
IMT Institute for Advanced Studies, Lucca

Lucca, Italy

Extending Ontology Queries with
Bayesian Network Reasoning

PhD Program in Computer Science and Engineering

XX Cycle

By

Bellandi Andrea

2008

http://www.imtlucca.it
mailto:a.bellandi@imtlucca.it

The dissertation of Bellandi Andrea is approved.

Program Coordinator: Prof. Ugo Montanari, University of Pisa

Supervisor: Prof. Franco Turini, Department of Computer Science - Uni-
versity of Pisa

Supervisor: ,

Tutor: ,

The dissertation of Bellandi Andrea has been reviewed by:

Prof. Yun Peng, Department of Computer Science and Electrical Engi-
neering - University of Maryland

Thierry Declerck, DFKI GmbH Language Technology Lab - Germany

IMT Institute for Advanced Studies, Lucca

2008

http://www.imtlucca.it

To my uncle Renzo Orsini

Contents

List of Figures ix

List of Tables xii

Vita and Publications xiii

Abstract xiv

1 Introduction 1
1.1 The approach . 5
1.2 Thesis Outline . 8

2 Background and Related Works 9
2.1 Ontology . 9

2.1.1 Introduction . 9
2.1.2 Formal ontology definition 10
2.1.3 Ontology web language 12

2.2 Bayesian Belief Networks 16
2.2.1 Networks . 16
2.2.2 Probabilities . 23
2.2.3 Probabilistic Networks and Inference 32
2.2.4 Related works . 35

3 Compiling Ontologies into Bayesian Networks 40
3.1 Introduction . 40
3.2 Two-levels Bayesian Network 41

vii

3.3 Ontology: Hypothesis and Requirements 45
3.4 Ontology Compiling Process 48

3.4.1 Deriving Two-level Bayesian Network Structure . . 50
3.4.2 Deriving Two-level Bayesian Network Probabilistic

Part . 52

4 Inference 59
4.1 BQ Language . 59

4.1.1 Introduction . 59
4.1.2 BQ Language: The syntax 60
4.1.3 BQ Language: The operational semantic 62

4.2 Inference over taxonomies 62
4.2.1 An Example of Inference over taxonomy 69

4.3 Inference over taxonomies with multiple inheritance 72
4.3.1 An Example of Inference over taxonomy with mul-

tiple inheritance . 78
4.4 Inference over polytrees . 81

4.4.1 Example of Inference over Polytrees 93
4.5 System Architecture . 99

4.5.1 GUI Interface Module 100
4.5.2 Query Checker Module 102
4.5.3 Ontology Compiling Module 102
4.5.4 Inference Module . 105
4.5.5 First Experimental Results 106

5 Conclusion and Future Work 110

A Bayesian Query Language: The Operational Semantics 117

References 134

viii

List of Figures

1 Graphical representation of an ontology. 12
2 Example of well defined model theoretic semantics. 14
3 Example of causal network. 17
4 Example of graph. 18
5 Example of D-separation criterion. 21
6 Universe of elements U = X ∪X 24
7 Probability of the union of events. 25
8 Conditional Probability of X given Y 26
9 Example of BN. 29
10 A simple Bayesian network. 34

11 (a) Example of 2lBN-structure. (b) Example of 2lBN-probabilistic
part. 41

12 (a) 2lBN Example. (b) Classical Bayesian Network. 42
13 Example of ontology. 47
14 Example of TBox ontology. 49
15 Mapping TBox ontology to 2lBN structure. 50
16 Example of Ωs function. 52
17 Example of instance counting. 53
18 Exampe of initial probability distribution. 54
19 Conditional probability distribution of a node with a single

father. 55
20 Computation of Conditional Probability distribution of a

node with two fathers. 56

ix

21 Computation of Conditional Probability distribution of a
node with a single father. 57

22 Computation Conditional probaiblity distribution of a node
with two fathers. 58

23 (a) A typical polytree. (b) under evindence and over evi-
dence w.r.t. D node. 60

24 Semantic rules about under and over evidence 64
25 Rules about the direct computation of the conditional prob-

ability . 66
26 Rules about the direct computation of the prior probability 67
27 Semantic rules about the normalisation factor computing . 69
28 Example of semantic rules derivation. 70
29 Fragment of the Legal Entity taxonomy of the Musing project. 71
30 Legal Entity taxonomy compiled into the bayesian network 71
31 An example of taxonomy with multiple inheritance. 73
32 Semantic rules about taxonomy evidence with multiply in-

heritance . 74
33 Example of ances function. 75
34 The taxonomy with multiple inheritance compiled into the

Bayesian Network. 78
35 Derivation rules for computing P (t2|t6). 79
36 Semantic rules about under and over evidence 83
37 Example of evidence both under and over w.r.t. query. . . 84
38 Example of evidence over w.r.t. query. 86
39 Example of evidence under w.r.t. query. 87
40 Semantic rules about induced conditioning 89
41 Example of triple function. 90
42 Example of Ontology. 91
43 Example of a node with three father nodes 92
44 The ontology compiled into the 2lBN 95
45 Function Ψ maps each object property to a bayesian arc. . . 96
46 Function Φ maps each ontology class to a bayesian node. . 97
47 System Architecture. 100

x

48 System GUI. 101
49 (a) HLNs and LLNs. (b) Bayesian arcs (HLRs). 104
50 (a) Query result (b) Inference schema. 108
51 (a) Query result (b) Inference schema. 109

52 Object property binding ci to cj 112
53 How to represent a data property as a LLN 113
54 (a) P (B|C) tends to zero. (b) P (B|C) is equal to zero. . . . 114

55 Taxonomy: Semantic rules about under and over evidence,
part 1 . 117

56 Taxonomy: Semantic rules about under and over evidence,
part 2 . 118

57 Taxonomy: Evidence over w.r.t. query 119
58 Taxonomy: Evidence under w.r.t. query 120
59 Taxonomy with multiply hineritance: Evidence over w.r.t.

query . 121
60 Taxonomy with multiply hineritance: Evidence underw.r.t.

query . 122
61 Taxonomy with multiply hineritance: query is one of the

fathers of the evidence . 123
62 Taxonomy with multiply hineritance: probability distribu-

tion of a node given its fathers 124
63 Taxonomy with multiply hineritance: evidence is one of

the father of the query . 125
64 Polytree: Evidence both over and under w.r.t. query, part 1 126
65 Polytree: Evidence over w.r.t. query 128
66 Polytree: Evidence under w.r.t. query 129
67 Polytree: query is one of the fathers of the evidence 130
68 Polytree: probability distribution of a node given its fathers 131
69 Polytree: Reversed probability distribution 132
70 Polytree: A prior induced probability distribution 132
71 Polytree: A prior probability distribution 133

xi

List of Tables

1 BQ grammar . 61
2 General procedure for detecting the kind of query. 101
3 Recursive visit to the structure of the ontology. 103
4 Procedure for under, over, and under over evidence. . . . 107

xii

March 26, 1976 Born, Livorno, Italy

October 2004 Degree in Computer Science
Final mark: 110/110
University of Pisa, Italy

Publications

1. A. Bellandi, B. Furletti, V. Grossi, A. Romei. “Ontology-driven association
rules extraction: a case study,” In the proceedings of the Workshop Context
and Ontologies: Representation and Reasoning, 2007.

2. A. Bellandi, B. Furletti, V. Grossi, A. Romei. “Pushing Constraints in Asso-
ciation Rule Mining: An Ontology-Based Approach,” In the proceedings of
the IADIS International Conference WWW/INTERNET, 2007.

3. M. Baglioni, A. Bellandi, B. Furletti, L. Spinsanti, F. Turini. “Ontology-
Based Business Plan Classification,” In the proceedings of the 12th IEEE
International EDOC Conference. The Enterprise Computing Conference (EDOC
2008), 2008.

4. A. Bellandi, B. Furletti, V. Grossi, A. Romei. “Ontological Support for Asso-
ciation Rule Mining,” In the Proceedings of the IASTED International Con-
ference on Artificial Intelligence and Applications (AIA 2008), 2008.

5. M. Baglioni, A. Bellandi, B. Furletti, C. Pratesi, F. Turini. “Improving the
Business Plan Evaluation Process: the Role of Intangibles,” To be published
in the International Journal Quality Technology and Quantitative Management
- Special Issue on Non-Standard Analysis of Customer Satisfaction Survey Data,
2008.

6. D. Bacciu, A. Bellandi, B. Furletti, V. Grossi and A. Romei “Discovering
Strategic Behaviors in Multi-Agent Scenarios by Ontology-Driven Mining,”
Chapter of the book Robotics, Automation and Control, ITECH Books
http://www.i-techonline.com/ - To be published, 2008.

xiii

Abstract

Today, ontologies are the standard for representing knowl-
edge about concepts and relations among concepts concern-
ing specific domains. In general, ontology languages are based
on crisp logic and thus they can not handle incomplete or
partial knowledge about application domain. However, un-
certainty exists in domain modeling, ontology reasoning, and
concept mapping. Our choice for dealing with uncertainty,
is the Bayesian probability theory. The technique of repre-
senting an ontology by means of a bayesian network is used
for having a new knowledge base enriched with uncertainty,
over which making inference and probabilistic reasoning. Our
method is composed of three steps. The first one is to compile
the ontology into a bayesian network. We define the ontology
compiling process for extracting the bayesian network struc-
ture directly from the schema of the knowledge base. The sec-
ond one is to learn the initial probability distributions. We
provide a computation process for learning the probability
distributions, both prior and conditional, directly from the on-
tology instances, based on the Bayes theorem. The third one is
to provide a bayesian query language for answering queries
involving probabilities. Although evaluating bayesian net-
works is, in general, NP-hard, there is a class of networks that
can efficiently be solved in time linear in the number of nodes.
It is that of the polytree. On the basis of this bayesian network
class, it is provided a bayesian query language for answering
queries involving probabilities concerning both is − a ontol-
ogy relations and object − property relations. It is based on
recursive algorithms implementing top-down and bottom-up
reasoning over polytrees networks.

xiv

Chapter 1

Introduction

Today, ontologies are the standard for representing knowledge about con-
cepts and relations among them in specific domains. The term ontology
came from Philosophy and was applied to Information Systems in the
late seventies to characterize the formalization of a body of knowledge
describing a given domain. One of the major drivers for the popular-
ity of that concept was the realization that many of the most challenging
problems in the information technology field (e.g. interoperability among
systems) cannot not be solved without considering the semantics intrinsi-
cally embedded in each particular knowledge system. In other words, ad-
dressing issues such as type consistency or consistency of format might
sometimes work in very controlled environments, but successful knowl-
edge sharing requires semantic interoperability, a much stronger require-
ment.

Commonly touted as a promising solution to the problem of semantic
interoperability (e.g., (Cha99)), ontologies are formal representations of
knowledge about a given domain, typically expressed in a manner that
can be processed by machines. Specifically, an ontology explicitly repre-
sents the types of entities that can exist in the domain, the properties these
entities can have, the relationships they can have to one another, the roles
they can play with respect to one another, how they are decomposed into
parts, and the events and processes in which entities can participate. On-

1

tologies are useful for ensuring that producer and consumer share a com-
mon interpretation of data, especially in situations in which ownership
boundaries are crossed.

A number of ontology definition languages has been developed over
the past few years. The emerging standard one, recommended by W3C,
is the Ontology Web Language (OWL). OWL has been designed to meet
this need for a Web Ontology Language and it is part of the growing stack
of W3C recommendations related to the Semantic Web.

• XML provides a surface syntax for structured documents, but im-
poses no semantic constraints on the meaning of these documents.

• XMLSchema is a language for restricting the structure of XML doc-
uments and also extends XML with datatypes.

• RDF is a datamodel for objects (resources) and relations between
them, it provides a simple semantics for this datamodel, and these
datamodels can be represented in an XML syntax.

• RDF Schema is a vocabulary for describing properties and classes
of RDF resources, with a semantics for generalization-hierarchies of
such properties and classes.

• OWL adds more vocabulary for describing properties and classes:
among others, relations between classes (e.g. disjointness), cardi-
nality (e.g. exactly one), equality, richer typing of properties, charac-
teristics of properties (e.g. symmetry), and enumerated classes.

In general, ontology languages are based on crisp logic and thus they
can not handle incomplete or partial knowledge about application do-
mains. However, uncertainty exists in almost every aspect of ontology
engineering, for example in domain modeling, and ontology reasoning.
Not surprisingly, as ontology engineering research has achieved a greater
level of maturity, the need for representing uncertainty in ontologies in a
principled way has became clear. There is increasing interest in extending
traditional ontology formalisms to include sound mechanisms for repre-
senting and reasoning with uncertainty (CK05), (Las07). Initial attempts

2

to represent uncertainty in ontology languages tend to begin with con-
structs for attaching probabilities as attributes of entities. This approach is
clearly inadequate, in that it fails to account for structural features such as
conditional dependence (or independence), double counting of influence
on multiply connected graphs, and context-specific independence. Many
researchers have pointed out the importance of structural information in
probabilistic models (e.g. (Sha86), (Pea88), (Sch94), (Kad96)). In short,
annotating an ontology with numerical probabilities is just not enough,
as too much information is lost to the lack of a representational scheme
that can captures structural nuances of the probabilistic information.

An important question, therefore, is how probabilistic formalisms such
as Bayesian Networks can be merged with formal ontologies. Probabilis-
tic theories produce qualified conclusions, graded by numerical measures
of plausibility. By contrast, formal ontologies have focused on purely log-
ical reasoning that leads to definite conclusions. Formal ontological cate-
gories are related to one another in definite, law-governed ways, and are
understood as possessing a purely binary truth functionality. Formal on-
tologies are useful for data integration, particularly at the upper-most lev-
els, because they provide for a logical structure for various categories and
relations, independent of any particular material knowledge of a given
domain (Smi95). In this sense, a formal ontology provides a means of un-
derstanding all types of objects, attributes and relations associated to one
another within a given domain by understanding the most basic formal
structures they share in common (Lit06a). The question of how formal on-
tologies can be merged with probabilistic reasoning rests on first defining
which items are in an ontology per se and which items are associated with
the ontology (e.g., the reasoning engine, the query language, the results
analyzer, etc.). An upper ontology provides asserted facts about the ontic
world, meaning the world of general being as opposed to any distinctive
philosophical or scientific theory of that world, i.e., the ontological. So, ac-
cording to this approach, an upper ontology provides a type of assumed
god′s eye view of reality, independent of human observations. By their
very nature, human observations presume certain epistemic (i.e., mind-
or knowledge-dependent assertions about reality (e.g., as discussed in the

3

lengthy philosophical debates between realist and conceptualist theories
of reality) (Lit06b), (Lit05). At the upper-most levels, for example, an on-
tology normally contains non-recursive categorical relations such as: a
TerroristAgent is − a Person, an IED is − a Explosive, an ObjectShape is
dependent on Substance). The lattice of types and subtypes is a logical
structure that is generally taken as given by both logical and probabilis-
tic domain theories. While there may be competing upper ontologies,
each with its own type lattice, generally within an ontology there is no
uncertainty associated with the categorical relations. However, the sit-
uation changes when we consider the problem of categorizing instance
data. As an example, consider an individual who is declared a Person-
Of -Interest, and is being observed to assess whether or not he is engag-
ing in terrorist activities. Information relevant to this problem includes,
for example, the network of individuals with whom he associates, his
religious affiliation, purchases he has recently made (e.g., materials that
could be used to manufacture explosive devices), phone calls to individ-
uals suspected of plotting an attack, etc. The decomposition of Person-
Of-Interest into sub-categories of Terrorist and non-Terrorist is a purely
logical assumption. However, categorizing an individual as a terrorist
or non-terrorist would make use of probabilistic information, such as the
base rate of terrorist versus nonterrorist individuals within the relevant
population, the likelihood of the pattern of attributes and activities given
that the individual is a terrorist versus a non-terrorist, and the credibilities
of the reports on which we are basing our inferences about his attributes
and activities (e.g., (Wri06)). Probability is an essential tool for perform-
ing this kind of inference in a systematic and principled manner. To per-
form this kind of reasoning, a system needs the basic categorical knowl-
edge typically encoded in an ontology, and also the likelihood informa-
tion needed by the probabilistic reasoner. This likelihood information
can be obtained from statistical summaries of past instance data, from the
judgment of experienced experts, from physical characteristics of sensing
systems, or from some combination of the above. This information must
be represented in computational form to be processed by probabilistic
reasoning algorithms. Increasingly, with the proliferation of distributed

4

fusion systems and web services, it is becoming important to represent
this likelihood information not just internally within a given system, but
also for consumption by other systems with which it interoperates. Data
quality information must be represented as metadata associated with a
web service. When a service returns a result on a situation-specific query,
it often must return not just a most likely conclusion, but also information
on the uncertainty associated with the conclusion, and also pedigree in-
formation to provide the consumer with an audit trail regarding how the
conclusion was reached. Interoperating systems require not just shared
vocabulary for domain concepts, but also shared vocabulary for commu-
nicating statistical regularities pertaining to categories in the ontology, as
well as uncertainties associated with instance-level reasoning results, and
pedigree information about how conclusions were reached.

Our reasearch aims to extend ontology querying for handling uncer-
tainty, without extending the ontology representation formalism. The un-
certainty is derived directly from the knowledge base (which is precise
knowledge), and no modification and no intial probability distributions
for answering to queries involving probabilities are required. This re-
search develops an extension of the ontology queries with Bayesian net-
work reasoning. Our approach does not need to modify or re-arrange the
original knowledge base in terms of both schema and instances for deal-
ing with uncertainty, by introducing new relations, or using non-classical
Bayesian networks. In the following we briefly discuss our approach.

1.1 The approach

This research aims to define a Bayesian Query Language (BQL) which ex-
tends ontology query languages. So, our natural choice for dealing with
uncertainty, is the probability theory, in particular the bayesian one. We
are attracted to bayesian networks in this work also for the structural sim-
ilarity between the DAG of a bayesian network and the RDF graph of an
ontology: both of them are directed graphs, and direct correspondence
exists between many nodes and arcs in the two graphs. In general, many
real-life situations can be modeled as a domain of entities represented as

5

random variables in a probabilistic network. A probabilistic network is
a clever graphical representation of dependence and independence rela-
tions among random variables. Supposing, for example, that our knowl-
edge is about businesses, we could want to be able to answer queries like
the following ones:

• which is the likelihood of default of a company given that it is lim-
ited and has branches outside Europe?

• which is the likelihood of a particular project type given that it is
led by male managers working for a ltd company?

The whole proposed method is composed of three steps:

• Compiling the ontology into a bayesian network. We define the on-
tology compiling process for extracting the bayesian network struc-
ture directly from the schema of the knowledge base.

• Learning the initial probability distributions. We provide a compu-
tation process for learning the probability distributions, both prior
and conditional, directly from the ontology instances, based on the
Bayes theorem.

• Providing a Bayesian query language for answering queries involv-
ing probabilities. In these terms, an advantage of our approach is
that, compiling an ontology into a classical bayesian network, it is
possible to provide a query language based on well-know inference
schemas over bayesian networks.

In our view an ontology is a set of taxonomies and relationships among
them. According to RDF/OWL definitions, we can distinguish two kinds
of relations: the first one is the is− a relation, binding classes within each
taxonomy, and the second one is the object property relation, binding a
class to another one. Our ontology compiling process produces a two-
levels bayesian network. Note that, in general, but depending on the spe-
cific ontology schema describing the business domain, example queries
could involve both is− a relationships (e.g., limited company is− a com-
pany, and male is− a person) and ontology relationships among concept

6

classes (e.g., having branches, leading projects). In our context, we treat
the probability as the chance that an ontology relationship, either is − a
or objectproperty, exists among ontology instances. Then, on the basis of
the ontology instances, the network learns the probability distributions
by using the Bayes theorem. From this point of view, we extract the un-
certain knowledge directly from the original knowledge base, and just im-
plicitly coded in it. So, it is not necessary to modify the information rep-
resentation, or adding new information for introducing the uncertainty,
and extracting the related bayesian network. In general, a bayesian net-
work of n variables consists of a DAG (Direct Acyclic Graph) of n nodes
and a number of arcs. Nodes ti in a DAG correspond to random vari-
ables, and directed arcs between two nodes represent direct causal or in-
fluential relations from one variable to the other. Our process codes each
taxonomy k, into a bayesian network Bk, at the first level. At the second
level the resulting bayesian network has all the Bk as nodes and all the
relations among taxonomies as annotated arcs. For this reason, we intro-
duce a two-levels Bayesian network (2lBN), and its structural part codes
the two levels specified so far. The uncertainty of the causal relationships
is represented locally by the conditional probability tables (CPTs) in terms
of both instances belonging to an ontology class, referring to each Bk net-
work, and triples belonging to ontology statements, referring to relations
among taxonomies. All of these CPTs are coded in the 2lBN probabilistic
part. In general P (ti|father(ti)) is associated with each node ti, where
father(ti) is the parent set of ti. Under the conditional independence
assumption, the joint probability distribution of t = (t1, t2, ..., tn) can be
factored out as a product of the CPTs in the network, namely, the chain
rule of BN:

P (t) =
∑

i P (ti|father(ti)).

Although evaluating bayesian networks is, in general, NP-hard, there is a
class of networks that can be efficiently solved in time linear in the num-
ber of nodes. The class is that of polytrees. It is one in which the un-
derlying undirected graph has no more than one path between any two
nodes (the underlying undirected graph is the graph that one gets if one

7

simply ignores the directions on the edges). In particular, for each node
t, it is possible to partition all the other nodes into two disjoint sets. The
first one, is the set of nodes which are over t, that is those nodes that are
connected to t only via the fathers of t. The second one is the set of nodes
which are under t, that is those nodes that are connected to t only by the
immediate descendents of t. On the basis of this bayesian network class,
it is provided a BQL for answering queries involving probabilities con-
cerning both is− a ontology relations and object property relations. BQL
is based on recursive algorithms implementing top-down and bottom-up
reasoning over polytrees networks.

1.2 Thesis Outline

This thesis is organized as follows. In chapter 2, section 2.1 provides an
introduction to what an ontology is, and how it is used for representing
knowledge; section 2.2 introduces some basics about Bayesian networks,
by discussing the fundamental concepts of the graphical language used
to construct probabilistic networks, the uncertainty calculus used in prob-
abilistic networks to represent the numerical counterpart of the graphical
structure. We introduce the notion of discrete Bayesian networks and
the principles underlying inference in probabilistic networks; section 2.3
discusses a comparison of our work with the literature. Chapter 3 in-
troduces the two-levels Bayesian network compiling process; section 3.1
gives an overview about the compiling process; section 3.2 introduces the
definition of the two-levels Bayesian network, and section 3.3 specifies
the ontology requirements treated by our method; section 3.4 defines the
compiling process in detail. Chapter 4 introduces the reasoning schemas
for making inference on the two-levels Bayesian networks, showing some
examples of query computation. In particular, section 4.1 defines the
Bayesian query language in terms of its syntax and its operational se-
mantics. Other sections show how make inference over taxonomies, tax-
onomies with multiple inheritance, and polytrees. Chapter 5 presents the
conclusion of this research and discuss open problems and future work.

8

Chapter 2

Background and Related
Works

2.1 Ontology

In the next sections we provide a general introduction to ontology, its
formal definition, and the ontology standard language of the semantic
web.

2.1.1 Introduction

The ontology may be defined as the study of being as such. The introduc-
tion of the word itself has remote origins and may be seen as an attempt
to modernize the classical debate about metaphysics. One of the first ex-
ponent of this new discipline was Aristotle that, in (ABC), presents a first
work that can be resembled to an ontology. He provides a list of categories
that represent an inventory of what there is, in terms of the most general
kinds of entities. Later on, the Latin term ontologia appeared for the first
time in the circles of German protestants around the 1600 (LJTP), while
the first English appearance goes back to 1721 in the Baileys dictionary in
which it was defined as an Account of being in the Abstract. The first use
of the term ontology in the computer and information science literature

9

occurs instead in 1967, in a work on the foundations of data modeling by
S. H. Mealy (H.67).
From the scientific point of view, the ontology is, in its first approxima-
tion, a table of categories in which every type of entity is captured by
some node within a hierarchical tree. While the philosopher-ontologist
has only the goal of establishing the truth about the domain in question,
in the world of the information systems the ontology is a software (or
formal language) designed with a specific set of uses and computational
environments. In this field, the ontologies are rapidly developing (from
1990 up to now) thanks to their focus on classification and their abilities
in representing the domains, in sharing the knowledge and in keeping
separate the domain knowledge from the operational one. Furthermore,
they play a key role in the Semantic Web by providing a source of shared
and precisely defined terms that can be used for describing the resources.
Reasoning over such descriptions is essential for accessibility purposes,
automating processes and discovering new knowledge.

2.1.2 Formal ontology definition

One of the modern ontology definition given by (RM03) is reported be-
low. An ontology O is defined as

O = {C,R,AO}, (2.1)

where:

1. C is a set of elements are called concepts.

2. R ⊆ (C × C) is a set of elements are called relations. For r =
(c1, c2) ∈ R, one may write r(c1) = c2.

3. AO is a set of axioms on O.

To cope with the lexical level, the notion of a lexicon is introduced. For an
ontology structure O = {C,R,AO} a lexicon L is defined as

L = {LC , LR, F,G}, (2.2)

where:

10

1. LC is a set of elements are called lexical entries for concepts.

2. LR is a set of elements are called lexical entries for relations.

3. F ⊆ LC × C is a reference for concepts such that

• F (lC) = c ∈ C : (lC , c) ∈ FforalllC ∈ LC ,

• F−1(c) = lC ∈ LC : (lC , c) ∈ Fforallc ∈ C.

4. G ⊆ LR ×R is a reference for concepts such that

• G(lR) = r ∈ R : (lR, r) ∈ G∀lR ∈ LR,

• G−1(r) = lR ∈ LR : (lR, r) ∈ G∀r ∈ R.

We note that a hierarchical structure can be explicitly defined in terms
of R. Finally, the mapping from elements in the lexicon to elements in
the ontology structure corresponds to the notion of an interpretation in
declarative semantics (GN87). Such a (semantic) interpretation associates
elements of a language to elements of a conceptualisation. Based on
the above definitions, an ontology can be formally defined as the pair
< O,L > where O is an ontology structure and L is a corresponding lex-
icon. The ontology structure O plays the role of an explicit specification
of a conceptualisation of some domain while the lexicon L provides the
agreed vocabulary to communicate about this conceptualisation. The fol-
lowing example may be useful for explaining the above definitions.
Let O = {C,R,AO} be an ontology structure such that C = {c1, c2}
and R = {r}, where r(c1) = c2. Suppose that AO = �. Also, let
L = LC , LR, F, C be a corresponding lexicon such that LC = {Mouse,

Inputdevice}, LR = {is a}, F (Mouse) = c1, F (Inputdevice) = c2 and
G(is a) = r.

Figure 1 depicts the elementary ontology described above. The top of
the figure shows the ontology structure O. It consists of two concepts c1,
c2 and one relation r that relates them. This corresponds to a conceptual-
isation of a domain of interest without any lexical reference. The latter is
provided by the lexicon L depicted at the bottom of the figure. L provides
the lexical references for O by means of F and G. F and G map lexical

11

Figure 1: Graphical representation of an ontology.

reference strings to the concepts and relations defined in O, respectively.
For instance, for r ∈ R one may consider using G−1(r) to get the lexical
reference, i.e. is a, corresponding to r and vice versa.

2.1.3 Ontology web language

The Web Ontology Language (OWL) is the current standard provided by
the World Wide Web Consortium (W3C) for defining and instantiating
Web ontologies. An OWL ontology can include descriptions of classes,
properties and their instances. The OWL language provides three increas-
ingly expressive sublanguages:

• OWL Lite supports a classification hierarchy and simple constraint
features.

• OWL DL is more expressive than OWL Lite without losing com-
putational completeness (all entailments are guaranteed to be com-
putable) and decidability (all computations will finish in finite time)
of reasoning systems. Its name is due to its correspondence with

12

description logics (BP03), a field of research that has studied a par-
ticular decidable fragment of first order logic.

• OWL Full is the most expressive with no computability guarantees.

We focus mainly on the first two variants of OWL because OWL-Full has
a nonstandard semantics that makes the language undecidable. OWL
comes with several syntaxes, all of which are rather verbose. In this chap-
ter we use the standard DL syntax. For a full DL syntax description,
please refer to (BP03). The main building blocks of an OWL ontology
are:

• concepts (or classes), representing sets of objects,

• roles (or properties), representing relationships between objects,

• individuals, representing specific objects.

In particular, properties can be used to state relationships between indi-
viduals or from individuals to data values. Examples of properties in-
clude hasChild, hasRelative, hasSibling, and hasAge. The first three can be
used to relate an instance of a class Person to another instance of the class
Person (and are thus occurences of Object Property), and the last (hasAge)
can be used to relate an instance of the class Person to an instance of the
datatype Integer (and is thus an occurence of Data Property).
Furthermore they are composed of two parts: intensional and extensional.
The former part consists of a TBox and an RBox, and contains knowl-
edge about concepts (i.e. classes) and the complex relations between them
(i.e. roles). The latter one consists of an ABox, containing knowledge
about entities and the way they are related to the classes as well as roles
from the intensional part. The following is an example of DL formaliza-
tion (according to the syntax defined in (BP03)) of the previous ontology
fragment. We add a property specifying the number of keys of each input
device:

TBox = ((Mouse v Inputdevice) u (Inputdevice v Thing)
t(= 1hasKeysNumber) v Inputdevice
t(∀hasKeysNumber.integer)).

13

Figure 2: Example of well defined model theoretic semantics.

All the possible ontology instances constitute the ABox which is inter-
linked with the intensional knowledge. An example of ABox related to
the previous TBox is the following:

ABox = {Logitech device : Input device,
hasKeysNumber = 88,

Optical IBMMouse : Mouse,
hasKeysNumber = 2}

Given such an ontology, the OWL formal semantics specifies how to de-
rive its logical consequences, i.e. facts not literally present in the ontology,
but entailed by the semantics.

The semantics of OWL DL is in agreement with DL standard seman-
tics. An example is in figure 2. An interpretation I = (∆I , ·I) is a tuple
where ∆I , the domain of discourse, is the union of two disjoint sets ∆OI ,
(the object domain) and ∆DI (the data domain), and I is the interpreta-
tion function that gives meaning to the entities defined in the ontology.
I maps each OWL class C to a subset CI ⊆ ∆OI , each object property
PObj to a binary relation P I

Obj ⊆ (∆OI × ∆OI), each datatype property

14

PData to a binary relation P I
Data ⊆ (∆OI × ∆DI). The complete defini-

tion can be found in the OWL W3C Recommendation 1. Concepts and
relations represent the explicit knowledge of an ontology, nevertheless
another kind of knowledge (i.e. the implicit knowledge) can be deduced
starting from the known facts. Its existence is implied by or inferred from
observable behavior or performance by using the rule inference mecha-
nism. Rules are an extension of the logical core formalism, which can still
be interpreted logically. The simplest variant of such rules are expres-
sions of the form C ⇒ D where C and D are concepts. The meaning of
such a rule is that ”if an individual is proved to be an instance of C, then
derive that it is also an instance of D”. Operationally, the semantics of
a finite set R of rules can be described by a forward reasoning process.
Starting with an initial knowledge base K, a series of knowledge bases
K(0),K(1), ... is constructed, whereK(0) = K andK(i+1) is obtained from
K(i) by adding a new assertion D(a) whenever R contains a rule C ⇒ D

such that K(i) ⊆ C(a) holds, but K(i) does not contain D(a). Seman-
tic Web Rule Language (SWRL) (Hor04) is the W3C proposal for the rule
language based on a combination of the OWL DL and OWL Lite sublan-
guages with the Unary/Binary Datalog RuleML sublanguages of the Rule
Markup Language 2. SWRL allows users to write Hornlike rules that can
be expressed in terms of OWL concepts and that can reason about OWL
individuals (Hor04). According to the SWRL syntax and referring to the
previous example of TBox andABox, the inference rule for deducing that
an ontology element is an instance of Mouse states that is an Inputdevice
and has 2 keys, as reported below:

∀x, yInputdevice(?x) ∧ hasKeysNumber(?x, ?y) ∧ equalTo(?y, 2)→
Mouse(?x),

where equalTo(., .) is a SWRL built-in function.

1The W3C webpage: http://www.w3c.org/.
2Rule Markup Language is specified at http://www.ruleml.org/.

15

2.2 Bayesian Belief Networks

In this section we provide a short general background of Bayesian Net-
work. In particular, in section 2.2.1 we describe the fundamental concepts
of the graphical language used to construct probabilistic networks as well
as the rules for reading statements of (conditional) dependence and in-
dependence encoded in network structures. Section 2.2.2 presents the
uncertainty calculus used in probabilistic networks to represent the nu-
merical counterpart of the graphical structure, namely classical Bayesian
probability calculus. We shall see how a basic axiom of probability calcu-
lus leads to recursive factorizations of joint probability distributions into
products of conditional probability distributions, and how such factoriza-
tions along with local statements of conditional independence naturally
can be expressed in graphical terms. In section 2.2.3 we shall see how
putting the basic notions of section 2.2.1 and 2.2.2 together we get the
notion of discrete Bayesian networks and we explain the principal under-
lying inference in probabilistic networks.

2.2.1 Networks

Probabilistic networks are graphical models of (causal) interactions among
a set of variables, where the variables are represented as nodes (also known
as vertices) of a graph and the interactions (direct dependences) as di-
rected links (also known as arcs and edges) among the nodes. Any pair of
unconnected/nonadjacent nodes of such a graph indicates (conditional)
independence between the variables represented by these nodes under
particular circumstances that can easily be read from the graph. Hence,
probabilistic networks capture a set of (conditional) dependence and in-
dependence properties associated with the variables represented in the
network. Graphs have proven themselves to be a very intuitive language
for representing such dependence and independence statements, and thus
provide an excellent language for communicating and discussing depen-
dence and independence relations among problem-domain variables. A
large and important class of assumptions about dependence and inde-
pendence relations expressed in factorized representations of joint proba-

16

Figure 3: Example of causal network.

bility distributions can be represented very compactly in a class of graphs
known as acyclic, directed graphs (DAGs). Chain graphs are a general-
ization of DAGs, capable of representing a broader class of dependence
and independence assumptions (Fry89), (Wer90). The added expressive
power comes, however, at the cost of a significant increase in the seman-
tic complexity, making specification of joint probability factors much less
intuitive. Thus, despite their expressive power, chain graph models have
gained very little popularity as practical models for decision support sys-
tems, and we shall therefore focus exclusively on models that factorize
according to DAGs.

As indicated above, probabilistic networks is a class of probabilistic
models that have gotten their name from the fact that the joint probabil-
ity distributions represented by these models can be naturally described
in graphical terms, where the nodes of a graph (or network) represent
variables over which a joint probability distribution is defined and the
presence and absence of links represent dependence and independence
properties among the variables. Probabilistic networks can be seen as
compact representations of fuzzy cause-effect rules that, contrary to or-
dinary (logical) rule based systems, are capable of performing deductive

17

Figure 4: Example of graph.

and abductive reasoning as well as intercausal reasoning. Deductive rea-
soning (sometimes referred to as causal reasoning) follows the direction
of the causal links between variables of a model; e.g., knowing that a per-
son has caught a cold we can conclude (with high probability) that the
person has fever and a runny nose (see Figure 3). Abductive reasoning
(sometimes referred to as diagnostic reasoning) goes against the direction
of the causal links; e.g., observing that a person has a runny nose provides
supporting evidence for either cold or allergy being the correct diagnosis.
The property, however, that sets inference in probabilistic networks apart
from other automatic reasoning paradigms is its ability to make inter-
causal reasoning: Getting evidence that supports solely a single hypoth-
esis (or a subset of hypotheses) automatically leads to decreasing belief
in the unsupported, competing hypotheses. This property is often re-
ferred to as the explaining away effect. For example, in figure 3, there are
two competing causes of runny nose. Observing fever, however, provides
strong evidence that cold is the cause of the problem, while our belief in
allergy being the cause decreases substantially (i.e., it is explained away
by the observation of fever). The ability of probabilistic networks to auto-
matically perform such intercausal inference is a key contribution to their
reasoning power. Often the graphical aspect of a probabilistic network
is referred to as its qualitative aspect, and the probabilistic, numerical
part as its quantitative aspect. This section is devoted to the qualitative

18

aspect of probabilistic networks, which is characterized by DAGs where
the nodes represent random variables, decision variables, or utility func-
tions, and where the links represent direct dependences, informational
constraints, or they indicate the domains of utility functions. Bayesian
networks contain only random variables, and the links represent direct
dependences (often, but not necessarily, causal relationships) among the
variables. The causal network in Figure 3 shows the qualitative part of a
Bayesian network. In the next subsections we introduce some basic graph
notation, the evidence concept and the criterion of the d-separation.

Graphs

A graph is a pair G = (V,E), where V is a finite set of distinct nodes
and E ⊆ V × V is a set of links. An ordered pair (u, v) ∈ E denotes
a directed link from node u to node v, and u is said to be a parent of
v and v a child of u. The set of parents and children of a node v shall be
denoted by pa(v) and ch(v), respectively. As we shall see later, depending
on what they represent, nodes are displayed as labelled circles, ovals, or
polygons, directed links as arrows, and undirected links as lines. Figure 4
shows a graph with 8 nodes and 8 links (all directed), where, for example,
the node labeled E has two parents labeled T and L. The labels of the
nodes are referring to (i) the names of the nodes, (ii) the names of the
variables represented by the nodes, or (iii) descriptive labels associated
with the variables represented by the nodes. Often the intuitive notation
u

G→ v to denote (u, v) ∈ E is used (or just u → v if G is understood).
If (u, v) ∈ E and (v, u) ∈ E, the link between u and v is an undirected
link, denoted by {u, v} ∈ E or u G↔ v (or just u ↔ v). We shall use
the notation u ∼ v to denote that u → v, v ← u, or u ↔ v. Nodes u
and v are said to be connected in G if u G∼ v. If u → v and w → v,
then these links are said to meet head-to-head at v. If E does not contain
undirected links, then G is a directed graph and if E does not contain
directed links, then it is an undirected graph. As mentioned above, we
shall not deal with mixed cases of both directed and undirected links. A
path < v1, ..., vn > is a sequence of distinct nodes such that vi ∼ vi+1 for

19

each i = 1, ..., n− 1; the length of the path is n− 1. The path is a directed
path if vi → vi+1 for each i = 1, ..., n−1; vi is then an ancestor of vj and vj

a descendant of vi for each j > i. The set of ancestors and descendants of
v are denoted an(v) and de(v), respectively. The set nd(v) = V/de(v)∪{v}
are called the non-descendants of v. The ancestral set An(U) ⊆ V of a set
U ⊆ V of a graph G = (V,E) is the set of nodes U ∪

⋃
u∈U an(u). A

graph G = (V,E) is connected if for any pair {u, v} ⊆ V there is a path
< u, ..., v > in G. A connected graph G = (V,E) is a polytree (also known
as a singly connected graph) if for any pair {u, v} ⊆ V there is a unique
path< u, ..., v > inG. A directed polytree with only a single orphan node
is called a (rooted) tree. A cycle is a path < v1, ..., vn > of length greater
than two with the exception that v1 = vn; a directed cycle is defined in
the obvious way. A directed graph with no directed cycles is called an
acyclic, directed graph or simply a DAG; see figure 4 for an example.

Evidence

A key inference task with a probabilistic network is computation of poste-
rior probabilities of the form P (x|ε), where, in general, ε is evidence (i.e.,
information) received from external sources about the (possible) values
of a subset of the variables of the network. For a set of discrete evidence
variables X , the evidence appears in the form of a likelihood distribution
over the states of X . An evidence can be seen as a function, εX , for X is
a function εX : dom(X) → R+. An evidence function that assigns a zero
probability to all but one state is often said to provide hard evidence; oth-
erwise, it is said to provide soft evidence. In the next chapters, we shall
leave out the hard or soft qualifier, and simply talk about evidence if the
distinction is immaterial. Hard evidence on a variable X is also often re-
ferred to as instantiation of X or that X has been observed. Note that,
as soft evidence is a more general kind of evidence, hard evidence can be
considered a special kind of soft evidence.

20

Figure 5: Example of D-separation criterion.

D-separation criterion

The DAG of a Bayesian network model is a compact graphical representa-
tion of the dependence and independence properties of the joint probabil-
ity distribution represented by the model. The causal network in figure 3
shows the five relevant variables (all of which are Boolean; i.e., they have
states F and T) and the entailed causal relationships. Notice that all of
the links are causal. For example, allergy and cold can cause the fact that
Andrea’s nose is runny, and if it is cold, Andrea can take flu. To introduce
the d-separation criterion, we have to consider each possible basic kind
of connection in a DAG. To illustrate these, consider the DAG in figure 5.
We see three different kinds of connections:

• Serial connections. The general rule for flow of information in se-
rial connections can thus be stated as follows. Information may flow
through a serial connection X → Y → Z unless the state of Y is
known.

– cold→ flu→ fever

• Diverging connections. The general rule for flow of information in
serial connections can thus be stated as follows. Information may
flow through a diverging connection X ← Y → Z unless the state
of Y is known.

21

– flu← cold→ runnynose

• Converging connections. The general rule for flow of information
in serial connections can thus be stated as follows. Information may
flow through a converging connection X → Y ← Z if evidence on
Y or one of its descendants is available.

– cold→ runnynose← allergy

The previous propositions can be summarized into a rule known as d-
separation (Pea88):

Definition 1 (d-Separation). A path π =< u, ..., v > in a DAG,G = (V,E),
is said to be blocked by S ⊆ V if π contains a node w such that either

• w ∈ S and the links of π do not meet head-to-head at w, or

• w 6∈ S, de(w) ∩ S = �, and the links of π meet head-to-head at w.

For three (not necessarily disjoint) subsets A,B, S of V , A and B are said to be
d-separated if all paths between A and B are blocked by S.

We can make definition 1 operational through a focus on nodes or through
a focus on connections. Let G = (V,E) be a DAG of a causal network and
let Hε ⊆ Sε ⊆ V be subsets of nodes representing, respectively, variables
with hard evidence and variables with soft evidence on them. Assume
that we wish to answer the question: ”Are nodes v1 and vn d-separated
in G under evidence scenario Sε?”. Now, using a nodes approach to d-
separation, we can answer the question as follows. If for any path π =
< v1, ..., vn > between v1 and vn and for each i = 2, ...n− 1 either

• vi ∈ Hε and the connection vi−1 ∼ vi ∼ vi+1 is serial or diverging,
or

• ({vi} ∪ de(vi)) ∩ Sε = � and vi−1 → vi ← vi+1,

then v1 and vn are d-separated given Sε; otherwise, they are d-connected
given Sε. Often, however, it can be more intuitive to think in terms of
flow of information, in which case a connections (or flow-of-information)
approach to d-separation might be more natural. If for some path <

22

v1, ..., vn > between v1 and vn and for each i = 2, ...n − 1 the connec-
tion vi−1 ∼ vi ∼ vi+1 allows flow of information from vi−1 to vi+1, then
v1 and vn are d-connected; otherwise, they are d-separated.
We show a d-separation example. Consider the problem of figuring out
whether variables C and G are d-separated in the DAG in figure 5; that
is, are C and G independent when no evidence about any of the other
variables is available? Using the flow-of-information approach, we first
find that there is a diverging connection C ← A → D allowing flow
of information from C to D via A. Second, there is a serial connection
A → D → G allowing flow of information from A to G via D. So, in-
formation can thus be transmitted from C to G via A and D, meaning
that C and G are not d-separated (i.e., they are d-connected). C and E,
on the other hand, are d-separated, since each path from C to E contains
a converging connection, and since no evidence is available, each such
connection will not allow flow of information. Given evidence on one
or more of the variables in the set {D,F,G,H}, C and E will, however,
become d-connected. For example, evidence onH will allow the converg-
ing connection D → G ← E to transmit information from D to E via G,
as H is a child of G. Then information may be transmitted from C to E
via the diverging connection C ← A→ D and the converging connection
D → G← E.

2.2.2 Probabilities

As mentioned in section 2.2, probabilistic networks have a qualitative as-
pect and a corresponding quantitative aspect, where the qualitative as-
pect is given by a graphical structure in the form of an acyclic, directed
graph (DAG) that represents the (conditional) dependence and indepen-
dence properties of a joint probability distribution defined over a set of
variables that are indexed by the nodes of the DAG. The fact that the
structure of a probabilistic network can be characterized as a DAG derives
from basic axioms of probability calculus leading to recursive factoriza-
tion of a joint probability distribution into a product of lower-dimensional
conditional probability distributions. First, any joint probability distri-

23

Figure 6: Universe of elements U = X ∪ X .

bution can be decomposed (or factorized) into a product of conditional
distributions of different dimensionality, where the dimensionality of the
largest distribution is identical to the dimensionality of the joint distri-
bution. Second, statements of local conditional independences manifest
themselves as reductions of dimensionalities of some of the conditional
probability distributions. Collectively, these two facts give rise to a DAG
structure. In fact, a joint probability distribution, P , can be decomposed
recursively in this fashion if and only if there is a DAG that correctly rep-
resents the (conditional) dependence and independence properties of P .
This means that a set of conditional probability distributions specified ac-
cording to a DAG, G = (V,E), (i.e., a distribution P (A|pa(A)) for each
A ∈ V) define a joint probability distribution. Therefore, a probabilis-
tic network model can be specified either through direct specification of
a joint probability distribution, or through a DAG (typically) expressing
cause-effect relations and a set of corresponding conditional probability
distributions. Obviously, a model is almost always specified in the latter
fashion. This section presents some basic axioms of probability calculus
from which the famous Bayes rule follows as well as the chain rule for
decomposing a joint probability distribution into a product of conditional
distributions. We shall also present the fundamental operations needed
to perform inference in probabilistic networks.

24

Figure 7: Probability of the union of events.

Definition of probability

Let us start out by defining informally what we mean by probability.
Apart from introducing the notion of probability, this will also provide
some intuition behind the three basic axioms presented so far. Consider a
(discrete) universe, U , of elements, and let X ⊆ U . Denote by X = U/X

the complement of X . Figure 6 on the facing page illustrates U , where
we imagine that the area covered by X , is proportional to the number of
elements that it contains. The chance that an element sampled randomly
from U belongs to X defines the probability that the element belongs to
X , and is denoted by P (X). Note that P (X) can informally be regarded
as the relative area occupied by X in U . That is, P (X) is a number be-
tween 0 and 1. Suppose now that U = X ∪ Y ∪X ∪ Y as in figure 7. The
probability that a random element from U belongs to X ∪ Y is defined as
P (X ∪Y) = P (X) +P (Y)−P (X ∩Y). Again, we can interpret P (X ∪Y)
as the relative area covered jointly byX and Y . So, ifX and Y are disjoint
(i.e., X ∩ Y = �), then P (X ∪ Y) = P (X) + P (Y). The conjunctive form
P (X ∩ Y) is often written as P (X,Y).

Consider figure 8 and assume that we know that a random element
from U belongs to Y . The probability that it also belongs to X is then
calculated as the ratio P (X∩Y)

P (Y) . Again, to understand this definition, it
may help to consider P (X ∩ Y) and P (Y) as relative areas of U . We shall
use the notation P (X|Y) to denote this ratio, where | reads ”given that

25

Figure 8: Conditional Probability of X given Y .

we know” or simply ”given”. Thus, we have

P (X|Y) =
P (X ∩ Y)
P (Y)

=
P (X,Y)
P (Y)

(2.3)

where P (X|Y) reads ”the conditional probability of X given Y ”.

Events

The language of probabilities consists of statements (propositions) about
probabilities of events. As an example, consider the event, a, that a sam-
ple a universe U = X ∪ X happens to belong to X . The probability of
an event a is denoted P (a). In general, an event can be considered as the
outcome of an experiment (e.g., a coin flip), a particular observation of
the value of a variable (or set of variables), etc. As a probabilistic network
define a probability distribution over a set of variables, V , in our context
an event is a configuration, x ∈ dom(X), (i.e., a vector of values) of a
subset of variables X ⊆ V .

Conditional probability

The basic concept in the Bayesian treatment of uncertainty is that of con-
ditional probability: Given event b, the conditional probability of event a
is x, written as

P (a|b) = x. (2.4)

26

This means that if event b is true and everything else known is irrelevant
for event a, then the probability of event a is x. For example, referring to
figure 6, assume that Andrea’s nose is runny in eight of every ten case (A),
when the weather is cold (E), but Andrea has no allergies (B). This fact
would then be expressed as the conditional probability P (A = yes|B =
no,E = yes) = 0.8.

Axioms

The following three axioms provide the basis for Bayesian probability cal-
culus, and summarizes the considerations of section 2.2.2.
Axiom 1. For any event, a, 0 ≤ P (a) ≤ 1, with P (a) = 1 if and only if a
occurs with certainty.
Axiom 2. For any two mutually exclusive events a and b the probability
that either a or b occur is

P (a ∨ b) = P (a) + P (b). (2.5)

In general, if events a1, ..., an are pairwise mutually exclusive, then

P (
n⋃
i

ai) = P (a1) + ...+ P (an) =
n∑
i

P (ai). (2.6)

Axiom 3. For any two events a and b the probability that both a and b

occur is
P (a ∧ b) ≡ P (a, b) = P (b|a)P (a) = P (a|b)P (b). (2.7)

P (a, b) is called the joint probability of the events a and b. Axiom 1 simply
says that a probability is a non-negative real number less than or equal to
1, and that it equals 1 if and only if the associated event happens for sure.
Axiom 2 says that if two events cannot co-occur, then the probability that
either one of them occurs equals the sum of the probabilities of their indi-
vidual occurrences. Axiom 3 is sometimes referred to as the fundamental
rule of probability calculus. The axiom says that the probability of the
co-occurrence of two events, a and b can be computed as the product of
the probability of event a (b) occurring given that event b (a) has already
occurred.

27

Probability Distributions for Variables

Probabilistic networks are defined over a (finite) set of variables, each of
which represents a finite set of exhaustive and mutually exclusive states
(or events). Thus, (conditional) probability distributions for variables
(i.e., over exhaustive sets of mutually exclusive events) play a central
role in probabilistic networks. If X is a (random) variable with domain
dom(X) = (x1, ..., x||X||), then P (X) denotes a probability distribution
(i.e., a vector of probabilities summing to 1), where

P (X) = (P (X = x1), ..., P (X = x||X||)). (2.8)

We use P (x) as shorthand for P (X = x), etc. If the probability distri-
bution for a variable Y is given conditionally w.r.t. a variable (or set of
variables) X , then we shall use the notation P (Y |X). That is, for each
possible value (state), x ∈ dom(X), we have a probability distribution
P (Y |X = x). We write P (Y |x).

Rule of Total Probability

Let P (X,Y) be a joint probability distribution for two variables X and Y
with dom(X) = x1, ..., xm and dom(Y) = y1, ..., yn. Using the fact that
dom(X) and dom(Y) are exhaustive sets of mutually exclusive states of
X and Y , respectively, Axiom 2 defined so far gives us the rule of total
probability:

∀i : P (xi) = P (xi, y1) + ...+ P (xi, yn) =
n∑

j=1

P (xi, yj). (2.9)

Using 2.9, we can calculate P (X) from P (X,Y):

P (X) = (
n∑

j=1

P (x1, yj), ...,
n∑

j=1

P (xm, yj)). (2.10)

In a more compact notation, we may write

P (X) =
n∑

j=1

P (X, yj), (2.11)

28

Figure 9: Example of BN.

or even shorter as

P (X) =
∑
Y

P (X,Y), (2.12)

denoting the fact that we sum over all indices of Y . We shall henceforth
refer to the operation in 2.12 as marginalization or projection. Also, we
sometimes refer to this operation as marginalizing out Y of P (X,Y) or
eliminating Y from P (X,Y).

Graphical Representation

The conditional probability distributions of probabilistic networks are of
the form P (X|Y), whereX is a single variable and Y is a (possibly empty)
set of variables. X and Y are sometimes called the head and the tail, re-
spectively, of P (X|Y). If Y = � (i.e., the empty set), P (X|Y) is often
called a marginal probability distribution and is then written as P (X).
This relation between X and Y = {Y1, ..., Yn} can be represented graph-
ically as the DAG illustrated in figure 9, where the child node is labelled
X and the parent nodes are labelled Y 1, Y 2, etc.

Fundamental Rule and Bayes Rule

Generalizing Axiom 3 to arbitrary (random) variables X and Y we get
the fundamental rule of probability calculus:

P (X,Y) = P (X|Y)P (Y) = P (Y |X)P (X). (2.13)

29

Bayes rule follows immediately:

P (Y |X) =
P (X|Y)P (Y)

P (X)
. (2.14)

Using Axiom 3 and the rule of total probability, 2.14 can be rewritten like

P (Y |X) =
P (X|Y)P (Y)

P (X|Y = y1)P (Y = y1) + + P (X|Y = yn)P (Y = y||Y ||)
.

(2.15)
We often write Bayes rule as

P (Y |X) ∝ P (X|Y)P (Y). (2.16)

read as ”P (Y |X) is proportional to P (X|Y)P (Y)”. Note that the propor-
tionality factor P (X)−1 is in fact a vector of proportionality constants, one
for each state of X , determined in a normalization operation. Division by
zero in 2.14 is not a problem as we define 0/0 = 0, since for

P (xi) =
∑

j

P (xi|yj)P (yj) (2.17)

to be zero at least one of P (xi|yj) and P (yj) must be zero for each j, and
if this is the case then both the numerator P (xi|yj)P (yj), and the denom-
inator P (xi), of 2.14 will be zero.

Independence

A variable X is independent of another variable Y with respect to a prob-
ability distribution P if

P (x|y) = P (x),∀x ∈ dom(X),∀y ∈ dom(Y). (2.18)

We express this property as X ./P Y , or simply as X ./ Y when P is
obvious from the context. Symmetry of independence (i.e., X ./ Y ≡
Y ./ X) can be verified from Bayes rule:

P (x) = P (x|y) =
P (y|x)P (x)

P (y)
⇔ P (y) = P (y|x). (2.19)

30

The statement X ./ Y is often referred to as marginal independence be-
tween X and Y . If X ./ Y , then from the fundamental rule 2.13 and 2.18
we get that

P (X,Y) = P (X|Y)P (Y) = P (X)P (Y) (2.20)

and, in general, whenever X1, ..., Xn are pairwise independent random
variables their joint distribution equals the product of the marginals:

P (X1, ..., Xn) =
∏

i

P (Xi). (2.21)

A variable X is conditionally independent of Y given Z (with respect to
a probability distribution P) if

P (x|y, z) = P (x|z),∀x ∈ dom(X),∀y ∈ dom(Y),∀z ∈ dom(Z). (2.22)

The conditional independence statement expressed in 2.22 is indicated as
X ./ Y |Z in our standard notation. Again, from the fundamental rule
and 2.22 we get

P (X,Y, Z) = P (X|Y,Z)P (Y,Z)

= P (X|Y,Z)P (Y |Z)P (Z)

= P (X|Z)P (Y |Z)P (Z). (2.23)

Chain rule

For a probability distribution, P (X), over a set of variablesX = {X1, ..., Xn},
we can use the fundamental rule repetitively to decompose it into a prod-
uct of conditional probability distributions:

P (X) = P (X1|X2, ..., Xn)P (X2, ..., Xn)

= P (X1|X2, ..., Xn)P (X2|X3, ..., Xn) · · ·P (Xn−1|Xn)P (Xn)

=
n∏

i=1

P (Xi|Xi+1, ..., Xn). (2.24)

Notice that the actual conditional distributions that comprise the factors
of the decomposition are determined by the order in which we select the

31

head variables of the conditional distributions. Thus, there are n factorial
different factorizations of P (X), and to each factorization corresponds a
unique DAG, but all of these DAGs are equivalent in terms of dependence
and independence properties, as they are all complete graphs, and hence
represent no independence statements.

2.2.3 Probabilistic Networks and Inference

A probabilistic interaction model on a set of random variables may be rep-
resented as a joint probability distribution. Considering the case where
random variables are discrete, it is obvious that the size of the joint prob-
ability distribution will grow exponentially with the number of variables
as the joint distribution must contain one probability for each configura-
tion of the random variables. Therefore, we need a more compact rep-
resentation for reasoning about large and complex systems involving a
large number of variables. To the purpose of facilitating an efficient rep-
resentation of a large and complex domain with many random variables,
the framework of Bayesian networks uses a graphical representation to
encode dependence and independence relations among the random vari-
ables. The dependence and independence relations induce a compact rep-
resentation of the joint probability distribution. By representing the de-
pendence and independence relations of a domain explicitly in a graph, a
compact representation of the dependence and independence relations is
obtained.

Discrete Bayesian Networks

A (discrete) Bayesian network, N = (X , G,P), over variables, X con-
sists of an acyclic, directed graph G = (V,E) and a set of conditional
probability distributions P . Each node v in G corresponds one-to-one
with a discrete random variable Xv ∈ X with a finite set of mutually ex-
clusive states. The directed links E ⊆ V × V of G specify assumptions
of conditional dependence and independence between random variables
according to the d-separation criterion. There is a conditional probability
distribution, P (Xv|Xpa(v)) ∈ P , for each variable Xv ∈ X . The variables

32

represented by the parents, pa(v), of v ∈ V in G = (V,E) are sometimes
called the conditioning variables of Xv - the conditioned variable.

Definition 2 A (discrete) Bayesian network N = (X , G,P) consists of

• A DAG G = (V,E) with nodes V = {v1, ..., vn} and directed links E.

• A set of discrete random variables, X , associated to the nodes of G.

• A set of conditional probability distributions, P , containing one distribu-
tion, P (Xv|Xpa(v)), for each random variable Xv ∈ X .

A Bayesian network encodes a joint probability distribution over a set
of random variables, X , of a problem domain. The set of conditional
probability distributions, P , specifies a multiplicative factorization of the
joint probability distribution over X as represented by the chain rule of
Bayesian networks:

P (X) =
∏
v∈V

P (Xv|Xpa(v)). (2.25)

Even though the joint probability distribution specified by a Bayesian net-
work is defined in terms of conditional independence, a Bayesian net-
work is most often constructed using the notion of cause-effect relations.
In practice, cause-effect relations between entities of a problem domain
can be represented in a Bayesian network by using a graph of nodes rep-
resenting random variables and links representing cause-effect relations
between the entities. Usually, the construction of a Bayesian network (or
any probabilistic network for that matter) proceeds according to an itera-
tive procedure where the set of nodes and their states, and the set of links
are updated iteratively as the model becomes more and more refined.
To solve a Bayesian network N = (X , G,P) is to compute all posterior
marginals given a set of evidence ε, i.e., P (X|ε) for all X ∈ X . If the
evidence set is empty, i.e., ε = �, then the task is to compute all prior
marginals, i.e., P (X) for all X ∈ X .

Inference schemas

In general, probabilistic inference is an NP-hard task (Coo90). Even ap-
proximate probabilistic inference is NP-hard (Dag93). For certain classes

33

Figure 10: A simple Bayesian network.

of Bayesian network models, the complexity of probabilistic inference is
polynomial or even linear in the number of variables in the network. The
complexity is polynomial when the graph of the Bayesian network is a
polytree (Kim83), (Pea88) (a directed graph G is called a polytree if its
underlying undirected graph is singly connected), while it is linear when
the graph of the Bayesian network is a tree. The most critical problem
related to the efficiency of the inference process is that of finding the op-
timal order in which to perform the computations. The inference task
is, in principle, solved by performing a sequence of multiplications and
additions. Three important inference schemas over Bayesian networks
exist. In the following we show you the basic idea behind each inference
schema. The first schema is the causal inference one. In general, it per-
mits to compute the probability of an effect E given one of its cause C1.
The main steps are re-writing the conditional probability of E given the
evidence C1 in terms of all the probabilities of E and all of its parents
(which are not part of the evidence C1), given the evidence. For example,
referring to figure 10, in order to compute P (M |S) we have:

P (M |S) = P (M |B,S)P (B) + P (M |B,S)P (B) (2.26)

The second schema is the diagnostic inference one. It permits to compute
the probability of a causeC1 given its effectE. By applying Bayes rule, the
diagnostic reasoning is transformed into a causal reasoning for less than
a normalisation factor (see section 4.3). For example, in order to compute
P (S|M) we have:

P (S|M) =
P (M |S)P (S)

P (M)
(2.27)

34

Note that this is the application of the Bayes formula, and P (M |S) is com-
putable by applying a causal inference schema.
The last schema is the explaining away one. It is a combination of the
previous schemas. It uses a step of causal inference within a diagnostic
process. For example, for computing P (S|B,M), we have to apply Bayes
rule:

P (S|B,M) =
P (M,B|S)P (S)

P (B,M)
(2.28)

By using the definition of conditional probability we have:

P (M,B|S)P (S)
P (B,M)

=
P (M |B,S)P (B|S)P (S)

P (B,M)
(2.29)

Finally, depending on the structure of the network in figure 10, we have:

P (M |B,S)P (B|S)P (S)
P (B,M)

=
P (M |B,S)P (B)P (S)

P (B,M)
(2.30)

The inference schemas presented here, will be discussed in large in Chap-
ter 4.

2.2.4 Related works

Our natural choice for dealing with uncertainty, is the probability theory,
in particular the bayesian one. We are attracted to bayesian networks in
this work also for the structural similarity between the DAG of a bayesian
network and the RDF graph of an ontology: both of them are directed
graphs, and direct correspondence exists between many nodes and arcs
in the two graphs.

As in (DP04a), (DP04b), (DP05b), (DP05a), we treat the probability as
the chance of an instance of belonging to a particular concept class, given
the current knowledge. Note that the definition of the concept class it-
self is precise. In those works the authors represent the probability con-
cept within OWL, that is, they develop a framework which augments and
supplements OWL for representing and reasoning with uncertainty based
on Bayesian networks. Their research involves developing methods for

35

representing probabilities in OWL statements, and modifies Bayesian net-
works to satisfy given general probabilistic constraints by changing con-
ditional probability tables only. They augment OWL semantics to allow
probabilistic information to be represented via additional markups. The
result would be a probabilistic annotated ontology that could then be
translated to a Bayesian network (BN). Such a translation would be based
on a set of translation rules that would rely on the probabilistic informa-
tion attached to individual concepts and properties within the annotated
ontology. BNs provide an elegant mathematical structure for modeling
complex relationships among hypotheses while keeping a relatively sim-
ple visualization of these relationships. The technique of representing
an ontology by means of a bayesian network is used for having a new
knowledge base enriched with uncertainty, over which making inference
and probabilistic reasoning. The main difference with (DP04a), (DP04b),
(DP05b), (DP05a), is that we deal with object properties. By using a two-
levels Bayesian network we can specify a probability distribution for both
is− a relationships and object properties. Consequently, the reasoning is
not limited to concept satisfiability, concept overlapping, or concept sub-
sumption, but it also extended to the existence of relationships among
classes which are no subsumptions. A path over a two-levels Bayesian
network defined by a query can involve object properties with specific
values of their domains and their codomains. Domains and codomains
are Bayesian networks each of which has a probability distribution of the
innstances w.r.t. the is− a relation.

In (CK05) an extension of OWL is presented with full first-order ex-
pressiveness by using Multi Entity Bayesian Networks (Las05), that en-
ables OWL ontologies to represent complex Bayesian probabilistic mod-
els, in a way that is flexible enough to be used by diverse Bayesian prob-
abilistic tools based on different probabilistic technologies. All those ap-
proaches suppose to modify or re-arrange the original knowledge base
for dealing with uncertainty, by introducing new relations, or using non-
classical bayesian networks. The spirit of our work differs from the other
ones exactly because it does not require to modify or extend the origi-
nal knowledge base, in terms of both schema and instances. UnBBayes-

36

MEBN (Cos08) implements the PR-OWL probabilistic ontology language
(CK05). Knowledge is expressed in MEBN as a collection of MEBN frag-
ments (MFrags) organized into MEBN Theories (MTheories). An MFrag
represents a conditional probability distribution of the instances of its res-
ident random variables (RVs) given the values of instances of their par-
ents in the fragment graphs and given the context constraints. RVs are
graphically represented in an MFrag either as resident nodes, which have
distributions defined in their home fragment, or as input nodes, which
have distributions defined elsewhere. The joint distribution is specified
by means of the local distributions together with the conditional indepen-
dence relationships implied by the fragment graphs. Our method aims to
use a classical Bayesian theory. Each ontology can be decomposed into
taxonomies or more in general into concepts domain (each taxonomy can
have more than one root classes). Each concept domain represents a prob-
ability distribution of the instances w.r.t. the is − a relationships. In this
sense, knowledge is expressed in our work as a collection of domain con-
cepts (multi valued random variables) connected among them via rela-
tionships (object properties). The context, that is the situation in which
the values of the random variables are evaluated, is determined by each
query. The relationships involved in each query and their values establish
constraints under which the local distributions of the nodes involved in
the inference path, have to be dinamically computed. Well-known infer-
ence schemas can be applyed, such as botto-up one, top-down one, and
explaining away one over classical Bayesian networks.

Another important aspect of our work is that the concept of probabil-
ity is derived from the knowledge base, and it is not directly represented
within the ontology. Authors in (CK05), start from this perspective, that is
to define a probabilistic ontology to represent the uncertainty explicitely
in the ontology. They use the following definition of a probabilistic ontol-
ogy: a probabilistic ontology (PO) is an explicit, formal knowledge repre-
sentation that expresses knowledge about a domain of application. This
includes: (a) types of entities that exist in the domain; (b) properties of
those entities; (c) relationships among entities; (d) processes and events
that happen with those entities; (e) statistical regularities that characterize

37

the domain; (f) inconclusive, ambiguous, incomplete, unreliable, and dis-
sonant knowledge related to entities of the domain; and (g) uncertainty
about all the above forms of knowledge; where the term entity refers to
any concept (real or fictitious, concrete or abstract) that can be described
and reasoned about within the domain of application. PR-OWL was de-
veloped as an extension enabling OWL ontologies to represent complex
Bayesian probabilistic models in a way that is flexible enough to be used
by diverse Bayesian probabilistic tools based on different probabilistic
technologies (e.g. PRMs, BNs, etc.). More specifically, PR-OWL is an up-
per ontology (i.e. an ontology that represents fundamental concepts that
cross disciplines and applications) for probabilistic systems that is expres-
sive enough to represent even the most complex probabilistic models. It
consists of a set of classes, subclasses and properties that collectively form
a framework for building POs. Currently, the first step toward build-
ing a probabilistic ontology as defined above is to import the PR-OWL
ontology, and start constructing the domain-specific concepts, using the
PR-OWL definitions to represent uncertainty about their attributes and
relationships. In this sense we remark that our query language can deal
with all the existing ontologies, and it is no requiring for any kind of
probability annotation, or modify to the ontology.

Other works, trying to extend description logics with Bayesian net-
works, are P-CLASSIC (Kol97) that extends CLASSIC, PTDL (Yel99) that
extends TDL (Tiny Description Logic with only Conjunction and Role
Quantification operators), OWL-QM (PA05) that extends OWL to support
the representation of probabilistic relational models (PRMs) (Get02), and
(HH04), (HH05) which uses BNs to model the degree of subsumption for
ontologies encoded in RDF(S).
In general, there are two different directions of research related to han-
dling uncertainty. The first is trying to extend the current ontology rep-
resentation formalism with uncertainty reasoning, the second is to repre-
sent probabilistic information using an OWL or RDF(S) ontology. Earliest
works have tried to add probabilities into full first-order logic (Bac90),
(Hal90), by defining a syntax and a semantics, but the logic was highly
undecidable just as pure first-order logic. An alternative direction is to

38

integrate probabilities into less expressive subsets of first-order logic such
as rule-based (for example, probabilistic horn abduction (Poo93)) or object-
centered (for example, probabilistic description logics (Hei94), (Jae94),
(GL02), (HS05), (NF04), (DP05a), (Str04), (CK05), (Str05), (PH05)) systems.
On the other side, to deal with vague and imprecise knowledge, research
in extending description logics with fuzzy reasoning has gained some at-
tention. Interested readers can may refer to (AH05), (MD05), (Sto05).
We remark that in our work the technique of representing an ontology by
means of a bayesian network is used for having a new knowledge base
enriched with uncertainty, over which making inference and probabilis-
tic reasoning. Our final goal in fact, is to provide a query language for
answering queries involving probabilities, by integrating ontologies with
typical features of bayesian networks.

39

Chapter 3

Compiling Ontologies into
Bayesian Networks

3.1 Introduction

In this chapter we introduce a specific structure called two-levels Bayesian
Network (2lBN in the following), in order to represent an ontology over
which making inference. The main definitions of 2lBN are based on the
Hierarchical Bayesian Networks features (Fla00), (Gyf04). 2lBNs are very
similar to Bayesian Networks in that they represent probabilistic depen-
dencies between variables as a direct acyclic graph, where each node of
the graph corresponds to a random variable and is quantified by the con-
ditional probability of that variable given the values of its parents in the
graph. What extends 2lBN is that each node can contain, in turn, to a
Bayesian Network. So, a node can represent a complex hierarchical do-
main, rather than a simple event, as well as each classical Bayesian node
has to represent. Then, each arc binding nodes among each other, repre-
sent the relationships among values of domains that each node codes.
Then, we will define a compiling process in order to represent ontolog-
ical knowledge by means of Bayesian Networks. In particular, we will
establish requirements and hypotheses that an ontology has to satisfy for
representing itself as Bayesian Network. We will discuss of the compiling

40

process about the derivation of both the structural part and the probabilis-
tic part of the Bayesian Network. Finally, we will show some example of
ontology compiling process.

Figure 11: (a) Example of 2lBN-structure. (b) Example of 2lBN-probabilistic
part.

3.2 Two-levels Bayesian Network

Intuitively, 2lBNs are a generalisation of standard Bayesian Networks
where, at the higher level, a node in the network can be a Bayesian Net-

41

work coding hierarchical domains. Figure 11 shows a simple example of
2lBN , where B is a composite node representing an hierarchical domain.
This allows the random variables of the network to represent the values
of the domain they code, at the lower level. It means that within a single
node, there may also be links between components, representing prob-
abilistic dependencies among parts of the lower level structure. 2lBNs
encode conditional probability dependencies the same way as standard
Bayesian Networks.
In general by using 2lBNs is possible to express dependencies in struc-

Figure 12: (a) 2lBN Example. (b) Classical Bayesian Network.

tured domains. Then, our idea is to use this representation for capturing
the ontological knowledge about domains, and make inference over it.
Just to give you a general idea of how to express dependencies in struc-

42

tured domains, we describe a very simple example. Consider a random
variable companyCEO that expresses the probability that a particular per-
son is suitable to be the CEO of a company. That decision is influenced by
the expertise of a person and by his grounding (we suppose grounding and
expertise to be independent each other). Furthermore we assume that
grounding is a couple of random variables [master, graduated] and exper-
tise another couple of random variables [authority, CEO] where authority
consists itself of the pair [director, chairman]. A hypothetical configuration
of the probabilistic dependencies between those variables is illustrated as
a 2lBN in figure 12(a). We can observe that the 2lBN structure is much
more informative than a standard Bayesian Network mapping the same
independencies, shown in figure 12(b). Additionally, the assumption that
the components of expertise and grounding are independent each other
is shown explicitely in the structure. It can easily be extended (adding
more components inside the expertise composite node) or refined (trans-
forming a leaf node into a composite one) on the basis, for example, of a
taxonomical knowledge provided by ontologies.
Now we give some simple definitions related to the notation that we will
use in the rest of the chapter.

Definition 3 (High level nodes and relations) Each node representing a spe-
cific domain by means of a Bayesian Network is called High Level Node (HLN).
Each arc binding HLNs among each other, is called High Level Relation (HLR).

Definition 4 (Low level nodes and relations) Each node within an HLN,
that represents a specific value of the domain represented by that HLN, is called
Low Level Node (LLN). Each arc binding LLNs among each other, is called Low
Level Relation (LLR).

Definition 5 (Domain type) A domain type τ is the type of each HLN, con-
taining a Bayesian Network representing all the values of that domain. Each of
them has type τ .

We specify that each HLR is labelled, because it refers to the name of
the specific relation that represents, among HLNs with different domain
types. It is not necessary to label LLRs, because they represent is − a

relationships among domains values, within specific HLNs.
A 2lBN consist of two parts:

43

• The structural part containing the variables of the network, HLNs
and LLNs, and describing the relationships between them, HLRs
and LLRs. The relationships can be of two kinds:

– HLR, represents all the labelled relationships among each HLN.

– LLR, represents all the is − a relationships among each LLN
belonging to each specific HLN.

• The probabilistic part containing the conditional probability tables
that quantify all the HLRs and LLRs introduced at the structural
part.

Figure 11(b) shows an example of probabilistic part of a generic 2lBN .
We will now provide more formal definitions of the notion of two-levels
Bayesian Networks.

Definition 6 (2lBN-structure) A 2lBN is a triple < N ,V,A > where

• N is the set of the HLNs each of which has a domain type τ , and corre-
sponds to a random variable.

• V is the set of the LLNs belonging to each HLN. Each LLN corresponds to
a random variable, and all the LLNs belonging to each HLN constitute the
whole Bayesian Network associated to that HLN.

• A ⊆ N 2 is the set of directed labelled arcs between elements of N such
that the resulting graph contains no cycles.

Definition 7 A 2lBN-probabilistic part related to a 2lBN-structure consist of:

• A LLRT, that is a Low Level Relation probability Table for each node ∈ V ,
related to the is− a relationships (LLR).

• A HLRT, that is a High Level Relation probability Table for each node∈ N ,
related to the labelled relationships (HLR).

Definition 8 A two-levels Bayesian Network is a pair < S,P > where:

• S =< N ,V,A >, is a 2lBN-structure

• P , is the 2lBN-probabilistic part related to S

44

3.3 Ontology: Hypothesis and Requirements

As discussed in the previous chapter OWL is the Web Ontology Language
recommended by W3C. The proposal of a standard language came out
because all languages used to develop tools and ontologies for specific
user communities (particularly in the sciences and in company-specific
e-commerce applications), were not defined to be compatible with the ar-
chitecture of the World Wide Web in general, and the Semantic Web in
particular. OWL uses both URIs for naming and the description frame-
work for the Web provided by RDF to add the following capabilities to
ontologies:

• Ability to be distributed across many systems.

• Scalability to Web needs.

• Compatibility with Web standards for accessibility and internation-
alization.

• Openess and extensiblility.

An OWL ontology is an RDF graph, which is in turn a set of RDF triples.
OWL builds on RDF and RDF Schema and adds more vocabulary for de-
scribing properties and classes: among others, relations between classes
(e.g. disjointness), cardinality (e.g. ”exactly one”), equality, richer typ-
ing of properties, characteristics of properties (e.g. symmetry), and enu-
merated classes. However, the meaning of an OWL ontology is solely
determined by the RDF graph. In our work we do not deal with neither
data properties nor logical relations among concepts introduced by OWL.
This task will be part of our immediate next steps, but a general discus-
sion about it, is presented in chapter 5.
Intuitively, in terms of 2lBN , an ontology is a set of relationships among
knowledge of different domains. Figure 13 shows an example of ontol-
ogy. We can see that it contains descriptions about four domains:

• Company domain describing some kind of company

• Person domain describing the concerps of male and female

45

• Sector domain describing the kind of sector in which a company op-
erates

• Project domain describing some kind of project that can be led by a
person

The ontology also contains the following relationships among those do-
main descriptions:

• hasceo connecting company domain with person domain meaning
that each company can have one or more chief executive officer

• hasSector connecting company domain with sector domain meaning
that each company operates in a specific sector

• leads connecting person domain with project domain meaning that
each person can lead one or more projects

Those relationships are called object properties. As discussed in the previ-
ous chapter, ontologies permit to describe knowledge also by using data
properties. They represent attributes of each concept of a domain. A data
property can refer to both quantitative and qualitative attributes. Figure
13 shows an example of data properties related to the company domain.
Each company has an initial capital, that is a quantitative attribute, and a
name that is a qualitative one.
More formally, ontologies consist in general of two parts: intensional and
extensional. The former part, consisting of a TBox, contains knowledge
about concepts (i.e., classes) and complex relations between them (i.e.,
roles). The latter part, consisting of an ABox, contains knowledge about
entities (i.e. individuals) and how they relate to the classes and roles from
the intensional part. A general discussion about data properties is pre-
sented in chapter 5.
Now, we give our formal ontology definition.

Definition 9 A domain concept D is a set of ontology classes and is − a rela-
tionships among them, describing knowledge about a specific domain within the
whole ontology.

Note that D does not explicitly exist as a class in the ontology.

46

Definition 10 A TBox ontology is a triple < D, C,R > where:

• D is the set of the domain concepts. Within each domain concept all the
classes are in relation each other by means of is− a relationship

• C is the set of the ontology classes.

• R is the set of object properties binding domain concepts each other.

Figure 13: Example of ontology.

Figure 14 shows the TBox ontology of figure 13.

Definition 11 An ABox ontology is a set of ontology instances I. For each
instance i ∈ I i ∈ C holds. Given a subset {i} ⊆ I, the instances of {i} can be
in relation among each other by means of a subset of object properties {r} ⊆ R,
according to TBox ontology.

Definition 12 An ontology O is a pair < T , I > where:

• T is a triple < D, C,R >

• I is the set of ontology instances

47

3.4 Ontology Compiling Process

In this section we define the ontology compiling process for deriving the
2lBN directly from the ontology. It is composed of two phases:

• Phase one: compiling TBox ontology into a 2lBN structural part

• Phase two: compilingABox ontology into a 2lBN probabilistic part

Phase one maps each ontology entity to a random variable of the 2lBN ,
and builds the whole structure of the Bayesian network. Phase two per-
mits us to associate values of uncertainty to the relations modelled in the
first phase. Information about the uncertainty of the classes and relations
in an ontology, is here represented as probability distributions. In gen-
eral they can be provided by domain experts, but in our work they are
directly derived by means of the explicit knowledge stored in the ontol-
ogy. We deal with two kinds of distributions. The first one, representing
the probability that an arbitrary ontology instance belongs to a specific
class, and the second one, representing the probability that an arbitrary
ontology instance is involved in specific object properties. If class A for
example, represents a concept, we treat it as a random Boolean variable of
two states a and a, and we interpret P (a) as the prior probability that an
arbitrary instance belongs to a, and P (a|b) as the conditional probability
that an instance of class B also belongs to class A 1. Similarly, we can in-
terpret P (a), P (a|b), P (a|b), P (a|b) with the negation interpreted as ”not
belonging to”. Concerning relations among domain concepts, we treat do-
mains and ranges of object properties as random multi-value variables,
that associate instances belonging to a class to instances belonging to an-
other class with a certain likelihood, w.r.t. the object property that they
encode. In the following sections we will explain all the details of phase
one and phase two.

1Note that the concept of ”belonging” referred to each instance, can be thought as
”involved in is−a relation”. P (a) means that a is involved in is−a relation, because each
ontology instance always belongs to some class. P (a|b) means that exists an is− a relation
between a and b.

48

Figure 14: Example of TBox ontology.

49

3.4.1 Deriving Two-level Bayesian Network Structure

In this section we define how to build the structural part of 2lBN starting
from the TBox ontology. The idea is to map each ontology class to a
random Boolean variable, to find out all the domain concepts, and to map
each of them to a random multi-value variable. So, at the upper level
of the network each HLN represents a domain concept of the ontology,
and each labelled arc represents a specific object property. At the lower
level, each HLN is a Bayesian network composed of LLNs each of which
represents an ontology class. Arcs of each Bayesian network encode is−a
ontology relation among classes. Now we introduce some definitions for

Figure 15: Mapping TBox ontology to 2lBN structure.

formalizing the ontology compiling process.
We introduce the following mapping function.

Definition 13 Let the function Φ be

50

Φ: Ontology class −→ booelan random variable.

mapping each ontology class to a LLN.
Let Φ−1 be the inverse function of Φ.

We can observe that Φ is injective. This condition assures that the inverse
function Φ−1 exists. It is a partial function because it is not defined over
the whole codomain.
Analogously we define the following functions.

Definition 14 Let the function Υ be

Υ: Concept Domain −→ multi-value random variable.

mapping each ontology concept domain to a HLN.

Definition 15 Let the function Ψ be

Ψ: Object Property −→ Bayesian Arc.

mapping each object property to a Bayesian arc connecting HLNs each other.

Now we can the define the ontology compiling process related to the
2lBN structure.

Definition 16 The compiling process of a TBox ontology is a function Ωs such
that:

Ωs :< D, C,R >−→< N ,V,A >, with
Φ(C) = V
Υ(D) = N
Ψ(R) = A

where Φ,Υ,Ψ are the functions defined so far.

Figure 15 and 16 show an example of mapping of a TBox ontology to a
2lBN structure, and an example of Ωs function, respectively.

51

Figure 16: Example of Ωs function.

3.4.2 Deriving Two-level Bayesian Network Probabilistic
Part

In this section we give a method for computing the initial probability dis-
tribution associated to 2lBN. It is very important to note that this method
supposes to have very large set of instances (ABox), such that they form
a viable sample space for probabilities. In the worst case, when instances
are not available, we need some external knowledge about data, such as
syntetic instances or training data sets from which we can compute the
initial probability distributions, or probability tables provided by experts
according to the TBox. Before describing that method in detail, we give
the following general definition.

Definition 17 The ontology compiling process related to the computation of the
initial probability distributions is the function Ωp such that:

Ωp : I −→ P

where I is the set of all ontology instances, and P is the 2lBN probabilistic part.

Note that definition 8, in which P is specified, states that there exist two
kinds of distributions. A low level relation probability distributions re-

52

lated to the is− a relationships, and a high level relation probability dis-
tributions related to the labelled relationships (that are ontology object
properties). In the following we discuss about both those distributions.

Low Level Relation probability distributions

This kind of distributions refers to random Boolean variables that repre-
sent ontology classes. Each domain concept D has its own distribution
that describes how instances are distributed over its taxonomical descrip-
tion. According to section 3.4 for each class ci, Φ(ci) = vi returns the
associated Boolean random variable. Each of them has two truth values:
vi holds the value true when the ontology instance belongs to the class
ci, false otherwise. In practice, each domain concept Di is a taxonomy 2,

Figure 17: Example of instance counting.

it contains all the instances of the specific domain it represents. In other
terms,Di can be thought of as the root class of the taxonomy representing

2We do not consider constraints on logical relations among classes such as, intersection,
disjoint, union, and so on.

53

that domain. Since our scenario concerns taxonomies, from this point of
view all the instances not belonging to a specific class belongs to the class
defined by the set difference between the taxonomy root class and that
class. So, for each vi we can define Φ−1(vi) in terms of Φ−1(vi) as follows:

Φ−1(vi) = Φ−1(Ni) / Φ−1(vi),

where / is the set difference operator between sets (or classes), and where
Φ−1(Ni) = Di is the root node of the taxonomy to which Φ−1(vi) = ci

belongs. The number of instances belonging to the set difference between
the ontology classes Φ−1(Ni) and Φ−1(vi), is equal to the numer of in-
stances not belonging to the class Φ−1(vi), that is equivalent to set the
value of vi to false (e.g., vi). Figure 17 shows an example of Ωp function

Figure 18: Exampe of initial probability distribution.

counting ontology instances. It constructs a table in which the first two
columns report all ontology classes and the domain concepts to which
they belong. The other columns report all the possible combinations of
the truth values of the random Boolean variables. Each column identifies
a combination corresponding to a ”state of belonging” si in which each
instance can be in. For each of those combinations the instances belong-
ing to that state si are counted. For example in figure 17, there are 3648
companies of which 345 are limited partnerships, 765 are limited liability
partnerships, 296 are resellers, 1290 are jointventures, and 952 are cus-

54

tomers. There are also observed 2904 instances of person of which 1928
are men, and 976 are women. Starting from this table, we can compute the

Figure 19: Conditional probability distribution of a node with a single father.

probability distribution by applying the Bayes formula in the following
form:

P (ti|tj) = P (ti∩tj)
P (tj)

where Φ(ci) = ti and Φ(cj) = tj .
In this context we consider that the logical relations among sets, also hold
among ontology classes. In this sense we give the following definition.

Definition 18 Let ci, cj two ontology classes. We have that:

• ci ∩ cj is the set containing the instances belonging both ci and cj

• ci∪ cj is the set containing the instances belonging to ci and those belong-
ing to cj

• ciis the set containing the instances not belonging to ci

55

Figure 18 shows an example of computation of both prior and conditional
probability, derived by table in figure 17.

Figure 20: Computation of Conditional Probability distribution of a node
with two fathers.

High Level Relations probability distribution

The second kind of distribution is related to the ontology object proper-
ties. Each domain concept is mapped to an HLN, and each of them is
related to the other one via labelled arcs representing object properties.
In terms of Bayesian networks, the arcs represent Bayesian conditionings
among HLNs. So, we have to compute the distributions associated to
each HLN w.r.t. the object properties that involve it. Each HLN corre-
sponds to a multi-value random variable, which assumes all the possible
values referring to its own domain concept value, and the values of the
domain concept over which it ranges via specific labelled Bayesian con-
ditioning. For example, the conditional probability distribution of the
hasCeo object property is specified by the following notation:

P (Person|hasCeoCompany)

56

Figure 21: Computation of Conditional Probability distribution of a node
with a single father.

This particular notation represents the probability that hasceo relation ex-
ists between a specific kind of company and a specific class of person,
depending on how both person and company concept domains are mod-
elled in the ontology. It is computed by applying the Bayes formula in the
following form:

P (Person = p|hasCeoCompany = c) = P (<Company=c,hasCeo,Person=p>)
P (<Company=c,hasCeo,Person=All>)

where c and p are classes belonging to person and company concept re-
spectively, and Person = All indicates all the instances belonging to per-
son (in this case both man and woman)3. Note that all the instances are
counted in the HLN entered by the Bayesian conditioning arc. In the
previous case, we counted all the instances of person which belongs to
class p (e.g., man), and they are chief executive officers of a company that
belongs to class c (e.g., supplier). Then, we counted all the instances of
any person (e.g., man and woman) which is chief executive officer of a
company that belongs to class c (e.g., supplier). The ratio between those
quantity gives the likelihood that a man is chief executive officer of a sup-
plier company. Figure 19 and 20 show general examples of probability
distribution. In particular figure 20 shows the case in which an HLN has
two income Bayesian conditionings. Figure 21 and 22 show how to com-
pute the probability distributions of the figure 19 and 20, respectively. The

3The a priori probability of company HLN is trivially computed in the same way, count-
ing the instances of company which have ceo or not, and considering all the kinds of com-
pany.

57

Figure 22: Computation Conditional probaiblity distribution of a node with
two fathers.

Bayes formula defined so far permits to correctly handle object properties
with multiple cardinality.

58

Chapter 4

Inference over Bayesian
Network

4.1 BQ Language

4.1.1 Introduction

The basic computation on belief networks is the computation of the be-
lief of every node (its conditional probability) given the evidence that has
been observed so far. Although evaluating Bayesian networks is, in gen-
eral, NP-hard, there is a class of networks that can efficiently be solved
in time linear in the number of nodes. The class is that of the polytrees.
BQ language queries a bayesian network R satisfying the polytree prop-
erties. It is one in which the underlying undirected graph has no more
than one path between any two nodes (the underlying undirected graph
is the graph one gets if one simply ignores the directions on the edges).
In particular, for each node t, it is possible to partition all the other nodes
into two disjoint sets. The first one, is the set of nodes which are over t,
meaning those nodes that are connected to t only via the fathers of t. The
second one is the set of nodes which are under t, meaning those nodes
that are connected to t only via the immediate descendents of t. An ex-
ample of a typical polytree is shown in figure 23(a).

59

Figure 23: (a) A typical polytree. (b) under evindence and over evidence
w.r.t. D node.

4.1.2 BQ Language: The syntax

According to the polytree definition, the syntax of the BQ language is
defined in table 1. The general form of a query is:

P(QUERY | EVIDENCE).

Both QUERY and EVIDENCE are polytree nodes, represented in the gram-
mar by the syntactic cathegory node. Is it possible to represent both a
prior probability and a conditional probability by specifying an evidence.
Evidence can refer either to is − a ontology relations among classes or
to ontology object properties. In the latter case, the bayesian condition-
ing is annotated by the path composed of the arcs connecting the query
node to the evidence node (e.g., the set of object properties connecting
the query class to the evidence class). Since the network is a polytree, it is
possible to specify the path in a unique way. Each path is represented by

60

the syntactic cathegory path. Nodes and paths refer to ontology classes
and object properties respectively, according to the Φ function defined in
chapter 3 section 3.1. From the physical polytree structure point of view,
each evidence node is under or over a query node. An example is de-
picted in figure 23(b). By using our grammar, it is possible to observe
evidence nodes both under and over, w.r.t. a query node. In figure 23(b),
for example, D is the query node. The set of nodes over D is { A, B, C, E}
because all those nodes are connected only to the father of D i.e., A and
B. The set of nodes under D is { F, G, H, I} because all those nodes are
connected only to the direct descendents of D i.e., F and G.
Relatively to the grammar defined in table 1, we use ti and pj to represent

PROBABILISTIC QUERY ::= P(QUERY | EVIDENCE)
QUERY ::= node
EVIDENCE ::= UNDER OVER | SINGLE | ε
UNDER OVER ::= path,path(node, node) | node,node
SINGLE ::= path(node) | node
node::= Ide
path::= Rel | Rel.path

Table 1: BQ grammar

a variable identifying a polytree node ∈ R (e.g., a boolean random vari-
able), and a path binding a query node to each observed evidence node
(e.g., a set of the polytree arcs among nodes), respectively.
Each path pj can be either a simple path, that is a single polytree arc, or
a composite path, that is a sequence of polytree arcs. A composite path
is the concatenation of several simple paths. The concatenation operator
is represented by the symbol ”.”. Remember that, since R is a polytree,
each path pj is unique inR.
Each node ti means that the value of the boolean variable ti is true, mean-
ing that we consider all the instances belonging to the class Φ−1(ti) for
computing the probability distributions. Φ−1 is defined over ti as stated

61

in definition 13. On the contrary, ti means that the value of the boolean
variable t is false, meaning that we consider all the instances not belong-
ing to Φ−1(ti).

4.1.3 BQ Language: The operational semantic

According to the ontology definition, we distinguish two kinds of in-
ference. The first kind is the inference over the is − a relations among
ontology classes, and the second one is the inference involving object
porperties among ontology classes. We refer to the first inference kind
by inference over taxonomy, and to the second one by inference over

polytree. Implicitly, when we refer to ontology is − a relationships, we
deal with Low Level Nodes (LLNs); when we refer to object properties
we deal with High Level nodes (HLNs).

4.2 Inference over taxonomies

We introduce some definition for specifying the BQ language operational
semantic.
The following is the function needed for computing the number of in-
stances belonging to a specific ontology class.

Definition 19 Let #inst be the function counting the number of the instances
of each ontology class.

So, #inst(Φ−1(t),R) is the number of instances satisfying the condition
t = true in the observations table defined in the previous chapter.

Definition 20 Let #inst be the function counting the number of the instances
not belonging to the ontology class Φ−1(ti).

#inst(Φ
−1(ti),R) is the number of the instances satisfying the condition

t = false in the observations table defined in the previous chapter.

62

Definition 21 Let t1 and t2 be two nodes inR. t1 � t2 means that t1 is under
t2 inR or, similarly, t2 is over t1 inR, according to the polytree definition.

Definition 22 Let t be a node inR. The function root is defined as follows:

root(t,R) =
{
true if t is the root of the taxonomy;
false otherwise.

Definition 23 Let t be a node in R, and {ti} be a set of nodes in R. The func-
tion father is defined as follows:

father(t,R) =
{
� if root(t,R);
{ti} otherwise.

where ∀i = 1, ..., n. ti is the direct ancestor of t inR.

Notice that, since R is a taxonomy, in general, each node has at most
one father. In this case the number of elements of {ti} is always equal
to one. Figures 24, 25, 26, 27 contain the operational semantic rules for
the BQ language. In the following we explain in detail the computation
provided by each rule. Rule (1) concerns the most general probabilistic
query. Given the query node t, two evidences t1 and t2 are obsverved,
such as t1 is under t, and t2 is over t. We apply the Bayes formula and we
obtain the following equation:

P(t|t1, t2) = P(t1|t,t2)·P(t|t2)
P(t1|t2)

We can re-write this formula as follows:

P(t|t1, t2) = P(t1|t, t2) · P(t|t2) · K

where K = 1
P(t1|t2) is a normalisation factor and it is computed as shown

in the following. Since t1 and t2 are d-separated by t, we obtain:

P(t|t1, t2) = P(t1|t) · P(t|t2) · K.

Since t is an evidence over t1 in P(t1|t), and t2 is an evidence over t in
P(t1|t), now we can compute P(t1|t) and P(t|t2) separately, by applying
to both rule (2). In order to compute the factor K, we use the property
that the sum of the probability of an event given an evidence, and the
probability of its negation given the same evidence, is always equal to
one. In our case we have:

63

P(t|t1, t2) + P(t|t1, t2) = 1

By applying the Bayes formula to both members of the previous equation
we obtain:

P(t1|t)·P(t|t2)
K + P(t1|t)·P(t|t2)

K = 1

from which we derive thatK = P(t1|t)·P(t|t2)+P(t1|t)·P(t|t2). Replacing
K in the first equation, we obtain:

P(t|t1, t2) = P(t1|t)·P(t|t2)
P(t1|t)·P(t|t2)+P(t1|t)·P(t|t2)

Figure 24: Semantic rules about under and over evidence

Rule (2) is a recursive one computing the probability of the ancestors of
the query node t1 given the evidence node t2, where the evidence is over
the query, and it implements a bottom− up reasoning schema. Since R is

64

a taxonomy, each node has, at most, one father. For the first one, we have
to introduce the father of the query node:

P(t1|t2) =
∑

father(t1)
P(t1, father(t1)|t2)

The
∑

father(t1)
notation, as specified in chapter 2, is used to indicate the

fact that we have to sum all the cases of P(t1, father(t1)|t2) among each
other. The first one, when the boolean random variable father(t1) holds
true, and the second one, when it holds false1. By using the conditional
independence definition we obtain:

P(t1, father(t1)|t2) = P(t1|father(t1), t2) · P(father(t1)|t2)

Since each node is independent from all non-descendants nodes given its
father, we can write:

P(t1|t2) =
∑

father(t1)
P(t1|father(t1)) · P(father(t1)|t2)

P(t1|father(t1)) is computed by rules (4), (5), (6) or (7) depending on the
thruth values of the nodes involved in that conditional probability, and
we have to re-apply recursively rule (2) to P(father(t1)|t2). When the
ancestor of t1 coincides with the evidence node (t2), the recursive process
terminates, and we can apply rules (4), (5), (6) or (7). The process termi-
nates also if the query node is the node root, and in this case we have to
apply rules (8) or (9) depending on the truth value of that node. Rules (12)
and (13) in figure 27 also deal with top-down inference with the evidence
over the query, but they involve the negation of the query node and the
negation of the evidence node, respectively. They are used for computing
the normalisation factor K.
If t2 becomes under w.r.t. an ancestor of t1, the recursive process stops,
and we have to apply the rule (3). It computes the probability of the
descendents of the query node t1 given the evidence node t2, where the
evidence is under the query, and it implements a top − down reasoning
schema. The basic step is the Bayes formula:

1In the operational semantic rules we omitted this notation for semplicity, but every time
we involve a new node in a conditional probability, we have to consider all its possible
values (in our case true and false).

65

Figure 25: Rules about the direct computation of the conditional probability

66

Figure 26: Rules about the direct computation of the prior probability

67

P(t1|t2) = P(t2|t1)·P(t1)
P(t2)

= P(t2|t1) · P(t1) · K,

whereK = 1
P(t2)

is a normalisation factor. It is very important to note that
this rule transfoms a bottom-up inference reasoning schema (P(t1|t2))
into a top-down inference reasoning schema (P(t2|t1)) except for K and
P(t1). So, on P(t2|t1) we can apply the recursive rule (2), and then we can
compute the K factor in the same way shown before:

P(t1|t2) + P(t1|t2) = 1

Applying the Bayes formula to both members of the previous equation
we obtain:

P(t2|t1)·P(t1)
K + P(t2|t1)·P(t1)

K = 1

from which we derive thatK = P(t2|t1)·P(t1)+P(t2|t1)·P(t1). Replacing
K in the first equation we introduced, we obtain:

P(t1|t2) = P(t2|t1)·P(t1)

P(t2|t1)·P(t1)+P(t2|t1)·P(t1)

P(t1) is trivially computable. In fact, from the physical network struc-
ture point of view, we know how we can reach the evidence node (that
is under the query node) passing via the query node, and we know how
we can reach the query node from each node which is over the query
node. Futhermore, each of this paths is unique because our network is
a polytree. So, in order to know the prior probability of the query node,
we have to consider all the possible paths connecting each node over the
query node to the query node itself. In the case of taxonomies each node
has, at most, one father, and the computation of the prior probability is
trivial as shows rule (10). We involve recursively the father of the query
node until the query node becomes the root node. The basic step is the
following:

P(t1) =
∑

father(t1)
P(t1|father(t1) · P(father(t1))

Rule (11) is equal to (10), but it computes the prior probability of the nega-
tion of a query node. When the recursive processes of (10) and (11) termi-
nate, we can apply the rules (8) and (9) over the root node, respectively.

68

Figure 27: Semantic rules about the normalisation factor computing

Rules (4), (5), (6), (7), (8) and (9) are defined according to the method for
computing the initial probability distribution described in the previous
chapter. In particular, rules (4), (5), (6), (7) compute the conditional prob-
ability distribution of each node t given its father t1 = father(t) consid-
ering all the possible truth values of the query and the evidence. In Rule
(5), for example, the evidence is the negation of the father of the query.
Since we deal with taxonomies, Φ−1(t1) ∩ Φ−1(t)),R) = � holds, and
P(t|t1) = 0 for each taxonomy. But, when we will deal with taxonomies
with multiple inheritance, this condition will not hold anymore.

4.2.1 An Example of Inference over taxonomy

The following is a simple example of inference over taxonomies by us-
ing the rules of the semantics defined so far. Figure 29 shows a frag-
ment of the taxonomy related to Legal Entities taken from the ontology
repository of the European MUSING Project (Sol). All the ontology frag-
ments presented in this thesis, are taken from that repository. According
to the method defined in the previous chapter, the taxonomy is compiled

69

Figure 28: Example of semantic rules derivation.

into a bayesian network satisfying the polytree properties. Then, starting
from its instances, all the initial distributions are computed. The result is
shown in figure 30. Function Φ maps each taxonomy class to a ti bayesian
node in the following way:

Φ(LegalEntity) = t1 Φ(Person) = t2
Φ(Company) = t3 Φ(V endor) = t4
Φ(Customer) = t5 Φ(Partnership) = t6
Φ(JointV enture) = t7 Φ(Competitor) = t8
Φ(Supplier) = t9 Φ(Reseller) = t10
Φ(LimitedLiability) = t11 Φ(Limited) = t12
Φ(PCSupplier) = t13 Φ(OtherSupplier) = t14

For example, if we want to know which is the likelyhood of a legal
entity to be a commercial personal computer selling company, given that
it is a company, we have to express this query as follows:

P(PCSupplier|Company)

What we know, that is the evidence, is that our observations are legal
entities that must be observed only in the company sub-space (and not,
for example, in the person sub-space). Then, what we want to know is

70

Figure 29: Fragment of the Legal Entity taxonomy of the Musing project.

Figure 30: Legal Entity taxonomy compiled into the bayesian network

71

about entities which are personal computer sellers. Figure 28 shows how
those rules work on the example reported in figure 30. The conditional
probability we have to compute is P(t13|t3,R). The candidate rules to
be applied are (2) and (3) in figure 24, and (4) in figure 25. Rule (4) can
not be applied because the condition on the father of t13 doesn’t hold.
Concerning rules (2) and (3), the evidence t3 is over the query t13, the
condition t3 � t13 holds, and we can apply rule (2). It decomposes the
original probability into the product of two other probabilities:

P(t13|t3,R) = P(t13|t9,R) · P(t9|t3,R).

Since the evidence is over the query, the method computes the probability
of the query (t13) given its father (t9), and it is re-applied to the new quey
node (t9). Concerning the first factor, the condition t9 = father(t13,R)
holds and we can apply rule (4). It computes the ratio between PC sup-
plier entities and supplier entities, and the process terminates. Rule (2) is
recursively applied to the second factor, and it decomposes the factor into
two other probabilities:

P(t9|t3,R) = P(t9|t4,R) · P(t4|t3,R).

On both the factors, the condition stating that the evidence node is the
father of the query node holds, and the rule (4) is applied. In the first case,
it is computed the ratio between supplier entities and vendor entities, and
in the second one, it is computed the ratio between vendor entities and
company entities.

4.3 Inference over taxonomies with multiple in-
heritance

Typically, ontologies can define taxonomies with multiple inheritance.
Each taxonomy class can be a subclass of two or many calsses. From
the bayesian network point of you, it means that each node can have one
or many fathers. We can modify our rules for dealing with this kind of
taxonomy. Figure 31 shows an example of taxonomy with multiple inher-
itance, in fact Chairman class is a subclass of both Officer and Authority.

72

In order to make inference over this kind of network, we have first to
modify rule (2) and (3) for involving all the fathers of each node along
the inference path. In table 32 the new rules are presented. We need to

Figure 31: An example of taxonomy with multiple inheritance.

introduce the following definitions.

Definition 24 (Path Uniqueness Property). A sequence of n arcs belonging
to a polytree R is called path of R, with n ≥ 1. In R each node can be reached
by each other node via an unique path. We call this feature as path uniqueness
property.

Definition 25 Let t1 and t2 be nodes in R, such as t2 � t1. desc(t2, t1,R) is
the function returning the node t, if it exists, which is both descendent of t1 and
father of t2.

Definition 26 Let t1, t2 be nodes inR. The function ances is defined as follows:

ances(t1, t2,R) =
{
true if a path from t1 to t2 exists, and t1 � t2
false otherwise.

Figure 33 shows an example of ances function. Given the node evidence
t2 = tε, the only father of tq , starting from which a path connecting it to
tε exists, is t13 as figure 33 shows. Note that t13 � tε.
In the following we use C to indicate the function counting the number of
nodes of a set of nodes {t}. Concerning evidence over query, the new rule
(2bis), is still implemented by a recursive bottom − up inference schema,

73

Figure 32: Semantic rules about taxonomy evidence with multiply inheri-
tance

74

Figure 33: Example of ances function.

computing the probability of each ancestor of the query, given the evi-
dence, until either an ancestor reaches the evidence or the evidence be-
comes under the query. W.r.t. rule (2), we have to introduce all the fathers
of the query node tq :

P(tq|t2) =
∑

father(tq) P(tq, father(tq)|t2) =
∑
{tq} P(tq, {tq}|t2)

where {tq} = father(tq) is the set of fathers of tq (C({tq})). By using the
conditional independence definition we obtain:

P(tq, {tq}|t2) = P(tq|{tq}, t2) · P({tq}|t2)

Since each node is independent from all non-descendants nodes given all
its fathers, we can write:

P(tq|t2) =
∑
{tq} P(tq|{tq}) · P({tq}|t2)

Since all the fathers of tq are d-separated, we can re-write the previous
equation as:

75

P(tq|t2) =
∑
{tq} P(tq|{tq}) · P(tk|t2) · P(tk+1|t2) · · · · · P(tk+n|t2)

where tk, ..., tk+n ∈ {tq}. We note that the terms of the previous equation
are:

(a) The probability of the query node tq given all its fathers.

(b) The probabilities of each father of tq given the evidence.

Concerning (a), P(tq|{tq}) factor is computed by applying rule (14) 2. Ac-
cording to what explained in chapter 3, it computes the probability of
a node given all its fathers, applying the Bayes formula. It is equal to
the number of ontology instances belonging to the intersection of all the
father classes and the query class, on the number of ontology instances
belonging to the intersection of all the father classes.
Regarding (b) we can observe that d-separation property permits us to
discard the evidence over each father node, when we compute the proba-
bilities of the other father nodes. So, we select that father ti of tq for which
ances(tq, ti) holds. All the other fathers tj are independent from the ev-
idence, because each father node is d-separated from each other and the
evidence is only over ti. This result derives directly from the polytree
structure. So, we obtain:

P(tq|t2) =
∑
{tq} P(tq|{tq}) · P(ti|t2) ·

∏(C({tq})−1)
j=1 P(tj)

where ances(tq, ti) ∧ ti ∈ {tq}, and j 6= i ∧ tj ∈ {tq}, as rule (2bis) shows.
All P(tj) factors can be computed applying rules (8), (9), (10), (11) in fig-
ure 26, depending on if tj is a root node or not.
Concerning the P(ti|t2) factor, if ti has only t2 as father, it is computed by
rules (4), (5), (6), (7) in figure 25, depending on the truth values of ti and
t2.

2In practice, we have to sum all the probabilities of the cases of P(tq |{tq}), on the basis
of the truth values of all {tq} nodes. For example, if tq has two fathers t1 and t2, we have to
compute

P
{t1,t2} P(tq |t1, t2) as the sum of four cases ofP(tq |t1, t2); the first one in which

we substitute t1 to t1, the second one in which we substitute t2 to t2, the third one in which
we substitute both t1 and t2 to t1 and t2 respectively, and the last one that is the original
version. For semplicity, this kind of computations are omitted in the operational semantic
rules. Each rule computing each of all the different cases of the conditional probability, is
equal to rule (14) except for the truth values of the father nodes.

76

If ti has two or more fathers, and the evidence t2 is one of its fathers, we
have to apply rule (15). In this case we have to involve in P(ti|t2), all the
other fathers of ti, {ti} = father(ti):

P(ti|t2) =
∑tj 6=t2

tj∈{ti} P(ti|{ti}) · P(t2|{{ti}/t2})

where {{ti}/t2} indicates the set of fathers of ti excluding t2. Since each
father is d-separated from the others, we obtain:

P(ti|t2) =
∑tj 6=t2

tj∈{ti} P(ti|tj) ·
∏

tk∈{{ti}/t2} P(tk),

as rule (15) shows in table 32.
Rule (3bis) is very similar to rule (3) but, since each node can have many
fathers, we have to choose the father of t2 which is a descendent of t1. The
function desc(t2, t1) selects that node, called tdesc. By applying the inde-
pendence property we have thatP(t2, tdesc|t1) = P(t2|t1, tdesc)·P(tdesc|t1),
and we can write:

P(t2|t1) =
∑

tdesc
P(t2|tdesc, t1) · P(tdesc|t1)

Now, an evidence node is always d-separated from a query node, w.r.t.
each node satifying the property of tdesc. In this way we can simplify the
previous equation as the following:

P(t2|t1) =
∑

tdesc
P(t2|tdesc) · P(tdesc|t1)

The two factors in which P(t2|t1) is decomposed are n1 and n2 in rule
(3bis), respectively. n3 is the a priori probability of the query, deriving
from the Bayes formula, and n4, n5 are deriving directly from the compu-
tation of the normalisation factor, as described in section 4.2.
Rule (3.1) is very similar to (3bis), but it deals with the case in which the
evidence is a direct descendent of query. This is the situation in which is
required only to apply the Bayes formula, in order to change the evidence
from under to over w.r.t. query. Then, on that factor we have to apply rule
(15). The computation of the other resulting factor, that are K and the a
priori probability, is identical to the previous one.

77

Figure 34: The taxonomy with multiple inheritance compiled into the
Bayesian Network.

4.3.1 An Example of Inference over taxonomy with multi-
ple inheritance

The following is a simple example of inference over taxonomies by using
the rules of the semantics defined so far. Figure 31 shows a fragment
of a taxonomy related to job positions. As you can see it is not a classical
taxonomy, in factAuthority andOfficer are root classes. Chairman class
is subclass of both Authority and Officer class. Now, we show how it is
possible to make inference over this kind of taxonomy by using our new
rules. The related bayesian network is depicted in figure 34.
Suppose we want to answer to the following query:

Which is the probability of an entity to be an Authority, given that it is a
Chairman of the board ?

By using our syntax we can express the previous query in the following
way:

P (Authority|ChairmanOfTheBorad) ≡ P (t2|t6)

In figure 35 is reported an example of derivation of the semantic rules for
solving the previous bayesian query.
Since the evidence is a single node, the rules which are candidate to be
applied to P (t2|t6), are rules (2bis), (3bis) and (3.1). W.r.t. the last ones,

78

Figure 35: Derivation rules for computing P (t2|t6).

79

the condition t6 � t2 holds, but the evidence is not a direct discendent
of the query, so we have to apply rule (3bis), implementing the Bayes
formula. It reverses t6 with t2 and it makes inference over P (t6|t2):

P (t2|t6) = P (t6|t2) · P (t2) · K, (4.1)

where K = 1
P (t6)

. The rule checks for that node satisfying the following
condition:

∃k.tk = desc(t2, t6).

t3 is the node satisfying this condition. As you can see in figure 34, t3 is
the father of t6 which is descendent of t2. So we have that:

P (t6|t2) = P (t6|t3) · P (t3|t2). (4.2)

On P (t6|t3) we can apply rule (4) because t3 is the unique father of t6. It
computes this factor by counting opportunely the ontology instances of
Φ−1(t6) and Φ−1(t3). Futhermore, P (t3|t2) satisfies the conditions of rule
(15):

{t2, t1} = father(t3,R), t2 ∈ {t2, t1}, C({t2, t1}) ≥ 2.

Rule (15) involves t1 node, that is the other father of t3. As you can see
in figure 35, (C(father(t3))− 1) is equal to 1, so

∏1
i=1 ni has only one term

n that is equal to P (t1). The rule decomposes P (t3|t2) into the following
way:

P (t3|t2) = P (t3|t1, t2) · P (t1). (4.3)

Finally, rule (14) computes P (t3|t1, t2) factor, because t1 and t2, are the
unique fathers of t3, and rule (8) computes P (t1) factor because root(t1)
holds.
Concerning P (t2) factor in equation 4.1, it also can be computed applying
rule (8) because root(t1) holds.
As equation 4.1 shows, we have also to compute the normalisation fac-
tor K. In order to do this, it is necessary to compute P (t3|t2), P (t2), and
P (t3|t1, t2). They are identical to the previous factors except for the truth
value of t2, and they are computed in the same way.

80

Finally, reordering all the previous directly computable factors, all the ap-
plied rules permit us to solve the bayesian query in the following way:

P (t2|t6) = P (t6|t3)·P (t3|t1,t2)·P (t1)·P (t2)

(P (t6|t3)·P (t3|t1,t2)·P (t1)·P (t2))+(P (t6|t3)·P (t3|t1,t2)·P (t1)·P (t2))
.

4.4 Inference over polytrees

In this section we describe the rules concerning inference over polytrees.
From the ontology point of view, it means we can formulate queries in-
volving object properties. At this level each arc of the polytree has a spe-
cific semantic given by the object property it refers to, and a label given
by the name of that object property. So, the conditional probability of an
HLN, depends on both the evidence node and what arcs bind it to the
evidence node.
As discussed in chapter 3, each arc has its probability distribution related
to the domain and the range of the object property that it refers, but it also
induces its conditioning to the other HLNs along a query path (we called
it as induced conditional probability). In fact, crossing an arc pi along a
path means that we have to restrict the next conditioning sub-space, to
that one in which the object property referred by pi holds. In terms of
space complexity, it can’t be efficent to compute in advance all the con-
ditional probabilities of all the possible conditionings among sub-spaces
individuated by each arc. It is more convenient to compute dinamically
all the induced conditional probabilities, every time we have to solving a
specific bayesian query. Also for computing these probabilities, the Bayes
formula is used, but the induced sub-space in which its arguments are
evaluated, is depending on the set of arcs via which we reached the ac-
tual arc. In our operational semantic, first of all, each bayesian query is
decomposed into the product of factors of directly computable probabili-
ties, and then the rules computing each conditional probability factor are
applied, taking into account the induced conditional probability.
Another aspect to evaluate is that a node can reach another node via dif-
ferent sets of arcs, here called paths, as stated in definition 24. It means
that in the initial ontology there are many object properties which have

81

both the same domain and the same range. So, the path uniqueness prop-
erty of the polytrees class, appears to be violated. In reality, it is sufficient
that the path uniqueness property holds among the nodes involved in
bayesian queries. Since, each query requires to specify the set of object
properties composing the path binding the query node to the evidence
node, the path uniqueness property trivially holds.
In order to specify the rest of the operational semantic of the BQ language,
we need some additional notation.
In the following, each ti node is a High Level Node (HLN) meaning that
it represents a whole taxonomy i, as specified in Chapter 3.

Definition 27 Let p1, p2 to be paths inR binding t to t1 and t to t2 respectively,
with t1 � t and t2 � t. p = p1.p2 is the set of paths binding t1 to t2.

Notice that, since both p1 and p2 are unique paths, also p is a unique path.

Definition 28 Let t1 and p to be a node and a path, respectively, belonging to
the polytreeR. The function

t1.p⇒ t2,

specifies that t2 is the node reached by t1 via p.

Definition 29 Let {p1, p2, ..., pn} to be a set of paths belonging to the polytree
R, such that p = p1.p2.p3. · · · .pn−1.pn is a path and p ∈ R. We define the
following functions:

head(p) = p1.p2. · · · .pn−1

and

tail(p) = p2.p3. · · · .pn

Definition 30 Let t be a node belonging to the polytreeR, and
DA(t) = {tDA1 , tDA2 , ..., tDAm } a set of m direct ancestors of t. The function

arc(t,DA(t),R),

returns the set of the names of the object properties that each arc, binding t to
each tDAi with i = 1, ..., n, refers.

82

Figure 36: Semantic rules about under and over evidence

83

Rule (1) in figure 36 concerns the most general kind of query over poly-
trees. Figure 37 shows an example of query involving evidence both
under and over w.r.t. query node. Concerning paths involved in each
bayesian query, we ignore the direction of each arc composing them, but
we consider only the direction of the whole path. Conventionally, we as-
sume that the direction of each path goes from the node which is on the
left of the symbol ”|”, to the node which is on the right w.r.t. the same
symbol.
In figure 37, we observe that the evidence over the query, that is t1, is con-
nected to query tq , via pover = p6.p3 path. Analogously, the evidence un-
der the query, that is t2, is connected to query tq , via punder = p10.p14.p15

path. We call the path binding t1 to t2 as p = p1.p2.

Figure 37: Example of evidence both under and over w.r.t. query.

We can separate those kinds of evidence in the computation of the bayesian
query, by using the Bayes formula:

P(tq|pover,punder
t1, t2) = P(t2|punder,ptq,t1)·P(tq|pover t1)

P(t2|pt1)

84

As discussed in section 4.2, 1
P(t2|pt1)

is a normalisation factor K, and since
tq d-separates t2 from t1, we can write:

P(tq|pover,punder
t1, t2) = P(t2|punder

tq) · P(tq|pover t1) · K

Semantic rules about both top-down and bottom-up inference over
polytrees are very similar to those ones over taxonomy with multiple
inheritance. In particular, all the steps involving d-separation property,
Bayes formula, and polytrees properties, for constructing the semantic
rules of BQ language, are the same as in section 4.3. So, in the follow-
ing we show how the paths are involved in all the semantic rules, rather
than how those rules have been constructed. We remark that the only
difference is about each probability computation and not about the math-
ematical construction process of each rule. Here, we have to consider the
semantics of each arc that composes each path, i.e., which are the arcs we
are dealing with, at each step of the recursive processes. The reason for
this, is that each arc refers to different ontology object properties, each of
which has a specific semantics.

Rule (2) computes recursively the probability of each ancestor of the query
node, given the evidence, till either an ancestor reaches the evidence node,
or the evidence becomes under the query of that ancestor. As discussed
in section 4.3, at each step a bayesian query P(tq|pt2) is decomposed into
three factors:

(a) The probability of the query node tq given all its fathers.

(b) The probability of the father of tq which is connected to the evidence
via p, given the evidence.

(c) The product of the a priori probabilities of the remaining fathers of
tq .

In figure 38 for example, the path binding tq to t2 is composed of three
specific arcs, that are, p6, p2, and p1. The first step is to involve the fathers
of tq . As rule (2) shows, we use the functions father and arc. Related to
figure 38, we obtain:

85

Figure 38: Example of evidence over w.r.t. query.

father(tq) = {t7, t8} ∧ arc(tq, t7, t8) = {p6, p7}

p6 is the arc binding tq to t7, and p7 is the arc binding tq to t8. So, concern-
ing (a) we have:

P(tq|p6,p7(t7, t8))

This probability is computed by rule (4), and we will esamine that rule in
at the end of this section. Among all fathers of tq , we have to select that
father tj by which we can reach the evidence. Since we are dealing with
polytrees, the other fathers are independent from the evidence. In this
respect, the rule verifies the following condition:

∃j : tj .tail(p)⇒ t2

As you can see in figure 38, j = 7, and so concerning to (b), we have:

P(t7|tail(p)t2)),

where tail(p) = p2.p1 is the path binding t7, the selected father of tq , to the
evidence.

86

Now we have to compute all the a priori probabilities of the remaining
fathers of tq , that are the fathers ti for which the condition ancestor(t2, ti)
does not hold. We also need to know which are the arcs that bind each ti
to tq . Related to our example, rule (2) checks the following condition:

∀i : ((ti ∈ {t7, t8}) ∧ ances(t2, ti,R) ∧ (pi = arc(tq, ti,R)).P(ti|pi
ε,R)

Since the only ti that satisfies the condition is t8, which is connected to tq
via p7, concerning to (c), we have to compute the following probability:

P(t8|p7ε)

It is computed by rule (7) in figure 40. Note that this particular notation,
means that, from the ontology point of view, we have to consider all the
instances belonging to Φ−1(t8) which are related to the instances belong-
ing to Φ−1(tq) by Ψ−1(p7). In other terms, all the instances of Φ−1(t8)
involved in the Ψ−1(p7) relation.

Figure 39: Example of evidence under w.r.t. query.

Rule (3) concerns the computation of each bayesian query when the evi-
dence is under the query. In figure 39 is reported a graphical example of

87

this kind of query.
As discussed in section 4.3 in relation to rule (3bis), a bayesian query is
decomposed in the following three factors:

(a) The probability of the evidence node (t15 in figure 39) given the father
of the evidence node which is descendent of the query node (t11 in
figure 39).

(b) The probability of the previous father, given the query node.

(c) The a priori probability of the query node.

The main step is to apply Bayes formula to the bayesian query. Related to
the example in figure 39, we obtain:

P(tq|p10.p14t15) = P(t15|p14.p10tq) · P(tq|p10ε) · K,

where K = 1
P(t15|p14ε) is the normalisation factor. Note that the Bayes for-

mula changes the query node with the evidence node, and consequently
the path binding those nodes is implicitly reversed.
Now, we have to involve the descendent of the query node which is the
father of the evidence node, that is t11. In general, due to the d-separation
property, the query node and the evidence node are independent each
other, given the node satisfying the properties of t11. So, in our case we
obtain:

P(t15|p14.p10tq) =
∑

t11
P(t15|p14t11) · P(t11|p10tq)

We can simply verify how rule (3) identifies those two factors, checking
the conditions specified at the begin of the rule, in relation to figure 39:

father(t15,R) = {t2, t11}
p = p10.p14 ∧ head(p) = p10 ∧ tail(p) = p14

∃k.(tq.p10 ⇒ tk) ≡ t11
pl = arc(t15, t11,R) ≡ p14

∃m.(p = pm.tail(p)) ≡ p10

P(t15|p14t11) and P(t11|p10tq) correspond to (a) and (b), respectively. (c) is
equal to P(tq|p10ε) and it is computed by rule (7) in figure 40.

88

Figure 40: Semantic rules about induced conditioning

89

The process of computation of K is not very different from the one dis-
cussed in section 4.3. Similarly to P(tq|p10.p14t15), we have to compute
P(tq|p10.p14t15), for obtaining P(t11|p10tq) and P(tq|p10ε). The computa-
tion process is identic to the previous one, but we have to consider tq
instead of tq
SinceK = P(tq|p10.p14t15)·P(tq|p10ε)+P(tq|p10.p14t15)·P(tq|p10ε), replacing
it in the initial query, we obtain the following final computation:

P(t15|p14 t11)·P(t11|p10 tq)·P(tq|p10ε)

(P(t15|p14 t11)·P(t11|p10 tq)·P(tq|p10ε))+(P(t15|p14 t11)·P(t11|p10 tq)·P(tq|p10ε))
,

as rule (3) shows.
Rule (3.1) in figure 36 is very similar to (3bis) in figure 32, but it consid-

Figure 41: Example of triple function.

ers the case in which evidence is a direct descendent of query. Here, it is
required only to apply the Bayes formula, in order to change the evidence
from under to over w.r.t. query. Then, on that factor we have to apply rule
(2) in figure 36. The computation of the other resulting factors, that are K
and the a priori probability, is identical to the previous one.

Now, we describe the rules for computing the induced conditional
probability. First, we introduce the following functions.

Definition 31 Let t, {ti} be nodes belonging to a polytreeR, such that {ti} are

90

Figure 42: Example of Ontology.

91

direct ancestors of t. Let p1, p2, ..., pn arcs belonging to R, such that ∀i.pi =
arc(t, {ti}) with n = 1, ..., n. Function #triple is defined as:

#triple: (set of domains × set of properties × range class) −→ number of
instances

It considers all the properties among each domain class and the range class, and
it counts all the instances of the range class, which have a relation with instances
of those domains via all the properties, at the same time.

Figure 41 shows an example about #triple(Φ−1({ti}),Ψ−1({pi}),Φ−1(t)).
It counts all the instances of Φ−1(t), individuated by the intersection of
all Ψ−1({pi}) properties.

Definition 32 Let IC(t) be the function returning the sub-space of condition-
ing of t w.r.t. the initial query.

IC(t,R) =
{
� if t is the initial query;
S otherwise.

Definition 33 Let ti be a node representing a taxonomy class. Function upper(ti)
returns the HLN ∈ R, to which ti belongs.

Figure 43: Example of a node with three father nodes

Rule (4) in figure 40 permits us to compute the probability of a node
given all its C({t}) fathers. Figure 43 shows a graphical example, in which

92

t1, t2, t3, are fathers of t and they are connected to it, via p1, p2, p3, respec-
tively. It means that in the initial ontology there are three object prop-
erties, that are Ψ−1(p1), Ψ−1(p2), Ψ−1(p3). Each one binds instances of
Φ−1(t1), Φ−1(t2), Φ−1(t3) classes respectively, to Φ−1(t) class. Since func-
tion IC(t) returns a sub-space of conditioning S, in this rule we have to
consider all instances of t satisfying the sub-space individuated by S:

(Φ−1(t) |= S).

Every time we cross an arc in R, we restrict our space in which we have
to evaluate the terms of the next probability. In figure 43, for example,
supposing we just crossed p4 arc, we have to evaluate all the instances
of Φ−1(t), starting from the space of t4, that are in relation with Ψ−1(p4),
Ψ−1(p4), and Ψ−1(p4) in the sub-space of t at the same time, and satisfy-
ing the property Ψ−1(p4).
Now, first, we have to count all the instances of Φ−1(t) belonging to the
space individuated by S, each of which is involved in Ψ−1(p1), Ψ−1(p2),
Ψ−1(p3) relations, at the same time:

n2 = #triple(Φ−1({ti}),Ψ−1({pi}), (Φ−1(t)) |= S)

Then we have to consider the whole range of the properties, that is the
HLN to which t could belong. So, we have to count all the instances of
upper(Φ−1(t)) for which all the properties hold:

n1 = #triple(Φ−1({ti}),Ψ−1({pi}),upper(Φ−1(t)))

The ratio between the second result and the first one gives the probability
of t given all its fathers w.r.t. the specific relations among them.
The case in which there are no induced conditioning, i.e., t coincides with
the initial query, is very similar to the previous one. The function IC(t)
returns �, so we can a priori evaluate all the instances of t. The related
rule is reported in the appendix A.

4.4.1 Example of Inference over Polytrees

Here we show an example of Bayesian query. It refers to the ontology
depicted in figure 42. It involves the concepts of Project, representing

93

various kinds of projects, Event representing changes of status or profile
of each company, Sector, representing the area in which each company
operates, Company, and Person. All these classes are bound each other
by the hasCeo object property, connecting Person with Company, hasSec-
tor connecting Company with Sector, hasEvent connecting Company with
Event, and leads connecting Person with Project. The compiling process,
described in the previous chapter, builds the two-level Bayesian network
shown in figure 44. As you can see, each HLN, called Ti, is a bayesian
network coding all is − a ontology relations, and the arcs among HLN
identify an upper level of the bayesian network, coding all ontology ob-
ject properties. Over this structure we can solve all bayesian queries
that can be written using the language BQ. Note that the nodes which
our semantic rules refer to, sometimes can be implicitly HLNs. So, in
the following, each t can refer either to a node or to an HLNs depend-
ing on whether some conditions about a specific taxonomy are expressed
or not. For example, if we are looking for instances of Jointventures, it
means we have an implicit condition about the company taxonomy like
Company=Jointventure. If we are interested in all kinds of companies
we have no conditions over that taxonomy, and we can directly refer to
the HLN related to company taxonomy. In general, t refers to a specific
class of a specific taxonomy, T refers to the taxonomy to which that t class
belongs.
Suppose we want to know the likelihood that research projects are part

of a company’s plans given that the involved companies operates in the
technology sector 3. In other terms, we want to know the probability that
a path exists between Research Project and Technology Sector4. By using the
language BQ, we specify those object properties that we want to involve
in our bayesian query:

P(ResearchProject|(leads.hasCeo.hasSector)TechnologySector) (4.4)

3Note that, there are no explicity conditions about Person, Event, and Company
4Note that, the path uniqueness property holds at the moment we specify each query.

Even if many paths binding each other two HLNs exist, one specific path is selected at the
inference time.

94

Figure 44: The ontology compiled into the 2lBN .

95

Figure 45: Function Ψ maps each object property to a bayesian arc.

In terms of bayesian nodes the query running in our system is:

P(t35|(p4.p2.p3)t16) (4.5)

where p = (p4.p2.p3). All the correspondences among classes and nodes
defined by Φ, and among object properties and arcs defined by Ψ, are
shown in figure 46 and 45 respectively.
Now we examine the query. We note that only one evidence node is spec-
ified. So rules (2), (3), (3.1), (5), are possible. Since T2 � T1, where T1

represents the HLN to which t35 belongs, and T2 represents the HLN to
which t16 belongs (as figure 44 shows), the remaining candidates rules,
are rule (2) and (5). But T2 is not a father of T1, so we have to apply rule
(2). Now, checks are required for arcs and nodes satisfying the conditions
in the head of the rule:

• for {T0} = father(T1,R) we obtain T3,

• for {p0} = arc(T1, T3,R) we obtain p4, and

• for ∃j : Tj .tail(p)⇒∗ T2 we obtain j = 3 and T3, since tail(p) = p2.p3

Since T3 is the only father of T1, i.e., C({T0}) = 1, the condition ances

in rule (2) can not be applied on any HLN, and we consider the factor∏0
k=1 nk equal to one. On the basis of the previous conditions, the rule

decomposes the intial query into the product of two other probabilities5:

P(t35|(p4)T3) · P(T3|(p2.p3)t16) (4.6)

5For semplicity of notation, in the examples we omit each probability factor involving
the same nodes with a different thrut values.

96

Note that t35 is the original query, that is a specific class of the Project
taxonomy, and t16 is the original evidence, that is a specific class of the
Sector taxonomy. When we consider all the other nodes along the query
path, we refer to them as HLNs, since there are no conditions on those
taxonomies. Just to give a more intuitive idea of what we obtained by
using the rule, we re-write the equation 4.6 with reference to the ontology
entity names:

P(ResearchProject|(leads)Person) · P(Person|(hasCeo.hasSector)TechnologySector)
(4.7)

Rule (4) is applied to the first factor of equation 4.6, because HLN T3 is

Figure 46: Function Φ maps each ontology class to a bayesian node.

the unique father of T1, via path p4
6. Such rule verifies if an induced

conditioning over t35 exists. Function IC(t35) returns the empty set, be-
cause t35 is the initial node of the path, and we do not have to cross any
arc for reaching it. So, that probability is computed starting from all the
sub-space of the research projects.
Rule (2) is recursively applied to P(T3|(p2.p3)t16) factor with p = p2.p3, be-

6Note that T1 represents the HLN to which t35 belongs.

97

cause T2 � T3. As shown before, it checks for arcs and nodes satisfying
the conditions in the head of the rule:

• for {T0} = father(T3,R) we obtain T4,

• for {p0} = arc(T3, T4,R) we obtain p1, and

• for ∃j : Tj .tail(p)⇒∗ T2 we obtain j = 4 and T4, since tail(p) = p2.p3

So, the second factor of equation 4.6, is decomposed into the following
factors:

P(T3|(p1)T4) · P(T4|(p2)t16) (4.8)

In terms of ontology entities names, we have:

P(Person|(hasCeo)Company) · P(Company|(hasSector)TechnologySector) (4.9)

On the first factor of equation 4.8, is applyed rule (4), because T4 is the
unique father of T3, and they are connected each other via p1 path. Rule
(4) verifies if exists an induced conditioning. Function IC(T3) returns a
space S 6= �, because for reaching T3 node we have to cross p1 arc. It
means that we restricted T3 sub-space to all elements belonging to T3 but
also satisfying p1 relation. In terms of the semantic given by the ontology,
we restrict the sub-space of all person, that is T3, to that of the person
leading research projects.
Now, analyse the second factor of equation 4.8. Now, rule (2) is not any-
more applicable because the evidence node T2 is passed under the query
node T4. Since T2 � T4, we have two candidates rules to be applied, that
are rule (3) and rule (3.1). Since T4 is the father of T2, our system applies
rule (3.1), and checks for the following conditions:

• for {T0} = father(T2,R) we obtain T4, and

• for {p0} = arc(T2, T4,R) we obtain p2

98

So, the factor is decomposed into the following terms:

P(t16|(p2)T4) · P(T4)
P(t16|(p2)T4) · P(T4) + P(t16|(p2)T 4) · P(T 4)

(4.10)

On P(t16|(p2)T4), is applyed rule (5) because T4 is the father of T2 to which
t16 belongs. We note that having applied Bayes formula, the induced sub-
space is became the evidence, instead of the query. Rule (5) is aware of
query and evidence have been reversed, and compute the probability in
way very similar to rule (4). P(t16|(p2)T 4) is the same factor with different
thrut values and it is computed in the same way, by the rule (2.2) reported
in appendix A.
P(T4) is a prior probability involving no arcs, and it is computed by rule
(6). P(T4) derives from the second factor of equation 4.8, in which T4

has an induced conditioning. So, also in P(T4), T4 has to be evaluated
awaring of its induced conditioning. It represents the sub-space of the
companies having CEOs which lead research projects. P(T 4) is computed
in a similar way by rule (6.1) in appendix A.
Reordering all the computed factors, and replacing them in equation 4.5,
we obtain the following final computation:

P(t35|(p4)T3) · P(T3|(p1)T4) · P(t16|(p2)T4) · P(T4)
P(t16|(p2)T4) · P(T4) + P(t16|(p2)T 4) · P(T 4)

(4.11)

In terms of the ontology semantic we have:

P(ResP roj|(leads)P ers) · P(P ers|(hasCeo)Comp) · P(T echSec|(hasSec)Comp) · P(Comp)

P(T echSec|(hasSec)Comp) · P(Comp) + P(T echSec|(hasSec)Comp) · P(Comp)
(4.12)

4.5 System Architecture

Figure 47 shows the architecture of the system in a simple schematic way.
First of all, starting from the ontology, the Ontology Compiling Module

constructs the two-levels Bayesian network as described in chapter 3,
over which making inference. Then, for each query specified by the user

99

by using the GUI Module, the Query Checker Module verifies the syn-
tactical correctness of the query, according to the BQ grammar defined
in section 4.1. If the query belongs to the BQ language, it is processed
by the Inference Module. This module recognizes the kind of query as
shown in table 2. There, a fragment of the pseudo-code related to the
query recognition is reported. By using the function getEvidence(.), we
are able to extract the evidence part from the Bayesian Query. If it returns
�, represented by the symbol ”E” (empty) at line 5, we have to deal with a
prior probability. Otherwise the structure evidence contains the evidence
of the Bayesian query which can be single (evidence under or evidence
over) or double (evidence under and over), as shown at lines 8-15. All

Figure 47: System Architecture.

the modules are implemented in Java. In the following we show some
details of each architecture module.

4.5.1 GUI Interface Module

Figure 48 shows the GUI interface of the System. It is composed of five
parts. The first one allows the user to load an ontology for extracting

100

01 real BayesianQuery(BQ) {

02 query = BQ.getQuery();

03 evidence = BQ.getEvidence();

04 switch(evidence.getType()) {

05 case < E >:

06 result = prior(query);

07 break;

08 case < U >:

09 result = under(query, evidence[0]);

10 break;

11 case < O >:

12 result = over(query, evidence[0]);

13 break;

14 case < UO >:

15 result = underover(query, evidence[0], evidence[1]);

16 break;

17 }

18 return result;

19 }

Table 2: General procedure for detecting the kind of query.

Figure 48: System GUI.

101

the Bayesian network by applying the ontology compiling process. The
second part allows the user to view all the Bayesian nodes and Bayesin
arcs of the extracted 2lBN , scrolling them in the proper combo boxes. The
third part is an useful keypad for composing Bayesian queries; when an
user specifies Bayesian queries referring to HLNs, the path connecting the
query HLN with the evidence HLN must be enclosed in square brackets
and it must follow the Bayesian conditioning symbol. Each sequence of
one or many object properties, separated by a dot, identifies a path. The
fourth part is the Bayesian Query Area where an user can specify its
Bayesian query. Finally, all the output messages, the query results, and
the possible errors are reported in the last part of the GUI, that is the Logs
Window.

4.5.2 Query Checker Module

This module checks the syntax of the Bayesian query. It consists in veri-
fying if the query belongs to the language generated by the BQ grammar
defined at the begin of this chapter. However, from the syntactical point
of view, the user is guided in composing queries because both node and
arc names are selectionable from the combo boxes in the part two of the
GUI, and the syntactical symbols of the Bayesian query structure can be
specified by using the GUI keypad.

4.5.3 Ontology Compiling Module

This module performs the 2lBN construction task. As described in chap-
ter 3, this task involves both the construction of the Bayesian arcs and
nodes, and the computation of the initial probability distributions. Re-
garding to the first one, we recursively visit the ontology is− a structure
in order to extract the LLNs and then we construct the HLNs. Then, we
examine how the ontology classes are related each other by the object
properties, in order to construct the Bayesian arcs connecting HLNs. Ta-
ble 3 reports the pseudo code related to this part.

The BayesianNodes function at line 20 loads the ontology. We start
from the class Thing, that is the root class of each ontology. The vari-

102

20 void BayesianNodes(onto, class) {

21 reasoner.loadOntologies(Collection.singleton(onto));

22 detectBayesNodes(class, 0);

23 reasoner.clearOntologies();

24 }

25 void detectBayesianNodes(class, level) {

26 // Recursive visit to the structure of the ontology //

27 if (level == 1) {

28 out.print(HLN);

29 }

30 else {

31 if (level! = 0 {

32 out.print(LLN);

33 }

34 }

35 for (i = 0; i < level ∗ INDENT ; i + +) {

36 out.print();

37 }

38 out.println(labelFor(clazz));

39 // Find the children and recurse //

40 Set < Set < OWLClass >> children = reasoner.getSubClasses(clazz);

41 for (Set < OWLClass > setOfClasses : children) {

42 for (OWLClasschild : setOfClasses) {

43 if (!child.equals(clazz)) {

44 save node and its father

45 detectBayesianNodes(child, level + 1);

46 }

47 }

48 }

49 }

50 }

Table 3: Recursive visit to the structure of the ontology.

103

able level represents the depth level of each class within the ontology;
Thing has level equal to zero. The detectBayesianNodes function at line

Figure 49: (a) HLNs and LLNs. (b) Bayesian arcs (HLRs).

25, is a recursive one that visits the is − a ontology structure, every time
calling itself over the children of the class that it is visiting (line 46) and
stores each class and its father in an appropriate data structure (line 45).
At lines 26-38 we prepare the visualization of the 2lBN structure as fig-
ure 49(a) shows. This is related to the ontology presented in the previ-
ous section. The Bayesian arcs (figure 49(b)) are retrieved in a simpler
way, asking for the object properties of each ontology class. The prob-
abilistic part of the 2lBN , is not computed when its structural part is
extracted, but it is calculated at Bayesian query computation time. Ac-
tually, the whole probabilistic part is not even computed but, for each
query, the necessary probability distributions are computed at run time.
After the Inference Module has decomposed the query into the product
of n probabilities P1, ...Pn with n ≥ 1, each of which belonging to the set
of the initial distributions, this module computes the values of those Pi.
In order to do this, ontologies are stored in main memory. Ontologies
are managed by Sesame, a Java platform for working with the Resource
Description Framework (RDF). An important component of the Sesame
architecture is the Storage And Inference Layer (Sail). API is a low level

104

System API (SPI) for RDF stores and inferences. Its purpose is to abstract
from the storage and inference details, allowing various types of storage
and inference to be used. In order to retrieve the ontology instances in-
dividuated by the bayesian queries, we perform queries to the ontology
by using SPARQL. It stands for the SPARQL Protocol and RDF Query-
ing Language. The Sesame server is an implementation of the SPARQL
Protocol and is being used when uploading or exporting data from the
repository.
This is very efficient in terms of space complexity, because we have not to
use very large data structures for storing all the initial probabilities val-
ues. Besides, every time the ontology is populated by new instances, we
have not to recompute the set of the initial distributions.

4.5.4 Inference Module

The Inference Module implements all the rules defined in section 4.1.3
and reported in appendix A. Also, it interacts with the ABox of the ontol-
ogy in order to compute function IC at query computation time. Table 4
shows the pseudo-code related to a small subset of those rules. It refers to
queries not involving Bayesian arcs among HLNs. Pseudo-code related
to inference involving HLNs is conceptually very similar, but it requires
to introduce the paths referring the object properties. Paths are retrieved
from the Bayesian query by the function getPath(.), and they are man-
aged by the functions headPath(.), tailPath(.), and HLRname(.) as the
rules defined in section 4.4 show. Function prior(q) at line 52, returns
the probability that an ontology instance belongs to a specific Low Level
Node q, within a specific High Level Node Dc.
Since this pseudo-code fragment deals with taxonomies as described in
section 4.2, each LLN can have at most one father. So, if q is the root node
in Dc, the probability is the ratio between the ontolgy instances that have
type q and all the ontology instances (lines 53-55). Otherwise we select
the father of q and we compute the percentage of the ontology instances
that have type q in the sub-space of the instances having the same type of
the father of q.

105

Function underover splits the Bayesian query into the product of a prob-
ability with an evidence under the query, and another one with an evi-
dence over the query (line 64), according to the BQ operational semantics
defined in the previous sections.
Functions under and over are recursive, and they can call each other.
Here, only the recursive call aspect is shown, that is how these two func-
tions can interact each other; all the other features of the implementation
are left out. Regarding to the function under, if the query q corresponds
to the father of the evidence e−, the function terminates given that it is
possible to compute that probability. Otherwise, as line 70 shows, the
function under calls the function over. It is very important to note that,
according to the BQ operational semantics, the arguments passed to the
function over are inverted, transforming a top-down inference schema
into a bottom-up inference one. Function over terminates when evidence
e+ is the father of the query q. Otherwise, until the evidence remains over
the query, the function calls recursively itself, where the new query q′ is
the father of q which occurs in the path binding q to e+ (lines 79-80). It
can happen that the evidence e+ is not over q′ anymore. In that case the
function over calls the function under (line 76).

4.5.5 First Experimental Results

In this section we report some runs of our system by using the ontology
presented in our thesis. The ontology compiling process produces a two-
level Bayesian network with 41 Bayesian nodes (5 High Level Nodes and
36 Low Level Nodes), and 36 bayesian arcs (4 High Level Relations and
32 Low Level Relations). The rules involving the conjunction of evidences
are not yet implemented. Furthermore, the results of the queries are pre-
sented except for their normalisation factors.
Concerning inference over taxonomies, we report the result about the fol-
lowing query:

Which is the probability of a Vendor instance to be a Supplier of PCs?

Figure 50(a) shows the result of the query and 50(b) shows what inference
schema has been applied. From the logical point of view, this query com-

106

51 real prior(q) {

52 // prior probability related to is− a relation within a domain concept Dc (HLN) //

53 if root(q,RDc) {

54 n =
#inst(q,RDc

)
#inst(All,R) ;

55 }

56 else { // q has only one father //

57 n =
#inst(q,RDc

)
#inst(father(q,RDc

) ;

58 }

59 return n;

60 }

61 real underover(q, e+, e−) {

62 //K is the normalisation factor //

63 // q and e− belong to LLN Dc //

64 return (K · under(q, e−) · over(q, e+));

65 }

66 real under(q, e−) {

67 //K is the normalisation factor //

68 // q and e− belong to LLN Dc //

69 if (father(e−,R) == q) return (P (e−|q) · K · P (q));

70 else return (K · P (q) · over(e−, q))

71 }

72 real over(q, e+) {

73 // q and e+ belong to LLN Dc //

74 if (father(q,R) == e+) return P (q|e+);

75 else {

76 if (e+ � q) return under(q, e+);

77 else {

78 // q′ is along the path connecting q to e+ //

79 q′ = father(q);

80 return (P (q|q′) · over(q′, e+)

81 }

82 }

83 }

Table 4: Procedure for under, over, and under over evidence.

107

Figure 50: (a) Query result (b) Inference schema.

putes the inclusion degree of SupplierPC class in Vendor class.
With our system is possible to make infernce about object properties, and
not only about classes inclusion degree, and classes overlap. So, we re-
port the results about the following query, concerning inference involving
object properties:

Which is the probability that a Patent project is led by person which is CEO of a
company operating in the financial sector?

Figures 51(a) and 51(a) show the result of the query and the inference
schema applied, respectively. As we can observe, it is necessary an explaining
away inference schema, because during the inference process the evi-
dence, which is initially over the query, becomes under the query, at the
last recursive step.

108

Figure 51: (a) Query result (b) Inference schema.

109

Chapter 5

Conclusion and Future
Work

In general dealing with uncertainty is crucial in ontology tasks as domain
modeling and ontology reasoning. As discussed in section 2.3, many pro-
posals are focused on the representation of the uncertainty in ontology,
and the reasoning over the enriched knowledge. Instead, our goal is to
provide a query language for answering queries involving probabilities,
by integrating ontologies with typical features of Bayesian networks, but
without modifying the original ontology. The uncertainty is directly de-
rived from the ontology explicit knowledge, and it is not necessary to
know an initial probability distribution a priori. In this research we de-
veloped a Bayesian compiling process which has an ontology as input, in
terms of its TBox and ABox, and a two-level Bayesian network (2lBN)
and its initial probability distributions as output. 2lBN permits to repre-
sent both the ontology taxonomical aspect and the relationships among
ontology classes, that are object properties. Then, we defined a Bayesian
query language which extends ontology queries with Bayesian network
reasoning, in order to make inference over the two-level Bayesian net-
work, involving both ontology is− a relations and ontology object prop-
erties.

However there are a number of issues still to be addressed, which lead

110

to several possible future works:

1. Handling ontology relationships

2. Dealing with logical relations between concepts introduced by OWL-
DL

3. Bayesian query language extensions

4. Dealing with cycles in 2lBN

We will very briefly discuss each of these issues next.

1. Handling ontology relationships

In our work we use a two-levels Bayesian network for representing a
TBox ontology. Each ontology class is mapped to a random Boolean vari-
able, to find out all the domain concepts, and each of them is mapped to
a random multi-value variable. So, at the upper level of the network each
High Level Node (HLN) represents a domain concept of the ontology,
and each labelled arc represents a specific object property. It is very im-
portant to note that each ontology object property between two classes ci
and cj which are not root classes in their concept domains Dh and Dk, is
represented as a labelled arc between the HLN of Dh and the HLN of Dk,
in the same way if ci and cj are root classes in Dh and Dk, respectively. It
means that the 2lBN structural part is the same in both cases, that is, each
object property is represented as an arc binding only root classes. Then,
in the 2lBN probabilistic part, for all the object properties between two
specific classes that do not hold, their existence probability value will be
equal to zero. Figure 52 shows an example. p connects Dh to Dk, but the
object property that it refers to in the ontology binds ci ontology class to
cj ontology class. So, for example, the probability that p binds instances
of c2 to instances of c4 is equal to zero. An ontology in OWL can de-
fine object properties, but it permits to describe knowledge also by using
data properties. They represent attributes of each concept of a domain. A
very interesting future research, is the possibility to introduce data prop-
erties into the two-levels Bayesian network compiling process. It permits

111

Figure 52: Object property binding ci to cj

to make inference over a richer Bayesian network, and to ask queries in-
volving both object and data properties. For example, still referring to the
examples in chapter 4, we could formulate a query like the following:

Which is the likelihood of default of a company having payments of
capital in cash by amount superior to 300,000 Euros when such amount

surpasses the 25% of the initial capital, given that it has a male older
than 70 years, as chief of executive officer?

The problem is how to represent data properties in 2lBNs, both in
terms of 2lBN structural part and 2lBN probabilistic part. Since obvi-
ously we are interested in quantitative data properties, first of all we need
to discretize all the ranges of all attributes that each data property refers
to. From the structural point of view, we could represent each data prop-
erty as a Low Level Node (LLN) propdata, and connecting all the classes
on which that data property is defined, to propdata. Consequently, the
probability tables for each data property could look like to the ones re-
ported in figure 53. This kind of nodes are leaf nodes with only in-arcs.

112

Figure 53: How to represent a data property as a LLN

We have to investigate how to make inference over the new 2lBN , and
how to extend BQ language for handling all of possible kinds of queries.

2. Dealing with logical relations between concepts introduced by OWL-
DL

OWL-DL is a variation of the Ontology Web Language, and its semantics
is defined based on model theroy in a way analogous to the semantics of
description logics (DLs). DLs are suitable for capturing the knowledge
about a domain in which instances can be grouped into classes and rela-
tionships among classes are binary. For example a class can be defined
by logical operations on two or more other classes (owl : intersectionOf ,
owl : unionOf , owl : complementOf). The three logical operators cor-
respond to AND (conjunction), OR (disjunction) and NOT (negation) in
logic. They define classes of all individuals by standard set-operations
of intersection, union, and complement, respectively. Three class axioms
(rdfs : subClassOf , owl : equivalentClass, owl : disjointWith) can be
used for defining necessary and sufficient conditions of a class. For the

113

moment our method does not support any kind of those constraints. So,
for example if we consider disjunction operator as represented in figure
54(a), the probability P (B|C) tend to zero, but it is not precisely equal to
zero. This problem can be solved, for example, by using the results in
(DP04a), (DP04b), (DP05b), (DP05a). In this work the authors uses par-
ticular nodes, called L − nodes, to facilitate modeling relations among
classes that are specified by OWL logical operators as reported in figure
54(b). So, we have to investigate how to integrate those kind of nodes in
our 2lBNs.

Figure 54: (a) P (B|C) tends to zero. (b) P (B|C) is equal to zero.

3. Dealing with cycles in 2lBN

When the structure of the Bayesian network is not a polytree, all the rea-
soning recursive procedures may not terminate because there can be more
than one path connecting two nodes. In particular, reflective ontology
object properties can cause loops because, in that case, a node is both the
father and the child of itself. For example, if we add a reflective relation
hasMother to Company class in figure 13, (for indicating that a Company

114

has a mother Company) we could want to ask to the system the following
question: ”What is the probability that the CEO of a company is also a director of
its mother company ?”. The facts involved in the query are that a company
c1 has a CEO that is a person p1, the company c1 has a mother company
that is c2, and c2 has a CEO that is p1. It can be expressed by both queries
and evidences conjunction as briefly described in the next Bayesian query
language extensions section. In some cases recursive procedures may not
terminate because hasMother creates a cycle in the network. However,
our main hypothesis is that the resulting graph, produced by the ontology
compiling process, contains no cycles. In fact, cycles violate the proper-
ties of polytrees. Anyway, there are some proposed solutions for dealing
with networks which are not polytree, and we could investigate how to
integrate them in our method. For example in (Hen88), marginal proba-
bilities of root nodes are used for assigning causal values (i.e., true, false)
to those nodes. Then, by using those values, causal values are assigned
to the descendents of the root nodes, by means of the conditional prob-
ability tables of those descendents, and so on till we reach the leaves. In
this way, each node assumes a truth value. This process is repeated many
times, remembering all the values assigned to all nodes, each time. So,
we can evaluate for example P (Q|E) dividing the number of times in
which both Q and E have value equal to true by the number of times in
which E has value equal to true. In (Lau88) the authors group nodes of
the network by super-nodes, in such a way that the resulting network is
a polytree. This process can be repeated, grouping super-nodes by other
super-nodes, till the network is a polytree. So all the reasoning schemas
for polytrees can be used for making inference, but for each super-node
there are many conditional probability tables. They give all the condi-
tional probabilities for each value of each super-node, conditional on all
the values of their father nodes, that can be super-nodes.

4. Bayesian query language extensions

Further investigations have to be addressed to the extension of the BQ
language for handling:

115

1. Conjunction of evidences

2. Conjunction of queries

3. Specifying more than one conditions over the inference path

The first and the second point concern the possibility to express more
evidence nodes e1, e2, ...en and more query nodes q1, q2, ...qn respectively,
in the Bayesian query. So, it could be possible to formulate queries with
the following structure for the point 1:

P (q|paths{e1, e2,, en})

and for the point 2:

P ({q1, q2,, qn}|pathse)

Point three concerns the possibility of specifying a condition along each
arc composing the inference path. For the moment it is possible only to
express a condition about both query and evidence node, but not also
about each HLN met along the inference path.

116

Appendix A

Bayesian Query Language:
The Operational Semantics

In the following is reported the operational semantics of the Bayesian
Query Language.

Figure 55: Taxonomy: Semantic rules about under and over evidence, part 1

117

Figure 56: Taxonomy: Semantic rules about under and over evidence, part 2

118

Figure 57: Taxonomy: Evidence over w.r.t. query

119

Figure 58: Taxonomy: Evidence under w.r.t. query

120

Figure 59: Taxonomy with multiply hineritance: Evidence over w.r.t. query

121

Figure 60: Taxonomy with multiply hineritance: Evidence under w.r.t. query

122

Figure 61: Taxonomy with multiply hineritance: query is one of the fathers
of the evidence

123

Figure 62: Taxonomy with multiply hineritance: probability distribution of
a node given its fathers

124

Figure 63: Taxonomy with multiply hineritance: evidence is one of the father
of the query

125

Figure 64: Polytree: Evidence both over and under w.r.t. query, part 1

126

127

Figure 65: Polytree: Evidence over w.r.t. query

128

Figure 66: Polytree: Evidence under w.r.t. query

129

Figure 67: Polytree: query is one of the fathers of the evidence

130

Figure 68: Polytree: probability distribution of a node given its fathers

131

Figure 69: Polytree: Reversed probability distribution

Figure 70: Polytree: A prior induced probability distribution

132

Figure 71: Polytree: A prior probability distribution

133

References

[ABC] The Internet Classic Archive. Aristotele (350 B.C.) Categories. 9

[AH05] S.; Agarwal and P. Hitzler. Modelling Fuzzy Rules with Description
Logics. In Proceedings of Workshop on OWL Experiences and Directions,
2005. 39

[Bac90] F. Bacchus. Representing and Reasoning with Probabilistic Knowledge.
Cambridge, MA: MIT Press, 1990. 38

[BP03] D.; McGuinness D.; Nardi D. Baader, F.; Calvanese and P. PatelSchnei-
der. The Description Logic handbook. Cambridge University Press., 2003.
13

[Cha99] J. R.; Benjamins V. R. Chandrasekaran, B.; Josephson. What Are Ontolo-
gies and Why Do We Need Them. IEEE Intelligence Systems, 1999. 1

[CK05] K. B.; Costa, P. C. G.; Laskey and Laskey K.J. PR-OWL: A Bayesian On-
tology Language for the Semantic Web. In Proceedings of ISWC-URSW,
pages 25–33, 2005. 2, 36, 37, 39

[Coo90] G. F. Cooper. The Computational Complexity of Probabilistic Inference
Using Bayesian Belief Networks. Artificial Intelligence, 42:393–405, 1990.
33

[Cos08] M.; Carvahlo R. N.; Laskey K. B.; Santos L. L.; Matsumoto S. Costa, P. C.
G.; Ladeira. A First-Order Bayesian Tool for Probabilistic Ontologies. In
Proceedings of 21st Florida FLAIRS UNBBayes-MEBN, 2008. 37

[Dag93] M. Dagum, P.; Luby. Approximating Probabilistic Inference in Bayesian
Belief Networks is NP-Hard. Artificial Intelligence, 60:141–153, 1993. 33

[DP04a] Y.; Ding, Z.; Peng and R. Pan. A Bayesian Approach to Uncertainty Mod-
elling in OWL Ontology. In Proceedings of 2004 International Conference on
Advances in Intelligent Systems, 2004. 35, 36, 114

134

[DP04b] Z.; Ding and Y. Peng. A Probabilistic Extension to Ontology Language
OWL. In Proceedings of the 37th Hawaii International Conference on system
Sciences, 2004. 35, 36, 114

[DP05a] Y.; Ding, Z.; Peng and R. Pan. BayesOWL: Uncertainty Modeling in
Semantic Web Ontologies. In Soft Computing in Ontologies and Semantic
Web, Springer-Verlag, 2005. 35, 36, 39, 114

[DP05b] Z.; Ding and Y. Peng. Modifying Bayesian Networks by Probabilistic
Constraints. In Proceedings of UAI-2005, Edimburgh, Scotland, 2005. 35,
36, 114

[Fla00] N. Flach, P. A.; Lachiche. Decomposing Probability Distributions on
Structured Individuals. Work-in-Progress Reports of the 10th International
Conference on Inductive Logic Programming, pages 96–106, 2000. 40

[Fry89] M. Frydemberg. The Chain Graph Markov Property. Scandinavian Jour-
nal of Statistics, 17:333–353, 1989. 17

[Get02] L. C. Getoor. Learning Statistical Models from Relational Data. Ph.D.
dissertation, Department of Computer Science, Stanford University, 2002. 38

[GL02] R.; Giugno and T. Lukasiewicz. P-SHOQ(D): A Probabilistic Extension
of SHOQ(D) for Probabilistic Ontologies in the Semantic Web. INFSYS,
Research Report, 2002. 39

[GN87] M. R. Genesereth and N. Nilsson. Logical Foundations of Artificial In-
telligence. Morgan Kaufmann Publishers: San Mateo, CA, 1987. 11

[Gyf04] P. A. Gyftodimos, E.; Flach. Hierarchical Bayesian Network An Ap-
proach to Classification and Learning from Structured Data. Knowledge
Representation and Search, pages 291–300, 2004. 40

[H.67] Melay G. H. Another look at data. In Proceedings of the Fall Joint Computer
Conference, 31:525–534, 1967. 10

[Hal90] J. Y. Halpern. An Analisys of first-order Logics of Probability. Artificial
Intelligence, 46:311–350, 1990. 38

[Hei94] J. Heinsohn. Probabilistic Description Logics. In Proceedings of UAI,
pages 311–318, 1994. 39

[Hen88] M. Henrion. Propagation of Uncertainty in Bayesian Networks by Prob-
abilistic Logic Sampling. in Lemmer, J, e Kanal, L. Uncertainty in Artificial
Intelligence, 2:149–163, 1988. 115

135

[HH04] M.; Holi and E. Hyvonen. Probabilistic Information retrieval Based on
Conceptual Overlap in Semantic Web Ontologies. In Proceedings of Work-
shop on Uncertainty Reasoning for the Semantic Web (URSW), 2004. 38

[HH05] M.; Holi and E. Hyvonen. Modelling Degrees of Conceptual Overlap
in Semantic Web Ontologies. In Proceedings of Workshop on Uncertainty
Reasoning for the Semantic Web (URSW), 2005. 38

[Hor04] I. Horrocks. SWRL: A Semantic Web Rule language Combining
OWL and RuleML. http://www.w3c.org/Submission/2004/SUBM-SWRL-
20040521, 2004. 15

[HS05] H. I.; Haarsler, V.; Pai and N. Shiri. A generic Framework for Descrip-
tion Logics with Uncertainty. In Proceedings of Workshop on Uncertainty
Reasoning for the Semantic Web (URSW), 2005. 39

[Jae94] M. Jaeger. Probabilistic Reasoning in Terminological Logics. In Proceed-
ings of KR, pages 305–316, 1994. 39

[Kad96] D. A. Kadane, J. B.; Schum. A Probabilistic Analysis of the Scacco and
Vanzetti Evidence. 1996. 3

[Kim83] J. Kim, J. H.; Pearl. A Computational Model for Causal and Diagnostic
Reasoning in Inference systems. Proceedings of the Eighth International
Joint Conference on Artificial Intelligence, pages 190–193, 1983. 34

[Kol97] A.; Pfeffer A. Koller, D.; Levy. P-CLASSIC A Tractable Probabilistic De-
scription Logic. In Proceedings of AAAI, pages 390–397, 1997. 38

[Las05] P. C. G. Laskey, K. B.; Costa. Bayesian logic for the 23rd Century. In
Proceedings of Uncertainty in Artificial Intelligence, 2005. 36

[Las07] K. B. Laskey. MEBN: A Language for First-Order Bayesian Knowledge
Bases. In Proceedings of Artificial Intelligence, 2007. 2

[Lau88] D. Lauritzen, S.; Spiegelhalter. Local Computations with Probabilities on
Graphical Structures and Their Application to Expert System. Journal of
the Royal Statistical Society B 50(2), pages 157–224, 1988. 115

[Lit05] G. Little, E.; Rogova. Ontology Meta-Model for Building A Situational
Picture of Catastrophic Events. In Proceedings of the FUSION 2005-8th
International Conference on Multisource Information Fusion, 2005. 4

[Lit06a] E. Little. The Need for Metaphysically-based Ontologies in Higher-level
Information Fusion Applications. Contribution to the Third International
Workshop on Philosophy and Informatics, 2006. 3

136

[Lit06b] G. Little, E.; Rogova. Principles for The Development of Upper Ontolo-
gies in Higher-Level Information Fusion Applications. In Proceedings of
the 2006 Formal Ontology for Information Systems Conference, 2006. 4

[LJTP] Basilia (1613). Lorhard J. Theatrum Philosophicum. 9

[MD05] M.; Mazzieri and A. F. Dragoni. A Fuzzy Semantics for Semantic Web
Languages. In Proceedings of Workshop on Uncertainty Reasoning for the
Semantic Web (URSW), 2005. 39

[NF04] H.; Nottelmann and N. Fuhr. A Probabilistic Extension to DAML+OIL
based on Probabilistic Datalog. In Proceedings of Information Processing
and Management of Uncertainty in Knowledge-Based systems (IPMU), 2004.
39

[PA05] F.; Cannon S.; Pool, M.; Fung and J. Aikin. Is it Worth a Hoot? Qualms
about OWL for Uncertainty Reasoning. In Proceedings of Workshop on
Uncertainty Reasoning for the Semantic Web (URSW), 2005. 38

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligence Systems: Networks of
Plausible Inference. San Mateo, CA: MOrgan Kaufmann, 1988. 3, 22, 34

[PH05] G.; Tzouvaras V.; Pan, J. Z.; Stamou and I. Horrocks. f-SWRL: A Fuzzy
Extension of SWRL. In Proceedings of the International Conference on Arti-
ficial Neural Networks, 2005. 39

[Poo93] D. Poole. Probabilistic Horn Abduction and Bayesian Networks. Artifi-
cial Intelligence, 64-1:81–129, 1993. 39

[RM03] A. A. Razmerita, L.; Angehrn and A. Maedche. Ontology-Based User
Modeling for Knowledge Management Systems. User Modeling, pages
213–217, 2003. 10

[Sch94] D. A. Schum. Evidential Foundations of Probabilistic Reasoning. New
York, NY, USA: Wiley, 1994. 3

[Sha86] G. Shafer. the Construction of Probability Arguments. Boston University
Law Review, (66(3-4)):799–816, 1986. 3

[Smi95] D. W. Smith, B.; Smith. The Cambridge Companion to Husserl - Cam-
bridge: Cambridge University Press. pages 27–29, 1995. 3

[Sol] MUSING: Multi-Industri Semantic-Based Business Intelligence Solu-
tions. 69

[Sto05] G.; Tzouvaras V.; Pan J.; Horrocks I. Stoilos, G.; Stamou. The Fuzzy
Description Logic f-SHIN. In Proceedings of Workshop on Uncertainty Rea-
soning for the Semantic Web (URSW), 2005. 39

137

[Str04] U. Straccia. Uncertainty and Description Logic Programs: A Proposal
for Expressing Rules and Uncertainty on top of Ontologies. Technical
Report, CNR Pisa ISTI-2004-TR, 2004. 39

[Str05] U. Straccia. A Fuzzy Description Logic for the Semantic Web. In Captur-
ing Intelligenece: Fuzzy Logic and the Semantic Web, E. Sanchez, Ed. Elsevier,
2005. 39

[Wer90] S. L. Wermuth, N.; Lauritzen. On Substantive Research Hypotheses,
Conditional Independence Graphs and Graphical Chain Models. Journal
of The Royal Statistical Society, 52:21–50, 1990. 17

[Wri06] K. B. Wright, E.; Laskey. Credibility Models for Multi-Source Fusion.
In Proceedings of the Ninth International Conference on Information Fusion,
2006. 4

[Yel99] P. M. Yelland. Market Analysis using Combination of Bayesian Net-
works and Description Logics. Sun Microsystem, Technical Report, TR-99-
78, 1999. 38

Unless otherwise expressly stated, all original material of whatever
nature created by Bellandi Andrea and included in this thesis, is li-
censed under a Creative Commons Attribution Noncommercial Share
Alike 2.5 Italy License.

Check creativecommons.org/licenses/by-nc-sa/2.5/it/ for the legal
code of the full license.

Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
mailto:a.bellandi@imtlucca.it

	List of Figures
	List of Tables
	Vita and Publications
	Abstract
	1 Introduction
	1.1 The approach
	1.2 Thesis Outline

	2 Background and Related Works
	2.1 Ontology
	2.1.1 Introduction
	2.1.2 Formal ontology definition
	2.1.3 Ontology web language

	2.2 Bayesian Belief Networks
	2.2.1 Networks
	2.2.2 Probabilities
	2.2.3 Probabilistic Networks and Inference
	2.2.4 Related works

	3 Compiling Ontologies into Bayesian Networks
	3.1 Introduction
	3.2 Two-levels Bayesian Network
	3.3 Ontology: Hypothesis and Requirements
	3.4 Ontology Compiling Process
	3.4.1 Deriving Two-level Bayesian Network Structure
	3.4.2 Deriving Two-level Bayesian Network Probabilistic Part

	4 Inference
	4.1 BQ Language
	4.1.1 Introduction
	4.1.2 BQ Language: The syntax
	4.1.3 BQ Language: The operational semantic

	4.2 Inference over taxonomies
	4.2.1 An Example of Inference over taxonomy

	4.3 Inference over taxonomies with multiple inheritance
	4.3.1 An Example of Inference over taxonomy with multiple inheritance

	4.4 Inference over polytrees
	4.4.1 Example of Inference over Polytrees

	4.5 System Architecture
	4.5.1 GUI Interface Module
	4.5.2 Query Checker Module
	4.5.3 Ontology Compiling Module
	4.5.4 Inference Module
	4.5.5 First Experimental Results

	5 Conclusion and Future Work
	A Bayesian Query Language: The Operational Semantics
	References

