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Abstract

In the last decades, consistent efforts have been spent to cap-
ture specific shades of real systems through the development
of random graph models, which have been studied extensively
either for their practical value as statistical benchmarks and
their theoretical appeal, as abstract tools capable of generating
synthetic graphs with realistic properties.
In particular, establishing a robust representation of a graph
at multiple scales of observation would enable considerable
progress in the description, modeling, and control of real-
world complex systems. Here, by building on the principles of
renormalization group theory from statistical mechanics, we
derive a random graph model precisely conceived to provide
a statistically consistent description of a network for different
resolutions of its units and in an exact manner.
We explore two interesting facets of the proposed model,
which interlace with different branches of network science. On
the one hand, it allows complying with empirical networks to
provide up-scaled and down-scaled reconstructions according
to a chosen hierarchy of partitions of the original nodes. In
this sense, the model constitutes solid support for harboring
a coarse-graining scheme of real systems without relying on
any arbitrary introduction of a metric space. Secondly, this
scale-invariant random graph itself turns out to generate net-
works with topological properties that are widespread among
real-world systems and thus its mathematical sifting has its
own theoretical interest.
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Chapter 1

Introduction

In their simplest formulation, networks are mathematical objects
composed of a collection of units connected in pairs by lines. Despite their
simplicity, in the past decades they acquired a central role in complex
systems modeling for their capability of providing profound insights
about a given system by only focusing on the pattern of interactions
among its fundamental units.
Reducing a system to such an abstract representation implies a net
loss of information, which is nevertheless repaid by the opportunity to
apply an extensive set of tools and techniques for extracting relevant
information from very different systems. In particular, the advent of
the computer age has incited an increasing interest in the fundamental
properties of complex networks. Indeed, the surge of computational
power allowed to store and investigate large datasets from the natural,
technological, and social realms, and led to the acknowledgment that the
emergent architectures, neither purely regular nor purely random, show
profound similarities that suggested a common formation mechanism
and blended the interest in network science of researchers from many
different fields [4].

One of the most evident common features of real networks is that they
can be large, and in some cases analyzing them in detail or providing a de-

1



terministic model for how they came to be is effectively impossible. Akin
to the study of physical systems in statistical mechanics, this problem has
been worked around by resorting to probability theory to consider random
graphs as network models, which provide a probabilistic description of
the local rules by which nodes are connected to one another [5].
In general, a random graph model is a network model in which the
specific structure of the network is considered as randomly drawn, con-
ditionally on a given set of parameters, which are taken as deterministic.
In the oldest and most studied random graph, introduced by Paul Erdős
and Alfréd Rényi in a series of seminal papers in the 1950s [6–8], the
number of vertices n and the number of edges m are fixed, while any
realization of the network is generated by progressively placing each
of the m edges between pairs of nodes, uniformly chosen at random 1.
Notwithstanding the remarkable advantage of the Erdős - Rényi random
graph of being exactly solvable for many of its average properties [9], it
is not completely satisfactory for most of the real-world networks, since
it differs from the latter in at least two of the universal aforementioned
features. The first one, pointed out by Watts and Strogatz [10], deals with
the high propensity of nodes from several real systems to cluster together,
i.e. to form connected triads even in very sparse regimes. The tendency of
nodes to be more likely connected if they share a connection with a third
node finds a very natural reformulation in the context of social sciences
since our common experience is that, usually, our social sphere grows by
progressively including adjacent possible contacts (i.e. the friends of our
friends). Moreover, a strong presence of short loops has been also found
in technological and biological networks [11]. In the Erdős-Rényi random
graph, the probabilities of vertex pairs to be connected are by definition
independent, so that they are not affected by the existence of a mutual
neighbour and thus the density of connected triads equals the density of
links, thus converging to zero as the latter does.
A second widespread feature of real networks that defies the classical

1More precisely, a random graph model is defined as an ensemble of networks, i.e. a
probability distribution over all possible networks. In Erdős - Rényi random graph, each
realization is drawn by choosing uniformly at random among the set of all simple graphs
with exactly n vertices and m edges.
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random graph model concerns the degree distribution, and it has been
particularly emphasized in the work of Albert, Barabási, and collabora-
tors [12, 13]: the expected degrees of Erdős-Rényi random graphs exhibit
a Poisson distribution where their empirical counterparts appear to have
power-law tailed degree distributions, possibly with exponential cut-off
([12–16]). The presence of a long-tailed degree distribution, generally
referred to as scale free property (since it implies the lack of a typical scale
for the nodes’ degree), induces a highly heterogeneous structure in the
network, in which a small fraction of nodes (called hubs) hold the vast ma-
jority of connections and thus strongly affects the behavior of the whole
system. This hierarchical organization has been found to have tremen-
dous impacts on the dynamics of processes taking place on networks
(among all the epidemic processes [17, 18]) and a large variety of random
graphs models have been conceived to reproduce such heterogeneity in
the successive years [13, 19–21].
Although exhibiting unrealistic clustering and degree distribution, the
Erdős-Rényi random graph has proved extraordinarily useful as a source
of insight into the structure of networks, among other reasons, for its
capability of providing a grounded, well-understood benchmark. Indeed,
although network modeling aims, in general, to mimic patterns of con-
nections of real networks to aid the understanding of their formation
mechanisms, there is no model capable of capturing just all about the
features of an empirical system (if not without consistent overfitting), and
every random graph focus on different aspects, depending on the specific
nuances of the system under study and on the specific inquiry one would
like to address. A paradigmatic class of random graphs with this regard is
represented by the family of Exponential Random Graphs [22–24], originally
introduced in social science and then reframed in the context of statistical
mechanics by Park and Newman, that derived them from the principle
of maximum entropy [23]. The ERGs provide the technical framework
for sampling networks that exhibit, in average, certain local features of
real-world systems but are otherwise maximally random [24].

Besides topological properties, one could be interested in intersecting
further facets of real-world systems that can be modelled by complex
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networks. While a univocal and formal definition of complexity is still
under debate, one of the settled aspects, which constitutes the motivation
for this thesis, is that complex systems usually exhibit structural features
extending over multiple characteristic scales [25, 26]. In network sci-
ence, methods developed for a multiple resolution screening of empirical
networks allowed to detect a widespread modular structure, in which
nodes divide naturally into communities (i.e. groups of nodes that are
more densely connected), that in their turn are organized hierarchically
across progressively higher-level structures [27–29]. This is resulting in an
overall arrangement into distinct levels (not necessarily straightforwardly
identified) that define a variety of scales of observation and can in some
cases be ordered according to these scales. A straightforward example
is provided by socio-economic networks, which are built hierarchically
across several levels, from single individuals up to groups, countries,
and whole geographical regions. The information concerning interac-
tions among these entities may, at times, be accessible only at aggregate
levels and may exhibit disparities across different units. For instance,
the statistical agency of one country might report comprehensive and
reliable data on all domestic and international transactions at the firm
level, whereas another may provide such information only at the sector or
even at the country level. This gives rise to a complex structure in which
elements on different mesoscales come together to interact, in addition to
the horizontal interactions that occur among elements at the same scale.
Such hierarchical organization calls for robust multi-scale representations
and models capable of capturing the properties of a system at arbitrary
scales of resolution, for both practical and theoretical reasons, including
the reconstruction of a network topology from partial information (due for
example to confidentiality constraints ) or the analysis of the propagation
of information from lower to higher levels of aggregation.

Already in the second half of the last century, the analysis of physical
systems at different scales successfully assisted the understanding of
their critical behavior, leading to the development of the Renormalization
Group (RG) theory in statistical mechanics [30–33]. The real space RGT can
be loosely introduced as a formal apparatus that allows for a systematic
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investigation of a system through a repeated coarse-graining scheme,
whereby its elementary units are progressively merged according to
a minimum-distance principle. The iteration of these coarse-graining
steps, each one followed by a proper rescaling of the parameters in
the Hamiltonian, induces the so-called renormalization flow, which
turned out to be deeply related to the phase diagram of the system
under study [32, 33]. Clearly, RG techniques are based on the availability
of a valid source of geometric scaling, i.e. a metric distance defining
‘how close’ the units being coarse-grained should be and identifying
possible characteristic lengths and scaling properties in the system. For
this reason, the application of RG methods has been strongly limited
in those cases where the system is not naturally embedded in a metric
space, as is the case for many real-world systems modelled by complex
networks. Indeed, the lack of an explicit geometric embedding implies
that vertices do not necessarily have well-defined coordinates, and the
renormalization procedure cannot be defined in a way similar to that
employed for regular geometric lattices.
Nevertheless, consistent efforts have been devoted to addressing this
limitation in recent decades. One of the earliest attempts proposes a
box-covering procedure borrowed from fractal analysis and based on
the identification of distance with the shortest path lengths between
nodes [34, 35]. Grouping the nodes according to their topological
distances has important limitations from practical and theoretical points
of view: on the one hand, finding the optimal partition of nodes (that is,
the minimum number of boxes that cover the system in such a way that
the elements in each block are separated by a given distance) is a NP-hard
problem, for which only approximate solutions can be found [36]; on the
other, the shortest path length is a poor source of variability and scaling
due to the small-world property exhibited by the majority of the real-world
networks, by which most pairs of nodes are connected by short paths
(implying that the renormalization flow leads to the limit of complete
connectedness after only a few iterations) [10, 14, 37].
Another notable, more recent approach relies on the optimal embedding
of nodes onto a ‘latent’ hyperbolic space that can then be used to guide

5



the renormalization scheme [38]. The groundwork is thus the adoption of
a hidden space random graph model, where the connection probabilities
among nodes are determined by their coordinates in a hyperbolic space
whose geometry shapes the structure and induces the topology of the
observed system [21, 39–41]. Driving the network into a metric space
grants to elude the lack of geometry by providing a metric that allows for
a clear definition of scale of observation and a natural implementation of a
zooming-in and zooming-out procedure.
A latter strategy involves the Laplacian operator for graphs and leverages
its spectral properties to introduce a diffusion-based renormalization
scheme [42]. Provided that the considered network exhibits a non-trivial
Laplacian susceptibility, this method is capable of successfully identifying
a spatiotemporal hierarchical organization in the network and uncovering
its mesoscale structures.
All the aforementioned approaches focus on the possibility of identifying
hierarchical partitions of nodes within a given real network, while either
neglecting the problem of defining a graph model consistent with the
identified partitions or addressing it in a manner that is contingent on
the specific methodology used to establish the coarse-graining scheme
itself. However, it is in general desirable to resort to a multiscale network
model that is independent of the specific scheme used to extract the
hierarchy of partitions, for instance, because the notion of coexistence of
multiple scales in networks may be more general than the one defining
the coarse-graining method itself.

In this work we want to contribute to the discussion around multiscale
modeling by addressing the following question: is it possible to define a
random graph model only from scale-invariance requirements attained
on a statistical description of the network ? And is a parsimonious choice
of the parameters compatible with the complex structures exhibited at
multiple scales? Under these terms, however, these are ill-posed issues,
since, as pointed out, networks in general are not embedded in any metric
space and therefore lack a clear definition of ’scale’. We will approach
these issues in the three chapters that interweave in this thesis, which is
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organized as follows.

In chapter 2, we first derive the random graph model that is the focus
of this contribution (the Scale-Invariant Model) for undirected and binary
networks. This is done by first defining a coarse-graining scheme that
progressively reduces the size of a network and thus identifying each
step in this coarse-graining flow with a different scale of observation. Then,
inspired by Kadanoff’s construction of the block-spin model [30], we
argue that a consistent multi-scale graph probability should preserve its
symmetries across these scales, therefore we find the unique solution
that fulfills the requirement upon realistic ansätze. In this sense, we
interlace the two distinct topics of finding a random graph model capable
of retaining the hierarchical structure of complex networks and the one
of devising a self-consistent way to apply a coarse-graining scheme on
metric-less systems. We then follow up by discussing the different roles
played by the parameters of the model and expound on its relation with
other random graphs. Different settings of these parameters lead to
different scenarios. We identify and discuss two viable applications: the
first one fits in a quenched scenario, where the parameters are deterministic
and the model can comply with an empirical network to guide its
coarsening or making predictions at any level of aggregation. The
possibility to merge the nodes according to non-homogeneous partitions
of the original nodes allows us to account for elements at different levels
of the hierarchy within the same snapshot, thereby harbouring possible
multi-scale interactions. Secondly, we approach an annealed scenario,
where the parameters are represented by random variables and the model
becomes an abstract tool for generating synthetic networks that turn out
to exhibit realistic properties.

In chapter 3, we revisit the initial derivation of the SIM to encompass
a broader class of networks in this modelization task, specifically,
directed networks. Indeed, a vast majority of real interacting systems
include directionalities, and thus a generalization of the SIM capable
of capturing the richer topological properties of directed networks was
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required. In particular, we focus on the possibility of accounting for
non-trivial patterns of network reciprocity, which refers to the tendency
of vertex pairs to form mutual connections and plays a central role in the
characterization of directed graphs. The chapter is organized analogously
to chapter 2, it therefore includes the detailed derivation of the Directed
Scale-Invariant model (in section 3.2), an application of the DSIM aimed
at producing down-scaled replicas of a real network (section 3.4) and an
analysis of synthetic networks drawn from our ensemble (in section 3.5).

In chapter 4, the topological properties of the SIM in its undirected
formulation are sifted by adopting a mathematically rigorous perspective.
Along the chapter, the annealed scenario introduced in section 2.4 is con-
sidered, and the analytical results previously obtained in a limited setting
are extended to more general claims. In particular, precise statements
around the expected degrees and their asymptotics are made in section
4.3.1, while in section 4.3.2 the local geometry of the graph is explored
by counting the expected number of triangles and wedges in the graph
ensemble.
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Chapter 2

Definition of the SIM:
geometry-free network
renormalization

This chapter is based on the work [1] by E. Garuccio, M. Lalli, and D.
Garlaschelli. We introduce the random graph model that is the focus of
this thesis and which we name Scale-Invariant Model (or SIM). Its explicit
derivation is reported together with two applications that illustrate how it
can be used either for reproducing multi-scale snapshots of a real network
(specifically the International Trade Network) or for generating scale-free
networks without fine-tuning and without geometry.

2.1 Introduction

Several societal challenges, including the development of more resilient
economies, the containment of infectious diseases, the security of critical
infrastructures and the preservation of biodiversity, require a thorough
understanding of the network structure connecting the units of the un-
derlying complex systems [43–45]. One of the obstacles systematically
encountered in the analysis and modeling of real-world networks is the
simultaneous presence of structures at multiple interacting scales. Estab-
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lishing a consistent representation of a graph at multiple scales is a long-
standing problem whose solution would enable considerable progress
in the description, modeling, and control of real-world complex systems.
In the language of statistical physics, achieving a proper multiscale de-
scription of a network requires the introduction of a renormalization
scheme whereby a network can be coarse-grained iteratively by parti-
tioning nodes into ‘block-nodes’ either horizontally, i.e. at homogeneous
levels of the hierarchy, or across hierarchical levels, thus allowing block-
nodes to contain possibly very different numbers of nodes. The traditional
block-renormalization scheme (whereby equally sized blocks of neigh-
bouring nodes in a regular lattice are replaced by identical block-nodes,
leading to a reduced lattice with the same geometry) is feasible for geo-
metrically embedded networks where the coordinates of nodes naturally
induce a definition of block-nodes of equal size. However, it becomes
ill-defined in arbitrary graphs where node coordinates are not necessarily
defined, and particularly problematic in real-world networks with broad
degree distribution (which makes the neighbourhoods of nodes very
heterogeneous in size and not good candidates as block-nodes) and small-
world property (which limits the iterability of coarse-grainings based on
shortest paths). Several renormalization schemes for complex networks
have been proposed to deal with this inherent complications [28, 34, 38,
42, 46–49]. For instance, in analogy with fractal analysis, a box-covering
technique defining block-nodes as certain sets of neighbouring nodes
has been defined [34, 46, 50, 51]. Alternative coarse-graining schemes
have been proposed based on the identification of communities [28] or
motifs [52]. Another notable approach is the geometrical embedding
of networks in a hidden euclidean [47] or hyperbolic [21, 38, 39] metric
space, followed by the coarse-graining of nearby nodes. Hyperbolically
embedded graphs have many realistic properties, including scale-free de-
gree distributions and large clustering, that are preserved upon geometric
renormalization [38]. Other methods are based on the preservation of
certain spectral properties of the original network via the identification of
(approximate) equivalence classes of structurally similar nodes [48, 49]. A
notable recent contribution is a diffusion-based coarse-graining scheme

10



that detects spatio-temporal scales in heterogeneous networks via the
Laplacian operator for graphs [42].

The above approaches have not yet focused on the problem of defining
the most general graph model that remains consistent across different coarse-
grainings of the network, i.e. that keeps describing the same system
coherently (possibly with renormalized parameters) at all scales without
requiring any further assumption e.g. regarding the embedding of nodes
with geometric coordinates. Indeed, the available approaches require the
existence of specific topological properties (e.g., community structure [28,
52], hyperbolicity [21, 38, 39], scale-freeness [34, 46, 51], approximate
structural equivalence [48, 49], non-trivial Laplacian susceptibility [42])
and are often irreducible to the ordinary renormalization scheme defined
for lattices or (random) Euclidean graphs, which on the other hand are a
clear example of scale-invariant network models. Crucially, the require-
ment that the renormalization can act flexibly across hierarchical levels
in a multiscale fashion is not explicitly enforced in any of the available
methods.

Here we propose a general renormalization scheme based on a
random network model that remains invariant across all scales, for any
desired (horizontal or vertical) partition of nodes into block-nodes. In a certain
‘quenched’ setting, the model can guide the renormalization of generic
graphs, from regular lattices to realistic complex networks with node
attributes and (optionally, but not necessarily) dyadic properties such as
distances and/or community structure. In a different ‘annealed’ setting,
it can generate realistic scale-free networks spontaneously, without
fine-tuning and without geometry, only as a result of the requirement of
scale-invariance imposed both on graph probability and on parameters
distribution, leading to one-sided α-stable random variables.

The rest of the chapter is organized as follows. In Sec. 2.2 we intro-
duce the graph renormalization framework, identify the resulting scale-
invariant network model, discuss several theoretical properties of the
resulting networks, and highlight the differences with respect to other
existing models. In Sec. 2.3 we consider the quenched setting, where the
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model parameters are considered fixed and identifiable with empirical
features, and show an application leading to a remarkably consistent
model of the International Trade Network across arbitrary geographical
partitions. In Sec. 2.4 we consider the annealed setting, where the model
parameters are themselves regarded as random variables subject to a
scale-invariance requirement, and show how this leads spontaneously to
a model of scale-free networks with interesting realistic features, includ-
ing finite local clustering even in absence of any notion of metric distance.
In Sec. 2.5 we propose some concluding remarks. Finally, Sec. 2.6 includes
technical details complementary to our analysis that have been set apart
from the main text to enhance overall readability.

2.2 Graph renormalization and scale-invariant
network model

Consider a binary undirected graph with N0 ‘fundamental’ nodes
(labeled as i0 = 1, N0) and its N0 ×N0 adjacency matrix A(0) with entries
a
(0)
i0,j0

= 1 if the nodes i0 and j0 are connected, and a
(0)
i0,j0

= 0 otherwise.
We do not allow for multiple edges but we do allow for self-loops, i.e.,
each diagonal entry can take values a(0)i0,i0

= 0, 1.
Now, let us introduce the scheme that will allow defining the network
at a coarse-grained level. Consider a non-overlapping partition Ω0 of
the nodes of GN0

that maps the original N0 nodes to a set of N1 blocks,
with N1 ≤ N0. As will be discussed later, Ω0 must be non-overlapping and
surjective (i.e. each node at level 0 is assigned to at most one block and each
block originates from at least one node at level 0) but is arbitrary on other
respects. Then all the nodes within the same block are merged to form a
block-node (labeled as i1 = 1, . . . , N1), and each pair of block-nodes (or
nodes at level 1) are connected if at least one link is present between the
nodes across the two blocks, as illustrated in Fig. 1.
Therefore, the coarse-grained graph is described by the N1×N1 adjacency
matrix A(1) with entries a(1)i1,j1

= 1 − ∏︁i0∈i1
∏︁

j0∈j1(1 − a
(0)
i0,j0

), where
i0 ∈ i1 denotes that the chosen partition Ω0 maps the original node i0
onto the block-node i1, i.e. i1 = Ω0(i0). Note that we do not require
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i1 ̸= j1, as we keep allowing for self-loops as we coarse-grain (a self-loop
at a block-node represents the existence of at least one link or self-loop in
the subgraph connecting the original ‘internal’ nodes).
In the following, we will denote the graph GNℓ

and its nodes at level ℓ as
ℓ-graph and ℓ-nodes, respectively, for any considered level of aggregation
ℓ.

Iterating the coarse-graining ℓ times produces a hierarchy of ‘blocks
of blocks’, with the partition Ωℓ leading to a (ℓ + 1)-graph with Nℓ+1

(ℓ+ 1)-nodes and adjacency matrix A(ℓ+1) with entries

a
(ℓ+1)
iℓ+1,jℓ+1

= 1−
∏︂

iℓ∈iℓ+1

∏︂

jℓ∈jℓ+1

(︂
1− a(ℓ)iℓ,jℓ

)︂
(2.1)

where iℓ and jℓ are ℓ-nodes, while iℓ+1 = Ωℓ(iℓ) and jℓ+1 = Ωℓ(jℓ) are
(ℓ+ 1)-nodes.

The hierarchy {Ωℓ}ℓ≥0 of desired partitions can be uniquely
parametrized in terms of a dendrogram, akin to the toy represen-
tation in Fig. 2.

Our first objective is the identification of a random graph model that
can be renormalized under any partition obtained from {Ωℓ}ℓ≥0 via ei-
ther a ‘horizontal’ (left panel of Fig. 2) or a ‘multi-scale’ (right panel of
Fig. 2) cut of the dendrogram. Note that, since any ‘multi-scale’ coarse-
graining is ultimately another partition of the same 0-nodes, we can
equivalently produce it ‘horizontally’ as well, but on a certain modified
hierarchy {Ω′ℓ}ℓ≥0 obtained from {Ωℓ}ℓ≥0. Therefore, requiring that the
model is scale-invariant for any specified hierarchy of partitions auto-
matically allows for multi-scale coarse-grainings as well. To enforce this
requirement, we fix some {Ωℓ}ℓ≥0 and regard the initial 0-graph A(0)

not as deterministic, but as generated by a random process with some
probability P0

(︁
A(0);Θ0

)︁
normalized so that

∑︁
A(0)∈GN0

P0

(︁
A(0);Θ0

)︁
= 1,

where Θ0 denotes all parameters of the model (including N0) and GN

denotes the set of all binary undirected graphs with N nodes. A given
partition Ω0 will in general map multiple 0-graphs {A(0)} onto the same
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without fine-tuning and without geometry.

The renormalizable network model. Let us consider
a binary undirected graph with N0 ‘fundamental’ nodes
(labeled as i0 = 1, N0) and its N0⇥N0 adjacency matrix

A(0) with entries a
(0)
i0,j0

= 1 if the nodes i0 and j0 are

connected, and a
(0)
i0,j0

= 0 otherwise. Note that we allow
for self-loops, i.e. each diagonal entry can take values

a
(0)
i0,i0

= 0, 1. We want to aggregate the N0 nodes into

N1  N0 block-nodes (labeled as i1 = 1, N1) forming
a non-overlapping partition ⌦0 of the original N0 nodes,
and connect two block-nodes if at least one link is present
between the nodes across the two blocks, as illustrated in
Fig. 1. Therefore the coarse-grained graph is described by

the N1 ⇥N1 adjacency matrix A(1) with entries a
(1)
i1,j1

=

1�Qi02i1

Q
j02j1

(1� a
(0)
i0,j0

), where i0 2 i1 denotes that
the chosen partition ⌦0 maps the original node i0 onto
the block-node i1, i.e. i1 = ⌦0(i0). Note that we have
not required i1 6= j1, as we keep allowing for self-loops.
In general i0 is not the only node mapped to i1, i.e. ⌦0 is
surjective. We call A(0) the 0-graph and A(1) the 1-graph.
Similarly, we call the N0 nodes the 0-nodes and the N1

block-nodes the 1-nodes. Iterating the coarse-graining
produces a hierarchy of ‘blocks of block-nodes’, whereby
the partition ⌦l leads to an (l+1)-graph with Nl+1 (l+1)-
nodes and adjacency matrix A(l+1) with entries

a
(l+1)
il+1,jl+1

= 1�
Y

il2il+1

Y

jl2jl+1

⇣
1� a

(l)
il,jl

⌘
(1)

where il and jl are l-nodes, while il+1 = ⌦l(il) and jl+1 =
⌦l(jl) are (l + 1)-nodes.

The hierarchy of desired partitions {⌦l}l�0 can be
uniquely parametrized in terms of a dendrogram as
shown in Fig. 2. Our first objective is the identifica-
tion of a random graph model that can be renormal-
ized under any partition obtained from {⌦l}l�0 via ei-
ther a ‘horizontal’ (left) or a ‘multi-scale’ (right) cut
of the dendrogram. Note that, since any ‘multi-scale’
coarse-graining is ultimately another partition of the

FIG. 1. Schematic example of the coarse-graining of
a graph. Nodes of the original network (left) are grouped
together to form the block-nodes A, B and C (right). In
general, block-nodes can contain di↵erent numbers of nodes.

same 0-nodes, we can equivalently produce it ‘horizon-
tally’ as well, but on a certain modified hierarchy {⌦0l}l�0

obtained from {⌦l}l�0. Therefore, requiring that the
model is scale-invariant for any specified hierarchy of
partitions automatically allows for multi-scale coarse-
grainings as well. To enforce this requirement, we fix
some {⌦l}l�0 and regard the initial 0-graph A(0) not
as deterministic, but as generated by a random pro-
cess with some probability P0

�
A(0)

��⇥0

�
normalized so

that
P

A(0)2GN0
P0

�
A(0)

��⇥0

�
= 1, where ⇥0 denotes

all parameters of the model (including N0) and GN de-
notes the set of all binary undirected graphs with N
nodes. A given partition ⌦0 will in general map mul-
tiple 0-graphs {A(0)} onto the same coarse-grained 1-

graph A(1), and the notation {A(0)} ⌦0��! A(1) will de-
note such surjective mapping. Therefore P0

�
A(0)

��⇥0

�

will induce a random process at the next level, gen-
erating each possible 1-graph A(1) with probabilityP

{A(0)}
⌦0��!A(1)

P0

�
A(0)

��⇥0

�
, where the sum runs over

all 0-graphs that are projected onto A(1) by ⌦0. Iterat-
ing l times, we induce a process generating the l-graph
A(l) with probability

P
{A(0)}

⌦l�1···⌦0������!A(l)
P0

�
A(0)

��⇥0

�
,

where ⌦l�1 · · ·⌦0 is the composition of the l partitions
{⌦k}l�1

k=0, which is ultimately a partition of the 0-nodes.

We now enforce a scale-invariant random graph model
that, for any level l, can generate the possible l-graphs in
two equivalent ways: either hierarchically, i.e. by first
generating the 0-graphs with probability P0

�
A(0)

��⇥0

�

and then coarse-graining them l times via the parti-
tions {⌦k}l�1

k=0, or directly, i.e with a certain probability

Pl

�
A(l)

��⇥l

�
that depends on l only through a set ⇥l of

renormalized parameters that should be obtained from
⇥0 using ⌦l�1 · · ·⌦0. This scale-invariance is equivalent

FIG. 2. Horizontal and multiscale renormalization.
Left: the desired hierarchy of coarse-grainings can be repre-
sented as a dendrogram where the 0-nodes are the bottom
‘leaves’ and the l-nodes are the ‘branches’ cut out by a hor-
izontal line placed at a suitable height. Right: if the den-
drogram is cut at di↵erent heights, one obtains a multiscale
renormalization scheme with block-nodes defined across mul-
tiple hierarchical levels. This is ultimately another partition
of the 0-nodes and is therefore readily implemented in our
approach, which is designed to work for any partition.

Figure 1: Schematic example of the graph coarse-graining and induced
ensembles. Nodes of an ℓ-graph A(ℓ) (left) are grouped together, via a
given partition Ωℓ, to form the block-nodes of the coarse-grained (ℓ + 1)-
graph A(ℓ+1) (right). Note that, in general, block-nodes can contain different
numbers of nodes. A link between two block-nodes (or a self-loop at a sin-
gle block-node) is drawn whenever a link is present between any pair of
constituent nodes. Different realizations of the ℓ-graph are mapped onto
realizations of the (ℓ+ 1)-graph via Ωℓ. Multiple realizations of the ℓ-graph
may end up in the same realization of the (ℓ+ 1)-graph. The scale-invariant
requirement is obtained by viewing the realizations of the ℓ-graph as the out-
come of a random graph generating process with probability Pℓ

(︁
A(ℓ);Θℓ

)︁
,

where Θℓ is a set of parameters, and imposing that the induced probabil-
ity Pℓ+1

(︁
A(ℓ+1);Θℓ+1

)︁
at the next level has the same functional form as

Pℓ

(︁
A(ℓ);Θℓ

)︁
, with renormalized parameters Θℓ+1.

coarse-grained 1-graph A(1), and the notation {A(0)} Ω0−−→ A(1) will de-
note such surjective mapping. Therefore P0

(︁
A(0);Θ0

)︁
will induce a ran-

dom process at the next level (see Fig. 1), generating each possible 1-
graph A(1) with probability

∑︁
{A(0)}

Ω0−−→A(1)
P0

(︁
A(0);Θ0

)︁
, where the sum
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Figure 2: Horizontal vs multiscale renormalization. Left: the desired
hierarchy of coarse-grainings can be represented as a dendrogram where the
0-nodes are the bottom ‘leaves’ and the ℓ-nodes are the ‘branches’ cut out by
a horizontal line placed at a suitable height. Right: if the dendrogram is cut
at different heights, one obtains a multiscale renormalization scheme with
block-nodes defined across multiple hierarchical levels. This is ultimately
another partition of the 0-nodes and is therefore readily implemented in our
approach, which is designed to work for any partition.

runs over all 0-graphs that are projected onto A(1) by Ω0. Iterating ℓ

times, we induce a process generating the ℓ-graph A(ℓ) with probability∑︁
{A(0)}

Ωℓ−1···Ω0−−−−−−→A(ℓ)
P0

(︁
A(0);Θ0

)︁
, where Ωℓ−1 · · ·Ω0 is the composition

of the ℓ partitions {Ωm}ℓ−1m=0, which is ultimately a partition of the 0-nodes.

We now enforce a scale-invariant random graph model that, for any
level ℓ, can generate the possible ℓ-graphs in two equivalent ways: ei-
ther hierarchically, i.e. by first generating the 0-graphs with probability
P0

(︁
A(0);Θ0

)︁
and then coarse-graining them ℓ times via the partitions

{Ωk}ℓ−1k=0, or directly, i.e. with a certain probability Pℓ

(︁
A(ℓ);Θℓ

)︁
that de-

pends on ℓ only through a set Θℓ of renormalized parameters that can be
obtained, in their turn, hierarchically from Θ0 (by means of renormaliza-
tion rules still to be defined) or directly at level ℓ. This scale-invariance
requirement means that, apart from the different dimensionality of their
domains, P0(·, ·) and Pℓ(·, ·) should have the same functional form, which
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we denote by P (·, ·), and be such that, for any pair ℓ,m (with ℓ > m),

P
(︁
A(ℓ);Θℓ

)︁
=

∑︂

{A(m)}
Ωℓ−1···Ωm−−−−−−−→A(ℓ)

P
(︁
A(m);Θm

)︁
(2.2)

where the renormalized parameters Θℓ are obtained only from Θm, given
Ωℓ−1 · · ·Ωm.

Let us look for the general solution in the case of random graphs with
independent links. In this case, P

(︁
A(ℓ);Θℓ

)︁
factorizes as

Nℓ∏︂

iℓ=1

iℓ∏︂

jℓ=1

[︁
piℓ,jℓ

(︁
Θℓ

)︁]︁a(ℓ)
iℓ,jℓ

[︁
1− piℓ,jℓ

(︁
Θℓ

)︁]︁1−a(ℓ)
iℓ,jℓ , (2.3)

where piℓ,jℓ
(︁
Θℓ

)︁
is the probability that two ℓ-nodes iℓ and jℓ are linked.

In this case it is natural to require that Θℓ contains (besides Nℓ) an overall
constant δℓ (which will set the global link density), a set of additive
node-specific ‘fitness’ parameters {xiℓ}Nℓ

iℓ=1 (which will distribute the
total number of links heterogeneously among nodes), and an (optional)
set of dyadic (pair-specific) parameters {diℓ,jℓ}Nℓ

iℓ,jℓ=1 (which include,
when iℓ = jℓ, the ‘self-interaction’ of a node with itself). We can therefore
use the notation piℓ,jℓ

(︁
Θℓ

)︁
= piℓ,jℓ(δℓ) where we keep only δℓ explicit in

the argument of piℓ,jℓ , because the dependence on the other variables xiℓ ,
xjℓ , diℓ,jℓ is already implicitly denoted by the subscripts iℓ, jℓ (indeed,
piℓ,jℓ depends on iℓ and jℓ only through xiℓ , xjℓ , diℓ,jℓ ).

As we prove in Sec. 2.6.1, if the graph probability factorizes as in
Eq. (2.3) and the fitness x is assumed to be additive upon coarse-graining
of nodes, then there is a unique solution to Eq. (2.2), given by the connec-
tion probability

piℓ,jℓ(δ) =

{︄
1− e−δ xiℓ

xjℓ
f(diℓ,jℓ

) if iℓ ̸= jℓ

1− e− δ
2 x2

iℓ
f(diℓ,iℓ

) if iℓ = jℓ
(2.4)

where δ > 0, xiℓ ≥ 0 for all iℓ, f is an arbitrary positive function and the
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following renormalization rules apply:

δℓ+1 ≡ δℓ ≡ δ, (2.5)

xiℓ+1
≡

∑︂

iℓ∈iℓ+1

xiℓ , (2.6)

f
(︁
diℓ+1,jℓ+1

)︁
≡

∑︁
iℓ∈iℓ+1

∑︁
jℓ∈jℓ+1

xiℓxjℓf
(︁
diℓ,jℓ

)︁
∑︁

iℓ∈iℓ+1
xiℓ

∑︁
jℓ∈jℓ+1

xjℓ
(2.7)

which means δ is scale-invariant, x is node-additive and f renormalizes
as a specific fitness-weighted average.
If the fitness is assumed to have a different renormalization rule (e.g.
multiplicative rather than additive), then a corresponding modified
solution is obtained (e.g. with x replaced by log x). So, up to a redefinition
of the fitness, the solution above is general.
Note that Eq. (2.7) applies also to the ‘diagonal’ terms with iℓ+1 = jℓ+1,
in which case it represents the renormalized self-interaction of node
iℓ+1 with itself, determining the probability of the presence of the
corresponding self-loop.

Equations (2.4)-(2.7) are our key result. One of their consequences
is that, while the dependence of the connection probability piℓ,jℓ(δ) on
the dyadic factor diℓ,jℓ can be switched off entirely without destroying
the scale-invariant properties of the model (for example by taking f to
be a constant function, whereby Eq. (2.7) is automatically fulfilled), the
dependence on the node-specific factors xiℓ xjℓ cannot be switched off
unless the model is made deterministic by formally requiring that f(diℓ,jℓ)
takes only the two values f = 0 (implying piℓ,jℓ(δ) = 0) or f = +∞
(implying piℓ,jℓ(δ) = 1). We consider examples of both situations below.
For now, we would like to remark that the dependence on dyadic factors
(including geometric distances) is optional, while that on node-specific factors is
necessary. This is a general result following only from the enforcement of
scale-invariance. More specific results are discussed below.
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2.2.1 Scale-invariance of graph probability and partition
function

Equations (2.4)-(2.7) have been derived using the scale-invariant require-
ment imposed in Eq. (2.2), under the assumption of edge independence
stated in Eq. (2.3). Indeed, inserting Eq. (2.4) into Eq. (2.3) yields the
explicit expression for the (scale-invariant) graph probability:

P
(︁
A(ℓ); δ

)︁
=

Nℓ∏︂

iℓ=1

iℓ∏︂

jℓ=1

[︁
1− piℓ,jℓ(δ)

]︁ [︃ piℓ,jℓ(δ)

1− piℓ,jℓ(δ)

]︃a(ℓ)
iℓ,jℓ

(2.8)

=

Nℓ∏︂

iℓ=1

[︁
e

δ
2x

2
iℓ
f(diℓ,iℓ

)−1
]︁a(ℓ)

iℓ,iℓ

e
δ
2x

2
iℓ
f(diℓ,iℓ

)

iℓ−1∏︂

jℓ=1

[︁
eδxiℓ

xjℓ
f(diℓ,jℓ

)−1
]︁a(ℓ)

iℓ,jℓ

eδxiℓ
xjℓ

f(diℓ,jℓ
)

=

Nℓ∏︂

iℓ=1

[︁
e

δ
2x

2
iℓ
f(diℓ,iℓ

)−1
]︁a(ℓ)

iℓ,iℓ

iℓ−1∏︂

jℓ=1

[︁
eδxiℓ

xjℓ
f(diℓ,jℓ

)−1
]︁a(ℓ)

iℓ,jℓ

Q−1(δ)

where we have introduced the quantity

Q(δ) ≡
Nℓ∏︂

iℓ=1

e−
δ
2x

2
iℓ
f(diℓ,iℓ

)
iℓ−1∏︂

jℓ=1

e−δxiℓ
xjℓ

f(diℓ,jℓ
)

=

Nℓ∏︂

iℓ=1

Nℓ∏︂

jℓ=1

e−
δ
2xiℓ

xjℓ
f(diℓ,jℓ

)

= e
− δ

2

∑︁Nℓ
iℓ=1

∑︁Nℓ
jℓ=1 xiℓ

xjℓ
f(diℓ,jℓ

)

= e−
δ
2x

2
i∞f(di∞,i∞ )

= 1− pi∞,i∞(δ), (2.9)

with

xi∞ ≡
Nℓ∑︂

iℓ=1

xiℓ , (2.10)

f(di∞,i∞) ≡
Nℓ∑︂

iℓ=1

Nℓ∑︂

jℓ=1

xiℓxjℓf
(︁
diℓ,jℓ

)︁

x2i∞
(2.11)
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representing the total fitness of all nodes and the fitness-weighted average
of f over all pairs of nodes, respectively. Our notation above is meant
to suggest that xi∞ and f(di∞,i∞) can be interpreted as the fitness and
self-interaction of a supernode i∞ representing the only coarse-grained
node remaining after applying an infinite sequence of partitions, or equiv-
alently after applying the trivial partition Ω∞ that places all nodes in the
same supernode i∞ (such that N∞ = 1). Indeed, when applied to such su-
pernode, Eqs. (2.6) and (2.7) produce exactly the values xi∞ and f(di∞,i∞)

defined in Eqs. (2.10) and (2.11), respectively. These quantities are clearly
scale-invariant, in that they can be calculated from the values taken by x
and f(d) at any hierarchical level ℓ. Therefore Q(δ) is a constant term that
depends neither on the realized ℓ-graph A(ℓ) or, owing to Eq. (2.7), on the
hierarchical level ℓ being considered. Consequently, as desired, P

(︁
A(ℓ); δ

)︁

depends on ℓ only through the parameters {xiℓ}Nℓ
iℓ=1 and {diℓ,jℓ}Nℓ

iℓ,jℓ=1,
which renormalize as stated in Eqs. (2.6) and (2.7).
Note that since pi∞,i∞(δ) in Eq. (2.9) represents the probability of a self-
loop at the supernode i∞, i.e. the probability of having at least one link
in the graph at any hierarchical level, then Q(δ) = 1− pi∞,i∞(δ) formally
represents the probability of having zero links in the network.

We can recast the above result in a way that has an explicit connection
with the real-space renormalization framework in statistical physics [31,
32]. To do so, we rewrite the graph probability in Eq. (2.8) in terms of an
effective Hamiltonian H

(ℓ)
eff and a partition function Z(ℓ):

P (A(ℓ); δ) =
e−H

(ℓ)

eff (A
(ℓ),δ)

Z(ℓ)(Nℓ, δ)
(2.12)

where we have defined:

H
(ℓ)
eff (A

(ℓ), δ) = −
Nℓ∑︂

iℓ=1

iℓ∑︂

jℓ=1

aiℓ,jℓ log

[︃
piℓ,jℓ(δ)

1− piℓ,jℓ(δ)

]︃
(2.13)

= −
Nℓ∑︂

iℓ=1

[︂
aiℓ,iℓ log

(︁
e

δ
2xiℓ

xiℓ
f(diℓ,iℓ

) − 1
)︁

+

iℓ−1∑︂

jℓ=1

aiℓ,jℓ log
(︁
eδxiℓ

xjℓ
f(diℓ,jℓ

) − 1
)︁]︂
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and
Z(ℓ)(Nℓ, δ) ≡

∑︂

A(ℓ)

e−H
(ℓ)

eff (A
(ℓ),δ). (2.14)

Note that, while Eq. (2.12) is formally identical to the expression for graph
probabilities in the Exponential Random Graphs approach [22–24, 53, 54],
in our case it does not exhibit a sufficient statistic, i.e. the Hamiltonian in
Eq. (2.13) cannot be written as a simpler function of graph properties and,
to be evaluated, requires the knowledge of the entire adjacency matrix of
the graph. A straightforward calculation yields

Z(ℓ)(Nℓ, δ) =
∑︂

A(ℓ)

Nℓ∏︂

iℓ=1

iℓ∏︂

jℓ=1

[︃
piℓ,jℓ(δ)

1− piℓ,jℓ(δ)

]︃a(ℓ)
iℓ,jℓ

=

Nℓ∏︂

iℓ=1

iℓ∏︂

jℓ=1

1∑︂

aiℓ,jℓ
=0

[︃
piℓ,jℓ(δ)

1− piℓ,jℓ(δ)

]︃a(ℓ)
iℓ,jℓ

=

Nℓ∏︂

iℓ=1

iℓ∏︂

jℓ=1

1

1− piℓ,jℓ(δ)

=
1

1− pi∞,i∞(δ)

= Q−1(δ). (2.15)

As noticed above, Q only depends on δ, which is invariant under renor-
malization. We can therefore drop the superscript and denote the partition
function as Z(δ).

Indeed, since the effective Hamiltonian H
(ℓ)
eff has the same form

given in Eq. (2.13), independently of the resolution level ℓ, recalculat-
ing Z(m)(Nm, δ) from Eq. (2.14) for any other coarse-graining level m ̸= ℓ

and number Nm of nodes would return exactly the same value Q−1(δ):

Z(m)(δ) = Z(ℓ)(δ) ≡ Z(ℓ)(δ) = Q(δ), ∀ ℓ,m. (2.16)

This means that, akin to Kadanoff’s construction [31], the partition function
is invariant along the coarse-graining flow. This property follows crucially
from the functional form of the connection probability piℓ,jℓ(δ) given
in Eq. (2.4): any other functional form, including those considered in
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ERGs [22–24, 53, 54], would in general not lead to an invariant partition
function. On the other hand, precisely because of this scale-invariance, in
our model here the effective Hamiltonian for a realization (say, A(m)) of
the graph at a coarse-grained level m can be evaluated exactly without
knowing the microscopic details of any finer-grained version A(ℓ) (with
ℓ < m) of the same realized graph A(m). This is not possible in ERGs,
and suggests that the topology of A(m) represents in some sense a sort
of sufficient statistic for the model since the probability of A(m) can be
estimated without explicitly summing over the compatible topologies of
any finer version of the same network, i.e. over the realizations A(ℓ) such

that A(ℓ) Ωm−1...Ωℓ−−−−−−−→ A(m) for some sequence Ωm−1...Ωℓ of partitions.

Node-specific fitness The connection probability piℓ,jℓ increases as xiℓ
and/or xjℓ increase. Therefore, as in the Fitness Model (FM) [20] and in
the inhomogeneous random graph model (IRGM) [55], xiℓ can be viewed
as a hidden variable or ‘fitness’ that characterizes the intrinsic tendency
of the ℓ-node iℓ to form connections. Here, the fitness is defined across
multiple hierarchical levels and renormalizability ensures that it is also
an additive quantity summing up to the value in Eq. (2.6) when ℓ-nodes
are merged onto an (ℓ+ 1)-node. This ensures that the total fitness xi∞
defined in Eq. (2.10) is preserved by the renormalization. For instance, if
one starts with xi0 = 1 for all i0, then xiℓ will simply count how many
0-nodes are found within the ℓ-node iℓ, and xi∞ = N0. More interesting
outcomes are obtained by using heterogeneous distributions of the fitness,
as we illustrate later.
We will consider both the ‘quenched’ case where the fitness is fixed and
possibly identified with some empirical quantity (thereby allowing for
the renormalization of real-world networks irrespective of their scale-free
behaviour), and then an opposite ‘annealed’ scenario that spontaneously
leads to scale-invariant and scale-free networks with a density-dependent
cut-off (thereby providing a generic mechanism for the emergence of
scale-free networks from scale-invariance, without geometry).
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Dyadic properties The quantity diℓ,jℓ is a dyadic factor (such as dis-
tance, similarity, co-membership in the same community, etc.) associated
with the node pair (iℓ, jℓ). Although we are free to do otherwise, we may
regard diℓ,jℓ as a distance, in which case it may make sense to assume that
f is a decreasing function, ensuring that more distant nodes are less likely
to be connected.
It is easy to realize that, if di0,j0 is an ultrametric distance, i.e., such that
the ‘stronger’ triangle inequality di0,j0 ≤ max {di0,k0 , dj0,k0} holds for
every triple i0, j0, k0 of 0-nodes [56] and is consistent with the hierarchy
of coarse-grainings (i.e., such that all distances can be represented as
the heights of the branching points of the dendrogram shown in Fig. 2),
then diℓ,jℓ = di0,j0 and hence f(diℓ,jℓ) = f(di0,j0) whenever the 0-nodes
i0 and i0 map onto the ℓ-nodes iℓ and jℓ respectively, that is, whenever
iℓ = Ωℓ−1 · · ·Ω0(i0) and jℓ = Ωℓ−1 · · ·Ω0(j0). In such a case, Eq. (2.7)
reduces to f

(︁
diℓ+1,jℓ+1

)︁
= f

(︁
diℓ,jℓ

)︁
with iℓ+1 = Ωℓ(iℓ) and jℓ+1 = Ωℓ(jℓ),

showing that if the distances among the 0-nodes are ultrametric on the den-
drogram induced by the hierarchy of partitions, they decouple from the hidden
variables and remain invariant across the entire coarse-graining process,
just like the global parameter δ. Reversing the point of view, we may
equivalently say that, given an ultrametric distance among the 0-nodes, any
hierarchy of partitions induced by the associated dendrogram keeps the distances
scale-invariant. In weaker form, this also means that one may use di0,j0 to
specify the dendrogram parametrizing the desired hierarchy of partitions
that will keep the distances scale-invariant. The hierarchy may coincide
with e.g. a nested community structure that one may want to impose. In
any case, we stress that, although ultrametricity is an attractive property
(especially in the annealed scenario that we introduce later or in the one
where directed graphs are approached - as detailed in Chap. 3), we do not
require it as a necessary condition in general.

2.2.2 Recovering the lattice case

We may now discuss a simple but important extreme case, where the
graph is constructed only as a function of distance, and our approach
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reduces to the traditional scheme for renormalizing regular lattices.
For instance, assume that the 0-nodes have coordinates at the sites of a
2-dimensional grid with lattice spacing τ0 and that di0,j0 is the Euclidean
distance between these coordinates. If we set f ≡ +∞ if diℓ,jℓ ≤ 2ℓτ0

and f ≡ 0 otherwise, then the 0-graph will be deterministically the grid
itself and the ℓ-graph will be the usual renormalized lattice with spacing
τℓ = 2ℓτ0 obtained through an appropriate partition Ωℓ−1 that maps each
square block of 4 nearest (ℓ− 1)-nodes onto a single ℓ-node sitting at the
center of the square. In this case, each vertical line of the dendrogram
of hierarchical partitions branches regularly into 4 ‘daughter’ lines and
τℓ = 2ℓτ0 is the height of the branching points splitting (ℓ + 1)-nodes
into ℓ-nodes. The renormalized distances diℓ,jℓ can be mapped exactly to
this dendrogram, thereby retrieving the standard lattice coarse-graining
scheme as a special case of our approach.

2.2.3 Relation to other network models

In the opposite extreme, the dependence on the dyadic factors can be
switched off. In particular, if we set f ≡ 1, Eq. (2.4) reduces to

piℓ,jℓ(δ) =

{︄
1− e−δ xiℓ

xjℓ if iℓ ̸= jℓ

1− e− δ
2 x2

iℓ if iℓ = jℓ
(2.17)

Depending on whether the fitness is considered to be quenched or an-
nealed (a distinction that we will study in detail below), this model can
also be viewed as a unique specification of the FM [20] or of the IRGM [55,
57], respectively. In particular, the specific form of connection probabil-
ity in Eq. (2.17) has been studied in previous works [58, 59]. However,
both our quenched (deterministic fitness) and annealed (random fitness)
approaches yield quite different scenarios with respect to those previ-
ous studies, where the considered fitness (under the different names of
’capacity’ [58] or ’sociability’ [59]) are assumed to be random variables
drawn from distributions with finite mean, whereas our fitness is either
deterministic (and taken to be some fixed value measured from real data)
or random but with infinite mean (the infinite-mean case being irreducible
to the finite-mean one).
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In the ‘sparse’ and ‘bounded’ case, i.e. for δ ≪ x−2max and xmax < +∞
where xmax is the maximum realized (in the quenched case) or ex-
pected (in the annealed case) value of the fitness, Eq. (2.17) reduces to
piℓ,jℓ(δ) ≈ δxiℓxjℓ , which includes the Chung-Lu [60] or ‘sparse’ Config-
uration Model (CM) (pi,j ≈ δxixj with xi = ki and δ = (2L)−1, where
ki is the degree of node i and L is the total number of links). Indeed,
it is possible to prove the asymptotic equivalence (or a weaker form of
asymptotic contiguity) of these models under certain assumptions on
the expected network sparsity and on the moments of the distribution of
the hidden variables [57]. Similarly, in the same limit Eq. (2.4) reduces
to piℓ,jℓ(δ) ≈ δxiℓxjℓf(diℓ,jℓ), which includes the sparse degree-corrected
Stochastic Block-Model (dcSBM) [61] (pi,j ≈ δxixjBi,j where B is a block
matrix) and the Hyperbolic Model (HM) [21, 39] (where xi is a ’hidden
degree’ related to the radial coordinate of node i and di,j to the angu-
lar separation between nodes i and j). The CM, dcSBM, and HM are
among the most popular network models and find diverse applications
including community detection [62], pattern recognition [54] and network
reconstruction [63]. They are instances of maximum-entropy random
graph ensembles [54], which are obtained by maximizing the entropy
under constraints on certain expected structural properties [23, 24, 53,
64]. To generate scale-free networks with power-law degree distribution,
the CM and the dcSBM are usually constructed by drawing the fitness
from a power-law distribution with the same exponent [65] of the target
degree distribution (equivalently, in the HM the fitness distribution is
realized via suitably sprinkling points in hyperbolic space). In the sparse
regime, the fitness distribution and the degree distribution are therefore
identical. In the dense regime, the degree distribution has still the same
power-law regime as the fitness distribution, but it additionally features
a size-dependent upper cut-off, corresponding to the largest degrees ap-
proaching their maximum value [65].
However, Eq. (2.17) is in general not equivalent to the aforementioned
models. Firstly, in the quenched case, even if we start from a sufficiently
sparse 0-graph for which these models are consistent with Eq. (2.4), suc-
cessive coarse-grainings will unavoidably increase xmax and bring the

24



network to the dense regime where the CM, dcSBM and HM are described
by their ‘full’ probability pi,j = δxixjBi,j/(1+δxixjBi,j) [21, 53, 65]. Since
the difference between the values of pi,j in Eq. (2.4) and the corresponding
ones in the dcSBM or HM, and similarly between those in Eq. (2.17) and
the corresponding ones in the CM, are now of finite order, these mod-
els are no longer equivalent [57] in the dense regime. Secondly, in the
annealed case, we will find that all moments of the distribution of the
hidden variables in our approach necessarily diverge. Remarkably, this
property breaks the equivalence of the different models even in the sparse
case, as the conditions on the moments of the fitness distribution required
for equivalence and contiguity [57] no longer hold. As we show later,
notable and useful consequences of this inequivalence are a non-linear
dependence of the degree on the fitness (hence different exponents of the
fitness and degree distributions) and a non-vanishing local clustering
coefficient even in the sparse regime. The above considerations indicate
that the multiscale model is in general not equivalent to the CM and the
dcSBM, which are not renormalizable. Similar considerations apply to the
traditional (non-degree-corrected) SBM [66] (for which pi,j = Bi,j), to the
Erdős-Rényi (ER) model [7] (for which pi,j = p for all i, j) and to growing
network models based on preferential attachment (PA) [13] (where nodes
enter sequentially into the network and the time at which a node enters
determines its expected topological properties). There is no straightfor-
ward way to coarse-grain these models by defining block-nodes (possibly
across different hierarchical levels) that respect the different expected
properties of the nodes they contain.
These considerations indicate that scale-invariant networks are consis-
tent with a unique specification of the FM, possibly enhanced by dyadic
factors, while they are incompatible with the CM, (dc)SBM, ER, and PA
models. As for the HM, while the renormalization scheme proposed
in [38] does address the consistency of the graph probability across scales,
the connection probability remains congruent with the hidden metric
space (i.e. retains the same functional form across coarse-grainings) only
if the density of links is kept sufficiently low, such that the contribution of
multi-edges terms can be neglected. To maintain this condition enforced
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across multiple agglomeration levels, the HM requires a progressive prun-
ing of links, making the scheme different from the one considered here.

2.2.4 Scale-free versus scale-invariant networks

The above discussion inspires a few considerations around the distinction
between scale-free networks (i.e. graphs with power-law tails in the degree
distribution, as usually appearing in the CM, dcSBM, and PA models)
and scale-invariant networks (i.e. graphs designed to be renormalizable as
defined here).

The early renormalization approaches reminiscent of fractal analy-
sis [34, 46, 51] relied on the idea that real-world networks can be in-
terpreted as scale-invariant, precisely because of their scale-free prop-
erty. However, the degrees, even when power-law distributed, cannot be
renormalized exactly because they are neither preserved nor additively
transformed upon renormalization. The non-renormalizability of the CM,
(dc)SBM, ER and PA models originates precisely from the fact that their
defining quantities are the node degrees. Unlike fractals, the self-similarity of
scale-free networks applies to a topological property (the degree), not to a metric
one. The absence of an embedding metric space, which would provide
an ‘ambient’ dimensionality to harbour fractality in the first place, is also
the reason why arbitrary networks cannot be easily renormalized using
metric coordinates.

In general, scale-invariance as intended here is not due to the
scale-free property, but to the compatibility with Eq. (2.4). As mentioned
above, in the quenched case, and only if δ is small enough and the fitness
is not too broadly distributed (so that xmax < +∞), there may be a sparse
regime where Eq. (2.17) reduces to piℓ,jℓ ≈ δxiℓ , xjℓ with kiℓ = xiℓ , so
that degrees are approximately additive. However, even in this case,
degrees are rigorously additive only if each (ℓ+ 1)-node is obtained as a
set of ℓ-nodes that have no mutual connection among themselves. This
prescription is opposite to the more natural scheme of merging nodes that
are tightly connected, e.g. because they are in the same community [28]
or motif [52]. If mutually connected nodes are mapped onto the same
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block-node, the degree of the latter is strictly smaller than the sum of the
degrees of the original nodes. We may say that the coarse-graining of a
network is often designed in such a way that the additivity of degrees is
maximally violated. Along the coarse-graining flow, the sparse regime
progressively vanishes into the dense one, eventually breaking the
approximate additivity of degrees and producing an unavoidable upper
cut-off in the degree distribution. We will show that this aspect mirrors
a suggestive outcome of the annealed case, where the proportionality
between fitness and degree does not hold, even in the sparse regime. In
that case, scale-invariance naturally leads to intrinsically non-additive
degrees throughout the entire spectrum of network density.

2.3 Quenched fitness

In the quenched case, the fitness of each 0-node i0 is assigned a fixed
value xi0 and the only randomness resides in the construction of the
random graph ensemble, given the fitness values. For instance, when
modeling real-world networks, the observed nodes can be identified
with the 0-nodes and xi0 can be taken to be the value of some measurable
additive empirical quantity attached to the 0-node i0. Then, after choosing
a hierarchy of partitions and consistently with Eq. (2.6), the fitness xiℓ+1

of each (ℓ+1)-node iℓ+1 (with ℓ > 0) is calculated iteratively by summing
the fitness of all the ℓ-nodes mapped onto iℓ+1. For each pair (i0, j0) of
0-nodes, a distance di0,j0 may also be specified (and possibly measured
from empirical data as well) and used to determine f(di0,j0). Consistently,
the quantity f(diℓ+1,jℓ+1

) between each pair (iℓ+1, jℓ+1) of (ℓ+ 1)-nodes
is calculated via Eq. (2.7). Together, fitness and distance determine the
probability (2.4) of connection between nodes at all scales. Once f is
specified, the only free parameter is δ, controlling the overall density of
the random network. When considering real-world networks for which
fitness and distance can be measured from empirical data separately from
the network structure, we may use the quenched model in order to check
whether Eq. (2.4) reproduces the observed topological properties of the
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0-graph itself and, if this is the case, to provide a testable multi-scale
model of the renormalized network at any higher level of aggregation.

2.3.1 The International Trade Network

To illustrate the procedure, we consider the empirical International Trade
Network (ITN), using the BACI-Comtrade dataset [67] which reports
the international trade flows (imports and exports) between all pairs of
world countries. We show the results for the year 2011, although we have
obtained similar results for the other years available in the database.
We select this particular network because previous research has clarified
that the topology of the ITN is strongly dictated by the GDP of coun-
tries [68–71]. Moreover, the economics literature has extensively shown
that both GDP and geographical distance are key determinants of interna-
tional trade, leading to the so-called ‘Gravity Model’ of trade [72, 73]. The
additivity of the GDP (i.e. the aggregate GDP of two countries is the sum
of their GDPs) makes the ITN a perfect candidate for our analysis and
allows us to introduce a novel renormalization scheme for this important
economic network across arbitrary levels of geographical aggregation. In
particular, our aim is twofold. On the one hand, we want to introduce
a multiscale model of the ITN derived from first principles, i.e. using
the unique combination of GDP and geographical distances dictated by
Eq. (2.4), rather than arbitrary or data-driven combinations. On the other
hand, we want to check whether the empirical topology of the ITN is
consistent with the multiscale model not only at the country level at which
it is usually studied (here, the 0-graph) but also across different hierarchi-
cal levels using the renormalization rules in Eqs. (2.6) and (2.7). Further
information on the dataset and on how we built on it can be found in the
complementary Sec. 2.6.2, while here we detail the implementation of our
method.
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Figure 3: Prediction of global topological properties of the renormalized
ITN across the full spectrum of geographical aggregation using the mul-
tiscale model. The panels show the agreement between the empirical and
expected values of the link density Dℓ including possible self-loops (left),
node-averaged rescaled average nearest neighbour degree k̄

nn
ℓ /(Nℓ − 1)

(middle) and node-averaged local clustering coefficient c̄ℓ (right) as functions
of the number Nℓ of ℓ-countries, for all the 18 hierarchical levels considered
(ℓ = 0, 17).

Definition of the multiscale model

Let us identify each 0-node i0 with a specific country for which there are
GDP data available from the World Bank [74] in the considered year. This
results in N0 = 183 0-nodes. Then, we set the fitness xi0 of each 0-node
equal to the empirical value of the GDP: xi0 = GDPi0 , i0 = 1, N0.
For each pair (i0, j0) of countries, we set the distance di0,j0 equal to the
empirical geographical distance between the corresponding countries,
using the BACI-CEPII GeoDist [75, 76] database that reports population-
averaged inter-country distances.

Next, we use these distances to induce a hierarchy of partitions
{Ωℓ}ℓ≥0 that define the possible coarse-grainings of the ITN. Techni-
cally, this is done by merging geographically close countries into ‘block-
countries’ following a single-linkage hierarchical clustering algorithm
based on the GeoDist distances {di0,j0}N0

i0,j0=1. The output of this algo-
rithm is a dendrogram (shown in Sec. 2.6.2) like the one in Fig. 2, where
the leaves are the original countries (0-nodes), the branching points are
the block-countries, and the height of each branching point represents
the ultrametric geographical distance between pairs of countries across
the corresponding two branches. Note that the ultrametric distances
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{d<i0,j0}
N0
i0,j0=1 obtained via the single-linkage clustering are known as sub-

dominant ultrametric distances and ensure the smallest possible distortion
among all possible ultrametric distances approximating the original met-
ric distances ‘from below’ [56].
Cutting the dendrogram at a fixed height hℓ defines the hierarchical level
ℓ and identifies a unique partition Ωℓ of countries into a certain number
Nℓ of ‘ℓ-countries’. This partition can be regarded as a multiscale aggre-
gation of countries into groups of varying size, following from actual
geographical closeness rather than pre-imposed regional or political cri-
teria. Cutting the dendogram at multiple heights {hℓ}ℓ≥0 (with h0 = 0)
identifies a set {ℓ} of hierarchical levels, a geography-induced hierarchy
{Ωℓ}ℓ≥0 of partitions, and a corresponding sequence {Nℓ}ℓ≥0 of numbers
of block-countries. We considered 18 hierarchical levels (from ℓ = 0 to
ℓ = 17), such that the number of block-countries is Nℓ = 183 for ℓ = 0 and
Nℓ = 180−10ℓ for ℓ = 1, 17. For each of these levels, the additivity of GDP
ensures that Eq. (2.6) holds as a definition for the empirical aggregate
GDP of block-countries:

GDPiℓ+1
≡

∑︂

iℓ∈iℓ+1

GDPiℓ . (2.18)

We then fix the function f in Eq. (2.4) as f(d) = d−1, so that the renormal-
ized geographical distances equal

d−1iℓ+1,jℓ+1
≡
∑︁

iℓ∈iℓ+1

∑︁
jℓ∈jℓ+1

GDPiℓ GDPjℓ d
−1
iℓ,jℓ∑︁

iℓ∈iℓ+1
GDPiℓ

∑︁
jℓ∈jℓ+1

GDPjℓ

, (2.19)

which is the GDP-averaged equivalent of the population-averaged
distances commonly used in geography and in the GeoDist database
itself [75] (as detailed in Sec. 2.6.2). In this way, diℓ+1,jℓ+1

represents a sort
of distance between the ‘barycenters’ of the block-countries iℓ+1 and jℓ+1,
where the barycenter of each (ℓ + 1)-country is defined via the internal
GDP distribution across the constituent ℓ-countries.

Putting all the above ingredients together, we arrive at the follow-
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ing multi-scale model for the ITN:

piℓ,jℓ(δ) =

{︄
1− e−δGDPiℓ

GDPjℓ
/diℓ,jℓ if iℓ ̸= jℓ

1− e− δ
2 GDP2

iℓ
/diℓ,iℓ if iℓ = jℓ

(2.20)

where δ is the only free parameter and where the renormalization rules
are given by Eqs. (2.18) and (2.19).

Once our multi-scale model of the ITN is defined, we build the corre-
sponding instances of the real network at the chosen 18 levels of aggre-

gation. To this end, we construct the empirical 0-graph Ã
(0)

by drawing
an undirected link between each pair of countries that have a positive
trade relationship in either direction in the BACI-Comtrade dataset (this
is detailed as well in Sec. 2.6.2). Then, we use the distance-induced parti-
tions {Ωℓ}ℓ≥0 defined above in order to construct the ℓ-graph according

to Eq. (2.1) for each level ℓ. This procedure creates a sequence {Ã(ℓ)}ℓ≥0
of empirical coarse-grained versions of the ITN, each one representing
the existence of trade among ℓ-countries.

To test the multiscale model defined by Eq. (2.20) against the real

data {Ã(ℓ)}ℓ≥0, we first calibrate it by setting δ to the unique value δ̃
that produces the same link density D0 as the real ITN, i.e. such that
the expected number of links in the 0-graph (that is a monotonically

increasing function of δ) equals the empirical value observed in Ã
(0)

.
Details on the procedure are provided in Sec. 2.6.3, together with the
definition of all the topological properties taken into consideration.
After this single parameter choice, all the probabilities in Eq. (2.20) are
uniquely determined at all hierarchical levels and we can test the model
by comparing the empirical and expected value of various topological
properties of the ITN at different coarse-grainings. In particular, for each
level ℓ we consider the link density Dℓ (including possible self-loops) and,
for each ℓ-node iℓ, the degree kiℓ , the average nearest neighbour degree knniℓ

[65]
and the local clustering coefficient ciℓ [10] (see Sec. 2.6.3 for all definitions).
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Capturing structural properties at multiple aggregation levels

As a first global test of the model, in Fig. 3 we plot, for each hierarchi-
cal level (ℓ = 0, 17), the link density Dℓ, the normalized overall average
nearest neighbour degree k̄nnℓ /(Nℓ − 1) and the overall local clustering
coefficient c̄ℓ as a function of the number Nℓ of ℓ-nodes (the bar over a
quantity denoting an average over all ℓ-nodes). Note that all these global
quantities are normalized on the same interval [0, 1], irrespective of ℓ. We
find captivating the accordance between the model’s predictions and the
empirical counterparts, for such wide range of hierarchical levels, given
that the model has only one free parameter (δ), which was calibrated
uniquely to match the density D0 of the 0-graph, while the agreement
holds for the other quantities as well and across multiple levels. Inter-
estingly, all the rescaled quantities remain roughly constant as the level
increases (i.e. as Nℓ decreases). In line with our previous discussion about
the non-equivalence between Eq. (2.4) and the CM and dcSBM, the large
values of density confirm that our model is necessarily different from the
model that would be obtained by inserting the GDP into the equations
for the CM or dcSBM.

As a more stringent test of the model, in Fig. 4 we confirm the
prediction that the local topological properties of the individual (block-
)countries, and in particular kiℓ , knniℓ

and ciℓ , should depend strongly on
the empirical value of GDPiℓ , in a way that is governed by Eq. (2.20) at
all levels. From the moment that, as already noted, the single parameter
δ was used to match only the density of the 0-graph, which is a global
property defined at a single hierarchical level, the agreement between
observations and model expectations at the level of individual nodes and
across all hierarchical levels is particularly interesting.
Note that results similar to those shown in Figs. 3 and 4 are retrieved if δ

is initially fixed in order to match the empirical density of Ã
(ℓ)

for levels
ℓ > 0.

The above results suggest that there is a profound difference between
scale-invariant and scale-free networks: the ITN is indeed not a scale-
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Figure 4: Prediction of local topological properties of the renormalized
ITN across the full spectrum of geographical aggregation using the multi-
scale model. Top panels (a,b,c): empirical (blue) and expected (red) degree
kiℓ vs ln(GDPiℓ) for all Nℓ nodes, for three representative hierarchical levels
(ℓ1 = 0, ℓ2 = 8, ℓ3 = 13) such that Nℓ1 = 183 (left), Nℓ2 = 100 (center) and
Nℓ3 = 50 (right). Middle panels (d,e,f): empirical (blue) and expected (red)
average nearest-neighbour degree knn

iℓ
vs ln(GDPiℓ) for all Nℓ nodes, for the

same three hierarchical levels. Bottom panels (g,h,i): empirical (blue) and
expected (red) local clustering coefficient ciℓ vs ln(GDPiℓ) for all Nℓ nodes,
for the same three hierarchical levels.

free network (its degree distribution is not power-law [68–71], and in
any case could be turned into virtually any distribution via an ad hoc
coarse-graining), yet its structure turns out to be scale-invariant.

2.4 Annealed fitness

In the annealed case we regard not only the graph structure but also the
fitness as a random variable. At the 0-th level, this means that, for all
i0 = 1, . . . , N0, the value xi0 is drawn from a certain probability density
function (PDF) ρi0(x;Γi0) with positive support, where Γi0 denotes all
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parameters of the PDF.
As for the randomness in the topology, we impose that the randomness in
the fitness, induced from {xi0}N0

i0=1 to {xiℓ}Nℓ
iℓ=1 at all higher levels ℓ > 0 by

the additivity property in Eq. (2.6), should be scale-invariant. This means
that we should be able to produce the possible values of xiℓ , with exactly
the same probability, by proceeding along two equivalent ways: hierarchi-
cally, by sampling each value xi0 from its PDF ρi0(x;Γi0) and summing
up these values for all the 0-nodes that are mapped onto iℓ through
the partition Ωℓ−1 · · ·Ω0, or directly, by drawing xiℓ from a certain PDF
ρiℓ(x;Γiℓ) that should have the same functional form of ρi0(x;Γi0) and a
set of renormalized parameters Γiℓ obtainable from {Γi0}N0

i0=1 only through
the knowledge of Ωℓ−1 · · ·Ω0. In other words, the fitness values can be re-
sampled at each scale ℓ from a universal distribution with scale-invariant
functional form and possibly scale-dependent parameters. This require-
ment is equivalent to imposing that ρiℓ(x;Γiℓ) belongs to the family of
α-stable distributions [77–79]. A comprehensive introduction of the sub-
ject can be found in [79], here we briefly recall the notions that are essential
to our purposes. This broad family of distributions emerged in probability
theory in the framework of the study of stability properties of sums of
independent random variables. After Bernoulli’s and De Moivre’s em-
brionic formulations of the Law of Large Numbers and of Central Limit
Theorem [78, 80, 81], respectively, the following problem was there: how
wide is the class of distribution functions that can play the role of the
limiting law? The major contribution in this respect came with Lévy, who
in [77, 82] progressively derived the most general functional equations
whose solutions define now the family of stable laws.
All the stable laws, except the degenerate ones, are absolutely continuous,
which implies that the corresponding distribution functions F (x) possess
the densities ρ(x) = F ′(x) but, other than a few exceptions, neither the
distribution functions nor the densities can be explicitly expressed in
terms of elementary functions. Instead, the stable laws can be described
in terms of the corresponding characteristic functions:

ϕ(t) =

∫︂ +∞

−∞
eitxdF (x) =

∫︂ +∞

−∞
eitxρ(x)dx (2.21)
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Indeed the functional equations that define the stable laws become par-
ticularly simple in terms of their characteristic functions, and lead to a
description of this family of distributions conveyed by four parameters:
the characteristic α ∈ (0, 2], the skew parameter β ∈ [−1, 1], the shift pa-
rameter µ ∈ [0,∞) and the scale parameter γ ∈ (−∞,∞). The only stable
distributions that can be written explicitly are the the Gaussian (α = 2),
the Cauchy (α = 1, β = 0), and the Lévy (α = 1/2, β = 1). All the others
are expressed through the corresponding characteristic functions, that
take the form:

φ(t;α, β, γ, µ) =

⎧
⎨
⎩

eitµ−|γt|
α
[︁
1−iβsign(t) tan πα

2

]︁
if α ̸= 1,

eitµ−|γt|
[︁
1+iβ 2

π sign(t) ln |t|
]︁

if α = 1.

Stable laws are often convenient in modelling data with long tail be-
haviour. Indeed it is well known that whenever α ̸= 2, the asymptotic
tail of a stable distribution is given exactly by a power-law: ρiℓ(x;Γiℓ) ∝
|x|−1−α for x large. When α = 2, ρiℓ(x;Γiℓ) is instead Gaussian.
The essential property of stable distributions is that sums of stable ran-
dom variables still follow a stable law with parameters that can be ob-
tained from the old ones by proper rescaling (except for the stability
parameter α, which is invariant). This statement can be reframed in
our context by going back to the renormalization rule in Eq. (2.6) estab-
lished for the fitness. Indeed, if the set {xiℓ}

Niℓ
1 is composed by random

variables with stable distribution ρiℓ(xiℓ ;α, βiℓ , γiℓ , µiℓ), then the coarse-

grained fitness {xiℓ+1
}Niℓ+1

1 are random variables with stable distribution
ρiℓ+1

(xiℓ+1;α, βiℓ+1
, γiℓ+1

, µiℓ+1
), where:

αiℓ+1
≡ α, (2.22)

βiℓ+1
≡

∑︁
iℓ∈iℓ+1

βiℓγ
α
iℓ∑︁

iℓ∈iℓ+1
γαiℓ

, (2.23)

γαiℓ+1
≡

∑︂

iℓ∈iℓ+1

γαiℓ , (2.24)

µiℓ+1
≡

∑︂

iℓ∈iℓ+1

µiℓ . (2.25)
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When 0 < α < 1 and βiℓ = 1, the support of α-stable distributions is
[µiℓ ,+∞). In order to ensure non-negative fitness values at all scales ℓ ≥ 0

(as required in the connection probability piℓ,jℓ), we therefore start from
ℓ = 0 and set 0 < α < 1, βi0 = 1 and µi0 = 0 for all i0 = 1, . . . , N0. Note
that we might set µi0 > 0 as well, but in that case Eq. (2.25) would imply
an increase of µiℓ with ℓ, while we do not want to progressively restrict
the possible values of the fitness as ℓ increases; in other words, we want
to keep the support of the fitness distribution scale-invariant. With this
choice, Eqs. (2.22)-(2.25) imply that, at all higher levels,

αiℓ+1
≡ α ∈ (0, 1),

βiℓ+1
≡ 1,

γαiℓ+1
≡

∑︂

iℓ∈iℓ+1

γαiℓ ,

µiℓ+1
≡ 0,

showing that α, β and µ are scale-invariant, while γα is node-additive.
It is important to note here that the requirement α ∈ (0, 1) implies that all
moments of the fitness distribution diverge (including the mean). The above
rules, combined with the form of φiℓ(t;Γiℓ) given above, finally lead to
the scale-invariant CF of the fitness, for all α ∈ (0, 1) and for all γiℓ > 0:

φiℓ(t;α, γiℓ) = e−|γiℓ
t|α
[︁
1−i sign(t) tan πα

2

]︁
. (2.26)

This choice corresponds to the so-called class of one-sided stable distribu-
tions [83]. For this particular class it is also known that, up to a scale trans-
formation reabsorbed in the value of γα ≡ [cos(απ/2)]1/α, the Laplace
transform (LT) λiℓ(t;α, γα) of the PDF ρiℓ(x;α, γα) equals

λiℓ(t;α, γα) ≡
∫︂ +∞

0

e−txρiℓ(x;α, γα)dx = e−t
α

(2.27)

which is a stretched exponential [83–86].
As a first attempt to characterize the random graphs generated by these
stable random fitness, we will restrict to the case in which the fitness
variables are drawn according to the only stable distribution known in
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closed form within the above constraints, i.e. the Lévy distribution, for
which α = 1/2:

ρiℓ(x; 1/2, γiℓ) =

√︃
γiℓ
2π

e−γiℓ
/(2x)

x3/2
(x > 0), (2.28)

where we have restored the arbitrary parameter γiℓ > 0, which is the only
remaining free parameter and is subject to renormalization rule given by
Eq. (2.24).

In summary, in the annealed scenario, at any hierarchical level ℓ the fit-
ness of each ℓ-node is a random variable described by the CF φiℓ(t;α, γiℓ)

in Eq. (2.26), or, equivalently, by the LT λiℓ(t;α, γα) in Eq. (2.27). If
α = 1/2, the PDF is known explicitly from Eq. (2.28) and such that
ρiℓ(x; 1/2, γiℓ) ∝ x−3/2 for x large, while for general α ∈ (0, 1) we know
that ρiℓ(x;α, γiℓ) ∝ x−1−α for x large, even if the explicit form is not
known.
Then, given a realization of fitness values, the network is generated with
probability P

(︁
A(ℓ); δ

)︁
given by Eq. (2.8), i.e. by connecting pairs of ℓ-

nodes with connection probability piℓ,jℓ(δ) given by Eq. (2.4).
This construction is entirely self-consistent across all hierarchical levels:
the ℓ-graph can either be built bottom-up, starting from level 0 and coarse-
graining the 0-graph up to level ℓ, or directly at the ℓ-th level, by sampling
the fitness at that level and generating the resulting ℓ-graph immediately.
Note that, up to this point, the connection probability piℓ,jℓ can still de-
pend on the distances diℓ,jℓ as long as the latter are ultrametric on the
histogram of desired coarse grainings (and therefore decoupled from the
fitness). If the distances between 0-nodes are not ultrametric, Eq. (2.7)
would make the renormalized distances fitness-dependent and hence
random, which is something that can be subtle to handle. Therefore for
now we refrain to include such a possibility.

2.4.1 From semi-group to group

A notable property of the annealed case is that the renormalization
procedure defines not only a semi-group proceeding bottom-up from the
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0-graph to higher levels as in usual schemes, but also a group: it can
proceed top-down as well, by resolving the 0-graph into a graph with
any number of nodes larger than N0, indefinitely and in a scale-invariant
manner. This possibility is ensured by the fact that stable distributions are
infinitely divisible, i.e. they can be expressed as the probability distribution
of the sum of an arbitrary number of i.i.d. random variables from the
same family. This property implies that we can disaggregate each ℓ-node
(including ℓ = 0) with fitness xiℓ into any desired number of (ℓ−1)-nodes,
each with its own fitness.
This possibility allows us to perform the upscaling of the network, in a
way that is conceptually similar to, but physically different from, the
approach in Ref. [87] (which assumes a geometric embedding of nodes).
We can therefore attach no particular meaning to the level ℓ = 0 and
consider any ‘negative’ level m < 0 (stretching all the way down to
m = −∞) as well, provided that the (ultrametric) distances between all
pairs of m-nodes are given and consistent with the higher-level ones,
i.e. such that f(diℓ,jℓ) = f(dim,jm) whenever iℓ = Ωℓ−1 · · ·Ωm(im) and
jℓ = Ωℓ−1 · · ·Ωm(jm) for all ℓ > m. This requirement is always ensured
in two cases: i) if distances are ultrametric and the associated dendrogram
is used to define which m-nodes branch into which (m− 1)-nodes as we
go deeper in the hierarchy of partitions; ii) in the distance-free case f ≡ 1.
We consider the latter an instructive example and discuss it in the rest of
the section.

In general, we may start from ℓ = 0 and assign to each 0-node i0 a
different value of γi0 , then specify a hierarchy of coarse-grainings (and
even fine-grainings) and calculate the corresponding values of γiℓ for all
ℓ-nodes and the resulting properties of the network, for all ℓ ̸= 0. This
leaves a lot of flexibility, in principle allowing us to tailor the resulting
properties of the network to any degree of heterogeneity. However, to
avoid making ad hoc assumptions, we put ourselves in the simplest
situation, where the following premises are settled:

• distances are switched off (i.e. f ≡ 1), so that the model is governed
by Eq. (2.17) and is entirely non-’geometric’;
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• all 0-nodes are statistically equivalent (i.e. γi0 ≡ γ0 for all i0 =

1, . . . , N0);

• The dendrogram of coarse-grainings is mℓ-regular: at each level ℓ,
the Nℓ ℓ-nodes are merged into a number Nℓ+1 of (ℓ + 1)-nodes
(each formed by exactly mℓ ℓ-nodes), given by

Nℓ+1 =
Nℓ

mℓ
= · · · = N0∏︁ℓ

q=0mq

(2.29)

This is the most homogeneous choice, as it preserves the statistical equiv-
alence of all the Nℓ ℓ-nodes at every hierarchical level, implying γiℓ ≡ γℓ
for all iℓ = 1, . . . , Nℓ where

γℓ+1 = bℓ
1/αγℓ = · · · =

ℓ∏︂

m=0

b1/αm γ0 =

(︃
N0

Nℓ+1

)︃1/α

γ0 (2.30)

(with α = 1/2 here), as ensured by Eq. (2.24). This means that, for any ℓ,
the fitness values {xiℓ}Nℓ

ℓ=1 are i.i.d. with common distribution

ρℓ(x; 1/2, γℓ) =

√︃
γℓ
2π

e−γℓ/(2x)

x3/2
(x > 0), (2.31)

effectively reducing a multivariate problem to a univariate one.

Note that the resulting probability of generating a graph at a given
hierarchical level ℓ does not depend on the labeling of nodes, i.e., it
is unchanged upon permutations of the nodes’ labels. This property
is known as exchangeability [88, 89] and can be a desirable property of
random graph models [90, 91].

The above prescriptions make the model similar to an annealed
version of the FM [20] or equivalently to the class of (rank-1) IRGM [55],
with two special requirements: i) here the fitness is defined at all
hierarchical levels simultaneously and ii) the connection probability can
only take the scale-invariant form given by Eq. (2.17).

Note that the fitness distribution depends on the hierarchical level ℓ
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Figure 5: Fitness distribution in the annealed scale-invariant model. The
points show the cumulative distribution of the node fitness x across five
different hierarchical levels (ℓ = 0, 1, 2, 3, 4), for a single realization from an
α-stable distribution with parameter choice α = 1/2, N0 = 104, b = 2. The
solid lines are the corresponding analytical α-stable cumulative distributions
obtained integrating Eq. (2.31) with γℓ+1 = b1/αγℓ, α = 1/2 and b = 2.
The dashed line is a power-law with exponent −1/2, confirming that the
non-cumulative fitness distribution has power-law tails with exponent −3/2.
Note that there is no upper cut-off to this tail, despite the increasing network
density for higher hierarchical levels, because the fitness of a node has no
bounds.

through the parameter γℓ, which, as clear from Eq. (2.30), cannot decrease
from the moment Nℓ cannot increase. This implies an overall shift
towards larger fitness values as nodes are coarse-grained. For instance,
if we take bℓ = b (i.e., the branching ratio is level-independent), then
Eq. (2.30) implies γℓ = bℓ/αγ0 = b2ℓγ0 and the corresponding behaviour of
the fitness distribution is illustrated in Fig. 5. Irrespective of the rightward
shift, the tail of the fitness distribution is always a pure power-law
proportional to x−1−α, independently of ℓ. We will adopt the choice
bℓ = b throughout the rest of the chapter, although all the results that we
obtain for a fixed hierarchical level ℓ hold irrespective of this choice and
are therefore general. Indeed the choice of a level-independent b only
affects how the calculated quantities change across hierarchical levels.
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In what follows, we focus on the analysis of certain topological prop-
erties of the network realizations drawn from the SIM ensemble, as above
described.
Since the fitness is annealed, the expected local topological properties
involving each node iℓ, when averaged over the randomness of the fitness,
will be identical. However, what interests us is deriving typical structural
patterns relating, irrespective of the particular realization of the fitness
(and hence surving after averaging over such realizations), the correlation
between different local properties of nodes. For instance, we are interested
in the expected degree kℓ(x) of an ℓ-node whose realized fitness is x at
level ℓ, since all ℓ-nodes with the same value x of the realized fitness are
statistically equivalent in the random realizations of the network, so the
expected degree only depends on x. In this way, we necessarily lose the
identity of the node (since each ℓ-node iℓ is assigned different values of
the fitness xiℓ in different realizations) but we keep the structural relation-
ship between degree and fitness. We can therefore drop the subscript iℓ
accompanying any local topological property (such as kiℓ , knniℓ

, ciℓ) and
replace it with the dependence of the expected value of that property on
the realized fitness x.

In the next section, we will use Eq. (2.31) to provide an analytical
characterization of the annealed model when α = 1/2, although we
will also retrieve similar results for all α ∈ (0, 1) either analytically or
through numerical sampling of the fitness. Further progress is possible
by replacing the α− stable PDF with a pure Pareto one with the same tail
exponent −1− α, as pursued in Chap. 4.

2.4.2 Scale-free networks from scale-invariance without
geometry

In Sec. 2.2.4 some reflections on why and in which sense scale-free
and scale-invariant networks should be regarded as distinct concepts
are expounded. Here we consider a special case of our annealed
scale-invariant model that spontaneously leads to scale-free networks,
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Fitness   x

Figure 6: Reduced degree as a function of fitness in the annealed scale-
invariant model. The circles represent the reduced degree κℓ of each ℓ-node
as a function of the corresponding fitness x in numerical simulations of
the model across five different hierarchical levels (ℓ = 0, 1, 2, 3, 4), for the
parameter choice α = 1/2, N0 = 104, b = 2. The solid lines are the expected
theoretical relationship κℓ(x) obtained via Eq. (2.38) for the same parameter
values. The dashed line is proportional to the square root of the fitness,
emphasizing the behaviour κℓ(x) ≈

√
2δγℓx of the (reduced) degree of

nodes with small fitness. For generic α ∈ (0, 1), the (reduced) degree of
nodes with small fitness is proportional to xα.

thus connecting the two concepts and providing a nontrivial recipe for
generating scale-freeness purely from scale invariance.

Let us start by deriving the functional form of the expected degree
distribution. To this end, for any fixed hierarchical level ℓ we adapt the
procedure outlined in Ref. [20] to compute, for a typical realization of the
fitness values, the distribution Pℓ(k) of expected (over the realizations of
the network) degrees from the PDF of the fitness ρℓ(x) and the connection
probability piℓ,jℓ , written as a function piℓ,jℓ = f(xiℓ , xjℓ) of the fitness of
the nodes involved, where in our case

f(x, y) = 1− e−δ x y. (2.32)

We first notice that since f(x, y) is an increasing function of both its argu-
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ments, the expected degree ⟨kiℓ⟩

⟨kiℓ⟩ =
∑︂

jℓ ̸=iℓ

piℓ,jℓ =
∑︂

jℓ ̸=iℓ

f(xiℓ , xjℓ) (2.33)

is an increasing function of the fitness xiℓ .
For a large number Nℓ of ℓ-nodes, the above discrete sum can be approx-
imated by an integral over the number (Nℓ − 1)ρℓ(y;α, γℓ) of ℓ-nodes
(except iℓ itself) with fitness in a neighbourhood of y: if kℓ(x) denotes the
expected degree of a node with fitness x at level ℓ, we have

kℓ(x) = (Nℓ − 1)

∫︂ ∞

0

f(x, y)ρℓ(y;α, γℓ)dy

= (Nℓ − 1)

(︃
1−

∫︂ ∞

0

e−δxyρℓ(y, α, γℓ)dy

)︃

= (Nℓ − 1) (1− λℓ(δx;α, γℓ)) (2.34)

where λℓ(t;α, γℓ) denotes the LT of ρℓ(x, α, γℓ) as in Eq. (2.27).
When α = 1/2, the LT can be calculated explicitly as

λℓ(δx; 1/2, γℓ) =

∫︂ ∞

0

e−δxy
√︃
γℓ
2π

e−γℓ/(2y)

y3/2
dy

= e−
√
2δγℓx, (2.35)

so that
kℓ(x) = (Nℓ − 1)

(︂
1− e−

√
2δγℓx

)︂
. (2.36)

It is convenient to rescale the degree kℓ by Nℓ − 1, thereby defining the
reduced degree

κℓ ≡
kℓ

Nℓ − 1
∈ [0, 1], (2.37)

whose range is independent of ℓ and whose node-averaged value κ̄ℓ
coincides with the network density excluding self-loops.
Clearly, Eq. (2.36) is equivalent to

κℓ(x) = 1− e−
√
2δγℓx, (2.38)

an exact calculation that is confirmed by numerical simulations, as shown
in Fig. 6.
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To aid the comparison with other network models, it is worth
noting that, for x sufficiently small, Eq. (2.36) is approximated by
kℓ(x) ≈ (Nℓ − 1)

√
2δγℓx, i.e., the expected degree of nodes with small

fitness is proportional to the square root of the fitness, not the fitness
itself (as also illustrated in Fig. 6). The latter remark can be extended
to the general case α ∈ (0, 1), although approximately, through the last
equality in Eq. (2.34): for x sufficiently small, we have κℓ(x) ∝ xα. This
result reflects the aforementioned key difference between the annealed
scale-invariant model and the CM: even for very small values of the
fitness, Eq. (2.17) does not reduce to piℓ,jℓ(δ) ≈ δxiℓxjℓ and the expected
degree is not proportional to the fitness. This is due to the divergence
of all moments of the fitness in the annealed case (due to the restriction
0 < α < 1), which implies maxiℓ{xiℓ} = +∞ and makes the regime
δ ≪ (maxiℓ{xiℓ})−2 (usually assumed in the sparse CM) impossible,
irrespective of the hierarchical level ℓ.

By inverting Eq. (2.36), we find that the fitness xℓ of an ℓ-node with
expected degree k at level ℓ is

xℓ(k) =
1

2δγℓ
ln2
(︃

Nℓ − 1

Nℓ − 1− k

)︃
, (2.39)

which implies

d

dk
xℓ(k) =

ln
(︂

Nℓ−1
Nℓ−1−k

)︂

δγℓ(Nℓ − 1− k) . (2.40)

We can use the above expressions to obtain the distribution Pℓ(k) of the
expected degrees from the distribution ρℓ(x;α, γℓ) of the corresponding
fitness. Indeed, starting from the fundamental equation

Pℓ(k)dk = ρℓ
(︁
xℓ(k);α, γℓ

)︁
dxℓ(k) (2.41)

relating the probability distributions of the two random variables k and
x, and using Eqs. (2.31), (2.39) and (2.40), we arrive at the explicit form of
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the distribution of expected degrees:

Pℓ(k) =

2γℓ

√︂
δ
π exp

[︃
−δγ2

ℓ

ln2
(︂
1− k

Nℓ−1

)︂]︃

(Nℓ − 1− k) ln2
(︂
1− k

Nℓ−1

)︂ (2.42)

for k ≥ 0, and Pℓ(k) = 0 otherwise.

The above degree distribution shows a twofold dependence on
the hierarchical level ℓ, as there are two contrasting tendencies as ℓ
increases. On the one hand, the number of nodes Nℓ decreases, hence the
possible range of values [1, Nℓ − 1] for the degree k shrinks: this implies
a tendency for the degree to decrease. On the other hand, the ongoing
coarse-graining is such that, on average, ℓ-nodes acquire more and more
links as ℓ increases: this implies a tendency for the degree to increase. We
can remove the effect of the first tendency by considering the probability
distribution Qℓ(κ) for the reduced degree κℓ, which is easily calculated
from Pℓ(k) as

Qℓ(κ) =
Pℓ[(Nℓ − 1)κ]

1/(Nℓ − 1)
=

2γℓ

√︂
δ
π exp

[︂
−δγ2

ℓ

ln2(1−κ)

]︂

(1− κ) ln2 (1− κ)
. (2.43)

We see that the distribution has a residual dependence on the level ℓ
through the parameter γℓ. As a consequence, the reduced degree distribu-
tions obtained for different hierarchical levels do not collapse upon each
other, as confirmed in Fig. 7 using the same parameter choice as above.
This is purely the effect of the second tendency. Indeed we see that, as ℓ
increases, there is a more and more pronounced accumulation of values of
the reduced degree κℓ close to the maximum value 1. This is a saturation
effect cutting off the tail of the degree distribution.

Importantly, for values of the degree that are sufficiently lower than
the upper cut-off, the distribution has a universal power-law trend pro-
portional to κ−2, for all values of α ∈ (0, 1) (hence without requiring
a fine-tuning of α to a specific value in that interval). Indeed, one can
show analytically (see Sec. 2.6.4) that the right tail of the reduced degree
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Figure 7: Degree distribution in the annealed scale-invariant model. Cu-
mulative degree distribution (fraction of nodes with reduced degree ≥ κ)
across five different hierarchical levels (ℓ = 0, 1, 2, 3, 4), for the parameter
choice α = 1/2, N0 = 104, b = 2. The circles represent a single realization of
the network, while the solid lines correspond to the theoretical prediction
given by Eq. (2.43). The dashed line is a power-law with exponent −1, corre-
sponding to a power-law Qℓ(κ) ∝ κ−2 for the non-cumulative distribution.
This exponent is universal for all α ∈ (0, 1) and different from the exponent
−1− α of the corresponding non-cumulative fitness distribution. Another
difference is the presence of an upper cut-off Cℓ(κ) (due to the fact that κ
cannot exceed 1) becoming stronger as the hierarchical level increases.

distribution behaves as

Qℓ(κ) ≈ κ−2Cℓ(κ), (2.44)

where Cℓ(κ) is a cut-off function with a peak at values of κ that increase to-
wards 1 as ℓ increases. The cut-off function captures stronger and stronger
finite-size effects as the network size shrinks under the effect of coarse-
graining. In the opposite direction (decreasing ℓ), one can always reach the
sparse regime through fine-graining, i.e. by subdividing each ℓ-node into
multiple (ℓ− 1)-nodes and so on. In such a regime, the effect of the cut-off
function practically disappears and the network is essentially scale-free
with universal degree exponent −2. This conjecture will be made more
rigorous in chapter 4, where the hierarchical level at which this becomes
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Figure 8: Local and global clustering coefficient as a function of density
along the coarse-graining flow. The average local (clocal

ℓ ) and global (cglobal
ℓ )

clustering coefficients are shown as a function of the network density (exclud-
ing self-loops) κ̄ℓ for different coarse-grainings of the scale-invariant model
with α = 1/2, N0 = 104, b = 2. Triangles refer to a single realization of the
(coarse-grained) network, while the solid lines show the expected values.
The dashed line is a reference corresponding to a density 1/N0 = 10−4.

true is made explicit. As anticipated, this exponent is different from the
tail exponent −1− α ∈ (−2,−1) of the corresponding fitness distribution
ρℓ(x), as a consequence of the divergence of all moments of ρℓ(x) and the
related non-linear dependence between degree and fitness, even for small
fitness values.
A mechanism producing the universal exponent −2 has been advocated
previously ([21, 92]) and, more generally, the latter falls within the empiri-
cal range of exponents observed for the vast majority of networks, which
are found in the interval (−3,−2] [24].

2.4.3 Assortativity and clustering

Here we focus on the assortativity and clustering patterns, including a
nonvanishing average local clustering coefficient, which we observe in
our ensemble.
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Figure 9: Local assortativity and clustering properties. Average nearest
neighbour degree knn

i (left) and local clustering coefficient ci (right) versus
degree ki in the annealed scale-invariant model across different hierarchical
levels, for the parameter choice α = 1/2, N0 = 104, b = 2.

In Fig. 8 we show, as a function of the link density (or equiva-
lently the average reduced degree κ̄ℓ), the node-averaged local clustering
coefficient clocalℓ ≡ c̄ℓ =

∑︁Nℓ

iℓ=1 ciℓ/Nℓ and the global clustering coefficient

c
global
ℓ ≡ ∆ℓ/Λℓ obtained for different hierarchical levels. The latter

is defined as the ratio of the overall number ∆ℓ of realized triangles
(each counted three times) to the number Λℓ of wedges, i.e. potential
triangles [93–96] (the exact formula can be found in Sec. 2.6.3 ). Various
studies have shown that, apart from cases where the network is
sufficiently homogeneous [93], the average local and global clustering
coefficients can be quite different [94–97]. In particular, an empirically
widespread property of real networks is their “large” overall local
clustering, defined as a non-vanishing (strictly positive) node-averaged
local clustering coefficient even in the sparse regime where the network
density k̄ℓ(without self-loops), and possibly the global clustering
coefficient, vanishes as the number of nodes increases.

In our model, we can numerically assess the behaviour of both cluster-
ing coefficients as functions of the link density κ̄ℓ, whose expected value
can easily be written in a concise way for α = 1/2, as we show in the
following lines. The expected link density κ̄ℓ (excluding self-loops) is
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given by

⟨κ̄ℓ⟩ =
1

Nℓ − 1

∫︂ Nℓ−1

0

Pℓ(k)k dk (2.45)

=

(︃
1− 2

π

∫︂ ∞

0

e−t
2
ℓ−γℓ

√
δ/tℓdtℓ

)︃
,

where we have changed variables by introducing

tℓ =
γℓ
√
δ

ln Nℓ−1
Nℓ−1−k

.

The integral in Eq. (2.45) corresponds to one of the Meijer-G functions
Gm,n

p, q

(︁ a1,...,ap

b1,...,bq

⃓⃓
z
)︁
, thus yielding:

⟨κ̄ℓ⟩ = 1− γℓ
√
δ

2π
G 3,0

0,3

(︁ ·
−1/2,0,0

⃓⃓
δγ2ℓ /4

)︁
. (2.46)

As a side remark, note that G 3,0
0,3

(︁ ·
−1/2,0,0

⃓⃓
δγ2ℓ /4

)︁
is a decreasing function

of the combination δγ2ℓ , therefore the network density increases as the
level ℓ increases.

Now, in the annealed scenario considered here, we are simultaneously
generating graphs at all scales ℓ = −∞, . . . ,+∞, ranging from the fully
connected regime (⟨κ̄+∞⟩ = 1) to the fully disconnected one (⟨κ̄−∞⟩ = 0).
We can therefore inspect the expected average local clustering coefficient
clocal
ℓ and expected global clustering coefficient cglobal

ℓ as a function of the
network density κ̄ℓ. The outcome is shown in Fig. 8, which illustrates how
c

global
ℓ decreases as the density decreases (that is, as the level ℓ decreases),

while clocal
ℓ retains finite values. In particular we see that, even for the

particular hierarchical level(s) ℓ∗ corresponding to the sparse regime
⟨κ̄ℓ∗⟩ ∝ 1/Nℓ∗ , clocal

ℓ∗ remains finite despite the asymptotic vanishing of
the network density. In random graph models, a non-vanishing local
clustering coefficient and a vanishing global clustering coefficient in the
sparse regime have been found also in the CM [98] (in the limit where the
tail exponent of the degree distribution approaches the value −2 found
here), in a class of ‘windmill’ graphs [95] and in the hyperbolic geometric
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model [96, 97]. In real-world networks, a typical tendency of the global
clustering coefficient to be significantly smaller than the average local
clustering coefficient (and even vanishing) has also been documented [95].

We finally consider the average nearest neighbour degree knniℓ
[65]

and local clustering coefficient ciℓ [10] as a function of the degree kiℓ of
each ℓ-node. These quantities are plotted in Fig. 9 for α = 1/2. The plots
show decreasing trends for both knniℓ

and ciℓ as kiℓ increases. Together
with the presence of a power-law degree distribution with a cut-off, these
properties are widespread in real-world networks [10, 24, 65].

2.5 Discussion

We proposed a renormalization scheme based on the identification of a
scale-invariant random graph model. The functional form of the probabil-
ity for two nodes to be connected is independent on the hierarchical level
being considered. At each level, the model can generate any network in
two possible ways, with exactly the same probability: either hierarchi-
cally, by generating the finest-grained network and then coarse-graining
it via progressive non-overlapping (but otherwise arbitrary) partitions, or
directly, using appropriately renormalized parameters. These parameters
include a global scale-invariant density parameter, a necessary set of hid-
den ‘fitness’ variables attached to each (block-)node, and, if useful, a set
of dyadic factors representing distances or communities. It turns out that
the model possesses scale-invariance without postulating the existence of
node coordinates in an underlying metric space.
If the fitness values are treated as quenched, the model can guide the
renormalization of real-world graphs. In this case, the parameters of the
model can be identified with empirical quantities attached to nodes and
dyads. In our application to the ITN, we found that a one-parameter fit of
the model to the observed network density is enough to accurately repli-
cate many local topological properties of individual nodes, even across
several hierarchical levels of resolution. This result exemplifies the deep a
priori conceptual distinction between scale-free networks (in the sense of
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power-law degree distributions, which are absent in the ITN) and scale-
invariant networks (in the sense of the network formation mechanisms
being consistent across scales, as found in the ITN) highlighted by the
model.

If the fitness values are annealed, the model naturally leads to one-
sided Lévy-stable fitness distributions, which are characterized by a tail
exponent −1− α ∈ (−2,−1). The properties of stability and infinite divis-
ibility of these distributions allow for the definition of a renormalization
scheme in both forward (coarse-graining) and backward (fine-graining)
directions. At the same time, the divergence of all moments of these distri-
butions implies that the multiscale model is not asymptotically equivalent
to the CM and dcSBM, showing that those models are not renormalizable.
The annealed version of the model has also the property of exchangeabil-
ity, which means that graph probabilities are unchanged upon relabelling
of nodes. It turns out that the requirement of scale invariance spon-
taneaously leads to scale-free networks with degree distribution featuring
a universal power-law decay P (kℓ) ∝ k−2 (which does not require a fine-
tuning of α) followed by a density-dependent cut-off and with realistic
assortativity and clustering properties, without postulating mechanisms
such as growth, preferential attachment or hyperbolic embedding. In par-
ticular, in the sparse regime the model appears simultaneously scale-free
and locally clustered, with no need for metric distances producing clus-
tering as a result of triangular inequalities as postulated in the hyperbolic
model [21]. Importantly, the desirable topological properties generated
by our annealed model differ from those of random graphs that, while
being defined through the same connection probability as in Eq. (2.17),
are characterized by fitness variables with finite mean [58, 59]. Indeed,
those studies did not consider a scale-invariant random graph setting,
and consequently they did not demand that in the annealed setting the
fitness variables are α-stable random variables, hence with 0 < α < 1

because of the positivity of the fitness.
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2.6 Supporting material

2.6.1 Determining the scale-invariant connection proba-
bility

Here we show how the scale-invariance requirement stated in Eq. (2.2),
for any model with independent links as formulated in Eq. (2.3), leads to
the unique form of the connection probability given by Eq. (2.4).

Let us consider a partition Ωℓ that maps an ℓ-graph with Nℓ ℓ-nodes
and adjacency matrix A(ℓ) to an (ℓ+1)-graph withNℓ+1 (ℓ+1)-nodes and
adjacency matrix A(ℓ+1). The relation between the entries of the matrices
A(ℓ) and A(ℓ+1) is given by Eq. (2.1). Now, for any random graph model
with independent links as stated in Eq. (2.3), a(ℓ)iℓ,jℓ

is a Bernoulli random

variable equal to 1 with probability p(ℓ)iℓ,jℓ
and equal to 0 with probability

1−p(ℓ)iℓ,jℓ
. Similarly, a(ℓ+1)

iℓ+1,jℓ+1
is a Bernoulli random variable equal to 1 with

probability p(ℓ+1)
iℓ+1,jℓ+1

and equal to 0 with probability 1− p(ℓ+1)
iℓ+1,jℓ+1

. Now,
the scale-invariance requirement in Eq. (2.2) demands that we should
create, with equal probability, any of the possible realizations of the ad-
jacency matrix A(ℓ+1) either by: i) generating the possible realizations
of the matrix A(ℓ) (using the associated probabilities {p(ℓ)iℓ,jℓ

}) and then
aggregating the corresponding ℓ-graphs into (ℓ+ 1)-graphs, or ii) directly
generating all the possible realizations of the matrix A(ℓ+1) (using the
associated probabilities {p(ℓ+1)

iℓ+1,jℓ+1
}). Scale-invariance also demands that

p
(ℓ)
iℓ,jℓ

depends on ℓ only through its parameters. Assuming that these
parameters are a combination of global (δℓ), node-specific (xiℓ , xjℓ) and
dyadic (diℓ,jℓ ) factors, we can write p(ℓ)iℓ,jℓ

(δℓ) = piℓ,jℓ(δℓ). Enforcing scale-
invariance means finding not only the functional form of piℓ,jℓ , but also
the renormalization rules connecting δℓ, xiℓ , xjℓ , diℓ,jℓ to their next-level
counterparts δℓ+1, xiℓ+1

, xjℓ+1
, diℓ+1,jℓ+1

.
To enforce the scale-invariance requirement, we first consider the case
when the connection at the coarse-grained level ℓ+1 involves two distinct
blocks iℓ+1 ̸= jℓ+1. In this case, since a link between the pair (iℓ+1, jℓ+1)

of (ℓ+ 1)-nodes is present if and only if there is at least one link present
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between any pair (iℓ, jℓ) of ℓ-nodes such that iℓ ∈ iℓ+1 and jℓ ∈ jℓ+1,
the probability that iℓ+1 and jℓ+1 are not connected is equal, according
to the procedure ii) described above, to the probability that none of the
pairs of underlying ℓ-nodes is connected. Since links are independent,
this probability equals

∏︁
iℓ∈iℓ+1

∏︁
jℓ∈jℓ+1

[1− piℓ,jℓ(δ)]. On the other hand,
according to the procedure i), the same event occurs with probability
1 − piℓ+1,jℓ+1

(δ). Enforcing the equality between the two probabilities
leads to the condition

1− piℓ+1,jℓ+1
(δ) =

∏︂

iℓ∈iℓ+1

∏︂

jℓ∈jℓ+1

[1− piℓ,jℓ(δ)] . (2.47)

Taking the logarithm of both sides of Eq. (2.47), we obtain

ln
[︁
1− piℓ+1,jℓ+1

(δ)
]︁
=

∑︂

iℓ∈iℓ+1

∑︂

jℓ∈jℓ+1

ln [1− piℓ,jℓ(δ)] , (2.48)

from which we can now derive the scale-invariant form of the connection
probability.
Note that Eq. (2.47) is consistent with taking the expected values of both
sides of Eq. (2.1). However, it cannot be derived directly in that way,
because the two expected values are taken with respect to different prob-
ability distributions having different support, i.e. P

(︁
A(ℓ+1);Θℓ+1

)︁
and

P
(︁
A(ℓ);Θℓ

)︁
respectively. Let us first consider the case where the connec-

tion probability piℓ,jℓ does not depend on any dyadic factor diℓ,jℓ . In this
case, the only functional form of piℓ+1,jℓ+1

compatible with Eq. (2.48) for
every pair of (ℓ+ 1)-nodes is such that

ln
[︁
1− piℓ+1,jℓ+1

(δ)
]︁
= −δ g(xiℓ+1

) g(xjℓ+1
) (2.49)

where g(x) is a positive function such that

g(xiℓ+1
) =

∑︂

iℓ∈iℓ+1

g(xiℓ) (2.50)

and δ is positive and ℓ-independent. The positivity of δ and g(x) follows
from the fact that, since 0 ≤ piℓ+1,jℓ+1

(δ) ≤ 1, ln
[︁
1− piℓ+1,jℓ+1

(δ)
]︁

has to
be non-positive. On the other hand, g(x) has to have the same sign for
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all nodes, otherwise for some pair of nodes the product g(xiℓ+1
) g(xjℓ+1

)

will be negative. Interpreting g(x) as the impact of the fitness x on the
connection probability, it makes sense to choose the positive sign for g(x)
(and, incidentally, to assume that g(x) is monotonically increasing with x).
For similar reasons, δ has to be positive as well. Now, if the quantity x is
node-additive (e.g. because it is identified with some empirical additive
quantity, like the GDP in our model of the ITN), then the fitness of each
(ℓ+ 1)-node xiℓ+1

should be consistently obtained as a sum
∑︁

iℓ∈iℓ+1
xiℓ

over the underlying ℓ-nodes. This implies that, after reabsorbing any
(positive) proportionality factor into δ, the only possible choice for g(x)
in the additive case is g(x) = x. By contrast, if we do not require x being
node-additive, we can always invoke the desired monotonicity of g(x)
and redefine x← g(x) (indeed, there is no a priori reason why xiℓ , rather
than g(xiℓ), should be regarded as the ‘natural’ node-specific factor affect-
ing the connection probabilities involving iℓ). This makes the redefined
fitness x additive by construction.
In summary, by redefining the node-specific factor x in a way that makes
it node-additive, and reabsorbing any global constant into δ, the only pos-
sible functional form for piℓ,jℓ under the requirement of scale-invariance
(and in the absence of dyadic factors) is such that

ln
[︁
1− piℓ+1,jℓ+1

(δ)
]︁
= −δ xiℓ+1

xjℓ+1
, (2.51)

for iℓ+1 ̸= jℓ+1, or equivalently

piℓ,jℓ(δ) = 1− e−δxiℓ
xjℓ , δ, xiℓ , xjℓ > 0, iℓ ̸= jℓ, (2.52)

where δ is scale-invariant and xiℓ+1
=
∑︁

iℓ∈iℓ+1
xiℓ .

Now we consider the connection probability between a block iℓ+1 and
itself, i.e. the self-loop at the coarse-grained level. In this case, to avoid
double counting the internal pairs of nodes, Eq. (2.48) should be replaced
by the expression

ln
[︁
1− piℓ+1,iℓ+1

(δ)
]︁
=

∑︂

iℓ∈iℓ+1

∑︂

jℓ∈iℓ+1,jℓ≤iℓ
ln [1− piℓ,jℓ(δ)] . (2.53)

Now, by isolating the terms corresponding to self-loops in the quantity
on the right hand side, we can rewrite the remaing terms as in Eq. (2.51)
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and obtain:

∑︂

iℓ∈iℓ+1

⎡
⎣ ∑︂

jℓ∈iℓ+1,jℓ<iℓ

ln [1− piℓ,jℓ(δ)] + ln [1− piℓ,iℓ(δ)]

⎤
⎦

=
∑︂

iℓ∈iℓ+1

⎡
⎣1
2

∑︂

jℓ∈iℓ+1,jℓ ̸=iℓ

ln [1− piℓ,jℓ(δ)] + ln [1− piℓ,iℓ(δ)]

⎤
⎦

=
∑︂

iℓ∈iℓ+1

⎡
⎣−δ

2

∑︂

jℓ∈iℓ+1,jℓ ̸=iℓ

xiℓxjℓ + ln [1− piℓ,iℓ(δ)]

⎤
⎦ .

(2.54)

As argued above, the only solution for piℓ,iℓ compatible with the re-
quirement xiℓ+1

=
∑︁

iℓ∈iℓ+1
xiℓ involves a function g̃(xiℓ) such that

g̃(xiℓ+1
) =

∑︁
iℓ∈iℓ+1

g̃(xiℓ). Take g̃(xiℓ) =
√
η xiℓ for some η > 0. Then the

requirement in Eq. (2.53) finally takes the form

η
∑︂

iℓ∈iℓ+1

∑︂

jℓ∈iℓ+1

xiℓxjℓ =
∑︂

iℓ∈iℓ+1

⎡
⎣δ
2

∑︂

jℓ∈iℓ+1,jℓ ̸=iℓ

xiℓxjℓ + ηx2iℓ

⎤
⎦ (2.55)

where we have used

x2iℓ+1
=

⎛
⎝ ∑︂

iℓ∈iℓ+1

xiℓ

⎞
⎠

2

=
∑︂

iℓ∈iℓ+1

∑︂

jℓ∈iℓ+1

xiℓxjℓ .

Clearly, the only possible solution for Eq. (2.55) is given by η = δ
2 , yielding:

piℓ,iℓ = 1− e− δ
2x

2
iℓ , δ, xiℓ , xjℓ > 0. (2.56)

Taken together, Eq. (2.52) and (2.56) coincide with what stated in Eq. (2.4)
when f ≡ 1, i.e. with Eq. (2.17).

If we add dyadic factors, i.e. if we allow piℓ,jℓ to additionally de-
pend on some positive function f(d) of the dyadic quantity d, while at
the same time preserving the bilinear dependence of ln

[︁
1− piℓ+1,jℓ+1

(δ)
]︁

on xiℓ and xjℓ (i.e. preserving the additivity of the fitness), then Eq. (2.51)
has to be generalized to

ln
[︁
1− piℓ+1,jℓ+1

(δ)
]︁
= −δ xiℓ+1

xjℓ+1
f(diℓ+1,jℓ+1

) (2.57)
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for iℓ+1 ̸= jℓ+1 and

ln
[︁
1− piℓ+1,iℓ+1

(δ)
]︁
= −δ

2
xiℓ+1

xiℓ+1
f(diℓ+1,iℓ+1

) (2.58)

otherwise, where f(diℓ,jℓ) renormalizes as

xiℓ+1
xjℓ+1

f(diℓ+1,jℓ+1
) =

∑︂

iℓ∈iℓ+1

∑︂

jℓ∈jℓ+1

xiℓxjℓf
(︁
diℓ,jℓ

)︁
. (2.59)

Equations (2.57), (2.58) and (2.59) coincide with Eqs. (2.4) and (2.7), thus
completing our proof.
As a final remark, note that in principle the constant δ may be entirely
reabsorbed into the fitness x (as mentioned above) or even into the func-
tion f(d), however it is useful to keep it separate as a single parameter
controlling the overall density of the graph. Also note that if the dyadic
factor d is interpreted as a feature enhancing the connection probability
(e.g. because it represents similarity, correlation, co-affiliation, etc.), then
f(d) has to be an increasing function. By contrast, if d suppresses the con-
nection probability (e.g. because it represents distance or dissimilarity),
then f(d) has to be a decreasing function, as in our model of the ITN.

2.6.2 GDP, distance and Trade data

In our analysis of the ITN, the fundamental hierarchical level ℓ = 0 is the
one where each 0-node i0 corresponds to a country in the world and the
fitness xi0 corresponds to the GDP of that country. Similarly, the distance
di0,j0 corresponds to the geographic distance between the two countries
i0 and j0 and a realized link (ai0,j0 = 1) corresponds to the existence of a
trade relation (in either direction) between i0 and j0.

GDP data are taken from the World Bank dataset [74] and are ex-
pressed in US Dollars. The results reported in Sec. 2.3 use data for year
2011. The number of countries for which GDP data are available in that
year is 183. Note that, unlike the international trade data (see below), the
World Bank GDP dataset covers a slightly smaller number of countries as
it does not include very small ones (typically islands).

Geographic distance data are taken from the BACI-CEPII GeoDist
database [75]. It reports bilateral inter-country distances measured as
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population-based averages among the most populated pairs of cities
across each pair of countries. The database uses the general formula

di0,j0 =

(︄∑︁
k∈i0

∑︁
l∈j0 POPkPOPl d

θ
k.l∑︁

k∈i0
∑︁

l∈j0 POPkPOPl

)︄1/θ

(2.60)

developed by Head and Mayer [76] for calculating the distance di0,j0
between country i0 and country j0 as a population-based average of the
distances dk,l between pairs of internal agglomerations (cities, towns and
places) across i0 and j0. The symbol k ∈ i0 denotes that k runs over the ag-
glomerations inside country i0, and POPk denotes the demographic popu-
lation of agglomeration k. In the GeoDist database, population data were
taken from the World Gazetteer (https://www.world-gazetteer.
com) website. Note that di0,i0 > 0, i.e. the ‘distance’ of a country to
itself is non-zero (therefore it is not a proper metric distance). This is
consistent with the fact that, at higher hierarchical levels, the distance
between a block-node to itself is necessarily positive as a result of the
renormalization rule. The exponent θ measures the sensitivity of trade
flows to bilateral distance. As noted in the BACI-CEPII GeoDist documen-
tation, selecting θ = −1 corresponds to the usual coefficient estimated
from gravity models of bilateral trade flows. Such a choice results in the
calculation of di0,j0 as a population-based average analogous to the GDP-
based average used later in our own renormalization procedure when
coarse-graining the network. The agreement between our model and the
ITN data actually suggests that, for the study of international trade, a
better definition of inter-country distances could presumably be obtained
by replacing POP with GDP in the above formula, to make inter-country
distances fully consistent with our GDP-averaged renormalized distances
at higher levels. Unfortunately, GDP data at the agglomeration level are
much more difficult to obtain than the corresponding population data.
For this reason, we used population-averaged distances in our analysis
at level ℓ = 0, and their GDP-averaged renormalized values at higher
levels ℓ > 0. Given the pairwise geographical distances {di0,j0}N0

i0,j0=1 at
level ℓ = 0, we constructed the dendrogram of nested partitions {Ωℓ}ℓ≥0
of world countries (shown in Fig. 10) using single-linkage hierarchical
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clustering, which produces subdominant ultrametric distances {d<i0,j0}
N0
i0,j0=1

as explained in Sec. 2.3. A straight cut in the dendrogram induces a hier-
archical level ℓ and a corresponding partition of countries into ℓ-countries.
The renormalized GDPs and distances are then calculated using Eqs. (2.18)
and (2.19) (using the original distances).

For the construction of the International Trade Network, we used the
BACI-Comtrade dataset [67]. The dataset reports the international trade
flows between 207 countries for the years 2008 to 2011. From the full
set of countries, we selected the 183 countries for which we could find
matching GDP data in the World Bank database (as explained above). In
the BACI-Comtrade dataset, trade is disaggregated into 96 commodity
classes labeled at a 2-digit resolution level and is expressed in thousands
of dollars. The database is the result of an adjustment procedure [67]
which reconciles unbalanced trade values as reported by importers and
exporters. For the purpose of this study, we first merged the disaggregated
data into a unique aggregate undirected network, where the monetary
flows between countries is the total trade (both import and export) in
all the 96 commodities, and then considered its binary (i.e. unweighted)
projection. Therefore, a binary link in the 0-graph of the ITN is present if
the two countries at its endpoints have a positive trade (either import or
export) in any commodity, consistently with similar analyses of the topol-
ogy of the ITN constructed from different datasets [68–71]. This procedure

defines the empirical adjacency matrix Ã
(0)

of the 0-graph of the ITN.

The empirical matrices Ã
(ℓ)

for ℓ > 0 are obtained via coarse-graining the
empirical 0-graph (following the general procedure illustrated in Fig. 1)
using the nested partitions {Ωℓ}ℓ≥0 induced by the dendrogram in Fig. 10.

2.6.3 Network properties: empirical and expected values

Here we define the key topological properties considered in our analysis
and modeling of the ITN.
Each such property is a function Y (A(ℓ)) of the Nℓ × Nℓ adjacency ma-
trix A(ℓ) (with entries a(ℓ)iℓ,jℓ

= 0, 1) of the generic ℓ-graph. Note that this
matrix is symmetric and can contain non-zero entries along the diagonal,
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Figure 10: Dendrogram of world countries from their geographical dis-
tances using single-linkage hierarchical clustering. The dendrogram can
be used to produce any desired sequence {Ωℓ}ℓ≥0 of geographically nested
partitions, via either single-scale (straight) or multi-scale (non-straight, but
monophyletic) ‘cuts’ as illustrated in Fig. 2. In our analysis we considered
18 straight cuts at various ultrametric distances {hℓ}17ℓ=0 (with h0 = 0) pro-
ducing a hierarchy {Ωℓ}17ℓ=0 of 18 partitions and a corresponding sequence
of block-countries with N0 = 183 and Nℓ = 180 − 10ℓ for ℓ = 1, 17. For
instance, a cut at level ℓ = 13 (dashed line) yields 50 block-countries that
correspond to the 50 branches drawn in different colors.

59



representing self-loops. These self-loops may or may not be present in the
0-graph, but are in any case eventually generated by the coarse graining
procedure if the nodes mapped onto the same block-node are connected
among themselves.
When analysing the ITN, the relevant matrix A(ℓ) is the empirical matrix

Ã
(ℓ)

obtained at the hierarchical level ℓ from the BACI-Comtrade data
in year 2011 as described above. The corresponding empirical value of

each topological property Y of interest will be denoted as Ỹ ≡ Y (Ã
(ℓ)

).
When considering the multiscale model, A(ℓ) is instead a random (sym-
metric) matrix whose entries {a(ℓ)iℓ,jℓ

} are Bernoulli random variables with
expected value

⟨a(ℓ)iℓ,jℓ
⟩ ≡ piℓjℓ(δ) =

⎧
⎪⎨
⎪⎩
1− e−δ

GDPiℓ
GDPjℓ

diℓ,jℓ if iℓ ̸= jℓ

1− e−
δ
2

GDP2
iℓ

diℓ,iℓ if iℓ = jℓ

(2.61)

where, consistently with the possible presence of self-loops, we allow for
iℓ = jℓ.
Equation (2.61) allows us to calculate the expected value of several topo-
logical properties. For instance, the total number of ℓ-links (including
possible self-loops) at level ℓ is given by

Lℓ(A
(ℓ)) =

Nℓ∑︂

iℓ=1

iℓ∑︂

jℓ=1

a
(ℓ)
iℓ,jℓ

. (2.62)

Before considering other properties, we note that we fix the only free
parameter δ to the unique value δ̃ such that the expected number

⟨L0⟩ =
N0∑︂

i0=1

i0∑︂

j0=1

pi0,j0(δ) (2.63)

of links of the 0-graph equals the empirical value

L̃0 = L0(Ã
(0)

) =

N0∑︂

i0=1

i0∑︂

j0=1

ã
(0)
i0,j0

= 12018 (2.64)
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observed in the ITN in year 2011. This selects the value δ̃ = 3.6 ·
10−17(USD)−2, where USD stands for US dollars (the unit of measure
used in GDP data). Having fixed δ̃, we can generate unbiased realisa-
tions {A(ℓ)} of the ℓ-graphs from the multiscale model at any desired
hierarchical level ℓ by sampling ℓ-links independently with probability
p̃iℓ,jℓ ≡ piℓ,jℓ(δ̃). By averaging the value Y (A(ℓ)) of any topological prop-
erty of interest over such realizations, we can efficiently estimate the
corresponding expected value

⟨Y ⟩ ≡
∑︂

A(ℓ)∈GNℓ

P
(︁
A(ℓ); δ̃

)︁
Y (A(ℓ)), (2.65)

where P
(︁
A(ℓ); δ

)︁
is given by Eq. (2.8), without actually calculating the

above sum explicitly. If Y (A(ℓ)) is linear in A(ℓ), we can even calculate ⟨Y ⟩
exactly by directly replacing a(ℓ)iℓ,jℓ

with p̃iℓ,jℓ in the definition of Y (A(ℓ)),
without sampling any graph at all. This is indeed the case for the number
of links in Eq. (2.62).

Given any ℓ-graph A(ℓ) (be it the empirical ℓ-graph or a random real-
ization from the model), the main topological properties of interest to us
are: the link density

Dℓ(A
(ℓ)) ≡ 2Lℓ(A

(ℓ))

Nℓ(Nℓ + 1)
=

2
∑︁Nℓ

iℓ=1

∑︁iℓ
jℓ=1 a

(ℓ)
iℓ,jℓ

Nℓ(Nℓ + 1)
(2.66)

(representing the ratio of realized to maximum number of links, including
possible self-loops), the degree

kiℓ(A
(ℓ)) ≡

∑︂

jℓ ̸=iℓ

a
(ℓ)
iℓ,jℓ

(2.67)

(counting the number of links of the ℓ-node iℓ, excluding self-loops), the
rescaled degree

κiℓ(A
(ℓ)) ≡ 1

Nℓ − 1

∑︂

jℓ ̸=iℓ

a
(ℓ)
iℓ,jℓ

(2.68)

(which ranges in [0, 1], irrespective of the vertex and hierarchical level
considered), the average nearest neighbour degree [65]

knniℓ
(A(ℓ)) ≡

∑︁
jℓ ̸=iℓ

∑︁
kℓ ̸=jℓ

a
(ℓ)
iℓ,jℓ

a
(ℓ)
jℓ,kℓ∑︁

jℓ ̸=iℓ
a
(ℓ)
iℓ,jℓ

(2.69)
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(representing the average degree of the neighbours of iℓ), and finally the
local clustering coefficient [10]

ciℓ(A
(ℓ)) ≡

∑︁
jℓ ̸=iℓ

∑︁
kℓ ̸=iℓ,jℓ

a
(ℓ)
iℓ,jℓ

a
(ℓ)
jℓ,kℓ

a
(ℓ)
kℓ,iℓ∑︁

jℓ ̸=iℓ

∑︁
kℓ ̸=iℓ,jℓ

a
(ℓ)
iℓ,jℓ

a
(ℓ)
kℓ,iℓ

(2.70)

(representing the number of triangles into which iℓ partipates, divided by
the maximum realizable number of triangles, given the value of kiℓ). All
the above quantities can be averaged over nodes to obtain the following
overall properties:

k̄ℓ(A
(ℓ)) ≡ 1

Nℓ

Nℓ∑︂

iℓ=1

kiℓ(A
(ℓ)), (2.71)

κ̄ℓ(A
(ℓ)) ≡ 1

Nℓ

Nℓ∑︂

iℓ=1

κiℓ(A
(ℓ)), (2.72)

k̄
nn
ℓ (A(ℓ)) ≡ 1

Nℓ

Nℓ∑︂

iℓ=1

knniℓ
(A(ℓ)), (2.73)

c̄ℓ(A
(ℓ)) ≡ 1

Nℓ

Nℓ∑︂

iℓ=1

ciℓ(A
(ℓ)). (2.74)

Note that κ̄ℓ(A(ℓ)) ∈ [0, 1] in Eq. (2.72) coincides with the link density
excluding self-loops, representative an alternative to the definition of density
in Eq. (2.66) (where self-loops are included). Besides the average local
clustering coefficient c̄ℓ(A(ℓ)), it is possible to define the global clustering
coefficient [94–96]

c
global
ℓ (A(ℓ)) ≡ ∆ℓ(A

(ℓ))

Λℓ(A(ℓ))
(2.75)

where

∆ℓ(A
(ℓ)) ≡

Nℓ∑︂

iℓ=1

∑︂

jℓ ̸=iℓ

∑︂

kℓ ̸=iℓ,jℓ

a
(ℓ)
iℓ,jℓ

a
(ℓ)
jℓ,kℓ

a
(ℓ)
kℓ,iℓ

(2.76)

is the overall number of realized (‘closed’) triangles and

Λℓ(A
(ℓ)) ≡

Nℓ∑︂

iℓ=1

∑︂

jℓ ̸=iℓ

∑︂

kℓ ̸=iℓ,jℓ

a
(ℓ)
iℓ,jℓ

a
(ℓ)
kℓ,iℓ

(2.77)
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is the number of (Λ-shaped) wedges, i.e. potential (both ‘open’ and ‘closed’)
triangles (note that each realized triangle is counted three times by both
∆ℓ and Λℓ).

It is important to stress that, of all the quantities defined in Eqs. (2.66)-
(2.74) for each ℓ-node (iℓ = 1, Nℓ) and/or all levels (ℓ = 0, 17), only the
overall density D0 of the 0-graph is replicated by construction via the
parameter choice δ = δ̃: indeed, having enforced ⟨L0⟩ = L̃0 by equating
Eqs. (2.63) and (2.64) coincides with having required ⟨D0⟩ = D̃0. For all
the other properties, includingDℓ for all ℓ > 0, the agreement between the
model and the empirical network is highly nontrivial and hence notable.

2.6.4 The scale-free range with universal inverse square
exponent

We first consider the case α = 1/2 and rewrite the distribution of the
reduced degree κ shown in Eq. (2.43) as

Qℓ(κ) = Aℓ(κ)Bℓ(κ) (2.78)

where

Aℓ(κ) ≡ exp

[︃ −δγ2ℓ
ln2 (1− κ)

]︃
, (2.79)

Bℓ(κ) ≡ 2
√︁
δγ2ℓ /π

(1− κ) ln2 (1− κ)
. (2.80)

The term Aℓ(κ) is a lower cut-off that rapidly saturates to 1 as κ increases
(see Fig. 11). On the other hand, Bℓ(κ) has an intermediate power-law
regime (for values of κ not too close to 1) and an upper cut-off (for κ
closer to 1). This behaviour can be understood by using the expansion
of ln(1 − y) = −∑︁∞n=1(−y)n/n = y + R(y) for |y| < 1, where R(y) ≡
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−∑︁∞n=2(−y)n/n:

Bℓ(κ) =
2γℓ
√︁
δ/π

(1− κ) ln2(1− κ)

=
2γℓ
√︁
δ/π

(1− κ)[κ+R(κ)]2

≈
{︄

2γℓ

√
δ/π

κ2 κ≪ 1
+∞ κ→ 1−

≈ κ−2Cℓ(κ) (2.81)

where Cℓ(κ) is a cut-off function being equal to 2γℓ
√︁
δ/π for κ≪ 1 and

diverging when κ→ 1−. This is confirmed in Fig. 11. Putting the pieces
together, the right tail of the reduced degree distribution behaves as

Qℓ(κ) ≈ κ−2Cℓ(κ) (2.82)

whereCℓ(κ) is the cut-off function. This proves our statement in Eq. (2.44),
and is confirmed by the numerical simulations in Fig. 7.

Now we can partly extend the above results to the general case
α ∈ (0, 1) using the following argument. We note from Eq. (2.34) that,
for any α ∈ (0, 1), the expected degree is uniquely determined by the
LT of the fitness distribution. Even if the explicit form of ρℓ(x;α, γℓ)
is not known for α ̸= 1/2 (apart from expressions involving integral
representations [80, 83, 84]), the LT is known and given by Eq. (2.27).
Using that formula, thereby selecting without loss of generality the value
γα ≡ [cos(απ/2)]1/α, we see that Eq. (2.34) can be rewritten as

kℓ(x) = (Nℓ − 1) (1− λℓ(δx;α, γα))
= (Nℓ − 1)

(︂
1− e−(δx)α

)︂
. (2.83)

Indeed, for α = 1/2 and γ1/2 = [cos(π/4)]2 = 1/2, the above equation
reduces exactly to Eq. (2.38). In complete analogy with the case α = 1/2,
Eq. (2.83) implies that, for small values of x, the expected degree behaves
as

kℓ(x) ∝ xα (x≪ δ−1), (2.84)
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Figure 11: The two factors contributing to the cumulative distribution of
the rescaled degree. Top: lower cut-off function Aℓ(κ) defined in Eq. (2.79).
The function rapidly saturates to Aℓ(κ) ≈ 1 as the rescaled degree κ increases.
Bottom: tail function Bℓ(κ) defined in Eq. (2.80). The function behaves as a
power law Bℓ(κ) ≈ κ−2 (red dashed line) for a wide range of κ and has an
ℓ-dependent upper cut-off corresponding to nodes whose rescaled degree
saturates to 1.
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while for large values of x there is a saturation kℓ(x) ≈ Nℓ− 1 (as in Fig. 6)
which produces the cut-off in the degree distribution Pℓ(k). Therefore, in
order to establish the behaviour of Pℓ(k) before the cut-off appears (i.e.
for k ≪ Nℓ − 1), it is enough to invert Eq. (2.84) as xℓ(k) ∝ k1/α and use
it into Eq. (2.41) to obtain

Pℓ(k) = ρℓ
(︁
xℓ(k);α, γα

)︁ d

dk
xℓ(k)

∝
(︁
xℓ(k)

)︁−1−α
k−1+1/α

∝ k−1−1/αk−1+1/α

∝ k−2 (k ≪ Nℓ − 1) (2.85)

where we have used ρℓ(x;α, γα) ∝ x−1−α for large enough x. As clear
from Eq. (2.84), the range of values of x for which both xℓ(k) ∝ k1/α and
ρℓ(x;α, γα) ∝ x−1−α are valid is larger when δ is smaller (correspondingly,
the effect of the cut-off in the degree distribution is weaker). So for sparser
networks the regime Pℓ(k) ∝ k−2 is valid for a larger fraction of the range
of values of k. Correspondingly, the reduced degree distribution behaves
as

Qℓ(κ) ∝ κ−2 (κ≪ 1) (2.86)

and is followed by an upper cut-off for κ ≲ 1. For sparser networks,
Eq. (2.86) is valid for a larger range of values. The above results confirm
Eq. (2.82), which was obtained for α = 1/2, and extend it to the entire
range α ∈ (0, 1).
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Chapter 3

Generalization of the SIM
to directed networks:
scale-invariance and
reciprocity

In this chapter, based on the work [3] by M. Lalli and D. Garlaschelli,
we focus on the possibility of enlarging our discussion to the family
of directed graphs, i.e. networks with directed edges. In this case, a
non-trivial reformulation of the SIM is needed to embed the additional
information conveyed by asymmetric interactions, and the main objective
of the following chapter is to provide such a framework.

3.1 Introduction

The original formulation of the SIM is restricted to undirected graphs,
while several real-world networks, including economic [99–102], so-
cial [103, 104], biological [105] and material flow [106] networks are
intrinsically directed. In general, moving from undirected to directed
networks is nontrivial, because of the pervasive property of reciprocity,
which refers to the non-random tendency of pairs of nodes to form mu-
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tual connections [105, 107]. By varying the degree of reciprocity, one can
range from undirected (perfectly reciprocal) through random (arecipro-
cal) to totally asymmetric (perfectly antireciprocal) networks [105, 107].
Reciprocity has been found to classify directed real-world networks into
consistent classes [105, 108], affect the abundances of directed triads [109–
111], determine the spectral properties of adjacency matrices [112] and
significantly impact processes taking place on networks [113–117].

In light of the aforementioned results, here we extend the SIM to the
realm of directed networks with reciprocity, which include the undirected
case as an extreme one.
It should be noted here that other approaches to network renormalization
(discussed in the previous chapter of this thesis) do not easily lend
themselves to directed networks. For instance, the geometric embedding
method [38] is based on necessarily symmetric distances that, per se,
cannot naturally explain the asymmetry of directed networks (indeed,
directed geometric models require additional and more sophisticated
ingredients [118, 119]). Similarly, the spectral method [42] requires
symmetric adjacency matrices to define a Hermitian Laplacian operator.
Importantly, we find that a naive reformulation of the original SIM,
which merely makes the connection probabilities asymmetrical by using
two features per node, fails in reproducing various topological and
spectral properties of real-world networks, precisely because it does
not capture the empirical patterns of reciprocity. On the contrary, a
non-trivial extension can replicate reciprocity and the resulting properties.

The chapter is organized as follows. In Sec. 3.2 we introduce the
Directed Scale-Invariant Model (DSIM). In Sec. 3.3, as a pedagogical
benchmark, we present the simplest, completely homogeneous example
of the model where all nodes are assumed to be statistically equivalent.
Then, following the approach adopted in Chap. 2, we distinguish between
a quenched scenario, where node features are treated as deterministic,
and an annealed scenario, where they are interpreted as random variables.
In the quenched scenario, the SIM can be used as a model of empirical
networks where node features are observable and expected to determine
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the topology. Then, unlike models that are not designed to remain consis-
tent across different resolution levels, the SIM can make predictions about
network properties observed at any scale. We illustrate this procedure in
Sec. 3.4, where we provide a multiscale description of the international
trade network that also captures its strongly reciprocal nature. In the
annealed scenario, the model can be used to generate random networks
built from the principle of scale invariance. We illustrate this approach in
Sec. 3.5. Complementary details on data and calculations are provided in
Sec. 3.7.

3.2 Construction of the Directed Scale-Invariant
Model

In this section, we define the DSIM as a model of random directed graphs,
with nontrivial reciprocity, characterized by the property that the connec-
tion probability between (blocks of) nodes has always the same functional
form, irrespective of the coarse-graining (resolution level) adopted. As
stressed in the previous chapter, this means that such probability depends
on the chosen aggregation of nodes only through its parameters, which
will obey appropriate renormalization rules. It is also worth stressing
again that the coarse-graining can be arbitrarily heterogeneous and in-
clude multi-scale aggregations where certain blocks may be deliberately
‘small’ (and even coincide with the original microscopic nodes themselves)
and other blocks may be very ‘large’ (i.e., containing several microscopic
nodes). As it is clear, this graph model is a generalization of the undi-
rected model introduced in Chap. 2 to which it will reduce in the extreme
case of complete reciprocity, i.e. when all links are reciprocated (so that
the network is effectively undirected).

Basic quantities and definitions. We consider a binary directed graph
with N0 ‘microscopic’ nodes (labelled by the first N0 positive integers
i0 = 1, . . . , N0) and its N0 × N0 (Boolean and, in general, asymmetric)
adjacency matrix A(0) with entries ai0j0 = 1 if a directed link from node
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i0 to node j0 exists, and ai0j0 = 0 otherwise. Self-loops (aiℓiℓ = 1) are
allowed. As is customary, we call this microscopic graph the 0-graph,
and its N0 nodes the 0-nodes. First, given an arbitrary surjective and
non-overlapping partition Ω0 of the original N0 0-nodes onto N1 < N0

(coarser) nodes, labelled as i1 = 1, . . . , N1, we define the coarse-grained
directed graph (this graph will be called the 1-graph, and its N1 nodes
the 1-nodes) with N1 ×N1 adjacency matrix A(1) as follows. A directed
link from the 1-node i1 to the 1-node j1 is present if and only if, in the
0-graph, there is at least one directed link from any i0 ∈ i1 (i.e. from any
of the 0-nodes ‘inside’ i1) to any j0 ∈ j1, as illustrated in Fig. 12. This
coarse-graining step can then be iterated to identify an arbitrary sequence
of coarse-grained ℓ-graphs (each with a certain number Nℓ of ℓ-nodes), by
introducing any desired hierarchy {Ωℓ}ℓ≥0 of nested (surjective and non-
overlapping) partitions. Each such ℓ-graph will be uniquely associated
to an Nℓ ×Nℓ Boolean (and in general still asymmetric) adjacency matrix
A(ℓ), whose entries obey the following relationship:

a
(ℓ+1)
iℓ+1jℓ+1

= 1−
∏︂

iℓ∈iℓ+1

∏︂

jℓ∈jℓ+1

(1− a(ℓ)iℓjℓ
) ∀ iℓ+1, jℓ+1. (3.1)

Now, we consider a random graph model producing a specific real-
ization A(ℓ) of the ℓ-graph with probability Pℓ

(︁
A(ℓ);Θℓ

)︁
, where Θℓ is the

set of all parameters of the model. We look for the functional form of
this probability by imposing that, given a partition Ωℓ of the Nℓ ℓ-nodes,
the induced probability Pℓ+1

(︁
A(ℓ+1);Θℓ+1

)︁
at the next level ℓ+ 1 has the

same functional form as Pℓ

(︁
A(ℓ);Θℓ

)︁
, with appropriately renormalized

parameters Θℓ+1 (as a result, we will drop the subscript ℓ from the Pℓ that
realizes the scale-invariance requirement). For simplicity, we restrict our-
selves to models with independent dyads where the graph probability (for
ℓ = 0, and consequently for all ℓ > 0) factorizes into dyadic connection
probabilities over pairs of nodes, plus self-loop probabilities over single
nodes. Adopting the formalism introduced in [107] and reprised in [54,
110, 111, 120, 121], if ⟨·⟩ denotes an expected value with respect to the
(yet to be determined) scale-invariant distribution P

(︁
A(ℓ);Θℓ

)︁
, then the

probabilities of the four possible dyads between two nodes iℓ and jℓ are:
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Figure 12: Schematic example of the graph coarse-graining and induced en-
sembles in the directed case. Given a probability distribution Pℓ

(︁
A(ℓ);Θℓ

)︁
of graphs with adjacency matrix A(ℓ) (left), a given node partition Ωℓ

is used to map sets of nodes onto ‘block-nodes’ of the resulting coarse-
grained graphs with adjacency matrix A(ℓ+1) (right). A directed edge
from iℓ+1 to jℓ+1 is drawn if an edge from iℓ to jℓ is present, for any
iℓ ∈ iℓ+1, jℓ ∈ jℓ+1. This coarse-graining will induce a new probability
distribution Pℓ+1

(︁
A(ℓ+1);Θℓ+1

)︁
. Note that such a scheme is a straightfor-

ward generalisation of the one illustrated in Fig. 1 to the directed case, where
the crucial difference resides in whether single or reciprocated links are cre-
ated. As in the undirected case, the graph at level ℓ may end up in the same
realization of the graph at level ℓ+ 1.

• p→iℓjℓ(Θℓ) = ⟨a→iℓjℓ⟩ with a→iℓjℓ ≡ a
(ℓ)
iℓjℓ

(1− a(ℓ)jℓiℓ
) for the joint probabil-

ity of a single directed link from iℓ to jℓ and no reciprocal link from
jℓ to iℓ;

• p←iℓjℓ(Θℓ) = ⟨a←iℓjℓ⟩ with a←iℓjℓ ≡ a
(ℓ)
jℓiℓ

(1− a(ℓ)iℓjℓ
) for the joint probabil-

ity of a single directed link from jℓ to iℓ and no reciprocal link from
iℓ to jℓ;
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• p↔iℓjℓ(Θℓ) = ⟨a↔iℓjℓ⟩with a↔iℓjℓ ≡ a
(ℓ)
iℓjℓ

a
(ℓ)
jℓiℓ

for the joint probability of
two reciprocal links between iℓ and jℓ;

• p↮iℓjℓ(Θℓ) = ⟨a↮iℓjℓ⟩ with a↮iℓjℓ ≡ (1 − a
(ℓ)
iℓjℓ

)(1 − a
(ℓ)
jℓiℓ

) for the joint
probability of no links between iℓ and jℓ.

Clearly, p→iℓjℓ(Θℓ) + p←iℓjℓ(Θℓ) + p↔iℓjℓ(Θℓ) + p↮iℓjℓ(Θℓ) = 1.
Note that, in order to generate reciprocity, i.e. the nontrivial occurrence
of mutual links between the same two nodes, we do not assume that
the joint probabilities further factorize over the marginal probabilities
piℓjℓ(Θℓ) ≡ ⟨a(ℓ)iℓjℓ

⟩ = p→iℓjℓ(Θℓ) + p↔iℓjℓ(Θℓ) for individual edges.

For self-loops, the only relevant probability is piℓiℓ(Θℓ) ≡ ⟨a(ℓ)iℓiℓ
⟩ =

p↔iℓiℓ(Θℓ) = 1− p↮iℓiℓ(Θℓ) since p→iℓiℓ(Θℓ) = p←iℓiℓ(Θℓ) = 0 (self-loops neces-
sarily reciprocate).

Before looking for the scale-invariant functional form of the above
probabilities, we assume that the latter may depend on global (scalar)
parameters η, δ, σ (determining, as we will see, the overall numbers of
directed links, reciprocated links and self-loops respectively), node-specific
(Nℓ-dimensional) features {xiℓ}Nℓ

iℓ=1, {yiℓ}Nℓ
iℓ=1, {ziℓ}Nℓ

iℓ=1, {wiℓ}Nℓ
iℓ=1 called

fitness values (separately determining the intrinsic tendency of individual
nodes of forming reciprocated pairs of links, unreciprocated out-going
links, unreciprocated in-coming links and self-loops), and finally dyadic
factors parametrized by an Nℓ × Nℓ matrix D(ℓ) (determining pairwise
connection preferences not attributable to global or node-specific ones,
e.g. similarities, distances, membership to communities, etc.). Having
clarified our parametrization, and to ease the notation, from now on we
omit the dependence on Θℓ in all quantities.

3.2.1 Scale-invariant connection probabilities.

We can now look for the scale-invariant form of all probabilities. First, we
demand that the undirected projection of our directed model reduces to
the SIM considered in Chap. 2 for undirected graphs. Indeed, without
this constraint, the directed model we are building here would violate
scale-invariance when projected onto its undirected representation.
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We can therefore constrain the functional form of the marginal probability
qiℓjℓ of nodes iℓ and jℓ being connected by at least one link, whatever the
direction, to have the form already derived in Chap. 2. In formulae, this
implies that the quantity defined by

qiℓjℓ ≡ p→iℓjℓ + p←iℓjℓ + p↔iℓjℓ = 1− p↮iℓjℓ (3.2)

is given by

qiℓjℓ =

{︄
1− e−δxiℓ

xjℓ
f(diℓjℓ

) iℓ ̸= jℓ

1− e− δ
2x

2
iℓ
f(diℓiℓ

)−σwiℓ iℓ = jℓ
(3.3)

where δ, {xiℓ}Nℓ
iℓ=1, {wiℓ}Nℓ

iℓ=1, {diℓjℓ}Nℓ
iℓ,jℓ=1 are all positive and f is a posi-

tive monotonic function. The global parameter δ tunes the overall density
of undirected links, the node-specific fitness xiℓ controls the tendency of
node iℓ of forming undirected (i.e. of any directionality) links, and f

incorporates the (optional) effects of the dyadic properties {diℓjℓ}Nℓ
iℓ,jℓ=1.

Note that, as an addition to the undirected SIM, we have introduced an
extra fitness wiℓ (coupled to another global parameter σ) separately con-
trolling for the tendency of iℓ of forming a self-loop more (if σ > 0) or less
(if σ < 0) likely than otherwise determined by xiℓ (note that self-loops are
intrinsically reciprocated). To guarantee a positive qiℓiℓ , one must require

σ ≥ −min
iℓ

{︃
δx2iℓf(diℓiℓ)

2wiℓ

}︃
. (3.4)

Also, to preserve the consistency between the directed network and its
undirected projection, we need the matrix D(ℓ) to be symmetric (diℓjℓ =
djℓiℓ ) as in the undirected scenario.
Let us recall here that the key property of the probability qiℓjℓ in Eq. (3.3)
is that it preserves its functional form under arbitrary aggregations: if
the coarse-grained network at the next level ℓ+ 1 is considered, then the
probability qiℓ+1jℓ+1

that the two (ℓ+1)-nodes iℓ+1 and jℓ+1 are connected
by a link (i.e. that any pair of their constituent ℓ-nodes are connected) is
given by exactly the same expression, with parameters δ, σ remaining
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unchanged and the other ones renormalizing as

xiℓ+1
≡∑︁iℓ∈iℓ+1

xiℓ , wiℓ+1
≡∑︁iℓ∈iℓ+1

wiℓ , (3.5)

f(diℓ+1jℓ+1
) ≡

∑︁
iℓ∈iℓ+1

∑︁
jℓ∈jℓ+1

xiℓ
xjℓ

f(diℓjℓ
)∑︁

iℓ∈iℓ+1
xiℓ

∑︁
jℓ∈jℓ+1

xjℓ
. (3.6)

Note that (3.6) holds also for self-distances (iℓ+1 = jℓ+1).

Next, we consider the other marginal, but ‘directed’, probability piℓjℓ
introduced above, representing the probability of a directed edge being
present from iℓ to jℓ, irrespective of the presence of the edge in the oppo-
site direction. By demanding that piℓjℓ fulfils the same scale-invariance
requirement that in the undirected case leads to the functional form (3.3),
we arrive at the expression

piℓjℓ =

{︄
1− e−ηyiℓ

zjℓf(diℓjℓ
) iℓ ̸= jℓ

1− e− δ
2x

2
iℓ
f(diℓiℓ

)−σwiℓ iℓ = jℓ
(3.7)

where η > 0 tunes the overall density of directed links and, because
of the possible asymmetry of piℓjℓ for iℓ ̸= jℓ, we have introduced two
sets of fitness variables {yiℓ}Nℓ

iℓ=1 and {ziℓ}Nℓ
iℓ=1 (representing the intrinsic

tendency of each node of establishing out-going and in-coming links,
respectively), while for iℓ = jℓ we have necessarily enforced piℓiℓ ≡
qiℓiℓ . Upon coarse-graining, η is unchanged while, in analogy with (3.5)
and (3.6), the other parameters renormalize as

yiℓ+1
≡∑︁iℓ∈iℓ+1

yiℓ , ziℓ+1
≡∑︁iℓ∈iℓ+1

ziℓ , (3.8)

f
(︁
diℓ+1jℓ+1

)︁
≡

∑︁
iℓ∈iℓ+1

∑︁
jℓ∈jℓ+1

yiℓ
zjℓf
(︁
diℓjℓ

)︁
∑︁

iℓ∈iℓ+1
yiℓ

∑︁
jℓ∈jℓ+1

zjℓ
. (3.9)

Note that Eq. (3.9) is not to be applied when iℓ+1 = jℓ+1, in which case
the requirement of scale-invariance bounces back to the undirected prob-
abilities in Eq. (3.2) and thus to the renormalization rules in Eqs. (3.5)
and (3.6). On the contrary, when iℓ+1 ̸= jℓ+1, Eqs (3.6)-(3.9) should be
realized simultaneously. To ensure this, a convenient sufficient condition
is that the dyadic factors {diℓjℓ}Nℓ

iℓ,jℓ=1 are ultrametric (or, more precisely,
metaultrametric) distances compatible with the chosen hierarchy {Ωℓ}ℓ≥0
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of nested partitions. Metric distances satisfy four axioms, for all i, j: pos-
itivity (dij > 0 if i ̸= j), symmetry (dij = dji), triangular inequality
(dij ≤ dik + djk ∀k) and null self-distance (dij = 0 iff i = j). Metamet-
ric [122, 123] (also called partial metric [124] or dislocated [125]) distances
relax the last axiom by requiring only i = j if dij = 0, so they admit
positive self-distance (dii ≥ 0). Ultrametric distances [56] are metric dis-
tances that satisfy a stronger version of the triangular inequality, known
as ultrametric inequality (dij ≤ maxk{dik, djk} ∀k). As a result, they can
be arranged on a dendrogram whereby the distance between two ‘leaves’
equals the height of the closest branching point between them. In the rest
of the chapter, we call metaultrametric distance a metametric that satisfies
the ultrametric inequality. If d is metaultrametric over the dendrogram
induced by the nested hierarchy {Ωℓ}ℓ≥0, then f(diℓjℓ) comes out of the
sums in Eqs. (3.6) and (3.9) and is therefore invariant, for any assignment
of the fitness:

f(diℓ+1jℓ+1
) = f(diℓjℓ) if iℓ ∈ iℓ+1, jℓ ∈ jℓ+1, (3.10)

with iℓ+1 ̸= jℓ+1. For iℓ+1 = jℓ+1, f(diℓ+1jℓ+1
) is still obtained through the

rule (3.6). Allowing diℓiℓ > 0 enables non-zero self-interactions (piℓiℓ >
0) even when σ = 0. This is particularly relevant for coarse-grained
configurations because any block of nodes connected by at least one link
has a self-loop. From now on, we assume that the distances {D(ℓ)}ℓ≥0 in
our model are metaultrametric over {Ωℓ}ℓ≥0. Note that this requirement
is unnecessary, although convenient, in the undirected case.

By rearranging the marginal probabilities qiℓjℓ and piℓjℓ in Eqs. (3.3)
and (3.7) respectively, we finally arrive at the fundamental expressions
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for the joint probabilities:

p→iℓjℓ =

{︄
e−ηziℓyjℓ

f(diℓjℓ
) − e−δxiℓ

xjℓ
f(diℓjℓ

) iℓ ̸= jℓ

0 iℓ = jℓ
, (3.11)

p←iℓjℓ =

{︄
e−ηyiℓ

zjℓf(diℓjℓ
) − e−δxiℓ

xjℓ
f(diℓjℓ

) iℓ ̸= jℓ

0 iℓ = jℓ
, (3.12)

p↮iℓjℓ =

{︄
e−δxiℓ

xjℓ
f(diℓjℓ

) iℓ ̸= jℓ

e−
δ
2x

2
iℓ
f(diℓiℓ

)−σwiℓ iℓ = jℓ
, (3.13)

p↔iℓjℓ =

{︄
1− p→iℓjℓ − p←iℓjℓ − p↮iℓjℓ iℓ ̸= jℓ

1− e− δ
2x

2
iℓ
f(diℓiℓ

)−σwiℓ iℓ = jℓ
. (3.14)

Note that the latter expression implies, whenever iℓ ̸= jℓ, p↔iℓjℓ =

1 − e−ηyiℓ
zjℓf(diℓjℓ

) − e−ηziℓyjℓ
f(diℓjℓ

) + e−δxiℓ
xjℓ

f(diℓjℓ
). Also note that,

in analogy with request (3.4), the following condition is needed to restrict
all probabilities within the interval [0, 1]:

δ
(iℓ,jℓ)
min ≤ δ ≤ δ(iℓ,jℓ)max ∀iℓ ̸= jℓ (3.15)

where

δ
(iℓ,jℓ)
max ≡

⎧
⎨
⎩
− ln

(︂
e
−ηyiℓ

zjℓ
f(diℓjℓ

)
+e
−ηyjℓ

ziℓ
f(diℓjℓ

)−1
)︂

xiℓ
xjℓ

f(diℓjℓ
) if 1−piℓjℓ−pjℓiℓ > 0

+∞ if 1−piℓjℓ−pjℓiℓ ≤ 0

while

δ
(iℓ,jℓ)
min ≡ ηmax (yiℓzjℓ , yjℓziℓ)

xiℓxjℓ
.

Note that the above condition should hold for all pairs iℓ, jℓ simultane-
ously, which also means for all hierarchical levels ℓ ≥ 0. Whether it is
possible to fulfill the condition, therefore, depends not only on the values
of {xiℓ}Nℓ

iℓ=1, {yiℓ}Nℓ
iℓ=1, {ziℓ}Nℓ

iℓ=1, {wiℓ}Nℓ
iℓ=1 of all nodes for a given hierar-

chical level ℓ, but also on the entire hierarchy {Ωℓ}ℓ≥0 of chosen partitions.
Sufficient, although not necessary, conditions are the following:

max(yiℓ+1
zjℓ+1

,yiℓ+1
zjℓ+1

)

xiℓ+1
xjℓ+1

≤ max(yiℓ
zjℓ ,yiℓ

zjℓ )

xiℓ
xjℓ

, (3.16)
[︂
e
−η yiℓ+1

zjℓ+1
f(diℓ+1jℓ+1

)
+e
−η yjℓ+1

ziℓ+1
f(diℓ+1jℓ+1

)−1
]︂xiℓ

xjℓ
f(diℓjℓ

)

[︂
e
−η yiℓ

zjℓ
f(diℓjℓ

)
+e
−η yjℓ

ziℓ
f(diℓjℓ

)−1
]︂xiℓ+1

xjℓ+1
f(diℓ+1jℓ+1

) ≤ 1.(3.17)
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We highlight two important quantities characterizing the model. The
first, local property is the conditional probability

riℓjℓ ≡ Prob(iℓ → jℓ|jℓ → iℓ) =
p↔iℓjℓ
pjℓiℓ

(3.18)

that a link from iℓ to jℓ exists, given that the reciprocal link from jℓ to iℓ
exists. Note that riℓiℓ = 1, i.e. a self-loop is necessarily reciprocated (by
itself).
The second, global property is the overall reciprocity ⟨r⟩, defined as the ra-
tio of the expected value of the number L↔ ≡ ∑︁Nℓ

iℓ=1

∑︁
jℓ ̸=iℓ

a
(ℓ)
iℓjℓ

a
(ℓ)
jℓiℓ

of reciprocated links to the expected value of the number L ≡∑︁Nℓ

iℓ=1

∑︁
jℓ ̸=iℓ

a
(ℓ)
iℓjℓ

of links in total, i.e.

⟨r⟩ ≡ ⟨L
↔⟩
⟨L⟩ =

∑︁Nℓ

iℓ=1

∑︁
jℓ ̸=iℓ

p↔iℓjℓ∑︁Nℓ

iℓ=1

∑︁
jℓ ̸=iℓ

piℓjℓ
. (3.19)

In the special case where all nodes are statistically equivalent (i.e., they
are assigned the same fitness values), all probabilities do not depend on
the specific pair of nodes and in particular riℓjℓ ≡ r = ⟨r⟩ which equals
the global reciprocity [105], motivating the choice of a common symbol
for the two quantities.

Relevant cases. Before discussing more general settings, we briefly
outline some relevant cases that represent useful benchmarks for later.

• Maximal reciprocity (riℓjℓ = 1) is achieved when all the connec-
tions are bidirectional by construction and the model reduces to
the undirected SIM, with the additional freedom of controlling
self-loops separately from the other links. In particular, we get
qiℓjℓ = piℓjℓ = pjℓiℓ = p↔iℓjℓ and p→iℓjℓ = p←jℓiℓ = 0 ∀ iℓ, jℓ. Clearly, in
this case the conditions in Eq. (3.15) force the fitness variables to be
related via the expression yiℓ ≡ ziℓ ≡ xiℓ

√︁
δ/η ∀ iℓ.

• Positive reciprocity (riℓjℓ > piℓjℓ) is achieved when the network has
a preference for the creation of reciprocal links, even when not
maximally reciprocated. In particular, the conditional reciprocation

77



probability riℓjℓ is larger than the unconditional connection proba-
bility piℓjℓ . Equivalently, the joint probability of a pair of links being
reciprocated is larger than the probability of the same event occur-
ring by chance if the two links were independent: p↔iℓ,jℓ > piℓjℓpjℓiℓ .
Refs. [105, 107] report several real-world networks (in decreasing
order of reciprocity, the World Trade Web, the World Wide Web,
neural networks, email networks, word networks and metabolic
networks) as belonging to this class of positive reciprocity.

• Random reciprocity or areciprocity (riℓjℓ = piℓjℓ) is achieved in the
‘neutral’ or trivial case when the two links between any two nodes
are independent. Reciprocity is therefore the result of sheer chance,
given the marginal connections probabilities: p↔iℓ,jℓ = piℓjℓpjℓiℓ . This
case is achieved by fixing δxiℓxjℓ = η(yiℓzjℓ + yjℓziℓ) ∀ iℓ, jℓ. This
condition can be seen as an equivalent way to discriminate between
a reciprocal ensemble where δxixj < η(yizj + yjzi), and an antire-
ciprocal ensemble (see below) where δxixj > η(yizj + yjzi). The
areciprocal case is useful to define the reference ‘random’ reciprocity

⟨r⟩rand =

∑︁Nℓ

iℓ=1

∑︁
jℓ ̸=iℓ

piℓjℓpjℓiℓ∑︁Nℓ

iℓ=1

∑︁
jℓ ̸=iℓ

piℓjℓ
(3.20)

as the value achieved by Eq. (3.19) in a network where no depen-
dency between mutual links is present.

• Negative reciprocity or antireciprocity (riℓjℓ < piℓjℓ) is achieved when
the network tries to avoid the creation of reciprocal links. The
conditional reciprocation probability riℓjℓ is in this case smaller than
the unconditional connection probability piℓjℓ . Equivalently, the
joint probability of a pair of links being reciprocated is smaller than
the probability of the same event occurring by chance if the two
links were independent: p↔iℓ,jℓ < piℓjℓpjℓiℓ . Analogously to the case
of positive reciprocity, Ref. [105] reports several real-world networks
(e.g. corporate shareholding networks and food webs) as belonging
to this class of negative reciprocity.
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• Minimal reciprocity (maximal antireciprocity) corresponds, ideally, to a
complete absence of mutual links, where all connections are either
missing or unidirectional so to have riℓjℓ = p↔iℓjℓ = 0, p→iℓjℓ = piℓjℓ ,
p←jℓiℓ = pjℓiℓ ∀ iℓ, jℓ. However, this extreme case cannot always be
reached, as there might be no unique choice for δ achieving the
fully antireciprocal limit δ = δmax

iℓjℓ
for all node pairs simultaneously.

This becomes increasingly difficult as the distribution of the fit-
ness variables becomes broader (and, in general, as more uneven
coarse-grainings are iterated): if 1− piℓjℓ − pjℓiℓ < 0, then p↔iℓjℓ > 0

irrespective of δ, since p↔iℓjℓ = piℓjℓ + pjℓiℓ − qiℓjℓ > 1 − qiℓjℓ ≥ 0.
This effect will be discussed more transparently in Sec. 3.3.

3.2.2 Graph probability and scale invariance.

Having derived all the dyadic connection probabilities in Eqs. (3.11) -
(3.14), we can now use them to obtain the full probability P (A(ℓ)) for the
entire graph A(ℓ) at any hierarchical level ℓ. To do so, it is convenient
to represent the graph through the mutually exclusive dyads a→iℓjℓ , a←iℓjℓ ,
a↔iℓjℓ , a↮iℓjℓ introduced above:

P (A(ℓ))=

Nℓ∏︂

iℓ=1

iℓ∏︂

jℓ=1

(p→iℓjℓ)
a→iℓjℓ (p←iℓjℓ)

a←iℓjℓ (p↔iℓjℓ)
a↔iℓjℓ (p↮iℓjℓ)

a↮
iℓjℓ

≡ e−H
(ℓ)

eff (A
(ℓ))

Z(ℓ)
, (3.21)

where, analogously to the description in Sec. 2.2.1, we have introduced
the effective Hamiltonian

H
(ℓ)
eff (A

(ℓ)) = −
Nℓ∑︂

iℓ=1

iℓ∑︂

jℓ=1

[︂
a→iℓjℓ ln

p→iℓjℓ
p↮iℓjℓ

(3.22)

+ a←iℓjℓ ln
p←iℓjℓ
p↮iℓjℓ

+ a↔iℓjℓ ln
p↔iℓjℓ
p↮iℓjℓ

]︂
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and the partition function

Z(ℓ) ≡
∑︂

{A(ℓ)}
e−H

(ℓ)

eff (A
(ℓ)) (3.23)

≡
Nℓ∏︂

iℓ=1

iℓ∏︂

jℓ=1

∑︂

{(a→iℓjℓ ,a
←
iℓjℓ

,a↔iℓjℓ
)}

(︄
p→iℓjℓ
p↮iℓjℓ

)︄a→iℓjℓ
(︄
p←iℓjℓ
p↮iℓjℓ

)︄a←iℓjℓ
(︄
p↔iℓjℓ
p↮iℓjℓ

)︄a↔iℓjℓ

≡
Nℓ∏︂

iℓ=1

iℓ∏︂

jℓ=1

(︄
p→iℓjℓ
p↮iℓjℓ

+
p←iℓjℓ
p↮iℓjℓ

+
p↔iℓjℓ
p↮iℓjℓ

+ 1

)︄

≡
Nℓ∏︂

iℓ=1

iℓ∏︂

jℓ=1

1

p↮iℓjℓ

≡ e
δ
2x

2
i∞f(di∞,i∞ )+σwi∞ , (3.24)

with xi∞ ≡ ∑︁Nℓ

iℓ=1 xiℓ , wi∞ ≡ ∑︁Nℓ

iℓ=1 wiℓ and f(di∞,i∞) ≡
x−2i∞

∑︁Nℓ

iℓ=1

∑︁Nℓ

jℓ=1 xiℓxjℓf(diℓ,jℓ) being scale-invariant quantities:
f(di∞,i∞) is independent of the hierarchical level ℓ, while xi∞ and
wi∞ are even independent of the hierarchy of partitions.

3.3 A simplified benchmark: the homogeneous
case

As the simplest benchmark for the more complicated cases that we will
consider later, we first illustrate the purely homogeneous case where
the fitness variables are all equal and the dyadic factors are switched off
(f ≡ 1), so that the only free parameters left are η and δ. Without loss of
generality, we can then set xi0 ≡ yi0 ≡ zi0 ≡ wi0 = 1 ∀ i0 = 1, N0 at level
ℓ = 0. Homogeneity will then be preserved at any subsequent level ℓ > 0,
provided that blocks of nodes are all equal in size for any ℓ. This model
represents a scale-invariant reparametrization of the well-known p1 model
by Holland and Leinhard [126], where the random graph is homogeneous
but with nontrivial reciprocity. We do not consider self-loops at level
ℓ = 0 and we therefore set σ = −δ/2, so that p↔i0i0 = p→i0i0 = p←i0i0 = pi0i0 =
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qi0i0 = 0 for all i0 = 1, . . . , N0.
In this scenario, all the connection probabilities are identical for different
pairs of nodes (i0, j0) (with i0 ̸= j0) and equal to

p = 1− e−η,
q = 1− e−δ,
p→ = q − p = e−η − e−δ,
p↔ = 2p− q = 1 + e−δ − 2e−η.

(3.25)

Notably, the conditions in Eq. (3.15) become very transparent:

η ≤ δ ≤ δmax, δmax =

{︄
− ln (2e−η − 1), if p < 1

2

∞, otherwise

and are global (i.e. not pair-specific). This allows us to easily interpret
the two extreme values of δ in terms of the resulting expected reciprocity,
which in this case equals ⟨r⟩ = p↔/p. In particular, for δ = δmin = η

we recover maximal reciprocity (⟨r⟩ = 1), while for δ = δmax we recover
minimal reciprocity (⟨r⟩= ⟨r⟩min). In the latter case, we have to distinguish
between two possibilities: if p > 1

2 , then ⟨r⟩min is necessarily larger than
zero since p↔(δmax) > 0. This is correctly mirroring the fact that if the
average link density (which in the homogeneous case equals p) is larger
than 1/2, then the minimum number L↔min of reciprocated links is given
by twice the number of links exceeding the number of vertex pairs, i.e.
L↔min = 2 [L−N(N − 1)/2]. This implies that the realized value of r can-
not be smaller than L↔min/L and, consequently, the minimum expected
reciprocity takes the strictly positive value ⟨r⟩δmax

= 2− 1
p . On the other

hand, for p ≤ 1/2 we can reach the complete absence of reciprocal links
and get ⟨r⟩δmax = 0 for δmax = − log (1− 2p).
In what follows, we keep discussing the properties of the model at level
ℓ = 0. Clearly, the properties at the next levels ℓ > 0 will depend on the
details of the partitions chosen. Importantly, choosing block nodes of the
same size at each level will keep the model homogeneous, with the same
values of the global parameters δ, η and σ, but rescaled and increasingly
larger values of the fitnesses (yet still equal for different blocks). In the
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latter case, adjusting the results of this section to any desired hierarchical
level is straightforward: coarser (finer) representations of the network
effectively correspond to larger (smaller) values of the global parameters.
Clearly, self-loops become more likely in coarser configurations. By con-
trast, partitions into heterogeneously sized blocks will effectively turn the
model into a non-homogeneous one.

We are mainly interested in the amount of reciprocation generated
by the model, compared with an areciprocal benchmark, or equivalently
with the random reciprocity ⟨r⟩rand = p generated by the model itself in
the particular case when p↔ = p2, i.e. for δrand = 2η (this case simply
reducing to a directed Erdős-Rényi model). Discounting for this ‘baseline’
reciprocity can be done transparently by adopting a modified metric of
reciprocity [105] defined as the Pearson correlation coefficient ρ between
the symmetric entries of the adjacency matrix, which for homogeneous
random graphs takes the convenient form

ρ ≡
∑︁

i,j ̸=i(aij − ⟨aij⟩)(aji − ⟨aij⟩)∑︁
i,j ̸=i(aij − ⟨aij⟩)2

=
r − p
1− p .

Unlike r, ρ is an absolute quantity and takes values in the interval [−1, 1].
The value ρ = 0 points at the areciprocal case, where the couples aij
and aji are indeed statistically independent. The sign of ρ immediately
distinguishes then between reciprocal (ρ > 0) and antireciprocal (ρ < 0)
networks. The explicit expressions for the expectations of r and ρ are

⟨r⟩ = 2− q

p
= 2− 1− e−δ

1− e−η ,

⟨ρ⟩ = (2− p)p− q
(1− p)p =

e−(δ−η) − e−η
1− e−η .

(3.26)

The above functions are illustrated in Fig. 13, where the dependence of ⟨r⟩
and ⟨ρ⟩ on the parameter δ is shown for four different values of η (i.e. of
the expected link density p). It is interesting to note how the antireciprocal
regime converges to the areciprocal one as η → 0: in this limit, the graph
gets so sparse that it becomes extremely unlikely for two nodes to establish
mutual connections, and reciprocated links are effectively absent. This
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Figure 13: Reciprocity (r) and correlation coefficient (ρ) as functions of the
density parameter (δ). The solid lines illustrate, for different values of the
link density p, the behaviour of the functions ⟨r⟩) and ⟨ρ⟩ in equations (3.26),
while the isolated points indicate the values achieved in the areciprocal case
δrand = 2η (where ⟨r⟩rand = p and ⟨ρ⟩rand = 0). The dashed lines indicate
the minimum values of ⟨r⟩ and ⟨ρ⟩ attainable for the given values of p.
The four values of p considered are: 1) p = 0.75, for which the maximum
value qmax for q is 1, ⟨r⟩min = 2p−1

1−p
and ⟨ρ⟩min = 2−p−1/p

1−p
; 2) p = 0.5,

for which qmax = 1, ⟨r⟩min = 0, and ⟨ρ⟩min = − p
1−p

; 3) p = 0.25, for
which qmax = 0.5, ⟨r⟩min = 0, and ⟨ρ⟩min = − p

1−p
; 4) p = 0.01, for which

qmax ∼ qrand, ⟨r⟩min = 0, and ⟨ρ⟩min = − p
1−p

∼ 0.

can be confirmed by expanding the conditions (3.15) around η = 0: the

value of δ for which p↔ vanishes is δmax
η∼0∼ − ln(1 − 2η) ∼ 2η, which

coincides with the value of δ for which p↔ = p2 (i.e. the areciprocal case).
Note that, starting from such a sparse configuration at level ℓ = 0 and
progressively coarse-graining the network implies a departure from this
scenario, as reciprocated links become more and more likely.

A remarkable effect of reciprocity is visible in the spectral density
of the adjacency matrix of directed graphs, as pointed out in [112]. In
our setting we can define the centred random matrix C with elements
Cij =

aij−pij√
Npij(1−pij)

, which have zero mean and unit variance. Then, the

covariance between its off-diagonal entries can be easily written in the
suggestive form

⟨CijCji⟩ =
p↔ − p2
Np(1− p) = ρ i ̸= j.
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According to [112], the spectral density of C is (asymptotically) uniform
on the ellipse with axes (1 + ρ, 1 − ρ). In terms of reciprocity, this state-
ment has an intuitive meaning: the larger the value of ρ (i.e. the ‘more
symmetrical’ the matrix C), the more the spectral ellipse ‘narrows’ along
the real axis, until it reaches the undirected (fully symmetric) limit, for
which ρ = 1 and the Wigner semicircle law is recovered [127]. On the
opposite, the smaller ρ, the more the ellipse concentrates on the imagi-
nary axis. In the intermediate areciprocal case, we find a perfect circle
(1 + ρ = 1− ρ = 1) as expected for matrices with perfectly uncorrelated
entries [128].
The above picture is illustrated in Fig. 14, where the outcome of numerical
simulations is shown for a single realization of the homogeneous model
and a sample of 100 realizations. Note that having centred the matrix
A indeed removes the largest eigenvalue λmax(A) (which is known to
behave as ∼ Np for Erdős-Rényi random graphs, either directed o undi-
rected) from the spectrum of C, as illustrated in the right panels in Fig. 14.
Moreover, rescaling by

√︁
Npij(1− pij) is convenient as N gets large.

The remarkable consistency between individual realizations and the
theoretical elliptic distribution, already for moderate network sizes, justi-
fies the use of the spectral density of the adjacency matrix of (necessarily
finite) real-world networks as a powerful quantification of reciprocity, as
we will see in the next section on a specific case study.

3.4 Quenched fitness

In this section, we move away from the homogeneous setting and address
the general case where different nodes can have different fitness values,
while still treating the latter as deterministic variables (which therefore
represent some sort of ‘intrinsic characteristics’ of nodes). In particu-
lar, each node iℓ is provided with a fitness quadruplet (xiℓ , yiℓ , ziℓ , wiℓ)

that will determine its tendency of establishing directed links with other
nodes and with itself. We recall that when using the model to describe
a real-world system, every element of the latter may be represented as a
node at a certain level ℓ, while the fitness parameters may be identified
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Figure 14: Spectral density for homogeneous directed networks. Complex
spectra of the (centred and rescaled) adjacency matrix of the network for 1
(top panels) and 100 (bottom panels) realizations of the homogeneous DSIM
with N = 1000 nodes. In all cases the parameter η is kept fixed to the value
η = 0.69315, corresponding to the link density d = 0.5, which allows the
parameter ρ to vary across its full range [−1, 1] (see Fig. 13). The spectra
are shown for the three values δ = 2.0794 (ρ = −0.5, red), δ = 2η (ρ = 0,
green), and δ = 0.9808 (ρ = 0.5, yellow). Left: spectra of the matrix with
entries Cij =

aij−p√
Np(1−p)

, which are uniform over the Ellipse[1 + ρ, 1 − ρ].

centre: spectra of the matrix with entries aij−p√
N

, which are uniform over the

Ellipse[(1 + ρ)
√︁

p(1− p), (1 − ρ)
√︁

p(1− p)]. Right: spectra of the matrix
with entries aij , which consist of an elliptic ‘bulk’ and an isolated largest real
eigenvalue λmax (crosses). Note that λmax ∼ Np does not depend on δ and
the resulting level of reciprocity.

with measurable node-specific quantities. Note that we may choose to
tune only the total number of self-loops and not their individual node-
specific probabilities, thereby relying solely on the parameter σ and fixing
wiℓ = 1 ∀iℓ = 1, . . . Nℓ. As already mentioned, we may also add a
(symmetric) dyadic property diℓ,jℓ to each pair of nodes (iℓ, jℓ), to fur-
ther encourage (or discourage) their connection. In this way, the only
remaining free parameters are the global, scale-invariant ones (η, δ, σ).
The latter can be adjusted by constraining the link density, the global
reciprocity, and the overall number of self-loops, respectively. Once the
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parameters are specified, the connection probabilities in Eqs. (3.11)-(3.14)
are determined simultaneously at all scales, thereby providing a testable
multi-scale model of the renormalized network at any higher level of
aggregation. In the following subsection, we illustrate the procedure by
considering the empirical International Trade Network (ITN).

3.4.1 The directed International Trade Network

In Chap. 2 we have shown how the undirected SI model can capture
relevant features of the observed (symmetric) network of bilateral inter-
national trade, not only at the ‘native’ level of resolution (where nodes
represent countries and links represent the existence of trade in any direc-
tion) but also consistently across different aggregation levels, e.g. between
groups of countries, regions, etc.. Here we walk the same line while focus-
ing on the finer topology induced by directed international trades, where
a directed link represents export from one node to another. This is not
a straightforward extension of the undirected case, precisely because of
the strongly reciprocal nature of this particular directed network, which
has been pointed out for example in [100, 105]. Capturing the reciprocity
structure of the ITN is crucial, among other things, for correctly assessing
the statistical significance of higher-order patterns such as triadic mo-
tifs [110]. We source the data from the expanded trade dataset developed
by K. S. Gleditsch [99], which provides trade flow estimates among 185

countries for the years 1948− 2000. Here we show the results for the year
2000, but similar outcomes have been obtained for the other years as well
(more details on the dataset are provided in Sec. 3.7.1).

We define our empirical network at the native level ℓ = 0 by consid-
ering N0 = 185 0-nodes, each representing a country in the dataset [99].

The empirical adjacency matrix Ã
(0)

(where the tilde indicates the specific
empirical matrix in the ensemble of possible matrices that the model we
are going to define can generate) is then built by setting the entry ã(0)i0j0

= 1

if there is any reported (i.e. positive) export relationship from country i0
to country j0, and ã(0)i0j0

= 0 otherwise. We set by convention all self-loops

to zero: ã(0)i0i0
= 0, ∀ i0 = 1, . . . , N0.
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Definition of the multiscale model

In what follows, we define our multiscale model for the directed ITN by
using the probabilities introduced in Eqs (3.11)-(3.14) and specifying all
the parameters therein.
We first discuss the choice of the fitness variables xi0 for each country
i0 = 1, N0. Building upon prior findings that highlight the significance
of the Gross Domestic Product (GDP) in shaping the structure of the
undirected ITN [68–71], we follow the approach taken in Chap. 2 and set
xi0 = GDPi0 for all i0 = 1, N0. As remarked in the undirected analysis,
this choice is consistent by the additive nature of GDP upon aggregation
(the total GDP of a set of countries is the sum of the individual GDPs),
which compels with the renormalization rule for x in Eq. (3.5).
Next, we fix the dyadic parameters, for which a natural candidate is
provided by the geographic distances between countries. Again, this
builds upon established empirical knowledge of the role of distances in
determining trade flows, as initially conceptualized by the traditional
Gravity Model of trade [72] and more recently confirmed by various net-
work analyses of the ITN [71, 129, 130]. On the tail of the analysis of
the undirected ITN in Sec. 2.3, we specifically consider the population-
averaged inter-country distances {di0j0} provided by the BACI-CEPII
GeoDist database [75, 76] (see Sec. 2.6.2). However, as discussed in gen-
eral in Sec. 3.2, we need our distances to be metaultrametric. For this reason,
for all i0 we set our diagonal metaultrametric distances dmu

i0i0
equal to the

non-zero self-distances di0i0 > 0 as already reported in the GeoDist data
(representing the population-averaged distance between agglomerations
inside each country). Next, we construct the off-diagonal metaultrametric
distances dmu

i0j0
(for i0 ̸= j0) via a single-linkage hierarchical clustering

algorithm, which produces the so-called subdominant ultrametric distances
representing the closest ultrametric ‘from below’ to the original metric [56].
The subdominant ultrametric distances are obtained by using the original
geographic distances {di0j0} as measure of dissimilarity. The output of
this procedure is a dendrogram whose leaves correspond to the origi-
nal countries (0-nodes) and the metaultrametric distance between each
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pair is given by the height of the branching point for the corresponding
branches. In particular, pairs of nodes that have the same ancestor have
the same distance, so that the cardinality of different values in the matrix
Dmu is given by the number of branching points, that in any dendrogram
amounts to at mostN−1 (and is equal toN−1 if the elements are merged
in pairs at each step of the algorithm). Then, we set the function f as
f(dmu) = 1/dmu.
We then consider the fitness {wi0}. To replicate the absence of empir-
ical self-loops at level 0 we set wi0 ≡ x2i0f(d

mu
i0i0

) for all i0 = 1, N0 and
σ ≡ −δ/2 (the latter is analogous to the choice made in Sec. 3.3). Note that,
as we proceed to higher levels ℓ > 0 through coarse-graining, self-loops
will eventually emerge both in the empirical network and the model.
Finally, we consider the fitness values yi0 and zi0 . As already observed
in [105] and confirmed for this specific dataset (see Fig. 15), each country
in the ITN exhibits approximately equal in-degrees kin

i0
=
∑︁

j0 ̸=i0
aj0i0

and out-degrees kout
i0

=
∑︁

j0 ̸=i0
ai0j0 . As a consequence, for this particular

system, a natural choice is the symmetric one, where pi0j0 ≡ pj0i0 , i.e.
yi0 ≡ zi0 , ∀ i0, j0. Moreover, to keep the focus on GDP alone as the main
node-specific driver of trade links, we make the convenient choice of
taking the vectors y⃗ and z⃗ proportional to x⃗. Since the (positive) propor-
tionality constant can be reabsorbed in the global parameter η, we can
posit x⃗ ≡ y⃗ ≡ z⃗.

With the above specifications, the only free parameters left are η and δ,
which we tune, respectively, so that both the expected number ⟨Lnl

0 ⟩ of
directed links (self-loops excluded) and the expected number ⟨L↔0 ⟩ of

reciprocated links equal their measured counterparts L̃
nl
0 and L̃

↔
0 in the

empirical network, i.e. at level ℓ = 0 (see Sec. 3.7.2).

We can now test the model against the real data at several levels of
aggregation, through a sequence of iterative coarse-grainings induced by
the dendrogram of metaultrametric distances discussed above. We follow
the same procedure adopted in Sec. 2.3 and cut the dendrogram hori-
zontally at 17 different levels, such that the number of block-countries,
at any coarse-graining level ℓ, is given by N0 = 185 for ℓ = 0 and
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Figure 15: Symmetry in the WTW: the above scatter-plot illustrates the linear
relation between in-degrees {kin

i0}
N0
1 and out-degrees {kout

i0 }N0
1 of 0−nodes

(i.e., countries) in the World Trade Web [99].

Nℓ = 180− 10ℓ, ∀ ℓ = 1, . . . , 16. This procedure generates the hierarchy

of coarse-grained empirical networks {Ã(ℓ)}ℓ=1,...,17 via the procedure
illustrated in Fig. 12. In this way, each ℓ-node represents a geographic
aggregate of nearby countries, and the additivity of GDPs ensures that
the renormalized fitness always represents the empirical aggregate GDP
of a block-country. Moreover, the transformation rules in (3.6) and (3.9)
leave the off-diagonal metaultrametric distances f(dmu

iℓ+1,jℓ+1
) invariant at

any level ℓ, as specified in (3.10), while the diagonal terms f(dmu
iℓ+1,iℓ+1

)

renormalize as in (3.6). The values of the model parameters, together
with their transformation rules across hierarchical levels, determine the
connection probabilities simultaneously at all scales considered. We
have checked that the conditions in (3.15) are verified along the entire
coarse-graining flow.

Capturing structural and spectral properties

First of all, it is worth noting that all the quantities that had been repro-
duced in the undirected case, referring to global and local properties of
the network, are still well captured by the DSIM, thus confirming the
desired consistency between the directed ensemble and its undirected
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Figure 16: Prediction of global topological properties of the ITN across
the full spectrum of geographical aggregation using the DSIM. The panels
show the agreements between the empirical and the expected values of the
link density Dℓ (on the left) and the node-averaged rescaled average nearest
neighbour out-degree k

out
nn (iℓ)/(Nℓ − 1) as functions of the number Nℓ of

countries at all the 17 hierarchical levels considered, with N0 = 185 and
Nℓ = 180− ℓ 10 for any ℓ = 1, . . . 16.

projection. To illustrate this, here we consider the direct generalization
of the topological quantities considered in Sec. 2.3 (defined in Sec. 3.7.2):
the link density Dℓ, the out-degree kout

iℓ
(the ”in-” counterparts being per-

fectly equivalent) and the average nearest neighbour out-degree kout
nn iℓ

.
We performed both the global and the local tests and show the outcome
in Figures 16 and 17.

Now we focus our attention on quantities that are somehow related
to network reciprocity. As anticipated, we find that the strongly recipro-
cated nature of the ITN cannot be captured without explicitly enforcing it,
since the empirical global reciprocity in the network is not consequential
to other topological properties. This can be seen by comparing various
features of the real ITN with the theoretical expectations provided by our
DSIM in two different settings: a fitted one, where the parameter δ is tuned
to replicate the empirical number of reciprocated links (as explained above
and detailed in Sec. 3.7.2), and a random one, where δrand =

η(yizj+yjzi)
xixj

as in the areciprocal benchmark for our model discussed in 3.2.1. In the
symmetric (yi = zi) setting considered here, this is simply obtained as
δrand = 2η. We consider both topological and spectral properties, for
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Figure 17: Prediction of local topological properties of the ITN at different
levels of aggregation using the DSIM. Top panels: empirical (blue) and
expected (goldenrod) out-degree kout

iℓ
vs ln(GDPiℓ) for all Nℓ nodes, for

three representative hierarchical levels (ℓ1 = 0, ℓ2 = 8, ℓ3 = 13) such that
N0 = 185 (left), N2 = 100 (centre) and N3 = 50 (right). Bottom panels:
empirical (blue) and expected (goldenrod) average nearest-neighbour out-
degree kout

nn (iℓ) vs ln(GDPiℓ) for all Nℓ nodes, for the same three hierarchical
levels.

various hierarchical levels: specifically, the global reciprocity rℓ, the re-
ciprocated degree k↔iℓ ≡

∑︁
jℓ ̸=iℓ

aiℓjℓajℓ,iℓ of each node iℓ and the spectral
density of the adjacency matrix A(ℓ). The results are shown in Fig. 18.

First, we note from the bottom left panel of Fig. 18 that the global
reciprocity rℓ is always systematically larger in the empirical network
than in the areciprocal model with the same link density. By contrast, the
reciprocated model replicates r0 by construction, via the fitted parameter
δ. Yet, it is quite remarkable that the agreement between the empirical
and the predicted reciprocity remains in place across all subsequent ag-
gregation levels ℓ > 0, even if no further refitting of the parameters has
taken place.

Similar considerations apply to the relationship between the recipro-
cal degree k↔iℓ and the undirected degree kund

iℓ
, which is shown for three

representative levels of aggregation (top panels of Fig. 18). Note that
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the areciprocal directed model cannot replicate the empirical (approxi-
mately linear) relationship between the two quantities, the reciprocated
degree being systematically underestimated. By contrast, the full model
replicates the empirical replationship remarkably well: even if only the
expected global reciprocity at level ℓ = 0 is fitted through the parame-
ter δ, the model successfully predicts the local reciprocated degree for
each node separately, and keeps doing so (again, without refitting) across
aggregation levels. Finally, we consider the spectral properties of the
network, in analogy with the analysis in Sec. 3.3, but here for heteroge-
neous fitness values. We compare the spectral distribution of the ITN
with the one of samples drawn from the DSIM ensemble. We generated
Ng = 1000 synthetic realizations of the ITN for each of the two models
considered (with δ fitted and δrand) and then juxtaposed their spectra with
the empirical one. The outcome is shown on the bottom right of Fig. 18,
where the strongly eccentric (along the real axis) elliptical distribution of
the ITN is closely replicated by the model with reciprocation, while the
areciprocal model produces the usual circular distribution.

3.5 Annealed fitness

As in the undirected case, the DSIM can be framed in an annealed scenario,
where not only the graph structure but also the fitness are treated as
random variables. Then, the requirement of invariance upon aggregation
is to be extended to the functional form of the probability density function
(pdf) describing these random variables. In the directed case, each node
is in general endowed with four random fitness variables, so at each level
ℓ there are four Nℓ-dimensional random vectors (x⃗(ℓ), y⃗(ℓ), z⃗(ℓ) and w⃗(ℓ)).

For simplicity, we disregard the dyadic factors, i.e. we posit f ≡ 1

in Eqs. (3.11), (3.12), (3.13), (3.14), and leave to chance the formation of
self-loops by setting w⃗(0) ≡ 0⃗. The additivity of w upon aggregation then
also implies w⃗(ℓ) = 0⃗ deterministically for all higher levels ℓ > 0. We
are then left with three random vectors (x⃗(ℓ), y⃗(ℓ) and z⃗(ℓ)) which can in
general be mutually dependent in complicated ways, both across nodes
(e.g. xiℓ and xjℓ can be correlated) and across fitness types (e.g. xiℓ , yiℓ
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Figure 18: Topological and spectral properties of the ITN across different
levels of aggregation. Various features of the empirical ITN (in blue) are
compared with the expectations provided by the DSIM (in goldenrod) and by
the areciprocal DSIM - where δ = δrand (in green). TOP PANELS: scatter-plot
of the undirected projection of the degree kund

iℓ
vs the reciprocal degree k↔

iℓ

of each node, at three representative levels of aggregation: starting from
ℓ = 0 with N0 = 185 nodes, corresponding to the original ITN (on the left),
to ℓ = 8 with N8 = 100 nodes (at the centre) to ℓ = 13 with N13 = 50 nodes
(on the right). BOTTOM PANELS: in the figure on the left, the observed and
expected values of global reciprocity rℓ are shown as functions of the number
Nℓ of nodes along the 17 considered levels of aggregation of the original
network, with N0 = 185 and Nℓ = 180 − ℓ 10 for any ℓ = 1, . . . 16. In the
two figures on the right, we focus on the spectral density of the ITN and
show real and imaginary parts of the eigenvalues induced by the empirical
ITN (in blue), by a sample of Ng = 1000 synthetic networks drawn from
the DSIM ensemble (with the same density and same reciprocity of the
empirical network of trades) (in goldenrod) and by a sample of Ng = 1000
synthetic networks drawn from the random DSIM (with the same density
of the empirical network of trades but random reciprocity) (in green). For
visualization purposes, in all cases the spectrum of the centred matrix Ac

(with elements a
(c)
ij = aij − pij) is considered instead of the one of the

adjacency matrix A. The picture on the right offers a soft zoom on the bulk
of the spectrum shown on the left.

and ziℓ can be correlated). While it is reasonable to assume statistical
independence between different nodes (in the general spirit of fitness
models or inhomogeneous random graphs considered in the literature),
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doing the same between different fitness types would lead to an unrealistic
scenario where, for instance, there would be no correlation between the
in-degree and out-degree of the same node (while, as the ITN example
considered above illustrates in a particularly strong way, these variables
are in general correlated). For the sake of simplicity, we consider the
extreme case of perfect correlation by setting x⃗(ℓ) ≡ y⃗(ℓ) ≡ z⃗(ℓ) for all
ℓ ≥ 0.

With the above choices, the multivariate problem reduces to a univari-
ate one, where each ℓ-node iℓ is endowed with a single random fitness xiℓ
(the fitness values for all nodes being i.i.d.) that impacts all its types of
connections through the probabilities defined by Eqs. (3.11)-(3.14), which
here become

piℓjℓ = 1− e−ηxiℓ
xjℓ ,

qiℓjℓ = 1− e−δxiℓ
xjℓ ,

p→iℓjℓ = p←iℓjℓ = e−ηxiℓ
xjℓ − e−δxiℓ

xjℓ ,

p↔iℓjℓ = 1 + e−δxiℓ
xjℓ − 2e−ηxiℓ

xjℓ ,

(3.27)

for any iℓ ̸= jℓ, while the diagonal terms read piℓiℓ = qiℓiℓ = p↔iℓiℓ =

1− e− δ
2x

2
iℓ .

As discussed in Sec. 2.4, requiring that the pdf of the (necessarily
positive) fitness values is positively supported and invariant upon aggre-
gation (just like the graph probability distribution) leads to the selection
of one-sided α-stable distributions [83]. In this way, at any level ℓ of ob-
servation, a realization {xiℓ}Nℓ

iℓ=1 of fitness variables can be obtained in
two equivalent ways, either hierarchically, from any lower hierarchical
level (say ℓ−1) by summing the finer-grained variables {xiℓ−1

}Nℓ−1

1 based
on the chosen partition Ωℓ−1, or directly by drawing Nℓ i.i.d. random
variables from a pdf with invariant functional form and scale-dependent
parameters.
We recall that the aforementioned property is ensured by the closure under
convolution that characterizes α-stable random variables, whose pdf we de-
note as φℓ(xiℓ ;α, βℓ, γℓ, µℓ), where α is the stability parameter (which, in
the one-sided case, ranges in the interval 0 < α < 1), βℓ controls the skew-
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ness, γℓ the scale and µℓ the location of the distribution. In the specific case
of one-sided α-stable distributions with support over the non-negative
real numbers, we have µ0 = 0 and β0 = 1. Upon aggregation, the only
parameter that gets modified is γℓ, while α remains unchanged due to the
stability property and βℓ and µℓ are mapped onto their original values
β0 = 1 and µ0 = 0. In order to preserve the i.i.d. nature of the fitness
across ℓ-nodes, we assume that, to pass from level ℓ to ℓ + 1, blocks of
homogeneous sizes are formed, i.e. all (ℓ+ 1)-nodes contain exactly the
same number (say, bℓ) of ℓ-nodes. Under this assumption, γℓ transforms
as γαℓ+1 = bℓγ

α
ℓ .

In the remainder of this section, we narrow the focus on the particular
case of the Lévy distribution, corresponding to α = 1/2 and representing
the only α-stable distribution that can be written in explicit form when
0 < α < 1. The Lévy pdf reads

φ(x; γiℓ) ≡ φℓ(x; 1/2, 1, γiℓ , 0) =

√︃
γiℓ
2π

e−γiℓ
/2x

x3/2
. (3.28)

In what follows, we explore the topology of network realizations
drawn from the DSIM ensemble in the annealed setting described above,
i.e. by connecting pairs of ℓ-nodes with the connection probabilities given
in Eq. (3.27) and Lévy distributed fitness variables. In particular, we
investigate how the parameters η and δ jointly shape the features of such
networks at different levels of aggregation.

3.5.1 Emergent positive reciprocity

Before delving into a multiscale analysis, we first note that, under our
choice of Lévy-distributed fitness and x⃗(ℓ) ≡ y⃗(ℓ) ≡ z⃗(ℓ), the formation
of antireciprocal networks is suppressed. To support the former state-
ment we recall from the discussion of the homogeneous case in Sec. 3.3
that finding the value δmax such that ⟨r⟩δmax

= 0 (corresponding to the
maximally antireciprocal limit) is possible only as long as the overall link
density (i.e. p) remains below the structural limit of 1/2 (recall Fig. 13).
At the same time, as mentioned in Sec. 3.2.1, strong heterogeneity in the
fitness distribution makes it very difficult for the resulting network to
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exhibit antireciprocal features, even when the overall density of links
is very low. Indeed, the upper bound δmax in Eq. (3.15) is dictated by
the pair of nodes with the lowest fitness as δmax = mini,j δ

max
i0j0

, where

δmax
i0j0

= − ln(2e
−ηxi0

xj0−1)
xi0

xj0
is a strictly increasing function of xi0xj0 . As a

consequence, the wider the gap between the minimum and maximum
fitness products in a given realization, the broader the range of values of
δmax
i0j0

across pairs of nodes and the larger the number of pairs of nodes
with positive mutual connection probability p↔i0j0 (contributing to an in-
crease of the attainable value for ⟨r⟩min). In our infinite-mean fitness case,
typical values of the fitness are spread so broadly over nodes that they
effectively hinder the emergence of antireciprocal patterns in the network.

In analogy with our analysis in Sec. 3.3, we can evaluate the expected
reciprocity ⟨r⟩(η, δ) in Eq. (3.19) for Lévy-distributed fitness values as a
function of the parameter δ in the domain established by the conditions in
Eq. (3.15), for different values of the parameter η (i.e. for a varying density
of links). In Fig. 19 the outcome of this procedure is illustrated for four
different values of the expected link density κ = 1

N(N−1)
∑︁

i,j ̸=i pij . As
the figure shows, maximal reciprocity (⟨r⟩ = 1) can always be achieved
(specifically, when δ = δmin = η, yielding p→ij = 0 and pij = qij ∀ i, j). By
contrast, ⟨r⟩ can never reach antireciprocated values compatibly with the
conditions in Eq. (3.15): δmax is indeed too small to allow for global values
of reciprocity below the areciprocal benchmark, due to the coexistence of
nodes with very low fitness (which yield δmax

ij ≈ 2η) and nodes with very
large fitness (which can establish unreciprocated links only for very large
δ).
These results indicate that the annealed random networks that remain
invariant under aggregations have non-negative reciprocity: they can
only be areciprocal or reciprocal.

3.5.2 Expected topological properties

We now calculate the expected degrees (in-, out-, and reciprocated degrees)
and their distributions. Note that the expected in-degree kin

iℓ
, in this

symmetrical setting, is equivalent to the expected out-degree kout
iℓ

.
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Figure 19: Reciprocity r in the annealed case as a function of the param-
eter δ. Solid lines illustrate, for four different values of link density (κ =
0.0001, 0.01, 0.3, 0.6, corresponding to η = 2.83 e−10, 1.83 e−06, 0.01, 0.14)
the behaviour of the function ⟨r⟩ in (3.19), while the full circles indicate the
values achieved in the areciprocal case δrand = 2η (where ⟨r⟩rand is given
by (3.20)). The dashed lines indicate the antireciprocal limit ⟨r⟩min = ⟨r⟩δmax ,

with δmax = mini,j

(︂
− ln(2e

−ηxixj−1)
xixj

)︂
. In each plot, δ varies in the range of

its domain of existence δ ∈ [η, δmax], which is dependent upon the specific
realization of fitness values (which is fixed in all plots and amounting to 5000
values) and, clearly, on the parameter η (whose value is found so to enforce
the desired density of links κ).

Let us start by deriving the functional form of the expected in-degree
distribution. In close resemblance with the analysis provided in Sec. 2.4,
we compute, for a typical realization of the fitness values, the distribu-
tion Pℓ(k

in) from the PDF (3.28) of the fitness and from the connection
probability piℓ,jℓ written as a function of the fitness of the nodes involved:

f(x, y) = 1− e−η x y. (3.29)

For a large number Nℓ of ℓ-nodes, the expected in-degree

⟨kin
iℓ
⟩ =

∑︂

jℓ ̸=iℓ

piℓjℓ =
∑︂

jℓ ̸=iℓ

f(xiℓ , xjℓ)

can be approximated by an integral over the number (Nℓ − 1)φ(y; γℓ) of
ℓ-nodes (except iℓ itself) with fitness in a neighbourhood of y. By denoting
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with kin
ℓ (x) the expected in-degree of a node with fitness x at level ℓ, we

find

kin
ℓ (x) = (Nℓ − 1)

∫︂ ∞

0

f(x, y)φ(y; γℓ)dy

= (Nℓ − 1)
(︂
1− e−

√
2ηγℓx

)︂
, (3.30)

a relationship confirmed via numerical simulations in the top left panel of

Fig. 20, where the rescaled quantity κin
ℓ (x) =

kin
ℓ (x)

Nℓ−1 is considered.
Inverting the above equation allows us to calculate the resulting ex-

pected in-degree distribution exactly. Indeed, by monotonicity, it holds:

Pℓ

(︁
kin)︁ dkin = φ

(︁
x(kin); γℓ

)︁
dx(kin). (3.31)

We therefore obtain

Pℓ(k
in) =

2√
π

√
ηγℓ

Nℓ − 1− kin

e
− ηγ2

ℓ

log2(1− kin
Nℓ−1

)

log2(1− kin

Nℓ−1 )
. (3.32)

Note that this distribution has a power-law regime proportional to κ−2,

followed by a density-dependent cut-off. The top right panel of Fig. 20
illustrates the good agreement between numerical simulations and ana-
lytical predictions at four different levels of resolution.

Similarly, for evaluating the distribution P̃ ℓ(k
↔), we consider the

function:
f↔(x, y) = 1 + e−δ x y − 2e−η x y. (3.33)

The expected reciprocal degree k↔ℓ of a node with fitness x, for a large
number Nℓ of nodes, is thus given by:

k↔ℓ (x) = (Nℓ − 1)

∫︂ ∞

0

f↔(x, y)φ(y; γℓ)dy

= (Nℓ − 1)
(︂
1− 2e−

√
2ηγℓx + e−

√
2δγℓx

)︂
. (3.34)

This is confirmed in the bottom left panel of Fig. 20. In this case, however,
the obtained expression cannot be inverted unless a specific relation is
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enforced between the parameters η and δ, i.e. δ = 4nη, with n = 1, 2, . . .

(this relation might in general be incompatible with the conditions in
Eq. (3.15)). Nevertheless, we can estimate the cumulative distribution of
rescaled reciprocated degrees by considering the behaviour of k↔ℓ (x) for
small values of x, i.e. k↔ℓ (x) ∼ (Nℓ − 1)

√
2γℓx (2

√
η −
√
δ). In this regime

the inverse function x(k↔ℓ ) can easily be found:

x(k↔ℓ ) ≈ 1

2γℓ

(︄
k

(Nℓ − 1)(2
√
η −
√
δ

)︄2

.

Although the above function is not monotone in k, we can still use
Eq. (3.31) in our domain of interest, which is the positive real axis. The
(approximated) reciprocal degree distribution therefore is given by

P̃ ℓ(k
↔) ≈ 2√

π
(Nℓ − 1)

γℓ

(︂
2
√
η −
√
δ
)︂

(k↔)
2 e

−
(︃
(Nℓ−1) γℓ(2

√
η−
√

δ)

k↔

)︃2

. (3.35)

As confirmed in the bottom right panel of Fig. 20, this approximate re-
sult reproduces the bulk of the distribution, while failing in the tails as
expected (the approximation being valid only for small values of x).

Finally, we look at the expected density of links ⟨κℓ⟩ (excluding self-
loops) and the expected reciprocity ⟨r⟩. An expression for the density is
found from

⟨κ̄ℓ⟩ =
∫︂ ∞

0

dx

∫︂ ∞

0

dy f(x, y)φ(x; γℓ)φ(y; γℓ)

= 1−
∫︂ ∞

0

e−
√
2ηγℓxφ(x; γℓ)dx,

(3.36)

which can be written in terms of the Meijer-G function:

⟨κ̄ℓ⟩ = 1−
√
ηγℓ

2π
G 3,0

0,3

(︃
·

−1/2,0,0

⃓⃓
⃓⃓ηγ

2
ℓ

4

)︃
. (3.37)

Analogously, we can express the expected reciprocity as

⟨rℓ⟩ =

∫︁∞
0

∫︁∞
0
f↔(x, y)φ(x; γℓ)φ(y; γℓ)dxdy

⟨κ̄ℓ⟩

= 2−
1−

√
δγℓ

2π G 3,0
0,3

(︂
·

−1/2,0,0
⃓⃓
⃓ δγ

2
ℓ

4

)︂

⟨κ̄ℓ⟩
. (3.38)

99



Figure 20: Degrees and reciprocal degrees in the annealed DSIM. We show
the outcome of a simulation obtained from one realization of a synthetic
network of N0 = 5000 nodes at four different levels of aggregation (ℓ =
0, 1, 2, 3). This is performed by drawing the network realization from the
graph probability in (3.21) and then progressively coarse-graining it via the
renormalization rules in (3.1), after having fixed the hierarchy of partitions
in the most homogeneous way: at each step ℓ, Nℓ blocks are created by
randomly grouping nodes in pairs so that we progressively halve the number
of nodes Nℓ = N02

−ℓ. In the two figures on the left, the reduced in-degree
κin
ℓ (top) and reduced reciprocal degree κ↔

ℓ (bottom) are shown as functions
of the fitness values and compared to the analytical predictions in (3.30)
and (3.5.2). In the two figures on the right, the cumulative distributions of
the reduced in-degree κin and reduced reciprocal degree k↔ are compared
with the analytical expectations shown in equations (3.34) and (3.35). As
a reference, the dashed lines in the right panels are proportional to κ−1,
corresponding to κ−2 for the non-cumulative pdf.

We display the above analytical results in Fig. 21, where the functional
dependence, shown in Eqs. (3.37) and (3.38), of ⟨κℓ⟩ and ⟨rℓ⟩ on the scale
parameter γℓ is illustrated, along with the respective values obtained at
four different levels of aggregation of a synthetic network drawn from
the graph probability in (3.21) and then progressively coarse-grained by
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Figure 21: Link density and reciprocity along the coarse-graining flow. The
blue and the orange lines correspond to the analytical predictions, respec-
tively, of the link density ⟨κ̄ℓ⟩ and reciprocity ⟨rℓ⟩ in equations (3.37)-(3.38).
The full circles correspond to the realized values of ⟨κ̄ℓ⟩ and ⟨rℓ⟩ in a simu-
lation where a synthetic network of N0 = 5000 nodes is generated at level
ℓ = 0 and then progressively coarse-grained. At each iteration, nodes are
randomly merged in pairs so that the parameter γℓ from level ℓ to ℓ + 1
scales as γℓ+1 = 22ℓγ0. Parameters η and δ are fixed, respectively, to 0.1 and
δmax = 0.20000037 (the latter yielding the minimally reciprocated networks,
given η = 0.1 and {xi0}).

merging pairs of randomly chosen nodes (bℓ = 2). Again, numerical
simulations agree perfectly with the analytical calculations.

3.6 Discussion

In this chapter we have shown that the Scale-Invariant Model, proposed
as an approach to consistently model undirected networks at arbitrary
(and possibly multi-scale) resolution levels, can be extended coherently to
directed networks, leading to the Directed Scale-Invariant Model. Impor-
tantly, besides being scale-invariant, the DSIM can account for nontrivial
reciprocity.

As in the undirected formulation, the model can generate any (di-
rected) network, equiprobably, either hierarchically (by generating a finer-
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grained network and then coarse-graining it through a sequence of nested
partitions) or directly (using appropriately renormalized parameters). In
the directed formulation, these parameters include three global param-
eters (meant to tune the overall density of directed links, reciprocated
links and self-loops), four sets of fitness variables (each quadruplet be-
ing attached to each (block-)node to separately trigger its tendency to
establish connections with other nodes - either incoming, outgoing, or
reciprocated - and with itself) and, if useful, a set of dyadic factors repre-
senting distances or communities. A sufficient condition to ensure that the
connection probabilities are indeed scale-invariant even in the presence
of dyadic interactions is to consider metaultrametric distances compati-
ble with the hierarchy of partitions chosen to define the coarse-graining
procedure.

After deriving the renormalization rules for networks with arbitrary
reciprocity, we have considered various examples, including a directed
multiscale model of the international trade network and an annealed
model, where scale-free networks with positive reciprocity emerge spon-
taneously from coarse-graining. Applying the model to the directed ITN
demonstrated its consistency with the undirected formalism (accurately
reproducing topological features of the undirected projection of the ITN),
while at the same time capturing nontrivial directed topological and spec-
tral properties related to strong reciprocity patterns across hierarchical
aggregation levels.

In the annealed scenario, we focused on a specific case, where the
connection probabilities are symmetric (in that the different fitness pa-
rameters assigned to each node are taken to be identical) and the fitness
values are drawn from a Lévy distribution. The high heterogeneity of
this distribution suppresses the antireciprocal regime, suggesting that an-
nealed scale-invariant random graphs are intrinsically reciprocal. In such
a setting, we have shown that in-degree, out-degree and reciprocal degree
distributions feature a power-law decay ∝ k−2 followed by a density-
dependent cutoff. Therefore, the sole requirement of scale-invariance au-
tomatically produces directed scale-free graphs with positive reciprocity.

Future research should address further generalizations, such as higher-
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dimensional quenched fitness values and multivariate α-stable distribu-
tions for the different annealed fitness types.

3.7 Supporting material

3.7.1 GDP, distance and Trade data

Here we specify the procedure used to gather trade, GDP and distance
data in our analysis of the International Trade Network (ITN).

For defining the fitness values and the empirical network we relied
on the expanded trade dataset developed by K. S. Gleditsch [99], which
provides estimates of the bilateral trade flows between independent states
between the years from 1948 to 2000, together with estimates of their Gross
Domestic Products (GDPs) per capita and population. The GDP estimates
are originally based on figures from Penn World Tables [131], produced
by the Center for International Comparisons at the University of Pennsyl-
vania, and from reports of Central Intelligence Agency (CIA) [132]. The
outcome consists of 185 countries, whose real GDPs per capita are given for
all years in constant US dollars (with base 1996), along with population
figures in units of 1000s. We obtained the real total GDP value of each
country by multiplying its GDP value per capita by its population. Such
quantities are naturally additive (i.e., scale linearly with the population)
and are thus suitable to serve as nodes’ fitness.
For defining the binary asymmetric matrix Ã

(0)
representing our empir-

ical ITN at level ℓ = 0, we used the final estimates of the international
trade flows provided in Gleditsch database, obtained from a refinement
of the Direction of Trade (DOT) of the International Monetary Fund (IMF)
data [133] where missing data and suspicious zero had been managed
with figures from the World Export Data (WED) [134] or through ad hoc
procedures (for which we refer to the original reference [99]). As described
in Sec. 3.4, if a positive trade is estimated in the considered year (2000)
from country i0 to country j0 then we posit ai0j0 = 1, otherwise ai0j0 = 0.

In accordance with the analysis of the undirected ITN (reported in
Sec. 2.3), we set the dyadic parameter of the model building on the
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population-averaged geographic distances provided within the BACI-
CEPII GeoDist database [75], extensively described in Sec. 2.6.2 (specifi-
cally, they were defined in the formula (2.19)). As explained in Sec. 3.4,
in this (directed) case the considered distances are required to be ultra-
metric (or, more in general, metaultrametric) allowing us to define the
coarse-graining flow of the network by progressively cutting the associ-
ated dendrogram at always larger heights while keeping invariant the
pairwise parameter. To minimize the distortion between the original inter-
country distance di0,j0 and its metaultrametric approximation dmu

i0,j0
, we

consider the subdominant ultrametric distance, i.e., the largest among
all ultrametrics that are less than or equal to the original metric. These
can be obtained via a single-linkage hierarchical clustering performed by
using the original distances di0j0 as measure of dissimilarity. Hierarchical
clustering algorithms start from the partition of the dataset into single-
ton nodes and merge step by step the current pair of mutually closest
nodes into a new node until there is one final node left. Several clustering
schemes share this procedure as a common definition, but differ in the
way in which the measure of inter-cluster dissimilarity is updated after
each step. The single-linkage method, which has been already recalled in
Sec. 2.3 and 2.6.2, uses the minimum of the distances between all obser-
vations of the two sets and is indeed known to produce the subdominant
ultrametric distance of the original one [56, 135, 136]. The output of this
algorithm is perfectly equivalent to the dendrogram shown in Fig. 10,
whose leaves correspond to each country (each 0-node) and the subdomi-
nant ultrametric distance between each pair is given by the height of the
branching point of the corresponding branches. This generates clusters
of nodes that are equally distant, in terms of du, one from each other. For
instance, given two clusters I and J , then the subdominant ultrametric
distance between each pair of nodes belonging to I and J is given by
du
i0j0

= mini0∈I,j0∈Jdi0j0 . Starting from the ultrametric distances du
i0j0

, we
define the metaultrametric distances (related to a metametric obeying the
ultrametricity condition) as

dmu
i0j0 =

{︄
du
i0j0

if i0 ̸= j0,

di0j0 if i0 = j0,
(3.39)

104



where di0j0 is the population averaged distance between countries i0 and
j0 in Eq. (2.60).

3.7.2 (Directed) network properties: empirical and ex-
pected values

In this section, the key topological properties considered in our analysis
of the directed ITN are defined. By keeping the notation adopted in the
undirected case (see Sec. 2.6.3), each such property is a function Y (A(ℓ))

of the Nℓ × Nℓ adjacency matrix A(ℓ) (with entries a(ℓ)iℓ,jℓ
= 0, 1) of the

generic ℓ-graph. This matrix is in general asymmetric and can in principle
contain non-zero entries along the diagonal, representing self-loops.

As made explicit in Sec. 3.4, Ã
(ℓ)

represents the empirical matrix obtained
at the hierarchical level ℓ from the Gleditsch data in year 2000. The
observed value of each considered topological property Y of the ITN will

be denoted as Ỹ ≡ Y (Ã
(ℓ)

).
When considering the multiscale model, A(ℓ) is instead a random matrix
whose entries {a(ℓ)iℓ,jℓ

} are Bernoulli random variables with expected value

⟨a(ℓ)iℓ,jℓ
⟩ ≡ piℓjℓ =

⎧
⎪⎨
⎪⎩
1− e

−η
GDPiℓ

GDPjℓ
dmu
iℓ,jℓ if iℓ ̸= jℓ

1− e
− δ

2

GDP2
iℓ

dmu
iℓ,iℓ

−σ̃w̃iℓ if iℓ = jℓ

(3.40)

where the parameters (σ̃, w̃i0) are chosen so to ensure pi0i0(η, δ, σ̃) =

0 ∀ i0 = 1, N0 (in accordance with the adopted convention to fix ã(0)i0i0
=

0 ∀ i0). As explained in Sec. 3.4, this is obtained by imposing σ̃ = − δ
2 and

w̃i0 =
GDP2

i0

dmu
i0i0

∀ i0 = 1, . . . , N0, which implies:

w̃iℓ =
∑︂

i0∈iℓ

GDP2
i0

dmu
i0i0

∀ℓ.

Note that even though at level ℓ = 0 either the empirical network
and the multiscale model are by our choice exhibiting null self-loops,
as we proceed with the coarse-graining, these will emerge in both
the former, as a consequence of the coarse-graining rule aiℓjℓ = 1 −
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∏︁
iℓ−1∈iℓ

∏︁
jℓ−1∈jℓ

(︁
1− aiℓ−1jℓ−1

)︁
, and in the latter, in that the parameters

σ̃w̃iℓ at aggregate levels do not counterbalance anymore the first term at
the exponent, which cannot equal 0 for ℓ > 0:

−δ
2

GDP2
iℓ

dupiℓiℓ
− σ̃w̃iℓ = −

δ

2

∑︂

i0∈iℓ

∑︂

j0∈iℓ

GDPi0GDPj0

dmu
i0j0

− σ̃w̃iℓ

= σ̃
∑︂

i0∈iℓ

∑︂

j0∈iℓ,j0 ̸=i0

GDPi0GDPj0

dmu
i0j0

̸= 0.

Then, we consider the undirected projection B(ℓ) of the matrix A(ℓ),
whose elements b(ℓ)iℓ,jℓ

≡ a
(ℓ)
iℓ,jℓ

+ a
(ℓ)
jℓ,iℓ
− a(ℓ)iℓ,jℓ

a
(ℓ)
jℓ,iℓ

are Bernoulli random
variables with expected values:

⟨b(ℓ)iℓ,jℓ
⟩ ≡ qiℓjℓ =

⎧
⎪⎨
⎪⎩
1− e

−δ
GDPiℓ

GDPjℓ
dmu
iℓ,jℓ iℓ ̸= jℓ,

1− e
− δ

2

GDP2
iℓ

dmu
iℓ,iℓ

−σ̃w̃iℓ
iℓ = jℓ.

(3.41)

The probabilities of the four possible dyads between each pair of
(block-)countries iℓ and jℓ (namely an unidirectional connection, a mutual
connection or a missing connection) are given by:

p→iℓjℓ =

⎧
⎨
⎩
e
−η

GDPiℓ
GDPjℓ

dmu
iℓ,jℓ − e

−δ
GDPiℓ

GDPjℓ
dmu
iℓ,jℓ iℓ ̸= jℓ,

0 iℓ = jℓ,

p←iℓjℓ =

⎧
⎨
⎩
e
−η

GDPiℓ
GDPjℓ

dmu
iℓ,jℓ − e

−δ
GDPiℓ

GDPjℓ
dmu
iℓ,jℓ iℓ ̸= jℓ,

0 iℓ = jℓ,

p↔iℓjℓ =

⎧
⎪⎨
⎪⎩
1− 2e

−η
GDPiℓ

GDPjℓ
dmu
iℓ,jℓ + e

−δ
GDPiℓ

GDPjℓ
dmu
iℓ,jℓ iℓ ̸= jℓ,

1− e
− δ

2

GDP2
iℓ

dmu
iℓ,iℓ

−σ̃w̃iℓ
iℓ = jℓ,

p↮iℓjℓ =

⎧
⎪⎨
⎪⎩
e
−δ

GDPiℓ
GDPjℓ

dmu
iℓ,jℓ iℓ ̸= jℓ,

e
− δ

2

GDP2
iℓ

dmu
iℓ,iℓ

−σ̃w̃iℓ
iℓ = jℓ.

(3.42)
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are calibrated by taking their unique values η̃ and δ̃ that produce,
respectively, the same number Lnl

ℓ =
∑︁Nℓ

iℓ=1

∑︁Nℓ

jℓ=1,jℓ ̸=iℓ
a
(ℓ)
iℓjℓ

of links and
the same number L↔ℓ =

∑︁Nℓ

iℓ=1

∑︁Nℓ

jℓ=1,jℓ ̸=iℓ
a↔iℓjℓ

(ℓ) of reciprocated links

(or, equivalently, the number Lund,nl
ℓ =

∑︁Nℓ

iℓ=1

∑︁Nℓ

jℓ<iℓ
b
(ℓ)
iℓjℓ

= Lnl
ℓ − 1/2 L↔ℓ

of undirected links) as the real ITN (self-loops excluded). In principle,
this can be done at an arbitrary level ℓ. Here, we are reporting the results
obtained by constraining the above quantities at the native level, i.e. ℓ = 0,
which reads:

N0∑︂

i0=1

N0∑︂

j0=1,j0 ̸=i0

pi0j0(η̃) = L̃
nl
0 ,

N0∑︂

i0=1

i0∑︂

j0=1,j0 ̸=i0

qi0j0(δ̃) = L̃
und,nl
0 ,

(3.43)

where the terms on the left side identify the expected values of links
⟨Lnl

0 ⟩(η) and undirected links ⟨Lund,nl
0 ⟩(δ) (not accounting for self-loops),

while the terms on the right correspond to their empirical values. In the

considered dataset, we find L̃
nl
0 = 20101 and L̃

und,nl
0 = 10250, yielding

η̃ = 1.211 10−11(USD)−2 and δ̃ = 1.344 10−11(USD)−2.

Once the parameters η and δ are fixed to η̃ and δ̃, we can generate real-
izations {A(ℓ)} of the ℓ-graphs from the multiscale model at any desired
hierarchical level ℓ by sampling ℓ-links independently with probabilities
p→iℓjℓ(η̃, δ̃), p

←
iℓjℓ

(η̃, δ̃) and p↔iℓjℓ(η̃, δ̃, σ̃). By averaging the value Y (A(ℓ)) of
a topological property over such realizations, we can efficiently estimate
the corresponding expected value

⟨Y ⟩ ≡
∑︂

A(ℓ)∈GNℓ

P
(︁
A(ℓ)

)︁
Y (A(ℓ)), (3.44)

where P
(︁
A(ℓ)

)︁
is given by Eq. (3.21). If Y (A(ℓ)) is linear in A(ℓ), we can

calculate ⟨Y ⟩ exactly by directly replacing, in the definition of Y (A(ℓ)),
a→iℓ,jℓ with p̃→iℓ,jℓ , a←iℓ,jℓ with p̃←iℓ,jℓ and a↔iℓ,jℓ with p̃↔iℓ,jℓ , without sampling
any graph at all. This is indeed the case for the number of total and
reciprocal links in Eq. (3.43).
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Given any ℓ-graph A(ℓ) (be it the empirical ℓ-graph or a random
realization from the ensemble), the main topological properties of interest
to us are listed in the following.

• The link density, representing the ratio of realized to the maximum
number of links, including possible self-loops:

Dℓ(A
(ℓ)) ≡ 2Lℓ(A

(ℓ))

Nℓ(Nℓ + 1)
=

2
∑︁Nℓ

iℓ=1

∑︁iℓ
jℓ=1 a

(ℓ)
iℓ,jℓ

Nℓ(Nℓ + 1)
; (3.45)

• the reciprocity, quantifying the proportion of mutual links with re-
spect to the total number of links (excluding self-loops to ensure
that rℓ(A(ℓ)) ∈ [0, 1]):

rℓ(A
(ℓ)) ≡ L↔ℓ (A(ℓ))

Lnl
ℓ (A(ℓ))

=

∑︁Nℓ

iℓ=1

∑︁Nℓ

jℓ=1,jℓ ̸=iℓ
a↔iℓ,jℓ

(ℓ)

∑︁Nℓ

iℓ=1

∑︁Nℓ

jℓ=1,jℓ ̸=iℓ
aiℓ,jℓ

(ℓ)
; (3.46)

• the in-degree (or, equivalently, the out-degree upon exchange of the
indices), counting the number of incoming (or outgoing) links to the
ℓ-node iℓ (excluding self-loops):

kin
iℓ
(A(ℓ)) ≡

∑︂

jℓ ̸=iℓ

a
(ℓ)
iℓ,jℓ

; (3.47)

• the undirected degree, counting the number of connections in the
undirected projection B(ℓ):

kund
iℓ

(B(ℓ)) =
∑︂

jℓ ̸=
biℓjℓ ; (3.48)

• the average nearest neighbour out-degree, representing the average
out-degree of the neighbours of iℓ:

kout
nn iℓ

(A(ℓ)) ≡
∑︁

jℓ ̸=iℓ

∑︁
kℓ ̸=jℓ

a
(ℓ)
iℓ,jℓ

a
(ℓ)
jℓ,kℓ∑︁

jℓ ̸=iℓ
a
(ℓ)
iℓ,jℓ

. (3.49)
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Chapter 4

SIM as an inhomogeneous
random graph with
infinite-mean fitness
variables

This chapter is based on the work [2] by M. Lalli, R. Hazra, D. Garlaschelli,
and L. Avena, which provides an investigation of the annealed SI model
with a mathematically rigorous perspective.
In what follows, we consider a slightly different model from the one intro-
duced in Chap. 2, as will be highlighted through a different notation. To
facilitate the reading, we will start by briefly outlining the new setting and
framing it within the context of Probability Theory’s evolving literature,
which offered the prompt for our analysis. The relationship with the
original model and implications of our findings on it will be discussed in
Sec. 4.2, while a complete definition of the new setting together with the
achieved results is contained in Sec. 4.3. Concluding results are in Sec. 4.6.
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4.1 Introduction

Consider a random graph with n nodes, where the vertices are assigned
independent weights (Wi)i∈[n] (or fitness variables), which determine
the connections between pairs of nodes. The values of the weights are
drawn from a common distribution FW (·), with 1 − FW (x) ∼ x−α for
some α ∈ (0, 1). Therefore the weights have infinite mean. Conditioned
on the weights, an edge between two distinct vertices i and j is drawn
independently with probability

pij = 1− e−εWiWj , (4.1)

where ε is a positive n-dependent parameter tuning the overall density of
edges in the graph and playing a crucial role in the analysis of the model
that will come in the present chapter.
The above model corresponds to a particular class of inhomogeneous
Erdős - Rényi random graphs, so called in continuation with the founda-
tional Erdős - Rényi random graph [7] which, on the opposite, is homoge-
neous as all nodes contribute equivalently to the network’s connectivity,
resulting in a non-heterogeneous degree distribution. More in general,
Eq. (4.1) represents a special example of connection probability between
vertices i and j defined as κn(Wi,Wj), where κn : [0, ∞)2 → [0, 1] is a
well-behaved function, and the weights are drawn independently from a
certain distribution. These class of random graphs, which in the physics
literature are usually denoted as fitness or hidden variables models ([20,
137]) find a well-known instance, in the mathematical literature, in the
Generalized Random Graph [5]. In most of the cases considered in the
literature so far, due to the integrability conditions on κn and moment
properties of FW , these models have a locally tree-like structure. The in-
terested reader may find an accessible review of related results in Chapter
6 of [5] for the properties of the degree distribution, and in [55, 138] for fur-
ther geometric structures. Models based on connection probabilities that
resemble almost exactly Eq. (4.1) had been proposed, but with relevant
differences regarding either the scaling of the prefactor at the exponent or
the distribution of the fitness variables, which most often has finite mean
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([58, 139, 140]). Our precise setting was revealed to be non-standard as
the analysis of its topological properties defies usual techniques, due to
the combination of the specific form of the connection probability and
these heavy-tailed weights produced by the choice α ∈ (0, 1). We believe
that certain mathematical features of an ultra-small world network, where
the degrees exhibit infinite variance, can be captured by this model. In
this case, due to the absence of a finite mean, the typical distances may
be much slower than the doubly-logarithmic behaviour (in relation to
the graph’s size) observed in ultra-small networks [141]. Here, we show
that the average degree in the considered model grows like log n if we
choose the specific scaling ε ∼ n− 1

α . In this case, the cumulative degree
distribution roughly behaves like a power law with exponent −1. In the
literature for random graphs with degree sequences having power-law
distribution with exponent τ , this falls in the critical case of exponent
τ = 1 [5]. In particular, the configuration model with degree distribution
being a power law with exponent τ ∈ (0, 1) was studied in [142], where it
was shown that the typical distance between two randomly chosen nodes
in the graph is either 2 or 3. In addition, they found that in the critical
case τ = 1 a similar ultra-small world behaviour holds true. Note that
our model differs from this one in that it naturally gives rise to degree
distribution with power law exponent −1 rather than imposing it.
Additionally, we investigate certain dependencies between the degrees of
different vertices and the asymptotic density of wedges and triangles.

The rest of the chapter is organized as follows: in Sec. 4.3 we state our
main results, in Sec. 4.2 we discuss the connection to the original model
and, ultimately, in Sections 4.4 and 4.5 we prove our results.

4.2 Connection with the original SIM

Despite the close resemblance between the model studied in this chapter
and the original annealed version of the SIM introduced in Sec. 2.4 (in
particular, between Eqs. (2.17) and (4.1)), some differences require further
discussion.
First, to make the calculations less irksome at the first stage, we have
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here considered weights drawn from a Pareto distribution with tail
exponent α and fixed scale parameter 1, rather than a one-sided
α-stable distribution with scale parameter γℓ (which is ℓ-dependent and
therefore n-dependent); second, to approach the asymptotic analysis
we have here considered an n-dependent density-parameter ε, while
in the original model the density-parameter δ was scale-invariant;
third, here we have not exploited the scale-invariant nature of the SIM
under coarse-graining. We now clarify the close relationship between
the two variants of the model, these apparent differences notwithstanding.

Let us stat by recalling that α-stable distributions belongs to the
broader family of regularly varying random variables with power law
exponent −α, i.e. random variables with tail such that P(Wi > w) =

w−αL(w) where L(·) is a slowly varying function, that is, for any w > 0,

lim
t→∞

L(wt)

L(t)
= 1.

More precisely, for large values of the argument x, a one-sided α-stable
distribution P(X > x) with scale parameter γ is well approximated by
a pure power law (Pareto) distribution P(X > x) ∼ Cα,γ x

−α with a
prefactor Cα,γ that depends on the parameters of the stable law [143]:

Cα,γ ≡ γαcα, with cα ≡
2Γ(α)

π
sin

πα

2
. (4.2)

It is our belief that most of the results stated in this chapter for pure Pareto
will go through also in presence of a slowly varying function, even if the
analysis will be more involved. However, we haven’t gone through this
technical side yet.

Concerning the shift in moving from a Pareto with scale cαγα to a
Pareto with scale 1, this implies a shift for the global prefactor at the
exponent of the connection probability which immediately relates the
results obtained here to those obtained in the original model at a given
level of aggregation of nodes. Indeed we note that, besides n0 and b, the
three remaining parameters of the original annealed SIM are α ∈ (0, 1),
γ0 ∈ (0,∞) and δ ∈ (0,∞). However, among these three parameters, only
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α and the combination δγ20 are independent. Indeed, it is easy to realize
that rescaling γ0 to γ0/λ (which is equivalent to rescaling Xiℓ to Xiℓ/λ, for
some λ > 0) while simultaneously rescaling δ to λ2δ leaves the connection
probability unchanged. In combination with the scale-invariant nature of
the SIM, this property can be exploited to map the quantities ({Xiℓ}nℓ

iℓ=1, δ)

introduced in the original model to the quantities ({Wi}ni=1, ε) used here
by choosing a level ℓ such that the number nℓ of vertices in the SIM equals
the one desired here, i.e. n = nℓ, and defining the weight of vertex i as
Wi ≡ c−1/αα γ−1ℓ Xiℓ for i = 1, n. From this redefinition, it follows:

lim
x→∞

P(Wi > x) xα = 1 i = 1, n,

irrespective of ℓ. This implies that, while the distribution ofXiℓ in Eq. (4.2)
depends on ℓ through the parameter γℓ, the distribution of Wi is actually
ℓ-independent in the tail, which is the reason why we could drop the
subscript ℓ in redefining Wi. In this way, we can keep the connection
probability unchanged (i.e. 1− e−δXiℓ

Xjℓ ≡ 1− e−εnℓ
WiWj ) while moving

the scale-dependence from {Xiℓ}nℓ
iℓ=1 to εnℓ

by redefining the latter in one
of the following equivalent ways:

εnℓ
≡ c2/αα γ2ℓ δ = c2/αα

(︃
n0
nℓ

)︃2/α

γ20δ = c2/αα b2ℓ/αγ20δ = b2ℓ/αεn0 (4.3)

where εn0
≡ c2/αα γ20δ.

In other words, our formulation here can be thought of as deriving
from an equivalent SIM where, rather than having a scale-dependent
fitness distribution and a scale-independent global parameter δ, we have
a scale-independent fitness distribution (with asymptotically the same
tail as the Pareto in Eq. (4.2)) and a scale-dependent global parameter
εn = εnℓ

, for an implied hierarchical level ℓ. According to Eq. (4.3), since
δ, α and b are finite constants, achieving a certain scaling of εn with n in
the model considered here corresponds to achieving a corresponding
scaling of γℓ with nℓ (or equivalently of γ0 with n0), or ultimately to
finding an appropriate ℓ, in the original model. Results that we obtain
for a specific range of values of ε can therefore be thought of as applying to a
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corresponding specific range of hierarchical levels in the original model.

4.3 Model and main results

The formal definition of the model considered here reads as follows. Let
the vertex set be given by [n] = {1, 2, . . . , n} and let ε = εn > 0 be a
parameter which will depend on n. The random graph with law P is
constructed in the following way:

(a) Sample n independent weights (Wi), under P, according to a Pareto
distribution with parameter α ∈ (0, 1), that is,

1− FW (w) = P(Wi > w) =

{︄
w−α, w > 1,

1, 0 < w ≤ 1.
. (4.4)

(b) For all n ≥ 1, given the weights (Wi)i∈[n], construct the random
graph Gn by joining edges independently with probability given by
(4.1). That is,

pij := P(i↔ j |Wi,Wj) = 1− e−εnWiWj , (4.5)

where the event {i↔ j}means that vertices i and j are connected
by an edge in the graph.

The above random graph will be denoted by Gn(α, ε) as it depends on
the parameters α and ε. Self-loops and multi-edges are not allowed and
hence the final graph is given by a simple graph on n vertices.

Notation Convergence in distribution and convergence in probability

will be denoted respectively by d−→ and P−→. E[·] is the expectation with
respect to P and the conditional expectation with respect to the weight W
of a typical vertex is denoted by EW [·] = E[·|W ]. We write X|W to denote
the distribution of the random variable, conditioned on the variable W .
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Let (aij)1≤i,j≤n be the indicator variables (1i↔j)1≤i,j≤n.
As standard, as n→∞, then f(n) ∼ g(n) stands for f(n)/g(n)→ 1, while
f(n) = o (g(n)) is equivalent to f(n)/g(n) → 0, and f(n) = O (g(n)) to
f(n)/g(n) ≤ C for some C > 0, for n large enough. Lastly, f(n) ≍ g(n)

denote that there exists positive constants c1 and C2 such that

c1 ≤ lim inf
n→∞

f(n)/g(n) ≤ lim sup
n→∞

f(n)/g(n) ≤ C2.

4.3.1 Degrees

Our first theorem characterizes the behaviour of a typical degree and the
joint distribution of the degrees. Consider the degree of vertex i ∈ [n]

defined as
Dn(i) =

∑︂

j ̸=i

aij , (4.6)

where aij denotes the entries of the adjacency matrix of the graph, that is,

aij =

{︄
1 if i↔ j

0 otherwise.

Theorem 1. Scaling and asymptotic of the degrees. Consider the graph
Gn(α, ε) and let Dn(i) be the degree of the vertex i ∈ [n].

(i) Expected degree. The expected degree of a vertex i scales as follows

E [Dn(i)] ∼ −(n− 1)Γ(1− α)εα log εα, as ε ↓ 0.
In particular, if εn = n−1/α then we have

E[Dn(i)] ∼ Γ(1− α) log n as n→∞. (4.7)

(ii) Asymptotic degree distribution. Let εn = n−
1
α , then for all i ∈ [n]

Dn(i)
d−→ D∞ as n→∞,

where D∞ is a mixed Poisson random variable with parameter Λ = Γ(1−
α)Wα, where W has distribution (4.4). Additionally, we have

P(D∞ > x) ∼ Γ(1− α)x−1 as x→∞. (4.8)
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(iii) Asymptotic joint degree behaviour. Let D∞(i) and D∞(j) be the
asymptotic degrees of two arbitrary distinct vertices i, j ∈ N. Then

E
[︂
tD∞(i)sD∞(j)

]︂
̸= E

[︂
tD∞(i)

]︂
E
[︂
sD∞(j)

]︂
, (4.9)

for fixed t, s ∈ (0, 1). For t, s sufficiently close to 1 we have,
⃓⃓
⃓E
[︂
tD∞(i)sD∞(j)

]︂
−E

[︂
tD∞(i)

]︂
E
[︂
sD∞(j)

]︂ ⃓⃓
⃓

≤ O

(︃
(1− s)(1− t) log

(︃(︃
1 +

1

Γ(1− α)(1− s)

)︃(︃
1 +

1

Γ(1− α)(1− t)

)︃)︃)︃

+ C((1− t) + (1− s)), (4.10)

for some constant C ∈ (0,∞).

Theorem 1 is proved in Section 4.4. The first part of the result deals
with the expectation of the typical degree of the graph for small values
of parameter ϵ. The particular choice ϵ = n−1/α results in a logarithmic
divergence of Dn(i) with n, corresponding to a semi-sparse regime where
the density of links behave as ∼ log(n)

n . In this regime, asymptotically the
degrees exhibit a cumulative power-law exponent −1, for any α ∈ (0, 1).
The third part of the result deserves further comments. Indeed Eq. (4.9)
shows that D∞(i) and D∞(j) are not independent, and this is a breaking
point with respect to previous research. For example, if one considers a
Generalized Random Graph, with weights defined as in (4.4) and

˜︁pij =
WiWj

n1/α +WiWj

then it follows from Theorem 6.14 of [5] that the asymptotic degree dis-
tribution has the same behaviour as our case while the degrees are in
fact asymptotically independent. In our case, although there is no in-
dependence as (4.9) shows, we still believe that the following will be
true
⃓⃓
⃓P(D∞(i) > x,D∞(j) > x)−P(D∞(i) > x)P(D∞(j) > x)

⃓⃓
⃓

= o (P(D∞(i) > x)P(D∞(j) > x)) ,
(4.11)
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Figure 22: Asymptotic tail independence between degrees. Scatter-plot of
the degrees of the vertices with labels 1 and 2 (assigned randomly but fixed
for every realisation in the ensemble). Each point in the plot corresponds to
one of 5000 realizations of a network of N = 3000 vertices, each generated
as described at the beginning of Section 4.3 (see Eqs. (4.4) and (4.5)).

and hence that the limiting vector will be asymptotically tail-independent.
Although not provided with a rigorous proof yet, this conjecture is sup-
ported by numerical simulations (see Fig.22). Such a property of limiting
degree was observed and proved for Preferential attachment models by
using a multivariate version of Karamata’s Tauberian theorem [144]. In
our case, (4.11) would be valid, given an explicit characterization of the
complete joint distribution of the asymptotic degrees. Currently, we have
not been able to verify the conditions outlined in [144] for the application
of their general multivariate Tauberian theorem. We hope to address this
question in the future.

4.3.2 Wedges, triangles and clustering

Our second result concerns the number of wedges and triangles associated
to a typical vertex i ∈ [n], defined respectively as follows:

Wn(i) :=
1

2

∑︂

j ̸=i

∑︂

k ̸=i,j

aijaik, ∆n(i) :=
1

6

∑︂

j ̸=i

∑︂

k ̸=i,j

aijaikajk. (4.12)
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Theorem 2. [Triangles and Wedges of typical vertices.] Consider the graph
Gn(α, ε) and let Wn(i) and ∆n(i) be the number of wedges and triangles at
vertex i ∈ [n]. Then:

(i) [Average number of wedges.]

E [Wn(i)] ∼
Γ2(−α

2 )α
2

2
εαn2 as ε ↓ 0.

In particular, when εn = n−1/α, then

E [Wn(i)] ∼
Γ2(−α

2 )α
2

2
n.

(ii) [Asymptotic distribution of wedges.] Let εn = n−1/α, then

Wn(i)
d−→W∞(i)

where W∞(i) = D∞(i)(D∞(i)− 1) with D∞(i) as in Theorem 1. Also,
we have

P(W∞(i) > x) ∼ Γ(1− α)x−1/2 as x→∞.

(iii) [Average number of triangles.] Let i ∈ [n], the average number of
triangles grows as follows:

E [∆n(i)] ∼ −
α3

12
Γ3
(︂
−α
2

)︂
ε

3
2αn2 as ε ↓ 0.

In particular, when εn = n−1/α we have

E [∆n(i)] ∼ −
α3

12
Γ3
(︂
−α
2

)︂√
n as n→∞.

(iv) [Convergence in probability for the total number of triangles.]
Let εn = n−1/α and ∆n =

∑︁
i∈[n] ∆n(i) be the total number of triangles,

then

12∆n

α3n3/2
P−→ −Γ3

(︂
−α
2

)︂
and

12∆n(i)

α3n1/2
P−→ −Γ3

(︂
−α
2

)︂
.
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Remark 3. [Global and local clustering.] Let Wn =
∑︁

i∈[n] Wn(i) be the
total number of wedges. We see from the above result that

E[∆n]

E[Wn]
≍ εα/2, as ε→ 0.

This shows in a quantitative form that the graph is not highly clustered from
the point of view of the global count of triangles. In particular, in the scale of
εn = n−1/α, the above ratio goes to zero like n−1/2. However, this does not
mean that the graph is not highly clustered from the point of view of the local
count of triangles around individual vertices. In particular, simulations from
Chap. 2 of this thesis concerning the average local clustering coefficient suggest
that the graph is in fact locally clustered (see Fig. 8). A dissimilarity in the
behaviour of local and global clustering coefficients has also been observed in
different inhomogeneous random graph models, see for example [97, 145, 146].

4.4 Proof of Theorem 1: typical degrees

Since the Karamata’s Tauberian theorem is used here as a key tool in
the analysis of the degree distribution and later analysis, it is first worth
recalling those results.

Theorem 4 (Karamata’s Tauberian theorem [147, Theorem 8.1.6]). Let X
be a non-negative random variable with distribution F and Laplace transform

ˆ︁F (s) = E
[︁
e−sX

]︁
, s ≥ 0.

Let L be a slowly varying function and α ∈ (0, 1), then the following are
equivalent

(a) 1− ˆ︁F (s) ∼ Γ(1− α)sαL
(︃
1

s

)︃
, as s ↓ 0,

(b) 1− F (x) ∼ x−αL(x), as x→∞.
(4.13)

Then, another property of the tails of products of regularly varying
distributions will be needed. A general statement about the product of n
iid random variables with Pareto tails can be found in [148, Lemma 4.1
(4)]. For completeness, a proof for two random variables is given here,
which is useful in our analysis.
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Lemma 5. Let W1 and W2 be independent random variables satisfying the tail
assumptions (4.4). Then

P(W1W2 ≥ x) ∼ αx−α log x, as x→∞. (4.14)

Proof. Consider the random variable log(W1) which follows an expo-
nential distribution, or alternatively a Gamma distribution with shape
parameter k = 1 and scale θ = 1/α. Then, the random variable
Z = log(W1) + log(W2) follows a Gamma distribution with shape pa-
rameter 2 and scale θ. This means:

P(log(W1) + log(W2) > x) =
α2

Γ(2)

∫︂ ∞

x

ye−αydy.

Therefore

P(W1W2 > x) = P(logW1 + logW2 > log x)

= α2

∫︂ ∞

log x

ye−αydy

= α2

∫︂ ∞

x

log(t)t−α−1dt.

(4.15)

Then applying Karamata’s Theorem (see [148, Theorem 12])

P(W1W2 > x) ∼ α2 x
−α log x

α
, (4.16)

which proves the statement.

Remark 6. The above theorem remains true if W1 and W2 are not exactly
Pareto, but asymptotially tail equivalent to a Pareto distribution, that is under
the assumption P(W1 > x) ∼ cx−α as x→∞. See Lemma 4.1 of [148] for a
proof.

Proof of Theorem 1. (i) We begin by evaluating the asymptotics of the
expected degree, which is an easy consequence of Lemma 5 and Theorem
4. Indeed we can write

E [Dn(i)] =
∑︂

j ̸=i

E [1− exp (−εWiWj)] = (n− 1)E [1− exp (−εW1W2)] ,

(4.17)
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where the last equality is due to the iid nature of the weights.
It follows from Lemma 5 that P(W1W2 > x) ∼ αx−α log x. Therefore,
using Theorem 4 we have

E [1− exp (−ϵW1W2)] ∼ Γ(1− α)αεα log
1

ε
as ε ↓ 0, (4.18)

which together with (4.17) gives the claim.

(ii) By following the line of the proof of Theorem 6.14 of [5], we can
prove our statement by showing that the probability generating function
of Dn(i) in the limit n → ∞ corresponds to the probability generating
function of a mixed Poisson random variable. Let t ∈ (0, 1), the probability
generating function of the degree Dn(i) reads:

E[tDn(i)] = E
[︂
t
∑︁

j ̸=i aij

]︂
= E

⎡
⎣∏︂

j ̸=i

taij

⎤
⎦ , (4.19)

where aij are the entries of the adjacency matrix related to the graph
Gn(α, ε), i.e. Bernoulli random variables with parameter pij as in (4.5).
Conditioned on the weights, these variables are independent. Recall that
we denoted by EWi

[·] the conditional expectation given the weight Wi.
Then:

EWi [t
Dn(i)] = EWi

⎡
⎣∏︂

j ̸=i

(︁
(1− t)e−εnWjWi + t

)︁
⎤
⎦

=
∏︂

j ̸=i

EWi

[︁
(1− t)e−εnWjWi + t

]︁
=
∏︂

j ̸=i

EWi
[φWi

(εnWj)] ,

(4.20)

where we have used the independence of the weights and introduced the
function

φWi
(x) := (1− t)e−Wix + t.

Let us introduce the following notation to simplify our expression:

ψn(Wi) := EWi
[φWi

(εnWj)] for some j ̸= i. (4.21)
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Using exchangeability, tower property of the conditional expectation, the
moment generating function of the Dn(i) can be written as

E[tDn(i)] = E

⎡
⎣∏︂

j ̸=i

EWi [φWi(εnWj)]

⎤
⎦ = E

[︁
ψn(Wi)

n−1]︁ . (4.22)

Consider now a differentiable function h : [0,∞) → R such that
h(0) = 0. Integrating by parts one can show that

E[h(Wj)] =

∫︂ ∞

0

h′(x)P(Wj > x)dx. (4.23)

By using (4.23) with h(w) = φWi(εnw)− 1, we have

ψn(Wi) = 1 +E [φWi
(εnw)− 1]

= 1 +

∫︂ ∞

0

εnφ
′
Wi

(εnw)(1− FW (w))dw

= 1 +

∫︂ ∞

0

φ′Wi
(y)(1− FW (ε−1n y))dy

= 1 +

∫︂ εn

0

φ′Wi
(y)dy +

∫︂ ∞

εn

φ′Wi
(y)(1− FW (ε−1n y))dy

= 1 + φWi
(εn)− φWi

(0) + εαn

∫︂ ∞

εn

(t− 1)Wie
−yWiy−αdy.

(4.24)

In particular for εn = n−1/α, combining (4.22) and (4.24) gives

E
[︂
tDn(i)

]︂
= E

[︁
ψn(Wi)

n−1]︁

= E
[︂(︂

1 + φWi
(n−1/α)− φWi

(0)+

+
1

n

∫︂ ∞

n−1/α

(t− 1)Wie
−yWiy−αdy

)︃n−1]︄
.

Note that for a fixed realization of Wi, using change of variable z =Wiy,
we have as n→∞,

(1− t)
∫︂ ∞

n−1/α

Wie
−yWiy−αdy → (1− t)Wα

i Γ(1− α)
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and

φWi(n
−1/α)→ φWi(0) = 1.

Observe that φWi
(n−1/α)− φ(0) = −(1− t)(1− e−Win

1/α

) ≤ 0 and

0 ≤ (1− t)
∫︂ ∞

n−1/α

Wie
−yWiy−αdy ≤ (1− t)Wα

i Γ(1− α).

Hence using (1− x/n)n ≤ e−x we have

(︃
1 + φWi

(n−1/α)− φWi
(0)− (1− t) 1

n

∫︂ ∞

n−1/α

Wie
−yWiy−αdy

)︃n−1

≤ exp (−(1− t)Wα
i Γ(1− α))

≤ 1.

Thus we can apply the Dominated Convergence Theorem to claim that

lim
n→∞

E
[︂
tDn(i)

]︂
= E [exp (−(1− t)Wα

i Γ(1− α))] .

So the generating function of the graph degree Dn(i) asymptotically cor-
responds to the generating function of a mixed Poisson random variable

with parameter Γ(1 − α)Wα
i . Therefore, the variable Dn(i)

d→ D∞(i)

where D∞(i) |Wi
d
= Poisson (Γ(1− α)Wα

i ).
In particular, we have the following tail of the distribution of the

random variable D∞(i).

P(D∞(i) ≥ k) =
∫︂ ∞

0

P(Poisson (Γ(1− α)wα) ≥ k|Wi = w) FWi(dw)

=

∫︂ ∞

0

∑︂

m≥k

e−Γ(1−α)w
α

Γ(1− α)mwαm

m!
FWi(dw)

=
∑︂

m≥k

1

m!

∫︂ ∞

1

e−Γ(1−α)w
α

Γ(1− α)mwαmαw−α−1dw.

(4.25)
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Let us introduce the new variable y = Γ(1− α)wα, then
∫︂ ∞

1

e−Γ(1−α)w
α

Γ(1− α)mwαmαw−α−1dw (4.26)

=

∫︂ ∞

1

e−Γ(1−α)w
α

Γ(1− α)m−1wαmw−2ααΓ(1− α)wα−1dw

= Γ(1− α)
∫︂ ∞

Γ(1−α)
e−yym−2dy

= Γ(1− α)Γ(m− 1)− Γ(1− α)
∫︂ Γ(1−α)

0

e−yym−2dy. (4.27)

The first integral is dominant with respect to the second one. To show
this, we can use a trivial bound:

∫︂ Γ(1−α)

0

e−yym−2dy ≤ Γ(1− α)m.

Since m! ≥ (m/e)m, then the following inequalities hold true

∑︂

m≥k

Γ(1− α)m
m!

≤
∑︂

m≥k

(eΓ(1− α))m
mm

≤ C(eΓ(1− α))kk−k,

for some positive constant C. Note that in last step we used k is large
enough (it is at least greater that eΓ(1− α)). Note that

k
∑︂

m≥k

Γ(1− α)m
m!

≤ Celog k−k log k+keΓ(1−α) → 0, as k →∞.

By using (4.27) we therefore obtain

∑︂

m≥k

1

m!

∫︂ ∞

1

e−Γ(1−α)w
α

Γ(1− α)mwαmαw−α−1dw

= Γ(1− α)
∑︂

m≥k

Γ(m− 1)

m!
+ o

(︁
k−1

)︁

= Γ(1− α)
∑︂

m≥k

(m− 2)!

m!
+ o

(︁
k−1

)︁

= Γ(1− α)
∑︂

m≥k

1

m(m− 1)
+ o

(︁
k−1

)︁
∼ Γ(1− α)

k
.
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This shows that P(D∞(i) ≥ k) ∼ Γ(1− α)k−1 as k →∞.

(iii) Fix t, s ∈ (0, 1). Due to the exchangeability of vertices, without
loss of generality, we consider the vertices 1 and 2.

E
[︂
tDn(1)sDn(2)

]︂
= E

[︂
t
∑︁

j ̸=1 a1js
∑︁

j ̸=2 a2j

]︂
= E

⎡
⎣ ∏︂

j ̸=1,2

ta1jsa2j (ts)
a12

⎤
⎦

= E

⎡
⎣(︁(1− ts) e−εW1W2 + ts

)︁ ∏︂

j ̸=1,2

(︁
(1− t) e−εW1Wj + t

)︁ (︁
(1− s) e−εW2Wj + s

)︁
⎤
⎦

(4.28)

where we have used the independence of the connection probabilities
given the weights. In order to simplify the notation, we can introduce the
following functions:

ϕba(x) := (1− b) e−εnax + b,

ψn(W1,W2) := EW1,W2

[︁
ϕtW1

(Wj)ϕ
s
W2

(Wj)
]︁
, for some j ̸= 1, 2,

(4.29)

where a, b > 0 and, as customary throughout this chapter,
EW1,W2

[ · ] := E[ · |W1,W2].

Using the tower property of conditional expectation, Eq. (4.28) reads

E
[︂
tDn(1)sDn(2)

]︂
= E

⎡
⎣ϕtsW1

(W2)
∏︂

j ̸=1,2

ϕtW1
(Wj)ϕ

s
W2

(Wj)

⎤
⎦

= E

⎡
⎣ϕtsw1

(w2) EW1,W2

⎡
⎣ ∏︂

j ̸=1,2

ϕtw1
(wj)ϕ

s
w2

(wj)

⎤
⎦
⎤
⎦

= E

⎡
⎣ϕtsw1

(W2)
∏︂

j ̸=1,2

EW1,W2

[︁
ϕtW1

(Wj)ϕ
s
W2

(Wj)
]︁
⎤
⎦

= E
[︁
ϕtsW1

(W2)ψn(W1,W2)
n−2]︁ ,

(4.30)

where we used conditional independence in the second last step and
exchangeability in the last step. The function ψn can be processed as
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follows. Just as in the one dimensional case, using εn = n−1/α, we get P
a.s.,

ψn(W1,W2)− 1 = EW1,W2

[︁
ϕtW1

(W3)ϕ
s
W2

(W3)− 1
]︁

→ −Γ(1− α) [(1− t)(1− s)(W1 +W2)
α + (1− t)sWα

1 + t(1− s)Wα
2 ]

= −Γ(1− α)
{︂
(1− t)(1− s) [(W1 +W2)

α −Wα
1 −Wα

2 ] + (1− t)Wα
1 +

(1− s)Wα
2

}︂

(4.31)

where in the second step we used (4.23) with h(x) := ϕtW1
(x)ϕsW2

(x)− 1.
Observe that ϕtsw1

(W2) ≤ 1 and 1−ψn(W1,W2) ≥ 0 and hence we can use
Dominated convergence theorem as in the single vertex case. Therefore
using ϕtsW1

(W2)→ 1 and (4.31) we get

E
[︂
tD∞(1)sD∞(2)

]︂
= lim

n→∞
E
[︂
tDn(1)sDn(2)

]︂

= E

[︄
e
−Γ(1−α)

{︂
(1−t)(1−s)[(W1+W2)

α−Wα
1 −Wα

2 ]+(1−t)Wα
1 +(1−s)Wα

2

}︂]︄

= E
[︂
e−Γ(1−α)(1−t)(1−s)[(W1+W2)

α−Wα
1 −Wα

2 ]e−Γ(1−α)(1−t)W
α
1 e−Γ(1−α)(1−s)W

α
2

]︂
.

(4.32)

It is straightforward to note that in the limit t → 1 and for fixed
s ∈ (0, 1) we recover the correct moment generating function of D∞(1)
and the inverse holds true as well. Finally, since (W1 +W2)

α ̸=Wα
1 +Wα

2

P-a.s., then (4.9) follows.

We next move to the proof of (4.10), for which we abbreviate η = 1− t,
γ = 1− s and show that

lim
η→0
γ→0

⃓⃓
⃓E
[︂
(1− η)D∞(1)(1− γ)D∞(2)

]︂
−E

[︂
(1− η)D∞(1)

]︂
E
[︂
(1− γ)D∞(2)

]︂ ⃓⃓
⃓ = 0.
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⃓⃓
⃓ E
[︂
(1− η)D∞(1)(1− γ)D∞(2)

]︂
−E

[︂
(1− η)D∞(1)

]︂
E
[︂
(1− γ)D∞(1)

]︂ ⃓⃓
⃓

=
⃓⃓
⃓ E
[︂
e−Γ(1−α)ηγ[(w1+w2)

α−wα
1−wα

2 ]e−Γ(1−α)ηw
α
1 e−Γ(1−α)γw

α
2

]︂
+

−E
[︂
e− Γ(1−α)ηwα

1

]︂
E
[︂
e− Γ(1−α)γwα

2

]︂ ⃓⃓
⃓

=
⃓⃓
⃓ E
[︂(︂
e−Γ(1−α)ηγ[(w1+w2)

α−wα
1−wα

2 ] − 1
)︂
e−Γ(1−α)ηw

α
1 e−Γ(1−α)γw

α
2

]︂ ⃓⃓
⃓

=

⃓⃓
⃓⃓
⃓

∫︂ ∞

1

⎛
⎝∑︂

k≥1

(Γ(1− α)ηγ)k
k!

[−(x+ y)α + xα + yα]
k

⎞
⎠

e−Γ(1−α)ηx
α

e−Γ(1−α)γy
α

α2(xy)−α−1dxdy

⃓⃓
⃓⃓
⃓

≤
∫︂ ∞

1

∞∑︂

k=1

(Γ(1− α)ηγ)k
k!

⃓⃓
⃓ − (x+ y)α + xα + yα

⃓⃓
⃓
k

e−Γ(1−α)ηx
α

e−Γ(1−α)γy
α

α2(xy)−α−1dxdy.
(4.33)

Now, since (x+ y)α ≤ (xα + yα) ∀ α ∈ (0, 1) , we get

⃓⃓
⃓xα + yα − (x+ y)α

⃓⃓
⃓
k

≤ (xα + yα)
k ≤ 2k−1

(︁
xαk + yαk

)︁
. (4.34)

Therefore, using Fubini we can bring the summation out of the integral
and using the inequality (4.34), we are left with the following quantity
(which we will show to be converging to zero):

α2
∞∑︂

k=1

(Γ(1− α)ηγ)k
k!

2k−1
∫︂ ∞

1

(︁
xαk + yαk

)︁
e−Γ(1−α)(ηx

α+γyα) dxdy

(xy)α+1
.

(4.35)

Let us consider the different terms of the sum separately. In the fol-
lowing we will consider the exponential integral E1(x) =

∫︁∞
1

e−tx

t dt and
the related inequality E1(x) < e−x ln(1 + 1

x ) for any x > 0.
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Case 1: k = 1

α2Γ(1− α)ηγ
∫︂ ∞

1

∫︂ ∞

1

(xα + yα) e−Γ(1−α)(ηx
α+γyα) dxdy

(xy)α+1

= Γ(1− α)ηγ
[︃
E1 (Γ(1− α)η)

∫︂ ∞

1

e−Γ(1−α)γz

z2
dz

+E1 (Γ(1− α)γ)
∫︂ ∞

1

e−Γ(1−α)ηz

z2
dz

]︃

≤ Γ(1− α)ηγ [E1 (Γ(1− α)η) + E1 (Γ(1− α)γ)]

< Γ(1− α)
[︃
ηγe−Γ(1−α) η log

(︃
1 +

1

Γ(1− α) η

)︃

+ηγ e−Γ(1−α) γ log

(︃
1 +

1

Γ(1− α) γ

)︃]︃

Case 2: k = 2

(α Γ(1− α)ηγ)2
∫︂ ∞

1

∫︂ ∞

1

(︁
x2α + y2α

)︁
e− Γ(1−α)ηxα

e− Γ(1−α)γyα

(xy)−α−1dxdy

=Γ(1− α) (ηγ)2
[︃
e−Γ(1−α)η

η

∫︂ ∞

1

e−Γ(1−α)γz

z2
dz +

∫︂ ∞

1

e−Γ(1−α)ηz

z2
dz

e−Γ(1−α)γ

γ

]︃

≤Γ(1− α) (ηγ)2
[︃
e−Γ(1−α)η

η
+
e−Γ(1−α)γ

γ

]︃
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Case 3: k > 2

α2 (Γ(1− α)ηγ)k
k!

2k−1
∫︂ ∞

1

(︁
xαk + yαk

)︁
e−Γ(1−α)ηx

α

e−Γ(1−α)γy
α

(xy)−α−1dxdy

=α2 (Γ(1− α)ηγ)k
k!

2k−1
[︃∫︂ ∞

1

e−Γ(1−α)ηx
α

xα(1−k)+1
dx

∫︂ ∞

1

e−Γ(1−α)γy
α

yα+1
dy

+

∫︂ ∞

1

e−Γ(1−α)ηx
α

xα+1
dx

∫︂ ∞

1

e−Γ(1−α)γy
α

yα(1−k)+1
dy

]︃

=α2 (Γ(1− α)ηγ)k
k!

2k−1
[︄∫︂ ∞

Γ(1−α)η

(︃
z

Γ(1− α)η

)︃k−2
e−zdz

αΓ(1− α)η

∫︂ ∞

1

e−Γ(1−α)γz

z2
dz

α

+

∫︂ ∞

1

e−Γ(1−α)ηz

z2
dz

1

α

∫︂ ∞

Γ(1−α)γ

(︃
z

Γ(1− α)γ

)︃k−2
e−zdz

αΓ(1− α)γ

]︄

≤α2 (Γ(1− α)ηγ)k
k!

2k−1
[︄(︃

1

Γ(1− α)η

)︃k−1
1

α2

∫︂ ∞

Γ(1−α)η
zk−2e−zdz

+

(︃
1

Γ(1− α)γ

)︃k−1
1

α2

∫︂ ∞

Γ(1−α)γ
zk−2e−zdz

]︄

≤ Γ(1− α)
k!

2k−1Γ(k − 1) (ηγ)
k

[︄(︃
1

η

)︃k−1
+

(︃
1

γ

)︃k−1]︄

=Γ(1− α) 2k−1

k(k − 1)

(︁
ηγk + ηkγ

)︁

So, combining together all the bounds, we have
⃓⃓
⃓ E
[︂
(1− η)D∞(1)(1− γ)D∞(2)

]︂
−E

[︂
(1− η)D∞(1)

]︂
E
[︂
(1− γ)D∞(2)

]︂ ⃓⃓
⃓

< Γ(1− α)
[︃
ηγ log

(︃
1 +

1

Γ(1− α) η

)︃
+ ηγ log

(︃
1 +

1

Γ(1− α) γ

)︃

+
1

2

∞∑︂

k=2

2k

k(k − 1)
(ηγk + ηkγ)

]︄
.

(4.36)

Since x log(1 + 1
x )→ 0 as x→ 0, the above quantity goes to 0 as η, γ → 0.

This completes the proof of Theorem 1.
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4.5 Proof of Theorem 2: wedges & triangles

Proof of Theorem 2. (i) Start from the equality

2E [Wn(i)] = E

⎡
⎣∑︂

j ̸=i

∑︂

k ̸=i,j

aijaik

⎤
⎦

= (n− 1)(n− 2)α3

∫︂ ∞

1

∫︂ ∞

1

∫︂ ∞

1

(1− e−εxy)(1− e−εxz)
(xyz)α+1

dxdydz.

(4.37)

The latter integral can be solved exactly by using the substitutions A =
xy,B = xz and C = yz. Thus:

E [Wn(i)] =
(n− 1)(n− 2)

4
α3

∫︂ ∞

1

1− e−εA
Aα/2+1

dA

∫︂ ∞

1

1− e−εB
Bα/2+1

dB

∫︂ ∞

1

C−α/2−1dC

=
(n− 1)(n− 2)

4
α3

[︃
2

α
− εα/2Γ

(︂
−α
2
; ε
)︂]︃2 2

α
(4.38)

where Γ
(︁
−α

2 ; ε
)︁

is the incomplete Gamma function. When ε is small, the
following expansion ([149]) can be used:

Γ(s; ε) ∼ Γ(s)−
∞∑︂

k=0

(−1)k εs+k

k!(s+ k)
, as ε→ 0+ and s ̸= 0,−1,−2,−3, . . .

(4.39)
So we see that in our case,

Γ
(︂
−α
2
, ε
)︂
∼ Γ

(︂
−α
2

)︂
+

2

α
ε−α/2 +O

(︂
ε1−α/2

)︂
, as ε→ 0.

Therefore, at the first order:

E [Wn(i)]
ε→0∼ α2n2

2

[︂
−ϵα/2Γ

(︂
−α
2

)︂]︂2
=
α2n2

2
εαΓ

(︂
−α
2

)︂2
. (4.40)

(ii) Assume now that εn = n−1/α. From Theorem 1 we know that
Dn(i)

d−→ D∞(i). Using the continuous mapping x ↦→ x(x− 1) we have,
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by the Continuous Mapping Theorem, convergence in distribution of the
number of wedges Wn(i):

Wn(i) = Dn(i)(Dn(i)− 1)
d−→ D∞(i)(D∞(i)− 1) ≡W∞(i). (4.41)

Let us now show that as x→∞, the tail satisfies

P(W∞(i) > x) ∼ Γ(1− α)x−1/2 as x→∞.

Indeed, first notice that by (4.8) we have

P(D∞(i)2 > x) = P(D∞(i) >
√
x) ∼ Γ(1− α)x−1/2. (4.42)

We first find the upper bound. Let δ > 0,

P(D∞(i)2 −D∞(i) > x) = P(D∞(i)2 > x+D∞(i), D∞(i) > x+ δ)

+P(D∞(i)2 > x+D∞(i), D∞(i) ≤ x+ δ)

≤ P(D∞(i)2 > x+D∞(i), D∞(i) > x+ δ) +P(D∞(i)2 > ω)

≤ P(D∞(i) > x+ δ) +P(D∞(i)2 > x).

Then for any δ > 0

P(W∞(i) > x)

P(D∞(i)2 > x)
=

P(D∞(i)2 −D∞(i) > x)

P (D∞(i)2 > x)
≤ P(D∞(i) > x+ δ)

P(D∞(i)2 > x)
+ 1

=
Γ(1− α)(x+ δ)−1

Γ(1− α)x−1/2 + 1 ∼ x−1/2 + 1→ 1.

This shows that

lim sup
x→∞

P(W∞(i) > x)

Γ(1− α)x−1/2 ≤ 1.

We do a similar break-up for the lower bound. Let δ > 0,

P(D∞(i)2 −D∞(i) > x) ≥ P(D∞(i)2 > (1 + δ)x,D∞(i) ≤ δx)
≥ P(D∞(i)2 > (1 + δ)x)−P(D∞(i) > δx).
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Then

P(D∞(i)2 −D∞(i) > x)

P(D∞(i)2 > x)
≥ ((1 + δ)x)

−1/2 − (δx)−1

x−1/2

∼
√︄

1

(1 + δ)
−
√
x

δx
(as x→∞)

∼ 1√︁
(1 + δ)

− δ−1x−1/2 →x→∞
1√
1 + δ

.

(4.43)

So we have

lim inf
x→∞

P(W∞(i) > x)

Γ(1− α)x−1/2 ≥
1√︁

(1 + δ)
.

The result follows by taking δ → 0 and it shows that P(W∞(i) > x) ∼
Γ(1− α)x−1/2.

(iii) We will here focus on the average number of triangles, whose
evaluation will require integral asymptotics similar to the ones used for
the wedges.

6E [∆n(i)] = E

⎡
⎣∑︂

j ̸=i

∑︂

k ̸=i,j

aijaikajk

⎤
⎦ =

∑︂

j ̸=i

∑︂

k ̸=i,j

E [pijpikpjk]

= (n− 1)(n− 2)α3

∫︂ ∞

1

∫︂ ∞

1

∫︂ ∞

1

(1− e−εxy)(1− e−εxz)(1− e−εyz)
(xyz)α+1

dx dy dz.

(4.44)

Analogously to what has been done before, the latter integral can be
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solved exactly by using the substitutions A = xy,B = xz, C = yz. Thus:

6E [∆n(i)] =
(n− 1)(n− 2)α3

2

∫︂ ∞

1

1− e−ϵA
Aα/2+1

dA

∫︂ ∞

1

1− e−ϵB
Bα/2+1

dB

∫︂ ∞

1

1− e−ϵC
Cα/2+1

dC

=
(n− 1)(n− 2)α3

2

[︃
2

α
− ϵα/2Γ

(︂
−α
2
; ϵ
)︂]︃3

=
n2α3

2

[︂
−ϵα/2Γ

(︂
−α
2

)︂
+O (ε)

]︂3

= −n
2α3

2
ε

3α
2 Γ
(︂
−α
2

)︂3
+O

(︁
n2ε3

)︁

(4.45)

where in the last step we used the expansion approximating the
incomplete Gamma function (4.39). By our assumption, since α < 2 and
ε→ 0, we have ε3 = o

(︂
ε

3α
2

)︂
and hence the result follows.

(iv) Let εn = n−1/α then E[∆n(i)] ∼ −α3

12n
1/2Γ

(︁
−α

2

)︁3. The above
computations also shows that ∆n =

∑︁n
i=1 ∆n(i) behaves as

E[∆n] ∼ −
α3n3/2

12
Γ
(︂
−α
2

)︂3
. (4.46)

For studying the concentration of the latter quantity, we start by eval-
uating the second moment:

E
[︁
∆2

n

]︁
= E

⎡
⎣∑︂

i,j,k

′ ∑︂

u,v,w

′
aijaikajkauvauwavw

⎤
⎦ = A+B + C +D (4.47)

where A represents the term in which there is no intersection between
the triples of indices of the two summations ((u, v, w) ̸= (i, j, k)), that is,
|{u, v, w} ∩ {i, j, k}| = 0, B is the term in which there is an intersection
of 1 index, that is, |{u, v, w} ∩ {i, j, k}| = 1 C an intersection of 2 indices,
that is, |{u, v, w} ∩ {i, j, k}| = 2 and D is the term in which all the indices
coincide |{u, v, w} ∩ {i, j, k}| = 3. Above,

∑︁
i,j,k

′
means sum over

distinct indices.
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(A) No common indices:

A = E

⎡
⎣∑︂

i,j,k

′ ∑︂

(u,v,w)̸=(i,j,k)

′
aijaikajkauvauwavw

⎤
⎦

= E

⎡
⎣∑︂

i,j,k

′
aijaikajk

⎤
⎦E

[︄∑︂

u,v,w

′
auvauwavw

]︄

= E [∆n]
2
.

(4.48)

(B) One common index:

B = E

⎡
⎣∑︂

i,j,k

′ ∑︂

1 intersection

′
aijaikajkauvauwavw

⎤
⎦

= E

⎡
⎣∑︂

i,j,k

aijaikajk 3
∑︂

v,w

avw(aivaiw + ajvajw + akvakw)

⎤
⎦

≤ E

⎡
⎣∑︂

i,j,k

aijaikajk 9
∑︂

v,w

avw

⎤
⎦ = 9nE [∆n] E [Dn(i)] .

(4.49)

(C) Exactly two common indices:

C = E

⎡
⎣∑︂

i,j,k

′ ∑︂

2 intersections

′
aijaikajkauvauwavw

⎤
⎦

≤ 6nE

⎡
⎣∑︂

i,j,k

′
aijaikajk

⎤
⎦ = 6nE [∆n] .

(4.50)

(D) All indices match:

D = E

⎡
⎣∑︂

i,j,k

′
aijaikajkaijaikajk

⎤
⎦ = E

⎡
⎣∑︂

i,j,k

′
aijaikajk

⎤
⎦ = E [∆n] .

(4.51)
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Therefore:

Var (∆n)

E [∆n]
2 =

E
[︁
∆2

n

]︁
−E [∆n]

2

E [∆n]
2 =

B + C +D

E [∆n]
2

≤ 9nE [∆n] E [Dn(i)] + 6nE [∆n] +E [∆n]

E [∆n]
2

∼ α9 c6 c7 n
5n−5/2 log 1/n+ 6 c6 n

4n−3/2 + c6 n
3n−3/2

c26n
6n−3

= O

(︃
log n

n1/2

)︃
,

(4.52)

where c6 = α3

12Γ
(︁
−α

2

)︁3 and c7 = Γ(1 − α) are taken respectively from
equations (4.46) and (4.7). Now using Chebyshev’s inquality it follows
that

P

(︃⃓⃓
⃓ ∆n

E[∆n]
− 1
⃓⃓
⃓ ≥ ε

)︃
≤ Var (∆n)

ε2E [∆n]
2 = O

(︃
log n

n1/2

)︃
.

This completes the proof of the first statement in Part (iv). The second one
follows from the very same computations.

4.6 Discussion

Along this chapter, we have focused on the mathematical properties of
the annealed model introduced in Sec. 2.4 of Chap. 2, building upon
the research line in probability theory that investigates the features of
inhomogeneous random graphs with infinite-mean weights.
Already in Chap. 2, some topological properties of the original SIM
were investigated numerically, either analytically (for α = 1/2) or
semi-analytically (for generic α ∈ (0, 1)). Notably, it was found that
networks sampled from the SIM feature an empirical degree distribu-
tion P (k) exhibiting a scale-free region, characterized by a universal
power-law decay ∝ k−2 (corresponding to a cumulative distribution
with decay ∝ k−1) irrespective of the value of α ∈ (0, 1), followed by a
density-dependent cut-off. The results obtained here provide significant
additional insights. In particular, we have identified the specific scaling
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(or equivalently, as explained in Sec. 4.2 above, the specific hierarchical
level) for which the density-dependent cut-off disappears and the tail of
the cumulative degree distribution can be rigorously proven (through
an independent proof) to become a pure power law with exponent −1,
for any α ∈ (0, 1). Secondly, we have provided a rigorous evaluation
of the overall number of triangles and wedges, valid for any α, that
supports the outcome of simulations shown in Sec. 2.4, which illustrated
the vanishing of the global clustering coefficient in the sparse limit (as
opposed to the local clustering coefficient, which remains bounded away
from zero as recalled above).
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Chapter 5

Conclusions

Motivated by the problem of multiscale modeling, in this thesis we
proposed a random graph model built on the principles of renormaliza-
tion group theory as defined in the configuration space. We refrained
from formally developing a renormalization group theory for complex
networks in a strict sense, but rather we leveraged its formalism for
designing a random graph model meant to harbour the hierarchical
organization of complex systems while resting on minimal assumptions.

The model lies on three essential ingredients: functional scale-invariance
of the graph probability, statistical independence between edges, and the
dependence of connection probabilities on additive features attached
to each node (denoted as fitness). This is sufficient for defining a
Scale-Invariant random graph Model (SIM), where the functional
form of the connection probability among each pair of nodes remains
invariant across different levels of observation. The model allows for
the generation of any network, at any given level of resolution, in two
equivalent ways: hierarchically, by first generating the finest-grained
network and then coarse-graining it through progressive partitions, or
directly, using appropriately rescaled parameters. The SIM allows for
arbitrarily heterogeneous aggregations of nodes, it remains self-consistent
irrespective of the topological properties of the networks and does not
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require the presence of communities, Laplacian properties, or (geo)metric
coordinates. The model has the option to integrate dependencies on
additional parameters, granting the incorporation of dyadic interactions
and global parameters. All these peculiarities are expounded in Chap. 2,
where we formally derived the model for binary and undirected graphs.
In addition, the SIM can be generalized to encompass directed (binary)
networks, as we showed in Chap. 3, where we introduced a Directed
Scale-Invariant Model (DSIM). The DSIM relies on the same ingredients
as the undirected case, with the caveat, however, of considering the
connections in opposite directions between each pair of nodes as distinct
events that are also not independent. Such prescription allowed us to
take into account network reciprocity, which plays a key role in the
characterization of directed graphs.

Along the three chapters that constitute this thesis, we explored
two different applications of the model, that interweave different relevant
topics of network science.

In a quenched scenario, the model can comply with empirical net-
works to make predictions at arbitrary levels of aggregation. In this case,
the fitness are quenched since they are measurable quantities gathered
from the particular system under study. We used one of the most studied
real-world networks as a testbed: the International Trade Network, first
(in Sec. 2.3) by focusing on its undirected and binary projection and later
(in Sec. 3.4) by considering its directed, binary representation. Notwith-
standing the assumption of edge-independence at the basis of the model,
we found that the model can effectively replicate the degrees of the ITN
and also higher-order topological properties. In particular, we found
that a one-parameter fit of the model to the observed network density
(and a two-parameter fit to adjust the global reciprocity in the directed
case) is enough to capture the profile of node-specific properties as the
local clustering coefficient or the average nearest neighbour degree of each
node, even across several hierarchical levels of resolution. These results
illustrate the distinction between scale-free networks (i.e. characterized by
power-law degree distributions, which are absent in the ITN) and scale-
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invariant networks (i.e. endowed with network formation mechanisms
consistent across scales, as found in the ITN). At the same time, using the
model to analyze the directed ITN confirmed the importance of taking
into account the correlations among reciprocated connections between
each pair of nodes to capture the non-trivial emergence of reciprocity.

To explore the asymptotic properties of the SIM, we defined as well
an annealed scenario, that allowed us to achieve the thermodynamic
limit upon the definition of a proper generative scheme for the fitness
variables. In this case, the model naturally led to one-sided Lévy-stable
fitness distributions, whose cumulative function is characterized by a
tail exponent −α ∈ (−1, 0) and, therefore, by diverging moments. Along
Secs. 2.4 and 3.5 and Chap. 4, we studied the architecture of network
realizations drawn from the scale-invariant ensemble, which turned out
to exhibit several features observed in real-world systems. We saw either
analytically or numerically that the sole requirement of scale-invariance
spontaneously leads to scale-free networks with degree distribution
featuring a universal power-law decay P (kℓ) ∝ k−2, endowed with a
density-dependent cut-off, and with realistic assortativity and clustering
properties. In particular, in the sparse regime (where the link density is
of the order ∼ 1

N ), the model appears to be simultaneously scale-free
and locally clustered, without resorting to metric distances to produce
clustering as a result of triangular inequalities. Contrarily to the local
clustering coefficient, the global clustering has been observed to vanish
in numerical simulations, and in Chap. 4 an educated estimate of such
behaviour has been assessed. In the same chapter, a special regime
has been identified where the link density scales as ∼ log(N)

N . In such
a regime, the tail of the degree distribution drops the cut-off due to
finite sizes, and the global clustering coefficient converges to 0 as∝ N−1/2.

Contrarily to other approaches to network renormalization, the model
we propose doesn’t rely on any structural assumption or underlying ge-
ometry regarding the network topology, and requires only node-specific
parameters representing their ”importance” in network organization, be-
longing indeed to the class of fitness models. In particular, this is a fitness
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model with the unique peculiarity of remaining a fitness model also upon
aggregation of nodes into blocks, as it doesn’t require the knowledge
of the fitness parameters of the original nodes to provide predictions at
higher levels. Being partition-independent, the SIM does not provide
a specific hierarchy of nodes’ partitions and in this sense is to be con-
sidered complementary to other approaches to network renormalization
which specifically address such task. In fact, given any such hierarchy,
the SIM can guide the renormalization of real networks by providing
the node-specific parameters and the exact form of the renormalized con-
nection probabilities at the coarse-grained level. Given the margin of
freedom in the choice of the nested partitions, the possible presence of
scale-invariance (i.e., the compliance with model’s predictions) in a given
empirical network is to be assessed concurrently with a proper definition
of the dyadic factor. With this respect, an important research direction
would include a systematic detection of such factors and eventually the
identification of classes of real systems featuring scale-invariance based
on the same notion of dyadic interactions.
On the practical side, achieving a proper description of a real system
through the lens of the SIM model would enable its multiscale reconstruc-
tion, where one can conveniently move across different scales for example
for fitting the parameters at the most convenient resolution (i.e. the finest
or the most populated scale) and then provide predictions for any finer
or coarser level of aggregation of nodes, or for focusing the attention on
a subregion of the system while incorporating the contribution to the
overall connectivity in a rest-of-the-network node. Such possibility can
also have an impact on the study of dynamical processes taking place
on networks and specifically on their critical behavior [150]. As in every
fitness model, any process with phase transitions whose critical points
depend on the average connectivity of the graph (e.g. epidemic spreading,
percolation processes or Ising phase transitions to a large scale ordered
state) can be studied in terms of the fitness distribution among different
vertices. This model, allowing for a multiscale description, further enables
a simoultaneous analysis of the process across hierachical levels where
the large ordered state will only depend on the new fitness distribution
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induced by the chosen partition at the coarse-grained level, given a proper
renormalization rule for the state of block-nodes (akin to the majority rule
often employed for defining the renormalized spin of a block-spin). Dif-
ferent choices for the hierarchy of partitions will in general lead to very
different scenarios and their analysis can be informative to further charac-
terize phase transitions in multiscale or self-similar systems [151]. This
can be crucial for example in the management of infectous diseases [152],
allowing to discriminate the main contribution to the spreading of the
long- and short-range modes and paving the way to quantitative approxi-
mation schemes that calibrate the level of data resolution and the needed
computational resources with respect to the accuracy in the description of
the epidemics.

The exploited ansätze point at the limitations of the SIM, which is re-
stricted to model binary networks with pairwise interactions and additive
node features. Concerning the latter point, different renormalization rules
of nodes’ features could still be made additive by a proper reparametriza-
tion, for instance a multiplicative process reduces to an additive rule for
the logarithm of nodes features, while a sublinear or superlinear growth
is made linear by defining the fitness as a power of such feature.
More in general, while preliminary results discussed in this thesis look
promising, the full spectrum of theoretical implications and practical im-
plementations of the SIM is still far from being thoroughly explored. We
refer, for instance, to the demand of a robust node-embedding scheme
to infer fitness values when they are not immediately deducible from
first principles (as was the case for the international trade network); this
would enhance the feasibility of the model for the multiscale analysis of a
wider range of empirical systems. A major refinement would also consist
in a deeper understanding of the higher-order topological properties of
the generated graphs. On the tail of the analysis provided in Chap. 4,
ongoing efforts are currently focused on obtaining a precise estimate of
the local clustering coefficient as well as on investigating the connectiv-
ity properties of the ensemble, specifically drawing a threshold for the
presence of dust (i.e. isolated nodes) and for the emergence of a giant
connected component.
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We hope that this contribution can stimulate further discussions both
on the theoretical side, to understand the essential ingredients behind the
formation and evolution of real networks, and on the practical side, to de-
sign a flexible model that can provide reliable and meaningful multiscale
predictions.
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[8] P. Erdős and A. Rényi, “On the strength of connectedness of a
random graph,” Acta Mathematica Hungarica, vol. 12, no. 1, pp. 261–
267, 1961.

[9] S. Janson, A. Rucinski, and T. Luczak, Random graphs. John Wiley
& Sons, 2011.

[10] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[11] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: Simple building blocks of complex
networks,” Science, vol. 298, no. 5594, pp. 824–827, 2002.

143



[12] R. Albert, H. Jeong, and A.-L. Barabási, “Diameter of the world-
wide web,” nature, vol. 401, no. 6749, pp. 130–131, 1999.

[13] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” science, vol. 286, no. 5439, pp. 509–512, 1999.

[14] L. A. N. Amaral, A. Scala, M. Barthelemy, and H. E. Stanley,
“Classes of small-world networks,” Proceedings of the national
academy of sciences, vol. 97, no. 21, pp. 11 149–11 152, 2000.

[15] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law re-
lationships of the internet topology,” ACM SIGCOMM computer
communication review, vol. 29, no. 4, pp. 251–262, 1999.

[16] A. Broder et al., “Graph structure in the web,” Computer networks,
vol. 33, no. 1-6, pp. 309–320, 2000.
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Gromov hyperbolic metric spaces. American Mathematical Soc., 2017,
vol. 218.

152

https://doi.org/10.1088/1367-2630/13/8/083001
https://doi.org/10.1088/1367-2630/13/8/083001
https://doi.org/10.1088/1367-2630/13/8/083001
https://doi.org/10.1088/1367-2630/13/8/083001
https://doi.org/https://doi.org/10.1016/j.exmath.2005.01.010
https://doi.org/https://doi.org/10.1016/j.exmath.2005.01.010
https://www.sciencedirect.com/science/article/pii/S0723086905000113
https://www.sciencedirect.com/science/article/pii/S0723086905000113


[124] M. Bukatin, R. Kopperman, S. Matthews, and H. Pajoohesh, “Par-
tial metric spaces,” The American Mathematical Monthly, vol. 116,
no. 8, pp. 708–718, 2009.

[125] P. Hitzler and A. K. Seda, “Dislocated topologies,” J. Electr. Eng,
vol. 51, no. 12, pp. 3–7, 2000.

[126] P. W. Holland and S. Leinhardt, “An exponential family of prob-
ability distributions for directed graphs,” Journal of the american
Statistical association, vol. 76, no. 373, pp. 33–50, 1981.

[127] E. P. Wigner, “On the distribution of the roots of certain symmetric
matrices,” Annals of Mathematics, pp. 325–327, 1958.

[128] V. Girko, “Elliptic law,” Theory of Probability & Its Applications,
vol. 30, no. 4, pp. 677–690, 1986.

[129] M. Di Vece, D. Garlaschelli, and T. Squartini, “Gravity models
of networks: Integrating maximum-entropy and econometric ap-
proaches,” Physical Review Research, vol. 4, no. 3, p. 033 105, 2022.

[130] M. Di Vece, D. Garlaschelli, and T. Squartini, “Reconciling econo-
metrics with continuous maximum-entropy network models,”
Chaos, Solitons & Fractals, vol. 166, p. 112 958, 2023.

[131] R. Summers and A. Heston, “The penn world table (mark 5): An
expanded set of international comparisons, 1950–1988,” The Quar-
terly Journal of Economics, vol. 106, no. 2, pp. 327–368, 1991.

[132] C. I. Agency, World factbook. [Online]. Available: http://www.
cia.gov/cia/publications/%20factbook/index.html.

[133] I. M. F. G. S. Division, Direction of trade statistics. International
Monetary Fund, 1993.

[134] J. Faber and T. Nierop, “World export data, 1948-1983 (icpsr no.
9116). amsterdam: University of amsterdam (producers),” Ann
Arbor, MI: Inter-university Consortium for Political and Social Research
(distributors), 1989.
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