
IMT School for Advanced Studies, Lucca
Lucca, Italy

Quasi-Newton methods for solving nonsmooth
optimization problems in learning and control

PhD Program in Systems Science

Track in Computer Science and Systems Engineering

Curriculum in Learning and Control

XXXVI Cycle

By

Adeyemi Damilare Adeoye

2025

mailto:adeyemi.adeoye@imtlucca.it

The dissertation of Adeyemi Damilare Adeoye is approved.

PhD Program Coordinator: Prof. Alberto Bemporad, IMT School for
Advanced Studies Lucca

Advisor: Prof. Alberto Bemporad, IMT School for Advanced Studies
Lucca

The dissertation of Adeyemi Damilare Adeoye has been reviewed by:

Prof. Mikael Johansson, KTH Royal Institute of Technology, Stockholm,
Sweden

Prof. Panagiotis Patrinos, KU Leuven, Leuven, Belgium

IMT School for Advanced Studies Lucca
2025

to my dearly beloved late mother;

to my family.

Contents

List of Figures xi

List of Tables xv

Acknowledgements xvi

Vita and Publications xix

Abstract xxii

I Motivation, context and structure 1

1 Introduction 2
1.1 Structure and overview . 3

1.1.1 Open-source implementations 6
1.2 Nonlinear programming problem 6
1.3 Learning and control problems 8

1.3.1 Supervised learning with neural networks 9
1.3.2 Finite-horizon optimal control problems in super-

vised learning . 11
1.4 First- and second-order optimization methods 15

1.4.1 First-order optimization methods 15
1.4.2 Second-order optimization methods 16
1.4.3 Quasi-Newton methods 16

vii

II Solving nonsmooth convex composite optimization
problems with generalized Gauss-Newton methods and
self-concordant smoothing 18

2 SCORE: Approximating curvature information under self-concordant
regularization 19
2.1 Introduction . 19
2.2 Preliminaries . 22

2.2.1 Notation and basic assumptions 22
2.2.2 Approximate Newton Scheme 24

2.3 Second-order (pseudo-online) optimization 25
2.4 Self-concordant regularization (SCORE) 30
2.5 Experiments . 33

2.5.1 GGN-SCORE for different values of α 34
2.5.2 Comparison with SGD, Adam, and L-BFGS meth-

ods on real datasets 39

Appendices 48
2.A Useful results . 48
2.B Missing proofs . 50

3 Self-concordant smoothing in proximal quasi-Newton methods 57
3.1 Introduction . 57

3.1.1 Notation and preliminaries 62
3.2 Self-concordant regularization 64

3.2.1 Self-concordant regularization via infimal convolution 65
3.3 A proximal Newton-type scheme 73

3.3.1 Variable-metric and adaptive step-length selection . 76
3.3.2 A proximal generalized Gauss-Newton algorithm . 80

3.4 Structured penalties . 82
3.4.1 Structure reformulation for self-concordant smooth-

ing . 83
3.4.2 Prox-decomposition and smoothness properties . . 85

3.5 Convergence analysis . 86
3.6 Numerical experiments . 92

viii

3.6.1 Sparse logistic regression 94
3.6.2 Sparse group lasso 96
3.6.3 Sparse deconvolution 100

Appendices 102
3.A Local behaviours of Algorithms 2 and 3 102

III Theoretical guarantees and practical frameworks
for solving supervised learning and control problems in
neural networks using quasi-Newton methods 107

4 Regularized Gauss-Newton for optimizing overparameterized
neural networks 108
4.1 Introduction . 108

4.1.1 Notation and preliminaries 111
4.2 Learning neural networks with GGN 112

4.2.1 Regularized GGN for overparameterized neural
networks . 114

4.3 Theoretical result . 117
4.4 Simulations . 119

4.4.1 Results and discussion 120
4.4.2 Experiments on real datasets 122

Appendices 125
4.A Preliminary results . 125

4.A.1 Lipschitz continuity of J 125
4.A.2 Lipschitz continuity of g 127

4.B Proof of the main result . 127
4.C Additional experimental details and results 135

4.C.1 Remark on the T-I measure 135
4.C.2 MNIST teacher-student setting 135
4.C.3 FashionMNIST experiments 137
4.C.4 Generalization and stability in comparison with GD 138

ix

5 An inexact sequential quadratic programming method for learn-
ing and control of recurrent neural networks 141
5.1 Introduction . 141
5.2 Recurrent control neural networks 145

5.2.1 RNN for state reconstruction in RL and control . . . 145
5.2.2 Extension to DCRNNs 146
5.2.3 FNN for optimal control policy selection 147

5.3 Sequential quadratic programming for recurrent learning . 149
5.3.1 Approximating the Lagrangian Hessian 150
5.3.2 Numerical solution of the saddle-point system . . . 151
5.3.3 Globalization of iSQPRL by a line-search 154
5.3.4 Practical aspects . 161

5.4 Off-line learning of the control network 164
5.5 Complexity analysis . 167
5.6 Numerical examples . 168

5.6.1 Classical reinforcement learning example 169
5.6.2 Chemical process example 173

IV Conclusion and future work 180

6 Conclusion 181
6.1 Future work . 183

x

List of Figures

1 Data-driven approximation of a dynamical system. 9
2 A neural network schematic. 10
3 Schematic of a dynamical system approximated by a neural

network. 11
4 Schematic of a simple RNN unrolled over time. 14

5 Numerical behaviour of GGN-SCORE for different values
of α in the strongly convex quadratic test problem (2.22) I . 35

6 Numerical behaviour of GGN-SCORE for different values
of α in the strongly convex quadratic test problem (2.22) II 36

7 Numerical behaviour of GGN-SCORE for different values
of α in the strongly convex quadratic test problem (2.22) III. 37

8 Numerical behaviour of GGN-SCORE for different values
of α using real datasets I. 38

9 Numerical behaviour of GGN-SCORE for different values
of α using real datasets II. 39

10 Convergence curves for GGN-SCORE, SGD, Adam and
L-BFGS in the proposed convex problem I. 40

11 Convergence curves for GGN-SCORE, SGD, Adam and
L-BFGS in the proposed convex problem II. 41

12 Convergence curves for GGN-SCORE, SGD, Adam and
L-BFGS in the proposed convex problem III. 42

13 Convergence curves for GGN-SCORE, SGD, Adam and
L-BFGS in the proposed convex problem IV. 43

xi

14 Convergence curves for GGN-SCORE, SGD, Adam and
L-BFGS in the non-convex (overparameterized) neural net-
work training problem I. 44

15 Convergence curves for GGN-SCORE, SGD, Adam and
L-BFGS in the non-convex (overparameterized) neural net-
work training problem II. 45

16 Convergence curves for GGN-SCORE, SGD, Adam and
L-BFGS in the non-convex (overparameterized) neural net-
work training problem III. 46

17 Classification task results using the proposed method –
logistic regression (LR), k-nearest neighbours (KNN), lin-
ear support vector machine (L-SVM), RBF-SVM, Gaussian
process (GP), decision tree (DT), random forest (RF) and
adaptive boosting (AdaBoost) techniques on real datasets. 47

18 Generalized self-concordant smoothing of ∥ · ∥1 with ϕ(t). 69
19 Behaviour of Prox-N-SCORE and Prox-GGN-SCORE for

different fixed values of αk in problem (3.62). 94
20 Test case for overparameterization vs non-overparameterization

in problem (3.62). 95
21 Performance profile (CPU time) for the sparse logistic re-

gression problem (3.62) using the LIBSVM datasets sum-
marized in Table 3. 96

22 Mean squared error (MSE) between the estimates xk and
the true solution x∗ in the sparse group lasso problem (3.63)
with Prox-GGN-SCORE, SSNAL, Prox-Grad and BCD. . . 99

23 Sparse deconvolution via ℓ1-regularized least squares (3.64).101
24 Sparse deconvolution via ℓ2-regularized least squares (3.64).101

25 Performance of GGN-SCORE with g(θ) as in (4.15). 120
26 Test loss evaluation of the GGN-SCORE-trained NN on

MNIST dataset for different values of the regularization
smoothing parameter µ fixing τ = 10−4 and different val-
ues of the regularization strength τ fixing µ = 1/

√
n. 121

xii

27 Loss decay with GGN-SCORE and GD per iteration num-
ber (left) and time in seconds (right) with g(θ) as in (4.15)
for GGN-SCORE, τ = 10−4, µ = 1/

√
n. 123

28 Evaluation of GGN-SCORE on MNIST dataset for differ-
ent values of the regularization smoothing parameter µ,
fixing τ = 10−4, and different values of the regularization
strength τ , fixing µ = 1/

√
n. 124

29 Test loss of the GGN-SCORE-trained NN on MNIST dataset
(teacher-student) with g(θ) given by (4.15). 136

30 Accuracy and T-I measure of the GGN-SCORE-trained NN
on MNIST dataset (teacher-student) for different values of
µ and different values of τ . 137

31 Test loss evaluation of the GGN-SCORE-trained NN on
FashionMNIST dataset for different values of the regular-
ization smoothing parameter µ fixing τ = 10−4 and differ-
ent values of the regularization strength τ fixing µ = 1/

√
n. 137

32 Evaluation of GGN-SCORE on FashionMNIST dataset for
different values of the regularization strength µ and dif-
ferent values of the regularization smoothing parameter
τ . 138

33 Test loss and accuracy evolution for GD and GGN-SCORE
on pendigits, letter and avila datasets. 139

34 Unrolled recurrent neural network with dynamically con-
sistent overshooting (DCRNN). 147

35 Architecture of recurrent control neural networks (RCNNs). 148
36 Convergence curves for the function approximation in

DCRNN training using GRL(m̂r) with ρ̄ = 0.8, first-order
methods (Adam and SGD), limited-memory BFGS with
line-search, and stochastic LBFGS with adaptive step-size. 170

37 Convergence of Algorithm 4 for terms defined in Proposi-
tion 5.3.4 and Theorem 5.3.5 (ρ̄ = 0.8, ω = 2). 171

38 RCNN off-line training results for the mountain car envi-
ronment. 172

xiii

39 Real-time RCNN control actions ut ∈ {−1, 0, 1}. 173
40 Real-time performance of the trained RCNN control actions

in the mountain car environment. 174
41 RCNN training results for ethylene oxidation process dy-

namics. 175
42 Performance of the trained RCNN control actions in ethy-

lene oxidization process. 176

xiv

List of Tables

1 Summary of LIBSVM datasets. 34

2 Examples of regularization kernel functions for self-concordant
smoothing, and their generalized self-concordant parame-
ters Mϕ and ν. 68

3 Summary of the real datasets used for sparse logistic re-
gression. 97

4 Performance of Prox-GGN-SCORE, SSNAL, Prox-Grad
and BCD on the sparse group lasso problem (3.63) for dif-
ferent values of m and n. 98

5 Summary of UCI datasets used for comparison. 138
6 Stability of activation measure. 138

7 Solution comparison between the proposed method and
SGD, Adam, LBFGS and sLBFGS (mountain car problem). 171

8 Solution comparison between the proposed method and
SGD, Adam, LBFGS and sLBFGS (ethylene oxidation). . . 174

9 Comparison between the proposed method and selected
RNN structures in the mountain car problem. 177

10 Parameters used in the ethylene oxidation process [89]. . . 177

xv

Acknowledgements

I am deeply and sincerely grateful to my supervisor, Prof.
Alberto Bemporad, for exercising his professional prowess,
knowledge and experience in helping to shape my PhD and
academic path. It has been a great pleasure learning about
different control and numerical optimization tools and tech-
niques, art of programming and software development, re-
search methodologies, and writing, through his guidance and
support. His dedication and belief in my abilities have been a
great source of motivation and inspiration. I feel very fortu-
nate to have had the opportunity to work with him, and I am
grateful for the trust he placed in me. I would like to acknowl-
edge the funding received from the European Commission
under the ERC Advanced Grant (COMPACT – Computational
Model Predictive and Adaptive Control Tools) for completing
the writing of this thesis.

I would like to thank Prof. Philipp Christian Petersen for the
fruitful six months spent with his amazing research group
at the University of Vienna, Austria. I am grateful for the
immense support, invaluable guidance, and mentorship I re-
ceived from him before and during my PhD. I thank the Fac-
ulty of Mathematics people there who created a welcoming
environment and made my stay in Vienna truly special. I
am grateful for the opportunity to learn from them, both in
academic discussions and social gatherings. Thanks to Prof.
Radu Ioan Bot, for his group’s optimization seminar and for
the engaging discussion on the interesting open problems he
was thinking about. I would like to acknowledge the Eras-
mus+ Traineeship fund received from the European Union
through IMT Lucca, which made this experience possible.

xvi

I am grateful to the reviewers of my thesis, Prof. Mikael
Johansson, Prof. Panagiotis Patrinos, and Asst. Prof. Puya
Latafat, for their time, effort, and very insightful feedback,
which has helped to improve the quality of the writing and
presentation.

I would also like to thank all the visiting researchers and
Professors of the DYSCO (Dynamical Systems, Control, and
Optimization) research group with whom I exchanged scien-
tific ideas during their visit. I am grateful for the continued
engagement and support. Thanks to Prof. Stephen Boyd and
his PhD student, Max, for a week-long discussion on paramet-
ric convex optimization, and for sparking interesting ideas in
this line.

I thank all the administrative staff members of IMT Lucca
for being very responsive and professional with helping to
handle and navigate so many important aspects of my PhD
and legal stay in Italy. I would like to thank all colleagues,
Professors and all academic staff members of IMT Lucca, and
collaborators who played significant roles in this rewarding
journey. I greatly appreciate all the help and support I received
from IMT community without hesitation when I asked. Some
discussions have also helped in improving the presentation
of some results in this thesis; such contributions are acknowl-
edged in the respective chapters. I would like to thank the
IMT football team for the enjoyable moments and physical
activity and to the table tennis players for the engaging and
competitive matches.

I would like to express my immense gratitude to all family
members and friends who were supportive in diverse ways
throughout this journey. I thank my loving wife and son for
their unconditional love, companionship, patience, sacrifice,
encouragement and support. I am grateful to my late mother
for being the strongest human support of my life and aca-

xvii

demic pursuit. Unfortunately, you left when I was just about
halfway into my PhD and didn’t wait to witness this day
which you’ve so much anticipated, but I’m sure you would
be proud of me. I hope to continue to make you proud; you
remain my hero and my best exemplar of a smart, hardwork-
ing and prayerful person who could achieve great things. I
thank my ever-supportive uncle, Dr. J.O.F., my loving dad, his
friend, Mr. O.A., and all my siblings.

xviii

Vita

Dec 04, 1993 Born, Ilorin, Nigeria

2016 Bachelor of Science in Mathematics
Final mark: 4.59/5.0 First Class Honours
University of Ilorin, Ilorin, Nigeria

2018 Master of Science in Mathematical Sciences
Final mark: 70-80% Good Pass
African Institute for Mathematical Sciences, Limbe,
Cameroon

2020 Master of Science in Mathematical Sciences (Machine
Intelligence)
Final mark: 65-75% Good Pass
African Institute for Mathematical Sciences, Kigali,
Rwanda

2020–Now PhD in Systems Science
IMT School for Advanced Studies, Lucca, Italy

2023–2024 Visiting PhD Student (Erasmus+ Trainee)
Faculty of Mathematics, University of Vienna
Vienna, Austria

xix

Publications

1. Adeyemi D. Adeoye and Alberto Bemporad. “SCORE: approximating cur-
vature information under self-concordant regularization”. In: Computational
Optimization and Applications 86.2 (2023), pp. 599–626.

2. Adeyemi D. Adeoye and Alberto Bemporad. “An Inexact Sequential Quadratic
Programming Method for Learning and Control of Recurrent Neural Net-
works”. In: IEEE Transactions on Neural Networks and Learning Systems 36.2
(2025), pp. 2762–2776. DOI: 10.1109/TNNLS.2024.3354855.

3. Adeyemi D. Adeoye and Alberto Bemporad. “Self-concordant Smoothing for
Large-Scale Convex Composite Optimization”. In: arXiv preprint arXiv:2309.01781
(2024). Submitted.

4. Adeyemi D. Adeoye, Philipp Christian Petersen, and Alberto Bemporad. “Reg-
ularized Gauss-Newton for Optimizing Overparameterized Neural Networks”.
In: arXiv preprint arXiv:2404.14875 (2024). Submitted.

5. Mikalai Korbit et al. “Exact Gauss-Newton Optimization for Training Deep
Neural Networks”. In: arXiv preprint arXiv:2405.14402 (2024). Submitted.

6. Adeyemi D Adeoye and Alberto Bemporad. SC-Reg: Training Overparameterized
Neural Networks under Self-Concordant Regularization. Tech. rep. IMT School for
Advanced Studies Lucca, 2021.

7. Adeyemi Damilare Adeoye and Philipp Petersen. A Deep Neural Network
Optimization Method Via A Traffic Flow Model. Tech. rep. African Institue for
Mathematical Sciences, Rwanda, 2021.

8. Jos U Abubakar and AD Adeoye. “Effects of radiative heat and magnetic field
on blood flow in an inclined tapered stenosed porous artery”. In: Journal of
Taibah University for Science 14.1 (2020), pp. 77–86.

9. Adeyemi Damilare Adeoye. “Blood Flow in an Inclined Tapered Stenosed
Porous Artery under the Influence of Magnetic Field and Heat Transfer”. MA
thesis. African Institue for Mathematical Sciences, Cameroon, 2018.

xx

https://doi.org/10.1109/TNNLS.2024.3354855

Presentations

1. A.D. Adeoye, “Newton-type Optimization Methods for Model Learning and
Control in Nonlinear Dynamical Systems,” (Virtual Seminar) at Mathematics and
Computer Science (MCS) Division, Argonne National Laboratory (ANL), Lemont,
Illinois, USA, 2025.

2. A.D. Adeoye, “Optimization of Neural Networks with an Explicit Regular-
ization: Generalized Gauss-Newton Method,” (Poster) at Applied Harmonic
Analysis and Machine Learning Summer School, Department of Mathematics, Uni-
versity of Genova, Genova, Italy, 2024.

3. A.D. Adeoye, “Self-concordant Regularization in Machine Learning,” at Mathe-
matics of Machine Learning Group Seminar, University of Vienna, Vienna, Austria,
2023.

4. A.D. Adeoye, “Self-concordant Regularization in Machine Learning,” (Virtual)
at DYSCO Research Unit Seminar, IMT Lucca, Lucca, Italy, 2023.

5. A.D. Adeoye, “Self-concordant Regularization for Convex Composite Opti-
mization,” at Mathematics of Machine Learning Research Group, Faculty of Mathe-
matics, University of Vienna, Vienna, Austria, 2023.

6. A.D. Adeoye, “Inexact SQP for Neural Network-Based Identification of Nonlin-
ear Dynamical Systems,” at DYSCO Research Unit Mini-Symposium, IMT Lucca,
Lucca, Italy, 2023.

7. A.D. Adeoye, “SCORE: Approximating Curvature Information under Self-
Concordant Regularization,” (Virtual with Poster) at Eastern European Machine
Learning (EEML) Summer School, Vilnius, Lithuania, 2022.

xxi

Abstract

This thesis is concerned with the design and analysis of some
quasi-Newton methods for solving optimization problems in
machine learning and control of nonlinear dynamical systems.
The proposed algorithms are designed to exploit approximate
second-order information to improve convergence rates, stabil-
ity, and generalization of the learned models and control poli-
cies. The thesis is organized into two main parts. In the first
part, we present a generalized Gauss-Newton algorithm that
uses an adaptive step-size selection strategy and preserves the
affine-invariant property of Newton’s method. This algorithm
significantly reduces the computational cost of Gauss-Newton
methods, particularly in mini-batch supervised learning. We
then extend this with a proximal method for nonsmooth con-
vex composite optimization, resulting in two new algorithms.
In the second part, we treat learning and control problems in
the training of neural networks. First, we present a rigorous
theoretical study of the generalized Gauss-Newton algorithm
for the optimization of feedforward neural networks. This
study establishes a non-asymptotic guarantee for the conver-
gence of feedforward neural networks with a general explicit
regularizer. Then, an inexact sequential quadratic program-
ming framework is proposed for optimal control in recurrent
neural networks, using a two-stage approach for system identi-
fication and optimal control policy selection. Several practical
applications of all the proposed algorithms are demonstrated
through numerical experiments.

xxii

Part I

Motivation, context and
structure

1

Chapter 1

Introduction

Optimization problems are ubiquitous in fields such as machine learn-
ing, control, and signal processing. Many real-world applications pose
challenging optimization problems that are nonsmooth, nonconvex, and
high-dimensional. First-order optimization methods, like gradient de-
scent, often suffer from slow convergence, getting trapped in suboptimal
local minima, or quickly reverting to poor solution estimates. Particularly
in the context of learning and control, these challenges can lead to poor
generalization, instability, and suboptimal performance of the learned
models and control policies. Second-order optimization methods, which
exploit curvature information, can help overcome these challenges by
providing faster convergence rates and more accurate solutions. However,
the computational overhead of computing and storing the full Hessian
matrix (the matrix of second-order partial derivatives) can be prohibitive,
especially in high-dimensional problems. Quasi-Newton methods, which
replace the Hessian matrix with its approximations, are popular alterna-
tives to full second-order methods. These methods are computationally
efficient in a wide range of optimization and control problems.

2

1.1 Structure and overview

In this thesis, we design and analyze practical quasi-Newton optimization
methods for learning and control problems. We focus on (i) nonsmooth
optimization in machine learning for several data-based modeling ap-
plications, and (ii) optimization-based approaches for optimal control
problems. The contributions herein are spread across two parts of the
thesis: Part II and Part III. Part II is made up of Chapters 2–3, and Part
III is made up of Chapters 4–5. Each of these chapters are written to be
self-contained, with a clear problem statement, motivation, methodology,
theoretical analysis, and numerical experiments. However, in Part I (this
chapter), we provide a general overview of the problems considered in
the thesis and the motivation behind the proposed algorithms. The thesis’
main contributions are thus structured as follows.

Part II: Solving nonsmooth convex composite optimization problems
with generalized Gauss-Newton methods and self-concordant smooth-
ing. This part, the associated appendices (Appendices 2.A, 2.B, 3.A),
and the conclusions from the respective chapters in Chapter 6 are based
on:

• Adeyemi D. Adeoye and Alberto Bemporad. “SCORE: approximat-
ing curvature information under self-concordant regularization”. In:
Computational Optimization and Applications 86.2 (2023), pp. 599–626.

• Adeyemi D. Adeoye and Alberto Bemporad. “Self-concordant Smooth-
ing for Large-Scale Convex Composite Optimization”. In: arXiv preprint
arXiv:2309.01781 (2024). Submitted.

The main contributions of this part are summarized below.

(a) We introduce self-concordant regularization (SCORE), a regulariza-
tion and optimization framework for smooth convex problems which
incorporates Newton-decrement into damped Newton-type iterates.
Under this framework, we present a generalized Gauss-Newton
(GGN) algorithm, called GGN-SCORE, that updates the optimiza-
tion variables in a pseudo-online (stochastic) manner. The proposed

3

algorithm exploits the structure of the regularized Gauss-Newton
matrix to significantly reduce associated computational overhead.
GGN-SCORE demonstrates how to speed up convergence while
also improving model generalization for practical machine learn-
ing applications. Numerical experiments show the efficiency of our
method and its fast convergence, which compare favorably against
baseline first-order and quasi-Newton methods. Additional exper-
iments involving nonconvex (overparameterized) neural network
training problems show that the proposed method is promising for
nonconvex optimization, motivating further study of the approach
specifically for understanding the optimization landscape of deep
neural networks.

(b) We extend and generalize the notion of SCORE to nonsmooth convex
optimization problems by embedding proximal operators to handle
nonsmooth regularizers. Based on this extension, we propose two
new algorithms: (i) a proximal Newton algorithm, and (ii) a proximal
GGN algorithm. We provide theoretical guarantees for the conver-
gence of these algorithms and demonstrate their efficiency through
numerical experiments on several problems relevant to machine
learning, signal processing, and control.

Part III: Theoretical guarantees and practical frameworks for solving
supervised learning and control problems in neural networks using
quasi-Newton methods. This part, the associated appendices (Appen-
dices 4.A, 4.B, 4.C), and the conclusions from the respective chapters in
Chapter 6 are based on:

• Adeyemi D. Adeoye, Philipp Christian Petersen, and Alberto Bempo-
rad. “Regularized Gauss-Newton for Optimizing Overparameterized
Neural Networks”. In: arXiv preprint arXiv:2404.14875 (2024). Submit-
ted.

• Adeyemi D. Adeoye and Alberto Bemporad. “An Inexact Sequential
Quadratic Programming Method for Learning and Control of Recur-
rent Neural Networks”. In: IEEE Transactions on Neural Networks and

4

Learning Systems 36.2 (2025), pp. 2762–2776. DOI: 10.1109/TNNLS.
2024.3354855.

The main contributions of this part are summarized below.

(a) Under practical boundedness conditions on the regularized GGN
matrices and the smoothness of the hidden-layer activation function,
we establish a non-asymptotic guarantee for the last-iterate conver-
gence of a two-layer neural network predictions to the outputs of a
given target function. We also quantify the decay of the regularized
objective function over the course of the training iterations which,
under standard theoretical setups, guarantees the global convergence
the GGN. Through empirical simulations, we show how this rather
general framework relate generalization and stability of the opti-
mized neural network with the structural properties of the class of
regularizers despite possibly breaking the direct relation between
GGN and the neural tangent kernel (NTK) regression.

(b) We present a quasi-Newton optimization framework based on a two-
stage approach to solving optimal control problems in the training
of neural networks. In the first stage, the true system dynamics are
approximated using a specific type of RNN whose training prob-
lem is regarded as a finite-horizon optimal control problem. We
describe how the resulting regularized quadratic programming (QP)
subproblems are solved efficiently, and how they incorporate ap-
proximate second-order information into the learning process. In
particular, we propose an inexact sequential quadratic programming
(SQP) algorithm to solve the QP subproblems efficiently. Under mild
assumptions, we establish the convergence of the proposed SQP
algorithm. Our framework and proposed algorithms use (approxi-
mate) second-order information in the optimization process of the
two stages to learn accurate models and control policies that help
in real-time decision-making under uncertainty and partial observ-
ability. Through numerical experiments on a reinforcement learning
(RL) problem and an industrial control setting, we demonstrate the
practical applications of the proposed methods and discuss possible

5

https://doi.org/10.1109/TNNLS.2024.3354855
https://doi.org/10.1109/TNNLS.2024.3354855

extensions for future research. Notably, the proposed RNN learning
framework is shown to outperform existing methods in terms of
convergence speed and approximation accuracy.

1.1.1 Open-source implementations

We provide open-source implementations of most of the proposed algo-
rithms in this thesis in a Julia [41] package. Due to the goal of devel-
oping a unified framework for solving optimization problems in learn-
ing and control, the Julia package is designed to be modular and ex-
tensible, allowing for easy integration of new algorithms and problem
formulations. Markedly, the Julia package unifies algorithms for solv-
ing Self-Concordant Smooth Optimization (SCSO) problems, where we use
“smooth” synonymously with “regularized” in the context of this thesis. It
is available on GitHub at https://github.com/adeyemiadeoye/
SelfConcordantSmoothOptimization.jl.

NB: It is worth mentioning that when revising some parts of the subsequent
sections of this chapter for a first submission, a writing tool based on a Large
Language Model (LLM) was used to rewrite some sentences, correct some gram-
matical errors and improve the writing of an original early draft where the main
structure and content were already in place with appropriate references (when
they’re known). The goal is to make the introduction clearer, simpler and less
technical for a broader audience; we hope this language technology has helped in
making the introduction a good entry point into the main (technical) parts of the
thesis for readers (as the expert reviews suggest). The technology was not used to
generate any new content or ideas (which expert sources debate its ability to do
currently), but rather to assist in the revision/writing process.
Also, the Julia package has since undergone some refactoring with the aid of the
LLM technology, with no changes to the implemented algorithms.

1.2 Nonlinear programming problem

In this section, we provide a very general setup of the optimization prob-
lems considered in this thesis. We want to describe the basic and essential
components that are common to all the optimization problems considered

6

https://github.com/adeyemiadeoye/SelfConcordantSmoothOptimization.jl
https://github.com/adeyemiadeoye/SelfConcordantSmoothOptimization.jl

throughout. The specific assumptions and notations for the objective func-
tions, constraints, and optimization variables are tailored to the specific
problem formulations and described in each chapter.

We aim to solve optimization problems of the form

min
x∈C

f(x), (1.1)

where x ∈ Rn is the optimization variable, and the set C ⊆ Rn represents
possible constraints on the optimization variables, such as bounds on
the variables or linear equality and inequality constraints. The objective
function f : Rn → R is possibly nonsmooth, nonconvex and/or high-
dimensional, depending on the target application. Irrespective of the
specific form of f and C, the goal is to find a minimizer x∗ ∈ C such
that f(x∗) ≤ f(x) for all x ∈ C. The optimization problems considered
in this thesis arise in machine learning, control, and signal processing
applications, where the objective function f is typically a loss function
or a cost function that needs to be minimized to learn accurate models
or control policies. In some problems, such as structural risk minimization
in machine learning, the constraint set C serves the purpose of regulariz-
ing the optimization problem and preventing overfitting of the learned
models [232]. In this case, the constraints are often imposed via an explicit
regularization term g : Rn → R, leading to the regularized optimization
problem

min
x∈Rn

L(x) ≜ f(x) + λg(x), (1.2)

where λ > 0 is a regularization parameter that controls the trade-off
between the objective term f and the regularization term g. This regular-
ization term penalizes complex models and encourages simpler solutions,
thereby improving the generalization capability of the learned models.

When modeling large-scale dynamical systems and designing control
systems, simpler and lightweight models are often preferred. To reduce
the model complexity, an optimization problem of the form (1.2) is typi-
cally solved, where the regularization term g enforces (structured) sparsity
on the model parameters. For example, g can be a sparse group lasso

7

penalty that encourages the selection of a small subset of states or inputs
that are considered more important in the dynamical model (see, e.g.,
[32]). In MPC problems, C represents model dynamics and operational
constraints that need to be satisfied by the control policies [44]. Here, the
constraints are imposed directly on the optimization variables x, and an
algorithm is sought to find a feasible solution that satisfies the constraints
while minimizing the cost function f . Typical examples of this setup are
presented in Section 1.3 and Chapter 5.

Each chapter in Parts II and III of this thesis deals with a specific
type of constraint set C. In Chapter 2, we consider smooth optimization
problems with self-concordant regularizers, with the main goal of pre-
senting the proposed optimization scheme in a comprehensive manner,
and demonstrating its efficiency in solving practical machine learning
problems. This scheme is extended to handle more general nonsmooth
optimization problems in the subsequent chapters, with the goal of pro-
viding a unified approach to solving optimization problems in learning and
control.

1.3 Learning and control problems

In common learning strategies, the optimization problem is formulated as
a data-driven modeling problem, where the optimization variables are the
model parameters, and the constraints (typically enforced through (1.2))
define desired structural properties of the model. When deeper structures
and higher complexities are involved in the model learning, particularly
in the context of neural networks, the learning algorithms of choice are
often gradient-based that use the chain rule of differentiation to compute
gradient terms. This process is known as backpropagation [203], and it is
central to modern deep learning algorithms [102]. Backpropagation has
been directly linked to an optimal control formalism in which constraints
in the problem are represented as model dynamics [132]. Under this
lens, we introduce the learning and control aspects of the optimization
problems considered in this thesis.

8

1.3.1 Supervised learning with neural networks

Consider a data-generating system represented by x+ ≜ h(x, u, t), where
x ∈ Rnx is the current state, x+ ∈ Rnx is the next state, u ∈ Rnu is
the control input, and t ∈ R is the discrete-time index. The system
dynamics are (partially) unknown, but we have access to a dataset of
(noisy) measurements {(xi, ui, yi)}Ni=1, where yi ∈ Rny are the outputs
of the system. We aim to learn an approximate modelM that provides
real-time predictions of the system outputs given the current state and
control input. SupposeM is a neural network with L layers defined by

noisy

data approximator
predictions

physical

system

(partially) unknown

Figure 1: Data-driven approximation of a dynamical system.

M(x, u; θ) ≜

σL(W
(L)σL−1(W

(L−1) · · ·σ1(W (1)[x, u]⊤ + b(1)) · · ·+ b(L−1)) + b(L)),
(1.3)

where for each l = 1, . . . , L, W (l) ∈ Rnl×nl−1 and b(l) ∈ Rnl are the
weights and biases of the l−th layer, respectively, and σl : R → R
is an element-wise nonlinear hidden map, called the activation func-
tion. Let θl ≜ {W (l), b(l)} be the parameters of the l−th layer, then
Rn ∋ θ ≜ vec(θ1, . . . , θL) represents the stacked vector of all parame-
ters in the network. If ŷi = M(xi, ui; θ) denotes the predictions of the
neural network, then the model parameters θ are learned by minimizing
the regularized empirical risk

L(θ) = 1

N

N∑︂
i=1

ℓ(Yi, ŷi) + λg(θ), (1.4)

where Yi ≜ [yi, x
+]⊤ ∈ RnY , ℓ : RnY ×RnY → R measures the discrepancy

between the predicted and true outputs, g : Rn → R is a regularization
term, and λ > 0 is a regularization parameter.

9

hidden maps

output input

Figure 2: A neural network schematic.

The neural network (1.3) is called a feedforward neural network (FNN).
Because FNNs are universal approximators, they can learn complex func-
tions and model the system dynamics effectively [117]. However, since
they lack memory (recurrent connections or feedback loops), they may
not be suitable for modeling dynamical systems with memory or feedback
without special modifications. On the other hand, recurrent neural networks
(RNNs) are designed to handle such systems [203]. A vanilla RNN in
state-space form is given by

xt+1 =Mx(xt, ut; θx),

ŷt =My(xt; θy),
(1.5)

where θx and θy are the parameters of the state and output models, re-
spectively.

The optimization problems associated with training RNNs are more
complex than those for FNNs as the model involves hidden states and
a sequence of optimization problems are solved over time. However,
the training problem of both FNNs and RNNs are finite-horizon optimal
control problems, as we briefly discuss below. Hence, developing efficient
optimization algorithms that solve problems coming from both (super-
vised) learning and control applications forms the core of subsequent
chapters. In Chapter 5, we propose a specialized algorithm that solve
the training problem of RNNs efficiently. All the algorithms proposed in

10

physical

system

noisy

data

hidden (recurrent) maps

predictions

(recurrent)

neural network

(partially) unknown

Figure 3: Schematic of a dynamical system approximated by a neural net-
work.

Chapters 2–4 can handle the training problem of FNNs.

1.3.2 Finite-horizon optimal control problems in super-
vised learning

Optimal control

Consider a discrete-time system described by the state-space model

xt+1 = h(xt, ut), (1.6)

where xt ∈ Rnx is the state, ut ∈ Rnu is the control input, and
h : Rnx ×Rnu → Rnx is the system dynamics in discrete time. For simplic-
ity of our presentation, we ignore possible disturbances, constraints, and
uncertainties in the system dynamics (1.6), but we remark that these are
important considerations in practice, and are taken into account in the
subsequent relevant chapters.

In finite-horizon optimal control, the goal is to find a sequence of control
inputs {ut}T−1

t=0 that minimizes a cost function

J(x0, {ut}T−1
t=0) ≜

T−1∑︂
t=0

ℓ(xt, ut) + ℓT (xT), (1.7)

11

over a finite horizon T , where ℓ : Rnx × Rnu → R is the stage cost, and
ℓT : Rnx → R is the terminal cost. The optimization problem is formulated
as

min
{ut}T−1

t=0

J(x0, {ut}T−1
t=0)

s.t. xt+1 = h(xt, ut), t = 0, . . . , T − 1

xT ∈ XT ,

x0 = xinit,

(1.8)

where J : Rnx × RTnu → R is defined by (1.7), XT is the terminal con-
straint set and xinit is the initial state of the system. In case disturbances,
constraints, and uncertainties are present in the system dynamics, the
optimization problem (1.8) is modified to include them accordingly.

The finite-horizon optimal control problem (1.7)–(1.8) can be solved
using dynamic programming or direct optimization methods [44]. For a
broader and more detailed presentation, including infinite-horizon optimal
control problems, we refer the reader to [40, 44].

Feedforward neural network training as an optimal control problem

By explicitly writing the equality constraints in (1.8) as

x1 = h(x0, u0),

x2 = h(x1, u1),

...

xT = h(xT−1, uT−1),

the optimal control problem (1.7)–(1.8) becomes more easily seen as a non-
linear programming (optimization) problem with variables {ut}T−1

t=0 and
{xt}Tt=0. Consider eliminating the intermediate state variables {xt}T−1

t=1

by successive substitution, so that only {ut}T−1
t=0 and x0 remain as opti-

mization variables. While the optimization problem still depends on the
initial state x0 which determines the optimal control sequence {u∗t }T−1

t=0 ,
there are now only T + 1 decision variables to be optimized. This ap-
proach is called the sequential optimal control approach, and it is precisely

12

what backpropagation amounts to when gradient-based optimization
algorithms are used to train FNNs by minimizing the regularized loss
(1.4) [132, 93]. To make it more explicit, consider the FNN model (1.3)
with L layers, and write this optimization problem as

min
θ,{zl}L−1

l=1

L(θ)

s.t. a0 = z0,

al =W (l)zl−1 + b(l), l = 1, . . . , L− 1,

with zl = σl(al), l = 1, . . . , L− 1,

(1.9)

where L(θ) is defined by (1.4) and z0 ∈ Rn0×N is the input data. Prob-
lem (1.9) is an L-stage finite-horizon optimal control problem, and the
optimization variables are the parameters θ and the intermediate states
{zl}L−1

l=1 . In the traditional gradient-based training, the intermediate states
are eliminated by successive substitution in the forward pass to compute
the loss, and the loss gradient is computed in the backward pass (backprop-
agation) to update the parameters θ.

Recurrent neural network training as an optimal control problem

Since stability and backpropagation-related issues in FNN training are
readily handled by regularization techniques [102] (see also Chapter 4),
traditional backpropagation (gradient-based) training is often efficient
and sufficient for FNNs. However, for RNNs, the training problem is
more complex due to the presence of hidden states and the sequential
nature of the optimization problem. In this case, the backpropagation
through time (BPTT) algorithm, a variant of backpropagation, is used
to compute the loss gradients. This involves first unrolling the RNN
over time to form a multilayer (deep) feedforward neural network (that
is, forward pass, which eliminates the hidden states), and then applying
backpropagation to compute the loss gradients. This process is known to
suffer from vanishing and exploding gradients [36, 116], which can lead to
poor generalization and slow convergence. These issues can be addressed
by incorporating second-order information into the optimization process,
as we discuss in Chapter 5.

13

x0 x1 x2 xt↼−−⇁
roll

unroll
xt

Hidden
state

ŷ0

u0

ŷ1

u1

ŷ2

u2

ŷt

ut

ŷtOutput

utInput

. . .

. . .

Figure 4: Schematic of a simple RNN unrolled over time.

Another approach to solving optimal control problems is the simulta-
neous approach, where all the decision variables are optimized simulta-
neously. When viewed as an optimal control problem, it is more natural
and efficient to solve the training problem of RNNs using the simultane-
ous approach. Here, no elimination of intermediate states is done, and
the optimization problem is solved directly as a large-scale nonlinear
programming problem where subproblems are solved with structure-
exploiting iterative algorithms.

Consider the RNN model in (1.5). Under the simultaneous approach,
the training problem of the RNN is formulated as

min
θx,θy,{xt}T

t=0

Lrnn(θx, θy, x0)

s.t.

⎡⎢⎢⎢⎢⎣
x1 −Mx(x0, u0; θx)
x2 −Mx(x1, u1; θx)

...
xT −Mx(xT−1, uT−1; θx)

⎤⎥⎥⎥⎥⎦ = 0,
(1.10)

where

Lrnn(θx, θy, x0) ≜
T−1∑︂
t=0

ℓ(yt, ŷt) +R(θx, θy, x0),

is the regularized loss function, with R being separable in the model
parameters and the initial state x0. This formulation results in a large-scale
optimization problem with Tnx + nθx + nθy decision variables and Tnx
equality constraints, where nθx and nθy are the number of parameters

14

in the state and output models, respectively. Several benefits of this
approach for training RNNs are discussed in Chapter 5.

1.4 First- and second-order optimization meth-
ods

To simplify our presentation in this section, we consider the optimization
problem (1.1) with C = Rn, and assume that f is twice continuously
differentiable. The gradient of f at x is denoted by ∇ f(x), and ∇2 f(x)

denotes its Hessian. In modern practice, these terms are estimated using
automatic differentiation tools provided by software libraries of popular
programming languages, and account for exact first- and second-order
information, respectively, about the function f in the design of algorithms
for solving smooth optimization problems. A technique for handling
nonsmooth terms in composite optimization problems is discussed in
Chapter 3.

1.4.1 First-order optimization methods

First-order optimization methods rely solely on gradient information to
find the minimizer of the objective function f . The most common first-
order method is the gradient descent method, which can be traced back
to Augustin-Louis Cauchy’s work in [62]. The gradient descent method
updates the current iterate xk of the optimization variable x using the
iterative formula

xk+1 = xk − αk∇f(xk), (1.11)

where αk > 0 is the step size or learning rate. There are now several
variants of the gradient descent method (see [200] and the references
in Chapter 2), including the stochastic gradient descent (SGD) method,
which uses a noisy estimate of the gradient to update x. The SGD method
is particularly useful for large-scale optimization problems, where com-
puting the full gradient is computationally expensive [46]. While they are
simple and easy to implement, with low per-iteration computational cost,
first-order methods can suffer from slow convergence, especially when

15

the objective function has a complex landscape as in the case of neural
network training [102]. A related issue arises when the step size is chosen
poorly, often making the methods require a large number of iterations to
converge to a solution [163, 46]. Additionally, first-order methods may
struggle with saddle points, where the gradient is zero but the point is
not a local minimum [77].

1.4.2 Second-order optimization methods

Second-order optimization methods use both gradient and Hessian in-
formation to achieve faster convergence, and improved accuracy and
stability. Newton’s method is a prominent second-order method, and
can be traced back to Sir Isaac Newton’s work in his unpublished 1669
manuscript titled De analysi per aequationes numero terminorum infinitas
(“On the analysis by means of equations with an infinite number of terms”
[104]). Newton’s method uses the iterative formula

xk+1 = xk − [∇2 f(xk)]
−1∇f(xk). (1.12)

This method can achieve quadratic convergence near the optimal so-
lution, making it significantly faster than first-order methods for well-
behaved problems [163]. However, the computational overhead of New-
ton’s method can be severe. Computing and inverting the Hessian matrix
at each iteration can be highly prohibitive, especially for high-dimensional
problems. This motivates the use of methods that replace ∇2 f(xk) (or its
inverse) in (1.12) with an approximation of it to reduce the computational
cost while maintaining fast convergence speeds comparable to Newton’s
method.

1.4.3 Quasi-Newton methods

The first formal quasi-Newton method was developed by William C. Davi-
don in [78]. The term “quasi-Newton” was first used by Charles G. Broy-
den in 1965 [48] to describe the class of optimization methods that replace
the exact Hessian matrix inverse [∇2 f(xk)]

−1 in Newton’s method with
an approximation. The first set of quasi-Newton methods, developed in

16

a series of papers between 1959 and 1970 [78, 48, 49, 21, 50, 94, 101, 216],
uses specified conditions to iteratively approximate [∇2 f(xk)]

−1 with a
sequence of matrices {Gk}, such that

lim
k→∞

Gk = [∇2 f(x∗)]−1,

where x∗ is the optimal solution of the optimization problem. In other
words, they compute Gk under the specified conditions, such that some
of its properties approximate to those of [∇2 f(xk)]

−1 [49]. Quasi-Newton
methods are widely used in practice due to their balance of efficiency and
convergence properties [168]. They are particularly effective for medium
to large-scale optimization problems where the computational cost of
Newton’s method is prohibitive.

The most popular quasi-Newton methods include the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS), the Davidon–Fletcher–Powell
(DFP), the limited-memory BFGS (L-BFGS), the generalized Gauss-
Newton, and sequential quadratic programming (SQP) methods [95, 143,
168]. A common, distinct feature of these methods is the low-rank update
of the approximation matrix Gk at each iteration which, in the case of
generalized Gauss-Newton methods, is achieved through low-rank linear
algebra techniques [4] (see Chapter 2). In the next chapters, we develop
new efficient quasi-Newton methods for solving large-scale optimization
problems in machine learning and control applications.

17

Part II

Solving nonsmooth convex
composite optimization

problems with generalized
Gauss-Newton methods and
self-concordant smoothing

18

Chapter 2

SCORE: Approximating
curvature information under
self-concordant
regularization

2.1 Introduction

This chapter presents a pseudo-online optimization algorithm based on
solving a regularized unconstrained minimization problem under the as-
sumption of strong convexity and Lipschitz continuity. As we discussed
in the previous chapter, first-order methods such as stochastic gradient
descent (SGD) [194, 46] and its variants [86, 247, 128, 123] only make use
of first-order information through the function gradients. Second-order
methods [30, 143, 108, 11, 147, 177, 149], on the other hand, attempt to
incorporate, in some way, second-order information in their approach,
through the Hessian matrix or the Fisher information matrix (FIM). This
generally provides second-order methods with better (quadratic) conver-
gence than a typical first-order method which only converges linearly in
the neighbourhood of the solution [163].

In most commonly used second-order methods, the natural gradient,

19

Gauss-Newton, and the sub-sampled Newton [56] – or its regularized
version [91] – used for incorporating second-order information while
maintaining desirable convergence properties, compute the Hessian ma-
trix (or FIM) H by using the approximation H ≈ JTJ , where J is the
Jacobian matrix. This approximation is still an nw × nw matrix, where nw
is the number of optimization variables, and remains computationally
demanding to invert for large problems. In recent works [57, 249, 38, 124],
second-order methods for overparameterized neural network models are
made to bypass this difficulty by applying a matrix identity, and instead
only compute the matrix JJT which is a d · N × d · N matrix, where
d is the model output dimension and N is the number of data points.
This approach significantly reduces computational overhead in the case
d ·N is much smaller than nw (overparameterized models) and helps to
accelerate convergence [57]. Nevertheless, for an objective function with
a differentiable (up to two times) convex regularizer, this simplification
requires a closer attention and special modifications for a general problem
with a large number of variables.

The idea of exploiting desirable regularization properties for improv-
ing the convergence of the (Gauss-)Newton scheme has been around for
decades and most of the published works on the topic combine in different
ways the idea of Levenberg-Marquardt (LM) regularization, line-search,
and trust-region methods [165]. For example, the recent work [155] com-
bines the idea of cubic regularization (originally proposed by [165]) and a
particular variant of the adaptive LM penalty that uses the Euclidean gra-
dient norm of the output-fit loss function (see [152] for a comprehensive
list and complexity bounds). Their proposed scheme achieves a global
O(k−2) rate, where k is the iteration number. A similar idea is considered
in [81] using the Bregman distances, extending the idea to develop an
accelerated variant of the scheme that achieves a O(k−3) convergence
rate.

We propose a new self-concordant regularization (SCORE) scheme
for efficiently choosing optimal variables of the model involving smooth,
strongly convex optimization objectives, where one of the objective func-
tions regularizes the model’s variable vector and hence avoids overfitting,

20

ultimately improving the model’s ability to generalize well. By an extra
assumption that the regularization function is self-concordant, we pro-
pose the GGN-SCORE algorithm (see Algorithm 1 below) that updates
the minimization variables in the framework of the local norm ∥ · ∥x (a.k.a.,
Newton-decrement) of a self-concordant function f(x) such as seen in
[164]. Our proposed scheme does not require that the output-fit loss
function is self-concordant, which in many applications does not hold
[155]. Instead, we exploit the greedy descent provision of self-concordant
functions, via regularization, to achieve a fast convergence rate while
maintaining feasible assumptions on the combined objective function
(from an application point of view). Although we assume a convex opti-
mization problem in this chapter, we also provide experiments that show
promising results for non-convex problems that arise when training neu-
ral networks. Our experimental results provide an interesting opportunity
for future investigation and scaling of the proposed method for large-
scale machine learning problems, as one of the non-convex problems
considered in the experiments involves training an overparameterized
neural network. We remark that overparameterization is an interesting
and desirable property, and a topic of interest in the machine learning
community [51, 157, 31, 9].

This chapter is organized as follows: First, we introduce some nota-
tions, formulate the optimization problem with basic assumptions, and
present an initial motivation for the optimization method in Section 2.2.
In Section 2.3, we derive a new generalized method for reducing the com-
putational overhead associated with the mini-batch Newton-type updates.
The idea of SCORE is introduced in Section 2.4 and our GGN-SCORE
algorithm is presented thereafter. Experimental results that show the
efficiency and fast convergence of the proposed method are presented in
Section 4.4.

21

2.2 Preliminaries

2.2.1 Notation and basic assumptions

Let {(xn,yn)}Nn=1 be a sequence of N input and output sample pairs,
xn ∈ Rnp ,yn ∈ Rd, where np is the number of features and d is the number
of targets. We assume a model f(θ;xn), defined by f : Rnw × Rnp → Y
and parameterized by the vector of variables θ ∈ Rnw . We denote by
∂ab ≡ ∂b the gradient (or first derivative) of b (with respect to a) and
∂2aab ≡ ∂2b the second derivative of b with respect to a. We write ∥ · ∥ to
denote the 2-norm. The set {diag(v) : v ∈ Rn}, where diag : Rn → Rn×n,
denotes the set of all diagonal matrices in Rn×n. Throughout this chapter,
bold-face letters denote vectors and matrices.

Suppose that f(θ;xn) outputs the value ŷn ∈ Rd. The regularized
minimization problem we want to solve is

min
θ
L(θ) ≜

N∑︂
n=1

ℓ(yn, ŷn)⏞ ⏟⏟ ⏞
g(θ)

+λ

nw∑︂
j=1

rj(θj)⏞ ⏟⏟ ⏞
h(θ)

, (2.1)

where ℓ : Rd×Rd → R is a (strongly) convex twice-differentiable output-fit
loss function, rj : R → R, j = 1, . . . , nw, define a separable regulariza-
tion term on θ, g(θ) : Rnw → R, h(θ) : Rnw → R. We assume that the
regularization function h(θ), scaled by the parameter λ > 0, is twice
differentiable and strongly convex. The following preliminary conditions
define the regularity of the Hessian of L(θ) and are assumed to hold only
locally in this chapter:

Assumption 1. The functions g and h are twice-differentiable with respect to θ
and are respectively γl- and γa-strongly convex.

Assumption 2. ∃γu, γb with 0 ≤ γl ≤ γu <∞, 0 < γa ≤ γb <∞, such that
the gradient of L(θ) is (γu + λγb)-Lipschitz continuous ∀x ∈ Rnp ,y ∈ Rd.
That is, ∀x ∈ Rnp ,∀y ∈ Rd, the gradient ∂θL(θ) = ∂θg(θ)+λ∂θh(θ) satisfies⃦⃦

∂θL(y, f(θ1;x))− ∂θL(y, f(θ2;x))
⃦⃦
≤ (γu + λγb) ∥θ1 − θ2∥ , (2.2)

for any θ1,θ2 ∈ Rnw .

22

Assumption 3. ∃γg, γh with 0 < γg, γh <∞ such that ∀x ∈ Rnp ,∀y ∈ Rd,
the second derivatives of g(θ) and h(θ) respectively satisfy⃦⃦⃦

∂2g(y, f(θ1;x))− ∂2g(y, f(θ2;x))
⃦⃦⃦
≤ γg ∥θ1 − θ2∥ , (2.3a)⃦⃦⃦

∂2h(y, f(θ1;x))− ∂2h(y, f(θ2;x))
⃦⃦⃦
≤ γh ∥θ1 − θ2∥ , (2.3b)

for any θ1,θ2 ∈ Rnw .

Commonly used loss functions such as the squared loss, and the
sigmoidal cross-entropy loss are twice differentiable and (strongly) convex
in the model variables. Certain smoothed sparsity-inducing penalties such
as the (pseudo-)Huber function – presented later – constitute the class of
functions that may be well-suited for h(θ) defined above.

The assumptions of strong convexity and smoothness about the ob-
jective L(θ) are standard conventions in many optimization problems as
they help to characterize the convergence properties of the underlying so-
lution method [153, 245]. However, the smoothness assumption about the
objective L(θ) is sometimes not feasible for some multi-objective (or regu-
larized) problems where a non-smooth (penalty-inducing) function h(θ)
is used (see the recent work [42]). In such a case, and when the need to
incorporate second-order information arise, a well-known approach in the
optimization literature is generally either to approximate the non-smooth
objectives by a smooth quadratic function (when such an approximation
is available) or use a “proximal splitting” method and replace the 2-norm
in this setting with the Q-norm, where Q is the Hessian matrix or its
approximation [182]. In [182], the authors propose two techniques that
help to avoid the complexity that is often introduced in subproblems
when the latter approach is used. While proposing new approaches, [211]
highlights some popular techniques to handle non-differentiability. Each
of these works highlight the importance of incorporating second-order
information in the solution techniques of optimization problems. By
conveniently solving the optimization problem (2.1) where the assump-
tions made above are satisfied, our method ensures the full curvature
information is captured while reducing computational overhead.

23

2.2.2 Approximate Newton Scheme

Given the current value of θ, the (Gauss-)Newton method computes an
update to θ via

θ ← θ − ρG, (2.4)

where ρ is the step size, G = H−1∂L(θ) and H is the Hessian of L or
its approximation. In this chapter, we consider the generalized Gauss-
Newton (GGN) approximation of H which we now define in terms of
the function g(θ). This approximation and its detailed expression moti-
vates the modified version introduced in the next section to include the
regularization function h(θ).

Definition 1 (Generalized Gauss-Newton Hessian). Let diag(qn) ∈ Rd×d

be the second derivative of the loss function ℓ(yn, ŷn) with respect to the predictor
ŷn, qn = ∂2ŷnŷn

ℓ(yn, ŷn) for n = 1, 2, . . . , N , and let Qg ∈ RdN×dN be a block
diagonal matrix with qn being the n-th diagonal block. Let Jn ∈ Rd×nw denote
the Jacobian of ŷn with respect to θ for n = 1, 2, . . . , N , and let Jg ∈ RdN×nw

be the vertical concatenation of all Jn’s. Then, the generalized Gauss-Newton
(GGN) approximation of the Hessian matrix Hg ∈ Rnw×nw associated with the
fit loss ℓ(yn, ŷn) with respect to θ is defined by

Hg ≈ JT
g QgJg =

N∑︂
n=1

JT
n diag(qn)Jn. (2.5)

Let en ∈ Rd be the Jacobian of the fit loss defined by en = ∂ŷn
ℓ(yn, ŷn)

for n = 1, 2, . . . , N . For example, in case of squared loss ℓ(yn, ŷn) =
1
2 (yn − ŷn)

2 we get that en is the residual en = ŷn − yn. Let eg ∈ RdN be

24

the vertical concatenation of all en’s. Then, using the chain rule, we write

JT
n eTn =

⎡⎢⎢⎢⎢⎣
∂θ1 ŷ

(1) ∂θ1 ŷ
(2)) · · · ∂θ1 ŷ

(d)

∂θ2 ŷ
(1) ∂θ2 ŷ

(2) · · · ∂θ2 ŷ
(d)

...
...

...
∂θnw

ŷ(1) ∂θnw
ŷ(2) · · · ∂θnw

ŷ(d)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
∂ŷℓ

(1)

∂ŷℓ
(2)

...
∂ŷℓ

(d)

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
∂θ1ℓ

(1) + ∂θ1ℓ
(2) + · · ·+ ∂θ1ℓ

(d)

∂θ2ℓ
(1) + ∂θ2ℓ

(2) + · · ·+ ∂θ2ℓ
(d)

...
∂θnw

ℓ(1) + ∂θnw
ℓ(2) + · · ·+ ∂θnw

ℓ(d)

⎤⎥⎥⎥⎥⎦
=

⎡⎣ d∑︂
i=1

∂θ1ℓ
(i)

d∑︂
i=1

∂θ2ℓ
(i) · · ·

d∑︂
i=1

∂θnw
ℓ(i)

⎤⎦T

, (2.6)

and

gg(θ) = JT
g eg =

N∑︂
n=1

JT
n en. (2.7)

As noted in [212], the GGN approximation has the advantage of capturing
the curvature information of ℓ in g(θ) through the term Qg as opposed
to the FIM, for example, which ignores the full second-order interactions.
While it may become obvious, say when training a deep neural network
with certain loss functions, how the GGN approximation can be exploited
to simplify expressions for Hg (see e.g. in [47]), a modification is required
to take account of a twice-differentiable convex regularization function to
achieve some degree of simplicity and elegance. We derive a modification
to the above for the mini-batch scheme presented in the next section that
includes the derivatives of h(θ) in the GGN approximation of Hg. This
modification leads to our GGN-SCORE algorithm in Section 2.4.

2.3 Second-order (pseudo-online) optimization

Suppose that at each mini-batch step k we uniformly select a random
index set Ik ⊆ {1, 2, . . . , N}, |Ik| = m ≤ N (usually m ≪ N) to access

25

a mini-batch of m samples from the training set. The loss derivatives
used for the recursive update of the variables θ in this way is computed
at each step k, and are estimated as running averages over the batch-
wise computations. This leads to a stochastic approximation of the true
derivatives at each iteration for which we assume unbiased estimations.

The problem of finding the optimal adjustment δθmk ≜ θk+1− θk that
solves (2.1) results in solving either an overdetermined or an underdetermined
linear system depending on whether dm ≥ nw or dm < nw, respectively.
Consider, for example, the squared fit loss and the penalty-inducing
square norm as the scalar-valued functions g(θ) and h(θ), respectively in
(2.1). Then, Qg will be the identity matrix, and the LM solution δθ [134,
146] is estimated at each iteration k according to the rule1:

δθ = −(Hg + λI)−1gg = −(JT
g Jg + λI)−1JT

g eg. (2.8)

If dm < nw (possibly dm≪ nw), then by using the Searle identity (AB +

λI)A = A(BA+ λI) [213], we can conveniently update the adjustment
δθ by

δθ = −JT
g (JgJ

T
g + λI)−1eg. (2.9)

Clearly, this provides a more computationally efficient way of solving
for δθ. In what follows, we formulate a generalized solution method
for the regularized problem (2.1) which similarly exploits the Hessian
matrix structure when solving the given optimization problem, thereby
conveniently and efficiently computing the adjustment δθ.

Taking the second-order approximation of L(θ), we have

L(θ + δθ) ≈ L(θ) + gT δθ +
1

2
δθTHδθ, (2.10)

where H ∈ Rnw×nw is the Hessian of L(θ) and g ∈ Rnw is its gradient.

1For simplicity of notation, and unless where the full notations are explicitly required, we
shall subsequently drop the subscripts m and k, and assume that each expression represents
stochastic approximations performed at step k using randomly selected data batches each
of size m.

26

Let M = dm+ 1 and define the Jacobian J ∈ RM×nw :

JT =

⎡⎢⎢⎢⎢⎣
∂θ1 ŷ1 ∂θ1 ŷ2 · · · ∂θ1 ŷm λ∂θ1r1
∂θ2 ŷ1 ∂θ2 ŷ2 · · · ∂θ2 ŷm λ∂θ2r2

...
...

...
...

∂θnw
ŷ1 ∂θnw

ŷ2 · · · ∂θnw
ŷm λ∂θnw

rnw

⎤⎥⎥⎥⎥⎦ . (2.11)

Let eM = 1 and denote by e ∈ RM the vertical concatenation of all en’s,
en ∈ Rd, n = 1, 2, . . . ,m and eM . Then by using the chain rule as in (2.6)
and (2.7), we obtain

g(θ) = ∂θL(θ) = JTe. (2.12)

Let qn = ∂2ŷnŷn
ℓ(yn, ŷn), qn ∈ Rd for n = 1, 2, . . . ,m (clearly qn = 1 in

case of squared fit loss terms) and let qM = 0. Define Q ∈ RM×M as
the diagonal matrix with diagonal elements qn, n = 1, 2, . . . ,m and qM ,
where Q = QT ⪰ 0 by convexity of ℓ. Consider the following slightly
modified GGN approximation of the Hessian H ∈ Rnw×nw associated
with L(θ):

H ≈ JTQJ + λHh, (2.13)

where Hh is the Hessian of the regularization term h(θ), Hh ∈ Rnw×nw ,
and is a diagonal matrix whose diagonal terms are

Hhjj =
d2rj(θj)

dθ2j
, j = 1, . . . , nw.

We hold on to the notation H to represent the modified GGN approxima-
tion of the full Hessian matrix ∂2L. By differentiating (2.10) with respect
to δθ and equating to zero, we obtain the optimal adjustment

δθ = −(JTQJ + λHh)
−1JTe. (2.14)

Remark 1. The inverse matrix in (2.14) exists due to the strong convexity
assumption on the regularization function h which makes Hr ⪰ (minj Hhjj)I
and therefore matrix JTQJ + λHh is symmetric positive definite and hence
invertible.

27

Let U = JTQ. Using the identity [87, 106]

(D − V A−1B)−1V A−1 = D−1V (A−BD−1V)−1 (2.15)

with D = λHr , V = −JT , A = IM , and B = UT , and recalling that Q is
symmetric, from (2.14) we get

δθ =
(︂
λHh − (−JT)IMUT

)︂−1

(−JT)I−1
M e

= − 1

λ
H−1

h JT

(︃
IM +UT 1

λ
H−1

h JT

)︃−1

e

= −H−1
h JT

(︂
λIM +QJH−1

h JT
)︂−1

e. (2.16)

Remark 2. When combined with a second identity, namely V A−1(A −
BD−1V) = (D − V A−1B)D−1V , one can directly derive from (2.15)
Woodbury identity defined as [114] (A + UBV)−1 = A−1 − A−1U(B +
V A−1U)−1V A−1, or in the special case B = −D−1, as (A−UD−1V)−1 =
A−1 +A−1U(D − V A−1U)−1V A−1. Using Woodbury identity would, in
fact, structurally not result into the closed-form update step (2.16) in an exact
sense. Our construction involves a more general regularization function than
the commonly used square norm, where the Woodbury identity can be equally
useful, as its Hessian yields a multiple of the identity matrix.

Compared to (2.14), the clear advantage of the form (2.16) is that it
requires the factorization of an M ×M matrix rather than an nw × nw
matrix, where the term H−1

h can be conveniently obtained by exploiting
its diagonal structure. Given these modifications, we proceed by making
an assumption that defines the residual e and the Jacobian J in the region
of convergence where we assume the starting point θ0 of the process (2.16)
lies.

Let θ∗ be a nondegenerate minimizer of L, and define Bϵ(θ∗) ≜ {θk ∈
Rnw : ∥θk − θ∗∥ ≤ ϵ}, a closed ball of a sufficiently small radius ϵ ≥ 0

about θ∗. We denote by Nϵ(θ
∗) an open neighbourhood of the sublevel

set Γ(L) ≜ {θk : L(θk) ≤ L(θ0)}, so that Bϵ(θ∗) = cl(Nϵ(θ
∗)). We then

have Nϵ(θ
∗) ≜ {θk ∈ Rnw : ∥θk − θ∗∥ < ϵ}.

Assumption 4. (i) Each en(θk) and each qn(θk) is Lipschitz smooth, and
∀θk ∈ Nϵ(θ

∗) there exists ν > 0 such that ∥J(θk)z∥ ≥ ν∥z∥.

28

(ii) limk→∞
⃦⃦
Em[H(θk)]− ∂2L(θk)

⃦⃦
= 0 almost surely whenever

limk→∞ ∥gL(θk)∥ = 0, ∀θk ∈ Nϵ(θ
∗), where Em[·] denotes2 expectation

with respect to m.

Remark 3. Assumption 4(i) implies that the singular values of J are uni-
formly bounded away from zero and ∃β, β̃ > 0 such that ∥e∥ ≤ β, ∥J∥ =

∥JT ∥ ≤ β̃, then as Q ⪰ 0, we have ∃K1 such that Q ≤ K1I , and hence
∥λI +QJH−1

h JT ∥ ≤ λ+ (K/γa), where K = K1β̃
2
. Note that although we

use limits in Assumption 4(ii), the assumption similarly holds in expectation
by unbiasedness. Also, a sufficient sample size m may be required for Assump-
tion 4(ii) to hold, by law of large numbers, see e.g. [198, Lemma 1, Lemma
2].

Remark 4. Hg(θ) and Hh(θ) satisfy

γlInw
⪯Hg(θk) ⪯ γuInw

,

γaInw
⪯Hh(θk) ⪯ γbInw

,⃦⃦
Hg(y, f(θ1;x))−Hg(y, f(θ2;x))

⃦⃦
≤ γg ∥θ1 − θ2∥ ,⃦⃦

Hh(y, f(θ1;x))−Hh(y, f(θ2;x))
⃦⃦
≤ γh ∥θ1 − θ2∥ ,

at any point θk ∈ Rnw , for any x ∈ Rnp ,y ∈ Rd, and for any θ1,θ2 ∈ Nϵ(θ
∗)

where Assumption 4 holds.

We now state a convergence result for the update type (2.14) (and
hence (2.16)). First, we define the second-order optimality condition and
state two useful lemmas.

Definition 2 (Second-order sufficiency condition (SOSC)). Let θ∗ be a local
minimum of a twice-differentiable function L(·). The second-order sufficiency
condition (SOSC) holds if

∂L(θ∗) = 0, ∂2L(θ∗) ≻ 0. (SOSC)

Lemma 1 ([163, Theorem 1.2.3]). Suppose that Assumption 3 holds. Let
W ⊆ Rnw be a closed and convex set on which L(θ) is twice-continuously
differentiable. Let S ⊂W be an open set containing some θ∗, and suppose that
L(θ∗) satisfies (SOSC). Then, there exists L∗ = L(θ∗) satisfying

L(θk) > L∗ ∀θk ∈ S. (2.18)
2Subsequently, we shall omit the notation for the Hessian and gradient estimates as we

assume unbiasedness.

29

Lemma 2. The adjustment δθ given by (2.14) (and hence, (2.16)) provides a
descent direction for the total loss L(θk) in (2.1) at the kth oracle call.

Remark 5. Lemma 1, Lemma 2 and the first part of (SOSC) ensure that the
second part of Assumption 4(ii) always holds. In essence, it holds at every point
θk of the sequence {θk} generated by the process (2.16) as long as we choose a
starting point θ0 ∈ Bϵ(θ∗).

Theorem 1. Suppose that Assumptions 1, 2, 3 and 4 hold, and that θ∗ is a
local minimizer of L(θ) for which the assumptions in Lemma 1 hold. Let {θk}
be the sequence generated by the process (2.16). Then starting from a point
θ0 ∈ Nϵ(θ

∗), {θk} converges at a Q-quadratic rate. Namely:

∥θk+1 − θ∗∥ ≤ ξk ∥θk − θ∗∥2 ,

where

ξk =
γg + bγh

2
(︁
γl + aγa − (γg + bγh) ∥θk − θ∗∥

)︁ .
The proofs of these results are reported in Appendix 2.A and Ap-

pendix 2.B.

2.4 Self-concordant regularization (SCORE)

In the case dm < nw, one could deduce by mere visual inspection that
the matrix H−1

h in (2.16) plays an important role in the perturbation of θ
within the region of convergence due to its “dominating" structure in the
equation. This may be true as it appears. But beyond this “naive” view,
let us derive a more technical intuition about the update step (2.16) by
using a similar analogy as that given in [163, Chapter 5]. We have

θk+1 = θk −H−1
h JT

(︂
λI +QJH−1

h JT
)︂−1

e, (2.19)

where I is the identity matrix of suitable dimension. By some simple
algebra (see e.g., [163, Lemma 5.1.1]), one can show that indeed the
update method (2.19) is affine-invariant. In other words, the region of
convergence Nϵ(θ

∗) does not depend on the problem scaling but on the

30

local topological structure of the minimization functions g(θ) and h(θ)

[163].
Consider the non-augmented form of (2.19): θk+1 = θk−QgJ

T
g G−1

g eg ,
where Gg = JgJ

T
g is the so-called Gram matrix. It has been shown that

indeed when learning an overparameterized model (sample size smaller
than number of variables), and as long as we start from an initial point θ0
close enough to the minimizer θ∗ of L(θ) (assuming that such a minimizer
exists), both Jg and Gg remain stable throughout the learning process
(see e.g., [57, 83, 84]). The term Qg may have little to no effect on this
notion, for example, in case of the squared fit loss, Qg is just an identity
term. However, the original Equation (2.19) involves the Hessian matrix
Hh which, together with its bounds (namely, γa, γb characterizing the
region of convergence), changes rapidly when we scale the problem [163].
It therefore suffices to impose an additional assumption on the function
h(θ) that will help to control the rate at which its second-derivative Hh

changes, thereby enabling us to characterize an affine-invariant structure
for the region of convergence. Namely:

Assumption 5 (SCORE). The scaled regularization function λh(θ) has a third
derivative and is Mh-self-concordant. That is, the inequality⃓⃓⃓⃓

⃓
⟨︃
u,
(︂
∂3h(θ)[u]

)︂
u

⟩︃⃓⃓⃓⃓
⃓ ≤ 2Mh

⟨︂
u, ∂2h(θ)u

⟩︂3/2
, (2.20)

where Mh ≥ 0, holds for any θ in the closed convex set W ⊆ Rnw and u ∈ Rnw .

Here, ∂3h(θ)[u] ∈ Rnw×nw denotes the limit

∂3h(θ)[u] ≜ lim
t→0

1

t

(︂
∂2(θ + tu)− ∂2(θ)

)︂
, t ∈ R.

For a detailed analysis of self-concordant functions, we refer the interested
reader to [164, 163].

Given this extra assumption, and following the idea of Newton-
decrement in [164], we propose to update θ by

δθ = − α

1 +Mhηk
H−1

h JT
(︂
λI +QJH−1

h JT
)︂−1

e, (2.21)

31

where α > 0, ηk =
⟨︂
gh,H

−1
h gh

⟩︂1/2
and gh is the gradient of h(θ). The

proposed method which we call GGN-SCORE is summarized, for one ora-
cle call, in Algorithm 1. There is a wide class of self-concordant functions

Algorithm 1 GGN-SCORE

1: Input: variables vector θk, data {(xn,yn)}mn=1, Hh (see (2.13)), Q (see
(2.13)), J (see (2.13)), e (see (2.12)), parameters α,Mh, λ

2: Output: variables vector θk+1

3: Compute gh = ∂θk
h(θk)

4: Choose ηk =
⟨︂
gh,H

−1
h gh

⟩︂1/2
5: Set ρk = α

1+Mhηk

6: Solve
(︂
λI +QJH−1

h JT
)︂
b = e for b

7: Set G = H−1
h JT b

8: Compute θk+1 = θk − ρkG

that meet practical requirements, either in their scaled form [163, Corol-
lary 5.1.3] or in their original form (see e.g., in [223] for a comprehensive
list). Two of them are used in our experiments in Section 4.4.

In the following, we state a local convergence result for the process
(2.21). We introduce the notation ∥∆∥θ to represent the local norm of a
direction ∆ taken with respect to the local Hessian of a self-concordant
function h, ∥∆∥θ ≜

⟨︁
∆, ∂2θθh(θ)∆

⟩︁1/2
=
⃦⃦⃦[︁
∂2θθh(θ)

]︁1/2
∆
⃦⃦⃦

. Hence, with-
out loss of generality, a ball Bϵ(θ∗) of radius ϵ about θ∗ is taken with
respect to the local norm for the function h in the result that follows.

Theorem 2. Let Assumptions 1, 2, 3, 4 and 5 hold, and let θ∗ be a local
minimizer of L(θ) for which the assumptions in Lemma 1 hold. Let {θk} be the
sequence generated by Algorithm 1 with α =

√
γa

β1
(K + λγa), β1 = ββ̃. Then

starting from a point θ0 ∈ NM−1
h

(θ∗), {θk} converges to θ∗ according to the
following descent properties:

E[L(θk+1)] ≤ L(θk)−
(︄

λ

M2
h

ω(ζk) +
γl
2γa

ω′′(ζ̃k)− ξ
)︄
,

E∥θk+1 − θ∗∥θk+1
≤ ϑ∥θk − θ∗∥θk

+
γu
β1
∥θk − θ∗∥+ γg

2
∥θk − θ∗∥2,

32

where ω(·) is an auxiliary univariate function defined by ω(t) ≜ t− ln(1 + t)
and has a second derivative ω′′(t) = 1/(1 + t)2, and

ζk ≜
Mh

1 +Mhηk
, ζ̃k ≜Mhηk, ξ ≜

2(γu + λγb)√
γa

,

ϑ ≜ 1 +
λ√

γaβ1(1−Mh∥θk − θ∗∥θk
)
.

The proof is provided in Appendix 2.B. The results of Theorem 2 combine
strong convexity and smoothness properties of both g(θ) and h(θ), and
requires that only h(θ) is self-concordant.

2.5 Experiments

In this section, we validate the efficiency of GGN-SCORE (Algorithm
1) in solving the problem of minimizing a regularized strongly convex
quadratic function and in solving binary classification tasks. For the bi-
nary classification tasks, we use real datasets: ijcnn1 and w2a from the
LIBSVM repository [65] and dis, hypothyroid and coil2000 from
the PMLB repository [197], with an 80:20 train:test split each. The datasets
are summarized in Table 1. In each classification task, the model with a
sigmoidal output ŷn is trained using the cross-entropy fit loss function
ℓ(yn, ŷn) =

1
2

∑︁N
n=1 yn log

(︂
1
ŷn

)︂
+(1−yn) log

(︂
1

1−ŷn

)︂
, and the “deviance”

residual [88] en = (−1)yn+1
√︂
−2
[︁
yn log(ŷn) + (1− yn) log(1− ŷn)

]︁
,

yn, ŷn ∈ {0,1}. We map the input space to higher dimensional
feature space using the radial basis function (RBF) kernel K(xn,x

′
n) =

exp(−γ∥xn − x′
n∥2) with γ = 0.1. In each experiment, we use the penalty

value λ = 0.1 with both pseudo-Huber regularization hµ(θ) [172] parame-
terized by µ > 0 [67, 110] and ℓ2 regularization h2(θ) defined respectively
as

hµ(θ) ≜
√︁
µ2 + θ2 − µ, h2(θ) = ∥θ∥22 ≜

nw∑︂
i=1

|θi|2 ,

with coefficient µ = 1.0. Throughout, we choose a batch size, m of
512 for w2a, dis and hypothyroid, 2048 for coil2000 and 4096 for

33

Table 1: Real datasets: N = number of data samples, np = number of
features, d = number of targets.

dataset N
np

before & after
feature mapping

d

dis 3772
29

1
3017

hypothyroid 3163
25

1
2530

w2a 3470
300

1
2776

ijcnn1 35000
22

1
28000

coil2000 9822
85

1
7857

ijcnn1, unless otherwise stated. We assume a scaled self-concordant
regularization so that Mh = 1 [163, Corollary 5.1.3].

2.5.1 GGN-SCORE for different values of α

To illustrate the behaviour of GGN-SCORE for different values of α in
Algorithm 1 versus its value indicated in Theorem 2, we consider the
problem of minimizing a regularized strongly convex quadratic function:

min
θ
L(θ) ≜ 1

2
θ⊤Q̂θ − p⊤θ + λh(θ) ≡ g(θ) + λh(θ), (2.22)

where Q̂ ∈ Rnw×nw is symmetric positive definite, p ∈ Rnw , g is γa-
strongly convex and has γu-Lipschitz gradient, with the smallest and
largest eigenvalues of Q̂ corresponding to γa and γu, respectively. For this
function, suppose the gradient and Hessian of h(θ) is known, for example
when we choose h = hµ or h = h2, we have ∂L(θ) = Q̂θ−p+λ∂h(θ) and
∂2L(θ) = Q̂+ λ∂2h(θ). The coefficients Q̂ and p form our data, and with

34

0 2 4 6 8 10 12 14 16 18 20

Effective Epoch Number

10−33

10−28

10−23

10−18

10−13

10−8

10−3

F
u

n
ct

io
n

V
al

u
e

pseudo-Huber-regularized, m = 64

Adam

L-BFGS

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

GGN-SCORE: α =
√
γa
β1

(K + λγa)

0 2 4 6 8 10 12 14 16 18 20

Effective Epoch Number

10−33

10−28

10−23

10−18

10−13

10−8

10−3

F
u

n
ct

io
n

V
al

u
e

pseudo-Huber-regularized, m = 128

Adam

L-BFGS

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

GGN-SCORE: α =
√
γa
β1

(K + λγa)

0 2 4 6 8 10 12 14 16 18 20

Effective Epoch Number

10−33

10−28

10−23

10−18

10−13

10−8

10−3

F
u

n
ct

io
n

V
al

u
e

pseudo-Huber-regularized, m = 256

Adam

L-BFGS

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

GGN-SCORE: α =
√
γa
β1

(K + λγa)

0 2 4 6 8 10 12 14 16 18 20

Effective Epoch Number

10−32

10−27

10−22

10−17

10−12

10−7

10−2

F
u

n
ct

io
n

V
al

u
e

pseudo-Huber-regularized, m = 512

Adam

L-BFGS

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

GGN-SCORE: α =
√
γa
β1

(K + λγa)

0 2 4 6 8 10

Time (seconds)

10−33

10−28

10−23

10−18

10−13

10−8

10−3

F
u

n
ct

io
n

V
al

u
e

pseudo-Huber-regularized, m = 64

Adam

L-BFGS

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

GGN-SCORE: α =
√
γa
β1

(K + λγa)

0 1 2 3 4 5 6

Time (seconds)

10−33

10−28

10−23

10−18

10−13

10−8

10−3

F
u

n
ct

io
n

V
al

u
e

pseudo-Huber-regularized, m = 128

Adam

L-BFGS

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

GGN-SCORE: α =
√
γa
β1

(K + λγa)

Figure 5: Numerical behaviour of GGN-SCORE for different values of α in
the strongly convex quadratic test problem (2.22).

Q̂ ≡ 0.1×M⊤M , N = nw = 1000, we generate the data M ∈ RN×N ran-
domly from a uniform distribution on [0, 1] and consider the case L∗ = 0

in which p is the zero vector. The optimization variable θ is initialized to a
random value generated from a normal distribution with mean 0 and stan-
dard deviation 0.01. Figure 5, Figure 6 and Figure 7 show the behaviour

35

0 2 4 6 8 10 12 14 16 18 20

Effective Epoch Number

10−4

10−3

10−2

10−1

100

101

F
u

n
ct

io
n

V
al

u
e

`2-regularized, m = 64

Adam

L-BFGS

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

GGN-SCORE: α =
√
γa
β1

(K + λγa)

0 2 4 6 8 10 12 14 16 18 20

Effective Epoch Number

10−4

10−3

10−2

10−1

100

101

F
u

n
ct

io
n

V
al

u
e

`2-regularized, m = 128

Adam

L-BFGS

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

GGN-SCORE: α =
√
γa
β1

(K + λγa)

0 2 4 6 8 10 12 14 16 18 20

Effective Epoch Number

10−4

10−3

10−2

10−1

100

101

F
u

n
ct

io
n

V
al

u
e

`2-regularized, m = 256

Adam

L-BFGS

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

GGN-SCORE: α =
√
γa
β1

(K + λγa)

0 2 4 6 8 10 12 14 16 18 20

Effective Epoch Number

10−4

10−3

10−2

10−1

100

101

F
u

n
ct

io
n

V
al

u
e

`2-regularized, m = 512

Adam

L-BFGS

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

GGN-SCORE: α =
√
γa
β1

(K + λγa)

0.0 0.5 1.0 1.5 2.0 2.5

Time (seconds)

10−4

10−3

10−2

10−1

100

101

F
u

n
ct

io
n

V
al

u
e

`2-regularized, m = 64

Adam

L-BFGS

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

GGN-SCORE: α =
√
γa
β1

(K + λγa)

0.0 0.5 1.0 1.5 2.0

Time (seconds)

10−4

10−3

10−2

10−1

100

101

F
u

n
ct

io
n

V
al

u
e

`2-regularized, m = 128

Adam

L-BFGS

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

GGN-SCORE: α =
√
γa
β1

(K + λγa)

Figure 6: Numerical behaviour of GGN-SCORE for different values of α in
the strongly convex quadratic test problem (2.22).

of GGN-SCORE for this problem with different values of α in (0, 1] and
α =

√
γa

β1
(K + λγa) indicated in Theorem 2. We experiment with different

batch sizes m ∈ {64, 128, 256, 512}. One observes from Figure 5, Figure 6
and Figure 7 that larger batch size yields better convergence speed when
we choose α =

√
γa

β1
(K+λγa), validating the recommendation in Remark 3.

36

0 1 2 3 4 5

Time (seconds)

10−33

10−28

10−23

10−18

10−13

10−8

10−3

F
u

n
ct

io
n

V
al

u
e

pseudo-Huber-regularized, m = 256

Adam

L-BFGS

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

GGN-SCORE: α =
√
γa
β1

(K + λγa)

0 1 2 3 4 5

Time (seconds)

10−32

10−27

10−22

10−17

10−12

10−7

10−2

F
u

n
ct

io
n

V
al

u
e

pseudo-Huber-regularized, m = 512

Adam

L-BFGS

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

GGN-SCORE: α =
√
γa
β1

(K + λγa)

0.0 0.5 1.0 1.5 2.0

Time (seconds)

10−4

10−3

10−2

10−1

100

101

F
u

n
ct

io
n

V
al

u
e

`2-regularized, m = 256

Adam

L-BFGS

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

GGN-SCORE: α =
√
γa
β1

(K + λγa)

0.0 0.5 1.0 1.5 2.0

Time (seconds)

10−4

10−3

10−2

10−1

100

101

F
u

n
ct

io
n

V
al

u
e

`2-regularized, m = 512

Adam

L-BFGS

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

GGN-SCORE: α =
√
γa
β1

(K + λγa)

Figure 7: Numerical behaviour of GGN-SCORE for different values of α in
the strongly convex quadratic test problem (2.22).

Figure 5, Figure 6 and Figure 7 also show the comparison of GNN-SCORE
with the first-order Adam [128] algorithm, and the quasi-Newton Limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [167] method using
optimally tuned learning rates. While choosing α =

√
γa

β1
(K + λγa) yields

the kind of convergence shown in Theorem 2, Figure 5, Figure 6 and
Figure 7 show that by choosing α in (0, 1], we can similarly achieve a great
convergence that scale well with the problem.

Strictly speaking, the value of α indicated in Theorem 2 is not of
practical interest, as it contains terms that may not be straightforward
to retrieve in practice. In practice, we treat α as a hyperparameter that
takes a fixed positive value in (0, 1]. For an adaptive step-size selection
rule, such as that in Line 5 of Algorithm 1, choosing a suitable scaling
constant such as α is often straightforward, as the main step-size selection

37

0 1 2 3 4 5 6 7

Effective Epoch Number

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’coil2000’)

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

0 1 2 3 4 5 6 7

Effective Epoch Number

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’coil2000’)

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

0 1 2 3 4 5 6 7

Effective Epoch Number

10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’dis’)

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

0 1 2 3 4 5 6 7

Effective Epoch Number

10−1C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’dis’)

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

0 1 2 3 4 5 6 7

Effective Epoch Number

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’hypothyroid’)

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

0 1 2 3 4 5 6 7

Effective Epoch Number

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’hypothyroid’)

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

Figure 8: Numerical behaviour of GGN-SCORE for different values of α
using real datasets. m = 512 for dis and hypothyroid, and m = 2048 for
coil2000.

task is accomplished by the defined rule. We show the behaviour of GGN-
SCORE on the real datasets for different values of α in (0, 1] in Figure 8
and Figure 9. In general, a suitable scaling factor α should be selected
based on the application demands.

38

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Effective Epoch Number

10−1

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’w2a’)

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Effective Epoch Number

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’w2a’)

GGN-SCORE: α = 0.1

GGN-SCORE: α = 0.2

GGN-SCORE: α = 0.3

GGN-SCORE: α = 0.4

GGN-SCORE: α = 0.5

GGN-SCORE: α = 0.7

GGN-SCORE: α = 1.0

Figure 9: Numerical behaviour of GGN-SCORE for different values of α
using the w2a dataset with m = 512.

2.5.2 Comparison with SGD, Adam, and L-BFGS methods
on real datasets

Using the real datasets, we compare GGN-SCORE for solving (2.1) with
results from the SGD, Adam, and the L-BFGS algorithms using optimally
tuned learning rates. We also consider the training problem of a neural
network with two hidden layers of dimensions (2, 128), respectively for
the coil2000 dataset, one hidden layer with dimension 1 for the ijcnn1
dataset, and two hidden layers of dimensions (4, 128), respectively for
the remaining datasets. We use ReLU activation functions in the hidden
layers of the networks, and the network is overparameterized for dis,
hypothyroid, w2a and coil2000 with 25425, 21529, 23497 and 16229

trainable parameters, respectively. We choose α ∈ {0.2, 0.5} for GGN-
SCORE. Minimization variables are initialized to the zero vector for all
the methods. The neural network training problems are solved under
the same settings. The results are respectively displayed in Figure 10–
Figure 16 for the convex and non-convex cases.

To investigate how well the learned model generalizes, we use the
binary accuracy metric which measures how often the model predic-
tions match the true labels when presented with new, previously unseen
data: Accuracy = 1

N

∑︁N
n=1 (2ynŷn − yn − ŷn + 1). While GGN-SCORE

converges faster than SGD, Adam and L-BFGS methods, it generalizes

39

0 10 20 30 40 50 60 70

Epoch

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’ijcnn’)

SGD

Adam

LBFGS

GGN-SCORE

0 10 20 30 40 50 60 70

Epoch

10−1

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’ijcnn’)

SGD

Adam

LBFGS

GGN-SCORE

0 20 40 60 80 100 120 140 160

Epoch

10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’dis’)

SGD

Adam

L-BFGS

GGN-SCORE

0 20 40 60 80 100 120 140 160

Epoch

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’dis’)

SGD

Adam

L-BFGS

GGN-SCORE

0 20 40 60 80 100 120 140 160

Epoch

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’hypothyroid’)

SGD

Adam

L-BFGS

GGN-SCORE

0 20 40 60 80 100 120 140 160

Epoch

4× 10−1

5× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’hypothyroid’)

SGD

Adam

L-BFGS

GGN-SCORE

Figure 10: Convergence curves for GGN-SCORE, SGD, Adam and L-BFGS
in the proposed convex problem. m = 512 for dis and hypothyroid, and
m = 4096 for ijcnn1.

comparatively well. The results are further compared with other known
binary classification techniques to measure the quality of our solutions.
The accuracy scores for dis, hypothyroid, coil2000 and w2a datasets,
with a 60:40 train:test split each, are computed on the test set. The mean

40

0 20 40 60 80 100 120 140 160

Epoch

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’coil2000’)

SGD

Adam

L-BFGS

GGN-SCORE

0 20 40 60 80 100 120 140 160

Epoch

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’coil2000’)

SGD

Adam

L-BFGS

GGN-SCORE

0 20 40 60 80 100 120 140 160

Epoch

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’w2a’)

SGD

Adam

L-BFGS

GGN-SCORE

0 20 40 60 80 100 120 140 160

Epoch

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’w2a’)

SGD

Adam

L-BFGS

GGN-SCORE

0 500 1000 1500 2000 2500

Time (seconds)

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’ijcnn’)

SGD

Adam

LBFGS

GGN-SCORE

0 500 1000 1500 2000 2500

Time (seconds)

10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’ijcnn’)

SGD

Adam

LBFGS

GGN-SCORE

Figure 11: Convergence curves for GGN-SCORE, SGD, Adam and L-BFGS in
the proposed convex problem. m = 512 for w2a, m = 2048 for coil2000,
and m = 4096 for ijcnn1.

scores are compared with those from the different classification tech-
niques, and are shown in Figure 17. The CPU runtimes are also compared
where it is indicated that on average GGN-SCORE solves each of the
problems within one second. This scales well with the other techniques,

41

0 10 20 30 40 50 60

Time (seconds)

10−1

C
ro

ss
E

n
tr

op
y

L
os

s
pseudo-Huber-regularized (’dis’)

SGD

Adam

L-BFGS

GGN-SCORE

0 10 20 30 40 50

Time (seconds)

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’dis’)

SGD

Adam

L-BFGS

GGN-SCORE

0 10 20 30 40

Time (seconds)

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’hypothyroid’)

SGD

Adam

L-BFGS

GGN-SCORE

0 10 20 30 40

Time (seconds)

3× 10−1

4× 10−1

5× 10−1

6× 10−1

7× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’hypothyroid’)

SGD

Adam

L-BFGS

GGN-SCORE

0 50 100 150 200 250

Time (seconds)

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’coil2000’)

SGD

Adam

L-BFGS

GGN-SCORE

0 50 100 150 200 250

Time (seconds)

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’coil2000’)

SGD

Adam

L-BFGS

GGN-SCORE

Figure 12: Convergence curves for GGN-SCORE, SGD, Adam and L-BFGS
in the proposed convex problem. m = 512 for dis and hypothyroid and
m = 2048 for coil2000.

as we note that while GNN-SCORE solves each of the problems in high
dimensions, the success of most of the other techniques are limited to
relatively smaller dimensions of the problems. The obtained results from
the classification techniques used for comparison are computed directly

42

0 10 20 30 40 50

Time (seconds)

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’w2a’)

SGD

Adam

L-BFGS

GGN-SCORE

0 10 20 30 40

Time (seconds)

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’w2a’)

SGD

Adam

L-BFGS

GGN-SCORE

Figure 13: Convergence curves for GGN-SCORE, SGD, Adam and L-BFGS
in the proposed convex problem with m = 512.

from the respective scikit-learn [183] functions.
The L-BFGS experiments are implemented with PyTorch [178]

(v. 1.10.1+cu102) in full-batch mode. The GGN-SCORE, Adam and SGD
methods are implemented using the open-source Keras API with Ten-
sorFlow [151] backend (v. 2.7.0). All experiments are performed on a
laptop with dual (2.30GHz + 2.30GHz) Intel Core i7-11800H CPU and
16GB RAM.

In summary, GGN-SCORE converges way faster (in terms of number
of epochs) than SGD, Adam, and L-BFGS, and generalizes comparatively
well. Experimental results show the computational convenience and
elegance achieved by our “augmented” approach for including regular-
ization functions in the GGN approximation. Although GGN-SCORE
comes with a higher computational cost (in terms of wall-clock time per
iteration) than first-order methods on average, if per-iteration learning
time is not provided as a bottleneck, this may not become an obvious
issue as we need to pass the proposed optimizer on the dataset only a few
times (epochs) to obtain superior function approximation and relatively
high-quality solutions in our experiments.

43

0 5 10 15 20 25 30 35 40

Epoch

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’ijcnn’)

SGD

Adam

LBFGS

GGN-SCORE

0 5 10 15 20 25 30 35 40

Epoch

10−1

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’ijcnn’)

SGD

Adam

LBFGS

GGN-SCORE

0 20 40 60 80 100 120 140 160

Epoch

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’dis’)

SGD

Adam

L-BFGS

GGN-SCORE

0 20 40 60 80 100 120 140 160

Epoch

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s
`2-regularized (’dis’)

SGD

Adam

L-BFGS

GGN-SCORE

0 20 40 60 80 100 120 140 160

Epoch

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’hypothyroid’)

SGD

Adam

L-BFGS

GGN-SCORE

0 20 40 60 80 100 120 140 160

Epoch

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’hypothyroid’)

SGD

Adam

L-BFGS

GGN-SCORE

Figure 14: Convergence curves for GGN-SCORE, SGD, Adam and L-BFGS in
the non-convex neural network training problem: overparameterized for dis
and hypothyroid. m = 512 for dis and hypothyroid, and m = 4096
for ijcnn1.

44

0 20 40 60 80 100 120 140 160

Epoch

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’w2a’)

SGD

Adam

L-BFGS

GGN-SCORE

0 20 40 60 80 100 120 140 160

Epoch

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’w2a’)

SGD

Adam

L-BFGS

GGN-SCORE

0 250 500 750 1000 1250 1500 1750 2000

Time (seconds)

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’ijcnn’)

SGD

Adam

LBFGS

GGN-SCORE

0 250 500 750 1000 1250 1500 1750

Time (seconds)

10−1

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’ijcnn’)

SGD

Adam

LBFGS

GGN-SCORE

0 20 40 60 80

Time (seconds)

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’dis’)

SGD

Adam

L-BFGS

GGN-SCORE

0 20 40 60 80

Time (seconds)

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’dis’)

SGD

Adam

L-BFGS

GGN-SCORE

Figure 15: Convergence curves for GGN-SCORE, SGD, Adam and L-BFGS
in the non-convex neural network training problem: overparameterized for
dis and w2a. m = 512 for w2a and dis, and m = 4096 for ijcnn1.

45

0 10 20 30 40 50 60 70

Time (seconds)

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’hypothyroid’)

SGD

Adam

L-BFGS

GGN-SCORE

0 10 20 30 40 50 60 70

Time (seconds)

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’hypothyroid’)

SGD

Adam

L-BFGS

GGN-SCORE

0 10 20 30 40 50 60 70

Time (seconds)

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

pseudo-Huber-regularized (’w2a’)

SGD

Adam

L-BFGS

GGN-SCORE

0 10 20 30 40 50 60 70

Time (seconds)

2× 10−1

3× 10−1

4× 10−1

6× 10−1

C
ro

ss
E

n
tr

op
y

L
os

s

`2-regularized (’w2a’)

SGD

Adam

L-BFGS

GGN-SCORE

Figure 16: Convergence curves for GGN-SCORE, SGD, Adam and L-BFGS
in the non-convex neural network training problem: overparameterized for
hypothyroid and w2a with m = 512.

46

LR

(GGN-SC
ORE) LR

(SG
D) LR

(Ad
am

)
LR

(L-
BFG

S) KN
N

L-S
VM

RBF-S
VM GP DT RF

Ad
aB

oo
st

Method

0.90

0.92

0.94

0.96

0.98
Ac

cu
ra

cy
 S

co
re

mean
median

LR

(GGN-SC
ORE) LR

(SG
D) LR

(Ad
am

)
LR

(L-
BFG

S) KN
N

L-S
VM

RBF-S
VM GP DT RF

Ad
aB

oo
st

Method

10 3

10 2

10 1

100

101

Ti
m

e
(s

ec
on

ds
)

mean
median

Figure 17: Classification task results using the proposed method – logistic
regression (LR), k-nearest neighbours (KNN), linear support vector machine
(L-SVM), RBF-SVM, Gaussian process (GP), decision tree (DT), random forest
(RF) and adaptive boosting (AdaBoost) techniques for dis, hypothyroid,
coil2000 and w2a datasets. LR and SVM methods use the ℓ2 penalty
function with parameter λ = 1.0. Solutions with GGN-SCORE, SGD, Adam,
and L-BFGS are obtained over one data pass with m = 128.

47

Appendix for Chapter 2

2.A Useful results

Following Assumptions 1 – 3, we get that [163, Theorem 2.1.6]

γlInw ⪯ ∂2g(θ) ⪯ γuInw , γaInw ⪯ ∂2h(θ) ⪯ γbInw , (2.23)

where Inw
∈ Rnw×nw is an identity matrix. Consequently,

(γl + λγa)Inw
⪯ ∂2L(θ) ⪯ (γu + λγb)Inw

. (2.24)

In addition, the second derivative of L(θ) is (γg + λγh)-Lipschitz continu-
ous ∀x ∈ Rnp ,y ∈ Rd, that is,⃦⃦⃦

∂2L(y, f(θ1;x))− ∂2L(y, f(θ2;x))
⃦⃦⃦
≤ (γg + λγh) ∥θ1 − θ2∥ . (2.25)

Lemma 3. Let Assumptions 1, 2 and 3 hold. Let θ1,θ2 be any two points in
Rnw . Then we have⃦⃦⃦

g(θ1)− g(θ2)−
⟨︁
H(θ2),θ1 − θ2

⟩︁⃦⃦⃦
≤ γg + λγh

2
∥θ1 − θ2∥2 ,

(2.26)⃓⃓⃓⃓
L(θ1)− L(θ2)−

⟨︁
g(θ2),θ1 − θ2

⟩︁
− 1

2

⟨︁
H(θ2)(θ1 − θ2),θ1 − θ2

⟩︁⃓⃓⃓⃓
≤ γg + λγh

6
∥θ1 − θ2∥3 .

(2.27)

Proof. Fix θ1,θ2 ∈ Rnw . Then

g(θ1)− g(θ2) =

∫︂ 1

0

∂2L(θ2 + τ(θ1 − θ2))(θ1 − θ2)dτ.

48

As τ ∈ [0, 1], we have θ2 + τ(θ1 − θ2) ∈ Rnw . Hence writing ∂2L = H ,
we have

g(θ1)− g(θ2) =

∫︂ 1

0

H(θ2 + τ(θ1 − θ2))(θ1 − θ2)dτ,

g(θ1)− g(θ2)−H(θ2)(θ1 − θ2) =∫︂ 1

0

(︁
H(θ2 + τ(θ1 − θ2))−H(θ2)

)︁
(θ1 − θ2)dτ

⃦⃦
g(θ1)− g(θ2)−H(θ2)(θ1 − θ2)

⃦⃦
=⃦⃦⃦⃦

⃦
∫︂ 1

0

(︁
H(θ2 + τ(θ1 − θ2))−H(θ2)

)︁
(θ1 − θ2)dτ

⃦⃦⃦⃦
⃦

≤
∫︂ 1

0

⃦⃦⃦(︁
H(θ2 + τ(θ1 − θ2))−H(θ2)

)︁
(θ1 − θ2)

⃦⃦⃦
dτ

≤
∫︂ 1

0

⃦⃦
H(θ2 + τ(θ1 − θ2))−H(θ2)

⃦⃦
· ∥θ1 − θ2∥ dτ

≤
∫︂ 1

0

τ(γg + λγh) ∥θ1 − θ2∥2 dτ

=
γg + λγh

2
∥θ1 − θ2∥2 .

The proof of (2.27) follows immediately using a similar procedure (see
e.g., [96]). ■

Corollary 1. Let Assumptions 1, 2 and 3 hold. Let θ1,θ2 be any two points in
Rnw . Then by writing ∂2L = H ,

H(θ2)− (γg + λγh) ∥θ1 − θ2∥ ≤H(θ1)

≤H(θ2) + (γg + λγh) ∥θ1 − θ2∥ . (2.28)

Proof. The proof follows immediately by recalling for any θ ∈ Rnw , H(θ)
is positive definite, and hence the eigenvalues sj of the difference H(θ1)−
H(θ2) satisfy⃓⃓

sj
⃓⃓
≤ (γg + λγh) ∥θ1 − θ2∥ , j = 1, 2, . . . , nw,

so that we have

−(γg + λγh) ∥θ1 − θ2∥ ≤H(θ1)−H(θ2) ≤ (γg + λγh) ∥θ1 − θ2∥ .
■

49

Lemma 4 ([163, Theorem 2.1.5]). Let the first derivative of a function Φ(·) be
L-Lipschitz on dom(Φ). Then for any θ1,θ2 ∈ dom(Φ), we have

0 ≤ Φ(θ1)− Φ(θ2)−
⟨︁
∂Φ(θ2),θ1 − θ2

⟩︁
≤ L

2
∥θ2 − θ1∥2.

Definition 3 ([163, Definition 2.1.3]). A continuously differentiable function
ψ(·) is γsc-strongly convex on dom(ψ) if for any θ1,θ2 ∈ dom(ψ), we have

ψ(θ1) ≥ ψ(θ2) +
⟨︁
∂ψ(θ2),θ1 − θ2

⟩︁
+
γsc
2
∥θ1 − θ2∥2, γsc > 0.

We remark that if the first derivative of the function ψ(·) in the above
definition isL-Lipschitz continuous, then by construction, for any θ1,θ2 ∈
dom(ψ), ψ satisfies the Lipschitz constraint

|ψ(θ1)− ψ(θ2)| ≤ L∥θ1 − θ2∥. (2.29)

Lemma 5 ([163, Theorem 5.1.8]). Let the function ϕ(·) be Mϕ-self-concordant.
Then, for any θ1,θ2 ∈ dom(ϕ), we have

ϕ(θ1) ≥ ϕ(θ2) +
⟨︁
∂ϕ(θ2),θ1 − θ2

⟩︁
+

1

M2
ϕ

ω(Mϕ∥θ1 − θ2∥θ2),

where ω(·) is an auxiliary univariate function defined by ω(t) ≜ t− ln(1 + t).

Lemma 6 ([163, Corollary 5.1.5]). Let the function ϕ(·) beMϕ-self-concordant.
Let θ1,θ2 ∈ dom(ϕ) and r = ∥θ1 − θ2∥θ1

< 1
Mϕ

. Then(︃
1−Mϕr +

1

3
M2

ϕr
2

)︃
∂2ϕ(θ1) ⪯

∫︂ 1

0

∂2ϕ(θ2 + τ(θ1 − θ2))dτ

⪯ 1

1−Mϕr
∂2ϕ(θ1).

2.B Missing proofs

Proof of Lemma 2. By the arguments of Remark 1, we have that the
matrix (J(θk)

TQJ(θk) + λHh(θk))
−1 is positive definite. Hence, with

g(θk) ̸= 0, we have gH(θk)
−1g(θk) = −δθTg(θk) > 0 and δθTg(θk) <

0. ■

50

Proof of Theorem 1. The process formulated in (2.16) performs the up-
date

θk+1 = θk −H(θk)
−1g(θk).

As g(θ∗) = 0 by mean value theorem and the first part of (SOSC), we
have

θk+1 − θ∗ = θk − θ∗ −H(θk)
−1

∫︂ 1

0

∂2L(θ∗ + τ(θk − θ∗))(θk − θ∗)dτ

=

[︄
I −H(θk)

−1

∫︂ 1

0

∂2L(θ∗ + τ(θk − θ∗))dτ

]︄
(θk − θ∗)

= H(θk)
−1

∫︂ 1

0

(︂
H(θk)− ∂2L(θ∗ + τ(θk − θ∗))

)︂
dτ(θk − θ∗),

∥θk+1 − θ∗∥

=

⃦⃦⃦⃦
⃦H(θk)

−1

∫︂ 1

0

(︂
H(θk)− ∂2L(θ∗ + τ(θk − θ∗))

)︂
dτ(θk − θ∗)

⃦⃦⃦⃦
⃦

≤
⃦⃦⃦
H(θk)

−1
⃦⃦⃦ ∫︂ 1

0

⃦⃦⃦
H(θk)− ∂2L(θ∗ + τ(θk − θ∗))

⃦⃦⃦
dτ ∥θk − θ∗∥ .

Also, as τ ∈ [0, 1] we have that θ∗ + τ(θk − θ∗) ∈ Bϵ(θ∗) ⊆ Rnw . By
taking the limit lim

k→∞
∥θk+1 − θ∗∥, we have by the first part of (SOSC) and

Assumption 4(ii)

∥θk+1 − θ∗∥

≤
⃦⃦⃦
H(θk)

−1
⃦⃦⃦ ∫︂ 1

0

⃦⃦
H(θk)−H(θ∗ + τ(θk − θ∗))

⃦⃦
dτ ∥θk − θ∗∥

≤
⃦⃦⃦
H(θk)

−1
⃦⃦⃦ ∫︂ 1

0

(1− τ)(γg + λγh) ∥θk − θ∗∥ dτ ∥θk − θ∗∥

=
γg + λγh

2

⃦⃦⃦
H(θk)

−1
⃦⃦⃦
∥θk − θ∗∥2 .

By combining the claims in Corollary 1 and the bounds of H(θk) in (2.17),
we obtain the relation

γl + aγa − (γg + λγh) ∥θk − θ∗∥ ⪯H(θ∗)− (γg + λγh) ∥θk − θ∗∥ ⪯H(θk).

51

Recall that H(θk) is positive definite, and hence invertible. We deduce
that, indeed for all θk satisfying ∥θk − θ∗∥ ≤ ϵ, ϵ small enough, we have⃦⃦⃦

H(θk)
−1
⃦⃦⃦
≤
(︁
γl − γg − λ(γh − γa) ∥θk − θ∗∥

)︁−1
.

Therefore,

∥θk+1 − θ∗∥ ≤ ξk ∥θk − θ∗∥2 ,
where

ξk =
1

2

γg + λγh(︁
γl − γg − λ(γh − γa) ∥θk − θ∗∥

)︁ .
■

Proof of Theorem 2. First, we upper bound the norm ∥δθ∥θk
≜ ∥θk+1 −

θk∥θk
= ∥H1/2

h (θk+1
− θk)∥. From Remark 3, we have

∥J(θk)T (λI +QJH−1
h JT (θk))

−1∥ ≤ γa∥J(θk)T ∥
K + λγa

≤ β̃γa
K + λγa

.

Hence,

∥θk+1 − θk∥θk

≤ α

1 +Mhηk

⃦⃦⃦
H

1/2
h H−1

h JT (θk)(λI +QJH−1
h JT (θk))

−1e(θk)
⃦⃦⃦

≤ αak
1 +Mhηk

⃦⃦⃦
Hh(θk)

1/2
⃦⃦⃦ ⃦⃦⃦

Hh(θk)
−1
⃦⃦⃦ ⃦⃦

e(θk)
⃦⃦

≤ αββ̃γ
−1/2
a

(K + λγa)(1 +Mhηk)
, (2.30)

where ak =
⃦⃦⃦
J(θk)

T (λI +QJH−1
h JT (θk))

−1
⃦⃦⃦

. Similarly, we have

∥θk+1 − θk∥ ≤
αββ̃

(K + λγa)(1 +Mhηk)
. (2.31)

By Lemma 4, the function L(θ) satisfies

L(θk+1) ≤ L(θk) +
⟨︁
∂L(θk),θk+1 − θk

⟩︁
+
γu + λγb

2
∥θk+1 − θk∥2

= L(θk) +
⟨︁
gg(θk),θk+1 − θk

⟩︁
+ λ

⟨︁
gh(θk),θk+1 − θk

⟩︁ γu + λγb
2

∥θk+1 − θk∥2.

52

By convexity of g and h, and self-concordance of h, we have (using Defi-
nition 3, Lemma 5 and (2.29))

L(θk+1) ≤ L(θk) + (γu + λγb)∥θk+1 − θk∥+
γu + λγb − γl

2
∥θk+1 − θk∥2

− λ

M2
h

ω(Mh∥θk+1 − θk∥θk
)

(2.30)
≤ L(θk) + (γu + λγb)∥θk+1 − θk∥+

γu + λγb − γl
2

∥θk+1 − θk∥2

− λ

M2
h

ω

(︄
αββ̃γ

−1/2
a Mh

(K + λγa)(1 +Mhηk)

)︄
.

Substituting the choice α = (ββ̃)−1(γa)
1/2(K + λγa), we have

L(θk+1) ≤ L(θk) + (γu + λγb)∥θk+1 − θk∥+
γu + λγb − γl

2
∥θk+1 − θk∥2

− λ

M2
h

ω

(︃
Mh

1 +Mhηk

)︃
.

Taking expectation on both sides with respect to m conditioned on θk, we
get

E[L(θk+1)] ≤ L(θk) + (γu + λγb)∥θk+1 − θk∥

+
γu + λγb − γl

2
∥θk+1 − θk∥2 − E

[︄
λ

M2
h

ω

(︃
Mh

1 +Mhηk

)︃]︄
.

Note the second derivative ω′′ of ω: ω′′(t) = 1/(1 + t)2. By the convexity
of ω and using Jensen’s inequality, also recalling unbiasedness of the
derivatives,

E[L(θk+1)] ≤ L(θk) +
γu + λγb√

γa(1 +Mhηk)
+

γu + λγb
2γa(1 +Mhηk)2

− γl
2γa

ω′′(Mhηk)−
λ

M2
h

ω

(︃
Mh

1 +Mhηk

)︃
≤ L(θk)−

[︄
λ

M2
h

ω

(︃
Mh

1 +Mhηk

)︃
+

γl
2γa

ω′′(Mhηk)−
2(γu + λγb)√

γa

]︄
.

In the above, we used the bounds of the norm in (2.31), and again used
the choice α = (ββ̃)−1(γa)

1/2(K + λγa).

53

To proceed, let us make a simple remark that is not explicitly stated in
Remark 4: For any θk,θk+1 ∈ Nϵ(θ

∗), we have⃦⃦
Hg(θk+1)−Hg(θk)

⃦⃦
≤ γg ∥θ1 − θ2∥ → 0 as k →∞,⃦⃦

Hh(θk+1)−Hh(θk)
⃦⃦
≤ γh ∥θ1 − θ2∥ → 0 as k →∞.

Now, recall the proposed update step (2.21):

θk+1 = θk −
α

1 +Mhηk
H−1

h JT
(︂
λI +QJH−1

h JT
)︂−1

e.

Then the above remark allows us to perform the following operation: Sub-
tract θ∗ from both sides and pre-multiply by H

1/2
h (θk+1) ≈H

1/2
h (θk) =

H
1/2
h , we get the recursion

H
1/2
h (θk+1 − θ∗) = H

1/2
h (θk − θ∗)

− α

1 +Mhηk
H

1/2
h H−1

h JT (θk)
(︂
λI +QJH−1

h JT (θk)
)︂−1

e(θk),⃦⃦⃦
H

1/2
h (θk+1 − θ∗)

⃦⃦⃦
≤
⃦⃦⃦
H

1/2
h (θk − θ∗)

⃦⃦⃦
+

α

1 +Mhηk

⃦⃦⃦
H

1/2
h

⃦⃦⃦ ⃦⃦⃦⃦
H−1

h JT
(︂
λI +QJH−1

h JT
)︂−1

e(θk)

⃦⃦⃦⃦
.

Take expectation with respect to m on both sides conditioned on θk and
again consider unbiasedness of the derivatives. Further, recall the defini-
tion of the local norm ∥ · ∥θ, and the bounds of Hh, then

E ∥θk+1 − θ∗∥θk+1
≤ ∥θk − θ∗∥θk

+
α√

γa(1 +Mhηk)

⃦⃦⃦⃦(︂
λI +QJH−1

h JT (θk)
)︂−1

⃦⃦⃦⃦ ⃦⃦⃦
H−1

h JTe(θk)
⃦⃦⃦

≤ ∥θk − θ∗∥θk
+

αγa√
γa(1 +Mhηk)(K + λγa)

⃦⃦⃦
H−1

h g(θk)
⃦⃦⃦

= ∥θk − θ∗∥θk
+

γa

ββ̃(1 +Mhηk)

⃦⃦⃦
H−1

h gg(θk) + λH−1
h gh(θk)

⃦⃦⃦
≤ ∥θk − θ∗∥θk

+
γa

ββ̃

⃦⃦⃦
H−1

h gg(θk) + λH−1
h gh(θk)

⃦⃦⃦
≤ ∥θk − θ∗∥θk

+
γa

ββ̃

⃦⃦⃦
H−1

h gg(θk)
⃦⃦⃦
+
λγa

ββ̃

⃦⃦⃦
H−1

h gh(θk)
⃦⃦⃦
.

54

By the mean value theorem and the first part of (SOSC),

gg(θk) =

∫︂ 1

0

Hg(θ
∗ + τ(θk − θ∗))(θk − θ∗)dτ

= Hg(θ
∗)(θk − θ∗) +

∫︂ 1

0

(︁
Hg(θ

∗ + τ(θk − θ∗))−Hg(θ
∗)
)︁
(θk − θ∗)dτ,

where Hg is the second derivative of g.

⃦⃦
gg(θk)

⃦⃦
=⃦⃦⃦⃦

⃦Hg(θ
∗)(θk − θ∗) +

∫︂ 1

0

(︁
Hg(θ

∗ + τ(θk − θ∗))−Hg(θ
∗)
)︁
(θk − θ∗)dτ

⃦⃦⃦⃦
⃦

≤
⃦⃦
Hg(θ

∗)
⃦⃦
∥θk − θ∗∥

+

∫︂ 1

0

⃦⃦
Hg(θ

∗ + τ(θk − θ∗))−Hg(θ
∗)
⃦⃦
∥θk − θ∗∥ dτ

=
⃦⃦
Hg(θ

∗)
⃦⃦
∥θk − θ∗∥+

∫︂ 1

0

τγg ∥θk − θ∗∥2 dτ

=
⃦⃦
Hg(θ

∗)
⃦⃦
∥θk − θ∗∥+ γg

2
∥θk − θ∗∥2 dτ

≤ γu ∥θk − θ∗∥+ γg
2
∥θk − θ∗∥2 .

In the above steps, we have used Assumption 4 and the remarks that
follow it. Further,

⃦⃦⃦
H−1

h gg(θk)
⃦⃦⃦
=
⃦⃦⃦
H−1

h gg(θk)
⃦⃦⃦

≤
⃦⃦⃦
H−1

h

⃦⃦⃦ ⃦⃦
gg(θk)

⃦⃦
≤ 1

γa

(︃
γu ∥θk − θ∗∥+ γg

2
∥θk − θ∗∥2

)︃
=
γu
γa
∥θk − θ∗∥+ γg

2γa
∥θk − θ∗∥2 .

55

Next, we analyze
⃦⃦⃦
H−1

h gh(θk)
⃦⃦⃦

. We have⃦⃦⃦
H−1

h gh(θk)
⃦⃦⃦
=
⃦⃦⃦
H

−3/2
h H

1/2
h gh(θk)

⃦⃦⃦
≤ 1

γ
3/2
a

⃦⃦⃦
H

1/2
h gh(θk)

⃦⃦⃦
(SOSC)
=

1

γ
3/2
a

⃦⃦⃦
H

1/2
h (θk)

(︁
gh(θk)− gh(θ

∗)
)︁⃦⃦⃦
,

and by the mean value theorem,

⃦⃦⃦
H−1

h gh(θk)
⃦⃦⃦
=

1

γ
3/2
a

⃦⃦⃦⃦
⃦
∫︂ 1

0

H
1/2
h (θk)Hh(θ

∗ + τ(θk − θ∗))(θk − θ∗)dτ

⃦⃦⃦⃦
⃦

≤ 1

γ
3/2
a

⃦⃦⃦
H

1/2
h (θk)(θk − θ∗)

⃦⃦⃦ ⃦⃦⃦⃦⃦
∫︂ 1

0

Hh(θ
∗ + τ(θk − θ∗))dτ

⃦⃦⃦⃦
⃦

=
1

γ
3/2
a

∥θk − θ∗∥θk

⃦⃦⃦⃦
⃦
∫︂ 1

0

Hh(θ
∗ + τ(θk − θ∗))dτ

⃦⃦⃦⃦
⃦

≤ 1

γ
3/2
a

∥θk − θ∗∥θk

⃦⃦⃦⃦
⃦
∫︂ 1

0

H
−1/2
h (θk)Hh(θ

∗ + τ(θk − θ∗))H−1/2
h (θk)dτ

⃦⃦⃦⃦
⃦

Lemma 6
≤

∥θk − θ∗∥θk

γ
3/2
a

(︂
1−Mh ∥θk − θ∗∥θk

)︂ .
In the above, we have used the fact θ0 ∈ NM−1

h
(θ∗) =⇒ θk ∈ NM−1

h
(θ∗)

for all θk generated by the process (2.21).
Combining the above results, we have

E ∥θk+1 − θ∗∥θk+1
≤

⎡⎢⎣1 + λγ
−1/2
a

ββ̃
(︂
1−Mh ∥θk − θ∗∥θk

)︂
⎤⎥⎦ ∥θk − θ∗∥θk

+
γu

ββ̃
∥θk − θ∗∥+ γg

2
∥θk − θ∗∥2 .

■

56

Chapter 3

Self-concordant smoothing
in proximal quasi-Newton
methods

3.1 Introduction

We consider the composite optimization problem

min
x∈Rn

L(x) ≜ f(x) + g(x), (3.1)

where f is a smooth, convex loss function and g is a closed, proper, convex
(nonsmooth) regularization function. A common smoothing framework
for solving (3.1) involves replacing the nonsmooth function g sequentially
by its smooth approximation such that with an efficient algorithm for
solving the resulting smooth optimization problem, we may approach
the solution of the original problem. However, as noted in [27], the
nonsmooth function g in (3.1) often plays a key role in describing some
desirable properties specific to the application in which it appears, such
as sparsifying the solution of the problem or enforcing some penalties or
constraints on x, e.g., in sparse signal recovery and image processing [63,
26], compressed sensing [82, 59], model predictive control of constrained
dynamical systems [35, 193, 220], neural network training [33], as well

57

as various classification and regression problems in machine learning. In
order to retain such properties about the optimization vector x in these
applications, [27] proposes to keep a part of g unchanged and hence
considers a partial smoothing where g is only partially smoothed. The
particular class of problems considered in [27] are those in which the
nonsmooth function g takes on the form g(x) = R(x) + Ω(x), and there,
it is proposed to smooth a part of g, say,R, leaving the other part, say, Ω
unchanged. Nevertheless, in many of the applications where this class
of problems appears, each of R and Ω is used to promote particular
structures in the solution estimates, and hence smoothing one of them
potentially destroys the overall desired structure. Prominent examples
are found in lasso and multi-task regression problems with structured
sparsity-inducing penalties. More specifically,R(x) is the scaled ℓ1-norm
penalty β∥x∥1 that encourages sparse estimates of x for β > 0, and Ω(x)

additionally enforces a more specific structure on these estimates, such as
groups and fused structures.

One of the main motivations in [27] for the partial smoothing tech-
nique is the possibility to derive “fast” proximal gradient methods [166,
161, 230, 25] for the resulting problem. While the fast proximal methods
prove to be more efficient than methods such as the subgradient and
bundle-type methods, they are first-order methods which often fall back
to weak solution estimates and accuracies [181]. It is evident, from their
performance on unconstrained smooth optimization problems, that incor-
porating second-order information into a gradient scheme often yields
superior performance and better solution quality. A line of work (see,
e.g., [28, 133, 182, 228, 219]) has made efforts to incorporate (approximate)
second-order information into proximal gradient schemes to emulate the
performance of relative second-order methods for unconstrained smooth
problems. The main drawback here is the computational overhead associ-
ated with second-order methods. This drawback is often largely mitigated
by choosing a special structure for the matrix of the second-order terms
of f . To deal with globalization issues, some of these approaches as-
sume specific structures and regularity of the function f . For example,
the authors in [228] assume a self-concordant structure of f allowing for

58

efficient step-size and correction techniques for proximal Newton-type
and proximal quasi-Newton algorithms. However, because f oftentimes
define a loss or data-misfit in real-world applications, the self-concordant
assumption is not easy to check for many of these applications, and also
restricts the applicability of the approach. Our self-concordant smoothing
framework in this chapter provides a remedy to this limitation. We pro-
pose a new step-size selection technique that is suitable for Newton-type
and quasi-Newton methods. This also exploits a self-concordant structure
albeit not imposed on any of functions f and g that define the original
problem.

In particular, we regularize1 problem (3.1) by a second smooth function
gs and propose to keep all parts of g unchanged, but instead solve the
following problem:

min
x∈Rn

Ls(x) ≜ f(x) + gs(x;µ) + g(x), (3.2)

where2 gs is a self-concordant, epi-smoothing function for g with a pos-
itive smoothing parameter µ (see Definition 6 below). By construction,
g and gs do not conflict, and therefore an algorithm exists that provides
a solution to (3.2), which also (approximately) solves (3.1) (see Section
3.3). The smooth regularization gs serves two main algorithmic pur-
poses in this chapter. First, it provides an adaptive step-size selection
method similar to the Newton decrement framework but without requir-
ing knowledge of the self-concordance of f . Second, it provides a simple
diagonal-structured variable-metric for efficiently scaling the proximal
operator of g. As a result, the regularization enhances both the solvability
of the smooth part of the original problem and the efficient handling of
the nonsmooth part.

We do not give a special attention to the particular structure induced
by g in the development of our technique. Yet in Section 3.4, we propose
an approach to incorporate certain known structures into our framework,

1In this chapter, we use “regularization” and “smoothing” interchangeably but use “reg-
ularization” to emphasize explicit addition of a smooth function (a smooth approximation
of the nonsmooth part of the problem) to the smooth part of the problem.

2We occasionally write gs(x) instead of gs(x;µ) to refer to the same function.

59

thereby making it amenable to more general structured penalty func-
tions. In particular, for the lasso and multi-task regression problems with
structured sparsity-inducing penalties, we highlight the relation between
Nesterov’s smoothing [161] for a class of structured problems and the
smoothing framework of this chapter, and then synthesize the so-called
“prox-decomposition” property of g with the smoothness property of gs
for easily handling the structures promoted by g in the solution.

Most notably, the following points are vital to the development of our
algorithmic framework in this chapter:

1. The first is to notice that for many practical problems, specifically
those arising from modern machine learning systems, we often deal
with overparameterized models (that is, in which number of data
points is much less than the size of the optimization vector x). In
this case, the pure proximal Newton method is not computationally
ideal. This necessitates the use of generalized Gauss-Newton (GGN)
approximations which, by our stylized “augmentation” technique,
can be found to provide a practically efficient proximal algorithm for
overparameterized models in which f can be expressed as a finite sum.

2. Secondly, we observe that the infimal convolution smoothing tech-
nique that we will introduce to construct gs reveals a structure that is
characterized by the self-concordant regularization (SCORE) frame-
work of [4]. This provides a way to devise efficient adaptive step-size
selection rule for proximal Newton-type algorithms without imposing
a self-concordant structure on the original problem.

3. Lastly, via the notion of epi-smoothing functions established in [53] (a
weaker notion than the smoothable functions of [27]), we can guarantee
certain convergence notions on the epigraph of g allowing to com-
bine the proposed smooth regularization technique with the Moreau-
infimal-based (proximal) algorithms to handle the nonsmooth function
g. As is customary, this assumes we can find an efficient method to
compute a closed-form solution to the minimization of the sum of g
and an auxiliary function ψα. However, unless the variable-metric asso-
ciated with the proximal Newton-type method has a specific structure

60

that can be exploited for computational efficiency, the scaled proximal
operator can be very difficult to compute and potentially poses a seri-
ous numerical issue. For this, the “simple” structure of the Hessian of
gs naturally provides a good candidate for the variable-metric, which
allows for an efficient computation of the scaled proximal operator.

Burke and Hoheisel [53, 52] developed the notion of epi-smoothing for
studying several epigraphical convergence (epi-convergence) properties
for convex composite functions by combining the infimal convolution
smoothing framework due to Beck and Teboulle [27] with the idea of gra-
dient consistency due to Chen [71]. The key variational analysis tool used
throughout their development is the coercivity of the class of regularization
kernels studied in [27]. In particular, they establish the close connection
between epi-convergence of the regularization functions and supercoer-
civity of the regularization kernel. Then, based on the above observations,
we synthesize this idea with the notion of self-concordant regularization
[4] to propose two proximal-type algorithms, viz., Prox-N-SCORE (Al-
gorithm 2) and Prox-GGN-SCORE (Algorithm 3), for convex composite
minimization.

The rest of this chapter is organized as follows: In Section 3.1.1, we
present some notations and background on convex analysis. In Section 3.2,
we establish our self-concordant smoothing notion with some properties
and results. We describe our proximal Newton-type scheme in Section
3.3, and present the Prox-N-SCORE and Prox-GGN-SCORE algorithms.
In Section 3.4, we describe an approach for handling specific structures
promoted by the nonsmooth function g in problem (3.1), and propose a
practical extension of the so-called prox-decomposition property of g for
the self-concordant smoothing framework, which has certain in-built
smoothness properties. Convergence properties of the Prox-N-SCORE
and Prox-GGN-SCORE algorithms are studied in Section 3.5. In Section
3.6, we present some numerical simulation results for our proposed frame-
work, and compare the results with other state-of-the-art approaches.

61

3.1.1 Notation and preliminaries

We denote by R̄ ≜ R ∪ {−∞,+∞} the set of extended real numbers.
The sets R≥0 ≜ [0,+∞[and R>0 ≜ R≥0\{0}, respectively, denote the
set of nonnegative and positive real numbers. Let g : Rp → R ∪ {+∞} be
an extended real-valued function. The (effective) domain of g is given by
dom g ≜ {x ∈ Rn | g(x) < +∞} and its epigraph (resp., strict epigraph) is
given by epi g ≜ {(x, γ) ∈ Rn × R | g(x) ≤ γ} (resp., epis g ≜ {(x, γ) ∈
Rn×R | g(x) < γ}). Given γ ∈ R>0, the γ-sublevel set of g is Γγ(g) ≜ {x ∈
Rn : g(x) ≤ γ}. The standard inner product between two vectors x, y ∈ Rn

is denoted by ⟨·, ·⟩, that is, ⟨x, y⟩ ≜ x⊤y, where x⊤ is the transpose of x.
The operation x⊙ y denotes the Hadamard product between two vectors
x, y ∈ Rn; we also denote by x2 the product x⊙ x.

For an n × n matrix H , we write H ≻ 0 (resp., H ⪰ 0) to say H

is positive definite (resp., positive semidefinite). The sets Sn+ and Sn++,
respectively, denote the set of n× n symmetric positive semidefinite and
symmetric positive definite matrices. The set

{︁
diag(v) | v ∈ Rn

}︁
, where

diag : Rn → Rn×n, defines the set of all diagonal matrices in Rn×n. Matrix
Id denotes the d× d identity matrix. We denote by card(G), the cardinality
of a set G. For any two functions f and g, we define (f ◦ g)(·) ≜ f(g(·)).
We denote by Ck(Rn), the class of k-times continuously-differentiable
functions on Rn, k ≥ 0. If the p-th derivatives of a function f ∈ Ck(Rn) is
Lf -Lipschitz continuous on Rn with p ≤ k, Lf ≥ 0, we write f ∈ Ck,pLf

(Rn).
The notation∥·∥ stands for the standard Euclidean (or 2-) norm∥·∥2. We
define the weighted norm induced by H ∈ Sn++ by∥x∥H ≜ ⟨Hx, x⟩ 12 , for

x ∈ Rn. The associated dual norm is∥x∥∗H ≜
⟨︁
H−1x, x

⟩︁ 1
2 . An Euclidean

ball of radius r centered at x̄ is denoted by Br(x̄) ≜ {x ∈ Rn | ∥x− x̄∥ ≤
r}. Associated with a given H ∈ Sn++, the (Dikin) ellipsoid of radius r
centered at x̄ is defined by Er(x̄) ≜ {x ∈ Rn | ∥x− x̄∥H ≤ r}. We define
the spectral norm ∥A∥ ≡ ∥A∥2 of a matrix A ∈ Rm×n as the square root of
the maximum eigenvalue of A⊤A, where A⊤ is the transpose of A.

A convex function g : Rp → R ∪ {+∞} is said to be proper if dom g ̸= ∅.
The function g is said to be lower semicontinuous (lsc) at y if g(y) ≤
lim inf
x→y

g(x); if it is lsc at every y ∈ dom g, then it is said to be lsc on

62

dom g. We denote by Γ0(D) the set of proper convex lsc functions from
D ⊆ Rn to R ∪ {+∞}. Given g ∈ C3(dom g), we respectively denote
by g′(t), g′′(t) and g′′′(t) the first, second and third derivatives of g,
at t ∈ R, and by ∇x g(x), ∇2

x g(x), and ∇3
x g(x) the gradient, Hes-

sian and third-order derivative tensor of g, respectively, at x ∈ Rn; if
the variables with respect to which the derivatives are taken are clear
from context, the subscripts are omitted. If ∇2 g(x) ∈ Sn++ for a given
x ∈ Rn, then the local norm ∥·∥x with respect to g at x is defined by
∥d∥x ≜

⟨︁
∇2 g(x)d, d

⟩︁1/2, the weighted norm of d induced by ∇2 g(x).

The associated dual norm is∥v∥∗x ≜
⟨︁
∇2 g(x)−1v, v

⟩︁1/2, for v ∈ Rn. The
subdifferential ∂g : Rn → 2R

n

of a proper function g : Rp → R ∪ {+∞}
is defined by x ↦→

{︁
u ∈ Rn | (∀y ∈ Rn) ⟨y − x, u⟩+ g(x) ≤ g(y)

}︁
, where

2R
n

denotes the set of all subsets of Rn. The function g is said to be sub-
differentiable at x ∈ Rn if ∂g(x) ̸= ∅; the subgradients of g at x are the
members of ∂g(x).

We define set convergence in the sense of Painlevé-Kuratowski. Let N
denote the set of natural numbers. Let {Ck}k∈N be a sequence of subsets
of Rn. The outer limit of {Ck}k∈N is the set

lim sup
k→∞

Ck ≜
{︁
x ∈ Rn | ∃{kj}j∈N,∃{xj}j∈N ∀j, xk ∈ Ck, {xk} → x

}︁
,

and its inner limit is

lim inf
k→∞

Ck ≜
{︁
x ∈ Rn | ∃xk ∈ Ck : {xk} → x, ∀k ∈ N

}︁
.

The limit C of {Ck}k∈N exists if its outer and inner limits coincide, and
we write

C = lim
k→∞

Ck ≜ lim sup
k→∞

Ck = lim inf
k→∞

Ck.

We say that a function g : Rp → R ∪ {+∞} is coercive if lim inf
∥x∥→∞

g(x) =

+∞, and supercoercive if lim inf
∥x∥→∞

g(x)
∥x∥ = +∞. The sequence {gk} of func-

tions gk : Rn → R̄ is said to epi-converge to the function g : Rn → R̄ if
lim
k→∞

epi gk = epi g; it is said to continuously converge to g if for all x ∈ Rn

63

and {xk} → x, we have lim
k→∞

gk(xk) = g(x); and it converges pointwise to

g if for all x ∈ Rn, lim
k→∞

gk(x) = g(x). Epi-convergence, continuous con-

vergence, and pointwise convergence of {gk} to g are respectively denoted
by e– lim gk = g (or gk e−→ g), c– lim gk = g (or gk c−→ g), and p– lim gk = g

(or gk p−→ g).

The conjugate (or Fenchel conjugate, or Legendre transform,
or Legendre-Fenchel transform) g∗ : Rp → R ∪ {+∞} of a function
g : Rp → R ∪ {+∞} is the mapping y ↦→ sup

x∈Rn

{︁
⟨x, y⟩ − g(x)

}︁
, and its bi-

conjugate is g∗∗ = (g∗)∗.

3.2 Self-concordant regularization

This section introduces the concept of self-concordant smoothing, which
provides structures that can be exploited in composite optimization prob-
lems. We begin by presenting the definition of generalized self-concordant
functions, as given in [223].

Definition 4 (Generalized self-concordant function on R). A univariate con-
vex function g ∈ C3(dom g), with dom g open, is said to be (Mg, ν)-generalized
self-concordant, with Mg ∈ R≥0 and ν ∈ R>0, if⃓⃓

g′′′(t)
⃓⃓
≤Mg g

′′(t)
ν
2 , ∀t ∈ dom g.

Definition 5 (Generalized self-concordant function on Rn of order ν).
A convex function g ∈ C3(dom g), with dom g open, is said to be (Mg, ν)-
generalized self-concordant of order ν ∈ R>0, with Mg ∈ R≥0, if ∀x ∈ dom g⃓⃓⃓⃓⟨︂

∇3 g(x)[v]u, u
⟩︂⃓⃓⃓⃓
≤Mg∥u∥2x∥v∥

ν−2
x ∥v∥3−ν

, ∀u, v ∈ Rn,

where∇3g(x)[v] ≜ lim
t→0

{︂(︁
∇2g(x+ tv)−∇2g(x)

)︁
/t
}︂

is the third directional
derivative of g.

Note that for an (Mg, ν)-generalized self-concordant function g de-
fined on Rn, the univariate function φ : R→ R∪ {+∞} defined by φ(t) ≜
g(x+tv) is (Mg, ν)-generalized self-concordant for every x, v ∈ dom g and

64

x+ tv ∈ dom g. This provides an alternative definition for the generalized
self-concordant function on Rn.

A key observation from the above definition is the possibility to extend
the theory beyond the case ν = 3 and u = v originally presented in [164].
This observation, for instance, allowed the authors in [19] to introduce
a pseudo self-concordant framework, in which ν = 2, for the analysis of
logistic regression. In a recent development, the authors in [172] identified
a new class of pseudo self-concordant functions and showed how these
functions may be slightly modified to make them standard self-concordant
(i.e., where Mg = 2, ν = 3, u = v), while preserving desirable structures.
With such generalizations, and stemming from the idea of Newton decre-
ment in [164], new analytic step-size selection and correction techniques
for a number of proximal algorithms were developed in [228]. It is in the
same spirit that we propose new step-size selection techniques from the
self-concordant smoothing framework developed in this chapter. We de-
note by FMg,ν the class of (Mg, ν)-generalized self-concordant functions,
with generalized self-concordant parameters Mg ∈ R≥0 and ν ∈ R>0.

Definition 6 (Self-concordant smoothing function). We say that the param-
eterized function gs : Rn × R>0 → R is a self-concordant smoothing function
for g ∈ Γ0(Rn) if the following two conditions are satisfied:

SC.1 e– lim
µ↓0

gs(x;µ) = g(x).

SC.2 gs(x;µ) ∈ FMg,ν .

We denote by SµMg,ν
the set of self-concordant smooth-

ing functions for a function g ∈ Γ0(Rn), that is, SµMg,ν
≜{︂

gs : Rn × R>0 → R | gs e−→ g, gs ∈ FMg,ν

}︂
.

3.2.1 Self-concordant regularization via infimal convolu-
tion

Next, we present key elements of smoothing through infimal convolution,
which includes the Moreau-Yosida regularization process as a special case
in defining the (scaled) proximal operator.

65

Definition 7 (Infimal convolution). Let g and h be two functions from Rn to
R ∪ {+∞}. The infimal convolution (or “inf-convolution” or “inf-conv”)3 of g
and h is the function g□h : Rn → R̄ defined by

(g□h)(x) = inf
w∈Rn

{︁
g(w) + h(x− w)

}︁
. (3.3)

The infimal convolution of g with h is said to be exact at x ∈ dom g if the
infimum (3.3) is attained. It is exact if it is exact at each x ∈ dom g, in which
case we write g ⊡ h. Of utmost importance about the inf-conv operation in
this chapter is its use in the approximation of a function g ∈ Γ0(Rn); that is,
the approximation of g by its infimal convolution with a member hµ(·) of
a parameterized familyH ≜ {hµ | µ ∈ R>0} of (regularization) kernels.
In more formal terms, we recall the notion of inf-conv regularization in
Definition 8 below. For h ∈ Γ0(Rn) and µ ∈ R>0, we define the function
hµ : Rp → R ∪ {+∞} by the epi-multiplication operation4

hµ(·) ≜ µh

(︃ ·
µ

)︃
, µ ∈ R>0. (3.4)

Definition 8 (Inf-conv regularization). Let g be a function in Γ0(Rn). Define

H ≜
{︁
(x,w) ↦→ hµ(x− w) | µ ∈ R>0

}︁
a parameterized family of regularization kernels. The inf-conv regularization
process of g with hµ ∈ H is given by (g□hµ)(x), for any x ∈ Rn.

The operation of the inf-conv regularization generalizes the Moreau-
Yosida regularization process in which case, hµ(·) =∥·∥2 /(2µ) or, with a
scaled norm, hµ(·) =∥·∥2Q /(2µ) for some Q ∈ Sn++. The Moreau-Yosida
regularization process provides the value function of the proximal opera-
tor associated with a function g ∈ Γ0(Rn). This leads us to the definition
of the scaled proximal operator.

Definition 9 (Scaled proximal operator). The scaled proximal operator of a
function g ∈ Γ0(Rn), written proxQαg(·), for α ∈ R>0 and Q ∈ Sn++, is defined
as the unique point in dom g that satisfies

(g□ψα)(x) = g(proxQαg(x)) + ψα(x− proxQαg(x)),

3Also sometimes called “epigraphic sum” or “epi-sum”, as its operation yields the (strict)
epigraphic sum epi g + epih [115, p. 93].

4It is easy to show that h∗
µ = µh∗.

66

where ψα(·) ≜∥·∥2Q /(2α). That is, proxQαg(x) ≜ argminw∈Rn{g(w)+ψα(x−
w)}.

A key property of the scaled proximal operator is its nonexpansiveness;
that is, the property that (see, e.g., [195, 228])⃦⃦⃦

proxQαg(x)− proxQαg(y)
⃦⃦⃦
Q
≤∥x− y∥∗Q , (3.5)

for all x, y ∈ Rn.
In the sequel, we assume that the regularization kernel function h is of

the form

h(x) =

n∑︂
i=1

ϕ(xi), (3.6)

where ϕ is a univariate potential function. We are now left with the question
of what properties we need to hold for ϕ such that g□hµ produces gs
satisfying the self-concordant smoothing conditions SC.1 – SC.2. To this
end, we impose the following conditions on ϕ:

K.1 ϕ is supercoercive.

K.2 ϕ ∈ FMϕ,ν .

Many functions that appear in different settings naturally exhibit the
structures in conditions K.1 – K.2. For example, the ones belonging to the
class of Bregman/Legendre functions introduced by Bauschke and Borwein
[23] (see also [79] for a related characterization of the class of Bregman
functions). In the context of proximal gradient algorithms for solving (3.1),
the recent paper [22] enlists these functions as satisfying the new descent
lemma (a.k.a descent lemma without Lipschitz gradient continuity) which the
paper introduced. We summarize examples of these regularization kernel
functions on different domains in Table 2. We extract practical examples
on R for the smoothing of the 1-norm and the indicator functions below.

Remark 6. Suppose that domh is a nonempty bounded subset of Rn, for
example, if ϕ ∈ Γ0(domϕ), then since we have that g ∈ Γ0(dom g) is bounded
below as it possesses a continuous affine minorant (in view of [24, Theorem

67

9.20]), the less restrictive condition that ϕ is coercive sufficiently replaces the
condition K.1. In other words, the key convergence notion presented below holds
similarly for the resulting function g□hµ in this case. Particularly, we get that
g□hµ in this case is exact, finite-valued and locally Lipschitz continuous (see,
e.g., [52, Proposition 3.6]) making it fit into our algorithmic framework.

Remark 7. Following Remark 6, it is possible to relax the supercoercivity
condition provided that g is bounded below. However, this condition requires
that dom g is bounded, which restricts the practical application of our results
in such cases. Nevertheless, whenever the supercoercivity condition is difficult
to check (and the condition in Remark 6 does not hold), two possibilities exist
for the epi-convergence of g□hµ to g according to [52, Proposition 3.9]: (1) If
h ∈ Γ0(Rn) is such that g□hµ e−→ g, and g ∈ Γ0(Rn) is supercoercive, then h is
necessarily supercoercive. (2) If, however, g ∈ Γ0(Rn) is not supercoercive, then
we can find some h ∈ Γ0(Rn) that is not supercoercive but for which g□hµ e−→ g.

In light of Remark 6 and Remark 7, our examples in Table 2 in-
clude both coercive and supercoercive functions. In either case, we have
ϕ ∈ FMϕ,ν . We keep the supercoercivity condition to emphasize other
realizable properties of g□hµ highlighted below.

Table 2: Examples of regularization kernel functions for self-concordant
smoothing, and their generalized self-concordant parameters Mϕ and ν (see
Definition 4).

ϕ(t) domϕ Mϕ ν Remark

1
p

√︂
1 + p2|t|2 − 1, p ∈ R>0 R 2 2.6 p = 1

1
2

[︄
√
1 + 4t2 − 1 + log

(︃√
1+4t2−1

2t2

)︃]︄
R 2

√
2 3 Ostrovskii & Bach [172]

1
2
t2 R 0 3 “Energy”

1
p
|t|p, p ∈ (1, 2) R≥0 4 6 p = 1.5

log(1 + exp(t)) R 1 2 “Logistic”
t log t− t [0,+∞] 1 4 “Boltzmann-Shannon”{︄

1
2
(t2 − 4t+ 3), if t ≤ 1

− log t, otherwise
R 4 3 De Pierro & Iusem [79]

Examples. For some functions g and hµ, there exists a closed form solu-
tion to g□hµ. On the other hand, if one gets that g□hµ = g ⊡ hµ ∈ Γ0(Rn),

68

e.g., as a result of Proposition 2(i) below, then knowing in this case that

g□hµ = (g∗ + h∗µ)
∗, (3.7)

we can efficiently estimate g□hµ using fast numerical schemes (see,
e.g., [145]). The structure of h implies gs can be expressed in terms of
a corresponding univariate function φ : R → R ∪ {+∞} by defining
φs(t;µ) ≜ (φ□ϕµ)(t), and then

gs(x;µ) =

n∑︂
i=1

φs(xi;µ).

In the following, we provide examples of such φs for some ϕ ∈ FMϕ,ν .

Infimal convolution of ∥ · ∥1 with hµ. In the first two examples, we
consider g(x) = ∥x∥1.

Example 1. Let p = 1 in ϕ(t) = 1
p

√︂
1 + p2|t|2 − 1, with domϕ = R. Then,

φs(t;µ) =
µ2 − µ

√︁
µ2 + t2 + t2√︁
µ2 + t2

.

4 2 0 2 4
t

0

1

2

3

4

5
t 1

s(t; 0.2)
s(t; 0.5)
s(t; 1.0)

4 2 0 2 4
t

0

1

2

3

4

5
t 1

s(t; 0.2)
s(t; 0.5)
s(t; 1.0)

Figure 18: Generalized self-concordant smoothing of ∥ · ∥1 with ϕ(t) =√︂
1 +|t|2 − 1 (left) and ϕ(t) = 1

2

[︄
√
1 + 4t2 − 1 + log

(︃√
1+4t2−1

2t2

)︃]︄
(right).

The smooth approximation is shown for µ = 0.2, 0.5, 1.0.

69

Example 2. ϕ(t) = 1
2

[︃√
1 + 4t2 − 1 + log

(︂√
1+4t2−1
2t2

)︂]︃
, with domϕ = R:

φs(t;µ) =

√︁
µ2 + 4t2

2
− µ

2

⎡⎣1 + log(2)− log

(︄
2t−

√︁
µ2 + 4t2 + µ

t

)︄

− log

(︄
2t+

√︁
µ2 + 4t2 − µ
t

)︄⎤⎦ .
Infimal convolution of δC(x) with hµ. In the next example, we consider
g(x) = δC(x), where C ≜ {x ∈ Rn | l ≤ x ≤ u} and

δC(x) ≜

{︄
0, if x ∈ C,
+∞, otherwise.

Example 3. Let g(x) = δC(x), and consider

ϕ(t) =

{︄
1
2 (t

2 − 4t+ 3), if t ≤ 1

− log t, otherwise,

with domϕ = R. We have

φs(t;µ) =

{︄
1
2µ (l − t+ 3µ) (l − t+ µ) , if l ≥ t− µ
µ log(µ)− µ log(t− l), otherwise.

The next two results characterize the functions h and hµ defined by
supercoercive and generalized self-concordant kernel functions.

Lemma 7. Let ϕ ∈ Γ0(R) be a function from R to R ∪ {+∞}, and let the
function h : Rp → R ∪ {+∞} be defined by h(x) ≜

∑︁n
i=1 λiϕ(xi) with xi ∈

domϕ, λi > 0, i = 1, 2, . . . , n. Then the following properties hold:

(i) h ∈ Γ0(Rn).

(ii) h is supercoercive if and only if ϕ is supercoercive on its domain.

(iii) If ϕ ∈ FMϕ,ν , where Mϕ ∈ R≥0 and ν ≥ 2, then h(x) is well-
defined on domh = {domϕ}n, and h(x) ∈ FMh,ν , with Mh ≜

max{λ1−
ν
2

i Mϕ | 1 ≤ i ≤ n} ∈ R≥0.

70

Proof. (i) This statement is a direct consequence of [24, Corollary 9.4,
Lemma 1.27 and Proposition 8.17].

(ii) Follows directly from the definition of supercoercivity.

(iii) h(·) ∈ FMh,ν with Mh ≜ max{λ1−
ν
2

i Mϕ | 1 ≤ i ≤ n} ∈ R≥0 follows
from [223, Proposition 1].

■

Proposition 1 (Self-concordance of hµ). Suppose the conditions of Lemma 7
hold such that the function h : Rp → R ∪ {+∞} defined by (3.6) is (Mh, ν)-
generalized self-concordant. Let A ∈ Rn×n be a diagonal matrix defined by
A ≜ diag(1µ) such that h(xµ) ≡ h(Ax) is an affine transformation of h(x). Then
the following properties hold:

(i) If ν ∈ (0, 3], then hµ ∈ FM,ν with M = n
3−ν
2 µ

ν
2−2Mh.

(ii) If ν > 3, then hµ ∈ FM,ν with M = µ4− 3ν
2 Mh.

Proof. (i) We have∥A∥ =
√
n
µ . By [223, Proposition 2(a)], h(xµ) ∈ FM,ν

with M =∥A∥3−ν
Mh. In view of Lemma 7(iii), the scaling h(·

µ) ↦→
µh(·

µ) gives M ↦→ µ1− ν
2M . The result follows.

(ii) The value µ2 > 0 corresponds to the unique eigenvalue of A⊤A. By
[223, Proposition 2(b)], h(xµ) ∈ FM,ν with M = µ3−νMh. The result
follows as in Item (i) above.

■

The next result concerns the epi-convergence of smoothing via infimal
convolution under the condition of supercoercive regularization kernels
in Γ0(Rn).

Lemma 8. [52, Theorem 3.8] Let g, h ∈ Γ0(Rn) with h supercoercive and
0 ∈ domh. Let hµ be defined as in (3.4). Then the following hold:

(i) e– lim
µ↓0
{g∗ + µh∗} = g∗.

(ii) e– lim
µ↓0
{g□hµ} = g.

(iii) If h(0) ≤ 0, we have p– lim
µ↓0
{g□hµ} = g.

71

The main argument for the notion of epi-convergence in optimization
problems is that when working with functions that may take infinite
values, it is necessary to extend traditional convergence notions by ap-
plying the theory of set convergence to epigraphs in order to adequately
capture local properties of the function (through a resulting calculus of
smoothing functions), which on the other hand may be challenging due
to the curse of differentiation associated with nonsmoothness. We refer the
interested reader to [196, Chapter 7] for further details on the notion of epi-
convergence, and to [221, 53, 52] for extended results on epi-convergent
smoothing via infimal convolution.

In the following, we highlight key properties of the infimal convolu-
tion of g ∈ Γ0(Rn) with hµ satisfying h ∈ FMh,ν .

Proposition 2. Let g, h ∈ Γ0(Rn). Suppose further that h is (Mh, ν)-
generalized self-concordant and supercoercive, and define gs ≜ g□hµ for all
µ > 0. Then the following hold:

(i) g□hµ = g ⊡ hµ ∈ Γ0(Rn).

(ii) gs ∈ SµMg,ν
with

Mg =

{︄
n

3−ν
2 µ

ν
2−2Mh, if ν ∈ (0, 3],

µ4− 3ν
2 Mh, if ν > 3.

(iii) gs is locally Lipschitz continuous.

Proof. First, as an immediate consequence of [24, Lemma 1.28, Lemma
1.27 and Proposition 8.17], we have hµ ∈ Γ0(Rn).

(i) Follows immediately from [24, Proposition 12.14].

(ii) By Item (i), gs = g ⊡ hµ ∈ Γ0(Rn). As a consequence of [24, Propo-
sition 12.14], we have

gs(x, µ) = min
w∈Rn

{︁
g(w) + hµ(x− w)

}︁
,

and gs e−→ g (by [196, Theorem 11.34]). In view of [196, Proposition
7.2], for x ∈ dom g and

wµ(x) ∈ argmin
w∈Rn

{︁
g(w) + hµ(x− w)

}︁
̸= ∅,

72

gs e−→ g implies that gs(x, µ) → g(x) for at least one sequence
wµ(x)→ x. Hence, we have

(g□hµ)(x) = g(wµ(x)) + hµ(x− wµ(x)).

And, given h ∈ FMh,ν , we have by Proposition 1 that hµ is (Mg, ν)-
generalized self-concordant, where Mg is given by

Mg =

{︄
n

3−ν
2 µ

ν
2−2Mh, if ν ∈ (0, 3],

µ4− 3ν
2 Mh, if ν > 3.

Hence, hµ ∈ C3(dom g), and by [24, Proposition 18.7/Corollary
18.8], noting that higher-order derivatives are defined inductively
in this sense [24, Definition 2.54, Remark 2.55], we deduce⃓⃓⃓⃓⟨︂

∇3(g□hµ)(x)[v]u, u
⟩︂⃓⃓⃓⃓

=

⃓⃓⃓⃓⟨︂
∇3 hµ(x− wµ(x))[v]u, u

⟩︂⃓⃓⃓⃓
,

∀u, v ∈ dom g, and similarly for the second-order derivatives. By
definition, the univariate function

φ(t) ≜ hµ(u1 + tv1), (3.8)

is (Mg, ν)-generalized self-concordant, for every u1, v1 ∈ dom g.
That is, ∀t ∈ R, ⃓⃓

φ′′′(t)
⃓⃓
≤Mg φ

′′(t)
ν
2 ,

which concludes the proof with u1 ≡ x, v1 ≡ w(xµ) and t ≡ −µ in
(3.8).

(iii) Following the arguments in Items (i) and (ii) above, wµ (and hence
gs) is finite-valued (see also [53, Lemma 4.2]). Then the Lipschitz
continuity of gs near some x̄ ∈ dom g follows from the convexity of
gs (see [196, Example 9.14]; see also [52, Proposition 3.6]).

■

3.3 A proximal Newton-type scheme

Our notion of self-concordant smoothing developed in the previous sec-
tion is motivated by algorithmic purposes. Notably, we have estab-
lished the epi-convergence of gs ∈ FMg,ν to g ∈ Γ0(Rn) under suit-
able conditions, which plays a critical role in the optimization problem

73

(3.2) in a global sense. We next characterize the optimal solution set of
(3.2) using the notion of ε-optimality with respect to (3.1). We define
ε-argmin g ≜ {x | g(x) ≤ inf g + ε} to be the set of points that minimize
the function g up to a tolerance ε ∈ R≥0. For our approach, it suffices to
state the following about the set of minimizers of gs.

Proposition 3. Fix any µ ∈ R>0. Suppose g ∈ Γ0(Rn) and gs ∈ SµMg,ν
. Then

a minimizer of gs is εµ-optimal for g with εµ ∈ R≥0.

Proof. From Proposition 2(iii), we have that, for any x̄ ∈ dom g, gs e−→ g

implies there is at least one sequence wµ(x̄)→ x̄. By the (super)coercivity
of gs, the level set {x ∈ Rn | gs(x;µ) ≤ α̂} at α̂ ∈ R is bounded and
contained in a compact set C such that wµ(x̄) ∈ C. Let wµ(x̄) ∈ εµ-
argmin gs ⊆ C (with µ ∈ R>0 fixed). Then, since gs e−→ g, we get from [196,
Theorem 7.31(b)] that g(x̄) ≤ inf g + εµ. Hence, x̄ ∈ εµ-argmin g. Finally,
wµ(x̄) ∈ εµ-argmin g necessarily follows from [196, Theorem 7.33]. ■

Proposition 3, along with the observation in [196, Theorem 7.37], sug-
gests that a proximal (Newton-type) algorithm can provide a highly accu-
rate solution to (3.2), which also solves (3.1). Hence, the proximal method
effectively handles the nonsmooth part of the problem, while our regu-
larization approach enhances both the solvability of the smooth part of
the original problem and improves the handling of the nonsmooth part
through the choice of the variable-metric. For the optimization problem
(3.2), we assume the following:

P.1 f is convex and f ∈ C2,2Lf
(Rn).

P.2 ρ1In ≤ ∇2 f(x∗) ≤ L1In, ρ2In ≤ ∇2 gs(x
∗) ≤ L2In at a locally opti-

mal solution x∗ of (3.2) with L1 ≥ ρ1 > 0 and L2 ≥ ρ2 > 0.

P.3 g ∈ Γ0(Rn).

P.4 gs ∈ SµMg,ν
.

In particular, we consider gs(x;µ) ≜ g□hµ, where h is a suitable regular-
ization kernel for self-concordant smoothing of g in the sense of Section
3.2. We are interested in practically efficient composite minimization
algorithms that utilize the idea of the Newton decrement framework but

74

without imposing the self-concordant structure on the objective functions
of the problem. In this section, we present proximal Newton-type algo-
rithms that exploit the structure of self-concordant smoothing functions
developed in § 3.2 for variable-metric selection and the computation of
their step-lengths.

Proximal Newton-type algorithms for solving (3.2) consist in mini-
mizing a sequence of upper approximation of Ls obtained by summing the
nonsmooth part g(xk) and a local quadratic model of the smooth part
q(xk) ≜ f(xk) + gs(xk) near xk. That is, for x ∈ domL ≡ dom f ∩ dom g,
we iteratively define

q̂k(x) ≜ q(xk) +
⟨︁
∇ q(xk), x− xk

⟩︁
+

1

2
∥x− xk∥2Q , (3.9a)

m̂k(x) ≜ q̂k(x) + g(x), (3.9b)

where Q ∈ Sn++, and then solve the subproblem

δk ∈ argmin
d∈Rn

m̂k(xk + d), (3.10)

for a proximal Newton-type search direction δk. Proximal Newton-type
algorithms encompass several specific cases. Our characterization of the
optimality conditions for (3.2), particularly the flexibility in the choice of
the variable metric Q, is well-motivated by the class of cost approximation
(CA) methods [180]. This leads to a novel approach for selecting {xk} from
the sequence of iterates {δk}. The necessary optimality conditions for (3.2)
are defined by

0 ∈ ∇ q(x∗) + ∂g(x∗), (3.11)

for x∗ ∈ domL. To find points x∗ satisfying (3.11), CA methods, as the
name implies, iteratively approximate ∇ q(xk) by a cost approximating
mapping Φ: Rn → Rn, taking into account the fixed approximation error
term Φ(xk)−∇ q(xk). That is, a point d is sought satisfying

0 ∈ Φ(d) + ∂g(d) +∇ q(xk)− Φ(xk). (3.12)

75

Let Φ be the gradient mapping of a continuously differentiable convex
function ψ : Rn → R. A CA method iteratively solves the subproblem

min
d∈Rn

{︂
ψ(d) + q(xk) + g(d)− ψ(xk) +

⟨︁
∇ q(xk)−∇ψ(xk), d− xk

⟩︁}︂
.

(3.13)

A step is then taken in the direction δk − xk, namely

xk+1 = xk + αk(δk − xk), (3.14)

where δk solves (3.13) and αk > 0 is a step-length typically computed via a
line search such that an appropriately selected merit function is sufficiently
decreased along the direction δk − xk.

Remark 8. Evaluating the merit function too many times can be impractical.
One way to mitigate this issue for large-scale problems is to incorporate “predeter-
mined step-lengths” into the solution scheme of (3.13). This allows us to update
xk as xk+1 ≡ δk. However, methods that use this approach do not generally yield
a monotonically decreasing sequence of objective values. Instead, convergence is
characterized by a metric that measures the distance from iteration points to the
set of optimal solutions [179].

In view of Remark 8, we discuss next a new proximal Newton-type
scheme that compromises between minimizing the objective values and
decreasing the distance from iteration points to the set of optimal solutions
as specified by a curvature-exploiting variable-metric.

3.3.1 Variable-metric and adaptive step-length selection

A very nice feature of the CA framework is that it can help, for instance,
through the specific choice of Φ, to efficiently utilize the original prob-
lem’s structure—a practice which is particularly useful when solving
medium- to large-scale problems. This feature fits directly into our self-
concordant smoothing framework. We notice that (3.13) gives (3.10) with
the following choice of ψ:

ψ(·) = 1

2
∥·∥2Q , Q ∈ Sn++. (3.15)

76

In this case, the optimality conditions and our assumptions give

(Q−∇ q)(xk) ∈ (Q+ ∂g)(d), (3.16)

which leads to

δk = proxQg (xk −Q−1∇ q(xk)). (3.17)

In the proximal Newton-type scheme,Qmay be the Hessian of q(xk) or its
approximation5. Although a diagonal structure of Q is often desired due
to its ease of implementation in the proximal framework, we most likely
throw away relevant curvature information by performing a diagonal
or scalar approximation of ∇2 q(xk), especially when q is not assumed
to be separable. Our consideration in this chapter entails the following
characterization of the optimality conditions:

(Hk −∇ q)(xk) ∈ (Qk + ∂g)(d), (3.18)

where Hk may be the Hessian, ∇2 q(xk) ≡ Hf
k +Hg

k , of q or its approxi-
mation, where Hf

k ≡ ∇2 f(xk), H
g
k ≡ ∇2 gs(xk;µ), and Qk ∈ Sn++. Specif-

ically, we set Qk = Hg
k in (3.18) and propose the following step update

formula:

xk+1 = prox
Hg

k
αkg(xk − ᾱkH

−1
k ∇ q(xk)), (3.19)

where ᾱk ∈ R>0 results from damping the Newton-type steps.
The validity of this procedure in the present scheme may be seen in the

interpretation of the proximal operator proxg
(︁
x+
)︁

for some x+ ∈ dom g as
compromising between minimizing the function g and staying close to x+

(see [175, Chapter 1]). When scaled by, say,Hg
k , “closeness” is quantified in

terms of the metric induced byHg
k , and we want the proximal steps to stay

close (as much as possible) to the Newton iterates relative to, say,∥·∥Hg
k

.
To see this, we note that in view of the fixed-point characterization (3.13)
via CA methods, we may interpret proximal Newton-type algorithms as

5If Q is the scaled identity matrix, then we have the proximal gradient method, if Q = ∇2 q,
we have the proximal Newton method, and if Q is a quasi-Newton, say BFGS, approximation
of the Hessian, we have a proximal quasi-Newton method.

77

Algorithm 2 Prox-N-SCORE (A proximal Newton algorithm)

Require: x0 ∈ Rn, problem functions f , g, self-concordant smoothing
function gs ∈ SµMg,ν

, α ∈ (0, 1]

1: for k = 0, . . . do
2: gradk ← ∇ f(xk) +∇ gs(xk)
3: Hg

k ← ∇2 gs(xk); ηk ←
⃦⃦
∇ gs(xk)

⃦⃦∗
Hg

k

▷ Note: Hg
k is diagonal

4: ᾱk = α
1+Mgηk

5: Hk ← ∇2 f(xk) +Hg
k ; Solve for ∆k: Hk∆k = gradk

6: xk+1 ← prox
Hg

k
αg (xk − ᾱk∆k)

7: end for

a fixation of the error term ∇ψ −∇ q at some point in dom q ∩ dom g. Let
us fix some x̄ ∈ dom q ∩ dom g and introduce the operator Ex̄ defined by

Ex̄(z) ≜ ∇2 q(x̄)z − ᾱ∇ q(z), (3.20)

where 0 < ᾱ ≤ α ≤ 1. Set Q = Qk ∈ Sn++ arbitrary in (3.15). We aim to
exploit the structure in gs (and ∇2 gs), so we define an operator ξx̄(Qk, ·)
to quantify the error between∇2 gs and Qk as follows:

ξx̄(Qk, z) ≜ (∇2 gs(x̄)−Qk)(z − xk). (3.21)

We provide a local characterization of the optimality conditions for (3.13)
in terms of Ex̄ and ξx̄ in the next result.

Proposition 4. Let the operators Ex̄ and ξx̄(Qk, ·) be defined by (3.20) and
(3.21), respectively. Then the optimality conditions for (3.13) with ψ(·) =
1
2∥·∥

2
Qk

are locally characterized in terms of Ex̄ and ξx̄(Qk, ·) by

Ex̄(xk) + ξx̄(Qk, d) ∈ ∇2 gs(x̄)d+ α∂g(d). (3.22)

More precisely, (3.18) holds with Qk = ∇2 gs(x̄) whenever x̄ is the unique
optimizer satisfying (3.22) at a local solution d of (3.13).

Proof. As gs satisfies the property in SC.1, it holds that [53, Lemma 3.4]

lim sup
x→x̄
µ↓0

∇ gs(x;µ) = ∂g(x̄). (3.23)

78

Hence, by Lemma 8 and [196, Theorem 13.2], there exists vg ∈ Rn, in the
extended sense of differentiability (see [196, Definition 13.1]), such that

lim sup
x→x̄
µ↓0

∇ gs(x) = ∂g(x̄) = {vg}, (3.24a)

∅ ≠ ∂g(d) ⊂ vg +∇2 gs(x̄)(d− x̄) + o(|d− x̄|)Er(x̄). (3.24b)

Let xk be in some neighbourhood of x̄ and let {xk} → x̄ be generated by
an iterative process. By assumption, the differentiable terms in (3.24b) are
convex and the differential operators are monotone. It then holds that

∂g(d) ⊂ vg +∇2 gs(x̄)(d− xk) + o(|d− x̄|)Er(x̄), (3.25)

for all xk in the neighbourhood of x̄. Since differentiability in the extended
sense is necessary and sufficient for differentiability in the classical sense
(see [196, Definition 13.1 and Theorem 13.2]), it holds for some µ ∈ R>0

that vg ≡ ∇ gs(x̄) which is defined through:

∇ gs(d) = ∇ gs(x̄) +∇2 gs(x̄)(d− x̄) + o(|d− x̄|). (3.26)

Consequently, using (3.12) (with Φ = ∇ψ), and defining the Dikin el-
lipsoid Er(x̄) in terms of gs for r small enough, we deduce from (3.25),
(3.26) that Qk(xk − d) + ∇2 gs(x̄)(xk − d) − ᾱ∇ q(xk) ∈ ᾱ∇ gs(x̄) for
0 < ᾱ ≤ 1. We assert∇2 f(x̄)(d− x̄) ∈ Er(x̄) at a local solution d of (3.13),
and then deduce again from (3.25), (3.26) that ᾱ∇ gs(x̄) + ∇2 gs(x̄)(d −
xk) +∇2 f(x̄)xk ∈ α∂g(d) holds for 0 < ᾱ ≤ α ≤ 1 near x̄, whenever x̄ is
the unique solution x∗ of (3.2). As a result, using q ≜ f + gs, we get

(∇2 q(x̄)− ᾱ∇ q)xk −∇2 gs(x̄)xk ∈ Qk(d− xk) + α∂g(d). (3.27)

In terms of Ex̄ and ξx̄(Qk, ·), (3.27) may be written as (3.22), which exactly
gives (3.18) with the choice Qk = ∇2 gs(x̄). ■

As we shall see in the GGN approximation discussed below, we
may exploit the properties of the function gs in ensuring stability of
the Newton-type steps via the notion of Newton decrement. In essence, we
consider damping the Newton-type steps such that

ᾱk =
αk

1 +Mgηk
, (3.28)

79

where by P.4, Mg is a generalized self-concordant parameter for gs, and
ηk ≜

⃦⃦
∇ gs(xk)

⃦⃦∗
xk

is the dual norm of ∇ gs(xk) with respect to gs(xk).
Note that the above choice for ᾱk, in the context of minimizing generalized
self-concordant functions, assumes ν ≥ 2 (see e.g. [223, Equation 12]).
Suppose for example αk = 1 is fixed and ν = 3, then (3.27) leads to the
standard damped-step proximal Newton-type method for minimizing the
sum of a function g ∈ FMg,ν and a nonsmooth function in Γ0(Rn) (cf. [228,
223]) in the framework of Newton decrement.

In view of (3.6), Hg
k has a desirable diagonal structure and hence can

be cheaply updated from iteration to iteration. This structure provides an
efficient way to compute the scaled proximal operator proxH

g
k

g , for example
via a special case of the proximal calculus derived in [29] (see Section 3.6
for two practical examples). Overall, by exploiting the structure of the
problem, precisely

(i) taking adaptive steps that properly capture the curvature of the
objective functions, and

(ii) scaling the proximal operator of g by a variable-metric Hg
k which

has a simple, diagonal structure,

we can adapt to an affine-invariant structure due to the algorithm and
ensure we remain close to the Newton-type iterates towards convergence.

If we choose Hk ≡ ∇2 q(xk) in (3.19), we obtain a proximal Newton
step (see Algorithm 2):

xk+1 = prox
Hg

k
αkg(xk − ᾱk∇2 q(xk)

−1∇ q(xk)). (3.29)

However, Hk may be any approximation of the Hessian of q at xk. In view
of (3.22), this corresponds to replacing the Hessian term∇2 q(x̄) in (3.20)
by the approximating matrix evaluated at x̄.

3.3.2 A proximal generalized Gauss-Newton algorithm

In describing the proximal GGN algorithm, consider first the simple case
g ≡ 0. Then (3.19) with ᾱk = 1 gives exactly the pure Newton-type

80

Algorithm 3 Prox-GGN-SCORE (A proximal generalized Gauss-Newton
algorithm)

Require: x0 ∈ Rn, problem functions f , g, self-concordant smoothing
function gs ∈ SµMg,ν

, modelM, input-output pairs {ui, yi}mi=1 with
yi ∈ Rny , α ∈ (0, 1]

1: for k = 0, . . . do
2: Hg

k ← ∇2 gs(xk); ηk ←
⃦⃦
∇ gs(xk)

⃦⃦∗
Hg

k

▷ Note: Hg
k is diagonal

3: ᾱk ← α
1+Mgηk

4: if m+ ny ≤ n then
5: Compute δggnk via (4.9)
6: else
7: Compute δggnk via (3.33)
8: end if
9: xk+1 ← prox

Hg
k

αg (xk + ᾱkδ
ggn
k)

10: end for

direction

δggnk = −H−1
k ∇ q(xk). (3.30)

Now suppose that the function f quantifies a data-misfit or loss between
the outputs6 ŷi of a modelM(·;x) and the expected outputs yi, for i =
1, 2, . . . ,m, as in a typical machine learning problem, and that g ̸= 0.
Precisely, let ŷi ≡M(ui;x), and suppose that f can be written as

f(x) =

m∑︂
i=1

ℓ(yi, ŷi), (3.31)

where ℓ : R× R→ R is a loss function. Define an “augmented” Jacobian
matrix Jk ∈ R(m+1)×n by [4]

JT
k ≜

⎡⎢⎢⎢⎢⎣
ŷ′1(x

(1)) ŷ′2(x
(1)) · · · ŷ′m(x(1)) g(1)′(x(1))

ŷ′1(x
(2)) ŷ′2(x

(2)) · · · ŷ′m(x(2)) g(2)′(x(2))
...

...
...

...
ŷ′1(x

(n)) ŷ′2(x
(n)) · · · ŷ′m(x(n)) g(n)′(x(n))

⎤⎥⎥⎥⎥⎦ , (3.32)

6Note that for the sake of simplicity, we assume here yi ∈ R, but it is straightforward to
extend the approach that follows to cases where yi ∈ Rny , ny > 1.

81

where x(1), x(2), . . . , x(n) are components of xk, and g(1), g(2), . . . , g(n) are
the components of gs(xk;µ). Then GGN approximation of the Newton
direction (3.30) gives

δggnk = −(Hf
k +Hg

k)
−1∇ q ≈ −(J⊤

k VkJk +Hg
k)

−1J⊤
k uk, (3.33)

where Vk ≡ diag(vk), vk ≜ [l′′ŷ1
(y1, ŷ1;xk), . . . , l

′′
ŷm

(ym, ŷm;xk), 0]
⊤ ∈

R(m+1), and the vector uk ≜ [l′ŷ1
(y1, ŷ1;xk), . . . , l

′
ŷm

(ym, ŷm;xk), 1]
⊤ ∈

Rm+1 defines an augmented “residual” term. If m + 1 < n (possibly
m ≪ n), that is, when the model is overparameterized, the following
equivalent formulation of (3.33) provides a convenient way to compute
the GGN search direction [4]:

δggnk = −Hg−1

k J⊤
k (Im + VkJkH

g−1

k J⊤
k)−1uk. (3.34)

Note that in case the function g (and hence gs) is scaled by some (non-
negative) constant, only the identity matrix Im may be scaled accordingly.
Following [4, Section 4], it suffices to assume stability of the GGN iterates
by ensuring the stability of Hg

k . This is achieved, for instance, through the
generalized self-concordant structure of gs.

Now if we choose Hk ≡ J⊤
k VkJk +Hg

k in the proximal Newton-type
scheme of (3.19), we have the proximal GGN update (see Algorithm 3):

xk+1 = prox
Hg

k
αkg(xk + ᾱkδ

ggn
k), (3.35)

where δk is computed via (3.33), or by (4.9) in case m + 1 is less than n,
and ᾱk is as defined in (3.28).

3.4 Structured penalties

As we have noted, more general nonsmooth regularized problems impose
certain structures on the variables that must be handled explicitly by
the algorithm. Such situations can be seen in some lasso and multi-task
regression problems in which problem (3.1) takes on the form

min
x∈Rn

f(x) +R(x) + Ω(Cx)⏞ ⏟⏟ ⏞
g(x)

, (3.36)

82

where, in addition toR(x), the function (cf. [69, 70])

Ω(Cx) ≜ max
u∈Q
⟨u,Cx⟩, (3.37)

characterizes a specific desired structure of the solution estimates and, for
V a finite-dimensional vector space such that C : Rn → V is a linear map,
Q ⊆ V∗ is closed and convex, where V∗ is the dual space to V.

For example, in the sparse group lasso problem [98, 217], Ω(Cx) =

γ
∑︁

j∈G ωj

⃦⃦
xj
⃦⃦

induces group level sparsity on the solution estimates and
R(x) = β∥x∥1 promotes the overall sparsity of the solution, so that the
optimization problem is written as

min
x∈Rn

f(x) + β∥x∥1 + βG
∑︂
j∈G

ωj

⃦⃦
xj
⃦⃦
, (3.38)

where β ∈ R>0, βG ∈ R>0, G = {jk, . . . , jng
} is the set of vari-

ables groups with ng = card(G), xj ∈ Rnj is the subvector of x
corresponding to variables in group j and ωj ∈ R>0 is the group
penalty parameter. Another example is the graph-guided fused lasso
for multi-task regression problems [127], where the function Ω(Cx) =

βG
∑︁

e=(r,s)∈E,r<s τ(ωrs)
⃓⃓
xr − sign(ωrs)xs

⃓⃓
encourages a fusion effect

over variables xr and xs shared across tasks through a graph G ≡ (V,E)

of relatedness, where V = {1, . . . , n} denotes the set of nodes and E the
edges; βG ∈ R>0, τ(ωrs) is a fusion penalty function, and ωrs ∈ R is the
weight of the edge e = (r, s) ∈ E. Here, withR(x) = β∥x∥1, β ∈ R>0, the
optimization problem is written as

min
x∈Rn

f(x) + β∥x∥1 + βG
∑︂

e=(r,s)∈E,r<s

τ(ωrs)
⃓⃓
xr − sign(ωrs)xs

⃓⃓
. (3.39)

3.4.1 Structure reformulation for self-concordant smooth-
ing

The key observation in problems of the form (3.36) is that the function
Ω(Cx) belongs to the class of nonsmooth convex functions that is well-
structured for Nesterov’s smoothing [161] in which a smooth approxima-

83

tion Ωs of Ω has the form7

Ωs(Cx;µ) = max
u∈Q

{︁
⟨u,Cx⟩ − µd(u)

}︁
, µ ∈ R>0, (3.40)

where d is a prox-function8 of the set Q. Note that Nesterov’s smoothing
approach assumes the knowledge of the exact structure of C. In the
sequel, we shall write ΩC(x) ≡ Ω(Cx) or ΩC

s (x;µ) ≡ Ωs(Cx), with the
superscript “C” to indicate the function is structure-aware via C.

Proposition 5. Let C : Rn → Rn be a linear map and let ω be a continuous
convex function defined on a closed and convex set Q ⊆ domω ⊆ Rn. Further,
define

Ω̃(x) ≜ max
u∈Q

{︁
⟨u,Cx⟩ − ω(u)

}︁
,

and let d ≜ h∗, where h : Rn → R satisfies∇2 h ∈ Sn++ and is of the form (3.6)
with ϕ satisfying K.1 – K.2 so that h ∈ FMh,ν with ν ∈ [3, 6) if n > 1 and with
ν ∈ (0, 6) if n = 1. Then the function

Ωs(x;µ) = max
u∈Q

{︁
⟨u,Cx⟩ − ω(u)− µd(u)

}︁
, µ ∈ R>0, (3.41)

is a self-concordant smoothing function for Ω̃(x).

Proof. We follow the approach in [27, Section 4]. First note that we can
write Ω̃(x) = Ω(Cx), where

Ω ≜ (ω + δQ)
∗.

Now, let d̃ ≜ d+ δQ. In view of [223, Proposition 6], we have d, d̃ ∈ FMd,νd

where Md =Mh and νd = 6− ν. Next, define h̃ ≜ (d̃)∗. We have

(Ω∗ + h̃
∗
µ)

∗(x) = (ω + δQ + µd̃)∗(x)

= max
u∈Q

{︁
⟨u, x⟩ − ω(u)− µd(u)

}︁
,

which is precisely (Ω̃□h∗µ)(x) according to [27, Theorem 4.1(a)] (cf. (3.7)).
Now, since d ≜ h∗ ∈ FMd,νd

, the result follows from Proposition 1 and
Proposition 2(ii). ■

7The reader should not confuse the barrier smoothing technique of, say, [162, 229],
with the self-concordant smoothing framework of this chapter. The self-concordant barrier
smoothing techniques, just like Nesterov’s smoothing, realize first-order and subgradient
algorithms that solve problems of this exact form.

8A function d1 is called a prox-function of a closed and convex set Q1 if Q1 ⊆ dom d1,
and d1 is continuous and strongly convex on Q1 with convexity parameter ρ1 > 0.

84

Under the assumptions of Proposition 5, ΩC
s (x;µ) provides a self-

concordant smooth approximation of Ω(x) with V ≡ Rn. In this case,
ω = 0 in Proposition 5 and the prox-function d in (3.40) is given by h∗, the
dual of h ∈ FMh,ν .

3.4.2 Prox-decomposition and smoothness properties

An important property of the function g = R+ΩC we want to infer here
is its prox-decomposition property [246] in which the (unscaled) proximal
operator of g satisfies

proxg = proxΩC ◦ proxR . (3.42)

Under our assumptions on g and h, this property extends for the inf-conv
regularization (and hence the self-concordant smoothing framework)9. To
see this, let V ≡ Rn, and note the following equivalent expression for the
definition of inf-convolution (3.3):

(R□hµ)(x) = inf
(u,v)∈Rn×Rn

u+v=x

{︁
R(u) + hµ(v)

}︁
.

Define also the function rs : R× R→ R such that

(R□hµ)(x) ≡
n∑︂

i=1

rs(xi;µ).

The next result follows, highlighting what we propose as the inf-
decomposition property.

Proposition 6. Let g ∈ Γ0(Rn) be given as the sum g(x) = R(x) + ΩC(x).
Suppose that the function h ∈ Γ0(Rn) is supercoercive and define z ≜
[rs(x1;µ), . . . , rs(xn;µ)]

⊤. Then the regularization process (g□hµ)(x), for
all µ > 0, is given by the composition

(g□hµ)(x) = (ΩC□hµ)(z). (3.43)
9Additional assumptions may be required to hold in order to correctly define this property

in our framework, e.g., nonoverlapping groups in case of the sparse group lasso problem, in
which case, V is the space Rn.

85

Proof. The exactness of the inf-conv regularization process by Proposi-
tion 2(i) allows to infer

(ΩC□hµ)(z) = inf
(u,v)∈Rn×Rn

u+v=z

{︂
ΩC(u) + hµ(v)

}︂
= inf

(u,v)∈Rn×Rn

2u+v=x

{︂
R(u) + ΩC(u) + hµ(v)

}︂
= ((R+ΩC)□hµ)(x) = (g□hµ)(x).

■

Given the smoothness properties of ΩC□hµ andR□hµ, we can apply
the chain rule to obtain the derivatives of their composition g□hµ. Pre-
cisely, [222, Lemma 2.1] provides sufficient conditions for the validity of
the derivatives obtained via the chain rule for composite functions, which
are indeed satisfied for g□hµ by our assumptions.

3.5 Convergence analysis

We analyze the convergence of Algorithms 2 and 3 under the proposed
smoothing framework. The local behaviour of the algorithms are dis-
cussed in Appendix 3.A. In view of the numerical examples considered
in Section 3.6, we restrict our analyses to the case 2 ≤ ν ≤ 3. However,
similar convergence properties are expected to hold for the general case
ν > 0, as the key bounds describing generalized self-concordant functions
hold similarly for all of these cases (see, e.g., Section 2 and the concluding
remark of [223]). We define the following metric term, taking the local
norm∥·∥x with respect to gs:

dν(x, y) ≜

{︄
Mg∥y − x∥ if ν = 2,(︁
ν
2 − 1

)︁
Mg∥y − x∥3−ν

2 ∥y − x∥ν−2
x if ν > 2.

(3.44)

We introduce the notations Hg∗

k ≡ ∇2 gs(x
∗), Hf∗

k ≡ ∇2 f(x∗) and H∗ ≡
∇2 q(x∗). Recall also the notations Hg

k ≡ ∇2 gs(xk), H
f
k ≡ ∇2 f(xk) and

Hk ≡ ∇2 q(xk) at xk. Furthermore, we define the following matrices

86

associated with any given twice differentiable function f :

Σx,y
f ≜

∫︂ 1

0

(︂
∇2 f(x+ τ(y − x))−∇2 f(x)

)︂
dτ, (3.45a)

Υx,y
f ≜ ∇2 f(x)−1/2Σx,y

f ∇2 f(x)−1/2. (3.45b)

We begin by stating some useful preliminary results. The following result
provides bounds on the function gs in (3.2).

Lemma 9. [223, Proposition 10] Suppose that P.3–P.4 hold. Then, given any
x, y ∈ dom g, we have

ων(−dν(x, y))∥y − x∥2x ≤ gs(y)− gs(x)− ⟨∇ gs(x), y − x⟩
≤ ων(dν(x, y))∥y − x∥2x, (3.46)

in which, if ν > 2, the right-hand side inequality holds if dν(x, y) < 1, and

ων(τ) ≜

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

exp(τ)−τ−1
τ2 if ν = 2,

−τ−ln(1−τ)
τ2 if ν = 3,

(1−τ) ln(1−τ)+τ
τ2 if ν = 4,(︂

ν−2
4−ν

)︂
1
τ

[︃
ν−2

2(3−ν)τ

(︂
(1− τ) 2(3−ν)

2−ν − 1
)︂
− 1

]︃
otherwise.

(3.47)

The next two lemmas are instrumental in our convergence analysis,
and are immediate consequences of the (local) Hessian regularity of the
smooth functions f and gs in (3.2).

Lemma 10. [163, Lemma 1.2.4] For any given x, y ∈ dom f , we have⃦⃦⃦
∇ f(y)−∇ f(x)−∇2 f(x)(y − x)

⃦⃦⃦
≤ Lf

2
∥y − x∥2 , (3.48)⃓⃓⃓⃓

f(y)− f(x)− ⟨∇ f(x), y − x⟩ − 1

2
⟨∇2 f(x)(y − x), y − x⟩

⃓⃓⃓⃓
≤ Lf

6
∥y − x∥3 .

(3.49)

Lemma 11. [223, Lemma 2] For any given x, y ∈ dom g, Υx,y
gs satisfies

∥Υx,y
gs ∥ ≤ Rν(dν(x, y))dν(x, y),

87

where, for τ ∈ [0, 1), Rν(τ) is defined by

Rν(τ) ≜

⎧⎪⎪⎨⎪⎪⎩
(︁
3
2 + τ

3

)︁
exp(τ) if ν = 2,

1−(1−τ)
4−ν
ν−2 −(4−ν

ν−2)τ(1−τ)
4−ν
ν−2

(4−ν
ν−2)τ2(1−τ)

4−ν
ν−2

if ν ∈ (2, 3].
(3.50)

Global convergence. We prove a first global result for the proximal
Newton-type scheme (3.19). We show that the iterates of this scheme
decrease the objective function values with the step-lengths specified by
(3.28) and αk ∈ (0, 1], and converge to an optimal solution of (3.1).

Let us define the following mapping:

Gαkg(xk) ≜
1

ᾱk
Hk

(︂
xk − prox

Hg
k

αkg(xk − ᾱkH
−1
k ∇ q(xk))

)︂
. (3.51)

Clearly, (3.19) is equivalent to

xk+1 = xk − ᾱkH
−1
k Gαkg(xk) . (3.52)

Using (3.18) with Qk = Hg
k and the definition of the (scaled) proximal

operator, Gαkg(xk) satisfies

Gαkg(xk) ∈ ∇ q(xk) + ∂g(xk − ᾱkH
−1
k Gαkg(xk)). (3.53)

Moreover, Gαkg(x̄) = 0 if and only if x̄ solves problem (3.2).

Proposition 7. Suppose that P.1, P.3 and P.4 hold for (3.2). Let {xk} be
the sequence generated by scheme (3.19) for problem (3.2) and satisfying
ων(dν(xk+1, xk)) ≤ 1

2 , where ων and dν are respectively defined by (3.47)
and (3.44). Define εµk(y) ≜ (Lf/6)∥y − xk∥3, and let ᾱk be specified by (3.28)
with αk ∈ (0, 1]. Then {xk} satisfies

L(xk+1) ≤ L(xk)− εµk(xk+1). (3.54)

Proof. Letting y = xk − ᾱkH
−1
k Gαkg(xk) and x = xk in Lemma 10, where

Gαkg is defined by (3.51), we have

f(xk+1) ≤ f(xk)− ᾱk(H
−1
k ∇ f(xk))⊤Gαkg(xk)+

ᾱ2
k

2

⃦⃦⃦
H−1

k Gαkg(xk)
⃦⃦⃦2
Hf

k

+
ᾱ3
kLf

6

⃦⃦⃦
H−1

k Gαkg(xk)
⃦⃦⃦3
. (3.55)

88

Using L(xk+1) ≜ f(xk+1) + g(xk+1) and (3.55), we get

L(xk+1) ≤ f(xk)− ᾱk(H
−1
k ∇ f(xk))⊤Gαkg(xk)+

ᾱ2
k

2

⃦⃦⃦
H−1

k Gαkg(xk)
⃦⃦⃦2
Hf

k

+
ᾱ3
kLf

6

⃦⃦⃦
H−1

k Gαkg(xk)
⃦⃦⃦3

+ g(xk − ᾱkH
−1
k Gαkg(xk))

Lemma 10
≤ f(z)− ⟨∇ f(xk), z − xk⟩ −

1

2
∥z − xk∥2Hf

k
+
Lf

6
∥z − xk∥3

− ᾱk(H
−1
k ∇ f(xk))⊤Gαkg(xk)+

ᾱ2
k

2

⃦⃦⃦
H−1

k Gαkg(xk)
⃦⃦⃦2
Hf

k

+
ᾱ3
kLf

6

⃦⃦⃦
H−1

k Gαkg(xk)
⃦⃦⃦3

+ g(xk − ᾱkH
−1
k Gαkg(xk)). (3.56)

In the above, we used the lower bound in Lemma 10 on f(z). By
the convexity of g, we have g(z) − g(xxk+1

) ≥ v⊤(z − xk+1) for all
v ∈ ∂g(xk+1). Now since from (3.53), we have Gαkg(xk)−∇ q(xk) ∈
∂g(xk − ᾱkH

−1
k Gαkg(xk)), and noting that∇ q −∇ f = ∇ gs, (3.56) gives

L(xk+1) ≤ f(z) + g(z)− ⟨∇ f(xk), z − xk⟩ −
1

2
∥z − xk∥2Hf

k

− ᾱk(H
−1
k ∇ f(xk))⊤Gαkg(xk)+

ᾱ2
k

2

⃦⃦⃦
H−1

k Gαkg(xk)
⃦⃦⃦2
Hf

k

− (Gαkg(xk)−∇ q(xk))⊤(z − xk + ᾱkH
−1
k Gαkg(xk))

+
Lf

6
∥z − xk∥3 +

ᾱ3
kLf

6

⃦⃦⃦
H−1

k Gαkg(xk)
⃦⃦⃦3

≤ L(z)− ⟨∇ f(xk), z − xk⟩ −
1

2
∥z − xk∥2Hf

k
−Gαkg(xk)

⊤
(z − xk)

+
ᾱ2
k

2

⃦⃦⃦
H−1

k Gαkg(xk)
⃦⃦⃦2
Hf

k

+
Lf

6
∥z − xk∥3 +

ᾱ3
kLf

6

⃦⃦⃦
H−1

k Gαkg(xk)
⃦⃦⃦3

− ᾱk(H
−1
k ∇ f(xk))⊤Gαkg(xk)−

ᾱ2
k

2
⟨H−1

k Gαkg(xk), Gαkg(xk)⟩

− ∇ q(xk)⊤(z − xk + ᾱkH
−1
k Gαkg(xk))

= L(z) +Gαkg(xk)
⊤
(xk − z) +

Lf

6
∥z − xk∥3 +

ᾱ3
kLf

6

⃦⃦⃦
H−1

k Gαkg(xk)
⃦⃦⃦3

+∇ gs(xk)⊤(z − xk) + ᾱk(H
−1
k ∇ gs(xk))⊤Gαkg(xk)−

1

2
∥z − xk∥2Hf

k

+
ᾱ2
k

2
⟨H−1

k (Hf
kH

−1
k − In)Gαkg(xk), Gαkg(xk)⟩, (3.57)

89

where the second inequality results from the fact that
⟨H−1

k Gαkg(xk), Gαkg(xk)⟩ ≥ 0 and ᾱk ≥ ᾱ2
k for 0 < ᾱk ≤ 1. Now

set z = xk in (3.57) and use the following relations from (3.52):

ᾱkH
−1
k Gαkg(xk) = xk − xk+1, Gαkg(xk) =

1

ᾱk
Hk(xk − xk+1).

We get

L(xk+1) ≤ L(xk) +
ᾱ2
k

2
⟨H−1

k (Hf
kH

−1
k − In)Gαkg(xk), Gαkg(xk)⟩

+ ᾱk(H
−1
k ∇ gs(xk))⊤Gαkg(xk)+

ᾱ3
kLf

6

⃦⃦⃦
H−1

k Gαkg(xk)
⃦⃦⃦3

= L(xk)−
[︃
⟨∇ gs(xk), xk+1 − xk⟩+

Lf

6
∥xk+1 − xk∥3

+
1

2
⟨Hg

k (xk+1 − xk), xk+1 − xk⟩
]︃
. (3.58)

Now, let us define the following cubic-regularized upper quadratic model
of gs near xk (cf. [165]):

ĝs(y) ≜ gs(xk) + ⟨∇ gs(xk), y − xk⟩+
1

2
⟨Hg

k (y − xk), y − xk⟩

+
Lf

6
∥y − xk∥3 ,

for y ∈ Rn and Lf given by P.1. Then, using Lemma 9 with x = xk, we
have

gs(y)− ĝs(y) ≤ ων(dν(y, xk))∥y − xk∥2x −
1

2
⟨Hg

k (y − xk), y − xk⟩

− Lf

6
∥y − xk∥3 . (3.59)

Next, using (3.59) with y = xk+1, (3.58) gives

L(xk+1) ≤ L(xk) + gs(xk+1)− ĝs(xk+1)

≤ L(xk) +
(︃
ων(dν(xk+1, xk))−

1

2

)︃
∥xk+1 − xk∥2x

− Lf

6
∥xk+1 − xk∥3 ,

which proves the result. ■

90

A straightforward implication of Proposition 7 is that the sequence
{L(xk)} is monotonically decreasing if δ̄k ≜ xk+1 − xk ̸= 0. Consider the
set of indices

KS ≜
{︁
k such that xk ∈ S and S is a subsequence of {xk}

}︁
. (3.60)

Then, for all kj ∈ KS , {xkj} converges to some x∗.

Lemma 12. Let an iterate xk be generated by the scheme (3.19) for problem
(3.2). Then, xk is a stationary point of L if and only if δ̄k = 0.

Proof. The statement holds true by our characterization of the optimiality
conditions in (3.18) with Qk = Hg

k . ■

Theorem 3. Let {xk} ⊂ Rn in Proposition 7. Then every limit point x∗ of
{xk} at which (3.18) holds with Qk = Hg

k is a stationary point of the objective
function L in problem (3.1).

Proof. Proposition 7 implies {L(xk)} is non-increasing and bounded be-
low. Hence, it converges to a finite value L∗. Consequently (and from
the proof of Proposition 3), the sequence of iterates {xk} generated from
(3.19) is bounded, and every limit point exists. Let x∗ be a limit point of
{xk}, and now consider all kj ∈ KS with {xkj

} → x∗, whereKS is defined
by (3.60). The relation in (3.23) implies inclusion in both directions, and
hence since gs e−→ g, if {xkj} is such that

lim sup
xkj

→x∗

µ↓0

∇ gs(xkj ;µ)→ 0, (3.61)

one finds x∗ is a stationary point of g [53]. For any suitably chosen
fixed µ ∈ R>0, it suffices that both properties (3.23) and (3.61) hold only
approximately with respect to Proposition 3 as they pertain only to the
smooth part of the problem. Taking the limit of (3.18) as kj → ∞ with
Qk = Hg

k , the result follows from Lemma 12. Precisely, δ̄kj → 0, and
hence all the limit points of {xk} are stationary points of L. ■

How to choose αk. In previous results, we did not specify a particular
way to choose αk. The results hold for any value of αk ∈ (0, 1]. Compared
to the step-length selection rule proposed in [223], for instance, our ap-
proach and analysis do not directly rely on the actual value of ν in the

91

choice of both ᾱk and αk. Indeed, in the context of minimizing a function
gs ∈ FMg,ν , an optimal choice for ᾱk, in view of [223], corresponds to
setting

αk =

⎧⎨⎩
ln(1+dk)(1+Mηk)

dk
if ν = 2,

2(1+Mgηk)
2+Mgηk

if ν = 3,

where dk ≜Mg∥∇2Hg−1

k ∇ gs(xk)∥ and in each case, it can be shown that
ᾱk ∈ (0, 1). However, choosing αk this way does not guarantee certain
theoretical bounds in the context of the framework studied in this chapter,
especially for ν = 2. We therefore propose to leave αk as a hyperparameter
that must satisfy 0 < αk ≡ α ≤ 1. This however provides the freedom
to exploit specific properties about the function f , when they are known
to hold. One of such properties is the global Lipschitz continuity of ∇ f ,
where supposing the Lipschitz constant L is known, one may set

αk = min{1/L, 1}.

3.6 Numerical experiments

In this section, we validate the efficiency of the technique introduced in
this chapter in numerical examples using both synthetic and real datasets
from the LIBSVM repository [65]. The approach and algorithms proposed
in this chapter are implemented in the Julia programming language and
are available in the SCSO package (see Section 1.1.1). We test the perfor-
mance of Algorithms 2 and 3 for various fixed values of αk ≡ α ∈ (0, 1]

(see Figure 19). Clearly, convergence is fastest with αk = 1, so we fix this
value for the two algorithms in the remainder of our experiments. We com-
pare our technique with other algorithms, namely PANOC [220], ZeroFPR
[226], OWL-QN [12], proximal gradient [142], and fast proximal gradient
[25] algorithms10. In the sparse group lasso experiments, we compare our

10We use the open-source package ProximalAlgorithms.jl for the PANOC,
ZeroFPR, and fast proximal gradient algorithms, while we use our own imple-
mentation of the OWL-QN (modification of https://gist.github.com/yegortk/
ce18975200e7dffd1759125972cd54f4) and proximal gradient methods which can
also be found in our package SelfConcordantSmoothOptimization.jl.

92

https://gist.github.com/yegortk/ce18975200e7dffd1759125972cd54f4
https://gist.github.com/yegortk/ce18975200e7dffd1759125972cd54f4

approach with the proximal gradient, block coordinate descent (BCD)11

algorithm, and the semismooth Newton augmented Lagrangian (SSNAL)
method [136] which was extended12 in [250] to solve sparse group lasso
problems. BCD is known to be an efficient algorithm for general regular-
ized problems [97], and is used as a standard approach for the sparse
group lasso problem [118, 98, 217]. Since the problems considered in our

experiments use the ℓ1 and ℓ2 regularizers, we use ϕ(t) = 1
p

√︂
1 + p2|t|2−1

from Example 1, with p = 1 and derive gs in problem (3.2) accordingly
(see also Figure 18). This provides a good (smooth) approximation for the
1- and 2-norms with an appropriate value of µ. Its gradient and Hessian
are respectively

∇ gs(x) = x/
√︁
µ2 + x2, ∇2 gs(x) = diag

(︂
µ2/(µ2 + x2)

3
2

)︂
.

For a diagonal matrix Hg
k ∈ Rn×n, the scaled proximal operator for the 1-

and 2-norms are obtained using the proximal calculus derived in [29]. Let
the vector d̂ ∈ Rn contain the diagonal entries of Hg

k , and let β ∈ R>0:

(i) prox
Hg

k

β∥x∥1
= sign(x) ·max{|x| − βd̂, 0}, and

(ii) prox
Hg

k

β∥x∥ = x ·max{1− βd̂/∥x∥, 0}.

We terminate most of the algorithms with the default stopping crite-
rion or when ∥xk−xk−1∥

max{∥xk−1∥,1} < εtol with εtol ∈ {10−6, 10−9}.
All experiments are performed on a laptop with dual (2.30GHz +

2.30GHz) Intel Core i7-11800 H CPU and 32GB RAM.

11We use the BCD method of [160] which is efficiently implemented with a gap safe
screening rule. The open-source implementation can be found in https://github.com/
EugeneNdiaye/Gap_Safe_Rules.

12We use the freely available implementation provided by the authors in https://
github.com/YangjingZhang/SparseGroupLasso.

93

https://github.com/EugeneNdiaye/Gap_Safe_Rules
https://github.com/EugeneNdiaye/Gap_Safe_Rules
https://github.com/YangjingZhang/SparseGroupLasso
https://github.com/YangjingZhang/SparseGroupLasso

3.6.1 Sparse logistic regression

We consider the problem of finding a sparse solution x to the following
logistic regression problem

min
x∈Rn

L(x) ≜
m∑︂
i=1

log
(︁
1 + exp(−yi⟨ai, x⟩)

)︁
⏞ ⏟⏟ ⏞

≜f(x)

+β∥x∥1, (3.62)

where, in view of (3.1), g(x) ≜ β∥x∥1, β ∈ R>0, and ai ∈ Rn, yi ∈ {−1, 1}

6 12 18 24
iteration number, k

100

10 2

10 4

10 6

10 8

k
*

/
*

mushrooms dataset: m = 8124, n = 112
Prox-GGN-SCORE: = 0.05
Prox-GGN-SCORE: = 0.1
Prox-GGN-SCORE: = 0.2
Prox-GGN-SCORE: = 0.3
Prox-GGN-SCORE: = 0.5
Prox-GGN-SCORE: = 0.7
Prox-GGN-SCORE: = 1.0

6 12 18 24
iteration number, k

100

10 2

10 4

10 6

10 8

k
*

/
*

mushrooms dataset: m = 8124, n = 112
Prox-N-SCORE: = 0.05
Prox-N-SCORE: = 0.1
Prox-N-SCORE: = 0.2
Prox-N-SCORE: = 0.3
Prox-N-SCORE: = 0.5
Prox-N-SCORE: = 0.7
Prox-N-SCORE: = 1.0

0 5 10 15
time [s]

100

10 2

10 4

10 6

10 8

k
*

/
*

mushrooms dataset: m = 8124, n = 112
Prox-GGN-SCORE: = 0.05
Prox-GGN-SCORE: = 0.1
Prox-GGN-SCORE: = 0.2
Prox-GGN-SCORE: = 0.3
Prox-GGN-SCORE: = 0.5
Prox-GGN-SCORE: = 0.7
Prox-GGN-SCORE: = 1.0

0.00 0.05 0.10 0.15
time [s]

100

10 2

10 4

10 6

10 8

k
*

/
*

mushrooms dataset: m = 8124, n = 112
Prox-N-SCORE: = 0.05
Prox-N-SCORE: = 0.1
Prox-N-SCORE: = 0.2
Prox-N-SCORE: = 0.3
Prox-N-SCORE: = 0.5
Prox-N-SCORE: = 0.7
Prox-N-SCORE: = 1.0

Figure 19: Behaviour of Prox-N-SCORE and Prox-GGN-SCORE for differ-
ent fixed values of αk in problem (3.62).

form the data. We perform experiments on both randomly generated data
and real datasets summarized in Table 3. For the synthetic data, we set
β = 0.2, while for the real datasets, we set β = 1. We fix µ = 1 in both
Algorithms 2 and 3, and set αk = 1/L for the proximal gradient algorithm,
where L is estimated as L = λmax(A

⊤A), the columns of A ∈ Rn×m are

94

0 8 16 24 32 40
iteration number, k

100

10 2

10 4

10 6

10 8

x k
x

*
/m

ax
{

x
*

,1
}

synthetic dataset: m = 100, n = 4500
Prox-N-SCORE
Prox-GGN-SCORE
PANOC
ZeroFPR
OWL-QN (L-BFGS)
Prox-Grad
Fast Prox-Grad

0 1 2 3 4 5 6
time [s]

100

10 2

10 4

10 6

10 8

x k
x

*
/m

ax
{

x
*

,1
}

synthetic dataset: m = 100, n = 4500
Prox-N-SCORE
Prox-GGN-SCORE
PANOC
ZeroFPR
OWL-QN (L-BFGS)
Prox-Grad
Fast Prox-Grad

0.0 0.5 1.0 1.5 2.0
time [s]

100

10 2

10 4

10 6

10 8

x k
x

*
/m

ax
{

x
*

,1
}

mushrooms dataset: m = 8124, n = 112
Prox-N-SCORE
Prox-GGN-SCORE
PANOC
ZeroFPR
OWL-QN (L-BFGS)
Prox-Grad
Fast Prox-Grad

0.0 0.1 0.2 0.3 0.4 0.5
time [s]

100

10 2

10 4

10 6

10 8

x k
x

*
/m

ax
{

x
*

,1
}

a4a dataset: m = 4781, n = 123
Prox-N-SCORE
Prox-GGN-SCORE
PANOC
ZeroFPR
OWL-QN (L-BFGS)
Prox-Grad
Fast Prox-Grad

Figure 20: Test case for overparameterization (top) versus non-
overparameterization (bottom) in problem (3.62).

the vectors ai and λmax denotes the largest eigenvalue. For the sake of
fairness, we provide this value of L to each of PANOC, ZeroFPR, and
fast proximal gradient algorithms for computing their step-lengths in our
comparison.

The results are shown in Figure 19, Figure 20 and Figure 21. In Fig-
ure 20, we observe that Prox-GGN-SCORE reduces most of computational
burden of the Newton-type method when m + ny < n and makes the
method competitive with the first-order methods considered. However,
as shown in both Figure 19 and Figure 20, Prox-GGN-SCORE is no longer
preferred when n < m+ ny and, by our experiments, the algorithm can
run into computational issues when n ≪ m. In this case (particularly
for all of the real datasets that we use in this example), Prox-N-SCORE
would be preferred and, as shown in the performance profile of Figure 21,
outperforms other tested algorithms in most cases, especially with α = 1.

95

5 10 15 20 250.00

0.25

0.50

0.75

1.00

(
)

Prox-N-SCORE: = 0.2
Prox-N-SCORE: = 0.5
Prox-N-SCORE: = 1.0
PANOC
ZeroFPR
OWL-QN (L-BFGS)
Prox-Grad
Fast Prox-Grad

Figure 21: Performance profile (CPU time) for the sparse logistic regression
problem (3.62) using the LIBSVM datasets summarized in Table 3. Here,
τ denotes the performance ratio (CPU times in seconds) averaged over
20 independent runs with different random initializations, and ρ(τ) is the
corresponding frequency.

3.6.2 Sparse group lasso

In this example, we consider the sparse group lasso problem:

min
x∈Rn

L(x) ≜ 1

2
∥Ax− y∥2⏞ ⏟⏟ ⏞

≜f(x)

+β∥x∥1 + βG
∑︂
j∈G

ωj

⃦⃦
xj
⃦⃦

⏞ ⏟⏟ ⏞
≜g(x)

, (3.63)

as described in Section 3.4. We use the common example used in the
literature [235, 227], which is based on the model y = Ax∗ + 0.01ϵ ∈
Rm×1, ϵ ∼ N (0, 1). The entries of the data matrix A ∈ Rm×n are drawn
from the normal distribution with pairwise correlation corr(Ai, Aj) =

0.5|i−j|, ∀(i, j) ∈ [n]2. We generate datasets for different values of m and
n with n satisfying (n mod ng) = 0. In this problem, we want to further
highlight the faster computational time achieved by the approximation in

96

Table 3: Summary of the real datasets used for sparse logistic regression.

Data m n Density

mushrooms 8124 112 0.19

phishing 11055 68 0.44

w1a 2477 300 0.04

w2a 3470 300 0.04

w3a 4912 300 0.04

w4a 7366 300 0.04

w5a 9888 300 0.04

w8a 49749 300 0.04

a1a 1605 123 0.11

a2a 2265 123 0.11

a3a 3185 123 0.11

a4a 4781 123 0.11

a5a 6414 123 0.11

Prox-GGN-SCORE, so we consider only overparameterized models (i.e.,
with m+ ny ≤ n).

In this problem, the matrix C in the reformulation (3.36) is a diago-
nal matrix with row indices given by all pairs (i, j) ∈ {(i, j)|i ∈ j, i ∈
{1, . . . , ng}}, and column indices given by k ∈ {1, . . . , ng}. That is,

C(i,j),k =

{︄
βGωj if i = k,

0 otherwise.

We construct x∗ in a similar way as [159]: We fix ng = 100 and break
n randomly into groups of equal sizes with 0.1 percent of the groups
selected to be active. The entries of the subvectors in the nonactive groups
are set to zero, while for the active groups, ⌈ n

ng
⌉ × 0.1 of the subvector

entries are drawn randomly and set to sign(ξ) × U where ξ and U are
uniformly distributed in [0.5, 10] and [−1, 1], respectively; the remaining
entries are set to zero. For the sake of fair comparison, each data and the
associated initial vector x0 are generated in Julia, and exported for the
BCD implementation in Python and also for the SSNAL implementation
in MATLAB. For Prox-GGN-SCORE, Prox-Grad and BCD, we set β =

97

Ta
bl

e
4:

Pe
rf

or
m

an
ce

of
P
r
o
x
-
G
G
N
-
S
C
O
R
E

(a
l
g
.
A

),
S
S
N
A
L

(a
l
g
.
B

),
P
r
o
x
-
G
r
a
d

(a
l
g
.
C

)a
nd

B
C
D

(a
l
g
.
D

)o
n

th
e

sp
ar

se
gr

ou
p

la
ss

o
pr

ob
le

m
(3

.6
3)

fo
r

di
ff

er
en

tv
al

ue
s

of
m

an
d
n

.n
nz

st
an

ds
fo

r
th

e
nu

m
be

r
of

no
nz

er
o

en
tr

ie
s

of
x
∗

an
d

of
th

e
so

lu
ti

on
s

fo
un

d
by

th
e

al
go

ri
th

m
s.

M
SE

st
an

d
s

fo
r

th
e

m
ea

n
sq

ua
re

d
er

ro
r

be
tw

ee
n

th
e

tr
ue

so
lu

ti
on

x
∗

an
d

th
e

es
ti

m
at

ed
so

lu
ti

on
s.

(m
,n

;n
n
z
)

nn
z

It
er

at
io

na
Ti

m
e

[s
]

M
SE

a
l
g
.
A
a
l
g
.
B
a
l
g
.
C
a
l
g
.
D
a
l
g
.
A
a
l
g
.
B
a
l
g
.
C
a
l
g
.
D
a
l
g
.
A
a
l
g
.
B
a
l
g
.
C
a
l
g
.
D

a
l
g
.
A

a
l
g
.
B

a
l
g
.
C

a
l
g
.
D

(5
00
,2
0
00
;1
9)

19
19

8
19

19
16

1
62

59
04

96
90

2.
81

4.
65

13
.3

9
3.

55
2.

93
05

E-
09

5.
31

88
E-

08
2.

51
89

E-
07

8.
03

50
E-

06

(5
00
,4
0
00
;3
6)

36
39

36
36

25
3

14
0

10
99

1
16

79
0

8.
44

39
.5

1
51

.9
1

11
.6

0
1.

42
91

E-
08

4.
39

52
E-

08
1.

16
53

E-
06

1.
71

27
E-

05

(5
00
,5
00
0;
45
)

45
45

45
45

53
0

11
1

13
91

9
20

83
0

16
.6

0
35

.5
7

90
.0

5
18

.5
3

2.
63

39
E-

07
6.

08
98

E-
08

2.
01

21
E-

06
2.

16
41

E-
05

(1
00
0
,5
00
0;
45
)

45
82

45
45

11
2

35
30

51
91

00
8.

71
15

.7
3

11
.5

7
22

.1
4

2.
46

67
E-

07
1.

97
57

E-
06

2.
17

47
E-

06
5.

07
79

E-
06

(1
00
0
,7
00
0;
65
)

65
65

65
65

18
5

82
70

12
20

87
0

30
.2

6
14

8.
07

42
.4

5
70

.0
8

4.
56

89
E-

07
2.

28
47

E-
08

4.
01

72
E-

06
1.

80
38

E-
05

(1
00
0,
10
00
0;
94
)

93
94

94
94

49
7

10
2

98
79

29
33

0
53

.2
6

25
2.

05
90

.2
5

12
6.

17
3.

84
21

E-
06

2.
84

41
E-

08
3.

63
20

E-
06

3.
58

55
E-

05

(1
00
0
,1
20
00
;1
12
)

11
2

11
3

11
3

16
4

66
3

68
21

17
8

59
36

0
16

6.
15

19
4.

40
22

1.
26

37
3.

50
1.

57
50

E-
05

4.
69

65
E-

08
7.

32
85

E-
06

5.
95

21
E-

05

a N
um

be
r

of
“o

ut
er

”
it

er
at

io
ns

fo
r
S
S
N
A
L

(a
l
g
.
B

).

98

0 1 2 3 4
time [s]

100

10 2

10 4

10 6

10 8

M
SE

m = 500, n = 2000
Prox-GGN-SCORE
SSNAL
Prox-Grad
BCD

0 10 20 30 40
time [s]

100

10 2

10 4

10 6

M
SE

m = 500, n = 4000
Prox-GGN-SCORE
SSNAL
Prox-Grad
BCD

0 5 10 15 20
time [s]

100

10 2

10 4

10 6

M
SE

m = 1000, n = 5000
Prox-GGN-SCORE
SSNAL
Prox-Grad
BCD

0 30 60 90 120
time [s]

100

10 2

10 4

10 6

M
SE

m = 1000, n = 7000
Prox-GGN-SCORE
SSNAL
Prox-Grad
BCD

Figure 22: Mean squared error (MSE) between the estimates xk and the true
coefficient x∗ for Prox-GGN-SCORE, SSNAL, Prox-Grad and BCD on the
sparse group lasso problem (3.63).

τ1γ∥AT y∥∞, βG = (10− τ1)γ∥AT y∥∞ with τ1 = 0.9 and γ ∈ {10−7, 10−8}.
SSNAL can be made to return a solution estimate that has number of
nonzero entries close to that of the true solution with a carefully tuned β
and simply setting βG = β (cf., [250, Table 1]). We set β = τ1γ∥AT y∥∞ and
βG = ∥AT y∥∞ with γ = 10−5 and τ1 ∈ {4, 5, 10, 12} for SSNAL. For each
group j, the parameter ωj is set to the standard value√nj [98, 217], where
nj = card(j). For fairness, the estimate αk = 1/L with L = λmax(A

⊤A) is
used in the proximal gradient and SSNAL algorithms.

The smoothing parameter µ is set to 1.2 for the problem with m = 500,
n = 2000, 2.0 for the problem with m = 1000, n = 12000, and to 1.6 for
the remaining problems. In principle, µ is a hyperparameter that has to
be chosen to scale with the size of the optimization vector x. Any µ > 0 is
suitable, but larger values of n may require to set µ ≥ 1. This is intuitive

99

in the sense that a rather small µ when n is large results into a “weak”
smoothing, and in the algorithmic scope, we only require that g and gs do
not conflict, which holds by construction for any µ > 0.

The simulation results are shown in Table 4 and Figure 22. As
shown, Prox-GGN-SCORE solves the problem faster than SSNAL,
Prox-Grad and BCD algorithms in most cases with the correct number
of nonzero entries in its solution estimates. In the problems considered,
Prox-GGN-SCORE benefits a lot from overparameterization which would
have potentially posed a serious computational issue for a typical second-
order method. This makes the algorithm competitive with first-order
methods and other Newton-type methods in large-scale problems.

3.6.3 Sparse deconvolution

In this example, we consider the problem of estimating the unknown
sparse input x to a linear system, given a noisy output signal and the
system response. That is,

min
x∈Rn

L(x) ≜ 1

2
∥Ax− y∥2⏞ ⏟⏟ ⏞

≜f(x)

+β∥x∥p, (3.64)

where A ∈ Rn×n and y ∈ Rn×1 are given data about the system which we
randomly generate according to [214, Example F]. We solve with both ℓ1
(p = 1) and ℓ2 (p = 2) regularizers, and set β = 10−3. We set µ = 5× 10−2

in the smooth approximation gs of g. We estimate L = λmax(A
⊤A) and

set αk = 1/L in the proximal gradient algorithm. Again, for fairness, we
provide this value of L to each of PANOC, ZeroFPR, and fast proximal
gradient procedures in our comparison. The results of the simulations
are displayed in Figure 23 and Figure 24. While Prox-GGN-SCORE and
Prox-N-SCORE sometimes have more running time in this problem, they
provide better solution quality with smaller reconstruction error than
the other tested algorithms, which we find appealing for such signal
reconstruction problems.

100

0 250 500 750 1000
1.0
0.5
0.0
0.5
1.0

original

0 250 500 750 1000
2
1
0
1
2

noisy

0 250 500 750 1000
1.0
0.5
0.0
0.5

Prox-N-SCORE, Iter: 153, MSE: 1.6918E-03, Time [s]: 2.47

0 250 500 750 1000
1.0
0.5
0.0
0.5

Prox-GGN-SCORE, Iter: 153, MSE: 1.6918E-03, Time [s]: 6.93

0 250 500 750 1000
0.75
0.50
0.25
0.00
0.25
0.50
0.75

PANOC, Iter: 129, MSE: 1.8404E-03, Time [s]: 0.35

0 250 500 750 1000
0.75
0.50
0.25
0.00
0.25
0.50
0.75

ZeroFPR, Iter: 65, MSE: 1.8404E-03, Time [s]: 0.23

0 250 500 750 1000
1.0
0.5
0.0
0.5

Prox-Grad, Iter: 1416, MSE: 1.6936E-03, Time [s]: 0.26

0 250 500 750 1000
0.75
0.50
0.25
0.00
0.25
0.50
0.75

Fast Prox-Grad, Iter: 551, MSE: 1.8421E-03, Time [s]: 0.94

Figure 23: Sparse deconvolution via ℓ1-regularized least squares (3.64) using
different solvers with n = 1024.

0 250 500 750 1000
1.0
0.5
0.0
0.5
1.0

original

0 250 500 750 1000
2
1
0
1
2

noisy

0 250 500 750 1000
1.0
0.5
0.0
0.5

Prox-N-SCORE, Iter: 161, MSE: 2.0727E-03, Time [s]: 2.6

0 250 500 750 1000
1.0
0.5
0.0
0.5

Prox-GGN-SCORE, Iter: 161, MSE: 2.0727E-03, Time [s]: 7.38

0 250 500 750 1000
0.6
0.3
0.0
0.3
0.6

PANOC, Iter: 156, MSE: 2.4167E-02, Time [s]: 0.28

0 250 500 750 1000
0.6
0.3
0.0
0.3
0.6

ZeroFPR, Iter: 102, MSE: 2.4167E-02, Time [s]: 0.34

0 250 500 750 1000
0.75
0.50
0.25
0.00
0.25
0.50
0.75

Prox-Grad, Iter: 246, MSE: 4.6235E-03, Time [s]: 0.04

0 250 500 750 1000
0.6
0.3
0.0
0.3
0.6

Fast Prox-Grad, Iter: 2960, MSE: 2.4167E-02, Time [s]: 5.01

Figure 24: Sparse deconvolution via ℓ2-regularized least squares (3.64) using
different solvers with n = 1024.

101

Appendix for Chapter 3

3.A Local behaviours of Algorithms 2 and 3

In this section, we discuss the local properties of Algorithms 2 and 3.
When nicely behaved, the local properties of the algorithms can be used
to establish local convergence. For example, if we fix αk = 1 (or larger),
and since dν < 1 (noting also that ων is a strictly increasing function), we
get a (near) quadratic local convergence. Therefore, for an appropriate
choice of some parameters of the algorithms, these properties provide
very important information about the local behaviour of the algorithms.
But we leave this discussion open. In the following, we take the local
norm∥·∥x (and its dual) with respect to gs, and the standard Euclidean
norm∥·∥with respect to the (local) Euclidean ball Br0(·) ⊂ Er(·).
Theorem 4. Suppose that P.1–P.4 hold, and let x∗ be an optimal solution of
(3.2). Let {xk} be the sequence of iterates generated by Algorithm 2 and define
λk ≜ 1+Mgων(−dν(x∗, xk))∥xk − x∗∥xk

, where ων is defined by (3.47). Then
starting from a point x0 ∈ Er(x∗), if dν(x∗, xk) < 1 with dν defined by (3.44),
the sequence {xk} satisfies

∥xk+1 − x∗∥x∗ ≤ ϑk∥xk − x∗∥+Rk∥xk − x∗∥x∗ +
Lf

2
√
ρ2
∥xk − x∗∥2 ,

(3.65)

where ϑk ≜ (L1 + L2)(λk − αk)/(λk
√
ρ), αk ∈ (0, 1], Rk ≜

Rν(dν(x
∗, xk))dν(x∗, xk) with Rν defined by (3.50).

Proof. The iterative process of Algorithm 2 is given by

xk+1 = prox
Hg

k
αkg(xk − ᾱk∇2 q(xk)

−1∇ q(xk)).

102

In terms of Ex̄ and ξx̄(Qk, ·) with Qk ≡ Hg
k , and using the definition of q,

we have

∥xk+1 − x∗∥x∗

=

⃦⃦⃦⃦
prox

Hg∗
k

αkg (Ex∗(xk) + ξx∗(Qk, xk+1))− prox
Hg∗

k
αkg (Ex∗(x∗))

⃦⃦⃦⃦
x∗

(3.5)
≤
⃦⃦
Ex∗(xk)− Ex∗(x∗) + ξx∗(Qk, xk+1)

⃦⃦∗
x∗

=
⃦⃦
H∗xk − ᾱk∇ q(xk)−H∗x∗ + ᾱkq(x

∗)
⃦⃦∗
x∗

=
⃦⃦
∇ q(x∗)−∇ q(xk) + (1− ᾱk)(∇ q(xk)−∇ q(x∗)) +H∗(xk − x∗)

⃦⃦∗
x∗

≤
⃦⃦
∇ q(xk)−∇ q(x∗)−H∗(xk − x∗)

⃦⃦∗
x∗ + (1− ᾱk)

⃦⃦
∇ q(xk)−∇ q(x∗)

⃦⃦∗
x∗

≤
⃦⃦⃦
∇ f(xk)−∇ f(x∗)−Hf∗

k (xk − x∗)
⃦⃦⃦∗
x∗

+
⃦⃦⃦
∇ gs(xk)−∇ gs(x∗)−Hg∗

k (xk − x∗)
⃦⃦⃦∗
x∗

+ (1− ᾱk)
(︂
∇ f(xk)−∇ f(x∗)

⃦⃦∗
x∗ +

⃦⃦
∇ gs(xk)−∇ gs(x∗)

⃦⃦∗
x∗

)︂
.

(3.66)

To estimate ∥∇ f(xk)−∇ f(x∗)−Hf∗

k (xk−x∗)∥∗x∗ , we note that for v ∈ Rn,

∥v∥∗x∗ ≡ ∥Hg∗− 1
2

k v∥ since we take the dual norm with respect to gs. Now,
using P.2, we get that the matrix Hg∗

k is positive definite and

∥Hg∗− 1
2

k ∥ ≤ 1√
ρ2
. (3.67)

Consequently, we have⃦⃦⃦
∇ f(xk)−∇ f(x∗)−Hf∗

k (xk − x∗)
⃦⃦⃦∗
x∗

=

⃦⃦⃦⃦
Hg∗− 1

2

k

(︂
∇ f(xk)−∇ f(x∗)−Hf∗

k (xk − x∗)
)︂⃦⃦⃦⃦

≤ ∥Hg∗− 1
2

k ∥
⃦⃦⃦
∇ f(xk)−∇ f(x∗)−Hf∗

k (xk − x∗)
⃦⃦⃦

Lemma 10
≤ Lf∥xk − x∗∥2

2
√
ρ2

.

To estimate ∥∇ gs(xk) − ∇ gs(x∗) − Hg∗

k (xk − x∗)∥∗x∗ , we can apply

103

Lemma 11 as in the proof of [223, Theorem 5], and get⃦⃦⃦
∇ gs(xk)−∇ gs(x∗)−Hg∗

k (xk − x∗)
⃦⃦⃦∗
x∗
≤

Rν(dν(x
∗, xk))dν(x

∗, xk)∥xk − x∗∥x∗ .

Following [223, p. 195], we can derive the following inequality in a
neighbourhood of the sublevel set of Ls in (3.2) using Lemma 9 and the
convexity of gs:

∥∇ gs(xk)∥∗xk
≥ ων(−dν(x∗, xk))∥xk − x∗∥xk

. (3.68)

In this regard, (3.28) gives

1− ᾱk ≤
λk − αk

λk
. (3.69)

Next, by P.2, we deduce⃦⃦
∇ gs(xk)−∇ gs(x∗)

⃦⃦
≤ L2∥xk − x∗∥ ,

and ⃦⃦
∇ f(xk)−∇ f(x∗)

⃦⃦
≤ L1∥xk − x∗∥ .

Then, using (3.67), we get

⃦⃦
∇ gs(xk)−∇ gs(x∗)

⃦⃦∗
x∗ =

⃦⃦⃦⃦
Hg∗− 1

2

k

(︁
∇ gs(xk)−∇ gs(x∗)

)︁⃦⃦⃦⃦
≤ L2√

ρ2
∥xk − x∗∥ .

Similarly, ⃦⃦
∇ f(xk)−∇ f(x∗)

⃦⃦∗
x∗ ≤

L1√
ρ2
∥xk − x∗∥ .

Finally, putting the above estimates into (3.66), we obtain (3.65). ■

To prove a related property for Algorithm 3, we need an additional
assumption about the behaviour of the Jacobian matrix Jk near x∗. As
before, Jk denotes the Jacobian matrix evaluated at xk; likewise, Vk and
uk. At x∗, we respectively write J∗, V ∗ and u∗. We assume the following:

104

G.1 ∥Jkv∥ ≥ β1∥v∥, β1 > 0, for all xk near x∗, and for any v ∈ Rn.

For f defined by (3.31), condition G.1 implies that the singular values
of Jk are uniformly bounded away from zero, at least locally. Let the
unaugmented version of the residual vector uk be denoted ũk at xk, that
is,

ũk ≜ [l′ŷ1
(y1, ŷ1;xk), . . . , l

′
ŷm

(ym, ŷm;xk)]
⊤ ∈ Rm.

Define the following matrix:

WT
k ≜

⎡⎢⎢⎢⎢⎣
ŷ′′1(x

(1)) ŷ′′2(x
(1)) · · · ŷ′′m(x(1))

ŷ′′1(x
(2)) ŷ′′2(x

(2)) · · · ŷ′′m(x(2))
...

...
...

ŷ′′1(x
(n)) ŷ′′2(x

(n)) · · · ŷ′′m(x(n))

⎤⎥⎥⎥⎥⎦ ∈ Rn×m. (3.70)

We note that the “full” Hessian matrix Hk can be expressed as

Hk ≡ J⊤
k VkJk + (1⊗ (W⊤

k ũk))
⊤ +Hg

k , (3.71)

where 1 ∈ Rn×1 is the n × 1 matrix of ones and ⊗ denotes the outer
product. By P.1, P.2 and the Lipschitz continuity of gs around x∗ in
Proposition 2(iii), we have: for r small enough, there exists a constant
β2 > 0 such that∥ũk∥ ≤ β2 near x∗. Furthermore by our assumptions (see,
e.g., [169, Theorem 10.1]), we deduce that there exists β3 > 0 such that
∥Wk∥ ≤ β3 near x∗.

The next result follows. Note that for Algorithm 3, we consider the
case where f in problem (3.2) may, in general, be expressed in the form
(3.31).

Theorem 5. Suppose that P.1–P.4 hold, and let x∗ be an optimal solution of
(3.2) where f is defined by (3.31). Additionally, let G.1 hold for the Jacobian
matrix Jk defined by (3.32). Let {xk} be the sequence of iterates generated by
Algorithm 3, and define λk ≜ 1 +Mgων(−dν(x∗, xk))∥xk − x∗∥xk

, where ων

is defined by (3.47). Then starting from a point x0 ∈ Er(x∗), if dν(x∗, xk) < 1
with dν defined by (3.44), the sequence {xk} satisfies

∥xk+1 − x∗∥x∗ ≤ ϑk∥xk − x∗∥+Rk∥xk − x∗∥x∗ +
Lf

2
√
ρ2
∥xk − x∗∥2 ,

(3.72)

105

where Rk is as defined in Theorem 4, ϑk ≜ (λk(L1 + L2)(λk − αk) + β̃)/
√
ρ2,

αk ∈ (0, 1], and β̃ ≜ β2β3 > 0.

Proof. Let Ĥk ≜ J⊤
k VkJk + Hg

k , and consider the iterative process of
Algorithm 3 given by

xk+1 = prox
Hg

k
αkg(xk − ᾱkĤ

−1

k J⊤
k uk).

We first note that J⊤
k uk is a compact way of writing∇ f(xk) +∇ gs(xk) ≜

∇ q(xk), where f is given by (3.31). Following the proof of Theorem 4, we
have

∥xk+1 − x∗∥x∗

=

⃦⃦⃦⃦
prox

Hg∗
k

αkg (Ex∗(xk) + ξx∗(Qk, xk+1))− prox
Hg∗

k
αkg (Ex∗(x∗))

⃦⃦⃦⃦
x∗

≤
⃦⃦⃦
∇ q(xk)−∇ q(x∗)− Ĥ

∗
k(xk − x∗)

⃦⃦⃦∗
x∗

+ (1− ᾱk)
⃦⃦
∇ q(xk)−∇ q(x∗)

⃦⃦∗
x∗ . (3.73)

Let W ∗ and ũ∗ respectively denote expressions for Wk and ũ evaluated at
x∗. Substituting (3.71) into (3.73) and using (3.67) in the estimate⃦⃦⃦

(1⊗ (W ∗⊤
ũk))

⊤(xk − x∗)
⃦⃦⃦∗
x∗
≤
⃦⃦⃦⃦
Hg∗− 1

2

k (1⊗ (W ∗⊤
ũ∗))⊤

⃦⃦⃦⃦
∥xk − x∗∥ ,

where Wk is defined by (3.70), we get

∥xk+1 − x∗∥x∗ ≤
⃦⃦
∇ q(xk)−∇ q(x∗)−H∗(xk − x∗)

⃦⃦∗
x∗

+
⃦⃦⃦
(1⊗ (W ∗⊤

ũ∗))⊤(xk − x∗)
⃦⃦⃦∗
x∗

+ (1− ᾱk)
⃦⃦
∇ q(xk)−∇ q(x∗)

⃦⃦∗
x∗

≤
⃦⃦⃦
∇ f(xk)−∇ f(x∗)−Hf∗

k (xk − x∗)
⃦⃦⃦∗
x∗

+
⃦⃦⃦
∇ gs(xk)−∇ gs(x∗)−Hg∗

k (xk − x∗)
⃦⃦⃦∗
x∗

+ (1− ᾱk)
(︂
∇ f(xk)−∇ f(x∗)

⃦⃦∗
x∗ +

⃦⃦
∇ gs(xk)−∇ gs(x∗)

⃦⃦∗
x∗

)︂
+
β̃∥xk − x∗∥√

ρ2
, (3.74)

where β̃ = β2β3. Now, using the estimates derived in the proof of Theo-
rem 4 in (3.74) above, we obtain (3.72). ■

106

Part III

Theoretical guarantees and
practical frameworks for

solving supervised learning
and control problems in
neural networks using
quasi-Newton methods

107

Chapter 4

Regularized Gauss-Newton
for optimizing
overparameterized neural
networks

4.1 Introduction

Despite their superior convergence rates compared to first-order methods,
(approximate) second-order methods are still rarely used — and as such,
underexplored — for training large-scale machine learning and neural
network (NN) models. This is due to their highly prohibitive compu-
tations and memory footprints at each iteration. Some past and recent
works have, however, made efforts to reduce this overhead by proposing
different approximations to the Hessian of the loss function, which the
methods ultimately exploit to achieve their impressive convergence prop-
erties (see e.g., Roux, Manzagol, and Bengio [199], Martens et al. [147],
Vinyals and Povey [234], Martens and Grosse [149], Botev, Ritter, and
Barber [45], Arbel et al. [14], Ren and Goldfarb [191], Cai et al. [57], Yao
et al. [244], and Adeoye and Bemporad [4]).

One of the most appealing approximations to the Hessian matrix

108

within the context of practical deep learning and nonlinear optimization
in general is the generalized Gauss-Newton (GGN) approximation of
Schraudolph [212], which uses a positive semi-definite (PSD) matrix to
model the curvature about an arbitrary convex loss function. In fact, the
Fisher information matrix (FIM) — a curvature approximating matrix
which certain approximate second-order methods seek to estimate — is
shown to have direct connections with the GGN matrix in many practical
cases [149, 177]. In addition to the desirable property of maintaining
positive-definiteness throughout the training procedure, other nice prop-
erties of the GGN matrix, in comparison with the Hessian matrix, are
discussed in Martens [148, Section 8.1]; see also Chen [68] for discussions
in the context of nonlinear least-squares estimation and Bemporad [34]
for efficient training of (deep) recurrent neural networks with a GGN
approach.

Towards understanding the theoretical working of deep neural net-
works, a line of work [75, 137, 84, 83, 10, 253, 121, 16, 73, 242] attributes
their optimization and generalization success in many applications to
their immense overparameterization, that is, the property of having way
more parameters than the number of data points they are being trained on.
These generalization properties of the NN are known to have connections
with the implicit regularization of the overparameterized NN by the gra-
dient descent (GD) method [248, 138, 105, 122, 9, 72, 140, 225, 39]. For the
(generalized) Gauss-Newton and its related FIM (or natural gradient), some
recent works [57, 249, 124, 126, 100, 13] have shown similar approximation
properties and global convergence in the overparameterized regime, also
mostly attributing generalization to the implicit regularization effect of
the Gauss-Newton via the NTK [57, 249, 124, 126, 100] and the mean-field
[13].

In many of the works showing the implicit regularization effect of
gradient-based optimizers, it is suggested that explicit regularizers are not
needed at all in order to see the impressive generalization results. How-
ever, recent works, such as Wei et al. [238], Raj and Bach [190], and Orvieto
et al. [171], argue that explicit regularization of the network indeed matters
and should at least be given as much attention, both from a generalization

109

and an optimization point of view. In particular, Wei et al. [238] proved
an approximation bound (in number of samples), via the lens of margin
theory, for an infinite-width one-hidden-layer NN weakly-regularized by the
ℓ2-norm, which significantly improves upon other results that rely on the
NTK and/or implicit regularization formalism. In addition, they proved
a global polynomial convergence rate for the noisy gradient descent, an
improvement over related works that similarly study NN optimization in
the infinite-width limit. In Cai et al. [57], the interpretation of the GGN
updates as an explicit solution of the NTK regression is used to prove
a global linear convergence in the mini-batch setting. Apart from the
explicit addition of a regularization term to the objective function, explicit
regularization is also induced in other forms [109, 243, 218, 201, 190, 171].

In this chapter, we study the optimization of a two-layer NN by the
GGN method, and by drawing inspiration from their performance in
convex optimization, we consider explicit self-concordant regularization
of the GGN. To the best of our knowledge, our convergence result is the
first in this kind of setting: optimization of an explicitly regularized NN
by the GGN method in the overparameterized regime. The structure of
the class of regularization functions considered not only helps to control
the local rate of change of their second derivatives [173], but can also be
used in the selection of adaptive learning rates. Given bounded GGN
matrices and a Lipschitz smooth hidden-layer activation, we provide a
non-asymptotic guarantee for the last-iterate convergence of neural net-
work predictions to a target function. We also discuss global convergence
of the GGN despite the explicit regularization. Unlike Wei et al. [238],
we do not assume an arbitrarily weak regularization under our setting;
instead the smoothing framework covered by our study allows to choose
a regularization strength which may depend only on the initialization of
the NN, and is characterized by a smoothing parameter. However, for a
proper choice of the regularization strength, the final trained NN model
can be made to be reasonably small and “simple” in spite of the overpa-
rameterization, and we can have a tradeoff between test error and training
error. Numerical simulations show how generalization and stability of
the optimized neural network are established, and how they relate with

110

the structural properties of the class of regularizers.

4.1.1 Notation and preliminaries

We reuse notations from Chapter 3. For ease of reference, we recall the
ones relevant to this chapter. The standard Euclidean norm is denoted
by ∥·∥ or ∥·∥2 and the 1-norm by ∥·∥1. We denote the standard inner
product between two vectors by ⟨·, ·⟩, i.e., ⟨x, y⟩ ≜ x⊤y for x, y ∈ Rp.
For a positive integer m, we define [m] ≜ {1, 2, . . . ,m}. We let R≥0

and R>0 denote the set of nonnegative and positive real numbers, re-
spectively. For an extended real-valued function g : Rp → R ∪ {+∞},
we denote by dom g ≜ {x ∈ Rp | g(x) < +∞} the (effective) domain of
g. Γ0(X) denotes the set of proper convex lower-semicontinuous (lsc)
functions from X ⊆ Rp to R ∪ {+∞}. We denote by Ck(Rp), the class
of k-times continuously-differentiable functions on Rp, k ∈ R≥0. For
g ∈ C3(dom g), we let g′(t), g′′(t) and g′′′(t) denote the first, second, and
third derivatives of g, at t ∈ R, respectively. The gradient, Hessian, and
third-order derivative tensor of g at x ∈ Rp are respectively written as
∇x g(x), ∇2

x g(x), and ∇3
x g(x). We omit the subscripts if the variables

with respect to which the derivatives are taken are clear from the con-
text. For a symmetric matrix H ∈ Rp×p, we write H ≻ 0 (resp. H ⪰ 0)
to say H is positive definite (resp., positive semidefinite). We let λ1(H)

denote the maximum eigenvalue of a matrix H ∈ Rp×p, and λp(H) its
minimum eigenvalue; tr(H) denotes the trace of H . The scalars σmax(A)

and σmin(A) respectively denote the maximum and minimum singular
values of an m × p matrix A. Given that ∇2 g(x) ≻ 0, the local norm
∥·∥x with respect to g at x is the weighted norm induced by ∇2 g(x), i.e.,
∥d∥x ≜

⟨︁
∇2 g(x)d, d

⟩︁1/2. The dual norm is ∥v∥∗x ≜
⟨︁
∇2 g(x)−1v, v

⟩︁1/2.

We also define the notations∥x∥H ≜ ⟨Hx, x⟩ 12 ,∥x∥∗H ≜
⟨︁
H−1x, x

⟩︁ 1
2 , for

H ≻ 0, x ∈ Rp. An Euclidean ball of radius r centered at x̄ is denoted by
Br(x̄) ≜ {x ∈ Rp | ∥x− x̄∥ ≤ r}. The (Dikin) ellipsoid of radius r centered
at x̄ is defined by Er(x̄) ≜ {x ∈ Rp | ∥x− x̄∥H < r}, for H ≻ 0. We define
set convergence in the sense of Painlevé-Kuratowski [196, Chapter 4].
Given {gt}k∈R≥0

with gt : Rp → R ∪ {−∞,+∞}, e– lim gt = g denotes

111

the epigraphic convergence (epi-convergence) of {gt}k∈R≥0
to a function

g : Rp → R ∪ {−∞,+∞}.

4.2 Learning neural networks with GGN

Given the sequence of data points S ≜ {(xi, yi)}i∈[m] with xi ∈ Rn0 , yi ∈
RnL , an L-layer fully-connected feedforward NN is defined as follows.
Starting with an input z0 ∈ Rn0×m, and for l = 1, . . . , L,

al =W (l)zl−1 + b(l), zl = ϱl(al), (4.1)

where W (l) ∈ Rnl×nl−1 and b(l) ∈ Rnl are the l-th layer weights and
biases of the network, respectively; each ϱl : R → R is an element-wise
activation function. Let Φ(·; θ) ≜ zL be the output of the NN, where θ =
[θ1, θ2, . . . , θL]

⊤ ∈ Rp with θl ≜ vec([W (l) b(l)]), the stacked vectorization
of W (l) and b(l). In the supervised learning task, we look for the parameter
vector θ minimizing the regularized empirical risk

min
θ∈Rp

L(θ) ≜ R̂s(Φ) + g(θ), (4.2)

where R̂s(Φ) ≜ 1
m

m∑︁
i=1

ℓ(Φ(xi; θ), yi) is the empirical risk associated with

the NN learning task, ℓ : RnL×RnL → R is a loss function, and g : Rp → R
is a regularization function. We denote by Φ∗ an output function that best
interpolates the data set S.

Let n1 ≡ n (number of hidden neurons), W (1) ≡ u =

[u1, u2, . . . , un]
⊤ ∈ Rn×n0 and W (2) ≡ v = [v1, v2, . . . , vn] ∈ Rn. With-

out loss of generality, we consider a biasless one-hidden layer NN:

Rn0 ∋ x ↦→ Φ(x; θ) ≜ κ(n)

n∑︂
i=1

viϱ(uix), (4.3)

where κ(n) is some scaling that depends on n, e.g., κ(n) = 1/
√
n as in Du

et al. [84]. We remark that for an (L− 1)-hidden layer NN written in the
biasless form, the bias vectors can always be recovered by redefining

x←
[︃
x
1

]︃
, θl ← vec

⎛⎝[︄W (l) b(l)

0 1

]︄⎞⎠ ,

112

for l ∈ [L− 1], and θL ← vec([W (L) b(L)]). We assume the following about
the activation function ϱ, which is satisfied by most activation functions
but piecewise linear ones.

A.1 The activation function ϱ is twice differentiable, Lipschitz, and
smooth.

Below, we briefly describe the NTK regression and its connection with
GGN for overparameterized networks by first considering the case g = 0

in (4.2).

The NTK and gradient descent. In the infinite-width limit, there is
an established [121] relation between the steps obtained via a gradient-
based method for NNs and the so-called kernel gradient descent in func-
tion space. In particular, it is shown that, as n → ∞, ∀i, j ∈ [m],
⟨∇θΦ(xi, θ0),∇θΦ(xj , θ0)⟩ converges to some positive definite determin-
istic kernel k(xi, xj) = k(xi, xj)

⊤ ∈ RnL×nL (the limiting NTK), and
remains unchanged during training. Consider the case g = 0 in (4.2).
In the infinite-width limit, the gradient descent for solving the resulting
problem reduces to the kernel gradient descent:

Φt+1 = Φt − αtGt∇Φt
R̂s(Φt), (4.4)

where Φt ≜ (Φ(xi; θt))i∈[m] ∈ Rm denotes the network outputs on xi’s at
iteration t, αt ∈ R>0 is a step-size (or learning rate), and Gt is an m ×m
matrix whose (i, j)-th entry is given by ⟨∇θΦ(xi, θt),∇θΦ(xj , θt)⟩; see,
e.g., Arora et al. [17, Lemma 3.1] which considers the continuous-time
evaluation of Φt, t ∈ R≥0.

GGN and the NTK regression. An important feature of GGN for
infinite-width NNs is its direct relation with the NTK regression so-
lution in the overparameterized regime. We introduce the notations
Qt ≡ ∇2

Φt
R̂s(Φt), et ≡ ∇ΦtR̂s(Φt), and consider again the case g = 0

in problem (4.2). The GGN for the resulting problem is given by the
following iterative process:

θt+1 = θt − αt(J
⊤
t QtJt)

−1J⊤
t et, (4.5)

113

where Jt = (∇θΦ(x1, θt), . . . ,∇θΦ(xm, θt))
⊤ ∈ Rm×p is the Jacobian ma-

trix (of features) at iteration t. For overparameterized networks, if ℓ is the
squared loss, Qt becomes the identity matrix and we can conveniently
rewrite the GGN updates with respect to the NTK matrix Gt as

θt+1 = θt − αtJ
⊤
t G

−1
t et. (4.6)

Note that the GGN in (5.44) (and (4.6)) corresponds to taking the zero
damping limit (τ → 0 in Remark 9 below) for FIM, where it is natural to
use the Moore-Penrose inverse due to the rank-deficiency of the matrices
in the overparameterized regime [124]. On the other hand, corresponding
to (4.4), the updates to the parameters θ via θt can be obtained by solving
the regression problem (cf. [57])

θt+1 = argmin
θ

1

2

⃦⃦⃦
⟨Jt, θ − θt⟩+∇ΦtR̂s(Φt)

⃦⃦⃦2
, (4.7)

which results from the linearization of Φ around θt. The Hessian (with
respect to θ) of the resulting empirical risk by replacing Φ by this lineariza-
tion, gives the GGN approximation (see, e.g., Martens and Sutskever
[150]). For an overparameterized NN, when θt is close θ0, the lineariza-
tion (resp., the GGN) provides a good approximation to Φ (resp., the
actual Hessian). In terms of kernel “ridgeless” regression solution to
problems of the form (4.2) (with g = 0) and ℓ taken as the squared loss, the
updates in (4.6) converge to a minimum-norm interpolating solution in the
so-called Reproducing Kernel Hilbert Space (RKHS) [141, 156]. Hence, the
GGN, in this case, provides a closed-form solution to the NTK regression,
which efficiently replaces gradient descent in the NTK formalism.

4.2.1 Regularized GGN for overparameterized neural net-
works

If g ̸= 0, the relation between gradient descent and NTK will probably
break [238]. Apart from the NTK parameterization, a commonly studied
parameterization in the context of overparameterized NNs is the random
feature (RF) model [189, 20] which, due to its close connection with a
one-hidden layer NN, often provides a prototype for studying realistic

114

NNs. Whether the NTK or the RF parameterization is used, one of the key
properties we desire about the dynamics of the optimizer is stability which,
when established, can help to still benefit a lot from overparameterization
in the optimization scope. In essence, we seek properties of g which
not only help to improve generalization of the trained model, but which
also introduces stability in the optimizer’s dynamics. To this end, it is
important to recall the definition of generalized self-concordant (GSC)
functions on Rp from Sun and Tran-Dinh [223] (see Definition 5).

We now make the following assumption about g.

G.1 The regularization function g is convex and (Mg, ν)-GSC.

The class of regularization functions satisfying condition G.1 includes
the self-concordant smoothing functions for commonly used regularizers
such as the ℓ1- and ℓ2-norms (see Definition 6). The resulting smooth
approximation has the key property that it epi-converges to the original reg-
ularizer, providing useful features that can be exploited on the epigraph
of g for optimization.

For the regularized problem (4.2) (with g satisfying G.1), the corre-
sponding GGN update is obtained by augmenting the terms Qt, et and
Jt, respectively by 0, 1 and∇g(θt) in the appropriate dimensions [4]. Let
us denote these augmented counterparts by Q̂t, êt and Ĵ t. We then write
for the GGN

θt+1 = θt − αt(Ĵ
⊤
t Q̂tĴ t +Ht)

−1Ĵ
⊤
t êt, (4.8)

or in its convenient form for overparameterized models as [4]

θt+1 = θt − αtH
−1
t Ĵ

⊤
t (I + Q̂tĴ tH

−1
t Ĵ

⊤
t)

−1êt, (4.9)

where Ht ≡ ∇2 g(θt). Relative to the minimal assumptions required
to control the dynamics of the network outputs for the unregularized
case, e.g., positive definiteness of Gt (for overparameterized NNs with
a specific random initialization), we need the following standard regu-
larity assumptions on R̂s, Q̂t and êt (see Appendix 4.B for details on the
regularity terms):

115

R.1 R̂s is γR-strongly convex, and has upper-bounded gradients and
Hessian; g, Q̂t and êt are locally bounded.

An important consequence of condition A.1 is that, in addition to g admit-
ting a Lipschitz continuous gradient (see Lemma 2 in Appendix 4.A.2), we
get that Jt is (locally) Lipschitz continuous (see Appendix 4.A.1). Then,
together with R.1 and the stability of Ht, we can control the key terms

H−1
t Ĵ

⊤
t (I + Q̂tĴ tH

−1
t Ĵ

⊤
t)

−1 and êt appearing in (4.9).

In the same spirit as (4.4), which results from infinite overparameteri-
zation, the NN trained according (4.9) evolves in discrete-time as

Φt+1 = Φt − αtĜtêt, (4.10)

where Ĝt ≜ JtH
−1
t Ĵ

⊤
t (I + Q̂tĴ tH

−1
t Ĵ

⊤
t)

−1 ∈ Rm×(m+1). Empirically, the
behaviour of the NN in (4.10) can be simulated with the hidden learning
phenomenon which GGN exhibits for small step-sizes [13]. One major
observation about the behaviour of the dynamics of Gt in (4.4) in the
overparameterized setting is its stability throughout the training process,
which characterizes the optimizer’s global optimality [83]. In the analysis
of gradient descent, most stability and convergence results in the literature
heavily rely on the (strictly positive) minimum eigenvalue of Gt. These
kinds of results are not immediate with Ĝt or, in general, with explicit
regularization. However, the self-concordant condition on g ensures
that its Hessian is at least locally stable1, and hence for an appropriate
parameterization of the NN, we can ensure the stability of the dynamics of
Ĝt. In addition to these, also noteworthy is an immediate deduction from
the Lipschitzness of ϱ and∇g: the boundedness of the singular values of
Ĵ t away from zero.

1As noted in the introduction, self-concordance helps to control the rate at which the
Hessian of g changes locally, and this property has been recently formalized and studied for
the notion of local and global Hessian stability in convex optimization (see, e.g., Karimireddy,
Stich, and Jaggi [125], Gower et al. [103], and Carmon et al. [61]).

116

4.3 Theoretical result

In line with the settings of Section 4.2, we choose the learning rate for
GGN as

αt =
ᾱt

1 +Mgηt
, (4.11)

where 0 < ᾱt ≤ 1 and ηt = ∥∇g(θt)∥∗θt . Without any emphasis on the
particular choice of the target function Φ∗, we assume it is given by any
universally consistent2 algorithm as a minimum requirement. An example,
in the case ℓ(Φ, y) ≜ 1

2 (Φ − y)2 in (4.2), is the regularized least squares
algorithm which, for a kernel prediction function ΦRF ≡ Φ∗ is defined by

Rn0 ∋ x ↦→ ΦRF(x; (u
∞, v∗)) ≜

n∑︂
i=1

v∗i ϱ(u
∞
i x). (4.12)

This yields the estimator v∗ = [v∗1 , v
∗
2 , . . . , v

∗
n] ∈ Rn, the unique minimizer

of the ℓ2-regularized empirical loss 1
2m

∑︁m
i=1(ΦRF(xi; v) − yi)2 + λ

2 ∥v∥
2,

for some λ ∈ R≥0, where the entries of u∞ = [u∞1 , u
∞
2 , . . . , u

∞
n]⊤ ∈ Rn×n0

remain fixed iid random variables.
We state our main result of this section in Theorem 6 below. The de-

tailed proof is given in Appendix 4.B. We let Φ̃t ∈ Rm+1 denote the vector
obtained by augmenting Φt by 1. This Φ̃t corresponds to augmenting the
rows of Jt in the definition of Ĝt by the vector whose entries are all zeros
except the last entry which has the value ϕ̃t = 1/ϕm+1

t−1 ∈ R, where ϕm+1
t

denotes the last entry of H−1
t Ĵ

⊤
t (I + Q̂tĴ tH

−1
t Ĵ

⊤
t)

−1êt ∈ Rn×1 at a time
t. Let this augmented version of Jt be denoted by J̃ t. Then, we define

G̃t ≜ J̃ tH
−1
t Ĵ

⊤
t (I + Q̂tĴ tH

−1
t Ĵ

⊤
t)

−1 ∈ R(m+1)×(m+1), and

Φ̃t+1 = Φ̃t − αtG̃têt. (4.13)

We also let Φ̃
∗ ∈ Rm+1 denote the vector obtained by augmenting Φ∗

t by
0.

2Informally speaking, a learning algorithm is said to be universally consistent if the error
of its estimate tends to zero as the sample size tends to infinity, for all distributions of the
sample space such that the second moment of the output variable is finite. For a more
precise context, see, e.g., Caponnetto and De Vito [60] and the references therein.

117

Theorem 6. Suppose that A.1, G.1 and R.1 hold, and let Φ∗ be a universally
consistent target function that best interpolates the training data set S. Then, for
an initialization θ0 ∈ Rp, the following convergence properties hold:

P.1 ∥ΦT − Φ∗∥2 ≤ ϵ after T ≜
1

ᾱt
log(∥Φ̃0 − Φ̃

∗∥2/ϵ) iterations for any ϵ ∈
(0, 1) and ᾱt ∈ (0, 1), if ∥G̃t∥F = Ω(1).

P.2 L(θt+1) ≤ L(θt)− ξt, for all t ∈ R≥0, where ξt =

O
(︃

β̂
2
1(ων(dν(θt,θt+1))−ων(−dν(θt,θt+1)))

β̂
4
m

)︃
∈ R>0, β̂m ≜ σmin(J),

ων is an increasing univariate function defined by (3.47), and dν(θ̄, θ̃) < 1
is a scaled metric term defined by (3.44).

Remark 9. The asymptotic lower bound ∥G̃t∥F = Ω(1) in P.1 inherently
dictates how well we can control the regularization strength τ ∈ R>0, that is,
when g takes the form g(θ) = τ ḡ(θ). Here, we only require that ḡ is GSC so that

g satisfies G.1. Recall the norm property ∥G̃t∥F ≤
√︂

(m+ 1)λ1(G̃
⊤
t G̃t) for all

t. Then since ηt can become arbitrarily small, and without loss of generality, if 1+

Mgηt ≤ ∥G̃t∥F , one can choose τ to satisfy 1+τMgη0 ≤
√︂
(m+ 1)λ1(G̃

⊤
0 G̃0)

such that P.1 holds. In this setting, we essentially rely on the local stability of G̃t

via overparameterization and the self-concordance of g.

Since the direct relation between GGN and NTK probably breaks with
an explicit regularization, our main proof step in Theorem 6 involves
analyzing a partitioning of the matrix Ĝt. In this way, we determine
what conditions on the separate blocks help to combine certain spectral
properties of G̃t with our regularity conditions and the self-concordance
of g. The second result becomes almost immediate in the optimization
scope under the regularity conditions.

Under the strong convexity assumption on R̂s, the global con-
vergence of GGN can be guaranteed in the case of no regulariza-
tion, for example, by training only the last layer of the NN given
the property of no blow-up of the GGN dynamics [13, Proposition
1, Proposition 3]. Consider the matrix G∞ whose (i, j)-th entry is
given by ⟨∇v Φ(xi; (v, u

∞)),∇v Φ(xj ; (v, u
∞))⟩, where u∞ is as defined

in (4.12). The main observation here is that the function v ↦→ r(v) =

R̂s(Φ(·; (v, u∞))) can be shown to satisfy a certain Polyak-Łojasiewicz (PL)

118

inequality, that is [13, Proposition 4] 1
2

⃦⃦
∇v l(v)

⃦⃦2 ≥ γRσ2
∞n

(l(v)−R̂s(Φ
∗)),

where σ∞n
is the minimum singular value of G∞. With a self-concordant

regularization function g, this kind of global property is retained, pro-
vided that g and R̂s do not conflict. Consider, for example, the sublevel
set Sg(θ)(g) ≜

{︁
θ̄ ∈ dom g | g(θ̄) ≤ g(θ)

}︁
of g. Then, following Sun and

Tran-Dinh [223, Theorem 4], we get that Sg(θ)(g) is bounded for ν ∈ [2, 3],
and hence g attains its minimum.

4.4 Simulations

We perform numerical simulations on GGN with self-concordant reg-
ularization (GGN-SCORE) for overparameterized NNs using synthetic
datasets as well as the MNIST dataset. Results of additional simula-
tions on the FashionMNIST and three UCI datasets are reported in Ap-
pendix 4.C.

Simulation setup. We consider the teacher-student setting in which Φ

defined by (4.3) with κ(n) = 1/
√
n is the student NN, while the teacher

NN is the target function Φ∗, a one-hidden layer NN given as

Rn0 ∋ x ↦→ Φ∗(x; θ∗) ≜
n∗∑︂
i=1

v∗i ϱ(u
∗
i x), (4.14)

where θ∗ ≡ (u∗, v∗). In both teacher and student networks, we use the
SiLU activation function [90] ϱ(x) ≜ x/(1 + exp(−x)). In each simulation,
we generate m training data points (xi, yi)i∈[m], where the inputs xi are
uniformly sampled on the unit sphere Sn0−1 ≜ {x | ∥x∥ = 1} and the
corresponding target outputs are given by yi = Φ∗(xi; θ∗). The weights of
the teacher NN are randomly generated as in [73]: they are normalized
random weights satisfying ∥v∗i u∗i ∥ = 1 for i = 1, . . . , n∗. The student
NN is initialized with randomly generated weights from the Gaussian
distribution. In all the simulations, we fix n = 500 and n∗ = 5. The student
NN is trained by minimizing the regularized empirical risk in (4.2) with
the squared loss ℓ (the empirical risk is unregularized for GD), and we
consider regularization of the form g(θ) = τ ḡ(θ), where τ ∈ R>0 and ḡ

119

is given by [5, Example 1]: ḡ(θ) = (∥ · ∥1□hµ)(θ) =
∑︁p

i=1

µ2−µ
√

µ2+θ2
i+θ2

i√
µ2+θ2

i

,

hµ(·) ≜ µh(·/µ), h(θ) =∑︁p
i=1((1 +|θi|

2
)1/2 − 1), which gives the (Mg, ν)-

GSC function

g(θ) = τ

p∑︂
i=1

µ2 − µ
√︁
µ2 + θ2i + θ2i√︁
µ2 + θ2i

, (4.15)

with Mg = 2µ−0.7p0.2, ν = 2.6 (see Lemma 2). We choose µ = 1/κ(n) and
τ = 10−4, except for where we consider different values for comparison.
We set ᾱt ≡ ᾱ = 0.95 in (4.11) for GGN and use a learning rate of 1 for
GD. All experiments are performed on a laptop with 16× 2.30GHz Intel
Core i7-11800H CPU and 32GB RAM.

10 3 10 2 10 1 100 101
10 5

10 4

10 3

10 2

10 1

100

te
st

 lo
ss

50

75

100

125

150

10 7 10 5 10 3 10 1

10 5

10 4

10 3

10 2

10 1

100

200

300

400

500

ze

ro
s

Figure 25: Performance of GGN-SCORE with g(θ) as in (4.15). Left: Results
for different values of µ, with τ = 10−4. Right: Results for different values of
τ , with µ = 1/

√
n. Results are averaged over 10 independent runs for each

value of µ and τ , resp.; the total computation time is ∼ 21 hours, 2 minutes
on CPU.

4.4.1 Results and discussion

Test loss vs. smoothing parameter. We compare the performance of
GGN-SCORE for different values of the regularization smoothing param-
eter µ evenly spaced in the range [10−3, 10], giving 41 different values
in total. We use a reasonable amount of training samples, 500, which
allows to perform several independent runs for each value of µ consid-
ered. We use a test size of 1000 to measure generalization of the student
NN for each µ. We perform 10 independent runs for each value of µ
considered and took the average value of the results. These are shown in

120

10 2 100 102
10 2

10 1

100

101

102
te

st
 lo

ss

10 5 10 3 10 1
10 2

10 1

100

101

102

103

8000

10000

12000

14000

50000

100000

150000

200000

ze

ro
s

Figure 26: Test loss evaluation of the GGN-SCORE-trained NN on MNIST
dataset for different values of the regularization smoothing parameter µ
fixing τ = 10−4 (left) and different values of the regularization strength τ
fixing µ = 1/

√
n (right). The regularization function g(θ) is given by (4.15).

Figure 25. We observe that larger values of µ yields better performance in
the optimization scope and also better generalization. This result is quite
intuitive, since by definition of the regularization function, the size of µ
should scale with the size of the variable θ in order to have an adequate
smooth approximation of the original nonsmooth function. For this rea-
son, it is recommended to choose µ = c/κ(n) for any c > 0 when scaling
with κ(n) = 1/

√
n.

Test loss vs. regularization strength. We study the influence of the regu-
larization strength on the evolution of the test loss within the optimization
loop of GGN-SCORE. We consider different values of τ evenly spaced in
the range [10−8, 1], giving 41 different values in total, and set µ = 1/

√
n.

Here, we also use a training size of 500 and a test size 1000 which allows
to perform several independent runs for each value of τ considered. We
perform 10 independent runs for each value of τ and compute the average
value of the results. These average values are shown in Figure 25. We
observe that smaller values of τ yield smaller training and test errors
for the overparameterized NN. This observation corroborates with the
analysis of [238] for GD. However, contrarily to [238], what we observe
for the GGN-SCORE is not an arbitrarily small regularization strength to
achieve a good generalization performance. In fact, any value of τ slightly
smaller than 10−4 in our experiment gives a similar generalization error

121

as the choice τ = 10−6 (and smaller). Figure 25 also displays the average
number of zero entries in the value of θ at the end of training. As observed,
larger values of τ yields a sparser/simpler model. In principle, a desirable
value of τ is one which helps to avoid overfitting of the NN model such
that a simpler model implies better generalization.

Loss decay in the optimization loop. We generate training and test
datasets of sizes 1000 and 2000, respectively, and compare the training
and test losses per iteration and time in seconds between GD and GGN-
SCORE for training the student NN. The results are displayed in Figure 27.
The dimension of the input data in this experiment is 20, and the number
of hidden neurons for the student network is 500. Choosing a much
smaller number of hidden neurons n∗ = 5 for the teacher network keeps
the optimization loop in the overparameterized regime. For the GD, we
use a learning rate of 1 which yields a much better performance than
smaller values. While larger learning rates could yield faster learning
at the beginning of training, we notice traces of divergence later on; a
learning rate of 1 gives a reasonably good descent and good performance
of GD. We run GD for a total of 10000 steps and GGN-SCORE for a total
of 4000 steps. GGN is well-known for its faster convergence in terms of
number iterations while sometimes we may have to train for a longer
time. Results here show that we do not trade total training time for better
performance with our GGN-SCORE setup.

4.4.2 Experiments on real datasets

The computations involved in full-batch GD and/or GGN are intractable
on real-world datasets. We study the properties of GGN-SCORE in the
mini-batch setting on the standard MNIST dataset [131] with n0 = 784,
m = 60000 : 10000 (training:test splits). Experimental results in the
teacher-student setup according to [13, Appendix C.4] with the SiLU ac-
tivation function are reported in Appendix 4.C. Additional experiments
on three UCI datasets, as well as those on the FashionMNIST dataset, are
also considered in the appendix. Here, we consider a NN of the form
(4.3) with a hidden size n = 512, a scaling κ(n) = 1/

√
n and the ReLU

122

100 101 102 103 104

iteration number

100

10 1

10 2

10 3

10 4

te
st

 lo
ss

GD
GGN-SCORE

0 500 1000 1500
time [s]

100

10 1

10 2

10 3

10 4

10 5

lo
ss

GD (train)
GGN-SCORE (train)
GD (test)
GGN-SCORE (test)

Figure 27: Loss decay with GGN-SCORE and GD per iteration number (left)
and time in seconds (right) with g(θ) as in (4.15) for GGN-SCORE, τ = 10−4,
µ = 1/

√
n.

[158] activation function. The NN is initialized with randomly generated
weights from the Gaussian distribution, and is trained with the squared
loss. The regularization function g used in GGN-SCORE is given by (4.15).
All results shown for GGN-SCORE are for a training batch size of 16 (i.e.,
3750 training steps) and a single epoch. In addition to the test loss and
prediction accuracy of the trained model, we adopt a time-invariance
“T-I” measure, representing the average proportion (in percentage) of the
entries of the pre-activation al ∈ Rn×n0 that satisfy sign(astart

ij) = sign(afinal
ij),

where sign is the signum function, astart
ij are positional entries of al at ini-

tialization and afinal
ij are its entries at the end of training. This metric was

used in [73] to measure the “stability of activations” where high values
indicate an effective linearization of the NN model. See additional details
and remark in Appendix 4.C.1.

Influence of the regularization parameters. We investigate the per-
formance of the GGN-SCORE-trained model for different values of the
regularization smoothing parameter µ and the regularization strength τ
on MNIST dataset. First, we fix µ = 1/

√
n and measure the performance

of the trained model for different values of τ . Similarly, we fix τ = 10−4

and measure the trained model’s performance for varying values of µ. In
each of the two cases, we use 7 different values of τ and µ as is respec-
tively shown in Figure 26 and Figure 28. As in the case with synthetic

123

10310210110010 110 210 3
10

30

50

70

90
%

training accuracy
test accuracy
T-I measure
T-I meas. (incl. # zeros)

10010 110 210 310 410 510 6
10

30

50

70

90

%

training accuracy
test accuracy
T-I measure
T-I meas. (incl. # zeros)

Figure 28: Evaluation of GGN-SCORE on MNIST dataset for different values
of the regularization smoothing parameter µ, fixing τ = 10−4 (left), and
different values of the regularization strength τ , fixing µ = 1/

√
n (right).

The regularization function g(θ) is given by (4.15).

datasets, optimal choices for τ and µ are seen to necessarily yield good
generalization of the model, and are such that give a relatively simple
model and stable dynamics (as indicated by the number of zeros in the
parameters of the final optimized model and the T-I measure). The total
computation time to generate the results in Figure 26 and Figure 28 is
∼ 23 hours, 5 minutes on CPU.

Acknowledgment

We acknowledge financial support from the Erasmus+ Programme of
the European Union for the traineeship that contributed to the research
presented in this chapter, facilitated by IMT Lucca and the University of
Vienna.

124

Appendix for Chapter 4

4.A Preliminary results

4.A.1 Lipschitz continuity of J

Here, we look at the Lipschitz property of the Jacobian matrix J . For this,
we need the following additional standard assumptions:

J.1 ∥x∥ = ∥x⊤∥ ≤ 1.

J.2 ∃Lϱ such that ∥ϱ(x̄)−ϱ(x̃)∥ ≤ Lϱ∥x̄− x̃∥ and ∥ϱ′(x̄)−ϱ′(x̃)∥ ≤ Lϱ∥x̄−
x̃∥ for all x̄, x̃ ∈ R.

J.3 ∃Lv such that ∥v∥ ≤ Lv at all time t until the training is stopped.

Condition J.2 simply restates the Lipschitzness and smoothness assump-
tions in A.1 explicitly. This kind of condition has been used, for example
in [83, Condition 3.1], to show the stability of the training process of NNs
via gradient descent. A consequence of the condition is that it also pro-
vides an upper bound on the gradients of ϱ, that is, ∥ϱ′(x̄)∥ ≤ Lϱ for all
x̄ ∈ R (see, e.g., Lemma 13 below).

Proposition 8 (Lipschitz constant of J ; training both layers). Under
assumptions J.1, J.2 and J.3, J is LJ -Lipschitz continuous, where LJ ≜
mκ(n)(1 + Lv)Lϱ

√
2.

125

Proof. Let (ū, v̄) ≡ θ̄, (ũ, ṽ) ≡ θ̃ for any θ̄, θ̃ ∈ Rp. We have⃦⃦⃦
J(θ̄)− J(θ̃)

⃦⃦⃦
≤ κ(n)

⎛⎝ n∑︂
i=1

⃓⃓⃓
ϱ′(ūix)v̄ix

⊤ − ϱ′(ũix)ṽix⊤
⃓⃓⃓
+

n∑︂
i=1

⃓⃓
ϱ(ūix)− ϱ(ũix)

⃓⃓⎞⎠
≤ κ(n)

⎛⎝ n∑︂
i=1

(︃
ϱ′(ūix)v̄ix

⊤ − ϱ′(ũix)v̄ix⊤
⃓⃓⃓
+
⃓⃓⃓
ϱ′(ũix)v̄ix

⊤ − ϱ′(ũix)ṽix⊤
⃓⃓⃓)︃

+

n∑︂
i=1

⃓⃓
ϱ(ūix)− ϱ(ũix)

⃓⃓⎞⎠
≤ κ(n)

⎛⎝ n∑︂
i=1

(︂
ϱ′(ūix)− ϱ′(ũix)

⃓⃓
|v̄i|∥x∥+|v̄i − ṽi|

⃓⃓
ϱ′(ũix)

⃓⃓
∥x∥
)︂

+

n∑︂
i=1

⃓⃓
ϱ(ūix)− ϱ(ũix)

⃓⃓⎞⎠
≤ mκ(n)

(︁
(1 + Lv)Lϱ∥ū− ũ∥+ Lϱ∥v̄ − ṽ∥

)︁
≤ mκ(n)(1 + Lv)Lϱ

(︁
∥ū− ũ∥+∥v̄ − ṽ∥

)︁
= mκ(n)(1 + Lv)Lϱ

(︂
(ū, 0)− (ũ, 0)

⃦⃦
+
⃦⃦
(0, v̄)− (0, ṽ)

⃦⃦)︂
. (4.16)

Next, we recall Peter-Paul inequality for two quantities a, b ∈ R≥0 which
reads 2ab ≤ a2 + b2, from which we obtain

(a+ b)2 = a2 + 2ab+ b2 ≤ a2 + a2 + b2 + b2 = 2(a2 + b2). (4.17)

We also derive the expression⃦⃦
(ū, 0)− (ũ, 0)

⃦⃦2
+
⃦⃦
(0, v̄)− (0, ṽ)

⃦⃦2
=
⃦⃦
(ū, 0)

⃦⃦2 − 2⟨(ū, 0), (ũ, 0)⟩+
⃦⃦
(ũ, 0)

⃦⃦2
+
⃦⃦
(0, v̄)

⃦⃦2 − 2⟨(0, v̄), (0, ṽ)⟩
+
⃦⃦
(0, ṽ)

⃦⃦2
=
⃦⃦
(ū, v̄)

⃦⃦2 − 2⟨(ū, v̄), (ũ, ṽ)⟩+
⃦⃦
(ũ, ṽ)

⃦⃦2
=
⃦⃦
(ū, v̄)− (ũ, ṽ)

⃦⃦2
. (4.18)

126

Now, using (4.17) and (4.18) in (4.16) with a =
⃦⃦
(ū, 0)− (ũ, 0)

⃦⃦
and b =⃦⃦

(0, v̄)− (0, ṽ)
⃦⃦

, we get⃦⃦⃦
J(θ̄)− J(θ̃)

⃦⃦⃦
≤ mκ(n)(1 + Lv)Lϱ

√
2
⃦⃦
(ū, v̄)− (ũ, ṽ)

⃦⃦
,

which proves the result. ■

4.A.2 Lipschitz continuity of g

As is customary, our results are restricted to the case ν ∈ [2, 3], but they
extend to other cases [223].

Lemma 13. Let g be a convex and (locally) L-Lipschitz function. Then,⃦⃦
∇ g(θ̄)

⃦⃦
≤ L,

for some θ̄ in a set X ⊂ Rp.

Proof. Take some θ̃ = θ̄ + α∇ g(θ̄) for α ∈ R>0 small enough. By the
convexity and Lipschitzness of g, we have⃦⃦

α∇ g(θ̄)
⃦⃦2

= α2
⃓⃓
⟨∇ g(θ̄),∇ g(θ̄)⟩

⃓⃓
= α

⃓⃓⃓
⟨θ̃ − θ̄,∇ g(θ̄)⟩

⃓⃓⃓
≤ α

⃓⃓⃓
g(θ̃)− g(θ̄)

⃓⃓⃓
≤ αL

⃓⃓⃓
θ̃ − θ̄

⃓⃓⃓
= α2L

⃦⃦
∇ g(θ̄)

⃦⃦
,

which completes the proof. ■

4.B Proof of the main result

Detailed regularity assumptions in R.1. We detail missing regularity
terms in condition R.1 as follows. For this, we define the ball Br0(θ0) ⊂
Er(θ0) for some initialization θ0, where Er(θ0) is an ellipsoid defined for
some r ∈ R>0. Note that, corresponding to Er(θ0), we compute local
norms with respect to g.

127

RR.1 R̂s(Φ(·, θ̄)) ≥ R̂s(Φ(·, θ̃)) + ⟨∇Φ R̂s(Φ(·, θ̃)),Φ(·, θ̄) − Φ(·, θ̃)⟩ +
γR

2

⃦⃦⃦
Φ(·, θ̄)− Φ(·, θ̃)

⃦⃦⃦2
∀θ̄, θ̃ ∈ Rp, and ∃BR, DR such that⃦⃦⃦

∇Φ R̂s(Φ(·, θ̄))
⃦⃦⃦
≤ BR,

⃦⃦⃦
∇2

Φ R̂s(Φ(·, θ̄))
⃦⃦⃦
op
≤ DR ∀θ̄ ∈ Br0(θ0).

RR.2 dgI ≤ Ht ≤ DgI with Dg ≥ dg ∈ R>0, dqI ≤ Q̂t ≤ DqI with
Dq ≥ dq ∈ R≥0, and∥êt∥ ≤ β ∀θt ∈ Br0(θ0).

Using the Lipschitness of ϱ, one can easily find some BΦ satisfying⃦⃦⃦
Φ(·, θ̄)− Φ(·, θ̃)

⃦⃦⃦
≤ BΦ

⃦⃦⃦
θ̄ − θ̃

⃦⃦⃦
for some θ̄, θ̃ ∈ Rp at least near the

initialization. Hence, we do not impose this regularity property as
an additional assumption. Subsequently, we recall the following no-

tations: LDt
≜ αtββ̂1Dg

dg(Dg+dqβ̂
2
m)

, ξ ≜ BRBΦ + Bg, ϑ ≜ B2
Φ(γR − DR),

ϖt ≜ ων(dν(θt, θt+1)) − ων(−dν(θt, θt+1)), β̂m ≜ σmin(Ĵ t). We also in-
troduce the notations β̂1 ≜ σmax(Ĵ t) and δt ≜ θt+1 − θt.

Lemma 14. Under assumption RR.2, we have

∥δt∥ ≤ LDt
, ∥δt∥θt ≤

√︁
DgLDt

.

Proof. We obtain the following estimate⃦⃦⃦⃦
H−1

t Ĵ
⊤
t

⃦⃦⃦⃦
≤
⃦⃦⃦
H−1

t

⃦⃦⃦⃦⃦⃦⃦
Ĵ
⊤
t

⃦⃦⃦⃦
≤ β1
dg
. (4.19)

We have also ⃦⃦⃦⃦
I + Q̂tĴ tH

−1
t Ĵ

⊤
t

⃦⃦⃦⃦
≥ 1 +

dqβ̂
2

m

Dg
. (4.20)

From (4.9), we have

∥δt∥ ≤ αt

⃦⃦⃦⃦
H−1

t Ĵ
⊤
t (I + Q̂tĴ tH

−1
t Ĵ

⊤
t)

−1êt

⃦⃦⃦⃦
. (4.21)

Using (4.19) and (4.20) in (4.21), we obtain

∥δt∥ ≤ LDt
.

The result follows, noting that∥δt∥θt =
⃦⃦⃦
H

1/2
t δt

⃦⃦⃦
by definition. ■

128

We obtain the following slightly loose estimate of the Lipschitz con-
stant of the objective function L in problem (4.2).

Lemma 15. Let g be constructed under the settings of Lemma 2 such that
condition G.1 holds. Then, under the additional condition RR.1, the objective
functionL is (BRBΦ+Bg)-Lipschitz continuous, whereBg is the local Lipschitz
constant of g in Lemma 2(iii).

Proof. By the convexity of R̂s and g, we have

R̂s(Φ(·, θ̃)) ≥ R̂s(Φ(·, θ̄)) + ⟨∇ R̂s(Φ(·, θ̃)),Φ(·, θ̃)− Φ(·, θ̄)⟩,
g(θ̃) ≥ g(θ̄) + ⟨∇ g(θ̃), θ̃ − θ̄⟩,

for some θ̃, θ̄ in the vicinity of θ0. Then, using L ≜ R̂s + g and the Cauchy-
Schwarz inequality, we get⃓⃓⃓
L(θ̄)− L(θ̃)

⃓⃓⃓
≤
⃦⃦⃦
∇Φ R̂s(Φ(·, θ̄))

⃦⃦⃦⃦⃦⃦
Φ(·, θ̄)− Φ(·, θ̃)

⃦⃦⃦
+
⃦⃦
∇ g(θ̄)

⃦⃦⃦⃦⃦
θ̄ − θ̃

⃦⃦⃦
.

By assumption RR.1, we have
⃦⃦⃦
∇Φ R̂s(Φ(·, θ̄))

⃦⃦⃦
≤ BR. By Lemma 2(iii),

g is locally Lipschitz, and hence we have
⃦⃦
∇ g(θ̄)

⃦⃦
≤ Bg for some Bg,

according to Lemma 13. Then, using the local Lipschitz property of Φ, we
obtain ⃓⃓⃓

L(θ̄)− L(θ̃)
⃓⃓⃓
≤ BRBΦ

⃦⃦⃦
θ̄ − θ̃

⃦⃦⃦
+Bg

⃦⃦⃦
θ̄ − θ̃

⃦⃦⃦
= ξ
⃦⃦⃦
θ̄ − θ̃

⃦⃦⃦
.

■

The following result from [236, Lemma 1] provides a useful inequality
for the trace of the product of two symmetric matrices, one of which is
positive semidefinite.

Lemma 16. Let P,Q ∈ Rn×n. If P = P⊤ ⪰ 0 and Q is symmetric, then

tr(P)λn(Q) ≤ tr(PQ) ≤ tr(P)λ1(Q).

The next result concerns the 2× 2 block partitioning of G̃t, and charac-
terizes the positive-definiteness of its leading principal blocks. For this,
we require that the function g is such that Ht ≻ 0. This, indeed, is a

129

property of many functions constructed from the ℓ1-norm in the sense of
Definition 6. An example is the pseudo-Huber function or the function ḡ
considered in Section 4.4.

Lemma 17. Consider a 2× 2 block partitioning of G̃t, and let G̃11 ∈ Rm×m,
G̃22 ∈ R1×1 respectively denote the upper left and lower right blocks. If Ht ≻ 0,
then it holds that G̃22 ∈ R>0 and G̃11 ≻ 0.

Proof. By the definition of G̃t and using (4.8), we have G̃t = J̃ t(Ĵ
⊤
t Q̂tĴ t +

Ht)
−1Ĵ

⊤
t . We note that for the squared loss that we consider, Qt is the

identity matrix and that we can write G̃t = J̃ t(J
⊤
t QtJt + Ht)

−1Ĵ
⊤
t =

J̃ t(J
⊤
t Jt +Ht)

−1Ĵ
⊤
t . Notice the removal of the augmentations, as the last

diagonal entry of Q̂t is zero. We have ⟨v̂, J⊤
t Jtv̂⟩ = ∥Jv̂∥2 ∈ R≥0 for all

non-zero v̂ ∈ Rp, and hence Bt ≜ J⊤
t Jt + Ht ≻ 0. Next, observe that

G̃11 results from removing the augmentations on J̃ and Q̂t in G̃t, that
is, G̃11 ≡ JtB

−1
t J⊤

t . Let û ≜ Btv̂; we have ⟨û, B−1
t û⟩ = ⟨Btv̂, B

−1
t Btv̂⟩ =

⟨v̂, B⊤
t v̂⟩ ≻ 0. Then, in a similar way, if Jt does not have all its entries

equal to zero, we get that G̃11 ≻ 0.
To show G̃22 ∈ R>0, we note that since Bt ≻ 0, it has a

non-zero determinant, and hence by Sylvester’s criterion, we have
1

det(Bt)
((−1)2pMp,p) > 0, where det(Bt) denotes the determinant of Bt

and Mp,p denotes the (p, p)-th minor of Bt. Then, G̃22 ∈ R>0 follows from
the definition of J̃ . ■

We are now ready to prove our main result.

Proof of Theorem 6.

Proof. Consider the time evolution of the regularized NN given by (4.10).
Using the augmentation specified by (4.13), we have⃦⃦⃦

Φ̃t+1 − Φ̃
∗⃦⃦⃦2

=
⃦⃦⃦
Φ̃t − αtG̃têt − Φ̃

∗⃦⃦⃦2
=
⃦⃦⃦
Φ̃t − Φ̃

∗⃦⃦⃦2 − 2αt⟨Φ̃t − Φ̃
∗
, G̃t(Φ̃t − Φ̃

∗
)⟩+ α2

t

⃦⃦⃦
G̃t(Φ̃t − Φ̃

∗
)
⃦⃦⃦2
.

(4.22)

130

Let us partition Φ̃t − Φ̃
∗

and G̃t as follows (omitting dependence on t in
the blocks for brevity):

Φ̃t − Φ̃
∗ ≡

[︄
Φ̃1

Φ̃2

]︄
, G̃t ≡

[︄
G̃11 G̃12

G̃21 G̃22

]︄
, (4.23)

where Φ̃1 = Φt − Φ∗ ∈ Rm, Φ̃2 = 1 and hence G̃11 ∈ Rm×m. Then, we
have

⟨Φ̃t − Φ̃
∗
, G̃t(Φ̃t − Φ̃

∗
)⟩

= ⟨Φ̃1, G̃11Φ̃1⟩+ ⟨Φ̃2, G̃21Φ̃1⟩+ ⟨Φ̃1, G̃12Φ̃2⟩+ ⟨Φ̃2, G̃22Φ̃2⟩
= ⟨Φ̃1, G̃11Φ̃1⟩+ ⟨G̃21 + G̃

⊤
12, Φ̃1⟩+ G̃22, (4.24)

where we have used Φ̃2 = 1. Recall that by Lemma 17, we get G̃22 ∈ R>0

and G̃11 ≻ 0.
Using the block partitioning of G̃t in (4.23), the product G̃

⊤
t G̃t gives

the following block structure

G̃
⊤
t G̃t =

⎡⎣ (G̃
⊤
t G̃t)11 (G̃

⊤
t G̃t)12

(G̃
⊤
t G̃t)21 (G̃

⊤
t G̃t)22

⎤⎦
≜

⎡⎣ G̃
⊤
11G̃11 + G̃

⊤
21G̃21 G̃

⊤
11G̃12 + G̃

⊤
21G̃22

G̃
⊤
12G̃11 + G̃

⊤
22G̃21 G̃

⊤
12G̃12 + G̃

⊤
22G̃22

⎤⎦ .
Consider the congruence⎡⎣ (G̃

⊤
t G̃t)11 (G̃

⊤
t G̃t)12

(G̃
⊤
t G̃t)21 (G̃

⊤
t G̃t)22

⎤⎦ ∼
⎡⎣ (G̃

⊤
t G̃t)

−1/2
11 0

0 (G̃
⊤
t G̃t)

−1/2
22

⎤⎦
×

⎡⎣ (G̃
⊤
t G̃t)11 (G̃

⊤
t G̃t)12

(G̃
⊤
t G̃t)21 (G̃

⊤
t G̃t)22

⎤⎦×
⎡⎣ (G̃

⊤
t G̃t)

−1/2
11 0

0 (G̃
⊤
t G̃t)

−1/2
22

⎤⎦
=

[︄
I A
B I

]︄
,

where

A = (G̃
⊤
t G̃t)

−1/2
11 (G̃

⊤
t G̃t)12(G̃

⊤
t G̃t)

−1/2
22 ,

B = (G̃
⊤
t G̃t)

−1/2
22 (G̃

⊤
t G̃t)21(G̃

⊤
t G̃t)

−1/2
11 .

131

Using this relation, one can show that G̃
⊤
t G̃t ≻ 0; since (G̃

⊤
t G̃t)21 =

(G̃
⊤
t G̃t)

⊤
12, we only require that ∥A∥ ≤ 1. Now, let 1 +Mgηt ≤ ∥G̃t∥F and

|⟨G̃⊤
21+G̃12, ṽt⟩| ≤ |G̃22| for some ṽt where, given a 2×2 block partitioning

of G̃t, G̃22, G̃21 and G̃12, respectively denote the lower right, lower left
and upper right blocks. We now invoke Lemma 16 and obtain⃦⃦⃦

G̃t(Φ̃t − Φ̃
∗
)
⃦⃦⃦2

= tr(G̃
⊤
t G̃t(Φ̃t − Φ̃

∗
)(Φ̃t − Φ̃

∗
)⊤)

≤ tr(G̃
⊤
t G̃t)λ1((Φ̃t − Φ̃

∗
)(Φ̃t − Φ̃

∗
)⊤)

= tr(G̃
⊤
t G̃t)

⃦⃦⃦
Φ̃t − Φ̃

∗⃦⃦⃦2
. (4.25)

Using (4.24) and (4.25) in (4.22), we have⃦⃦⃦
Φ̃t+1 − Φ̃

∗⃦⃦⃦2 ≤ ⃦⃦⃦Φ̃t − Φ̃
∗⃦⃦⃦2 − 2αt

⃦⃦⃦⃦
G̃

1/2

11 Φ̃1

⃦⃦⃦⃦2
− 2αt⟨G̃

⊤
21 + G̃12, Φ̃1⟩

− 2αtG̃22 + α2
t tr(G̃

⊤
t G̃t)

⃦⃦⃦
Φ̃t − Φ̃

∗⃦⃦⃦2
.

Now, using the inequality −
⃓⃓⃓⃓
⟨G̃⊤

21 + G̃12, Φ̃1⟩
⃓⃓⃓⃓
≤ ⟨G̃⊤

21 + G̃12, Φ̃1⟩ ≤⃓⃓⃓⃓
⟨G̃⊤

21 + G̃12, Φ̃1⟩
⃓⃓⃓⃓
, we get that

−⟨G̃⊤
21 + G̃12, Φ̃1⟩ ≤

⃓⃓⃓⃓
⟨G̃⊤

21 + G̃12, Φ̃1⟩
⃓⃓⃓⃓
,

and then,⃦⃦⃦
Φ̃t+1 − Φ̃

∗⃦⃦⃦2 ≤ ⃦⃦⃦Φ̃t − Φ̃
∗⃦⃦⃦2 − 2αt

⃦⃦⃦⃦
G̃

1/2

11 Φ̃1

⃦⃦⃦⃦2
+ 2αt

⃓⃓⃓⃓
⟨G̃⊤

21 + G̃12, Φ̃1⟩
⃓⃓⃓⃓

− 2αtG̃22 + α2
t tr(G̃

⊤
t G̃t)

⃦⃦⃦
Φ̃t − Φ̃

∗⃦⃦⃦2
.

Setting ṽ = Φ̃1 in the condition |G̃22| ≥ |⟨G̃21 + G̃
⊤
12, ṽ⟩|, it holds that

|G̃22| > |⟨G̃21 + G̃
⊤
12, Φ̃1⟩| − C1 for any arbitrary constant C1 > 0. Set

C1 = 1
αtC2

for some constant C2 > 0, noting that αt > 0 for all t, then we
get

−G̃22 ≤ −
⃓⃓⃓⃓
⟨G̃21 + G̃

⊤
12, Φ̃1⟩

⃓⃓⃓⃓
+

1

αtC2
.

132

Consequently,⃦⃦⃦
Φ̃t+1 − Φ̃

∗⃦⃦⃦2 ≤ ⃦⃦⃦Φ̃t − Φ̃
∗⃦⃦⃦2 − 2αt

⃦⃦⃦⃦
G̃

1/2

11 Φ̃1

⃦⃦⃦⃦2
+

2

C2

+ α2
t tr(G̃

⊤
t G̃t)

⃦⃦⃦
Φ̃t − Φ̃

∗⃦⃦⃦2
.

Now, if the condition 1 +Mgηt ≤ ∥G̃t∥F is such that⃦⃦⃦⃦
G̃

1/2

11 Φ̃1

⃦⃦⃦⃦2
tr(G̃

⊤
t G̃t)

⃦⃦⃦
Φ̃t − Φ̃

∗⃦⃦⃦2 ≥ αt ≜
ᾱt

1 +Mgηt
≥ ᾱt⃦⃦⃦

G̃t

⃦⃦⃦
F

≡ ᾱt√︂
tr(G̃

⊤
t G̃t)

,

by fixing 0 < ᾱt ≡ ᾱ < 1, then⃦⃦⃦
Φ̃t+1 − Φ̃

∗⃦⃦⃦2 ≤ (1− ᾱ)
⃦⃦⃦
Φ̃t − Φ̃

∗⃦⃦⃦2
+

2

C2
. (4.26)

The recurrence in (4.26) can be expanded as follows:⃦⃦⃦
Φ̃t+1 − Φ̃

∗⃦⃦⃦2 ≤ (1− ᾱ)
⃦⃦⃦
Φ̃t − Φ̃

∗⃦⃦⃦2
+

2

C2

≤ (1− ᾱ)
(︃
(1− ᾱ)

⃦⃦⃦
Φ̃t−1 − Φ̃

∗⃦⃦⃦2
+

2

C2

)︃
+

2

C2

≤ (1− ᾱ)
(︄
(1− ᾱ)

(︃
(1− ᾱ)

⃦⃦⃦
Φ̃t−2 − Φ̃

∗⃦⃦⃦2
+

2

C2

)︃
+

2

C2

)︄
+

2

C2

= (1− ᾱ)3
⃦⃦⃦
Φ̃t−2 − Φ̃

∗⃦⃦⃦2
+ (1− ᾱ)2 2

C2
+ (1− ᾱ) 2

C2
+

2

C2
,

and so on. This gives, for any T ≥ 1,

⃦⃦⃦
Φ̃T − Φ̃

∗⃦⃦⃦2 ≤ (1− ᾱ)T
⃦⃦⃦
Φ̃0 − Φ̃

∗⃦⃦⃦2
+

2

C2

T−1∑︂
j=0

(1− ᾱ)T−j−1. (4.27)

Since C2 > 0 is arbitrary, we set C2 = 2
∑︁T−1

j=0 (1− ᾱ)T−j−1. We also have
that since ᾱ > 0, it satisfies the inequality 1 − ᾱ ≤ exp(−ᾱ). Then (4.27)
gives ⃦⃦⃦

Φ̃T − Φ̃
∗⃦⃦⃦2 ≤ exp(−ᾱT)

⃦⃦⃦
Φ̃0 − Φ̃

∗⃦⃦⃦2
+ 1. (4.28)

133

Substituting our choice of T into (4.28) gives⃦⃦⃦
Φ̃T − Φ̃

∗⃦⃦⃦2 ≤ ϵ+ 1,

which is result P.1.
To prove P.2, we first notice that the local condition

⃦⃦⃦
∇2

Φ R̂s(Φ)
⃦⃦⃦
op
≤

DR in RR.1 implies local DR-Lipschitz continuity of ∇Φ R̂s(Φ) with re-
spect to Φ, that is, for θ̄, θ̃ around the initialization, we have⃦⃦⃦

∇ R̂s(Φ(·, θ̄))−∇ R̂s(Φ(·, θ̃))
⃦⃦⃦
≤ DR

⃦⃦⃦
Φ(·, θ̄)− Φ(·, θ̃)

⃦⃦⃦
,

or equivalently,

R̂s(Φ(·, θ̄)) ≤ R̂s(Φ(·, θ̃)) + ⟨∇ R̂s(Φ(·, θ̃)),Φ(·, θ̄)− Φ(·, θ̃)⟩

+
DR

2

⃦⃦⃦
Φ(·, θ̄)− Φ(·, θ̃)

⃦⃦⃦2
. (4.29)

We recall the notation Φt ≜ Φ(·, θt) for all t ∈ R≥0. Then, using L ≜ R̂s+g,
Lemma 9, and (4.29), we get

L(θt+1) ≤ L(θt) + ⟨∇ R̂s(Φt),Φt+1 − Φt⟩+
DR

2
∥Φt+1 − Φt∥2

+ ⟨∇ g(θt), θt+1 − θt⟩+ ων(dν(θt, θt+1))∥θt+1 − θt∥2θt
≤ L(θt)−

γR
2
∥Φt+1 − Φt∥2 − L(θt) + L(θt+1)

− ων(−dν(θt, θt+1))∥θt+1 − θt∥2θt +
DR

2
∥Φt+1 − Φt∥2

+ ων(dν(θt, θt+1))∥θt+1 − θt∥2θt .

Using the γR-strong convexity assumption on R̂ in RR.1 and the Lipschitz
property of L in Lemma 15, this gives

L(θt+1) ≤ L(θt) + ξ∥θt+1 − θt∥+
DR − γR

2
∥Φt+1 − Φt∥2

+
(︁
ων(dν(θt, θt+1))− ων(−dν(θt, θt+1))

)︁
∥θt+1 − θt∥2θt

≤ L(θt) + ξ∥θt+1 − θt∥+
B2

Φ(DR − γR)
2

∥θt+1 − θt∥2

+
(︁
ων(dν(θt, θt+1))− ων(−dν(θt, θt+1))

)︁
∥θt+1 − θt∥2θt . (4.30)

Recalling the notation δt ≜ θt+1 − θt and substituting the estimates on
∥δt∥ and∥δt∥θt from Lemma 14 into (4.30) yields result P.2. ■

134

4.C Additional experimental details and results

4.C.1 Remark on the T-I measure

The time-invariance measure provides a way to measure stability of the
optimizer’s dynamics from initialization. However, since the signum
function does not account for indices (i, j) of al with aij = 0, i.e.,

sign(aij) ≜

{︄
+1 if aij > 0,

−1 if aij < 0,

and, as we have seen, the GGN-SCORE framework potentially produces
many of this instance (with aij = 0) to reduce the model’s complexity
and/or improve generalization, a natural question is what state should
be assumed for neuron aij when it is exactly zero. For this, we follow the
standard convention that if aij = 0, then the (i, j)-th neuron remains un-
changed from its initial state [111, Section 13.7]. Under this convention, the
proportion of the indices (i, j) of afinal

l satisfying sign(astart
ij) ̸= sign(afinal

ij)

with afinal
ij = 0 contribute to the stability of activations, and hence should

be accounted for in the T-I measure. However, this contribution appear to
be insignificant for the values of τ and µ that give the best test accuracies.
From what we observe in Figure 26 and Figure 28, proper choices of µ and
τ reliably produces stable dynamics of the optimizer as well as a good
generalization of the final trained model.

4.C.2 MNIST teacher-student setting

In order to evaluate GGN-SCORE on the MNIST dataset such that we are
close to the theoretical framework, we consider a teacher-student setup
for the MNIST dataset in a similar way as Arbel [13, Appendix C.4]:

• We create a custom training dataset by combining the original MNIST
test dataset (containing 10000 sample points) and a balanced subset of
the original training dataset. This balanced subset is created by “un-
dersampling” the first 3000 samples of the original training dataset to
give 2610 sample points. In total, the custom training dataset contains
12610 sample points.

135

10 2 100 10210 2

10 1

100

101

102

103
te

st
 lo

ss

10 5 10 3 10 1
10 2

10 1

100

101

102

103

25000

26000

27000

28000

29000

30000

0

200000

400000

600000

800000

ze

ro
s

Figure 29: Test loss of the GGN-SCORE-trained NN on MNIST dataset
(teacher-student) with g(θ) given by (4.15). Left: Results for different values
of the regularization smoothing parameter µ with τ = 10−4 fixed. Right:
Results for different values of the regularization strength τ with µ = 1/

√
n

fixed.

• We then train a teacher NN Φ∗ of the form (4.14) and hidden size
n∗ = 16 on this training dataset with the cross-entropy loss function
and the SiLU activation function.

• A training “target” dataset is created from Φ∗ (with the softmax function
applied on each output of Φ∗).

• The student NN of the form (4.3) with the SiLU activation and hidden
size n = 1024 is then trained on the custom training input samples and
their corresponding target samples constructed from Φ∗. The trained
student NN is tested on the original MNIST test dataset.

The training and test results are displayed Figure 29 and Figure 30. We
follow a similar evaluation procedure as in Section 4.4.2, i.e., the results
are evaluated on the basis of the test loss, training and test accuracy, and T-
I measure of the trained student NN. Interestingly, similar observations as
in Section 4.4.2 are made from the displayed results. The total computation
time to generate the results in Figure 29 and Figure 30 is ∼ 8 hours, 39
minutes on CPU.

136

10310210110010 110 210 3
10

30

50

70

90
%

training accuracy
test accuracy
T-I measure
T-I meas. (incl. # zeros)

10010 110 210 310 410 510 6
10

30

50

70

90

%

train accuracy
test accuracy
T-I measure
T-I meas. (incl. # zeros)

Figure 30: Accuracy and T-I measure of the GGN-SCORE-trained NN on
MNIST dataset (teacher-student) for different values of µ (left) and different
values of τ (right), with the regularization function g(θ) given by (4.15). In
the left figure, τ = 10−4 is used. In the right figure, µ = 1/

√
n is used.

4.C.3 FashionMNIST experiments

We perform experiments on the FashionMNIST dataset [241] under the
same setting as the MNIST experiments in Section 4.4.2. While the Fash-
ionMNIST classification tends to be a harder task than the MNIST, results
shown in Figure 31 and Figure 32 indicate similar behaviours as those
described in Section 4.4.2 regarding the influence of the regularization
parameters.

10 5 10 3 10 1

10 1

100

101

102

103

te
st

 lo
ss

10 5 10 3 10 110 2

10 1

100

101

102

103

6000

8000

10000

12000

20000

40000

60000

80000

100000

120000

ze
ro

s

Figure 31: Test loss evaluation of the GGN-SCORE-trained NN on FashionM-
NIST dataset for different values of the regularization smoothing parameter
µ fixing τ = 10−4 (left) and different values of the regularization strength τ
fixing µ = 1/

√
n (right), where the regularization function g(θ) is given by

(4.15).

137

10010 110 210 310 410 510 6

20

40

60

80
%

training accuracy
test accuracy
T-I measure
T-I meas. (incl. # zeros)

10010 110 210 310 410 510 6

20

40

60

80

%

training accuracy
test accuracy
T-I measure
T-I meas. (incl. # zeros)

Figure 32: Evaluation of GGN-SCORE on FashionMNIST dataset for different
values of the regularization strength µ (left) and different values of the
regularization smoothing parameter τ (right). The regularization function
g(θ) is given by (4.15). In the left figure, µ = 1/

√
n is used. In the right figure,

τ = 10−4 is used.

Num. of samples

Dataset Training Test Input dim. Num. of classes

pendigits 7494 3498 16 10
letter 10500 5000 16 26
avila 10430 10437 11 12

Table 5: Summary of UCI datasets used for comparison.

T-I measure (%) T-I meas. incl. aij = 0 (%)

Dataset Batch-size µ GD GGN-SCORE GD GGN-SCORE

pendigits 8 0.001/
√
n 50.066 52.7331 50.1041 52.7331

letter 64 10/
√
n 55.9237 55.2016 55.925 55.2112

avila 64 10/
√
n 73.318 71.4815 73.3189 71.4833

Table 6: Stability of activation measure.

4.C.4 Generalization and stability in comparison with GD

We now compare GGN-SCORE with GD on three UCI benchmark
datasets3: pendigits, letter, and avila, summarized in Table 5. As in
Section 4.4, we use a learning rate of 1 for GD, and set the hidden size

3https://archive.ics.uci.edu.

138

https://archive.ics.uci.edu

GD GGN-SCORE

103102101100

iteration number

105

104

103

102

101

100

10 1

10 2

te
st

 lo
ss

pendigits

103102101100

iteration number

101

100

10 1

10 2

letter

103102101100

iteration number

101

100

10 1

avila

GD (test) GGN-SCORE (test) GD (train) GGN-SCORE (train)

103102101100

iteration number

10

30

50

70

90

ac
cu

ra
cy

 [%
]

pendigits

103102101100

iteration number

10

30

50

70

letter

103102101100

iteration number

10

30

50

70

avila

GD (train) GGN-SCORE (train) GD (test) GGN-SCORE (test)

0 50 100 150 200 250
time [s]

10

30

50

70

90

ac
cu

ra
cy

 [%
]

pendigits

0 250 500 750 1000
time [s]

10

30

50

70

letter

0 100 200 300 400
time [s]

10

30

50

70

avila

Figure 33: Test loss and accuracy evolution for GD and GGN-SCORE on
pendigits, letter and avila datasets. The regularization function g(θ) in GGN-
SCORE is given by (4.15) with τ = 10−4 and µ given in Table 6.

n = 128 in all the experiments for a NN of the form (4.3), and a scaling
κ(n) = 1/

√
n. The function g in GGN-SCORE is given by (4.15) with

τ = 10−4. The results are shown Figure 33 and Table 6. We observe faster
convergence and better generalization in most cases for GGN-SCORE,
and as in the case for the full-batch deterministic setting in Section 4.4 on
synthetic datasets, we achieve this performance in faster time compared
to GD. Note that much of the computational burden associated with the

139

regularized GGN is greatly reduced by using the stylized expression (4.9),
since the mini-batch size is typically much smaller than p, the size of the
optimization variable θ.

140

Chapter 5

An inexact sequential
quadratic programming
method for learning and
control of recurrent neural
networks

5.1 Introduction

Approximate dynamic programming or reinforcement learning (RL) in-
volves an agent or decision maker that interacts with its environment based
on the states of the environment observable by the agent [111, 224]. For
each decision that the agent makes, it incurs a cost or, alternatively, gets a
reward. Hence, the ultimate goal of the agent is to minimize the total costs,
or maximize the sum of its rewards, received from the environment. In
most cases, it is assumed that the operations of the agent are in accordance
with a finite discrete-time Markovian decision process (MDP), which in turn
assumes that the states of the environment are fully observable by the
agent at any given time t, providing all necessary information that the
agent can use to decide what action to take. This is not always the case

141

in reality, especially as the environment is mostly complex and its model
is unknown. Hence, many practical RL problems are solved within the
framework of partially observable Markov decision process (POMDP). In line
with control problems, the environment is presented as the state-space
model of a dynamical system that encodes the spatial and temporal infor-
mation about the system which can be used to predict its future behaviour.
With the popularity of deep learning methods [130], the paradigm of
world model [107] has been recently used to describe RL methods in
which a generative and/or predictive model is trained to represent the
agent’s own imagination of the environment. A control neural network
which the agent uses to make decisions and take actions on-line is there-
after trained off-line on top of the representative model. This approach
encompasses an idea that dates back as far as the 90s where mostly RNNs
are trained to build a predictive model of the environment or complex
system [208, 209, 210, 206], helping to possibly develop a meaningful
representation of the Markovian state-space in the face of partial observability
[206]. Data-efficiency becomes an added advantage in the design of the
representative RNN model, which is a key element of model-based RL
and control methods [224]. These so-called recurrent control networks [210]
are mostly designed with much focus on their architecture that enable
them to capture relevant information about the underlying system dynam-
ics. In [206], the authors introduce the recurrent control neural network
(RCNN) with an architectural design motivated by the two stages of a
typical neural network based complex control method, namely: (1) a
system identification stage where a RNN with dynamically consistent
overshooting [252] is designed to train a state-space model of the system
using process measurements, and (2) an optimal control policy selection
stage where a FNN is concatenated with the RNN to learn an optimal
control policy which is later used to control the real process.

This unified approach largely benefits from the approximation power
of the individual neural networks when trained with an appropriate
gradient-based algorithm. Besides their slow convergence, a drawback in
learning RNNs for practical applications with gradient-based algorithms
is the possible problem of vanishing- and exploding-gradients [36, 116], which

142

may lead to their difficulty in learning long-term dependencies, as their
operations rely only upon the slope of the loss surface in the Jacobian.
Second-order methods, however, can be used to mitigate these drawbacks
by utilizing in their learning procedures the information contained in the
curvature of the loss surface, which provably accelerates convergence.
Second-order methods for learning RNNs have historically been used
in two ways: (1) the use of second-order optimization algorithms such
as generalized Gauss-Newton (GGN), Levenberg-Marquardt (LM) and
conjugate gradient (CG) algorithms (see, e.g., [205, 233, 150, 64, 154, 99,
66, 34]), and (2) using nonlinear sequential state-estimation techniques
such as extended Kalman filter (EKF) method (see, e.g., [144, 239, 187,
237, 92, 33]). In the first approach, the second-order information is cap-
tured through Hessian (or approximate Hessian) computations, while
in the second approach the second-order information is computed re-
cursively as a prediction-error covariance matrix. In any event, these
approaches provide ways to capture relevant second-order information
about the training loss function as well as help to curtail the possible
vanishing/exploding-gradient problem. As the strength of data-based
RL and control methods lies in their data-efficiency, it is further desirable
to capture curvature information about the neural network training data
for better approximation and representation capability within the allotted
training time. In control applications, recovering a good representation
of the underlying system is very important for robustness and reliability
due to better generalization capabilities of the model to situations unseen
before. For this reason, many recent works have focused on designing
custom training algorithms for their application-specific RNN structures
(see, e.g., the recent works [99, 170, 251, 139, 58]).

Although, we discuss the training problem of RCNNs in accordance
with the two stages involved, our main focus is on the first stage of
the training problem where training a RNN with dynamically consis-
tent overshooting (DCRNN) is viewed as a constrained optimization
problem. While this viewpoint helps us to develop alternative neural
network training algorithms, it can also provide tools to derive useful
convergence results for the algorithm [135]. In this chapter, we estab-

143

lish an inexact SQP framework for the DCRNN training problem where
the quadratic programming (QP) subproblems are solved by a restarted
Krylov-subspace iterative scheme that implicitly exploits the structure
of the associated Karush–Kuhn–Tucker (KKT) subsystems. As the re-
sulting algorithm is based on the restarted generalized minimal residual
(GMRES) Krylov-subspace method, we call it GMRES recurrent learning
(GRL) algorithm, or GRL(m̂r) to include a given restart parameter m̂r.
The iSQPRL framework allows us to use sparse iterative methods that
exploit the structure of subproblems for fast convergence and to achieve a
control- and data-efficient model of the DCRNN. As a back-propagation-
through-time (BPTT) algorithm for training RNNs [202], GRL(m̂r) also
addresses one of the main shortcomings associated with the class of BPTT
algorithms, viz. requiring an excessive number of iterations to converge
to the true solution, largely increasing the complexity of the algorithm
[18]. In the second stage – where we learn an optimal control law – we
simply adapt the GGN with self-concordant regularization (GGN-SCORE)
algorithm, established for convex optimization problems in Chapter 2.
Because the GGN-SCORE algorithm was established for curvature exploit-
ing, this also improves our overall model-based control decision approach
for data-efficiency.

The rest of this chapter is organized as follows. In Section 5.2, we
present the state-space RCNN model and the optimization problem in-
volved in each of the two training stages. In Section 5.3, we introduce
the SQP framework for the DCRNN learning problem of the first stage
and present details of our proposed learning algorithm, which we call
GRL(m̂r), an algorithm that uses a nonmonotone line-search for its glob-
alization (see Algorithm 4). In Section 5.4, we present the curvature-
exploiting GGN-SCORE algorithm, with a slight modification, for training
the control network of the second stage. We analyze the complexity of
the proposed algorithm in Section 5.5. Numerical examples in which we
demonstrate our approach is presented in Section 5.6 and a concluding
remark is given in Section ??.

144

5.2 Recurrent control neural networks

The RCNN training problem involves two stages: (1) identify a DCRNN
model and (2) train a FNN on the DCRNN model for optimal control
policy selection. In accordance with this, we first formulate the problem of
training a RNN (and DCRNN). Then we present the RCNN and formulate
its training problem on top of an extension of the DCRNN model.

5.2.1 RNN for state reconstruction in RL and control

Suppose that the state transition and observables of the environment or
system process can be described by a nonlinear open-loop dynamical sys-
tem, for which a model is assumed to be unknown. Let {u0, u1, . . . , uN−1}
be a sequence of inputs to the dynamical system and {y0, y1, . . . , yN−1} the
corresponding sequence of observable outputs, with ut ∈ Rnu , yt ∈ Rny .
System identification is performed to train a RNN model of the form
(cf. (1.5))

xt+1 = fx(xt, yt, ut, θx) (5.1a)

ŷt = fy(xt, θy) (5.1b)

where fx and fy describe the Markovian state-space dynamics and are
respectively parameterized by the vectorized weight/bias terms θx ∈
Rnθx and θy ∈ Rnθy , xt ∈ Rnx is the RNN hidden state and ŷt ∈ Rny

is its prediction of the system observable at time t. In the identification
task, the RNN is trained to encode meaningful information about the true
system in its hidden states xt. In addition to passing the observables yt as
external inputs to the state-update function (5.1a), they are also given as
the targets for the RNN predictions ŷt. In this chapter, we propose to learn
xt and the parameter vectors θx, θy in parallel in the context described
in [187]; that is, in a way analogous to direct multiple shooting approach
to optimal control (OC) problems. This is achieved by formulating the

145

learning task as the equality-constrained problem

min
z

f(z) ≜ R(x0, θx, θy) +
N−1∑︂
t=0

ℓ(yt, ŷt) (5.2a)

s.t. c(z) ≜

⎡⎢⎢⎢⎢⎣
x1 − fx(x0, y0, u0, θx)

...
xN−1 − fx(xN−2, yN−2, uN−2, θx)
cN (x0, fx(xN−1, yN−1, uN−1, θx))

⎤⎥⎥⎥⎥⎦ = 0 (5.2b)

where f : Rn → R, c : Rn → Rm, z ≜ [x⊤1 · · ·x⊤N−1 x
⊤
0 θ

⊤
y θ

⊤
x]

⊤ ≡
[z1 z2 · · · zn]⊤, n = m + nθy + nθx ,m = Nnx, ℓ : Rny × Rny → R is a
loss function, andR is a regularization term. Both ℓ andR are assumed to
be twice continuously differentiable with respect to their arguments. The
last constraint in (5.2b) represents possible constraints such as periodicity,
x0−fx(xN−1, yN−1, uN−1, θx) = 0 [231], or fixed terminal state constraint,
where cN : Rnx × Rnx → Rnx .

5.2.2 Extension to DCRNNs

Since now on, we will consider the special structure of (5.1) given by

xt+1 = σx(Wxuut +Wxyyt +Wxxxt + bx) (5.3a)

ŷt =Wyxxt + by (5.3b)

where σx(·) is an element-wise activation function. Let θx ≜

vec([WxuWxyWxx bx]), θy ≜ vec([Wyx by]), where Wxu ∈ Rnu×nx ,Wxy ∈
Rnx×ny ,Wxx ∈ Rnx×nx and Wyx ∈ Rny×nx are the RNN weight matri-
ces, and bx ∈ Rnx , by ∈ Rny its bias vectors associated with model (5.3).
The formulation (5.2) does not minimize a pure open-loop simulation
error, in that yt enters the state-update equation rather than ŷt. To han-
dle open-loop simulation terms, we approximate the recurrence of the
RNN dynamics by truncating its unrolling into the past at a finite time
step t = m−. The DCRNN contains in modeling an internal dynamics
by overshooting the network dynamics in the sense that, we take m+ > 1

overshooting time-steps into the future where the network uses its own

146

predictions as the future external inputs [252] (see Figure 34). Still, in the
overshooting part, the network gets the system inputs ut as they also in-
fluence the network dynamics. This phenomenon results in the following
state-space equations of the DCRNN dynamics

x̂0 x1 x̂1 xt x̂t xt+1 x̂t+1 xt+2 x̂t+2

ŷ1

Wyx

by ŷt

Wyx

by ŷt+1

Wyx

by ŷt+2

Wyx

by

y0

Wxy

y1

Wxy

yt

Wxy

u0

Wxu

bx

ut−1

Wxu

bx

ut

Wxu

bx

ut+1

Wxu

bx

ut ŷt+1

Wxy

ut+1 ŷt+2

Wxy

Inx Inx InxWxx Wxx Wxx Wxx

Figure 34: Unrolled recurrent neural network with dynamically consistent
overshooting (DCRNN).

xt+1 = σx(Ix̂t +Wxuut + bx) (5.4a)

ŷt =Wyxxt + by (5.4b)

with x̂t =

{︄
Wxxxt +Wxyyt, ∀0 ≤ t ≤ m−

Wxxxt +Wxy ŷt, ∀m− < t ≤ N
(5.4c)

where I ∈ Rnx×nx is an identity matrix. Letting ℓ = (yt − ŷt)2, c(z) ≜

[c0, c1, . . . , cN] ∈ Rm, N = m− + m+, the corresponding optimization
problem is

min
z

f(z) ≜ R(x0, θx, θy) +
N−1∑︂
t=0

(yt − ŷt)2 (5.5a)

s.t. ct = 0, ∀t = 0, . . . , N (5.5b)

with ct ≜ xt+1 − σx(Ix̂t +Wxuut + bx) (5.5c)

x̂t =

{︄
Wxxxt +Wxyyt, ∀0 ≤ t ≤ m−

Wxxxt +Wxy ŷt, ∀m− < t ≤ N − 1
(5.5d)

5.2.3 FNN for optimal control policy selection

Given a training dataset {ut, yt}, t = 0, . . . , N − 1, after computing the
optimal values of the parameter vectors θx, θy , we construct a FNN on top

147

of the DCRNN to obtain a RCNN (see Figure 35). In this chapter, a three
layer FNN model is considered to obtain new optimal control inputs ût,
∀t > m−. The resulting control network together with the DCRNN forms
the following RCNN represented by their state-space equations:

ût = σu(Vuhσh(Vhxx̂t + bh) + bu), ∀m− ≤ t ≤ N (5.6a)

xt+1 =

{︄
σx(Ix̂t +Wxuut + bx), ∀0 ≤ t < m−

σx(Ix̂t +Wxuût + bx), ∀m− < t ≤ N
(5.6b)

Rt = Grσr(Wyxxt + by), ∀m− < t ≤ N (5.6c)

with x̂t =

{︄
Wxxxt +Wxyyt, 0 ≤ t ≤ m−

Wxxxt +Wxy ŷt, m− < t ≤ N
(5.6d)

where Vuh ∈ Rnu×nh , Vhx ∈ Rnh×nx , bh ∈ Rnh , bu ∈ Rnu are the control
network parameters to be learnt, and σu, σh are element-wise activation
functions. Gr is a constant, problem-specific matrix, chosen such that
with an appropriate choice of the function σr, the network output map
Rt(xt, ŷt; ût) models the problem’s reward function. Here, the optimiza-
tion problem to solve is

max
θu

f̂(θu) ≜
N−1∑︂
t=m−

Rt (5.7)

where θu ≜ vec([Vuh Vhx bh bu]) ∈ Rnθu .

x̂0 x1 x̂1 xt x̂t xt+1 x̂t+1 xt+2 x̂t+2

ŷ1

Wyx

by
ŷt

Wyx

by
ŷt+1

Wyx

by
ŷt+2

Wyx

by
ht

Vhx

bh

ût

Vuh

bu

ht+1

Vhx

bh

ût+1

Vuh

bu

ht+2

Vhx

bh

ût+2

Vuh

bu
Rt+1

Gr

Rt+2

Gr

y0

Wxy

y1

Wxy

yt

Wxy

u0

Wxu

bx

ut−1

Wxu

bx

ût

Wxu

bx

ŷt+1

Wxy

ût+1

Wxu

bx

ŷt+2

Wxy

Inx Inx InxWxx Wxx Wxx Wxx

Figure 35: Architecture of recurrent control neural networks (RCNNs).

148

5.3 Sequential quadratic programming for recur-
rent learning

In the following, we describe the iSQPRL framework which we use to
construct an algorithm to solve the DCRNN learning problems. Consider
again problem (5.5) and define the Lagrangian

L(z, λ) ≜ f(z)− λ⊤c(z) (5.8)

where λ ∈ Rm is the vector of Lagrange multipliers. The SQP approach
for solving problem (5.5) involves iteratively solving the quadratic pro-
gramming (QP) subproblem

dzk ∈ argmin
dz

1

2
d⊤z H(zk)dz +∇f(zk)⊤dz (5.9a)

s.t. ∇c(zk)dz + c(zk) = 0 (5.9b)

at a given approximate solution zk, k = 1, 2, . . ., where ∇c(z) =

[∇c0(z) · · · ∇cN−1(z)]
⊤ ∈ Rm×n and H(zk) is the Hessian∇2L(zk, λk) ≜

∇2f(zk)+∇(∇c(zk)⊤λk) of the Lagrangian at step k, or an approximation
to it. Suppose at iteration k, the QP solver finds an optimal multiplier λ̃k
(which can change from iteration to iteration). Then, by setting

dλk = λ̃k − λk (5.10)

we update (z, λ) using

zk+1 = zk + αkd
z
k, λk+1 = λk + αkd

λ
k (5.11)

where αk is a carefully chosen step-length, or learning rate. This iterative
process creates a sequence {zk} of approximations which should be made
to converge to a solution z∗ of (5.5). Next, we consider the equivalent
Newton viewpoint of the QP subproblem (5.9), to simplify our analysis of
the proposed solution technique.

The necessary (KKT) optimality conditions for the QP subproblem at
any step k are given by the nonlinear equation

F̃(zk, λk) ≜
[︄
∇f(zk)−∇c(zk)⊤λk

c(zk)

]︄
=

[︃
0
0

]︃
. (5.12)

149

For simplicity of notation, we denote by F̃k ≜ F̃(zk, λk) and similarly for
other functional quantities, and set Jk ≜ ∇ck and gk ≜ ∇fk. By applying
Newton’s method to (5.12), we obtain the Newton’s equation

Ãkd̃k = −F̃k, Ãk = ∇F̃k =

[︄
Hk −J⊤

k

Jk 0

]︄
, d̃k =

[︄
dzk
dλk

]︄
. (5.13)

By treating λk+1 as an unknown and by letting Fk ≜ [gk, ck]
⊤, bk ≜ −Fk,

we equivalently write (5.13) as the saddle point system[︄
Hk J⊤

k

Jk 0

]︄
⏞ ⏟⏟ ⏞

Ak

[︄
dzk
−λ̃k

]︄
⏞ ⏟⏟ ⏞

dk

=

[︃
−gk
−ck

]︃
⏞ ⏟⏟ ⏞

bk

. (5.14)

The solution dk to (5.14) constitutes the Newton direction at step k. De-
pending on the choice of Hk, say Hk = ∇2Lk, and by setting dλk as in
(5.10), we choose an appropriate value for the step-length parameter αk,
say αk = 1, and take the step (5.11). Once the system in (5.14) is solved,
Ãk and d̃k satisfying (5.13) can then be obtained accordingly.

5.3.1 Approximating the Lagrangian Hessian

Clearly, the choice Hk = ∇2Lk in (5.14) would be computationally pro-
hibitive for the DCRNN training problem in most cases. Besides, we often
need Hk to be positive-definite in order to ensure that the QP subprob-
lem solved at each step is convex, thereby preserving the convergence
properties provided by the primal step direction. However,∇2Lk is not
positive-definite in general. As in Section ??, we reduce these computa-
tional difficulties by approximating ∇2Lk by the modified BFGS formula
[50, 94, 101, 216] presented in [184]. For completeness, we also summarize
the modified BFGS scheme here.

Starting from an initial positive definite matrix H0, the modified BFGS
scheme seeks an approximation Hk to the true Hessian ∇2Lk as follows.
At step k, define

γ̄k = θkγk + (1− θk)Hkδk, 0 ≤ θk ≤ 1 (5.15)

150

where γk = ∇Lk+1 −∇L(zk, λk+1), δk ≜ αkd
z
k = zk+1 − zk. Vector γ̄k is

geometrically the closest to γk such that the inequality

δ⊤k γ̄k ≥ ηδ⊤k Hkδk (5.16)

is satisfied, where the parameter η is chosen empirically and typically
takes the value 0.2 [184, 185, 186] which is just sufficient for our approxi-
mations. The key idea is to gradually approach the true Hessian while
accounting for the curvature information captured during the most recent
step. Consequently, the convexity parameter θk in (5.15) takes the value

θk =

⎧⎨⎩1, if δ⊤k γk ≥ ηδ⊤k Hkδk
(1−η)δ⊤k Hkδk
δ⊤k Hkδk−δ⊤k γk

, otherwise
(5.17)

and a rank-two matrix Uk defined by

Uk =
γ̄kγ̄

⊤
k

δ⊤k γ̄k
− Hkδkδ

⊤
k Hk

δ⊤k Hkδk
(5.18)

is selected to update Hk as

Hk+1 = Hk + Uk (5.19)

which maintains positive-definiteness of Hk.

5.3.2 Numerical solution of the saddle-point system

As the linear system (5.14) can involve a large number of variables, it be-
comes natural to present a computationally efficient technique for solving
it. In this chapter, we do not wish to impose restrictive assumptions on
iSQPRL as we know that the matrix Ak in (5.14) is not positive-definite.
Hence, we present a solution approach to the system in a general learning
framework. The GMRES algorithm [204], which we briefly describe next,
is our method of choice for this purpose. Starting from an arbitrary initial
guess dk,0 ∈ Rn̂, n̂ = n+m, define the initial residual rk,0 ≜ bk −Akdk,0

and let

Km̂(Ak, rk,0) ≜ span
{︂
rk,0, Akrk,0, . . . , A

m̂−1
k rk,0

}︂
(5.20)

151

be the m̂-dimensional Krylov-subspace generated by Ak and rk,0. At the
m̂-th step, GMRES finds an approximation dk,m̂ ∈ Km̂ to the true solution
dk = A−1

k bk. This approximate solution is the value of dk that minimizes
the norm of the residual rk,m̂ = bk −Akdk,m̂. In its implementation, GM-
RES does not explicitly form the vectors rk,0, Akrk,0, A

2
krk,0, . . . , A

m̂−1
k rk,0,

as they may be close to being linearly dependent; instead, it uses the
Arnoldi iteration to form an orthonormal basis for Km̂(Ak, rk,0). In par-
ticular, if qk,1, qk,2, . . . , qk,m̂ are the orthonormal vectors formed by the
Arnoldi iteration, and if these vectors form the matrix Qk,m̂ ∈ Rn̂×m̂, then
we can write dk,m̂ as dk,m̂ = dk,0 +Qk,m̂sk,m̂, sk,m̂ ∈ Rm̂.

Let H̃k,m̂ ∈ R(m̂+1)×m̂ be the upper Hessenberg matrix generated
from the (modified) Gram-Schmidt orthogonalization step of Arnoldi
iteration satisfying

AkQk,m̂ = Qk,m̂+1H̃k,m̂.

and let βk ≜ ∥rk,0∥. Then, Qk,m̂+1e1 = qk,1 = ∥rk,0∥−1rk,0, where e1 ≜

[1 0 0 · · · 0]⊤ ∈ Rm̂+1, and

rk,m̂ = bk −Akdk,m̂

= bk −Ak(dk,0 +Qk,m̂sk,m̂)

= βkqk,1 −Qk,m̂+1H̃k,m̂sk,m̂

= Qk,m̂+1(βke1 − H̃k,m̂sk,m̂).

As Qk,m̂+1 has orthonormal columns, we get that

∥rk,m̂∥ = ∥βke1 − H̃k,m̂sk,m̂∥.

Therefore, one finds dk,m̂ ≡ dk by solving

min
s∈Rm̂

∥βke1 − H̃k,m̂s∥ (5.21)

whose solution can be obtained efficiently by using the QR factorization
of H̃k,m̂, which in turn can be cheaply updated from iteration to iteration
by exploiting its structure.

While GMRES solves a general linear system, the restarted variant of
it, written GMRES(m̂r), provides a better convergence speed and helps

152

to curtail the memory issue linked to the storage of the orthonormal
vectors formed in the former. Instead of allowing the storage of the entire
Krylov-subspaces whose size grows quadratically with the number m̂
of steps, GMRES(m̂r) restricts the dimension of the Krylov-subspace to
a fixed integer parameter m̂r and restarts the Arnoldi process using the
current approximate solution dk,m̂r

as the new initial guess [204]. As
the GMRES(m̂r) method only computes an approximate solution dk of
the SQP subproblem, it forms an inexact SQP method (cf. [80]). Hence,
we consider (5.14) with the residual vector rk ≡ rk,m̂r

≜ (rzk, r
λ
k) that

accounts for the error due to this inexactness:[︄
Hk J⊤

k

Jk 0

]︄[︄
dzk
−λ̃k

]︄
=

[︃
−gk
−ck

]︃
+

[︄
rzk
rλk

]︄
. (5.22)

The addition of this residual vector is useful for deriving relevant bounds
on important terms of the problem, as we shall see. In specific terms, the
residual vector characterizes a part of the globalization strategy (Steps 9–
13 of Algorithm 4) described in the next subsection. As a first step, we now
state a result, established in [204], on the convergence of GMRES(m̂r), that
provides us with an important property of the residual norm associated
with the algorithm.

Proposition 5.3.1 ([204], Proposition 4 and Theorem 5). Suppose that Ak

is diagonalizable so that Ak = PkDkP
−1
k where Dk is the diagonal matrix of

eigenvalues of Ak. Let τ be the number of distinct eigenvalues ϱ1, ϱ2, . . . , ϱτ
of Ak with nonpositive real parts and let the other eigenvalues be enclosed in
CΘ(Ω), a circle of radius Θ centered at Ω with Ω > Θ > 0. Then the residual
norm of GMRES(m̂r) satisfies

∥rk,m̂r
∥ ≤ κ(Pk)ξk∥rk,0∥ (5.23)

where

κ(Pk) = ∥Pk∥∥P−1
k ∥, ξk =

(︃
ᾱ

β̄

)︃τ (︃
Θ

Ω

)︃m̂r−τ

,

ᾱ = max
1≤i≤τ

τ+1≤j≤n̂

|ϱt − ϱj | and β̄ = min
1≤i≤τ

|ϱt|.

153

5.3.3 Globalization of iSQPRL by a line-search

Many known inexact SQP approaches rely upon a line-search or trust re-
gion method to ensure global convergence. For the sake of completeness,
we discuss these globalization concerns for iSQPRL with a line-search
strategy, and with specific reference to the GMRES(m̂r) iterative scheme
considered in this chapter. In order to do this, we assume that the se-
quence {Hk} is obtained through the modified BFGS formula described
in Section 5.3.1. We also assume that the value of m̂r is sufficient to
ensure convergence of GMRES(m̂r), and that the sequence of iterates
{zk, λk} is generated by the described iSQPRL framework. Furthermore,
the following conditions hold (using L∗ to denote L(z∗, λ∗)):

A.1 {zk, λk} is contained in a closed, bounded, convex set S, on which
the functions f and c are twice continuously differentiable.

A.2 The columns of Jk are linearly independent, for each k.

A.3 The matrices Hk are uniformly positive definite on the null spaces
of Jk, that is, ∃σ1 > 0 such that for each k, d⊤Hkd ≥ σ1∥d∥2 for all
d ∈ Rn̂ satisfying Jkd = 0.

A.4 The sequence {Hk} is bounded in norm, that is, ∃σ2 > 0 such that for
each k, ∥Hk∥ ≤ σ2.

A.5 The matrices Hk have inverses that are bounded in norm, that is,
∃σ3 > 0 such that for each k, H−1

k exists and ∥H−1
k ∥ ≤ σ3.

A.6 ∇2Lk is Lipschitz continuous for each k in the neighbourhood of
(z∗, λ∗).

A.7 The primal-dual step dk locally satisfies

lim
k→∞

∥(Pk(Hk −∇2L∗)Pk)d
z
k∥

∥dzk∥
= 0

where Pk is the projection matrix Pk = I − Jk(J⊤
k Jk)

−1J⊤
k .

154

Assumptions A.1 – A.7 are fairly standard for an equality-constrained
optimization problem adopting a line-search technique, and in which
positive-definiteness of Hk is enforced [55, 54]. Some of the assumptions
can however be relaxed to meet specific practical demands. The following
condition provides a stronger version of Assumptions A.3 and A.4, and
will be imposed for the sake of simplicity of our presentation.

B.1 For all d ∈ Rn̂, ∃σ1, σ2 > 0 such that σ1∥d∥2 ≤ d⊤Hkd ≤ σ2∥d∥2 for
each k.

An important consequence of Assumption A.7 is that one can recover a
local two-step superlinear convergence with positive definite matrices Hk,
requiring only that a projection of each Hk is close to a projection of∇2L∗

[186], as opposed to the similar convergence result, say for unconstrained
problems, that requires∇2L∗ to be also positive definite with

lim
k→∞

∥(Hk −∇2L∗)dzk∥
∥dzk∥

= 0.

We formally state the two-step superlinear convergence result for the
constrained problem in the following.

Lemma 5.3.2 ([186, Theorem 1]). Let Assumptions A.1 – A.7 hold for the
recurrent learning problem. Then

lim
l→∞

∥zl+1 − z∗∥
∥zl−1 − z∗∥

= 0.

In order to ensure superlinear convergence of the kind shown in
Lemma 5.3.2 from an arbitrary starting point, we equip the SQP with a
line-search strategy for choosing a value for the step-length parameter αk

that ensures the value of some well-defined merit function is sufficiently
reduced for an acceptable1 step to be taken. This strategy provides a way
to decide when a progress is made towards a solution. One such merit
function commonly used to account for feasibility of the constraints ck is
the ℓ1 merit function defined as

M1(zk; ρk) = fk +
ρk
ω
∥ck∥1,

ρk
ω
> 0 (5.24)

1An inexact solution dk is considered acceptable if, together with some penalty term ρk
of the merit function, it causes a sufficient reduction in the value of the merit function.

155

where ω > 1 is selected heuristically, the motivation for which becomes
clear in the ρk selection rule of (5.34) below. The main goal is to ensure
that the (feasible) KKT points of (5.5) are critical points ofM1.

Upon computing an acceptable step dk and defining the merit function,
we choose a step-length αk which satisfies the so-called sufficient decrease
(or Armijo [15]) condition

M1(zk + αkd
z
k; ρk) ≤M1(zk; ρk) + ναk∇dz

k
M1(zk; ρk) (5.25)

where 0 < ν ≤ 0.5 is a small value and ∇dz
k
M1(zk; ρk) is the directional

derivative ofM1 along dzk, which we derive in the following lemma.

Lemma 5.3.3. Let assumptions A.1 – A.5 hold for the iSQPRL problem. Then
the directional derivative ofM1(zk; ρk) along a step dzk satisfies

∇dz
k
M1(zk; ρk) ≤ gkdzk −

ρk
ω
∥ck − rλk∥1 (5.26a)

∇dz
k
M1(zk; ρk) ≥ gkdzk −

ρk
ω
∥ck − rλk∥1. (5.26b)

Proof. Applying Taylor’s theorem to f and c, we have

M1(zk + αkd
z
k; ρk)−M1(zk; ρk)

= f(zk + αkd
z
k)− fk +

ρk
ω
∥c(zk + αkd

z
k)∥1 −

ρk
ω
∥ck∥1

≤ αkg
⊤
k d

z
k + σ2α

2
k∥dzk∥2 +

αkρk
ω
∥ck∥1.

From (5.22), we have Jkdzk = −ck + rλk ; hence, with αk ≤ 1, we get

M1(zk + αkd
z
k; ρk)−M1(zk; ρk)

≤ αkg
⊤
k d

z
k + σ2α

2
k∥dzk∥2 −

αkρk
ω
∥ck − rλk∥1

= αk

(︃
g⊤k d

z
k −

ρk
ω
∥ck − rλk∥1

)︃
+ σ2α

2
k∥dzk∥2.

Similar arguments yield the lower bound

M1(zk + αkd
z
k; ρk)−M1(zk; ρk)

≥ αk

(︃
g⊤k d

z
k −

ρk
ω
∥ck − rλk∥1

)︃
− σ2α2

k∥dzk∥2.

156

Taking the limits

lim
αk→0

M1(zk + αkd
z
k; ρk)−M1(zk; ρk)

αk
≜ ∇dz

k
M1(zk; ρk)

proves (5.26). ■

Consequently, the directional derivative ofM1 along dzk is given by

∇dz
k
M1(zk; ρk) = g⊤k d

z
k −

ρk
ω
∥ck − rλk∥1. (5.27)

As with inexact Newton methods for a general nonlinear system of equa-
tions [80], inexact SQP methods require that the residual norm is reduced
strictly at each step to allow for the update (zk+1, λk+1) in (5.11). This
requirement, in our case, is provided in the following conditions:

M.1 The primal step computed in the iSQPRL framework is a descent
direction forM1.

M.2 The residual rk satisfies ∥rk∥ ≤ σ4∥Fk∥, 0 < σ4 < 1.

Indeed, that condition M.2 holds with the primal steps evaluated via
GMRES(m̂r), is a simple deduction from Proposition 5.3.1.

Corollary 1 (of Proposition 5.3.1). The residual norm at step k satisfies condi-
tion M.2 with σ4 = κ(Pk)ξk assuming the initial guess dk,0 = 0.

Proof. With dk,0 = 0, we get from (5.23) and the definition of rk,m̂
that ∥rk∥ ≤ κ(Pk)ξk∥rk,0∥ = κ(Pk)ξk∥bk − Akdk,0∥ = κ(Pk)ξk∥bk∥ =
κ(Pk)ξk∥Fk∥. ■

The following result tells us what conditions are sufficient, in particu-
lar the choice of ρk, such that condition M.1 holds.

Proposition 5.3.4. Let Assumptions A.1 – A.5 and B.1 hold for the iSQPRL
problem. Then the directional derivative ofM1(zk; ρk) along a step dzk satisfies

∇dz
k
M1(zk; ρk) ≤

− dzk⊤Hkd
z
k +

(︃
ρk
ω
− ∥λ̃k∥∞

)︃(︂
∥ck∥1 − ∥rλk∥1

)︂
+ dzk

⊤rzk. (5.28)

157

Moreover, if we choose

ρk > ω∥λ̃k∥∞ (5.29)

then dzk is guaranteed to be a descent direction forM1, and∇dz
k
M1(zk; ρk) < 0

at nonstationary points of (5.5).

Proof. From (5.22), we obtain

g⊤k d
z
k = −dzk⊤Hkd

z
k + dzk

⊤Jkλ̃k + dzk
⊤rzk

dzk
⊤Jkλ̃k = −c⊤k λ̃k + rλk

⊤
λ̃k.

Substituting these into (5.27) gives

∇dz
k
M1(zk; ρk) =

− dzk⊤Hkd
z
k + dzk

⊤Jkλ̃k + dzk
⊤rzk −

ρk
ω
∥ck − rλk∥1

= −dzk⊤Hkd
z
k − (ck − rλk)T λ̃k + dzk

⊤rzk −
ρk
ω
∥ck − rλk∥1.

Using the relation −(ck − rλk)
⊤λ̃k ≤ ∥λ̃k∥∞∥ck − rλk∥1 from Hölder’s

inequality, we obtain

∇dz
k
M1(zk; ρk) ≤

− dzk⊤Hkd
z
k −

(︃
ρk
ω
− ∥λ̃k∥∞

)︃
∥ck − rλk∥1 + dzk

⊤rzk (5.30)

which proves (5.28) by applying the reverse triangle inequality on −∥ck −
rλk∥1. By assumption B.1, and if dzk ̸= 0 solves (5.9), it is sufficient to show
that

∆M1 ≜ dzk
⊤rzk −

(︃
ρk
ω
− ∥λ̃k∥∞

)︃
∥ck − rλk∥1 ≤ 0 (5.31)

in order to show that dzk is a descent direction forM1, with ρk > ω∥λ̃k∥∞.
To do this, we define

r⊤k d̄k = rλk
⊤
λ̃k + dzk

⊤rzk = dzk
⊤Hkd

z
k + g⊤k d

z
k + c⊤k λ̃k

where d̄k = (dzk, λ̃k). By noting the relation

−ρk
ω
∥ck − rλk∥1 < −∥λ̃k∥∞∥ck − rλk∥1

158

we have

dzk
⊤rzk −

(︃
ρk
ω
− ∥λ̃k∥∞

)︃
∥ck − rλk∥1

= dzk
⊤Hkd

z
k + g⊤k d

z
k + c⊤k λ̃k − rλk

⊤
λ̃k⏞ ⏟⏟ ⏞

=dz
k
⊤rzk

−ρk
ω
∥ck − rλk∥1

+ ∥λ̃k∥∞∥ck − rλk∥1
< dzk

⊤rzk + ∥dzk∥∞∥rzk∥1 ≤ 0.

■

Remark 1. Alternatives to the merit reduction condition (5.29) exist in the
literature (see, e.g., [74]), with their specificity linked to the choice of merit
function. The use of a particular merit reduction condition is however often well-
motivated, say, as a way to quantify an appropriate steepness of the directional
derivative of the merit function with the residual terms of the inexact SQP step
[55].

Corollary 2. Let the assumptions of Proposition 5.3.4 hold, and let dzk be such
that (5.28) is satisfied. Then the following property holds:

ρk ≥
ω

2

[︄
g⊤k d

z
k + dzk

⊤Hkd
z
k − dzk⊤rzk

∥ck∥1 − ∥rλ∥1
+ ∥λ̃k∥∞

]︄
. (5.32)

Proof. From (5.28) and (5.27), we get

g⊤k d
z
k + dzk

⊤Hkd
z
k +

(︃
2ρk
ω
− ∥λ̃k∥∞

)︃
∥ck − rλk∥1 − dzk⊤rzk ≤ 0

and applying the reverse triangle inequality on ∥ck − rλk∥1 gives

2ρk
ω
− ∥λ̃k∥∞ ≥

g⊤k d
z
k + dzk

⊤Hkd
z
k − dzk⊤rzk

∥ck∥1 − ∥rλk∥1
.

Rearranging the terms gives the result. ■

From the property shown in Corollary 2, we see that a necessary
requirement for condition (5.29) is that we choose ω ≥ 2 (cf. [55, 54]). In
order to maintain (5.29) at each step k, thereby ensuring the exactness

159

ofM1 at convergence, a common approach is to safeguard the inequality
with some positive constant ρ̄ in a way that

ρk ≥ ω∥λ̃k∥∞ + ρ̄. (5.33)

The selection rule for ρk, proposed in [184], is slightly modified for the
inexact SQP problem of this chapter:

ρk =

{︄
max{ω∥λ̃k∥∞ + ρ̄, 1

ω (ρk−1 + ω∥λ̃k∥∞ + ρ̄)},∀k ̸= 1

ω∥λ̃k∥∞ + ρ̄, if k = 1.
(5.34)

The rationale behind (5.34) is that it provides relevant bounds on the
sequence {ρk} and allows, for k large enough and towards convergence,
the choice ρk = ρk−1, provided that ρk−1 ≥ ω∥λ̃k∥∞ + ρ̄. Coupled with a
backtracking line-search procedure, a step-length αk such that the Armijo
condition (5.25) holds is chosen.

Many known results for the global convergence of line-search SQP
algorithms in constrained optimization are based upon the exactness and
stationarity ofM1 at KKT optimality points of the problem, and are direct
consequences of the descent property ofM1 (when shown to hold) at dk
such that the line-search succeeds for all k. In the same spirit, and with
condition M.2 assumed to hold, we obtain the following result (which we
prove by following the reasoning in [43, Theorem 17.2]).

Theorem 5.3.5. Let the assumptions of Proposition 5.3.4 hold for the iSQPRL
problem, and let ρk be chosen according to the rule (5.34) so that ρk > ω∥λ̃k∥∞
holds. Suppose further that the sequence {λk} is bounded. Then if αk is bounded
below by some positive constant, the sequence of iterates {zk}, starting from an
arbitrary point, converges to a stationary point ofM1.

Proof. Since {λk} is bounded, and hence {ρk}, then it is easy to show
that there exists an index k1 such that ρk ≈ ρ ≥ ω∥λ̃k∥∞ + ρ̄ for all
k ≥ k1. The adaptation rule (5.34) indeed ensures that ρk does not increase
unnecessarily in attaining this ρ since then {λ̃k} is bounded. Therefore,
by the descent property ofM1 in Proposition 5.3.4, we are ensuredM1

remains exact.
Consider the set of indices K ≜ {k ≥ k1 : αk < 1}. Then each of

the step k ∈ K causes a sufficient decrease inM1 by the backtracking

160

line-search procedure. Moreover, withM1(zk; ρ) ≥ K > −∞ for some
constant K, the sufficient decrease condition (5.25) shows that

αk∇dz
k
M1(zk; ρk)→ 0. (5.35)

Now let ᾱ ≤ αk be some constant for which the backtracking line-search
procedure fails. Then with k ∈ K, at least one of the following holds:

zk + ᾱdzk /∈ S (5.36a)
M1(zk + ᾱdzk; ρk) >M1(zk; ρk) + νᾱ∇dz

k
M1(zk; ρk). (5.36b)

However, by Assumption A.1 and with dzk ̸= 0, (5.36a) does not hold.
Hence, we have (5.36b). From the proof of Lemma 5.3.3 and (5.27), we get

M1(zk + ᾱdzk; ρk)−M1(zk; ρk) ≤ ᾱ∇dz
k
M1(zk; ρk)

+ σ2ᾱ
2∥dzk∥2

which together with (5.36b) gives

−(1− ν)∇dz
k
M1(zk; ρk) ≤ σ2ᾱ∥dzk∥2.

From (5.30) and Assumption B.1, we have

σ1∥dzk∥2 ≤ −∇dz
k
M1(zk; ρk)

and since ν > 1, we get from the above two inequalities

αk ≥ ᾱ ≥
σ1
σ2

(1− ν) > 0. (5.37)

Therefore, (5.35) implies∇dz
k
M1(zk; ρk)→ 0. Consequently, by (5.30) and

ρk ≥ ω∥λ̃k∥∞ + ρ̄ we have

dzk
⊤Hkd

z
k → 0, ck → 0.

By our assumptions on Hk, the above implies dzk → 0 which we know
to hold if and only if zk is a feasible point satisfying the KKT optimality
conditions in (5.12). ■

5.3.4 Practical aspects

We discuss two practical issues that are considered in the implementa-
tion of our algorithm with the goal of enabling the convergence results
discussed so far.

161

Algorithm 4 GRL(m̂r) with nonmonotone line-search

1: Input: data {ut, yt}N−1
t=0 , initial guess for (x0, θx, θy), number of epochs

Ne, line-search parameters 0 < µ < 1, ν, ρ̄, initial Lagrangian multi-
plier vector λ0, initial BFGS matrix H0

2: Output: updated parameters (x0, θx, θy)
3: Evolve (5.1). Set z0 ← [x⊤1 · · ·x⊤N−1 x

⊤
0 θ

⊤
y θ

⊤
x]

⊤

4: Compute f0, c0, J0, g0,L0

5: k ← 0
6: repeat
7: Construct KKT system (5.14)
8: Solve KKT system with preconditioning (see Section 5.3.2 and

Section 5.3.4). Get (dzk, λ̃k). Get dλk as in (5.10)
9: Get ρk using (5.34). Define the merit functionM1 (5.24). Define
mk (5.39)

10: ifM1(zk + dzk; ρk) ≤ mk + ν∇dz
k
M1(zk; ρk) then

11: zk+1 ← zk + dzk
12: λk+1 ← λk + dλk
13: else
14: Construct KKT system (5.41)
15: Solve KKT system with preconditioning (see Section 5.3.2 and

Section 5.3.4). Get (d̄zk, λ̄k)
16: d̄λ ← λ̄k − λk
17: if ∥d̄zk∥ > ∥dzk∥ then
18: d̄

z
k ← 0, d̄λ ← 0

19: end if
20: αk ← 1
21: whileM1(zk + αkd

z
k + α2

kd̄
z
k) > mk + ναk∇dz

k
M1(zk; ρk) do

22: αk ← µαk

23: end while
24: zk+1 ← zk + αkd

z
k + α2

kd̄
z
k

25: λk+1 ← λk + αkd
λ
k + α2

kd̄λ
26: end if
27: Compute fk+1, ck+1, Jk+1, gk+1,Lk+1

28: Get Uk as in (5.18). Hk+1 ← Hk + Uk

29: k ← k + 1
30: until k ≥ Ne

162

Preconditioning for GMRES(m̂r)

The (left) preconditioned GMRES(m̂r) is the GMRES(m̂r) applied to the
system

M−1
k Akdk =M−1

k bk

where Mk ∈ Rn̂×m̂ is a suitably chosen, problem-dependent precondi-
tioner. In this chapter, we implement GMRES(m̂r) for the solution of (5.14)
at each step k, left-preconditioned with the non-singular preconditioner

Mk =

[︄
Gk J⊤

k

Jk 0

]︄
(5.38)

whereGk ̸= Hk is an n×nmatrix typically chosen so thatMk is invertible.
This preconditioning method, known in the literature as constraint precon-
ditioning [37], has been used extensively to achieve improved convergence
results for problems of the kind (5.14). There are various options for the
choice of Gk (see, e.g., [37] for an overview).

Enforcing superlinear convergence

An important requirement for the superlinear convergence of SQP al-
gorithms is that the line-search strategy accepts a unit step-length2 for
all k. This superlinear step, however, may not be accepted for the merit
functionM1 thereby inhibiting fast convergence. This condition, known
as the Maratos effect, is avoided in this chapter by incorporating the non-
monotone line-search procedure introduced in [174] into our algorithm
allowing to occasionally take nonmonotone steps towards progress (see
Algorithm 4, lines 14 – 25). The approach is based on the observation that
with the number mk defined by

mk ≜ max
j=0,...,hm

M1(zk−j ; ρk) (5.39)

over a nonmonotone horizon hm (typically, hm = 3), the function M1

“eventually” satisfies the modified sufficient decrease condition

M1(zk + αkd
z
k; ρk) ≤ mk + ναk∇dz

k
M1(zk; ρk). (5.40)

2It is remarked that obtaining a unit step-length does not always hold [186].

163

In specific terms, it is proposed in [174] to perform the variable update

zk+1 = zk + αk̂kd
z
k + α̂2

kd̄
z
k

whenever the merit function does not accept a unit step-length in the
test (5.40), where 0 < α̂k ≤ 1 is the number returned by a backtracking
line-search performed on

M1(zk + αkd
z
k + α2

kd̄
z
k; ρk) ≤ mk + ναk∇dz

k
M1(zk; ρk)

and d̄zk is defined by [︄
Hk J⊤

k

Jk 0

]︄[︄
d̄
z
k

−λ̄k

]︄
=

[︃
−gk
−c̄k

]︃
(5.41)

with c̄k = c(zk + dzk). It is shown that under suitable conditions (such as
those assumed in this chapter), this “correction plus arc-search” procedure
globally preserves Q-superlinear convergence of the SQP algorithm, even
though now the merit functionM1 is not forced to reduce at each step k
[174].

5.4 Off-line learning of the control network

A key element considered in discussing our proposed algorithm for the
optimization problem of the second stage of training RCNN is the struc-
ture of the Hessian terms which the method efficiently exploits. Although
a FNN is often a simpler network to train than a recurrent network, it
is still desirable to exploit curvature information about the training data
to improve learning. In Chapter 2, we presented a GGN algorithm that
ultimately exploits the idea of self-concordance [164] for approximating
batch-wise parameter updates in an unconstrained optimization problem.
We also studied this algorithm in Chapter 4 for optimizing feedforward
neural networks. In this chapter, we adapt the algorithm for training the
control network as described next.

Suppose that in stage two of learning the RCNN we process mini-
batches of sample streams in a multi-step ahead fashion, composed of

164

the current and future stacks (ûk, ŷk), ûk ∈ Rnu·nb , ŷk ∈ Rny·nb , where
nb is the mini-batch size, 1 < nb < nθu (possibly 1 ≪ nb ≪ nθu), k =

1, 2, . . . , ⌈Nu

nb
⌉, Nu ≥ nb is a desired number of training samples. Let

r̄ : Rnθu → R be a self-concordant function3 with parameter Mr̄, that is,
the inequality ⃓⃓⃓⃓

⃓
⟨︃
v,
(︂
∇3r̄(θ)[v]

)︂
v

⟩︃⃓⃓⃓⃓
⃓ ≤ 2Mr̄

⟨︂
v,∇2r̄(θ)v

⟩︂3/2
(5.42)

holds for any θ in the closed convex set W ⊆ Rnθu and v ∈ Rθu , where
∇3r̄(θ)[v] ∈ Rnθu×nθu denotes the limit

∇3r̄(θ)[v] ≜ lim
t→0

1

s

[︂
∇2r̄(θ + sv)−∇2r̄(θ)

]︂
, s ∈ R.

Note that any self-concordant function can be scaled to have Mr̄ = 1 in
(5.42) [163, Corollary 5.1.3].

Let us regularize problem (5.7) with r̄(θu) and a penalty parameter
λr̄ ∈ R to have the regularized minimization problem4

min
θu

f̄(θu) + λr̄ r̄(θu) (5.43)

where f̄ ≡ −f̂ . Then, letting z̄ ≜ θu and nd ≜ ny ·nb, the mini-batch GGN
update rule for optimizing over θu is

z̄k+1 = z̄k −
(︂
J⊤
ŷ Qf̄Jŷ + λr̄H̄k

)︂−1

J⊤
ŷ gf̄ (5.44)

where at step k, H̄k ∈ Rnθu×nθu is the Hessian of r̄ with respect to θu, Jŷ ∈
Rnd×nθu is the Jacobian of ŷk with respect to θu, gf̄ ∈ Rnd is the residual
vector defined as the gradient of f̄ with respect to ŷk, and Qf̄ ∈ Rnd×nd is
the Hessian of f̄ with respect to ŷk. Note that dependence of the terms on
k is ignored for notational convenience.

3For details on self-concordant functions, we refer the interested reader to the references
provided in [4].

4Note that f̄ ≡ f̂ is used if the problem defines Rt in (5.7) as a cost to be minimized
rather than a reward to be maximized.

165

Clearly, the computations involved in (5.44) are highly prohibitive. In
[4], the authors use a generalized inverse identity on (5.44) to derive a
more computationally convenient way to update z̄ as follows:

B̄k ≜ λr̄I + Q̄kJ̄kH̄
−1
k J̄

⊤
k (5.45a)

z̄k+1 = z̄k − H̄−1
k J̄kB̄

−1
k ēk (5.45b)

where I ∈ Rnd×nd is an identity matrix, J̄k ∈ R(nd+1)×nθu is Jŷ augmented
with λr̄ ḡk the gradient of λr̄ r̄ with respect to θu, ēk ∈ Rnd+1 is gf̄ aug-
mented with a unit term, Q̄k ∈ R(nd+1)×(nd+1) is a diagonal matrix with
diagonal terms defined byQf̄ with an additional zero diagonal term. That
is,

J̄
⊤
k =

[︂
J⊤
ŷ λr̄ ḡk

]︂
, Q̄k =

[︄
Qf̄ 0

0 0

]︄
, ēk =

[︄
gf̄
1

]︄
.

We note that the Hessian H̄k is a diagonal matrix with diagonal ele-
ments that can be quite cheap to obtain, and hence its inverse H̄−1

k can
clearly be computed efficiently.

Furthermore, with motivation from the Newton decrement framework
in convex optimization, a learning rate σ/(1 +Mr̄η̄k) was introduced in
(5.45) to obtain the full GGN-SCORE update step

B̄k ≜ λr̄I + Q̄kJ̄kH̄
−1
k J̄

⊤
k (5.46a)

z̄k+1 = z̄k −
σ

1 +Mr̄η̄k
H̄

−1
k J̄kB̄

−1
k ēk (5.46b)

where 0 < σ ≤ 1 and η̄k =
⟨︂
ḡk, H̄

−1
k ḡk

⟩︂1/2
. Hence, the self-concordance

of r̄ helps to control the rate at which its second-derivatives change within
the region of convergence, thereby giving the problem an affine-invariant
structure [4], as well as to select a learning rate at step k without a line-
search technique.

An efficient way to compute vector B̄−1
k ēk in (5.46b), is to solve a linear

system, say, by QR factorization, and not by a direct matrix inversion.
However, in our adaptation of the algorithm, it is observed that, by
construction, the diagonal matrix B

¯ k
∈ Rnθu×nθu , with diagonal terms

166

defined by

b
¯ i,j

= δ̄i,j/b̄i,i i, j = 1, . . . , nθu

provides a good approximation to B̄−1
k , where δ̄i,j is the Kronecker delta

function and b̄i,i are the diagonal entries of B̄k. Hence, for the training
of the control network in this chapter, we propose the approximation
B̄

−1
k ≈ B

¯ k
so that (5.46b) becomes:

z̄k+1 = z̄k −
σ

1 +Mr̄η̄k
H̄

−1
k J̄kB

¯ k
ēk.

Once the RCNN is trained on the representative DCRNN model to a
desired accuracy, the control network parameters become fixed and are
used to perform simulation tasks on the true system. Simulation results
obtained from a classical RL problem and a model predictive control
(MPC) steady-state regulation problem are presented in Section 5.6 to
demonstrate the efficiency of our approach.

5.5 Complexity analysis

In this section, we estimate the computational complexity of the method
proposed in this chapter. The proposed GRL(m̂r) algorithm is summa-
rized into three main steps, viz.: constructing the Newton-KKT system,
solving the Newton-KKT system, and updating the optimization vari-
ables.

Constructing the KKT system

Constructing the Newton-KKT system at each iteration k involves eval-
uating the constraints and their gradients with a combined worst-case
complexity of O(2mn). Hence, in addition to evaluating the modified
BFGS Hessian matrix, constructing the KKT system has an overall com-
plexity of O(n2 + 2mn) per iteration in the worst-case scenario.

Solving the KKT system

The KKT system is solved using the restarted GMRES scheme which de-
pends on both the number of restarts required to reach a given tolerance

167

and the restart parameter m̂r. Let us denote by N1, the number of GMRES
restarts required to reach a specified tolerance. Then the matrix-vector
multiplications and vector operations in the restarted GMRES procedure
have a (fixed) worst-case complexity of O(N1nm̂

2
r) which involves the

construction of the upper Hessenberg matrix H̃k,m̂r in the Arnoldi it-
eration. Here, we assume the use of an updating QR-algorithm in the
solution of (5.21). Note that m̂r is typically small, say between 10 − 50,
compared to n.

Updating the optimization variables

The line-search method using the Armijo update rule with the ℓ1 merit
function has a worst-case complexity of O(n) per iteration.

Overall, the complexity of the proposed GRL(m̂r) algorithm for
training the RNN model considered in this chapter is estimated as
O(2n2Ne + 2nNe + 2mnNe). Since the number of iterations, Ne, is gener-
ally small for GRL(m̂r), which also provides a better solution quality, a
compromise is made on computational complexity in favour of GRL(m̂r)
for convergence speed in terms of small iteration number and solution
quality, against benchmark (first-order) BPTT algorithms.

As we mentioned before, we may use any convenient gradient-based
algorithm for learning the control FNN. Hence, the effective complexity
involved in training the full RCNN will be the complexity of the GRL(m̂r)
algorithm plus the complexity of the algorithm used to train the control
FNN.

5.6 Numerical examples

In the following examples, the RCNN is trained with σx and σh set, respec-
tively, to the hyperbolic tangent (tanh) and the rectified linear unit (ReLU)
functions. The RCNN is structured as described in Section 5.2. The entries
of the DCRNN weights are initialized to a normally-distributed number
randomly generated by the Mersenne-Twister pseudorandom number
generator, while the bias vectors, the hidden states and the Lagrangian pa-
rameter are all initialized to the zero array. ρ̄ = 0.8, ω = 2, Ne = 200, µ =

168

0.8, ν = 0.5. We set R(x0, θx, θy) = Qα

2 ∥x0∥22 +
Qβ

2

(︁
∥θx∥22 + ∥θy∥22

)︁
with

Qα = 1.0, Qβ = 10−5. The restart parameter m̂r in GRL(m̂r) is upper
bounded by 50 for solving the resulting saddle point systems with Gk = I,
the identity matrix, in (5.38). The control network weights Vuh, Vhx are ini-
tialized according to the Kaiming uniform initialization scheme described
in [112], that is, we initialize each entry of the matrices to a number
generated randomly from a uniform distribution in the interval [−d, d]
where d = 4

√︁
3/n̂w, and n̂w represents nu or nh accordingly. The bias

vectors here are initialized to the zero array. The control network is
trained with r̄ set to the pseudo-Huber function rµ̄ parameterized by
µ̄, rµ̄(θu) ≜

√︁
µ̄2 + θ2u − µ̄, and λr̄ = 10−2, σ = Mr̄ = 1. All bound

constrained continuous variables ai ≤ xi ≤ bi are transformed to [176]:

xi = tai,bi(x̂i) =
bi + ai

2
+
bi − ai

2

(︃
2x̂i

1 + x̂i

)︃
(5.47)

i = 1, 2, . . . , n.

5.6.1 Classical reinforcement learning example

The RL problem considered in this example is the classical mountain car
problem described in [224]. The task is to drive an underpowered car to
the top of a steep mountain. The continuous observables here are the
states of the car given by yt = [yt, ẏt], where yt is the car’s position and
ẏt is its velocity at any given time t. For each time the car reaches the top
of the mountain, it gets a positive reward Rt

Rt = logistic10(ŷt − yref) (5.48)

in which σr has been set to a steep logistic function logistic10(x) ≜ 1
1+e−10x

[207], and yref = 0.5. The function Rt returns a number that is approxi-
mately equal to 1 whenever ŷt > yref and 0 otherwise. The control action
is the applied force ut ∈ {−1, 0, 1}. The car’s motion is described by the
set of equations

yt+1 = yt + ẏt

ẏt+1 = ẏt + 0.001ut − 0.0025 cos(3yt)

169

0 500 1000 1500
epoch

10 3

10 2

10 1

M
SE

GRL(mr) [= 2]
GRL(mr) [= 50]
GRL(mr) [= 100]
GRL(mr) [= 200]
Adam
SGD
LBFGS
sLBFGS

(a) Mountain car

0 500 1000 1500
epoch

10 2

10 1

M
SE

GRL(mr) [= 2]
GRL(mr) [= 50]
GRL(mr) [= 100]
GRL(mr) [= 200]
Adam
SGD
LBFGS
sLBFGS

(b) Ethilene oxidation

0 50 100 150 200
wall-clock time [s]

10 3

10 2

10 1

M
SE

GRL(mr) [= 2]
GRL(mr) [= 50]
GRL(mr) [= 100]
GRL(mr) [= 200]
Adam
SGD
LBFGS
sLBFGS

(c) Mountain car

0 50 100 150 200
wall-clock time [s]

10 2

10 1

M
SE

GRL(mr) [= 2]
GRL(mr) [= 50]
GRL(mr) [= 100]
GRL(mr) [= 200]
Adam
SGD
LBFGS
sLBFGS

(d) Ethilene oxidation

Figure 36: Convergence curves for the function approximation in DCRNN
training using GRL(m̂r) with ρ̄ = 0.8, first-order methods (Adam [128]
and SGD [188]), limited-memory BFGS (LBFGS; best memory size: 1) with
line-search [169, Section 3.5] (training stopped at line-search failure), and
stochastic LBFGS (sLBFGS; best memory size: 10) with adaptive step-size
[240]. Hidden state vector is initialized to zero. MSE stands for the mean
squared error.

with the bound constraints −1.2 ≤ yt ≤ 0.5 and −0.07 ≤ ẏt ≤ 0.07. The
task is episodic in that, when yt has reached its right bound, the goal was
reached and an episode is completed. However, when it reached its left
bound, ẏt was reset to zero.

Each episode starts from an initial random position yt ∈ [−0.6,−0.4]
and a zero velocity. We trained the RCNN using the algorithms proposed
in this chapter, where the control inputs ut and environment observables
yt were given to the network as inputs and targets accordingly. Here,
nu = 1, ny = 2, and we used m− = m+ = 50, nx = 2, nh = 128, Nu =

1000, nb = 64.
Given the characteristics of the problem, we chose σu as the tanh

170

0 50 100 150 200
epoch

0.8

1.0

1.2

1.4

1.6
k

0 50 100 150 200
epoch

0.8

1.0

1.2

1.4

1.6

k

0 50 100 150 200
epoch

2

0

2

4

1

0 50 100 150 200
epoch

1.0

0.5

0.0

0.5

1.0

1.5

1

0 50 100 150 200
epoch

12.5

10.0

7.5

5.0

2.5

0.0

d z
M

1(
z k

;
k)

0 50 100 150 200
epoch

2.5

2.0

1.5

1.0

0.5

0.0

d z
M

1(
z k

;
k)

Figure 37: Convergence of Algorithm 4 for terms defined in Proposition 5.3.4
and Theorem 5.3.5 (ρ̄ = 0.8, ω = 2). Left: Mountain car dynamics. Right:
Ethylene oxidation process.

Table 7: Solution comparison between the proposed method and SGD, Adam,
LBFGS and sLBFGS (mountain car problem).

BPTT
algorithm

Approximation
error (MSE) Iter CPU time [s]

SGD 5.6828× 10−4 1500 5.6584× 10
Adam 1.5821× 10−4 1500 4.9532× 10
LBFGS 7.1389× 10−4 30 2.8670× 100

sLBFGS 3.9884× 10−4 1000 2.8071× 10
GRL(m̂r), ω = 2 1.3451× 10−4 200 6.4956× 10
GRL(m̂r), ω = 50 1.2702× 10−4 200 1.0091× 102

GRL(m̂r), ω = 100 1.3164× 10−4 200 5.6220× 10
GRL(m̂r), ω = 200 1.2707× 10−4 200 1.1914× 102

function that keeps the variables ût in the interval [−1, 1] during training.
However, for our simulations, we follow the standard approach of buck-

171

0 250 500 750 1000

0.8

0.6

0.4

0.2 environment position
identified position

0 250 500 750 1000
step

0.060.030.000.030.06

er
ro

r

3 6 9 12 15
batch

0.55

0.60

0.65

0.70

av
er

ag
e

re
wa

rd

Figure 38: RCNN off-line training results for the mountain car environment.
Top: DCRNN identified model in stage I (testing via open-loop simulation);
error = y − ŷ. Bottom: Stage II training of the RCNN.

eting the continuous outputs of σu into the discrete set {−1, 0, 1}. This
approach for ensuring the input bound constraints are satisfied can be
used in different problem settings by using an appropriate σu or by using
the variable transform (5.47). Further, we set Gr = [1, 0] and Rt is defined
in (5.48).

The RCNN training results are shown in Figure 38. In the identi-
fication stage, the effective DCRNN model was trained on 3 randomly
generated datasets with trained hidden states from one dataset used in
the next initialization5. In the second stage, the control network was
trained with 1000 noisy observations (5% Gaussian noise over 10 seeds).
Simulation performance on the true system with 10000 noisy observations
(5% Gaussian noise over 10 seeds) is shown in Figure 40. Adding noise

5This way, we are able to generate a good start value for the hidden state to improve the
representation power of the DCRNN.

172

0 50 100 150 200
step

1.0

0.5

0.0

0.5

1.0
u

9800 9850 9900 9950 10000
step

1.0

0.5

0.0

0.5

1.0
u

Figure 39: Real-time RCNN control actions ut ∈ {−1, 0, 1}. Top: Control
actions for the first 200 steps. Bottom: Control actions for the last 200 steps.

at these stages creates a more realistic situation [113, 85]. As displayed,
we were able to train the RCNN with our algorithms to keep the agent’s
rewards and steps taken per episode within a reasonably good threshold
in the true environment.

5.6.2 Chemical process example

The ethylene oxidation process in a nonisothermal continuously stirred
tank reactor is considered in this example. The oxidation process is

173

0 100 200 300 400
episode

1.0

1.5

2.0

2.5

3.0

3.5

su
m

 o
f r

ew
ar

ds

0 100 200 300 400
episode

15

20

25

30

35

to
ta

l s
te

ps

Figure 40: Real-time performance of the trained RCNN control actions in the
mountain car environment.

Table 8: Solution comparison between the proposed method and SGD, Adam,
LBFGS and sLBFGS (ethylene oxidation).

BPTT
algorithm

Approximation
error (MSE) Iter CPU time [s]

SGD 6.7298× 10−3 1500 5.3596× 10
Adam 8.3706× 10−3 1500 4.4071× 10
LBFGS 1.5866× 10−3 46 1.6200× 100

sLBFGS 1.4902× 10−3 1000 1.9693× 10
GRL(m̂r), ω = 2 1.6720× 10−3 200 4.3819× 10
GRL(m̂r), ω = 50 1.4948× 10−3 200 4.2956× 10
GRL(m̂r), ω = 100 1.5043× 10−3 200 4.4190× 10
GRL(m̂r), ω = 200 1.3642× 10−3 200 4.5000× 10

described by the following dimensionless equations [89]:

ẏ1 = u1(1− y1y4)

ẏ2 = u1(u2 − y2y4)−A1e
γ1/y4(y2y4)

0.5

−A2e
γ2/y4(y2y4)

0.25

ẏ3 = −u1y3y4 +A1e
γ1/y4(y2y4)

0.5 −A3e
γ3/y4(y3y4)

0.5

ẏ4 =
u1
y1

(1− y4) +
B1

y1

eγ1/y4(y2y4)
0.5 +

B2

y1

eγ2/y4(y2y4)
0.25

+
B3

y1

eγ3/y4(y3y4)
0.5 − B4

y1

(y4 − Tc)

174

0 100 200 300
0.0

0.5

1.0

1.5

2.0
ytrue

1
ytrue

2
ytrue

3
ytrue

4

ypred
1

ypred
2

ypred
3

ypred
4

0 250 500 750 1000
dimensionless time

0.06
0.03
0.00
0.03
0.06

er
ro

r

3 6 9 12 15
batch

0.0

0.5

1.0

1.5

M
SE

Figure 41: RCNN training results for ethylene oxidation process dynamics.
Top: DCRNN identified model in stage I (testing via open-loop simulation);
error = y − ŷ. Bottom: Stage II training of the RCNN. MSE stands for the
mean squared error.

where the continuous observables are given by the dimensionless state
variables yt = [y1,y2,y3,y4], y1,y2,y3,y4 represent the gas density, ethy-
lene concentration, ethylene oxide concentration, and temperature in the
reactor, respectively, at any given time t. The control action is ut = [u1, u2],
where u1 is the feed volumetric flow rate and u2 is the concentration
of ethylene in the feed, with bound constraints 0.0704 ≤ u1 ≤ 0.7042,
0.2465 ≤ u2 ≤ 2.4648. The parameters in the equations above are given
values adopted from [89] (see Table 10). The goal of the process is
to maximize the production of ethylene oxide for a limited reactant
feedstock, starting from an initial state y0 = [0.997, 1.264, 0.209, 1.004]

175

0 50 100 150 200
0.3550
0.3575
0.3600
0.3625
0.3650
0.3675 u

0 50 100 150 200
dimensionless time

0.5

0.6

0.7

0.8
u

0 50 100 150 200
dimensionless time

10 4

10 3

10 2

10 1

100

R t

0 50 100 150 200
0.99700
0.99725
0.99750
0.99775
0.99800

y1s

y1

0 50 100 150 2000.4
0.6
0.8
1.0
1.2

y2s

y2

0 50 100 150 200
0.05
0.10
0.15
0.20

y3s

y3

0 50 100 150 200
dimensionless time

1.0020
1.0025
1.0030
1.0035
1.0040

y4s

y4

Figure 42: Performance of the trained RCNN control actions in ethylene
oxidization process. Top-left: RCNN control inputs ut = [u1, u2] with bound
constraints 0.0704 ≤ u1 ≤ 0.7042, 0.2465 ≤ u2 ≤ 2.4648. Bottom-left:
Simulation squared errors Rt = (ŷt − yref)2. Right: ŷt = [y1,y2,y3,y4] are
the RCNN predictions of the steady-state yref = [y1s,y1s,y3s,y4s].

with a sampling period of ∆t = 9.36. Again, we trained the RCNN
using the algorithms proposed in this chapter, where the control in-
puts ut and environment observables yt were given to the network as

176

Table 9: Comparison between the proposed method and selected RNN
structures in the mountain car problem.

Method
Approximation

error (MSE)
Iter CPU time [s]

Vanilla RNN + SGD 2.0034× 10−4 8000 1.0377× 102

DRRRNN + SGD + ℓ1 [215] 3.0245× 10−4 8000 1.5338× 102

DRRGRU + SGD + ℓ1 [215] 1.7761× 10−4 8000 1.6378× 102

Ours (GRL(m̂r), ω = 50) 1.3689× 10−4 250 5.4477× 10

Ours (GRL(m̂r), ω = 200) 1.3435× 10−4 250 5.3771× 10

Table 10: Parameters used in the ethylene oxidation process [89].

Parameter Value Parameter Value

γ1 −8.13 B1 7.32
γ2 −7.12 B2 10.39
γ3 −11.07 B3 2170.57
A1 92.80 B4 7.02
A2 12.66 Tc 1.0
A3 2412.71

inputs and targets accordingly. Here, nu = 2, ny = 4, and we used
m− = m+ = 40, nx = 2, nh = 128, Nu = 1000, nb = 64. Here, σu was
taken to be the identity map with bound constraints enforced through
(5.47), Gr = [1, 1, 1, 1] and Rt is defined by taking the squared difference
between ŷt and a reference point yref , with σr and σy both set to the
identity map so that we have

Rt = (ŷt − yref)2

where we set yref ≡ [y1s,y2s,y3s,y4s] = [0.998, 0.424, 0.032, 1.002], the
open-loop asymptotically stable steady-state of the process provided in
[89]. Note that in this problem, Rt is specified as a cost to be minimized.

The training and identification results are displayed in Figure 41. In
the first identification stage, the effective DCRNN model was trained on
5 randomly generated datasets with trained hidden states from the first

177

dataset used in the second initialization. Simulation performance on the
true system is shown in Figure 42. As shown, the constant control inputs
reported in [89] to bring the process states to the asymptotically stable
steady-state value resembles with what is obtained by our approach, that
is, us = [u1s, u2s] = [0.35, 0.5] in [89].

Regarding the comparison between the proposed GRL(m̂r) algorithm
for training the DCRNN with respect to first-order SGD and Adam opti-
mizers and two quasi-Newton methods (LBFGS and sLBFGS), in Figure 36
we compare the corresponding convergence curves. Although shown to
sometimes converge faster than GRL(m̂r), LBFGS (for which we report
the best results obtained after careful tuning) yields less numerically ro-
bust function approximation results in our examples, as the backtracking
line-search fails most of the time. In particular, failure occurs frequently
when the memory size is as large as 4. The sLBFGS method seems numer-
ically more robust than the LBFGS in our experiments for a small memory
size, but its performance depends heavily on selecting a good adaptive
step-size. For a large memory size, and with the adaptive step-size tech-
nique adopted in our experiments, sLBFGS tends to converge as slow
as a first-order method such as SGD. In summary, GRL(m̂r) compares
favorably overall with respect to the alternative state-of-the-art methods
tested.

In Table 9, we also compare our approach with the vanilla RNN and
recently proposed RNN structures and training methods. In particular,
we compare with two variants of the recently proposed DRRNets [215]:
DRRRNN and DRRGRU. In order to have a feel of the low-rank regulariza-
tion proposed in [215], which leads to a (convex-)cardinality problem, we
trained the respective DRRNets with an ℓ1 regularization (i.e., DRRNets +
SGD + ℓ1). Our choice of these variants for comparison is based on the
results and discussions in the DRRNets paper. As shown, our approach
produces smaller approximation error in fewer number of iterations and
reduced runtime.

All parts of the experiments, including the RCNN models and the
proposed algorithms were implemented in Julia v1.7.2 on a laptop with
dual (2.30GHz + 2.30GHz) Intel Core i7-11800H CPU and 16GB RAM.

178

Gradient and Jacobian computations were performed by Julia’s open-
source ForwardDiff.jl [192] package. The first-order algorithms
used for comparison in Figure 36 were provided by Julia’s open-source
Flux.jl [119, 120] package. The continuous dynamical system simula-
tions in example Section 5.6.2 were performed within Julia’s open-source
DynamicalSystems.jl [76] library.

Acknowledgment

We thank Mario Zanon (IMT Lucca) for providing very useful comments
on an initial version of this chapter’s content which helped to improve
the overall presentation.

179

Part IV

Conclusion and future work

180

Chapter 6

Conclusion

In this thesis, we have presented several practical quasi-Newton frame-
works and algorithms for solving large-scale optimization problems in
machine learning and control. Under practical settings, we provided
theoretical guarantees on the convergence of the proposed algorithms
and demonstrated their effectiveness through numerical experiments,
which reveal their competitiveness and superiority over existing state-of-
the-art methods. First, in Chapter 1, we provided a general setup of the
optimization problems considered and presented a motivation for the pro-
posed algorithms. The main contributions of this thesis were presented in
Chapters 2–5, which are organized into two main parts.

In Chapter 2, we proposed GGN-SCORE, a generalized Gauss-Newton
algorithm for solving unconstrained regularized minimization problems,
where the regularization function is considered to be self-concordant. In
this generalized setting, we employed a matrix approximation scheme
that significantly reduces the computational overhead associated with
the method. Unlike existing techniques that impose self-concordance on
the problem’s objective function, our analysis involves a less restrictive
condition from a practical point of view but similarly benefits from the
idea of self-concordance by considering scaled optimization step-lengths
that depend on the self-concordant parameter of the regularization func-
tion. We proved a quadratic local convergence rate for our method under

181

certain conditions, and validate its efficiency in numerical experiments
that involve both strongly convex problems and the general non-convex
problems that arise when training neural networks. In both cases, our
method compare favourably against Adam, SGD, and L-BFGS methods
in terms of per-iteration convergence speed, as well as some machine
learning techniques used in binary classification, in terms of solution
quality.

As we highlighted in Chapter 2, (generalized) self-concordant op-
timization provides very useful tools for implementing and analyzing
Newton-type methods for unconstrained problems. This helps to rec-
oncile the geometric properties of Newton-type methods with their im-
plementations, while providing convergence guarantees. In the pres-
ence of constraints or nonsmooth terms in the objective functions, it
becomes natural to extend these methods via proximal schemes. How-
ever, when the (generalized) self-concordant property is uncheckable
for the objective functions, these methods are no longer applicable and
the convergence guarantees become difficult to prove. In addition to
other related computational issues, Chapter 3 addresses this with a self-
concordant smoothing notion which combines and synthesizes different
regularization/smoothing phenomena, namely: inf-conv regularization,
self-concordant regularization (SCORE), and Moreau-Yosida regulariza-
tion. This approach, leading to two algorithms (Prox-N-SCORE and
Prox-GGN-SCORE), is able to utilize certain properties of generalized
self-concordant functions in the selection of adaptive step-lengths and a
simple variable-metric in the proximal Newton-type scheme. We proved
convergence guarantees for our approach. As demonstrated in numerical
simulations, in most cases, our approach compares favourably against
other state-of-the-art first- and second-order approaches from the litera-
ture.

In Chapter 4, we proved a non-asymptotic guarantee for the optimiza-
tion of a two-layer neural network with explicit regularization using the
generalized Gauss-Newton method. We considered the class of general-
ized self-concordant regularizers under which we quantified the decay
of the objective function throughout the training iterations. The class of

182

regularizers share certain epigraphical properties with commonly-used
neural network regularizers, giving a more general perspective on the
global convergence of the Gauss-Newton beyond what, say, ℓ2 regularizer
provides. Numerical simulations revealed several generalization and
stability properties of the optimized neural network model with this class
of regularizers.

In Chapter 5, we proposed an efficient training approach for RCNNs,
a recurrent neural network architecture for data-efficient RL and control.
We presented an approximate Newton framework for training the state-
space model of DCRNNs with convergence guarantee, through the lens
of inexact SQP and numerical linear algebra techniques. The proposed
GRL(m̂r) algorithm efficiently addresses one of the main shortcomings
associated with benchmark BPTT algorithms, viz. requiring excessive
number of iterations to converge to the true solution. The method does
this by exploiting approximate second-order information about the train-
ing data to speed up convergence, with minimal parameters to tune—we
provided a detailed insight on the choice of the main parameter ω in
our algorithm. Numerical examples have shown the efficiency of our
proposed method.

6.1 Future work

The proposed algorithms in this thesis have shown promising results
in solving large-scale optimization problems in machine learning and
control. However, there are several directions for future work that can be
explored to further improve the efficiency and robustness of the proposed
algorithms. Some of these directions include:

• More general constraints: One of the most important extensions of the
proposed algorithms is to consider more general types of constraints in
the optimization problems. Specifically, we are considering problems
with general (nonlinear) equality and inequality constraints, possibly
with nonsmooth regularization terms. One approach is to develop aug-
mented Lagrangian-based methods (and their proximal variants) that
can handle these types of constraints. The versatility of the proposed

183

algorithms in this thesis and that of the augmented Lagrangian meth-
ods allow for the development of efficient algorithms that can handle
a wide range of constraints. The main difficulty in this case is in the
design of non-conservative, problem-independent, and efficient strate-
gies for updating the penalty parameter and the Lagrange multipliers
in the augmented Lagrangian methods. Developing such strategies can
help to broaden the applicability of the proposed algorithms to a wider
range of optimization problems.

• Adaptive step-size selection: While the proposed algorithms in this
thesis use adaptive step-size selection strategies, there is still room for
improvement in the design of these strategies. Future work will focus
on developing more sophisticated step-size selection strategies that can
use additional information about the optimization problem to adapt
to the local geometry of the optimization landscape. This can help
to further improve the convergence properties of the algorithms and
make them more robust to different types of optimization problems.

• Adaptive smoothing parameters: The proposed algorithms in Chapter
3 use fixed smoothing parameters for the regularization terms. This
restricts the flexibility of the algorithms, as fixed smoothing parameters
work well only under certain conditions. In future research, we will ex-
plore efficient strategies for adjusting the smoothing parameters during
the optimization process. The use of adaptive smoothing parameters
(particularly those that become smaller as the optimization progresses)
will help discourage the destruction of certain properties that we aim
to preserve in the solution of the optimization problem. This in turn
will help to improve the convergence properties of the algorithms.

• Parallel and distributed optimization: The proposed algorithms can
be extended to exploit parallel and distributed computing environ-
ments to speed up the optimization process. One of such use cases is in
federated learning. In future work, we will adapt the proposed algo-
rithms to work in a federated learning setting, where the optimization
process is performed in parallel on multiple devices, and the results are

184

aggregated to obtain a global model. This will help to improve the scal-
ability of the algorithms and make them more suitable for large-scale
optimization problems.

• Application to real-world problems: Beyond the simulated environ-
ments and datasets used in this thesis, the proposed algorithms can be
applied to real-world optimization problems in machine learning and
control. This will help to validate the effectiveness of the algorithms in
practical settings and demonstrate their competitiveness with existing
state-of-the-art methods. Applying the algorithms to real-world prob-
lems will also help to identify potential limitations of the algorithms
and guide future research directions.

• Theoretical analysis: In future work, the convergence analysis of the
proposed algorithms will be extended to cover more general classes
of optimization problems. This will help to provide more practical
insights into the convergence properties of the algorithms, thereby
establishing their reliability in real-world applications.

185

Bibliography

[1] Jos U Abubakar and AD Adeoye. “Effects of radiative heat and
magnetic field on blood flow in an inclined tapered stenosed
porous artery”. In: Journal of Taibah University for Science 14.1 (2020),
pp. 77–86.

[2] Adeyemi D Adeoye and Alberto Bemporad. SC-Reg: Training Over-
parameterized Neural Networks under Self-Concordant Regularization.
Tech. rep. IMT School for Advanced Studies Lucca, 2021.

[3] Adeyemi D. Adeoye and Alberto Bemporad. “An Inexact Sequen-
tial Quadratic Programming Method for Learning and Control
of Recurrent Neural Networks”. In: IEEE Transactions on Neural
Networks and Learning Systems 36.2 (2025), pp. 2762–2776. DOI:
10.1109/TNNLS.2024.3354855.

[4] Adeyemi D. Adeoye and Alberto Bemporad. “SCORE: approximat-
ing curvature information under self-concordant regularization”.
In: Computational Optimization and Applications 86.2 (2023), pp. 599–
626.

[5] Adeyemi D. Adeoye and Alberto Bemporad. “Self-concordant
Smoothing for Large-Scale Convex Composite Optimization”. In:
arXiv preprint arXiv:2309.01781 (2024). Submitted.

[6] Adeyemi D. Adeoye, Philipp Christian Petersen, and Alberto Be-
mporad. “Regularized Gauss-Newton for Optimizing Overparam-
eterized Neural Networks”. In: arXiv preprint arXiv:2404.14875
(2024). Submitted.

[7] Adeyemi Damilare Adeoye. “Blood Flow in an Inclined Tapered
Stenosed Porous Artery under the Influence of Magnetic Field
and Heat Transfer”. MA thesis. African Institue for Mathematical
Sciences, Cameroon, 2018.

186

https://doi.org/10.1109/TNNLS.2024.3354855

[8] Adeyemi Damilare Adeoye and Philipp Petersen. A Deep Neural
Network Optimization Method Via A Traffic Flow Model. Tech. rep.
African Institue for Mathematical Sciences, Rwanda, 2021.

[9] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. “Learning and
generalization in overparameterized neural networks, going be-
yond two layers”. In: Advances in neural information processing sys-
tems 32 (2019).

[10] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. “A convergence
theory for deep learning via over-parameterization”. In: Interna-
tional Conference on Machine Learning. PMLR. 2019, pp. 242–252.

[11] Shun-Ichi Amari. “Natural gradient works efficiently in learning”.
In: Neural computation 10.2 (1998), pp. 251–276.

[12] Galen Andrew and Jianfeng Gao. “Scalable training of ℓ1-
regularized log-linear models”. In.

[13] Michael Arbel. “Rethinking Gauss-Newton for learning over-
parameterized models”. In: arXiv preprint arXiv:2302.02904 (2023).

[14] Michael Arbel et al. “Kernelized wasserstein natural gradient”. In:
arXiv preprint arXiv:1910.09652 (2019).

[15] Larry Armijo. “Minimization of functions having Lipschitz contin-
uous first partial derivatives”. In: Pacific Journal of mathematics 16.1
(1966), pp. 1–3.

[16] Sanjeev Arora et al. “Fine-grained analysis of optimization and
generalization for overparameterized two-layer neural networks”.
In: International Conference on Machine Learning. PMLR. 2019,
pp. 322–332.

[17] Sanjeev Arora et al. “On exact computation with an infinitely wide
neural net”. In: Advances in Neural Information Processing Systems
32 (2019).

[18] Amir F Atiya and Alexander G Parlos. “New results on recurrent
network training: unifying the algorithms and accelerating conver-
gence”. In: IEEE transactions on neural networks 11.3 (2000), pp. 697–
709.

[19] Francis Bach. “Self-concordant analysis for logistic regression”.
In: Electronic Journal of Statistics 4.none (2010), pp. 384–414. DOI:
10.1214/09-EJS521. URL: https://doi.org/10.1214/
09-EJS521.

187

https://doi.org/10.1214/09-EJS521
https://doi.org/10.1214/09-EJS521
https://doi.org/10.1214/09-EJS521

[20] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. “Ker-
nels as features: On kernels, margins, and low-dimensional map-
pings”. In: Machine Learning 65 (2006), pp. 79–94.

[21] John GP Barnes. “An algorithm for solving non-linear equations
based on the secant method”. In: The Computer Journal 8.1 (1965),
pp. 66–72.

[22] Heinz H Bauschke, Jérôme Bolte, and Marc Teboulle. “A descent
lemma beyond Lipschitz gradient continuity: first-order methods
revisited and applications”. In: Mathematics of Operations Research
42.2 (2017), pp. 330–348.

[23] Heinz H Bauschke and Jonathan M Borwein. “Legendre functions
and the method of random Bregman projections”. In: Journal of
convex analysis 4.1 (1997), pp. 27–67.

[24] Heinz H Bauschke and Patrick L Combettes. Convex analysis and
monotone operator theory in Hilbert spaces. Vol. 408. Springer, 2011.

[25] Amir Beck and Marc Teboulle. “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems”. In: SIAM
Journal on Imaging Sciences 2.1 (2009), pp. 183–202.

[26] Amir Beck and Marc Teboulle. “Gradient-based algorithms with
applications to signal recovery”. In: Convex optimization in signal
processing and communications (2009), pp. 42–88.

[27] Amir Beck and Marc Teboulle. “Smoothing and first order meth-
ods: A unified framework”. In: SIAM Journal on Optimization 22.2
(2012), pp. 557–580.

[28] Stephen Becker and Jalal Fadili. “A quasi-Newton proximal split-
ting method”. In: Advances in neural information processing systems
25 (2012).

[29] Stephen Becker, Jalal Fadili, and Peter Ochs. “On quasi-Newton
forward-backward splitting: proximal calculus and convergence”.
In: SIAM Journal on Optimization 29.4 (2019), pp. 2445–2481.

[30] Sue Becker and Yann le Cun. “Improving the Convergence of Back-
Propagation Learning with Second Order Methods”. In: (1988).

[31] Mikhail Belkin et al. “Reconciling modern machine-learning prac-
tice and the classical bias–variance trade-off”. In: Proceedings of the
National Academy of Sciences 116.32 (2019), pp. 15849–15854.

188

[32] Alberto Bemporad. “An L-BFGS-B Approach for Linear and Non-
linear System Identification Under ℓ1 and Group-Lasso Regular-
ization”. In: IEEE Transactions on Automatic Control (2025).

[33] Alberto Bemporad. “Recurrent neural network training with con-
vex loss and regularization functions by extended Kalman filter-
ing”. In: IEEE Transactions on Automatic Control (2023).

[34] Alberto Bemporad. “Training recurrent neural networks by se-
quential least squares and the alternating direction method of
multipliers”. In: Automatica 156 (2023), p. 111183.

[35] Alberto Bemporad et al. “The explicit linear quadratic regulator
for constrained systems”. In: Automatica 38.1 (2002), pp. 3–20.

[36] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning
long-term dependencies with gradient descent is difficult”. In:
IEEE transactions on neural networks 5.2 (1994), pp. 157–166.

[37] Michele Benzi, Gene H Golub, and Jörg Liesen. “Numerical solu-
tion of saddle point problems”. In: Acta numerica 14 (2005), pp. 1–
137.

[38] Alberto Bernacchia, Máté Lengyel, and Guillaume Hennequin.
“Exact natural gradient in deep linear networks and application to
the nonlinear case”. In: NIPS. 2019.

[39] Julius Berner et al. “The modern mathematics of deep learning”.
In: arXiv preprint arXiv:2105.04026 (2021), pp. 86–114.

[40] Dimitri Bertsekas. Dynamic programming and optimal control: Volume
I. Vol. 4. Athena Scientific, 2012.

[41] Jeff Bezanson et al. “Julia: A fresh approach to numerical comput-
ing”. In: SIAM review 59.1 (2017), pp. 65–98.

[42] Katharina Bieker, Bennet Gebken, and Sebastian Peitz. “On the
treatment of optimization problems with l1 penalty terms via
multiobjective continuation”. In: arXiv preprint arXiv:2012.07483
(2020).

[43] Joseph-Frédéric Bonnans et al. Numerical optimization: theoretical
and practical aspects. Springer Science & Business Media, 2006.

[44] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Pre-
dictive control for linear and hybrid systems. Cambridge University
Press, 2017.

189

[45] Aleksandar Botev, Hippolyt Ritter, and David Barber. “Practical
gauss-newton optimisation for deep learning”. In: International
Conference on Machine Learning. PMLR. 2017, pp. 557–565.

[46] Léon Bottou. “Large-scale machine learning with stochastic gradi-
ent descent”. In: Proceedings of COMPSTAT’2010: 19th International
Conference on Computational StatisticsParis France, August 22-27,
2010 Keynote, Invited and Contributed Papers. Springer. 2010, pp. 177–
186.

[47] Léon Bottou, Frank E Curtis, and Jorge Nocedal. “Optimization
methods for large-scale machine learning”. In: Siam Review 60.2
(2018), pp. 223–311.

[48] Charles G Broyden. “A class of methods for solving nonlinear si-
multaneous equations”. In: Mathematics of computation 19.92 (1965),
pp. 577–593.

[49] Charles G Broyden. “Quasi-Newton methods and their application
to function minimisation”. In: Mathematics of Computation 21.99
(1967), pp. 368–381.

[50] Charles George Broyden. “The convergence of a class of double-
rank minimization algorithms 1. General considerations”. In: IMA
Journal of Applied Mathematics 6.1, 3 (1970), pp. 76–90.

[51] Sébastien Bubeck and Mark Sellke. “A Universal Law of Robust-
ness via Isoperimetry”. In: arXiv preprint arXiv:2105.12806 (2021).

[52] James V Burke and Tim Hoheisel. “Epi-convergence properties of
smoothing by infimal convolution”. In: Set-Valued and Variational
Analysis 25 (2017), pp. 1–23.

[53] James V Burke and Tim Hoheisel. “Epi-convergent smoothing with
applications to convex composite functions”. In: SIAM Journal on
Optimization 23.3 (2013), pp. 1457–1479.

[54] Richard H Byrd, Frank E Curtis, and Jorge Nocedal. “An inexact
Newton method for nonconvex equality constrained optimiza-
tion”. In: Mathematical programming 122.2 (2010), pp. 273–299.

[55] Richard H Byrd, Frank E Curtis, and Jorge Nocedal. “An inexact
SQP method for equality constrained optimization”. In: SIAM
Journal on Optimization 19.1 (2008), pp. 351–369.

[56] Richard H Byrd et al. “On the use of stochastic hessian information
in optimization methods for machine learning”. In: SIAM Journal
on Optimization 21.3 (2011), pp. 977–995.

190

[57] Tianle Cai et al. “Gram-gauss-newton method: Learning overpa-
rameterized neural networks for regression problems”. In: arXiv
preprint arXiv:1905.11675 (2019).

[58] Wenzhe Cai et al. “Learning a World Model With Multitimescale
Memory Augmentation”. In: IEEE Transactions on Neural Networks
and Learning Systems (2023).

[59] Emmanuel J Candès, Justin Romberg, and Terence Tao. “Robust
uncertainty principles: Exact signal reconstruction from highly
incomplete frequency information”. In: IEEE Transactions on infor-
mation theory 52.2 (2006), pp. 489–509.

[60] Andrea Caponnetto and Ernesto De Vito. “Optimal rates for the
regularized least-squares algorithm”. In: Foundations of Computa-
tional Mathematics 7 (2007), pp. 331–368.

[61] Yair Carmon et al. “Acceleration with a ball optimization oracle”.
In: Advances in Neural Information Processing Systems 33 (2020),
pp. 19052–19063.

[62] Augustin Cauchy et al. “Méthode générale pour la résolution
des systemes d’équations simultanées”. In: Comp. Rend. Sci. Paris
25.1847 (1847), pp. 536–538.

[63] Antonin Chambolle. “An algorithm for total variation minimiza-
tion and applications”. In: Journal of Mathematical imaging and vision
20 (2004), pp. 89–97.

[64] Lai-Wan Chan and Chi-Cheong Szeto. “Training recurrent net-
work with block-diagonal approximated Levenberg-Marquardt
algorithm”. In: IJCNN’99. International Joint Conference on Neural
Networks. Proceedings (Cat. No. 99CH36339). Vol. 3. IEEE. 1999,
pp. 1521–1526.

[65] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: a library for sup-
port vector machines”. In: ACM transactions on intelligent systems
and technology (TIST) 2.3 (2011), pp. 1–27.

[66] Wing-Fai Chang and Man-Wai Mak. “A conjugate gradient learn-
ing algorithm for recurrent neural networks”. In: Neurocomputing
24.1-3 (1999), pp. 173–189.

[67] Pierre Charbonnier et al. “Deterministic edge-preserving regu-
larization in computed imaging”. In: IEEE Transactions on image
processing 6.2 (1997), pp. 298–311.

191

[68] Pei Chen. “Hessian matrix vs. Gauss–Newton hessian matrix”. In:
SIAM Journal on Numerical Analysis 49.4 (2011), pp. 1417–1435.

[69] Xi Chen et al. “Graph-structured multi-task regression and an
efficient optimization method for general fused lasso”. In: arXiv
preprint arXiv:1005.3579 (2010).

[70] Xi Chen et al. “Smoothing proximal gradient method for general
structured sparse regression”. In: (2012).

[71] Xiaojun Chen. “Smoothing methods for nonsmooth, nonconvex
minimization”. In: Mathematical programming 134 (2012), pp. 71–99.

[72] Lenaic Chizat and Francis Bach. “Implicit bias of gradient descent
for wide two-layer neural networks trained with the logistic loss”.
In: Conference on Learning Theory. PMLR. 2020, pp. 1305–1338.

[73] Lenaic Chizat, Edouard Oyallon, and Francis Bach. “On lazy train-
ing in differentiable programming”. In: Advances in Neural Informa-
tion Processing Systems 32 (2019).

[74] Rémi Choquet and Jocelyne Erhel. “Some convergence results for
the Newton-GMRES algorithm”. PhD thesis. INRIA, 1993.

[75] Amit Daniely. “SGD learns the conjugate kernel class of the net-
work”. In: Advances in Neural Information Processing Systems 30
(2017).

[76] George Datseris. “DynamicalSystems.jl: A Julia software library for
chaos and nonlinear dynamics”. In: Journal of Open Source Software
3.23 (Mar. 2018), p. 598. DOI: 10.21105/joss.00598. URL:
https://doi.org/10.21105/joss.00598.

[77] Yann N Dauphin et al. “Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization”. In: Ad-
vances in neural information processing systems 27 (2014).

[78] WC Davidon. “Variable metric method for minimization”. In: AEC
Research and Development Report ANL-5990 (1959). DOI: 10.2172%
2F4252678.

[79] A.R. De Pierro and A.N. Iusem. “A relaxed version of Bregman’s
method for convex programming”. In: Journal of Optimization The-
ory and Applications 51 (1986), pp. 421–440.

[80] Ron S Dembo, Stanley C Eisenstat, and Trond Steihaug. “Inexact
Newton methods”. In: SIAM Journal on Numerical analysis 19.2
(1982), pp. 400–408.

192

https://doi.org/10.21105/joss.00598
https://doi.org/10.21105/joss.00598
https://doi.org/10.2172%2F4252678
https://doi.org/10.2172%2F4252678

[81] Nikita Doikov and Yurii Nesterov. “Gradient Regularization of
Newton Method with Bregman Distances”. In: arXiv preprint
arXiv:2112.02952 (2021).

[82] David L Donoho. “Compressed sensing”. In: IEEE Transactions on
information theory 52.4 (2006), pp. 1289–1306.

[83] Simon Du et al. “Gradient descent finds global minima of deep
neural networks”. In: International Conference on Machine Learning.
PMLR. 2019, pp. 1675–1685.

[84] Simon S Du et al. “Gradient descent provably optimizes
over-parameterized neural networks”. In: arXiv preprint
arXiv:1810.02054 (2018).

[85] Yan Duan et al. “Benchmarking deep reinforcement learning for
continuous control”. In: International conference on machine learning.
PMLR. 2016, pp. 1329–1338.

[86] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradi-
ent methods for online learning and stochastic optimization.” In:
Journal of machine learning research 12.7 (2011).

[87] William Jolly Duncan. “LXXVIII. Some devices for the solution
of large sets of simultaneous linear equations: With an appendix
on the reciprocation of partitioned matrices”. In: The London, Ed-
inburgh, and Dublin Philosophical Magazine and Journal of Science
35.249 (1944), pp. 660–670.

[88] Peter K Dunn and Gordon K Smyth. Generalized linear models with
examples in R. U.S.A.: Springer, 2018.

[89] Helen Durand, Matthew Ellis, and Panagiotis D Christofides. “Eco-
nomic model predictive control designs for input rate-of-change
constraint handling and guaranteed economic performance”. In:
Computers & Chemical Engineering 92 (2016), pp. 18–36.

[90] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. “Sigmoid-weighted
linear units for neural network function approximation in rein-
forcement learning”. In: Neural Networks 107 (2018), pp. 3–11.

[91] Murat A Erdogdu and Andrea Montanari. “Convergence rates of
sub-sampled newton methods”. In: arXiv preprint arXiv:1508.02810
(2015).

[92] Tolga Ergen and Suleyman Serdar Kozat. “Efficient online learning
algorithms based on LSTM neural networks”. In: IEEE transactions
on neural networks and learning systems 29.8 (2017), pp. 3772–3783.

193

[93] Brecht Evens et al. “Neural Network Training as an Optimal Con-
trol Problem:—An Augmented Lagrangian Approach—”. In: 2021
60th IEEE Conference on Decision and Control (CDC). IEEE. 2021,
pp. 5136–5143.

[94] Roger Fletcher. “A new approach to variable metric algorithms”.
In: The computer journal 13.3 (1970), pp. 317–322.

[95] Roger Fletcher. Practical methods of optimization. John Wiley & Sons,
2000.

[96] Jaroslav M Fowkes, Nicholas IM Gould, and Chris L Farmer. “A
branch and bound algorithm for the global optimization of Hessian
Lipschitz continuous functions”. In: Journal of Global Optimization
56.4 (2013), pp. 1791–1815.

[97] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. “Regulariza-
tion paths for generalized linear models via coordinate descent”.
In: Journal of statistical software 33.1 (2010), p. 1.

[98] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. “A note
on the group lasso and a sparse group lasso”. In: arXiv preprint
arXiv:1001.0736 (2010).

[99] Xingang Fu et al. “Training recurrent neural networks with the
Levenberg–Marquardt algorithm for optimal control of a grid-
connected converter”. In: IEEE transactions on neural networks and
learning systems 26.9 (2015), pp. 1900–1912.

[100] Jezabel R Garcia et al. “Fisher-Legendre (FishLeg) optimization of
deep neural networks”. In: The Eleventh International Conference on
Learning Representations. 2022.

[101] Donald Goldfarb. “A family of variable-metric methods derived
by variational means”. In: Mathematics of computation 24.109 (1970),
pp. 23–26.

[102] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learn-
ing. http://www.deeplearningbook.org. MIT Press, 2016.

[103] Robert Gower et al. “RSN: randomized subspace Newton”. In:
Advances in Neural Information Processing Systems 32 (2019).

[104] I. Grattan-Guinness. Landmark Writings in Western Mathemat-
ics 1640-1940. Elsevier Science, 2005. ISBN: 9780080457444. URL:
https://books.google.it/books?id=UdGBy8iLpocC.

194

http://www.deeplearningbook.org
https://books.google.it/books?id=UdGBy8iLpocC

[105] Suriya Gunasekar et al. “Characterizing implicit bias in terms of
optimization geometry”. In: International Conference on Machine
Learning. PMLR. 2018, pp. 1832–1841.

[106] Louis Guttman. “Enlargement methods for computing the inverse
matrix”. In: The annals of mathematical statistics (1946), pp. 336–343.

[107] David Ha and Jürgen Schmidhuber. “Recurrent world models facil-
itate policy evolution”. In: Advances in neural information processing
systems 31 (2018).

[108] Martin T Hagan and Mohammad B Menhaj. “Training feedforward
networks with the Marquardt algorithm”. In: IEEE transactions on
Neural Networks 5.6 (1994), pp. 989–993.

[109] Stephen Hanson and Lorien Pratt. “Comparing biases for mini-
mal network construction with back-propagation”. In: Advances in
Neural Information Processing Systems 1 (1988).

[110] R. I. Hartley and A. Zisserman. Multiple View Geometry in Com-
puter Vision. Second. Cambridge, United Kingdom: Cambridge
University Press, ISBN: 0521540518, 2004.

[111] S.S. Haykin. Neural Networks and Learning Machines. Pearson Inter-
national Edition. Pearson, 2009. ISBN: 9780131293762. URL: https:
//books.google.it/books?id=KCwWOAAACAAJ.

[112] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification”. In: Proceedings of the
IEEE international conference on computer vision. 2015, pp. 1026–1034.

[113] Verena Heidrich-Meisner and Christian Igel. “Variable metric re-
inforcement learning methods applied to the noisy mountain
car problem”. In: European Workshop on Reinforcement Learning.
Springer. 2008, pp. 136–150.

[114] Nicholas J Higham. Accuracy and stability of numerical algorithms.
New York, U.S.A.: SIAM, 2002.

[115] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals
of convex analysis. Grundlehren Text Editions. Springer Science &
Business Media, 2004.

[116] Sepp Hochreiter. “Recurrent neural net learning and vanishing
gradient”. In: International Journal Of Uncertainity, Fuzziness and
Knowledge-Based Systems 6.2 (1998), pp. 107–116.

195

https://books.google.it/books?id=KCwWOAAACAAJ
https://books.google.it/books?id=KCwWOAAACAAJ

[117] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Mul-
tilayer feedforward networks are universal approximators”. In:
Neural networks 2.5 (1989), pp. 359–366.

[118] Yasutoshi Ida, Yasuhiro Fujiwara, and Hisashi Kashima. “Fast
sparse group lasso”. In: Advances in neural information processing
systems 32 (2019).

[119] Michael Innes et al. “Fashionable Modelling with Flux”. In: CoRR
abs/1811.01457 (2018). arXiv: 1811 . 01457. URL: https : / /
arxiv.org/abs/1811.01457.

[120] Mike Innes. “Flux: Elegant Machine Learning with Julia”. In: Jour-
nal of Open Source Software (2018). DOI: 10.21105/joss.00602.

[121] Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural tan-
gent kernel: Convergence and generalization in neural networks”.
In: Advances in Neural Information Processing Systems 31 (2018).

[122] Ziwei Ji and Matus Telgarsky. “The implicit bias of gradient de-
scent on nonseparable data”. In: Conference on Learning Theory.
PMLR. 2019, pp. 1772–1798.

[123] Rie Johnson and Tong Zhang. “Accelerating stochastic gradient
descent using predictive variance reduction”. In: Advances in neural
information processing systems 26 (2013), pp. 315–323.

[124] Ryo Karakida and Kazuki Osawa. “Understanding approximate
fisher information for fast convergence of natural gradient de-
scent in wide neural networks”. In: arXiv preprint arXiv:2010.00879
(2020).

[125] Sai Praneeth Karimireddy, Sebastian U Stich, and Martin
Jaggi. “Global linear convergence of Newton’s method with-
out strong-convexity or Lipschitz gradients”. In: arXiv preprint
arXiv:1806.00413 (2018).

[126] Anna Kerekes, Anna Mészáros, and Ferenc Huszár. “Depth With-
out the Magic: Inductive Bias of Natural Gradient Descent”. In:
arXiv preprint arXiv:2111.11542 (2021).

[127] Seyoung Kim, Kyung-Ah Sohn, and Eric P Xing. “A multivariate
regression approach to association analysis of a quantitative trait
network”. In: Bioinformatics 25.12 (2009), pp. i204–i212.

[128] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

196

https://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1811.01457
https://doi.org/10.21105/joss.00602

[129] Mikalai Korbit et al. “Exact Gauss-Newton Optimization for Train-
ing Deep Neural Networks”. In: arXiv preprint arXiv:2405.14402
(2024). Submitted.

[130] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learn-
ing”. In: Nature 521.7553 (2015), pp. 436–444.

[131] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST hand-
written digit database”. In: ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist 2 (2010).

[132] Yann LeCun et al. “A theoretical framework for back-propagation”.
In: Proceedings of the 1988 connectionist models summer school. Vol. 1.
1988, pp. 21–28.

[133] Jason D Lee, Yuekai Sun, and Michael A Saunders. “Proximal
Newton-type methods for minimizing composite functions”. In:
SIAM Journal on Optimization 24.3 (2014), pp. 1420–1443.

[134] Kenneth Levenberg. “A method for the solution of certain non-
linear problems in least squares”. In: Quarterly of applied mathemat-
ics 2.2 (1944), pp. 164–168.

[135] Qianxiao Li, Long Chen, Cheng Tai, et al. “Maximum prin-
ciple based algorithms for deep learning”. In: arXiv preprint
arXiv:1710.09513 (2017).

[136] Xudong Li, Defeng Sun, and Kim-Chuan Toh. “A highly efficient
semismooth Newton augmented Lagrangian method for solving
Lasso problems”. In: SIAM Journal on Optimization 28.1 (2018),
pp. 433–458.

[137] Yuanzhi Li and Yingyu Liang. “Learning overparameterized neu-
ral networks via stochastic gradient descent on structured data”.
In: Advances in Neural Information Processing Systems 31 (2018).

[138] Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. “Algorithmic reg-
ularization in over-parameterized matrix sensing and neural net-
works with quadratic activations”. In: Conference On Learning The-
ory. PMLR. 2018, pp. 2–47.

[139] Zhan Li and Shuai Li. “Neural network model-based control for
manipulator: An autoencoder perspective”. In: IEEE Transactions
on Neural Networks and Learning Systems (2023).

[140] Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. “What Happens
after SGD Reaches Zero Loss?–A Mathematical Framework”. In:
arXiv preprint arXiv:2110.06914 (2021).

197

[141] Tengyuan Liang and Alexander Rakhlin. “Just interpolate: Kernel
“Ridgeless” regression can generalize”. In: The Annals of Statistics
48.3 (2020), pp. 1329–1347. DOI: 10.1214/19-AOS1849. URL:
https://doi.org/10.1214/19-AOS1849.

[142] Pierre-Louis Lions and Bertrand Mercier. “Splitting algorithms for
the sum of two nonlinear operators”. In: SIAM Journal on Numerical
Analysis 16.6 (1979), pp. 964–979.

[143] Dong C Liu and Jorge Nocedal. “On the limited memory BFGS
method for large scale optimization”. In: Mathematical programming
45.1 (1989), pp. 503–528.

[144] Mitchell M Livstone, Jay A Farrell, and Walter L Baker. “A com-
putationally efficient algorithm for training recurrent connection-
ist networks”. In: 1992 American Control Conference. IEEE. 1992,
pp. 555–561.

[145] Yves Lucet. “Faster than the fast Legendre transform, the linear-
time Legendre transform”. In: Numerical Algorithms 16 (1997),
pp. 171–185.

[146] Donald W Marquardt. “An algorithm for least-squares estimation
of nonlinear parameters”. In: Journal of the society for Industrial and
Applied Mathematics 11.2 (1963), pp. 431–441.

[147] James Martens et al. “Deep learning via hessian-free optimization.”
In: ICML. Vol. 27. 2010, pp. 735–742.

[148] James Martens. “New insights and perspectives on the natural
gradient method”. In: The Journal of Machine Learning Research 21.1
(2020), pp. 5776–5851.

[149] James Martens and Roger Grosse. “Optimizing neural networks
with kronecker-factored approximate curvature”. In: International
conference on machine learning. PMLR. 2015, pp. 2408–2417.

[150] James Martens and Ilya Sutskever. “Learning recurrent neural
networks with hessian-free optimization”. In: Proceedings of the
28th International Conference on Machine Learning (ICML-11). 2011,
pp. 1033–1040.

[151] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. Software available from tensorflow.org. 2015.
URL: https://www.tensorflow.org/.

198

https://doi.org/10.1214/19-AOS1849
https://doi.org/10.1214/19-AOS1849
https://www.tensorflow.org/

[152] Naoki Marumo, Takayuki Okuno, and Akiko Takeda. “Con-
strained Levenberg-Marquardt method with global complexity
bound”. In: arXiv preprint arXiv:2004.08259 (2020).

[153] Si Yi Meng et al. “Fast and furious convergence: Stochastic second
order methods under interpolation”. In: International Conference on
Artificial Intelligence and Statistics. PMLR. 2020, pp. 1375–1386.

[154] Derrick Mirikitani and Nikolay Nikolaev. “Recursive Bayesian
Levenberg-Marquardt training of recurrent neural networks”. In:
2007 International Joint Conference on Neural Networks. IEEE. 2007,
pp. 282–287.

[155] Konstantin Mishchenko. “Regularized Newton Method with
Global O(1/k2) Convergence”. In: arXiv preprint arXiv:2112.02089
(2021).

[156] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foun-
dations of machine learning. MIT press, 2018.

[157] Vidya Muthukumar et al. “Harmless interpolation of noisy data in
regression”. In: IEEE Journal on Selected Areas in Information Theory
1.1 (2020), pp. 67–83.

[158] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve
restricted boltzmann machines”. In: Proceedings of the 27th inter-
national conference on machine learning (ICML-10). 2010, pp. 807–
814.

[159] Eugene Ndiaye et al. “Gap safe screening rules for sparse-group
lasso”. In: Advances in neural information processing systems 29 (2016).

[160] Eugene Ndiaye et al. “Gap safe screening rules for sparsity en-
forcing penalties”. In: The Journal of Machine Learning Research 18.1
(2017), pp. 4671–4703.

[161] Yu Nesterov. “Smooth minimization of non-smooth functions”. In:
Mathematical programming 103 (2005), pp. 127–152.

[162] Yurii Nesterov. “Barrier subgradient method”. In: Mathematical
programming 127.1 (2011), pp. 31–56.

[163] Yurii Nesterov et al. Lectures on convex optimization. Vol. 137.
Switzerland: Springer, 2018.

[164] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial
algorithms in convex programming. Philadelphia: SIAM, 1994.

199

[165] Yurii Nesterov and Boris T Polyak. “Cubic regularization of New-
ton method and its global performance”. In: Mathematical Program-
ming 108.1 (2006), pp. 177–205.

[166] Yurii E Nesterov. “A method for solving the convex programming
problem with convergence rate O (1/kˆ 2)”. In: Dokl. akad. nauk
Sssr. Vol. 269. 1983, pp. 543–547.

[167] Jorge Nocedal. “Updating quasi-Newton matrices with limited
storage”. In: Mathematics of computation 35.151 (1980), pp. 773–782.

[168] Jorge Nocedal and Stephen Wright. Numerical optimization.
Springer Science & Business Media, 2006.

[169] Jorge Nocedal and Stephen J. Wright. Numerical optimization. New
York, NY: Springer, 1999.

[170] Alexander Ororbia et al. “Continual learning of recurrent neural
networks by locally aligning distributed representations”. In: IEEE
Transactions on Neural Networks and Learning Systems 31.10 (2020),
pp. 4267–4278.

[171] Antonio Orvieto et al. “Explicit regularization in overparametrized
models via noise injection”. In: International Conference on Artificial
Intelligence and Statistics. PMLR. 2023, pp. 7265–7287.

[172] Dmitrii M Ostrovskii and Francis Bach. “Finite-sample analysis
of M -estimators using self-concordance”. In: Electronic Journal of
Statistics 15.1 (2021), pp. 326–391.

[173] Art B Owen. “Self-concordance for empirical likelihood”. In: Cana-
dian Journal of Statistics 41.3 (2013), pp. 387–397.

[174] Eliane R Panier and André L Tits. “Avoiding the Maratos effect by
means of a nonmonotone line search I. General constrained prob-
lems”. In: SIAM Journal on Numerical Analysis 28.4 (1991), pp. 1183–
1195.

[175] Neal Parikh, Stephen Boyd, et al. “Proximal algorithms”. In: Foun-
dations and Trends® in Optimization 1.3 (2014), pp. 127–239.

[176] Stephen Keith Park. A transformation method for constrained-function
minimization. Tech. rep. L-10178, NASA-TN-D-7983. NASA Lang-
ley Research Center Hampton, VA, United States, 1975.

[177] Razvan Pascanu and Yoshua Bengio. “Revisiting natural gradient
for deep networks”. In: arXiv preprint arXiv:1301.3584 (2013).

200

[178] Adam Paszke et al. “Automatic differentiation in pytorch”. In:
(2017).

[179] Michael Patriksson. “A unified framework of descent algorithms
for nonlinear programs and variational inequalities”. PhD thesis.
Linköping University Linköping, Sweden, 1993.

[180] Michael Patriksson. “Cost approximation: a unified framework of
descent algorithms for nonlinear programs”. In: SIAM Journal on
Optimization 8.2 (1998), pp. 561–582.

[181] Panagiotis Patrinos and Alberto Bemporad. “Proximal Newton
methods for convex composite optimization”. In: 52nd IEEE Con-
ference on Decision and Control. IEEE. 2013, pp. 2358–2363.

[182] Panagiotis Patrinos, Lorenzo Stella, and Alberto Bemporad.
“Forward-backward truncated Newton methods for convex com-
posite optimization”. In: arXiv preprint arXiv:1402.6655 (2014).

[183] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[184] Michael JD Powell. “A fast algorithm for nonlinearly constrained
optimization calculations”. In: Numerical analysis. Springer, 1978,
pp. 144–157.

[185] Michael JD Powell. “Algorithms for nonlinear constraints that use
Lagrangian functions”. In: Mathematical programming 14.1 (1978),
pp. 224–248.

[186] Michael JD Powell. “The convergence of variable metric methods
for nonlinearly constrained optimization calculations”. In: Nonlin-
ear programming 3. Elsevier, 1978, pp. 27–63.

[187] Gintaras V Puskorius and Lee A Feldkamp. “Neurocontrol of
nonlinear dynamical systems with Kalman filter trained recur-
rent networks”. In: IEEE Transactions on neural networks 5.2 (1994),
pp. 279–297.

[188] Ning Qian. “On the momentum term in gradient descent learning
algorithms”. In: Neural networks 12.1 (1999), pp. 145–151.

[189] Ali Rahimi and Benjamin Recht. “Random features for large-scale
kernel machines”. In: Advances in Neural Information Processing
Systems 20 (2007).

[190] Anant Raj and Francis Bach. “Explicit regularization of stochastic
gradient methods through duality”. In: International Conference on
Artificial Intelligence and Statistics. PMLR. 2021, pp. 1882–1890.

201

[191] Yi Ren and Donald Goldfarb. “Efficient subsampled Gauss-
Newton and natural gradient methods for training neural net-
works”. In: arXiv preprint arXiv:1906.02353 (2019).

[192] J. Revels, M. Lubin, and T. Papamarkou. “Forward-Mode Auto-
matic Differentiation in Julia”. In: arXiv:1607.07892 [cs.MS] (2016).
URL: https://arxiv.org/abs/1607.07892.

[193] Stefan Richter, Colin N Jones, and Manfred Morari. “Real-time
input-constrained MPC using fast gradient methods”. In: Pro-
ceedings of the 48h IEEE Conference on Decision and Control (CDC)
held jointly with 2009 28th Chinese Control Conference. IEEE. 2009,
pp. 7387–7393.

[194] Herbert Robbins and Sutton Monro. “A stochastic approximation
method”. In: The annals of mathematical statistics (1951), pp. 400–407.

[195] R Tyrrell Rockafellar. “Monotone operators and the proximal point
algorithm”. In: SIAM journal on control and optimization 14.5 (1976),
pp. 877–898.

[196] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis.
Vol. 317. Springer Science & Business Media, 2009.

[197] Joseph D Romano et al. “PMLB v1.0: an open source dataset col-
lection for benchmarking machine learning methods”. In: arXiv
preprint arXiv:2012.00058v2 (2021).

[198] Farbod Roosta-Khorasani and Michael W Mahoney. “Sub-sampled
newton methods ii: Local convergence rates”. In: arXiv preprint
arXiv:1601.04738 (2016).

[199] Nicolas Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. “Top-
moumoute online natural gradient algorithm”. In: Advances in
Neural Information Processing Systems 20 (2007).

[200] Sebastian Ruder. “An overview of gradient descent optimization
algorithms”. In: arXiv preprint arXiv:1609.04747 (2016).

[201] Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco.
“Less is more: Nyström computational regularization”. In: Ad-
vances in Neural Information Processing Systems 28 (2015).

[202] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
Learning internal representations by error propagation. Tech. rep. Cali-
fornia Univ San Diego La Jolla Inst for Cognitive Science, 1985.

202

https://arxiv.org/abs/1607.07892

[203] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
“Learning representations by back-propagating errors”. In: nature
323.6088 (1986), pp. 533–536.

[204] Youcef Saad and Martin H Schultz. “GMRES: A generalized mini-
mal residual algorithm for solving nonsymmetric linear systems”.
In: SIAM Journal on scientific and statistical computing 7.3 (1986),
pp. 856–869.

[205] Euripedes P dos Santos and Fernando J Von Zuben. “Improved
second-order training algorithms for globally and partially recur-
rent neural networks”. In: IJCNN’99. International Joint Conference
on Neural Networks. Proceedings (Cat. No. 99CH36339). Vol. 3. IEEE.
1999, pp. 1501–1506.

[206] Anton Maximilian Schaefer, Steffen Udluft, and Hans-Georg Zim-
mermann. “A recurrent control neural network for data efficient
reinforcement learning”. In: 2007 IEEE International Symposium
on Approximate Dynamic Programming and Reinforcement Learning.
IEEE. 2007, pp. 151–157.

[207] Anton Maximilian Schäfer. “Reinforcement learning with recur-
rent neural networks”. PhD thesis. Osnabrück, Germany: Univer-
sität Osnabrück, Oct. 2008.

[208] Jiirgen Schmidhuber. Making the World Differentiable: On Using Self-
Supervised Fully Recurrent Neural Networks for Dynamic Reinforce-
ment Learning and Planning in Non-Stationary Environments. Tech.
rep. TR FKI-126-90. Department of Computer Science, Technical
University of Munich, 1990.

[209] Jürgen Schmidhuber. “An on-line algorithm for dynamic reinforce-
ment learning and planning in reactive environments”. In: 1990
IJCNN international joint conference on neural networks. IEEE. 1990,
pp. 253–258.

[210] Jürgen Schmidhuber. “Reinforcement learning in Markovian and
non-Markovian environments”. In: Advances in neural information
processing systems 3 (1990).

[211] Mark Schmidt, Glenn Fung, and Rmer Rosales. “Fast optimization
methods for l1 regularization: A comparative study and two new
approaches”. In: European Conference on Machine Learning. Springer.
2007, pp. 286–297.

203

[212] Nicol N Schraudolph. “Fast curvature matrix-vector products for
second-order gradient descent”. In: Neural computation 14.7 (2002),
pp. 1723–1738.

[213] Shayle R Searle. Matrix algebra useful for statistics. United States:
John Wiley & Sons, 1982.

[214] Ivan W Selesnick and Ilker Bayram. “Sparse signal estimation by
maximally sparse convex optimization”. In: IEEE Transactions on
Signal Processing 62.5 (2014), pp. 1078–1092.

[215] Dongjing Shan et al. “DRRNets: Dynamic Recurrent Routing via
Low-Rank Regularization in Recurrent Neural Networks”. In:
IEEE Transactions on Neural Networks and Learning Systems (2023).

[216] David F Shanno. “Conditioning of quasi-Newton methods for func-
tion minimization”. In: Mathematics of computation 24.111 (1970),
pp. 647–656.

[217] Noah Simon et al. “A sparse-group lasso”. In: Journal of computa-
tional and graphical statistics 22.2 (2013), pp. 231–245.

[218] Nitish Srivastava et al. “Dropout: a simple way to prevent neural
networks from overfitting”. In: The Journal of Machine Learning
Research 15.1 (2014), pp. 1929–1958.

[219] Lorenzo Stella, Andreas Themelis, and Panagiotis Patrinos.
“Forward–backward quasi-Newton methods for nonsmooth opti-
mization problems”. In: Computational Optimization and Applications
67.3 (2017), pp. 443–487.

[220] Lorenzo Stella et al. “A simple and efficient algorithm for nonlinear
model predictive control”. In: 2017 IEEE 56th Annual Conference on
Decision and Control (CDC). IEEE. 2017, pp. 1939–1944.

[221] Thomas Strömberg. “A study of the operation of infimal convolu-
tion”. PhD thesis. Luleå Tekniska Universitet, 1994.

[222] Defeng Sun. “The strong second-order sufficient condition and
constraint nondegeneracy in nonlinear semidefinite programming
and their implications”. In: Mathematics of Operations Research 31.4
(2006), pp. 761–776.

[223] Tianxiao Sun and Quoc Tran-Dinh. “Generalized self-concordant
functions: a recipe for Newton-type methods”. In: Mathematical
Programming 178.1 (2019), pp. 145–213.

204

[224] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[225] Salma Tarmoun et al. “Understanding the dynamics of gradient
flow in overparameterized linear models”. In: International Confer-
ence on Machine Learning. PMLR. 2021, pp. 10153–10161.

[226] Andreas Themelis, Lorenzo Stella, and Panagiotis Patrinos.
“Forward-backward envelope for the sum of two nonconvex func-
tions: Further properties and nonmonotone linesearch algorithms”.
In: SIAM Journal on Optimization 28.3 (2018), pp. 2274–2303.

[227] Robert Tibshirani et al. “Strong rules for discarding predictors in
lasso-type problems”. In: Journal of the Royal Statistical Society Series
B: Statistical Methodology 74.2 (2012), pp. 245–266.

[228] Quoc Tran-Dinh, Anastasios Kyrillidis, and Volkan Cevher. “Com-
posite self-concordant minimization”. In: J. Mach. Learn. Res. 16.1
(2015), pp. 371–416.

[229] Quoc Tran-Dinh, Yen-Huan Li, and Volkan Cevher. “Barrier
smoothing for nonsmooth convex minimization”. In: 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2014, pp. 1503–1507.

[230] Paul Tseng. “On accelerated proximal gradient methods for
convex-concave optimization”. In: submitted to SIAM Journal on
Optimization 2.3 (2008). URL: https : / / www . mit . edu /
~dimitrib/PTseng/papers/apgm.pdf.

[231] Anne Van Mulders et al. “Two nonlinear optimization methods
for black box identification compared”. In: Automatica 46.10 (2010),
pp. 1675–1681.

[232] Vladimir Vapnik and Alexey Chervonenkis. Theory of pattern recog-
nition. 1974.

[233] AA Vartak, Michael Georgiopoulos, and Georgios C Anagnos-
topoulos. “On-line Gauss–Newton-based learning for fully recur-
rent neural networks”. In: Nonlinear Analysis: Theory, Methods &
Applications 63.5-7 (2005), e867–e876.

[234] Oriol Vinyals and Daniel Povey. “Krylov subspace descent for
deep learning”. In: Artificial Intelligence and Statistics. PMLR. 2012,
pp. 1261–1268.

205

https://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf
https://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf

[235] Jie Wang and Jieping Ye. “Two-layer feature reduction for sparse-
group lasso via decomposition of convex sets”. In: Advances in
Neural Information Processing Systems 27 (2014).

[236] Sheng-De Wang, Te-Son Kuo, and Chen-Fa Hsu. “Trace bounds on
the solution of the algebraic matrix Riccati and Lyapunov equa-
tion”. In: IEEE Transactions on Automatic Control 31.7 (1986), pp. 654–
656.

[237] Xiaoyu Wang and Yong Huang. “Convergence study in extended
Kalman filter-based training of recurrent neural networks”. In:
IEEE Transactions on Neural Networks 22.4 (2011), pp. 588–600.

[238] Colin Wei et al. “Regularization matters: Generalization and opti-
mization of neural nets vs their induced kernel”. In: Advances in
Neural Information Processing Systems 32 (2019).

[239] Ronald J Williams. “Training recurrent networks using the ex-
tended Kalman filter”. In: [Proceedings 1992] IJCNN International
Joint Conference on Neural Networks. Vol. 4. IEEE. 1992, pp. 241–246.

[240] Adrian Wills and Thomas Schön. “Stochastic quasi-Newton with
adaptive step lengths for large-scale problems”. In: arXiv preprint
arXiv:1802.04310 (2018).

[241] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning Al-
gorithms”. In: CoRR abs/1708.07747 (2017). arXiv: 1708.07747.
URL: http://arxiv.org/abs/1708.07747.

[242] Greg Yang. “Scaling limits of wide neural networks with
weight sharing: Gaussian process behavior, gradient indepen-
dence, and neural tangent kernel derivation”. In: arXiv preprint
arXiv:1902.04760 (2019).

[243] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. “On early
stopping in gradient descent learning”. In: Constructive Approxima-
tion 26 (2007), pp. 289–315.

[244] Zhewei Yao et al. “ADAHESSIAN: An adaptive second order opti-
mizer for machine learning”. In: proceedings of the AAAI conference
on artificial intelligence. Vol. 35. 12. 2021, pp. 10665–10673.

[245] Haishan Ye, Luo Luo, and Zhihua Zhang. “Nesterov’s Accelera-
tion for Approximate Newton.” In: J. Mach. Learn. Res. 21 (2020),
pp. 142–1.

206

https://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

[246] Yao-Liang Yu. “On decomposing the proximal map”. In: Advances
in neural information processing systems 26 (2013).

[247] Matthew D Zeiler. “Adadelta: an adaptive learning rate method”.
In: arXiv preprint arXiv:1212.5701 (2012).

[248] Chiyuan Zhang et al. “Understanding deep learning (still) requires
rethinking generalization”. In: Communications of the ACM 64.3
(2021), pp. 107–115.

[249] Guodong Zhang, James Martens, and Roger Grosse. “Fast conver-
gence of natural gradient descent for overparameterized neural
networks”. In: arXiv preprint arXiv:1905.10961 (2019).

[250] Yangjing Zhang et al. “An efficient Hessian based algorithm for
solving large-scale sparse group Lasso problems”. In: Mathematical
Programming 179 (2020), pp. 223–263.

[251] Yiying Zhang. “Neural network algorithm with reinforcement
learning for parameters extraction of photovoltaic models”. In:
IEEE Transactions on Neural Networks and Learning Systems (2023).

[252] Hans-Georg Zimmermann et al. “Identification and forecasting
of large dynamical systems by dynamical consistent neural net-
works”. In: New Directions in Statistical Signal Processing: From Sys-
tems to Brain (2006), pp. 203–242.

[253] Difan Zou et al. “Stochastic gradient descent optimizes
over-parameterized deep relu networks”. In: arXiv preprint
arXiv:1811.08888 (2018).

Unless otherwise expressly stated, all original material of whatever
nature created by Adeyemi Damilare Adeoye and included in this
thesis, is licensed under a Creative Commons Attribution Noncom-
mercial Share Alike 3.0 Italy License.

Check on Creative Commons site:

https://creativecommons.org/licenses/by-nc-
sa/3.0/it/legalcode/

https://creativecommons.org/licenses/by-nc-sa/3.0/it/deed.en

Ask the author about other uses.

https://creativecommons.org/licenses/by-nc-sa/3.0/it/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/legalcode/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/legalcode/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/deed.en
mailto:adeyemi.adeoye@imtlucca.it

	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract
	I Motivation, context and structure
	1 Introduction
	1.1 Structure and overview
	1.1.1 Open-source implementations

	1.2 Nonlinear programming problem
	1.3 Learning and control problems
	1.3.1 Supervised learning with neural networks
	1.3.2 Finite-horizon optimal control problems in supervised learning

	1.4 First- and second-order optimization methods
	1.4.1 First-order optimization methods
	1.4.2 Second-order optimization methods
	1.4.3 Quasi-Newton methods

	II Solving nonsmooth convex composite optimization problems with generalized Gauss-Newton methods and self-concordant smoothing
	2 SCORE: Approximating curvature information under self-concordant regularization
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 Notation and basic assumptions
	2.2.2 Approximate Newton Scheme

	2.3 Second-order (pseudo-online) optimization
	2.4 Self-concordant regularization (SCORE)
	2.5 Experiments
	2.5.1 GGN-SCORE for different values of α
	2.5.2 Comparison with SGD, Adam, and L-BFGS methods on real datasets

	Appendices
	2.A Useful results
	2.B Missing proofs

	3 Self-concordant smoothing in proximal quasi-Newton methods
	3.1 Introduction
	3.1.1 Notation and preliminaries

	3.2 Self-concordant regularization
	3.2.1 Self-concordant regularization via infimal convolution

	3.3 A proximal Newton-type scheme
	3.3.1 Variable-metric and adaptive step-length selection
	3.3.2 A proximal generalized Gauss-Newton algorithm

	3.4 Structured penalties
	3.4.1 Structure reformulation for self-concordant smoothing
	3.4.2 Prox-decomposition and smoothness properties

	3.5 Convergence analysis
	3.6 Numerical experiments
	3.6.1 Sparse logistic regression
	3.6.2 Sparse group lasso
	3.6.3 Sparse deconvolution

	Appendices
	3.A Local behaviours of Algorithms 2 and 3

	III Theoretical guarantees and practical frameworks for solving supervised learning and control problems in neural networks using quasi-Newton methods
	4 Regularized Gauss-Newton for optimizing overparameterized neural networks
	4.1 Introduction
	4.1.1 Notation and preliminaries

	4.2 Learning neural networks with GGN
	4.2.1 Regularized GGN for overparameterized neural networks

	4.3 Theoretical result
	4.4 Simulations
	4.4.1 Results and discussion
	4.4.2 Experiments on real datasets

	Appendices
	4.A Preliminary results
	4.A.1 Lipschitz continuity of J
	4.A.2 Lipschitz continuity of g

	4.B Proof of the main result
	4.C Additional experimental details and results
	4.C.1 Remark on the T-I measure
	4.C.2 MNIST teacher-student setting
	4.C.3 FashionMNIST experiments
	4.C.4 Generalization and stability in comparison with GD

	5 An inexact sequential quadratic programming method for learning and control of recurrent neural networks
	5.1 Introduction
	5.2 Recurrent control neural networks
	5.2.1 RNN for state reconstruction in RL and control
	5.2.2 Extension to DCRNNs
	5.2.3 FNN for optimal control policy selection

	5.3 Sequential quadratic programming for recurrent learning
	5.3.1 Approximating the Lagrangian Hessian
	5.3.2 Numerical solution of the saddle-point system
	5.3.3 Globalization of iSQPRL by a line-search
	5.3.4 Practical aspects

	5.4 Off-line learning of the control network
	5.5 Complexity analysis
	5.6 Numerical examples
	5.6.1 Classical reinforcement learning example
	5.6.2 Chemical process example

	IV Conclusion and future work
	6 Conclusion
	6.1 Future work

