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Abstract 

The nature of human action remains a debated issue, with no definitive 
resolution.  This  problem can  be  approached from two perspectives. 
The first is theoretical: refining our understanding of what constitutes 
an  action  and  developing  a  taxonomy  that  effectively  captures  its 
essential  features  can  provide  a  more  structured  framework  for 
investigating its neurobiological basis. The second is empirical: to fully 
grasp  the  complexity  of  human  action,  research  must  incorporate 
actions  occurring  in  ecologically  valid  settings,  such  as  naturalistic 
stimuli (e.g., movies).

This  thesis  addresses  both  dimensions.  On  the  theoretical  side,  I 
propose new high-level models for interpreting action, beginning with 
fundamental  definitions  and  examining  the  minimal  conditions 
required for an effective taxonomy. I highlight the inherent limitations 
and unavoidable incompleteness  in any attempt to comprehensively 
map the action phenomenon. Additionally, I review existing empirical 
approaches  in  neuroscience  that  have  sought  to  identify  the  key 
features representing actions in the brain.

On the empirical side, I employ functional magnetic resonance imaging 
(fMRI) with naturalistic stimuli to investigate how actions are encoded 
in the human brain.  Using a  theoretically  grounded action model,  I 
examine the stability of action representations across different movies, 
demonstrating that action coding remains consistent despite variations 
in narrative and sensory complexity. I then conduct a detailed analysis 
of  a  single  movie  (101  Dalmatians),  exploring  how  model  fit  varies 
across  different  sensory  modalities.  The  findings  reveal  that  certain 
action features have a stable impact on brain activity regardless of the 
modality through which they are perceived. By integrating theoretical 
modeling with empirical validation in naturalistic settings, this work 
advances our understanding of action representation in the brain and 
underscores the importance of studying actions in contexts that closely 
mirror real-world experiences.
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Introduction

The  concept  of  "action"  has  been  studied  from  multiple 
perspectives, including philosophy, cognitive neuroscience, 
psychology, and robotics.  Each discipline has shaped the 
definition of action differently, leading to diverse theories 
and  approaches.  However,  despite  substantial 
contributions  from  these  fields,  there  is  still  no  unified 
framework  that  integrates  these  perspectives  into  a 
coherent understanding of actions. A key challenge lies in 
developing a taxonomy of actions that reflects the multi-
level complexity and diversity of actions, from basic motor 
functions to high-level cognitive processes. This thesis aims 
to address these challenges by exploring the role of action 
representation  and  proposing  an  integrative  framework 
that embraces a pluralistic approach.

The  motivation  behind  this  research  lies  in  the  lack  of 
consensus in defining and categorizing actions, especially 
across different levels of description and representational 
formats.  By  taking  a  deflationary  pluralism  stance,  this 
thesis aims to embrace different theoretical views without 
enforcing  a  single,  restrictive  definition  of  action.  The 
proposed  framework  will  consider  multiple  aspects  of 
action  representation:  sensorimotor,  perceptual,  and 
semantic formats. By integrating insights from each of these 
domains,  we  can  develop  a  richer  and  more  nuanced 
understanding of action, contributing to the advancement 
of theoretical and empirical studies in the field. In this first 
chapter,  we  will  list  several  ways  of  describing  actions, 
discussing various taxonomies  that,  while  not  conclusive 
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individually,  together  offer  different  perspectives  on  the 
same problem.

This  thesis  will  address  key  research  questions,  such  as 
how  to  evaluate  existing  action  taxonomies,  the  role  of 
motor  and  goal  representations,  and  the  relationship 
between theoretical and practical approaches to actions. By 
building  on  a  foundation  of  empirical  evidence  and 
theoretical analysis, this work aims to propose an adaptable 
framework for understanding actions, one that can enhance 
explanatory power and guide future research in cognitive 
neuroscience and psychology.
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Chapter 1 

1. The Search for the Mark of Action

The first aspect of the problem of action is understanding 
whether  there  is  any distinctive  “mark” (or  collection of 
traits,  or properties) of actions, distinguishing them from 
mere  movements  or  behavioral  motor  reactions.  It  has 
acquired  many  meanings  through  diverse  periods  and 
disciplines. Under various standpoints, since ancient times, 
philosophers  have  searched  for  the  distinctive  property 
that  differentiates  bodily  actions  from  unintentional 
movements or reflexes — what we will call the "mark" of 
action. 

The  standard  causal  theory  of  action  identifies 
intentionality as the criterion distinguishing an action from 
something that merely happens to an agent. Other authors 
(among others, Frankfurt, 1978; Bach, 1978; Butterfill, 2001, 
2012; Sinigaglia, 2013; Fridland, 2017; Pacherie, 2018) have 
argued  that  propositional  attitude  and  explicit  decision-
making  are  not  necessarily  implied  by  purposive  and 
skillful action. Evidence from, for example, how the cat's 
intentional  behavior  adapts  to  the environmental  context 
suggests that intention is not necessary to define an action; 
rather,  expertise in the guidance or control of action is a 
sufficient condition.

More recently, empirical and theoretical work by Jackson 
and  Cross  (2011),  and  Kaufman  and  Newen  (2023)  has 
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contested this  view of intentions as necessarily requiring 
complex  language  competencies.  They  argue  that  non-
human animals,  such as spiders or rats,  possess complex 
planning  abilities  that  support  flexible,  intentional 
behavior.  These  considerations  challenge  the  view  that 
complex  action  essentially  involves  intentions  or  even 
linguistic competencies.

These  insights  notwithstanding,  there  is  still  no  clear 
evidence  available  to  conclusively  settle  the  controversy 
about the "mark" of action. For this reason, we would like 
to suggest a deflationary pluralism—representing a variety 
of  perspectives  along  with  their  respective  action 
taxonomies. By embracing such plurality, we will resist the 
temptation of prematurely ruling out various approaches 
and  be  able  to  accept  relevant  contributions  from 
philosophy,  cognitive  neuroscience,  psychology,  robotics, 
and linguistics.

However, embracing pluralism does not mean embracing 
all  indistinguishable  action  taxonomies.  Hence,  in  the 
section below, I list the minimum conditions any plausible 
theory of action must satisfy if it  is supposed to provide 
sufficient and necessary conditions for actions. We will then 
explain, focusing on different theories consonant with our 
pluralism,  how  such  theories  adopt  experimental 
methodologies and levels of granularity in conceptualizing 
actions.
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1.1 Is Three the Magic Number? The Basic Principles of 
Actions and Action Taxonomies

When limiting our discussion to bodily actions, we propose 
that  any  theory  of  action  must  account  for  several  key 
features of how actions are instantiated. Specifically, every 
theory should satisfy three minimal explanatory conditions
—the "three basic principles of action":

 Actions have hierarchical structures.
 Actions are distinguished by their outcomes (or 

goals).
 A single action can be described in multiple ways.

1.1.2 The Hierarchical Structure of Actions

An action should consist of a hierarchy of simpler actions, 
or  sub-actions,  whereas  atomic  actions  cannot  be  broken 
down further and are analyzed only at the kinematic level 
(Grafton & Hamilton, 2007; Gallese & Sinigaglia, 2011). For 
instance, the action of "drinking from a cup of tea" involves 
perceiving  and  representing  the  cup  (Jeannerod,  1994), 
reaching for it, grasping it (Rizzolatti et al., 2001), bringing 
it  to the mouth, preparing the facial muscles,  and finally 
ingesting the tea. These sub-actions occur in sequence but 
exist  at  the  same level  of  complexity.  Additionally,  each 
sub-action is hierarchically superior to simpler ones, such 
as the coordinated movements of  the fingers required to 
grasp the cup (Fitts & Posner, 1967; Gentilucci et al., 1997).

This  structure  reflects  the  means-goal  relationship:  the 
coordinated  finger  movements  aim  toward  grasping  the 
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cup as the goal (Rosenbaum et al., 2007; Newell, 1991). The 
concept  of  an  action  hierarchy  also  touches  on  the 
"granularity  of  action"—different  theories  may  focus  on 
different levels of granularity depending on their goals and 
underlying  assumptions  (Butterfill  &  Sinigaglia,  2014; 
Grafton,  2007).  For  example,  a  philosophical  approach 
focusing  on  motor  goal  representations  might  adopt  a 
broader-grained analysis, but it could still be quite detailed 
(Fridland,  2014).  Ultimately,  each  theory's  goals  and 
commitments determine the analysis level and the methods 
used (Gallagher, 2005).

In this context, we aim to exclude theories that fail to meet 
our criteria for valid action theories. Any theory that does 
not  go  beyond the  kinematic  level  of  analysis—i.e.,  that 
only examines movement—fails to satisfy the first principle 
of  action  and  is  incompatible  with  our  deflationary 
pluralism. As a result, such theories will be rejected from 
our pluralistic action taxonomy.

1.2 The Role of Outcome in Action Individuation

The notion of an "outcome" refers to an actual or possible 
state  of  affairs,  such  as  "drinking  a  cup  of  tea."  It 
distinguishes  actions  from  mere  movements  or  bodily 
reflexes  and  functions  as  the  "action  individuation 
principle." However, the concept of outcome is not without 
its  limitations.  The  mere  existence  of  an  outcome  or 
motor/cognitive  representation  does  not  automatically 
constitute  an action since  intentions may fail  to  produce 
corresponding  movements  or  the  desired  outcome.  For 
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instance, merely intending to "hit a tennis ball like Roger 
Federer" does not mean the action will succeed.

To  effectively  individuate  actions,  each  theory  of  action 
should  include  a  correctness  condition  that  allows us  to 
determine  whether  an  action  has  been  successfully 
instantiated.  This  involves  differentiating  between 
outcomes  and  end-states,  as  well  as  between  token-
outcomes  (specific  to  individual  actions)  and  type-
outcomes (applicable to multiple actions). Not all outcomes 
are end-states, and not all result from actions. Instead, goal 
representations  (i.e.,  representations  of  end-states)  help 
identify correctness conditions.

By  conceptualizing  outcomes  in  representational  terms, 
mainly  focusing  on  goal  representation,  we  understand 
their  role  in  organizing  and  coordinating  bodily 
movements to achieve an intended outcome, enabling us to 
uniquely individuate actions.

1.3 Multiplicity of Goal Representations

While each action requires a token-outcome representation, 
this  does  not  mean  a  single  action  must  have  only  one 
representation. For example, "hitting a forehand like Roger 
Federer" can also be described as "sending the ball to the 
opposite  corner."  This  demonstrates  that  one  action  can 
have  multiple  token-outcome  representations. 
Additionally,  individuals  may  execute  the  same  type  of 
action while representing it differently, illustrating that one 
type-action can be characterized by various token-outcome 
representations.  This  multiplicity  is  consistent  with  our 
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explanatory pluralism, which allows each action theory to 
describe  actions  differently,  assigning  appropriate  goal 
representations based on the context.

1.4  Goal  Representation  in  Action  Observation  and 
Control

We propose that goal representation is sufficient for action 
individuation, questioning the necessity of intentionality as 
an  explanatory  element.  The  standard  causal  theory 
suggests that intentionality harmonizes mental states like 
desires  and  beliefs  with  bodily  movements  to  achieve  a 
goal. However, we argue that a causal account and second-
order representations (e.g., beliefs and desires) may not be 
required  to  explain  actions.  Instead,  a  model  based  on 
temporal  stability,  supported  by  appropriate  neural 
representations,  could adequately explain both purposive 
and skillful actions.

In  this  framework,  coordinated  bodily  movements  are 
selectively guided by motor representations that organize 
sub-actions and movements toward an intended end-state 
(Gallese & Sinigaglia, 2011). The motor system coordinates 
actions  through  sensory  and  mnemonic  feedback, 
activating  goal-oriented  motor  plans  (Rosenbaum  et  al., 
2001).  This  approach  eliminates  the  need  for  meta-
representations,  such as propositional attitudes (Pacherie, 
2008), and emphasizes the role of motor goal representation 
as  a  sufficient  reason  for  action  (Jeannerod,  1997).  Our 
pluralism,  therefore,  is  essentially  descriptive,  aiming  to 
provide  a  comprehensive  mechanical  and  informational 

8



explanation of actions without focusing on their ontological 
basis (Fridland, 2014).

Beyond  its  executive  function,  the  motor  system  also 
contributes to action observation and understanding. The 
neural circuits involved in executing actions are similarly 
activated  during  action  observation,  indicating  that  the 
motor-neural circuit plays a role in action comprehension. 
Goal representation, therefore, serves not only as an action 
individuation  principle  but  also  as  the  essence  of  what 
Pacherie (2018) termed "motor intentionality."

In  conclusion,  our  deflationary  pluralistic  approach  to 
action  taxonomies  emphasizes  the  need  for  specialized 
taxonomies that accept goal representation as the principle 
of action individuation, hierarchical action structures as an 
essential  condition,  and  the  idea  that  actions  can  be 
described in multiple ways. This approach excludes mere 
bodily  movements  from  being  considered  actions  and 
supports  explanatory  pluralism  by  integrating  insights 
from  philosophy,  cognitive  neuroscience,  psychology, 
robotics, and related fields to deepen our understanding of 
actions.

We  will  now  move  on  to  explore  suitable  action 
taxonomies.

1.5 Action Taxonomies: An Introduction

In the present section, we introduce the main approaches to 
studying different types of actions. Actions are multilevel 
entities,  and  taxonomies  focused  on  low-level  features, 
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such as shape and kinematics, differ from those addressing 
semantic and more abstract features, such as locomotion or 
communicative actions. Moreover, some features of actions 
are  transversal  across  different  taxonomies.  For  example, 
temporal  extension is  essential—researchers  may  focus  on 
brief  actions,  such  as  grasping  an  object,  or  extended 
sequences of actions involving complex processes.

Another guiding feature is granularity, which is influenced 
by the chosen methodology: EEG studies often focus on the 
microstructure  of  temporal  action,  while  fMRI  studies 
examine longer time frames, often exploring brain activity 
localization  corresponding  to  different  action  types  and 
emphasizing the semantic representation of various actions 
in the brain. By integrating these approaches, researchers 
can learn about the temporal structure and localization of 
action comprehension.

Behavioral-level  research  reveals  trade-offs  based  on 
research  focus.  For  example,  studying  specific  action 
components,  such as grasping small  versus large objects, 
requires  a  narrow  focus,  whereas  studying  action 
variability necessitates broader sampling, often without the 
same level of detail. Attention and emotional engagement 
heavily  influence  how  actions  are  processed,  both  at 
kinematic and abstract levels (Alaerts et al., 2011; Castiello 
et al., 2010; Shahdloo et al., 2022; Wurm & Schubotz, 2012).

For  instance,  behavioral  relevance  can  be  estimated  by 
studying the effects of removing contextual cues on action 
recognition. Gaze anticipation is a key indicator of motor 
primitives comprehension, such as grasping (Ambrosini et 
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al., 2013; Costantini et al., 2010). The following sections will 
explore  how taxonomies  are  shaped by the  chosen level 
and perspective, with a more detailed review of proposed 
taxonomies.

1.5.1 Several types of taxonomies
Action Concepts and Dimensions

Current  taxonomies  often  conflate  prediction  and 
explanation,  although  these  are  distinct  concepts.  While 
prediction is practically useful, relying solely on prediction 
may not lead to a comprehensive understanding of brain 
functions.  Theories  must  make  predictions  that  are  then 
empirically validated (Breiman, 2001; Yarkoni & Westfall, 
2017).  Predictive  success  helps  distinguish  between 
competing models, even if they are theoretically equivalent.

However, complex models like deep learning may not offer 
human-interpretable explanations. In neuroscience, spatial 
and  temporal  resolution  constraints  often  limit  the 
predictive  value  of  models  like  fMRI-based  encoding. 
Despite  these  limitations,  models  must  still  support 
predictions  and  offer  interpretability,  distinguishing 
between descriptive, mechanistic, and explanatory models 
(Dayan & Abbott, 2005). Insights from animal studies, such 
as those involving mirror neurons, remain fundamental to 
building these models.

Mirror neurons inherently embody a predictive framework: 
they  fire  upon  observing  an  action  as  if  the  observer  is 
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performing the  action.  The  predictive  and the  embodied 
aspects  of  mirror  neuron  theory  align  well  with  the 
predictive  coding  account,  conceptualizing  action 
understanding as involving anticipation. Most researchers 
agree on the concept of motor primitives—the basic units of 
actions  that  form  complex  behaviors  (Rizzolatti  & 
Craighero, 2004; Rizzolatti & Fabbri-Destro, 2010). Mirror 
neurons help explain how we quickly understand others' 
actions based on our experiences and expertise (Becchio et 
al.,  2012;  Cavallo  et  al.,  2016).  Studies  show  that  motor 
experience  is  superior  to  observation  in  predicting 
subsequent actions (Aglioti et al., 2008). However, research 
in this field has often focused on simpler motor acts like 
grasping,  limiting  the  exploration  of  other  action  types. 
Identifying motor primitives and understanding how they 
combine into complex actions is  key to advancing action 
taxonomy.

Action Concepts and Dimensions

Describing  the  brain  representation  of  complex  actions 
remains a challenging task. Tarhan and Konkle (2020) used 
a  survey-based  approach  to  model  effector  involvement 
and action targets,  predicting voxel  activation per  action 
clip. Their data-driven approach used clustering to reveal 
distinct action categories, such as large-scale versus small-
scale actions,  and actions with social  aspects.  Wurm and 
Caramazza (2017), on the other hand, employed a theory-
driven  approach  to  demonstrate  that  brain  regions  are 
organized  topographically  along  dimensions  of  sociality 
and  transitivity,  similar  to  how  object  categories  are 
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represented  in  the  brain.  Their  findings  showed  that 
sociality and transitivity are computed along a gradient in 
the lateral  occipitotemporal  cortex (LOTC),  with sociality 
distinctions in the dorsal LOTC and transitivity distinctions 
in the ventral LOTC.

These  studies  illustrate  that  action  dimensions  are 
continuously  represented  in  the  brain,  supporting  both 
theory-driven  and  data-driven  approaches  to  action 
categorization.  Although  Tarhan  and  Konkle's  clustering 
approach  differed  from  Wurm  and  Caramazza's 
hypothesis-based  work,  both  contribute  to  our 
understanding of how the brain represents actions and the 
underlying semantic information.

The goal of these studies is to extract relevant dimensions 
from cortical maps representing different action categories, 
using techniques like multivariate pattern analysis (MVPA) 
and  representational  similarity  analysis  (RSA)  (Haxby  et 
al., 2014). These methods demonstrate that representations 
of both object and action categories are distributed across 
the  cortex.  By  integrating  dimensions  from  different 
sources—such as subject  ratings and low-level features—
researchers  can  create  dissimilarity  matrices  that  reveal 
correlations  between  voxel  activation  and  semantic 
features.  Similar  methodologies  have  also  been  used  to 
explore emotional processing.

Linking Prediction to Action Taxonomies

Recent studies reveal that predicting actions involves more 
than  just  movement—it  also  depends  on  conceptual 
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similarity  within  a  high-dimensional  semantic  space. 
Thornton  and  Tamir  (2019,  2021)  demonstrated  that  the 
human  brain  organizes  conceptual  action  knowledge  to 
enable predictions, showing that similar actions are more 
likely to follow one another (e.g.,  walking and running). 
Their use of an automatic classifier on naturalistic movie 
stimuli, combined with subjective action similarity ratings, 
confirmed  that  conceptual  similarity  plays  a  key  role  in 
predicting action transitions. This suggests that motor and 
semantic  systems  contribute  to  our  understanding  of 
actions, with a trade-off between detailed motor simulation 
and broader semantic categorization depending on the task 
context.

Mirror neurons naturally embody a predictive mechanism, 
firing  when  observing  actions  and  facilitating  rapid 
understanding  through  motor  simulation  (Rizzolatti  & 
Sinigaglia,  2008,  2016).  This  process  is  complemented by 
the semantic system, which provides a broader conceptual 
framework,  particularly during passive observation,  such 
as when watching a movie. The interplay between motor 
and semantic systems raises questions about how different 
types  of  understanding—motoric  versus  semantic—
contribute to action recognition.

Action Prediction

In  high-dimensional  semantic  space,  the  proximity  of 
actions can predict transition probabilities between them. 
For  instance,  walking  and  running  often  occur  close 
together  temporally,  whereas  the  sequence  might  matter 
more  for  actions  like  eating  after  grocery  shopping. 
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Thornton and Tamir (2019) used an automatic classifier to 
label actions in a naturalistic setting (e.g.,  Sherlock Holmes 
episodes)  and  gathered  behavioral  similarity  ratings  for 
linguistic classes of actions. These ratings were then used to 
create  a  high-dimensional  space  where  actions  were 
positioned, and their proximity was found to predict their 
temporal occurrence in naturalistic stimuli.  The ability to 
decode these predictions from fMRI cortical maps further 
supports  the  idea  that  the  brain’s  organization  of 
conceptual action knowledge is tuned to predicting actions 
in both active scenarios and passive viewing contexts.

Passive vs. Active Action Prediction

The  findings  raise  the  question  of  whether  spontaneous 
action  prediction  significantly  differs  from  passive 
observation.  Evidence  suggests  that  the  organization  of 
action knowledge inherently supports prediction, aligning 
with  the  brain’s  predictive  coding  model.  Conceptual 
similarity,  rather  than  movement  kinematics  or  effector 
type,  may  serve  as  a  stronger  predictor  of  subsequent 
actions,  even though the mirror neuron system (MNS) is 
thought  to  use  these  low-level  features  for  rapid  action 
simulation. This suggests that motor and semantic systems 
serve  distinct  roles:  motor  simulation  is  vital  for 
distinguishing fine-grained motor acts, while the semantic 
system helps with broader, context-based categorization.

Mirror  neuron  theories  posit  that  humans  instantly 
recognize familiar actions, using internal motor simulation 
(Rizzolatti & Fabbri-Destro, 2010). In contrast, recognizing 
unfamiliar actions requires more time and effort (Cavallo et 
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al.,  2016; Koul et al.,  2019). The semantic system is likely 
more involved when broader categorization suffices, such 
as during movie-watching. This reveals a potential trade-
off in action taxonomy, similar to the variance-bias trade-off 
in  machine  learning:  focusing  on  granularity  when 
describing  specific  actions  may  limit  generalization, 
whereas more abstract descriptions lose sensory detail.

Attention

Attention  plays  a  crucial  role  in  modulating  action 
comprehension by influencing the selectivity  of  semantic 
maps  in  the  brain  based  on  task  relevance  and  context. 
Similarly,  mirror  neuron  activity  is  affected  by  context, 
prior experience, and social relevance (Kilner et al.,  2006; 
Campbell & Cunnington, 2017). These findings suggest that 
the interaction between attention and mirror neurons helps 
adapt action understanding to the specific situation.

Other findings point in the direction of a focusing of the 
brain on certain semantic categories,  produced by giving 
semantic cues to the participants (Çukur et al., 2013)

Linguistic Taxonomies

Vendler's  classic  linguistic  taxonomy  of  verbs  identifies 
four  main  categories  of  action—activities, 
accomplishments, achievements, and states—based on their 
aspectual  properties.  While  this  linguistic  categorization 
provides  a  useful  framework,  it  may  only  partially 
represent  how  the  brain  distinguishes  different  types  of 
actions. However,  exposure to language from birth helps 
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shape conceptual boundaries, which may lead to alignment 
between  language-based  categories  and  cognitive 
representations  (Cangelosi  &  Stramandinoli,  2018). 
Embodied  cognition  theories  further  emphasize  the 
interplay  between  language  and  sensorimotor 
representations,  with  abstract  concepts  grounded  in  the 
body's  sensorimotor  experiences  (Jamrozik  et  al.,  2016; 
Martin, 2016).

Computer Vision and Robotics

In computer  vision and robotics,  efficient  taxonomies for 
categorizing  actions  have  also  been  developed,  often 
incorporating  insights  from  cognitive  psychology  and 
neuroscience.  Actions  and  objects  exhibit  a  many-to-one 
relationship,  where  similar  actions  can  be  performed on 
different  objects,  and  different  grasps  can  be  employed 
depending on the action goal (Butterfill & Sinigaglia, 2014). 
These  taxonomies  are  designed  to  quickly  categorize 
observed actions, ensuring context-sensitive representation.

 Abstraction in Action Taxonomies

Action  taxonomies  can  encompass  both  abstract  and 
concrete  dimensions.  For  example,  Tarhan  and  Konkle 
(2020)  demonstrated  that  features  like  visibility  and 
involvement  correlate  with  the  brain’s  action 
representations.  Balancing  granularity—whether  focusing 
on  specific  kinematic  details  or  higher-level  conceptual 
features—remains  challenging  in  developing 
comprehensive  action  taxonomies  and  building  effective 
models to explore them through neuroimaging techniques.
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1.6 Conclusion

Exploring  action  taxonomies  reveals  the  complexity  and 
multi-dimensionality  of  actions  as  multi-level  entities. 
Integrating  different  methodologies,  such  as  EEG  and 
fMRI,  may  help  in  further  bridging  the  gap  between 
temporal dynamics and localization of brain activity related 
to actions. Predictive and explanatory models are essential 
for understanding how actions are organized in the brain, 
with  predictive  coding  and  mirror  neuron  theories 
highlighting the interplay between motor simulation and 
semantic categorization.

As  evidenced  by  the  studies  discussed,  the  conceptual 
similarity between actions suggests that semantic cues play 
a significant role in predicting actions, complementing the 
fast  motor  simulations  provided  by  the  mirror  neuron 
system.  Attention  processes  and  linguistic  taxonomies 
further  influence  how actions  are  understood,  indicating 
that action comprehension is influenced by both low-level 
sensory details and high-level conceptual understanding.

By adopting a pluralistic approach that incorporates goal 
representation,  hierarchical  action structure,  and multiple 
descriptions  of  actions,  we  can  better  understand  the 
intricate ways in which the brain represents and processes 
actions. This deflationary pluralism accommodates diverse 
action taxonomies and integrates insights from philosophy, 
cognitive  neuroscience,  psychology,  robotics,  and 
linguistics,  offering  a  comprehensive  framework  for 
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understanding actions at different levels of granularity and 
abstraction.

Fig.  1:  A  conceptual  overview  of  the  core  components  of  action 
understanding, highlighting the three basic principles of actions,  the 
central  role  of  goal  representation,  and  the  pluralistic  taxonomy 
framework  integrating  motor,  perceptual,  and  semantic  dimensions 
across multiple disciplines.
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Chapter 2 
2. Introduction: Defining Actions Across Disciplines

Multiple  disciplines  have  long  been  interested  in 
characterizing  what  constitutes  an  action.  Philosophy  of 
mind  (Butterfill,  2014),  computer  vision  (Efros,  2003), 
robotics  (Zech  et  al.,  2018),  cognitive  neuroscience 
(Thornton et al., 2019), and (neuro)linguistics (Humpreys et 
al.,  2013)  have  all  contributed  to  understanding  actions 
from their unique perspectives. Each field’s perspective is 
shaped  by  its  specific  needs—ranging  from  practical 
applicability  to  theoretical  understanding—often  without 
acknowledging  the  progress  or  insights  from  other 
disciplines.  Consequently,  actions  remain  a  sparse  and 
distributed  topic  in  the  scientific  literature,  with  little 
consensus regarding their conceptual and neurobiological 
organization.

Even  within  cognitive  neuroscience,  researchers  have 
examined actions from various perspectives and levels of 
analysis.  While  contributions  are  abundant,  several 
theoretical  aspects  remain  poorly  defined,  such  as  the 
absence  of  a  coherent  taxonomy  of  actions.  Integrating 
recent  contributions  with  earlier  insights  into  a  unified 
schema  could  prove  helpful.  Here,  we  attempt  to 
systematize what is known about actions, organizing this 
knowledge through conceptual tools mainly derived from 
the  philosophy  of  mind.  Specifically,  in  the  rest  of  this 
paper,  we will  apply the notions of  levels  of  description 
and  representational  formats  to  map  out  most  of  the 
taxonomies of action.
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2.1 Levels of Representation: A Practical Illustration

The concept of levels of representation (Land et al., 2013; 
Grafton  et  al.,  2007)  can  be  illustrated  with  a  simple 
example—such as the action of "grasping a mug":

 At  the  basic  motor  level,  grasping  involves  an 
effector (e.g., the hand) that closes around an object, 
using  a  specific  kind  of  grasp  from  several 
possibilities (Giszter, 2015).

 The movements must happen in a specific sequence 
to  achieve  the  desired  outcome:  for  instance,  one 
cannot grasp before reaching for the mug (Houghton 
et al., 1996).

 The action involves  essential  elements,  such as  an 
effector and an object.

 There must be an agent with an appropriate effector 
to  perform  the  action  (e.g.,  a  bus  cannot  grasp 
mugs),  contextual  relevance  and  correct  affordances 
(Gibson, 1977).

 Grasping  has  contextual  meaning  (Wurm  et  al., 
2012) only in certain circumstances (e.g., "I grasped 
the mug and drank a sip of tea"), not in others (e.g., 
"I grasped a mug and called the police").

 Knowledge  of  a  specific  action  can  be  obtained 
through direct execution (motor format), observation 
(perceptual format), or linguistic representation (e.g., 
"grasping  a  mug").  Each  format  conveys  distinct 
information  and  is  inherently  partial  (Shepherd, 
2021) 

 "Grasping a mug" encompasses a variety of possible 
specific actions, yet we know how to generalize from 
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similar  actions  and  recognize  it  when  observing 
another  person  perform  it,  despite  the  infinite 
variations in its execution (Hu et al., 2023)

These  examples  demonstrate  that  action  knowledge  is 
stratified.  Knowing  how  to  perform  "grasping  a  mug" 
differs  from knowing that  a  specific  instantiation of  that 
action  is  one  of  many  possible  exemplars.  Grasping  a 
specific mug at a specific moment represents a token from 
the  action  type  "grasping  a  mug."  In  other  words,  the 
particular  action  observed  or  performed  is  a  specific 
instance of a general category.

In the philosophical literature, this distinction rests on what 
is often called: "knowing how" versus "knowing that" (Ryle, 
1945;  Ferretti  & Caiani,  2023).  Knowing how to  attach  a 
linguistic description to an action is distinct from knowing 
how to execute it. Performing an action requires a different 
granularity than language can provide,  and potentially a 
different  representational  format,  such  as  a  procedural 
(metric-based)  system  versus  a  symbolic  one.  These 
foundational distinctions shape our conceptual approach to 
actions.

The central question then becomes: what do we consider an 
'action'? If we extend this notion to include the concept of 
an action, or the semantics of an action, we encounter the 
challenge  of  how  different  action  formats  interact—a 
problem referred to as the "interface problem" (Burnston, 
2017; Ferretti & Caiani, 2019)
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We  intuitively  understand  actions  as  means  to  achieve 
specific goals, and this informs our sense of levels: we can 
have  a  surface  representation  of  an  action,  composed of 
concatenated motor acts,  or  we can access  a  higher-level 
representation  that  highlights  the  essential  elements  of 
action (e.g.,  agent  and outcome).  These various forms of 
action knowledge are represented differently, as explored 
in the next sections.

2.2 Representational Formats

The concept of 'representational format' is well-established 
in  cognitive  science  and  philosophy  (Shepherd,  2018).  It 
refers  to  the  vehicle  through  which  specific  content  is 
represented.  The  same  content  can  be  conveyed  using 
different  formats—for  example,  instructions  to  locate 
treasure can be described using an allocentric (map-based) 
or egocentric (personal viewpoint) format.

We distinguish action taxonomies based on their preferred 
representational  format:  semantic,  perceptual,  or  motor. 
These  tools  help  to  identify  whether  two  taxonomies 
describe  the  same phenomenon,  the  same set  of  actions, 
even if they use different formats or levels of description. 
Taxonomies  at  different  levels  describe  actions  with 
varying  durations  and  representational  formats.  For 
instance, a taxonomy of grasping will necessarily exist at a 
different  descriptive  level  than  a  taxonomy  of  everyday 
observed  actions—they  both  describe  actions  but 
emphasize different aspects.
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Within  these  levels  of  description,  the  representational 
format  concept  allows  for  useful  distinctions  among 
different types of actions. We argue that certain levels of 
description  are  better  suited  to  specific  representational 
formats,  with  common  action  features  emerging  from 
considering  studies  organized  within  our  proposed 
framework.

2.3 Representational Formats and Levels of Description

To illustrate, consider the action "going to the cinema". This 
action can be analyzed at various levels of description:

 At a high-level, this action might be represented 
propositionally, describing the intention and 
planning involved.

 Breaking it down further, sub-actions are linked to 
the overarching goal, with sub-actions recursively 
breaking into smaller components. Ultimately, at the 
lowest level, actions are analyzed purely in terms of 
kinematic features (e.g., the actual body movements 
to get to the cinema). At this level, a motor format is 
most appropriate.

These representational formats are:

1. Sensorimotor  Format:  Represents  precise  bodily 
movements required for action, ensuring accuracy in 
muscle activation. For instance, grasping a specific 
mug  requires  precision  in  muscle  and  joint 
activation (Pouget et al., 2000).
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2. Perceptual  Format:  Involves  categorizing  actions 
based  on  stimulus-dependent  features  (e.g.,  visual 
characteristics or movement).  For example, effector 
recognition and movement  features  are  perceptual 
formats (McDonough et al., 2020).

3. Semantic  Format:  Refers  to  abstract,  modality-
independent representations that describe actions in 
conceptual terms (e.g., transitivity or communicative 
content, e.g., Wurm et al., 2017).

Before delving into taxonomic proposals, it is important to 
recognize  that  streams  of  information  are  not  entirely 
segregated by format.  At  some point,  perceptual,  motor, 
and  semantic  formats  must  interlock  to  facilitate 
comprehensive  action  comprehension  (Burnston,  2017). 
Our  classification  emphasizes  differences  in 
representational  formats,  which  is  useful  for  organizing 
taxonomies and research on action dimensions.

2.4 On the Interface Problem

The  "interface  problem"  (Burnston,  2017)  arises  when 
attempting  to  explain  how  different  representational 
formats  interact  in  the  brain.  High-level  intentions  in  a 
semantic  format  ultimately  lead  to  fine-grained  motor 
actions in a sensorimotor format, but how this happens is 
still  an open question.  How do different representational 
formats  communicate?  Understanding  these  mechanisms 
could  benefit  both  empirical  research  and  theoretical 
developments in cognitive neuroscience.
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The idea of representational formats is just one perspective 
for approaching action phenomena, serving as a conceptual 
tool that does not require prior assumptions. While some 
taxonomies may overlap or fit into multiple categories, we 
argue that simplicity and clarity outweigh accuracy in this 
context.  Modeling,  particularly  in  brain  sciences,  often 
involves drawing artificial boundaries around phenomena 
that are inherently interconnected. Actions do not exist in 
isolation;  they  constantly  interact  with  other  cognitive 
processes, such as emotional responses. However, for the 
purposes  of  organizing  our  understanding  of  actions, 
abstraction is useful.

The  discussion  will  conclude  by  examining  how 
coordinated  investigation  of  empirical  and  theoretical 
approaches could further elucidate the neural correlates at 
each level of action description. We also address the role of 
representational  formats  and  propose  future  steps  for 
developing a more comprehensive and coherent taxonomy 
of actions.

2.5 Map of Taxonomies

To further  clarify  our  framework,  we distinguish among 
sensorimotor, perceptual, and semantic formats in terms of 
the relevant  literature on action dimensions.  This  review 
does  not  explicitly  separate  action  production  from 
observation,  as  these  processes  share  common  cognitive 
and neural bases. The following three sections will present 
taxonomies  that  emphasize  specific  representational 
formats, using examples from the literature (Butterfill, 2014; 
Burnston, 2021; Quandt et al., 2017).
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1. Sensorimotor  Format:  The  format  of  the 
representation  that  ensures  accurate  bodily 
movements.  For example,  grasping requires  motor 
representations that specify how muscles and joints 
should move to achieve a specific outcome.

2. Perceptual  Format:  Involves  categorizing  actions 
based on stimulus-dependent features.  Actions are 
understood in terms of their sensory characteristics, 
often  involving  multiple  sensory  modalities 
(McDonough, 2020).

3. Semantic Format: Represents the conceptual aspects 
of  actions,  often  using  abstract,  propositional 
content.  Examples  of  semantic  dimensions  include 
transitivity,  communicative  content,  and  linguistic 
classifications (e.g., tool use or telicity, see Wurm et 
al., 2017).
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Fig.  2:  Representational  formats  and  their  relationship  to  action 
representation. Action representation can be decomposed into different 
representational  codes that  together try to capture (always partially) 
the process that we call “action understanding”. We summarize these 
codes  as  pertaining  to  different  ways  through  which  the  brain 
manipulates information. We subdivide them in sensory (based on a 
code defined on the basis of the sensory channel), sensorimotor (code 
implied in the transformation needed to execute actions), and semantic 
(abstract  or  linguistic,  possibly  amodal  information  on  action).  The 
three codes are not to be viewed as mutually exclusive in the process of 
“action understanding”.

Ultimately,  a  complete  model  of  actions  would  combine 
models  at  all  levels,  incorporating  all  representational 
formats.  Each  level  contributes  a  distinct  perspective, 
helping to build a rich, multidimensional understanding of 
actions.  This  integrative  perspective  requires  addressing 
the interactions between levels and the interdependencies 
among different formats.

2.5.1 Sensorimotor format

For  over  30  years,  computer  vision  and  robotics  have 
focused on recognizing and classifying actions (Cutkosky, 
1989). Many taxonomies have recently been developed in 
these fields to label and categorize observed actions in the 
most efficient manner. These taxonomies draw inspiration 
from  studies  on  action  representation  in  cognitive 
neuroscience (Feix et al., 2016).
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Robotics  tends  to  focus  on  the  performative  aspect  of 
human  actions,  while  computer  vision  is  primarily 
concerned with how humans recognize actions. Robotics is 
interested in understanding both recognition and execution 
(including  mechanical  effectors  and  conjoint  action), 
whereas  computer  vision  focuses  purely  on  action 
recognition (Saif et al.,  2018; Beddiar et al.,  2020).  Mirror 
neuron  theories  propose  that  sensorimotor  experience 
allows  humans  to  understand  actions  flexibly  and 
adaptively.  By  contrast,  applications  like  autonomous 
driving need a classification based solely on surface cues, 
highlighting the need for purely perceptual analysis.

Actions as Effector-Driven

Another  approach  models  actions  based  on  the  effectors 
involved.  Effectors  are  the  body  parts  used  to  perform 
actions, such as the hand, arm, or foot. Studies show that 
different types of manipulation are limited, but there are 
numerous objects that can be manipulated (Liu, 2015). This 
highlights  a  relationship of  many-to-one between objects 
and types of manipulation, such that the same grasp can be 
used for different objects, and different grasps can be used 
for the same object, depending on the aim of the action.

The  most  recent  attempt  to  organize  this  complexity 
systematically comes from Liu and colleagues (2021) and 
Yang and colleagues (2021), who revised prior efforts and 
provided a new framework. This framework makes explicit 
the  relationship  between  tasks,  subtasks,  and  specific 
movements. It can be extended to other effectors, such as 
the mouth, which can also perform tasks like manipulation 
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(e.g.,  chewing),  reaching  (e.g.,  biting),  or  simple  contact 
(e.g., kissing).

A  detailed  effector-based  account  of  simple  motor  acts 
must account for the relative involvement of multiple body 
parts. To eat, for instance, involves the coordinated action 
of  hands,  mouth,  and  arms.  Thus,  an  action  involving 
multiple effectors can only be fully understood in terms of 
their relative contribution.

Actions During Development

Motor  skills  develop  through  a  combination  of 
environmental  interaction  and  genetic  factors.  Macro-
categories of action that emerge early in development could 
serve as the ontogenetic predecessors for the wide variety 
of adult actions. For example, studies suggest that toddlers 
are  influenced  by  conventional  actions  associated  with 
objects  (e.g.,  "putting  shoes  on")  before  differentiating 
specific object categories (Hagihara, 2020).

Prenatally, infants engage in general movements (GMs)—
movements that involve all body parts and vary in speed, 
amplitude,  and  direction  (Hadders-Algra,  2004).  These 
movements help infants explore the potential combinations 
of movement available to them, which serves as a basis for 
developing motor skills. After birth, primary variability is 
the  process  of  exploring  motor  possibilities,  while 
secondary variability refers to the ability to select effective 
movements in a given context.
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The  early  motor  repertoire  includes  reaching  and 
manipulation  abilities,  postural  control,  and  locomotor 
activities. These foundational movements form the basis of 
adult motor skills, which expand and refine based on tool 
use, cultural influences, and social interactions.

Actions and Lesions

Liepmann's  classic  classification of  apraxia  describes  two 
main  types:  ideomotor  apraxia  and  ideational  apraxia. 
Ideational apraxia involves difficulty in sequencing motor 
acts  for  a  goal,  while  ideomotor  apraxia  prevents  the 
correct execution of actions even though patients possess 
the required motor and sensory abilities (Liepmann, 1908; 
Buxbaum  et  al.,  2018).  These  patients  struggle  with 
imitation and tool use, although they may perform actions 
spontaneously. This highlights the difficulty of translating 
action semantics (propositional format) into an executable 
motor program (motor format).

Anosognosia  for  Hemiplegia  (AHP)  provides  another 
example  of  dissociation  between  motor  awareness  and 
sensory output. In AHP, patients with a paralyzed side of 
the body believe they can move it and report performing 
tasks  involving  both  hands  (Garbarini  et  al.,  2019).  The 
disorder  suggests  that  an  impaired  ability  to  compare 
predicted  sensory  consequences  with  actual  sensory 
feedback  could  underlie  this  condition.  The  premotor 
cortex  (PMC)  appears  crucial  for  monitoring  whether 
intended actions are successfully executed.
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These  cases  illustrate  the  distinction  between  sensory 
awareness of action and its implementation at the motor 
level. However, there is a symbiotic relationship between 
perceptual  and motor formats.  Without a mechanism for 
tracking  action  correctness,  the  concept  of  action  loses 
coherence.

2.5.2 Perceptual Format

Actions as Spatio-Temporal Relations

Ziaeetabar et al. (2021) investigated actions as sequences of 
simple movements, emphasizing spatio-temporal relations 
between  objects  and  limbs.  They  developed  a  matrix 
representation  to  capture  the  likelihood  of  specific 
relationships (e.g.,  touching or  dynamic spatial  relations) 
and classify actions accordingly. Actions were represented 
by  clustering  relations  based  on  similarity.  Although 
limited  to  hand  actions  and  devoid  of  other  cues  like 
context and gaze, this approach uses perceptual features to 
classify actions at a granular level.

Actions as Dynamic Visual Features

In computer vision, human action recognition focuses on 
extracting  information  from  visual  stimuli,  which  may 
differ  significantly  in  low-level  features  (Zhang,  2017). 
Handcrafted features, such as point-light displays or space-
time interest points (Laptev, 2005), were initially employed 
to  model  the  relevant  features  of  actions.  Later,  deep 
learning  approaches  took  over,  applying  supervised, 
unsupervised,  and  hybrid  methods.  The  introduction  of 
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deep learning marked a revolution in action recognition, 
using  temporal  convolution  layers  to  capture  action 
sequences.

2.5.3 Semantic Format

Actions as Conceptual Entities

Recent studies by Wurm and Caramazza (2021) highlighted 
the role of the ventral "what" stream in recognizing actions. 
This  approach  suggests  that  action  recognition  involves 
more  than  just  the  Action  Observation  Network  (AON), 
and  that  conceptual  understanding  plays  a  role  in 
understanding observed actions.

Tarhan and Konkle (2020) took a data-driven approach to 
identify dimensions relevant to action representation in the 
brain. Their research involved clustering voxels based on 
activation patterns when participants observed brief action 
clips. The resulting clusters represented different types of 
actions, emphasizing features such as sociality and effector 
involvement.  These  features  represent  a  high-level 
categorization, in contrast to approaches that focus on low-
level, perceptual components.

Actions as Predictive Dimensions

Thornton and Tamir (2019) sought to map the conceptual 
space of actions by predicting the likelihood of transitions 
between  actions.  Their  model,  built  from  participants' 
ratings  of  similarity  between  action  clips,  successfully 
predicted action transitions  and aligned with  fMRI data, 
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suggesting that conceptual action knowledge is structured 
to  facilitate  prediction.  This  aligns  with  the  predictive 
coding  account,  in  which  conceptual  similarity  helps 
predict subsequent actions more effectively than cues like 
movement kinematics or effector type.

The interplay between motor and semantic systems raises 
questions  about  understanding  different  types  of  action. 
Predicting  subtle  differences  in  action  execution  requires 
motor simulation, while placing an action within a broader 
context  relies  on  semantic  understanding.  This  dual 
approach  suggests  that  the  motor  and  semantic  systems 
serve  different  purposes,  each  contributing  to  action 
understanding in different ways.

Actions as Linguistic Concepts

Vendler (1957) introduced a taxonomy of verbs based on 
their  aspectual  qualities:  activities,  accomplishments, 
achievements,  and  states.  These  categories  help  clarify 
distinctions in verb types and have influenced subsequent 
linguistic  taxonomies  (Smith,  1997).  However,  language 
may  not  always  align  with  the  brain's  representation  of 
actions. Language provides a framework that may partially 
shape action categories,  but  it  is  ultimately  just  one tool 
among many (Mazzuca et al., 2018).

2.5.4 Integrating the Levels: The Interface Problem

The  "interface  problem"  refers  to  the  challenge  of 
understanding how a high-level, propositionally structured 
intention (e.g., "I want to grasp this mug") results in specific 
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motor  actions.  This  problem  deals  with  how  different 
representational  formats  communicate.  How  does  an 
abstract intention propagate to the motor system, directing 
precise movement sequences? Although empirical evidence 
shows  that  such  communication  exists,  we  do  not  fully 
understand the mechanisms.

Recent  studies  have  investigated  how  different 
representational formats interact in the brain. For example, 
Urgen  (2019)  described  the  selectivity  of  different  brain 
regions  toward  various  representational  formats. 
Baldassano et  al.  (2017)  proposed that  different  temporal 
receptive  windows  might  underlie  action  processing, 
similar  to  how language understanding involves varying 
levels of temporal integration.

One potential approach is to identify regions of the brain 
whose representational format changes significantly during 
processing. For example, studies have shown that certain 
brain  regions  (e.g.,  areas  near  the  visual  cortex)  are 
sensitive to both visual and language representations of the 
same concept  (Popham et  al.,  2021).  These regions could 
help  us  understand  the  mechanisms  of  representational 
format change and interaction.

Further  investigation  of  the  structural  and  functional 
connectivity of these regions, even combined with targeted 
interventions (e.g.,  TMS or tDCS),  could provide insights 
into  how  different  formats  integrate  during  action 
representation.  Studying these  interactions  could help us 
develop a more comprehensive understanding of how the 
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brain  achieves  the  complex  task  of  translating  abstract 
intentions into concrete motor behaviors.

2.6 Conclusion
It  is  possible  to  advance  the  suggestion  that 
neuroanatomically  distinct  taxonomic  (similarity-based) 
and  thematic  (event-based)  action-related  systems  exist. 
This  is  a  diverse  way  to  frame  the  same  thing,  the 
coexistence  of  two levels  in  the  literature  and the  brain, 
action as a concept and action as a concrete exemplar both 
in  production  and  in  observation.  A  similar  semantic 
system exists  for  objects  and actions in the left  posterior 
temporal lobe (Kalenine et al., 2016).
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CHAPTER 3

3. Introduction

Classifications  have  long  been  fundamental  to  scientific 
inquiry,  offering  an  orderly  framework  that  enhances 
understanding  and exploration  of  complex  concepts  and 
phenomena. Taxonomies, in particular, enable researchers 
to  establish  systematic  relationships  between  diverse 
objects  and processes,  revealing both existing knowledge 
and potential  gaps  that  warrant  further  exploration.  The 
biological sciences have successfully employed taxonomies 
to categorize life, establish evolutionary relationships, and 
create a structure that enhances the interpretability of new 
findings. In a similar vein, a taxonomic approach within the 
action domain—focusing on human actions,  motor skills, 
and cognitive mechanisms—offers the potential to advance 
scientific understanding and practical applications across a 
range  of  disciplines,  including  neuroscience,  robotics, 
computer vision, and even social cognition.

The human nervous system, fundamentally structured to 
generate actions, operates under the imperative of survival 
and adaptation to natural environments (Catmur & Heyes, 
2019). Given this imperative, actions play a pivotal role in 
the  architecture  of  the  nervous  system,  a  principle 
observable  even  from  childhood  as  infants  learn  to  link 
actions with object nouns (Hagihara et al., 2020). However, 
despite the foundational significance of actions, no general, 
agreed-upon action taxonomy currently exists, and efforts 
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toward  systematic  classification  have  been  fragmented 
across  distinct  disciplines.  The  current  approaches  to 
categorizing  actions—such  as  the  classifications  used  in 
robotics for manipulation tasks (Cutkosky, 1989)—remain 
domain-specific  and  are  often  limited  by  their  targeted 
applications.  A  comprehensive  taxonomy,  incorporating 
insights from these various fields,  could enable a holistic 
approach  to  action  research  by  bridging  gaps  and 
promoting  collaboration  across  disciplines  like  cognitive 
neuroscience,  psychology,  computer  vision,  and 
philosophy.

A coherent action taxonomy has several potential benefits. 
First  and  foremost,  it  provides  a  shared  framework, 
allowing different research fields to understand and build 
upon one another's progress by providing a comprehensive 
picture  of  the  current  state  of  knowledge.  Classifications 
generally  accelerate  research  by  highlighting  gaps  and 
areas that need exploration, thereby foreshadowing future 
research directions (Vegas et al., 2009). We believe that an 
action taxonomy, in particular,  is  crucial  to evaluate and 
interpret new and existing contributions from a panoramic 
point of view.

The  biological  sciences  have  been  a  rich  source  of 
inspiration for constructing taxonomies, and their methods 
may  be  similarly  applied  to  human  actions.  Biological 
systematics, which flourished since Linnaeus, offers a well-
established  model  for  organizing  diversity  and  creating 
hierarchical  systems  that  relate  similar  entities  in 
meaningful  ways  (Mayr,  1969;  Cracraft,  1978;  Cracraft  & 
Donoghue,  2004).  Drawing  parallels  between  action 
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research  and  biological  taxonomy  could  help  to  solve 
common  challenges  and  foster  novel  approaches.  For 
instance,  analogies  between  species  and  actions  could 
illuminate the relationships between various action types—
considering  them  as  analogous  to  different  "species"  of 
action  with  shared  features  and  notable  differences. 
Moreover,  the  fundamental  issues  faced  in  taxonomy 
construction in biology, such as the role of granularity, the 
level  of  abstraction,  and hierarchical  relationships,  could 
similarly benefit the construction of an action taxonomy.

In  this  chapter,  we  propose  to  explore  how  taxonomic 
approaches inspired by biological classification systems can 
be  adapted  to  enhance  the  field  of  human  actions. 
Specifically,  we  summarize  how  a  taxonomic  approach 
could contribute to action research in three key ways:

1. Structure:  A  taxonomy  provides  a  formal  and 
precise  language  for  describing  actions  and  their 
components within a defined relationship structure.

2. Theory:  It  offers  the  basis  for  a  quasi-axiomatic 
framework,  sometimes  referred  to  as  "taxonomic 
theory"  (Pavlinov,  2020),  which  determines  the 
attributes  relevant  for  creating  taxonomies.  This 
opens a discussion on which set of attributes—here 
termed "taxonomic attributes" (TAs)—are of utmost 
importance.

3. Clarity: Taxonomies, being theory-laden, clarify the 
theoretical foundation underlying the classification, 
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helping  researchers  understand  which  aspects  of 
action are emphasized.

In  this  context,  we  would  like  to  clarify  what  an  action 
taxonomy is not supposed to be: a) A taxonomy is not a 
theory in itself: While taxonomies provide a classification, 
they do not inherently offer an explanation.  Theories are 
required  to  explain  why  specific  relationships  or 
similarities exist, thus giving meaning to the taxonomy. b) 
Taxonomic  Attributes  (TAs)  depend  on  the  underlying 
theory: The attributes used to create a taxonomy are theory-
dependent and reflect particular perspectives or theoretical 
commitments. Classifications are never entirely transparent
—they always entail theoretical assumptions. While theory 
may  be  embedded  in  the  resulting  classification,  the 
classification process can attempt to remain objective.

No taxonomy can substitute for a theory on, for instance, 
the  generation  of  specific  actions  at  the  brain  level. 
However, a robust, well-conceived taxonomy could draw 
from  the  extensive  data  collected  in  the  field  of  action 
research  and,  in  doing  so,  propose  new  hypotheses  or 
avenues of inquiry. Organizing information in an orderly 
way  is  never  futile;  it  opens  new  combinations  and 
highlights patterns that might otherwise be overlooked.

To  further  contextualize  these  ideas,  we  examine  the 
biological  systematic  concepts  that  are  translatable  to  a 
neurobiologically  inspired  taxonomy  of  actions.  We  also 
consider  whether  common  challenges  in  the  field  of 
biological systematics have been confronted or solved, and 
how these lessons could inform action taxonomy.
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This exploration will be guided by the following questions:

1. What are the aims and purposes of a taxonomy, and 
why is it useful in the context of actions?

2. What  lessons  from  biological  taxonomies  can  be 
translated to a neurobiologically informed taxonomy 
of actions?

3. Are there similar issues encountered in both action 
research and biological  systematics that  have been 
addressed in the biological domain?

By  addressing  these  questions,  this  chapter  aims  to 
establish a foundation for a systematic taxonomy of human 
actions, borrowing concepts and methods from biological 
systematics to advance interdisciplinary understanding. A 
comprehensive  action  taxonomy is  not  only  theoretically 
important but also highly practical, as it holds the potential 
to  unify  research,  promote  collaboration,  and  enhance 
applications  in  fields  like  robotics,  neuroscience,  and 
computer vision (Giese & Rizzolatti, 2015). Thus, through 
the exploration of biological analogies, we hope to lay the 
groundwork for an organized and collaborative approach 
to the science of human actions.

3.1 Aims and Purposes of Taxonomy

Taxonomic practice is grounded in the understanding that 
classification  predicates  are  inherently  theory-laden.  All 
classifications  are  influenced  by  the  theoretical  context 
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within  which  it  is  conceived  and  ultimately  developed 
(Scott-Ram, 1990).

We can distinguish between two primary attitudes toward 
taxonomic  practice:  descriptive  and  theoretical,  as 
discussed  in  the  philosophy  of  biology  literature  (Scott-
Ram, 1990).  According to  this  view,  classification can be 
either  theoretical  or  descriptive.  However,  in  both 
approaches,  the  goal  is  to  encapsulate  the  maximum 
available  information  in  a  taxonomy—essentially,  "the 
more characters, the better."

In  the  descriptive  approach,  the  primary  goal  is  to 
minimize theoretical bias as much as possible. The idea is 
to  exclude  explanatory  elements  from  classifications, 
resulting in a catalog or database in which new data are 
structured  naturally,  without  metaphysical  assumptions. 
This  approach  produces  a  convenient  repository  of  all 
actions, organized with their respective features. By doing 
so, descriptive taxonomies focus on being as objective and 
theory-independent as possible.

Conversely, in the theoretical approach, the primary goal is 
to  construct  a  classification  system  that  carries  as  much 
theoretical  information as possible.  Here,  the question is: 
how  much  theory  can  be  embedded  into  the  taxonomy 
itself? Ideally, the taxonomy should reflect an established 
theory, ensuring that newly discovered data are consistent 
with the framework provided by the theory. This approach 
emphasizes  the  interpretative  richness  that  theories  can 
contribute to taxonomic structures.
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Importantly,  both  taxonomic  perspectives  agree  that 
classifications must be informative—the relationships they 
entail among entities should provide meaningful insights. 
Furthermore,  taxonomies  should  be  accessible  to 
practitioners. If a taxonomy is overly complex and difficult 
to use, it loses its utility. An implicit aim of any taxonomy 
is, therefore, to create "organized knowledge" that is easy to 
navigate and apply.

These two taxonomic approaches yield different outcomes 
and serve distinct purposes. Despite their differences, we 
can still derive some common principles (Vegas et al., 2009) 
that both approaches share:

1.  Providing a Set  of  Unifying Constructs:  Classifications 
serve as a common language that facilitates communication 
among  researchers.  For  instance,  the  Linnaean 
nomenclature  in  biology remains widely used because it 
provides a shared reference system for communication and 
exchange of knowledge.

2. Identifying Interrelationships: Taxonomies help identify 
connections between entities. Mendeleyev's periodic table, 
for example, had a profound impact on our understanding 
of the atomic structure by illustrating relationships between 
different elements. Conversely, when little is known about 
a particular subject, such as certain types of bacteria, their 
classification becomes challenging.

3.  Identifying  Knowledge  Gaps:  Taxonomies  can  also 
highlight  knowledge  gaps.  For  example,  gaps  in  the 
periodic table led to the search for new elements, and in 
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some cases, elements were even predicted before they were 
discovered.

3.2  Key  Ideas  of  Taxonomic  Practice  from  Biological 
Systematics

The defining feature of taxonomies lies in the relationships 
they  establish  among  entities,  such  as  species  or  action 
categories (Godfray, 2002). The capacity of a taxonomy to 
encode  and  inscribe  these  relationships—using 
nomenclature, hierarchical categories, and group formation
—defines  its  effectiveness.  The  question  is:  which 
characteristics  provide  the  most  fundamental 
understanding  of  the  relationships  between  different 
entities? For instance, which features are most informative 
in distinguishing between a cat and a dog?

A  core  aspect  of  taxonomies  is  their  relational  nature. 
Taxonomic  categories  are  defined  relationally,  meaning 
that they depend on the relationships with all other entities 
within the classification. This is similar to the idea that "a 
species is what it is in relation to all other species." Without 
context, an entity's definition lacks meaning. For example, 
consider the statement: "Lorenzo is shorter than Luca but 
heavier  than  Emiliano."  Without  any  absolute 
measurements, these descriptions rely on the relationships 
between the individuals, yet they remain informative and 
sufficient to distinguish among them.

Taxonomic  attributes  (TAs)  are  used  to  describe  these 
characteristics.  TAs  that  connect  different  living  forms 
serve to group species and are influenced by underlying 
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theories.  For  instance,  phenetics  groups organisms based 
purely  on  their  overall  similarity  (Mayr,  1969). 
Evolutionary  cladistics  (Cassis  et  al.,  2010)  and 
phylogenetic systematics (Lieberman, 2011) use homologies 
to infer ancestral lineages and establish relationships based 
on evolutionary history.

By understanding the relational and theory-laden nature of 
taxonomies, we can appreciate their importance in scientific 
inquiry  and  the  organization  of  knowledge.  A  robust 
taxonomy in the field of human action research, inspired by 
biological principles, could significantly contribute to our 
understanding of actions and their neural bases, providing 
an  organized  framework  that  enhances  interdisciplinary 
communication and collaboration.

3.3 On the Demarcation of Species

Since  the  1960s,  biological  taxonomists  have  recognized 
that  the  classical  use  of  categories  is  inadequate  for 
biological  taxonomy,  particularly  for  the  demarcation  of 
species  (Farris,  1967;  Ereshefsky,  2007).  According  to 
classical logic (Jansen, 2007), for an object A to be part of a 
class  B,  it  must  possess  a  precise  set  of  features  that  all 
entities in that class have. However, this approach is not 
suitable for defining biological categories such as Reptilia, 
Mammalia,  and  Teleostei  (Farris,  1967).  There  are  no 
definitive  sets  of  diagnostic  criteria  that  can  uniquely 
demarcate a single species. Even at the species level, it is 
impossible to establish principles that uniquely identify a 
species,  as  new  instances  are  continually  discovered, 
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requiring  an  enlargement  or  accommodation  of  the 
category.

As  a  result,  the  concept  of  a  "species"  is,  in  principle, 
considered  a  spatio-temporal  entity—a  real,  dynamic 
category  (Richards,  2010;  Wilkins,  2014).  In  practice, 
taxonomists  must  rely  on  examining  the  totality  of 
specimens belonging to a species. Moreover, the ongoing 
debate on biological essentialism (Devitt, 2008) shows that 
while demarcation is sometimes convenient, in some taxa 
there is less variability between species compared to others.

One  way  to  address  this  problem  is  to  avoid  using 
Aristotelian logic  for  species  classification.  The notion of 
monotypic  and  polytypic  concepts  (Beckner,  1959)  is 
derived from Wittgenstein's idea of "family resemblances" 
(Wittgenstein, 1953). In this context, members of a class do 
not need to possess all of the features shared by the group 
as  a  whole.  A  polytypic  concept  functions  like  family 
resemblances:  each  group member  shares  most—but  not 
necessarily all—of the taxonomic attributes (TAs) present 
in  the  group.  Consequently,  the  boundaries  between 
species  are  fluid  because  the  concept  of  species  itself  is 
inherently fluid.

Another approach to overcoming the demarcation problem 
is to apply fuzzy logic to species classification. Fuzzy logic 
is a recent and influential branch of logic that has proven 
useful for studying within-species variations and provides 
a more biologically rooted definition of species boundaries 
(Xu,  2011;  Pappas,  2006).  Unlike  classical  binary  logic, 
fuzzy logic allows for degrees of truth between zero and 
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one. For instance, consider the statement, "A is an adult." If 
"A"  is  an  infant,  the  truth  value  may  be  close  to  0.1, 
whereas for an 18-year-old, it could be 0.6, and for a 35-
year-old, the value may approach 1. Belonging to a specific 
class,  therefore,  becomes a matter  of  degrees,  which is  a 
more biologically plausible conclusion. Fuzzy logic is also 
useful for defining when a new species emerges, allowing 
for a graded transition rather than a sudden shift from one 
species to another.

3.4 On the Ontological Basis of Biological Taxonomy

The ontological question in biological taxonomy concerns 
the  basic  unit  of  the  taxonomy:  "What  constitutes  the 
fundamental unit of analysis?" In biological systematics, the 
species  level  is  often  considered  the  primary  unit  of 
classification. However, this is not as straightforward as it 
may  appear.  There  is  still  uncertainty  regarding  what 
makes an individual  member of  a species belong to that 
group. Devitt (2008) argues that the philosophy of biology 
often confuses the question of species demarcation with the 
question of what makes an individual dog a member of the 
species Canis familiaris. Some features must be considered 
essential,  albeit  with  a  degree  of  fuzziness,  for  an 
individual to belong to a given species.

Moreover,  the starting point for constructing a biological 
taxonomy may not be the species themselves but rather the 
individual specimens. In biosystematics, geographic races 
may  be  more  fundamental  taxonomic  units  than  species 
(Pavlinov,  2020;  Mayr,  1965).  Even geographical  races  or 
populations  are  abstractions,  although  less  so  than  the 
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concept of a "Linnaean species," as they are closer to the 
individuals that comprise a given species.

From this perspective, taxonomy construction can be seen 
as  a  bottom-up  process,  beginning  with  individual 
organisms  and  progressing  to  the  taxonomic  units  we 
recognize today. However, categories and relationships are 
frequently established top-down. Categories and groupings 
are often postulated to order taxa or are based on intuitive 
understandings,  such  as  the  differentiation  between 
Animalia  and  Vegetalia—a  distinction  that  remains 
common in biological discussions, even though the number 
of biological kingdoms is still debated.

In conclusion, it  is  crucial to establish a clear ontological 
basis for taxonomic analysis. This ensures that taxonomies 
can  be  evaluated  using  consistent  and  comparable 
parameters. Although this level of decision-making might 
appear  simple,  it  has  profound  implications.  It  cascades 
through  the  classification,  influencing  the  relationships 
within  the  taxonomy  and  determining  the  level  of 
granularity  in  the  final  classification.  Therefore, 
determining  the  ontological  level  of  a  taxonomy 
fundamentally  determines  the  objects  that  the  taxonomy 
will  classify,  as  well  as  the  extent  to  which  biological 
"reality" is included in the classification process to achieve 
the desired objectives.

3.4.1 On the Levels at Which Natural Selection Operates

Evolutionary thought is a prevalent concept in biology, and 
understanding the scale at which evolutionary mechanisms 

49



function  is  crucial  for  systematics.  There  is  ongoing 
discussion regarding which level of biological organization 
natural  selection  primarily  acts  upon:  the  micro-scale 
(genes, molecules, individual organisms) or the macro-scale 
(populations, species, groups). The evidence suggests that 
evolution acts at multiple levels, involving both micro and 
macro processes (Okasha, 2002; Okasha, 2006).

It  is,  therefore, not sufficient to say that evolution selects 
only the genotype or phenotype. Rather, both the genotype 
and  phenotype  are  influenced  by  selection,  alongside 
population-level  selection.  These  various  levels, 
hierarchically organized from the micro to the macro, may 
all function as vectors of selection in a coordinated manner. 
This  suggests  interactions  between  lower-level  biological 
units,  such  as  molecules  or  genes,  and  higher-level 
constructs, such as entire populations, each influencing the 
evolutionary trajectory of the other.

The idea of biological complexity has been discussed in the 
literature  in  terms  of  contextuality  and radical  openness 
(Chu,  2011;  Fomin  et  al.,  2021).  Contextuality  involves 
recognizing that a model of a biological system inevitably 
leaves out some aspects of the system, as it is impossible to 
capture all factors simultaneously. Radical openness refers 
to  the  fact  that  there  are  no  closed,  natural  systems;  a 
modeler must artificially draw boundaries and categories 
to make a system comprehensible. In this way, biology—
particularly  evolutionary  biology—requires  an 
understanding  of  the  limitations  inherent  in  any 
classification  scheme  and  the  influences  that  operate  at 
multiple levels.
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3.5 Taxonomic Monism or Pluralism

The  discussion  regarding  whether  taxonomic  research 
should aim for a single unified classification (monism) or 
accept the existence of multiple taxonomies (pluralism) has 
been ongoing for years. This debate arises partly because 
biological  systematics  has  no  singular  classification 
framework,  and  many  taxonomists  argue  that  different 
taxonomies may reflect distinct perspectives on biological 
diversity (Pavlinov, 2020). Thus, a macro-taxonomy might 
be a long-term goal for the field, one that could help bridge 
the gap between disparate approaches.

A macro-taxonomy can be considered a general theory that 
encompasses  and  explains  particular  taxonomies, 
elucidating overlaps and differences among them. Such a 
framework  could  be  instrumental  in  reducing 
inconsistencies  between  taxonomies  and  organizing 
systematic work more effectively. It would not only show 
the  relationships  between  different  taxonomies  but  also 
provide  insights  into  how these  taxonomies  complement 
each other and in what ways they diverge.

Currently,  biological  systematics  is  dominated  by  the 
phylogenetic  approach,  which  is  focused  on  the 
evolutionary  relationships  between  species.  Alongside 
phylogenetics,  there  are  other  classification  methods, 
including  phenetics,  numerical  taxonomy,  typological 
taxonomy,  and  biosystematics.  These  approaches  have 
different emphases and methodologies, and they continue 
to influence the phylogenetic program in various ways. For 
example, the notion of a prototypical developmental plan, 
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which  originated  in  typology,  has  influenced  modern 
phylogenetics.

3.5.1  On  the  Relationship  Between  Description  and 
Theory

With  the  exception  of  purely  descriptive  classification 
methods  that  avoid  theoretical  explanations,  most 
taxonomies  incorporate  theory  into  their  formation.  In 
evolutionary  systematics,  data—primarily  morphological 
and genetic—are compared, and the theory (of evolution) 
provides a set of principles that explain the similarities and 
differences  observed  in  the  comparative  analysis.  This 
theoretical  grounding  allows  taxonomists  to  infer  a 
hierarchical organization of the taxa being studied.

For instance, evolutionary theory may infer that the species 
shared a common ancestor if  two species share the same 
Bauplan  (i.e.,  the  structural  body  plan  of  a  taxon  that 
distinguishes a particular group of organisms). The concept 
of  Bauplan  refers  to  the  specific  structural  layout  of  a 
taxonomic group, such as the distinctive characteristics of 
feline  species,  which  are  shared  by  all  members  of  that 
group.  Without  an  articulated  theory,  establishing 
boundaries or even defining the components of taxonomies 
would not be straightforward (Feest, 2010).

Phylogenetic  trees  and  other  classifications  can  thus  be 
viewed  as  "best  guesses"  regarding  the  evolutionary 
relationships  among  a  group  of  organisms.  These 
representations  are  inherently  provisional  and  subject  to 
change  with  the  discovery  of  new  species  and  data. 
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Research  studies  often  use  different  sets  of  comparative 
data  or  alternative  methodologies,  which  can  lead  to 
divergent  phylogenetic  trees  or  hypotheses  about 
relationships among species (Delsuc et al., 2005; Sanderson 
et al., 2003a; Sanderson et al., 2003b).

Theories  underlying  classification  also  shape  how 
relationships  between  species  are  represented.  This 
relationship  is  visually  encoded  in  structures  such  as 
phylogenetic  diagrams.  For  instance,  evolutionary 
cladistics  interprets  a  branching  pattern  where  a  new 
species "buds off" from an old one, yet retains the name of 
the  original  species.  Although the  species  itself  may not 
change,  the  branching  implies  the  emergence  of  a  new 
lineage. This kind of theoretical framework can also create 
differences  in  interpretation:  for  example,  between 
phenetics,  which  emphasizes  overall  similarity,  and 
evolutionary cladistics,  which focuses on shared ancestry 
and homologies.

In  summary,  the  structure  and  representation  of 
relationships between taxa are strongly influenced by the 
underlying  theory.  The  choice  of  a  specific  taxonomic 
approach will inevitably impact how relationships among 
species are visualized and understood, and the integration 
of both descriptive and theoretical elements is necessary to 
achieve a meaningful classification.

3.6 The Role of Theory in Taxonomy

While some approaches to taxonomy attempt to minimize 
the  influence  of  theoretical  frameworks,  it  is  ultimately 
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impossible to fully separate theory from the categorization 
process. In biology, the phenetics school of taxonomy has 
faced  criticisms  for  being  a  mere  statistical  analysis  of 
comparative  data,  contributing  little  beyond  accelerating 
and automating comparative analyses (Blackwelder, 1967). 
Weighing  taxonomic  characters  and  determining  their 
placement in a hierarchy require theoretical understanding 
and  human  interpretation.  Additionally,  mathematical 
approaches  often  do  not  yield  unique  solutions  to 
optimization  problems.  D'Arcy  Thompson's  work 
demonstrates  this:  related  species'  morphological 
differences  can  be  represented  through  various 
mathematical transformations without providing a unique 
representation  of  their  evolutionary  transformations 
(Thompson, 1917; Arthur, 2006 ).

Ultimately, a description devoid of theory is not useful. To 
accurately  represent  biological  systems  and  construct  a 
"tree of life" that shows evolutionary relationships between 
species,  biologically  sound  theories  with  meaningful 
assumptions are required.

3.7 Applying Biological Taxonomic Principles to Actions

Can actions be categorized in a similar way as biological 
organisms? Do they exhibit taxonomic attributes that allow 
researchers  to  distinguish  and  organize  them?  Multiple 
attributes  have  been  highlighted  in  the  literature  to 
distinguish different types of actions.  However,  for these 
distinctions to be meaningful, they must be groupable and 
hierarchical—otherwise,  they  would  simply  result  in 
clusters of actions without any structured relationships.
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Widely  shared  in  biological  systematics,  the  concept  of 
taxonomic attributes (TAAs) can be adopted in the action 
domain. To reach an agreement on a taxonomy of actions, it 
is  essential  to  establish  a  common  agenda  to  direct 
research, such as studying brain topography to understand 
the  representations  of  various  actions.  Alternatively,  a 
taxonomy  could  be  constructed  by  systematically 
comparing available metrics for action classification, using 
approaches  similar  to  the  phenetic  program  in  biology, 
which relies heavily on mathematics (Mayr, 1969).

Two critical distinctions need to be emphasized. First, the 
appropriate  level  of  granularity  for  tracking  TAAs  is  a 
subjective  choice,  highly  dependent  on  the  goals  of  the 
research  discipline  involved  in  classification.  This  work 
remains agnostic about the level of detail, as we believe the 
decision  should  be  driven  by  the  specific  research 
objectives.  Second,  we  view  systematic  biology  as  a 
heuristic tool—a means of advancing the understanding of 
homologies among actions and testing their relationships 
across different types of characters.

We  argue  that,  although  a  comprehensive  taxonomy  of 
actions is still some distance away, the attempt to build one 
is the best way to advance research coherently in this field.

3.7.1 On the Demarcation of Actions

In  biological  systematics,  demarcation  is  an  ongoing 
challenge (as discussed in first chapter). A similar problem 
exists  in  categorizing  actions.  Actions  are  often  context-
dependent  and  exhibit  considerable  variability,  which 
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makes defining clear boundaries difficult. Therefore, using 
flexible  approaches—such  as  fuzzy  logic,  which  allows 
membership  in  categories  to  be  treated  as  a  matter  of 
degrees  rather  than  a  binary  decision—could  prove 
beneficial for categorizing actions.

3.8 Ontological Basis of an Action Taxonomy

In building an action taxonomy, a fundamental decision is 
identifying the appropriate first level of categorization. In 
biological  taxonomy,  this  is  often  the  species  level.  For 
actions,  a  similar  approach  might  involve  adopting 
distinctions present in natural language, which provide a 
starting  point  for  categorizing  actions.  However,  simply 
accepting  linguistic  distinctions  assumes  that  language 
accurately reflects the full range of action diversity. Instead, 
it might be preferable to use language-based distinctions as 
a  foundation  while  refining  or  creating  new distinctions 
where existing terminology falls short.

In the study of brain activation associated with actions, the 
focus is often on isolated laboratory tasks, which may not 
fully capture the complexity of actions in the real world. 
The  same  neural  mechanisms  may  be  involved  in 
performing diverse actions (e.g., gripping a ball vs. running 
a marathon), but each action has a unique set of challenges 
related to planning and execution.  Questions arise  about 
the nature of action representation in the brain: Is there a 
unique "fingerprint"  for  each action? How much overlap 
exists  between  different  actions?  And  how  can  brain 
measures  such  as  EEG,  fMRI,  ECOG,  or  MEG  help  to 
elucidate these distinctions? Furthermore, what behavioral 
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referents can be used to compare these neural responses—
such as observed or performed actions (Majdandzic et al., 
2007; Niki et al., 2019)?

Just  as  evolutionary  biology  considers  multiple  levels  of 
natural  selection,  actions  can  also  be  understood  at 
multiple levels. These levels might range from basic motor 
units responsible for simple movements to complex, goal-
directed activities involving extensive coordination across 
body systems. Understanding these levels is important for 
building a  comprehensive  taxonomy that  integrates  both 
micro-level processes and macro-level coordination.

3.9 Taxonomic Monism or Pluralism in Actions

Since  a  taxonomy  is  ultimately  a  tool  for  organizing 
information,  why  should  we  aim  for  a  single,  unified 
taxonomy  of  actions?  A  more  modest,  yet  potentially 
useful,  proposal  is  to  develop  distinct  taxonomies  for 
different research areas within the broader field of action 
studies.  For  example,  a  taxonomy  specific  to  action 
perception might include attributes that encode the identity 
of  actions  observed.  By  pre-structuring  hierarchical 
relationships  among  these  attributes,  researchers  can 
generate hypotheses and test them empirically. Continuous 
refinement  of  these  hypotheses  could  eventually  yield  a 
robust taxonomy of action perception.

3.10  Biological  Taxonomic  Principles  and  the  Action 
Domain
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Can actions exhibit taxonomic attributes that allow for their 
meaningful  classification? For  a  taxonomy to be  valid,  it 
must  be  both  hierarchical  and  groupable,  establishing 
relationships  that  offer  more  than  mere  clustering  of 
categories. Attributes such as tool-mediated actions versus 
non-tool-mediated actions might be nested within broader 
categories,  like  transitive  actions  (i.e.,  actions  involving 
objects).

The  development  of  an  action  taxonomy  necessitates  an 
agreement  on  the  central  tenets—those  attributes  most 
influential  in  understanding  actions.  To  reach  such  a 
consensus,  researchers  might  need  to  establish  a  shared 
agenda, such as understanding the neural representation of 
different  types  of  actions,  or  adopting  more  numerically 
driven  approaches  similar  to  those  used  in  biological 
phenetics (Mayr, 1969).

Although a fully developed taxonomy of actions may be 
distant, pursuing one is the most coherent way to advance 
knowledge in this area. By applying biological taxonomy 
principles  to  the  action  domain,  researchers  can  make 
significant strides toward understanding how actions can 
be organized, classified, and systematically studied.

3.11 Organizing Taxonomic Attributes of Action (TAA): A 
Tentative Proposal

In  this  section,  we  present  a  classification  and  detailed 
description  of  the  main  Taxonomic  Attributes  of  Action 
(TAA) as defined by the current literature. The purpose of 
organizing  these  attributes  is  to  build  a  systematic  and 
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hierarchical understanding of actions. We will first group 
TAAs  into  major  action  domains,  providing  a  structural 
framework  to  observe  interrelationships  among  these 
attributes.  At  the  end  of  this  chapter,  we  propose  a 
tentative taxonomy of actions using TAAs, drawing from 
biological classification frameworks as an inspiration.

The  major  action  domains  proposed  in  this  taxonomy 
represent  a  mix  of  different  theoretical  approaches  and 
have  an  intuitive  coherence  analogous  to  the  biological 
concept  of  regna.  These  domains  aim  to  capture  the 
complexity  of  actions  and organize  TAAs in  a  way that 
highlights  their  relevance  across  different  levels  and 
perspectives.

Major Action Domains

1. Behavioral  Action  Domain
This  domain focuses  on the mechanical  aspects  of 
actions,  including  low-level  features  and  practical 
applications, such as robotics and computer vision. 
Behavioral  attributes  are  concerned  with  the 
physical  execution  and  real-life  application  of 
actions, encompassing performance and recognition 
components.
Robotics  and  computer  vision,  for  instance,  often 
emphasize  the  analysis  of  human  movement  and 
mechanics to enhance automated action recognition 
and  performance.  The  objective  is  to  label  and 
categorize  observed  actions  effectively  and 
efficiently,  often  for  practical  purposes  such  as 
human-robot  interaction  and  machine  learning  in 
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computer vision. A variety of taxonomies have been 
proposed to classify actions based on their low-level 
features, including grasp types, manipulation types, 
and tool-mediated versus non-tool-mediated actions 
(Nakawala et al., 2018; Zech et al., 2018; Feix et al., 
2016;  Cutkosky,  1989).
In neuroscience, this domain is related to the neural 
processes  responsible  for  enabling  rapid  and 
automatic  responses  to  observed  actions.  For 
example, the mirror neuron system (Caggiano et al., 
2012) plays a significant role in action recognition by 
mapping  observed  actions  onto  the  same  neural 
circuits  that  would be activated if  the action were 
performed by the observer. These mechanisms have 
also  been  framed  within  the  predictive  coding 
framework (Amoruso & Urgesi, 2018; Cerliani et al., 
2022),  where  the  brain’s  ability  to  predict  and 
simulate  observed  actions  contributes  to  more 
efficient interaction and recognition of joint actions 
(Della Gatta et al., 2017; Zunino et al., 2020).

2. Linguistic  Domain
This domain explores the language-like structure of 
actions  and  focuses  on  understanding  both  action 
performance  and  action  observation  at  a  syntactic 
and semantic level. This includes research into how 
actions  are  perceived  in  terms  of  their  intuitive 
similarities  and dissimilarities  and the  hierarchical 
structures  they  can  form.
Linguistic attributes of action encompass syntax and 
semantics, which are essential for a comprehensive 
understanding of actions. The syntactic aspect refers 
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to  how  basic  units  of  action  (similar  to  linguistic 
words) are combined and concatenated to produce 
complex actions (analogous to sentences) (Martins et 
al.,  2019;  Ziaeetabar  et  al.,  2021;  Worgotter  et  al., 
2020).  The  semantic  aspect  of  actions  involves 
understanding  the  meaning  and  relationships 
between  different  actions,  as  captured  in  intuitive 
similarity  ratings  (Tarhan  &  Konkle,  2020)  and 
studies  on  action  concatenation  to  achieve  distal 
goals (Braukmann et al.,  2017; Thomas et al.,  2018; 
Majdandzic  et  al.,  2007).  These  dimensions  also 
apply  to  how multiple  actions  are  sequenced  and 
coordinated  to  achieve  more  complex  outcomes, 
effectively forming an action "grammar."

3. Brain-Based  Action  Domain
The  brain-based  domain  aims  to  understand  how 
actions  are  represented  in  neural  terms.  This 
involves  capturing  actions  through  their  neural 
signatures,  as  measured  by  brain  imaging 
methodologies  like  EEG,  fMRI,  MEG,  and 
electrophysiology.  The  main  focus  is  to  integrate 
data  from  different  modalities  to  build  a  unified, 
brain-based  taxonomy  of  actions.
The neural basis of actions is often investigated in 
terms  of  how  different  brain  regions  represent 
similar  or  distinct  actions.  The  temporal  receptive 
windows  (TRWs)  theory  (Baldassano  et  al.,  2021) 
suggests  that  different  brain  areas  are  tuned  to 
different  timescales,  thus  creating  a  hierarchy  of 
action  understanding  from  simple,  fine-grained 
actions  to  more  abstract  goals.  Research  using 
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methods such as representational similarity analysis 
has  shown  that  different  types  of  actions  are 
represented  in  overlapping  but  distinct  neural 
regions (Thornton & Tamir, 2020; Tarhan et al., 2021; 
Wurm et al.,  2017).  Further integration of different 
neural  frameworks  -  such  as  predictive  coding 
(Badcock et al., 2019) and the common coding theory 
(Hommel  et  al.,  2001)  -  may  provide  a  better 
understanding  of  the  neural  implementation  of 
actions.

Algorithmic and Temporal Considerations in Action Taxonomies

Actions  are  inherently  algorithmic,  often  involving  a 
sequence  of  steps  to  achieve  a  goal.  This  reliance  on 
algorithmic  thinking  implies  the  presence  of  a  temporal 
hierarchy,  which  could  serve  as  a  basis  for  classifying 
actions.  For  instance,  individuals  with  dyspraxia  often 
struggle with implementing the sequential steps required 
for  common  tasks,  which  could  suggest  an  underlying 
difficulty  in  processing  the  temporal  hierarchy  of  action 
(Miller et al., 2014).

These  temporal  hierarchies  correspond  to  the  frequency 
with which actions are sampled and understood, forming a 
framework that may be similar to what has been proposed 
for linguistic comprehension (Fedorenko et al., 2016). This 
temporal arrangement can be mapped onto specific brain 
areas  with  corresponding  temporal  receptive  windows 
(Baldassano et al., 2021). Thus, actions can be understood at 
different  levels  depending  on  their  temporal  sampling 
frequency:
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 Low-level  TAA:  Attributes  related  to  shape,  fine 
kinematics,  and  mechanical  components  (often 
studied  in  computer  vision,  robotics,  and 
psychophysics) correspond to areas with fast TRWs, 
such as primary sensory areas.

 Intermediate  TAA:  Attributes  relating  to  effector-
object  relations and specific components of actions 
correspond  to  middle-level  TRWs,  which  involve 
more  complex  neural  processes  that  combine 
perceptual  information  into  meaningful  action 
segments.

 High-level  TAA:  Attributes  involving  goals, 
intentions, and the broader meaning of actions are 
associated with higher-level TRWs, which reflect an 
abstract understanding of the action’s purpose.

Contributions from Computer Vision

The  contributions  from  computer  vision  to  action 
taxonomy  are  also  significant,  particularly  in  the 
development of action recognition and labeling algorithms. 
There  are  two  primary  types  of  features  in  action 
recognition:  hand-crafted  features  and  deep-learned 
features.  Hand-crafted  features,  such  as  improved 
trajectories and Fisher vectors, have been effective for many 
years in describing action kinematics and dynamics (Wang 
et al., 2011). More recently, deep learning approaches, such 
as convolutional neural networks (CNNs), have allowed for 
greater autonomy in learning action features (Simonyan & 
Zisserman, 2014; Shi et al., 2019).
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To  leverage  these  features  for  taxonomic  purposes,  a 
promising  approach  is  to  use  representational  similarity 
analysis  to  compare  the  activation  of  the  final  layers  of 
CNN  architectures  across  different  actions.  This  could 
reveal  data-driven  similarities  and  differences  between 
actions,  which  can  then  be  organized  into  a  hierarchical 
framework through clustering techniques.

3.12 Conclusion

Using the taxonomic attributes identified in the literature, 
we have proposed a tentative taxonomy of actions that is 
both  hierarchical  and  domain-specific.  The  behavioral 
action  domain  emphasizes  low-level  kinematic  and 
mechanical attributes that are relevant to robotics and real-
life execution. The linguistic domain captures higher-order 
relationships  between  actions,  including  their  syntactic 
concatenation and semantic properties. Finally, the brain-
based  domain  aims  to  develop  a  unified  neural 
representation  of  actions,  integrating  multiple  levels  of 
observation and methodological approaches.

This classification framework is intended to guide future 
research  in  understanding  and  organizing  the  vast 
diversity of human actions. A key aspect of this approach is 
that  it  is  flexible:  different  levels  of  granularity  can  be 
employed depending on the research question, allowing for 
both high-level conceptual understanding and fine-grained 
mechanistic analysis.
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Fig.  3:  Multi-layered  diagram  illustrating  how  principles  from 
biological taxonomy inform the classification of human actions. Central 
concepts  such  as  taxonomic  attributes,  fuzzy  boundaries,  and  the 
Bauplan analogy are linked to three core functions—structure, theory, 
and  clarity—and  organized  across  behavioral,  linguistic,  and  brain-
based  domains,  each  with  low-,  intermediate-,  and  high-level 
attributes.
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Chapter 4 

4.  Heuristic  and  Organizing  Principles  of  Action 
Taxonomies

The  central  question  driving  the  development  of  action 
taxonomies is: “What is the best way to segment the action 
phenomenon?”  The  goal,  undertaken  from  diverse 
perspectives,  is  to  identify  an  appropriate  method  for 
discriminating,  dividing,  and  ultimately  explaining  the 
action phenomenon in the most efficient, detailed, and non-
invasive  way.  The  aim  is  to  approach  action  as  Lord 
Wenhui's  butcher  does  in  the  famous  Zen  tale  from the 
Zhuangzi,  cutting  effortlessly  through  natural  divisions 
without exerting unnecessary force:

"I  go  along  with  the  natural  makeup,  strike  in  the  big 
hollows,  guide  the  knife  through  the  big  openings,  and 
follow things  as  they  are.  So  I  never  touch  the  smallest 
ligament  or  tendon,  much  less  a  main  joint.  There  are 
spaces between the joints, and the blade of the knife has 
really no thickness. If you insert what has no thickness into 
such  spaces,  then  there’s  plenty  of  room—more  than 
enough for the blade to play."

In  this  analogy,  we  aspire  to  segment  the  action 
phenomenon precisely as it is, without imposing artificial 
or  excessive  divisions,  but  instead  finding  ways  to 
accommodate  all  empirical  evidence  as  we  delineate  the 
profile of our knowledge of actions.
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Before  delving  into  heuristic  principles  and  their 
application to existing action taxonomies, we must address 
a philosophical question: can we hope to develop a macro-
taxonomy  that  effectively  fuses  all  levels  of  action 
understanding,  or  must  we  concede  that  "different 
perspectives yield different truths" in the study of actions? 
Is it even possible to develop a taxonomy that accounts for 
both  the  kinematic  details  and  the  expansive  variety  of 
human actions? The answer is definitively yes, though such 
an  endeavor  may  be  impractical  given  current 
methodological  constraints.  Fortunately,  more  and  more 
datasets  containing  precise  kinematic  descriptions  of 
actions are becoming available online (Chung et al., 2020; 
Smaira et al., 2020; Soomro et al., 2012).

Theoretically, if methodological barriers were removed, we 
could  describe  actions  with  maximal  detail.  We  could 
record neural  activity  at  the  level  of  single  neurons  and 
capture their temporal dynamics at millisecond resolution 
throughout  the  brain,  while  dissecting  stimuli  into 
increasingly fine-grained semantic and kinematic models. 
The  effector-specific  taxonomies  described  by  Castiello 
(2005) and Liu (2015) could be extended to all effectors. It 
appears there are no theoretical limits to our capacity for 
description, only methodological ones.

However, this raises new questions: How many models or 
taxonomies  could  be  derived  from  the  same  stimuli? 
Likely,  countless  models  could  be  proposed.  Moreover, 
how does  the  brain  transform dynamic  entities,  such  as 
actions, even before we become consciously aware of them? 
The  brain  is  inherently  dynamic  and  hierarchically 
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organized (Heer et al., 2017; Raut et al., 2020). It processes 
information across multiple dimensions at different stages, 
reflecting  the  complexity  of  action  perception  and 
production.

To return to the analogy from the Zhuangzi,  the natural 
joints  of  the  action  phenomenon  are  found  at  the 
"junctures"  within  the  information  processing  stream, 
where  dramatic  changes  occur  in  the  type  of  encoded 
information.  Therefore,  pursuing  a  useful  taxonomy  of 
actions  means  illuminating  our  knowledge  of  actions  by 
emphasizing  the  areas  we  do  not  yet  understand—
delineating the object by coloring in the background.

The following sections propose several heuristic principles 
that  can  help  conceptualize  and  evaluate  action 
taxonomies,  recognizing  their  strengths  and  limitations. 
These  principles  are  derived  from  philosophical 
considerations and aim to organize and unify action-related 
research.  Given  that  there  are  few  action  taxonomies 
available in the literature, many references in the following 
sections  may  refer  repeatedly  to  the  same  taxonomies. 
Additionally,  we  will  often  draw  from  studies  that 
investigated  specific  dimensions  of  action  but  did  not 
attempt to develop a comprehensive taxonomy. The goal is 
to piece together these fragmented studies to synthesize a 
broader understanding of actions.

4.1 Heuristic Principles for Action Taxonomies

The  principles  outlined  below  serve  as  criteria  for 
navigating existing action taxonomies and evaluating them 
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within  a  common  framework.  By  comparing  various 
taxonomies  and  their  empirical  foundations,  we  aim  to 
identify gaps in the current  landscape of  action research 
and guide future questions and experiments.

1. Granularity
The  principle  of  granularity  refers  to  how  finely 
actions are described. Each description is granular at 
a particular level. If researchers study the kinematics 
of action, they may achieve an exceptionally detailed 
description  of  actions’  mechanical  properties. 
However, if they switch perspectives—say, to brain 
activity—the  level  of  detail  may  change 
substantially. In action production, a highly granular 
description  could  include  the  precise  pattern  of 
muscle contractions required to perform an action. 
On the other hand, granularity may be lower when 
analyzing  broad  neural  patterns  involved  in  the 
same  movement.
Importantly,  granularity  must  be  balanced  with 
completeness,  defined  as  how much  of  the  actual 
variety  of  human  actions  is  captured  by  the 
taxonomy. There is often a trade-off between these 
two  elements:  achieving  high  granularity  might 
mean analyzing a smaller subset of actions, whereas 
capturing the full diversity of human actions might 
necessitate  using  broader  and  less  detailed 
descriptors. Figure 1 below illustrates this trade-off 
between granularity and completeness. Taxonomies 
focusing on a broad observational standpoint often 
sacrifice granularity for completeness and vice versa.
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2. Interactivity
The level of  interactivity in a task (e.g.,  predicting 
the  next  action  or  judging  the  congruency  of  an 
observed action) determines how the brain’s action-
related  networks  are  engaged.  Interactive  tasks—
those that require active engagement, such as joint 
action prediction—recruit more motor resources and 
result in distinct patterns of brain activity (Butterfill 
&  Sebanz,  2014).  Passive  tasks,  such  as  simple 
observation, engage different processes. We can also 
consider  interactivity  in  the  context  of  action 
production:  the  complexity  of  a  performed  action 
(e.g., walking vs. learning new dance steps) can vary 
greatly in terms of required planning and attention, 
consequently  involving  different  neural  resources.
The relevance of attention within interactive tasks is 
well  established.  Attending  to  certain  features  of 
actions  modifies  both  single-neuron  activity 
(Caggiano  et  al.,  2012;  Toschi,  2017)  and  regional 
brain  activation  patterns  (Nastase  et  al.,  2017; 
Shahdloo  et  al.,  2021).  This  modulation  of  action 
perception  by  attentional  focus  highlights  the 
interaction between interactivity and hierarchy. For 
example,  attentional  focus  can  warp  action 
representations  in  the  brain,  selectively  enhancing 
response patterns relevant to the attended features.

3. Observation-Production
Many  taxonomies  distinguish  between  action 
observation and action production. Computer vision 
and robotics,  for  instance,  often consider only one 
side of the problem. Robotics is primarily interested 
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in action production—creating robots that move as 
efficiently  as  humans—while  computer  vision 
focuses on recognizing and understanding observed 
actions.  However,  cognitive  neuroscience 
emphasizes  the  interaction  between  action 
production  and  action  perception,  with  evidence 
suggesting that  the two processes share functional 
overlap (De Kleijn et al.,  2014).  The mirror neuron 
system  is  an  illustrative  example:  mirror  neurons 
activate both when observing an action and when 
performing  the  same  action  (Casile  &  Sinigaglia, 
2013).

4. Hierarchy
Hierarchical  organization  is  implicit  in  all  actions. 
Actions  are  embedded  in  a  series  of  nested 
hierarchies, both conceptually and within the brain. 
Complex  actions  require  coordination  across 
multiple  stages,  and  long-duration  actions 
necessitate  memory to  understand how individual 
components contribute to the overall goal. There are 
also  notable  similarities  between  narrative 
comprehension and action comprehension, as both 
require  integration  over  extended  timescales 
(Baldassano  et  al.,  2017;  K.  Pastra,  2012).  The 
hierarchical  structure  of  actions  is  evident  at 
multiple levels of processing, from simple motor acts 
(e.g.,  grasping)  to  sequences  of  actions  integrated 
into a narrative (Ziaeetabar et al., 2021).

5. Abstraction
Different  taxonomies  classify  actions  at  different 
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levels of abstraction, ranging from concrete features 
(e.g., grasping type) to more abstract concepts (e.g., 
sociality). Taxonomies modeling low-level kinematic 
features of actions span a different space than those 
focusing  on  higher-level  semantic  features  (e.g., 
locomotion,  communication).  This  separation  is 
reflected  in  neural  correlates,  with  a  posterior-to-
anterior  gradient  of  representation  for  abstract 
versus  concrete  features  in  the  lateral 
occipitotemporal cortex (LOTC) (Wurm et al., 2017). 
Considering  different  levels  of  abstraction  is 
essential  when  integrating  multiple  taxonomies  or 
understanding  the  overlap  between  seemingly 
distinct action categories.
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Fig. 4: A graphical representation of the most relevant distinctions and 
features  for  an  action  taxonomy  highlighted  in  the  section.  First, 
granularity: how fine and detailed is the description of the stimulus, 
both  from  a  brain  and  a  stimulus  perspective?  To  this  principle 
connects  a  methodologically  implied  one,  that  we  could  call 
completeness. Does the variety of actions considered in the taxonomy 
reflect the actual variety of actions that we humans do and observe? 
Are there biases toward certain types of actions in actual experiments? 
And how does this depend on the granularity of the analysis? Second, 
abstraction:  how  much  distant  and  transformed  is  the  action 
information in the brain as compared to the source (Spunt et al., 2016)? 
Notice  that  this  feature  could be  applied to  both  representations  of 
action in the brain (e.g., the notion of a supramodal representation of 
actions as in Ricciardi et al.,  2013) and to hidden layers of an ANN 
processing human actions. Third, completeness: Fourth, active-passive: 
does  the  taxonomy  consider  the  differences  in  the  underlying 
mechanisms  necessary  to  passively  perceive  actions  and  to  actively 
perceive  actions?  Actively  can  mean  several  attitudes  towards  the 
observed actions: it is meant here to indicate tasks in which the subject 
has to pay attention, with various modulations, to different features of 
the  actions  shown.  The  concept  also  applies  to  active  or  passive 
production of  actions:  here,  the subjects  observe features  of  its  own 
actions  actively,  or  the  actions  are  only  a  means  for  an  end,  no 
particular attention in the experimental context is  paid to the action 
itself (but rather to its consequences).  Fifth, hierarchy: each action is 
incapsulated within a hierarchical intentional cascade; simultaneously, 
the kinematics of action is as well wrapped up in a hierarchy of smaller 
and smaller  acts.  Each  action  in  a  certain  sense  is  a  matryoshka  of 
actions: this hierarchy is probably present also in the brain (Cattaneo et 
al.,  2010),  even if  coded in  ways  we don’t  fully  understand for  the 
moment.

4.2 Methodological Considerations
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The  heuristic  principles  described  above  are  deeply 
influenced by the methodologies  applied to  study action 
phenomena. Granularity is constrained by methodological 
limitations.  For  example,  EEG  is  optimal  for  analyzing 
temporal features of action perception, while fMRI is more 
suitable for investigating the spatial distribution of neural 
activation, but with lower temporal precision. Integrating 
these  methodologies  allows  for  a  comprehensive 
understanding  of  both  the  localization  and  temporal 
dynamics of action comprehension (Ortigue et al., 2009).

The  principle  of  interactivity  is  also  crucial  from  a 
methodological  perspective.  Interactivity  determines  the 
degree of participant engagement, which in turn influences 
the level of cognitive and motor processing required. For 
example,  attentional  focus on specific action features can 
significantly modify action perception, as demonstrated in 
naturalistic action observation (Shahdloo et al., 2021).

Observation-production  studies  must  account  for  the 
overlap between these processes and recognize that action 
understanding  often  involves  implicit  prediction.  For 
example,  gaze  anticipation  is  an  indicator  of  action 
comprehension  during  motor  primitive  observation 
(Ambrosini et al., 2013; Costantini et al., 2014). In contrast, 
for  complex  or  unfamiliar  actions,  more  explicit  task 
requirements are needed to assess comprehension.

A  notable  challenge  encountered  in  this  review  is  the 
limited  number  of  comprehensive  action  taxonomies 
available in the literature. Most studies tend to focus on a 
select few dimensions of actions, which is understandable 
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given the experimental difficulties of analyzing data across 
multiple  dimensions  and levels.  At  times,  the  discussion 
will rely on studies that did not explicitly aim to provide a 
complete account of actions but instead focused on specific 
dimensions.

The  following  sections  will  utilize  the  set  of  heuristic 
principles illustrated before. These principles will provide a 
framework for evaluating each action taxonomy and model 
in  a  consistent  manner,  allowing  us  to  determine  the 
contributions  of  each  taxonomy  to  the  broader 
understanding of  action.  For example,  an effective action 
taxonomy  must  account  for  the  overlap  between  action 
production and perception—such as what is captured by 
the literature on mirror neurons, which provides insights 
into  the  functional  interdependence  between  motor 
programming  and  action  understanding.  As  such,  this 
overlap  between  perception  and  production  must  be 
considered for evaluating action taxonomies, alongside the 
other principles discussed.

4.3 Granularity

The  first  principle  is  granularity—the  level  of  detail  at 
which  an  action  is  described.  The  granularity  can  vary 
across different levels of analysis. A researcher focused on 
the  kinematics  of  actions  may  seek  a  highly  detailed 
description of the movement, while a broader description 
might be appropriate when switching to a different level of 
analysis,  such  as  understanding  brain  activity  associated 
with these movements.
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For instance, at the production level, granularity can refer 
to the precise coordination of muscle contractions involved 
in  executing  an  action,  whereas,  at  the  level  of  brain 
activity,  a  shift  occurs  in  the  type  of  detail  and  focus 
required. A critical trade-off arises: the completeness of the 
mapping—how  comprehensive  the  coverage  of  action 
types is—often comes at the cost of granularity. This trade-
off  is  illustrated  in  Figure  1,  where  the  extent  to  which 
taxonomies  can describe  a  wide range of  human actions 
depends on the adopted level of granularity.

4.4 Interactivity

The principle of interactivity concerns the degree to which 
tasks involve active participation,  which can significantly 
influence  brain  activity  related  to  motor  processes. 
Interactive tasks can take various forms, such as predicting 
the  outcome  of  an  observed  action,  choosing  between 
congruent  and incongruent  responses,  or  engaging in an 
action. Tasks with lower levels of interactivity can include 
naturalistic  stimulation  or  orthogonal  tasks,  where  the 
participant's  response  is  mostly  independent  of  the 
observed action.

Regarding  action  production,  it  may  seem redundant  to 
discuss interactivity since executing an action is inherently 
an  active  task.  However,  distinctions  can  still  be  made 
based on gradation and expertise. For example, performing 
a  simple,  everyday  action  like  walking  involves  less 
cognitive  effort  compared  to  learning  a  complex  dance 
routine.  In  the  same  manner,  an  experimental  task 
involving  joint  action  (e.g.,  collaborative  tasks;  Butterfill, 

76



2014)  requires  more  planning  and  attention,  thereby 
activating different motor-related networks.

The  attentional  processes  involved  are  crucial  for  the 
interactivity  principle,  as  evidenced  by  multiple  studies 
that  demonstrate  how  attention  modulates  action 
observation and execution at both the single neuron level 
(e.g., Caggiano et al., 2012; Toschi et al., 2017) and across 
brain regions in neuroimaging studies (e.g.,  Haxby et al., 
2020;  Nastase  et  al.,  2017;  Bach et  al.,  2017).  A study by 
Nastase and colleagues  (Nastase et  al.,  2018) found that 
directing attention towards different dimensions of action
—such  as  observing  actions  performed  by  animals 
compared  to  attending  to  taxonomic  information—alters 
the  multivariate  response  patterns  across  brain  regions. 
Attention also warps semantic maps in the brain, shifting 
the response selectivity of certain brain areas according to 
action features or categories (e.g., Shadloo et al., 2021).

In summary, we need to consider whether taxonomies or 
studies account for the various levels of interaction during 
action observation, and whether the actions are isolated or 
occur under specific situational constraints.

4.5 Observation-Production

An  important  distinction  is  whether  the  taxonomy 
considers  both  action  production  and  perception.  This 
principle  is  pivotal  for  action-related  disciplines  such  as 
computer  vision and robotics.  Robotics  focuses primarily 
on producing human-like actions, whereas computer vision 
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emphasizes the accurate recognition of actions from visual 
data.

In  cognitive  neuroscience,  the  emphasis  is  not  only  on 
action  kinematics  but  also  on  understanding how action 
production and perception are functionally linked within 
the brain, as demonstrated by mirror neuron research (e.g., 
De Kleijn et  al.,  2014).  Although these two processes are 
often treated separately, there is a significant overlap, and 
understanding  this  overlap  is  crucial  for  developing 
comprehensive action taxonomies.

4.6 Hierarchy

The  concept  of  hierarchy  can  be  approached  from  two 
perspectives: the hierarchical nature of actions themselves 
and the hierarchical processing of these actions in the brain. 
For an action to be produced or understood, information 
must pass through multiple cortical levels. Depending on 
one's  perspective  of  brain  functioning—whether 
representationalist  or  enactivist  (Friston  et  al.,  2018; 
Gadziejewski  et  al.,  2016)—the  interpretation  of  these 
hierarchies may vary.

Longer sequences of actions inherently require a form of 
narrative understanding, akin to language comprehension 
(Baldassano  et  al.,  2017).  Such  temporal  extension  is  a 
fundamental  feature  across  taxonomies,  with  some 
researchers  focusing  on  brief,  isolated  actions  (e.g., 
Ahlheim  et  al.,  2014),  while  others  investigate  more 
complex,  chained action  sequences  (e.g.,  Ziateebar  et  al., 
2021).  Based on the literature on mirror neurons, we can 
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distinguish  between  narrative  prediction  and  motor 
prediction.  Narrative  prediction  is  more  relevant  to 
understanding extended action sequences, whereas motor 
prediction is better suited for isolated, immediate actions.

4.7 Abstraction

Abstraction refers  to the distinction between higher-level 
conceptual  features  of  actions  and  more  concrete, 
observable features.  Some taxonomies focus on low-level 
features  such  as  shape  and  kinematics,  whereas  others 
describe more abstract attributes such as action goals and 
sociality  (e.g.,  Tarhan  &  Konkle,  2020).  This  separation 
between low-level and high-level features also has a neural 
correlate.  For  example,  Wurm  et  al.  (2017)  found  a 
posterior-to-anterior  gradient  in  the  lateral 
occipitotemporal  cortex  (LOTC)  that  transitions  from 
representing concrete action features to abstract ones.

A study by Bach and colleagues (2017) also illustrated how 
different  levels  of  abstraction  influence  brain  processing: 
action  novelty  and  ambiguity  activate  motor-related 
regions,  while  familiar  actions  are  primarily  associated 
with  semantic  object-related  associations  rather  than 
movements.  This  distinction  highlights  the  existence  of 
multiple abstraction levels across actions.

4.8 Methodological Perspective on Heuristic Principles

From  a  methodological  viewpoint,  these  heuristic 
principles  are  deeply  intertwined  with  the  methods 
employed in studies of action comprehension. Granularity, 
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for instance, is influenced by the type of methodology used
—EEG studies excel at exploring the temporal structure of 
actions  (e.g.,  Bub  et  al.,  2018,  Ortigue  et  al.,  2010, 
Pomiechowska  et  al.,  2017),  while  fMRI  studies  better 
capture spatial localization of brain activity (e.g., Ortigue et 
al., 2009). Thus, fMRI is often used to study more abstract 
levels  of  action comprehension,  while  EEG captures  fine 
temporal details.

At the behavioral level, there are similar trade-offs between 
granularity  and  completeness.  Studying  the  specific 
trajectories of an effector during a particular action requires 
focusing  on  a  limited  number  of  action  types  (e.g., 
grasping),  whereas  investigating  the  full  diversity  of 
human actions necessitates a broader approach, at the cost 
of reduced granularity.

Interactions  between  action  observation  and  other 
cognitive  processes,  such  as  attention  and  emotional 
engagement,  further  complicate  the  picture,  as  they  can 
alter  both  kinematic  and abstract  action  processing  (e.g., 
Alaerts  et  al.,  2011;  Castiello  et  al.,  2010;  Shadloo  et  al., 
2021).  Thus,  the  interactivity  principle  is  highly  relevant 
from  a  methodological  perspective,  influencing  the 
abstraction  and  hierarchy  of  action  processing.  Different 
tasks can result in different processing hierarchies (e.g., Isik 
et al., 2018).

One  effective  approach  to  assessing  the  importance  of 
specific action dimensions is  to investigate the impact of 
removing  certain  cues  on  action  recognition  (e.g.,  El-
Sourani et al., 2019). For instance, removing contextual cues 
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reduces  action  recognition  performance,  while  removing 
key  parts  of  an  action  sequence  impacts  the  ability  to 
predict  its  outcome.  Such  analyses,  ideally  conducted 
across a wide variety of actions and taxonomic dimensions, 
help  determine  which  aspects  of  action  information  are 
crucial for comprehension.

Distinguishing  between  action  observation  and  action 
prediction further refines the evaluation of comprehension. 
In  the  case  of  motor  primitives  (e.g.,  grasping),  gaze 
anticipation can serve as a marker of understanding (e.g., 
Ambrosini et al., 2013; Costantini et al., 2014). However, in 
passive  observation  tasks—such  as  viewing  short  action 
clips—understanding  is  often  implied.  The  interactivity 
principle thus helps account for such differences.

Fig.  5:  The  figure  shows  that  taxonomies  providing  a  more 
comprehensive  extension  (i.e.,  capturing  a  wide  variety  of  actions) 
often  sacrifice  granularity  in  describing  the  constituents  of  these 
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actions, while more detailed taxonomies tend to capture fewer types of 
actions.  However,  even  though  obtaining  both  completeness  and 
granularity  across  all  levels  of  hierarchy  is  methodologically 
challenging, it remains theoretically possible.

In  this  context,  these  principles  can  help  organize  and 
critically  evaluate  proposed  taxonomies  of  action  by 
establishing a structured reference frame, providing deeper 
insight into how individual models relate to each other and 
how each one contributes uniquely to our understanding of 
action.  In  doing so,  we can determine the strengths  and 
weaknesses of existing taxonomies and suggest directions 
for  future  research.  Such  directions  could  include 
investigating aspects  of  action not  thoroughly  examined, 
integrating multidisciplinary perspectives, and developing 
experimental methods that yield greater granularity while 
still retaining diversity in action representation.

In  summary,  the  principles  discussed  here  represent  an 
invaluable  heuristic  for  guiding  research  into  action 
taxonomies. These principles allow for a nuanced approach 
to  characterizing  action  by  incorporating  diverse 
dimensions, from abstraction and granularity to interaction 
levels  and  hierarchical  structure.  The  journey  toward  a 
unifying taxonomy for action phenomena is ongoing, but 
by  employing  these  principles  as  both  guidelines  and 
evaluation tools, researchers can develop taxonomies that 
do not merely classify actions but also reveal underlying 
processes and interconnections.

4.9 Conclusion
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In  conclusion,  a  comprehensive  and  insightful  action 
taxonomy is not a static endeavor but a dynamic interplay 
between theory, empirical findings, and heuristic inquiry. 
By  focusing  on  core  principles  such  as  granularity, 
completeness,  abstraction,  interaction,  and  hierarchy,  we 
can systematically break down the complex phenomenon 
of  human  action  and  capture  its  essence  across  varying 
dimensions. Each principle provides a distinct lens through 
which to view and interpret the nature of actions, helping 
us understand the different ways in which actions can be 
classified, represented, and understood.

However, more important than these individual principles 
is their collective application. Much like pieces of a puzzle, 
these elements are most effective when brought together to 
generate  a  complete  picture.  It  is  through  this  holistic 
approach—one that acknowledges both the diversity and 
interconnectedness of action representations—that we can 
make significant strides in action research. This synthesis of 
theoretical,  empirical,  and  heuristic  principles  has  the 
potential  to  foster  breakthroughs,  uncover  hidden 
dimensions, and inspire new and transformative ways of 
thinking  about  human  actions  in  both  cognitive 
neuroscience and related disciplines.
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Chapter 5 

5. Introduction

A  fundamental  question  in  cognitive  neuroscience  is  to 
what  extent  different  human  brains  operate  similarly. 
While  neuroimaging  studies  have  consistently  revealed 
substantial  similarities  across  individuals,  these  results 
often stem from highly controlled experimental conditions, 
which  limit  individual  variability.  Most  studies 
investigating  cortical  similarity  utilize  simplified  stimuli, 
such  as  single,  isolated  images  (e.g.,  IAPS,  Lang,  2005), 
making it difficult to generalize findings to more complex, 
ecologically valid settings (Hasson et al., 2004).

Naturalistic  stimuli,  such  as  movies,  offer  a  richer 
framework  for  studying  brain  function  due  to  the 
contextual integration of multiple sensory modalities and 
their  dynamic,  multi-object  environment.  This  richness 
enables a more holistic examination of cognitive processes, 
unlike the traditional focus on controlled, simple tasks. The 
use  of  naturalistic  stimuli  reveals  complex  neural 
activations,  suggesting that  different levels  of  perceptual, 
semantic,  and  motor  dimensions  underlie  action 
recognition, and these processes may not fully overlap with 
traditional simple task-based findings.

Humans  recognize  thousands  of  objects  and  actions, 
though it is unlikely that each category has a distinct neural 
region dedicated to it. Instead, studies show that the brain 
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utilizes  a  continuous  semantic  space  for  categorization 
based on similarity between categories (Seger & Peterson, 
2013; Freedman & Assad, 2016). Categorization in the brain 
is  thought  to  proceed through a  two-stage model:  initial 
perceptual identification followed by a categorical decision 
process  (Freedman et  al.,  2003;  Scholl  et  al.,  2014).  Early 
sensory regions are responsible for perceptual processing, 
while the prefrontal and parietal cortices are implicated in 
decision-making  processes,  such  as  classifying  stimuli 
(Riesenhuber & Poggio, 2000).

Moreover,  symbolic  labeling  (naming)  is  essential  to 
categorization  in  real-world  settings.  Symbols  enhance 
categorical  learning,  object  recognition,  and  abstraction 
(Althaus  &  Westermann,  2016;  Lupyan  et  al.,  2007). 
However,  the  neural  correlates  of  symbolic  use  in 
categorization  remain  underexplored.  It  has  been 
hypothesized  that  categorizing  stimuli  through  symbols 
may  generate  shared  neural  representations  between 
objects and their symbolic forms (Viganò et al., 2021).

A  wealth  of  research  indicates  that  perceiving  and 
generating  actions  are  tightly  linked.  Mirror  neurons, 
originally discovered in the premotor cortex (area F5)  of 
macaques, are active both during the execution of an action 
and while observing the same action performed by others 
(Gallese et al., 1996; Rizzolatti et al., 1996). In humans, the 
observation  and execution  of  actions  engage  the  inferior 
frontal  gyrus  (IFG),  inferior  parietal  lobule  (IPL),  and 
superior  temporal  sulcus  (STS).  These  areas  support  the 
direct  mapping  of  observed  actions  onto  motor 

86



representations, facilitating action understanding (Iacoboni 
et al., 2005).

The perception of actions in naturalistic  settings,  such as 
movies,  involves  the  integration  of  perceptual,  semantic, 
and motor processes.  Naturalistic  stimuli  elicit  consistent 
brain responses across individuals, as evidenced by fMRI, 
EEG,  MEG,  and  ECoG  studies  (Hasson  et  al.,  2004; 
Bhattasali  et  al.,  2019).  These  responses  are  distributed 
across  sensory,  associative,  and  higher-order  cortical 
regions,  suggesting  that  naturalistic  paradigms  capture 
richer and more ecologically valid neural  representations 
than traditional controlled stimuli.

Naturalistic  stimuli,  such  as  movies,  can  evoke 
synchronized brain responses across individuals, not only 
in sensory areas but also in higher-order cortical  regions 
involved in attention and social processing (Hasson et al., 
2004).  The use of inter-subject  correlation (ISC) measures 
has  proven  particularly  effective  in  analyzing  such 
responses, as they do not require a strict parametric model 
(Pajula et al., 2012). This method allows for better detection 
of  complex,  distributed  activations  related  to  continuous 
natural stimuli.

Studies  involving  prolonged  movie  viewing  have 
demonstrated  hierarchical  temporal  receptive  windows 
(TRW)  within  the  brain,  wherein  lower-order  sensory 
regions  show  rapid  responses,  while  higher-order 
associative areas require integration over longer timescales 
(Hasson et al., 2008). This temporal hierarchy suggests that 
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distinct  areas  integrate  different  scales  of  information  to 
support coherent perception in real-world environments.

5.1  The  Current  Study:  Investigating  Action  Recognition 
during Film Viewing

This study aims to explore which features of actions serve 
as  the  best  predictors  of  fMRI  data  acquired  during 
naturalistic stimulation, aiming at creating models as rich 
as possible, to capture all the underlying complexity of the 
act  of  understanding  actions  in  movies.  Participants 
watched three films (“101 Dalmatians,”  “Forrest  Gump,” 
and “The Grand Budapest Hotel”), and brain activity was 
recorded  using  fMRI.  Two  models  were  compared:  a 
categorical  model,  which  included  descriptors  of  actions 
(e.g.,  context,  agent  type,  effector  visibility,  transitivity), 
and a semantic model, encompassing both the agent and 
object of the action.

The  results  revealed  that  both  models  significantly 
predicted brain activity within networks involved in action 
observation (p<0.05). The semantic model showed stronger 
representation in  early  visual  areas,  lateral  occipital,  and 
fusiform  cortices,  while  the  categorical  model  showed 
greater  representation  in  the  superior  temporal  sulcus, 
parietal areas, and dorsal extrastriate regions. The observed 
high correlation between models supports the hypothesis 
that  integrated  processing  across  multiple  dimensions 
underlies the natural comprehension of actions.
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5.2 Methods

5.2.1 fMRI Datasets

We  analyzed  three  fMRI  datasets  from  separate  studies, 
each containing naturalistic stimuli.

 Dataset  1 (Setti  et  al.,  2023):  Fifty  participants 
watched a shortened version ( 50 minutes)  of  the∼  
film  101  Dalmatians (1996)  in  three  modalities 
(audiovisual,  visual-only,  and  audio  description). 
The  participants  were  typically  developed 
individuals, as well as congenitally blind and deaf 
individuals.  For  our  analysis,  we  selected  10 
typically  developed  subjects  (n=10,  age  35  ±  13 
years,  8  females)  who  viewed  the  audiovisual 
version during fMRI scanning.

 Dataset  2 (Studyforrest,  Phase  II, 
http://www.studyforrest.org):  Fourteen 
participants (n=14, mean age 29.4 years, range 20-40 
years,  6  females)  viewed  a  modified  German-
dubbed  version  of  Forrest  Gump ( 90  minutes)∼  
(Zemeckis, 1994). These participants were previously 
involved in a  study investigating the dynamics  of 
emotional processing under naturalistic stimulation 
(Lettieri  et  al.,  2019).  We utilized the preprocessed 
data from that study for subsequent analyses.

 Dataset 3 (Visconti di Oleggio Castello et al., 2020): 
Twenty-five subjects  (n=25,  mean age 27.52 ± 2.26 
years,  13  females)  watched the second part  of  the 
movie Grand Budapest Hotel ( 45 minutes).∼

89



Fig. 6: Overview of the analysis steps of the project. First, a rater (L.T.) 
encoded  each  action  based  on  the  features  extracted  from  relevant 
literature on action understanding and naturalistic  stimuli.  Semantic 
model was instead created on the basis of a word-to-vec representation 
of action and object labels assigned to action event. The same approach 
was applied to the three different movies. fMRI data were preprocessed 
in a similar fashion in all the three cases.

5.2.2 Acquisition and Preprocessing of fMRI Data

Dataset 1: 101 Dalmatians

fMRI data were acquired using a Philips 3T Ingenia scanner 
equipped with a 32-channel head coil.  Functional images 
were collected using the following parameters:  GRE-EPI, 

90

fMRI Data

Preprocessing

Feature

Extraction

Semantic

Model Creation

Analyzed

Action Data

Action Analysis Process

Action

Encoding



TR = 2000 ms, TE = 30 ms, flip angle = 75°, FOV = 240 mm, 
in-plane acquisition matrix = 80×80, slice thickness = 3 mm, 
voxel size = 3×3×3 mm, 38 ascending sequential axial slices, 
with a total of 1614 volumes for six runs of the movie and 
256 volumes for a control run.

The  preprocessing  pipeline  was  performed  using 
AFNI_17.1.12  (Cox,  1996)  and  included  standard  steps. 
Initially,  scanner-related noise  was removed by applying 
spike correction (3dDespike). Then, slice timing correction 
(3dTshift)  was  performed,  followed  by  head  motion 
correction  using  the  first  run  as  reference  (3dvolreg). 
Spatial  smoothing  was  applied  using  a  Gaussian  kernel 
(3dBlurToFWHM, 6 mm, full width at half maximum). The 
normalized  runs  underwent  detrending  using  Savitzky-
Golay  filtering  (order  3,  window  size  200  points)  in 
MATLAB  R2019b  (MathWorks  Inc.,  Natick,  MA,  USA). 
Runs were concatenated, and multiple regression analysis 
was  performed  (3dDeconvolve)  to  remove  head 
movement-related  signals  and  motion  peak  regressors 
(framewise  displacement  above  0.3).  Volumes  were 
subsequently registered non-linearly to MNI-152 standard 
space (3dQWarp).

Dataset 2: Forrest Gump

Images were acquired with a Philips Achieva dStream 3T 
MRI  scanner  using  a  32-channel  head  coil.  Functional 
images  were  collected  using  T2*-weighted  gradient-echo 
echoplanar imaging (TR = 2000 ms, TE = 30 ms, flip angle = 
90°, bandwidth = 1943 Hz/Px). The acquisition consisted of 
35 ascending axial  slices  (slice  thickness = 3.0  mm) with 
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80×80 voxels (3.0×3.0 mm) and a field of view (FOV) of 240 
mm,  providing  whole-brain  coverage.  A  total  of  3599 
volumes were acquired across eight segments of the movie.

The preprocessing was conducted by Lettieri et al. (2019) 
using ANTs (Avants et al., 2009) and AFNI v.17.2.00 (Cox, 
1996).  This  included  brain  extraction,  non-linear 
registration to MNI-152 space, slice timing correction, head 
movement  correction  (3dvolreg),  and  spatial  smoothing 
(FWHM = 6 mm). The hemodynamic signal was detrended 
to remove slow drifts, head movement, and physiological 
artifacts.

Dataset 3: Grand Budapest Hotel

Functional and structural volumes were acquired using a 
Siemens  Magnetom  Prisma  3T  MRI  scanner  with  a  32-
channel  phased-array  head  coil  at  the  Dartmouth  Brain 
Imaging  Center.  BOLD functional  images  were  collected 
using gradient-echo echoplanar imaging (TR/TE = 1000/33 
ms, flip angle = 59°, isotropic voxel size = 2.5 mm, matrix 
size = 96×96,  FOV = 240×240 mm, 52 axial  slices).  Three 
dummy scans were acquired at the start of each session for 
signal  stabilization.  Structural  T1-weighted  scans  were 
obtained with MPRAGE (TR/TE/TI = 2300/2.32/933 ms, 
voxel resolution 0.9375×0.9375×0.9 mm).

The preprocessing steps were conducted following Lettieri 
et  al.  (2019),  using  in-house  scripts.  The  functional  data 
were downsampled to match the temporal resolution (TR = 
2s) of the other datasets. The initial 10 TRs were removed 
due to film onset delay, leaving 1477 volumes in total.
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5.2.3 Analysis and Annotation of the Films

To  categorize  the  features  of  the  presented  stimuli,  we 
annotated the  films using  a  mix  of  fully  automated and 
human labeling approaches, as described in the previous 
section.  Three  independent  annotators  (L.T.,  A.I.,  L.M.) 
systematically identified the presence or absence of each of 
the dimensions outlined in Table 1 for each action in the 
film  101 Dalmatians.  This  was  used  as  a  proxy  for  the 
consistency of  the  annotations for  the  other  two movies. 
Each stimulus was analyzed run by run, and the timecodes 
of each action were extracted with a temporal resolution of 
hundredths  of  a  second.  Some  dimensions  presented 
choices beyond 1 or 0 (e.g., the "main effector" dimension, 
which  included  13  levels).  For  certain  dimensions,  NaN 
was also accepted, indicating that none of the given options 
applied to a specific action (e.g., in the multi-agent or joint-
action  section  when  the  action  involved  only  a  single 
agent). The timestamps for each action were determined by 
the first of the two annotators (L.T.).

Inter-rater  consistency  in  annotating  the  films  was 
estimated by correlating the two resulting design matrices 
after  encoding  all  columns  of  the  matrix  using  custom 
MATLAB  functions.  As  described  earlier,  the  semantic 
model of action was based on the verb associated with the 
action and the noun of the object/agent annotated by the 
two raters. Action verbs were chosen to describe the action 
in a generalized manner, avoiding rare or unusual verbs. 
Particular care was also taken in selecting nouns to describe 
either  the  associated  object  (if  present)  or  the  agent  (if 
present).
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It is believed that the noun provides contextual information 
to the verb. Generally, when an action was intransitive, the 
agent was described instead of the associated object. These 
actions were often intransitive and communicative (e.g., a 
dog barking or a man talking), whereas actions in which 
the object was described by a noun were typically transitive 
and tool-mediated.

5.3 Model Description and Construction

The following models constitute the three different levels or 
perspectives onto which the actions displayed in the movie 
have been captured. The low-level visual model captures 
the perceptual properties of the film stimuli by analyzing 
motion energy across time. Using a set of Gabor wavelets 
tuned  to  different  spatial  and  temporal  frequencies,  this 
model  quantifies  the  dynamics  of  visual  information, 
emphasizing  rapidly  changing  motion  patterns  that  are 
known to engage early visual and motion-sensitive cortical 
areas,  such  as  the  occipital  cortex  and  middle  temporal 
(MT) regions. In contrast, the high-level categorical action 
model  represents  actions  based  on  a  structured  set  of 
conceptual features, including transitivity, tool mediation, 
sociality, and effector involvement. By categorizing actions 
along these dimensions, this model provides a framework 
for  understanding  how  the  brain  encodes  goal-directed 
movements  and  interaction  contexts,  engaging  regions 
associated  with  action  recognition  and  social  cognition, 
such  as  the  superior  temporal  sulcus  (STS)  and 
temporoparietal  junction  (TPJ).  Finally,  the  high-level 
semantic  action  model  captures  the  linguistic  and 
conceptual  associations  of  actions  by  leveraging  word 
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embeddings derived from a word2vec representation. This 
model encodes the semantic relationships between action 
verbs and their associated agents or objects, allowing for an 
exploration  of  how  meaning  is  structured  in  the  brain. 
Previous research suggests that such representations recruit 
lateral  temporal  and  prefrontal  regions,  facilitating  the 
integration  of  conceptual  knowledge  with  perceptual 
experience.

Low-level visual model

The total  level  of  motion energy was computed for each 
second  of  the  film  using  a  set  of  6,555  motion  energy 
descriptors, consisting of a quadrature pair of space-time 
Gabor filters (Gabor wavelets with three distinct temporal 
frequencies: 0 - static energy -, 2, and 4 Hz; Nishimoto et al., 
2011). The model describes each frame of the film based on 
a  set  of  specific  spatial  frequencies,  orientations,  and 
temporal frequencies that capture rapidly changing visual 
information.

High-level categorical action model

To  categorize  actions  during  the  viewing  of  films,  we 
constructed  a  model  considering  the  following  17 
dimensions:  context,  interaction,  target,  predictability, 
agent,  main effector,  effector  visibility,  transitivity,  action 
description,  object  description,  sociality,  dynamics, 
durability, telicity, iterativity, multi-agent/joint action, and 
tool mediation. The specific coding for each dimension is 
described below.
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 Context describes the scene in which the action is 
occurring, categorized into three levels (e.g., indoors, 
urban outdoors, rural outdoors). This dimension is 
represented predominantly in the visual cortex and 
fusiform gyrus (Masson & Isik, 2021).

 Interaction scale (Tarhan & Konkle, 2020) measures 
the  level  of  movement  required  to  complete  an 
action (e.g., knitting vs. running).

 Target describes  the  directionality  of  movement, 
coded into four levels:  towards the agent,  another 
human  agent,  an  animal,  or  an  object.  Previous 
studies showed that interacting with another human 
primarily  involves  the  occipital  face  area  (OFA), 
fusiform  face  area  (FFA),  and  superior  temporal 
sulcus (STS) (Tarhan & Konkle, 2020).

 Predictability describes the predictability of actions 
observed  (0  =  unpredictable,  1  =  predictable). 
Predictable  actions  are  associated  with  the  Action 
Observation  Execution  Network  (AOEN),  while 
unpredictable ones activate regions associated with 
Theory of Mind (ToM) (Thomas et al., 2018).

 Agent identifies whether the action is performed by 
a  human or  non-human agent,  represented  in  the 
extrastriate  visual  cortex  and  the  fusiform  gyrus 
(Haxby et al., 2020).

 Main effector is categorized into 13 levels based on 
the body part involved in the action (e.g., hand, arm, 
leg). Different parts of the body are represented in 
distinct regions, such as the intraparietal sulcus (IPS) 
and  temporo-occipital  cortex  (Tarhan  &  Konkle, 
2020).
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 Effector visibility describes whether the effector is 
visible  or  inferred,  involving  visual  cortices  and 
temporoparietal regions (Tarhan & Konkle, 2020).

 Transitivity indicates whether the action involves an 
object interaction. Transitive actions are represented 
in the ventral lateral occipitotemporal cortex (LOTC) 
(Wurm et al., 2017).

 Action description and object description are part 
of  the  semantic  model,  represented  mainly  in  the 
visual  cortex  and  fusiform  gyrus  (Masson  &  Isik, 
2021).

 Sociality describes  whether  the  action  involves 
social  interaction,  represented  in  the  dorsal  LOTC 
and STS (Wurm et al., 2017).

 Dynamics (Aflalo et al., 2020) indicates whether an 
action  involves  movement  (e.g.,  running  vs. 
thinking).

 Durability (Aflalo et al., 2020) specifies whether the 
action is instantaneous or sustained over time.

 Telicity (Aflalo et al., 2020) describes actions with a 
clear endpoint.

 Iterativity (Aflalo et al., 2020) indicates whether the 
action  requires  repetitive  movement  patterns.  All 
these dimensions are represented within the action 
observation  network,  particularly  in  the  posterior 
parietal cortex.

 Multi-agent/joint  action distinguishes  between 
actions performed by multiple agents or jointactions. 
Involves visual, prefrontal, parietal cortices, fusiform 
gyrus, and STS (Sebanz et al., 2016).
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 Tool  mediation describes  whether  the  action 
requires the use of a tool, represented in the dorsal 
parietal  cortices,  the  ventral  stream,  and  the  left 
posterior  middle  temporal  gyrus  (Ricciardi  et  al., 
2013).
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Fig. 7: Comprehensive list of action features used to categorize actions 
across  the  three  films.  Each  detected  action  was  systematically 
annotated with categorical  descriptors capturing distinct facets of its 
representation.

High-level semantic action model 

For  the  high-level  semantic  action  model,  we  used  the 
word2vec algorithm (Mikolov et  al.,  2013).  Word2vec was 
employed to obtain semantic representations for the verb of 
the action and its associated agent/object from a corpus of 
Italian words curated in our lab (Lettieri et al., 2022). The 
embeddings  (128  dimensions,  window  size  5,  CBOW 
architecture) were averaged across each 2-second interval 
(matching  the  fMRI  temporal  resolution).  Principal 
Component  Analysis  (PCA)  was  applied  to  preserve 
components  explaining  at  least  75%  of  the  variance, 
resulting in 49 columns for 101 Dalmatians, 56 columns for 
Forrest Gump, and 48 columns for Grand Budapest Hotel. The 
resulting columns were convolved with a standard gamma 
function as a hemodynamic response function.
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Fig.  8:  The  original  feature  matrix,  representing  the  high-level 
semantic action model (comprising the action verb and object name), 
underwent  a  series  of  preprocessing  steps  before  inclusion  in  the 
regression  analysis.  Dimensionality  reduction  was  first  applied  to 
minimize  overfitting  while  preserving  key  variance  in  the  semantic 
features.  The  reduced  feature  set  was  then  convolved  with  a 
hemodynamic  response  function  (HRF),  followed  by  z-score 
normalization  to  standardize  the  features  (mean  =  0,  standard 
deviation = 1). Finally, the data were downsampled to align with the 
fMRI temporal resolution (2 seconds).

To  account  for  potential  collinearity  between  high-level 
action comprehension and motion within the stimulus, we 
extracted  the  motion  energy  from  all  three  films  using 
MATLAB  (R2020a,  The  MathWorks,  Natick,  MA).  After 
resampling all films to the same size (i.e., 600 x 600 pixels), 
the  film  stimuli  were  analyzed  at  the  highest  available 
temporal resolution (i.e., frame duration, which was 0.04 s 
at 25 frames per second for "101 Dalmatians," and 0.04 s at 
24 frames per second for  both "Forrest  Gump" and "The 
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Grand  Budapest  Hotel").  The  low-level  motion  features 
were extracted using the GIST model  (Oliva & Torralba, 
2006).

5.4 Voxel-wise Encoding Modeling

A  voxel-wise  encoding  modeling  approach  with  cross-
validation (k=5) was used to predict voxel-specific BOLD 
responses  evoked  during  film  viewing.  For  each  voxel, 
BOLD responses were modeled as a linear combination of 
feature spaces created by tagging the films and convolving 
with a gamma function. Specifically, ordinary least squares 
(OLS)  regression  was  implemented  to  estimate  the  beta 
weights of the stimulus features.

Using  MATLAB's  built-in  functions  (R2022a,  The 
MathWorks, Natick, MA), we applied principal component 
analysis  (PCA)  to  the  predictor  matrices  and  extracted 
components  that  explained  99%  of  the  variance.  This 
process was employed to reduce the dimensionality of the 
feature space (~45 predictors before PCA). Across all three 
films, the selected components ranged between 20 and 25. 
Subsequently,  in a cross-validation scheme, we estimated 
for each partition—based solely on the training set's beta 
parameters—the t-statistic of each voxel, and selected the 
top  5  features  with  the  best  t-statistic  for  the  encoding 
procedure. The purpose of this step was to further reduce 
the dimensionality of the feature space, as methodological 
studies  have demonstrated that  a  voxel  cannot  represent 
more  than  five  dimensions.  Using  this  method,  we 
estimated the beta parameters for each voxel, utilizing only 
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the principal components identified in the feature selection 
phase.

The  data  were  first  divided  into  five  partitions  using 
MATLAB's  cvpartition function.  Of  these,  four  partitions 
were  used  to  estimate  beta  weights.  After  model 
estimation,  the  data  excluded  from  the  remaining  fifth 
partition  in  the  loop  were  used  to  evaluate  model 
performance,  using  the  r-squared  measure.  We  assessed 
model performance by computing the relationship between 
predicted and actual BOLD responses.

For each voxel separately,  this process was repeated five 
times,  and  model  performance  was  averaged  across 
repetitions.

Specifically,  we  defined  a  leave-one-fold-out  cross-
validation  (LOOCV)  loop,  in  which  we  estimated  the  t-
statistics of each voxel based solely on the training set. For 
each  voxel,  a  voxel-wise  multiple  regression  was 
performed to obtain the t-statistics of the beta coefficients 
for the model descriptors. The t-statistics were computed 
by  averaging  the  beta  coefficients  across  subjects  and 
dividing them by their standard errors. We decided to limit 
the maximum number of features predicting a BOLD signal 
in a voxel to 5, given that the encoding properties of small 
cortical areas (or voxels) appear to be based on relatively 
low dimensionality  (Diedrichsen et  al.,  2013;  Ahlheim & 
Love, 2018).

Subsequently, in the final encoding procedure, the selected 
features  were  used  to  predict  the  test  set  of  a  cross-
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validation  loop  (Fig.  10),  thus  providing  an  unbiased 
estimate of model performance. Using the estimated beta 
weights,  the  unseen  BOLD  responses  were  predicted  as 
follows:

Y predicted=X ⋅estimate d β❑+❑❑ϵ

where Y-predicted is an array of size TR (total number of 
fMRI  volumes  from  the  test  set)  composed  of  predicted 
BOLD  signals.  The  final  step  involved  calculating  the 
amount of variance explained by the model in each voxel. 
Model performance was evaluated using the R-squared (R²) 
statistic.

Two separate encoding models were constructed to assess 
which  voxel  could  be  accurately  predicted  by  the  linear 
combination  of  categorical  or  semantic  features  of  the 
actions.

We  calculated  the  prediction  performance  map  across 
participants  for  each  model.  Group-level  analyses  were 
conducted  using  a  non-parametric  permutation  test  to 
identify  voxels  that  showed  prediction  performance 
significantly  greater  than  chance.  One  thousand  null 
models were generated by randomly shuffling the rows of 
the  design  matrix  obtained  after  PCA  analysis  (Fig.  11). 
Subsequently, for the null models, we followed the exact 
same  procedure  used  previously  for  the  original  model 
(feature  selection,  encoding),  ultimately  obtaining  a 
measure of the performance (R-squared) of the null models 
for each voxel (1000 R-squared values per voxel; Fig. 12). 
From  the  empirical  null  distribution  of  prediction 
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performance,  one-tailed  p-values  were  calculated  and 
adjusted  using  FDR  and  FWER  corrections.  The  group-
averaged  prediction  performance  maps  for  each  model 
were thresholded at P-FDR < 0.05 and P-FWER < 0.05 and 
were projected onto the cortical surface.

5.5 Results

To assess collinearities among the features, we computed a 
correlation  matrix  for  each  film's  feature  set.  Figure  X 
illustrates  the  correlation  matrices  for  101  Dalmatians, 
Forrest  Gump,  and Grand Budapest  Hotel.  We observed 
notable collinearities among certain features, particularly in 
high-level action dimensions such as sociality, telicity, and 
iterativity.  These  correlations  suggest  shared  variance 
among  features  that  may  reflect  overlapping  cognitive 
processes during action observation.

To  investigate  how  these  collinearities  impacted  the 
model's  performance,  we  applied  Principal  Component 
Analysis  (PCA)  to  reduce  dimensionality  and  address 
multicollinearity.  The  first  components  captured  the 
majority of the variance,  indicating that a reduced set of 
dimensions  sufficiently  represented  in  every  movie  the 
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features  while  minimizing  redundancy.

Fig. 9: From the left, three small correlation matrices representing the 
correlation  between  the  annotated  features  in  each  movie,  the  first 
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correlation  matrix  is  derived  from  tagging  of  the  movie  “101 
Dalmatians”, the second from the movie “Forrest Gump” and the third 
from  the  movie  “Grand  Budapest  Hotel”.  The  bigger  matrix  is  the 
average  of  the  three  different  correlation  matrices,  underlying  once 
more that regressors correlate with a similar intensity and form clusters 
of similar shape in the three different movies’ ratings. 

Our  voxel-wise  encoding  models  demonstrated  robust 
prediction  performance  across  all  three  films.  Figure  7 
shows the group-averaged R-squared maps for each film, 
indicating  that  the  models  significantly  captured  the 
variance  in  BOLD  responses  with  differences  in  the 
performance  related  to  the  SNR varying  in  the  different 
datasets.

For  the  101  Dalmatians  dataset,  the  average  variance 
explained  was  0.04%  (P-FDR  <  0.05),  predominantly  in 
occipital  and  posterior  temporal  regions.  Similarly,  for 
Forrest  Gump  and  Grand  Budapest  Hotel,  the  models 
achieved  significant  R-squared  values  in  occipital  and 
posterior-temporal and temporal cortices for all  the three 
different models. Importantly, despite differences in stimuli 
and narrative complexity, the models consistently captured 
variance across these naturalistic settings, supporting their 
generalizability for further use in an in-depth single movie 
analysis (chapter 3).
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Fig.  10:  FWER-corrected  R²  results  for  the  three  datasets 
(corresponding to the three movies) for the high-level semantic action 
model. Brain surfaces are displayed from three orientations—posterior 
and  lateral  views  from  both  hemispheres—illustrating  the  spatial 
distribution of model performance across the cortex. 
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Fig  11:  FWER-corrected  R²  results  for  the  three  datasets 
(corresponding  to  the  three  movies)  for  the  low-level  visual  model. 
Brain  surfaces  are  displayed  from  three  orientations—posterior  and 
lateral  views  from  both  hemispheres—illustrating  the  spatial 
distribution of model performance across the cortex. 
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Fig. 12: FWER-corrected R² results for the three datasets (corresponding 
to the three movies) and the high-level categorical action model. Brain 
surfaces are displayed from three orientations—posterior  and lateral 
views from both hemispheres—illustrating the spatial distribution of 
model performance across the cortex. 

A permutation test was conducted to evaluate the statistical 
significance  of  model  predictions,  with  null  distributions 
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generated  from  shuffled  design  matrices.  Observed  R-
squared  values  exceeded  null  distributions  (P-FWER  < 
0.05), confirming that the models' predictive power was not 
due to chance.

We  identified  significant  activation  within  the  Action 
Observation  Network  (AON),  including  the  superior 
temporal  sulcus  (STS),  premotor  cortex,  and  inferior 
parietal  lobule,  consistent  with  previous  research linking 
these regions to action understanding and social cognition 
(Avenanti et al., 2013; Zhou et al., 2023; Mizuguchi et al., 
2016).  The  STS,  a  core  component  of  the  AON,  plays  a 
crucial  role  in  processing  observed  movements  and 
inferring others'  intentions (Cortese,  2021).  The premotor 
cortex, particularly in conjunction with the inferior frontal 
gyrus,  is  involved in anticipatory simulation of observed 
actions (Avenanti  et  al.,  2013),  while  the inferior  parietal 
lobule contributes to mapping observed actions onto motor 
representations,  a  key  process  in  action  recognition  and 
social interaction (Nelissen et al., 2011).

We  also  highlight  similarities  between  low-level  models 
(motion  energy),  semantic  models  (word  embeddings  of 
verbal etiquettes of each action), high-level action models 
(transitivity,  telicity,  effectors  involved,  etc.),  that  will  be 
subsequently  further  investigated  in  chapter  3  of  the 
present  thesis. 
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We  observed  macro-level  similarities  between  model 
predictions across the three films. Specifically: the low-level 
motion energy model predominantly explained variance in 
early  visual  areas,  including  the  occipital  cortex  and 
motion-sensitive middle temporal (MT) regions, reflecting 
the model's emphasis on perceptual features.

In  contrast,  the  high-level  categorical  action  model 
captured variance  in  superior  temporal  and TPJ  regions, 
suggesting  an  involvement  of  social  and  cognitive 
processing in action understanding.

The high-level semantic action model showed activation in 
lateral temporal cortices and the angular gyrus, indicating 
its role in processing linguistic and contextual information.
These differences highlight the hierarchical nature of action 
representation, from low-level perceptual encoding to high-
level semantic integration.

5.6 Discussion

Our  analysis  revealed  differences  in  signal-to-noise  ratio 
(SNR) across the three datasets, likely due to variations in 
scanning parameters and film characteristics.  Specifically, 
the  101 Dalmatians  dataset  showed lower temporal  SNR 
compared  to  Forrest  Gump  and  Grand  Budapest  Hotel, 
which  could  be  attributed  to  differences  in  narrative 
complexity and auditory-visual integration requirements.
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Variability in SNR is known to influence the reliability of 
BOLD  responses,  impacting  model  performance  across 
regions  involved  in  action  observation  and  semantic 
processing  (Dubois  &  Adolphs,  2016).  Moreover, 
naturalistic stimuli have been shown to elicit variable SNR 
depending  on  sensory  modalities  and  scene  transitions, 
which might explain the observed differences (Mandelkow 
et al., 2017).
These  SNR  differences  underscore  the  importance  of 
considering  stimulus-specific  factors  when  interpreting 
model  performance,  as  high  temporal  dynamics  and 
auditory  complexity  can  reduce  SNR,  particularly  in 
associative and prefrontal cortices (Abreu et al., 2018).

To  address  multicollinearity  and  improve  model 
generalizability, we applied Principal Component Analysis 
(PCA) to reduce dimensionality in the feature space. PCA 
effectively preserved key variance while mitigating noise, 
aligning with previous studies showing that dimensionality 
reduction enhances model interpretability and performance 
in complex fMRI datasets (Adhikari et al., 2019).
Interestingly, the first few principal components captured 
the  majority  of  variance  in  all  three  films,  suggesting  a 
shared  low-dimensional  structure  underlying  action 
representation.  This  finding supports  the  hypothesis  that 
action  semantics  are  encoded  in  compressed  neural 
subspaces,  consistent  with  hierarchical  models  of  action 
observation (Lv et al., 2015).
Moreover, the application of PCA facilitated cross-dataset 
comparisons by harmonizing the dimensionality of feature 
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sets,  allowing us to directly compare model performance 
across films with varying narrative complexity and sensory 
modalities.  This  approach  enhances  reproducibility  and 
robustness,  particularly  in  naturalistic  fMRI  studies  with 
heterogeneous stimuli (Afshin-Pour et al., 2014).

Our  encoding  models  demonstrated  robust  performance 
across all three films, indicating that action representation 
is  consistently  captured  despite  differences  in  narrative 
structure,  temporal  dynamics,  and  cultural  context.  This 
generalizability  suggests  that  the  brain  encodes  action 
semantics  through  a  hierarchical  network  involving 
perceptual,  cognitive,  and  social  processing  areas, 
consistent  with  the  Action  Observation  Network  (AON) 
(Mandelkow et al., 2016).
Notably, model performance was not confined to the 101 
Dalmatians dataset, but generalized well to Forrest Gump 
and Grand Budapest Hotel, demonstrating that our feature 
set  captures  invariant  aspects  of  action  semantics.  This 
cross-dataset  consistency  aligns  with  findings  that 
naturalistic stimuli engage distributed neural networks in a 
reproducible manner, irrespective of cultural and linguistic 
differences (Thirion et al., 2014).
The  use  of  multiple  films  with  distinct  narrative  arcs 
allowed us to identify common neural coding schemes for 
action understanding, enhancing the ecological validity of 
our models. This robustness across stimuli emphasizes the 
potential  of  using  diverse  naturalistic  datasets  to  study 
complex cognitive functions.
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A key strength of this study is the reproducibility of model 
performance  across  three  independent  datasets, 
underscoring the robustness of our encoding models. Our 
use  of  cross-validation  and  permutation  testing  ensured 
that  observed  prediction  accuracy  was  not  due  to 
overfitting,  confirming  the  models'  generalizability 
(Mandelkow et al., 2017).
Reproducibility was particularly high in perceptual regions 
for low-level motion models, and in the STS and TPJ for 
high-level categorical and semantic models, consistent with 
established  neural  correlates  of  action  observation  and 
social cognition (Lv et al., 2015).
5.7 Conclusions
By  demonstrating  consistent  model  performance  across 
films  with  varying  narrative  complexity  and  cultural 
contexts,  we  provide  compelling  evidence  for  a  shared 
neural architecture supporting action representation. This 
reproducibility supports the use of naturalistic stimuli for 
investigating complex cognitive functions, bridging the gap 
between controlled experiments and real-world cognition 
(Dubois & Adolphs, 2016).
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Chapter 6

Neural representation of action features 
across sensory modalities: a multimodal 

fMRI study
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6. Introduction

Action processing in neuroscience explores how the brain 
encodes,  processes,  and  retrieves  information  related  to 
actions (Grafton & Hamilton, 2007;  Kilner,  2011;  Giese & 
Rizzolatti, 2015). In the last decades, particular interest has 
arisen around the role of the so-called action representation 
or action observation network (AON) which is believed to 
play  a  crucial  role  in  understanding  and  interpreting 
observed  actions  (Decety  &  Grèzes,  1999;  Gallese  et  al., 
2004; Rizzolatti & Craighero, 2004). This network spans a 
wide extent of the cortical mantle and comprises distant, 
yet functionally interconnected regions, extending from the 
inferior  ventral  and  dorsal  premotor  cortex  (vPMC  and 
dPMC) to  the  bilateral  occipitotemporal  (LOTC)  and the 
parietal cortices.
Various theoretical frameworks have been proposed in the 
literature  to  explain  the  mechanisms  underlying  action 
representation  in  the  human  brain,  each  contributing 
unique insights into the cognitive and neural mechanisms 
involved. Evidence suggests that the human brain encodes 
the specific features contributing to action recognition (e.g., 
kinematics,  object-centered  goals,  motor  acts)  through  a 
hierarchical  and  distributed  organization  (Grafton  & 
Hamilton, 2007;  Kilner,  2011).  This existing literature has 
primarily  explored  the  representation  of  distinct  sets  of 
features  -  e.g.,  effector-target  interaction  (Beurze  et  al., 
2007), target-agent identity (Chambon et al., 2014), social-
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emotional  valence  (De  Gelder  &  Van  den  Stock,  2011). 
However,  the  emergence  of  high-level  conceptual 
representations of action, and the degree to which feature 
coding  is  shared  across  constituent  regions  of  the  AON 
remain subjects of ongoing debate (Simonelli et al., 2024).
Furthermore,  while  much  of  the  existing  literature  has 
focused on the visuomotor processing of actions, the ability 
of  the  AON  to  encode  the  properties  of  actions  across 
different sensory modalities is still of particular interest, as 
it  may  reveal  fundamental  principles  of  neural 
representation  and  cognitive  processing  (Calvert  et  al., 
2004;  Beauchamp,  2005).  Recent  studies  have  suggested 
that  the  AON  exhibits  a  degree  of  invariance  to  the 
modality of stimulus presentation, indicating that the brain 
can  extract  and  represent  action-related  information 
regardless of whether it is presented visually, auditorily, or 
through a combination of both (James et al., 2011; Kirsch & 
Cross,  2015; Copelli  et  al.,  2022).  In this regard, evidence 
exists that congruent auditory and visual stimuli enhance 
the  activation  of  the  AON  compared  to  unimodal 
presentations (Bischoff et al., 2014) and that the integration 
of auditory and visual information leads to a more robust 
representation of actions in the brain (Calvert et al., 2004). 
Although this invariance is crucial for understanding how 
individuals interpret and respond to actions in a dynamic 
environment  where  sensory  inputs  can  vary  widely,  the 
extent to which the encoding of distinct action features is 

117



stable  across  sensory  modalities  remains  poorly 
understood.

Here,  we  assessed  whether and  to  what  extent distinct 
features  of  action  representation  are  processed  under 
naturalistic conditions across different sensory modalities. 
Taking advantage of the rich literature based on behavioral 
and  functional  studies   (e.g.,  Van  Elk  et  al.,  2014; 
Kemmerer, 2021; Kabulska & Lingnau, 2023), we purposely 
defined  a  comprehensive  taxonomic  model  for  action 
representation  that  allows  a  detailed  categorization  of 
action-related events even in naturalistic condition, when 
action  features  are  often  interacting  and  overlapping. 
Specifically, a set of six domains of action features -  Space, 
Effector, Agent & Object, Social, Emotion, and Linguistic -  was 
defined a priori encompassing multiple action features in 
terms of their context, execution, and underlying dynamics 
(Fig.  11A  and  Tab.1).   Furthermore,  we  acquired  brain 
responses  using  functional  Magnetic  Resonance  Imaging 
(fMRI)  in  three  groups  of  participants  exposed  to  the 
multimodal audiovisual,  the visual-only,  or the auditory-
only versions of  the  live-action movie  101 Dalmatians (S. 
Herek,  Great  Oaks  Entertainment  &  Walt  Disney,  1996). 
Our  aim was  twofold:  first,  we  tested  the  ability  of  our 
model to predict fMRI activity by measuring the impact of 
each  action  domain  through  a  multi-voxel  encoding 
analysis (Haynes, 2015; Naselaris et al., 2011); second, we 
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determined whether the representation of action domains 
was comparable across sensory modalities within the AON. 
Importantly,  here  we  adopted  a  variance  partitioning 
approach to disentangle the unique contribution of action 
features,  whereas  previous  research  on  action 
representation  has  largely  focused  on  individual 
dimensions  in  isolation  (Kemmerer,  2021),  often 
overlooking potential confounds due to collinearity among 
action categories.

6.1 Methods

In this study, we investigated the neural encoding of action 
features  across  sensory  modalities  by  applying  a 
comprehensive  taxonomic  model  to  fMRI  data  collected 
during  naturalistic  stimulation.  We  analyzed  part  of  a 
naturalistic fMRI dataset from our previous study (Setti et 
al., 2023). First, a full-model Canonical Correlation Analysis 
(CCA) assessed how well the entire action model predicted 
brain  activity,  quantifying  the  proportion  of  variance 
explained  within  cortical  regions  of  interest.  Second,  a 
variance  partitioning  approach  measured  the  unique 
contribution of each domain. This framework disentangled 
domain-specific and shared effects in brain representations 
of  action  features  across  experimental  conditions.  Thirty 
participants were divided into three groups and exposed to 
the audiovisual,  visual-only,  or auditory-only versions of 
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the  same  movie.  Action  events  in  the  stimuli  were 
identified  and  annotated  by  three  independent  raters, 
according  to  an  ad-hoc  action  model  consisting  of  six 
conceptual  domains:  Space,  Effector,  Agent  &  Object, 
Social,  Emotion,  and  Linguistic.  The  final  model  was 
validated through inter-rater agreement and served as the 
final  input  for  the  multivariate  encoding  fMRI  analysis, 
offering a detailed and structured representation of action-
related information from the movie stimulus as perceived 
consistently  across  multiple  raters.  First,  a  full-model 
Canonical Correlation Analysis (CCA) assessed how well 
the  entire  action  model  predicted  brain  activity, 
quantifying  the  proportion  of  variance  explained  within 
cortical regions of interest. Second, a variance partitioning 
approach  measured  the  unique  contribution  of  each 
domain.  This  framework  allowed  us  to  disentangle 
domain-specific and shared effects in brain representations 
of action features across experimental conditions.

Participants
Thirty healthy and typically developing participants were 
assigned to one of three experimental conditions consisting 
of  three  versions  of  naturalistic  stimulation:  audiovisual 
(AV) (N=10, 35±13 years, 8 females); visual-only (V) (N=10, 
37±15 years, 5 females); or auditory-only (A) (N=10, 39±17 
years, 7 females). All subjects were right-handed and native 
Italian speakers. Participants had no history of neurological 
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or  psychiatric  conditions,  normal  hearing,  normal  or 
corrected  vision,  and  were  drug-free.
Each  participant  was  instructed  about  the  nature  of  the 
research and gave written informed consent. The study was 
approved by  the  Ethical  Committee  of  the  University  of 
Turin (protocol number 195874/2019) and conforms to the 
Declaration of Helsinki.

Stimuli and Experimental Conditions
Naturalistic stimulation consisted of the presentation of a 
shortened and edited version (~54 minutes) of the movie 
"101 Dalmatians" (S.  Herek,  Great  Oaks Entertainment & 
Walt Disney, 1996), split into six runs (~8 minutes each). 
The stimulation was delivered in three different versions: 
(1)  audiovisual  (AV),  including both visual  and auditory 
features of the movie stimulus; (2) visual (V) features only 
with no auditory stimulation; (3) auditory (A) features only 
with no visual stimulation. 
In the A and AV versions, an Italian voice-over serving as a 
narrator's  verbal  description  of  the  movie  was 
superimposed.  The  audiodescription  included  all  the 
aspects  of  the  visual  scenery  that  can  not  be  conveyed 
through  dialogue,  music,  or  environmental  sounds. 
Likewise,  in  the  V  and  AV  versions,  Italian  subtitles 
transcribing  the  whole  soundscape  (dialogues,  narrator's 
voice-over, environmental sounds) were added. For further 
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details on the editing procedure, we refer the reader to the 
original paper (Setti et al., 2023). 
In  all  conditions,  participants  were  instructed  to  simply 
enjoy the movie, and in the A condition, participants were 
instructed to keep their eyes closed.

Taxonomic Action model
Features selection and domains creation
To  create  a  detailed  and  systematic  representation  of 
action-related  events,  the  taxonomic  model  was 
constructed  through  an  iterative  process  that  integrated 
multiple  conceptual  frameworks  ranging  from embodied 
cognition to ecological  psychology, and action semantics. 
We  first  identified  candidate  features  based  on  their 
relevance  to  action  perception  and  representation  in  the 
brain, as supported by prior studies (e.g., Tarhan & Konkle, 
2020; Haxby et al., 2020; Wurm et al., 2017; see Table 1 and 
Fig.  11A).  Each  feature  was  operationalized  to  capture 
specific aspects of actions.
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Fig. 13: Taxonomic Action Model 
(A) Schematic representation of the six action domains (Space, Effector, 
Agent  &  Object,  Social,  Emotion,  and  Linguistic)  and  corresponding 
features used to annotate actions of the movie stimulus. (B) Frequency 
of action features occurrence in the stimulus. Features are color-coded 
to denote the domain they pertain to, with a larger font size indicating 
a greater frequency.  EBL:  Emotional Body Language.  EIA:  Emotional 
Implication  of  Action.  ToM:  Theory  of  Mind.  (C)  Mean  Inter-rater 
agreement across domains and for the full model. Error bars indicate 
standard deviation. Dashed bars represent the 99th percentile of the 
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Figure 1. Taxonomic action model.
(A) Schematic representation of the six action domains (Space, Effector, Agent & Object, 
Social, Emotion, and Linguistic) and corresponding features used to annotate actions of 
the movie stimulus. (B) Frequency of action features occurrence in the stimulus. Features 
are color-coded to denote the domain they pertain to, with a larger font size indicating a 
greater frequency. EBL: Emotional Body Language. EIA: Emotional Implication of Action. 
ToM: Theory of Mind. (C) Mean Inter-rater agreement across domains and for the full 
model. Error bars indicate standard deviation. Dashed bars represent the 99th percentile of 
the null distribution obtained via permutation testing (p < 0.01). (D) Pairwise similarity 
between domains and the full model, indicating the amount of shared variability. (E) 
Similarity between model domains and computational models, measuring the extent to 
which the action model captures low- and high-level perceptual and semantic information 
in the stimulus. Visual low-level: motion-energy model; visual high-level: ReLU6 layer of the 
VGG-19 network; acoustic low-level: spectral descriptors; acoustic high-level: ReLU5.1  
layer of the VGGish network; semantic: GPT-4 word embeddings.



null  distribution  obtained  via  permutation  testing  (p <  0.01).  (D) 
Pairwise similarity between domains and the full model, indicating the 
amount of  shared variability.  (E)  Similarity between model domains 
and computational models, measuring the extent to which the action 
model  captures  low-  and  high-level  perceptual  and  semantic 
information in  the  stimulus.  Visual  low-level:  motion-energy model; 
visual high-level: ReLU6 layer of the VGG-19 network; acoustic low-
level:  spectral  descriptors;  acoustic  high-level:  ReLU5.1  layer  of  the 
VGGish network; semantic: GPT-4 word embeddings.

The  selected  features  were  grouped  into  six  domains  to 
minimize overlap and ensure orthogonality: Space,  Effector, 
Agent  &  Object,  Social,  Emotion,  and  Linguistic.  This 
organization  reflects  both  theoretical  coherence  and 
empirical  evidence  suggesting  distinct  neural 
representations for these feature sets. These domains were 
derived from a comprehensive review of existing literature 
on  action  representation,  combining  theoretical  insights 
and  practical  considerations  to  ensure  their  relevance  to 
naturalistic  stimuli.  Each  domain  includes  features  that 
define  specific  dimensions  of  actions,  allowing  their 
characterization at multiple levels of granularity. 
The Space domain refers to the type of environment where 
an action occurs and the extent of movement required to 
complete  it.  It  captures  the  environment's  nature  -  e.g., 
indoor, urban outdoor, or countryside outdoor (Dima et al., 
2022) - and quantifies the interaction scale, defined by the 
movement scope of the actor within the scene (Tarhan & 
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Konkle, 2020). The  Effector  domain characterizes the main 
body part involved in performing the action and whether 
this effector is visible or hidden from the observer’s view 
during the action (Tarhan & Konkle,  2020).  The  Agent & 
Object domain addresses the attributes of the action's agent 
and its non-social target. It distinguishes actions based on 
whether the agent is human or non-human (Haxby et al., 
2020) and whether the action is directed toward an object or 
the  self  (Tarhan  &  Konkle,  2020).  This  domain  also 
identifies  whether  the  action  involves  interactions  or 
physical  contact  with  inanimate  objects  (Masson  &  Isik, 
2021) and whether it requires the use of tools (Gallivan et 
al.,  2013).  The  Social  domain  includes  a  set  of  features 
related mainly to human or animal interactions (Wurm et 
al., 2017). In particular, this domain specifies whether the 
action  has  a  social  target  (Tarhan  &  Konkle,  2020),  i.e., 
directed toward another individual (human or animal), or 
involves interaction or physical contact with another agent 
(Masson  &  Isik,  2021).  Furthermore,  it  considers  the 
number  of  individuals  visible  in  the  scene  (Dima  et  al., 
2023), whether the action is performed by multiple agents 
in a coordinated or concurrent fashion (Sebanz et al., 2006; 
Sinigaglia  and  Butterfill,  2020),  and,  finally,  whether  the 
action requires inferring another's mental state (Masson & 
Isik,  2021).  The  Emotion  domain  describes  the  emotional 
dimensions of actions, including the presence of emotional 
implications of the action (Goldberg et al., 2014), the use of 
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gesticulation and symbolic gestures (Schippers et al., 2010), 
and  whether  the  action  expresses  portrayed  emotions 
through  body  language,  conveyed  for  instance  by 
movement velocity, acceleration, pitch in the voice or urge 
(Barliya  et  al.,  2013;  Tipper  et  al.,  2015).  Lastly,  the 
Linguistic domain  characterizes  actions  through  features 
derived  from  verbal  descriptors,  focusing  on  semantic 
properties  that  contribute  to  their  representation.  These 
features  include  durativity  (the  temporal  extent  of  an 
action),  telicity  (whether  an  action  has  a  clear  and 
intrinsically defined endpoint), dynamicity, (the degree of 
motion involved in an action - Zarcone & Lenci, 2010), and 
iterativity (whether the action consists of repetitive cycles - 
Xu & Huang, 2013). Altogether, these domains provide a 
structured  taxonomic  model,  grounded  in  the  literature, 
along  with  a  comprehensive  set  of  descriptors  for 
classifying action-related events.

Domai
n

Feature Annotation Reference
s

Annotation 
Example

Space Environment:
the type of 
environment 
where the 
action occurs.

 Indoor
 Urban 

Outdoor
 Country

side 
Outdoor

Dima et 
al., 2022

“Dog sniffs the 
ground”: 
Countryside 
Outdoor

“Girls jogging": 
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Urban Outdoor

"Man hits friend 
with a stick”: 
Indoor

Interaction 
Scale:
the 
magnitude of 
movement in 
the space 
required to 
complete the 
action.

Minimal / 
Extensive

Tarhan & 
Konkle, 
2020

“Dog sniffs the 
ground”: 
Minimal

“Girls jogging":  
Extensive

"Man hits friend 
with a stick”: 
Extensive

Effecto
r

Main Effector:
the primary 
body part 
involved in 
performing 
the action.

 One 
hand

 Both 
hands

 One arm
 Both 

arms
 One leg 

or paw
 All legs 

Tarhan & 
Konkle, 
2020

“Dog sniffs the 
ground”: Head 
or nose

“Girls jogging": 
Whole body

"Man hits friend 
with a stick”: 
Both arms
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or paws
 Mouth
 Head or 

nose
 Tongue
 Eyes
 Whole 

body
 Fingers

Effector 
Visibility:
whether the 
effector is 
visible or 
hidden from 
the observer’s 
view.

Visible / 
Not Visible

Tarhan & 
Konkle, 
2020

“Dog sniffs the 
ground”: Not 
visible

“Girls jogging": 
Visible

"Man hits friend 
with a stick”: 
Visible

Agent 
& 
Object

Agent Type:
whether the 
agent 
performing 
the action is 
human or 

Human / 
Non-Human

Haxby et 
al., 2020

“Dog sniffs the 
ground”: Non-
Human

“Girls jogging": 
Human
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non-human.
"Man hits friend 
with a stick”: 
Human

Non-social 
Action Target:
whether the 
action is 
directed to an 
object or to 
the self.

 Object
 Self

Tarhan & 
Konkle, 
2020

“Dog sniffs the 
ground”: Object

“Girls jogging": 
Self

"Man hits friend 
with a stick”: 
Social

Tool-Mediated:
whether the 
action 
requires the 
use of tools.

Yes / No Gallivan et 
al., 2013

“Dog sniffs the 
ground”: No

“Girls jogging": 
No

"Man hits friend 
with a stick”: Yes

Transitivity:
whether the 
action 
involves 

Yes / No Wurm et 
al., 2017

“Dog sniffs the 
ground”: Yes

“Girls jogging": 
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interaction 
with 
inanimate 
objects.

No

"Man hits friend 
with a stick”: Yes

Non-Social 
Touch:
whether the 
agent makes 
physical 
contact with 
an object or 
self during 
the action.

Yes / No Masson & 
Isik, 2021

“Dog sniffs the 
ground”: Yes

“Girls jogging": 
No

"Man hits friend 
with a stick”: Yes

Social Sociality:
whether the 
action 
involves 
social 
interaction 
with another 
individual 
(human or 
animal).

Social / 
Non-Social

Wurm et 
al., 2017

“Dog sniffs the 
ground”: Non-
social

“Girls jogging": 
Yes

"Man hits friend 
with a stick”: Yes

Social Action 
Target:

 Human
 Animal

Tarhan & 
Konkle, 

“Dog sniffs the 
ground”: non-
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whether the 
action is 
directed to 
another 
individual 
(human or 
animal).

2020 social target

“Girls jogging": 
Non-social target

“Man hits friend 
with a stick”: 
Human

Multi-Agent:
whether the 
action is 
performed by 
multiple 
agents in a 
coordinated 
or concurrent 
manner.

 Single-
agent

 Multiple 
agents 
concurr
ent

 Joint 
actions

Sebanz et 
al., 2006;
Sinigaglia 
& 
Butterfill, 
2020

“Dog sniffs the 
ground”: single-
agent

“Girls jogging": 
Multiple agents 
concurrent

“Man hits friend 
with a stick”: 
Single-agent

People Present:
whether there 
are more than 
2 people 
present in the 
scene.

Yes / No Dima et 
al., 2023

“Dog sniffs the 
ground”: No

“Girls jogging": 
Yes
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“Man hits friend 
with a stick”: No

Theory of 
Mind:
whether the 
action 
involves 
inferring 
another 
individual’s 
mental state.

Yes / No Masson & 
Isik, 2021

“Dog sniffs the 
ground”: No

“Girls jogging": 
No

“Man hits friend 
with a stick”: Yes

Social Touch:
whether the 
agent makes 
physical 
contact with 
an individual 
(human or 
animal) 
during the 
action.

Yes / No Masson & 
Isik, 2021

“Dog sniffs the 
ground”: No

“Girls jogging": 
Yes

“Man hits friend 
with a stick”: Yes

Emotio
n

Emotional 
Body 
Language:
whether the 

Yes / No Barliya et 
al., 2013;
Tipper et 
al., 2015

“Dog sniffs the 
ground”: No

“Girls jogging": 
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action 
expresses 
emotions 
through body 
language.

No

"Man hits friend 
with a stick”: Yes

Emotional 
Implications:
whether the 
action has 
emotional 
significance 
due to its 
narrative or 
context.

Yes / No Goldberg 
et al., 2014

“Dog sniffs the 
ground”: No

“Girls jogging": 
No

"Man hits friend 
with a stick”: Yes

Gesticulation:
whether the 
actor 
gesticulates 
during the 
action.

Yes / No Schippers 
et al., 2010

“Dog sniffs the 
ground”: No

“Girls jogging": 
No

"Man hits friend 
with a stick”: No

Symbolic 
Gesture:
whether the 

Yes / No Schippers 
et al., 2010

“Dog sniffs the 
ground”: No
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action 
executes 
culturally 
specific 
gestures with 
symbolic 
meaning (e.g., 
handshakes, 
salutes).

“Girls jogging": 
No

"Man hits friend 
with a stick”: No

Lingui
stic

Iterativity:
whether the 
action 
involves 
repetitive 
cycles or a 
single 
occurrence.

Repetitive / 
Single

Xu & 
Huang, 
2013

“Dog sniffs the 
ground”: 
Repetitive

“Girls jogging": 
Repetitive

"Man hits friend 
with a stick”: 
Single

Dynamicity:
the degree of 
motion 
involved in 
the action.

Dynamic / 
Static

Zarcone & 
Lenci, 2010

“Dog sniffs the 
ground”: Static

“Girls jogging": 
Dynamic
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"Man hits friend 
with a stick”: 
Dynamic

Durativity:
whether the 
action is 
continuous 
(e.g., 
speaking) or 
instantaneous 
and bounded 
(e.g., 
striking).

Continuous 
/ Bounded

Zarcone & 
Lenci, 2010

“Dog sniffs the 
ground”: 
Bounded

“Girls jogging": 
Continuous
"Man hits friend 
with a stick”: 
Bounded

Telicity:
whether the 
action has a 
clear and 
defined 
endpoint.

Telic / 
Atelic

Zarcone & 
Lenci, 2010

“Dog sniffs the 
ground”: Atelic

“Girls jogging": 
Atelic

"Man hits friend 
with a stick”: 
Telic

Table  1.  Characterization  of  the  features  and domains  of  the 
taxonomic action model
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Stimulus feature space
Based  on  our  taxonomic  model  of  actions,  we  created  a 
stimulus  feature  space  to  capture  detailed  action-related 
aspects  present  in  the  movie  stimulus.  For  this  purpose, 
three  independent  raters  (1F,  a  were  recruited  and 
instructed to watch the movie in the AV condition, identify 
each action in the naturalistic stimulus, and describe it in 
terms  of  the  taxonomic  model.  Each  rater  began  with 
segmenting the stimulus into discrete events. This involved 
independently  detecting  individual  actions  and  marking 
their  specific  onset  and  offset  times  with  a  temporal 
resolution  of  0.1  seconds.  Raters  were  instructed  to 
annotate as many actions as they could detect,  including 
both primary actions - which occur predominantly in the 
foreground of a scene - as well as secondary actions, which 
may  (co)-occur  in  the  background.  To  preserve  the 
ecological  validity  of  the  naturalistic  stimulation,  no 
specific  instructions  were  given  regarding  the  level  of 
granularity for defining actions. Rather, the raters were free 
to  apply their  criteria,  ensuring the annotations reflected 
their subjective interpretations of the action boundaries. For 
each identified action, the raters then evaluated each of the 
22  features  of  the  model  by  manually  annotating  the 
corresponding value. As a result, we obtained a matrix of 
actions by features for each rater.
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Model preprocessing
These matrices were then preprocessed to create a single, 
time-resolved feature space. First, we converted categorical 
annotations  of  specific  features  into  a  binary  format 
applying one-hot encoding, obtaining a total of 38 features. 
We then transformed the datasets from an event-based to a 
time-resolved  format.  Specifically,  based  on  each  action 
onset and offset,  we mapped the respective features to a 
continuous  time  sequence  with  0.1  seconds  resolution, 
obtaining a time by features matrix for each rater.
The resulting time-based feature matrices from individual 
raters were aggregated to create a group-level model. To 
ensure consistency among raters, a value of 1 was assigned 
to a feature at each time point only if at least two out of 
three raters agreed on its presence. The group-level model 
was then down-sampled to match the temporal resolution 
of the fMRI data (2 seconds). To account for events shorter 
than the fMRI sampling interval, each feature was assigned 
a  value  of  1  at  each time point  if  it  was  present  in  any 
sample  within  the  2-second  bin.   For  the  multivariate 
encoding  procedure,  each  column  of  the  model  was 
convolved  with  a  canonical  hemodynamic  response 
function (gamma function, duration = 12 seconds, p = 8.6, q 
= 0.547) to account for the delayed hemodynamic response 
of the fMRI signal.
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Inter-rater agreement
To  verify  the  consistency  of  feature  annotations,  we 
quantified inter-rater agreement across individual domains 
and  the  full  model.  We  employed  Centered  Kernel 
Alignment (CKA) (Kornblith et al., 2019) with a debiasing 
step  (Murphy  et  al.,  2024)  as  a  similarity  index.  CKA 
measures  the  shared  variance  between  two  multi-
dimensional feature spaces, providing a robust method for 
quantifying  similarity  between  datasets  of  different  size. 
Debiasing was applied to account for potential confounds 
arising  from  significant  differences  in  matrix  ranks  (i.e., 
domains’ dimensionality ranged from 4 to 12, with the full 
model comprising 38 descriptors), ensuring a more reliable 
assessment of similarity.
For  each  rater  pair,  we  computed  CKA  scores  for 
individual  domains  and  the  full  model  using  their 
respective downsampled (i.e., 2-seconds temporal window) 
binary  matrices.  To  establish  statistical  significance,  a 
permutation  test  was  implemented:  a  null  distribution 
(n=1,000) was obtained by randomly shuffling chunks of 15 
timepoints of one rater’s matrix prior to CKA estimation, to 
account  for  temporal  autocorrelation  in  the  data.  The 
observed  similarity  scores,  averaged  across  rater  pairs, 
were then compared against the 99th percentile of the null 
distribution  to  identify  significant  agreements  (p<0.01). 
This  analysis  ensured  that  the  group  model  accurately 
reflected consistent action feature annotations across raters.
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Inter-domain similarity
To evaluate the relationship between domains, we assessed 
how  features  from  different  domains  uniquely  or 
redundantly captured aspects of the described actions. This 
was  accomplished  by  calculating  pairwise  similarity 
through CKA between all  domains  of  the  downsampled 
binary group-level model.

Computational modeling
As a final step, we sought to determine the extent to which 
perceptual or semantic information from the stimulus was 
captured by the features of the action model.  To achieve 
this,  we  leveraged  a  series  of  computational  models  to 
extract  diverse  representations  of  the  movie  stimulus, 
encompassing: 1) low-level visual descriptors (i.e., motion 
energy  derived  from  the  spatiotemporal  integration  of 
Gabor-like  filters);  2)  high-level  visual  descriptors  (i.e., 
VGG-19  convolutional  deep  neural  network  architecture; 
Simonyan  &  Zisserman,  2014);  3)  low-level  auditory 
descriptors  (spectral  and  envelope-based  properties 
capturing  frequency modulations);  4)  high-level  auditory 
descriptors  (VGGish  deep  neural  network  architecture; 
Hershey  et  al.,  2017);  5)  a  high-level  semantic 
representation derived from GPT-4 embeddings (Achiam et 
al., 2023) extracted from the movie’s subtitles. 
In  detail,  low-level  visual  descriptors  were  obtained  for 
each two-second segment of the movie videoclip using a 
comprehensive  set  of  4,715  motion  energy  descriptors 
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derived  from  space-time  Gabor  filters.  These  filters 
included  Gabor  wavelets  varying  in  spatial  frequencies, 
orientations, and integrated across three distinct temporal 
frequencies:  0  Hz  (static  energy),  2  Hz,  and  4  Hz 
(Nishimoto  et  al.  2011).  Regarding  high-level  visual 
descriptors,  we  utilized  the  VGG-19  (Simonyan  & 
Zisserman,  2014)  convolutional  deep  neural  network 
architecture to extract a comprehensive set of 4096 visual 
properties  from  the  central  frame  of each  two-second 
segment. Specifically, we used the output from ReLU6, the 
final  layer  in  the  stack  of  convolutional  layers,  which 
captures high-level visual information essential for object 
recognition  and  image  classification.  To  model  low-level 
auditory characteristics, we extracted  for each two-second 
segment 449 spectral descriptors in the 0-15k Hz frequency 
range, following the methodology outlined by de Heer and 
colleagues  (2017).  Instead,  for  high-level  auditory 
descriptors, we employed the VGGish (Hershey et al., 2017) 
model,  a  convolutional  neural  network  based  on  the 
VGGNet architecture and adapted for audio classification. 
Specifically, we extracted the output of the ReLU5.1 layer, 
obtaining 4,096 descriptors for each two-second segment. 
These  features  captured  more  abstract  properties  of  the 
movie’s  audio  track,  including  contextual  information 
about the soundscape, such as the presence of background 
noise,  music,  or  speech.  Finally,  regarding  semantic 
descriptors,  we  extracted  contextual  word  embeddings 
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from  each  subtitle  sentence  using  the  pre-trained  GPT-4 
model (Achiam et al.,  2023) (i.e.,  text-embedding-3-small) 
via  the  OpenAI API (https://openai.com/).  This  process 
generated a 1,536-dimensional vector for each two-second 
segment.
We  then  compared  the  representations  of  individual 
domains as well as the full model to these computational 
representations  using CKA as  a  similarity  measure.  This 
allowed us to evaluate whether specific domains aligned 
more closely with perceptual or semantic features, offering 
insights into the nature of the information encoded by each 
domain.

fMRI data acquisition and preprocessing
Structural and functional data were acquired in the same 
session with a Philips 3T Ingenia scanner equipped with a 
32-channel  head  coil.  For  anatomical  images,  a 
magnetization-prepared rapid gradient echo sequence use 
employed  (TR=7  ms;  TE=3.2  ms;  FA=9°;  FOV=224  mm, 
acquisition  matrix=224×224;  slice  thickness=1  mm;  voxel 
size 1×1×1 mm; 156 sagittal slices). Functional images were 
acquired using gradient recall echo planar imaging (GRE-
EPI;  TR=2000  ms;  TE=30  ms;  FA=75°;  FOV=240  mm; 
acquisition matrix (in-plane resolution)=80×80; acquisition 
slice  thickness=3  mm;  acquisition  voxel  size=3×3×3  mm; 
reconstruction  voxel  size=3×3×3  mm;  38  sequential  axial 

141

https://openai.com/


ascending slices; total volumes 1,614 for the six runs of the 
movie).
Acquired  fMRI  data  were  preprocessed  with  the  AFNI 
17.1.12  software  package  (Cox,  1996),  following  the 
standard steps.  First,  scanner-related noise was corrected 
through  spike  removal  (3dDespike).  Then,  all  volumes 
underwent run-wise temporal realignment (3dTshift)  and 
head  motion  correction  using  as  base  the  first  run 
(3dvolreg). Spatial smoothing was then performed with a 
Gaussian kernel (3dBlurToFWHM, 6mm, full width at half 
maximum),  followed  by  run-wise  percentage 
normalization.  Next,  in  order  to  smooth  time  series  and 
remove unwanted trends and outliers, the normalized runs 
underwent  detrending  through  Savitzky-Golay  filtering 
(sgolayfilt,  polynomial  order=3,  frame  length=200 
timepoints) in MATLAB R2019b (MathWorks Inc., Natick, 
MA, USA) and were concatenated into a single time series. 
Afterward, signals related to head motion parameters and 
framewise  displacement  were  regressed-out  through 
multiple  regression  analysis  (3dDeconvolve).  Lastly,  the 
anatomical  volumes  were  aligned  to  the  reference 
functional image and non-linearly registered (3dQWarp) to 
the  MNI-152  standard  space  (final  voxel  size  3  mm iso; 
Fonov et al., 2009).
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fMRI data analysis
To investigate the relationship between action features and 
brain  activity,  we  employed  a  variance  partitioning 
framework based on multivariate analysis, using a region 
of interest (ROI)-based approach.

Parcellation and PCA
First, fMRI data were parcellated into 200 distinct cortical 
ROIs  using  Schaefer’s  atlas  (Schaefer  et  al.,  2018).  The 
parcellation, including grey matter cortical voxels only, was 
applied in the original anatomical space of each subject.
To measure the association between the action model and 
brain  activity  we  employed  a  multivariate  encoding 
procedure  based  on  CCA.  Since  CCA  extracts  canonical 
components that maximize the linear association between 
two matrices, the algorithm limits the dimensionality of the 
final components to the lower rank of the input matrices. 
Thus,  to  accurately  reconstruct  the  action  model  and 
account for variability in the number of voxels across ROIs 
(ranging from 21 to 492; see Appendix Fig. S1), we set the 
dimensionality of the ROIs to match the rank of the action 
model.  Specifically,  for  each  ROI,  principal  component 
analysis  (PCA)  was  performed  voxel-wise,  retaining  a 
number of  components  equal  to  the  38 predictors  in  the 
action model.  To address  cases  where  an ROI  contained 
fewer  than  38  voxels,  additional  voxels  were  added  by 
replicating the  average time series  across  existing voxels 
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within  that  ROI.  This  approach  ensured  consistent 
dimensionality across ROIs and subjects while preserving 
the  minimum  number  of  components  required  for 
subsequent  analyses,  without  excluding  brain  regions  or 
altering  the  original  informational  content  of  the  ROI 
signals.  Importantly,  while  the  amount  of  variance 
explained  by  the  resulting  38  components  varied  across 
ROIs (see Appendix Fig. S1), it consistently exceeded 76% 
for all subjects and conditions. 

Full-model Canonical Correlation Analysis
Then,  to  quantify  how  well  the  predictors  in  the  action 
model  explained  brain  activity  within  each  ROI,  we 
employed CCA. CCA is a multivariate statistical technique 
designed  to  measure  linear  relationships  between 
multidimensional  variables  (Hotelling,  1992;  Bilenko  & 
Gallant,  2016).  Specifically,  CCA finds  pairs  of  canonical 
components  -  linear  projections  of  each  dataset  -  that 
maximize  the  correlation  between  the  two  datasets  in  a 
shared canonical space.
In our analysis, CCA was iteratively applied to each ROI, to 
relate the action model (X, time points × 38 features) to the 
brain components (Y, time points × 38 components). This 
process yielded two sets of canonical components U and V, 
along with the canonical coefficients A and B, for X and Y, 
respectively. These were used to compute the proportion of 
variance in Y that  could be predicted by X,  through the 
following steps. First, we used U to predict the canonical 
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projections of V (Vpred) by fitting a set of coefficients (W), 
obtained through least squares regression mapping U→V  
(eq. 1).

V pred=U ⋅W    (1)

Next,  we reconstructed predicted brain activity (Ypred)  by 
mapping back the predicted canonical components (Vpred) 
to  the  original  brain  activity  space,  using  the  canonical 
coefficients B derived during the CCA process (eq. 2).

Y pred=V pred ⋅B (2)

Finally,  we calculated the coefficient of determination R², 
which quantifies the proportion of variance in the observed 
Y  that  was  explained  by  the  reconstructed  Y  (Ypred)  (eq. 
3,4,5). 

SSresidual=∑
❑

❑

(Y −Y pred )
2  (3)

SStotal=∑
❑

❑

(Y −Y )2  (4)

R ²=1−
SSresidual
SStotal

​​  (5)

Here, R² represents the proportion of variance in the brain 
activity  of  a  given  ROI  that  can  be  explained  by  the 
predictors of the action model.

Statistical significance and Permutation Tests
To  assess  the  significance  of  R²,  we  generated  null 
distributions by permuting the temporal order of the fMRI 
data. For each ROI, the time points of the brain components 
(in  chunks  of  contiguous  30  seconds,  to  account  for 
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temporal  autocorrelation  of  the  signal)  were  shuffled 
randomly  across  1,000  iterations  while  keeping  the 
structure of the action model intact. For each permutation, 
the  CCA  procedure  was  repeated,  generating  a  null 
distribution  of  R²  values  for  each  ROI.  Each  of  these  R² 
values was then compared against the null distribution to 
determine their p-value. Once this process was done for all 
subjects,  p-values were combined across subjects through 
Fisher’s  sum  (Fisher,  1970)  (eq.  6),  yielding  a  null 
distribution of combined statistics for each ROI.

χ2k
2 =−2∑

i=1

k

ln ( pi )  (6)

The  group-level  p-value  for  each  ROI  was  obtained  by 
comparing  the  observed  combined  statistics  with  the 
relative null distribution, using Pareto tail approximation 
(Winkler  et  al.,  2016)  and  t-max  correction  for  multiple 
comparisons  (pcorr<0.05;  Westfall  &  Young,  1993). 
Specifically, we obtained the t-max distribution by taking 
the maximum value across all ROIs, for each permutation. 
Then, we modelled the right tail (90th percentile) of the t-
max distribution by fitting a generalized Pareto distribution 
(Winkler  et  al.,  2016;  Pickands,  1975),  from  which  we 
derived the p-values.

First,  this  process  was  done  for  all  subjects  of  the  AV 
condition. Then the same pipeline was repeated in the A 
and  V  conditions,  this  time  including  only  ROIs  that 
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obtained significant R² (pcorr<0.05) in the AV condition. As a 
result,  we  obtained  a  comprehensive  map  of  the  task-
related  variance  in  brain  activity  for  each  experimental 
condition, highlighting cortical regions where brain activity 
was significantly predicted by the full action model.

Variance partitioning
To disentangle the contributions of individual domains in 
the  action  model,  a  variance  partitioning  approach  was 
employed. This method quantified the unique explanatory 
power of each domain by measuring the drop in R² when 
its predictors were shuffled.
For  each  domain,  the  corresponding  predictors  were 
shuffled across timepoints while all other domains were left 
intact. The partially shuffled action model was then used in 
the CCA to estimate R², reflecting the model’s explanatory 
power after disrupting the specific domain of interest. To 
obtain  a  stable  estimate  of  the  impact  of  shuffling,  we 
repeated the process 50 times for each domain and took the 
average R² from the 50 shuffled models. Lastly, the shuffled 
R²  was  subtracted  from  the  full-model  R²,  obtaining  a 
domain-specific R². These calculations were performed for 
each  domain,  ROI,  subject,  and  condition,  generating 
domain-specific maps of unique variance contributions to 
brain activity.
We then computed the average across subjects to obtain a 
group R² and, for each domain, the regression coefficient 
between  conditions  and  the  Spearman  correlation 
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coefficients  with  associated  p-values  were  calculated 
pairwise.

Domain Specificity
To evaluate the spatial specificity of domain contributions 
to  brain  activity,  we  employed  a  non-parametric  rank-
based  approach.  This  method  tested  whether  the 
representation of specific domains within individual ROIs 
was  significantly  greater  than  others,  based  on  the 
distribution of R² values across ROIs.
For  each  subject  and  condition,  R²  values  were  ranked 
within  each  domain  across  all  ROIs,  identifying  regions 
where  the  domain  exhibited  the  highest  and  lowest 
explanatory  power.  Converting  R²  values  into  ranks 
allowed  us  to  assess  the  relative,  rather  than  absolute, 
representation of each domain across ROIs. By focusing on 
rank-based  comparisons,  this  approach  mitigated  the 
influence of global differences in R² magnitudes between 
domains,  emphasizing  the  relative  contribution  of  each 
domain within a given ROI.
To  compare  the  rank-based  representation  of  domains 
within each ROI, we applied the Wilcoxon signed-rank test, 
a  non-parametric  method  for  paired  data.  Pairwise  one-
tailed  tests  were  conducted for  all  domain  combinations 
within  each  ROI  and  condition.  This  test  determined 
whether  the  ranks  of  one  domain  consistently  exceeded 
those  of  another,  reflecting  greater  relative  specificity  in 
that region. Then, p-values from the three conditions were 
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aggregated  across  modalities  using  Fisher’s  method 
(Fisher, 1970). To control for multiple comparisons across 
ROIs  and  domain  pairs,  the  aggregated  p-values  were 
corrected  using  False  Discovery  Rate  (FDR)  control 
(α=0.05). A significant result for a domain pair within an 
ROI indicates  that  one  domain consistently  ranks  higher 
than the other  across  subjects.  This  implies  that  the  ROI 
exhibits  a  relatively  stronger  representation  of  the  more 
dominant domain, independent of absolute R² values. To 
identify  the  dominant  domain(s)  within  each  ROI  we 
adopted a  “maximum-takes-all”  procedure.  Each domain 
was compared based on the number of significant pairwise 
tests  it  won  within  the  ROI.   The  domain(s)  with  the 
highest  number  of  wins  were  flagged as  dominant.  This 
analysis  produced  spatial  maps  of  domain-specific 
representations,  highlighting  ROIs  where  specific  action-
related features were most prominently encoded relative to 
other brain regions and other features.
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6.2 Results

Model validation
Our  action  model  was  constructed  by  selecting  a 
comprehensive set of features from the literature on action 
representation  and  asking  three  raters  to  identify  action 
events and then manually annotate each feature.
Stimulus segmentation to identify action occurrences was 
performed independently by each of the three raters, who 
identified  1,635,  1,304,  and  1,025  events,  respectively 
(average event count = 1,321). Event duration ranged from 
0.1  to  85.7  seconds  and  averaged  3.5  seconds.  After 
downsampling  to  the  fMRI  temporal  resolution  and 
aggregating  individual  raters'  models,  the  number  of 
timepoints in which at least one action event was present 
was 1,562 out of 1,614 (Appendix Fig. S2). 
The 38 action features comprising the final  group model 
had variable frequency counts (Fig. 11B), ranging from 11 
timepoints (0.7% for Symbolic gestures) to 1,530 timepoints 
(97.95%  for  Dynamicity;  see  Appendix Table  S1). 
Frequencies of Space features highlighted that the actions in 
the  dataset  predominantly  occurred  in  indoor 
environments and at an extended spatial scale. The Effector 
was  almost  always  visible  and  most  actions  were 
performed using the mouth (e.g.,  speaking),  followed by 
legs/paws, and fingers. In the  Agent & Object  domain, the 
most frequent feature was Human Agent, and roughly half 

150

https://docs.google.com/presentation/d/1IxyRAdSdDnt46fJDvc7YIcNf_g8J6so_/edit#slide=id.g31f99c083e0_1_0


of  the  time  actions  were  targeted  toward  the  agents 
themselves and involved contact with an inanimate object. 
Transitive and Intransitive actions were mostly balanced, 
while Tool-mediated actions were underrepresented. More 
than half of the tagged events were considered social, that 
is, they involved some sort of interaction between agents; 
of these, most were directed towards humans rather than 
animals,  and  only  one-fifth  were  concurrently  or  jointly 
performed by  multiple  agents.  An emotional  component 
was  frequently  present  in  the  stimulus,  either  conveyed 
through the actor’s body language or implicit in the action 
itself. Concerning the  Linguistic  domain, the actions in the 
dataset  were  predominantly  dynamic  and  continuous 
rather than static and instantaneous. 
To assess the validity of the tagging procedure, the inter-
rater  agreement  was  first  evaluated  by  measuring  the 
similarity  between  individual  raters’  action  models: 
considering  that  these  were  multidimensional  binary 
matrices  differing  in  size,  Centered  Kernel  Alignment 
(CKA)  was  chosen  as  an  appropriate  metric.  CKA is  an 
index  of  multivariate  similarity  and ranges  from 0  to  1, 
where 0 means the two matrices are completely dissociable 
and 1 denotes maximal similarity. The average CKA value 
across  all  parings  of  raters  was  0.48  ±  0.04  for  the  full 
model, indicating an adequate level of consistency among 
raters (Fig. 11C). The same analysis was performed also for 
each domain separately (Space: 0.65 ± 0.01;  Effector: 0.26 ± 
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0.03; Agent & Object: 0.43 ± 0.05; Social: 0.46 ± 0.03; Emotion: 
0.1 ± 0.02;  Linguistic: 0.12 ± 0.04). We observed the lowest 
similarities in the Emotion domain, which requires the rater 
to extrapolate and interpret implicit information from the 
scene, and the Linguistic domain, which captures attributes 
conveyed by the meaning of the action verb. Nonetheless, 
all  CKA  scores  were  statistically  significant  when 
compared against the null distribution (p<0.01).
To ensure consistency in the final aggregated model, only 
annotations agreed upon by at least two out of three raters 
were retained.
Since  multiple  features  from  different  domains  may  co-
occur  at  the  same  timepoint,  we  assessed  collinearity 
between  domains  by  measuring  the  similarity  structure 
between each domain and with the full model (Fig. 11D). 
CKA scores between domains varied from a minimum of 
0.04 to a maximum of 0.35, with the  Effector  and  Emotion 
domains  exhibiting  the  highest  and  lowest  similarity, 
respectively.  CKA  values  between  domains  and  the  full 
model were 0.62 for the Social domain; 0.61 for Effector; 0.60 
for Agent & Object; 0.53 for Space; 0.37 for Emotion and 0.47 
for  the  Linguistic  domain.  Hence,  the  adopted  domains 
capture  sufficiently  unique  representational  content  and 
unbiasedly contribute to the full model.
As our action model was built based on hypothesis-driven 
taxonomic  features  derived  from  the  literature,  some 
degree  of  collinearity  with  visual,  acoustic,  and  verbal 
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properties  is  expected.  To  measure  the  impact  of  these 
descriptors on both the full model and individual domains, 
we  computed  CKA  between  different  computational 
models and the action model matrices (Fig. 11E). As for the 
full  model,  stronger  correlations  were  observed  with 
computational  models  capturing  higher-level  perceptual 
descriptors,  both  visual  and  auditory  (0.22  and  0.15, 
respectively),  and semantic descriptors (0.15),  rather than 
low-level perceptual characteristics (0.09 for the visual and 
0.05 for the auditory model). This effect was also present 
when considering individual domains, though it was more 
evident for Space, Effector, and Social, compared to the other 
domains. 

fMRI results in the audiovisual modality
Next,  the  ability  of  our  action  model  to  predict  brain 
activity  was assessed.  Since  the aim was to  measure the 
association between two sets of multivariate data, i.e., the 
multidimensional action model and each multi-voxel brain 
region (i.e., ROI), we used Canonical Correlation Analysis 
(CCA,  Fig.  12A).  From  CCA,  we  computed  the  R2  as  a 
metric  of  brain-model  association,  which  expresses  the 
proportion of  variance  in  ROI patterns  explained by the 
action  model  (see  Methods  section  Full-model  Canonical 
Correlation  Analysis).  Importantly,  to  quantify  the  unique 
contribution of each domain, we also performed variance 

153

https://docs.google.com/presentation/d/1IxyRAdSdDnt46fJDvc7YIcNf_g8J6so_/edit#slide=id.g31f99c083e0_1_0
https://docs.google.com/presentation/d/1IxyRAdSdDnt46fJDvc7YIcNf_g8J6so_/edit#slide=id.g31f99c083e0_1_0


partitioning, thus obtaining a domain-specific R² for each 
ROI.
In the AV modality, we identified an extended network of 
occipital, temporal, posterior parietal, and prefrontal areas 
(127  ROIs  in  total  out  of  200  cortical  parcels  defined  in 
Schaefer et al., 2018), in which the full action model could 
significantly explain neural activation (average R² = 0.061 
±0.017, p<0.05, t-max correction for multiple comparisons). 
Posterior temporal and lateral occipital areas showed the 
highest R2 values (Fig. 12B; peak R²=0.129 in right posterior 
superior temporal sulcus -STS- at x=56, y=-51, z=14, LPI), 
consistent  with  previous  literature  denoting  these  brain 
regions  as  critical  for  action  recognition  (Rizzolatti  & 
Craighero, 2004; Orban et al.,  2021; Wurm & Caramazza, 
2022; Karakose-Akbiyik et al., 2023).
As for the contribution of individual domains (Fig. 12C), 
the Effector domain had on average the highest explanatory 
power (0.0086 ± 0.0031, 14% of full model R²), followed by 
the  Social  domain (0.0059 ± 0.002, 9.6% of full model R²), 
Agent  & Object (0.0041  ±  0.0017,  6.7% of  full  model  R²), 
Linguistic  (0.0034  ±  0.0019,  5.5% of  full  model  R²),  Space 
(0.0034 ± 0.0014, 5.5% of full model R²), and Emotion (0.0028 
± 0.0011,  4.6% of  full  model  R²).  Therefore,  54.1% of  the 
brain  variance  explained  by  the  full  model  was  not 
attributable to the unique contributions of single domains, 
but  rather  to  shared  variance  across  combinations  of 
multiple domains.
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Fig.  14:  Brain  encoding  of  action  features  in  the  audiovisual 
modality. 
(A)  Analysis  pipeline  for  assessing  the  relationship  between  action 
features and brain activity. fMRI data were parcellated into 200 cortical 
regions of interest (ROIs) using Schaefer’s atlas. Principal Component 
Analysis (PCA) was applied to voxels time series within each ROI and 
Canonical Correlation Analysis (CCA) was then used to map the action 
model  onto  the  fMRI  data,  identifying  canonical  components  that 
maximized the correlation between the two datasets. The proportion of 
variance in brain activity explained by the action model was quantified 
using R², which reflects model fit within each reduced ROI. The same 
process was repeated in a variance partitioning framework to isolate 
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Figure 2. Brain encoding of action features in the audiovisual modality.
(A) Analysis pipeline for assessing the relationship between action features and brain activity. 
fMRI data were parcellated into 200 cortical regions of interest (ROIs) using Schaefer’s atlas. 
Principal Component Analysis (PCA) was applied to voxels time series within each ROI and 
Canonical Correlation Analysis (CCA) was then used to map the action model onto the fMRI 
data, identifying canonical components that maximized the correlation between the two 
datasets. The proportion of variance in brain activity explained by the action model was 
quantified using R², which reflects model fit within each reduced ROI. The same process was 
repeated in a variance partitioning framework to isolate contributions of individual domains. (B) 
Brain regions showing significant (pcorr < 0.05, t-max correction) R² values for the full action 
model in the audiovisual (AV) modality. L: left, R: right. (C) Unique contributions of individual 
domains. Individual points reflect domain-specific R² values for each ROI. 



contributions  of  individual  domains.  (B)  Brain  regions  showing 
significant (pcorr < 0.05, t-max correction) R² values for the full action 
model in the audiovisual (AV) modality. L: left, R: right. (C) Unique 
contributions of individual domains. Individual points reflect domain-
specific R² values for each ROI. 

Impact of sensory modality 
To  test  the  degree  of  invariance  of  identified  areas  to 
sensory modality, we replicated the same analysis in the V 
and A modalities, quantifying the amount of task-related 
variance  in  brain  activity  when  subjects  were  presented 
with visual-only or auditory-only versions of the stimulus. 
In the V modality, brain activity was significantly predicted 
by  the  full  model  in  80  ROIs  out  of  127  (p<0.05,  t-max 
correction, average R2  = 0.06 ± 0.015, highest R2  = 0.109 in 
right  LOTC,  at  x=47,  y=-75,  z=-1,  LPI),  while  in  the  A 
modality,  only  12  ROIs  survived  statistical  thresholding 
(p<0.05,  t-max  correction,  average  R2  =  0.065  ±  0.005; 
peaking in middle right STS at x=61, y=-30, z=-4, LPI, R2  = 
0.073),  reflecting  a  partial  loss  of  information  when  one 
modality is neglected. The average full model R² across all 
tested ROIs (N=127) for the V and A modalities was 0.055 ± 
0.014 and 0.05 ± 0.009, respectively (Fig. 12B). The decrease 
in  explanatory  power  as  compared  to  the  multisensory 
stimulation was mainly observed in  frontal  and primary 
visual areas for the V modality. The statistically significant 
ROIs in the A stimulation all pertained to the superior and 
middle temporal cortices (Fig. 12A). 
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Fig. 15: Impact of sensory modality on action representation in the 
brain.
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Figure 3. Impact of sensory modality on action representation in the brain.
(A) Brain regions showing significant (pcorr < 0.05, t-max correction) R² values for the full action model 
in the visual (V, top) and auditory (A, bottom) modalities. L: left, R: right. (B) Distributions of full model 
R² values across all tested ROIs for the three conditions (AV, V, A). Each point represents an ROI full 
model R2 value; ROIs not surviving statistical thresholding in each modality are colored in grey. (C) 
Unique contributions of individual domains across sensory modalities. (D) Domains correlations 
between different modalities. Each point represents an individual ROI domain-specific R². Solid lines 
represent the least square fit between modalities pairings for each domain.



(A) Brain regions showing significant (pcorr < 0.05, t-max correction) R² 
values for the full action model in the visual (V, top) and auditory (A, 
bottom) modalities.  L: left,  R: right. (B) Distributions of full model R² 
values across all tested ROIs for the three conditions (AV, V, A). Each 
point  represents  an  ROI  full  model  R2 value;  ROIs  not  surviving 
statistical thresholding in each modality are colored in grey. (C) Unique 
contributions  of  individual  domains  across  sensory  modalities.  (D) 
Domains  correlations  between  different  modalities.  Each  point 
represents an individual ROI domain-specific R². Solid lines represent 
the least square fit between modalities pairings for each domain.

Variance partitioning for the V and A modalities (Fig. 13C) 
revealed a similar trend in individual domain contributions 
as  for  the  AV  stimulation.  For  all  three  conditions,  the 
Effector domain explained the highest amount of variance in 
brain activity (V: 0.0085 ± 0.0029, 14.2% of full model R²; A: 
0.0113 ± 0.0016, 17.4% of full model R²),  followed by the 
Social domain (V: 0.0051 ± 0.0017, 8.5% of full model R²; A: 
0.0077  ±  0.0014,  11.9%  of  full  model  R²).  Likewise,  the 
Emotion  domain  had the  least  explanatory  power  for  all 
three modalities (V: 0.002 ± 0.0009, 3.3% of full model R²; A: 
0.0022 ± 0.0003, 3.4% of full model R²).
In  the  V  modality,  the  domain-specific  R²  was  0.005  ± 
0.0017 (8.3% of full model R²) for Agent & Object, R² = 0.0028 
± 0.0011 (4.7% of full model R²) for Space, and R² = 0.0027 ± 
0.0016 (4.5% of full model R²) for the Linguistic domain. In 
the A modality, the remaining domains R² were: 0.0055 ± 
0.0009  (8.5% of  full  model  R²)  for  Space,  0.0035  ±  0.0007 
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(5.4%  of  full  model  R²)  for  Agent  &  Object, and  0.003  ± 
0.0005  (4.6% of  full  model  R²)  for  the  Linguistic domain. 
Similarly to the AV modality, a substantial portion of brain 
variance  explained  by  the  full  model  (56.4%  for  V  and 
48.8% for A) was shared across combinations of multiple 
domains.

The  invariance  of  action  information  organization 
across sensory modalities was further explored by directly 
comparing  domain-specific  R²  distributions  between 
modalities.  For  each  domain,  Spearman’s  rho  was 
computed  between  ROIs  R²  of  each  pair  of  sensory 
modalities. The correlation was significant for all domains 
and  modalities  combinations  (Table  2),  indicating  that 
information was similarly organized across the cortex for 
all  three  sensory  inputs  (Fig.  12D).  The  AV  and  V 
modalities had the most similar spatial distribution, with 
all domains having a correlation coefficient higher than 0.7. 
For  the  A  modality,  the  most  dissimilar  domains  were 
Emotion,  whose  features  were  predominantly  expressed 
through visual attributes, and Linguistic. 
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Table 2. Spearman correlations between modalities. ** p<0.001

Overall,  the  distribution  of  explained  variance  across 
cortical  regions  and  modalities  indicates  that  the 
multidimensional  framework  of  action  representation  is 
stable across sensory inputs. 

Domain Specificity
We observed that ROIs showing a high fit to the full model 
have high R2 values for all domains, leading to overlapping 
spatial  maps  across  domains.  Therefore,  to  assess  each 
domain's spatial specificity, we employed a non-parametric 
rank-based approach: rather than comparing the absolute 
magnitude  of  domain-specific  R2,  we  focused  on  the 
relative  contribution  of  each  domain  across  regions  (see 
Methods section Domain Specificity, Appendix Fig. S3-5 and 
Appendix Table  S2).  Data  from  all  conditions  were 
aggregated to  evaluate  tuning across  sensory  modalities. 
From this analysis,  we obtained spatial maps of domain-
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Space Effector Agent & Object Social Emotion Linguistic

AV - V 0.76** 0.77** 0.78** 0.74** 0.77** 0.82**

AV - A 0.78** 0.75** 0.64** 0.63** 0.5** 0.47**

V - A 0.69** 0.67** 0.6** 0.73** 0.51** 0.49**



specific representations, highlighting ROIs predominantly 
tuned to a domain versus the others independently of the 
sensory modality (Fig. 13). In the following paragraph, we 
report  and  briefly  discuss  the  results  for  each  domain, 
which  expand  on  the  current  knowledge  of  domain 
specificity in AON.

Fig. 16: Spatial domain specificity in cortical action representations.
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Cortical  regions  predominantly  tuned  to  each  action  domain.  ROIs 
were identified using a rank-based approach and aggregating results 
across modalities.  L: left, R: right.

Space
This domain describes the context in which the action takes 
place  and  its  spatial  extent.  Research  on  scene 
representation has highlighted the role of the retrospenial 
cortex  (RSC)  and  the  parahippocampal  cortex  (PHC)  in 
processing  indoor  vs  outdoor  and  natural  vs  urban 
environments  (Henderson  et  al.,  2007;  Henderson  et  al., 
2011;  Stobbe  et  al., 2024).  In  the  context  of  action 
representation,  the setting of  an action is  often conflated 
with other perceptual features (Masson & Isik, 2021; Dima 
et al., 2022),  contributing to brain activity in early visual 
areas and fusiform gyrus (Masson & Isik, 2021). A previous 
study  investigating  the  representation  of  actions  spatial 
scale  found  regions  tuned  to  fine-scale  actions  in  the 
intraparietal  sulcus  (IPS)  extending  to  the  transverse 
occipital  sulcus  (TOS),  LOTC,  and  PHC;  areas  tuned  to 
intermediate/near  space and large interaction scale  were 
identified  in  posterior  portions  of  middle  (MTG)  and 
inferior temporal cortices (ITG), medial parietal cortex and 
RSC (Tarhan & Konkle, 2020). 
Consistently,  we  showed  tuning  to  the  Space  domain  in 
inferior  and  middle  temporal  cortices.  Other  areas  were 
identified  in  bilateral  orbitofrontal  cortex  (OFC),  pars 
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orbitalis  of  the  inferior  frontal  gyrus  (IFGorb),  left  pars 
triangularis  of  the  inferior  frontal  gyrus  (IFGtri),  left 
anterior  medial  prefrontal  cortex  (mPFC),  and  left 
dorsomedial prefrontal cortex (dmPFC).

Effector
Tarhan & Konkle (2020) underlined the importance of the 
effector  in  action  representation  and found that  effector-
related features modulate responses in occipital, temporal, 
and  parietal  cortices,  with  dorsal  areas  preferentially 
encoding effector visibility rather than identity. 
Here,  effector-specific  ROIs  were  identified  in  the  left 
parietal operculum (OP), which is considered part of the 
extended human Mirror Neuron System (Bonini, 2017), and 
parieto-occipital  sulcus  (POS).  We  also  found  tuning  in 
areas  associated  with  auditory  and  language  processing 
(i.e., STS and  MTG); this response was likely driven by the 
mouth effector, engaged during speaking. 

Agent & Object
This domain predominantly identifies actions involving or 
directed  towards  non-social  targets,  such  as  transitive 
actions.  Observation  of  object  manipulation  has  been 
shown  to  activate  parietal  regions  (Gallivan  &  Culham, 
2015;  Urgen  &  Orban,  2021).  Moreover,  ventral  LOTC 
represents actions based on transitivity (Wurm et al., 2017; 
Tucciarelli et al., 2019).
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Here,  we  found  that  Agent  &  Object  features  were 
preferentially encoded in ventral  occipito-temporal  areas, 
part of the ventral pathway for object recognition (Goodale 
& Milner, 1992). Other identified areas included: bilateral 
anterior  mPFC,  right  temporal  pole  (TP),  left  dorsal 
premotor  area  (PMd),  left  inferior  temporal  sulcus  (ITS), 
and right primary visual cortex (V1).

Social
Studies investigating the social dimension of actions have 
typically  implicated  STS (Isik  et  al.,  2017;  Masson et  al., 
2018; Tarhan & Konkle, 2020), the temporoparietal junction 
(TPJ; Arioli & Canessa, 2019; Arioli et al., 2021; Masson & 
Isik, 2021), and mPFC (Wagner et al., 2016; Masson & Isik, 
2021). Furthermore, some evidence suggests that sociality is 
encoded in the dorsal parts of LOTC (Wurm et al.,  2017; 
Han et al., 2024), while the superior parietal lobule (SPL) 
has  been  shown  to  respond  to  observed  socio-affective 
touch (Masson et al., 2018).
Observation of joint actions recruits areas in the temporal 
poles,  STS/MTG, precuneus, and TPJ (Leube et al.,  2012; 
Eskenazi et al., 2015); these activations overlap with areas 
comprising  the  Theory  of  Mind  network  (Schurz  et  al., 
2014; Arioli & Canessa, 2019; Arioli et al., 2021), underlying 
mentalizing processes necessary for inferring others’ state 
of mind.
Adding to the existing literature, we found tuning to the 
Social  domain in left ITS, frontal pole (FP), left frontal eye 
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field (FEF), and SPL and IPS. IPS and FEF are part of the 
Dorsal  Attention  Network,  which  has  been  shown  to 
encode embodied aspects of social cognition (Lahnakoski et 
al.,  2012).  Moreover,  a  recent  meta-analysis  (Zhao  et  al., 
2024)  suggested  that  SPL  may  be  part  of  an  action 
observation pathway dedicated to the processing of non-
social  actions,  therefore  capturing  modulation  of  social 
features.

Emotion
Previous  research  on  naturalistic  viewing  indicates  that 
affective  features,  including  valence  and  arousal,  partly 
predict responses in STS, TPJ, anterior temporal lobe (ATL), 
and mPFC (Masson & Isik;  2021).  Moreover,  lateral  OFC 
has been shown to map emotional content regardless of the 
sensory  modality  (Lettieri  et  al.,  2024).  Emotional 
information conveyed specifically through body language 
activates  ATL  (Tipper  et  al.,  2015)  and  other  areas 
specialized  in  emotional  processing,  such  as  amygdala, 
OFC,  anterior  cingulate  cortex,  and  anterior  insula  (de 
Gelder, 2006; Sokolov et al., 2020). 
Other features included in the domain were Gesticulation 
and Symbolic gestures, which have been shown to evoke 
responses  in  frontal  (e.g.,  IFG) and temporal  (e.g.,  MTG, 
STG extending to supramarginal gyrus) cortices (Andric et 
al., 2013; Möttönen et al., 2016; Papeo et al., 2019).
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Consistent with these findings, our results revealed areas 
exhibiting specificity  to  the  Emotion  domain in  OFC,  left 
anterior mPFC, bilateral ATL, and right IFGorb and IFGtr.

Linguistic
The  literature  on  the  neural  correlates  of  action  verb 
processing has highlighted that Telicity modulates activity 
in  the  left  posterior  MTG  (Romagno  et  al.,  2012)  and 
bilateral  precuneus  (Malaia  &  Newman,  2014),  while 
Iterativity engages IPS (Lai  et  al.,  2023),  and Dynamicity 
MTG/STS (Peelen et al., 2012).
In the present study, only the precuneus showed specific 
tuning to the Linguistic domain.

6.3 Discussion

This study assessed a comprehensive taxonomic model of 
action representation, designed to capture six key domains 
of  action  descriptors  (i.e.,  Space,  Effector,  Agent  &  Object, 
Social,  Emotion,  and  Linguistic)  in  naturalistic  contexts. 
Using  fMRI  data  collected  across  different  sensory 
modalities (i.e., audiovisual, visual-only, and auditory-only 
presentations  of  the  same movie),  we demonstrated  that 
this  action  feature-based  model  effectively  predicts  a 
significant  portion  of  brain  activity.  Furthermore,  the 
results  showed  that  domain  representations  were 
consistently maintained across sensory modalities, both in 
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their  cortical  spatial  distribution  and  in  their  relative 
contribution to explaining brain activity.

Naturalistic  approach  to  model  design  and 
stimulation
The taxonomic model of naturalistic action representation 
was  developed  through  a  multi-step  process.  First,  we 
identified and categorized critical  action features into six 
conceptual  domains,  drawing  on  existing  literature  on 
action representation. Next, multiple raters were engaged 
to extract and annotate action-related information from the 
movie  stimulus.  This  step  comprised  two  main  stages: 
event  segmentation,  during  which  raters  were  asked  to 
detect discrete actions from the continuous movie stream 
and define their temporal locations; and feature tagging, i.e, 
raters  described  each  identified  action  according  to  the 
features outlined in the taxonomic model.
For the segmentation step, raters were instructed to freely 
identify the temporal boundaries of distinct actions. Event 
segmentation  research  suggests  that  actions  follow  a 
partonomic organization: they can be defined at multiple 
levels  of  granularity,  ranging  from  fine-grain  atomic 
movements to broader, coarse-grain events based on actor 
intentions  and  goals  (Shipley  &  Zacks,  2008;  Gu  et  al., 
2018). We deliberately avoided imposing strict constraints 
or  providing explicit  instructions  about  the grain size  of 
actions. This approach aligns with findings indicating that 
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partitioning  a  continuous  stream  of  events  into  discrete 
units  is  a  subjective  and  non-trivial  process  for  human 
observers.  In  fact,  event  segmentation  emerges  from the 
interplay  of  perceptual  cues  and  inferential  processes 
involving  prior  knowledge,  observer  goals,  and  task 
instructions (Shipley & Zacks, 2008). Notably, instructions 
can modulate segmentation density by guiding observers 
toward coarser or finer-grain segmentation criteria (Zacks 
et  al.,  2001).  By  refraining  from  providing  specific 
instructions,  raters  were  allowed to  adhere  to  their  own 
criteria  for  defining  action,  fostering  the  emergence  of  a 
more ecologically valid and naturalistic segmentation unit. 
At  the  same  time,  the  absence  of  a  common  criteria 
inevitably  led  to  greater  variability  across  raters,  as 
reflected in differences in the number of identified events. 
Nevertheless,  overall  inter-rater  agreement  on  the 
annotated  features  was  found  to  be  robust,  and,  by 
including only annotations that were common to at least 
two out of three raters, we constructed an average group 
model that effectively captures a structured representation 
of action domains. Importantly, the domains were designed 
to be orthogonal, and analyses of inter-domain correlations 
confirmed  their  minimal  overlap  and  independent 
contributions to the final model. 
Notably,  most  of  the features incorporated in our model 
have previously been explored within the literature, often 
with neural correlates identified for each of them (Grafton 
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& Hamilton, 2007; Van Elk et al.,  2014; Kemmerer, 2021). 
However, traditional paradigms usually focus on isolated 
actions, employing highly-controlled single clips with low 
ecological  validity.  These  approaches  often  overlook  the 
complex  interplay  and  contextual  dependencies  between 
multiple actions. Therefore, to enhance ecological validity, 
we  evaluated  our  taxonomic  model  using  a  naturalistic 
stimulation  paradigm  which  enables  a  more 
comprehensive understanding of how the brain interprets 
and  processes  actions  within  the  dynamic  context  of 
everyday life, thus ultimately improving the reliability and 
generalizability of research findings (Hasson et al., 2004). 

Model  goodness  of  fit  and  invariance  to  sensory 
input 
Testing whether our model could predict fMRI data during 
AV stimulation, we found that most of the cortex encodes 
action  features.  Statistically  significant  ROIs  spanned 
prefrontal,  temporal,  parietal,  and  temporal  cortices, 
substantially  overlapping  with  the  extended  AON.  On 
average,  the  full  model  explained  around  6%  of  the 
variance in neural activation, reaching a maximum of 13% 
in posterior temporal and lateral occipital areas. While this 
effect size is consistent with previous literature (Huth et al., 
2012; Cichy et al., 2021; Lahner et al., 2024), a considerable 
proportion  of  variance  in  neural  activity  remained 
unexplained.  In the present  study,  we employed a high-
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level  taxonomic  action  model  which  showed  higher 
collinearity with high-level perceptual and semantic rather 
than  low-level  properties.  Yet,  the  AON  might  be 
preferentially tuned to lower-level perceptual information. 
In such a case, our results would be driven by the marginal 
collinearities  between  our  model  and  perceptual  lower-
level features. The existing literature, however, appears to 
confute  this  possibility:  studies  comparing  or  estimating 
unique contributions of perceptual vs. higher-level models 
demonstrated an advantage of the latter in explaining brain 
activations (Urgen et al., 2019; Masson & Isik, 2021; Dima et 
al.,  2022).  These  findings  are  paralleled  by  behavioral 
investigations  suggesting  that  action  categorization  and 
similarity judgments are driven by higher-level dimensions 
such  as  sociality  and  action  goals  rather  than  visual 
characteristics  and  kinematics  (Tarhan  et  al.,  2021; 
Kabulska & Lingnau, 2023; Dima et al., 2024). 
The  action  model's  ability  to  explain  brain  activity 
independently of stimulation modality was also assessed. 
Results  in  the  video-only  modality  were  similar  to  the 
multimodal  stimulation,  as  the  model  significantly 
predicted  brain  activity  in  most  temporal,  occipital,  and 
parietal  areas.  On  the  other  hand,  auditory-only 
stimulation resulted in a loss of explanatory power across 
the cortex,  with only a  few areas  in  the  temporal  cortex 
surviving statistical thresholding for multiple comparisons. 
It should be noted that, for all three modalities, we tested 
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the same action model, which was developed by tagging 
events  in the audio-video version of  the stimulus.  While 
raters were instructed to tag every action independently of 
the sensory modality of stimulus presentation, the action 
descriptors  inevitably  encompass  multisensory 
information.  Indeed,  the  effect  size  in  the  multisensory 
modality was greater than in the visual-only and auditory-
only modalities. The increased responsivity of the AON to 
multimodal  audio-video  stimulation  as  compared  to 
unimodal conditions has already been proved (Kaplan & 
Iacoboni, 2007; McGarry et al., 2012; Bischoff et al., 2014), 
with evidence pointing toward an advantage of the visual 
over the auditory modality (Copelli et al.,  2022). Equally, 
while action processing as a whole results to be modality-
independent  (Ricciardi  et  al.,  2009;  2013),  whether  the 
representation  of  individual  action  features  is  due  to 
concurrent additive modality-dependent responses or to a 
truly shared, modality-independent coding is still uncertain 
(Alaerts et al., 2009; Rezk et al., 2020). 

Domains representation across modalities 
Previous  investigations  into  action  representation  have 
usually  adopted  univariate  approaches,  testing  action 
properties  in  isolation  (Kemmerer,  2021).  Therefore,  the 
potential  interactions  and the  complex  manner  in  which 
such  properties  may  jointly  contribute  to  brain  activity 
have  been  overlooked.  To  address  this  limitation,  we 
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employed a variance partitioning approach, which enabled 
us  to  disentangle  the  unique  contribution  of  each  action 
domain, while accounting for collinearity between features. 
This  approach  yielded  equivalent  results  across  sensory 
modalities,  both  in  terms  of  the  magnitude  of  domain-
specific R2 and their cortical  distribution. Specifically,  we 
observed a stability of domain contributions across brain 
regions and sensory modalities.
In  this  regard,  the  Effector  domain explained the  highest 
amount  of  variance  in  all  modalities,  highlighting  the 
importance of this feature in action perception (Beurze et 
al.,  2007;  Abdollahi  et  al.,  2013;  Tarhan & Konkle,  2020). 
The  Social  domain  was  the  second  most  contributing 
domain, consistent with previous accounts proposing the 
socio-affective  dimension  as  an  organizing  principle  for 
action representation (Wurm et al., 2017; Tarhan & Konkle, 
2020; Dima et al., 2022; Kabulska & Lingnau, 2023; Zhao et 
al.,  2024; Han et al.,  2024).  On the other hand, we found 
that the  Emotion domain had the least impact on the full 
model  across  all  modalities,  which  may  be  due  to  the 
higher  level  of  complexity  of  our  Emotion  features  with 
respect  to  previous  studies  (e.g.,  emotional  information 
relayed by the narrative rather than scene valence; Masson 
& Isik, 2021; Kabulska & Lingnau, 2023).  Altogether, these 
findings suggest that the representational organization of 
action  features  remains  consistent  despite  differences  in 
sensory input.
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The  absolute  magnitude  of  domain-specific  R2 

revealed an imbalance toward the  Effector  domain, which 
was  consistent  across  ROIs.  Therefore,  to  highlight 
potential  preferences  in  feature  tuning,  we  employed  a 
rank-based approach assessing domains' relative specificity 
within  ROIs.  We  found  weak  evidence  of  domain 
specificity, with multiple regions preferentially recruited by 
more than one domain. Nonetheless, as discussed above in 
the  Results  section,  the  spatial  distribution  of  domain 
preference  is  consistent  with  previous  literature.  Indeed, 
the lack of specificity of the AON is corroborated by lesion 
studies,  which  provide  sparse  evidence  of  associations 
between  these  specific  action  features  and  brain  regions 
(Kalénine et al., 2010; Kalénine et al., 2013; Bonivento et al., 
2014; Urgesi et al., 2014).
In  the  audio-video,  visual-only,  and  auditory-only 
conditions, single domain contributions added up to 54%, 
57%,  and  49%  of  the  full  model  R2,  respectively.  Thus, 
around half of the neural activity explained by the action 
model can be attributed to variance shared across domains 
rather than to their unique contributions. Again, the lack of 
domain  specificity  in  our  results  is  consistent  with  this 
notion.  Because  of  computational  constraints,  it  was  not 
feasible to estimate common sources of variance between 
all possible domain combinations. Interestingly, our action 
features  were  grouped  into  conceptually  meaningful 
domains  so  that  collinearities  between  domains  were 
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minimized.  Despite  model  orthogonality,  we  found  that 
shared  information  across  domains  accounted  for  the 
majority  of  explained  brain  activity,  suggesting  that  our 
taxonomic  categorization  may  not  reflect  how  the  brain 
organizes  action-related  information.  Rather  than  relying 
on  theoretically  motivated  stimulus  descriptors,  recent 
works  (Zheng  et  al.,  2019;  Hebart  et  al.,  2020)  have 
employed  data-driven  approaches  to  stimulus  feature 
extraction  in  object  coding,  leveraging  human  similarity 
judgments  of  stimuli.  Such  approaches  may  provide  a 
better approximation of the dimensions governing mental 
representations (Hebart et al., 2020) and may reveal critical 
features  that  previous  literature  might  have  missed 
(Kabulska & Lingnau, 2023), thus increasing the ecological 
validity of the investigated dimensions. Implementations of 
such approaches in the framework of action representation 
may identify action features tailored to describe naturalistic 
stimuli and explain their neural representations.

6.4 Conclusions

In conclusion, this study has extended the understanding 
of action representation in the human brain across varying 
sensory modalities,  by taking advantage of  a  naturalistic 
stimulation  and  a  comprehensive  taxonomic  model  of 
action features. The findings reveal that the AON is capable 
of  robustly  encoding  action-related  information  across 
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sensory modalities, highlighting the modality-independent 
nature  of  action  processing.  Furthermore,  by  means  of 
variance partitioning, we demonstrated that specific action 
domains contribute distinctly to neural representation, with 
some domains, such as Effector and Social, showing stronger 
influence than others.  Importantly,  the work underscores 
the  value  of  a  naturalistic  approach  to  neuroscience 
research, providing a more ecologically valid insight into 
how  actions  are  processed  in  real-world  settings.  This 
study  not  only  enhances  our  understanding  of  neural 
mechanisms underlying action perception but also opens 
avenues  for  further  research  into  how  actions  are 
integrated  across  different  sensory  inputs  to  form  a 
cohesive understanding of others' behaviors.
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Conclusions 

This  thesis  set  out  to  bridge  longstanding  theoretical 
debates  with empirical  investigation in  order  to  advance 
our understanding of how human actions are represented 
in the brain. Drawing from interdisciplinary perspectives—
including  philosophy,  cognitive  neuroscience,  and 
computational  modeling—the  work  has  developed  a 
comprehensive  framework  that  reconsiders  traditional 
action  taxonomies  and  illuminates  the  neural 
underpinnings of action comprehension.

At  the  theoretical  level,  the  thesis  has  proposed  a 
deflationary  pluralism  approach  to  action  taxonomy. 
Rather than adhering to a single, narrowly defined model, 
the work emphasizes the necessity of embracing multiple 
representational  formats—sensorimotor,  perceptual,  and 
semantic—to capture the multifaceted nature of actions. By 
delineating how each format contributes uniquely to our 
understanding  of  actions,  the  framework  challenges 
conventional  theories  that  reduce  actions  to  mere  motor 
acts  or  abstract  intentions.  Instead,  it  posits  that  the 
richness of human behavior lies in the dynamic interplay 
between  precise  motor  control,  sensory  integration,  and 
higher-order  conceptual  processing.  This  theoretical 
contribution not  only redefines the “mark” of  action but 
also  provides  a  structured  language  for  future 
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investigations,  thereby  encouraging  a  more  nuanced 
exploration  of  phenomena  such  as  goal  representation, 
hierarchical structure, and the interface problem.

Empirically,  the  study  leveraged  naturalistic  fMRI 
paradigms  to  validate  these  theoretical  insights.  The 
analysis of multiple film datasets—ranging from narratives 
in  101  Dalmatians  to  the  complex  storytelling  in  Forrest 
Gump  and  the  distinctive  stylistic  features  of  Grand 
Budapest  Hotel—revealed  that  neural  representations  of 
action  are  remarkably  stable  across  varying  sensory 
modalities  and  narrative  contexts.  Voxel-wise  encoding 
models  demonstrated  that  key  action  features,  when 
appropriately  abstracted,  reliably  predict  brain  activity 
patterns. This consistency across datasets underscores the 
robustness of the proposed action models and supports the 
idea that the brain organizes actions in a high-dimensional 
semantic space, where both low-level sensory inputs and 
higher-order  conceptual  cues  are  integrated  to  inform 
prediction and comprehension.

The  methodological  innovations  introduced in  this  work 
have  further  enriched  our  understanding  of  action 
representation. By combining data-driven approaches with 
theory-guided  modeling,  the  thesis  illustrates  how 
computational  techniques—such  as  multivariate  pattern 
analysis  and  clustering—can  be  harnessed  to  reveal  the 
latent structure of action representations in cortical maps. 
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This  integrative  approach  not  only  enhances  the 
interpretability of fMRI data but also opens new avenues 
for  the  development  of  predictive  models  that  may 
eventually  have  applications  in  robotics,  cognitive 
rehabilitation, and artificial intelligence.

Despite  these  advances,  several  challenges  remain.  The 
current  framework,  while  comprehensive,  is  not 
exhaustive. Future research could benefit from refining the 
granularity of action descriptions and exploring additional 
representational  formats  that  may  capture  context-
dependent variations more fully. Moreover, expanding the 
empirical paradigm to include diverse cultural contexts or 
real-life interactive tasks could provide further insights into 
how environmental factors shape neural coding of actions. 
Such endeavors would not only test the generalizability of 
the proposed models but also contribute to a more holistic 
understanding of the interplay between perception, motor 
control, and higher-level cognition.

In  synthesizing  theoretical  discourse  with  empirical 
evidence, this thesis offers a novel perspective on one of the 
most  fundamental  aspects  of  human  behavior.  It 
demonstrates  that  action  representation  is  a  dynamic, 
multilevel process that cannot be fully appreciated by any 
single  methodological  lens.  Rather,  it  is  through  the 
convergence  of  diverse  scientific  traditions—each 
contributing  its  unique  insights—that  we  can  begin  to 
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unravel  the  complexity  of  how  the  brain  perceives, 
encodes, and executes actions.

Ultimately, the contributions of this work extend beyond 
the immediate realm of cognitive neuroscience. They invite 
a broader rethinking of  how we conceptualize actions in 
both naturalistic and controlled settings, suggesting that a 
truly  integrative  model  of  action must  accommodate  the 
inherent diversity and flexibility of human behavior. As the 
field  moves  forward,  the  integration  of  theoretical 
pluralism with advanced neuroimaging and computational 
techniques promises not only to refine our models of action 
but also to inspire new lines of inquiry into the very nature 
of intentionality, perception, and motor control.

In conclusion, this thesis lays the groundwork for a unified 
framework  that  captures  the  nuanced  interplay  between 
the  physical  and  the  conceptual  aspects  of  actions.  By 
reconciling  theoretical  debates  with  rigorous  empirical 
analysis,  it  offers  a  fresh perspective on how the human 
brain  transforms  abstract  intentions  into  concrete  motor 
outcomes. This work thus marks an important step toward 
a more comprehensive and elegant understanding of  the 
neural  architecture  underlying  action,  with  implications 
that  reverberate  across  cognitive  science,  artificial 
intelligence, and beyond.
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Appendix

Table S1. Feature frequency counts. For each domain, the number of 
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Domain Feature Count Percentage
Space

Environment 
Indoor 853 64.61
Urban Outdoor 456 29.19
Countryside Outdoor 277 17.73

Interaction Scale Extensive/Minimal 1101 70.48
Effector Effector visibility Visible/Not visible 1498 95.90

Main effector

One hand 72 4.61
Both hands 29 1.86
One arm 95 6.08
Both arms 97 6.21
One leg or paw 36 2.31
All legs or paws 651 41.68
Mouth 971 62.16
Head or nose 145 9.28
Tongue 15 0.96
Whole body 48 3.07
Fingers 296 18.95

Agent & 
Object

Agent Type Human/Non-human 1186 75.93

Action target
Self-directed actions 832 53.27
Inanimate target 554 35.47

Tool-Mediated Yes/No 42 2.69
Transitivity Yes/No 634 40.59
Object Touch Yes/No 783 50.13

Social Sociality Social/non-social 1035 66.26

Action target
Human Target 714 45.71
Animal Target 321 20.55

Social touch Yes/No 201 12.87
People Present >2/<=2 527 33.74
Theory of Mind Yes/No 24 1.54

Multi-Agent
Joint actions 114 7.30
Multiple agents concurrent 211 13.51

Emotion Emotional Body Language Yes/No 739 47.31
Emotional Implications Yes/No 705 45.13
Gesticulation Yes/No 56 3.59
Symbolic Gesture Yes/No 11 0.70

Linguistic Iterativity Repetitive / Single 799 51.15
Dynamicity Dynamic / Static 1530 97.95
Durativity Continuous / Bounded 1414 90.53
Telicity Telic / Atelic 649 41.55

Table S1. Feature frequency counts. For each domain, the number of timepoints (and corresponding 
percentage) in which a feature was tagged is reported. The count refers to the feature level underlined 
(e.g., 1101 timepoints tagged as extensive rather than minimal interaction scale).



timepoints (and corresponding percentage) in which a feature was tagged is 
reported. The count refers to the feature level underlined (e.g., 1101 timepoints 
tagged as extensive rather than minimal interaction scale).

Figure S1. PCA Explained Variance, R2, and number of voxels for each ROI. 
The top plot shows the relation between ROIs dimensionality and retained 
variance after PCA. The bottom plot shows the relation between ROIs 
dimensionality and full model R2 . Data points are average values across 
subjects, shaded areas represent the min-max range.
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Figure S2. Action presence over time points across raters. Stimulus segmentation was performed 
independently by each rater (in rows), who identified a variable number of events. Timepoints in which an 
event is present are identified after downsampling to TR resolution, therefore event counts are inflated 
with respect to the original tagging temporal resolution.

Figure S1. PCA  Explained Variance,  R2, and  number of voxels for each ROI. The top plot shows 
the relation between ROIs dimensionality and retained variance after PCA. The bottom plot 
shows the relation between ROIs dimensionality and full model R2 . Data points are average 
values across subjects, shaded areas represent the min-max range.

Figure S2. Action presence over time points across raters. Stimulus segmentation was performed 
independently by each rater (in rows), who identified a variable number of events. Timepoints in which an 
event is present are identified after downsampling to TR resolution, therefore event counts are inflated 
with respect to the original tagging temporal resolution.

Figure S1. PCA  Explained Variance,  R2, and  number of voxels for each ROI. The top plot shows 
the relation between ROIs dimensionality and retained variance after PCA. The bottom plot 
shows the relation between ROIs dimensionality and full model R2 . Data points are average 
values across subjects, shaded areas represent the min-max range.



Figure S2. Action presence over time points across raters. Stimulus 
segmentation was performed independently by each rater (in rows), who 
identified a variable number of events. Timepoints in which an event is present 
are identified after downsampling to TR resolution, therefore event counts are 
inflated with respect to the original tagging temporal resolution.

Figure S3. Average ranks in the AV modality. For each subject and domain, 
ROIs that survived statistical thresholding for the full model were ordered and 
assigned a rank (from 1 to 127) based on the R2 obtained from variance 
partitioning.For each ROI, ranks are averaged across subject. L: left. R: right.
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Figure S3. Average ranks in the AV modality. For each subject and domain, ROIs that survived 
statistical thresholding for the full model were ordered and assigned a rank (from 1 to 127) based on the 
R2 obtained from variance partitioning.For each ROI, ranks are averaged across subject. L: left. R: right.
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Figure S4. Average ranks in the V modality. For each subject and domain, 
ROIs that survived statistical thresholding for the full model were ordered and 
assigned a rank (from 1 to 127) based on the R2 obtained from variance 
partitioning.For each ROI, ranks are averaged across subject. L: left. R: right.
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Figure S4. Average ranks in the V modality. For each subject and domain, ROIs that survived 
statistical thresholding for the full model were ordered and assigned a rank (from 1 to 127) based on the 
R2 obtained from variance partitioning.For each ROI, ranks are averaged across subject. L: left. R: right.
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Figure S5. Average ranks in the AV modality. For each subject and domain, 
ROIs that survived statistical thresholding for the full model were ordered and 
assigned a rank (from 1 to 127) based on the R2 obtained from variance 
partitioning.For each ROI, ranks are averaged across subject. L: left. R: right.
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Figure S5. Average ranks in the AV modality. For each subject and domain, ROIs that survived 
statistical thresholding for the full model were ordered and assigned a rank (from 1 to 127) based on the 
R2 obtained from variance partitioning.For each ROI, ranks are averaged across subject. L: left. R: right.
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Table S2. Peak R2 and coordinates of the corresponding ROI for each domain 
and modality. Center-of-mass coordinates are defined in MNI space.
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Domain R2 x y z

AV space 0.0078 -24 -98 6

effector 0.0196 56 -51 14

agent & object 0.0091 19 -90 22

social 0.0107 26 -63 58

emotion 0.0055 8 -57 61

linguistic 0.015 56 -51 14

V space 0.0056 -56 -65 2

effector 0.019 -56 -65 2

agent & object 0.011 -18 -72 56

social 0.009 56 -51 14

emotion 0.0049 -26 -97 -10

linguistic 0.0097 56 -51 14

A space 0.0056 -56 -65 2

effector 0.019 -56 -65 2

agent & object 0.011 -18 -72 56

social 0.009 56 -51 14

emotion 0.0049 -26 -97 -10

linguistic 0.0097 56 -51 14

Table S2. Peak R2 and coordinates of the corresponding ROI for each domain and modality. 
Center-of-mass coordinates are defined in MNI space.
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