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Introduction

The thesis explores the application of cutting-edge, tree-based machine-
learning techniques to analyze and predict the dynamics of firm failure,
success, and growth. It is structured around three key areas: the detec-
tion of non-viable firms, the analysis of factors driving the future success
of startups, and the examination of firm growth dynamics while address-
ing methodological limitations. Given the endemic missingness affecting
firm-level data—often highly informative in prediction—particular at-
tention is dedicated to the handling and usage of missing values within
predictive frameworks. By integrating predictive analytics with empiri-
cal insights, the thesis seeks to enhance understanding and transparency
in firm dynamics, offering insights for both academic research and prac-
tical applications.

Chapter 1 introduces a framework for identifying zombie firms, i.e.,
companies that persist in a high-risk status despite financial distress. Us-
ing a machine-learning approach, we define zombies based on predictive
thresholds and analyze their characteristics, distribution, and economic
impact. A key focus is the role of missing financial data, which we incor-
porate into the predictive model to enhance accuracy. Leveraging a rich
dataset of Italian firms, we evaluate the effectiveness of various machine-
learning methods in forecasting firm viability and compare their perfor-
mance with traditional credit risk models. The findings provide insights
for policymakers and stakeholders aiming to improve financial stability
and resource allocation.

Chapter 2 investigates the determinants of startup success, focusing
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on whether survival and long-term performance are driven by initial
conditions or by firms’ ability to adapt and develop capabilities over
time. The analysis is framed within two theoretical perspectives: noisy
learning and capability learning. The former suggests that firms discover
if they have viable business models through experience, while the latter
posits an adaptive learning process where firms actively improve their
business model and strategies over time. Using a comprehensive dataset
of newly founded firms in the Netherlands, the chapter employs gradi-
ent boosting to assess the extent to which early-life firm characteristics
predict future success and interpret the results in term of noisy and ca-
pability learning theories. The findings provide insights into startup dy-
namics and offer policy recommendations aimed at fostering the emer-
gence of high-growth and high-productivity firms.

Chapter 3 examines firm growth dynamics, a key topic in economic
research, particularly regarding the factors that drive growth and the
validity of Gibrat’s law, which posits that firm growth is independent
of size. However, empirical studies face significant challenges due to
sample attrition and missing data, which can bias estimates and obscure
the true relationship between firm growth, size, and innovation. To ad-
dress these issues, this chapter proposes an extension of Heckman’s two-
step procedure, integrating machine-learning techniques to improve the
correction for selection bias in firm growth analysis. By replacing the
traditional probit model with a more flexible predictive algorithm, this
approach enhances the ability to account for complex selection mech-
anisms and missing data patterns. The study focuses on the role of
innovation—measured through intellectual property indicators such as
patents and trademarks—as a driver of growth. The findings contribute
to the debate on Gibrat’s law and underscore the advantages of combin-
ing econometric methods with machine learning to obtain more accurate
and reliable estimates of firm growth dynamics.
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Chapter 1

Machine-learning for
zombie hunting: predicting
distress from firms’
accounts and missing
values

This chapter is co-authored with Falco J. Bargagli-Stoffi, Massimo Riccaboni,
and Armando Rungi, and was published in 2023 in the journal Industrial and
Corporate Change.

1.1 The conceptual framework

The first chapter proposes machine-learning techniques as suitable tools
to make predictions about business failure when information about firm
viability is partially undisclosed. Therefore, we define zombies as firms
that persist in a high-risk status because their predicted probability of
failure is above a threshold for which a combination of the false positive
rate (i.e., predicting a firm that did not fail as failed) and the false nega-
tive rate (i.e., predicting a firm that failed as not failed) is minimized. We
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prove that the latter is also the distributional segment in which the prob-
ability of transitioning to a lower risk of failure is minimal. According
to our machine-learning approach, the Italian proportion of zombie firms
in the analysis period is between 1.5% and 2.5%. Zombie firms are, on
average, 19% less productive and 17% smaller than viable firms. Inter-
estingly, we find that Zombies are countercyclical, as their share increases
in times of crisis and decreases in economic recovery.

The problem of identifying non-viable firms is important to schol-
ars and practitioners, whether to assess the credit risk of an individual
firm or to identify the part of an entire economy that is in trouble. Orig-
inally, the notion of zombie firms was associated with the phenomenon
of “zombie lending”, in which banks extend credit to otherwise insolvent
borrowers. In some cases, zombie lending is a deliberate strategy to
avoid a bank’s budget restructuring while only apparently complying
with capital standards set by financial regulators (Bonfim et al., 2020),
e.g., the case of Japanese banks in the 1990s (Peek and Rosengren, 2005;
Caballero, Hoshi, and Kashyap, 2008). More recently, Schivardi, Sette,
and Tabellini (2021) studied Italian companies during the 2008 finan-
cial crisis and found that the misallocation of credit under zombie lend-
ing increased the default rate of otherwise healthy firms while decreas-
ing the default rate of non-viable firms. This was because undercapital-
ized banks could restrict lending to more viable projects to avoid disclos-
ing non-performing loans in their portfolios. Paradoxically, severely dis-
tressed companies can appear resilient in times of financial crisis thanks
to continued access to financial resources.

From a more general perspective, recent studies introduce zombies as
firms that have persistent problems meeting their interest payments (An-
drews, Muge Adalet McGowan, Millot, et al., 2017; Müge Adalet Mc-
Gowan, Andrews, and Millot, 2018; Banerjee and Hofmann, 2018; An-
drews and Petroulakis, 2019), thus expanding the original category to
include firms that are in some form of financial distress. Based on proxy
indicators from financial accounting, they show that zombies account for
a non-negligible share of modern economies—up to 10% of incumbent
firms—while absorbing up to 15%, 19%, and 28% of the capital stock in
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countries such as Spain, Italy, and Greece, respectively. When market exit
or restructuring delays occur, they drag down aggregate productivity by
hindering the reallocation of resources in favour of healthier firms and
preventing the entry of potentially more innovative and younger firms.
It is therefore argued that identifying non-viable, financially distressed
firms can be particularly useful in avoiding the misallocation of produc-
tive and financial resources.

Against this background, we argue that the empirical problem of as-
sessing whether a firm is a zombie is closely related to the more gen-
eral problem of determining its credit risk. Ultimately, a zombie is a
non-viable firm that may escape bankruptcy despite its extreme finan-
cial distress—i.e., despite scoring the highest credit risk. From another
perspective, healthier firms are the furthest from bankruptcy and zombie
status. Traditionally, credit risk has been studied from the perspective
of a financial firm, which must assess the health of a company using
information, albeit limited, from financial books and public records.1.
Thus, for decades, academics and practitioners have attempted to de-
termine a firm’s profitability after benchmarking exercises on firm-level
indicators of financial constraints—e.g., in estimating Z-Scores (Altman,
1968; Altman et al., 2000), Distance-to-Default (DtD; Merton, 1974), or
investment-to-cash-flow sensitivity ((Fazzari, R. G. Hubbard, and Pe-
tersen, 1988). However, information on corporate viability may be in-
complete due to strategic disclosure of relevant information and simpli-
fied financial records for certain categories of unlisted companies.

Thus, we propose a machine-learning approach to predict credit risk
and zombie status from incomplete financial accounts. To show the po-
tential of our approach, we worked with a sample of 304,906 Italian firms
over the period 2008–2017. Italy is a compelling example of a country
that hosts a relevant share of inefficient firms that hinder the growth po-

1The seminal reference is to a departure from the Modigliani and M. H. Miller (1958)
theorem, according to which capital structure should not be relevant to a company’s value
if there are no market frictions, including bankruptcy costs. Thus, a firm’s ability to raise ex-
ternal financing should depend solely on the profitability of its investment projects. How-
ever, since financial market frictions cannot be eliminated, a firm’s capital structure actually
provides information about the profitability of the firm and its assets. See also the discus-
sion of Rajan and Zingales (1995) for an international perspective
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tential of the economy (Calligaris, Del Gatto, Hassan, G. I. P. Ottaviano,
et al., 2018).

The underlying intuition is simple: based on the experience of firms
that failed in previous periods, we derive predictions about the risk of
failure of active firms. Each time we compare the observed outcomes
with the predicted outcomes, the algorithm updates and reduces the pre-
diction errors in the next periods after processing new “in-sample” infor-
mation about the financial accounts. In the end, we obtain a probabilistic
measure of the likelihood that a business will fail. Our machine-learning
framework improves upon existing benchmark models by leveraging a
rich set of firm-level economic and financial indicators that potentially
contain diverse information about the firm’s core economic activity and
ability to meet financial obligations.

Importantly, we find that emerging patterns of missing financial ac-
counts correlate with firm failure, possibly because managers are more
likely to conceal accounts when they are in financial distress. We provide
evidence that most missing variables are often those that have been used
as proxies for zombies or financial constraints in the previous literature.
Therefore, we implement our missing-aware methodologies incorporat-
ing patterns of undisclosed accounts and test whether a substantial im-
provement in prediction occurs when missing data are properly handled.
Using the missing values information as another predictor of outcome,
we show that the best predictive algorithm in our setting, eXtreme Gra-
dient Boosting (XGBoost) (T. Chen and Guestrin, 2016), explains up to
0.97 of the area under the curve (AUC), and its precision-recall (PR) per-
formance reaches 0.76. XGBoost outperforms credit scoring models (i.e.,
Z-score and DtD models), standard econometric methods (i.e., logistic re-
gression), and other machine-learning techniques (i.e., classification and
regression tree [CART] and random forests).

We argue that asymmetric and undisclosed (missing) information is
ubiquitous in corporate financial accounts. Therefore, simply omitting
records with missing values would severely impair the search for pre-
dictors of zombies and lead to a loss of precision and bias (Little and Ru-
bin, 2019). If the missing information is correlated with firm failures, ex-
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cluding these firms would significantly reduce the number of failures in
the sample and thus hinder the algorithm’s learning for these instances.
This problem could potentially be avoided by a missing data imputation
approach that would allow the inclusion of these firms in the training
sample. On the other hand, the missing information per se constitutes
relevant information to learn from failures. This may be the case if non-
viable firms have the option of not disclosing information in their finan-
cial accounts. As a result, the mechanism in the data is missing not at
random (MNAR), and the complete records are not a random sample of
the population of interest. In this second case, if some companies consis-
tently avoid disclosing part of their information, imputation of missing
data would not be sufficient to solve the problem. Indeed, we know
from previous literature that techniques for imputing data, such as mean
or median imputation, can fail in the presence of MNAR because they
distort the empirical distributions.2

Based on the previous considerations, we choose an approach that
can simultaneously incorporate missing data into our analysis while be-
ing robust to MNAR. We implement two methods specifically designed
to deal with nonrandom patterns of missing data: XGBoost and Bayesian
Additive Regression Trees with Missing Incorporated in Attributes (BART-
MIA) (Kapelner and Bleich, 2015). Although these methods differ in im-
plementation, they have very similar routines for dealing with MNAR
patterns. XGBoost uses default directions, also known as block propa-
gation (Josse et al., 2019), to group all incomplete observations and send
them to one side of the tree. The MIA method method (Twala, Jones,
and Hand, 2008), extended by Kapelner and Bleich, 2015; Kapelner and
Bleich, 2016, strengthens block propagation so that missingness can be
used as an explicit feature to compute the best splits. According to Josse
et al., 2019, MIA can handle both informative and noninformative miss-
ing values. Our results suggest that both XGBoost and BART-MIA ef-
fectively capture the direct influence of missing values as either implicit
(block propagation) or explicit (MIA) predictors of the response variable.

2Further limitations of traditional approaches to imputing missing data are discussed
in (He et al., 2010; T. K. White, Reiter, and Petrin, 2018; Little and Rubin, 2019).
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Finally, the following analyses show that XGBoost has a significantly
lower computational cost and relatively higher predictive power than
BART-MIA. To shed more light on the information that contributes most
to prediction, we use an interpretable framework that has its roots in
game-theoretic Shapley values, introduced by Strumbelj and Kononenko
(2010). Shapley values have recently been proposed to identify the eco-
nomically meaningful nonlinearities learned by machine-learning mod-
els (Buckmann, Joseph, and Robertson, 2021). We find that no single
financial indicator predicts failure better than the ensemble of predictors
used in our machine-learning approach.

Economically informative groups of variables have heterogeneous
predictive power. In particular, indicators of firms’ financial constraint or
previously used indicators of zombies are important. Nevertheless, they
are of secondary importance when compared to information on firms’ fi-
nancial accounts, indicators of corporate governance, and the presence of
nonrandom missing values. Our results confirm that machine-learning
techniques perform better than single indicators when incorporating as
much valuable in-sample information as possible while updating each
time there is new out-of-sample information because prediction errors
dynamically decrease after independent tests that minimize the discrep-
ancies between the realized and predicted outcomes (Susan Athey, 2018).

Our framework is of particular interest to policymakers in designing
optimal bankruptcy laws.3 Tracking a company’s bankruptcy risk allows
all stakeholders, not just creditors, to understand whether there is an op-
portunity for restructuring and, if not, to prevent incumbent, albeit non-
viable, firms from wasting additional economic resources. Evidence-
based, interpretable methods are even more important after the recent
pandemic crisis, as we believe that financial support must be targeted to
companies that have a real chance of recovering and staying on their feet
in normal times to avoid misallocation of resources.4

3See also the suggestions by the European Directive 2012/30/EU, and the recent Italian
law on business failures on October 19, 2017, n. 155, which provides the legal basis for early
notification of corporate crises to improve targeted interventions.

4For a first analysis of the impact of the pandemic crisis on Italian companies, see
Schivardi and G. Romano (2020)
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1.2 Data and preliminary evidence

We obtain the financial accounts from the ORBIS database5, compiled by
the Bureau Van Dijk, for manufacturing firms active in Italy for at least
one year from 2008-2017. Italy is a compelling case to study business fail-
ure and zombie firms: it is a country where relatively inefficient firms hin-
der the economy’s growth potential (Calligaris, Del Gatto, Hassan, G. I.
Ottaviano, et al., 2016; Bugamelli et al., 2018), perpetuating geographic
divergence (Rungi and Biancalani, 2019), and are studied extensively by
international organizations (Müge Adalet McGowan, Andrews, and Mil-
lot, 2018; Andrews and Petroulakis, 2019). For our purpose, we use two
main variables that help us identify business failure: the status of a firm
and the date on which it becomes inactive. Table 1 shows our sample
coverage by firm status over in the period of analysis. We assume that
a firm has failed in the first year if it is reported as “bankrupt”, “dis-
solved”, or “in liquidation”, as in the original data. Overall, the share of
exiting firms accounts for about 5.7% of the total sample, which is close
to the average official 6.3% obtained by ISTAT, the national statistics of-
fice, for the same period.

Figure 1 shows the proportions of firm failures by NUTS 2-digit re-
gions. As expected, we find a higher concentration of failures in the north
and center of the country, where economic density is higher. It is note-
worthy that we fully represent the whole Italian territory since we detect
business failures in every region during our period of analysis.

5ORBIS firm-level data (Orbis, 2020) have become a common source of global finan-
cial accounts. For previous use of this database, see Gopinath et al., 2017 and Cravino and
Andrei A. Levchenko, 2016, among others. Coverage of smaller firms and some financial
accounts may change across countries as national business registries impose different filing
requirements, as observed in the validation exercises of Kalemli-Ozcan et al., 2015 and Gal,
2013. In the case of Italy, the original information provider for Italian financial accounts is
CERVED, a credit rating agency. Bureau Van Dijk standardizes and translates the original
financial accounts to make them comparable between countries. Note that, unlike other
platforms of the same Bureau Van Dijk (e.g., AIDA or AMADEUS), ORBIS does not drop
exiting firms in our analysis period. It supplements the financial accounts with other infor-
mation from various sources on ownership, management and intellectual property rights,
which we also use for predictions.
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Table 1: Firms by status

Status Active Bankrupted Dissolved In Liquidation Total

Sample 287,586 1,533 8,540 7,221 304,906
Percentage 94.33% 0.50% 2.80% 2.37% 100%

Figure 1: Geographic coverages

Notes: The proportion of business failures to the total number of firms for NUTS 2-
digit regions. We assume that a firm fails when it is reported as bankrupt, dissolved,
or in liquidation.

We use a set of economic and financial indicators to train our predic-
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tive models. The battery of predictors includes (i) original financial ac-
counts at the firm level; (ii) widely used indicators to proxy firm-level
financial constraints; (iii) indicators previously used to detect zombie
firms; (iv) indicators included as warnings of corporate crises in the re-
cent Italian bankruptcy law.6 Each predictor is detailed in Appendix Ta-
ble A.1.1.

Note that many indicators we select as predictors have been used in
various frameworks to assess the extent to which a firm is in trouble.
From our machine-learning perspective, they cannot be interpreted as
drivers of failure. It is sufficient that they contribute, albeit in a small
way, to the assessment of a company’s health. In our predictive frame-
work, they might even border on multicollinearity, e.g., in the case of dif-
ferent measures of efficiency, liquidity, and solvency ratios. Since we are
not interested in identifying a causal contribution to firm failure, high
collinearity does not pose a problem for our predictions (Makridakis,
Wheelwright, and Hyndman, 2008; Shmueli et al., 2010). On the con-
trary, we will discuss in Section 1.3.4 how, by construction, one cannot
separate the empirical contribution of an indicator from the entire set in
the context of a pure prediction problem. For this reason, the predictors
we use should be considered as an inseparable ensemble, and a discus-
sion of the statistical significance of the individual predictors is not rele-
vant in our framework. In addition to mandatory and basic information
(volume of activity, profits, location, industry affiliation, ownership, and
intellectual property rights), many other financial accounts have differ-
ent patterns of missing values over time. In the Appendix, Figure A.2.1
shows a map of missing values in our sample. The frequency of miss-
ing values affects all firms in the data, both active and failed and it is
more concentrated in the financial accounts of recent years. In addition,
liquidations exhibit less pronounced patterns over time than the other

6A recent reform of the bankruptcy law (L. 155/2017 and DL. 14/2019) proposes an
early warning system based on indicators identified by practitioners, the purpose of which
is to identify companies in distress in time to intervene to preserve entrepreneurial capabil-
ities and find a way out of the crisis. It delegated practitioners (in particular the National
Association of Chartered Accountants: Consiglio Nazionale dei Dottori Commercialisti e
degli Esperti Contabili ) to draw up a list of indicators that could help assess the state of
crisis of a company
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Table 2: Missing predictors and firms’ failures

Missing predictor Odds ratio Std. Error N. obs. Pseudo R2

Interest Coverage Ratio 5.70*** (1.07) 298,873 0.051
Interest Benchmarking 4.09*** (0.75) 298,873 0.043
Negative Value Added 6.65*** (1.22) 298,873 0.052
Z-score 10.29*** (2.21) 298,873 0.069
Total Factor Productivity 7.04*** (1.22) 298,873 0.056
Profitability 5.70*** (1.07) 298,873 0.051

Odds ratios according to a logit specification where the dependent variable is firm
failure and the binary regressor equals 1 if at least one missing value is found in the
last 3 years. Fixed effects at the region and industry levels are included. Errors are
clustered by industry. Statistical significance at the 1% level is indicated by ∗∗∗.

failure categories.7 After running a series of χ2 tests (see Appendix Table
A.1.2), we find a positive statistical relationship between the patterns we
observe in the sample and the event of a firm’s failure. In short, a firm is
more likely to fail if a pattern of missing financial accounts is observed.
The exercise performed in Table 2 clearly shows such correlations. We
run a simple logistic regression using the observed failure of a firm as
the dependent variable. We then add a binary regressor equal to 1 if the
predictor is missing at least once in the 3 years. Fixed effects by the NUTS
3-digit region and the NACE 2-digit industry are included. We report the
results for each predictor per row in Table 2.

The above correlations are particularly relevant to the scope of our
analyses. The main problem is sample selection when observations are
selectively missing for some categories of firms. In this case, there are
two potential sources of sample selection bias: (i) distressed firms vis-à-
vis firms that are not in distress, as the former may have the incentive to
disclose less information than the latter; (ii) smaller firms vis-à-vis big-
ger firms because the first are often exempted from a complete financial
report, in accordance with Italian Regulation.8 Of course, the two sets of

7There is no missing value for categorical variables (industry and region).
8Under Italian civil law, companies that do not list financial activities on the stock ex-

change have the option to provide more aggregate financial reports if their size does not
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firms may overlap, as smaller companies may also be the ones that are
proportionally more affected by financial difficulties. Using a missing-
aware procedure, as described in Section 1.3, allows us to consider both
sources of sample selection when patterns of missing financial accounts
emerge since the algorithm considers such patterns as another predictor
of firm failure.

Interestingly, we note that most of the missing variables are also those
used in previous work as proxies for zombies or financial constraints.
Take, for example, the case of the interest coverage ratio (ICR), which
is derived as the ratio between a firm’s earnings before interest and taxes
(EBIT) and its interest expense. If the ICR is less than 1, Bank of Eng-
land (2013) assumes that a company is a zombie because it is having trou-
ble meeting its financial obligations. In our sample, we find that about
19% of firms have an ICR smaller than 1, but at the same time, there are
62.50% of firms whose ICR information is not available at all. Moreover a
negative value added is an appropriate indicator for evaluating a zombie
status, as it indicates that intermediate inputs have a higher market value
than the firm’s output. In the case of Italy, about 64.27% of enterprises
do not report their value added in at least one period, while about 3%
of them report a negative value. A negative value added is, of course, a
more severe condition than a negative profit since a company can make
no profits without destroying economic value. Indeed, firms’ profitabil-
ity is at the heart of two similar proxies for zombies used by Schivardi,
Sette, and Tabellini (2021) when comparing firm-level profits to an ex-
ternal benchmark. Repeating the same exercises, we find that about 3%
of Italian firms are distressed, while a large part of the sample (62.50%)
does not report any information on the predictor. Finally, both Caballero,
Hoshi, and Kashyap (2008) and Müge Adalet McGowan, Andrews, and
Millot (2018) perform another benchmarking exercise, comparing the in-
terest a firm pays to raise external finance with the cost opportunity to
invest in alternative, safer investments. In our case, when we try to re-

simultaneously exceed two of the following thresholds in one or two consecutive periods:
i) 4,400,000 euros in total assets; ii) 8,800,000 euros in operating revenues; iii) 50 employees.
A simplified financial statement always includes the most significant items in the first or
second position digit of the aggregation.
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produce the same exercise with the yields of Italian government bonds
with a ten-year maturity, we find that there is a high proportion (60.29%)
of companies for which we have no information in at least one period in
which they were active.

We also include an estimate of the total factor productivity (TFP) as
a predictor, following the methodology proposed by Ackerberg, Caves,
and Frazer (2015), to account for the simultaneity bias arising from ex
post adjustments in combining factors of production. In this respect,
firm-level TFP allows us to make predictions based on the ability to trans-
form inputs and sell output in the market. Indeed, the relationship be-
tween financial constraints and productivity is one of the most debated
issues (see, among others, Aghion, Bergeaud, et al., 2019; Ferrando and
Ruggieri, 2018). The simple assumption for our forecasting models is
that less productive firms are the ones that have more difficulty surviv-
ing in the market. At the same time, zombie firms have also often been
defined in terms of (lack of) productivity (Müge Adalet McGowan, An-
drews, and Millot, 2018; Andrews, Muge Adalet McGowan, Millot, et
al., 2017; Andrews and Petroulakis, 2019; Schivardi, Sette, and Tabellini,
2020).9

1.3 Empirical strategy

It is difficult to identify non-viable companies for obvious reasons. If
financial accounts are in bad shape, one could argue that it is only a mat-
ter of time before they become more competitive if conditions are right.
If the balance sheets are good, one could argue that the worst is yet to
come because bad management decisions will show up later. Trivially,
only the already bankrupt companies were certainly not viable at some
point. Still, an outside observer will never know when that happened
because the manager of a company in trouble has an incentive not to dis-
close private information.

9Please note how T. K. White, Reiter, and Petrin (2018) recently highlighted the limita-
tions of using missing imputation techniques for the variables used to calculate TFP in the
US.
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In principle, an analyst would like to observe the entire event horizon
to discount all possible scenarios and understand the value of a company
and its investment projects. However, this is not possible because it is the
typical double problem of a financial institution facing uncertainty in the
presence of information asymmetries. On the one hand, the company
has a clear information advantage in its investment plans. On the other
hand, both the financial institution and the company have a limited abil-
ity to predict future economic shocks, which can have either positive or
negative effects.

In their seminal works, Altman (1968) and Ohlson (1980) apply stan-
dard econometric techniques—i.e., multiple discriminant analysis and
logistic regression—to assess the probability of firm bankruptcy. Fol-
lowing these contributions and the Basel Accord II in 2004, default fore-
casts are based on standard reduced-form linear regression approaches.
However, these approaches may fail because their limited complexity
precludes nonlinear interactions among predictors, while their ability to
handle large sets of predictors is limited due to potential multicollinear-
ity problems.

Machine-learning algorithms compensate for these shortcomings by
providing flexible models that allow nonlinear interactions in the space
of predictors and the inclusion of a large number of predictors with-
out the need to invert the covariance matrix of the predictors, thereby
circumventing multicollinearity (Linn and Weagley, 2019). In addition,
machine-learning models are directly optimized to perform the predic-
tion task, resulting in better prediction performance in many complex
situations.

The data science literature has already developed exercises to predict
corporate failures using financial accounts but without a clear economic
and financial framework. In this context, Falco J Bargagli-Stoffi, Nieder-
reiter, and Riccaboni (2021), Behr and Weinblat (2017), Linn and Wea-
gley (2019), Moscatelli et al. (2019), De Martiis, Heil, and Peter (2020),
Davies, Kattenberg, and Vogt (2023), Udo (1993), K. C. Lee, Han, and
Kwon (1996), Tsai and Wu (2008), Sun and H. Li (2011), Brédart (2014),
Tsai, Hsu, and Yen (2014), G. Wang, Ma, and S. Yang (2014), Alaka et al.
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(2018), and Hosaka (2019).
With this in mind, we propose a machine-learning procedure that

uses past information about previously failed firms to estimate the prob-
ability that another firm in a similar condition will go bankrupt. The
wider the variety of past experiences on which we can draw, the more
accurate the prediction about the health—or lack thereof—of a company
(Kleinberg et al., 2015). Ultimately, our perspective is on a firm’s (lack
of) resilience, using potentially any observable data that might hold in-
formation about the firm’s viability. In the end, we obtain a probabilistic
measure at the firm level, ranging from 0 to 1, which tells us the proba-
bility that a firm will exit the market in the next period, given that other
firms in a similar situation have done so. As shown in Figure 2, we can
assess the distance of each company from the highest financial distress.

Let us consider a generic predictive model in the form:

f(Xi,t−1) = Pr(Yi,t = 1 |Xi,t−1 = x) (1.1)

where Yi,t is the binary realization of the outcome at time t that takes the
value 1 if the ith firm exits the market and takes the value zero otherwise,
while Xi,t−1 is the P -dimensional vector of firm-level predictors in the
previous time period, where P is the number of predictors included in
the model. The functional form linking the predictors to the outcomes is
determined by the generic supervised machine-learning procedure used
to predict out-of-sample information. In short, the generic algorithm
chooses the best in-sample loss-minimizing function in the form:

argmin

N∑︂
i=1

L(f(xi,t−1), yi,t) over f(·) ∈ F s. t. R
(︁
f(·)

)︁
≤ c (1.2)

where F is a function class from where to pick f(·), and R
(︁
f(·)

)︁
is the

generic regularizer that summarizes the complexity of f(·) (see also Mul-
lainathan and Spiess, 2017). In our case, the function f(·) is an element
from the family of classification trees or a combination of them. The set of
regularizers, R’s, will change according to the standards adopted by each
method. Ultimately, each algorithm takes a loss function L(f(xi), yi) as
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Figure 2: Fictional distribution of failure’s probability

input and searches for the function that minimizes the prediction losses.
To determine the region of highest financial distress, we show in the

following analysis that a cutoff of 0.9 minimizes the combination of false-
positive (false prediction of firm failures) and false-negative (false pre-
diction of active firms) rates. This empirical result supports the choice of
the highest decile of the predicted risk distribution as the optimal thresh-
old for identifying cases of critical financial distress. We will also prove
that using the highest decile to identify zombie firms is successful, as this
is the segment where prediction accuracy is highest, and after which the
probability of transitioning back to lower levels of financial distress is
minimal.

We would like to emphasize that we are not interested in identifying
the causes of firm failure, since we are dealing with a pure prediction
problem,— i.e., the probability of the failure of firm i at time t. Never-
theless, we perform variable selection to evaluate the contribution of the
predictors to the estimated risk. We show how the predictors of failure
can change over time, under the circumstances in which we make the
predictions, each time there is an update with new out-of-sample infor-
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mation.

1.3.1 Decision tree learning for failure prediction

Consistent with the literature on bankruptcy and firm exit predictions
presented earlier, we derive—given new out-of-sample information—a
prediction for the failure of each firm based on its current financial ac-
counts, both for established firms that have operated in previous periods
and for firms entering the market for the first time. From another per-
spective, we interpret this probability range as the degree of risk of an
investor who has no information other than that contained in the current
financial accounts.

Our study introduces an innovative approach to failure prediction
by demonstrating the remarkable effectiveness of tree-based machine-
learning models, especially in the presence of missing data. While neural
networks are widely considered the best option for prediction tasks with
homogeneous data such as images and text, they often fail for “prob-
lems with heterogeneous features, noisy data, and complex dependen-
cies” (Prokhorenkova et al., 2018). Decision tree–based algorithms are
considered suitable tools in these cases due to their flexibility and high
performance. The CART algorithm, first introduced by Breiman et al.,
1984, is a widely used decision tree algorithm that constructs binary trees
where each node is divided into only two branches. Figure 3 shows how
binary partitioning works in practice, using a simple example with only
two predictors.

Ensemble methods have been developed to improve the stability of
decision tree estimates, which combine multiple weak learners into one
strong learner. Bagging and boosting are two popular methods for this
purpose (Breiman, 1996; Freund, Schapire, et al., 1996). In line with re-
cent developments in the literature, we perform a comparative evalua-
tion of firm failure prediction using two state-of-the-art approaches: XG-
Boost (T. Chen and Guestrin, 2016) and BART-MIA (Chipman, George,
McCulloch, et al., 2010). Both statistical models are specifically designed
to deal with missing values, which makes them ideal for dealing with se-
vere cases of missing financial data in corporate accounts. As illustrated
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in Section 3.4, the absence of financial data does not follow random pat-
terns, or at least does not follow the failure of a company completely
randomly. When a company is financially distressed and/or smaller, it
is more likely that data is missing from some accounts. Simply discard-
ing the missing observations would introduce selection bias and exclude
certain categories of firms with a higher probability of failure. Crucially,
both XGBoost and BART-MIA include patterns of undisclosed accounts
as a feature of the model.

XGBoost is an ensemble method based on decision trees with a gradi-
ent boosting framework. It has proven to be highly competitive and re-
liable on various prediction tasks, mainly due to its efficient use of com-
putation time and memory resources (Gumus and Kiran, 2017; Abbasi
et al., 2019; M. Li, Fu, and D. Li, 2020). It is equipped with various op-
timization techniques and tools, such as a percentile-based split-finding
algorithm, parallelized tree building, a depth-first approach to tree prun-
ing, and efficient handling of missing values. XGBoost uses a technique
called “Sparsity-aware Split Finding”, also known as default directions
(T. Chen and Guestrin, 2016) or block propagation (Josse et al., 2019),
to deal with missing values for continuous variables. All observations
reporting missing values are directed toward the branch with the least
error magnitude. On the other hand, categorical variables require one-
hot encoding before training, with missing values encoded as a separate
category during preprocessing. In this way, the algorithm can make in-
formed decisions based on the presence or absence of missing categor-
ical data. In our application, the categorical variables have no missing
values. Therefore, there is no need to encode missing values for them.
Moreover, XGBoost includes regularization techniques to prevent over-
fitting (Bentéjac, Csörgő, and Martı́nez-Muñoz, 2021).

BART-MIA is a robust Bayesian ensemble of trees methodology that
combines the traditional BART (Chipman, George, McCulloch, et al.,
2010) with a variant called MIA (Twala, Jones, and Hand, 2008). This
variant was specifically designed to deal with MNAR ( Missing Not At
Random) patterns in the data. BART is a well-established method that
has shown excellent performance on various prediction tasks (Murray,
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Figure 3: An example of binary tree

x1 < 0.6

x2 > 0.2

l3l2

No Yes

l1

No Yes

(a) Binary tree

(b) Feature space

Notes: In Figure (3a), the internal nodes are labeled by their splitting rules and the
terminal nodes by the corresponding parameters li. Figure (3b) shows the corre-
sponding partition of the feature space.
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2017; Linero and Y. Yang, 2018; Linero, 2018; Hernández et al., 2018). This
can be attributed to two key factors: first, BART contains a noise compo-
nent that mitigates the overfitting problem common to random forest
methods, and second, it has shown consistently strong performance on
standard model specifications, avoiding time-consuming hyperparame-
ter tuning procedures. This property is particularly important because
it reduces the researcher’s dependence on parameter choice and mini-
mizes the computational time and cost associated with cross-validation.
See the appendix A.3 for the technical details of the two models.

1.3.2 Validation against other machine-learning techniques

We compare the predictive performance of our methods that account for
missing values, XGBoost and BART-MIA, with the conditional inference
tree (Hothorn, Hornik, and Zeileis, 2006), the random forest (Breiman,
2001), and the super learner (Van der Laan, Polley, and A. E. Hubbard,
2007). The conditional inference tree we use is a simple variant of the
CART algorithm (Breiman et al., 1984), based on a significance testing
procedure that avoids bias toward variables with many possible splits
(see Odén, Wedel, et al., 1975; Loh, 2002; Hothorn, Hornik, and Zeileis,
2006). The random forest is an ensemble method that combines differ-
ent trees to obtain stronger predictive power. Each tree is created by
randomly selecting different variables from all possible predictors and
randomly selecting a subset of the total number of observations (see also
Breiman, 2001). The super learner (Van der Laan, Polley, and A. E. Hub-
bard, 2007) is based on a weighted combination of other algorithms. We
use a non-negative least squares (NNLS) version of it, which ensures that
the assigned weights are non-negative. This prevents negative contribu-
tions, which have no intuitive meaning in most contexts. Furthermore,
in our variant of the NNLS version, the assigned weights are normalized
so that they sum to 1. The normalization ensures that the final prediction
is a weighted average of the base learners’ predictions, with each weight
representing the relative importance of the base learner in the ensemble.
We build it as a convex combination of the following models: logistic re-
gression, CART, random forest, BART, and XGBoost.
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To evaluate the performance of the models, we use a standard five-
fold cross-validation for panel data, where the dataset is divided into five
groups and the model is trained on four of them, while the fifth group is
used as a validation set, iteratively repeating this process. In this way, we
can comprehensively evaluate the predictive performance of the model
over the entire time series.

To ensure comparability with the other models that do not consider
missing values, we perform a complete-case (CC) analysis. The latter is
a widely used approach for dealing with missing values in models that
are not designed to do so. In this approach, all observations with at least
one missing value in the predictors are discarded. Although XGBoost
and the BART-MIA models could use the entire dataset without exclud-
ing missing observations, we perform a missing-aware analysis to ensure
fair performance evaluation of all models: we train and test XGBoost and
BART-MIA using fivefold cross-validation with identical dimensions as
the original folds but allow missing observations to be included in the
sample. For clarity, we use the terms XGBoost and BART-MIA for the
models trained on observations with missing values. In this case, XG-
Boost uses default directions to deal with missing values, while BART-
MIA uses the MIA procedure. On the other hand, we will simply refer to
the models trained on CC data as CC-XGBoost and BART.
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Table 3: Models’ horse race: performance measures

(a) CC analysis

Method AUC PR F1-Score BACC R2 Time
Logit 0.8966 0.4542 0.1833 0.7504 0.2658 9.13
Ctree 0.8957 0.4444 0.1987 0.7668 0.2640 572.46
Random Forest 0.9117 0.5233 0.1907 0.7595 0.3135 261.62
CC-XGBoost 0.9140 0.5170 0.1833 0.7504 0.3126 43.66
BART 0.9185 0.5221 0.1843 0.7533 0.3179 1249.05
Super Learner 0.9231 0.5464 0.1844 0.7535 0.3373 4147.87

(b) Missing-aware analysis

Method AUC PR F1-Score BACC R2 Time
XGBoost 0.9685 0.7591 0.2070 0.7646 0.5243 24.70
BART-MIA 0.9681 0.7516 0.2092 0.7676 0.5178 1126.88

Notes: All algorithms are trained with five-fold cross-validation. The training and test
sets include 95,970 and 19,194 observations in each iteration, respectively. All metrics
correspond to the five-fold average. Time indicates the average seconds required to
train the model in each fold.

Table 3 shows the results of the horse race of the models. It is clear
that the missing-aware models consistently outperform the state-of-the-
art methods involved in the CC analysis. To compare the predictive
power of the different methods, we show five different performance mea-
sures commonly used for classification problems: the area under the re-
ceiver operating characteristic (ROC) curve (AUC), the area under the
PR curve, F1-score, Balanced ACCuracy (BACC), and adjusted R2. Both
AUC and PR vary between 0 and 1, with 0 indicating complete misclas-
sification and 1 indicating perfect prediction. The AUC (Hanley and Mc-
Neil, 1982) is a general measure of predictive power that tells us the ex-
tent to which we are able to classify failures vis à vis non-failures, hence
with an accent on the false discovery rate (FDR). PR is particularly use-
ful for our scope because it takes into account both the total proportion
of true failures that we are able to predict in the data (i.e., the sensitiv-

23



Figure 4: Goodness-of-fit scores

Notes: The ROC and PR curves for the Complete-Case Logit and the XGBoost models.
Each plot shows the five-fold cross-validated mean curves, with the mean taken with
respect to the ROC and PR curves of each validation set along the cross-validation
routine.

ity/recall of the predictions) and for the proportion of predicted failures
that turn out to be true failures (i.e., the precision of the predictions).
Indeed, assessing sensitivity/recall alone could be misleading in a zero-
inflation environment such as ours, where the number of non-failures
systematically exceeds the number of failures.10 The F1-Score (Van Rijs-
bergen, 1979) and the BACC (Brodersen et al., 2010) are used for cases of
unbalanced data. The former is based on a harmonic mean of precision
and recall, while the latter is a simple average between the rate of true
positives and the rate of true negatives from our predictions.

In the CC analysis, the best-performing model is the super learner,
which, however, stops at 0.9231 and 0.5463 in terms of AUC and PR,
respectively.11 The results of the missing-aware analysis differ signifi-
cantly from those of the CC ones. XGboost shows a PR of 0.7591 and an
AUC of 0.9685, followed by BART-MIA, whose performances are almost
identical. However, training the BART-MIA model is computationally
intensive and takes 45 times longer than XGBoost. Due to its signifi-

10For more details, see Saito and Rehmsmeier, 2015; Fawcett, 2006.
11It is noteworthy that the Super Learner performs better than the Random Forest in

terms of accuracy, but not in terms of F1-Score. The reason is that the Super Learner al-
gorithm (Van der Laan, Polley, and A. E. Hubbard, 2007) is optimized to find a convex
combination of algorithms that minimizes the accuracy of the ensemble method. The latter
strategy is not optimal in our case because the dataset is unbalanced.
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Table 4: Goodness-of-fit: DtD, Z-Scores and XGboost

DtD Z-Scores XGboost

Percentile Precision FDR Precision FDR Precision FDR

1 0.3314 0.6686 0.2239 0.7761 0.9850 0.0150
2 0.3314 0.6686 0.2102 0.7898 0.9054 0.0946
3 0.3314 0.6686 0.2070 0.7930 0.8316 0.1684
4 0.3314 0.6686 0.1986 0.8014 0.7517 0.2483
5 0.3020 0.6980 0.1937 0.8063 0.6715 0.3285
6 0.2723 0.7277 0.1882 0.8118 0.6037 0.3963
7 0.2497 0.7503 0.1875 0.8125 0.5447 0.4553
8 0.2334 0.7666 0.1831 0.8169 0.5018 0.4982
9 0.2226 0.7774 0.1769 0.8231 0.4600 0.5400

10 0.2139 0.7861 0.1745 0.8255 0.4312 0.5688

Notes: For DtD, Z-Scores, a firm is predicted to fail if its score falls below a certain
threshold. The thresholds for classification are determined by the first 10 percentiles
of their in-sample score distribution. In contrast, XGBoost predicts failure when the
score is above a certain threshold, and classification cutoffs are determined by the top
10 percentiles of the own in-sample score distribution.

cantly lower computational cost and higher predictive power, we choose
XGBoost as the optimal prediction algorithm for the following analysis.

Interestingly, the most notable improvement comes from higher pre-
cision. Figure 4 shows the average ROC and PR curves over the fivefolds
for CC logit and XGBoost to illustrate the difference in performance be-
tween the traditional approach and our best-performing missing-aware
machine-learning method. This is also reflected in the larger departure
of the missing-aware models with respect to the performance measures
using precision (namely PR and F1-score) reported in Table 4. This is crit-
ical to our objective as it means that missing-aware models have better
predictive power in identifying companies that will close within a year
based on the predictions.

To ensure the robustness of our results, we perform a number of ro-
bustness checks in Appendix A.5. We investigate whether (i) imput-
ing missing observations could improve the performance of predictive
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models that do not include information on missing attributes and (ii) ex-
cluding liquidations from the set of firm failures would affect the perfor-
mance of the model. We find that the performance of traditional models
increases significantly when missing values are considered, especially
for tree-based methods. This result is consistent with our observation
that missing entries signalled by a constant value either over the en-
tire dataset (out-of-range imputation) or over a specific feature (median
imputation) are included in tree splitting. As a result, the model can
now account for missingness in a similar way to the standard directions
and MIA techniques, leading to comparable results. With respect to (ii),
we test whether predictive performance depends on the type of failure
(e.g., bankruptcy, dissolution, merger, acquisition, and liquidation). We
find that excluding the largest group of business failures—i.e., liquida-
tions—has little effect on the performance of the models, suggesting that
the dependence on the type of failure is negligible.

1.3.3 Validation against proxy models of credit scoring

So far, we have compared the predictions of failures from different econo-
metric and machine-learning techniques and concluded that XGBoost is
the best choice in terms of predictive power and computational burden.
Here, we compare our baseline predictions with widely known prox-
ies for firm-level credit scores: the Z-Scores (Altman, 1968) and the DtD
(Merton, 1974). Z-Scores involve putting a selection of financial ratios
(profitability, leverage, liquidity, solvency, and volumes of activity) into
an equation with some weights to proxy their relative importance. The
weights are taken from the literature and from previous scholarly esti-
mates of the relative importance of these indicators in assessing a firm’s
distress. In this way, a threshold is obtained, the crossing of which indi-
cates a high probability of future bankruptcy. Unlike Z-Scores, the DtD
by Merton (1974) focuses specifically on a firm’s ability to meet its fi-
nancial obligations. The original intuition is that a firm’s equity can be
modelled as a call option on its assets. Thus, to build such a model, one
must combine firm-level accounts (firm assets, debt, and market value)
and information from financial markets (risk-free interest rate and stan-
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dard deviation of stock returns). Finally, one puts the variables into an
equation that gives the value of a theoretically fair call option.12

We evaluate the predictive power of both Z-Scores and DtD. The pre-
cision and false discovery rate (FDR) are given in Figure 4. Similar to our
previous analysis, we performed fivefold crossvalidation. We start with
the non-missing observations in Z-Scores and DtD and randomly split
them into fivefolds. Based on the Z-Scores and DtD measures, distressed
firms have lower scores. Therefore, we used the first 10 percentiles of
the in-sample scores as cutoffs for classifying the out-of-sample observa-
tions. We found that the DtD predictions have higher precision (0.3314
vs. 0.2239) and lower FDR (0.6686 vs. 0.7761) than the Z-Scores. We then
train an XGBoost model with the same cross-validation routine and use
the in-sample percentiles as cutoffs to classify the out-of-sample obser-
vations. The XGBoost model considers the highest-risk firms to be in the
right tail, unlike Z-Scores and DtD. Therefore, the first column of Table 4
represents the bottom ten percentiles (1-10) for DtD and Z-Scores, while
for XGboost the top ten percentiles (99-90) symmetrically. It is clear that
XGboost outperforms both DtD and Z-Scores in all percentiles.

1.3.4 Unboxing the black box: Shapley values for predic-
tors

In the previous sections, we validated our proposed XGBoost model
against state-of-the-art financial indicators, traditional econometric mod-
els, and widely used machine-learning techniques. Despite its excel-
lent predictive performance, the nonlinear relationships learned by XG-
Boost are not directly observable, leading to the recurring criticism that
machine-learning models are black boxes despite their improved accu-
racy. However, there are a number of tools to shed light on complex
nonlinear relationships in machine-learning predictions to make models
interpretable (Lundberg et al., 2020).13 Popular methods for assessing

12Following the insights of the distance-to-default model, Black and Scholes, 1973 devel-
oped their widely known model based on the observation that one can eliminate a systemic
risk component by hedging an option.

13Interpretability is a non-mathematical concept, but is often defined as the degree to
which a human can understand the cause of a decision or consistently predict the outcomes
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predictor importance include permutation importance or Gini impor-
tance for tree-based models (Breiman, 2001), LIME (Ribeiro, Singh, and
Guestrin, 2016), DeepLIFT (Shrikumar, Greenside, and Kundaje, 2017),
and Shapley values (Strumbelj and Kononenko, 2010).

We choose to use Shapley values because they are able to not only
reveal the complex patterns linking the predictors and the outcome but
also guarantee a number of desirable properties: efficiency, null payoffs,
symmetry, monotonicity and linearity (Rozemberczki et al., 2022). In the
case of a general ML model, these properties state that: the importance
of individual variables must add up to the goodness-of-fit of the model
trained with the entire set of variables (efficiency)14; a variable that does
not improve the goodness-of-fit of the model is assigned a contribution
of zero (null payoff ); two variables that make the same marginal contribu-
tion to the global goodness-of-fit have the same importance (symmetry);
if variable A consistently contributes more to the global goodness-of-fit
of the model than variable B, the Shapley value of A must be higher than
that of B (monotonicity); for two subsets of the same data set, the global
Shapley value of a variable is equal to the sum of the Shapley values cal-
culated separately for the same variable in the two subsets (linearity).

An intuitive way to understand how Shapley values for variable im-
portance work is to include each variable in the predictive model in ran-
dom order. All variables in the model contribute to the final predictions
(and thus to the goodness-of-fit of the model). The Shapley value of a
variable is the average change in prediction (and goodness-of-fit) expe-
rienced by the set of variables already in the model when that variable
is included (Molnar, 2020). From a mathematical perspective, assume
that S is a q-dimensional subset of variables, m is a generic variable in
S (m ⊂ S), and v(T ) is a generic value function that takes in the subset
S and returns real-valued payoff of the model (e.g., the goodness-of-fit)
created using S or subsets thereof. Then the Shapley value ϕm(v) for a

of the model see, e.g., Kim, Khanna, and Koyejo, 2016; T. Miller, 2019; K. Lee, Falco J
Bargagli-Stoffi, and Dominici, 2020.

14This property is crucial because it allows quantifying the contribution of each variable
to the overall performance of the model.

28



Figure 5: Shapley values for the variables in the predictive model

generic variable m is:

ϕm(v) =
1

q

∑︂
S⊆{1,...,q}\{m}

[v(S ∪ {m})− v(S)]
|S|!(q − |S| − 1)!

q!
. (1.3)

Using equation (1.3), we see how the Shapley value is computed by
calculating a weighted average gain in payoff (read: gain in goodness-
of-fit) that the variable m yields when included in all subsets of variables
that exclude m.

The results of our Shapley value analyses are shown in Figures 5 and
6. Figure 5 reports the results of the average Shapley Values over the time
frame of our analysis for each variable used as input. Figure 6 shows the
same value, but this time all variables are aggregated into some econom-
ically relevant groups.15

15A full description of how variables are aggregated into groups is described in Ap-
pendix Table A1. Governance variables are indicated by (G), financial constraints by (FC),
financial accounts by (FA), zombie indicators by (ZI), area by (A), innovation by (I), pro-
ductivity by (PDC), sector by (SE), profitability by (PFT), size by (SI).
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Figure 6: Shapley values for the groups of variables in the predictive model

First, we note that no single financial indicator has better predic-
tive power than the aggregate of indicators. On their own, most indica-
tors have relatively low predictive power. The financial indicators with
higher Shapley values—i.e., that contribute most to the model’s predic-
tions—are the corporate control indicator(Corporate control), the missing-
ness in the financial accounts (Missingness), some profit and loss charac-
teristics (Net income, Taxes, Revenues), the size and age indicators (Employ-
ees, Size-age), the resources invested in the company (Shareholders funds)
and the long-term physical assets (Fixed assets).16 When analyzing the
groups of indicators, it appears that original financial accounts with no
further elaboration carry the greatest explanatory power. This result is
reasonable considering that most predictors fall into this category. In ad-
dition, the governance, size, and financial constraint indicators also have
relatively high predictive power. Although they compete with groups
consisting of multiple predictors, missingness remains an important fac-
tor. On the other hand, firms’ productivity, sector, and geographic loca-

16See Table A.1.1 for a full description of the predictors and their construction.

30



tion of firms also have high predictive power but are of secondary im-
portance compared to the aforementioned indicators.

Finally, to check for robustness, we conduct a logit-Least Absolute
Shrinkage and Selection Operator (LASSO) analysis to evaluate, using a
shrinkage method, the most frequently selected variables that predict a
firm’s distress. We find substantial overlap, with corporate control, profit
and loss characteristics, and firm size-age indicators among the most im-
portant predictors. The full analysis can be found in Appendix A.4.

We conclude this section with a discussion of the possibility that firms
manipulate financial accounts and the predictive power of missing val-
ues in this case. We argue that there are two reasons for the occurrence
of missing values in firms’ financial accounts:

1. Smaller firms are often exempt from reporting complete informa-
tion to national registries if they fall below certain size thresholds
because it may be too costly for them to implement complex ac-
counting procedures.17

2. Some financial accounts are optional each year or may be incom-
plete (e.g., number of employees, management of inventories, cash
prospects, etc.).

In any case, there is room for manipulation by firms that know that banks
and policymakers do not routinely use missing values to predict their fi-
nancial distress. They have two choices: they can provide truthful infor-
mation and thereby disclose their true financial distress or they can pro-
vide false information and thereby potentially commit accounting fraud.
In the first case, the missing values are no longer meaningful, but our
algorithm can still rely on the disclosed financial accounts for predic-
tion. In the second case, we would have false negatives, i.e., companies
that are predicted to be financially viable but are not. More generally, we
conclude that a limitation of our approach is that we assume that compa-
nies do not report false information; otherwise, we would have statistical
noise that reduces prediction accuracy.

17In footnote 7 of the manuscript, we indicate the combination of size thresholds that
the Italian law provides.
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1.4 A case for zombie firms

In our analysis, we showed how we can use machine-learning to pre-
dict firms’ failures. But how do we spot a zombie firm? There is no
consensus on the exact meaning of the zombie status, other than its sug-
gestive power. To date, scholars have merely adopted various thresh-
olds based on a proxy assessment of one or more available financial in-
dicators in the absence of more precise theoretical guidance. Ideally, a
company’s competitiveness and financial constraints should be viewed
from a dynamic perspective that considers the entire horizon of future
events. Considering all future threats and opportunities and their im-
pact on profit and net cash flow at the firm level could be the theoretical
equivalent of “zombie firms”. Without the latter, empirical identification
is left to the creativity of academics and practitioners. Caballero, Hoshi,
and Kashyap (2008) define zombies as firms that receive subsidies in the
form of bank loans after observing how interest payments compare to an
estimated benchmark of debt structure and market interest rates. Müge
Adalet McGowan, Andrews, and Millot (2018) assume that zombies are
old firms that have persistent problems meeting their interest payments,
although they focus a policy discussion on the macroeconomic impact of
low-productivity firms. Bank of Korea (2013) explicitly examines when
the ICR is below one over three years. Bank of England (2013) disregards
financial management and considers firms that have both negative prof-
its and negative value added, thus focusing on a firm’s core activity.

In our view, the direction of the work so far is clear: scholars and
practitioners want to infer companies’ future viability from their current
financial accounts. If they do not appear to be in good shape, it is likely
that the company will be in trouble in the near future. From this perspec-
tive, the empirical classification of zombie firms is a perfect case study for
applying machine-learning techniques to firm-level data. It is a call to
use in-sample information to predict an out-of-sample event.

Strengthened by the previous intuition, we propose an identification
of zombies, starting from the predictions of failure made in Section 1.3. We
propose to classify as zombies those firms that are at the right end of the
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Table 5: Transitions across deciles of risk

t / t+ 1 9th decile t+ 1 8th decile t+ 1 7th decile t+ 1 6th decile t+ 1 Below 6th decile t+ 1 Total t+ 1

9th decile t 0.46 0.22 0.12 0.08 0.12 1.00
8th decile t 0.22 0.22 0.17 0.13 0.26 1.00
7th decile t 0.11 0.16 0.19 0.15 0.39 1.00
6th decile t 0.07 0.11 0.15 0.18 0.49 1.00

Below 6th decile t 0.03 0.04 0.06 0.09 0.78 1.00

risk distribution and for which the chances of recovering from financial
distress are minimal for at least 3 years. In notation, we first consider the
deciles along the predictions f(Xi,t−1), where each qj,t is the threshold
for the jth decile of the probability of default at time t:

Qj,t =

{︄
1 if f(Xi,t−1) ≥ qj,t ∩ Yi,t ̸= 1,

0 otherwise.

where Yi,t ̸= 1 indicates that the ith firm did not fail yet at time t.
In Table 5, we report a transition matrix for the firms that did not fail,

based on elaborations over the entire period of analyses (2008-2017). We
find that a significant fraction of the firms that our predictions place be-
yond the 9th decile in a representative year t do not have much chance
to improve in t + 1. In fact, most of them (46%) remain stuck in the
same highest-risk category, and only 12% are able to recover and reach
a more reasonable level of financial distress, i.e., below the 6th decile.
Interestingly, the 9th decile is difficult to reach from the bottom of the
distribution, as only 11%, 7%, and 3% of firms from the lower deciles,
respectively, reach a situation of highest distress. Moreover, around 78%
of the companies remain below the 6th decile throughout the analysis
period.

In general, we can say that, according to the information we have ob-
served, a viable firm does not easily shift into financial distress, but if it
does, it is difficult to recover from it. With this in mind, it makes sense
to set an appropriate threshold that realistically reflects the most diffi-
cult situations in business life. We obtain this threshold by determining
the cutoff that minimizes the combination of false positive and negative
rates. We accomplish this task by maximizing the BACC since it corre-
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Figure 7: BACC at different cutoffs along the distribution of predictions

sponds to a convex combination of the true positive and negative rates,
which in turn are complementary to the false positive and negative rates.
Moreover, the concept of zombie firms is closely related to the concept of
false positives since these firms are expected to fail but remain active.
Therefore, focusing on the false positive and negative rates within this
framework is natural. According to our results in Figure 7, the BACC
peaks at about 0.9.

The latter result provides a first justification for using the 9th decile
as a cutoff. Nevertheless, we want to give firms a trial period to discount
the break-even strategies of some firms in the short run, e.g., in the case
of newly formed firms and start-ups. For all the above reasons, we de-
fine zombie firms those firms that persist at least three years beyond the
9th decile of the risk distribution:

1(

3∑︂
t=1

Qj,t = 3) (1.4)
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Figure 8: Transitions after predictions of a zombie status

Notes: The bars of the diagram show the transition of zombie firms in the years fol-
lowing the prediction: (i) to failure; (ii) to remain in a zombie status; (iii) to relatively
lower distress, i.e., between the 6th and 9th deciles; and (iv) to a range of no distress,
i.e., below the 6th decile. Note that we cannot report 2017 because we cannot com-
pare it to actual observations in subsequent years.

where the risk distributions are estimated with the XGboost, as proposed
in Section 1.3.

Finally, Figure 8 shows a transition analysis of zombie firms based
on our definition from Equation (1.4).We calculate the fraction of zombies
that fail, remain in zombie status, transition to a lower (but still signifi-
cant) risk category, or transition to a non-distressed state in the following
year. These results suggest that the most common outcome is remain-
ing in zombie status, which applies to nearly 50% of them over multiple
years. In addition, a substantial proportion of zombies transition to a
lower-risk category. However, only a small fraction of them completely
deviate from their current state, resulting in either failure or absence of
distress.
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1.4.1 Zombies in Italy

In this section, we give some coordinates for the phenomenon of zom-
bies in Italy. First, we provide an overview of their evolution along the
macroeconomic cycle. Then, we show how they differ from the rest of the
viable firms that survive the market. Finally, we provide a geographical
and cross-sector comparison, taking into account their financial perfor-
mance and their ability to generate added value.

In Figure 9, we plot the share of zombies in our analysis period against
the Gross Domestic Product (GDP) growth rates observed over the same
period. Interestingly, we find that a range between 1.48% and 2.55% of
manufacturing firms are on the verge of bankruptcy. The share of zombies
is higher immediately after the financial crisis in 2011 and then decreased
from 2013. In fact, the presence of zombies seems to be related to the busi-
ness cycle. The latter is an interesting finding for further analysis but
beyond the scope of this paper. We presume it makes sense for zombie
firms to be countercyclical: many firms can be pushed to the brink of
bankruptcy in times of crisis, while a few financially distressed firms can
find a way to recover when the recovery begins.

Table 6: Productivity and size premia for healthy firms vs. zombies

Indicator (in logs) Coeff. Std. Error N. obs. Adj. R squared

Total Factor Productivity -0.197*** (.037) 600,771 .967
Labor Productivity -0.450*** (.014) 559,315 .110
Sales -2.066*** (.053) 1,234,750 .116
Employees -0.170*** (.039) 1,119,486 .157

Notes: The table shows the coefficients of the linear models for panel data with fixed
effects at the region and industry levels. We use pooled Ordinary Least Squares (OLS)
estimation with cluster-robust standard errors to account for possible correlations
within regions and industries. The dependent variable is a measure of firm produc-
tivity or size. The main covariate is an indicator that takes the value of 1 if the firm
is classified as zombie in a given year of our sample, and 0 otherwise. Zombie firms
are defined as firms that are at the right end of the predicted risk distribution (above
the 9th decile) for three consecutive years. Statistical significance at the 1% level is
indicated by ∗∗∗.
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Figure 9: Zombie firms and the economic cycle

Notes: The share of zombies on the left axis is compared with nominal GDP growth
rates on the right axis, obtained from the World Bank for the period 2011-2017. Zombie
firms are firms that are at the right end (9th decile) of the predicted risk distribution
for at least three consecutive years.

To fully capture their economic importance, we briefly show in Table
6 what distinguishes zombies from the other firms. Controlling for in-
dustry and region, we find that zombies are on average less productive,
i.e., 19.7% and 45%, respectively, in terms of TFP and labor productivity.
Healthy firms are also consistently larger on average, selling about 200%
more and employing 17% more workers than zombie firms in the same
sector and region. Our results are consistent with the idea that these
firms drag down aggregate productivity while hindering the redistribu-
tion of resources (Andrews, Muge Adalet McGowan, Millot, et al., 2017;
Müge Adalet McGowan, Andrews, and Millot, 2018).

Eventually, we lay out how the segment of zombies that we find ac-
cording to our working definition compares to the segments of firms that:

1. have problems in making their interest payments because their In-
terest Coverage Ratio (ICR);

2. have problems in their core economic activity because they are de-
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stroying value, i.e., their value added is negative.

Interestingly, both ICR and negative value added have occasionally been
proposed as indicators of zombieness in previous literature (see Appendix
A.1 for more details on these indicators and their previous use).

In Figure 10, the rays of the radar show for NUTS 2-digit regions the
proportions of zombie firms that we detect with XGBoost (circles) com-
pared to firms that have an ICR of less than 1 (triangles in panel a) and
firms that experience negative value added (triangles in panel b). We
find that there is indeed common support when firms are financially dis-
tressed because their ICR is too low, and at the same time they are also
classified as zombies according to our algorithm. This is evident from a
common core region in the radar graph bounded by square nodes. How-
ever, the two segments do not coincide. If we consider only the ICR, we
may have zombies that are obviously not in distress but are classified as
such by our algorithm. It is noticeable that this occurs mostly in south-
ern and central Italy: Abruzzo (ITF1), Basilicata (ITF5), Calabria (ITF6),
Campania (ITF3), Lazio (ITI4), Molise (ITF2), and Puglia (ITF4) host a
relatively large proportion of zombies according to XGBoost.18 In these
cases, the cause of distress may lie in other aspects of business activity,
as our methodology allows us to use information from a wide range of
financial predictors covering different aspects of firms’ economic life.

At the same time, Figure 10a also identifies firms that have liquidity
problems because their ICR is less than 1, but our algorithm does not
classify them as zombies, possibly because they are still solvent thanks
to profitable economic activity that allows them to eventually meet their
financial obligations and thus overcome temporary liquidity constraints
shortages. This is particularly evident in North and Insular Italy, includ-
ing Emilia-Romagna (ITH5), Friuli-Venezia Giulia (ITH4), Lombardy (ITC4),
Piemonte (ITC1), Sardinia (ITG2), Tuscany (ITI1), Valle d’Aosta (ITC2),
and Veneto (ITH3).

On the other hand, in Figure 10b, we show that a relatively small

18Not surprisingly, patterns of missing values are also more pronounced in southern
and central Italy. Between 2008 and 2016, ICR values are missing for 81.79% of firms in
central Italy and 76.24% of firms in southern Italy on average
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Figure 10: Zombie firms and geography

(a) Zombies and interest payments (b) Zombies and value destruction

Notes: The rays of the radar show, at the regional level (NUTS 2-digit), the proportion
of zombie firms vs. firms that have an ICR of less than one (panel a) and vs. firms
that have negative value added (panel b). The square nodes indicate the common
areas where the segments overlap. The circles represent the fraction of zombies that
we detect using XGboost. The triangles indicate the fraction of firms identified with
ICR < 1 or negative value added. Along each ray, the values of the squares, circles,
and triangles sum to 1. Panel (a) and (b) include a total of 30,380 and 24,351 obser-
vations, respectively. See Appendix Table A.1.3 for the legend of the NUTS 2-digit
codes.

segment of firms destroy economic value because what they sell has
less value than what they buy as inputs. They are problematic; in fact,
most of them are classified as zombies. However, there is a significant
portion of zombies that show positive value added but are still strug-
gling financially and are therefore detected as zombies by our algorithm.
This scenario extends over the entire country but peaks in some cen-
tral and southern regions: Abruzzo (ITF1), Basilicata (ITF5), Calabria
(ITF6), Campania (ITF3), Lazio (ITI4), Molise (ITF2), and Puglia (ITF4).
The descriptive statistics in Figure A.2.2 confirm our intuition that only
a comprehensive battery of predictors, including missing values, can
provide a clear picture of the relevance of the phenomenon of zombie
firms. Finally, Appendix Table A.1.4 and Figure A.2.2 provide a snap-
shot of the proportion of zombies across industries (2-digit NACE Rev.
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2). As largely expected, firms that have problems with interest payments
(ICR < 1) are always a larger segment than firms that we identify as
zombies. On the other hand, the share of firms with negative value added
is generally smaller than the share of zombie firms.

1.5 Discussion

In this contribution, we show how statistical learning can infer non-trivial
information on a set of financial indicators, and we successfully classify
firms into risk categories after training on past failures. Our preferred
algorithm is XGBoost, which outperforms other well-known economet-
ric and machine-learning methods, especially in the presence of missing
patterns of financial accounts.

Thanks to our machine-learning approach, we can also reduce pre-
diction errors compared to traditional credit scoring tools such as the
Z-scores and the DtD. Therefore, we propose to classify zombie firms as
those firms that remain in high-risk status because they are at the right
end of the distribution of our predictions for at least 3 years, beyond the
9th decile of risk, where we find that the chances of recovery to a smaller
risk of distress are minimal.

The preceding evidence suggests that identifying zombies may be cru-
cial for financial institutions to avoid wasting credit resources on insol-
vent firms when the latter survive the market only thanks to some ad-
verse selection mechanisms that arise from imperfect financial markets.
However, from a more general perspective, we believe that our exercise
can be useful in identifying a part of an economy that is in trouble. The is-
sue is all the more critical because recent studies discuss how zombies can
hinder the growth potential of many countries by impeding the redistri-
bution of productive resources in modern economies (Andrews, Muge
Adalet McGowan, Millot, et al., 2017; Banerjee and Hofmann, 2018; An-
drews and Petroulakis, 2019).

Indeed, we find that Italian zombies have lower levels of TFP and are
mainly found in smaller firms. Interestingly, we note a possible relation-
ship with the business cycle that would be worth investigating further in
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the future: the share of zombies was higher after the two financial crises
in 2008 and 2011 but then declined as the recovery took hold.

It is beyond the scope of this work to make predictions for the post-
pandemic scenario. However, we anticipate that the problem of separat-
ing companies that can stand on their own two feet from those that hide
their inability to pay will become all the more urgent now that policy-
makers have finally withdrawn financial support programs. The chal-
lenge is to avoid further misallocation of resources, which would slow
down the much-needed economic recovery.
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Chapter 2

Founding Conditions,
Learning and the Economic
Success of Young Firms

The chapter is co-authored with Mark Kattenberg, Massimo Riccaboni, and Erik
Stam.

Disclaimer: AI has been employed in the preparation of this chapter, specifically
for grammar and language refinement. All content, ideas, and interpretations
remain the original work of the author and coauthors.

2.1 Introduction

Many high-income economies are facing declining productivity growth.
In order to boost productivity growth, a process of creative destruction
is required, in which new highly productive firms displace less produc-
tive firms and increase overall productivity (Bartelsman and Doms, 2000;
Aghion, Akcigit, and Howitt, 2014; Acemoglu et al., 2018). This process
of creative destruction does not take place to a sufficient extent because
there are too few new, highly productive companies (Akcigit and Ates,
2021; Decker et al., 2016). This may be due to a lack of entry in general
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or a lack of entrants achieving high productivity. An extensive literature
has been developed on the survival of new firms (Audretsch and Mah-
mood, 1995; Geroski, José Mata, and Portugal, 2010; Manjón-Antolı́n and
Arauzo-Carod, 2008; Soto-Simeone, Sirén, and Antretter, 2020), but sur-
prisingly very little is known about how productive firms emerge. This
paper aims to improve our understanding of the survival and economic
success of young firms. To achieve this, we present two interpretations
of the survival and economic success of young firms inspired by two the-
ories of firm dynamics: noisy learning (Jovanovic, 1982) and capability
learning (Teece, Pisano, and Shuen, 1997).

The theory of noisy learning states that firms learn about their pro-
ductivity and market fit through experience. Some new firms discover
that they have a viable business model and grow, while others exit early
on due to a lack of product-market fit and resulting profitability. Impor-
tantly, in this framework, the initial conditions determine the survival
and long-term success of the company. In contrast, capability learning
theory posits that firms actively improve their resources, knowledge, and
strategies over time. Adaptive firms that are able to develop new capa-
bilities are more likely to be successful in the long term, even if their
initial conditions are less favorable.

To test these theories, we focus on the Netherlands, a country with
high entry rates but stagnating overall productivity. Several studies have
analyzed young firm survival and success (cf. Geroski, José Mata, and
Portugal, 2010; Fuertes-Callén, Cuellar-Fernández, and Serrano-Cinca,
2022, and for a recent review: Soto-Simeone, Sirén, and Antretter, 2020).
Although many studies rely on commercial data sources, such as Bureau
van Dijk—which often do not cover the full population of firms and lack
detailed, year-by-year information on each entry cohort—some recent
contributions have addressed these limitations by using administrative
data. For instance, Fairlie et al. (2025) leverage the U.S. universe of star-
tups to study the impact of entry policies on entrepreneurial outcomes,
Cascarano, Natoli, and Petrella (2025) examine firm dynamics in Italy us-
ing matched employer-employee data covering the entire population of
Italian startups. Similarly, Grazzi and Moschella (2018) examine the role
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of small firms in productivity growth by drawing on a rich administra-
tive dataset that links the universe of Italian firms with detailed export
transaction records. However, despite these valuable efforts, the use of
high-dimensional administrative data to track the full population of new
firms over several years of their early development remains relatively
limited. This study seeks to contribute to this emerging area of research.

This study analyzes comprehensive administrative data on the pop-
ulation of newly founded firms in the Netherlands from 2006 to 2021
and combines this data with a novel machine-learning methodology in-
spired by the seminal contribution of Mueller and Spinnewijn (2023).
This approach makes it possible to quantify the persistence of firm suc-
cess probability types over time and to assess the relative importance of
dynamic selection versus within-firm learning in explaining economic
success. The central research question of this study is: to what extent is
the economic success of young firms determined by dynamic selection
and within-firm learning? To answer this question, the study investi-
gates whether the survival of young firms depends on the characteristics
of the firm at the time of founding, and the changes in firm character-
istics over time. It also examines whether the survival mechanisms of
productive firms differ from those of unproductive firms.

The study constructs a high-dimensional dataset by bringing together
over a hundred administrative sources from Statistics Netherlands. This
dataset contains firm-level financial statements, employment data and
ownership characteristics and allows a detailed analysis of how initial
conditions and within-firm dynamics shape firm performance. An im-
portant contribution is the application of state-of-the-art supervised learn-
ing methods in combination with Shapley value decomposition and ac-
cumulated local effects analysis. These techniques enable the prediction
of economic performance based on early-life course firm characteristics
which allows us to quantify the heterogeneity in firm economic success
probability types and its dynamics over time as firms age and gain expe-
rience.

Our results contribute to the growing literature on the determinants
of firm success. First, we find that early-life firm characteristics are highly
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predictive of long-term success—not necessarily due to direct causality,
but because they are correlated with firm attributes that emerge later in
the life cycle. This persistence in success probability types is observable
both across the firm’s life course and over time, and we interpret it as
evidence in support of noisy learning. Moreover, our findings align with
entrepreneurship literature, which highlights how the founding team af-
fects a firm’s initial conditions and, consequently, its long-term perfor-
mance. In particular, Zhao, Song, and Storm (2013) and Jin et al. (2017)
highlight the significant impact of founding team capabilities and com-
position on new venture performance, mediated by strategic positional
advantages.

Our study is also related to the industrial dynamics literature. Cav-
allari, S. Romano, and Naticchioni (2021) show how firms born during
recessions start on a larger scale and keep larger compared to those born
during expansions, suggesting that the economic conditions at the time
of entry have long-term implications for firm performance. Our findings
strongly align with these findings and indicate that annual fluctuations
in the success rates of young firms at the macro level appear to result
from variations in the timing and decision to enter the market, rather
than variations in the decision of how to enter the market.

The results of this study have significant implications for policy. If
initial firm conditions largely determine long-term outcomes, policies to
improve conditions for early-stage businesses, such as better access to fi-
nance, business mentoring, and managerial training, could have a lasting
impact on economic productivity. Furthermore, the findings challenge
traditional views on capability learning, and suggest that while firms
may adapt over time, in most cases these adaptations do not fundamen-
tally alter the long-term probabilities of success.

The rest of the paper is structured as follows. Section 2.2 provides an
overview of existing theories of young firm survival and economic suc-
cess. Section 2.4 describes the construction and content of our dataset.
Section 2.3 presents the methodology. In particular, it presents a concep-
tual framework that relates our empirical analysis to noisy learning and
capability learning. Section 2.5 presents our results on the predictive per-

45



formance and persistence of firms’ success probability types. Section 2.6
derives the main implications for different types of learning. Finally, in
Section 2.7, we draw conclusions.

2.2 Theories of young firm survival and economic
success

In our work, we use two theories of firm dynamics to interpret the causes
of the survival and economic success of young firms: the theory of noisy
learning and the theory of capability learning. A firm is an entity with
resources and capabilities that are used to produce and sell goods and
services in specific markets. Moreover, a firm is characterized by its busi-
ness model, which determines how it wants to make profits, what prod-
ucts it wants to sell, which market it targets, what investments are to be
expected, and what the competition looks like.

2.2.1 Noisy learning

In the theory of noisy learning, firm dynamics depend on the learning
process through which firms discover their productivity. Founders do
not know the (potential) productivity of their firm in advance, and mar-
ket interactions are used to obtain this information. Each firm enters the
market with a specific configuration of resources and products (business
model). The theory assumes that a firm type is given from the foun-
dation, remains unobservable, and does not undergo significant adjust-
ments over time. Those firms that are productive, grow and survive,
while those that are not productive exit. This theory predicts that the
survival rate of a company increases with both the current size (condi-
tional on age) as well as with firm age, as larger firms tend to be more
productive and companies that survive longer are more likely to have
discovered that they have a viable business model. These predictions are
consistent with the evidence from early empirical studies in industrial
economics (see, among others, Evans, 1987b; B. H. Hall, 1986). Empir-
ical studies have shown that the probability of survival increases with
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the age and size of the firm (Dunne, Roberts, and Samuelson, 1989; Au-
dretsch and Mahmood, 1994; Jose Mata and Portugal, 1994; Mitchell,
1994; Haveman, 1995; Sharma and Kesner, 1996; Buldyrev et al., 2020)
albeit at a decreasing rate. In addition, studies that have focused on the
post-entry performance of new firms have found that the probability of
survival increases with the size of the new firm at the time of entry (Agar-
wal and Audretsch, 2001). Further cross-country evidence supports the
idea that firm growth dynamics differ substantially across contexts, with
important implications for long-run survival and productivity patterns
(Hsieh and Klenow, 2014). Firm size matters not only at the beginning
but also in relation to the growth of the company. The fact that a firm
has grown in the past indicates that it has performed well and wants to
become larger than it currently is. Consequently, it should have a lower
probability of exit than its current size alone would suggest (José Mata,
Portugal, and Guimaraes, 1995). Coad et al. (2013) integrates these find-
ings and shows that the survival of a new firm depends on the resources
available at start-up or accumulated through post-entry growth. A re-
fined version of this noisy learning theory states that firms must reach
a minimum efficient size to survive and that firms below this minimum
efficient size have a lower probability of survival than firms beyond this
minimum efficient size. Beyond this minimum efficient size, there may
be no positive effect on survival, as shown by the decreasing effect of
firm size on firm survival (Farinas and L. Moreno, 2000).

2.2.2 Capability learning

In the theory of capability learning, some new firms are better able to
improve their resources and develop new products and markets than
others, which makes these “adaptive” firms more likely to be successful.
A key property of such adaptive firms are dynamic capabilities, which
reflect the “capacity of an organization to purposefully create, extend or
modify its resource base”(Helfat, 2007). Teece, Pisano, and Shuen (1997)
define dynamic capabilities as “the firm’s ability to integrate, build and
reconfigure internal and external resources to address rapidly changing
environments, indicating the importance of within firm dynamics for
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growth and survival”. These dynamic capabilities enable firms to im-
prove their resources, learn to produce a given product, and/or diver-
sify. Diversification may improve firm success prospects by reducing
risk and keeping alive options in one market should other markets de-
cline. Studies have shown that the ability to change the business model
increases firm survival (Cucculelli and Peruzzi, 2020). Initial conditions
may matter here as well, as firms that start with more “learning capacity”
(reflected in the human capital of the founders and employees) are better
able to learn and more likely to be successful. Better managerial abilities
translate into lower costs at any given size, and these lower costs lead
firms to choose to operate at a large scale (Lucas Jr, 1978). Better manage-
ment practices of firms translate into higher productivity levels (Bloom,
Sadun, and Van Reenen, 2016) at any given size, and these higher pro-
ductivity levels may lead firms to choose to operate at a large scale. For
new firms, this means “scaling up” before productivity levels increase,
given that it takes some time for new firms to recruit and absorb em-
ployees (Penrose, 1959; Garnsey, 1998). Besides the direct effect of human
capital (via managerial abilities) upon productivity and, thus, survival,
a high stock of human capital in the firm may also be a consequence of
some other intrinsic firm ability, as high-quality firms find it easier to at-
tract highly skilled employees. Earlier studies have found human capital
to be a good predictor of survival (José Mata and Portugal, 2002; Gimeno
et al., 1997; Cooper, Gimeno-Gascon, and Woo, 1994; Unger et al., 2011).
The observed size of firms can thus result from their superior managerial
ability. Empirical tests of this capability learning theory have shown that
(new) firms that invest in new knowledge are more likely to survive and
grow (Stam and Wennberg, 2009; Ugur and Vivarelli, 2021).

These two theories of firm dynamics can be tested with specific hy-
potheses. Our null hypothesis is that the success of young firms is ran-
dom. Based on these two theories, we formulate the following hypothe-
ses:

• Hypothesis 1 (noisy learning): The success of young firms depends
on the early-life characteristics of the firm.
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• Hypothesis 2 (capability learning): The success of young firms de-
pends on the changing firm characteristics during the life course.

We formalize these two theories in Section 2.3.

2.3 Methodology

We conceptualize firm success at a given age as a two-way process in-
volving survival and size attainment. Survival is a necessary but not
sufficient condition for success. We define the economic success of firm i

at age a as reaching a specific turnover size in real terms, conditional on
having survived up to that point. The threshold is determined using a
specific quantile from the turnover distribution, which is then applied to
create the economic success indicator as follows

Si,a =

{︄
1 if turnover ≥ qα & Ii,a−1 = 1

0 otherwise

where the survival indicator Ii,a−1 equals 1 if the firm has survived for
a− 1 years and qα is the quantile of order α from its distribution in 2019.
We use all firms in 2019 as the benchmark year to calculate the cutoff, as it
is less likely to be impacted by business cycle fluctuations, such as those
following the 2008 crisis or the disruptions caused by the 2020 COVID-19
pandemic. This choice ensures a stable and accurate reference point for
our analysis. In our analysis, we set α = 0.2, corresponding to a turnover
threshold of approximately 150 thousand euros, to define whether a firm
makes a minimally meaningful contribution through its operations. This
cutoff captures the lower bound of successful performance while main-
taining a balanced approach and avoiding extremes that could bias the
analysis. For robustness, we run sensitivity checks using a broader range
of quantiles and applying sector-specific cutoffs qα,s, where s represents
the industry of firm i.
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2.3.1 Conceptual framework

Having defined our measure of economic success, we apply the frame-
work developed in Mueller and Spinnewijn, 2023 for the status of unem-
ployment to the status of the economic success of firms. Let Ti,a repre-
sent the (latent) economic success type of startup i at age a, defined as the
(unobserved) probability that its turnover exceeds a threshold q that is a
function of the founding conditions Xi and an idiosyncratic error εi,a.

Ti,a = Ta(Xi,1) + εi,a (2.1)

Assume that firm success, denoted by Si,a, is a Bernoulli random variable
that depends on the success type Ti,a, which defines whether firm i will
be successful at age a, conditional on having survived up to age a− 1. It
is defined as follows

Si,a =

{︄
1 with probability Ti,a

0 otherwise
(2.2)

In expectation, any difference in success probability types for firms aged
a and a′ < a generates an equivalent difference in observed survival
rates: Ea[Si,a] − Ea′ [Si,a′ ] = Ea[Ti,a] − Ea′ [Ti,a′ ]. The expectation sub-
scripts define the set of firms that are used to calculate the expectations.
That is, Ea[Ti,a − T1,a′ ] represents the expected difference in the prob-
ability of success between ages a and a′ computed for firms that have
survived up to age a. This difference in success probability types can be
decomposed into a part driven by dynamics within the firm and a part
driven by dynamic selection

Ea[Ti,a]− Ea′ [Ti,a′ ] = Ea[Ti,a − Ti,a′ ]⏞ ⏟⏟ ⏞
within-firm dynamics

+Ea[Ti,a′ ]− Ea′ [Ti,a′ ]⏞ ⏟⏟ ⏞
dynamic selection

(2.3)

=Ea[Ti,a − Ti,a′ ] +
cova(Ti,a, Ti,a′)

1− Ea(Ti,a)
(2.4)

The first term in equation 2.3 compares the average success probability
across two different ages, a and a′, for the group of firms that survive to

50



age a. The second term compares the average probability of success at
a given age for two different groups of firms: those that have survived
until a and those that have survived until a′. Equation 2.4 shows that
the dynamic selection effect is driven by the heterogeneity in the success
probability types of firms that is persistent, as measured by the covari-
ance in the probability of success at ages a and a′. Obviously, individual
heterogeneity in success probability types is a necessary condition for dy-
namic selection to impact the age-differential success rates. However, it
is not sufficient, as individual heterogeneity needs to be persistent for dy-
namic selection to take place: without persistency, success probabilities
at age a′ would be orthogonal to success probabilities in year a, which
rules out dynamic selection of ‘good firms.’

Note that all the terms in both equations 2.3 and 2.4 are latent, but
we observe whether a startup is successful at a given age. We propose a
prediction model fa(·) that uses founding conditions to explain success

Si,a = fa(Xi,1) + ei,a, (2.5)

where the error ei,a originates from random shocks to success probabili-
ties (equation 2.1) and sampling noise (equation 2.2). Mueller and Spin-
newijn, 2023 prove that under unbiasedness, i.e., Ea[Ŝi,a′ |Xi] = Ti,a, it
holds that:

cova(Si,a, Ŝi,a′) = cova(Ti,a, Ti,a′)

This allows us to estimate and infer persistent heterogeneity in the model,
as well as, to identify an upper bound for the within-firm dynamics in
success probability types between ages a and a′. They also provide a
lower bound for dynamic selection term in equation 2.4 as

cova(Ti,a, Ti,a′)

1− Ea(Ti,a)
≥ cova(Si,a, Ŝi,a′)

1− Ea(Si,a)
(2.6)

Mueller and Spinnewijn, 2023 show that this inequality is binding when
unobserved heterogeneity is purely transitory or when all of the firm
heterogeneity in success is predicted by the model.
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2.3.2 Estimation strategy

We estimate the relationship between a firm’s early-life conditions and
its economic success in equation 2.5 by analyzing firms that entered the
market between 2006 and 2020 in the Netherlands. To assess the initial
conditions of firm i (Xi), we examine a high-dimensional set of startup
characteristics. Since the functional form of fa(·) is unknown, we use ex-
treme gradient boosting (XGBoost) to estimate it. XGBoost is a tree-based
ensemble method that operates within a gradient boosting framework.
It has been widely recognized for its exceptional competitiveness and re-
liability in various prediction tasks, primarily due to its efficient use of
computational time and memory resources (Gumus and Kiran, 2017; Ab-
basi et al., 2019; M. Li, Fu, and D. Li, 2020). It is particularly well-suited
for this application due to its ability to handle large datasets with high di-
mensionality and its robustness in managing unbalanced classes, which
are common challenges in predicting startup survival and success. Ad-
ditionally, its robustness to missing values allows it to effectively handle
various patterns of missing data, especially in a firm’s financial accounts
(Falco J Bargagli-Stoffi, Incerti, et al., 2024a).

The characteristics in Xi,1 that we consider include firm financial in-
formation (from balance sheets and profit and loss statements), firm-
specific indicators (such as sector, size, and age), workforce character-
istics (including age, gender, migration background, and educational
level), and owner characteristics (age, gender, migration background, ed-
ucational level, and wealth). Additionally, we include control variables
like the exit rate at the industry-region level and adjust all euro-based
variables for inflation. The complete list of variables used in the analysis
is provided in Table B.4.1 in the Appendix.

We split the dataset of 283,485 firms into three mutually exclusive
subsets: a training set including 20% of the observations (56,697 firms),
a validation set with 10% (28,348 firms), and a testing set containing the
remaining 70% (198,441 firms). Each firm, along with all its time-series,
is uniquely assigned to one of these three sets. In other words, the ran-
dom assignment is done at the firm level—not at the level of individual
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observations. This ensures that no single firm contributes data to more
than one subset, thereby avoiding temporal and structural inconsisten-
cies.

We train XGBoost to estimate the probability of success, using the
training set. Next, we use the trained XGBoost model to predict the
success probabilities for startups in the validation set. These predicted
probabilities are then used to estimate a linear spline with ten segments,
using the same validation set. The linear spline estimated from the val-
idation set, combined with the XGBoost model trained on the training
set, is then used to produce the final predictions for the test set. We
use a wide test set to ensure robust out-of-sample analyses and to ob-
tain reliable insights into prediction performance. Thus, the test set is re-
served for assessing the model’s out-of-sample predictive accuracy and
for exploring the heterogeneity in predicted success probabilities among
out-of-sample startups. Specifically, each test observation is first passed
through the XGBoost model to compute a success probability, which is
then fed into the spline model to generate the final prediction.

To predict future economic success using early-life features, we esti-
mate various models across different ages. While the startups allocated
to the training, validation, and test sets remain consistent across mod-
els, the actual startups included at each age vary. This variation arises
due to the natural attrition in the dataset and the inherent challenge of
censoring affecting survival. As startups age, the sample size reduces
because some startups exit the dataset. Moreover, survival is not always
observed, not because the startup has ceased to exist, but because we lack
the data to confirm its current status. This combination of attrition and
censoring means that as we look at older startups, the sample not only
becomes smaller but also more selective, often including only those that
have either survived or for which survival status is known. This reduc-
tion in sample size underscores the importance of carefully interpreting
results from models focused on later ages, as they reflect a progressively
narrower subset of the original population.

We employ three key metrics to evaluate our models: the Area Un-
der the Receiver Operating Characteristic Curve (AUC-ROC), the Area
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Under the Precision-Recall Curve (AUC-PR), and the R2. The AUC-ROC
evaluates the model’s ability to distinguish between economically suc-
cessful firms and those that are not, providing a robust measure of classi-
fication accuracy across varying thresholds. The AUC-PR focuses on the
model’s ability to identify the positive class (successful firms), empha-
sizing two critical components: precision (the proportion of predicted
successes that are correct) and recall (the proportion of actual successes
that are identified). In scenarios with strong class imbalance, AUC-PR
offers a more reliable assessment by mitigating the misleading influence
of the large negative class. The R2 measures the proportion of variance in
the outcome explained by the model, highlighting its overall fit and the
predictive strength of early-life features. Additionally, R2 provides in-
sights into the lower bound of dynamic selection, as we will detail later.

As machine learning models become more sophisticated and opaque
–often referred to as ”black boxes”-— it is crucial to ensure that these
models are not only accurate but also interpretable and transparent. We
therefore use Shapley values (Rozemberczki et al., 2022) and ALE plots
(Apley and J. Zhu, 2020) to interpret our models, see appendix B.1 for a
detailed description of these methods.

2.3.3 Empirical tests supporting the theories of firm learn-
ing

We use the predictions of our models to quantify the heterogeneity and
dynamics in firm economic success probability types and interpret them
using noisy learning and capability learning as follows.

First, we consider the heterogeneity in firm success types. In particular,
we use the ratio of the R2 at age a over that of age a′ to inspect the per-
sistency of early life conditions in explaining observable heterogeneity in
firm success types as firms age. Mueller and Spinnewijn, 2023 proof that
this ratio measures the persistence of observable heterogeneity

R2
a(Ŝi,a′ , Si,a)

R2
a(Ŝi,a, Si,a)

=
V ara(Ti,a′)

V ara(Ti,a)
(2.7)
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where R2
a(Ŝi,a, Si,a) =

COVa(Ŝi,a,Si,a)
2

V ara(Ŝi,a)V ara(Si,a)
.

We then apply the decomposition in equation 2.3 to interpret the rela-
tive importance of noisy learning in explaining the increase in success
as firms age. In particular, when the change in success rates between
ages is, by and large, driven by dynamic selection, firm learning is more
likely to be driven by noisy learning, although capability learning does
not rule out moderate levels of dynamic selection. If, on the other hand,
within-firm dynamics are, by and large, the most important driver, noisy
learning is unlikely to be an important way by which young firms learn.

Second, we consider the dynamics in success probabilities over the life-
course of firms. We start by imposing structure on our estimates of firm
success and estimate the observable heterogeneity in firm success dy-
namics. In particular, we impose a log-linear relationship between firm
success probabilities at age a– predicted using the early life conditions of
the firm– and their age as follows

log(ŝi,a(Xi,1)) = βi,0 + βi,1a+ νi,a (2.8)

Note that the imposed log-linear relationship allows interpreting the pa-
rameters as a Cox proportional hazards model in which βi,0 equals the
log of the baseline hazard function and βi,1 is the proportional effect of
age on the probability to be economically successful. To account for sur-
vival bias, this equation is estimated regardless of firm survival or eco-
nomic success. We do this for a random sample of five thousand startups
in the test sample.

As the dependent variable in the specification is an estimate, the dis-
tribution of βi,0 and βi,1 reflects both true dispersion as well as sampling
error. Following Mueller and Spinnewijn, 2023, we shrink the coefficients
for βi,0 and βi,1 using the sample means and sample variances as follows

β̃g,i =(1− wi)E[β̂g,i] + wiβ̂g,i with wi =

√︃
V AR[β̂g,i]−sê2g,i

E[β̂g,i]
, g = 0, 1

Here E[β̂g,i(X1)] and V AR[β̂g,i(X1)] are the sample mean and sample
variance of the estimated parameters before shrinkage. β̂g,i(X1) and
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sêg,i(X1) are the estimated coefficients and standard errors. The for-
mula essentially shrinks the estimated coefficient for each firm to the
sample average, where the shrinkage weight wi increases with the stan-
dard error of the estimated parameters. As wi is undetermined when
sêg,i(X1) > V AR[β̂g,i(X1)], we set it equal to zero in this case.

We then use the estimates β̃g,i to empirically test for a relationship be-
tween the dynamics in economic success types and early life conditions.
In particular, we estimate the following regression using LASSO (where
the model is trained using 10-fold cross-validation)

β̃
ˆ
i,1 =g(Xi,1) + υi (2.9)

This analysis allows us to test the importance of capability learning in
explaining the rise in firm success over the life course. If we observe
that firm-level characteristics on the financial position, the quality of the
workforce, or the quality of firm owners are important in explaining firm
success dynamics, we interpret this as evidence that firm-specific capa-
bilities explain the success of firms. If, however, regional and time indica-
tors are most important, this lends credibility to the belief that firms’ eco-
nomic success is explained by noisy learning. Naturally, this approach
relies on the possibility of detecting a firm’s capability from the measured
firm characteristics. We observe high-dimensional data on the financial
position of firms and important workforce and owner characteristics, like
the wage of the workforce and age and wealth of the owners, as well as
indicators for the regional economic environment in which the firm op-
erates. Although it is likely that we do not observe all capabilities that
contribute to the success of firms, we feel confident that we observe suffi-
cient and detailed information at the firm level to pick up the correlation
with these unobserved capabilities. The fact that we are able to explain
economic success very well also at high ages indicates that we observe
important features for economic success and supports our claim.

Third, we consider the heterogeneity in firm success types over the busi-
ness cycle, which allows us to quantify to what extent annual variations
in the success rate of young firms are driven by changes in their com-
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position. We also consider whether the relationship between firm early
life conditions and economic success is persistent. This is informative
on whether capability learning or noisy learning is the dominant pro-
cess by which learning takes place because capability learning stresses
the importance of firm capabilities to respond to changing business en-
vironments. Noisy learning, in contrast, views firms as passive units in
a changing economic environment.1 Therefore, if we find evidence that
the relationship between firm early life conditions and economic success
change over time, and more so when time periods are further apart, this
can be interpreted as evidence that firms adapt to changes in the environ-
ment, which would be in line with capability learning. If, however, the
relationship between firm composition and firm success is stable across
years, changes in the business environment do not call for a differen-
tial response by firms, which suggests that noisy learning is a dominant
learning strategy.

We propose the following method to inspect whether the relation-
ship between early life conditions and firm economic success is stable
over time. To explain the method, we introduce additional notation for
predictions of the success probability types

Ŝ
m

2 (Xt−1
1 )

here the superscript m denotes the modelled year, specifically the year in
which the outcomes used to train the model were observed, and the sub-
script 2 indicates that success probability types are estimated for firms
that are two years old. The superscript t−1 denotes the year when early-
life conditions, X1, were observed. The subscript 1 indicates that the firm
was one year old at that time. From now on, we drop the subscript that
denotes the firm’s age and the age of early life conditions for readability.
In this framework, we first set m = t = 2015 to estimate the probability of
success at age 2 in 2015 using firm early-life conditions from 2014. This is

formally expressed as Ŝ
2015

(X2014). This dataset includes approximately

1Note that our sample periods contain the great financial crisis and the following re-
cession, as well as the first year of the COVID-19 pandemic, and therefore the economic
environment was not stable in the period we consider.
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10,000 startups in the combined training and validation set.2

Next, we compute Ŝ
2015

(Xt−1) with t = 2007, ..., 2020. By keeping

the prediction model Ŝ
2015

2 (·) fixed, we can examine how the (counter-
factual) expected probability of success varies for startups that are two
years old in year t. This probability is given by

E[Ŝ
2015

(Xt−1) | t = k], k ∈ {2007, . . . , 2020} (2.10)

and captures changes in the composition of the startup pool over time.
By comparing this counterfactual success rate to the actual success rate,
we can inspect how much variation in the observed success rate of young
firms can be explained by variation in the observable composition in
early life conditions, evaluated using the 2015 economic model.

We use a related approach to measure the extent to which early life
conditions that successfully explain economic success in one year can
also explain it in other years. Once the model Ŝ

m
(·) is trained for a given

year m, we use it to generate out-of-sample predictions for the test set.
Specifically, we apply Ŝ

m
(Xt−1) for years t = 2007, . . . , 2020. We then

compute the R2 between the observed success rate of firms that are 2
years old in year t and their (counterfactual) probability of success, us-
ing the model trained in year m. This is given by:

R2,t,m(St, Ŝ
m
(Xt−1)) =

COV
(︂
St, Ŝ

m
(Xt−1)

)︂2

V ar (St)V ar
(︂
Ŝ
m
(Xt−1)

)︂ , (2.11)

We compute equation 2.11 for all combinations of m and f and we inter-
pret it as follows. When m = t, the R2 represents the share of variation
in observed success probabilities types for firms that are two years old in
year t that can be explained by the relationship between early-life con-
ditions and success in the same year. In contrast, when m ̸= t, the R2

measures the share that can be explained using the relationship between
early-life conditions and success probabilities from a different year. In

2To increase the number of observations used for training the model, we use 50 percent
of the observations in each year for training and 20 percent for debiasing.
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that respect, we compute the ratio between the R2 of cohort m′ and that
of our benchmark cohort m = t as

R2,t,m′
(St, Ŝ

m′

(Xt−1))

R2,t,m(St, Ŝ
m
(Xt−1))

, m = t (2.12)

Note that the predictions of these R2 are based on the same set of early
life conditions. The only difference between them is the year used to
establish a relationship between early-life conditions and firm success
outcomes. Therefore, values close to one suggest that the relationship
between early life conditions and firm success in estimation years m and
m′ are very similar. Conversely, values far from one suggest that the
relationships between early life conditions and firm success have differed
substantially over the years. This directly allows us to quantify to what
extent relationships between early life conditions and firm success are
stable over the business cycle.

2.4 Data

We identify firms from an annual unbalanced panel dataset at the firm
level that includes the universe of all incorporated (limited liability firms
and public liability companies) firms registered in the Netherlands from
2006 to 2021. We thus exclude sole proprietors, as these are more likely
to reflect self-employment instead of (young) firms. This data was com-
piled by merging more than one hundred administrative datasets pro-
vided by Statistics Netherlands. A unique company identifier was used
to track each firm over time using the General Company Registry (ABR),
in which we define the creation and exit of firms based on their registra-
tion and deregistration data. We define start-ups as companies that are
one year old and have submitted their annual financial statements. This
final dataset contains specific details on the sector, age, and type of exit of
the companies, whereby we distinguish between an exit due to a cessa-
tion of activity (shutdown), an exit due to a merger and acquisition, and
an exit due to a restructuring of the firm. Subsequently, this dataset is
integrated with information on firm balance sheets and corporate profit
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and loss accounts (NFO), which provide detailed financial information
ranging from turnover and balance sheet size to results from equity in-
vestments and trade credits. Finally, we merge the data sets of all taxable
employment contracts (SPolis). In this way, we can bring together char-
acteristics that provide information about the employees and owners of
companies, such as their (average) age, gender, migration background,
education level, and – for owners – their financial wealth. Figure 11

Figure 11: Exit vs. entry dynamics

shows that the number of firms in our dataset increases when the num-
ber of start-ups exceeds the number of exits, with exits falling into three
categories: cessations (Stops), mergers and acquisitions (M&A), and re-
structurings. The number of stops is subject to considerable fluctuation
and rose sharply between 2008 and 2012, probably due to the effects of
the financial crisis. After a period of relative stability, the number of stops
fell sharply in 2020, probably due to the pandemic and the associated

60



government interventions. In contrast, M&A and restructuring remain
relatively stable over time, with both categories showing a gradual up-
ward trend. This pattern could indicate increasing market consolidation
as firms opt for mergers or restructurings rather than a complete exit.
Meanwhile, the number of new firms declines after the financial crisis,
but stabilizes in the following years. Similar to stops, there was also a
sharp decline in start-ups in 2020, which is likely due to the disruption
caused by the COVID-19 pandemic. Moreover, it shows that the number
of established companies is growing faster than the number of start-ups,
which leads to a decline in the entry rate, especially towards 2020 (see
table B.2.1 in the Appendix). The number of start-ups peaked in 2008 be-
fore falling after the crisis. It then fluctuated with another peak in 2015,
followed by a sharp decline in 2020, probably due to the pandemic. On
the other hand, the number of established companies is growing steadily,
indicating an expanding market. Figure 12 depicts the proportion of
the 198,441 startups in the test set that survive and the proportion of
those that achieve economic success — defined as survival and reaching
a turnover threshold of €150,000 — as a function of their age. The fig-
ure shows the well-documented positive relationship between firm age
and survival. At the age of two years, for example, around 85 percent
of companies survive until the next year. This rate rises to 92 percent at
the age of six years and reaches 94 percent when the companies are ten
years old. While the relationship between age and economic success is
also positive and monotonic, the economic success curve is consistently
below the survival curve, suggesting that economically successful firms
are a subset of surviving firms. At the age of two, 64 percent of compa-
nies are successful; by the age of six, it is already 75 percent.

The relationship between economic success and age changes with
the selected cut-off value. If the cutoff is reduced, the line shifts upwards
and approaches the survival rate (the two lines are identical when the
turnover cut-off value is zero). If the cut-off value is increased, the line
shifts downwards. Figure B.5.2a in the Appendix shows the survival
rate and the economic success rate in the test set, plotted against age.
The cutoffs used correspond to the fifth, tenth, twentieth, and fortieth
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Figure 12: Survival and economic success

percentiles of turnover in 2019. All cutoffs yield a similar relationship
between economic success and age. This pattern for economic success
is consistent across cohorts (Figure B.5.2b in the Appendix). In addition,
Figure B.5.3 shows that the relationship between economic success and
age varies by sector, suggesting that in some sectors, more firms reach a
turnover threshold of €150k at a given age.

The economic success of young firms varies greatly. Most firms are
either always successful or never successful in the first five years of their
existence. This distribution is affected by the threshold value chosen to
determine economic success, as shown in Figure 13. The figure shows
that over 80% of the startups in our sample that survive the first five
years also achieve a minimum annual turnover of €100,000 in each of
these years. In contrast, only 5% do not manage to be successful within
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Figure 13: Success rate by years of success and cutoff

Notes: The plot shows the share of successful startups among those that
survived the first five years. A total of 123,155 startups survive over this
period.

the first five years. A marginal group of startups alternates between suc-
cess and unsuccess conditions, achieving success in only 1 to 4 years.
When applying higher turnover thresholds of €200,000 and €400,000 per
year, only 66% and 49% of startups achieve success each year. Table 7
lists the most important economic indicators for startups at the begin-
ning of their life course and five years later for those that have survived.
This comparison illustrates the significant changes that occur as startups
mature and face the challenges of early business development. In their
first year of existence, startups generally operate on a modest scale, with
a median total balance sheet value of 291,000 euros. By the fifth year, this
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median figure almost doubles, indicating that these companies are ex-
panding and growing their business. There is also a significant increase
in tangible assets, reflecting the accumulation of physical resources as
startups expand their operations. This growth suggests that startups are
likely to invest more in tangible assets as they stabilize and expand. Suc-
cessful startups not only survive but thrive by scaling up their opera-
tions and assets. Intangible assets remain at a similar level in all statis-
tics, suggesting that the relative importance of non-physical assets such
as patents or software remains the same over time. The analysis of debt
and equity dynamics reveals that startups generally improve their finan-
cial stability as they mature. The mean equity increases from 390 in the
first year to 630 thousand euros in the fifth year, indicating a stronger
capital base. At the same time, the leverage ratio falls from 0.68 to 0.56,
and the debt-to-equity ratio from 0.75 to 0.64, indicating that firms are
either reducing debt or increasing their equity faster than their liabilities.
These changes indicate improved solvency and better financial manage-
ment over time, as shown by the increase in the mean solvency ratio from
0.59 to 0.8.

The operating performance, measured in terms of sales and EBITDA,
also shows significant improvements. The median turnover increases
from 373 thousand euros in the first year to 628 thousand euros in the
fifth year. This growth in turnover indicates that the companies are ex-
panding their market presence and customer base. EBITDA, a key mea-
sure of operational profitability, moves from a slightly negative mean in
the first year to a positive figure of 25 thousand euros in the fifth year,
highlighting the shift towards profitability as the companies mature.

Overall, the statistics illustrate the significant transformation that star-
tups undergo in their early years. Initially, they are characterized by
high variability in terms of size, financial health, and operational per-
formance. However, those that survive to the fifth year tend to have
a stronger financial structure, better operational efficiency, and greater
market presence. In the Appendix, Tables B.2.2 and B.2.3 provide further
statistics about startups’ workforce-based features.
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Table 7: Startups characteristics

(a) Startups in their first year

Variable Mean Median SD Mean 1st percentile Mean 99th percentile Unit
Total balance sheet 1109.23 290 2803.83 6.1 22194.91 Thousand €
Tangible assets 243.1 10.88 876.14 0 7195.34 Thousand €
Intangible assets 18.2 0 73.81 0 556.48 Thousand €
Liquid assets 161.74 31.58 454.63 -0.12 3746.85 Thousand €
Equity 386.66 63.2 1390.64 -1449.06 11186.62 Thousand €
Long term debt 249.56 0 858.26 0 6801.2 Thousand €
Short term debt 253.31 58 702.91 0 5734.12 Thousand €
Turnover 2022.17 371.41 6130.74 7.9 51628.43 Thousand €
Result before taxes 84.99 17.71 348.66 -757.34 2647.09 Thousand €
Taxes -16.62 -1.21 50.92 -417.91 18.33 Thousand €
Value added 363.78 122.69 874.68 -85.87 7182.83 Thousand €
EBITDA -0.14 2.35 270.06 -1399.13 1502.94 Thousand €
Dividends 21.12 0 113.06 0 977.83 Thousand €
Labor productivity 58.9 31.35 110.11 -30.74 781.15 Thousand €
ROA 0.02 0.06 0.44 -1.98 0.94 Ratio
Solvency ratio 0.6 0.08 2.56 -7.52 16.28 Ratio
Debt ratio 9.46 2.21 27.54 0 216.62 Ratio
Age 1.52 1.5 0.28 1.08 2 Number of years
Entry year 2012.76 2013 4.26 2006 2020 Year
Year 2013.76 2014 4.26 2007 2021 Year

(b) Startups in their fifth year

Variable Mean Median SD Mean 1st percentile Mean 99th percentile Unit
Total balance sheet 1509.22 531 3133.54 8 23692.05 Thousand €
Tangible assets 316.88 24.29 965.78 0 7566.16 Thousand €
Intangible assets 18.29 0 75.5 0 575.19 Thousand €
Liquid assets 242.51 67 539.7 -0.08 4122.46 Thousand €
Equity 629.66 193.73 1605.04 -1412.45 12125.38 Thousand €
Long term debt 288.38 0 892.32 0 6827.78 Thousand €
Short term debt 326.89 78.7 817.14 0 6293.29 Thousand €
Turnover 3048.78 628 7785.23 9.08 60578.68 Thousand €
Result before taxes 140.55 37.94 424.89 -701.08 3058.34 Thousand €
Taxes -24.52 -3.64 65.08 -498.82 0.3 Thousand €
Value added 561.81 209.47 1125.46 -77.82 8470.09 Thousand €
EBITDA 25.34 6.32 308.21 -1326.51 1734.45 Thousand €
Dividends 35.98 0 145.42 0 1162.25 Thousand €
Labor productivity 61.34 40.7 81.94 -28.01 581.02 Thousand €
ROA 0.05 0.07 0.33 -1.85 0.92 Ratio
Solvency ratio 0.8 0.12 2.84 -7.34 17.36 Ratio
Debt ratio 11.85 3.04 29.28 0.01 221.89 Ratio
Age 5.53 5.5 0.28 5.08 6 Number of years
Entry year 2010.99 2011 3.18 2006 2016 Year
Year 2015.99 2016 3.18 2011 2021 Year

Notes: summary statistics for 283,486 firms during their first year of classification as
startups. Additionally, Table 7b provides summary statistics for the subset of star-
tups that successfully survived for 5 consecutive years, comprising 123,155 out of the
initial 283,486.
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2.5 Results

2.5.1 Performance and calibration

Overall, our models demonstrate strong predictive performance for eco-
nomic success, regardless of the age of the firm or whether we measure
economic success using the pooled or sector-specific cutoffs (see Table 8).
The R2 for economic success at age two exceeds fifty percent, drops as
firms get older, but is still 23 percent when firms are ten years old. Both
AUC-ROC and AUC-PR exceed 0.90 at age two, indicating a high level of
accuracy. Over time, AUC-ROC and R2 gradually decline, reaching 0.79
and 0.24, respectively, by age ten, while AUC-PR remains relatively sta-
ble. This suggests that the model is particularly effective at identifying
successful startups but less so at distinguishing between successful and
unsuccessful firms. This is intuitive, as the model predicts that a large
share of firms will reach the minimum revenue threshold of €150,000.
However, as shown in Appendix Table B.4.4, when the success threshold
is raised to higher quantiles, AUC-PR drops significantly below AUC-
ROC. This occurs because increasing the cutoff makes the dataset more
imbalanced, and it becomes harder to predict firms that are very likely to
be successful.

The sector-specific model shows a nearly identical pattern to the pooled
model, indicating that predictive power for economic success is rela-
tively unaffected by differences in industry sizes or industry-specific cir-
cumstances. This initial robustness suggests that industry heterogeneity
has a limited impact on the model’s ability to predict economic success.
When compared to the simple survival prediction (see Table B.4.2 in the
Appendix), the superior performance of the economic success models
can be attributed to the fact that economic success is more directly linked
to observable early-life characteristics, enabling more accurate predic-
tions. Apparently, the decision to withdraw a firm from the market is
influenced by a broader range of factors, including unpredictable exter-
nal shocks, than having economic success. Additionally, the declining
performance across all models with increasing age underscores the chal-
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lenges of long-term prediction as uncertainties accumulate and sample
sizes shrink due to attrition and censoring.

Table 8: Performance metrics: economic success prediction models

(a) Pooled cutoff (α ≈ 0.2, qα = 150, 000)

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features
56,697 55,173 28,348 27,543 198,441 193,200 .9017 .9259 .5257 2 1
56,697 22,444 28,348 11,238 198,441 78,472 .8120 .9079 .2906 6 1
56,697 10,032 28,348 5,063 198,441 35,153 .7906 .9188 .2356 10 1

(b) Sector-specific cutoffs (α ≈ 0.2)

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features
56,697 54,889 28,348 27,391 198,441 192,202 .8974 .9246 .5147 2 1
56,697 22,440 28,348 11,236 198,441 78,462 .8009 .9065 .2707 6 1
56,697 10,031 28,348 5,062 198,441 35,148 .7623 .9124 .2053 10 1

We find that our machine learning method predicts economic success
better than conventional estimators like logistic regression or OLS. In Ap-
pendix B, we provide evidence that this is due to the flexibility of the
model, particularly the ability to accommodate non-linear effects of fea-
tures. Moreover, Tables B.4.4 and B.4.6 present the performance results
for predicting economic success across a wider range of cutoffs, showing
that the relatively good performance of our method is not specific to the
cutoff chosen. From this point forward, unless stated otherwise, we will
use the pooled cutoff model to estimate the probability of success.

In contrast to early life conditions, contemporaneous conditions –
firms’ characteristics from the previous year– remain strong predictors of
success regardless of age (Table 9), pointing towards the key role played
by up-to-date information in predicting economic success the next year.
The R2 increases from about fifty percent at age two to about sixty per-
cent at age ten. One explanation for this pattern is that the sample be-
comes more strongly concentrated around high success types, which re-
duces sample noise. Notwithstanding the difference in predictive perfor-
mance when models are given the early life conditions or contempora-
neous features, we note that predictions by both models are similar. The
correlation between predictions of economic success at age six when fea-
tures are measured when firms are one or five years old is 0.78 percent.
Also, a bivariate regression of these predictions, where predictions from
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features when firms are five years old is the dependent variable, has a
precisely estimated slope coefficient of 0.93.

When we predict economic success at ages six and ten using both
contemporaneous and early life conditions, the predictive performance
is virtually identical to that reported in Table 9.3 As predictive perfor-
mance does not change significantly, early life conditions do not carry
additional information that is predictive of economic success over the in-
formation that is contained in contemporaneous features. This also sug-
gests that our main models, which use only early life conditions to pre-
dict economic success, are able to predict economic success later in life
mainly because initial life conditions are strongly correlated with firm
characteristics later in life.

Table 9: Economic success models using contemporaneous features (α ≈
0.20, qα = 150, 000)

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features
56,697 55173 28,348 27,543 198,441 193,200 .9017 .9259 .5257 2 1
24,661 22444 12,360 11,238 86,134 78,472 .9144 .9568 .5715 6 5
11,490 10032 5,761 5,063 40,268 35,153 .9147 .9648 .5977 10 9

The finding that early life conditions do not affect firm economic
success conditional on contemporaneous features of the firm contrasts
sharply with the results of Geroski, José Mata, and Portugal (2010), who
find that early life conditions have a significant, yet fading, impact on
firm survival later in life conditional on contemporaneous features. As
we will detail later, we do not find evidence that significant predictors
in the analysis by Geroski, José Mata, and Portugal (2010) are important
drivers of economic success when our high-dimensional set of firm fi-
nancial characteristics is included in the feature space. This suggests that
the inclusion of high-dimensional firm financial indicators in the feature
space is the main reason why our results differ from Geroski, José Mata,
and Portugal (2010).

3As they only differ from the third digit onwards, we do not report results here. They
are available upon request.
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Figure 14: Calibration plots for success probabilities at age 2

(a) First stage: XGB (b) Overall model: 2S-XGB

Finally, the predictions by our machine learning model are well cali-
brated. Figure 14 shows the observed success rates against the predicted
success rates of our model. The model predictions are grouped into 20
bins, each representing the mean observed and predicted success rates.
The calibration plot for this combined approach shows a marked im-
provement, with the points adhering closely to the 45-degree line across
all bins. Additionally, Figures B.5.4-B.5.6 in the Appendix show the cal-
ibration plots for various models and time horizons: these cover predic-
tions of survival and success probabilities (using both pooled and sector-
specific cutoffs), as well as survival predictions at different ages using
features from the prior year.

2.5.2 Distribution of economic success probability types

Success types for startups at different ages differ substantially. We derive
this conclusion from the density and complementary cumulative distri-
bution function (CCDF) plots in Figure 15 computed for all startups ob-
served in the test data when they are one year old.

The densities are bimodal at all ages, suggesting the existence of two
distinct subpopulations of startups. Startups typically show higher ob-
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servable success probabilities at a young age, indicating that those who
succeed early in life tend to do so with a relatively strong likelihood.
This could reflect that only the most promising startups—those with
strong founding conditions, innovative products or competitive advan-
tages—achieve early economic success. However, as firms age, the den-
sity shifts toward lower success probabilities. This change may be driven
by increased competition, market saturation, or operational challenges
that arise over time, making it more difficult to achieve or maintain the
size threshold. Essentially, older firms experience a stabilization or de-
cline of their growth potential, further reinforcing the idea of two distinct
subgroups: one with high potential that succeeds early, and another that
faces greater challenges as they age.

The CCDFs in Figure 15b support this by showing that, as firms age,
fewer of them reach high success probabilities. This trend suggests that
while firms that persist into later stages continue to operate, their chances
of achieving economic success diminish over time.

Naturally, the share of firms with very low observed success proba-
bility types at age a increases as firms age because of sample attrition.
However, we still predict survival probability types for these firms as we
report predictions for all startups using their early life conditions. In Fig-
ures 15c and 15d, we report the density and CCDF plots of observed suc-
cess probability types for firms aged two, six, and ten for long-run sur-
vivors, defined as startups that ex-post stay in the market for ten years.
The density distribution in Figure 15c of this subset is very different from
the one from the general population. At age two, the distribution of the
success probability types for long-run survivors is very similar to the dis-
tribution for all firms. However, at later ages, the concentration at high
observed success probability types has increased, whereas the concen-
tration at lower values has diminished. Also, the distribution of success
probability types at ages six and ten is very similar. As the sample re-
mains constant, this suggests that some long-run survivors succeed in
increasing their economic success probability types between ages two
and six.

In the Appendix, we report estimated densities and CCDFs for both
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survival and sector-specific models. The sector-specific results closely
align with those from the pooled model, while the survival models re-
veal distinctly different dynamics. Survival probabilities are left-skewed,
with an increasing concentration at higher values as firms age. This trend
is consistent with existing literature, which generally finds that survival
probability increases almost ‘monotonically’ over a firm’s lifespan. How-
ever, the dynamics of success and survival differ markedly and appear
almost inverted. This suggests that the drivers of both short and long-
term resilience, i.e., the ability to survive, are quite different from those
that foster success and growth.
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Figure 15: Success probabilities at different ages

(a) All testing startups (density) (b) All testing startups (CCDF)

(c) Conditional on long-run survival (den-
sity)

(d) Conditional on long-run survival
(CCDF)

2.5.3 Drivers of economic success

We describe how certain founding conditions contribute to the survival
and economic success of startups at later stages. First, we do this by
removing groups of characteristics from the model and assessing the im-
pact on the model’s explained variability. Next, we use Shapley values
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to identify which variables contribute the most to the likelihood of eco-
nomic success overall. Finally, we examine the marginal effect of revenue
on the probability of survival and the likelihood of economic success in
our models.

Group-wise decomposition of R2

We inspect the importance of blocks of independent variables by consid-
ering the change in R2 when these blocks are removed from the specifica-
tion. This is informative on the importance of economic success because
the R2 drops when a group of variables is important, and their role in
forming the predictions cannot be taken over by variables that are still
included. We consider the following groups of variables and combina-
tions of them: financial statement variables, worker and DGA variables
and age of the firm, size of the firm (measured as the number of employ-
ees), industry sector in which the firm is active, and region in which the
firm is located.

We find that financial statement variables are the most important group
of variables. Without this group, the R2 halves at almost all the ages of
success are considered, see Table 10. In particular, the R2 drops by 27.06
percentage points (from 52.57 percent to 25.51 percent) when this group
of variables is removed. Next, the most important variables are the char-
acteristics of the workforce and of the firm’s owner. However, it’s im-
portant to note that the R2 drops by only 0.26 percentage points (from
52.57 percent to 52.31 percent), with a more noticeable drop at later ages.
This suggests that these specific early-life characteristics have minimal
predictive contribution early on, but their influence grows later (e.g., a
2.36 percentage-point reduction at age 10). The other features have mini-
mal and often negative impacts on the explained variability of the model,
suggesting these features may not strongly explain success in isolation or
are redundant given other variables. Likewise, financial constraints have
little to no predictive power, with reductions close to or below zero. Note
that sometimes the R2 increases when a group of variables is removed, in-
dicating that the model better explains the target out of sample when this
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group is removed.4

To sum up, the R2 analysis underscores the dominant role of financial
statement variables in predicting economic success, particularly at ear-
lier stages. Conversely, workforce-related variables, while historically
deemed important for survival, appear less critical when other factors
are considered. The increasing importance of worker and DGA variables
at later ages may indicate that workforce dynamics become relevant in
explaining success further into a firm’s life course. In the Appendix, we
provide further analyses for the simple survival prediction and for the
economic success model with sector-specific cutoffs. The models show
that financial statement variables are by far the most important in all
models. Conversely, despite the literature showing that workforce vari-
ables are important in explaining firm survival, our analysis shows that
the predictive performance of these variables for survival is low, condi-
tional on the other groups of features.

Table 10: Reduction in R2 for economic success (pooled model, α = 0.2)

Age to success age 2 age 6 age 10
R2 of the full model 52.57 29.06 23.56
percentage points reduction in out of sample R2 when removing
Financial statement variables and year 27.31 12.28 8.44
Financial statement variables 27.06 12.16 8.44
Year 0.13 -0.26 0.24
Worker and dga variables 0.26 0.94 2.36
Worker variables 0.25 0.03 0.53
Dga variables 0.10 0.11 -0.09
Age, size, sector, area -0.09 -0.27 0.11
Age -0.08 0.07 0.12
Size class (OECD) 0.10 -0.15 -0.28
Sector 0.10 0.17 0.27
Region 0.09 -0.20 0.07
Financial constraints variables -0.09 -0.20 -0.13

4As is well known the in sample R2 always increases when variables are added to the
specification, but the out of sample R2 might fall. Likewise, the in-sample R2 always
decreases when variables are removed, but the out-of-sample R2 might increase, especially
when machine learning and high-dimensional data are combined. When it happens, it
points out that the model better predicts the target because noise is removed, making it
easier for the model to find the relevant structure.
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Most important predictors

We use Shapley Values to identify the most important predictors of startup
success at different ages. For each firm in the test data, we calculate the
Shapley values of all variables used to predict future success. Then, for
each variable, we compute the average absolute Shapley value. The re-
sulting Shapley plots share a uniform x-axis scale within the same model
class (e.g., success prediction), facilitating straightforward comparisons
while maintaining clarity in the visual representation.

The analysis reveals that turnover and entry data are by far the most
important in predicting the outcome, see Figure 16. This pattern holds
both when the model’s predictive power is lower at later stages and
when it is higher at earlier stages. The importance of turnover suggests
that turnover in the first year is a key predictor of whether a minimum
turnover level will be achieved at a later stage. The relative importance
of the entry date indicates that there are significant differences between
companies that start during periods of economic boom or bust.

Figure 17 compares the Shapley values at age 2 for startups in the
testing set with a high probability of success—those in the top quartile of
the success probability distribution—with those with a low probability
of success, falling into the bottom quartile.

The early-life conditions that most significantly contribute to explain-
ing success are strikingly similar between the two groups. However,
turnover plays a more prominent role in shaping the predictions for star-
tups in the bottom quartile, which aligns with expectations. Startups in
the top quartile are likely those capable of surpassing the success thresh-
old imposed by the model. In contrast, startups in the bottom quartile
face a greater challenge in achieving a viable size. They may need more
effort to meet the size required for success, whereas top-quartile startups
face a relatively lower marginal effort to keep their size.

In the Appendix, we provide a corresponding comparison of early-
life success predictions at ages 6 and 10. Once again, the timing of market
entry emerges as the critical factor the algorithm exploits to distinguish
between successful and unsuccessful startups.
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Figure 16: SHAP comparison for success at different ages

(a) Age 2 (b) Age 6 (c) Age 10

Figure 17: SHAP comparison for success at age 2: top vs. bottom quartile
firms

(a) Top 25% (b) Bottom 25%

Marginal effects of turnover

Given the importance of turnover in predicting economic success, we
examine how predictions change with this variable. Figure 18 shows the
effect of increasing turnover by €1000 on the probability of being eco-
nomically successful. We consider how this effect changes as firms get
older. The marginal effect is plotted as a step function in which the width
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of the steps indicate the ALE-interval used to compute it.
Marginal effects in turnover are not constant but change discontin-

uously (see Figure 18a). At age two, the marginal effect of an increase
in turnover is close to zero when turnover is below 10 thousand euros
or exceeds 1 million euros. For intermediate values, the marginal ef-
fect is positive, reaching its highest value of about 0.01 when turnover is
about 150 thousand euro (102.2 ≈ 150). This indicates that the probabil-
ity of economic success, defined as surviving and achieving a minimum
turnover of 150 thousand euros, largely depends on whether initial rev-
enue is close to this cutoff in the first year.

The same pattern is observed for our definition of economic success
at age six. However, the discontinuity is less abrupt, and the marginal
effects are smaller. The impact of initial revenue on success might be-
come smaller when firms age due to unforeseen events. In particular, the
marginal effects at age ten are less clear, with marginal effects around the
cutoff value of 150 thousand euros being very similar to values observed
for smaller values of initial turnover. However, for all ages, the marginal
effect of initial turnover on the probability of being economically suc-
cessful becomes virtually zero when initial turnover exceeds a value of
about 1 million euros.

In Figure 18b we present the marginal effects for firm entry dates
measured as months elapsed since december 2005. The marginal effects
fall strongly when firms are two, six, or ten years old in 2020, reflecting
the drop in exit rates during the COVID-19 pandemic. In other years,
the marginal effect of turnover on economic success later in life is quite
modest.
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Figure 18: Effect on economic success at various ages (20p pooled cutoff)

(a) Turnover (b) Entry period

2.6 What drives economic success? Capability
learning vs noisy learning

The above analysis has revealed that economic success at age a, condi-
tional on having survived up to age a− 1, is very predictable from early
life conditions, even in later years. Firm financial variables are the most
important features, whose impact on the predictions cannot be taken
over by other characteristics. In particular, the initial turnover level and
the moment the firms enters the business environment stand out as im-
portant contributors to firm success. Next, we use our estimates to quan-
tify the importance of dynamic selection and inspect drivers within firm
dynamics. Finally, we interpret these findings using theories of noisy
learning and capability learning.

2.6.1 Quantifying the importance of dynamic selection

Our rich data on firm founding conditions allows us to quantify the ob-
servable heterogeneity in firm success types at different ages. We first
consider the persistence in the heterogeneity in firm success types. In
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particular, we see that R2
2(Ŝ2, S2) = 0.47 and that R2

2(Ŝ6, S2) = 0.38.
This suggests that about 80 percent of the observable heterogeneity in
firm success types at age two is persistent over the following four years(︁
0.38
0.47 ≈ 0.8

)︁
. A persistency of similar magnitude is found by Mueller and

Spinnewijn (2023) for heterogeneity in unemployment risk over the first
six months of the unemployment spell. More than one-third of the firm-
level heterogeneity in firm success types at age two is persistent up to
age ten

(︁
0.17
0.47 ≈ 0.37

)︁
, which is still substantial.

When considering the sample of startups that survive up to age 6, ob-
servable heterogeneity is significantly lower than in the former sample.
This pattern is also found by Mueller and Spinnewijn (2023), who at-
tribute it to selection effects within the sample. If heterogeneity is largely
persistent, then, conditional on survival, the variance in success types
should decrease, as startups of greater type are more likely to survive.
This process leads to a monotonic decline in contemporaneous covari-
ances, as shown in Table 11, along with a corresponding decrease in the
R2 across sample models. As a result, the impact of dynamic selection
gradually diminishes over time, despite remaining a key factor in shap-
ing success patterns. The persistence in the heterogeneity in firms’ suc-

Table 11: Persistent heterogeneity in success types

Sample (a) Model age (j) Na Ea[Sa] Ea[Ŝj ] V ara[Ŝj ] COVa[Ŝj , Sa] R2
a[Ŝj , Sa]

Age 2 2 95,738 0.6754 0.6728 0.1072 0.1053 0.4715
6 95,738 0.6754 0.6850 0.0779 0.0811 0.3849
10 95,738 0.6754 0.6148 0.1262 0.0694 0.1742

Age 6 6 42,095 0.9181 0.8336 0.0216 0.0049 0.0147
10 42,095 0.9181 0.7369 0.1003 0.0033 0.0014

Age 10 10 26,802 0.9330 0.8516 0.0274 0.0100 0.0588

Notes: The sample column subsets startups in the test set based on their
age a, meaning it includes only startups that have survived for at least a −
1 years from foundation. The model age column indicates the prediction
model used. For example, a = 2 and j = 2 refer to predicting success at age
2 using startups that have survived up to age 2.

cess types suggests that dynamic selection is an important driver of the
increase in the firm success rate as firms grow older. This statement is
reinforced by Figure 19, which illustrates the success rate at age 2 for
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startups that have survived d years and the simple and lower bound
of dynamic selection. The upper line illustrates the concave relation-
ship between economic success and age: firms are more likely to be
economically successful when they are older, yet the gain in economic
success decreases with age. The second line from above provides a sim-
ple quantification of the effect of dynamic selection by taking the es-
timates of firm survival at age two and presenting the expectation of
the estimate at every age. This line simulates a world in which sur-
vival probabilities at the firm level remain constant, and the success-
age gradient fully reflects dynamic selection. In particular, we impose
E[Ti,a] = E[Ti,2] reflecting the theory of noisy learning. The line shows
that at age three, about 88 percent of the gain in the economic success
rates of firms is due to dynamic selection

(︂
82.87−67.54
85.04−67.54 = 0.88

)︂
. At age

five, this share has decreased to 79 percent, which is still very substantial(︂
85.83−67.54
90.69−67.54 = 0.79

)︂
. The lowest line describes the conservative lower

bound to dynamic selection according to equation 2.6. The line suggests
that the effects are still substantial. In this conservative view, 79 per-
cent of the increase in firm economic success at age three is due to dy-
namic selection

(︂
81.39−67.54
85.04−67.54 = 0.79

)︂
. This is about 55 percent at age five(︂

80.28−67.54
90.69−67.54 = 0.53

)︂
. Even at high ages, dynamic selection is important

as it explains about forty percent of the increase in firm economic success
between ages two and ten

(︂
77.81−67.54
93.30−67.54 = 0.40

)︂
.
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Figure 19: The blue line shows the success rate for firms given their age.
The red line quantifies the role of dynamic selection as the success rate for
firms that have survived up to that age when their expected success rate
would not change, represented as Ed[S1,XGB ]. The green line shows the
lower bound on dynamic selection described in Equation 2.6, calculated as
COVa(S2, Ŝa)/1− E2[S2] for a > 2.

Dynamic selection effects are important in all industries we consider,
although the importance of dynamic selection differs across industries.
In the Appendix, Figure B.5.13 presents the corresponding decomposi-
tion across various industries. The findings are broadly consistent across
sectors, though the lower bound for selection effects is particularly pro-
nounced in certain industries, such as consultancy, wholesale and retail
trade, manufacturing, ICT, and agriculture. In these sectors, dynamic se-
lection effects are especially strong during the early years, as highlighted
by the high lower bound. Nonetheless, across all industries, dynamic se-
lection plays a significant role in the initial stages, gradually diminishing
as firms mature.
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2.6.2 Within-firm dynamics

Based on the estimates of equation 2.8, we find substantial dispersion in
the firm-specific effect of age on the probability of being economically
successful, rejecting the hypothesis that economic success probabilities
are proportional to a baseline hazard. We derive this conclusion from
Figure 20, which shows the distributions of exp(βi,0) and βi,1. The left
panel displays the distribution of the baseline hazard function, exp(β0)

(truncated at three for about one-sixth of the sample). The distribution
has two peaks, one that is concentrated around zero and one that is con-
centrated around 0.85. Also, the picture shows substantial overshooting
of the baseline hazard function; about one-third of firms have a baseline
hazard to be economically successful that is larger than one.

The distribution is very different when we consider the estimate of
exp(β0) for firms that survive up to age ten. Then we see that the base-
line hazard is distributed around one value, also about 0.85, and that it
is skewed to the left. The difference in distribution indicates that initial
hazard functions to be successful are larger and less dispersed for long-
run survivors compared to the average firm in the sample.

The right panel depicts the expected increase in the probability of be-
ing economically successful as the firm ages by one year. We plot the
distribution of this parameter for all firms and for those that survive up
to age ten. Both distributions peak strongly around a value of βi,1 = 0.
Considering all firms in the sample, the spread in the distribution to
the left of zero is striking. The sample mean of β1,i equals -0.25 with
a sample standard deviation of 0.28. The large standard deviation, with
a bootstrapped confidence interval of 0.278 - 0.285, points to substantial
heterogeneity in firm success dynamics. The average value of success
dynamics is negative, suggesting that the average startup is less likely to
be economically successful as it gets older. Note this is partly due to the
fact that we have estimated probabilities to be economically successful
for all firms in the sample, including firms that are unlikely to survive in
their first years.
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Figure 20: Heterogeneity in within-firm dynamics

(a) distribution of exp(β0(X1)) (shrunken) (b) distribution of β1(X1) (shrunken)

In order to improve our feeling for the estimated probabilities, we
plot the trajectories of ˆ︂exp(ŝi,a) = β̂i,0 + β̂i,1a when firms are up to ten
years old in Figure 21. In particular, we rank firms according to the
(shrunken) value of β̂i,1, and compute the expected value by quantile.
In panel 21a, we plot the development in success rate implied by these
values. To improve comparison, we equate the probability of success at
age two for each quantile to the sample mean (0.675). The figures show
that the probability of being economically successful, which is observ-
able early in life, decreases in the age of the firm for all quantiles, and
the success trajectories are very different. Firms in the third quantile of
β̂0,i have the lowest decrease over time (from 0.675 to 0.45, a reduction
of about one-third), but firms in the quantile have the largest (from 67.5
to 0.5, a reduction of ninety-nine percent).

Figure 21b shows the same relationship, but this time for selected
quantiles of βi,1. Note that success trajectories by quantiles are very dif-
ferent. The first quantile is successful at a young age but very unsuc-
cessful at old age, whereas the fourth quantile is relatively successful at
all ages. Note that the probability of being economically successful is in-
creasing only for the fifth quantile. Figures 21a and 21b indicate substan-
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tial heterogeneity in firm success dynamics violating the proportionality
of the hazard assumption of the proportional hazard model.

Figure 21: Heterogeneity in within-firm dynamics

(a) Economic success by quantile of the
baseline hazard

(b) Economic success by quantile of the
age effect

Estimation results of equation 2.9 with LASSO reveal that most of the
variation in linearized success rate dynamics is explained by business
cycle effects. This follows from Table B.4.16, which shows that most of
the selected early life conditions are year indicators.5 The LASSO model
explains about 87 percent of the variation in the linearized growth of
success probability types at the firm level.

2.6.3 Heterogeneity in success rates over the business cy-
cle

The year indicators that are important in explaining firm success dynam-
ics could be driven by yearly changes in the composition of firms enter-
ing the market or by annual market demand shocks. Figure 22 compares
the counterfactual success rate using the 2015 model to the observed

5When we allow for non-linearities in the relationship between the dynamics in success
probabilities and early life conditions using an XGB model, we derive a similar conclusion.
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success rate for the corresponding group of startups. Both series grad-
ually decline, indicating that the share of two years old firms decreases
steadily. Also, the figure illustrates that the 2015 model overestimates
the share of successful firms in 2015. Despite this, the predicted and ob-
served success rates move in the same direction as the two series are
highly correlated (corr = 0.94), and changes in startup composition ex-
plain 88 percent of the annual variation in success rates of two-year-old
firms. This is not specific to the 2015 model. When we repeat the analysis
for other years, we find that variation in the composition of startups ex-
plains at least 86 percent and at most 92 percent of the annual variation
in success rates of two-year-old firms. As we keep the prediction model
fixed, this suggests that variations in the observable composition of firms
are important for explaining annual variations in the observed success
rate of young firms. Naturally, since we use a prediction model to derive
the counterfactual success rate, we cannot rule out the possibility that
unobserved characteristics fluctuate across years and affect the observed
success rate of young firms. However, for this to alter our conclusion, se-
lection based on observable heterogeneity affecting firm success would
need to be fundamentally different from selection based on unobservable
heterogeneity.
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Figure 22: Compositional effects over the business cycle

Notes: The solid line plots the share of two-year-old firms that are econom-
ically successful by year. The dashed line plots the share of firms that is
expected to be successful according to the 2015 model and early life con-
ditions of two years old firms in the years 2007 - 2020. The 2015 model is
estimated using the test data for firms that were two years old in 2015.

Next, we show evidence that the relationships between early life con-
ditions and subsequent firm success at age two are very similar over
time. Figure 23 shows that the ratio of the R2 in year t′ over the base-
line year t remains high throughout the sample period considered. The
ratio remains about 95 to 90 percent of the optimal R2 even when the
difference in years increases to ten. Note that the relative R2 is one by
definition for the year in which the model was trained. For all years, the
relative R2 are lower than one, indicating that some predictive power is
lost when the mapping from a different year than the baseline year is
used to make predictions. The exception to this rule is the 2015 model,
which predicts economic success in its own year relatively badly (as fig-
ure 22 showed). Also, note that the predictive power of the models re-
mains around 90 percent during the financial crisis and the early start of
the COVID-19 pandemic.
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All in all, the high relative predictive performance of models trained
in years that are very far away from the evaluation year suggests that
early life conditions that are predictive of economic success in the one
year explain firm success similarly in other years in a similar way. Thus,
despite the fact that we document cyclicality in the economic success
of young firms (Figure 22), the relationship between the early life con-
ditions that explain economic success seems relatively stable over the
business cycle. This is in line with our finding that variation in the com-
position of startups is the main driver for annual variation in the success
rate of young firms.

Figure 23: Persistence in predictive power over time

Notes: The figure shows the R2 in the test data of 2010, 2015, and 2020 using
the prediction model for each year relative to the R2 in the test data from
the same year as the prediction model. Vertical grey solid lines indicate the
years that were used in the test data.
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2.6.4 Interpretation in terms of noisy learning and capa-
bility learning

According to the noisy learning hypothesis, early life conditions, such as
having substantial liquidity, increase the likelihood of a firm surviving
its initial years, as it provides more flexibility to absorb adverse shocks.
However, early life conditions do not directly affect a firm’s economic
success during any given period. This is because some firms may, by
chance, succeed in building a stable network of suppliers and customers,
while others may fail to do so, also by chance. In particular, firms do not
change behavior in response to major changes to the environment.

This contrasts with the theory of capability learning, which states that
some firms are better equipped to leverage their capabilities for survival.
Even if all firms have similar initial survivability at birth, this theory
posits significant variation in the development of firm survival types as
they age. Some firms will quickly learn how to achieve economic success,
leading to a rapid increase in their survival probability, while others may
fail to do so, resulting in stable or even declining survival probability
over time. Capability learning assumes, therefore, variation in firm eco-
nomic success dynamics that is predictable from firm characteristics.

After re-interpreting the evidence provided in Sections 2.6.1 to 2.6.3
in light of these theories, we conclude that noisy learning is an important
driver of firm learning. This conclusion is derived from three observa-
tions. First, we find that success probability types of firms are persistent,
which limits the degree to which capability learning takes place. Indeed,
more than half of the gain in the probability of being economically suc-
cessful when a firm’s age increases from two to five can be explained by
dynamic selection. This suggests that noisy learning is a very important
mechanism by which firm learning takes place when firms are young
and when firms are more mature.

Second, firm-specific changes in success rate probability types are
small in size and mostly explained by year indicators. Capability learn-
ing would imply that early life conditions that vary at the firm level ex-
plain the dynamics in firm probability types, but we do not find evidence
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for this. Instead, we provide evidence that the variation in the success
rates of young firms over time is, to a large extent, explained by varia-
tion in early life conditions of these firms, which aligns well with noisy
learning.

Third, we find that the mappings between early life conditions and
the economic success of young firms are relatively persistent over time.
The relationship between early life conditions and firm success at age
two in year t′ explains at least 90 percent of the explainable variation
of this relationship in year t, even if the time gap between t and year t′

grows to ten years. This suggests that firms do not respond strongly to
changes in the economic environment, which is in line with the theory of
noisy learning as well.

2.7 Conclusion

This chapter provides an in-depth empirical analysis of business survival
and economic success based on comprehensive administrative data from
the Netherlands, analyzing the whole population of newly incorporated
firms in the period 2006 - 2021. We use machine learning to analyze this
data and use early life conditions to predict the economic success of firms
later in life. While we find no direct effect of early life conditions on
economic success in later life when we control for contemporaneous fea-
tures, the strong predictive power of early life characteristics arises from
their correlation with firm characteristics in later life. Our findings in-
dicate that firm success probability types exhibit substantial persistence
over time. In particular, firms that are successful early on maintain their
advantage as they age, while firms that struggle in the early years have
a significantly higher probability of exiting.

An important empirical result is that firm success probability types
are not randomly distributed, but correlate strongly over the years. The
analysis using the framework of Mueller and Spinnewijn (2023) confirms
that dynamic selection effects contribute strongly to the observed in-
crease in success rates as firms age. This is because firms with a high ini-
tial probability of success continue to be successful, while weaker com-
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panies are gradually filtered out. Intra-firm dynamics play a relatively
minor role in explaining the rise in success rates as firms age, as we show
that within-firm dynamics are predominantly driven by year indicators.
This suggests that year-to-year fluctuations in the composition of star-
tups or firms’ reactions to external shocks are the main drivers of the ob-
served success rates over time. We find that changes in the composition
of firms’ early life conditions explain around 88 percent of the variation
in the success rate of young firms, suggesting that other explanations,
such as changes in the economic environment, play a more limited role.
Consistent with this, we find that the relationship between early life con-
ditions and economic success is stable over time. These results provide
strong empirical support for the noisy learning theory, which posits that
initial firm conditions and market selection mechanisms largely deter-
mine long-term survival and success. The limited role of within-firm
dynamics suggests that firm learning over time plays a secondary role
compared to the initial sorting process. Our finding that firms’ responses
to the economic environment remain relatively stable over the years sug-
gests that the scope for capability learning to drive success dynamics is
limited. Companies can adapt, but these adaptations do not appear to
fundamentally alter the observed success type probabilities of firms.

Despite the robustness of these findings, some limitations remain.
Not all aspects of capability learning are directly observed in the study,
making it difficult to disentangle the exact mechanisms that drive firm
adaptation over time. Future research should incorporate direct mea-
sures of firm investment in innovation, managerial abilities, and strategic
flexibility to enhance the interpretation of learning dynamics. Although
the analysis successfully captures the long-term persistence of firm suc-
cess types, policy variations could further refine the explanatory power
of the model.

Overall, this research provides strong empirical evidence that firm
success probability types are persistent over the life of the firm and across
years, reinforcing the notion that firm trajectories are shaped early in
their life course. However, the interplay between selection mechanisms
and within-firm learning dynamics remains an area for further explo-
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ration. By improving our understanding of these factors, future studies
can inform more targeted policy interventions. Given that firm trajec-
tories are largely determined early in their life course, policies aimed at
improving initial firm conditions—such as better access to finance, men-
torship programs, and early-stage business support—may have long-
lasting impacts on firm success rates.
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Chapter 3

Innovation and Firm
Growth: A
Machine-Learning
Enhanced Tobit Model

The chapter is co-authored with Massimo Riccaboni.

Disclaimer: AI has been employed in the preparation of this chapter, specifically
for grammar and language refinement. All content, ideas, and interpretations
remain the original work of the author and coauthors.

3.1 Introduction

Firm growth dynamics represent a cornerstone of economic research,
with particular attention paid to factors that drive growth—most no-
tably innovation—and the validity of Gibrat’s law, which posits that firm
growth is independent of its size (Gibrat, 1931; Sutton, 1997; Kalecki,
1945). However, empirical investigations are often hindered by sample
attrition issues, as first evidenced by B. H. Hall (1986) and Evans (1987b)
and Evans (1987a). This estimates may conceal the true relationship be-
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tween growth and its determinants, such as size, intellectual property,
and other firm-specific characteristics. Traditional approaches, such as
the Tobit 2 model, often address this challenge with Heckman’s estima-
tor (Heckman, 1979): a Probit model for the first stage to capture the
selection mechanism, followed by a regression for the second stage to
predict the outcome while correcting for selection bias through the In-
verse Mills ratio. While the model is relatively straightforward to esti-
mate under its assumptions, it suffers from significant limitations due to
its parametric nature, which restricts its ability to capture complex pat-
terns in firm observability (S. Athey, 2017). Extensions that preserve the
simplicity of the estimation procedure, while substantially enhancing the
reliability and interpretability of the final estimates, can provide a useful
tool with practical relevance for both scholars and practitioners. Tradi-
tional methods for correcting selection bias are primarily designed to ad-
dress exit attrition, which arise because growth can only be measured for
firms that survive throughout the study period. However, depending on
the data source, unobserved growth may result from additional factors
that require careful consideration. Beyond exit attrition, growth is often
observable only for a subset of firms or time periods due to reporting
thresholds or data limitations. Unobserved growth is frequently accom-
panied by missing values in other key variables, further complicating
the analysis. This issue is particularly evident in data from Orbis Bureau
Van Dijk (Kalemli-Ozcan et al., 2015; Gal, 2013), where the quality of data
varies widely depending on the country, industry, and size of the firm.
Missing data often occur due to firm exits, regulatory exemptions, or in-
consistent reporting practices, especially among smaller or privately held
firms (Bajgar et al., 2020; Glaeser and Omartian, 2022; Kalemli-Özcan,
Sørensen, et al., 2024). Such gaps in data not only present technical chal-
lenges but may also introduce additional biases, as the missingness itself
can be informative, reflecting underlying latent dynamics. Addressing
both growth censoring and the missingness in the predictors is therefore
essential for producing accurate and robust estimates of firm growth dy-
namics.
In this study, we introduce and test an extension to Heckman’s two-
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step procedure, which preserves the Tobit 2 model’s traditional assump-
tion of joint normality of errors while replacing the Probit model in the
first stage with a machine-learning algorithm. By leveraging the abil-
ity of machine-learning models to capture complex non-linear relation-
ships and interactions among predictors, this approach provides a more
robust and flexible method for predicting the likelihood of observing
firm growth rates (Mullainathan and Spiess, 2017). In the second stage,
the machine-learning-based Inverse Mills ratio is incorporated into the
growth rate prediction model. This enhances the model’s ability to ac-
count for the censoring mechanism and correct for selection bias. Our ap-
plication focuses on predicting firm-level growth while addressing selec-
tion effects. We explore how the relationship between growth, size, and
innovation changes according to the controlled selection mechanism. In
particular, we examine the role of intellectual property—such as patents
and trademarks—as potential drivers of firm growth. Trademarks and
patents are key indicators of innovation and strategic differentiation, and
their effects on firm growth dynamics are of significant interest in both
theoretical and applied research (B. Hall et al., 2014; Greenhalgh and
Rogers, 2010).

Our contribution is threefold. First, we address the methodologi-
cal limitations of traditional traditional Heckman’s procedure in Tobit 2
models by incorporating machine-learning tools, showing their superior
ability to effectively capture the censoring mechanism and correct for po-
tential selection biases. Second, we empirically assess whether the com-
mon rejection of Gibrat’s law depends on the choice of model, providing
insights into its robustness when applied to widely used firm-level data
sources. Third, we investigate the role of innovation in shaping firm
growth trajectories. Our findings indicate that the rejection of Gibrat’s
law is largely independent of the selection mechanism, reaffirming the
statistical regularity of the negative relationship between firm size and
growth. However, we find that innovation have a positive impact on
growth only when machine learning is employed to enhance Heckman’s
model. This shows the value of integrating machine learning to address
censoring and missing data, providing a more robust framework for an-
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alyzing firm growth dynamics.

3.2 The conceptual framework

According to the seminal work of Heckman (1979), the bivariate sample
selection model also known as Tobit 2 model, specifies: (i) a model for
the censoring mechanism; (ii) a model for the outcome, conditional on
the outcome to be observed. In our application, the Tobit 2 model con-
sists of two main components: a participation equation that determines
the observability of the growth rate and an outcome equation that deter-
mines its value. We will use throughout the paper the notation employed
in Cameron (2005). The participation equation, which describes the cen-
soring mechanism of the growth rate, is given by

y1 =

{︄
1 if y∗1 > 0

0 if y∗1 ≤ 0

where y∗1 is a latent variable. The outcome equation, which describes the
value of the growth rate, is

y2 =

{︄
y∗2 if y∗1 > 0

− if y∗1 ≤ 0

The latent variables y∗1 and y∗2 are linear combinations of explanatory
variables plus an error term

y∗1 = x′
1β1 + ε1

y∗2 = x′
2β2 + ε2

(3.1)

Under the assumption that the errors are jointly normally distributed,
homoskedastic and correlated, the model can be estimated through max-
imum likelihood estimation (MLE). Under this assumption in the model,
analytical computations based on the properties of the truncated mo-
ments of the normal distribution show that the truncated mean can be
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expressed as

E [y2 | x1,x2, y
∗
1 > 0] = x′

2β2 + σ12λ (x′
1β1)

where λ(z) = ϕ(z)/Φ(z) is the Inverse Mills ratio (IMR), defined as the
ratio between the density ϕ(z) and the cumulative Φ(z) distributions
of the standard normal. Therefore, simply projecting y2 onto the space
spanned by x2 results in a biased estimate of β2 unless a correction for
the sample selection mechanism is applied.
While the traditional MLE approach is more efficient under the joint
normality assumption of the error terms, in our setting the computa-
tional burden is high, as well as sensitive to potential misspecifications
in the underlying model. The Heckman estimator provides consistent
estimates by explicitly separating the selection process from the outcome
equation through the incorporation of the IMR, making it a robust and
practical choice for model estimation. The Heckman procedure aug-
ments the second-stage OLS regression with an estimate of the omitted
regressor λ (x′

1β1). Using the observed values of y2, the model is esti-
mated as

y2 = x′
2β2 + σ12λ (x′

1β1) + v

where v is an error term. The parameter β1 is obtained from a first-step
probit regression of y1 on x1. Specifically, the probability of y1 = 1 is
given by

Pr[y1 = 1|x1] = Φ (x′
1β1)

In our application, we propose an alternative approach where we replace
the traditional probit model used in the first step of the Heckman proce-
dure with predictions from a machine learning model. It is worth not-
ing that the Heckman model’s assumption of joint normality of the error
terms is preserved in our extension. What we boost, in essence, are the
selection probabilities from the first stage. In our case, these probabili-
ties are generated by a more complex non-linear model, which leads to
improved predictions in the first step of the two-stage estimation proce-
dure. The core idea is to leverage the flexibility and predictive power
of machine learning algorithms, which can better handle complex re-
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lationships and interactions in the data compared to the standard pro-
bit model. The first step involves training a machine learning model to
predict the probability of observing the growth rate. Once the machine
learning model is trained, we obtain predicted probabilities for each ob-
servation. Next, we convert these predicted probabilities into the probit
scale by applying the inverse of the cumulative distribution function of
the standard normal distribution, denoted as Φ−1(z). This transforma-
tion maps the predicted probabilities p̂1=Pr[y1 = 1|x1] onto the latent
variable scale, which corresponds to x′

1β1 in the traditional probit model.
Then, we compute the IMR as follows:

λ̂ML =
ϕ(Φ−1(p̂1))

Φ(Φ−1(p̂1))
=

ϕ(Φ−1(p̂1))

p̂1

where ML stands for machine-learning. In the second stage, we then
perform the outcome regression using the machine learning-based IMR.
The outcome equation becomes

y2 = x′
2β2 + σ12λ̂ML + v

where v is the error term and λ̂ML is the estimated IMR based on the
machine learning predictions.

3.3 A case for missing data

In the Heckman settings, where the first stage predicts the likelihood of
observing the growth rate, machine-learning tools offer several advan-
tages over traditional probit models. This is particularly important in
empirical analyses where predictors often contain missing values. Un-
like standard probit models, which typically require Complete-Case (CC)
analysis or imputation, some machine-learning techniques are specif-
ically designed to handle missing values directly. This capability en-
ables the extraction of meaningful patterns without the need for pre-
processing steps that could reduce the sample size or, worse, introduce
biases—especially in the case of Missing Not At Random (MNAR) data
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(Little and Rubin, 2019), where missing values can provide important
information for prediction. Furthermore, machine-learning models are
outstanding to capture complex, non-linear relationships and interac-
tions among predictors, offering superior predictive accuracy in scenar-
ios where traditional parametric models fall short. As a result, using
machine-learning approaches in the first stage of a Heckman procedure
not only simplifies data preparation but also enhances the robustness
and flexibility of the estimation process, especially when dealing with
censored growth rates and incomplete predictors in our data.
Among the many machine-learning tools available, eXtreme Gradient
Boosting (XGBoost) stands out as a particularly effective model for this
purpose. It is an ensemble method based on decision trees within a gra-
dient boosting framework, renowned for its high performance across
diverse prediction tasks. Its computational efficiency in terms of time
and memory makes it a reliable choice for large datasets (Gumus and
Kiran, 2017; Abbasi et al., 2019; M. Li, Fu, and D. Li, 2020). A key
strength of XGBoost is its ability to handle missing values through the
so-called sparsity-aware algorithm (T. Chen and Guestrin, 2016). This
technique directs missing observations for continuous variables to the
branch that minimizes error, ensuring effective use of incomplete data.
In contrast, categorical variables require one-hot encoding, with miss-
ing values treated as a separate category during preprocessing. These
mechanisms, combined with regularization techniques to prevent over-
fitting, make XGBoost particularly well-suited for datasets with miss-
ing and complex features (Bentéjac, Csörgő, and Martı́nez-Muñoz, 2021).
The utility of XGBoost becomes especially apparent when dealing with
datasets such as Orbis, which present significant challenges due to miss-
ing values. Missing data in Orbis can occur for various reasons, such as
firm failure, changes in ownership, or operational status (Kalemli-Özcan,
Sørensen, et al., 2024; Liu, 2020). Additionally, some firms may strategi-
cally restrict financial disclosures or simplify their records, as they are not
obligated to disclose or even calculate certain financial variables (Falco
J Bargagli-Stoffi, Incerti, et al., 2024b). For example, growth rates may
be unavailable when firms exit the market or fail to provide consistent
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financial statements during key periods. These issues are particularly
pronounced in private firms, which face fewer regulatory reporting re-
quirements than publicly listed firms (Glaeser and Omartian, 2022). Fur-
thermore, Orbis data quality varies across countries, industries, and firm
sizes, with SMEs often underrepresented (Dinlersoz et al., 2018). In this
context, XGBoost’s ability to process incomplete information robustly en-
sures that first-stage estimations in Tobit 2 models remain both unbiased
and efficient, making it a valuable tool for addressing the complexities of
real-world datasets.

3.4 Data

Our work relies on firm-level data sourced from the ORBIS database,
a popular repository for academics and practitioners of global financial
accounts provided by Bureau Van Dijk. ORBIS data have been exten-
sively applied in prior economic research (Gopinath et al., 2017; Cravino
and Andrei A Levchenko, 2017; Adalet McGowan, Andrews, and Millot,
2018; Gourinchas et al., 2020; Kalemli-Özcan, Laeven, and D. Moreno,
2022). Despite its comprehensive nature, ORBIS coverage can vary across
countries due to differences in national business registry filing require-
ments (Gal, 2013; Kalemli-Ozcan et al., 2015). For Italy, financial account
data are primarily collected from CERVED, a credit rating agency, before
being standardized and translated by Bureau Van Dijk to facilitate cross-
country comparability. Additionally, ORBIS enriches financial records by
integrating supplemental information on firm ownership, management
structures, and intellectual property rights, which prove valuable for pre-
dictive modeling. This study employs ORBIS data for Italian manufac-
turing firms active for at least one year between 2008 and 2017 (see Falco
J Bargagli-Stoffi, Incerti, et al., 2024b for additional information about the
data). We first compute the firm-level proportional growth:

πn =
sizet+n − sizet

sizet
(3.2)
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and we define the growth rate according to Capasso, Treibich, and Verspa-
gen (2015):

gn = log (πn + 2) (3.3)

where sizet represents firm’s revenues (or employment) at year t and n

is the growth window. The transformation strikes a balance between in-
terpretability and robustness. For firms experiencing high growth rates,
it closely approximates the log difference growth, preserving the rela-
tionship between size changes and growth. However, unlike the pro-
portional measure, it reduces the impact of heteroscedasticity in growth,
as empirical evidence shows that growth variance is dependent on firm
size (B. H. Hall, 1986; Evans, 1987b; Evans, 1987a). That is because
smaller firms tend to exhibit higher variability in growth rates compared
to larger firms. Moreover, in cases of extreme negative growth, the mea-
sure is also less sensitive to endogenous attrition. In our analysis, we
focus on a three-year period (n = 3), with additional robustness checks
for one and two-year periods provided in the Appendix. Our dataset
includes a wide range of economic and financial indicators, such as orig-
inal financial accounts, measures of financial constraints, and indicators
of financial risk. The full list of predictors is available in Falco J Bargagli-
Stoffi, Incerti, et al. (2024b), as we use the same data. Additionally, the
dataset includes dummy variables for trademarks (equal to 1 if the firm
has issued trademarks and 0 otherwise), patents (equal to 1 if the firm has
issued patents and 0 otherwise), and consolidated accounts (equal to 1 if
the firm consolidates the accounts of its subsidiaries). However, in Tobit
2 models, incorporating a large set of predictors, such as three years of
lagged variables, can lead to challenges such as multicollinearity, where
high correlations among predictors inflate standard errors and reduce
the precision of parameter estimates. To address this, we perform a di-
mensionality reduction through Principal Components Analysis (PCA).
This way, we transform the original predictors into a smaller set of un-
correlated components that capture the majority of the variance in the
data, mitigating multicollinearity while preserving the most relevant in-
formation. Additionally, reducing the dimensionality of the predictor
space improves computational efficiency and helps prevent overfitting.
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By simplifying the predictor set, PCA enables a more robust estimation
process and ensures that the model remains interpretable and statisti-
cally sound, even in the presence of a large and complex dataset. In the
data construction pipeline, we begin by calculating the growth rate over
a three-year period. Next, we split the data, allocating 80% to the train-
ing set and 20% to the test set. The training set is used to train both
the first and second stage regressions, while the test set is employed for
evaluating the first stage model’s performance. Since XGBoost can han-
dle missing values in the predictors, it can be applied to a larger set of
observations compared to traditional models, which require CC data. To
ensure fairness, we construct the training and test sets for XGBoost us-
ing a random sample of the same size as the CC data used in traditional
methods, while allowing observations with missing predictors to be in-
cluded.

3.5 Results

3.5.1 Well-predictable missing growth

We first analyze the ability to predict the missing growth rate, focusing
on revenue-based growth and later assessing its link to innovation out-
comes. However, we also find it valuable to compare it with employment-
based growth, as traditional literature primarily emphasizes the latter.
Employment growth represents an input, while revenues growth reflects
an output, offering distinct perspectives on firm performance (Coad, 2009).
For example, innovation may allow firms to achieve higher outputs with
fewer inputs, potentially increasing revenues without a corresponding
rise in employment. This distinction is important since policymakers are
often concerned with employment trends and their implications, whereas
firms are more concerned about revenue and profit growth as key indica-
tors of success and competitiveness. Comparing both measures provides
a more comprehensive understanding of firm dynamics.
Table 12 compares the performance of probit, random forest, and XG-
Boost in predicting the probability of missing growth, which provides
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the first stage of Heckman’s estimation. The AUC-ROC scores, which
measure the model’s ability to distinguish between firms with observed
and unobserved growth, show that the probit model has limited per-
formance for both classes of growth compared to its competitors, re-
flecting a limited ability to capture complex patterns. Random forest
achieves higher scores, indicating stronger predictive ability, but XG-
Boost shows consistently superior performance, achieving near-perfect
AUC-ROC scores (0.9807 and 0.9879, respectively), underscoring its ro-
bustness and ability to accurately differentiate between missing and non-
missing growth. Furthermore, we assess predictive performance using
the AUC-PR (Area Under the Precision-Recall Curve). Although our
data exhibit only a moderate imbalance (52% of revenue growth is miss-
ing and 60% for employment), the AUC-PR underscores the superior
performance of XGBoost in terms of both precision and recall. Likewise,
the F1-Score, which balances precision and recall, highlights the relative
strengths of the machine learning models. Similarly, the R2, which mea-
sures the proportion of variance explained by the model, reveals that XG-
Boost captures data patterns most effectively, with random forest trailing
behind. Finally, the Balanced Accuracy (BACC), reflecting the average
of sensitivity and specificity, further underscores XGBoost’s superiority.
Thus, the superior predictive power of XGBoost, particularly its robust-
ness, precision, and ability to exploit missing patterns effectively, makes
it a suitable choice for the first-stage estimation in this setting. Impor-
tantly, all metrics are computed on the test set, allowing us to assess the
generalization ability of the model out-of-sample. The high performance
across all evaluation criteria suggests that the model does not suffer from
overfitting, reinforcing the reliability of its predictions in capturing the
selection mechanism.

3.5.2 Unpacking first stage modelling

The first stage estimation of the missing growth is based on features mea-
sured at the beginning of the growth window, along with other time-
invariant controls. Despite the limited information available to the algo-
rithm, the strong performance of XGBoost is likely depends on its ability
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Table 12: First stage out-of-sample prediction (missing g3)

Method AUC-ROC AUC-PR F1-Score R2 BACC Num. obs
(a) Employment
Probit 0.6862 0.2109 0.2434 0.0499 0.6293 82,096
Random forest 0.7402 0.2541 0.2901 0.0837 0.6790 82,096
XGBoost 0.9807 0.9899 0.9625 0.8517 0.9638 82,096
(b) Revenues
Probit 0.8271 0.4966 0.3336 0.2755 0.7449 92,920
Random forest 0.8479 0.5217 0.3572 0.3023 0.7665 92,920
XGBoost 0.9879 0.9918 0.9702 0.8941 0.9709 92,920

to capture non-linearities that probit models fail to detect. Moreover,
missing values themselves may also contain valuable information that
both probit and random forest cannot exploit because of their CC nature.
However, assessing the importance and quality of the signal provided
by missing values is challenging. In that respect, we introduce in the first
stage a missingness indicator, which provides the share of missing values
in financial statements features over the two years prior the growth win-
dow. To assess variable importance, we compute approximate Shapley
values for the XGBoost model. Given the high computational burden,
we use a random sample of 15,000 observations. Figure 24 shows the
mean absolute Shapley values in both revenues and employment-based
three-year growth models. In both models, the share of past missing
values, size, and year are the most important predictors. This suggests
that past patterns of missing data are highly informative in the predic-
tion. Furthermore, due to the XGBoost use of default directions when
splitting on a feature—which assigns all missing values to either the left
or right branch—we expect missing values in size to play a critical role
in generating missing growth in subsequent periods. Consequently, size
is likely to affect the prediction through two main channels: its miss-
ing values and its observed values. This further supports that attrition
is often driven by Orbis-specific data collection dynamics. Additionally,
the high importance of year aligns with differences in Orbis data cov-
erage over time (Kalemli-Ozcan et al., 2015), which may lead to higher
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rates of missing growth in specific years. Figure C.2.1 in the Appendix
shows the Shapley values, using an equivalent CC random sample, for
the probit model. Interestingly, the probit relies on the same predictors
as XGBoost. This suggests that the higher ability to separate missing and
non-missing growth is likely driven by the signal from missing values
and non-linearities captured by the tree-based nature of XGBoost.

Figure 24: Shapley values for XGBoost first stage prediction (missing g3)

(a) Revenues (b) Employment

To further investigate how (observed) size affects the probability of
missing growth, we compute and compare Accumulated Local Effects
(ALE) plots. Figure 25 shows them for size and share of past missing by
growth model. For both models, the probit exhibits a monotonic down-
ward trend, indicating that larger firms are less likely to experience un-
observed growth. This suggests that, in general, firm size is negatively
correlated with the probability of missing growth. However, the XG-
Boost model shows a more nuanced relationship. In the case of employ-
ment growth, the ALE initially decreases but reverses for larger firms.
This implies that after reaching a certain size threshold, the probability of
missing employment growth begins to increase again. Interestingly, both
algorithms agree that firms with revenues exceeding 270, 000 (≈ e12.5)
euros contribute negatively to the probability of unobserved growth. Be-
yond this threshold, the XGBoost model shows that the contribution lev-
els off and slightly increases again for very large firms, suggesting that
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very large firms are more likely to exhibit missing growth. This finding
indicates that while larger firms generally have more reliable revenues
growth, there may be discontinuities in the data where revenues growth
is unobserved for some large firm. Regarding, the impact of past miss-
ing values, the probit shows an almost linear and negative effect on the
probability of missing growth. Interestingly, both algorithms converge
on the finding that as the share of missing values over the past two years
approaches one, the probability of unobserved growth decreases. How-
ever, XGBoost spots more complex patterns, particularly at lower quan-
tiles. In the revenue-based model, the relationship appears bimodal, with
two peaks in the probability of missing growth—one when the share of
past missing values is low (around 0.2) and another as it approaches one.
The latter may reflect cases where firms are already registered in Orbis,
but the actual information is systematically processed or updated later.
This lag likely explains this trend. Similarly, in the employment-based
model, XGBoost captures a plateau in the accumulated local effect when
the share of missing values is at most 0.5, followed by a sharp decline as
missingness increases further. This suggests that missing data may not
provide uniform signals but could also reflect idiosyncratic firm-level re-
porting and data collection behaviors, which traditional linear models
like probit fail to capture.
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Figure 25: ALE plots for size

(a) Size (Revenues) (b) (Size) Employment

(c) Share past missing (Revenues) (d) Share past missing (Employment)

3.5.3 Outcome model

Table 13 reports the second-stage regression results for estimating the
growth rate over a three-year period, comparing the naive model (with-
out correction for censoring) with traditional (probit) and extended (XG-
Boost) Heckman’s models. While the definition of the growth rate in
equation 3.3 partially mitigates the issue of heteroscedasticity, evidence
of heteroscedasticity remains present. To address it and ensure more ro-
bust inference, we employ heteroscedasticity-consistent standard errors
using the HC3 estimator (MacKinnon and H. White, 1985), which is par-
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ticularly suited for handling influential observations1. The coefficient for
firm size (logarithmically measured at the start of the growth period)
is consistently negative across all models. However, a strong rejection
of Gibrat’s law is observed only in the employment-based models. In
these models, the relationship between growth and size keeps robust
regardless of the inclusion and design of sample selection corrections.
This divergence between models is not surprising, as employment-based
growth reflects changes in workforce and operational capacity. In con-
trast, revenue-based growth can be influenced by external factors such
as market prices or sales strategies, which may weaken the observed
relationship between size and growth. Innovation indicators (patents
and trademarks) exhibit nuanced effects on growth. In the naive model
(a), both patents and trademarks show positive and significant effects
on both revenues and employment growth. However, the inclusion of
selection mechanisms changes the significance and direction of these co-
efficients. Notably, the probit-based model (b) shows insignificant co-
efficients for patents (−0.027) and trademarks (0.002) in revenues mod-
els. By contrast, the extended model (c) shows positive effects of inno-
vation, with patents and trademarks once again emerging as significant
drivers of both revenue and employment growth. These findings align
more closely with the prevailing theoretical and empirical literature on
innovation. Additionally, firm age is consistently negatively associated
with growth across all models, which is also in line with earlier findings.
The magnitude of this negative relationship is modest but highly sig-
nificant in all specifications, indicating that younger firms tend to grow
faster. Consolidated accounts have a consistently strong and positive
effect on growth across all models and outcomes, with coefficients par-
ticularly high in the probit-based models (2.711 and 1.936 respectively).
The IMR provides critical insights into the underlying selection dynam-

1The HC3 estimator is given by:

ˆ︂Var(β̂) = (X⊤X)−1

(︄
n∑︂

i=1

û2
i

(1− hii)3
xix

⊤
i

)︄
(X⊤X)−1

where ûi is the residual for observation i, and hii is the leverage for observation i (i.e., the
diagonal of the hat matrix H = X(X⊤X)−1X⊤).
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ics captured by the different models. In the probit-based model (b), the
IMR is positive and highly significant (1.939 for revenues growth and
0.202 for employment growth), providing strong evidence of positive
selection bias: firms with observable growth are more likely to exhibit
higher growth rates. In contrast, the XGBoost-based model (c) shows a
negligible and statistically insignificant IMR for revenues growth (0.004).
The model thus suggests that the selection bias requiring correction is
minimal. Given XGBoost’s superior ability to fit the first stage, it is likely
more effective at identifying selection patterns related to the observabil-
ity of growth rates. However, these dynamics introduce little bias in the
estimation of the outcome model. Interestingly, the IMR for employment
growth in model (c) is negative and significant (−0.012), suggesting a
slight negative selection bias, where firms more likely to be observed
tend to exhibit lower growth. In this scenario, selection occurs with
smaller and younger firms, which typically exhibit higher growth but
have more limited coverage in financial and employment data compared
to the firm and Orbis population (Bajgar et al., 2020). On the revenues
growth side, the selection process may be influenced by more random
data collection dynamics within Orbis, as indicated by the insignificant
IMR in the model.
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Table 13: Second-stage regressions: three-year models comparison

Three-year growth rate (g3)

Revenues Employees
(a) (b) (c) (a) (b) (c)

Intercept −59.522∗∗∗ −1826.469∗∗ −65.553∗∗∗ −25.169∗∗∗ −817.613∗∗∗ −16.571∗∗∗

(2.040) (605.971) (4.477) (1.721) (49.928) (2.091)

Age −0.001∗∗∗ −0.010∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.002∗∗∗ −0.001∗∗∗

(0.000) (0.003) (0.000) (0.000) (0.000) (0.000)

Size (log) −0.005∗ −0.396∗∗ −0.005∗ −0.030∗∗∗ −0.410∗∗∗ −0.027∗∗∗

(0.002) (0.136) (0.002) (0.001) (0.024) (0.001)

Consolidated accounts 0.073∗∗∗ 2.711∗∗ 0.077∗∗∗ 0.095∗∗∗ 1.936∗∗∗ 0.087∗∗∗

(0.014) (0.912) (0.015) (0.010) (0.121) (0.010)

Patents 0.026∗∗∗ −0.027 0.026∗∗∗ 0.024∗∗∗ −0.199∗∗∗ 0.026∗∗∗

(0.002) (0.018) (0.002) (0.002) (0.014) (0.002)

Trademarks 0.019∗∗∗ 0.002 0.018∗∗∗ 0.027∗∗∗ −0.228∗∗∗ 0.029∗∗∗

(0.003) (0.006) (0.003) (0.002) (0.016) (0.002)

IMR 1.939∗∗ 0.004 0.202∗∗ −0.012∗∗∗

(0.665) (0.003) (0.077) (0.002)

PCA Controls Yes Yes Yes Yes Yes Yes
Fixed Effects Yes Yes Yes Yes Yes Yes
First Stage Probit XGB Probit XGB
Second Stage OLS OLS OLS OLS OLS OLS
R2 0.0414 0.0563 0.0414 0.0470 0.0563 0.0477

RMSE 0.2461 0.1955 0.2461 0.1964 0.1955 0.1963

Obs. 1st Stage 371, 028 371, 028 325, 165 325, 165

Obs. 2nd Stage 82, 861 82, 861 82, 861 79, 026 79, 026 79, 026
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Note: PCA controls include lagged predictors condensed into five principal compo-
nents. All regressions include industry, regional, and year fixed effects. Standard
errors are based on heteroscedasticity-consistent (HC3) estimation.

In the appendix, we provide robustness checks for one and two year
growth analyses. In the first-stage predictions, XGBoost consistently out-
performs both probit and random forest across all periods, showing its
robustness when predicting the observability of growth across different
horizons. Tables C.1.4 and C.1.5 highlight the challenges of predicting
short-term growth (one and two years ahead), where shorter growth
windows result in lower R-squared and RMSE. This reflects the high
volatility and dominance of transitory factors in short-term growth, which
reduce the model’s ability to capture systematic trends (Coad, 2009; Halti-
wanger, Jarmin, and Miranda, 2011). Increasing R-squared with longer
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growth windows reflects the model’s ability to capture more systematic
variation as transient noise diminishes over time. However, RMSE also
increases because longer horizons amplify the scale of growth variability,
leading to larger absolute prediction errors. The negative effects of size
and age remain significant for employment-based growth, whereas this
relationship is weaker for the revenue-based one. Innovation effects on
growth are negative or insignificant in the probit-based model, further
supporting our claim that traditional sample selection corrections may
be inadequate, even in the short run.
In Table C.1.6, we provide additional robustness checks using a random
forest model in the first stage, yielding results very similar to those ob-
tained with XGBoost. This shows that, despite its ability to capture in-
formative missingness in predictions, random forest can still provide ef-
fective predictions and corrections for Heckman’s model. However, the
computational burden is significantly higher than XGBoost. Considering
its ability to handle missing values, shorter runtime, and strong predic-
tive performance, XGBoost is a suitable choice for the first stage. We
also generalize the first stage to account for the joint probability that a
firm has missing growth and is excluded from the second stage due to
missing predictors. Table C.1.7 shows similar results to those from the
traditional first stage. To further investigate the effects of firm size, in Ta-
ble C.1.8, we conduct a panel regression with individual and time-fixed
effects, allowing for better control of time-invariant unobserved hetero-
geneity. However, this approach comes with the trade-off of excluding
time-invariant variables, such as patents, trademarks, and consolidation,
due to collinearity issues. We find that the negative relationship between
size and growth is stronger for employment-based growth and becomes
more pronounced as the growth window increases. The magnitude of
this effect is notably larger, indicating that, after accounting for time-
invariant confounders, younger firms exhibit significantly higher growth
rates than older firms, and this result holds regardless of the sample se-
lection corrections applied.
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3.6 Limitations and future research avenues

In this application, we aim to highlight how the selection process under-
lying the dynamics of firm growth is significantly more complex com-
pared to the design of traditional empirical models. Specifically, widely-
used firm-level data available to researchers and practitioners often shows
limitations that must be carefully considered when drawing inferences
about firm dynamics. At the same time, our contribution has several
methodological limitations. In particular, by employing gradient boost-
ing in the first stage, our model implicitly assumes that the observabil-
ity of the growth rate is not driven by a latent variable that linearly de-
pends on the features of interest (i.e., x′

1β1), as in the standard Heckman
framework. Instead, we allow for a nonlinear relationship of the form
f(x1;γ1), where γ1 represents the parameters uniquely identifying the
model. Although the model provides more flexibility in capturing the
selection process, we keep the assumption of normally distributed error.
The two-step Heckman (heckit) procedure should rely on MLE of γ1, as
for β1 when estimating the probit model. However, this estimation pro-
cess is inherently complex due to the nonparametric nature of gradient
boosting. To tackle this challenge, we instead use a two-step approach.
First, we estimate the selection model using gradient boosting. Secondly,
we incorporate the predictions into the outcome equation through the
IMR. While this “backward blending” approach allows us to estimate
the model, it also highligths the methodological limitations in extending
the first-stage specification more rigorously. Additionally, the support of
the IMR derived from our machine learning approach is more restricted
compared to the traditional model. This is because, in the traditional
approach, the IMR is based on the extrapolation of x′

1β1 from the pro-
bit estimation. In contrast, in our case, the corresponding IMR is based
on the extrapolation of gradient boosting predictions, which rely on a
binary label. As a result, their support is concentrated around the [0, 1]

region. While using an appropriate loss function can extend this sup-
port over the boundaries, the estimates still revolve around the interval.
Consequently, the lower variability of the IMR may explain the reduced
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statistical significance of the corresponding coefficients, as well as, the
higher R2 in the second stage when the probit model is employed to cor-
rect for selection. An interesting avenue for future research lies in the use
of Bayesian methods (O’Neill, 2024) to flexibly handle selection and cen-
soring issues with a fully nonparametric approach. Such advancements
could provide more flexible and robust tools for modeling the observ-
ability mechanisms underlying firm growth dynamics.

Our approach is conceptually related to double machine learning (Cher-
nozhukov et al., 2018). In particular, the use of machine learning models
to predict the selection mechanism can be interpreted as a way to partial
out nuisance components from the second-stage structural equation of
interest—namely, the outcome equation in our framework. This aligns
with the double-machine learning approach, which stresses orthogonal-
ization. Although the orthogonality conditions are not explicitly im-
posed in our model, the two-stage structure—where machine learning
is applied flexibly in the first stage and the Inverse Mills Ratio is used
to correct for selection in the second—mirrors the spirit of double ma-
chine learning by mitigating overfitting and model misspecification in
the selection process. In that respect, it is worth noting that Hirukawa et
al. (2023) introduce the DS-HECK method based on double-lasso estima-
tion for Heckman selection models. This approach is particularly useful
when the first-stage model involves a high-dimensional and sparse set of
predictors, potentially exceeding the sample size. In contrast, our appli-
cation primarily relies on theoretical-based predictors of missing growth,
such as the current size and past patterns of missingness. While the DS-
HECK framework offers valuable tools when facing a large number of
potential predictors, this is not the focus of our study. Our primary aim
is to capture nonlinearities and the impact of missing data on prediction,
contexts where high-dimensional sparsity is less relevant. Nevertheless,
the methodological innovations introduced by DS-HECK provide a com-
plementary perspective, especially in applications where variable selec-
tion plays a central role.

A final limitation of the our approach concerns reduced model inter-
pretability. While the primary goal of the selection model is to obtain
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consistent estimates in the outcome equation, it is still desirable to un-
derstand the underlying selection mechanism. Unlike traditional Probit
models, which offer interpretable coefficients that link predictors to se-
lection probabilities, XGBoost does not provide such direct interpretabil-
ity. To address this, we rely on Shapley values as variable importance
tools, which offer a post hoc decomposition of each predictor’s contribu-
tion to the model’s predictions. This allows us to recover some degree
of transparency regarding the factors driving selection. In that respect,
we face the well-known trade-off inherent to machine learning models:
a loss in interpretability is exchanged for the ability to uncover com-
plex, non-linear relationships—such as the predictive role of missing-
ness—that traditional linear models are generally unable to capture.

3.7 Concluding remarks

This study extends the traditional Tobit 2 model by integrating machine
learning techniques to improve the estimation of firm growth dynamics
when working with incomplete data and selection bias. Our approach
tackles key limitations of traditional Heckman selection models, provid-
ing greater flexibility in capturing non-linear relationships and the mech-
anisms underlying growth observability. By applying this framework
to ORBIS data on Italian manufacturing firms, we show that tree-based
methods can significantly improve the predictive performance of the se-
lection equation, outperforming traditional probit models. Our find-
ings support a persistent rejection of Gibrat’s law, indicating that firm
growth is negatively related to size, regardless of the selection mecha-
nism. This result holds across different growth measures, such as rev-
enues and employment, though the strength of the relationship varies.
Notably, the positive contribution of innovation becomes evident when
machine learning methods are incorporated into the Heckman frame-
work. This suggests that traditional parametric models may underesti-
mate the role of innovation due to their limited capacity to account for
selection dynamics and missing data patterns. While our approach pro-
vides new insights for handling selection bias and missingness, it is not
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without limitations. The use of gradient boosting in the first stage intro-
duces challenges related to the estimation of the IMR, particularly due
to complexity of MLE and the restricted support compared to traditional
models. Bayesian nonparametric methods offer a flexible alternative for
modeling selection mechanisms without relying on strong distributional
assumptions. If suitably equipped with tools to handle and incorporate
the signal from missing data in the model, they could represent a signif-
icant advancement. In conclusion, this paper contributes to the growing
literature on the integration of machine learning in econometric models,
highlighting both its potential and its limitations. By bridging the gap
between traditional selection models and cutting-edge predictive algo-
rithms, we offer new insights into the dynamics of firm growth and pro-
vide a perspective for future methodological advancements in the anal-
ysis of censored and incomplete data.
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Conclusions

This thesis sheds light on the role of statistical learning in analyzing
and predicting firm dynamics, stressing the predictive power of machine
learning techniques for determining failure risk, success probabilities,
and potential growth. A central theme of this thesis is the challenge
posed by unobservable firm characteristics that affect future firm dynam-
ics and the methods used to control for them. At the same time, the thesis
highlights the strong persistence of observable firm conditions over time,
underscoring their importance in shaping long-term firm outcomes. By
integrating machine learning with traditional econometric models, this
research advances our understanding of firm behavior and provides in-
sights relevant to policy and financial decision-making.

The first chapter shows how machine learning can extract meaning-
ful insights from financial indicators and classify firms into risk cate-
gories based on past failures. In particular, extreme gradient boosting
outperforms traditional econometric and machine-learning methods, es-
pecially in handling missing financial data. The algorithm improves pre-
diction accuracy over conventional credit scoring tools such as Z-scores
and DtD. Based on its strongly accurate predictions, we define ”zombie
firms” as those that persist in the highest risk decile for at least three
consecutive years. Identifying these firms is crucial for financial insti-
tutions to allocate credit efficiently and mitigate adverse selection prob-
lems inherent in imperfect financial markets. More broadly, this work
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helps assessing financial distress at both the firm and systemic levels, re-
inforcing the evidence that zombie firms slow economic growth by mis-
allocating resources. Indeed, our findings indicate that Italian zombie
firms are mostly small and show low prod. Their numbers rise during
recessions and fall during periods of economic expansion or recovery.
While this work does not make direct post-pandemic predictions, it un-
derscores the importance of distinguishing viable firms from non-viable
ones, especially as public support programs come to an end.

The second chapter of the dissertation examines the dynamics of firm
success, and the role of early-life conditions in shaping later performances.
We find that, While early-life conditions do not have a direct causal ef-
fect on later economic success when controlling for contemporaneous
characteristics, they exhibit strong predictive power due to their corre-
lation with later firm attributes. The findings confirm that firm success
probabilities are highly persistent. Firms that perform well early on tend
to maintain their advantage, while those struggling in their formative
years face an increased risk of exit. This persistence is largely driven by
selection effects rather than intra-firm learning. The results suggest that
most of the variation in young firms’ success rates can be explained by
early-life conditions, indicating that external economic factors play a sec-
ondary role. Despite these insights, some aspects of firm learning remain
unobserved, and further research on the role of innovation, managerial
skills, and strategic flexibility is needed. These findings underscore the
importance of policies that enhance early firm conditions, such as im-
proved access to finance, mentorship programs, and startup support, as
firm trajectories are largely determined in their formative years.

The final chapter extends the discussion on firm dynamics to firm
growth, by integrating machine learning techniques into traditional To-
bit 2 models. This approach improves the estimation of firm growth
determinants by addressing selection bias and missing data more effec-
tively than standard econometric models. Applying this methodology to
Italian manufacturing firms, this work further supports that tree-based
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methods significantly enhance predictive accuracy, outperforming stan-
dard probit models within the Heckman model. A key empirical result
is the persistent rejection of Gibrat’s law: firm growth is inversely re-
lated to size, regardless of the selection mechanism. This relationship
holds across different growth horizons, with innovation playing a cru-
cial role—though its impact is often underestimated by traditional mod-
els due to their limited capacity to capture selection dynamics. While this
contribution provides a more flexible framework for analyzing censored
data, it introduces challenges in estimating the IMR with maximum like-
lihood. Future research could explore Bayesian nonparametric methods
as a more adaptable alternative. More broadly, this work contributes to
the growing literature on the integration of machine learning into econo-
metrics, highlighting both its potential and its limitations in addressing
selection bias and incomplete data.

A common thread across the chapters is that machine learning algo-
rithms not only enhance predictive accuracy and help overcome econo-
metric limitations, but also provide valuable tools for addressing key
questions related to economic policy. The findings underscore the need
for early-stage interventions to foster firm success, as well as improve re-
source allocation. Future research can further enhance our understand-
ing of firm behavior and contribute to more effective policies.
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Appendix A

Appendix to Chapter 1

A.1 Additional tables

Table A.1.1: Panel (A): List of predictors for firms’ failures.

Variables Description

Material Costs (FA), Costs of Employees
(FA), Added Value (FA), Taxation, Tax
and Pensions’ Payables (FA), Revenues
(FA), Financial Expenses (FA), Interest
Payments (FA), Cash Flow (FA), Fixed
Assets (FA), Current Assets (FA),
Shareholders’ Funds (FA), Retained
Earnings (FA), Long-Term Debt (FA),
Loans (FA), Current Liabilities (FA),
EBITDA (Earnings before interest,
Taxation, Depreciation and
Amortization) (PFT), Intangible Fixed
Assets (FC), Total Assets (SI), Net
Income (SI), Number of Employees (SI)

Original accounts (in euros).

Capital Intensity (FA) Ratio of fixed assets over the number of
employees.

119



Table A.1.1: Panel (B): List of predictors for firms’ failures.

Variables Description

Corporate Control (G) Binary variable equal to one if a firm
belongs to a corporate group.

Consolidated Accounts (G) Binary variable equal to one if the firm
consolidates accounts of its subsidiaries.

Number of Patents (I) Portfolio of patents granted to a firm by
patent offices (Dummy Patents equal to 0
if the firm issued no patents, and 1
otherwise).

Number of Trademarks (I) Total number of trademarks issued to
the firm by national or international
trademark offices (Dummy Trademarks
equal to 0 if the firm issued no
trademarks, and 1 otherwise).

NACE rev. 2 (SE) 4-digit industry affiliation following
European classification NACE rev. 2.

NUTS 2 regions (A) Region in which the company is located.

TFP (PDT) Total factor productivity computed as in
Ackerberg, Caves, and Frazer, 2015.
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Table A.1.1: Panel (C): List of predictors for firms’ failures.

Variables Description

Interest Benchmarking (ZI) Proxy for zombies proposed by
Caballero, Hoshi, and Kashyap (2008)
and calculated as

R∗ = rst−1BSi,t−1 +⎛⎝1

5

5∑︂
j=1

rlt−j

⎞⎠BLi,t−1

+rcb5y,t ·Bondsi,t−1

where BSi,t−1 are short-term bank
loans, BLi,t−1 are long-term bank
loans, rst−1 is the average short-term
prime rate in year t, rlt−j is the average
long-term prime rate in year t, Bonds

are the total outstanding bonds, and
rcb5y,t is the minimum observed rate
on any convertible corporate bond
issued over the previous five years.

Interest Coverage Ratio (ZI) Ratio of EBIT over interest expenses.
When it is less than one for three
consecutive years and the firm is at least
ten years old, then Bank of Korea (2013),
Müge Adalet McGowan, Andrews, and
Millot (2018), and Banerjee and
Hofmann (2018) assume a firm is a
zombie.
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Table A.1.1: Panel (D): List of predictors for firms’ failures.

Variables Description

Financial Misallocation (ZI) Binary indicator adopted by Schivardi,
Sette, and Tabellini, 2021 for capturing
zombie lending, based on both

ROA =
1
3

∑︁3
t=1 EBITDAt

Total Assets
< prime

and

Leverage =
Financial Debt

Total Assets
> L̃

where prime is the measure of the cost
of capital for firms with a Z-score equal
to 1 or 2, and where L̃ is the median
value of leverage in the current year for
firms that exited in the following two
years.

Negative Value Added (ZI) Binary variable to identify zombie firms
(Müge Adalet McGowan, Andrews, and
Millot, 2018), equal to one when the
value added is negative, i.e., when the
value of sold output is less than
purchases of intermediate inputs.

Profitability (ZI) Ratio of EBITDA over total assets,
adopted by Schivardi, Sette, and
Tabellini (2021) as a control for zombie
lending.

Financial Constraints (FC) Proxy of financial constraints as in
Nickell and Nicolitsas, 1999, calculated
as the ratio between interest payments
and cash flow.
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Table A.1.1: Panel (E): List of predictors for firms’ failures.

Variables Description

Size-Age (FC) Synthetic indicator proposed by
Hadlock and Pierce, 2010:

−0.737 log(Total Assets) +

0.043 log(Total Assets)2 −

0.040Age

Financial Sustainability (FC) It is a ratio calculated as Financial
Expenses over Operating Revenues.

Capital Adequacy Ratio (FC) Ratio of shareholders’ funds over short
and log term debt.

Liquidity Ratio (FA) Ratio of current assets (net of stocks)
over current liabilities.

Solvency Ratio (FA) Ratio of shareholders’ funds over
current and non-current liabilities.

Liquidity Returns (FA) Ratio of cash flow over total assets.

Tax and Pension Payables (FA) Ratio of the sum of tax and pension
payables over total assets.
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Table A.1.2: Missing predictors and firms’ failures - Chi-square tests

Firm’s failure
0 1 Test Statistic

N = 287587 N = 17319

Interest Benchmarking : 0 38% (110524) 61% (10530) χ2
1=3414.25, P<0.001

Interest Benchmarking : 1 62% (177063) 39% (6789)

Interest Coverage Ratio : 0 37% (105907) 49% (8422) χ2
1=970.93, P<0.001

Interest Coverage Ratio : 1 63% (181680) 51% (8897)

Negative value added : 0 34% ( 98014) 63% (10915) χ2
1=5958.81, P<0.001

Negative value added : 1 66% (189573) 37% (6404)

Financial Constraint : 0 37% (105904) 49% (8419) χ2
1=968.27, P<0.001

Financial Constraint : 1 63% (181683) 51% (8900)

Financial Misallocation : 0 39% (112560) 54% (9276) χ2
1=1415.82, P<0.001

Financial Misallocation : 1 61% (175027) 46% (8043)

Total Factor Productivity : 0 36% (104345) 38% (6600) χ2
1=23.52, P<0.001

Total Factor Productivity : 1 64% (183242) 62% (10719)

Solvency Ratio : 0 41% (118851) 63% (10897) χ2
1=3115.5, P<0.001

Solvency Ratio : 1 59% (168736) 37% (6422)

Liquidity Ratio : 0 42% (119357) 72% (12543) χ2
1=6362.72, P<0.001

Liquidity Ratio : 1 58% (168230) 28% (4776)

Size-Age : 0 42% (120260) 75% (12989) χ2
1=7310.19, P<0.001

Size-Age : 1 58% (167327) 25% (4330)

Liquidity Returns : 0 39% (112561) 54% (9277) χ2
1=1416.88, P<0.001

Liquidity Returns : 1 61% (175026) 46% (8042)

Labour Productivity : 0 34% ( 97253) 36% (6221) χ2
1=32.23, P<0.001

Labour Productivity : 1 66% (190334) 64% (11098)

Profitability : 0 37% (105907) 49% (8422) χ2
1=970.93, P<0.001

Profitability : 1 63% (181680) 51% (8897)

Financial Sustainability : 0 41% (117294) 64% (11119) χ2
1=3673.94, P<0.001

Financial Sustainability : 1 59% (170293) 36% (6200)

Capital Intensity : 0 36% (104122) 42% (7325) χ2
1=261.17, P<0.001

Capital Intensity : 1 64% (183465) 58% (9994)

Note: Chi-square tests for the null hypothesis that missing predictors do not correlate
with the event of failure. Number of observations in parentheses.
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Table A.1.3: Zombies, geography and selected financial indicators

Interest payments Value generation
Region NUTS 2 Common support Zombies ICR< 1 Common support Zombies Value added< 0

Abruzzo ITF1 0.16 0.48 0.36 0.15 0.57 0.27
Basilicata ITF5 0.19 0.53 0.29 0.12 0.66 0.22
Calabria ITF6 0.20 0.50 0.30 0.13 0.64 0.23
Campania ITF3 0.16 0.57 0.27 0.12 0.62 0.25
Emilia-Romagna ITH5 0.14 0.29 0.57 0.14 0.46 0.39
Friuli-Venezia Giulia ITH4 0.15 0.26 0.59 0.14 0.49 0.37
Lazio ITI4 0.15 0.55 0.31 0.13 0.62 0.25
Liguria ITC3 0.20 0.37 0.43 0.14 0.54 0.32
Lombardia ITC4 0.15 0.28 0.57 0.14 0.48 0.38
Marche ITI3 0.17 0.41 0.42 0.16 0.53 0.31
Molise ITF2 0.13 0.46 0.41 0.15 0.57 0.29
Piemonte ITC1 0.15 0.29 0.56 0.15 0.46 0.39
Puglia ITF4 0.19 0.49 0.33 0.15 0.58 0.26
Sardegna ITG2 0.17 0.30 0.52 0.15 0.54 0.31
Sicilia ITG1 0.18 0.41 0.41 0.14 0.53 0.33
Trentino-Alto Adige ITH1/2 0.18 0.46 0.36 0.17 0.53 0.30
Toscana ITI1 0.16 0.25 0.59 0.12 0.42 0.46
Umbria ITI2 0.21 0.36 0.43 0.17 0.46 0.37
Valle d’Aosta ITC2 0.06 0.28 0.66 0.14 0.45 0.41
Veneto ITH3 0.15 0.30 0.54 0.15 0.45 0.40

Num. obs. 30,380 24,351

Notes: We report the proportions of zombies against firms with ICR lower than 1
and against firms with negative value added for each NUTS 2-digit region in Italy.
Common support indicates the overlap between zombie firms and the firms that have
problems with interest payments (ICR < 1) and have a negative value added, re-
spectively.

125



Table A.1.4: Zombies, industries and viability indicators
Interest payments Value generation

Manufacturing of NACE Common support Zombies ICR< 1 Common support Zombies Value added< 0

Food products 10 0.18 0.31 0.50 0.15 0.45 0.40
Beverages 11 0.33 0.33 0.33 0.12 0.50 0.38
Tobacco products 12 0.19 0.35 0.46 0.16 0.55 0.29
Textiles 13 0.19 0.49 0.31 0.17 0.51 0.32
Wearing apparel 14 0.15 0.53 0.32 0.13 0.55 0.32
Leather 15 0.17 0.34 0.49 0.17 0.49 0.34
Wood and cork products 16 0.12 0.31 0.57 0.13 0.56 0.31
Paper products 17 0.15 0.32 0.53 0.16 0.54 0.30
Printing and reproduction of recorded media 18 0.14 0.34 0.52 0.11 0.44 0.45
Coke and refined petroleum products 19 0.13 0.34 0.53 0.14 0.46 0.41
Chemicals and chemical products 20 0.19 0.36 0.45 0.10 0.49 0.41
Pharmaceutical products and preparations 21 0.12 0.30 0.57 0.13 0.53 0.34
Rubber and plastic products 22 0.18 0.31 0.52 0.17 0.51 0.32
Other non metallic mineral products 23 0.12 0.26 0.61 0.12 0.49 0.39
Basic metals 24 0.14 0.39 0.46 0.14 0.59 0.27
Fabricated metal products 25 0.16 0.41 0.44 0.11 0.53 0.35
Computer, electronic and optical products 26 0.16 0.39 0.44 0.14 0.54 0.32
Electrical equipment 27 0.15 0.37 0.48 0.14 0.52 0.34
Machinery and equipment n.e.c. 28 0.17 0.33 0.50 0.16 0.50 0.35
Motor vehicle, trailers and semi-trailers 29 0.18 0.45 0.37 0.18 0.49 0.32
Other transport equipment 30 0.19 0.35 0.46 0.19 0.52 0.30
Forniture 31 0.19 0.40 0.41 0.16 0.51 0.33
Other manufacturing 32 0.12 0.51 0.37 0.10 0.55 0.35

Num. obs. 30,380 24,351

Notes: We report for 2-digit industries (NACE Rev. 2) the shares of zombies compared
to firms with an ICR of less than 1 and compared to firms with negative value added.
The common support column contains the proportions of firms classified as zombies
by our algorithm that have either an ICR of less than 1 or negative value added.
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A.2 Additional figures

Figure A.2.1: Patterns of missingness over time across firms

Panel (A): Share of missing values out of 287,787 non-failing firms.

Panel (B): Share of missing values out of 7,221 firms in liquidation.

Panel (C): Share of missing values out of 4,718 bankruptcies and other dissolved firms.
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Figure A.2.2: Zombie firms and industries

(a) Zombies and interest payments (b) Zombies and value destruction

Notes: The rays of the radar show, at the industry level (NACE Rev. 2, 2-digit manu-
facturing codes), zombie firms against firms that report ICR of less than 1 (panel a) and
the proportion of firms reporting negative value added (panel b). The square nodes
indicate the common areas where the segments overlap. The circles represent the
fraction of zombies that we detect with XGboost. The triangles indicate the fraction of
firms identified with ICR ¡ 1 or negative value added, alternatively. Along each ray,
the values of the squares, circles, and triangles sum to 1. Panels (a) and (b) include a
total of 30,380 and 24,351 observations, respectively. See Table A.1.4 for the legend of
the NACE Rev. 2, 2-digit manufacturing codes.
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A.3 Methodologies

A.3.1 XGBoost

XGBoost is a gradient-boosting algorithm introduced by T. Chen and
Guestrin, 2016. The algorithm uses a standard boosting method where J

decision trees are sequentially created to approximate the outcome. Each
tree uses the information learned from the previous trees, and the final
model can be expressed as follows:

Yi,t =

J∑︂
j=1

Tj (Xi,t−1;Dj ,Wj) + ϵi,t−1

where Tj (Xi,t−1;Dj ,Wj) corresponds to an independent tree with struc-
ture Dj and leaf weights Wj . Note that ϵi,t−1 is typically assumed to
be zero-mean, but no probabilistic assumptions are made about it. The
model approximation is built additively, minimizing the loss function it-
eratively. The loss function includes a regularization term to penalize
the complexity of the model and avoid overfitting, and has the following
form:

L =

N∑︂
i=1

L
(︂
Ŷ i,t, Yi,t

)︂
+

J∑︂
j=1

Ω (Tj)

Ω(Tj) = γTj +
1

2
λ∥Wj∥2

where Tj and Wj represent the number and weights of the leaves of the
j-th tree, respectively, while γ and λ are regularization parameters used
to reduce complexity and avoid overfitting.

XGBoost is characterized by the fact that it includes several tools that
increase the training speed and deal with sparsity in the data (Bentéjac,
Csörgő, and Martı́nez-Muñoz, 2021). In traditional algorithms for split-
ting data, finding the best splits is quite time consuming. To be effi-
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cient, each variable is sorted and all potential splits are explored to de-
termine the optimal one. XGBoost overcomes this problem by using a
compressed column-based structure with parallel processing to avoid re-
peated sorting of the data. The algorithm for finding the best split is now
based on the percentiles of the features, so only a subset of the possible
splits is examined, which significantly increases the training speed. In
addition, XGBoost uses default directions to handle sparsity patterns. For
missing values, if a feature required for a split is missing, XGBoost as-
signs the observation to a default direction (left or right) learned from
the data. This approach is useful for handling and incorporating infor-
mation about missing values into the model.

A.3.2 BART-MIA

BART is a Bayesian sum-of-trees ensemble algorithm and its approach is
based on a fully Bayesian probability model (Kapelner and Bleich, 2015;
Kapelner and Bleich, 2016). The revised version of the BART model we
use for our predictions can be expressed as follows:

Yi,t =

J∑︂
j=1

Tj(Xi,t−1;Dj ,Mj) + ϵi,t−1, ϵi,t−1 ∼ N (0, σ2), (A.1)

where each Tj(Xi,t−1;Dj ,Mj) denotes a unique binary tree. Each Tj is
a function that sorts each unit into one of the sets of mj terminal nodes
associated with mean parameters Mj{µ1, ..., µmj

} based on a set of deci-
sion rules, Dj . The error terms ϵi,t−1 are usually assumed to be indepen-
dent and identically normally distributed if the outcome is continuous
(Chipman, George, McCulloch, et al., 2010). The Bayesian component of
the algorithm is incorporated in a set of three different priors on: (i) the
structure of the trees, Dj (this prior aims to limit the complexity of each
tree T and serves as a regularization tool); (ii) the distribution of the out-
come in the nodes, Mj (this prior aims to reduce the node predictions to
the center of the distribution of the response variable Y ); (iii) the error
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variance σ2 (which bounds away σ2 from very small values that would
cause the algorithm to overfit the training data)1. The goal of these priors
is to regularize the algorithm and prevent individual trees from dominat-
ing the overall fit of the model. This property is considered important to
balance the tendency of tree-based methods to overfit the training data
(Kapelner and Bleich, 2016).

BART-MIA extends the original BART algorithm by including addi-
tional information from patterns of missing values (Kapelner and Bleich,
2015). This is done by introducing the possibility to share on a feature
for missing values in each binary tree component of the BART algorithm,
T . Figure A.3.1 illustrates the intuition behind the MIA procedure in a
simple case with only one variable (Control). In the presence of missing
values in this variable, the algorithm creates a new feature (Missing) –
namely, an indicator variable that takes the value 1 when the ith obser-
vation for the variable is missing – and uses it to perform the data split.
As shown in A.3.1, the algorithm in this case has three possible splits. As
in the usual CART procedure, the algorithm chooses the one that mini-
mizes the prediction error in the generated leaves l1 and l2.

As shown by Twala, Jones, and Hand (2008), this splitting rule allows
trees to better capture the direct influence of missing values as another
predictor of the response variable. Furthermore, after a theoretical and
empirical comparison of different missing value strategies in trees, Josse
et al., 2019 show that MIA can handle both non-informative and infor-
mative missing values.

1The choice of priors and the derivation of posterior distributions are discussed in de-
tail in Chipman, George, McCulloch, et al., 2010 and Kapelner and Bleich, 2016. Namely: (i)
the prior on the probability that a node splits at depth k is β(1k)−η , where β ∈ (0, 1), η ∈
[0,∞) (these hyperparameters are generally chosen to be η2 and β0.95); (ii) the prior on
the probability distribution in the nodes is a normal distribution with zero mean: N (0, σ2

q )
where σqσ0/

√
q and σ0 can be used to calibrate the plausible range of the regression func-

tion; (iii) the prior on the error variance is σ2 ∼ InvGamma(v/2, vλ/2) where λ is deter-
mined from the data such that the BART improves the RMSE of an OLS model in 90% of
cases.
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Figure A.3.1: MIA splitting rules

Total sample

µl2µl1

Missing= 1 Control= 1

Total sample

µl2µl1

Control= 0 Missing= 1

Total sample

µl2µl1

Missing= 0 Missing= 1

Notes: The three potential trees from the MIA procedure in a simple case
with only one binary variable (Control ∈ {0, 1}).
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A.4 Selection of predictors with LASSO

In our analysis, we asserted that we need as much in-sample informa-
tion as possible to reduce out-of-sample prediction errors. However, es-
pecially in small sample analyses, overfitting problems can arise as the
dimensionality of the inputs increases. The so-called curse of dimension-
ality is an obstacle when working with finite data samples and many
variables. The basic reference is the work of Bellman, 1961, who intro-
duced the notion of dimensionality reduction. Falco Joannes Bargagli-
Stoffi, Cevolani, and Gnecco, 2020 and Falco J. Bargagli-Stoffi, Cevolani,
and Gnecco, 2022 discuss the role of regularization and dimensionality
reduction in the context of machine learning. In this Appendix, we show
what happens when we sift through firm-level data and attempt to ex-
tract a set of predictors with the highest ability to detect financial distress.
The natural candidate for reducing the dimensionality of a matrix of pre-
dictors is the LOGIT-LASSO (Ahrens, Christian B Hansen, and Mark E
Schaffer, 2019), whose functional form in a panel setting is the following:

argmin
β∈Rp

1

2N

N∑︂
i=1

(︂
yi,t(x

T
i,t−1β)− log(1 + e(x

T
i,t−1β))

)︂2

subject to ∥β∥1 ≤ k.

(A.2)

where yi,t is a binary variable equal to one if a firm i failed at time t and
zero otherwise. Each xi,t−1 is a lagged predictor chosen in Rp at time
t− 1, while ∥β∥1 =

∑︁p
j1 |βj |. The constraint ∥β∥1 ≤ k limits the complex-

ity of the model to avoid overfitting, and k is chosen following Ahrens,
Christian B Hansen, and Mark E Schaffer (2019) as the value that maxi-
mizes the Extended Bayesian Information Criteria (J. Chen and Z. Chen,
2008). We use the rigorous penalization introduced by Belloni, Cher-
nozhukov, C. Hansen, et al., 2016 to account for the possible presence
of heteroskedastic, non-Gaussian, and cluster-dependent errors. Table
A.4.1 shows the ten highest ranked predictors.
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Although the number of predictors varies over time, up to a max-
imum of twenty-one characteristics in 2015, we find a core set of fre-
quently selected predictors. This stable set includes indicators of finan-
cial distress (Liquidity Returns, ICR, Interest Benchmark, Financial Constraint)
and indicators of firms’ core economic activities (Negative value added,
TFP, Size-Age). Apparently, firms controlled by parent companies (Cor-
porate Control) are less likely to fail in each period, i.e. the predictor en-
ters the algorithm with a negative coefficient2. The same is true for the
Dummy Trademarks and the Dummy Patents since it makes sense that in-
tangible assets reduce the probability of exit.

Some of the top predictors we showed were used to measure either
financial distress or zombie lending. However, the rankings change over
time, and we cannot discern a meaningful pattern in these changes. In
this context, we cannot rely on a single indicator (or set of them) to derive
predictions about defaults. If we did, we would have a higher rate of false
positives (when our forecasts suggest that a firm is at risk of failure, but
it is not) and a higher rate of false negatives (when forecasts incorrectly
suggest that a firm in trouble deserves a loan).

Indeed, at this stage, we cannot rule out the possibility that a different
ranking over time is due to better use of the newly acquired information
from the in-sample information after new failures have been observed. It
could also be that a change in rankings reflects a change in the business
environment in which firms operate. We presume applications to dif-
ferent aggregates (countries, regions, industries) may result in different
rankings. We conclude that it is better to keep the full battery of predic-
tors, provided there is no dimensionality problem in the predictors when
we can train with a large number of observed firm-level outcomes.

2For an in-depth analysis of the impact of corporate control on the performance of
Italian firms, see Riccaboni, X. Wang, and Z. Zhu (2021).

135



Table A.4.1: Top 10 predictors for firms’ failures - Results from a rigorous LOGIT-LASSO

Rank 2017 2016 2015 2014 2013 2012 2011 2010 2009

1 Liquidity Returns Negative value added Negative value added Negative value added Liquidity Returns Negative value-added Negative value added Negative value added Negative value added

2 Negative value added Financial Constraint Corporate Control Liquidity Returns Negative value added Profitability Liquidity Returns Liquidity Returns Liquidity Returns

3 Corporate Control ICR Financial Constraint Profitability Profitability Financial Constraint Financial Constraint Profitability Financial Constraint

4 Financial constraint Corporate Control ICR Solvency Ratio Solvency Ratio Corporate Control Corporate Control Financial Constraint Profitability

5 ICR Solvency Ratio Profitability Financial Constraint Corporate Control Solvency Ratio Solvency Ratio Corporate Control Corporate Control

6 Profitability Size-Age Solvency Ratio Corporate Control Financial Constraint ICR Size-age Solvency Ratio Solvency Ratio

7 Solvency Ratio Liquidity Ratio Size-age ICR Size-Age Liquidity Returns ICR Area ICR

8 Size-age Liquidity Returns Liquidity Ratio Size-age ICR Size-age Misallocated fixed Dummy Trademarks Dummy Trademarks

9 Liquidity Ratio Capital Intensity Area TFP Dummy Patents Dummy Patents Dummy Trademarks ICR Size-age

10 Capital Intensity TFP Capital Intensity Liquidity Ratio TFP Dummy Trademarks Dummy Patents Dummy Patents Capital Intensity

Rankings are determined after conducting a rigorous LOGIT-LASSO (Ahrens, Christian B. Hansen, and Mark E. Schaffer, 2020;
Belloni, Chernozhukov, and Wei, 2016) each year on the entire battery of predictors described in Figure A.1.1. Only the first ten
selections are reported. The procedure selects a different number of predictors each year, up to a maximum of 21.
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A.5 Imputation of missing predictors

In this appendix, we show the performance of machine learning algo-
rithms when we impute the missing values of predictors using two pos-
sibilities known in the literature: out-of-range and median imputation.
In this way, we can use all the observations available in the dataset. We
first conduct the analysis keeping all categories of firm failures and then
exclude the cases of liquidations since the latter can sometimes have rea-
sons other than financial distress. The training and test datasets include
238,148 and 59,537 observations, respectively, in each iteration when liq-
uidations are excluded. On the other hand, the training and testing
datasets include 243,924 and 60,982 observations, respectively, when liq-
uidations are included. In Table A.5.1 we perform out-of-range imputa-
tion by imputing all missing values in the dataset with an out-of-range
value, i.e., 1020. In Table A.5.2 we perform median imputation by imput-
ing the missing values of a variable q with its median q.5.
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Table A.5.1: Performance of the model with out-of-range imputed data

(a) Liquidations excluded

Method ROC PR F1-Score BACC R2 Time

Logit 0.9657 0.6689 0.1270 0.7588 0.4558 56.49
Ctree 0.9712 0.6999 0.1323 0.7686 0.4840 1628.08
Random Forest 0.9343 0.7000 0.2011 0.8371 0.4999 608.33
XGBoost 0.9785 0.7592 0.1270 0.7586 0.5427 40.28
BART 0.9770 0.7482 0.1296 0.7635 0.5327 2736.74
Super Learner 0.9788 0.7574 0.1289 0.7626 0.5454 11765.18

(b) Liquidations included

Method AUC PR F1-Score BACC R2 Time

Logit 0.9496 0.6482 0.2039 0.7647 0.4173 76.89
Ctree 0.9652 0.7230 0.2264 0.7919 0.48907 2835.23
Random Forest 0.9410 0.7313 0.2680 0.8214 0.5130 695.48
XGBoost 0.9733 0.7815 0.2039 0.7648 0.5525 45.29
BART 0.9719 0.7718 0.2048 0.7659 0.5412 4056.36
Super Learner 0.9748 0.7896 0.2039 0.7649 0.5620 13992.57

Notes: All algorithms were trained with five-fold cross-validation. All met-
rics correspond to the five-fold average. Time indicates the average seconds
taken to train the model in each fold.
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Table A.5.2: Performance of models with column-wise median imputed
data

(a) Liquidations excluded

Method ROC PR F1-Score BACC R2 Time

Logit 0.8825 0.2690 0.1465 0.7540 0.1495 50.77
Ctree 0.9270 0.4017 0.1492 0.7962 0.2364 1975.38
Random Forest 0.7767 0.4337 0.1487 0.7060 0.2667 855.37
XGBoost 0.9584 0.5246 0.1271 0.7579 0.3281 39.51
BART 0.9485 0.4936 0.1328 0.7688 0.3014 4345.19
Super Learner 0.9595 0.5393 0.1269 0.7576 0.3389 13927.68

(b) Liquidations included

Method ROC PR F1-Score BACC R2 Time

Logit 0.8907 0.3966 0.2282 0.7667 0.2302 60.44
Ctree 0.9237 0.5059 0.2187 0.7808 0.3082 2429.78
Random Forest 0.8281 0.5453 0.2227 0.7304 0.3420 1167.71
XGBoost 0.9536 0.6175 0.2037 0.7636 0.3942 40.93
BART 0.9440 0.5890 0.2063 0.7663 0.3696 4702.54
Super Learner 0.9551 0.6295 0.2043 0.7643 0.4051 15218.50

Notes: All algorithms are trained with five-fold cross-validation. All metrics
correspond to the five-fold average. The time indicates the average seconds
taken to train the model in each fold.
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Appendix B

Appendix to Chapter 2

B.0.1 Predictive performance compared to OLS

Table B.0.1 compares our primary model, 2S-XGB, with two traditional
econometric benchmark models: Ordinary Least Squares (OLS) and lo-
gistic regression (Logit). Since both OLS and Logit cannot handle miss-
ing values, the subsequent horse-race analysis is conducted using a more
limited set of predictors. Specifically, worker and DGA variables were
excluded due to a high proportion of missing values caused by incom-
plete matching of worker-related information across many startups. Ad-
ditionally, the variable importance analysis in the main text revealed
their low predictive power, further justifying their exclusion.

The horse race shows that the 2S-XGB method consistently predicts
economic success better than either Logit or OLS, regardless of the age of
the firm. The improvement is most visible when the R-squared is used
to evaluate predictive performance and when firms are young. For in-
stance, the R-Squared of 2S-XGB is about 52 per cent when economic
success at age two is predicted from initial life conditions, an improve-
ment in the predictive performance of about 93 per cent compared to
Logit (R-Squared = 0.27) and of about 126 per cent compared to OLS
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(R-Squared = 0.23). At age ten, the R-Squared of the 2S-XGB model is
21 percent, an improvement of 17 percent compared to the Logit model
(R-Squared = 0.18) and of about 31 percent compared to the OLS model
(R-Squared = 0.16).

In terms of the AUC-ROC, all models predict economic success rea-
sonably well to very well, depending on the age of the firm. In particular,
the AUC of the 2S-XGB model is higher yet similar to that of the Logit
model for all ages. The AUC of the OLS model is always below that of
the 2S-XGB and Logit models, indicating that these models best separate
firms likely to meet the threshold from firms that do not.

Table B.0.1: Predicting economics success: Models horse-race

Model Gross train Net train Gross test Net test AUC-ROC AUC-PR R-Squared Age of success Age features

2S-XGB 84,919 82,591 198,086 192,848 .8997 .9234 .5234 2 1
Logit 84,919 82,591 198,086 192,848 .8108 .8674 .2730 2 1
OLS 84,919 82,591 198,086 192,848 .7955 .8591 .2282 2 1

2S-XGB 84,919 33,638 198,086 78,337 .8080 .9084 .2794 6 1
Logit 84,919 33,638 198,086 78,337 .7711 .8978 .1868 6 1
OLS 84,919 33,638 198,086 78,337 .7594 .8927 .1603 6 1

2S-XGB 84,919 15,073 198,086 35,075 .7796 .9164 .2146 10 1
Logit 84,919 15,073 198,086 35,075 .7730 .9180 .1807 10 1
OLS 84,919 15,073 198,086 35,075 .7593 .9124 .1561 10 1

One reason to use 2S-XGB is its ability to exploit interactions and non-
linearities. To see how these models differ in the way they use features,
we plot the marginal effect of turnover on the probability of being eco-
nomically successful at age two (Figure B.0.1). It shows that the marginal
effect of turnover for Logit and OLS is constant and near zero. Yet for
Logit, we see that the marginal effect of turnover on the prediction is
not constant, but depends on the value of the feature. Consequently, the
marginal effect of a 1000 euro increase in turnover in the 2S-XGB model is
a concave step function with a peak around 102.2 ≈ 150, which is close to
the turnover cutoff used to define economic success. The model assigns a
high marginal effect around this cutoff, but when turnover is sufficiently
below or above this threshold, marginal effects are smaller. As all models
are trained on the same set of observations, this illustrates the ability of
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2S-XGB to exploit non-linearities.

Figure B.0.1: Models comparison: Marginal effect of turnover

B.1 Interpretable machine learning methods

We use Shapley values and ALE plots to interpret our models. Here we
describe the details of these methods.

B.1.1 Shapley values

As machine learning models become more sophisticated and opaque—often
referred to as ”black boxes”—it is crucial to ensure that these models are
not only accurate but also interpretable and transparent. Shapley val-
ues, originally rooted in cooperative game theory, offer a powerful and
fair framework for attributing a model’s output to its individual features.
These values account for the marginal contribution of each feature across
all possible combinations, ensuring that the importance of a feature is
evaluated within the context of all others. This makes Shapley values
particularly effective for explaining the predictions of complex models,
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as they satisfy key properties such as efficiency, symmetry, and additiv-
ity (Rozemberczki et al., 2022). We estimate Shapley values for the test-
ing firms using the ‘fastshap’ package, which efficiently approximates
these values. The library employs sampling techniques and algorithmic
optimizations to evaluate only a subset of all possible combinations of
variables, making it feasible to apply Shapley values to large datasets
and complex models without prohibitive computational costs. This ap-
proach enables us to harness the theoretical strengths of Shapley values
while overcoming computational challenges.

B.1.2 ALE plots

We use Accumulated Local Effects plots (ALE plots, see Apley and J.
Zhu, 2020) to visualize the local impact of a change in a specific vari-
able on the predicted value. ALE plots segment the support of x into
numerous narrow and non-overlapping intervals. The derivative of the
dependent variable y with respect to x within each interval is estimated
by the mean of the difference in predicted values when x takes on the
value at the start and at the end of the interval. This approach of using
the predicted values’ differences avoids the necessity of directly comput-
ing the partial derivative, making it applicable to scenarios where the
partial derivative is not defined. The mean differences (per interval) are
then aggregated to derive the ALE, representing the change in y when x

transitions from its minimum to the maximum value. To center the ALE
of x, the average ALE across all x intervals is subtracted. We focus on
the local effects derived from the ALE plots. In particular, we apply the
following steps:

1. Make k = 1, . . . ,K non-overlapping intervals of variable x, where
the length of each interval equals (xmax − xmin)/K. We use the
default value K = 40.

2. Compute the local effects: For each observation i in each interval k:
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(a) Replace xl by the lower bound of the interval and predict ŷk,li .

(b) Replace xi by the upper bound of the interval and predict ŷk,ui .

(c) Compute the average difference in prediction in each interval

∆ŷ̄k =
1

Nk

∑︂
i∈Ik

(︂
ŷk,ui − ŷk,li

)︂

where Nk is the number of observations in interval k.

3. For Local Effects (LE) plots:

(a) Plot ∆ŷ̄k against interval k.

4. For ALE plots:

(a) Rescale ∆ŷ̄k by subtracting the average difference over all in-
tervals ∆ŷ̄k

∗
= ∆ŷ̄k −∆ŷ̄.

(b) Plot ∆ŷ̄k
∗

against k.

Consequently, the LE plot for a fitted linear model will have a constant
slope, while a variable that is not selected by a LASSO estimator will
have a zero slope. The ALE plot for a feature from a linear model and
the ALE plot for a feature that was not selected by a LASSO estimator
will have a constant slope equal to zero.
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B.2 Additional tables

B.2.1 Descriptives

Table B.2.1: Entry dynamics

Year New startups Incumbents Entry rate

2006 19,507 133,350 14.63
2007 20,277 146,291 13.86
2008 24,093 154,483 15.60
2009 17,139 168,130 10.19
2010 19,329 166,349 11.62
2011 18,623 175,431 10.62
2012 17,539 179,586 9.77
2013 17,670 181,562 9.73
2014 18,523 187,210 9.89
2015 21,185 191,287 11.07
2016 19,193 199,804 9.61
2017 19,489 205,640 9.48
2018 19,378 211,748 9.15
2019 21,392 217,156 9.85
2020 10,149 230,616 4.40
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Table B.2.2: Startups’ workforce in the first year
Variable Mean Median SD Mean 1st percentile Mean 99th percentile Unit
Age of the workforce 40.24 39.08 10.57 19.16 70.56 Age in years
Wages -256.2 -86.4 626.93 -5187.77 0 Thousand €
Hours worked 1346.75 1373.8 626.65 57.12 2246.14 Count
Number of employees 12.46 2 91.32 1 461.27 Count
DGAs’ age 44.98 44 10.27 22.34 73.39 Age in years
DGAs’ assets 51815.13 581.43 2199250.02 -34.15 5078404.6 Thousand €

Notes: summary statistics of workforce-related variables for startups during their first
year. The features are based on all employment relationships within the firm accord-
ing to SPolis data.

Table B.2.3: Startups’ workforce in the fifth year
Variable Mean Median SD Mean 1st percentile Mean 99th percentile Unit
Age of the workforce 42.03 41 10.4 20.09 71.45 Age in years
Wages -397.63 -137.32 823.21 -6241.91 0 Thousand €
Hours worked 1411.82 1442.62 566.59 86.24 2301.94 Count
Number of employees 18.67 3 148.56 1 757.49 Count
DGAs’ age 47.89 47 9.39 26.15 74.23 Age in years
DGA’s assets 17148.77 812.24 1241689.75 -18.24 1591262.26 Thousand €

Notes: summary statistics of workforce-related variables for startups that successfully
survived for 5 consecutive years. The features are based on all employment relation-
ships within the firm according to SPolis data.
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Table B.2.4: All firms characteristics

(a) Firms in their first year

Variable Mean Median SD Mean 1st percentile Mean 99th percentile Unit

Total balance sheet 1344.98 404.74 2893.56 6.61 21013.17 Thousand €
Intangible assets 15.33 0 66.61 0 491.09 Thousand €
Tangible assets 305.22 21.24 920.32 0 6930.16 Thousand €
Liquid assets 199.19 39.92 495.48 -1.38 3771.14 Thousand €
Equity 453.4 87.44 1389.61 -1527.45 10269.78 Thousand €
Long term debt 293.99 0 905.24 0 6699.2 Thousand €
Short term debt 298.81 72.21 745.16 0 5694.48 Thousand €
Turnover 2755.92 503.91 7288.73 8.28 56669.56 Thousand €
Result before taxes 108.56 23.11 380.29 -730.81 2722.23 Thousand €
Taxes -24.21 -1.36 69.19 -534.01 19 Thousand €
Value added 491.11 162.83 1042.29 -82.64 7760.9 Thousand €
EBITDA -10.52 0 278.07 -1421.08 1413.23 Thousand €
Dividends 23.04 0 114.79 0 955.17 Thousand €
Labor productivity 65.43 35.5 124.94 -29.65 950.46 Thousand €
ROA 0.02 0.05 0.4 -1.95 0.9 Ratio
Solvency ratio 0.53 0.06 2.42 -6.92 15.24 Ratio
Debt ratio 9.65 2.36 26.05 0.02 192.94 Ratio
Age 1.51 1.5 0.23 1.08 2 Number of years
Entry year 2010.28 2009 5.05 2005 2020 Year
Year 2011.28 2010 5.05 2006 2021 Year

(b) Firms in their fifth year

Variable Mean Median SD Mean 1st percentile Mean 99th percentile Unit
Total balance sheet 1854.51 693.62 3379.34 10.06 21647.09 Thousand €
Intangible assets 16.36 0 71.96 0 564.27 Thousand €
Tangible assets 431.66 41.95 1100.19 0 7408.13 Thousand €
Liquid assets 290.25 76.49 606.5 -0.18 4073.45 Thousand €
Equity 732.65 225.13 1698.32 -1597.41 10818.79 Thousand €
Long term debt 377.57 0 1042.2 0 7045.67 Thousand €
Short term debt 374.95 92.7 859.33 0.08 5947.16 Thousand €
Turnover 3724.29 829.47 8550.2 9.88 58478.9 Thousand €
Result before taxes 137.47 34.48 432.62 -815.01 2696.6 Thousand €
Taxes -24.13 -2.65 71.28 -468.58 143.49 Thousand €
Value added 683.16 247.62 1268.61 -79.31 8327.71 Thousand €
EBITDA -4.55 0 329.54 -1558.78 1446.66 Thousand €
Dividends 39.86 0 153.28 0 1130.41 Thousand €
Labor productivity 59.94 40.43 79.12 -29.09 565.65 Thousand €
ROA 0.03 0.05 0.31 -1.79 0.87 Ratio
Solvency ratio 0.61 0.06 2.61 -7.25 15.43 Ratio
Debt ratio 11.97 3.04 28.13 0.03 200.4 Ratio
Age 5.51 5.5 0.22 5.08 6 Number of years
Entry year 2008.51 2007 3.82 2005 2016 Year
Year 2013.51 2012 3.82 2010 2021 Year

Notes: Table B.2.4a reports summary statistics for all 416,455 firms available in the
sample during their first year of activity. Additionally, Table B.2.4b provides sum-
mary statistics for all firms that successfully survived for 5 consecutive years, com-
prising 240,524 out of the initial 416,455.
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Table B.2.5: Firms’ workforce in the first year
Variable Mean Median SD Mean 1st percentile Mean 99th percentile Unit
Age of the workforce 40.63 39.5 10.34 19.61 70.6 Age in years
Wages -346.2 -113.62 744.02 -5610.65 0 Thousand €
Hours worked 1384.21 1420.76 601.48 67.15 2473.85 Count
Number of employees 13.32 3 83.7 1 423.99 Count
DGAs’ age 46.21 46 10.08 23.18 73.5 Age in years
DGAs’ assets 82667.92 646.22 2804835.1 -27.1 8156989.97 Thousand €

Notes: summary statistics of workforce-related variables for all firms during their
first year. The features are based on all employment relationships within the firm
according to SPolis data.

Table B.2.6: Firms’ workforce in their fifth year
Variable Mean Median SD Mean 1st percentile Mean 99th percentile Unit
Age of the workforce 42.27 41.26 10.19 20.31 71.39 Age in years
Wages -493.72 -169.45 932.39 -6207.79 0 Thousand €
Hours worked 1420.82 1458.51 542.62 99.7 2301.68 Count
Number of employees 18.78 4 121.48 1 613.4 Count
DGAs’ age 48.83 48 9.36 26.95 74.32 Age in years
DGAs’ assets 26003.52 854.79 1523747.62 -14.18 2468869.49 Thousand €

Notes: summary statistics of workforce-related variables for firms that successfully
survived for 5 consecutive years. The features are based on all employment relation-
ships within the firm according to SPolis data.
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B.3 Sector-specific cutoffs

α-quantile
Sector Num. obs. 0.05 0.10 0.20 0.40 0.60 0.80 0.90 0.95
Public administration 56 120 280 1,090 4,000 10,750 23,810 46,860 62,400
Consultancy and research 68,174 20 40 80 180 340 910 2,110 4,160
Construction 19,654 60 120 300 990 2,330 5,690 11,660 22,080
Culture, sports and recreation 4,728 30 60 150 390 850 1,990 3,870 7,280
Healthcare and welfare services 13,415 80 160 240 340 520 1,410 2,670 4,660
Wholesale and retail trade 50,525 50 110 300 1,150 3,000 8,540 19,000 35,140
Manufacturing 16,837 60 150 400 1,340 3,190 8,660 18,340 33,960
ICT 19,315 20 50 120 270 640 2,040 4,620 9,300
Agriculture, forestry and fishing 5,873 50 100 240 1,060 2,750 6,530 11,650 18,750
Accommodation and food service activities 8,445 90 190 410 970 1,740 3,220 5,250 8,680
Education 3,363 20 50 100 250 590 1,590 3,540 6,190
Other services 1,969 40 90 170 440 940 2,280 4,310 8,050
Electricity, natural gas, steam and cooled air 582 30 60 130 340 990 3,240 6,520 13,290
Rental of movables goods and other business services 13,864 40 80 180 550 1,570 4,610 10,380 19,470
Transport and storage 7,879 60 130 320 1,280 3,110 8,930 19,030 33,160
Extraction and distribution of water 725 60 140 360 1,440 3,440 9,790 22,510 43,310
Mining 145 30 70 160 460 930 4,430 7,840 23,550

Notes: The table provides the α-quantiles of the 2019 turnover distribution
for each sector (in thousand euros) on the whole sample, along with the
number of observations per sector.
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B.4 Features

Table B.4.1: Variables and description

Variables Description

Total balance sheet, Intangible assets,
Tangible assets, Participations, Long
term claims, Short term claims, Stocks,
Trade receivables, Trade credit, Liquid
assets, Equity, Third parties, Shared third
parties, Equalization, Provisions, Long
term debt, Short term debt, Turnover,
Costs revenue, Costs wages, Results
from participations, Interest income, In-
terest payments, Other financial results,
Extra benefits, Extra costs, Balance extra
costs benefits, Result before taxes, Taxes,
Net result, Dividends, Value added,
EBITDA.

Original accounts from balance sheet in
thousand euros. Participations are rep-
resented by three variables: one cap-
tures the total participations of the firm,
while the other two distinguish between
participations involving Dutch firms and
those involving non-Dutch firms.

Labor productivity Value added
Hours worked

Leverage Long and short term debts
Total balance sheet

Quick ratio Liquid assets
Short term debt

Debt ratio Total balance sheet
Long and short term debts

Debt-to-equity ratio Long and short term debts
Equity

ROA Net results
Total balance sheet

Solvency ratio Net result+Depreciation
Long and short term debts

Altman Z-Score 6.56∗ Total balance sheet - long and short term debts
Total balance sheet +

3.26 ∗ Equity
Total balance sheet +

6.72 ∗ EBITDA+Depreciation
Total balance sheet +

1.05 ∗ Equity
Long and short term debts

Financial distress 1 if EBITDA+Depreciation
Interest payments < 1, 0 otherwise
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Variables Description

Age, NUTS 3 Region, Entry date index,
Exit rate fixed effect

Demographic variables. The exit rate
fixed effect is a control variable that ac-
counts for the exit rate by year and NUTS
3 region.

Number of workers, Individual hours
worked, Individual hours paid, Full-
time days worked Temporary contracts,
Gender, Individual wage, Workers’ age,
Share of workers classified as DGAS,
First job type, Workers’ migration back-
ground, Assets, Savings, Stocks (own
firm), Educational level.

Spolis variables based on the entire
workforce matched for the firm. Each
variable represents the mean across the
workers of the firm for a specific year.
Specifically:
- Gender: share of male workers
- Workers’ migration background: clas-
sified as none, parents from abroad, or
grandparents from abroad
- Assets, savings, and stocks: average
values across the matched workers of the
firm
- Educational level: classified as low,
medium, or high.

Number of DGAs, Individual hours
worked, Individual hours paid, Full-
time days worked, Temporary contracts,
Gender, Individual wage, DGAs’ Age,
Job type, Country of origin, Assets, Sav-
ings, Stocks (own firm), Educational
level.

Spolis variables are based on only DGAs
matched for the firm. Each variable rep-
resents the average (mean) across the
DGAs of the firm for a specific year. The
variables include:
- Gender: Share of male DGAs.
- Country of origin: Dutch Antilles and
Aruba, Morocco, The Netherlands, other
Western countries, other non-Western
countries.
- Assets, savings, and stocks: average
values across the matched DGAs.
- Educational level: classified as low,
medium, or high.
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B.4.1 Survival models

Table B.4.2: Early-life survival prediction
Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age to survive Age features

56,697 56,697 28,348 28,348 198,441 198,441 .7612 .9364 .1434 2 1

56,697 24,422 28,348 12,249 198,441 85,366 .5829 .9374 .0056 6 1

56,697 11,416 28,348 5,718 198,441 39,960 .5535 .9495 .0016 10 1

Table B.4.3: Survival prediction models at age 3
Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age to survive Age features

36,875 29,651 18,331 14,799 128,408 103,222 .6630 .9457 .0303 6 3

36,875 11,416 18,331 5,718 128,408 39,960 .5530 .9485 .0024 10 3
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B.4.2 Economic success with pooled cutoffs

Table B.4.4: Early-life economic success prediction models (pooled cutoffs)

(a) α = 0.05, qα = 30, 000

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 55,173 28,348 27,543 198,441 193,200 .8278 .9373 .3234 2 1

56,697 22,444 28,348 11,238 198,441 78,472 .6979 .9350 .1278 6 1

56,697 10,032 28,348 5,063 198,441 35,153 .6731 .9420 .1336 10 1

(a) α = 0.10, qα = 70, 000

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 55,173 28,348 27,543 198,441 193,200 .8644 .9487 .4244 2 1

56,697 22,444 28,348 11,238 198,441 78,472 .7511 .9198 .1939 6 1

56,697 10,032 28,348 5,063 198,441 35,153 .7355 .9293 .1745 10 1

(a) α = 0.20, qα = 150, 000

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 55,173 28,348 27,543 198,441 193,200 .9017 .9510 .5257 2 1

56,697 22,444 28,348 11,238 198,441 78,472 .8120 .9267 .2906 6 1

56,697 10,032 28,348 5,063 198,441 35,153 .7906 .9253 .2356 10 1

(a) α = 0.40, qα = 400, 000

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 55,173 28,348 27,543 198,441 193,200 .9415 .9575 .6373 2 1

56,697 22,444 28,348 11,238 198,441 78,472 .8845 .9303 .4691 6 1

56,697 10,032 28,348 5,063 198,441 35,153 .8601 .9272 .4025 10 1

(a) α = 0.60, qα = 1, 190, 000

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 55,173 28,348 27,543 198,441 193,200 .9643 .9692 .6901 2 1

56,697 22,444 28,348 11,238 198,441 78,472 .9135 .9347 .5223 6 1

56,697 10,032 28,348 5,063 198,441 35,153 .8874 .9276 .4581 10 1

(a) α = 0.80, qα = 3, 780, 000

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 55,173 28,348 27,543 198,441 193,200 .9758 .8538 .6843 2 1

56,697 22,444 28,348 11,238 198,441 78,472 .9293 .7710 .5108 6 1

56,697 10,032 28,348 5,063 198,441 35,153 .8970 .7339 .4283 10 1
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(a) α = 0.90, qα = 8, 860, 000

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 55,173 28,348 27,543 198,441 193,200 .9818 .8191 .6685 2 1

56,697 22,444 28,348 11,238 198,441 78,472 .9403 .7004 .4756 6 1

56,697 10,032 28,348 5,063 198,441 35,153 .9089 .6463 .3939 10 1

(a) α = 0.95, qα = 17, 910, 000

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 55,173 28,348 27,543 198,441 193,200 .9832 .7840 .6375 2 1

56,697 22,444 28,348 11,238 198,441 78,472 .9432 .6294 .4342 6 1

56,697 10,032 28,348 5,063 198,441 35,153 .9102 .5366 .3283 10 1

154



Table B.4.5: Next year economic success prediction models (pooled cutoffs)

(a) α = 0.05, qα = 30, 000

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 55173 28,348 27,543 198,441 193,200 .8278 .9373 .3234 2 1

24,661 22444 12,360 11,238 86,134 78,472 .8323 .9648 .3392 6 5

11,490 10032 5,761 5,063 40,268 35,153 .8283 .9718 .3511 10 9

(a) α = 0.10, qα = 70, 000

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 55173 28,348 27,543 198,441 193,200 .8644 .9335 .4244 2 1

24,661 22,444 12,360 11,238 86,134 78,472 .8728 .9626 .4528 6 5

11,490 10032 5,761 5,063 40,268 35,153 .8792 0.9719 .4847 10 9

(a) α = 0.20, qα = 150, 000

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 55173 28,348 27,543 198,441 193,200 .9017 .9259 .5257 2 1

24,661 22444 12,360 11,238 86,134 78,472 .9144 .9568 .5715 6 5

11,490 10032 5,761 5,063 40,268 35,153 .9147 .9648 .5977 10 9

(a) α = 0.40, qα = 400, 000

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 55173 28,348 27,543 198,441 193,200 .9415 .9123 .6373 2 1

24,661 22444 12,360 11,238 86,134 78,472 .9571 .9511 .7277 6 5

11,490 10032 5,761 5,063 40,268 35,153 .9595 .9642 .7555 10 9

(a) α = 0.60, qα = 1, 190, 000

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 55173 28,348 27,543 198,441 193,200 .9643 .8943 .6901 2 1

24,661 22444 12,360 11,238 86,134 78,472 .9751 .9427 .7830 6 5

11,490 10032 5,761 5,063 40,268 35,153 .9744 .9535 .8069 10 9

(a) α = 0.80, qα = 3, 780, 000

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 55173 28,348 27,543 198,441 193,200 .9758 .8538 .6843 2 1

24,661 22444 12,360 11,238 86,134 78,472 .9842 .9228 .7828 6 5

11,490 10032 5,761 5,063 40,268 35,153 .9834 .9356 .8132 10 9
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(a) α = 0.90, qα = 8, 860, 000

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 55173 28,348 27,543 198,441 193,200 .9818 .8191 .6685 2 1

24,661 22444 12,360 11,238 86,134 78,472 .9869 .9003 .7653 6 5

11,490 10032 5,761 5,063 40,268 35,153 .9844 .8949 .7840 10 9

(a) α = 0.95, qα = 17, 910, 000

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 55173 28,348 27,543 198,441 193,200 .9832 .7840 .6375 2 1

24,661 22444 12,360 11,238 86,134 78,472 .9882 .8729 .7399 6 5

11,490 10032 5,761 5,063 40,268 35,153 .9864 .8739 .7549 10 9
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B.4.3 Economic success with sector-specific cutoffs

Table B.4.6: Early-life economic success prediction models (sector-specific
cutoffs)

(a) α = 0.05

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 54,889 28,348 27,391 198,441 192,202 .8283 .9353 .3247 2 1

56,697 22,440 28,348 11,236 198,441 78,462 .7023 .9330 .1320 6 1

56,697 10,031 28,348 5,062 198,441 35,148 .6872 .9447 .1351 10 1

(a) α = 0.10

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 54,889 28,348 27,391 198,441 192,202 .8618 .9329 .4168 2 1

56,697 22,440 28,348 11,236 198,441 78,462 .7440 .9216 .1819 6 1

56,697 10,031 28,348 5,062 198,441 35,148 .7237 .9346 .1634 10 1

(a) α = 0.20

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 54,889 28,348 27,391 198,441 192,202 .8974 .9287 .5147 2 1

56,697 22,440 28,348 11,236 198,441 78,462 .8009 .9206 .2707 6 1

56,697 10,031 28,348 5,062 198,441 35,148 .7623 .9303 .2053 10 1

(a) α = 0.40

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 54,889 28,348 27,391 198,441 192,202 .9323 .9240 .6063 2 1

56,697 22,440 28,348 11,236 198,441 78,462 .8518 .9152 .3802 6 1

56,697 10,031 28,348 5,062 198,441 35,148 .8141 .9197 .2922 10 1

(a) α = 0.60

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 54,889 28,348 27,391 198,441 192,202 .9532 .9176 .6473 2 1

56,697 22,440 28,348 11,236 198,441 78,462 .8849 .9040 .4493 6 1

56,697 10,031 28,348 5,062 198,441 35,148 .8384 .9012 .3478 10 1

(a) α = 0.80

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 54,889 28,348 27,391 198,441 192,202 .9701 .9090 .6544 2 1

56,697 22,440 28,348 11,236 198,441 78,462 .9047 .8864 .4374 6 1

56,697 10,031 28,348 5,062 198,441 35,148 .8630 .8735 .3553 10 1
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(a) α = 0.90

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 54,889 28,348 27,391 198,441 192,202 .9757 .8973 .6212 2 1

56,697 22,440 28,348 11,236 198,441 78,462 .9114 .8735 .3890 6 1

56,697 10,031 28,348 5,062 198,441 35,148 .8696 .8623 .2919 10 1

(a) α = 0.95

Gross train Net train Gross validation Net validation Gross test Net test AUC-ROC AUC-PR R2 Age of success Age features

56,697 54,889 28,348 27,391 198,441 192,202 .9753 .8795 .5826 2 1

56,697 22,440 28,348 11,236 198,441 78,462 .9241 .8520 .3377 6 1

56,697 10,031 28,348 5,062 198,441 35,148 .8744 .8396 .2448 10 1
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Table B.4.14: Reduction in R-Squared for survival

Age to survive age 2 age 3 age 6 age 10

R-Squared of the full model 13.99 3.91 0.55 0.14

percentage points reduction in out of sample R2 when removing

Financial statement variables and year 7.30 1.94 0.28 0.06

Financial statement variables 7.12 1.96 0.22 0.08

Year -0.14 -0.01 0.01 -0.06

Worker and dga variables 0.93 0.38 0.04 0.08

Worker variables 0.37 -0.09 -0.18 -0.01

Dga variables 0.07 0.14 -0.02 -0.04

Age size sector area 0.02 0.02 -0.05 -0.03

Age -0.29 -0.13 0.03 -0.03

Size class (OECD) -0.11 -0.02 -0.05 0.00

Sector -0.13 0.08 -0.14 0.06

Region -0.25 0.09 0.00 0.00

Financial constraints variables -0.06 0.01 -0.07 -0.05

Table B.4.15: Reduction in R-Squared for economic success (sector-specific
cutoffs, α = 0.2)

Age to survive age 2 age 3 age 6 age 10

R-Squared of the full model 61.59 37.57 26.79 20.78

percentage points reduction in out of sample R2 when removing

Financial statement variables and year 38.19 19.07 12.04 7.64

Financial statement variables 38.29 19.14 12.00 7.96

Year 0.07 0.02 0.03 -0.10

Worker and dgas variables 0.25 0.35 0.85 1.91

Worker variables 0.07 -0.10 0.15 0.24

Dga variables -0.00 0.11 -0.18 0.18

Age size sector area 13.27 5.80 4.08 2.65

Age -0.01 -0.15 -0.13 0.12

Size class (OECD) 0.04 -0.00 -0.01 0.74

Sector 13.46 5.66 4.13 2.48

Region 0.13 -0.07 -0.20 -0.26

Financial constraints variables -0.08 -0.18 -0.42 -0.09
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Table B.4.16: Most important predictors with LASSO for linearized success
probabilities

Feature Coefficient
Constant 74.8318
Year 2021 0.3588
Year 2016 -0.3171
Year 2017 -0.2806
Year 2015 -0.2746
Year 2014 -0.1975
Year 2020 0.1930
Year 2012 0.1780
Year 2018 -0.1672
Year 2011 0.1345
Year 2010 0.1062
Year 2009 0.0679
Year 2013 -0.0570
Region: Zuidoost-Drenthe -0.0447
Age -0.0381
R2 0.8657
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B.5 Additional figures

Figure B.5.1: Labor productivity dynamics

(a) All startups (b) Startups that survived at least 10 years

Figure B.5.2: Success at different quantiles and cohorts of entry

(a) Success rates for different cutoffs (b) Success rates by cohort of entry
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Figure B.5.3: Survival and economic success by industry

Notes: Success of firm at age a corresponds to survival up to that point,
conditional on reaching 150,000€ turnover size (in real terms).
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Figure B.5.4: Calibration plots for early-life survival probability

(a) Age 2 (b) Age 6 (c) Age 10

Figure B.5.5: Calibration plots for early-life success probability (pooled cut-
off, α = 0.2)

(a) Age 2 (b) Age 6 (c) Age 10

Figure B.5.6: Calibration plots for early-life success probability (sector-
specific cutoffs, α = 0.2)

(a) Age 2 (b) Age 6 (c) Age 10
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Figure B.5.7: Survival probabilities at various ages

(a) Density (b) CCDF

Notes: Densities and CCDF are based on out-of-sample survival probabili-
ties for all testing startups
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Figure B.5.8: Success type probabilities at various ages (sector-specific cut-
offs)

(a) Density (b) CCDF

Notes: Densities and CCDFare based on out-of-sample success probabilities
for all testing startups
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Figure B.5.9: SHAP comparison for success at age 6: top vs. bottom quartile
firms

(a) Top 25% (b) Bottom 25%

Figure B.5.10: SHAP comparison for success at age 10: top vs. bottom quar-
tile firms

(a) Top 25% (b) Bottom 25%
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Figure B.5.11: ALE plots for entry date at various ages

(a) Survival (b) Economic success (20p pooled cutoff)

Figure B.5.12: Marginal effects for entry date at various ages

(a) Survival (b) Economic success (20p pooled cutoff)
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Figure B.5.13: Dynamic selection for economic success by industry

(a) Consultancy (b) Construction

(c) Healthcare and welfare services (d) Wholesale and retail trade

(e) Manufacturing (f) ICT
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Appendix C

Appendix to Chapter 3

C.1 Additional tables

Table C.1.1: First stage out-of-sample prediction (missing g1)

Method AUC-ROC AUC-PR F1-Score R2 BACC Num. obs

(a) Employment

Probit 0.6756 0.1140 0.1205 0.0289 0.6244 176,694

Random forest 0.8271 0.1961 0.1895 0.0894 0.7548 176,694

XGBoost 0.9909 0.9919 0.9725 0.9160 0.9733 176,694

(b) Revenues

Probit 0.8250 0.5152 0.2852 0.3465 0.7442 197,045

Random forest 0.8905 0.5936 0.3352 0.4026 0.8101 197,045

XGBoost 0.9902 0.9898 0.9714 0.9197 0.9728 197,045
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Table C.1.2: First stage out-of-sample prediction (missing g2)

Method AUC-ROC AUC-PR F1-Score R2 BACC Num. obs

(a) Employment

Probit 0.6853 0.1760 0.1883 0.0453 0.6310 128,149

Random forest 0.7922 0.2481 0.2520 0.1024 0.7181 128,149

XGBoost 0.9852 0.9893 0.9637 0.8803 0.9649 128,149

(b) Revenues

Probit 0.8150 0.4909 0.2929 0.2911 0.7268 144,098

Random forest 0.8743 0.5610 0.3570 0.3430 0.7900 144,098

XGBoost 0.9885 0.9897 0.9666 0.9003 0.9679 144,098

Table C.1.3: First-stage regression: probit model

Missing gn

Revenues Employees

(g1) (g2) (g3) (g1) (g2) (g3)

Age −0.040∗∗∗ −0.051∗∗∗ −0.073∗∗∗ −0.002 −0.012∗∗ −0.006

(0.004) (0.004) (0.005) (0.004) (0.004) (0.004)

Size (log) −0.602∗∗∗ −0.596∗∗∗ −0.609∗∗∗ −0.319∗∗∗ −0.325∗∗∗ −0.312∗∗∗

(0.002) (0.003) (0.003) (0.006) (0.006) (0.006)

Consolidated accounts 0.033∗∗∗ 0.042∗∗∗ 0.048∗∗∗ 0.089∗∗∗ 0.091∗∗∗ 0.088∗∗∗

(0.003) (0.003) (0.004) (0.003) (0.003) (0.004)

Patents −0.048∗∗∗ −0.055∗∗∗ −0.061∗∗∗ −0.019∗∗∗ −0.027∗∗∗ −0.035∗∗∗

(0.003) (0.004) (0.004) (0.004) (0.004) (0.004)

Trademarks −0.066∗∗∗ −0.071∗∗∗ −0.076∗∗∗ −0.025∗∗∗ −0.031∗∗∗ −0.038∗∗∗

(0.003) (0.004) (0.004) (0.004) (0.004) (0.004)

Share past missing −0.130∗∗∗ −0.178∗∗∗ −0.259∗∗∗ −0.302∗∗∗ −0.340∗∗∗ −0.314∗∗∗

(0.004) (0.004) (0.004) (0.005) (0.005) (0.005)

Fixed Effects Yes Yes Yes Yes Yes Yes

Training obs. 784, 618 573, 257 371, 028 703, 119 509, 226 325, 165

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Note: coefficients are standardized as β∗
x = βxσx to improve comparability. All

regressions include industry, regional, and year fixed effects. Standard errors are
based on heteroscedasticity-consistent estimation.
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Table C.1.4: Second-stage regressions: one-year models comparison

One-year growth rate (g1)

Revenues Employment

(a) (b) (c) (a) (b) (c)

Intercept −15.448∗∗∗ −1028.702∗∗∗ −21.052∗∗∗ −2.629∗∗∗ −274.595∗∗∗ 2.403∗∗∗

(0.595) (153.860) (1.375) (0.457) (14.958) (0.632)

Age −0.000∗∗∗ −0.008∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.001∗∗∗ −0.000∗∗∗

(0.000) (0.001) (0.000) (0.000) (0.000) (0.000)

Size (log) −0.009∗∗∗ −0.677∗∗∗ −0.010∗∗∗ −0.015∗∗∗ −0.419∗∗∗ −0.013∗∗∗

(0.002) (0.103) (0.002) (0.001) (0.022) (0.001)

Consolidated accounts 0.039∗∗∗ 4.592∗∗∗ 0.048∗∗∗ 0.044∗∗∗ 2.127∗∗∗ 0.035∗∗∗

(0.008) (0.695) (0.010) (0.006) (0.118) (0.006)

Patents 0.013∗∗∗ −0.012∗∗∗ 0.013∗∗∗ 0.011∗∗∗ −0.131∗∗∗ 0.012∗∗∗

(0.001) (0.003) (0.001) (0.001) (0.008) (0.001)

Trademarks 0.013∗∗∗ −0.019∗∗∗ 0.012∗∗∗ 0.012∗∗∗ −0.178∗∗∗ 0.013∗∗∗

(0.002) (0.004) (0.002) (0.001) (0.010) (0.001)

IMR 3.197∗∗∗ 0.009∗∗∗ 2.002∗∗∗ −0.011∗∗∗

(0.486) (0.002) (0.110) (0.001)

PCA Controls Yes Yes Yes Yes Yes Yes

Fixed Effects Yes Yes Yes Yes Yes Yes

First Stage Probit XGB Probit XGB

Second Stage OLS OLS OLS OLS OLS OLS

R2 0.0148 0.0700 0.0149 0.0185 0.0260 0.0192

RMSE 0.1886 0.1833 0.1886 0.1385 0.1379 0.1384

Obs. 1st Stage 784, 618 784, 618 703, 119 703, 119

Obs. 2nd Stage 202, 755 202, 755 202, 755 197, 758 197, 758 197, 758

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Note: PCA controls include lagged predictors condensed into five principal compo-
nents. All regressions include industry, regional, and year fixed effects. Standard
errors are based on heteroscedasticity-consistent (HC3) estimation.
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Table C.1.5: Second-stage regressions: two-year models comparison

Two-year growth rate (g2)

Revenues Employment

(a) (b) (c) (a) (b) (c)

Intercept −36.670∗∗∗ −1236.931∗∗∗ −44.383∗∗∗ −15.366∗∗∗ −556.759∗∗∗ −7.686∗∗∗

(1.000) (263.666) (1.967) (0.834) (24.542) (1.069)

Age −0.001∗∗∗ −0.008∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.002∗∗∗ −0.001∗∗∗

(0.000) (0.002) (0.000) (0.000) (0.000) (0.000)

Size (log) −0.006∗∗ −0.443∗∗∗ −0.006∗∗ −0.024∗∗∗ −0.436∗∗∗ −0.021∗∗∗

(0.002) (0.098) (0.002) (0.001) (0.019) (0.001)

Consolidated accounts 0.052∗∗∗ 3.048∗∗∗ 0.059∗∗∗ 0.061∗∗∗ 2.146∗∗∗ 0.049∗∗∗

(0.011) (0.663) (0.011) (0.007) (0.098) (0.007)

Patents 0.020∗∗∗ −0.048∗∗∗ 0.020∗∗∗ 0.019∗∗∗ −0.174∗∗∗ 0.021∗∗∗

(0.002) (0.014) (0.002) (0.001) (0.009) (0.001)

Trademarks 0.017∗∗∗ −0.005 0.017∗∗∗ 0.022∗∗∗ −0.204∗∗∗ 0.024∗∗∗

(0.002) (0.004) (0.002) (0.001) (0.010) (0.001)

IMR 2.172∗∗∗ 0.008∗∗∗ 2.062∗∗∗ −0.015∗∗∗

(0.477) (0.002) (0.093) (0.001)

PCA Controls Yes Yes Yes Yes Yes Yes

Fixed Effects Yes Yes Yes Yes Yes Yes

First Stage Probit XGB Probit XGB

Second Stage OLS OLS OLS OLS OLS OLS

R2 0.0287 0.0528 0.0288 0.0348 0.0452 0.0356

RMSE 0.2253 0.2224 0.2252 0.1759 0.1749 0.1758

Obs. 1st Stage 573, 257 573, 257 509, 226 509, 226

Obs. 2nd Stage 140, 509 140, 509 140, 509 135, 668 135, 668 135, 668

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Note: PCA controls include lagged predictors condensed into five principal compo-
nents. All regressions include industry, regional, and year fixed effects. Standard
errors are based on heteroscedasticity-consistent (HC3) estimation.

172



Table C.1.6: Second-stage regressions: models based on Random Forest
first-stage

n-year growth rate (gn)

Revenues Employees

(g1) (g2) (g3) (g1) (g2) (g3)

Intercept −18.482∗∗∗ −46.361∗∗∗ −76.461∗∗∗ 7.280∗∗∗ 3.725∗∗ 1.284

(1.129) (2.015) (4.654) (0.674) (1.266) (2.454)

Age −0.000∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.000∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Size (log) −0.009∗∗∗ −0.007∗∗∗ −0.006∗∗ −0.010∗∗∗ −0.017∗∗∗ −0.022∗∗∗

(0.002) (0.002) (0.002) (0.001) (0.001) (0.001)

Consolidated accounts 0.043∗∗∗ 0.062∗∗∗ 0.086∗∗∗ 0.022∗∗∗ 0.031∗∗∗ 0.065∗∗∗

(0.009) (0.011) (0.015) (0.006) (0.007) (0.010)

Patents 0.013∗∗∗ 0.019∗∗∗ 0.024∗∗∗ 0.013∗∗∗ 0.024∗∗∗ 0.031∗∗∗

(0.001) (0.002) (0.002) (0.001) (0.001) (0.002)

Trademarks 0.012∗∗∗ 0.016∗∗∗ 0.018∗∗∗ 0.014∗∗∗ 0.027∗∗∗ 0.036∗∗∗

(0.002) (0.002) (0.003) (0.001) (0.001) (0.002)

IMR 0.007∗∗∗ 0.015∗∗∗ 0.020∗∗∗ −0.032∗∗∗ −0.050∗∗∗ −0.060∗∗∗

(0.002) (0.003) (0.005) (0.002) (0.003) (0.004)

PCA Controls Yes Yes Yes Yes Yes Yes

Fixed Effects Yes Yes Yes Yes Yes Yes

First Stage RF RF RF RF RF RF

Second Stage OLS OLS OLS OLS OLS OLS

R2 0.0148 0.0289 0.0414 0.0208 0.0381 0.0504

RMSE 0.1886 0.2252 0.2461 0.1383 0.1756 0.1963

Obs. 1st Stage 784, 618 573, 257 371, 028 703, 119 509, 226 325, 165

Obs. 2nd Stage 202, 755 140, 509 82, 861 197, 758 135, 668 79, 026

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Note: PCA controls include lagged predictors condensed into five principal compo-
nents. All regressions include industry, regional, and year fixed effects. Standard
errors are based on heteroscedasticity-consistent (HC3) estimation.
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Table C.1.7: Second-stage regressions: models based on XGBoost-
generalized first-stage

n-year growth rate (gn)

Revenues Employees

(g1) (g2) (g3) (g1) (g2) (g3)

Intercept −15.756∗∗∗ −36.652∗∗∗ −62.988∗∗∗ −2.759∗∗∗ −13.512∗∗∗ −16.471∗∗∗

(0.582) (1.071) (3.662) (0.461) (0.836) (2.028)

Age −0.000∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.000∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Size (log) −0.009∗∗∗ −0.006∗∗ −0.005∗ −0.014∗∗∗ −0.022∗∗∗ −0.028∗∗∗

(0.002) (0.002) (0.002) (0.001) (0.001) (0.001)

Consolidated accounts 0.044∗∗∗ 0.052∗∗∗ 0.076∗∗∗ 0.041∗∗∗ 0.051∗∗∗ 0.089∗∗∗

(0.009) (0.011) (0.015) (0.006) (0.007) (0.010)

Patents 0.013∗∗∗ 0.020∗∗∗ 0.026∗∗∗ 0.011∗∗∗ 0.019∗∗∗ 0.025∗∗∗

(0.001) (0.002) (0.002) (0.001) (0.001) (0.002)

Trademarks 0.013∗∗∗ 0.017∗∗∗ 0.019∗∗∗ 0.013∗∗∗ 0.023∗∗∗ 0.028∗∗∗

(0.002) (0.002) (0.003) (0.001) (0.001) (0.002)

IMR 0.005∗∗ 0.000 0.003 −0.005∗∗∗ −0.012∗∗∗ −0.009∗∗∗

(0.002) (0.002) (0.002) (0.001) (0.001) (0.001)

PCA Controls Yes Yes Yes Yes Yes Yes

Fixed Effects Yes Yes Yes Yes Yes Yes

First Stage XGB XGB XGB XGB XGB XGB

Second Stage OLS OLS OLS OLS OLS OLS

R2 0.0149 0.0287 0.0414 0.0187 0.0362 0.0477

RMSE 0.1886 0.2253 0.2461 0.1384 0.1757 0.1963

Obs. 1st Stage 784, 618 573, 257 371, 028 703, 119 509, 226 325, 165

Obs. 2nd Stage 202, 755 140, 509 82, 861 197, 758 135, 668 79, 026

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Note: PCA controls include lagged predictors condensed into five principal compo-
nents. All regressions include industry, regional, and year fixed effects. Standard
errors are based on heteroscedasticity-consistent (HC3) estimation.
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Table C.1.8: Second-stage regressions: coefficients of size with two-way
fixed effects model

n-year growth rate (gn)

Revenues Employees

First stage (g1) (g2) (g3) (g1) (g2) (g3)

No first stage −0.229∗∗ −0.285∗∗ −0.327∗∗ −0.354∗∗ −0.482∗∗∗ −0.511∗∗∗

(0.032) (0.024) (0.026) (0.043) (0.035) (0.009)

Probit −0.229∗∗ −0.284∗∗ −0.326∗∗ −0.354∗∗ −0.482∗∗∗ −0.512∗∗∗

(0.032) (0.024) (0.026) (0.043) (0.035) (0.009)

Random Forest −0.231∗∗ −0.287∗∗ −0.328∗∗ −0.352∗∗ −0.478∗∗∗ −0.507∗∗∗

(0.032) (0.024) (0.027) (0.044) (0.036) (0.009)

XGBoost −0.229∗∗ −0.284∗∗ −0.327∗∗ −0.354∗∗ −0.481∗∗∗ −0.510∗∗∗

(0.032) (0.024) (0.026) (0.044) (0.036) (0.009)

Obs. 1st Stage 784, 618 573, 257 371, 028 703, 119 509, 226 325, 165

Obs. 2nd Stage 202, 755 140, 509 82, 861 197, 758 135, 668 79, 026

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

The models estimate two-way fixed effects panel regressions, incorporating both
firm-level and time fixed effects. Variables like trademarks, patents and consolidated
accounts are excluded due to collinearity with fixed effects. Standard errors are clus-
tered at both firm and time levels for robust inference.
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C.2 Additional figures

Figure C.2.1: Shapley values for Probit first stage prediction (missing g3)

(a) Revenues (b) Employment

176



Bibliography

Abbasi, Raza Abid et al. (2019). “Short term load forecasting using XG-
Boost”. In: Web, Artificial Intelligence and Network Applications: Proceed-
ings of the Workshops of the 33rd International Conference on Advanced
Information Networking and Applications (WAINA-2019) 33. Springer,
pp. 1120–1131.

Acemoglu, Daron et al. (2018). “Innovation, reallocation, and growth”.
In: American Economic Review 108.11, pp. 3450–3491.

Ackerberg, Daniel A, Kevin Caves, and Garth Frazer (2015). “Identifica-
tion properties of recent production function estimators”. In: Econo-
metrica 83.6, pp. 2411–2451.
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Mata, José, Pedro Portugal, and Paulo Guimaraes (1995). “The survival
of new plants: Start-up conditions and post-entry evolution”. In: In-
ternational Journal of Industrial Organization 13.4, pp. 459–481.
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