
IMT School for Advanced Studies, Lucca

Lucca, Italy

Dynamical systems reduction through approximate

lumping techniques

PhD Program in System Science - Track in Computer Science
and Systems Engineering (CSSE)

XXXV Cycle

By

Giuseppe Squillace

2024

The dissertation of Giuseppe Squillace is approved.

PhD Program Coordinator: Prof. Alberto Bemporad, IMT School for

Advanced Studies Lucca

Advisor: Prof. Mirco Tribastone, IMT School for Advanced Studies

Lucca

Co-Advisor: Prof. Max Tschaikowski, Aalborg University

Co-Advisor: Prof. Andrea Vandin, School of Advanced Studies

Sant’Anna

The dissertation of Giuseppe Squillace has been reviewed by:

Prof. Sabina Rossi, University Ca’ Foscari of Venice

Prof. Tatjana Petrov, University of Konstanz

IMT School for Advanced Studies Lucca

2024

Contents

List of Figures viii

List of Tables x

Vita and Publications xii

Abstract xiv

1 Introduction 1

1.1 Related works . 9

1.1.1 Reduction of dynamical systems 9

1.1.2 Regular Equivalences 11

2 Background 14

2.1 Ordinary Differential Equations 14

2.2 Reaction Networks . 15

2.3 Exact reduction: backward and forward differential equiv-

alence . 16

2.4 CORA . 20

3 Approximate BDE and FDE 22

3.1 Approximate differential equivalences 23

3.2 Error Bounds . 31

3.3 Experiments . 34

3.3.1 Electrical Network 34

3.3.2 Polymerization model 37

v

3.3.3 Protein interaction networks 40

3.3.4 Mobile virus model 43

4 Approximate Reduction through Differential Hulls 45

4.1 Differential Hull . 47

4.2 Experiments . 52

4.2.1 SIR Model . 52

4.2.2 Polymerization . 53

4.2.3 Protein interaction network 56

4.2.4 Electrical Network 56

4.2.5 Conversion of light alkanes over H-ZSM-5 58

5 Iterative ε-BDE for Approximate Regular Equivalences 61

5.1 Regular Equivalence . 63

5.1.1 ε-BDE . 64

5.2 Iterative ε-BDE . 66

5.2.1 Asymptotics for BA networks 70

5.3 Experiments . 74

5.3.1 Experimental Set-up 75

5.3.2 Results . 77

6 Conclusion 81

A Appendix Chapter 3 84

A.1 Proofs . 84

B Appendix Chapter 4 91

B.1 Proofs . 91

B.1.1 Proof of Theorem 11 91

B.1.2 Proof of Theorem 12 91

B.2 Experiments . 91

B.2.1 SIR . 91

B.2.2 Polymerization . 92

B.2.3 Protein interaction network 93

B.2.4 Electrical Network 93

B.2.5 n-Hexane model 93

vi

C Appendix Chapter 5 95

C.1 Proofs . 95

vii

List of Figures

1 Reachability set from the CORA Manual [52]. 20

2 Given a PIVP P, a partition G of S, and an ε > 0, the

coarsest ε-FDE/BDE partition H that refines G is con-

structed. Afterwards, the solution Ã̂∗ of the optimization

problem (3.6) is computed in Fig. 1(a). This allows to

compute the ε-FDE/BDE quotient P̂(Ã̂∗) of H. With this,

¼ and ¶ from Theorem 8 are calculated. In the case the

distance between Ã̂0 and Ã̂∗ does not exceed ¶, the tight

bounds of Theorem 8 can be applied and relate the tra-

jectories of P̂(Ã̂∗) and P̂(Ã̂0) = P(Ã), as depicted in Fig.

1(b). 30

3 H-tree network adapted from [133]. 35

4 (left) Over-approximation by means of differential hulls for

the running example. (right) CORA over-approximation of

the running example. 51

5 Bounds of the infected individuals computed by our algo-

rithm against CORA. 54

6 Bounds of the molecule H2 computed by Algorithm 2 against

CORA. 55

7 Bounds of the molecule A11. 57

8 Bounds of the voltages in the second level of the H-tree. . 58

viii

9 Two largest over-approximations in the n-Hexane model

(these of C2

3
and C2

2
, respectively). CORA provided tighter

bounds but required around 10 seconds, while the proposed

technique was less than one second. 59

10 Example of a network where BDE of A and AT does not

imply regular equivalence 65

11 Example of a network where BDE fails while ε-BDE find

the regular equivalence {{1}, {2, 3}, {4, 5, 6, 7, 8}} imposing

ε equal to 1. 66

ix

List of Tables

1 Binding model: parameters and reduction results. 2

2 Nominal parameters of electronic components at different

depths i. 36

3 H-tree model results. The Bound column in the ε-BDE side

refers to the quantity ¼ ∥·∥. 37

4 Polymerization models results.The Bound column in the

ε-FDE side refers to the quantity ¼ ∥·∥. 40

5 Binding model: parameters and reduction results. 42

6 Results of ε-BDE and CORA for the model reported in

table 5. The horizon Ä is equal to 8E-4. The Bound column

in the ε-BDE side refers to the quantity ¼ ∥·∥. 42

7 Results of ε-BDE and CORA for the multiclass SI models.

The Bound column in the ε-BDE side refers to the quantity

¼ ∥·∥. 44

8 CORA running times for the SIR model. 53

9 CORA running times of the polymerization model. Sim-

ilarly to the SIR model, the running times of differential

hulls were within one second. 54

10 CORA running times of the protein interaction network. . 56

11 CORA running times of the H-tree circuit model. 57

12 Parameters and results for iterative ε-BE. 76

x

13 Comparison on weighted (left) and binary (right) networks.

Best results in bold; methods that timed out are not listed. 78

14 Parameters of the SIR model. 92

15 Initial conditions of the SIR model. 92

16 Parameters of the Polymerization model. 92

17 Initial conditions of the Polymerization model. 92

18 Parameters of the Protein interaction network. 93

19 Initial conditions of the Protein interaction network. . . . 93

20 Parameters of the Electrical network. 93

21 Initial conditions of the Electrical network. 93

22 Parameters of the n-Hexane model. 94

23 Initial conditions of the n-Hexane model. 94

xi

Vita

March 28, 1992 Born, Catanzaro, Italy

2016 Bachelor Degree in Computer Science

University of Turin, Italy

2019 Master Degree in Computer Science

University of Turin, Italy

xii

Publications

1. G. Squillace, M. Tribastone, M. Tschaikowski, and A. Vandin, 2022,
September. An Algorithm for the Formal Reduction of Differential Equa-
tions as Over-Approximations. In International Conference on Quantita-
tive Evaluation of Systems (pp. 173-191).

2. L. Cardelli, G. Squillace, M. Tribastone, M. Tschaikowski, and A. Vandin,
2023. Formal lumping of polynomial differential equations through ap-
proximate equivalences. Journal of Logical and Algebraic Methods in
Programming, 134, p.100876.

xiii

Abstract

Model reduction is a fundamental technique utilized across

various disciplines, such as engineering, physics, and compu-

tational sciences, to simplify complex mathematical models

while retaining essential dynamics.

This thesis introduces two novel approaches for model reduc-

tion, particularly focusing on dynamical systems described by

polynomial ordinary differential equations (ODEs). The pro-

posed techniques aim to reduce ODE systems while providing

formal error bounds for the resultant reduced models.

The first approach, based on backward and forward differen-

tial equivalence (BDE/FDE), partitions the set of variables in

an ODE system to construct a reduced model, incorporating a

tolerance parameter ε to capture perturbations in polynomial

coefficients. In the second approach, we present an algorithm

to transform an ODE system into a so-called differential hull.

This is a construction whereby variables with structurally sim-

ilar dynamics but originally different parameters may be rep-

resented by the same lower and upper bounds and reduced

through the backward differential equivalence.

Furthermore, the thesis explores the application of these tech-

niques in discovering regular equivalences on networks. An

iterative scheme, called iterative ε-BDE, is introduced to com-

pute regular equivalences, allowing for the analysis of roles in

networks.

Experimental evaluations demonstrate the effectiveness and

efficiency of the proposed approaches compared to existing

methods in the literature.

xiv

Chapter 1

Introduction

Model reduction is a fundamental technique widely utilized across diverse

fields, such as engineering, physics, and computational sciences, to sim-

plify complex mathematical models while preserving their essential dy-

namics [77, 1, 59, 117, 17]. The exponential increase in available data in

recent years has led to systems becoming increasingly complex and com-

putationally intensive to manage [9]. In response to this challenge, model

reduction has emerged as a powerful strategy to address computational

bottlenecks and facilitate analysis [9].

At its core, model reduction aims to transform detailed, high-dimensio

nal models into compact representations that capture the fundamental

behavior of the system. Model reduction enables faster computations,

enhanced understanding, and improved control of complex systems by

eliminating redundant information and focusing on the most significant

variables and relationships.

The need for model reduction arises in many practical scenarios where

the detailed models become computationally infeasible due to their high

dimensionality and high computational costs. For example, in engineering

design, the simulation of large-scale structures or systems often requires

extensive computational resources [28], making real-time analysis or op-

timization impractical. By reducing the model complexity, engineers can

achieve significant speedup in simulations, enabling efficient design itera-

1

Rates of bindings Runtime (s)

N kb1
kb2

kb3
kb4

0.8-FDE 0.4-BDE |H|
2 10.0748 9.9864 — — 0.003 0.001 4
3 9.9174 10.0575 9.9740 — 0.010 0.001 5
4 10.0886 10.0226 9.9418 9.9505 0.078 0.002 6

Table 1: Binding model: parameters and reduction results.

tions and faster decision-making.

To provide a concrete example, consider a biological model discussed

later in the experimental sections of chapters 2 and 3. In this model,

a protein interaction network involves molecule A with N independent

binding sites to which molecule B can bind reversibly. We focus on the

scenario where N = 2. Here, we encounter four distinct configurations: A

binding with B in the first binding site, A binding with B in the second

binding site, A binding with two molecules of B, and A with all binding

sites unoccupied. Each configuration entails unique dynamics that must

be tracked. Notably, for N = 2, we observe an exponential increase in

the number of dynamics, prompting the application of our dimensionality

reduction approaches. Table 1 showcases the reduction achieved for the

model across varying numbers of binding sites.

In the table, the first column denotes the number of binding sites, N ,

while the last column indicates |H|, representing the number of dynamics

in the reduced model. Our approach effectively addresses the exponential

growth inherent in the original model, providing a reduced model where

the number of equations scales linearly with N . This allows practitioners

to simulate the system efficiently on a smaller scale.

However, it’s essential to acknowledge that the reduced model intro-

duces an approximation error in capturing the original system dynam-

ics. In this thesis, we propose a formal quantification of this deviation,

a task that embodies one of the most challenging aspects of model re-

duction. While constructing a reduced model may seem straightforward,

minimizing errors in replicating the original system’s dynamics presents

a significant challenge.

2

Ordinary differential equations (ODEs) are a fundamental formalism

to describe dynamical systems across many branches of science and en-

gineering. In this thesis, we consider ODEs with polynomial right-hand

sides. This does not impose any limitations on our findings, as polynomial

ODE systems encompass a wide array of applications. They are partic-

ularly relevant for investigating nonlinear interactions occurring within

populations under the assumption of opportunistic contacts, a scenario

prevalent in fields such as biology [110], chemistry [112], and ecology [80].

Moreover, polynomial ODEs find utility in diverse domains, including

the encoding of electric circuits [35] and the design of control systems

[159]. In addition, we consider an equivalent way to represent polyno-

mial ODE systems by means of the so-called reaction networks (RN) [8].

This formalism is strictly related to the ODEs system and represents a

more compact way to represent dynamical systems where reactions and

compounds substitute the equations.

It is well-known that closed-form solutions of initial value problems

with polynomial ODEs are available only in special cases, a major problem

when dealing with complex models regards the computational cost of the

analysis, which generally is conducted by means of numerical integration.

This problem has spurred a considerable amount of cross-disciplinary re-

search on model reduction (e.g., [9, 139]). The model reduction techniques

can be categorized into two main classes: exact and approximate.

Exact methods yield a reduced model that preserves the projected dy-

namics without introducing any error (e.g., as seen in the early work by

Aoki [10]). However, achieving exact reduction necessitates matching the

reduced dynamics with precisely equal parameters, which proves challeng-

ing given the complexity and uncertainty inherent in model parameters.

Hence, exact techniques may not always be feasible. In contrast, approx-

imate techniques offer a means to further reduce model dimensionality at

the expense of introducing some error in the reduction process. Depend-

ing on the specific approach, these errors may be quantified with formal

bounds (e.g., as demonstrated in [126] and related literature).

The most common model-reduction methods fall into one of these

categories: time-scale separation [87, 89], singular value decomposition,

3

balanced truncation [9, 112, 139], and lumping [90].

Time-scale separation, in essence, hinges on the distinction between

slow and fast variables [127]. Slow variables evolve over relatively large

timescales, while fast variables undergo rapid variations over much smaller

timescales. The central notion revolves around constructing reduced mod-

els that effectively capture the interplay between these variable types. The

choice of slow and fast variables dictates whether the reduced model pre-

cisely or approximately replicates the original model’s dynamics. Com-

monly employed approaches include the Singular Perturbation Method

[143], Quasi-Steady State Methods [29], and Quasi-Equilibrium methods

[104, 83] in their various forms [125, 155, 135]. The major drawback of

these approaches is that their effectiveness relies on the identification of

the timescale separation. The choice of method and its parameters should

be tailored to the specific characteristics and requirements of the system

under consideration.

Singular value decomposition is a matrix factorization technique that

can be employed to reduce dynamical systems. By decomposing a ma-

trix A into the product of three matrices UΣV , SVD yields a diagonal

matrix where the elements represent the importance of associated dy-

namics in the system. This enables the selection of crucial dynamics

while discarding others to construct a reduced model. Balanced trunca-

tion, a similar approach, builds upon the work of Morrie in control theory

[108]. Instead of directly manipulating the system matrix A, balanced

truncation involves constructing controllability and observability Grami-

ans, followed by finding a balancing transformation that equalizes and

diagonalizes these Gramians. The subsequent truncation phase involves

discarding states and outputs of the balanced model, corresponding to

less significant modes. This method is particularly suited for approxi-

mate reductions, where the dimension of the reduced model depends on

the discarded components.

These methods offer accurate results, and some techniques can estab-

lish a priori bounds on the error [9]. However, a notable drawback lies in

the transformation applied to the state variables, rendering the interpreta-

tion of new state variables challenging. Consequently, balanced truncation

4

may be regarded as a black-box approach to model reduction [139].

Lumping techniques involve constructing the reduced model by defin-

ing variables as a mapping of those in the original model. This approach

was proposed in [158]. Nowadays, it is a very popular approach with

a lot of applications in different fields such as performance engineering

[105, 100, 76, 150], machine learning [132], biology [121, 11, 55, 94] and

control theory [144, 148, 6]. The lumping scheme can be categorized as

linear or non-linear, depending on whether each reduced variable repre-

sents a linear combination of the original ones. Furthermore, the scheme

can project the original dynamics either exactly or approximately, termed

exact or approximate lumping, respectively. This framework is versatile

and can be seamlessly integrated with previous techniques [55, 85, 142].

One of the strengths of lumping approaches lies in the flexibility of

defining the lumping scheme. The reduced model remains interpretable

since the mapping from the original variables to the new ones is well-

defined. However, a significant drawback is the challenge of identifying the

appropriate lumping scheme. If the scheme is ineffective, the system may

be oversimplified, potentially compromising the accuracy of the reduced-

order model.

In this thesis, we address the challenge of model reduction by propos-

ing two distinct approximate lumping techniques. This decision stems

from the recognition that when dealing with real-world systems, exact

reductions often prove too fragile [70, 73, 79]. This fragility arises due to

imprecision and uncertainties in model parameters, structure, and initial

conditions, which frequently violate the criteria for exact lumping. More-

over, the techniques presented here offer formal estimations of the error

computed by the reduced model, enhancing their utility and reliability.

The first approach proposed is related to a specific class of lumping in-

duced by a so-called differential equivalence [34]. It consists of a partition

of the set of variables in a given ODE system such that each macro-variable

represents the sum of the variables in a partition block [41]. Specifically,

we consider both backward and forward differential equivalence (abbrevi-

ated BDE and FDE, respectively). In the former case, variables in the

same block have exactly the same solution if starting from the same ini-

5

tial condition; in the latter case, each macro-variable exactly represents

the sum of the original variables. We introduce approximate variants of

differential equivalence tailored for polynomial ODE systems. The core

concept involves incorporating a threshold parameter ε g 0, which intu-

itively captures perturbations in polynomial coefficients. This enables the

establishment of relationships between ODE variables within the same

partition block that would otherwise remain distinct. The parameter ε

governs the degree of similarity among lumped variable blocks. The par-

tition obtained is employed to build the reduced model. To make the

approach more robust, we equipped the reduced model with a formal

bound that relates the reduced model to the original model.

The second approach reduces the model, building an augmented model

[140], the so-called differential hulls for heterogeneous ODE systems [148].

Differential hulls provide lower- and upper-bounds on the original equa-

tions by relying on the theory of differential inequalities [129, 128, 136]

which can be traced back to the seminal work of Müller [109]. We present

an algorithm to compute the differential hull of a generic ODE system

with positive solutions. In many cases, these systems represent classes

of entities governed by structurally similar laws governed by different pa-

rameters. Such heterogeneous parameters may encode different dynamical

behavior of the same underlying phenomenon, such as age- or location-

dependent rates for the contagion of a disease [33], class-dependent service

demands in a queuing system [26], and conformation-dependent bind-

ing affinities in protein interaction networks [64]. The algorithm aims to

homogenize class-dependent behavior into representative equations that

suitably summarize the difference in similar parameters. The algorithm

considers a level of perturbation in the parameters ε. Then, it builds the

differential hull. If the original system consisted of structurally similar

equations with different parameters (and these parameters are at most ε

away), the intended output of this first step is to have replicated equations

that have the same dynamical behavior by taking appropriate minimum

and maximum values across the parameters. As a result, the resulting

model becomes amenable to exact reduction via BDE, enabling the lump-

ing together of variables with identical dynamics. This approach is orthog-

6

onal to the previous one. Instead of introducing an approximate technique

on the original model, we apply an exact reduction on the differential hull,

which is an overapproximation of the original model.

Among the wide range of applicability of these techniques, we show

how the approximate BDE can be used to discover node equivalences on

networks. Rooted in the social sciences, notions of node equivalences are

useful tools to uncover and understand roles and relations in networks

across a variety of domains, including biology [98], economics [137], and

management [114]. Several definitions of node equivalence are proposed in

the literature. Structural equivalence identifies nodes that are connected

to the same neighbors [97]. In automorphic equivalence [22], nodes are

related through graph-theoretic properties such as in-/out-degree and cen-

tralities. This is relaxed by regular equivalence, which aims to identify

nodes that play the same role in the network even if they do not share

neighbors by requiring that any two regularly equivalent nodes are both

connected to nodes that are themselves regularly equivalent [160]. We fo-

cus on regular equivalence because it represents an advance in capturing

key features of the relational role concept [24]. We consider the ε-BDE

technique exploiting the well-understood interpretation of regular equiv-

alence as a bisimulation [101]. More in detail, we relate approximate

regular equivalence to an approximate bisimulation computed by means

of ε-BDE. Our intuition is to associate the adjacency matrix of network

A with a linear system of differential equations ẋ = Ax and establish

a formal correspondence between regular equivalence in the former and

backward equivalence on the latter. More in detail, we provide an itera-

tive framework to compute the regular equivalences on a network called

iterative ε-BDE. The iterative scheme allows the computing of regular

equivalence on the network considering increasing values of ε in order to

capture roles with different levels of uncertainty. In addition, we exploit

the partition refinement nature of the approach to specify an initial par-

tition of the nodes. The initial partition is suitable to avoid excessive

aggregation that can arise, especially on binary, as experienced by other

methods in literature [23]. For this reason, we provide an initial partition

for the relevant class of Barabasi-Albert (BA) networks [16], which are

7

well-known to fit real-world datasets appropriately. We prove formally

how this partition corresponds, on average, to an ε-BDE partition for

sufficiently large BA networks.

The thesis organization Chapter 2 introduces the background nec-

essary for the rest of the thesis. Chapters 3, 4 present the new lumping

techniques proposed for the reduction of dynamical systems. Chapter

5 presents the application of ε-BDE in finding regular equivalences in a

network. Each of these chapters consists of a small introduction, an ex-

position of the theory, and an experimental analysis. The last chapter

presents a final discussion with the conclusions. We decided to move the

detailed proofs within the chapter to their respective appendices in or-

der to improve the overall flow and coherence of the exposition. Part of

this thesis, including Chapter 1, Chapter 2, Chapter 3, Chapter 4 and

appendices A and B are based on the following publications [140, 34]:

• G. Squillace, M. Tribastone, M. Tschaikowski, and A. Vandin, 2022,

September. An Algorithm for the Formal Reduction of Differential

Equations as Over-Approximations. In International Conference on

Quantitative Evaluation of Systems (pp. 173-191).

• L. Cardelli, G. Squillace, M. Tribastone, M. Tschaikowski, and A.

Vandin, 2023. Formal lumping of polynomial differential equations

through approximate equivalences. Journal of Logical and Algebraic

Methods in Programming, 134, p.100876.

where the last one is a journal extension of the following paper [39]:

• L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin, “Guar-

anteed Error Bounds on Approximate Model Abstractions Through

Reachability Analysis”. In: Quantitative Evaluation of Systems.

Ed. by Annabelle McIver and Andras Horvath. Cham: Springer

International Publishing, 2018, pp. 104– 121.

8

1.1 Related works

The proposed approaches offer the potential for reducing dynamical sys-

tems and establishing formal error bounds for the resultant reduced mod-

els. We divided the related work into two sections. The first one reports a

comprehensive survey of the literature, which encompasses not only lump-

ing techniques but also methodologies capable of computing bounds asso-

ciated with the system’s dynamics. The second one presents a meticulous

literature review of the methods for computing the regular equivalences.

1.1.1 Reduction of dynamical systems

Classic approximation approaches relying on Lyapunov-like functions [99,

60] may provide tight bounds, but their automatic computation remains

a challenging task, especially in case of nonlinearity [72]. A restriction

to special classes of Lyapunov-like functions (e.g., sum-of-squares polyno-

mials [72]), instead, leads to efficient construction algorithms, which may

provide tight bounds, but existence is not guaranteed. Conversely, the ap-

proximate differential equivalences and the differential hull can efficiently

compute tight bounds.

On the other side, the method based on abstraction like CORA lo-

cally approximates the nonlinear model by a multivariate polynomial or

an affine system, see [12, 47] and references therein. The reachable set

can also be over-approximated by geometrically convenient objects such as

zonotopes [69, 2]. In that spirit, the approximate backward equivalences

linearize across a reference trajectory, a concept also known from gain

scheduling [63]. A closer approach to ours is discussed in [62]. It com-

bines local Lyapunov-like functions and techniques based on sensitivity

analysis [91]. Our bound is, however, different because the nonlinear part

is bounded analytically by restricting to polynomial derivatives. On the

other side, our differential hull approach always provides an approximate

dynamical system that bounds the dynamics without any linearization.

In [19], the authors propose a reduction technique by overapproximat-

ing trajectories through the tropicalization of the differential equations

[127]. This method leverages the concept of max-plus algebra, where the

9

maximum term can replace the sum of well-separated positive terms. By

imposing a dominance definition, they compute upper and lower bounds

for the original system. The idea is similar to the differential hull, although

we do not tropicalize the equations. The approach is applied mainly to

biological systems while we show the effectiveness of the differential hull

in different fields.

Recently, researchers have explored deep learning techniques for model

reduction [27, 141, 74, 5, 131, 67, 75, 93]. These approaches aim to reduce

the computational burden of simulating large systems while providing re-

duced models. For instance, in [27], a Mixture Density Network (MDN)

is employed to estimate the probability distribution of the model, en-

abling abstraction by projecting onto a subset of species. Despite yielding

promising outcomes, deep learning approaches lack of full explainability,

and determining the most suitable architecture for the specific problem

is not straightforward. In [131], the authors introduced an automated

method to identify the optimal architecture for neural networks. However,

they emphasize that their objective is not to outperform any conceivable

human-designed architecture, which remains the preferred choice.

Lumping techniques applied to dynamical systems have already been

investigated in the literature. In chemistry, it can be traced back to Kuo

and Wei [90]. They studied monomolecular reaction networks, which give

rise to affine ODE systems. The approximation consists in nearly exact

lumping, i.e., a linear transformation of the state space that would be ex-

act up to a perturbation of the parameters. The approximation, however,

only applies when the transition matrix underlying the linear system is di-

agonalizable. In our reduction techniques, we harness the same underlying

principle, with the tolerance parameter denoted as ε, signifying the de-

gree of perturbation in the system’s parameters. Notably, our techniques

offer a broader scope, eliminating the need for system diagonalization and

making them applicable to a more extensive range of scenarios. Li and

Rabitz extend approximate lumping to general CRNs [95], but an explicit

error bound is not given. In a similar vein, approximate quotients in

ecology have been studied from the point of view of finding a reduced

ODE system whose derivatives are as close as possible (in norm) to the

10

derivatives of the original ODE system, where the 0-distance induces the

exact quotient [81]. The justification that variables underlying similar

ODEs have nearby solutions is grounded on Gronwall’s inequality, which

is also at the basis of more recent quotient constructions [147, 78], which,

however, are not algorithmic.

1.1.2 Regular Equivalences

In the literature, the approaches for discovering regular equivalences on

a network are categorized into direct and indirect methods. The indirect

approach first computes a similarity matrix among the nodes, which is

then partitioned using hierarchical clustering [160, 24]. Direct approaches

do not require a similarity matrix. Deterministic blockmodeling sorts the

adjacency matrix in blocks [58], each identifying a cluster of nodes in the

network and specifying the links from one cluster to another through an

optimization problem. Stochastic blockmodeling is a generative model

based on statistical properties of random graphs [66, 119].

Indirect methods REGE is the first indirect method for regular equiv-

alence based on an iterative point-scoring procedure that builds a simi-

larity matrix for both binary and weighted networks [160]. Its time com-

plexity is O(n5), where n is the number of nodes. CATREGE is an im-

proved version for binary and categorical networks with time complexity

O(n3) [24], which, moreover, allows specifying an initial partition of the

nodes to constrain the solution and improve the results. Despite this, the

current implementation of CATREGE limits its use to networks with at

most a few hundred nodes [25]. To build a partition of approximately

regularly equivalent nodes with an indirect approach, typical hierarchical

clustering techniques are based on single-link, complete-link, and Ward’s

method [162].

Direct methods While stochastic blockmodeling is based on a gen-

erative model, deterministic blockmodeling is more similar to indirect

approaches in that it performs clustering. Usually, the number of clus-

ters is a parameter set beforehand, and an optimization problem is set

11

up to minimize a certain objective function of discrepancy with respect

to ideal blocks by allowing permuting rows and the columns of the adja-

cency matrix [58]. In binary networks, binary blockmodeling defines the

discrepancy in terms of ideal blocks specified as 0-1 patterns [58]. For

weighted networks, dichotomization is used; given a threshold, it sets all

values in the matrix under (resp., over) the threshold with 0 (resp. 1), so

that blockmodeling for binary networks can be used. Since dichotomiza-

tion may lead to loss of information, in [164] a new approach, the val-

ued blockmodeling, is proposed trying to define ideal blocks in terms of

weighted networks (f-regular equivalence). This is shown to be more ro-

bust than dichotomization, but it requires the choice of a parameter that

depends on the strength of the links. Often, the estimation is based on

previous knowledge of the network [164]; some general estimations are

possible, like the median or the mode of the weights, but no guarantees

can be provided [102]. A different approach is the homogeneity block-

modeling proposed in [164]. Its aim is to create blocks where a measure

of the variability of the links is minimal.

Since exact methods that guarantee globally optimal solutions are

computationally expensive [30], heuristic methods of local search are gen-

erally employed [58], which, however, lack guarantees of optimality [58].

As shown also by our numerical experiments, such an optimization-based

approach cannot scale, in practice, to networks larger than a few hundred

nodes. Our algorithm can be considered a direct method in that it does

not compute a similarity matrix. Different from blockmodeling, however,

it does not require the user to choose the number of clusters. Instead, it

is parameterized by a tolerance ε that, roughly speaking, determines the

degree to which nodes can be deemed approximately regularly equivalent.

In terms of efficiency, our experimental results, presented in Chapter 5,

demonstrate that our approach consistently outperforms both direct and

indirect methods found in the existing literature.

We mention the works [123, 124], where the authors employed the ex-

act and approximate BDE reduction to reduce multilayer networks. More

in detail, they propose a PIVP to encode the iterative scheme to compute

the eigenvalue centrality on multilayer networks. Consequently, they com-

12

pute equivalences on this PIVP in order to find exact and approximate

role assignments. The novelty of our approach is the definition of the iter-

ative scheme that avoids aggressive aggregation on single-level networks.

The scheme can be applied straightforwardly to the proposed PIVP for

multilayer networks.

13

Chapter 2

Background

This chapter provides essential background information that serves as

the foundation for the subsequent discussions in this thesis. Part of this

chapter is based on the published work [34].

2.1 Ordinary Differential Equations

In our study, we focus on polynomial ordinary differential equations (ODEs)

as effective models for dynamical systems.

We begin by addressing polynomial initial value problems (PIVPs)

over the set of ODE variables S = {x1, . . . , xn}. We define xi(t) as the

unique solution for variable xi at time point t. We denote the initial

conditions with x(0) as the value of x(t) at time t equal to 0. We assume

to work with PIVPs that do not exhibit explosion in finite time, ensuring

solutions on arbitrary long time intervals. A PIVP comprises ODEs in the

form ẋi = qi, where 1 f i f n and qi is a multivariate polynomial over S.

A PIVP satisfies the normal form when each monomial xα ≡∏

xi∈S x
αxi

i ,

where ³ ∈ N
S
0 is a multi-index, appears in qi at most once. Without loss of

generality, we assume that the polynomials qi in the PIVPs are in normal

form, and we indicate this with the notation N (qi). We denote with

c(qi, xα) the coefficient of the monomial xα in a normal form polynomial

qi with variables in S, where ³ ∈ N
S
0 .

14

2.2 Reaction Networks

Here, we introduce the reaction network formalism as an alternative for-

malism to define a dynamical system. A reaction network is composed of

a set of species S = {s1, ..., sn} specifying the compounds that participate

in the chemical reactions and a set of reactions R = {r1, ..., rm}. Each

reaction is associated with a time-invariant kinetic parameter k, deter-

mining the frequency of occurrence. In a reaction, certain species, called

reactants, combine to produce a specified number of other species, called

products. We indicate with A + 2B
k−→ C a reaction where A and B are

the reactants, C is the product, and the paramater k is the reaction rate.

Each species involved in a reaction presents a stoichiometry coefficient

that represents the quantity of this species involved in the reaction. In

our reaction, one molecule of A fires between two molecules of B and

produces a molecule of C. More in general, we can define a reaction i as

∑

j∈S

³ijsj →
∑

j∈S

´ijsj

Here, the left side of the reaction equation represents the summation

of reactants, each multiplied by their respective stoichiometry coefficients,

³ij . On the right side, we show the resulting compound of the reaction,

with their stoichiometry coefficients denoted as ´ij .

We store the coefficients in the so-called stoichiometry matrix Γ ∈
Rnxm. A stoichiometry matrix is a mathematical representation of a

chemical reaction network. The entry Γij represents the net value of the

stoichiometric coefficients (product minus reactant) of the i-th species in

the j-th reaction. The sign of Γij indicates the role of the species in the

reaction: positive for a product, negative for a reactant, and zero if the

concentration of the compound remains unaffected by the reaction.

A chemical reaction network can be transformed into an associated

system of ordinary differential equations (ODEs) to keep track of the con-

centrations over time. We define xi(t) : S → Rn
g0 as the concentration

vector a time t. A common assumption is that the change in the con-

centrations is governed by the Law of Mass Action [45]. It states that

15

the rate of a chemical reaction is proportional to the product of the con-

centrations of the reactants, each raised to the power of their respective

stoichiometric coefficients. We can define for each reaction the rate vector

ri(x(t)) = ki

n
∏

j=1

x
αij

j

where n is the number of species. This represents the function of the

concentration and the kinetic parameters. Consequently, we can define

the following system of ODE:

ẋ(t) = Γr(x(t))

Example 1. Let us consider a reaction network with S = {A, B, C} and

two reactions R = {A + B
k1−→ 2C, C + B

k2−→ A} The corresponding ODE
system will be:

ẋA = −k1xAxB + k2xBxC

ẋB = −k1xAxB − k2xCxB (2.1)

ẋC = −k2xCxB + 2k1xAxB (2.2)

A polynomial initial value problem (PIVP) can be formulated to track

species concentrations over time by specifying appropriate initial condi-

tions.

2.3 Exact reduction: backward and forward

differential equivalence

The major contribution of this thesis lies in developing approximate lump-

ing techniques. These novel approaches either extend existing exact meth-

ods or integrate them into the proposed framework. For this reason, we

present the exact techniques here. In order to explain these methods, let

us consider the following running example:

16

Example 2. We use the following ODE system, with variables S =
{x1, x2, x3}, as a running example.

ẋ1 = −4.00x1 + x2 + x3

ẋ2 = 2.00x1 − x2 (2.3)

ẋ3 = 2.00x1 − x3 (2.4)

The backward differential equivalence (BDE) and the forward differ-

ential equivalence (FDE) were originally provided in [41] for a class of

nonlinear ODE systems covering derivatives more general than polyno-

mials. Since the focus of this thesis is on polynomials, we restate these

notions for a PIVP. (The proofs for this correspondence are straightfor-

ward hence we omit them.)

BDE assures that variables in the same equivalence class have the

same solutions at all time points. These relations are built by making

pairwise comparisons between the coefficients of the polynomials related

to any two variables in the same equivalence class.

Definition 1 (Backward differential equivalence (BDE)). Fix a PIVP,
a partition H of S and write xi ∼B

H xj if all coefficients of the following
polynomial are zero,

℘H
i,j := (qi − qj)

[

xïH′,1ð

/

xH′ , . . . , xïH′,|H′|ð

/

xH′ :H ′ ∈H
]

i.e., when
∑

α∈NS
0

|c(℘H
i,j , xα)| = 0. (2.5)

A partition H is a BDE if H = S/(∼B∗

H ∩ ∼H).

The definition states that a candidate partition is a BDE if, for any

two variables in the same block, the differences between the coefficients

on the same monomials are zero. The correctness of this approach can be

checked by replacing each variable in a block with a representative one.

After the substitution, all the dynamics BDE equivalents have exactly the

same derivatives.

Example 3. In our running example, let us consider the partition of
variables H = {H1, H2}, with H1 = {x1} and H2 = {x2, x3}. Then H is

17

a BDE partition. We can manually check the correctness of this reduction.
We pick x1 and x2 as the representative variable for the blocks H1 and
H2, respectively. The new PIVP is the following:

ẋ1 = −4.00x1 + x2 + x2

ẋ2 = 2.00x1 − x2 (2.6)

ẋ3 = 2.00x1 − x2 (2.7)

We compute ℘H
2,3 = 2.00x1−x2−(2.00x1−x2). It consists of the differ-

ence of the equation q2 and q3 after the replacement of the representative
variables. Now we check that the sum of coefficients in ℘H

2,3 is equal to 0,

i.e,
∑

α∈NS
0

|c(℘H
i,j , xα)| = 0. The equation is satisfied because ℘H

2,3 = 0.

Therefore ẋ2 and ẋ3 are BDE. Indeed, the same equations ensure the same
solutions at all-time points if they start from the same initial conditions.

FDE relates sums of variables. More in detail, it identifies a partition

that induces a quotient ODE that tracks sums of variables in each equiv-

alence class. This can be done by replacing any two variables in the same

equivalence class with their sum.

Definition 2 (Forward differential equivalence (FDE)). Fix a PIVP, a
partition H of S and write xi ∼F

H xj if all coefficients of the polynomial
∑

H∈H ℘H
i,j are zero, where

℘H
i,j :=

∑

xk∈H

qk −
∑

xk∈H

qk[xi/s(xi + xj), xj/(1− s)(xi + xj)]

and s is an auxiliary variable that does not denote any state. That is,
when

m
∑

k=1

∑

α∈N
S∪̇{s}
0

|c(℘Hk

i,j , xα)| = 0. (2.8)

H = {H1, . . . , Hm} is an FDE when H = S/(∼F ∗

H ∩ ∼H).

For a PIVP, FDE can be checked by requiring that the evaluation of

the polynomial that represents the quotient derivative for an equivalence

class is invariant with respect to a redistribution of the values of any two

variables within that equivalence class.

18

Example 4. Let us consider the partition H = {{x1}, {x2, x3}} in our
example. It is an FDE partition because we can find the following system
for x2 + x3:

ẋ1 = −4.00x1 + (x2 + x3)

˙(x2 + x3) = 4.00x1 − (x2 + x3)

Replacing the variable x23 with x2 + x3 we obtain the quotient ODE

ẋ1 = −4.00x1 + x23

ẋ23 = 4.00x1 − x23

Again, we can check that the partition is FDE. We consider, as an exam-
ple, the case where H = {x2, x3}. We must check that the definition (2.8)
holds. To illustrate this, we compute ℘H

2,3:

℘H
2,3 = 2x1 − x2 + 2x1 − x3

− [2x1 − s(x2 + x3) + 2x1 − (1− s)(x2 + x3)]

It consists of the sum of the equation q2 and q3 minus their formulation
after redistributing the variables in the block. Upon simplification, we
can ensure the ℘H

i,j is equal to 0, and consequently, the equation (2.8)
is satisfied. Thus we can conclude that the solution satisfies x23(t) =
x2(t) + x3(t) for all times t if this holds for the initial condition, i.e.,
x23(0) = x2(0) + x3(0).

In general, differential equivalences are related but not comparable to

the notion of bisimulation for differential systems [72, 79] since it par-

titions ODE variables rather than the state space. Likewise, it comple-

ments [21] in that it captures nonlinear relations between ODE variables

but does not enjoy a polynomial time algorithm. Instead, for both equiv-

alences, one can prove the existence of a maximal exact reduction (or

equivalently, of the coarsest partition) [41], which can be computed by

building on fundamental algorithmic results in computer science related

to partition-refinement algorithms [115]. In particular, restricting to poly-

nomial derivatives enables the computation of differential equivalences on

a suitable encoding of the ODEs into a hyper-graph akin to a formal

chemical reaction network [36]. This finitary encoding ultimately allows

19

for algorithms that efficiently run in polynomial time and space with re-

spect to the size of the original ODE system, related to the number of

variables and of monomials appearing in the right-hand sides [40]. (This

is in contrast to significantly more expensive symbolic checks for a more

general class of nonlinear ODE systems studied in [41, 42].)

2.4 CORA

In this section, we present the state-of-art tool for reachability analy-

sis CORA. The COntinuous Reachability Analyzer (CORA) [2, 3] is a

MATLAB toolbox for reachability analysis. Reachability analysis is a

well-known technique [48] in the domain of formal methods for system

verification and validation, offering a systematic approach to exploring

the dynamic behavior of complex systems. It aims to determine whether

a particular state or set of states within a system can be reached from

an initial state through a sequence of transitions defined by the system’s

dynamics. CORA requires specifying initial reachable sets that can be

expressed with different formalisms. For the purposes of this thesis, we

utilize zonotopes [103], which are default representations provided by

CORA. Informally speaking, zonotopes are compact representations of

sets in high-dimensional space.

Figure 1: Reachability set from the CORA Manual [52].

20

They are useful in various fields, such as control theory [92] and

robotics [145, 120], for describing sets of possible states or trajectories in

high-dimensional spaces. Once the initial set is defined, CORA approxi-

mates the trajectories of the system, moving the zonotopes according to

the dynamics of the ODE system. We report the reachability set of an ex-

ample using zonotopes in Figure 1. The axes represent different variables,

illustrating their movement within the space. The blue region denotes

the states reached by the trajectory. Given that one of the main objec-

tives of this thesis is to provide formal bounds, we have chosen CORA

as a benchmark tool to compare computational speed and the tightness

of our bounds. Through the thesis, we demonstrate that CORA yields

tight bounds but requires more computational effort compared to our ap-

proaches.

21

Chapter 3

Approximate BDE and

FDE

This chapter is based on the published work [34], which is a journal ex-

tension of [39].

Although exact reduction methods prove effective in a variety of mod-

els (e.g., performance engineering [149, 151, 146, 150], biochemistry [79,

33, 43] or physical engineering [21, 4]), especially when they have “struc-

tural” symmetries that are not dependent on specific values of the param-

eters, they may not be effective in applications domains where parameter

uncertainty, error tolerances, and calibration from finite-precision mea-

surements are common, such as in biology or engineering [139, 53]. To

cope with this challenge, in this chapter, we introduce approximate vari-

ants of differential equivalence for polynomial ODE systems. This allows

relating ODE variables in the same partition block considering a threshold

parameter ε g 0, which intuitively captures perturbations in polynomial

coefficients. The extension is conservative in the sense that the case ε = 0

corresponds to an exact differential equivalence. In addition to defining

criteria for approximate differential equivalences, we provide an algorithm

for obtaining the maximal one, still in a partition-refinement framework.

The reduction is represented as a reference model, obtained through

a perturbation of the coefficients of the original model, which makes the

22

given approximate differential equivalence an exact one. By considering

a metric (the Euclidean norm) to measure the degree of perturbation, the

reference model is the one that minimizes such perturbation. This can be

done efficiently by solving an optimization problem that runs polynomially

with the size of the ODE system [86]. This approach is analogous to

optimal approximate lumping for Markov chains (e.g., [61]), although our

theory can be applied to other choices of reference models.

The bound of the error produced by the reference model with respect

to the original system can be computed by studying the reachable set of

the reference model from an uncertain set of initial conditions that covers

the applied perturbation. Therefore, this reachable set becomes a formal

bound that relates the reference model to the original model. Our bound is

given in terms of an ε-¶ argument (similar in spirit to the ones routinely

used in calculus). Informally, it states the following: for any choice of

the tolerance ε, there exists a degree of perturbation ¶ and an amplifier ¼

such that, for any ODE system obtained by applying a perturbation to the

reference model of at most ¶, at all time points the difference between the

solution of the reference model and the perturbed one is at most ¼ times

the perturbation. We show that our bounding technique can complement

a state-of-the-art overapproximation technique, CORA [2, 3], in that it

can scale to larger systems while being more conservative in the size of

the initial uncertain set that it supports.

3.1 Approximate differential equivalences

In this section, we present two different approximate versions of BDE and

FDE. In an approximate differential equivalence, we allow the conditions

(2.5)-(2.8) to be satisfied with a certain amount of tolerance.

Definition 3 (Approximate BDE). Fix a PIVP, a partition H = {H1, . . . ,
Hm} of S, and ε g 0. We write xi ∼B

H,ε xj if
∑

α∈NS
0

|c(℘H
i,j , xα)| f ε,

where ℘H
i,j is as in Definition 1. A partition H is an ε-BDE if H =

S/(∼B∗

H,ε ∩ ∼H).

Definition 4 (Approximate FDE). Fix a PIVP, a partition H = {H1, . . . ,
Hm} of S, and ε g 0. We write xi ∼F

H,ε xj if
∑m

k=1

∑

α∈N
S∪̇{s}
0

|c(℘Hk

i,j , xα)|

23

f ε, where ℘H
i,j is as in Definition 2. A partition H is an ε-FDE when

H = S/(∼F ∗

H,ε ∩ ∼H).

In the definitions above ∗ represents the transitive closure of this rela-

tion while B and F stand, respectively, for BDE and FDE. Setting ε = 0

recovers the exact counterparts in both cases. That is, H is a BDE (resp.,

FDE) partition if and only if H is a 0-BDE (resp., 0-FDE) partition.

The two approximate differential equivalences are not comparable since

their exact counterparts are not [41]. Since these two notions have sim-

ilar structures, in the example of this tractation, we will illustrate only

approximate BDE. Instead, both notions will be discussed in more detail

for the numerical evaluation at the end of the chapter.

Example 5. Let us consider the following running example.

ẋ1 = −4.00x1 + x2 + x3

ẋ2 = 1.99x1 − x2 (3.1)

ẋ3 = 2.01x1 − x3 (3.2)

H =
{

{x1}, {x2, x3}
}

cannot be a BDE partition because c(℘H
2,3, x1) =

−0.02 ̸= 0. Of course, it is clear that in this context, the exact BDE is
too fragile because a small perturbation of the parameter brings to miss
the detection of a strong association. The approximate counterpart is able
to cope with this problem. Indeed, if we set up ε = 0.02, the partition H
is a 0.02-BDE partition.

The next two theorems are concerned with providing an algorithm to

compute an approximate differential equivalence. Theorem 1 shows the

existence of the largest approximate differential equivalence. Theorem 2

proves the correctness of the partition-refinement algorithm to compute

it as the coarsest refinement of a given initial partition of variables.

Theorem 1. Fix a PIVP, a partition G of S, and ε g 0. Then, there
exists a unique coarsest ε-FDE (ε-BDE) partition refining G.

The following lemma will be needed in the proof of Theorem 2.

Lemma 1. Let G,H be two partitions of S. Then, for any ε > 0, the
following can be shown.

24

Algorithm 1 Template partition refinement algorithm for the compu-
tation of the coarsest ε-FDE/ε-BDE partition that refines a given initial
partition G.

Require: A PIVP over variables S, a partition G of S, a threshold ε g 0,
and a mode Ç ∈ {F, B}.
H ←− G
while true do

H′ ←− S/(∼χ∗

H,ε ∩ ∼H)
if H′ = H then

return H
else

H ←− H′

end if

end while

(i) xi ∼F ∗

H,ε xj implies xi ∼F ∗

G,ε xj if H is a refinement of G.

(ii) xi ∼B∗

H,ε xj implies xi ∼B∗

G,ε xj if H is a refinement of G.

Theorem 2. Fix a PIVP, a partition G of S, and ε g 0. Then, Algo-
rithm 1 computes the coarsest ε-FDE (ε-BDE) that refines G if Ç = F
(Ç = B).

Example 6. We decided to apply the Algorithm 1 on the running ex-
ample. For this purpose we set an ε = 0.02 and the initial partition
G = {x1, x2, x3}. In the first iteration, the partition was split into two
blocks H = {{x1}, {x2, x3}}. In the next iteration, H can not be split
anymore, and the algorithm returns it as the 0.02-BDE partition.

The importance of these two theorems lies in the fact that, gener-

ally, the largest and unique approximate equivalence does not exist for

approximate equivalence, as noted in [105]. In their work, the authors

introduced the concept of approximate strong equivalence inspired by

quasi-lumpability [106], where elements within the same block display

a difference in the sum of rates towards equivalent classes that is less than

ε. This criterion aligns with our operator ∼B
H. But differently, by en-

forcing the transitive closure of the operator to compute the partition, we

establish the basis for defining the unique and coarsest ε-BDE partition.

25

These properties are fundamental for the definition of Algorithm 1 and

assure the convergency to the resulting partition. On the other hand,

the transitive closure necessary for these properties can lead to aggressive

aggregation. In Chapter 5, we tackle this problem, proposing an iterative

scheme for the ε-BDE reduction.

We now study how efficiently the conditions for approximate differ-

ential equivalence can be computed. Since the reduction techniques are

concerned with the coefficients of the polynomials, we define the com-

plexity in terms of ℘H
i,j and ℘H

i,j . In the case of ε-FDE, we estimate an

exponential complexity due to term replacement. Suppose to have the

PIVP ẋ1 = xk
2 , ẋ2 = xk

1 , for some k > 0, then, for H =
{

{x1, x2}}, the

term q1[x1/s(x1 + x2), x2/(1− s)(x1 + x2)] will be of size O(2k).

The ε-BDE case is different because the conditions involve a difference

between polynomial terms with no term rewritings. This discussion can

be formalized as follows.

Theorem 3. There exists a polynomial Π such that, under the assump-
tions of Theorem 2, the number of steps done by Algorithm 1 is O

(

Π(2d ·
p)

)

if Ç = F and O
(

Π(p)
)

if Ç = B, respectively, where d is the maximum
degree of the polynomial and p is the number of monomials present in the
PIVP.

Proof. Follows from the proof of Theorem 2.

As already mentioned, the approximate differential equivalences are

a relaxation of the exact counterparts; for this reason, the above results

provide a complexity bound for a subclass of ODE considered in [41].

In practice, d is not large. Indeed, in the numerical evaluations in

Section 3.3, d was no larger than two. For instance, in a PIVP of a

chemical reaction network with mass-action kinetics, one typically has d =

2 because, in nature, at most, two species interact in a given reaction [71].

For the sake of completeness, we take into account another complexity

measure. Another natural definition could be the maximal distance be-

tween derivatives “semantically”, i.e., under all possible evaluations within

a given domain of interest. For example, consider the PIVP ẋ1 = x3
1−x2,

ẋ2 = x1 − x3
2. Establishing that {{x1, x2}} is an ε-BDE would require

checking that the difference between the derivatives satisfies

26

|ẋ1 − ẋ2| = |x3
1 − x1 + x3

2 − x2| f ε, (3.3)

for all 0 f x1, x2 f C and for some finite bound C > 0. Since this question

is in general equivalent to solving a non-convex optimization problem, we

infer that the problem is NP-hard [116].

Despite this, if a partitionH satisfies constraints like (3.3) with respect

to some ε > 0, then we can prove that H is an O(ε)-FDE/BDE, and vice

versa. The basic idea is to observe that a polynomial is the zero function

if and only if its coefficients are all zero. In this sense, our techniques

defined through the coefficients of the polynomials correspond to check if

(3.3) holds.

Given a partition of variables that represents an approximate differ-

ential equivalence, we construct a reference PIVP by finding a “pertur-

bation” of the original PIVP, i.e., a modification of the initial conditions

and the coefficients present in q1, . . . , qn, which ensures that that parti-

tion becomes an exact differential equivalence. Here the initial conditions

are denoted by the function Ã : S → R such that xi(0) = Ã(xi). On this

reference PIVP one can use the quotienting algorithms for FDE/BDE.

Therefore, the as-obtained quotient represents an approximate reduction

of the original PIVP. We obtain the desired perturbation by treating the

original initial conditions and polynomial coefficients uniformly as initial

conditions on an extended PIVP where every coefficient is parameterized

and turned into a new ODE variable.

The perturbation to use in order to achieve this result can be found by

considering an extended PIVP where every coefficient and initial condition

is parameterized and turned into a new ODE variable.

Definition 5. The parameterization of a polynomial qi in normal form
with variables S is denoted by q̂i and arises from qi by replacing, for each
³ ∈ N

S
0 , the constant c(qi, xα) with the parameter c(q̂i, xα).

Example 7. The polynomials q2 = 1.99x1−x2 and q3 = 2.01x1−x3 from
Example 5 give rise to the parameterized polynomials q̂2 = c(q̂2, x1)x1 +
c(q̂2, x2)x2 and q̂3 = c(q̂3, x1)x1 + c(q̂2, x3)x3, respectively.

Definition 6 (Extended PIVP). For a PIVP P with variables S, set
Θ = {c(q̂i, xα) | 1 f i f n, ³ ∈ N

S
0 }. Its extended version P̂ has variables

27

S∪Θ and is given by ẋi = q̂i and ċ(q̂i, xα) = 0, where xi ∈ S and ³ ∈ N
S
0 .

For a given Ã̂ ∈ RS∪Θ, let P̂(Ã̂) denote the PIVP which arises from P̂ by
replacing each v ∈ S ∪Θ by the corresponding real value Ã(v) ∈ R in P̂.
In particular, let Ã̂0 ∈ RS∪Θ be such that P(Ã) = P̂(Ã̂0). In particular,
let Ã̂0 ∈ RS∪Θ be such that P(Ã) = P̂(Ã̂0).

Example 8. If P is the PIVP from Example 5, its extended version P̂ is

ẋ1 = c(q̂1, x1)x1 + c(q̂1, x2)x2 + c(q̂1, x3)x3,

ċ(q̂1, xi) = 0, i = 1, 2, 3,

ẋ2 = c(q̂2, x1)x1 + c(q̂2, x2)x2,

ċ(q̂2, xi) = 0, i = 1, 2, 3,

ẋ3 = c(q̂3, x1)x1 + c(q̂3, x2)x2,

ċ(q̂3, xi) = 0, i = 1, 2, 3.

The corresponding Ã̂0 satisfies Ã̂0(xi) = Ã(xi) for 1 f i f 3 and

Ã̂0

(

c(q̂1, x1)
)

= −4.00, Ã̂0

(

c(q̂1, x2)
)

= 1.00,

Ã̂0

(

c(q̂1, x3)
)

= 1.00, Ã̂0

(

c(q̂2, x1)
)

= 1.99,

Ã̂0

(

c(q̂2, x2)
)

= −1.00, Ã̂0

(

c(q̂3, x1)
)

= 2.01,

Ã̂0

(

c(q̂3, x2)
)

= −1.00.

The following is needed for the definition of the reference PIVP.

Definition 7. Given constant free polynomial ℘̂ (i.e., such that ℘̂(0) = 0)
and Ξ ¦ S ∪ Θ ∪ {s}, let t(℘̂, xα, Ξ) denote the coefficient term of xα

in N (℘̂, Ξ), where ³ ∈ N
Ξ
0 and N (℘̂, Ξ) is the normal form of ℘̂ where

variables outside Ξ are treated as parameters.

Example 9. With q̂2 and q̂3 as in Example 7 and Ξ = {x1, x2, x3}, the
normal form N (q̂2− q̂3, Ξ) is given by (c(q̂2, x1)−c(q̂3, x1))x1 +(c(q̂2, x2)−
c(q̂3, x2))x2, while t(q̂2 − q̂3, x1, Ξ) = c(q̂2, x1)− c(q̂3, x1).

For an H to be an FDE/BDE, the coefficients of certain polynomials

need to coincide or, alternatively, the corresponding differences to be zero.

These constraints can be described by linear equations introduced next.

Definition 8. Given a PIVP with variables S and an ε-FDE partition H
of S, the set of linear constraints of H is given by

{

t(℘̃H
i,j , xα,S ∪ {s}) = 0 | ³ ∈ N

S∪{s}
0 , H ∈ H and xi ∼H xj

}

(3.4)

28

with ℘̃H
i,j =

∑

xk∈H q̂k −
∑

xk∈H q̂k[xi/s(xi + xj), xj/(1 − s)(xi + xj)].
Instead, if H is an ε-BDE partition of S, the corresponding set of linear
constraints is

{

t(℘̃H
i,j , xα,S) = 0 | ³ ∈ N

S
0 , xi ∼H xj

}

∪
{

xij
−xij+1

= 0 | 1 f j f k−1

and {xi1
, . . . , xik

} ∈ S/∼H

}

, (3.5)

where ℘̃H
i,j = (q̂i − q̂j)

[

xH′,1

/

xH′ , . . . , xH′,|H′|

/

xH′ :H ′ ∈H
]

.

Next, we showcase the linear equations in our example.

Example 10. From Example 3, we know that H = {{x1}, {x2, x3}} is
a 0.02-BDE partition of the PIVP (3.1). The set of linear constraints
underlying H is given by c(q̂2, x1)− c(q̂3, x1) = 0 and x2 − x3 = 0.

Remark 1. In line with its exact counterpart, an ε-BDE is “useful” un-
der the further constraint that related variables have the same initial con-
ditions in the reference model as a necessary condition for having equal
solutions at all time points. This translates into adding the constraints in
(3.5) that perturbed initial conditions of related variables are equal. This
leads, for instance, to the constraint x2 − x3 = 0 in the running example.
For ε-FDE, instead, only constraints on the parameters Θ are made.

Theorem 4. Given a PIVP P with variables S, an ε-FDE/BDE partition
H and a configuration Ã̂ ∈ RS∪Θ that satisfies (3.4)/(3.5), it holds that
H is an FDE/BDE of P̂(Ã̂).

In general, an approximate quotient is not unique; indeed, the linear

system of constraints from Theorem 4 is underdetermined. Here, we fix

one candidate perturbation by assuming that nearby initial conditions

yield nearby trajectories. This fact is asymptotically true due to Gron-

wall’s inequality, as mentioned in the related works section. For this

purpose, we set the Euclidian norm as the objective function in a linear

system with the constraints defined by 4.

Ã̂∗ = argmin
σ̂:Eq. (3.4)/(3.5) holds

∥Ã̂ − Ã̂0∥2 (3.6)

This yields a convex quadratic program that can be solved in polynomial

time [86].

29

δ

σ̂0

σ̂∗

Solution set of Eq. (5) / (6)

d
is

ta
n
ce

σ̂∗

σ̂0

ε-FDE/BDE quotient

R
S∪Θ

Figure 1(b)Figure 1(a)

Figure 2: Given a PIVP P, a partition G of S, and an ε > 0, the coarsest
ε-FDE/BDE partition H that refines G is constructed. Afterwards, the
solution σ̂∗ of the optimization problem (3.6) is computed in Fig. 1(a).
This allows to compute the ε-FDE/BDE quotient P̂(σ̂∗) of H. With this,
λ and δ from Theorem 8 are calculated. In the case the distance between
σ̂0 and σ̂∗ does not exceed δ, the tight bounds of Theorem 8 can be applied
and relate the trajectories of P̂(σ̂∗) and P̂(σ̂0) = P(σ), as depicted in Fig.
1(b).

Example 11. Let us continue Example 10 and assume that Ã(x2) =
Ã(x3). In such a case, it can be easily seen that Ã̂∗ and Ã̂0 satisfy

Ã̂∗(c(q̂2, x1)) = Ã̂∗(c(q̂3, x1)) =
(

Ã̂0(c(q̂2, x1)) + Ã̂0(c(q̂3, x1))
)

/2 = 2.00

and coincide on all other parameters. In other words, the closest PIVP
that enjoys an exact BDE relating x2 and x3 is given, as expected, by
perturbing the coefficients 1.99 and 2.01 of (3.1) to their average value,
yielding:

ẋ1 = −4.00x1 + x2 + x3

ẋ2 = 2.00x1 − x2

ẋ3 = 2.00x1 − x3

The above discussions are summarized in the following.

Theorem 5. Given a PIVP, ε g 0, and an ε-FDE/BDE partition H, the
solution of (3.6) exists and can be computed in polynomial time.

Proof. Follows from Theorem 3, Theorem 4 and [86].

The solution of the optimization problem (3.6) stated in Theorem 5 is

informally depicted in Fig. 2a.

30

The reference PIVP is the extended, exactly reducible PIVP with the

optimum initial condition Ã̂∗, i.e., P̂(Ã̂∗). Its ODE solution is called the

reference trajectory.

3.2 Error Bounds

The objective of this section is to provide a formal bound between the

solution of the original PIVP and the reference one. For this, we consider

two parameters ¶ > 0 and ¼ > 0. The former corresponds to the size of a

ball around the initial condition Ã̂∗ of the reference PIVP; the latter is an

amplifier that relates the maximum distance between trajectories to the

distance between the initial conditions. Every time the initial condition

of the original PIVP P̂(Ã̂0) stays inside the ¶ ball, it is possible to show

that the maximum error is limited by a formal bound affected by ¼. This

idea is visualized in Fig. 2(b).

The next definitions and theorems build the theory necessary to for-

malize this idea. We start recalling the notion of Jacobian matrix.

Definition 9. Given an extended PIVP with variables S ∪Θ, the entries
of the Jacobian matrix A = (Ai,j)xi,xj∈S∪Θ are given by Ai,j = ∂xj

q̂i,
where ∂x denotes the partial derivative with respect to x.

Let A(t) ∈ RS∪Θ×S∪Θ denote the Jacobian obtained by plugging in

the reference trajectory xσ̂∗(t). We will need the following result from the

theory of ODEs.

Theorem 6. There exists a family of matrices Λ(t0, t1), with 0 f t0 f
t1 f Ä̂ , such that the solution of ẏ(t) = A(t)y(t) + u(t), where y(t0) = y0

and u is continuous, is given by y(t) = Λ(t0, t)y0 +
∫ t

t0
Λ(s, t)u(s)ds for

all 0 f t0 f t f Ä̂ .

Fix some arbitrary Ã̂1 ∈ R
S∪Θ and let P̂ be given by ẋ = q̂(x). Us-

ing Taylor’s expansion of q̂ at point xσ̂∗(s), it holds that q̂(xσ̂1(s)) =

q̂(xσ̂∗(s)) + A(s)(xσ̂1(s) − xσ̂∗(s)) + r(s, xσ̂1(s) − xσ̂∗(s)), where r is the

remainder function which accounts for the higher order terms of q̂ at point

xσ̂∗(s). This implies that

(ẋσ̂1(t)− ẋσ̂∗(t)) = A(t)(xσ̂1(t)− xσ̂∗(t)) + r(s, xσ̂1(t)− xσ̂∗(t)),

31

meaning that xσ̂1 − xσ̂∗ can be interpreted as a solution of the linear

ODE system from Theorem 6 with input function u(s) = r(s, xσ̂1(s) −
xσ̂∗(s)). Let ∆x denote the solution of ∆ẋ(t) = A(t)∆x(t) with ∆x(0) =

xσ̂1(0) − xσ̂∗(0). The above discussion and Theorem 6 then ensure that

the auxiliary function z = xσ̂1 − xσ̂∗ − ∆x satisfies z(t) = Λ(0, t)z(0) +
∫ t

0
Λ(s, t)r(s, xσ̂1(s)−xσ̂∗(s))ds. With z(0) = 0, we thus get the following.

Theorem 7. With the notation from above, it holds that ∥xσ̂1(t)−xσ̂∗(t)∥
f ∥∆x(t)∥+ ∥

∫ t

0
Λ(s, t) ·

(

r(s, xσ̂1(s)− xσ̂∗(s))
)

ds∥.

Since ∆x ≡ xσ̂1 −xσ̂∗ only if the remainder function r is zero (that is,

only if the original ODE system is linear), we call ∆x the linearization of

the true difference function xσ̂1 − xσ̂∗ . With this, we are in a position to

show Theorem 8 and 9.

Theorem 8. Consider an extended PIVP P̂ with variables S ∪Θ and de-
fine ¼0 = max0ftfτ̂∥Λ(0, t)∥ and ¼1 = max0ft0ft1fτ̂∥Λ(t0, t1)∥. Further,
define the remainder function r : [0; Ä̂]× R

S∪Θ → R
S∪Θ via

r(t, x− xσ̂∗(t)) = q̂(x)− q̂(xσ̂∗(t))−A(t)(x− xσ̂∗(t))

and let 0 f d2, d3, . . . be such that ∥r(t, y)∥ f ∑deg(
ˆP)

k=2 dk∥y∥k for all
y ∈ R

S∪Θ and 0 f t f Ä̂ . Then, with ¼ = 2¼0, for any xσ̂1(0) ∈ R
S∪Θ, it

holds that

∥xσ̂1(0)− xσ̂∗(0)∥ f ¶ ⇒ max
0ftfτ̂

∥xσ̂1(t)− xσ̂∗(t)∥ f

¼∥xσ̂1(0)− xσ̂∗(0)∥

whenever ¶ > 0 satisfies
∑deg(

ˆP)
k=2 dk(2¼0¶)k−1 f (2¼1Ä̂)−1.

Through the theorem 8, we show that there exists a formal bound

proportional to ¼ in terms of the initial perturbation if this is smaller

than ¶.

We wish to point out that the maximal ¶ satisfying
∑deg(

ˆP)
k=2 dk(2¼0¶)k−1

f (2¼1Ä̂)−1 is a root of a polynomial in one variable and thus can be effi-

ciently approximated from below via Newton’s method. Instead, the as-

sumption ∥r(s, y)∥ f∑deg(
ˆP)

k=2 dk∥y∥k on the remainder function r states

32

essentially that, for any k g 2, the sum of all k-th order derivatives of r

are bounded by dk along the reference trajectory xσ̂∗ .

The previous Theorem could be more precise in the special case of

linear systems (i.e., deg(P̂) = 1) as discussed in [56]. In the next result,

we consider this context, and we show that the amplifier could be halved.

This is because Theorem 9 need not estimate nonlinear terms present

in remainder function r. More importantly, Theorem 9 shows that the

amplifier of Theorem 8 cannot be substantially improved.

Theorem 9. If an extended PIVP P̂ satisfies deg(P̂) = 1 and ¼ = 2¼0,
it holds that

max
0ftfτ̂

∥xσ̂1(t)− xσ̂∗(t)∥ f ¼

2
∥xσ̂1(0)− xσ̂∗(0)∥

for any xσ̂1(0) ∈ R
S∪Θ. The bound is tight in the sense that there exist 0 f

t f Ä̂ and xσ̂1(0) ∈ R
S∪Θ such that ∥xσ̂1(t)−xσ̂∗(t)∥ = λ

2 ∥xσ̂1(0)−xσ̂∗(0)∥.
Remark 2. We note that ¼0, ¼1 can be estimated efficiently. Indeed, let
exi
∈ RS∪Θ be the xi-th unit vector in R

S∪Θ, i.e., exi
(xj) = ¶i,j where

¶i,j is the Kronecker delta. Then, if y(t0) = exi
, Theorem 6 implies

y(t1) = Λ(t0, t1)exi
. Since Λ(0, t1)exi

is the xi-column of Λ(0, t1) and
Λ(t0, t1) = Λ(0, t1)Λ(0, t0)−1, this shows that the matrices Λ(t0, t1) can
be computed by solving |S ∪ Θ| instances of the linear ODE system from
Theorem 6 up to time Ä̂ .

By calculating a bound L > 0 on max0ftfτ̂∥A(t)∥ and by computing

the matrices Λ(ti, tj) for all time points tk underlying a fixed discretization

step ∆t > 0 of [0; Ä̂], the following can be shown.

Lemma 2. Together with ¼+
0 = maxi∥Λ(0, ti)∥ and ¼+

1 = maxifj∥Λ(ti, tj)∥,
it holds that ¼0 f ¼+

0 eL∆t and ¼1 f ¼+
1 [1 + L∆t(eL∆t + 1)].

The next result simplifies the constraints on ¶ from Theorem 8 if

deg(P̂) f 3.

Lemma 3. In the case where deg(P̂) f 3, the constraint on ¶ of Theo-

rem 8 simplifies to ¶ f
[

2Ä̂¼0¼1

(

d2 +
√

d2
2 + 2d3

λ1τ̂

)]−1

.

The above lemma applies, for instance, to most biochemical systems,

as discussed in Section 3.1. The next result, instead, allows for an efficient

estimation of dk, with 2 f k f deg(P̂).

33

Lemma 4. Given an extended PIVP P̂ with variables S∪Θ, let #k(q̂i) be
the number of degree k monomials in N (q̂i) and D(q̂i, Ã̂) the largest coeffi-
cient of N (q̂i) for configuration Ã̂ ∈ RS∪Θ. With C = max0ftfτ̂∥xσ̂∗(t)∥,
M = maxxi∈S maxkg2 #k(q̂i) and D = maxxi∈S D(q̂i, Ã̂∗), it suffices to

set dk in Theorem 8 to Cdeg(
ˆP)−kMD.

For the case of linear systems whose parameters are subject to pertur-

bation, the following lemma can be applied. It provides a sharper estimate

on d2 but comes at the price of more involved computation.

Lemma 5. Given an extended PIVP P̂ with variables S ∪Θ, the Hessian
matrix Hk = (Hk

i,j)xi,xj
of q̂k is given by Hk

i,j = ∂xi
∂xj

q̂k. With this, d2

can be chosen as d2 = 1
2 ·maxxi∈S∪Θ max0ftfτ̂∥Hi(xσ̂∗(t))∥.

Example 12. Since deg(P̂) = 2 in Example 8, coefficients d3, d4, . . . are
zero and we only need to bound d2. Moreover, the constraint in Theorem 8
simplifies to ¶ f (4Ä̂¼0¼1d2)−1 thanks to Lemma 3. By applying Lemma 4,
instead, we see that it suffices to choose d2 = 3.00 because M = 3.00 and
D = 1.00. In the case of Ä̂ = 2.00, we thus get ¼0 = ¼1 = 1.40 which
yields ¶ f 0.02.

3.3 Experiments

In this section, let us show the application of ε-BDE (FDE) on real case

studies. More in detail, we take into account four different examples: an

electrical network, a protein interaction network, a polymerization model,

and a mobile virus infection model. For every model, we provide the

results achieved by applying the reductions implemented in the ERODE

tool [37], and we compare them against CORA. The results reported were

computed on a laptop with Windows 10 64 bits over an actual Intel Core

i7 machine with 16 GB of RAM.

3.3.1 Electrical Network

We consider a simplified (inductance-free) version of a power distribution

electrical network from [133], arranged as a tree called H-tree (Figure 3).

We let N be the depth of the tree and denote the resistances and the

34

Figure 3: H-tree network adapted from [133].

capacitances at depth i by Ri,k and Ci,k, respectively. The source voltage

is vs, here assumed to be constant, vs = 2.0V. Then, the voltage across

Ci,k, denoted by vi,k, obeys the affine ODE

v̇1,1 =
vS − v1,1

R1,1C1,1
− v1,1 − v2,1

R2,1C1,1
− v1,1 − v2,2

R2,2C1,1
, (3.7)

v̇i,k =
vi−1,l − vi,k

Ri,kCi,k
,

where 1 f i f N , k = 1, . . . , 2i−1, and l = +k/2,, where +·, denotes the

ceil function. Here, we considered networks with depth up to N = 6.

For depths, i f 4, the nominal parameter values R∗
i and C∗

i were taken

from [133]; for i g 5, instead, we extrapolated them. The parameters are

summarized in Table 2.

In [133] the authors show that when the values of resistors and ca-

pacitors of any depth are equal, i.e., Ri,· ≡ R∗
i and Ci,· ≡ C∗

i then the

network is symmetric. That is, the voltages at the capacitors at any level

are equal at all time points. Indeed,
{

{vi,k | 1 f k f 2i−1} | 1 f i f N
}

is an exact BDE partition (with N equivalence classes).

We now study the robustness of the symmetry under the realistic as-

sumption that resistances and capacitances are only approximately equal.

In particular, we test whether it is possible to explain quasi-symmetries

when the parameters have tolerance ¸ = 0.01%. This corresponds to a

practical situation when components or measurement parameters enjoy

35

i R∗
i (mΩ) C∗

i (fF)

1 3.19 0.280
2 6.37 0.300
3 12.75 0.130
4 25.50 0.140
5 50.00 0.070
6 100.00 0.070

Table 2: Nominal parameters of electronic components at different depths
i.

high accuracy.

We considered networks of different sizes by varying the maximum

depth N from 2 to 6. For each size, we built an ODE model by sampling

values for Ri,k and Ci,k uniformly at random within ¸ percent from their

nominal values.

To each model, we applied the ε-BDE reduction algorithm; choosing

ε = 6.00E-4, it returned a quotient corresponding to a perfectly sym-

metrical case. We computed the values of ¶ and ¼ over a time horizon

equal to 7. This was chosen as a representative time point for any N , of

the transient state of the network (to account for the fact that, typically,

circuits are analyzed in the time domain for transient analysis only).

The presence of uncertain parameters required us to transform the

originally affine system (3.7) into a polynomial system of degree two (by

substituting each 1/(Ri,kCj,l) with a corresponding new state variable)

with 2N+1 states. Since this required nonlinear over-approximation tech-

niques, it ruled out standard over-approximation approaches for linear

systems.

In Table 3 we present the results for the random models generated.

The runtimes (second column) refer to the computation cost of the ¼-¶

pair. In all cases, ¶ turned out to be larger than the distance between the

original model and its quotient ∥Ã̂0 − Ã̂∗∥ = ∥xσ̂0(0)− xσ̂∗(0)∥ (shown in

column ∥·∥).
This demonstrates that the 0.01% tolerance can be formally explained

36

ϵ-BDE CORA

N Time (s) ¶ ∥·∥ Bound Time (s) Bound

2 7.06E-1 7.95E–4 6.64E–5 3.59E–4 2.05E+1 3.90E–3
3 1.33E+0 6.34E–4 6.70E–5 4.20E–4 5.60E+1 3.00E–3
4 2.62E+0 4.71E–4 8.79E–5 6.84E–4 3.04E+2 2.30E–3
5 9.20E+0 4.71E–4 1.27E–4 9.88E–4 4.02E+3 1.60E–3
6 2.57E+1 4.71E–4 1.58E–4 1.23E–3 —

Table 3: H-tree model results. The Bound column in the ε-BDE side
refers to the quantity λ ∥·∥.

by approximate differential equivalence. Indeed, the preconditions of The-

orem 8 hold, and we can provide a formal bound.

For CORA, we set the time step equal to 0.01 as this led to tight

enough bounds. For our approach, instead, we used time step 0.023 be-

cause this ensured tight approximations of ¼0 and ¼1 via Lemma 2. In all

cases, the time-out was set to 3 hours.

The comparison results are also reported in Table 3. For a network of

depth N , the over-approximations for CORA are reported as the maximal

diameter of the flowpipe underlying vN,1 across all time points. As such,

it can be compared to the product ¼ ·∥Ã̂0− Ã̂∗∥ given by our bound, which

is also explicitly reported in the table for the sake of easy comparability

(column Bound in Table 3).

CORA reported tight bounds, but ours are better, approximately 1

order of magnitude less. CORA failed to compute the symbolic Jacobian

matrices for N > 5. Our approach, instead, also reaches good perfor-

mance for N = 6. Not only that, but we also wish to point out that our

algorithm naturally applies to parallelization. Indeed, its bottleneck is in

the computation of the set of linear ODE systems discussed in Remark 2,

which can be trivially solved independently from each other.

3.3.2 Polymerization model

In chemistry, polymerization is the process by which basic compounds,

called monomers, react and bind to form chains of several units. A

37

prototypical CRN for modeling such a situation in the case of homo-

polymerization (when monomers are of the same species), may be as fol-

lows: A + A→ AA, AA + A→ AAA, and so on until the polymer grows

so large that other phenomena will cause instability, preventing further

binding of monomers. To allow for an exact quotient, the kinetic rates

are typically set equally in all reactions. However, this assumption is

challenged by measurements, explained by the fact that the geometrical

conformation of polymers of different lengths affects reactivity [153].

Here, we consider the polymerization scenario taken from [153, Chap-

ter 7] illustrating the formation of polycyclic aromatic hydrocarbons in

flame combustion. The CRN describes the growth of a molecule with i

aromatic rings, denoted by the formal chemical species Ai, according to

the infinite reaction scheme.

Ai + H
αi−→Aĩ + H2 (i, 1) (3.8)

Aĩ + H2
αi−→Ai + H (i, 1)

Aĩ + C2H2
βi−→AiCHCH˜ (i, 2) (3.9)

AiCHCH˜
βi−→Aĩ + C2H2 (i, 2)

AiCHCH˜+ C2H2
γi−→Ai+1 + H (i, 3) . . . (i + 1, 1)

Here Aĩ is an aromatic radical formed by H abstraction from Ai, and

AiCHCH˜is a radical formed by adding C2H2 to Aĩ. The reactions (i, 1)

and (i, 1), and similarly (i, 2) and (i, 2), model reversible mechanisms. In

this section, we consider the following finite truncations of the previous

38

model:

A1 + H
α1−→A1̃ + H2 (1, 1) (3.10)

A2 + H
α2−→A2̃ + H2 (2, 1)

A1̃ + H2
α1−→A1 + H (1, 1) (3.11)

A2̃ + H2
α2−→A2 + H (2, 1)

A1̃ + C2H2
β1−→A1CHCH˜ (1, 2)

A2̃ + C2H2
β2−→A2CHCH˜ (2, 2) (3.12)

A1CHCH˜
β1−→A1̃ + C2H2 (1, 2)

A2CHCH˜
β2−→A2̃ + C2H2 (2, 2) (3.13)

A1CHCH˜+ C2H2
γ1−→A2 + H (1, 3) (3.14)

A2CHCH˜+ C2H2
γ2−→A1 + H (2, 3)

In this case, we restrict only to the dynamics of polymers up to length 2

(i.e., with i ∈ {1, 2}), and redirect the flux originally going in A3 to A1, see

reaction (2, 3). Intuitively, this mimics the fact that polymers of length 3

become unstable due to their length. Let’s define N as the length of the

polymers. In this section, we take into account three different truncation

with N from 2 to 6. For the sake of simplicity, the set-up of the experiments

is explained below only for the model with N equal to 2. The discussion

easily extends to the other models. A model with polymers of length N

has 3 · (N + 1) ODEs.

In [153], it is assumed that the dynamics of polymers do not depend on

their length. In our truncated model, this corresponds to setting perfectly

symmetric values for rates, i.e., ³1 = ³2, ´1 = ´2, µ1 = µ2, ³1 = ³2,

´1 = ´2. Then, it can be shown (similarly to [153]) that xA1
and xA2

,

xA1̃
and xA2̃

, and xA1CHCH ˜ and xA2CHCH ˜ are related by FDE.

We now consider a variant with approximately equal rates by perturb-

ing the parameters of 0.1%, while we kept the reversed rates equal, i.e.,

³1 = ³2 = 0.1 and ´1 = ´2 = 0.2. The perturbation was made around

the values 1.0, 2.0, and 3.0, respectively, for ³, ´, and µ.

To study the approximation error, we set the initial concentrations of

39

ε-FDE CORA

N Time (s) ¶ ∥·∥ Bound Time (s) Bound

2 4.80 4.21E–2 1.50E–3 3.02E–3 21.54 1.50E–2
3 6.75 2.14E–2 4.00E–3 8.07E–3 48.60 1.50E–2
4 9.80 1.29E–2 4.20E–3 8.44E–3 81.27 1.50E–2
5 11.97 8.60E–3 4.60E–3 9.32E–3 231.81 1.50E–2
6 14.10 6.20E–3 5.80E–3 1.17E–2 432.47 1.50E–2

Table 4: Polymerization models results.The Bound column in the ε-FDE
side refers to the quantity λ ∥·∥.

H, H2, C2H2 and A1 to 5, with a 0.06 time horizon, which ensures a good

part of the models’ dynamic.

The CORA bound corresponds to the maximal flowpipe diameter of

molecule A1.

The experimental results are reported in Table 4. For each model,

the norms ∥·∥ is less than ¶, which implies the existence of the formal

bound ¼ ∥·∥ computed in column Bound. The running times show that

ε-FDE reduction is quicker than CORA, not only, also our formal bounds

outperform the ones provided by CORA.

3.3.3 Protein interaction networks

We tested approximate differential equivalence on another example of

polynomial ODE systems from computational biochemistry. Here, a re-

curring case is the dynamics of complexes such as receptors and scaffold

proteins, which have multiple binding domains (e.g., [50, 32]). Let us

consider a prototypical situation where a molecule A has two indepen-

dent binding sites to which molecule B can bind reversibly. We denote

by A10 and A01 the species obtained when A and B are bound via the

first or second binding site of A, respectively, while the other binding site

is free. Instead, A11 denotes the complex obtained when A is bound to

two molecules of B. This situation can be described using the following

40

mass-action CRN:

A + B
kb1−−→ A10 A10

ku1−−→ A + B

A + B
kb2−−→ A01 A01

ku2−−→ A + B

A01 + B
kb1−−→ A11 A11

ku1−−→ B + A01

A10 + B
kb2−−→ A11 A11

ku2−−→ B + A10

Many models in the literature assume perfectly symmetric binding

sites, where the kinetic constants do not depend on which particular bind-

ing site is involved in the interaction (e.g., [138, 107]). Mathematically,

this is translated into assuming that kb1
= kb2

and ku1
= ku2

. At the

ODE level, these perfect symmetries between the species A10 and A01 are

captured by both FDE and BDE [38, 41], as well as by domain-specific

techniques [51, 50, 32]. However, it is well understood that, in reality,

distinct binding sites will have different kinetic rates to account for their

different conformation or just for the ineluctable uncertainty introduced

by difficulties in measuring such rates. Thus, the assumption of perfect

symmetry can be seen as a mathematical convenience to simplify the

description of a more heterogeneous real system. With approximate dif-

ferential equivalences, we can study how strong the assumption of perfect

symmetry actually is.

We considered variants of this binding model by increasing the number

of sites N of molecule A from 2 to 4, each site being involved in binding

events with its own rate denoted by kbi
; for simplicity, instead, we assume

that unbinding events have the same kinetic constant kui
= 0.1 for every

site i. The model with N binding sites has 2N + 1 ODEs. Similarly to

the H-tree case study, the values of kbi
were sampled uniformly in an

interval around an arbitrarily fixed value of 10. The interval considers a

1% perturbation of the fixed value. In this way, the original model was

always contained in the ¶ neighborhood around the reference PIVP, where

all binding rates then become equal to 10 by construction. In Table 5 let’s

show the values for the model taken into account for experimental results.

Since distinct binding rates are used, none of the models can be re-

duced by FDE or BDE. Instead, we set ε = 0.8 and ε = 0.4 for ε-FDE and

41

Rates of bindings Runtime (s)

N kb1
kb2

kb3
kb4

0.8-FDE 0.4-BDE |H|
2 10.0748 9.9864 — — 0.003 0.001 4
3 9.9174 10.0575 9.9740 — 0.010 0.001 5
4 10.0886 10.0226 9.9418 9.9505 0.078 0.002 6

Table 5: Binding model: parameters and reduction results.

ε-BDE CORA

N Time (s) ¶ ∥·∥ Bound Time (s) Bound

2 4.02 2.00E–0 6.25E–2 1.30E–1 5.80 1.13E–1
3 6.69 5.19E–1 9.97E–2 2.00E–1 14.25 1.34E–1
4 11.35 1.22E–1 1.19E–1 2.40E–1 —

Table 6: Results of ε-BDE and CORA for the model reported in table
5. The horizon τ is equal to 8E-4. The Bound column in the ε-BDE side
refers to the quantity λ ∥·∥.

ε-BDE, respectively. With these, all models for 2 f N f 4 feature the

same ε-FDE and ε-BDE coarsest partition (column |H| gives the number

of blocks). This is similar to the exact counterpart, where all the binding

rates are equal.

The fact that ε-BDE has much better runtime performance than ε-

FDE backs the complexity result in Theorem 3.

We computed the bounds for the ε-BDE only. We set up the time

horizon Ä̂ equals to 8.0E–4, starting from an initial condition where the

concentrations were always set to 20 for the free molecules A and B,

and to zero for the other species. With this setup, the values of ¶ were

computed using Lemma 3. The results, together with the runtimes for

these computations, are reported in Table 6. We find that ¶ decreases as

the number of asymmetric binding sites increases;

The results confirm that the ¶ neighborhood does contain the original

model in all cases. Consequently also in this case, we can provide a formal

bound for each model.

The comparison with CORA was performed similarly to the H-tree

42

case studies. In particular, in all cases, we used the time horizons Ä̂ ,

and we set the time step equal to Ä̂ /100 for CORA. For our approach,

instead, in order to ensure tight approximations of ¼0 and ¼1 via Lemma 2

we used time steps equal to 1E–6. The CORA bound was computed as

the maximal flow pipe diameter for the value of species A across the

time interval. In the models with N equal to 2 and 3 the CORA bound

is tighter. Despite this, the ε-BDE provides good formal bounds in a

smaller amount of time. In the last model, CORA did not terminate its

computation within the 3-hour timeout, instead, our tool returns a good

formal bound.

3.3.4 Mobile virus model

We consider a simplified mobile virus propagation model inspired by [156].

Here, a region is divided into cells where the mobile virus can spread fol-

lowing an SI model [7]. The SI model describes the spread of an infection

in a population composed of two kinds of individuals: susceptible (S) and

infected (I). The former are the ones that can contract the virus, while

the latter are the ones already infected. The proportion of infected grows

according to the differential equation İ = ´SI/N , where the parameter ´

is called infection rate.

More in detail, we consider a multiclass SI model where each cell repre-

sents a class of the model. In this case, the individuals are mobile phones

that infect each other through message exchange. We can organize the

cells in a network where nodes represent an SI model with Si susceptible

and Ii infected phones. An edge from a node i to a node j has a weight

that represents the cross-class infection rate ´ij . The self-loops represent

the spreading of the disease within the cell.

We generate three fully connected networks with 4, 8, and 12 nodes.

We split the nodes into two groups with different parameters. We set up

the infection rate ´ij equal to 1 for node i in the first group and equal to 2

for node i in the second group. In line with other case studies, we perturb

these parameters of 0.1% around their fixed value. We expect to get a

reduced model where the infected and susceptible belonging to the same

43

ε-BDE CORA

N Ä̂ Time (s) ¶ ∥·∥ Bound Time (s) Bound

4 1.50 5.70E–1 3.80E–3 8.65E–4 1.89E–3 3.69E+1 1.68E–2
8 0.80 2.13E+0 2.80E–3 1.90E–3 4.52E–3 1.24E+3 4.17E–2
12 0.50 6.63E+0 2.40E–3 2.00E–3 5.18E–3 —

Table 7: Results of ε-BDE and CORA for the multiclass SI models. The
Bound column in the ε-BDE side refers to the quantity λ ∥·∥.

group are lumped together. This corresponds to the following partition

{

{S1, ..., S N
2
}, {S N

2
+1, ..., SN}, {I1, ..., I N

2
}, {I N

2
+1, ..., IN}

}

.

As initial conditions, we pick a proportion of the susceptible equal to

0.9 for the first group and 1.0 for the second. We set up different time

horizons Ä̂ for each network to ensure the system’s steady state. We chose

a time step equal to 0.01 for both CORA and ε-BDE. We reduce the

model with ε = 5E–3. The CORA bound was computed as the maximal

flowpipe diameter for the value of species S1 across the time interval.

In Table 7, we report the results for each network considered. Our

approach provides Bounds one order of magnitude smaller than CORA.

Increasing the dimension of the model, the number of parameters grows

quickly. CORA goes out of memory for the model with 12 nodes, while we

can compute the Bound in a small amount of time. The reduced model

aggregates variables that are generated from the same group, showing

that our approach can lump similar equations considering a perturbation

of their parameters.

44

Chapter 4

Approximate Reduction

through Differential Hulls

This chapter is based on the published work [140].

In some cases, dynamical systems describe classes of entities governed

by structurally similar laws governed by different parameters. These pa-

rameters may encode different behaviors of the same phenomenon, such as

age- or location-dependent rates for the contagion of a disease [33], class-

dependent service demands in a queuing system [26], and conformation-

dependent binding affinities in protein interaction networks [64]. When

there is a large degree of heterogeneity, intended as the number of classes

used in the model, the analysis becomes increasingly more complex. Here,

we tackle this issue by designing an algorithm that aims to homoge-

nize class-dependent behavior into representative equations that suitably

summarize the difference in parameters using the notion of differential

hull [148]. The differential hull is a dynamical system that provides up-

per and lower bounds for the dynamics of the original ODE system. The

main limitation of [148] is that no algorithm is given to build differential

hulls; that is, the method requires a priori knowledge of the existence of

“equivalent” dynamical equations up to the choice of the parameters.

The main contribution presented in this chapter is to propose an al-

gorithm to build the differential hull that is able to homogenize similar

45

parameters. We focus on polynomial ODEs with positive solutions. This

is already a general class to which other forms of nonlinearity can be re-

duced [96], and it essentially covers many dynamical models of systems

where the state variables are physical quantities such as concentration of

molecules and populations of agents. Our algorithm takes as input a tol-

erance ε that defines the amount of heterogeneity allowed in the model

parameters and then computes the associated differential hull. Let us take

the simple polynomial ODE system:

ẋ1 = −k2x1, ẋ2 = k1x1 − k3x2, ẋ3 = k2x1 − k3x3

with k1 = 1.0, k2 = 1.1, and k3 = 1.2 and initial conditions all equal to

1. It is clear that the dynamics ẋ2 and ẋ3 presents structurally similar

equations with different parameters.

The procedure consists of two steps. In the first phase, it builds the

differential hull considering the perturbation in the parameter ε. In this

case, the parameters suggest setting up ε equal to 0.2. The resulting

differential hull is an ODE system with double the number of equations.

ẋ1 = −k3x1 ẋ2 = k1x1 − k3x2 ẋ3 = k1x1 − k3x3

ẋ1 = −k1x1 ẋ2 = k3x1 − k1x2 ẋ3 = k3x1 − k1x3

The equations represent the lower bound ẋi and the upper bound ẋi

for each original dynamic ẋi. The differential hull overapproximates the

original system, replacing each parameter for the maximum or the mini-

mum. The structurally similar equations in the original ODE system now

present lower and upper bounds that are backward equivalent in the dif-

ferential hull. Indeed, the second phase performs an automated discovery

of the replicated behavior. This is done with backward differential equiv-

alence (BDE) presented in Chapter 2. Similarly to the previous chapter,

we compare the efficiency and the tightness of our bounds against the one

computed by CORA.

46

4.1 Differential Hull

In this section, we introduce the notion of differential hull and the al-

gorithm to compute it. We use the notation x f y for the vectors

x = (x1, ..., xn) and y = (y1, ..., yn) in R if and only if xi f yi for all

1 f i f n. The strict inequality, x < y, is defined similarly. The differen-

tial hull is a vector field with 2n variables that provide upper and lower

bounds for the dynamics of the original ODE system defined on the set

of variables V = {x1, ..., xn}.

Definition 10 (Differential Hull [148]). We call (g1, ..., gn, g1, ..., gn) :
R

2n
>0 −→ R

2n a differential hull of the polynomial ODE system (q1, ..., qn) :
R

n
>0 −→ R

n when, for all 1 f i f n gi, gi are polynomials and for any
x f x f x,

xi = xi =⇒ gi(x, x) f qi(x) and xi = xi =⇒ qi(x) f gi(x, x)

The previous definition is very general because the only condition a

differential hull should satisfy is that it should over-approximate the dy-

namics of a polynomial vector field q. Indeed, the main contribution of

this chapter relies on the definition of an algorithm to compute the dif-

ferential hull of a generic ODE system.

Theorem 10. Let g be a differential hull of q. Then, if the solution of the
polynomial ODE system (ẋ, ẋ) = g(x, x) subject to 0 < x(0) f x(0) f x(0)
exists and is positive on [0; T], where T > 0, then the solution of ẋ = q(x)
exists on [0; T] as well and satisfies x(t) f x(t) f x(t) for all 0 f t f T .

We show the pseudocode of this procedure in Algorithm 2. It takes as

input a tolerance value ε > 0 and a polynomial ODE system O, given by

ẋi = qi(x) with 1 f i f n. Line 2 sorts all coefficients {(i, ³, c(qi, xα)) ∈
O | 1 f i f n, ³ ∈ N

n
0} of O in increasing order and splits them into

blocks whose members are within distance ε. More in detail, we start

from the minimum parameter and add the next one in the same block

until the difference between the first and last inserted is not greater than

ε. Blocks are collected in the resulting partition, P . Lines 4-5 define two

new equations xi and xi, respectively the lower and upper bound of xi.

In lines 6-11, the algorithm considers the monomials M in equation xi. It

47

computes the lower and upper bound for each of them and appends these

results to ẋ and ẋ, respectively.

The procedure to compute the upper bound is shown in Algorithm 3.

It requires a monomial M , the coefficients partition P already calculated

by Algorithm 2, and variable xi. In lines 2-3, the procedure retrieves the

coefficient and the variables associated with the monomial M . In lines

4-8, the algorithm substitutes the original parameter of the monomial.

If the coefficient of the monomial p is positive, the computation picks

the maximum parameter in the block p belongs to (line 5), otherwise the

minimum (line 7). In lines 9-15, the method takes care of the variables

xj . The idea is similar. The method picks the upper or lower bound of xj

depending on the value of p. The first condition in line 10 represents the

case where the variable xj is the same variable as ẋi. We are computing

ẋi and we find xj equals to xi in qi, in this case, since the variable defines

itself, the algorithm will pick xj no matter what is the value of p.

We omit the algorithm for the lower bound, called in line 9 of Algo-

rithm 2, because it is similar to Algorithm 3. In lines 12-13, Algorithm 2

composes the new equations to the differential hull and returns it.

Theorem 11. The time and space complexity of Algorithm 2 and Algo-
rithm 3 is polynomial in the size of the ODE model.

For the sake of simplicity, let us consider the simple model presented

at the beginning of this chapter as a running example.

Running example. Let us take the simple polynomial ODE system:

ẋ1 = −k2x1, ẋ2 = k1x1 − k3x2, ẋ3 = k2x1 − k3x3

with k1 = 1.0, k2 = 1.1, and k3 = 1.2 and initial conditions all equal to 1.

We now consider the application of the Algorithm 2 with a tolerance

parameter ε = 0.2. In the first step, the procedure splits the parameters

in a single block B1 where the tolerance is exactly 0.2, corresponding to

the difference k3 − k1. We now discuss the detailed process to compute

the upper bound ẋ2. In line 6, Algorithm 2 considers every monomial in

the dynamics ẋ2 of ODE system O. For the first term k1x1, since k1 is

48

Algorithm 2 computeDifferentialHull

Require: An ODE system O, a tolerance ε .
1: DHull = {}
2: P = groupParameters(O,ε)
3: for each xi in O do

4: ẋi = []
5: ẋi = []
6: for each monomial M in O do

7: M = upperBound(M ,P ,xi)
8: M = lowerBound(M ,P ,xi)
9: append(ẋi,M)

10: append(ẋi,M)
11: end for

12: add(DHull,ẋi)
13: add(DHull,ẋi)
14: end for

15: return DHull

Algorithm 3 upperBound

Require: A monomial M , the parameters partition P , variable ẋi.
1: M = {}
2: (·, ·, p) = getParameter(M)
3: V = getVariables(M)
4: if p > 0 then

5: add(M ,getMax(p,P))
6: else

7: add(M ,getMin(p,P))
8: end if

9: for each xj in V do

10: if xj == xi or p > 0 then

11: add(M ,xj)
12: else

13: add(M ,xj)
14: end if

15: end for

16: return M

49

positive, line 5 of Algorithm 3 picks k3, the maximum parameter for this

block. Similarly, in line 11, the maximum value that x1 could assume is

x1, which is the upper bound of x1. In this way, the algorithm provides the

first term k3x1 of ẋ2. The computation proceeds with the maximization

of the second term −k3x2. Since −k3 is negative, the algorithm takes the

parameter k1. Moreover, we fall in the case where the condition xj == xi

in line 10 is true; for this reason, Algorithm 3 replaces x2 with x2 rather

than x2. Summing up all the steps, the algorithm computes the upper

bound of ẋ2 with the equation ẋ2 = k3x1 − k1x2. The lower bound is

computed similarly and, for this reason, is omitted.

Overall, the differential hull for the system reads:

ẋ1 = −k3x1 ẋ2 = k1x1 − k3x2 ẋ3 = k1x1 − k3x3

ẋ1 = −k1x1 ẋ2 = k3x1 − k1x2 ẋ3 = k3x1 − k1x3

In Figure 4 (left), we plot both the dynamics of the differential hull and

the original system when all initial conditions are equal to 1. Every tra-

jectory xi falls in a band bounded by the two equations xi and xi. Impor-

tantly, we notice that, due to the choice of initial conditions, the solutions

for x2 and x3 coincide, and so do the solutions for x2 and x3. This is due to

the fact that the partition of variables
{

{x1}, {x1}, {x2, x3}, {x2, x3}
}

sat-

isfies the BDE criterion in Eq. 2.5. This gives the following BDE-reduced

differential hull where variables x2 and x2 are taken as the representatives

of their respective blocks.

ẋ1 = −k3x1, ẋ1 = −k1x1, ẋ2 = k1x1 − k3x2, ẋ2 = k3x1 − k1x2.

It is important to notice that the bounds computed over approxi-

mate not only the dynamics for the parameters under study. Indeed, any

set of parameters giving rise to the same differential hull will be over-

approximated by the hull. Specifically, the following can be shown.

Theorem 12. Let O be an ODE system over variables x1, . . . , xn and
let P be the partition as computed by Algorithm 2 and Algorithm 3. As-
sume that all blocks of P have common signs (i.e., for any B ∈ P and
(·, ·, p1), (·, ·, p2) ∈ B, it holds that p1 · p2 g 0). Then, an ODE system O′

over x1, . . . , xn gives rise to the same differential hull as O when

50

Figure 4: (left) Over-approximation by means of differential hulls for
the running example. (right) CORA over-approximation of the running
example.

• O′ has no more monomials than O, that is, if (j, ´, ·) ̸∈ B for each
B ∈ P , then c(q′

j , xβ) = 0 and;

• the parameters of O′ yield the same minima and maxima over par-
tition P , i.e., for all (j, ´, ·) ∈ B and all B ∈ P we have that

min{c(qi, x
α) | (i, α, ·) ∈ B} f c(q′

j , x
β) f max{c(qi, x

α) | (i, α, ·) ∈ B},

where c(q′
j , xβ) denotes the coefficient of monomial xβ in q′

j of O′.

Remark 3. The assumption on P having blocks with common signs can
always be enforced by means of a prepartitioning. This being said, we wish
to point out that all models considered in the evaluation section did not
require a prepartitioning, i.e., Theorem 12 could be applied directly.

The foregoing result ties differential hulls to reachability analysis,

where an amount of perturbation is considered among the grouped pa-

rameters. This justifies the comparison against CORA in the next section.

For completeness, we next show the application of CORA to our running

example.

CORA requires choosing how to represent the reachability set and the

amount of perturbation in the parameters. In this case, we decided to

represent the sets with the zonotopes. We set up the parameters to their

average values, that is 1.1, allowing an amount of perturbation equal to

51

0.1. In this way, we consider the following range of uncertainty [1.0; 1.2],

which represents the set of all the possible parameters considered by the

differential hull. In Figure 4 (right) we show the bounds computed by

CORA. It can be noted that the two techniques provide almost identical

bounds. We will see in the next section that CORA tends to give better

bounds compared to our approach while requiring significantly more time

and space.

4.2 Experiments

In this section, we consider a number of case studies. The CORA imple-

mentation was carried out in Matlab, while the BDE reductions of Al-

gorithm 2 were performed by invoking ERODE [37]. Since our approach

exploits the exact reduction BDE, we consider here some models already

considered in the previous chapter, where the reduction was carried out

with the ε-BDE technique. All parameter values and the initial conditions

are provided in the Appendix B.

4.2.1 SIR Model

The SIR model describes the spread of an infection in a population com-

posed of three main actors: infected (I), susceptible (S), and recovered

individuals (R) [84]. The infected individuals are the ones that could

infect the susceptibles; the recovered obtained permanent immunization

from infection because they already got the disease. The model has two

types of parameters: ´, the infection rate, and µ, the recovery rate. In

this context, we consider the following multiclass SIR model of individuals

with class-specific infection and recovery rates:

Ṡi =
N

∑

j=1

−Si´i,jIj , İi = −µiIi +
N

∑

j=1

Si´i,jIj , Ṙi = µiIi.

where the parameters ´i,j represent cross-class infection rates. For

consistency across all number of classes, the parameters were chosen using

52

Number of classes 2 4 6 8
CORA runtime 12.98 s 43.43 s 162.96 s Out of memory

Table 8: CORA running times for the SIR model.

the same level of heterogeneity, as follows:

¹SIR = |max
i,j

´i,j −min
i,j

´i,j |+ |max
i

µi −min
i

µi| = 0.2

We computed the differential hull running our algorithm with the tol-

erance ε equal to ¹SIR, and then we reduced it with BDE. The reduced

differential hull is a SIR model where all the lower and the upper bounds

for each class collapse into one so that the partition achieved by BDE is:

P =
{

{S1, ..., SN}, {S1, ..., SN}, {I1, ..., IN}, {I1, ..., IN}, {R1, ..., RN}, {R1, ..., RN}
}

In Figure 5, we show the comparison between CORA and differential

hulls for the SIR model with two different classes; the bounds computed

considering a higher number of classes are similar. CORA has tighter

bounds, but it is more time-consuming. Indeed, Table 8, which lists the

CORA runtimes, shows a fast increase with respect to the number of

classes, issuing out-of-memory errors for 8. Our algorithm instead re-

quired less than 1 s in all cases. This is an expected result because, as

stated in Theorem 11, the cost of the algorithm is polynomial and is based

on the substitution of parameters and variables.

4.2.2 Polymerization

Polymerization is the chemical process already studied in Chapter 3. We

recall the reaction network of the polymerization process as follows.

Ai + H
αi−→Aĩ + H2 (i, 1) (4.1)

Aĩ + H2
αi−→Ai + H (i, 1)

Aĩ + C2H2
βi−→AiCHCH˜ (i, 2) (4.2)

AiCHCH˜
βi−→Aĩ + C2H2 (i, 2)

AiCHCH˜+ C2H2
γi−→Ai+1 + H (i, 3) . . . (i + 1, 1)

53

Figure 5: Bounds of the infected individuals computed by our algorithm
against CORA.

N 4 8 12 16
CORA runtime 69.73 s 232.90 s 671.10 s Out of memory

Table 9: CORA running times of the polymerization model. Similarly
to the SIR model, the running times of differential hulls were within one
second.

Also, in this case, since the reaction network is infinite, we restrict

our analysis to a truncated version of this model, where we consider the

dynamics of polymers up to length N (i.e., with i ∈ {1, ..., N}). To do

this, we redirect the flux to Ai+1, when i + 1 > N to A1 in order to mimic

the fact that polymers longer than N are unstable. Similarly to the SIR

model, we define the following level of heterogeneity:

¹Poly = |max
i

³i −min
i

³i|+ |max
i

´i −min
i

´i|+ |max
i

µi −min
i

µi|

The difference between the maximum and the minimum is zero for the

omitted parameters. This keeps a level of heterogeneity equal to 0.2 for

54

Figure 6: Bounds of the molecule H2 computed by Algorithm 2 against
CORA.

each model. For simplicity, only a part of the parameters was subject to

perturbation. We ran Algorithm 2 with ε = 0.2, obtaining the reduced

differential hull through BDE. The variables are lumped according to the

following partition:

P =
{

{A1, ..., AN}, {A1, ..., AN}, {A1̃, ..., AÑ}, {A1̃, ..., AÑ},
{H}, {H}, {H2}, {H2}, {C2H2}, {C2H2}
{A1CHCH̃, ..., AN CHCH̃}, {A1CHCH̃, ..., AN CHCH̃}

}

It can be noted the lower and upper bounds of each molecule family

were lumped together. Figure 6 shows the over-approximations of H2

obtained by CORA and differential hulls. Also in this case study, the

plot shows the results only for N = 2, but the results are similar also

for bigger models. As shown in Table 9, CORA provides tighter over-

approximations but becomes computationally challenging as the number

of molecules grows.

55

N 2 4 6
CORA runtime 12.51 s 376.77 s Out of memory

Table 10: CORA running times of the protein interaction network.

4.2.3 Protein interaction network

We next consider the protein interaction network presented in Chapter 3.

Again, we report the reaction network of this model as follows in order to

facilitate the exposition of the experimental analysis.

A + B
kb1−−→ A10 A10

ku1−−→ A + B

A + B
kb2−−→ A01 A01

ku2−−→ A + B

A01 + B
kb1−−→ A11 A11

ku1−−→ B + A01

A10 + B
kb2−−→ A11 A11

ku2−−→ B + A10

We applied our algorithm with a tolerance equal to 0.2 and computed

the reduced differential hull. The reduction computed by BDE was

P =
{

{A}, {A}, {B}, {B}, {A01, A10}, {A01, A10}, {A11}, {A11}
}

It can be noted that all molecules with the same amount of occupied

binding sites were lumped together. This yields an exponential reduction

because the size of the original model increases exponentially in N (i.e.,

2N + 1), while that of the reduced one polynomially (i.e., N + 2). We

report in Figure 7 the bounds computed with our technique and CORA;

instead, Table 10 reports the computation times of CORA.

4.2.4 Electrical Network

We consider as a further case study the Electrical network presented in

Chapter 3. We report here the affine ODE system where vi,k denotes the

voltage at Ci,k

v̇1,1 =
vS − v1,1

R1,1C1,1
− v1,1 − v2,1

R2,1C1,1
− v1,1 − v2,2

R2,2C1,1
, v̇i,k =

vi−1,l − vi,k

Ri,kCi,k
,

56

Figure 7: Bounds of the molecule A11.

N 2 4 6
CORA runtime 53.99 s 231.56 s Out of memory

Table 11: CORA running times of the H-tree circuit model.

where 1 f i f N , k = 1, ..., 2i−1, and l = +k/2,, with +·, denoting

the ceil function. As a baseline, we considered a network with depth

N = 2. For the sake of simplicity, we define the associated ODE sys-

tem with the following set of parameters P = {b2 = 1/(R2,1C1,1), b3 =

1/(R2,2C1,1), a1,1 = 1/(R1,1C1,1), a2,1 = 1/(R2,1C2,1), a2,2 = 1/(R2,2C2,2)}.
We defined the following level of heterogeneity by

¹Htree = |b2 − b3|+ |a2,1 − a2,2|.

Similarly to the foregoing case studies, the differential hull was computed

through Algorithm 2 and reduced afterward via the BDE technique. The

following variables were lumped:

{

{v1,1}, {v1,1}, {v2,1, v2,2}, {v2,1, v2,2}}

57

Figure 8: Bounds of the voltages in the second level of the H-tree.

As expected, the voltages of the same level are lumped together. The

bounds for the voltages at the second level in case of a heterogeneity

equal to 0.2 can be found in Figure 8. We considered larger models by

increasing the height N of the H-Tree. Table 11 reports the computational

times required to calculate the respective over-approximations.

4.2.5 Conversion of light alkanes over H-ZSM-5

Catalytic conversions of light alkanes into industrial chemicals, such as

olefins, aromatics, oxygenates, and organic nitrides, are promising candi-

dates for traditional petroleum-based or coal-based producing routes. We

consider the conversion of n-alkanes over H-ZSM5, which is commonly

used in converting methanol to gasoline and diesel. In [111], the au-

thors considered three n-alkanes: the n-Butane, the n-Pentane, and the

n-Hexane. They investigated the three different conversions, reporting

the entire reaction networks for each n-alkanes.

We applied our framework to the n-Hexane conversion of H-ZSM5 for

the original parameters from [111]. The heterogeneity parameter was set

58

Figure 9: Two largest over-approximations in the n-Hexane model (these
of C2

3 and C2
2 , respectively). CORA provided tighter bounds but required

around 10 seconds, while the proposed technique was less than one second.

to ε = 15, while the reactions were

C6H14
k1−→ C1 + C

2−

5 C6H14
k2−→ C2 + C

2−

4

C6H14
k3−→ C3 + C

2−

3 C6H14
k4−→ C4 + C

2−

2

C6H14
k5−→ H2 + C

2−

6 C
2−

6
k6−→ C

2−

3 + C
2−

3

C
2−

5
k7−→ C

2−

2 + C
2−

3

Likewise, the BDE algorithm was used to reduce the differential hull,

giving rise to the following partition of the variables:

{

{C6H14}, {C6H14}, {C1, C4}, {C1C4}, {C2
5}, {C

2

5}, {C2, C2
4},

{C2, C
2

4}, {C3, H2}, {C3, H2}, {C2
3}, {C

2

3}, {C2
2}, {C

2

2}, {C2
6}, {C

2

6}
}

We compare our approach against CORA. In Figure 9, we show the

bounds computed for the molecules with the largest differential hull bounds,

C2
3 and C2

2 . The CORA bounds are tighter, as expected. At the same

59

time, CORA’s running time is around 10 seconds, while our approach

remains under 1 second. Unlike the other case studies, the computa-

tional advantage of differential hulls cannot be exploited on larger model

instances.

60

Chapter 5

Iterative ε-BDE for

Approximate Regular

Equivalences

Node equivalences play a vital role in simplifying complex network struc-

tures while preserving essential structural and functional properties [134,

57]. These notions involve identifying groups of nodes that can be treated

as equivalent or indistinguishable in terms of their behavior or impact on

the network dynamics. Node equivalences can be defined for both binary

and weighted networks. Among many different notions, we consider the

so-called regular equivalences [160]. Formally, two nodes are regularly

equivalent if they are equally related to equivalent others. That is, regu-

lar equivalence sets are composed of nodes that have similar relations to

members of other regular equivalence sets.

The regular equivalence definition, especially for weighted networks,

could be too strict to discover useful relations in practice, for example,

under the presence of noisy data (e.g., [130]). This has motivated the de-

velopment of approximate relations that relax the assumptions on when

two nodes can be deemed equivalent. Based on the fact that they can be

related to the notion of bisimulation [101], we established a connection

with ε-BDE. In the first instance, this can be done considering a net-

61

work denoted by an adjacency matrix A as a linear system of differential

equations ẋ = Ax. Unfortunately, ε-BDE cannot be directly reused for

two reasons. The first is of a mathematical nature and concerns the fact

that regular equivalence is related to backward equivalence on both the

network A and its transpose AT . The second reason is that the algo-

rithm constructs equivalence classes through a transitive closure of nodes

that are pairwise ε-similar, which may lead to aggressive aggregation in

the output (cf. Example 13). A similar phenomenon occurs in indirect

methods, especially with binary networks. They could fail the analysis by

identifying all nodes as approximately regularly equivalent [23].

To address these challenges, we propose an iterative approach wherein

the ε-BDE algorithm is executed iteratively on both A and AT , with each

iteration considering progressively larger values of ε to prevent excessive

aggregation. Additionally, the algorithm allows users to specify the initial

partition to be refined, offering flexibility to encode specific requirements

or prior knowledge. In general, the largest equivalence (i.e., the coarsest

partition) is computed by initializing the algorithm with a singleton par-

tition where all nodes are in the same block. However, users may choose

an arbitrary initial partition to suit their needs, such as isolating a node

or prepartitioning nodes based on predefined roles.

We exploit this feature by providing an initial candidate partition for

the relevant class of Barabasi-Albert (BA) networks, which are well-known

for fitting real-world datasets appropriately. Intuitively, such networks

are particularly challenging for our algorithm because their power-law

distributed degrees may lead to relatively low values of ε to collapse many

low-degree nodes, with the risk of losing much information in the resulting

equivalence. The initial BA partition avoids aggressive reduction and fits

our framework because we show it is, on average, an ε-BDE partition for

sufficiently large BA networks.

We conduct an experimental evaluation of our algorithm on binary

and weighted networks from the literature. Our approach provides more

accurate partitions than both direct and indirect methods using the same

level of granularity (number of clusters), as indicated by statistics on the

centralities of approximately regular equivalents. Furthermore, our ap-

62

proach demonstrates efficiency and scalability, particularly outperform-

ing direct and indirect methods on larger networks. Additionally, the

proposed asymptotic BA partition offers a solution to potential issues of

excessive clustering. It also serves as a suitable pre-partition for indirect

methods, such as those outlined in [23], which are designed to identify all

nodes within the same block.

5.1 Regular Equivalence

We define a network with n nodes by its adjacency matrix A = (ai,j) ∈
R

nxn where each component aij denotes the weight of the link from node i

to node j; as usual, we call a network binary if ai,j ∈ {0, 1} and undirected

if A is symmetric. We indicate with L the number of distinct weights in

a weighted network. Nodes are labeled 1, 2, . . . , n. Intuitively, regular

equivalence relates nodes equivalent whenever these have identical links to

and from regularly equivalent nodes [160]. For the purposes of this thesis,

it is convenient to express it via the classic notion of bisimulation [101],

as recalled next.

Definition 11. For an adjacency matrix A ∈ {0, 1}n×n, we write i → j
whenever ai,j = 1.

• A equivalence relation R is a bisimulation of A if for any (i, j) ∈ R
and link i→ i′, there exists a link j → j′ such that (i′, j′) ∈ R

• A relation R is a regular equivalence of A whenever R is a bisimu-
lation of A and AT .

• We set HR = {1, . . . , n}/R for any equivalence relation R.

The definition naturally extends to weighted networks by, essentially,

treating every distinct weight as a categorical label and requiring regular

equivalences on all such labels (e.g., [162]).

Definition 12. Let A ∈ Rn×n be a weighted adjacency matrix with L dis-
tinct weights such that A =

∑L
l=1 wlA

l, where wl ∈ R and Al ∈ {0, 1}n×n.
Then, R is a regular equivalence of A if R is a regular equivalence of
A1, . . . , AL.

63

Regular equivalence allows the same link of a node to match more than

one link of a regularly equivalent one.

We want to establish a connection between regular equivalences on

networks and the BDE reduction on ODE systems. To do this, given a

matrix A ∈ Rn×n one considers an associated linear system of ordinary

differential equations (ODEs) in the form ẋ = Ax, where ẋ denotes the

time derivative of the solution x. Here, we state the BDE definition

tailored for a linear dynamical system associated with a network denoted

by an adjacency matrix A.

Definition 13. For an adjacency matrix A ∈ Rn×n, an equivalence re-
lation R is called backward equivalence (BDE) when

∑

H′∈HR

|
∑

k∈H′

ak,i −
∑

k∈H′

ak,j | = 0

for all H, H ′ ∈ HR and i, j ∈ H.

Let us observe that BDE matches cumulative in-degrees towards equiv-

alence classes (hence the term backward). A BDE relation for the trans-

pose adjacency matrix AT corresponds to a forward equivalence that

matches out-degrees [14, 154, 13, 31]. Differently from regular equiva-

lences, the BDE technique is based on the concept of bisimulation for

dynamical systems that, informally, relate nodes that have the same cu-

mulative degree with respect to blocks of nodes in the same equivalence

class.

5.1.1 ε-BDE

We start with a simple yet crucial statement that relates regular equiva-

lence with BDE.

Theorem 13. Given A =
∑L

l=1 wlAl with Al ∈ {0, 1}n×n, assume that
R is a BDE of Al and (Al)T , for all 1 f l f L. Then, R is a regular
equivalence of A and each A1, . . . , AL.

The above statement provides us with a sufficient condition for regular

equivalence. Unfortunately, its assumption cannot be relaxed to R being

64

the BDE of A and AT only. Indeed, partition {{1, 2, 3}, {4, 5, 6}} of the

network depicted in Figure 10 can be shown to be a BDE of A and AT ,

where A = A1 + . . . + A4. At the same time, however, it is not a regular

equivalence of A because it is not a regular equivalence of A1. Indeed,

nodes 1 and 3 have black links, while node 2 has no black links. It can

also be noted that, in contrast to regular equivalence, BDE requires the

rather strict assumption regarding equal degrees of related nodes.

1 2 3

4 5 6

1
4

3 2
1

1
3

Figure 10: Example of a network where BDE of A and AT does not imply
regular equivalence

For this reason, we decided to consider ε-BDE, whereby the equality

between the degrees of related nodes in Definition 14 are relaxed by in-

equalities up to a given tolerance ε. Since approximately related nodes

will not have equal in- and out-degrees in general, ε-BDE becomes an

alternative method to compute an approximate regular equivalence.

In the following, we recast the notion of ε-BDE to the linear case

related to an adjacency matrix.

Definition 14 (ε-BDE). For an A ∈ Rn×n and a partition H, we write
i ∼A,H,ε j whenever there exists an H ∈ H with i, j ∈ H such

∑

H′∈H

|
∑

k∈H′

ak,i −
∑

k∈H′

ak,j | f ε.

A partition H is called ε-BDE if H = {1, . . . , n}/ ∼∗
A,H,ε. Here, the

asterisk denotes the equivalence closure of a relation.

The relaxed definition enables the identification of regular equivalences

that elude detection by the exact BDE method. To illustrate this capabil-

ity, consider the example depicted in Figure 11. Here, we consider all the

65

edges with the same unitary weight, and for this reason, they are omit-

ted. The target regular equivalence is {{1}, {2, 3}, {4, 5, 6, 7, 8}}. In this

context, the exact BDE method fails to recognize this partition because

node 2 has two connections to the group {4, 5, 6, 7, 8}, while node 3 has

three connections. In contrast, the ε-BDE approach successfully identifies

the regular equivalence by setting ε to 1.

1

2 3

4 5 6 7 8

Figure 11: Example of a network where BDE fails while ε-BDE find the
regular equivalence {{1}, {2, 3}, {4, 5, 6, 7, 8}} imposing ε equal to 1.

5.2 Iterative ε-BDE

As discussed in Chapter 3, an attractive feature of BDE, both in its ex-

act and approximate variant, is that it can be computed by partition

refinement [40, 39], where a given candidate initial partition of nodes is

iteratively refined until the BDE criteria are satisfied. In ε-BDE, we ob-

tain equivalence relations by closing under transitivity pairs of variables

satisfying Definition 14. This transitive closure could lead to inconvenient

associations. Indeed, if both pairs of nodes i, j and j, k are ε-BDE equiv-

alent, their pairwise difference is less than ε; however, this does not mean

that the difference between i and k is less than ε. To show this, let us

consider the following example.

Example 13. Pick ε = 0.3 and consider the adjacency matrix

A =









0.4 0.1 0.5 0.7
0.1 0.5 0.6 0.7
0.5 0.6 0.3 0.8
0.7 0.7 0.8 0.3









66

Then, 3 ∼A,H,ε 4 for H = {{1, 2, 3, 4}} because

|0.5 + 0.6 + 0.3 + 0.8− (0.7 + 0.7 + 0.8 + 0.3)| = 0.3

Instead, 1 ̸∼A,H,ε 3 for H = {{1, 2, 3, 4}} since

|0.4 + 0.1 + 0.5 + 0.7− (0.5 + 0.6 + 0.3 + 0.8)| = 0.5

At the same time, 1 ∼∗
A,H,ε 3 because 1 ∼A,H,ε 2 and 2 ∼A,H,ε 3. In

particular, we infer that {1, . . . , 4}/ ∼∗
A,H,ε= H, showcasing that ε-BDE

can aggregate too much.

To cope with this problem, we propose an iterative scheme where nodes

are related by invoking the ε-BDE algorithm with increasingly larger val-

ues of ε, using an appropriate choice of initial partitions at each iteration.

We call this approach iterative ε-BDE (Iε-BDE).

Let us discuss its pseudocode shown in Algorithm 4. It requires an

adjacency matrix A, an initial partition Hin to keep track of the blocks

discovered in the previous iterations, an initial tolerance ε0, a step size

¶, and a maximum tolerance ∆. At every iteration, the ε-BDE algorithm

is invoked with the current tolerance, starting from ε0. The algorithm

refines the current partition with respect to A and AT (lines 6-7) until no

refinement is possible. The result is a partition satisfying Definition 14

on A and AT according to the current ε. Afterward, the algorithm joins

all trivial blocks of size one present in Hε′ (line 9). The intuition is to

attempt node aggregation for smaller values of ε first. If that fails, i.e.,

nodes are eventually outputted as singleton blocks, the merging of such

nodes is used to attempt aggregation for the larger ε values in the next

iterations. The so-obtained partition Hε is then used to refine the original

input partition Hin. Specifically, line 10 computes the coarsest partition

that refines both Hε′ and Hin, That is a partition with a minimal number

of blocks such that each of its blocks is a subset of a block in Hε′ and a

block in Hin. Thereafter, line 11 and 12 update and increase, respectively,

Hε′ and ε. The algorithm then iterates until the user-defined maximum

tolerance ∆ is reached.

Complexity. The repeat until loop of Algorithm 4 requires at most

O(n5) steps. Additionally, the total number of steps performed by Algo-

67

rithm 4 is at most O(+∆/¶,n5). We begin by noting that the while loop

performs +∆/¶, iterations. Instead, each repeat until loop has at most n

iterations because any partition may have at most n refinements. It thus

suffices to show that Algorithm 5, inspired by the (non-approximative)

forward equivalence algorithm [154], runs in at most O(n4). To see

this, we first note that lines 5-11 of Algorithm 5 can be computed in

O(n2). Then, Algorithm 5 computes in lines 13-19 the equivalence rela-

tion ∼H,A,ε, where Di is the list of nodes that are ε-BDE equivalent to

node i. This portion of the code can be computed inO(n3). This complex-

ity arises due to the necessity of verifying the ε-BDE condition for every

pair (i, j), requiring O(n2) comparisons. The verification is performed in

line 15 of Algorithm 5, involving the evaluation of differences. The cost of

computing these differences is proportional to the number of blocks that,

in the worst case, is O(n). In line 20 Algorithm 5 computes the blocks of

the partition Hε induced by the transitive closure ∼∗
H,A,ε. To do this, we

consider the undirected graph induced by Di, where node i is connected

to node j if and only if i and j are ε-BDE equivalent. The blocks of

the partition Hε correspond to the strongly connected components of the

graph and thus can be computed in O(n + m), where m is the number

of edges. In the worst case, this implies that ∼∗
H,A,ε can be computed in

O(n2). Finally, the main loop is repeated until no more refinement is pos-

sible. Since the partition is composed of n nodes, the number of possible

refinements is bounded by n. To summarize, the overall computational

complexity of Algorithm 5 is characterized by at most n iterations, thus

giving rise to O(nn3) = O(n4).

Remark 4. In all experiments from Section 5.3, the repeat-until loop of
Algorithm 4 executed at most twice.

Example 14. We next present Algorithm 4 on Example 13 with ε0 = 0,
∆ = 0.3, ¶ = 0.1 and Hin =

{

{1, 2, 3, 4}
}

. For ε = 0, the repeat loop

returns Hε′ =
{

{1}, {2}, {3}, {4}
}

, making joinSingletons return Hin

in line 9. The second iteration of the while loop with ε = 0.1 is therefore
computed for the original Hin. A similar statement can be made about
ε = 0.1, meaning that the algorithm initiates its third while loop iteration
with ε = 0.2 and the original Hin. This time, nodes 1 and 2 are aggregated

68

Algorithm 4 Iterative ε-BDE.

Require: Adjacency matrix A, initial partition of nodes Hin, an initial
tolerance ε0, step size ¶ g 0, maximum tolerance ∆ g 0.

1: ε ←− ε0

2: Hε′ ←− Hin

3: while ε f ∆ do

4: repeat

5: Hε ←− Hε′

6: Hε ←− {1, . . . , n}/ ∼∗
A,Hε,ε via Algorithm 5

7: Hε′ ←− {1, . . . , n}/ ∼∗
AT ,Hε,ε via Algorithm 5

8: until Hε = Hε′

9: Hε′ ←− joinSingletons(Hε′)
10: Hin ←− coarsestRefinement(Hin,Hε′)
11: Hε′ ←− Hin

12: ε ←− ε + ¶
13: end while

14: return Hε

during the repeat loop, giving rise to Hε′ =
{

{1, 2}, {3}, {4}
}

. At this
point, it is worth noting that block {1, 2} will not be split in any future it-
eration of the algorithm because the aggregation of nodes is monotonic in ε.
The algorithm then executes joinSingletons in line 9 which yields Hε′ =
{

{1, 2}, {3, 4}
}

. Since Hε′ is a refinement of Hin, coarsestRefinement

in line 10 does not change Hε′ . After setting Hin to Hε′ , the algorithm
begins its final while loop with ε = 0.3 and Hin =

{

{1, 2}, {3, 4}
}

. In it,

the repeat loop aggregates nodes 3 and 4 and returns Hε =
{

{1, 2}, {3, 4}
}

,
the final result of the algorithm.

The above example showcases why Algorithm 4 helps avoid unneces-

sary aggregations. Indeed, as discussed in Example 13, 0.3-BDE returns

one block, while Algorithm 4 returns two blocks as outlined in Exam-

ple 14. This is because aggregations arising for smaller ε-values are sepa-

rated from these, which require larger ε-values (since the latter arise from

singleton blocks obtained for smaller ε-values). Intuitively, ¶ accounts

for the granularity with which Algorithm 4 aggregates nodes. A large ¶

may result in over-aggressive aggregations, while a small value may lead

to prohibitively small blocks. In the experimental section, we evaluate

69

Algorithm 5 Routine for computing {1, . . . , n}/ ∼∗
H,A,ε

Require: Adjacency matrix A, partition of nodes H, tolerance ε
1: Hε ←− H
2: repeat

3: H′ ←− Hε

4: w[i, H] ←− 0 for all H ∈ H′, 1 f i f n
5: for all H ∈ H′ do

6: for all i ∈ H do

7: for all j with ai,j ̸= 0 do

8: w[j, H] ←− w[j, H] + ai,j

9: end for

10: end for

11: end for

12: Di ←− ∅ for 1 f i f n
13: for all 1 f i f n do

14: for all 1 f j f n do

15: if
∑

H∈H′ |w[i, H]− w[j, H]| f ε then

16: insert j in Di

17: end if

18: end for

19: end for

20: Hε ←− refine H′ using D to compute ∼∗
H,A,ε

21: until Hε = H′

22: return H′

Algorithm 4 on a number of benchmark networks from different fields.

5.2.1 Asymptotics for BA networks

In this section, we introduce a partition for a BA network of size O(n),

which is approximately BDE equivalent. We begin by recalling the BA

network [15].

Definition 15 (BA Model). For a given size n, the BA model is de-
scribed by the stochastic process (Gt)0ftfn, where Gt describes an undi-
rected graph with nodes {1, . . . , n}. Given Gt−1, we form Gt by adding

70

node t and link node t to node i, where i is chosen randomly with

P(i = j) =











dGt−1(j)

2t− 1
, 1 f j f t− 1

1

2t− 1
, j = t

Here, dGt−1(j) denotes the degree of node j in graph Gt−1.

We are now ready to introduce the BA partition, which, inspired the

theory of the BA model, divides the nodes into two groups: celebrities

and followers.

Definition 16 (BA partition). Fix a partition threshold 0 < À < 1 and
generate a sample run of the stochastic process (Gt)0ftfn. From this sam-
ple run, partition the set of graph nodes {1, . . . , n} into blocks of celebrities
C and followers F , that is, let

H = C ∪ F = {C1, . . . , Cκ} ∪ {F1, . . . , Fκ},

where » = 1/À and:1

• celebrity nodes comprise 1, . . . ,
√

n, that is, we have:

C1 ∪ . . . ∪ Cκ = {1, . . . ,
√

n};

• follower nodes constitute
√

n + 1, . . . , n, meaning that

F1 ∪ . . . ∪ Fκ = {√n + 1, . . . , n};

• |Cν | = À
√

n and Cν f Cν′ elementwise for ¿ f ¿′;

• |Fν | = À(n−√n) and Fν f Fν′ elementwise for ¿ f ¿′.

For the BA process, computing the partition is straightforward because

the node identifier corresponds to its age. In the case of an instance of a

scale-free network, without access to its underlying generative process, we

can estimate the node’s age by considering its degree and exploiting that

older nodes have, on average, higher degrees than younger ones [20, 15].

1To simplify presentation, we assume that n is a square and that ξ
√

n, 1/ξ ∈ N.

The assumption can be dropped by rounding up.

71

For this reason, we can sort the nodes in decreasing order of their degrees

and consider the first
√

N as celebrities and the remaining N −
√

N as

followers. Then, these two groups of nodes will be split following the

definition.

We next formally justify the choice of the partition from Definition 16.

To this end, we recall the big-O, big-Ω, and big-Θ notations.

Definition 17. For two functions f, g : N0 → Rg0, we define

f = O(g) :⇐⇒ lim sup
n→∞

f(n)
g(n) <∞

f = Ω(g) :⇐⇒ lim inf
n→∞

f(n)
g(n) > 0

f = Θ(g) :⇐⇒ f = O(g) and f = Ω(g)

The following key auxiliary result estimates the probability of finding

links between nodes of a BA model and sharpens [20] by studying the

error terms in the proof of [20, Lemma 2].

Lemma 6. In a BA model (Gt)0ftfn, let gj with j f n denote the node
to which node j connects to. Then for all i < j < k, we have

P(gj = i) =
1

2

1√
ij

+O
(1

ij

)

P(gj = i, gk = i) =
1

2

1

i
√

jk
+O

(1

i
√

ijk

)

Moreover, it holds that

P(gj = i, gk = i)− P(gj = i)P(gk = i) =
1

4i
√

jk
+O(

1

i
√

ijk
)

For a block H of some given partition of nodes H, we shall next study

the number of H-in-degree of a node i. Formally, this is captured by the

random variable
∑

j∈H Xi,j , where

Xi,j =

{

1, gj = i

0, otherwise
(5.1)

Revisiting Lemma 6, we note that the in-degree of a node can be approx-

imated by a sequence of Bernoulli trials. However, while the first identity

72

of Lemma 6 suggests to approximate Xi,j by a Bernoulli variable with

success probability 1/2
√

ij, the third statement shows that variables Xi,j

and Xi,k are positively correlated, hence stochastically dependent. This

prevents direct applications of the law of large numbers or the central

limit theorem.

The next result studies the number of links between the blocks of H.

Theorem 14. Let (Gt)0ftfn be a BA model and H as in Definition 16.
Then, the number of links between celebrities and followers is of order√

À 4
√

n, that is

E[deg(i, H)] = Θ(
√

À 4
√

n), H ∈ F , i = µ
√

n ∈ Cν , Cν ∈ C

for some 0 < µ < 1; in all other cases, the number of links is O(1), i.e.,
negligible because it does not grow with n.

After studying the connectivity between the blocks of H, we are ready

to state our main result.

Theorem 15. Let G = (Gt)0ftfn be a BA model and H as in Defini-
tion 16. Then, for large n, partition H is on average a

√
À-BDE of the

scaled network G/ 4
√

n. Specifically, for any 0 < µ, µ′ < 1 and H ∈ H, for
large n g 1, we have

1
4
√

n
|E[deg(i, H)]− E[deg(i′, H)]| = O(

√

À|µ′ − µ|),

where

• either i = µ
√

n and i′ = µ′
√

n such that i, i′ ∈ H̄ ∈ C;

• or i = µn and i′ = µ′n such that i, i′ ∈ H̄ ∈ F .

A strengthening of the above result which would ensure that the differ-

ence of degrees (rather than their expected values) is with high probability

of order O(|µ − µ′|) is difficult. Indeed, as stated in the next result, the

variance of the difference (deg(i, H)− deg(i′, H))/ 4
√

n does not vanish as

n increases.

73

Theorem 16. In a BA model (Gt)0ftfn. Then, for any H ∈ H and
i ̸= i′, it holds that:

V[deg(i, H)− deg(i′, H)
]

g V[deg(i, H)] + V[deg(i′, H)]

and

V[deg(i, H)
]

=



















O(1), i ∈ Cν , H ∈ C
Θ(
√

n), i ∈ Cν , H ∈ F
O(1), i ∈ Fν , H ∈ C
O(1), i ∈ Fν , H ∈ F

We proved that the BA partition is asymptotically an ε-BDE parti-

tion for binary scale-free networks. By identifying important (celebrity)

and less important nodes (followers) in scale-free networks, practitioners

can use this result as a starting point in the analysis of the network. In

particular, the BA partition can be used to avoid an aggressive reduc-

tion of the network, a well-known issue for regular equivalence on binary

networks [23]. In the experimental section, we show how Iε-BDE and

CATREGE can employ the BA partition to improve the results on binary

networks.

5.3 Experiments

In this section, we show the effectiveness of our approach against the state

of the art. For indirect approaches, we consider REGE and CATREGE;

for direct approaches, we consider different variants of blockmodeling. To

make a fair comparison, we analyzed the algorithms by keeping the same

level of granularity for all. This is controlled by incomparable parameters

¶/∆ for Iε-BDE and the number of clusters for the competing techniques.

Thus, we first fixed Iε-BDE parameters in a uniform manner across all

networks, as detailed next; then we chose the number of clusters of direct

and indirect approaches equal to the number of partition blocks returned

by Iε-BDE.

74

5.3.1 Experimental Set-up

We consider benchmark networks of different sizes as listed in Table 12.

The networks are divided into binary and weighted networks.

Iterative ε-BDE We implemented the Iε-BDE in a prototype that

uses the implementation of ε-BDE already available in the software tool

ERODE [37]. The two parameters for Iε-BDE are the maximum toler-

ance ∆ and the step size ¶. For an unbiased, model-independent choice

of these parameters, we considered the following heuristic: since ε-BDE

relates nodes with similar row-sums of the adjacency matrix A, we set up

∆ by picking a value roughly equal to the average sum of the rows of A.

For ¶, instead, we took a value of one order of magnitude smaller than the

average value of the non-zero entries of A, considering only the weights

greater than 0. When this value is less than the minimum non-zero entry

in A, we set up ¶ equal to this minimum. The values of ¶ and ∆ are listed

in Table 12. With this choice, Iε-BDE was run using ε0 = 0 and, unless

otherwise stated, with the singleton initial partition considering all nodes.

We use this output to compare against the other approaches.

REGE For weighted networks, we compare against the indirect method

of REGE as implemented in the R package presented in [102]. Following

[163], we set up a number of iterations for every model equal to 100.

Then, we employ the REGE’s similarity matrix to compute a partition

with the same number of blocks returned by Iε-BDE. To do this, we use the

dendrogram associated with hierarchical clustering, which was computed

with the scikit-learn library [118]. In this case, following the literature on

this subject [162], we consider two linkages for hierarchical clustering, i.e.,

single and complete links [162] (denoted by REGE+SL and REGE+CL

in the forthcoming tables, respectively).

CATREGE For binary networks, we considered the indirect method

of CATREGE, since it achieves superior performance with respect to

REGE [24]. We used the implementation in UCINET [25]. CATREGE

allows specifying an initial partition. In the first iteration, it divides the

75

Weighted networks Iε-BDE

Model Ref. n REGE 0-BDE Size ¶ ∆ Ratio

EIES [65] 32 32 32 19 100 300 0.59
Windsurfers [88] 43 43 43 20 100 60 0.47
Ecosystem [88] 128 128 128 37 10−1 30 0.29
FaoTrade [54] 214 214 214 170 102 2 · 104 0.79
WTN [68] 226 226 226 171 104 107 0.75
CElegans [157] 306 286 286 207 100 40 0.67
USairport [49] 500 500 500 223 104 106 0.45
FB [113] 1899 — 1857 1310 10 1000 0.69

Average ratio: 0.59

Binary networks Iε-BDE Iε-BDE / BA

Model Ref. n CATREGE 0-BDE Size ¶ ∆ Ratio Size Ratio

Karate [88] 34 30 30 16 100 4 0.47 24 0.71
GD [18] 73 54 54 17 100 2 0.23 34 0.47
Revolution [88] 136 56 56 11 100 2 0.11 46 0.34
Email [88] 167 166 166 14 100 30 0.08 45 0.27
Physician [88] 241 241 241 3 100 5 0.01 195 0.80
FilmTrust [88] 874 — 673 238 100 2 0.27 371 0.42
BlogCatalog [161] 10312 — 10106 5455 100 60 0.53 5490 0.53
Youtube [161] 15088 — 12691 4760 100 10 0.32 6766 0.45

Average ratios: 0.25 0.50

Table 12: Parameters and results for iterative ε-BE.

nodes following the given partition instead of considering all of them in

the same block. The nodes in different blocks cannot be associated in

the following iterations. We opted to utilize the BA partition for all

binary networks to prevent CATREGE from erroneously identifying all

nodes as equivalent, as highlighted in [24]. Similar to the approach taken

with REGE, we applied hierarchical clustering to the resultant similarity

matrix. This strategic adjustment ensures a more accurate and reliable

analysis, mitigating the risk of aggressive aggregation.

Blockmodeling For direct approaches, we compare against the binary,

valued, and homogeneity blockmodeling approaches [164], using the R

package by Ziberna et al. [102]. Since these techniques are based on a

local optimization algorithm, we set 1000 repetitions/different starting

partitions to check. Valued and homogeneity blockmodeling identifies for

f -regular equivalence, where the function f was set to max, which is the

common setting for regular equivalence [102]. Valued blockmodeling re-

76

quires specifying a parameter m that distinguishes between prominent

and non-prominent weights. The best way to determine m is to have

prior knowledge about the network. In the absence of this, it is possible

to choose the value of m considering the distribution of the links. Follow-

ing [102, 164], we set m equal to the median and the mode of the nonzero

weights.

Error metric In evaluating the precision of various methods for iden-

tifying approximately equivalent nodes, we adopt a similarity measure

based on PageRank, as suggested by prior research [152]. We compute the

maximum PageRank difference across all node pairs within each approx-

imately regular equivalent block. Subsequently, we derive the minimum,

average, and maximum difference across all blocks. Thus, lower values of

such indices correspond to more similar (in terms of regular equivalence)

blocks.

Timeout Throughout all experiments, we set a 3-hour timeout for each

analysis.

5.3.2 Results

Preliminary analysis We conducted an analysis to determine the num-

ber of regularly equivalent node blocks using both REGE and CATREGE.

These blocks comprise nodes that strictly satisfy the regular equivalence

definition. Our findings reveal that regularly equivalent nodes are rare,

particularly in the case of weighted networks. Table 12 provides an

overview of the quantities of regularly equivalent nodes identified. No-

tably, in all weighted networks except CElegans, we observed the absence

of nontrivial blocks, indicating the absence of regularly equivalent nodes.

However, for CElegans, REGE identified 286 blocks. It’s worth men-

tioning that CATREGE yielded a notable number of equivalent nodes;

however, due to limitations, larger networks could not be analyzed, as

CATREGE supports networks with a maximum of 256 nodes. For com-

parison purposes, we also explored regular equivalences using Iε-BDE by

77

setting ∆ = 0 (denoted as 0-BDE in the table column). This configu-

ration aligns with the condition outlined in Theorem 13. Interestingly,

although Theorem 13 presents a sufficient condition for regular equiva-

lence, our analysis indicates that the two notions are indistinguishable

across the analyzed networks, as both algorithms returned the same num-

ber of blocks.

Weighted Networks

Errors

Method Min Avg Max Times (s)

EIES

Iε-BDE 2.23E–4 3.31E–3 9.34E–3 2.62
REGE+CL 1.05E–3 8.56E–3 3.15E–2 0.23

REGE+SL 1.50E–3 1.26E–2 3.72E–2 0.23

Blockmod. Hom. 1.50E–3 5.30E–3 8.27E–3 319.86
Blockmod. Val. median 3.15E–2 4.65E–2 6.15E–2 142.74
Blockmod. Val. mode 7.12E–4 2.06E–2 8.30E–2 115.23

Windsurfers

Iε-BDE 5.66E–6 4.46E–3 1.50E–2 1.47
REGE+CL 1.31E–4 6.36E–3 3.85E–2 0.46

REGE+SL 2.10E–4 7.41E–3 3.85E–2 0.46

Blockmod. Hom. 1.93E–3 5.67E–3 1.41E–2 532.80
Blockmod. Val. median 1.99E–3 3.78E–2 7.83E–2 291.55
Blockmod. Val. mode 1.31E–3 1.86E–2 3.85E–2 300.61

Ecosystem

Iε-BDE 6.89E–8 7.61E–4 2.89E–3 18.13

REGE+CL 6.89E–8 1.27E–2 2.18E–1 18.20
REGE+SL 6.89E–8 1.70E–3 8.16E–3 18.20

FaoTrade

Iε-BDE 0.0 3.47E–4 1.38E–3 23.53

REGE+CL 0.0 2.68E–3 2.89E–2 503.58
REGE+SL 0.0 5.23E–4 2.89E–2 503.58

WTN

Iε-BDE 2.42E–7 7.55E–5 4.35E–4 154.95

REGE+CL 2.42E–7 2.44E–3 3.42E–2 857.40
REGE+SL 2.96E–5 3.69E–3 5.3E–2 857.40

CElegans

Iε-BDE 0.0 5.61E–4 3.46E–3 3.54

REGE+complete link 0.0 6.47E–4 2.06E–3 75.30
REGE+single link 0.0 7.56E–4 3.40E–3 75.30

USairport

Iε-BDE 1.25E–7 1.92E–4 3.45E–3 13.73

REGE+CL 1.32E–6 1.30E–3 3.27E–2 408.60
REGE+SL 1.52E–7 1.64E–3 4.02E–2 408.60

FB

Iε-BDE 0.0 3.21E–5 5.25E–4 47.46

Binary Networks

Errors

Method Min Avg Max Times (s)

Karate

BA partition 2.37E–5 2.90E–3 7.62E–3 —
Iε-BDE 0.0 1.17E–3 5.48E–3 0.28

CATREGE+CL 0.0 1.53E–3 5.48E–3 1.00
CATREGE+SL 0.0 2.41E–3 7.62E–2 1.00
Blockmodeling 0.0 4.40E–3 1.23E–2 84.6

GD

BA partition 0.0 3.09E–3 6.06E–3 —
Iε-BDE 0.0 1.04E–3 4.89E–3 0.12

CATREGE+CL 0.0 2.34E–3 6.06E–3 1.00
CATREGE+SL 0.0 2.12E–3 6.06E–3 1.00
Blockmodeling 4.54E–3 2.18E–2 9.92E–2 1441.8

Revolution

BA partition 1.63E–4 1.38E–3 1.01E–2 —
Iε-BDE 0.0 1.02E–4 2.63E–3 0.32

CATREGE+CL 0.0 5.71E–4 1.01E–2 1.00
CATREGE+SL 0.0 5.57E–4 1.01E–3 1.00

Email

BA partition 0.0 1.23E–3 2.96E–3 —
Iε-BDE 0.0 6.71E–4 2.96E–3 2.11
CATREGE+CL 0.0 9.99E–4 2.96E–3 1.00

CATREGE+SL 0.0 9.93E–4 2.96E–3 1.00

Physician

BA partition 0.0 3.95E–3 1.38E–2 —
Iε-BE 0.0 4.92E–4 3.28E–3 0.77

CATREGE+CL 0.0 3.12E–3 1.38E–2 1.00
CATREGE+SL 0.0 3.32E–3 6.93E–3 1.00

FilmTrust

BA partition 0.0 3.25E–3 1.19E–2 —
Iε-BDE 0.0 1.79E–4 3.41E–3 1.46

BlogCatalog

BA partition 1.33E–5 4.47E–4 2.29E–3 —
Iε-BDE 0.0 2.86E–6 2.50E–5 1250.0

Youtube

BA partition 5.83E–5 5.05E–4 1.83E–3 —
Iε-BDE 0.0 5.77E–6 1.21E–4 114.04

Table 13: Comparison on weighted (left) and binary (right) networks.
Best results in bold; methods that timed out are not listed.

Weighted networks Table 12 shows the number of approximately equiv-

alent blocks of nodes identified by Iε-BDE with the chosen parameters,

highlighting that it halves, on average, the network size. The comparison

against REGE and blockmodeling for weighted networks is reported in

78

Table 13 (left). Iε-BDE proved generally more accurate and can yield

errors up to one order of magnitude smaller. We also observe that homo-

geneity blockmodeling performs better than REGE and valued blockmod-

eling. Blockmodeling requires a considerable amount of time, making it

applicable in these examples to networks up to 43 nodes within the given

threshold. REGE’s implementation is faster than Iε-BDE for small net-

works. We remark that FaoTrade and WTN, despite being similar in size,

are characterized by considerably different runtimes. This is attributed

to the density of the network. For larger networks, Iε-BDE proved faster,

justifying the differences in asymptotic cost complexity of the two algo-

rithms; in practice, REGE could not analyze the FB network within the

timeout.

Binary networks With the settings of Table 12, Iε-BDE identifies

nodes more aggressively, on average, in binary networks than in weighted

networks (ratios 0.25 and 0.59, respectively). We now consider Iε-BDE

initialized with the BA partition, following Definition 16. Here, we set

À = 0.1 for all networks, always leading to 20 blocks. With this setting,

and using the same values of ¶ and ∆, the average ratio using the BA par-

tition becomes comparable to that of weighted networks (last two columns

of Table 12).

Table 13 (right) shows the comparison for binary networks. These

results were obtained when initializing Iε-BDE with the BA partition for

a fair analysis against CATREGE. For reference, we also report the error

statistics directly computed on the BA partition. Since, in all cases, both

the CATREGE and the Iε-BDE results refine the BA partition, their

error metrics are consistently improved. However, we remark that, for

small networks, the BA partition already provides errors within the same

order of magnitude as the iterative algorithms; for larger networks, the

error statistics of the BA pre-partition obviously deteriorate because, by

fixing the number of blocks, it clusters increasingly more nodes.

Overall, in the networks where the comparison is possible, Iε-BE yields

superior precision than CATREGE and blockmodeling. CATREGE may

be faster than Iε-BDE in some cases, but it does not support networks

79

larger than 256 nodes, as discussed. The blockmodeling results confirm

the scalability issues observed in weighted networks, timing out already

with 136 nodes.

80

Chapter 6

Conclusion

In this thesis, we proposed two novel techniques to reduce nonlinear dy-

namical systems.

We developed notions of equivalence as a relaxation of the exact coun-

terparts, allowing the derivatives of related ODE variables to vary up to

a desired tolerance. Our algorithmic approach can be useful to system-

atically discover quasi-symmetries in different case studies. It is able to

reduce the model, imposing a certain error within the dynamics. We also

propose a formal bound that is able to estimate the maximum error in the

reference model. In this context, our approach serves as a complement to

well-established over-approximation methods such as CORA. Our method

performs better with small uncertainties on larger models, while CORA

is more effective with larger uncertainties on smaller models. As a result,

our approach is more computationally efficient and capable of producing

satisfactory results in a reasonable time. The main limitation is that the

bounds account only for small perturbations of the parameters. In fu-

ture work, we have to overcome this weakness in order to provide tighter

bounds for larger perturbations.

In the second work, we proposed an efficient algorithmic approach for

the over-approximation of nonlinear ODE models by combining results

from the theory of differential inequalities and nonlinear model reduction.

More specifically, by enforcing homogeneity across model parameters in

81

dependence on a given numerical threshold parameter, the algorithm con-

structs a system of differential inequalities. The differential hull is guar-

anteed to over-approximate the original ODE system in the presence of

uncertain/noisy parameters and can be reduced by exploiting the BDE

technique. Also, in these cases, we tested the approach against CORA in

different case studies. Similarly to the previous case, the results highlight

a trade-off between the quality of the approximation and the computa-

tional cost of computing it. This approach also represents a solution with

respect to the problem that arises in the first approach. Indeed, it is able

to provide formal bounds for larger perturbation with respect to ε-BDE.

The main limitation is that the algorithm proposed is limited to ODE sys-

tems with positive solutions. As part of future work, we intend to extend

the algorithm for negative solutions.

Finally, we presented the Iε-BDE, a new method to compute approxi-

mate regular equivalences for networks based on a partition refinement al-

gorithm. In most examples, it showed superior precision and performance

with respect to the state of the art, enabling the analysis of networks that

are beyond the scope of applicability of currently available direct and in-

direct approaches. The asymptotic result for scale-free (binary) networks

provides a pre-partitioning heuristic for practical models that avoid the

problem of aggressive clustering of nodes. A possible extension would

be to develop a similar result for other classes of distributions, starting

from scale-free weighted networks. Building on recent works on network

embedding [82], it will be also interesting to study whether the character-

ization of approximate regular equivalence as a quantitative bisimulation

paves new ways of encoding role relationships in lower-dimensional spaces.

Addressing the reduction of nonlinear dynamical systems has proven

to be a great challenge, especially nowadays, where the models have be-

come more complex and their analysis is computationally expensive. Our

research has primarily centered on three key aspects: the accuracy of the

reduced models, the efficiency of the reduction algorithms, and ensuring

a broad range of applications. Notably, all the methods presented within

this thesis offer provable formal bounds. The approximate differential

equivalences are equipped with a formal bound while the reduced differ-

82

ential hull approach represents the bounds as a dynamical system. This

is an extremely useful result, especially in applications where stringent

control over the trajectory error of the reduced model is a fundamental re-

quirement. Regarding computational efficiency, almost all the approaches

proposed present a polynomial complexity. The only exception is ε-FDE,

although as explained in Chapter 3 is in practice efficient. We tested the

proposed techniques on several case studies spreading in different fields

of research. Practically every problem that can be expressed by means

of nonlinear differential equations is suitable for the application of our

approaches. In this direction, we interpret the problem of finding regular

equivalences on a network as reduction of a dynamical systems. We show

how ε-BDE can be tailored to discover regular equivalences on networks.

The results show the effectiveness and scalability of our approach with

respect to the methods in the literature.

In conclusion, this thesis achieves the proposed objectives and repre-

sents a step forward in the challenging field of nonlinear dynamical system

reduction.

83

Appendix A

Appendix Chapter 3

The appendix is taken from the published work [34].

A.1 Proofs

This appendix collects all the formal proofs of the results stated in the

paper.

Proof of Theorem 1.

Proof. Assume that H1, . . . ,Hn are ε-FDE partitions of S and define
∼l:=∼F

Hl,ε ∩ ∼Hl
and ∼:=∼H, where H := S/

(
⋃n

l=1∼l

)∗
. Note that

the definition of ε-FDE implies that Hl = S/∼∗
l for all 1 f l f n. Let

us fix arbitrary 1 f l f n and xi ∼l xj . It can be easily seen that
for any H ∈ H there exist unique blocks GH

1 , . . . , GH
mH
∈ Hl such that

84

⊎mH

k=1 GH
k = H. With this, it holds that

∑

H∈H

∑

α∈N
S∪̇{s}
0

|c(℘H
i,j , xα)| =

∑

H∈H

∑

α∈N
S∪̇{s}
0

|c(

mH
∑

k=1

℘
GH

k

i,j , xα)|

f
∑

H∈H

mH
∑

k=1

∑

α∈N
S∪̇{s}
0

|c(℘
GH

k

i,j , xα)|

=
∑

G∈Hl

∑

α∈N
S∪̇{s}
0

|c(℘G
i,j , xα)|

f ε,

where the first estimation follows from the triangle inequality, while the
second estimation is thanks to the definition of ∼l. The above readily
implies that H is an ε-FDE partition.

We now turn to the case of ε-BDE. Similarly to the ε-FDE case, we
assume that H1, . . . ,Hn are ε-BDE partitions of S and ∼l, ∼:=∼H and H
are as above. Note that the definition of ε-BDE implies that Hl = S/∼∗

l

for all 1 f l f n. For arbitrary 1 f l f n and xi ∼l xj , it holds that

∑

α∈NS
0

|c(℘H
i,j , xα)| f

∑

α∈NS
0

|c(℘Hl

i,j , xα)|

since Hl refines H. The above implies that H is an ε-BDE partition.

So far, we have shown that the coarsening S/
(

⋃n
l=1∼l

)∗
of ε-FDE/BDE

partitions H1, . . . ,Hn is again an ε-FDE/BDE partition. The claim fol-
lows by noting that Lemma 26 in [38] ensures that S/

(
⋃n

l=1∼l

)∗
is a

refinement of G if each S/ ∼l is a refinement of G.

Proof of Lemma 1.

Proof. Let us assume that xi ∼F
H,ε xj , which is equivalent to

∑

H∈H

∑

α∈N
S∪̇{s}
0

|c(℘H
i,j , xα)| f ε

85

Since H is a refinement of G, for any G ∈ G there exist unique blocks
HG

1 , . . . , HG
mG
∈ H such that

⊎mG

k=1 HG
k = G. With this, it holds that

∑

G∈G

∑

α∈N
S∪̇{s}
0

|c(℘G
i,j , xα)| =

∑

G∈G

∑

α∈N
S∪̇{s}
0

|c(

mG
∑

k=1

℘
HG

k

i,j , xα)|

f
∑

G∈G

mG
∑

k=1

∑

α∈N
S∪̇{s}
0

|c(℘
HG

k

i,j , xα)|

=
∑

H∈H

∑

α∈N
S∪̇{s}
0

|c(℘H
i,j , xα)|

f ε,

thus showing xi ∼F
G,ε xj . This yields the first statement. Let us now as-

sume that xi ∼B
H,ε xj which corresponds by definition to

∑

α∈NS
0

|c(℘H
i,j , xα)|

f ε. Moreover,
∑

α∈NS
0

|c(℘G
i,j , xα)| f

∑

α∈NS
0

|c(℘H
i,j , xα)|

because H is a refinement of G. Hence, we infer that xi ∼B
G,ε xj . This

readily implies the second statement.

Proof of Theorem 2.

Proof. Let G′ denote the coarsest ε-FDE (ε-BDE) partition that refines

H0 := G and set Hk+1 := S/(∼χ∗

Hk,ε ∩ ∼Hk
) for all k g 0. Then, the

sequence (Hk)kg0 is such that G′ is a refinement of Hk for all k g 1. We
prove this by induction on k.

• k = 1: Since G′ is a refinement of H0, Lemma 1 ensures the first
claim.

• k → k + 1 : Thanks to the fact that G′ is a refinement of Hk by
induction, Lemma 1 ensures the first claim.

From the fact that G′ is a refinement of any Hk, we conclude that G′ = Hk

whenever Hk is an ε-FDE (ε-BDE) partition. Since Hk is a refinement
of Hk−1 for all k g 1 and S is finite, we can fix the smallest k g 1 such

that Hk = Hk−1. This, in turn, implies that Hk−1 = Hk = S/(∼χ∗

Hk−1,ε

∩ ∼Hk−1
).

86

Proof of Theorem 4.

Proof. Fix a partition H and consider the system of equations (3.4)

{

t(℘̃H
i,j , xα,S ∪ {s}) = 0 | ³ ∈ N

S∪{s}
0 , H ∈ H and xi ∼H xj

}

By definition, t(℘̃H
i,j , xα,S ∪ {s}) = 0 states that the coefficient of mono-

mial xα in polynomial ℘̃H
i,j is zero. Likewise, by definition, H is an FDE

if and only if all polynomials ℘̃H
i,j , where xi ∼H xj , are zero. Since a

polynomial is zero if and only if all its coefficients are zero, we thus obtain
that any choice of parameters satisfying the above set of equations yields
an FDE. The proof for BDE proceeds along the same lines.

Proof of Theorem 6.

Proof. See [122, Theorem 1, Section 1.10].

Proof of Theorem 8.

Proof. It can be efficiently checked whether P(Ã̂∗) exhibits singularities on
[0; T] by using a numerical ODE solver. Hence, if P(Ã̂∗) is singularity free,
the bound which is to be proven next ensures that P(Ã̂1) is singularity
free as long as ∥xσ̂1(0)− xσ̂∗(0)∥ f ¶.

Let ¶ = ∥xσ̂1(0) − xσ̂∗(0)∥ satisfy
∑deg(

ˆP)
k=2 dk¶k−1

+ < (2¼1Ä̂)−1 for
¶+ = 2¼0¶. Since ¶ < ¶+, it holds that

0 < Ä(¶) = inf{0 f t f Ä̂ | ∥xσ̂1(t)− xσ̂∗(t)∥ g ¶+},

where inf ∅ :=∞ as usual. With this, it holds that

∥

∥

∥

∥

∫ t

0

Λ(s, t)r(s, xσ̂1(s)− xσ̂∗(s))ds

∥

∥

∥

∥

f ¼1t

deg(
ˆP)

∑

k=2

dk¶k
+

for all t f min{Ä(¶), Ä̂}. Hence, Theorem 9 and 7 yield

∥xσ̂1(t)− xσ̂∗(t)∥ f ¼0¶ + ¼1Ä̂

deg(
ˆP)

∑

k=2

dk¶k
+ =

¶+

2
+ ¼1Ä̂

deg(
ˆP)

∑

k=2

dk¶k
+ < ¶+

87

for all t f min{Ä(¶), Ä̂}, where the last inequality follows from straightfor-
ward algebraic manipulation. This implies that Ä(¶) = ∞, thus showing
that ∥xσ̂1(t) − xσ̂∗(t)∥ < 2¼0∥xσ̂1(0) − xσ̂∗(0)∥ for all 0 f t f Ä̂ because
¶+ = 2¼0¶.

Proof of Theorem 9.

Proof. As pointed out above, in the case of deg(P̂) = 1, it holds that r ≡ 0.
This and Theorem 6 imply xσ̂1(t) − xσ̂∗(t) = ∆x(t) = Λ(0, t)∆x(0) =
Λ(0, t)(xσ̂1(0) − xσ̂∗(0)) for any xσ̂1(0) ∈ R

S∪Θ and 0 f t f Ä̂ , thus
yielding the first claim. The second claim, instead, follows by noting that

max
0ftfτ̂

max
∥∆x(0)∥=1

∥∆x(t)∥ = max
0ftfτ̂

max
∥∆x(0)∥=1

∥Λ(0, t)∆x(0)∥ = max
0ftfτ̂

∥Λ(0, t)∥ = λ0

Proof of Lemma 2.

Proof. Fix 0 f s f t f Ä̂ and assume that |s− t| f ∆. Since (∂tΛ)(s, t) =
A(t)Λ(s, t), it can be shown (see Lemma 1 and 2 in [78]) that ∥Λ(s, t)∥ f
eL(t−s) f eL∆t and the claim holds true. Using this, it can also be seen
that

∥Λ(0, t)∥ = ∥Λ(ti, t)Λ(0, ti)∥ f ¼+
0 eL∆t

for some ti f t such that t− ti f ∆t. Let us now assume that |s− t| > ∆t.
Then there exist ti f tj such that s f ti f tj f t with ti − s, t− tj f ∆.
With this, it holds that

∥Λ(ti, tj)− Λ(s, t)∥ f ∥Λ(ti, tj)− Λ(ti, t)∥+ ∥Λ(ti, t)− Λ(s, t)∥
The bound on ¼1 then follows by noting that

∥Λ(ti, tj)− Λ(ti, t)∥ = ∥Λ(ti, tj)− Λ(tj , t)Λ(ti, tj)∥
= ∥(Λ(tj , tj)− Λ(tj , t))Λ(ti, tj)∥
f ¼+

1 L∆t

and

∥Λ(ti, t)− Λ(s, t)∥ = ∥Λ(ti, t)− Λ(ti, t)Λ(s, ti)∥
= ∥Λ(ti, t)(Λ(s, s)− Λ(s, ti))∥
= ∥Λ(tj , t)Λ(ti, tj)(Λ(s, s)− Λ(s, ti))∥
f eL∆t¼+

1 L∆t.

88

Proof of Lemma 3.

Proof. For deg(P̂) = 3, the constraint writes as d2(2¼0¶)2 + d3(2¼0¶)1 f
(2¼1Ä̂)−1. Since the left-hand side is monotonic increasing in ¶, it thus
suffices to solve the quadratic equation d2(2¼0¶)2 +d3(2¼0¶)1 = (2¼1Ä̂)−1.
The following formula, known as Muller’s variant, can be readily checked
to solve a quadratic equation ax2 + bx + c:

x =
−2c

b±
√

b2 − 4ac

Matching the coefficients gives the claim. The claim for deg(P̂) = 2,
instead, is trivial.

Proof of Lemma 4.

Proof. Fix some xi ∈ S ∪ Θ and 0 f s f Ä̂ . Then, the multidimensional
Taylor expansion of q̂i at point xs := xσ̂∗(s) is given by

q̂i(x) =
∑

|α|fdeg(
ˆP)

(Dαq̂i)(xs)

³!
(x− xs)α,

where Dα = ∂|α|
∏

xi∈S
∂x

αxi
i

is the standard compact notation of the partial

derivative underlying the multi-index ³ ∈ N
S∪Θ
0 with ³! =

∏

xi∈S∪Θ ³xi
!

and |³| =
∑

xi∈S ³xi
. Using the concept of Jacobi matrix, the above

formula rewrites to

q̂i(x) = q̂i(xs) + eT
xi

A(xs)(x− xs) +
∑

2f|α|fdeg(
ˆP)

(Dαq̂i)(xs)

³!
(x− xs)α

(A.1)
Since this shows that

ri(s, y) =
∑

2f|α|fdeg(
ˆP)

(Dαq̂i)(xs)

³!
yα,

a straightforward estimation of the terms yields the claim.

89

Proof of Lemma 5.

Proof. Using the concept of Hessian matrix, (A.1) from the proof of
Lemma 4 can be rewritten into

q̂i(x) = q̂i(xs) + eT
xi

A(xs)(x− xs) + 1
2 (x− xs)T Hi(xs)(x− xs)+

∑

|α|=3

(Dαq̂i)(xs)

³!
(x− xs)α,

thus readily implying the claim.

90

Appendix B

Appendix Chapter 4

The appendix is taken from the published work [140].

B.1 Proofs

B.1.1 Proof of Theorem 11

Proof. Trivial.

B.1.2 Proof of Theorem 12

Proof. The only nontrivial fact to be aware of is that a parameter block
with different signs will give rise to a different differential hull because the
if-statements in algorithms upperBound and lowerBound will be evaluated
differently.

B.2 Experiments

We next report the parameter values and the initial conditions.

B.2.1 SIR

Here we provide the parameters and runtimes for the SIR model consid-

ered in Section 4.2.1.

91

Parameters ´1,1 ´1,2 ´2,1 ´2,2 µ1 µ2

Actual values 2.46 2.45 2.53 2.55 0.5 0.6

Table 14: Parameters of the SIR model.

Variables S1 S2 I1 I2 R1 R2

Initial conditions 20 20 10 10 0 0

Table 15: Initial conditions of the SIR model.

B.2.2 Polymerization

Here we provide the parameters and runtimes for the polymerization

model considered in Section 4.2.2.

Parameters ³1 ³2 ³1 ³2 ´1 ´2 ´2 ´2 µ2 µ2

Actual values 0.55 0.60 1.95 2.00 1.5 1.6 0.01 0.01 0.25 0.25

Table 16: Parameters of the Polymerization model.

Variables A1 A2 A1̃ A2̃ H H2 C2H2 A1CHCH̃ A2CHCH̃
Initial conditions 1 1 1 1 1 1 1 1 1

Table 17: Initial conditions of the Polymerization model.

92

B.2.3 Protein interaction network

Here we provide the parameters and runtimes for the model considered in

Section 4.2.3.

Parameters kb1
kb2

ku1
ku2

Actual values 20.10 19.90 0.1 0.1

Table 18: Parameters of the Protein interaction network.

Variables A B A10 A01 A11

Initial conditions 50 50 0 0 0

Table 19: Initial conditions of the Protein interaction network.

B.2.4 Electrical Network

Here we provide the parameters and runtimes for the model considered in

Section 4.2.4.

Parameters b2 b3 a1,1 a2,1 a2,2

Actual values 0.56 0.66 1.12 0.40 0.50

Table 20: Parameters of the Electrical network.

Variables v1,1 v2,1 v2,2

Initial conditions 0.56 0.66 1.12

Table 21: Initial conditions of the Electrical network.

B.2.5 n-Hexane model

Here we provide the parameters and runtimes for the model considered in

Section 4.2.5.

93

Parameters k1 k2 k3 k4 k5 k6 k7

Actual values 17 54 42 13 32 32 14

Table 22: Parameters of the n-Hexane model.

Variables C6H14 C1 C2
5 C2 C2

4 C3 C2
3 C4 C2

2 H2 C2
6

Initial conditions 1 1 1 1 1 1 1 1 1 1 1

Table 23: Initial conditions of the n-Hexane model.

94

Appendix C

Appendix Chapter 5

C.1 Proofs

This appendix collects all the formal proofs of the results stated in the

Chapter 5.

Proof of Theorem 13

Proof. Follows via the if-then direction of [46, Lemma 1], applied on each
Al.

Proof of Lemma 6

Lemma 7. For any 0 < s < t, it holds that

t
∏

i=s

(1 +
1

2i− 1
) =

√

t

s
+O(s−1)

Proof. As suggested in [20, Lemma 2], we approximate the product by
applying the logarithm

log
(

t
∏

i=s

(

1 +
1

2i− 1

)

)

=
t

∑

i=s

log
(

1 +
1

2i− 1

)

=
t

∑

i=s

log
(2i

2i− 1

)

95

and noting that the integral convergence test ensures

∣

∣

t
∑

i=s

log
(2i

2i− 1

)

−
∫ t

s

log
(2x

2x− 1

)

dx
∣

∣ f log
(2s

2s− 1

)

Moreover, log(2x/(2x− 1)) = log(2x)− log(2x− 1), while integration by
substitution yields

∫ t

s

log(2x)dx = 1
2

∫ 2t

2s

log(x)dx

∫ t

s

log(2x− 1)dx = 1
2

∫ 2t−1

2s−1

log(x)dx

Hence, by Taylor’s theorem, there exist À, À′ ∈ (−1; 0) with

∫ t

s

2 log
(2x

2x− 1

)

dx =
[

∫ 2t

2t−1

log(x)dx−
∫ 2s

2s−1

log(x)dx
]

= log(2t) +
1

2t
· À′ − log(2s)− 1

2s
À′

= log(t/s) +O(s−1)

Recalling that 1
2 log(a) = log(

√
a), we thus obtain

∣

∣

∣

t
∏

i=s

(

1 +
1

2i− 1

)

−
√

t

s

∣

∣

∣
f 2s

2s− 1
· exp(O(s−1))

f
(

1 +O(1/s))(1 +O(1/s)),

yielding the claim.

We next prove Lemma 6.

Proof of Lemma 6. In the proof of [20, Lemma 2], the authors show that

P(gj = i) =
1

2j − 1

j−1
∏

k=i

(

1 +
1

2k − 1

)

,

With this, Lemma 7 implies

P(gj = i) =
1

2j − 1

((j − 1)1/2

i1/2
+O(i−1)

)

=
(1

2j
+O(j−2)

)(j1/2

i1/2
+O(i−1)

)

96

because |√j − √j − 1| f | 12 (j − 1)−1/2| · 1 f i−1/2 by the mean value
theorem. For the second and third statement, we note using the notation
from [20, Lemma 2] that

E(dk,iIgj=i | Gk−1) = dk−1Igj=i +
dk−1

2k − 1
Igj=i = (1 +

1

2k − 1
)dk−1,iIgj=i,

which in turn implies

E(dk,iIgj=i) =

k
∏

s=j

(

1 +
1

2s− 1

)

E(dj,iIgj=i)

as postulated in the proof of [20, Lemma 2]. With this, the discussion
from the aforementioned lemma ensures that

P(gj = i, gk = i) =
1

2k − 1

k−1
∏

s=j

(

1 +
1

2s− 1

) 1

2j − 1

2j − 1

2i + 1

4i + 2

2i− 1

=
1

2k − 1

1

2i− 1

k−1
∏

s=j

(

1 +
1

2s− 1

)

· 2,

where, thanks to [44] and Γ(x + 1) = xΓ(x) for any x > 0, we have that

2j − 1

2i + 1

4i + 2

2i− 1
= µ

(2)
j−1,i =

j−1
∏

s=i+1

(

1 +
1

2s− 1

)

µ
(2)
i,i

=
Γ(i + 1

2)

Γ(j − 1
2)

Γ(j + 1
2)

Γ(i + 3
2)

µ
(2)
i,i

=
j − 1

2

i + 1
2

µ
(2)
i,i

=
2j − 1

2i + 1
µ

(2)
i,i

and

µ
(2)
i,i =

2i− 2

2i− 1
· (12 + 1) +

1

2i− 1
· (22 + 2) =

4i + 2

2i− 1

97

This, in turn, allows us to conclude that

P(gj = i, gk = i)− P(gj = i)P(gk = i) =

=
1

2k − 1

1

2i− 1

k−1
∏

s=j

(

1 +
1

2s− 1

)

· 2−

1

2k − 1

k−1
∏

s=i

(

1 +
1

2s− 1

)

· 1

2j − 1

j−1
∏

s=i

(

1 +
1

2s− 1

)

=
1

2k − 1

k−1
∏

s=j

(

1 +
1

2s− 1

)

[2

2i− 1
− 1

2j − 1

j−1
∏

s=i

(

1 +
1

2s− 1

)2
]

=
1

4i
√

jk
+O(

1

i
√

ijk
),

where the last identity follows by invoking several times Lemma 7. This
establishes the third statement which, together with the first statement,
implies the second statement.

Proof of Theorem 14

Proof. Pick H ∈ H with H = {a, a + 1, . . . , b − 1, b}, an i ∈ {µ√n, µn}
such that i f a and let Xi,j be as in (5.1). Then

E[
∑

j∈H

Xi,j] =
∑

j∈H

E[Xi,j]

=
∑

j∈H

1

2
√

ij
+

∑

j∈H

O(1/ij)

=
∑

j∈H

1

2
√

ij
+O((log(b) + 1)/i)

=

∫ b

a

1

2
√

ij
dj +O(log(b)/i + 1/i + 1/

√
ia)

=
√

b/i−
√

a/i +O(log(b)/i + 1/i + 1/
√

ia),

where the first identity is due to the linearity of the expected value, the
second due to the first identity of Lemma 6 and the logarithmic growth
of harmonic numbers, the third due to the integral convergence test, and

98

the forth due follows via integration. This implies

E[
∑

j∈H

Xi,j] =



















O(1), i ∈ Cν , H ∈ C
Θ(
√

À 4
√

n), i ∈ Cν , H ∈ F
O(1), i ∈ Fν , H ∈ C
O(1), i ∈ Fν , H ∈ F

The statement follows because |deg(i, H)−∑

j∈H Xi,j | f 1.

Proof of Theorem 15

Proof. From the proof of Theorem 14, we infer for i < i′:

E[
∑

j∈H

Xi,j]− E[
∑

j∈H

Xi′,j]

= (
√

b−√a)
(1√

i
− 1√

i′

)

+O(log(b)/i + 1/i + 1/
√

ia)

We consider the case i, i′ ∈ Cν and H ∈ F as the other cases are straight-
forward. By Taylor’s theorem, we infer for 0 < x0 < x1:

|x−1/2
0 − x

−1/2
1 | f |12 x

−3/2
0 | · |x1 − x0|

Setting x1 = µ1
2
√

n and x0 = µ0
2
√

n, the above formula yields

| 1√
x0
− 1√

x1
| f |µ1 − µ0|/ 4

√
nµ

3/2
0

Noting that
√

b−√a = O(
√

Àn), we obtain

|(
√

b−√a)
(1√

i
− 1√

i′

)

| f
√

À 4
√

n
|µ1 − µ0|

µ
3/2
0

The statement follows because |deg(i, H)−∑

j∈H Xi,j | f 1.

99

Proof of Theorem 16

Proof of Theorem 16. Letting j, j′ ranging over H, we first note that

V[
∑

j

Xi,j −
∑

j

Xi′,j]

= V[
∑

j

Xi,j] + V[
∑

j

Xi′,j]− 2Cov[
∑

j

Xi,j ,
∑

j

Xi′,j]

= V[
∑

j

Xi,j] + V[
∑

j

Xi′,j]− 2
∑

j

∑

j′

Cov[Xi,j , Xi′,j′

]

The first statement follows by noting that [20, Lemma 3] ensures for any
i ̸= i′ and j, j′ ∈ H that

Cov[Xi,j , Xi′,j′

] = E[Xi,jXi′,j′

]− E[Xi,j]E[Xi′,j′

] f 0.

To see the second statement, we note that Lemma 6 implies for j, j′ ∈ H
with j ̸= j′:

Cov(Xi,j , Xi,j′

) = E[Xi,jXi,j′

]− E[Xi,j]E[Xi,j′

]

= P(gj = i, gk = i)− P(gj = i)P(gk = i)

=
1

4i
√

jk
+O(

1

i
√

ijk
)

With this, we obtain

E :=
∑

j∈H

∑

j′∈H\{j}

(

E[Xi,jXi,j′

]− E[Xi,j]E[Xi,j′

]
)

=
∑

j∈H

∑

j′∈H\{j}

(1

4i
√

jj′
+O

(1

i
√

ijj′

)

)

=



















O(1), i ∈ Cν , H ∈ C
Θ(
√

n), i ∈ Cν , H ∈ F
O(1), i ∈ Fν , H ∈ C
O(1), i ∈ Fν , H ∈ F

100

Moreover, one can observe

V
(

n−1/4
∑

j∈H

Xi,j
)

= n−1/2
(

∑

j∈H

V[Xi,j] + E
)

= n−1/2
∑

j∈H

V[Xi,j] + n−1/2E

f n−1/2
∑

j∈H

[1

2
√

ij
− 1

4ij

]

+ n−1/2E

= O(n−1/2
E[

∑

j∈H

Xi,j]) + n−1/2E

The statement follows because |deg(i, H)−∑

j∈H Xi,j | f 1.

101

Bibliography

[1] Stefano Allesina and Si Tang. “Stability criteria for complex ecosys-
tems”. In: Nature 483.7388 (2012), pp. 205–208.

[2] Matthias Althoff. “An Introduction to CORA 2015”. In: Workshop
on Applied Verification for Continuous and Hybrid Systems. 2015.

[3] Matthias Althoff. “Reachability Analysis of Nonlinear Systems us-
ing Conservative Polynomialization and Non-Convex Sets”. In: In-
ternational conference on Hybrid systems: computation and con-
trol. 2013, pp. 173–182.

[4] Matthias Althoff, Colas Le Guernic, and Bruce H. Krogh. “Reach-
able set computation for uncertain time-varying linear systems”.
In: International conference on Hybrid systems: computation and
control. Ed. by Marco Caccamo, Emilio Frazzoli, and Radu Grosu.
ACM, 2011, pp. 93–102.

[5] American Revolution network dataset – KONECT. Oct. 2017. url:
http://konect.cc/networks/brunson_revolution.

[6] BDO Anderson and PC Parks. “Lumped approximation of dis-
tributed systems and controllability questions”. In: IEE Proceed-
ings D (Control Theory and Applications). Vol. 132. 3. IET. 1985,
pp. 89–94.

[7] Roy M Anderson and Robert M May. Infectious diseases of hu-
mans: dynamics and control. Oxford university press, 1992.

[8] David Angeli. “A tutorial on Chemical Reaction Networks dynam-
ics”. In: 2009 European Control Conference (ECC). IEEE. 2009,
pp. 649–657.

[9] Athanasios C. Antoulas. Approximation of Large-Scale Dynamical
Systems. SIAM, 2005.

102

[10] Masanao Aoki. “Control of large-scale dynamic systems by aggre-
gation”. In: IEEE Trans. Autom. Control 13.3 (1968), pp. 246–253.
issn: 0018-9286.

[11] Georgios Argyris, Alberto Lluch Lafuente, Mirco Tribastone, Max
Tschaikowski, and Andrea Vandin. “An Extension of ERODE to
Reduce Boolean Networks By Backward Boolean Equivalence”.
In: Computational Methods in Systems Biology. Ed. by Ion Petre
and Andrei Păun. Cham: Springer International Publishing, 2022,
pp. 294–301.

[12] Eugene Asarin, Thao Dang, and Antoine Girard. “Reachability
Analysis of Nonlinear Systems Using Conservative Approximation”.
In: International conference on Hybrid Systems: Computation and
Control. 2003.

[13] Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Mirco Tribastone,
Max Tschaikowski, and Andrea Vandin. “Efficient Local Compu-
tation of Differential Bisimulations via Coupling and Up-to Meth-
ods”. In: 2021 36th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS). 2021, pp. 1–14.

[14] Christel Baier, Bettina Engelen, and Mila Majster-Cederbaum.
“Deciding Bisimilarity and Similarity for Probabilistic Processes”.
In: Journal of Computer and System Sciences 60.1 (2000), pp. 187–
231.

[15] Albert-László Barabási. “The science of networks”. In: Cambridge
MA: Perseus (2012).

[16] Albert-László Barabási and Eric Bonabeau. “Scale-free networks”.
In: Scientific american 288.5 (2003), pp. 60–69.

[17] Stephan Barthel and Christian Isendahl. “Urban gardens, agricul-
ture, and water management: Sources of resilience for long-term
food security in cities”. In: Ecological economics 86 (2013), pp. 224–
234.

[18] Vladimir Batagelj and Andrej Mrvar. Pajek datasets. 2006.

[19] Andreea Beica, Jérôme Feret, and Tatjana Petrov. “Tropical Ab-
straction of Biochemical Reaction Networks with Guarantees”. In:
Electronic Notes in Theoretical Computer Science 350 (2020). Pro-
ceedings of SASB 2018, the Ninth International Workshop on Static
Analysis and Systems Biology, Freiburg, Germany - August 28th,
2018, pp. 3–32. issn: 1571-0661. doi: https://doi.org/10.1016/

103

j.entcs.2020.06.002. url: https://www.sciencedirect.com/

science/article/pii/S1571066120300293.

[20] Béla Bollobás and Oliver Riordan. “The diameter of a scale-free
random graph”. In: Combinatorica 24.1 (2004), pp. 5–34.

[21] Michele Boreale. “Algebra, Coalgebra, and Minimization in Poly-
nomial Differential Equations”. In: International Conference on
Foundations of Software Science and Computation Structures. 2017,
pp. 71–87.

[22] Stephen P Borgatti and Martin G Everett. “Notions of position
in social network analysis”. In: Sociological methodology (1992),
pp. 1–35.

[23] Stephen P Borgatti and Martin G Everett. “The class of all regu-
lar equivalences: Algebraic structure and computation”. In: Social
networks 11.1 (1989), pp. 65–88.

[24] Stephen P Borgatti and Martin G Everett. “Two algorithms for
computing regular equivalence”. In: Social networks 15.4 (1993),
pp. 361–376.

[25] Stephen P Borgatti, Martin G Everett, and Linton C Freeman.
“Ucinet for Windows: Software for social network analysis”. In:
Harvard, MA: analytic technologies 6 (2002), pp. 12–15.

[26] Luca Bortolussi and Nicolas Gast. “Mean Field Approximation of
Uncertain Stochastic Models”. In: International Conference on De-
pendable Systems and Networks. 2016, pp. 287–298.

[27] Luca Bortolussi and Luca Palmieri. “Deep Abstractions of Chem-
ical Reaction Networks”. In: Computational Methods in Systems
Biology. Ed. by Milan Češka and David Šafránek. Cham: Springer
International Publishing, 2018, pp. 21–38.

[28] Paul PJ van den Bosch and Alexander C van der Klauw. Modeling,
identification and simulation of dynamical systems. crc Press, 2020.

[29] George Edward Briggs and John Burdon Sanderson Haldane. “A
note on the kinetics of enzyme action”. In: Biochemical journal
19.2 (1925), p. 338.

[30] Peter Brucker. “On the complexity of clustering problems”. In:
Optimization and Operations Research: Proceedings of a Workshop
Held at the University of Bonn, October 2–8, 1977. Springer. 1978,
pp. 45–54.

104

[31] Peter Buchholz. “Exact and Ordinary Lumpability in Finite Markov
Chains”. In: Journal of Applied Probability 31.1 (1994), pp. 59–75.
issn: 00219002.

[32] Ferdinanda Camporesi and Jérôme Feret. “Formal Reduction for
Rule-based Models”. In: Electronic Notes in Theoretical Computer
Science 276 (2011), pp. 29–59.

[33] Luca Cardelli, Isabel Cristina Pérez-Verona, Mirco Tribastone, Max
Tschaikowski, Andrea Vandin, and Tabea Waizmann. “Exact max-
imal reduction of stochastic reaction networks by species lumping”.
In: Bioinformatics 37.15 (2021), pp. 2175–2182.

[34] Luca Cardelli, Giuseppe Squillace, Mirco Tribastone, Max Tschaikowski,
and Andrea Vandin. “Formal lumping of polynomial differential
equations through approximate equivalences”. In: Journal of Logi-
cal and Algebraic Methods in Programming 134 (2023), p. 100876.
issn: 2352-2208. doi: https://doi.org/10.1016/j.jlamp.

2023.100876. url: https://www.sciencedirect.com/science/

article/pii/S2352220823000305.

[35] Luca Cardelli, Mirco Tribastone, and Max Tschaikowski. “From
electric circuits to chemical networks”. In: Natural Computing 19.1
(2020), pp. 237–248.

[36] Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea
Vandin. “Efficient Syntax-driven Lumping of Differential Equa-
tions”. In: Tools and Algorithms for the Construction and Analysis
of Systems — 21st International Conference, TACAS. 2016.

[37] Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea
Vandin. “ERODE: A Tool for the Evaluation and Reduction of
Ordinary Differential Equations”. In: TACAS. 2017.

[38] Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea
Vandin. “Forward and Backward Bisimulations for Chemical Re-
action Networks”. In: International Conference on Concurrency
Theory. 2015.

[39] Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea
Vandin. “Guaranteed Error Bounds on Approximate Model Ab-
stractions Through Reachability Analysis”. In: Quantitative Eval-
uation of Systems. Ed. by Annabelle McIver and Andras Horvath.
Cham: Springer International Publishing, 2018, pp. 104–121. isbn:
978-3-319-99154-2.

105

[40] Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea
Vandin. “Maximal aggregation of polynomial dynamical systems”.
In: Proceedings of the National Academy of Sciences 114.38 (2017),
pp. 10029–10034.

[41] Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea
Vandin. “Symbolic computation of differential equivalences”. In:
POPL. 2016, pp. 137–150.

[42] Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea
Vandin. “Symbolic computation of differential equivalences”. In:
Theoretical Computer Science 777 (2019). In memory of Maurice
Nivat, a founding father of Theoretical Computer Science - Part I,
pp. 132–154. issn: 0304-3975.

[43] Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea
Vandin. “Syntactic Markovian Bisimulation for Chemical Reac-
tion Networks”. In: Models, Algorithms, Logics and Tools - Es-
says Dedicated to Kim Guldstrand Larsen on the Occasion of His
60th Birthday. Ed. by Luca Aceto, Giorgio Bacci, Giovanni Bacci,
Anna Ingólfsdóttir, Axel Legay, and Radu Mardare. Vol. 10460.
2017, pp. 466–483.

[44] Marc Chamberland and Armin Straub. “On gamma quotients and
infinite products”. In: Advances in Applied Mathematics 51.5 (2013),
pp. 546–562. issn: 0196-8858.

[45] Vijaysekhar Chellaboina, Sanjay P. Bhat, Wassim M. Haddad, and
Dennis S. Bernstein. “Modeling and analysis of mass-action kinet-
ics”. In: IEEE Control Systems Magazine 29.4 (2009), pp. 60–78.
doi: 10.1109/MCS.2009.932926.

[46] Di Chen, Franck van Breugel, and James Worrell. “On the com-
plexity of computing probabilistic bisimilarity”. In: Foundations
of Software Science and Computational Structures: 15th Interna-
tional Conference, FOSSACS 2012, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS
2012, Tallinn, Estonia, March 24–April 1, 2012. Proceedings 15.
Springer. 2012, pp. 437–451.

[47] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. “Flow*:
An Analyzer for Non-linear Hybrid Systems”. In: International
Conference on Computer Aided Verification. 2013, pp. 258–263.

106

[48] Xin Chen and Sriram Sankaranarayanan. “Reachability Analysis
for Cyber-Physical Systems: Are We There Yet?” In: NASA Formal
Methods Symposium. Springer. 2022, pp. 109–130.

[49] Vittoria Colizza, Romualdo Pastor-Satorras, and Alessandro Vespig-
nani. “Reaction–diffusion processes and metapopulation models in
heterogeneous networks”. In: Nature Physics 3.4 (2007), pp. 276–
282.

[50] Holger Conzelmann, Dirk Fey, and Ernst Gilles. “Exact model re-
duction of combinatorial reaction networks”. In: BMC Systems Bi-
ology 2.1 (2008), p. 78.

[51] Holger Conzelmann, Julio Saez-Rodriguez, Thomas Sauter, Boris
Kholodenko, and Ernst Gilles. “A domain-oriented approach to
the reduction of combinatorial complexity in signal transduction
networks”. In: BMC Bioinformatics 7.1 (2006), p. 34.

[52] CORA Manual 2024. 2024. url: https://tumcps.github.io/

CORA/manual/index.html.

[53] Anup Das, Geoff V. Merrett, Mirco Tribastone, and Bashir M. Al-
Hashimi. “Workload Change Point Detection for Runtime Thermal
Management of Embedded Systems”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 35.8
(2016), pp. 1358–1371.

[54] Manlio De Domenico, Vincenzo Nicosia, Alexandre Arenas, and
Vito Latora. “Structural reducibility of multilayer networks”. In:
Nature communications 6.1 (2015), pp. 1–9.

[55] Aristides Dokoumetzidis and Leon Aarons. “Proper lumping in sys-
tems biology models”. In: IET systems biology 3.1 (2009), pp. 40–
51.

[56] Alexandre Donzé and Oded Maler. “Systematic Simulation Using
Sensitivity Analysis”. In: International conference on Hybrid Sys-
tems: Computation and Control. Springer, 2007, pp. 174–189.

[57] Patrick Doreian. “Equivalence in a social network”. In: The Journal
of Mathematical Sociology 13.3 (1988), pp. 243–281.

[58] Patrick Doreian, Vladimir Batagelj, and Anuska Ferligoj. Gener-
alized blockmodeling. 25. Cambridge university press, 2005.

107

[59] C Ronnie Drever, Garry Peterson, Christian Messier, Yves Berg-
eron, and Mike Flannigan. “Can forest management based on natu-
ral disturbances maintain ecological resilience?” In: Canadian Jour-
nal of Forest Research 36.9 (2006), pp. 2285–2299.

[60] Parasara Sridhar Duggirala, Sayan Mitra, and Mahesh Viswanathan.
“Verification of Annotated Models from Executions”. In: Interna-
tional Conference on Embedded Software. IEEE Press, 2013.

[61] Weinan E, Tiejun Li, and Eric Vanden-Eijnden. “Optimal partition
and effective dynamics of complex networks”. In: Proceedings of the
National Academy of Sciences 105.23 (June 2008), pp. 7907–12.

[62] Chuchu Fan, Bolun Qi, Sayan Mitra, Mahesh Viswanathan, and
Parasara Sridhar Duggirala. “Automatic Reachability Analysis for
Nonlinear Hybrid Models with C2E2”. In: International Confer-
ence on Computer Aided Verification. 2016, pp. 531–538.

[63] Jay A. Farrell and Marios M. Polycarpou. Adaptive Approximation
Based Control. Wiley-Interscience, 2006. isbn: 0471727881.

[64] Jérôme Feret, Vincent Danos, Jean Krivine, Russ Harmer, and
Walter Fontana. “Internal coarse-graining of molecular systems”.
In: Proceedings of the National Academy of Sciences 106.16 (2009),
pp. 6453–6458.

[65] Sue C Freeman and Linton C Freeman. The networkers network:
A study of the impact of a new communications medium on so-
ciometric structure. School of Social Sciences University of Calif.,
1979.

[66] Thorben Funke and Till Becker. “Stochastic block models: A com-
parison of variants and inference methods”. In: PloS one 14.4 (2019),
e0215296.

[67] Han Gao, Jian-Xun Wang, and Matthew J. Zahr. “Non-intrusive
model reduction of large-scale, nonlinear dynamical systems using
deep learning”. In: Physica D: Nonlinear Phenomena 412 (2020),
p. 132614. issn: 0167-2789. doi: https://doi.org/10.1016/j.

physd.2020.132614. url: https://www.sciencedirect.com/

science/article/pii/S0167278919305573.

[68] Guillaume Gaulier and Soledad Zignago. BACI: International Trade
Database at the Product-Level. The 1994-2007 Version. Working
Papers 2010-23. CEPII, 2010. url: http://www.cepii.fr/CEPII/

fr/publications/wp/abstract.asp?NoDoc=2726.

108

[69] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. “The Zonotope
Abstract Domain Taylor1+”. In: International Conference on Com-
puter Aided Verification. Ed. by Ahmed Bouajjani and Oded Maler.
2009, pp. 627–633.

[70] Alessandro Giacalone, Chi-Chang Jou, and Scott A. Smolka. “Al-
gebraic Reasoning for Probabilistic Concurrent Games”. In: IFIP
WG 2.2/2.3. 1990, pp. 443–458.

[71] Daniel Thomas Gillespie. “Exact Stochastic Simulation of Cou-
pled Chemical Reactions”. In: Journal of Physical Chemistry 81.25
(1977), pp. 2340–2361.

[72] Antoine Girard and George J. Pappas. “Approximate Bisimula-
tions for Nonlinear Dynamical Systems”. In: IEEE Conference on
Decision and Control and European Control Conference. 2005.

[73] Antoine Girard and George J. Pappas. “Approximation Metrics
for Discrete and Continuous Systems”. In: IEEE Transactions on
Automatic Control 52.5 (2007), pp. 782–798.

[74] Ankit Gupta, Christoph Schwab, and Mustafa Khammash. “Deep-
CME: A deep learning framework for solving the Chemical Master
Equation”. In: (2021). doi: 10.1101/2021.06.05.447033.

[75] David Hartman and Lalit K Mestha. “A deep learning framework
for model reduction of dynamical systems”. In: 2017 IEEE Con-
ference on Control Technology and Applications (CCTA). IEEE.
2017, pp. 1917–1922.

[76] Jane Hillston, Carla Piazza, Andrea Marin, and Sabina Rossi.
“Contextual lumpability”. In: ValueTools 2013–7th International
Conference on Performance Evaluation Methodologies and Tools.
ICST. 2013.

[77] Sui Huang, Gabriel Eichler, Yaneer Bar-Yam, and Donald E. Ing-
ber. “Cell Fates as High-Dimensional Attractor States of a Com-
plex Gene Regulatory Network”. In: Physical Review Letters 94 (12
Apr. 2005), p. 128701.

[78] Giulio Iacobelli and Mirco Tribastone. “Lumpability of fluid models
with heterogeneous agent types”. In: International Conference on
Dependable Systems and Networks. 2013.

109

[79] Md. Ariful Islam, Abhishek Murthy, Ezio Bartocci, Elizabeth Cherry,
Flavio H. Fenton, James Glimm, Scott A. Smolka, and Radu Grosu.
“Model-order reduction of ion channel dynamics using approxi-
mate bisimulation”. In: Theoretical Computer Science 599 (2015),
pp. 34–46.

[80] Yoh Iwasa, Viggo Andreasen, and Simon Levin. “Aggregation in
model ecosystems. I. Perfect aggregation”. In: Ecological Modelling
37.3-4 (1987), pp. 287–302.

[81] Yoh Iwasa, Simon A. Levin, and Viggo Andreasen. “Aggregation in
Model Ecosystems II. Approximate Aggregation”. In: Mathemati-
cal Medicine and Biology 6.1 (1989), pp. 1–23.

[82] Pengfei Jiao, Xuan Guo, Ting Pan, Wang Zhang, Yulong Pei, and
Lin Pan. “A survey on role-oriented network embedding”. In: IEEE
Transactions on Big Data 8.4 (2021), pp. 933–952.

[83] JP Keener and James Sneyd. Mathematical physiology 1: Cellular
physiology. 2009.

[84] William Ogilvy Kermack and Anderson G McKendrick. “A contri-
bution to the mathematical theory of epidemics”. In: Proceedings
of the royal society of london. Series A, Containing papers of a
mathematical and physical character 115.772 (1927), pp. 700–721.

[85] Markus Koschorreck, Holger Conzelmann, Sybille Ebert, Michael
Ederer, and Ernst Dieter Gilles. “Reduced modeling of signal
transduction–a modular approach”. In: BMC bioinformatics 8.1
(2007), pp. 1–24.

[86] M.K. Kozlov, S.P. Tarasov, and L.G. Khachiyan. “The polynomial
solvability of convex quadratic programming”. In: USSR Computa-
tional Mathematics and Mathematical Physics 20.5 (1980), pp. 223–
228.

[87] Niclas Kruff, Christoph Lüders, Ovidiu Radulescu, Thomas Sturm,
and Sebastian Walcher. “Algorithmic Reduction of Biological Net-
works with Multiple Time Scales”. In: (2021).

[88] Jérôme Kunegis. “Konect: the koblenz network collection”. In: Pro-
ceedings of the 22nd international conference on world wide web.
2013, pp. 1343–1350.

110

[89] Juan Kuntz, Diego Oyarzún, and Guy-Bart Stan. “Model reduc-
tion of genetic-metabolic networks via time scale separation”. In:
A systems theoretic approach to systems and synthetic biology I:
models and system characterizations (2014), pp. 181–210.

[90] J. C. W. Kuo and James Wei. “Lumping Analysis in Monomolec-
ular Reaction Systems. Analysis of Approximately Lumpable Sys-
tem”. In: Industrial & Engineering Chemistry Fundamentals 8.1
(1969), pp. 124–133.

[91] Ratan Lal and Pavithra Prabhakar. “Bounded error flowpipe com-
putation of parameterized linear systems”. In: International Con-
ference on Embedded Software. 2015, pp. 237–246.

[92] Vu Tuan Hieu Le, Cristina Stoica, Teodoro Alamo, Eduardo F
Camacho, and Didier Dumur. Zonotopes: From guaranteed state-
estimation to control. John Wiley & Sons, 2013.

[93] Kookjin Lee and Kevin T Carlberg. “Model reduction of dynami-
cal systems on nonlinear manifolds using deep convolutional au-
toencoders”. In: Journal of Computational Physics 404 (2020),
p. 108973.

[94] Alexander Leguizamon-Robayo, Antonio Jiménez-Pastor, Micro Trib-
astone, Max Tschaikowski, and Andrea Vandin. “Approximate Con-
strained Lumping of Polynomial Differential Equations”. In: Inter-
national Conference on Computational Methods in Systems Biol-
ogy. Springer. 2023, pp. 106–123.

[95] Genyuan Li and Herschel Rabitz. “A general analysis of approxi-
mate lumping in chemical kinetics”. In: Chemical Engineering Sci-
ence 45.4 (1990), pp. 977–1002. issn: 0009-2509.

[96] Jiang Liu, Naijun Zhan, Hengjun Zhao, and Liang Zou. “Abstrac-
tion of Elementary Hybrid Systems by Variable Transformation”.
In: International Symposium on Formal Methods. Ed. by Nikolaj
S. Bjørner and Frank S. de Boer. Vol. 9109. 2015, pp. 360–377.

[97] Francois Lorrain and Harrison C White. “Structural equivalence of
individuals in social networks”. In: The Journal of mathematical
sociology 1.1 (1971), pp. 49–80.

[98] Joseph J Luczkovich, Stephen P Borgatti, Jeffrey C Johnson, and
Martin G Everett. “Defining and measuring trophic role similarity
in food webs using regular equivalence”. In: Journal of Theoretical
Biology 220.3 (2003), pp. 303–321.

111

[99] Rupak Majumdar and Majid Zamani. “Approximately Bisimilar
Symbolic Models for Digital Control Systems”. In: International
Conference on Computer Aided Verification. 2012, pp. 362–377.

[100] Andrea Marin, Carla Piazza, and Sabina Rossi. “Proportional Lumpa-
bility”. In: Formal Modeling and Analysis of Timed Systems. Ed.
by Étienne André and Mariëlle Stoelinga. Cham: Springer Inter-
national Publishing, 2019, pp. 265–281.

[101] Maarten Marx and Michael Masuch. “Regular equivalence and dy-
namic logic”. In: Social Networks 25.1 (2003), pp. 51–65.

[102] Miha Matjaŝiĉ, Marjan Cugmas, and Aleŝ Ẑiberna. “blockmodel-
ing: An R package for generalized blockmodeling”. In: Advances in
Methodology and Statistics 17.2 (2020), pp. 49–66.

[103] Peter McMullen. “On zonotopes”. In: Transactions of the Ameri-
can Mathematical Society 159 (1971), pp. 91–109.

[104] Leonor Michaelis, Maud L Menten, et al. “Die kinetik der invert-
inwirkung”. In: Biochem. z 49.333-369 (1913), p. 352.

[105] Dimitrios Milios and Stephen Gilmore. “Component aggregation
for PEPA models: An approach based on approximate strong equiv-
alence”. In: Performance Evaluation 94 (2015), pp. 43–71.

[106] Dimitrios Milios and Stephen Gilmore. “Compositional approxi-
mate Markov chain aggregation for PEPA models”. In: Computer
Performance Engineering: 9th European Workshop, EPEW 2012,
Munich, Germany, July 30, 2012, and 28th UK Workshop, UKPEW
2012, Edinburgh, UK, July 2, 2012, Revised Selected Papers 9.
Springer. 2013, pp. 96–110.

[107] Michael I. Monine, Richard G. Posner, Paul B. Savage, James R.
Faeder, and William S. Hlavacek. “Modeling Multivalent Ligand-
Receptor Interactions with Steric Constraints on Configurations of
Cell-Surface Receptor Aggregates”. In: Biophysical Journal 98.1
(2010), pp. 48–56.

[108] Bruce Moore. “Principal component analysis in linear systems:
Controllability, observability, and model reduction”. In: IEEE trans-
actions on automatic control 26.1 (1981), pp. 17–32.

[109] Max Müller. “Über das Fundamentaltheorem in der Theorie der
gewöhnlichen Differentialgleichungen”. In: Mathematische Zeitschrift
26 (1927), pp. 619–645.

112

[110] James D. Murray. Mathematical Biology I: An Introduction. 3rd.
Springer, 2002.

[111] T.F. Narbeshuber, H. Vinek, and J.A. Lercher. “Monomolecular
Conversion of Light Alkanes over H-ZSM-5”. In: Journal of Catal-
ysis 157.2 (1995), pp. 388–395. issn: 0021-9517.

[112] M. S. Okino and M. L. Mavrovouniotis. “Simplification of Mathe-
matical Models of Chemical Reaction Systems”. In: Chemical Re-
views 2.98 (1998), pp. 391–408.

[113] Tore Opsahl and Pietro Panzarasa. “Clustering in weighted net-
works”. In: Social networks 31.2 (2009), pp. 155–163.

[114] Luigi Orsenigo, Fabio Pammolli, Massimo Riccaboni, Andrea Bonac-
corsi, and Giuseppe Turchetti. “The evolution of knowledge and the
dynamics of an industry network”. In: Journal of Management &
Governance 1 (1997), pp. 147–175.

[115] Robert Paige and Robert E. Tarjan. “Three Partition Refinement
Algorithms”. In: SIAM Journal on Computing 16.6 (1987), pp. 973–
989.

[116] Panos M. Pardalos and Stephen A. Vavasis. “Quadratic program-
ming with one negative eigenvalue is NP-hard”. In: Journal of
Global Optimization 1.1 (1991), pp. 15–22.

[117] Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem,
and Alessandro Vespignani. “Epidemic processes in complex net-
works”. In: Reviews of modern physics 87.3 (2015), p. 925.

[118] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[119] Tiago P Peixoto. “Bayesian stochastic blockmodeling”. In: Ad-
vances in network clustering and blockmodeling (2019), pp. 289–
332.

[120] Aaron Pereira and Matthias Althoff. “Safety control of robots un-
der Computed Torque control using reachable sets”. In: 2015 IEEE
International Conference on Robotics and Automation (ICRA).
2015, pp. 331–338. doi: 10.1109/ICRA.2015.7139020.

113

[121] Isabel Cristina Perez-Verona, Mirco Tribastone, and Andrea Vandin.
“A large-scale assessment of exact lumping of quantitative mod-
els in the BioModels repository”. In: Theoretical Computer Sci-
ence 893 (2021), pp. 41–59. issn: 0304-3975. doi: https://doi.

org / 10 . 1016 / j . tcs . 2021 . 06 . 026. url: https : / / www .

sciencedirect.com/science/article/pii/S0304397521003716.

[122] Lawrence Perko. Differential Equations and Dynamical Systems.
New York: Springer, 1991.

[123] Tatjana Petrov and Stefano Tognazzi. “Centrality-Preserving Ex-
act Reductions of Multi-Layer Networks”. In: Leveraging Applica-
tions of Formal Methods, Verification and Validation: Engineering
Principles. Ed. by Tiziana Margaria and Bernhard Steffen. Cham:
Springer International Publishing, 2020, pp. 397–415.

[124] Tatjana Petrov and Stefano Tognazzi. “Exact and approximate
role assignment for multi-layer networks”. In: Journal of Complex
Networks 9.5 (Oct. 2021), cnab027.

[125] V Petrov, Elena Nikolova, and Olaf Wolkenhauer. “Reduction of
nonlinear dynamic systems with an application to signal transduc-
tion pathways”. In: IET systems biology 1.1 (2007), pp. 2–9.

[126] Thomas P. Prescott and Antonis Papachristodoulou. “Guaranteed
error bounds for structured complexity reduction of biochemical
networks”. In: Journal of Theoretical Biology 304.0 (2012), pp. 172–
182. issn: 0022-5193.

[127] Ovidiu Radulescu, Alexander N Gorban, Andrei Zinovyev, and
Vincent Noel. “Reduction of dynamical biochemical reactions net-
works in computational biology”. In: Frontiers in genetics 3 (2012),
p. 131.

[128] Nacim Ramdani, Nacim Meslem, and Yves Candau. “Computing
reachable sets for uncertain nonlinear monotone systems”. In: Non-
linear Analysis: Hybrid Systems 4.2 (2010). IFAC World Congress
2008, pp. 263–278.

[129] Nacim Ramdani, Nacim Meslem, and Yves Candau. “Reachability
of Uncertain Nonlinear Systems Using a Nonlinear Hybridization”.
In: HSCC. 2008, pp. 415–428.

[130] Jörg Reichardt and Douglas R White. “Role models for complex
networks”. In: The European Physical Journal B 60 (2007), pp. 217–
224.

114

[131] Denis Repin and Tatjana Petrov. “Automated deep abstractions
for stochastic chemical reaction networks”. In: Information and
Computation 281 (2021), p. 104788. issn: 0890-5401. doi: https:

//doi.org/10.1016/j.ic.2021.104788. url: https://www.

sciencedirect.com/science/article/pii/S0890540121001048.

[132] Dalila Ressi, Riccardo Romanello, Carla Piazza, and Sabina Rossi.
“Neural Networks Reduction via Lumping”. In: AIxIA 2022 – Ad-
vances in Artificial Intelligence. Ed. by Agostino Dovier, Angelo
Montanari, and Andrea Orlandini. Cham: Springer International
Publishing, 2023, pp. 75–90.

[133] Jonathan Rosenfeld and Eby G. Friedman. “Design Methodol-
ogy for Global Resonant H-Tree Clock Distribution Networks”. In:
IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems 15.2 (2007), pp. 135–148.

[134] Ryan A. Rossi and Nesreen K. Ahmed. “Role Discovery in Net-
works”. In: IEEE Transactions on Knowledge and Data Engineer-
ing 27.4 (2015), pp. 1112–1131. doi: 10.1109/TKDE.2014.2349913.

[135] Klaus R Schneider and Thomas Wilhelm. “Model reduction by
extended quasi-steady-state approximation”. In: Journal of math-
ematical biology 40.5 (2000), pp. 443–450.

[136] Joseph K. Scott and Paul I. Barton. “Bounds on the reachable sets
of nonlinear control systems”. In: Automatica 49.1 (2013), pp. 93–
100.

[137] David A Smith and Douglas R White. “Structure and dynamics of
the global economy: network analysis of international trade 1965–
1980”. In: Social forces 70.4 (1992), pp. 857–893.

[138] Michael W. Sneddon, James R. Faeder, and Thierry Emonet. “Ef-
ficient modeling, simulation and coarse-graining of biological com-
plexity with NFsim”. In: Nature Methods 8.2 (2011), pp. 177–183.

[139] Thomas J. Snowden, Piet H. van der Graaf, and Marcus J. Tindall.
“Methods of Model Reduction for Large-Scale Biological Systems:
A Survey of Current Methods and Trends”. In: Bulletin of Math-
ematical Biology 79.7 (2017), pp. 1449–1486.

115

[140] Giuseppe Squillace, Mirco Tribastone, Max Tschaikowski, and An-
drea Vandin. “An Algorithm for the Formal Reduction of Differen-
tial Equations as Over-Approximations”. In: Quantitative Evalua-
tion of Systems. Ed. by Erika Ábrahám and Marco Paolieri. Cham:
Springer International Publishing, 2022, pp. 173–191. isbn: 978-3-
031-16336-4.

[141] Augustinas Sukys, Kaan Öcal, and Ramon Grima. “Approximating
solutions of the Chemical Master equation using neural networks”.
In: iScience 25.9 (2022), p. 105010. issn: 2589-0042. doi: https:

//doi.org/10.1016/j.isci.2022.105010. url: https://www.

sciencedirect.com/science/article/pii/S2589004222012822.

[142] Mikael Sunn̊aker, Gunnar Cedersund, and Mats Jirstrand. “A method
for zooming of nonlinear models of biochemical systems”. In: BMC
systems biology 5.1 (2011), pp. 1–21.

[143] Andrei Nikolaevich Tikhonov. “Systems of differential equations
containing small parameters in the derivatives”. In: Matematich-
eskii Sbornik. Novaya Seriya 31.73 (1952), pp. 575–586.

[144] Stefano Tognazzi, Mirco Tribastone, Max Tschaikowski, and An-
drea Vandin. “Differential Equivalence for Linear Differential Al-
gebraic Equations”. In: IEEE Transactions on Automatic Control
67.7 (2022), pp. 3484–3493. doi: 10.1109/TAC.2021.3108530.

[145] Bertrand Tondu. “A zonotope-based approach for manipulability
study of redundant robot limbs”. In: International Journal of Hu-
manoid Robotics 10.03 (2013), p. 1350023.

[146] Mirco Tribastone. “Behavioral relations in a process algebra for
variants”. In: Proceedings of the 18th International Software Prod-
uct Line Conference. Ed. by Stefania Gnesi, Alessandro Fantechi,
Patrick Heymans, Julia Rubin, Krzysztof Czarnecki, and Deepak
Dhungana. ACM, 2014, pp. 82–91.

[147] Max Tschaikowski and Mirco Tribastone. “A unified framework for
differential aggregations in Markovian process algebra”. In: Jour-
nal of Logical and Algebraic Methods in Programming 84.2 (2015),
pp. 238–258.

[148] Max Tschaikowski and Mirco Tribastone. “Approximate Reduction
of Heterogenous Nonlinear Models With Differential Hulls”. In:
IEEE Transaction on Automatic Control 61.4 (2016), pp. 1099–
1104.

116

[149] Max Tschaikowski and Mirco Tribastone. “Exact fluid lumpability
for Markovian process algebra”. In: International Conference on
Concurrency Theory. LNCS. 2012, pp. 380–394.

[150] Max Tschaikowski and Mirco Tribastone. “Spatial fluid limits for
stochastic mobile networks”. In: Performance Evaluation 109 (2017),
pp. 52–76.

[151] Max Tschaikowski and Mirco Tribastone. “Tackling continuous state-
space explosion in a Markovian process algebra”. In: Theoretic
Computer Science 517 (2014), pp. 1–33.

[152] Ke Tu, Peng Cui, Xiao Wang, Philip S Yu, and Wenwu Zhu. “Deep
recursive network embedding with regular equivalence”. In: Pro-
ceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining. 2018, pp. 2357–2366.

[153] Tamás Turányi and Alison S. Tomlin. “Reduction of Reaction Mech-
anisms”. In: Analysis of Kinetic Reaction Mechanisms. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2014, pp. 183–312.

[154] Antti Valmari and Giuliana Franceschinis. “Simple O(m log n) Time
Markov Chain Lumping”. In: TACAS. 2010.

[155] Tomáš Vejchodskỳ, Radek Erban, and Philip K Maini. “Reduction
of chemical systems by delayed quasi-steady state assumptions”.
In: arXiv preprint arXiv:1406.4424 (2014).

[156] Pu Wang, Marta C González, César A Hidalgo, and Albert-László
Barabási. “Understanding the spreading patterns of mobile phone
viruses”. In: Science 324.5930 (2009), pp. 1071–1076.

[157] Duncan J Watts and Steven H Strogatz. “Collective dynamics of
‘small-world’networks”. In: nature 393.6684 (1998), pp. 440–442.

[158] James Wei and James CW Kuo. “Lumping analysis in monomolec-
ular reaction systems. analysis of the exactly lumpable system”.
In: Industrial & Engineering chemistry fundamentals 8.1 (1969),
pp. 114–123.

[159] Max Whitby, Luca Cardelli, Marta Kwiatkowska, Luca Laurenti,
Mirco Tribastone, and Max Tschaikowski. “PID Control of Bio-
chemical Reaction Networks”. In: IEEE Transaction on Automatic
Control. 67.2 (2022), pp. 1023–1030.

[160] Douglas R White and Karl P Reitz. “Graph and semigroup ho-
momorphisms on networks of relations”. In: Social Networks 5.2
(1983), pp. 193–234.

117

[161] R. Zafarani and H. Liu. Social Computing Data Repository at ASU.
2009. url: http://socialcomputing.asu.edu.

[162] Aleš Ziberna. “Direct and Indirect Approaches to Blockmodeling
of Valued Networks in Terms of Regular Equivalence”. In: The
Journal of Mathematical Sociology 32.1 (2008), pp. 57–84.

[163] Aleš Žiberna. “Evaluation of direct and indirect blockmodeling of
regular equivalence in valued networks by simulations”. In: Ad-
vances in Methodology and Statistics 6.2 (2009), pp. 99–134.

[164] Aleš Žiberna. “Generalized blockmodeling of valued networks”. In:
Social networks 29.1 (2007), pp. 105–126.

Unless otherwise expressly stated, all original material of whatever
nature created by Giuseppe Squillace and included in this thesis,
is licensed under a Creative Commons Attribution Noncommercial
Share Alike 3.0 Italy License.

Check on Creative Commons site:

https://creativecommons.org/licenses/by-nc-sa/3.0/it/legalcode/

https://creativecommons.org/licenses/by-nc-sa/3.0/it/deed.en

Ask the author about other uses.

	List of Figures
	List of Tables
	Vita and Publications
	Abstract
	1 Introduction
	1.1 Related works
	1.1.1 Reduction of dynamical systems
	1.1.2 Regular Equivalences

	2 Background
	2.1 Ordinary Differential Equations
	2.2 Reaction Networks
	2.3 Exact reduction: backward and forward differential equivalence
	2.4 CORA

	3 Approximate BDE and FDE
	3.1 Approximate differential equivalences
	3.2 Error Bounds
	3.3 Experiments
	3.3.1 Electrical Network
	3.3.2 Polymerization model
	3.3.3 Protein interaction networks
	3.3.4 Mobile virus model

	4 Approximate Reduction through Differential Hulls
	4.1 Differential Hull
	4.2 Experiments
	4.2.1 SIR Model
	4.2.2 Polymerization
	4.2.3 Protein interaction network
	4.2.4 Electrical Network
	4.2.5 Conversion of light alkanes over H-ZSM-5

	5 Iterative -BDE for Approximate Regular Equivalences
	5.1 Regular Equivalence
	5.1.1 -BDE

	5.2 Iterative -BDE
	5.2.1 Asymptotics for BA networks

	5.3 Experiments
	5.3.1 Experimental Set-up
	5.3.2 Results

	6 Conclusion
	A Appendix Chapter 3
	A.1 Proofs

	B Appendix Chapter 4
	B.1 Proofs
	B.1.1 Proof of Theorem 11
	B.1.2 Proof of Theorem 12

	B.2 Experiments
	B.2.1 SIR
	B.2.2 Polymerization
	B.2.3 Protein interaction network
	B.2.4 Electrical Network
	B.2.5 n-Hexane model

	C Appendix Chapter 5
	C.1 Proofs

