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Abstract

In this thesis we explore the concept of Breaking of Ensem-
ble Equivalence (BEE) within the context of random graph
models, focusing on spectral properties of adjacency matri-
ces. Our research aims to identify spectral quantities that
can distinguish between different random graph ensembles,
thereby providing new insights into the structure and behav-
ior of complex networks. We cover both theoretical aspects
and practical implications, including simulations and sam-
pling methods for random graph models.

In Chapter 1 we introduce some basic notions of random graph
theory, and discuss how maximum entropy graph models are
fundamental in modeling real-world networks. We explain
what BEE is, what is its characterization in the context of sta-
tistical mechanics, and how it is intimately connected to dif-
ferences that arise naturally between the canonical versus the
microcanonical description of random graph ensembles. In
order to do so, we delve into the spectral theory of random
graphs and use it to investigate BEE.

In Chapter 2 we formulate a conjecture on the equivalence of
measure-BEE and the presence of a gap between the largest
non-centered and non-scaled largest eigenvalues of the adja-
cency matrix in the canonical and the microcanonical ensem-
ble. We prove this conjecture in the setting of homogeneous
graphs.

In Chapter 3 we study the same question for Chung-Lu ran-
dom graphs. In particular, we prove central limit theorems
for the largest eigenvalue and its associated eigenvector.

xviii



In Chapter 4 we compute the expectation of the largest eigen-
value for the configuration model, which verifies our conjec-
ture in the setting of inhomogeneous graphs as well.

In Chapter 5 we provide numerical evidence for our findings
through simulation, after a brief introduction to graph sam-
pling. We formulate the main conclusions of our work and
indicate possible further directions of research.
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Chapter 1

Introduction

The present thesis deals with random graph models and how to capture
their differences via their spectral properties. The first four chapters are
of theoretical nature, while the fifth deals with sampling random graphs.

1.1 Background

The rapid development of Network Science in past years is part of the
rising interest in complex systems encountered in physics, chemistry,
biology, the social sciences, the medical sciences, and beyond. Mathe-
matics provides a formidable framework for understanding the complex
forms of interconnectedness in these systems, empowered by the increas-
ing abundance of real-world data. The presence of these data, which
need to be explained and understood, required the development of pow-
erful models, not only to explain what could be extracted from the data,
but also to forecast properties of the network that lie hidden. Thus, mod-
elling and testing of graph-like structures were a main driving force of
network theory, and in turn led to many new questions of theoretical
relevance. These questions gradually gained new territory, making net-
work theory into a vibrant and interdisciplinary research area. Important
questions are: What is the best way to model a network-like structure ob-
served in real life? What features need to be included to obtain a faithful



model? How can the functionality of the network be captured properly?
Such questions naturally lead to Random Graph Theory (RGT).

The mathematical field of graph theory has a long history that traces
back to the beginning of the 20th century. The birth of the probabilistic
treatment of graphs in RGT can be identified with the seminal paper of
Erdős and Rényi [59], where the by now most famous model of a ran-
dom graph – the Erdős-Rényi random graph (ERRG in the following) –
was introduced. The original aim of the authors was to use this proba-
bilistic model to answer some graph-theroretic questions (Ramsey the-
ory, colouring problems, extremal graph theory, etc.). This approach is
known today as the probabilistic method (see [6] for a survey). Despite the
versatility of the ERRG and its successful application to solve some hard
problems in discrete mathematics, its simpleness made it unrealistic as
a meaningful model for real-world systems. Indeed, real networks are
far from being describable as a set of independent random variables. A
first question in network theory was how to recreate the specific struc-
tures observed in real-world networks and what is the distribution of
the dependent random variables that form the model. Most real-world
networks have a clustering coefficient that is higher than the one arising
from ERRG (see [48]). Examples are the networks formed by social inter-
actions, which are naturally transitive (e.g. if A and B are friends and B
and C are friends, then A and C are likely to be friends as well) and there-
fore tend to form triangles between the nodes, a property that is mostly
absent in simple network models. Another example is the difficulty to
explain higher network structures that appear naturally in society, such
as communities, with the help of only a few independent parameters.
This complexity led researchers to develop generalizations of ERRG that
include inhomogeneities, clustering and other features of real-world net-
works (see [99] for a review). A powerful and versatile network model
was developed in the seminal work [62], which was further developed
especially in [105] and led to creation of Exponential Random Graphs. This
family of models has many important properties, the most striking being
the ability to create a probability distribution that favors graphs with a
pre-chosen set of features. Of course, this does not come for free: the
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more complex are the features, the more difficult are the dependencies
hidden in the model. It did not take much time to recognize that this
approach is powerful and not dissimilar to an old problem in Statistical
Physics (SP).

SP was born with the aim of describing the statistical properties of
physical systems consisting of a large number of interacting particles. By
statistical properties we mean the distribution of the relevant functions
of the random variables defining the system (e.g. classical quantities such
as energy, density, pressure, temperature or magnetization) which usu-
ally are linked to measurable macroscopic quantities. The aim of SP is to
describe the microscopic equilibrium states of the system (and the fluctu-
ations around these equilibria) when only a handful of these macroscopic
quantities are known and are fixed (i.e., measured in real experiments).
One way to do this is to create a probability distribution P whose equilib-
rium state (i.e., the expectation with respect to P) has the required value
of the relevant quantity, but still allows for many microstates whose like-
lihood is smaller the farther they are from equilibrium. The advantages
of this approach are twofold: on the one side, the probability distribution
describing the system recreates the measurements that were made; on
the other side, we are not imposing any information on the model other
than what we actually know. The power of this approach was explained
in full generality by Jaynes in [84] and was, in the context of graph theory,
further developed in what we call Maximum-Entropy Networks (see [110]).
Maximum-Entropy Networks offer a principled and versatile framework
for modeling probability distributions in a way that balances the need
to fit observed data with the desire to avoid unwarranted assumptions.
This approach has proven effective in addressing a wide range of prob-
lems where traditional models may fall short, making them a valuable
tool in the arsenal of probabilistic modeling techniques. Restricting our-
self to graph-like systems, the approach just described is different from
the approach of just sampling from the set of graphs that have exactly a
given property (e.g. sampling uniformly from all the graphs with 2028

vertices and 347 triangles). The dichotomy between the two approaches
is well known in SP. Sampling according to the uniform distribution from

3



a set of objects with a prescribed property leads to what is called the mi-
crocanoncal ensemble, while fixing the average subject to maximal entropy
leads to what is called the canonical ensemble.

1.2 Comparison of ensembles

One question that might arise at this point is why the first construction,
where we let the defining features of our model fluctuate (= soft con-
straint), is preferable over the second construction, where we select only
those graphs with the desirable property (= hard constraint). Indeed, one
could argue that our empirical knowledge of the system under study
comes only from what we can measure, and therefore the construction
where we pick only the graphs that have exactly the measured feature
must be the best one. The reasons why this observation is not accurate
are multiple. First, any measurement comes with an error and, given that
the microcanonical ensemble selects only graphs with a hard constraint,
this may lead to a possibly biased description. Moreover, the majority
of the networks that we want to analyze vary over time, so sticking to a
particular value of the measured feature can be questionable. A further
reason comes from the difficulty in sampling from the uniform distri-
bution (see, for example, [73]), which often makes it hard to work with
the microcanonical ensemble. A model given by a uniform distribution
over a very large set is hard to manipulate mathematically. It is often
the case that to say anything about these types of models requires hard
combinatorial estimates. Furthermore, the random variables that form
the model are typically highly dependent, with correlation patterns that
are not easy to capture. These arguments explain why network scientists
often prefer to work with the canonical ensemble.

In view of its preferable characteristics, a relevant question is: What
is the asymptotic error if we use canonical instead of microcanonical? In
mathematical terms this amounts to studying the differences in the ex-
pectation, the variance and large deviations of functions of the model
with respect to the two different probability distributions. In SP, the
widespread belief is that swapping microcanonical to canonical leads to

4



negligible corrections for very large systems. In other words, it is cus-
tomary to assume that for very large systems the two ensembles can
be used interchangeably with a negligible approximation error. While
this can be shown to be true for systems with a short-range interaction
Hamiltonian subject to constraints on global quantities like the energy,
the relation between the two ensembles is more involved for systems
with long-range interactions subject to complicated constraints. Never-
theless, Ensemble Equivalence in the Thermodynamic Limit is most of the
time taken for granted. The first appearance of systems where ensem-
ble equivalence was failing was in [91], where thermodynamic proper-
ties of certain stellar systems were considered. Since then, many studies
have appeared where ensemble equivalence was questioned. In particu-
lar, in [55] it was concluded that Breaking of Ensemble Equivalence (BEE) is
deeply connected to the large deviations properties of the two ensembles.
In short, Large Deviation Theory appears as the proper mathematical set-
ting in which to analyse the problem (see [119] for a review). In a series
of papers [118, 120, 121], Touchette showed that BEE can be character-
ized in three different but equivalent ways: Thermodynamic BEE, Measure
BEE, Macrostate BEE. While Thermodynamic BEE characterizes BEE in
a classical thermodynamic setting, in terms of non-concavity of certain
thermodynamic quantities such as entropy and free energy (relating the
problem to duality between a function and its Legendre-Fenchel trans-
form), Measure BEE and Macrostate BEE have an SP interpretation that
we will describe in Chapter 1.4. Since the work of Touchette, a series of
paper by Garlaschelli, den Hollander, Squartini and co-authors [71, 72,
113] has appeared that analyze BEE in random-graph ensembles, with
the main focus on Measure BEE. The main contributions in this area up
to 2018 are summarized in A. Roccaverde’s PhD thesis [103].

1.3 Random matrices

In the study of complex systems, the inherent randomness and com-
plexity often defy traditional analytical approaches. Random Matrix The-
ory (RMT), originating in the mid-20th century, has proven to be an in-
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valuable tool for characterizing the statistical behavior of complex ma-
trices that arise in diverse fields of science. This theory offers a unique
perspective, focusing on universal properties that transcend specific de-
tails of system dynamics, allowing researchers to extract essential fea-
tures and gain insights into the underlying complexity. The origins of
RMT can be traced back to nuclear physics, where it was developed by
Wigner [131] to describe the statistical properties of nuclear energy levels
of large nuclei. Over time, the scope of RMT has expanded significantly,
evolving into a versatile and interdisciplinary tool that has found appli-
cations in fields such as quantum mechanics, statistical physics, informa-
tion theory, and even the analysis of large-scale financial systems, grad-
ually gaining the status of a powerful and versatile mathematical frame-
work for understanding the statistical properties of complex systems in
various different settings (see [9, 95] for references and [3] for applica-
tions). It did not take long before the interaction between RMT and RGT
appeared. The possibility of interpreting a graph as a matrix (adjacency,
incidence, Laplacian) suggests that certain features of the graph are well
captured by its spectrum (see, for example, the monographs [47, 110]).
Soon, spectral graph questions were linked to important graph-theoretic
notions, such as expander graphs and stochastic processes on graphs. It is
thus natural to look at how BEE is linked to spectral quantities, which is
the main theme of the present PhD thesis.

In the remainder of this introduction we will formally introduce max-
imum entropy graph models, canonical and microcanonical ensembles,
BEE, and the role of RMT in our study. We will close with a summary of
the content of this thesis, some conclusions and some directions of future
research.

1.4 Maximum entropy graph models and break-
ing of ensemble equivalence

The fundamental idea behind Maximum Entropy Networks is to con-
struct a probability distribution that is consistent with the observed data,
i.e., respects some constraints, while maximizing the Shannon Entropy

6



(which plays the role of uncertainty in information theory). In other
words, these network models seek to find the most unbiased probability
distribution that satisfies the available information. By maximizing the
entropy, these networks aim to avoid making unnecessary assumptions
about the underlying structure of the data, allowing for a more flexible
and data-driven modeling approach. These network models have found
applications in various fields, including machine learning, statistics, so-
ciology and computational biology. They are particularly useful in situa-
tions where the relationships between variables are not well understood
or are highly complex. The flexibility of Maximum Entropy Networks
makes them valuable for capturing dependencies in diverse data sets,
ranging from biological networks to social interactions, and beyond.

1.5 Maximum entropy ensembles and canoni-
cal vs. microcanonical

Suppose that we are given a system that can be modeled through a graph
G∗. While the full knowledge and reconstruction of G∗ is almost never
achievable, it is often the case that we can measure different characteris-
tics of G∗. For example, say that we know that our system has size n and
that we can measure the degree d∗i of each vertex. For example, think of
a social network in which we can measure how many friends each per-
son has. This information on the degree sequence should be present in
the model, but we do not want to force any other information into our
probability distribution on Gn, the set of simple graphs of size n. More
formally, given a graph function ~C(G) → Rm, G ∈ Gn, and a vector of
quantities ~C∗ = {Ci}mi=1 that is graphical (i.e., there exist at least one graph
in Gn such that ~C(G) = ~C∗), we want to create a probability distribution
Pn(G) on the space Gn of simple graphs of size n such that ~C(G) is a suf-
ficient statistics (in the example above, m = n, ~C = {Ci}mi=1, Ci(G) = di

is the degree of the vertex i) and maximizes the Shannon entropy

S[P] = −
∑
G∈Gn

P(G) lnP(G).
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(In the sequel we will often suppress the dependence of the measure on
n.) The Pitman-Koopman-Darmois theorem states that this has to be an
exponential family of probability distributions, and its form can be cal-
culated through a maximization problem via the Karush–Kuhn–Tucker
theorem. This gives

argmax
P

S[P] such that EP[Ci] =
∑
Gn

P(G)Ci(G) = C∗i ∀ 1 ≤ i ≤ m,

where the maximization problem is over the space of probability mea-
sures on Gn. This leads to the Lagrangian function

L(P, ~θ) = S[P] +

m∑
i=0

θi

(
C∗i −

∑
G∈Gn

P(G)Ci(G)

)
, (1.5.1)

whereC0 = 1 andC∗0 = 1 ensure that P is a probability measure:
∑
G∈Gn P(G) =

1. The solution of the above maximization problem is an exponential
family of measures with parameters ~θ, playing the role of Lagrange mul-
tipliers, which are fixed ~θ∗ such that

EP,~θ[Ci] = C∗i , 1 ≤ i ≤ m.

This solution goes by the name of canonical Gibbs ensemble, and takes the
form

Pcan(G, ~θ∗) =
e−H(G,~θ∗)∑

G∈Gn e−H(G,~θ∗)
=

e−H(G,~θ∗)

Z~θ
, (1.5.2)

where H(G, ~θ∗) =
∑m
i=1 θ

∗
iCi(G) is the interaction Hamiltonian and Z~θ is

the partition function. It is worth noting that the values of θ∗i are chosen
from the data through the log-likelihood maximization principle.

In contrast, the definition of the microcanonical is far easier. Let Gn,
~C∗ = {Ci}mi=1 and ~C(G) be as above. Define the level set of the function
~C

Γ~C∗ = {G ∈ Gn : Ci(G) = C∗i ∀ 1 ≤ i ≤ m} , (1.5.3)

and let |Γ~C∗ | be the cardinality of the above set. The microcanonical en-
semble is the probability distribution given by

Pmic(G, ~θ
∗) =

{
1
|Γ~C∗ |

, if G ∈ Γ~C∗

0, otherwise.
(1.5.4)
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Despite its easy definition, the difficulty of the microcanonical ensemble
lies in the definition of (1.5.3), in particular, in the estimation of its car-
dinality |Γ~C∗ |. This typically involves hard combinatorial computations
that are linked to problems in extremal graph theory (see [14] for an ex-
ample). Is important to note that Pcan is constant on the level sets of ~C,
and so every graph with the same value of the constraint is equally likely
to be drawn. This fact will play a crucial role in Chapter 2.

1.6 An example

To give an example, let us take ~C = ~d, where ~d = {d1, . . . , dn} is a given
degree sequence that satisfies the Erdős-Gallai criterion ([42]). Consider
the Hamiltonian

H(G) =
∑
i

θidi =
∑
i

∑
j>i

(θi + θj)aij ,

where aij is the indicator function of the event that vertices i and j are
connected, written i ∼ j, i.e., aij is the ij-th entry of the adjacency matrix
A(G). One can use this precise form of the Hamiltonian to perform a
trick (see [99]) and write the partition function as

Z~θ∗ =
∑
G∈Gn

e−H(G,~θ∗) =
∑
G∈Gn

exp

−∑
i

∑
j>i

(θi + θj)aij

 =
∏
i<j

1∑
aij=0

exp (−(θi + θj)aij)

=
∏
i

∏
i<j

(
1 + e−(θi+θj)

)
=
∏
i

∏
i<j

(1 + xixj),

where we put xi = e−θi . Thus, putting pij =
xixj

1+xixj
, we can rewrite the

probability of a graph G as

P(G) =
∏
i

∏
i<j

p
aij
ij (1− pij)1−aij . (1.6.1)

As will be discussed in Chapter 3, for suitable degrees the above model
becomes a Chung-Lu inhomogeneous random graph, where the denomina-
tor 1 + xixj gives a lower order correction to the connection probability.
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The microcanonical distribution is, in this case, the uniform distribution
on all the simple graphs with a given degree sequence ~dn. This model
can be described in different ways (see [132] for example). One way is
via the so-called configuration model conditioned on simplicity (the config-
uration model produces a multigraph with a positive probability when
the degrees are bounded, and with a probability tending to one when the
degrees diverge with n).

For the case di ≡ d, we have a homogeneous model for both the
canonical and the microcanonical ensemble. Is not difficult to see that
(1.6.1) degenerates to an ERRG with edge probability p = e−θ (by sym-
metry we have only one Lagrange multiplier θ), while the microcanonical
becomes an instance of a random regular graph.

1.7 Breaking of Ensemble Equivalence

Breaking of Ensemble Equivalence measures the information-theoretic
price we pay asymptotically in exchanging the canonical and the micro-
canonical ensembles. BEE can be defined in three different ways (in [121]
it is proved that all three are equivalent).

• Thermodynamical BEE. As can be seen from (1.5.1), the non concavity
of S[P] can lead to problems in the solution of the maximization prob-
lem. Indeed, this type of BEE focusses on the duality of two important
thermodynamic potentials – the free energy and the entropy – which play
a key role in determining the properties of the canonical and the mi-
crocanoncal ensembles, respectively. Under normal circumstances, these
two quantities are related by a Legendre-Fenchel transform, but concav-
ity problems that may arise from the Hamiltonian can lead to a failure
of this duality, signaling the presence of BEE. This is intimately related
to large deviation properties as stated in the Gartner-Ellis theorem (see
[123, Chapter V] for further explanations), where entropy can be seen as
a rate function and free energy as a scaled cumulant generating function.
Nevertheless, the relation between BEE and large deviations are better
captured through the next type of BEE.
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• Measure BEE. This compares the canonical and the microcanonical en-
sembles in an information-theoretic sense, namely, it measures the price
we pay in describing the microcanonical ensemble via the canonical en-
semble. To do this, we take the Kullback-Leibler divergence (or relative
entropy) of the two probability measures:

Sn(Pmic | Pcan) = DKL(Pmic | Pcan) =
∑
G∈Gn

Pmic(G) log
Pmic(G)

Pcan(G)
.

Given a sequence αn � 1, we say that Pmic and Pcan are equivalent at
scale αn if

lim
n→∞

sαnn = lim
n→∞

1

αn
Sn(Pmic | Pcan) = 0. (1.7.1)

It can of course happen that two ensembles are equivalent on given scale
αn but not on a scale βn = o(αn). The scale αn captures the difference
in the large deviation behaviour of the tails of Pmic and Pcan, much like
Sanov theorem captures the price we pay in describing the empirical dis-
tribution of a sample x∗i by the prior probability distribution pn(xi). In a
series of papers [71, 72, 113] the scale αn at which limn→∞ sαnn 6= 0 was
studied. It was found that for non-dense graphs (i.e., with degrees o(n)),
when the constraint is on the degree sequence, the scale is αn = n and

1

n
Sn(Pmic | Pcan) = Θ(log n).

•Macrostate BEE. While Measure BEE deals with the microstate descrip-
tion, i.e., the analysis of every state the system can be in, Macrostate BEE
analyzes the differences between their ensembles at their equilibrium. In
a probabilistic rephrasing of the previous sentence, macrostate equiva-
lence looks at the expectations of functions of the system under study. In-
deed, while equivalence at the measure level deals with the differences
in the tails of the two distributions, the presence of non-equivalence tells
us that for diverging n we can expect some tail events to behave differ-
ently, and so there should exist some graph function (i.e., a measurable
quantity of our network model) that is different between the two models.
For f(G) such a function, we can rephrase Macrostate BEE as

lim
n→∞

|Ecan[f ]− Emic[f ]| > 0. (1.7.2)
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An important aspect of the above characterization is that it gives no clue
on how to choose f . Indeed, the search for a universal quantity signalling
BEE is non-trivial. For example, when the constraint is applied to the de-
gree sequence, any linear function of the degree sequence behaves in the
same way in the two ensembles, while any non-linear function is diffi-
cult to evaluate. Restricting ourselves to the case where the constraint
is on the degree sequence (like in the examples above), the main contri-
bution of this thesis is the qualitative and quantitative evidence that a
good choice for f is the largest eigenvalue of the adjacency matrix of the
random graph.

1.8 Spectral theory of random graphs

RMT aims to characterize the behavior of eigenvalues of large matrix
ensembles. The collective behavior of eigenvalues was the main object of
study in the work of Wigner [131]. There the empirical spectral distribution
(ESD) of a class of large matrices was determined. Later works identified
it as the universal behaviour for a wide class of symmetric matrices with
i.i.d. entries, called Wigner matrices. Let An be a symmetric matrix of
dimension n, and let aij , j ≥ i, be its elements, i.i.d.1 with E[aij ] = 0 and
Var[aij ] = 1. Define the ESD as

µ 1√
n
An =

n∑
i=1

δ
λi
(

1√
n
An
), (1.8.1)

where λi, 1 ≤ i ≤ n, are the eigenvalues of An. Then

lim
n→∞

µ 1√
n
An

a.s.−→ µsc, (1.8.2)

where µsc = 1
2π (4− x2)

1/2
+ dx is the Wigner semicircle distribution. Inter-

preting the graph as an adjacency matrix, we can analyze random graph
models as a matrix ensemble. For the Erdős-Rényi random graphs with

1In Wigner matrices the diagonal elements can be chosen independently from a different
distribution than the off-diagonal elements without changing the asymptotic behaviour of
the ESD.
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a mean degree p(n− 1) = d > (log n)a with a > 3, after a proper scaling
and centering of the matrix elements, the ESD and many other spectral
characteristic were extensively studied in [56, 57]. For the case with fixed
d, less is known. This is an active field of research with many open prob-
lems. See [11, 46] and reference therein for an overview.

For a random regular graph with degree d > 3 a similar result applies,
and the convergence is to the Kesten-McKay distribution

µdKM(dx) =
d
√

4(d− 1)− x2

2π(d2 − x2)
dx, |x| ≤ 2

√
d− 1, (1.8.3)

where the adjacency matrix has been normalized by the square root sof
the degree,

√
d.

(a) In blue, histogram of the
eigenvalues of a random regular
graph with d = 3 and 5000
nodes. In red, (scaled) Kesten-
McKay distribution with d = 3.

(b) In blue, histogram of the
eigenvalues of a random regular
graph with d = 5 and 5000
nodes. In red, (scaled) Kesten-
McKay distribution with d = 5.

Further properties of spectral statistics of random regular graph with
fixed degree were studied in [15, 16]. For a growing d = d(n)� 1, it was
proved in [124] that

lim
d→∞

µdKM = µsc. (1.8.4)

By (1.8.4) and the above observations, ESD cannot be the right quantity
to look at Macrostate BEE. Indeed, for sufficient large degrees, the ESDs
of the microcanonical and the canonical ensemble (i.e., the random reg-
ular graph and the ERRG in the homogenous case) are asymptotically
equivalent.
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(a) In blue, histogram of the
eigenvalues of an Erdős-Rényi
random graph with E[d] = 500
and 5000 nodes. In red, the semi-
circle distribution.

(b) In blue, histogram of the
eigenvalues of a random regu-
lar graph with d = 500 and
5000 nodes. In red, (scaled)
Kesten-McKay distribution with
d = 500 (which is practically in-
distinguishable from a semicircle
law).

This is no surprise. Indeed, over time it has been understood that
convergence to the semicircle law is a universal phenomenon (a type of
central limit theorem for matrices) that does not depend on the particu-
lar distribution or characteristics of the random variables that form the
model. It turns out that the characteristics of the model are better cap-
tured by the non-normalized largest eigenvalue of the non-centered adja-
cency matrix. This object carries important information on the model,
and shows interesting behavior such as a phase transition dependent on
the degree of the graph [13]. In what follows we will explore to what
extent the principal eigenvalue, λ1, is a good indicator of breaking of en-
semble equivalence, and we will prove the following conjecture in the
cases under study:

∆∞ 6= 0 =⇒ BEE,
BEE =⇒ ∆∞ 6= 0 apart from exceptional constraints,

(1.8.5)
where

∆∞ = lim
n→∞

(
Ecan[λ1(n)]− Emic[λ1(n)]

)
. (1.8.6)
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1.9 Outline of the thesis

Chapters 2–5 deal with the following:

– In Chapter 2 we analyze the homogeneous case, when the degree
sequence ~d is constant and equal to d. We will show that, while
spectral BEE appears for the pair Erdős-Rényi random graph and
random regular graph, it does not for a model where we just fix
the total number of edges. The latter is a less strong constraint
that does not give rise to measure BEE on scale n and, accord-
ing to (1.8.5), neither Spectral BEE. To prove this result we relate
tail events under Pcan and Pmic, namely, we will show that, for
given event E , it is possible to obtain a bound on the tail of this
event in Pmic by just looking at the tail decay of E in Pcan. This
trick is possible only when the tail of Pcan(E) goes to zero faster
than exp (−S(Pmic|Pcan)). It generalizes the method used in [124],
and gives a general tool to prove concentration inequalities of ma-
trix ensembles with dependent entries that can be described in the
canonical versus microcanonical formalism.

– In Chapter 3 we study the inhomogeneous case, for a non-constant
degree sequences ~d with some restrictions on the degree density
and the degree inhomogeneity. The resulting model is the one de-
scribed by (1.6.1), where the connection probability can be further
simplified given the density assumptions. For this model, we first
show that λ1 can be expressed as a series expansion in terms of the
powers of the centered ajdacency matrix H = A − E[A]. Once this
is achieved, we can accurately compute the expectation of λ1 as a
function of the degree sequence, providing the leading and error
terms coming from the series expansion. This is a first step in prov-
ing spectral BEE in the inhomogeneous case, for which Ecan[λ1] was
not known. We also derive a central limit theorem for λ1, taking ad-
vantage of the particular form of the terms that appear in the series
expansion. Furthermore, the same formula that produces the ex-
pansion of λ1 gives an analogous result for v1, the eigenvalue cor-
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responding to λ1. We derive a law of large numbers and a central
limit theorem for each component of this normalized eigenvector.

– In Chapter 4 we analyze the configuration model, and compute the
expectation of λ1 conditional on simplicity. This leads to the mi-
crocanonical ensemble of the previous chapter. To do so, we need
to perform a series expansion of λ1 similar to the one performed
in Chapter 3. A key step to achieve this is to analyze the spectral
norm ‖H‖ of the centered matrix H = A − E[A], in order to ob-
tain good bounds. In particular, we need ‖H‖ to be O(

√
d) with a

super-polynomial small probability. Once this is solved, Emic[λ1] is
calculated from the terms of the series expansion. The result ob-
tained, compared to the one obtained in Chapter 3, confirms the
conjecture in (1.8.5) for this model, and provides a value of ∆∞

consistent with the homogeneous case.

– In Chapter 5 we offer a brief discussion of how to properly sample
the graphs that are considered in the present thesis, followed by
some simulations that helped us to understand the problem under
study and that may serve as an inspiration for future research.

1.10 Conclusions

We analyzed breaking of ensemble equivalence from the macrostate per-
spective and indentified a quantity that is capable to spot this phenomenon,
for the classes of random graphs studied in this thesis. Many natural
questions remain to be solved.

A first question is how general the conjecture in (1.8.5) is. It is easy to
cook up a counterexample where the constraint appearing in the Hamil-
tonian is the eigenvalue itself. At that point it is natural that Emic[λ1] =

Ecan[λ1]. For constraints different from the pure degree sequence, less is
known, starting from the order of divergence of sαnn in (1.7.1). It is fair to
expect that if the constraint is a function of the graph that forces the en-
semble to pick specific degree sequences, then (1.8.5) holds. For instance,
ERRGs with an excessive number of triangles have clusters with very
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dense vertices (with high degrees), forcing the model to pick realizations
with peculiar degree sequences. Given the type of arguments used in
our proofs, it is reasonable to expect that something like (1.8.5) happens
even in this case, where the heart of the problem is now the difficulty to
obtain the connection probabilities of the canonical model in closed form
(like in (1.6.1)), in order to allow for explicit calculations.

Another question is whether there exist quantities different from λ1

that are able to spot BEE at the macrostate level. Arguably, any function
of the constraints that contains in its definition the second moment of the
constraints will have a discrepancy between the expectations in the two
ensembles. This is the case for λ1, for which the expansion we used to
calculate its expectation is composed of simpler quantities and contains a
term related to the second moment of the degree sequence. Indeed, while
for the microcanonical ensemble the variance of the constraint function
~C is zero, for the canonical it is not. For λ1 more is true. Every term in
the expansion of λ1 contains a combination of different moments of the
degree sequence, so every constraint that affects a moment of the degree
distribution in a different way in the two ensembles will be detected at
some order. It is therefore difficult to conjecture a quantity other than λ1

that has the right properties to be a universal BEE signature.

A deeper understanding of the relations between measure BEE and
macrostate BEE is also needed. Lemma 3.1 links the tail behaviour of
events in the microcanonical ensemble to their tails in the canonical en-
semble. This convenient approach gives for free an upper bound on
the scaling of the tail events of the microcanonical ensemble if the tail
of the same event goes to zero in the canonical ensemble faster than
e−Sn(Pmic|Pcan). Whether the latter is a necessary condition as well remains
an interesting and unanswered question. The combinatorial implications
of the above would be substantial, especially in view of the conjecture
put forward in [111], where a simple method to calculate the scaling of
sαnn is described. Indeed, the canonical ensemble is the model with less
correlations between its entries, is easier to use for the calculations of
tail events, and provides a good way to obtain tail bounds on functions
of dependent random variables once the problem is embedded in the
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canonical versus microcanonical framework.
A further research line that we are pursuing is to derive the CLT be-

haviour of λ1 in the configuration model of Chapter 4, in the same way
as this was obtained in Chapter 3 for the Chung-Lu model. Furthermore,
it would be interesting to see whether the largest eigenvalues of the mod-
els analyzed in Chapter 3 and 4 do behave as a Gaussian process when a
suitable dynamics is defined on the respective graph spaces (for example,
a switching chain on the configuration model conditional on simplicity).
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Chapter 2

A spectral signature of
breaking of ensemble
equivalence

This chapter is based on:
P. Dionigi, D. Garlaschelli, F. den Hollander, M. Mandjes. A spectral sig-
nature of breaking of ensemble equivalence. Electronic Communications in
Probability, 2021.

Abstract

For random systems subject to a constraint, the microcanoni-
cal ensemble requires the constraint to be met by every realisa-
tion (‘hard constraint’), while the canonical ensemble requires
the constraint to be met only on average (‘soft constraint’).
It is known that for random graphs subject to topological
constraints breaking of ensemble equivalence may occur when
the size of the graph tends to infinity, signalled by a non-
vanishing specific relative entropy of the two ensembles. We



investigate to what extent breaking of ensemble equivalence
is manifested through the largest eigenvalue of the adjacency
matrix of the graph. We consider two examples of constraints
in the dense regime: (1) fix the degrees of the vertices (= the
degree sequence); (2) fix the sum of the degrees of the ver-
tices (= twice the number of edges). Example (1) imposes an
extensive number of local constraints and is known to lead
to breaking of ensemble equivalence. Example (2) imposes
a single global constraint and is known to lead to ensemble
equivalence. Our working hypothesis is that breaking of en-
semble equivalence corresponds to a non-vanishing difference
of the expected values of the largest eigenvalue under the two en-
sembles. We verify that, in the limit as the size of the graph
tends to infinity, the difference between the expected values
of the largest eigenvalue in the two ensembles does not van-
ish for (1) and vanishes for (2). A key tool in our analysis
is a transfer method that uses relative entropy to determine
whether probabilistic estimates can be carried over from the
canonical ensemble to the microcanonical ensemble, and il-
lustrates how breaking of ensemble equivalence may prevent
this from being possible.

2.1 Introduction

Background. Spectral properties of random graphs have been studied
intensively in past years. A non-exhaustive list of key contributions is
[7, 18, 38, 51, 52, 56, 57, 66, 88, 133]. Both the adjacency matrix and the
Laplacian matrix have been popular. Scaling properties have been de-
rived for the spectral distribution and the largest eigenvalue, with focus
on central limit and large deviation behaviour. Most papers deal with
random graphs whose edges are drawn independently. Different types of
behaviour show up in the dense regime (where the number of edges is of
the order of the square of the number of vertices), in the sparse regime
(where the number of edges is of the order of the number of vertices),
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and in between.
In this paper we focus on the largest eigenvalue of the non-normalized

and non-centred adjacency matrix for a class of constrained random graphs.
The largest eigenvalue is a highly non-linear functional of the entries of
the adjacency matrix and therefore carries global information about the
structure of the graph. Constraints are natural in the framework of sta-
tistical mechanics and Gibbs ensembles. Typically, they introduce a depen-
dence between the edges that makes the spectral analysis challenging.

Breaking of ensemble equivalence (BEE). One of the interesting phe-
nomena exhibited by certain classes of constrained random graphs is
Breaking of Ensemble Equivalence (BEE). To understand what this is, we re-
call that in statistical physics different microscopic descriptions are avail-
able for a system that is subjected to a constraint, referred to as Gibbs
ensembles. In the microcanonical ensemble the constraint is hard, i.e., each
microscopic realisation of the system matches the constraint exactly. In
the canonical ensemble the constraint is soft, i.e., is met only on average. For
finite systems the two ensembles are clearly different, since they repre-
sent different physical situations (energetic isolation, respectively, ther-
mal equilibrium with a reservoir at an appropriate temperture). How-
ever, the general belief is that this discrepancy vanishes in the thermody-
namic limit. This expectation, referred to as Equivalence of Ensembles (EE),
permeates the theory of Gibbs ensembles. It turns out that for many
physical systems EE holds, but not for all. We refer to [117] for more
background.

For interacting particle systems, EE has been studied at three differ-
ent levels: thermodynamic, macrostate and measure. It was shown in
[117] that these levels are equivalent. The present paper uses the mea-
sure level, which is based on the vanishing of the specific relative en-
tropy. In [50, 70, 107, 108], the phenomenon of BEE was studied for ran-
dom graphs subject to different types of constraints. It was found that,
interestingly, BEE is the rule rather than the exception for constraints that
are either extensive in the number of vertices or frustrated. An overview
can be found in [102].
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Spectral signature of BEE. Let A be the adjacency matrix of a random
graph on n vertices, i.e., A = {aij}i,j∈[n] with aij = 1{i∼j}. Let λ1(n)

denote its largest eigenvalue. For i ∈ [n], let di be the degree of vertex i.
Write Ecan and Emic to denote expectation with respect to the canonical,
respectively, microcanonical ensemble. Put

∆∞ = lim
n→∞

(
Ecan[λ1(n)]− Emic[λ1(n)]

)
. (2.1.1)

Our working hypothesis is that

∆∞ 6= 0 =⇒ BEE,
BEE =⇒ ∆∞ 6= 0 apart from exceptional constraints.

(2.1.2)
The goal of the present paper and future work is to verify when this
working hypothesis is valid and to identify what are the exceptional con-
straints (see Remark 2.1.4 below).

We will verify the working hypothesis for two specific examples of
constraints: (1) fix the degrees of the vertices (= the degree sequence);
(2) fix the sum of the degrees of the vertices (= twice the number of
edges). Example (1) corresponds to the so-called configuration model. We
consider the particular case where all the degrees are fixed at a com-
mon value d(n), in which case the microcanonical ensemble becomes the
d(n)-regular random graph, for which λ1(n) = d(n) with probability 1.
For this case, BEE is known to occur for all choices of d(n) 6= {0, n − 1},
and we will see that ∆∞ 6= 0 except in the ultra-dense regime where
limn→∞ n−1d(n) = 1. The failure of our working hypothesis in this
regime is a consequence of the saturation of the adjacency matrix. In-
deed, the largest eigenvalue becomes ineffective in detecting BEE when
the two ensembles asymptotically concentrate around the complete graph,
for which the largest eigenvalue achieves the maximal value n − 1. In
contrast, relative entropy manages to detect BEE because the two ensem-
bles still look different in the ultra-dense regime, where the number of
achievable graphs scales as the exponential of n2. For Example (2) we
will see that no BEE occurs and that ∆∞ = 0. For both examples the
canonical ensemble coincides with the Erdős-Rényi random graph with
an appropriate retention probability [108].
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For Erdős-Rényi random graphs, λ1(n) was studied for various dif-
ferent regimes in [57, 66, 88]. Throughout the sequel we consider the
regime

∃β ∈ (6,∞) : n−1(log n)β ≤ p(n) < 1− n−1(log n)β . (2.1.3)

Theorem 2.1.1. [57, Theorem 6.2] LetG(n, p(n)) be the Erdős-Rényi random
graph on n vertices with retention probability p(n) satisfying (2.1.3). Let λ1(n)
be the largest eigenvalue of the adjacency matrix of G(n, p(n)). Then

EG(n,p(n))[λ1(n)] = (n− 1)p(n) + (1− p(n)) +O

(
(1− p(n))3/2

q(n)
√

(n− 1)p(n)

)
,

(2.1.4)
where q(n) =

√
(n− 1)p(n) when p(n) ≤ c < 1, and q(n) =

√
(n− 1)(1− p(n))

when p(n) = 1− o(1).

To state (2.1.4), we removed diagonal entries so as to get simple graphs,
as explained in Chapter 2.5.1. Theorem 2.1.1 shows that the largest eigen-
value of the Erdős-Rényi random graph is a perturbative correction around
the mean degree d(n) = (n−1)p(n). In the dense regime p(n) ≡ p ∈ (0, 1)

we get the classical result from [66]. In the ultra-dense regime, where the
complementary graph is sparse, we can still use [57, Definition 2.1]. The
lower bound on p(n) in (2.1.3) implies that we do not capture the sparse
regime below the connectivity threshold: a crossover in the scaling be-
haviour of λ1(n) occurs when d(n) � log n, as proved in [7].

Theorem 2.1.1 leads us to our main result.

Theorem 2.1.2. Let p(n) satisfy (2.1.3).
(1) Let the constraint be di = d(n), i ∈ [n], with nd(n) even and limn→∞[n−1d(n)]/p(n) =
1. Then

∆∞ =

 1− p, if p(n) ≡ p ∈ (0, 1),
1, if p(n) = o(1),
0, if p(n) = 1− o(1).

(2.1.5)

(2) Let the constraint be 1
2

∑
i∈[n] di = L(n) with limn→∞[2n−2L(n)]/p(n) =

1. Then
∆∞ = 0. (2.1.6)
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The restriction that nd(n) is even is needed to make the constraint graph-
ical, i.e., there exist simple graphs that meet the constraint. Note the re-
markable fact that both Emic[λ1(n)] and Ecan[λ1(n)] tend to infinity as
n→∞while their difference remains bounded.

As shown in [70, 108], BEE occurs in example (1) and EE in exam-
ple (2), and hence Theorem 2.1.2 supports our working hypothesis that
BEE corresponds to a non-vanishing difference of the expected largest
eigenvalues under the two ensembles.

Remark 2.1.3. In [88] a general technique is used that also covers the regime
0 < p(n) < n−1(log n)β . However, as stated by the authors in their conclu-
sions, their method does not allow for a derivation of the asymptotics of E[λ1(n)].
Nevertheless, it is worth mentioning that when p(n) = c

n , c ∈ (0,∞), the
asymptotic behaviour of λ1(n) in the Erdős-Rényi model G(n, p(n)) is

lim
n→∞

(
λ1(n)−

√
log n

log log n

)
= 0 (2.1.7)

with high probability. Interestingly, in view of the results in Section 2.4, this
suggests that (2.1.5) may have limit∞ in this regime.

Remark 2.1.4. In [70] it is shown that BEE occurs for three regimes of constant
degree d(n): (I) d(n) = o(

√
n ) (sparse regime); (II) δn ≤ d(n) ≤ 1−δ for some

δ ∈ (0, 1
2 ] (dense regime); (III) d(n) = n − o(

√
n ) (ultra dense regime). The

scaling of the specific relative entropy is n for regimes (I) and (II), and n log n for
regime (II). Theorem 2.1.2(1) shows that our working hypothesis holds in regime
(I) (subject to d(n) ≥ (log n)β) and (II), but fails in regime (III). The reason is
that, while the specific relative entropy is invariant under the map where edges
are replaced by non-edges and vice versa, the same is not true for the largest
eigenvalue. In the ultra dense regime, other spectral quantities may be better
candidates to look at than the maximal eigenvalue. This is no surprise: in [117]
it was shown that the relative entropy is the most sensitive global quantity to
detect BEE, while other global quantities may detect BEE in certain settings
and fail to do so in others. For instance, if the constraint is that the maximal
eigenvalue takes a prescribed value, then clearly ∆∞ = 0 while BEE may still
be possible.

Outline. The remainder of this paper is organised as follows. In Sec-
tion 2.2 we recall the definition of the microcanonical and the canonical
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ensemble in the setting of constrained random graphs. Section 2.3 de-
scribes our main tool: a transfer method based on relative entropy, which
carries over estimates on rare events from the canonical ensemble to the
microcanonical ensemble, and describe its role in the general framework
of BEE. In Section 2.4 we prove Theorem 2.1.2(1), in Section 2.5 we prove
Theorem 2.1.2(2).

2.2 Gibbs ensembles for constrained random graphs

Consider the discrete probability space (Gn,B,P), with Gn the set of all
simple graphs on n vertices, B = 2Gn the power set of Gn consisting of
all the subsets of Gn, and P a probability measure.

A constraint is defined to be a vector-valued function ~C : Gn → Rd.
Fix a value ~C? that is graphical, i.e., ~C(g) = ~C? for at least one g ∈ Gn.
Define

Γ~C? =
{
g ∈ Gn : ~C(g) = ~C?

}
. (2.2.1)

The microcanonical ensemble is the uniform probability distribution on
Γ~C? :

Pmic(g) =

{
1/|Γ~C? |, if g ∈ Γ~C? ,

0, otherwise.
(2.2.2)

The canonical ensemble is defined via the Hamiltonian H(g, ~θ) = 〈~θ, ~C(g)〉
(where 〈·, ·〉 denotes the scalar product), namely,

Pcan(g) =
1

Z~θ?
e−H(g,~θ?), g ∈ Gn, (2.2.3)

with the normalising factorZ~θ? =
∑
g∈Gn exp[−H(g, ~θ?)], called the parti-

tion function. Note that both Pmic and Pcan depend on n, but we suppress
this dependence. The parameter ~θ is set to the particular value ~θ? that
realises the constraint:

Ecan

[
~C
]∣∣∣
θ=θ?

= ~C?. (2.2.4)

The constraint ~C?, apart from being graphical, must also be irreducible,
i.e., no subset of the constraint is redundant [107]. Once these conditions
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are met, the value of ~θ? that solves (2.2.4) is unique, and so the canonical
ensemble is well defined (see the appendices in [107] for further details).

The relative entropy of Pmic w.r.t. Pcan is defined as

Sn(Pmic ‖ Pcan) =
∑
g∈Gn

Pmic(g) log
Pmic(g)

Pcan(g)
=

1

|Γ~C? |
∑
g∈Γ~C?

log
Pmic(g)

Pcan(g)

= − 1

|Γ~C? |
log
[
|Γ~C? |Pcan(g?)

] ∑
g∈Γ~C?

1 = − logPcan(Γ~C?)

(2.2.5)

where we use the convention 0 log 0 = 0 and g? is any graph in Γ~C? . EE
in the measure sense is defined as the vanishing of the relative entropy
density, i.e., limn→∞ n−1Sn(Pmic ‖ Pcan) = 0 (see [117]).

2.3 Transfer method

Comparison of the two ensembles. The additional freedom in the canon-
ical ensemble implies that there is less dependence between the con-
stituent random variables. In our case these random variables are the
edges of the graph. For example, if the constraint is on the degree se-
quence, then the microcanonical ensemble corresponds to the hard config-
uration model (which in the case of constant degrees becomes the regular
random graph), while the canonical ensemble corresponds to the soft con-
figuration model (which is a special case of the generalized random graph
model). The former requires an algorithm that randomly pairs half-edges
and creates dependencies, while the latter is constructed via a sequence
of independent random trials (which results in a multivariate Poisson-
Binomial distribution for the degrees of the vertices [70]). Consequently,
in the canonical ensemble calculations are carried out more easily. For
example, a lot is known about spectral properties of adjacency matrices
of random graphs under the canonical ensemble: because the entries of
the adjacency matrix are independent, powerful tools from random ma-
trix theory can be used. The challenge is to transfer properties from the
canonical ensemble to the microcanonical ensemble without performing
elaborate combinatorial computations.
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Transfer principle. We start by noting that

Pmic (B) =
Pcan(B)

Pcan(Γ~C?)
, B ⊆ Γ~C? . (2.3.1)

The latter holds because g 7→ H(g, ~θ?) and g 7→ Pcan(g) are constant on
the support of Pmic, i.e., all microcanonical realisations have the same
probability under the canonical ensemble. In particular,

Pcan(B | Γ~C?) = Pmic(B), B ∈ B, (2.3.2)

where again B = 2Gn . Consequently, we have the following transfer prin-
ciple.

Lemma 2.3.1. For everyB ∈ B, if limn→∞ Pcan(B | Γ~C?) = 0, then limn→∞ Pmic (B) =
0.

Distinguishing sets. Let EP ∈ B be the subset of Gn given by

EP = {g ∈ Gn : g has property P} . (2.3.3)

Write [EP ]c to denote the complementary event. The crucial step in the
argument underlying the transfer method is to find the right event [EP ]c

that asymptotically implies failure of the property P that we want to
transfer from the canonical ensemble to the microcanonical ensemble.

For the remainder, two events are important: EP ∩ Γ~C? and [EP ]c ∩
Γ~C? . These represent the sets that are in the support of Pmic for which
property P holds and fails, respectively. Our focus will be on replacing
Pcan([EP ]c ∩ Γ~C?) by Pcan([EP ]c). Since Pmic([EP ]c ∩ Γ~C?) ≤ Pmic([EP ]c),
if we are able to prove that limn→∞ Pmic([EP ]c) = 0, then we also have
limn→∞ Pmic([EP ]c ∩ Γ~C?) = 0, and we say that the property defining the
set EP holds with high probability as n → ∞. As explained in Section
2.2,

Pcan
(
[EP ]c | Γ~C?

)
=

Pcan([EP ]c ∩ Γ~C?)

Pcan(Γ~C?)
≤ Pcan([EP ]c)

Pcan(Γ~C?)
, (2.3.4)

and so if we manage to prove that Pcan([EP ]c) = o(Pcan(Γ~C?)), then we
obtain
limn→∞ Pmic([EP ]c) = 0.
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Role of relative entropy and BEE. Equation (2.3.4) sets the scale at
which the transfer method is effective. This scale is given by the denom-
inator Pcan(Γ~C?). Indeed, if it happens that Pcan([EP ]c) 6= o(Pcan(Γ~C?)),
then (2.3.4) is ineffective. Importantly, from (2.2.5) we have

Pcan(Γ~C?) = e−Sn(Pmic ‖ Pcan). (2.3.5)

This leads to an interesting connection between BEE and the transferabil-
ity of a propertyP : if Pcan([EP ]c) = o(e−Sn(Pmic ‖ Pcan)), then limn→∞ Pmic([EP ]c) =

0. Since EE coincides with Sn(Pmic ‖ Pcan) = o(n), when the ensem-
bles are equivalent it is easier to transfer. Our proof of Theorem 2.1.2(2)
makes use of precisely this fact, and P is a certain concentration in-
equality for the largest eigenvalue of the adjacency matrix. By contrast,
BEE makes the transfer more difficult. Indeed, Theorem 2.1.2(1) can be
seen as an example where the same concentration inequality P cannot
be transferred because the relative entropy is of higher order, namely,
Sn(Pmic ‖ Pcan) = Θ(n log n) [70, 108].

Largest eigenvalue. We know from the results in [117] that ,whenever
BEE occurs, there must exist quantities whose macrostate expectation is
different under the two ensembles. Clearly, not all macroscopic quanti-
ties are good candidates for this. For instance, any linear combination
of the constraints necessarily has the same expected value under the two
ensembles. What we propose as a candidate is the largest eigenvalue
of the adjacency matrix of the graph, because this is a highly nonlinear
function of the imposed constraints and is sensitive to the global struc-
ture of the graph. In Sections 2.4–2.5 we will consider two examples of
constraints in the dense regime: (1) fix the degrees of all the vertices; (2)
fix the total number of edges. For the former we focus on the special case
where all the degrees are equal.

Remark 2.3.2. Since λ1(A) = sup‖x‖=1 x
TAx, Jensen’s inequality implies

that λ1(A) is a convex function of the entries of the matrix A, which means
that for both ensembles

λ1

(
E(·)[A]

)
≤ E(·)[λ1(A)]. (2.3.6)
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Taking into account the results of Theorem 2.1.1 and Section 2.4, we get

λ1(Emic[A]) = Emic[λ1(A)] = λ1(Ecan[A]) ≤ Ecan[λ1(A)]. (2.3.7)

If, on top of the constraint on the degree sequence, we add more (compatible)
constraints, then by exchangeability we still have λ1(Emic[A]) = Emic[λ1(A)] =
λ1(Ecan[A]). Applying (2.3.6), we therefore still expect that Emic[λ1(A)] ≤
Ecan[λ1(A)]. This shows that λ1 is particularly sensitive to the moments of the
underlying degree sequence (as can also be seen from the power method used
in [57, 66]; see (2.5.4) and (2.5.35) below). We may therefore expect that our
working hypothesis holds in all those cases where BEE forces the degree sequence
to assume either a different mean of a different variance in the two ensembles, as
in the case under study.

2.4 Proof of main Theorem part I: constraint on
the degree sequence

In what follows we suppress the n-dependence from p(n), d(n), λ1(n),
writing p, d, λ1. The d-regular random graph with n vertices, written
Gn,d, coincides with the microcanonical ensemble with constraint ~C? =

(d, . . . , d) on the degree sequence, where we allow d = d(n). The largest
eigenvalue of the adjacency matrix of Gn,d equals d, irrespective of n.
The Erdős-Rényi random graph with retention probability p = d/(n− 1)

coincides with the canonical ensemble with the same constraint.
In order to understand the difference in behaviour of λ1 under the

two ensembles, we need Theorem 2.1.1. Indeed, the result in (2.1.4),
which actually holds for a generic symmetric random matrix subject to
specific regularity conditions, can be interpreted as follows. The adja-
cency matrix A associated with G(n, p) consists of elements {aij}i,j∈[n]

that are identically 0 when i = j and Bernoulli random trials (aij = 0, 1)
with success probability p when i 6= j. The largest eigenvalue of the de-
terministic matrix Āwhose entries are āij = Ecan[aij ] = pwhen i 6= j and
āij = 0 when i = j is given by λ1(Ā) = (n − 1)p. Hence, compared to
λ1(Ā), λ1 is shifted by a random variable whose expected value is (1−p)
and is distributed as N (1− p, 2p(1− p)) under certain conditions on d

(see [57, equation 6.10]) plus an error term of order dependent on the
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considered regime ( O(1/
√
n) for p constant). It is important to note that

the parameters of this shift depend on p only. In [57, 66] it is shown that
(2.1.4) relies on the fact that in the canonical ensemble the eigenvector
~v1 corresponding to the largest eigenvalue λ1 is very close to the vector
~1 = (1, . . . , 1) (i.e., the norm of the projection of ~v1 onto ~1 is much larger
than the norm of the projection of ~v1 onto the perpendicular space ~1⊥).

It was shown in [70] that BEE holds in the all regimes covered in
Theorem 2.1.2(1), namely the delta tame regime, which corresponds to
δ ≤ p = d/(n− 1) ≤ 1− δ with δ ∈ (0, 1

2 ] (see [70, Definition 1.1]) and the
sparse regime (d = o(

√
n)). Hence the claim in Theorem 2.1.2(1) follows.

2.5 Proof of main Theorem part II: constraint on
the total number of edges

Consider the case where the constraint is on the total number of edges:
~C(g) = ~C? =

(
n
2

)
p for some p ∈ (0, 1). Then the canonical ensemble

is still the Erdős-Rényi random graph with parameter p. It was proved
in [108] that the two ensembles are asymptotically equivalent on scale
n. In particular, it was shown that Sn(Pmic ‖ Pcan) = log n + Θ(1). The
canonical probability of drawing a microcanonical realization is given by
(2.3.5):

Pcan(Γ~C?) = e−Sn(Pmic ‖ Pcan) = e− logn+Θ(1) = Θ(n−1). (2.5.1)

Together with (2.3.4), this tells us that if we can find an event [EP ]c such
that Pcan([EP ]c) = o(n−1), then we know that limn→∞ Pmic(EP) = 1. Our
goal is to use the results in [57] to apply (2.3.4) with (2.5.1).

In Section 2.5.1 we show how our results follow from [57, Theorem
6.2] both in the dense and the non-dense regime. In Section 2.5.2 and
2.5.3 we focus on the dense regime and show how our results follow by
making the concentration inequalities used in [66] tighter. In particular,
we will find that the approach heavily depends on the ability of identi-
fying good concentration inequalities for the degree sequence, which is
a special case of the bounds presented in [57]. The heavy dependence on
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the degree sequence is further evidence of what was said in Remark 2.3.2.
In Section 2.5.2 we prove a concentration inequality for the degrees un-
der the canonical ensemble (Lemma 2.5.1) that is of independent interest.
In Section 2.5.3 we use this to prove a concentration inequality for a func-
tional of the degrees that approximates the largest eigenvalue well in the
dense regime (Lemma 2.5.3). In Section 2.5.4 we transfer the results from
the previous sections to the microcanonical ensemble (Lemma 2.5.4), and
show that this leads to a negligible shift of the expected largest eigen-
value.

2.5.1 Proof of main Theorem via known results

In [57, Chapter 6] the largest eigenvalue of matrices of the form A =

A0 +E[A] = A0 +f |~e 〉〈~e | is studied, whereA0 is a matrix with mean-zero
entries, ~e = 1√

n
(1, 1, . . . , 1)

T and 1 + ε0 ≤ f ≤ NC , with ε0, C ∈ (0,∞)

constants. In order to consider only adjacency matrices As of simple
graphs, we have to get rid of the diagonal of A. This can be easily done
by considering As = A − pI = A0 + f |~e 〉〈~e | − pI , where p = p(n) is the
retention probability that appears Theorem 2.1.1 subject to (2.1.3) and
f = np. We note that if λ1 is the largest eigenvalue of A, then λ1 − p is
the largest eigenvalue of As, so it suffices to study the largest eigenvalue
of A.

Let Ã be the normalized version of A, defined by Ã = A/
√
np(1− p).

This scaling is needed in order to have ‖H‖ = O(1) with high probability.
Let Ã0 be the centered version of Ã, i.e., Ã0 = Ã − Ecan

[
Ã
]
. It is easy to

see that Ecan

[
Ã
]

can be expressed as
√
np/(1− p)|~e 〉〈~e |, where again

~e = 1√
n

(1, 1, . . . , 1)
T . Following [57, Theorem 6.2], we say that an event

E holds with (ξ, ν)-high probability when

P(Ec) ≤ e−ν(logn)ξ , (2.5.2)

where ν and ξ can be two positive n-dependent constants bounded from
below by ν > 0 and ξ > 1. Note that e−ν(logn)ξ = o(n−1) whenever ν > 0

and ξ > 1. Thus, if an event EP of the type described in (2.3.3) holds with
(ξ, ν)-high probability under Pcan, then by (2.3.4) and (2.5.1) EP it holds
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also under Pmic. Starting from the equation(
I− Ã0

λ1

)
λ1~v =

√
np

1− p
〈~e,~v〉~e, (2.5.3)

where ~v is the eigenvector associated with λ1 and I is the identity ma-
trix, after multiplying by (I − Ã0

λ1
)−1 and projecting on ~e we obtain the

following series for λ1:

λ1 =

√
np

1− p
∑
k∈N0

〈
~e,

(
Ã0

λ1

)k
~e

〉
. (2.5.4)

We see that for the series to converge we need
∥∥∥Ã0

∥∥∥/λ1 < 1. From [57,
Lemma 4.3] (see also [4, 106, 116, 130]) and the leading order of (2.5.4)
(see also [57, Eq.(6.5)]) we have that

∥∥∥Ã0

∥∥∥/λ1 < 1 with (ξ, ν)-high prob-
ability (which also holds for the microcanonical ensemble). Iterating
(2.5.4), we get that with (ξ, ν)-high probability

λ1 =
√

np
1−p +

〈
~e, Ã0~e

〉
+

(〈
~e, Ã2

0~e
〉
−
〈
~e, Ã0~e

〉2
)(√

np
1−p

)−1

+

(〈
~e, Ã0~e

〉3

− 3
〈
~e, Ã0~e

〉〈
~e, Ã2

0~e
〉)(√

np
1−p

)−2

+O

((√
np

1−p

)−3

+
(

(np)q
1−p

)−1
)
,

(2.5.5)
where q is the parameter defined in Theorem 2.1.1. Taking expectations,
using [57, Lemma 6.5] and scaling back, we get (2.1.4) for E[λ1]−p, the ex-
pected eigenvalue of As. Note that all the bounds hold with (ξ, ν)-high
probability. We can therefore conclude via (2.3.4) that (2.1.4) approxi-
mates λ1 with a vanishing error also in the microcanonical ensemble,
where the constraint is on the total number of edges. Together with the
result of Lemma 2.5.3, we conclude that limn→∞ (Ecan [λ1]− Emic [λ1]) =

0.

2.5.2 Concentration for the degrees under the dense canon-
ical ensemble

For the remainder of the paper we take p ∈ (0, 1) constant and A to
be the unnormalized adjacency matrix. For i 6= j, Ecan[aij ] = p and
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Varcan[aij ] = p(1 − p). In what follows we abbreviate µ = p and σ2 =

p(1 − p). We write ~1 = ~v1 + ~r with ~r ∈ ~1⊥, 〈~v1, ~r〉 = 0 and A~v1 = λ1~v1.
Following the power method in [96], we define

~d = A~1 = A(~v1 + ~r) = λ1~v1 +A~r, (2.5.6)

which is the vector of row sums of the matrix A, i.e., the vector of de-
grees of the vertices (the degree sequence). Centering ~d by Θ~1 with
Θ = E[di] = (n− 1)p and using ~1 = ~v1 + ~r, we get

~d−Θ~1 = (λ1 −Θ)~v1 + (A~r −Θ~r). (2.5.7)

Our key step is the following lemma.

Lemma 2.5.1. With σ2 denoting p(1 − p), there exist two constants c1, c2 ∈
(0,∞) such that

Pcan

(∣∣∣∣∣
n∑
i=1

(di −Θ)
2 − σ2n(n− 1)

∣∣∣∣∣ ≥ t
)
≤ c2e−c1t/n

3/2

. (2.5.8)

Proof. The term
∑n
i=1 (di −Θ)

2 can be written as

n∑
i=1

 n∑
j=1

(aij − Ecan[aij ])

2

=

n∑
i=1

 n∑
j=1

bij

2

=

n∑
i=1

n∑
j=1

n∑
k=1

bijbik,

(2.5.9)
where

bij = aij − Ecan[aij ] =

{
aij − p, if i 6= j,

0, if i = j,
(2.5.10)

are the centred entries of the adjacency matrix. Note that

Ecan

 n∑
i=1

n∑
j=1

n∑
k=1

bijbik

 = σ2n(n− 1). (2.5.11)

Straightforward counting shows that the sum in (2.5.9) containsO(n3)
different terms. Let us represent bij = bji by a variable Xα, α ∈

[(
n
2

)]
.

Then (2.5.9) can be rewritten in the form∑
α,β∈[(n2)]

hαβXαXβ , (2.5.12)
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which is the quadratic form of the matrix H = {hαβ}α,β∈[(n2)]. Because
there is a one-to-one correspondence between the terms in (2.5.12) and
(2.5.9), we can conclude thatH hasO(n3) entries, whose values are either
1 (off-diagonal) or 2 (diagonal). We can apply to (2.5.12) the Hanson-
Wright inequality (see [75] or [2, Theorem 1.4, item 6]).

Theorem 2.5.2. Let X = (X1, . . . XN ) be mean-zero square-integrable ran-
dom variables taking values in R, and let ξ > 0 be such that

‖X‖ψ2
= inf

{
t > 0 : E

[
exp

(
‖X‖22/t2

)]
≤ 2
}
≤ ξ. (2.5.13)

LetH = (hαβ)αβ∈[N ] be a real symmetric matrix. Then Y =
∑
α,β∈[N ] hαβXαXβ

satisfies

P (|Y − E[Y ]| ≥ t) ≤ 2 exp

(
− 1

C
min

{
t2

ξ4‖H‖2HS

,
t

ξ2‖H‖`N2 →`N2

})
, t > 0,

(2.5.14)
where C is a suitable constant, ‖H‖2HS =

∑
α,β∈[N ] h

2
αβ is the Hilbert-Schmidt

norm of H , and

‖H‖2`N2 →`N2 = sup

 ∑
α,β∈[N ]

hαβxαyβ :
∑
α∈[N ]

x2
α ≤ 1,

∑
α∈[N ]

y2
α ≤ 1


(2.5.15)

is the `N2 → `N2 norm of H .

In our setting, N =
(
n
2

)
. Since |Xα| < 1, we have ‖X‖ψ2

≤ 1/ log 2, so
that (2.5.13) applies with ξ = 1/ log 2. Since H has bounded entries, we
have ‖H‖2HS = O(n3). Moreover, by the Cauchy-Schwarz inequality we
have

‖H‖2`N2 →`N2 = sup {‖Hx‖2 : ‖x‖2 ≤ 1} = ‖H‖op, (2.5.16)

where the latter is the operator norm of H . But

‖H‖2HS = Tr(H†H) ≥ λmax(H†H) = ‖H‖2op, (2.5.17)

and so the exponent in the right-hand side of (2.5.14) is bounded below
by

min

{
t2

ξ4n3
,

t

ξ2n3/2

}
≥ c3t

n3/2
, (2.5.18)

where c3 is a suitable constant. Taking c1 ≤ c3/C, with C the constant
appearing in (2.5.14), we obtain (2.5.8).
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We end this section with an immediate consequence of Lemma 2.5.1.
Picking t = σ2n2 and using that, for appropriately chosen constants
C1, C2, C3, C4,

σ4n4

‖H‖2HS

≥ σ4n4

C1n3
≥ C2n,

σ2n2

L2‖H‖op

≥ σ2n2

C3‖H‖HS

≥ C4

√
n, (2.5.19)

we find that there are constants c̃ ≤ C4/C and C̃ such that

Pcan

(∣∣∣∣∣
n∑
i=1

(di −Θ)
2 − σ2n2

∣∣∣∣∣ ≥ 2σ2n2

)

≤ 2 exp

(
− 1

C
min

{
4σ4n4

‖H‖2HS
,

2σ2n2

‖H‖op

})
≤ C̃e−c̃

√
n.

(2.5.20)

2.5.3 Concentration for the largest eigenvalue under the
dense canonical ensemble

After applying A once to ~1, we must find a suitable normalization in
order to isolate λ1. This is given by∑n

i=1 d
2
i∑n

i=1 di
=
〈~d, ~d〉
〈~1, ~d〉

=
‖A~1‖
〈~1, A~1〉

= λ1 +
‖A~r‖2 − λ1〈~r,A~r〉∑n

i=1 di
. (2.5.21)

In [66], it was shown that
∑n
i=1 d

2
i /
∑n
i=1 di approximates λ1 with

high probability, in the sense that for any x > 0,

Pcan

(∣∣∣∣∑n
i=1 d

2
i∑n

i=1 di
−
∑n
i=1 di
n

− σ2

µ

∣∣∣∣ ≥ 3σ2x√
n

)
≤ 1

x2
, (2.5.22)

which with the choice x =
√
n leads to an upper bound of order 1/n.

As it turns out, however, in order to transfer the estimates to the micro-
canonical ensemble via (2.3.4), we need the upper bound to hold with
probability o(1/n). This result is covered by the following lemma.

Lemma 2.5.3. Let ~d be as before, and µ = p, σ2 = p(1 − p). For any γ > 0
there exist γ′, γ1, γ2 satisfying c1γ1, γ2 > 1, with c1 the constant in (2.5.8),
such that

Pcan

(∣∣∣∣∑n
i=1 d

2
i∑n

i=1 di
−
∑n
i=1 di
n

− σ2

µ

∣∣∣∣ ≥ γ√
n

)
≤ γ′

nmin{c1γ1,γ2}
. (2.5.23)
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Proof. First note that

Ecan

[∑n
i=1 di
n

]
=

1

n

n∑
i=1

Ecan[di] = (n− 1)p = Θ (2.5.24)

and write∑n
i=1 d

2
i∑n

i=1 di
−
∑n
i=1 di
n

=

∑n
i=1 (di −Θ)

2∑n
i=1 di

−
(
n−1

∑n
i=1 di −Θ

)2
n−1

∑
i=1 di

. (2.5.25)

To analyse the first ratio in (2.5.25), note that

n∑
i=1

di =
∑
i,j∈[n]

aij = 2
∑

i,j∈[n],j>i

aij . (2.5.26)

Applying Hoeffding’s inequality (see e.g. [23, 29]), we have

Pcan

∣∣∣∣∣∣
∑

i,j∈[n],j>i

aij −
n(n− 1)

2
µ

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
− 4t2

n(n− 1)

)
. (2.5.27)

Take t = n
√
γ2 log n in (2.5.27) with γ2 > 1 and apply Lemma 2.5.1 with

t = n3/2γ1 log n, with γ1c1 > 1 and c1 the constant in the exponential
bound of (2.5.8). Then, for some γ > 0,∑n

i=1 (di −Θ)
2∑n

i=1 di
≤ n(n− 1)σ2 + n3/2γ1 log n

n(n− 1)µ+ n
√
γ2 log n

≤ σ2

µ
+

γ√
n

(2.5.28)

with probability at least 1− 1/nγ1c1 − 1/nγ2 . Similarly, the probability of∑n
i=1 (di −Θ)

2∑n
i=1 di

≥ σ2

µ
− γ√

n
(2.5.29)

is bounded from below by 1− 1/nγ1c1 − 1/nγ2 . Hence

Pcan

(∣∣∣∣∣
∑n
i=1 (di −Θ)

2∑n
i=1 di

− σ2

µ

∣∣∣∣∣ ≥ γ√
n

)
≤ γ′

nmin{γ1c1,γ2}
. (2.5.30)

To analyse the second ratio in (2.5.25), we write(
n−1

n∑
i=1

di −Θ

)2

=
1

n2

2
∑

i,j∈[n],j>i

(aij − Ecan[aij ])

2

, (2.5.31)
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and apply Hoeffding’s inequality with t = O(n2) twice. This gives

Pcan

((
n−1

∑n
i=1 di −Θ

)2
n−1

∑n
i=1 di

>
γ̃

n

)
≤ γ̃2e

−γ̃1n2

, γ̃ > 0, (2.5.32)

where γ̃2 and γ̃1 are suitable constants. Applying the union bound to the
complementary events, we obtain (2.5.23).

2.5.4 Transfer to the dense microcanonical ensemble

Next we use the transfer method to pass the property characterised by
the event in (2.5.23) to the microcanonical ensemble. Indeed, using the
notation of Section 2.3, we identify∣∣∣∣∑n

i=1 d
2
i∑n

i=1 di
−
∑n
i=1 di
n

− σ2

µ

∣∣∣∣ ≥ γ√
n

(2.5.33)

as the event EcP , i.e., the set of graphs that do not possess the property
that we would like to pass on. The fact that Pcan (EcP) tends to zero faster
than Pcan(Γ~C?) (as n → ∞, that is) tells us that also Pmic (EcP) tends to
zero, and implies that

lim
n→∞

Pmic

(∣∣∣∣∑n
i=1 d

2
i∑n

i=1 di
−
∑n
i=1 di
n

− σ2

µ

∣∣∣∣ ≤ γ√
n

)
= 1. (2.5.34)

Thus, in the microcanonical ensemble
∑n
i=1 d

2
i /
∑n
i=1 di concentrates

around the sum n−1
∑n
i=1 di + σ2/µ with an error of order 1/

√
n. How-

ever, we need to also see what n−1
∑n
i=1 di + σ2/µ is in the microcanon-

ical ensemble. The term σ2/µ, a constant equal to 1− p, is in accordance
with the constraint in the microcanonical ensemble. For the other term
we have n−1

∑n
i=1 di = (n− 1)p. The two together give precisely the ex-

pected value in the canonical ensemble, as follows from Proposition 2.1.1.
Hence we only need to show that

∑n
i=1 d

2
i /
∑n
i=1 di concentrates around

λ1 also in the microcanonical ensemble, for which we can once more use
the transfer method.

Lemma 2.5.4. For any η > 0, there exist ζ and Λ such that

Pcan

(∣∣∣∣∑n
i=1 d

2
i∑n

i=1 di
− λ1

∣∣∣∣ ≥ η√
n

)
≤ Λe−ζ

√
n. (2.5.35)
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Proof. We need to show that the last term in (2.5.21),

‖A~r‖2 − λ1〈~r,A~r〉∑n
i=1 di

, (2.5.36)

is small. First we show that ‖~r‖ is bounded in probability. Indeed,
n∑
i=1

(di −Θ)
2

= (λ1 −Θ)2‖~v1‖2 + ‖A~r −Θ~r‖2. (2.5.37)

Since (λ1 −Θ)2‖~v1‖2 ≥ 0, we have ‖A~r −Θ~r‖2 <
∑n
i=1 (di −Θ)

2. By the
Courant-Fisher theorem [116, Theorem 1.3.2], we get that ‖A~r −Θ~r‖ ≥
|Θ− λ2|‖~r‖ (indeed, |Θ− λi| ≥ |Θ− λ2| for i > 2). Next, we need a
concentration inequality for λ2. Use [4, Theorem 1] plus the fact that the
largest eigenvalue of a centred matrix is of order O(σ

√
n) almost surely

[106], [116, Theorem 2.3.24], [130, Theorem 1.3]. Again use the Courant-
Fisher theorem to pass to the non-centred case [66, Lemma 1]. We find
that, for any β > 2 and for ñ large enough,

Pcan

(
max
i>1
|λi| ≥ βσ

√
n

)
≤ 4e−ζ1n, n > ñ (2.5.38)

where ζ1 is a suitable constant. Since maxi>1|λi| ≥ λ2 ≥ 0, we can bound
λ2 ≤ βσ

√
n with high probability. Using (2.5.20), we have

Pcan

(
‖~r‖2 < (di −Θ)

2

(Θ− λ2)2
<

n2σ2

(µn− βσ
√
n)2

<
4σ2

µ2

)
≥ 1−4e−ζ1n−C̃e−c̃

√
n,

(2.5.39)
as a consequence of the union bound applied to the last term of P (∩nEn) =
1− P(∪n[En]c), with [En]c denoting the events described by Lemma 2.5.1
and (2.5.38). Thus, we have

Pcan

(
‖~r‖2 ≥ 4σ2

µ2

)
≤ C̃1e

−c̃1
√
n, (2.5.40)

where C̃1 and c̃1 are suitable constants.
All the other terms in (2.5.36) can be obtained by repeatedly using

(2.5.40), (2.5.38) and (2.5.20). Note that in order to get (2.5.40) we have
used both (2.5.38) and (2.5.20), and the events that these inequalities
identify. Thus, using (2.5.38) twice, we obtain

Pcan

(
‖A~r‖2 ≤ λ2

2‖~r‖
2 ≤ 50σ4

µ2
n

)
≥ 1− 4e−ζ1n − C̃e−c̃

√
n. (2.5.41)
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Therefore

Pcan

(
‖A~r‖2 ≥ 50σ4

µ2
n

)
≤ C̃2e

−c̃2
√
n, (2.5.42)

where C̃2 and c̃2 are suitable constants. In the same way we can bound
|〈~r,A~r〉| ≤ ‖~r‖‖A~r‖, which yields

Pcan

(
|〈~r,A~r〉| ≥ 2

√
50σ3

µ2

√
n

)
≤ C̃3e

−c̃3
√
n. (2.5.43)

Now, using the trivial deterministic bound λ1 ≤ maxi
∑
j |aij | < n and

Hoeffding’s inequality on
∑n
i=1 di = 2

∑
j>i aij , we can conclude that,

for any η > 0,

Pcan

(∣∣∣∣∣‖A~r‖2 − λ1〈~r,A~r〉∑n
i=1 di

∣∣∣∣∣ ≥ η√
n

)
≤ Λe−ζ

√
n, (2.5.44)

where ζ and Λ are suitable constants. Thus, recalling (2.5.21), we have
settled (2.5.35).

We thus find that the probability in the canonical ensemble of the
event in (2.5.35) is o (1/n), which confirms the results of Section 2.5.1. In
particular, we have shown that the central object is the ratio

∑n
i=1 d

2
i /
∑n
i=1 di.

Remark 2.5.5. The constants in the right-hand side of (2.5.23) can be cho-
sen freely. By Lemma 2.5.4, this means that for any choice of constraint
for which Sn(Pmic ‖ Pcan) = O(log n) and the canonical ensemble is the
Erdős-Rényi random graph, we have that λ1 is close to n−1

∑n
i=1 di + σ2

µ

in both ensembles. If the constraint does not prevent Emic[n−1
∑n
i=1 di +

σ2

µ ] to take the value (n−1)p+(1−p), then we have the same result as in
Theorem 2.1.2(2), which supports the working hypothesis put forward in
Section 2.1. Indeed, as shown in Section 2.3, Sn(Pmic ‖ Pcan) = o(n) is the
condition for EE. Instead, in the sparse regime we have to rely on events
that hold with (ξ, ν)-high probability, where ξ is in principle allowed to
vary with n, and the condition has to be checked for the specific value of
p(n).
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Chapter 3

Central limit theorem for
the principal eigenvalue
and eigenvector of
Chung-Lu random graphs

This chapter is based on:
P. Dionigi, D. Garlaschelli, R.S. Hazra, F. den Hollander, M. Mandjes.
Central limit theorem for the principal eigenvalue and eigenvector of Chung-Lu
random graphs. Journal of Physics: Complexity, 2023.

Abstract

A Chung-Lu random graph is an inhomogeneous Erdős-Rényi
random graph in which vertices are assigned average degrees,
and pairs of vertices are connected by an edge with a proba-
bility that is proportional to the product of their average de-
grees, independently for different edges. We derive a central
limit theorem for the principal eigenvalue and the compo-
nents of the principal eigenvector of the adjacency matrix of



a Chung-Lu random graph. Our derivation requires certain
assumptions on the average degrees that guarantee connec-
tivity, sparsity and bounded inhomogeneity of the graph.

3.1 Introduction, main results and discussion

3.1.1 Introduction

The spectral properties of adjacency matrices play an important role in
various areas of network science. In the present paper we consider an in-
homogeneous version of the Erdős-Rényi random graph called the Chung-
Lu random graph and we derive a central limit theorem for the principal
eigenvalue and eigenvector of its adjacency matrix.

Setting

Recall that the homogeneous Erdős-Rényi random graph has vertex set
[n] = {1, . . . , n}, and each edge is present with probability p and absent
with probability 1−p, independently for different edges, where p ∈ (0, 1)

may depend on n (in what follows we often suppress the dependence on
n from the notation; the reader is however warned that most quantities
depend on n). The average degree is the same for every vertex and equals
(n− 1)p when self-loops are not allowed, and np when self-loops are al-
lowed (and are considered to contribute to the degrees of the vertices).
In [43] the following generalisation of the Erdős-Rényi random graph is
considered, called the Chung-Lu random graph, with the goal to accom-
modate general degrees. Given a sequence of degrees ~dn = (di)i∈[n], con-
sider the random graph Gn(~dn) in which to each pair i, j of vertices an
edge is assigned independently with probability pij = didj/m1, where
m1 =

∑n
i=1 di (for computational simplicity we allow self-loops). Here,

the degrees can act as vertex weights. Vertices with low weights are more
likely to have less neighbours than vertices with high weights which act
as hubs (see [77, Chapter 6] for a general introduction to generalised ran-
dom graphs). If m2

∞ ≤ m1 with m∞ = maxi∈[n] di, then pij ≤ 1 for all
i, j ∈ [n], and the sequence ~dn is graphical. Note that in Gn(~dn) the ex-
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pected degree of vertex i is di. The classical Erdős-Rényi random graph
(with self-loops) corresponds to di = np for all i ∈ [n].

Principal eigenvalue and eigenvector

The largest eigenvalue of the adjacency matrix A and its corresponding
eigenvector, written as (λ1, v1), contain important information about the
random graph. Several community detection techniques depend on a
proper understanding of these quantities [126], [90], [1], which in turn
play an important role for various measures of network centrality [92],
[97] and for the properties of dynamical processes (such as the spread of
an epidemic) taking place on networks [37, 100]. For Erdős-Rényi ran-
dom graphs, it was shown in [89] that with high probability (whp in the
following) λ1 scales like

λ1 ∼ max{
√
D∞, np}, n→∞, (3.1.1)

where D∞ is the maximum degree. This result was partially extended
to Gn(~dn) in [44], and more recently to a class of inhomogeneous Erdős-
Rényi random graphs in [19], [20]. For a related discussion on the be-
haviour of (λ1, v1) in real-world networks, see [37, 100]. In the present
paper we analyse the fluctuations of (λ1, v1). We will be interested specif-
ically in the case where λ1 is detached from the bulk, which for Erdős-
Rényi random graphs occurs when λ1 ∼ np whp, and for Chung-Lu
random graphs when λ1 ∼ m2/m1, where m2 =

∑
i∈[n] d

2
i . Note that the

quotient m2/m1 arises from the fact that the average adjacency matrix is
rank one and that its only non-zero eigenvalue is m2/m1. Such rank-one
perturbations of a symmetric matrix with independent entries became
prominent after the work in [13]. Later studies extended this work to
finite-rank perturbations [12], [21], [35], [36], [60], [61]. Erdős-Rényi ran-
dom graphs differ, in the sense that perturbations live on a scale different
from

√
n. For Chung-Lu random graphs we assume that m2/m1 →∞.

In the setting of inhomogeneous Erdős-Rényi random graphs, finite-
rank perturbations were studied in [39]. In that paper the connection
probability between between i and j is given by pij = εnf(i/n, j/n),
where f : [0, 1]2 → [0, 1] is almost everywhere continuous and of finite
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rank, εn ∈ [0, 1] and nεn � (log n)8. However, for a Chung-Lu random
graph with a given degree sequence it is not always possible to construct
an almost everywhere continuous function f independent of n such that
εnf(i/n, j/n) = didj/m1. In the present paper we extend the analysis
in [39] to Chung-Lu random graphs by focussing on (λ1, v1). For Erdős-
Rényi random graphs it was shown in [57], [56] that λ1 satisfies a central
limit theorem (CLT) and that v1 aligns with the unit vector. These papers
extend the seminal work carried out in [67].

Chung-Lu random graphs

In the present paper, subject to mild assumptions on ~dn, we extend the
CLT for λ1 from Erdős-Rényi random graphs to Chung-Lu random graphs,
and derive a pointwise CLT for v1 as well. It was shown in [44] that
if m2/m1 �

√
m∞ (log n), then λ1 ∼ m2/m1 whp, while if

√
m∞ �

(m2/m1)(log n)2, then λ1 = m∞ whp. In fact, examples show that a
result similar to (3.1.1) does not hold, and that λ1 does not scale like
max{m2/m1,

√
m∞}. These facts clearly show that the behaviour of λ1

is controlled by subtle assumptions on the degree sequence. In what fol-
lows we stick to a bounded inhomogeneity regime where m2/m1 � m∞.

The behaviour of v1 is interesting and challenging, and is of ma-
jor interest for applications. One of the crucial properties to look for
in eigenvectors is the phenomenon of localization versus delocalization.
An eigenvector is called localized when its mass concentrates on a small
number of vertices, and delocalized when its mass is approximately uni-
formly distributed on the vertices. The complete delocalization picture
for Erdős-Rényi random graphs was given in [57]. In fact, it was proved
that λ1 is close to the scaled unit vector in the `∞-norm. In the present
paper we do not study localization versus delocalization for Chung-Lu
random graphs in detail, but we do show that in a certain regime there
is strong evidence for delocalization because v1 is close to the scaled unit
vector. In [32, Corollary 1.3 ] the authors found that the eigenvectors of a
generalized Wigner matrix are distributed according to a Haar measure
on the orthogonal group, and the coordinates have Gaussian fluctuations
after appropriate scaling. Our work shows that the coordinate-wise fluc-
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tuations hold as well for the principal eigenvector of the non-centered
Chung-Lu adjacency matrix and that they are Gaussian after appropri-
ate centering and scaling.

Outline

In Section 3.1.2 we define the Chung-Lu random graph, state our as-
sumption on the degree sequence, and formulate two main theorems:
a CLT for the largest eigenvalue and a CLT for its associated eigenvector.
In Section 3.1.3 we discuss these theorems and place them in their proper
context. Section 3.2 contains the proof of the CLT of the eigenvalue and
Section 3.3 studies the properties of the principal eigenvector.

3.1.2 Main results

Set-up

Let Gn be the set of simple graphs with n vertices. Let ~dn = (di)i∈[n] be a
sequence of degrees, such that di ∈ N for all i ∈ [n] and abbreviate

mk =
∑
i∈[n]

(di)
k, m∞ = max

i∈[n]
di, m0 = min

i∈[n]
di,

Note that these numbers depend on n, but in the sequel we will suppress
this dependence. For each pair of vertices i, j (not necessarily distinct),
we add an edge independently with probability

pij =
didj
m1

. (3.1.2)

The resulting random graph, which we denote by Gn(~dn), is referred to
in the literature as the Chung-Lu random graph. In [43] it was assumed
that m2

∞ ≤ m1 to ensure that pij ≤ 1. In the present paper we need
sharper restrictions.

Assumption 3.1.1. Throughout the paper we need two assumptions on
~dn as n→∞:

(D1) Connectivity and sparsity: There exists a ξ > 2 such that

(log n)2ξ � m∞ � n1/2.
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(D2) Bounded inhomogeneity: m0 � m∞.

♠

The lower bound in Assumption 3.1.1(D1) guarantees that the random
graph is connected whp and that it is not too sparse. The upper bound
is needed in order to have m∞ = o(

√
m1), which implies that (3.1.2) is

well defined. Assumption 3.1.1(D2) is a restriction on the inhomogeneity
of the model and requires that the smallest and the largest degree are
comparable.

Remark 3.1.2. The lower bound on m∞ in Assumption 3.1.1(D1) can be
seen as an adaptation to our setting of the main condition in [44, Theorem
2.1] for the asymptotics of λ1. As mentioned in Section 3.1.1, under the
assumption

m2

m1
�
√
m∞ (log n)ξ,

[44] shows that λ1 = [1+o(1)]m2/m1 whp. It is easy to see that the above
condition together with Assumption 3.1.1(D2) gives the lower bound in
Assumption 3.1.1(D1). ♠

Remark 3.1.3. When m∞ � n1/6, [77, Theorem 6.19] implies that our
results also hold for the Generalized Random Graph (GRG) model with the
same average degrees. This model is defined by choosing connection
probabilities of the form

pij =
didj

m1 + didj
,

and arises in statistical physics as the canonical ensemble constrained on
the expected degrees, which is also called the canonical configuration model.
Note that in the above connection probability, di plays the role of a hid-
den variable, or a Lagrange multiplier controlling the expected degree
of vertex i, but does not in general coincide with the expected degree it-
self. However, under the assumptions considered here, di does coincide
with the expected degree asymptotically. The reader can find more about
GRG and their use in [77, Chapter 6], and about their role in statistical
physics in [109]. In the corresponding microcanonical ensemble the degrees
are not only fixed in their expectation but they take a precise determin-
istic value, which corresponds to the microcanonical configuration model.
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The two ensembles were found to be nonequivalent in the limit as n→∞
[113]. This result was shown to imply a finite difference between the ex-
pected values of the largest eigenvalue λ1 in the two models [53] when
the degree sequence was chosen to be constant (di = d for all i ∈ [n]). In
this latter case the canonical ensemble reduces to the Erdős-Rényi ran-
dom graph with p = d/n, while the microcanonical ensemble reduces to
the d-regular random graph model. Although ensemble nonequivalence
is not our main focus here, we will briefly relate some of our results to
this phenomenon. ♠

Notation

Let A be the adjacency matrix of Gn(~dn) and E[A] its expectation. The
(i, j)-th entry of E[A] equals to pij in (3.1.2). The (i, j)-th entry ofA−E[A]

is an independent centered Bernoulli random variable with parameter
pij . Let λ1 ≥ . . . ≥ λn be the eigenvalues of A and let v1, . . . , vn be
the corresponding eigenvectors. The vector e will be the n-dimensional
column vector

e =
1
√
m1

(d1, · · · , dn)t, (3.1.3)

where t stands for transpose. It is easy to see that E[A] = eet.

Definition 3.1.4. Following [57], we say that an event E holds with (ξ, ν)-
high probability (written (ξ, ν)-hp) when there exist ξ > 2 and ν > 0 such
that

P(Ec) ≤ e−ν(logn)ξ . (3.1.4)

♠

Note that this is different from the classical notion of whp, because it
comes with a specific rate.

Remark 3.1.5. Our results hold for any ν > 0 as soon as ξ > 2 (think
of ν = 1). The role of ν becomes important when we consider specific
subsets S of the event space and split into S ∩E and S ∩Ec (see e.g. [57]).
♠

We write w−→ to denote weak convergence as n → ∞, and use the sym-
bols o,O to denote asymptotic order for sequences of real numbers.
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CLT for the principal eigenvalue

Our first theorem identifies two terms in the expectation of the largest
eigenvalue, and shows that the largest eigenvalue follows a central limit
theorem.

Theorem 3.1.6. Under Assumption 3.1.1, the following hold:

(I)
E[λ1] =

m2

m1
+
m1m3

m2
2

+ o(1), n→∞.

(II)
m2

m1

(
λ1 − E[λ1]

σ1

)
w−→ N (0, 2), n→∞,

where

σ2
1 =

∑
i,j

(pij)
3(1− pij) ∼

m2
3

m3
1

, n→∞.

CLT for the principal eigenvector

Our second theorem shows that the principal eigenvector is parallel to
the normalised degree vector, and is close to this vector in `∞-norm.
It also identifies the expected value of the components of the principal
eigenvector, and shows that the components follow a central limit theo-
rem.

Theorem 3.1.7. Let ẽ = e
√
m1/m2 be the `2-nomalized degree vector. Let v1

be the eigenvector corresponding to λ1 and let v1(i) denote the i-th coordinate
of v1. Under Assumption 3.1.1, the following hold:

(I) 〈v1, ẽ〉 = 1 + o(1) as n→∞ with (ξ, ν)-hp .

(II) ‖v1 − ẽ‖∞ ≤ O
(

(logn)ξ√
nm∞

)
as n→∞ with (ξ, ν)-hp .

(III) E[v1(i)] = di√
m2

+ O
(

(logn)2ξ√
m2

)
as n→∞.

Moreover, if the lower bound in Assumption 3.1.1(D1) is strengthened to (log n)4ξ �
m∞, then for all i ∈ [n],
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(IV)
m

3/2
2

m1

(
v1(i)− di/

√
m2

s1(i)

)
w−→ N (0, 1), n→∞,

where
s2

1(i) =
∑
j

d2
jpij(1− pij) ∼ di

m3

m1
, n→∞.

3.1.3 Discussion

We place the theorems in their proper context.

1. Theorems 3.1.6–3.1.7 provide a CLT for λ1, v1. We note that m2/m1 is
the leading order term in the expansion of λ1, while m1m3/m

2
2 is a cor-

rection term. We observe that Theorem 3.1.6(I) does not follow from the
results in [44], because the largest eigenvalue need not be uniformly in-
tegrable and also the second order expansion is not considered there. We
also note that in Theorem 3.1.6(II) the centering of the largest eigenvalue,
E[λ1], cannot be replaced by its asymptotic value as the error term is not
compatible with the required variance.

2. The lower bound in Assumption 3.1.1(D1) is needed to ensure that
the random graph is connected, and is crucial because the largest eigen-
value is very sensitive to connectivity properties. Assumption 3.1.1(D2)
is needed to control the inhomogeneity of the random graph. It plays
a crucial role in deriving concentration bounds on the central moments
〈e, (A − E[A])ke〉, k ∈ N, with the help of a result from [57]. Further re-
finements may come from different tools, such as the non-backtracking
matrices used in [19], [20]. While Assumption 3.1.1(D1) appears to be
close to optimal, Assumption 3.1.1(D2) is far from optimal. It would be
interesting to allow for empirical degree distributions that converge to a
limiting degree distribution with a power law tail.

3. As already noted, if the expected degrees are all equal to each other,
i.e., di = d for all i ∈ [n], then the Chung-Lu random graph, or canoni-
cal configuration model, reduces to the homogeneous Erdős-Rényi ran-
dom graph with p = d/n, while the corresponding microcanonical con-
figuration model reduces to the homogeneous d-regular random graph
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model (here, all models allow for self-loops). This implies that, for the
homogeneous Erdős-Rényi random graph with connection probability
p� (log n)2ξ/n, ξ > 2, Theorem 3.1.6(I) reduces to

E[λ1] = np+ 1 + o(1), n→∞,

while Theorem 3.1.6(II) reduces to

1
√
p

(λ1 − E[λ1])
w−→ N (0, 2), n→∞.

Both these properties were derived in [56] for homogeneous Erdős-Rényi
random graphs and also for rank-1 perturbations of Wigner matrices.
In [53], the fact that E[λ1] in the canonical ensemble differs by a finite
amount from the corresponding expected value (here, d = np) in the
microcanonical ensemble (d-regular random graph) was shown to be a
signature of ensemble nonequivalence.

4. In case di = d for all i ∈ [n], Theorem 3.1.7(III) reduces to the following
CLT, which was not covered by [56] and [53].

Corollary 3.1.8. For the Erdős-Rényi random graph with (log n)4ξ/n� p�
n−1/2 for some ξ > 2,

n

√
p

1− p

(
v1(i)− 1√

n

)
w−→ N (0, 1), n→∞.

Note that, in the corresponding microcanonical ensemble (d-regular ran-
dom graph), v1 coincides with the constant vector where v1(i) = 1/

√
n

for all i ∈ [n]. Therefore in the canonical ensemble each coordinate v1(i)

has Gaussian fluctuations around the corresponding deterministic value
for the microcanonical ensemble. This behaviour is similar to the de-
grees having, in the canonical configuration model, either Gaussian (in
the dense setting) or Poisson (in the sparse setting) fluctuations around
the corresponding deterministic degrees for the microcanonical configu-
ration model [71].

5. One way to satisfy Assumption 3.1.1 is to specify functions ω, c1, . . . , cn,
satisfying (log n)2ξ � ω(n)�

√
n and c ≤ c1(n) ≤ . . . ≤ cn(n) ≤ C with
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c, C ≥ 0, such that

di(n) = ci(n)ω(n), pij =
cicj

1
n

∑
k ck

ω

n
.

The reason why we avoid such a description is that our setting is poten-
tially broader. The concentration estimate in Lemma 3.2.4 requires us to
assume homogeneous degree sequences as above, while Theorem 3.1.6(I)
holds for much more general degree sequences. A further refinement of
Lemma 3.2.4 may be possible. The advantage of the above description
is that it makes the scale ω(n) on which the degrees live explicit. How-
ever, most of the bounds in our proofs depend on some power ofm∞, up
to some multiplicative constant. This means that, in the bounded inho-
mogeneity setting, expressing the asymptotics through ω(n) or m∞ are
equivalent. Bounds expressed through ω(n) would cease to be meaning-
ful as soon as we manage to push beyond the bounded inhomogeneity
setting of our model, while the skeleton of our proof would still hold.

6. In [41] the empirical spectral distribution of A was considered under
the assumption that

(m∞)2/m1 � 1� n(m∞)2/m1,

which is weaker than Assumption 3.1.1. It was shown that if µn
w−→ µ

with µn = n−1
∑n
i=1 δdi/m∞ and µ some probability distribution on R,

then

ESD

(
A√

n(m∞)2/m1

)
w−→ µ� µsc

with µsc the Wigner semicircle law and � the free multiplicative convo-
lution. Since µ� µsc is compactly supported, this shows that the scaling
for the largest eigenvalue and the spectral distribution are different.

3.2 Proof of Theorem 3.1.6

In what follows we use the well-known method of writing the largest
eigenvalue of a matrix as a rank-1 perturbation of the centered matrix.
This method was previously successfully employed in [57, 67, 101].
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Given the adjacency matrix A of our graph G, we can write A = H +

E[A] with H = A − E[A]. Let v1 be the eigenvector associated with the
eigenvalue λ1. Then

Av1 = λ1v1, (H + E[A])v1 = λ1v1, (λ1I −H)v1 = E[A]v1.

Using that E[A] = eet, we have (λ1I − H)v1 = 〈e, v1〉 e, where I is the
n× n identity matrix. It follows that if λ1 is not an eigenvalue of H , then
the matrix (λ1I −H) is invertible, and so

v1 = 〈e, v1〉 (λ1I −H)−1e. (3.2.1)

Eliminating the eigenvector v1 from the above equation, we get

1 =
〈
e, (λ1I −H)−1e

〉
,

where we use that 〈e, v1〉 6= 0 (since λ1 is not an eigenvalue of H). Note
that this can be expressed as

λ1 =

〈
e,

(
I − H

λ1

)−1

e

〉
=

∞∑
k=0

〈
e,

(
H

λ1

)k
e

〉
with (ξ, ν)-hp , (3.2.2)

where the validity of the series expansion will be an immediate conse-
quence of Lemma 3.2.2 below.

Section 3.2.1 derives bounds on the spectral norm of H . Section 3.2.2
analyses the expansion in (3.2.2) and prove the scaling of E[λ1]. Section
3.2.3 is devoted to the proof of the CLT for λ1, Section 3.3 to the proof
of the CLT for v1. In the expansion we distinguish three ranges: (i) k =

0, 1, 2; (ii) 3 ≤ k ≤ L; (iii) L < k <∞, where

L = blog nc.

We will show that (i) controls the mean and the variance in both CLTs,
while (ii)-(iii) are negligible error terms.

3.2.1 The spectral norm

In order to study λ1, we need good bounds on the spectral norm of
H . The spectral norm of matrices with inhomogeneous entries has been
studied in a series of papers [19], [20], [8] for different density regimes.
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An important role is played by λ1(E[A]). In recent literature this
quantity has been shown to play a prominent role in the so-called BBP-
transition [13]. Given our setting (3.1.2), it is easy to see that

λ1(E[A]) =
m2

m1
, (3.2.3)

while all other eigenvalues of E[A] are zero.

Remark 3.2.1. Since m0 ≤ m2

m1
≤ m∞, Assumption 3.1.1(D2) implies that

m2

m1
� m∞. (3.2.4)

♠

We start with the following lemma, which ensures concentration of
λ1 and is a direct consequence of the results in [20] (which matches As-
sumption 3.1.1). In particular, we use [20, Theorem 3.2] to check that the
boundaries of the bulk of the spectral distribution live on a scale smaller
than the scale of λ1.

Lemma 3.2.2. Under Assumption 3.1.1, with (ξ, ν)-hp∣∣∣∣λ1(A)− λ1(E[A])

λ1(E[A])

∣∣∣∣ = O

(
1

√
m∞

)
, n→∞,

and consequently
λ1(A)

λ1 (E[A])

P→ 1, n→∞.

Proof. In the proof it is understood that all statements hold with (ξ, ν)-
hp in the sense of (3.1.4). Let A = H +E[A]. Due to Weyl’s inequality, we
have that

λ1(E[A])− ‖H‖ ≤ λ1(A) ≤ λ1(E[A]) + ‖H‖.

From [20, Theorem 3.2] we know that there is a universal constant C > 0
such that

E [‖A− E[A]‖] = E [‖H‖] ≤
√
m∞

2 +
C

q

√√√√ log n

1 ∨ log
(√

logn
q

)
 ,
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where
q =
√
m∞ ∧ n1/10κ−1/9

with κ defined by
κ = max

ij

pij
m∞/n

=
nm∞
m1

.

Thanks to Assumption 3.1.1(D2), we have κ = O(1). By Remark 3.1 of
[20, Remark 3.1] (which gives us that q =

√
m∞ for n large enough) and

Assumption 3.1.1, we get that

E [‖H‖] ≤


√
m∞

(
2 + C

√
logn√
m∞

)
, (log n)2ξ ≤ √m∞ ≤ n1/10κ−1/9,

√
m∞

(
2 + C′

√
logn

n1/10

)
,

√
m∞ ≥ n1/10κ−1/9.

(3.2.5)
Using [30, Example 8.7] or [20, Equation 2.4] (the Talagrand inequality),
we know that there exists a universal constant c > 0 such that

P (|‖H‖ − E[‖H‖]| > t) ≤ 2e−ct
2

.

For t =
√
ν(log n)ξ,

E[‖H‖]−
√
ν(log n)ξ/2 ≤ ‖H‖ ≤ E[‖H‖] +

√
ν(log n)ξ/2. (3.2.6)

Thus, we have

|λ1(A)− λ1(E[A])| ≤ ‖H‖ ≤
√
m∞(2 + o(1)) +

√
ν(log n)ξ/2. (3.2.7)

Using that λ1(E[A]) = m2/m1, we have that with (ξ, ν)-hp the following
bound holds:∣∣∣∣λ1(A)− λ1(E[A])

λ1(E[A])

∣∣∣∣ ≤ √m∞m2/m1
(2 + o(1))+

√
ν(log n)ξ/2

m2/m1
= O

( √
m∞

m2/m1

)
.

Via Assumption 3.1.1 and (3.2.4) the claim follows.

Remark 3.2.3.

(a) The proof of Lemma 3.2.2 works well if we replace Assumption
3.1.1(D2) by a milder condition. Indeed, the former is directly linked
to the parameter κ that appears in the proof of Lemma 3.2.2 and in
the proof of [20, Theorem 3.2], which contains a more general con-
dition on the inhomogeneity of the degrees.
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(b) Note that a consequence of proof of Lemma 3.2.2 is that with (ξ, ν)-
hp

‖H‖
λ1(A)

≤ 1− C0 (3.2.8)

for someC0 ∈ (0, 1). This allows us to claim that with (ξ, ν)-hp the
inverse (

I − H

λ1(A)

)−1

(3.2.9)

exists.

♠

Lemma 3.2.4. Let 1 ≤ k ≤ L. Then, under Assumption 3.1.1, with (ξ, ν)-hp

∣∣〈e,Hke
〉
− E

[〈
e,Hke

〉]∣∣ ≤ Cm2

m1

m
k
2∞(log n)kξ√

n
,

i.e.,

max
1≤k≤L

P

(∣∣〈e,Hke
〉
− E

[〈
e,Hke

〉]∣∣ > C(log n)kξm
k
2∞√

n

m2

m1

)
≤ e−ν(logn)ξ , n ≥ n1(ν, ξ).

Lemma 3.2.4 is a generalization to the inhomogeneous setting of [57,
Lemma 6.5]. We skip the proof because it requires a straightforward
modification of the arguments in [57].

Lemma 3.2.5. Under Assumption 3.1.1, for 2 ≤ k ≤ L, there exists a constant
C > 0 such that

E
[〈
e,Hke

〉]
≤ m2

m1
(Cm∞)k/2. (3.2.10)

Proof. Let E be the high probability event defined by (3.2.6), i.e.,

‖H‖ ≤ E[‖H‖] +
√
ν(log n)ξ/2 ≤ m∞

(
1 + O

(
(log n)ξ/2

m∞

))
.

Due to Assumption 3.1.1(D1) we can bound the right-hand side byCm∞.
Since ‖e‖22 = m2/m1, on this event we have

E
[(〈

e,Hke
〉)

1E
]
≤ ‖e‖22 E[‖H‖k1E ] ≤

m2

m1
(Cm∞)k/2.
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We show that the expectation when evaluated on the complementary
event is negligible. Indeed, observe that

E
[〈
e,Hke

〉]
= E

 n∑
i1,...,ik+1=1

ei1eik+1

k∏
j=1

H(ij , ij+1)

2

≤
(
nk+1m2

∞
m1

)2

≤ Ce(2k+2) logn ≤ e2(logn)2 ,

where in the last inequality we use that m∞ = o(
√
m1). This, combined

with the exponential decay of the event Ec, gives

E
[〈
e,Hke

〉
1Ac

]
≤ Ce−ν(logn)ξ ,

and so the claim follows.

3.2.2 Expansion for the principal eigenvalue

We denote the event in Lemma 3.2.2 by E , which has high probability. As
noted in Remark 3.2.3(b), I − H

λ1
is invertible on E . Hence, expanding on

E , we get

λ1 =

∞∑
k=0

〈
e,
Hk

λk1
e

〉
.

We split the sum into two parts:

λ1 =

L∑
k=0

〈
e,Hke

〉
λk1

+

∞∑
k=L+1

〈
e,Hke

〉
λk1

. (3.2.11)

First we show that we may ignore the second sum. To that end we
observe that, by Assumption 3.1.1 (D1), on the event E we can estimate∣∣∣∣∣

∞∑
k=L+1

〈
e,Hke

〉
λk1

∣∣∣∣∣ ≤
∞∑

k=L+1

‖e‖22‖H‖k

λk1
≤

∞∑
k=L+1

m2

m1

m
k/2
∞

(Cm2/m1)k

≤
∞∑

k=L+1

C ′

m
k/2−1
∞

= O
(

e−c log
√
n
)
. (3.2.12)
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Because of (3.2.12) and the fact that E(〈e,He〉) = 0, (3.2.11) reduces to

λ1 =

L∑
k=3

E
[〈
e,Hke

〉]
λk1

+
L∑
k=3

〈
e,Hke

〉
− E

[〈
e,Hke

〉]
λk1

+ 〈e, e〉+
1

λ1
〈e,He〉+

1

λ2
1

〈
e,H2e

〉
+ o(1).

Next, we estimate the second sum in the above equation. Using Lemma
3.2.2, we get∣∣∣∣∣

L∑
k=3

〈
e,Hke

〉
− E

[〈
e,Hke

〉]
λk1

∣∣∣∣∣
≤

L∑
k=3

Cm
k
2∞(log n)kξ√

n(m2/m1)k−1
≤

L∑
k=3

C(log n)kξ

√
nm

k/2−1
∞

≤ O

(
C(log n)ξ+1

√
nm∞

)
= o(1).

From Lemma 3.2.5 we have
L∑
k=3

E
〈
e,Hke

〉
λk1

≤
L∑
k=3

m2

m1
(Cm∞)k/2

(m2/m1)
k

= O

(
1

√
m∞

)
= o(1),

where the last estimate follows from Assumption 3.1.1(D1). Hence, on E ,

λ1 = 〈e, e〉+
1

λ1
〈e,He〉+

〈
e,H2e

〉
λ2

1

+ o(1).

Iterating the expression for λ1 in the right-hand side, we get

λ1 = 〈e, e〉+ 〈e,He〉
(
〈e, e〉+

1

λ1
〈e,He〉+

1

λ2
1

〈
e,H2e

〉
+ o(1)

)−1

+
〈
e,H2e

〉(
〈e, e〉+

1

λ1
〈e,He〉+

1

λ2
1

〈
e,H2e

〉
+ o(1)

)−2

+ o(1),

Expanding the second and third term we get,

λ1 = 〈e, e〉+
〈e,He〉
〈e, e〉

(
1− 〈e,He〉

λ1 〈e, e〉
−
〈
e,H2e

〉
λ2

1 〈e, e〉
+ o(1)

)

+

〈
e,H2e

〉
(〈e, e〉)2

(
1− 2 〈e,He〉

λ1 〈e, e〉
−

2
〈
e,H2e

〉
λ2

1 〈e, e〉
+ o(1)

)
+ o(1),

= 〈e, e〉+
〈e,He〉
〈e, e〉

− 〈e,He〉
2

λ1 〈e, e〉2
+

〈
e,H2e

〉
〈e, e〉2

+ o(1).
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Here we use that 〈e, e〉 = m2/m1 → ∞, and we ignore several other
terms because they are small with (ξ, ν)-hp , for example,

〈e,He〉
〈
e,H2e

〉
λ2

1 〈e, e〉
2 = O

(
m

3/2
∞

(m2/m1)4

)
= o(1).

One more iteration gives

λ1 = 〈e, e〉+
〈e,He〉
〈e, e〉

+

〈
e,H2e

〉
〈e, e〉2

− 〈e,He〉
2

〈e, e〉2

(
〈e, e〉+

1

λ1
〈e,He〉+

1

λ2
1

〈
e,H2e

〉
+ o(1)

)−1

+ o(1)

= 〈e, e〉+
〈e,He〉
〈e, e〉

+

〈
e,H2e

〉
〈e, e〉2

− 〈e,He〉
2

〈e, e〉3
+

〈
e,H2e

〉2 〈e,He〉
λ1 〈e, e〉3

+

〈
e,H2e

〉3
λ2

1 〈e, e〉
3 + o(1).

Proof of Theorem 3.1.6 (I). Since the probability of Ec decays exponen-
tially with n, taking the expectation of the above term and using that
E[〈e,He〉] = 0, we obtain

E[λ1] = 〈e, e〉+
E[
〈
e,H2e

〉
]

〈e, e〉2
− E[〈e,He〉2]

〈e, e〉3
+ o(1) =

m2

m1
+
m1m3

m2
2

− m2
3

m3
2

+ o(1).

Note that

m2
3

m2
2

≤ m2
∞
n

= o(1),
m1m3

m2
2

≤
(
m∞
m0

)4

= O(1),

and so we can write

E[λ1] =
m2

m1
+
m1m3

m2
2

+ o(1). (3.2.13)

3.2.3 CLT for the principal eigenvalue

Again consider the high probability event on which (3.2.9) holds. Recall
that from the series decomposition in (3.2.11) we have

λ1 =
〈e,He〉
λ1

+

L∑
k=0

E
〈
e,Hke

〉
λk1

+

L∑
k=2

〈
e,Hke

〉
− E

〈
e,Hke

〉
λk1

+
∑
k>L

〈
e,Hke

〉
λk1

.

(3.2.14)
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Lemma 3.2.6. The equation

x =

L∑
k=0

E
〈
e,Hke

〉
xk

(3.2.15)

has a solution x0 satisfying

lim
n→∞

x0

m2/m1
= 1.

Proof. Define the function h : (0,∞)→ R by

h(x) =

logn∑
k=0

E
〈
e,Hke

〉
xk

.

Since E[e′He] = 0, we have

h

(
xm2

m1

)
=
m2

m1
+

logn∑
k=2

E
〈
e,Hke

〉
(xm2/m1)k

.

For x > 0,∣∣∣∣∣
logn∑
k=2

E[
〈
e,Hke

〉
]

(xm2/m1)k

∣∣∣∣∣ ≤
∞∑
k=2

1

(xm2/m1)k
m2

m1
(Cm∞)k/2

= o

(
m2

m1

∞∑
k=2

1

xk(log n)kξ

)
= o

(
m2

m1
x−2

)
.

This shows that

lim
n→∞

1

m2/m1

logn∑
k=0

E
〈
e,Hke

〉
(xm2/m1)k

= 1.

Hence, for any 0 < δ < 1,

lim
n→∞

1

m2/m1

[
m2

m1
(1 + δ)− h

(
(1 + δ)

m2

m1

)]
= δ.

So, for large enough n,

h

(
(1 + δ)

m2

m1

)
<
m2

m1
(1 + δ).
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Similarly, for any 0 < δ < 1,

h

(
(1− δ)m2

m1

)
>
m2

m1
(1− δ).

This shows that there is a solution for (3.2.15), which lies in the interval
[m2

m1
(1− δ), m2

m1
(1− δ)].

Lemma 3.2.7. Let x0 be a solution for (3.2.15). Define

Rn = λ1 − x0 −
〈e,He〉
m2/m1

.

Then

Rn = oP

(
m3

m2
√
m1

)
, E [|Rn|] = o

(
m3

m2
√
m1

)
.

Proof of Theorem 3.1.6 (II). From the previous lemmas we have

λ1 = x0 +
〈e,He〉
m2/m1

+Rn.

Therefore
E[λ1] = x0 + E[Rn]

and

λ1 − E[λ1] =
〈e,He〉
m2/m1

+ o

(
m3

m2
√
m1

)
.

Hence
m2

m1
(λ1 − E[λ1]) = 〈e,H, e〉+ o

(
m3

m
3/2
1

)
. (3.2.16)

Observe that

〈e,He〉 =

N∑
i,j=1

hi,j
didj
m1

= 2
∑
i≤j

hi,j
didj
m1

Let

σ2
1 =

∑
i≤j

Var

(
2

m1
hi,jdidj

)
=
∑
i≤j

4d3
i d

3
j

m3
1

(
1− didj

m1

)
∼ 2

m2
3

m3
1

(
1 + O

(
m2
∞
n

))
,
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where we use the symmetry of the expression in the last equality. We
can apply Lyapunov’s central limit theorem, because {hi,j : i ≤ j} is an
independent collection of random variables and Lyapunov’s condition is
satisfied, i.e.,

lim
n→∞

1

σ3
n

∑
i>j

E
[
|H(i, j)didj |3

]
≤ K lim

n→∞

m
3/2
1

m3
3

m2
4

m1
= 0,

where K is a constant that does not depend on n. Hence

m
3/2
1 〈e,He〉√

2m3

w−→ N(0, 1).

Returning to the eigenvalue equation in (3.2.16) and dividing by σ1,
we have

√
m1m2

m3
(λ1 − E[λ1]) =

m
3/2
1 〈e,He〉
m3

+ o(1)
w−→ N(0, 2).

We next prove Lemma 3.2.7, on which the proof of the central limit
theorem relied.

Proof. Note that by (3.2.14) and (3.2.15) we can write

λ1 − x0 =
〈e,He〉
λ1

+

L∑
k=2

E
〈
e,Hke

〉( 1

λk1
− 1

xk0

)
+ Ln, (3.2.17)

where

Ln =

L∑
k=2

〈
e,Hke

〉
− E

〈
e,Hke

〉
λk1

+
∑
k>L

〈
e,Hke

〉
λk1

.

Thanks to Lemma 3.2.2, Lemma 3.2.4 and (3.2.12) we have

Ln = O

(
m∞(log n)2ξ

√
nm2/m1

)
.

Note that Ln = o( m3

m2
√
m1

). Indeed, using m3 ≥ nm3
0 and Assumption

3.1.1(D1), we get

m∞(log n)2ξm2
√
m1√

n(m2/m1)m3
≤ m

5/2
∞ n3/2(log n)2ξ

√
nm0nm3

0(log n)ξ
=
m

5/2
∞ (log n)ξ

m4
0

= O

(
(log n)ξ

m
3/2
0

)
.
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Observe that (3.2.17) can be rearranged as

(λ1 − x0) =
〈e,He〉
λ1

−
L∑
k=2

(λ1 − x0)E
〈
e,Hke

〉
λ−k1 x−k0

k−1∑
j=0

xk−1−j
0 + Ln.

Hence, bringing the second term from the right to the left, we have

(λ1 − x0)

1 +

L∑
k=2

E
〈
e,Hke

〉
λ−k1 x−k0

k−1∑
j=0

xk−1−j
0

 =
〈e,He〉
λ1

+ Ln.

Using the bounds on λ1 and x0, we get∣∣∣∣∣∣
L∑
k=2

E
〈
e,Hke

〉
λ−k1 x−k0

k−1∑
j=0

xk−1−j
0

∣∣∣∣∣∣ ≤
L∑
k=2

k

(m2/m1)k+1
E
〈
e,Hke

〉
≤

L∑
k=2

k

(m2/m1)k+1

m2

m1
(Cm∞)k/2 = O

(
m∞

(m2/m1)2(log n)2ξ−1

)
= o(1).

We can therefore write

λ1 − x0 =
〈e,He〉
λ1

+ Ln,

where Ln = oP ( m3

m2
√
m1

). Finally, to go to Rn, note that

Rn = λ1 − x0 −
〈e,He〉
m2/m1

= 〈e,He〉
(

1

λ1
− 1

m2/m1

)
+ Ln. (3.2.18)

To bound Rn, it is enough to show that the first term on the right-hand
side is with (ξ, ν)-hp bounded by m3

m2
√
m1

. Using Lemma 3.2.4 (for k = 1)
and (3.2.7), we have with (ξ, ν)-hp

|〈e,He〉| |λ1 −m2/m1|
λ1m2/m1

≤
√
m∞(log n)ξ√

n

√
m∞

(m2/m1)
. (3.2.19)

Using again Assumption 3.1.1(D1), m3 ≥ nm3
0, m1 ≤ nm∞ and m2 ≤

nm2
∞, we get that

m∞(log n)ξ√
n(m2/m1)

m2
√
m1

m3
≤
(
m∞
m0

)3
c

√
m∞

= o(1).
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This controls the right-hand side of (3.2.19), and hence Rn = o( m3

m2
√
m1

)

with (ξ, ν)-hp .
We want to show that the latter is negligible both pointwise and in

expectation. We already have that this is so with (ξ, ν)-hp on Rn. We
want to show that the same bound holds in expectation. Let A be the
high probability event of Lemma 3.2.2 and 3.2.4, and write

E[|Rn|] = E[|Rn|1Ac ] + E[|Rn|1A],

where 1A is the indicator function of the event A. Since all the bounds
hold on the high probability event A, it is immediate that

E[|Rn|1A] = o

(
m3√
m1m2

)
.

The remainder can be bounded via the Cauchy-Schwarz inequality, namely,

E[|Rn|1Ac ] ≤
(
E[|Rn|2]E[1Ac ]

) 1
2 ≤

(
E
[
|Rn|2

]
e−ν(logn)ξ

) 1
2

.

We see that if E[|Rn|2] = o(e−ν(logn)ξ), then we are done. Expanding, we
see that

E[|Rn|2] = E

[∣∣∣∣λ1 − x0 −
〈e,He〉
m2/m1

∣∣∣∣2
]
≤ nC

for some C > 0, where we use that

E[(λ2
1)] ≤ E[TrA2] =

N∑
i,j=1

E[(A(i, j))2] ≤ m∞n

and the trivial bound | 〈e,He〉 | ≤ nC∗ for some C∗ < C. Hence we have(
E[|Rn|2]E[1Ac ]

) 1
2 ≤ e−ν(logn)ξ and

E[|Rn|] = o

(
m3√
m1m2

)
.

3.3 Proof of Theorem 3.1.7

In this section we study the properties of the principal eigenvector. Let
v1 be the normalized principal eigenvector, i.e., ‖v1‖ = 1, and let e be as
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defined in (3.1.3). Recall from (3.2.1) that

λ1

(
1− H

λ1

)
v1 = e〈e, v1〉,

and after inversion (which is possible on the high probability event) we
have

v1 =
〈e, v1〉
λ1

(1−H/λ1)−1e.

If K denotes the normalization factor, then we can rewrite the above
equation with (ξ, ν)-hp as the series

v1 =
K

λ1

∞∑
k=0

Hke

λk1
. (3.3.1)

Our first step is to determine the value of K in (3.3.1). We adapt the
results from [57] to derive a component-wise central limit theorem in the
inhomogeneous setting described by (3.1.2) under Assumption 3.1.1. By
the normalization of v,

1 = 〈v1, v1〉 =
K2

λ2
1

〈 ∞∑
k=0

Hk

λk1
e,

∞∑
`=0

H`

λ`1
e

〉
=
K2

λ2
1

∞∑
k=0

(k + 1)
〈
e,Hke

〉
λk1

,

(3.3.2)
where we use the symmetry of H .

The following lemma settles Theorem 3.1.7(I).

Lemma 3.3.1. Under Assumption 3.1.1, and with ẽ = e
√

m1

m2
, with (ξ, ν)-hp

〈ẽ, v1〉 = 1 + o(1). (3.3.3)

Proof. Recall that L = blog nc. We rewrite (3.3.2) as(
λ1

K

)2

=

L∑
k=0

(k + 1)

λk1
E
[〈
e,Hke

〉]
+

L∑
k=1

(k + 1)

λk1

∣∣〈e,Hke
〉
− E

[〈
e,Hke

〉]∣∣
+

∞∑
k=L+1

(k + 1)

λk1

〈
e,Hke

〉
.

(3.3.4)
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We first show that the last two parts are negligible and then show that
the main term of the first part is the term with k = 0, i.e., 〈e, e〉 = m2/m1.

The last term in (3.3.4) is dealt with as follows. Using (3.2.8), we have
with (ξ, ν)-hp

∞∑
k=L+1

(k + 1)

λk
〈
e,Hke

〉
≤

∞∑
k=L+1

(k + 1)
‖e‖2‖H‖k

(m2/m1)k
≤ m2

m1

∞∑
k=L+1

(k + 1)(1− C0)k

≤ m2

m1
(log n+ 2)e−c

′ logn 1

C2
0

with c′ = − log(1 − C0), where we use that
∑∞
k=0(k + 1)(1 − c)k = 1/c2

for |1− c| < 1.
We tackle the second sum in (3.3.4) by using Lemma 3.2.4. Indeed,

with (ξ, ν)-hp we have

L∑
k=1

(k + 1)

λk1

∣∣〈e,Hke
〉
− E

[〈
e,Hke

〉]∣∣ ≤ L∑
k=1

(k + 1)
Cm

k/2
∞ (log n)kξ√

n

(
m2

m1

)1−k

≤
C ′
√
m∞(log n)ξ(log n+ 1)√

n
≤
C ′
√
m∞(log n)2ξ

√
n

,

where the constant varies in each step. By Assumption 3.1.1(D1), the last
term goes to zero.

As to the first term, note that by (3.2.5) for k ≥ 3 we have

L∑
k=3

(k + 1)

λk1
E
[〈
e,Hke

〉]
≤

L∑
k=3

(k + 1)

(
m2

m1

)−k+1

(Cm∞)k/2

≤
L∑
k=3

Cm
k/2
∞

(m2/m1)(k−1)
= O

(
1

√
m∞

)
.

The term with k = 1 is zero, while for k = 2 we have

3
E〈e,H2e〉

λ2
1

≤ cm1m3

m2
2

= O (1)

for some constant c. After substituting these results into (3.3.4), we find(
λ1

K

)2

=
m2

m1

(
1 + O

(
1

m2/m1

))
(3.3.5)

and the proof follows by normalizing the vector e and using (3.3.1).
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The following lemma is an immediate consequence of (3.3.1) and Lemma
3.3.1.

Lemma 3.3.2. Under Assumptions 3.1.1, with (ξ, ν)-hp

v1 =

(
1 + O

(
m1

m2

))√
m1

m2

∞∑
k=0

Hk

λk1
e. (3.3.6)

In order to estimate how the components of v1 concentrate, we need
the following lemma.

Lemma 3.3.3. For 1 ≤ k ≤ L, with (ξ, ν)-hp

|Hke(i)| =

∣∣∣∣∣∣ 1
√
m1

∑
i1,...,ik

hii1hi1i2 . . . hik−1ikdik

∣∣∣∣∣∣ ≤ m∞√
m1

(
(log n)ξ

√
m∞

)k
.

The proof of this lemma is a direct consequence of Lemma 3.2.4, is similar
to [57, Lemma 7.10] and therefore we skip it. An immediate corollary of
the above estimate is the delocalized behaviour of the largest eigenvector
stated in Theorem 3.1.7(II).

Lemma 3.3.4. Let v1 be the normalized principal eigenvector, and ẽ = e
√

m1

m2
.

Then with (ξ, ν)-hp

‖v1 − ẽ‖∞ ≤ O

(
(log n)ξ
√
nm∞

)
.

Proof. Recall from (3.3.4) that

v1(i) =
K

λ1

∞∑
k=0

Hke(i)

λk1
=
K

λ1
e(i) +

K

λ1

L∑
k=1

Hke(i)

λk1
+
K

λ1

∞∑
k=L+1

Hke(i)

λk1
.

The last term is negligible with (ξ, ν)-hp , because it is the tail sum of a
geometrically decreasing sequence. For the sum over 1 ≤ k ≤ L fwe can
use Lemma 3.3.3 and the fact that K/λ1 =

√
m1

m2
+o(1) with (ξ, ν)-hp . So

we have

K

λ1

L∑
k=1

Hke(i)

λk1
≤ m∞√

nm0

(log n)ξ
√
m∞

≤ O

(
(log n)ξ
√
nm∞

)
.
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The first term with (ξ, ν)-hp is

K

λ1
e(i) = ẽ(i) + o(1)

and the error is uniform over all i. Indeed, with (ξ, ν)-hp∣∣∣∣Kλ1
e(i)− K

m2/m1
e(i)

∣∣∣∣ ≤ Kdi√
m1

|λ1 −m2/m1|
(m2/m1)2

≤
√
m2

m1

cm
3/2
∞√
m0n

c′

m2
∞

= O

(
1

√
nm∞

)
,

(3.3.7)
where we use Assumption 3.1.1, Remark 3.2.1 and (3.2.7). Since the de-
tailed computations are similar to the previous arguments, we skip the
details.

We next prove the central limit theorem for the components of the
eigenvector stated in Theorem 3.1.7(IV).

Theorem 3.3.5. Under Assumption 3.1.1, with the extra assumtion m∞ �
(log n)4ξ, √

m3
2

dim3m1

(
v1(i)− di√

m2

)
w→ N (0, 1).

Proof. First we compute E[v1(i)], and afterwards we show that the CLT
holds componentwise.

We use the law of total expectation. Conditioning on the high prob-
ability event E in Lemma 3.2.2, we can write the expectation of the nor-
malized eigenvector v1 as

E[v1(i)] = E[v1(i)|E ]P(E) + E[v1(i)|Ec]P(Ec).

Because the components of a normalized n-dimensional vector are bounded,
we know that

E[v1(i)] = E[v1(i)|E ]P(E) + O
(
e−cν(logn)ξ

)
for some suitable constant cν > 0, dependent on ν and on the the bound
on v1(i). On E , we can expand v1 as

v1(i) =
K

λ1

(
e(i) +

(He)(i)

λ1
+

(H2e)(i)

λ2
1

+

∞∑
k=3

(Hke)(i)

λk1

)
.
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Using the notation EE for the conditional expectation on the event E , we
have

EE [v1(i)] = EE
[
K

λ1
e(i)

]
+ EE

[
K

λ1

(He)(i)

λ1

]
+ +EE

[
K

λ1

∞∑
k=2

(Hke)(i)

λk1

]
.

For the first term we have, using (3.3.5),

EE
[
K

λ1
ei

]
= EE

[
1√

m2/m1

ei

]
+ O

(
di√

m1(m2/m1)3/2

)
=

di√
m2

+ O

(
di√

m1(m2/m1)3/2

)
.

For the term corresponding to k = 1, we know that E[(He)(i)] = 0 by
construction on the whole space. However, under the event E we can
show that its contribution is exponentially negligible. We have

EE
[
K

λ1

(He)(i)

λ1

]
= EE

[
K

λ1

∑
j hijdj√
m1λ1

]
= EE


(

1 + O
(

1
m2/m1

))
√
m2/m1

( ∑
j hijdj√

m1(m2/m1)

+

∑
j hijdj√
m1

|λ1 − (m2/m1)|
(m2/m1)2

)]
.

Since m2/m1 →∞, there exists a constant C̃ such that

(1 + O (1/(m2/m1)))√
m2/m1

≤ C̃ 1√
m2/m1

.

We can therefore write

EE
[
K

λ1

∑
j hijdj√
m1λ1

]
≤ C̃ 1√

m2/m1

EE
[ ∑

j hijdj√
m1(m2/m1)

+

∑
j hijdj√
m1

|λ1 − (m2/m1)|
(m2/m1)2

]
≤ EE

[ ∑
j hijdj√

m1(m2/m1)

]
+ EE

[∑
j hijdj√
m1

|λ1 − (m2/m1)|
(m2/m1)2

]

≤ EE

∑
j

hijdj

( 1
√
m1(m2/m1)

+

√
m∞√

m1(m2/m1)

)
.
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Here we use (3.2.7) to bound the difference |λ1 − (m2/m1)|. Next, write

0 = E

∑
j

hijdj

 = EE

∑
j

hijdj

P(E) + EEc

∑
j

hijdj

P(Ec)

≤ EE

∑
j

hijdj

P(E) +m1P(Ec) = EE

∑
j

hijdj

P(E) + O
(
e−cν(logn)ξ

)
,

where cν is a constant depending on ν, and we use that |hij | ≤ 1 and
m1 = O

(
e3/2 logn

)
. We can therefore conclude that

EE
[

(He)(i)

λ1

]
= O

(
e−c

′
ν(logn)ξ

)
,

where c′ν > 0 is a suitable constant depending on ν, and possibly differ-
ent from cν .

To bound the remaining expectation terms, we use Lemma 3.3.3, which
gives a bound on (Hke)(i) on the event E . As before, we break up the
sum into two contributions:

EE

[
K

λ1

∞∑
k=2

(Hke)(i)

λk1

]
= EE

[
K

λ1

L∑
k=2

(Hke)(i)

λk1

]
+ EE

[
K

λ1

∞∑
k=L

(Hke)(i)

λk1

]
.

For the second term we have

∞∑
k=L+1

(
Hke

)
(i)

λk1
≤ C

√
m2

m1
e−Cc logn, (3.3.8)

where we use (3.2.8) and Cc = | log(1 − C0)|. The first term can be
bounded via Lemma 3.3.3, which gives

L∑
k=2

(Hke)(i)

λk1
≤

L∑
k=2

m∞
(
(log n)ξ

√
m∞

)k
√
m1(m2/m1)k

= O

(
(log n)2ξ

√
m1

)
. (3.3.9)

Using the above bounds, taking expectations and using (3.3.5), we get

EE

[
K

λ1

∞∑
k=2

(Hke)(i)

λk1

]
= O

(
(log n)2ξ

√
m2

)
.
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Thus, we have obtained that

E[v1(i)] =
di√
m2

+ O

(
(log n)2ξ

√
m2

)
,

which settles Theorem 3.1.7(III).
We can write

v1(i)− di√
m2

=

(
1 + O

(
1

m2/m1

))
e(i)√

m2/m1

− di√
m2

+
K

λ1

(He)(i)

λ1
+O

(
(log n)2ξ

√
m2

)
,

where we replace the last terms of the expansion of v1 by the bounds
derived above (note that these bounds are of the same order as the ones
obtained for the same terms in expectation). The first term of the centered
quantity v1(i)− di/

√
m2 is given by(

1 + O
(

1
m2/m1

))
e(i)√

m2/m1

= O

(
di√

m1(m2/m1)3/2

)
.

This last error can be easily seen to be o
(

(logn)2ξ√
m2

)
. We can therefore write

v1(i)− E[v1(i)] =
K

λ1

(He)(i)

λ1
+ O

(
(log n)2ξ

√
m2

)
.

We proceed to show that the first term on the right-hand side of the
above equality gives a CLT when the expression is rescaled by an appro-
priate quantity, and the error term goes to zero. It turns out that

s2
n(i) = Var

∑
j

hijdj

 =
∑
j

did
3
j

m1

(
1 + O

(
1

m0

))
∼ dim3

m1
.

Multiplying by
√

m3
2

dim3m1
, we have√

m3
2

dim3m1

(
v1(i)− 〈ẽ, v1〉ẽ(i)

)
=

1

sn

∑
j

hijdj + O

√m2
2(log n)4ξ

dim3m1

 .

The error term is√
m2

2(log n)4ξ

dim3m1
= O

(
(log n)2ξ

√
m0

)
= o(1),
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where last inequality follows from the assumption that m0 � (log n)4ξ.

We now apply Lindeberg’s CLT to the term
∑
j hijdj

sn
. The Lindeberg con-

dition for the CLT reads

lim
n→∞

1

s2
n(i)

n∑
j

E
[
(hijdj)

2 1{|hijdj |≥εsn(i)}
]

= 0. (3.3.10)

Defining σ2
j (i) = Var(hijdj), we note that

lim
n→∞

σ2
j (i)

s2
n(i)

= lim
n→∞

did
3
jm1

m1m3di
≤ lim
n→∞

m3
∞

m3
≤ lim
n→∞

m3
∞

nm3
0

= 0.

Let us finally examine the event

|hijdj | ≥ εsn(i) = ε

√
dim3

m1
⇐⇒ |hij | ≥ ε

√
m3

m1

di
d2
j

.

By definition, |hij | < 1. If we show that

lim
n→∞

√
m3

m1

di
d2
j

=∞,

then for all ε > 0 there exists nε such that the event

ε

√
m3

m1

di
d2
j

> 1 > |hij |

has probability 1. Indeed,

lim
n→∞

ε

√
m3

m1

di
d2
j

> lim
n→∞

ε

√
nm4

0

nm3
∞
≥ lim
n→∞

εC
√
m0 =∞

for a suitable constant C. Thus, (3.3.10) holds.
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Chapter 4

Largest eigenvalue of the
configuration model and
breaking of ensemble
equivalence

This chapter is based on:
P. Dionigi, D. Garlaschelli, R.S. Hazra, F. den Hollander. Largest eigen-
value of the configuration model and breaking of ensemble equivalence. arXiv:2312.07812,
2023.

Abstract

We analyse the largest eigenvalue of the adjacency matrix of
the configuration model with large degrees, where the latter
are treated as hard constraints. In particular, we compute the
expectation of the largest eigenvalue for degrees that diverge
as the number of vertices n tends to infinity, uniformly on a
scale between 1 and

√
n, and show that a weak law of large



numbers holds. We compare with what was derived in Chap-
ter 3 for the Chung-Lu model, which in the regime considered
represents the corresponding configuration model with soft
constraints, and show that the expectation is shifted down by
1 asymptotically. This shift is a signature of breaking of en-
semble equivalence between the hard and soft (also known as
micro-canonical and canonical) versions of the configuration
model. The latter result generalizes the previous finding in 2
obtained in the case when all degrees are equal.

4.1 Introduction and main results

Motivation. Spectral properties of adjacency matrices in random graphs
play a crucial role in various areas of network science. The largest eigen-
value is particularly sensitive to the graph architecture, making it a key
focus. In this paper we focus on a random graph with a hard constraint
on the degrees of nodes. In the homogeneous case (all degrees equal to
d), it reduces to a random d-regular graph. In the heterogeneous case
(different degrees), it is known as the configuration model. Our inter-
est is characterizing the expected largest eigenvalue of the configuration
model and comparing it with the same quantity for a corresponding ran-
dom graph model where the degrees are treated as soft constraints.

The set of d-regular graphs on n vertices, with d = d(n), is non-
empty when 1 ≤ d ≤ n − 1 and dn is even. Selecting a graph uni-
formly at random from this set results in what is known as the random
d-regular graph, denoted byGn,d. The spectral properties ofGn,d are well-
studied for d ≥ 2 (for d = 1, the graph is trivially a set of disconnected
edges). For instance, all eigenvalues of its adjacency matrix fall in the
interval [−d, d], with the largest eigenvalue being d. The computation
of λ = max{|λ2|, |λn|}, where λ2 and λn are the second-largest and the
smallest eigenvalue, respectively, has been challenging. It is well known
that for fixed d the empirical distribution function of the eigenvalues of
Gn,d converges to the so-called Kesten-McKay law [93], the density of
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which is given by

fKM(x) =

{
d
√

4(d−1)−x2

2π(d2−x2) if |x| ≤ 2
√
d− 1,

0 otherwise.

From the convergence of the spectral distribution a lower bound of the
type λ ≥ 2

√
d− 1 + o(1) trivially follows. An explicit dependence on n

and the degree d of the error term was later found in the celebrated Alon-
Boppana theorem in [5], stating that λ ≥ 2

√
d− 1 +Od(log−2(n)), where

the constant in the error term only depends on d. In the same paper
an upper bound of the type λ ≤ 2

√
d− 1 + o(1) was conjectured. This

conjecture was later proven in the pioneering work [65] (for a shorter
proof, see [27]), and improved in the recent work [80]. When d = d(n)→
∞, the spectral distribution converges to the semi-circular law [125]. It
was proven in [34] that λ = O(

√
d ) with high probability when d =

o(
√
n ). This result was extended in [17] to d = o(n2/3). For recent results

and open problems, we refer the reader to [129].
There has not been much work on the inhomogeneous setting where

not all the degrees of the graph are the same. The natural extension of
the regular random graph is the configuration model, where a degree se-
quence ~dn = (d1, . . . , dn) is prescribed. Unless otherwise specified, we
assume the degrees to be hard constraints, i.e. realized exactly on each
configuration of the model (this is sometimes called the ‘microcanonical’
configuration model, as opposed to the ‘canonical’ one where the de-
grees are soft constraints realized only as ensemble averages [71, 114]).
The empirical spectral distribution of the configuration model is known
under some assumptions on the growth of the sum of the degrees. When∑n
i=1 di = O(n), the graph locally looks like a tree. It has been shown that

the empirical spectral distribution exists and that the limiting measure
is a functional of a size-biased Galton-Watson tree [28]. When

∑n
i=1 di

grows polynomially with n, the local geometry is no longer a tree. This
case was recently studied in [49], where it is shown that the appropri-
ately scaled empirical spectral distribution of the configuration model
converges to the free multiplicative convolution of the semi-circle law
with a measure that depends on the empirical degree sequence. The
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scaling of the largest and the second-largest eigenvalues has not yet been
studied in full generality.

For the configuration model the behaviour of the largest eigenvalue
is non-trivial. In the present paper, we consider the configuration model
with large degrees, compute the expectation of the largest eigenvalue of
its adjacency matrix, and prove a weak law of large numbers. When
d → ∞, the empirical distribution of Gn,d (appropriately scaled) con-
verges to the semi-circle law. Also, if we look at Erdős-Rényi random
graphs on n vertices with connection probability d/n, then the appro-
priately scaled empirical distribution converges to the semi-circle law. It
is known that the latter two random graphs exhibit different behaviour
for the expected largest eigenvalue [53]. This can be understood in the
broader perspective of breaking ensemble equivalence [71, 114], which we
discuss later. In the inhomogeneous setting, the natural graph to com-
pare the configuration model with is the Chung-Lu model. For the case
where the sum of the degrees grows with n, it was shown in [40] that
the empirical spectral distribution converges to the free multiplicative
product of the semi-circle law with a measure that depends on the de-
gree sequence, similar to [49]. In [54], we investigated the largest eigen-
value and its expectation for the Chung-Lu model (and even derived a
central limit theorem). In the present paper we complete the picture by
showing that, when the degrees are large, there is a gap between the ex-
pected largest eigenvalue of the Chung-Lu model and the configuration
model. We refer the reader to the references listed in [53, 54] for more
background.

Main theorem. For n ∈ N, let CM(~dn) be the random graph on n ver-
tices generated according to the configuration model with degree sequence
~dn = (di)i∈[n] ∈ Nn [79, Chapter 7.2]. Define

m0 = min
i∈[n]

di, m∞ = max
i∈[n]

di, mk =
∑
i∈[n]

(di)
k, k ∈ N.

Throughout the paper we need the following assumptions on ~dn as n→
∞.
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Assumption 4.1.1.
(D1) Bounded inhomogeneity: m0 � m∞.
(D2) Connectivity and sparsity: 1� m∞ �

√
n. ♠

Under these assumptions, CM(~dn) is with high probability non-simple
[79, Chapter 7.4]. We write P and E to denote probability and expectation
with respect to the law of CM(~dn) conditional on being simple, suppressing
the dependence on the underlying parameters.

Let ACM(~dn) be the adjacency matrix of CM(~dn). Let (λi)i∈[n] be the
eigenvalues of ACM(~dn), ordered such that λ1 ≥ · · · ≥ λn. We are in-
terested in the behaviour of λ1 as n → ∞. Our main theorem reads as
follows.

Theorem 4.1.2. Subject to Assumption 4.1.1,

E [λ1] =
m2

m1
+
m1m3

m2
2

− 1 + o(1), n→∞, (4.1.1)

and
λ1

E [λ1]
→ 1 in P-probability.

In [54] we looked at an alternative version of the configuration model,
called the Chung-Lu model CM∗n(~dn), where the average degrees, rather
than the degrees themselves, are fixed at ~dn. This is an ensemble with
soft constraints; in the considered regime for the degrees, it coincides
with a maximum-entropy ensemble, also called ‘canonical’ configuration
model [114]. For this model we showed that, subject to Assumption 4.1.1,

E∗ [λ1] =
m2

m1
+
m1m3

m2
2

+ o(1), n→∞, (4.1.2)

and λ1/E∗ [λ1] → 1 in P∗-probability, where P∗ and E∗ denote expecta-
tion with respect to the law of CM∗n(~dn) and λ1 is the largest eigenvalue
of the ACM∗n(~dn). The notable difference between (4.1.1) and (4.1.2) is the
shift by −1.

For the special case where all the degrees are equal to d, we have
m0 = m∞ = d and mk = ndk, and so E[λ1] = d + o(1) and E∗[λ1] =

d + 1 + o(1). In fact, P(λ1 = d) = 1. Since in this model the degrees
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can fluctuate with the same law (soft constraint in the physics literature),
this case reduces to the Erdős-Rényi random graph for which results on
E∗[λ1] were already well known in [68, 86] and further analyzed in [58].

Breaking of ensemble equivalence. The shift by−1 was proven in [53]
for the homogeneous case with equal degrees and is a spectral signa-
ture of breaking of ensemble equivalence [114]. Indeed, a d-regular graph
is the ‘micro-canonical’ version of a random graph where all degrees
are equal and ‘hard’, and the Erdős-Rényi random graph is the corre-
sponding ‘canonical’ version where all degrees are equal and ‘soft’. More
in general, CM(~dn) is the micro-canonical configuration model where
the constraint on the degrees is ‘hard’, while CM∗n(~dn) is the canonical
version where the constraint is ‘soft’. We refer the reader to [71] for
the precise definition of these two configuration model ensembles and
for the proof that they are not asymptotically equivalent in the measure
sense [122]. This means that the relative entropy per node of P with re-
spect to P∗ has a strictly positive limit as n → ∞. This shows that the
choice of constraint matters, not only on a microscopic scale but also on
a macroscopic scale. Indeed, for non-equivalent ensembles one expects
the existence of certain macroscopic properties that have different expec-
tation values in the two ensembles (macrostate (in)equivalence [122]). The
fact that the largest eigenvalue picks up this discrepancy is interesting.
What is remarkable is that the shift by −1, under the hypotheses consid-
ered, holds true also in the case of heterogeneous degrees and remains
the same irrespective of the scale of the degrees and of the distribution of
the degrees on this scale.

Outline. The remainder of this paper is organised as follows. In Section
4.2 we look at the issue of simplicity of the graph. In Section 4.3 we
bound the spectral norm of the matrix

H = ACM(~dn) − E[ACM(~dn)]. (4.1.3)
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We use the proof of [34] to show that ‖H‖ = o(m∞) with high probability.
Using the latter we show that

λ1 ∼ λ1

(
E[ACM(~dn)]

)
∼ m2

m1

with high probability. In Section 4.4 we use the estimates in Section 4.3
to prove Theorem 4.1.2.

4.2 Configuration model and simple graphs with
a given degree sequence

In the context of random graphs with hard constraints on the degrees,
we work with both the configuration model (a random multi-graph with a
prescribed degree sequence) and with the conditional configuration model
(a random simple graph with a prescribed degree sequence). We view the
second as a special case of the first.

Configuration model. The configuration model with degree sequence
~d = (d1, . . . , dn), CM(~dn), generates a graph through a perfect matching P
of the set of half-edges E = ∪i∈[n]{i} × [di], i.e., P : E → E such that P is
an isomorphism and an involution, and P (α) 6= α for all α ∈ E .

(a) Pairing procedure. (b) The configuration model gen-
erates multi-graphs with self-
loops (left) and multiple edges
(right).

It turns out that a pairing scheme, such as matching half-edges from
left to right or selecting pairs uniformly at random, is considered admis-
sible as long as it yields the correct probability for a perfect matching
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(see, for example, [79, Lemma 7.6]). An important property of each ad-
missible pairing scheme is that

PCM(~dn) (α ∼ β) =
1

m1 − 1
∀α, β ∈ E . (4.2.1)

We can therefore endow E with the lexicographic order. An element
α ∈ E , α = (i, `), is associated with a vertex v(α) = i through the first
component of α. An edge e is an element of E × E given by the pair-
ing e = {α, β} = {α, P (α)}. We define the configuration C as the set of
all such e. Given the lexicographic order, we may assume that α < β

and identify arbitrarily the head and the tail of the edge: t(e) = v(α),
h(e) = v(β). We can then order the edges in their order of appearance
via t(e), forming a list {ei, i = 1, . . . ,m1/2}. These properties of the con-
figuration model will be used in Subsection 4.3.1. For the configuration
model it is easy to check that1

E[aii] =
di(di − 1)

m1 − 1
, E[aij ] =

didj
m1 − 1

, i 6= j. (4.2.2)

Indeed every matrix element aij , can be expressed as

di∑
k=1

dj∑
h=1

1
(
α ∼ β, α = (i, k), β = (j, h)

)
,

where 1(E) is the indicator function of the event E. Taking expectations
and using (4.2.1), we get 4.2.2.

Simple graphs with a given degree sequence. A linked but different
model is the one that samples uniformly at random a simple graph with a
given degree sequence ~d, G(~d)2. An immediate question is whether there
is any relation between CM(~d) and G(~d). It turns out that the following
is true (see [79] for reference):

1We adopt the convention that a self-loop contributes 2 to the degree, i.e., aii is twice
the number of self-loops attached to vertex i. This convention is useful because it yields∑

j aij = di.
2With a little abuse of notation we permit our simple graphs to have self-loops. We

maintain the convention explained in the previous footnote.
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Lemma 4.2.1. Let beGn a graph generated via the configuration model CM(~dn)

with degree sequence ~d. Then

PCM(~dn)(Gn is simple) = exp

[
−O

(
m2

1

n2

)]
(4.2.3)

and
PCM(~dn) (Gn = · | Gn is simple) is uniform. (4.2.4)

Thus, we can identify the law of the uniform random graph with a given
degree sequence with the law of the configuration model conditional on sim-
plicity, i.e.,

PG(~d)(·) = PCM(~d)(· | G is simple).

It follows that the expectation under the uniform random graph with a
given degree sequence can be expressed as a the expectation of the con-
figuration model conditional on simplicity. As explained in [78, Remark
1.14], we have

EG(~d)[aij ] = PG(~d)(i ∼ j) = (1 + o(1))
didj

m1 + didj

≤ didj
m1(1 +O(1/m∞))

=
didj
m1

+O(1/m∞).

(4.2.5)

4.3 Bound on ‖H‖

In this section we derive the following bound on the spectral norm of
the matrix H defined in (4.1.3). This bound will play a crucial role in the
proof of Theorem 4.1.2 in Section 4.4.

Theorem 4.3.1. For every K > 0, there exists a constant C > 0 such that

‖H‖ ≤ C
√
m∞ with probability 1− o(n−K),

where the constant C depends on m∞
m0

and K only.

The proof is given in Section 4.3.1 and we follow the proof of Lemma
16 of [34]. In Sections 4.3.2–4.3.3 we derive some estimates that are needed
in Section 4.3.1.
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We have
‖H‖ = max{λ1(H), |λn(H)|}.

Recall (4.1.3). In Lemma 4.3.3 below we will see that E[ACM(~dn)] is asymp-
totically rank 1 (more precisely, the other eigenvalues are of orderO(n−1).
This means that λi

(
ACM(~dn)

)
= O(n−1), i 6= 1. Therefore, by Weyl’s in-

equality, it easy to see that λ1(H) and λn(H) are bounded above and
below by λ2(AGn) and λn(AGn) with error O(n−1), while λ1(AGn) is in
a window of size

√
m∞ around m2

m1−1 . We therefore have the following
Corollary, which will be needed in Section 4.4:

Corollary 4.3.2. For every K > 0,

λ1(AGn)− λ1(E[AGn ]) = O(
√
m∞ ) with probability 1− o(n−K).

4.3.1 Spectral estimates

Notation. AbbreviateGn = CM(~dn). LetU be uniformly distributed on
[n], let dU be the degree of a vertex that is picked uniformly at random,
and let

ωn = E[dU ]

be the average of the empirical degree distribution. Under Assumption
4.1.1, ωn → ∞ and ωn = o(n). We define the normalised degree sequence
(d̂i)i∈[n] as

d̂i =
di
ωn

(4.3.1)

and the normalised adjacency matrix ÂGn as

ÂGn =
AGn√
ωn
.

In the following we will need multiples of the vector

ẽi =
di√

m1 − 1
, 1 ≤ i ≤ n, (4.3.2)

which is the eigenvector corresponding to the rank-1 approximation of
E[AGn ], as it easy to check using (4.2.2).
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Two lemmas. The matrix E[AGn ] is asymptotically rank 1:

Lemma 4.3.3. Define

ẽ = (ẽ1, . . . , ẽn)
t

and

Ashift = E[AGn ]− |ẽ〉〈ẽ| = − 1

m1 − 1
diag (d1, . . . , dn) .

Then

‖Ashift‖ = O(n−1).

Proof. Using (4.2.2), we haveAshift is a diagonal matrix and hence ‖Ashift‖ ≤
m∞
m1−1 = O(n−1) under Assumption 4.1.1. Note that when all the degrees
are equal to d, then this bound is sharp, i.e., ‖Ashift‖ = d

dn−1 , and E[AGn ]
is exactly rank 1.

It is shown in [49] that the empirical spectral distribution of AGn has
a deterministic limit given by µ = µsc � µD̂, where µsc is the standard
Wigner semicircle law, µD̂ is the distribution of d̂U , and � is the free
product defined in [10, 22, 128].

Lemma 4.3.4. Let (d̂i)i∈[n] be the normalised degree sequence, and suppose
that Assumption 4.1.1 holds and

1

n

n∑
i=1

δd̂i ⇒ µD̂. (4.3.3)

Then µD̂ is compactly supported.

Proof. By Assumption 4.1.1 D(2),

0 < c ≤ lim inf
n→∞

mini d̂i

maxi d̂i
≤ lim sup

n→∞

maxi d̂i

mini d̂i
≤ C <∞.

Hence the support of d̂U is contained in a multiple of [c, C], and (4.3.3)
implies that µD̂ is compactly supported.
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Key estimates. From [49, Theorem 1] we know that, under Assump-
tion 4.1.1, the empirical spectral distribution of ÂGn , written

µÂGn
,

converges weakly to µsc � µD̂. The fact that µsc and µD̂ are compactly
supported implies that µsc � µD̂ is compactly supported too. However,
this still allows that H has o(n) outliers, which possibly control ‖H‖. It is
hard to analyse ‖H‖ for sparse graphs, because it is related to expansion
properties of the graph, mixing times of random walks on the graph,
and more. To prove that ‖H‖ = O(

√
m∞ ), we will use the argument

described in [34], which is an adaptation of the argument in [63]. We are
only after the order of ‖H‖, not sharp estimates.

For random regular graphs with fixed degree, the problem of com-
puting ‖H‖ was solved in [64]. We are not aware of any proof concern-
ing the second largest eigenvalue of configuration models with bounded
degrees, but any sharp bound must come from techniques of the type
employed in [26, 64]. In what follows we prove Theorem 4.3.1 based on
[63] and its adaptation to the inhomogeneous setting in [34]. In the fol-
lowing, we present the proof as outlined in the latter paper, adapting it to
our case to make our paper self-contained. This adjustment is necessary
because the result we need is somewhat obscured in the context in which
it appears in [34].

Let Dn = diag(d1, . . . , dn). The transition kernel of a random walk
on the graph Gn is given by Pn = D−1

n AGn . The random matrix Pn has
as principal normalised eigenvector ~1 = (1, . . . , 1)/

√
n with eigenvalue

1. Define

λ∗ = max{λ2(Pn), |λn(Pn)|}.

Note that the matrices Pn and Sn = D
1/2
n PnD

−1/2
n have the same spec-

trum by a similarity transformation. Hence we can write the Rayleigh
formula

λ∗ = max
z : 〈z,~1〉=0

|〈Pnz, z〉|
‖z‖2

= max
x : 〈x,

√
~d〉=0

|〈Snx, x〉|
‖x‖2

,
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where
√
~d = (

√
d1, . . . ,

√
dn). Define Mn = D−1

n AnD
−1
n . Let λ̃ be the

second largest eigenvalue of Mn. Then

〈Snx, x〉 = 〈D1/2
n MnD

1/2
n x, x〉 = 〈MnD

1/2
n x,D1/2

n x〉.

Since
〈x, x〉
‖x‖2

≥ 1

m∞

〈D1/2
n x,D

1/2
n x〉

‖x‖2
,

putting y = D
1/2
n x we see that

λ∗ ≤ m∞ max
〈y,~1〉=0

|〈Mny, y〉|
‖y‖2

= m∞λ̃, (4.3.4)

which gives a bound of the type ‖H‖ = O(m2
∞λ̃). Note that the matrix

elements of Mn can be expressed as

(Mn)ij =
aij
didj

, (4.3.5)

where aij counts the number of edges between vertices i and j, with the
convention for the diagonal elements stated earlier. In view of (4.3.4), in
order to obtain a bound on λ∗ we must focus on λ̃. In fact, we must show
that

λ̃ = O(m−3/2
∞ ), (4.3.6)

in order to obtain the desired bound ‖H‖ = O(
√
m∞ ). To achieve this

we proceed in steps:

– We reduce the computation of λ̃ to the analysis of two terms.

– In (4.3.7) below we identify the leading order of E[λ̃] from these
two terms, which turns out to be O(m

−3/2
∞ ).

– We show that the other terms are of higher order and therefore are
negligible.

– We prove concentration around the mean through concentration of
the leading order term in Lemma 4.3.8 below.
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– Recalling the denominator of (4.3.5), we get a bound on ‖H‖ after
multiplying by m2

∞.

To prove (4.3.6), we reduce the problem to a maximisation problem
in a simpler space. Namely, let ε ∈ (0, 1), and

T =

x ∈
(

ε√
n
Z
)n

:
∑
i∈[n]

xi = 0,
∑
i∈[n]

x2
i ≤ 1

 .

Then, using the formula for the volume of the n-dimensional ball, we
have

|T | ≤
(

(2 + ε)
√
n

2ε

)n
πn/2

Γ(n2 + 1)
≤

(
(2 + ε)

√
2πe

2ε

)n
.

The maximisation over Rn can be reduced to over T and this leads to an
error that depends on ε.

Lemma 4.3.5. Let

λ = max{|〈x,Mny〉| : x, y ∈ T}.

Then
λ̃ ≤ (1− ε)−2λ.

Proof. Let be S = {x ∈ Rn :
∑
i∈[n] xi = 0, ‖x‖ ≤ 1}. We want to show

that for every x ∈ S there is a vector y ∈ T such that ‖x − y‖ ≤ ε and∑
i∈[n](xi − yi) = 0. Let us write the components of x as

xi = ε
mi√
n

+ fi, i ∈ [n],

wheremi ∈ Z and fi ∈ [0, εn−1/2) is an error term. Because
∑
i∈[n] xi = 0,

we choosemi such that
∑
i∈[n] fiv = vεfn−1/2, where f is a non-negative

integer smaller than n. We relabel the indices in such a way thatmi ≤ mj

when i ≤ j. Now consider the vector y given by

yi =

{
εmi+1√

n
if i ≤ f,

εmi√
n

if i > f.

It follows that
∑
i∈[n] yi = 0 and ‖y‖ ≤ 1, and therefore y ∈ T . Further-

more, because |xi − yi| ≤ εn−1/2 by construction, we have the required
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property ‖x − y‖ ≤ 1. Iterating the previous argument, we can express
every vector x ∈ S in terms of a sequence of vectors (y(i))i∈[n] in T such
that

x =
∑
i∈[n]

εiy(i).

Therefore, because (4.3.4) is maximized on S, we have

〈x,Mnx〉 =
∑

i,j∈[n]×[n]

εi+j〈x(i)Mnx
(j)〉 ≤ 1

(1− ε)2
max{|〈y,Mnz〉| : y, z ∈ T},

from which the claim follows.

Our next goal is to show that |〈x,Mny〉| = o(m
−3/2
∞ ) for all x, y ∈ T

with a suitably high probability. This can be done in the following way.
Fix x, y ∈ T and define the random variable

X =
∑

i,j∈[n]×[n]

xi(Mn)ijyj .

Define the set of indices

B =

{
(i, j) ∈ [n]× [n] : 0 < |xiyj | <

√
m∞
n

}
.

Then we can rewrite X = X ′ +X ′′ with

X ′ =
∑

(i,j)∈B

xi(Mn)ijyj , X ′′ =
∑

(i,j)/∈B

xi(Mn)ijyj .

In Section 4.3.2 we show that E[X ′] is of the correct order and that X ′

is well concentrated around its mean. In Section 4.3.3 we analyse X ′′,
which is of a different nature and requires that we exclude subgraphs in
the configuration model that are too dense.

4.3.2 Estimate of first contribution

1. Use (4.2.2) and (4.3.5) to write out E[mij ] = E[(Mn)ij ]. This gives

E[X ′] =
∑

(i,j)∈B

xiyj
m1 − 1

−
∑

(i,i)∈B

xiyi
d2
i (m1 − 1)

.
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In view of the bound on |xiyi|, the last term gives a contribution∣∣∣∣∣∣
∑

(i,i)∈B

xiyi
d2
i (m1 − 1)

∣∣∣∣∣∣ = O

(
1

m1m
3/2
∞

)
.

Since x, y ∈ T , we have that
∑
i∈[n] xi = 0 and

∑
j∈[n] yj = 0, and there-

fore
∑

(i,j)∈[n]×[n] xiyj = 0. Hence

∣∣∣∣∣∣
∑

(i,j)∈B

xiyj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

(i,j)/∈B

xiyj

∣∣∣∣∣∣ ,
where we can bound the right-hand side as∣∣∣∣∣∣
∑

(i,j)/∈B

xiyj

∣∣∣∣∣∣ ≤
∑

(i,j) : |xiyj |≥
√
m∞
n

|xiyj | ≤
∑

(i,j) : |xiyj |≥
√
m∞
n

x2
i y

2
j

|xiyj |
≤ n
√
m∞

∑
(i,j)

x2
i y

2
j ≤

n
√
m∞

.

We can therefore conclude that

|E[X ′]| ≤ n

(m1 − 1)
√
m∞

+O

(
1

m1m
3/2
∞

)
. (4.3.7)

2. To prove thatX ′ is concentrated around its mean, we use an argument
originally developed in [33, 104] and used for the configuration model in
[34, 63]. This argument employs the martingale structure of the configura-
tion model conditional on partial pairings. Define

χ(x) =

{
x, if |x| <

√
m∞
n ,

0, otherwise.

We can then express X ′ as

X ′ =
∑
e∈C

χ(xt(e)yh(e))

dt(e)dh(e)
+
∑
e∈C

χ(xh(e)yt(e))

dt(e)dh(e)
= X ′a +X ′b.
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We divide the set of pairings C into three sets

C1 =

{
e ∈ C : |xt(e)| >

1

ε
√
n

}
,

C2 =

{
e ∈ C : |yt(e)| >

1

ε
√
n
, |xt(e)| ≤

1

ε
√
n

}
,

C3 =

{
e ∈ C : |yt(e)| ≤

1

ε
√
n
, |xt(e)| ≤

1

ε
√
n

}
,

and write

X ′a = X1 +X2 +X3, Xi =
∑
e∈Ci

χ(xt(e)yh(e))

dt(e)dh(e)
.

We can do a similar decomposition for X ′b.

3. The following martingale lemma from [34, 63] is the core estimate that
we want to apply to each of the Xi’s.

Lemma 4.3.6. Let be G1 and G2 two graphs generated via the configuration
model through perfect matchings P1 and P2. Let {e(1)

i }i≥1 be the edges of G1

and {e(2)
i }i≥1 be the edges of G2, ordered as above. Define an equivalence re-

lation on the probability space Ω by setting G1 ≡k G2 when {e(1)
i }ki=1 =

{e(2)
i }ki=1, i.e., the first k pairings match. Let Ωk be the set of equivalence classes,

and Fk the corresponding σ-algebra with F0 = F . Consider a bounded mea-
surable f : G(~d)→ R, and set Yk = E[f | Fk]. Note that

(Yk)0≤k≤m1/2 is a Doob martingale with E[Yk | Fk−1] = Yk−1

and Y0 = E[f ], Ym1/2 = f .

DefineZk = Yk−Yk−1, and suppose that there exist functions (gk(ζ))
1≤k≤ 1

2m1

such that
E
[
eζ

2Z2
k | Fk−1

]
≤ gk(ζ), 1 ≤ k ≤ m1/2.

Then, for all t ≥ 0 and ζ > 0,

P (|f − E[f ]| ≥ t) ≤ 2 e−ζt
m1/2∏
k=1

gk(ζ). (4.3.8)

Remark 4.3.7. The condition on the existence gk(ζ) can be rephrased as
the existence of a random variable Wk that stochastically dominates Zk
on (Ωk−1,Fk−1) (see [63]). ♠
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Lemma 4.3.8. [34, Lemma 15] There exist constants B` > 0, ` = 1, 2, 3, de-
pending only on the ratio m∞

m0
, such that

P
(
|X` − E[X`]| ≥

t

m
3/2
∞

)
≤ 2 e−tn+B`n, ` = 1, 2, 3. (4.3.9)

Proof. While the properties in C3 allow us to apply standard martingale
arguments to capture X3 (see below), the properties in C1 and C2 force us
to use Lemma 4.3.6 to capture X1 and X2.

i. From the definition of C1 and C2 it follows that a bound on X1 implies
by symmetry a bound on X2 (with, possibly, different constants). We
will therefore focus on X1, the result for X2 carrying through trivially.
Without loss of generality we may reorder the indices in such a way that
|xi| ≥ |xi+1| and for each ei = {αi, βi} use the lexicographic order αi+1 >
αi and βi > αi (i.e., we perform the pairing sequentially from left to
right; see [79, Lemma 7.6]). It follows that v(αi) ≤ v(αi+1) and |xv(αi)| ≥
|xv(αi+1)|. Define

χ̂(x, y) =

{
xy, if |xy| <

√
m∞
n and |x| > 1

ε
√
n
,

0, otherwise.

For each e = {α, β} in the configuration C we have

X1 =
∑
e∈C

q(e)

with q(e) = χ̂(xv(α), yv(β))/dv(α)dv(β).

ii. Next, take Yk = E[X1 | Fk], with Y0 = E[X1] and Ym = X1. Then
(Yk)k∈N0

is a Doob martingale and, by the definition of the configuration
model, we can write Zk = Yk − Yk−1 as

Zk(C) =
2

1
2m1−k( 1

2m1 − k)!

(m1 − 2k)!

 ∑
C′≡kC

X1(C′)− 1

m1 − 2k + 1

∑
C′′≡k−1C

X1(C′′)

 .

Now that we have an expression forZk, we can use the method of switch-
ing (see, for example, [132]). Indeed, given a C′ ≡k C, we can define a
quantity C′η as follows. Given the first k pairings of C, let I be the set of
points already paired, and let {α, β} be the k-th pair. Put η /∈ I−{β} and
{η, γ} ∈ C′. Then C′η is the pairing obtained from C′ by mapping

{α, β}, {η, γ} → {α, η}, {γ, β}.
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Is easy to see that C′η ≡k−1 C and that {{C′η : η /∈ I − {β}} | C′ ≡k C} is a
partition of {C′′ | C′′ ≡k−1 C}. We can therefore rewrite

Zk(C) =
2

1
2m1−k( 1

2m1 − k)!

(m1 − 2k)!

∑
C′≡kC

∑
η/∈I

(X1(C′)−X1(C′η))

=
∑
η/∈I

∑
γ /∈I,γ 6=η

q({α, β}) + q({η, γ})− q({α, η})− q({γ, β})
(2m− 2k + 1)(2m− 2k − 1)

.

Because
∑
i x

2
u ≤ 1, there are at most ε2n indices of x such that |xi| >

1/(ε
√
n). By the definition of X1, the lexicographic ordering of {αi, βi}

and the ordering of |xj | > |xj+1|, there exists a k̃ such that Zk̃ = 0. Take
k̃ = ε2m∞n. For k > k̃, we have that

m1 − 2k − 1 ≥ m1 − 2ε2m∞n− 1 ≥ m0n,

where the free parameter ε has to be fixed such that the last inequality
holds. (Note that, because there exists a constant θ such that m∞m0

< θ, we
can always choose an ε small enough so that this holds). Hence we can
bound

|Zk(C)| ≤ 1

(m0n)2

∑
η/∈I

∑
γ /∈I,γ 6=η

(|q({α, β})|+ |q({η, γ})|+ |q({α, η})|+ |q({γ, β})|) .

iii. Define

yα =
1

|xv(α)|
min

{
|yxv(α)|,

√
m∞
n

}
.

Because α < β, we can bound

q({α, β}) =
χ̂(xv(α), yv(β))

dv(α)dv(β)
≤
yαvβ |xv(α)|

m2
0

.

A similar bound holds for {α, η} for the same reason. For the other two
edges, {η, γ} and {γ, β}, we need to upper bound with a symmetric term,
because we do not know whether γ > η or γ < η. Thus, we have the
upper bound

q({η, γ}) ≤ 1

m2
0

(
yγvη |xv(γ)|+ yηvγ |xv(η)|

)
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(the same bound holds for {γ, β}). Moreover, by the lexicographic or-
der, xv(α) bounds all the other components, and therefore yαvβ |xv(α) ≤
yαvβ |xv(α). Now note that

∑
i |yi| ≤

√
n (because

∑
i y

2
i ≤ 1), and so∑

η/∈I

yαv(η) ≤
∑
η/∈I

|yv(η)| ≤ m∞
∑
i

|yi| ≤ m∞
√
n.

By the previous considerations, substituting into the expression for Z(C),
we have

|Zk(C)| ≤ 1

m2
0

(
yαvβ |xv(α)|+

(
yαvη |xv(α)|+ yαvγ |xv(α)|

)
+ yαvη |xv(α)|+

(
yαvβ |xv(α)|+ yαvγ |xv(α)|

))
≤ 4m2

∞
m4

0

|xv(α)|
(
yαv(β) +

1√
n

)
.

iv. From the above bounds we are able to obtain an upper bound for
E[exp(ζ2Z2

k) | Fk−1] and then use lemma 4.3.6. Indeed,

E
[
eζ

2Z2
k | Fk−1

]
≤ 1

m1 − 2k − 1

∑
ω/∈I\β

exp
[
16ζ2m4

∞m
−8
0 (xv(α))

2
](

yαv(ω) +
1√
n

)2

.

Looking at (4.3.8), we see that we have to fix ζ = m
3/2
∞ n in order to

achieve the required bound. Using that xv(α) ≤
√
m∞/(ε

√
n) (because

xv(α)y
α
v(β) ≤

√
m∞n and yαv(β) ≥ ε/

√
n), the exponent in the previous

display is bounded by 64θ8ε−2. Using that ex ≤ 1 + xex, x ≥ 0, and
putting B = 64θ8ε−2, we have

E
[
eζ

2Z2
k |Fk−1

]
≤ 1 +

B

m1 − 2k − 1

∑
ω/∈I\β

ζ2m4
∞m

−8
0 (xv(α))

2

(
yαv(ω) +

1√
n

)2

≤ 1 +Bζ2m4
∞m

−9
0 (xv(α))

2
∑
ω

(
y2
v(ω) + 2yv(ω)

1√
n

+
1

n

)
≤ exp

[
4B

ζ2m5
∞

m9
0n

(xv(α))
2

]
.

Next, let us pick an index i(k) such that, for all C ∈ Ω,

E
[
eζ

2Z2
k | Fk−1

]
≤ exp

[
4B

ζ2m5
∞

m9
0n

(xi(k))
2

]
.
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One possible choice is to take i(k) = dk/m∞e. We finally get

P
(
|X1 − E[X1]| ≥ t

m
3/2
∞

)
≤ 2 e

− ζt

m
3/2
∞ e

∑ 1
2m1

k=1 4B
ζ2m5

∞
m9

0n
(xi(k))

2

≤ 2 e
−tn+4B

m9
∞
m9

0
n
,

which proves what was said at the beginning of the proof (4.3.9) for ` =
1, 2.

v. Finally, consider X3. In view of the bounds in C3, this case can be
dealt with via classical martingale arguments (see, for example, the Mc-
Diarmid inequality and its generalizations in [31]). Considering the vari-
ables Yk = E[X3 | C3], we have that |Yk−Yk−1| ≤ 4/(ε2nm2

0). Thus, given
our choice of ε = ε(θ) being constant, we have

P
(
|X3 − E[X3]| ≥ tm−3/2

∞

)
≤ 2 e

− t
2ε4n2m4

0
16m3
∞m1 ≤ 2 e−C(ε,θ)t2n,

where C(ε, θ) > 0.

4. Combining the results for ` = 1, 2, 3 in the above lemma, we get an
exponential bound on X ′a of the type

P
(
|X ′a − E[X ′a]| ≥ t

m
3/2
∞

)
≤ 2e−tn+Ban,

where Ba is a suitable constant, possibly different from any of the B`. By
symmetry, the same holds forX ′b, which proves the concentration around
m
−3/2
∞ of X ′.

Remark 4.3.9. Up to now we have worked with multi-graphs, so we
have to pass to simple graphs with a prescribed degree sequence. Is easy
to see that, because of (4.2.3), we can express the final result as saying
that, conditional on the event that the graph is simple, there exist two
constants ξ̂ < ξ in (0, 1) and a constant K(θ, ξ) > 0 such that

P
(
|X ′ − E[X ′]| ≥ Km−3/2

∞

)
≤ eO(d̂2)ξ̂n ≤ ξn.

♠
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4.3.3 Estimate of second contribution

It remains to show that the pairs with x, y /∈ B give a bounded contribu-
tion of the order O(m

−3/2
∞ ) with sufficiently high probability. For this it

suffices to show that a simple random graph G with a prescribed degree
sequence ~d cannot have too dense subgraphs (see [63, Lemma 2.5] and
[34, Lemma 16]):

Lemma 4.3.10. Let G be a simple random graph of size n drawn uniformly at
random with a given degree sequence ~d. Let A,B ⊆ [n] be two subsets of the
vertex set, and let e(A,B) be the set of edges e = {α, β} such that either α ∈
A, β ∈ B or α ∈ B, β ∈ A. Since µ(A,B) = θ|A||B|m∞n with θ > m∞/m0 a
sufficiently large constant, for any K > 0 there exist a constant C = C(θ,K)
such that with probability 1 − o(n−K) any pair A,B with |A| ≤ |B| satisfies
at least one of the following:

e(A,B) ≤ Cµ(A,B) (4.3.10)

e(A,B) log

(
e(A,B)

µ(A,B)

)
≤ C|B| log

(
n

|B|

)
. (4.3.11)

The above lemma has the following corollary.

Corollary 4.3.11. For all x, y ∈ T ,

X ′′ = O

(
1

m
3/2
∞

)
with probability at least 1−O(n−K),

where K is the constant in Lemma 4.3.10.

Proof. Fix x, y ∈ T and define

Si(x) =

{
` :

ε2−i
√
n
≤ |x`| <

ε1−i
√
n

}
, i ∈ I,

Sj(y) =

{
` :

ε2−i
√
n
≤ |y`| <

ε1−i
√
n

}
, j ∈ J,

where I = {i|Si(x) 6= ∅} (J is defined similarly). Then, for x ∈ T , write

xu|S =

{
xu, if u ∈ S,
0, otherwise.
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In order to apply Lemma 4.3.10, define Ai = Si(x) and Bj = Sj(y), and
let ai and bi be their cardinality, respectively. Divide the set of indices
into two groups:

E =
{

(i, j) : i, j > 0, ε2−i−j >
√
m∞, ai ≤ bj

}
,

E ′ =
{

(i, j) : i, j > 0, ε2−i−j >
√
m∞, ai > bj

}
.

By the definition of X ′′ and the set B, we have

X ′′ =
∑

xiyj>
√
m∞/n

xiAijyj =
∑

(i,j)∈E

(x|Ai)tAy|Bj +
∑

(i,j)∈E′
(x|Ai)tAy|Bj .

It suffices to show that either of the contributions coming from E or E ′ are
O(m

−3/2
∞ ) (the other will follow by symmetry). Focus on E . Putting ei,j =

e(Ai, Bj) and µi,j = µ(Ai, Bj), we see that the bound can be rewritten as

1

n

∑
(i,j)∈E

ei,j
εi+j

= O(
√
m∞ ).

Divide E into the union of Ea and Eb, where Ea satisfies (4.3.10) and Eb
satisfies (4.3.11). Clearly E = Ea ∪ Eb and

1

n

∑
(i,j)∈E

ei,j
εi+j

≤ 1

n

∑
(i,j)∈Ea

ei,j
εi+j

+
1

n

∑
(i,j)∈Eb

ei,j
εi+j

.

If we are able to show that both contributions from Ea and Eb areO(
√
m∞ ),

then the theorem follows. It is easy to see that Ea gives a bounded con-
tribution. Indeed,

1

n

∑
(i,j)∈Ea

ei,j
εi+j

≤ 1

n2

∑
(i,j)∈Ea

Caibjθm∞
εi+j

≤ C ′m∞
n2

∑
(i,j)∈Ea

aibj
ε2(i+j)

√
m∞

= O(
√
m∞ ),

where in the last step we use that, because
∑
i x

2
i ≤ 1,∑

i∈I

ai
ε2(i−2)

≤ n,
∑
j∈J

bj
ε2(i−2)

≤ n.

It remains to show that

1

n

∑
(i,j)∈Eb

ei,j
εi+j

= O(
√
m∞ ).
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In order to do so, we divide Eb into subsets E(`)
b , ` = 1, . . . , 5, having the

following properties:

(1) εj ≥ εi
√
m∞.

(2) ei,j ≤
µi,j

εi+j
√
m∞

.

(3) log

(
ei,j
µi,j

)
≥ 1

4
log

(
n

bj

)
.

(4)
n

bj
≤ e−4j .

(5)
n

bj
> e−4j .

For j > i we have that E(`)
b * E(`)

b and Eb = ∪`E(`)
b . Thus it suffices to

show a bound ofO(
√
n) for each of the quantities S` = 1/n

∑
E(`)b

ei,j/ε
i+j .

• For ` = 1 we note that, since ei,j ≤ aim∞,

S1 ≤
1

n

∑
i

∑
j|εj≥εi√m∞

aim∞
εi+j

= bO

(
1

n

∑
i

ai
√
m∞
ε2i

)
= O(

√
m∞ ).

• For ` = 2 we obtain

S2 ≤
1

n

∑
ij

µij
ε2(i+j)

√
m∞

= O(

√
m∞
n2

∑
ij

aibj
ε2(i+j)

) = O(
√
n).

• For ` = 3, because the pairs (i, j) ∈ Eb have property (4.3.11), it follows
easily that eij = O(bj). Furthermore, because E(3)

b * E(1)
b , we have that

∀(i, j) ∈ E(3)
b , ej < ei

√
m∞. It follows that

S3 = O

 1

n

∑
j

∑
i|εi>ej/√m∞

bj
εi+j

 = O

 1

n

∑
j

√
m∞ bj
ε2j

 = O(
√
m∞ ).

• For ` = 4 we take advantage of the fact that (i, j) ∈ E(4)
b do not belong

to E(3)
b and E(2)

b . This implies that

eij
mij
≤ 1

ej
eij
µij
≥ 1

εi+j
√
m∞

.
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Hence we have ε−i ≤ √m∞ and, by (4.3.11), also eij = O(jbj). We can
therefore conclude that

S4 = O

 1

n

∑
j

∑
i|ε−i≤√m∞

jbj
εi+j

 = O

√m∞
n

∑
j

jbj
εj

 = O(
√
m∞ ),

where in the last equality we use that
∑
j∈J bj/(nε

2) = O(1).

• For ` = 5, using the property in (5) and (4.3.11), we have

eij ≤ Cnε4j log ε−4j = O(njε4j).

Also, using that E(4)
b * E(4)

b , we have εj < εi
√
m∞, from which we con-

clude that

S5 = O

∑
j

∑
i|εi>εj/√m∞

jε3j−i

 = O

√m∞∑
j

jε2j

 = O(
√
m∞ ).

This completes the proof.

4.4 Proof of the main theorem

Expansion. Throughout this section we abbreviate A = AGn and con-
dition on the event that Gn is simple. Recall Lemma 4.3.3. Compute

Av1 = λ1v1,

(H + |ẽ〉〈ẽ|+ (E[A]− |ẽ〉〈ẽ|)) v1 = λ1v1,(
H + |ẽ〉〈ẽ| − diag

(
d1

m1 − 1
, . . . ,

dn
m1 − 1

))
v1 = λ1v1.

Rewriting the equation we have,

〈ẽ, v1〉ẽ =

(
λ1I + diag

(
d1

m1 − 1
, . . . ,

dn
m1 − 1

)
−H

)
v1.

Therefore componentwise we have the following inequality,(
λ1 +

m0

m1 − 1

)(
I− H

λ1 + m0

m1−1

)
v1 ≤ 〈ẽ, v1〉ẽ ≤

(
λ1 +

m∞
m1 − 1

)(
I− H

λ1 + m∞
m1−1

)
v1,
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If x, y and e are non-negative vector (the non-negativity of v1 follows
from Perron-Frobenius theory) with x ≥ y, then 〈e, x〉 ≥ 〈e, y〉, we can
use Corollary 4.3.2 and invert the matrix multiplying v1. Indeed, given
that ‖H‖ = O(

√
m∞ ) and λ1 ∼ m2/m1 on the event with probability 1−

o(n−K) of Corollary 4.3.2 and Theorem 4.3.1, we can invert and expand(
I− H

λ1 + m0

m1−1

)−1

=
∑
k∈N0

Hk

(λ1 + m0

m1−1 )k
,

and similarly for m∞. Thus,

λ1 ≤
m2

m1 − 1
− m0

m1 − 1
+
∑
k∈N

〈ẽ, Hkẽ〉
(λ1 + m0

m1−1 )k

λ1 ≥
m2

m1 − 1
− m∞
m1 − 1

+
∑
k∈N

〈ẽ, Hkẽ〉
(λ1 + m∞

m1−1 )k
.

Our final goal is to determine the expectation E[λ1], which splits as

E[λ1] = E[λ1|E ]P(E) + E[λ1|Ec]P(Ec). (4.4.1)

The event Ec has probability at most n−K , where K is a large arbitrary
constant. Thus, given the deterministic bound λ1 ≤ n, we may focus on
E[λ1|E ]P(E). In order to do this, we need to be able to handle terms of
the type

m2

m1 − 1
+

E[〈ẽ, Hẽ〉]
m2

m1−1 (1 + o(1))
+

E[〈ẽ, H2ẽ〉](
m2

m1−1

)2

(1 + o(1))
+

∑
k∈N\{1,2}

E[〈ẽ, Hkẽ〉](
m2

m1−1

)k
(1 + o(1))

Since
E[〈ẽ, Hkẽ〉](

m2

m1−1

)k
(1 + o(1))

≤ m
k/2
∞(

m2

m1−1

)k−1
= o

(
1

m
k/2−1
0

)
,

the last sum is o(1/
√
m∞), which is an error term. It therefore remains to

study 〈ẽ, Hkẽ〉, k = 1, 2. The study of these moments for the configura-
tion model is more involved than for random regular graphs.
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Case k = 1. Compute

〈ẽ, Hẽ〉 = 〈ẽ, (A− E[A]) ẽ〉

=
1

m1 − 1

∑
ij

didjaij −
1

m1 − 1

∑
ij

d2
i d

2
j

 =

∑
j dj(

∑
i∼j di)

m1 − 1
− m2

2

(m1 − 1)2
.

Since

E

∑
j

dj
∑
i∼j

di

 =
∑
ij

djdiEaij =
m2

2

m1 − 1
− m3

m1 − 1
,

where the last term comes from the presence of selfloops. It follows that
E[〈ẽ, Hkẽ〉] = O(1/

√
n).

Case k = 2. Compute

〈ẽ, H2ẽ〉 = 〈ẽ, (A− E[A])2 ẽ〉

=
1

m1 − 1

(∑
ijk

didkaijajk −
1

m1 − 1

∑
ijk

did
2
kaijdj

− 1

m1 − 1

∑
ijk

d2
i djdkajk +

1

(m1 − 1)2

∑
ijk

d2
i d

2
jd

2
k

)
.

Write

1

m1 − 1

∑
ijk

did
2
kaijdj =

m2

m1 − 1

∑
ijk

diaijdj =
m2

m1 − 1

∑
i

di

∑
i∼j

dj


(by symmetry the third term is equal) and

∑
ijk

didkaijajk =
∑
j

∑
i∼j

di

2

=
∑
j

∑
i∼j

d2
i+
∑
k

∑
i,j∼k
i 6=j

didj = m3+
∑
k

∑
i,j∼k
i 6=j

didj .

Indeed in
∑
j

∑
i∼j d

2
i , the summand d2

i appears exactly di times, because
the node i has exactly di neighbours, and so

∑
j

∑
i∼j d

2
i = m3. Putting
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the terms together, we get

〈ẽ, H2ẽ〉 =
1

m1 − 1

m3 +
∑
k

∑
i,j∼k
i 6=j

didj − 2
m2

m1 − 1

∑
i

di

∑
i∼j

dj

+
m3

2

(m1 − 1)2

 .

Taking expectations, we get

E[〈ẽ, H2ẽ〉] =
1

m1 − 1

m3 + E

∑
k

∑
i,j∼k
i 6=j

didj −
m3

2

(m1 − 1)2


 .

Note that E[
∑
k

∑
i,j∼k, i 6=j didj ] is a sum over the wedges centered

at vertex k, summed all k. We can swap the summation over pairs of
vertices, and choose a third neighbour to form a wedge, which gives

∑
k

∑
i,j∼k
i 6=j

didj =
∑
i,j
i 6=j

didj
∑
k

1(k∼i,k∼j).
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Compute

E

∑
i,j
i 6=j

didj
∑
k

1(k∼i,k∼j)

 =
∑
i,j
i 6=j

didj
∑
k

E
[
1(k∼i,k∼j)

]

=
∑
i,j
i 6=j

didj
∑
k

(
didjdk(dk − 1)

(m1 − 1)(m1 − 2)
1k 6=i,k 6=j +

didj(dk − 1)(dk − 2)

(m1 − 1)(m1 − 2)
1k=i or k=j

)

=
∑
i,j
i 6=j

didj
∑
k

(
didjdk(dk − 1)

(m1 − 1)(m1 − 2)
− 2didj(dk − 1)

(m1 − 1)(m1 − 2)
1k=i or k=j

)

=
1

(m1 − 1)(m1 − 2)

∑
i,j
i6=j

d2i d
2
j

∑
k

(dk(dk − 1)− 2(dk − 1)1k=i or k=j)

=
1

(m1 − 1)(m1 − 2)

(m2 −m1)

(∑
i,j

d2i d
2
j −

∑
i

d4i

)
− 2

∑
i,j
i 6=j

d2i d
3
j − 2

∑
i,j
i 6=j

d3i d
2
j + 4

∑
i,j
i 6=j

d2i d
2
j


=

1

(m1 − 1)(m1 − 2)

(
(m2 −m1)

(
m2

2 −m4

)
− 4

(∑
i,j

d2i d
3
j −

∑
i

d5i

)
+ 4

(∑
i,j

d2i d
2
j −

∑
i

d4i

))

=
1

(m1 − 1)(m1 − 2)

(
(m2 −m1)

(
m2

2 −m4

)
− 4 (m3m2 −m5) + 4

(
m2

2 −m4

))
=
m3

2 −m2m4 −m1m
2
2 +m1m4 − 4m3m2 + 4m5 + 4m2

2 − 4m4

(m1 − 1)(m1 − 2)
.

Hence

E[〈ẽ, H2ẽ〉]

=
1

m1 − 1

(
m3 +

m3
2 −m2m4 −m1m

2
2 +m1m4 − 4m3m2 + 4m5 + 4m2

2 − 4m4

(m1 − 1)(m1 − 2)
− m3

2

(m1 − 1)2

)
.

Given the event E , by (4.4.1) and Corollary 4.3.2, we have that E[λ1] con-
centrates around m2/m1 with an O(

√
m∞) error, and so we can write

E
[
〈ẽ, H2ẽ〉
λ2

1

]
=

E
[
〈ẽ, H2ẽ〉

]
( m2

m1−1 )2
(1 + o(1)) + o(1).

We run through the various contributions separately (using Assump-
tion 4.1.1). Noting that nmk

0 ≤ mk ≤ nmk
∞ and that. there are positive
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constants c, C such that c ≤ m∞
m0
≤ C, we have

m3
2

m2
2(m1 − 1)(m1 − 2)

= Θ

(
1

n

)
,

m2m4

m2
2(m1 − 2)

= o

(
1√
n

)
,

m1m4

m2
2(m1 − 2)

= Θ

(
1

n

)
,

4m3m2

m2
2(m1 − 2)

= o

(
1

n

)
,

4m5

m2
2(m1 − 2)

= o

(
1

n3/2

)
,

4m2
2

m2
2(m1 − 2)

= o

(
1

n

)
,

4m4

m2
2(m1 − 2)

= o

(
1

n2

)
.

Therefore
E
[
〈ẽ, H2ẽ〉

]
(m2/(m1 − 1))2

=
m3m1

m2
2

− 1 + o(
1√
n

),

which settles (4.1.1).

Weak law of large numbers. We want to show that

λ1

Eλ1
→ 1

in P-probability. Using Corollary 4.3.2 and the Weyl interlacing inequal-
ity, we have that, with probability 1− n−K for K > 0,

m2

m1
−O (

√
m∞ ) ≤ λ1 ≤

m2

m1
+O(

√
m∞ ).

By (4.1.1),

m2

m1
−O(

√
m∞ )

m2

m1
(1 + o(1))

≤ λ1

E[λ1]
≤

m2

m1
+O(

√
m∞ )

m2

m1
(1 + o(1))

.

It follows that

1−O
(

1
√
m∞

)
) ≤ λ1

E[λ1]
≤ 1 +O

(
1

√
m∞

)
with probability 1− n−K , and hence the claim follows.
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Chapter 5

Sampling random graph
models

Abstract

In this Chapter we give a brief introduction to the problem
of random graph sampling and we will show simulations
that support our findings of the previous Chapters. Simu-
lations were performed using the computational resources
from the Academic Leiden Interdisciplinary Cluster Environ-
ment (ALICE) provided by Leiden University.

In Chapter 1 we spoke about the strong influence the abundance of
real-world data had on the flourishing of Network Science. The interplay
between models and data validation caused Network Science to emerge
as a powerful interdisciplinary field that studies the structure, dynam-
ics and behavior of complex systems represented as networks. As we
pointed out, these networks can range from social interactions and bio-
logical systems to technological infrastructures. Each network has pecu-
liar features that need to be captured by mathematical models that aim
to emulate reality.Typically, the size of the networks of interest is very
large, and as a consequence there is no hope to fully reconstruct real-
world network structures from the data. Indeed, with the large size of



the networks come many problems, such as the impossibility to gather
all the data needed, the amount of time and costs that this would take, as
well as accuracy and storage problems. Therefore, in the realm of Net-
work Science, sampling random graphs from given distributions plays a
crucial role, offering researchers a practical and efficient way to gain in-
sight into large-scale networks after the main features (i.e. the ones that
are easily accessible) have been incorporated. Once the model is chosen
and is found to recreate the observed datas, it becomes an efficient null
model that can be used to test whether new gathered data are consistent
with it or require more sophisticated models.

As we already discussed, Network Science provides many versatile
models that are able to capture many different features. Sampling-wise
a difference needs to be made between sampling from distributions with
soft constraints and from distributions with hard constraint. Ultimately,
we will specialize our discussion to the type of constraints that we ana-
lyzed in this thesis, i.e., constraints on the degree sequence.

5.1 Sampling from the Canonical Ensemble

Following [112, 127], fast sampling of the canonical model with con-
straint ~C(g) can be obtained once the Shannon entropy maximization
problem has been solved. Indeed, once the functional form of the pij

(
~θ
)

as in (1.6.1) is obtained, it is easy to calculate the value of the Lagrange
multipliers ~θ through maximum likelihood. The precise value of ~θ needed
to express (1.6.1) must be chosen in order to match with what has been
measured from data. This is obtained by requiring that the logarithm of
the probability of observing ~C∗ given ~θ is maximal, i.e.,

max
~θ

lnP
(
~C(g) = ~C∗

∣∣∣ ~θ ) .
This is possible only when the dyadic probabilities pij can be expressed
in closed form from the entropy maximization. When this is not the
case, other sampling procedures should be taken into account, most of
them based on Monte Carlo approaches (for example, Hamiltonian Monte
Carlo [24, 25]), or mean-field approaches (for example, the solution for
the Strauss model in [98]). See [45] for more examples. Constraints on
the degree sequence, i.e., the ones used in this thesis, allow for an explicit
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form of (1.6.1), even in the directed case with reciprocity or weights. We
will therefore use the methodology and the packages developed in [112].

(a) n = 500,
~d = (16, 18, 19, 20, 21),√
n ≈ 22.4, logn ≈ 6.2.

(b) n = 1000,
~d = (20, 23, 25, 28, 30),√
n ≈ 31.6, logn ≈ 6.9.

(c) n = 2000,
~d = (28, 33, 35, 38, 42),√
n ≈ 44.7, logn ≈ 6.21.

4 2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30
=0.025
=1.426

(d) n = 5000,
~d = (48, 53, 57, 62, 64),√
n ≈ 70.7, logn ≈ 8.5.

Figure 1: Histograms of λ̄1 for different graph sizes n and degree sequences
~d. The sample size for each regime is 104. Each element specified in the
degree sequence appears n

5
times. In red is plotted the Gaussian fit; µ is

the sample mean (represented by a dashed line in the histogram), σ is the
sample standard deviation. We expect µ ≈ 0 and σ ≈

√
2.
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4 3 2 1 0 1 2 3 4
0.0

0.1

0.2

0.3

0.4
=-0.112
=1.025

(a) n = 500,
~d = (16, 18, 19, 20, 21),√
n ≈ 22.4, logn ≈ 6.2.

4 3 2 1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
=-0.091
=1.026

(b) n = 1000,
~d = (20, 23, 25, 28, 30),√
n ≈ 31.6, logn ≈ 6.9.

3 2 1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 =-0.093
=1.02292

(c) n = 2000,
~d = (28, 33, 35, 38, 42),√
n ≈ 44.7, logn ≈ 6.21.

3 2 1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 =-0.073
=1.023

(d) n = 5000,
~d = (48, 53, 57, 62, 64),√
n ≈ 70.7, logn ≈ 8.5.

Figure 2: Histograms of v̄1(i) for different graph sizes n and degree se-
quences ~d. For each of the images, i is chosen to be the last i such that di
is equal to the 4th element of the corresponding degree sequence (e.g. for
n = 500, v1(400) was analysed with d400 = 20). The sample size for each
regime is 104. Each element in the degree sequence appears n

5
times. In red

is plotted the Gaussian fit; µ is the sample mean (represented by a dashed
line in the histogram), σ is the sample standard deviation. We expect µ ≈ 0
and σ ≈ 1.

.
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5.1.1 Simulations of results of Chapter 3: Largest eigen-
value.

Theorems 3.1.6–3.1.7 show that, after proper scaling and under certain
conditions of sparsity and homogeneity, the largest eigenvalue and the
components of the largest eigenvector exhibit Gaussian behaviour in the
limit as n → ∞. A natural question is how these quantities behave for
finite n. Indeed, real-world networks have sizes that range from n = 102

to n = 109. Another question is computational feasibility. Indeed, our
CLTs require the degrees to lie between (log n)4 (respectively, (log n)8)
and
√
n. In order to make this possible, n must be at least 1011 (respec-

tively, 1029), which is unrealistic. Let us therefore see what simulations
have to say1.

In Figure 1 we show histograms for the quantity

λ̄1 =
m2

m1σ1
(λ1 − E[λ1]),

which should be close to normal with mean 0 and variance 2 (for E[λ1]
the correction term o(1) is neglected). The convergence is fast: already
for n = 500 the Gaussian shape emerges and represents an excellent fit:
the sample mean µ is close to 0 and the sample standard deviation σ is
close to

√
2.

5.1.2 Largest eigenvector.

In Figure 2 we show histograms for the quantity

v̄1(i) =
m

3/2
2

m1s1(i)
(v1(i)− di/

√
m2 ) ,

which should be close to normal with mean 0 and variance 1. The fit is
again excellent.

5.1.3 Degrees of order log n and
√
n.

What happens when the degrees are of order log n? As can be seen in
Figure 3, in that range the Gaussian approximation for the largest eigen-

1Simulations were performed using the computational resources from the Academic
Leiden Interdisciplinary Cluster Environment (ALICE) provided by Leiden University.
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value is visibly worse, especially for the centering. The same happens
for the components of the largest eigenvector, as can be seen in Figure 4,
where the Gaussian shape is lost and two peaks appear.

(a) n = 500,
~d = (4, 5, 8, 9),√
n ≈ 22.4, logn ≈ 6.2.

4 2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25 =2.751
=1.532

(b) n = 5000,
~d = (6, 7, 9, 10),√
n ≈ 70.7, logn ≈ 8.5.

Figure 3: Histograms of λ̄1 for different graph sizes n and degree sequences
~d of order logn. The sample size for each regime is 104. Each element spec-
ified in the degree sequence appears n

4
times. In red is plotted the Gaussian

fit; µ is the sample mean (represented by a dashed line in the histogram),
σ is the sample standard deviation. If Theorem 3.1.6 would hold, then we
would expect µ ≈ 0 and σ ≈

√
2.
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12.5 10.0 7.5 5.0 2.5 0.0 2.5 5.0
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200 =-3.071
=2.702

(a) n = 500,
~d = (4, 5, 8, 9),√
n ≈ 22.4, logn ≈ 6.2.

12.5 10.0 7.5 5.0 2.5 0.0 2.5 5.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

=-4.179
=2.667

(b) n = 5000,
~d = (6, 7, 9, 10),√
n ≈ 70.7, logn ≈ 8.5.

Figure 4: Histograms of v̄1(i) for different graph sizes n and degree se-
quences ~d of order logn. For each of the images, i has been chosen to be the
last i such that di is equal to the 3rd element of the specified degree sequence
(e.g. for n = 500, v1(375) was analysed with d375 = 8). The sample size for
each regime is 104. Each element specified in the degree sequence appears
n
4

; µ is the sample mean (represented by a dashed line in the histogram),
σ is the sample standard deviation. If Theorem 3.1.7 would hold, then we
would expect µ ≈ 0 and σ ≈ 1.

5.2 Sampling from the Microcanonical Ensem-
ble

Sampling from uniform distributions is known to be an hard problem.
The main reason for this, in graph theory, is the difficulty in estimating
the cardinality of the support (1.5.3) of the uniform distribution. Many
approximate procedures have been developed over time to overcome
this obstacle. In general, there is an interplay between biased sampling
and complexity of the algorithm. While most of the procedures to sample
with accuracy from Γ~C∗ require an exponential complexity time, faster
procedures rely on Monte Carlo approaches that suffer from two related
types of problems: bias and ergodicity. The latter refers to the fact that,
depending on the constraints on the dynamics of the Markov Chain,
there can be configurations that are never visited by the MCMC. Biased
sampling refers to the fact that our MCMC might sample certain graphs
with higher probability, e.g. because of a lack of ergodicity or a high mix-
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ing time for the Markov chain. This is usually solved, when possible, by
introducing importance sampling. For the case when the constraint is on
the degree sequence fast algorithms are available. These algorithm usu-
ally are divided into two steps: the first generates an unbiased seed which
then is fed to the MCMC for the second step. For the case of constraints
on the degree sequence the MCMC is shown to mix fast enough to make
this method efficient. Usually the shortcoming of these approaches is the
limitations on the density and inhomogeneity of our random graphs.

Because of its importance in graph theory, sampling graphs with a
given degree sequence, i.e., when the constraint is on the degree se-
quence, has been studied since the 60s. A good reference is [73]. Three
main approaches are used. One is the use of configuration model, which
was shown in [83] to be efficient to generate simple graphs only when
m2 = O(m1

2

√
log n) and maxi di = o(m1/2) (for example, when maxi di =

O(
√

log n)). A rejection sampling when the degree sequence is above
these thresholds will lead to exponential complexity. To overcome this
difficulty in [94] Wormald and McKay showed a way to sample from
the set of simple graphs with a given degree sequence by implementing
switching-based algorithms. In the case of an homogeneous degree se-
quence, i.e., di = d for all i, the microcanonical ensemble coincides with
the random d-regular graph model. The problem was solved by imple-
menting the switching algorithm of [94] and was perfectioned in [69, 87,
115]. The algorithm is efficient when d = O(n−1/3). For inhomogeneous
degree sequences, it was proved in [82] that when

max
i
di = o(

√
n), m1 = Θ(n), m2 = O(n),

the switching algorithm asymptotically provides a uniform sampling.
For the directed case a sequential stub-matching procedure was shown in
[81] to lead to asymptotic uniform sampling when maxi di = O(m

1/4−ε
1 ),

provided m1 =
∑
i d

in
i =

∑
i d

out
i .

MCMC methods usually rely on switching chain dynamics performed
on a seed graph generated via the Havel-Hakimi algorithm [74, 76]. The
details of this method and its variations can be found in [73, Chapter
6]. In particular, it was shown that the mixing properties of the Markov
chain are linked to P -stability of the degree sequence [85].

In our simulations, given the relatively small size of the graphs and
the low density and inhomogeneity of the degree sequences taken in ac-
count, we opted for a rejection sampling using the configuration model.
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In Table 1 we report the details of the simulated graphs and the rejection
rate.

Configuration Model
Size n Degree Sequence Mean Degree

√
n log n Rejection Rate

1000 ~d = (20, 23, 25, 28, 30) 25.2 ≈ 31.6 ≈ 6.9 1.67%

2000 ~d = (28, 33, 35, 38, 42) 35.2 ≈ 44.7 ≈ 7.6 1.35%

5000 ~d = (48, 53, 57, 62, 64) 56.8 ≈ 70.7 ≈ 8.5 0.95%

10000 ~d = (78, 80, 83, 87, 90) 83.6 100 ≈ 9.2 0.73%

Table 1: Configuration model that have been sampled. Each element spec-
ified in the degree sequence appears n

5
times. The rejection rate has been

obtained by sampling 10000 graphs for each different size and degree se-
quence and counting the non simple realizations.

5.2.1 Simulations of results of Chapter 4: Largest eigen-
value.

In Theorem 4.1.2 we proved that the expectation of λ1 in the configura-
tion model conditioned on simplicity satisfies

E[λ1] =
m2

m1
+
m1m3

m2
2

− 1 + o(1), n→∞.

In Figure 5 and Figure 6 we plot

λ̄1 = λ1 − E[λ1]

for some degree sequences compatible with the ones studied in Section
5.1.1. It can be seen that, with an increasing size of the graph, the error
in the above formula becomes smaller and smaller. Furthermore it can
be seen that the empirical standard deviation of λ1 is much smaller than
the one calculated for the Chung-Lu model from the formula for σ2 in
Theorem 3.1.6.

To capture the difference between the largest eigenvalues of the mod-
els in Chapter 3 and Chapter 4 we can define the following quantity on
the probability space formed by the product measure of the two models

λ̂1 = λCL
1 − λCM

1 .
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(a) n = 1000,
~d = (20, 23, 25, 28, 30),√
n ≈ 31.6, logn ≈ 6.9.

(b) n = 2000,
~d = (28, 33, 35, 38, 42),√
n ≈ 44.7, logn ≈ 7.6.

Figure 5: Histograms of λ̄1 for different graph sizes n and degree sequences
~d. The sample size for each regime is 104. Each element specified in the
degree sequence appears n

5
times. In red is plotted the Gaussian fit; µ is

the sample mean (represented by a dashed line in the histogram), σ is the
sample standard deviation. We expect µ ≈ 0.

(a) n = 5000,
~d = (48, 53, 57, 62, 64),√
n ≈ 70.7, logn ≈ 8.5.

(b) n = 10000,
~d = (78, 80, 83, 87, 90),√
n = 100, logn ≈ 9.2.

Figure 6: Histograms of λ̄1 for different graph sizes n and degree sequences
~d. The sample size for each regime is 104. Each element specified in the
degree sequence appears n

5
times. In red is plotted the Gaussian fit; µ is

the sample mean (represented by a dashed line in the histogram), σ is the
sample standard deviation. We expect µ ≈ 0.
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Figure 7: Histograms of λ̂1 for n = 10000 and degree sequences ~d =
(78, 80, 83, 87, 90). The sample size is 104. Each element specified in the
degree sequence appears n

5
times. In red is plotted the Gaussian fit; µ is

the sample mean (represented by a dashed line in the histogram), σ is the
sample standard deviation. We expect µ ≈ 1.

In Figure 7 we plot λ̂1. The choice of the product measure corresponds to
an independent sampling of λCL

1 and λCM
1 . The histogram supports our

conjecture formulated in Chapter 2. Remarkably, the difference is 1, like
in the homogenous case, irrespective of the degrees.
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[59] Paul Erdős and Alfréd Rényi. “On Random Graphs I”. In: Publi-
cationes Mathematicae Debrecen 6 (1959), pp. 290–297.
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