations are globally of higher quality than QFG-based ones. We further
investigate (see Table 4.4) the effectiveness of our method with respect to
three different classes of MSN queries: unseen, dangling, and others. A
query is unseen if it does not appear in the training query log. A query
is dangling if its corresponding node in the QFG has no outgoing edges.
The remaining queries belong to the class others. We observe that QFG
is unable to provide suggestions for queries in the first two classes while
our method provides suggestions of high quality. The two methods have
almost the same quality for the third class of queries. A similar behavior
has been observed in Yahoo! query log. We do not report the results due
to space limitations.5

Anecdotal evidence. We next show an example of query recommenda-
tions. The query “lower heart rate” is one among the eight from the TREC
testbed that does not appear at all in the MSN query log. Table 4.5 report
the top 5 recommendations both using our TQ-Graph model and using
RWR6.

We can observe that all the top-5 suggestions can be considered per-
tinent to the initial topic. Moreover, even if this is not an objective in

5We observe that results in Table 4.3 and Table 4.4 are consistent because we considered
as not useful the cases in which a method is not able to provide any suggestion.

6RWR corresponds to summing the entries of score vectors instead of computing the
Hadamard product.

50

Query: lower heart rate

TQ-Graph Suggestions RWR Suggestions

things to lower heart rate broken heart
lower heart rate through exercise prime rate
accelerated heart rate and pregnant exchange rate
web md bank rate
heart problems currency exchange rate

Table 4.5: Top-5 query suggestions for lower heart rate.

this Chapter, they present some diversity: the first two are how-to queries,
while the last three are queries related to finding information w.r.t. pos-
sible problems (with one very specific for pregnant women). The most
interesting recommendation is probably “web md”, which makes perfect
sense (WebMD.com is a web site devoted to provide health and medical
news and information), and has a large edit distance from the original
query. Recommendations produced by RWR are not relevant due to the
effect we point out in Section 4.3.

4.5 The TQ-Graph Efficiency

Since query suggestions have to be served online, a query recommender
must compute them efficiently, possibly in real-time. In this section we
introduce some novel techniques allowing the efficient generation of rec-
ommendations at query time. Such techniques are peculiar of the TQ-
Graph as they can only be achieved thanks to the term-centric perspec-
tive.

We recall that given an incoming query q, the generation of sugges-
tions requires to compute RWRs on the TQ-Graph from the nodes associ-
ated with the terms occurring in the query. For each term t, the stationary
probability distribution resulting from the RWR is represented by a vec-
tor rt that scores queries in Q according to the probability of reaching
them in a random walk on the TQ-Graph starting from t. As discussed
in Section 4.3, given an incoming query q = {t1, . . . , tm}, our recom-
mender system returns the k queries having the largest probabilities in
the Hadamard product

∏m
i=1 rti .

Before introducing our optimized solution we want to point out the
major drawbacks of the two trivial approaches that can be used for com-

51

��

���

���

���

���

���

���

�	�

�� ����� ������ ������ ������

�
�
�
�
��
�
�
��
��
�
��
�
��
���
��
��

������������������

���� ��������

�!"!��#�$�
�!"!��#�$�
�!"!��#�$%

��

���

���

���

���

���

���

�	�

�� �� ��
� ��� ��� ��� ��� �
� ���

�
�
�

�
�
��

�
�
��

��
�
��

�
��

���
�

��

���������������������

����� �!�������

�"#"��$�%�
�"#"��$�%�
�"#"��$�%&

Figure 4.2: Dissimilarity (in percentage) for the top-5 suggestions as a
function of the pruning threshold p, measured on the MSN (top) and
Yahoo! (bottom) query logs. The curves refer to different values of the
parameter α used in the RWR.

puting suggestions using our model.

The most trivial approach consists in simply computing the RWR on
the TQ-Graph for each term ti in the incoming query as it arrives, and in
multiplying the resulting stationary distributions.

The second (less) trivial approach, instead, provides to store the pre-
computed stationary distributions for all the terms appearing in T . To
improve efficiency, we can resort to use an index on which the stationary
distribution of the random walks for terms in T are stored as lists of post-

52

ings, where each posting is given by the identifier of the query (queryID),
along with its probability. Recommendations for an incoming query are
then computed by processing the posting lists associated with the terms
composing the query.

Both approaches suffer from crucial time or space inefficiencies. The
former approach requires Ω(m · (|E| + |Q|)) time for each suggestion,
thus making it unusable in any online recommender system. As far as
the latter approach is concerned, it has its main drawback in the space
occupancy. Indeed, the algorithm for computing recommendations is
significantly simpler and its time complexity is lower (i.e., O(m · |Q|)).
Storing all the stationary distributions requires to store |T | different vec-
tors of |Q| entries each (namely, the ith entry of each vector is the proba-
bility of the i-th query in the stationary distribution of a term). The space
required to store these |T | · |Q| entries is unfortunately prohibitive even
for quite small query logs. For example, we notice that using such a ap-
proach for the TQ-Graph built over the relatively small MSN query log
would ask to store a total of 13× 1012 entries which is clearly not feasible
in any real system.

In the following we show how the two above-mentioned drawbacks
can be avoided by using three different optimizations, namely pruning,
bucketing, and compression. The goal is to sensibly reduce space require-
ments, thus making our query suggestion method viable.

Pruning Lists. In order to reduce the space occupancy of the latter ap-
proach we consider to prune unnecessary entries in each list. The idea
is to store only the probabilities of the top-p entries of each stationary
distribution, where p is a user defined threshold. In this way we require
to store p entries per term instead of |Q|.7 The total number of entries to
be stored becomes thus p · |T |, with a large saving in space occupancy
when p ≪ |Q|. Obviously, this pruning phase comes at the price of in-
troducing errors in the scores computed by the recommender. Assume
that the k suggestions for a query q = {t1, t2, . . . , tm} are the queries
q1, q2, . . . , qk. The pruning phase introduces an error whenever one of
these top-k queries has been pruned in the list of at least one of the terms
ti ∈ q.

We evaluated experimentally the effects of pruning, and report in Fig-
ure 4.2 the results of these tests. In particular we measured the average
dissimilarities for the top-5 suggestions returned before and after prun-
ing, by varying the number p of entries maintained for each term. Given

7The probability of a pruned query is assumed to be 0.

53

two set A and B of size k, the dissimilarity among A and B is defined

as 1 − |A∩B|
k

. This experiment has been repeated by varying also the pa-
rameter α used in the RWR. In both cases the largest loss is obtained for
RWR α = 0.9. This is due to the fact that with this value of restart the
most probable queries for a term are more likely to differ from the ones of
other terms. This increases the chances for a query to be evicted from the
list of at least a term of the user query. However, the experiments con-
ducted show that relatively small values of p lead to a average similarity
larger than 95% between the sets of top-5 results.

For example, it is possible to preserve the correctness of 97, 6% of the
top-5 results by setting p = 20, 000 on the MSN query log. Note that
on MSN 20, 000 queries account for only 0.67% of the total number of
queries |Q| present in the log. For Yahoo! query log we can instead pre-
serve 95.40% of the results by setting p = 100, 000. In this case the num-
ber of non pruned queries is just 0.34% of |Q|. These figures show that
about 97% of the queries in each list can be safely pruned away with-
out remarkably affecting the quality of results. This phenomenon can
be explained by observing that usually the terms in the user queries are
highly related to each other. Thus, it should be not surprising that rel-
evant queries have relatively high probabilities in the lists of all these
terms.

Table 4.6 shows some figures related to the percentage of dissimilar-
ity measured for some values of p on the two query logs. The average
dissimilarity after pruning for the top-5 suggestions returned for all the
queries in our testbeds, is computed by considering only those recom-
mendations that have been deemed to be sufficiently good by assessors
in the user study (namely, recommendations having been classified as
useful or somewhat useful by at least an assessor). Dissimilarity, in per-
cent, due to pruning for the whole lists of the top-5 recommendations is
indicated between parenthesis.

As far as the space occupancy is concerned, we recall that the list of
each term is formed by a pair of values, for each of the p most probable
queries, i.e., the queryID and its probability. We represent each list in
the form of a posting list. Firstly, we sort pairs by increasing queryIDs.
Then, we encode differences between consecutive queryIDs by resorting
to the well-known Elias’ Delta coding (see [119] and references therein
for more details on integers encoding methods). Finally, we encode the
probability of each query in a fixed-length field of 8 bytes. The average
number of bits required to store each pair ranges from 69 to 74 bits de-
pending on the value of p. Complete experimental results are reported

54

MSN query log

p RWR α = 0.1 RWR α = 0.5 RWR α = 0.9
5, 000 1.18 (0.40) 5.31 (3.60) 13.66 (20.80)

10, 000 1.18 (0.40) 1.77 (0.80) 7.10 (9.60)

15, 000 1.18 (0.40) 1.77 (0.80) 6.01 (5.20)

20, 000 1.18 (0.40) 1.77 (0.80) 3.28 (2.40)

100, 000 1.18 (0.40) 0.88 (0.80) 0.00 (0.00)

200, 000 1.18 (0.40) 0.00 (0.80) 0.00 (0.00)

Yahoo! query log

p RWR α = 0.1 RWR α = 0.5 RWR α = 0.9
5, 000 21.75 (31.40) 24.26 (31.80) 25.08 (31.60)

10, 000 15.09 (25, 00) 18.69 (26.20) 18.31 (25.40)

15, 000 11.93 (20.80) 15.74 (22.40) 14.58 (21.20)

20, 000 11.23 (18.20) 13.77 (20.00) 13.22 (20.00)

100, 000 1.05 (1.80) 2.30 (3.00) 2.37 (4.60)

200, 000 1.05 (1.60) 1.64 (2.20) 1.36 (2.60)

Table 4.6: Average dissimilarity (in percentage) between the sets of top-5
suggestions computed with or without pruning as a function of p. The
same measure computed by restricting to suggestions that have been
considered “useful” or “somewhat useful” is reported between paren-
thesis.

in parenthesis in Table 4.5. We observe that the larger the value of p, the
denser are the lists for each term. This implies that gaps between queries
IDs become smaller and, thus, each pair is more effectively encodable.

Approximating Probabilities. The above method allow to build a index
of terms’ RWRs, where the pruned list of queries for each term is coded
as a postings list. The size of this index is used as baseline to assess the
effectiveness of our more sophisticated solution that relies on approxima-
tions. We observed that the previous method spends most of its space in
storing the probability rt(q) for each query q in the stationary distribution
rt. The idea is thus that of approximating each probability by a bucketing
schema in a way that still preserves roughly indications of its magnitude.
We start by choosing a parameter ǫ which is a real value in (0, 1). We di-
vide the query IDs in the list of a particular term t in buckets based on
their probabilities. Let s be the smallest probability in the list. We have l
buckets B0, B1, . . ., Bl−1 where ǫl−1 ≤ s < ǫl. The i-th bucket Bi contains

55

MSN query log

p RWR α = 0.1 RWR α = 0.5 RWR α = 0.9
5, 000 19.21 (73.63) 17.34 (73.98) 15.81 (73.71)

10, 000 18.32 (73.31) 17.15 (73.44) 16.08 (73.44)

15, 000 17.99 (73.16) 17.17 (73.16) 16.23 (73.32)

20, 000 17.82 (73.03) 17.23 (72.96) 16.33 (73.21)

100, 000 15.84(71.39) 16.09(71.28) 16.34(71.15)

200, 000 15.43(70.22) 15.36(70.15) 15.21(70.05)

Yahoo! query log

p RWR α = 0.1 RWR α = 0.5 RWR α = 0.9
5, 000 16.25 (72.17) 15.26 (72.26) 13.67 (72.33)

10, 000 15.72 (71.43) 14.99 (71.54) 13.79 (71.63)

15, 000 15.54 (71.17) 14.96 (71.29) 13.99 (71.42)

20, 000 15.59 (71.03) 15.11 (71.17) 14.27 (71.32)

100, 000 16.55 (70.47) 16.42 (70.67) 16.16 (70.87)

200, 000 16.30 (69.94) 16.23 (70.12) 16.09 (70.30)

Table 4.7: Average bits per entry for our bucketing method (ǫ = 0.95) and
the baseline (between parenthesis) by varying p and α.

the IDs of the queries whose probabilities are in the range [ǫi, ǫi+1). The
approximated probability r̂t(q) of a query q in bucket Bi is approximated
with ǫi. This organization in buckets is particularly suitable for compres-
sion. In our scheme we sort queries IDs in each buckets, then we encode
gaps between consecutive queries in the same bucket. Finally, we en-
code the index and the cardinality of each bucket. For simplicity, all the
values have been encoded by resorting to Elias’ Delta coding. Different
choices are possible since the literature offers a great variety of different
solutions for these aims [119]. According to our schema, the decoding is
very simple: IDs of queries are obtained by decompressing each bucket,
while their probabilities are set to be equal to ǫi where i is the index of
the corresponding bucket.

By resorting to this bucketing technique, we are able to achieve high
levels of compression as shown in Figure 4.3. In this figure we re-
port the average number of bits per entry required by our method with
p = 20, 000, as a function of the values of ǫ and α. The number of bits
per entry ranges between 11 and 19. These figures are reported for the
MSN query log only since a very similar behavior was observed on the

56

 10

 12

 14

 16

 18

 20

 0 0.2 0.4 0.6 0.8 1

B
its

 p
er

 e
nt

ry

ε

MSN query log

 RWR α=0.1
 RWR α=0.5
 RWR α=0.9

Figure 4.3: Average bits per entry on the MSN query log as a function of
ǫ (p = 20, 000).

Yahoo! query log. Notice that the smaller the value of ǫ, the smaller is
the average number of bits per entry. This expected effect is due to the
fact that with smaller values of ǫ we obtain fewer different buckets which
are more dense. Thus, query IDs become more compressible. Table 4.5
compares the average number of bits per entry required by our schema
(ǫ = 0.95), with those required by the baseline (pruned lists without
bucketing). The comparison was made by using both the MSN and Ya-
hoo! query logs by varying p for three different values of α in the RWR.
The number of bits per entry for the baseline are reported between paren-
thesis. The table shows that our scheme is much more space-efficient
than the baseline (namely, each entry requires roughly 4 times less space).

Clearly, our bucketing scheme may introduce approximations on the
probabilities of each query. However, by construction, we are able to
precisely bound the highest possible level of approximation. The ap-
proximated probability of any query q is in fact at most ǫ−1 times larger
than its real probability (namely, rt(q) ≤ r̂t(q) < ǫ−1 · rt(q)). Thus, the
larger is the value of ǫ, the better are the guarantees on the resulting ap-
proximations. Since recommendations are computed by using these ap-
proximated probabilities, there may exist differences between the top-k
queries suggested by resorting to real probabilities and the ones obtained
with approximated probabilities. In other words, a query that is among
the top-k with real probabilities may be replaced by another query when

57

we resort to approximations. However, we can prove that this event hap-
pens only if the two queries have a very close product of (real) probabil-
ities. More formally, let q = {t1, t2, . . . , tm} be the user query and let q′

and q′′ be any pair of candidate queries. Assume that

rq′ =

m
∏

i=1

rti(q
′) >

m
∏

i=1

rti(q
′′) = r

′′
q .

Thus, q′ precedes q′′ in the ranking for query q computed via real prob-
abilities and, thus, q′ should be preferred to q′′. The relative order in the
ranking between q′ and q′′ computed via the approximated probabilities
differs if8

r̂q′ =

m
∏

i=1

r̂ti(q
′) ≤

m
∏

i=1

r̂ti(q
′′) = r̂q′′ .

Therefore, a change in the relative order of these two queries is possible
only if their products of probabilities are too close. More precisely, since
rq′ < r̂q′ , r̂q′ ≤ ǫ−m

rq′′ and rq′ > rq′′ , the relative order between q′ and q′′

cannot change whenever rq′ > ǫ−m
rq′′ . The quantity ǫ−m is sufficiently

small since the number of terms m in the input query is usually a value
between 2 and 3. For example, the average number of terms per query
in MSN query log is m = 2.40. Thus, it suffices that r̂(q′) > 1.131× r̂(q′′)
in order to preserve the relative order between q and q′′ with ǫ = 0.95.

Table 4.8 shows the percentage of dissimilarity achieved with prun-
ing and bucketing with respect to the original results computing consid-
ering the whole lists. Once more dissimilarity is computed for the top-5
results restricted to those recommendations that have been considered
sufficiently good in the user study discussed in Section 4.4. At the first
glance, we can see that the percentage of dissimilarity is remarkable. For
example, a percentage ranging between 47.12% and 28.14% of the useful
suggestions generated using the whole lists built from the Yahoo! query
log are lost due to pruning and approximation. We observe however,
that we are measuring exact differences in sets of results. This measure
might not actually capture the global quality of the set of suggestions
provided. It could happen in fact (and we will see that it often actually
happens), that a good query suggested by using the whole lists is evicted
by the set of suggestions due to pruning and bucketing to make place to
a different query of comparable quality. The differences in the probabili-
ties among the queries retrieved which are close to the fifth position, are

8In case of tails between products of probabilities one of the queries is preferred arbi-
trarily.

58

MSN query log

p RWR α = 0.1 RWR α = 0.5 RWR α = 0.9
5, 000 18.48 (8.47) 22.58 (14.11) 42.04 (40.32)

10, 000 17.39 (8.47) 20.97 (12.50) 39.49 (30.65)

15, 000 17.39 (8.47) 20.16 (12.10) 36.31 (25.40)

20, 000 17.39 (8.06) 18.55 (11.29) 33.12 (22.18)

100, 000 17.39 (8.06) 18.55 (11.29) 32.48 (21.77)

200, 000 17.39 (8.06) 18.55 (11.29) 32.48 (21.77)

Yahoo! query log

p RWR α = 0.1 RWR α = 0.5 RWR α = 0.9
5, 000 33.75 (40.30) 37.87 (42.22) 45.11 (47.12)

10, 000 27.76 (34.12) 32.84 (36.89) 40.23 (42.22)

15, 000 26.18 (31.13) 31.36 (34.33) 38.22 (39.23)

20, 000 23.97 (27.72) 28.70 (31.56) 37.07 (38.38)

100, 000 19.24 (17.48) 21.89 (20.26) 31.32 (28.78)

200, 000 19.24 (17.70) 21.30 (19.62) 31.90 (28.14)

Table 4.8: Average dissimilarity (in percentage) between the sets of top-5
suggestions computed by resorting or not to bucketing (with ǫ = 0.95)
as a function of p. The same measure computed by restricting to sug-
gestions that have been considered “useful” or “somewhat useful” is re-
ported between parenthesis.

in fact so small that our approximation could swap two queries having a
very similar probability. This has a negligible effect on the overall quality
of the suggestions provided, but it accounts for a 20% error according to
our metrics. In order to verify this hypothesis, we thus conducted a new
user study to evaluate the recommendations generated with the index
exploiting pruning (p = 5, 000; 20, 000; 200, 000) and bucketing (ǫ = 0.95).

Table 4.5 reports the results of this new user study, conducted exactly
as discussed in Section 4.4. By comparing the figures reported in Table 4.3
and 4.5, we can see that the quality of recommendations as judged by our
assessors does not change remarkably. The experiment confirms our hy-
pothesis: even if some of the lowest-ranked top-5 recommendations computed
on the whole RWRs lists are lacking in the set of recommendations generated by
using the pruned and approximated index, they are in most cases replaced with
queries of similar quality even according to human judgments.

59

MSN query log

p useful somewhat not useful
5, 000 56% 17% 27%

20, 000 55% 15% 30%

200, 000 55% 15% 30%

Yahoo! query log

p useful somewhat not useful
5, 000 46% 29% 25%

20, 000 47% 29% 24%

200, 000 46% 28% 26%

Table 4.9: Effectiveness of the suggestions provided with pruning and
bucketing as a function of p for ǫ = 0.95 and α = 0.9.

4.6 Scaling Up TQ-Graph Suggestion Building

To further improve query suggestion response time in the case even the
pruned and compressed index discussed above does not fit into the main
memory of the computer used for generating suggestion, we can exploit
caching to improve throughput and scalability. It is in fact worth remark-
ing that while query popularity changes significantly over time, the us-
age of terms in queries presents a higher temporal locality [120].

As we have discussed in the previous section, our index is accessed
by query terms. For each term t occurring in queries of the log, we have a
posting list consisting of p pairs of query IDs and (approximated) steady-
state probabilities of reaching such queries by performing a RWR from
t. At recommendation-generation time, the lists corresponding to each
term occurring in the incoming query are retrieved and their probabil-
ities multiplied. Therefore, in order to speed-up the recommendation
scoring phase we can adopt a cache to keep in memory a “working set”
of “likely-to-be-used” lists. Each entry of the cache stores p bucketed
queryIDs, and is accessed by using the associated term as the key. The
cache can be managed with a simple “Least Recently Used” (LRU) policy
consisting in replacing, when needed, the oldest list in the cache.

Experiments. In order to assess empirically the benefits of adopting such
a caching mechanism, we consider two portions of the query logs not
used to learn the TQ-Graph model. We extract from such portions the
queries and we sort them by timestamp. From each query we parse the

60

terms and we build the stream of term requests by keeping the order in-
duced by query timestamps. Each time a term t appears in the stream, we
check if the cache contains the associated list. If not we count a cache miss
and we store t and the associated posting list in the cache, possibly evict-
ing another entry according to the LRU policy. Three different values of
p = 5, 000, 20, 000, 200, 000 are considered in the experiments, while the
relative average bits per entry b are set as reported in Table 4.5. As in the
previous experiments the RWRs are computed by setting α = 0.9. The
number of entries fitting in a cache of s bits is thus given by s/(p · b).

��

���

���

���

���

���

���

�	�

�� �� �� �
 ��� ���

�
�
�
�
�
��
�
�
��
��
�
�
�
�
�
��
��
�

���������������

 �!�"#�$�%��

�&��������������'
��(����
��&��������������'���(����
���&��������������'���(����
�&������������	�'	��(����
��&������������	�'���(����
���&������������	�'���(����

��

���

���

���

���

����

�� �� �� �� ��� ���

	

��

��
�

��
��
�
�
�
�

��
��
�

����
����
�����

������� !
�"�#��

$%����
���
�����&�'�(����
��%����
���
�����&�'�(����

���%����
���
�����&�)�(����
$%����
���
���'�&���(����

��%����
���
���'�&���(����
���%����
���
���'�&���(����

Figure 4.4: Miss ratio of our cache as a function of its size for different
values of p. Results obtained on both the two query logs MSN (top) and
Yahoo! (down) are reported.

Results. Figure 4.4 shows the percentage of cache misses measured on

61

our LRU cache over the total number of requests. The first obvious ob-
servation is that bigger caches correspond to a smaller number of cache
misses. Indeed, the cache miss curve has an asymptotic trend allowing
us to estimate the most reasonable cache size for each query log.

For instance, in the case of the MSN query log, when p is equal to
5, 000 and the average bit per entry is 15.81, we are able to obtain a cache
miss ratio of 7.21% when the cache has a size of 4GB. On the other hand,
by doubling the size of the cache (from 4GB to 8GB) we obtain a miss
ratio of 6.20%, i.e., a decrease of just the 1.01%, a small gain if compared
to the higher cost of allocating a bigger cache size.

Similar results can be observed in the case of the Yahoo! query log
(> 1 billion terms) where almost 90% of the recommendations can be
computed (when p = 5, 000, and ǫ = 0.95.) in memory by using a “small”
8GB cache. These figures strengthen further our proposal that results to
be very scalable as it allows the fast generation of recommendations by
using an in-memory approach for the vast majority of queries.

4.7 The TQ-Graph Contributions and Draw-

backs

In the previous sections we have presented the TQ-Graph methods for
generating query suggestions. The TQ-Graph contributions are:

• A novel method for query recommendation based on center-piece
graph computation over the TQ-Graph model. Being term-centric,
our center-piece-based method does not suffer from the prob-
lem of sparsity of queries, being able to generate suggestions for
previously-unseen queries as far as terms have been previously
seen. Empirical assessment confirms that our method is able to
generate suggestions for the vast majority (i.e., 99%) of queries and
with a quality that is comparable to (and in some cases better than)
the state-of-the-art method based on Query Flow Graph.

• A term-centric perspective which allows us to provide a framework
enabling suggestions to be efficiently generated on the fly during
query processing. Infact, after having proved the effectiveness our
method, we are faced with its major but only apparent drawback:
any suggestion pass through the computation of the center-piece
subgraph from query terms. Given the very large size of the un-

62

derlying graph, this task is clearly unfeasible for any system claim-
ing to be real-time. We overcome to this limitation by introducing
a novel and efficient way to compute center-piece subgraphs. This
comes at the small cost of storing precomputed vectors that need to
be opportunely combined to obtain the final results. The data struc-
ture we use is inverted list-based and thus it is particularly suitable
for web search environments.

• An inverted-list-based data structure that is compressed by using a
lossy compression method able to reduce the space occupancy of the
uncompressed data structures by an average of 80%. Even if the
compression method is lossy, we have evaluated through a user
study the loss in terms of suggestion quality, and we have found
that this loss is negligible. Furthermore, a term-level caching is
exploited to enable scalable generation of query suggestions. Be-
ing term-based, caching is able to attain hit-ratios of approximately
95% with a reasonable footprint (i.e., few gigabytes of main mem-
ory.)

It should be noted that the last two research results, beyond enabling our
model to be real-time, represent a more general achievement for what
concerns the computation of center-piece subgraphs in very large graphs.

TQ-Graph is a query recommendation method that generate sugges-
tions based on the exact terms that composed the original query. How-
ever, when the query is sufficiently ill-posed, the user’s informational
need is best met using entirely different keywords, and a small perturba-
tion of the original result set is bound to fail. Interestingly, in this case,
the higher the query similarity used for the perturbation, the less likely
that the recommendation would succeed. In this remaining part of this
Chapter, we will present a new way of recommending query, namely, Or-
thogonal Query Recommenation. In this case we intentionally seek out
queries that have low similarity to the user’s original query. An orthog-
onal query can access the user’s informational need while consisting of
entirely different terms than the original query.

Orthogonal query recommendation is complementary to traditional
query recommendation and each technique may succeed when the other
fails. Traditional approaches explore adjacent meanings of the user’s
query, whereas orthogonal query recommendation considers relevant in-
terpretations that are more distant. While standard approaches to query
recommendation perturb the original result set, orthogonal query rec-
ommendation finds queries that have little intersection with the original

63

Figure 4.5: A graphical illustration of the difference between traditional
query recommendation and orthogonal query recommendation [2]. The
dots represent webpages. The oval represent the set of pages that are rel-
evant to the user’s needs. The pages containing the user’s keywords are
represented in the green, nearly-horizontal stab. Results sets using tra-
ditional query recommendation are shown using the dashed stabs. An
orthogonal result set is represented using the orange stab, appearing per-
pendicular to the original result set.

result set. See Figure 4.7 for an illustration. Orthogonal queries tap into
the space of relevant pages in a radically different way than is possible
through traditional query recommendation techniques, allowing them to
detect high quality pages that cannot be found by using previous tech-
niques. Observe that if the original query is sufficiently ill posed, no
small perturbation will succeed in capturing high value pages. In addi-
tion, an orthogonal query can access the user’s informational need while
consisting of keywords that are mostly distinct from those in the original
query.

In the following sections we will present the Orthogonal Query Rec-
ommendation model. Additionaly we will present a comparison among
different query recommendation techniques (including TQ-Graph and
Orthogonal Query Recommendation).

64

4.8 Orthogonal Queries

In this section we aim to define formally the Orthogonal Queries. In our
model, the objective of a search engine is to retrieve at least one highly
ranked page that is relevant to the user’s needs. The purpose of an or-
thogonal query is to satisfy the user’s information need when they are
not met by the original results.

Formally, let R denote the set of web-pages that are relevant to the
user’s needs. Let K denote the set of pages that contain the keywords
comprising the user’s query. Search engines rely on the existence of some
highly ranked pages in R ∩ K, since these would be the top results re-
turned to the user.

As such, the main limitation of the current approach to searching is its
restricted capacity to access pages in R. We introduce orthogonal queries
as a means of accessing R in a manner that is not as dependent on the
particular keyword choices made by the user.

We refer to K as a stab of R. An orthogonal stab is a set O such that O∩K
is small. In particular, we are interested in orthogonal stabs so that R∩O

contains some highly ranked pages. See Figure 4.6 for an illustration.
Orthogonal results denote pages in O that do no occur in K.

Orthogonal queries and their results may be useful when R ∩ K is
unsatisfactory; for instance when R ∩K does not contain enough highly
ranked pages. Orthogonal query recommendation is also useful when
the top results in R ∩ K address the same interpretation of the user’s
query, allowing orthogonal queries to capture alternative interpretations.
Orthogonal queries and their results may satisfy the user information
needs on poorly formulated queries, by going beyond the scope of the
provided keywords. These results are also able to provide relevant in-
formation that is entirely new to the user, where the user could not have
searched for it directly.

Now the challenge is to find orthogonal queries in a computationally
efficient manner that prove useful in practice.

4.8.1 Finding Orthogonal Queries

Our orthogonal query recommendation technique relies on a measure of
similarity that goes beyond keyword comparisons, and is at the same
time computationally efficient so that the similarity score can be com-

65

Figure 4.6: Orthogonal queries [2] within our model of search result
evaluation: the dots represent web pages and the stars represent highly
ranked pages. Our goal is to detect a high quality page that satisfies the
user’s informational needs.

puted in real-time.

Let resultSet(p) denote the set of URLs returned by a search engine
on query p. The result overlap between queries p and q is,

resultOverlap(p, q) =
|resultSet(p) ∩ resultSet(q)|
|resultSet(p) ∪ resultSet(q)| .

See, for example, Balfe et al. [121].

We found that queries with a large result overlap score yield results
that are similar to the original query’s results, and thus do not address
alternative interpretations. We use the result overlap score to determine
when a query is orthogonal, and build a set of orthogonal queries for
recommendation.

Now we identify a precise range of result overlap, which we then use
to find orthogonal queries.

4.8.2 Identifying a Range of Result Overlap

In order to find a range of result overlap that leads to orthogonal queries,
we compare result overlap with a simple measure of query similarity, as
used in Balfe et al. [121].

66

Let the term overlap between queries p and q be

termOverlap(p, q) =
|terms(p) ∩ terms(q)|
|terms(p) ∪ terms(q)| .

We first provide a high level description of the relationship between
term overlap and result overlap, and discuss how this relationship en-
ables us to identify a range of result overlap that leads to orthogonal re-
sults. We then proceed with a more in-depth comparison of term overlap
and result overlap and show how we obtain the desired range.

Very high values of result overlap tend to indicate that the queries
are composed of similar terms. The most similar queries are slight syn-
tactic variants composed of the same terms. For instance, the queries eu-
ropean+rabbit and European rabbit have result overlap 0.575. As our al-
gorithm compares the top 100 results from both queries, a result over-
lap score of 0.575 indicates that 73 of the top 100 results match. Queries
that are word permutations of each other, as in lyrics office space and of-
fice space lyrics also have a high result overlap score, in this case 0.4084.
Many other queries with high result overlap score often have significant
overlap in their term bags.

When both the result overlap and term overlap scores are high, incor-
porating highly ranked results from such a query into the original result
set does not significantly alter the original result set. In particular, the
added pages will address the same interpretation of the query as the re-
sults for the original query. In our effort to find pages that satisfy the
needs of users when their informational needs are not met by the orig-
inal highly ranked results, we look for similar queries (according to the
result overlap score) that includes entirely different keywords.

Indeed, the most interesting results occur at a low range of result
overlap. Surprisingly, we did not find an instance where two queries
have result overlap beyond score 0.01 and yet are semantically dissimi-
lar.

The result overlap measure of query similarity can detect seman-
tic similarity when there are no common terms, without the use of
complicated natural language processing techniques. For example, the
queries students with reading difficulties and dyslexia help have result over-
lap 0.0102, and car-price and bluebook cars have a 0.06 result overlap.
A surprising relationship was caught in the comparison of the queries
Daisy Duke and “Catherine Bach" with a result overlap value of 0.02. Fur-

67

ther investigation revealed that Catherine Bach played character Daisy
Duke in The Dukes of Hazard, as already mentioned in the Introduction.

Query 1 Query 2 T.O. R.O.
european+rabbit European rabbit 1 0.575
lyrics office space office space lyrics 1 0.4084
car-price bluebook cars 0 0.06
DISCOUNT TRAVEL cheap airfares 0 0.105
Daisy Duke “catherine Bach" 0 0.02

Table 4.10: Examples of query pairs and their Term Overlap (T.O.) and
Result Overlap (R.O.) scores.

4.8.3 Finding Interesting Orthogonal Queries

Now we perform a more formal comparison of result overlap with term
overlap in order to identify the most appropriate range of result overlap
for finding orthogonal queries. For this we compute the result overlap
and term overlap scores for each distinct pair of queries in a query log of
5,000 entries. We computed term overlap while ignoring very common
stop words (such as “a” and “the”), otherwise many dissimilar pairs of
queries would have high term overlap. In addition, we reduce all letters
to lower case, and treat words as sequences of alpha-numerical charac-
ters (i.e., then european+rabbit and European rabbit have term overlap 1.)

The Pearson correlation coefficient between result overlap and aver-
age term overlap is 0.567, indicating significant positive correlation. Fig-
ure 4.7 shows result overlap values in the range (0, 1] and (0, 0.2] with
the corresponding average term overlap values. The lines in Figure 4.7
represent a moving average with a period of two, and a Bézier curve of
degree n [3]. We also report the standard deviation of term overlap for
each result overlap. Since we were using a real query log, it is not sur-
prising that the number of queries decreases as result overlap increases.

We obtain further evidence of the positive correlation between the
two measures of similarity by looking at term overlap versus average re-
sult overlap. The Pearson correlation coefficient between them reveals a
strong positive correlation of 0.686. Figure 4.8 shows term overlap values
with the corresponding average result overlap values in the range (0, 1]
and (0, 0.2], similarly to the previous figure.

We would like to identify a range of result overlap where term over-

68

��

����

����

����

����

����

���	

���

����

����

��

�
�
��

�
�
��

�
��

��
�
�
��
�
�

������
������������������������ �

�!�"����#$�����%�&����������

����
����
����

���� ���� ���� ���� ���� ���	 ���
 ���� ���� ��

�

'��$����������

��

����

����

����

����

����

���	

���

����

����

��

�
�
��

�
�
��

�
��

��
�
�
��
�
�

������
������������������������ �

�!�"����#$�����%�&����������

����
����
����

����� ����� ����	 ����� ���� ����� ����� ����	 ����� ����

�

'��$����������

Figure 4.7: Result overlap versus average term overlap in a query log of
5, 000 queries. At the right we show the result overlap values in the range
(0, 1], while at the left the result overlap values in the range (0, 0.2]. The
lines represents the moving average of period two, and the Bézier curve
of degree 352 [3]. We also show the standard deviation σ. The graphs
show a positive correlation between result and term overlap.[2]

lap is low. Most queries have very few terms. In a study of 100 million
internet users, it was found that over 82% of search queries consist of 4
or fewer terms [122]. A term overlap score below 0.333, on two queries of
length at most 4, indicates that the queries overlap on at most one term.
With the goal of introducing as little noise as possible, and only present-
ing those results that are most likely to be orthogonal to, and not similar
to, the results of the original query, we want to avoid having large term
overlap. To this end, we set a threshold so that we expect to have at most

69

����

����

����

����

����

���	

���

����

����

��

�
�
��

�
�
��

�
�
�
��
��

�
�
��
�
�

������
������������������������ �
�!�"����#������$�%�������	�

����
����
����

���� ���� ���� ���� ���� ���	 ���
 ���� ���� ��

�

&��'��������

�����

�����

�����

�����

����

�����

�����

�����

�����

����

	

�
�

�
�
��

�
�
�
��
��

�
��

�

������
���
����	
����������������
�����������
��� �!������"��

����
����
���"

���� ���� ���" ���� ���# ���� ���$ ���� ���% ��

�

&��'��
����

Figure 4.8: Term overlap versus average result overlap in a query log of
5, 000 queries. At the right we show the average result overlap values in
the range (0, 1], while at the left the values in the range (0, 0.2]. The lines
represents the moving average of period two, and the Bézier curve of
degree 36 [3]. We also show the standard deviation σ. The graphs show
a positive correlation between results and term overlap.[2]

one overlapping term.

Taking into account the size of the Web, and thus the number of pos-
sibilities of the first 100 results, a non-zero result overlap is actually very
meaningful. Indeed, the probability of a false match can be estimated in
the range of 10−5 to 10−9. We found that in practice a non-zero result
overlap score in most cases represents some semantic similarity.

We would also like the queries to have little term overlap, so that the

70

corresponding result set is orthogonal. Thus, we would like the term
overlap to be below 0.333. Figure 4.7 (right) shows that until result over-
lap of 0.06, the running average is dominantly below 0.333.

Hence, we chose to use queries with a result overlap score in the range
(0, 0.06] to find interesting orthogonal queries.

Note that this threshold depends on the data set and should tuned
for each search engine depending on the query stream.

4.8.4 Algorithm

To find orthogonal queries we use result overlap scores to compute query
similarity between an incoming query and all queries currently in the
cache. As discussed in the previous subsection, we have determined that
a result overlap similarity score in the interval (0, 0.06] is most beneficial
for finding orthogonal queries. Thus, we say that query A is orthogonal to
query B if its result overlap similarity score is within this range. Given
a user’s query, A, we construct the set of all such orthogonal B from the
cache.

By using the cache, our algorithm is only looking at queries that have
been run within the recent past. This gives our algorithm two desirable
properties. First, it can be computed online and efficiently while queries
are being executed. We would not be able to compute similarity scores
and present results for incoming queries if we had to run our algorithm
over all previously seen queries. Second, and perhaps more importantly,
our algorithm reacts to temporal changes in users’ query habits. If users
are currently interested in searching for “Michael Jackson died”, instead
of “Michael Jackson thriller”, the orthogonal queries will reflect this fact.

4.9 Effectiveness of Orthogonal Query Recom-

mendation

In this section we aim to evaluate the effectiveness of Orthogonal Query
Recommendation algorithm with respect to others by using a large query
log. Our idea is to use the sessions extracted from a query log for the
evaluation purpose, where a session is a sequence of queries q1, q2, ..., qn
submitted by a user, in a fixed amount of time t, which we will vary.

To the best of our knowledge, this is the first time that a large scale

71

analysis has been performed to evaluate the effectiveness of query rec-
ommendation algorithms9. In fact, while the use of a large scale query
log has been widely proposed for training purposes, evaluation is usu-
ally done based on user evaluated judgments. We generated 6.4 million
of query recommendations for evaluation purposes, with more than 1.8
million of them for the comparison itself.

We will proceed by describing our data set, the experimental setup,
the best cache policy, and the effectiveness of orthogonal query recom-
mendation when compared with other state-of-the-art query recommen-
dation algorithms.

4.9.1 Experimental Setup

We used a large search engine query log containing approximately 22
million queries from the USA. We used 80% of the query log for training
purposes and the rest for testing. In particular, we sessionized the testing
set by using four different values for t = 1, 10, 20, and 30 minutes. We
then consider only the satisfied sessions with retype, where the last query
of the session, qn, is the only query that has received a click, and n ≥ 2
(i.e. the first query of the session wasn’t satisfactory). Furthermore, we
removed sessions where qn is not present in the training set. Table 4.11
reports more detailed statistics of the query log.

Number of queries 21, 562, 727
Number of queries with frequency = 1 4, 467, 362
Test corpus - number of queries 4, 312, 545
Training corpus - number of queries 17, 250, 182
Number of unique URL downloaded 34, 228, 300
Test Session of 1 min S-1min 99, 833
Test Session of 10 min S-10min 157, 747
Test Session of 20 min S-20min 170, 720
Test Session of 30 min S-30min 177, 183

Table 4.11: Statistics of the query log.

The satisfied sessions with retype are interesting because they simulate
a real case where a user would need a recommendation. In fact, in this

9 [123, 108, 107] each propose an automated approach, but in practice the evaluation
was based on samples of a few hundred queries.

72

type of session, the user is initially unsatisfied by the url results of q1,
and consequently, s/he tries to find an alternative query 10 which ends
in a click. We based our evaluation methodology on predicting the last
query of the session. Predicting the exact last query by simply using
the first query of a session is very difficult. Consider that even a single
character variation between the recommended query and the last query
of a session will not be considered a useful recommendation.

For evaluation purposes, we adopted the average success at rank k ,
denoted S@k, which we define to be the probability of finding at least
one relevant query among the top-k recommended queries. Formally,
given a set of sessions S, a session q = (q1, q2, . . . , qn) ∈ S, and a set Rq of

recommended queries for q1, we define Sq@k =

{

1, if {qn} ∩Rq 6= ∅
0, if {qn} ∩Rq = ∅ ,

and with |Rq| = k, we define S@k =
∑

q∈S
Sq@k

|S| .

4.9.2 Orthogonal Query Cache Policy

Before describing the effectiveness of orthogonal recommendations, we
discuss our static cache policy. Our goal is to keep in the cache those
queries that could potentially be the final query of a satisfied session with
retype.

While other query recommendation algorithms could benefit from
the entire query log training set for recommendation purposes, orthogo-
nal query recommendation is based on a finite set of queries in the cache.
In other words, a query that is recommended by the orthogonal query
recommendation algorithm is, by definition, in the cache, while the other
recommendation algorithms could potentially recommend a query that
is chosen from among the entire training set. In this sense our technique
is at a disadvantage.

As we discussed in the experimental setup, we want to predict the last
query of a session. Formally, given a set of queries in cache C, a session
q = (q1, q2, . . . , qn) ∈ S, and a set Rq of recommended queries for q1, we
define a cache hit if qn ∈ C, and a cache miss otherwise. We selected four
different features extracted from the query log: “query freshness", “query
frequency", “query click" and “last session query likelihood". Based on the

10Note that we did not implement a method for detecting whether the user’s intention
changes between q1 and qn, and so we did not evaluate these types of sessions in any
special manner.

73

MCQ Most Clicked Query
MFFQS Most Frequent Final Query in Session
MFQ Most Frequent Query
MRQ Most Recent Query
S-xmin Test session of x minutes.
CG Cover Graph
UF-IQF User Frequency-Inverse Query Frequency
OQ Orthogonal Query
SC Short Cuts
QFG Query Flow Graph

Table 4.12: Table of acronyms.

selected features, we define:

- MCQ (Most Clicked Query): The most clicked queries in the training
set are kept in the cache.

MFQ (Most Frequent Query): The most frequent queries in the train-
ing set are kept in the cache.

-- MFFQS (Most Frequent Final Query in Session): The query training
set is sessionized, and we select the final query of each session. We
keep those final queries that occur most often. Here we use sessions
with t = 30 minutes.

- MRQ (Most Recent Query): The most recent queries are kept in the
cache.

To avoid introducing queries into the cache that were not available
during the training of the baseline algorithms, we use only the training
data to determine the best cache policy. We used 80% of the training set
query log to fill the cache to a particular size based on each policy, and
we sessionized the remaining 20% for cache testing purposes.

We use many acronyms during the discussion that follows. For quick
reference, Table 4.12 contains a list.

Table 4.13 reports the normalized hit ratio for different cache policies
and session tests by using a cache size of 80, 000 query entries. The nor-
malization factor is obtained by considering the cache to have infinite

74

size. The cache policy with the highest hit ratio is MCQ. Thus, the prob-
ability of having the last session of a query in the cache is higher if we
adopt the MCQ policy.

S-1min S-10min S-20min S-30min
MCQ 55,59 56,98 57,56 57,85
MFQ 53, 08 54, 75 55, 35 55, 64
MFFQS 51, 00 52, 59 53, 12 53, 36
MRQ 34, 56 36, 27 36, 81 37, 08

Table 4.13: Last session query hits percentage, normalized by the max-
imum number of hits for each session with an infinite cache size. The
columns indicates different types of test sessions, and the rows are dif-
ferent techniques used to fill the cache.

��

���

���

���

���

����

������ ������� ���	���

�
�
�
���
�
�
��
��
�

���������������������

������������������������

�����
�� ��
�� ��
��!��

Figure 4.9: Percentage of S-30min query hits, normalized by the maxi-
mum number of hits reachable with a cache of infinite size.

Figure 4.9 shows the percentage of normalized query hits for different
types of cache policies with varied cache sizes. The larger the cache size,
the higher the hit ratio. MCQ is almost always better than any other cache
policy. Sessions of 1, 10 and 20 minutes follow the same trend.

Orthogonal Query (OQ) After discovering that MCQ is the cache policy
with the highest hit ratio (in terms of last query of a session), we further
investigate the effectiveness of the orthogonal query recommendation
algorithm. We investigate the quality of the recommended orthogonal
queries for different cache policies and cache sizes.

75

For each cache policy, the same criteria that was used to fill the cache
is used to impose an order on the orthogonal queries output by our rec-
ommendation method.

Table 4.14 reports the S@10 of orthogonal query recommendations
by varying the cache size and the cache policy for S-1min and S-30min.
Almost always, the prediction for short session times (t = 1 minute)
is better. This is probably due to the fact that by considering a shorter
session length, the probability that the user’s intent changes during the
session is lower. The best cache policy is MCQ with S@10 = 4.97 for
S-1min and S@10 = 3.64 for S-30min, with a cache size of 80, 000 query
entries. MFFQS seems to be a good cache policy for small cache size,
with a S@10 = 2.78 for S-1min and 2.04 for S-30min.

Cache size 10, 000 20, 000 40, 000 80, 000
Sessions of 1 minute

MCQ 2.66 3.42 4.22 4.97
MFQ 2.46 3.11 3.80 4.51
MFFQS 2.78 3.40 4.13 4.48
MRQ 0.18 0.36 0.68 1.43

Sessions of 30 minutes
MCQ 1.95 2.52 3.08 3.64
MFQ 1.84 2.29 2.80 3.34
MFFQS 2.04 2.47 3.01 3.42
MRQ 0.14 0.27 0.51 1.05

Table 4.14: S@10 in percentage of orthogonal query recommendations
for S-1min and S-30min. The columns indicate different cache sizes
(number of query entries), and rows are different policies used to fill the
cache.

In conclusion, we could say that the best cache policy is MCQ, as
it performs best for short term (S-1min) and long term prediction (S-
30min). We note that using short term sessions (S-1min), S@10 in per-
centage of orthogonal query recommendations for policy MCQ appears
to increase by a constant (0.75) as we double the cache size. For longer
term sessions (S-30min), we see a similar trend with a smaller constant
(0.56). However, as the number of queries increase and we reach the
long tail, this increase will stop.

76

4.9.3 Comparison

Having pointed out that the best cache policy is MCQ, we focus on
comparing the effectiveness of orthogonal query recommendations w.r.t.
state-of-art algorithms for query recommendation. Hereinafter, we will
adopt a cache of 80, 000 query entries and the MCQ policy for produc-
ing orthogonal query recommendations. Before describing our baseline
algorithms, it is worth mentioning that we needed to generate approx-
imately 600 thousand recommendations for each baseline. Hence, we
selected recommendation algorithms with low computational cost. As
baselines, we used three different well-known recommendation algo-
rithms:

• CG (Cover Graph) [107]: Recommendations are based on a bipartite
weighted graph of queries and URLs, where a query q and an
URL u are connected if a user issued q and clicked on u, and
the weight is the number of clicks received by u when issued by
query q. Suggestions for a query q are thus obtained by accessing
the corresponding node in the CG and by extracting the related
queries sharing more URLs. We implemented a fast version based
on an inverted index.

• UF-IQF (User Frequency-Inverse Query Frequency) [108]: Recom-
mendations are based, as in CG, on a bipartite weighted graph of
queries and URLs. The only difference with the CG recommenda-
tion is an entropy based definition of the query-URL edges.

• SC (Short Cuts) [123]: Recommendations are based on virtual doc-
uments of queries. Given a sessionized query log, for each unique
final query qn of a session with retype, a virtual document is created.
The virtual document title is qn and it contains all the sessions
that ends up with qn. Given a query q, the virtual documents are
ranked by using the BM25 ranking function. Suggested queries
are the document’s title.

Table 4.15 reports the S@10 as a percentage of orthogonal query
recommendations compared to our baselines, for different test session
lengths. We report the overall results, and the results of unseen queries
separately. In fact, around 21% (Table 4.11) of the queries in our query
log are unseen queries (that is, their frequency is one).

77

Sessions S-1min S-10min S-20min S-30min
Overall

UF-IQF 5.87 4.83 4.54 4.40
OQ 4.97 4.07 3.72 3.64
SC 3.46 2.48 2.32 2.25
CG 0.64 0.49 0.46 0.43

Unseen queries
OQ 3.54 3.61 3.65 4.16
SC 0.78 0.80 0.79 0.79
UF-IQF 0.00 0.00 0.00 0.00
CG 0.00 0.00 0.00 0.00

Table 4.15: S@10 as a percentage, both for all queries and for long tail
queries. In each case, the techniques are sorted in order of effectiveness.

Note that the best results are obtained with S-30min, in the case of
unseen queries, and S-1min in the overall case. In the case of unseen
queries, the effectiveness of OQ is higher than all of the baselines, show-
ing its effectiveness for long tail queries. Notice that in this case, the
second best algorithm is SC and not UF-IFQ.

The effectiveness of OQ is always higher than CG and SC. However,
UF-IQF performs better than OQ when we consider the entire set of ses-
sions. We further investigate this issue by reporting in Table 4.16 the per-
centage of the recommended queries that overlap between OQ and our
baselines. That is, what percentage of the recommended queries are the
same. We want to know whether the queries recommended by the clas-
sical query recommendation algorithms contain the orthogonal queries
that we recommend. We restrict the test sessions to the successful ses-
sions of each method. As we can see, only 14% of the successful rec-
ommended queries of OQ are contained in the successful recommended
queries of UF-IQF. This means that the two recommendation algorithms
are almost “orthogonal" in terms of recommended queries, and therefore
they could be combined. The percentage of overlap with other baselines
is even lower as those are not very effective; a maximum of 5% with SC,
and 1% with CG.

Further, because OQ is most effective in comparison with other rec-
ommendation algorithms in the case of unseen queries, and detecting
such queries given a cache is trivial, it would be very easy to implement
OQ in conjunction with other methods.

78

Sessions S-1min S-10min S-20min S-30min
CG 1% 1% 1% 1%
UF-IQF 14% 14% 14% 13%
SC 5% 5% 5% 4%

Table 4.16: Overlap percentage of the successful orthogonal recommen-
dations with our the successful baseline query recommendations. The
columns indicate the different types of test session lengths and the rows
are our baselines.

4.9.4 User Study Evaluation

In addition to the automated evaluation shown, we would tested the
effectiveness of the query recommendations by running a user study. We
experimented with the following methods: OQ, CG, UF-IQF, and SC.
Additionally, we introduce TQ-Graph and QFG .

The high computational time of the Random Walk with Restart (Ω(|E|+
|V |), where |E| is the number of edges of the graph and |V | is the number
of nodes), is the reason for not introducing QFG and TQ-Graph in section
4.9.3. The user study was conducted on the 50 queries from the standard
TREC Web diversification task test bed.11 The assessment was conducted
by a group of 10 assessors. The assessors were researchers unaware of
the used algorithms, and not working on related topics. We generated
the top-5 recommendations per query for each technique evaluated: OQ,
CG, UF-IQF, SC, QFG, and TQG.

Using a web interface, each assessor was provided with a random
query from the test bed, followed by a list of recommended queries (the
top-5 for each of the 6 methods) selected by the different methods. Rec-
ommendations were randomly shuffled, so that the assessors could not
distinguish which method produced them. Each assessor was asked to
assess each recommended query using the following scale: useful, some-
what useful, and not useful.12 We gave assessors the possibility of observ-
ing the search engine results for the original query and the recommended
query that was being evaluated. The user study finished when each as-

11http://trec.nist.gov/data/web09.html
12 Each assessor was given the following instructions: A useful recommendation is a

query such that if it were submitted to a search engine, it would provide URL results that
were not available using the original query, and it would reflect the user’s intent from the
original query.

79

Judgment useful somewhat not useful
Overall

OQ 20% 25% 55%
TQG 18% 23% 59%
UF-IQF 20% 20% 60%
CG 16% 22% 62%
SC 14% 16% 70%
QFG 13% 12% 75%

Unseen queries
OQ 25% 8% 67%
TQG 8% 13% 79%
SC 5% 3% 92%
UF-IQF 0% 0% 100%
CG 0% 0% 100%
QFG 0% 0% 100%

Table 4.17: User study results, which compare the effectiveness of OQ
with the baseline techniques, sorted in order of effectiveness (useful +
somewhat).

sessor had assessed all recommendations for all 50 queries in the test
bed.

Table 4.17 reports the results of the user study. The overall results
and the results of unseen queries are reported separately. Overall, for
OQ, 45% of the recommendations were judged useful or somewhat useful.
This table shows that the quality of the queries recommended by OQ are
higher than our baselines, and strictly higher in the somewhat category,
which demonstrates the orthogonality of our technique. UF-IQF shows
lower overall effectiveness, while only 25% of QFG recommendations
were judged useful or somewhat useful. One reason for QFG’s recommen-
dation failure is the presence of high in-degree nodes (such as yahoo,
google), connected to a large number of other nodes. Also, QFG does
not provide recommendations for unseen queries, while TQG solves this
issue. In fact, for TQG, 41% of the recommendations were judged useful
or somewhat useful, making it second-best in our user study. For unseen
queries, 25% of OQ recommendation were judged useful, while for TQG
only 8% we judged useful. In both cases, OQ was judged to be more
useful than all other methods.

80

4.9.5 Some Examples

Now we discuss 3 (out of 50 TREC queries) examples of queries rec-
ommended by the orthogonal query recommendation algorithm and
the baselines. Table 4.18 reports the top-5 recommendations of OQ
and our baselines for three example queries: starbucks, air travel
information, and gmat prep classes. In all three cases, four out
of five of the OQ recommendations have no term overlap with the origi-
nal query, and all of the top-5 suggestions can be considered pertinent to
the original query.

starbucks, is a frequent query, and four out of five orthogonal
queries deal with food in general, like coffee and drinks. For CG, UF-
IQF, and TQG we observe that all of the suggestions contain the original
query and some additional terms. SC and QFG do not seem to perform
well.

gmat prep classes is a query that stands for Graduate Manage-
ment Admission Test preparation classes. OQ’s recommended queries are:
gmac (Graduate Management Admission Council), gre (Graduate Record Ex-
aminations), lsat (Law School Admission Test), gmat, and sat test (a
standardized college admission test in the U.S.A.). Each can be consid-
ered pertinent to the original query, while four of them have no term
overlap. TQG’s results are useless (due to the high in-degree nodes).
QFG’s recommendations are reformulations. Other techniques do not
provide any results.

air travel information, is an unseen query, i.e. the query did
not appear previously in our query log. OQ’s recommendations deal
with information about plane tickets, air traffic control, airline news and
the FAA (Federal Aviation Administration). SC presents two airlines com-
panies, while TQG’s recommendations are not useful. Other techniques
are not able to generate any suggestion.

4.10 Summary

In this Chapter we have presented two query recommendation tech-
niques: TQ-Graph and Orthogonal Query Recommendation.

TQ-Graph is a query recommendation technique based on two sets of
nodes: Query nodes, which are connected among them on the basis of the
query reformulations observed in a historical query log, and Term nodes,

81

TREC Query: starbucks

OQ TQG
coffee starbucks livonia michigan
ice cream starbucks locations
drinks starbucks haggerty rd
starbucks franchise starbucks coffee
ice cream recipes star bucks
UF-IQF SC
starbucks coffee carsonvalleyjobs
star bucks insulated coffee travel mug
starbucks locations starbucks coffee cups
coffee starbucks corporations
QFG CG
google starbucks corporate image
mapquest starbucks gift card
ebay hear music starbucks
yahoo starbucks coffee
starbucks franchise starbucks grants

TREC Query: gmat prep classes

OQ TQG
gmac mapquest
gre google.com
lsat yahoo
gmat ebay
sat test google
QFG SC, UF-IQF, CG
gmat prep classess NO RESULTS

gmat
gmat prep courses
gmat test prep
gmat prep classes in new york

TREC Unseen query: air travel information

OQ TQG
faa yellow pages
airline tickets expedia
plane tickets yahoo
airline news ebay
air traffic control google
SC QFG, UF-IQF, CG
southwest airlines NO RESULTS

continental airlines
mapquest
walmart
myspace

Table 4.18: Top-5 recommendations, if found, for OQ and our baselines.

which have only outgoing links pointing at the nodes corresponding to
the queries in which the terms occur. Given a TQ-Graph, the sugges-
tions for a incoming query are generated by performing RWRs starting
from the nodes associated with query terms. The method we have pro-
posed to efficiently compute on-the-fly query suggestions by consider-
ing a pruned and approximated index represents a more general con-
tribution in the field of efficient computation of approximated random
walks with restart, in particular of center-piece subgraphs. An accurate

82

experimental evaluation was conducted to assess effectiveness and effi-
ciency of our proposal. We firstly observed that the distribution of query
terms allows our solution to provide suggestions for about the 99% of the
queries encountered. The quality of TQ-Graph-based recommendations
were judged higher than QFG-based ones in the user study conducted.
Furthermore, we have shown that the optimization techniques adopted
are very effective, and safeguard the quality of suggestions provided also
when aggressive pruning and lossy compression strategies are applied.
Finally, a simple caching technique was proposed to enable scalable and
fast in-memory generation of TQ-Graph-based recommendations.

The second technique that we have presented is the Orthogonal
Query Recommendation. Orthogonal Query Recommendation is a new
technique based on identifying orthogonal queries in the cache. In con-
trast to previous approaches, we intentionally seek out queries that are
only moderately similar to the original. Orthogonal queries aim to detect
different interpretations of the user’s query that go beyond the scope
of the user-provided keywords. The unexpected yet relevant nature of
some of the suggested orthogonal queries gives the impression of intel-
ligence without requiring the complex understanding that many such
systems entail. This approach requires no training, is computationally
efficient, and can be easily integrated into any search engine with a query
cache.

Contributions. Using TQ-Graph , we have shifted the common query-
centric perspective over the problem of query recommendation, and by
taking a term-centric perspective we have achieved two important re-
sults. First a novel query recommendation method able to generate rel-
evant query suggestions also for rare or previously unseen queries. Sec-
ond, a framework to make our method extremely efficient and scalable,
thanks to the use of a optimized index data structure. For the Orthog-
onal Query Recommendation we have shown that the query suggested
are complimentary to previous approaches. In particular queries recom-
mended by Orthogonal Query Recommendation have low intersection
with the results of other techniques. As such, integrating orthogonal
query recommendation with previous methods will lead to even better
results than any technique individually. Lastly, orthogonal query recom-
mendation is shown to perform strikingly better than all previous tech-
niques considered.

Future Work. There are various ideas that are worthy of further investi-
gation in order to improve our solutions. Firstly, in TQ-Graph model the
stationary distributions of the terms in the input query are multiplied to-

83

gether without considering their relative importance. Essentially, we are
implicitly assuming that all the terms forming a query are equally impor-
tant. Obviously, this is not the case. Thus, one could think to weigh each
vector based on the importance of the corresponding term. For example,
we could increase the importance of the terms that better characterize the
query at hand. This could be done by resorting to scoring mechanisms
that recall known measures like TF/IDF. Another aspect worth consider-
ing further is the tuning of the length of the pruned lists in TQ-Graph and
of the approximation level. In all the experiments conducted the values
of these two parameters were equal for all the terms. Thus, we are again
implicitly assuming that all the terms have the same importance. Instead,
one should reserve more space for the lists of more important terms. For
the Orthogonal Query Recommendation we could further investigate the
combination of the recommendation technique with the other technique
to show its benefits and the combination of caching techniques and the
final ordering of the orthogonal queries.

84

Chapter 5

Recommending Tweets

In this Chapter we introduce the task of tweet recommendation, the prob-
lem of suggesting tweets that match a user’s interests and likes. We pro-
pose an Information-Retrieval-like model that leverages the content of
the user’s tweets and those of her friends, and that effectively retrieves
a set of tweets that is personalized and varied in nature. Our approach
could be easily leveraged to build, for example, a Twitter or Facebook
timeline that collects messages that are of interest for the user, but that
are not posted by her friends. We compare to typical approaches used in
similar tasks, reporting significant gains in terms of overall precision, up
to about +20%, on both a corpus-based evaluation and real world user
study.

5.1 Introduction

Social media are having an unprecedented success in terms of popularity
in recent years. Twitter and Facebook, the two most popular social media
hubs, occupy high positions in the top-10 of the most visited sites, rivaled
only by big search engines and by Wikipedia.1 In January 2012 Twit-
ter has been visited 2.5 billion times, more than double than 6 months
before2. In October 2011, Twitter revealed that 250 million tweets are
posted every day, with a user base of about 300 million people.

1http://www.alexa.com/topsites
2http://www.quantcast.com/twitter.com

85

http://www.alexa.com/topsites
http://www.quantcast.com/twitter.com

With a rate of roughly 3,000 tweets per seconds, social media are to-
day facing the same challenge of information overloading that the Web
faced more than 10 years ago. More than that, we are today also fac-
ing the challenge of information hiding. By no means can a Twitter user
possibly read all the messages s/he might consider important. Indeed,
only a very small percentage of tweets spreads to a significant number of
users [124]. It is quite likely that users miss lots of interesting tweets just
because none of the people in their network retweet or mention them. So-
cial search engines can help to solve the problem by providing a simple
means to retrieve information. However, these engines cannot predict
what the user may like and push interesting information for her. The
solution is therefore a combination of social search and algorithms for
personalizing, summarizing and recommending social content.

In this Chapter we focus on the latter task of social content recom-
mendation. We propose two Information Retrieval inspired methods for
recommending engaging tweets to a user, matching her interests and
likes. The method is based on the idea of building a user profile from
her tweets and a weighted combination of those posted by her friends,
and to match this profile on incoming tweets. Our extensive evaluation
performed on both an in-house dataset and on real users, shows that our
method successfully recommends interesting tweets when compared to
other approaches. Our system differs from most previous work on social
recommendation, where the focus is predominantly on recommending
web content using social signals, and on recommending new connec-
tions. Our primary objective here is to recommend the social content
itself, i.e. tweets.

The most direct practical application of our method is to provide a so-
cial media user with a new timeline3 that contains messages that strongly
match her interests, but that have not been posted by any of her friends.
The benefits of having this additional timeline are twofold. Firstly, the
user will not miss messages that are relevant to her, because our method
will show them. Second, authors of recommended tweets may be con-
sidered relevant by the user who receives the recommendation; thus our
tweet recommendation system may indirectly serve as a mechanism to
“implicitly” recommend accounts to follow.

3The user entry point in most social media hubs like Twitter and Facebook is the per-
sonal timeline, where the user is shown the recent messages posted by her friends.

86

Summing up, the original contributions of this Chapter are:

• We define two novel models for tweet recommendation: TWEE-
TREC aims at recommending the most interesting tweets;
INTERESTS-SPANNING TWEETREC aims at recommending a set of
tweets, minimizing overlapping informative content. As a result,
INTERESTS-SPANNING TWEETREC provides more diverse recom-
mendations.

• The two proposed models define a measure of tweet interestingness
for a user. We propose an effective measure to estimate interest-
ingness by considering the content of tweets posted by the user
herself, and also by her most authoritative friends. We prove the im-
pact of the newly proposed measure by using both an automatic
and user-study-based evaluation.

The Chapter is structured as follows. Section 5.2 presents an
overview of the current state of the art in areas that are related to our
work. Section 5.3 presents a formal definition of the problem, while Sec-
tion 5.4 describes the proposed solutions. Experiments are presented in
Section 5.5 along with a careful description of the datasets we are using
and a definition of the metrics we evaluate. We conclude the Chapter in
Section 5.6 with a final analysis and future work.

5.2 Related Work

Research on recommender systems has been widely studied in the past
decade (e.g., see [30, 26, 29, 28]). Recommenders have been applied to
many different items including movies, video, user, music, restaurants,
news stories, journal articles, and much more (see [30] and references
therein). To the best of our knowledge, tweet recommendation has not
been yet explicitly defined. This task relates to four main areas of re-
search: tweet-based content recommendation, tweet ranking, tweet classifica-
tion, and information spreading in social networks.

Tweet-based content recommendation systems use Twitter for rec-
ommending other types of content. Among others, Abel et al. [125] pro-
pose a URL recommendation system for Twitter users. They build a lin-
guistic model for the user, as the frequency weighted vector of the hash-
tags and entities that he/she mentions in his/her tweets. A similar vec-
tor is computed from the content of candidate URLs. The web pages that

87

have the highest cosine similarity with the user are recommended [125].
Chen et al. present similar models for the same task, where the user pro-
file is represented as the bag-of-word vector of all terms in the user’s
tweets (or his/er friends’ tweets); and the URL model is built from the
terms in the tweet that mention it.[126] Our work differs from the above
two, in that we recommend tweets instead of URLs, which is a harder
task since there is less linguistic material available. Yet, like them, we
leverage the linguistic content of the user’s tweets and of his/er friends’
tweets.

Tweet ranking is the task of ranking tweets given an input query.
Duan et al. [127] experiment with content, user and social features to
feed a RankSVM algorithm. They report good DGC results by using a
variety of information, including user authority features and cosine sim-
ilarity between the texts of the retrieved tweets. Similar ranking systems
have been proposed at the TREC-2011 Microblog Track 4. In general, typ-
ical models for web document ranking such as BM25 and text similarity,
can be easily adapted to tweet ranking, showing good performance. Yet,
microblogging specific features, such as social feedback and annotations
(e.g., number of retweets and hashtags), the authority of the user posting
the tweet, tweet length and freshness also play a key role. Tweets have
also been use to improve document ranking : Dong et al. show that in-
tegrating tweeter features (e.g. user and textual properties of the tweets
mentioning the URLs) significantly improve state of the art web search
algorithm, in ranking documents by relevance and freshness [128]. The
task presented in this Chapter differs from tweet ranking, in that our
task is query independent and user centric. Instead of ranking tweets
for a given query, we recommend tweets to a user according to his/her
interests. There are however similarities between the two tasks, e.g. in
both cases there is a specific user need to answer, and similar features
can be used.

Short texts classification is a relatively new problem that is receiving
more and more attention. Tweet classification is a specilizarion of this
problem where text fragments propagated through social networks. The
main issue for classification of microblog messages is their small size.
The same issue holds also in different domains where fragments of text
are small. Take for instance search snippets, forum messages and In-
stant Message service texts. At an extremal end, query classification is a
tougher problem. The main issue is that messages are small in size, and
therefore difficult to classify. Several studies have approached this prob-

4sites.google.com/site/microblogtrack

88

lem from different angles. Banerjee et al. exploit Wikipedia as an external
source for improving the accuracy of clustering short texts by enriching
their representation with features coming from Wikipedia pages related
to terms appearing in the short text [129]. Schonhofen presents a similar
approach exploiting Wikipedia as a taxonomy for topics [130] showing
significant improvements on clustering accuracy. Phan et al. use topic
models for building short and sparse text classifiers [131]. Their idea is
to overcome the data sparsity issue through the exploitation of a so called
“universal dataset”. They build a a Latent Dirichlet Allocation [132] topic
model from this dataset, and then use it to classify short texts.

Information spreading in social networks is another important and
well-studied problem in social networks. This research area is important
as results can be immediately exploited in several ways, e.g. to spread
a marketing campaign or to block spread diseases. One of the seminal
papers dealing with this problem is that of Kempe et al. [133]. In the
paper an approximation algorithm to find the most influential nodes in
a network is devised. Furthermore, the technique is extensively tested
also on large collaboration networks showing that, not only the perfor-
mance guarantees are effective but also, in practice, the designed algo-
rithms performs better than state-of-the-art heuristics on the same topic.
The algorithm is further refined by Leskovec et al. [134] and by Goyal et
al. [135]. A similar problem, but with the opposite purpose, is defined
by Budak et al. [136]. Roughly, when a “bad” advertisement campaign is
initiated the goal of their algorithm is to block it. As in the case of Kempe
et al. [133] authors formulate the problem as an optimization problem de-
scribed by a sub-modular objective function. The standard greedy algo-
rithm for this kind of functions [137] is used with the goal of identifying
a subset of individuals that need to be convinced to adopt the competing
(or “good”) campaign so as to minimize the number of people that adopt
the “bad” campaign at the end of both propagation processes.

5.3 Problem Definition

We give here a definition of the notation and the problems we shall
study in the rest of the Chapter. Let T be a stream of tweets, each tweet
t1, t2, . . . ∈ T is indexed by the timestamp at which it arrives. For each
user u, we assume to know the interestingness of a tweet t ∈ T, denoted by
Iu (t). Hereinafter, we consider a single user u and we omit the subscript
u from Iu whenever the user can be inferred from the context.

89

We shall define two problems whose goal is to select a subset of
tweets S ⊆ T to be recommended to a given user. The first problem aims
at selecting S ⊆ T of size k, without considering the goodness of the set
in its wholeness. Namely, each tweet in S is selected independently from
the already selected tweets. We refine the idea of tweet subset selection
in the second problem, where the set of tweets S ⊆ T is further required
to maximize the overall information conveyed to u. To the best of our
knowledge both problems are novel and have never been proposed be-
fore in the context of social media systems such as Twitter.

We begin by introducing the first problem, namely the TweetRec
problem, defined as follows.

Problem 2 (TweetRec). Given a user u and a positive integer k, we aim at
finding a set S of k tweets in T maximizing the overall “interestingness”.
More formally, we want to find

max
S⊆T

|S|=k

∑

t∈S

I (t) (5.1)

Essentially, we are looking for the set of k tweets S having the largest
interestingness under the assumption that the tweets independently con-
vey their interesting content. The nicest property of TWEETREC is that
its solution is optimally discoverable in O(|T| log k) time by the obvious
greedy algorithm selecting the most interesting, i.e., top-k, tweets. The
price to pay for being easy and solvable is that we are assuming inde-
pendence of tweet content in the solution set. This, indeed, is far from
being satisfactory for a user. Suppose, in fact, that all the tweets selected
for being included in the set S are highly correlated to each other. This
represents a feasible solution of TWEETREC but the user may be far from
being satisfied. For instance, each of these two tweets “What’s new in
Linux 3.2? #linux” and “New features in Linux 3.2. #linux” may be highly
interesting for a user but reporting both of them is useless.

The issue in TWEETREC is given by the fact that we are not consider-
ing interdependency among selected tweets. Indeed, in a sense, we can
say that the objective function in TWEETREC assumes the independence
of all the tweets and does not consider the overall interestingness of the
identified set S in its wholeness.

A more complicated definition gives us a more precise version of the
tweet recommendation problem. Given S ⊆ T, we use the shortcut F (S)
to denote the overall interestingness of the content of tweets t ∈ S for the

90

user u, i.e., F (S) = I

(

⊔

t∈S

t

)

. Likewise, I

(d
t∈S

t

)

denotes the interest-

ingness for user u in the shared informative content among all tweets in
t ∈ S.

Problem 3 (Interests-Spanning TweetRec). Given a user u, a positive integer
k, and the stream of tweets T, we aim at finding the k tweets t in T maximizing
the overall interestingness. More formally we seek

max
S⊆T

|S|=k

F (S) =

k
∑

j=1

(−1)
j+1

∑

I⊆S
|I|=j

I

(

l

t∈I

t

)

(5.2)

The derivation of the equation in the objective function of INTERESTS-
SPANNING TWEETREC is an instantiation of the Inclusion-Exclusion
principle to the set S ⊆ T of tweets. As in TWEETREC, we are looking
for the set of k tweets S having the largest overall interestingness for the
user u. However, in this case we are taking into consideration all possible
dependencies, i.e. shared content, among the tweets in the set.

INTERESTS-SPANNING TWEETREC is NP-Hard as proven in the fol-
lowing Theorem.

Theorem 4. The INTERESTS-SPANNING TWEETREC problem is NP-hard.

Proof. The reduction is from Independent Set [138]. Assume we have a
graph G = (V,E) with n =| V | and we want to compute the maximum
independent set of G. The independent set can be computed by creating
an appropriate instance of our problem. Vertexes in V are considered as
tweets. Each vertex is assigned an interestingness equal to 1

n
. Any set

S has an overall interestingness equal to 1
n

| S | if and only if it does
not exist a pair of vertexes in S connected by an edge in E. The inter-
estingness is set to be smaller than 1

n
| S |, otherwise. To conclude the

reduction we observe that, fixed k, the set S identified by a solution of
INTERESTS-SPANNING TWEETREC has probability k

n
if and only if G has

an independent set of size k. In this case, nodes in S are exactly the nodes
of one of these independent sets.

Despite being complex, the objective function of our problem has
the property of being a non-negative, monotone submodular function, as
stated in the following Theorem.

91

Theorem 5 (Submodularity of F (X)). Let k be a positive integer and let S
be a set of k tweets. Then, the function

F (S) =

k
∑

j=1

(−1)
j+1

∑

I⊆X
|I|=j

I

(

l

t∈I

t

)

is submodular.

Proof. We have to show, by the definition of submodularity, that given
A ⊆ B ⊆ T and a tweet c ∈ T, F ({c} ∪ A)−F (A) ≥ F ({c} ∪B)−F (B).

The theorem is proven by observing that since F (X) = I

(

⊔

t∈X

t

)

then F ({c} ∪X) = I (c) + I

(

⊔

t∈X

t

)

− I

(

c ⊓ ⊔

t∈X

t

)

.

Thus, F ({c} ∪A) − F (A) = I (c) − I

(

c ⊓ ⊔

t∈A

t

)

. Similarly,

F ({c} ∪B)− F (B) = I (c)− I

(

c ⊓ ⊔

t∈B

t

)

.

The thesis easily follows by observing that I

(

c ⊓ ⊔

t∈A

t

)

≤

I

(

c ⊓ ⊔

t∈B

t

)

since A ⊆ B ⊆ T.

Given that our objective function is submodular, its maximization can
be obtained by the famous greedy algorithm presented in [139, 140]. This
algorithm incrementally builds the set S in k steps. At each step, the ele-
ment that has the largest marginal gain is added. This simple algorithm
guarantees to obtain a (1 − 1/e) approximation. The following Theorem
summarizes this very well-known result.

Theorem 6 (Submodularity Approximation). [139, 140] For a non-
negative, monotone submodular function F , let S be a set of size k obtained
by selecting elements one at a time, each time choosing an element that provides
the largest marginal increase in the function value. Let S⋆ be a set that maxi-
mizes the value of F over all k-element sets. Then F (S) ≥ (1− 1/e)F (S⋆).

92

5.4 Interestingness Estimation

The TWEETREC and INTERESTS-SPANNING TWEETREC problem defini-
tions give a good formalization for a tweet recommendation system. Yet,
these formalizations assume that for any user u and tweet t ∈ T, we
know the score I (t) measuring the interestingness of the tweet t for the
user u. In order to build a functioning recommendation system we there-
fore need an estimator of interestingness.

In this section we present one example of an estimator, based on a
linguistic model. The main assumption is that the interests of a user u
are implicitly expressed in his/her tweets. By comparing the linguistic
content of the user’s tweets and that of a generic tweet t, we can therefore
estimate the interestingness I (t).

In detail, we estimate interestingness as a linear combination of two
distinct similarity measures between the set of tweets of the user and a
candidate tweet (or set of tweets). In these two measures, sets are com-
pared either by using item-wise or pair-wise comparisons between their
enclosed terms. Our estimation is detailed in Section 5.4.1.

A drawback of the above-mentioned measure is that it heavily relies
on the (textual content of the) set of tweets produced by the user. Indeed,
there exist (a class of) users, namely passive users, that post a small num-
ber of tweets in their lifetime, and adopt Twitter mostly for reading news
published by other users. In Section 5.4.2 we show how to extend the set
of tweets written by a passive user u with other carefully chosen tweets
that have been posted by users that are highly authoritative.

5.4.1 Exploiting Textual Similarities

In this section we show how to estimate I (t) by computing the similarity
between the set of user’s tweets Tu and any subset of tweets from T.

First, given a generic set of tweets X , we define the bag-of-words
BT(X) = {ω1, ω2, ..., ωn} as the set of distinct terms ωi contained in
at least a tweet t ∈ X . Similarly, we define the bag-of-pairs BP(X) =
{ρ1, ρ2, ..., ρn} as the set of distinct pairs of terms ρi that co-occur (possi-
bly non consecutively) in at least a tweet t ∈ X .

We define two score functions for terms and pairs with respect to a
set of tweets X .

93

Definition 7 (Term Score). Given a term ω and a set of tweets X , we define
the score of ω given X as

tscore(ω,X) = TFT(ω,X) · IDFT(ω)

where TFT(ω,X) is the number of tweets in X containing term ω, IDFT(ω) =

log |T|
DFT(ω) , and DFT is the number of tweets in the stream T containing ω.

As we will show in the experimental section, the sum of the tf − idf

of the terms used by the user is particularly useful for tweets. Indeed,
apart from increasing the importance of co-occurrences of rare terms, it
privileges longer tweets with respect to shorter ones.

Similarly to what we have just done we define a score function for
pairs of terms.

Definition 8 (Pair Score). Given a pair of terms ρ and a set of tweets X , we
define the score of ρ given X as

pscore(ρ,X) = TFP(ρ) · IDFP(ρ) (5.3)

where TF is the number of tweets in X containing pair of terms ρ, IDFP =

log |T|
DFP(ρ)

, and DFP(ρ) is the number of tweets in the stream T containing the

pair of terms ρ.

The rationale behind the measure defined by Equation 5.3 is that
since tweets are relatively small documents usually consisting of few sen-
tences, there are good chances that two tweets having pairs of terms in
common have higher correlation than tweets sharing only terms.

We observe that both scores implicitly consider the overlapping con-
tent between sets of tweets only once. This is an important aspect of the
scoring functions that complies with the concept of overall interesting-
ness discussed in the previous section.

Finally, by combining Definitions 7 and 8, we define a score that es-
tablishes the similarity of a set of tweets with respect to another.

Definition 9 (Set Similarity). Given two sets of tweets X1 and X2, we define
the similarity of X1 with respect to X2 is as

intλ(X1, X2) = (1 − λ) ·∑ω∈BT(X1)
⋂

BT(X2)
tscore(ω,X2)

+λ ·∑ρ∈BP(X1)
⋂

BP(X2)
pscore(ρ,X2)

where λ ∈ [0, 1] is the linear combination coefficient.

94

Observe that for λ equal to 0 the similarity is computed by consider-
ing only terms. Conversely, for λ equal to 1 the similarity is computed
by considering only pairs of terms. Note that it is possible to define
a score for triples of terms or more, similar to what we have done for
terms and term pairs. In that case the function intλ is defined by a linear
combination of different scores, using coefficients λ1, λ2, λ3, . . . such that
λ1 + λ2 + λ3 + . . . = 1.

Given the above definitions, we are now ready to estimate I (t). Given
a user u and his set of tweets Tu, for any value λ ∈ [0, 1] we estimate
the interestingness of a set of tweets X for user u, by setting Iu (X) =
intλ(X,Tu).

We can now solve the TWEETREC problem by selecting the k tweets
in T having the largest values of intλ with respect to Tu. Obviously, this
considers the contribution of each tweet t ∈ X to the overall interest of X
for a user independently. In fact, the content of two tweets may overlap.
When this overlap is non-negligible, the contribution of these two tweets
to the overall interestingness of the pair is far from being the sum of the
two independent contributions.

In order to address this issue, we can similarly solve the INTERESTS-
SPANNING TWEETREC problem, directly applying Definition 9 to Equa-
tion 3.

5.4.2 Enhancing Precision for Passive Users

The main assumption of our approach is that the number of tweets |Tu|
posted by a user is large enough to build a rich language model. Unfor-
tunately a large portion of Twitter users are passive, i.e. they post only
few or no tweets, as shown in Figure 5.1(a) and by other analytic studies
(e.g., [141]). According to Twitter, as of September 2011, 40% of the users
“sign in just to observe.” Building a language model for such users is
thus prohibitive.

We therefore enhance our approach by including in the user’s model
the tweets posted by the user’s friends. The intuition is that the user’s
interests are expressed not only in his own feed, but also in the feeds of
the people he follows. Indeed, contrary to other social networks, social
connections in Twitter are based more on shared interests than on real
world friendships [142, 143].

A further important observation is that some friends are intuitively

95

more relevant than others when building a user’s model. Friends that
are more authoritative should be weighted more in the model, because
they provide more contentful and relevant information. We model this
intuition by integrating Definition 7 with the following new formulation
of tscore:

tscore(ω,X) =
(

∑

x∈X

auth(ux) · in(ω, x)
)

· IDFT(ω) (5.4)

where in(ω, x) is 1 if the tweet x contains term ω, 0 otherwise; and
auth(ux) is the authoritativeness of the user that originally posted x, ob-
tained as described next. Likewise, we also modify Definition 8 by con-
sidering pairs of terms instead of single terms.

As a side note, we experimented with another similar approach for
solving the problem of passive user, where instead of considering au-
thoritative users, we considered friends that the user often retweets, i.e.
users that likely share her interests. This approach, obtained by replac-
ing the auth(ux) score in the above formula with a retweet score, showed
no improvements over the authority approach.

5.4.3 User Authority

It is known that a clear definition of user authority in Twitter is very dif-
ficult to draw and to model, as it is often subjective and task dependent.

In our case, authoritative users are those that post relevant informa-
tion that is engaging for other users. Authoritative users, often called
information sources, are usually characterized by a high number of fol-
lowers and a high ratio between followers and friends. Although other
indicators of authority may serve in this context, e.g. number of retweets
or PageRank scores, we prefer to keep the computation of the score as
simple as possible, given the real-time high-load nature of our applica-
tion. 5

For each user u in our corpus, we define the authority score auth(u) ∈
[0, 1] as a linear combination of two logistic functions 6:

5Despite other indicators, the number of followers and the number of friends are indeed
directly available from the Twitter streaming API.

6Normalization omitted for clarity

96

auth(u) = A · 1

1 + e−
ffRatio(u)

α

+ (1−A) · 1

1 + e−
foll(u)

β

(5.5)

where ffRatio(u) = foll(u)/fri(u). foll(u) and fri(u) are respectively the
number of followers and friends of the user. A ∈ [0, 1] is the linear pa-
rameter (set experimentally to 0.5). The logistic parameters α and β are
also set experimentally to respectively 2 and 2000, to reflect the current
topological characteristics of the Twitter network.

5.5 Experiments

This section shows the experiments we conducted in order to assess the
effectiveness of our recommendation methods.

After a description of the datasets, we first assess how good the intλ
function is as an estimator of the interestingness of a tweet for a user.
We then provide a comparison of intλ against three well-known meth-
ods that we consider as baselines. These comparisons are done by using
both an automatic evaluation and a user study. After assessing the ef-
fectiveness of intλ, we use it to find solutions for the TWEETREC and the
INTERESTS-SPANNING TWETTREC problems. Eventually, in Section 5.5.3
we compare the solutions obtained by approaching these two problems,
and we show that results produced by solving INTERESTS-SPANNING

TWETTREC are of a higher quality.

5.5.1 Dataset

Our corpus consists of about 182, 000 tweets posted between October 30
and November 4, 2011. The corpus was collected as follows. A large set
of more than 14 million tweets was initially downloaded from Twitter
using the Spritzer API, that provides access to a 1% random sample of
all tweets. This set was then pruned to obtain our final corpus containing
informative and non-junk English tweets on which we run our experi-
ments. In details, the pruning process was as follows. First, we discarded
all the tweets shorter than 30 characters and having less than 8 tokens (i.e.
terms, hashtags, and usernames). Then, we removed tweets containing
less than 3 English nouns and more than 5 English stopwords. To do

97

��

�����

����

�����

����

�����

����

�����

����

�
	�
�
�
�

�
�
�
�
�
	�
�
�
�
�

�
�
�
�
�
	�
�
�
�
�

�
�
�
�
�
	�
�
�
�
�

�
�
�
�
�
�
��
�
�

���������������

������������������

(a) Distribution of the number of tweets per user in our corpus. The y-axis indicates the
fraction of users in the corpus that have a given number of tweets.

��

�����

����

�����

����

�����

����

�����

����

�
	�

�
�

�
�
�
	�

�
�

�
�
	�

�
�

�
�
�
	�

�
�
�

�
�
�
�
	�

�
�
�

�
�
�
�
	�

�
�

�

�
�
	�

�
�
�

�
�

�
��

�
��

�
��

�
�

�������������������� �!���

�������������� �!����"����������������#����$�������

��� �!���

��������

(b) Distribution of Friends and Followers for users with less than 200 tweets posted since
they joined Twitter.

Figure 5.1: Statistical data on our Tweets Stream.

that, we performed part of speech tagging using the NLTK7 toolkit. Fi-

7http://www.nltk.org/

98

http://www.nltk.org/

nally, we discarded directed tweets (i.e., tweets starting with the @ sym-
bol), that are usually personal in nature, and therefore not interesting for
recommendation purposes.

Table 5.1 reports general statistics regarding our corpus. Figure 5.1(a)
shows the distribution of the number of tweets per user. Each point on
the x-axis corresponds to a bucket of 1,000 tweets. The corresponding y-
axis value is the overall fraction of users that have posted that number of
tweets. As expected the distribution follows a power-law. Almost 40% of
users have posted less than 1, 000 tweets since they joined Twitter. This
confirms the need for strategies capable of handling “passive” users, as
described in Section 5.4.2. Figure 5.1(b) shows the distribution of the
friends and followers in Twitter for “passive” users with less than 200
tweets posted since they joined Twitter. Values on the x-axis are buckets
of 100 friends or followers. We observe that about 80% has more than
100 friends, while around 40% has less than 100 followers.

Number of tweets 14, 720, 718
Number of tweets after filtering 182, 054
Number of hashtags 43, 026
Number of distinct terms 108, 295
Number of pairs with freq. ≥ 2 262, 081

Table 5.1: Statistics regarding our tweet corpus.

5.5.2 Evaluating intλ Quality

In this section we show the effectiveness of intλ by comparing it to
three well-known baselines: Cosine, LDA, and Hashtags. Comparisons
are done both using an automatic evaluation and a user-study-based
methodology.

Automatic Evaluation

We base this set of experiments on the assumption that a user is likely
to find his own tweets more interesting than random tweets from other
users. Building on this assumption we randomly select a set of 250 users
from our corpus. For each one of these users u we use 90% of his tweets
(we call it the set Tu) for building the user profile. The remaining 10%

99

is mixed with all the tweets from other users in the corpus, forming the
testing set.

Ideally, the correct recommendations for a given user correspond to
tweets from this 10% of his own tweets. More formally, we divide the
test set into a positive set P, consisting of the 10% of the user’s tweets,
and a negative set N formed by all other tweets. We consider correct a
tweet belonging to the positive set.

As evaluation metrics we used standard Information Retrieval mea-
sures. For each user we compute:

• P@k. Precision at rank k is the fraction of correct tweets in the top-k
tweets ranked by the method.

• S@k. Success at rank k is the probability of finding at least a correct
tweet on the top-k ranked ones.

• MRR. Reciprocal Rank is the inverse of the position of the first
correct tweet in the ranking produced by the method.

To compute the final metrics’ scores we take the average of the above
measures across all the 250 users.

Optimizing λ. The aim of our first experiment is to identify the value of
λ in intλ that provides the best performance. Figure 5.2 reports results of
intλ in terms of P@k (a), S@k (b), and MRR (c), for different λ values.

Results show that adopting λ values close to 1, corresponding to give
more importance to pscore, the model achieves better performance. Max-
imum P@k and S@k values, in fact, are obtained when λ = 1. In addi-
tion, in Figure 5.2(c) we observe that a value of λ = 0.9 corresponds to a
significant MRR decrease, i.e. the rank of the best tweets in the positive
set P significantly increases.

We can overall conclude that by setting λ = 0.9 the intλ metric per-
forms very well in terms of both precision and recall, and ranks interest-
ing tweets high in the ranked list. Hereinafter, we therefore adopt the
int0.9 metric to estimate the interestingness of tweets for a user.

Comparing the different methods. We are now ready to compare int0.9
against the following three baselines.

Cosine. A baseline model based on cosine similarity. For each tweet t in
T, interestingness is estimated as the cosine similarity between the term

100

��

����

����

����

����

��

����	 ���	 ���
	 ��

�
�
�
��
��
�

�

�����
�����
���	�

(a) P@k

��

����

����

����

����

��

����	 ���	 ���
	 ��

�
�

�
�
�

�

���	�
������
���	��

(b) S@k

��

����

����

����

����

��

����	 ���	 ���
	 ��

�
�
�

�

(c) MRR

Figure 5.2: P@k (a), S@k (b), and MRR (c) of intλ by varying λ.

101

vectors of t and Tu, where each vector is obtained by using the classical
information retrieval TFIDF [12] score.

Hashtags. A baseline similar to the above, where the vectors are
not filled with terms, but with hashtags, similarly to what proposed
by Abel et al. [125]. The intuition is that hashtags explicitly summa-
rize the topic(s) of a tweet (e.g. “I am flying to #NY today!
#travel”).

LDA. A generative topic model using the Latent Dirichlet Allocation al-
gorithm proposed in [132]. The intuition is that the interests of a Twitter
user can be mapped to the latent topics discovered by LDA, as suggested
for example by Pennacchiotti and Gurumurthy [144]. The LDA model
is built by considering all tweets in the stream T, while the user profile
is built by considering all of his tweets as a single document. We ex-
perimented with different topic dimensions and parameterizations. We
report results for the best parameterization, corresponding to 200 topics.

P@1 P@3 P@5 S@5 S@10 S@50 MRR
int0.9 0.71 0.62 0.55 0.85 0.90 0.95 0.77
Cosine 0.30 0.25 0.23 0.39 0.46 0.68 0.48
Hashtags 0.32 0.28 0.24 0.52 0.59 0.71 0.50
LDA 0.00 0.00 0.00 0.00 0.03 0.29 0.02

Table 5.2: Comparison of int0.9 with Cosine, LDA, and Hashtags.

Table 5.2 shows the comparative results among the tested methods.
We observe that int0.9 is the best performing method for all measures. In
particular, for the P@1 metric, int0.9 ranks a correct tweet in first posi-
tion in 71% of the cases. Hashtags, which is the second best performing
method, instead ranks a correct tweet in the first position in only 32% of
cases.

int0.9 is the most effective method also in terms of S@k, with a 0.85
accuracy in finding correct results in the top-5 ranked tweets. The good
performance of int0.9 is confirmed also for the MRR metric. Correct
tweets are ranked higher on average by int0.9 than the other three meth-
ods.

Surprisingly, despite being one at the state of the art model, the LDA
method performs very poorly. An analysis of the topics discovered by
LDA reveals that terms clustered in the same topic do not have a well
defined semantic relation. For example one of the topics has as the top-

102

most representative words “art , box, winner, soul, alabama, adam,
master, live”. We conclude that the hypothesis that LDA topics can
be mapped to user’s interests does not hold in our specific case. One
possible explanation is that our dataset is probably not big enough to
correctly estimate the model parameters. Another issue is that LDA may
be very sensitive to the short nature of the tweets. While a whole set of
user’s tweets may suffice to infer the user’s topics of interest, a single
tweet is too short to be reliably assigned topics.

P@1 P@3 P@5 S@5 S@10 S@50 MRR
int0.9 0.40 0.37 0.44 0.70 0.70 0.98 0.48
Cosine 0.22 0.30 0.31 0.33 0.33 0.78 0.31
HashTags 0.20 0.20 0.12 0.29 0.30 0.35 0.28
LDA 0.00 0.00 0.00 0.00 0.02 0.10 0.04

Table 5.3: Comparison of int0.9 with Cosine, LDA, and Hashtags on a
subset of highly related users.

The high results for int0.9 may have been obtained because of bias in
the data, i.e. a user might use a very peculiar writing style that makes his
tweets highly distinguishable. In order to remove this bias we manually
selected 20 pairs of users having very similar interests. The selection was
done by using the Twitter user recommender system. The evaluation for
this experiment works as follows: for each pair of users we add all the
tweets of the second user in the stream; the task consists to re-retrieving
them by using the set of tweets of the first user as the user profile.

Table 5.3 shows the results of this experiment, with a comparison
against Cosine, LDA, and Hashtags. Once again, it is confirmed that int0.9
performs better than the baselines. This suggests that the bias induced
by the user’s writing style is very limited.

User Study Evaluation

In addition to the automatic evaluation just shown, we also tested the
effectiveness of int0.9 by running a user study. We experimented with
the following methods: Cosine8, int0.9, and int0.9 enhanced with the au-
thoritative friends strategy described in Section 5.4.2 (hereafter referred

8To reduce the load on human assessors we did not evaluate LDA and Hashtags since in
the most conservative experiments in Table 5.3, they were performing worse than Cosine.

103

as int0.9+auth).

The assessment was conducted by a group of 7 professional asses-
sors that regularly post tweets (Active users, in our terminology), and a
group of 5 professional assessors that are using twitter mainly for read-
ing tweets (Passive users).

For each assessor and each method, we generated the top-20 tweet
suggestions. Each assessor was provided with a random combination
of tweets selected by the different methods, and was asked to state his
personal interest on each tweet, using the following scale:

• Excellent: if the tweet is “very interesting/very informative/very funny
with respect to his interests";

• Good: if the tweet is “interesting/informative/funny with respect to his
interests";

• Fair: if the tweet is “somehow interesting, but nothing bad if he would
have skipped it";

• Bad: if the tweet is “not interesting, and he would have preferred not to
have it in his timeline".

All the experimented models were built using a maximum of 200 tweets
from the assessor’s Twitter stream. As evaluation metrics we use abso-
lute Discounted Cumulative Gain (DCG), Precision computed over all
assessed tweets of each method, and MRR.

Table 5.4 reports results for Active users, Passive users, and both
classes combined. Table 5.5 reports more in detail the percentage of
Excellent, Good, Fair and Bad judgments for each method. For Active
users, both our methods outperform Cosine in DCG and Precision, con-
solidating the results obtained in the automatic evaluation. As expected,
int0.9+auth is the best performing system. The addition of the authorita-
tive friends’ tweets thus proves to be principled, as well as the criterion
we used to select authoritative users, described in Section 5.4.3. For Ac-
tive users, int0.9 only reports 0.57 in MRR, i.e. the top recommended
tweet is often not correct. A closer look at the errors shows that this hap-
pens when the user’s model shares with a bad tweet a term pair with
a high pscore (thus boosting int0.9), but the term pair is not representa-
tive of the user interests (e.g. ‘have’-‘today’). This effect disappears in
int0.9+auth, where the larger size of the tweet set smoothes the impact of
idiosyncratic terms pairs.

104

Active users
DCG Precision MRR

int0.9 23.29 0.67 0.57
int0.9+auth 24.42 0.67 0.86
Cosine 19.28 0.56 0.80

Passive users
DCG Precision MRR

int0.9 25.50 0.67 0.75
int0.9+auth 36.60 0.88 1.00
Cosine 14.60 0.47 0.90

Active + Passive users
DCG Precision MRR

int0.9 24.09 0.67 0.64
int0.9+auth 29.50 0.76 0.92
Cosine 17.33 0.52 0.84

Table 5.4: User study results for int0.9 and Cosine for Active and Passive
users separately. We consider a tweet annotated as E, G, or F as useful.

In general, we verified that the most common errors across all
methods are recommendations of ‘status update’ tweets, e.g. “Almost
home! God can’t wait to get in my bed” or “None of my
dog friends around here raw feed”. Even if these tweets may
contain terms that define an interest (e.g. ‘raw feed’ and ‘dog’), they
are personal in nature and therefore not interesting. In future work we
will explore heuristics to classify and discard status updates.

int0.9+auth stands out even more for Passive users than Active users.
This proposes int0.9+auth as a promising robust solution for tweet recom-
mendation, for Active users as well as Passive users. In both cases, it is
important to leverage the tweets of the users’ authoritative friends, that
mostly post informative tweets.

The overall precision of our baseline Cosine is 0.52, which is relatively
higher than expected w.r.t. our int0.9. We further investigate this issue by
reporting in Table 5.5 the results of the user study for different scores.
int0.9 is almost always 1.5 times better than Cosine in ranking Excellent
results. The difference is even higher if we consider the effectiveness of

105

top-5 tweets

Excellent Good Fair Bad
Cosine 15% 22% 26% 37%
int0.9 22% 16% 27% 35%
int0.9+auth 30% 33% 15% 22%

top-10 tweets

Excellent Good Fair Bad
Cosine 10% 17% 27% 46%
int0.9 21% 21% 30% 28%
int0.9+auth 27% 28% 18% 27%

top-20 tweets

Excellent Good Fair Bad
Cosine 8% 19% 27% 46%
int0.9 16% 21% 31% 32%
int0.9+auth 20% 25% 25% 30%

Table 5.5: Percentage of Excellent, Good, Fair and Bad judgments in the
top-k tweets suggested to Passive and Active users.

the top-10 Excellent or Good results. As a matter of fact, we have that
only 27% of Cosine are Excellent or Good w.r.t. 66% of int0.9+auth.

5.5.3 TWEETREC vs. INTERESTS-SPANNING TWEETREC

In this section we compare the quality of the solutions of TWEETREC

versus INTERESTS-SPANNING TWEETREC. As described in previous sec-
tions, a solution for the latter problem should recommend a more het-
erogeneous, and therefore interesting, set of tweets to the user. As in the
previous section, we both conduct an automatic and a user-based assess-
ment.

Automatic Evaluation. Goal of the automatic evaluation is to assess
if the INTERESTS-SPANNING TWEETREC solution successfully recom-
mends a set of tweets that spans a larger set of user’s interests, with
respect to TWEETREC.

We proceed by randomly selecting 15 sets of 20 lists9 each. The as-

9A Twitter list aggregates the tweets of users that share a common interest.

106

sumption is that each list represents a specific user interest. For each
list we download 800 tweets. We then create 15 virtual users with 8, 000
(= 20 × 400) tweets, one per each set, by selecting 400 tweets per list.
We use the remaining 400 tweets per list to build a single virtual stream
of tweets. The resulting dataset is a set of 15 virtual users spanning 20
different interests and having produced 8, 000 tweets.

��

��

��

��

���

���

���

���

��� ��� ��� ��� �	� ��� �
� ��� ��� ����

�
�
�
�
�
��
��
��

�����

��������

������������ ����!���������

Figure 5.3: Number of distinct interests (i.e. lists) present in the top-k
recommended tweets.

We now evaluate how many different lists (i.e. interests) are present
in the top-k tweets recommended by our functions. Figure 5.5.3 shows
the number of distinct lists in the top-k recommended tweets by using
the solutions of TWEETREC and INTERESTS-SPANNING TWEETREC. Re-
sults show that, given a user, the set returned by solving INTERESTS-
SPANNING TWEETREC spans multiple different interests, whereas the set
returned by solving TWEETREC is more biased towards a very small set
(usually one) of interests. This experimentally proves the value of solv-
ing INTERESTS-SPANNING TWEETREC.

User study Evaluation. We further investigate the difference between
TWEETREC and INTERESTS-SPANNING TWEETREC, by evaluating which
of the two solutions is preferred by real, i.e., human, users. We use the
same group of assessors as in Section 5.5.2. For each assessor and for each
method, we generate the set of top-5 recommended tweets. We then ask
the assessors to perform a pairwise comparison of the top-5 sets from
two different methods. We ask them to select the most interesting set or,
alternatively, to indicate that the two sets are equally interesting.

107

TWEETREC Equal INTERESTS-SPANNING TWEETREC

int0.9 18% 45% 37%
int0.9 + Auth 8% 58% 34%

Table 5.6: Results of pairwise comparison of TWEETREC and INTERESTS-
SPANNING TWEETREC, as judged by the assessors.

top-5 TWEETREC top-5 INTERESTS-SPANNING

TWEETREC

1. President Obama LinkedIn
Town Hall About Jobs (VIDEO).

1. President Obama LinkedIn
Town Hall About Jobs (VIDEO).

2. #WWLP President Obama has
declared a state of emergency
for Massachusetts

2. I’ve set my email filters so the
President’s messages go straight
to my spam folder.

3. Let me state it bluntly and
clearly, Obama sucks as presi-
dent and is quite the amateur!

3. UN leader Ban Ki-moon ar-
rived on Wednesday in Libya.

4. I’ve set my email filters so the
President’s messages go straight
to my Spam folder.

4. Jerry Sandusky, faces charges
of sex crimes.

5. Do you have questions on
Obama’s plan to help Federal
student.

5. New issue will be in our office
in about an hour! re-tweet.

Table 5.7: An example of pairwise comparison, where the top-5 tweets
from INTERESTS-SPANNING TWEETREC were preferred over TWEETREC.
(Tweets shortened for lack of space).

Results are reported in Table 5.6, for two different configurations :
int0.9 and int0.9 + auth. For both configurations, the top-5 recommended
tweets are equally interesting in about half of the cases. If they are not,
preference is mostly given to INTERESTS-SPANNING TWEETREC, because
in most cases it selects a set of tweets that spans several user’s interests.

For example in Table 5.7, the tweets selected by TWEETREC are

108

mostly focused on Barack Obama, while those selected by INTERESTS-
SPANNING TWEETREC are about a variety of political topics.

5.6 Summary

In this Chapter, we have presented alternative methods for recommend-
ing tweets to Twitter users. The most direct practical application of our
method is to provide a social media user with a new timeline that con-
tains messages that strongly match her interests, but that have not been
posted by any of her friends. The benefits of having this additional time-
line are twofold:

• The user will not miss messages that are relevant to her, because
our method will show them.

• Authors of recommended tweets may be considered relevant by
the user who receives the recommendation; thus the tweet recom-
mendation system may indirectly serve as a mechanism to “implic-
itly” recommend accounts to follow.

Furthermore, we have presented two Information Retrieval inspired
methods for recommending engaging tweets to a user, matching her likes
and interests. The method is based on the idea of building a user pro-
file from her tweets and a weighted combination of those posted by her
friends, and to match this profile on incoming tweets. Results over a
large experimental study show that our solutions outperform existing
baselines, and that selecting tweets that are about a variety of the user’s
interests, improves the user experience.

Contributions. The original contributions of this Chapter are:

• The definition of two novel models for tweet recommenda-
tion: TWEETREC aims to recommend the most interesting tweets;
INTERESTS-SPANNING TWEETREC aims to recommend a set of
tweets, minimizing overlapping informative content. As a result,
INTERESTS-SPANNING TWEETREC provides more diverse recom-
mendations.

• The proposal of an effective measure to estimate interestingness by
considering the content of tweets posted by the user herself, and
also by her friends in higher roles of authority. In particular, we

109

proved the impact of the newly proposed measure by using both
an automatic and user-study-based evaluation.

Future Work. There is large scope for future work. First, we are in-
terested in improving the precision of our methods by devising auto-
matic strategies to filter out tweets that are uninteresting ‘status updates’.
We also plan to improve the selection power of INTERESTS-SPANNING

TWEETREC by providing tweet deduping at higher levels of semantics
(e.g., adopting Textual Entailment Recognition techniques). Further-
more, we plan to carry out simulation trials to test the computational
cost of our methods when facing a real-time load of thousands of tweets
per second.

110

Chapter 6

Recommending Touristic
Points of Interest

On-line photo sharing services allow users to share their touristic expe-
riences. Tourists can publish photos of interesting locations or monu-
ments visited, and they can also share comments, annotations, and even
the GPS traces of their visits. By analyzing such data, it is possible to
turn colorful photos into metadata-rich trajectories through the points of
interest present in a city.

In this Chapter we propose a novel algorithm for the interactive gen-
eration of personalized recommendations of touristic places of interest
based on the knowledge mined from photo albums and Wikipedia. The
distinguishing features of our approach are multiple. First, the under-
lying recommendation model is built fully automatically in an unsuper-
vised way and it can be easily extended with heterogeneous sources of
information. Moreover, recommendations are personalized according to
the places previously visited by the user. Finally, such personalized rec-
ommendations can be generated very efficiently even on-line from a mo-
bile device.

6.1 Introduction

Designing an application for travel itinerary planning is a complex task,
which requires to identify the so called Points of Interest (PoIs), to select a

111

few of them according to user tastes and potential constrains (e.g. time),
and finally to set them in a meaningful visiting order. Skilled and curious
travelers typically consult several sources of information such as travel
books, travel blogs, photo sharing sites and many others. The number of
possible choices easily blows up, and makes it difficult to find the right
blend of PoIs that best fits the interests of a particular user.

Many approaches have been proposed to automatically analyze the
large amount of available information with the aim of discovering the
most popular PoIs and routes. In this work we focus on media sharing
sites such as Flickr1. The easiness and attractiveness of producing and
sharing multimedia content through these sites motivate the exponen-
tial growth of the number of their users. Tourists are a typical example:
while visiting a city, they took pictures of the most interesting places.
These pictures are associated with a timestamp, often with geographic
coordinates, and sometimes enriched with user-provided textual tags.
A photo album can thus be considered an evidence of the route taken
by a tourist while visiting a city. The goal of this work is to propose
an effective PoI recommendations algorithm supporting interactive and
personalized travel planning by exploiting the knowledge mined from
Wikipedia and the billions of photos published in photo-sharing sites.

The raw data at hand is thus given by a few pages describing the
most relevant PoIs in a city and by a large collection of images described
by some features (e.g., the time at which the photo was taken, the user
ID, the textual tags, the coordinates of the geographic location). These
raw data are however very noisy. User-provided tags, when present, can
be too general to identify a specific PoI (e.g. “Europe Tour 2011”, “New
York”), or irrelevant (e.g. “Me and Laura”), or wrong, or misspelled. The
same holds for the geographic coordinates, since they can be missing or
have different precision if provided by a GPS device or by the users, or
they cannot help to discriminate between two very close PoIs.

In this work, we propose a novel algorithm for planning travel
itineraries based on a recommendation model mined from such infor-
mation sources. The model is based on a graph-based representation of
the knowledge, and exploits random walk with restarts to select the most
relevant PoIs for a particular user. Differently from previous proposals,
our recommender system relies in fact on an initial set of PoIs to be used
as query places. Query places are important because they represent con-
textual information identifying tourists guts. We carefully evaluate the
system by casting the recommendation problem into a prediction prob-

1http://www.flickr.com

112

http://www.flickr.com

lem, and by evaluating the ability of our recommendation algorithm to
correctly guess the PoIs actually preferred by tourists which posted their
albums on Flickr.

The Chapter is organized as follows. Section 6.2 discusses related
works. Section 6.3 describes how to exploit users’ photo and other Web
data sources to identify the PoIs in a given region, and to map photos
into such set of PoI. Eventually, users itineraries are transformed into a
graph-based model, where a node corresponds to a PoI and edges are
weighted with the expected probability of a user going from one end of
the edge to the other. Section 6.4 presents our random walk with restart
approach to provide personalized PoI recommendations given a set of
already selected/visited PoIs. Section 6.5 shows experimental results on
real world data relative to the cities of San Francisco, Glasgow and Flo-
rence that measure the effectiveness of our approach. Finally, Section 6.6
discusses possible extensions of this work and draws some final conclu-
sions.

6.2 Related Work

Mean shift [145] has been proven to be an effective clustering technique
for the identification of the set of PoIs P : by exploiting the geographic
information associated with the input set of photos, it is possible to dis-
cover which are the most relevant PoIs [146, 147, 148, 149, 150]. A draw-
back of this approach is that an observation scale parameter must be prop-
erly set by the user, affecting the minimum size of a region that can be
considered a PoI. In addition, not all the images might have geographic
information, thus discarding some of the available data. When the PoIs P
are identified by means of geographic clustering, each cluster of images
must be assigned with a textual description which makes sense for the
user, that means to identify the subject of each cluster. This is achieved by
means of nearest neighbor matching with gazetteers, which provide ge-
ographic coordinates of relevant locations [149], or by text analysis con-
ducted on image description and tags [148, 151, 152, 147]. These PoI
naming techniques rely on the level of detail provided by gazetteers and
by the consistency of user provided tags.

We propose here to determine the valid set of PoIs using Wikipedia as
external knowledge base. The advantage of using Wikipedia is twofold.
First it identifies a large number of PoIs in every city, even the less pop-
ular ones. Second, it provides additional structures information about

113

the PoI, e.g. a subdivision in categories. After having identified the PoIs
P and mapped each user image to a single PoI, the temporal sequence
of images taken by each distinct user can be trivially translated into a
trajectory joining the sequence of visited PoIs. These sequences are used
to build a model of touristic routes in a city. To this purpose, the PoI
sequences can be mined for frequent sequential patterns as in [148], to
discover interesting visiting sequences. According to a collaborative fil-
tering approach, the set of visited PoIs can be used to build user profiles,
and therefore to leverage historical data of similar users [150]. A different
approach is adopted in [146], where the user behavior is modeled by a
mixture of a topic model, similar to collaborative filtering, and a Markov
model where a user going from a PoI to another identifies a transition
between two states. This mixed model tries to take into consideration
correlated locations which do not necessarily occur consecutively in the
visiting history of a user. A graph-based model is introduced by [153].
The authors actually model a set of PoIs with a clique where nodes are
associated to PoIs and weighted with a reward and a visiting time, while
edges are weighted with an estimate of the transit time between two PoIs.
The reward associated with a PoI is derived by the number of users vis-
iting it.

The devised model is then used to recommend relevant PoIs. The
authors of [148] use a sort of reinforcement algorithm that ranks higher
in the model the frequent sequential patterns generated by authoritative
users and that include popular locations. A drawback of this approach is
that recommendations are not personalized. In [146], the list of locations
visited in the past by the user is used to build incrementally new trajec-
tories that maximize their likelihood in the mixed topic-Markov model.
The bests k routes satisfying a maximum time and distance constraints
are returned. In [153] the problem of generating recommendations is re-
duced to the Orienteering problem, and a greedy algorithm is proposed
to find the route between two locations providing the maximum reward
within a given time budget.

Random walks based methods were successfully used in some re-
lated recommendation or graph problems. In [154], repeated random
walks are executed on the similarity graph to reach object similar to the
current item of interest. The authors of [155] proposed an random walk
on the user social network to discover an item’s rating from trusted users
. In [156], RWR is used to recommend music tracks by leveraging an ex-
tended graph whose nodes represent users, as well as tags and song.
Finally, in [157], it is used to predict the future outgoing edges of a node
in an evolving graph.

114

6.3 A Graph-Based Model of Touristic

Itineraries

The proposed recommender system exploits a graph model of the
itineraries covered by tourists during their visit. Such model is built via a
completely automatic process exploiting both photos from a photo shar-
ing portal (in particular Flickr) and Wikipedia. The model identifies the
PoIs in a given region, and measures there relatedness from a user per-
spective.

Definition 10 (Itinerary Graph). An Itinerary Graph G = (V,E,w) is an
undirected weighted graph where each node in V corresponds to a PoI of a given
region or city, and edge e = (u, v) connects two PoIs if they are likely to belong
to the same touristic itinerary, and w(u, v) weights such probability.

During their visit, tourists shoot photos of their preferred PoIs, and
share them on the Web also enriching those photos with comments, tags,
and other metadata. The process of recognizing the PoIs of a city given
such set of photos is not trivial, since it requires to determine the land-
marks depicted in any given image. This process is made even more dif-
ficult by the noise present in the data, such as wrong or irrelevant tags,
approximate GPS coordinates, etc. Therefore detecting the set of PoIs by
exploiting geographical clustering or visual recognition is very difficult
and may introduce a significant amount of noise.

We solve the problem of PoI identification by resorting to Wikipedia.
We identify be the smallest region that encloses a given city. We collect
the geo-referenced Wikipedia articles that fall within this region and con-
sider the title of each articles as a PoIs name.

In the subsequent phase, we query Flickr to find the photos whose
tags contain exactly the name of a PoI. For a given region, the number of
results obtained with these queries is fewer with respect to other types
of queries, e.g. spatial queries. False positive are however rare, since it
is unlikely that a user adopted a very specific tag by chance or mistake.
If an image is tagged with a Wikipedia article title, then it is very likely
that the image renders the corresponding PoI. For each retrieved image,
the user id and the corresponding PoI are sufficient to build an itinerary
graph G for the given region. A node u is added to G for every PoI de-
tected. An edge e = (u, v) is added if there is at least one user that visited
both u and v. We do not consider the timestamp of each photo, since we
are not interested to the fact that a certain PoI has been visited immedi-
ately before or after another one. Our main objective is indeed that of

115

establishing relations of mutual interest between PoIs independently of
the time of their visits. The weight w(e), e = (u, v), is set equal to the
number of different users that have the two PoIs u and v in their albums.

The resulting graph G models the co-visit frequency of any couple
of PoIs. Such frequency is thus estimated on the basis of the actual user
trajectories derived from the Flickr data. The graph G is used to estimate
the probability that a user having visited a PoI u is also be interested in
visiting the PoI v.

We further enrich the graph G by exploiting Wikipedia categories.
Categories, indeed, provide strong signals about the correlation between
two PoIs. PoIs may belong to the same class in some classification, or
share the same architect or building period and so on. We derive another
graph from Wikipedia, where the edge weights are given by the num-
ber of categories shared by two PoIs. Then, the two sets of edges are
merged by equally weighting the Flickr-based and the Wikipedia-based
contributions. In the experimental section, we show that the injection of
Wikipedia-based relations, succeeds in automatically discover the topic
the user is currently interested in, and in recommending new PoIs that
belong to the same category.

In general, many other information sources or different features could
be included in the model, thus extending the recommendation capa-
bilities beyond the current analysis. A specifically tailored application,
could also allow the user to choose between different perspectives, i.e.
different ways of generating recommendations based on different infor-
mation sources. Indeed, just basing on Flickr could harm the serendipity
of the system.

6.4 RWR-based PoIs Recommendation

In this section we propose a strategy for recommending PoIs given the
itinerary graph G = (V,E,w). We recall that G has a vertex for each PoI
in the city. As described in Section 6.3, the edge e = (u, v) belongs to E
whenever a relation between the PoIs corresponding to u and v has been
discovered (namely, the two PoIs are together in the album of at least a
Flickr user or they share at least a category in Wikipedia). The weight
w(u, v) = w(v, u) is the number of these relations: the number of Flickr
users and the number of shared Wikipedia categories.

Our recommendation algorithm assumes that the user has already

116

visited, or that she has already showed interest to a set of PoIs, corre-
sponding to a set of nodes U ⊂ V . Its aim is that of ranking the remain-
ing PoIs in G with respect to the ones in U . The set U is used as a sort
of user profile to personalize the generated recommendations. Ranking
all the remaining PoIs is useful for various post-processing phases. For
example, if the tourist is at her desk and she is planning a visit to the city,
the system can simply show the top-k PoIs in the computed ranking, and
support her in the interactive selection and recommendation of PoIs. On the
other hand, if she is currently visiting the city, the ranked PoIs could be
filtered by removing all the PoIs that are too far from her current position.

Given the graph G and the set of PoIs U which already attracted
user’s interest, our objective is that of scoring each node of V \U based on
the level and the weight of its interconnection with nodes corresponding
to PoIs in U . Our proposal relies on combining the results of Random
Walks with Restart (RWR) (see [158] and references therein) started from
each node in U in order to obtain the final ranking.

The graph G modeling the mutual relationships between the various
PoIs is used to estimate the probability that a user having visited the
PoI u is willing to visit the PoI v as well. This estimate is obtained by
normalizing the weights of the given graph.

Definition 11 (Itinerary Transition Matrix). Given the itinerary graph
G = (V,E,w) the itinerary transition matrix A ∈ R

|V |×|V | estimates the
conditional probability P (v | u) for any given pair of nodes u,v ∈ V by
Au,v = w(u, v)/

∑

z w(u, z).

The intuitive meaning of a random walk with restart from a node z
is the following. A random walker starts visiting the graph G from node
z. At each step, she is on a certain node u and has two possibilities: she
can move to a neighbor of u or she can jump back to the initial node
z. One of these two possibilities is chosen with probability α and 1 − α
respectively, where α ∈ [0, 1] is a real parameter. In the first case, the
neighbor v is chosen with probability Au,v . Note that A is not symmetric.
The RWR from z is the steady-state probability rz of this process. rz is a
vector of probabilities summing up to 1. The vector rz is the solution of

rz = αrz ×A+ (1 − α)ez

where A is the itinerary transition matrix derived from G, and vector ez
has all its entries set to 0 but the z-th which is 1.

The stationary distributions rz are computed for each PoI z ∈ U and

117

then merged by computing their Hadamard product in a single scoring
vector rU .

Definition 12 (PoI Score). Given the itinerary transition matrix A resulting
from the itinerary graph G, a seed set of PoIs corresponding to the set U ∈ V in-
duces a scoring of the other nodes of the graph, defined by rU (j) =

∏

z∈U rz(j).

The reason for resorting to the product of the entries instead of their
sum is that we are more interested in discovering PoIs that are strongly
related to most of the PoIs in U instead of PoIs that are highly related to
just few of them [158].

Once rU is computed, the recommender system suggests the k PoIs
having the highest probabilities in rU . As anticipated, the actual sugges-
tion could be preceded by a preprocessing phase that filters out some of
the PoIs (e.g., PoIs that are too far from the current position of the tourist),
or that rearrange them in order to provide a suitable visiting path.

We finally observe that computing each vector rz is a task too de-
manding to be performed at query time. Thus, in our solution, all the
vectors are precomputed offline and stored in memory. The overall space
occupancy is quadratic in the number of PoIs of the city. This is not prob-
lematic since even the most rich cities have at most a few thousands of
PoIs. For the same reason, the final ranking vector rU is computed effi-
ciently: it passes through the computation of few (i.e., |U |) products of
relatively small vectors.

Since the ranking of the various PoIs is very efficient, our proposed
algorithm can profitably be used in any interactive travel planning ap-
plication running even on a mobile device. In this case, it is very easy to
filter the ranked PoIs according to some external features (e.g. location,
distance, reachability), or to incrementally build a route by recomputing
the recommendations incrementally every time a user adds a new PoI to
her route. Efficiency and extendibility are two distinguishing features of
our approach.

6.5 Experimental Evaluation

First of all, we present in Table 6.1 some statistics regarding the datasets,
i.e. the PoIs and the graphs obtained for Florence, Glasgow, and San
Francisco. Fig. 6.1, instead, shows a list of the top-10 PoIs in each of the
considered towns along with their normalized frequency in the datasets.

118

Florence Glasgow San Francisco
Number of PoIs 1, 022 353 550
Images gathered from Flickr 124, 223 176, 981 937, 389
Number of distinct albums (at least two photos) 2, 919 1, 971 4, 411
Average distinct PoIs per album 3.71 4.97 3.61
Number of edges 131, 238 25, 486 39, 372
Edges from Flickr 22, 164 19, 150 26, 752
Edges from Wikipedia’s Categories 111, 778 8, 644 16, 038
Maximum (out)degree 415 103 263
Average (out)degree 121.86 72.20 71.59

Table 6.1: Statistics regarding the three datasets used in our experiments.

Evaluating the effectiveness of recommender systems is a difficult
task as perceived quality is a subjective characteristic. To overcome to
the lack of objective measurements, we cast our PoI recommendation
problem into a PoI prediction problem and we evaluate the ability of
our recommender system to correctly guess what a tourist visited in a
town.

We consider thus the following problem: given a set of PoIs from a
list of places in a given town actually visited by a tourist, the system must
correctly guess what are the remaining favorite places the tourist visited
in that town. As an example, suppose Alice during her tour of Barcelona
visited the following five places: “Sagrada Familia”, “Parc Güell”, “Casa
Milà”, “Casa Batlló”, and “Picasso Museum”. Thus, when queried by using
the first three PoIs of the above list the recommender should guess “Casa
Batlló” and “Picasso Museum”. The closer the number of correct guesses
to the maximum possible, the better the quality of the recommender.

More formally, let Vi be the set of interesting PoIs for tourist i. We se-
lect a subset Ui ⊂ Vi of size ⌊ 1

2 |Vi|⌋. We apply our algorithm to compute
rUi

, i.e. the vector containing the scores for each PoI in the town relative
to the PoIs in Ui. Let Si@k be the set of top-k scoring PoIs according
to rUi

. The Normalized Precision at k (NP@k) is used to measure the
precision of an algorithm in predicting the PoIs in Vi given the PoIs in

Ui. NP@k is defined to be equal to
∑

i
|Si@k∩Vi|∑

i
min{k,|Vi\Ui|}

. Basically, NP@k

measures the overall number of suggestions correctly guessed normal-
ized w.r.t. the maximum number of corrected recommendation possible
when k recommendations are requested, i.e.

∑

imin{k, |Vi \ Ui|}.

We tested our model using a 5-fold cross validation process. Models
were built out of itineraries randomly chosen from those identified using
the method described in Section 6.3. The remaining fifth is then used

119

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

Piazza della Signoria

Palazzo Vecchio

G
alleria degli U

ffizi

Piazza della R
epubblica

Loggia della Signoria

Palazzo Pitti

Ponte Vecchio

Fontana del N
ettuno

G
iardino di Boboli

C
am

panile di G
iotto

Buchanan Street

Kelvingrove Park

G
eorge Square

Finnieston

G
lasgow

 C
athedral

G
lasgow

 G
reen

Sauchiehall Street

People’s Palace

G
lasgow

 Science C
entre

Kelvinbridge

Painted Ladies

G
olden G

ate Bridge

M
etreon

Transam
erica Pyram

id

D
olores Park

Baker Beach

Sutro Baths

C
oit Tow

er

Yerba Buena G
ardens

Em
barcadero C

enter

F
re

q
u
e
n
c
y
 i
n
 t

h
e
 a

lb
u
m

s

San FranciscoGlasgowFlorence

Figure 6.1: Normalized frequency of the top-10 most frequent PoIs in the
Flickr photo albums for the three cities considered.

as a test set to evaluate NP@k values. Furthermore, since RWR uses a
damping parameter α to decide restarts, we have evaluated what is the
best value for α. We experimentally observed that the value α is to be
considered independent of k. The values of NP@5 varying the parameter
α are reported in Fig. 6.2. It is evident that small α values correspond to
better results independently from the dataset on which the method is
applied. For this reason RWR method results thereinafter are obtained
with α = 0.2.

The baseline recommendation algorithm we adopt consists in sug-
gesting independently from the subset Ui ⊂ Vi the set of the top-k PoIs
in the database, i.e. the k most visited PoIs of a given town. We refer to
this strategy as “Touristic Guide”. Notice that for tourism related applica-
tions, this is a hard-to-beat baseline. In fact, the most visited PoIs are by
far the most popular ones. Indeed, from an estimate we made using our
datasets about 20% of PoIs are visited by at least 80% of tourists.

In Fig. 6.3 we report NP@k when k ranges from 1 to 5. We tested
both random and sorted samplings for query selection. Random query
selection consists of choosing query PoIs randomly for each tourist. Fur-
thermore, to better simulate the behavior of a tourist willing to visit a
city, we also tested a sorted selection that samples most popular 1

2 PoIs

120

 0

 5

 10

 15

 20

 25

 30

 35

 40

0.9 0.7 0.5 0.3 0.2 0.1 0.05 0.01

N
o

rm
a

liz
e

d
 p

re
c
is

io
n

 a
t

5
 i
n

 p
e

rc
e

n
ta

g
e

Values of parameter α in the RWR

Florence
Glasgow

San Francisco

Figure 6.2: NP@5 varying the α parameter in RWR.

in each Vi. The idea is that we want to measure how good our system is
at recommending useful, yet not popular, PoIs.

For all the values of k, our RWR method outperforms sensibly the
Touristic Guide strategy both when queries are randomly selected and
when the most popular ones are chosen. In the case of queries made
up of popular PoIs NP@k are lower than the random query selection.
This is expected, indeed, given that our recommenders are not allowed to
propose places already visited and that, in this case, popular destinations
are already used as queries and cannot be suggested.

A possible explanation for RWR superiority is that it is able to rec-
ommend places that are related with those already visited. Instead, the
Touristic Guide strategy is oblivious to the history of a user and this may
degrade recommendation quality. The same observation holds also in
the case of randomly selected query PoIs.

To conclude, we present some examples of suggestions computed by
means of our algorithm. The aim of the following examples is that of
showing the behavior of our system on PoIs of Florence, Glasgow, and
San Francisco.

In the first example the set of starting PoIs U contains two of the most
important PoIs of Florence: Palazzo Vecchio and Piazza della Signoria. The

121

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5

N
o

rm
a

liz
e

d
 p

re
c
is

io
n

 i
n

 p
e

rc
e

n
ta

g
e

k

Florence

Touristic Guide (random)
RWR (random)

Touristic Guide (sorted)
RWR (sorted)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5

N
o

rm
a

liz
e

d
 p

re
c
is

io
n

 i
n

 p
e

rc
e

n
ta

g
e

k

Glasgow

Touristic Guide (random)
RWR (random)

Touristic Guide (sorted)
RWR (sorted)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5

N
o

rm
a

liz
e

d
 p

re
c
is

io
n

 i
n

 p
e

rc
e

n
ta

g
e

k

San Francisco

Touristic Guide (random)
RWR (random)

Touristic Guide (sorted)
RWR (sorted)

Figure 6.3: Normalized Precision NP@k as a function of k.

top-10 PoIs ranked by our recommender are shown in the Table 6.2(a).

Without any doubt these 10 PoIs are among the most important PoIs
in Florence. In presence of very popular PoIs in U , our system responds
by producing a ranking that has other very famous PoIs on its top. These
are conditions where the edges gathered from Flickr come into play.
Most of the tourists perform, in fact, tours of the city by mainly visit-
ing its most important PoIs. Thus, since many albums in Flickr contains
all these PoIs together, our graph has a large component that connects all
of them. This component tends to increase the ranking probabilities of
these PoIs when some of them belong to U .

For the second example we selected the following, less famous, four
PoIs: La Specola, Museo Fiorentino di Preistoria, Museo Horne and Bargello.
These are all museums in Florence. The top-10 PoIs ranked by our rec-
ommender are reported in the Table 6.2(b). We observe that the top-
10 ranked PoIs can be classified as museums. This kind of response is
mainly due to the structure gathered from Wikipedia. As we already
pointed out, we are able to relate together PoIs that are semantically sim-

122

Starting PoIs in U

Palazzo Vecchio
Piazza della Signoria

Top-10 ranked PoIs

PoI Probability

Ponte Vecchio 5.9 · e−4

Piazzale Michelangelo 2.1 · e−4

Palazzo Pitti 1.9 · e−4

Giotto’s Campanile 6.8 · e−5

Boboli Gardens 4.9 · e−5

Loggia dei Lanzi 4.6 · e−5

Piazza Santa Croce 4.2 · e−5

Uffizi 4.1 · e−5

Basilica of Santa Croce 3.9 · e−5

Ponte alle Grazie 3.4 · e−5

Starting PoIs in U

La Specola
Museo Fiorentino di Preistoria
Museo Horne
Bargello

Top-10 ranked PoIs

PoI Probability

Uffizi 1.4 · e−10

Giotto’s Campanile 1.2 · e−10

Palazzo Medici Riccardi 9.8 · e−11

Vasari Corridor 7.4 · e−11

Medici Chapel 6.5 · e−11

Basilica of Santa Croce 5.3 · e−11

San Marco’s National Museum 1.3 · e−11

Dante Alighieri’s House 9.6 · e−12

Modern Art Gallery 9.3 · e−12

Museo Stibbert 8.0 · e−12

a) b)

Starting PoIs in U

Clyde Tunnel
Govan Subway Station
Hillhead Subway Station
Renfrew Airport

Top-10 ranked PoIs

PoI Probability

Glasgow International Airport 1.2 · e−8

Buchanan Street Subway Station 4.2 · e−9

Kelvinbridge 6.8 · e−10

Glasgow Seaplane Terminal 2.4 · e−10

St Enoch Subway Station 2.0 · e−10

Glasgow City Heliport 2.0 · e−10

Buchanan Bus Station 9.5 · e−11

Ibrox Subway Station 9.5 · e−11

Kelvinhall Subway Station 8.3 · e−11

Cowcaddens Subway Station 9.5 · e−12

Starting PoIs in U

Golden Gate Theatre
San Francisco Conservatory of Music

Top-10 ranked PoIs

PoI Probability

War Memorial Opera House 1.1 · e−5

Dolores Park 1.0 · e−5

Castro Theatre 8.1 · e−6

Yerba Buena Gardens 7.8 · e−6

Embarcadero Center 7.3 · e−6

Metreon 6.3 · e−6

Golden Gate Bridge 5.5 · e−6

Pacific-union Club 4.2 · e−6

Lake Merritt 4.1 · e−6

American Conservatory Theater 3.9 · e−6

c) d)

Table 6.2: PoI recommendations in Florence, Glasgow, and San Francisco.

ilar by exploiting categories of Wikipedia. We also observe that these
museums are presented in a order that reflects their relative importance.
For example, Uffizi is probably the most important museum in Florence.
This second effect is again a consequence of the edges extracted from
Flickr.

The third example referred to the city of Glasgow shows how our
system is able to adapt itself to the expected needs of the user. We start
from four PoIs: Clyde Tunnel, Govan Subway Station, Hillhead Subway Sta-
tion and Renfrew Airport. We have a tunnel that connects two parts of

123

the city, two subways stations and the Glasgow’s domestic airport. The
returned PoIs are reported in the Table 6.2(c). In this case all the top-10
PoIs identified by our model are highly related to transportation within
the city of Glasgow. Among these results, we can find a airport, a heli-
port, a seaplane terminal, a bus station and a few subway stations. Even
in this example, correlations learned from Wikipedia help our model to
identify common aspects that relate PoIs in U . Finally, relative impor-
tance learned from Flicker is fundamental for ranking equally correlated
PoIs. For example, we observe that the highest ranked subway station,
Buchanan Street Subway Station, is the most central and busy station on
the subway of Glasgow.

The last example is for the city of San Francisco. We start from the
two PoIs: Golden Gate Theatre and San Francisco Conservatory of Music. The
top- 10 PoIs ranked by our recommender are shown in the Table 6.2(d).
Even in this example, we have the same phenomenon observed in the
previous ones: PoIs related to theaters, music, and culture in general are
placed among the first positions.

6.6 Summary

In this Chapter we have proposed a novel algorithm for planning travel
itineraries based on a recommendation model mined from folksonomy
related data (Flickr), and social content data (e.g. Wikipedia). The model
is based on a graph-based representation of the knowledge, and extract
the centerpiece subgraph [5] to select the most relevant PoIs for a partic-
ular user.

Contribution. The contributions of this model are multiple:

• A new recommender system that relies on an initial set of PoIs to
be used as query places. Query places are important because they
represent contextual information identifying tourists guts.

• A very effective ranking of points of touristic interest obtained by
resorting to combinations of Random Walks with Restart, i.e., cen-
terpiece subgraph extraction. The resulting ranking can be used to
suggest a touristic points of her interest as function of the already
chosen PoIs.

• A combination of multiple sources of knowledge (Flickr and

124

Wikipedia) that increase the effectiveness of a recommender sys-
tem for Touristic Point of Interest.

Future Work. An important part of our recommender’s effectiveness de-
pends on the quality of the relations between PoIs which are inferred
and weighted by resorting to Flickr and Wikipedia. Thus, it is worth to
try to enrich the graph by extracting relations from other heterogeneous
sources of information (e.g., TripAdvisor, Lonely Planet, and so on). For
example, we could consider also the hierarchy of categories present in
Wikipedia: a relation could have a boost whenever it is obtained from a
very specific category. Furthermore, in Section 6.3 we have implicitly as-
sumed that all the relations have the same importance. These aspects
should be further investigated and other signals and other weighting
schema taken into consideration.

125

126

Chapter 7

Conclusions and Future
Work

In this thesis we have presented different solutions to solve the infor-
mation and interaction overload problems on the Web. In particular
we have introduced several recommendation algorithms: to recommend
correct tags, to recommend queries for the queries in the long-tail and for
the ill-posed queries, to recommend tweets, and to recommend touristic
points of interest.

In Chapter 3 we have presented a tag spelling correction method us-
ing a graph model representing co-occurrences between tags. Tags from
YouTube’s resources had been collected and represented on a graph.
Such a co-occurrence graph was then used in combination with an edit
distance and term frequency to obtain a list of right candidates for a
given possibly misspelled term. Experiments show that this collabora-
tive spell checker yields a precision up to 93%, with a recall of 100% (in
many cases). A possible extension of this model is to build a context-
aware, interactive, tag spelling correction. The context of a tag is the set
of tags previously introduced by the user for the same resource. The tag-
ging process is progressive, when a user annotates a resource with a set
of tags those tags are introduced one at a time. Therefore, when, say, the
fourth tag is introduced a knowledge represented by the previous three
tags, i.e., the context in which the fourth tag is embedded, is available
and exploitable for generating potential correction of the current tag. It
is then possible to consider this context together with the available co-

127

occurrences of tags in all the resources of the repository to provide an
interactive tag spell correction.

In Chapter 4 we have presented two query recommendation tech-
niques: TQ-Graph and Orthogonal Query Recommendation.

TQ-Graph is a query recommendation method which is based on a
graph, which has two sets of nodes: Query nodes, which are connected
among them on the basis of the query reformulations observed in a his-
torical query log [4], and Term nodes, which have only outgoing links
pointing at the nodes corresponding to the queries in which the terms
occur. Recommendation for a new query is performed by splitting it into
terms, and by extracting the center-piece subgraph [5] from this terms.
Using TQ-Graph , we have shifted the common query-centric perspec-
tive over the problem of query recommendation, and by taking a term-
centric perspective we have achieved two important results. First a novel
query recommendation method able to generate relevant query sugges-
tions also for rare or previously unseen queries. Second, a framework
to make our method extremely efficient and scalable, thanks to the use
of a optimized index data structure. The method we proposed to effi-
ciently compute on-the-fly query suggestions by exploiting a pruned and
approximated index represents a more general contribution in the field
of efficient computation of approximated random walks with restart, in
particular of center-piece subgraphs. An accurate experimental evalua-
tion was conducted to assess effectiveness and efficiency of our proposal.
We firstly observed that the distribution of query terms allows our so-
lution to provide suggestions for about the 99% of the queries encoun-
tered. The quality of TQ-Graph-based recommendations were judged
higher than QFG-based ones in the user study conducted. Furthermore,
we have shown that the optimization techniques adopted are very effec-
tive, and safeguard the quality of suggestions provided also when ag-
gressive pruning and lossy compression strategies are applied. Finally,
a simple caching technique was proposed to enable scalable and fast
in-memory generation of TQ-Graph-based recommendations. There are
various ideas that are worthy of further investigation in order to improve
our solutions. Firstly, in TQ-Graph model the stationary distributions of
the terms in the input query are multiplied together without considering
their relative importance. Essentially, we are implicitly assuming that
all the terms forming a query are equally important. Obviously, this is
not the case. Thus, one could think to weigh each vector based on the
importance of the corresponding term. For example, we could increase
the importance of the terms that better characterize the query at hand.
This could be done by resorting to scoring mechanisms that recall known

128

measures like TF/IDF. Another aspect worth considering further is the
tuning of the length of the pruned lists in TQ-Graph and of the approx-
imation level. In all the experiments conducted the values of these two
parameters were equal for all the terms. Thus, again we are implicitly as-
suming that all the terms have the same importance. Instead, one should
reserve more space for the lists of more important terms.

The second technique presented in Chapter 4 is the Orthogonal Query
Recommendation. Orthogonal Query Recommendation is a new tech-
nique based on identifying orthogonal queries in the cache. In contrast
to previous approaches, we intentionally seek out queries that are only
moderately similar to the original. Orthogonal queries aim to detect dif-
ferent interpretations of the user’s query that go beyond the scope of the
user-provided keywords. The unexpected yet relevant nature of some
of the suggested orthogonal queries gives the impression of intelligence
without requiring the complex understanding that many such systems
entail. This approach requires no training, is computationally efficient,
and can be easily integrated into any search engine with a query cache.
Furthermore, we showed that the query suggested are complimentary
to previous approaches. In particular queries recommended by Orthog-
onal Query Recommendation have low intersection with the results of
other techniques. As such, integrating orthogonal query recommenda-
tion with other methods will lead to even better results than any tech-
nique individually. Lastly, orthogonal query recommendation is shown
to perform strikingly better than all previous techniques considered. As
future work we plan to investigate the combination of the recommen-
dation technique with the other technique to show its benefits and the
combination of caching techniques and the final ordering of the orthog-
onal queries.

In Chapter 5 we have proposed alternative methods for recommend-
ing tweets to Twitter users. The most direct practical application of our
method is to provide a social media user with a new timeline that con-
tains messages that strongly match her interests, but that have not been
posted by any of her friends. We presented two Information Retrieval
inspired methods for recommending engaging tweets to a user, match-
ing her likes and interests. The method is based on the idea of build-
ing a user profile from her tweets and a weighted combination of those
posted by her friends, and to match this profile on incoming tweets. Re-
sults over a large experimental study show that our solutions outper-
form existing baselines, and that selecting tweets that are about a variety
of the user’s interests, improves the user experience. The original con-
tributions of this Chapter are: 1. The definition of two novel models for

129

tweet recommendation: TWEETREC aims to recommend the most inter-
esting tweets; INTERESTS-SPANNING TWEETREC aims to recommend a
set of tweets, minimizing overlapping informative content. As a result,
INTERESTS-SPANNING TWEETREC provides more diverse recommenda-
tions. 2. The proposal of an effective measure to estimate interestingness
by considering the content of tweets posted by the user herself, and also
by her friends in higher roles of authority. In particular, we proved the
impact of the newly proposed measure by using both an automatic and
user-study-based evaluation. There is large scope for future work. First,
we are interested in improving the precision of our methods by devis-
ing automatic strategies to filter out tweets that are uninteresting ‘status
updates’. We also plan to improve the selection power of INTERESTS-
SPANNING TWEETREC by providing tweet deduping at higher levels of
semantics (e.g., adopting Textual Entailment Recognition techniques).
Furthermore, we plan to carry out simulation trials to test the compu-
tational cost of our methods when facing a real-time load of thousands
of tweets per second.

In Chapter 6 we have proposed a novel algorithm for planning travel
itineraries based on a recommendation model mined from folksonomy
related data (Flickr), and social content data (e.g. Wikipedia). The model
is based on a graph-based representation of the knowledge, and extract
the centerpiece subgraph [5] to select the most relevant PoIs for a par-
ticular user. We have showed that a very effective ranking of points of
touristic interest can be obtained by resorting to combinations of Ran-
dom Walks with Restart. The resulting ranking can be used to suggest a
touristic points of her interest as function of the already chosen PoIs. We
have two main contributions of this model. First, an effective ranking of
points of touristic interest obtained by resorting to combinations of Ran-
dom Walks with Restart, i.e., centerpiece subgraph extraction. The re-
sulting ranking can be used to suggest a touristic points of her interest as
function of the already chosen PoIs. Second, combining multiple sources
of knowledge (Flickr and Wikipedia) increases the effectiveness of a rec-
ommender system for Touristic Points of Interest. As future work we
plan to investigate to try to enrich the graph by extracting relations from
other heterogeneous sources of information (e.g., TripAdvisor, Lonely
Planet, and so on). For example, we could also consider the hierarchy
of categories present in Wikipedia: a relation could have a boost when-
ever it is obtained from a very specific category. Furthermore, in Section
6.3 we have implicitly assumed that all the relations have the same im-
portance. These aspects should be further investigated and other signals
and other weighting schema taken into consideration.

130

Bibliography

[1] D. Aha, “The omnipresence of case-based reasoning in science and
application,” Knowledge-Based Systems, vol. 11, pp. 261–273, 1998.

[2] D. L. Margareta Ackerman and A. Lopez-Ortiz, “Orthogonal query
expansion, the last version of this work is not yet published and
is a joint work with the authors, ricardo baeza-yates and hossein
vahabi,” in http://arxiv.org/pdf/1109.0530.pdf.

[3] R. H. Bartels, J. C. Beatty, and B. A. Barsky, An introduction to splines
for use in computer graphics & geometric modeling. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1987.

[4] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and S. Vi-
gna, “The query-flow graph: model and applications,” in Proc.
CIKM’08, ACM, 2008.

[5] H. Tong and C. Faloutsos, “Center-piece subgraphs: problem def-
inition and fast solutions,” in KDD ’06: Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and
data mining, (New York, NY, USA), pp. 404–413, ACM, 2006.

[6] F. Ljungberg and C. Sørensen, “Interaction Overload: Managing
Context and Modality,” 1998.

[7] B. Gross, The managing of organizations: the administrative struggle.
No. v. 1 in The Managing of Organizations: The Administrative
Struggle, Free Press of Glencoe, 1964.

[8] R. A. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1999.

131

[9] A. Singhal, “Modern Information Retrieval: A Brief Overview,”
Bulletin of the IEEE Computer Society Technical Committee on Data En-
gineering, vol. 24, no. 4, pp. 35–42, 2001.

[10] “Information retrieval on-line. f. w. lancaster and e. g. fayen. los
angeles: Wiley-becker & hayes. 417 pp. (1974),” Journal of the Amer-
ican Society for Information Science, vol. 25, no. 5, pp. 336–337, 1974.

[11] G. Salton, E. A. Fox, and H. Wu, “Extended boolean information
retrieval,” Commun. ACM, vol. 26, pp. 1022–1036, Nov. 1983.

[12] G. Salton, A. Wong, and C. S. Yang, “A vector space model for au-
tomatic indexing,” Commun. ACM, vol. 18, pp. 613–620, Nov. 1975.

[13] M. A. Pasca and S. M. Harabagiu, “High performance ques-
tion/answering,” in Proceedings of the 24th annual international
ACM SIGIR conference on Research and development in information re-
trieval, SIGIR ’01, (New York, NY, USA), pp. 366–374, ACM, 2001.

[14] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval:
the concepts and technology behind search. Addison-Wesley, 2 ed.,
2011.

[15] C. N. Mooers, “Zatocoding applied to mechanical organization of
knowledge,” American Documentation, vol. 2, no. 1, pp. 20–32, 1951.

[16] M. E. Maron and J. L. Kuhns, “On relevance, probabilistic indexing
and information retrieval,” J. ACM, vol. 7, pp. 216–244, July 1960.

[17] S. E. Robertson, “The Probability Ranking Principle in IR,” Journal
of Documentation, vol. 33, no. 4, pp. 294–304, 1977.

[18] W. S. Cooper, F. C. Gey, and D. P. Dabney, “Probabilistic retrieval
based on staged logistic regression,” in Proceedings of the 15th an-
nual international ACM SIGIR conference on Research and development
in information retrieval, SIGIR ’92, (New York, NY, USA), pp. 198–
210, ACM, 1992.

[19] W. B. Croft and D. J. Harper, “Document retrieval systems,” ch. Us-
ing probabilistic models of document retrieval without relevance
information, pp. 161–171, London, UK, UK: Taylor Graham Pub-
lishing, 1988.

[20] W. B. Croft, “Boolean queries and term dependencies in probabilis-
tic retrieval models,” Journal of the American Society for Information
Science, vol. 37, no. 2, pp. 71–77, 1986.

132

[21] N. Fuhr, “Probabilistic models in information retrieval,” The Com-
puter Journal, vol. 35, pp. 243–255, 1992.

[22] K. S. Jones, S. Walker, and S. E. Robertson, “A probabilistic model
of information retrieval: development and comparative experi-
ments,” in Information Processing and Management, pp. 779–840,
2000.

[23] H. C. L. A. GrifïňĄths and P. Willett., “Using interdocument sim-
ilarity in document retrieval systems,” in Journal of the American
Society for Information Science, 1986.

[24] J. Allan, J. Carbonell, G. Doddington, J. Yamron, Y. Yang,
U. Amherst, and J. A. Umass, “Topic detection and tracking pilot
study,” 1998.

[25] U. Hanani, B. Shapira, and P. Shoval, “Information filtering:
Overview of issues, research and systems,” User Modeling and User-
Adapted Interaction, vol. 11, pp. 203–259, Aug. 2001.

[26] N. J. Belkin and W. B. Croft, “Information filtering and information
retrieval: two sides of the same coin?,” Commun. ACM, vol. 35,
pp. 29–38, December 1992.

[27] C. Faloutsos and D. W. Oard, “A survey of information retrieval
and filtering methods,” tech. rep., 1995.

[28] P. Resnick and H. R. Varian, “Recommender systems,” Commun.
ACM, vol. 40, pp. 56–58, Mar. 1997.

[29] R. Burke, “Hybrid recommender systems: Survey and exper-
iments,” User Modeling and User-Adapted Interaction, vol. 12,
pp. 331–370, Nov. 2002.

[30] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, eds., Recommender
Systems Handbook. Springer, 2011.

[31] J. A. Konstan and J. Riedl, “Recommender systems: from al-
gorithms to user experience.,” User Model. User-Adapt. Interact.,
vol. 22, no. 1-2, pp. 101–123, 2012.

[32] R. Burke, “The adaptive web,” ch. Hybrid web recommender sys-
tems, pp. 377–408, Berlin, Heidelberg: Springer-Verlag, 2007.

[33] M. Montaner, B. López, and J. L. De La Rosa, “A taxonomy of
recommender agents on theinternet,” Artif. Intell. Rev., vol. 19,
pp. 285–330, June 2003.

133

[34] G. Fischer, “User modeling in humancomputer interaction,” User
Modeling and UserAdapted Interaction, vol. 11, no. 1-2, pp. 65–86,
2001.

[35] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and pos-
sible extensions,” IEEE TRANSACTIONS ON KNOWLEDGE AND
DATA ENGINEERING, vol. 17, no. 6, pp. 734–749, 2005.

[36] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collabo-
rative filtering to weave an information tapestry,” Commun. ACM,
vol. 35, no. 12, pp. 61–70, 1992.

[37] J. B. Schafer, J. Konstan, and J. Riedi, “Recommender systems in
e-commerce,” in Proceedings of the 1st ACM conference on Electronic
commerce, EC ’99, (New York, NY, USA), pp. 158–166, ACM, 1999.

[38] U. Shardanand and P. Maes, “Social information filtering: algo-
rithms for automating “word of mouth”,” in Proc. SIGCHI’95,
ACM, 1995.

[39] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“Grouplens: An open architecture for collaborative filtering of net-
news,” pp. 175–186, ACM Press, 1994.

[40] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, “Item-based collab-
orative filtering recommendation algorithms,” in Proc. WWW’01,
ACM, 2001.

[41] J. S. Breese, D. Heckerman, and C. M. Kadie, “Empirical analysis
of predictive algorithms for collaborative filtering,” in UAI (G. F.
Cooper and S. Moral, eds.), pp. 43–52, Morgan Kaufmann, 1998.

[42] S. A. Goldman, M. K. Warmuth, and D. Haussler, “Learning bi-
nary relations using weighted majority voting,” in Machine Learn-
ing, pp. 453–462, ACM Press, 1995.

[43] Y. Ren, G. Li, W. Zhou, and D. U. S. of Information Technology,
“Automatic generation of recommendations from data : a multi-
faceted survey,” 2011.

[44] S. Han, S. Chee, J. Han, and K. Wang, “Rectree: An efficient col-
laborative filtering method,” in Lecture Notes in Computer Science,
pp. 141–151, Springer Verlag, 2001.

134

[45] H. Ma, I. King, and M. R. Lyu, “Effective missing data prediction
for collaborative filtering,” in Proceedings of the 30th annual inter-
national ACM SIGIR conference on Research and development in infor-
mation retrieval, SIGIR ’07, (New York, NY, USA), pp. 39–46, ACM,
2007.

[46] F. Garcin, B. Faltings, R. Jurca, and N. Joswig, “Rating aggrega-
tion in collaborative filtering systems,” in Proceedings of the third
ACM conference on Recommender systems, RecSys ’09, (New York,
NY, USA), pp. 349–352, ACM, 2009.

[47] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl, “Applica-
tion of dimensionality reduction in recommender systems: a case
study,” in In ACM WebKDD Workshop, 2000.

[48] D. Billsus and M. J. Pazzani, “Learning collaborative information
filters,” in Proceedings of the Fifteenth International Conference on Ma-
chine Learning, ICML ’98, (San Francisco, CA, USA), pp. 46–54,
Morgan Kaufmann Publishers Inc., 1998.

[49] T. Hofmann and J. Puzicha, “Latent class models for collaborative
filtering,” in Proc. IJCAI’99, (San Francisco, CA, USA), pp. 688–693,
Morgan Kaufmann Publishers Inc., 1999.

[50] E. Rich, “User modeling via stereotypes,” Cognitive Science, vol. 3,
pp. 329–354, 1979.

[51] M. J. Pazzani, “A framework for collaborative, content-based and
demographic filtering,” ARTIFICIAL INTELLIGENCE REVIEW,
vol. 13, pp. 393–408, 1999.

[52] A. I. Schein, A. Popescul, L. H., R. Popescul, L. H. Ungar, and D. M.
Pennock, “Methods and metrics for cold-start recommendations,”
in In Proceedings of the 25th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pp. 253–
260, ACM Press, 2002.

[53] Y. Lashkari, M. Metral, and P. Maes, “Collaborative interface
agents,” in Proceedings of the twelfth national conference on Artificial
intelligence (vol. 1), AAAI ’94, (Menlo Park, CA, USA), pp. 444–449,
American Association for Artificial Intelligence, 1994.

[54] M. D. Gemmis, L. Iaquinta, P. Lops, C. Musto, F. Narducci, and
G. Semeraro, “Preference learning in recommender systems,” in In
Preference Learning (PL-09) ECML/PKDD-09 Workshop, 2009.

135

[55] B. Krulwich, “Lifestyle finder: Intelligent user profiling us-
ing large-scale demographic data,” Artificial Intelligence Magazine,
vol. 18, no. 2, pp. 37–45, 1997.

[56] M. Balabanovic and Y. Shoham, “Fab: Content-based, collaborative
recommendation,” Communications of the ACM, vol. 40, pp. 66–72,
1997.

[57] M. J. Pazzani and D. Billsus, “Content-based recommendation
systems,” in THE ADAPTIVE WEB: METHODS AND STRATE-
GIES OF WEB PERSONALIZATION. VOLUME 4321 OF LECTURE
NOTES IN COMPUTER SCIENCE, pp. 325–341, Springer-Verlag,
2007.

[58] M. Pazzani, J. Muramatsu, and D. Billsus, “Syskill & webert: Iden-
tifying interesting web sites,” in In Proc. 13th Natl. Conf. on Artificial
Intelligence, pp. 54–61, 1998.

[59] K. Lang, “Newsweeder: Learning to filter netnews,” in in Pro-
ceedings of the 12th International Machine Learning Conference (ML95,
1995.

[60] L. Chen and K. Sycara, “Webmate: a personal agent for browsing
and searching,” in Proceedings of the second international conference on
Autonomous agents, AGENTS ’98, (New York, NY, USA), pp. 132–
139, ACM, 1998.

[61] P. P. shan Chen, “The entity-relationship model: Toward a unified
view of data,” ACM Transactions on Database Systems, vol. 1, pp. 9–
36, 1976.

[62] K. S. Jones, “A statistical interpretation of term specificity and its
application in retrieval,” Journal of Documentation, vol. 28, pp. 11–
21, 1972.

[63] P. V. A. N. Andel, “Anatomy of the unsought finding. serendip-
ity: Origin, history, domains, traditions, appearances, patterns and
programmability,” Br J Philos Sci, vol. 45, pp. 631–648, June 1994.

[64] B. Sheth and P. Maes, “Evolving agents for personalized informa-
tion filtering,” pp. 345–352, Mar. 1993.

[65] Y. Zhang, J. Callan, and T. Minka, “Novelty and redundancy de-
tection in adaptive filtering,” in Proceedings of the 25th annual inter-
national ACM SIGIR conference on Research and development in infor-
mation retrieval, SIGIR ’02, (New York, NY, USA), pp. 81–88, ACM,
2002.

136

[66] D. Billsus and M. J. Pazzani, “User modeling for adaptive news ac-
cess,” User Modeling and User-Adapted Interaction, vol. 10, pp. 147–
180, Feb. 2000.

[67] J. R. Quinlan, “Induction of decision trees,” Machine Learning,
vol. 1, pp. 81–106, 1986. 10.1007/BF00116251.

[68] W. W. Cohen, “Fast effective rule induction,” in In Proceedings of the
Twelfth International Conference on Machine Learning, pp. 115–123,
Morgan Kaufmann, 1995.

[69] W. Cohen, “Learning rules that classify e-mail,” in In Papers from the
AAAI Spring Symposium on Machine Learning in Information Access,
pp. 18–25, AAAI Press.

[70] M. Pazzani, D. Billsus, S. Michalski, and J. Wnek, “Learning and
revising user profiles: The identification of interesting web sites,”
in Machine Learning, pp. 313–331, 1997.

[71] J. Rocchio, Relevance Feedback in Information Retrieval, pp. 313–323.
1971.

[72] D. J. Ittner, D. D. L. Y, and D. D. A. Z, “Text categorization of low
quality images,” pp. 301–315, 1995.

[73] C. Desrosiers and G. Karypis, “A comprehensive survey of
neighborhood-based recommendation methods,” Recommender
Systems Handbook, vol. 69, no. 11, pp. 107–144, 2011.

[74] R. Burke, “Knowledge-based recommender systems,” 2000.

[75] F. Lorenzi, F. Ricci, R. M. Tostes, and R. Brasil, “Case-based rec-
ommender systems: A unifying view,” in In: Intelligent Techniques
in Web Personalisation. LNAI. Springer-Verlag, pp. 89–113, Springer
Verlag, 2005.

[76] J. L. Kolodner, “An introduction to case-based reasoning,” Artificial
Intelligence Review, vol. 6, pp. 3–34, Mar. 1992.

[77] A. Aamodt and E. Plaza, “Case-based reasoning; foundational
issues, methodological variations, and system approaches,” AI
COMMUNICATIONS, vol. 7, no. 1, pp. 39–59, 1994.

[78] J. Kolodner, Case-based reasoning. San Mateo, CA: Morgan Kauf-
mann, 1993.

137

[79] L. Mcginty and B. Smyth, “On the role of diversity in conversa-
tional recommender systems,” in Proceedings of the Fifth Interna-
tional Conference on Case-Based Reasoning, pp. 276–290, Springer,
2003.

[80] D. McSherry, “Similarity and compromise,” in ICCBR, pp. 291–305,
2003.

[81] D. Bridge and A. Ferguson, “Diverse product recommendations
using an expressive language for case retrieval,” in In Proceedings
of the Sixth European Conference on Case-Based Reasoning, pp. 43–57,
Springer, 2002.

[82] A. Felfernig and R. Burke, “Constraint-based recommender sys-
tems: technologies and research issues,” in Proceedings of the 10th
international conference on Electronic commerce, ICEC ’08, (New York,
NY, USA), pp. 3:1–3:10, ACM, 2008.

[83] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme, “Information
retrieval in folksonomies: Search and ranking,” in ESWC, 2006.

[84] M. Grahl, A. Hotho, and G. Stumme, “Conceptual clustering of
social bookmarking sites,” in LWA 2007: Lernen - Wissen - Adaption,
2007.

[85] D. Ramage, P. Heymann, C. D. Manning, and H. Garcia-Molina,
“Clustering the tagged web,” in WSDM 2009: Proc. of the 2nd ACM
Int. Conference on Web Search and Data Mining, 2009.

[86] M. van Leeuwen, F. Bonchi, B. Sigurbjörnsson, and A. Siebes,
“Compressing tags to find interesting media groups,” in CIKM,
2009.

[87] Y. H. Kwon, M. H. Lee, and S.-R. Kim, “Effective spelling cor-
rection in web queries and run-time db construction,” in Proc.
ICHIT’09, ACM, 2009.

[88] K. Kukich, “Techniques for automatically correcting words in
text,” ACM Comput. Surv., vol. 24, no. 4, pp. 377–439, 1992.

[89] A. R. Golding and D. Roth, “A winnow-based approach to context-
sensitive spelling correction,” Mach. Learn., vol. 34, no. 1-3, pp. 107–
130, 1999.

[90] D. Yarowsky, “Decision lists for lexical ambiguity resolution: ap-
plication to accent restoration in spanish and french,” in Proc. ACL,
Association for Computational Linguistics, 1994.

138

[91] S. Cucerzan and E. Brill, “Spelling correction as an iterative process
that exploits the collective knowledge of web users,” in Proceedings
of the 2004 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP 2004), pp. 293–300, July 2004.

[92] C. Whitelaw, B. Hutchinson, G. Y. Chung, and G. Ellis, “Using the
web for language independent spellchecking and autocorrection,”
in Proc. EMNLP’09, ACL, 2009.

[93] J. Schaback, “Multi-level feature extraction for spelling correction,”
2007.

[94] F. Ahmad and G. Kondrak, “Learning a spelling error model from
search query logs,” in Proceedings of the 2005 Human Language Tech-
nology Conference and Conference on Empirical Methods in Natural
Language Processing (HLT/EMNLP), (Vancouver, Canada), pp. 955–
962, Association for Computational Linguistic, October 2005.

[95] F. Echarte, J. J. Astrain, A. Córdoba, and J. Villadangos, “Pattern
matching techniques to identify syntactic variations of tags in folk-
sonomies,” in Proc. WSKS’08, Springer-Verlag, 2008.

[96] J. Freund, Mathematical Statistics. Englewood Cliffs, NJ: Prentice
Hall, 1962.

[97] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras,
and F. Silvestri, “The impact of caching on search engines,” in
SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval, (New
York, NY, USA), pp. 183–190, ACM, 2007.

[98] F. Silvestri, “Mining query logs: Turning search usage data into
knowledge,” Foundations and Trends in Information Retrieval, vol. 1,
no. 1-2, pp. 1–174, 2010.

[99] R. A. Baeza-yates, C. A. Hurtado, and M. Mendoza, “Improving
search engines by query clustering,” Journal of The American Society
for Information Science and Technology, vol. 58, pp. 1793–1804, 2007.

[100] R. A. Baeza-yates, Applications of Web Query Mining. 2005.

[101] R. Baeza-Yates, C. Hurtado, and M. Mendoza, Query Recommenda-
tion Using Query Logs in Search Engines, vol. 3268/2004 of LNCS.
Springer Berlin / Heidelberg, November 2004.

139

[102] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang, “Clustering user queries of a
search engine,” in Proc. WWW’01, ACM, 2001.

[103] D. Beeferman and A. Berger, “Agglomerative clustering of a search
engine query log,” in Proc. KDD’00, ACM, 2000.

[104] R. Jones, B. Rey, O. Madani, and W. Greiner, “Generating query
substitutions,” in Proc. WWW’06, ACM, 2006.

[105] E. Balfe and B. Smyth, “Improving web search through collabora-
tive query recommendation.,” in Proc. ECAI’04, IOS Press, 2004.

[106] B. M. Fonseca, P. Golgher, B. Pôssas, B. Ribeiro-Neto, and
N. Ziviani, “Concept-based interactive query expansion,” in Proc.
CIKM’05, ACM, 2005.

[107] R. Baeza-Yates and A. Tiberi, “Extracting semantic relations from
query logs,” in Proc. KDD’07.

[108] H. Deng, I. King, and M. R. Lyu, “Entropy-biased models for query
representation on the click graph,” in Proceedings of the 32nd interna-
tional ACM SIGIR conference on Research and development in informa-
tion retrieval, SIGIR ’09, (New York, NY, USA), pp. 339–346, ACM,
2009.

[109] P. Boldi, F. Bonchi, C. Castillo, and S. Vigna, “From ’dango’ to
’japanese cakes’: Query reformulation models and patterns,” in
Proc. WI’09, IEEE, September 2009.

[110] P. Boldi, F. Bonchi, C. Castillo, and S. Vigna, “Query reformula-
tion mining: models, patterns, and applications,” Inf. Retr., vol. 14,
no. 3, pp. 257–289, 2011.

[111] D. Downey, S. Dumais, and E. Horvitz, “Heads and tails: studies
of web search with common and rare queries,” in Proc. SIGIR’07,
ACM, 2007.

[112] Q. Mei, D. Zhou, and K. Church, “Query suggestion using hitting
time,” in Proc. CIKM’08, ACM, 2008.

[113] Y. Song and L.-w. He, “Optimal rare query suggestion with implicit
user feedback,” in Proc. WWW’10.

[114] A. Broder, P. Ciccolo, E. Gabrilovich, V. Josifovski, D. Metzler,
L. Riedel, and J. Yuan, “Online expansion of rare queries for spon-
sored search,” in Proc. WWW’09, ACM, 2009.

140

[115] J. Xu and G. Xu, “Learning similarity function for rare queries,” in
Proceedings of the fourth ACM international conference on Web search
and data mining, WSDM ’11, (New York, NY, USA), pp. 615–624,
ACM, 2011.

[116] A. Jain, U. Ozertem, and E. Velipasaoglu, “Synthesizing high util-
ity suggestions for rare web search queries,” in Proc. SIGIR ’11,
ACM, 2011.

[117] R. Baraglia, F. Cacheda, V. Carneiro, D. Fernandez, V. Formoso,
R. Perego, and F. Silvestri, “Search shortcuts: a new approach to
the recommendation of queries,” in Proc. RecSys’09, ACM, 2009.

[118] I. Szpektor, A. Gionis, and Y. Maarek, “Improving recommenda-
tion for long-tail queries via templates,” in Proceedings of the 20th
international conference on World wide web, WWW ’11, (New York,
NY, USA), pp. 47–56, ACM, 2011.

[119] F. Silvestri and R. Venturini, “Vsencoding: efficient coding and
fast decoding of integer lists via dynamic programming,” in CIKM,
pp. 1219–1228, 2010.

[120] R. A. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Pla-
chouras, and F. Silvestri, “Design trade-offs for search engine
caching,” TWEB, vol. 2, no. 4, 2008.

[121] E. Balfe and B. Smyth, “A comparative analysis of query similarity
metrics for community-based web search,” in ICCBR (H. Muñoz-
Avila and F. Ricci, eds.), vol. 3620 of Lecture Notes in Computer Sci-
ence, pp. 63–77, Springer, 2005.

[122] “Bing searches increase 7 percent in october 2009,” Nov 2009.
http://www.hitwise.com/us/press-center/press-releases/google

[123] D. Broccolo, L. Marcon, F. Nardini, R. Perego, and F. Silvestri,
“Generating suggestions for queries in the long tail with an in-
verted index,” Information Processing & Management, 2011.

[124] S. Ye and S. F. Wu, “Measuring message propagation and social in-
fluence on Twitter.com,” in Proceedings of the Second international
conference on Social informatics, SocInfo’10, (Berlin, Heidelberg),
pp. 216–231, Springer-Verlag, 2010.

[125] F. Abel, Q. Gao, G.-J. Houben, and K. Tao, “Analyzing Temporal
Dynamics in Twitter Profiles for Personalized Recommendations

141

in the Social Web,” in Proceedings of ACM WebSci ’11, 3rd Interna-
tional Conference on Web Science, Koblenz, Germany, ACM, June 2011.

[126] J. Chen, R. Nairn, L. Nelson, M. Bernstein, and E. Chi, “Short and
tweet: experiments on recommending content from information
streams,” in Proceedings of the 28th international conference on Hu-
man factors in computing systems, CHI ’10, (New York, NY, USA),
pp. 1185–1194, ACM, 2010.

[127] Y. Duan, L. Jiang, T. Qin, M. Zhou, and H.-Y. Shum, “An Empirical
Study on Learning to Rank of Tweets,” in COLING, pp. 295–303,
2010.

[128] A. Dong, R. Zhang, P. Kolari, J. Bai, F. Diaz, Y. Chang, Z. Zheng,
and H. Zha, “Time is of the essence: improving recency ranking
using twitter data,” in Proceedings of the 19th international conference
on World wide web, WWW ’10, (New York, NY, USA), pp. 331–340,
ACM, 2010.

[129] S. Banerjee, K. Ramanathan, and A. Gupta, “Clustering short texts
using Wikipedia,” in Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information re-
trieval, SIGIR ’07, (New York, NY, USA), pp. 787–788, ACM, 2007.

[130] P. Schonhofen, “Identifying Document Topics Using the Wikipedia
Category Network,” in Proceedings of the 2006 IEEE/WIC/ACM In-
ternational Conference on Web Intelligence, WI ’06, (Washington, DC,
USA), pp. 456–462, IEEE Computer Society, 2006.

[131] X.-H. Phan, L.-M. Nguyen, and S. Horiguchi, “Learning to classify
short and sparse text & web with hidden topics from large-scale
data collections,” in Proceeding of the 17th international conference
on World Wide Web, WWW ’08, (New York, NY, USA), pp. 91–100,
ACM, 2008.

[132] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

[133] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread
of influence through a social network,” in Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and
data mining, KDD ’03, (New York, NY, USA), pp. 137–146, ACM,
2003.

142

[134] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen,
and N. Glance, “Cost-effective outbreak detection in networks,”
in Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’07, (New York, NY,
USA), pp. 420–429, ACM, 2007.

[135] A. Goyal, W. Lu, and L. V. Lakshmanan, “Celf++: optimizing the
greedy algorithm for influence maximization in social networks,”
in Proceedings of the 20th international conference companion on World
wide web, WWW ’11, (New York, NY, USA), pp. 47–48, ACM, 2011.

[136] C. Budak, D. Agrawal, and A. El Abbadi, “Limiting the spread of
misinformation in social networks,” in Proceedings of the 20th inter-
national conference on World wide web, WWW ’11, (New York, NY,
USA), pp. 665–674, ACM, 2011.

[137] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, “An anal-
ysis of approximations for maximizing submodular set func-
tions – II,” in Polyhedral Combinatorics, vol. 8 of Mathematical Pro-
gramming Studies, pp. 73–87, Springer Berlin Heidelberg, 1978.
10.1007/BFb0121195.

[138] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H. Free-
man & Co., 1979.

[139] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser, “Location of
bank accounts to optimize float: An analytic study of exact and ap-
proximate algorithms,” Management Science, vol. 23, no. 8, pp. 789–
810, 1977.

[140] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An anal-
ysis of approximations for maximizing submodular set func-
tions,” Mathematical Programming, vol. 14, pp. 265–294, 1978.
10.1007/BF01588971.

[141] P. Judge, Barracuda Labs, Annual Report. 2009.

[142] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?,” in WWW ’10: Proceedings of the 19th
international conference on World wide web, (New York, NY, USA),
pp. 591–600, ACM, 2010.

[143] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts, “Everyone’s
an influencer: quantifying influence on Twitter,” in Proceedings of

143

the fourth ACM international conference on Web search and data mining,
WSDM ’11, (New York, NY, USA), pp. 65–74, ACM, 2011.

[144] M. Pennacchiotti and S. Gurumurthy, “Investigating Topic Models
for Social Media User Recommendation,” in Proceedings of WWW,
2011.

[145] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Trans. on Patt. Anal. and Mach. Intell.,
vol. 24, pp. 603–619, 2002.

[146] T. Kurashima, T. Iwata, G. Irie, and K. Fujimura, “Travel route
recommendation using geotags in photo sharing sites,” in CIKM,
pp. 579–588, 2010.

[147] D. Crandall, L. Backstrom, D. Huttenlocher, and J. Kleinberg,
“Mapping the world’s photos,” in WWW, pp. 761–770, ACM, 2009.

[148] Z. Yin, L. Cao, J. Han, and J. L. T. Huang, “Diversified trajectory
pattern ranking in geo-tagged social media,” SDM, 2011.

[149] X. Lu, C. Wang, J. Yang, Y. Pang, and L. Zhang, “Photo2trip: gen-
erating travel routes from geo-tagged photos for trip planning,”
MM, pp. 143–152, 2010.

[150] M. Clements, P. Serdyukov, A. P. de Vries, and M. J. Reinders, “Us-
ing flickr geotags to predict user travel behaviour,” in SIGIR 2010,
July 2010.

[151] T. Rattenbury, N. Good, and M. Naaman, “Towards automatic ex-
traction of event and place semantics from flickr tags,” in SIGIR
2007, pp. 103–110, 2007.

[152] Y. Zheng, M. Zhao, Y. Song, H. Adam, U., A. Bissacco, F. Brucher,
T. Chua, and H. Neven, “Tour the world: Building a web-scale
landmark recognition engine,” in CVPR, pp. 1085–1092, 2009.

[153] M. De Choudhury, M. Feldman, S. Amer-Yahia, N. Golbandi,
R. Lempel, and C. Yu, “Automatic construction of travel itineraries
using social breadcrumbs,” in HT, pp. 35–44, 2010.

[154] H. Yildirim and M. S. Krishnamoorthy, “A random walk method
for alleviating the sparsity problem in collaborative filtering,” Pro-
ceedings RecSys 2008, p. 131.

144

[155] M. Jamali and M. Ester, “TrustWalker: a random walk model
for combining trust-based and item-based recommendation,” in
SIGKDD 2009, pp. 397–406, 2009.

[156] I. Konstas, V. Stathopoulos, and J. M. Jose, “On social networks
and collaborative recommendation,” Proceedings SIGIR 2009, vol. 8,
no. 3, p. 195, 2009.

[157] L. Backstrom and J. Leskovec, “Supervised random walks: predict-
ing and recommending links in social networks.,” in WSDM’11,
pp. 635–644, 2011.

[158] H. Tong and C. Faloutsos, “Center-piece subgraphs: problem defi-
nition and fast solutions,” in KDD, pp. 404–413, 2006.

145

146

	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Publications
	Abstract
	1 Introduction
	1.1 Thesis Contributions
	1.1.1 Recommending Correct Tags
	1.1.2 Recommending Queries
	1.1.3 Recommending Tweets
	1.1.4 Recommending Touristic Points of Interest

	1.2 Outline

	2 Background: an Overview of Recommender Systems
	2.1 Introduction
	2.2 Recommendation Techniques
	2.2.1 Collaborative Filtering Based Recommendation
	2.2.2 Demographic Recommendation
	2.2.3 Content-Based Recommendation
	2.2.4 Knowledge-Based Recommendation
	2.2.5 Hybrid Methods

	3 Recommending Correct Tags
	3.1 Introduction
	3.2 Related Work
	3.3 Model Description
	3.4 Experiments
	3.5 Summary

	4 Recommending Queries
	4.1 Introduction
	4.2 Related Work
	4.2.1 Center-Piece Subgraph
	4.2.2 Query Recommendation
	4.2.3 Rare Query Recommendation
	4.2.4 Limitations

	4.3 The TQ-Graph Model
	4.3.1 Query Suggestion Method

	4.4 The TQ-Graph Effectiveness
	4.5 The TQ-Graph Efficiency
	4.6 Scaling Up TQ-Graph Suggestion Building
	4.7 The TQ-Graph Contributions and Drawbacks
	4.8 Orthogonal Queries
	4.8.1 Finding Orthogonal Queries
	4.8.2 Identifying a Range of Result Overlap
	4.8.3 Finding Interesting Orthogonal Queries
	4.8.4 Algorithm

	4.9 Effectiveness of Orthogonal Query Recommendation
	4.9.1 Experimental Setup
	4.9.2 Orthogonal Query Cache Policy
	4.9.3 Comparison
	4.9.4 User Study Evaluation
	4.9.5 Some Examples

	4.10 Summary

	5 Recommending Tweets
	5.1 Introduction
	5.2 Related Work
	5.3 Problem Definition
	5.4 Interestingness Estimation
	5.4.1 Exploiting Textual Similarities
	5.4.2 Enhancing Precision for Passive Users
	5.4.3 User Authority

	5.5 Experiments
	5.5.1 Dataset
	5.5.2 Evaluating int Quality
	5.5.3 TweetRec vs. Interests-Spanning TweetRec

	5.6 Summary

	6 Recommending Touristic Points of Interest
	6.1 Introduction
	6.2 Related Work
	6.3 A Graph-Based Model of Touristic Itineraries
	6.4 RWR-based PoIs Recommendation
	6.5 Experimental Evaluation
	6.6 Summary

	7 Conclusions and Future Work
	Bibliography

