
IMT School for Advanced Studies, Lucca
Lucca, Italy

Global and preference-based optimization using
surrogate-based methods

PhD Program in Systems Science

Track in CSSE

XXXV Cycle

By

Mengjia Zhu

2024

mailto:mengjia.zhu@imtlucca.it




The dissertation of Mengjia Zhu is approved.

PhD Program Coordinator: Prof. Alberto Bemporad, IMT School for
Advanced Studies Lucca

Advisor: Prof. Alberto Bemporad, IMT School for Advanced Studies
Lucca

The dissertation of Mengjia Zhu has been reviewed by:

Prof. Fabio Schoen, University of Florence

Prof. Benoı̂t Chachuat, Imperial College London

IMT School for Advanced Studies Lucca
2024





“Sometimes I wish I could have been a bit more relaxed, but then I
wouldn’t have been the same player.“

— Steffi Graf





Contents

List of Figures xi

List of Tables xvii

Acknowledgements xix

Vita and Publications xxii

Abstract xxv

List of Notations xxvi

List of Abbreviations xxviii

1 Overview 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis outline and contributions . . . . . . . . . . . . . . . 2

2 Preliminaries 7
2.1 Global optimization . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Black-box optimization . . . . . . . . . . . . . . . . . . . . . 9
2.3 Preference-based optimization . . . . . . . . . . . . . . . . 12

2.3.1 GLISp . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Mixed-variable black-box optimization . . . . . . . . . . . 19

2.4.1 PARC . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Model predictive control . . . . . . . . . . . . . . . . . . . . 24

vii



3 Preference-based MPC calibration 28
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Problem description . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Preference-based tuning . . . . . . . . . . . . . . . . . . . . 33
3.4 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 CSTR optimal steady-state switching policy . . . . 34
3.4.2 Automated driving vehicle . . . . . . . . . . . . . . 40

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Handling unknown constraints in preference-based optimiza-
tion with applications to controller calibration 46
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Learning unknown constraint functions . . . . . . . 52
4.3.2 Learning the preference function . . . . . . . . . . . 53
4.3.3 Acquisition function . . . . . . . . . . . . . . . . . . 54

4.4 Optimization benchmarks . . . . . . . . . . . . . . . . . . . 58
4.5 MPC calibration . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Global and Preference-based Optimization with Mixed Vari-
ables using Piecewise Affine Surrogates 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Solution method . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Change of variables: scaling and encoding . . . . . 75
5.3.2 Piecewise affine surrogate function . . . . . . . . . . 79
5.3.3 Exploration function . . . . . . . . . . . . . . . . . . 81
5.3.4 Acquisition function . . . . . . . . . . . . . . . . . . 84
5.3.5 Initial sampling strategies . . . . . . . . . . . . . . . 87

5.4 Preference-based learning . . . . . . . . . . . . . . . . . . . 88

viii



5.5 Optimization benchmarks . . . . . . . . . . . . . . . . . . . 91
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Discrete and mixed-variable experimental design with
surrogate-based approach 97
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Problem description . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.1 Suzuki-Miyaura cross-coupling . . . . . . . . . . . . 99
6.3.2 Crossed barrel . . . . . . . . . . . . . . . . . . . . . . 102
6.3.3 Solvent design . . . . . . . . . . . . . . . . . . . . . 106

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 Conclusion 122
7.1 Open questions and future work . . . . . . . . . . . . . . . 124

Bibliography 126

Appendix 144

A Benchmark 144
A.1 Unconstrained mixed-variable synthetic benchmarks . . . 145
A.2 Unconstrained mixed-variable real-world benchmarks . . 147
A.3 Constrained mixed-variable synthetic problems . . . . . . 148

B Optimization methods and relevant implementations 151
B.1 Bayesian Optimization methods . . . . . . . . . . . . . . . 151

B.1.1 CoCaBO . . . . . . . . . . . . . . . . . . . . . . . . . 151
B.1.2 EXP3BO . . . . . . . . . . . . . . . . . . . . . . . . . 152
B.1.3 One-hot BO . . . . . . . . . . . . . . . . . . . . . . . 152
B.1.4 BoTorch . . . . . . . . . . . . . . . . . . . . . . . . . 152
B.1.5 EDBO . . . . . . . . . . . . . . . . . . . . . . . . . . 153
B.1.6 TPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.2 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . 154
B.2.1 Random Search . . . . . . . . . . . . . . . . . . . . . 154
B.2.2 MISO . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
B.2.3 NOMAD . . . . . . . . . . . . . . . . . . . . . . . . . 155

ix



B.2.4 SMAC . . . . . . . . . . . . . . . . . . . . . . . . . . 155
B.2.5 Genetic . . . . . . . . . . . . . . . . . . . . . . . . . . 155
B.2.6 PSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

x



List of Figures

2.1 General procedures for surrogate-based optimization
methods 2.1 [3]. . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The flowchart of PARC. . . . . . . . . . . . . . . . . . . . . 20

2.3 The polyhedral partition with Kinit = 10 initial partitions.
Note that the final partition is also 10 (no partition is dis-
carded). The dots in the figure are the training data for the
PARC algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Branin function fitted analytically and by PARC. The dots
in the figure are the test data (200 samples) for the PARC
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 The polyhedral partition with Kinit = 10 initial parti-
tions. Note that the final partition is 8 (2 partitions are
discarded). The dots in the figure are the training data for
the PARC algorithm. . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Function (2.16) fitted analytically and by PARC. . . . . . . 24

3.1 CSTR query window for one iteration of GLISp. The top
subplots show the change of concentration CA over the
simulation time. The bottom subplots show the variations
of coolant temperature Tc over simulation time. The re-
sults of the left experiment are preferred to the right one
because of a faster transient and settling time, and smaller
variations of Tc. . . . . . . . . . . . . . . . . . . . . . . . . . 37

xi



3.2 CSTR closed-loop performance obtained by calibrating
MPC parameters through the proposed semi-automated
preference-based approach (left panels) and through a
fully-automated approach minimizing the scoring func-
tion (3.8) (right panels). . . . . . . . . . . . . . . . . . . . . . 39

3.3 Vehicle control query window. The top subplots show
the location trajectories of the vehicle and the obstacle, in
which the “vehicle OA” and “obstacle OA” bars show five
relative positions of the vehicle and obstacle during the
obstacle-avoidance phase. The middle subplots show the
actual and reference velocity v at different longitudinal po-
sitions. The steering angleψ over the longitudinal position
is depicted in the bottom subplots. For ease of assessment,
the unit of v and ψ in the figure is converted to km/hr and
degree (◦), respectively. The results on the right panels are
preferred. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Vehicle control final performance obtained by the de-
signed MPC controller. . . . . . . . . . . . . . . . . . . . . 44

4.1 Algorithm C-GLISp. Level sets of the functions used in the
three benchmarks, along with feasibility and satisfaction
sets. Blue×: points generated from initial sampling phase;
black ◦: points generated from active learning phase; pur-
ple ♢: global unconstrained optimizer; red •: constrained
optimizer found after Nmax iterations; green □: global
constrained optimizer. As N increases, the points gener-
ated by C-GLISp approach the constrained optimizer, and
most of the points generated during the active learning
phase lay in the feasibility and satisfaction regions. ©2021
IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xii



4.2 Benchmark CHC. Optimizers computed by C-GLISp,
GLISp and PBO in 100 runs. Red ×: optimizer computed
at the end of each run; purple ♢: unconstrained optimizer;
green ♢: global constrained optimizer. Numbers in black
with arrows indicate the number of overlapping points.
©2021 IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Vehicle control query window. The top subplots show the
vehicle and obstacle positions. The “vehicle OA” and “ob-
stacle OA” bars show five relative positions of the vehicle
and obstacle during the OA period. The dashed lines indi-
cate the lateral distance that the car should avoid exceed-
ing (5 m in this case). The middle subplots show the actual
and reference velocity v at different longitudinal positions.
The steering angle ψ over the longitudinal position is de-
picted in the bottom subplots. The results on the left pan-
els are preferred and feasible, while the results on the right
panels are infeasible. The results on both sets of panels fail
to satisfy the satisfaction conditions. ©2021 IEEE . . . . . . 67

4.4 Final vehicle control performance obtained by the de-
signed MPC controller. The top subplot shows the vehicle
and obstacle positions. The “vehicle OA” and “obstacle
OA” bars show five relative positions of the vehicle and
obstacle during the OA period. The middle subplot shows
the actual and reference velocity v at different longitudinal
positions. The bottom subplot shows the steering angle ψ
over the longitudinal position. ©2021 IEEE . . . . . . . . . 68

5.1 Illustrative example of the max-box exploration function
in 2D. The black dots denote the initial samples. The red
squares denote the samples generated using the max-box
exploration method. The subscript number indicates the
order of the point generated. . . . . . . . . . . . . . . . . . . 83

6.1 General steps of experimental design. . . . . . . . . . . . . 98

xiii



6.2 Suzuki-Miyaura cross-coupling reaction. The variables -
boronic acid derivative (Y), aryl halide (X), ligand, base,
and solvent - highlighted in blue represent the experimen-
tal design space. All other reaction conditions are fixed
and noted in black. . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 A comparison of the performance of PWAS and the bench-
mark methods on Suzuki-Miyaura cross-coupling reaction
optimization. For each method, the solid line represents
the mean value, and the filled area comprises the 95% con-
fidence interval, i.e., mean ± 1.96 std. . . . . . . . . . . . . . 103

6.4 Number of iterations each method takes in each run to ob-
tain the first top-20 ranked yield. The results for 30 repeti-
tions are summarized in the boxplot. Each dot represents
one run of the repetitions. The diamond-shaped points are
the ones classified as outliers by the boxplot. . . . . . . . . 104

6.5 Schematic representation of a crossed-barrel design [150],
illustrating the optimization variables, where θ is twist
angle of the columns [degree], r is outer radius of the
columns [mm], n is the number of hollow columns, and
t is thickness of the hollow columns [mm]. . . . . . . . . . 105

6.6 Best toughness achieved so far at different iterations for
the designed structure at different iterations for crossed
barrel design. Results are summarized over 30 repetitions.
For each method, the solid line represents the mean value,
and the filled area comprises the 95% confidence interval,
i.e., mean ± 1.96 std. . . . . . . . . . . . . . . . . . . . . . . 107

6.7 Best toughness achieved so far at different iterations for
the designed structure at different iterations with EDBO
method with different discretization steps for crossed bar-
rel design. The trajectory of PWAS is also shown for com-
parison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.8 The Menschutkin reaction of phenacyl bromide and pyri-
dine. In the illustration, Solvent 2 is preferred which low-
ers the free energy compared to Solvent 1 [153, 155]. . . . . 109

xiv



6.9 Partial Dependence Plots (PDP) and Individual Condi-
tional Expectation (ICE) Plots utilized to assess the in-
fluence of diverse solvent properties on the reaction rate
across all feasible solvents. n2: refractive index at 298K,
B: Abraham’s overall hydrogen-bond basicity, ϵ: dielectric
constant at 298K, A: Abraham’s overall hydrogen-bond
acidity, γ: the macroscopic surface tension at 298K. Solvent
properties are calculated based on the property prediction
method of Sheldon et al. [161, 163]. . . . . . . . . . . . . . . 115

6.10 Radar chart of the three selected features of the first 10 ini-
tial samples. n2: refractive index at 298K, B: Abraham’s
overall hydrogen-bond basicity, ϵ: dielectric constant at
298K. All features were normalized to a range between 0
and 1 using min-max normalization, except for the dielec-
tric constant. Since the dielectric constants of S-5 and S-7
were significantly higher than those of the others, the di-
electric constant was normalized relative to the remaining
solvents. With the relative normalized dielectric constants
of S-5 and S-7 denoted in the figure. . . . . . . . . . . . . . 116

6.11 Radar chart of the three selected features for the first-10
(a) and last-10 (b) active learning samples. n2: refractive
index at 298K, B: Abraham’s overall hydrogen-bond ba-
sicity, ϵ: dielectric constant at 298K. All features are nor-
malized to a range between 0 and 1. . . . . . . . . . . . . . 117

6.12 Solvents identified by PWAS in 50 iterations, whose struc-
tures are depicted in functional group representations. (a):
in sequential iteration order, with a black line separating
the initial and active-learning samples; (b): grouped in
partitions, with orange lines representing the boundary of
the partitions (in total 10 partitions). . . . . . . . . . . . . . 118

xv



6.13 Bubble chart of solvent properties of the solvents identi-
fied by PWAS. n2: refractive index at 298K, ϵ: dielectric
constant at 298K. Abraham’s overall hydrogen-bond ba-
sicity is represented by the size of each bubble, with the
relevant bubble size scale shown in the legend. The rela-
tive ranks of each solvent are indicated using a color bar,
with the top-10 and last-10 ranked solvents also denoted
with texts for clarity. . . . . . . . . . . . . . . . . . . . . . . 120

xvi



List of Tables

3.1 CSTR parameters [91] . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Numerical benchmarks - Problem Specification ©2021 IEEE 59
4.2 Numerical benchmarks - Solver Specification ©2021 IEEE . 59
4.3 Numerical benchmarks - Results ©2021 IEEE . . . . . . . . 59
4.4 Distribution over 100 runs of the percentage difference be-

tween achieved and global optimum ©2021 IEEE . . . . . . 62

5.1 Illustrative example of the Hamming distance exploration
fun. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Benchmark problem specifications. . . . . . . . . . . . . . . 92
5.3 Optimal value found on benchmark Func-2C [123] (max =

0.2063). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4 Optimal value found on benchmark Func-3C [123] (max =

0.7221). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Optimal value found on benchmark Ackley-5C [123] (max

= 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6 Optimal value found on benchmark XG-MNIST [123]. . . . 94
5.7 Optimal value found on benchmark NAS-CIFAR10 [123]. . 94
5.8 Performance of PWAS/PWASp on constrained mixed-

variable synthetic problems. . . . . . . . . . . . . . . . . . . 95
5.9 CPU time (s) for surrogate fitting and acquisition opti-

mization, averaged over Nmax − Ninit active sampling it-
erations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xvii



6.1 Reaction design space (fully categorical) for the Suzuki-
Miyaura cross-coupling reaction [143–145]. . . . . . . . . . 100

6.2 Optimization variables for the crossed-barrel design [145,
150]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 CPU time (seconds) required by different methods for
one run of the optimization for the crossed barrel design.
Statistics were obtained from 30 random runs. . . . . . . . 106

6.4 Optimization variables and problem size for the solvent
design [153]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.5 Property constraints for the solvent design. The property
prediction method of Hukkerikar et al. [156] is used for Tb,
Tm, Tfp, and Kow, and Hukkerikar et al. [157] is used to
predict LD50 . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.6 The top 10 ranked solvents identified by PWAS for the sol-
vent design case study. k [L mol−1 s−1]: rate constant
for the Menschutkin reaction, QM: ln k obtained from
quantum-mechanical calculation, pred: ln k predicted by
the PWAS surrogate. . . . . . . . . . . . . . . . . . . . . . . 112

6.7 The top 10 ranked solvents identified by DoE-QM-CAMD
for the solvent design case study. k [L mol−1 s−1]: rate
constant for the Menschutkin reaction, QM: ln k obtained
from quantum-mechanical calculation, pred: ln k pre-
dicted by the DoE-QM-CAMD surrogate, i.e., the multipa-
rameter solvatochromic equation (6.2). . . . . . . . . . . . 113

xviii



Acknowledgements

I would like to begin by expressing my sincere appreciation
to my supervisor, Prof. Alberto Bemporad, for his continuous
guidance and support throughout this journey. His profound
expertise in the research field has consistently provided me
with valuable feedback and insightful suggestions to guide
me in the right direction. He has always been approachable
for discussions, available via email and in-person meetings.
Furthermore, he has played a crucial role in helping me de-
velop good research habits and be more organized regard-
ing the research process. Additionally, he has consistently
challenged me to think critically and independently. I have
always held in high regard his work ethic, exceptional effi-
ciency, and amazing coding skills. Moreover, he has aided
me in honing my writing and presentation skills. Under his
supervision, my research journey has been a constant source
of inspiration and fulfillment.

I would like to extend my sincere gratitude to Prof. Dario
Piga for his invaluable support and collaboration throughout
our joint research projects. I am immensely grateful for his
constant availability and willingness to provide guidance and
assistance. The fruitful discussions and constructive feedback
have significantly contributed to the quality of our work.

I also want to thank Dr. Hasan Esen, Dr. Maximilian
Kneissl, and Dr. Adam Molin from DENSO Automotive
Deutschland GmbH, and Dr. Dejan Ničković, and Dr. Edgar
A. Aguilar from Austrian Institute of Technology GmbH for
our collaboration on the joint industrial project. This expe-

xix



rience has been truly invaluable and has significantly con-
tributed to my personal and professional growth.

I am grateful to Dr. Ehecatl Antonio del Rı́o Chanona for
providing me the opportunity to undertake the Erasmus+
traineeship at the Imperial College London. I also appreciate
the supervision and collaboration of Dr. Ehecatl Antonio del
Rı́o Chanona, Dr. Ye Seol Lee, and Prof. Kim Jelfs as well as
the insightful discussions and collaborations with Dr. Austin
Mroz and Dr. Lingfeng Gui for our project on experimental
design. Additionally, I thank all my colleagues for their ca-
maraderie and enjoyable interactions during my visit.

I am also grateful to Dr. Loris Cannelli and Dr. Francesco
Farina for our collaboration on the distributed version of
GLIS.

I want to thank Prof. Fabio Schoen and Prof. Benoı̂t
Chachuat for taking the time to review my thesis and offering
valuable feedback to enhance its quality.

The journey of these past years at IMT has truly impacted
me in many dimensions. I want to express my deep appre-
ciation to my dear friends for their support, companionship,
and the joyous/touching moments we have shared. The“Tea
+ party“ group with Asli, Kristina, Luisana, and Serenella
has been an enormous support since day one of my Ph.D.
studies. Over these years, we have created cherished mem-
ories and participated in each other’s important life events.
I also want to thank my friends Sampath, Stefano, Daniele,
Nick, Liang, Hamid, and Shokh, as well as Mario from our
DYSCO research unit for the walks around the wall, the ping-
pong/foosball games, all the discussions, and the emotional
support. I would also like to thank Di for the support and
for making me feel at home. I thank people from the IMT
offices/receptions/canteen, especially Barbara, Daniela and
Silvia, for helping with all the documentations and emotional

xx



support.

I want to thank Fang, Xinyi, Jiachun, Xuan, Qixuan, and
Anne for the company through all these years. I am truly
fortunate to have them by my side. I also express my deep
appreciation to Na and Jiaqi for dragging me out of emotional
holes, for the ups and downs, and for everything we have
experienced together.

I would like to thank Prof. Sandro Macchietto, Prof. Lilo
Pozzo, and Prof. Nirmala Savage for their continuous sup-
port academically and personally.

Finally, I would like to thank my parents and my grandma
for their generous and continuous support along my personal
and educational journey over the years. Nothing would be
possible without them.

xxi



Vita

August 29, 1995 Born, Zhejiang, China

2017 B.S. in Chemical Engineering, minor in Math
Final mark: 3.72/4.00
University of Washington,
Seattle, US

2019 MSc in Advanced Chemical Engineering with PSE
Final mark: Distinction
Imperial College London,
London, UK

2019 - 2024 PhD in System Science
IMT School for Advanced Studies Lucca,
Lucca, Italy

Aug 2023 - Jan 2024 Visiting PhD student
Imperial College London,
London, UK

xxii



Publications

1. M. Zhu, A. Bemporad, M. Kneissl, and H. Esen, “Learning critical scenar-
ios in feedback control systems for automated driving,” IEEE 26th Inter-
national Conference on Intelligent Transportation Systems, Bilbao, Spain, 2023,
pp. 321-328.

2. L.Cannelli, M. Zhu, F. Farina, A. Bemporad, and D. Piga, “Multi-agent ac-
tive learning for distributed black-box optimization,” IEEE Control Systems
Letters, vol. 7, pp. 1488-1493, 2023.

3. A. Molin, E. Aguilar, D. Nickovic, M. Zhu, A. Bemporad, and H. Esen,
“Specification-guided critical scenario identification for automated driv-
ing,” 25th International Symposium on Formal Methods, 2023.

4. M. Zhu, D. Piga, and A. Bemporad, “C-GLISp: Preference-based global
optimization under unknown constraints with applications to controller
calibration,” in IEEE Trans. on Control Systems Technology, vol. 30, no. 5,
pp. 2176–2187, 2022.

5. M. Zhu, A. Bemporad, and D. Piga, “Preference-based MPC calibration,”
in European Control Conference, Rotterdam, Netherlands, 2021, pp. 638–645.

Submitted

1. M. Zhu, A. Mroz, L. Gui, K. Jelfs, A. Bemporad, EA. del Rı́o Chanona, and
Y. Lee, “Discrete and mixed-variable experimental design with surrogate-
based approach,“ submitted for publication, 2024.

2. M. Zhu and A. Bemporad, “Global and preference-based optimization
with mixed variables using piecewise affine surrogates,” submitted for pub-
lication, 2023.

xxiii



Presentations

1. M. Zhu, “Preference-based Optimization“, IPSE Seminar at University of
Surrey, Surrey, UK, 2024.

2. M. Zhu, “Learning critical scenarios in feedback control systems for au-
tomated driving,“ at 26th IEEE International Conference on Intelligent Trans-
portation Systems, Bilbao, Bizkaia, Spain, 2023.

3. M. Zhu, “Preference-based MPC calibration,” at European Control Confer-
ence, virtual, 2021.

4. M. Zhu, “Preference-based MPC calibration,” at AUTOMATICA.IT Work-
shop, virtual, 2020.

xxiv



Abstract

This thesis explores methodologies in black-box and
preference-based optimization, addressing three key research
questions. Firstly, it introduces a semi-automated calibra-
tion approach that eliminates the need for an explicit per-
formance index by relying on human calibrator preferences.
Secondly, the thesis delves into preference-based global op-
timization algorithms that address optimization problems
where the analytic expression of the objective function is
unknown and the optimization is subject to unknown con-
straints. The proposed algorithm, C-GLISp, extends the
active preference learning framework to handle these un-
known constraints. Lastly, the thesis tackles the challenge
of optimization problems involving mixed variables and lin-
ear constraints. To address this challenge, we present a
novel surrogate-based global optimization algorithm, named
PWAS. The algorithm constructs a piecewise affine surrogate
of the objective function over feasible samples and utilizes ex-
ploration functions to efficiently navigate the feasible domain
using mixed-integer linear programming solvers. Addition-
ally, a preference-based version of the algorithm, PWASp, is
introduced to handle situations where only pairwise compar-
isons between samples are available instead of direct objec-
tive function evaluations. The efficiency and effectiveness of
the proposed approaches are demonstrated via benchmark
studies. Additionally, the practical applicability of PWAS is
discussed via experimental design case stuides.

xxv



List of Notations

General

• R is the set of all real numbers

• Z is the set of all integers

• N is the set of all natural numbers

• Rn denotes the set of real vectors of dimension n with n ∈ N

• Rm×n denotes the set of matrices of dimension m× n (m rows
and n columns) with n,m ∈ N

• Zn denotes the set of integer vector of dimension n with n ∈ N

• x ∈ Rn denotes the optimization vector

• X is often used to denote the set of x within linear/nonlinear
equality/inequality constraints

• xT denotes the transpose of vector x

• x∗ denotes the optimum x identified after optimization

• ∥x∥p denotes the general p-norm of vector x

• Given ℓ ∈ Rn, ℓj denotes the jth element of vector ℓ

• Given A ∈ Rm×n, Aij denotes the element at row i and column
j of matrix A

• |A| denotes the cardinality of the set A

• ⌊a⌋ denotes the greatest integer smaller than or equal to a, for
a ∈ R

• ⌈a⌉ denotes the smallest integer greater than or equal to a, for
a ∈ R

• f̂ is often used to denote the surrogate approximation of the (un-
known) latent function f

xxvi



Model Predictive Control

• ∥ν∥2Q is the weighted squared norm, i.e., ν⊤Qν

• Np is the prediction horizon and Nu is the control horizon

• ut+k|t, k = 1, . . . , Np denotes the control action at time step t+ k

up to the end of the prediction horizon given the information at
time step t

• Qu denotes the positive-semidefinite weight matrix of vector u

xxvii



List of Abbreviations

BO Bayesian Optimization

BoTorch BO in PyTorch

C-GLISp GLISp under unknown constraints

CAMD Computer-aided Molecular Design

CMA-ES Covariance Matrix Adaptation - Evolution Strategy

CoCaBO Continuous and Categorical BO

CoCaBO-0.5 CoCaBO with trade-off parameter λ = 0.5

CoCaBO-auto CoCaBO with λ optimized as a hyperparameter

CSTR Continuous Stirring Tank Reactor

DEAP Distributed Evolutionary Algorithm in Python

DoE Design of experiment

EDA Estimation of Distribution

EDBO Experimental Design via BO

EXP3BO Exponential-weight algorithm for Exploration and
Exploitation with BO

GLIS Global minimum using Inverse distance weighting
and Surrogate radial basis functions

GLISp Preference-based GLIS

GP Gaussian Process

GPT Generative Pre-trained Transformer

HTE High-throughput experimentation

IDW Inverse Distance Weighting

LHS Latin Hypercube Sampling

LK Lane-Keeping

xxviii



LLM Large Language Model

LP Linear Programming

LPV Linear parameter-varying model

LTV Linear time-varying model

MIDACO Mixed Integer Distributed Ant Colony Optimiza-
tion

MILP Mixed-integer Linear Programming

MISO Mixed-Integer Surrogate Optimization

MPC Model Predictive Control

NOMAD Nonlinear Optimization with the Mesh Adaptive
Direct search

OA Obstacle-Avoidance

PARC Piecewise Affine Regression and Classification

PBO Preference-based Bayesian Optimization

PWA PieceWise Affine function

PWAS Global optimization using PWA surrogates

PWASp Preference-based PWAS

QP Quadratic Programming

RBF Radial Basis Function

PSO Particle Swarm Optimization

SMAC sequential model-based algorithm configuration

SVM Support Vector Machine

TPE Tree-structured Parzen Estimator

xxix



Chapter 1

Overview

1.1 Introduction

In today’s dynamic and complex world, pursuing optimal solutions
across various domains has become essential. Whether in engineering,
finance, or data analysis, the ability to efficiently navigate the vast so-
lution space to find the best outcomes is a compelling challenge. Re-
searchers and practitioners have developed diverse methodologies and
algorithms to tackle these intricate optimization problems. Global opti-
mization methods have emerged as indispensable tools for finding op-
timal solutions within a given problem space. On the other hand, the
applicability of many traditional optimization techniques is often con-
strained by assumptions of known objective functions and explicit prob-
lem structures. Black-box optimization, also known as derivative-free
optimization, is a powerful technique used to find the optimal solution
for a problem when the underlying function is unknown or cannot be
directly accessed. However, given an input, the objective function can
be measured. Optimization methods that tackle black-box optimization
problems have been widely used in various fields, including calibration
in control engineering, hyperparameter tuning in machine learning, and
portfolio design in finance.

1



1.2 Thesis outline and contributions

In this thesis, we focus on the following research questions. The content
of the research questions is partially or fully reprinted from [1–3]:

©2021 EUCA. Reprinted, with permission, from M. Zhu, A.
Bemporad, and D. Piga, “Preference-based MPC calibration,”
in European Control Conference, Rotterdam, Netherlands, 2021,
pp. 638–645.

©2021 IEEE. Reprinted, with permission, from M. Zhu, D.
Piga, and A. Bemporad, “C-GLISp: Preference-based global
optimization under unknown constraints with applications
to controller calibration,” in IEEE Trans. on Control Systems
Technology, vol. 30, no. 5, pp. 2176–2187, 2022.

M. Zhu and A. Bemporad, “Global and preference-based op-
timization with mixed variables using piecewise affine surro-
gates,” submitted for publication, 2023.

1. Automating the calibration of the parameters of a control pol-
icy through global optimization requires quantifying a closed-
loop performance function. However, this can be impractical in
many situations [1]. What are possible ways to solve such black-
box global optimization problems without measuring the objective
function?

2. Preference-based global optimization algorithms minimize an un-
known objective function only based on whether the function is
better, worse, or similar for given pairs of candidate optimization
vectors. Such optimization problems arise in many real-life exam-
ples, such as finding the optimal calibration of the parameters of a
control law. The calibrator can judge whether a particular combi-
nation of parameters leads to a better, worse, or similar closed-loop
performance. The search for the optimal parameters is often sub-
ject to unknown constraints. For example, the vector of calibration

2



parameters must not lead to closed-loop instability [2]. What can
we do to encourage feasible sampling when there exist unknown
constraints?

3. Optimization problems involving mixed variables, i.e., variables of
numerical and categorical nature, can be challenging to solve, es-
pecially in the presence of complex constraints. Moreover, when
the objective function is the result of a complicated simulation or
experiment, it may be expensive to evaluate [3]. What are possible
ways to solve such black-box global optimization problems while
maintaining the integrality of the integer variables and respecting
mixed-integer constraints? Can we extend such methods to prob-
lems where the objective function can not be assessed, but we can
assess the performance based on pairwise comparisons?

As we will demonstrate in this thesis, the aforementioned research
questions can be tackled using surrogate-based optimization methods
for global and preference-based optimization problems. In this thesis,
we show the formulation of the optimization problems and their solution
methods, which are organized as follows:

• In Chapter 2, we present a general literature review and some
background information for the subjects of global, black-box,
preference-based, and mixed-variable black-box optimization, and
model predictive control.

• In Chapter 3, we address Question 1, where we suggest a semi-
automated calibration approach that requires instead a human cal-
ibrator to express a preference on whether a certain control policy
is “better” than another one, therefore eliminating the need of an
explicit performance index. In particular, we focus our attention on
semi-automated calibration of Model Predictive Controllers (MPCs),
for which we attempt computing the set of best calibration param-
eters by employing the recently-developed active preference-based
optimization algorithm GLISp. Based on the preferences expressed
by the human operator, GLISp learns a surrogate of the underlying

3



closed-loop performance index that the calibrator (unconsciously)
uses and proposes, iteratively, a new set of calibration parameters
to him or her for testing and for comparison against previous ex-
perimental results. The resulting semi-automated calibration pro-
cedure is tested on two case studies, showing the capabilities of the
approach in achieving near-optimal performance within a limited
number of experiments.

The content of this Chapter and this abstract are from [1]:

©2021 EUCA. Reprinted, with permission, from M. Zhu,
A. Bemporad, and D. Piga, “Preference-based MPC cal-
ibration,” in European Control Conference, Rotterdam,
Netherlands, 2021, pp. 638–645.

• In Chapter 4, we address Question 2, where we extend an active
preference learning algorithm introduced recently to handle un-
known constraints. The proposed method, called C-GLISp, looks
for an optimizer of the problem only based on preferences expressed
on pairs of candidate vectors, and on whether a given vector is re-
ported feasible and/or satisfactory. C-GLISp learns a surrogate of
the underlying objective function based on the expressed prefer-
ences, and a surrogate of the probability that a sample is feasible
and/or satisfactory based on whether each of the tested vectors
was judged as such. The surrogate functions are used to propose
a new candidate vector for testing and assessment iteratively. Nu-
merical benchmarks and a semi-automated control calibration task
demonstrate the effectiveness of C-GLISp, showing that it can reach
near-optimal solutions within a small number of iterations.

The content of this Chapter and this abstract are from [2]

©2021 IEEE. Reprinted, with permission, from M. Zhu,
D. Piga, and A. Bemporad, “C-GLISp: Preference-based
global optimization under unknown constraints with ap-
plications to controller calibration,” in IEEE Trans. on

4



Control Systems Technology, vol. 30, no. 5, pp. 2176–2187,
2022.

• In Chapter 5, we address Question 3, where we propose a novel
surrogate-based global optimization algorithm to solve linearly
constrained mixed-variable problems up to medium-size (around
100 variables after encoding and 20 constraints) based on construct-
ing a piecewise affine surrogate of the objective function over fea-
sible samples. We introduce two types of exploration functions to
efficiently search the feasible domain via mixed-integer linear pro-
gramming solvers. We also provide a preference-based version of
the algorithm, which can be used when only pairwise comparisons
between samples can be acquired while the underlying objective
function to minimize remains unquantified. The two algorithms
are tested on mixed-variable benchmark problems with and with-
out constraints. The results show that, within a small number of
acquisitions, the proposed algorithms can often achieve better or
comparable results than other existing methods.

The content of this Chapter and this abstract are reprinted from [3]:

M. Zhu and A. Bemporad, “Global and preference-based
optimization with mixed variables using piecewise affine
surrogates,” submitted for publication, 2023.

• In Chapter 6, we apply PWAS, the algorithm developed in Chap-
ter 5, to experimental design problems. Specifically, we focus on
three case studies, each with a different size of design space and
numerical complexity: i) optimization of reaction conditions for
Suzuki–Miyaura cross-coupling (fully categorical), ii) optimization
of crossed-barrel design to augment mechanical toughness (mixed-
integer), and iii) solvent design for enhanced Menschutkin reaction
kinetics (mixed-integer and categorical with linear constraints). By
comparing with conventional optimization algorithms, we offer in-
sights into the practical applicability of PWAS.

The content of this Chapter and this abstract are reprinted from [4]:

5



M. Zhu, A. Mroz, L. Gui, K. Jelfs, A. Bemporad, EA. del
Rı́o Chanona, and Y. Lee, “Discrete and mixed-variable
experimental design with surrogate-based approach“,
submitted for publication, 2024.

• In Chapter 7, we provide some concluding remarks on the pre-
sented materials in this thesis and some open problems for future
research.

6



Chapter 2

Preliminaries

In this chapter, we will present a general literature review and some
background information that will serve as the foundation for the fol-
lowing chapters. Specifically, we will delve into the following subjects:
global, black-box, preference-based, and mixed-variable derivative-free
optimization, along with model predictive control.

2.1 Global optimization

Global optimization methods aim to find the global optimum of a given
objective function within a known feasible region. It is widely used
in different real-world applications such as portfolio optimization in fi-
nance[5], experimental design in engineering[6], and scheduling in oper-
ations management [7–9].

The general formulation of global optimization problems is stated as
follows 1:

find x∗ ∈ argmin
x
f(x)

s.t. ℓ ≤ x ≤ u
x ∈ X

(2.1)

1In this thesis, we define optimization problems as minimization problems. However,
one can always translate these problems into maximization by defining the objective func-
tion as −f(x).

7



where the objective function f : Rn → R models some quantity that
we want to minimize. The optimization vector x ∈ Rn is the vector of
optimization variables xi that we aim to identify optimally. We assume
x is always bounded, and the upper (u) and lower (ℓ) bounds and other
arbitrary constraints (X ) define the feasible region of x, which we denote
asD in the sequel. The global and local optimizers are defined as follows:

• A vector x∗ ∈ Rn is a global optimizer of (2.1), if x∗ ∈ D and f(x) ≥
f(x∗), ∀x ∈ D

• A vector x∗ ∈ Rn is a local optimizer of (2.1), if x∗ ∈ D and there
exists a neighborhood N of x∗ such that f(x) ≥ f(x∗), ∀x ∈ D ∩N

Different approaches can be applied to solve (2.1). In the following,
we provide a summary for some common methods.

• Exhaustive search methods, such as grid search [10] and random
search [11], involve enumerating all possible solutions within a
given domain. Therefore it can guarantee that the global minimum
in (2.1) is achieved if the search space is discrete and finite. How-
ever, this approach can be computationally inefficient, especially
for problems with high dimensions and/or with continuous search
space.

• Gradient-based approaches, such as Newton’s method and steep-
est descent method, often rely on smoothness and convexity as-
sumptions of (2.1), limiting their applicability to find global opti-
mum for non-convex problems [12, 13].

• Probabilistic and population-based search methods, such as sim-
ulated annealing [14], genetic algorithms [15], and particle swarm
optimization [16], search the feasible region by trading off between
exploration and exploitation, making them suitable for global op-
timization problems with non-convex and multimodal objective
functions. However, tuning is often required for the hyperparam-
eters involved in the algorithm and the algorithms can be slow to
converge for complex problems [17].

8



• Surrogate-based methods (also often referred to as response sur-
face methods) use surrogate models, such as kriging [18] and radial
basis functions [19], to approximate the objective function. These
methods can be helpful when the objective function is expensive to
evaluate. In this case, using surrogates to guide the search process
can reduce the number of function evaluations. On the other hand,
surrogate-based methods are often not suitable for problems with
high dimensions, and the design of suitable surrogate models and
acquisition functions can be challenging.

In this thesis, our primary focus is on global optimization methods
suitable for addressing complex problems involving simulation or phys-
ical experiments. These problems typically involve finding the global
optimum without a known analytic expression for the objective function
(i.e., the expression of f(x) in (2.1)). However, we can often measure the
objective function given an input decision vector. These types of opti-
mization problems are commonly referred to as black-box optimization
problems. Evaluating the black-box input/output function can be com-
putationally expensive. Hence, it is crucial to minimize the number of
function evaluations required to find a near-optimal solution. Addition-
ally, due to the lack of expression of the objective function, methods that
require derivative information can not be applied directly.

2.2 Black-box optimization

In this section, we briefly discuss optimization methods suitable to solve
black-box optimization problems.

• Direct search methods [20], such as pattern search [21], coordi-
nate search [22], Mesh Adaptive Direct-Search [23, 24], Nelder-
Mead [25], and Hooke and Jeeves [26] algorithms, iteratively probe
and evaluate the objective function without explicitly using its
derivatives or assuming of any specific structure. These methods
are generally robust and are especially useful when the objective
function is non-differentiable (or when its gradient information is

9



unavailable), discontinuous, or noisy. However, they can be com-
putationally expensive since they rely on a large number of func-
tion evaluations.

• Surrogate-based methods are often coupled with active learning
strategies when dealing with black-box optimization problems. For
instance, Bayesian Optimization (BO) [27] is the widely used nowa-
days.

• Probabilistic and population-based search methods: see the dis-
cussion in Section 2.1.

• Metaheuristic algorithms [28], such as Ant colony optimiza-
tion [29], Harmony search [30], and Firefly algorithm [31], are op-
timization techniques inspired by natural phenomena or problem-
solving heuristics. These methods often require no gradient infor-
mation, tend to explore the search space more globally, and can be
parallelized. On the other hand, they often require a large num-
ber of function evaluations (high computational cost), lack of inter-
pretability of the solution, and require parameter tunning.

This thesis concentrates on black-box optimization problems with
expensive-to-evaluate objective functions. As a result, we focus on em-
ploying surrogate-based methods. In the following, we summarize their
general procedures (see, e.g., [32]), which are also schematically summa-
rized in Figure 2.1 [3].

1. Define the objective function to optimize (e.g., the performance of a
simulation or a real-world problem). It needs to provide the out-
put based on an input decision vector, but it does not necessarily
require an explicit analytic expression.

2. Select a surrogate model to approximate the behavior of the objective
function (e.g., Gaussian processes [33], radial basis functions [19,
32], etc..). One may select the model based on the prior knowl-
edge available and the characteristics of the problems (determinis-
tic/stochastic).

10



3. Select an exploration model (e.g., space-filling methods, i.e., disperse
points to promote a broad coverage across the domain [32], prob-
ability of improvement [33], etc..). An appropriate exploration
model encourages exploration in unvisited feasible regions, aiming
to decrease uncertainties in the surrogate model and avoid getting
stuck in local optima.

4. Generate an initial set of samples using some initial sampling strate-
gies (e.g., Latin hypercube sampling). For sample efficiency, it is
important to ensure diversity and coverage across a wide range of
input space.

5. Evaluate the initial samples.

6. Build the surrogate model by training it with the initial samples
and their corresponding function evaluations.

7. Select the next sample to test by optimizing the acquisition function,
which trades off between the exploitation of the objective function
predictions based on the surrogate model and the exploration of
the input space (prediction uncertainty/improvement/diversity)
based on the exploration model.

8. Evaluate the objective function with the newly queried sample
from step 7.

9. Update the surrogate model by incorporating the new sample and
its function evaluation. The predictability of the surrogate model is
improved by iteratively updating the surrogate model throughout
the optimization procedure,

10. Repeat steps 7 to 9 until a stopping criterion is met (e.g., a maximum
number of function evaluations, a converge threshold, etc.).

In general, measurements of the objective function at sampled points
are required for surrogate-based optimization methods to construct the
surrogate model. However, certain application domains pose challenges

11



Generate 
initial samples 

Black-box
simulation/experiment

fun. eval. Store the samples and their
corresponding fun. eval.

Select the initial
sample to query

Yes

Initial acquisition fun.
(Fit the initial surrogate and

exploration fun.)

No

YesGenerate the
next sample to

query

Optimize Return the
optimal
solution

YesNo

Optimize

No

Update the acquisition fun.
(Refit the surrogate and

exploration fun.)

Figure 2.1: General procedures for surrogate-based optimization meth-
ods 2.1 [3].

where the objective function may not be quantifiable (e.g., qualitative de-
scriptions) or involve multiple objectives without pre-determined rela-
tive importance [34]. Conversely, an experienced human decision-maker
can easily evaluate the performance of the optimization outcome and
expresses his/her preferences through pairwise comparisons. When op-
timization methods rely on preference information instead of function
evaluations, they are referred to as preference-based optimization meth-
ods in this thesis.

2.3 Preference-based optimization

In this section, we start with an overview of preference-based optimiza-
tion methods, followed by defining the specific problem we address in
this thesis. Finally, we summarize GLISp, the optimization method that
this thesis is built upon.

In the context of preference-based optimization, various methods
have been developed to handle optimization problems where the objec-
tive function is not explicitly defined, not quantifiable, or difficult to eval-
uate [33, 35–38]. These methods aim to leverage the knowledge of pref-
erences provided by the user to guide the optimization process. These
approaches are often interactive and involve an iterative process of incor-
porating user preferences into the optimization process. They typically

12



rely on preference elicitation techniques [39], such as direct assessment
(see e.g., [40]), pairwise comparisons (see e.g., [1, 38]), or interactive visu-
alizations (see e.g., [33, 41]), to guide the search for preferred solutions.

Different approaches are used to model the preferences, which can
be generally classified into three categories [37]: learning utility func-
tions [42–44], learning preference relations [45], and function approxi-
mation [46].

In this thesis, our main focus lies on preference-based optimization
methods that learn a surrogate model respecting the preferences ex-
pressed by the decision-maker based on pairwise comparisons. The sur-
rogate, once learned, is used to guide the search toward the decision
vector that leads to the most preferable outcome [38]. This fall into the
category of utility function learning, where the preferences are considered
constraints for the space of utility functions [37, 42–44]. In the following,
we provide the general formulation for preference-based optimization
problems.

Different from the problem formulation in (2.1), for preference-
based optimization, the latent objective function f(x) is un-
known/immeasurable. However, we assume that we can always express
a preference between two choices. Formally, given two decision vectors
x1 and x2, we define the preference function π : Rnx × Rnx → {−1, 0, 1} as

π(x1, x2) =

⎧⎨⎩ −1 if x1 “better” than x2
0 if x1 “as good as” x2
1 if x2 “better” than x1.

(2.2)

And the following properties holds for all x1, x2 ∈ Rn [38, 47]:

π(x1, x1) = 0, π(x1, x2) = −π(x2, x1)
π(x1, x2) = π(x2, x3) = −1⇒ π(x1, x3) = −1

The modeling assumption [38] is that the decision-maker assigns prefer-
ences based on an underlying latent function f (cf. formulation (2.1)) in
his/her mind that he or she wants to minimize:

π(x1, x2) =

⎧⎨⎩ −1 if f(x1) < f(x2)
0 if f(x1) = f(x2)
1 if f(x1) > f(x2).

(2.3)

13



Here, the latent function f is unknown to the optimization algorithm and
the decision-maker. We can only obtain the preference expressed by the
decision-maker, i.e., the evaluation of the preference function π.

The goal is to find the optimal decision vector x∗ ∈ D such that x∗

is “better“ (or “not worse“) than any other feasible x according to the
preference function π, which translates to the following mathematical
formulation

Find x⋆ such that π(x⋆, x) ≤ 0, ∀x ∈ D. (2.4)

Considering the relationship between the expressed preference and the
underlying latent function as noted in (2.3), optimization problem (2.4)
implies f(x∗) ≤ f(x), ∀x ∈ D, which indicates that x∗ is a global mini-
mizer of f on D.

2.3.1 GLISp

This thesis builds upon the preference-based optimization method
GLISp [38]. In the following, we note the general steps of GLISp in solv-
ing preference-based optimization problem (2.4), and refer readers to [38]
for detailed descriptions 2.

2.3.1.1 Training a surrogate function from preferences

Assume that we have generated N ≥ 2 samples {x1 . . . xN} of the
optimization vector, with xi, xj ∈ Rnx such that xi ̸= xj , ∀i ̸= j,
i, j = 1, . . . , N . For each of these vectors, an experiment/simulation
is performed and the decision-maker has provided a preference vector
B = [b1 . . . bM ]T ∈ {−1, 0, 1}M with

bh = π(xi(h), xj(h)), (2.5)

where M is the number of expressed preferences, 1 ≤ M ≤
(︁
N
2

)︁
, h ∈

{1, . . . ,M}, i(h), j(h) ∈ {1, . . . , N}, i(h) ̸= j(h). Note that the element
2The content of this subsection is is based on [38] and is partially reprinted from ©2021

EUCA. Reprinted, with permission, from M. Zhu, A. Bemporad, and D. Piga, “Preference-
based MPC calibration,” in European Control Conference, Rotterdam, Netherlands, 2021,
pp. 638–645.

14



bh of vectorB represents the preference expressed by the decision-maker
between the experimental/simulation performance achieved with vector
xi(h) and xj(h).

The observed preferences are then used to learn a surrogate function
f̂ : Rnx → R of the underlying latent function f . The surrogate f̂ is
constructed by imposing the constraints

π̂(xi(h), xj(h)) = π(xi(h), xj(h)), ∀h = 1, . . . ,M, (2.6)

on f̂ , where π̂ is defined from f̂ as in (2.3).
The function f̂ is parametrized as the following linear combination of

Radial Basis Functions (RBFs) [48, 49]:

f̂(x) =

N∑︂
k=1

βkϕ(ϵd(x, xi)), (2.7)

where d : Rnx × Rnx → R is the squared Euclidean distance

d(x1, x2) = ∥x1 − x2∥22, (2.8)

ϵ > 0 is a scalar parameter, ϕ : R → R is an RBF, and β = [β1 . . . βN ]T

are the unknown coefficients to be computed based on the preferences
imposed in (2.6). Examples of RBFs are ϕ(ϵd) = 1

1+(ϵd)2 (inverse quadratic),

ϕ(ϵd) = e−(ϵd)2 (Gaussian), ϕ(ϵd) = (ϵd)2 log(ϵd) (thin plate spline), see
more examples in [32, 48].

According to (2.6) and the preference relation (2.3), the following con-
straints are imposed on f̂ :

f̂(xi(h)) ≤ f̂(xj(h))− σ + εh if π(xi(h), xj(h)) = −1
f̂(xi(h)) ≥ f̂(xj(h)) + σ − εh if π(xi(h), xj(h)) = 1

|f̂(xi(h))− f̂(xj(h))| ≤ σ + εh if π(xi(h), xj(h)) = 0

(2.9)

for all h = 1, . . . ,M , where σ > 0 is a given tolerance and εh are positive
slack variables.

Accordingly, and similarly to Support Vector Machines (SVMs) [50],
the coefficient vector β describing the surrogate f̂ is obtained by solving

15



the convex Quadratic Programming (QP) problem

minβ,ε

M∑︂
h=1

chεh +
λ

2

N∑︂
k=1

β2
k

s.t.

N∑︂
k=1

(ϕ(ϵd(xi(h), xk)− ϕ(ϵd(xj(h), xk))βk

≤ −σ + εh, ∀h : bh = −1
N∑︂
k=1

(ϕ(ϵd(xi(h), xk)− ϕ(ϵd(xj(h), xk))βk

≥ σ − εh, ∀h : bh = 1⃓⃓⃓⃓
⃓
N∑︂
k=1

(ϕ(ϵd(xi(h), xk)− ϕ(ϵd(xj(h), xk))βk

⃓⃓⃓⃓
⃓

≤ σ + εh, ∀h : bh = 0
h = 1, . . . ,M

(2.10)

where ch are positive weights, for example ch = 1, ∀h = 1, . . . ,M . The
slack variables εh in (2.10) are used to relax the constraints imposed by
the preference vector B in (2.6). Constraint infeasibility might be due
to an inappropriate selection of the RBF (namely, poor flexibility in the
parametric description of the surrogate f̂ ) and/or to outliers in the ac-
quired preferences, for instance, due to inconsistent assessments done
by the decision-maker. The scalar λ in the cost function (2.10) is a regu-
larization parameter. When λ > 0, problem (2.10) is a QP problem that
admits a unique solution because ch > 0 for all h = 1, . . . ,M . If λ = 0,
problem (2.10) becomes a Linear Program (LP), whose solution may not
be unique.

We remark that computing the surrogate function f̂ requires one to
choose the hyper-parameter ϵ defining the shape of the RBFs ϕ in (2.7).
This parameter can be chosen through K-fold cross-validation [51], by
testing the capabilities of f̂ in reconstructing the preferences in slices of
the dataset not used to estimate f̂ .

2.3.1.2 Acquisition function

Once a surrogate f̂ is estimated, this function can be in principle mini-
mized in order to find the optimal vector x. More specifically, the follow-

16



ing steps can be followed: (i) generate a new sample by pure minimiza-
tion of the estimated surrogate function f̂ defined in (2.7), i.e.,

xN+1 = argmin f̂(x) s.t. x ∈ X ;

(ii) ask the decision-maker to evaluate the preference π(xN+1, x
⋆
N ),

where x⋆N ∈ Rnx is the best vector of optimization variables found so
far, corresponding to the smallest index i⋆ such that

π(xi⋆ , xi) ≤ 0, ∀i = 1, . . . , N ; (2.11)

(iii) update the estimate of f̂ through (2.10); and (iv) iterate over N .
Such a procedure, which only exploits the current available observa-

tions in finding the optimal vector x, may easily miss the global mini-
mum of (2.4). Therefore, looking only at the surrogate function f̂ is not
enough to search for a new sample xN+1. A term promoting the explo-
ration of the parameter space should thus be considered.

In GLISp, an acquisition function is employed to balance exploitation
vs. exploration when generating the new sample xN+1. As proposed
in [32], the exploration function is constructed by using the inverse dis-
tance weighting (IDW) function z : Rnx → R defined by

z(x) =

{︄
0 if x ∈ {x1, . . . , xN}
tan−1

(︂
1∑︁N

i=1 wi(x)

)︂
otherwise (2.12)

where wi(x) = 1
d2(x,xi)

. Clearly z(x) = 0 for all parameters already
tested, and z(x) > 0 in Rnx \ {x1, . . . , xN}. The arc tangent function
in (2.12) avoids that z(x) gets excessively large far away from all sam-
pled points.

Then, given an exploration parameter δ ≥ 0, the acquisition function
a : Rnx → R is constructed as

a(x) =
f̂(x)

∆f̂
− δz(x), (2.13)

where
∆f̂ = max

i
{f̂(xi)} −min

i
{f̂(xi)}

17



is the range of the surrogate function on the samples in {x1, . . . , xN} and
is used in (2.13) as a normalization factor to simplify the choice of the
exploration parameter δ. Clearly ∆f̂ ≥ σ if at least one comparison bh =

π(xi(h), xj(h)) ̸= 0.

As discussed below, given a set {x1, . . . , xN} of samples and a vector
B of preferences defined by (2.5), the next xN+1 to test is computed as
the solution of the (non-convex) optimization problem

xN+1 = argmin
x∈X

a(x). (2.14)

Different optimization algorithms can be used to solve problem (2.14).
For instance, the methods discussed in Sections 2.1 and 2.2. Note that
the construction of the acquisition function a is rather heuristic, therefore
finding highly accurate solutions of (2.14) is not required.

In the acquisition function (2.13), the exploration parameter δ pro-
motes sampling the space in X in areas that have not been explored yet.
While, as observed earlier, δ = 0 can make the GLISp algorithm rely
only on the surrogate function f̂ and miss the global optimum, setting
δ ≫ 1 makes the GLISp algorithm exploring the entire feasible region
regardless of the results of the comparisons. For a sensitivity analysis
example of GLISp with respect to δ, the reader is referred to [38, Section
7.5]. Regarding the other main hyper-parameter ϵ of GLISp defining the
RBF in (2.7), during the active learning phase K-fold cross-validation is
executed repeatedly to automatically choose and possibly adapt ϵ.

As per discussed, most surrogate-based optimization methods that
tackle black-box and preference-based optimization problems focus on
the input space that consists solely of continuous variables. On the
other hand, many optimization problems in real-world applications in-
volve mixed variables, i.e., continuous, integer, and categorical variables.
Moreover, mixed-variable constraints are often present in such applica-
tions. Therefore, it is important to suggest feasible samples to test, lead-
ing to mixed-variable derivative-free optimization problems.

18



2.4 Mixed-variable black-box optimization

In this section, we discuss some common algorithms in the literature that
tackles black-box optimization problems with mixed variables. We refer
the reader to [52] for a comprehensive review and comparison of algo-
rithms and software for mixed-integer derivative-free optimization. In
the following, we list out some main algorithms categorized based on
their characteristics.

• Surrogate-based methods (see Section 2.1 for a general discus-
sion): Mixed-Integer Surrogate Optimization (MISO) [53], Se-
quential Model-based Algorithm Configuration (SMAC) [54], Tree-
structured Parzen Estimator (TPE) [55]

• Direct search methods (see Section 2.2 for a general discussion):
Nonlinear Optimization with the Mesh Adaptive Direct search
(NOMAD) [56], Brute Force Optimizer (BFO) [57], Design Analysis
Kit for Optimization and Terascale Applications (DAKOTA) [58]

• Metaheuristic algorithms (see Section 2.2 for a general discus-
sion): Mixed Integer Distributed Ant Colony Optimization (MI-
DACO) [59]

2.4.1 PARC

The mixed-variable black-box optimization method developed in Chap-
ter 5 of this thesis uses PARC (Piecewise Affine Regression and Classifi-
cation) [60] to fit the surrogate function. In the following, we provide an
overview of PARC and refer readers to [60] for detailed analysis 3.

The general procedures of PARC are illustrated in Fig. 2.2. PARC is
a block descent algorithm, where it first groups samples in Kinit clus-
ters. Clusters containing fewer samples than a predefined minimum

3The content of this subsection is based on [60] and is partially reprinted from M. Zhu,
A. Mroz, L. Gui, K. Jelfs, A. Bemporad, EA. del Rı́o Chanona, and Y. Lee, “Discrete and
mixed-variable experimental design with surrogate-based approach“, submitted for publica-
tion, 2024 and M. Zhu and A. Bemporad, “Global and preference-based optimization with
mixed variables using piecewise affine surrogates,” submitted for publication, 2023.

19



Set PARC parameters

Group the samples in
 clusters

{ }
{ }

(Data to fit)

Fit PWA separation functions
among clusters

Calculate the cost function,
which consists of separability

and predictability indexes 

|cost  - cost | < tol
or  

Iteration 
cost  

Fit PWA surrogate function
within each partition

Update cluster information
(eliminate the clusters if # of samples within the cluster

is smaller than the pre-defined minimum)

Reassign samples to 
 clusters based on PWA separation

functions

Terminate

Y

N

cost  = cost  

Figure 2.2: The flowchart of PARC.

threshold are discarded, resulting in Kupdated remaining clusters. We
then fit PWA (Piecewise affine) separation functions among these clus-
ters to form Kupdated partitions of the design space. Within each par-
tition, a PWA surrogate function is fitted to make predictions. A cost

20



function comprising separability and predictability indexes is then cal-
culated, which balances between the enhancement of separability among
different partitions and the improvement of predictability within each
partition. PARC terminates when either the difference in the value of
the cost function between two consecutive evaluations falls below a pre-
defined tolerance, or the number of iterations surpasses a predetermined
maximum limit. Otherwise, PARC reassigns samples toKupdated clusters
based on the newly fitted PWA separation functions and then iterates the
procedure until termination criteria are met.

The number Kinit of partitions is a hyper-parameter of PARC that
must be selected by trading off between having a more flexible surro-
gate function (largeKinit) and limit computations (smallKinit). As noted
in Fig. 2.2, PARC can adaptively update Kinit during surrogate fitting,
which makes it more flexible and robust when fitting the surrogate, and
can help reduce computational complexities without significantly com-
promising prediction accuracy. While we refer the reader to [60] for a
detailed analysis of the PARC algorithm, for mere illustration here we
show two surrogate-fitting examples: one in the continuous domain, and
another in the mixed continuous and categorical domain. We note that
problems in 2D are selected for demonstration purposes, and PARC can
handle problems with high dimensions.

For the continuous function, we consider the Branin function [61]:

f(x1, x2) = a(x2 − bx21 + cx1 − r)2 + s(1− t) cos(x1) + s

a = 1, b =
5.1

4π2
, c =

5

π
, r = 6, s = 10, t =

1

8π
−5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.

(2.15)

We use 800 randomly generated training samples (x1k, x2k) to fit a PWA
surrogate of f in (2.15) by using the PARC algorithm with the initial par-
tition Kinit = 10. Figure 2.3 shows the final polyhedral partition and
Figure 2.4 the PWA surrogate of the Branin function fit by PARC. We ob-
serve that the surrogate fitted by PARC captures the general shape of the
nonlinear Branin function.

For the mixed continuous and categorical domain, we consider the

21



4 2 0 2 4 6 8 10
x1

0

2

4

6

8

10

12

14

x 2

11 22

33

4455

66

77

88

99
1010

PARC (K = 10)

Figure 2.3: The polyhedral partition with Kinit = 10 initial partitions. Note
that the final partition is also 10 (no partition is discarded). The dots in the
figure are the training data for the PARC algorithm.

x14 2 0 2 4 6 8 10

x2

0
2

4
6

8
10

12
14

y

0

50

100

150

200

250

300

Branin function

(a) Analytical

x14 2 0 2 4 6 8 10

x2

0
2

4
6

8
10

12
14

y

0

50

100

150

200

250

300

PARC (K = 10)

(b) PARC with Kinit = 10

Figure 2.4: Branin function fitted analytically and by PARC. The dots in the
figure are the test data (200 samples) for the PARC algorithm.

22



following synthetic function:

f(x1, x2) =

⎧⎪⎨⎪⎩
x21 + 2x1 + 1 x2 = 0

x1 + 100 x2 = 1

(1− x1)3 x2 = 2

−5 ≤ x1 ≤ 5, x2 ∈ {0, 1, 2},

(2.16)

where with different categorical values of x2, function evaluations
(f(x1, x2)) can vary significantly. We use 960 randomly generated train-
ing samples with 10 initial partitions (Kinit) to fit the PWA surrogates.
Figure 2.5 shows the final polyhedral partition. In this case, we observe
that 2 initial partitions were discarded during surrogate fitting, resulting
in 8 remaining partitions. In Figure 2.6, we show the function (2.16) fit-
ted analytically, and fitted by PARC with Kupdated = 8 partitions, where
we observe that PARC can make good predictions at different values of
the categorical variable (x2), despite their distinct characteristics.

4 2 0 2 4
x1

0.5

0.0

0.5

1.0

1.5

2.0

2.5

x 2

1122

33 44

55

66

77

88

PARC (initial K = 10, final K = 8)

Figure 2.5: The polyhedral partition with Kinit = 10 initial partitions. Note
that the final partition is 8 (2 partitions are discarded). The dots in the figure
are the training data for the PARC algorithm.

23



4 2 0 2 4
x1

50

0

50

100

150

200

f(x
1,

x 2
)

Analytical expression
x2 = 0
x2 = 1
x2 = 2

(a) Analytical

4 2 0 2 4
x1

50

0

50

100

150

200

f(x
1,

x 2
)

PARC (initial K = 10, final K = 8)
x2 = 0
x2 = 1
x2 = 2

(b) PARC with Kinit = 8 final par-
titions

Figure 2.6: Function (2.16) fitted analytically and by PARC.

2.5 Model predictive control

In later chapters of this thesis, we will apply optimization methods to
solve problems in control applications, specifically in model predictive
control (MPC). In this section, we provide an overview of MPC. MPC is
an advanced model-based control strategy used to optimize the perfor-
mance of dynamic systems in engineering and industrial applications.
It chooses a control action based on predictions of the system’s future
behavior made using a simplified dynamical model of the system [62,
63]. In the following, we summarize the main elements and key steps
involved in MPC [62, 63]:

• MPC requires a dynamical model of the system to be controlled. It
describes the system dynamics, constraints, and input-output rela-
tionships, which will be used to predict how the state variables of
the system evolve over time. The model can be obtained based on
prior knowledge of the system (first principle models) or through
system identification techniques [64–66]. In the following, we dis-
cuss briefly about Linear parameter-varying (LPV) [67–69] and Linear

24



Time-varying (LTV) [68, 70] models.

– The LPV model characterizes the system’s evolution over time
by accounting for parameter values at each time step. By in-
corporating parameter variations, LPV models can effectively
capture the time-varying dynamics of the system, leading to
more precise representations and control designs. This model-
ing approach is particularly beneficial when systems operate
under changing conditions or when uncertainties exist regard-
ing the parameters involved.

– The LTV model characterizes dynamic changes in the sys-
tem’s behavior over the prediction horizon. These changes
may arise from various factors, including time-varying inputs,
varying operating conditions, or evolving system parameters.
Moreover, it is possible to embed measured disturbances in
the model. The flexibility of the LTV model allows for a
more accurate depiction of the system’s temporal dynamics,
enabling a better understanding and analysis of its behavior
under changing circumstances.

• MPC operates by adopting a receding horizon approach, where it
forecasts the future behavior of the system within a specified finite
time horizon, namely prediction horizon, by recursively utilizing the
system model. The prediction horizon is divided into several dis-
crete time steps.

• MPC also considers a control horizon, which determines the dura-
tion during which control actions are computed and implemented
on the system. Generally, the control horizon is shorter than the
prediction horizon.

• MPC utilizes a cost function that quantifies the performance of the
system under control and represents the control objectives. The
cost function is formulated based on the system’s state variables
and control inputs. It can comprise various terms such as setpoint

25



tracking, control effort (aggressiveness), and constraints. The de-
sign of the cost function often requires a careful balance among con-
flicting objectives whose relative importance are often accounted
for using different weight factors.

• MPC can handle both hard (e.g., physical limitations, and safety
specifications) and soft (e.g., user comfort) constraints, which is one
of its main advantages.

• The control problem in MPC is formulated as an optimization prob-
lem, where the goal is to find the optimal control sequence over the
prediction horizon that minimizes the cost function while satisfy-
ing the constraints. Depending on the characteristics of the cost
function, different optimization algorithms can be employed.

• Once the optimization problem is solved, only the first control ac-
tion of the optimal control sequence is implemented in the system.
The system evolves. Then the process is repeated at the next time
step, where the optimization problem is solved again with updated
measurements and predictions from previous time steps.

• MPC inherently incorporates feedback control by continuously up-
dating the system model and recalculating control actions based
on current measurements. This adaptive nature enables MPC to ef-
fectively handle uncertainties, disturbances, and variations in sys-
tem dynamics that may arise during operation. By leveraging real-
time information, MPC can dynamically adjust its control strategy
to maintain system performance and stability.

Implementing an MPC controller entails certain challenges. One such
challenge is the tuning of MPC parameters, such as the control and pre-
diction horizons, to achieve optimal performance. These parameters
need to be carefully selected based on the system’s characteristics and
desired control objectives. Additionally, defining the cost function for
the MPC can be a nontrivial task. Determining the appropriate weight-
ing of various factors in the cost function, such as setpoint tracking, con-

26



trol effort, and constraints, may require prior knowledge or iterative re-
finement to strike the right balance for effective control. In Chapter 3,
we will show how alternative cost function can be defined for the MPC
and in Chapter 4, we show an MPC calibration example where unknown
(in terms of explicit analytic expression) but assessable (by the decision-
maker) constraints are present.

27



Chapter 3

Preference-based MPC
calibration

3.1 Introduction

The design of Model Predictive Controllers (MPC) typically requires the
tuning of several parameters such as the prediction and control horizons,
the weight matrices defining the cost function, various numerical solver
tolerances, etc. A calibrator typically adjusts these knobs based on ex-
perience and trial-and-error, until the closed-loop system behaves as he
or she desires. Such a tuning process thus requires skilled calibrators,
domain knowledge, and it can be costly and time consuming.

To automate the tuning process, usually a figure of merit is defined to
quantitatively assess closed-loop performance, and experiment-driven
optimization algorithms are usually adopted to find near-optimal MPC
parameters. In particular, black-box global optimization methods based
on surrogate functions, like Bayesian Optimization (BO) [33] and the re-

The content of this Chapter is from ©2021 EUCA. Reprinted, with permission, from M.
Zhu, A. Bemporad, and D. Piga, “Preference-based MPC calibration,” in European Control
Conference, Rotterdam, Netherlands, 2021, pp. 638–645. and ©2021 IEEE. Reprinted, with
permission, from M. Zhu, D. Piga, and A. Bemporad, “C-GLISp: Preference-based global
optimization under unknown constraints with applications to controller calibration,” in
IEEE Trans. on Control Systems Technology, vol. 30, no. 5, pp. 2176–2187, 2022.

28



cently introduced GLIS (GLobal optimization based on Inverse distance
weighting and radial basis function Surrogates) algorithm [32], have
been recently applied for MPC parameter tuning [71, 72], choice of the
MPC predictive model [73, 74] and also in other control engineering
problems and applications such as PID and state-feedback control tun-
ing [75, 76], position and force control in robot manipulators [77, 78],
and control of mobile robots and quadrotors [79, 80], just to cite a few.

The aforementioned optimization approaches iteratively suggest new
parameters to be tested based on a surrogate function, which is estimated
from closed-loop performance figures gathered from previous experi-
ments. An exploration term takes care of sufficiently covering the set
of parameters to search, thus avoiding the solver to be trapped in a local
minimum.

However, in order to use such methods for MPC calibration, it is es-
sential to have a well-defined performance index that captures the de-
sired closed-loop behavior of the system. Unfortunately, in many prac-
tical control applications a performance is usually formulated based on
multiple criteria, and thus it is difficult for a calibrator to formally define
and quantify objectively the scoring function. On the other hand, it is
usually easier for a calibrator to express a preference (such as “controller
A is better than controller B”) between the outcome of two experiments.

3.1.1 Contribution

Motivated by the above consideration, in this chapter, we propose a
novel calibration approach to tune the MPC parameters based on pair-
wise preferences between experiment outcomes. The approach is semi-
automated in that the control parameters to be tested are selected au-
tomatically by an algorithm while closed-loop performance is assessed
manually by the calibrator, that therefore is no longer required to formu-
late a performance index upfront.

The proposed approach for preference-based MPC calibration relies
on the derivative-free global optimization algorithm recently developed
in [38] (see also in Section 2.3.1), which iteratively proposes a new com-

29



parison to the calibrator to make, based on actively learning a surrogate
of the latent objective function from past sampled decision vectors and
pairwise preferences. Preference-based optimization method is becom-
ing popular in the field of reinforcement learning (RL) [81] and a com-
prehensive review is presented in the survey paper [37]. Inverse (rein-
forcement) learning and semi-supervised machine learning approaches
are also closely related to preference-based learning, which has been ap-
plied to parameter tuning, such as for automated driving [82–84]. The
main concern of the inverse-learning approach is that it can not improve
upon the demonstrations by the expert. The algorithm implemented in
this chapter [38], called GLISp (preference-based GLIS) proposed a dif-
ferent acquisition function form that balances the trade-off between ex-
ploitation and exploration. GLISp has been shown to be very efficient in
terms of number of experiments and comparisons required to compute
the global optimum, which is a major drawback of many preference-
based RL methods [37].

We show the efficiency of the proposed preference-based MPC cali-
bration in two case studies. The first one considers the control of a Con-
tinuous Stirring Tank Reactor (CSTR), while the second one is related to au-
tomated driving of a vehicle with obstacle avoidance. In both cases, over-
all satisfactory performance is achieved within a relatively small number
of closed-loop experiments, without the hard and time-consuming need
to specify a quantitative scoring function driving a fully-automated MPC
calibration.

The rest of this chapter is organized as follows. Section 3.2 describes
the MPC calibration problem. Some notes on the preference-based tun-
ing approach based on GLISp is presented in Section 3.3. The applica-
tion of the proposed approach for two case studies are discussed in Sec-
tion 3.4. Finally, conclusions are drawn in Section 3.5.

3.2 Problem description

Let us consider the problem of controlling a nonlinear multi-input multi-
output system described by the continuous-time state-space representa-

30



tion:

ẋ = f(x, u)

y = g(x, u),
(3.1)

where x ∈ Rnx and ẋ ∈ Rnx are the state vector and its time derivative,
respectively; u ∈ Rnu is the control input; y ∈ Rny is the vector of con-
trolled outputs; and f : Rnx × Rnu → Rnx and g : Rnx × Rnu → Rny are
the state and output mappings, respectively.

A popular strategy to achieve a reference-tracking objective for a sys-
tem described by (3.1) under input and output constraints, is linear-time
varying (LTV) MPC, a.k.a. real-time iteration scheme [85, 86]. The MPC
is designed based on the following predictive model obtained via lin-
earization of (3.1) around a nominal trajectory x̄k, ūk, ȳk and discretiza-
tion with sampling time Ts, resulting in the prediction model

x̃k+1 = Akx̃k +Bkũk

ỹk = Ckx̃k +Dkũk,
(3.2)

where subscript k denotes the value at time step k, x̃k = xk − x̄k, ũk =

uk − ūk and ỹk = yk − ȳk.

At each sampling time t, the MPC action ut|t to apply to the system is
computed by solving the Quadratic Programming (QP) problem:

min
{ut+k|t}Nu−1

k=0
,ε

Np−1∑︂
k=0

⃦⃦
yt+k|t − yreft+k

⃦⃦2
Qy

+

Np−1∑︂
k=0

⃦⃦
ut+k|t − ureft+k

⃦⃦2
Qu

+

Np−1∑︂
k=0

⃦⃦
∆ut+k|t

⃦⃦2
Q∆u

+Qε ∥ε∥2

(3.3)

31



s.t. model equation (3.2) and the following constraints

ymin−ε ≤ yt+k|t ≤ ymax + ε, k = 1, . . . , Np

umin ≤ ut+k|t ≤ umax, k = 1, . . . , Np

∆umin ≤ ∆ut+k|t, k = 1, . . . , Np

∆ut+k|t ≤ ∆umax, k = 1, . . . , Np

ut+Nu+j|t = ut+Nu|t, j = 1, . . . , Np −Nu,

(3.4)

where ∥ν∥2Q is the weighted squared norm, i.e., ν⊤Qν; uref and yref are
the input and output references, respectively; and ∆ut+k|t = ut+k|t −
ut+k−1|t.

Several tuning parameters appear in the MPC problem (3.3) - (3.4)
and must be tuned, such as:

• prediction horizon Np and control horizon Nu;

• positive-semidefinite weight matrices Qy , Qu, Q∆u;

• positive constantQε used to soften the constraints and thus to guar-
antee feasibility of the optimization problem (3.3);

• tolerances used in the QP algorithm solving (3.3)–(3.4).

In order to compact the notation, all the MPC knobs are collected in a
parameter vector x ∈ X ⊆ Rnx , where X is a given bounded set in which
the optimal tuning for x is sought.

In this chapter, we present an experiment-driven approach to tune the
MPC knobs x in order to optimize the overall closed-loop performance
based on pairwise preferences expressed by a controller calibrator. More
precisely, we assume that we do not have a quantitative scoring function
used by the calibrator to measure the closed-loop performance index and
thus to be usable for auto-tuning x by global optimization. The only
assumption we make is that for a given pair of different MPC parameters
x1, x2 ∈ X , only a preference expressed by the calibrator is available
in terms of “performance achieved with parameters x1 was better (or
worse, or similar) than the one achieved with x2”.

32



The rationale of our problem formulation is that, in multi-criteria de-
cision making such as in control system design, it is difficult (and some-
times impossible) to quantify an overall scoring function, but anyway it
is easier for a calibrator to assess a preference between the outcomes of
two experiments.

In order to compute the optimal MPC parameters x, the active pref-
erence learning algorithm GLISp [38] is used, which proposes the exper-
iments to be performed for tuning x, through pairwise comparisons, that
we reviewed in Section 2.3.1.

3.3 Preference-based tuning

The active learning algorithm GLISp iteratively suggest a sequence of
MPC parameters x1, . . . , xN to be tested and compared such that xN ap-
proaches the “optimal” combination of parameters as N grows. Specifi-
cally, we aim to find x⋆ ∈ X such that x⋆ is “better” (or “no worse”) than
any other parameter x according to the preference function π, namely

x⋆ such that π(x⋆, x) ≤ 0, ∀x ∈ X . (3.5)

If such a vector x⋆ is found, clearly we have also found a global mini-
mizer x⋆ of J on X , where J is an underlying closed-loop performance
index that the calibrator wants to minimize, as (2.3) and (3.5) implies that
J(x⋆) ≤ J(x), ∀x ∈ X .

Since the analytic expression and evaluations of J are unknown, we
first estimate the surrogate function Ĵ following the steps noted in Sec-
tion 2.3.1.1. Then the combined acquisition function (2.14) is optimized
use the Particle Swarm Optimization (PSO) algorithm of [87].

We finally remark that, in executing the GLISp, some values of the
MPC knobs may lead to an unstable closed-loop behaviour. In this case,
the experiment should be interrupted (e.g., for safety reasons) and the
calibrator may still express a preference. It is also possible that in the
initialization phase of GLISp a comparison should be performed over
two experiments both exhibiting closed-loop instability. In this case, one

33



experiment can be preferred to another one, for instance, based on the
time it could run before being interrupted.

3.4 Case studies

We apply the proposed preference-based MPC calibration method on
two case studies: control of a Continuous Stirring Tank Reactor (CSTR) and
automated driving with obstacle avoidance. The role of the calibrator
is played by myself, which compares the observed closed-loop perfor-
mance manually according to a qualitative scoring function constructed
in her mind based on engineering insights.

In both case studies we set the maximum number of function evalu-
ations Nmax = 50, the exploration parameter δ = 0.3, and the tolerance
parameter σ = 10−6. The GLISp algorithm is initialized with Ninit = 10

random samples generated by Latin hypercube sampling [88] using the
lhsdesign function of the Statistics and Machine Learning Toolbox of MAT-
LAB [89]. The hyper-parameter ϵ defining the RBF functions (2.7) is
initialized as 1 and updated at iterations 10, 20, 30, 40 via K-fold cross-
validation with K = 3. The tests are run on an x64 with Intel i7-8550U
1.8 GHz CPU and 8GB of RAM. The Model Predictive Control Toolbox of
MATLAB [90] is used for MPC design and simulation.

3.4.1 CSTR optimal steady-state switching policy

System description

The first case study considers the control of a CSTR, extensively de-
scribed in [91]. The CSTR system consists of a jacketed non-adiabatic
tank where an exothermic reaction occurs. The tank is assumed to be
perfectly mixed with constant inlet and outlet rate. The chemical laws
describing the CSTR reaction can be derived based on the energy and

34



material balance, and are given by:

dT (t)

dt
=
F

V
(Tf (t)−T (t))−

H

Cpρ
r(t)− US

CpρV
(T (t)−Tc(t))

dCA(t)

dt
=
F

V
(CAf (t)−CA(t))−r(t), (3.6)

where V [m3] is the volume of the reactor, and F [m3/hr] is the rate
of reactant A feeding the tank, which is equal to the rate of the prod-
uct stream that exists from the reactor. Both V and F are assumed to
be constant. CA(t) and CAf (t) [kgmol/m3] represent the concentration
at time t of reactant A in the tank and in the inlet feed stream, respec-
tively. T (t), Tf (t) and Tc(t) [K] are the temperature of the reactor, of
the inlet feed stream and of the coolant stream, respectively. Constant
heat of reaction H [kcal/kgmol], fluid heat capacity Cp [kcal/(kg K)]
and density ρ [kg/m3] are assumed. U [kcal/(m K hr)] and S [m2] are
the overall heat transfer coefficient and heat exchange area, respectively.
r(t) [kgmol/(m3hr)] is the reaction rate per unit volume, which can be
calculated through Arrhenius rate law:

r(t) = k0 exp

(︃
−E
RT (t)

)︃
CA(t) (3.7)

where k0 [hr−1] is the pre-exponential factor; E [kcal/kgmol] is the ac-
tivation energy for the reaction; and R [Kcal/(kgmol K)] is the gas con-
stant. The CSTR process parameters are taken from [91] and listed in
Table 3.1.

Control objectives

Initially, the plant is operating at steady state with a reactant concen-
tration CA = 8.56 kgmol/m3 and low conversion. The objective is to
design an MPC controller to achieve a steady-state concentration CA = 2

kgmol/m3, thus increasing the conversion rate. The feed stream con-
centration CAf (t) and temperature Tf (t) are treated as measured distur-
bances, and the coolant temperature Tc(t) is the control input. In this
test, the condition of the feed stream is kept constant, with Tf = 298.15 K
and CAf = 10 kgmol/m3.

35



Table 3.1: CSTR parameters [91]

Parameter Value unit
F/V 1.0 hr−1

k0 3.49e7 hr−1

H 5960 kcal/kgmol
E 11843 kcal/kgmol
ρCp 500 kcal/(m3K)
US/V 150 kcal/(m3K hr)
Tc0 298 K
R 1.987 Kcal/(kgmol K)

At each time step, the nonlinear model of the CSTR system in (3.6)
is linearized around its operating point, and a linear MPC problem is
solved. Although the output variables of interest are both the reactor
temperature T (t) and the concentrationCA(t) in the product stream, only
the latter is tracked and compensated by MPC.

Different competitive objectives should be taken into account in the
MPC calibration, such as fast steady-state transition, reasonable final tar-
get achievement, and low energy consumption. The following guide-
lines are used to assist the calibration. First, the steady-state switch-
ing is expected to be completed within two days. Second, the final
achieved steady state should be within ±3% of the desired value CA = 2

kgmol/m3. Third, in order to take into account energy consumption due
to the cooling process, the temperature of the coolant stream Tc(t) is re-
stricted to be in the range of [284 310] K, with a maximum change at each
time step (Tcmax ) set to 10 K. The first two requirements just reflect the
desired performance, and thus are not treated as hard constraints during
calibration.

The following three design parameters are tuned: the sampling
time Ts used to close the loop and to discretize the continuous-time
model (3.6), the prediction horizon Np, and the weight Q∆u penalizing
the input change. These tuning parameters Ts, Np and log(Q∆u) are re-
stricted to the ranges [0.25 1.5] hr, [4 40] and [−5 3], respectively. The
control horizon Nu is set equal to Np/3 and rounded to the closet inte-

36



ger. Other MPC knobs are fixed, with Qy and Qu equal to [ 0 0
0 1 ] and 0,

respectively.

Calibration process

At each iteration of GLISp, a set of new MPC parameters is suggested
and the closed-loop experiment is performed in simulation. The experi-
ment is interrupted either when the steady-state condition is reached or
after 48 hrs (namely, two simulated days). The experiment is also inter-
rupted if an unsafe behavior is observed. The calibrator is then asked to
compare the performance of the experiment with the best performance
achieved until that time and choose the one she prefers based on the con-
trol objectives and the aforementioned guidelines.

As an example, Fig. 3.1 shows one iteration of the semi-automated

Figure 3.1: CSTR query window for one iteration of GLISp. The top sub-
plots show the change of concentration CA over the simulation time. The
bottom subplots show the variations of coolant temperature Tc over simu-
lation time. The results of the left experiment are preferred to the right one
because of a faster transient and settling time, and smaller variations of Tc.

37



calibration process. At the top of the figure, the MPC design parameters,
the achieved values of CAend and duration of the switching process tf
are displayed. Both the MPC designs achieved the desired CAend within
48 hrs. However, the transient and settling times of the left-hand-side
experiment are shorter than the right-hand-side one. Moreover, the vari-
ations of the input signal Tc are smaller for the experiment on the left.
Therefore, in this iteration, the left-hand-side MPC design is preferred.

Results

The GLISp algorithm terminates after Nmax = 50 iterations (namely,
closed-loop experiments) and hence 49 comparisons. The best MPC de-
sign parameters Ts, Np and log(Q∆u) are found to be 0.31 hr, 26 and
−1.79, respectively. Fig. 3.2 (left panels) shows the corresponding tra-
jectory of reactant concentration CA(t) and of the manipulated variable
Tc(t).

Fully-automated calibration

For the sake of comparison, a fully-automated calibration is performed.
This requires to define a multi-objective quantitative scoring function de-
scribing the expected closed-loop performance. This step can be very
hard and time-consuming, requiring proper scaling and balancing of the
competitive control objectives.

The following closed-loop performance index function to be mini-
mized is constructed after several trial-and-error iterations based on the
preferences of the calibrator:

tf
tfmax

+

∑︁NT
k=1(Tck − Tck−1

)2

Tcmax NT
+

⃓⃓
CAend − CAref

⃓⃓
AR% CAref

(3.8)

where tfmax = 48 hrs is the maximum duration of the switching pro-
cess; Tcmax = 10 K is the maximum allowed temperature change of the
coolant fluid between each time step; Tck and Tck−1

are the temperature
of the coolant fluid at time step k and k − 1, respectively; NT is the total
number of time steps in the steady-state transition; AR% = 3% is the

38



acceptable range of the final steady state concentration; CAend and CAref
[kgmol/m3] are the achieved and desired final steady-state concentra-
tion of reactant A.

The GLIS algorithm (without preference) of [32] is used for
experiment-driven optimization of the cost function in (3.8) with respect
to the MPC design parameters. For a fair comparison with the proposed
preference-based algorithm, 50 function evaluations are performed. This
value actually does not account for the number of trials (namely, experi-
ments) needed to construct the scoring function in (3.8).

The obtained optimal MPC parameters Ts, Np and log(Q∆u) are 0.25

hr, 26 and −0.91. Fig. 3.2 (right panels) shows the corresponding closed-
loop trajectory of CA(t) and of the manipulated variable Tc(t). It can be
observed that the preference- and the non-preference- based approaches
achieve similar closed-loop performance.

Figure 3.2: CSTR closed-loop performance obtained by calibrating MPC pa-
rameters through the proposed semi-automated preference-based approach
(left panels) and through a fully-automated approach minimizing the scor-
ing function (3.8) (right panels).

39



Overall, this case study demonstrates the capability of the semi-
automated approach for solving calibration tasks with multiple competi-
tive objectives. For such calibration tasks, when using a fully-automated
approach, significant efforts need to be devoted to construct a proper
performance scoring function as in (3.8). Therefore, the semi-automated
approach can greatly reduce calibration time and efforts by eliminating
this step.

3.4.2 Automated driving vehicle

System description

As a second case study, we consider the problem of lane-keeping (LK)
and obstacle-avoidance (OA) in automated driving. MPC is employed
to command vehicle velocity and steering angle to provide a smooth and
safe drive. A simplified two degree-of-freedom bicycle model is used
to describe the vehicle dynamics and simulate the experiment, with the
front wheel as the reference point. The state variables s = [xf wf θ]

′ in
the model are the longitudinal xf and lateralwf [m] positions of the front
wheel, and the yaw angle θ [rad]. The manipulated variables u = [v ψ]′

are the commanded vehicle velocity v [m/s] and steering angle ψ [rad].
The standard continuous-time kinematic equations

ẋf =v cos(θ + ψ)

ẇf =v sin(θ + ψ)

θ̇ =
v sin(ψ)

L

(3.9)

are used to model the evolution of the vehicle, where L [m] is the vehicle
length. Here, full state observation is assumed, i.e., the control output
y = s.

The resulting discrete-time state-space model of (3.9) following the

40



MPC strategy noted in Section 3.2:

s̃k+1=

[︃
1 0 −v̄k sin(θ̄k+ψ̄k)Ts
0 1 v̄k cos(θ̄k+ψ̄k)Ts
0 0 1

]︃
s̃k

+

[︄
cos(θ̄k+ψ̄k)Ts −v̄k sin(θ̄k+ψ̄k)Ts
sin(θ̄k+ψ̄k)Ts v̄k cos(θ̄k+ψ̄k)Ts

sin(ψ̄k)

L Ts
v̄k cos(ψ̄k)

L Ts

]︄
ũk

ỹk= s̃k,

(3.10)

is then used at each sampling time to compute the MPC action.

Control objectives

In tuning the MPC parameters, the objective is to keep the vehicle at the
same horizontal lane with constant speed and to overtake other moving
vehicles in an optimal way if they are within safety distance. However,
similar to the CSTR case, it is difficult to define a proper quantitative
scoring function for this multi-objective calibration task (for example,
due to the ambiguity of transferring “optimal obstacle avoidance” into
a mathematical formula). Therefore, to achieve good MPC performance
using a fully-automated approach not based on preferences, either the
calibrator needs to find a proper scoring function via trial-and-error (like
in the previous CSTR case) or an advanced path planner model is re-
quired to provide a well-defined reference path to compare with. Both
procedures can be time-consuming and computationally heavy. On the
other hand, when using the semi-automated approach discussed in this
chapter, none of the pre-mentioned steps is required.

We describe the test scenario as follows. Note, for ease of assessment,
the unit of v and ψ described in the following text as well as in the figures
are represented in km/hr and degree (◦), respectively. The controlled ve-
hicle is initially at position (xf , wf ) = (0, 0) m with θ = 0◦. Another vehicle
(obstacle) is at position (30, 0) m and moving horizontally at a constant
speed of 40 km/hr. The shape of both vehicles is assumed to be rectan-
gular, with a length of 4.5 m and a width of 1.8 m. During nominal LK
conditions, the vehicle being controlled moves horizontally at 50 km/hr,
with wf = 0 m and ẇf = 0 m/s . Once the obstacle is within a safety

41



distance, the vehicle being controlled should pass it while keeping a safe
lateral distance between them. In this case, the horizontal and lateral
safety distances are 10 m and 3 m, respectively. The vehicle controlled by
the MPC can vary its velocity in the range of [40, 70] km/hr during the
LK period and [50, 70] km/hr during the OA period, and its reference
velocities are set to 50 and 60 km/hr, respectively. For both LK and OA
periods, θ can take values in the range of [-45, 45]◦, with its rate of change
between each time step limited to [-5, 5]◦/s.

Five MPC design parameters are tuned. The sampling time Ts is al-
lowed to vary in the range [0.085 0.5] s. The prediction horizon Np is
restricted to [10 30] and the control horizon Nu is taken as a fraction ϵc of
Np rounded to the closest integer. Here, ϵc can take values in the range
[0.1 1]. The weight matrix of manipulated variables (Q∆u) is set to be
diagonal Q∆u =

[︁ qu11 0
0 qu22

]︁
and the values of log(qu11) and log(qu22) are

restricted in the interval [-5, 3]. The other MPC design parameters are
fixed, with Qy and Qu set to

[︂
1 0 0
0 1 0
0 0 0

]︂
and [ 0 0

0 0 ], respectively.

Calibration process

The calibrator selects the preferred controller based on the following ob-
servations: (i) during both LK and OA periods, the worst-case compu-
tational time (tcomp) required for solving the QP problem (3.3) at each
time step needs to be smaller than Ts, so that the MPC can be imple-
mented in real time; (ii) during the LK phase, the vehicle should move
at constant speed with wf and θ close to 0 m and 0◦; (iii) during the OA
phase, the vehicle should keep reasonable safety distance away from the
obstacle and should guarantee passengers’ comfort (i.e., aggressive lat-
eral movements during overtaking should be avoided); (iv) the velocity
in both LK and OA period should be close to the reference value with
its variations kept to minimum; (v) variations of steering angles should
not be aggressive; (vi) when there is a conflict combination among afore-
mentioned criteria, criterion (i) has the highest priority and if the conflict
is among criteria (ii)–(v), preference is given to the one leading to safer
driving practice based on calibrator’s experience.

42



Figure 3.3: Vehicle control query window. The top subplots show the loca-
tion trajectories of the vehicle and the obstacle, in which the “vehicle OA”
and “obstacle OA” bars show five relative positions of the vehicle and ob-
stacle during the obstacle-avoidance phase. The middle subplots show the
actual and reference velocity v at different longitudinal positions. The steer-
ing angle ψ over the longitudinal position is depicted in the bottom sub-
plots. For ease of assessment, the unit of v and ψ in the figure is converted
to km/hr and degree (◦), respectively. The results on the right panels are
preferred.

The closed-loop test is simulated for 15 seconds. Fig. 3.3 shows the
query window for one iteration of the calibration process. The MPC de-
sign parameters and tcomp are displayed at the top of the figure. In both
of the cases illustrated in the figure, the QP problem (3.3) is solved within
the chosen sampling time Ts. The performance of the right-hand-side ex-
periment is preferred since in the left-hand-side experiment large lateral
movements are present. Indeed, these movements can be much more
dangerous (as the car may cross to the other lane) comparing to slightly
more aggressive ψ variations.

43



Results

The GLISp algorithm terminates after Nmax = 50 function evalua-
tions and 49 comparisons. The best MPC design parameters Ts, ϵc,
Np, log(qu11) and log(qu22) are found to be equal to 0.085 s, 0.310, 16,
0.261 and 0.918, respectively with a worst-case computational time tcomp
needed to solve the QP problem (3.3) equal to 0.0808 s.

The final closed-loop results achieved by the designed MPC are de-
picted in Fig. 3.4, which demonstrates that solely based on calibrator’s
preferences, after only 50 experiments, the proposed algorithm is able to
tune the MPC parameters with satisfactory performance. It is also im-
portant to remark that, for the same problem, the authors were not able
to find, via several trial-and-error tests, a proper scoring function of the
closed-loop performance to be used for a fully-automated calibration.

Figure 3.4: Vehicle control final performance obtained by the designed MPC
controller.

44



3.5 Conclusion

In this chapter, a novel semi-automated MPC calibration approach was
presented which turns out to be efficient in terms of number of experi-
ments required for calibration. The key feature of the proposed method-
ology is that it allows calibration only based on pairwise preferences be-
tween the outcomes of the experiments, and thus it is very useful for
calibration tasks with qualitative, subjective, or hard-to-quantify perfor-
mance index functions, and with calibrators having limited MPC design
knowledge. The same preference-based approach can be also used for
calibration of other type of controllers, such as PIDs.

45



Chapter 4

Handling unknown
constraints in
preference-based
optimization with
applications to controller
calibration

4.1 Introduction

Active learning algorithms for black-box global optimization problems
have been studied since the sixties under different names [92–95]. These
algorithms solve the problem by optimizing a surrogate of the objective
function, which is estimated by exploring the space of the optimization
variables. General procedures of surrogate-based active learning meth-

The content of this Chapter is from ©2021 IEEE. Reprinted, with permission, from M.
Zhu, D. Piga, and A. Bemporad, “C-GLISp: Preference-based global optimization under
unknown constraints with applications to controller calibration,” in IEEE Trans. on Control
Systems Technology, vol. 30, no. 5, pp. 2176–2187, 2022.

46



ods were discussed in Section 2.2. In particular, nowadays Bayesian Op-
timization (BO) [27] is widely used to solve problems in which the cost
function can only be quantified after running an experiment, such as in
experimental controller calibration [96] and in automated machine learn-
ing [97].

Successful applications of global optimization algorithms based on
active learning for the calibration of Model Predictive Control (MPC),
PID, and state-feedback control laws were presented in [71, 72, 75, 76],
in which the tuning parameters of the controller are the optimization
variables and a quantitative characterization of the resulting closed-loop
performance after running a simulation or experiment is the objective to
optimize. These algorithms were also used for model selection [73, 74],
for controller tuning in robotic manipulation and trajectory tracking [77,
78, 98], in optimizing gait parameters in robotic bipedal locomotion [79],
and for “safe” optimization of position controller parameters of quadro-
tors [80].

A limitation of many black-box optimizers is that they require quan-
tifying an objective function after running an experiment. However,
many real-world controller calibration problems involve multiple objec-
tives to optimize, such as settling time, overshoots, actuation effort, com-
putational burden, and other performance-related metrics. The relative
weights of such objectives can be hard to assign, and sometimes even
impossible to quantify, as they are the result of a qualitative judgment.
On the other hand, a skilled calibrator can often assess closed-loop per-
formance of certain tuning combinations in terms of “this test was better
than the other one,” i.e., by pairwise comparisons. Thus, when quanti-
fying an objective function is difficult or impossible, we can instead use
these expressed preferences to learn an underlying surrogate function to
be optimized, which leads to the area of preference-based learning algo-
rithms.

Preference-based Bayesian optimization (PBO) has been proposed
in [99–102]. Preference-based reinforcement learning (RL) has also drawn
much attention in recent years [81]. The reader is referred to the sur-
vey paper [37] for a comprehensive review. Note that sample efficiency,

47



which is related to the credit assignment task in RL, is a major chal-
lenge in many preference-based RL methods [37]. A more sample-
efficient active preference learning method, called GLISp (an extension
of GLIS), was proposed in [38]. GLISp learns a surrogate of the un-
derlying preference relations by solving a Quadratic Programming (QP)
problem, whose constraints reflect the expressed preference on whether
a specific candidate is better than the other. Then, it iteratively pro-
poses a new candidate for testing to the decision-maker for comparison.
This experiment-driven preference-based approach was tested in [1] (see
also in Chapter 3 of this thesis) for semi-automated MPC calibration (au-
tomatic selection of control parameters, manual assessment of perfor-
mance by comparisons), demonstrating its effectiveness in terms of the
number of experiments needed to reach near-optimal closed-loop perfor-
mance.

Some real-life control design problems often also involve constraints
that are unknown beforehand or for which it is not possible to find an
explicit analytic expression. This is a challenge since safe exploration can
be essential in many control applications, and infeasible experiments can
be dangerous and costly. Several methods have been proposed in the lit-
erature to handle unknown constraints and encourage safe exploration.
In [103], Sui et al. presented a stagewise safe BO with Gaussian pro-
cesses, which they later extended to allow multiple safety constraints in-
dependent of the objective function [104]. A general formulation for con-
strained BO and a modified version of the expected improvement acqui-
sition function was illustrated in [105], which handles noisy constraint
observations and considers cases in which the objective and constraint
functions are decoupled. In [106], a sequential model-based optimization
method was proposed. The unknown feasible region boundaries are first
reconstructed from data through support vector machines (SVM). Then, a
global optimization step is performed via BO. Different from aforemen-
tioned methods, GLISp accounts for unknown constraints implicitly in
the preferences expressed by the decision maker by making the sam-
ples that are infeasible lose the pairwise comparisons against the feasible
ones.

48



This chapter extends GLISp to handle unknown constraints in the
active learning phase explicitly, therefore encouraging safe exploration.
Besides expressing preferences, the decision-maker is asked to label an
experiment as feasible and if its outcome is overall satisfactory (yes/no).
Based on such labels, a surrogate of the probability of constraint fea-
sibility and experiment’s satisfaction is learned via an Inverse Distance
Weighting (IDW) interpolant function [32]. The surrogates are properly
integrated within the acquisition function to find the next point to test.

We show the efficiency and effectiveness of the proposed method,
called C-GLISp, in three numerical benchmarks, and on an extension of
the case study originally proposed in [1] on semi-automated MPC cali-
bration for automated driving.

MATLAB and Python implementations of C-GLISp are also provided
and available at http://cse.lab.imtlucca.it/˜bemporad/

glis.

The rest of the chapter is organized as follows. The problem of
preference-based optimization with unknown constraints is formulated
in Section 4.2. The proposed active-learning algorithm and details for
its practical implementation are discussed in Section 4.3. Numerical
benchmarks showing the properties and the effectiveness of the pro-
posed method are reported in Section 4.4, while the case study on semi-
automated MPC calibration for automated driving is presented in Sec-
tion 4.5. Conclusions are drawn in Section 4.6.

4.2 Problem formulation

Let D ⊆ Rnx be the space of decision vectors x. We are interested in
minimizing an (unknown) objective function f : D → R subject to the
constraint that x belongs to, which is an (unknown) feasibility set ΩG ⊆
D.

We assume that we cannot represent the set ΩG, but rather that, given
a vector x ∈ D, a decision-maker can assess the value of the feasibility

49

http://cse.lab.imtlucca.it/~bemporad/glis
http://cse.lab.imtlucca.it/~bemporad/glis


function G : D → {0, 1} defined as

G(x) =

{︃
0 if x /∈ ΩG
1 if x ∈ ΩG.

(4.1)

The idea is that all the values x outside ΩG are considered as “unaccept-
able” by the decision-maker. For example, an unacceptable x can be a set
of controller parameters leading to an unstable closed-loop behavior or
to a control law that is too expensive to compute in real-time.

Furthermore, we assume that the objective function f cannot be di-
rectly quantified, but rather it can be indirectly observed in two ways:

1. For a given sample x ∈ D, the decision-maker is requested to say
whether or not x leads to certain “satisfactory performance”. For-
mally, we can define a satisfaction set ΩS ⊆ D and a satisfaction func-
tion S : D → {0, 1} as

S(x) =

{︃
0 if x /∈ ΩS
1 if x ∈ ΩS ,

(4.2)

where the set ΩS contains all the vectors x leading to a performance
that the decision-maker judges satisfactory. An analytic expression
of ΩS is therefore not available, only the value S(x) is provided
by the decision-maker for any given x ∈ D. Note that ΩS may
not be a subset of ΩG, for example when the preference-based opti-
mization process is carried out in simulation: a sample may lead to
satisfactory performance but would not be implementable due to
hardware limitations. On the other hand, in cases of assessments
based on physical experiments, ΩS is necessarily a subset of ΩG,
as no performance would be available for evaluation when the pa-
rameters are infeasible.

2. For any pair x1, x2 ∈ D, the decision-maker is requested to provide
the output of the preference function: π : D × D → {−1, 0, 1}, which
is implicitly defined according to the underlying hidden function f
to be minimized, namely

π(x1, x2) =

⎧⎨⎩ −1 if f(x1) < f(x2)
0 if f(x1) = f(x2)
1 if f(x1) > f(x2).

(4.3)

50



The rationale behind the above problem formulation is that often one
encounters practical decision problems in which a function f is impossi-
ble to quantify, but anyway it is possible for a human operator to express
a qualitative evaluation (e.g., “good” or “bad”) and a preference between
the outcome of two experiments.

Formally, we want to find the optimal solution x⋆ ∈ ΩS ∩ ΩG such
that x⋆ is “better” (or “no worse”) than any other x according to the
preference function π, namely solve the following problem:

find x⋆ such that π(x⋆, x) ≤ 0, ∀x ∈ ΩS ∩ ΩG. (4.4)

We propose to solve problem (4.4) iteratively as follows: (i) suggest a
sequence of decision vectors x1, . . . , xN ∈ D to test, (ii) ask to evaluate
the feasibility function G(xi) and the satisfaction function S(xi) for i =
1, . . . , N , and (iii) ask to evaluate the preference function π(xi, xj) for
M given pairs (i, j), i, j = 1, . . . , N , i ̸= j, where M is the number of
expressed preferences, 1 ≤ M ≤

(︁
N
2

)︁
. The goal is to propose candidate

vectors xN approaching the optimal solution x⋆ as N grows.

4.3 Proposed method

The preference-based optimization method described in this chapter to
solve problem (4.4) is based on an extension of GLISp originally pro-
posed in [38] (see also in Section 2.3.1). We refer to the new algorithm
as “C-GLISp,” whose aim is to handle unknown constraints expressed in
terms of an approximation of the feasibility function G in (4.1) and of the
satisfaction function S in (4.2).

Similarly to GLISp, C-GLISp involves two main phases: an initial ran-
dom sampling and an active learning phase. In both phases, C-GLISp
trains and updates three surrogate functions approximating the feasibil-
ity function G, the satisfaction function S, and the preference function
π. During the active learning phase, the next point for evaluation is se-
lected by optimizing an acquisition function which trades off exploitation
(optimization only based on the surrogates describing the observed pref-
erences and constraints) and exploration (searching unexplored areas of

51



the domain D). The goal of C-GLISp is to approach an optimal solution
x⋆ as in (4.4) within a small number N of experiments.

4.3.1 Learning unknown constraint functions

We discuss how to train surrogates of the functions G and S that approx-
imate, respectively, the feasibility constraint x ∈ ΩG and the satisfaction
constraint x ∈ ΩS . The idea is to ask the decision-maker to assess, once
an experiment is performed, whether the constraints x ∈ ΩG and x ∈ ΩS

are satisfied or not, and train surrogate functions of G and S based on
the outcome of N ≥ 2 of such queries. These queries are performed on a
set of samples {x1, . . . , xN} iteratively proposed by C-GLISp. Compared
to unconstrained preference-based optimization like GLISp, in which an
infeasible/unsatisfactory sample only indirectly reveals itself as such by
losing pairwise comparisons against feasible/satisfactory ones, C-GLISp
exploits the information on whether x ∈ ΩG and/or x ∈ ΩS to facilitate
the optimization process, in particular, to avoid exploration in the infea-
sible and/or unsatisfactory region and therefore reduce the number of
samples xi ̸∈ ΩG and/or xi ̸∈ ΩS .

The surrogate functions for G and S are constructed as follows. The
decision-maker observes the outcome of the performed experiments, and
he/she provides a feasibility vector GF = [G1 . . . GN ]′ ∈ {0, 1}N with

Gi = G(xi), (4.5)

and a satisfaction vector SF = [S1 . . . SN ]′ ∈ {0, 1}N with

Si = S(xi), (4.6)

by assessing whether each experiment is feasible and satisfactory. Then,
surrogates Ĝ of G and Ŝ of S are constructed from the observations GF
and SF , respectively, as detailed below.

A surrogate function Ĝ : D → R predicting the probability of satisfy-
ing the feasibility constraint x ∈ ΩG is defined as

Ĝ(x) =

N∑︂
i=1

νi(x)Gi, (4.7)

52



where νi(x) : D → R for i = 1 . . . , N is defined as

νi(x) =

⎧⎪⎨⎪⎩
1 if x = xi
0 if x = xj , j ̸= i

wi(x)∑︁N
i=1 wi(x)

otherwise.
(4.8)

Here wi : D \ {xi} → R is the following IDW function [107]

wi(x) =
e−d

2(x,xi)

d2(x, xi)
, (4.9)

where d : D ×D → R denotes the squared Euclidean distance

d(x, xi) = ∥x− xi∥22. (4.10)

The surrogate function Ŝ : D → R is defined similarly. The ap-
proach presented in this chapter aims at solving problems where exper-
iments are expensive to run, so that data efficiency is essential. IDW
interpolation functions are selected because of their high accuracy in
this case. Other binary classification methods (e.g. logistic regression
or random forests) would be less suitable in this context since their ac-
curacy with a small number of training data is limited. Support vec-
tor machines (SVMs) [50] can be a potential substitute since it works
well for small and medium-size training samples. However, our pre-
liminary numerical tests have shown that IDW interpolation functions
outperform SVM in our context. Also the predicted probabilities Ĝ and
Ŝ from IDW interpolation functions are always between 0 and 1 by con-
struction (see [32, Lemma 1-P2]). It is also worth noting that since the
feasibility/satisfactory constraints are unknown, it may be impossible
to distinguish between them. Hence, rather than model each feasibil-
ity/satisfactory constraint with a separate surrogate function, we model
the probability of being feasible/satisfactory, making it easier to handle
multiple feasibility/satisfactory constraints.

4.3.2 Learning the preference function

Radial basis functions (RBFs) [48, 49] are flexible and have been adopted
to solve global optimization problems in [32, 48, 49, 108, 109] with

53



success. Therefore, as in [38], we parameterize the surrogate function
f̂ : D → R as a linear combination of RBFs [48, 49] as reviewed in Sec-
tion 2.3.1.1

f̂(x) =

N∑︂
k=1

βkϕ(ϵd(x, xi)). (4.11)

Besides the feasibility vectorGF and the satisfaction vector SF , the pref-
erence vector B = [b1 . . . bM ]T ∈ {−1, 0, 1}M is also assumed to be pro-
vided by the decision-maker, with

bh = π(xi(h), xj(h)), (4.12)

for xi, xj ∈ D such that xi ̸= xj , ∀i ̸= j, i, j = 1, . . . , N .

4.3.3 Acquisition function

Minimizing f̂ greedily to generate the next sample xN+1 may lead the
solver converge to a point that is not the global optimum of (4.4). Hence,
when selecting the next point xN+1, besides exploiting the surrogate f̂ ,
some exploration should be considered to search regions with limited/no
samples to reduce uncertainty of f̂ . Also, the feasibility and satisfactory
regions are unknown and are only implicitly included in the surrogate
function f̂ . Therefore, we also include terms to explicitly avoid the explo-
ration in the regions with low probabilities of being feasible and satisfac-
tory by penalizing the (estimated) infeasibility x ̸∈ ΩG and unsatisfactory
performance x ̸∈ ΩS .

The exploration term used in GLISp is the following IDW function
z : D → R

z(x) =

{︄
0 if x ∈ {x1, . . . , xN}
tan−1

(︂
1∑︁N

i=1 ri(x)

)︂
otherwise, (4.13)

where ri(x) = 1
d2(x,xi)

. Unlike GLISp, here we modify (4.13) into

zN (x) =

(︃
1− N

Nmax

)︃
tan−1

(︄∑︁N
i=1 ri(x

∗
N )∑︁N

i=1 ri(x)

)︄

+
N

Nmax
tan−1

(︄
1∑︁N

i=1 ri(x)

)︄ (4.14)

54



for x /∈ {x1, . . . , xN} and zN (x) = 0 otherwise. In (4.14), x∗N is the best
decision variable found up to iteration N . The formulation in (4.14)
is empirically observed to better escape from local minima. In (4.14),
Nmax is the maximum allowed number of experiments. The rationale
behind (4.14) is that we encourage the exploration of regions ofD further
away from the current best solution in the early iterations and reduce its
effects as the number N of experiments increases.

Then, we introduce the acquisition function a : D → R defined as

a(x) =
f̂(x)

∆F̂
− δEzN (x)

+ δG(1− Ĝ(x)) + δS(1− Ŝ(x)),
(4.15)

where δE ≥ 0 is the exploration parameter, and δG, δS ≥ 0 weight the
probability of a sample x to be infeasible and/or unsatisfactory, respec-
tively. The term ∆F̂ = maxi{f̂(xi)} − mini{f̂(xi)} is the range of the
surrogate function f̂ on the samples in {x1, . . . , xN}. It is used as a scal-
ing factor in (4.15) to make each term in (4.15) comparable, which eases
the selection of the hyper-parameters δE , δG, and δS .

The exploration parameter δE encourages sampling unexplored re-
gions of the domain D. Setting δE = 0 makes C-GLISp rely heavily on
the accuracy of the surrogate functions f̂ , Ĝ, and Ŝ, which may easily
lead to missing the global optimum. On the other hand, setting δE ≫ 1

leads C-GLISp to explore the entire domain D regardless of the decision-
maker’s preferences and feasibility/satisfaction assessments.

Functions Ĝ and Ŝ in (4.15) aim at discouraging exploration in re-
gions where the experiment is predicted to be infeasible (i.e., x /∈ ΩG)
and/or unsatisfactory (i.e., x /∈ ΩS). Therefore, a poor selection of the
hyperparameters δG and δS and/or a poor predictive capability of Ĝ and
Ŝ (e.g., due to a limited number of samples) can prevent finding new
vectors that are actually feasible and/or satisfactory. To alleviate this
issue, we suggest to adaptively tune δG and δS based on the sampled
standard deviation obtained from leave-one-out cross-validation [51] of
Ĝ and Ŝ, respectively. More specifically, each available sample in the set
{x1, . . . , xN} is used once as a testing point and the remaining ones are

55



used to train Ĝ and Ŝ. The prediction Ĝ(xi) and Ŝ(xi) on the test sample
xi is compared with the corresponding labels G(xi) and S(xi) assigned
by the decision-maker to compute the following sampled standard devi-
ations of the error:

σ̂G = min

⎧⎨⎩1,

√︄∑︁N
i=1(Ĝ(xi)−G(xi))2

N − 1

⎫⎬⎭ ,

σ̂S = min

⎧⎨⎩1,

√︄∑︁N
i=1(Ŝ(xi)− S(xi))2

N − 1

⎫⎬⎭ . (4.16)

The sampled standard deviations are then used to update, after each
iteration, the weights δG and δS as follows:

δG = (1− σ̂G)δG,default, (4.17a)

δS = (1− σ̂S)δS,default, (4.17b)

where δG,default and δS,default are default values set by the user. Clearly,
one should select δG,default > δS,default, so that the possible infeasibility is
penalized more than a potential unsatisfactory behavior. The updated
values of δG and δS are then used to construct the acquisition function
a(x) in (4.15).

The next sample xN+1 to test is obtained by minimizing a(x), i.e.,

xN+1 = argmin
x∈D

a(x). (4.18)

Different optimization methods can be used to solve problem (4.18) effi-
ciently either via derivative-free [110], or derivative based algorithms.

C-GLISp updates the surrogates f̂ , Ĝ, and Ŝ, and the exploration
function zN (x), by iteratively suggesting a new point xN+1 to test, and
by receiving feedback from the decision-maker in terms of feasibility,
overall satisfaction, and preferences between pairs of experiments. Al-
gorithm 4.1 summarizes the flow of the proposed method.

56



Algorithm 4.1 C-GLISp: Preference learning algorithm with unknown
constraint handling ©2021 IEEE
Input: Lower and upper bounds (ℓ, u), known constraint set if available;

number Ninit ≥ 2 of initial samples, number Nmax ≥ Ninit of maximum
function evaluations; δE ≥ 0, δG,default ≥ 0 and δS,default ≥ 0; σ > 0; and
ϵ > 0; self-calibration index set Isc ⊆ {1, . . . , Nmax − 1}.

1. Generate Ninit random samples X = {x1, . . . , xNinit
} using Latin

hypercube sampling method [88];

2. N ← 1, i⋆ ← 1;

3. While N < Nmax do

3.1. if N = 1 then

3.1.1. Observe feasibility GN and satisfaction SN ;

3.2. if N ≥ Ninit then

3.2.1. if N ∈ Isc then recalibrate ϵ through K-fold cross-
validation;

3.2.2. Solve (2.10) to obtain β to define the surrogate function
f̂ (4.11);

3.2.3. Update δG and δS as in (4.17);
3.2.4. Define acquisition function a as in (4.15);
3.2.5. Solve optimization problem (4.18) and get xN+1;

3.3. i(N)← i⋆, j(N)← N + 1;

3.4. Observe feasibility Gj(N). satisfaction Sj(N) and preference
bN = π(xi(N), xj(N)) ;

3.5. if bN = 1 then set i⋆ ← j(N);

3.6. N ← N + 1;

4. End.

Output: Computed best input x⋆ = xi⋆ .

57



4.4 Optimization benchmarks

This section reports tests of C-GLISp on three constrained global opti-
mization benchmarks to illustrate its effectiveness in solving optimiza-
tion problems with unknown constraints. Computations are run on an
Intel i7-8550U 1.8-GHz CPU laptop with 8GB of RAM. The Latin hyper-
cube sampling method [88] (lhsdesign function of the Statistics and Ma-
chine Learning Toolbox of MATLAB [89]) is used in the initial sampling
phase of C-GLISp. Particle Swarm Optimization (PSO) [87] is used to
minimize the acquisition function as in (4.18).

C-GLISp is compared to the original GLISp and to PBO (with expected
improvement as acquisition function) [100, Section 2.3]. For numerical
benchmarks, C-GLISp, GLISp, and PBO assign the preferences on pair-
wise comparisons based on the combined assessments of the objective
function value, feasibility, and performance satisfaction. For each test
function, depending on the problem formulation, a maximum of three
types of queries are obtained when we use C-GLISp, which are the pref-
erence relation (B), the feasibility label (GF ), and the satisfaction label
(SF ). In contrast, GLISp and PBO only rely on the preference relation
B. The goal of the comparison between C-GLISp and GLISp is to check
if accounting the feasibility and/or satisfactory information explicitly in
the acquisition function can encourage safe exploration from the compar-
isons. It is worth noting that the exact evaluation of the objective function
and the constraints (feasibility and satisfactory outcomes) for these nu-
merical benchmarks are unknown to the algorithms and are only used to
construct a synthetic decision-maker.

Table 4.1 lists the specifications of the benchmarks. The original fea-
sibility set of the function Mishra’s Bird function-constrained (MBC) [111,
112] is modified so that the unconstrained global optimum in the search
domain is no longer in the feasible area. The camelsixhumps-hard con-
strained (CHC) benchmark [32, 113] considers two feasibility constraints,
and the unconstrained global optimum also differs from the constrained
one. Lastly, the benchmark function camelsixhumps-hard and soft con-
strained (CHSC) [32, 113] has both feasibility and satisfaction constraints.

58



Ta
bl

e
4.

1:
N

um
er

ic
al

be
nc

hm
ar

ks
-P

ro
bl

em
Sp

ec
ifi

ca
ti

on
©

20
21

IE
EE

Te
st

fu
nc

ti
on

O
bj

ec
ti

ve
fu

nc
ti

on
U

nk
no

w
n

co
ns

tr
ai

nt
s

Se
ar

ch
do

m
ai

n
D

M
is

hr
a’

s
Bi

rd
fu

nc
ti

on
-

f
(x
,y
)
=

si
n
(y
)e

(1
−
c
o
s(
x
))

2

+
co
s(
x
)e

(1
−
si
n
(y

))
2

Fe
as

ib
ili

ty
co

ns
tr

ai
nt

s:
[−

10
.0
,−

2
];

co
ns

tr
ai

ne
d

(m
od

ifi
ed

)[
11

1,
11

2]
+
(x
−
y
)2

(x
+
9)

2
+
(y

+
3)

2
<

9
[−

6
.5
,0
.0
]

(M
BC

)
ca

m
el

si
xh

um
ps

-
f
(x
,y
)
=

(4
−
2.
1x

2
+
x
4
/
3
)x

2
Fe

as
ib

ili
ty

co
ns

tr
ai

nt
s:
g 1
∩
g 2

[−
2
,2
];

ha
rd

co
ns

tr
ai

ne
d

[3
2,

11
3]

+
x
y
+
(4
y
2
−

4
)y

2
[−

1
,1
]

(C
H

C
)

g 1
:

[︄ 1.6
2
9
5

1
−
1

4
.4
5
5
3

−
4
.3
0
2
3

−
1

−
5
.6
9
0
5
−
1
2
.1
3
7
4

1
7
.6
1
9
8

1

]︄ [x y
]
<

[︄ 3.0
7
8
6

2
.7
4
1
7

−
1
.4
9
0
9

1
3
2
.5
1
9
8

]︄
g 2

:
x
2
+
(y

+
0
.1
)2
<

0.
5

ca
m

el
si

xh
um

ps
-

f
(x
,y
)
=

(4
−
2.
1x

2
+
x
4
/
3
)x

2
Fe

as
ib

ili
ty

co
ns

tr
ai

nt
s:
g 2

[−
2
,2
];

ha
rd

an
d

so
ft

co
ns

tr
ai

ne
d

[3
2,

11
3]

+
x
y
+
(4
y
2
−

4
)y

2
Sa

ti
sf

ac
ti

on
co

ns
tr

ai
nt

s:
g 1

[−
1
,1
]

(C
H

SC
)

g 1
:

[︄ 1.6
2
9
5

1
0
.5

3
.8
7
5

−
4
.3
0
2
3

−
4

−
2

1
0
.5

−
1

]︄ [x y
]
<

[︄ 3.0
7
8
6

3
.3
2
4

−
1
.4
9
0
9

0
.5

0
.5

]︄
g 2

:
x
2
+
(y

+
0
.0
4)

2
<

0
.8

Ta
bl

e
4.

2:
N

um
er

ic
al

be
nc

hm
ar

ks
-S

ol
ve

r
Sp

ec
ifi

ca
ti

on
©

20
21

IE
EE

Te
st

fu
nc

ti
on

M
ax

nu
m

be
r

of
N

um
be

r
of

in
it

ia
l

H
yp

er
-p

ar
am

et
er

va
lu

es
R

BF
sp

ec
ifi

ca
ti

on
s

(4
.1

1)
To

le
ra

nc
e

W
ei

gh
ts

R
eg

ul
ar

iz
at

io
n

fu
n.

ev
al

.N
m
a
x

sa
m

pl
in

g
N
in
it

δ E
δ G

,d
ef

au
lt

δ S
,d

ef
au

lt
fu

nc
ti

on
in

it
ia

lϵ
re

ca
lib

ra
ti

on
st

ep
s

σ
in

(2
.1

0)
c h

in
(2

.1
0)

λ
in

(2
.1

0)
M

BC
50

13
1.

0
1.

0
−

In
ve

rs
e

qu
ad

ra
ti

c
1.

0
{1

3
,2
2
,3
2
,4
1
}

0.
02

1.
0

1e
-6

C
H

C
10

0
25

2.
0

2.
0

−
In

ve
rs

e
qu

ad
ra

ti
c

1.
0

{2
5
,4
4
,6
3
,8
1
}

0.
01

1.
0

1e
-6

C
H

SC
50

13
1.

0
1.

0
0.

5
In

ve
rs

e
qu

ad
ra

ti
c

1.
0

{1
3
,2
2
,3
2
,4
1
}

0.
02

1.
0

1e
-6

Sa
m

e
pa

ra
m

et
er

s
(i

fr
el

ev
an

t)
ar

e
us

ed
in

C
-G

LI
Sp

,G
LI

Sp
,a

nd
PB

O
.

Ta
bl

e
4.

3:
N

um
er

ic
al

be
nc

hm
ar

ks
-R

es
ul

ts
©

20
21

IE
EE

Te
st

fu
nc

ti
on

C
on

st
ra

in
ed

op
ti

m
um

a
Fe

as
ib

ili
ty
b

O
pt

im
um

C
-G

LI
Sp

G
LI

Sp
PB

O
C

-G
LI

Sp
G

LI
Sp

PB
O

M
BC

-4
8.

4
-4

7.
95

-4
8.

33
-4

0.
24

10
0

10
0

91
C

H
C

-0
.5

84
4

-0
.3

58
2

-0
.5

22
4

0.
25

71
96

66
33

C
H

SC
-0

.9
05

0
-0

.8
52

6
-0

.8
86

1
-0

.6
31

5
96

(9
5)

82
(8

4)
74

(7
2)

a-
Th

e
m

ed
ia

n
of

co
m

pu
te

d
co

ns
tr

ai
ne

d
op

ti
m

a
th

at
ar

e
fe

as
ib

le
ou

to
f1

0
0

ru
ns

(t
he

di
st

ri
bu

ti
on

ov
er

10
0

ru
ns

is
re

po
rt

ed
in

Ta
bl

e
4.

4)
.

b-
N

um
be

r
of

ru
ns

w
ho

se
co

m
pu

te
d

op
ti

m
iz

er
s

ar
e

fe
as

ib
le

ou
to

f1
00

ru
ns

.V
al

ue
s

in
pa

re
nt

he
se

s
in

di
ca

te
th

e
nu

m
be

r
of

ru
ns

th
e

op
ti

m
iz

er
is

sa
ti

sf
ac

to
ry

.

59



The two unconstrained optima for this test function are both feasible but
not satisfactory.

The values of the hyper-parameters and benchmark testing specifi-
cations for C-GLISp, GLISp, and PBO are provided in Table 4.2. The
number of initial samples (Ninit) is selected as one fourth of the max-
imum number of function evaluations (Nmax/4) rounded to the near-
est integer. Three-fold cross-validation is used to update the hyper-
parameter ϵ (4.11) at iterations within the self-calibration index set Isc,
which are Ninit, Ninit + (Nmax −Ninit)/4, Ninit + (Nmax −Ninit)/2, and
Ninit + 3(Nmax − Ninit)/4, rounded to the closest integers. The toler-
ance σ in (2.10) is set to 1/Nmax. The default value δG,default in (4.17)
is the same as δE , so that the feasibility term in (4.15) is comparable to
the pure exploration term, while the default value δS,default is selected as
δG,default/2 to reduce its effects with respect to hard feasibility constraints.
The parameters δG and δS are kept at their default values until Ninit ex-
periments have been performed, then they are updated each time a new
point is added using equation (4.17). The remaining parameters of the
solvers are set according to the defaults used or suggested in [38].

Table 4.3 reports the results obtained by running a Monte-Carlo sim-
ulation with 100 runs of C-GLISp, GLISp, and PBO to obtain statistically
significant results. One of such runs of C-GLISp on all three numerical
benchmarks is depicted in Fig. 4.1. Table 4.4 displays the distribution
over 100 runs of the percentage difference between the achieved feasible
solutions and the true constrained optimum. Overall, the results from
Table 4.3 and 4.4 show that C-GLISp can find a feasible near-optimal so-
lution more frequently than GLISp and PBO.

From the results on the benchmark function MBC, where the feasi-
bility set ΩG covers roughly one-third of the domain D (cf. Fig. 4.1), the
performance of GLISp and C-GLISp are comparable. They always ter-
minate the search with a feasible optimum (100 out of 100 runs), with
67% and 69% of them, respectively, located within 5% difference from
the global solution (Table 4.4). On the other hand, PBO computes a feasi-
ble optimum in 91 runs, but with only around 39% within 5% difference
(Table 4.4). When the constraint is more complex such as the one in CHC,

60



MBC ( G: Ellipsoid)

-10 -9.5 -9 -8.5 -8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2
-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
y

CHC ( G: Intersection of ellipsoid and polytope)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

CHSC ( G: Ellipsoid; S: Polytope)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Figure 4.1: Algorithm C-GLISp. Level sets of the functions used in the three
benchmarks, along with feasibility and satisfaction sets. Blue ×: points
generated from initial sampling phase; black ◦: points generated from ac-
tive learning phase; purple ♢: global unconstrained optimizer; red •: con-
strained optimizer found after Nmax iterations; green □: global constrained
optimizer. As N increases, the points generated by C-GLISp approach the
constrained optimizer, and most of the points generated during the active
learning phase lay in the feasibility and satisfaction regions. ©2021 IEEE

the majority of the optima computed by C-GLISp (96 out of 100 runs) are
feasible. In comparison, only 66 and 33 runs by GLISp and PBO, respec-
tively, terminate with a feasible solution (Table 4.3 and Fig. 4.2). From
Fig. 4.1, it is also observed that, for the test function CHC, after the initial
sampling phase, most points generated in the active learning phase by
C-GLISp are within the feasible region.

For the test function CHSC, C-GLISp can often find a near-optimal

61



Table 4.4: Distribution over 100 runs of the percentage difference between
achieved and global optimum ©2021 IEEE

Benchmark Algorithm
Number of runs within each interval

Intervals of % Difference from Global Optimum
(0,5] (5,10] (10,15] (15,100]

MBC
PBO 39 4 2 18
GLISp 67 1 2 3
C-GLISp 69 6 1 5

(0,5] (5,20] (20,50] (50,100]

CHC
PBO 0 0 4 7
GLISp 28 7 5 1
C-GLISp 0 20 40 22

(0,5] (5,10] (10,15] (15,100]

CHSC
PBO 13 10 4 27
GLISp 56 8 5 9
C-GLISp 43 22 13 16

Note: only the runs with feasible solutions within 100% difference from the
global optimum are counted.

solution that is both feasible and satisfactory. The performance of GLISp
is slightly worse than C-GLISp in terms of the number of times a feasible
and satisfactory solution is obtained. PBO can identify a feasible and
satisfactory solution with a relatively high chance but still lower than
both C-GLISp and GLISp. Also, its final outcome is worse, see Table 4.3.

Table 4.3 also shows that, within the same number of iterations, the
median of the computed feasible constrained optima from GLISp is al-
ways closer to the global constrained optimum than the one computed
from C-GLISp. This is because of the trade-off between trying to get a
more accurate solution (which is often achieved by sampling multiple
points close to the current best solution up to iteration N ) and explor-
ing a larger area to reduce uncertainty (in problems with unknown con-
straints, C-GLISp also tries to identify possible feasible regions).

For our problem setting, we have set a limit on the computational
budget. Modification of the exploration term from (4.13) to (4.14) helps
to better escape from local minima in the early iterations by encourag-
ing the exploration of regions of D further away from the current best

62



C-GLISp

-1 -0.5 0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
y

2

2

87

9

GLISp

-1 -0.5 0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

16

18

41

15

PBO

-1 -0.5 0 0.5 1 1.5 2
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

13

21

Figure 4.2: Benchmark CHC. Optimizers computed by C-GLISp, GLISp and
PBO in 100 runs. Red ×: optimizer computed at the end of each run; purple
♢: unconstrained optimizer; green ♢: global constrained optimizer. Num-
bers in black with arrows indicate the number of overlapping points. ©2021
IEEE

solution. This modification is significant for problems with small fea-
sible regions (relative to the search domain) and/or complex unknown
constraints (e.g., numerical benchmark CHC). This is because that the ad-
ditional exploration introduced by the modification can help the solver
identify the feasible region more quickly and start recommending feasi-
ble guesses faster, reducing the chance of the solver trapping into an in-
feasible local optimum. From the number of feasible solutions computed
shown in Table 4.3 and the computed optimizers displayed in Fig. 4.2, we
observe that the situation of trapping into an infeasible local optimum
occurs to GLISp more frequently than to C-GLISp. However, GLISp can

63



achieve a solution closer to the constrained optimum than C-GLISp (Ta-
ble 4.4) when GLISp successfully identifies the feasible region. This is
because more computational budget is then used to get closer to the op-
timum than to explore other potentially feasible regions as in C-GLISp.
For problems where testing an infeasible solution is expensive and/or
dangerous, it is better to be conservative and have a less optimal but fea-
sible solution. As a result, C-GLISp is preferred over GLISp under these
problem settings.

Overall, the results on the numerical benchmarks show that both
C-GLISp and GLISp can approach near-optimal solutions within a
small number of function evaluations. In all of the three bench-
marks, both C-GLISp and GLISp outperform PBO (Table 4.3 and 4.4).
An explanation for the superior performance of C-GLISp in identify-
ing feasible/satisfactory solutions is that it explicitly leverages feasibil-
ity/satisfaction information in the acquisition function, while GLISp and
PBO handle unknown constraints only through preference queries.

4.5 MPC calibration

To illustrate the application of C-GLISp to controller calibration, we dis-
cuss the design of an MPC controller for lane-keeping (LK) and obstacle-
avoidance (OA) in automated driving. MPC is employed to command
vehicle velocity and steering angle to provide a smooth and safe drive.
The same problem was considered in Section 3.4.2 and is extended in this
chapter to handle feasibility and satisfaction constraints. Specifically, we
use C-GLISp to implement an iterative semi-automated calibration pro-
cedure. Different from the case study in Section 3.4.2, where we account
for the information of feasibility and satisfaction conditions implicitly
in the preference query (GLISp) as if they were, implicitly, underlying
penalty functions, C-GLISp explicitly takes into account this information
via direct queries as in (4.1) and (4.2).

As discussed in Section 3.4.2, the two main objectives involved in this
control task are: (1) maintain the vehicle at the same horizontal lane with
constant speed if no obstacles (other vehicles) are present; and (2) pass

64



other moving vehicles if they are within a safety distance. We test C-
GLISp with the same test scenario as in Section 3.4.2 to tune the same
set of MPC design parameters, that is, the sampling time (Ts), prediction
and control horizons (Np, Nu), and weight matrix Q∆u.

The role of the calibrator is played by myself. The maximum number
of function evaluations Nmax is set to 50, with Ninit = 10. The default
hyperparameters δE , δG and δS in (4.15) are set to 1, 1, and 0.5, respec-
tively. The parameters σ, ch and λ in (2.10) are set to 0.02, 1, and 1e-6, re-
spectively. The hyperparameter ϵ characterizing the RBF function (4.11)
is initialized to 1.0, and recalibrated at iterations 10, 20, 30, and 40 via
3-fold cross-validation.

The closed-loop experiment of the vehicle control is simulated for
15 seconds. Fig. 4.3 shows the query window for one iteration of the
calibration process. Besides expressing a preference between the new
experiment and the current best one, as in the case study discussed
in Section 3.4.2, at each iteration, the calibrator is also asked to decide
whether the newly proposed experiment is feasible and/or satisfactory.
More specifically, the calibrator labels the control policy that leads to
“unstable/unsafe” and “unimplementable” behavior as infeasible (i.e.,
G(x) = 0). Examples of “unstable/unsafe” behaviors include but are
not limited to: vehicle hits the obstacle; vehicle oscillates on the road,
etc. “Unimplementable” cases are the ones whose computational time
(tcomp) required for solving the QP problem of MPC (2.10) exceeds the
sampling time Ts. As for being labeled as satisfactory, the following two
criteria are used: (i) the lateral position of the vehicle does not exceed 5
m during the OA period (black dashed line on Fig. 4.3); and (ii) the ve-
hicle does not oscillate during the LK period (in other words, the vehicle
moves at a constant speed with wf and θ close to 0 m and 0◦). These fea-
sibility and satisfactory criteria are assumed to be unknown to C-GLISp
and are learned based on the expressed feasibility and satisfactory labels.

For the pairwise comparisons, the calibrator expresses her prefer-
ences according to the following guidelines: (i) whether it is feasible;
(ii) whether it is satisfactory; (iii) whether the vehicle guarantees pas-
sengers’ comfort during the OA period, for example, by not changing

65



velocities or moving the lateral position too aggressively; (iv) whether
the deviations of the vehicle velocity from the reference values is minor
in both LK and OA periods; (v) whether aggressive variations of steering
angles are avoided. If a conflict combination among criteria mentioned
above appears, criterion (i) has the highest priority, and if the conflict is
among criteria (ii)–(v), the control policy that leads to qualitatively safer
driving practice based on the calibrator’s experience is preferred. Note
that conditions (iii)-(v) and the method of judging safe driving practice
are mainly qualitative/subjective, and it is difficult to express them in
terms of quantitative metrics.

For the example query window illustrated in Fig. 4.3, conflicting
combinations of the assessing criteria are observed. Compared to the
experiment shown in the left panels of the figure, the experiment shown
in the right panels has more aggressive lateral movements during the
OA period. Furthermore, the changes in velocity and steering angle are
greater in both frequency and magnitude in both LK and OA periods.
The experiment shown in the left panels is feasible since it is imple-
mentable (tcomp < Ts) and stable, while the experiment shown in the
right panels of the figure is infeasible since tcomp exceeds Ts. Addition-
ally, both experiments fail to satisfy the satisfaction conditions. Above
all, the performance of the experiment shown in the left panels is pre-
ferred according to criterion (vi).

4.5.1 Results

C-GLISp terminates after 50 simulated closed-loop experiments and 49
pairwise comparisons. The best MPC design parameters Ts, ϵc, Np,
log(qu11) and log(qu22) are determined to be 0.085 s, 0.100, 23, -0.323 and -
3.71, respectively, with a worst-case computational time tcomp = 0.0789 s.
The closed-loop performance obtained via these MPC design parameters
is depicted in Fig. 4.4. As shown in the figure, after only 50 simulated
experiments, the proposed algorithm can tune the MPC parameters to
achieve feasible and satisfactory performance, accomplishing the driv-
ing tasks with smooth and safe maneuvers.

66



0 50 100 150 200 250

0

2

4

6

 w
f [

m
]

car
obstacle
car OA
obstacle OA

0 50 100 150 200 250
0

2

4

6

0

 v
 [

km
/h

r]

Input
Reference

0 50 100 150 200 250
 xf [m]

0

2

4

6

0

 [
°]

0 50 100 150 200 250

0

2

4

6
 w

f [
m

]
car
obstacle
car OA
obstacle OA

0 50 100 150 200 250
0

2

4

6

0

 v
 [

km
/h

r]

Input
Reference

0 50 100 150 200 250
 xf [m]

0

2

4

6

0

 [
°]

T
s
 = 0.125 s, N

u
 = 28, N

p
 = 29, log(q

u11
) = -1.39, 

log(q
u22

) = -3.48, t
comp

:  0.13 s

T
s
 = 0.372 s, N

u
 =  6, N

p
 = 25, log(q

u11
) = -3.67, 

log(q
u22

) = -1.75, t
comp

:  0.09 s

Figure 4.3: Vehicle control query window. The top subplots show the vehi-
cle and obstacle positions. The “vehicle OA” and “obstacle OA” bars show
five relative positions of the vehicle and obstacle during the OA period. The
dashed lines indicate the lateral distance that the car should avoid exceed-
ing (5 m in this case). The middle subplots show the actual and reference
velocity v at different longitudinal positions. The steering angle ψ over the
longitudinal position is depicted in the bottom subplots. The results on the
left panels are preferred and feasible, while the results on the right panels
are infeasible. The results on both sets of panels fail to satisfy the satisfac-
tion conditions. ©2021 IEEE

4.6 Conclusions

The algorithm C-GLISp introduced in this chapter can handle preference-
based global optimization with unknown objective functions and un-
known constraints better than other existing black-box surrogate meth-
ods (PBO and GLISp), as illustrated through benchmark problems. The
automated driving case study demonstrated the application of C-GLISp
in semi-automated MPC calibration. Although convergence to global op-

67



0 50 100 150 200 250
-1

0

1

2

3

4

 w
f [

m
]

vehicle

obstacle

vehicle OA

obstacle OA

0 50 100 150 200 250

50

55

60

65

70

75

 v
 [

km
/h

r]

Input

Reference

0 50 100 150 200 250
 xf [m]

-15

-10

-5

0

5

10

15

 [
°]

Figure 4.4: Final vehicle control performance obtained by the designed
MPC controller. The top subplot shows the vehicle and obstacle positions.
The “vehicle OA” and “obstacle OA” bars show five relative positions of
the vehicle and obstacle during the OA period. The middle subplot shows
the actual and reference velocity v at different longitudinal positions. The
bottom subplot shows the steering angle ψ over the longitudinal position.
©2021 IEEE

timizers cannot be guaranteed, we observed that the C-GLISp can find
satisfactory results within a small number of iterations and that it has a
higher probability of proposing feasible samples during the exploration
thanks to the introduction of additional information by the decision-
maker that is used to synthesize corresponding surrogate functions. We
finally note that, while we have used C-GLISp for controller calibration,
the algorithm can be used in many other applications in which a few tun-
ing parameters must be decided based on preferences under constraints
that cannot be easily quantified.

68



Chapter 5

Global and
Preference-based
Optimization with Mixed
Variables using Piecewise
Affine Surrogates

5.1 Introduction

A large variety of decision problems in several application domains can
have decision variables defined over a mixed-variable domain, i.e., they
can be of different types, such as continuous, integer, and categorical,
which introduces a further challenge from an optimization perspective.
Also, these problems frequently include constraints of mixed-integer na-
ture, for example, constraints determined by logical conditions involving
continuous and binary variables, and evaluating infeasible instances of
the optimization variables may not be possible, for example, when the

The content of this Chapter is from M. Zhu and A. Bemporad, “Global and preference-
based optimization with mixed variables using piecewise affine surrogates,” submitted for
publication, 2023.

69



corresponding function evaluation requires running a simulation or an
experiment that is impossible or dangerous to execute. As a result, it is
preferable to efficiently exploit the known admissible set of the problem
to encourage feasible sampling.

Surrogate-based optimization techniques have been studied exten-
sively to target black-box optimization problems with expensive-to-
evaluate objective functions as discussed in the previous chapters. Al-
though most of the literature has focused only on real-valued optimiza-
tion variables, a few approaches have been adopted to handle integer
and categorical variables [114]. Here, we distinguish integer variables
as the ones representing ordinal relationships and categorical variables
as those representing non-ordinal relationships. Integer variables are
most commonly considered as continuous variables during the solu-
tion process and rounded to the nearest integer during post-analysis
(e.g., MISO [53]), while categorical variables are often first one-hot en-
coded and then treated as continuous variables in [0, 1] when fitting
the surrogate model, and then rounded and decoded after the opti-
mization step (e.g., MINOAN [115]). See also [116–118] for algorithms
that have applied similar approaches to handle integer and categorical
variables. Ploskas and Sahinidis [52] comprehensively analyzed and
compared different algorithms, and related software packages, target-
ing bound-constrained mixed-integer derivative-free optimization prob-
lems. In their review, the authors observed that MISO [53] demonstrates
superior performance when dealing with large (51 - 500 variables) and bi-
nary problems. On the other hand, NOMAD [56, 119] emerged as the top
performer for mixed-integer, discrete (non-binary), small, and medium-
sized (up to 50 variables) problems.

Most of the surrogate-based methods assume all the inputs as contin-
uous and ordinal [52, 53, 115]. On the other hand, different classes for
the categorical variables often represent different choices rather than or-
dinal relations. Therefore, if one attempts to fit the latent function using
a unified surrogate in which categorical variables are one-hot encoded
and treated as continuous vectors with entries in [0, 1], sharp transitions
might be observed in the constructed surrogate, leading to poor fitting

70



qualities. Alternatively, one can fit different surrogate models to each
categorical class [120–122]. However, as the number of categories and
classes within each category increase, the size of the problem quickly
blows up. To alleviate this issue, Ru et al. [123] propose an approach
that makes efficient use of the information in the acquired data by com-
bining the strengths of multi-armed bandits and BO based on Gaussian
processes. This method has been shown to effectively solve bound-
constrained problems with multiple categorical variables and multiple
possible choices.

In addition to mixed variables, real-life optimization problems fre-
quently contain constraints. In this case, if the integer and the one-hot
encoded category variables are relaxed as continuous variables while op-
timizing, i.e., the integrality of the variables is neglected, the constraints
may not be satisfied after post-analysis, especially when equality con-
straints are present [115]. In [115], to maintain the integrality of the vari-
ables, the authors use one-hot encoding to convert integer and one-hot
encoded categorical variables to auxiliary variables. However, infeasi-
bility with respect to constraints is still allowed during the solution pro-
cess in [115]. In [124], piecewise-linear neural networks are employed
as surrogate models to address constrained discrete black-box optimiza-
tion problems, and mixed-integer linear programming (MILP) is used
to optimize the acquisition function. However, the no-good constraints
used in [124] to tackle discrete-variable-only problems cannot be trivially
transferred to the mixed-variable domain; hence, this approach cannot be
directly applied to domains with mixed variables.

5.1.1 Contribution

In this chapter, we aim to solve medium-sized mixed-variable nonlinear
optimization problems (say up to 100 variables after encoding) subject to
mixed-integer linear equality and/or inequality constraints (say up to 20
constraints), where the optimization variables can be continuous, integer,
and categorical. Specifically, we propose an algorithm that uses a piece-
wise affine (PWA) function as the surrogate, and we incorporate two

71



types of exploration functions (distance-based and frequency-based) in
the acquisition function to efficiently explore the feasible domain, there-
fore reducing the number of queries required to obtain satisfactory re-
sults. Moreover, as the initial samples play an essential role in fitting the
surrogate, especially when the function-evaluation budget is limited, we
propose incorporating the exploration function as part of the initial sam-
pling strategy to obtain scattered initial samples when a large number of
linear equality and inequality constraints are present.

We name the proposed algorithm as PWAS, short for Piecewise
Affine Surrogate-based optimization. We show the efficiency and ef-
fectiveness of PWAS by comparing its performance with other exist-
ing solvers on a set of benchmark problems. We also present an ex-
tension of PWAS to solve problems in which function evaluations are
unavailable, such as problems with multiple objectives whose relative
weight is unclear or when only qualitative assessments are available, as-
suming that a decision-maker can express preferences between two can-
didate solution vectors. Such preference information is used to shape
the PWA surrogate by the proposed algorithm that we name PWASp,
short for PWAS based on preferences. Python implementations of PWAS
and PWASp are available on the GitHub repository (https://GitHub.
com/mjzhu-p/PWAS).

The rest of the chapter is organized as follows. The description of
the target problem is formulated in Section 5.2. The proposed surrogate-
based optimization algorithms are discussed in Sections 5.3 and 5.4. Sec-
tion 5.5 reports the numerical benchmarks demonstrating the effective-
ness of the proposed method. Lastly, conclusions are discussed in Sec-
tion 5.6.

5.2 Problem formulation

We consider a decision problem with nc real variables grouped in vec-
tor x ∈ Rnc , nint integer variables grouped in vector y ∈ Znint , and nd

categorical variables grouped in list Z = [Z1, . . . , Znd ], where each cat-
egorical variable Zi can take values within its corresponding ni classes,

72

https://GitHub.com/mjzhu-p/PWAS
https://GitHub.com/mjzhu-p/PWAS


i = 1, . . . , nd. Let us assume that each categorical variable Zi is one-hot
binary encoded into the subvector [z1+di−1 . . . zdi ]

T ∈ {0, 1}ni for each
i = 1, . . . , nd, where d0 = 0, di =

∑︁i
j=1 nj , and z ∈ {0, 1}dnd is the com-

plete vector of binary variables after the encoding, with z ∈ Ωz = {z ∈
{0, 1}dnd :

∑︁ni
j=1 zj+di−1 = 1, ∀i = 1, . . . , nd}. Let X = [xT yT zT]T de-

note the overall optimization vector. We assume that the vectors x and y
of interest are bounded, i.e., ℓx ≤ x ≤ ux and ℓy ≤ y ≤ uy , and denote by
Ω = [ℓx, ux] × ([ℓy, uy] ∩ Z) × Ωz the domain of X . Let f : Ω ↦→ R be the
objective function to minimize, that we consider noiseless and expensive
to evaluate.

The black-box mixed-variable optimization problem we want to solve
can be stated as follows:

find X∗ ∈ arg min
X∈Ω

f(X) (5.1a)

s.t. Aeqx+Beqy + Ceqz = beq (5.1b)

Aineqx+Bineqy + Cineqz ≤ bineq (5.1c)

whereAeq,Beq,Ceq andAineq,Bineq,Cineq are matrices of suitable dimen-
sions that, together with the right-hand-side column vectors beq, bineq,
define possible linear equality and inequality constraints on x, y, and z.
For example, if x ∈ R, Z = [Z1], Z1 ∈ {red,blue, yellow}, the logical
constraint [Z1 = red] → [x ≤ 0] can be modeled as x ≤ ux(1 − z1). For
modeling more general types of mixed linear/logical constraints, pos-
sibly involving the addition of auxiliary real and binary variables, the
reader is referred to, e.g., [125–127]. Note that, different from function f ,
which is assumed to be black-box and expensive to evaluate, we assume
the mixed-integer linear constraints on X in (5.1) have known algebraic
form and are cheap to evaluate.

5.3 Solution method

We follow the general surrogate-based optimization procedure (see e.g.,
Figure 2.1) to solve (5.1). The approach consists of an initial (passive)
sampling and an active learning stage, in which a surrogate model of

73



Algorithm 5.1 PWAS: Global optimization using piecewise affine surro-
gates

Input: Lower and upper bounds ℓx, ux, ℓy, uy ; linear constraint ma-
trices Aeq, Beq, Ceq and Aineq, Bineq, Cineq and right-hand-side vectors
beq and bineq; number nd of categorical variables and ni of possible cate-
gories, i = 1, . . . , nd; initial number K of polyhedral partitions; number
Ninit ≥ 2 of initial samples, number Nmax ≥ Ninit of maximum function
evaluations; δ1 ≥ 0, δ2 ≥ 0 and δ3 ≥ 0 if solve (5.11) in one step or δ ≥ 0
if solve (5.11) in multiple steps; solving strategy for (5.11): {“one-step”
or “multi-steps”}.

1. Pre-process the optimization variables as described in Section 5.3.1;

2. N ← 1, N∗
curr ← 1, f∗curr ← +∞ ;

3. Generate Ninit random scaled and encoded samples X̄ =
{X̄1, . . . , X̄Ninit

} using one of the initial sampling methods re-
ported in Section 5.3.5 based on the problem setup;

4. While N ≤ Nmax do

4.1. Scale back and decode X̄N to XN , i.e., XN = S(X̄N ), and
query fN = f(XN );

4.2. If fN < f∗curr then update N∗
curr ← N , f∗curr ← fN ;

4.3. If N ≥ Ninit then

4.3.1. Update and fit the PWA separation function ϕ and PWA
surrogate function f̂ as described in Section 5.3.2;

4.3.2. Define the acquisition function a as in (5.11);
4.3.3. Solve the global optimization problem (5.11) and get

X̄N+1 either in one-step or multi-steps;

4.4. N ← N + 1;

5. End.

Output: Best decision vector X∗ = XN∗
curr

found.

the objective function f is repeatedly learned. In particular, here we pro-
pose fitting a piecewise affine surrogate of the latent objective function f ,

74



to have two main benefits: (i) allow discontinuities introduced by sharp
transitions induced by taking values in different classes of the categorical
variables. In this case, instead of using one surrogate model for each cat-
egorical class as in [120–122], it is possible to adaptively update the num-
ber of partitions allowed in the PWA function by analyzing the clusters
of the queried samples. For example, one can initiate the surrogate fit-
ting procedure by setting a maximum allowed number of partitions and
then discard some partitions if the number of queried samples within
these partitions is smaller than some fixed minimum values (cf. [60]); (ii)
PWA surrogates have a direct mixed-integer linear reformulation and,
therefore, can be minimized by efficient MILP solvers (e.g., Gurobi [128]
and GLPK [129]). Also, we can explicitly reformulate and include lin-
ear equality and inequality constraints involving integer and one-hot en-
coded categorical variables in the standard MILP form to maintain their
integrality during the solution process. We note that each new sample
Xk+1 is determined by minimizing an acquisition function, which com-
bines the surrogate with an exploration function, to reach an exploita-
tion/exploration tradeoff. To enable the possibility of making feasible
queries during the acquisition step for problems with mixed-variable do-
main, we will also define a suitable PWA exploration function that admits
a MILP representation. The resulting approach, which we call PWAS, is
summarized in Algorithm 5.1, whose steps will be described in detail in
the next sections.

5.3.1 Change of variables: scaling and encoding

Before attempting solving problem (5.1), we first rescale every continu-
ous variable xi into a new variable x̄i ∈ [−1, 1] such that

xi =
uix − ℓix

2
x̄i +

uix + ℓix
2

, ∀i = 1, . . . , nc.

Accordingly, the constraint matrices Aeq, Aineq are rescaled to

Āeq = Aeqdiag

(︃
ux − ℓx

2

)︃
, Āineq = Aineqdiag

(︃
ux − ℓx

2

)︃
75



and the right-hand-side vectors are updated as follows:

b̄eq = beq −Aeq

(︃
ux + ℓx

2

)︃
, b̄ineq = bineq −Aineq

(︃
ux + ℓx

2

)︃
.

The intervals [−1, 1] for the continuous variables are possibly further
tightened by taking the updated inequality constraints (5.1c) (if they ex-
ist) into account (cf. [32]), i.e., for i = 1, . . . , nc, we set

ℓ̄
i
x = min

x̄,y,z
eTi [x̄

T yT zT]T

s.t. Āineqx̄+Bineqy + Cineqz ≤ b̄ineq
x̄ ∈ [−1 1]nc , y ∈ [ℓy, uy] ∩ Z, z ∈ Ωz

and, similarly,

ūix = max
x̄,y,z

eTi [x̄
T yT zT]T

s.t. Āineqx̄+Bineqy + Cineqz ≤ b̄ineq
x̄ ∈ [−1 1]nc , y ∈ [ℓy, uy] ∩ Z, z ∈ Ωz

where ei denotes the ith column of the identity matrix of the same di-
mension as vector X . We denote by Ωx = [ℓ̄

1
x, ū

1
x] × . . . × [ℓ̄

nc
x , ū

nc
x ] the

resulting domain of the scaled continuous variables.
Let us assume that only a finite numberNmax of queries can be made,

which depends on the nature of function f (i.e., how expensive it is
to evaluate) and the time available to solve the optimization problem.
Moreover, we treat integer variables y differently depending on the rela-
tion between Nmax and the number

∏︁nint

i=1 n
int
i of possible combinations

of integer variables, where ninti = ⌊uiy⌋ − ⌈ℓiy⌉ + 1 is the cardinality of
the set [liy, uiy] ∩ Z, i.e., the number of integer values that variable yi can
take. In particular, as described in Section 5.3.1.1 below, to make the ex-
ploration of the search space possibly more efficient, we will treat the
vector y of integer variables as categorical when solving (5.1) in case∏︁nint

i=1 n
int
i < Nmax, i.e., when it may possible to exhaustively list out all

the potential combinations of the integer variables within Nmax queries
if no continuous or categorical variables are present; vice versa, as we
will detail in Section 5.3.1.2, we will maintain the optimization variables

76



yi integer. We note that this is a general heuristic we applied, which was
empirically observed to be more efficient when handling integer vari-
ables.

5.3.1.1 Treating integer variables as categorical

The first scenario occurs when the number of possible combinations of
integer variables

∏︁nint

i=1 n
int
i < Nmax. In this case, we treat all integer

variables yi as categorical, similarly to vector z, and one-hot encode them
into further dnint binary variables ȳj ∈ {0, 1}, j = 1, . . . , dnint , where

dnint =
∑︁nint

i=1 n
int
i . We also define Ωy = {ȳ ∈ {0, 1}dnint :

∑︁nint
i
j=1 ȳj+di−1

y
=

1, ∀i = 1, . . . , nint}, where d0y = 0 and diy =
∑︁i
j=1 n

int
j for i = 1, . . . , nint,

and set ȳ ∈ Ωy . The constraint matrixBeq (Bineq) is modified accordingly
into a new matrix B̄eq (B̄ineq) by replacing each scalar entry Bijeq (Bijineq)
with the row vector obtained by multiplying the entry by the vector of
integers that variable yj can take, i.e.,

Bijeq ← Bijeq
[︁
⌈ℓjy⌉ . . . ⌊ujy⌋

]︁
∈ R1×nint

j , ∀j = 1, . . . , nint

Bijineq ← Bijineq
[︁
⌈ℓjy⌉ . . . ⌊ujy⌋

]︁
∈ R1×nint

j , ∀j = 1, . . . , nint.

The new optimization vector becomes X̄ = [x̄T ȳT zT]T ∈ Ω̄, where Ω̄ =

Ωx×Ωy×Ωz , and consists of n = nc+d
nint +dnd variables. As evaluating

the objective function in (5.1) requires the original values inX , we denote
by S : Ω̄ ↦→ Ω the inverse scaling/encoding mapping of X̄ , i.e., X =

S(X̄). According to such a change of variables, problem (5.1) is now
translated to

find X̄∗ ∈ arg min
X̄∈Ω̄

f(S(X̄))

s.t. Āeqx̄+ B̄eqȳ + Ceqz = b̄eq

Āineqx̄+ B̄ineqȳ + Cineqz ≤ b̄ineq.

(5.2a)

In the sequel, D ⊆ Ω̄ will denote the set of admissible vectors X̄ satisfy-
ing the constraints in (5.2a).

77



5.3.1.2 Scaling integer variables

In the second scenario,
∏︁nint

i=1 n
int
i ≥ Nmax, the integer variables are also

rescaled and treated as numeric variables ȳi ∈ [−1, 1], i = 1, . . . , nint.
In this case, we also keep the original nint integer variables yi ∈ Z in the
model for the sole purpose of enforcing integrality constraints, as we link
them with ȳi by the scaling factors

yi =
uiy − ℓiy

2
ȳi +

uiy + ℓiy
2

.

Similar to the continuous variables, we can also further shrink the
bounds on ȳi by considering the updated inequality constraints (5.1c)
(if present)

ℓ̄
i
y = min

x̄,ȳ,z
eTnc+i[x̄

T ȳT zT]T

s.t. Āineqx̄+Bineqy + Cineqz ≤ b̄ineq
x̄ ∈ Ωx, ȳ ∈ [−1 1]nint , z ∈ Ωz

ūiy = max
x̄,ȳ,z

eTnc+i[x̄
T ȳT zT]T

s.t. Āineqx̄+Bineqy + Cineqz ≤ b̄ineq
x̄ ∈ Ωx, y ∈ [−1 1]nint , z ∈ Ωz.

We denote the domain of ȳ after tightening as Ωy = [ℓ̄
1
y, ū

1
y] × . . . ×

[ℓ̄
nint

y , ūnint
y ]. Accordingly, problem (5.1) is translated to

find
[︃
X̄

∗

y∗

]︃
∈ arg min

X̄∈Ω̄,y∈[ℓy,uy ]∩Z
f(S(X̄))

s.t. Āeqx̄+Beqy + Ceqz = b̄eq

Āineqx̄+Bineqy + Cineqz ≤ b̄ineq

(5.2b)

where now X̄ = [x̄T ȳT zT]T ∈ Ω̄ and consists of n = nc + nint + dnd

variables, Ω̄ = Ωx × Ωy × Ωz , and S : Ω̄ ↦→ Ω is the new inverse scaling
mapping. We will denote by D ⊆ Ω̄ the set of admissible vectors X̄ such
that the constraints in (5.2b) are satisfied for some vector y ∈ [ℓy, uy] ∩ Z.

78



5.3.2 Piecewise affine surrogate function

When fitting a surrogate of the objective function, we treat the modified
vector X̄ as a vector in Rn. We describe next how to construct a PWA
surrogate function f̂ : Rn ↦→ R such that f̂(X̄) approximates f(S(X̄)).

Consider N samples X̄1, . . ., X̄N ∈ Rn and their corresponding func-
tion evaluations f(S(X̄1)), . . ., f(S(X̄N )) ∈ R. We want to define the
PWA surrogate function f̂ over a polyhedral partition of Ω̄ into K re-
gions. To this end, we consider the following convex PWA separation
function ϕ : Rn ↦→ R

ϕ(X̄) = ωT
j(X̄)X̄ + γj(X̄) (5.3a)

where ωj ∈ Rn and γj ∈ R, j = 1, . . . ,K, need to be determined, and

j(X̄) = arg max
j=1,...,K

{ωT
j X̄ + γj}, (5.3b)

and we define the PWA surrogate function f̂ as

f̂(X̄) = aTj(X̄)X̄ + bj(X̄) (5.3c)

where aj ∈ Rn and bj ∈ R, j = 1, . . . ,K, also need to be determined.
Note that f̂ is possibly non-convex and discontinuous.

We use the PARC algorithm recently proposed in [60] to fit the PWA
separation and surrogate functions and obtain the required coefficients
ωj , γj , aj , bj for j = 1, . . . ,K (see also in Section 2.4.1 for an overview
of PARC). We stress that while the closed-form expression of f ◦ S as a
function of X̄ is generally unavailable and very expensive to evaluate
for each given X̄ , evaluating its surrogate f̂ is very cheap and, as we will
show in Section 5.3.2.1, admits a simple mixed-integer linear encoding
with K binary variables.

We also remark that our purpose for the current study is to obtain a
highly accurate approximation of the objective function around the global
optimal solution and not necessarily over the entire domain of X̄ , which
usually requires much fewer samples as in the illustrative examples dis-
cussed in Section 2.4.1. It is because, as the algorithm adaptively queries

79



points to test from the domain, the partitions associated with higher
function evaluations, which we are less interested in for optimization
purposes, will be sampled less frequently and accurate prediction mod-
els for these partitions are not necessary. On the other hand, the regions
with promising test points will be more frequently visited, resulting in
better (more accurate) PWA surrogates within these partitions.

5.3.2.1 Mixed-integer linear encoding of the surrogate

After learning the coefficients of ϕ and f̂ by applying the PARC algo-
rithm, in order to optimize over the surrogate function to acquire a new
sample X̄N1 by MILP, as we will describe in Section 5.3.4, we introduce
K binary variables ζj ∈ {0, 1} and K real variables vj ∈ R, j = 1, . . . ,K,
where ζj = 1 if and only if X̄N+1 belongs to the jth polyhedral re-
gion of the partition induced by ϕ. The PWA separation function ϕ can
be modeled by the following mixed-integer inequalities via the big-M
method [60]:

ωT
j X̄N+1 + γj ≥ ωT

h X̄N+1 + γh −Mϕ(1− ζj), ∀h = 1, . . . ,K, h ̸= j

K∑︂
j=1

ζj = 1

(5.4)

where Mϕ is a large-enough constant, i.e., satisfies the inequality

Mϕ ≥ max
j,h=1,...,K, X̄∈D

(ωh − ωj)TX̄ + γh − γj .

The PWA surrogate function f̂ can be modeled by setting

f̂(X̄) =

K∑︂
j=1

ζj(a
T
j X̄N+1 + bj) =

K∑︂
j=1

vj

subject to

vj ≤ aTj X̄N+1 + bj −M−
sj(1− ζj)

vj ≥ aTj X̄N+1 + bj −M+
sj(1− ζj)

vj ≥M−
sjζj

vj ≤M+
sjζj ,

(5.5)

80



where M+
sj , M

−
sj are large-enough constants satisfying the inequalities

M+
sj ≥ max

X̄∈D
aTj X̄ + bj , M−

sj ≤ min
X̄∈D

aTj X̄ + bj

for j = 1, . . . ,K.

5.3.3 Exploration function

Solely minimizing the surrogate function f̂ may easily miss the global
optimum. In order to properly explore the admissible set D we intro-
duce an exploration function E : Ω̄ ↦→ R to be coupled with the surro-
gate function to form the acquisition function, which will be optimized to
find the next sample to test. Due to the different numerical properties of
continuous, integer, and categorical variables, we consider different ex-
ploration strategies for each of them that admit a MILP representation.
Specifically, we use a distance-based exploration method for continuous
and integer variables if the latter are not one-hot encoded (as described
in Section 5.3.1.2) and a frequency-based exploration method for one-
hot encoded categorical and integer variables (in the alternative scenario
described in Section 5.3.1.1). In the following, we discuss the distance-
based and frequency-based methods in a general manner, and we will
dive into specifics of the exploration functions for our problem of inter-
est when we discuss the acquisition function in Section 5.3.4.

5.3.3.1 Distance-based exploration: “max-box” method

We want to define a function Ect : Rnct ↦→ R mapping a generic numeric
vector x̄ ∈ Rnct into a nonnegative valueEct(x̄) that is zero at given sam-
ples x̄1, . . . , x̄N , grows away from them, and admits a PWA representa-
tion. To this end, we consider the boxes Bi(βct) = {x̄ : ∥x̄− x̄i∥∞ ≤ βct}
and set Ect(x̄) = min{βct ≥ 0 : x̄ ∈ Bi(βct) for some i = 1, . . . , N}.
Then, maximizing Ect(x̄) is equivalent to finding the largest value βct
and a vector x̄∗ outside the interior of all boxes Bi(βct), a problem that

81



can be solved by the following MILP

x̄∗ ∈ arg max
x̄,βct,δ+,δ−

βct

s.t x̄l − x̄li ≥ βct −ME(1− δ+il ), ∀l = 1, . . . , nct, ∀i = 1, . . . , N

−x̄l + x̄li ≥ βct −ME(1− δ−il ), ∀l = 1, . . . , nct, ∀i = 1, . . . , N

δ+il ≤ 1− δ−il , ∀l = 1, . . . , nct, ∀i = 1, . . . , N

nct∑︂
l=1

δ+il + δ−il ≥ 1, ∀i = 1, . . . , N

βct ≥ 0, x̄ ∈ D
(5.6)

where l denotes the lth component of vector x̄, δ−il , δ
+
il ∈ {0, 1} are aux-

iliary optimization variables introduce to model the violation of at least
one of the linear inequalities that define the box Bi(βct), and ME is a
large-enough constant satisfying the following inequality

ME ≥ 2

(︃
max

l=1,...,nct
ūlx − min

l=1,...,nct
ℓ̄
l
x

)︃

where ūlx and ℓ̄lx are the upper and lower bounds, respectively, of the lth
component of vector x̄.

Figure 5.1 shows an example where we apply the max-box explo-
ration method to x̄ ∈ R2 and D = [−3, 9] × [−2, 8]. We start with three
existing samples x̄1, x̄2, x̄3. After 20 iterations, we get the samples re-
ported in the figure, which shows that, indeed, the max-box exploration
method effectively explores the feasible region D.

5.3.3.2 Frequency-based exploration: “Hamming distance” method

Unlike the case of continuous variables treated in the previous section,
to account for the frequency of occurrence of a particular combination of
binary variables we use the Hamming distance, defined as follows: given
two binary vectors z = [z1, . . . , zd]T ∈ {0, 1}d and zi = [z1i . . . zdi ]

T ∈
{0, 1}d, the Hamming distance between z and zi is defined by the number

82



-3 -2 -1 0 1 2 3 4 5 6 7 8 9
-2

-1

0

1

2

3

4

5

6

7

8

Figure 5.1: Illustrative example of the max-box exploration function in 2D.
The black dots denote the initial samples. The red squares denote the sam-
ples generated using the max-box exploration method. The subscript num-
ber indicates the order of the point generated.

of different components between them

dH(z, zi) =

d∑︂
m=1

|zm − zmi | (5.7)

which can be encoded as the following linear expression

dH(z, zi) =
∑︂

m:zmi =0

zm +
∑︂

m:zmi =1

(1− zm). (5.8)

We consider the exploration function Edt : {0, 1}d ↦→ R such that Edt(z)
quantifies the average number of different binary components between
z and the given N vectors z1, . . ., zN

Edt(z) =
1

dN

N∑︂
i=1

dH(z, zi).

83



Hence, a binary vector z∗ with maximum average Hamming distance
Edt(z

∗) from the current samples z1, . . . , zN can be determined by solv-
ing the following MILP

z∗ ∈ argmax
z∈D

Edt(z). (5.9)

Table 5.1 shows an example in which we have three categorical vari-
ables Z = [Z1, Z2, Z3], where Z1 ∈ {A,B}, Z2 ∈ {A,B,C,D,E}, and
Z3 ∈ {A,B,C}. We start with three initial samples Z1 = [A,E,C],
Z2 = [B,B,B], and Z3 = [A,D,C]. First, we binary encode the cate-
gorical variables, getting the corresponding vectors z1, z2, z3 ∈ {0, 1}10.
Then, we solve the optimization problem (5.9) to identify z4 = z∗ and
its corresponding decoded form Z4. The table shows the categorical val-
uesZ4, . . . , Z23 generated in 20 subsequent iterations, which shows that a
diverse set of categorical variables are obtained when applying the Ham-
ming distance exploration method.

Table 5.1: Illustrative example of the Hamming distance exploration fun.

Iteration 1 2 3 4 5 6 7 8 9 10
Z1 B A B A B A B A B A
Z2 A C D A E B C D A E
Z3 A B A C A B C A B C
Iteration 11 12 13 14 15 16 17 18 19 20
Z1 B A B A B A B A B A
Z2 B C D A E B C D A E
Z3 A B C A B C A B C A

5.3.4 Acquisition function

The surrogate and exploration functions defined in Sections 5.3.2
and 5.3.3 can be combined into the following acquisition problem

find X̄∗ ∈ arg min
X̄∈D

f̂(X̄)− δ(Ect(x̄) + Edt([ȳ
T zT]T)) (5.10a)

when integer variables are treated as categorical as described in Sec-
tion 5.3.1.1, or into

find
[︃
X̄

∗

y∗

]︃
∈ arg min

X̄∈D,y∈[ℓy,uy ]∩Z
f̂(X̄)−δ(Ect([x̄T ȳT]T)+Edt(z)) (5.10b)

84



when the integer vector y is scaled as described in Section 5.3.1.2.
In (5.10), the nonnegative scalar δ is called the exploration parameter and
decides the tradeoff between exploiting the surrogate f̂(X̄) and promot-
ing the exploration of the feasible domain D. In the sequel, we will refer
to the cost function a : Ω̄ ↦→ R in (5.10a) or (5.10b) as the acquisition
function. By construction, Problem (5.10) can be solved by MILP. An op-
timal vector X̄∗ of its solution, once scaled and decoded back, defines
the next sample XN+1 to query for the corresponding function value
fN+1 = f(XN+1). Note that XN+1 satisfies all the constraints in (5.1)
since X̄∗ ∈ D.

The direct formulation (5.10) can be further improved to ease the se-
lection of δ and make the exploration more homogenous with respect
to all types of variables (continuous, integer, or categorical). In fact, the
formulation in (5.10) has the following possible drawbacks:

(i) The relative magnitude between f̂(X̄) and E(X̄) is hard or impos-
sible to estimate a priori, making the value for the exploration pa-
rameter δ hard to select.

(ii) By using the same exploration parameter δ for the exploration func-
tion of each type of variable, we implicitly assumed that the relative
magnitude of each exploration function is comparable, which may
not be the case.

(iii) When the integer variables y are not one-hot encoded as described
in Section 5.3.1.2, the max-box exploration function is applied to
the combined vector [x̄T ȳT]T (see (5.10b)) and two problems can
occur. Firstly, as shown in (5.2), even though ȳi is a continuous
variable, because of the presence of the corresponding auxiliary in-
teger variable yi, it can only be changed in discrete steps, unlike
the remaining variables x̄j . As a result, when finding the max box,
one unit change in an integer variable can be reflected as a more
significant change of its corresponding scaled variable ȳ, therefore
promoting the exploration of directions with more variations in the
integer variables ȳi than in the continuous variables x̄j . Secondly,
due to possibly different lower and upper bounds and therefore

85



scaling factors of integer variables, unit changes of them may cause
different changes in size of their corresponding scaled variables.

To address the aforementioned issues, given N samples (X̄i, f(S(X̄i)),
i = 1, . . .,N , we reformulate the acquisition problems (5.10), respectively,
as follows:

find X̄N+1 ∈ arg min
X̄∈D

f̂(X̄)

∆F
− δ1Ect(x̄)− δ2Ect(ȳ)− δ3Edt(z) (5.11a)

find
[︃
X̄N+1

yN+1

]︃
∈ arg min

X̄∈D,y∈[ℓy,uy ]∩Z

f̂(X̄)

∆F
−δ1Ect(x̄)−δ2Edt(ȳ)−δ3Edt(z)

(5.11b)
where

∆F = max

{︃
max

i=1,...,N
f(Xi)− min

i=1,...,N
f(Xi), ϵ∆F

}︃
and ϵ∆F > 0 is a threshold to prevent division by zero. The scaling factor
∆F eases the selection of the exploration parameters δ1, δ2, and δ3 by
making the surrogate term comparable to the exploration terms (cf. [32]).

An alternative to solve the optimization problem (5.11) in one step
is to consider only one exploration term at a time, therefore solving the
problem in three consecutive steps (that will be referred to as the “multi-
step” approach) where, at each step, the problem is only solved with
respect to one variable type. The remaining variables are treated as con-
stants at either the value associated with the current best vectorXN∗

curr
or

at the new value optimized during the multi-step operation. The advan-
tage of serializing the optimization is that the relative value of δ1, δ2, and
δ3 is no longer relevant, and therefore we set δ1 = δ2 = δ3 = δ, where δ is
the only tradeoff hyperparameter to choose.

A further heuristic is applied to restrict the number of binary vari-
ables used to encode the max-box exploration function (5.6) and there-
fore limit them as the number N of samples increases. Specifically, given
an upper bound NEmax defined by the user depending on the computa-
tional power available, we only consider the most recent NS samples in
the exploration function (we will use NS = 20 in our experiments) when
Nnc ≥ NEmax or Nnint ≥ NEmax (when integer variables are not one-hot

86



encoded). Since, instead, the surrogate function is approximated using
all the existing samples, the rationale behind the heuristic is that, as the
number N of queried samples grows, the surrogate itself should already
discourage the exploration around the older samples not included in the
exploration term, where the surrogate function, most likely, takes large
values.

5.3.5 Initial sampling strategies

The values of the initial samples X1, . . . , XNinit
can significantly impact

the final solution X∗ obtained after Nmax steps. Moreover, one of the
main motivations of the proposed method is its ability to handle mixed-
integer constraints on the optimization variables. We propose different
initial sampling strategies to efficiently acquire Ninit scattered feasible
samples depending on the constraints and types of optimization vari-
ables present in the problem:

(i) When only box constraints are present, we use the Latin Hypercube
Sampling (LHS) [130] method as in [32].

(ii) When both box constraints and linear equality and/or inequality
constraints are present, we consider the following alternatives:

• If only continuous variables are present, we use the Dou-
ble Description Method [131] to generate the nV vertices of
the convex polytope given by the linear and box constraints.
If nV < Ninit and only inequality constraints are involved
in (5.1), additional feasible samples can be generated via lin-
ear combinations of the vertices; if nV < Ninit and equality
constraints are also present, the generated nV vertices can be
used to define initial boxes and additional scattered feasible
samples are generated by solving MILPs sequentially with the
max-box exploration function discussed in Section 5.3.3.1 as
the objective function. In this way, the constraints in (5.1) can
be enforced in the formulation.

87



• If integer and/or categorical variables are also present, the al-
gorithm first attempts to generate samples using LHS and fil-
ters out the infeasible ones. If the number of generated feasi-
ble samples is insufficient, which may happen when the con-
straints are hard to fulfill by random sampling, we generate
scattered samples by solving MILPs sequentially using the ex-
ploration functions discussed in Section 5.3.3 as the objective
functions and incorporating the given constraints to ensure
sample feasibility.

5.4 Preference-based learning

We want to extend the global optimization method introduced in the pre-
vious sections to handle cases in which quantifying an objective function
f(X) as in (5.1) can be hard, if not impossible. Similar to GLISp [38]
(see also in Section 2.3.1), we define the following preference function
π : Ω× Ω→ {−1, 0, 1}

π(X1, X2) =

⎧⎨⎩ −1 if X1 “better” than X2

0 if X1 “as good as” X2

1 if X2 “better” than X1.
(5.12)

In this case, we are interested in finding a feasible optimization vector
X∗ that wins or ties the pairwise comparisons with any other feasible X
according to the preference function π, i.e., the optimization problem (5.1)
is replaced by

find X∗ such that π(X∗, X) ≤ 0, ∀X ∈ D. (5.13)

We describe next a variant of Algorithm 5.1, that we call as PWASp, for
solving the preference-based optimization problem (5.13).

Let the optimization vector X be first pre-processed to X̄ (e.g., scal-
ing and/or encoding) as described in Section 5.3.1. Given N samples
X̄1, . . . , X̄N andMc preferences π(S(X̄1,k), S(X̄2,k)) ∈ {−1, 0, 1}, for k =

1, . . . ,Mc, where Mc = N − 1, we aim to fit a PWA surrogate model re-
flecting the preference relations among different samples. Since function

88



evaluations are not available, here, the preferences π(S(X̄1,k), S(X̄2,k))

are used to shape the surrogate function f̂(X̄) by imposing the follow-
ing constraints:

f̂(X̄1,k) ≤ f̂(X̄2,k)− σ ∀k : π(S(X̄1,k), S(X̄2,k)) = −1
f̂(X̄2,k) ≤ f̂(X̄1,k)− σ ∀k : π(S(X̄1,k), S(X̄2,k)) = 1

|f̂(X̄1,k)− f̂(X̄2,k)| ≤ σ ∀k : π(S(X̄1,k), S(X̄2,k)) = 0

(5.14)

where (S(X̄1,k), S(X̄2,k)) = (X1,k, X2,k) are pairs of compared samples,
X1,k, X2,k ∈ {X1, . . . , XN}, k = 1, . . . ,Mc, and σ > 0 is a given constant,
used to avoid the trivial solution f̂(X̄) ≡ 0.

To identify the PWA separation function ϕ(X̄), we first use K-
means [132] to cluster the samples, and then use softmax regression [133,
134] to fit the coefficients. The assignment j(X̄) of each sample X̄ to
each region of the partition is then determined. Following that, different
from the PARC algorithm, we determine the coefficients aj , bj defining
the PWA surrogate function f̂(X̄) by minimizing the sum

∑︁Mc

k=1 ϵk of the
violations of the preference constraints (5.14) under an additional ℓ∞-
regularization term. Specifically, the coefficients aj , bj are obtained by
solving the following linear programming (LP) problem:

min
ϵk,ξ,a,b

Mc∑︂
k=1

ϵk + αξ

s.t. f̂(X̄1,k) + σ ≤ f̂(X̄2,k) + ϵk ∀k : π(X1,k, X2,k) = −1
f̂(X̄2,k) + σ ≤ f̂(X̄1,k) + ϵk ∀k : π(X1,k, X2,k) = 1

|f̂(X̄1,k)− f̂(X̄2,k)| ≤ σ + ϵk ∀k : π(X1,k, X2,k) = 0

ξ ≥ ±alj , l = 1, . . . , n

ξ ≥ ±bj

(5.15)

where α > 0 is the regularization parameter, ξ ∈ R is a new optimiza-
tion variable introduced to linearly encode the ℓ∞-regularization of the
coefficients, and l denotes the lth component of the vector.

After obtaining the surrogate model, the same procedure as in PWAS
can be followed to construct the acquisition function, which is then op-
timized to identify the next sample XN+1 = S(X̄N+1) to compare with

89



the current best vector XN∗
curr

. The various steps involved in PWASp are
summarized in Algorithm 5.2.

Algorithm 5.2 PWASp: Preference-based optimization using piecewise
affine surrogates
Input: Lower and upper bounds ℓx, ux, ℓy, uy ; linear constraint matrices
Aeq, Beq, Ceq and Aineq, Bineq, Cineq and right-hand-side vectors beq and
bineq; number nd of categorical variables and ni of possible categories, i =
1, . . . , nd; initial number K of polyhedral partitions; number Ninit ≥ 2 of
initial samples to compare, maximum number Nmax − 1 of comparisons,
Nmax ≥ Ninit; δ1 ≥ 0, δ2 ≥ 0 and δ3 ≥ 0 if solve (5.11) in one step or δ ≥ 0
if solve (5.11) in multiple steps; solving strategy for (5.11): {“one-step”
or “multi-steps”}.

1. Pre-process the optimization variables as described in Section 5.3.1;

2. N ← 1, i∗ ← 1;

3. GenerateNinit random and encoded samples X̄ = {X̄1, . . . , X̄Ninit}
using one of the initial sampling methods described in Section 5.3.5
based on the problem setup;

4. While N < Nmax do

4.1. If N ≥ Ninit then

4.1.1. Update and fit the PWA separation function ϕ and PWA
surrogate function f̂ as described in Section 5.4;

4.1.2. Define the acquisition function a as in (5.11);
4.1.3. Solve the MILP problem (5.11) and get X̄N+1, either in

one-step or multi-steps;

4.2. i(N)← i∗, j(N)← N + 1

4.3. Query preference π(Xi(N), Xj(N));

4.4. If π(Xi(N), Xj(N)) = 1 then set i∗ ← j(N)

4.5. N ← N + 1;

5. End.

Output: Best vector X∗ = Xi∗ encountered.

90



5.5 Optimization benchmarks

To illustrate the effectiveness of PWAS and PWASp in solving the tar-
get problems (5.1) and (5.13), we have considered various global opti-
mization benchmarks: a set of standard nonlinear programming prob-
lems (NLP) [135] with diverse dimensions (up to 10-D with 11 linear
inequality constraints), several integer linear problems (up to 30 inte-
ger variables), three unconstrained mixed-variable synthetic benchmarks
and two unconstrained mixed-variable real-world benchmarks taken
from [123], and two constrained mixed-variable synthetic problems.

Computations are performed on an Intel i7-8550U 1.8-GHz CPU lap-
top with 24GB of RAM. The MILP problem in the acquisition step is
formulated with the PuLP library [136] and solved by Gurobi’s MILP
solver [128]. For space limitations, we report below the performance
of PWAS/PWASp only on the mixed-variable benchmarks, referring the
reader to the GitHub repository for more detailed results on other tested
benchmarks.

For each benchmark, the function evaluations are fed into PWAS to
fit the surrogate, while the explicit function expressions remain unknown
to PWAS. As in [123] the benchmark problems are solved via maximiza-
tion, we use the values −f(X) when running PWAS. As for PWASp,
the objective function serves as a synthetic decision-maker whose eval-
uations are only used to express the preference between two decision
vectors, namely π(X1, X2) = −1 if f(X1) > f(X2), π(X1, X2) = 1 if
f(X1) < f(X2), or zero otherwise. In other words, PWASp only has
access to the queried preferences (5.12) and not the explicit function ex-
pressions nor their evaluations f(XN ). Specifically, Nmax − 1 pairwise
comparisons are obtained for each benchmark when solved by PWASp.

The performance of PWAS and PWASp on the unconstrained bench-
marks are compared with the following solvers: CoCABO-auto [123],
CoCABO-0.5 [123], One-hot BO [118], SMAC [54], TPE [55], and
EXP3BO [121] as noted in [123] as well as MISO [53] and NOMAD [56,
119]. Summaries of these optimization methods are noted in Appendix B.
CoCABO-auto and CoCABO-0.5 are selected because the authors noted

91



Table 5.2: Benchmark problem specifications.

Benchmark nc nint nd ni

Func-2C 2 0 2 {3, 3}
Func-3C 2 0 3 {3, 3, 3}
Ackley-5C 1 0 5 {17, 17, 17, 17, 17}
XG-MNIST 4 1 3 {2, 2, 2}
NAS-CIFAR10 21 1 5 {3, 3, 3}
Horst6-hs044-modified 3 4 2 {3, 2}
ros-cam-modified 2 1 2 {2, 2}

that they consistently show competitive performance [123]. MISO and
NOMAD are selected since they are noted as the best performers among
all the solvers tested in [52]. The settings of the first six algorithms com-
pared are available in [123]. As for MISO and NOMAD, we kept their de-
fault algorithm settings, with integer and categorical variables declared
as referenced by the corresponding solvers [53, 56, 119]. To have fair
comparisons, we use the same initial and maximum number of itera-
tions (Ninit = 20 and Nmax = 100) as indicated in [123] to obtain a
near-optimal value found on the synthetic and real-world benchmarks
for all the solvers tested except for NOMAD. NOMAD starts the opti-
mization process with an initial guess [56], which we generate via the
LHS sampling method [130]. When solving the problems using PWAS
or PWASp, the multi-step solution strategy is applied in the acquisition
step with δ1 = δ2 = δ3 = 0.05 or δ1 = δ2 = δ3 = 1, respectively for PWAS
and PWASp. The initial number K of polyhedral partitions is set to 20

for both PWAS and PWASp in all the benchmarks. We stress that here
the function evaluations for PWASp are solely reported for performance
comparisons and are not attainable to PWASp during optimization. Ta-
ble 5.2 summarizes the tested benchmark problems, while a detailed
description of the benchmarks is reported in Appendix A. The optimal
values obtained by CoCaBO-auto, CoCaBO-0.5, One-hot BO, SMAC and
TPE after the maximum number of evaluations were read from Figure 4
in [123] using GetData Graph Digitizer [137]. Regarding MISO and NO-
MAD (version 4), we retrieved their packages from the GitHub repos-
itory. We performed 20 random repetitions for the unconstrained syn-
thetic problems and 10 random repetitions for the unconstrained real-

92



world problems as reported in [123].
In general, PWAS and PWASp can solve the benchmark decision

problems, with or without constraints, to near-optimal solutions within a

Table 5.3: Optimal value found on benchmark Func-2C [123] (max =
0.2063).

Algorithm After 100 iterations After 200 iterations
mean std mean std

PWAS 0.2049 0.0022 0.2061 0.0002321
PWASp 0.1813 0.0443 0.1889 0.0449
CoCaBO-auto 0.1219 0.0172 0.2041 0.0057
CoCaBO-0.5 0.1352 0.01620 0.2041 0.0057
One-hot BO 0.009524 0.02158 0.01524 0.02064
SMAC 0.06381 0.01746 0.07714 0.01556
TPE 0.1273 0.0184 0.1743 0.01650
EXP3BO 0.05524 0.01429 0.1105 0.01650
MISO 0.2063 0.0000 0.2063 0.0000
NOMAD 0.1700 0.0736 0.1754 0.07557

Table 5.4: Optimal value found on benchmark Func-3C [123] (max =
0.7221).

Algorithm After 100 iterations After 200 iterations
mean std mean std

PWAS 0.5282 0.2117 0.6450 0.0972
PWASp 0.4542 0.2078 0.5106 0.1665
CoCaBO-auto 0.4993 0.0299 0.6912 0.0169
CoCaBO-0.5 0.5371 0.0503 0.6991 0.0205
One-hot BO 0.007670 0.04956 0.1076 0.0606
SMAC 0.1084 0.04016 0.1965 0.0339
TPE 0.2672 0.0472 0.4914 0.5308
EXP3BO 0.1784 0.0393 0.2515 0.0330
MISO 0.7221 0.0000 0.7221 0.0000
NOMAD 0.6618 0.1610 0.6860 0.1615

Table 5.5: Optimal value found on benchmark Ackley-5C [123] (max = 0).

Algorithm After 100 iterations After 200 iterations
mean std mean std

PWAS -1.1148 0.4077 -0.7108 0.3320
PWASp -1.8857 0.5795 -1.6462 0.5422
CoCaBO-auto -2.5120 0.602 -1.9244 0.5512
CoCaBO-0.5 -2.8415 0.0488 -2.0073 0.0488
One-hot BO -3.076 0.0483 -2.5341 0.3024
SMAC -3.0073 0.2488 -1.710 0.2393
TPE -3.4659 0.2000 -2.7976 0.2487
MISO -1.6389 0.1388 -1.5582 0.06218
NOMAD -2.0175 0.2015 -1.5467 0.01437
Note: the reported values for CoCaBO-auto, CoCaBO-0.5, One-hot BO, SMAC and TPE are read
from Figure 4 in [123] using GetData Graph Digitizer [137]. Statistics are obtained over 10 runs.

93



small number of function evaluations or comparisons. In fact, as shown
in Tables 5.3–5.7, the optimal values achieved by PWAS and PWASp af-
ter 100 iterations are often already better or comparable to the results
obtained by the other solvers after 200 iterations. We also observe that
PWAS performs consistently better than PWASp, due to the fact that
it has access to function evaluations, while PWASp only receives pair-
wise comparisons. Nonetheless, in spite of the more limited information
it gets, PWASp outperforms several other solvers in most of the tested
benchmarks.

Regarding problems with constraints, we consider the two mixed-
variable synthetic problems reported in Appendix A.3. We do not con-
sider other solvers than PWAS and PWASp as they either do not sup-
port constraint handling with mixed variables or allow infeasible sam-
ples during the optimization process. Thus, a systematic comparison

Table 5.6: Optimal value found on benchmark XG-MNIST [123].

Algorithm After 100 iterations After 200 iterations
mean std mean std

PWAS 0.9585 0.0030 0.9609 0.0029
PWASp 0.9576 0.0036 0.9615 0.0028
CoCaBO-auto 0.9639 0.0004 0.9653 0.0004
CoCaBO-0.5 0.9731 0.0008 0.9741 0.0008
One-hot BO 0.9541 0.0019 0.9556 0.0015
SMAC 0.9651 0.0012 0.9681 0.0012
TPE 0.9656 0.0007 0.9679 0.0007
EXP3BO 0.9691 0.0005 0.9706 0.0005
MISO 0.9574 0.0071 0.9594 0.0078
NOMAD 0.9528 0.0138 0.9564 0.0146

Table 5.7: Optimal value found on benchmark NAS-CIFAR10 [123].

Algorithm After 100 iterations After 200 iterations
mean std mean std

PWAS 0.9440 0.0024 0.9462 0.0016
PWASp 0.9409 0.0052 0.9454 0.0019
CoCaBO-auto 0.9446 0.0017 0.9454 0.0017
CoCaBO-0.5 0.9458 0.0014 0.9468 0.0004
One-hot BO 0.9438 0.0006 0.9451 0.0006
SMAC 0.9422 0.0004 0.9436 0.0004
TPE 0.9427 0.0006 0.9443 0.0007
MISO 0.9440 0.0030 0.9452 0.0025
NOMAD 0.9292 0.0331 0.9338 0.0241
Note: the reported values for CoCaBO-auto, CoCaBO-0.5, One-hot BO, SMAC and TPE are read
from Figure 4 in [123] using GetData Graph Digitizer [137]. Statistics are obtained over 10 runs.

94



is not performed for the constrained problems. Instead, the results are
compared against the analytic global optimum. Here, we set Nmax = 100

and Ninit = ⌈Nmax/4⌉ = 25, K = 20 initial clusters, and the exploration
parameters δ1 = δ2 = δ3 = 0.05 when using PWAS or δ1 = δ2 = δ3 = 1

with PWASp. We run PWAS and PWASp 20 times from different random
seeds on these two problems. The resulting optimal values identified by
PWAS and PWASp after the maximum allowed iterations are shown in
Table 5.8. We observe that both PWAS and PWASp can approach the con-
strained optimum within a relatively small number of iterations. Also,
PWAS achieves better results than PWASp regarding the optimal val-
ues obtained after the maximum allowed iterations and consistency over
multiple repetitions.

Table 5.8: Performance of PWAS/PWASp on constrained mixed-variable
synthetic problems.

Algorithm Horst6-hs044-modified ros-cam-modified
mean std mean std

PWAS -62.579 3.5275e-08 -1.1151 0.3167
PWASp -56.5539 8.3454 8.7421 16.2088
Global optimum -62.579 -1.81
Note: for both PWAS and PWASp, the optimum is obtained after 100 iterations.
Statistics are obtained with 20 random repetitions.

The average CPU time spent by PWAS and PWASp to fit the surro-
gate and solve the acquisition problem during a single iteration is re-
ported in Table 5.9 for each tested benchmark problem. Considering that
often evaluating the black-box function f or comparing samples involves
expensive-to-evaluate simulations or experiments, such a CPU time can
be considered negligible in real-life applications.

Table 5.9: CPU time (s) for surrogate fitting and acquisition optimization,
averaged over Nmax −Ninit active sampling iterations.

Func-
2C

Func-
3C

Ackley-
5C

XG-
MNIST

NAS-
CIFAR10

Horst6-
hs044-
modified

ros-
cam-
modified

Surrogate
fitting

PWAS 0.565 0.556 0.889 0.327 0.329 0.211 0.198
PWASp 0.221 0.289 0.544 0.312 0.422 0.177 0.162

Acquisition
optimization

PWAS 0.231 0.196 1.250 0.505 1.871 0.327 0.311
PWASp 0.270 0.420 1.352 0.589 1.700 0.387 0.364

95



5.6 Conclusion

The algorithms PWAS and PWASp introduced in this chapter can han-
dle global and preference-based optimization problems involving mixed
variables subject to known linear equality and inequality constraints.
Tests on different synthetic and real-world benchmark problems show
that PWAS and PWASp can obtain better or comparable performance
than other existing methods. Although convergence to global optimiz-
ers cannot be guaranteed, we observed that PWAS and PWASp could
find satisfactory results within a limited number of iterations, despite
the presence of integer and categorical variables and mixed-integer lin-
ear constraints.

96



Chapter 6

Discrete and
mixed-variable
experimental design with
surrogate-based approach

6.1 Introduction

Experimental design includes five main steps [138] as depicted in Fig. 6.1:
i) define the objective of the experiments, for instance, for a chemical re-
action, the objective can be maximizing the yield of a desired product; ii)
select the relevant variables and their corresponding ranges. The vari-
ables may include independent, dependent, and control variables; iii)
plan the experiments, for which different strategies can be employed;
iv) conduct the experiments; and v) analyze the data obtained from the
experiments. Performing chemical and physical experiments is often ex-
pensive in terms of the required time, resources, and human labor. There-
fore, it is important to plan experiments efficiently to gather pertinent

The content of this Chapter is from M. Zhu, A. Mroz, L. Gui, K. Jelfs, A. Bemporad,
EA. del Rı́o Chanona, and Y. Lee, “Discrete and mixed-variable experimental design with
surrogate-based approach“, submitted for publication, 2024.

97



data with a small number of required experiments. In this chapter, we
address the challenges posed by mixed-variable spaces in experimen-
tal planning. Specifically, we propose a different framework – the use
of mixed-integer surrogates and acquisition functions, where we adopt
PWAS discussed in Chapter 5 to solve the optimization problem.

) Define the objective ( ) of the experiments

 (Yield of desired product, Selectivity, ...)
 (Side product, Energy waste,..) 

) Select design variables and their ranges

) Plan the experiments

Propose experiments to conduct

) Conduct experimentsEx
pe

rim
en

ta
l p

la
nn

in
g

m
et

ho
ds

) Analyze data

 can be integer, categorical, continuous

e.g. number of reactors, solvent type, temperature

trial-and-error
factorial design
high-throughput experimentation
model-based methods
data-driven methods
...

Figure 6.1: General steps of experimental design.

This chapter is organized as follows. In Section 6.2, we discuss the
general problem formulation of the experimental planning optimization
problem, focusing on problems with discrete and mixed-variable design
space. We then discuss the implementation and performance of PWAS
through three case studies in Section 6.3. Conclusion are summarized in
Section 6.4.

6.2 Problem description

The general mathematical formulation of the targeted problem is:

X∗ ∈ argmin f(X), (6.1)

where X = [x; y;Z] consists of the continuous variable x ∈ Rnc , integer
variable y ∈ Znint , and categorical variable Z = [Z1, . . . , Znd ], with ni

classes in each categorical variable Zi, i = 1, . . . , nd. We assume both

98



x and y are bounded, i.e., ℓx ≤ x ≤ ux and ℓy ≤ y ≤ uy , and ni is
finite, for i = 1, . . . , nd. In (6.1), f is the objective function that maps the
optimization vectorX to a scalar value in R. Here, we assume an analytic
expression of f is not available, and the outcome of f(X1) can only be
measured/recorded post-experimentation/simulation at X = X1. And
the goal is to find the X∗ that minimizes f .

6.3 Case studies

We assess the applicability and effectiveness of PWAS for practical ex-
perimental planning problems through three case studies: i) reaction
optimization of Suzuki-Miyaura cross-coupling (fully categorical), ii)
crossed-barrel design (mixed-integer), and iii) optimal solvent design
for Menshutkin reaction (mixed integer and categorical with linear con-
straints). The case studies are chosen to exhibit a range of complexities,
varying in problem size, numerical difficulty, types of variables, and the
presence/absence of design constraints.

All the case studies are solved on an Intel i7-8550U 1.8-GHz CPU lap-
top with 24GB of RAM, with all the results available in the GitHub repos-
itory at https://github.com/MolChemML/ExpDesign.

6.3.1 Suzuki-Miyaura cross-coupling

6.3.1.1 Problem description

The first case study focused on optimizing the reaction conditions for
Suzuki-Miyaura cross-coupling [139, 140]. This reaction is pivotal in
medicinal chemistry and materials chemistry, serving as a fundamen-
tal process for forming carbon-carbon bonds in the synthesis of various
pharmaceuticals and polymers [139–142]. A reaction scheme for the in-
vestigated Suzuki-Miyaura coupling is shown in Fig. 6.2, illustrating the
coupling of a boronic acid derivative and an aryl halide facilitated by a
palladium complex catalyst, a ligand, a base, and a solvent [143–145].
Here, all optimization variables are categorical and the number of pos-
sible options for each optimization variable is summarized in Table 6.1.

99

https://github.com/MolChemML/ExpDesign


The full Cartesian product space consists of 3,696 unique reactions. The
study looks into the relationship among these categorical variables, and
aims to identify optimal combinatorial sets of precursors that can max-
imize the yield of the desired product within a small number of experi-
ments, and therefore reduce the resources and time required.

N

Y
+

N

N

THP

X

Me

N

N

N

THP

MeY = B(OH)2, BPin, BF3K
X = Cl, Br, I, OTf

Solvent
1 min, 100 oC

Flow rate: 1 ml/min at 100 bar

Pd(OAc)2 (6.25 mol%)
Ligand (12.5 mol%)
Base (2.5 equiv.)

Figure 6.2: Suzuki-Miyaura cross-coupling reaction. The variables - boronic
acid derivative (Y), aryl halide (X), ligand, base, and solvent - highlighted in
blue represent the experimental design space. All other reaction conditions
are fixed and noted in black.

Table 6.1: Reaction design space (fully categorical) for the Suzuki-Miyaura
cross-coupling reaction [143–145].

Optimization variables # options
Aryl halide (X) 4
Boronic acid derivative (Y) 3
Base 7
Ligand 11
Solvent 4
Total # of possible combinations 3,696

We employ PWAS to solve the optimization problem and benchmark
its performance against established optimization libraries: Genetic [146,
147] (evolutionary algorithm), Hyperopt [148] (BO with Tree-Structured
Parzen Estimator (TPE)), BoTorch [149] (BO with Gaussian Process (GP)),
and EDBO [143] (BO with GP specialized for reaction). Additionally,
we consider Random Search as a baseline. The characteristics of the ap-
proaches used in these libraries have been discussed in Appendix B.
We note that Random Search, Genetic, Hyperopt, and BoTorch have been
interfaced in the Olympus [145] package; therefore, we use the algo-
rithmic structure implemented in the package for benchmark tests with
their default parameter values. A customized forked version tailored

100



for our testing is also available on GitHub at https://github.com/
mjzhu-p/olympus (Branch “pwas comp“). Regarding EDBO, categor-
ical variables, namely, distinct chemical entities, are one-hot-encoded
and the default setting is used with minor changes to the original pack-
age to allow customized input for the number of initial samples (see
the changes in the forked version at https://github.com/mjzhu-p/
edbo/tree/pwas_comp). As for PWAS, the default setting [3] is used,
i.e., the number of initial partitions (Kinit) is set to 10, with the trade-off
parameter between exploitation and exploration (θE) set to be 0.5. And
the categorical variables are one-hot encoded.

For each optimization method, we conduct 30 repetitions for statisti-
cal analysis. Given that the goal of our study is to assess the performance
of the algorithms on case studies where only a small number of experi-
ments/simulations can be done due to time and resource constraints, we
cap the maximum number of experiments at 50 within each repetition.

6.3.1.2 Results and discussion

The performance comparisons of different methods on Suzuki-Miyaura
cross-coupling reaction optimization are shown in Fig. 6.3. Fig. 6.3a illus-
trates the highest yield achieved (%) so far at different iterations. Since
the numerical values of the yields are very close, especially as the num-
ber of iterations increases, a zoomed-in panel of the last five iterations is
shown for better visualization. In Fig. 6.3b, the corresponding ranks of
the yields at different iterations are presented. These ranks are derived
from the known yields of all possible combinations (3,696 in total) [144].

While EDBO achieves the highest yield after 50 iterations, PWAS
demonstrates competitive performance, surpassing all other tested
methods in its ability to identify optimal reaction conditions that max-
imize the reaction yield. It is important to note that EDBO is expected
to outperform other methods in this case study, given that the GP model
used in EDBO was pre-trained using the entire Suzuki-Miyaura reaction
dataset (3,696 reactions) [143] (see also in Appendix B). To provide a clear
demonstration of the efficiency of each method, we present a boxplot in
Fig. 6.4. This visualization represents the number of iterations required

101

https://github.com/mjzhu-p/olympus
https://github.com/mjzhu-p/olympus
https://github.com/mjzhu-p/edbo/tree/pwas_comp
https://github.com/mjzhu-p/edbo/tree/pwas_comp


by each method to achieve a top-20 ranked yield. Each data point on
the plot represents the outcome of one specific run, and the statistics pre-
sented are derived from 30 repetitions to ensure robustness. On aver-
age, both PWAS and EDBO require significantly fewer iterations to at-
tain a top-20 ranked yield when compared to other methods. This sug-
gests their superior efficiency and potential time and resource savings
in practical applications. Overall, the comparable performance of PWAS
with EDBO demonstrated in the case study shows the ability of mixed-
integer surrogates to more efficiently optimize the parameter space with
no prior knowledge of the system, which has major implications for sit-
uations where prior data (literature or otherwise) is not available or dif-
ficult/expensive to obtain - a very common scenario in the chemical sci-
ences.

6.3.2 Crossed barrel

6.3.2.1 Problem description

The second case study explores the optimization of the design of a
crossed barrel (see Fig. 6.5) for improved mechanical properties [145,
150]. Specifically, we aim to maximize its toughness while not exceeding
a specified force threshold. Here, toughness corresponds to the amount
of energy a component can withstand before experiencing failure [150].
Components with a crossed-barrel structure are used to protect more
fragile parts within a design while not passing on harmful reactionary
forces [150]. For instance, these structures can shield sensitive instru-
mentation or electronics from mechanical vibrations or impacts.

As depicted in Fig. 6.5, a crossed barrel has n hollow columns with
outer radius r and thickness t, twisted at an angle θ. Here, n, r, t and θ

are the design variables we want to optimize, whose data types (dis-
crete/continuous) and domains are outlined in Table 6.2. Due to the
involvement of continuous variables (n, r, t), exhaustively enumerating
all possible combinations is impractical. Hence, an emulator, as recom-
mended by Hickman et al. [145], is utilized to simulate the process and
therefore make it possible to sample over the whole feasible domain. The

102



0 10 20 30 40 50
# of iterations

25

35

45

55

65

75

85

95

Be
st

 y
ie

ld
 a

ch
ie

ve
d 

(%
)

45 50

90

95

Random
Genetic

Hyperopt
Botorch

PWAS
EDBO

(a) Best yield achieved (%) so far at different iterations.

0 10 20 30 40 50
# of iterations

101

102

103

Be
st

 y
ie

ld
 ra

nk
 a

ch
ie

ve
d

Random
Genetic
Hyperopt

Botorch
PWAS
EDBO

(b) Best yield rank achieved so far at different iterations.

Figure 6.3: A comparison of the performance of PWAS and the benchmark
methods on Suzuki-Miyaura cross-coupling reaction optimization. For each
method, the solid line represents the mean value, and the filled area com-
prises the 95% confidence interval, i.e., mean ± 1.96 std.

emulator was modeled as Bayesian neural nets (BNN) [145] and trained
on over 2,500 HTE data points collected by Gongora et al. [150]. We note
that the trained emulator serves the purpose of method comparisons in

103



Random Genetic Hyperopt Botorch PWAS EDBO
0

10

20

30

40

50

60

# 
of

 it
er

at
io

ns
 fo

r f
irs

t t
op

-2
0 

yi
el

d

Figure 6.4: Number of iterations each method takes in each run to obtain
the first top-20 ranked yield. The results for 30 repetitions are summarized
in the boxplot. Each dot represents one run of the repetitions. The diamond-
shaped points are the ones classified as outliers by the boxplot.

this case study. Nevertheless, the accuracy of the trained model can be
improved if more data could be provided.

The challenges of this case study involve balancing trade-offs be-
tween conflicting mechanical properties, such as strength (the ability to
resist an applied force without being damaged) and ductility (the abil-
ity to stretch without breaking), and incorporating mixed-integer design
choices. This case study is selected due to the mixed-integer nature of
the problem and the availability of an adequate number of HTE exper-
imental data to train an emulator [145, 150]. Similar procedures can be
followed to design chemical-related units, e.g., chemical reactors, if data
acquisition is possible via experiments or high-fidelity simulations.

We solve this optimization problem with the same set of methods
employed in the Suzuki-Miyaura cross-coupling case study, using the
packages interfaced in the Olymnpus package for Random Search, Genetic,
Hyperopt, and BoTorch. As discussed in Appendix B, the method imple-
mented in EDBO package requires a pre-defined discrete search space,
meaning that the continuous variables, θ, r, and t, need to be discretized.

104



Figure 6.5: Schematic representation of a crossed-barrel design [150], illus-
trating the optimization variables, where θ is twist angle of the columns
[degree], r is outer radius of the columns [mm], n is the number of hollow
columns, and t is thickness of the hollow columns [mm].

Table 6.2: Optimization variables for the crossed-barrel design [145, 150].

Optimization variables Type Domain
Number of hollow columns (n) integer [6, 12]
Twist angle of the columns (θ) [degree] continuous [0.0, 200.0]
Outer radius of the columns (r) [mm] continuous [1.5, 2.5]
Thickness of the hollow columns (t) [mm] continuous [0.7, 1.4]

Here, we consider three discretization schemes for the search domain,
evenly divided and spaced by: 100, 10, and 10 points (EDBO 1); 10, 10,
and 10 points (EDBO 2); and 10, 5, and 5 points (EDBO 3), respectively.
These configurations yield 70,000, 7,000, and 1,750 possible combinations
to form the search domain. As for PWAS, two strategies are used to
handle integer variables as detailed in the pre-processing step in Sec-
tion 5.3.1, and the same values introduced in Section 6.3.1 are used for
Kinit and θE . Similarly to the Suzuki-Miyaura cross-coupling case study,
we run 30 repetitions for statistical analysis. Within each run, we include
10 initial experiments and then allow a maximum of 50 iterations.

6.3.2.2 Results and discussion

The optimization outcomes are summarized in Figs. 6.6, 6.7, and Ta-
ble 6.3. In achieving the best objective function values within a specified

105



budget, EDBO 1 outperforms all other methods, while PWAS is compa-
rable with that of Hyperopt (see Fig. 6.6) and EDBO 2 (see Fig. 6.7). How-
ever, the effectiveness of EDBO varies depending on the number of dis-
cretization steps considered. As evidenced in Fig. 6.7, the performance
of EDBO improves with an increase in discretization steps, showing that
only EDBO 1 outperforms PWAS. Although the differences in objective
function values obtained by EDBOs and PWAS are marginal, the number
of discretization steps required to achieve a particular quality of solution
is unknown and there is no systematic method of determining appropri-
ate value. Furthermore, the increase in the number of discretization steps
can result in higher computational cost, particularly with a higher num-
ber of continuous variables. This is reflected in Table 6.3, where the CPU
time for EDBO and BoTorch are significantly higher than that of other
methods. Despite that, we acknowledge that our target problems often
involve costly experiments or simulations. The CPU time needed by the
methods examined in this study is negligible compared to the time re-
quired for conducting many types of experiments or simulations. Never-
theless, we note the necessity for some chemistry applications that may
benefit from fast feedback, including flow chemistry [151, 152]. More-
over, when the number of continuous variables and their ranges grow,
selecting an appropriate discretization scheme that guarantees improved
performance a prior may not be straightforward.

Table 6.3: CPU time (seconds) required by different methods for one run of
the optimization for the crossed barrel design. Statistics were obtained from
30 random runs.

Random Genetic Hyperopt BoTorch PWAS EDBO 1 EDBO 2 EDBO 3
Average 1.85 1.77 2.80 398.68 35.36 272.54 227.54 212.92
std 0.44 0.35 0.71 260.71 2.00 67.61 2.52 20.38

6.3.3 Solvent design

6.3.3.1 Problem description

In the third case study, we consider the design of solvents for enhanced
kinetics of a Menschutkin reaction (see Fig. 6.8), following the computer-

106



0 10 20 30 40 50
# of iterations

9
12
15
18
21
24
27
30
33
36

Be
st

 to
ug

hn
es

s a
ch

ie
ve

d 
(J)

40 45 50
30

33

36

Random
Genetic

Hyperopt
Botorch

PWAS
EDBO_1

Figure 6.6: Best toughness achieved so far at different iterations for the de-
signed structure at different iterations for crossed barrel design. Results are
summarized over 30 repetitions. For each method, the solid line represents
the mean value, and the filled area comprises the 95% confidence interval,
i.e., mean ± 1.96 std.

0 10 20 30 40 50
# of iterations

9
12
15
18
21
24
27
30
33
36

Be
st

 to
ug

hn
es

s a
ch

ie
ve

d 
(J)

40 45 50
33

36

EDBO_1 EDBO_2 EDBO_3

Figure 6.7: Best toughness achieved so far at different iterations for the de-
signed structure at different iterations with EDBO method with different
discretization steps for crossed barrel design. The trajectory of PWAS is also
shown for comparison.

aided molecular design (CAMD) formulation of Gui et al. [153]. Choos-
ing an appropriate solvent is crucial for liquid-phase reactions, as it can

107



reduce the Gibbs free energy barrier (see Fig. 6.8) and therefore promote
fast reaction kinetics. The aim of optimization is to determine the opti-
mal molecular structure of the solvent that maximizes the reaction rate
constant k [L mol−1 s−1], for which we define the objective function as
f(X) = − ln k. We note that (6.1) is formulated as a minimization prob-
lem, thereby maximizing ln k is equivalent to minimizing − ln k). Here,
ln k is used, which is a common practice when developing data-driven
models and comparing with experimental data [153], because k can sig-
nificantly differ across different solvents, sometimes by orders of magni-
tude.

A set of 46 functional groups were selected as molecular building
blocks. The solvent was represented by integer variables to indicate the
number of each functional group present in the solvent molecule. To en-
sure that only chemically feasible combinations of functional groups are
generated during the optimization process and to limit the size of the
solvent, a set of chemical feasibility and complexity constraints was im-
posed. For instance, constraints were used to ensure the octet rule [154].
Since the solvent designed must be in the liquid phase at reaction condi-
tions, the normal melting point (Tm) and the boiling point (Tb) of the sol-
vent were added as design constraints. Two physical properties, namely,
flash point (Tfp) and octanol/water partition coefficient (Kow), as well as
the oral rat median lethal dose (LD50) of the solvent were constrained to
reduce health, safety, and environmental impact. In total, the problem
consists of 115 linear inequality and 5 linear equality constraints, where
one auxiliary categorical and 7 binary variables were introduced to for-
mulate the constraints. The types of design variables and the property
prediction model used are summarized in Tables 6.4 and 6.5. For a com-
prehensive description of the mathematical formulation used, the reader
is referred to Gui et al. [153] and section 2.3 therein.

6.3.3.2 Surrogate model for the rate constant

As discussed in Appendix B, the methods examined in the previous
two case studies cannot explicitly handle mixed integer/categorical con-
straints. While post-hoc screening of infeasible solutions obtained from

108



Br

O

+

N

Br
O

H
H

N

O

N

+

Br

Figure 6.8: The Menschutkin reaction of phenacyl bromide and pyridine.
In the illustration, Solvent 2 is preferred which lowers the free energy com-
pared to Solvent 1 [153, 155].

Table 6.4: Optimization variables and problem size for the solvent de-
sign [153].

Description Notes
Number of functional group types 46 (integer)
Number of auxiliary variables introduced for chemical feasibility 1 (categorical) and 7 (binary)
Number of inequality/equality design constraints 115 (linear) / 5 (linear)

Table 6.5: Property constraints for the solvent design. The property predic-
tion method of Hukkerikar et al. [156] is used for Tb, Tm, Tfp, and Kow, and
Hukkerikar et al. [157] is used to predict LD50

Physical property Bounds
Tm (K) [10−5, 298.15]
Tb (K) [323.15,105]
Tfp (K) [252,105]
log Kow [10−5, 3]
-log LD50 (mol/kg) [10−5,3]

an unconstrained optimization may appear as a potential approach, the
large number of constraints often renders such post-optimization exclu-
sion computationally expensive and potentially inefficient in achieving
convergence. Thus, direct comparisons with such methods are not prac-
tical. Instead, we benchmark our optimization results against those ob-
tained using DoE-QM-CAMD [153] – a CAMD framework tailored to in-
corporate quantum-mechanical (QM) calculations of rate constant and
computational experimental design into the molecular design process.

In the following, we provide an overview of the DoE-QM-

109



CAMD [153] method. DoE-QM-CAMD employed a multiparameter sol-
vatochromic equation [158, 159] to correlate solvent properties and the
logarithm of the rate constant:

ln k = c0 + cAA+ cBB + cSS + cδδ + cHδ
2
H , (6.2)

where A,B, S, δ, and δ2H are the Abraham’s overall hydrogen-bond acid-
ity, Abraham’s overall hydrogen-bond basicity, dipolarity/polarisability,
and Hildebrand solubility parameter, respectively, of the solvent, and
c0, cA, cB , cS , cδ , and cH are the coefficients that need to be estimated
via multiple linear regression (MLR). Estimating the parameters in the
MLR model with high accuracy can be challenging because only a small
number of experiments can often be conducted, restricting its predic-
tive capacity. To address this challenge, DoE-QM-CAMD first selects an
information-rich set of (computer) experiments using the D-optimality
criterion. These initial experiments, which are observed to cover a wider
range of solvent properties, are then used to train an initial MLR model.
Subsequently, to refine the MLR model and enhance its predictability
around the optimal solvent region, iterative optimization is undertaken
to identify the best solvent (i.e., the one that gives the highest reaction
rate) based on the current MLR model. Should a new solvent be identi-
fied, the MLR model undergoes re-fitting with the updated experimental
set that consists of the newly identified optimal solvent and the solvents
in the original set. The iterative process terminates when the best sol-
vent, determined by optimizing the MLR model, has been sampled pre-
viously. Upon convergence of the MLR model, the top 10 solvents are
determined by re-initializing and optimizing the problem, wherein in-
teger cuts are added to exclude previously identified solutions. We note
that the active-learning-like iterative process of DoE-QM-CAMD after the
initial experiments relies solely on the newly fitted MLR model with lim-
ited capabilities for exploration.

In contrast, PWAS solves the problem by employing an active-
learning technique with exploration capability. It systematically iden-
tifies optimal solvents for examination, effectively balancing the trade-
off between exploring new possibilities for model improvement and ex-

110



ploiting known knowledge of reaction kinetics. As opposed to DoE-QM-
CAMD, which assumes linear relationship between the expert-derived
solvent properties and ln k, PWAS adopts PWA surrogates to represent
the correlations between the functional groups within the designed sol-
vent and ln k, where the relationship between solvent properties and
ln k are learned implicitly. As discussed in Chapter 5, PWAS lever-
ages PARC [160] to fit the surrogates, where PARC first clusters sam-
ples in Kinit initial partitions. The initial partitions are then optimized
by balancing between enhancing separability, which relies on similar-
ities among different solvents (in this context, functional groups), and
improving the predictability of the surrogate function within each par-
tition, in this case, the input-output correlations. Here, the output (ln k)
correlates with the properties of the designed solvent and therefore can
be implicitly learned during surrogate fitting, offering insights not avail-
able when solely considering individual functional groups.

Consistent with previous case studies, default parameters are utilized
when solving the problem with PWAS, including a maximum of 50 ex-
periments, with an initial set of 10 samples. It is important to highlight
that the complete QM reaction constant data were generated by exhaus-
tively enumerating all 326 feasible solvents within the defined design
space [161], enabling the sampling of new solvents without the need for
additional calculations and providing the true rank of the solvents.

6.3.3.3 Results and discussion

Comparison between PWAS and DoE-QM-CAMD
In the following, we compare the performance of PWAS and DoE-
QM-CAMD based on the top 10 solvents identified by PWAS and
DoE-QM-CAMD, for which we compare their rank alignment with QM
calculated values. As shown in Tables 6.6 and 6.7, respectively, the top
10 solvents identified by PWAS are consistent with the true rank, in
contrast to ranks of the optimal solvents obtained from DoE-QM-CAMD,
which show a large deviation. Also, we observe that the predicted
values based on PWAS are more accurate to the QM calculated values
compared to those of DoE-QM-CAMD (The mean squared errors for

111



the top-10 ranked solvents with QM are 2.4×10−4 log units for PWAS
and 0.46 log units for DoE-QM-CAMD). These observations can be
attributed to the inherent nature of PWAS and DoE-QM-CAMD. The
MLR model utilized within the DoE-QM-CAMD method primarily
serves as a predictive tool across the design space. As previously noted,
it generates predictions for the top-ranked samples post-generation of
the MLR model, which may not align well with the experimental results.
In contrast, PWAS operates as an optimization mechanism, focusing on
refining the predictive model within the design space where promising
solvent candidates exist—those that yield high reaction rates, while also
exploring uncovered design space to prevent from being stuck in the
local optimum. It achieves this by iteratively proposing new samples for
evaluation through active learning, where an acquisition function that
trades off between exploitation (finding the solvents with a high reaction
rate) and exploration (covering unexplored design space) is minimized.
As a result, it is not surprising that PWAS performs better in terms of the
rank alignment and predictability around the optimal region.

Table 6.6: The top 10 ranked solvents identified by PWAS for the solvent
design case study. k [L mol−1 s−1]: rate constant for the Menschutkin re-
action, QM: ln k obtained from quantum-mechanical calculation, pred: ln k
predicted by the PWAS surrogate.

Rank Chemical formula ln k
QM pred

1 CH3NHCHO -5.92 -5.92
2 OHCH2NO2 -6.46 -6.49
3 CH2OHCH2NO2 -6.72 -6.69
4 (CH3)2SO -6.82 -6.82
5 (CH2)2OHCH2NO2 -6.93 -6.93
6 CH3CHOHCH2NO2 -6.96 -6.97
7 CH2=COHCH2NO2 -6.98 -6.97
8 CH=CHOHCH2NO2 -7.00 -6.98
9 (CH2)3OHCH2NO2 -7.10 -7.10
10 CHCH2=CHOHCH2NO2 -7.11 -7.11

Analysis of algorithmic exploitation and exploration capabilities
To further analyze the exploitation and exploration capabilities of PWAS,

112



Table 6.7: The top 10 ranked solvents identified by DoE-QM-CAMD for
the solvent design case study. k [L mol−1 s−1]: rate constant for the Men-
schutkin reaction, QM: ln k obtained from quantum-mechanical calculation,
pred: ln k predicted by the DoE-QM-CAMD surrogate, i.e., the multiparam-
eter solvatochromic equation (6.2).

Rank Chemical formula ln k
QM pred

1 CH2OHCH2NO2 -6.72 -5.50
2 (CH3)2SO -6.82 -5.59
3 CH2OHCH2NO2 -6.72 -6.28
4 CH2=COHCH2NO2 -6.98 -6.66
5 (CH2)2OHCH2NO2 -6.93 -6.74
6 CH3CHOHCH2NO2 -6.96 -6.87
7 (CH3)2COHCH2NO2 -7.23 -6.91
8 CH=CHOHCH2NO2 -7.00 -6.92
9 CH2CH2=COHCH2NO2 -7.15 -6.97
10 CH3NHCHO -5.92 -7.00

we examine the solvents determined by PWAS. Specifically, we aim to
show that PWAS can exploit the surrogate to implicitly learn the pre-
ferred solvent properties that lead to a high reaction rate, and can explore
the design space to obtain a set of solvents with diverse structures and
chemical properties.

Before examining specific solvents, we first perform a sensitivity anal-
ysis using Partial Dependence Plot (PDP) and Individual Conditional
Expectation (ICE) plots to investigate the relative influence of solvent
properties on the reaction rate constant, which we will then use to assess
PWAS’s exploitation and exploration capability. Seven representative de-
scriptors considered are refractive index at 298K (n2), Abraham’s overall
hydrogen-bond acidity (A), Abraham’s overall hydrogen-bond basicity
(B), dielectric constant at 298K (ϵ), microscopic surface tension at 298 K
(γ), aromaticity, and halogenticity, which are used in a successful quan-
tum mechanical continuum solvation model [162]. The descriptors of all
feasible solvents are calculated using the group contribution method of
Sheldon et al. [163]. As can be seen in Fig. 6.9, the fluctuation in PDPs
is most pronounced for ϵ, while the fluctuation in ICEs is most signif-
icant for three properties, namely, n2, B, and ϵ, indicating their strong

113



marginal effect on predicting ln k. This finding aligns with the estab-
lished results for SN2 reactions. As reported in the literature [164–166],
solvent effects on reaction kinetics stem from the fact that the solvent-
solute interactions stabilize the reactant(s) and the transition state to dif-
ferent extents. In general, when the transition state is (partially) ionic by
nature and the reactants are neutral, a solvent with larger dielectric con-
stant, indicating greater polarity, or those with stronger hydrogen bond
basicity, meaning they are more potent hydrogen bond acceptors, can
lower the free energy of the transition state more than that lowered for
the reactants, thereby reducing the overall free energy barrier. It is also
known that non-basic, polar aprotic solvents are preferred as they do not
solvate the nucleophile strongly, making it more reactive and available
for the reaction. Regarding the refractive index, although it does not di-
rectly reflect the polarity of solvents, it can greatly affect the solvation
of reactants and the overall environment. Besides the dominant solvent
descriptors, from Fig. 6.9, we can see that the relationship between the re-
action rate and the solvent properties is not strictly linear. Additionally,
there are dependencies among different properties, explaining why the
MLR model (6.2) integrated into the DoE-QM-CAMD approach demon-
strates inconsistent performance across the entire design space. While
the MLR model could be improved by incorporating second-order terms
and interaction terms, as discussed by Gui [161], deciding which terms
to include often resorts to a trial-and-error approach, which can be time-
consuming and potentially hard to justify. In contrast, PWAS provides
a systematic approach to decompose the solvent design space based on
their similarity related to rate constants, making it possible to capture the
nonlinear relationship between the solvent properties and the reaction
rate without making prior assumptions on the functional form, which
we demonstrate in the following.

Focusing on the most significant solvent descriptors, n2, B, and ϵ,
three radar charts are plotted in Figs. 6.10 and 6.11, showing the rele-
vant properties of the initial, first-10 active-learning, and last-10 active
learning samples. To facilitate comparison, all features are normalized
to a range between 0 and 1 using min-max normalization, except for the

114



1.8 2.0 2.2 2.4 2.6
n2

20

15

10
ln

k

ICE for n2

PDP for n2

0.0 0.1 0.2 0.3 0.4
A

20

15

10

ln
k

ICE for A
PDP for A

0.0 0.2 0.4 0.6 0.8
B

20

15

10

ln
k

ICE for B
PDP for B

0.2 0.3 0.4 0.5 0.6 0.7
20

15

10

ln
k

ICE for 
PDP for 

0.0 0.5 1.0 1.5
20

15

10

ln
k

ICE for 
PDP for 

0.0 0.2 0.4 0.6 0.8 1.0
Aromaticity

20

15

10
ln

k

ICE for Aromaticity
PDP for Aromaticity

0.0 0.2 0.4 0.6
Halogenicity

20

15

10

ln
k

ICE for Halogenicity
PDP for Halogenicity

Figure 6.9: Partial Dependence Plots (PDP) and Individual Conditional Ex-
pectation (ICE) Plots utilized to assess the influence of diverse solvent prop-
erties on the reaction rate across all feasible solvents. n2: refractive index at
298K, B: Abraham’s overall hydrogen-bond basicity, ϵ: dielectric constant
at 298K, A: Abraham’s overall hydrogen-bond acidity, γ: the macroscopic
surface tension at 298K. Solvent properties are calculated based on the prop-
erty prediction method of Sheldon et al. [161, 163].

dielectric constant. Since the dielectric constants of two solvents are sig-
nificantly higher than the others, the dielectric constant is normalized
relative to the remaining solvents, resulting in values of these two sol-
vents exceeding 1. Besides the radar charts, we also depict the struc-

115



tures of the solvents and their categorization based on the constituent
functional groups in Fig. 6.12. Fig. 6.12a arranges the solvents in the se-
quence of optimization steps, distinguishing the initial and subsequent
active-learning samples with a black line in, while Fig. 6.12b arranges the
solvents into partitions, with orange lines denoting partition boundaries.

n2

B

0.2

0.4

0.6

0.8

S- 1
S- 2

S- 3
S- 4

S- 5
S- 6

S- 7
S- 8

S- 9
S- 10

Normalized  of S-5: 1.99, S-7: 7.83

Figure 6.10: Radar chart of the three selected features of the first 10 initial
samples. n2: refractive index at 298K,B: Abraham’s overall hydrogen-bond
basicity, ϵ: dielectric constant at 298K. All features were normalized to a
range between 0 and 1 using min-max normalization, except for the dielec-
tric constant. Since the dielectric constants of S-5 and S-7 were significantly
higher than those of the others, the dielectric constant was normalized rela-
tive to the remaining solvents. With the relative normalized dielectric con-
stants of S-5 and S-7 denoted in the figure.

By examining Figs. 6.10, 6.11 and 6.12, it can be observed that PWAS
explores diverse solvent structures, covering large ranges of solvent
properties, during the initial sample step, and then gradually converges
toward clear patterns while maintaining an exploratory nature. These
results demonstrate the effectiveness of PWAS at finding a diverse and
promising set of solvents over the constrained mixed-integer and cate-

116



n2

B

0.2

0.4

0.6

0.8

S- 11
S- 12

S- 13
S- 14

S- 15
S- 16

S- 17
S- 18

S- 19
S- 20

(a) The first-10 active-learning samples.

n2

B

0.2

0.4

0.6

0.8

S- 41
S- 42

S- 43
S- 44

S- 45
S- 46

S- 47
S- 48

S- 49
S- 50

(b) The last-10 active-learning samples.

Figure 6.11: Radar chart of the three selected features for the first-10 (a)
and last-10 (b) active learning samples. n2: refractive index at 298K, B:
Abraham’s overall hydrogen-bond basicity, ϵ: dielectric constant at 298K.
All features are normalized to a range between 0 and 1.

117



CH
3

CH
2

CH C
CH

2=
CH

CH
=C

H
CH

2=
C

CH
=C C=

C
aC

H aC
aC

CH
3

aC
CH

2

aC
CH OH

aC
OH

CH
3C

O
CH

2C
O

CH
O

CH
3C

OO
CH

2C
OO

CH
3O

CH
2O

CH
-O

CH
2N

H 2
CH

3N
H

CH
2N

H
CH

3N
CH

2N
aC

NH
2

CH
3C

N
CH

2C
N

CH
2C

l
CH

Cl
CH

Cl
2

CH
Cl

3

aC
Cl

CH
2N

O 2
CH

NO
2

CH
2S

H I Br aC
F

CH
2S

C 2
H 6

SO
C 2

H 5
NO

Atom groups

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Ite
ra

tio
ns

 in
 se

qu
en

tia
l o

rd
er

CH
3

CH
2

CH C
CH

2=
CH

CH
=C

H
CH

2=
C

CH
=C C=

C
aC

H aC
aC

CH
3

aC
CH

2

aC
CH OH

aC
OH

CH
3C

O
CH

2C
O

CH
O

CH
3C

OO
CH

2C
OO

CH
3O

CH
2O

CH
-O

CH
2N

H 2
CH

3N
H

CH
2N

H
CH

3N
CH

2N
aC

NH
2

CH
3C

N
CH

2C
N

CH
2C

l
CH

Cl
CH

Cl
2

CH
Cl

3

aC
Cl

CH
2N

O 2
CH

NO
2

CH
2S

H I Br aC
F

CH
2S

C 2
H 6

SO
C 2

H 5
NO

2
5
7
8

10
25
48
41
33
31
24
22
3

42
14
30
1

50
44
9

40
39
35
32
20
49
38
13
17
46
43
37
34
11
21
12
29
28
26
23
47
45
19
36
15
4
6

27
16
18

Ite
ra

tio
ns

 g
ro

up
ed

 in
 p

ar
tit

io
ns

0 1 2 3 4 5 6
Number of each atom group in the solvent

Figure 6.12: Solvents identified by PWAS in 50 iterations, whose structures
are depicted in functional group representations. (a): in sequential iteration
order, with a black line separating the initial and active-learning samples;
(b): grouped in partitions, with orange lines representing the boundary of
the partitions (in total 10 partitions).

118



gorical domain. One major advantage of PWAS is that it allows one not
only to group solvents with similar functional groups into the same par-
tition, but also to place solvents with similar chemical properties into
the same partition through the PARC mechanism. These similar findings
across the functional group- and property-based design spaces highlight
the adeptness of PWAS in identifying key implicit relationships, demon-
strating its capability to effectively discern and utilize the links between
functional groups and the ensuing solvent properties.

Preferred solvent properties
We further investigate the implicitly learned solvent properties to gain
some chemical insights to derive general conclusions on the preferred
solvent properties that can result in a high reaction rate for the Men-
schutkin reaction. In Fig. 6.13, we plot each solvent in relative-rank order,
with x and y axis indicating n2 and log ϵ, respectively. B is represented
by the size of each bubble whose scales are shown in the legend. The
relative ranks are indicated using a colorbar, with the top-10 and last-10
ranked solvents also denoted with texts for clarity. Upon examination of
Fig. 6.13, it seems that the dielectric constant emerges as the predominant
factor influencing reaction kinetics. This finding aligns with the estab-
lished results for the Menschutkin reaction, where polar aprotic solvents
are typically favored [164, 165]. Also, in scenarios where differences in
dielectric constants are small, a higher refractive index tends to correlate
with higher reaction rates. Among the top-ranked solvents, there exists
a notable uniformity in basicity levels, while no clear trend can be ob-
served for basicity across all identified solvents, which is also consistent
with the PDP plot for B (see Fig. 6.9).

In summary, we compared the effectiveness of two approaches for
the solvent design case: PWAS and DoE-QM-CAMD. Our findings reveal
the strengths in each method: the DoE-QM-CAMD approach, utilizing a
MLR model, demonstrates more robust predictive capabilities across the
entire design space; while, PWAS, employing PWA surrogates, can better
predict reaction rates in proximity to optimal regions, which is important
for our optimization objective. Furthermore, PWAS can learn correla-

119



2.0 2.1 2.2 2.3 2.4 2.5 2.6
n2

2.0

1.5

1.0

0.5

0.0

lo
g

40

50

4

43

1

46 444548

42

49

8 7

10

41

3

5

47

9 6

2

Basicity

 0.00

 0.20

 0.40

 0.60

 0.80

1 10 20 30 40 50
Relative rank of the determined solvents by PWAS

Figure 6.13: Bubble chart of solvent properties of the solvents identified by
PWAS. n2: refractive index at 298K, ϵ: dielectric constant at 298K. Abra-
ham’s overall hydrogen-bond basicity is represented by the size of each
bubble, with the relevant bubble size scale shown in the legend. The rel-
ative ranks of each solvent are indicated using a color bar, with the top-10
and last-10 ranked solvents also denoted with texts for clarity.

tions between solvent properties and reaction rates and offer valuable
insights.

6.4 Conclusion

In this Chapter, we have shown the effectiveness of mixed-integer sur-
rogates, specifically PWAS, in addressing discrete and mixed-variable
experimental planning problems. We illustrated the efficiency of PWAS
through analysis and experimentation across three benchmark case stud-
ies, covering problems from different domains. While BO has undeni-
ably revolutionized the landscape of optimization in experimental plan-
ning, especially in the chemical domain, it is important to recognize

120



the potential of other surrogate-based approaches within conventional
chemistry optimization problems. This is particularly relevant due to
the inherent complexity of many chemical problems, that are often char-
acterized by mixed variables and a relatively large number of constraints,
making it challenging for conventional BO approaches to obtain feasible
samples during the acquisition step while still maintaining exploration
capability. In this chapter, we demonstrated that integrating mixed-
integer optimization strategies is an effective way to address these chal-
lenges.

121



Chapter 7

Conclusion

In this thesis, we have addressed various challenges in the field of black-
box and preference-based optimizations as well as their subset optimiza-
tion problems involving mixed variables. Our research has led to the
development of novel algorithms and methodologies that offer efficient
and effective solutions to these complex problems.

In Chapter 3, we began by tackling the calibration of control policy
parameters through global optimization. Traditional approaches often
require explicit knowledge of the objective function, which can be im-
practical or difficult to obtain in many real-world scenarios. To overcome
this limitation, we introduced a semi-automated calibration approach
that relies on pairwise preferences between control policies rather than
a quantifiable performance index. This preference-based approach not
only simplifies the calibration process but also makes it suitable for tasks
with qualitative or subjective performance evaluations. We applied the
approach to calibrate MPC for a steady-state switching task in a CSTR
and an obstacle avoidance task in automated driving. Our findings re-
vealed that achieving satisfactory results only required a small number
of experiments.

Building upon this, in Chapter 4, we extended our research to
preference-based global optimization problems with unknown con-
straints. We proposed an algorithm called C-GLISp, which effectively

122



handles such optimization tasks by leveraging the preferences expressed
by the decision-maker as well as the satisfactory and feasibility assess-
ment by the decision-maker. The algorithm’s ability to incorporate addi-
tional information from the decision-maker improves the probability of
proposing feasible samples during the exploration process. The effective-
ness of C-GLISp was demonstrated through numerical benchmark prob-
lems and a semi-automated model predictive control (MPC) calibration
case study, where we find that C-GLISp can find satisfactory solutions
within a small number of iterations.

Furthermore, in Chapter 5, we addressed the challenges of optimiza-
tion problems involving mixed variables subject to linear equality and in-
equality constraints. We introduced two algorithms, PWAS and PWASp,
that utilize piecewise affine surrogates to approximate the objective func-
tion in these problems. PWAS efficiently solves global optimization prob-
lems with mixed variables, while PWASp extends the approach to handle
preference-based optimization tasks. Both algorithms show comparable
performance with existing methods in various synthetic and real-world
benchmark problems. Despite the presence of integer and categorical
variables and mixed-integer linear constraints, PWAS and PWASp con-
sistently found satisfactory solutions within a limited number of itera-
tions.

Next, in Chapter 6, we put into practice PWAS developed in Chap-
ter 5 to tackle experimental design challenges, where we demon-
strate the efficacy of PWAS in optimizing experimental design prob-
lems through three case studies of varying design space sizes and nu-
merical complexities. These include: i) optimizing reaction conditions
for Suzuki–Miyaura cross-coupling (fully categorical), ii) optimizing
crossed-barrel design to enhance mechanical toughness (mixed-integer),
and iii) designing solvents for improved Menschutkin reaction kinetics
(mixed-integer and categorical with linear constraints). Through com-
parison with conventional optimization methods implemented in es-
tablished libraries (Genetic, Hyperopt, BoTorch, EDBO), we show that
PWAS often performs comparably or better. Additionally, it can address
problems with a relatively large number of linear constraints.

123



In conclusion, this thesis has contributed some insights and method-
ologies to the field of black-box and preference-based optimization. The
developed algorithms and approaches address the challenges posed by
black-box functions, unknown constraints, and mixed variables, provid-
ing efficient and effective solutions. The semi-automated calibration ap-
proach, along with the C-GLISp, PWAS, and PWASp algorithms, have
demonstrated their practical applicability and performance through nu-
merical benchmarks and simulation case studies on real-world problems.

7.1 Open questions and future work

Future research can be conducted to further enhance the algorithms’
performance and scalability (high-dimensional problems), explore alter-
native surrogate modeling techniques, and extend the methodologies
to handle more complex constraints and problem structures. Specifi-
cally, regarding surrogate modeling, since initial samples play an impor-
tant role, future research can be devoted to finding efficient initial sam-
pling strategies, especially when complex (mixed-variable) constraints
are present. Additionally, there are challenges involved in designing the
acquisition function. In our thesis, we focus on exploration methods that
employ space-filling strategies. However, it is worth noting that in many
real-world applications, even if two points have the same spatial distance
from existing samples, they can have significantly different impacts on
the experiment. For instance, in a chemical reaction, different variations
in temperature may cause different shifts in the steady state. To address
this issue, one approach is to incorporate prior knowledge to pre-process
the data before inputting it into the exploration function. Additionally,
for mixed-variable problems, it may be useful to investigate the adop-
tion of acquisition strategies in PWAS to other BO methods, especially
the ones with tree-based kernels.

In the following, we note some open questions in preference-based
optimization problems, which encompass various aspects, including
eliciting and modeling user preferences, handling uncertainty and am-
biguity in preferences, and integrating preferences into decision-making

124



processes.
Firstly, accurately capturing and understanding decision-maker’s

preferences pose a significant challenge. It is because the expressed pref-
erences can be subjective and complex. Furthermore, modeling these
preferences to be compatible with the optimization process requires care-
ful consideration. Additionally, we may want to reach a consensus
among different users. In such cases, one may extend the preference-
based optimization approach to a distributed scheme similar to the ap-
proach discussed in [167].

Secondly, decision-makers often encounter uncertainty and ambigu-
ity when expressing their preferences. Preferences can be imprecise, con-
flicting, or incomplete. In our approach, we allow inconsistent prefer-
ences to a certain extent by introducing the slack variables when fitting
the surrogate (cf. (2.10)). Other methods may be developed to represent
and reason with uncertain preference information.

Lastly, integrating preferences into real-world decision-making pro-
cesses can be challenging. Decision-makers need to consider various
other factors, such as feasibility, cost, and constraints, alongside their
preferences (cf. Chapter 4). Some engineering interfacing techniques
may be investigated to find effective ways to incorporate preferences into
the decision-making process and align them with other decision criteria.

Also, as advancements in large language models (LLMs) continue
to unfold rapidly, there emerges the intriguing prospect of entrusting
decision-making tasks to LLM agents. For example, in a study by Mao
et al. [168], the authors suggested employing the Generative Pre-trained
Transformer (GPT) agent for the generation of driving scenarios. This
overarching concept can be viewed through the lens of ”AI/LLM-in-
the-loop” optimization as opposed to the conventional ”human-in-the-
loop” optimization prevalent in many preference-based optimization ap-
proaches. This shift signifies a pivotal juncture in the intersection of ar-
tificial intelligence and decision-making processes, paving the way for
a deeper exploration of the roles LLMs can play in diverse domains be-
yond traditional human decision-making paradigms, which can be an
interesting research area to explore.

125



Bibliography

[1] Mengjia Zhu, Alberto Bemporad, and Dario Piga. “Preference-
based MPC calibration”. In: European Control Conference (ECC).
IEEE. 2021, pp. 638–645.

[2] Mengjia Zhu, Dario Piga, and Alberto Bemporad. “C-GLISp:
Preference-based global optimization under unknown constraints
with applications to controller calibration”. In: IEEE Transactions
on Control Systems Technology 30.5 (2022), pp. 2176–2187.

[3] Mengjia Zhu and Alberto Bemporad. “Global and Preference-
based Optimization with Mixed Variables using Piecewise Affine
Surrogates”. In: arXiv preprint arXiv:2302.04686 (2023).

[4] Mengjia Zhu et al. “Discrete and mixed-variable experimental
design with surrogate-based approach”. In: ChemRxiv preprint
doi:10.26434/chemrxiv-2024-h37x4 (2024).

[5] Dietmar Maringer and Panos Parpas. “Global optimization of
higher order moments in portfolio selection.” In: Journal of Global
optimization 43 (2009).

[6] Stewart Greenhill et al. “Bayesian optimization for adaptive ex-
perimental design: A review”. In: IEEE access 8 (2020), pp. 13937–
13948.

[7] Ramkumar Karuppiah, Kevin C Furman, and Ignacio E Gross-
mann. “Global optimization for scheduling refinery crude oil
operations”. In: Computers & Chemical Engineering 32.11 (2008),
pp. 2745–2766.

[8] Jie Li, Ruth Misener, and Christodoulos A Floudas. “Schedul-
ing of crude oil operations under demand uncertainty: A robust
optimization framework coupled with global optimization”. In:
AIChE journal 58.8 (2012), pp. 2373–2396.

126



[9] Graham Kendall et al. “Scheduling in sports: An annotated bibli-
ography”. In: Computers & Operations Research 37.1 (2010), pp. 1–
19.

[10] Iwan Syarif, Adam Prugel-Bennett, and Gary Wills. “SVM param-
eter optimization using grid search and genetic algorithm to im-
prove classification performance”. In: TELKOMNIKA (Telecommu-
nication Computing Electronics and Control) 14.4 (2016), pp. 1502–
1509.

[11] James Bergstra and Yoshua Bengio. “Random search for hyper-
parameter optimization.” In: Journal of machine learning research
13.2 (2012).

[12] Jorge Nocedal and Stephen J Wright. Numerical optimization.
Springer, 1999.

[13] Stephen P Boyd and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[14] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. “Op-
timization by simulated annealing”. In: science 220.4598 (1983),
pp. 671–680.

[15] David E Goldberg, Bradley Korb, and Kalyanmoy Deb. “Messy
genetic algorithms: Motivation, analysis, and first results”. In:
Complex systems 3.5 (1989), pp. 493–530.

[16] James Kennedy and Russell Eberhart. “Particle swarm optimiza-
tion”. In: Proceedings of ICNN’95-international conference on neural
networks. Vol. 4. IEEE. 1995, pp. 1942–1948.

[17] Thomas Weise. “Global optimization algorithms-theory and ap-
plication”. In: Self-Published Thomas Weise 361 (2009).

[18] Margaret A Oliver and Richard Webster. “Kriging: a method of
interpolation for geographical information systems”. In: Interna-
tional Journal of Geographical Information System 4.3 (1990), pp. 313–
332.

[19] Donald R Jones, Matthias Schonlau, and William J Welch. “Effi-
cient global optimization of expensive black-box functions”. In:
Journal of Global optimization 13.4 (1998), p. 455.

[20] Charles Audet. A survey on direct search methods for blackbox opti-
mization and their applications. Springer, 2014.

127



[21] Virginia Torczon. “On the convergence of pattern search algo-
rithms”. In: SIAM Journal on optimization 7.1 (1997), pp. 1–25.

[22] Enrico Fermi. Numerical solution of a minimum problem. Tech. rep.
Los Alamos Scientific Lab., Los Alamos, NM, 1952.

[23] Charles Audet and John E Dennis Jr. “Mesh adaptive direct search
algorithms for constrained optimization”. In: SIAM Journal on op-
timization 17.1 (2006), pp. 188–217.

[24] Mark A Abramson et al. “OrthoMADS: A deterministic MADS
instance with orthogonal directions”. In: SIAM Journal on Opti-
mization 20.2 (2009), pp. 948–966.

[25] John A Nelder and Roger Mead. “A simplex method for function
minimization”. In: The computer journal 7.4 (1965), pp. 308–313.

[26] Robert Hooke and Terry A Jeeves. ““Direct Search”Solution of
Numerical and Statistical Problems”. In: Journal of the ACM
(JACM) 8.2 (1961), pp. 212–229.

[27] Bobak Shahriari et al. “Taking the human out of the loop: A re-
view of Bayesian optimization”. In: Proceedings of the IEEE 104.1
(2015), pp. 148–175.

[28] Xin-She Yang. Nature-inspired metaheuristic algorithms. Luniver
press, 2010.

[29] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. “Ant colony
optimization”. In: IEEE computational intelligence magazine 1.4
(2006), pp. 28–39.

[30] Zong Woo Geem, Joong Hoon Kim, and Gobichettipalayam Va-
sudevan Loganathan. “A new heuristic optimization algorithm:
harmony search”. In: simulation 76.2 (2001), pp. 60–68.

[31] Xin-She Yang and Xingshi He. “Firefly algorithm: recent advances
and applications”. In: International journal of swarm intelligence 1.1
(2013), pp. 36–50.

[32] A. Bemporad. “Global optimization via inverse distance weight-
ing and radial basis functions”. In: Computational Optimization and
Applications 77 (2020). Code available at http://cse.lab.
imtlucca.it/˜bemporad/glis, pp. 571–595.

[33] Eric Brochu, Vlad M Cora, and Nando De Freitas. “A tutorial on
Bayesian optimization of expensive cost functions, with applica-
tion to active user modeling and hierarchical reinforcement learn-
ing”. In: arXiv preprint arXiv:1012.2599 (2010).

128

http://cse.lab.imtlucca.it/~bemporad/glis
http://cse.lab.imtlucca.it/~bemporad/glis


[34] Andrzej P Wierzbicki. “The use of reference objectives in mul-
tiobjective optimization”. In: Multiple Criteria Decision Making
Theory and Application: Proceedings of the Third Conference Ha-
gen/Königswinter, West Germany, August 20–24, 1979. Springer.
1980, pp. 468–486.

[35] Ralph L Keeney and Howard Raiffa. Decisions with multiple objec-
tives: preferences and value trade-offs. Cambridge university press,
1993.

[36] Roseanna W Saaty. “The analytic hierarchy process—what it
is and how it is used”. In: Mathematical modelling 9.3-5 (1987),
pp. 161–176.

[37] Christian Wirth et al. “A survey of preference-based reinforce-
ment learning methods”. In: The Journal of Machine Learning Re-
search 18.1 (2017), pp. 4945–4990.

[38] Alberto Bemporad and Dario Piga. “Global optimization based
on active preference learning with radial basis functions”. In: Ma-
chine Learning 110 (2021), pp. 417–448.

[39] Li Chen and Pearl Pu. Survey of preference elicitation methods. Tech.
rep. EPFL, 2004.

[40] Louis P Hagopian, Ethan S Long, and Karena S Rush. “Preference
assessment procedures for individuals with developmental dis-
abilities”. In: Behavior Modification 28.5 (2004), pp. 668–677.

[41] Ashish Kapoor et al. “Interactive optimization for steering ma-
chine classification”. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 2010, pp. 1343–1352.

[42] Hendrik S Houthakker. “Revealed preference and the utility func-
tion”. In: Economica 17.66 (1950), pp. 159–174.

[43] Fabio Aiolli and Alessandro Sperduti. “A preference optimization
based unifying framework for supervised learning problems”. In:
Preference learning. Springer, 2010, pp. 19–42.

[44] Willem Waegeman and Bernard De Baets. “A transitivity analy-
sis of bipartite rankings in pairwise multi-class classification”. In:
Information Sciences 180.21 (2010), pp. 4099–4117.

[45] Eyke Hüllermeier et al. “Label ranking by learning pairwise pref-
erences”. In: Artificial Intelligence 172.16-17 (2008), pp. 1897–1916.

129



[46] Peter Flach. Machine learning: the art and science of algorithms that
make sense of data. Cambridge university press, 2012.

[47] David Kreps. Notes On The Theory Of Choice. Westview Press, 1988.
[48] H.M. Gutmann. “A Radial Basis Function Method for Global Op-

timization”. In: Journal of Global Optimization 19 (2001), pp. 201–
2227.

[49] D.B. McDonald et al. “Global and local optimization using radial
basis function response surface models”. In: Applied Mathematical
Modelling 31.10 (2007), pp. 2095–2110.

[50] A.J. Smola and B. Schölkopf. “A tutorial on support vector regres-
sion”. In: Statistics and Computing 14 (2004), pp. 199–222.

[51] M. Stone. “Cross-validatory choice and assessment of statistical
predictions”. In: Journal of the Royal Statistical Society: Series B
(Methodological) 36.2 (1974), pp. 111–133.

[52] Nikolaos Ploskas and Nikolaos V Sahinidis. “Review and com-
parison of algorithms and software for mixed-integer derivative-
free optimization”. In: Journal of Global Optimization (2022), pp. 1–
30.

[53] Juliane Müller. “MISO: mixed-integer surrogate optimization
framework”. In: Optimization and Engineering 17 (2016), pp. 177–
203.

[54] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. “Se-
quential model-based optimization for general algorithm config-
uration”. In: Learning and Intelligent Optimization: 5th International
Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers
5. Springer. 2011, pp. 507–523.

[55] James Bergstra et al. “Algorithms for hyper-parameter optimiza-
tion”. In: Advances in neural information processing systems 24
(2011).

[56] Charles Audet et al. “NOMAD version 4: Nonlinear optimization
with the MADS algorithm”. In: arXiv preprint arXiv:2104.11627
(2021).

[57] Margherita Porcelli and Philippe L Toint. “BFO, a trainable
derivative-free brute force optimizer for nonlinear bound-
constrained optimization and equilibrium computations with
continuous and discrete variables”. In: ACM Transactions on Math-
ematical Software (TOMS) 44.1 (2017), pp. 1–25.

130



[58] Brian M Adams et al. Dakota, a multilevel parallel object-oriented
framework for design optimization, parameter estimation, uncertainty
quantification, and sensitivity analysis: version 6.13 user’s manual.
Tech. rep. Sandia National Lab.(SNL-NM), Albuquerque, NM
(United States), 2020.

[59] Martin Schlüter, Jose A Egea, and Julio R Banga. “Extended
ant colony optimization for non-convex mixed integer nonlinear
programming”. In: Computers & Operations Research 36.7 (2009),
pp. 2217–2229.

[60] Alberto Bemporad. “A piecewise linear regression and classifi-
cation algorithm with application to learning and model predic-
tive control of hybrid systems”. In: IEEE Transactions on Automatic
Control (2022). Code available at http://cse.lab.imtlucca.
it/bemporad/parc.

[61] Laurence Charles Ward Dixon. “The global optimization prob-
lem: an introduction”. In: Towards Global Optimiation 2 (1978),
pp. 1–15.

[62] James Blake Rawlings, David Q Mayne, and Moritz Diehl. Model
predictive control: theory, computation, and design. Vol. 2. Nob Hill
Publishing Madison, WI, 2017.

[63] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Pre-
dictive control for linear and hybrid systems. Cambridge University
Press, 2017.

[64] Manfred Morari and Jay H Lee. “Model predictive control: past,
present and future”. In: Computers & Chemical Engineering 23.4-5
(1999), pp. 667–682.

[65] Daniele Masti and Alberto Bemporad. “Learning nonlinear state–
space models using autoencoders”. In: Automatica 129 (2021),
p. 109666.

[66] Marco Forgione and Dario Piga. “Continuous-time system iden-
tification with neural networks: Model structures and fitting cri-
teria”. In: European Journal of Control 59 (2021), pp. 69–81.

[67] Alessandro Alessio and Alberto Bemporad. “A survey on explicit
model predictive control”. In: Nonlinear Model Predictive Control:
Towards New Challenging Applications (2009), pp. 345–369.

131

http://cse.lab.imtlucca.it/∼bemporad/parc
http://cse.lab.imtlucca.it/∼bemporad/parc


[68] Corentin Briat. “Linear parameter-varying and time-delay sys-
tems”. In: Analysis, observation, filtering & control 3 (2014), pp. 5–
7.

[69] Marcelo M Morato, Julio E Normey-Rico, and Olivier Sename.
“Model predictive control design for linear parameter varying
systems: A survey”. In: Annual Reviews in Control 49 (2020),
pp. 64–80.

[70] Alberto Bemporad and Claudio Rocchi. “Decentralized linear
time-varying model predictive control of a formation of un-
manned aerial vehicles”. In: 2011 50th IEEE conference on decision
and control and European control conference. IEEE. 2011, pp. 7488–
7493.

[71] Marco Forgione, Dario Piga, and Alberto Bemporad. “Efficient
Calibration of Embedded MPC”. In: Proc. of the 21st IFAC World
Congress. Berlin, Germany, 2020.

[72] A. Lucchini et al. “Torque vectoring for high-performance electric
vehicles: an efficient MPC calibration”. In: IEEE Control Systems
Letters (2020).

[73] Dario Piga et al. “Performance-oriented model learning for data-
driven MPC design”. In: IEEE Control Systems Letters 3.3 (2019),
pp. 577–582.

[74] Somil Bansal et al. “Goal-driven dynamics learning via Bayesian
optimization”. In: Proc. of the IEEE 56th Annual Conference on Deci-
sion and Control. 2017, pp. 5168–5173.

[75] Marcello Fiducioso et al. “Safe Contextual Bayesian Optimization
for Sustainable Room Temperature PID Control Tuning”. In: Proc.
of the 28th IJCAI. Macao, China, 2019, pp. 5850–5856.

[76] Alonso Marco et al. “Automatic LQR tuning based on Gaussian
process global optimization”. In: 2016 IEEE International Confer-
ence on Robotics and Automation (ICRA). 2016, pp. 270–277.

[77] Loris Roveda, Marco Forgione, and Dario Piga. “Robot control pa-
rameters auto-tuning in trajectory tracking applications”. In: Con-
trol Engineering Practice 101 (2020).

[78] Danny Drieß, Peter Englert, and Marc Toussaint. “Constrained
Bayesian optimization of combined interaction force/task space
controllers for manipulations”. In: 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA). 2017, pp. 902–907.

132



[79] Roberto Calandra et al. “Bayesian gait optimization for bipedal
locomotion”. In: International Conference on Learning and Intelligent
Optimization. Springer. 2014, pp. 274–290.

[80] Felix Berkenkamp, Angela P Schoellig, and Andreas Krause.
“Safe controller optimization for quadrotors with Gaussian pro-
cesses”. In: 2016 IEEE International Conference on Robotics and Au-
tomation (ICRA). 2016, pp. 491–496.

[81] Paul F Christiano et al. “Deep reinforcement learning from hu-
man preferences”. In: Advances in Neural Information Processing
Systems. 2017, pp. 4299–4307.

[82] Marcel Menner et al. “Inverse learning for human-adaptive mo-
tion planning”. In: 2019 IEEE 58th Conference on Decision and Con-
trol (CDC). IEEE. 2019, pp. 809–815.

[83] Sascha Rosbach et al. “Driving with style: Inverse reinforcement
learning in general-purpose planning for automated driving”. In:
arXiv preprint arXiv:1905.00229 (2019).

[84] Wenshuo Wang et al. “Driving style classification using a semisu-
pervised support vector machine”. In: IEEE Transactions on
Human-Machine Systems 47.5 (2017), pp. 650–660.

[85] Sébastien Gros et al. “From linear to nonlinear MPC: bridging the
gap via the real-time iteration”. In: International Journal of Control
93.1 (2020), pp. 62–80.

[86] Moritz Diehl, Hans Georg Bock, and Johannes P. Schlöder. “A
real-time iteration scheme for nonlinear optimization in optimal
feedback control”. In: SIAM Journal on Control and Optimization
43.5 (2005), pp. 1714–1736.

[87] A.I.F. Vaz and L.N. Vicente. “PSwarm: A hybrid solver for linearly
constrained global derivative-free optimization”. In: Optimization
Methods and Software 24 (2009). http://www.norg.uminho.
pt/aivaz/pswarm/, pp. 669–685.

[88] M.D. McKay, R.J. Beckman, and W.J. Conover. “Comparison of
three methods for selecting values of input variables in the analy-
sis of output from a computer code”. In: Technometrics 21.2 (1979),
pp. 239–245.

[89] The MathWorks. Statistics and Machine Learning Toolbox. Nat-
ick, Massachusetts, United State, 2019. URL: https : / / www .
mathworks.com/products/statistics.html.

133

http://www.norg.uminho.pt/aivaz/pswarm/
http://www.norg.uminho.pt/aivaz/pswarm/
https://www.mathworks.com/products/statistics.html
https://www.mathworks.com/products/statistics.html


[90] A. Bemporad, L. Ricker, and M. Morari. Model Predictive Control
Toolbox. Natick, Massachusetts, United State, 2019. URL: https:
//www.mathworks.com/products/mpc.html.

[91] B. Wayne Bequette. Process dynamics: modeling, analysis, and simu-
lation. Prentice hall PTR New Jersey, 1998.

[92] G. Matheron. “Principles of geostatistics”. In: Economic geology
58.8 (1963), pp. 1246–1266.

[93] H.J. Kushner. “A new method of locating the maximum point of
an arbitrary multipeak curve in the presence of noise”. In: Journal
of Basic Engineering 86.1 (1964), pp. 97–106.

[94] J. Sacks et al. “Design and analysis of computer experiments”. In:
Statistical Science (1989), pp. 409–423.

[95] D.R. Jones, M. Schonlau, and W.J. Matthias. “Efficient global op-
timization of expensive black-box functions”. In: Journal of Global
Optimization 13.4 (1998), pp. 455–492.

[96] Gianluca Savaia et al. “Experimental automatic calibration of a
semi-active suspension controller via Bayesian Optimization”. In:
Control Engineering Practice 112 (2021).

[97] Gang Luo. “A review of automatic selection methods for ma-
chine learning algorithms and hyper-parameter values”. In: Net-
work Modeling Analysis in Health Informatics and Bioinformatics 5.1
(2016), pp. 1–16.

[98] Loris Roveda et al. “Human–robot collaboration in sensorless as-
sembly task learning enhanced by uncertainties adaptation via
Bayesian Optimization”. In: Robotics and Autonomous Systems 136
(2021), p. 103711.

[99] Wei Chu and Zoubin Ghahramani. “Extensions of Gaussian pro-
cesses for ranking: semisupervised and active learning”. In: Learn-
ing to Rank 29 (2005).

[100] Eric Brochu, Nando De Freitas, and Abhijeet Ghosh. “Active
Preference Learning with Discrete Choice Data.” In: NIPS. 2007,
pp. 409–416.

[101] Javier González et al. “Preferential Bayesian optimization”. In: In-
ternational Conference on Machine Learning. PMLR. 2017, pp. 1282–
1291.

134

https://www.mathworks.com/products/mpc.html
https://www.mathworks.com/products/mpc.html


[102] Majid Abdolshah et al. “Multi-objective Bayesian optimisation
with preferences over objectives”. In: Advances in neural informa-
tion processing systems 32 (2019).

[103] Yanan Sui et al. “Stagewise Safe Bayesian Optimization with
Gaussian Processes”. In: Proc. of the 35th ICML. PMLR. 2018,
pp. 4781–4789.

[104] Felix Berkenkamp, Andreas Krause, and Angela P Schoellig.
“Bayesian optimization with safety constraints: safe and auto-
matic parameter tuning in robotics”. In: Machine Learning (2021),
pp. 1–35.

[105] Michael A. Gelbart, Jasper Snoek, and Ryan P. Adams. “Bayesian
Optimization with Unknown Constraints”. In: Proceedings of the
Thirtieth Conference on Uncertainty in Artificial Intelligence. Arling-
ton, VA, USA, 2014, pp. 250–259.

[106] Antonio Candelieri. “Sequential model based optimization of
partially defined functions under unknown constraints”. In: Jour-
nal of Global Optimization (2019), pp. 1–23.

[107] V Roshan Joseph and Lulu Kang. “Regression-based inverse dis-
tance weighting with applications to computer experiments”. In:
Technometrics 53.3 (2011), pp. 254–265.

[108] Alberto Costa and Giacomo Nannicini. “RBFOpt: an open-source
library for black-box optimization with costly function eval-
uations”. In: Mathematical Programming Computation 10 (2018),
pp. 597–629.

[109] Rommel G Regis and Christine A Shoemaker. “Constrained
global optimization of expensive black box functions using ra-
dial basis functions”. In: Journal of Global optimization 31.1 (2005),
pp. 153–171.

[110] L.M. Rios and N.V. Sahinidis. “Derivative-free optimization: a
review of algorithms and comparison of software implementa-
tions”. In: Journal of Global Optimization 56.3 (2013), pp. 1247–1293.

[111] Sudhanshu K Mishra. “Some new test functions for global opti-
mization and performance of repulsive particle swarm method”.
In: Available at SSRN 926132 (2006).

135



[112] Phenix Integration. Bird Problem (Constrained). https://web.
archive . org / web / 20161229032528 / http : / / www .
phoenix-int.com/software/benchmark_report/bird_
constrained.php. Accessed: 2021-04-18. 2016.

[113] Momin Jamil and Xin-She Yang. “A literature survey of bench-
mark functions for global optimisation problems”. In: Interna-
tional Journal of Mathematical Modelling and Numerical Optimisation
4.2 (2013), pp. 150–194.

[114] Charles Audet, Edward Hallé-Hannan, and Sébastien Le Diga-
bel. “A general mathematical framework for constrained mixed-
variable blackbox optimization problems with meta and categori-
cal variables”. In: Operations Research Forum. Vol. 4. Springer. 2023,
p. 12.

[115] Sun Hye Kim and Fani Boukouvala. “Surrogate-based optimiza-
tion for mixed-integer nonlinear problems”. In: Computers &
Chemical Engineering 140 (2020), p. 106847.

[116] Miten Mistry et al. “Mixed-integer convex nonlinear optimization
with gradient-boosted trees embedded”. In: INFORMS Journal on
Computing 33.3 (2021), pp. 1103–1119.

[117] Kenneth Holmström. “An adaptive radial basis algorithm (ARBF)
for expensive black-box global optimization”. In: Journal of Global
Optimization 41 (2008), pp. 447–464.

[118] GPyOpt. GPyOpt: A Bayesian Optimization framework in Python.
http://github.com/SheffieldML/GPyOpt. 2016.

[119] Mark A Abramson et al. The NOMAD project. Software available
at http://www.gerad.ca/nomad. 2011.

[120] Laura P Swiler et al. “Surrogate models for mixed discrete-
continuous variables”. In: Constraint Programming and Decision
Making (2014), pp. 181–202.

[121] Shivapratap Gopakumar et al. “Algorithmic assurance: An active
approach to algorithmic testing using bayesian optimisation”. In:
Advances in Neural Information Processing Systems 31 (2018).

[122] Vu Nguyen. “Bayesian optimization for accelerating hyper-
parameter tuning”. In: 2019 IEEE second international conference on
artificial intelligence and knowledge engineering (AIKE). IEEE. 2019,
pp. 302–305.

136

https://web.archive.org/web/20161229032528/http://www.phoenix-int.com/software/benchmark_report/bird_constrained.php
https://web.archive.org/web/20161229032528/http://www.phoenix-int.com/software/benchmark_report/bird_constrained.php
https://web.archive.org/web/20161229032528/http://www.phoenix-int.com/software/benchmark_report/bird_constrained.php
https://web.archive.org/web/20161229032528/http://www.phoenix-int.com/software/benchmark_report/bird_constrained.php
http://github.com/SheffieldML/GPyOpt
http://www. gerad. ca/nomad


[123] Binxin Ru et al. “Bayesian optimisation over multiple continu-
ous and categorical inputs”. In: International Conference on Machine
Learning. PMLR. 2020, pp. 8276–8285.

[124] Theodore P Papalexopoulos et al. “Constrained discrete black-
box optimization using mixed-integer programming”. In: Inter-
national Conference on Machine Learning. PMLR. 2022, pp. 17295–
17322.

[125] H.P. Williams. Model Building in Mathematical Programming. 5th.
John Wiley & Sons, 2013.

[126] J.N. Hooker and M.A. Osorio. “Mixed logical/linear program-
ming”. In: Discrete Applied Mathematics 96–97 (1999), pp. 395–442.

[127] F.D. Torrisi and A. Bemporad. “HYSDEL — A Tool for Generat-
ing Computational Hybrid Models”. In: IEEE Trans. Contr. Systems
Technology 12.2 (Mar. 2004), pp. 235–249.

[128] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual.
2023. URL: https://www.gurobi.com.

[129] Andrew Makhorin. GNU Linear Programming Kit. Reference Man-
ual. Version 5.0. 2020.

[130] Michael D McKay, Richard J Beckman, and William J Conover. “A
comparison of three methods for selecting values of input vari-
ables in the analysis of output from a computer code”. In: Techno-
metrics 21.2 (1979), pp. 239–245.

[131] Theodore S Motzkin et al. “The double description method”. In:
Contributions to the Theory of Games 2.28 (1953), pp. 51–73.

[132] Stuart Lloyd. “Least squares quantization in PCM”. In: IEEE
transactions on information theory 28.2 (1982), pp. 129–137.

[133] David Roxbcc Cox. “Some Procedures Connccted With the Logis-
tic Qualitative Response Curve”. In: Research Papers in Statistics
(1951), pp. 55–71.

[134] Henri Theil. “A multinomial extension of the linear logit model”.
In: International economic review 10.3 (1969), pp. 251–259.

[135] Linas Stripinis and Remigijus Paulavičius. “DIRECTGO: A new
DIRECT-type MATLAB toolbox for derivative-free global opti-
mization”. In: ACM Transactions on Mathematical Software 48.4
(2022), pp. 1–46.

137

https://www.gurobi.com


[136] Stuart Mitchell, Michael OSullivan, and Iain Dunning. “PuLP:
a linear programming toolkit for python”. In: The University of
Auckland, Auckland, New Zealand 65 (2011).

[137] Getdata Graph Digitizer. GetData Graph Digitizer: Version 2.26.
2013. URL: http://getdata-graph-digitizer.com/.

[138] Riccardo Leardi. “Experimental design in chemistry: A tutorial”.
In: Analytica chimica acta 652.1-2 (2009), pp. 161–172.

[139] Norio Miyaura, Kinji Yamada, and Akira Suzuki. “A new stere-
ospecific cross-coupling by the palladium-catalyzed reaction of
1-alkenylboranes with 1-alkenyl or 1-alkynyl halides”. In: Tetra-
hedron Letters 20.36 (1979), pp. 3437–3440.

[140] Norio Miyaura and Akira Suzuki. “Palladium-catalyzed cross-
coupling reactions of organoboron compounds”. In: Chemical re-
views 95.7 (1995), pp. 2457–2483.

[141] Timothy E Barder et al. “Catalysts for Suzuki- Miyaura coupling
processes: scope and studies of the effect of ligand structure”. In:
Journal of the American Chemical Society 127.13 (2005), pp. 4685–
4696.

[142] Alastair JJ Lennox and Guy C Lloyd-Jones. “Selection of boron
reagents for Suzuki–Miyaura coupling”. In: Chemical Society Re-
views 43.1 (2014), pp. 412–443.

[143] Benjamin J Shields et al. “Bayesian reaction optimization as a tool
for chemical synthesis”. In: Nature 590.7844 (2021), pp. 89–96.

[144] Damith Perera et al. “A platform for automated nanomole-scale
reaction screening and micromole-scale synthesis in flow”. In: Sci-
ence 359.6374 (2018), pp. 429–434.

[145] Riley Hickman et al. Olympus, enhanced: benchmarking mixed-
parameter and multi-objective optimization in chemistry and materials
science. en. May 2023. DOI: 10.26434/chemrxiv-2023-74w8d.
(Visited on 06/21/2023).

[146] Félix-Antoine Fortin et al. “DEAP: Evolutionary algorithms made
easy”. In: The Journal of Machine Learning Research 13.1 (2012),
pp. 2171–2175.

[147] François-Michel De Rainville et al. “Deap: A python framework
for evolutionary algorithms”. In: Proceedings of the 14th annual
conference companion on Genetic and evolutionary computation. 2012,
pp. 85–92.

138

http://getdata-graph-digitizer.com/
https://doi.org/10.26434/chemrxiv-2023-74w8d


[148] James Bergstra, Daniel Yamins, and David Cox. “Making a sci-
ence of model search: Hyperparameter optimization in hundreds
of dimensions for vision architectures”. In: International conference
on machine learning. PMLR. 2013, pp. 115–123.

[149] Maximilian Balandat et al. “BoTorch: A framework for efficient
Monte-Carlo Bayesian optimization”. In: Advances in neural infor-
mation processing systems 33 (2020), pp. 21524–21538.

[150] Aldair E Gongora et al. “A Bayesian experimental autonomous
researcher for mechanical design”. In: Science advances 6.15 (2020),
eaaz1708.

[151] Matthew B Plutschack et al. “The hitchhiker’s guide to flow
chemistry∥”. In: Chemical reviews 117.18 (2017), pp. 11796–11893.

[152] Brandon J Reizman and Klavs F Jensen. “Feedback in flow for ac-
celerated reaction development”. In: Accounts of chemical research
49.9 (2016), pp. 1786–1796.

[153] Lingfeng Gui et al. “Integrating model-based design of exper-
iments and computer-aided solvent design”. In: Computers &
Chemical Engineering 177 (2023), p. 108345.

[154] Gaia Franceschini and Sandro Macchietto. “Model-based design
of experiments for parameter precision: State of the art”. In: Chem-
ical Engineering Science 63.19 (2008), pp. 4846–4872.

[155] Heiko Struebing et al. “Computer-aided molecular design of sol-
vents for accelerated reaction kinetics”. In: Nature chemistry 5.11
(2013), pp. 952–957.

[156] Amol Shivajirao Hukkerikar et al. “Estimation of environment-
related properties of chemicals for design of sustainable pro-
cesses: development of group-contribution+ (GC+) property
models and uncertainty analysis”. In: Journal of chemical informa-
tion and modeling 52.11 (2012), pp. 2823–2839.

[157] Amol Shivajirao Hukkerikar et al. “Group-contribution+ (GC+)
based estimation of properties of pure components: Improved
property estimation and uncertainty analysis”. In: Fluid Phase
Equilibria 321 (2012), pp. 25–43.

[158] Mortimer J Kamlet, Jose Luis Abboud, and RW Taft. “The solva-
tochromic comparison method. 6. The. pi.* scale of solvent po-
larities”. In: Journal of the American Chemical Society 99.18 (1977),
pp. 6027–6038.

139



[159] Michael H Abraham et al. “Linear solvation energy relationships.
Part 37. An analysis of contributions of dipolarity–polarisability,
nucleophilic assistance, electrophilic assistance, and cavity terms
to solvent effects on t-butyl halide solvolysis rates”. In: Journal of
the Chemical Society, Perkin Transactions 2 7 (1987), pp. 913–920.

[160] Alberto Bemporad. “A piecewise linear regression and classifi-
cation algorithm with application to learning and model predic-
tive control of hybrid systems”. In: IEEE Transactions on Automatic
Control 68.6 (2023), pp. 3194–3209.

[161] Lingfeng Gui. “Solvent design assisted by mechanistic insights:
methods and application to peptide synthesis”. PhD thesis. Im-
perial College London, 2024.

[162] Aleksandr V Marenich, Christopher J Cramer, and Donald G
Truhlar. “Universal solvation model based on solute electron den-
sity and on a continuum model of the solvent defined by the bulk
dielectric constant and atomic surface tensions”. In: The Journal of
Physical Chemistry B 113.18 (2009), pp. 6378–6396.

[163] TJ Sheldon, CS Adjiman, and JL Cordiner. “Pure component
properties from group contribution Hydrogen-bond basicity,
hydrogen-bond acidity, Hildebrand solubility parameter, macro-
scopic surface tension, dipole moment, refractive index and di-
electric constant”. In: Fluid Phase Equilibria 231.1 (2005), pp. 27–
37.

[164] Christian Reichardt and Thomas Welton. Solvents and solvent ef-
fects in organic chemistry. John Wiley & Sons, 2011.

[165] James Sherwood et al. “N-Butylpyrrolidinone as a dipolar aprotic
solvent for organic synthesis”. In: Green Chemistry 18.14 (2016),
pp. 3990–3996.

[166] Haydar Taylan Turan, Sebastian Brickel, and Markus Meuwly.
“Solvent effects on the Menshutkin reaction”. In: The Journal of
Physical Chemistry B 126.9 (2022), pp. 1951–1961.

[167] Loris Cannelli et al. “Multi-agent active learning for distributed
black-box optimization”. In: IEEE Control Systems Letters (2023).

[168] Jiageng Mao et al. “GPT-Driver: Learning to Drive with GPT”.
In: NeurIPS 2023 Foundation Models for Decision Making Workshop.
2023.

140



[169] S. Surjanovic and D. Bingham. Virtual Library of Simulation Ex-
periments: Test Functions and Datasets. Retrieved February 1, 2023,
from http://www.sfu.ca/˜ssurjano.

[170] Marcin Molga and Czesław Smutnicki. “Test functions for opti-
mization needs”. In: Test functions for optimization needs 101 (2005),
p. 48.

[171] Evelyn Martin Lansdowne Beale. On an iterative method for finding
a local minimum of a function of more than one variable. 25. Statistical
Techniques Research Group, Section of Mathematical Statistics,
Department of Mathematics, Princeton University, 1958.

[172] Jorge J Moré, Burton S Garbow, and Kenneth E Hillstrom. “Test-
ing unconstrained optimization software”. In: ACM Transactions
on Mathematical Software (TOMS) 7.1 (1981), pp. 17–41.

[173] David H Ackley. “The model”. In: A Connectionist Machine for Ge-
netic Hillclimbing. Springer, 1987, pp. 29–70.

[174] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boost-
ing system”. In: Proceedings of the 22nd acm sigkdd international con-
ference on knowledge discovery and data mining. 2016, pp. 785–794.

[175] Yann LeCun, Corinna Cortes, and Chris Burges. MNIST hand-
written digit database. 2010. URL: http://yann.%20lecun.
%20com/exdb/mnist.

[176] Chris Ying et al. “Nas-bench-101: Towards reproducible neural ar-
chitecture search”. In: International Conference on Machine Learning.
PMLR. 2019, pp. 7105–7114.

[177] Aaron Klein and Frank Hutter. “Tabular benchmarks for joint ar-
chitecture and hyperparameter optimization”. In: arXiv preprint
arXiv:1905.04970 (2019).

[178] Kevin K Yang, Zachary Wu, and Frances H Arnold. “Machine-
learning-guided directed evolution for protein engineering”. In:
Nature methods 16.8 (2019), pp. 687–694.

[179] Reiner Horst, Panos M Pardalos, and Nguyen Van Thoai. Intro-
duction to global optimization. Springer Science & Business Media,
2000.

[180] Hoai An Le Thi, A Ismael F Vaz, and LN Vicente. “Optimizing
radial basis functions by DC programming and its use in direct
search for global derivative-free optimization”. In: Top 20 (2012),
pp. 190–214.

141

http://www.sfu.ca/~ssurjano
http://yann.%20lecun.%20com/exdb/mnist
http://yann.%20lecun.%20com/exdb/mnist


[181] Momin Jamil and Xin-She Yang. “A literature survey of bench-
mark functions for global optimisation problems”. In: Interna-
tional Journal of Mathematical Modelling and Numerical Optimisation
4.2 (2013), pp. 150–194.

[182] Peter Auer et al. “The nonstochastic multiarmed bandit problem”.
In: SIAM journal on computing 32.1 (2002), pp. 48–77.

[183] Yevgeny Seldin et al. “Evaluation and analysis of the performance
of the EXP3 algorithm in stochastic environments”. In: European
Workshop on Reinforcement Learning. PMLR. 2013, pp. 103–116.

[184] Derek T Ahneman et al. “Predicting reaction performance in C–
N cross-coupling using machine learning”. In: Science 360.6385
(2018), pp. 186–190.

[185] Hirotomo Moriwaki et al. “Mordred: a molecular descriptor cal-
culator”. In: Journal of cheminformatics 10.1 (2018), pp. 1–14.

[186] Shuhei Watanabe and Frank Hutter. “c-TPE: tree-structured
parzen estimator with inequality constraints for expensive hyper-
parameter optimization”. In: Proceedings of the Thirty-Second Inter-
national Joint Conference on Artificial Intelligence. 2023, pp. 4371–
4379.

[187] Sébastien Le Digabel et al. NOMAD user guide version 3.9. 1. 2019.

[188] Leo Breiman. “Random forests”. In: Machine learning 45 (2001),
pp. 5–32.

[189] Kalyanmoy Deb et al. “A fast and elitist multiobjective genetic
algorithm: NSGA-II”. In: IEEE transactions on evolutionary compu-
tation 6.2 (2002), pp. 182–197.

[190] Ahmed Fawzy Gad. “Pygad: An intuitive genetic algorithm
python library”. In: Multimedia Tools and Applications (2023), pp. 1–
14.

[191] Diego Giacomelli. GeneticSharp. https://https://github.
com/giacomelli/GeneticSharp. 2017.

[192] Max Halford. eaopt: Evolutionary optimization library for Go (ge-
netic algorithm, particle swarm optimization, differential evolution).
https://github.com/MaxHalford/eaopt. 2016.

[193] Austin Tripp. mol ga: Simple, lightweight package for genetic algo-
rithms on molecules. https://github.com/AustinT/mol_ga.
2023.

142

https://https://github.com/giacomelli/GeneticSharp
https://https://github.com/giacomelli/GeneticSharp
https://github.com/MaxHalford/eaopt
https://github.com/AustinT/mol_ga


[194] Jan H Jensen. “A graph-based genetic algorithm and generative
model/Monte Carlo tree search for the exploration of chemical
space”. In: Chemical science 10.12 (2019), pp. 3567–3572.

[195] Nathan Brown et al. “GuacaMol: benchmarking models for de
novo molecular design”. In: Journal of chemical information and
modeling 59.3 (2019), pp. 1096–1108.

[196] Kashif Hussain et al. “Metaheuristic research: a comprehensive
survey”. In: Artificial intelligence review 52 (2019), pp. 2191–2233.

[197] Yaochu Jin. “Surrogate-assisted evolutionary computation: Re-
cent advances and future challenges”. In: Swarm and Evolutionary
Computation 1.2 (2011), pp. 61–70.

[198] Linqiang Pan et al. “A classification-based surrogate-assisted evo-
lutionary algorithm for expensive many-objective optimization”.
In: IEEE Transactions on Evolutionary Computation 23.1 (2018),
pp. 74–88.

[199] Carlos A Coello Coello. “Constraint-handling techniques used
with evolutionary algorithms”. In: Proceedings of the genetic and
evolutionary computation conference companion. 2022, pp. 1310–1333.

143



Appendix A

Benchmark

Note: the unconstrained mixed-variable synthetic and real-world prob-
lems are adopted from [123] for our comparisons. Note that the objec-
tive function is maximized in [123], so we consider the minimization of
−f(X) in PWAS and PWASp.

144



A.1 Unconstrained mixed-variable synthetic
benchmarks

Func-2C [61, 123, 169–172]: nc = 2, nint = 0, and nd = 2 with ni = 3

for each categorical variable (denoted as ndi, for i = 1, 2). Each cat-
egorical variable is in {0, 1, 2}. The bounds are ℓx = [−1.0 − 1.0]T,
ux = [1.0 1.0]T. The global maximum f(X) = 0.20632 is attained at
X = [0.0898 − 0.7126 1 1]T and [−0.0898 0.7126 1 1]T.

f(X) =

⎧⎪⎨⎪⎩
f1 + fros(x) nd2 = 0

f1 + fcam(x) nd2 = 1

f1 + fbea(x) nd2 = 2

where f1(x, y) =

⎧⎪⎨⎪⎩
fros(x) nd1 = 0

fcam(x) nd1 = 1

fbea(x) nd1 = 2

fros(x) = −(100(x2 − x21)2 + (x1 − 1)2)/300

fcam(x) = −(a1 + a2 + a3)/10

a1 = (4− 2.1x21 +
x41
3
)x21

a2 = x1x2

a3 = (−4 + 4x22)x
2
2

fbea(x) = −((1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2

+ (2.625− x1 + x1x
3
2)

2)/50

(A.1)

145



Func-3C [61, 123, 169–172]: nc = 2, nint = 0, and nd = 3 with ni = 3

for each categorical variable (denoted as ndi, for i = 1, 2, 3). Each
categorical variable is in {0, 1, 2}. The bounds are ℓx = [−1.0 − 1.0]T,
ux = [1.0 1.0]T. The global maximum f(X) = 0.72214 is attained at
X = [0.0898 − 0.7126 1 1 0]T and [−0.0898 0.7126 1 1 0]T.

f(X) =

⎧⎪⎨⎪⎩
f2 + 5fcam(x) nd3 = 0

f2 + 2fros(x) nd3 = 1

f2 + nd2fbea(x) nd3 = 2

where f2(x, y) =

⎧⎪⎨⎪⎩
f1 + fros(x) nd21 = 0

f1 + fcam(x) nd2 = 1

f1 + fbea(x) nd2 = 2

f1(x, y) =

⎧⎪⎨⎪⎩
fros(x) nd1 = 0

fcam(x) nd1 = 1

fbea(x) nd1 = 2

fros(x), fcam(x), and fbea(x) are defined in (A.1)

(A.2)

Ackley-5C [123, 169, 173]: nc = 1, nint = 0, and nd = 5 with ni = 17

for each category (denoted as ndi, for i = 1, . . . , 5). Each categorical
variableis in {0, 1, . . . , 16}. The bounds are ℓx = −1.0, ux = 1.0. The
global maximum f(X) = 0 is attained at X = [0 8 8 8 8 8]T.

f(X) = a exp

(︃
−b
(︂s1
n

)︂ 1
2

)︃
+ exp

(︂s2
n

)︂
− a− exp(1)

where a = 20, b = 0.2, c = 2π

s1 = x2 +

5∑︂
i=1

z2i (ndi)

s2 = cos(cx) +

5∑︂
i=1

cos(czi(ndi))

zi(ndi) = −1 + 0.125ndi

(A.3)

146



A.2 Unconstrained mixed-variable real-world
benchmarks

XG-MNIST [123, 174, 175]: nc = 4, nint = 1, and nd = 3 with ni = 2,
for i = 1, 2, 3. Each categorical variable (ndi) can be either 0 or 1. The
bounds are ℓx = [10−6, 10−6 0.001 10−6]T, ux = [1 10 1 5]T; ℓy = 1,
uy = 10.

Notes on the optimization variables:
The 0.7/0.3 stratified train/test split ratio is applied as noted in [123].
The xgboost package is used [174] on MNIST classification [175]. The
optimization variables in this problem are the parameters of the xgboost
algorithm. Specifically, the continuous variables x1, x2, x3, and x4 refer
to the following parameters in xgboost, respectively: ‘learning rate’,
‘min split loss’, ‘subsample’, and ‘reg lambda’. The integer
variable y stands for the ‘max depth’. As for the categorical variables,
nd1 indicates the booster type in xgboost where nd1 = {0, 1} correspond-
ing to {‘gbtree’, ‘dart’}. nd2 represents the ‘grow policy’,
where nd2 = {0, 1} corresponding to {‘depthwise’, ‘lossguide’}.
nd3 refers to the ‘objective’, where nd3 = {0, 1} corresponding to
{‘multi: softmax’, ‘multi:softprob’}.

Notes on the objective function:
The classification accuracy on test data is used as the objective function.

NAS-CIFAR10 [123, 176, 177]: nc = 21, nint = 1, and nd = 5 with ni = 3

for each category (denoted as ndi for i = 1, . . . , 5). Each categorical
variable is in {0, 1, 2}. The bounds are ℓix = 0, uix = 1, ∀i = 1, . . . , nc;
ℓy = 0, uy = 9.

Notes on the optimization problem:
The public dataset NAS-Bench-101 [178] is used. This dataset maps

147



convolutional neural network (CNN) architectures to their trained
and evaluated performance on CIFAR-10 classification. As a result,
we can quickly look up the validation accuracy of the proposed CNN
architecture by PWAS/PWASp. The same encoding method for the
CNN architecture topology as noted in [123, 178] is used.

Notes on the optimization variables:
The CNN architecture search space is described by a directed acyclic
graph (DAG) which has 7 nodes with the first and the last nodes being
the input and output nodes. The continuous variables represent the
probability values for the 21 possible edges in the DAG. The integer
variable y is the number of edges present in the DAG. The categorical
variables are the operations for the 5 intermediate nodes in the DAG,
for which ndi = {0, 1, 2} corresponding to {‘3x3 conv’, ‘1x1 conv’,
‘3x3 max-pool’}. Within the 21 possible edges, only y edges with
the highest probability are activated. The DAG that leads to invalid
CNN architecture topology specifications will result in zero validation
accuracy.

Notes on the objective function:
The validation accuracy of the defined CNN architecture topology on
CIFAR-10 classification is used as the objective function.

A.3 Constrained mixed-variable synthetic
problems

Horst6-hs044-modified [179, 180]: nc = 3, nint = 4, and nd = 2 with
n1 = 3 and n2 = 2 (the first (nd1) and the second (nd2) categorical vari-
able are in {0, 1, 2} and {0, 1}, respectively. ℓx = [0 0 0]T, ux = [6 6 3]T;
ℓy = [0 0 0 0]T, uy = [3 10 3 10]T. The global minimum f(X) = −62.579
is attained at X = [5.21066 5.0279 0 0 3 0 4 2 1]T.

148



f(X) =

{︄
|f1| nd2 = 0

f1 nd2 = 1

s.t Aineqx+Bineqy ≤ bineq

where f1(x, y) =

⎧⎪⎨⎪⎩
fHorst6(x) + fhs044(y) nd1 = 0

0.5fHorst6(x) + fhs044(y) nd1 = 1

fHorst6(x) + 2fhs044(y) nd1 = 2

fHorst6(x) = xTQx+ px

Q =

⎡⎣ 0.992934 −0.640117 0.337286
−0.640117 −0.814622 0.960807
0.337286 0.960807 0.500874

⎤⎦
p =

[︁
−0.992372 −0.046466 0.891766

]︁
fhs044(y) = x0 − x1 − x2 − x0x2 + x0x3 + x1x2 − x1x3

Aineq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.488509 0.063565 0.945686
−0.578592 −0.324014 −0.501754
−0.719203 0.099562 0.445225
−0.346896 0.637939 −0.257623
−0.202821 0.647361 0.920135
−0.983091 −0.886420 −0.802444
−0.305441 −0.180123 −0.515399

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bineq =

⎡⎢⎢⎢⎢⎢⎢⎣
1 2 0 0
4 1 0 0
3 4 0 0
0 0 2 1
0 0 1 2
0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
bineq = [2.86506, −1.49161, 0.51959, 1.58409, 2.19804, −1.30185,

− 0.73829, 8, 12, 12, 8, 8, 5]T

(A.4)

149



ros-cam-modified [32, 181]: nc = 2, nint = 1, and nd = 2 with ni = 2

for each categorical variable (denoted as ndi, for i = 1, 2). Each cat-
egorical variable is in {0, 1}. ℓx = [−2.0 − 2.0]T, ux = [2.0 2.0]T;
ℓy = 1, uy = 10. The global minimum f(X) = −1.81 is attained at
X = [0.0781 0.6562 5 1 1]T.

f(X) =

{︄
f1 + fros(x, y) nd2 = 0

f1 + fcam(x, y) nd2 = 1

s.t Aineqx ≤ bineq

where f1(x, y) =

{︄
fros(x, y) nd1 = 0

fcam(x, y) nd1 = 1

fros(x, y) = 100(x2 − x21)2 + (x1 − 1)2 + (y − 3)2

fcam(x, y) = a1 + a2 + a3 + (y − 5)2

a1 = (4− 2.1x21 +
x41
3
)x21

a2 = x1x2

a3 = (−4 + 4x22)x
2
2

Aineq =

⎡⎢⎢⎢⎢⎣
1.6295 1
0.5 3.875

−4.3023 −4
−2 1
0.5 −1

⎤⎥⎥⎥⎥⎦
bineq = [3.0786, 3.324, −1.4909, 0.5, 0.5]T

(A.5)

150



Appendix B

Optimization methods and
relevant implementations

B.1 Bayesian Optimization methods

Bayesian Optimization (BO) [33] is a technique often used to optimize ex-
pensive black-box functions with limited data. It involves constructing a
surrogate model, typically a probabilistic model such as a Gaussian pro-
cess, to approximate the unknown function. BO follows a general proce-
dure of surrogate-based optimization methods outlined in Section 2.2. To
guide the optimization process, various acquisition functions are com-
monly employed, including expected improvement, upper confidence
bound, and probability improvement. These acquisition functions help
in selecting the most promising points to evaluate, trading-off exploita-
tion of the surrogate and exploration of the search space, and iteratively
refining the surrogate model to find the optimal solution.

B.1.1 CoCaBO

Continuous and Categorical Bayesian Optimization (CoCaBO) [123] is
a technique proposed to optimize box-constrained expensive black-box
problems with both continuous and categorical variables, specifically for

151



problems with multiple categorical variables with multiple possible val-
ues. CoCaBO model the input space with a Gaussian Process kernel,
which is designed to allow information sharing across different categor-
ical variables to enhance data efficiency.

B.1.2 EXP3BO

EXP3BO [121] is a technique proposed to optimize box-constrained, ex-
pensive black-box problems, which is modified from BO via the EXP3
algorithm [182, 183]. It can deal with mixed categorical and continu-
ous input spaces by utilizing multi-armed bandits. Specifically, EXP3BO
constructs a Gaussian process surrogate specific to each chosen category,
making it unsuitable for handling problems with multiple categorical
classes.

B.1.3 One-hot BO

One-hot BO [118] handles the input space with continuous and categor-
ical variables by one-hot encoding the categorical variables and treating
these encoded variables as continuous. Then, the standard BO noted in
Section B.1 is used to solve the optimization problem on the transformed
input space.

B.1.4 BoTorch

BoTorc (BO in PyTorch) [149] is a package that implements BO based
on GPs. In this framework, categorical variables are one-hot encoded,
and users can select different kernels. For instance, for fully-categorical
design space, the Hamming distance kernel is commonly used. For
mixed-integer cases within the reaction optimization domain, it is recom-
mended to use Matérn5/2 kernel for both continuous and integer (dis-
crete) variables [143, 145]. For mixed-integer cases, BoTorch finds the next
point to test by iterating through all possible integer values in an outer
loop and optimizing the remaining continuous variables while keeping
the integer value fixed. Subsequently, it selects the integer value that

152



returns the best evaluation on the acquisition function. This step can
cause the computational time to increase significantly, especially when
the number of integer (discrete) variables increases and/or the number
of possible options for these variables increases. Additionally, constraint
handling for mixed-integer cases has not been implemented [149] as con-
ventional approaches, such as trust regions, cannot be trivially integrated
with the current framework.

B.1.5 EDBO

EDBO (Experimental Design via Bayesian Optimization) [143] is a pack-
age that implements BO based on GPs, where it considers three descrip-
tors to encode the categorical variables, which are density functional the-
ory [184], Mordred [185], and one-hot encoding. Different from BoTorch,
EDBO pre-trains the GP model with data from the literature for the fol-
lowing two reactions: Suzuki-Miyaura reaction [144], consisting of 3,696
reactions in the dataset, and the Buchwald-Hartwig reaction, whose
training dataset consists of 3,960 unique reactions [184]. We note that
EDBO is tailored to solve problems for reaction condition optimization,
which only involve categorical variables with finite options. As a re-
sult, its workflow involves pre-generating all the possible combinations.
When searching the next sample to test, rather than searching within de-
fined bounds, EDBO exhaustively enumerates the entire domain, select-
ing the point with the lowest acquisition function evaluation. For mixed-
integer cases, continuous variables first need to be discretized. The enu-
meration procedure in the acquisition step can become computationally
expensive as the number of discretization steps increases, highlighting
the trade-off between computational time and achieving a better repre-
sentation of the original domain. Regarding constraint handling, there is
currently no implementation integrated into EDBO.

B.1.6 TPE

Tree-structured Parzen Estimator (TPE) [55] is a black-box optimization
algorithm that uses tree-structured Parzen density estimators. TPE main-

153



tains historical data of “good“ and “bad“ configurations and builds prob-
ability density functions based on these data. Notably, TPE is capable of
handling both continuous and categorical spaces due to the nature of its
kernel density estimators. TPE is implemented in Hyperopt, which offers
a framework specifically designed to facilitate the application of BO for
hyperparameter selection [55]. TPE is computationally cheap and sim-
ple compared to many other algorithms within the BO framework [148].
However, incorporating a relatively large number of constraints is chal-
lenging and is not currently implemented in Hyperopt [148, 186]. Watan-
abe and Hutter [186] attempted to address this challenge by integrating
the acquisition function of constrained BO by Gardner et al. [105]. How-
ever, the proposed approach considers the probability of constraint im-
provement and still allows infeasible samples [105, 186], which may be
selected and tested in simulations but can not be queried for real experi-
ments.

B.2 Other methods

B.2.1 Random Search

Samples are randomly selected within the search domain without any
encoding for categorical variables or optimization steps.

B.2.2 MISO

Mixed-Integer Surrogate Optimization (MISO) [53] is a technique that
targets expensive black-box functions with mixed-integer variables. It
constructs a surrogate model using the radial basis function to approx-
imate the unknown function. MISO follows a general procedure of
surrogate-based optimization methods outlined in Section 2.2. Addition-
ally, MISO combines different sampling strategies (e.g., coordinate per-
turbation, random sampling, expected improvement, target value, and
surface minimum) and local search to obtain high-accuracy solutions.

154



B.2.3 NOMAD

NOMAD [56, 119] is a C++ implementation of the Mesh Adaptive Di-
rect search (MADS). It is designed to solve difficult black-box optimiza-
tion problems. In particular, it can handle nonsmooth, nonlinearly con-
strained, single or bi-objetive, and mixed variable optimization prob-
lems. It handles the categorical variable using the extended poll, which
is defined as following [187]:

The extended poll first calls the user-provided procedure
defining the neighborhood of categorical variables. The pro-
cedure returns a list of points that are neighbors of the cur-
rent best point (incumbent) such that categorical variables are
changed and the other variables may or may not be changed.
These points are called the extended poll points and their di-
mension may be different than the current best point, for ex-
ample when a categorical variable indicates the number of
continuous variables.

B.2.4 SMAC

Sequential Model-based Algorithm Configuration (SMAC) [54] is a
surrogate-based black-box optimization method originally proposed to
tackle algorithm configuration problems with continuous and categorical
variables. Its model is based on random forests [188], so it can handle
categorical variables explicitly. SMAC uses empirical mean and variance
within a tree ensemble to identify uncertain search space regions and
optimizes the acquisition function by combing local and random search.

B.2.5 Genetic

Different genetic algorithm implementations are available [146, 147, 189–
195]. In Chapter 6, we compare PWAS with the evolutionary algo-
rithm implemented in the Distributed Evolutionary Algorithm in Python
(DEAP) package [146, 147]. DEAP handles categorical variables by label

155



encoding them. Next sample to test is generated through crossover, mu-
tation, or a combination of both, depending on whether the randomly
generated probabilities for the execution of crossover or mutation exceed
the default threshold. Evolutionary algorithms often balance exploita-
tion and exploration through crossover and mutation, without explicitly
utilizing the input-output correlations. Therefore, when the design space
is large, it may require a large number of experiments or simulations to
attain desired outcomes, making it not suitable for expensive-to-evaluate
problems [196]. To address this issue, different surrogate-assisted evolu-
tionary algorithms have been proposed [197, 198]. Nevertheless, sur-
rogate model selection and relevant parameter tuning remain challeng-
ing [198]. Moreover, incorporating constraints within the framework can
be non-trivial [199].

B.2.6 PSO

Particle Swarm Optimization (PSO) [16] is a population-based technique
often used to optimize black-box, nonlinear, and multi-modal functions
with continuous variables. It mimics the behavior of a swarm of birds or
fish. In PSO, potential solutions are represented as particles that move
through a search space. At each iteration, particles adjust their positions
based on their own historical best position and the best position found by
any particle in the swarm. This information influences their movement
toward promising areas of the search space. The algorithm iteratively
refines the particle positions until a stopping criterion is met.

156





Unless otherwise expressly stated, all original material of what-
ever nature created by Mengjia Zhu and included in this thesis,
is licensed under a Creative Commons Attribution Noncommercial
Share Alike 3.0 Italy License.

Check on Creative Commons site:

https://creativecommons.org/licenses/by-nc-
sa/3.0/it/legalcode/

https://creativecommons.org/licenses/by-nc-sa/3.0/it/deed.en

Ask the author about other uses.

https://creativecommons.org/licenses/by-nc-sa/3.0/it/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/legalcode/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/legalcode/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/deed.en
mailto:mengjia.zhu@imtlucca.it

	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract
	List of Notations
	List of Abbreviations
	Overview
	Introduction
	Thesis outline and contributions

	Preliminaries
	Global optimization
	Black-box optimization
	Preference-based optimization
	GLISp

	Mixed-variable black-box optimization
	PARC

	Model predictive control

	Preference-based MPC calibration
	Introduction 
	Contribution

	Problem description
	Preference-based tuning
	Case studies
	CSTR optimal steady-state switching policy
	Automated driving vehicle

	Conclusion

	Handling unknown constraints in preference-based optimization with applications to controller calibration
	Introduction
	Problem formulation
	Proposed method
	Learning unknown constraint functions
	Learning the preference function
	Acquisition function

	Optimization benchmarks
	MPC calibration
	Results

	Conclusions

	Global and Preference-based Optimization with Mixed Variables using Piecewise Affine Surrogates
	Introduction
	Contribution

	Problem formulation
	Solution method
	Change of variables: scaling and encoding
	Piecewise affine surrogate function
	Exploration function
	Acquisition function
	Initial sampling strategies

	Preference-based learning
	Optimization benchmarks
	Conclusion

	Discrete and mixed-variable experimental design with surrogate-based approach
	Introduction
	Problem description
	Case studies
	Suzuki-Miyaura cross-coupling
	Crossed barrel
	Solvent design

	Conclusion

	Conclusion
	Open questions and future work

	Bibliography
	Appendix
	Benchmark
	Unconstrained mixed-variable synthetic benchmarks
	Unconstrained mixed-variable real-world benchmarks
	Constrained mixed-variable synthetic problems

	Optimization methods and relevant implementations 
	Bayesian Optimization methods
	CoCaBO
	EXP3BO
	One-hot BO
	BoTorch
	EDBO
	TPE

	Other methods
	Random Search
	MISO
	NOMAD
	SMAC
	Genetic
	PSO



