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Abstract

Biology has been an unparalleled source of inspiration for the

work of researchers in several scientific and engineering fields

including computer vision. The starting point of this thesis is

the neurophysiological properties of the human early visual

system, in particular, the cortical mechanism that mediates

learning by exploiting information about stimuli repetition.

Repetition has long been considered a fundamental correlate

of skill acquisition and memory formation in biological as well

as computational learning models. However, recent studies

have shown that biological neural networks have different ways

of exploiting repetition in forming memory maps. The thesis

focuses on a perceptual learning mechanism called repetition

suppression, which exploits the temporal distribution of neu-

ral activations to drive an efficient neural allocation for a set

of stimuli. This explores the neurophysiological hypothesis

that repetition suppression serves as an unsupervised percep-

tual learning mechanism that can drive efficient memory for-

mation by reducing the overall size of stimuli representation

while strengthening the responses of the most selective neu-

rons. This interpretation of repetition is different from its tra-

ditional role in computational learning models mainly to in-

duce convergence and reach training stability, without using

this information to provide focus for the neural representa-

tions of the data.

The first part of the thesis introduces a novel computational

model with repetition suppression, which forms an unsuper-

vised competitive system termed CoRe, for Competitive Repe-

tition-suppression learning. The model is applied to general
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problems in the fields of computational intelligence and ma-

chine learning. Particular emphasis is placed on validating the

model as an effective tool for the unsupervised exploration of

bio-medical data. In particular, it is shown that the repeti-

tion suppression mechanism efficiently addresses the issues

of automatically estimating the number of clusters within the

data, as well as filtering noise and irrelevant input compo-

nents in highly dimensional data, e.g. gene expression levels

from DNA Microarrays. The CoRe model produces relevance

estimates for the each covariate which is useful, for instance,

to discover the best discriminating bio-markers.

The description of the model includes a theoretical analysis

using Huber’s robust statistics to show that the model is ro-

bust to outliers and noise in the data. The convergence prop-

erties of the model also studied. It is shown that, besides its bi-

ological underpinning, the CoRe model has useful properties

in terms of asymptotic behavior. By exploiting a kernel-based

formulation for the CoRe learning error, a theoretically sound

motivation is provided for the model’s ability to avoid local

minima of its loss function. To do this a necessary and suffi-

cient condition for global error minimization in vector quan-

tization is generalized by extending it to distance metrics in

generic Hilbert spaces. This leads to the derivation of a family

of kernel-based algorithms that address the local minima is-

sue of unsupervised vector quantization in a principled way.

The experimental results show that the algorithm can achieve

a consistent performance gain compared with state-of-the-art

learning vector quantizers, while retaining a lower computa-

tional complexity (linear with respect to the dataset size).

Bridging the gap between the low level representation of the

visual content and the underlying high-level semantics is a

major research issue of current interest. The second part of

the thesis focuses on this problem by introducing a hierar-

chical and multi-resolution approach to visual content under-
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standing. On a spatial level, CoRe learning is used to pool

together the local visual patches by organizing them into per-

ceptually meaningful intermediate structures. On the seman-

tical level, it provides an extension of the probabilistic La-

tent Semantic Analysis (pLSA) model that allows discovery

and organization of the visual topics into a hierarchy of as-

pects. The proposed hierarchical pLSA model is shown to ef-

fectively address the unsupervised discovery of relevant vi-

sual classes from pictorial collections, at the same time learn-

ing to segment the image regions containing the discovered

classes. Furthermore, by drawing on a recent pLSA-based

image annotation system, the hierarchical pLSA model is ex-

tended to process and represent multi-modal collections com-

prising textual and visual data. The results of the experimen-

tal evaluation show that the proposed model learns to attach

textual labels (available only at the level of the whole image)

to the discovered image regions, while increasing the preci-

sion/recall performance with respect to flat, pLSA annotation

model.
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Chapter 1

Introduction

1.1 Motivation

The tremendous growth of multimedia repositories has been fostering

the work of researchers in multiple areas of computer science over the

last decade. The heterogeneous nature of such information, encompass-

ing textual, visual and auditive data, motivates the need for developing

alternative access methods with respect to those used to store, index, pro-

cess and retrieve traditional textual information.

Image data, in particular, has undergone a massive growth in size

due to the progress in acquisition of visual information, encompassing

satellite images, pictures of everyday life captured by digital cameras,

frames from closed-circuit cameras and medical images. This consider-

able amount of data can reveal useful high-level semantic information

which, however, needs to be extracted from the low-level pixel-based

representation. For this reasons there is an increasing demand for image

mining tools, whose fundamental challenge encompasses the extraction

of implicit knowledge, image data relationships and other patterns not

explicitly stored in visual data collections.

Image mining draws resources and knowledge from multiple research

fields such as machine vision, image processing, image retrieval, data

mining, machine learning, database and distributed systems. Moreover,
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an image mining system cannot be built by simply integrating various

techniques borrowed from the aforementioned areas, whereas it requires

an extensive rethinking of the models in the view of the unique research

issues characterizing the process of knowledge extraction from pictorial

information.

The last ten years of image mining studies have been characterized by

an extremely active research in the field of Content-Based Image Retrieval

(CBIR) systems (LSDJ06). Despite the name, most of the CBIR approaches

developed so far have been trying to tackle the problem of visual informa-

tion mining more from a low-level, image-feature perspective (e.g. color,

texture, shape, interest points), than from a semantic-oriented perspec-

tive (HNDA04). Recently, there has started to be an increasing attention

towards new machine vision models that overtake such low-level appro-

aches in favor of stratified representations (e.g. latent topic models) that

can convey a richer semantics into the visual content description.

Our research effort began with the objective of developing a biolog-

ically inspired computational model addressing visual content under-

standing from a hierarchical perspective, where information is incremen-

tally refined to extract higher level concepts from the bottom to the top

of the hierarchy. Computer science started its long joint journey with bi-

ology and neuroscience since its early days, back in 1943, when McCul-

loch and Pitts published A Logical Calculus of the Ideas Immanent in Ner-

vous Activity (MP43), laying foundations for artificial neural networks.

Since then, the relationship between the sciences of the artificial and of

the natural has evolved into a two-way association, where one serves as

a means for improving the other. This dissertation drew inspiration from

the study of those powerful cortical memory mechanisms that allow vi-

sual information to be processed in isolation before being incrementally

merged and isolated into semantically meaningful entities. In particular,

our initial research statement focused on the development of a fully cog-

nitive approach to image content understanding, founding on a compu-

tational model of the biological memory mechanisms underpinning per-

ceptual learning (DD95). However, research is a story about wins and

losses and, as the doctoral study evolved, we had to abandon the hy-
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pothesis that perceptual learning alone could be exploited to build an ef-

ficient model for visual content understanding. On the other hand, our

studies on the neural correlates of perceptual learning led us to the de-

velopment of a novel competitive learning model inspired by the repeti-

tion suppression phenomenon (Des96). This cortical memory mechanism,

exploits the temporal distribution of neural activations to drive an effi-

cient neural allocation for a set of stimuli. In this dissertation, we explore

the neurophysiological hypothesis that repetition suppression serves as

an unsupervised perceptual learning mechanism that can drive efficient

memory formation by reducing the overall size of stimuli representation

while strengthening the responses of the most selective neurons. This in-

terpretation of repetition is different from its traditional role in computa-

tional learning models mainly to induce convergence and reach training

stability, without using this information to provide focus for the neural

representations of the data.

The first part of this dissertation is devoted to the formalization of

a novel computational model inspired by repetition suppression, which

forms an unsupervised competitive system termed CoRe, for Competitive

Repetition-suppression learning (BS08). In particular, it is shown that the

repetition suppression mechanism efficiently addresses the issues of au-

tomatically estimating the number of clusters within the data, as well

as filtering noise and irrelevant input components in highly dimensional

data. The description of the model includes a theoretical analysis using

robust statistics (Hub81) to show that the model is robust to outliers and

noise in the data. Moreover, it is also given a convergence analysis (BS07a)

that shows that, besides its biological underpinning, the CoRe model has

useful properties in terms of asymptotic behavior. Furthermore, the study

of CoRe’s convergence analysis yields, as an additional contribution in

Part I, to the formalization of a family of optimized kernel-based algo-

rithms addressing unsupervised vector quantization. The performance

of the proposed models is evaluated on general problems in the fields of

computational intelligence and machine learning. Particular care is de-

voted to evaluating CoRe’s performance as an exploratory tool for bio-

medical datasets comprising both low dimensional samples of meaning-
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ful proteomic expression levels (ABQ+06), as well as high dimensional

data from DNA Microarrays.

In the second part of the work we recover the initial motivation of the

thesis, that is the development of a multilayered model for visual content

understanding. Due to the failure to address the discovery of high level

visual semantics by relying solely on perceptual learning mechanisms,

we turned our attention to a recent approach to visual content character-

ization, that is the latent aspects model (Hof01; BNJ03). Starting from a

text-like bag-of-words representation of the images, these models allow to

estimate the underlying semantic content of a picture as a latent aspect (or

topic) (SRE+05; FFFPZ05). In the second part of the dissertation we pro-

pose to extend probabilistic Latent Semantic Analysis (pLSA) (Hof01) to

allow the discovery and organization of the visual topics into a hierarchy

of aspects. The proposed model, named Hierarchical Region-topic Latent

Semantic Analysis (HRPLSA), integrates with a multi-resolution image

representation obtained by exploiting CoRe learning to pool together the

local visual patches, organizing them into perceptually meaningful inter-

mediate structures. As a result, we obtain a stratified representation both

on the semantic (i.e. the topic) level as well as on the spatial level. The

proposed HRPLSA model is applied to the unsupervised discovery of rel-

evant visual classes from pictorial collections, at the same time learning

to segment the image regions containing the discovered classes. Further-

more, we extend the hierarchical pLSA model, by drawing on a recent

pLSA-based image annotation system (MGP07), to process and represent

multi-modal collections comprising textual and visual data.

In the next section, we review the thesis outline by describing the rel-

evant issues introduced in each chapter. Finally, Section 1.3 lists the pub-

lished works that relate to the contributions presented in the dissertation.

1.2 Outline of the Thesis

The dissertation is organized into two parts corresponding to the two re-

search areas that we are willing to contribute.
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Part I describes a novel computational learning model inspired by a

perceptual learning mechanism of the visual cortex. This part is orga-

nized as follows

Chapter 2 introduces the neuro-physiological foundations of perceptual

learning and provides motivations underlying the development of

the Competitive Repetition suppression (CoRe) model. Moreover,

Chapter 2 presents a comparative analysis with the state-of-the-art

models in unsupervised learning , as well as a performance evalua-

tion on benchmark datasets.

Chapter 3 presents a theoretical analysis of competitive repetition sup-

pression learning. In particular, we show how its error formulation

can be interpreted in terms of robust M-estimators (Hub81) prov-

ing, both analytically and experimentally, that CoRe learning im-

plements a cluster estimation process that is robust to noise and

data outliers. The second part of Chapter 3 studies the convergence

behavior of CoRe learning; within this discussion, we introduce a

kernel-based formulation of the CoRe error function, that we exploit

to provide theoretical motivations for CoRe’s ability in avoiding lo-

cal minima of its error function.

Chapter 4 draws on the convergence analysis developed for CoRe learn-

ing, developing further the ideas underlying the global minimum

condition introduced in Chapter 3. In particular, we describe a com-

petitive neural algorithm that performs unsupervised learning vec-

tor quantization in kernel space. The performance of the proposed

algorithm is confronted with that obtained by optimized learning

vector quantization algorithms, showing how the proposed method

can sensibly reduce the quantization error by exploiting a simple

global minimum term that can be computed in linear time (with

respect to the dataset size).

Chapter 5 starts by analyzing CoRe’s limitations when dealing with high-

dimensional data, that is typically characterized by several irrele-

vant and noisy components. Drawing on this consideration, we
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generalize CoRe’s inhibition mechanism so that it can be used to

suppress irrelevant input features, while providing a means for pro-

ducing incremental estimates of the relevance of the input com-

ponents (i.e. feature ranking). Through a set of bio-medical case

studies, we show how the feature-wise CoRe algorithm can be effec-

tively applied as an exploratory tool for discovering prognostic in-

formation, such as pathology sub-types and bio-markers regulating

pathological processes.

Part II shifts the focus of the dissertation to the discovery of latent struc-

tures within visual content. In particular, we embed the perceptual learn-

ing mechanism introduced in Part I, into a multi-resolution hierarchical

latent topic model. The content of this part is organized as follows

Chapter 6 introduces the state-of-the art in image representation tech-

niques and presents a comparative analysis of the most relevant

contributions to unsupervised image content understanding and

annotation.

Chapter 7 describes a multi-resolution image representation approach ex-

ploiting the CoRe learning model introduced in Part I. This repre-

sentation is embedded into a hierarchical latent aspect model, named

Hierarchical Region-topic Probabilistic Latent Semantic Analysis,

that is applied to the unsupervised characterization and segmen-

tation of the semantic content of image collections. By applying

a multi-modal extension developed for the flat probabilistic Latent

Semantic Analysis (pLSA), we extend the hierarchical approach to

model collections of images and associated captions. The effective-

ness of the proposed model is tested in unsupervised visual content

discovery and automatic image annotation.

Chapter 8 concludes the dissertation by reviewing the contributions to

the state-of-the-art and by discussing future developments of this doc-

toral research.
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1.3 Published Works

Part of the contributions presented in the dissertation have been pub-

lished or have been submitted for publication. In particular, the first mo-

del based on Competitive Repetition-suppression learning appeared in

D. Bacciu and A. Starita, “Competitive Repetition-suppression (CoRe)
Learning“, Proceedings of the 2006 International Conference on Artificial
Neural Networks (ICANN’06), LNCS, Vol. 4131, pp. 130 – 139, Springer,
2006

and has been later extended in

D. Bacciu and A. Starita, “A Robust Bio-Inspired Clustering Algorithm
for the Automatic Determination of Unknown Cluster Number“, Pro-
ceedings of the 2007 International Joint Conference on Neural Networks
(IJCNN’07), pp. 1314-1319, IEEE, 2007.

An overall introduction of the CoRe model, covering mostly Chapter

2 and the first part of Chapter 3, is about to be published in

D. Bacciu and A. Starita, “Competitive Repetition Suppression (CoRe)
Clustering: a Biologically inspired Learning Model with Application
to Robust Clustering“, IEEE Transactions on Neural Networks, To Ap-
pear, 2008.

The convergence analysis presented in the second part of Chapter 3

has appeared in

D. Bacciu and A. Starita, “Convergence Behavior of Competi-
tive Repetition-Suppression Clustering“, Proceedings of 14th Interna-
tional Conference on Neural Information Processing (ICONIP’07), LNCS,
Vol. 4984, pp.497–506, Springer, 2008.

The feature-wise extension of the CoRe algorithm described in Chap-

ter 5 has been first introduced in

D. Bacciu, A. Micheli and A. Starita, “Simultaneous Clustering and
Feature Ranking by Competitive Repetition Suppression Learning
with Application to Gene Data“, Proceedings of the 2007 Interna-
tional Conference on Computational Intelligence in Medicine and Healthcare
(CIMED’07), Plymouth, UK, 2007,

while its application to prognostic classes discovery described in Sec-

tion 5.3.2 has appeared in
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D. Bacciu, E. Biganzoli, P.J.G. Lisboa and A. Starita, “Are Model-
based Clustering and Neural Clustering Consistent? A Case Study
from Bioinformatics“, Proceedings of the 12th International Conference
on Knowledge-Based and Intelligent Information & Engineering Systems
(KES’08), LNCS, Vol. 5178, pp. 130 – 139, Springer, 2008

and will be published in an extended version in

D. Bacciu, E. Biganzoli, P.J.G. Lisboa and A. Starita, “Unsupervised
Breast Cancer Class Discovery: a Comparative Study on Model-based
and Neural Clustering“, Chapter in Computational Intelligence in human
cancer research, KES Rapid Research Results Series, 2008.

The kernel-based learning vector quantization algorithm described in

Chapter 4 is currently under consideration for publication in

D. Bacciu and A. Starita, “Expansive Competitive Learning for Kernel
Vector Quantization“, Submitted to Pattern Recognition Letters, 2008

All published contributions are presented in this thesis in revised and

extended form.
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Part I

A Model of Perceptual
Learning in the Visual

Cortex
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Chapter 2

Competitive
Repetition-Suppression
Learning

Repetita iuvant. (Latin Proverb)

2.1 Introduction

Repetition has long been considered a fundamental correlate of learn-

ing: already in Ancient Rome, Latins had a popular proverb referring

to repetition as the mother of learning (i.e. Repetitio est mater studiorum).

This early concept of repetition as a high road for conscious acquisition

of knowledge has later evolved into a well-established idea of repetition

mediating skill acquisition as well as memory formation at various repre-

sentational levels and in several learning mechanism of the brain. Neuro-

physiological studies have shown that restated exposure to a perceptual

stimulus is essential for the development of its neuronal representation,

while the repeated execution of a motor task induces adaptation in the

brain circuitry regulating motor control, resulting in an increased perfor-

mance in the task. Similarly, repetition performs a strategic function in

computational learning models, where patterns’ presentation is iterated
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throughout the training epochs until a given task-related performance cri-

terion is met (e.g. the minimization of an objective function).

Recent studies have shown that biological neural networks have dif-

ferent ways of coping with repetition and exploiting it to drive knowl-

edge and skill acquisition: here, we are particularly interested in a mem-

ory mechanism of the visual cortex called repetition suppression (Des96).

This mechanism exploits the temporal distribution of neuron activations

as a source of training information to drive an efficient neural allocation

on a set of stimuli. In this work, we explore Desimone’s neurophysiolog-

ical hypothesis (Des96) that the repetition suppression mechanism serves

as an unsupervised mean for reducing the size of stimuli representation,

that is the number of neurons coding a given stimulus, while strengthen-

ing the responses of the most selective neurons, i.e. those showing sharp

responses to particular classes of input stimuli.

This interpretation of repetition is different from its traditional un-

derstanding that is adopted, for instance, by the machine learning com-

munity. In computational learning models, in fact, repetition is typically

exploited as part of the pattern sampling process to induce convergence

and reach training stability, but it does not convey, by itself, any informa-

tion into learning. Conversely, in the repetition suppression model, the

knowledge regarding pattern repetition is actively used in determining

the neural representation of the inputs. Our research effort focuses on this

active approach to repetition, with the intent of developing a novel com-

putational learning model inspired by the repetition suppression mecha-

nism.

We introduce the Competitive Repetition-suppression (CoRe) neural net-

work, an unsupervised learning model that, by mimicking the behavior

of the repetition suppression mechanism, evolves a neural population in

the direction of maximum selectivity by means of a procedure that pe-

nalizes or enhances the responses of the neurons on the basis of the stim-

uli frequency. In order to do that, CoRe resorts to competitive learning

(RZ85) and, in particular, to the soft-competitive approach (YZG92; SO03)

in which each unit, or the units from a selected subset, is allowed to adapt

its weights in proportion to its activation strength. CoRe learning can
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be used to efficiently determine an optimal allocation of feature detector

units and to train their parameters locally, without external teaching sig-

nals and a-priori knowledge concerning the inputs distribution and the

problem at hand.

The identification of the optimal number of feature detectors, along

with their parameters, is a central problem in several machine learning

tasks: in neural network models, for instance, the determination of the

number of units that are needed to solve a task is often led to heuris-

tics and to expert knowledge concerning the problem at hand. In this

chapter, our attention will be primarily devoted to robust data cluster-

ing and, more specifically, to the traditional challenge of automatically

estimating the appropriate number of data partitions. In the following

we presents an in-depth description of the CoRe model, introducing a

soft-competitive formulation that is evaluated in the context of unsuper-

vised clustering: in particular, we interpret CoRe neurons as cluster de-

tectors so that the repetition suppression mechanism can be used to se-

lectively suppress irrelevant neurons, consequently determining the un-

known cluster number k. In the comparative analysis with the cluster-

ing models in the literature, we focus on the relationship between CoRe

clustering and a popular divide-and-conquer multi-agent learning algo-

rithm, that is the Rival Penalized Competitive Learning (RPCL) model

(XKO93; Xu07; Xu03). In particular, we point out how CoRe extends the

winner-rival competition of RPCL to include set of units characterized by

generic activation functions; moreover, we show how CoRe’s repetition

suppression mechanism positively addresses a key open issue of RPCL,

that is how to adaptively modulate the strength of the rival penalization

(Che05).

Before discussing the details of the CoRe model, we introduce, in Sec-

tion 2.2, the biological processes from which we drew inspiration for the

development of CoRe, while in Section 2.3 we describe related competi-

tive learning models as well as an overview of the literature with respect

to the cluster number identification task.
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2.2 Biological Foundations

This section introduces the biological foundations of the CoRe model: be-

fore discussing the details of the memory mechanism modeled by CoRe

learning, we give an high level introduction to the biological visual sys-

tem and we discuss the main cortical mechanisms of implicit visual mem-

ory.

2.2.1 The Visual System

Hubel and Wiesel, in the pioneering work (HW62) which earned them the

Nobel prize, discovered the strongly hierarchical nature of the vision sys-

tem. Following their lesson, this section briefly introduces the structure

of the vision system from a bottom up perspective, climbing the visual

pathways in the direction of the visual information flow, from the retina

to the high level cognitive centers.

The retina is a composite structure consisting of 3 functionally distinct

layers of cells: photoreceptors, collectors cells and retinal ganglion cells. Pho-

toreceptors come in two different types, namely cones and rods, where

the former are specialized in color detection with high spatial resolu-

tion, while the the latter are not discriminant to wavelength (no color

perception) and have low spatial resolution, but have high light sensi-

tivity, therefore are of much use for night vision. At the level of retinal

ganglion cells, the image undergoes an extensive processing, which re-

duces the amount of information transferred to higher visual areas. One

of the major results of this process is that absolute levels of illuminations

are replaced by a retinotopic map of light differences. This is done by

the particular structure of the ganglion receptive fields, namely center-

surround. An on-center off-surround cell receives excitatory inputs from

a small patch of its visual field and inhibitory inputs from the surround-

ing regions via the lateral connections.

The information leaving the retina is split into different pathways, the

major of which is directed to the Lateral Geniculate Nucleus (LGN). LGN

is six-layered structure of the thalamus, made up of two magnocellular

layers and four parvocellular layers of center-surround cells. The organi-
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Figure 1: The primary visual cortex (V1) is the source of two cortical visual
streams. The ventral stream is directed to the inferior temporal (IT) area and
underlies object recognition. The dorsal stream is directed to the posterior
parietal area and underlies spatial perception.

zation of the LGN cells is retinotopic, which means that a single point in

the visual field is represented by cells above and below each other in the

layered structure.

The majority of the innervations from the LGN projects into the pri-

mary visual cortex (PVC), also known as V1 (see Fig. 1). Within primary

visual cortex the image continues to have a retinotopic organization, with

more neurons allocated to the representation of the center of the visual

field (cortical magnification). Center-surround cells are still present in the

primary visual cortex but at least two other classes of neurons can be

found, that are simple cells and complex cells (HW62). Simple cells respond

to the presence of edges at particular locations and orientations in the vi-

sual field. Complex cells represent a more abstract type of information

which is often independent of the location in the visual field.

Until this point we have analyzed the various stages which constitute

the early vision. At this point the image is still represented in terms of lo-

cal features such as orientation, wavelength and motion, but it is still lack-
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ing a global structure and there is no indication of what are the neural rep-

resentations of the objects contained in the image. The first steps towards

such high level representation require (i) determining which pieces of the

image go-together, i.e. belong to the same object, (ii) inferring the true ob-

ject color and (ii) determining a motion pattern that is coherent with the

object representation and the viewer motion. Most of these tasks are taken

over by the extrastriate cortex (visual association cortex) surrounding the

primary visual cortex. Color perception as we experience it consciously

does not appear until area V4 (see Fig. 1). Following the responses of

cones through the visual pathways, color information reaches area V2

and, at this point, it cannot be related with ”real” color perception, which

is a context dependent task, but only with wavelength perception, which

can be influenced by the spectral composition of the incident light. This

means that colors as we see them are the result of a process which disen-

tangles the ambient light from the spectral reflectance of the object: area

V4 is the site where this takes place.

The perception of motion seems to be mediated by two types of neu-

rons. Component selective neurons, which can be found in V1 and in the

middle temporal area (MT), respond to edges with a particular orienta-

tion and that are moving along in a particular direction. Pattern selective

neurons, on the other hand, can be found only in MT and seem to pool

the outputs of component selective neurons in order to detect particular

patterns of movement.

Until this point it has been described how higher level features such

as color and motion are detected, but nothing has been said about how

this information is put together to generate the perception of an object.

Proceeding along the ventral stream (see Fig. 1), which departs from V1

passing thorough V2 and V4, we finally reach the inferior temporal cortex

(IT), which is considered the site of object recognition processes. As one

proceeds along the ventral stream from earlier to latter areas, neuronal

properties change: the size of the receptive fields increases, indicating

more information integration, and the complexity of visual processing

grows. While V1 cells respond to local edge orientation, neurons in IT

respond selectively to object features. In Von der Malburg’s hypothesis
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(dM85), this distributed object representation is bound together by the

synchronization of the neural activation of the feature detectors. More-

over, top-down interactions with higher cognitive areas such as the pre-

frontal cortex, i.e the site of working memory, play a key role in the pro-

cess of object recognition (DD95). Parallel to the ventral stream, the dorsal

stream (see Fig. 1) departs from the primary visual cortex and reaches the

posterior parietal cortex. Its role seems to be more connected with spatial

perception and visuomotor control. As in IT cortex, receptive fields of

parietal neurons are very large, denoting high complexity of visual pro-

cessing. Moreover, also parietal cortex appears to interact tightly with the

prefrontal cortex.

2.2.2 Cortical Mechanisms of Visual Memory

The ability of humans and animals to learn from experience is recog-

nized to be supported by multiple memory systems with different func-

tional characteristics and diverse neural bases (Squ92). A fundamental

distinction between memory systems differentiates between declarative

and non-declarative (implicit) models: the former supports the explicit

recollection of objects, places or events and grounds primarily on the

structures of the medial temporal lobe (Des96). Implicit memory, on the

other hand, does not require conscious awareness and relates primarily to

skill acquisition (i.e. motor, perceptual and cognitive skills), habit forma-

tion, priming, emotional learning and, in general, all the knowledge that

is more related to performance than to explicit recollection (Squ92). In this

section, we briefly review the non-declarative memory models that relate

to the acquisition of visual skills and perceptual knowledge, focusing pri-

marily on the cortical machinery that represents the neural correlate of

this from of implicit memory.

In biological vision systems, the neural mechanisms for learning and

memory are continually modulating and altering the representation of

perceptual stimuli in the cortex. Perceptual learning is a key behavioral

phenomenon of implicit visual memory that is concerned with the im-

provement in one’s ability on a variety of simple sensory tasks following
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practice (TG04a). Perceptual learning is a process that continuously, and

unconsciously, adapts the neural representation of the visual stimuli, al-

lowing the visual cortex to assimilate knowledge about specific familiar

patterns (TG04a). It operates on neural representation at various level of

the visual information processing pathway, undertaking a wide spectrum

of perceptual tasks, ranging from the identification of primitive visual at-

tributes, such as position, orientation, texture and shapes, to the detection

of complex geometric shapes and alphanumeric characters.

Priming is a behavioral phenomenon that is closely related to percep-

tual learning. This non-conscious form of memory improves the identi-

fication of an object or word by experience with that object or word. In

particular, people are faster and more accurate at naming or reading re-

peated stimuli with respect to new stimuli. Perceptual priming is not af-

fected by small variations in orientation, texture, color and size (WM98).

For instance, a fragmented image of an object, which appears meaning-

less at first sight, can be easily identified after the presentation of an un-

fragmented picture of the same object. Priming seems to have long last-

ing results both on normal and amnesic subjects (WM98) and its effects,

similarly to perceptual learning, appear to be modulated by the num-

ber of stimulus repetitions. Further, evidence suggests that the degree

of attention devoted to a task does not affect the magnitude of priming

(Des96; WM98).

The two behavioral phenomena described above have been recently

correlated with three commonly observed neuronal effects in memory

demanding tasks, that are repetition suppression, enhancement and delay

activity (Des96). In Repetition Suppression (RS), the repeated presenta-

tion of a visual stimulus induces both a short-term and a long-term sup-

pression of the neuronal responses in subpopulations of visual neurons.

Repetition suppression is not dependent on the behavioral significance of

the stimuli and is completely unconscious. Brain imaging studies have

shown that, under conditions which lead to priming, the repetition of

visually presented objects induces reduced activation in the cortical ar-

eas. In (Des96) it is hypothesized that a smaller population of activated

neurons connected with a better task performance suggests that a smaller
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representation of the stimulus, associated with a sharpening of the neu-

ronal selectivity, is a better representation.

Enhancement works in an opposite fashion, in that neuronal responses

are enhanced for objects with learned behavioral relevance. For instance,

in a delayed-matching-to-sample (DMS) experiment, a subject is asked

which visual stimulus (or stimuli combination) matches the target among

those that are presented. Monitoring the IT cortex in a DMS task shows

that the cortical neurons can distinguish between matching and non-match-

ing samples (Des96). Clearly these results cannot be explained in terms of

the repetition suppression mechanism, since RS does not distinguish be-

tween behaviorally relevant and irrelevant stimuli. In particular, the DMS

experiment shows that neurons that normally respond to a given stimu-

lus A have a stronger response when A is the target stimulus, whereas all

the other cells experience suppression. Moreover, the neuronal responses

are enhanced only when the stimulus matches the sample, while they are

not influenced by the non-matching (i.e. behaviorally insignificant) repe-

titions of the stimulus.

Delay activity (DA) is another cortical mechanism which has a funda-

mental role in the DMS task, since it maintains the memory of the behav-

iorally relevant samples. The delay activity at the level of the IT cortex has

only limited temporal scope, since it reduces to the association of coupled

stimuli. For instance, a group of cells responsive to B in a task in which

is requested to associate A and B will show elevated activity in the de-

lay between A and B. These results suggest that DA in IT cortex may be

associated with the representation of what is behaviorally important at

a given moment of time. In other words, it may account for contextual

information within a limited temporal horizon.

Enhancement and delay activity seems to depend strongly on feed-

back from the prefrontal cortex to the temporal cortex and are thought to

be important for active visual working memory. Conversely, repetition

suppression appears to be an intrinsic property of visual cortical areas

such as inferior temporal cortex and is thought to be a key neural corre-

late for perceptual learning and priming (Des96). Together, these corti-

cal mechanisms bias the competitive interactions that take place between
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stimuli representation in the cortex, possibly influencing visual attention.

In the next section we delve more into the details of repetition suppres-

sion, analyzing three hypotheses that have been presented in the litera-

ture to account for the RS phenomenon and providing motivations for

the development of a learning model inspired by this cortical memory

mechanism.

2.2.3 The Repetition Suppression Mechanism

The finding that perceptual learning and priming constitute separate mem-

ory mechanisms, that operate through different rules with respect to epi-

sodic memory, has motivated a whole body of research aimed at revealing

the underlying mechanisms regulating its activity. A particularly inter-

esting finding concerning perceptual learning is that while people show

improved perception and recognition abilities for repeated stimuli, the

overall neural activity is reduced as a result of the repeated pattern pre-

sentation. This phenomenon is known as repetition suppression (RS) and

appears to be fundamental for mediating perceptual learning and prim-

ing (Des96; WM98). Repetition suppression induces long-lasting changes

to the visual cortex, decreasing the neural activity as a consequence of the

repeated presentation of similar stimuli. Neurophysiological evidence

has shown that its effects can be observed also when the repeated stimu-

lus is presented at different retinal locations and in case of variations to

the visual stimulus geometry. Like priming and perceptual learning, rep-

etition suppression does not depend on the behavioral significance of the

stimuli, i.e. it is not specifically linked to the active maintenance of a sam-

ple in memory, nor does it require any form of response/reward signal.

Furthermore, RS is a process that operates unconsciously, since its effects

can be recorded also in anesthetized subjects (Des96).

In the literature are reported three models that have been proposed to

account for the repetition suppression phenomenon (see Fig. 2)

1. Fatigue. In this model all the neurons initially responsive to a stimu-

lus experience a proportionally equivalent suppression. This change

affects the mean population firing strength but preserves the pattern
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of relative responses across the neurons (MD94).

2. Sharpening. According to this model only some neurons experience

repetition suppression. In particular, neurons coding irrelevant fea-

tures with respect to the particular stimulus at hand experience sup-

pression. This process is fundamentally a learning mechanism that

enhances the sharpness and distributivity of the stimuli representa-

tion (Des96; WM98).

3. Facilitation. This model accounts for the faster processing time of re-

peated stimuli, by causing shorter latencies and durations of neural

firing (SR96; JG05).

We explore the sharpening model hypothesis, since in our opinion

it has the most suitable characteristics to be used as a learning process.

Moreover, from the neurophysiological point of view, the sharpening mo-

del is the one that best explains the behavior of repetition priming at the

level of IT cortex and V4 (GSHM06). In this model, the repetition sup-

pression phenomenon induces a sharpening of the neural representation

of items by means of an overall reduction of the number of active neurons

which is counterbalanced by the steepening of the response of the most

item-selective neurons. This process seems to be aimed at the selection of

neurons that act as detectors of the most informative features. Moreover

it appears that such a process may facilitate novelty detection, since more

familiar stimuli experience more suppression than unfrequent items.

We suggest that this form of repetition suppression provides interest-

ing hints for the development of innovative learning schemes and mecha-

nisms. The literature in this field offers few works that exploits the neuro-

physiological issues described so far. The activation sharpening model by

French (Fre92), for instance, extends the standard backpropagation with

an extra step in which the response of the most active hidden nodes is

increased slightly for each pattern, while the other nodes activations are

decreased. French’s learning rule, however, does not achieve sharpening

by exploiting repetition. Norman and O’Reilly (NO03), on the other hand,

devise a competitive network to simulate the repetition-driven sharp-

ening of neural representations within an hippocampal model. Initially
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Figure 2: Graphical exemplification of the three repetition suppression hy-
potheses: the fatigue model (top-right, lower firing strengths), the sharp-
ening model (bottom-left, fewer neurons responding) and the facilitation
model (bottom-right, shorter duration of neural processing). The particu-
lar connection topology of the exemplar neural network is not relevant for
the description of the RS mechanism. The networks depict the activation of
the neurons subject the repeated presentation of an input x, under the three
RS hypothesis. The neural activity (i.e. the output) is represented by the
grey levels in the circles: darker gray levels identify more active neurons.
The graphs, on the other hand, depict neural spikes with respect to time.
Adapted from (GSHM06).
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many neurons respond weakly to a distributed input pattern representing

the stimulus. Through learning, a fixed percentage of neurons is selected

to be reinforced while the remainder is inhibited by using lateral connec-

tions. This model focuses more on familiarity detection than on feature

selection and applies only to a very specific network model.

The learning scheme we propose in the following is inspired by the

repetition suppression phenomenon and focuses in particular on neuron

and feature selection. Our idea is to devise a broad scope model that can

be applied to a wide range of neural network models and learning sys-

tems on real world tasks. For this reason we do not model explicitly the

novelty detection aspects of repetition suppression, whereas we devise a

flexible learning scheme that can be applied to several neural models and

that can, eventually, be instantiated to reproduce the novelty detection

behavior.

2.3 Background

Before delving into the details of the proposed model, we review key re-

lated work and those contributions in the literature from which our model

draws inspiration. In particular, we describe hard and soft competitive

learning models as well as related clustering algorithms dealing with the

cluster number identification problem.

2.3.1 Competitive Learning

The general term Competitive learning identifies a broad class of online

neural network models that generate data partitions by means of an un-

supervised learning strategy based on some kind of competition between

the activation levels of the units composing the network. The typical com-

petitive learning scenario compromises of a set on units U = {u1, . . . , ui,

. . . , uN} characterized by an activation function that determines the re-

sponse of the neurons to the patterns in the data setχ = {x1, . . . ,xk,. . . ,xK}.

Each unit has an associated weight vector ci, known also as prototype, that

is iteratively modified by the learning process. Associated with a weight
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Figure 3: Competitive learning example: the weight vector cw of the BMU
(�) is moved towards the current pattern xk.

vector ci there is a Vororonoi region Ci that is the set of vectors in the ref-

erence feature space F (usually F = Rd, but F can be, e.g., every kernel

induced space (SMB+99)) for which ci is the nearest neighbor; in other

words,

Ci =

{

x ∈ F|i = arg min
j

‖cj − x‖2

}

. (2.1)

The earliest competitive approaches adopted a Winner Takes All (WTA)

learning strategy, where a single neuron, called the Best Matching Unit

(BMU), is allowed to update its weight vector for each pattern presenta-

tion. The basic WTA competitive learning model determines the BMU by

seeking the neuron ui whose weight vector ci is the closest to the input

xk with respect to the Euclidean norm (see Fig. 3). More formally, the

algorithm can be summarized by the following steps

0 - Sample At each learning step randomly pickup a sample xk from the

dataset.

1 - Activation For each unit ui calculate the activation as

hi =

{
1 if i = w s.t. w = arg minj ‖xk − cj‖
0 otherwise

(2.2)
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2 - Update For each unit ui, update the prototype as

cti =

{
ct−1
i + α(t)hi(xk − ct−1

i ) if i = w
ct−1
i otherwise

. (2.3)

where α(t) is the time-dependent learning rate regulating the magnitude

of the weight update and is assumed to decay to zero as t increases as to

ensure convergence of the algorithm (YZG92). The procedure described

above essentially yields to an online analog of the popular k-means, also

known as the Linde-Buzo-Gray (LBG) algorithm (LBG80). In fact, it can

be easily show (AKCM90) that it implements a steepest descent optimiza-

tion of the LBG quantization error

J =
1

K

N∑

i=1

∑

xk∈Ci

‖xk − vi‖
2 (2.4)

where Ci identifies the set of patterns xk for which ui is the BMU, i.e. the

Voronoi cell induced by the weight vector ci.

The earlier WTA models are prone to produce under-utilized neurons,

that is the so called dead-unit problem (RZ86). Figure 4 portrays a typical

scenario showing neuron under-utilization: the weight vector c1 is a win-

ner for both the top-most clusters and starts oscillating between the two,

while c2 never wins for any sample and is thus a dead-unit. As a con-

sequence, the two clusters are not correctly identified and the algorithm

produces a sub-optimal solution. To address this problem, (DeS88) pro-

posed the use of a conscience mechanism for making frequently winning

neurons less likely to win in the future. Frequency Sensitive Competitive

Learning (FSCL) (AKCM90), for instance, solves the dead-unit problem

by modifying (2.2) to compute the best matching unit uw as

w = argmin
j

nj
∑

i ni

‖xk − cj‖ (2.5)

where nj is the number of patterns for which unit uj was the BMU. While

FSCL can deal effectively with the dead-unit problem, it cannot address

the issue of estimating the appropriate number of clusters from the data.

In particular, if FSCL is initialized with a network size that is larger than
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Figure 4: The neuron under-utilization problem: weight c2 (�) is frozen in
its position (dead-unit) since c1 is always the BMU for the samples in the 2
top-most clusters.

the actual number of clusters, then it will distribute the unit in excess on

the data introducing a distortion in the estimation of the clusters’ cen-

troids. Several competitive learning algorithms have been proposed to

address this issue. One of the earliest and most effective approaches is

Rival Penalized Competitive Learning (RPCL) (XKO93). The key idea

of RPCL is that, for each pattern, not only the winner is updated so to

approach the input pattern, but also the second winner (i.e the rival) is

deflected from it, with a step size that is proportional to the Euclidean

distance between the rival’s prototype and the input pattern (see Fig. 5).

More formally, the RPCL algorithm consists of the following steps

0 - Sample At each learning step randomly pickup a sample xk from the

dataset.

1 - Activation For each unit ui calculate the activation as

hi =







1 if i = w s.t. w = arg minj γj‖xk − cj‖
−1 if i = r s.t. r = arg minj 6=w γj‖xk − cj‖
0 otherwise

(2.6)

where ci is the prototype of the i-th cluster, uw and ur are the win-

ner and the rival, respectively. The term γj = nj/
∑

i ni is the con-
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Figure 5: Rival Penalized competitive learning example: the BMU (�) is
moved towards the current pattern xk, while the weight of the second win-
ner (i.e. cr) is deflected from xk.

science parameter used to reduce the likelihood that a frequent win-

ner is the best matching unit.

2 - Update For each unit ui, update the prototype as

cti =







ct−1
i + αw(t)hi(xk − ct−1

i ) if i = w
ct−1
i + αr(t)hi(xk − ct−1

i ) if i = r
ct−1
i otherwise

(2.7)

where αw(t) and αr(t) are the learning and de-learning rate, with

αw ≫ αr.

RPCL uses the rival de-learning strategy to make sure that each cluster

is assigned to exactly one prototype, while exceeding units are driven

away from the data. Due to its reduced computational complexity and

the ability to incrementally determine the cluster number from the data,

RPCL has been applied extensively to various cluster number identifi-

cation problems encompassing gene expression data analysis (NZF+03),

object detection (Xu07), software component classification (NS04) and en-

vironmental data clustering (ACFV03).

Self Organizing Maps (SOM) (Koh82) introduced the idea of soft com-

petitive learning by modifying the competition strategy to allow multiple
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Figure 6: Self Organizing Map. Neurons are arranged in a grid of fixed size
and their position on the grid, i.e. si is used to determine the co-activated
neurons (shown in gray) with respect to the best matching unit in sw (shown
in black).

winners for a given input. A SOM is neural network whose units are orga-

nized on a grid with fixed topology (see Fig. 6): in addition to the weight

vector ci the neurons are characterized by a fixed position on the grid si.

Given an input pattern, the SOM identifies the BMU as in standard com-

petitive learning, e.g. the unit whose vector is the closest to the pattern in

Euclidean sense. The BMU activation is then propagated along the grid

based on a neighborhood function and both the BMU and its neighbors

are updated. In particular, the BMU receives full credit for adaptation,

while its neighbors are allowed to learn proportionally to their spatial

contiguity with the best matching unit. This process constrains unit learn-

ing in such a way that, at convergence, grid-neighbors respond to similar

input patterns, thus realizing a topologically ordered map of the input

distribution.

Summarizing, the SOM algorithm is the following:

0 - Sample At each learning step randomly pickup a sample xk from the

dataset.

1 - Activation Determine the BMU uw using w = arg minj ‖xk − cj‖ or

the version with conscience in (2.5). For each unit ui, compute the
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activation using the neighbor function

h(dw,i) = exp

(
dw,i

σ(t)

)

(2.8)

where dw,i measures the grid-distance between the BMU uw and the

unit ui; σ(t) is decreasing function of t ensuring that the size of the

neighborhood reduces with time.

2 - Update For each unit ui, update the prototype as

cti = ct−1
i + α(t)h(dw,i)(xk − ct−1

i ). (2.9)

Based on the SOM, several other topology preserving, soft compet-

itive, models have been proposed. Of particular interest are the Neu-

ral Gas (NG) (MS91) and Growing Neural Gas (GNG) (Fri94; Fri95) net-

works: both models release the constraint that units are organized in a

grid. Rather, they determine the BMU neighborhood and the adaptation

strength based on distance ranks: each time a pattern xk is presented to

the network, all the units ui are ranked in order of increasing distance be-

tween their weight vector ci and xk . Given ri as the rank of the i-th unit,

the update rule is given by

cti = ct−1
i + α(t)h(ri)(xk − ct−1

i ). (2.10)

where h(ri) plays the role of SOM’s neighborhood, being a decreasing

function of ri, e.g. h(ri) = exp(−ri/λ(t)) with λ(t) decreasing with time.

The key difference between NG and GNG is that while the former net-

work has a fixed size that has to be specified a priori, the latter is capable

of estimating the network size during learning. In particular GNG starts

with two neurons and iteratively adds (i.e. grows) units based on local

error measures gathered during the adaptation process (see (Fri95) for

further details).

All the models described so-far implements soft competition by means

of neighborhood function that determines how much learning is propa-

gated from the BMU to its neighbors. The first full soft competition scheme
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(SCS) has been formalized in (YZG92). Instead of updating only neigh-

boring neurons, SCM defines an activation function that distributes the

learning credit to all the units in the network proportionally to their local

activation levels. In other words, the update rule for ci is given by

cti = ct−1
i + α(t)h(xk, c

t−1
i )(xk − ct−1

i ). (2.11)

where the credit assignment function h(xk, c
t−1
i ) is defined as

h(xk, c
t−1
i ) =

exp−β(t)‖xk − ct−1
i ‖2

∑

j exp−β(t)‖xk − ct−1
j ‖2

. (2.12)

and

lim
t→∞

β(t) = ∞. (2.13)

Hence, upon each pattern presentation, all the weight vectors are simul-

taneously updated such that ci is shifted a fraction h(xk, c
t−1
i ) towards

xk. This is a soft competition scheme in the sense that there is no ulti-

mate winner; rather, each prototype is updated towards the data with a

step size that is proportional to its probability of winning. The anneal-

ing scheme of β(t) ensures that at the beginning of learning no neuron is

attracted by a particular partition: as training develops the scheme con-

verges towards a WTA scheme where each unit tends to win for a single

partition.

The SCS model has inspired the development of several soft compet-

itive algorithms. For instance, Xu (Xu07; Xu03) has recently presented a

divide-and-conquer framework for multi-agents that extends the RPCL

model to soft competitive learning strategies. In particular, the general-

ized RPCL model provides a sharing mechanism that distributes learn-

ing and penalization to groups of agents proportionally to their activa-

tion strengths. In other words, RPCL is extended to a soft-competitive

mechanism comprising multiple winners and rivals so to minimize the

following global error criteria

ǫ(θ) =

K∑

k=1

N∑

i=1

pk,iǫk(θi) (2.14)
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where ǫk(θi) is the individual criteria that evaluates the performance of

the i-th agent (having parameters θi = {ci, . . . }) on the observed sample

xk. The term pk,i = qk,i − απk,i provides the sharing mechanism by bal-

ancing the amount of positive learning qki
and penalization πk,i. In the

general model, both qki
and πk,i are weighted sums of the exponentiation

of ǫk (for more details refer to section 3.1.2 in (Xu07)). The agent error can

be specified either as the standard Euclidean distance ǫk(θi) = ‖xk − ci‖

or, in a probabilistic form, as ǫk(θi) = −ln(p(xk|θi)), where p(·) is, for

instance, given by a Gaussian centered in ci.

A competitive neural network based on a radically different learning

strategy is the Adaptive Resonance Theory (ART) model (CG88). This fam-

ily of algorithms has been developed specifically to address the stability-

plasticity dilemma, that is how to design a learning system so that it re-

mains plastic, i.e. capable of learning, in response to exogenous stimuli,

while maintaining a stable neural representation of the significant events

experienced in the past, i.e. avoiding to forget previous knowledge. As

in other competitive learning models, an ART network consists of a set

of weight vectors that store the neural representation of the input stimuli.

The ART family comprises various models, often with substantially dif-

ferent network architectures, sharing the common belief that adaptation

is only possible within a state of resonance. In particular, if an input vector

matches closely an existing ART prototype, it achieves resonance and the

prototype is updated to match the particular input to an higher degree.

The activation of the resonant state is regulated by a vigilance parameter

that determines how closely the input vector has to match an existing

prototype. In a sense, the vigilance parameter determines the sizes of

the detected perceptual classes: a low vigilance value produces few large

classes, while a larger number of finer classes is obtained as the network

vigilance increases. If the ART network does not enter the resonant state

because no prototype can pass the vigilance test, then it triggers a neuron

recruiting strategy. This procedure dynamically activates silent neurons

from a pool of uncommitted units and uses them to represent the novel

input (i.e. a stimulus that hasn’t a close-enough representation in the net-

work). In essence, an ART network is initialized with all uncommitted
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neurons and dynamically activates them whenever a novel, surprising

stimulus is encountered. This neuron enabling process continues until

there are no more committable neurons: in this case, a novel input pro-

duces no response. ART leaning strategy addresses the stability-plasticity

dilemma, since it allows a certain degree of neural adaptivity while con-

trolling the degree of forgetting of the network through the vigilance pa-

rameter.

2.3.2 Cluster Number Identification

Clustering is a popular task that in the last 30 years has received much at-

tention from the scientific community. Due to the large number of works

in the literature it is particularly arduous, as well as beyond the scope of

this thesis, to give a comprehensive overview of the works in the area. In

this chapter, we focus primarily on a central issue that rises in clustering,

that is how to estimate the appropriate number of data partitions. There-

fore, in the remainder of this section, we will center our review on those

clustering models that have been devised to explicitly address the clus-

ter number identification problem. For a broad discussion on clustering

models we refer the reader to survey papers such as (XW05) and (JMF99).

Taking an high level look at the approaches in the literature, we can

roughly classify the algorithms in two classes depending on whether they

perform cluster number identification as a second stage with respect to

parameter learning or jointly with the model fitting process. Approaches

from the former class, often generate a number of candidate models for

different values of the cluster number; then, they select the best candidate

model based on some kind of validity measure. This approach is particu-

larly common in probabilistic mixture models: here data is assumed to be

generated by a number of random sources and the mixture components

are fitted to the data so to locate such sources. Finding the number of data

sources, in this context, is equivalent to fitting the mixtures by optimiz-

ing an information criterion. Usually, the Expectation Maximization (EM)

(DLR77) algorithm is used to estimate the model parameters for a fixed

number of components: then the fitted model which optimizes the infor-
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mation criterion is selected as the final candidate. Among the most pop-

ular model-selection indices is the Bayesian Information Criterion (BIC)

(Sch78), that is

BIC = −2 ln(L) +Np ln(K) (2.15)

where K is the sample size, L is the maximum likelihood estimated for

the model andNp is the number of parameters in the mixture. In this case,

lower BIC values imply either fewer model parameters, better likelihood,

or both: hence, the winning model is that minimizing the BIC. Fraley

and Raftery (FR98) describe an application of BIC model selection to a

Gaussian mixture. The Akaike Information Criterion (AIC) (Aka74)

AIC = Np − 2 ln(L), (2.16)

has been proposed earlier than BIC to describe the tradeoff between bias

and variance: its formulation is quite similar to that in (2.15), but AIC

penalizes free parameters less strongly than BIC does. Reference (WC92)

describes an algorithm for estimating the number of mixtures using the

AIC index. Other model selection criteria exist, such as the Minimum De-

scription Length (MDL) (Ris96) and Minimum Message Length (MML)

(OBW96): for a comparison and a comprehensive overview refer to (MP00).

An interesting approach founding on the information bottleneck model is

presented in (SB04): this approach exploits information curves, defined in

terms of mutual information, to determine the maximum number of re-

solvable clusters in the data; the distortion introduced by the sampling

noise is taken into account directly in the formulation of the objective

function, thus bounding the number of clusters that can be resolved from

the data without overfitting.

Apart from these information-theoretic approaches, cluster number

determination can be performed by means of model selection criteria tai-

lored to the particular unsupervised learning model at hand. In kernel-

based algorithms, for instance, the cluster number is often estimated based

on some form of factorization of the kernel matrix. Each element klm of

the kernel matrix (known also as Gram matrix (SSM98)) identifies the dot-

product distance in the kernel-defined feature space between the samples

xl and xm. The general intuition is that the kernel matrix will show a
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block diagonal structure whenever there are groupings within the data

set. Girolami (Gir02) proposed a kernel clustering algorithm where clus-

ter number is estimated based on the eigenvalue decomposition of the

kernel matrix K , that is K = UΛUT , where the columns of the matrix U

are the individual eigenvectors ul of K and the diagonal matrix Λ con-

tains the associated eigenvalues λl. Within this decomposition there will

be a certain number of dominant eigenvectors that can be used as an esti-

mate of the number of distinct clusters in the data set.

The class of clustering algorithms that performs joint parameter esti-

mation and cluster number identification is wider than that of the two-

stage models and further differentiates between several diverse appro-

aches. Some of them take on a divisive strategy that begins the training

phase with a single weight vector and incrementally adds new cluster de-

tectors as learning proceeds. This is the case, for instance, of Self-Splitting

Competitive Learning (SSCL) (ZL02), that generates an estimate of the num-

ber of clusters based on a one-prototype-take-one-cluster (OPTOC) para-

digm and a self-splitting validity measure. The OPTOC paradigm is an

hard competitive learning strategy that uses biasing to ensure that each

unit focuses on a single cluster while ignoring the rest of the data. To

achieve this, OPTOC defines an Asymptotic Property Vector (APV) that

guides the learning of the unit prototype. In practice, the APV Ai and

the weight vector ci together determine a circular learning neighborhood

in input space, that ascertains a set of ”preferred” stimuli for the i-th neu-

ron. Initially, this neighborhood is large, implying that the weight vector

and the APV are far. As learning progresses, this size reduces to zero,

guaranteing convergence of the prototype to the center of the cluster. To

achieve this, the OPTOC update rule ensures that patterns outside of the

dynamic neighborhood contributes less to learning as compared to the in-

side patterns. The neighborhood size is dynamically adjusted by moving

both the APV and weight vector of the BMU towards the current input

vector xk.

The OPTOC process ensures that the single units do not start oscil-

lating between different clusters; however, alone OPTOC cannot be used

to estimate the appropriate number of clusters. To achieve this, SSCL

33



iteratively chooses one of the existing prototypes (initially, the only pro-

totype) to split it into two weight vectors based on a split validity mea-

sure. This criterion measures the distortion between the OPTOC solution

and a purely WTA solution (e.g. obtained by k-means): if this distortion

is large, then there are data samples that have been ignored by OPTOC.

SSCL thus selects the prototype with higher distortion and splits it so that

the new weight vector can, eventually, take care of the ignored samples.

This self-splitting behavior terminates if no prototype is suitable for fur-

ther splitting.

Other approaches adopt a progressive clustering model, where the

number of possible partitions exceeds the actual data distribution and

exceeding clusters are merged as learning proceeds. The Competitive Ag-

glomeration (CA) clustering (FK97), for instance, produces a sequence of

partitions with a decreasing number of clusters by means of an error func-

tion that creates a competitive environment in which units compete for

the samples and only significant neurons survive. The loss function of

competitive agglomeration clustering is defined as

Jca(χ) =

N∑

i=1

K∑

k=1

(uki)
2d2

ki − α

N∑

i=1

[
K∑

k=1

uki

]2

(2.17)

subject to the constraints

uki ∈ [0, 1], 1 <
∑K

k=1 uki < K,

N∑

i=1

uki = 1 (2.18)

and where the term dki measures the distance of the feature point xk

from the prototype ci. Together, equations (2.17) and (2.18) recall a typ-

ical fuzzy clustering scenario, where the matrix U = [uki] determines a

fuzzy partition of the samples xk in N clusters, with fuzzy membership

given by uki. However, (2.17) differs from a typical fuzzy c-means (Bez81)

loss function for the second term in the subtraction: while the first term

controls the shape and size of the clusters and encourages partitions with

many clusters, the second one penalizes solutions with a large number

of partitions and encourages the agglomeration of clusters. As a conse-

quence of the combined action of the two terms (mediated by the weight
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α) CA produces results that minimize the sum of intra-cluster distances,

while partitioning the data into the smallest possible number of clusters.

The rules for prototype and membership update are obtained by con-

strained minimization of (2.17) using Lagrange multipliers (see (FK97)

for the details of the derivation steps).

The definition of the competitive agglomeration algorithm is flexible

enough to incorporate different distance measures in the loss function.

For instance, the same authors of CA, proposed the Robust Competitive

Clustering (RCA) (FK99) algorithm. RCA estimates the cluster number

by means of a competitive agglomeration process, while achieving im-

munity to noise and outliers by incorporating robust loss functions in

the definition of the RCA error. In (FN04), on the other hand, is pre-

sented a competitive agglomeration strategy that achieves simultaneous

clustering and attribute discrimination (SCAD): in other words, SCAD

determines the optimal prototypes ci along with a relevance measure, or

feature weight, of its covariates cil.

The Similarity-based Clustering Method (SCM) (YW04) takes an alterna-

tive approach with respect to progressive clustering: instead of exploit-

ing competitive agglomeration to get rid of overestimated clusters, SCM

exploits an Agglomerative Hierarchical Clustering (AHC) procedure to

estimate the local optimal cluster number as well as their volumes. The

SCM learning scheme is set up by maximizing the total similarity mea-

sure Jscm, that is

Jscm(χ) =
N∑

i=1

∑

xk∈χ

exp

(

−
‖xk − ci‖

β

)γ

(2.19)

where the power parameter γ is used to take over the effect of the β pa-

rameter so that it can be initialized as the sample variance. First, SCM

finds an approximated density shape for the data set by estimating γ such

that it optimizes Jscm; then, it seeks the optimal value for the prototypes

ci, that correspond to the peaks of the objective function Jscm. Finally,

SCM uses AHC to build a hierarchical clustering tree of the peaks ci that

is used to select the final cluster number. The agglomerative hierarchi-

cal clustering method is quite general, so it has been used to determine
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the optimal cluster number in mode seeking algorithms other than SCM,

including, for instance, the popular Mean Shift clustering (WY07).

Previously, it has been pointed out how finite mixture models can be

used together with model-selection criteria to identify the number of ran-

dom sources generating the data samples. Figueiredo and Jain (FJ02) pro-

posed an alternative approach to mixture models clustering by exploiting

the intuition that a component with a null mixing weight is essentially in-

distinguishable from a non-existing component. Therefore they devised a

Gaussian Mixture Model (GMM) that uses a variant of the Expectation Max-

imization (EM) algorithm to learn to annihilate the mixing components

of irrelevant mixtures, while positioning the remaining mixtures on the

data clusters. To achieve this they modify the log-likelihood by adding

a term derived from a Minimum Description Length criterion: the up-

date equation resulting from the EM optimization are shown to be able

to identify the data sources, starting from an overestimation of the actual

cluster number.

So far, we have described models that adopt either the divisive or the

agglomerative approach. However, in the literature there are models us-

ing an hybrid strategy that mixes both approaches. Circular K-means (CK-

means) (Cha05), for instance, determines the number of clusters by means

of a sequence of split and merge operations that are taken based on a

modified version of the Variance Ratio Criterion (VRC) index. Essentially

VRC measures the ratio among the between clusters distance and the within

clusters distance and the number of clusters is determined as the configu-

ration that maximizes the VRC. As a consequence, an existing cluster is

split into a number of new clusters as long as its VRC keeps increasing,

whereas, at each iteration, the two closest prototypes are merged pro-

vided that the joining operation increases the VRC. Variational Bayesian

Splitting (VBS) (CL07) applies a similar merge-split approach to Gaussian

Mixture Models trained by a variational optimization procedure. With re-

spect to the mixture model in (FJ02), VBS treats the model selection prob-

lem locally by restricting the number of components that are updated at

each learning step. In particular, for each input pattern, only those com-

ponents falling in the same region of the sample are allowed to update
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their parameters, i.e. they are free, while the rest is kept fixed. During the

optimization process, some of the free coefficients converge to zero and

are canceled from the mixture similarly to (FJ02). However, differently

from the GMM model, VBS is initialized with a single component and

incrementally adds new components to the mixture by means of a split-

ting procedure. In particular, at each step, one component is selected and

replaced by two subcomponents: at this stage only the two subcompo-

nents are considered free while the rest is held fixed. Both components

are tested against the data in their region and, if the test suggests the ex-

istence of more than one cluster, then both subcomponents are retained

and the size of the mixture increases. If this test fails, then one of them

is eliminated and the initial component is recovered. This process is it-

erated for all the components in the mixture and terminates solely when

all the components fail the splitting test. In the case where a successful

split is encountered, a new round of splitting tests is initialized for all the

components.

As a concluding remark, we can observe that, in general, two-stage al-

gorithms have clearly higher computational impact with respect to single-

stage models, due to the fact that they often fit several models before

choosing the cluster size. On the other hand, the calculation of the reg-

ularization terms and the split-merge process is often a key factor deter-

mining the computational complexity of the of single stage algorithms.

Our work focuses on a progressive clustering model that targets at es-

timating the unknown cluster number from the data by means of a bio-

inspired penalization scheme characterized by a lower computational com-

plexity with respect to popular clustering approaches.

2.4 Competitive Repetition-suppression (CoRe)

Learning

CoRe is a soft-competitive learning model that has been inspired by the

repetition suppression memory mechanism described in 2.2.3. In this mo-

del, only a subset of the most active units is allowed to learn in proportion

to their activation strength, while the least active units are penalized by
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reducing their response to the pattern that has produced the low firing

strength. In this section we describe a general formulation of CoRe as an

unsupervised neural network model, while in Section 2.5 we shift our fo-

cus on the application of CoRe learning to clustering and cluster number

determination.

As in every competitive learning model, prototypes are fundamental

in the definition of the CoRe model: given a unit ui ∈ U , the prototype

ci determines the neuron preferred stimulus, that is the pattern that pro-

duces the highest neural activation. In addition, units are characterized

by an activation function ϕi(xk|λi), defined in terms of the unit param-

eters λi, that determines the firing strength of the neuron in response to

the presentation of an input xk ∈ χ. The exact form of the activation func-

tion is left unspecified at this stage, but we assume it to have a bounded

maximum: typically, the activation function ϕi serves as an estimate of

the similarity of input pattern xk with the prototype ci.

The CoRe competition is engaged between two sets of units: at each

step the most active units are selected to form the winners pool, while the

remainder is inserted into the losers pool. More formally, we define the

winners pool for the input xk as the set of units ui that fires more than

θwin, that is

wink = {i | ϕi(xk|λi) ≥ θwin, ui ∈ U} ∪ {i | i = argmax
j∈U

ϕj(xk|λj)},

(2.20)

where the second term of the union ensures that the winner set isn’t

empty if no unit fires more than θwin. Conversely, the losers pool cor-

responding to xk is

losek = {i | ϕi(xk|λi) < θwin, ui ∈ U} \ {i | i = arg max
j∈U

ϕj(xk, |λj)},

(2.21)

where the second term of the set difference discounts the most active unit

from the loser pool in order to ensure that {wink, losek} is a partition of

the units set U . Hence, for each incoming stimulus xk, neurons are par-

titioned into the two sets wink and losek depending on their activation

level. The contrastive soft-competition mechanism of CoRe allows all the

units in the winners pool to be positively adapted by strengthening their
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response to xk; at the same time, neurons in the losers pool are subject

to a negative reinforcement that makes them less likely to be activated by

the next presentation of the stimulus xk. Such partitioning is determined

by the firing threshold θwin, that can be interpreted as the minimal firing

strength that a neuron has to achieve to be considered selective for a pat-

tern xk. In Section 2.6.1 we will discuss how the choice of this parameter

influences the behavior of the algorithm. Figure 7 shows a graphical in-

terpretation of a general CoRe neuron: the prototype (depicted as a black

circle) identifies the preferred stimulus and each neuron is characterized

by an area of its receptive field where only attractive learning can happen

(i.e. the gray areas enclosing the prototypes in Fig. 7). The shape and size

of this area is determined by the choice of the winners threshold as well

as by the properties of the activation function. Neurons engage a compe-

tition for each stimuli falling inside their receptive fields but outside the

positive learning area: the lightly shaded portion of the space in Fig. 7

indicates the area where repetition suppression will surely be applied to

the loser neurons.

Modeling the stimulus repetition is a key issue for implementing a

learning scheme based on repetition suppression. In our model we de-

fine a parameter, named stimulus predominance, that represents an approx-

imate measure of the pattern frequency. The stimulus predominance at

the time t is defined as

νt
i =

1

|χt|

∑

xk∈χt

ηi(xk), (2.22)

where χt is the set of the input patterns presented to the network up to

time t and ηi(xk) is the relative activation of the i-th unit upon the pre-

sentation of input xk, that is

ηi(xk) =
ϕi(xk|λi)

zk
U

, (2.23)

where zk
U acts as a normalization factor. For instance, the term zk

U can be

chosen as the output of the maximally active unit, from the set U , on the

pattern xk, i.e. zU (xk) = maxuj∈U{ϕj(xk|λj)}. Alternatively, zk
U can be
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c3

c2

c1

Figure 7: Receptive fields for a generic CoRe neuron: the solid lines deter-
mine the boundaries of the receptive fields, while the dark-gray areas iden-
tify the regions of the space where each neuron will surely be a winner (de-
pending on the value of θwin). The light shaded area shows the region where
neurons compete for activation and losers are suppressed.
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calculated as a soft max (see (BS06)) or as the sum of the activations of the

units uj ∈ U .

The general objective of the definition in (2.22), is to measure the fre-

quency of the patterns that are preferred by the unit with prototype ci,

scaled by the relative activation strength with respect to the contribution

of the maximally similar prototype zk
U . The stimulus predominance is

used to regulate the amount of penalization that is applied to the losers,

defined as

RSt
k =

1

M |wink|

∑

i∈wink

νt
iϕi(xk|λi), (2.24)

that is the repetition suppression for the pattern xk calculated at time t,

where M is the maximum of the activation function ϕi.

The expression in (2.24) is used to calculate the penalization for the

losers neuron. For instance, we can use it to define a pseudo-target acti-

vation for units in the losers pool as ϕ̂t
i(xk) = ϕi(xk|λi)(1 − RSt

k). This

reference signal forces the losers to reduce their activation proportionally

to the amount of repetition suppression they receive. The error of the i-th

loser can thus be written as

Et
i,k =

1

2
(ϕ̂t

i(xk) − ϕi(xk|λi))
2 =

1

2
(−ϕi(xk|λi)RS

t
k)2. (2.25)

Conversely, in order to strengthen the activation of the winner units, we

set the target activation for the neurons ui ∈ wink to M. The error, in this

case, can be written as

E
t

i,k = (M − ϕi(xk|λi)). (2.26)

The unit parameters λi can be adapted by an optimization procedure that

minimizes the error functions defined in (2.25) and (2.26). Notice that

although CoRe learning may resort to supervised learning for training the

λi, it remains an unsupervised algorithm since all the reference signals it

uses are self-generated on the basis of the input pattern distribution over

space and time.

The ideal outcome of CoRe learning would be to generate pools of

highly selective neurons, hence, it is important to define a metric for iden-
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tifying the most significant units which have been produced by the learn-

ing process. We define the relevance factor for the unit ui as

ν̂t
i =

1

νt
i |χ

t|

∑

xk∈wint
ui

ϕi(xk|λi)

zk
wink

, (2.27)

where zk
wink

follows the definition given above and wint
ui

is the set of

patterns xk ∈ χt for which unit ui was in the winners pool, i.e.

wint
ui

= {xk | i ∈ wink, xk ∈ χt}. (2.28)

In other words, the relevance factor defines a soft-measure of the fre-

quency with which ui was the most active unit in the winners pool. This

measure can be used to determine which units are less significant for the

representation of the input patterns and can be used, for instance, for de-

ciding whether a neuron has to be retained or discarded by the network.

How exactly this is done depends on the network implementation: for

instance, in this thesis, we focus on a pruning approach where neurons

with a low relevance are pruned permanently from the network. Here

the low relevance is determined by a threshold θprune that has to be pro-

vided by the user: more details about this strategy, and about the effects of

the choice of the metaparameter θprune, will be given in the next section.

We would like to point out that pruning is not the only strategy avail-

able for treating irrelevant neurons: for instance, it can be implemented a

neuron commitment-uncommitment mechanism that behaves specularly

with respect to ART networks (see Section 2.3). In other words, CoRe can

be started with all the neurons committed so that, as learning proceeds,

irrelevant units are silenced by uncommitting them as soon as their rele-

vance falls below a given threshold θsilence. Uncommitted neurons can

later be re-activated if a surprising stimulus is encountered, that is to say,

if none of the committed neurons fires more than a given threshold θmin.

By means of this strategy, we can realize incremental learning within the

CoRe framework.
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2.5 Competitive Repetition-suppression (CoRe)

Clustering

2.5.1 The Algorithm

The general Core model introduced in the previous section can be readily

instantiated in a clustering context with application to the cluster number

determination problem. Each CoRe unit is interpreted as a cluster detec-

tor, where the prototype ci defines the cluster representative and the acti-

vation function ϕi(xk) determines whether the pattern xk belongs to the

i-th cluster. Here, we take a soft-clustering approach, where each pattern

can be assigned to multiple clusters with different membership weights.

In particular, we chose the activation function to be a bounded measure of

similarity between the pattern xk and the prototypes ci. A suitable choice

for ϕi is the gaussian function centered in ci with spread σi, i.e.

ϕi(xk|λi) = e
−

‖xk−ci‖
2

2σ2
i (2.29)

where λi includes all the center components ci and the spread σi (in the

remainder of the section λi will be omitted to ease the notation of ϕi).

Hence, the winners set contains those units that are selectively tuned on

the current pattern xk while the losers set contains those neurons that

have a dissimilar prototype ci or that have insufficiently sharp responses.

Notice that in order to simplify the index notation we assumed in (2.29)

(and in the remainder of the chapter) to work with scalar σi’s (i.e. purely

spherical Gaussians). However, all the results described hereafter hold

for the general case of symmetric covariance matrices Σi and elliptic Gaus-

sians, i.e. ϕi(xk|λi) = exp{−(xk − ci)
T Σ−1(xk − ci)}.

Following the indications in Section 2.4, we obtain the incremental

learning rules for prototype adjustment and spread tuning by applying

gradient descent to the error measure in (2.25) and (2.26). The parameter

increments for the units ui ∈ losek can be obtained by differentiating

(2.25) with respect to the parameters ci and σi. Therefore the prototype
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update at time t can be calculated as

△cti,k =
∂Et

i,k

∂ci
= ϕi(xk)RSt

k

∂(ϕi(xk)RSt
k)

∂ci
(2.30)

where the differentiation on the right side can be expanded by chain rule

as

∂(ϕi(xk)RSt
k)

∂ci
=

∂(ϕi(xk)RSt
k)

∂ϕi(xk)

∂(ϕi(xk))

∂ci

=

(

RSt
k + ϕi(xk)

∂(RSt
k)

∂ϕi(xk)

)

·
∂(ϕi(xk))

∂ci

= RSt
kϕi(xk)

(xk − ci)

σ2
i

(2.31)

in which we have used
∂(RSt

k)
∂ϕi(xk) = 0 if ui ∈ losek at time t (follows from

the definition of RS in (2.24)). Substituting the results of (2.31) in (2.30)

we obtain

△cti,k =

(
ϕi(xk)RSt

k

σi

)2

(xk − ci). (2.32)

Similarly, the spread update at time t can be calculated as

△σt
i,k =

∂Et
i,k

∂σi

= ϕi(xk)RSt
k

∂(ϕi(xk)RSt
k)

∂σi

= (ϕi(xk)RSt
k)2

‖xk − ci‖2

σ3
i

(2.33)

while the parameter increments for the units ui ∈ wink can be written as

follows

△cti,k =
∂E

t

i,k

∂ci
= −ϕi(xk)

(xk − ci)

σ2
i

(2.34)

△σt
i,k =

∂E
t

i,k

∂σi

= −ϕi(xk)
‖xk − ci‖2

σ3
i

. (2.35)

The update rule for the unit parameters λt
i = (cti, σ

t
i) is

λt
i =

{

λt−1
i − αlose

λ △λt
i,k for i ∈ losek

λt−1
i − αwin

λ △λ
t

i,k for i ∈ wink

(2.36)
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where αwin
λ and αlose

λ are the learning and de-learning rate, respectively,

with αwin
λ ≫ αlose

λ .

Analyzing equations (2.32) to (2.36) gives an interesting insight on

the algorithm behavior. As one would expect, winner units have their

prototype moved towards the current pattern xk (see (2.34)), but at the

same time their selectivity is enhanced by reducing the spread of their

activation function (in (2.35)). Conversely, loser units are moved further

from the current prototype (see (2.32)), while the spread of their activa-

tion function is enlarged (in (2.33)). On the one hand, this compensates

for the displacement with respect to the unit preferred stimuli while, on

the other hand, it reduces the unit selectivity, thus penalizing it for not

having sharp responses and making it more prone to be discarded by a

relevance/selectivity based pruning. This spread adjustment process has

also a self-regulating effect on frequent winner neurons. For instance, if

a unit ui wins for many samples, then its spread σ2
i will reduce up to a

point where ui stops prevailing for certain patterns xk , that will hence

exit from its winner set wint
ui

. On the other hand, weakly winning units

maintain wider spreads, hence they are able to compete again on those

xk that have exited wint
ui

. Therefore, CoRe clustering provides an adap-

tive conscience mechanism that prevents the low-utilized center problem

(AKCM90).

In order to analyze in detail the behavior of the proposed CoRe clus-

tering model, a procedural description of its learning steps is given in

Algorithm 1. Notice that the algorithm ensures that, for each pattern xk ,

there exist at least one winner unit that, in the worst-case scenario, is the

most active neuron (see the wint
k empty condition in Algorithm 1). Such

a winner search policy can be refined by envisaging more complex win-

ner recruitment policies, such as those described at the end of Section 2.4.

In particular, a constraint can be added to the minimum activation that

a winner neuron has to produce. For instance, if the firing strength of

the maximally active unit does not exceed a predefined minimum thresh-

old θmin, we can consider reallocating the unit with the smallest relevance

factor, whenever this value does not exceed a threshold θrel. If such mini-

mum relevance condition is not satisfied, then there are no uncommitted
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Algorithm 1 CoRe Clustering

Given: the dataset χ = {x1, . . . , xK}, the winners threshold θwin, the prun-
ing threshold θprune, the spread initialization constant α and the initial cluster
number N

Set t = 0, θdecay = 1 − 1
K

, νt
i = 1 and ν̂t

i = 1;
Randomly initialize the N prototypes cti;
Initialize the Gaussian spreads (σ0

i )2 proportionally to the data covari-
ance (see Eq. 2.38);
repeat

Generate a random presentation order for the patterns in χ;
for all xk ∈ χ do
t = t+ 1
for i = 1 to N do

Calculate unit activation ϕi(xk)t;
if ϕt

i(xk) ≥ θwin then Add i to wink and xk to wint
ui

;
else Add i to losek;
end if

end for
if wink is empty then

Set wink =
{
i|i = arg maxj{ϕt

j(xk)}
}

and remove i from losek;
end if
for i = 1 to N do

Update νt
i using (2.22);

if i ∈ wink then Update ν̂t
i using (2.27);

else Apply the relevance factor decay ν̂t
i = θdecay · ν̂t−1

i ;
end if

end for
Compute the repetition suppression RSt

k using (2.24);
end for
for i = 1 to N do

if i ∈ wink then Update cti and σt
i using the increments in (2.34)

and (2.35);
else Update cti and σt

i using the increments in (2.32) and (2.33);
end if
if ν̂t

i ≤ θprune then
Prune the unit ui;
N = N − 1;

end if
end for

until convergence
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units available and all neurons are considered to be too relevant for being

pruned: hence, a new unit can be allocated and set to be the winner.

In this chapter we limit our analysis to the basic winner search policy

described in Algorithm 1. Notice that the unit pruning decision in Algo-

rithm 1 is taken based on the value of the relevance factor. This parameter

is adjusted at every pattern presentation: the neurons in the winners pool

are updated based on the expression in (2.27), while an exponential de-

cay weight is applied to the units in the losers pool. As a result, those

units that are frequent winners and that are often the best matching unit

are preserved, while those not satisfying this condition are bound to be

pruned. The choice of the pruning threshold θprune and of the exponen-

tial decay weight has to ensure that the pruning decision is taken based

on a sufficient data support: Section 2.6.1 discusses the details of the CoRe

exponential decay process and the influence of the pruning threshold and

the decay weight on CoRe learning behavior.

2.5.2 Related Work

Before delving into the analysis of CoRe clustering performance we briefly

review common traits and key differences between CoRe and the related

work in the literature. As noted in the previous sections, the CoRe algo-

rithm works essentially by evolving a small set of highly selective units

out of an initially large neural population: therefore, the algorithm needs

to be initialized with a sufficiently large number of units. In this sense,

CoRe resembles progressive clustering algorithms such as RCA (FK99),

where an initial overestimation of the cluster number leads to the final

data partition by iteratively merging irrelevant units into similar clusters.

Moreover, CoRe relates to another general model, that is the similarity-

based clustering (SCM) (YW04) described in Section 2.3. SCM performs

clustering on the basis of a maximization procedure on a total objective

function defined in terms of the similarity of the patterns to the unit pro-

totypes with respect to a given measure (in particular (YW04) uses a gaus-

sian function). Like CoRe and RCA, SCM starts with an overestimation

of the prototype number, merging them only at the end of the clustering
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procedure by means of an Agglomerative Hierarchical Clustering (AHC)

procedure. Such an approach is computationally expensive since clus-

ter pruning is deferred to the end of the prototype positioning phase as

well as because the AHC method itself requires a consistent computa-

tional load, being quadratic with respect to the dataset size. Conversely

CoRe, as it will be formally discussed in Section 2.6.3, requires a consis-

tently lower computational effort given the fact that cluster selection is

performed incrementally during pattern presentation and that the repeti-

tions suppression penalization term can be computed in linear time.

CoRe clustering is, indeed, closely related to the family of the unsu-

pervised competitive learning models. As noted previously, Self Orga-

nizing Maps (SOM) (Koh82) introduced the idea of a competition with

multiple winners, allowing a subset of the network units to learn pro-

portionally to their spatial contiguity with the BMU, producing maps of

topographically ordered neurons. Likewise SOM, CoRe allows a subset

of the units to win the competition, although it does not produce topo-

graphically ordered neural maps: on the other hand, CoRe allows loser

neurons to adapt their prototype with a negative reinforcement. In other

words, each CoRe unit behaves like a class detector, assigning positive

class information to those patterns falling inside the excitatory region of

its receptive field and negative class labels to those patterns in the in-

hibitory region. This learning dynamics relates closely to the behavior of

the Rival Penalized Competitive Learning (RPCL) algorithm. However,

CoRe generalizes the RPCL model by allowing winner and rival com-

petitors to refer to set of units (instead of single neurons), implementing a

soft-competitive rival penalization scheme. Moreover, CoRe’s repetition

suppression mechanism, besides having a strong biological interpreta-

tion, addresses a key open issue of the RPCL model, that is how to modu-

late the strength of penalization (Che05). In particular, the RS mechanism

offers a means for adaptively controlling rival penalization, so as to pro-

duce a sufficient level of prototype repulsion without generating insta-

bility. In the experimental evaluation part, we will show how this issue

degrades strongly the performance of the RPCL algorithm whenever the

number of initial units is not a close guess with respect to the true cluster
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number.

CoRe formulation is general enough to be applied to neurons with a

broad selection of activation functions (e.g. Gaussian, sigmoid, etc.), in

contrast with the RPCL model that is restricted to hard competitive Eu-

clidean units. In our intention, CoRe can serve as an unsupervised learn-

ing algorithm in complex hierarchical neural models comprising multiple

hidden layers, such as those developed by the machine vision commu-

nity (e.g. Neocognitron (Fuk03), the HMAX model (SWB+07) or convo-

lutional networks (LHB04)). In particular, CoRe can be used to develop

compact neural representations of the information flowing between the

most internal layers of such hierarchical models. Finally, the CoRe mo-

del defines a measure of neuron significance, i.e. the relevance factor,

that can be used to selectively silence (or prune) irrelevant neurons. As it

has been noticed earlier, this particular mechanism can be considered as

the counterpart of the neuron commitment mechanism of ART networks

(CG88), where the relevance threshold θprune plays the role of a vigilance

parameter.

The recent evolution of RPCL into a divide-and-conquer framework

for multi-agents systems (see Section 2.3) has extended it to a more gen-

eral competitive learning strategies, comprising multiple winners and ri-

vals as well as a wider choice of the agents error functions. Although this

model represents an interesting development of the RPCL framework, it

retains two key open issues of the earlier model, that are the penalization

modulation and the robustness to noise. The former problem has already

been described above, whereas the latter relates to the influence that noise

and outliers have on the quality of the clustering result and will be stud-

ied in detail in Chapter 3. CoRe learning addresses these two issues by

providing a means for adaptively controlling the penalization strength,

that is the repetition suppression mechanism, and, as it will be shown in

Section 3.2.1, by means of a robust cluster identification strategy.

In the remainder of the chapter, we investigate the performance of the

CoRe model by comparing it with several state-of-the-art clustering al-

gorithms. In particular, we analyze the behavior of CoRe learning and

RPCL with respect to the open issues instantiated above. Such compara-
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tive analysis is carried out on the original RPCL formulation, since these

issues are common to both the original and the generalized model, which,

however, still misses a reference experimental and simulative analysis

(Xu07).

2.6 Experimental Evaluation

In this section we present the results of several experiments assessing

CoRe performance on various popular clustering tasks, comparing its

performance with that of several state-of-the-art clustering algorithms.

In particular, we focus on a comparative analysis between CoRe cluster-

ing and RPCL. Before describing the outcome of the experimental eval-

uation, we analyze how the choice of the CoRe parameters influences its

behavior. Finally, we discuss the computational complexity of the CoRe

algorithm with respect to the models used in the experimental evaluation.

2.6.1 Fitting the model: Meta-Parameters Selection

The formal description of CoRe model given in Algorithm 1 highlights

the parameters that might influence CoRe performance, that are: the win-

ners threshold θwin, the spread initialization σ0
i , the decay weight θdecay

and the pruning threshold θprune. To describe their effects on CoRe learn-

ing dynamics we consider an exemplar four classes dataset consisting

of 400 datapoints generated by four gaussian sources with mean (1,0),(-

1,0),(0,1),(0,-1) and variance 0.1.

Figure 8.a and 8.b show a clustering result obtained with RPCL and

CoRe starting with an initial population of 5 seed points: both models

are able to identify the correct number of clusters and the corresponding

centroids with 98% of correctly clustered data points. The solid gray lines

in Fig. 8 trace the prototype trajectories produced during the centroid

identification phase. Figure. 8.b visually explains the behavior of CoRe

neurons. The solid ellipses identify the support of the neuron, that is the

hypersphere enclosing the samples that produce positive learning or, in

other words, the portion of the input space where the neuron will surely
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Figure 8: Clustering on four gaussian distributions with mean (1,0),(-
1,0),(0,1),(0,-1) and variance 0.1. The identified clusters are marked as
×, ◦, ⋄, ▽) and the corresponding centroids are identified by �. The solid
gray lines in (a) and (b) depicts the prototype trajectories during training.
The solid ellipsoids in (b) identify the support of the CoRe neurons, while the
dashed ones identify the corresponding receptive fields. Notice that CoRe’s
results have been obtained with pruning disabled to allow a straightforward
comparison with RPCL.

51



be a winner. The dashed ellipses, on the other hand, identify the signi-

ficative area of the receptive fields (RF). In particular, the portion of the

input space where dashed RFs overlap determines the stimuli that will

have a suppressive effect on the non winning neurons. In other words,

the inputs producing repetition suppression will tend to deflect the loser

neurons; such a displacement will be contrasted by the patterns belong-

ing to the unit support, that will produce an anchoring effect on the re-

spective prototypes. As a consequence, if a neuron has a sufficient sup-

port, it won’t be deflected by the repetition suppression. The learning

dynamics of CoRe neurons has a nice biological interpretation, since it

resembles a naive on-center/off-surround strategy. For instance, neurons

responds positively to stimuli falling inside the center of their receptive

fields, while they might respond negatively to patterns falling in the sur-

round area. The naive part is related to the fact that a unit might respond

positively to stimuli in the surround if no other CoRe neuron is suffi-

ciently activated.

The winners threshold θwin determines the relative size of the neuron

support with respect to the receptive field size. Using the definition of

winners pool in (2.20) and the Gaussian activation in (2.29), we can deter-

mine the hypersphere enclosing the portion of the space where the i-th

neuron will surely be a winner as

Suppi = {x | ‖x− ci‖
2 ≤ −2 log (θwin)σ2

i }, (2.37)

that corresponds to the solid ellipses in Fig. 8.b. Clearly, if we take

lim
θwin→0

Suppi

we obtain a support that covers the full extension of the neuron’s recep-

tive field, resulting in a pure soft-competitive scheme (YZG92). For in-

stance, given an input pattern x, every unit with a non-zero activation

will be a winner, learning to approach the input vector proportionally to

its activation strength. At the same time, the gaussian spread will tend to

reduce as a consequence of learning (see Eq. (2.35)) in accordance with

the soft-competitive spread annealing process proposed by Gersho et al.

in (YZG92). The winners threshold θwin regulates the tradeoff between
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positive learning, i.e. related to winners, and negative learning, that is

related to loser units. If θwin approaches to zero, then there will be only

a slight amount of penalization applied to the neurons that will, then, be

prone to overfit the data. On the other hand, setting an high threshold

might produce an excessive amount of penalization, thus preventing the

correct identification of the clusters. Figure 9 shows CoRe performance

on the four Gaussians dataset for different values of θwin and for a dif-

ferent number of seed points. The solid line in Fig. 9 describes CoRe

performance when the number of units is a close approximation of the

true cluster number, i.e. 5 seed points; the dashed line shows the perfor-

mance when using a neat over-approximation of the cluster number, i.e.

20 units. The best solution is clearly obtained for θwin = 0.9: under this

value the performance of the 20 units case starts to deteriorate quickly,

since the amount of penalization produced is too small to deflect all the

units in excess, thus producing overfitting of the data. On the other hand,

the 5-units network start to deteriorate performance for θwin ≤ 0.7: the

peak around 0.5 is generated by the complete superposition of the recep-

tive fields of two neurons, that produces a good clustering result (notice

that in a vector quantization problem only the first maximally responding

unit is chosen to represent each pattern) but an incorrect prototype alloca-

tion. Similarly, the performance drop for the 20-units network reduces for

θwin ≤ 0.4, since the algorithm start to behave like a pure soft-clustering

model: the little penalization effect allows neurons to superimpose al-

most perfectly the respective receptive fields. Again, in this simple exam-

ple this may result in a good clustering performance but with a wrong

prototype allocation.

The choice of the initial variances σ0
i is another important factor influ-

encing the performance of CoRe learning. In particular, the spreads have

to be selected wide enough to allow competition between the CoRe units,

but not so large to produce too much de-learning, possibly deflecting the

units from the data and delaying the convergence of the algorithm. We

initialized the spread to be proportional to the sample variance σ2
χ, that is

σ2
χ =

∑|χ|
k=1 ‖xk − x‖2

|χ|
where x =

∑|χ|
k=1 xk

|χ|
. (2.38)
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Figure 9: Performance of the CoRe clustering algorithm as a function of the
winner threshold θwin .

Using the expression in (2.38), we can write the initial spread as σ2
i =

α · σ2
χ, where α is a proportionality constant. Figure 10 illustrates the

performance of a 5 neuron CoRe network on the four Gaussians dataset

for different values of α and diverse prototype learning rates. The solid

line is related to the CoRe network using a learning rate of 0.005 for win-

ner and loser prototypes: the best results are obtained for α ∈ [0.15, 0.4],

while larger α values produce an excessive unit repulsion, preventing

CoRe from identifying correctly the cluster number. The dashed line in

Fig. 10 shows the results obtained for a lower prototype de-learning rate

(i.e. 0.001): the clustering error for large α values is smaller due to the

reduced repulsive strength, but, in general, the algorithm is not capable

of correctly identifying the true cluster number, since the unit in excess

cannot be driven away from the data.

All the results presented so-far have been produced by a CoRe al-

gorithm based only on prototype repulsion, without using any pruning

strategy. Here, we study the behavior of the CoRe algorithm subject to

the relevance pruning described in Section 2.5 and Algorithm 1. First,

the expression in (2.27) describes the relevance of a neuron in terms of

its selectivity, measuring how often a neuron is the best matching unit
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Figure 10: Performance of the CoRe clustering algorithm as a function of the
proportionality constant α regulating the initial spread size.

for the prototypes in its winners set. This measures tends to one for the

highly selective neurons that fire only for patterns for which they have

been tuned to respond. On the other hand, the relevance factor drift to

zero for units that fire spuriously for many patterns that are already rep-

resented by other neurons. However, this process of relevance zeroing

may take long or can be stopped if, for instance, a unit has few patterns

left into its receptive field. Hence, for each pattern presentation we ap-

ply a constant exponential decay ν̂t
i = θdecay · ν̂t−1

i to the loser neurons

relevance and we set a pruning threshold θprune that determines which

units have to be removed from the network (see Algorithm 1). The ra-

tionale behind this choice is to save computational load and to speed up

convergence by removing early those units that are considered irrelevant.

The choice of the decay weight θdecay and of the pruning threshold θprune

is central in determining the performance of the pruning process. Here,

we choose a decay weight θdecay = 1 − ( 1
K

), that depends on the size of

the dataset K = |χ|. The dotted line in Fig. 11 shows the behavior of

the relevance factor of a neuron under the effect of the exponential decay

alone: the vertical line determines the time instant when the relevance

factor of the decay-only curve reaches the level θprune = 0.005. In this ex-
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Figure 11: Behavior of the relevance factor ν̂ under different conditions.

ample the dataset size m is equal to 400, hence the decay weight reaches

the pruning limit after more than 5 learning epochs. The solid line, on the

other hand, shows the relevance of a loser neuron on the 4 Gaussian ex-

ample: the relevance reduction is steeper in early phases of learning but

stops before the neuron can be pruned. Combining such natural relevance

reduction with the exponential decay produces the dashed curve in Fig.

11: the relevance reduction effect continues after the initial epoch so that

the pruning decision can be taken early. Finally, the dashed-dotted curve

in Fig.11 describes the relevance of a winner unit: after an initial tuning

phase, the neuron relevance stabilizes to a level that prevents it from be-

ing pruned. The behavior of the relevance curves in Fig. 11 shows that

a neuron that fires un-selectively for patterns that are assigned to other

units is most likely to be pruned with respect to a neuron that never wins

and that is then subject to the exponential decay alone. This strategy is

consistent with the biological foundations of the repetition suppression

mechanism, where the most un-selective neurons experience more sup-

pression. Moreover, this behavior determines a fast pruning of those units

that may interfere with the selective neurons, e.g. by deflecting them from

their cluster centroids by means of the RS mechanism.
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The determination of the convergence criteria is another key-issue in-

fluencing the clustering outcome. Typical convergence criteria establish

a measure of clustering stability, for instance by setting a threshold on

the prototype change between epochs, that is maxi ‖c
t+1
i − cti‖ ≤ ǫ. Al-

ternatively, it may be required that the cluster assignment of the patterns

remains stable for a number E of epochs. To determine convergence we

take into consideration, together with the clustering stability criterion, a

measure of the residual competition that is ongoing between the units. In

particular, we define a measure of the amount of RS that is generated dur-

ing an epoch e, that is the Mean Applied Repetition Suppression (MARS)

∑|χ|
k=1

∑

i∈losek
RS

(e|χ|+k)
k · ϕi(xk)2

|χ|
. (2.39)

The MARS formula in (2.39) essentially measures the mean repetition

suppression that has been applied to the loser neurons during a given

learning epoch. MARS therefore assesses the strength of the competition

that is ongoing between the units: when its value becomes negligible,

then little repulsion is applied and neurons are mostly acting based on

a purely attractive dynamics. Hence, the cluster number identification

phase can be considered completed and convergence can be determined

by a clustering stability criterion. In the experiments presented hereafter,

we determined convergence for MARS values under 0.05 and cluster as-

signment stability for 10 epochs. As regards the simulative setup, follow-

ing the results of the analysis discussed above, we initialized θprune =

0.005 and θwin = 0.9, while the initial variance was determined based

on (2.38) with proportionality constant α = 0.2. As regards the cluster

initialization, all the simulations were run repeatedly with randomly ini-

tialized prototypes, without experiencing consistent fluctuations in the

clustering performance. Similarly, the datapoints’ presentation order was

permuted randomly at each training epoch, in order to untie performance

from specific clustering pattern sequences. The RPCL algorithm has been

implemented based on the model in (XKO93) and tested to reproduce the

results in the literature: RPCL parameters have been optimized to maxi-

mize its performance in the single experimental trials.
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2.6.2 Results and Discussion

Example 1. The first example is based on the four Gaussian dataset de-

scribed in the previous section. Here, CoRe clustering is compared to

RPCL when the initial guess about the number of seed units is not ac-

curate enough. For instance, at this stage we run RPCL and CoRe with

a very rough approximation of the cluster number (i.e. 20 units): the

two types of graphs in 12 depict the prototype displacement with respect

to the datapoints and the number of victories per units, where the latter

graph is intended to show the sharpness of the neural representation.

The plots for RPCL (i.e. Fig. 12.a and 12.b) show that the rival pe-

nalization mechanism is not sufficient to deflect the excess units from the

data: as a result all the seed points are allocated to cover a portion of the

input vectors. This behavior is clearer from the bar graph in Fig. 12.b,

where we notice that all the neurons tend to converge to a common mean

firing frequency. In contrast, the CoRe repetition suppression mechanism

has a strong de-learning effect on those neurons that do not show enough

selectivity, moving them outside the area where the input data lies (see

Fig. 12.c). Notice that at this stage, we have disabled CoRe pruning to

allow a fair comparison between the two algorithms.

The bar graphs in Fig. 12.d show a different behavior with respect to

RPCL: as CoRe learning proceeds, the overall neural activation decreases

and few neurons become highly frequent winners. As a result, CoRe can

correctly detect the 4 clusters, deflecting the units in excess from the data

and obtaining a result that is comparable with that obtained with pruning

enabled (see Fig. 13.a).

The RS mechanism has a self-regulating effect on the magnitude of de-

learning: hence the prototype repulsion learning rate can be chosen equal

to the attractive learning rate, obtaining a consistent deflection of the ex-

cess prototypes that does not impair the convergence of the winner pro-

totypes to the centroid of the clusters. In fact, the RS mechanism slowly

decreases the amount of penalization as the neural representation gets

sharper, thus automatically regulating the rate of de-learning. In contrast,

RPCL performance is highly sensitive to the selection of the de-learning
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Figure 12: RPCL and CoRe performance on the four gaussian dataset: CoRe
results have been obtained with pruning disabled to show a fair compari-
son in terms of neural selectivity. (a) RPCL cannot drive away the excess
units when the initial number of neurons overestimates too much the true
data distribution: as a consequence, the number of victories gets distributed
almost evenly among the neurons (b). (c) CoRe with disabled pruning de-
flects all the excessive neurons from the data; (b) as CoRe learning proceeds
it produces a sharper neural representation with reducing number of active
neurons, in compliance with the repetition suppression model.
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Figure 13: CoRe performance on the four gaussian dataset with pruning
enabled: all the excessive neurons are pruned (a). The curves in (b) show the
behavior of CoRe’s relevance factor as learning proceeds.

rate, since, in general, it needs to be re-selected appropriately not only for

different clustering problems, but also for different initial positions of the

seed points (Che05). In this particular example, values of the de-learning

rate superior to 0.005 prevent the convergence of the RPCL algorithm,

while smaller values are not able to deflect the units in excess from the

data. Figure 13.b shows the behavior of the relevance factor during the

learning epochs: the relevance of the 4 neurons that identified the Gaus-

sian clusters stabilizes to high values, while that of the loser units slowly

drifts towards zero. Again, it can be noted that after an initial phase of

strong relevance reduction, there follows a phase in which the loser units

freeze, never firing for any of the input patterns: hence the relevance re-

duction becomes dependent only on the exponential decay strategy.

Example 2. The second example (see Fig. 14) is based on a 16 group

dataset, where each cluster is generated by a uniform probability on the

rectangle. This is a difficult clustering task, since the performance of most

of the clustering algorithms will depend on the prototypes’ initialization

(YW04). In particular, if the seed points are not initialized in each of the

clusters, we cannot ensure that a good data partition will be found. CoRe

on the other hand is not sensitive to the initialization of the unit proto-

types: as it can be seen in Fig. 14.a, it is able to correctly partition the data
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Figure 14: Clustering results for a 16 group dataset: the datapoints in each
cluster are generated with uniform probability on the rectangle. (a) Clusters
generated by CoRe from an initial population of 50 neurons. Full circles
identify clusters center while ellipsoids define the clusters shape estimate
given by the gaussian activation function. (b) Clusters generated by RPCL
from an initial population of 20 neurons: 2 seed points (not shown) have
been driven away from the data; 2 extra-prototypes are retained.

into 16 groups, identifying the center of each cluster as well as an approx-

imation of the cluster shape. CoRe was run with an initial population of

50 units, with prototypes randomly chosen with uniform probability in

the [0, 7] × [0, 7] interval. The ellipsoids in Fig. 14.a represent the activa-

tion functions spread of the cluster detector units learned by CoRe: these

results are comparable with that of the SCM algorithm (YW04), although

they are obtained with a reduced initial population and without resorting

to hierarchical clustering. Fig. 14.b shows the results of RPCL clustering

on the 16 group dataset. Here we choose an initial cluster number that

is a close guess of the true data partition, i.e. 20 units. The results show

that RPCL is able to drive away from the data two units (not shown in the

plots). However, it can not partition correctly the data, since two extra-

units are retained at the end of the learning epochs (Fig. 14.b).

Example 3. In the third example we evaluated the performance of

CoRe clustering on popular benchmark data sets from the UCI Machine

Learning Repository1, that are Iris (Fis36), Wine and Wisconsin Breast

1http://www.ics.uci.edu/ mlearn/MLRepository.html
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Cancer. All the datasets have been preprocessed in order to normalize

the data in the [0, 1] interval and all the trials have been repeated 10 times

and the results averaged.

The Iris dataset contains 150 samples, partitioned into three iris cate-

gories, that are iris setosa, iris versicolor and iris virginica, where the lat-

ter two are not linearly separable. Each class consists of 50 patterns with

four continuous features detailing sepal length, sepal width, petal length

and petal width. CoRe clustering, with an initial population of 50 ran-

dom seeds, identified the correct number of clusters and achieved a final

error of 6 misclassified patterns. RPCL, on the other hand, was run from

an initial population of 4 neurons since, as noted in the previous exam-

ple, it cannot detect the correct cluster number when initialized with 50

seed points. The RPCL method converged after 100 epochs, having iden-

tified 3 clusters and producing 9 data misclassifications. Table 1 (adapted

from (XW05)) summarizes the performance of various clustering meth-

ods on the IRIS dataset: CoRe outperforms most of prototype-based clus-

tering algorithms and achieves an error performance that’s comparable,

although inferior, to that of kernel-based models such as Mercer Clus-

tering (Gir02) and SVC (BHHSV02). These two algorithms can sepa-

rate almost perfectly the two non-linearly-separable clusters because they

can build complex separating hyperplanes by exploiting the high dimen-

sional mapping of the input data into the kernel space. In particular, the

SVC approach builds class borders passing through the support vector of

the identified cluster. However this model does not generate cluster cen-

troids, hence it is useful only if we are not seeking explicitly the cluster

representatives. On the other hand, the Mercer Kernel approach clusters

the data based on the trace of the within-group scatter matrix of the in-

puts transformed in an high dimensional feature space induced by a Mer-

cer Kernel. This algorithm, in opposition to SVC, retains the possibility of

generating cluster representatives in input space.

A second set of simulations was run on the 13-dimensional Wine data

set, in order to study further the performance of CoRe with respect to

Mercer clustering, This dataset can be partitioned into three classes, rep-

resenting different types of wines. Table 2 shows the simulation results:
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Table 1: Clustering Results for the IRIS Dataset

Algorithm Error Number Error %

GVLQ (PBEK93) 17 11.3%

FCM (RB01) 16 10.6%

GFMM (GB00) 0 − 7 0 − 4.7%

Mercer Kernel Clustering (Gir02) 3 2%

SVC (BHHSV02) 4 2.7%

CDL (EF98) 6 4%

HC (MV00) 13 − 17 8.7 − 11.3%

RHC (MV00) 5 − 6 3.3 − 4%

Fuzzy ART Clustering (BA02) 6.7 − 46.4 4.5 − 30.9%

SOM Clustering (WC03) 6 4%

K-Means 16 10.6%

RPCL 9 6%

CoRe Clustering 6 4%

(GLVQ) General Learning Vector Quantization - (FCM) Fuzzy c-Means -
(GFMM) General Fuzzy Min-Max network - (SVC) Support Vector
Clustering - (CDL) Cluster Detection and Labeling network - (HC)
Hierarchical Clustering - (RHC) Relative Hierarchical Clustering

again Mercer kernel clustering obtained the best result, identifying three

clusters with four misclassifications. On the other hand, CoRe correctly

identified the true cluster number (starting from an initial population of

50 neurons), obtaining a performance that is close to that of Mercer clus-

tering and presenting a significant improvement with respect to classical

prototype-based algorithms. In general, SVC and Mercer Kernel obtain a

better clustering accuracy at the expenses of a non-linear computational

complexity. For instance, SVC isO(K2), whereK is the dataset size, while

Mercer kernel clustering is O(K3), since it needs to perform a factoriza-

tion of the kernel matrix in order to determine the cluster number esti-

mate. On the other hand, the CoRe algorithm is O(K), showing a fair
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Table 2: Clustering Results for the WINE Dataset

Algorithm Error Number Error %

Mercer Kernel Clustering (Gir02) 4 2.3%

CoRe Clustering 5 2.8%

FCM 9 5%

K-Means 8 4.5%

RPCL 8 4.5%

tradeoff between clustering precision and computational complexity. A

wider discussion on the computational issues of CoRe learning is left to

Section 2.6.3.

The third set of simulations was run on the 9-dimensional Wisconsin

Breast Cancer (WBC) data set collecting 699 cases of diagnostic samples.

The dataset contains 16 records with missing values: since CoRe algo-

rithm does not deal with missing values, we deleted the 16 records from

the data set and used the remaining 683 records, belonging to two differ-

ent classes, benign and malignant tumors. Table 3 shows the results of

the simulation: again CoRe correctly identified the true cluster number,

achieving the lowest clustering error. In particular, CoRe obtained bet-

ter results than two state-of-the-art kernel clustering approaches, that are

the Camastra-Verri Algorithm (CV05) and Ng-Jordan spectral clustering

(NJW01).

2.6.3 Computational Issues

CoRe clustering has a computational complexity that is comparable to

that of the fuzzy c-means (FCM) (Bez81) family of clustering algorithm

(e.g. FCM (Bez81), RCA (FK99),. . . ). Analyzing Algorithm 1 it is clear

that CoRe epoch complexity is O(cKN), where K is the number of input

samples and N is the number of units. The constant c is a small number

that depends on the number of loops that are performed on the K units

for each datapoint. In our implementation c = 3, that is equal the number
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Table 3: Clustering Results for the WISCONSIN BREAST CANCER Dataset

Algorithm Error Number Error %

Camastra-Verri Kernel Clustering (CV05) 20.5 3%

Spectral Clustering (NJW01) 31 4.5%

CoRe Clustering 19 2.6%

Neural Gas (CV05) 26.5 3.9%

K-Means 26.5 3.9%

SOM (CV05) 22.5 3.3%

RPCL 31 4.5%

of for-loops that are required to compute the units’ activation (first loop

in Algorithm 1), the νt
i and ν̂t

i factors (second loop) and the units’ update

(third loop). Since initialization is bounded by O(K), the final complexity

of the CoRe algorithm is O(3KN): observe that in general, due to the

pruning strategy, N is not a constant and decreases from Nmax, i.e. the

initial unit number, to Nmin, i.e. the number of identified clusters.

Compared with other progressive clustering algorithms (see Section

2.3), CoRe retains a low computational complexity. For instance, the ro-

bust RCA algorithm is O(K logK +KN), where the K logK term is de-

termined by the penalization factor that is used to prevent overfitting the

data set with too many prototypes. SCM (YW04) and, in general, hier-

archical clustering algorithms (ESI98) are O(NK2), where the quadratic

complexity term is, again, determined by the cluster number identifica-

tion process. As noted earlier in Section 2.6.2, kernel and spectral clus-

tering algorithms (e.g. see (Gir02; BHHSV02; CV05; NJW01)) have com-

putational complexities that are at least O(NK2) since they usually re-

quire a factorization of the kernel/laplacian matrix in order to estimate

the cluster number. As a general comment, the RS penalization terms

is an efficient mean for determining the unknown cluster number from

the data while retaining a linear computational complexity that is com-

parable with that of simple non-agglomerative clustering models such as

FCM, k-means and RCPL.

The computational load of CoRe clustering for a single iteration on

65



Table 4: Computational load for CoRe and RPCL clustering

Dataset CoRe RPCL

N = 5 (Ep) N = 10 (Ep) N = 5 (Ep) N = 10 (Ep)

4 Gaussians 9.23 (0.62) 11.92 (1.02) 4.36 ( 0.14) 14.68 (0.14)

Iris 5.72 (0.26) 9.75 (0.39) 1.85 (0.05) 9.66 (0.05)

Wine 7.49 (0.34) 15.92 (0.53) 73.9 (0.07) 36.79 (0.07)

the dataset is, certainly, superior to that of RCPL, that is an O(K) algo-

rithm. In order to compare the computational load of the two algorithms

and their respective convergence times we report in Table 4 the simula-

tion times (in seconds) obtained for three data sets used in the previous

section. The results have been obtained on a 1.7-GHz Centrino machine

with 1064-MB memory running Matlab and for two different initial net-

work sizes, i.e. N = 5 and N = 10. As expected, RPCL is shown to

be faster than CoRe on the single iteration through the dataset (see the

number between brackets in Table 4). Such load increase is due to the fact

that CoRe updates all the units for each datapoint presentation. How-

ever, if we look at the total converge time we see that CoRe reduces the

computational gap with RPCL. This is due, on the one hand, to the prun-

ing strategy that eliminates units as learning proceeds and, on the other

hand, to CoRe’s faster convergence rate.

In general, RPCL convergence speed seems to degrade strongly as the

number of initial units N increases, probably because the network size

growth produces an increase in the number of local minima of the error

function, thus delaying its convergence. Notice the different convergence

behavior of RPCL on the Wine dataset: repeated simulation with N = 5

always produce slower convergence, since the rival penalization mecha-

nism cannot easily get rid of the fourth excess unit. CoRe, on the other

hand, seems to be less sensitive to variations in the initial cluster num-

ber: chapter 3 will explain this behavior by presenting theoretical moti-

vations for CoRe’s faster convergence rate and, in particular, for its ability

to avoid local minima of the loss function.
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2.7 Conclusion

This chapter introduced the general CoRe model, an unsupervised learn-

ing scheme inspired by a memory mechanism of the visual-cortex called

repetition suppression. CoRe learning produces sharp feature detectors

and compact neural representations of the input stimuli through a mech-

anism of neural suppression and strengthening that is dependent on the

frequency of the stimuli. In particular, we showed how the general CoRe

formulation can be used to derive a clustering algorithm that can auto-

matically estimate the cluster number without a-priori information.

In particular, we highlighted CoRe similarities with rival penalized

learning, proposing the idea that CoRe clustering represents a soft com-

petitive generalization of RPCL, extending the rival-penalized competi-

tion to multiple winner and loser units. Experimental results show how

the CoRe soft-rival competitive model overcomes RPCL limitation con-

cerning clusters initialization. RPCL performance, in fact, reduces consis-

tently when the initial seed points number is too distant from the actual

cluster number. CoRe, on the other hand, converges to the optimal re-

sult also when the initial cluster number is a rough over-approximation

of the actual distribution, due to the higher level of competition that is

produced between the sets of winner and rival units. Moreover, the rep-

etition suppression effect modulates adaptively unit de-learning. This,

on the one hand, makes CoRe more robust with respect to the choice of

the learning rates. On the other hand, it produces a parsimonious unit

allocation in those regions of the feature space that are more densely pop-

ulated, in contrast with RPCL, that tends to allocate more units to the

densely populated regions of the input space (BS07b).

Experimental results have further shown that CoRe clustering achieves

performance results that are comparable with that of state-of-the-art ker-

nel based models, while retaining a linear computational complexity. More-

over, CoRe convergence showed robustness with respect to the choice of

the initial cluster number. In particular, CoRe seems resistant to the in-

crease in the number of local minima of the error function produced by

a larger initial network size, while RPCL convergence speed degrades
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strongly as the number of units increases. In the next chapter we will

tackle this aspect from a theoretical point of view, motivating CoRe’s abil-

ity in avoiding local minima.

In our opinion, competitive repetition-suppression learning can be

successfully used as a training mechanism within hierarchical neural net-

work models characterized by articulated architectures, comprising neu-

rons with various activation functions. This is the case, for instance, of

several neural models within the machine vision community, such as the

classical Neocognitron (Fuk03) and the recent HMAX hierarchical object

recognition model by Serre et al (SWB+07). On the one hand, CoRe of-

fers a common formalism and training ground for expressing competi-

tion between neurons with different activation functions and character-

ized by different parameters. On the other hand, the repetition suppres-

sion mechanism along with the relevance ranking can be successfully ex-

ploited to estimate the number of neurons comprising the single layers

of the hierarchical network. Furthermore, all CoRe computations are per-

formed locally to the single layers, hence contributing to maintain the

learning complexity low even for strongly stratified structures.
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Chapter 3

Theoretical Properties of
CoRe Clustering

3.1 Introduction

Chapter 2 has introduced the CoRe learning formulation showing how

it can effectively be applied to clustering and cluster number determina-

tion. In particular we have focused our analysis on evaluating its perfor-

mance both in terms of clustering precision and in terms of computational

load. In this Chapter, we shift our attention to a theoretically oriented

analysis of the CoRe clustering, studying both its properties in terms of

robustness to noise and outliers in the data, as well as its convergence

behavior. With respect to the former property, we provide theoretical mo-

tivations for the robustness to noise and outliers of CoRe’s prototype esti-

mation process; additionally, we provide experimental evidence support-

ing the robustness of CoRe’s cluster number identification process when

dealing with noisy data.

Previously, it has been highlighted the close relationship between CoRe

and Rival Penalized Competitive Learning: in the first part of this chap-

ter, we take a closer look at this association by studying the issue of noise

robustness of both algorithms. We will give formal arguments that CoRe

can be considered as a robust version of the RPCL algorithm where rival
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Figure 15: Results for a dataset with 4 ellipsoidal clusters: RPCL prototypes
are represented as ◦ and CoRe centroids as +.

penalization is modulated by sample repetition. The capital importance

of relying on a robust estimation process when dealing with the cluster

number identification problem can be well understood by a simple ex-

ample. Consider, for instance, the scenario in Fig. 15 that shows a dataset

comprising four ellipsoidal clusters characterized by different sizes and

orientations. Figure 15 shows the cluster centroids identified by CoRe

and RPCL for the original data: the two algorithms have been initial-

ized with 20 and 6 neurons, respectively. Such a different initialization

is motivated by placing RPCL in the most advantageous scenario since,

as we have pointed out in Section 2.6.2, RPCL cannot correctly estimate

the cluster number when the initial guess is too large with respect to the

ground truth. Figure 15 confirms that both algorithms are able to identify

the four cluster centroids, although CoRe seem to be able to cope better

with cluster of elliptical shape, achieving a more precise centroid identi-

fication. This can be explained by the fact that CoRe’s activation function

uses a full covariance matrix which naturally models clusters of elliptical

shape. Besides the distortion introduced by elliptical clusters, here we

are more interested in evaluating the effect of noise on the cluster num-

ber estimation task. For this reason, we corrupted the original data by
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40% multiplicative uniform noise (see Fig. 16). Figure 16.a shows that

RPCL now fails to identify the actual cluster number, while the CoRe es-

timation procedure still identifies the four clusters (Fig. 16.b), with only a

slight distortion in the position of the bottom-right centroid, thus show-

ing some kind of robustness with respect to noise and data outliers.

Section 3.2 studies the robustness properties of CoRe clustering from

a theoretical point of view, comparing its error function formulation with

that of RPCL as well as with other robust clustering models such as RCA

(FK99). Section 3.3 presents further experimental results supporting the

robustness properties of CoRe clustering.

Aside from robustness, another fundamental theoretical issue that needs

to be addressed when modeling a novel computational learning system

is determining its convergence behavior. In the second part of this chap-

ter, in Section 3.5, we will study the CoRe error formulation to describe

its convergence properties with respect to the framework introduced in

(MW06) for studying the behavior of the distance-sensitive RPCL (DSR-

PCL) algorithm. Section 3.4 introduces a kernel-based (STC04) formula-

tion of the CoRe error that is exploited to give theoretically-sound moti-

vations for CoRe’s ability of avoiding local minima of the loss function.

In particular, we use the kernel error formulation to generalize the results

given in (MPGRLRGB02) for hard vector quantization, to kernel-based

algorithms. These results will be further expanded in Chapter 4, where

we propose a novel kernel vector quantization model that avoids local

minima.

3.2 Robust Clustering by CoRe Learning

We derive a batch CoRe error formulation, showing how, besides bio-

logical soundness, it posses interesting properties in terms of statistical

robustness. Most prototype-based approaches use the Euclidean norm

to determine cluster membership, but they suffer from the interference

caused by noise and outliers in the data. This interference can be catas-

trophic in unsupervised clustering, where the actual cluster number has

to be estimated from the data. In the following we discuss how CoRe clus-
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(b) CoRe

Figure 16: Results for the 4 ellipsoidal clusters dataset corrupted by 40%
multiplicative uniform noise: (a) RPCL and (b) CoRe clusters.
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tering combines the biological inspiration with the robustness properties

of the M-estimators (Hub81), hence being tolerant to outliers and noise in

the data.

3.2.1 Robust Error Function

The incremental formulation of CoRe clustering, given in Section 2.5,

reflects the formalization of the general CoRe learning framework and

serves to highlight differences and similarities with the RPCL model. In

this section, we focus on an alternative, non incremental, characteriza-

tion which allows to better describe the robustness properties of CoRe

clustering and to emphasize its relationships with state-of-the-art robust

clustering models.

First, we give an alternative formulation for the residuals in (2.25) and

(2.26) by writing a general CoRe error expression for the unit ui ∈ U over

all the dataset χ = (x1, . . . , xk, . . . , xK) as

Ji(χ) =

K∑

k=1

δik(1 − ϕi(xk)) +

K∑

k=1

(1 − δik)(ϕi(xk)RSk)2 (3.1)

where we assume that the activation function is the gaussian kernel in

(2.29), while the time index t has been omitted from RSk for notational

simplicity. The term δik is the indicator function for the set wink, that is

δik =

{
1 if i ∈ wink

0 if i ∈ losek.
(3.2)

The first term in the objective function in (3.1) tries to minimize the resid-

uals of the winner points, that are those points that are similar enough to

the cluster prototype with respect to the given similarity function ϕi and

the threshold θwin. Therefore the first term tries to maximize the simi-

larity of the cluster prototype with as many datapoints as possible. The

second term, on the other hand, penalizes the cluster for those datapoints

that are not similar enough, counteracting the effect of the first term. In

addition, the RSk factor ensures that the the penalization is higher for

those patterns that have been assigned to another cluster.
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Since the units can be treated as independent, we can generalize the

objective function in (3.1) by summing up over all CoRe units U = (u1,

. . . , ui, . . . , uN ), obtaining

J (χ,U) =

N∑

i=1

K∑

k=1

δik(1 − ϕi(xk)) +

N∑

i=1

K∑

k=1

(1 − δik)(ϕi(xk)RSk)2. (3.3)

Following the procedure in (FK99), we can rewrite the CoRe error J in

terms of loss functions ρi and in terms of typicality measures ŵik, yielding

to

JR(χ,U) =

N∑

i=1

K∑

k=1

δikρi(d
2
ik) +

N∑

i=1

K∑

k=1

(1 − δik)ŵ2
ikRS

2
k. (3.4)

In (3.4), ρi(d
2
ik) is the loss function associated to the i-th cluster, while ŵik

is a typicality term proportional to ρi’s derivative with respect to d2
ik , that

is

ŵik = αi ·
∂ρi(d

2
ik)

∂d2
ij

.

Both ρi() and ŵik depends on the the term d2
ik , that is a measure of the

distance between the input vector xk and the cluster prototype ci. In the

following we show that, under the assumption that the CoRe activation

function is the gaussian kernel in (2.29), the term ρi() in the CoRe error

formulation (3.4) can be interpreted as the loss function of a robust M-

estimator (see definition and properties in (Hub81), Section 3.2, pp. 43–

55).

The general idea of robust estimation can be well described in terms of

two desirable properties identified by Huber (Hub81). In his idea, a sta-

tistical procedure for fitting a non parametric model, such as in centroid

estimation, should be robust in the sense that

1. small deviations from model assumptions should impair the per-

formance only slightly;

2. large deviations from the model should not cause catastrophic in-

terference.
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In our scenario, noise and outliers play the role of the deviations from

the original model, which is characterized by a number of random data

sources that we are willing to discover by finding an appropriate cluster-

ing of the observation data.

Maximum likelihood estimators, or, in short, M-estimators, are generated

as solution of a minimum problem of the form

min
θ

K∑

k=1

ρ(xk; θ), (3.5)

where ρ is an arbitrary function that measures the loss of xk and θ. In par-

ticular, we are often interested in finding a location estimate θ̂ minimizing

k∑

k=1

ρ(xk − θ). (3.6)

The corresponding M-estimator can be generated by solving the analo-

gous problem
K∑

k=1

wj(xk − θ) = 0, (3.7)

where

wk = (xk − θ)−1 ∂ρ(xk − θ)

∂θ
(3.8)

is called the weight function or W-estimator, since the resulting M-estimator

θ̂ can be written as the weighted mean

θ̂ =

K∑

k=1

wk
∑

l=1 wl

xk, (3.9)

where sample contributions are weighted by the W-estimator.

Following this definition, the CoRe error formulation in (3.3) and (3.4)

can be restated in terms of K M-estimators for the prototypes ci given by

the following loss functions

ρi(xk − ci) = (1 − ϕi(xk)) = (1 − e
−

‖xj−ci‖
2

2σ2
i ), (3.10)
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where the corresponding W-estimators can be written as

wik = −σ2
i exp(−

‖xk − ci‖2

2σ2
i

). (3.11)

In the step from (3.4) to (3.10), we have implicitly used the assumption

dik = ‖xk − ci‖. By applying this substitution to the definition of ŵik, we

obtain

ŵik = αi

∂ρi(d
2
ik)

∂d2
ij

= αiwik, (3.12)

where αi = σ−2
i discounts the contribution of the variance magnitude

from the weight function. Roughly, from the formulation of the objective

function in (3.3) and (3.4), we can say that CoRe clustering corresponds

to a combination of K M-estimators with loss ρi, whose estimates are

perturbed by a penalization that is proportional to the corresponding W-

estimators.

In order to assess the statistical robustness of the CoRe M-estimator

we need to study the behavior of the its influence curve. This function

has been proposed by Hampel (Ham74) to measure the relative influence

of individual observations on the value of the estimate. In (Hub81) is

shown that the influence function of an M-estimator is proportional to

the derivative of its loss function ψ(x − θ) = ∂ρ(x− θ)/∂θ. In the context

of the location estimate in (3.6), we can thus write the influence function

as

IC(x, F, θ) =
ψ(x− θ)

∫
ψ′(x− θ)dFX (x)

(3.13)

where FX(x) is the distribution over X . If the influence function is un-

bounded, then an outlier can have a large relative influence on the esti-

mate, resulting in a strong deviation from the asymptotic solution. An

interesting statistics based on the influence functions is its maximum ab-

solute value

γ∗ = sup
x

|IC(x, F, θ)| (3.14)

that is called gross error sensitivity and measures the worst approximate

influence that the addition of an infinitesimal point mass can have on

the value of the estimator (YW04). Since the influence function in (3.13)
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is proportional to the derivative ψ(x − θ), we can study its behavior by

analyzing ψ following the procedure in (WY02). From the definition in

(3.10), we obtain that CoRe’s ψ function is given by

ψ(x− c) =
−2σ−2(x− c)

exp(‖x−c‖2

2σ2 )
(3.15)

where the unit index i has been omitted to ease the notation. To describe

the asymptotic behavior of (3.15) we need to study the limit of ψ(x−c) for

x → ∞ and x → −∞. A straightforward application of the L’Hospital’s

rule yields

lim
x→∞

ψ(x − c) = 0 and lim
x→−∞

ψ(x − c) = 0, (3.16)

thus the influence function approaches zero whenever x tend to positive

or negative infinity. We can also obtain maximum and minimum values

of ψ by applying the necessary condition

∂ψ(x− c)

∂x
= 0. (3.17)

Given these results we obtain that the M-estimators defined by (3.10) have

a bounded and continuous influence function and a finite gross error sen-

sitivity: therefore the estimators based on (3.10) are robust with respect to

Huber’s definition (Hub81). According to these results, CoRe’s objective

function in (3.3) combines a loss function of a robust M-estimator with

a penalization term proportional to the corresponding W-estimator. The

first term reduces the effect of noise and outliers on the estimate, while the

second term prevents the cluster at hand from attracting significant points

that have already been assigned to another cluster. Therefore CoRe im-

plements a robust cluster estimation process that is resistant to noise and

outliers in the data.

Apart from proving robustness properties, the error formulation in

(3.3) can be used to derive a batch version of the CoRe clustering algo-

rithm, namely the Batch Competitive Repetition-suppression (BCoRe). In

order to derive the batch learning rules of BCoRe, we apply the neces-

sary condition for the minimization of J (χ,U), differentiating (3.3) with
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respect to all ci, that is

∂J (χ,U)

∂ci
=

K∑

k=1

δikϕi(xk)
(xk − ci)

σ2
i

+

−
K∑

k=1

(1 − δik)(ϕi(xk))2RS2
k

(xk − ci)

σ2
i

= 0. (3.18)

Hence, the necessary condition that minimizes J (χ,U) becomes

ci =

∑K
k=1 Sikxk
∑K

l=1 Sil

, (3.19)

where the Sik values are calculated as follows:

Sik = S(ci, xk) = δikϕi(xk) − (1 − δik)(ϕi(xk))2RS2
k. (3.20)

The expression in (3.19) estimates the cluster prototypes as the weighted

mean of the sample vectors, where the mixing weights Sik are modulated

by the robust W-estimator ϕi(xk) and a penalization term. The spread

estimate is determined similarly as the weighted variance with respect to

the current mean estimate ci and the input vectors xk, that is

σ2
i =

∑K
k=1 Sik‖xk − ci‖2

∑K
l=1 Sil

. (3.21)

Moreover, in the general case of a symmetric covariance matrix Σi (FK99),

(3.21) can be reformulated as

Σi =

∑K
k=1 Sik(xk − ci)(xk − ci)

T

∑K
l=1 Sil

. (3.22)

The estimates in (3.19) and (3.21) cannot be solved directly, but can

be approximated by means of the fixed point iterative method. Let τ be

the epoch counter, we take the left hand side of (3.19) and (3.21) as the

center and spread solutions at epoch τ + 1. Their estimate is calculated

by evaluating the right hand side of the equations at the epoch τ . This

process is iterated until a certain stability criterion is met. Summarizing,

the BCoRe algorithm can be described as follows:
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Initialize c0i , σ0
i ; set iteration counter τ = 0.

Do Repeat

Step 1 Estimate Sτ+1
ik by (3.20);

Step 2 Estimate cτ+1
i by (3.19);

Step 3 Estimate στ+1
i by (3.21)

Until maxi‖c
τ+1
i − cτi ‖ < ǫ; Increment τ .

Here, the iterative procedure is stopped whenever the prototypes esti-

mate at time τ + 1 is very close to the solution generated at the previous

epoch.

3.2.2 Relationship with Other Models

The error formulation in (3.4) can be used to compare CoRe with rele-

vant robust clustering models in the literature. Consider, for instance, the

Robust Competitive Agglomeration (RCA) (FK99) algorithm described in

Section 2.3: its objective function can be written as

Jrca(B, V, χ) =
N∑

i=1

K∑

k=1

(vik)2ρi(d
2
ik) − α

N∑

i=1

(
K∑

k=1

wikvik

)2

. (3.23)

The term vik represents the degree to which the point xk belongs to the

cluster identified by the prototype βi and is subject to the constraint

N∑

i=1

vik = 1.

The expression V = [vik] identifies the constrained fuzzy partition ma-

trix, while B is the matrix of the cluster prototypes βi. The first term in

the RCA objective function is essentially the sum of the fuzzy intra-cluster

distances mediated by a robust loss function ρi. This term induces over-

fitting, since it is minimized when the number of clusters is equal to the

number of the datapoins. The second term prevents overfitting by im-

posing a penalization that is proportional to the cardinality of the clusters
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and that is mediated by wik , that is the W-estimator generated by the loss

function ρi. This term discounts outliers when computing the clusters

cardinality, hence making the estimation more robust.

The RCA algorithm determines the cluster number by aggregating an

initially over-specified set of prototypes. This agglomeration depends on

the balance between the first and the second term in (3.23), that is con-

trolled by the mixing parameter α. In (FK99), α is chosen to be dependent

on the iteration step. In the first phase, it is chosen to be low in order to

encourage the formation of small clusters. Then, α is increased gradually

to promote agglomeration and, finally, it is decreased again to allow the

convergence of the algorithm. RCA agglomeration resembles the CoRe

neuron suppression process controlled by the RSk factor. Repetition sup-

pression is initially low, allowing neurons to identify their reference stim-

ulus, and increases as soon as the units start to be tuned on specific pat-

terns, finally decreasing to zero when there is little overlapping in the

temporal activation of the units. More formally, if we compare the ob-

jective functions in (3.4) and (3.23), we notice that RSk plays a similar

role to α in determining the balance between the robust loss ρi and the

penalization in the second term.

The error formulation in (3.3), highlights CoRe similarity with another

robust clustering method, that is the alternative hard c-means (AHCM) al-

gorithm (WY02). The AHCM error function is

Jahcm(B,χ) =

N∑

i=1

K∑

k=1

δ1ik
(
1 − exp(−δ‖xk − βi‖

2)
)

=

C∑

i=1

K∑

k=1

δ1ikρi(d
2
ik)

(3.24)

where δ1ik is non-zero only when i is the index of the best matching unit

for the pattern xk. The formulation in (3.24) depends solely on the first

term in (3.3), i.e. the robust loss determined by the gaussian kernel, and

does not include any penalization term. Consequently, AHCM cannot de-

termine automatically the number of clusters from the data. The same au-

thors proposed, in (YW04), an alternative formulation based on the maxi-

mization of a gaussian similarity metric, namely the similarity-based robust

clustering method (SCM). Again, SCM does not use any penalization term
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in its objective function, but resorts to agglomerative hierarchical clus-

tering in order to determine the number of clusters once the prototype

positioning phase has converged.

The original RPCL model does not define an error function for the

rival penalization learning. Recently, Ma and Wang (MW06) published

a generalization of the RPCL algorithm, named distance-sensitive RPCL

(DSRPCL), defined in terms of the following cost function

Jdsrpcl(B,χ) =
1

2

K∑

k=1

‖xk − βc(k)‖
2+

2

P

K∑

k=1

N∑

i=1,i6=c(k)

‖xk − βi‖
−P . (3.25)

In (3.25), βi identify the cluster prototypes, while c(k) denotes the index

of the winner unit in the WTA competition and P is a positive number.

The first term of the DSRPCL cost function is proportional to the dis-

tance between the current sample xk and the winner weight βc(k), playing

the same role as the first term in the CoRe error formulation in (3.4). In

addition, the CoRe term corresponds to a robust version of the DSRPCL

estimate obtained by means of a Gaussian weight function. On the other

hand, the second term of the DSRPCL cost is inversely proportional to

the distance between the sample point and the loser weights, serving to

counteract overfitting such as in the second term of the CoRe error in (3.4).

The CoRe penalization is, in fact, inversely proportional to the dissimilar-

ity (measured by the gaussian kernel ϕi) between the current sample and

the loser neurons. The repetition suppression factor RSk serves to modu-

late the penalization proportionally to the relative density of the samples

constituting a cluster, i.e. more frequent patterns experience more sup-

pression. The DSRCPL penalization, on the other hand, depends solely

on the distance between the loser weights and the samples.

These robustness issues continue to be present in the recent general-

ization of the RPCL framework (Xu07) described in Section 2.3. In fact,

the reformulated RPCL error criterion in (2.14) mixes robust Gaussian

functions with non-robust Euclidean metrics, producing estimators that

fail to meet the robustness conditions detailed above, that are the bound-

edness of the influence function and the finiteness of gross error sensitiv-

ity. Summarizing, CoRe can be considered as a soft and robust version
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Figure 17: CoRe error (dashed) and MARS score (solid) for the four Gaus-
sians task (Example 1). Core error has been averaged over the data set size
to report it on the interval of the MARS score. The convergence criteria was
MARS < 0.05: notice that convergence happens when the CoRe error has
already reached a stable state.

of the DSRPCL (and RPCL) algorithm where rival penalization is modu-

lated by sample repetition. Figure 17 shows an example of the behavior of

the CoRe error J , as defined in (3.3), with respect to the MARS score (see

(2.39)) during training on the four gaussians dataset (see Section 2.6.1).

3.3 Experimental Evaluation

In this section we analyze the robustness properties of CoRe learning

through a set of experiments on the unsupervised segmentation of noisy

images. In particular, we are interested in understanding the role of ro-

bust estimation in tasks where the optimal cluster number is unknown

and to study the effects of the overestimation of the cluster number in

noisy environments.

In the first experiment, we applied CoRe and RPCL to the segmen-

tation of a 64 × 64 synthetic image consisting of four gray-level classes

of intensity 0, 80, 160 and 240. First, we tested the two algorithms with
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(a) (b) (c)

(d) (e) (f)

Figure 18: Comparison of segmentation results on a synthetic four class im-
age under varying levels of noise: (a) Original image perturbed by 5% noise,
(b) RPCL result, (c) CoRe result; (d) Original image perturbed by 11% noise,
(e) RPCL result, (f) CoRe result.

the original image corrupted by 5% gaussian noise (Fig. 18.a) and an ini-

tial population of 10 seed points. Figure 18.b and 18.c show the results

of CoRe and RPCL segmentation, respectively. A quick visual inspection

of the results shows that both algorithms identified correctly 4 clusters,

converging nearly to the same segmentation accuracy (i.e. the percent-

age of correctly segmented pixels in the reconstructed image). However,

if we corrupt the same image with 11% noise (Fig. 18.d), we obtain two

different behaviors for RPCL and CoRe. The former algorithm retains 3

spurious clusters, resulting in a strong degradation of the segmentation

performance that drops to 70.6% (see Fig. 18.e). CoRe, on the other hand,

converges to the optimal cluster number, achieving a segmentation per-

formance of 88.8% (see Fig. 18.f). It appears that a low level of noise does

not interfere significatively with the cluster identification process, while

the robustness of CoRe estimation seems to be fundamental when dealing

with considerable noise levels.

The second experiment compares the segmentation results of RPCL,

FCM (Bez81) and CoRe clustering applied to a T1-weighted MR phan-
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tom image from the BrainWeb Simulated Brain Database1 (SBD). The SBD

contains a set of realistic MRI data volumes produced by an MRI simula-

tor. For our experiment we used a high-resolution 181× 217 T1-weighted

phantom image with slice thickness of 1mm, 3% noise and no intensity

inhomogeneity. The SDB provides a discrete anatomical model of the

image compromising the cerebro-spinal fluid (CSF), gray matter (GM),

white matter (WM) and background. This model has been used to cal-

culate the segmentation accuracy and to compare the results obtained by

CoRe and RPCL. Both models have been initialized with 10 seed points

and trained pixel by pixel on the noisy 181× 217 image. At the end of the

training phase both algorithms have selected four clusters: one each for

CSF, GM, WM and one for the background . As detailed in Table 5, CoRe

and RPCL have, on this task, a similar performance in terms of comparison

score, that is

sc =
Ac ∩Aref

c

Ac ∪A
ref
c

(3.26)

where Ac represents the set of pixels assigned to the class c by the learn-

ing algorithm and Aref
c is the reference set of pixels for class c. This result

is not surprising since the level of noise in the image is still low, so that

RPCL, although not based on a robust M-estimator, achieves good results.

In order to compare the performance of the two algorithms under higher

levels of noise, we ran the simulation on the same image distorted by a

7% gaussian noise. Fig. 19 shows the original noisy image and the RPCL

and CoRe segmentation. The results in Fig. 19 show that CoRe and RPCL

have a similar segmentation performance on the white matter and gray

matter, while RPCL have a consistently worse performance on the CSF

segmentation. This visual impression is confirmed by the comparison

scores in Table 5: RPCL experiences a consistent drop in the segmenta-

tion performance due to the presence of noise. CoRe, on the other hand,

maintains an acceptable segmentation performance, in particular with re-

spect to the CSF, since the robust similarity function used for calculating

the units’ activation is less affected by noise than the Euclidean measure

used by RPCL.

1http://www.bic.mni.mcgill.ca/brainweb/
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 19: (a) Original image (100th slice) distorted by 7% gaussian noise.
Noisy image reconstructed by CoRe (b)and RPCL (c) segmentation. CoRe
(d) and RPCL (g) cerebro-spinal fluid segmentation. CoRe (e) and RPCL (h)
gray matter segmentation, CoRe (f) and RPCL (i) white matter segmentation.
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Table 5: Comparison Scores for the Simulated MRI

Algorithm (Noise) WM GM CSF

CoRe (3%) 95.9% 90.7% 89.7%

RPCL (3%) 96.2% 90.7% 87.5%

CoRe (7%) 88.8% 78.4% 82.3%

RPCL (7%) 88.8% 77.9% 70.8%

The particularly poor CSF segmentation obtained by RPCL can be ex-

plained by its incorrect background cluster allocation. In fact, RPCL as-

signed 3 different units to the background pixels, that are those with the

gray-level that is most similar to the CSF, leading to a gapy segmentation

of the cerebro-spinal fluid (see Fig. 19.g). Conversely, CoRe converged

to the optimal cluster number, allocating a single unit to the background

pixels. The results of this experiment exemplify the difference existing be-

tween the two algorithms: RPCL has the tendency to allocate more units

to the densely populated regions of the input space (MW06). CoRe, on

the other hand, tends to reduce the overall units activation in correspon-

dence to the more frequent patterns, therefore producing a parsimonious

unit allocation in those regions of the feature space that are more densely

populated. In other words, taking into consideration our MR segmenta-

tion example, we see that the biggest portion of the feature space is related

to the image background: as a consequence, RPCL tends to over-allocate

clusters in that area, while CoRe selects only a single background feature

detector.

Figure 20 illustrates this phenomenon with respect to the segmenta-

tion of the 128 × 128 pool image (PHK+00). RPCL and CoRe clustering

were run with 20 initial seed points, with CoRe unit pruning disabled

to allow a fair comparison between the two cluster allocation strategies.

The results in Fig. 20.a and 20.b show that the majority of RPCL proto-

types is displaced in the area of the color component space that has the

highest density of data points and that corresponds to the table and the

background colors in Fig. 21.c and 21.d. Conversely, in the same area,

CoRe allocates only 2 units (see the components plot in Fig. 20.c and
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Figure 20: RGB Color distribution (⋆) and cluster centers for the pool image:
(a-b) RPCL prototypes (�) and (c-d) CoRe prototypes (◦) w.r.t. the RG and
GB components.
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(a) Original (b) k-means (c) RPCL 25 Ep.

(d) RPCL 100 Ep. (e) CoRe 10 Ep. (f) CoRe 23 Ep.

Figure 21: Segmentation of the pool image: (a) Original image, (b) refer-
ence k-means segmentation for k = 16, RPCL results after 25 (c) and 100 (d)
epochs, CoRe segmentation after 10 (e) and 23 (f) epochs.
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20.d). CoRe realizes a more uniform color quantization, identifying the

2 low density clusters at the top-right in Fig. 20.c that differentiate the

blue-stripe of the ball from the blue-powder on the dice and on the tip

of the pool stick (Fig. 21.e and 21.f). In Fig. 21.b it is shown a reference

segmentation realized using the k-means algorithm (with k = 16): again,

the majority of the prototypes concentrate on the denser area of the color

space, leaving few seed points quantizing colors different from green (e.g.

see the wrong dice color in Fig 21.b).

Figure 22 depicts the segmentation performance of four methods on

the MR image distorted by increasing levels of noise. RPCL and CoRe

have been initialized with 5 seed points, while fuzzy c-means was tested

with 4 (FCM4) and 5 (FCM5) initial clusters. The results in Fig.22 un-

derline the key role of a robust cluster identification process when deal-

ing with noisy data. In particular, the presence of an extra cluster, influ-

ences negatively the performance of FCM5 and RPCL as the level of noise

increase. Initially both methods are able to cope with a small amount

of noise, achieving a segmentation performance that is comparable with

that of FCM4. Soon FCM5 performance starts to deteriorate, while RPCL

shows an higher robustness due to the rival penalization, and its per-

formance drops consistently only above 9% noise. Conversely, a small

overestimation of the initial cluster number does not affect CoRe perfor-

mance. In particular, when noise is under 9%, CoRe has a classification

score that it’s comparable with that of FCM4, while, when the noise level

exceeds 9%, CoRe shows a superior performance thanks to the use of a

robust M-estimator in its error function.

3.4 A Kernel Based Loss Function for CoRe Clus-

tering

Previously, it has been shown how the CoRe loss formulation in (3.3) can

be used to study the robustness properties of CoRe clustering. Besides

this central theoretical issue, the loss formulation allows to analyze also

the convergence properties of a CoRe learning process. In order to pro-

ceed with this analysis we need to introduce an alternative formulation
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Figure 22: Comparison of classification scores on a noisy MR image for five
methods: fuzzy c-means with 4 seed points (fcm4), fuzzy c-means with 5
seed points (fcm5), RPCL and CoRe with 5 seed points.

for the CoRe error in (3.3) based on kernel induced distance metrics (STC04).

Before giving the details of such alternative formulation we briefly intro-

duce the fundamentals of kernel methods.

3.4.1 Introduction to Kernel Methods

Kernel methods are algorithms that exploit a convenient mapping of the

data onto an implicit higher dimensional space, i.e. the kernel or feature

space, to perform linear operations in the mapped space that result in non-

linear operations in the input space.

A kernel is a symmetric positive semi-definite function κ : (χ× χ) −→R that, given a set χ represents its elements as a pairwise comparison

matrix Kij = κ(xi, xj), where xi, xj ∈ χ. A fundamental theorem by

Aronszajn (Aro50) states that κ is a kernel on the set χ if and only if there

exist an Hilbert space Fκ and a mapping

Φ : χ→ Fκ (3.27)

such that, for all xi, xj ∈ χ

κ(xi, xj) = 〈Φ(xi),Φ(xj)〉. (3.28)
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Figure 23: Every kernel κ on the space χ determine a nonlinear map Φ to an
implicit feature space Fκ .

The embedding function Φ : χ → Fκ determines a nonlinear map from

the input space χ to the feature space Fκ, equipped with an inner product

〈·, ·〉 : Fκ × Fκ −→ R. Figure 23 graphically depicts the embedding from

the input space to the kernel space via the mapping function Φ.

In general, neither the nonlinear map Φ nor the embedding space Fκ

needs to be explicitly defined, since operations in Fκ can be expressed in

terms of the inner product 〈Φ(x1),Φ(x2)〉. Hence, they can be computed

by means of the kernel function alone, without explicitly knowing or us-

ing the mapping Φ. This approach allows to retain the power of the high

dimensional mapping without the computational burden of performing

operations with high dimensional vectors. Amongst the most commonly

used kernels in the literature are

• Gaussian kernel

κ(x1, x2) = e

(

−‖x1−x2‖2

σ2

)

(3.29)

• Polynomial kernel

κ(x1, x2) = ( 1 + 〈x1, x2〉)
d (3.30)

• Sigmoid kernel

κ(x1, x2) = tanh(α〈x1, x2〉 + β). (3.31)
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These kernels are all defined on vectorial data comprising real valued

components: however, provided that we know how to define a suitable

positive semi-definite symmetric function, we can apply kernels to objects

of various nature, including strings, sequences as well as more complex,

structured data, such as graphs.

Given that every kernel κ defines an Hilbert space Fκ characterized by

an inner product metric ‖·‖Fκ
, we can define a metric on Fκ as ‖Φ(x)‖2

Fκ
=

〈Φ(x),Φ(x)〉. Based on this representation, every algorithm defined in

terms of the Euclidean norm can be restated as a kernel based model:

such an approach is known in the literature as the kernel trick (SSM98). By

this means, the nonlinear map Φ induced by κ can be used to embed the

data onto an implicit high dimensional feature space Fκ, such that linear

operations in Fκ result in nonlinear operations in the input space.

Without loss of generality, in the remainder of the chapter we will con-

sider only normalized kernels ((GB01)). Such kernels implement a normal-

ization in the embedding space so that mapped vectors lie on a portion of

the unit hyper-sphere in the feature space. There is no loss of generality

in this approach, since normalized kernels can be built out of any kernel

function κ(x1, x2) by

κ̂(x1, x2) =
κ(x1, x2)

√

κ(x1, x1)κ(x2, x2)
. (3.32)

Normalized kernels can effectively be considered as similarity met-

rics. Consider, for instance, a generic kernel κ and the associated Hilbert

space norm ‖ ·‖Fκ
. Using the inner product definition of the norm we can

write the feature space distance between two samples as

d(Φ(x1),Φ(x2)) = ‖Φ(x1) − Φ(x2)‖
2
Fκ

= ‖Φ(x1)‖
2
Fκ

+ ‖Φ(x2)‖
2
Fκ

−2〈Φ(x1),Φ(x2)〉. (3.33)

Since we are dealing with normalized kernels it holds that ‖Φ(x)‖2
Fκ

= 1

for every x ∈ χ; then, (3.33) can be rewritten as

d(Φ(x1),Φ(x2)) = ‖Φ(x1) − Φ(x2)‖
2
Fκ

= 2 · (1 − κ(x1, x2)) (3.34)

Equation (3.34) means that a normalized kernel is a decreasing measure

of the feature-space distance between x1 and x2: hence, κ is a similarity
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measure. The equality in (3.34) will be fundamental, in the next section, to

derive the kernel based loss function for CoRe clustering and to analyze

its convergence behavior in Section 3.5.

There exist a vast literature of kernel-based learning models, such as

Support Vector Machines (SVM) or Kernel Principal Component Anal-

ysis (KPCA). In the latter years, several classical clustering algorithms

have been extended to the kernel approach by exploiting the kernel trick.

In (SSM98) it was first introduced the idea of a kernel k-means algorithm,

that exploit the kernel trick to produce a k-means clustering where the

vectors distances are measured in the feature space. This approach is able

to identify correctly nonlinearly separable clusters, by projecting them on

the kernel space and identifying the linearly separable clusters in the high

dimensional space. In (DGK04) this model has been generalized by defin-

ing the weighted kernel k-means model, that is shown to include spectral

clustering (NJW01) as a special case. Also the Rival Penalized Compet-

itive Learning (RPCL) algorithm (XKO93) has been extended the kernel

case (ZC04b). In (ZC04a), it is presented kernel based version of the fuzzy

c-means algorithm that exploits the kernel trick in a different way with re-

spect to the aforementioned models: instead of defining the cluster proto-

types as a weighted combination of the vectors Φ(xi), the kernel c-means

estimates the prototype vectors in the input space, thus retaining a clear

geometrical interpretation of the learning results in the input space.

3.4.2 Kernel Loss

The error formulation introduced in (3.3) can be restated by exploiting the

kernel trick to express the CoRe loss in terms of differences in a kernel-

induced feature space Fκ. First of all, we need to restrict CoRe activation

functions to be normalized kernels κi: the Gaussians used in CoRe clus-

tering are themselves normalized kernels, so we can straightforwardly

apply the kernel trick to (3.3).

Recall that, given a normalized kernel κ, we can write the feature

space distance between two samples x1 and x2 as

dFκ
= ‖Φ(x1) − Φ(x2)‖

2
Fκ

= 2 − 2κ(x1, x2).
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Figure 24: A kernel-based interpretation for CoRe attractive and repulsive
learning. The prototype c as well as the samples xw and xl are mapped to
the feature space Fκ: winners and losers are determined based on distances
in kernel space. The resulting attractive and repulsive updates, respectively
△c+ and △c− are modulated by the kernel defined similarity.

Now, if we take x1 to be an element of the input dataset, e.g. xk ∈ χ, and

x2 to be the prototype ci of the i-th CoRe unit, we can rewrite dFκ
in such

a way to depend on the activation function ϕi. Therefore, by applying

the substitution κ(xk, ci) = ϕi(xk, {ci, σi}), we obtain ϕi(xk, {ci, σi}) =

1− 1
2‖Φ(xk)−Φ(ci)‖2

Fκ
. Now, if we substitute this result in the formulation

of the CoRe loss in (3.3) yields

Je(χ,U) =
1

2

I∑

i=1

K∑

k=1

δik‖Φ(xk) − Φ(ci)‖
2
Fκ

+

+
1

2

I∑

i=1

K∑

k=1

(1 − δik)

[

RS
(e|χ|+k)
k

(

1 −
1

2
‖Φ(xk) − Φ(ci)‖

2
Fκ

)]2

.

(3.35)

Equation (3.35) states that CoRe minimizes the feature space distance be-

tween the prototype ci and those xk that are close in the kernel space in-

duced by the activation functions ϕi, while it maximizes the feature space

distance between the prototypes and those xk that are far from ci in the

kernel space (see the example in Fig. 24).
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3.5 Convergence Behavior of CoRe Clustering

3.5.1 Overview of the Proof

The intended aim of this section is to show that CoRe clustering is not

only characterized by strong biological foundations, whereas it posses in-

teresting properties in terms of asymptotic behavior. To achieve this, we

base our analysis on the error formulation introduced in (3.3) as well as

on the guidelines provided in (MW06) for studying the convergence be-

havior of Distance Sensitive Rival Penalized Competitive Learning (DSRPCL),

that is a generalization of the RPCL model discussed in Section 3.2.2.

The general idea of the analysis in (MW06) is to show that a DSR-

PCL process decreases the cost given by the error function to a local min-

imum, ending up with a number of weight vectors eventually falling into

a hypersphere surrounding the sample data, while the other prototypes

diverge to infinity. To the extent of our knowledge, there is no full mathe-

matical proof that an algorithm converges by identifying the correct num-

ber of clusters: in a sense, the existence of such proof would imply the

existence of a computable way of determining the true cluster number or,

in other words, that the bias-variance dilemma can be solved by applying

the same algorithmic process that is at the basis of the proof. Rather, the

analysis in (MW06) should be considered as a formal study of the general

asymptotic properties of the DSRPCL algorithm.

In this section, we present a convergence analysis for CoRe clustering

that founds on the DSRPCL approach, describing how CoRe satisfies the

three correctness properties defined in (MW06), that are

Separation nature Given G, a bounded hypersphere containing all the

sample data, then after sufficient iterations of the algorithm, each

prototype ci will finally either fall into G or stay outside G and never

enter back into G.

Correct division The number of the weight vectors inside the hypersphere

G should be equal to the number nc of actual clusters in the sample

data.
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Correct location The nc weight vectors will finally converge to, or locate

around, the centroids of the nc actual clusters.

The intuitive study proposed in (MW06) for DSRPCL is enforced with

theoretical considerations showing that CoRe pursues a global optimal-

ity criterion for the vector quantization problem. In order to do this, we

exploit the kernel interpretation of the CoRe loss given in Section 3.4 to

generalize the results presented in (MPGRLRGB02) for Euclidean vector

quantization models to kernel-based algorithms.

Starting from the error formulation in (3.3), we can derive the CoRe

learning equations for epoch e by applying gradient descent to minimize

the cost Je(χ,U) with respect to the parameters {ci, σi}. Notice that, in

the remainder of the chapter, we will consider the loss in (3.3) as being

decomposed into a winner and a loser dependent term, that is

Je(χ,U) = J win
e (χ,U) + J lose

e (χ,U) (3.36)

where

J win
e (χ,U) =

N∑

i=1

K∑

k=1

δik(1 − ϕi(xk)) (3.37)

and

J lose
e (χ,U) =

N∑

i=1

K∑

k=1

(1 − δik)(ϕi(xk)RSk)2. (3.38)

The prototype increment for the e-th epoch can be calculated as follows

△cei = αc

K∑

k=1

[

δikϕi(xk)
(xk − cei )

(σe
i )

2
+

−(1 − δik)

(

ϕi(xk)RS
(e|χ|+k)
k

σe
i

)2

(xk − cei )





(3.39)

where αc is a suitable learning rate ensuring that Je decreases with e and

δik is the indicator function for the set wink. Similarly, the spread update
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can be calculated as

△σe
i = ασ

K∑

k=1

[

δikϕi(xk)
‖xk − cei ‖

2

(σe
i )

3
+

−(1 − δik)(ϕi(xk)RS
(e|χ|+k)
k )2

‖xk − cei‖
2

(σe
i )

3

]

.

(3.40)

As one would expect, unit prototypes are attracted by similar patterns

(first term in (3.39)) and are repelled by the dissimilar inputs (second

term in (3.39)). The essence of the convergence analysis is to show that

the repetition suppression penalization is capable of deflecting a num-

ber of prototype vectors, possibly only the excessive ones, from the data

and that, after sufficient epochs, such repelled prototypes freeze in a po-

sition where the units cannot be winners for any sample. Moreover, we

will show that the repulsive term does not impair the convergence of the

prototypes that remains inside the data hypersphere G; rather, its effect

would be that of speeding up convergence by avoiding local minima of

the vector quantization term in the error function (3.3).

3.5.2 Separation Nature

To prove the separation nature of the CoRe process we need to demon-

strate that, given a a bounded hypersphere G containing all the sample

data, then after sufficient iterations of the algorithm the cluster proto-

types will finally either fall into G or remain outside it and never get into

G. In particular, those prototypes remaining outside the hypersphere will

be driven far away from the samples by the RS repulsion.

We consider a prototype ci to be far away from the data if, for a given

epoch e, it is in the loser pool for every xk ∈ χ. To prove CoRe separation

nature we first demonstrate the following Lemma.

Lemma 1 When a prototype ci is far away from the data at a given epoch e, then
it will always be a loser for every xk ∈ χ and will be driven away from the data
samples.

Proof The definition of far away implies that, given cei , ∀xk ∈ χ. i ∈ losee
k,

where the e in the superscript refers to the learning epoch. Given the
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prototype update in (3.39), we obtain the weight vector increment ∆cei at

epoch e as follows

△cei = −ασ

K∑

k=1

(

ϕi(xk)RS
(e|χ|+k)
k

σe
i

)2

(xk − cei ). (3.41)

As a result of (3.41), the prototype ce+1
i is driven further from the data.

On the other hand, by definition of the winner set in (2.20), for each of

the data samples there exists at least one winner unit for every epoch e,

such that its prototype is moved towards the samples for which it has

been a winner. Moreover, not every prototype can be deflected from

the data, since this would make the term J win
e (χ,U) in (3.36) grow and,

consequently, the whole Je(χ,U) will diverge since the loser error term

J lose
e (χ,U) in (3.3) is lower bounded. However, this would contradict the

gradient descent assumption that Je(χ,U) is non-increasing with respect

to the epochs e. Therefore, there must exist at least one winning proto-

type cel that remains close to the samples at epoch e. On the other hand,

cei is already far away from the samples and, by (3.41), ce+1
i will be fur-

ther from the data and won’t be a winner for any xk ∈ χ. To prove this,

consider the definition of wink in (2.20): for ce+1
i to be a winner, it must

hold either

1. ϕi(xk) ≥ θwin,

2. or i = argmaxj∈U ϕj(xk, λj).

The former does not hold because the receptive field area where the firing

strength of the i-th unit is above the threshold θwin does not contain any

sample at epoch e. Consequently, it cannot contain any sample at epoch

e + 1 since its center ce+1
i has been deflected further from the data. The

latter does not hold since there exist at least one prototype, i.e. cl, that

remains close to the data, generating higher activations than unit ui. As

a consequence, a far away prototype ci will be deflected from the data

until it reaches a stable point where the corresponding firing strength ϕi

is negligible.

Now, we can proceed to demonstrate the following
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Theorem 1 For a CoRe process there exist an hypersphere G surrounding the
sample data χ such that, after sufficient iterations, each prototype ci will finally
either (i) fall into G or (ii) keep outside G and reach a stable point.

Proof The CoRe process is a gradient descent (GD) algorithm on Je(χ,U),

hence, for a sufficiently small learning step, the loss decreases with the

number of epochs. Therefore, being Je(χ,U) always positive the GD pro-

cess will converge to a minimum J ∗.

The sequences of prototype vectors {cei} will converge either to a point

close to the samples or to a point of negligible activation far away from

the data. If a unit ui has a sufficiently long subsequence of prototypes

{cei} diverging from the dataset then, at a certain time, it will no longer

be a winner for any sample and, by Lemma 1, will converge at a point far

away from the data. The attractors for the sequence {cei} of the diverging

units lie at a certain distance r from the samples’ mean, that is determined

by those points x ∈ X such that a Gaussian centered in x produces a

negligible activation in response to any pattern xk ∈ χ (see Fig. 25), that

is

exp

(

−
‖xk − x‖2

σ2

)

≈ 0 ∀xk ∈ χ.

Hence, G can be chosen as any hypersphere surrounding the samples with

radius smaller than r.

On the other hand, since Je(χ,U) decreases to J ∗, there must exist

at least one prototype that is not far away from the data, otherwise the

J win
e (χ,U) term in (3.3) will diverge. In this case, the sequences {cei}

must have accumulation points close to the samples. Therefore any hy-

persphere G enclosing all the samples will also surround the accumula-

tion points of {cei} and, after a certain epoch E, the sequence will be al-

ways within such hypersphere.

In summary, Theorem 1 tells that the separation nature holds for a

CoRe process: some prototypes are possibly pushed away from the data

until their contribution to the error in (3.3) becomes negligible. Far away

prototypes will always be losers and will never head back to the data.

Conversely, some prototypes will converge to the samples, heading to a

saddle point of the loss Je(χ,U) by means of a gradient descent process.
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r

X

G

Figure 25: Separation property of the CoRe clustering process: a certain
number of prototypes remains close to the data, while other weight vectors
are driven far away from the samples. White triangles denote initial proto-
type positions, while black and grey triangles identify final positions of close
and far away prototypes, respectively. Small dotted ellipses depict the edges
of the neurons’ receptive fields (for clarity, only the receptive fields of the
far away units are shown). The far away prototypes have attractor points
roughly at a distance r from the dataset mean, that is to the lieu of the space
where the activation of CoRe units becomes negligible (i.e. ≈ 0), i.e. the
boundary of the hypersphere X. Hence G can be chosen as any hypersphere
surrounding the data and having radius smaller than r.

3.5.3 A Global Minimum Condition for Vector Quantiza-
tion in Kernel Space

Before stepping over to study the correct division and location properties,

we introduce a global optimality criterion for kernel vector quantization

problems that will be used to prove the non-distortive behavior of the

repetition suppression penalization.

The classical problem of hard vector quantization (VQ) in Euclidean

space is to determine a codebook V = v1, . . . , vN minimizing the total

distortion, calculated by Euclidean norms, resulting from the approxima-
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tion of the inputs xk ∈ χ by the code vectors vi. Here, we focus on a more

general problem that is vector quantization in kernel space. Given the

nonlinear mapping Φ and the induced feature space norm ‖ · ‖Fκ
intro-

duced in the section 3.4.1, we aim at optimizing the distortion

minD(χ,ΦV ) =
1

K

K∑

k=1

N∑

i=1

δ1ik‖Φ(xk) − Φvi
‖2

Fκ
(3.42)

where ΦV = {Φv1
, . . . ,ΦvN

} represents the codebook in the kernel space

and δ1ik is equal to 1 if the i-th cluster is the closest to the k-th pattern

in the feature space Fκ, and is 0 otherwise. It is widely known that VQ

generates a Voronoi tessellation of the quantized space and that a nec-

essary condition for the minimization of the distortion requires the code-

vectors to be selected as the centroids of the Voronoi regions (YZG92).

In (MPGRLRGB02), it is given a necessary and sufficient condition for the

global minimum of an Euclidean VQ distortion function. In the follow-

ing, we generalize this result to vector quantization in feature space.

To prove the global minimum condition in kernel space we need to ex-

tend the results in (Spa80) (Proposition 3.1.7 and 3.2.4) to the general case

of a kernel induced distance metric. Therefore we introduce the following

lemma.

Lemma 2 Let κ be a kernel and Φ : χ → Fκ a map into the corresponding
feature space Fκ. Given a dataset χ = x1, . . . , xK partitioned into N subsets
Ci, define the feature space mean

Φχ =
1

K

K∑

k=1

Φ(xk) (3.43)

and the i-th partition centroid

Φvi
=

1

|Ci|

∑

k∈Ci

Φ(xk), (3.44)

then we have

K∑

k=1

‖Φ(xk) − Φχ‖
2
Fκ

=

N∑

i=1

∑

k∈Ci

‖Φ(xk) − Φvi
‖2

Fκ
+

N∑

i=1

|Ci|‖Φvi
− Φχ‖

2
Fκ
.

(3.45)
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Proof Given a generic feature vector Φ1, consider the identity Φ(xk) −

Φ1 = (Φ(xk) − Φvi
) + (Φvi

− Φ1): its squared norm in feature space is

‖Φ(xk)−Φ1‖
2
Fκ

= ‖Φ(xk)−Φvi
‖2

Fκ
+‖Φvi

−Φ1‖
2
Fκ

+2(Φ(xk)−Φvi
)T (Φvi

−Φ1).

Summing over all the elements in the i-th partition we obtain

∑

k∈Ci

‖Φ(xk) − Φ1‖
2
Fκ

=
∑

k∈Ci

‖Φ(xk) − Φvi
‖2

Fκ
+
∑

k∈Ci

‖Φvi
− Φ1‖

2
Fκ

+

+ 2
∑

k∈Ci

(Φ(xk) − Φvi
)T (Φvi

− Φ1)

=
∑

k∈Ci

‖Φ(xk) − Φvi
‖2

Fκ
+ |Ci|‖Φvi

− Φ1‖
2
Fκ
.

(3.46)

The last term in (3.46) vanishes since
∑

k∈Ci
(Φ(xk) − Φvi

) = 0 by defini-

tion of Φvi
. Now, applying the substitution Φ1 = Φχ and summing up for

all the N partitions yields

K∑

k=1

‖Φ(xk) − Φχ‖
2
Fκ

=

N∑

i=1

∑

k∈Ci

‖Φ(xk) − Φvi
‖2

Fκ
+

+
N∑

i=1

|Ci|‖Φvi
− Φχ‖

2
Fκ

(3.47)

where the left side of equality holds since

N⋃

i=1

Ci = χ and
N⋂

i=1

Ci = ∅.

Using the results from Lemma 2 we can proceed with the formulation

of the global minimum criterion by generalizing the results of Proposition

1 in (MPGRLRGB02) to vector quantization in feature space.

Proposition 1 Let {Φv
g
1

, . . . ,Φv
g

N
} be a global minimum solution to the prob-

lem in (4.18), then we have

N∑

i=1

|Cg
i |‖Φv

g
i
− Φχ‖

2
Fκ

≥
N∑

i=1

|Ci|‖Φvi
− Φχ‖

2
Fκ

(3.48)
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for any local optimal solution {Φv1
, . . . ,ΦvN

} to (4.18), where {Cg
1 , . . . , C

g
N}

and {C1, . . . , CN} are the χ partitions corresponding to the centroids

Φv
g
i

=
1

|Cg
i |

∑

k∈C
g
i

Φ(xk)

and

Φvi
=

1

|Ci|

∑

k∈Ci

Φ(xk)

respectively, and where Φχ is the dataset mean in (3.43).

Proof Since {Φv
g
1
, . . . ,Φv

g

N
} is a global minimum for (4.18) we have

N∑

i=1

∑

k∈C
g
i

‖Φ(xk) − Φv
g
i
‖2

Fκ
≤

N∑

i=1

∑

k∈Ci

‖Φvi
− Φχ‖

2
Fκ

(3.49)

for any local minimum {Φv1
, . . . ,ΦvN

}. From Lemma 2 we have that

K∑

k=1

‖Φ(xk) − Φχ‖
2
Fκ

=

N∑

i=1

∑

k∈C
g
i

‖Φ(xk) − Φv
g
i
‖2

Fκ
+

N∑

i=1

|Cg
i |‖Φv

g
i
− Φχ‖

2
Fκ

(3.50)

and

K∑

k=1

‖Φ(xk) − Φχ‖
2
Fκ

=

N∑

i=1

∑

k∈Ci

‖Φ(xk) − Φvi
‖2

Fκ
+

N∑

i=1

|Ci|‖Φvi
− Φχ‖

2
Fκ
.

(3.51)

Since (3.49) holds, we obtain

N∑

i=1

|Cg
i |‖Φv

g
i
− Φχ‖

2
Fκ

≥
N∑

i=1

|Ci|‖Φvi
− Φχ‖

2
Fκ
.

3.5.4 Correct Division and Location

To evaluate the correct division and location properties we first analyze

the case when the number of units N is equal to the true cluster number

nc.
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Consider the CoRe loss decomposition in (3.36), where

J win
e (χ,U) =

nc∑

i=1

K∑

k=1

δik(1 − ϕi(xk))

must have, by definition, at least one minimum point. By applying the

necessary condition ∂J win
e (χ,U)/∂ci = 0, we can obtain a fixed point

estimate of the prototypes as

cei =

∑N
k=1 δikϕi(xk)xk
∑N

k=1 δikϕi(xk)
. (3.52)

When the number of prototypes equals the number of clusters, the fixed

point iteration in (3.52) converges by positioning each unit weight vector

close to the true cluster centroids. It can be shown that (3.52) approxi-

mates a local minimum solution of the kernel vector quantization prob-

lem in (4.18). To prove this, consider the CoRe loss formulation in kernel

space (3.35): focusing only on the winner dependent term we have that

J win
e (χ,U) =

1

2

nc∑

i=1

K∑

k=1

δik‖Φ(xk) − Φ(ci)‖
2
Fκ
,

where ci is estimated by (3.52).

Now, consider the kernel vector quantization problem in (4.18): a nec-

essary condition for loss minimization requires the computation of the

cluster centroids as

Φvi
=

1

|Ci|

∑

k∈Ci

Φ(xk). (3.53)

In general, computing analytically Φvi
requires to know the form and

definition of the implicit nonlinear mapping Φ, so as to be able compute

the sum in (3.53) and to solve the so-called pre-image problem (SMB+99),

that is determining the input space vector z such that

Φ(z) = Φvi
.

Unfortunately, such a problem is insolvable in the general case (SMB+99).

Rather then trying to compute the exact pre-image Φ(z) we can look for
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Φ(zt)
κ(xk, z

0)

κ(xK , z0)

κ(x1, z
0)

Ci

d(Φ(xK), Φ(z0)

d(Φ(xk), Φ(z0)

d(Φ(x1), Φ(z0)

Φvi

Φ(xK)

Φ(xk)

Φ(z0)

Φ(x1)

Figure 26: The actual centroid in feature space Φvi
is approximated by esti-

mating the zt vector in input space whose embedding Φ(zt) minimizes the
kernel induced distance from Φvi

. Again, feature space distances are com-
puted by means of kernels without needing to explicitly compute the map-
ping Φ. The initial and final position of the prototype are depicted as white
and gray squares, respectively. The black square identifies a plausible feature
space centroid, while white circles stand for the data samples.

an approximation, by seeking the input space vector z that minimizes

ρ(z) = ‖Φvi
− Φ(z)‖2

Fκ
, (3.54)

that is the feature space distance between the centroid in kernel space Φvi

and the mapping Φ(z) of its approximated pre-image (see Fig. 26).

Instead of optimizing ρ(z), it is convenient to minimize the distance

between Φvi
and its orthogonal projection onto the span Φ(z) ((SMB+99)),

that is
∥
∥
∥
∥

〈Φvi
,Φ(z)〉

〈Φ(z),Φ(z)〉
Φ(z) − Φvi

∥
∥
∥
∥

2

Fκ

= ‖Φvi
‖2

Fκ
−

〈Φvi
,Φ(z)〉2

〈Φ(z),Φ(z)〉
. (3.55)

Since CoRe uses normalized kernels, it holds ‖Φvi
‖2

Fκ
= 1 and 〈Φ(z),Φ(z)〉 =

1, hence the problem in (3.55) reduces to maximizing 〈Φvi
,Φ(z)〉2. To de-

termine the extremum we apply the gradient condition

〈Φvi
,Φ(z)〉

∂〈Φvi
,Φ(z)〉

∂z
= 0. (3.56)
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Substituting the centroid definition in (3.44) into the expression in (3.56)

and applying the kernel trick, allows to write the gradient in terms of the

kernel κ alone, obtaining the sufficient condition

0 =
∂〈Φvi

,Φ(z)〉

∂z
=

1

|Ci|

∑

k∈Ci

∂κ(xk, z)

∂z
=
∑

k∈Ci

κ′(xk, z)

|Ci|
(xk − z) (3.57)

where the last equality holds because κ is a Gaussian kernel. Solving

(3.57) by fixed point iteration yields

ze =

∑

k∈Ci
κ(xk, z

e−1)xk
∑

k∈Ci
κ(xk, ze−1)

(3.58)

that is the preimage estimate corresponding to the feature space centroid

Φvi
. Clearly this is the same as the CoRe prototype estimate obtained in

(3.52) for a Gaussian kernel centered in ze.

Notice that the indicator function δik in (3.19) is not null only for those

points xk for which unit ui was in the winner set. This does not ensure the

partition conditions over χ, since, by definition of wink, some points can

be associated with two or more winners. However, by (3.40) we know

that the variance of the winners tends to reduce as learning proceeds.

Therefore, using the same arguments exploited by Yair et al in their soft

competition scheme (YZG92), it can be demonstrated that, after a certain

epoch E, the CoRe competition will become a winner takes all process

where δik will be ensuring the partition conditions over χ.

Summarizing, the minimization of the CoRe winners error J win
e (χ,U)

generates an approximated solution to the vector quantization problem in

feature space in (4.18). As a consequence, the prototypes ci can be inter-

preted as local solutions satisfying the conditions of the global minimum

criterion in Proposition 1. Hence, by substituting the definition of Φχ

in the results of Proposition 1 we obtain that {c1, . . . , cnc
} is an approxi-

mated global minimum for (4.18) if and only if

nc∑

i=1

K∑

k=1

|Ci|

K
‖Φ(ci) − Φ(xk)‖2

Fκ
≥

nc∑

i=1

K∑

k=1

|C̃i|

K
‖Φ(c̃i) − Φ(xk)‖2

Fκ
(3.59)

holds for every {c̃1, . . . , c̃nc
} that are approximated pre-images of a local

minimum for (4.18).
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In summary, a global optimum for (4.18) should minimize the feature

space distance between the prototypes and the samples assigned to the

respective clusters, while maximizing the weight vector distance from the

sample mean, or, equivalently, the distance from all the data points in χ.

The loser component J lose
e (χ,U) of the kernel CoRe loss in (3.35) depends

on the term
(

1 −
1

2
‖Φ(ci) − Φ(xk)‖2

Fκ

)

that maximizes the distance between the prototypes ci and those xk that

do not fall in the respective Voronoi sets Ci. Hence, J lose
e (χ,U) produces

a distortion in the estimate of ci that pursues the global optimality crite-

rion except for the fact that it discounts the repulsive effect of the xk ∈ Ci.

In fact, (3.59) suggests that ci has to be repelled by all the xk ∈ χ. On

the other hand, we know that ci is a linear combination of the xk ∈ Ci:

applying the repulsive effect in (3.59) would subtract the contribution of

such xk ∈ Ci resulting in either the cancelation of the attractive effect

(which would be catastrophic) or in a simple scaling of the magnitude of

the learning step, without affecting the orientation of the estimate. Hence,

the CoRe loss makes a reasonable assumption discarding the repulsive

effect of the xk ∈ Ci when calculating the estimate of ci. Summarizing,

CoRe locates the prototypes close to the centroids of the nc clusters by

means of (3.52), escaping from local minima of the loss function by ap-

proximating the global minimum condition of Proposition 1.

So far, we have proved that CoRe satisfies the correct location prop-

erty whenever the number of units is equal to the actual cluster number.

Now, we need to study the behavior of Je(χ,U) as the number of units

N varies with respect to the actual cluster number nc. This is the part

of the analysis in (MW06) that relies less on formal arguments: rather,

it tries to show that the loss formulation is well-founded and produces

a rival penalization that counteracts the bias of the vector quantization

part without introducing distortions in the prototype location. With re-

spect to the CoRe loss, we have just given theoretically sound motivations

that the repetition suppression penalization does not introduce such dis-

tortion whereas RS has a positive effect since it deflects prototypes from

107



E
rr

or

# unitsnc

J
win

(a)

# units

E
rr

or

J
lose

nc

(b)

E
rr

or

# unitsnc

J
win + J

lose

(c)

Figure 27: Sketches of the behavior for the CoRe loss: the winner dependent
term (a) reduces as the size of the network becomes larger, hence producing
overfitting. The loser dependent term (b) grows with the number of units
falling into the data hypersphere G. As a consequence, the total error (c)
reaches a minimum when the number of identified clusters approximates
the true cluster number nc

local minima. Now, using the same motivations in (MW06) we show that

the joint effect of winner and loser error terms produces a cluster number

estimate that approximates the actual cluster number.

The winner dependent loss J win
e essentially measures the quantiza-

tion distortion when approximating the samples with the nearest proto-

type: clearly J win
e tends to reduce as the the number of units increases

(see the behavior in Fig. 27.a). At the same time, if the number of units

falling into G increases, so will do the loser dependent loss J lose
e (see Fig.

27.b). In particular, if the number of units falling into G is larger than nc

there will be a number of clusters that are erroneously split. Therefore,

the samples from these clusters are likely to produce an increased level of

error in J lose
e contrasting the reduction of J win

e . On the other hand, J lose
e

tends to reduce when the number of units inside G is lower than nc. This

however produces increased levels of J win
e since the prototype allocation

won’t match the underlying sample distribution. Hence, the full CoRe

error J win
e + J lose

e has its minimum when the number of units inside G

approximates nc (see Fig. 27.c), coherently with the correct division prop-

erty.

108



3.6 Conclusion

We analyzed two important theoretical aspects of the CoRe clustering al-

gorithm, that are robustness to noise and convergence. Founding on an

alternative formulation for the CoRe clustering error, we pointed out its

relationships with the theory of robust estimators, as well as the simi-

larities with state-of-the art robust clustering algorithms such as SCM

and RCA. The batch error formulation introduced in Section 3.2.1 em-

phasizes the role of CoRe as a robust version of RPCL, showing how

CoRe strengthens the rival penalization mechanism by exploiting robust

M-estimators to produce a learning process that is resistent to noise and

outliers in the data.

Throughout the experiments, we showed the fundamental role played

by robust estimation when addressing cluster number estimation from

noisy data. This is a key issue when dealing, for instance, with image

segmentation, where the number of homogenous areas in the image is

not known a-priori and has to be estimated from the pictures’ color-space

distribution. The experimental results showed that CoRe can estimate

the actual number of segmentation classes from MR images even if they

are strongly corrupted by noise, while the non-robust learning process

of RPCL can tolerate only low levels of data distortion: above such lev-

els RPCL fails to identify the actual cluster number, resulting in a strong

degradation of the task’s performance. The robustness issues pointed out

for RPCL and DSRPCL continue to hold also for the recent multi-agent

divide-and-conquer framework (Xu07) based on the rival penalization

mechanism: in particular, the loss function that has been defined for this

model mixes robust Gaussian functions with non-robust Euclidean met-

rics, resulting in estimators that fail to meet the robustness conditions on

the respective influence functions. For the sake of clarity, we point out

that the experiments were not intended to address specific techniques for

noise reduction in image segmentation. Rather, we pointed out the im-

pact of robust estimation with respect to the broad cluster number iden-

tification problem; however, in general, nothing prevents to extend the

CoRe loss formulation with application-dependent noise canceling terms,

109



e.g. penalty functions based on pixel continuity (ZC04a).

The simulation results in Section 3.3 suggest another peculiar prop-

erty of the CoRe model, apart from robustness. The CoRe algorithm, in

fact, tends to be extremely parsimonious when distributing prototypes in

the denser areas of the input space. In particular, CoRe does not show

the typical tendency of unsupervised vector quantization algorithms that

allocate units to portions of the input space proportionally to the number

of data points. As a consequence, CoRe can detect small-sized, low den-

sity clusters even in asymmetrical scenarios where there are clusters that

contain a large portion of the samples in the data set. This information

compression mechanism resembles much the behavior of repetition sup-

pression, where more frequent patterns tend to be coded by fewer units

sharply tuned to their preferred stimuli, and may serve as a correlate of

novelty detection.

The second part of the chapter presented a sound analysis of the con-

vergence behavior of CoRe clustering, showing how the minimization of

the CoRe error satisfies the properties of separation nature, correct divi-

sion and location (MW06). As the loss reduces to a minimum, the CoRe

algorithm is shown to converge allocating a number of prototypes that

approximates the actual cluster number. Moreover, it is given a sound

optimality criterion that shows how the CoRe learning process pursues

the global minimum of a vector quantization problem in kernel space. In

particular, the global minimum theorem suggests that the repetition sup-

pression penalization produces a local minima escape term that drives

the prototypes to the global minimum of the kernel vector quantization

loss. In other words, the repulsion produced by the repetition suppres-

sion mechanism does not introduce a distortion in the centroid identifi-

cation process, whereas it offers a means for escaping the local optima

of a vector quantization problem in the kernel space induced by the ac-

tivation function. Such escape term allows CoRe to reach a clustering

accuracy that is comparable to that of state-of-the-art kernel approaches

and motivates why CoRe achieves, as detailed in Section 2.6.3, a faster

convergence rate than RPCL although using a highly nonlinear loss for-

mulation.
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Besides the theoretical results regarding CoRe convergence, the global

minimum condition described in Section 3.5.3 offers interesting practical

implications with respect to the minimization of the vector quantization

distortion. In the next chapter, we introduce a novel adaptive learning

vector quantization algorithm that draws inspiration from Proposition 1

and we show how it addresses the sensitivity to initial condition and the

local minima issues of traditional unsupervised vector quantization mod-

els.
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Chapter 4

Expansive Competitive
Learning for Kernel Vector
Quantization

4.1 Introduction

The previous chapter has introduced a necessary and sufficient condition

for a local minimum of a kernel-based distortion metric to be a globally

optimal solution for a Vector Quantization (VQ) problem. In this chapter,

we draw inspiration from the same criterion to describe a novel neural

learning algorithm that addresses the local minima issue of unsupervised

vector quantization models.

Vector quantization is a technique that is used to approximate a multi-

dimensional input source with a finite number of representative vectors,

i.e. the codevectors. An unsupervised learning vector quantizer constructs

a finite collection of codevectors, i.e. the codebook, that minimizes the

expected distortion introduced by approximating the inputs by means

of the representative vectors. Learning a vector quantizer is a noncon-

vex optimization problem for which two necessary optimality conditions

have been defined, that are the centroid and the nearest neighbor conditions.

Based on these two conditions, (LBG80) proposed the Linde-Buzo-Gray
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(LBG) algorithm that performs a local search to minimize the total vec-

tor quantization error. However, the two conditions alone ensure only

convergence to a local minimum: this negatively affects the performance

of the LBG algorithm, that has the tendency of getting stuck into local

minima of the quantization error. Several models have been proposed to

address this issue: for instance, competitive learning-based approaches

such as Self Organizing Maps (SOM) (Koh82) and Neural Gas (MS91)

(NG) tackle the problem by optimizing the codebook by means of a pro-

cess of mutual competition between the codewords. Deterministic an-

nealing (RGF92), on the other hand, eliminates the sensitivity to the initial

configuration by smoothing the distortion measure to produce a convex

estimate of the vector quantization error, controlled by a temperature pa-

rameter. The optimization process first identifies the global minimum at

an high temperature, when the smoothed error is convex. Then, follow-

ing the annealing scheme the temperature is lowered and, at each phase,

the global minimum is tracked down until the temperatures reaches zero,

corresponding to the original un-smoothed quantization error.

A large group of algorithms tackles the local minima problem by di-

rectly addressing the dependance of LBG from initial conditions. En-

hanced LBG (PR01), for instance, defines a codeword utility measure that

is used to move the least effective codevectors to positions of higher util-

ity, while Adaptive Incremental LBG (SH06a) incrementally introduces

or remove codevectors to minimize a local measure of the quantization

error.

Munoz-Perez et al (MPGRLRGB02) presents an alternative approach

to the local minima issue: instead of addressing the dependance on the

starting conditions, they propose a sufficient condition for globally opti-

mal solutions of vector quantization problems in Euclidean space (that is

the basis of our kernel-based extension). Along with the theoretical re-

sult, (MPGRLRGB02) presents a competitive VQ algorithm, i.e. Expansive

Competitive Learning Vector Quantization (ECLVQ), that exploits the mini-

mum condition to define a repulsive codevector update term that favors

the convergence to the global optimum of the loss function.

The idea of exploiting repulsive terms in stochastic optimization re-
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sembles much RPCL and CoRe penalization schemes: however, while in

the latter two models repulsion is used to estimate the size of the code-

book, in ECLVQ it is used solely as a means for optimizing the choice

of the codevectors. Other models based on this latter use of repulsion

include, for instance, the Electromagnetism-like Method (cIBFS04), that uses

an attraction-repulsion mechanism to seek the global optimum of a population-

based optimization algorithm. The lotto-type competitive learning (LL00),

on the other hand, splits neurons into two classes comprising multiple

winner and loser units: unlike CoRe and RPCL, the repulsive effect ex-

erted on the losers is not used to determine the codebook size, whereas it

serves to favor the converge of the algorithm by avoiding dead neurons.

In this chapter, we generalize the ECLVQ algorithm to account for

generic distance metrics in Hilbert spaces: based on this idea, we present

an expansive competitive learning kernel vector quantization algorithm

that pursues the global minimum condition in feature space introduced

by Proposition 1 in Chapter 3. The remainder of the chapter is organized

as follows: in Section 4.2 we briefly recall the formalization of the vec-

tor quantization problem in Euclidean space, discussing popular related

work in the field, including the original ECLVQ algorithm. Section 4.3

formalizes the VQ problem in kernel space, introduced previously in Sec-

tion 3.5.3, and presents the Expansive Competitive Kernel Learning Vec-

tor Quantization (ECKLVQ) algorithm. Finally, in Section 4.4, we test the

performance of ECKLVQ on image quantization tasks.

4.2 Learning Vector Quantization

4.2.1 Definition

The classical problem of hard vector quantization in Euclidean space re-

sides in determining a mapping M : RM → V from the M -dimensional

Euclidean space RM to a set of N codevectors V = v1, . . . , vN . The vector

quantizer is chosen to minimize the average distortion measure

D(RM , V ) = E[d(x,M(x))]
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resulting from the approximation of the input x ∈ RM by the code vec-

tor M(x), where d(·) is usually chosen as the squared error distortion

d(x1, x2) = ‖x1 − x2‖2. The mapping M determines a partition of the

input space RM into N disjoint Voronoi regions C1, . . . , CN , such that

Ci = {x ∈ RM : M(x) = vi}. (4.1)

For a finite input dataset χ = {x1, . . . , xk, . . . , xK}, the VQ problem re-

duces to the minimization of the sample distortion

minD(χ, V ) =
1

K

N∑

i=1

∑

k∈Ci

‖xk − vi‖
2 (4.2)

where, for the sake of notational simplicity, we have used k ∈ Ci as a

short form for xk ∈ Ci.

A vector quantizer in Euclidean space is optimal if no other quantizer

has a smaller sample distortion (4.2): (YZG92) reports two necessary con-

ditions for global minimization of the VQ error in (4.2), that are

Condition 1 Nearest Neighbor (or Voronoi) Condition: For a given code-
book V = {v1, . . . , vN}, the optimal mapping M should be constructed in such
a way that

M(xk) = vi ⇔ ‖xk − vi‖ ≤ ‖xk − vj‖ (4.3)

holds for every vj ∈ V . Hence, the optimal partition {Ci} results in the Voronoi
condition

Ci = {xk ∈ χ : ‖xk − vi‖ ≤ ‖xk − vj‖∀j 6= i}, i = 1, . . . , N. (4.4)

Condition 2 Generalized Centroid Condition: For a given partition {Ci},
each codevector vi is chosen as the centroid of the Voronoi region Ci. For a finite
input set χ the centroid is calculated as the sample mean of the region, that is

vi =
1

|Ci|

∑

k∈Ci

xk,

where |Ci| is the cardinality of Ci.

Based on these two conditions, (LBG80) proposed a popular unsuper-

vised vector quantization algorithm known as LBG. This algorithm starts

115



with randomly initialized centroids, iteratively computing the Voronoi

regions in Condition 1 and updating the codevectors according to the for-

mula in Condition 2: this process is repeated until the centroids’ change

becomes negligible.

The two conditions guarantee solely that the local minimum of (4.2)

is pursued: consequently LBG leads to solutions that are locally optimal,

but that might not be globally optimal. In (PR01), the authors study the

performance of the LBG algorithm by analyzing how poorly chosen code-

word positions leads to locally optimal solutions. They identify poorly

positioned codevectors vi by means of an utility function

Ui =
Di

Dav

that measures how much the distortion of the i-th Voronoi region Ci, that

is

Di =
∑

k∈Ci

‖xk − vi‖
2,

departs from the average local distortion

Dav =
1

N

N∑

i=1

Di.

The ELBG algorithm (PR01) introduces a step in the LBG procedure that

pursues an equalization of the codewords’ utility, resulting in an equal-

ization of the contribution Di of the single Voronoi regions. In particular,

ELBG identifies low utility codewords and moves them in the Voronoi

region of those vectors that contribute more to the reduction of the quan-

tization error, i.e. those with an high utility Ui. This optimization step

has two effects on the Voronoi tessellation: on the one hand, it produces a

join between a low utility cell and its adjacent regions; on the other hand,

it splits an high utility Voronoi cell into two smaller partitions having,

possibly, utilities that are closer to 1 than in the original cell.

Grounding on the idea of finding good initial codewords’ positions

for LBG, (LVV03) proposes the global k-means algorithm. This model in-

crementally adds codevectors, positioning them through a deterministic
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global search procedure that requires to iteratively run the k-means al-

gorithm, each time selecting a different data sample as the codevector

initial position: the best solution out of those generated is retained and

the process is iterated with an additional cluster. More in detail, to ad-

dress vector quantization of K samples with codebook size N , global k-

means proceeds as follows: it starts with one codevector and positions it

at the optimal location, that is the sample mean. Then, it adds one more

codebook and selects its optimal position by running K iteration of the k-

means algorithm, each time initializing the new codevector as a different

data point xk. This process is iterated by keeping the solutions obtained

for codebook size n − 1 and positioning the n-th codevector at the best

solution generated in the K k-means runs. Although this algorithm gives

better results than LBG, it is very difficult to use in practice, even in its

optimized versions, due to the high computational complexity.

Drawing on the ideas of both ELBG and global k-means, (SH06a) in-

troduces the Adaptive Incremental LBG (AILBG). This algorithm incre-

mentally inserts and deletes codewords in the codebook, pursuing direct

equalization (i.e. without going through the definition of utility functions

Ui) of the local distortion of the Voronoi regions. The insertion of new

codevectors is done by means of a search procedure similar to that of

global k-means, although AILBG restricts the search space to the Voronoi

region of the current winner, thus reducing the computational effort with

respect to the original model. Additionally, AILBG deletes codevectors

with zero or minimal local distortion Di, since they don’t contribute sig-

nificantly to the minimization of the quantization error in (4.2).

4.2.2 Expansive Competitive Learning Vector Quantization

The ELBG, global k-means and AILBG algorithms address the local op-

timality issue of LBG from the point of view of identifying good initial

codevector positions. In order to do this, they resort to local search proce-

dures that are often computational intensive. Recently, (MPGRLRGB02)

have tackled the problem from a different perspective, proposing a vector

quantization approach that founds on a global optimality term character-

117



ized by a low computational complexity. In particular, the two necessary

conditions described in the previous section have been completed with a

third necessary and sufficient condition for a local minimum codebook to

be optimal, that is

Condition 3 Global Minimum Condition: A local minimum codebook V g =
{vg

1 , . . . , v
g
N} for the problem in (4.2) is optimal if

N∑

i=1

|Cg
i |‖v

g
i − x‖2 ≥

N∑

i=1

|Ci|‖vi − x‖2 (4.5)

for any local minimum codebook V = {v1, . . . , vN}, where x =
∑

K
k=1

xk

|χ| is the

dataset mean.

Basically, Condition 3 states that when the codevectors are a global

minimum solution to the problem in (4.2) then they are the prototypes

with larger variance. Based on this observation, (MPGRLRGB02) have

developed a neural VQ algorithm, i.e. Expansive Competitive Learning

Vector Quantization (ECLVQ), that tries to achieve global optimality by

using a repulsive codevector update term that complies with the property

in (4.5).

The ECLVQ network consist of a set of N units (neurons) ui, each

characterized by a prototype vi and by a WTA activation function

oi(xk) =

{
1 if i = argmaxj{(xT

k vj) −
1
2 (vT

j vj)}
0 otherwise.

(4.6)

The ECLVQ prototypes vi are updated iteratively to generate a global

minimum solution for the VQ problem in (4.2). The ECLVQ weight up-

date rule is given by

△vi(t+ 1) = oi(xk) (α(t) · (xk − vi(t)) − (1 − α(t)) · β(t) · x) (4.7)

where α(t), i.e. the parameter of attraction, is the learning rate controlling

the effect of moving the prototype vi of the winning unit ui towards the

current input pattern xk , while β(t), i.e. the parameter of repulsion, reg-

ulates the penalizing effect exerted by the dataset mean x. Hence, the
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weight update is the result of two forces: the first term in (4.7) attracts

the prototypes towards the input patterns, while the second term deflects

them from the center of gravity of the dataset χ, in accordance to the re-

sults of Condition 3. In (MPGRLRGB02) it is reported how the repulsive

term enables the ECLVQ algorithm to avoid local minima, achieving con-

sistently lower levels of VQ distortion than standard competitive learning

vector quantization.

In the previous chapter (see Section 3.5.3), we have already shown

how the results of Condition 3 can be extended to the general case of un-

supervised vector quantization in a kernel-induced feature space. In the

following, based on this generalized condition, we introduce the Expan-

sive Competitive Kernel Learning Vector Quantization (ECKLVQ) algo-

rithm, showing how it achieves superior vector quantization performance

with respect to ECLVQ, LBG and its optimized version ELBG and AILBG.

4.3 Expansive Competitive Learning for Kernel

Vector Quantization

4.3.1 Learning Vector Quantization in Kernel Space

The basics about kernel methods have already been discussed previously:

in this chapter we will essentially make use of the same concepts intro-

duced in Section 3.4.1. We recall that a kernel κ defines a feature space

Fκ, characterized by a metric ‖ · ‖Fκ
that can be calculated in terms of the

inner product κ(x1, x2) = 〈Φ(x1),Φ(x2)〉, where the mapping between

the input space and the feature space is realized by the implicit embed-

ding function Φ(·). For the sake of simplicity, as discussed in the previous

chapter, we focus solely on normalized kernels.

By means of the the identity

d(Φ(x1),Φ(x2)) = ‖Φ(x1) − Φ(x2)‖
2
Fκ

= 2 · (1 − κ(x1, x2))

introduced in (3.34), we can straightforwardly adapt the Euclidean vec-

tor quantization formulation in Section 4.2.1 to general kernel induced

distance metric. Given the non linear mapping Φ and the induced feature
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space norm ‖ ·‖Fκ
, the general kernel vector quantization (KVQ) problem

aims at minimizing the distortion

minD(χ,ΦV ) =
1

K

N∑

i=1

∑

k∈Ci

‖Φ(xk) − Φvi
‖2
Fκ

(4.8)

where ΦV = {Φv1
, . . . ,ΦvN

} is the kernel space codebook and {Ci} de-

fines a Voronoi tessellation in the feature space. The necessary global

minimum Conditions 1 and 2 can be adjusted to fit the kernel vector quan-

tization (KVQ) problem as follows

Condition 4 Kernel Nearest Neighbor Condition: For a given codebook
ΦV = {Φv1

, . . . ,ΦvN
}, the optimal mapping M should be constructed in such

a way that

M(Φ(xk)) = Φvi
⇔ ‖Φ(xk) − Φvi

‖Fκ
≤ ‖Φ(xk) − Φvj

‖Fκ
(4.9)

holds for every vj ∈ ΦV . Hence, the optimal partition {Ci} results in the
Voronoi condition

Ci = {Φ(xk) ∈ Fκ : ‖Φ(xk) − Φvi
‖Fκ

≤ ‖Φ(xk) − Φvj
‖Fκ

∀j 6= i} (4.10)

for all i = 1, . . . , N .

Condition 5 Generalized Kernel Centroid Condition: For a given partition
{Ci}, each codevector Φvi

is chosen as the centroid of the Voronoi region Ci. For
a finite set Fκ the centroid is calculated as the sample mean of the region, that is

Φvi
=

1

|Ci|

∑

k∈Ci

Φ(xk). (4.11)

As regards the Euclidean global minimum criterion in Condition 3,

it has already been proved to hold for kernel induced distance metrics in

Proposition 1 (see Section 3.5.3). Therefore, the sufficient global minimum

condition in kernel space states

Condition 6 Kernel Global Minimum Condition: A local minimum code-
book {Φv

g
1
, . . . ,Φv

g

N
} for the problem in (4.8) is optimal if

N∑

i=1

|Cg
i |‖Φv

g
i
− Φχ‖

2
Fκ

≥
N∑

i=1

|Ci|‖Φvi
− Φχ‖

2
Fκ

(4.12)
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for any local optimal solution {Φv1
, . . . ,ΦvN

}, where Φχ = 1
K

∑K
k=1 Φ(xk) is

the data set mean.

Several classical unsupervised learning vector quantization models

have been adapted to kernels by exploiting different ways to solve the

optimization of the dual, kernelized cost. In (SSM98), the authors pro-

posed the first kernel extension for the k-means algorithm, expressing

the codevectors as linear combinations of the samples projected in the

embedding space. In other words, the approach in (SSM98) assumes that

the codevectors lie in the span of the embedded dataset {Φx1
, . . . ,ΦxK

}:

thus, given the feature space centroid Φvi
it can be expanded as

Φvi
=

K∑

k=1

νikΦ(xk) (4.13)

where νik is the coefficient determining the contribution of the embedded

sample Φ(xk) to the prototype Φvi
. The squared distance between the

centroid Φvi
and a generic mapped sample Φ(x) can be written as

‖Φ(x) − Φvi
‖2 = ‖Φ(x) −

K∑

k=1

νikΦ(xk)‖2 = κ(x, x)+

− 2
K∑

k=1

νikκ(x, xk) +
K∑

k,l=1

νilνikκ(xl, xk)

(4.14)

where we have used the definition in (4.13) and the kernel trick to ex-

press the scalar product in terms of the kernel κ. The identity in (4.14)

can be used in the optimization of the kernel distortion (4.8) to obtain an

incremental update rule for the coefficients νik. In other words, instead

of learning an explicit codebook (either in input or in feature space), the

approach in (SSM98) learns a coefficient vector νi· whose components de-

termine the contribution of the single embedded patterns {Φx1
, . . . ,ΦxK

}

to each implicit codevector Φvi
. The same representation has been used

also in (HHB05) to introduce a kernel-based formulation for the fuzzy c-

means algorithm, while kernel Self Organizing Maps have been proposed

both as online (MF00) and batch (VR07) learning models.
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In our model, we take an alternative approach to codebook represen-

tation: instead of generating implicit codevectors as combinations of the

input samples projected in the embedding space, we explicitly estimate

them by solving the approximated pre-image problem (see Section 4.3.2),

hence obtaining actual prototypes in input space. Very similar in spirit to

this approach is the supervised Neural Gas proposed by (HSV05): this

algorithm extends standard NG to general distance metrics, i.e. includ-

ing kernel-based measures, with application to supervised learning vec-

tor quantization.

4.3.2 The Expansive Competitive Learning for Kernel Vec-
tor Quantization Algorithm

Based on the kernel global minimum condition described in the previous

section, we introduce the Expansive and Competitive Kernel Learning

Vector Quantization (ECKLVQ) algorithm, that extends the formulation

of ECLVQ (see Section 4.2.2) to feature space vector quantization. In par-

ticular, by exploiting the kernel trick and the identity in (3.34) we describe

the ECKLVQ learning equations only in terms of the kernel κ, without the

need of explicitly computing the nonlinear mapping Φ.

An ECKLVQ network consists of N competitive neurons ui. At each

time step, the units receive in input the current sample xk ∈ χ and calcu-

late their activation level by means of the following WTA rule

oi(xk) =

{
1 if i = argmaxj{〈Φ(xk),Φvj

〉 − 1
2‖Φvj

‖2
Fκ

}
0 otherwise

(4.15)

where Φvi
represents the feature-space prototype characterizing the i-th

neuron. The condition in (4.15) can be simplified by considering that

‖Φvj
‖2
Fκ

= 1 holds for every normalized kernel κ, thus obtaining

oi(xk) =

{
1 if i = argmaxj{〈Φ(xk),Φvj

〉}
0 otherwise

. (4.16)

Equation (4.16) essentially states that the ECKLVQ neurons project the

input sample xk into the embedding space Fκ induced by the kernel κ.
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The winning unit ui is the neuron whose prototype is closest to the em-

bedding of xk in the feature space, since, from (3.34), we have that

〈Φ(xk),Φvj
〉 = 1 −

1

2
· ‖Φ(xk) − Φvj

‖2
Fκ
.

In order to calculate 〈Φ(xk),Φvj
〉 by means of the kernel κ we need

to invert the mapping Φ so that we obtain the preimage vj , such that

Φ(vj) = Φvj
. Finding an analytical expression for vj requires to solve the

pre-image problem (SMB+99) which is, in practice, seldom possible. In fact,

the explicit formulation of the mapping Φ is, normally, not known and the

existence of the preimage vj is not ensured in general. As shown in Sec-

tion 3.5.4, rather than trying to find the exact preimage, we consider seek-

ing an estimated solution ṽj such that Φ(ṽj) closely approximates Φvj
.

First, we derive the update rules for the estimated prototype ṽj ∈ χ, by

applying gradient descent to minimize the distortion error in (4.8). Then,

we will show that the solution to the problem in (4.8) is a suitable approx-

imation for the preimage of Φvj
. For the sake of clarity, we point out that

the discussion reported from now onwards, is restricted to differentiable,

isotropic kernels, i.e. where κ(x1, x2) = κ(‖x1 − x2‖2).

The quality of the pre-image approximation strictly depends on the

method used to estimate it: in this work we refer to the approach by

(SMB+99) that uses gradient descent and fixed point iteration. This non-

linear optimization method can, potentially, suffer from local minima and

instability: for this reason, (KT04) proposed a non-iterative method in-

volving only linear algebra that directly finds the location of the pre-

image based on distance constraints in the feature space. In (ARS07),

on the other hand, the authors propose a pre-image estimation method

based on Nyström extension, while (BWS03) suggest to use kernel prin-

cipal component analysis and regression to learn pre-images. We employ

the approach in (SMB+99) since it allows a cleaner introduction of the

ECKLVQ algorithm and, based on the simulation results, it has a com-

petitive vector quantization performance: we plan, however, to study the

effect of different pre-image estimation approaches in future works.

Consider the approximation Φ(ṽj) ≈ Φvj
: the ECKLVQ activation can
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now be calculated as

oi(xk) =

{
1 if i = arg maxj{κ(xk, ṽj)}
0 otherwise.

(4.17)

where it has been used κ(xk, ṽj) = 〈Φ(xk),Φ(ṽj)〉. Now, the winning unit

ui is the neuron whose prototype embedding Φ(ṽj) is the closest to the

mapping of xk in the feature space. Similarly, applying the pre-image

approximation to the distortion error in (4.8) yields to

minD(χ, Ṽ ) =
1

K

N∑

i=1

∑

k∈Ci

‖Φ(xk) − Φ(ṽi)‖
2
Fκ

(4.18)

where Ṽ = {ṽ1, . . . , ṽN} is the set of codevectors in input space. In order

to solve the minimization problem in (4.18) we apply stochastic gradient

descent to D(χ, Ṽ ); using the substitution in (3.34) we can replace the

distance metric with the corresponding kernel, that is

‖Φ(xk) − Φ(ṽi)‖
2
Fκ

= 2 · (1 − κ(xk, ṽi)). (4.19)

The substitution in (4.19) yields to a reformulation of the problem in (4.18)

that is now restated as

maxD(χ, Ṽ ) =
1

K

N∑

i=1

∑

k∈Ci

κ(xk, ṽi) (4.20)

The update rules for the codevectors ṽi are obtained by differentiating

(4.20) with respect to the free parameters ṽi. The exact form of the learn-

ing equations depends from the definition of the kernel κ: we recall that,

in the following, we derive the ECKLVQ rules restricted to isotropic ker-

nels.

Given the distortion function D(χ, Ṽ ) in (4.20) we obtain the code-

vector update for the i-th unit by applying gradient ascent in the △ṽi

direction, that is

△ṽi =
∂D(χ, Ṽ )

∂ṽi

=
∑

k∈Ci

∂κ(xk, ṽi)

∂ṽi

=
∑

k∈Ci

κ′(xk, ṽi)(xk − ṽi) (4.21)
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where κ′ is the first derivative of the kernel and (xk − ṽi) is generated

by the Euclidean metric dependence κ(‖xk − ṽi‖2). In order to obtain a

competitive learning rule in the form of (4.7), we consider only the con-

tribution in (4.21) that depends on the input xk . Hence, the online (com-

petitive) update becomes

△ṽi(t+ 1) = oi(xk)α(t)κ′(xk, ṽi(t))(xk − ṽi(t)) (4.22)

where α(t) is the time-dependent learning rate such that α(t) → 0 as

t → ∞, in accordance with the typical convergence conditions of WTA

learning (YZG92).

The stochastic gradient ascent described so far seeks a codebook V =

{ṽ1, . . . , ṽN} of approximated preimages ṽi, that minimizes the distortion

in (4.18). In the following, we show that the preimages obtained by the

process in (4.21) and (4.22) are close estimates of the actual preimages

vi = Φ−1(Φvi
). Consider, for instance, the general problem of seeking an

approximated preimage z ∈ χ such that z minimizes the feature space

distance ‖φ − Φ(z)‖2
Fκ

with a given embedding φ ∈ Fκ. As it has been

shown in Section 3.5.4, rather than minimizing ‖φ− Φ(z)‖2
Fκ

, it is conve-

nient to minimize the distance between φ and its orthogonal projection

onto the span Φ(z) (SMB+99), that is
∥
∥
∥
∥

〈φ,Φ(z)〉

〈Φ(z),Φ(z)〉
Φ(z) − φ

∥
∥
∥
∥

2

Fκ

= ‖φ‖2
Fκ

−
〈φ,Φ(z)〉2

〈Φ(z),Φ(z)〉
. (4.23)

Given κ as a normalized kernel, it holds ‖φ‖2
Fκ

= 1 and 〈Φ(z),Φ(z)〉 = 1,

hence the problem in (4.23) reduces to maximizing 〈φ,Φ(z)〉2. Now, if

we chose φ to be the feature space centroid Φvi
then the maximization of

〈Φvi
,Φ(z)〉2 produces the preimage z that approximates most closely Φvi

.

To determine the extremum we apply the usual gradient condition

〈Φvi
,Φ(z)〉

∂〈Φvi
,Φ(z)〉

∂z
= 0. (4.24)

Using the centroid definition in (4.11) allows to evaluate the gradient in

(4.24) in terms of the kernel, obtaining the sufficient condition

0 =
∂〈Φvi

,Φ(z)〉

∂z
=

1

|Ci|

∑

k∈Ci

∂κ(xk, z)

∂z
=
∑

k∈Ci

κ′(xk, z)

|Ci|
(xk − z) (4.25)
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where the last equality holds since we are using Euclidean metric based

kernels. Using fixed point iteration to solve (4.25) yields to

z =

∑

k∈Ci
κ′(xk, z)xk

∑

k∈Ci
κ′(xk, z)

(4.26)

that is the preimage estimate corresponding to the feature space centroid

Φvi
. Clearly, this corresponds to the estimate obtained from the distor-

tion minimization condition in (4.21). In addition, the online competitive

rule in (4.22) is known to converge to the solution of (4.21) for an ap-

propriate choice of the learning rate α (SMB+99). Hence, the solution ṽi

generated by the distortion minimization process is a suitable preimage

approximate for the feature space centroid Φvi
.

The kernel-based competitive learning rule derived so far does not yet

exploit the global minimum criterion in Condition 6. Comparing the ex-

pression in (4.22) with the Euclidean competitive rule in (4.7) it follows

that we need to extend the formulation of the ECKLVQ rule by adding a

repulsive term that deflects the input-space prototype ṽi from the preim-

age of the feature space mean Φχ, defined in (4.11). Again, this requires

to solve an approximated preimage problem, where we seek for a zχ ∈ χ

such that ‖φχ − φ(zχ)‖2
Fκ

is minimum. If we apply the optimization pro-

cedure described above, we can derive the approximated preimage of φχ

by fixed point iteration as

zt+1
χ =

∑K
k=1 κ

′(xk, z
t
χ)xk

∑K
k=1 κ

′(xk, zt
χ)

(4.27)

where the estimation process stops when ‖zt+1
χ − zt

χ‖ ≤ ǫ.

The ECKLVQ competitive learning rule can, finally, be written as

△ṽi(t+ 1) = oi(xk) · (α(t) · κ′(xk, ṽi(t)) · (xk − ṽi(t)) +

−(1 − α(t)) · β(t) · κ(ṽi(t), zχ) · zχ) (4.28)

where zχ is the approximated preimage of Φχ resulting from (4.27). Again,

α(t) is the parameter regulating the attraction towards the current input

pattern xk, while β(t) is the parameter controlling the penalizing effect ex-

erted by the kernel-weighted estimate of the dataset mean. The repulsive

126



D

vL
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△v+
i
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vi
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Figure 28: The codeword update △vi is the result of a positive component v+

i

along the direction of the minimization of the distortion D and a repulsive
component v−

i that has a distortive effect with respect to the original local
minima direction.

effect is regulated by the kernel weighting term κ(ṽi, zχ), that determines

the strength of the repulsion based on the feature space distance between

the mean estimate zχ and the prototype ṽi. This choice is consistent with

the results Condition 6, since the repulsive effect tends to vanish as a pro-

totype maximizes its feature space distance from the estimated mean.

The attraction-repulsion dynamics is partly regulated by the choice of

the learning rates α and β: we allow α to be larger than β and to gradu-

ally decrease to zero slower than the repulsion parameter. In particular,

the attraction parameter follows a linear decay rule α(t) = α0(1 − t/T ),

where α0 ∈ [0, 1] is the initial learning rate and T is the maximum num-

ber of allowed learning epochs. Similarly, the repulsion parameter decay

follows

β(t) =

{
β0(1 − t/T0) if t ≤ T0

0 if t > T0

where β0 is the initial repulsion rate and T0 < T is the repulsion cancela-

tion epoch.

Figure 28 exemplifies the attractive △v+
i and repulsive △v−i updates

acting on a winner codevector vi. In particular, Fig. 28 represent a sce-

nario where the quantization error surface D comprises a local and a
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global minimum (depicted as darker areas) denoted by vL and vG, re-

spectively. The effect of the positive update △v+
i is to move the prototype

on the steepest descent direction with respect toD: as a result of this local

minimization step, the prototype vi might converge to the local minimum

vL. On the other hand, the negative reinforcement △v−i has a distortive

effect on the codevector update, that prevents vi from being trapped in the

local minimum. In a sense, the effect of the repulsive term plays the role

of classical neural network strategies for avoiding local minima in gra-

dient descent such as momentum and simulated annealing. A remark that

might rise consequently to this observation, is whether performance gain

has to be ascribed fully to the effect of the global minimum condition or if

it can be obtained as well with a generic repulsive term pointing towards

a random direction (i.e. similarly to a simulated annealing strategy). In

the experimental part, we will show that the quantization error reduction

of ECKLVQ is fully due to the global minimum condition, illustrating

how a random repulsive term does not produce significant performance

improvements with respect to a purely attractive vector quantizer.

Algorithm 2 summarizes the steps of the ECKLVQ process used in

the experimental evaluation in Section 4.4. In the following, we will fo-

cus on ECKLVQ networks characterized by Gaussian kernels κ(x, ṽi) =

exp (−0.5‖x− ṽi‖2/σ2), where the codevector ṽi is the mean of the i-th

Gaussian function having spread σ2. This particular kernel induces an

infinitely dimensional feature space and has nice properties of differen-

tiability, normalization and robustness to noise (STC04). We remark that

the general scheme described so far can be straightforwardly applied to

any differentiable kernel function and that can be used as an heuristic for

developing competitive learning algorithms in feature space even for non

differentiable kernels.

4.4 Experimental Evaluation

The effectiveness of the ECKLVQ approach is evaluated in image vec-

tor quantization, analyzing the effect of the introduction of the global

optimality term and showing how a kernel-based approach has signifi-
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Algorithm 2 ECKLVQ

Given: the dataset χ = {x1, . . . , xK}, the maximum number of learning epochs
T , the repulsion cancelation epoch T0, the initial learning rates α0 and β0, the
minimum estimate change ǫ and the network size N ;

t = 0;
repeat
t = t+ 1;
Compute the sample mean estimate zt

χ using (4.27);
until ‖zt+1

χ − zt
χ‖ ≤ ǫ

t = 0;
K = |χ|;
Initialize α(0) = α0 and β(0) = β0;
Randomly initialize the N prototypes v0

i ;
repeat

Generate a random presentation order for the patterns in χ;
for all xk ∈ χ do
t = t+ 1;
for i = 1 to N do

Calculate unit activation ot
i(xk) using (4.17);

end for
Calculate the winner unit uw s.t. w = arg maxj{κ(xk, v

t
j)};

Update the winner codevector vt
w using (4.28);

α(t) = α0(1 − t/(T ·K));

β(t) =

{
β0(1 − t/(T0 ∗K)) if t ≤ (T0 ∗K)

0 if t > (T0 ∗K)
;

end for
until t > T ∗K
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(a) Goldhill (b) Lena (c) Lake

Figure 29: Test images for the vector quantization task.

cant advantages with respect to LVQ in Euclidean space. All the trials

reported hereafter have been performed using ECKLVQ with Gaussian

kernels having the same spread σ2 (initialized as the data variance), initial

attraction parameter α0 = 0.5 and initial repulsion parameter β0 = 0.2.

Moreover, the repulsion cancelation epoch T0 is chosen to be slightly less

than a half of the total epoch number T , i.e. T0 = 0.4 · T .

First, to test the efficacy of the global minimum term, we considered

the quantization of three 513 × 513 graylevel images (see Fig.29), that

are Goldhill, Lena (both available in the BragZone repository1) and Lake

(downloaded from USC-SIPI database2). Three LVQ algorithms have been

applied to the quantization of the 3 × 3 subimages extracted from the

original pictures: the popular LBG algorithm has been used to determine

the baseline performance on the task, and ECKLVQ is compared with a

purely attractive Kernel LVQ (KLVQ) model obtained from (4.28) with

β = 0, that is without the effect of the global optimality term. Table 6 re-

ports the Mean Squared Error (MSE) for the experiments performed with

32 and 64 codevectors: each trial has been repeated 10 times and averaged

(standard deviations are reported in brackets).

The results in Table 6 show that the addition of the global minimiza-

tion term generates a significant advantage in terms of reduction of the

quantization error. In particular, the standard kernel quantizer KLVQ

1http://links.uwaterloo.ca/bragzone.base.html
2http://sipi.usc.edu/database/index.html
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Table 6: Mean Squared Error for LVQ on the Goldhill, Lena and Lake images.

32 Codevectors 64 Codevectors
LBG KLVQ ECKLVQ LBG KLVQ ECKLVQ

Goldhill 27.4 (.7) 34.8 (0) 22.4 (.2) 31.6 (0) 31.5 (0) 31.5 (0)
Lena 22.5 (.5) 22.2 (.5) 18.9 (.1) 20.1 (.4) 20.3 (.4) 16.5 (.1)
Lake 30.7 (.9) 29.7 (1) 26.4 (.2) 27.4 (.5) 27.4 (.6) 23.2 (.1)

achieves distortion errors that are close, or even higher than those ob-

tained by LBG, while ECKLVQ reaches significantly lower levels of quan-

tization error. Hence, the kernel itself (in KLVQ) does not produce a per-

formance gain, that is due, instead, to the presence of the ECKLVQ re-

pulsive term. It appears that both LBG and KLVQ solutions are trapped

in local mininima of the respective objective functions. The values of the

standard deviation (reported in brackets in Table 6) seems to confirm this

behavior: ECKLVQ has a stabler learning dynamics with smaller oscilla-

tions around the minimum, while both LBG and KLVQ show consistent

fluctuations. The Goldhill image (see Fig. 30.a) appears to be especially

difficult to quantize due to the higher number of details in the scene that

produce a more complex error quantization surface. The performance

of the KLVQ algorithm seems to be particularly affected, resulting in a

local minimum solution with a significantly higher MSE when 32 code-

books are used. On the other hand, the addition of the repulsive term in

ECKLVQ allows to avoid such local minima, achieving an image recon-

struction quality that is higher than that of the LBG algorithm (compare

the two reconstructed images in Fig. 30.b and 30.c).

To quantitatively assess the quality of the reconstruction produced by

ECKLVQ, we use the image quality index (QI) proposed by (ZB02). This

index models the distortion between the original and the reconstructed

image as a combination of three factors, that are loss of correlation, lu-

minance distortion and contrast distortion. The final quality index is the

result of the product of three components, each measuring one of the fac-

tors described previously. The three statistical features, i.e. linear corre-

lation, mean luminance proximity and contrast similarity, are not com-

puted globally; rather, they are measured locally using a sliding window
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approach and then combined together. The superior reconstruction re-

sult of ECKVLQ on the Goldhill image is confirmed numerically by the QI

measured using the code provided by the authors (ZB02)3: for instance,

LBG achieves a QI = 0.51, while ECKLVQ obtains QI = 0.66, where

higher QI values imply a better reconstruction quality.

As we have seen, the use of a kernel does not produce, per-se, a sig-

nificant performance gain. However, a kernel quantization algorithm

with a proper global minimization term can produce consistent advan-

tages with respect to standard Euclidean VQ. In particular, we expect the

ECKLVQ algorithm to be more effective than its Euclidean counterpart

ECLVQ when dealing with data with noise and outliers. In the second set

of simulations, we tested the effectiveness of the kernel generalization in

ECKLVQ with respect to the original Euclidean ECLVQ algorithm on the

513×513 Elaine image4 perturbed by 20% additive Gaussian noise and by

5% salt and pepper noise (see Fig. 32.a). Both ECLVQ and ECKLVQ have

been trained on the noisy data for 30 learning epochs: Fig. 31 shows that

ECKLVQ achieves a consistently lower mean squared error than ECLVQ

already on the training data. As a second step, the learned codevectors

have been used to reconstruct the original Elaine image: Fig. 32.c and

32.d shows the images produced by the two algorithms. Again, ECKLVQ

achieved a lower quantization error (MSE = 2.43) then the Euclidean

ECLVQ (MSE = 5.35). A fast visual inspection of the two images shows

that the quality of the reconstructed ECKLVQ picture is higher, since the

robust estimation of the Gaussian kernel produced a smother image with

less aliasing on the skin and hat areas (compared with the ECLVQ image

in Fig. 32.d).

The visual impression is confirmed by the QI measures: the ECLVQ al-

gorithm achieves an image quality of 0.72, while ECKLVQ obtained a QI

equal to 0.91. Figure 33 shows the quality map for the two reconstructed

pictures: white pixels identify areas where the QI is higher, while the

darker regions identify the corrupted portions of the images (i.e. with

low QI). As expected, the kernel-based quantizer has a superior recon-

3http://www.cns.nyu.edu/ ˜ zwang/
4USC-SIPI: http://sipi.usc.edu/database/index.html
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(a) (b)

(c)

Figure 30: The 513 × 513 Goldhill image (a) reconstructed by LBG (b) and
ECKLVQ (c).
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Figure 31: ECLVQ and Gaussian ECKLVQ mean squared error (MSE) during
training on the noisy Elaine image.

struction performance when dealing with noisy images and outlier data.

However, this is not the unique advantage of ECKLVQ with respect to

the original ECLVQ: in order to validate the robustness of the two mod-

els, we run several simulations on the quantization of the 3 × 3 blocks

of the original Elaine image, starting with different initial learning rate

values. Figure 34 depicts a significant sample of the behavior of the two

algorithms for differentα0 and β0, i.e. the attraction and repulsion param-

eters, respectively. The results in Fig. 34 show that the choice of the ini-

tial learning rates does not influence substantially the convergence of the

ECKLVQ algorithm, while the final quantization error of ECLVQ seems

to be strongly influenced by the initialization of the meta-parameters. As

a consequence, the ECLVQ learning rates have to be heuristically deter-

mined by trial and error5, while ECKLVQ shows to be robust also with

respect to the choice of the meta-parameters.

5Note that all the simulation results presented in this section have been obtained based
on the most advantageous setup for ECLVQ, i.e. using the initial learning rates α0 = 0.5

and β0 = 0.2.
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(a) (b)

(c) (d)

Figure 32: Application of ECLVQ and ECKLVQ to the quantization of the
Elaine image corrupted by 20% additive Gaussian noise plus 5% salt and
pepper noise: (a) the corrupted image used in the learning phase; (b) the
original Elaine image; (c) the ECKLVQ reconstructed image and (d) the
ECLVQ reconstructed image (best viewed in electronic format).
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(a) (b)

Figure 33: Quality map for the Elaine image reconstructed by ECKLVQ (a)
(Qi = 0.91) and ECLVQ (b) (QI = 0.72).
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Figure 34: Mean squared error on the original Elaine image quantization
with varying learning rates initialization: (a) ECLVQ and (b) ECKLVQ MSE
trajectories.
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(a) (b)

Figure 35: (a) Original Lena image and (b) ECKLVQ reconstruction (256
codewords and PSNR = 32.21).

The final set of simulations compare the gain produced by the ECK-

LVQ global optimality term with respect to the enhanced versions of the

LBG algorithm presented in Section 4.2. In particular, the quantization

quality of the 512 × 512 Lena image (see Fig. 35.a) is evaluated in terms

of the Peak Signal to Noise Ratio (PSNR), that is a measure used in im-

age compression to evaluate the reconstructed images after the encoding-

decoding cycle. The PSNR is defined as

PSNR = 10 log10

2552

1
N

∑N
i=1(o(i) − r(i))2

(4.29)

where o(i) identifies the graylevel of the i-th pixel of the original image,

while r(i) refers to the reconstructed image. Following the testbed de-

scribed in (PR01; SH06a), we extract 4 × 4 sub-images from the original

Lena, and perform VQ with 256, 512 and 1024 codevectors. As a first

step, we compare the performance of ECKLVQ with respect to the orig-

inal ECLVQ, the purely attractive kernel-based KLVQ and the baseline

LBG. Additionally, following the analysis in Section 4.3, we study the per-
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Figure 36: Comparison of PSNR for different vector quantizers on the 512 ×
512 Lena image.

formance of a modified ECKLVQ algorithm, named R-ECKLVQ, that uses

randomly generated repulsion directions in place of the dataset mean in

the global optimality term. This is intended to show whether the perfor-

mance increase is truly generated by the global minimum condition or if

it stems from a sort of annealing process that deflects the codewords from

local minima irrespectively of the chosen repulsion direction.

Figure 36 shows the comparison of the results obtained by the five

algorithms: ECKLVQ obtains the best reconstruction quality (i.e. higher

PSNR ratios). Again it is clear how such performance gain is not due

to the kernel alone, but is produced by the global optimality term. The

purely attractive KLVQ, in fact, obtains the worse result together with R-

ECLVQ: in particular, it seems clear how a random repulsion direction

does not produce any performance increase with respect to the results

of the KLVQ, thus confirming the global optimality hypothesis. Figure

36 shows that ECKLVQ has a consistently superior reconstruction ability

with respect to the original ECLVQ even when the data is not corrupted

by noise and outliers (see Fig. 35.b for an example of Lena reconstructed
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Table 7: Comparison of VQ performance on the 512 × 512 Lena image for
different codeword sizes.

Codewords PSNR (dB)
LBG ELBG AILBG ECKLVQ

256 31.60 31.94 32.01 32.21
512 32.49 33.14 33.22 33.48
1024 33.37 34.42 34.59 34.95

by ECKLVQ). Notice that, as the number of codewords grows, ECLVQ

obtains increasingly worse results than LBG. In our opinion, this is due to

the fact that LBG is a batch algorithm, i.e. the codevector update is per-

formed only at the end of the learning epoch, while ECLVQ is an online

algorithm and is, thus, more exposed than LBG to the local minima prob-

lem. This characteristics produces disruptive learning interference as the

codebook size increases and the quantization error surface becomes more

complex.

Table 7 shows a comparison of ECKLVQ with the original LBG and

two optimized algorithms, that are EILBG and AILBG. The proposed al-

gorithm achieves again the best reconstruction quality in terms on PSNR

on all the codebook sizes used in the test. In particular, ECKLVQ ob-

tains a significative performance improvement with respect to AILBG

and EILBG without resorting to time consuming local search operations

(see Section 4.2.2), by using a simple constant-time optimality term.

4.5 Conclusion

To prove the correctness of the cluster identification process in the CoRe

algorithm, we introduced, in Chapter 3, a global minimum criterion for

learning vector quantization problems in general kernel-induced spaces.

Kernels are known to produce implicit mappings of the data onto high di-

mensional spaces where linear operations result in nonlinear operations

in the input space. Such an high dimensional mapping generates com-

plex Voronoi surfaces that quantize the input space, allowing to discover

nonlinear data structures that would not show in the Euclidean space.
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Founding on these theoretical considerations, in this chapter we de-

rived an online competitive learning algorithm for a vector quantizer

based on Gaussian kernels. The simulation results proved the effective-

ness of the global minimum term, that allows the codevectors to escape

from the local minima of the quantization error and to achieve superior

performance with respect to optimized LVQ algorithm such as EILBG and

AILBG. Moreover, we have shown how the use of a distance measure in-

duced by a Gaussian kernel allows to deal more effectively with noisy

data, while enforcing the robustness of the algorithm with respect to the

choice of the meta-parameters.

In general, we advise that the adoption of the global minimum heuris-

tic might prove to be efficient in enhancing the performance of existing

kernel based learning vector quantizers and clustering algorithms, at the

cost of a small increase in the computational complexity of the algorithm.

In particular, the addition of the repulsive term requires to compute, for

each pattern presentation, an additional kernel distance between the win-

ner prototype and the dataset mean. The latter term has to be estimated,

e.g. by kernel-weighted fixed point iteration, only once at the beginning

of learning.

In this chapter, we presented some encouraging preliminary results on

small scale problems. However, we expect the performance increase to be

higher in more complex tasks involving highly non-linear error surfaces.

Some of these problems might not be solvable with the use of differen-

tiable kernels: hence the formal derivation steps developed in this chap-

ter might not be applicable. However, we think that the global minimum

condition can serve as a guideline to devise heuristic repulsive terms that

can enhance the performance on complex quantization and clustering

tasks, such as, for instance, those involving kernels for sequences and

structured data (e.g. strings, proteins, graphs, etc.) (XW05).
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Chapter 5

Simultaneous Clustering
and Feature Ranking by
CoRe Clustering

5.1 Introduction

So far, we have described how the repetition suppression mechanism can

be used to deal with the cluster number identification problem by sup-

pressing weakly selective units. In particular, we have focused our anal-

ysis, as well as the experimental evaluation, on problems characterized

by small to medium dimensionality. In this chapter, we study the appli-

cation of CoRe learning to high dimensional data, investigating how we

can extend the repetition suppression mechanism to deal not only with

cluster number identification, but also with feature selection.

The starting point of our analysis comes from the observation of a sim-

ple example comprising the identification of two Gaussian clusters. Con-

sider, for instance, the toy scenario depicted in Fig. 37.a: the plot shows

200 datapoints generated by two Gaussian sources in a bi-dimensional

space as well as the prototypes identified by the CoRe procedure in Algo-

rithm 1. As noted in Chapter 2, CoRe can estimate the actual cluster num-

ber positioning the prototypes close to the clusters’ centroids. The orig-
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inal two-Gaussian dataset has then been extended by adding 400 noisy

components generated by random sampling from a uniform distribution

in [0, 1]. Hence, the sample size has been increased from two to 402. Fig-

ure 37 shows the outcome of CoRe clustering on the extended dataset:

for the sake of clarity only the two relevant features corresponding to the

Gaussian covariates are shown. Obviously, CoRe is no more able to sep-

arate correctly the two clusters due to the interference produced by the

400 noisy components. However, it is clear that we can recover the orig-

inal data partition by isolating the two Gaussian covariates from the 400

random noise features conveying no class information. In other words,

the Gaussian covariates are significative features that enclose essential in-

formation concerning class separation, while the 400 noisy components

are irrelevant features whose only effect is worsening the chances of iden-

tifying the actual data partitions. Therefore, it would be of great interest

to extend CoRe’s penalization scheme to tackle selective suppression of

such irrelevant components, hence reducing their negative effect on clus-

ter identification when dealing with high dimensional data.

Cluster discovery in high dimensional data has became a major re-

search topic since the advent of high throughput data collection tools.

Consider, for instance, how DNA microarray technology has made avail-

able extensive collections of data comprising information related to the

expression levels of thousands of genes with respect to the most impor-

tant biological processes. The discovery of the patterns hidden in gene

expression data as well as the identification of the most informative por-

tions of this consistent collections are two open challenges that require

the development of innovative clustering models. The effectiveness of

classical algorithms is, in fact, highly limited by the the nature of the ge-

nomic datasets, that are characterized by a small cardinality (i.e. the num-

ber of samples) in a high dimensional space (i.e. the number of genes).

Typically, distance-based clustering algorithms such as k-means, fuzzy c-

means and rival penalized competitive learning cannot effectively deal

with high dimensional data, since they seek for areas where the samples

are especially dense (FMR05). In addition, it is likely that the vast ma-

jority of the genes in the samples are irrelevant for the realization of the
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Figure 37: Influence of redundant and noisy features on clustering perfor-
mance: (a) CoRe correctly identifies the two Gaussian clusters on a simple
2-dimensional scenario; (b) the addition of 400 noisy components prevents
CoRe from detecting the actual Gaussian clusters. The plots show only the
two relevant features corresponding to the Gaussian covariates; identified
centroids are marked in bold.
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biological processes that we are willing to discover: hence, the presence

of such noisy components has the sole effect of making cluster detection

more complicated (Din02). Recently, several algorithms have been pro-

posed to explicitly deal with the peculiarities of high dimensional data

and, in particular, with feature selection. With respect to the latter issue,

the approaches in the literature are usually differentiated into filters, that

select variables by ranking them contemporarily to data clustering, and

wrappers that exploit computationally intensive subset selection methods

to generate a set of candidate clustering solutions. The CLIFF algorithm

(XK01), for instance, tackles clustering of microarray data by exploiting

feature filtering to reduce the effect of irrelevant and redundant features.

Given a reference partition that approximates the correct clustering of

the samples, CLIFF ranks the features according to their discriminative

power, relevance to the reference partition, and non-redundancy with re-

spect to other relevant features. This ranking is then used to select the

features for the clustering phase, that is performed based on a normalized

cut algorithm. The two modules (i.e. clustering and feature selection) are

combined in such a way that a new reference partition is computed by

the clustering module and used to rank the genes; the selected features

are then used to generate a new data partition and the whole process is

iterated until convergence. Consensus clustering (MTMG03) is another

unsupervised learning algorithm that deals with high-dimensional data

clustering using a resampling approach: in particular, this model con-

structs a consensus matrix that measures the agreement of sample parti-

tioning between multiple runs of a traditional clustering algorithm, e.g. k-

means, SOM, etc. Similarly, (TZZR01) addresses sample clustering by an

interplay between sample partition detection and irrelevant gene prun-

ing. First, samples and genes are grouped into several small partitions

by conventional clustering methods. Then, the algorithm isolates repre-

sentative partitions characterized by an high internal coherence and by a

neat difference with respect to the other groups. Representative groups

are selected as candidate dataset partitions and used to guide the elim-

ination of irrelevant genes. The max-min cut hierarchical clustering al-

gorithm (Din02) takes a rather different approach, isolating those genes
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which show a large variance in the expression matrix and feeding them

to a divisive clustering module that generates the data partitions. No-

tice that this approach relies on the assumption that informative genes

exhibit larger variance than irrelevant features, which is not necessarily

true, especially in DNA microarray data.

In general, the majority of models dealing with high dimensional data

clustering and feature ranking are based on supervised learning, while

the few unsupervised models often exploit computationally intensive ap-

proaches such as resampling, ensemble methods or combinatorial searches

(FMR05) to obtain good clustering results (see (GE03) and (JTZ04) for ex-

tensive reviews on feature selection and high dimensional data cluster-

ing). Notice that, in the literature, there exist several model-based ap-

proaches to unsupervised cluster number estimation and feature selec-

tion (see the brief review in Section 2.3.2). However, model-based appro-

aches are rarely applied to high dimensional data, due to their intrinsic

fragility when dealing with insufficient data support to estimate the mo-

del parameters. In this chapter, we extend the CoRe clustering algorithm

introduced in Chapter 2 to deal with the cluster number identification

problem with high dimensional data: as a by-product of its execution, the

extended CoRe algorithm produces a relevance ranking that can be used

to select the most informative features of each cluster. In particular, we

show how repetition suppression can be used to reduce the effect of irrel-

evant and redundant features and to increase the clustering performance

when dealing with high dimensional feature spaces. In our intention, this

model should serve as a computationally simple tool (i.e. in the order of

magnitude of k-means or FCM) for the unsupervised exploration of high

dimensional data, producing incremental evaluations of the data parti-

tioning and features relevance as learning proceeds. Experimental evalu-

ation of the feature-wise CoRe performance is given in Section 5.3.1, with

respect to clustering and feature ranking with high dimensional DNA

microarray data, while in Section 5.3.2, CoRe is compared with Bayesian

model-based algorithms on a small dimensional dataset.

145



5.2 Learning to Suppress Irrelevant Features with

CoRe Clustering

This section describes the feature-wise extension of the CoRe learning

model described in Chapter 2: Section 5.2.1 summarizes the ideas under-

lying its development and introduces an alternative CoRe formulation

that highlights its interpretation as a competitive neural network model;

Section 5.2.2 focuses on the procedural details of the feature-wise CoRe

clustering algorithm and describes the learning equations obtained for

Gaussian Core units.

5.2.1 Feature-Wise Repetition Suppression

The CoRe clustering process described in Chapter 2 performs cluster iden-

tification without considering the relevance of the single features compos-

ing the input vectors neither in its decision procedure nor at the learning

stage. In particular, the repetition suppression mechanism, as well as the

stimulus predominance and the relevance factor parameters are defined

and used only on a per-unit basis. Figure 38 visually describes the com-

putation of the relevant variables in the original CoRe model: at each

time instant, a unit ui processes a vector xk computing a scalar response

ϕi(xk) that represents the unit activation. Similarly the units, or a subset

of them corresponding to the winner neurons, update the scalar stimulus

predominance νt
i and relevance factor ν̂t

i . We recall that the former pa-

rameter represents an estimate of the frequency of patterns similar to the

vector xk, while the latter factor measures the relevance of the i-th unit

in the neural coding of the data set. Finally, the stimulus predominance

νt
i , along with the unit response ϕi(xk) of the winner neurons are used

to compute the scalar RSt
k term that is used to suppress the activation

of the loser units. Obviously none of the mentioned terms differentiates

between the single components of the input vector; rather, they encode in-

formation on a per-unit basis, i.e. related to the patterns xk on the whole.

It is clear from the example in Fig. 37 that such an approach, which
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Figure 38: Scheme of a scalar CoRe unit.

flattens the information content of the single features, impairs CoRe per-

formance when dealing with high dimensional input spaces. However,

it is also clear that the CoRe model can be naturally extended by intro-

ducing the repetition suppression competition on a per-feature basis. In

our intention this should lead to an algorithm that, by means of the RS

mechanism, is capable of automatically establishing the unknown cluster

number, while ranking the input features to determine those that are the

most relevant for cluster membership, whilst suppressing the influence

of those components that are not significant.

The key intuition underlying the feature-wise CoRe extension is to

turn the scalar parameters of the model in Fig. 38 into vectorial terms:

Fig. 39 sketches this idea by means of the same graphical notation used

for the original algorithm. First of all, we differentiate between the fea-

ture activation vector ϕt
i = [ϕi1, . . . , ϕil, . . . , ϕid]

T and the scalar unit ac-

tivation ϕi. The former term identifies the activation of the i-th unit in

response to the single components xkl of the input vector, while the latter

determines the overall response of the unit to the pattern xk. The stimu-

lus predominance νt
i and the relevance factor ν̂t

i are both d-dimensional

vectors with components νt
il and ν̂t

il, respectively. The parameter νt
il mea-
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sures the mean firing frequency of the l-th component of the i-th proto-

type vector and is used, along with the feature activation ϕil, to compute

the repetition suppression vector RSt
k = [RSt

k1, . . . , RS
t
kl, . . . , RS

t
kd]

T .

The suppression component RSt
kl can be used to selectively penal-

ize the single features of the activation vector ϕi of loser neurons, result-

ing in a fine-grained update policy for the prototypes components cil (as

well as for the rest of the learned CoRe parameters, e.g. the variance

σi in Gaussian units). Essentially, the features that frequently generate

stronger responses to patterns ascribed to the prototype ci, i.e. those with

high νt
il, produce higher amounts of repetition suppressionRSt

kl. In other

words, the components that characterize more a given pattern repel the

prototypes of the other clusters more strongly than non selective features,

resulting in a better separation between the classes. By means of this pro-

cess, we obtain a neural coding where non-selective features have smaller

influence on the pattern classification than components that are specific

for a given cluster. The relevance vector ν̂t
i , on the other hand, provides

a measure of the significance of the single input features in determining

the patterns’ membership to the i-th cluster: the components ν̂t
il supply

a feature relevance ranking that can be used, for instance, to prune non-

significative input dimensions. Moreover, the vector ν̂t
i still provides in-

formation concerning the overall relevance of the i-th unit: this knowl-

edge can be used to prune excessive neurons from the network, likewise

the original CoRe algorithm described in Chapter 2.

The details of the feature suppression process described above can

be well understood by resorting to an alternative formulation that intro-

duces the CoRe learning model as a competitive neural network with lat-

eral inhibition. Within this context, a CoRe model is a two-layer neu-

ral network (see Fig. 40) where input nodes are fully connected to a

layer of output units U = {u1, . . . , uN} that compete with each other

through lateral connections. Each output unit ui is associated to a pro-

totype vector ci ∈ Rd, determining its preferred stimulus, and to an acti-

vation ϕi(xk) ∈ Rd that determines the feature-wise response to the input

pattern xk ∈ Rd. The activation ϕil(xk) is determined for each of the l

components of the d dimensional input vector xk (for the sake of sim-
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Figure 39: Scheme of a vectorial CoRe unit.

plicity we take the usual assumption ϕil ∈ [0, 1]); moreover, the overall

(scalar) unit output ϕt
i is calculated as a function f of the feature activa-

tion, i.e. ϕt
i = f(ϕt

i1(xk), . . . , ϕt
id(xk)) = f(ϕi(xk)). The definition of the

activation function as well as the form of the pooling function f deter-

mines the amount of interaction between the features. In the remainder

of the chapter we assume that the activation of a component l depends

solely on the l-th input feature, i.e. ϕt
il(xk) = ϕt

il(xkl): this choice corre-

sponds to the common assumption of feature independence. Typically,

the function f is chosen to return the sum or the average of the features’

activations.

The units in the outer layer are fully connected through a set a lateral

inhibitory connections that serve to convey the suppressive potential to

the loser neurons. More in detail, given an input pattern xk we first cal-
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Figure 40: CoRe neural network with lateral inhibition: intra-layer connec-
tions link the competitive neurons ui and propagate the Repetition Suppres-
sion. Lateral inhibition is applied selectively to the single input components
l, i.e. there are d lateral connections from neuron uj to neuron ui, each
weighted with a (possibly) different νt

il.

culate the feature-wise activation ϕi(xk) of each output neuron ui. Then,

following the CoRe competitive scheme in Chapter 2, we select the units

with the highest overall activation ϕi(xk) to form the winners pool, i.e.

wink = {i | ϕi(xk) ≥ θwin, ui ∈ U} ∪ {i | i = arg max
uj∈U

ϕj(xk)}, (5.1)

while the remainder of the neurons is inserted into the losers pool, that is

losek = {i | ϕi(xk) < θwin, ui ∈ U} \ {i | i = arg max
uj∈U

ϕj(xk)}. (5.2)

Notice that, while we calculate separated activations for each of the in-

put components, we determine winners and losers of the competition in

accordance with the overall unit activation. This aspect is fully coherent

with the repetition suppression behavior, where the winner neurons are

those that are more selective for the input pattern considered as a whole,

i.e. in all its features. The key difference concerns the update process that

now allows to treat each feature selectively, assigning different rewards

and penalizations depending on the components significance.
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Besides the scalar activation ϕi, each unit ui generates an inhibitory

output x−il for each of the l components of the d dimensional input, that is

x−il =

{
ϕil(xkl)ν

t
il if i ∈ wink

0 if i ∈ losek
(5.3)

where 0 ≤ νt
il ≤ 1 (i.e. the stimulus predominance in Chapter 2) repre-

sents the weight of the inhibitory connection for the l-th component (see

lateral links in Fig. 40). As discussed previously, the inhibitory weight

vector νt
i ∈ Rd measures the frequency of the patterns that are preferred

by the i-th unit. The value of its l-th component (at time t) is computed as

νt
il =

1

|χt|

∑

xk∈χt

min

(
ϕil(xkl)

ϕz(U,xk)l(xkl)
, 1

)

(5.4)

where χt is the set of patterns xk presented to the network up to time t

and z(U, xk) returns the index of most active unit for the pattern xk , that

is

z(U, xk) = arg max
uj∈U

{ϕj(xk)}. (5.5)

The expression in (5.4) recalls the original definition of the stimulus pre-

dominance in (2.22): notice that the normalization factor in (5.4) does not

ensure the condition νt
il ≤ 1 since the most active unit uz(U,xk) might

be characterized by feature responses that are weaker than in the other

units. As a consequence, there might exist some components l′ such that

ϕz(U,xk)l′ ≤ ϕil′ . Hence, we use the thresholding function min(·, 1) to en-

force the condition νt
il ≤ 1. In general, the denominator ϕz(L0,xk)l(xkl)

can be replaced with other suitable terms such as, for instance, the total

feature activation
∑

j ϕjl(xkl). Notice that, by using this latter normaliza-

tion, there is no more need of thresholding νt
il by means of the min(·, 1)

function, whose argument becomes the well known soft-max function.

The inhibitory output generated by the network is propagated to all

the competing neurons through the lateral connections and is accumu-

lated at each unit i, yielding

RSt
il(xk) =

1

|wink|

∑

j∈I−
i

x−jl (5.6)
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that is the l-th component of the repetition suppression generated at time

t for the pattern xk. The term |wink| represents the cardinality of the

winners pool for xk and is used to ensure 0 ≤ RSt
il ≤ 1, while I−i is the

set of the inhibiting connections for the i-th neuron. In a sense, the RSil

term can be considered as the net value of the inhibiting inputs in the

typical notation of the artificial neural network literature.

Following the CoRe model described in Section 2.4, we can exploit the

generated RSil inhibition to selectively suppress the prototype features.

For instance, by generalizing the results in (2.32) and (2.34) we can update

the l-th component of the prototype vector ci proportionally to

△ctil ≈ αc

[
δik − (1 − δik)ϕil(xkl)(RS

t
il(xk))2

]
ϕil(xkl)(xkl − ct−1

il ) (5.7)

where αc is the learning rate, while δik is the usual indicator function for

the winners pool, that is δik = 1 if i ∈ wink and δik = 0 otherwise. We

remark that equation (5.7) describes only an exemplar update rule: in Sec-

tion 5.2.2 we discuss in detail the parameter learning rules for Gaussian

CoRe units. Equation (5.7) suggests that CoRe’s lateral inhibition plays

a substantially different role with respect to the typical lateral connec-

tions in competitive learning. The latter ones are often used as part of the

competitive mechanism to determine the winner units for a given input

pattern, but they do not convey any learning signal to the neurons. ART

(CG88), for instance, uses the lateral inhibition to selectively shut-off com-

mitted neurons, allowing other nodes in the network to win the competi-

tion. CoRe, on the other hand, exploits the intra-layer links to propagate

a teaching signal that produces a long-term silencing of the neurons and a

suppression of the irrelevant input components. CoRe’s lateral connec-

tions have somewhat much more in common with SOM lateral connec-

tions, that are indeed used to convey positive learning to other nodes of

the network, although the two models differ significantly in the way they

determine the neurons that receive teaching signals through the lateral

connections (e.g. topographic proximity in SOM and activation sharp-

ness in CoRe).
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5.2.2 The Algorithm

To introduce the feature-wise CoRe clustering algorithm we consider the

same network setup used in Chapter 2, comprising Gaussian activation

functions with independent features. Hence, the l-th feature activation

for the i-th unit can be written as

ϕil(xkl|{cil, σil}) = exp

(

−
(xkl − cil)

2

2σ2
il

)

, (5.8)

while the unit activation corresponds to the multivariate Gaussian

ϕi(xk|{ci, σi}) = exp

(

−
d∑

l=1

(xkl − cil)
2

2σ2
il

)

. (5.9)

The terms ci and σi on the left-hand side of the identities in (5.8) and

(5.9) point out which parameters are learned by CoRe. Notice that in

(5.9), the function f (see Fig. 40), which pools the feature activations to

generate the scalar unit response ϕi, is implicitly chosen as the product of

the components ϕil.

The feature-wise stimulus predominance of unit ui at time t is the d-

dimensional vector νt
i = [νt

i1, . . . , ν
t
il, . . . , ν

t
id]

T , where d is the cardinality

of the input space χ and νt
il is the stimulus predominance restricted to

the l-th feature defined previously in (5.4). Similarly, the feature-wise

repetition suppression is a vectorRSt
k = [RSt

k1, . . . , RS
t
kl, . . . , RS

t
kd]

T that

applies different levels of penalization RSt
kl to each component l of the

losers activation function ϕi. Hence, by adapting (2.24) to comply with

the new formulation, we obtain

RSt
kl =

1

M |wink|

∑

i∈wink

νt
ilϕi(xkl|{cil, σil}) (5.10)

where the normalizing factorM can be omitted since we are dealing with

Gaussian activation functions (i.e. M = 1).

To specify the algorithm for feature-wise CoRe clustering we need to

derive the update rules for the unit parameters , i.e. λi = {ci, σi} for

Gaussian activation functions, such that ci is the d-dimensional prototype

and σi is a d dimensional vector containing the diagonal elements of the
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variance matrix of unit ui. Following the general CoRe framework in

Chapter 2, we can derive the update rules for the Gaussian parameters

by differentiating CoRe errors with respect to each parameter component

l = 1, . . . , d, that is

△λil =
∂Et

il,k

∂λil

for the loser units and

△λil =
∂E

t

il,k

∂λil

for the winners, where

Et
il,k =

1

2
(ϕil(xkl|λil)(1 −RSt

kl) − ϕil(xkl|λil))
2 (5.11)

and

E
t

il,k = (1 − ϕil(xkl|λil)). (5.12)

are the feature-wise loser and winner errors, respectively. In the remain-

der of the chapter, we will omit the explicit mention to λil in the argu-

ments of ϕil to ease the notation. The parameter increments for the units

ui ∈ losek are obtained by differentiating (5.11) with respect to cil and σil.

Hence, the prototype update at time t can be calculated as

△ctil,k =
∂Et

il,k

∂cil
= ϕil(xkl)RS

t
kl

∂(ϕil(xkl)RS
t
kl)

∂cil
(5.13)

where the differentiation on the right side can be expanded by chain rule

as

∂(ϕil(xkl)RS
t
kl)

∂cil
=
∂(ϕil(xkl)RS

t
kl)

∂ϕil(xkl)

∂(ϕil(xkl))

∂cil

=

(

RSt
kl + ϕil(xkl)

∂(RSt
kl)

∂ϕil(xkl)

)

·
∂(ϕil(xkl))

∂cil

= RSt
klϕil(xkl)

(xkl − cil)

σ2
il

(5.14)

in which we have used
∂(RSt

kl)
∂ϕil(xkl)

= 0 if ui ∈ losek at time t (follows from

the definition of RS in (5.10)). Substituting the results of (5.14) in (5.13)
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we obtain

△ctil,k =

(
ϕil(xkl)RS

t
kl

σil

)2

(xkl − cil). (5.15)

Similarly, the spread update at time t can be calculated as

△σt
il,k =

∂Et
il,k

∂σil

= ϕil(xkl)RS
t
kl

∂(ϕil(xkl)RS
t
kl)

∂σil

=
(
ϕil(xkl)RS

t
kl

)2 (xkl − cil)
2

σ3
il

(5.16)

while the parameter increments for the units ui ∈ wink can be written as

follows

△ctil,k =
∂E

t

il,k

∂cil
= −ϕil(xkl)

(xkl − cil)

σ2
il

(5.17)

△σt
il,k =

∂E
t

il,k

∂σil

= −ϕil(xkl)
(xkl − cil)

2

σ3
il

. (5.18)

The update rule for the unit parameters λt
i = (cti, σ

t
i) is

λt
i =

{

λt−1
i − αlose

λ △λt
i,k for i ∈ losek

λt−1
i − αwin

λ △λ
t

i,k for i ∈ wink

(5.19)

where αwin
λ and αlose

λ are the learning and de-learning rate, respectively,

with αwin
λ ≫ αlose

λ .

Algorithm 3 describes feature-wise CoRe clustering using pseudo-code:

the cluster number identification process is, essentially, the same described

for the original model (see Algorithm 1). Initially, a number units is gen-

erated and, at each pattern presentation, we compute the unit activations

and update the parameters on a per-feature basis; if the relevance factor

of a unit falls below a predefined threshold θpr−u then the unit is pruned

from the network. As described in Chapter 2, this process is iterated un-

til there is a residual RS competition between the units, measured by the

Mean Applied Repetition Suppression (MARS) score. The original MARS

definition in (2.39) is updated to comply with the current feature-based

scenario, yielding

MARSt =
1

|χt|

|χt|
∑

k=1

∑

i∈losek

d∑

l=0

RSt
kl · ϕil(xkl)

2

d
. (5.20)
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Algorithm 3 Feature-wise CoRe Clustering

Given: the dataset χ, the winners threshold θwin, the unit pruning thresh-
old θpr−u, the dimension pruning threshold θpr−d and the network size
N

Set t = 0, θdecay = 1 − 1
K

, νt
i = 1 and ν̂t

i = 1;
Randomly initialize the N prototypes cti;
Initialize (σ0

i )2 using (2.38);
repeat

Generate a random presentation order for the patterns in χ;
for all xk ∈ χ do
t = t+ 1
for i = 1 to N do

Calculate feature activation ϕt
il(xkl) = exp

(

− (xkl−cil)
2

2σ2

il

)

;

Calculate unit activation ϕt
i(xk) = exp

(

−
∑d

l=1
(xkl−cil)

2

2σ2

il

)

;

Update wink, losek and wint
ui

;
end for
for i = 1 to N do

Update νt
i using (5.4);

if i ∈ wink then Update ν̂t
i using (5.21);

else Apply the relevance factor decay ν̂t
i = θdecay · ν̂t−1

i ;
end if
Compute the repetition suppression RSt

k using (5.10);
end for
for i = 1 to N do

if i ∈ wink then Update cti and σt
i using the increments in (5.17)

and (5.18);
else Update cti and σt

i using the increments in (5.15) and (5.16);
end if
if ν̂t

i ≤ θpr−u for all l = 1, . . . , dt then
Prune the unit ui;
N = N − 1;

end if
if ν̂t

i ≤ θpr−d for all i = 1, . . . , nt then
Remove the l-th feature from all the units;
d = d− 1;

end if
end for

end for
until convergence
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So far, we have discussed mainly the process for identifying the clusters

number as well as to selectively update the components of CoRe param-

eters. However, our extension wouldn’t be complete without re-defining

the relevance factor in (2.27). The feature significance for the unit ui is

measured by the vector ν̂t
i = [ν̂t

i1, . . . , ν̂
t
il, . . . , ν̂

t
id]

T where ν̂t
il is the rele-

vance of the l-th feature for the i-th prototype and is defined as follows

ν̂t
il =

1

νt
il|χt|

∑

xk∈wint
ui

{
ϕil(xkl)

ϕz(wink,xk)l(xkl)

}0 (5.21)

where

{v}0 =

{
0 v > 1
v v ≤ 1

. (5.22)

The term z(wink,xk) in (5.21) follows the definition in (5.5), while

wint
ui

refers to the set of patterns xk ∈ χt for which unit ui was in the

winners pool, i.e. wint
ui

= {xk | ϕi(xk) ≥ θwin, xk ∈ χt}. The function

{·}0 in (5.22), flattens its argument to zero if it exceeds 1. The rationale

behind this choice is to penalize the relevance of the l-th component of a

prototype ci whenever it produces an high feature activation ϕil(xkl) in

correspondence to a low feature activation ϕjl(xkl) in the unit uj that is

the maximally active neuron for the pattern xk, i.e. j = z(wink, xk) (see

Fig. 41 for a graphical interpretation). This process implicitly considers

improper responses all those feature activations that do not correspond

to highly active features in the maximally responsive unit. In this sense,

the output of the best matching neuron becomes, itself, an endogenous

training signal.

The vector ν̂t
i ∈ Rd defines a measure of relevance that can be used to

determine which prototype components characterize best the input pat-

terns assigned to the i-th neuron. The feature relevance can be used,

on the one hand, to help profiling the data clusters discovered by the

CoRe algorithm and, on the other hand, to prune irrelevant or noisy data

components. For instance, the same relevance-based strategy used for

unit pruning can be applied to select a set of significant components. In

Algorithm 3, the features whose relevance factor falls below the thresh-

old θpr−d for all the units are considered irrelevant and are discarded.
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Figure 41: Graphical interpretation of relevance factor calculation in feature-
wise CoRe. Darker gray-levels identify increasing levels of feature and unit
activation: the most responsive unit uj is identified by the darkest color. The
term △ν̂il represents the relevance factor increment produced in unit ui by
the current input xk. Notice how the increment of the 5-th feature is flat-
tened to 0 by the function {·}0 since the unit uj , which is the most selectively
tuned to xk, has a low 5-th feature activation ϕj5 (bottommost dashed lines).
Conversely, the relevance of the 3-rd feature is reinforced proportionally to
ϕi3 because the 3-rd component of the activation function in uj follows a
similar activation pattern (see the topmost dashed lines).

Alternatively, we can opt for an ex-post evaluation of the feature rele-

vance, where component pruning is not performed incrementally. In

other words, the relevance factor is updated throughout training, but the

feature selection step is performed only at the end of the training phase,

e.g. by applying a top-k selection with respect to the relevance rank. We

would like to remark that the process of feature and unit relevance rank-

ing is performed incrementally during learning, irrespectively of which

feature selection mechanism is implemented. Hence, CoRe can be a suit-

able tool for performing human supervised visual explorations of high

dimensional data, where the estimate of cluster and feature relevance is

incrementally refined during learning and is continuously made available
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Figure 42: Two Gaussian with 400 noisy components example: (a) original
CoRe clustering; (b) feature-wise CoRe. The extended algorithm is able to
identify the relevant input components, pruning the 400 noisy features and
recovering the original clustering shown in Fig. 37.a.

to the user throughout the whole data analysis process.

Figure 42 compares the solutions generated by the original and the

feature-wise CoRe algorithm on the toy example introduced in Section

5.1: clearly, the latter algorithm is able to recover the two original Gaus-

sian clusters by isolating the 400 noisy components. In particular, Figure

42.b has bee obtained with the incremental feature pruning process de-

scribed in Algorithm 3. However, it is interesting to note that the same re-

sults can be obtained with incremental pruning disabled: Figure 43 shows

the feature ranking obtained in this scenario. CoRe is able to isolate the

first two components, i.e. those corresponding to the Gaussian covari-

ates, as being the only highly relevant for cluster membership (see the

bottommost graphs in Fig. 43 for a zoomed plot of the first 50 features).

5.3 Experimental Evaluation

In this section we evaluate the effectiveness of the extended CoRe algo-

rithm. In particular, Section 5.3.1 tests the performance of the model when

dealing with sparse data in high dimensional space, while Section 5.3.2

studies how CoRe can be used to analyze a recently published breast can-
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Figure 43: Feature relevance for the two gaussian example: (a) and (b) plot
the relevance of the 402 components of cluster 1 and 2, respectively; (c) and
(d) show a detail of the first 50 components.
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Table 8: CoRe meta-parameters

Description Name Value

Winners threshold θwin 0.9
Unit pruning threshold θpr−u 0.005

Dimension pruning threshold θpr−d 0.01
Winners’ prototype learning rate αwin

c 0.05
Winners’ variance learning rate αwin

σ 0.0005
Losers’ prototype learning rate αlose

c 0.005
Losers’ variance learning rate αlose

σ 0.0001

cer case-study (ABQ+06) with the intent of discovering tumoral profiles

characterized by different disease dynamics, exploiting CoRe’s feature

ranking to gather insight into the markers that best describe the discov-

ered bio-profiles.

5.3.1 High-dimensional Data Clustering

DNA microarray analysis is one of the principal sources of high through-

put data in high dimensional space. It is therefore natural the we present

a first assessment of the feature-wise CoRe clustering performance on

consolidated synthetic and real gene expression data collected with DNA

microarrays. All the results described in this section have been obtained

with Gaussian CoRe units using the procedure described in Algorithm

3. The same meta-parameters and convergence condition described in

Chapter 2 are employed: only the definition of the MARS score has been

slightly adjusted in (5.20) to comply with the feature wise scenario. The

meta-parameters choices are summarized in Table 8; the initial network

size has been set toK = 30, which results from a trade-off between choos-

ing an overestimation of the actual class number and keeping the execu-

tion time limited. All trials have been repeated 10 times and the results

averaged.

First, to test the effectiveness of the feature relevance ranking, we con-

sidered the Simulated6 (MTMG03) dataset, comprising 60 artificial sam-

ples consisting of 600 genes and that is known to be partitioned in 6 clus-

161



ters of various sizes. This dataset has been specifically designed to have

clusters that are characterized by known subsets of significant compo-

nents, i.e. the gene markers, with varying degree of differential expres-

sion between the classes. In particular, the dataset can be partitioned

into 6 classes consisting of 8, 12, 10, 15, 5 and 10 samples, respectively,

each marked by 50 distinct genes uniquely up-regulated for that class

(MTMG03). In addition, it contains 300 noisy genes not ”coding” any

particular class.

Table 9 describes the clustering performance in terms of the Adjusted

Rand Index (HA85), that is

r =

∑

ij

(
nij

2

)
−
[
∑

i

(
ni

2

)∑

j

(
nj

2

)]

/
(
K
2

)

1
2

[
∑

i

(
ni

2

)
+
∑

j

(
nj

2

)]

−
[
∑

i

(
ni

2

)∑

j

(
nj

2

)]

/
(
K
2

)

where nij is the number of samples from the i-th class that have been as-

signed to cluster j, ni denotes the number of items members of class i and

nj denotes those that are members of cluster j, whileK is the dataset size.

The Rand index ranges between 0 and 1, where 1 corresponds to the per-

fect agreement between the two partitions, while 0 matches the expected

value for two random partitions. The use of the Rand index is motivated

by the fact that it allows to confront the performance of clustering algo-

rithms even when they estimate a different cluster number for the same

dataset (see the results in Table 9).

Feature-wise CoRe clustering is compared with agglomerative Hier-

archical Clustering (HC) with single linkage, that is a popular tool for the

unsupervised analysis of high dimensional data, mainly because of its vi-

sualization properties and its ability to provide multi-resolution views of

the dataset. The HC model is, originally, not committed to identifying a

specific number of clusters, whereas it is often used together with valid-

ity indices to obtain a cluster number estimate: the results in Table 9 have

been obtained by hierarchical clustering in conjunction with the GAP

statistics. The k-means algorithm is used to provide a baseline perfor-

mance for iterative algorithms: in this case the estimated cluster number

was chosen equal to the actual number of classes in the data. Moreover,

we compare CoRe’s performance with Consensus Clustering (MTMG03):
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Table 9: Estimated number of clusters N and classification accuracy r

(Rand index) obtained by feature-wise CoRe, k-means, hierarchical cluster-
ing with GAP statistics (HC), consensus clustering with hierarchical clus-
tering (CCHC) and self organizing maps (CCSOM ) ( C identifies the actual
cluster number).

Simulated6 Leukemia St. Jude Lung
C = 6 C = 3 C = 6 C = 4+

Algorithm N r N r N r N r

k-means 6 .962 3 .419 6 .834 4 .339
HC 7 .986 5 .648 (.46) 5 .853 (.90) 5 .307 (.28)
CCHC 7 .986 5 .648 (1.0) 5 .899 (.948) 5 .31 (.28)
CCSOM 6 .986 4 .721 (.6) 5/7 .726 (.825) 5/7 .233 (.22)

CoRe 6 1.0 3 .845 5/6 .854 (.936) 4/5 .519

this model constructs a consensus matrix that measures the agreement

of sample partitioning between multiple runs of a given clustering algo-

rithm, e.g. k-means. The general idea of the model is to construct a series

of perturbed datasets by means of resampling techniques and to run the

clustering algorithm on the resampled data with varying cluster numbers

N , generating a series of consensus matrices M(N). The estimated clus-

ter number is that corresponding to the most regular consensus matrix, i.e.

that containing mainly 0’s or 1’s, that are the values indicating full con-

sensus on the samples’ membership. The results shown in Table 9 have

been obtained by consensus clustering based on hierarchical clustering

(CCHC ) and self organizing maps (CCSOM ). There exist several other

methods for automatically selecting the number of cluster: among these,

model-based Bayesian clustering algorithms allow for the seamless com-

bination of prior knowledge and observational data. However, most of

these methods are based on asymptotic approximations of the marginal

likelihood, whose accuracy tends to decrease as the sample number de-

creases with respect to the feature space size, which is typically the case

when clustering DNA microarray data. Therefore, we prefer to postpone

the comparison between model-based algorithms and feature-wise CoRe

clustering to the Section 5.3.2, where we focus on the analysis of a small

dimensional data set from breast cancer research.

163



The results in Table 9 show that CoRe clustering correctly identified

the six clusters of the Simulated6 dataset, pruning the irrelevant units

and partitioning the data with full agreement with the actual class dis-

tribution. Compared with the results obtained by k-means, consensus

and hierarchical clustering, CoRe achieves better results both in terms

of cluster number identification and classification accuracy. In particu-

lar, hierarchical clustering, both when used with the GAP statistics and

with consensus clustering, has the tendency to allocate an excessive clus-

ter in correspondence to sample x8, that is characterized by up-regulated

genes both in class 1 and class 2 (MTMG03). On the other hand, the par-

simonious cluster allocation policy of CoRe learning does not allow the

creation of this singleton cluster, thus obtaining a correct cluster num-

ber estimate, likewise the CCSOM algorithm which, however, does not

achieve full clustering accuracy. The perfect classification score of CoRe

learning can be explained by the fact that it has correctly identified the

significant features of each class, suppressing the influence on noisy and

non relevant components. Figure 44 shows the bar graphs of the fea-

ture relevance corresponding to the 6 clusters identified by CoRe, where

the topmost plot refers to the first partition C1 and the bottommost to

cluster C6. In general, each cluster seems to be characterized by a set

of 30 to 50 relevant genes, which is coherent with the a-priori informa-

tion concerning the distribution of the up-regulated genes in the classes

(MTMG03). In particular, in the first two clusters, that are those character-

ized by the largest gene differential expression, CoRe isolates the signifi-

cant components with a sharp distinction between relevant and irrelevant

genes. Conversely, clusters C5 and C6 are characterized by the weakest

markers, i.e. small differential expression, which results in a reduced rel-

evance factor variance between significant and non-significant features.

However, CoRe is still able to clearly isolate most of the relevant genes

characterizing these two clusters. Overall, the relevance factor seems ca-

pable of providing an interesting insight into the feature significance of

the identified clusters: this ability can be exploited not only to visually

explore the data, but also to enhance the performance of other clustering

algorithms. Consider, for instance, to perform k-means clustering on a fil-
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Figure 44: Expression patterns for the 6-class simulated dataset. The bar
plots represent the relevance factor ν̂t

i (scaled to [0, 1]) of the single genes for
each of the identified clusters: the topmost cluster refers to class C1 while
the bottommost pertains to C6.

tered dataset, where samples comprise only the top-50 most informative

genes identified by CoRe for each cluster: such a feature selection pro-

duces a performance improvement that allows k-means to reach perfect

partitioning of the dataset, i.e. with Rand index r = 1.

The second set of simulations was run on real gene expression samples

from a widely adopted benchmark dataset, that is the Leukemia data by

Golub (GST+99). The dataset consists of 38 bone marrow samples com-

prising the expression levels of 7129 genes obtained from acute leukemia

patients at the time of the diagnosis. The data can be partitioned into 3

relevant classes: 8 T-Lineage Acute Lymphoblastic Leukemia (ALL) sam-

ples, 19 B-lineage ALL samples and 11 Acute Myeloid Leukemia (AML)
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samples. However, there exist a large number of supervised learning al-

gorithms tested on the Leukemia data focused on a reduced problem,

that is partitioning the dataset into 11 AML and 27 ALL samples. In gen-

eral, there is no unambiguous and clear solution when trying to deter-

mine the ground truth sample classification in real high dimensional da-

taset: in this analysis we consider the most common sample partitioning

used in the literature for the Leukemia data, that corresponds to the three

classes hypothesis. The results in Table 9 show that CoRe identifies three

clusters corresponding to the original T-ALL, B-ALL and AML classes,

with a clustering performance of 0.845. On the other hand, both the hi-

erarchical clustering with GAP statistics and the consensus-based HC es-

timate five partitions, with two clusters isolating the AML and T-ALL

classes, while the remaining three clusters partition further the B-ALL

class. The sub-division of this latter class might, in principle, have an in-

teresting clinical interpretation suggesting a further differentiation of the

B-lineage type which can find confirmation in additional clinical investi-

gations (MTMG03). Notice that when the HC model with GAP statistics is

forced to partition the data into three classes, it obtains a worse clustering

performance with respect to the five cluster solution (see the Rand index

in brackets in Table 9). Conversely, the consensus-based hierarchical clus-

tering model obtains full classification accuracy when forced to partition

the dataset into 3 cluster. The SOM-based algorithm (i.e. CCSOM ), on the

other hand, originally estimated four clusters with two clusters splitting

the B-lineage type; if forced to partition the data into 3 classes, CCSOM

obtains a strong reduction of its clustering performance. Again, the k-

means algorithm obtained the lowest Rand scores within the methods.

Overall, CoRe’s analysis confirms the three class hypothesis although

the best performance on the dataset is achieved by CCHC when it is

forced to partition the data into three clusters. It it interesting to note

how hierarchical clustering alone (i.e. HC in Table 9) obtains an extremely

poor performance, close to that obtained by k-means, suggesting that the

resampling strategy embedded in consensus clustering is providing the

performance speed-up to the HC algorithm. However, such a perfor-

mance increase is obtained at the cost of a consistent load raise due to
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Figure 45: Principal component analysis for the Leukemia dataset on the
7129 genes.

the dataset resampling. The drastic reduction in the clustering perfor-

mance of k-means and HC can be explained by looking more in depth at

the nature of the Leukemia data. In (Din02), it is shown that the leukemia

classes overlaps significantly in the 7129-dimensional space, while they

are neatly separable when a subset of informative features are used. The

CoRe algorithm exploits the feature-wise competition mechanism to sup-

press the contribution of the irrelevant genes, achieving competitive re-

sults even when the full set of features is used and without resorting to

time consuming resampling strategies. Figure 45 and 46 give a visual

interpretation of the problem, by projecting the Leukemia data along its

first two principal components. Figure 45 shows a component plot when

all the 7129 genes are used: the two classes in the ALL samples (B-linkage

and T-linkage) are completely mixed, while the AML class is not clearly

identifiable as a single cluster. Figure 46 shows the PCA result when only

the 30 most relevant genes identified by CoRe are used: the AML data

is tightly clustered, while the T-ALL and B-ALL classes are almost com-

pletely separated already in a bi-dimensional space.

The feature ranking produced by CoRe clustering can be confronted

with the list of the 50 most relevant genes for the Leukemia data identified
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Figure 46: Principal component analysis for the Leukemia dataset on CoRe’s
top-30 features.

by Golub (GST+99). Table 10 shows an example of 8 genes from the top-

20 list generated by CoRe clustering, that are present also in Golub’s list:

this result confirms that CoRe relevance ranking produces results that are

consistent with the state-of-art knowledge concerning informative genes

in the leukemia disease. Moreover, if we perform again k-means clus-

tering on the ALL/AML task restricted to the top-20 genes identified by

CoRe ranking we obtain a neat improvement in clustering performance,

i.e. a Rand index r = 0.7901.

To compare the quality of CoRe’s feature ranking with other popu-

lar feature selection algorithms from microarray data analysis we force

CoRe to identify the relevant genes in the 2-class task on the Leukemia

dataset, that requires the discovery of the two clusters corresponding to

the ALL and AML samples. To do so, we relax the CoRe stopping con-

dition and we force the algorithm to converge again after having pruned

one of the three clusters. To compare CoRe’s performance with the results

in the literature, in this test we express clustering performance in terms

of the Q-accuracy score, that is the number of correctly classified samples

with respect to the dataset size. The Q-accuracy obtained by CoRe on

the 7129-dimensional ALL/AML task is 98.7%, reducing to 94.7% when
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Table 10: Relevant features identified by CoRe clustering and listed in
Golub’s top-50 (GST+99).

Code Description

M27891_at CST3 Cystatin C (amyloid angiopathy and
cerebral hemorrhage)

M28130_rna1_s_at Interleukin 8 (IL8) gene
M57710_at LGALS3 Lectin, galactoside-binding, soluble

Y00787_s_at INTERLEUKIN-8 PRECURSOR
U05259_rna1_at MB-1 gene
M96326_rna1_at Azurocidin gene

U22376_cds2_s_at C-myb gene extracted from Human (c-myb)
gene, complete primary cds, and five
complete alternatively spliced cds

X1704_at2 PRG1 Proteoglycan 1, secretory granule

only the top-20 genes are used. Running the k-means algorithm on the

same ALL/AML task restricted to the top-20 most relevant genes gen-

erated by CoRe results in a Q-accuracy of 94.7%, that is the same value

obtained by max-min cut hierarchical clustering in (Din02) using the top-

50 genes. The two-way unsupervised feature selection algorithm (Din03), on

the other hand, achieves a Q-accuracy score of 76.3% and 79.0% for the

full-feature and the top-50 case, respectively. These results show that, on

the one hand, CoRe achieves an higher clustering performance with re-

spect to popular filter models in the literature. On the other hand, the

fact that also k-means can obtain an high Q-accuracy when applied to

CoRe’s top-20 selected genes, suggests that the feature ranking produced

by CoRe can efficiently identify the most informative, and discriminative,

components of the input data. Recently, (FMR05) presented a wrapper

approach based on simulated annealing, that achieves 100% Q-accuracy

on the ALL/AML task with less than 20 genes. However, this approach

requires a considerable computational effort, since it does not seek in-

cremental estimates of the feature relevance, whereas it make an explicit

combinatorial search for subsets of 20 genes minimizing the representa-

tion error.

The third experiment was performed on the St. Jude’s dataset (YRS+02)

169



that includes 248 diagnostic bone marrow samples from pediatric acute

leukemia patients corresponding to six prognostically relevant leukemia

subtypes. In particular, the 985-dimensional samples are partitioned as

follows: 43 T-lineage ALL, 27 E2A-PBX1, 15 BCR-ABL, 79 TEL-AML1,

20 MLL rearrangements and 64 hyperdiploid>50 individuals. The results

in Table 9 show that none of the algorithms is capable of clearly iden-

tifying the actual structure of the dataset. With respect to hierarchical

clustering, both the GAP statistics and the distribution of the consensus

function criterion suggest that the most likely number of cluster is five.

On the other hand, a visual inspection of the consensus matrices M sup-

ports a different hypothesis comprising a six-cluster structure of the data

(MTMG03). More specifically, the best separation is obtained for a seven

cluster solution, where six clusters correspond almost perfectly with the

six leukemia subtypes and one cluster identifies a singleton sample from

the hyperdiploid>50 group. A similar result is obtained by CCSOM , al-

though the resulting sample classification does not match the actual data

partition as well as hierarchical clustering does. CoRe learning, on the

other hand, strongly supports the five clusters hypothesis. Notice that in

a single experiment repetition CoRe learning converged by identifying six

clusters instead of five, where the excessive partition identified a singleton

cluster: as a consequence, the resulting data partition did not differenti-

ate significantly from the five clusters hypothesis, i.e. with a rand Index

within 2% deviation from the average CoRe result. Overall CoRe learning

obtained the best results together with hierarchical clustering both on the

N = 5 solution as well as when it was forced to partition the data in six

clusters (see the results in parenthesis in Table 9). In the latter case, CoRe

achieves an higher classification accuracy than standard HC, reaching a

performance that is close to that obtained by the resampling-based HC

algorithm CCHC at a reduced computational complexity.

The last set of simulations has been performed on the Lung cancer tis-

sue data (BRS+01). This dataset is known to contain at least 4 classes cor-

responding to 139 adenocarcinomas (AD), 21 squamous cell carcinomas

(SQ), 20 carcinoids (COID), and 17 normal lung (NL) samples. However,

there is some discussion concerning the opportunity of partitioning fur-
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ther the highly heterogenous AD class, although there is no established

hypothesis concerning its actual substructure. The heterogeneity of the

AD class makes the identification of the four partitions rather compli-

cated: the results in Table 9 show that hierarchical clustering suggests

the existence of five clusters, where three clusters identify quite closely

the SQ, COID and NL classes while the remaining two split the AD class

into two subgroups. Notice that when HC and CCHC are forced to gen-

erate a four cluster partition, they obtain worse results with respect to

the original five cluster configuration. The CCSOM algorithm obtains a

poorer performance and cannot generate a stable estimate of the cluster

number which oscillates between five and seven. The complexity of the

Lung dataset affects also CoRe’s performance, although it achieves the

highest rand index among the five algorithms. CoRe typically identifies

four clusters, although two repetitions converged with an additional fifth

cluster that splits the AD class into two subgroups. It has to be noted

that CoRe obtains an higher rand score with respect to the other models

even when it identifies five clusters, e.g. rCoRe−5 = 0.471 with respect to

rCChc
= 0.31.

Overall, the Lung cancer tissue data is a challenging dataset that has

not yet revealed its full structure. To gather a clearer insight into this data

we analyzed the differential expression of the four classes in compari-

son with the feature relevance generated by the CoRe analysis. Figure 47

shows an histogram of the up-regulated genes in each of the four tumor

subtypes, measured by computing a one-versus-all t-test using the Gene

Pattern (RLL+06) online tool1. Positive bins in Fig.47 denote characteris-

tic genes for the particular class at hand, while negative values identify

differentially expressed features in the other classes. Figure 48 depicts the

relevance of the clusters corresponding to the actual AD, COID, SQ and

NL classes. Some degree of overlap exists between relevant features as

identified by the t-test and by CoRe: for instance, by analyzing the top-

50 features with respect to the two relevance rankings we notice that the

31888_s_at and 40237_at genes, known for controlling programmed

cell death (LF98) and implicated in breast cancer and leukemia (TNY+06),

1http://www.broad.mit.edu/cancer/software/genepattern/
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Figure 47: Histogram of the the differentially expressed genes in the four
classes of the Lung dataset: differential expression is measured by one-
versus-all t-test.

are strongly characterizing the AD samples in both rankings. In general,

the COID class is that characterized by the largest overlap between the

two relevance measures. However, rather than focusing on the similar-

ities between the two approaches, we are more interested in investigat-

ing those prognostic hypothesis that may rise from considering features

that are highly relevant in CoRe’s analysis but that are not supported by

the t-test. For instance, the dynamin 1 gene (i.e. code 32138_at ) has

high CoRe relevance (ranking 10) for COID samples and a rather weak

significance in t-test (ranking 231): however, (MBCCGF05) has shown

that dynamin 1 is a strong bio-marker for discriminating pulmonary carci-

noids from other tumoral histotypes, thus confirming CoRe’s hypothesis.
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Figure 48: Histograms of the feature relevance obtained for the four CoRe
clusters on the Lung dataset.

Interestingly, the same study suggests that a specific neuronal protein,

that is the internexin neuronal intermediate filament protein alpha (gene code

37210_at ), is important in discriminating carcinoids from other lung tu-

mors: the same protein is ranked by CoRe as the third most relevant in

COID samples. On the other hand, the SQ samples seems to be strongly

characterized by the 36119_at gene, that is ranked second by CoRe and

434th (which means irrelevant) by the t-test. This gene, known as caveolin

1, is thought to be a major indicator for predicting prognosis in patients

with pulmonary squamous cell carcinoma (YPK+03).

Analyzing the feature relevance in the control individuals (NL class)

points out the strong dichotomy related to the fascin protein (gene code
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39070_at ) that is ranked as the fifth most significant gene by CoRe while

is ranked 804th by the t-test. Such a strong difference highlights the dif-

ference between CoRe’s feature ranking and one-versus-all t-test: while

the latter seeks overexpressed genes in a particular class, the former looks

for features that play a key role in differentiating one class from the rest,

i.e. genes that influence the separation between the classes. A closer look

to the bio-medical interpretation of the fascin protein confirms this in-

terpretation. In fact, fascin is known to be an independent prognostic

predictor of various tumoral forms, including lung cancer and, more in

detail, adenocarcinomas and squamous cell carcinomas (PPF+03). Con-

sequently, fascin is itself strongly relevant for the characterization of the

NL class, since control samples are characterized by average fascin ex-

pression, while AD and SQ individuals show fascin overexpression.

By looking at the relevance histograms in Fig. 48, it can be noticed

that both the AD and the NL classes are characterized by the same top-

rank gene 33383_f_at , expressing the N-acylsphingosine amidohydrolase-

like (ASAH-like) protein. This protein has recently been ranked fifth in

the list of the top markers for lung adenocarcinoma, with 93% of predic-

tion accuracy (SH06b), hence it is fairly straightforward to understand

its significance for the AD class. On the other hand, its relevance for

the NL class can be understood by looking the distribution of the top-

3 genes identified by CoRe for each of the four clusters in the dataset (see

Fig. 49). The expression levels of 33383_f_at strongly differentiates NL

samples (see plot 49.c) from COID and SQ individuals (see Fig. 49.b and

49.d, respectively). This fact, alone, should produce an high relevance in

the 33383_f_at gene of the NL cluster. Moreover, by comparing the

NL profile with the AD class we notice that there is a certain amount of

overlap in the distribution of 33383_f_at : this superposition produces

a strong competition between the two units on gene 33383_f_at . As

a result, both clusters experience an additional relevance increase that is

due to the dynamics of the repetition suppression competition. In partic-

ular, since the AD samples constitute the 70% of the dataset, the expres-

sion levels of the ASAH-like protein become significant for separating NL

samples from the rest of the dataset.
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5.3.2 Tumor Classes and Bio-markers Discovery

In the previous section we have analyzed the performance of the feature-

wise CoRe clustering algorithm when dealing with the cluster number

identification problem in high dimensional space. In this section, we shift

our focus on an application example showing how CoRe can be used for

the exploratory analysis of biomedical data, providing a means for the

unsupervised discovery of clinical profiles and related bio-markers. In

particular, we study the performance of the proposed neural approach

on a recently published dataset from breast cancer research (ABQ+06),

that lacks a consolidated characterization of the actual class distribution.

Compared with DNA microarray data, this dataset contains small di-

mensional samples, allowing to compare CoRe performance with that of

Bayesian model-based algorithms that have been excluded from the anal-

ysis presented in the previous section for high-dimensional data. In par-

ticular, CoRe results are compared with those obtained by three model-

based algorithms described in Section 2.3.2, that are

• Gaussian Mixture Model (GMM) (FJ02): this algorithm fits the input

samples to a mixture of Gaussians using EM, while the number of

components is estimated from the data by pruning those mixtures

with zero mixing weights.

• Variational Bayesian Gaussian Mixture (VBG) (CB01): this algorithm

uses a variational approximation to fit a fully Bayesian model to the

samples; as with GMM it determines the number of mixtures by

component pruning.

• Variational Bayesian Mixtures with Splitting (VBS) (CL07): simi-

larly to VBM uses variational methods to fit the data to the model;

the number of mixtures is determined by recursively splitting and

pruning the existing components.

Additionally, the results obtained by each algorithm are compared with

the sample labeling discovered in previous work (ABQ+06) by Partition-

ing Around Medoids (PAM) (KR90) and k-means (KM).
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The dataset comprises information from biomarker proteins that was

collected from a consecutive series of 922 patients who underwent surgery

for primary infiltrating breast cancer between 1983 and 1992 at the Uni-

versity of Ferrara (ABQ+06). This study analyzed proteins measured on

preserved tissue samples, with exploratory aims and without diagnostic

nor risk communication to the patient. Data on patient age, pathologic

tumor size, histologic type, pathologic stage, and number of metastatic

axillary lymph nodes were collected, as well as immunohistologic deter-

minations of estrogen receptor (ER) status, progesterone receptors (PR)

status, Ki-67/MIB-1 proliferation index (Pro), HER2/NEU (NEU), and

P53 levels. Only the latter five biomarkers have been analyzed as part of

this study: the 633 samples used in (ABQ+06), for which is present com-

plete information on all patho-biological measurements, are included in

this work. Coherently with (ABQ+06), the expression values of ER, PR,

and NEU have been discretized to the following percentages: 0%, 10%,

25%, 50%, 75%, and 100%. Percentages of Ki-67- and p53-expressing cells

were recorded without discretization.

The results presented in the following are based on 50 runs of each al-

gorithm, with randomly initialized prototype positions. Both GMM and

VBM are initialized with 20 mixtures, VBS is initialized with one compo-

nent while CoRe starts with 30 units (for the rest of CoRe meta-parameter

settings refer to Table 8).

As a first step of the analysis, we focus on determining the most likely

numberN of sample groups in the data. Figure 50 shows the histogram of

the cluster numbers estimated by the four algorithms during the 50 runs.

The distribution of N for GMM and VBG closely resembles a Gaussian

centered on 7 and 5, respectively. CoRe and VBS produce sharper hy-

potheses: the former, in particular, suggests that the data can be grouped

in 4 or 5 clusters, with few runs terminating with 6 clusters. The behav-

ior of VBS is peculiar: this algorithm behaves similarly to a wrapper ap-

proach that tentatively splits the existing components and locally tests

the existence of additional clusters, eventually pruning the newly gener-

ated mixture; this process is iterated until the splitting test fails for all the

components. Within this stopping criterion, VBS always converged to a
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Figure 50: Distribution of the cluster number estimate for the 50 independent
runs of the algorithms

solution where N = 6 (see the VBS-2 bar in Fig. 50). However, by taking

a closer look at the learning dynamics of VBS one discovers that the max-

imum likelihood solution is obtained always for N = 4 (that is the VBS-1

solution in Fig. 50), while N = 5 is the second best-scoring solution with

respect to the likelihood.

These results suggest that the most likely cluster number estimates are

N = 4, N = 5 and N = 6. To evaluate the agreement between the data

partitions produced by the different algorithms, we compared them with

a baseline k-means clustering and with the sample labels discovered by

PAM in (ABQ+06). Table 11 summarizes the pairwise concordance of the

generated solutions in terms of the κ statistics (Coh60), that is

κ =
Pr(a) − Pr(r)

1 − Pr(r)
,

where Pr(a) is the relative observed agreement among two solutions

while and Pr(r) is the probability that agreement is due to chance. Com-

plete agreement between the solutions is denoted by κ = 1, whereas κ = 0
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Table 11: Clustering concordance evaluated by κ statistics: X’s indicate when
model comparison was not possible.

CoRe VBG VBS PAM
N KM PAM VBS VBG KM PAM VBS KM PAM KM

4 .83 .83 .65 .46 .54 .47 .36 .76 .74 .96
5 .83 X .54 .38 .36 X .53 .65 X X
6 .68 X .61 X .23 X .52 .49 X X

denotes a concordance which does not exceed an agrement generated by

chance.

The GMM model is not shown in Table 11 since it produced results

only for N = 6, with a minimal overlap between its solutions and those

produced by the other algorithms. Besides GMM, the model based algo-

rithms seem to produce partitions that are quite uncorrelated with respect

to those generated by the other algorithms. In particular, VBG produces

groupings that are only marginally supported both by CoRe, PAM and

KM, as well as by VBS. This latter model shows a fair agreement with

CoRe on the hypotheses N = 4 and N = 6 and a rather weaker concor-

dance on N = 5. The κ values in Table 11 show a substantial agreement

between CoRe and k-means, especially on the hypotheses N = 4 and

N = 5, that are those most strongly advised by CoRe. The concordance

with the PAM labels is analyzed only on theN = 4 hypothesis since this is

the cluster number estimated by (ABQ+06) using PAM with model selec-

tion indices (e.g. Gap statistics, Kullback-Leibler, etc.). The KM solution

shows the highest agreement with PAM labels, confirming the results in

(ABQ+06), while Gaussian-based algorithms seem to find different so-

lutions with respect to both KM and PAM. As a general comment, the

model-based algorithms seem unable to converge to a shared sample clas-

sification, producing quite discording dataset partitions. CoRe, on the

other hand, produces solutions that are a trade-off between the concor-

dant sample classification produced by PAM and KM, and the alternative

partition discovered by VBS.

To gather a better insight into the CoRe’s cluster profiles we looked at

the relevance ν̂il of the biomarkers characterizing CoRe’s sample groups.
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Figure 51.a and 51.b show CoRe’s feature relevance for the N = 4 and

N = 5 models, respectively. The relevance plot suggests that the prolif-

eration marker PRO does not play a key role in determining the group

membership of the samples. In both hypotheses, there appears to be a

single cluster that is strongly characterized by the NEU biomarker and

that corresponds to the most aggressive tumor profile (ABQ+06). The P53

biomarker appears to be strongly discriminant for the singleC4
1 cluster (in

the N = 4 scenario). On the other hand, in the N = 5 hypothesis, the P53

covariate becomes relevant for two clusters, that areC5
4 (corresponding to

C4
1 ) and C5

3 . Finally, the ER and PR markers seem to follow a correlated

relevance pattern: in other words, for a given cluster, they are either both

relevant or both irrelevant in determining the cluster membership.

Table 12 shows a detailed comparison between PAM and CoRe results

in terms of their confusion matrices: when N = 4 both algorithms seem

to agree on the existence of a large C4
2 -P1 group, that CoRe characterizes

with an high PR-relevance and a medium relevance of the ER marker (see

Fig.51.a). This hypothesis seems to be consistent with the distribution of

the PR and ER values in the Core and PAM clusters (see Fig.52 and Fig.53,

respectively). In particular, the boxplots in Fig.52 and Fig.53 show that the

C4
2 -P1 group is the sole characterized by high PR values: therefore CoRe

has correctly identified PR as the most discriminative marker for the clus-

ter. On the other hand, the ER marker shows high levels both for C4
2 -P1

and C4
3 -P2 obtaining a lower relevance due to its smaller discriminative

effect.

The results in Table 12 show that part of PAM’s P1 cluster is split by

CoRe and assigned to C4
3 , that roughly corresponds to PAM’s P2: Fig.52.c

and Fig.53.b confirm that the two clusters have a similar markers’ distri-

bution. Notice that C4
3 has a very similar pattern of feature relevance with

respect to C4
2 , except for a slightly higher significance of the ER covariate

(see Fig.51.a). In particular, the high PR relevance is due to the fact that

these two clusters have a very similar markers’ distribution except for the

PR covariate, that characterizesC4
2 and C4

3 respectively by a high and low

marker expression (see the boxplots in Fig.52.b and Fig.52.c).
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Table 12: Samples cross-distribution between PAM and CoRe (N = 4 and
N = 5)

CoRe (N = 4) CoRe (N = 5)
PAM C4

1 C4
2 C4

3 C4
4 C5

1 C5
2 C5

3 C5
4 C5

5

P1 9 210 32 5 193 28 32 3 0
P2 24 0 159 24 0 76 131 0 0
P3 76 0 0 15 0 0 1 79 11
P4 0 0 3 76 0 4 5 0 70

The two smaller groups identified by PAM, i.e. P3 and P4, roughly cor-

respond to CoRe’s C4
1 and C4

4 groups, respectively. CoRe clusters, how-

ever, are larger than PAM’s P3 and P4, since they gather samples from the

highly populated P2 group (see the confusion matrix in Table 12). Inter-

estingly, CoRe isolates sharply the small P3 and P4 groups in the K = 5

hypothesis: the results in Table 12 show a strong P3-C5
4 and P4-C5

5 over-

lap. Such an overlap is confirmed by the similarity of the corresponding

marker distributions in Fig.53 and Fig.54. Seemingly, the addition of the

cluster C5
2 attracted those spurious P2 samples that, in the N = 4 hypoth-

esis, were assigned by CoRe to partition C4
1 and C4

4 . In our opinion, this

suggests the existence of a fifth cluster that is situated in between the P2,

P3 and P4 groups from PAM’s solution. Already in (ABQ+06), the au-

thors pointed out the heterogeneity of the samples in P2 with respect to

the other three clusters, hypothesizing the existence of a further subdivi-

sion of P2 in smaller subgroups. The outcome of our analysis seems to

confirm this initial hypothesis. In particular, by analyzing the biomedical

features associated with the clusters we can derive interesting prognostic

consequences underlying the existence of a fifth tumor subgroup.

The results in (ABQ+06) shows that, in general, the P1 and P2 samples

are associated with the least aggressive tumor subgroups and are charac-

terized by minimal-change lesions as well as hormone sensitivity. On the

other hand, individuals from the P3 and P4 groups tend to develop an in-

creased number of metastatic lymph nodes and the corresponding tumors

are characterized by an higher proliferative rate and by more frequent

oncogene suppressor alterations. More in detail, the analysis in (ABQ+06)
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shows that the P4 group, characterized by high levels of HER2/NEU (see

Fig.53.d), has an intermediate prognosis amongst patients non treated

with hormone therapy but has the poorest response among the treated

patients. Conversely, the P3 group shows the worse event free survival

(EFS) rate among the non-treated patients. The Kaplan-Meier curves (KM58)

of cluster P1 and P2 for non-treated cases essentially overlaps (see Figure

5 in (ABQ+06)), showing an event free survival rate above 80% for a five-

years period, thus confirming the low aggressiveness of these two tumor

subgroups compared to P3 and P4. However, it is worth noticing a pe-

culiar behavior in the Kaplan-Meier curve of the P2 cluster for patients

treated with hormone therapy: while the P1 group shows an EFS pattern

that is close to the non-treated cases, P2 shows a notably different behav-

ior after the first 30 months. In fact, the event free survival of P2 patients

drops to values close to those obtained by individuals in the P3 group.

This behavior might confirm the existence of two tumor subtypes inside

the original P2 group: our hypothesis is that the CoRe clusters C5
2 and C5

3

correspond to these two tumor subtypes. In particular, the former group

might be related to individuals that are responsive to hormone therapy,

while the latter can possibly describe a tumor bioprofile characterized by

a stronger resistance to hormone treatment.

Our conjecture is supported by the analysis of the marker profiles of

the C5
2 and C5

3 groups (see Fig.54.b and Fig.54.c,respectively). The C5
2

cluster is characterized by an high expression of the estrogen receptor

(ER), which is considered a major predictor of response to hormone ther-

apy (ABQ+06). In addition, standing to CoRe’s relevance measure in

Fig.51.b, the ER covariate is the most significant feature in determining

the membership of samples to cluster C5
2 . The C5

3 group, on the other

hand, is characterized by a low activity of both the ER and PR hormone

receptors (see Fig.54.c): in our opinion, this aspect might have triggered

the reduced response to treatment of some P2 individuals. From the box-

plots in Fig.54.c and Fig.54.d it is clear that the key difference between the

profiles of cluster C5
3 and C5

4 -P3 lies in the expression of the P53 marker

(which is confirmed by its high CoRe relevance in both clusters). In a

sense, the identification of the C5
3 cluster suggests the existence of an in-
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termediate tumor subgroup that situates between the aggressive cancer

form of the C5
4 -P3 individuals and the (possibly) treatment-responsive

cases in C5
2 .

5.4 Conclusion

We presented an extension of the CoRe learning algorithm that enables

repetition suppression competition on a feature-wise basis. The model

described in this chapter overcomes previous limitations of the CoRe al-

gorithm when dealing with high-dimensional data and redundant or noisy

input components. In particular, we have shown how the extended CoRe

model achieves automatic detection of the unknown cluster number while

simultaneously ranking the sample features with respect to a given rele-

vance measure.

The feature-wise CoRe model has been applied to the analysis of sev-

eral freely available datasets from gene expression data: the results show

that CoRe clustering is able to estimate the latent structure of an high di-

mensional dataset in a completely unsupervised way, while developing a

feature ranking that is consistent with the state-of-the-art knowledge re-

garding the functional role of gene expression in disease realization. In

particular, the experimental results suggest that feature-wise CoRe has

performances that are comparable with that of computationally intensive

wrapper approaches, e.g. based on ensemble learning and resampling

(MTMG03; FMR05; DMBD04), while retaining the low computational

complexity of an incremental filter model. We advise that this CoRe prop-

erty can be exploited for the development of a tool addressing interactive

gene data exploration, that can provide the user with incremental esti-

mates of features’ relevance as learning proceeds. Within this context,

it would be interesting to study further the adaptivity of our model by

analyzing the effect of the introduction of fresh data on a consolidated

training base.

In addition to DNA microarray data, we have studied unsupervised

cluster number estimation on small dimensional breast cancer dataset,

comparing the performance of feature-wise CoRe with Bayesian model-
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based clustering. The experimental results showed how the CoRe algo-

rithm can be used to unsupervisedly explore biomedical data, estimating

the number of the clusters in the dataset and providing a relevance for the

samples’ covariates that can be used to identify significant markers of the

discovered bio-profiles. The comparison with the Bayesian models has

highlighted how their performance can be seriously affected by the na-

ture of the dataset, preventing them to reliably estimate the data clusters.

With respect to the breast cancer case study, CoRe’s analysis suggests the

existence of a fifth tumor subgroup. Our hypothesis, that shall by vali-

dated by clinical studies, is that such sub-group might differentiate two

breast cancer subtypes: the former is characterized by a high expression

of the estrogen receptors which should determine a low aggressiveness

and a good response to hormonal therapy; the latter should differentiate

a more aggressive tumoral type that is less responsive to treatment and is

characterized by an event free survival profile close to that of individuals

with high P53 expression.
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Figure 51: CoRe relevance factors of the 5 features for the (a) 4 clusters and
(b) 5 clusters scenario
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Figure 52: Boxplots of CoRe cluster profiles for the N = 4 solution
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Figure 53: Boxplots of PAM cluster profiles
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Figure 54: Boxplots of CoRe cluster profiles for the N = 5 solution
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Chapter 6

Image Processing
Background

6.1 Introduction

So far, the dissertation focused on the analysis of the theoretical proper-

ties and performance of the CoRe learning algorithm. In this part, we

move forward by applying CoRe learning within a machine vision model

that addresses the issue of attaching semantic labels to meaningful im-

age portions, in the attempt to reduce the semantic gap between the low

level pixel representation and the high level concepts represented in the

scene. However, before proceeding with the formalization of the machine

vision model (in the next chapter), we need to lay down the foundations

of image representation and to review the recent relevant works in image

content understanding.

The first part of this chapter (Section 6.2) discusses the most relevant

approaches to low level visual information representation. First, in Sec-

tion 6.2.1, we describe how the single relevant bits of the perceptual in-

formation can be represented by means of global and local descriptors:

the former features mostly rely on color, edge and texture statistics com-

puted on the whole image, while the latter describe the information con-

tent of a portion of the whole scene. The use of localized representation
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approaches rises an additional challenge, that is how to identify signifi-

cant and informative portions of the images where local descriptors are

computed: in Section 6.2.2, we review the most relevant contributions

with this respect, focusing in particular on the popular affine region de-

tectors (MTS+05). Finally, in Section 6.2.3 we discuss how the single bits

of visual information extracted from a picture, and represented either by

global or local descriptors, can be aggregated to describe the whole im-

age.

Once that a suitable description for the low level visual information

has been obtained, it can be processed to discover higher level semantic

concepts describing the image content. The second part of the chapter,

Section 6.3, reviews approaches dealing with the identification of seman-

tically meaningful entities in cluttered scenes, i.e. object recognition, as well

as with the inference of category labels summarizing the scene informa-

tion, i.e. scene recognition. Particular attention is paid in Section 6.3.1 to

latent aspect models: these approaches allows to discover an intermediate

representation (known as topic, aspect or theme) of the visual information

that has proved to be extremely helpful in bridging the gap between the

low level image representation and the high level semantic concepts. Sec-

tion 6.3.2, on the other hand, describes structured part-based and hierar-

chical approaches: instead of searching a latent aspect summarization of

the visual content, they fit a, more or less, flexible model of the object or

scene to be identified, that is typically based on a generative probabilistic

formulation of the sought items.

The third part of the chapter, i.e. Section 6.4, concludes the back-

ground analysis by reviewing automatic image annotation models. These

systems, typically process collections of images and related textual in-

formation in order to learn the association between visual content and

significant caption words. In a sense, they can be considered as a weak

generalization of the object and scene recognition models, since the tex-

tual annotations that they learn to correlate to images can be considered

as category labels in a object or scene recognition scenario. Notice, how-

ever, that annotations are not constrained to refer strictly to objects cate-

gories or scene descriptions, but can contain any information related to
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the pictures in the collection (i.e. localization information, patient name

in medical images, etc.).

6.2 Visual Content Representation

The description of the the visual content of an image is fundamental pre-

requisite for performing any image analysis task. In general, the choice

of the visual descriptors is deeply influenced by the final objective of the

image processing. Much of the early approaches to image content de-

scription rely on a global characterization of the visual features, that is

to say that the signature of a picture is computed based on information

regarding the distribution of given features in the whole scene depicted

in the image. This representation has the undoubtable advantage of con-

ciseness, since the whole image content can be summarized in a relatively

low dimensional pattern which, in general, does not necessitates consis-

tent computational efforts in order to be calculated. However, such an

approach inherently discards much information regarding, for instance,

the single objects depicted in the image and has a weak tolerance to vari-

ation in the image content, that is to say that slight alterations (e.g. lu-

minance, occlusion, etc.) to the depicted scene might result in strong

variations in image representation. As a result, global approaches are

more effective for high-level scene categorization tasks with few classes,

but they are rather ineffective for object recognition. Lately, local feature

descriptors has started gathering increasing attention in the machine vi-

sion community due to their superior ability in representing fine-grained

visual knowledge. These approaches describe the information content re-

stricted to a localized portion of the image. This aspect immediately rises

a fundamental questions, that is how to determine the portions of the im-

age as to obtain the most informative local features. This latter issue has

been addressed by several visual feature detectors, performing region of

interest identification at various image scales. Section 6.2.2 reviews the

main feature detectors in the literature, while 6.2.1 overviews global and

local image descriptors. Finally, Section 6.2.3 shows how such feature de-

tectors and descriptors can be used and combined to generate effective
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representations of the visual content.

6.2.1 Feature Descriptors

Global Descriptors The first attempts to capture the visual content ex-

ploited the global distribution of pixel intensities and color information

in the image. Within this context, images are typically represented by

means of histograms describing color distribution in one the several exist-

ing color spaces such as RGB, HSV, YUV, CIE-LUV and CIE-LAB (Hun98).

Each of these color spaces has different advantages and drawbacks: RGB

and YUV are common color encodings in image and video hardware but

are strongly influenced by intensity variations. CIE-LAB and CIE-LUV,

on the other hand, are good choices for measuring the distance between

two colors because of their perceptual uniformity, although the transfor-

mation from the RGB space is computationally intensive.

Swain and Ballard (SB91) have probably been the first to formalize

the use of color histograms to index images. Later, color moments have

started to be used to obtain compact representations of the color distribu-

tion of an image. Color coherence and color autocorrelogram (HKM+97;

HKM+99) have been developed to take into account also the spatial distri-

bution of colors in an image, although experimental results (MZ99) sug-

gest that these representations do not perform substantially better than

basic color histograms, which require lower computational efforts.

Shape features such as texture orientations have been used in the clas-

sification of natural versus man-made scenes: in (GP94), for instance, a

set of directional filters is convolved with the images over multiple scales

in order to extract histograms of perceptually relevant local orientations.

Gabor filters have been widely used to characterize edge orientations in

textures as well as in natural/man-made scenes; typically a multireso-

lution dictionary is built out of a set of Gabor wavelets that are con-

volved with the image and the feature descriptor is constructed based

on the mean and standard deviations of the magnitude of the wavelet

transform (MM96). The PicSom model (BLO02), on the other hand, de-

scribes images by means of an eight-bins histogram of edge orientations
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computed by Sobel operator as well as by 128-dimensional magnitude

vectors computed from a Fast Fourier Transform (FFT) of the Sobel fil-

tered images, converted in log-polar coordinates to enforce translation

and scale invariance. Different types of features are often combined to

enhance the discriminative power of the visual content description: the

work in (VFJHJ01) is a relevant example of such hybrid approaches where

diverse features are used to separate image classes at different levels of a

taxonomy. For instance, color histograms are used at the top of the hierar-

chy to tell outdoor images from indoor pictures. The former class is then

partitioned into a city and a landscape class based on global shape fea-

tures derived from local edge orientations. Finally the landscape class is

further sub-divided into sun, forest and mountain scenes based on color

histograms, coherence vectors and spatial moments. Such an approach

has the advantage of breaking an articulated multi-group classification

task into several two-way classification problems, which are best solved

by a classifier that relies only on global features.

Texture is another fundamental aspect characterizing visual content

that has been exploited to build global feature descriptors. Texture char-

acterizes regions instead of single pixels and has been widely exploited

by the image retrieval community. One of the first attempts to char-

acterize texture is due to Tamura (TMY78), that provided a description

based on six features derived from human visual perception, i.e. coarse-

ness, contrast, directionality, line-likeness, regularity, and roughness. The

first three features are those that encountered more success and have

been widely used to represent image content. In (Har79), on the other

hand, it has been proposed to describe textures using moments computed

from grey-level co-occurrence matrices (GLCM) derived from the image

at given pixels. As discussed previously, Gabor filters have been used

also to characterize textures in terms of mean and variance of their out-

puts in feature space (Tur86). See (HR04) for an experimental comparison

of several texture descriptors in an image retrieval scenario.

Recently, Oliva and Torralba (OT01) proposed a low dimensional global

characterization of images for scene classification tasks that founds on the

concept of Spatial Envelope. In this model, the dominant spatial structure
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of a scene is described by five perceptual dimensions, namely natural-

ness, openness, roughness, expansion and ruggedness, that are estimated

using spectral and coarsely localized information.

So far, we have described global approaches that generate a visual

content descriptor based on the information contained in all the pixels

in the image. Local representation approaches, on the other hand, mo-

del the pictorial content by dividing the image into regions on which in-

dividual features are computed, building the final image descriptor by

aggregating the computed local features. These approaches have started

gathering increasing attention in the latter years since they provide ro-

bustness to scene or object occlusion as well as a richer description of the

visual content. Indeed, the simplest form of local descriptor is a vector

of pixel intensities in the region of interest: this representation allows to

compare image patches using cross-correlation but has an high compu-

tational complexity given by the high dimensionality of the representa-

tion. Moreover, these descriptors lack of invariance with respect to affine

transformations which is a key property when targeting at generalizable

and flexible representations of the visual content. Therefore the use of

pixel vectors is mostly restricted to finding correspondences between im-

ages. In general, the sought properties for local descriptors are robustness

to photometric and geometrical variations, in order to obtain representa-

tions that are discriminative while being as much invariant as possible to

scene illumination, rotation as well as to object occlusion.

Local Descriptors The majority of local descriptors can be interpreted as

multi-scale filters applied to specific regions of an image: the response of

such filters represents the information content of the region of interest.

Clearly, the Gabor filters introduced previously in the context of global im-

age representation are natural candidates to describe parts of an image.

The Gabor transform is often used to represent textures, although a large

number of Gabor filters is required to capture small changes in frequency

and orientation of the image patch, resulting in a consistent computa-

tional load and a larger dimensionality of the descriptor. The intensity

domain spin image (LSP03) is an histogram-based local descriptor pro-
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posed in the context of texture classification. Spin images represent visual

patches by means of two dimensional histograms of space and intensity

values and have been shown to outperform Gabor filters in texture clas-

sification tasks (LSP03). However, texture descriptors do not transpose

their performance when applied to generic images, due to the lack of re-

peated patterns and statistical dependencies that characterize textures but

do not apply to more generic visual contexts (MS05).

The class of differential descriptors relates closely to Gabor filters. These

descriptors represent geometric features of an image patch by means of

a set of partial derivatives (up to a given order K) with respect to the

space coordinates, that is called a local jet (KvD87). Essentially the par-

tial derivatives are obtained by convolution with a receptive field pro-

file, typically given by Gaussian derivatives (Bau00). In (SZ02) it is pro-

poses to induce a coordinate change in the Gaussian derivative responses

by means of a linear filter bank; invariance to intensity and rotation is

achieved by combining the single components produced by the local jet

(FtHRKV94). Notable examples of differential descriptors are the popu-

lar steerable filters (FA91), that consist of linear combinations of basis fil-

ters that can be easily steered to any orientation. This model is shown to

achieve rotation invariance when Gaussian derivatives are steered in the

direction of the gradient.

Distribution-based descriptors represent local patches by means of his-

tograms describing different properties of the local neighborhood. The

simplest distribution-based representation is the classical histogram of

pixel intensities restricted to the given local patch. The spin image de-

scriptors introduced above, provide a richer information content by ac-

companying intensity values with spatial information in a two-dimensional

histogram. An attempt to devise distribution-based descriptors that are

robust with respect to intensity variations is the non-parametric local trans-

form by (ZW94). Rather than representing the intensity values, this ap-

proach codes the relative ordering of local pixel values by means of a

rank transform; then, a second non-parametric transform, called census

transform, is used to encode the neighborhood of the pixels in the patch

into a bit string. This approach has originally been developed to address
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the correspondence problem and requires high-dimensional descriptors

in order to reliably represent generic image collections: however, it can

be effectively applied to texture representation (MS05). On the other

hand, geometric histogram (ATRB95) and shape context (BMP02) descriptors

have a similar approach to visual content representation that relies on the

computation of histograms describing the edge distribution within local

patches. Therefore, these descriptors can be successfully exploited to rep-

resent pictures where edges are reliable and discriminative features, e.g.

handwritten data and drawings.

The most popular histogram-based descriptor is undoubtedly the Scale

Invariant Feature Transform (SIFT) by Lowe (Low99). To compute a SIFT

descriptor at a given scale σ, it is first needed to smooth the image using

a Gaussian with spread σ. Then, for each image keypoint (identified pre-

viously by a suitable interest point extraction algorithm), the algorithm

computes the gradient magnitude and orientation of the smoothed im-

age. Finally, a three dimensional histogram of magnitude orientations is

computed in a 4× 4 neighborhood of the keypoint (see Fig. 55). Gradient

angle is computed along eight directions, resulting in a 4 × 4 × 8 = 128

dimensional descriptor. Notice that the quantization of both gradient lo-

cations and orientations produces a representation that is robust with re-

spect to small geometric distortions. Illumination invariance is obtained

by L2 normalization of the SIFT vector. The SIFT algorithm provides also

a scale invariant region detector that first blurs the image by convolv-

ing it with Gaussian filters at different scales σi and, then, extracts inter-

est points at the peaks of the differences between successive Gaussian-

smoothed images.

Several variants to the original SIFT descriptor have been proposed

recently: (KS04), for instance, applies Principal Components Analysis

(PCA) to the SIFT representation, obtaining more distinctive PCA-SIFT

descriptors that are robust with respect to image deformations and of-

fer the compactness of a principal component representation. The Gradi-

ent Location and Orientation Histogram (GLOH) (MS05), on the other hand,

considers more spatial regions than the standard SIFT descriptor, obtain-

ing a superior distinctiveness at the price of a higher computational load
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(a) (b)

Figure 55: SIFT descriptor computed by VLFeat toolbox (Ved07) on an exem-
plar image (a); a close up (b) on the descriptor reveals the 4×4 neighborhood
and the magnitude orientations.

and histogram dimensionality which, however, is reduced (typically to

64) by means of PCA. The Speeded Up Robust Features (SURF) (BETG08) de-

scriptor uses a different representation of the information content based

on the distribution of Haar-wavelet responses within the interest point

neighborhood. SURF computes a 4-dimensional vector for each of the 4×

4 neighboring subregions of the interest point, resulting in a 64-dimensional

descriptor. Each subregion vector contains the sum of the responses of the

Haar-wavelets in the horizontal and vertical direction, as well as the mag-

nitude along the two directions. The wavelet responses are, themselves,

invariant to illumination offsets, while invariance to contrast is achieved

by descriptor normalization. The SURF computation and matching pro-

cess uses only integral images, resulting in computation time that is about

an halve of that required for SIFT calculation (BETG08).

There exist other distribution-based approaches that do not rely on

an histogram characterization of the local patch: (GMU96), for instance,

uses invariant moments to characterize shape and intensity distribution

within the region of interest. Moments of higher degree are in general

sensitive to geometric and photometric distortions, hence (GMU96) com-

putes a mix of different type of moments to keep their order (and sen-

sitivity) low. In general, invariant moments require a consistent amount
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of information to generate discriminative descriptors; therefore they are

more suitable for application to color images representation (MS05).

The local descriptors introduced so far represent a choice of the most

prominent contributions in a lively scientific field; for an in depth analysis

of the state of the art in this area refer to (MS05), which presents a notable

experimental comparison of several local descriptors. Additional exper-

imentations with the latest local descriptors can be found in (BETG08).

Overall, the experimental analysis show that there is no unique descriptor

which performs better than its competitors on generic image collections:

the family of SIFT-like descriptors has in general the best performance

and, in between the family components, the SURF descriptor seems to be

the best performer. However the SIFT descriptor still has an implicit role

of de-facto standard for benchmarking new local approaches to image

understanding and retrieval.

A localized representation of the visual content requires tools for de-

termining the regions or points of interest within an image. For instance,

previously we have mentioned that the SIFT method provides a means

for determining the picture keypoints (and similarly do GLOH and SURF):

in the next section, we review the principal contributions to interest re-

gions and interest points identification.

6.2.2 Feature Detectors

So far, we have focused our overview on how to represents the relevant

visual features enclosed in an image, however little has been said con-

cerning how to localize such features. In order to identify them, we need

first to define what is an interesting and informative feature. In its wider

meaning a visual feature is a characterizing portion of an image: within

this definition, we might enclose several visual structures such as seg-

ments, blobs, edges and corners. In the following, we will review the

main feature detectors in the literature, grouping them based on the type

of image feature they seek to identify.

Before delving into the discussion, we need to identify what are the

desirable properties of an efficient detector. The first and most funda-

199



mental property of a feature detector is indeed repeatability, that is the

ability to detect the same feature in different images as well as in differ-

ent portions of the same scene. In order to enforce repeatability, a feature

identification algorithm must be able to cope with photometric and ge-

ometrical transformations of the image since, by this means, it ensures

that given an image and a slightly altered version of the same scene, the

algorithm detects the same interest points in both pictures. The typical

transformations that are encountered when dealing with visual content

are

Photometric variations Changes in brightness and luminance should not

impair the detection of a visual features.

Translation Interest regions tend to change location in different scenes;

feature detector must be able to locate them irrespectively of their

position in the image.

Rotation The rotation of a single object or of the whole scene influences

the angle at which the interest points are processed; detectors should

be able to identify a keypoint irrespectively of their absolute and

relative orientation.

Scaling Image resizing or a change in camera zoom produce scaled ver-

sion of the same scene and a change in the absolute size of the inter-

est region; detectors must be able to identify the correct scale where

the feature has to be detected.

Affine Transformations These changes are the most difficult to address

and are typically generated by a change in the viewpoint angle that

results in a contemporaneous transformation in position, angle, scale

and shape of the interest region. Affine transformations are seen as

generalization of the scale change to non-isotropic operations: usu-

ally feature detectors cope with it by using the adaptive shape mat-

ching procedure (LG97).

Finally, since feature detection is a basic low-level step of the image pro-

cessing chain, it needs to be an efficient process with a limited computa-

tional complexity.
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Segment Detectors In a sense, segmentation algorithms have been the

predecessors of the modern local feature detectors. These algorithms

seeks spatially contiguous pixel groups, i.e. the segments, characterized by

color homogeneity: typically, detected image segments are represented

by means of color, texture and shape histograms. For instance, second

generation image understanding and retrieval models, such as (CBGM02;

GGR01), as well as image auto-annotation system (Bar01; FML04) mostly

relied on an image segments’ representation. Blobword (CBGM02), for

instance, represents each image pixel as a six dimensional vector com-

prising both color and texture information: pixel data is then used to fit a

Gaussian Mixture Model using Expectation Maximization. At the end of

the learning phase, the mixture components identify the image segments

(blobs) that are used to represent the scene. Meanshift (CM99), on the

other hand, is a non-parametric density estimator that has found wide

application in machine vision due to its ability in reliably, and repeat-

edly, estimating image segments out of pure color intensity information.

In (FOPA04), for instance, is presented an object recognition model that

exploits Meanshift to detect interest regions, represented by vectors of

color and texture moments, that are later used to train an object classifi-

cation module. Barnard et al (BDG+03) exploit Meanshift segmentation

together with a machine translation model to attach text to relevant image

segments. The same paper compares Meanshift’s performance with that

of another popular segmentation algorithm, that is the Normalized Cuts

(NCuts)(SM00). NCuts has been particularly successful in machine vision

community since it allows to smoothly control the degree of image over-

segmentation, i.e. the tendency to generate more segments than the ac-

tual number, and since it produces global solutions where segments have

a large chance to be capturing whole objects. Carbonetto et al (CdFB04),

for instance, used NCuts within an image annotation framework, while

(RFE+06) exploited it to generate multiple image segmentations within a

latent topic discovery model.

Blob Detectors Overall, segmentation algorithms do not show a clear

attitude towards repeatability, since the extent of the image segments of-
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ten varies not only with photometric changes, but also as the result of dif-

ferent initializations of the algorithm. Moreover, pure segmentation ap-

proaches are scarcely robust with respect to occlusion since the detected

surfaces usually occupy consistent and contiguous portions of the image,

hence the same segment has an high chance of being, at least partially,

occluded in diverse scene arrangements. Blob detection (known also as in-

terest region detection) can be seen as a segmentation approach taken on a

smaller scale, where the regions of interest are image patches that are ei-

ther brighter or darker than the surrounding pixels and that suggest the

presence of object parts. Two approaches are commonly used to detect

blobs: the former is based on the difference of image derivatives of dif-

ferent order, while the latter exploits the identification of local intensity

extrema.

A popular algorithm relating to the former approach, i.e. the Differ-

ence of Gaussians (DoG) (Low04), has already been discussed when intro-

ducing the SIFT descriptor. DoG generates a sequence of blurred images

by convolving the original gray-scale picture with Gaussian functions at

different scales, obtaining a pyramidal representation where increasingly

larger scales correspond to stronger suppression of high frequency spatial

information. By subtracting blurred images at different scales, DoG ob-

tains two results: (i) it implements a band-pass filter that enhances high

frequency details of the original image, e.g. allowing to detect edges; (ii)

it identifies areas of uniform intensity, i.e. blobs, since the convolution

of a difference of two Gaussian with a uniform signal generates a null

response. Besides the multiscale representation, DoG builds also a multi

space pyramid by sub-sampling the image at difference octaves: this pro-

cess allows to detect interest regions with high variation of scales and po-

sitions, obtaining an extremely stable characterization of the image. The

resulting detector is scale, illumination, and orientation invariant.

The DoG operator can be seen as an approximation of the second

derivative of a Gaussian smoothed image, known as the Laplacian of Gaus-

sian (LoG) (Lin98). This operator produces strong responses (strong neg-

ative responses) for dark blobs (bright blobs, respectively) matching the

squared root of the scale. The LoG operator has been the first to adopt
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a scale-space representation in order to bypass the dependency between

region size and scale: in particular, blobs are identified by means of the

scale-normalized Laplacian (Lin98), that allows to detect those points that

are simultaneous extrema both in scale and space. This Laplacian scale se-

lection mechanism has been a fundamental building block for construct-

ing advanced feature detectors, such as the Harris-affine approach.

The Determinant of the Hessian (DoH) operator is a blob detector with

automatic scale selection which also responds to ridges (Lin98). This de-

tector is based on the Hessian matrix, that describes the neighborhood of

an image point in terms of the second order derivatives computed by con-

volution with Gaussian kernels: the resulting derivatives are integrated

in the neighborhood by Gaussian smoothing. Local maxima of the deter-

minant of the Hessian identify image blobs. In order to make the detector

scale invariant, (Lin98) proposes to select the scale that maximizes the

Hessian match with the structure of the keypoint neighborhood. Alter-

natively, (MS01) exploits the determinant of the Hessian to obtain spatial

localization while the Laplacian operator is used for scale selection, yield-

ing the so-called Hessian-Laplace detector.

The maximally stable extremum regions (MSER) (MCUP02) is a popular

blob detector seeking image regions that maintain a stable shape over a

range of thresholds of the image intensities. In practice, MSER considers

a sequence of possible intensity thresholds for a given gray-scale image:

for each threshold, MSER builds a binary mask of the pixels that exceed

the given level. The selected blobs correspond to a subset of the regions

detected at all thresholds whose shape remains stable across a range of

thresholds. The resulting regions are invariant to transformations of the

image intensity and produce a multi-scale image representation without

resorting to Gaussian smoothing.

Corner/Interest Point Detectors Detectors formerly addressing corner

detection have recently evolved to embrace the identification of a larger

class of characteristic image points, known has interest points. Typically,

interest points identify image positions characterized by local intensity

extrema, such as line endings or points where line curvature is locally

203



maximal.

The Harris detector identifies interest points by a measure of saliency,

named cornerness, defined in terms of the determinant and trace of the

second order matrix of local image gradients, known as the scatter ma-

trix. Local image derivatives are obtained by convolution with Gaussian

kernels and successive integration by weighted average using Gaussian

smoothing. The second moment matrix characterizes the signal autocor-

relation on the neighborhood of a point. The eigenvalues of the scatter

describe the two principal directions of curvature in the neighborhood of

a point, hence the maxima of the cornerness identifies those keypoints

where the curvature is significative in both orientations (i.e. a corner).

The original Harris detector determines the region of interest around the

keypoint with a scale defined by the Gaussian used in the convolution,

hence it is not scale invariant. In (DSH00) it has been extended to multi-

scale detection, where keypoints are identified by local maxima of the

cornerness over multiple scales; Harris-Laplace (MS01), on the other hand,

applies the LoG operator to the Harris interest points detected at multiple

scales in order to locate the right resolution for the interest region.

Smallest Univalue Segment Assimilating Nucleus (SUSAN) (SB97) is a

corner detection algorithm that finds circular masks such that the simi-

larity between the intensity of the mask center and its local area is max-

imized. In presence of edges and, in particular, of corners the size of

SUSAN notably reduces. Hence, by seeking the smallest circular masks

this detector is able to identify image corners without resorting to local

gradient computations. The Features from Accelerated Segment Test (FAST)

(RD05) operator takes a similar approach, defining a circular region around

the candidate keypoint and testing whether there exist at least a number

n of contiguous neighboring points that have a substantially higher (re-

spectively lower) pixel intensity with respect to the mask center. This

algorithm is reported to produce stable features at a small computational

complexity.

Affine Invariant Point Detectors So far, we have reviewed local feature

detectors that can deal with photometric changes and that are invariant
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to translations, rotations and uniform scale changes. However, images

are often subject to more articulated geometric distortions: in particular,

a robust visual content detector should be able to address perspective

modifications that result in affine transformations of the local patch. An-

alytically, affine invariance can be obtained as a generalization of scale

invariance, that is to say that full scale matrices Σ−1 are used in place of

uniform scale parameters σ. Hence, affine invariant interest points are ob-

tained by applying affine shape adaptation (LG97) either to the smooth-

ing kernel or the the image patch.

Most of the interest point and blob detectors described above can be

adapted to achieve affine invariance. Mikolajczyk and Schmid (MS04), for

instance, extended both the Hessian-Laplace and the Harris-Laplace de-

tectors to address non isotropic transformations, proposing the Hessian-

Affine and Harris-Affine operators. Initially, spatial interest points’ local-

ization and scale estimates are obtained using the original algorithms;

then, affine shape adaptation (LG97) is applied to normalize the key-

points’ neighborhood: as a result, a new integration and differentiation

scale, as well as an updated interest point localization are generated. The

affine shape adaptation process is thus iterated until a stopping criterion

is met.

Tuytelaars and Van Gool (TG04b) propose two alternative methods

for obtaining affine invariant local regions. The former, known as Edge-

Based Region Detector (EBR), exploits corners and edges information (ob-

tained with Harris and Sobel operators, respectively) to identify interest

regions. Starting from a corner and a set of recurrent neighboring edges,

EBR constructs a parallelogram family bounded by the Harris corner and

the points in two neighboring edges: the final interest region is deter-

mined by selecting the parallelogram associated to the extremum of an

intensity function defined over the candidate regions. The EBR approach

relies strongly on the quality of the edge information: hence, the authors

proposed an alternative model, called Intensity Extrema-Based Region De-

tector (IBR) (TG04b), that relies purely on intensity information. The IBR

detector starts by identifying local intensity extrema: given such points, it

analyzes the intensity profiles along radial lines departing from the local
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extrema. Intensity profiles are measured by a function describing the pho-

tometric transformation with respect to the keypoints: the maxima of this

function identify positions of sudden change of intensity and are used to

delineate regions of arbitrary shape enclosing the local maxima. These

regions are then replaced by ellipses having the same shape moments up

to the second order, resulting in an affine covariant construction.

The Salient Region detector has been first introduced as an isotropic

feature detector but has later been extended to affine invariance (KZB04).

The idea underlying this work is to evaluate the entropy of local image

attributes (e.g. intensity or color), computed within an elliptical region

of each image pixel. First the multi-scale extrema over the whole im-

age are selected as candidate salient regions. Then the scales producing

a peak in the entropy are retained as salient scales. Region saliency is

thus calculated as the product of the entropy with the derivative of the

attribute’s probability density function with respect to scale. Finally, the

P top-ranking regions with respect to the saliency measure are selected as

interest patches. By seeking high entropy regions, this algorithm implic-

itly considers as salient those regions that exhibit unpredictability with

respect to the expected behavior of given image attributes.

An experimental comparison of several affine invariant and covariant

feature detectors is presented in (MTS+05) and in Dorko’s thesis (Dor06).

The analysis suggests that it does not exist one detector that outperforms

the competitors for all tasks and under all types of visual transformation.

In particular, MSER obtains the best results in average, together with the

Hessian-Affine, performing particularly well on images containing ho-

mogenous regions with sharp boundaries. Salient regions obtained low

repeatability scores but they perform best in the context of object recogni-

tion (KZB04). Overall Hessian and Harris-based detectors produced the

largest number of interest points (∽ 1500 for 800 × 640 images), while

MSER and Salient Regions produced about one third the number of key-

points with respect to Hessian and Harris operators (see Fig. 56 for an

example of interest point detection): in particular, the ability to detect a

larger number of interest points might enforce the robustness of object

recognition since classification is less affected by occlusion.
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(a) (b)

(c) (d)

(e) (f)

Figure 56: Interest point detectors computed using the binaries provided

by the Visual Geometry Group, Oxford University1: (a) MSER (b) salient
regions, (c) Harris Laplace, (d) Hessian Laplace, (e) Harris affine and (f)
Hessian Affine detectors. Notice how Harris and Hessian detectors return
a larger number of interest points with respect to blob detectors, i.e. MSER
and salient regions. Also, thresholds of Harris and Hessian detectors have
been adjusted to return a smaller number of interest points to favor visual-
ization.
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In general, it is hard to determine which feature detector is best suited

for a given task. Often different types of detectors are mixed to obtain

more information concerning the visual content of an image: in (SRE+05),

for instance, MSER is used together with Harris-Affine detectors, since

the former can identify blob-like regions while the latter detects corner

regions. In (NJT06), on the other hand, the authors suggest that uni-

form sampling obtains better results in image categorization than interest

point detectors. Moreover, Bosch et al (BZM08) show that patch sam-

pling achieves higher classification performances than Harris-Affine also

in scene categorization. Dense sampling works by placing a grid on the

top of the image, randomly picking a number of interest regions from the

multiscale grid patches. In our opinion, sampling achieves a good cat-

egorization performance when used in combination with a bag-of-words

image representation because the vector quantization step produces sta-

bler results when applied to densely sampled regions instead of sparse

interest patches. Interest regions detectors, in fact, tend to produce more

irregular data distributions characterized by a large number of low di-

mensional and highly informative clusters with many outliers produc-

ing consistent distortion. On the other hand, random sampling tends to

generate denser clusters (due to the redundancy of the sampling of most

frequent features) where outliers have a smaller distortive effect on the

quality of vector quantization.

6.2.3 Image Representation

Global approaches to visual content description offer a straightforward

representation of the whole image content. For instance, global color and

texture histograms can be used to compare and rank different images in

a collection as in the earlier CBIR model such as QBIC (FSN+95), Virage

(GJ97)) and Candid (KCH95).

Local descriptors, on the other hand, pose the additional challenge of

devising a suitable representation for the whole image content: in fact,

by themselves, local descriptors provide only information on a portion

of the portrayed scene. In the following, we overview some of the most
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relevant models for image representation based on local content.

One of the earliest models in the literature is based on image segments

information: in particular, (GGR01) adopts a probabilistic image repre-

sentation relying on the color, texture and position information of the de-

tected segments. Each image is represented as a mixture of Gaussians,

where each component describes the local distribution of the attributes in

a segment. Images are then compared based on the Kullback-Leibler dis-

tance (GGR01). The Blobword system takes a slightly different approach:

similarly to (GGR01) it fits a Gaussian Mixture to each image in order to

determine the segments. Then each detected segment is represented as

an histogram of color distributions and texture moments and the whole

image is represented by a collection of segments’ histograms. The mat-

ching between images is performed on a region level by confronting the

segments’ histograms using the Mahalanobis distance.

The representation of images based on local patches, either densely

sampled or sparsely identified by interest point detectors, typically goes

through a first normalization step that resembles the word stemming phase

in text-based systems. In particular, the local descriptors collected for the

whole image collection, or for a consistent portion of it, are feed to an

unsupervised vector quantization algorithm in order to determine a set

of K local patch classes, corresponding to the K codewords identified by

the vector quantizer. The most popular algorithm for visual word quan-

tization is k-means, although some authors have explored more sophis-

ticated vector quantization approaches: (JT05), for instance, pointed out

k-means’ tendency to allocate codevectors in denser regions of the input

space, producing a perceptually distorted representation of the descrip-

tors, and proposed to address this issue by a quadratic Meanshift-like

algorithm. In (LMS06) the authors introduce an optimized agglomera-

tive clustering algorithm for automatically estimating the size of the code-

book, while (MLS06) exploits hierarchical clustering to provide a multi-

level image representation. The practical application of these advanced

clustering models is limited by their run-time complexity and the use of

k-means is, in general, preferred.

The bag-of-words (BOW) representation (CDF+04), also known as bag-
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Figure 57: The bag-of-words (BOW) generation process: interest patches are
extracted for the images in the collection; then, a codebook is generated for
a set of training images (upper part of the graph). Each image can thus be
represented by a word occurrence histogram, i.e. the BOW, computed using
the previously extracted codebook (lower part of the graph).

of-visterms (BOV) and bag-of-keypoints, exploits the vocabulary of visual

words (visterms) built by the vector quantizer to compute an histogram

of codevectors’ occurrences for each image in the collection (SZ03). BOV

takes the local patches associated with each image and substitutes each

local descriptor with the closest codevector with respect to a given dis-

tance measure, typically Euclidean or Mahalanobis. Then, it builds an

histogram that counts the number of occurrences of each codeword in the

image (see Fig.57 for a graphical description of the process). The result-

ing representation describes an image by its local patches distribution,

so that pictures can be confronted by means of any bin-to-bin histogram

measure. As with any vector quantization task, this process introduces

noise in the image representation. However it has also the positive effect

of standardizing the local patches description in such a way that the com-

mon visual root of similar descriptors is hopefully brought out, likewise

with word stemming in text retrieval.

The BOV representation has been successfully applied to object recog-

nition, scene classification and image retrieval using histograms as image
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signatures that are feed to k-Nearest Neighbors (k-NN) (GD05; DKN05),

Naive Bayes (CDF+04; DKN05) and Support Vector classifiers (CDF+04;

NJT06). Moreover, the BOV representation is the basic building block

for latent topic models (SRE+05; FFP05; FFFPZ05) and generative appro-

aches (MLS06; FFFP07) to visual content discovery (see Section 6.3 for a

broader discussion).

The bag-of-words representation assumes that any information con-

cerning the arrangement of local patches as well as the spatial relation-

ships between visterms can be neglected. In other words, the probabil-

ity of finding a visterm wi given and image I is independent from the

other visterms that are possibly present in the scene. This BOV descrip-

tion can be generated with a small computational overhead and is inher-

ently robust with respect to partial occlusion, since the lack of a few local

patches does not produces a substantial change in the histogram distri-

bution. Moreover, given invariant interest point detectors, BOW is robust

to scene translation, scaling and rotation since the spatial relationships

between patches are ignored.

The bag-of-word assumption comes from the text retrieval commu-

nity, where word ordering is assumed to contain a negligible informa-

tive content regarding the document semantics. However, in the visual

domain this assumption contains an extreme simplification, since the se-

mantics of visual entities, e.g. objects, is mostly determined by the way

their constituent parts, possibly represented by local patches, relate spa-

tially. Moreover, the bag-of-words model is particularly prone to a prob-

lem that is known from text retrieval literature, that is the semantic am-

biguity introduced by polysemy. Polysemous words are characterized by

different meanings and, typically, their actual semantics has to be inferred

from the context, that is the surrounding terms. However, in a pure BOW

approach each word is independent from the other so the semantic ambi-

guity cannot be easily solved.

Recently, there have been a number of works trying move past the

bag-of-word assumption by introducing spatial information into the im-

age histograms. For instance, (OB05) introduces the localized feature his-

tograms representation, where a perceptual organization principle inspired
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by the Gestalt theory is used to form compositions of local patches de-

scriptors. In (MS06), the spatial relations between features are used to

weight the BOW histogram by enhancing the relevance of those descrip-

tors that match the objects layout, while irrelevant features are suppressed.

The resulting representation is richer and more robust to clutter, although

requires ground-truth object segmentations to learn the histogram weights.

Spatial pyramid matching (LSP06) introduces a multi-resolution histogram

that captures the aggregation of local descriptors at different spatial reso-

lutions: an image is partitioned into in increasingly finer sub-regions and

a BOW representation is built for each sub-region and finally aggregated

in a unique histogram. This model is reported to perform extremely well

for object categorization on the challenging Caltech101 dataset (FFFP04).

In (SRE+05), the authors seek to increase to spatial specificity of object

description by augmenting the visual vocabulary with doublets, that are

pairs of visual words that co-occur often within a spatial neighborhood.

A similar approach is taken by (ZWG06; YWY07), where feature prox-

imity or co-occurrence are analyzed to build a highly discriminative im-

age representation based on visual phrases. In (WLL+07), statistical lan-

guage modeling techniques are used together with dense-sampling fea-

ture detection to extend the unigram representation, i.e. bag-of-words,

to bigrams, where each visual word is conditionally dependent on its left

neighbor, as well as to trigrams, where visual words are conditionally

dependent on their left and upper neighbors. In (JDSW06), on the other

hand, local patches are aggregated into compound terms using image an-

notations to drive perceptual grouping.

Some approaches have tried to get past the vector quantization step by

introducing a continuous modeling of the descriptor distribution. Quel-

has (dSQ06) proposes to model the descriptors distribution as a Gaussian

mixture model: each local feature is represented by an histogram of Gaus-

sian activations that describe the probability of the feature been generated

by each of the GMM components. This approach has the advantage of

producing a soft clustering of the local descriptors, enriching the image

representation with a measure of how much each particular feature be-

longs to the corresponding cluster center. In (LJ08), the visual vocabulary
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is learned simultaneously with the object recognition model in a latent

topics approach that considers visual words as Gaussian mixtures of lo-

cal descriptors. Perronnin (Per08), on the other hand, introduces adapted

vocabularies that combine a universal visual dictionary, describing the

visual content of all the image collection, with a specific vocabulary, that

contains class specific visterms and is obtained through the adaptation of

the universal vocabulary using class-specific data.

An alternative approach to image representation that founds on the

BOW model uses latent aspects learned from the local descriptors distri-

butions by means of probabilistic Latent Semantic Analysis (pLSA) (Hof01).

The full details of this model will be given in Section 6.3 in the context of

scene and object recognition models. The fundamental idea is to repre-

sent each image as an histogram of latent topics expression: each latent

topic captures the co-occurrence of visual words within an image collec-

tion, hence can address the semantic ambiguity introduced by polyse-

mous words: (QMO+07; BZM08) show how the latent topics representa-

tion can be used in combination with k-NN and support vector classifiers

to achieve effective image ranking and scene categorization.

6.3 Models for Scene and Object Categorization

Once that a suitable description for the visual content has been obtained,

it can be processed to discover semantically meaningful entities that are

present in the image. In this section, we review models, mostly found-

ing on the BOW representation, that address the tasks of object and scene

recognition. The former task, in its most recent and most general inter-

pretation, can be better interpreted as object categorization, that implies the

recognition of general object classes from non specialized image sources.

Earlier approaches to object recognition, on the other hand, focused more

on recognizing the occurrence of a specific object in several images. Scene

classification, likewise object recognition, tries to recognize the visual con-

tent of the image. However, objects are usually characterized by the pres-

ence of a limited number of specific parts organized in strongly struc-

tured configurations, while scenes are composed of several semantically
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meaningful entities (e.g. sky, mountain, people,etc.) organized in weekly

structured layouts (e.g. sky is typically above mountains, but people can

appear almost everywhere in the picture). Scene classification attempts to

organize such variable visual content by assigning an high level category

label summarizing the overall scene information (e.g. urban, country-

side, beach, etc,).

In the following we briefly review the main contributions to the object

and scene recognition field: in Section 6.3.1, we focus on weakly structured

approaches based on the BOW assumption and on latent aspect discov-

ery; in Section 6.3.2 we describe structured approaches exploiting gener-

ative and part-based modeling of the objects and scenes.

6.3.1 Latent Aspect Discovery

Section 6.2.3 has introduced the bag-of-words image description that founds

on the representation of textual documents as vectors of terms occur-

rences. By taking further this similitude, several works have applied com-

putational models for text understanding with the intent of discovering

semantically meaningful visual content from collections of BOW images.

In particular, the latent topic models has been widely applied to dis-

cover latent aspects in image collections. Sivic et al (SRE+05), for instance,

first proposed to exploit probabilistic Latent Semantic Analysis (pLSA)

for the unsupervised discovery of object categories. The pLSA model has

been introduced by Hoffmann (Hof01) to address a fundamental limita-

tion of the earlier latent topic models such as the mixture of unigrams: this

model assumes that each document can be assigned to a unique topic and,

as a consequence, all the words in a document are constrained to belong

to a single topic. The pLSA model relaxes this assumption by allowing

words in a document to belong to different topics, obtaining a multi-topic

representation for the documents in the collection.

The typical pLSA setting includes a collection of documents D = {d1,

. . . , dD} defined over a vocabulary of terms W = {w1, . . . , wW }. The doc-

ument data is summarized by a rectangular integer matrix n ∈ NW×D

such that each row n(·, di) contains the bag-of-words representation for
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document di. The variables identifying words and documents, i.e. wj

and di, are observed, in contrast with a set of latent terms Z = {z1, . . . ,

zK}, that are hidden or unobserved variables. In pLSA, every observa-

tion n(wj , di) is associated to a latent topic k by means of the hidden vari-

able zk. The fundamental probabilities associated with this model are

P (di), that is the document probability, P (wj |zk), that is the probability

of word wj conditioned on the latent variable zk, and P (zk|di), that is the

conditional probability of topic zk given document di. Using this defi-

nitions, the pLSA scheme determines a (quasi) generative model for the

word/document co-occurrences given by the following process

1. select a document di with probability P (di);

2. pick a latent topic zk with probability P (zk|di);

3. generate a word wj with probability P (wj |zk).

The same generative process can be described in a very compact way us-

ing the plate notation introduced by Buntine (Bun94) (see Fig. 58.a): each

rectangular plate denotes the replication of its content for a number of

times given by term on the bottom right (e.g. D and Wd for the outer and

inner plates in Fig 58.a, respectively); each shaded circular item denotes

an observed variable, while empty circles identify hidden variables. The

direction of the arrows denote conditional dependence: e.g. z is depen-

dent from d in Fig 58.a.

The pLSA data generation process can be translated in formulas start-

ing from the joint probability distribution P (wj , di) and decomposing it

by following the conditional dependencies in in Fig. 58.a as follows

P (wj , di) = P (di)P (wj |di) = P (di)

K∑

k=1

P (zk|di)P (wj |zk). (6.1)

The second equality in (6.1) is given by the marginalization of the la-

tent variables zk and by the conditional independence assumption of the

pLSA model, stating that word wj and document di can be considered

independent given the state of the latent variable zk. In other words, the

word distribution of a document is modeled as a convex combination of
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Figure 58: Probabilistic Latent Semantic Analysis: (a) graphical model, (b)
matrix decomposition.

K aspect-specific distributions P (wj |zk). Figure 58.b shows an interpre-

tation of the pLSA model as a matrix factorization: essentially, the joint

distribution matrix is decomposed in a document-topic matrix and and

a word-topic matrix, such that the word-histogram of a document di be-

comes a mixture of word-topics weighted by the topics contribution to

the document di, i.e. {P (z1|di), . . . , P (zK |di)}. In this sense, pLSA can

be interpreted as a special instance of a Non-negative Matrix Factorization

(NMF) problem (LS99). In general, NMF relates to finding a factoriza-

tion of an input matrix into two non-negative matrix, minimizing a cost

function that measures the divergence between the original matrix and

its non-negative factorization. In (GG05), it is shown how pLSA solves a

non-negative matrix factorization problem with a Kullback-Leibler diver-

gence.

The pLSA parameters, i.e. P (wj |zk) and P (zk|di), are determined by

maximization of the log-likelihood of observation N given the model pa-
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rameters θ, that is

logL(N|θ) = log
D∏

i=1

W∏

j=1

P (wj , di)
n(wj ,di)

=

D∑

i=1

W∑

j=1

n(wj , di) logP (wj , di),

(6.2)

where P (wj , di) is expanded using the formulation in (6.1).

The parameter fitting process needs to infer the two multinomial dis-

tributions P (wj |zk) and P (wj |zk): the Expectation Maximization (EM)

(DLR77) algorithm is used to this end, since it applies naturally to mod-

els comprising hidden variables. The derivation of the inference process

is described in (Hof01). Essentially it consists of two steps: first, the E-step

estimates the probability of the topic zk given word wj in document di as

P (zk|wj , di) =
P (zk|di)P (wj |zk)

∑K
k=1 P (zk|di)P (wj |zk)

; (6.3)

then, the M-step derives the P (zk|di) and P (wj |zk) distributions from the

estimated conditional distribution of topics P (zk|wj , di) as follows

P (zk|di) =

∑W
j=1 n(wj , di)P (zk|wj , di)
∑W

j=1 n(wj , di)
, (6.4)

and

P (wj |zk) =

∑D
i=1 n(wj , di)P (zk|wj , di)

∑W
j=1

∑D
i=1 n(wj , di)P (zk|wj , di)

. (6.5)

This two-step process is iterated until a likelihood convergence criterion

is met: often a validation set, or a tempered version of the EM are used in

order to avoid model overfitting (Hof01).

The pLSA scheme maps naturally to image collection analysis by con-

sidering each visual word as a term wj in an image document di. The pi-

oneering work in (SRE+05) exploited pLSA for the unsupervised discov-

ery of object categories in image collections: in particular, they showed

how single latent topics learn to denotes image patches corresponding to

a particular object class. Hence, by determining the most likely aspect
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in the image based on P (zk|di), one can determine the most likely object

depicted in the scene. Moreover, (SRE+05) provides evidence that the

knowledge acquired by applying the inference procedure on a training

set, can be used to estimate the image content in a set of fresh images. This

pLSA approach has been further extended in (FFFPZ05) and (LCC06) to

include some partial spatial information concerning visual patches local-

ization. Alternatively, the pLSA analysis has been seen as an intermedi-

ate feature extraction step, where the document-topic distribution vector

[P (z1|di), . . . , P (zK |di)]
T can be used as a descriptor of the visual content

in image di. Based on this idea, (QMO+07) and (BZM08) independently

developed an hybrid approach to scene categorization that uses pLSA to

extract a latent topic characterization of the images that is in turn feed to a

supervised k-NN or support vector classifier. In (QMO+05), on the other

hand, the document-topic distribution is used to rank the images with re-

spect to a given latent aspect zk, allowing to browse the image collection

according to a sought visual theme.

Although pLSA describes a generative process for the word-document

co-occurrences, it is not a full generative model. In fact, the document

specific mixing weights for the topics are not sampled from a distribu-

tion, rather they are selected from P (z|d) based on the document index d.

Hence, pLSA indexes only the documents in the training set and cannot

directly model unseen documents; furthermore it is prone to overfit the

parameters to the training data. The Latent Dirichlet Allocation (LDA)

(BNJ03) has been proposed to extend pLSA by treating the multinomial

weights P (z|d) as latent random variables, sampling them from a Dirich-

let distribution, that is the conjugate prior of a multinomial distribution.

As with pLSA, the goal is to maximize the data likelihood

P (w|φ, α, β) =

∫
∑

z

P (w|z, φ)P (z|θ)P (θ|α)P (φ|β)dθ (6.6)

where P (w|z, φ) is the word-topic distribution with parameter φ sampled

from the Dirichlet distribution P (φ|β). The term P (z|θ) is the topic distri-

bution having θ as document-specific multinomial parameter being sam-

pled from the Dirichlet P (θ|α). The terms α and β are the hyperparame-
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Figure 59: Graphical model for the Latent Dirichlet Allocation.

ters of the Dirichlet distribution: see Fig.59 for a graphical description of

the model. Direct EM inference is impossible for the LDA model, since

the integral in (6.6) is intractable due to the couplings between the pa-

rameters within the topic marginalization. Hence, approximate Bayesian

inference methods such as variational expectation maximization (BNJ03),

expectation propagation (ML02) and Gibbs sampling (GS04) have been

used to fit the LDA parameters.

With respect to image content analysis, (RFE+06) and (CFF07) apply

LDA-based models to discover object categories from image segments. In

(WZFF06), the authors apply a Bayesian extension of the LDA model, i.e.

the Hierarchical Dirichlet Process (HDP), to categorize images in the chal-

lenging Caltech-101 dataset (FFFP04). Recently, (LJ08) proposed a simpli-

fied Gaussian-Multinomial LDA (BJ03) model that embeds visual vocab-

ulary creation in the object model construction. This model does not need

local descriptor quantization as in other latent aspects model based on the

BOW representation; rather, it consider words as being Gaussian distri-

butions over the SIFT descriptor space. These Gaussian distributions are

enclosed in the LDA model and their parameters are fitted as part of the

LDA inference process. In (FFP05), on the other hand, the authors extend

LDA to supervised learning by introducing an explicit category variable

and the resulting model is used to learn to categorize images into scenes.

Overall, there is no consensus on which of the two models, i.e. ei-

ther LDA of pLSA, offers the best performance. Theoretically, LDA is
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less prone to overfitting than pLSA, although experimental results have

shown that pLSA can achieve better results than LDA (SRE+05). In gen-

eral, pLSA is often preferred for its simplicity and the lower computa-

tional load: the approximate inference procedures used by LDA higher

the time required for parameter fitting and might result in poorly fitting

results.

6.3.2 Part-based and Generative Models

Latent aspect models try to learn object categories using mostly a weakly

structured approach based on the bag-of-word assumption. Other appro-

aches have explored more structured models where object categories are

represented as collections of connected parts characterized by distinctive

appearance and spatial position. A remarkable part-based approach is the

constellation model (BMP98), a probabilistic scheme that describes objects

as random constellations of parts and each part has an appearance, rela-

tive scale and can be be occluded or not. This model explicitly accounts

for shape variations, i.e. modification in the mutual position of the parts,

and for the randomness in the presence/absence of features due to occlu-

sion; however, since the model is supervised, it requires consistent effort

to provide sufficient ground truth data for the object categories. To ad-

dress this issue, Weber et al. (WWP00) propose an unsupervised learning

algorithm based on the maximum likelihood criterion. In (FPZ03), the

authors extend further the constellation model by enforcing its invari-

ance properties with respect to appearance variations and by adopting a

saliency-based (KZB04) interest region operator (see Section 6.2.2) to de-

tect object parts together with their characteristic scale.

Constellation is a generative object model, hence it represents appear-

ance, scale, shape and occlusion by means of probability density func-

tions (e.g. Gaussians). First, it detects regions and relative scales by

means of interest point operators; then, it fits the density parameters by
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maximizing the likelihood

P (X,S,A|θ) =
∑

h

P (X,S,A, h|θ) =

=
∑

h

P (A|X,S, h, θ)
︸ ︷︷ ︸

appearance

P (X |S, h, θ)
︸ ︷︷ ︸

shape

P (S|h, θ)
︸ ︷︷ ︸

scale

P (h|θ)
(6.7)

where X denotes the interest regions locations, S the scales and A the

appearances. This equation essential states that the likelihood can be fac-

torized into appearance, shape and scale dependent terms given a latent

variable h, called the hypothesis, that determines how detected regions

are allocated to model parts.

Another generative part-based approach has been proposed in (RZ06)

with application to human faces modeling. Given an image collection,

parts correspond to fixed regions of the image that contain meaning-

ful face sub-entities. In this approach, the range of appearances of each

part is described by a set of probabilistic models, known as factors. The

generative scheme dictates that an observed data vector is generated by

stochastically selecting one appearance for each factor and one factor for

each dimension of the data. The former selection allows each part to inde-

pendently choose its appearance, while the latter describes how the parts

combine to produce the observed data vector. Given a set of training ex-

amples, this model infers by variational algorithms the association of data

dimensions with factors, as well as the appearance of each factor.

A simplified part-based approach is presented in (WaTM05). This mo-

del consider parts as being arbitrarily arranged, hence losing shape infor-

mation, but occurring in particular proportions in objects, e.g. leaves on

trees and windows on buildings. In particular, object classes are repre-

sented as conglomerates of visual words using a supervised generative

model based on Gaussian distributions of visual words histograms. This

model is faster than ”full” part-based approaches and the experimental

results in (WaTM05) highlight a notable performance in segmenting im-

ages into multiple objects. However, since it is a supervised model, it re-

quires consistent amounts of ground-truth data, i.e. object segmentation,

in order to be able to reliably estimate the object categories. The Hierar-
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chical Pattern model (PCM07) addresses scene categorization by means of

generative approach that is based on a hierarchical organization of the

visual content. Images are clustered at different description levels: first,

they are considered as whole entities and organized based on global pat-

terns alone. This allows to group together images with an overall scene

similitude, disregarding variations at the local level. Then, those images

showing local typicality patterns are analyzed at increasingly finer scales

so to obtain a structured categorization of the visual features.

Perceptual grouping is used in the Bayesian compositionality approach

in (OSB06) (see Fig. 60.a): as in the constellation model, objects are repre-

sented based on their components and the relations between them; how-

ever, instead of modeling a flat constellation of parts, the composition-

ality approach learns intermediate groupings of parts forming a hierar-

chy of recursive compositions. In particular, this model first groups local

patches that lie on common curves; then, curves are agglomerated if this

increases the discriminative power of the compound with respect to the

original constituents.

In (KK07) is presented a hierarchical approach that represents indoor

scenes as undirected graphical models comprising place, object and part

nodes. This model proposes a unified framework for describing contex-

tual information, that is represented as interactions/links between nodes

in the hierarchy. In particular, spatial context is introduced as intra-layer

interactions (e.g. between part nodes), while top-down context or bottom-

up influence is represented by inter-layer connections (see Fig. 60.b). The

resulting graphical model is quite complex and needs to resort to several

variational approximations in order to fit the parameters to the data.

In general, part-based models offer a structured representation of the

visual content, being able to capture the spatial and contextual relation-

ships between the object/scene components. However, they require a

large number of parameters to be able to cope with the multiple vari-

ations in appearance of the object/scene categories they are seeking to

model, thus requiring consistent computational efforts in order to fit the

model parameters. Moreover, their performance is strongly influenced

by the results of the interest point detection phase, since failure to de-
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Figure 60: Examples of part-based hierarchical models. (a) Compositionality
approach: Bayesian network coupling the J compositions Gj based on their
locations Xj , the location of the object center X, a bag of features GI and
the image categorization C. (b) Hierarchical graphical model for the unified
context framework: dotted lines represent spatial context while solid lines
represent bottom-up and top-down hierarchical contextual relationships.

tect a key part of the object model might result in failure to detect the

whole object. Hence, the use of part-based models has been limited, so

far, to problems comprising a small/medium number of object categories

or small variability in the scene description (e.g. see (KK07)).

6.4 Image Annotation

Automatic image annotation systems address the problem of learning the

association between image content and text by relying on previously an-

notated data to learn the connection between words and visual features.

Image annotation is a complex task and, in a sense, can be seen as the gen-

eralization of multi-object and scene characterization, since it tries to bind

semantic information, i.e. the annotations, to the whole image or to signif-

icant portions of it. However, image annotation does not seek for explicit

object presence, rather it estimates the probability of an image contain-

ing a particular concept. Image annotations allows to linguistically index
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pictorial content, hence providing a powerful tool for retrieving images

from large collections by expressing queries using textual terms. In the

following, we review the main contributions to this field: following the

presentation scheme in (Yav07), we differentiate approaches that follow a

probabilistic modeling of the task from non-probabilistic models.

6.4.1 Non-Probabilistic Image Annotation

Non-probabilistic image annotation models are typically rooted in the in-

formation retrieval community and often use a bag-of-words represen-

tation of the image content. In (HLES06), for instance, it is exploited a

cross language information retrieval system based on an algebraic ver-

sion of the pLSA, named Latent Semantic Indexing (LSI). Likewise pLSA,

the LSI algorithm produces a decomposition of the word-document ma-

trix ensuring that frequently co-occurrent terms are mapped to the same

topic. If the word-document matrix contains terms from two different lan-

guages, then LSI produces a decomposition that correlates words from

the different idioms. Documents that are available in a single language

are projected in the LSI topic-space, so that they can be associated with

terms from the other language. Hare et al. (HLES06) have exploited this

model within an image annotation framework by considering the image-

documents as being represented by two idioms: a visual language, de-

scribing the visual content in a BOW representation, and a textual lan-

guage containing the image annotations. The projection of an unseen

image on the resulting LSI space produces automatic annotations of the

visual content at the level of the whole image.

In (TL07), on the other hand, annotations are produced at the level

of individual image regions. They exploit an image description inspired

by the popular term vectors representation from the information retrieval

community (SWY75). In their approach, a training set of annotated im-

ages is used as vocabulary to represent both the visual and the textual

terms. In particular, each training image is a dimension in the vocabu-

lary vector space such that an annotation a is represented by a vector ta
whose components correspond to the images in the training set. The j-th
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component taj of this vector is set to 1 if the j-th image in the training

set contains the annotation a, otherwise is set to 0. An image region r,

on the other hand, is first represented as a bag of local patches; this low

level description is then confronted with the regions in the training set to

produce a refined vector wr . In particular, each component wrj contains

the cosine similarity of the BOW descriptor of region r with the best mat-

ching region in the j-th image of the training set. Since the term vectors ta
and the region descriptors wr are defined on the same vocabulary, a new

region r1 can be annotated by confronting its descriptor wr1
with the ta

vectors, selecting the best matching terms as image annotations.

In (LCZ+06), the image annotation problem is seen as a search and

mine task: the un-captioned images are first confronted with a large scale

database of pictures crawled from the Web and characterized by a rich

annotation content. A set of best matching pictures is selected and, in

the mining phase, a clustering algorithm is used to find the most repre-

sentative keywords for the annotations of the retrieved image set. These

keywords are then ranked based on a saliency measure and used to an-

notate the un-captioned image.

Discriminative approaches have also been used to address image an-

notation. In (CCS04), a multi-class Support Vector Machine (SVM) is

trained to perform semantic segmentation by classifying image pixels

into one of the annotation categories: however, this model has been tested

only with a few classes (i.e. 7/8), it is thus debatable whether it has to be

considered an image annotation system rather than an object recognition

model. Multiple-instance learning (MIL) has been proposed as a natural

tool for modeling image annotation (MR98): this learning strategy builds

classifiers form bags of labeled examples, such that one typically knows

only whether the bag contains or not a positive example for the class, but

cannot relate this information to the bag’s content. In the image annota-

tion context, a picture is represented as a bag of regions or local patches

(i.e. the typical BOW description), while the captions represent the labels

that have to be attached to the bag content. In (QH07), is presented an

image annotation system that integrates MIL with SVM. The former al-

gorithm is used to generate an intermediate representation for the visual

225



content that is in turn feed to a set of SVMs that learn to associate textual

annotations.

6.4.2 Probabilistic Image Annotation

The majority of the existing works in image annotation relies on a proba-

bilistic formulation of the problem, that focuses on estimating the proba-

bility that a set of annotations is emitted by some particular image feature.

The problem of learning joint probabilities between text and image fea-

tures has been addressed at three levels of visual content representation,

that is global, regional and local level. In (CSS98), for instance, is pro-

posed a global descriptor approach where visual features are computed

over the whole image.

However, the image annotation approaches in the literature are mostly

based on the quantization of interest patches or whole regions. One of the

earliest approaches in this sense, is the co-occurence model in (MTO99):

images are partitioned into local segments by means of a fixed grid. Im-

age segments are then described by their color and texture content and

vector quantized to obtain a finite set of visual terms w and a bag-of-

words representation for the image content. Given a set of annotated

training images, the co-occurrence model estimates the empirical distri-

bution of each textual caption t given the visual terms w as

P (t|w) =
N(t, w)

∑

tN(t, w)
(6.8)

where N(t, w) is the number of co-occurrences of term t with the visterm

w. Based on the probability in (6.8), an un-captioned image is annotated

by computing the probability of each annotation given the visual terms

extracted from the picture.

Besides fixed-grid partitioning, image segments, or blobs, have been

widely used to represent visual content in image annotation. In (Bar01),

for instance, it is proposed a probabilistic generative model in which

words and image regions are independently emitted at different levels

of a fixed hierarchy of image clusters. In particular, each node in the hier-

archy has some probability of generating terms and image regions, rep-
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resented by means of Blobword (CBGM02) features. Images are assigned

to clusters, that are the leaves of the hierarchy tree, and their words and

segments are modeled as being generated from a distribution over the

nodes on the path from the root to the leaf corresponding to the cluster.

Mathematically, this is modeled as a sum over the clusters weighted by

the probability that the image d is in the cluster, that is

P (D|d) =
∑

c

P (c)
∏

t∈D

∑

l

P (t|l, c)P (l|c, d) (6.9)

where D is the set of visual and textual terms t in image d, c indexes clus-

ters and l indexes levels. The EM algorithm is used to fit the model, com-

prising two hidden variable sets: the former indicates the membership of

a training document d to a given cluster c, while the latter indicates that

term t is generated at level l of the hierarchy.

The Translation model in (DBdFF02) uses Brown’s machine translation

framework (BPPM94) for associating image segments (that are words in

one language) to annotations (that are the translated words): blobs are

identified by Normalized Cuts (SM00) segmentation and are represented

by vector quantized color and texture features. The EM algorithm is used

to learn the translation probabilities (translation table) linking a blob b

within image d with the annotations t: given a a trained translation ta-

ble, an un-captioned image is annotated by picking the most likely word

for each of its blobs. Brown’s model is used also in (JDSW06) with lo-

cal patches extracted by interest point detectors. In this approach, textual

annotations serve also as an aggregating means for detecting visterms

compounds, that are sets of frequently co-occurring patches with respect

to single textual terms. Given an un-captioned image, compound visual

terms are detected and annotated with the most likely term estimated us-

ing the translation table.

Similarly, the Cross Media Relevance Model (CMRM) (JLM03) considers

images as sets of words and blobs, that are terms from two different lex-

icons. However, CMRM loosens the translation model’s assumption that

considers annotations and blobs to be in a one-to-one correspondence: in-

stead of computing a translation table, CMRM estimates the probability
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of observing an annotation t together with a blob b. An un-captioned im-

age is annotated by choosing the most probable terms tj under the joint

probability

P (tj , b1, . . . , bI) =
∑

d∈DT

P (d)P (tj |d)
I∏

i=1

P (bi|d) (6.10)

where bi are the blobs describing the un-captioned image and DT is the

set of training images. Equation (6.10) essentially considers words and

blobs as being generated independently given an image d in the train-

ing set. Given this assumption, the probability of seeing an annotation

tj together with the blobs bi is estimated based on statistics on the occur-

rence of annotations and blobs in the training images. In particular, the

probability of a term, either an annotation or blob, occurring in a training

image d is given by a multinomial distribution smoothed by the back-

ground probability of the term with respect to the whole training set. The

CMRM is reported to improve consistently the performance of translation

model: however, rather than annotating blobs, CMRM provides captions

for the whole image. In (THL06), the CMRM model is adapted to a salient

regions: image segmentation is avoided by representing pictures as bags

of local SIFT patches, while the multinomial probabilities P (wi|d) are es-

timated for each quantized visterm wi.

So far, we have described models that rely on vector quantized de-

scriptors of the image regions: in (LMJ03) it has been proposed the Con-

tinuous Relevance Model (CRM) that extends CMRM by abandoning the

quantization of the blobs. Instead of computing the probability P (bi|d)

as a smoothed multinomial, the CRM model computes it using a non-

parametric Gaussian kernel density estimate of its un-quantized blob fea-

ture vector. In (FML04), it has been proposed an extension to the CRM

model that replaces the multinomial image-annotation distributionP (tj |d)

with a multiple Bernoulli distribution.

A non-parametric kernel density estimate approach is exploited in

(YSR05) using global image features in place of a blob representation.

This approach models the annotation process using a simple Bayesian

scenario, where the probability of labeling an image d with a word t is
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given by

P (t|d) =
f(d|t)p(t)

f(d)
(6.11)

where f(d|t) is the density of d conditional to the assignment of the la-

bel t. The image d is represented either by color and texture features or

by a signature s = {(c1,m1), . . . , (cI ,mI)}, that models the centroids ci of

I k-means clusters in CIE-Lab space as well as the number of points mi

belonging to each cluster. The function f(d|t) is then approximated by

a Gaussian non-parametric kernel density estimator for each annotation

t: additionally, the Earth Movers Distance (EMD) (Rub98) is used in place

of the Euclidean measure in the Gaussian kernel, when images are repre-

sented by signatures. The model is shown to perform as well as the CRM

when using image signatures with the EMD measure.

Besides scene and object recognition, latent variable models have found

application also in automatic image annotation: (BJ03), for instance, de-

scribes several generative models based on a blob-like image representa-

tion. The simplest approach presented in (BJ03) is a finite mixture model

named Gaussian-multinomial mixture (GM-MIXTURE), where a single la-

tent aspect z is used to bind the visual modality, i.e. the blobs b, with

the annotations t. Likewise in the CRM, the distribution of blobs and

words are modeled by Gaussian and multinomial distributions, respec-

tively. The generative process in Fig. 61.a essentially states that images

and captions are generated by first choosing a topic z and then repeatedly

sampling Bd region descriptors andMd labels, conditional on z. This mo-

del is limited to a single latent aspect for each image, that is sampled once

and held fixed during the generation of the blobs and labels. Moreover,

the correspondence between regions and words is totally ignored, since

blobs and annotations are independent conditioned on the latent variable

z.

To address the limitations of the GM-MIXTURE approach, (BJ03) first

introduced a multimodal extension to the LDA model (BNJ03), named

Gaussian-Multinomial LDA (GM-LDA). As discussed in Section 6.3.1, LDA

allows multiple topics to be allocated for a single image: likewise, the

GM-LDA permits to generate regions and words from different latent as-
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Figure 61: Latent topic image annotation (BJ03): (a) GM-Mixture model, (b)
GM-LDA model and (c) CORR-LDA model. See the text for further details.
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pects within the same image. The GM-LDA generative process in Fig.

61.b states that the the Dirichlet variable θ is sampled once for each im-

age, while blob and word topics (i.e. z and v, respectively) are selected

for each region and annotation but from the same Dirichlet variable. In a

sense, the parameter θ describes how blob and word topics can be assem-

bled within an image. However, this increased flexibility with respect

to the GM-MIXTURE does not produce a performance improvement in

the GM-LDA model, as detailed in the experimental evaluation in (BJ03).

This is due to the fact that the latent factors z and r are not directly de-

pendent on each other, hence GM-LDA cannot model the relationship

between the visual content and the image captions. The same authors in

(BJ03) introduce a third model, named Correspondence LDA (CORR-LDA),

that extends the flexible GM-LDA approach by modeling the conditional

correspondence between blob and word topics (see Fig. Fig. 61.c). The

key assumption of this model is that region aspects are generated first,

while captions are generated conditional on their topics v as well as the

region aspects z. In other words, after having generated Bd blob descrip-

tors b, we then select one blob b and its generating topic z for each anno-

tation, and we finally sample a term t conditioned on z. Essentially, in

CORR-LDA, image regions can be sampled from any visual topic, while

image annotations are conditioned to be selected from the visual aspects

that are present in the image. This representation is flexible enough to

allow caption words to be drawn from a subset of the image regions with

multiple terms eventually coming from the same blob. The experimental

results in (BJ03) show that CORR-LDA improves significantly the GM-

MIXTURE model. In (BDdF+03), the CORR-LDA is further extended by

the Mixture of Multi-Modal LDA (MoM-LDA) to model independent im-

age collections. Each collection is modeled by a randomly generated mix-

ture over latent factors: in particular, a multinomial collection variable c is

added as a prior to the Dirichlet term θ and is sampled once for each im-

age, providing a means for constraining the choice of the topics mixture

for images within the same corpus.

Three models inspired by the pLSA scheme are presented in (MGP07)

to deal with annotated image collections. The performance of the three
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models is evaluated with different image representation, that are a global

descriptor of the pixel color distribution, a blob-like representation based

on image regions and a localized description based on SIFT and local

interest points. The simpler latent aspect scheme for annotated images,

named PLSA-MIXED, learns a standard pLSA model on a concatenated

representation of text and visual content within an image. In other words,

each image descriptor x = (v, t) is the concatenation of the visual descrip-

tor v with the bag of annotations t, and the word-topic distribution P (x|z)

captures the co-occurrence of visual features and words together. An un-

captioned image dnew is then represented by the visual part alone, i.e.

xdnew
= (vdnew

, 0), and the conditional probability P (x|dnew) is generated

using the standard folding-in (SRE+05) procedure. Finally, the conditional

distribution over the captions P (tdnew
|dnew) is extracted from P (x|dnew)

and used to annotate the image. This approach implicitly assumes that

both modalities have the same influence in determining the latent space

decomposition and, likewise the GM-LDA model, does not allow to relate

the visual content with the annotations (recall that the pLSA approach as-

sumes that the elements in the bag are independent conditioned on the

latent aspect z). The second and third pLSA-based models (MGP07) ad-

dress these issues by first generating features with one modality and then

sampling the other modality from the subset of aspects that generated

the first features, in a process that closely resembles that of the CORR-

LDA approach. The PLSA-FEATURES model, for instance, allows to es-

timate the document-topic distribution P (z|d) from the visual modality

alone, while learning also the distribution P (v|z) of the visual features

conditioned on the latent aspects. When learning converges, the condi-

tional distribution of annotations given the latent topics, i.e. P (t|z), is

estimated while keeping P (z|d) fixed for the textual modality, likewise

in the folding-in process. Conversely, the PLSA-WORDS first estimates

the topic distribution for the textual modality and then keeps it fixed for

the visual information. The annotation of a new image dnew is then per-

formed by probabilistic inference using the folding-in procedure to esti-
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mate the conditional distribution over captions

P (t|dnew) =
∑

k

P (t|zk)P (zk|dnew). (6.12)

The experimental results in (MGP07) show that PLSA-WORDS has a bet-

ter retrieval performance than PLSA-FEATURES: this is not un-expected

since, in general, annotations are more semantically discriminative than

visual features; hence, they produce a document space decomposition

that separates more sharply the images with respect to their visual se-

mantics.

Other relevant probabilistic approaches to image annotation include

the 2D Multiresolution Hidden Markov Model (2D-MHMM) (LW03) where

images are segmented by a fixed grid at progressively higher resolutions

and a 2D-MHMM model is trained for each image category to capture

segment dependencies. Each category is associated with multiple anno-

tations and the likelihood of an un-captioned image (based on the learned

2D-MHMM category models) is used to annotate it with the category la-

bels. A supervised generative/discriminative approach is presented in

(FGLX04), where SVM classifiers are trained on labeled image regions

to recognize and annotate salient objects, while a Gaussian mixture mo-

del is used to estimate the scene caption, achieving a multi-level annota-

tion of the image. In (WFCX06), contextual information is integrated in a

region-based probabilistic annotation model. In particular, spatial context

is modeled in such a way that the choice of a region label is influenced

by the annotations of its neighboring blobs. In (ZWZ+07), on the other

hand, it is explored the contextual relationships between the terms in the

image annotations: the CMRM model is extended by incorporating co-

occurrence statistics for the textual terms, achieving substantial improve-

ments with respect the multiple Bernoulli relevance model (FML04). The

Collaterally Confirmed Labelling model in (ZB07) integrates both the spa-

tial context given by region co-occurrence as well as the annotation con-

text given by term co-occurrence statistics gathered from external sources

(e.g. web pages, linguistic corpora, etc.). In (WG07), it is presented an

hybrid approach that exploits the translation model to attach labels to the

topics in a probabilistic latent semantic analysis model fitted with the vi-
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sual information from an annotated image collection. words. In a sense,

compared to the original translation model, this approach provides an in-

termediate level of description for the visual content based on the learned

topics: however, likewise the original model, it assumes a one-to-one cor-

respondence between topics and words.
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Chapter 7

Image Region Annotation
By Hierarchical Region
Topic Discovery

7.1 Introduction

In the last ten years, there has been a notable strive to realize new tools for

the semantic categorization of image content, motivated both by the avail-

ability of consistent collections of weakly annotated data (e.g. an image

with its surrounding text in a web page) as well as by the recent advance-

ments in image processing models. In the previous chapter, it has been

noted that there is an increasing attention towards new machine vision

models that overtake flat region-based and keypoint-based approaches

in favor of multi-layered representations conveying richer semantics and

discriminative power than a BOW model, but without the rigidity of a

part-based approach.

In this chapter, we present a model that takes further the idea of strati-

fying the representation of the visual content. In particular, we propose to

exploit a multi-layered description both at the level of image representa-

tion as well as the semantic level of latent topic discovery. To address the

former issue, we define a multi-resolution representation of the visual
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content that draws both on region-based as well as on keypoint-based

models. The proposed image representation approach is integrated into

a hierarchical latent variable model that is used to discover visual aspects

at different levels of image resolution. By exploiting the asymmetric pLSA

learning proposed by (MGP07), we extend the hierarchical latent variable

algorithm to allow representing multimodal information collections com-

prising images and related textual captions. Such captions act as a source

of weakly supervised information, that we exploit to learn to annotate the

single image regions based on the distribution of their latent aspects.

The remainder of the chapter is organized as follows: Section 7.2 in-

troduces the multi-resolution image representation, while in Section 7.3.1

we lay down the foundations of the Hierarchical Region-Topic Probabilis-

tic Latent Semantic Analysis (HRPLSA), that is extended in Section 7.3.2

to address automatic image annotation. Section 7.4 discusses the rela-

tionships of the proposed approach with the state-of-the-art latent aspect

models. Finally, in Sections 7.5 and 7.6 we present a performance evalu-

ation in unsupervised visual classes segmentation and image annotation,

respectively.

7.2 Multi-resolution Image Representation

The definition of a suitable representation of the visual information con-

tent is an essential prerequisite for developing competitive image under-

standing models. In this section, we introduce a multi-resolution descrip-

tion for the pictorial information that integrates within the region-based

hierarchical latent topic model that we describe in Section 7.3. Since the

aim of this latent model is to learn to recognize and segment semantically

meaningful portions of a picture, we need a representation scheme that

provides sufficient information concerning the appearance of such image

regions.

The term multi-resolution stems exactly from the need of describing vi-

sual information at different spatial granularity, by borrowing both from

the BOW and the region-based image representations. In Section 6.2 we

have pointed out that, on the one hand, region-based approaches do not
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offer sufficient warrantees with respect to robustness to occlusion and

affine transformations of the visual entities; moreover, they rely strongly

on the performance of segmentation algorithms, that is not sufficient to

ensure the isolation of relevant objects. On the other hand, the BOW rep-

resentation seems to be too strongly biased by the assumption that spa-

tial distribution of visual keywords can be neglected when determining

the overall image appearance. In our opinion, such an approach has the

best performance on image corpora characterized by small variability of

the pictorial content, especially when applied to the characterization of

single-object images (e.g. the Caltech101 data (FFFP04)) or to high level

scene characterization, such as in scene recognition. However, when deal-

ing with varied visual information and with complex tasks encompassing

the identification of multiple relevant entities within the same picture,

such as in image annotation, we need a more structured approach that

can isolate semantically different image portions and process them with

little noise coming from the visual keywords of the surrounding regions.

Our intention is to devise a flexible representation that can account for

the spatial structuring of the visual information content, while retaining

the tolerance of a BOW description. To do so, we shift the application of

the BOW representation to a lower spatial granularity: in particular, we

first extract a set of visual keywords, either by dense sampling or interest

point detection, that are in turn aggregated based on their spatial conti-

guity as determined by a coarse segmentation of the image into percep-

tually homogenous portions. Figure 62 exemplifies the proposed multi-

resolution representation: an image d is, essentially, a bag of Rd regions

which are, themselves, bags of visual keywords wj . Hence, each region

is represented by an histogram counting the occurrences of visual code-

words within the segment. Seen from the perspective of textual latent se-

mantic analysis, this representation essentially assumes that a document

can be characterized by the unordered paragraphs in the text, whose gen-

eral concept is, in turn, independent from the disposition of the words in

the paragraph.

Image regions are obtained by performing CoRe segmentation on the

image pixels, such that each image position is represented by the corre-
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Figure 62: Multi-resolution representation: images undergo both visual key-
points extraction and region segmentation. Each image is characterized by
its composing regions rl; each region is, in turn, described as a bag of those
visual keypoints wj that fall into its portion of the image.

sponding three-dimensional color descriptor in the perceptually uniform

CIE-LAB (WS82) space as well as by the coordinates of the pixel. CoRe

segmentation is employed because, given the results in Chapter 2 and 3,

it produces reliable estimates of the underlying pixel distribution with a

linear computational complexity. Moreover, as shown in Sections 3.2 and

3.3, it is robust noise and outliers and its repetition-suppression mech-

anism allows to detect small dimensional clusters (i.e. corresponding

to small homogeneous image regions) even in presence of consistently

denser datapoint concentrations (i.e. corresponding to larger visual en-

tities, such as sky, grass, etc.). The settings for the CoRe algorithm are

those described in Section 2.6.1 and the number of initial units is chosen

equal to 20, that offers a fair tradeoff between quality of the estimate and

computation effort. Figure 63 shows an example of segmented images

from the Microsoft Research Cambridge dataset (MRSC-B1) (WaTM05).

This dataset provides ground truth segmentations for a number of visual

classes: in Section 7.5 we exploit this information to evaluate the seg-

mentation performance of the hierarchical latent topic model proposed
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in Section 7.3.1.

Visual keypoints can be extracted based on dense sampling or using

one of the interest point detectors described in Section 6.2.2. In this chap-

ter, we focus on densely sampled keypoints since they have been shown

to be more effective than sparse interest point detectors for scene cate-

gorization (BZM08) and image annotation (MGP07), that are both prob-

lems dealing with articulated scenes comprising multiple visual entities.

Sparse interest points, on the other hand, have shown to perform well

when dealing with object recognition, while they do not seem to capture

well the informative portions of large scenes comprising landscapes and

large perceptually uniform regions. Following the approach in (BZM08),

we select gray-level patches with radius r = 4, 8, 12 and 16, that lie on a

multi-resolution grid with spacing δ = 5, 10 and 15. In general, we ran-

domly sample 2000 or 3000 patches from each image and we represent

them by SIFT descriptors using the VLFeat package (Ved07). Standard

k-means clustering is then performed on the SIFT descriptors to extract a

codebook of visterms (typically 1000–3000), that is in turn used to vector

quantize the local patches within each image.

As a final step, regions and keywords are brought together: each re-

gion rl is represented by the histogram of visterms occurring with their

centers in the image portion assigned to the segment. Notice that CoRe

provides a description of the detected image segments in terms of Gaus-

sian functions: in principle we can exploit this to devise an alternative

image representation approach, where keypoints are not assigned selec-

tively to a single image region; rather, they can be shared between those

segments whose Gaussian response (to the keypoint center) exceeds a

minimum threshold.

Compared to the work in (RFE+06; SRZ+08), our representation offers

the advantage of avoiding to tear the image into pieces: in their work, seg-

ments are considered as standalone entities that are supposed to represent

objects in their entirety. In order to find good objects they perform multiple

segmentations of the same image, obtaining a pool of alternative, possibly

overlapping, regions among which they choose the candidate solution. In

our approach, every picture is represented in its entirety, and each region
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Figure 63: Segmentation examples for the MRSC-B1 Dataset (WaTM05).
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is in the context of its originating image. A similar approach has been

developed by (CFF07): they perform an over-segmentation of the images

to extract a large number of image portions (i.e. 30 − 50). Then, for each

segment they extract a set of informative keypoints by the scale invariant

saliency detector (see Section 6.2.2) and represent them as a bag of vis-

terms. Notice that we take a different approach to the creation of the re-

gional bag-of-words: first, we extract keypoints from the whole image and

then we assign them to the regions. In a sense, we seek keypoints that de-

scribe the visual content of the whole image and we pool them together

based on the perceptual concepts of closure and spatial contiguity. From a

computational point of view, this allows to parallelize the image segmen-

tation process and the keypoint extraction phase; moreover, a variation

in the segmentation of the image does not require recomputing the whole

image descriptor. This later aspect poses also a robustness issue for the

model in (CFF07): some image segmentations, in fact, might lead to the

extraction of mis-informative keypoints; our representation, on the other

hand, is more stable since the set of keypoints used to compute the region

BOW does not depend on the outcome of the segmentation.

7.3 Region Annotation by Hierarchical Probabilis-

tic Latent Semantic Analysis

In this section, we introduce our proposal for a hierarchical latent topic

model for image segment annotation. In particular, in Section 7.3.1, we

describe the details of the Hierarchical Region-Topic Probabilistic Latent Se-

mantic Analysis (HRPLSA) that we use to learn a multilayered and mul-

tiresolution representation of the visual content. In Section 7.3.2, we show

how to extend HRPLSA to model the association between visual content

and related textual information.
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7.3.1 Hierarchical Region-Topic Probabilistic Latent Seman-
tic Analysis (HRPLSA)

The hierarchical region-topic model extends the probabilistic latent se-

mantic analysis by introducing a multilayered representation of the vi-

sual content both on the spatial and on the semantic level. The former

aspect refers to the fact that images are no longer represented as bag-

of-keywords; rather, they are considered as an unordered collection of

coarse regions, which are themselves described as bags of visterms. The

semantic aspect, on the other hand, refers to the fact that HRPLSA intro-

duces a hierarchy of latent topics, such that the appearance of each region

is associated to a mixture of high level aspects that, in turn, determine

the mixing proportions of low level topic associated to the visterms in the

region.

More formally, the HRPLSA setting is defined by a collection of image

documents D = {d1, . . . , di, . . . , dD}, such that the i-th image is repre-

sented as a bag-of-regions di = {r1, . . . , rl, . . . , rRi
} where each region

rl is itself a bag-of-visterms rl = {w1, . . . , wj , . . . , wWl
}. The generative

probabilistic model of HRPLSA is described in Figure 64: observed vari-

ables include the documents di, the regions rl and the visual words wj ,

while the latent variables include the region topics Z = {z1, . . . , zk, . . . ,

zK} as well as the word aspects T = {t1, . . . , tp, . . . , tT }. The observa-

tion matrix, that in the original pLSA model is a two-dimensional ma-

trix of word-document occurrences, is now a three-dimensional matrix

n(wj , rl, di), containing the number of occurrence of word wj in region rl
of image di.

The fundamental probabilities associated with the HRPLSA model

can be better understood by taking a top-down approach, starting from

the coarser image representation (region level) to the finer (word level).

Let’s first consider the occurrence of a region rl within an image di; the as-

sociated co-occurrence probabilityP (di, rl) can be decomposed by marginal-

izing the latent topics zk as in the original pLSA model, that is

P (di, rl) = P (di)

K∑

k=1

P (zk|di)P (rl|zk) (7.1)
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Figure 64: The Hierarchical Region-Topic Probabilistic Latent Semantic
Analysis as a generative model: an image document d contains a set of re-
gions rd, that are themselves bags of Wr visual words. Notice that each
region is assigned to a single topic z and that each region aspect z is char-
acterized by a different proportion of word topics t. The φ term denotes the
multinomial parameter of the word-topic distribution.

where P (zk|di) denotes the mixing proportions of the region topics given

the document. The probability of a region in di being generated by an

aspect, i.e. P (rl|zk), can be further expanded by applying the BOW as-

sumption to the regions, yielding

P (rl, zk) = P (w1, . . . , wWl
|zk) =

Wl∏

j=1

(
T∑

p=1

P (tp|zk)P (wj |tp)

)n(di,rl,wj)

.

(7.2)

Equation (7.2) expresses the BOW assumption, stating that visual words

in a region rl are generated independently conditioned on the choice of a

visterm topic tp. The probability P (tp|zk) determines the mixing propor-

tions of word topics given the region aspects, while φjp = P (wj |tp) is the

multinomial word-topic distribution. For the sake of notational compact-

ness, in the following, we will refer to the observation n(wj , rl, di) as njli.

Given the model probabilities, the generative process of HRPLSA can be

stated as follows
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1. Select a document di with probability P (di).

2. For each region rl ∈ di,

(a) pick a topic zk with probability P (zk|di);

(b) for each word wj ∈ rl,

i. pick a topic tp with probability P (tp|zk);

ii. choose a word wj from the multinomial φjp.

In order to estimate the model parameters, i.e θ = {P (zk|di), P (tp|zk),

φjp}, we need to formalize the log-likelihood of the collection N , that is

L(N|θ) =

D∑

i=1

Ri∑

l=1

log



P (di)

K∑

k=1

P (zk|di)

Wl∏

j=1

(
T∑

p=1

P (tp|zk)φjp

)nilj


 .

(7.3)

The log-likelihood maximization cannot be performed directly on the

formulation in (7.3), due to the sums in the logarithm. However, the Hi-

erachical Latent Variable Model (BT98) provides a hierarchical extension of

the Expectation-Maximization algorithm, that can be adapted to fit the

HRPLSA model. First, we introduce two sets of indicator variables that

specify which component of the mixture is responsible for generating the

single data samples. For instance, Zilk determines which topic zk is re-

sponsible for the generation of the l-th region in the i-th image; similarly,

Tkjp specifies which topic tp generated the word wj given the region as-

pect zk. Essentially, indicator variables are such that Zilk = 1 (or Tkjp = 1)

only for the generating component k (respectively p) and they are equal

to zero for all the other topics. Hence, the complete likelihood of the

HRPLSA model can be restated as

LC(N|θ) =
D∏

i=1

Ri∏

l=1

K∑

k=1

P (zk|di)
Zilk

Wl∏

j=1

[
T∑

p=1

P (tp|zk)(φjp)Tkjp

]nilj

(7.4)

where the document probability P (di) has been neglected since we as-

sume that documents in the collection are equiprobable. The log-likelihood
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corresponding to (7.4) is

LC(N|θ) =

D∑

i=1

Ri∑

l=1

K∑

k=1

Zilk [log(P (zk|di))

+

Wl∑

j=1

nilj

T∑

p=1

Tkjp log (P (tp|zk)φjp)



 .

(7.5)

Indeed, we do not have full knowledge concerning the responsibilities of

the single components in generating the data. However, we have a prob-

abilistic estimate of the responsibility of each latent aspect, that is given

by the posteriors of the indicator variables Zilk and Tkjp. Such posteriors

are estimated in the E-Step of the EM algorithm: for the region-topics, this

yields to

E[Zilk] = P (zk|di, rl) =
P (zk|di)P (rl|zk)

∑K
k′=1 P (zk′ |di)P (rl|zk′)

=
P (zk|di)

∏Wl

j=1[
∑T

t=1 P (tp|zk)φjp]nilj

∑K
k′=1 P (zk′ |di)

∏Wl

j=1[
∑T

t=1 P (tp|zk′)φjp]nilj

(7.6)

where the region-topic probability P (rl|zk) has been expanded using the

BOW assumption. Similarly, we compute the word-topic posterior as

E[Tkjp] = P (tp|zk, wj) =
P (tp|zk)P (wj |tp)

∑K
p′=1 P (tp′ |zk)P (wj |tp′)

. (7.7)

The posteriors in (7.6) and (7.7) are used in the M-Step to compute

the current estimates of the model parameters θ. To obtain the learning

equations for θ, one has to maximize the expected log-likelihood

E[LC(N|θ)] =

D∑

i=1

Ri∑

l=1

K∑

k=1

P (zk|di, rl) [log(P (zk|di))

+

Wl∑

j=1

nilj

T∑

p=1

P (tp|zk, wj) log (P (tp|zk)φjp)

] (7.8)

with respect to the model parameters. In order to enforce the probability

normalization constraints, one needs to extend the formulation in (7.8)
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with proper Lagrange multipliers ρi, λk and τp, yielding

H = E[LC(N|θ)] +

D∑

i=1

ρi

(

1 −
K∑

k=1

P (zk|di)

)

+

K∑

k=1

λk

(

1 −
T∑

p=1

P (tp|zk)

)

+

T∑

p=1

τp



1 −
W∑

j=1

φjp



 .

(7.9)

Maximization of H is obtained by differentiating (7.9) with respect to the

model parameters θ, which yields to the following system of stationary

equations

∂H

∂P (zk|di)
= 0 ⇐⇒

Ri∑

l=1

P (zk|di, rl) − ρiP (zk|di) = 0,
1 ≤ i ≤ D
1 ≤ k ≤ K

∂H

∂P (tp|zk)
= 0 ⇐⇒

D∑

i=1

Ri∑

l=1

P (zk|di, rl)

Wl∑

j=1

niljP (tp|zk, wj)

− λkP (tp|zk) = 0,
1 ≤ p ≤ T
1 ≤ k ≤ K

∂H

∂φjp

= 0 ⇐⇒
D∑

i=1

Ri∑

l=1

K∑

k=1

niljP (zk|di, rl)P (tp|zk, wj)

− τpφjp = 0,
1 ≤ p ≤ T
1 ≤ j ≤W

.

After eliminating Lagrange multipliers, resolving the system above yields

the M-step update equations for the model parameters, that are

P (zk|di) =

∑Ri

l=1 P (zk|di, rl)
∑K

k′=1

∑Ri

l′=1 P (zk′ |di, rl′)
=

∑Ri

l=1 P (zk|di, rl)

Ri

(7.10)

where we have used the equality
∑K

k′=1 P (zk′ |di, rl′) = 1 from (7.6),

P (tp|zk) =

∑D
i=1

∑Ri

l=1 P (zk|di, rl)
∑Wl

j=1 niljP (tp|zk, wj)
∑T

p′=1

∑D
i′=1

∑Ri′

l′=1 P (zk|di′ , rl′)
∑Wl′

j′=1 ni′l′j′P (tp′ |zk, wj′ )

=

∑D
i=1

∑Ri

l=1 P (zk|di, rl)
∑Wl

j=1 niljP (tp|zk, wj)
∑D

i′=1

∑Ri′

l′=1 P (zk|di′ , rl′)ni′l′·

(7.11)
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given that
∑T

p′=1 P (tp′ |zk, wj′) = 1 and where ni′l′· is the number of vis-

terms in region rl′ of image di′ ; finally,

φjp =

∑D
i=1

∑Ri

l=1

∑K
k=1 niljP (zk|di, rl)P (tp|zk, wj)

∑D
i′=1

∑Ri′

l′=1

∑K
k′=1

∑Wl′

j′=1 ni′l′j′P (zk′ |di′ , rl′)P (tp|zk′ , wj′ )
. (7.12)

Parameter fitting proceeds as in the original pLSA model (Hof01), al-

ternating between posterior estimation in the E-Step and model update

in the M-Step. Algorithm 4 summarizes the HRPLSA parameter learn-

ing: notice that the stopping condition is based on the convergence of

the likelihood estimate, which can be computed either on training data N

or with respect to hold-out samples Nvalid to prevent model overfitting

(early stopping) (Hof01).

The probability estimates determined by the HRPLSA model can be

used to perform Bayesian inference on the visual content. As regards the

estimation of the most likely topic within an image di, this can be easily

done as in (SRE+05), by finding the predominant aspect zi as

zi = arg max
zk∈Z

P (zk|di). (7.13)

Compared with pLSA, the HRPLSA model allows also to determine a

semantic segmentation of the image regions by estimating the most likely

latent aspect z∗ for each segment rl, that is

z∗ = arg max
zk∈Z

P (zk|di, rl). (7.14)

On the other hand, in order to determine the most likely aspect t∗ of a

visterm wj in di, HRPLSA needs first to determine the topic z∗ of the

region rl that encloses wj , so that it can infer t∗ by seeking

t∗ = arg max
tp∈T

P (tp|z
∗, wj). (7.15)

In other words, different region topics might induce different word topics

associations even within the same image. Seen from the point of view of

textual semantic analysis, this implies that the meaning of a given word

can potentially vary depending on the context of the surrounding text,
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Algorithm 4 HRPLSA Model Fitting

Randomly initialize P (zk|di), P (tp|zk) and φjp

repeat
for all nilj ∈ N and k ∈ {1, . . . ,K} do

P (zk|di, rl) =
P (zk|di)

∏Wl

j=1[
∑T

t=1 P (tp|zk)φjp]nilj

∑K
k′=1 P (zk′ |di)

∏Wl

j=1[
∑T

t=1 P (tp|zk′)φjp]nilj

end for
for all j ∈ {1, . . . ,W}, k ∈ {1, . . . ,K} and p ∈ {1, . . . , T} do

P (tp|zk, wj) =
P (tp|zk)P (wj |tp)

∑K
p′=1 P (tp′ |zk)P (wj |tp′)

end for
for all i ∈ {1, . . . , D} and k ∈ {1, . . . ,K} do

P (zk|di) =

∑Ri

l=1 P (zk|di, rl)

Ri

end for
for all p ∈ {1, . . . , T} and k ∈ {1, . . . ,K} do

P (tp|zk) =

∑D
i=1

∑Ri

l=1 P (zk|di, rl)
∑Wl

j=1 niljP (tp|zk, wj)
∑D

i′=1

∑Ri′

l′=1 P (zk|di′ , rl′)ni′l′·

end for
for all p ∈ {1, . . . , T} and j ∈ {1, . . . ,W} do

φjp =

∑D
i=1

∑Ri

l=1

∑K
k=1 niljP (zk|di, rl)P (tp|zk, wj)

∑D
i′=1

∑Ri′

l′=1

∑K
k′=1

∑Wl′

j′=1 ni′l′j′P (zk′ |di′ , rl′)P (tp|zk′ , wj′ )

end for
Compute the new likelihood LC(N )t

until Increase in likelihood LC(N )t − LC(N )t−1 < ǫ
return P (zk|di), P (tp|zk), φjp, P (zk|di, rl) and P (tp|zk, wj)
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i.e. the region topic. Hence, the HRPLSA model can naturally account

for the presence of polysemous words within the same document, by dis-

ambiguating the topic depending on the context of the term. The pLSA

model, on the other hand, determines the word-topic distribution on a

per-document basis: hence, the same word recurring multiple times in a

document will always be associated with the same topic. In Section 7.5,

we will show how HRPLSA can effectively be used for the unsupervised

discovery and segmentation of multiple visual classes within the same

image.

Probabilistic inference can be extended to images outside the training

corpora by using the folding-in technique described in (SRE+05). Given an

unseen image dtest described as a bag of regions, we can determine the

document specific mixing coefficients P (zk|dtest), as well as the posteri-

ors P (zk|dtest, rl) and P (tp|zk, wj), by running Algorithm 4 using fixed

word-topic and topic-topic distributions, i.e. φjp and P (tp|zk), estimated

using the training data Ntrain. In other words, φjp and P (tp|zk) are kept

fixed through the whole EM process while the other distributions are re-

estimated for the new image.

The generative model described in (7.1) reflects an asymmetric formu-

lation of the latent semantic model (Hof99). However, by straightforward

considerations on the Bayes’rule, (7.1) can be rewritten following a sym-

metric description (Hof99), that is

P (di, rl) =
K∑

k=1

P (zk)P (di|zk)P (rl|zk). (7.16)

This re-parametrization of the original problem highlights the symme-

try of word-region generation process, since both di and rl are generated

from the latent topic zk. Some authors (GGPC02; VG02) have argued

that one formulation might offer advantages with respect to the other, al-

though there is no consensus regarding which could be the best perform-

ing solution. For the sake of completeness, we point out that the asym-

metric HRPLSA model described in Algorithm 4 can be straightforwardly
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transformed into a symmetric one by estimating the region posterior as

P (zk|di, rl) =
P (zk)P (di|zk)

∏Wl

j=1[
∑T

t=1 P (tp|zk)φjp]nilj

∑K
k′=1 P (zk′)P (di|zk′)

∏Wl

j=1[
∑T

t=1 P (tp|zk′)φjp]nilj

(7.17)

while the M-Step computation for P (zk|di) is substituted by

P (di|zk) =

∑Ri

l=1 P (zk|di, rl)
∑D

i′=1

∑Ri′

l′=1 P (zk|di′ , rl′ )
(7.18)

and

P (zk) =

∑D
i=1

∑Ri

l=1 P (zk|di, rl)
∑K

k′=1

∑D
i′=1

∑Ri′

l′=1 P (zk′ |di′ , rl′ )
. (7.19)

Besides, in the remainder of the chapter, we will deal solely with the

asymmetric HRPLSA formulation described in Algorithm 4.

7.3.2 Modeling Images and Words with Hierarchical Region-
Topic Probabilistic Latent Semantic Analysis

In the previous section, we have introduced HRPLSA as a tool for mod-

eling the visual content of an image collection as a multi-resolution hier-

archical mixture of latent aspects. In this section, we extend it to model

the association between visual content and related textual information.

In particular, we show how HRPLSA learns to attach textual labels to the

image regions by relying only on weak annotations available solely at the

level of the whole image.

The HRPLSA annotation model, HRPLSA-ANN in short, takes inspi-

ration from the Asymmetric PLSA Learning (APL) introduced by Monay

and Gatica-Perez (MGP07) and described in brief in Section 6.4.2. Es-

sentially, APL fits a pLSA model to the visual modality alone, obtain-

ing a document-topic distribution P (z|d) as well as a distribution of vi-

sual features conditioned on the latent aspects, i.e. P (w|z). Then, it es-

timates the conditional distribution of annotations a given the topics z,

i.e. P (a|z), while keeping P (z|d) fixed from the visual modality, likewise

in the folding-in process. The annotation of an un-captioned image is ob-

tained by probabilistic inference and provides textual labels at the level of
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the whole scene. Notice that the same process can be applied in a reversed

fashion, e.g. by first fitting the textual annotations and then folding in the

visual content (i.e. the pLSA-WORDS model in (MGP07)).

The HRPLSA-ANN model uses an asymmetric learning approach, but

learns to generate annotations for multiple levels of the topic hierarchy

and of the spatial pyramid. For instance, lets consider the output of

Algorithm 4 when applied to an image collection N : at convergence,

HRPLSA provides a document-topic distribution P (zk|di), a topic-topic

distribution P (tp|zk), a word-topic distribution φjp, a region-topic pos-

terior P (zk|di, rl) and a word-topic posterior P (tp|zk, wj). The overline

sign on a distribution, e.g. in φjp, indicates that this term is held fixed

for the textual modality. Now, represent each image in N as a vector of

annotation occurrences mfi, that is the number of instances of term af

within document di. By asymmetric learning, we can fit the HRPLSA-

ANN model to provide the probability of an annotation being generated

by a region topic, that is P (af |zk). To do so, we perform an EM optimiza-

tion to maximize the following constrained annotation likelihood

Lcal(N|θ′) =

D∑

i=1

F∑

f=1

mfi log

K∑

k=1

P (af |zk)P (zk|di). (7.20)

The term constrained refers to the fact that the document topic distribution

P (zk|di) is inherited from the visual modality and is not updated by the

M-step of the textual modality.

Algorithm 5 summarizes the optimization process for attaching an-

notations to the region-topics zk. Given the estimated annotation-topic

probability P (af |zk), we can annotate an un-captioned image dnew by

means of the following probabilistic estimate

P (af |dnew) =

K∑

k=1

P (af |zk)P (zk|dnew), 1 ≤ f ≤ A (7.23)

where the word-document distribution P (zk|dnew) is generated by the

visual modality and the text-topic probability P (af |zk) is the outcome of

the EM process in Algorithm 5. Notice that the annotations provided by
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Algorithm 5 HRPLSA-ANN model fitting at the region-topic level

Given P (zk|di) from visual modality
Randomly initialize P (af |zk)
repeat

E-STEP
for all mfi ∈ N and k ∈ {1, . . . ,K} do

P (zk|di, af) =
P (zk|di)P (af |zk)

∑K
k′=1 P (zk′ |di)P (af |zk′)

(7.21)

end for
Constrained M-STEP
for all f ∈ {1, . . . , A} and k ∈ {1, . . . ,K} do

P (af |zk) =

∑D
i=1 P (zk|di, af )

∑A
f ′=1

∑D
i′=1 P (zk|di′ , af ′)

(7.22)

end for
Compute the constrained likelihood Lcal(N )t

until Increase in likelihood Lcal(N )t − Lcal(N )t−1 < ǫ
return P (af |zk) and P (zk|di, af ).

(7.23) are still generated at the level of the whole image. However, by

applying a similar inference process to the region-topic posterior, we can

estimate the following

P (af |dnew , rl) =

K∑

k=1

P (af |zk)P (zk|dnew, rl), 1 ≤ f ≤ A (7.24)

where P (zk|dnew, rl) is estimated by HRPLSA from the visual modality.

The estimate in (7.24) allows to determine the most likely annotation a∗

for region rl in image dnew , that is

a∗ = arg max
af∈A

P (af |dnew , rl). (7.25)

The region annotation process described in (7.24) can be taken further

by devising a generative annotation-topic model for the visterm aspects

tp. In other words, we consider the problem of attaching captions to a
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visual word wj characterized by a latent context (i.e. region topic) zk; this

is equivalent to perform the following probabilistic inference

P (af |zk, wj) =
T∑

p=1

P (af |tp)P (tp|zk, wj), 1 ≤ f ≤ A. (7.26)

where P (tp|zk, wj) is estimated from the visual modality. Such word-

topic posterior allows to performs a contextualized prediction of the most

likely annotation for wj since, coherently with the HRPLSA model, each

visterm is associated to a latent aspect depending on the topic of the re-

gion it belongs to.

In order to compute (7.26), we need to estimate P (af |tp), that is the

distribution of annotations given visterm-topics. To do so, we exploit

asymmetric learning to fit the textual modality to the visual information.

Algorithm 6 describes the EM optimization used to fit the P (af |tp) dis-

tribution. Notice that in (7.27) we have got rid of the P (tp|di) term by

exploiting the HRPLSA independency assumption between word-topics

and documents, i.e. given latent region aspects zk, then visterm topics

tp and documents di are independent. Hence, by marginalizing the zk

variables we can substitute P (tp|di) with
∑K

k=1 P (zk|di)P (tp|zk).

Summarizing, the HRPLSA-ANN model allows to represent multi-

modal collections of images and associated text. In particular, annotations

can be attached at different spatial resolutions (i.e. the whole scene, the

single regions or the visual words) by varying the level of the topic hier-

archy where captions are generated. Therefore, several approaches can be

taken when modeling the association between visual and textual modal-

ity. For instance, we can learn solely coarse-level associations between

regions (or images) and captions. Alternatively, we can learn the asso-

ciation between annotations and both regions and visterms: this can be

achieved, for instance by using the same captions to estimate both P (a|z)

and P (a|t). A more refined strategy, can exploit a word ontology such as

WordNet (Fel98), to decide whether to generate annotations at the region-

topic or at the word-topic level. The LabelMe collection and annotation

tool (RTMF08) already provides a means for organizing the image anno-

tations with respect to the WordNet ontology: however, this knowledge is
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Algorithm 6 HRPLSA-ANN model fitting at the visterm-topic level

Given P (zk|di) and P (tp|zk) from visual modality
Randomly initialize P (af |tp)
repeat

E-STEP
for all mfi ∈ N and p ∈ {1, . . . , T} do

P (tp|di, af ) =
P (af |tp)

∑K
k=1 P (zk|di)P (tp|zk)

∑T
p′=1 P (af |zp′)

∑K
k′=1 P (zk′ |di)P (tp′ |zk′)

(7.27)

end for
Constrained M-STEP
for all f ∈ {1, . . . , A} and p ∈ {1, . . . , T} do

P (af |tp) =

∑D
i=1 P (tp|di, af )

∑A
f ′=1

∑D
i′=1 P (tp|di′ , af ′)

(7.28)

end for
Compute the constrained likelihood Lcal(N )t

until Increase in likelihood Lcal(N )t − Lcal(N )t−1 < ǫ
return P (af |tp).

not used for driving image annotation, which is still performed manually.

Figure 65 shows an example of how WordNet can be employed in an-

notating an image from the LabelMe dataset. In particular, the ontology

suggests that window is a part meronym of building : hence, we can hy-

pothesize that the visual representation of the window is more likely to

be generated by a visterm rather than a region. On the other hand, a

building is more likely to be captured by a whole region. Therefore, we

generate the window label from the visterm-topics while the region-topics

take responsibility for the building caption.

In the remainder of the chapter, we evaluate the performance of the

HRPLSA and HRPLSA-ANN models in image understanding tasks. Be-

fore delving into the details of the experimental evaluation, in the next

section, we briefly review the relationships of HRPLSA with relevant re-
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Figure 65: Example of hierarchical image annotation with the HRPLSA-
ANN model: given an image and its associated annotation (both available on
LabelMe (RTMF08)) we can use a word ontology (i.e. WordNet (Fel98)) to de-
termine whether to assign captions to the region-aspects z or to the visterm-
topics t. In this figure, the window caption is in a part-of (part meronym)
relation with the building . Hence, we can hypothesize that the latter an-
notation is generated by a region topic (coarse scale), while the former is
associated to a visterm topic (finer scale).

lated work in the literature.

7.4 Related Work

In the recent years, weakly structured approaches to image content un-

derstanding have acknowledged a notable increase in popularity, mostly

due to the surprising performance of pLSA applications built on the top

of a bag-of-words image representation. After this initial burst, attention

has started to slowly drift towards more structured approaches, that are

capable of retaining the flexibility and low computational complexity of

BOW approaches, while introducing explicit spatial and contextual infor-

mation into the visual model. The HRPLSA model fits into this scenario,

since it tries to get past a purely BOW assumption by introducing a mul-

tilevel representation of the image comprising regions and visual words.

Between the earliest approaches introducing spatial information into

latent semantic analysis are the ABS-pLSA and TSI-pLSA models (FFFPZ05).

The former approach defines a discrete grid of image locations that is
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used to quantize the visterm positions in a set of spatial bins; then, pLSA

density estimate is performed jointly on visual word appearance and lo-

cation. The TSI-pLSA model, instead, introduces a latent variable that

provides an estimate of the object position under the form of a bounding

box. Inside this box, the image is partitioned as in ABS-pLSA, while the

outer part is considered as a unique bin. In the context of object recogni-

tion, (LC06) propose the Semantic Shift model, that is a modified form of

pLSA that extends the BOW representation by adding localization infor-

mation regarding the visual words position. Essentially, the document-

word co-occurrence matrix becomes a document-word-position table

n(d;w;x), where x is the position of word w in document d. As a result,

this model provides location and scale estimates of foreground objects,

allowing to better separate background latent aspects. The models de-

scribed so far, essentially focus on determining a suitable isolation of the

object topics from the background: to do so, they resort to a joint mod-

eling of word appearance and position in an absolute coordinate system.

HRPLSA, on the other hand, does not assume any absolute positioning

since this, for instance, might impair the detection of an object presented

at consistently different scales. Moreover, HRPLSA accommodates for the

presence of multiple objects within the same scene.

Recently, segmentation has been re-discovered as an useful object recog-

nition tool. Russell et al (RFE+06) introduced the idea of performing mul-

tiple segmentations of the same image, representing each detected region

as a bag of visual words identified by interest point operators. In their

approach, each segment is considered as a document d in a visual corpus

D that is used to fit an LDA model. Therefore, the estimated latent topics

can be used to label the single regions in the collection and a candidate

image segmentation is chosen based on the similarity of the visual word

distribution in the alternative segments with respect to the correspond-

ing word-topic multinomial. This model breaks down images by treating

each segment as an isolated entity, i.e. a document of the collection; in

contrast, HRPLSA treats each image as one document characterized by a

topic distribution that is inferred at the region-level rather than at word

level. Moreover, HRPLSA does not need to perform multiple segmenta-
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tions of the same image, since the final segmentation is produced straight-

forwardly by the region-topic assignment (in Section 7.5 we show an ex-

perimental comparison between the two approaches). The spatially coher-

ent latent topic model (Spatial-LTM) takes a rather similar approach, where

images are modeled as bag of regions within an LDA model and the latent

topics are estimated at the level of picture segments. However, Spatial-

LTM does not define a hierarchy of latent topics since the region aspects

are estimated directly from the visual word distribution. In other words,

Spatial-LTM forces all visual words within the same regions to share a

common latent aspect, whereas HRPLSA allows the co-existence of multi-

topic words, determining the region aspect based on the mixture of word-

topics in the segment. In a sense, the HRPLSA approach accommodates

naturally the semantical differences between visterms and regions. Con-

sider, for instance, a urban scene: visterm topics can, eventually, learn to

isolate window portions from concrete patches, while the region topic can

isolate buildings; with the Spatial-LTM approach, window and building

visterms would be forced to belong to the same topic.

Hierarchical latent semantic approaches have initially found wide ap-

plication in text clustering, given that they provide a means for organiz-

ing documents in a hierarchy of clusters, e.g. HPLSA (GGPC02) and

MASHA (VG02). Recently, there has started to be an increasing atten-

tion towards hierarchical representation of the visual content. The De-

pendent Hierarchical Dirichlet Process (DHDP) (WZFF06), for instance, ex-

ploits a hierarchical structure over the latent topics to encode visterms co-

occurrence, facilitating better clustering of the latent aspects. With respect

to HRPLSA, the DHDP models only the inter-dependencies between vi-

sual words, whereas topic correlation is totally disregarded. The Pachinko

Allocation Model (DPAM) (LWG07), on the other hand, explicitly models

the correlation between visual topics by means of a four level hierarchy of

latent aspects: the leaves of the hierarchy are responsible for the genera-

tion of the local patches, while the internal nodes learn the correlation be-

tween the subtopics (represented as their child nodes): within this model,

a local patch is generated by sampling a path from the root to the leaves

of the hierarchy. The HRPLSA model, compared to DPAM, defines a less
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articulated aspect hierarchy, but allows to model both the topic correla-

tion (via the topic hierarchy) as well as the visterm co-occurrence (by the

multi-layered image representation). DPAM, on the other hand, needs to

be augmented with prior knowledge regarding the visual words interde-

pendence, so that co-occurrent visterms are more likely to share the same

topic.

Recently, (SRZ+08) adapted the hierarchical Latent Dirichlet Allocation

(hLDA) model to the visual domain, with the intent of unsupervisedly

discovering a hierarchy of object aspects, such that topics become increas-

ingly specialized on the path from the root to the leaves of the hierarchy.

This work extends the multiple segmentation framework in (RFE+06), so

that the hLDA model learns not only the object category but also its seg-

mentation. With respect to HRPLSA, the hLDA model still treats each

image segment as an isolated document of the collection. The compara-

tive analysis between HRPLSA, hLDA and the flat multiple segmentation

model (RFE+06) is further developed in the following section, where we

evaluate the performance of the models on a visual class segmentation

task.

As a general comment, HRPLSA-ANN seems to be, to the best of

our knowledge, the first hierarchical latent semantic model exploiting a

multi-layered image representation for modeling visual content and re-

lated textual information. As we have already pointed out in Section

7.3.2, the asymmetric learning model (MGP07) provides only a flat ap-

proach, where captions are attached to the whole image and latent topics

are responsible solely for visterm generation. We recall that in (MGP07)

it is proposed an alternative annotation model, named pLSA-WORDS,

that first fits a pLSA model to the textual modality and then folds-in the

visual modality. The experimental results in (MGP07) show that this mo-

del achieves a slightly superior precision/recall performance with respect

to the approach that we adopted for the HRPLSA-ANN. However, the

pLSA-WORDS does not not fit naturally in our multi-resolution scenario

since it allows to predict annotations only for the whole scene. On the

other hand, with the HRPLSA-ANN model we aim at inferring a region-

caption distribution that can be used to generate annotations for the sin-
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gle regions of an image; hence, in the remainder of the chapter, we con-

centrate solely on the pLSA-FEATURE approach.

7.5 Unsupervised Discovery and Segmentation

of Visual Classes

Before discussing the application of the HRPLSA-ANN model to auto-

matic region annotation, we study the performance of the hierarchical

latent topic model on visual information alone. In particular, we focus

on evaluating HRPLSA performance on the unsupervised discovery and

segmentation of visual classes from a small collection of images compris-

ing articulated scenes depicting multiple object instances. To this end, we

apply our approach to the Microsoft Research Cambridge dataset (MSRC-

B1 (WaTM05)), containing 240 images with 9 visual classes, that are air-

planes, bicycles, buildings, cars, cows, faces, grass, tree and sky. Each image

in the dataset is provided with a, manually obtained, ground truth seg-

mentation into the semantic classes. The dataset is reported to contain

4 additional visual entities, i.e. horses, water, mountain and sheep, which,

however, have insufficient data support to yield to reasonable recogni-

tion.

In this section, we test HRPLSA performance with respect to the seg-

mentation of the 9 MRSC-B1 classes. In particular, we study if the region-

topics can successfully isolate the single visual classes, refining the coarse

CoRe segmentation introduced in Section 7.2, by joining regions that share

a common semantic interpretation (i.e. the same region aspect). The per-

formance of the HRPLSA model is compared with two state of the arts

methods, that are the flat multiple segmentation LDA (RFE+06) and the

hierarchical hLDA model (both discussed in Section 7.4).

The multi-resolution image representation is constructed following

the indications given previously in the chapter: local patches are obtained

by densely sampling 3000 points from the multi-resolution grid described

in Section 7.2; a 2000 dimensional visual codebook has been constructed

by running k-means clustering on the keypoint descriptors of 120 ran-

domly selected images. Regions have been generated by CoRe clustering
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initialized with 20 units, resulting in an average of 11 units per image.

The HRPLSA model has been fitted to the 240 images using different

choices for the number of word and region topics (i.e. tp and zk, respec-

tively). The results for flat LDA are provided for 10, 15, 20 and 25 word

topics, while hLDA is based on a 5-level topic hierarchy (see (SRZ+08) for

the details.). Given GTo, i.e. the ground truth segmentation for object o,

and Rr the retrieved candidate region, the discovery/segmentation per-

formance is computed by means of the region overlap

ρor =
GTo ∩Rr

GTo ∪Rr

. (7.29)

Following the approach in (SRZ+08), we obtain the object overlap ρo by

averaging ρor over the top-5 retrieved images and for each object class

we reported the score of the best performing topic. Table 13 shows the

segmentation scores for each object/model averaged over multiple runs:

LDA10, stands for a flat LDA model with 10 topics, while HPRLSA10
25

identifies an HRPLSA model with 25 word-topics and 10 region aspects.

For the sake of completeness, in the last two rows of Table 13 we report

the overlap score obtained by HPRLSA
10

25 and HPRLSA
15

25 (i.e. the best

scoring models) over all the segments assigned to a single visual class.

Figure 66 to Figure 68 show a mosaic of the top-5 image segmentations

retrieved by HPRLSA10
25.

On average, the HRPLSA models obtain the best results: in particu-

lar, the most consistent performance gain seems to be achieved for those

aspects, i.e. building, grass and sky, that typically cover larger areas of the

image. Due to their size, these regions tend to include within their bound-

aries visterms characterized by different topic assignments. Consider, for

instance, a building region: it typically contains visual words that can be

characterized by either a concrete/brick topic or by a glass/window as-

pect. This latter topic can be shared, for instance, with the car or even

with sky classes. Since LDA assigns the region topic based on the most

likely word aspect, the whole building segment has an high probability

of being assigned to a shared glass/window topic, hence resulting in a

poor LDA segmentation. HRPLSA, on the other hand, can isolate both

the concrete and the glass topics at the word level, while modeling the
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Figure 66: Example of retrieved segments for the MSRC classes: airplanes, bicycles, buildings and cars.
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Figure 67: Example of retrieved segments for the MSRC classes: cows, faces, grass and sky.
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Figure 68: Example of retrieved segments for the tree MSRC class.

higher-level building aspect as a mixture of concrete and glass topics. No-

tice that the hLDA topic hierarchy is conceptually different from that of

HRPLSA: hLDA assigns the whole documents (i.e. the single image re-

gions in the multi-segmentation framework) to the single topic/nodes of

the hierarchy; hence, all the latent topics in the hierarchy are still gener-

ated at the level of the visterms. The superior performance of HRPLSA

on segments covering large portions of the image is also motivated by

the different approach to image representation. Both hLDA and flat LDA

need to select one region from a soup of segments generated by multiple

segmentations: if a region depicting a particular object class is split into

multiple pieces in all the alternative segmentations, then hLDA and LDA

cannot recover its original boundaries since they consider each segment

as a separate document. HRPLSA, on the other hand, allows image re-

gions to be split into multiple segments before merging them back into a

unique region once that it has inferred the topic segmentation for the im-

age. This motivates why hLDA, although hierarchical, has a poor over-

lap score for the building class. Regions containing building instances are

typically fragmented, including several visual entities (e.g. doors, win-

dows, signs, etc) that worsen the chances of obtaining a unique segment

including the whole building. On the other hand, grass sky regions can

be well isolated by color segmentation, resulting in a good overlap score
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also for the hierarchical LDA model.

The visual classes where HRPLSA obtains a limited performance gain

are airplane, bicycle, face and tree. The airplane class seems to be partic-

ularly difficult to detect for the flat LDA model that fails to discover

good segment-topic assignments: hLDA and HRPLSA achieve consis-

tently better results, although none of the two models obtains a notably

superior performance with respect to the other. The visual impression in

Figure 66 confirms that airplane segments discovered by HRPLSA10
25 do

not sharply isolate the object; whereas a notable performance is obtained

for building and cars (third and fourth row in Figure 66), as well as for

cows, grass and sky (see Figure 67). In particular, the results for the cars

and cows classes (see Table 13) show that HRPLSA achieves better topic-

segmentation quality with respect to hLDA and LDA: it is worth not-

ing how the overlap score obtained for the totality of the object segments

(i.e. HRPLSA
10

25 and HRPLSA
15

25) is very close to the results obtained by

hLDA and LDA on the top-5 segments, denoting the fact that HRPLSA

can stably detect good cars and cows instances.

By comparing the performance of HRPLSA for different numbers of

latent topics (see Table 13), we notice that some aspects, such as sky and

grass are well isolated independently from the size of the latent spaces

Z and T . These classes, together with the cows and cars categories, en-

sure that the average overlap score remains high for different choices of

the initial topic number. The airplanes class, on the other hand, seems to

be discovered best when the number of region topics zk is in between

15 and 20. Airplane segments typically include noisy visterms from the

background, e.g. grass, building and trees, which results in HRPLSA iso-

lating spurious aspects where airplanes cannot be well isolated from the

surrounding (see Figure 66). This issue affects primarily those models

characterized by fewer region-topics, since the model is less likely to clus-

ter airplane segments and noisy regions into two different aspects. Seg-

menting out the airplane class is, in general, an hard task also for those

HRPLSA models using 15 − 20 region topics since, typically, some parts

of the airplane tend to be confused with background aspects. Figure 69

shows an example of topic segmentation obtained by HRPLSA15
25 on im-
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Figure 69: An example of topic segmentations of images containing air-
planes (HRPLSA15

25): left column shows the original images, center the
CoRe segmentation and right the topic segmentation. The airplane aspect
is shown in purple, while brown and light-blue identify sky and grass, re-
spectively. Notice how consistent portions of the airplane are assigned to a
background cluster (in yellow).

ages containing airplane instances: it can be seen that the model is able

to isolate well the sky and grass aspects (shown in light-blue and brown,

respectively), while part of the airplane is assigned to the background.

A possible way to address this issue requires forcing CoRe to produce a

fine-grained segmentation of the image (e.g. similarly to (CFF07)), hence

producing smaller regions that are less likely to contain mixed airplane-

background visterms.

As regards the faces class, it achieves the best isolation when the HRPLSA

model comprises at least 20 word topics. By looking at the mixing pro-

portions P (t|zface) of the visterm-topics t in the face aspect zface, we dis-

cover that topic zface is characterized by at least 3 different word-topics

t. Therefore, if the visterm collection is modeled with few t aspects, it

can result in HRPLSA running out of word-topics, consequently failing

to isolate a word-topic that is important for representing the zface aspect.

By means of the HRPLSA model, we can produce semantically mean-

ingful segmentations of an image collection. In a sense, CoRe learning

generates low-level hypotheses concerning the existence of meaningful
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Figure 70: An example of topic segmentation obtained by HRPLSA10
25: each

color identifies a different image segment (center) or topic (right).

local entities, while the hierarchical topic model refines them by provid-

ing an unsupervised top-down signal that aggregates semantically ho-

mogenous regions. Consider for instance the topic segmentation in Fig-

ure 70: the HRPLSA model is able to aggregate the perceptually uniform

regions generated by CoRe (shown in the center) into meaningful topic-

segments (shown on the right). The dark-red color, for instance, isolates

the grass topic while the gray color identifies cows. Notice how the sheep

instance in the second row is assigned to the cow topic, since HRPLSA

has insufficient information for discriminating between the two animal

kinds. Moreover, in both images, part of the grass segments (typically

corresponding to the weed) are erroneously assigned to the tree topic

(brown color in Figure 70). Also, part of the animals in the top-row image

is assigned to the face topic (light-red color): this is not unexpected since

the original CoRe region (center) includes all the cow heads; hence, its

visterm distribution includes a large percentage of face-related keypoints

(e.g. eyes, mouth, etc.).

So far, we have studied the performance of our model as a fully un-

supervised approach to visual content discovery on a dataset character-

ized by a small number of visual classes. Indeed, since the whole process

is completely unsupervised it cannot infer the full semantics underlying
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the visual information (especially as the number of aspects increases), al-

though HRPLSA achieves a segmentation performance that is superior to

both hLDA and flat LDA, that are the state-of-the-art models in this re-

spect. In the next section, we approach the problem of exploiting weakly

supervised information provided by image captions to extend the visual

content discovery to more articulated image collections comprising hun-

dreds of visual aspects.

7.6 Image Annotation

The experiments in this section aim at evaluating the effectiveness of the

multi-resolution hierarchical extension of pLSA in modeling collections

of annotated images. The performance of the flat and hierarchical la-

tent aspect models is first tested on the University of Washington Ground

Truth dataset1, which contains 857 publicly available images that have

been manually annotated with 392 words. Each image caption contains

between 1 and 20 annotations, resulting in average of 5.8 words per pic-

ture. As noted in (THL06), the dataset contains several annotation mis-

takes as well as mixed singlurar/plural forms: after error correction and

stemming we reduce the original vocabulary size to 245 words. The fre-

quency distribution of the words across the dataset is shown in Figure

71: notice how the frequency is distributed quite unevenly between the

words, with several terms occurring only once in the dataset (e.g. the zen

word). As a general idea, we choose to keep the level of keyword pre-

processing to the minimum, in order to test the robustness of latent space

annotation with respect to noisy dictionaries: however, to allow a better

comparison with the works in the literature (THL06; HSSST06), we pro-

vide also results for cleaner vocabularies including only terms occurring

more than once (i.e. 188 words) and more than twice (i.e. 158 terms).

Images have been processed, as detailed in Section 7.5, to extract a

set of 2000 SIFT descriptors using dense grid sampling : 427 randomly

selected images have been used to build a 1000-dimensional codebook

by k-means clustering. As noted in a recent review on image annotation

1http://www.cs.washington.edu/research/imagedatabase /groundtruth/
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Figure 71: Word frequency distribution for the Washington Ground Truth
dataset.

in semantic spaces (HSLN08), the codebook size, whenever is is larger

than 500, has a negligible effect on the maximally achievable precision of

the method. For practical purposes, we have chosen a 1000-dimensional

codebook since it is characterized by a fair tradeoff between computa-

tional efficiency and discriminative power (in particular for the vector-

space baseline). Regions have been generated by CoRe clustering initial-

ized with 20 units, resulting in an average of 11 regions per image, with

the minimum number being 5 and the maximum 18. Training and test im-

ages are selected by dividing the dataset into two equally-sized random

partitions (427 images).

In the experiments, we perform a direct comparison between the pro-

posed hierarchical HRPLSA-ANN model and the flat pLSA-FEATURE

annotation approach introduced in (MGP07). Moreover, following the

experimental setup in (MGP07), we validate the performance of the two

models against a baseline vector space model, that is Annotation Propaga-

tion (AP). This approach is intuitively very simple: it computes the simi-

larity of an un-captioned image dnew with the images in the training set;

annotations are propagated from the training images to dnew based on the

cosine similarity between the visual descriptors (see (MGP07) for further
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details). Besides its simplicity, this method is reported to perform well,

especially on datasets, like Washington, characterized by images with a

large degree of visual similitude (THL06; MGP07).

The performance of the methods is evaluated based on the precision

and recall measures, defined as

prei =
ri

(ri + wi)
(7.30)

and

reci =
ri
ni

(7.31)

where ri is the number of correctly predicted words for image i, wi is

the number of wrongly predicted captions and ni is the actual number

of words in the image. Indeed, the best model will be characterized by

the highest precision, i.e. the ratio of correct annotations with respect to

the number of predicted words, at the highest recall, i.e. the total ratio of

correctly predicted captions. The normalized score proposed in (BDdF+03)

is another popular measure for evaluating the quality of keyword pre-

diction: however, (MGP03) show that it does not sufficiently weight in-

correct word responses, since it tends not to take into consideration the

added noise given by incorrect guesses once that all the right captions has

been generated.

Figure 72 shows the average precision/recall curves obtained by the

three models for different sizes of the annotation vocabulary: the curves

have been obtained by increasing the number of predicted annotations

from 1 to 9. Overall, the HRPLSA-ANN model obtains the best precision-

recall results when predicting 1 − 5 captions, with ∼ 79% of correct pre-

dictions when a single term is generated for each image. On the other

hand, the performance of the two latent models is essentially equivalent

when generating 7−9 annotations. In particular, in this latter interval, the

best performance is obtained by the annotation propagation method: this

is not unexpected since, as we have noted before, the Washington dataset

contains very similar images, that is the best scenario for the annotation

propagation method. Additionally, the particularly good performance of

this method is coherent with the results presented in (THL06), where a
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Figure 72: Precision/recall curves for the Washington dataset: the plot
shows the performance of annotation propagation (ap), pLSA-FEATURES
(plsa )and HRPLSA-ANN (hrplsa) for different sizes of the vocabulary
(shown as footer number).

closely related annotation propagation approach yields similar results on

the Washington data. The size of vocabulary does not seem to influence

much the performance of the three models, given that the variations of

the precision/recall remain bounded within the respective error bars.

Table 14 summarizes the precision/recall results obtained on the Wash-

ington dataset by relevant annotation models in the literature. For in-

stance, (HL05) performs image annotation using Latent Semantic Index-

ing (LSI) on images represented as bags of salient regions, while (HSSST06)

applied Kernel Canonical Correlation Analysis (KCCA) to retrieve and

annotate pictures, again represented as histograms of visterms. The Wash-

ington dataset has also been used in (THL06) to confront two Cross Me-

dia Relevance Models (CMRM), one using a blob-based image represen-

tation and the other one relying on salient regions extracted by Lowe’s

interest point detectors (Low99). Notice that a direct comparison of the

results in Table 14 needs to take into consideration the fact that results
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have been obtained for different vocabulary sizes (i.e. given by differ-

ent clean-up processes); hence, Table 14 reports the name of the models

together with the size of the word vocabulary used in the experimenta-

tion. A comparison of the results obtained by our latent approach shows

that HRPLSA-ANN achieves a comparable performance with respect to

the saliency-based CMRM (THL06), that is the state-of-the-art model on

the Washington dataset. In particular, HRPLSA-ANN yields to an higher

precision at price of a lower recall, which can be motivated by the differ-

ence in the term vocabulary: for instance, the average caption size in our

experiments is 5.8, while (THL06) reports an average annotation length

of 4.8 keywords. With respect to the region-based CMRM, the HRPLS-

ANN model obtains a consistent performance increase, irrespectively of

the size of its vocabulary of captions.

Figure 73 shows an example of Washington images annotated by the

HRPLSA-ANN, pLSA-FEATURES and annotation propagation. In gen-

eral, both latent topic models can recall with an high precision those

words associated to latent aspects that are predominant in the image col-

lection, e.g. tree, building, sky, etc, and that, in a sense, are those isolating

the broader visual concepts in the data. This ability provides them with

an high baseline performance when predicting few terms, since they can

correctly guess the most general words describing the images. Since these

words are those most likely to occur across several pictures, latent topic

models results in a high overall performance. Annotation propagation,

on the other hand, can recall words that have a low overall frequency

but a sufficient presence within a cluster of similar images: for instance,

the lines term (i.e. denoting electric lines) detected for the sixth image

in Figure 73 is not frequent in general, but appears sufficiently often in

a number of house images. The HRPLSA-ANN seems to have an ad-

vantage over the flat pLSA model since it can recall less general captions

that are connected with peculiar distributions of visterms within a spatial

locality, i.e. that can be well isolated by region aspects. An example is

the waterfall theme shown in the fourth image in Figure 73, or the cherry

aspect depicted in the fifth image. In pLSA, the latent aspect connected

with these words might not stand out from the crowd of topics associ-
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ated to the visterms present in the whole image, while in HRPLSA it will

be characterizing the spatial locality, i.e. the picture segment, where it

occurs.

As described in Section 7.3.2, the HRPLSA-ANN model provides a

caption-topic distribution P (a|r, d) that can be used to label the single

image regions r with the most likely caption a∗. Figure 74 and 75 show

an example of the annotated segments discovered by HRPLSA-ANN on

the Washington images. In some cases, the model is able to learn to sepa-

rate semantically related captions such as sky (Figure 75.b) from clear sky

(Figure 74.c), and clouds (Figure 74.d) from overcast (Figure 75.h). In other

cases, such as for building (Figure 75.1) and house (Figure 74.e), there is a

certain overlap between the visual concepts captured by the two annota-

tions. Figure 76 shows some good examples of HRPLSA-ANN region

annotation, while Figure 77 points out typical labeling mistakes. Some

limitations to the model performance rise as a consequence of the SIFT

image representation: for instance, segments labeled as containing trees

may also contain instances of flowers, given the difficulty of distinguish-

ing between the two visual concepts relying solely on gray level SIFT

information (see Figure 77.a). Similarly, aspects relating to sky and wa-

ter tend to overlap (see 77.b), resulting in water regions being labeled as

containing sky. In this cases, the keyword water is usually the second

most likely caption with respect to P (a|r, d)). Some dataset objects, e.g.

people and cars, are too small for being detected and segmented out as iso-

lated entities. Typically, they tend to be included into cluttered regions

comprising portions of their background, resulting in noisy aspects that

produce less reliable annotations. In Figure 77.c, for instance, some im-

age portions are labeled as people since this keyword tends to co-occur

frequently with the house term: hence, the discovered word-topic asso-

ciation is likely to capture the occurrence of human figures on a house

background. Conversely, the woman keyword (see segments in 75.d) is as-

sociated to nicely isolated regions containing man/woman occurrences,

thanks to the well defined contrast between the human figures and the

flat background.

The second set of experiments is performed on a LabelMe (RTMF08)
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Original
boat, clouds, building, bush clouds, sky

mast, sky, small flower, ground, tree, water
tree, water sidewalk, tree

HRPLSA
boat, clouds, building, bush clouds, sky

sky, tree, water flower, grass, tree mountain, tree, water

plSA
boat, clouds bush, flower boat, clouds

sky, tree, water grass, sky, tree sky, tree, water

AP
boat, clouds building, bush building, clouds

mast, sky, tree clear, flower, sky sky, small, tree

Original
tree, rock cherry, clouds car, flower, house
waterfall house, sky, tree lines, overcast, pole

sky, structures, white

HRPLSA
mountain, rock, cherry, clouds, clouds, house,

sky, tree, waterfall grass, sky, tree people, sky, tree

plSA
clear, mountain, bush, clouds, clouds, people,
rock, tree, sky grass, sky, tree sky, tree, water

AP
canyon, clouds, building, bush, clouds, lines,
rock, sky, tree cherry, grass, tree house, flag, overcast

Figure 73: Annotation examples from the Washington datatset.
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(a) Building

(b) Bush

(c) Clear Sky

(d) Clouds

(e) House

(f) Husky Field

(g) Mountain

(h) Overcast

Figure 74: An example of annotated Washington segments.
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(a) Rocks

(b) Sky

(c) Tree

(d) Woman

Figure 75: An example of annotated Washington segments.
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Figure 76: Examples of good HRPLSA annotations.
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Figure 77: Examples of bad HRPLSA annotations.

benchmark dataset2 comprising 2688 color images (256 × 256 pixels in

size) from eight outdoor scene categories, i.e. coast, mountain, forest,

open country, street, inside city, tall buildings and highways. The chal-

lenge proposed by the authors of the collection requires to try to recog-

nize and segment as many object categories as possible, randomly select-

ing 100 images for each of the 8 scene categories to form the training set

(giving a total of 800 training images), while using the remaining 1888 as

a test-set. This is a challenging task that, to the extent of our knowledge,

has never been undertaken by any of the object recognition models in the

literature, although this dataset has been widely used to evaluate the per-

formance of scene recognition approaches (BZM08). Given that figures

are provided with manual annotations, we can approach it as an image

annotation task: first, we cleaned up the initial 400 terms by removing an-

notation errors and merging plurals, obtaining a final vocabulary of 309

keywords. With respect to the Washington dataset, this image collection

has a challenging number of images with a relatively large vocabulary

size (see (Han08) for a recent survey on annotated datasets). Figure 78

shows the word distribution for the dataset: notice how the the frequency

is distributed even more unevenly than in the Washington dataset, with a

long tail of terms with a single occurrence within the collection (∼ 28%).

On the other hand, the distribution of the caption length in Figure 79

shows that most of the images are labeled by ∼ 10 terms, hence confirm-

ing that there are certain general captions that occur very often across the

2http://labelme.csail.mit.edu/
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Figure 78: Word frequency distribution for the LabelMe dataset.

image collection.

As for the Washington dataset we densely sampled 2000 SIFT descrip-

tors per image, randomly selecting 100 images from each of the 8 scene

categories, to generate a 1000-dimensional codebook. Regions have been

generated with the process described previously.

As required by the benchmark, the experiments have been performed

by randomly sampling 100 images from each of the 8 scene categories to

form the training set, while using the remaining 1888 as a test-set. Figure

80 shows the precision/recall results for HRPLSA-ANN, the flat pLSA-

FEATURE model as well as annotation propagation. Both latent methods

are tested on different sizes of the latent spaces: i.e. hrplsa25,50 denotes an

HRPLSA-ANN with 25 region aspects and 50 word aspects. The curves

in Figure 80 show that HRPLS-ANN achieves better results with respect

to the other models: in particular, it obtains higher precison/recall using

less region topics than pLSA-FEATURES (confront the hrplsa25,50 result

with plsa60). Overall, latent topic models confirm their superiority over

vector space models. With respect to the results obtained for the Wash-

ington data, the gap between the performance of annotation propagation

and latent topic approaches has grown notably. This might be due to the
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fact the this experimentation is characterized by a low ratio between the

number of training images and the size of the testing set: this aspect can

have particularly affected the annotation propagation model, since it re-

lies solely on image comparisons in order to determine the annotation of

an un-captioned image. An example of images annotated by the three

methods is shown in Figure 81. As with the Washington dataset, both

latent topic models recall with good precision those annotations that are

associated to predominant latent aspects of the image collection, such as

sky, building and mountain. Notice how, in the second and sixth images,

HRPLSA-ANN infers labels that are not present in the original ground-

truth data but are, nevertheless, coherent with the visual content. In com-

parison to pLSA-FEATURE, the HRPLSA-ANN model seem to maintain

a fair precision on low-recall terms, such as the balcony and sign captions

in the third and fourth images of Figure 81: the bar plot in Figure 82

quantitatively shows the difference between the models in terms of the

per-word precision and recall.

The challenge proposed by the authors of the LabelMe benchmark re-

quires to recognize and segment as many objects as possible from the

image collection. To some extent, we can interpret HRPLSA-ANN as an

object recognition model that learns to segment visual entities based on

weak labels available only at the level of the whole image. Hence, by

exploiting the region labeling probability P (a|r, d) as in the Washington

data, we can approach the proposed object recognition challenge using

the HRPLSA-ANN model.

Figure 83 plots the distribution of the vocabulary terms with recall> 0

generated by HRPLSA-ANN region labeling on the LabelMe collection.

Essentially, HRPLSA-ANN seems to associate the region topics only to

those captions that are the most frequent terms for the eight scene cate-

gories. This behavior can be better understood by observing the distribu-

tion of term occurrences for each scene class: Figure 84 shows that there

are few words (often a single one) occurring for all the images in a scene

class. These captions are likely to be co-occurring with the region-aspects

that characterize the scene categories: as a consequence, the P (a|z) distri-

bution tends to associate such frequent terms to the region topics charac-
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Original

lighthouse, tree, brush, mountain car, hill
rocks, sea, central reservation,
sky, water highway, road

sign, sky, tree

HRPLSA
mountain, sea, brush, field car, road
sky, tree, water stone, tree, trunk sign, sky, tree

plSA
car, mountain car, person car, mountain

sky, tree, water sky, tree, trunk road, sky, tree

AP
bridge, building brush, field building, road
mountain, river, stone, tree sign, sky

sky trunk streetlight

Original

balcony, brand, car branch, sky building,
building, door, name mountain, rocks, sky, tree

person, road, snow, tree
walking, window,

shop, sidewalk

HRPLSA
balcony, car, mountain, sky, building, tree,

building, tree rocks, snow, tree window, sky,
window skyscraper

plSA
building, window, car, mountain, building, sidewalk,

tree, trunk, car person, sky, tree car, window,
skyscraper

AP
awning, balcony, cloud, mountain, building, car,

brand, building, car rocks, sky, snow hedge, sign, sky

Figure 81: Annotation examples from the LabelMe datatset.
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Figure 82: Precision and recall for the balcony and sign terms in the LabelMe
dataset.
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Figure 84: Distribution of word occurrences within the 8 scene classes of the
LabelMe dataset. The frequently occurring word for each category are: water
(231), sky (231) and sea (216) for coast; tree (274) and trunk (276) for forest; car
(46) for highway; window (304) for city; mountain (153) and snow (235) for the
mountain category; tree (274) and field (85) for country; building (35) and car
(46) for street; building (35) and skyscraper (232) for tallbuildings. The number
within brackets denotes the term index in the vocabulary.

terizing the scene class. Since the region labeling process recalls a single

caption for each image segment (i.e. the one with highest P (a|r, d) prob-

ability), it is very likely that the caption will be chosen among the most

frequent terms for the image category.

In other words, the unbalanced distribution of term occurrences intro-

duces a bias in the generation of the segment caption that yields to distinct

region aspects being associated to the same frequently occurring word.

Consider, for instance, the topic distribution P (a|z) related to the moun-

tain keyword, that is a frequently occurring term for the mountain scene

category: Figure 85 shows that the mountain term is primarily generated

by four aspects, that are number 11, 20, 40 and 55. Topic 55 character-

izes noisy regions comprising, typically, sky and mountains fading in the

background, while the former three topics isolate three different visual

themes, that are a general mountain topic, i.e. topic 20, a snow aspect,

i.e. topic 11, and a rock aspect, corresponding to topic 40 (the right side
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Figure 85: Distribution of topics for the mountain caption.

of Figure 85 shows a example of characteristic segments for the three as-

pects). Since the mountain keyword occurs for every image labeled with

the snow caption, both keywords will have similar probabilities P (a|z) of

being generated by the 11-th aspect. In other words, the annotation pro-

cess cannot determine which caption should be given more credit for the

topic because the two annotations co-occur always with the snow aspect.

On the other hand, the mountain caption is likely to be generated also by

other region aspects (for instance topic 40), hence its overall region proba-

bility P (mountain|r, z) will, typically, be higher than P (snow|r, z), result-

ing in the mountain keyword being generated before the snow annotation

when performing region labeling. In a sense, this issue is caused by the

”ANN” part go the HRPLSA-ANN model: Figure 85, for instance, shows

that the visual HRPLSA model is capable of differentiating between snow

and mountain region aspects; however, at the topic annotation stage, i.e.

the ANN part of the model, both aspects end-up being associated to the

same mountain caption, thus producing the issue discussed so far. Notice

that this problem appears in region labeling but it doesn’t show when an-

notating the whole image: this is due to the fact that the former task gen-

erates a single label based on the topics distribution within the region; the

annotation of the whole image, on the other hand, typically recalls mul-

tiple words, allowing more specialized captions to be generated together

with frequent keywords.
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Figure 86 shows an example of segments retrieved by HRPLSA-ANN

for the building, car, mountain, sea, sky, skyscraper, tree and window anno-

tations. Given the results in Figure 86, the HRPLSA-ANN model con-

firms the good performance obtained on the Washington data when iso-

lating sky and tree segments, although the use of sole gray-level informa-

tion still limits HRPLSA’s ability in discriminating between perceptually

similar visual aspect such as sky and sea. Notably, the skyscaper annota-

tion is linked to a well defined distribution of region aspects, resulting

in skyscraper occurrences being well segmented in the image collection

(see the examples in Figure 86.f). With respect to the Washington data,

there are a number of small sized visual entities, such as cars, person

and windows, that have sufficient training support for being isolated in

regions labeled with the corresponding keywords. However, given the

small scale of these objects with respect to the image size, they tend to be

isolated into coarse regions comprising also portions of their background:

this results in the corresponding textual labels being associated both to

the visual aspects describing the objects as well as to the topics identify-

ing the background theme (e.g. road and buildings). As it can be seen

in Figure 87, this issue is particularly evident for the car keyword, that is

prone to be associated both to car and road segments, and for the person

keyword, that is typically associated to cluttered segments, often without

a clear visual interpretation.

Overall, the number of segment classes discovered in the LabelMe da-

taset is lower than that obtained for the Washington collection: this is not

unexpected, given the small training support with respect to the test data

in an image collection characterized by a notable number of visual aspects

(which often need to be inferred from very few occurrences). However,

with this experimentation we wanted to evaluate HRPLSA-ANN perfor-

mance on a challenging task to outline those limitations that will need to

be addressed in future developments. The experimental results obtained

on the two datasets suggests that we need to provide HRPLSA with an

enhanced description of the visual content comprising color information.

Possible extensions in this sense might take inspiration from the work

in (BZM08), where SIFT descriptors are extended to convey color infor-
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(a) Building

(b) Car

(c) Mountain

(d) Sea

(e) Sky

(f) Skyscraper

(g) Tree

(h) Window

Figure 86: An example of annotated LabelMe segments.

285



Figure 87: An example of LabelMe regions comprising mixed visual con-
tent: the car-labelled regions include consistent portions of the road and
surrounding, while the person-labeled segments contain significant back-
ground clutter. The latter class of segments, in particular, has only a weak
association to the person visual concept.

mation into a flat pLSA model; on the other hand, in (CFF07), the BOW

region representation is complemented with an histogram describing the

distribution of color intensities within the image regions, which is in turn

added as an additional observed variable in the latent topic model. An

additional issue highlighted by the experimentations relates to the spa-

tial resolution at which captions are generated; in particular, small-sized

visual entities, e.g. human figures, tend to be included into large image

segments, often comprising a large portion of background. As a conse-

quence, these segments tend to produce noisy region aspects, that are in

turn associated with the vocabulary term identifying the small-sized vi-

sual entity, e.g. people, resulting in this caption being incorrectly attached

to cluttered image regions. To address this issue, we can consider taking

further the hierarchical labeling approach, by allowing labels to be gen-

erated at different levels of the topic hierarchy, e.g. associating captions

related to small-sized visual entities to the visterm aspects. Finally, the ex-

perimental results on the LabelMe dataset point out the strong relation-

ship between the quality of image annotations and the resulting region

labeling performance. In particular, unbalanced vocabularies produce

catastrophic effect on region annotation, biasing the caption generation

process to predict only frequently occurring terms. Since this issue influ-

ences predominantly the outcome of region annotation, we can consider

introducing a limited amount of supervised training information in the
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HRPLSA-ANN model. In particular, we can extend the generative mo-

del with an observed variable providing the actual region labels: by these

means we can bias the model so that it is more likely to predict the cor-

rect topic-caption association, instead of being biased towards the most

frequent terms in the vocabulary. Notice that this effect can be obtained

by introducing only a few ground truth segmentations into the training

collection, whereas the rest of the training can be performed, as in the

original model, on weak labels available only at the level of the whole

image.

7.7 Conclusion

We have presented a novel hierarchical latent aspect model that exploits

a multi-layered representation of the pictorial information to discover la-

tent visual aspects at different levels of spatial resolution. The proposed

model has been complemented with a topic annotation procedure, de-

rived from asymmetric pLSA learning (MGP07), that allows to process

and represent multimodal collections comprising images and related tex-

tual captions.

Throughout experimentation on pictorial data alone, we have shown

the effectiveness of the HRPLSA model in determining a semantic seg-

mentation of the image content based on latent visual aspects that are

discovered in a completely unsupervised fashion. The experimental re-

sults show that HRPLSA reaches a superior segmentation performance

with respect to the state-of-the-art models based on latent dirichlet allo-

cation.

The multimodal extension of the HRPLSA model has been tested on

two collections of annotated images, showing that the hierarchical region-

based approach yields to a performance improvement with respect to flat

pLSA annotation when dealing with the automatic generation of cap-

tions at the level of the whole image. Further, the experimental results

have shown that the proposed model reaches a precision/recall perfor-

mance that is comparable to that obtained by the state-of-the-art saliency-

based CMRM approach (THL06). Besides automatic image annotation,
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the HRPLSA-ANN model is capable of segmenting object occurrences by

exploiting its generative model to infer associations between captions and

the topics distribution within the regions. In particular, the model learns

to attach textual labels to perceptually coherent portions of the image, us-

ing captions that are available only at the level of the whole picture. In

this sense, image annotations serve as a source of weakly-supervised in-

formation within an, otherwise, unsupervised model. The experimental

results point out how the quality of the discovered object labeling de-

pends strongly on the quality of the annotating vocabulary: for instance,

the presence of frequently occurring keywords can negatively influence

the annotation process by preventing associations between regions and

medium/low frequency terms.

Overall, HRPLSA-ANN is the first latent space model that addresses

image annotation by exploiting a multi-resolution representation of the

image content that mixes a saliency-based description of the visual infor-

mation with a region-based organization of the perceptual knowledge.

This multi-level representation is developed in parallel to a hierarchical

structuring of the semantic space, where latent topics are discovered at

spatial resolutions corresponding to visterms and image segments. The

proposed topic annotation process can be seamlessly applied to any level

of this topic hierarchy, potentially yielding to a multi-resolution annota-

tion of the visual content.
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Table 13: Segmentation Overlap on the MSRC-B1 Dataset.

Algorithm Airplanes Bicycles Buildings Cars Cows Faces Grass Tree Sky Average

dLDA 0.43 0.50 0.16 0.45 0.52 0.44 0.60 0.71 0.74 0.51
LDA10 0.11 0.06 0.09 0.14 0.11 0.40 0.41 0.69 0.41 0.27
LDA15 0.08 0.56 0.06 0.14 0.14 0.43 0.57 0.62 0.41 0.33
LDA20 0.10 0.50 0.40 0.15 0.58 0.45 0.54 0.46 0.50 0.40
LDA25 0.14 0.52 0.21 0.17 0.48 0.44 0.45 0.59 0.50 0.39

HPRLSA10
15 0.32 0.37 0.59 0.68 0.74 0.44 0.87 0.81 0.90 0.62

HPRLSA10
20 0.35 0.56 0.65 0.67 0.74 0.47 0.89 0.47 0.91 0.63

HPRLSA10
25 0.35 0.52 0.75 0.63 0.73 0.50 0.89 0.71 0.86 0.66

HPRLSA15
20 0.36 0.49 0.56 0.60 0.68 0.52 0.89 0.77 0.91 0.64

HPRLSA15
25 0.42 0.52 0.61 0.68 0.69 0.45 0.90 0.61 0.92 0.65

HPRLSA20
25 0.44 0.43 0.48 0.52 0.67 0.48 0.88 0.75 0.91 0.61

HPRLSA
10

25 0.16 0.32 0.15 0.40 0.43 0.22 0.28 0.33 0.38 0.30

HPRLSA
15

25 0.24 0.31 0.13 0.38 0.37 0.19 0.25 0.21 0.45 0.28

2
8
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Table 14: Comparative precision/recall results on the Washington dataset:
the KCCA results have been obtained by predicting the actual number of
keywords in each image caption (HSSST06).

Model Pred. Words Precision Recall

HRPLSA-ANN
3 0.612 0.357
5 0.50 0.47

245 terms
7 0.418 0.547
9 0.363 0.602

HRPLSA-ANN
3 0.613 0.362
5 0.50 0.481

188 terms
7 0.418 0.552
9 0.363 0.609

HRPLSA-ANN
3 0.615 0.368
5 0.50 0.489

158 terms
7 0.418 0.561
9 0.364 0.617

Saliency-based CMRM
3 0.584 0.371
5 0.489 0.500

170 terms
7 0.412 0.576
9 0.351 0.628

Region-based CMRM
3 0.541 0.336
5 0.448 0.458

170 terms
7 0.383 0.541
9 0.333 0.604

LSI K = 40
∼ 4.8 0.490 0.480
∼ 7.42 0.414 0.588

170 terms ∼ 9.70 0.356 0.648
KCCA (132 terms) - 0.381 0.381
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Chapter 8

Conclusion

The dissertation discussed a hybrid neural-probabilistic model for the un-

supervised discovery of hierarchical latent structures within image col-

lections. The proposed approach is founded, on the one hand, on a novel

computational learning algorithm inspired by a perceptual learning mech-

anism of the visual cortex and, on the other hand, on a probabilistic model

extending pLSA (Hof01) to hierarchies of localized latent topics.

The main contributions of this research can be summarized into two

broad areas, i.e. competitive neural networks and image understanding,

corresponding to the two parts in which the thesis has been organized.

The first part of the dissertation introduced our proposal for a novel com-

petitive learning model, named CoRe learning, inspired by the repetition

suppression mechanism of the visual cortex. Experimental results show

that CoRe learning provides an effective mean for estimating the un-

known cluster number from the data, achieving performance results that

are comparable with that of state-of-the-art kernel based models, while re-

taining a computational complexity that is linear with respect to the size

of the dataset. The CoRe model introduces a generalized formulation for

rival penalized learning that allows to train articulated neural network

models, e.g. comprising neurons with several different activation func-

tions, with a single unsupervised learning algorithm. On the practical

side, we have shown that the repetition suppression mechanism over-
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comes several limitations of rival penalized learning algorithms: first, it

provides an adaptive mechanism that modulates the effect of neural inhi-

bition depending on the temporal distribution of the neural activations,

resulting in accurate estimates of the cluster number, irrespectively of the

initial network size and without needing to customize the learning rates

to the peculiarities of the dataset. Additionally, the repetition suppression

mechanism enforces a parsimonious neuron allocation policy, such that

densely populated regions of the input space don’t get over-represented

in the neural coding. As a consequence, CoRe can detect small-sized, low

density clusters even in asymmetrical scenarios characterized by clusters

containing a large portion of the samples of the data set. This informa-

tion compression mechanism reflects the typical repetition suppression

behavior, where more frequent patterns tend to be coded by fewer units,

sharply tuned to their preferred stimuli.

As part of the dissertation, we have underlined the limitations of the

CoRe learning formulation with respect to high-dimensional data and re-

dundant or noisy input components. To address such limits we have pro-

posed a feature-wise extension of the CoRe model, that allows to propagate

the repetition suppression competition to the single input covariates. As a

by-product of this extension, we derived a novel relevance measure that

is capable of ranking the input features with respect to their ability in

determining cluster membership. Throughout experimentations on gene

expression data from DNA microarray, we have shown how the feature-

wise CoRe model is able to estimate the latent structure of an high dimen-

sional dataset, while developing a feature ranking that is consistent with

the state-of-the-art knowledge regarding the functional role of genes’ ex-

pression in disease realization. The experimental results on labeled data

suggest that feature-wise CoRe obtains performances that are compara-

ble with that of computationally intensive wrapper approaches, while

retaining the low computational complexity of an incremental filter mo-

del. In addition to DNA microarray data, we have applied the extended

CoRe model to a small dimensional dataset from breast cancer research,

with the intent of estimating its performance as an exploratory tool for

biomedical data analysis, in comparison with advanced Bayesian cluster-
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ing algorithms. The experimental results showed that the performance of

the model-based algorithms can be seriously affected by the nature of the

data. On the other hand, the bio-inspired CoRe approach has proved to

be a valuable tool for discovering new knowledge concerning tumor pro-

files, providing a reliable measure of feature relevance that can be used to

infer significant markers in the discovered bio-profiles.

Besides experimental performance, we have also analyzed two im-

portant theoretical aspects of the CoRe learning model, namely robust-

ness to noise and convergence behavior. By resorting to the theory of

robust statistics we have shown that, given certain choices for the units’

activation function, CoRe cluster estimation is a robust process. In par-

ticular, we have pointed out the interpretation of CoRe as a robust ver-

sion of RPCL, where the rival penalization mechanism is strengthened

by exploiting robust M-estimators to produce a learning process that is

resistent to noise and outliers in the data. By experimental validation,

we have showed the fundamental role played by robust estimation when

addressing cluster number identification from noisy data, that is a key as-

pect when dealing, for instance, with unsupervised image segmentation.

As regards CoRe’s convergence behavior, we have presented a sound

analysis showing how the minimization of the CoRe error satisfies the

properties of separation nature, correct division and location defined in

(MW06). Moreover, we have given a sound optimality criterion suggest-

ing that the repetition suppression penalization produces a local minima

escape term that drives the CoRe prototypes to the global minimum of a

kernel vector quantization loss. In other words, the repulsion produced

by repetition suppression does not introduce a distortion in the cluster

identification process, whereas it offers a means for escaping local op-

tima, providing theoretical motivations for CoRe’s fast convergence rate.

As a by-product of CoRe’s convergence analysis, we have also derived

a family of kernel-based learning vector quantizers that comply with the

aforementioned global minimum condition. Experimental results have

shown the effectiveness of the proposed kernel-based algorithms in min-

imizing the distortion error in unsupervised image quantization tasks.

The second part of the dissertation introduced a novel multi-layered
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latent aspect model that extends probabilistic Latent Semantic Analysis to

the unsupervised discovery of hierarchies of latent visual topics from im-

age collections. The proposed model, named Hierarchical Region-topic

Latent Semantic Analysis (HRPLSA), integrates with a multi-resolution

image representation that exploits CoRe learning to pool together local

visual patches extracted from the whole image, organizing them into per-

ceptually meaningful intermediate structures, called regions. The result-

ing representation provides a stratified description of the visual content

both on the spatial level, i.e. through the region-visterm organization, as

well as on the semantic level, i.e. through the topic hierarchy. Experi-

mental results on a benchmark dataset have shown the effectiveness of

the model in determining a semantic segmentation of the image content,

based on latent visual aspects that are discovered in a completely unsu-

pervised fashion. In particular, HRPLSA achieves a superior segmenta-

tion performance with respect to the state-of-the-art models based on La-

tent Dirichlet Allocation (SRZ+08). Further, by applying a multi-modal

learning scheme developed for the flat pLSA model (MGP07), we have

extended the HRPLSA approach to model collections of images and asso-

ciated textual information. The multi-modal HRPLSA has been tested on

two collections of annotated images, showing that the proposed hierar-

chical region-based approach yields to a performance improvement with

respect to flat pLSA learning when addressing automatic image annota-

tion. Moreover, the experimental results pointed out that HRPLSA-ANN

achieves a precision/recall performance that is comparable to that ob-

tained by the state-of-the-art saliency-based CMRM model (THL06). In

addition to image-level annotation, we have shown that HRPLSA-ANN

can exploit its hierarchical region-based generative model to learn to at-

tach textual labels to the image regions using captions that are available

only at the level of the whole scene.

To the extent of our knowledge, HRPLSA-ANN is the first latent space

model that addresses multi-resolution annotation by exploiting a layered

representation of the image content that organizes the low-level saliency-

based description of the visual information into perceptually homoge-

nous image regions. Elaborating further on the simile with text retrieval,
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we can interpret the proposed approach as a means to organize docu-

ments (i.e. the images) into an orderless collection of paragraphs (the

regions) that are themselves bags of words (the visterms). Such a multi-

level document representation is developed in parallel to a hierarchical

structuring of the semantic space, where latent topics are discovered at

both levels of document representation, i.e. paragraphs and words. Within

this scheme, we infer the topic of the whole document based on the mix-

ture of its paragraphs topics which are, in turn, described by the latent

semantics of the composing words.

The most general message conveyed by this dissertation is that the

interchange between bio-inspired neural processing algorithms and sta-

tistical machine learning models can lead to fruitful integrations, with

positive outcomes on both sides. Indeed, the first part of the dissertation

suggests that biological inspiration can effectively lead to robust compu-

tational models characterized both by competitive performances as well

as by strong theoretical properties. On the other hand, the experience

gained while developing this doctoral research has led us to the conclu-

sion that purely cognitive approaches might not yield to the best solu-

tions when applied to complex scenarios such as in automatic image an-

notation. With this respect, statistical learning algorithms have strong

modeling capabilities that earned them a central role in the image under-

standing community. However, the complexity of their parameter fitting

process often prevents their application to large scale problems while, as

shown by the breast cancer case study, they might incur in catastrophic

degenerations whenever they have to cope with peculiar data distribu-

tions. The experimental results provided in the dissertation suggest that

neural processing approaches have the flexibility to deal with such data

irregularities being, at the same time, characterized by limited computa-

tional requirements. Hence, a new research issue emerges from the strive

to reach new forms of integrations between the flexibility and compu-

tational feasibility of neural processing, and the well-foundedness and

modeling power of statistical machine learning approaches. In the con-

text of this thesis, we have realized an integration where the neural algo-

rithm intervenes to provide bottom-up information that teaches the hierar-
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chical topic model how low level aspects are expected to co-occur within

a spatial neighborhood. The model in (SRZ+08), for instance, achieves

this by resorting to a-priori knowledge that is used to constrain the way

their hierarchical model assigns visual words to a certain node in the topic

hierarchy.

Indeed, there are several ways to extend the work presented in this

dissertation. As regards the CoRe learning model, we are planning to

reformulate it to account more closely for the sequential nature of the bi-

ological repetition suppression mechanism. We recall that, at the cortical

level, repetition suppression rises as the consequence of the repeated pre-

sentation of similar stimuli within a sequence of perceptual inputs. In our

intentions, the reformulation in terms on sequential processing should al-

low to extend further the model by including the effect of two additional

correlates of perceptual learning, that are enhancement and delayed activa-

tion (see their description in Chapter 2). This model should result in a

novel neural network paradigm for sequence learning, where repetition

suppression is used to generate a compact coding of the single items in

the sequence, while the enhancement and delayed activation mechanisms

provide the means for learning contextual information from the input se-

quences. Possible applications of this model would range from validating

attentional models of perceptual learning, to the processing of sequential

information, comprising strings, trajectories and time series data. An-

other interesting area where CoRe learning can find effective application

is within the so-called third generation or spiking neural networks (MB99).

These models have been proposed as a refined approach to neurocom-

puting where information, rather than being represented under the form

of weight vectors, is coded in the firing intervals of the neurons. The

development of an efficient unsupervised learning mechanism is still an

open challenge within this neural model: it is therefore our intention to

explore possible applications of the repetition suppression mechanism in

this context. Additionally, on the practical side, we plan to exploit the pe-

culiarities of the feature-wise CoRe algorithm to develop a tool for the un-

supervised exploration of bio-medical datasets: this tool should provide

the user with a range of hypotheses concerning the most likely number of
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functional classes within the data, together with an estimate of relevant

markers/predictors for the discovered classes.

As regards the hierarchical image annotation model, there is still work

to be done for validating the performance of HRPLSA-ANN in compar-

ison with relevant region-based image annotation systems in the litera-

ture. The first step to provide a thorough validation of the model requires

to build a real-life sized benchmark: this ought to be an open-access, stan-

dardized collection of annotated images depicting articulated scenes with

multiple objects portrayed in different sceneries and providing high qual-

ity ground truth segmentations of the visual content. In our opinion, the

LabelMe collection provides an interesting starting point for the establish-

ment of such a benchmark; however, as noted in the experimental evalua-

tion, there is a consistent amount of work to be done for selecting suitable

images as well as for preparing an high-quality annotation vocabulary.

From the point of view of possible developments of the model, we plan

to study a generalized formulation of the HRPLSA scheme that allows to

describe generic topic hierarchies that go beyond the two-layered struc-

ture described in the present thesis. For instance, the generalized mo-

del should comprise multiple layers of topics, each drawing information

from data gathered at different spatial resolutions. This, on the one hand,

requires to formulate a novel multi-resolution representation of the visual

content that generalizes the region/visterms organization. On the other

hand, it requires the development of a learning scheme that is capable of

automatically determining the depth of the topic hierarchy (and, implic-

itly, of the multi-resolution representation) from the data. On a practical

side, it would be interesting to exploit HRPLSA-ANN to develop a fron-

tend for the LabelMe manual annotation tool. This tool should exploit

annotated LabelMe pictures to learn to provide the user with suggestions

concerning the most likely keywords for the regions of new, un-captioned

images. Such a tool can potentially yield to two positive outcomes: on the

one hand, it would allow the users to save annotation time by having at

least some portions of the image being correctly segmented and anno-

tated in a fully automated way. On the other hand, it would provide the

system with a relevance feedback from the user that can be adaptively in-
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corporated into the HRPLSA-ANN model to increase its region labeling

performance.
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