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Abstract

This thesis is mainly focused on the computational model-
ing of solar cell cracking, multiphyics phenomena, and re-
cycling of photovoltaic (PV) modules through the finite ele-
ment method. Specifically, it consists of three parts. In the
first part, a comprehensive hygro-thermo-mechanical com-
putational framework in the 3D setting is proposed to model
the coupled degradation phenomena in the PV modules for
the durability analysis, and it is applied to the simulation
of three international standard tests of PV modules, namely
the damp heat test, the humidity freeze test, and the ther-
mal cycling test. The second part is focused on the crack
modeling of very thin and brittle silicon solar cells in the PV
modules, and a reliable computational framework integrat-
ing solid shell element formulation with phase field fracture
modeling is developed using the efficient quasi-Newton so-
lution scheme and global local approach. The excellent per-
formance is showcased through the simulation of different
boundary value problems, and then applied to predict the
crack growth of silicon solar cells when the PV modules are
subjected to different external loadings. The third part ad-
dresses the efficient recycling of PV modules through the nu-
merical modeling method by the development of 3D interface
finite element with humidity-dose enhanced cohesive zone
model for the peeling simulation to separate different layers,
and diffusion-swelling large deformation continuum theory
for the nondestructive recovery of silicon cells in the PV recy-
cling using the solvent method. With these tools at hand, it is
possible to design suitable virtual testing procedures for PV
durability and recyclability analysis.

xxiii



Chapter 1

Introduction

1.1 Introduction to photovoltaic modules

Nowadays renewable energy plays a key role in the socio-economic de-
velopment, and different types of solutions through various technologies
rapidly emerge due to the increasing demand of reducing the energy
deficit. Photovoltaic (PV) technology is the dominant choice in the re-
newable energy market, and it is not only widely used for the industry,
but also for the individual needs.

A PV module is usually a laminate composed of tempered glass, so-
lar cells, backsheet and encapsulant layers, see Fig. 1. Different compo-
nents are adhesively bonded to each other [1]. This multilayer system
can ensure the safety and performance of PV modules but forms a num-
ber of interfaces that are potential paths for contaminant ingress, causing
delamination [2], which eventually promotes many other further ageing
mechanisms such as polymer degradation, corrosion of metalic materials
inside the system, loss of light transmission, and so on [3, 4]. The reliabil-
ity of encapsulation is therefore crucial for the durability and the service
life of PV modules [5, 6]. The most commonly used encapsulant material
in the existing PV installations is Epoxy Vynil Acetate (EVA) that, inter-
posed in the form of layers between the glass and the silicon solar cells,
and between the solar cells and the backsheet, holds the components to-
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Figure 1: The general structure of a typical PV module [1].

gether and protects the module from outside harsh environments [7].

The conversion of solar energy into thermal energy for the various
industrial processes not only reduces the dependency on fossil resources
but only minimizes the harmful emissions [9]. Photovoltaic technolo-
gies are widely used in the industrial processes, such as steam demand
processes, industrial space heating, buildings and so on [10]. The major-
ity of solar energy applications lies in the solar water heating industry,
which is regarded as the most effective alternative among all the avail-
able solar thermal technologies. Solar water heating system usually con-
sists of solar collectors and storage space, which works on the basis of
the density difference between hot and cold water. Another applica-
tion of solar energy is the refrigeration and air-conditioning system, and
generally there are two different solar air-conditioning systems includ-
ing the closed and open systems. Closed air-conditioning solar systems
are capable of being installed with high temperature collectors, while
open air-conditioning solar systems can heat the ambient air to certain
temperature and regenerate the sorbent. Fig. 2 shows the rooftop air-
conditioning solar system [8]. Due to the increasing energy demand in
agriculture, photovoltaic technologies have also been widely applied to
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Figure 2: A typical solar air-conditioning system (adapted from [8]).

Figure 3: Photovoltaic greenhouses for agricultural purposes.
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the agricultural greenhouses, which aims at creating an appropriate envi-
ronment for crops growth. According to the previous studies [11, 12, 13],
the amount of sunlight that enters the greenhouse can be significantly
increased by the use of semi-transparent and transparent photovoltaic
modules, and besides, light absorption with different wavelengths can
be provided for the growth of different plants through the selective plas-
tic films. As a result of the wide application of photovoltaic greenhouse,
the anti-season planting becomes possible, leading to higher agricultural
income [14]. Fig. 3 shows the photovoltaic greenhouse for agricultural
purposes. Another interesting photovoltaic application is to improve the
traditional breeding by providing sufficient green energy in harsh envi-
ronment, such as fishery shown in Fig. 4. The combination of photo-
voltaic power generation and fishery can improve the efficiency of land
usage and increase productivity per unit area with the establishment of
photovoltaic panels over the water that breeds fishes and shrimps. On
the other hand, the purification of waste water to alleviate the environ-
mental pollution has received a lot of attention, and the photovoltaic
technologies can also significantly contribute to this industrial process.
Fig. 5 shows the integrated solar waste water purification system. The
oxidation ditch driven by the solar system can work without the stor-
age battery to remove the nitrogen and phosphate from the waste wa-
ter [15]. Generally speaking, photovoltaic technologies have been explo-
sively developed through its combination with new energy requirements
and thus play a significant role in the modern industrialization.

1.2 Durability of photovoltaic modules: Accel-
erated hygro-thermo-mechanical ageing

Photovoltaic technology has been widely recognized as a promising so-
lution for the energy security and the low-carbon economy in the near
future owing to its high efficiency and low manufacturing cost [16]. De-
spite the advantages and strengths, the PV modules are sensitive to mois-
ture diffusion as well as chemical reactions, especially in hygrothermal
outdoor environments [17, 1, 18, 19, 20], and thus its reliability is not
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Figure 4: Photovoltaic fishery.

Figure 5: Photovoltaic application in waste water purification.
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still very competitive. A great deal of research has been focused on in-
vestigating the degradation mechanisms, see [21, 22], among many oth-
ers, and most of them studied the diffusion phenomena at the constant
temperature and humidity conditions. However, the realistic evaluation
of PV durability is very challenging due to the coupling between the
reaction-diffusion and thermo-mechanical problems, and thus requires a
multiphysics framework to comprehensively study the different failure
mechanisms under changing environments [23].

Reliability is defined as the probability that a product will perform
normally under certain conditions for a certain period of time in the con-
cept of engineering design [24]. In the field of PV industry, reliability and
quality are strongly interrelated with each other. High-quality PV mod-
ules will lead to high reliability of the deployed products in the outdoor
environment. It is worth noting that the power loss of the PV modules
needs to be quantified for the assessment of the service lifetime. Accel-
erated testing of the PV modules to speed up the degradation process
is frequently employed to identify different failure modes for research
purposes. Compared with the uncontrolled outdoor ageing, the accel-
erated testing approaches show the monotonous degradation tendency.
Accelerated ageing tests are requested by the International Electrotech-
nical Commission (IEC) standards for quality control and assessment of
power loss after a certain number of humidity and temperature cycles
inside the environmental chamber, including the thermal cycling tests,
humidity freeze tests, and damp heat tests. The thermal cycling test re-
quires the control of both humidity and temperature, and it is a stress test
due to the difference of thermo-mechanical properties between different
layers in the photovoltaic laminate. The humidity freeze test is similar
to the thermal cycling test in terms of the maximum and minimum tem-
peratures inside the chamber, but the time period range at the maximum
temperature is much longer. In the damp heat test, the constant tempera-
ture and humidity are imposed on the photovoltaic modules to accelerate
the ageing process during the entire period.

The EVA layer of PV modules is usually made of polymeric materi-
als, and permeable to moisture, which diffuses from the edges, backsheet
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Figure 6: EL images of PV modules with moisture induced dimmer areas
during the damp heat test (adapted from [25]).

and interspaces between different solar cells. This moisture diffusion can
induce chemical oxidation of grid lines deposited on the surface of solar
cells and subsequently lead to degradation and power loss, which has
been reported in the damp heat test of PV modules exposed to the very
aggressive environment with 85 ◦C temperature and 85% relative hu-
midity [25, 26, 27]. As shown in Fig. 6, the dark bands can be observed
at the edges of solar cells in the captured EL image after the test, which
were not detected in the beginning but became thicker during aging. It
is important to remark that in photovoltaics, the larger the dark – elec-
trically inactive – area, the higher the electrical power loss of the module
[28]. Particularly, the dark bands indicate the moisture ingress into the
module from the edges of the solar cells over time. Since moisture can
induce chemical reactions inside the modules and delamination failure
between different laminae, it is crucial to establish a reliable and accu-
rate modeling strategy of moisture diffusion along the EVA layer. The
complexity regards the strong dependency of moisture diffusion coeffi-
cient of EVA on the temperature, which indicates the coupling between
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the moisture and thermal fields, as shown in [29]. On the other hand,
moisture diffusion also degrades the cohesive energy of EVA layer, giv-
ing rise to the delamination failure between the different laminae, such
as the decohesion between solar cell and backsheet or tempered glass,
which corresponds to the coupling between the mechanical and mois-
ture fields [30, 31, 32].

Previous investigations on chemical reactions in EVA have been re-
ported in the literature, including both experiments [33, 34] and com-
putational modeling [29, 35]. Existing computational methods for pre-
dicting the environmental degradation of PV mainly study the diffusion
under constant hygrothermal conditions and reliable models to predict
the degradation phenomena under coupled thermo-mechanical loading
cases are sorely lacking. Moreover, the diffusion processes are usually
dependent on temperature, and spatial variation may also exist in the
presence of cracks inside the PV modules. Therefore, it is essential to es-
tablish a comprehensive hygro-thermo-mechanical modeling framework
to the coupled degradation phenomena over the 3D domain of the PV
modules. This modeling method should enable the possibility to recall
any realistic initial and boundary value problems and to simulate differ-
ent accelerated aging tests with changing environmental loadings, such
as the humidity freeze test, which could be very useful in estimating the
maintenance costs and economic sustainability of PV systems.

1.3 Durability of photovoltaic modules: Silicon
cell cracking

During the fabrication process of silicon solar cells, permanent defor-
mations are induced from the thermomechanical loadings, which corre-
sponds to the residual stress that leads to cracks. It was pointed out in
[36] that 2 % of the silicon wafers are broken, causing the increase of pro-
duction cost and material losses. Even though the fabrication process can
be optimized, the imperfections inside the silicon cells during production
are unavoidable, especially when the wafer thickness is reduced [37, 38].
Besides, crack formation of silicon cells can also take place during the
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transportation and installation of PV modules in the field, as well as dur-
ing the operation when subjected to the harsh environmental conditions
such as wind, snow loading, hail impacts and so on [39, 40]. The cracks
of silicon solar cells are usually invisible, but could produce electrically
disconnected regions that significantly increase the electrical resistance,
and hence reduce the power output of PV modules. Overall, the length,
width and orientation of cracks in the silicon wafers directly influence
the output of solar panels as pointed out in [41, 42, 43]. According to
the survey of over 200 PV modules, more than 20 % of power loss has
been detected due to the cell cracks in combination with EVA delami-
nation and degradation [44]. Experimental studies in [45] reported that
approximately 4 % power degradation are caused by cracks of solar cells
in the mechanical load tests. When the disconnected cell area caused
by crack formation and propagation is greater than 8 % of the total cell
layer, the associated power loss was found to be roughly proportional to
the electrically inactive area [27]. Regarding the crack direction in solar
cells, several types of cracks can be observed from previous experimental
studies, including parallel and perpendicular cracks, +45 and -45 cracks,
and multiple direction cracks [46], as shown in Fig. 7. Different cracks
lead to different power degradation of PV modules. Therefore, it is of
utmost importance to develop reliable simulation tools for the fracture
modeling of brittle thin-film solar cells in order to understand the im-
pact of cracks on the performance of PV modules.

Microcracks of silicon solar cells can be formed at different stages, in-
cluding the cutting of an ingot, the lamination of PV modules, the trans-
portation and installation, and the environmental loadings during the
service lifetime. The silicon substrates for the manufacturing of PV mod-
ules are typically produced by casting the silicon ingots and subsequent
wafer sawing, and the wire sawing of silicon ingots can result into the
cracking of wafers [48]. According to the previous study [47], the risks
of crack formation increase as the thickness of the silicon solar cells has
been drastically decreased. Besides, due to the difference of thermal ex-
pansion properties, thermo-mechanical residual stress can be generated
during the soldering process, leading to the silicon solar cell crackings.
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Figure 7: Different crack patterns in silicon solar cells [47].

On the other hand, the residual stress can also be generated during the
lamination process of PV modules, which increases the propensity of
crackings. Besides the factors during production, cracks of silicon so-
lar cells can be produced due to improper transportation as reported in
[49]. Currently there is no standardard on the way of PV transportation,
and it is pointed out in [39] that transporting the PV products vertically
can reduce the risks of breaking silicon solar cells compared to the way
of transporting the modules horizontally. Finally, cracks of silicon solar
cells and power degradation may be caused by the environmental load-
ings during the service lifetime, such as wind [50], snow loading [51],
and hail impact [52]. Such environmental loadings increase the stress
beyond the residual stress from the production processes, and lead to
higher crack probability of silicon solar cells [36]. Although cracks of
silicon solar cells are unavoidable as mentioned above, it is of signifi-
cant importance to identify the crack characteristics so as to improve the
durability of the photovoltaic modules.
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1.4 Sustainability of photovoltaic modules: Re-
cycling of the end-of-life PV modules

Massive PV modules have been deployed in the recent decades, and
given the service lifetime of approximately 30 years, the pressure to han-
dle the end-of-life modules starts to emerge. The PV modules that ap-
proach the end of the service lifetime can be reused or repaired so as
to lower the environmental impacts without additional energy and ma-
terial investment [38]. Although numerous economic and regulatory
challenges must be addressed, the reusing strategies of PV modules are
worth investigating from the circular-economy point of view. The key is
that the burden from the repair or reuse of end-of-life PV modules should
be lower than the environmental benefit from the subsequent reuse. Note
that the reuse of PV modules requires the necessary repair for safety and
performance. Due to the shorter service lifetime and lower power effi-
ciency of reused PV modules, the system owners may not gain much eco-
nomic values from the second-hand products [53]. However, to avoid the
material loss of end-of-life modules, the landfills have been discouraged
by the European policy since the beginning of this century. The values of
end-of-life PV materials are estimated to be approximately 15 billion US
dollars and 2 billion new PV products can be manufactured by the reuse
of the reclaimed materials, which accounts for around 630 GW of new
capacity [54]. Furthermore, there is a strong incentive to avoid environ-
mental pollution for the recycling of end-of-life PV modules [55, 56]. In
general, the environmental requirement and material recovery necessi-
tate the development of reliable PV recycling techniques for the circular
source of PV materials.

The improper disposal of PV panels by landfilling is intolerable nowa-
days as the hazardous metal components such as lead and cadmium,
among others, would cause pollution to the environment [57]. Besides,
it is of great importance to recover the precious silicon wafers and other
metals for the manufacturing of new products to reduce the cost, sup-
porting the sustainable development of energy production [58, 59, 60,
61]. Normally, the PV module is a laminate structure composing of dif-
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ferent plies including tempered glass, silicon solar cells, and backsheet,
which are bonded to each other by ethylene-co-vinyl acetate (EVA) lay-
ers [16]. Therefore, many approaches have been developed in the relatd
literature in order to separate the different layers by the removal of EVA
and then reclaim valuable materials in the end-of-life PV modules [1, 62,
63, 64]. The use of nitric acid to remove EVA layers was proposed in
[65], but the resulting NOx emissions are harmful to the environments.
Thermal decomposition is another alternative method to remove EVA
layers but leads to the release of harmful gas because of the existence of
fluorinated compounds [66, 67, 68]. Also, some thermal or mechanical
pretreatments are designed to dissemble the backsheet before the further
recycling process [69, 70, 71]. In addition, recycling of PV modules us-
ing the organic solvent method has received a great deal of attention in
the recent years [72, 73, 74, 75, 76]. In spite of these efforts, it is very
challenging to reclaim unbroken silicon wafers, which is a key problem
in the PV recyling as the thickness of silicon cell layers was reduced to
approximately 0.1 mm after 2006 [77].

The major factor responsible for the degradation of PV modules is
the aging of EVA layers, while the service lifetime of silicon wafers is
much longer than that of PV modules [72]. In this regard, much cost
can be saved with the reclaim of structurally intact silicon wafers for the
manufacturing of new PV products, since the silicon ingot manufactur-
ing process can be omitted. High environment pollution and energy con-
sumption can be avoided with such an ideal reusing strategy that also re-
duces around 40% cost of PV production [78]. Unfortunately, very scarce
research activities have been devoted to the nondestructive reclaim of in-
tact silicon wafers in PV recycling, such as thermal decomposition at spe-
cific heating rates [79] and breakage of glass layer before thermal treat-
ment [80]. Although it is possible to recover the intact silicon wafers
using the these methods, the thermal decomposition is actually difficult
to control and the cracking of glass during the treatment tends to break
the the silicon wafers. In addition to this, results in [72] have indicated
that the swelling of EVA during the recycling process using the solvent
method can lead to the cracking of silicon cell layer. Therefore, there is
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an urgent need to develop a suitable computational framework to help
control the recycling process for the recovery of structurally intact silicon
wafers.

In the recent decade, recycling of photovoltaic modules have received
a lot attention, and different organizations are established to address
this topic. PHOTORAMA is an EU funded innovation action striving
to improve recycling of solar panels, and it is a consortium consisting
of 13 organizations from 2021 to 2024. Another interesting project is the
CABRISS, which is also an EU funded consortium with 11 companies
and 5 research institutes for pioneering a circular economy on photo-
voltaics. A France-based start-up named ROSI has claimed to develop an
innovative and viable process to recover silicon from the end-of-life pho-
tovoltaic modules. Besides, there is another European project ReProSo-
lar led by Veolia Germany that designs a new delamination technology
which is able to separate solar cells efficiently from the glass plate for the
recovery of all materials without shredding the photovoltaic modules.

1.5 Outline of the thesis

This work is mainly focused on the computational modeling of thin-
walled photovoltaic laminates with application to the durability and re-
cycling analysis. In this section, each chapter in the following is outlined.

Chapter 2 presents the comprehensive computational framework at
finite deformation for the multiphysics modeling of the degrdation phe-
nomena in the photovoltaic modules. The developed framework is then
applied to simulate the three standard international tests of PV modules,
including the damp heat test, the humidity freeze test, and the thermal
cycling test.

Chapter 3 addresses the crack modeling of brittle silicon solar cells
in the photovoltaic modules using the global-local approach with solid
shell element formulation. For the efficient modeling, the quasi-Newton
monolithic solution scheme is proposed, and its excellent performance is
demonstrated by the comparison with the standard staggered Newton
solution scheme through the different boundary value problems. This
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computational framework is then applied to the modeling of silicon solar
cell crackings in the PV modules under different boundary conditions,
which showcases its capacity to predict the crack growth in the thin-film
silicon solar cells.

Chapter 4 outlines the numerical simulation of PV recycling prob-
lems. It consists of two parts. In the first part, a large deformation theory
is proposed to model the swelling-diffusion problem in the PV recycling
using the solvent method, which aims at predicting the EVA swelling in-
duced cracking of silicon solar cells. In the second part, given the degra-
dation of EVA in the end-of-life PV modules, a computational framework
integrating large deformation interface element with the polynomial co-
hesive zone model incorporating the moisture and temperature effects is
developed to simulate the peeling tests of PV panels.

Chapter 5 addresses the main conclusions and future developments
of this thesis.
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Chapter 2

Multiphysics modeling for
the durability analysis of
photovoltaic laminates

The main content of this chapter is taken from my own publication - Z.
Liu, J. Reinoso, M. Paggi. “Hygro-thermo-mechanical modeling of thin-
walled photovoltaic laminates with polymeric interfaces” [16].

The durability analysis of PV modules has received much attention in
the past decades [81, 82, 16, 83], and modeling polymeric materials EVA
is quite challenging as it requires a multiphysics framework to predict
their overall performance and degradation accurately [84]. This chapter
establishes a comprehensive computational framework for the coupled
modeling of hygro-thermo-chemo-mechanical degradation phenomena
of PV laminates for durability analysis.

Regarding the thermo-mechanical behavior, the EVA polymer shows
a strong thermo-visco-elastic constitutive response, and its Young’s mod-
ulus varies within a range by three orders of magnitude depending on
temperature, as experimentally reported in [85, 86]. In order to approx-
imate the power-law trend from experimental observation, the gener-
alized Maxwell rheological models can be used to determine the relax-
ation modulus with exponential type equations. However, a great num-
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ber of elements as well as model parameters have to be taken into ac-
count, which requires laborious calibration work. To simplify the proce-
dure of parameter identification, the fraction calculus method has been
proved to be very effective for the modeling of visco-elastic constitutive
behaviour [87, 88, 89]. Thus this formulation has been adopted to de-
scribe the rheologically complex behaviour of polymeric EVA, whose mi-
crostructure changes with temperature, and according to [90], only two
temperature dependent parameters are required for its complete descrip-
tion.

To model these coupled nonlinear hygro-thermo-mechanical prob-
lems in PV modules, a comprehensive computational framework in the
three-dimensional space, where the coupled thermo-mechanical prob-
lem and the moisture diffusion are solved in a staggered manner, is re-
quired so that the dependency of diffusion properties of EVA on the
thermo-mechanical fields can be accounted for properly. Analytical solu-
tion for the moisture diffusion along EVA layer proposed in [29] assumes
constant diffusivity without any update based on the actual temperature,
and the spatial variation due to temperature dependency is ignored. Al-
though it might be feasible in the steady state temperature case, such as
damp heat test, its validity in the cases of cyclic temperature boundary
loading in the humidity freeze and thermal cycling tests is hard to guar-
antee. Besides, since moisture can also diffuse from the channel cracks
and interspaces between the solar cells, it is almost impossible to obtain
analytical solution in these complex cases. To overcome the limitations
of analytical solution methods, the finite element modeling methodol-
ogy in the three-dimensional setting is proposed to simulate the coupled
problems in this work. The thermo-mechanical phenomena in the PV
laminate, which is much faster than moisture diffusion, is firstly solved
through a monolithic fully implicit solution scheme, see Fig. 8. The calcu-
lated temperature and displacement fields inside the EVA layer are then
projected to the nodes of another finite element model specific for mois-
ture diffusion, so that the diffusion properties at the corresponding time
and space can be determined accordingly. With updated diffusion coeffi-
cient from thermo-mechanical solution at each time increment, the mois-
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Figure 8: The proposed solution scheme for the 3D hygro-thermo-
mechanical modeling framework.

ture diffusion can be solved by the Newton-Rapson scheme in a standard
way.

To save the computational efficiency, the EVA layers are modelled
using zero-thickness interfaces elements with thermo-visco-elastic cohe-
sive zone model based on the fractional calculus method, and a thermo-
mechanical solid shell formulation incorporating the EAS and ANS meth-
ods to remedy potential locking pathologies, which is kinematically com-
patible with the 3D interface element, is established here for the mod-
eling of the different thin-walled laminae in PV modules such as glass
layer, backsheet and silicon solar cell layer. Modeling thermo-mechanical
responses in thin-walled structures necessitates the consistent derivation
of formulations accounting for the stress and heat transfer across the in-
ternal interfaces. To use the 3D constitutive laws without further mod-
ifications, recent advances in shell element formulation aim at incorpo-
rating the three-dimensional effects into the corresponding implemen-
tation. To achieve this, it is pointed out in [91, 92] that a linear normal
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strain distribution through the thickness direction has to be embodied in
the shell element formulation. In this regard, two paths have been fol-
lowed: (i) shell formulations that include the linear distribution using
either quadratic displacement distribution or enhanced strain methods
through the reference surface of body in the thickness direction [93, 94,
95, 96, 97, 98], and (ii) shell formulations relying on the solid shell con-
cept through the parametrization of the top and bottom surfaces of the
body [99, 100, 101, 102, 103]. The latter has been extensively developed in
the past decades since the complex update procedure regarding the rota-
tion tensor can be completely avoided. However, the extension of solid
shell formulation to thermo-mechanical applications has received very
limited attention, see [104, 105, 106, 107]. Besides, to alleviate the locking
pathologies in shell formulations complying with the low-order kine-
matic interpolation, different numerical strategies have been proposed
such as the EAS method [108, 109, 110, 111], the ANS method [112, 113],
and combination of them [114, 115, 116].

This section is structured as follows. In Section 2.1, the primary as-
pects of coupled thermo-mechanical analysis along with the definition
of kinematics and constitutive formulation, the thermo-visco-elastic co-
hesive zone model through the fractional calculus method, as well as
temperature and gap dependent moisture diffusion is presented in de-
tail. The weak forms of the governing equations for the hygro-thermo-
mechanical problems and the corresponding finite element discretization
are given in Section 2.1.4. In particular, the Hu-Washizu variational prin-
ciple with thermo-mechanical solid shell formulation accounting for the
EAS and ANS methods to alleviate locking effects is outlined, and this
section also covers the 3D thermo-mechanical interface and moisture dif-
fusion finite element implementation, respectively. Details of the numer-
ical algorithm for the implementation of the hygro-thermo-mechanical
framework with staggered solution scheme are provided in Section 2.1.5.
Then this modeling methodology is applied to simulate the three inter-
national standard tests of PV laminates, namely the damp heat test, the
humidity freeze test, and the thermal cycling test, and numerical predic-
tions are compared with analytical solution for the damp heat case with

18



the constant temperature boundary condition, as well as experimental
electroluminescence images obtained from the thermal cycling test with
the cyclic temperature boundary condition, which is presented in Section
2.2.

2.1 Hygro-thermo-mechanical modeling frame-
work for the PV laminate

In this section, the modeling framework for the thermo-mechanical cou-
pling in thin-walled PV laminae separated by thermo-visco-elastic in-
terfaces and moisture diffusion along the polymeric layers is presented.
Moisture diffusion takes place in the polymeric encapsulant layers of
laminate, which usually percolates from the free edges and towards the
center of solar cell panels. The encapsulant layers are made of visco-
elastic polymer materials and permeable to moisture, which is one of
the dominant factors leading to the electrical degradation of PV mod-
ules during the service life. Besides, moisture diffusion can also degrade
the adhesion strength of encapsulant layers, causing delamination fail-
ure between silicon solar cells and backsheet or the glass superstrate. In
order to effectively model the cohesive mechanical behavior of encapsu-
lant layers, a 3D cut-off traction-separation law is formulated.

2.1.1 Coupled thermo-mechanical kinematics formulation

For thermo-mechanical boundary value problems in solids, displacement
and absolute temperature fields are usually chosen as the independent
fields in the coupled governing equations. In the 3D setting, let B0 ⊂ R3

denotes the reference configuration, while Bt ⊂ R3 denotes the current
configuration. The position vectors of material points in the reference
and current configurations are represented by X and x, respectively. The
displacement field is denoted as u(X, t) : B0 × [0, t] → R3, which is a
vector valued function during the time interval [0, t]. The absolute tem-
perature field T (X, t) : B0× [0, t] → R+ is a smooth scalar-value function.
As shown in Fig. 9, the body motion denoted by φ(X, t) : B0× [0, t] → R3
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Figure 9: The finite thermo-mechanical deformation of a three-dimensional
body from the reference configuration to the current configuration.

maps the material point X in the reference configuration onto its corre-
sponding point x in the current configuration.

The mechanical boundary conditions are imposed on the boundary
of deformable body in the reference configuration ∂B0, which is divided
by disjoint sets ∂B0,u ⊂ ∂B0 and ∂B0,t̄ ⊂ ∂B0 with ∂B0,u ∩ ∂B0,t̄ = ∅. The
Dirichlet boundary condition u = ū is applied on ∂B0,u, while Neumann
boundary condition characterized by prescribed tractions σ · n = t̄(X, t)

is applied on ∂B0,t̄. Similarly, the temperature boundary condition T =

T0 is prescribed over ∂B0,T ⊂ ∂B0, while the heat flux boundary condi-
tion q = q̄ is prescribed over ∂B0,q̄ ⊂ ∂B0, such that ∂B0,T ∩ ∂B0,q̄ = ∅.
Besides, the deformable body can also be divided into parts Bi

0(i > 0)

such that B0 = ∪iBi
0, which could be assigned with different mechanical

and thermal constitutive behaviors.
The deformation gradient, which is defined as the gradient of defor-

mation map with regard to the reference configuration, can be expressed
as

Fu := ∂Xφ(X, t) = ∇Xφ(X, t), (2.1)
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where ∇X[•] denotes the Lagrangian gradient operator. This operator
represents the map of line element dX in the reference configuration
onto the corresponding line element dx = FudX in the current config-
uration. The Jacobian of the deformation is defined as the determinant
of deformation gradient Ju := det[Fu] > 0, where det[•] represents the
determinant operator.

The covariant tangent vectors Gi(ξ) and gi(ξ) are defined as the par-
tial derivatives of position vectors with respect to the convective coordi-
nates ξi in the reference and current configurations, respectively

Gi(ξ) :=
∂X(ξ)

∂ξi
, gi(ξ) :=

∂x(ξ)

∂ξi
, i = 1, 2, 3. (2.2)

The contravariant vectors are defined by Gi · Gj = δji and gi · gj = δji ,
and the metric tensors are defined as G = GijG

i ⊗ Gj = GijGi ⊗ Gj ,
g = gijg

i⊗gj = gijgi⊗gj . The left and right Cauchy-Green deformation
tensors, which are derived from displacement field vectors, are given by

Cu := [Fu]Tg[Fu], bu := [Fu]G−1[Fu]T. (2.3)

The Green-Lagrange strain tensor Eu is defined as

Eu :=
1

2
[Cu −G] . (2.4)

In order to alleviate the locking effects according to [106], an incompat-
ible strain tensor Ẽ is incorporated into the displacement-derived quan-
tities, and the total Green-Lagrange strain by additive decomposition
takes the form of

E := Eu + Ẽ. (2.5)

This decomposition constitutes the fundamentals of assumed strain
method, and thus the enhanced right Cauchy-Green tensor C is given by

C := Cu + C̃ = 2(Eu + Ẽ) +G. (2.6)

Then the enhanced deformation gradient F can be derived by the po-
lar decomposition theorem. The displacement derived deformation gra-
dient can be decomposed as Fu := RUu, where R and Uu represents the
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rotation and right-stretch tensors, respectively. Based on Eq. (2.6), the
modified right-stretch tensor U that accounts for the incompatible strain
is calculated as

U := C1/2. (2.7)

Since the calculation of rotation tensor is straightforward, the modi-
fied deformation gradient F can be computed as

F := RU. (2.8)

The modified corresponding Jacobian is given by J = det[F].
Consider P0 ⊂ B0 from the continuum body B0 in the reference con-

figuration with the delimiting boundary ∂P0, and its spatial counterpart
Pt ⊂ Bt, with the boundary ∂Pt in the current configuration. It is postu-
lated in Cauchy stress theorem that there is a linear dependency between
the normal vector n of ∂Pt and traction t through Cauchy stress tensor
σ, which is given by

t = σ · n. (2.9)

In line with this theorem, the first Piola–Kirchhoff stress tensor P,
which is also known as nominal stress tensor, is defined as

P = Jσ · F−1. (2.10)

The first Piola–Kirchhoff traction vector T̂ is defined as T̂ = P ·N, which
satisfies the force equality T̂dS = tds, and N denotes the normal di-
rection in the reference configuration. Accordingly, the second Piola–
Kirchhoff stress tensor S, which is a symmetrical stress tensor, is given
by

S = F−1 ·P = JF−1 · σ · F−1. (2.11)

Analogously, Stokes heat flux theorem in the current configuration
reads,

qn = q · n, (2.12)

where qn and q represent the scalar and vector heat flux, respectively, and
n denotes the normal direction in the current configuration. The material

22



heat flux Q can be determined from the equality condition q · nds =

Q ·NdS, and thus its definition can be expressed as

Q = JF−1 · q. (2.13)

Recalling the theoretical developments outlined in [117, 118], the Helmholtz
free energy function for the thermo-elastic Kirchhoff-Saint-Venant consti-
tutive material law is given by

Ψ(E, T ) =
1

2
λ (tr[E])

2
+ µtr[E2]

− 3καtr[E] (T − T0) + ρ0cp

[
(T − T0)− T log

T

T0

]
,

(2.14)

where κ is the bulk modulus, λ and µ are the Lame constants, ρ0 is
the mass density, α represents the thermal expansion coefficient and T0

stands for the reference temperature.
The second Piola–Kirchhoff stress tensor can be obtained from the

constitutive relationship, which reads

S := ∂EΨ = λ (tr[E])1+ 2µE− 3κα (T − T0)1, (2.15)

where 1 is the second-order identity tensor. The constitutive operators
in the curvelinear settting take the form

C = ∂2EEΨ =
[
λGijGkl + µ

(
GikGjl +GilGjk

)]
Gi ⊗ Gj ⊗ Gk ⊗ Gl,

(2.16a)
Z = ∂2TEΨ = −3καGijGi ⊗ Gj . (2.16b)

where C is the fourth-order material stiffness tensor, and Z is the second-
order tensor associated with the coupling term of the Helmholtz func-
tion.

Assuming isotropic conductivity k = kgijgi ⊗ gi [119], the material
heat flux vector in the curvilinear setting can be expressed as

Q = −JF−1kF−T∇XT

= −Jk
(
Gi ⊗ gi

) (
gklgk ⊗ gl

) (
gj ⊗Gj

)
∇XT

= −JkC−1∇XT.

(2.17)
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where C−1 stands for the inverse of right Cauchy-Green tensor. The for-
mulation can be further simplified as Q = −k0G∇XT under isotropic
assumption, where k0 represents the thermal conductivity in the refer-
ence configuration.

2.1.2 Thermo-visco-elastic cohesive interface model for poly-
meric layers

Assuming that the polymeric layers can be treated as zero-thickness im-
perfect interfaces, the displacement and temperature fields inside the
encapsulant layers are allowed to be discontinuous through the thick-
ness direction. The cohesive zone model assumes the existence of free
energy density per unit undeformed area, and thermo-mechanical cou-
pling can be achieved by making conductivity properties dependent on
the cohesive damage and interface tractions dependent on the tempera-
ture field. Let define the displacement gaps along the interfaces in three-
dimensional setting as: ∆ = (∆n,∆t,∆s), where ∆n,∆s,∆t stand for
normal, tangential and shear displacement gaps, respectively, and tem-
perature gap ∆T along the interface, which play the role of internal vari-
ables for the description of the debonding process along polymeric inter-
faces.

Hence, the coupled thermo-mechanical model for deformable lami-
nae body is enriched due to the presence of cohesive traction field and
heat flux through the thickness direction of polymeric layer. Under the
assumption of continuity along the interface, the out-of-plane tearing
and in-plane sliding traction vectors are defined as

τI =

{
KI(t, ⟨T ⟩)∆I , if ∆I ∈ JI

0, if ∆I /∈ JI
(2.18)

where JI = (−δcI ,+δcI), ⟨T ⟩ is the average temperature along the inter-
face and I = t, s, while the opening traction component σ is defined as

σ =


ϵ∆n, if ∆n < 0

Kn(t, ⟨T ⟩)∆n, if ∆n ∈ Jn

0, if ∆n /∈ Jn and ∆n ≥ 0

(2.19)
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Figure 10: The traction versus separation curves of the polymeric interface:
(a) sliding and shearing modes, and (b) the opening mode.

where Jn = (0, δcn), and ϵ is the penalty parameter in compression [120].
This corresponds to a tension cut-off traction separation cohesive law, in
which the interface cannot transfer tractions when the critical opening
gap δcn is reached. The similar brittle behavior is assumed for the tearing
and sliding modes, see Fig. 10.

To obtain the structural response of encapsulant layers, the stiffness
Kn is related to the actual stiffness of polymeric materials in the nor-
mal direction, which is calculated as the ration between the Young’s
modulus Epoly and its thickness hpoly, i.e., Kn = Epoly/hpoly . Analo-
gously, the tearing and sliding stiffness can be expressed as: Ks = Kt =

Epoly/[2hpoly(1 + νpoly)]. Since polymeric materials have thermo-visco-
elastic constitutive behaviors, the Young’s modulus Epoly depends both
on the average temperature ⟨T ⟩ and time history t. To synthetically char-
acterize these dependencies, a fractional calculus approach proposed in
[88] is adopted here instead of the use of Prony series representation,
which has been proved to be very effective for parameters identification
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[90, 121]. Accordingly, the modulus Epoly is given by

Epoly(t, T ) =
a(T )h(t, T )−α(T )

Γ(1− α(T ))
(2.20)

where a and α are two temperature dependent functions, such that 0 <
a, α < 1, and Γ(t) is the Euler gamma function

Γ(t) =

∫ ∞
0

e−xxt−1 dx (2.21)

The function h(t, T ) is a time history and temperature dependent func-
tion, which is used to model the rheologically complex polymeric materi-
als when the time-temperature superposition principle is not applicable.
This can be ascribed to the change of polymer microstructure driven by
temperature above a threshold. Hence, this history function h(t, T ) is
equal to the difference between the current time t and t0 corresponding
to the microstructure modification.

With regard to the heat conduction, it is assumed that the heat flux
across the interface is oriented in the direction orthogonal to the thin
polymeric surface. Thus, q1 = q2 = 0 and q = q3 is expressed as

q =

{
−h0

(
1− ∆n

δcn

)
⟨T ⟩ if ∆n ∈ Jn

0 if ∆n /∈ Jn
(2.22)

where h0 is the thermal conductivity of interface without crack opening,
i.e., ∆n = 0. Note that the heat conductivity is assumed to be a decreas-
ing function of gap opening so that the partial heat transfer in case of
damaged interface can be taken into account properly [122].

2.1.3 Moisture diffusion along polymeric interfaces

Durability tests of photovoltaic laminates, including damp heat test, hu-
midity freeze test, and thermal cycling test, are characterized by time
dependent temperature and moisture conditions in accordance with pre-
scribed ramps inside a climate chamber. Moisture diffusion mainly takes
place along the encapsulant polymeric layers between the solar cell and
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tempered glass or backsheet. Generally, the aim of the numerical method
is to predict the moisture content c(x1, x2, x3, t) inside the polymeric layer
for each material point and time.

The boundary value problem for moisture diffusion, in which an im-
posed moisture content c∗ is applied to the boundary, can be described
as follows

∂c
∂t (x1, x2, x3, t)−D∇2c (x1, x2, x3, t) = 0 in Bpoly × [0, tf ]

c (x1, x2, x3, 0) = 0 in Bpoly

c (x1, x2, x3, t) = c∗ in ∂Bpoly × (0, tf ]

(2.23)

where D is the moisture diffusion coefficient.
It should be pointed out that the moisture diffusion is characterized

with a different time scale from that of thermo-mechanical problem. The
characteristic velocity of moisture diffusion is related to the diffusion co-
efficient D, while that of temperature diffusion is governed by the ratio
k0/ρcp. Given the characteristic values for polymeric layers, the ratio be-
tween these two physical phenomena is

[k0/ (ρcp)] /D ≈ 106.

Hence, the moisture diffusion is dependent on the coupled thermo me-
chanical problem and not viceversa since heat transfer is about six order
faster than moisture diffusion. Based on the experimental evidence re-
ported in [29], the moisture diffusion coefficient should be considered as
temperature and gap dependent Arrhenyus type function

D =

{
A exp

(
− Ea

TR

)
, if ∆n ≤ δcn

A exp
(
− Ea

TR

)
∆n

δcn
, if ∆n > δcn

(2.24)

For the purpose of accounting for the debonding effect of the encapsulant
layer on the moisture diffusion, D is assumed to be a linear increasing
function of the interfacial gap ∆n when it overcomes the critical value
δcn. Given the different time scales of moisture diffusion and heat trans-
fer, a staggered scheme is adopted for the solution of this computational
framework, where the diffusion coefficient D is determined by the av-
erage temperature and gap displacement at the previous time increment
computed from the coupled thermo-mechanical problem.
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2.1.4 Variational form and finite element approximation

In this section, the derivations for the variational form and finite element
formulation of the coupled thermo-mechanical problem with cohesive
interface and 3D moisture diffusion are outlined. Firstly, this part intro-
duces the multi-field Hu-Washizu variational principle and discretiza-
tion for the coupled thermo-mechanical problem, which is particularized
for solid shell formulation incorporating the EAS and ANS method to al-
leviate the locking effects. Subsequently, the consistent linearization of
the governing equations for the thermo-mechanical cohesive interface is
presented. Finally, the finite element implementation of the 3D moisture
diffusion along the encapsulant polymeric layers is detailed.

In the following, the variational basis and finite element interpola-
tion of the initial boundary value problem with the coupled thermo-
mechanical solid shell formulation are presented. The laminae in pho-
tovoltaic modules are usually made of thin-walled structures, including
tempered glass, silicon solar cell, and backsheet, and to accurately sim-
ulate their mechanical behaviors, a solid shell formulation incorporating
the EAS and ANS methods for the alleviation of locking effects is derived
from the mixed Hu-Washizu variational principle.

The weak form of energy balance equation in absence of heat sources
and dissipative mechanism in the reference configuration is given by

RT (u, Ẽ, T, δT ) =

∫
B0

ρ0cpṪ δT dΩ−
∫
B0

TZ : ĖδT dΩ

+

∫
B0

∇ ·QδT dΩ = 0,
(2.25)

where δT is the virtual temperature field. Invoking the Gauss’s theorem,
the third term relevant to the divergence of heat flux can be reformulated
as ∫

B0

∇ ·QδT dΩ =

∫
∂B0,q̄

QNδT d∂Ω−
∫
B0

Q∇XδT dΩ, (2.26)

where QN = Q ·N denotes the Neumann boundary condition on ∂B0,q̄ .
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Subsequently, Eq. (2.25) can be rewritten as

RT (u, Ẽ, T, δT ) =

∫
B0

ρ0cpṪ δT dΩ−
∫
B0

TZ : ĖδT dΩ

+

∫
∂B0,q̄

QNδT d∂Ω−
∫
B0

Q∇XδT dΩ = 0.
(2.27)

By inserting the Duhamel’s law, i.e., simplified Eq. (2.17) under isotropic
assumption, the previous expression can be formulated as

RT =

∫
B0

ρ0cpṪ δT dΩ−
∫
B0

TZ : ĖδT dΩ

+

∫
∂B0,q̄

QNδT d∂Ω+

∫
B0

[∇XδT ]
T
k0G∇XT dΩ = 0,

(2.28)

with the internal residual RT
int and external counterpart RT

ext being iden-
tified as

RT
int =

∫
B0

ρ0cpṪ δT dΩ−
∫
B0

TZ : ĖδT dΩ

+

∫
B0

[∇XδT ]
T
k0G∇XT dΩ = 0,

(2.29)

RT
ext =

∫
∂B0,q̄

QNδT d∂Ω. (2.30)

Analogously, the weak form of the linear momentum balance govern-
ing equation can be derived in this procedure. However, low-order shell
elements usually suffer from various locking pathologies, such as volu-
metric locking, Poisson thickness locking, transverse shear locking and
so on. To alleviate such deficiencies, the mixed formulation proposed
in [115, 123, 124] is adopted here, which incorporates the ANS and EAS
methods through the enhancement of the displacement derived strain
field by several collocation points and a set of incompatible strains. In
this three-field Hu-Washizu variational principle, the displacement u,
the incompatible strain Ẽ, and stress S are the independent unknown
variables for this numerical strategy.

Given the use of EAS method, the strain field can be decomposed into
a displacement derived compatible part Eu and an enhanced incompati-
ble part Ẽ [106, 107], i.e., E = Eu + Ẽ. Accounting for the orthogonality
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condition between the stress spaces and enhanced strain fields, the stress
field can be removed from the subsequent derivations. Hence, the weak
form of the linear momentum balance equation can be expressed as

Ru(u, Ẽ, T, δu) =

∫
B0

S : δEu dΩ−
∫
B0

ρ0γ̄δu dΩ−
∫
∂B0,t̄

t̂δu d∂Ω = 0,

(2.31)

RẼ(u, Ẽ, T, δẼ) =

∫
B0

S : δẼ dΩ = RẼ
int = 0, (2.32)

where RẼ
int represents the internal contribution from the enhanced strain

field to the functional. Here the internal residual Ru
int and external resid-

ual Ru
ext corresponding to the kinematic compatible part can be defined

as
Ru

int =

∫
B0

S : δEu dΩ, (2.33)

Ru
ext =

∫
B0

ρ0γ̄ · δu dΩ−
∫
∂B0,t̄

t̂ · δu d∂Ω. (2.34)

The initial configuration B0 is discretized into ne non-overlapping fi-
nite elements, i.e., B0 ≈

⋃ne

e=1 B
(e)
0 . For the thermo-mechanical modeling

framework stated above, it is particularized for the so-called solid shell
parametrization, which assumes the approximation of vector at any ma-
terial point in terms of the counterparts on the corresponding top and
bottom surfaces of the shell element.

In line with this parametrization, the position vectors and tempera-
ture of any material point in the reference and current configurations can
be computed as

X(ξ) =
1

2

(
1 + ξ3

)
Xt(ξ

1, ξ2) +
1

2

(
1− ξ3

)
Xb(ξ

1, ξ2), (2.35a)

x(ξ) =
1

2

(
1 + ξ3

)
xt(ξ

1, ξ2) +
1

2

(
1− ξ3

)
xb(ξ1, ξ2), (2.35b)

where the subscripts t and b stand for the top and bottom surfaces, re-
spectively. The parametric space is given by: A := {ξ = (ξ1, ξ2, ξ3) ∈
R3| − 1 ≤ ξi ≤ +1; i = 1, 2, 3}, where (ξ1, ξ2) represent the in-plane direc-
tions and ξ3 identifies the thickness direction.
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Based on the isoparametric concept, the approximation of position
vectors X and x are interpolated through standard trilinear shape func-
tions NI as follows

X ≈
nn∑
I=1

NI(ξ)XI = NX̃, x ≈
nn∑
I=1

NI(ξ)xI = Nx̃, (2.36)

where XI and xI are the nodal position vectors in the reference and cur-
rent configurations, respectively, with number of nodes nn = 8, and X̃
and x̃ are the respective nodal position vectors in the element level. The
shape functions NI is defined as

NI = diag [NI , NI , NI ] (2.37)

where NI = 1
8

(
1 + ξ1I ξ

1
) (

1 + ξ2I ξ
2
) (

1 + ξ3I ξ
3
)
, I = 1, 2, ..., 8. The in-

terpolation of displacement and temperature fields (u, T ), the variations
(δu, δT ), and the increments (∆u,∆T ) are given by

u ≈
nn∑
I=1

NI(ξ)dI = Nd,

δu ≈
nn∑
I=1

NI(ξ)δdI = Nδd,

∆u ≈
nn∑
I=1

NI(ξ)∆dI = N∆d,

(2.38)

T ≈
nn∑
I=1

NI(ξ)TI = N̂T̂ ,

δT ≈
nn∑
I=1

NI(ξ)δTI = N̂δT̂ ,

∆T ≈
nn∑
I=1

NI(ξ)∆TI = N̂∆T̂ ,

(2.39)

where dI and TI represent the nodal displacement and temperature, re-
spectively, and d and T̂ are the corresponding vectors at the element
level. The interpolation of the spatial temperature gradient in the refer-
ence configuration ∇XT , its variation ∇XδT and its increment ∇X∆T
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Figure 11: The position of collocation points in the parametric space for the
ANS method.

reads
∇XT ≈ G−T∇ξN̂T̂ ,

∇XδT ≈ G−T∇ξN̂δT̂ ,

∇X∆T ≈ G−T∇ξN̂∆T̂ ,

(2.40)

where ∇ξ represents the gradient with respect to the natural coordinates
in the curvilinear setting.

The Green-Lagrange strain vector is expressed as Eu=[E11, 2E12, 2E13,
E22, 2E23, E33]T. To overcome the curvature thickness locking, the ANS
method proposed in [112] is adopted to modify the strain component
E33, which requires four collocation points defined in convective coor-
dinates ξCi

as ξC1
= (−1,−1, 0), ξC2

= (1,−1, 0), ξC3
= (1, 1, 0), and

ξC4
= (−1, 1, 0), see Fig. 11. Besides, to prevent transverse shear lock-

ing, the ANS method proposed in [113] is also adopted in this work.
The corresponding collocation points are ξA1

= (0,−1, 0), ξA2
= (0, 1, 0),

ξB1
= (−1, 0, 0), and ξB2

= (1, 0, 0), see Fig. 11. Accounting for the ANS
interpolations, the strain vector is given by

Eu =



1
2 (g11 −G11)
(g12 −G12)(

1− ξ2
) (
gA1
13 −GA1

13

)
+
(
1 + ξ2

) (
gA2
13 −GA2

13

)
1
2 (g22 −G22)(

1− ξ1
) (
gB1
23 −GB1

23

)
+
(
1 + ξ1

) (
gB2
23 −GB2

23

)
∑4

i=1
1
4

(
1 + ξ1i ξ

1
) (

1 + ξ2i ξ
2
)

1
2

(
gCi
33 −GCi

33

)


(2.41)
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The approximation of strain variation and increment is interpolated
by

δEu ≈
nn∑
I=1

BI(ξ)δdI = Bδd, ∆Eu ≈
nn∑
I=1

BI(ξ)∆dI = B∆d (2.42)

where BI is defined as

BI =


NI,1

(
gT
1

)
NI,1

(
gT
2

)
+ NI,2

(
gT
1

)
(
1 − ξ2

) (
N

A1
I,1

(
g

A1
3

)T
+ N

A1
I,3

(
g

A1
1

)T)
+
(
1 + ξ2

) (
N

A2
I,1

(
g

A2
3

)T
+ N

A2
I,3

(
g

A2
1

)T)
NI,2

(
gT
2

)
(
1 − ξ1

) (
N

B1
I,2

(
g

B1
3

)T
+ N

B1
I,3

(
g

B1
2

)T)
+
(
1 + ξ1

) (
N

B2
I,2

(
g

B2
3

)T
+ N

B2
I,3

(
g

B2
2

)T)
∑4

i=1
1
4

(
1 + ξ1i ξ1

) (
1 + ξ2i ξ2

)
NI,3

(
gi
3

)T


(2.43)

Similarly, the interpolation of enhanced incompatible strain field Ẽ,
its variation δẼ and its increment ∆Ẽ take the form of

Ẽ ≈ M(ξ)ς, δẼ ≈ M(ξ)δς, ∆Ẽ ≈ M(ξ)∆ς , (2.44)

where ς is the enhancing modes vector to prevent locking pathologies
as pointed out in [123, 92], and M denotes the interpolation matrix of
incompatible strain [98], which is given by

M(ξ) =

[
detJ0

detJ

]
T−T0 M̃(ξ) (2.45)

where J = [G1,G2,G3]
T, J0 is its evaluation at the element center (ξ1 =

0, ξ2 = 0, ξ3 = 0), and the transformation matrix T0 takes the form

T0 =


J2
110

J2
210

J2
310

2J110
J210

2J110
J310

2J210
J310

J2
120

J2
220

J2
320

2J120
J220

2J120
J320

2J220
J320

J2
130

J2
230

J2
330

2J130
J230

2J130
J330

2J230
J330

J110
J120

J210
J220

J310
J320

J110
J220

+ J210
J120

J110
J320

+ J310
J120

J210
J320

+ J310
J220

J110
J130

J210
J230

J310
J330

J110
J230

+ J210
J130

J110
J330

+ J310
J130

J210
J330

+ J310
J230

J120
J130

J220
J230

J320
J330

J120
J230

+ J22J130
J120

J330
+ J320

J130
J220

J330
+ J320

J230


(2.46)

where JIJ0 in the transformation matrix T0 are the components of J0.
To alleviate the membrane, volumetric and Poisson thickness locking ef-
fects, the interpolation matrix M̃(ξ) of the enhancing modes defined in
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the parametric space ξ = {ξ1, ξ2, ξ3} reads

M̃ =


ξ1 0 0 0 ξ1ξ2 0 0 0 0 0 0
0 0 ξ1 ξ2 0 0 ξ1ξ2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 ξ2 0 0 0 ξ1ξ2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 ξ1 ξ2 ξ1ξ2

 . (2.47)

By inserting the interpolation formulae, the discrete forms of internal
energy balance residual Eq. (2.29) is given by

R̂T
int(d, ς, T̂ , δT̂ ) =δT̂

T

[∫
B0

N̂Tρ0cpṪ dΩ−
∫
B0

N̂T
(
ZTĖ

)
T dΩ

+

∫
B0

k0B
T
TG∇XT dΩ

]
,

(2.48)

where BT is the interpolation operator for the temperature gradient.
The discrete internal residual terms with regard to the kinematic com-

patible part, Eq. (2.33), and enhanced strain field, Eq. (2.32), can be ex-
pressed as

R̂u
int(d, ς, T̂ , δd) = δdT

[∫
B0

BTS dΩ
]
, (2.49)

R̂Ẽ
int(d, ς, T̂ , δς) = δςT

[∫
B0

MTS dΩ
]
. (2.50)

For subsequent developments, the residual vectors associated with
the displacement field, the incompatible strain field, and the temperature
field, respectively, are defined as

RT
int =

∫
B0

N̂Tρ0cpṪdΩ−
∫
B0

N̂T
(
ZTĖ

)
TdΩ+

∫
B0

k0B
T
TG∇XT dΩ,

(2.51a)

Rd
int =

∫
B0

BTS dΩ, (2.51b)

Rς
int =

∫
B0

MTS dΩ. (2.51c)
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To solve the set of nonlinear residual equations, the iterative scheme
is adopted for the multi-field coupled thermo-mechanical problem, and
the consistent linearization of the system derived from the concept of
Gateaux directional derivative in matrix form can be expressed as kdd kdς kdT

kςd kςς kςT

kTd kTς kTT

 ∆d
∆ς

∆T̂

 =

 Rd
ext
0

RT
ext

−

 Rd
int

Rς
int

RT
int

 (2.52)

where kab with {a, b} = {d, ς, T} are different element tangent opera-
tors.

Firstly the tangent operators derived from the linearized residual form
of Eq. (2.51a) with respect to the energy balance reads

kTT =

∫
B0

N̂T ρ0cp
∆t

N̂ dΩ−
∫
B0

N̂T
(
ZTĖ

)
N̂ dΩ+

∫
B0

k0B
T
TGBT dΩ,

(2.53a)

kTς = −
∫
B0

N̂T T

∆t
ZTM dΩ, (2.53b)

kTd = −
∫
B0

N̂T T

∆t
ZTB dΩ, (2.53c)

where ∆t is the time increment.
Analogously, the tangent operators obtained from linearization of the

residual equation Eq. (2.51b) with respect to the displacement field is
given by

kdT =

∫
B0

BTZN̂ dΩ (2.54a)

kdς =

∫
B0

BTCM dΩ, (2.54b)

kdd =

∫
B0

(
BTCB+Q

)
dΩ. (2.54c)

where Q represents the geometrical nonlinearity, which is defined as

Q =
∂B(d)T

∂d
S =


Q11 Q12 · · · Q18

Q21 Q22 · · · Q28

...
...

. . .
...

Q81 Q82 · · · Q88

 (2.55)
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where QIJ is defined as QIJ = diag [QIJ , QIJ , QIJ ] for the combination
of node I and J , and the scalar QIJ reads

QIJ = ST


NI,1NJ,1

NI,1NJ,2 + NI,2NJ,1(
1 − ξ2

) (
N

A1
I,1

N
A1
J,3

+ N
A1
I,3

N
A1
J,1

)
+
(
1 + ξ2

) (
N

A2
I,1

N
A2
J,3

+ N
A2
I,3

N
A2
J,1

)
NI,2NJ,2(

1 − ξ1
) (

N
B1
I,2

N
B1
J,3

+ N
B1
I,3

N
B1
J,2

)
+
(
1 + ξ1

) (
N

B2
I,2

N
B2
J,3

+ N
B2
I,3

N
B2
J,2

)
∑4

i=1
1
4

(
1 + ξ1i ξ1

) (
1 + ξ2i ξ2

)
NI,3NJ,3


(2.56)

where S is the approximate stress field in matrix form as S =[S11, S12, S13,
S22, S23, S33]T.

Similarly, the tangent operators derived from Eq. (2.51c) with respect
to the incompatible strain field take the form

kςT =

∫
B0

MTZN̂ dΩ, (2.57a)

kςd =

∫
B0

MTCB dΩ, (2.57b)

kςς =

∫
B0

MTCM dΩ, (2.57c)

Since inter-element continuity is not required [100], the consistent lin-
earization with respect to the incompatible strain field can be condensed
out in the element level, and the condensed system of equations are given
by [

k∗dd k∗dT
k∗Td k∗TT

] [
∆d
∆T

]
=

[
Rd

ext
RT

ext

]
−
[

Rd∗
int

RT∗
int

]
(2.58)

where the element stiffness contributions are

k∗dd = kdd − kdςk
−1
ςς kςd, k∗dT = kdT − kdςk

−1
ςς kςT , (2.59a)

k∗Td = kTd − kTςk
−1
ςς kςd, k∗TT = kTT − kTςk

−1
ςς kςT , (2.59b)

and the condensed element internal residual vectors render

Rd∗
int = Rd

int − kdςk
−1
ςς R

ς
int, (2.60a)

RT∗
int = RT

int − kTςk
−1
ςς R

ς
int. (2.60b)
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Figure 12: Sketch of the interface between the two bodies during the defor-
mation process.

In the reference configuration for finite deformation setting, consider
two deformable bodies B(1)

0 ⊂ R3 and B(2)
0 ⊂ R3 (identified as Body-

1 and Body-2 in Fig. 12). The interface contribution of cohesive traction
σ̄ = (σ, τt, τs) and heat flux q̄ to the Principle of Virtual Work of the whole
mechanical system can be expressed as

Πint =

∫
Γint

gT
loc ·T d∂Ω (2.61)

where gloc = (∆n,∆s,∆t,∆T )
T is the local gap vector including both

mechanical and thermal gaps, and T = (σ, τt, τs, q̄) is the traction vector
conjugate to the gap vector. Note that the traction vector vanishes when
the interface is undergoing rigid body motions owning to the frame in-
difference of this formulation. The variational form of interface contri-
bution is given by

δΠint(gloc) =

∫
Γint

(
∂gloc

∂û
δû

)T

T d∂Ω = δûT
∫
Γint

(
∂gloc

∂û

)T

T d∂Ω (2.62)

where û = (u, T )T is the generalized vector.
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Figure 13: Sketch of the three-dimensional interface finite element.

To account for the rotations of configuration, a middle plane of the
interface by averaging the position and displacement vector of the upper
and lower faces is defined. Hence, the position vector on the middle
surface x̄ and X̄ can be determined by multiplying the position vector
with an averaging operator Mcz ,

x̄ = Mczx, X̄ = MczX (2.63)

where the matrix Mcz is defined as Mcz = 1
2 (I12, I12) with I12 identified

as 12× 12 identity matrix.
In line with derivations proposed in [125], the convective shear vec-

tor s, tangential vector t and normal vector n to the middle surface, see
Fig. 13, are defined via the differentiation of average position vector in
the current configuration with respect to the natural coordinates ξ and η,
and given by

s =
∂x̄
∂ξ
, t =

∂x̄
∂η
, n = s × t. (2.64)

The gap vector g can be determined by multiplying the nodal dis-
placement vector of the interface element with an appropriate operator
Lcz = (−I16, I16) with I16 identified as 16 × 16 identity matrix, which
provides the difference between the bottom and upper surface displace-
ments, and its expression is given by

g = NczLczd̂ (2.65)
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where d̂ is the vector collecting the degrees of freedom in the element
level, and Ncz is the interpolation matrix of interface, which reads

Ncz = [N cz
1 I4, N cz

2 I4, N cz
3 I4, N cz

4 I4] , (2.66)

whereN cz
1 =

1

4
(1−ξ)(1−η),N cz

2 =
1

4
(1+ξ)(1−η),N cz

3 =
1

4
(1+ξ)(1+η)

and N cz
4 =

1

4
(1− ξ)(1 + η), and I4 is the 4× 4 identity matrix.

To define the traction-separation law in the local frame, the local gap
vector needs to be computed by multiplying the counterpart in the global
frame with a rotation matrix operator

gloc = Rczg = RczN
czLczd̂, (2.67)

and the rotation matrix Rcz reads

Rcz =


sx sy sz 0
tx ty tz 0
nx ny nz 0
0 0 0 1

 (2.68)

where its coefficients are all components of the convective vectors de-
fined in Eq. (2.64).

Recalling the derivation of Eq. (4.75), the partial derivative of the local
gap vector with respect to nodal displacements takes the form

∂gloc

∂û
≈ ∂gloc

∂d̂
= RczN

czLcz +
∂Rcz

∂d̂
NczLczd̂ = RczBcz +

∂Rcz

∂d̂
Bczd̂.

(2.69)
where Bcz = NczLcz is introduced to simplify the equation. By inserting
Eq. (2.69) into Eq. (2.61), where u is replaced by the nodal vector d̂, the
general variational form of interface element formulation is given by

δΠint = δd̂T

∫
int

(
RczBcz +

∂Rcz

∂d̂
Bczd̂

)T

T d∂Ω = δd̂Tfint (2.70)

where the vector δd̂ represents the admissible virtual nodal vector, and
fint is the internal force vector of interface at the element level. The con-
sistent linearization for the interface finite element formulation at the
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(k + 1)th iteration is given by

Ke,k∆d̂k+1 = −fkint (2.71a)

d̂k+1 = d̂k +∆d̂k+1 (2.71b)

where Ke,k = ∂fint

∂d̂
is the element stiffness evaluated at the (k)th iteration,

which reads

Ke =

∫
Γint

[
2BT

cz

∂RT
cz

∂d̂
T+

(
BT

czR
T
cz + d̂TBT

cz

∂RT
cz

∂d̂

)
∂T

∂d̂

]
d∂Ω. (2.72)

It should be pointed out that the second derivative of the rotation matrix
with respect to the nodal vector is omitted for convenience in the formu-
lation [126]. The derivative of cohesive traction vector can be derived by
chain rule as follows,

∂T
∂d̂

=
∂T
∂gloc

∂gloc

∂d̂
= CczRczBcz +

∂Rcz

∂d̂
Bczd̂ (2.73)

where Ccz is the material tangent stiffness of the interface. In small
displacement setting, the second term of Eq. (2.73) with respect to the
partial derivative of rotation matrix can be neglected. After substituting
Eq. (2.73) into Eq. (2.72), the final element stiffness matrix form of inter-
face can be expressed as

Ke =

∫
Γint

BT
czR

T
czCczRczBcz d∂Ω. (2.74)

The weak form and finite element discretization of 3D moisture dif-
fusion along the polymeric encapsulant layer will be presented in this
section. Since a staggered scheme is adopted for the solution of hygro-
thermo-visco-elastic problem, the spacing of mesh for moisture diffusion
can be different from that of thermo-mechanical model. Hence, an appro-
priate interpolation scheme is required to project the nodal temperatures
from the thermo-mechanical problem to the nodes of mesh for moisture
diffusion to determine the diffusion coefficients as stated in Eq. (2.24).
In the sequel, the finite element mesh for moisture diffusion coincident
with the discretization for the thermo-mechanical interface of encapsu-
lant layers is adopted for convenience.
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By multiplying Eq. (2.23) with a test function δc(X, t), the weak form
for moisture diffusion after integration by parts can be constructed as
follows ∫

B0

D∇Xc · ∇Xδc dΩ +

∫
B0

δc
∂c

∂t
dΩ = 0. (2.75)

The interpolation of moisture concentration and its variation in a generic
material point X and at the time point t is given by

c(X, t) ≈
nn∑
I=1

NI(ξ)cI = Ncc̃, δc(X, t) ≈
nn∑
I=1

NI(ξ)δcI = Ncδc̃, (2.76)

where Nc = [N1, N2, N3, N4, N5, N6, N7, N8] is the shape function matrix,
and c̃ is the moisture concentration nodal vector. Besides, the interpola-
tion of the spatial concentration gradient ∇Xc and its variation ∇Xδc can
be expressed as

∇Xc ≈ G−T∇ξNcc̃ = Bcc̃, ∇Xδc ≈ G−T∇ξNcδc̃ = Bcδc̃, (2.77)

Introducing Eq. (2.76) and Eq. (2.77) into Eq. (2.75), the variational
form of moisture diffusion is given by

δc̃T
∫
B0

(
DBT

c ∇Xc+NT
c ċ

)
dΩ = δc̃Tf cint (2.78)

where f cint is the internal residual vector, which is defined as

f cint =

∫
B0

(
DBT

c ∇Xc+NT
c ċ

)
dΩ. (2.79)

The linearization for moisture diffusion at the (k + 1)th iteration in
the Newton-Rapson iterative solution scheme reads

Kc,k∆c̃k+1 = −fc,kint (2.80a)

c̃k+1 = c̃k +∆c̃k+1 (2.80b)

where Kc is the element stiffness for moisture diffusion, which is given
by

Kc =

∫
B0

(
DBT

c Bc +
1

∆t
NT

c Nc

)
dΩ (2.81)
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2.1.5 Staggered solution scheme for the multi-field frame-
work

In this section, the staggered computational procedure for the solution
of thermo-mechanical problem with solid shell element and interface el-
ement formulation and temperature dependent 3D moisture diffusion is
outlined.

With regard to the thermo-mechanical governing equations incorpo-
rating the solid shell formulation, let consider the time increment

[
tn, t

(k)
n+1

]
,

where tn and t(k)n+1 stand for the previous converged increment and prospec-
tive current increment at iteration k, respectively. Given the data {dn, ςn, T̂n}
at the previous converged increment, the nonlinear incremental solution
requires the Newton iterations at the intermediate state {d(k)

n+1, ς
(k)
n+1, T̂

(k)
n+1}.

Note that {dn, ςn, T̂n} and {d(k)
n+1, ς

(k)
n+1, T̂

(k)
n+1} denote the nodal displace-

ment vector, the enhancing vector, and the nodal temperature vector at
the previous converged increment and prospective current increment at
(k)th iteration, respectively. Based on the static condensation described
in Section 2.1.4, the nodal displacement and temperature vectors are de-
fined as unknowns in the element level, and the increment of enhancing
vector in the (k)th iteration of next time increment, ∆ς

(k)
n+1, should be de-

termined. According to the procedure proposed in [100], it is calculated
as ∆ζ

(k)
n+1 is given by

∆ς
(k)
n+1 = − [kςς,n]

−1
[
Rς

int,n + kςd,n∆d
(k)
n+1 + kςT,n∆T̂

(k)
n+1

]
(2.82)

It should be pointed out that the increments ∆d(k)
n+1 and ∆T̂

(k)
n+1 are pro-

vided by the solver, while the element matrices at the previous incre-
ment [kςς,n]

−1, Rς
int,n, kςd,n, kςT,n, and ςn are all stored as internal vari-

ables. The numerical algorithm for the finite element implementation of
thermo-mechanical problem with solid shell and interface element for-
mulation is detailed in Algorithm 1. The Newton-Raphson iteration is
performed until the machine precision is achieved, i.e., the tolerance of
residual vector is up to 10−15.

It is worth noting that the history variables h at the integration points
need to be determined due to the time dependency of visco-elastic con-
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Algorithm 1: Numerical implementation procedure of the cou-
pled thermo-mechanical formulation

if Solid shell element then
Data: dn, T̂n, ∆d(k)

n+1, ∆T̂
(k)
n+1

Result: dn+1, T̂n+1

Initialization of ςn, Rς
int,n, kςd,n, [kςς,n]

−1;
while ||R∗

d|| > tolerance do
Compute ∆ς

(k)
n+1 = − [kςς,n]

−1
[
Rς

int,n + kςd,n∆d
(k)
n+1 + kςT,n∆T̂

(k)
n+1

]
;

Update the enhancing vector ς(k)
n+1 = ςn + ∆ς

(k)
n+1;

for n← 1 to 8 integration points do
Compute the curvilinear basis G(k)

n+1 and g
(k)
n+1;

Compute the B matrices B(k)
n+1 and B

(k)
T,n+1;

Modify the B(k)
n+1 matrix according to the ANS method;

Compute C(k)
n+1, S(k)

n+1, and Z
(k)
n+1;

Compute the EAS operator M(k)
n+1;

end
Compute the element stiffness matrices k(k)

dd,n+1, k(k)
dς,n+1, k(k)

ςd,n+1, k(k)
ςς,n+1, and

k
(k)
TT,n+1;

Compute the internal force vectors Rd(k)
int,n+1, Rς(k)

int,n+1, and R
T (k)
int,n+1;

Perform the static condensation and final assembly;
end

end
else if Cohesive interface element then

Data: dn, T̂n, ∆d(k)
n+1, ∆T̂

(k)
n+1

Result: dn+1, T̂n+1

while ||R∗
d|| > tolerance do

Compute the operators Lcz and Mcz ;
for n← 1 to 4 integration points do

Compute the shape function N
(k)
cz,n+1 ;

Compute the matrix B
(k)
cz,n+1 = N

(k)
cz,n+1Lcz ;

Compute the rotation matrix in the curvilinear system R
(k)
cz,n+1;

Compute the local gap g
(k)
loc,n+1 = R

(k)
cz,n+1B

(k)
cz,n+1d̂

(k)
n+1;

Compute the temperature value at the integration point T (k)
int,n+1;

if |T (k)
int,n+1 − Tint,n| > tolerance then
Compute the history variable h(k)

int,n+1 = hint,n;
else

Compute the history variable h(k)
int,n+1 = hint,n + ∆t;

end
Compute the stiffness matrix C

(k)
cz,n+1 and the traction vector T(k)

n+1;
end
Compute the element stiffness matrix K

e(k)
int,n+1;

Compute the internal residual vector f (k)
int,n+1;

end
end
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stitutive equation, Eq. (2.20). To model relaxation, this history variable
is set to zero in case of any temperature change, which is stored as a
state variable in the interface element implementation, while updated
by the current time increment if the temperature value remains constant
compared with that of previous increment, see Algorithm 1. Hence, the
drawback of temperature-time superposition principle for thermo-visco-
elastic modeling of polymeric materials is overcome.

Once the temperature and displacement field in the coupled thermo-
mechanical problem are solved in a given time increment, these nodal
values are transferred to the moisture diffusion problem, which is solved
by the Euler backward time integration scheme using the same temporal
interval with that of the thermo-mechanical analysis. As stated in Sec-
tion 2.1.3, given the time scale difference between the moisture diffusion
and thermo-mechanical phenomena, the coefficient in the current incre-
ment of moisture diffusion analysis is determined from the nodal tem-
perature and gap values at the previous time increment. The detailed
computational procedure of moisture diffusion is outlined in Algorithm
2.

2.2 Numerical applications to photovoltaics

In this section, three international standard tests for photovoltaics, in-
cluding damp heat test, humidity freeze test, and thermal cycling test,
are simulated by the proposed computational framework. Note that the
damp heat test requires constant temperature and humidity testing en-
vironments, which uncouples the moisture diffusion from the thermo-
mechanical problem and thus allows the derivation of analytical solution
useful for benchmark targets, while the latter require the fully coupled
solution scheme due to the spatial variation of temperature. Besides, the
role of cracks in silicon on moisture diffusion pattern is also investigated
and compared to the experimental electroluminescence images.
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Algorithm 2: Numerical implementation procedure of the mois-
ture diffusion along the interface

Data: c̃n, ∆c̃
(k)
n+1

Result: c̃n+1

Initialization of dn and T̂n;
while ||fcint|| > tolerance do

for n← 1 to 8 integration points do
Compute the shape function N

(k)
c,n+1;

Compute the B matrix B
(k)
c,n+1;

Compute the temperature value at the integration point Tint,n with T̂n;
Compute the normal gap at the integration point ∆int,n with dn;
if ∆int,n ≤ δcn then

Compute the coefficient D(k)
int,n+1 = A exp

(
− Ea

Tint,nR

)
;

else
Compute the coefficient D(k)

int,n+1 = A exp
(
− Ea

Tint,nR

)
∆int,n

δcn
;

end
end
Compute the element stiffness matrices K(k)

c,n+1;

Compute the internal force vectors fc(k)
int,n+1;

Perform the final assembly;
end

2.2.1 Damp heat test

As prescribed by the international standard, the damp heat test is con-
ducted in the environmental chamber with the constant temperature of
85 ◦C and relative humidity of 85% RH. Since temperature is kept con-
stant in this test, the moisture diffusion problem can be solved indepen-
dently from the coupled thermo-mechanical problem with the constant
diffusivity. The specimen is a double-glass PV laminate of span l = 40

mm separated by EVA. The thickness of glass laminae is 3 mm, and the
thickness of EVA is 0.5 mm. As glass is not permeable, the moisture will
only diffuse from the free edges of EVA towards the central part in this
test, see Fig. 14. The analytical solution was obtained in [127], which will
be treated as a benchmark of the computational scheme proposed above.
Assuming the initial laminate is dry, the spatial and temporal solution c
can be obtained as

c = c∗ +
4c∗

π

∞∑
m=0

1

2m+ 1
sin

[
(2m+ 1)πx

l

]
e(−D(2m+1)2π2t/l2) (2.83)
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Figure 14: The sketch of double-glass structure in the damp heat test.

The mesh size of finite element model is 1 mm, and there are 1600
solid diffusion elements in total. The contour plot of moisture concen-
tration inside the EVA is shown in Fig. 15, and as clearly seen, water
concentration gradually diffuses from the edges into the middle area of
EVA during simulation. At 100 h, the most area of EVA is still dry with
almost zero concentration, see Fig. 15(a), while after 1000 h, the dry area
becomes obviously smaller. To quantitatively validate the computational
diffusion model, the predicted moisture concentration with respect to
the distance from the edge after 1000 h (the black solid line in Fig. 16) is
compared with that obtained from the analytical solution (the black dot-
ted line Fig. 16), and they agree with each other very well. Besides, this
model is also used to simulate the experimental results obtained from
Miami as reported in [29], and numerical predictions also agree very well
with the data from the impermeable double-glass laminate exposed to
Miami environment for 1 year, 2 years, and 3 years, which further proves
the reliability of the diffusion modeling method proposed in this work.

A series of damp heat tests were also examined with the double glass
modules exposed to four different hot and humid conditions, namely 85
◦C/85% RH, 65 ◦C/85% RH, 45 ◦C/85% RH, and 85 ◦C/40% RH, which
correspond to the absolute humidity of 2.74 kg/cm3, 1.25 kg/cm3, 0.508
kg/cm3, and 1.29 kg/cm3, respectively [128].

The contour plots of moisture diffusion in the 85 ◦C/85% RH damp
heat test obtained from simulation are shown in Fig. 17 and compared
with the corresponding experimental EL images at different time points
[128]. As can be seen from both predictions and EL images, moisture
diffuses from the free edges of the EVA layer towards the central area
during aging, and they agree with each other very well. The captured EL
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(a) 100 h

(g) 800 h

(d) 500 h

(b) 300 h (c) 400 h

(e) 600 h (f) 700 h

(h) 900 h (i) 1000 h

0.0000 g/cm3 0.0056 g/cm3

Figure 15: The contour plot of moisture diffusion along the EVA layer inside
the double-glass laminate during the damp heat simulation.
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Figure 16: The comparison of moisture concentration vs. distance from the
edge of laminate curves between diffusion simulation and damp heat test
after 1000 h as well as experimental data in Miami.

images show the dark bands at the side area of EVA, which are not de-
tected at the beginning (Fig. 17(a)), and get thicker after 43 h (Fig. 17(b))
and 81 h (Fig. 17(c)). This trend that indicates the moisture ingress into
the module over time [128] is well reproduced by the modeling method
proposed in this work. To see the temperature effect on the diffusion
phenomena, the contour plots of moisture diffusion and experimental
EL images in the 65 ◦C/85% RH and 45 ◦C/85% RH damp heat tests are
also compared and shown in Fig. 18 and Fig. 19, respectively. Due to
the temperature-dependent diffusion properties, the absolute humidity
in these two cases differs from that in the 85 ◦C/85% RH case. The dif-
fusion phenomena are much slower in low-temperature conditions since
the diffusion coefficients are smaller. It is clearly observed that the pro-
cess for dark bands in the 65 ◦C/85% RH case (see Fig. 18) or 45 ◦C/85%
RH case (see Fig. 19) to become thick is slower than that in the 85 ◦C/85%
RH damp heat case. Besides, it is worth noting that the absolute humid-
ity in the 65 ◦C/85% RH (see Fig. 18) and 85 ◦C/40% RH (see Fig. 20) are
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(a) 0 h (b) 43 h (c) 81 h

2.74 kg/cm30.00 kg/cm3

Figure 17: Comparison between the moisture diffusion contour plots ob-
tained from simulation and the EL images taken from [128] in the 85
◦C/85% RH damp heat test after 0 h, 43 h, and 81 h.
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(a) 0 h (b) 130 h (c) 279 h

1.25 kg/cm30.00 kg/cm3

Figure 18: Comparison between the moisture diffusion contour plots ob-
tained from simulation and the EL images taken from [128] in the 65
◦C/85% RH damp heat test after 0 h, 130 h, and 279 h.
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(a) 0 h (b) 321 h (c) 776 h

0.508 kg/cm30.000 kg/cm3

Figure 19: Comparison between the moisture diffusion contour plots ob-
tained from simulation and the EL images taken from [128] in the 45
◦C/85% RH damp heat test after 0 h, 321 h, and 776 h.
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(a) 0 h (b) 104 h (c) 187 h

1.29 kg/cm30.00 kg/cm3

Figure 20: Comparison between the moisture diffusion contour plots ob-
tained from simulation and the EL images taken from [128] in the 85
◦C/40% RH damp heat test after 0 h, 104 h, and 187 h.
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almost equal to each other (1.25 kg/cm3 vs. 1.29 kg/cm3). However, due
to the temperature difference, the diffusion phenomena are still different
in these two cases.

The predicted time history evolution of moisture concentration at the
positions with different distances away from the edge in the four dif-
ferent cases is shown in Fig. 21. The moisture concentration at differ-
ent positions increases over time as the diffusion phenomena proceed
during the damp heat tests. Although the absolute humidity at the 65
◦C/85% RH and 85 ◦C/40% RH cases are almost equal to each other, the
diffusion time history demonstrates the significant difference, especially
at the positions relatively far away from the free edge. As can be seen
from Fig. 21(b) and Fig. 21(d), the trends of moisture concentration ver-
sus time curves at the position 10 mm far away from the edge in both
cases are very similar, but as the distance increases from 20 mm to 70
mm away from the edge, the corresponding concentration versus time
curve in the 85 ◦C/40% RH case is obviously higher than that in the 65
◦C/85% RH case, indicating faster diffusion process in the former case
that can be ascribed to its higher temperature.

The predicted spatial variation of moisture concentration in the four
different damp heat cases after 200 h, 400 h, 600 h, and 800 h are shown
in Fig. 22. Moisture diffusion takes place from the free edges towards
the center of the EVA layer, and as a result, moisture concentration at the
central area increases over time for all the different hygrothermal condi-
tions. For the 85 ◦C/85% RH damp heat case, the concentration at the
center of the module starts to increase after 400 h (see Fig. 22(b)), and
reaches around 0.5 kg/cm3 after 800 h (see Fig. 22(d)), while for the 45
◦C/85% RH case, the moisture concentration at the center is still zero
even after 800 h due to its low diffusivity. To further illustrate this point,
it can also be observed that the spatial variation curves of moisture con-
centration in the 85 ◦C/40% RH damp heat case are always above the red
curves corresponding to the 65 ◦C/85% RH damp heat case despite the
approximate absolute humidity on the boundary.
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Figure 21: The plots of predicted moisture concentration vs. time at the
positions (70 mm, 50 mm, 40 mm, 30 mm, 20 mm, and 10 mm away from
the edge of EVA layer) in the (a) 85 ◦C/85% RH damp heat case, (b) 65
◦C/85% RH damp heat case, (c) 45 ◦C/85% RH damp heat case, and (d) 85
◦C/40% RH damp heat case.

54



(a) (b)

(c) (d)

0.0

0.6

1.2

1.8

2.4

3.0

M
o
is

tu
re

 c
o
n
c
e
n
tr

a
ti
o
n
 (

k
g
/m

3
)

 85 °C/85% RH

 65 °C/85% RH

 45 °C/85% RH

 85 °C/40% RH

Edge Center Edge

0.0

0.6

1.2

1.8

2.4

3.0

M
o
is

tu
re

 c
o
n
c
e
n
tr

a
ti
o
n
 (

k
g
/m

3
)

 85 °C/85% RH

 65 °C/85% RH

 45 °C/85% RH

 85 °C/40% RH

Edge Center Edge

0.0

0.6

1.2

1.8

2.4

3.0

M
o
is

tu
re

 c
o
n
c
e
n
tr

a
ti
o
n
 (

k
g
/m

3
)

 85 °C/85% RH

 65 °C/85% RH

 45 °C/85% RH

 85 °C/40% RH

Edge Center Edge

0.0

0.6

1.2

1.8

2.4

3.0

M
o
is

tu
re

 c
o
n
c
e
n
tr

a
ti
o
n
 (

k
g
/m

3
)

 85 °C/85% RH

 65 °C/85% RH

 45 °C/85% RH

 85 °C/40% RH

Edge EdgeCenter

Figure 22: The spatial variation plots of predicted moisture concentration
inside the EVA layer in the four different damp heat cases after (a) 200 h, (b)
400 h, (c) 600 h, and (d) 800 h.
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Figure 23: Temperature profile imposed inside the chamber during the hu-
midity freeze test

2.2.2 Humidity freeze test

In the humidity freeze test of PV laminates, as requested by the inter-
national standard, the modules are subjected to the cycling temperature
condition from -40 ◦C to 85 ◦C with the constant humidity condition of
85% RH. The temperature ramp can be expressed as

T ∗(t) =



t
t∗1
T ∗1 0 ≤ t < t∗1

T ∗1 t∗1 ≤ t < t∗2
t∗3−t
t∗3−t∗2

T ∗1 t∗2 ≤ t < t∗3
t−t∗3
t∗4−t∗3

T ∗2 t∗3 ≤ t < t∗4
T ∗2 t∗4 ≤ t < t∗5
t∗6−t
t∗6−t∗5

T ∗2 t∗5 ≤ t < t∗6

(2.84)

where T ∗1 = 85 ◦C, T ∗2 = −40 ◦C, and t∗1 = 1.0 h, t∗2 = 21.0 h, t∗3 = 22.0 h,
t∗4 = 22.5 h, t∗5 = 23.5 h, t∗6 = 24.0 h, as shown in Fig. 23.

Compared with the damp heat test, this case is much more complex
and almost impossible to obtain the analytical solution due to the spa-
tial and temporal temperature variation inside the EVA, to which a non-
constant temperature boundary condition is applied. Particularly, the co-
hesive properties and diffusivity of EVA need to be updated during sim-
ulation, and to be specific, the viscoelastic parameters α(T ) and a(T ) for
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Table 1: Mechanical and thermal properties of the PV materials.

E (GPa) ρ (kg/m3) α cp (J/kg · K) k0 (W/m · K)

Backsheet 2.8 1200 5.04e-5 300 0.36
Glass 73 2300 8e-6 500 0.8

Silicon 130 2500 2.49e-6 715 148

the calibration of Young’s modulus of EVA are temperature dependent as
experimentally evaluated in [86] and interpreted through the fractional
calculus method [122], see the plot of modulus E in Fig. 24. Regarding
the properties of moisture diffusion, the coefficient D is determined ac-
cording to the Arrhenius type equation Eq. (2.24) reported in [29]. The
thermal and mechanical properties of different PV materials are taken
from [85, 86], which are listed in Table 1. Besides, the critical opening
of polymeric interface δcn can be estimated from the experimental data of
variation of Mode 1 fracture energy with respect to temperature in [31],
since the area below the traction versus separation curve is the fracture
energy.

The temperature variation inside the double glass laminate is strongly
dependent on the heat conduction properties of different layers, as shown
by the temperature contour of the cross section at time point A in Fig. 25.
The contour plot of temperature distribution inside the EVA layer in the
first cycle during simulation is shown in Fig. 26. At time point A, the
boundary temperature reaches 85 ◦C, and is kept constant for 20 hours.
As shown in Fig. 26(a)-(c), heat gradually diffuses from the edges into the
middle area of EVA during this period. At time point D, the boundary
temperature drops to -40 ◦C, but the temperature in the middle area of
EVA layer is still higher than 65 ◦C due to the inertial effect of heat con-
duction, see Fig. 26(d)-(f). Remarkably, this spatial and temporal varia-
tion of temperature inside EVA leads to the difference of moisture diffu-
sion properties from that of EVA subjected to constant condition in the
damp heat test. To quantitatively describe the spatial variation of tem-
perature inside EVA, the temperature versus distance from edge curves
at the six different time points in the first cycle is plotted in Fig. 27. As
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Figure 24: Relaxation modulus of EVA vs. time curves at different temper-
atures (adapted from [90]).
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8.93 C

Figure 25: The temperature contour plot of the cross section of the double
glass laminate at time point A in the first cycle during humidity freeze sim-
ulation.
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can be seen, the platform, which denotes the central area temperature
of EVA, gradually goes up from time point A to C with the evolution of
thermal conduction. At time C, the temperature at almost all the area of
EVA from the edge to the center reaches around 85 ◦C, which means the
EVA layer is fully and evenly heated after 20 hours. Besides, the platform
at the time period when boundary temperature changes to -40 ◦C, which
can be ascribed to the hysteresis of heat conduction, gradually goes down
from time point D to F. It is worth noting that the temperature at the cen-
tral area is still higher than 30 ◦C at the end of one complete cycle due
to the relatively short duration of constant low-temperature boundary
loading.

The contour plot history of moisture diffusion during the humidity
freeze simulation is shown in Fig. 28. The moisture gradually diffuses
into the central area, which is very similar to the phenomena obtained
from previous damp heat simulation. However, the amount of moisture
concentration is totally different in two cases due to the spatial varia-
tion of temperature inside EVA in the humidity freeze simulation. As
shown in Fig. 29, the difference of moisture concentration spatial varia-
tion after 700 hours and 1000 hours between the damp heat and humid-
ity freeze simulation can be observed. Note that the amount of moisture
concentration in all the area of EVA after 700 hours and 1000 hours in
the damp heat case is higher than that in the humidity freeze case, since
the moisture diffusion coefficient in the former case is much higher at the
constant high-temperature condition (85 ◦C). Furthermore, It can be seen
from Fig. 29 that the amount of moisture concentration at all the areas of
EVA after 700 hours in the damp heat case is even higher than that in the
humidity freeze case after 1000 hours, which further demonstrates the
effect of temperature on the moisture diffusion. Besides the difference of
spatial variation, the temporal variation between the damp heat and hu-
midity freeze simulation is also shown and compared in this work, see
Fig. 30. The time history of moisture concentration at three positions 3
mm, 5 mm, and 8 mm away from the edge is also plotted, and the curves
obtained from the damp heat simulations (solid lines) are higher than all
the counterparts obtained from the humidity freeze simulations (dotted
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lines). Thus, conclusions can be drawn that temperature plays an import
role on the moisture diffusion problem as the coefficient is determined
from the Arrhenius equation, and this coupling can be described with
the proposed modeling method, which can be demonstrated by the ex-
ample of humidity freeze simulation.

2.2.3 Thermal cycling test

In this section, as shown in Fig. 31, a minimodule composed of 3 × 3

multicrystalline solar cells with a crack in the middle one, which was
tested under the thermal cycling environmental condition with EL im-
ages taken regularly as reported in [129], was simulated using the pro-
posed modeling framework. In this case, the temperature ramp is given
by

T ∗(t) =



t∗1−t
t∗1

(T ∗1 − T ∗2 ) + T ∗2 0 ≤ t < t∗1
T ∗2 t∗1 ≤ t < t∗2
t−t∗2
t∗3−t∗2

(T ∗3 − T ∗2 ) + T ∗2 t∗2 ≤ t < t∗3
T ∗3 t∗3 ≤ t < t∗4
t∗5−t
t∗5−t∗4

(T ∗3 − T ∗1 ) + T ∗1 t∗4 ≤ t < t∗5

(2.85)

where T ∗1 = 25 ◦C, T ∗2 = −40 ◦C, T ∗3 = 85 ◦C, and t∗1 = 0.5 h, t∗2 = 1.5 h,
t∗3 = 2.5 h, t∗4 = 3.5 h, t∗5 = 4.0 h, as shown in Fig. 32. The sketch of the
cross-section of the PV minimodule is shown in Fig. 33. The module con-
sists of a tempered glass with the thickness of 4 mm, an encapsulanting
EVA with the thickness of 0.5 mm, the silicon solar cell with the thickness
of 0.166 mm, another layer of EVA, and finally a thin backsheet made of
an ethylene tetrafluoroethylene core and silicon nitride coating with the
thickness of 0.1 mm. The thermal and mechanical properties of all the
component materials are listed in Table 1. The size of this PV module is
48 cm, and the adopted mesh size of the finite element model is 1 mm.
Since backsheet is permeable to water and thus moisture can penetrate
from it and percolates along the edges of each solar cell, it is possible in
the numerical simulation to directly impose moisture boundary condi-
tion at the edges of each solar cell embedded in the module, see Fig. 33.

The temperature contour plots of the cross section of the minimod-
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Figure 26: Temperature contour plot inside EVA at six different time points
in the first cycle during humidity freeze simulation.
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Figure 27: Temperature versus distance from edge curves at six different
time points in the first cycle during humidity freeze simulation.

ule at time point B and time point E are shown in Fig. 34. Owning to
the different heat conductivity properties of different layers (glass, back-
sheet, and silicon solar cells), the temperature inside the PV minimod-
ule presents significant spatial variation at both the cooling and heating
stages. The temperature distribution inside the EVA layer of the module
at six time points of the first cycle during the thermal cycling simulation
is shown in Fig. 35. At time point A, heat has diffused inside the panel.
From time point A to C, the thermal boundary condition is kept constant
with the temperature of 85 ◦C, and as can be clearly seen, the EVA layer is
almost fully heated at the end of this heating period. When the tempera-
ture boundary condition drops to -40 ◦C at time point D, this layer starts
to cool down from its edges, but the temperature in the most area is still
very high after this period, and the lowest temperature is up to around 50
◦C in the time point F, see Fig. 35(f). This trend is quantified in Fig. 36 by
plotting the temperature versus the distance from edge at six time points
during the first cycle. Compared with the previous curves obtained from
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0.0000 g/cm3 0.0056 g/cm3

Figure 28: Contour plot of moisture diffusion along the EVA layer during
the humidity freeze simulation

63



0 4 8 1 2 1 6 2 00 . 0 0 0

0 . 0 0 1

0 . 0 0 2

0 . 0 0 3

0 . 0 0 4

0 . 0 0 5

0 . 0 0 6

Mo
istu

re 
co

nc
en

tra
tio

n (
g/c

m3 )

D i s t a n c e  f r o m  e d g e  ( m m )

 H u m i d i t y F r e e z e _ 7 0 0  h
 H u m i d i t y F r e e z e _ 1 0 0 0  h
 D a m p H e a t _ 7 0 0  h
 D a m p H e a t _ 1 0 0 0  h

Figure 29: Comparison of moisture concentration versus distance from edge
curves after 700 hours and 1000 hours between the damp heat and humidity
freeze simulations.

humidity freeze simulation, the platforms are relatively lower at the tem-
perature level of around 0 ◦C because of the much shorter heating period
with the constant temperature boundary condition 85 ◦C.

The contour plots of moisture concentration inside the EVA layer
above the silicon solar cell layer during the thermal cycling simulation
are shown in Fig. 37. Notably, moisture diffusion can take place not only
from the edges of module, but also along the interspaces between differ-
ent solar cells as well as the crack indicated in Fig. 31. Thus the moisture
boundary condition c∗ is imposed on all these edges, and the numerical
simulation is performed with this computational framework. As pointed
out in [130], the moisture plays a significant role in the oxidation of sili-
con solar cell, which is demonstrated by the observed darkness in the EL
images shown in Fig. 31. The silicon oxidation versus time history curves
at the different moisture concentration are plotted in Fig. 38, and it can be
seen that higher moisture concentration and longer exposure time lead
to more silicon oxidation. The contour plots of normalized oxidation
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Figure 30: Comparison of time history of moisture concentration at the po-
sitions 3 mm, 5 mm, and 8 mm away from the edge between the damp heat
and humidity freeze simulations.

of the minimodule during the thermal cycling simulation are shown in
Fig. 39. The area close to the crack of the middle solar cell starts to be-
come deeply oxidized resulting from moisture intrusion while all other
cell areas show much lower degradation, which demonstrates the consis-
tency between simulation and experiment. At the 460th cycle, as shown
in Fig. 39, the upper right area of the middle solar cell area during sim-
ulation is almost fully oxidized due to the moisture intrusion from the
crack channel, and the corresponding EL image (see Fig. 31) also shows
much dimmer area at the same position compared with that at the pre-
vious cycle. At this stage, electric degradation is significantly enhanced
by moisture diffusion from the crack channels and the corresponding ox-
idation. The contour plots of oxidation (see Fig. 39) correlates very well
with the EL images in terms of the electrically inactivated area, which is
impossible to be achieved by analytical methods.
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120th cycle

360th cycle

240th cycle

160th cycle 200th cycle

280th cycle 320th cycle

400th cycle 460th cycle

Figure 31: EL images of the minimodule taken at different cyles during the
thermal cycling test (adapted from [129]).
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Figure 32: Temperature profile imposed inside the chamber during the ther-
mal cycling test
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Figure 33: The sketch of the PV minimodule in the thermal cycling test.
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(a) Time point B (b) Time point E

Figure 34: The temperature contour plot of the cross section of the mini-
module at time points B and E in the first cycle during the thermal cycling
test.
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Figure 35: The temperature contour plot inside EVA at six different time
points in the first cycle during thermal cycling simulation.
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Figure 36: The temperature versus distance from edge curves at six different
time points in the first cycle during thermal cycling simulation.
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Figure 37: The contour plot of moisture diffusion along the EVA layer above
the silicon solar cell layer during the thermal cycling simulation.
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Figure 38: The silicon oxidation versus time history at the different moisture
concentration (adapted from [130]).
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Figure 39: The contour plot of normalized silicon oxidation of the minimod-
ule during the thermal cycling simulation.
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Chapter 3

Global-local phase field
modeling of silicon cell
cracking in photovoltaic
laminates

The main content of this chapter is taken from my own publication - Z.
Liu, J. Reinoso, M. Paggi. “Phase field modeling of brittle fracture in
large-deformation solid shells with the efficient quasi-Newton solution
and global–local approach” [131].

Nowadays the crystalline silicon photovoltaic (PV) modules have been
massively deployed all over the world since the last century, and accord-
ing to [132], the installed capacity of PV approximately increases from 40
GW to 715 GW in the recent 10 years. Among the major components of
PV products, including tempered glass, ethylene-co-vinyl acetate (EVA),
silicon cells, and backsheet, the silicon wafer accounts for more than 40
% of the manufacturing cost of crystalline modules [47]. It was proposed
in the 2010 International Technology Roadmap for Photovoltaics that the
thickness of silicon cell should be signifcantly decreased so as to save cost
of cystalline PV modules. However, the decrease of silicon cell thickness
could reduce its robustness under mechanical loading and thus lead to
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the formation of microcracking. Hence, the identification of crack initi-
ation and propagation that may trigger performance degradation of PV
modules has received a lot of attention in the recent decades.

To accurately predict the failure and crack propagation, several for-
mulations on the basis of different numerical techniques have been de-
veloped in the past decades. Simplified phenomenological cohesive zone
models specific for the crack modeling along internal boundaries have
been proposed in [133, 134, 135, 136, 137], in which cracking events are
triggered by the evaluation of traction-separation constitutive laws. This
modeling technique has been widely employed to identify crack paths
along the element edges by incorporating a characteristic length scale,
see the discussions in [138, 84, 139, 140, 141], among many others. In con-
trast to the cohesive zone models, the extended finite element method
has also been developed to model crack propagation, and it does not
explicitly depend on the finite element discretization corresponding to
the physical domain [142]. Other alternative computational techniques
such as enhanced finite element method [143, 144] and generalized finite
element method [145], can also be used to model crack events although
possible operative difficulties to identify crack initiation and paths might
arise. In order to overcome the disadvantages of the above-mentioned
explicit modeling method for complex crack topologies, the phase field
approach [146, 147] that is based on the Griffith’s theory has been pro-
posed to address the crack modeling of quasi-brittle materials such as
silicon solar cells [148, 149]. In this approach, the sharp crack is gen-
erally diffused through the definition of so-called phase field variable
and the crack propagation is characterized by the evolution of the corre-
sponding governing equations. According to the Γ-convergence discus-
sions in [150], the crack discontinuities are regularized by a characteristic
phase field length scale. Note that the phase field formulation shares sev-
eral common aspects with the gradient enhanced damage formulations,
which is one of the most appealing advantages of this crack modeling
method [151, 152, 153]. In view of this feature, the phase field approach
accounting for thermodynamic consistency [146, 154] has been extended
to the modeling of ductile fracture [155], anisotropic fracture [156], mul-
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tiphysics fracture [157], and polycrystalline materials [158, 159], among
many others. Given the promising aspects of phase field approach, this
technique has been employed to model the crack propagation of brittle
silicon solar cells in this work.

As mentioned above, to reduce the production cost of silicon solar
panels, the average thickness of solar cells has decreased from 300 µm
to 150 µm during the recent decades [160, 161, 162], which increases the
breakage rates and crack events. Based on the computational framework
developed in [131], the solid shell formulation combined with anisotropic
phase field model at finite deformation is proposed to model the prefer-
ential crack propagation in thin-film solar cells. In the literature, phase
field models have been coupled with shell kinematics for the fracture
modeling of thin-walled structures through many different ways, see
[163, 164] and references therein. Previous attempts in [165] have been
made to model geometrically linear problems according to the Reissner-
Midlin theory, but the developments are limited to standard finite ele-
ments. Alternative investigation adopting the Local Maximum-Entropy
approximation is proposed in [166], making it difficult to be implemented
into the standard finite element method. The tension-compression split
method by integrating the energy contribution through the shell element
thickness has been proposed in [167, 168], and later extended to the iso-
geometric modeling of multipatch structures [169, 170]. Recently, this
approach has been adopted in [171, 172] for phase field fracture model-
ing of the Reissner–Mindlin shells and plates. Besides, other models have
been developed in combination of phase field theory with solid shell and
Kirchhoff–Love formulations to model brittle and ductile fracture [173,
174, 175, 176]. Hence, the attempt to employ the phase field solid shell
formulation, extended to account for the anisotropic fracture orientation,
is a proper choice for the crack modeling of solar cells in thin-walled PV
laminates .

This chapter aims at presenting a global-local phase field approach
with large-deformation solid shell element formulation so as to provide
a very efficient modeling framework for the modeling of silicon solar
cell crack propagation in the PV modules. The two main innovative as-
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pects of this chapter are: (i) the coupling of phase field approach for frac-
ture modeling with solid shell formulation considering the EAS and ANS
methods for the alleviation of locking effects, and its efficient and robust
quasi-Newton monolithic implementation into the commercial finite el-
ement code ABAQUS, which was comprehensively evaluated by com-
parison with the standard staggered Newton scheme through different
benchmark examples, including single edge notched tension and shear,
fracture of cylindrical structure under mixed bending and tension, and
computationally demanding fatigue induced crack growth; (ii) a specific
global-local approach in the 3D setting tailored for phase field modeling
with solid shell elements is proposed here to save computational cost in
fracture modeling of large-scale thin-walled structures, and its capabil-
ity was demonstrated by simulating the local crack growth of cylindrical
structure under both static and fatigue cyclic loading. Finally, to model
the preferential crack patterns observed from the experimental electro-
luminescence images of solar cells, the fracture anisotropy is taken into
account in the phase field modeling, and it is showcased through the
simulation of crack growth of silicon solar cells when the PV modules
are subjected to the different loading, as depicted in Section 3.4.7.

3.1 Phase field solid shell formulation

In this section, the phase field solid shell formulation is presented for the
modeling of anisotropic crack propagataion in the thin-film brittle solar
cells. Firstly, the basics of phase field approach are revisited in Section
3.1.1. For a more comprehensive description, the detailed derivation of
this theory can be found in the significant work [146, 177, 178]. In Section
3.1.2, the solid shell kinetics at finite deformation are described in the
convective curvilinear coordinate system.

3.1.1 Basics of phase field approach

In the 3D setting, let B0 ⊂ R3 and Bt ⊂ R3 denote the reference config-
uration and current configuration of an arbitrary solid body with exist-
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Figure 40: Schematic representation of solid body with (a) sharp crack
topology, and (b) phase field approximation of diffusive crack

ing crack represented by Γ, and X and x stand for the position vectors
in the corresponding configurations, respectively. Furthermore, let ∂B0

and ∂Bt be the exterior boundary of the solid body in the reference and
current configuration, respectively. The motion of the material point X
inside the body is denoted by φ(X, t) : B0× [0, t] → R3 that maps into the
corresponding position x in the current configuration during the time in-
terval [0, t]. The deformation gradient Fu is defined as Fu := ∂Xφ(X, t),
where ∂X represents the partial derivative with respect to the position X
in the reference configuration, and its determinant Ju = det[Fu] denotes
the Jacobian. The phase field approach is conceived as the regularization
of sharp crack topology within a diffusive crack zone characterized by
the scalar-valued function d : B0 × [0, t] → [0, 1] to model brittle frac-
ture. The phase field variable d smears out the sharp crack by a diffusive
crack area of width l, as shown in Fig. 40. It is noted that the width of
regularization area depends on the parameter l, which is called the phase
field length scale that controls the transition between intact and damaged
parts. In the modeling framework, d is regarded as a smooth function of
(X, t), and d = 0 and d = 1 denote intact and cracked states, respectively.

According to the variational theory of fracture [178], the total energy
functional that governs the cracked body under external loadings takes
the form of

Π(u,Γ) = Πint (u, d,Γ) + Πext(u) (3.1)

where u denotes the displacement field, and Πint and Πext represent the
internal and external energy functionals, respectively. Note that the in-
ternal energy functional term Πint is defined as the sum of elastic en-
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ergy stored in the solid body ΠB and the energy dissipated through crack
propagation ΠΓ. Based on the Griffith’s theory, the internal energy func-
tional Πint is defined as

Πint (u, d,Γ) = ΠB(u, d) + ΠΓ(Γ) =

∫
B\Γ

Ψ(u, d) dΩ +

∫
Γ

Gc dΓ (3.2)

where Ψ denotes the specific elastic energy, and Gc is the critical energy
release rate. The dissipated fracture energy during the crack propagation
is evaluated through the Griffith theory. It should be pointed out that the
competition between the elastic energy in the solid body and fracture
energy is directly defined in the context of minimization problem. The
evaluation of this competition is computationally challenging when the
space discretization methods are used to track the crack propagation. To
circumvent the use of tracking algorithms, the phase field approach that
smears the crack over the whole domain of the body is employed in the
same line with gradient damage formulations [150, 178, 179].

In the context of this approach, the dissipated surface energy can be
approximated by a volume integral∫

Γ

Gc dΓ ≈
∫
B0

Gcγ (d,∇Xd) dΩ (3.3)

where γ (d,∇Xd) is the crack surface density per unit volume, and ∇Xd

is the gradient of phase field variable. In this way, the sharp crack is reg-
ularized over the body inducing the diffusive representation, as shown
in Fig. . The crack surface density γ (d,∇Xd) is defined according to the
modified Ambrosio-Tortorelli functional [180]

γ (d,∇Xd,ω) =
1

2l
d2 +

l

2
ω : (∇Xd⊗∇Xd) (3.4)

where ω is the second order structural tensor characterising the mate-
rial anisotropy. In order to make the energy release rate orientation-
dependent [158, 181], the structural tensor can be defined as

ω = I2 + αp(I2 −Np ⊗Np) (3.5)

where I2 is the second-order identity tensor, Np represents the unit vec-
tor normal to the preferential cleavage plane, and αp is the penalty pa-
rameter that is used to prevent damage to develop on planes not normal
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to Np. According to the previous study [182], this parameter should be
greater than 1.0, and in case of isotropic material, the value is equal to
0.0.

The specific elastic energy Ψ is influenced by the phase field variable
d, which is motivated by the fact that this energy in the damage transi-
tion zone has to decrease so as to ensure the thermodynamic equilibrium.
Furthermore, to avoid the asymmetric damage behaviour, the elastic en-
ergy density can be split into the active contribution Ψ+ and the passive
contribution Ψ− [177]. During the reversal loading process, the crack
closing precludes the damage evolution, and also provokes the stiffness
discovery [183]. Based on the aforementioned viewpoints, the elastic en-
ergy Ψ can be defined as

Ψ = g(d)Ψ+ +Ψ− (3.6)

where g(d) = (1− d)2 + K denotes the monotonic degradation function,
K ≈ 0 is a positive parameter to ensure numerical stability in case of fully
material degradation.

3.1.2 Solid shell kinematics

In the concept of solid shell theory, the position vectors X and x in the
reference and current configurations, and the phase field variable d at
any material point can be approximated by the corresponding vectors
on the bottom and top surfaces of solid-like shell element, and can be
defined as

X
(
ξ1, ξ2, ξ3

)
=

1

2

(
1 + ξ3

)
Xt

(
ξ1, ξ2

)
+

1

2

(
1− ξ3

)
Xb

(
ξ1, ξ2

)
(3.7a)

x
(
ξ1, ξ2, ξ3

)
=

1

2

(
1 + ξ3

)
xt

(
ξ1, ξ2

)
+

1

2

(
1− ξ3

)
xb

(
ξ1, ξ2

)
(3.7b)

d
(
ξ1, ξ2, ξ3

)
=

1

2

(
1 + ξ3

)
dt
(
ξ1, ξ2

)
+

1

2

(
1− ξ3

)
db
(
ξ1, ξ2

)
(3.7c)

where the parametric space is identified as: A := {ξ =
(
ξ1, ξ2, ξ3

)
∈ R3

| −1 ≤ ξi ≤ +1; i = 1, 2, 3}, the subscript b and t represent bottom and
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Figure 41: Definition of the cracking shell body in both the reference and
current configurations with the solid shell concept and phase field approach
for fracture modeling

top surfaces, respectively, and
(
ξ1, ξ2, ξ3

)
represent the coordinates in the

parametric space, see Fig. 41.
The kinematics of solid shell element can be described by the use

of the convective curvilinear system so that the ANS interpolation for
the transverse normal and shear strain components can be implemented.
The covariant tangent vectors Gi(ξ) and gi(ξ) in the reference and cur-
rent configuration are defined as the partial derivatives of corresponding
position vectors X and x with respect to the convective coordinates ξi

Gi(ξ) :=
∂X(ξ)

∂ξi
, gi(ξ) :=

∂x(ξ)

∂ξi
, i = 1, 2, 3 (3.8)

The contravariant basis vectors can be determined in a standard manner
by Gi · Gj = δji and gi · gj = δji , and metric tensors are defined as
G = GijG

i ⊗Gj = GijGi ⊗Gj , g = gijg
i ⊗ gj = gijgi ⊗ gj .

In curvilinear setting, the deformation gradient Fu is given by

Fu =
∂x

∂X
= gi ⊗Gi (3.9)

where the Einstein summation convention on repeated indices is adopted
here. Through the definition of metric tensor components Gij = Gi ·Gj

and gij = gi · gj in the reference and current configuration, the displace-
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ment derived Green-Lagrange strain tensor is defined as

Eu :=
1

2

[
(Fu)

T
Fu − I2

]
=

1

2
[gij −Gij ]G

i ⊗Gj (3.10)

The energetically conjugated second Piola-Kirchhoff stress tensor is de-
fined as

S = SijGi ⊗Gj (3.11)

where Sij represents the contravariant component.

3.2 Numerical implementation

In this section, the numerical strategy rooted in the use of finite ele-
ment method for the spatial approximation is described briefly. Since
this work is restricted to quasi-static analysis, no temporal integration
scheme is required, which leads to an equilibrium problem at each pseudo-
time step. Firstly, the variational formulation and finite element interpo-
lations are derived in Section 3.2.1. Secondly, the solution schemes pro-
posed for the phase field solid shell formulation are depicted in Section
3.2.2.

3.2.1 Finite element interpolation

The mixed Hu-Washizu variational principle is adopted for the deriva-
tion of phase field solid shell formulation incorporating the Enhanced
Assumed Strain (EAS) and Assumed Natural Strain (ANS) methods to
alleviate the locking pathologies. It should be pointed out that the EAS
method is employed to remedy volumetric and Poisson thickness lock-
ing, while the membrane and in-plane locking effects are tackled by the
ANS method [110, 113]. Given the enhancement based on the EAS method
at finite deformation, the Green-Lagrange strain consists of two parts fol-
lowing the approach proposed in [106], including the displacement de-
rived compatible strain Eu and incompatible strain Ẽ, and its complete
form reads: E = Eu + Ẽ.
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The multi-field variational functional of the solid body takes the form
of

Π(S, Ẽ,u, d) =

∫
B0

Gcl

2

[
d2

l2
+ ω : (∇Xd⊗∇Xδd)

]
dΩ

+

∫
B0

Ψ
(
Eu, Ẽ, d

)
dΩ−Πext

(3.12)

where Πext identifies the external energy functional. Note that the dis-
placement u, the phase field variable d, and the imcompatible strain Ẽ

are the independent variables. Given the orthogonality condition be-
tween the stress and strain fields, the stress field is ignored in line with
the previous work [124]. The first variation of Eq. (3.12) with respect to
the independent fields is given by

Ru(u, δu, Ẽ, d) =

∫
B0

∂Ψ

∂E
:
∂Eu

∂u
δu dΩ

− δΠext(u) = 0, ∀δu ∈ Vu

(3.13a)

RẼ(u, Ẽ, δẼ, d) =

∫
B0

∂Ψ

∂E
: δẼ dΩ = 0, ∀δẼ ∈ VẼ (3.13b)

Rd(u, Ẽ, o, δd) =

∫
B0

Gcl

[
1

l2
dδd+ ω : (∇Xd⊗∇Xδd)

]
dΩ

+

∫
B0

−2(1− d)δdΨ+dΩ = 0, ∀δd ∈ Vd

(3.13c)

where Vu, VẼ and Vd are the admissible spaces of independent vari-
ables.

By means of isoparametric concept, the approximations of position
vectors X and x, displacement vector u and its variation δu on the solid
shell element level are given by

X = NX̃ (3.14a)

x = Nx̃ (3.14b)

u = Nd, δu = Nδd (3.14c)
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where X̃ and x̃ denote the nodal position vectors in the reference and
current configurations, respectively, and d represents the nodal displace-
ment vector. The shape function matrix N is defined as

N = [N1, N2, N3, N4, N5, N6, N7, N8] (3.15)

where NI = diag [NI,NI,NI] with I = 1, 2, ..., 8, and its component NI is
given by

NI =
1

8

(
1 + ξ1I ξ

1
) (

1 + ξ2I ξ
2
) (

1 + ξ3I ξ
3
)

(3.16)

with ξ1I , ξ
2
I , ξ

3
I = ±1.

In a similar manner, the phase field variable d and its variation δd are
interpolated as

d = Ndd̄, δd = Ndδd̄ (3.17)

where d̄ represents the nodal phase field vector, and the shape function
matrix Nd for interpolation of phase field is given by

Nd = [N1, N2, N3, N4, N5, N6, N7, N8] (3.18)

The material gradient of phase field ∇Xd and its variation ∇Xδd are in-
terpolated as

∇Xd = G−T∇ξd̄ = Bd(ξ)d̄, ∇Xδd = G−T∇ξδd̄ = Bd(ξ)δd̄ (3.19)

where ∇ξ represents the gradient with respect to the natural coordinates
in the curvilinear setting, and Bd is the gradient interpolation matrix of
phase field variable.

The Green-Lagrange strain vector in this work is given by E =[E11,
2E12, 2E13, E22, 2E23, E33 ]T. To overcome the deficiency of curvature
thickness locking, the ANS interpolation proposed in [112] to modify
transverse normal strain components E33 is adopted. This ANS method
considers four collocation points defined in convective coordinates ξCi

as ξC1
= (−1,−1, 0), ξC2

= (1,−1, 0), ξC3
= (1, 1, 0), and ξC4

= (−1, 1, 0).
Besides, to prevent transverse shear locking in case of distorted element
geometry, the ANS interpolation method proposed in [113] is also em-
ployed in this work. The four collocation points for the treatment of
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transverse shear strain components are ξA1 = (0,−1, 0), ξA2 = (0, 1, 0),
ξB1

= (−1, 0, 0), and ξB2
= (1, 0, 0). With respect to the ANS interpola-

tions, the approximation of strain vector is expressed as

Eu =



1
2 (g11 −G11)
(g12 −G12)(

1− ξ2
) (
gA1
13 −GA1

13

)
+
(
1 + ξ2

) (
gA2
13 −GA2

13

)
1
2 (g22 −G22)(

1− ξ1
) (
gB1
23 −GB1

23

)
+
(
1 + ξ1

) (
gB2
23 −GB2

23

)
∑4

i=1
1
4

(
1 + ξ1i ξ

1
) (

1 + ξ2i ξ
2
)

1
2

(
gCi
33 −GCi

33

)


(3.20)

where the superscripts A1, A2, B1, B2, and Ci with i = 1, 2, 3, 4 denote
the values at the corresponding collocation points.

The approximation of virtual strain is given by

δEu = Bδd with B = [B1,B2,B3,B4,B5,B6,B7,B8] (3.21)

where BI is the matrix for each node I considering ANS interpolation.
According to the previous work [102, 92], the interpolations of incom-
patible strain vector Ẽ and its variation δẼ are given by

Ẽ ≈ M(ξ)ζ, δẼ ≈ M(ξ)δζ (3.22)

where M(ξ) is the interpolation matrix of the enhancing modes ζ, and is
defined as

M(ξ) =

[
detJ0

detJ

]
T−T0 M̃(ξ) (3.23)

where J = [G1,G2,G3]
T, J0 is its evaluation at the element center, T0

is the tranformation matrix, and M̃(ξ) is the interpolation matrix in the
parametric space [131].

Inserting the aforementioned interpolations into Eqs. (3.13), the dis-
cretes residual equations are given by

Rd(d, δd, d̄, ζ) =

∫
B0

g(d)B(d)TS dΩ−Rd
ext (3.24a)

Rζ(d, d̄, ζ, δζ) =

∫
B0

g(d)M(ξ)TS dΩ (3.24b)
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Rd(d, d, δd, ζ) =

∫
B0

−2(1− d)N(ξ)TΨ+dΩ

+

∫
B0

Gcl

[(
Bd
)T

W∇Xd+
1

l2
N(ξ)Td

]
dΩ

(3.24c)

To avoid the irreversible growth of the fracture process, a history vari-
able H is introduced to modify the residual vector Rd [184], which is
transformed into

Rd =

∫
B0

−2(1− d)N(ξ)THdΩ

+

∫
B0

Gcl

[(
Bd
)T

W∇Xd+
1

l2
N(ξ)Td

]
dΩ

(3.25)

In view of the irrevisibility [177], the history variable H must obey the
following Kuhn-Tucker conditions

Ψ+ −H ⩽ 0, Ḣ ⩾ 0, Ḣ (Ψ+ −H) = 0 (3.26)

At the certain time point t, the history variable H can be expressed as

H = max
τ∈[0,t]

Ψ+(τ) (3.27)

To solve the multi-field problem, an iterative scheme is adopted, and
the consistent linearization of Eqs. (3.24) obtained from the concept of
Gateaux directional derivative can be derived as kdd kdζ 0

kζd kζζ 0
0 0 kdd

 ∆d
∆ζ
∆d̄

 =

 Rd
ext
0
0

−

 Rd

Rζ

Rd

 (3.28)

The different components of the stiffness matrix are defined as

kdd =

∫
B0

[
(1− d)2 +K

] [
Q+B(d)TCB(d)

]
dΩ (3.29a)

kdζ =

∫
B0

[
(1− d)2 +K

]
B(d)TCM(ξ)dΩ (3.29b)

kζd =

∫
B0

[
(1− d)2 +K

]
M(ξ)TCB(d)dΩ (3.29c)
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kζζ =

∫
B0

[
(1− d)2 +K

]
M(ξ)TCM(ξ)dΩ (3.29d)

kdd =

∫
B0

[
Gc

l
+ 2H

]
N(ξ)TN(ξ)dΩ

+

∫
B0

Gcl
(
Bd(ξ)

)T
WBd(ξ)dΩ

(3.29e)

The derivative of B with respect to d in Eq. (3.29a) appears in order to
compute ∆δEu : S, where ∆δEu is the linearized virtual strain tensor,
and the matrix form is given by

Q =
∂B(d)T

∂d
S =


Q11 Q12 · · · Q18

Q21 Q22 · · · Q28

...
...

. . .
...

Q81 Q82 · · · Q88

 (3.30)

where QIJ is defined as QIJ = diag
[
QIJ,QIJ,QIJ

]
for the combination of

node I and J.
The isotropic Kirchhoff–Saint-Venant constitutive model is consid-

ered in this study, and the tangent material stiffness tensor C in the con-
vective curvilinear setting can be expressed as

C =
[
λGijGkl + µ

(
GikGjl +GilGjk

)]
Gi ⊗Gj ⊗Gk ⊗Gl (3.31)

where λ and µ are the Lame parameters. The matrix form of stiffness C

is given by

C =


C1111 C1112 C1113 C1122 C1123 C1133

C1212 C1213 C1222 C1223 C1233

C1313 C1322 C1323 C1333

C2222 C2223 C2233

sym. C2323 C2333

C3333

 (3.32)

Since inter-element continuity is not required, the enhanced strain
term can be condensed out in the element level [106], and the system of
equations that couples the kinematics with phase field is given by[

k∗dd 0
0 kdd

] [
∆d
∆d

]
=

[
Rd

ext
0

]
−
[

Rd∗

Rd

]
(3.33)

86



where components of modified stiffness matrix and residual vector are
defined as

k∗dd = kdd − kdζk
−1
ζζ kζd (3.34a)

Rd∗ = Rd − kdζk
−1
ζζ R

ζ (3.34b)

3.2.2 Solution schemes

Given the highly nonlinearity of residual equations with respect to the
kinematic variables, two schemes are widely adopted to address the cou-
pled phase field-displacement problem, including the monolithic scheme
in which the displacement and phase field variables are solved simul-
taneously and the AM scheme in which the independent variables are
solved separately as sequentially staggered field. Monolithic scheme re-
tains unconditional stability and consequently large time increments are
allowed, but the poor performance in achieving convergence has hin-
dered its wide application. With regard to the staggered scheme, it is
very robust and can overcome the convergence issues. However, suffi-
ciently small increments must be employed to prevent the solution de-
viating from the equilibrium, and thus computational cost is very high.
In the following, the quasi-Newton monolithic scheme with improved
performance over conventional Newton schemes in terms of both con-
vergence and computational efficiency is introduced into the numerical
implementation of phase field solid shell formulation.

Within the time increment
[
tn, t

(k)
n+1

]
, where tn and t(k)n+1 represent the

previous converged increment and prospective current increment at it-
eration k, respectively, given the data {dn, ζn, d̄n} at the previous con-
verged increment, the final solution at the next increment requires New-
ton iterations around the intermediate state {d(k)

n+1, ζ
(k)
n+1, d̄

(k)
n+1} due to

nonlinearity. Note that {dn, ζn, d̄n} and {d(k)
n+1, ζ

(k)
n+1, d̄

(k)
n+1} denote the

nodal displacement vector, incompatible enhancing vector, and nodal
phase field vector at the previous converged increment and prospective
current increment at iteration k, respectively. According to the static con-
densation procedure in Section 4.2, the nodal phase field and displace-
ment vectors are defined as unknowns in the element level, and the in-
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crement of enhancing vector at the next time increment of iteration k,
which is denoted as ∆ζ

(k)
n+1, should be determined for the computational

procedure. Based on the process described in [100], the increment ∆ζ
(k)
n+1

is given by

∆ζ
(k)
n+1 = − [kζζ,n]

−1
[
Rζ

int,n + kζd,n∆d
(k)
n+1

]
(3.35)

It should be pointed out that the increments ∆d(k)
n+1 and ∆d̄

(k)
n+1 are pro-

vided by the solver, while the element matrices at the previous increment
[kζζ,n]

−1, Rζ
int,n, kζd,n, and ζn are all stored as internal variables.

In contrast to standard Newton methods, the stiffness in the quasi-
Newton method is not updated after each iteration, and instead, it is
approximated after a certain number of iterations without achieving con-
vergence [185]. Specifically, the approximated stiffness matrix must sat-
isfy the following equation

K̃δz = δR (3.36)

for the residual δz := zt+∆t − zt, in which the kinematic variable vector
is defined as z = [d, d̄]T, and the correction δR := Rt+∆t − Rt, respec-
tively. In the quasi-Newton method, the approximated stiffness matrix
K̃ is given by

K̃ = K̃t −

(
K̃tδz

)(
K̃tδz

)T
δzTK̃tδz

+
δRδRT

δzTδR
(3.37)

In addition, as pointed out in [186], the updated stiffness matrix in case
of symmetry can be written in its inverse form

K̃−1 =

(
I− δzδRT

δzTδR

)
K̃−1t

(
I− δzδRT

δzTδR

)T

+
δzδzT

δzTδR
(3.38)

Accordingly, it can be easily implemented into the finite element code,
and significant computational cost can be saved. The initial guess of the
stiffness K̃(0) is defined as

K̃(0) =

[
K∗dd 0
0 Kdd

]
(3.39)
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Note that, though it is not fully coupled, the subsequent approxima-
tion of the stiffness matrix couples the phase field and displacement, see
Eq. (3.37). The quasi-Newton stiffness will be reformed whenever the
number of iterations exceed 8 without obtaining the convergent solution
in this work. The computational procedure for the quasi-Newton mono-
lithic implementation of phase field solid shell formulation is outlined in
Algorithm 3.

Algorithm 3: Numerical algorithm for the QN implementation
of phase field solid shell formulation

Data: dn, d̄n, ∆d(k)
n+1, ∆d̄

(k)
n+1

Result: dn+1, d̄n+1

Initialization of ζn, Rζ
int,n, kζd,n, [kζζ,n]

−1;
while ||R∗

d|| > tolerance do
Compute ∆ζ

(k)
n+1 = − [kζζ,n]

−1
[
Rζ

int,n + kζd,n∆d
(k)
n+1

]
;

Update the enhancing vector ζ(k)
n+1 = ζn + ∆ζ

(k)
n+1;

for n← 1 to N integration points do
Compute the curvilinear basis G(k)

n+1 and g
(k)
n+1;

Compute the B matrices B(k)
n+1 and B

d(k)
n+1 ;

Modify the B(k)
n+1 matrix according to the ANS method;

Compute C(k)
n+1, S(k)

n+1, Ψ(k)
n+1, and H

(k)
n+1;

Compute the EAS operator M(k)
n+1;

end
Compute the element stiffness matrices k(k)

dd,n+1, k(k)
dζ,n+1, k(k)

ζd,n+1, k(k)
ζζ,n+1, and

k
(k)
dd,n+1;

Compute the internal force vectors Rd(k)
int,n+1, Rζ(k)

int,n+1, and R
d(k)
int,n+1;

Perform the static condensation in the element level;
Do the final assembly;

end

3.3 The global-local fracture submodeling ap-
proach

The global-local modeling approach has been widely employed in a va-
riety of technical applications, such as J-integral calculation in fracture
problems [187], three-dimensional stress analysis [188, 125] and com-
putation of stress intensity factors [189]. Generally, a global finite ele-
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Figure 42: The sketch of solid shell elements from both global and local
models

ment model with coarse mesh is used to calculate the displacement field
and determine the size and location of the critical region with low com-
putational cost. Subsequently, the displacement output obtained from
the global-scale calculation will be employed to interpolate the bound-
ary condition of the local model, which is a fine scale representation of
the critical area with more detailed mechanical degradation to achieve a
greater accuracy [28]. However, very limited work has been focused on
the global local approach for phase field fracture modeling, see [190, 191,
192], among others.

To further reduce the computational cost in fracture modeling of large-
scale thin-walled structures, a specific global-local submodeling approach
in the 3D setting tailored for phase field modeling using solid shell for-
mulation is proposed. The submodeling technique is a computational
strategy frequently employed in fiber-reinforced composites for model-
ing with two different length scales, such as macro scale and meso scale
of the laminate. The global and local model are solved sequentially in
the submodeling approach, in which the global model is solved firstly,
and subsequently its results are taken as boundary conditions to drive
the local model. As a result, both global and local models are analysed
separately, and local model has no influence on the global model. In this
work, this approach is introduced for phase field fracture modeling of
shell structures to improve computational efficiency when the crack in
the local region has minor effect on the global stiffness. For instance, it is
pointed out in [193, 28] that the stiffness of the global photovoltaic panel
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is hardly degraded by the cracks in the local solar cells, and in this case, it
is viable to apply the submodeling technique uncoupling the global lin-
ear elastic finite element analysis of photovoltaic module from the local
fracture modeling of solar cell. To simulate the realistic loading condition
driving the crack propagation of brittle silicon solar cell, it is essential to
model the whole photovoltaic laminate, and on the other hand, for the
prediction of cracking phenomena at the cell level, phase field approach
can be employed with very refined mesh for the local model.

Algorithm 4: Numerical algorithm for displacement projection
from global model to local model

for t← 1 to T time increments do
Impose boundary conditions on the global model;
Solve the nodal displacements of global model using Newton-Rapson scheme;
for i← 1 to S solid shells of the local model do

for j ← 1 to N exterior facets of the local model do
for k ← 1 to M edges (M=2, upper and bottom edges) do

Find the two closest nodes P1 and P2 belonging to the same edge and facet in
the global model;

Interpolate the nodal displacement uk = N1u1 + N2u2, where u1 and u2 are
the nodal displacement vector of P1 and P2, N1 and N2 are linear shape
functions.

end
end

end
end

To efficiently model thin-walled global structures like photovoltaic
panels, a solid-like continuum solid shell element is employed to simu-
late the structural response under complex loading conditions with rela-
tively coarse mesh to save computational cost. Compared with Kirchhoff-
Love shell elements and solid elements in thin-walled structure mod-
eling [84], it is preferred since three dimensional constitutive laws are
allowed and accuracy can be ensured with only one ply of element re-
quired through thickness of the global model. After obtaining the dis-
placements of global coarse-scale model in the different directions by lin-
ear elastic finite element analysis, the boundary conditions applied to the
nodes belonging to the edges of local fine-scale model can be determined
by linear interpolation of global results. It is worth mentioning that the
finite element discretization of the local model is not required to comply
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with the one of the global finite element model, and a projection scheme
can be used to map the displacement results from computation of global
model onto the edge nodes of local model. In doing so, the mesh of local
model can be more refined to perform the appropriate phase field frac-
ture simulation. From the viewpoint of algorithm, since there is only one
ply of solid shell element through the thickness direction, it is convenient
to distinguish the nodes of exterior element facets belonging to the local
model into upper and bottom edge nodes, see Fig. 42. For each node of
local model on the exterior facets, the displacement boundary conditions
are obtained by linear interpolation between the displacement values of
two closest nodes of global model on the same upper or bottom edge.
The projection scheme is illustrated in Algorithm 4.

3.4 Numerical examples

In this section, to investigate the performance of quasi-Newton mono-
lithic solution scheme in phase field modeling using solid shell formu-
lation, four different numerical tests, including single edge notched ten-
sion, single edge notched shear, cylindrical structure under mixed ten-
sion and bending, and fatigue induced crack propagation, are performed.
The performance in attaining convergence and computational efficiency
is assessed by comparison with that of the widely adopted staggered
scheme through the different types of boundary value problems. Then
the capability of the proposed global-local approach to further reduce
the computational cost in phase field modeling is demonstrated by the
numerical tests of cylindrical structure subjected to both constant and
cyclic fatigue loading conditions. With regard to the application of the
computational framework for crack modeling of silicon solar cells in the
photovoltaic modules, the feasibility to model anisotropic fracture using
the current approach is firstly shown through a demonstration problem,
and then the solar cell cracking modeling in the photovoltaic module un-
der two different loading cases are presented.
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Figure 43: (a) Sketch of the single edge notched tension and (b) finite ele-
ment mesh of the specimen

3.4.1 Single edge notched tension

The first numerical case is the mode I fracture of single edge notched
specimen under monotonic loading, as indicated in Fig. 43(a). It is a very
popular benchmark example for verification of phase field approach and
challenging for the numerical algorithms used to solve the coupled gov-
erning equations [146]. Specimen dimensions and boundary conditions
are shown in Fig. 43(a). The geometry is a square plate with unit lateral
size of 1 mm and thickness of 0.001 mm. Note that there is an initial sharp
crack with the length of 0.5 mm in the middle of the specimen. The de-
grees of freedom at the bottom edges of specimen are constrained, while
the displacement boundary condition is imposed on the upper edges in
the vertical direction, leading to a symmetric loading at the crack tip of
specimen and subsequent mode I crack propagation. The Young’s mod-
ulus and Poisson’s ratio are equal to 210 GPa and 0.3, respectively, and
regarding the fracture properties, the fracture toughness and phase field
length scale are set to 2.7 N/mm and 0.024 mm, respectively. The model
is discretised with solid shell elements, see Fig. 43(b), and notably, the
characteristic elements along the potential crack path are refined to a size
of 0.004 mm, being 6 times smaller than the length scale. The total num-
ber of elements is 7222. The contour plots of phase field values during
the crack propagation are shown in Fig. 44.
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Figure 44: The contour plots of phase field values at the loading displace-
ments equal to 0.0055 mm, 0.0057 mm, and 0.006 mm during the crack prop-
agation in the single edge notched tension

The constrained force versus loading displacement curves are shown
in Fig. 45. The numerical results obtained from the conventional stag-
gered or AM scheme with different numbers of time increments are also
presented here for comparison. It can be seen that the staggered scheme
is very sensitive to the time increment size, and with the increase of
the number of increments, the obtained force versus displacement curve
will gradually coincide with that solved by the quasi-Newton mono-
lithic scheme, which requires only 100 time increments. Both the quasi-
Newton monolithic scheme and staggered scheme require a lot of iter-
ations at the critical time increment when the crack starts to propagate.
The total number of iterations versus loading displacement curves for
the staggered schemes with different increment size and quasi-Newton
monolithic scheme are shown in Fig. 46. Results indicate that repro-
ducing the numerical result obtained by the quasi-Newton monolithic
scheme through the staggered scheme requires at least around ten thou-
sand iterations. It is also shown that the number of iterations by the
staggered scheme with one thousand time increments is almost the same
as that required by the quasi-Newton monolithic scheme, but its devi-
ation from the convergent solution reaches around 20%. Note that the
quasi-Newton monolithic scheme is roughly 15 times more efficient than
the staggered scheme for the phase field modeling of this single edge
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Figure 45: The force vs. displacement curves obtained from both the quasi-
Newton monolithic and staggered schemes for the phase field modeling of
single edge notched tension using solid shell formulation

notched tension using enhanced assumed strain shell formulation. The
significant differences in computational cost are mainly due to the greatly
reduced number of iterations in the quasi-Newton monolithic solution.

3.4.2 Single edge notched shear

In this section, the performance of the proposed quasi-Newton mono-
lithic scheme in phase field modeling using solid shell element formula-
tion is assessed in the context of mode II fracture of single edge notched
specimen. The same material properties and specimen dimensions as the
previous single edge notched tension are adopted but the shear loading
is applied to the upper edges of specimen, see Fig. 47(a). The shear-
dominated crack conditions lead to crack propagation towards the right
bottom part of the specimen, which is discretized with uniform solid
shell elements. The contour plots of phase field values during the crack
propagation in the single edge notched shear test are shown in Fig. 48,
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Figure 46: The total number of iterations vs. loading displacement curves
obtained from both the quasi-Newton monolithic and staggered schemes
for the phase field modeling of single edge notched tension using solid shell
formulation

Figure 47: (a) Sketch of the single edge notched shear and (b) finite element
mesh of the specimen
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Figure 48: The contour plots of phase field values at the loading displace-
ments 0.0085 mm, 0.010 mm, and 0.0135 mm during the crack propagation
in the single edge notched shear

and it can be seen that the predicted crack trajectory agrees with results
in the literature, see [146].

The constrained force versus displacement curves obtained from both
the quasi-Newton and staggered schemes with different increment sizes
are shown in Fig. 49. It can also be seen that reproducing the quasi-
Newton monolithic result with staggered scheme requires the use of 104

number of increments. When using the less number of total increments,
such as 103 or 2 × 103, the resultant curve deviates from the predicted
quasi-Newton one, see Fig. 49. The total number of iterations versus dis-
placement curves obtained from both the quasi-Newton monolithic and
staggered schemes for the phase field modeling of single edge notched
shear test using solid shell element formulation are shown in Fig. 50. Dif-
ference of total number of iterations between the two solution schemes
is smaller compared with the previous single edge notched tension, but
remains significant in this case. To obtain the same result as the quasi-
Newton monolithic solution, the required total number of time incre-
ments for the staggered scheme is still one order larger than the former
scheme. It can be concluded that the quasi-Newton monolithic scheme in
the single edge notched shear is also much more efficient as its computa-
tional cost is around ten times smaller than that required in the staggered
solution with 104 number of increments.
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Figure 49: The force vs. displacement curves obtained from both the quasi-
Newton monolithic and staggered schemes for the phase field modeling of
single edge notched shear using solid shell formulation

3.4.3 Cylindrical structure under mixed tension and bend-
ing

The performance of the quasi-Newton monolithic scheme for phase field
modeling using enhanced assumed strain shell formulation is further as-
sessed in capturing fracture events of thin-walled structure with curved
geometry under mixed tension and bending. In this section, we consider
a quarter of cylindrical structure with an initial crack notch in the mid-
dle of the specimen, see Fig. 51(a). The dimensions of the specimen are
as follows: the length is equal to 240 mm, the internal radius is 100 mm,
the external radius is 100.1 mm, the width of the initial notch is 3 mm
and its length is 6 mm. To comply with the symmetric boundary con-
ditions, the translational degrees of freedom at the X=0 side of the spec-
imen is constrained in the X direction, and the Y=0 side is constrained
in the translational vertical direction Y. Besides, the translational degree
of freedom in the Z direction at the back of the specimen is constrained,
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Figure 50: The total number of iterations vs. loading displacement curves
obtained from both the quasi-Newton monolithic and staggered schemes
for the phase field modeling of single edge notched shear using solid shell
formulation
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Figure 51: (a) Sketch of the cylindrical structure under mixed tension and
bending and (b) finite element mesh of the specimen

while the displacement condition δZ is applied to the front edges and
the displacement condition δY is applied to the notch edges, as shown
in Fig. 51(a). The same material properties as in the previous cases are
used here. Regarding the fracture properties, the phase field length scale
is set to 4 mm and fracture toughness is 2.7 N/mm. The specimen is dis-
cretized using 8474 solid shell elements with refinement in the potential
crack propagation region, see Fig. 51(b). The contour plots of phase field
and displacement during the crack propagation are shown in Fig. 52,
which agrees well with the fracture pattern predicted by an alternate for-
mulation proposed in [174].

The force versus displacement curves obtained from both the quasi-
Newton monolithic and staggered schemes with different increment sizes
are shown in Fig. 53. As with the previous single edge notched ten-
sion and shear cases, reproducing the exact numerical result from the
quasi-Newton monolithic solution requires a large number of time in-
crements for the staggered scheme. For the phase field fracture mod-
eling of cylindrical structure under mixed tension and bending, the re-
sultant curve obtained from the staggered scheme with 104 time incre-
ments agrees perfectly well with that solved by quasi-Newton mono-
lithic scheme that requires only 100 time increments. The total number
of iterations versus loading displacement curves obtained from both the
quasi-Newton monolithic and staggered schemes are shown in Fig. 54.
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Figure 52: The contour plots of (a) phase field and (b) axial displacement
at the loading displacements δZ equal to 0.14 mm, 0.145 mm, and 0.155
mm during the crack propagation in the fracture modeling of cylindrical
structure under mixed tension and bending
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Figure 53: The force vs. displacement curves obtained from both the quasi-
Newton monolithic and staggered schemes for the phase field modeling of
cylindrical structure under mixed tension and bending using solid shell for-
mulation

The same conclusion as the previous two cases can be drawn that the
total number of iterations to obtain the same numerical result for the
staggered scheme is 100 times larger than that required by the quasi-
Newton monolithic scheme. It takes approximately 12 times longer us-
ing the staggered scheme with 104 time increments than that solved by
the quasi-Newton monolithic scheme. It should be pointed out that the
quasi-Newton scheme is very robust and efficient for the phase field
modeling with solid shell formulation considering both EAS and ANS
compared with the conventional Newton solution schemes.

3.4.4 Phase field fatigue modeling using solid shell for-
mulation

In this section, the quasi-Newton monolithic scheme for phase field mod-
eling with solid shell formulation is employed to address fatigue prob-
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Figure 54: The total number of iterations vs. displacement curves ob-
tained from both the quasi-Newton monolithic and staggered schemes for
the phase field modeling of cylindrical structure under mixed tension and
bending using solid shell formulation
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lems. The framework presented in [194] has been adopted and imple-
mented into the phase field solid shell formulation. Firstly, a history vari-
able ᾱ that governs the accumulation of fatigue is defined and the crack
propagation is driven by a fatigue function f(ᾱ), which is employed to
lower the fracture energy around the vicinity of crack. The governing
equation for the phase field fracture driven by fatigue is given by

Rd =

∫
B0

−2(1− d)δdΨdΩ

+

∫
B0

f(ᾱ)Gcl

[
1

l2
dδd+∇Xd · ∇X(δd)

]
dΩ = 0

(3.40)

The history variable ᾱ should be independent of the unloading process
and takes the form

ᾱ(t) =

∫ t

0

θ(αα̇)|α̇|dτ (3.41)

where θ(αα̇) is the Heaviside function and τ is the pseudo time. Note
that the fatigue history variable ᾱ is a scalar variable depending on the
loading history of material, which is defined as α = g(ϕ)Ψ. The function
f(ᾱ) characterizing the relationship between the degradation of fracture
energy and the number of cycles in the fatigue loading is expressed as

f(ᾱ(t)) =

{
1 if ᾱ(t) ≤ αT

2αT

ᾱ(t)+αT
if ᾱ(t) ≥ αT

(3.42)

where αT is the threshold value of the fatigue variable, below which the
fracture energy will not be influenced by fatigue loading, and its expres-
sion is given by

αT =
GC

12l
(3.43)

The sketch of the single edge notched fatigue is shown in Fig. 55(a).
The geometry and dimensions of specimen are all the same as those of
the previous single edge notched tension and shear except the shape of
initial notch. To avoid contact between the upper and lower faces during
compression, a V-shaped notch is adopted here, see Fig. 55(a). The finite
element mesh with refinement in the potential crack region is shown in
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Figure 55: (a) Sketch of the single edge notched fatigue and (b) finite ele-
ment mesh of specimen
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Figure 56: Cyclic fatigue loading with equal tension and compression for
the single edge notched specimen
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Fig. 55(b), and the total number of solid shell elements is 4878. The mate-
rial and fracture properties are also the same as the previous study. The
cyclic loading with equal tension and compression is applied to the up-
per surface of the specimen, and the amplitude and cycle are 0.002 mm
and 0.002 s, respectively, see Fig. 56.

The curves of crack length driven by fatigue loading versus number
of cycles for quasi-Newton monolithic and staggered schemes with dif-
ferent time increment sizes are shown in Fig. 57. It is clear that extremely
small time increment size is required for the staggered scheme so as to
obtain the same result as that of the quasi-Newton monolithic solution,
and convergence rate of the staggered scheme is quite low. The curves
of total iterations versus number of cycles for the two solution schemes
in the phase field fatigue simulation are shown in Fig. 58. Results show
that the quasi-Newton solution requires almost the same number of to-
tal iterations as the staggered solution with 80 time increments per cycle.
However, even the staggered scheme with 200 time increments per cycle
cannot reproduce the quasi-Newton monolithic solution, and obviously
more increments per cycle are required, which is computationally too ex-
pensive. Notably, the staggered solution with 200 increments per cycle
requires 6 times more computation times than that in the quasi-Newton
monolithic analysis. It can be concluded that quasi-Newton monolithic
scheme shows the tremendous advantage over the staggered scheme
in computational efficiency for fatigue problems. The contour plots of
phase field values in fatigue induced fracture modeling with solid shell
formulation solved by the quasi-Newton monolithic scheme are shown
in Fig. 59. As can be clearly seen, the crack propagation starts from the
15th cycle of fatigue loading, and it proceeds with the increase of fatigue
cycles. The single edge notched specimen for fatigue modeling is fully
cracked at the 50th cycle.
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Figure 57: The curves of crack length vs. number of cycles obtained from
both the quasi-Newton monolithic and staggered schemes for the phase
field fracture modeling under fatigue loading

3.4.5 Global-local fracture modeling of thin-walled struc-
ture with curved geometry

In this section, the global-local phase field approach using solid shells
is tested through the fracture modeling of cylindrical structure with an
initial notch in the center as shown in Fig. 60(a). The dimensions of
this specimen in the global level are the same as that in Section 3.4.3.
As shown in Fig. 60(a), the global specimen is separated into 9 different
blocks in total and the initial notch lies within the central block, which
is chosen as the region of local model. To save computational cost, the
global model is discretized with relatively coarse mesh using the uni-
form size of 3 mm, while to appropriately capture the crack propagation
in the phase field modeling of local region, very refined mesh is used
to discretize the potential crack area around the notch of local model.
Specifically, the mesh size around the edge of local model is 3 mm, which
is the same as that of global model, and characteristic mesh size along the
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Figure 58: The curves of total iterations vs. number of cycles obtained from
both the quasi-Newton monolithic and staggered schemes for the phase
field fracture modeling under fatigue loading
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Figure 59: The contour plots of phase field values in fatigue modeling using
solid shell element solved by the quasi-Newton monolithic scheme
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Figure 60: (a) Geometry and (b) finite element mesh of the global and local
models in the phase field fracture submodeling of cylindrical structure

potential crack path is 0.8 mm, see Fig. 60(b). The continuum solid shell
is chosen for the elastic finite element analysis of global model, and phase
field modeling for solid shell using quasi-Newton monolithic scheme
is subsequently employed for the analysis of refined local model. The
same material properties are adopted for the global and local model with
the Young’s modulus equal to 210 GPa and the Poisson’s ratio equal to
0.3, and both the phase field length scale and fracture toughness of lo-
cal model are the same as the previous study in Section 3.4.3, which are
equal to 4 mm and 2.7 N/mm, respectively.

The contour plots of phase field values of local model, displacement
fields of both global and local models solved by quasi-Newton mono-
lithic scheme at two different time points are shown in Fig. 61. The first
time point is the time increment when the crack of local model starts to
propagate under the drive of the boundary conditions interpolated from
the displacement output of global model, while the second time point is
the time increment when the local model with curved geometry is fully
cracked. This global-local approach is very computationally efficient in
fracture modeling of large thin-walled structures, since only the local re-
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Figure 61: The contour plot of global and local displacement as well as
phase field variable in the fracture submodeling of cylindrical structure with
solid shell element formulation

gion of interest needs to be modeled by phase field approach. In the
global model, the degree of freedom corresponding to phase field vari-
able is ignored, and thus significant computational cost can be saved.
Besides, mesh in the local fracture region of interest can be refined with
more flexibility, which is very appealing for realistic application of phase
field approach in fracture modeling of large-scale structures.

To further assess the global-local phase field approach using solid
shells, the above case study is extended to the analysis of fatigue induced
crack growth by applying the cyclic loading to the frontal end of global
model. The cyclic loading is characterized by the amplitude of 0.05 mm
and the cycle of 0.01 s, as shown in Fig. 62. The time duration is 1 s, and
thus there are 100 cycles in total. The phase field plots of local model in
the fatigue submodeling solved by quasi-Newton monolithic scheme are
shown in Fig. 63. It should be pointed out that the boundary conditions
of local model are obtained by the interpolation of the displacement out-
put from the global finite element analysis, which is subjected to cyclic
loading shown in Fig. 62. In this fatigue submodeling case, the crack of
local model starts to propagate from the 40th cycle and after 28 cycles of
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Figure 62: Cyclic fatigue loading with equal tension and compression for
the global model of the cylindrical structure

fatigue loading, the local model is fully cracked along the expected crack
path, which further demonstrates the capability of this global-local phase
field approach for fracture modeling.

3.4.6 Benchmark example of anisotropic fracture

In this example, the model will be assessed through a benchmark prob-
lem consisting in a square specimen that contains two parts and an initial
crack, as shown in Fig. 64. The size of the specimen is 1 mm, and meshed
with uniform solid shell elements. The elastic modulus and critical frac-
ture energy release rate are set to 160 GPa and 4.32 N/m, respectively,
which are the typical material properties of silicon solar cells in photo-
voltaic modules [148]. The preferential crack plane of the Grain 2 with an
initial crack is oriented with a fixed angle of 45 degree, while the prefer-
ential crack direction of the Grain 1 varies with respect to the horizontal
axis of the whole domain. Regarding the boundary condition, the bot-
tom facet is constrained in the vertical direction, and a tensile loading is
applied to the upper facet of the specimen.

The predicted contour plots of phase field with different preferential
crack orientations of Grain 1 are shown in Fig. 65. Different crack pat-
terns can be observed with different preferential crack planes. The crack
propagates from the initial crack following the fixed crack orientation
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Figure 63: The contour plots of phase field values of local model in fatigue
submodeling solved by quasi-Newton monolithic scheme

Grain boundary

Crack

Displacement loading

Grain 2

Grain 1

45 degree

Preferential direction

Preferential direction

Grain boundary

Figure 64: Schematic diagram of the benchmark problem for anisotropic
fracture modeling.
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Figure 65: The phase field contour plots of fully cracked specimen with the
preferential crack orientation of Grain 1 equal to 0 degree, 22.5 degree, 45
degree, and 67.5 degree.
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through the domain of Grain 2, and when approaching the boundary be-
tween the two grains, crack deviation occurs due to the different nature
of Grain 1. As shown in Fig. 65, the crack path through the Grain 1 when
the specimen is fully cracked exactly follows the expected orientation.
The force versus displacement curves for the different crack orientations
of Grain 1 are plotted in Fig. 66. It can be seen that the crack prefer-
ential orientation of Grain 1 has negligible influence on the mechanical
response. The approximate linear behaviour can be observed before the
specimen is fully cracked when the loading displacement reaches around
0.0005 mm. After the peak values, all the curves drops down to zero im-
mediately except the curve with crack orientation angle of Grain 1 equal
to 67.5 degree, which can be ascribed to the fact that part of specimen is
still constrained even when reaching the fully cracked state in this case.
It should be pointed out that the different crack patterns can create differ-
ent electrically inactive area in the silicon solar cell, leading to different
power loss of the photovoltaic modules. Hence, the fracture anisotropy
must be taken into account for the modeling of cracking events [28].

3.4.7 Silicon solar cell cracking in the photovoltaic mod-
ule

The modeling framework is further assessed in this section with applica-
tion to the more realistic simulation of silicon solar cell cracking when
the photovoltaic modules are subjected to the different external load-
ing. According to the experimental investigations [193, 28], the cracking
events of silicon solar cells have negligible influence on the global stiff-
ness of photovoltaic modules, and as a result, the global-local approach
proposed in [131] can be employed to reduce the computational cost by
decoupling the elastic modeling of photovoltaic module with the fracture
modeling of silicon solar cells. In this approach, the photovoltaic module
is assumed to be purely elastic corresponding to the global model, and
its solution at each time step is used to drive the local fracture modeling
of silicon solar cell with the phase field approach. Hence, the global and
local models are solved in a staggered manner, which features the one-
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Figure 66: The obtained force vs. displacement curves with the preferential
crack orientation of Grain 1 equal to 0 degree, 22.5 degree, 45 degree, and
67.5 degree.

way coupling in line with experimental evidence. The cracking events
of one single silicon solar cell when the photovoltaic modules are sub-
jected to two different loading cases are investigated to comprehensively
showcase the capability of the modeling framework.

In the first case, the tensile loading is applied to the photovoltaic mod-
ule, and there is an initial notch perpendicular to the loading direction in
the middle of one single solar cell, as shown in Fig. 67. The photovoltaic
module is basically a thin-walled laminate structure that consists of dif-

Table 2: Mechanical properties for Photovoltaic modules [86, 52].

E (GPa) Density (kg/m3)

Backsheet 2.8 1200
EVA 0.01 1180
Glass 73 2500

115



Frame

Glass

Encapsulant

Solar cells

Encapsulant

Backsheet

Junction box

Single solar cell

Tensile loading

Tensile loading

PV module

Figure 67: Schematic diagram of the local fracture modeling of one single
solar cell when the photovoltaic module is subjected to tensile loading.

ferent layers, including glass, backsheet, solar cells, and so on [16]. The
material properties of photovoltaic modules are listed in Table 2, which
are taken from [86, 52]. The key component of the photovoltaic module
is the silicon cell layer that converts the solar energy into electrical en-
ergy. It is very thin with the thickness of aproximately 0.1 mm [38], and
can be broken easily due to the fragility. Each module contains 60 sili-
con solar cells, and the local crack propagation in the one single thin-film
solar cell can be modeled by the phase field approach with solid shell
formulation. The predicted contour plots of displacement in the module
at the loading displacement 1.24 mm, 1.34 mm, 1.42 mm, and 1.48 mm
are shown in Fig. 68. At each time step, the global solution is used to
drive the crack propagation of local model with uniform fine mesh by
interpolation [131]. Hence, the boundary condition of the local model
is determined by the global solution at each time step. Due to fracture
anisotropy, the local model can have different crack paths. In case of
isotropic fracture, the phase field contour plots of the local model corre-
sponding to the four loading stages are shown in Fig. 69. On the other
hand, when the preferential crack orientation angle is set to 45 degree,
the crack growth can be observed from Fig. 70.

In the second case, the photovoltaic module is subjected to the three
point bending, as shown in Fig. 71. The predicted displacement contour
plots of the module along the loading direction at four loading stages
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Loading Displacement 1.24 mm Loading Displacement 1.34 mm

Loading Displacement 1.42 mm Loading Displacement 1.48 mm

Figure 68: The predicted displacement contour plots of the whole photo-
voltaic module when subjected to tensile loading at the loading displace-
ment 1.24 mm, 1.34 mm, 1.42 mm, and 1.48 mm.
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Loading Displacement 1.34 mm

Loading Displacement 1.42 mm Loading Displacement 1.48 mm
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Figure 69: The predicted phase field contour plots of the local model with
no fracture anisotropy at the loading displacement 1.24 mm, 1.34 mm, 1.42
mm, and 1.48 mm.
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Figure 70: The predicted phase field contour plots of the local model with
the preferential crack orientation angle equal to 45 degree at the loading
displacement of 1.24 mm, 1.34 mm, 1.42 mm, and 1.48 mm.
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Figure 71: Schematic diagram of the local fracture modeling of one single
solar cell when the photovoltaic module is subjected to three point bending.

are shown in Fig. 72. The local model driven by the global solution at
each time step should have mixed boundary conditions in this case, in-
cluding both pure bending and tension. Fig. 73 shows the phase field
contour plots of the local model with no fractrue anisotropy at four dif-
ferent loading stages, while Fig. 74 indicates the phase field contour plots
of the local model with the preferential crack orientation angle equal to
45 degree, which presents complete different crack patterns compared to
the former.
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Figure 72: The predicted displacement contour plots of the whole photo-
voltaic module when subjected to three point bending at the loading dis-
placement 67.5 mm, 70.5 mm, 73.5 mm, and 76.5 mm.
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Figure 73: The predicted phase field contour plots of the local model with
no fracture anisotropy at the loading displacement 67.5 mm, 70.5 mm, 73.5
mm, and 76.5 mm.
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Figure 74: The predicted phase field contour plots of the local model with
the preferential crack orientation angle equal to 45 degree at the loading
displacement 100.5 mm, 103.5 mm, 106.5 mm, and 109.5 mm.
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Chapter 4

Modeling and simulation
of the recycling process for
end-of-life photovoltaic
laminates

The main content of this chapter is taken from my own publications -
Z. Liu, J. Reinoso, M. Paggi. “A humidity dose-CZM formulation to
simulate new end-of-life recycling methods for photovoltaic laminates”
[1] and Z. Liu, M. Marino, J. Reinoso, M. Paggi, “A continuum large-
deformation theory for the coupled modeling of polymer–solvent system
with application to PV recycling” [38].

In the past decades, the development of environmentally friendly en-
ergy production techniques has resulted into the fast-growing increase
of photovoltaic (PV) modules all over the world [26, 27, 195, 54, 196]. In
view of the limited service lifetime (around 25 years) of PV modules [197,
84, 23, 28], a significant amount of these end-of-life products, which are
defined as waste of electronic equipment [198], will continuously pose
challenges to the sustainable energy production and environmental pro-
tection [199, 200, 201, 57, 1]. Hence, there is an urgent need to develop
reliable techniques to dispose end-of-life PV modules [202, 203, 204, 205,
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206, 207].

EVA is a kind of polymeric material consisting of 3D network of poly-
mer molecules that are bonded to each other, and thus capable of recover-
able large-deformation [208, 209, 210, 211]. During the recycling process
using the solvent method, the solvent can penetrate into the EVA net-
work when coming into contact, and the molecules can be absorbed by
the skeletal polymeric network of EVA, forming a swollen aggregate. The
solvent molecules can interact with each other as well as with the poly-
mer structure, and also migrate in and out of the swollen aggregate. The
theory of mass transport in the continuum solids dates back to [212], and
have been further developed for the description of coupled deformation
and diffusion with application to the response of hydrogels, including
swelling and deswelling induced by mechanical deformation and forced
fluid permeation [213, 214, 215]. The purpose of this work is to develop
a thermodynamically consistent large-deformation theory on the contin-
uum level for the description of EVA polymer-solvent system in the PV
recycling, so as to provide guidance to the design of experimental pro-
cedures for the nondestructive recovery of ultrathin and brittle silicon
wafers. Similarly to the theories developed by [213], the polymer-solvent
system is treated as homogenized continuum in which the solvent flux
is allowed. In the development of constitutive theory, the Flory-Huggins
theory for the free energy change due to the mixing of solvents with dif-
ferent solubility parameters and EVA polymer network is adopted, and
the statistical-mechanical model is accounted for to describe the entropic
change of EVA polymer chains due to the mechanical stretching.

The adhesion strength of PV modules is greatly influenced by the op-
erating environment, depending on different factors, including humid-
ity, temperature, and irradiance [216, 217]. Moisture will weaken the
ionic attraction of the bond and physical adsorption across the interface
due to the high permittivity of water, which is highly relevant to the
properties of high polarity adherend [218]. Both the ionic attraction force
and van der Waals forces are inversely proportional to the relative per-
mittivity, and a small amount of water will significantly reduce the adhe-
sion strength [219]. Besides, the high surface tension resulting from the
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high polarity of water will reduce the thermodynamic work of adhesion
and thus damage interface durability [220]. Temperature mechanically
affects the performance of PV modules through differential thermal ex-
pansion, as can be seen in real life because of daily and seasonal ther-
mal cycles. However, it is assumed that the loss of adhesion strength
is primarily reduced by moisture ingress, and temperature acts as the
accelerator of the effects of humidity [221, 222]. This research aims at
understanding the influence of moisture penetration accelerated by tem-
perature on the adhesion durability of interfaces in the PV system. More
specifically, the target is to develop a computational framework allowing
for the accurate simulation of delamination in PV modules for different
ageing conditions. In this regard, research is motivated by the fact that
peeling techniques could be exploited to partially disassemble PV lami-
nates at the end of their lifetime. This can be energetically and econom-
ically favourable over the actual recycling operations which consider a
full crushing of the glass laminate and then separation of its recyclable
components aftwerwards.

During the past decades, cohesive zone models (CZM) have been
widely incorporated into the nonlinear finite element method for engi-
neering applications concerning the formation of free surfaces due to
fracture. Compared with other methods such as the virtual crack closure
technique (VCCT) [223], CZM can be easily implemented into research
and commercial codes and is highly versatile to accommodate different
physical phenomena. CZM is a nonlinear traction–relative displacement
relationship between the interface tractions across the discontinuity and
the sliding and opening displacements. Applications cover many fields,
like quasi-static fracture in solids [224, 225], snap-back instabilities dur-
ing crack propagation [226, 227], crack propagation in composites [125,
228], micromechanical and multiscale analyses [229, 135], and crack as-
sessment in bio-inspired materials [136], among others. However, to the
best knowledge of the authors, no previous research considers effect of
environmental factors including both moisture and temperature on the
interfacial strength in CZM for numerical prediction of fracture espe-
cially towards PV lifetime recycling.
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Peeling of layers of the laminate from the layer of solar cells would
require large deformation simulations [230], since the deformed config-
uration cannot be approximated by the undeformed one. As a result, the
interfacial gap calculated according to the initial undeformed configura-
tion can result in errors that cannot be ignored when assessing the total
energy required for peeling, which is the quantity of primary interest for
recycling. To accurately predict the large deformation framework, both
the surface separation and relative rotation between two sides of the in-
terface need to be taken into account. A first attempt has been proposed
in [138], which adopted the middle surface of the cohesive element in
the deformed configuration as the reference plane to calculate the normal
and tangential directions of the interface. Nevertheless, this formulation
stemming from differentiation of cohesive tractions with regard to nor-
mal unit vector led to non-symmetric geometric stiffness. Based on that
research, a 3D interface finite element was used to simulate the standard
fracture mechanics tests in thin aluminum panels, in which residual with
rotation matrix is updated during the deformation process [231]. How-
ever, its linearization does not consider the dependence of differential
operator with respect to the kinematic field. Another alternative formu-
lation for large displacement interface element was proposed in [232] by
introducing a co-rotational reference system coincident with one of the
deformed surfaces of the interface element, but not easy to be imple-
mented into the finite element method due to this co-rational descrip-
tion. In order to account for large deformation of the interface, the inter-
face element formulation for both geometrical and material nonlinearity
developed in [126] is herein adopted and extended to 3D application in
this work.

The first part of this section proposes a computational framework at
finite strains for the modeling of EVA polymer-solvent system in PV re-
cycling using the solvent method, which takes into account the coupled
solvent diffusion, swelling and shrinking of EVA polymers, as well as ef-
fects of mechanical constraints and initial crosslinking of EVA during PV
lamination. In Section 4.1.1 and 4.1.2, the basic continuum kinematics in
the large-deformation framework and balance laws for force and mass
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balance are given according to the standard modern continuum mechan-
ics. Section 4.1.3 presents the derivation of thermodynamics and consti-
tutive theory, and the specific free energy definition is given in Section
4.1.4. The numerical implementation of this theory is derived in detail
using the finite element method in Section 4.1.5, and then applied to the
PV recycling through some examples in Section 4.1.6. In the second part
of this section, the polynomial CZM [233] coupled with strength degra-
dation by the humidity dose model [221] is proposed for the peeling
simulation in PV recycling, as shown in Section 4.2.1. Then it is incor-
porated into the 3D large deformation interface element extended from
the 2D version proposed in [126], see Section 4.2.2. The numerical results
obtained from this coupling strategy correlate with experimental results
[221] very well for adhesion strength between backsheet and encapsulant
layer in PV. In section 4.2.3, the difference between the specific energy re-
quired in peeling and traditional crushing for recycling of PV panels is
compared and discussed.

4.1 Coupled modeling of polymer-solvent sys-
tem in PV recycling

4.1.1 Continuum kinematics

According to the standard concepts of continuum mechanics framework
[234, 235], the EVA body in PV modules can be described as a macro-
scopically homogeneous continuum solid within the Euclidean space E3.
It is assumed that kinematic fields in the continuum theory are applied at
large length scales compared to that associated with the polymer molecule
network and pore-structure of EVA [236, 237]. We identify the macro-
scopically homogeneous EVA with the space it occupies in the reference
configuration B0, and describe the current configuration B by a smooth
one-to-one transformation mapping φ : B0 → E3. The position vector of
an arbitrary material point in the reference configuration B0 is denoted
by X, and the corresponding vector in the current configuration B is rep-
resented by x = φ(X, t).
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The displacement field in the reference configuration is defined as
u(X, t) = x − X = φ(X, t) − X, and the transformation mapping is
described by the deformation gradient F, which reads

F =
∂φ(X, t)

∂X
= ∇Xφ(X, t) (4.1)

where ∇X denotes the material gradient. The determinant of the defor-
mation gradient is defined as J = det F ̸= 0, representing the volume
change from the reference configuration to the current configuration. The
velocity v and its gradient with respect to the position vector x in the cur-
rent configuration L are given by

v = φ̇(X, t) and L = ∇xv = Ḟ · F−1 (4.2)

where ∇x denotes the spatial gradient.
To describe the coupled mechanical behavior of polymer and solvent,

the multiplicative decomposition of deformation gradient is given by

F = Fe · Fs (4.3)

where Fe and Fs represent the elastic and swelling parts of deformation
gradient F, respectively. The swelling distortion Fs is defined as

Fs = λs1, with λs ≥ 0 (4.4)

where λs is the swelling stretch, which accounts for the swelling of the
polymeric body due to absorbed solvents that are pinned to the network
structure in the intermediate local space at the material point X. For
convenience, the determinant J can be written as

J = JeJs, with Je = det Fe and Js = det Fs = (λs)3 (4.5)

Remarkably, (Js − 1) represents the volume change per unit reference
volume of EVA resulting from the swelling behaviour due to the change
in the solvent content. Analogous to the theory developed for hydrogels,
the swelling constraint is defined as

Js = 1 + υCR and ϕ = (1 + υCR)
−1 (4.6)

129



where υ denotes the volume of a mole of solvent molecules, CR repre-
sents the number of moles of absorbed solvent molecules by the poly-
meric body per unit reference volume, and ϕ is the polymer volume frac-
tion.

Following the standard decomposition of deformation gradient, we
have

F = R ·U = V ·R and Fe = Re ·Ue = Ve ·Re (4.7)

where R and Re are rotation tensors, U and Ue are right stretching ten-
sors, and V and Ve are left stretching tensors. Subsequently, the total
right and left Cauchy-Green tensors C and B, and the elastic correspond-
ing tensors Ce and Be are defined as

C = U2 = FT · F and B = V2 = F · FT (4.8a)

Ce = Ue2 = FeT · Fe and Be = Ve2 = Fe · FeT (4.8b)

Next, by substituting Eq. (4.3) into Eq. (4.2)2, the velocity tensor L can
be expressed as

L = Le + Fe · Ls · Fe−1 (4.9)

where the elastic and swelling velocity tensors Le and Ls are given by

Le = Ḟe · Fe−1 and Ls = Ḟs · Fs−1 (4.10)

4.1.2 Balance laws

In the current configuration, the local form of force balance in the absence
of dynamic effects can be expressed as

∇x · σ + b = 0 (4.11)

where b is the body force per unit deformed body, and σ is the Cauchy
stress tensor deriving from the balance of angular momentum. As is stan-
dard [238], the first Piola-Kirchhoff stress tensor P and Kirchhoff stress
tensor τ can be related to the symmetric Cauchy stress tensor σ by

P = Jσ · F−T (4.12a)
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τ = Jσ (4.12b)

and thus
σ = J−1P · FT (4.13)

Let ∂Bu and ∂Bt be the complementary surfaces of the polymeric
body B with ∂B = ∂Bu ∪ ∂Bt and ∂Bu ∩ ∂Bt = ∅. The boundary condi-
tions imposed on the body in the current configuration can be given by

u = ū on ∂Bu (4.14a)

σ · n = t̄ on ∂Bt (4.14b)

where n is the outward unit normal on the external boundary ∂B of the
body B.

Let j denotes the fluid flux per unit deformed area per unit time, and
thus −

∫
∂B j ·n d∂Ω represents the total moles of solvent molecules enter-

ing the EVA body B across ∂B per unit time. In the current configuration,
the mass balance equation reads

ĊR = −J∇x · j (4.15)

By the substitution of Eq. (4.6)2, Eq. (4.15) can be rewritten as

ϕ̇

Jυϕ2
−∇x · j = 0 (4.16)

in which the fluid flux j is defined as [213]

j = −m(ϕ) · ∇xµ with m(ϕ) =
D

RTυ
[(1− γ)ϕ+ γ] (4.17)

where m is the mobility coefficient that depends on the polymer volume
fraction ϕ and diffusion coefficient D, R is the universal gas constant, T
represents the absolute temperature, and γ is the correlation coefficient
that determines the change of polymer network due to the increase of
solvent content.

Let ∂Bµ and ∂Bj be the complementary surfaces of the polymeric
body B with ∂B = ∂Bµ ∪ ∂Bj and ∂Bµ ∩ ∂Bj = ∅. The boundary condi-
tions imposed on the EVA body in the current configuration are given by
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µ = µ̄ on ∂Bµ (4.18a)

−j · n = j̄ on ∂Bj (4.18b)

where µ is the chemical potential that will be derived in the following.

4.1.3 Thermodynamics and constitutive laws

Following the discussion of thermodynamics and ignoring inertial ef-
fects and kinetic energy [234], the balance law for energy under the isother-
mal condition using Lagrangian description is given by∫

B0

ψ̇R dΩR ≤
∫
∂B0

(P ·NR) · φ̇ d∂ΩR

+

∫
B0

BR · φ̇ dΩR −
∫
∂B0

µJR ·NR d∂ΩR

(4.19)

where the subscript R means the description of fields in the reference
configuration, JR is the solvent fluid flux in the reference configuration
that is pulled back from the current configuration (i.e., JR = JF−1j),
NR stands for the unit normal in the reference configuration, BR repre-
sents the body force in the reference configuration, and ψR denotes the
Helmholtz free energy density per unit reference volume. By using the
divergence theorem, Eq. (4.19) can be rewritten as∫
B0

[
ψ̇R − (∇X ·P+BR) · φ̇−P : Ḟ+ µ∇X · JR + JR · ∇Xµ

]
dΩR ≤ 0

(4.20)
Given the material description of Eq. (4.11) and Eq. (4.15), and using the
fact that Eq. (4.20) must hold for every part of the EVA body, the local
form of energy imbalance in the reference configuration is given by

ψ̇R −P : Ḟ− µĊR + JR · ∇Xµ ≤ 0 (4.21)
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By using Eq. (4.3), Eq. (4.9), Eq. (4.10), and Eq. (4.12a), the stress-power
term can be written as

P : Ḟ = J
(
σ · F−T

)
: Ḟ = Jσ :

(
Le + Fe · Ls · Fe−1)

= Jσ :
(
Ḟe · Fe−1

)
+ Jσ :

(
Fe · Ls · Fe−1)

= Jσ :
(
Ḟe · Fe−1

)
+ J

(
FeT · σ · Fe−T) : Ls

=
1

2
J
(
Fe−1 · σ · Fe−T) : Ċe + J

(
FeT · σ · Fe−T) : Ls

(4.22)

For convenience, two stress measures are defined as

Se = JFe−1 · σ · Fe−T and Me = JFeT · σ · Fe−T (4.23)

so that
P : Ḟ =

1

2
Se : Ċe +Me : Ls (4.24)

where Se and Me are the second Piola stress tensor and Mandel stress
tensor, respectively. Given Eq. (4.4), Eq. (4.5) and Eq. (4.10), the stress-
power Eq. (4.24) can be written as

P : Ḟ =
1

2
Se : Ċe +Me :

(
Ḟs · Fs−1

)
=

1

2
Se : Ċe +

1

3
Js−1J̇sMe : 1

=
1

2
Se : Ċe − p̄J̇s

(4.25)

in which p̄ is the mean normal pressure defined as p̄ = − 1
3J

s−1Me : 1.
Hence, by substituting Eq. (4.25) into Eq. (4.21), the local form of free
energy imbalance in the reference configuration is given by

ψ̇R − 1

2
Se : Ċe + p̄J̇s − µĊR + JR · ∇Xµ ≤ 0 (4.26)

Recalling Eq. (4.6), it results into J̇s = υĊR that yields

ψ̇R − 1

2
Se : Ċe − (µ− υp̄)ĊR + JR · ∇Xµ ≤ 0 (4.27)

The Helmholtz free energy ψR is assumed to depend on the deforma-
tion Ce, solvent concentration CR, and thus its rate is given by

ψ̇R (Ce, CR) =
∂ψR

∂Ce
: Ċe +

∂ψR

∂CR
ĊR (4.28)

133



Eq. (4.27) yields,(
∂ψR

∂Ce
− 1

2
Se

)
: Ċe −

[
∂ψR

∂CR
− (µ− υp̄)

]
ĊR + JR · ∇Xµ ≤ 0 (4.29)

Given that this inequality should hold for any values of Ce and CR, the
following thermodynamics restrictions can be obtained

Se = 2
∂ψR (Ce, CR)

∂Ce
and µ =

∂ψR (Ce, CR)

∂CR
+ υp̄ (4.30)

Next, recalling Eq. (4.12a) and Eq. (4.23), the Piola stress tensor and Cauchy
stress tensor can be written as

σ = 2J−1Fe · ∂ψR (Ce, CR)

∂Ce
· FeT (4.31a)

P = 2Fe · ∂ψR (Ce, CR)

∂Ce
· Fs−T (4.31b)

Notably, in view of Eq. (4.17), the solvent-transport inequality is followed

JR · ∇Xµ = −Jm||∇xµ||2 ≤ 0 (4.32)

4.1.4 Free energy definition

Following the well-established methods [236], the Helmholtz free energy
ψR can be specialized as

ψR (Ce, CR) = µ̄RCR + ψR,mech (C
e, CR) + ψR,mix (C

e, CR) (4.33)

where µ̄R is the reference chemical potential of the solvent, ψR,mech (C
e, CR)

denotes the mechanical contribution to the free energy, andψR,mix (C
e, CR)

represents the energy contribution due to the mixing of the solvent with
the EVA body.

The mixing free energy per unit reference volume of the polymeric
body is defined as

ψR,mix (C
e, CR) = RTCR ln

(
υCR

1 + υCR

)
+RTχ

(
CR

1 + υCR

)
(4.34)

134



where χ is the dimensionless parameter. Recalling the definition of poly-
mer volume fraction in Eq. (4.6), the mixing free energy in Eq. (4.34) can
be written as

ψR,mix (C
e, CR) = RT

1− ϕ

υϕ
ln (1− ϕ) +RT

χ (1− ϕ)

υ
(4.35)

It should be pointed out that the enthalphy term in Eq. (4.34) is intro-
duced for the mixing of polymer-solvent system in line with the Flory
Huggins theory. According to [239], the Flory-Huggins parameter χ can
be determined as

χ = χS + χH = χS +
υ

RT
(δs − δp)

2 (4.36)

where χS and χH are the entropic and enthalphic contributions of the
parameter, respectively, δp is the solubility parameter of polymer, and δs
is the solubility parameter of the specific solvent, which is given by

δs =
(
δ2s,d + δ2s,p + δ2s,h

)1/2
(4.37)

where δs,d is the apolar part, δs,p is the polar part, and δs,h is the hydrogen
bonding part.

By coupling an energetic contribution with a Gaussian statistics based
entropic term [240], the mechanical free energy ψR,mech can be expressed
as

ψR,mech =
1

2
G(α)

(
ϕ−2/3Ce : 1− 2 lnJ − 3

)
+

1

2
K(α) (lnJe)

2 (4.38)

where α is the crosslinking degree during the lamination process, and
G(α) and K(α) represent the shear modulus and bulk modulus of EVA
polymer network, respectively. To account for the crosslinking effects
on polymer structure [241, 242, 243], the shear modulus is assumed to
depend on the gelation, and defined as

G(α) = (1− α)G0 + αG1 (4.39)

in which G0 is the shear modulus of polymer network with no crosslink-
ing (α = 0), and G1 is the shear modulus of polymer network with full
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crosslinking (α = 1). As a result of Eq. (4.39), the bulk modulus can be
determined as

K(α) =
2G(α)(1 + ν)

3(1− 2ν)
(4.40)

where ν denotes the Poisson’s ratio of the polymer network.
Thus, using Eq. (4.35) and Eq. (4.38) in Eq. (4.33), the free energy

function accounting for the combination of mixing, swelling and elastic
stretching effects takes the form of

ψR (Ce, CR) =µ̄RCR +RT
1− ϕ

υϕ
ln (1− ϕ) +RT

χ (1− ϕ)

υ

+
1

2
G(α)

(
ϕ−2/3Ce : 1− 2 lnJ − 3

)
+

1

2
K(α) (lnJe)

2

(4.41)
Recalling Eq. (4.31a), the Cauchy stress tensor is given by

σ = J−1
[
G(α)ϕ−2/3Be −G(α)1+K(α) (lnJe)1

]
(4.42)

Next, by the use of
B = F · FT = ϕ−2/3Be (4.43)

Eq. (4.42) reduces to

σ = J−1 [G(α) (B− 1) +K(α) (lnJe)1] (4.44)

Hence, according to Eq. (4.31a), the first Piola-Kirchhoff stress tensor is
given by

P = G(α)
(
F− F−T

)
+K(α) (lnJe)F−T (4.45)

Also, using Eq. (4.30)2 and Eq. (4.41) and taking into account J = Je/ϕ =

Je(1 + υCR), the chemical potential µ is given by

µ = µ̄R +RT
[
ln(1− ϕ) + ϕ+ χϕ2

]
+

1

3
υG(α)ϕ1/3Ce : 1− υG(α)ϕ+ υp̄

(4.46)
Recalling that

p̄ = −1

3
Js−1Me : 1 = −1

3
Je
(
FeT · σ · Fe−T) : 1 = −1

3
Jeσ : 1 (4.47)

and Eq. (4.42), Eq. (4.46) can be reduced to

µ = µ̄R +RT
[
ln(1− ϕ) + ϕ+ χϕ2

]
− υK(α)(ln Je)ϕ (4.48)
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4.1.5 Numerical implementation

Recalling Eq. (4.11) and Eq. (4.14), together with Eq. (4.16) and Eq. (4.18)
that represents the boundary value problems, and in the absence of body
forces, the corresponding weak forms can be obtained by multiplying
Eq. (4.11) and Eq. (4.16) with the weighting functions δu and δµ, respec-
tively. Integration over the region Ω of the body yields the scalar-valued
functions ∫

B
(∇x · σ) · δu dΩ = 0 (4.49a)

∫
B

(
ϕ̇

Jυϕ2
−∇x · j

)
δµ dΩ = 0 (4.49b)

By the use of divergence theorem and accounting for the boundary con-
ditions Eq. (4.14) and Eq. (4.18), the weak forms can be reformulated as∫

B

(
σ :

∂δu

∂x

)
dΩ =

∫
∂Bt

(δu · t̄) d∂Ω (4.50a)

∫
B

(
δµ

ϕ̇

Jυϕ2

)
dΩ = −

∫
B

(
∂δµ

∂x
· j
)

dΩ−
∫
∂Bj

(δµj̄) d∂Ω (4.50b)

Through the standard Galerkin approach [235], the displacement fields
u, the chemical potential µ, and their corresponding weighting functions
δu and δµ can be interpolated by the shape functions N , and expressed
as

u =
∑

uIN I and δu =
∑

δuIN I (4.51a)

µ =
∑

µIN I and δµ =
∑

δµIN I (4.51b)

with I and J denote the node number of the element. By substituting
Eq. (4.51) into Eq. (4.50), the following system of equations in the element
level read ∫

Be

(
σ · ∂N

I

∂x

)
dΩ =

∫
∂Be

t

(
N I t̄

)
d∂Ω (4.52a)

∫
Be

(
N I ϕ̇

Jυϕ2

)
dΩ = −

∫
Be

(
∂N I

∂x
· j
)

dΩ−
∫
∂Be

j

(
N I j̄

)
d∂Ω (4.52b)
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This set of coupled equations can be solved by the iterative Newton-
Raphson solution scheme by defining the following residuals for the dis-
placement u and the chemical potential µ in the element level

RI
u = −

∫
Be

(
σ · ∂N

I

∂x

)
dΩ +

∫
∂Be

t

(
N I t̄

)
d∂Ω (4.53a)

RI
µ =

∫
Be

(
N I ϕ̇

Jυϕ2

)
dΩ +

∫
Be

(
∂N I

∂x
· j
)

dΩ +

∫
∂Be

j

(
N I j̄

)
d∂Ω

(4.53b)
and given the definition of solvent flux in Eq. (4.17), the residual equa-
tions in the index form can be written as

RI
ui

= −
∫
Be

(
σij

∂N I

∂xj

)
dΩ +

∫
∂Be

t

(
N I t̄i

)
d∂Ω (4.54a)

RI
µ =

∫
Be

(
N I ϕ̇

Jυϕ2

)
dΩ−

∫
Be

(
m
∂N I

∂xi

∂µ

∂xi

)
dΩ +

∫
∂Be

j

(
N I j̄

)
d∂Ω

(4.54b)
The consistent linearization of the coupled polymer-solvent system in
the matrix form is given by

[
Kuu Kuµ

Kµu Kµµ

] [
∆u
∆µ

]
= −

[
Ru

Rµ

]
(4.55)

with the components of tangents corresponding to the node number I
and J defined as

KIJ
uu = −∂R

I
u

∂uJ
and KIJ

uµ = −∂R
I
u

∂µJ

KIJ
µu = −

∂RI
µ

∂uJ
and KIJ

µµ = −
∂RI

µ

∂µJ

(4.56)

For convenience, the tangent component KIJ
uu in index form is de-
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rived as

KIJ
uiuk

= −
∂RI

ui

∂uJk
=

∫
Be

0

∂

∂uJk

(
Jσij

∂N I

∂xj

)
dΩR −

∫
∂Be

t

N INJ ∂t̄i
∂uk

d∂Ω

=

∫
Be

0

∂

∂uJk

(
τij
∂N I

∂Xa
F−1aj

)
dΩR −

∫
∂Be

t

N INJ ∂t̄i
∂uk

d∂Ω

=

∫
Be

0

∂N I

∂Xa

(
∂F−1aj

∂Fmn
τij + F−1aj

∂τij
∂Fmn

)
∂Fmn

∂uJk
dΩR

−
∫
∂Be

t

N INJ ∂t̄i
∂uk

d∂Ω

=

∫
Be

0

∂N I

∂Xa

(
−F−1nj F

−1
amτij + F−1aj

∂τij
∂Fmn

)
∂NJ

∂Xn
δmk dΩR

−
∫
∂Be

t

N INJ ∂t̄i
∂uk

d∂Ω

=

∫
Be

0

∂N I

∂Xa

(
−F−1ak F

−1
nj τij + F−1aj

∂τij
∂Fkn

)
∂NJ

∂Xn
dΩR

−
∫
∂Be

t

N INJ ∂t̄i
∂uk

d∂Ω

=

∫
Be

0

∂N I

∂xr
Fra

(
−F−1ak F

−1
nj τij + F−1aj

∂τij
∂Fkn

)
Fln

∂NJ

∂xl
dΩR

−
∫
∂Be

t

N INJ ∂t̄i
∂uk

d∂Ω

=

∫
Be

0

∂N I

∂xr

(
−δrkτil + Fln

∂τir
∂Fkn

)
∂NJ

∂xl
dΩR −

∫
∂Be

t

N INJ ∂t̄i
∂uk

d∂Ω

=

∫
Be

∂N I

∂xr

(
−J−1δrkτil + J−1Fln

∂τir
∂Fkn

)
∂NJ

∂xl
dΩ

−
∫
∂Be

t

N INJ ∂t̄i
∂uk

d∂Ω

=

∫
Be

∂N I

∂xr

(
−J−1δrkτil + J−1FlnFrm

∂Pim

∂Fkn
+ J−1δrkτil

)
∂NJ

∂xl
dΩ

−
∫
∂Be

t

N INJ ∂t̄i
∂uk

d∂Ω

=

∫
Be

∂N I

∂xr

(
J−1FlnFrm

∂Pim

∂Fkn

)
∂NJ

∂xl
dΩ−

∫
∂Be

t

N INJ ∂t̄i
∂uk

d∂Ω
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with

∂Pim

∂Fkn
=

∂

∂Fkn

[
G(α)

(
Fim − F−1mi

)
+K(α)(ln Je)F−1mi

]
= G(α)δikδmn −G(α)

∂F−1mi

∂Fkn

+K(α)F−1mi

∂(ln Je)

∂Fkn
+K(α)(ln Je)

∂F−1mi

∂Fkn

= G(α)δikδmn +G(α)F−1ni F
−1
mk

+K(α)F−1mi

∂(ln Je)

∂Fkn
−K(α)(ln Je)F−1ni F

−1
mk

= G(α)δikδmn +G(α)F−1ni F
−1
mk

+K(α)F−1mi

∂(lnϕJ)

∂Fkn
−K(α)(ln Je)F−1ni F

−1
mk

= G(α)
(
δikδmn + F−1ni F

−1
mk

)
+K(α)

[
F−1mi F

−1
nk − (ln Je)F−1ni F

−1
mk

]

(4.58)

Next, recalling Eq. (4.44) and Eq. (4.48), the tangent KIJ
uµ in index form is

given by

KIJ
uiµ = −

∂RI
ui

∂µJ
=

∫
Be

∂N I

∂xj

(
σij
∂ϕ

∂ϕ

∂µ

)
NJ dΩ

=

∫
Be

∂N I

∂xj

K(α)

Jϕ
δij

(
∂µ

∂ϕ

)−1
NJ dΩ

(4.59)
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Then the tangent KIJ
µu in index form can be derived as

KIJ
µuk

= −
∂RI

ui

∂uJk
=

∂

∂uJk

(∫
Be

m
∂N I

∂xi

∂µ

∂xi
dΩ

)
=

∂

∂uJk

(∫
Be

0

mJ
∂N I

∂Xa
F−1ai

∂µ

∂Xb
F−1bi dΩR

)

=

∫
Be

0

m
∂N I

∂Xa

∂µ

∂Xb

∂
(
JF−1ai F

−1
bi

)
∂uJk

dΩR

=

∫
Be

0

m
∂N I

∂Xa

∂µ

∂Xb

∂
(
JF−1ai F

−1
bi

)
∂Fmn

∂Fmn

∂uJk
dΩR

=

∫
Be

0

m
∂N I

∂Xa

∂µ

∂Xb

(
JF−1nmF

−1
ai F

−1
bi

) ∂Fmn

∂uJk
dΩR

−
∫
Be

0

m
∂N I

∂Xa

∂µ

∂Xb

(
JF−1amF

−1
ni F

−1
bi + JF−1ai F

−1
bmF

−1
ni

) ∂Fmn

∂uJk
dΩR

=

∫
Be

m
∂N I

∂Xa

∂µ

∂Xb

(
F−1nmF

−1
ai F

−1
bi

) ∂NJ

∂Xn
δmk dΩ

−
∫
Be

m
∂N I

∂Xa

∂µ

∂Xb

(
F−1amF

−1
ni F

−1
bi + F−1ai F

−1
bmF

−1
ni

) ∂NJ

∂Xn
δmk dΩ

=

∫
Be

m
∂N I

∂Xa

∂µ

∂Xb

(
F−1nk F

−1
ai F

−1
bi

) ∂NJ

∂Xn
dΩ

−
∫
Be

m
∂N I

∂Xa

∂µ

∂Xb

(
F−1ak F

−1
ni F

−1
bi + F−1ai F

−1
bk F

−1
ni

) ∂NJ

∂Xn
dΩ

=

∫
Be

m

(
∂N I

∂xi

∂µ

∂xi

∂NJ

∂xk
− ∂N I

∂xk

∂µ

∂xi

∂NJ

∂xi
− ∂N I

∂xi

∂µ

∂xk

∂NJ

∂xi

)
dΩ

=

∫
Be

m
∂N I

∂xi

(
δjk

∂µ

∂xi
− δik

∂µ

∂xj
− δij

∂µ

∂xk

)
∂NJ

∂xj
dΩ

(4.60)
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Similarly, the last tangent KIJ
µµ is given by

KIJ
µµ = −

∂RI
µ

∂µJ

=
∂

∂µJ

[∫
Be

(
−N I ϕ̇

Jυϕ2
+m

∂N I

∂xi

∂µ

∂xi

)
dΩ−

∫
∂Be

j

(
N I j̄

)
d∂Ω

]

=

∫
Be

−N
I

Jυ

∂

∂µJ

(
ϕ̇

ϕ2

)
dΩ +

∫
Be

∂N I

∂xi

∂

∂µJ

(
m
∂µ

∂xi

)
dΩ

−
∫
∂Be

j

N I ∂j̄

∂µJ
d∂Ω

=

∫
Be

−N
I

Jυ

(
−2

ϕ̇

ϕ3
∂ϕ

∂µJ
+

1

ϕ2
∂ϕ̇

∂µJ

)
dΩ +

∫
Be

∂N I

∂xi

∂m

∂µJ

∂µ

∂xi
dΩ

+

∫
Be

m
∂N I

∂xi

∂NJ

∂xi
dΩ−

∫
∂Be

j

(
N INJ ∂j̄

∂µ

)
d∂Ω

=

∫
Be

−N
INJ

Jυϕ2

(
−2

ϕ̇

ϕ

∂ϕ

∂µ
+
∂ϕ̇

∂µ

)
dΩ +

∫
Be

∂N I

∂xi
NJ ∂m

∂µ

∂µ

∂xi
dΩ

+

∫
Be

m
∂N I

∂xi

∂NJ

∂xi
dΩ−

∫
∂Be

j

(
N INJ ∂j̄

∂µ

)
d∂Ω

=

∫
Be

−N
INJ

Jυϕ2

[
−2

ϕ̇

ϕ

(
∂µ

∂ϕ

)−1
+
∂ϕ̇

∂µ

]
dΩ

+

∫
Be

∂N I

∂xi
NJ ∂m

∂ϕ

(
∂µ

∂ϕ

)−1
∂µ

∂xi
dΩ

+

∫
Be

m
∂N I

∂xi

∂NJ

∂xi
dΩ−

∫
∂Be

j

(
N INJ ∂j̄

∂µ

)
d∂Ω

(4.61)

Notably, by the use of Eq. (4.48) and Je = Jϕ, the polymer volume
fraction ϕ in the numerical solution is determined explicitly from the fol-
lowing nonlinear equation

µ̄R − µ

RT
+ ln(1− ϕ) + ϕ+ χϕ2 − υK(α)

RT
(ln Jϕ)ϕ = 0 (4.62)
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Besides, its rate ϕ̇ is calculated through the difference approximation

ϕ̇ =
ϕn+1 − ϕn

∆t
(4.63)

where ϕn+1 and ϕn denote the values of polymer volume fraction at the
current and previous time increments, respectively. The computational
framework is implemented into the finite element program Abaqus, and
convergence is accepted if both the largest residual and correction to the
solution are less than the prescribed tolerance values at each time incre-
ment.

4.1.6 Numerical examples

In this section, the coupled chemo-mechanical responses of EVA copoly-
mer with application to the recycling of end-of-life photovoltaic modules
using the organic solvent method are simulated to illustrate the capa-
bility of the computational framework. The first case is the numerical
simulation of the free-swelling experiments of cylindrical EVA samples
with different types of solvents (Toluene, Tetrahydrofuran, and Octane),
and subsequent comparison with available testing data is addressed for
validation purposes. It should be pointed out that these solvents have
been chosen because they cannot dissolve the EVA copolymer at the par-
ticular temperatures but cause swelling when coming into contact [244].
Then the second case demonstrates the capability of this computational
framework to model the effects of initial crosslinking and mechanical
constraints on the time history evolution of complex coupled response.
Finally, since the cracking of silicon solar cells due to EVA swelling is
the critical problem in PV recyling using the solvent method [72], the
complete PV laminate is modeled in the 3D setting to study the defor-
mation and diffusion mechanisms, and the mechanical and swelling re-
sponses under different conditions are analyzed in detail. Based on the
well-established experimental evidence in the literature, the basic model
parameters associated with the properties of EVA copolymer are listed in
Table 3. The initial chemical potential of dry EVA polymer is defined by
Eq. (4.48) with the reference chemical potential of the solvent µ̄R equal to
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Table 3: Model parameters of EVA copolymer for the coupled modeling.

Parameter Value

G0 (298 K) 5 MPa [245]
G1 (298 K) 20 MPa

ν 0.495 [245]
χS 0.34 [239]
δp 17.5 MPa1/2 [239]
γ 100

2R

H

2R

H H

2R

R/H = 1.0

R/H = 0.5

R/H = 2.0

Figure 75: Cylindrical EVA samples with three different aspect ratios (0.5,
1.0, and 2.0) between radius and height.

0.0 J/mol, and the default initial crosslinking degree is set to 0.0 unless
specified in the following. It should be pointed out that the value of poly-
mer volume fraction ϕ at time 0.0 is set to 0.999 rather than 1.0 to avoid
numerical difficulties. For convenience, the swelling degree is specified
as the ratio between the solvent volume and total volume of both solvent
and EVA polymer [244].

The first numerical example is the free swelling simulation of cylin-
drical EVA samples. In this example, the transient free swelling of cylin-
drical EVA samples with different types of solvents is simulated accord-
ing to the experiments [244]. To study the swelling kinetics of EVA poly-
mer in different solvents, the apparatus consisting of two round reser-
voirs connecting to each other with a graduated tube was designed to
perform the experiments as reported in [244]. Before testing, the sol-
vent level in the tube was recorded when the apparatus was vertical and
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Table 4: Solvent properties for the swelling simulation [244, 246].

Toluene Tetrahydrofuran Octane

υ (m3/mol) 1.068×10−4 7.79×10−5 1.635×10−4

D (m2/s) 4.04×10−11 4.0×10−11 4.0×10−11

δs,d (MPa1/2) 18.0 16.8 15.6
δs,p (MPa1/2) 1.4 5.7 0.0
δs,h (MPa1/2) 2.0 8.0 0.0

there was no contact between solvent and the dry EVA polymer samples.
On turning the apparatus to the horizontal state, the solvent penetrated
into the specimen and the kinematic measurements started. After cer-
tain time periods, the apparatus was turned back to the vertical state and
the solvent level in the graduated tube was recorded again. In this way,
the volume decrease of solvent level is equal to the volume increase of
the polymer specimen. The initial volume of the specimen is 0.15 cm3,
but the shape is not mentioned in [244]. To investigate this influence,
cylindrical specimens with three different aspect ratios between radius
and height (0.5, 1.0, and 2.0) are chosen in the following simulation, see
Fig. 75. The isothermal condition with the constant temperature of 298
K is assumed in this work. Three different solvents including Toluene,
Tetrahydrofuran, and Octane are considered, and their basic properties
are reported in Table 4. Due to symmetry, only a half of axisymmetric
cylindrical slice is modeled to save computational cost. Zero chemical
potential boundary condition is prescribed on the outer surfaces of spec-
imen.

The contour plots of polymer volume fraction ϕ for the three cylin-
drical models with different ratios between the radius and height ob-
tained from simulation after 15 min, 30 min, and 45 min in the solvent of
Tetrahydrofuran are shown in Fig. 76. Note that as the solvent penetrates
into the EVA copolymer, the volumes of models change with time for all
the three different shapes. The EVA models gradually increases their
volumes because of the entry of solvent molecules and subsequent com-
bination with the polymer molecules by physical forces. This swelling
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Figure 76: Comparison of the contour plots of the polymer volume fraction
in Tetrahydrofuran after (a) 15 min, (b) 30 min, and (c) 45 min for the three
different models with the ratio between radius and height equal to 0.5, 1.0,
and 2.0.
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Figure 77: The time history plots of swelling degree in Tetrahydrofuran for
the three different models with the ratio between radius and height equal to
1.0, 0.5, and 2.0.

phenomena can be ascribed to the higher interaction energy between the
polymer molecules than that for their interaction with solvent molecules
at this temperature condition of 298 K. Besides, it should be pointed out
that the volume change process is not only the absorption and diffu-
sion of solvent molecules but also the change in polymer structure of
the EVA. As mentioned in [244], on the one hand, as solvent molecules
penetrate into the interstructural space between polymer molecules, the
supermolecular polymer structures are formed, which results into the in-
terstructural swelling. On the other hand, the solvent molecules will also
penetrate into the internal polymer molecule structures, leading to the
so-called intrastructural swelling. From the sectional view of the cylin-
drical models in Fig. 76, it is also clearly observed that the polymer vol-
ume fraction ϕ increases from the boundary to the inside portion of EVA,
which represents the solvent diffusion as well as the polymer swelling
process. To better quantify the effects of ratio between radius and height,
the time history responses of swelling degree for three different mod-
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Figure 78: Comparison of the time history curves of swelling degree in the
three different solvents between experiments and numerical simulation.

els in the solvent of Tetrahydrofuran are shown in Fig. 77. Generally,
the time history curves of swelling degree for the three different models
agree with each other very well, which indicates that the ratio between
the radius and height has no significant influence on the swelling behav-
ior of the EVA copolymer in solvents under the isothermal condition. In
the remaining part of this section, only the cylindrical model with the
ration between the radius and height equal to 1.0 will be considered.

The swelling phenomena in the EVA polymer-solvent system is mainly
caused by the interactions due to the dispersive forces, but the solvent
properties such as the molar volume and viscosity also greatly influence
the kinetics. In the following, three solvents (Toluene, Tetrahydrofuran,
and Octane) with different basic properties have been chosen in the nu-
merical simulation of swelling tests of EVA samples with the cylindrical
shape at the constant temperature of 298 K reported in [244]. The com-
parison of time history curves of swelling degree in the three different
solvents between simulation and experiments are shown in Fig. 78. The
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Figure 79: Schematic for the transient swelling of (a) pure EVA sample and
(b) EVA/aluminum laminate.

swelling degree changed over time, and the volume change lasted until
the equilibrium state when the swelling degree became constant. Also
note that the same polymer reaches the different equilibrium swelling
degrees in the three solvents due to the different molar volumes and vis-
cosity parameters. Compared with the swelling behaviour of polymer
samples in Tetrahydrofuran and Toluene, the corresponding equilibrium
swelling degree in Octane is significantly lower because of its lower sol-
ubility parameter. As for the cases in Toluene and Tetrahydrofuran, not
much difference of equilibrium swelling degree can be observed as a re-
sult of approximately equal Flory-Huggins parameter determined by the
corresponding solvent properties. The swelling kinetics for EVA copoly-
mer in the three solvents of different nature with respect to their inter-
actions can be well predicted by the modeling method, and as shown in
Fig. 78, the swelling time history curves obtained from simulation agree
with the experimental data very well.

In the second numerical example, the influences of crosslinking treat-
ment and mechanical constraints on the coupled responses of EVA poly-
mer in PV recycling using the organic solvent method have been in-
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vestigated in detail to further demonstrate the capability of the mod-
eling framework. As mentioned in [247], the crosslinking process of
EVA copolymer is indeed the formation of 3D polymer network that
increases the stability of the elastomeric material. In this process, the
hydrogen from terminal methyl groups of the EVA chains is abstracted
by the cleaved radical species, and at the same time, the active radical
site is transferred to the methyl group of EVA, which then creates the
bond between the EVA chains through reaction. In PV lamination, the
crosslinking reaction is basically the result of thermolysis at the temper-
ature condition around 150 ◦C [248]. It has shown by chemical assess-
ment in [249] that the crosslinking degree is strongly affected by both
the temperature condition and lamination time during the manufactur-
ing process. The initial crosslinking degree is considered here as a key
parameter to the coupled chemo-mechanical response of the polymer-
solvent system in PV recycling. In line with the tests reported in [72],
both the pure EVA samples and samples bonded with aluminum plate
have been taken into account in the simulation to study the mixing ef-
fects. As shown in Fig. 79, due to the symmetry, only a quarter of the
pure EVA sample and a half of the EVA/laminate are modeled in the
plane strain condition. The width and thickness of the EVA sample are 15
mm and 3 mm, respectively. For the elastic modeling of aluminum sub-
strate using the Kirchhoff–Saint-Venant constitutive model, the Young’s
modulus and Poisson ratio are set to 69 GPa and 0.33, respectively, which
are taken from [51]. In the first case of pure EVA sample, symmetric
boundary conditions are imposed on the edges AB and AD, while in the
second case of EVA/aluminum laminate, the symmetric boundary con-
dition is applied to the edge EH. The solvent can penetrate into the two
symmetric models from the edges BC, CD, GH, and part of edge FG that
belongs to EVA, and the other edges are prescribed to zero-flux chemical
boundary conditions.

The contour plots of polymer volume fraction ϕ of the pure EVA sam-
ples with the crosslinking degree α = 0.0 and α = 1.0 at 15 min, 30 min,
and 45 min are shown in Fig. 80. It can be clearly seen the rectangular
pure EVA samples in the plane strain condition gradually increase its
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Figure 80: Comparison of the contour plots of the polymer volume fraction
at (a) 15 min, (b) 30 min, and (c) 45 min between the pure EVA samples with
crosslinking degree α = 0.0 and α = 1.0.
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Figure 81: Comparison of the contour plots of the polymer volume fraction
at (a) 15 min, (b) 30 min, and (c) 45 min between the EVA/aluminum lam-
inate samples with crosslinking degree α = 0.0 and α = 1.0 (aluminum in
grey color).
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volume over time due to the penetration of solvent.The polymer volume
fraction ϕ is higher in the area close to the edges than that in the middle
areas as a result of the solvent diffusion. Also, the polymer volume frac-
tion distribution in the EVA sample becomes lower with time for both the
initial crosslinking degree α = 0.0 and α = 1.0. On the other hand, the
contour plots of polymer volume fraction ϕ of the EVA/aluminum lami-
nate samples with the crosslinking degree α = 0.0 and α = 1.0 at 15 min,
30 min, and 45 min are shown in Fig. 81. As in the previous case study of
pure EVA samples, the volume of EVA in the laminate structure becomes
bigger over time for both two crosslinking degrees. However, the EVA
body can only change along the thickness direction in this case as the
bottom edges are constrained by the aluminum substrate along the hori-
zontal direction. Note that the difference between the predictions of EVA
with two crosslinking degree is intensified compared with the previous
case, which can be ascribed to the coupled diffusion-deformation in the
presence of mechanical constraint from the aluminum substrate. Besides,
it can also be seen from Fig. 81 that the EVA part of laminate sample with
no initial crosslinking cannot maintain the rectangular shape with time
because of the enhanced solvent flux from the two upper corners and
faster diffusion process than that with the initial crosslinking α = 1.0.
The quantitative comparison of swelling degree between the pure EVA
sample and EVA/aluminum laminate with two different initial crosslink-
ing degree is shown in Fig. 82. The equilibrium swelling degree for both
the pure EVA and EVA/aluminum laminate with no initial crosslink-
ing is larger than that with initial crosslinking α = 1.0 - this is because
crosslinking can suppress the swelling behaviour of EVA due to part of
its dissolution. It is also worth noting that the mechanical constraint di-
rectly influence the magnitude of equilibrium swelling degree, reducing
from 0.5 to 0.385 with the initial crosslinking α = 0.0 and from 0.31 to
0.225 with the initial crosslinking α = 1.0.

The third numerical example addresses the numerical simulation of
the recycling of complete PV laminate using the organic solvent method
under gentle temperature condition. As pointed out in [72], the key prob-
lem in this recycling method is the cracking of PV silicon cells due to
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Figure 83: The sectional sketch of the PV module in the recycling process.
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Figure 84: Finite element model of a quarter of the complete PV laminate.
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Table 5: Mechanical properties for PV modules [86, 52].

E (GPa) Density (kg/m3) ν

Backsheet 2.8 1200 0.3
Silicon 130 2329 0.2
Glass 73 2500 0.24

the swelling of EVA layers induced by solvent penetration. The char-
acteristics of recycled intact silicon cells are of great importance to the
high-value reuse and reduction of production cost. Hence, it is crucial
to develop a reliable modeling framework to understand the coupled
responses of EVA in different solvents during the PV recycling process.
The sectional sketch of the PV laminate in the recycling process is shown
in Fig. 83. A quarter of the complete PV laminate is modeled in the 3D
setting to study the EVA swelling-induced deformation of silicon cells,
as shown in Fig. 84. The thickness values of glass, EVA (no crosslinking),
silicon cell, and backsheet are 4 mm, 0.5 mm, 0.166 mm, and 0.1 mm,
respectively. Only elastic deformation is taken into account for the mod-
eling of glass, silicon cell, and backsheet layers using the Kirchhoff–Saint-
Venant constitutive model, and the basic mechanical properties are listed
in Table 5. The zero chemical potential is prescribed on the outer surfaces
of two EVA layers, and the initial potential for the dry EVA polymer is
determined in the same way as in the previous two cases. Symmetric dis-
placement boundary conditions are imposed on the symmetric planes,
and the bottom surface of glass layer is constrained to remove rigid body
motions.

The contour plots of polymer volume fraction ϕ of the first EVA layer
(EVA1) in the three different solvents Toluene, Tetrahydrofuran, and Oc-
tane after 5 h, 10 h, and 15 h are shown in Fig. 85. At each of the three
different time points, the polymer volume fraction of the first EVA layer
(EVA1) in Toluene is lower than that in the other two solvents Tetrahy-
drofuran and Octane, which is mainly because of the high molar volume
and viscosity of Toluene. The polymer volume fraction values of EVA1 at
equilibrium in Toluene, Tetrahydrofuran, and Octane are approximately
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Figure 85: The contour plots of the polymer volume fraction ϕ of the first
EVA layer (EVA1) in the three different solvents Toluene, Tetrahydrofuran,
and Octane after (a) 5 h, (b) 10 h, and (c) 15 h.
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Figure 86: The spatial variation of the polymer volume fraction ϕ of the first
EVA layer (EVA1) in the three different solvents Toluene, Tetrahydrofuran,
and Octane after (a) 1 h, (b) 5 h, (c) 10 h, and (d) 15 h.
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Figure 87: The contour plots of the polymer volume fraction ϕ of the second
EVA layer (EVA2) in the three different solvents Toluene, Tetrahydrofuran,
and Octane after (a) 5 h, (b) 10 h, and (c) 15 h.
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Figure 88: The spatial variation of the polymer volume fraction ϕ of the
second EVA layer (EVA2) in the three different solvents Toluene, Tetrahy-
drofuran, and Octane after (a) 1 h, (b) 5 h, (c) 10 h, and (d) 15 h.
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0.587, 0.612, and 0.780, respectively. After 15 h, the polymer volume frac-
tion value in the middle area of EVA1 in Octane is the highest among the
three cases, which can be ascribed to the lowest Flory-Huggins param-
eter. The spatial variation of the polymer volume fraction ϕ of the first
EVA layer in the three different solvents after 1 h, 5 h, 10 h, and 15 h are
shown in Fig. 86. At 1 h, the polymer volume fraction at the central area
remains the value of 1.0 due to the lack of solvent penetration. No sig-
nificant difference of the spatial distribution of polymer volume fraction
in the solvents Tetrahydrofuran and Toluene can be observed at this time
point because of their similar solubility parameters. After 15 h, it can be
clearly seen from Fig. 86(d) that the polymer volume fraction distribu-
tion plot of EVA1 in Octane is much higher than the other two plots cor-
responding to Toluene and Tetrahydrofuran, which indicates least vol-
ume change of EVA in Octane. The contour plots and spatial variation of
polymer volume fraction ϕ of the second EVA layer (EVA2) in the three
different solvents Toluene, Tetrahydrofuran, and Octane after different
time periods are shown in Fig. 87 and Fig. 88, respectively. It can be ob-
served that the volume change and spatial variation of polymer volume
fraction of EVA2 are similar to that of EVA1 in PV modules due to the fact
that the thickness of silicon cell layer is very small. The time history evo-
lution curves of EVA swelling degree of the two EVA layers in the three
solvents Toluene, Tetrahydrofuran, and Octane are shown in Fig. 89. As
expected, the volume of EVA layers in the PV modules increases with the
penetration of solvents over time, but due to the different solubility pa-
rameters and molar volumes of three solvents, the corresponding time
evolution curves of swelling degree show clear distinctions from each
other.

The maximum principal stress plots of silicon solar cell layer of the
PV modules in the three different solvents Toluene, Tetrahydrofuran, and
Octane after 5 h, 10 h, and 15 h are shown in Fig. 90. Due to the enhanced
solvent flux at the corners of EVA layers in the PV module, the stresses
of silicon cell layer are higher at these marginal areas. After 5 h, the up-
per limit of maximum principal stress of silicon cell layer in Toluene is
the highest among the three cases, with the value of 35.0 MPa, which
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Figure 89: The time history evolution of the EVA swelling degree in the
three different solvents Toluene, Tetrahydrofuran, and Octane.

can be ascribed to the highest swelling degree of EVA layers in this case.
The maximum principal stress of silicon cell layer has the lowest value
in Octane because of the lowest swelling degree of EVA layers in it. Note
that the values of maximum principal stress of silicon solar cell layers in
the three different solvents Toluene, Tetrahydrofuran, and Octane all in-
crease over time as the solvents gradually penetrate into the middle area
of EVA layers. After 15 h, the maximum principal stress at the outer areas
of silicon cell layers with the three solvents reach the maximum values,
indicating higher risks of silicon cracking at these areas. According to
[193], the fracture stress of silicon mono-crystalline was approximately
30 MPa, which might be regarded as damage criterion here. Specifically,
the silicon cells are considered to be damaged when the corresponding
maximum principal stress values reach this criterion. The damage plots
of silicon cell layer of the PV modulus in three different solvents after 5 h,
10 h, and 15 h are shown in Fig. 91. It is noteworthy that the onset of dam-
age affects the stress distribution in the silicon (and hence the mechanical
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Figure 90: The maximum principal stress plots of the silicon cell layer in the
three different solvents Toluene, Tetrahydrofuran, and Octane after (a) 5 h,
(b) 10 h, and (c) 15 h.
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equilibrium condition) but this is here not taken into account and is left
for future investigations. Therefore, the obtained damage distributions
should be considered just as a first step towards a more detailed fracture
mechanics approach. However, in the limits of such approximation, they
are certainly associated with different risks of damage in the different
cases.

4.2 Peeling simulation of PV recycling

4.2.1 Humidity dose-based cohesive zone model

In this section, the humidity dose concept based polynomial CZM for
the appropriate simulation of hygrothermal-mechanical behavior, sub-
jected to large deformation like peeling, is presented. The formulations
described subsequently are macroscopic models and developed for use
within the framework of the finite element method.

Adhesion strength within the PV module under different environ-
mental conditions degrades similarly in the form of exponential decay,
which tends to decrease quickly in the beginning and then slow down
after a certain period. Increased moisture causes the loss of interfacial
strength, while temperature enhances the effect of humidity at a faster
speed. In order to describe the environmental impact on the module
over a time period, the relative humidity under ambient temperature
must be transformed into the relative humidity at the interface of the
module. The relative humidity inside the module is usually lower than
the ambient relative humidity. Assuming the interface is in thermody-
namic equilibrium with the environment and temperature inside the PV
module is uniform [250], the ambient and module relative humidity are
calculated as

RHa =
Pw

Ps(Ta)
(4.64a)

RHm =
Pw

Ps(Tm)
=
RHa × Ps(Ta)

Ps(Tm)
(4.64b)

where RHa and RHm are the ambient and module relative humidity, re-
spectively, Pw is the water vapor pressure of the environment, and Ps(Ta)
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Figure 91: The damage plots of the silicon cell layer in the three different
solvents Toluene, Tetrahydrofuran, and Octane after (a) 5 h, (b) 10 h, and (c)
15 h.
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and Ps(Tm) are respective saturated water vapor pressures at ambient
temperature and module temperature. The saturated and partial water
vapor pressure of the environment are calculated as

Ps = f × P ′s (4.65a)

Pw = RHa × Ps = RHa × f × P ′s (4.65b)

where Ps and P ′s are the saturated water vapor pressure of environment
and pure value, respectively, f is an enhancement coefficient. Substitut-
ing Eqs. (4.65a) and (4.65b) into Eq. (4.64b), the module relative humidity
is formulated as

RHm =
Pw

Ps(Tm)
=
RHa × f(Ta)× P ′s(Ta)

f(Tm)× P ′s (Tm)
(4.66)

where P ′s (Ta) and P ′s (Tm) are pure saturation water vapor pressure at am-
bient temperature Ta and module temperature Tm, and f(Ta) and f(Tm)

are enhancement coefficients at corresponding temperatures, respectively.
Due to many different environmental factors such as irradiance, wind
speed, heat exchange, and so on, module temperature is usually differ-
ent from ambient temperature for outdoor exposure. However, for stan-
dard laboratory damp-heat test, the module temperature is identical to
ambient temperature as experiments are performed in the environmen-
tal chambers. Thus, in this case, the relative humidity of the interface
inside the PV module becomes approximately equal to the ambient rel-
ative humidity. The difference needs to be taken into account for the
prediction of outdoor installation or for accelerated cyclic tests with fast
non-equilibrium temperature variations.

The humidity dose model is established to quantify the environmen-
tal humidity and temperature effect on the interfacial degradation of PV
modules within a certain time duration. In this model, relative humidity
is regarded as the dominating factor, while the temperature is an accel-
erating factor, which can be described by an Arrhenius function. This
Arrhenius form is an acceleration formulation to define relationships be-
tween degradation and contributing factors when a single mechanism
dominates the influence [251], allowing to establish a consistent model
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for different operating environments. The humidity dose is defined as
a function of relative surface humidity with temperature as weighting
factor within the time duration

dose = RHm × e−
Ea

RTm ×∆t (4.67)

where R is Boltzmann’s constant (8.617 × 10-5eV/K), Ea is the activation
energy and Tm is the module temperature in kelvin. Considering the
relative module humidity defined in Eq. (4.66), the humidity dose can be
formulated as follows,

dose =
RHa × f(Ta)× P ′s (Ta)

f(Tm)× P ′s (Tm)
× e−

Ea
RTm ×∆t (4.68)

This means the relative humidity of the PV module rather than the am-
bient relative humidity determines the moisture ingress. Besides, it also
considers the temperature effect on moisture diffusion. The critical pa-
rameter in this dose model for the prediction of aging is the activation
energy, which is determined as 0.65 eV by curve fitting [221].

Polynomial CZM proposed by Tvergaard [233] is a nonlinear consti-
tutive relationship where the traction vector T = (τs, τt, σ)

T is defined
as a function of opening and sliding displacement of interface element
with a softening part after reaching the maximum traction value. In this
model, a non-dimensional parameter λ is firstly defined as

λ =

√(gloc,s

δ

)2

+

(gloc,t

δ

)2

+

(gloc,n

δ

)2

(4.69)

where gloc,n , gloc,s and gloc,t are normal, in-plane shearing and out-of-
plane shearing gap vector components, and δ is the corresponding ul-
timate displacement. In this research, both the shearing displacement
values are set the same as the normal displacement one. Complete sep-
aration occurs when reaching the ultimate dimensionless displacement
λ = 1. An exponential model can be used to describe the relation be-
tween ultimate displacement δ and humidity dose during degradation,

δ = δ0e−k×dose (4.70)
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where k is the coefficient determined as 3.28×107 [221], and δ0 is the ini-
tial ultimate displacement corresponding to no damp-heat effect, which
is determined as approximate value 15 mm by the trial simulation to
match experimental results.

To define the interface constitutive behavior, a function is defined as

P (λ) =
27

4
σmax(1− 2λ+ λ2) for 0 ≤ λ ≤ 1 (4.71)

where σmax is the maximum stress, which is defined by trial simulation
and specified as a constant value of 0.3 MPa throughout this study for
all the cases. Then the traction components are given by the following
expressions

σ = σmax
gloc,n

δ
P (λ) (4.72a)

τs = µσmax
gloc,s

δ
P (λ) (4.72b)

τt = µσmax
gloc,t

δ
P (λ) (4.72c)

where µ is the difference factor between tangential and normal sepa-
ration, and set as 0.1 in this work. This cohesive zone formulation is
viewed as a phenomenological model representing the average effect of
the debonding mechanisms of PV interfaces. Its tangent constitutive ma-
trix reads as

C =


∂τs

∂gloc,s

∂τs
∂gloc,t

∂τs
∂gloc,n

∂τt
∂gloc,s

∂τt
∂gloc,t

∂τt
∂gloc,n

∂σ
∂gloc,s

∂σ
∂gloc,t

∂σ
∂gloc,n

 (4.73)

4.2.2 3D large deformation interface element and FE im-
plementation

In the reference configuration for finite deformation setting, consider two
deformable bodies B(1)

0 ⊂ Rn and B(2)
0 ⊂ Rn (identified as Body-1 and

Body-2 in Fig. 92(a), where n = 3 stands for the space dimension. Both
the boundary conditions: ti = t̂i on ∂B(i)

0,t and ui = ûi on ∂B(i)
0,u and vol-

ume forces F
(i)
v with i = 1, 2 are imposed on the two separate bodies.
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Figure 92: A sketch of schematic and kinematic definitions of the interface
between two bodies along the deformation process

It is worth mentioning that two bodies can obey different constitutive
material laws that characterize the mechanical performance within their
domain. A deformation map φ(X) : X → x is defined to relate material
point in the reference configuration X ⊂ B(i)

0 to the corresponding point
in the deformed configuration x ⊂ B(i)

t at time t, see Fig. 92(b). To deter-
mine the linear map between the reference and deformed configuration,
the deformation gradient of transformation is defined as: F := ∂Xφ(x, t)
where ∂X denotes the partial derivative with respect to the reference con-
figuration. Jacobian can then be defined as the determinant of deforma-
tion gradient, which can be expressed as J = det[F] > 0. Noted that
interface between two bodies S0 ⊂ Rn−1 is characterized by the poly-
nomial cohesive zone formulation coupling with humidity dose model
described in Sec. 4.2.1 for 3D applications.

Focusing on the analysis of the interface between the two bodies, its
contribution to the Principle of Virtual Work of the whole mechanical
system can be expressed as

Πintf(gloc) =

∫
S0

gT
locT dS (4.74)

where gloc = (gloc,s,gloc,t,gloc,n)
T is the displacement gap vector including
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both opening and sliding components between the two opposite sides of
interface, and T is the traction vector conjugate to the gap vector. Note
that the traction vector defined previously is the Piola-Kirchhoff stress
defined in the reference configuration due to the geometrical nonlinear-
ity. In a large deformation setting, the traction vector vanishes when the
interface is undergoing rigid body motions owning to the frame indif-
ference of this formulation.The variational form of interface contribution
on the basis of the Principle of Virtual Work is expressed as

δΠintf(gloc) =

∫
S0

(
∂gloc

∂u
δu
)T

T dS = δuT
∫

S0

(
∂gloc

∂u

)T

T dS (4.75)

In the case of large deformation, the position vector in the deformed con-
figuration can be calculated as x = X + u , see Fig. 92(b). To account for
moderate rotations, it is convenient to define a middle plane of the inter-
face by averaging the position and displacement vector of the upper and
lower faces in the deformed configuration. Hence, the position vector for
any material point vector on the middle surface x̄ can be determined by
multiplying the position vector with an averaging operator M,

x̄ = Mx (4.76)

Complying with the isoparametric concept, the discrete version of the
position vector x̄e and X̄e can be obtained by the operator N that collects
the shape functions,

x̄e = NMxn, X̄e
= NMXn (4.77)

where xn and Xn represents the nodal position vector in the discrete do-
main of interface in the deformed and undeformed configuration, respec-
tively, the superscript n denotes nodal quantities, and N is defined in the
natural parametric space {ξ, η} ∈ [−1, 1]× [−1, 1], where ξ and η are nat-
ural coordinates defined in the middle surface of the element. The matrix
form of N is expressed as

N =
[
N11 N21 N31 N41

]
(4.78)
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where 1 is a 3 × 3 identity matrix, and N1, N2, N3 and N4 presents the
following expression

N1 =
1

4
(1− ξ)(1− η) (4.79a)

N2 =
1

4
(1 + ξ)(1− η) (4.79b)

N3 =
1

4
(1 + ξ)(1 + η) (4.79c)

N4 =
1

4
(1− ξ)(1 + η) (4.79d)

The matrix form of M is given as

M =
1

2


1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

 (4.80)

where 0 denotes 3 × 3 null matrix. Similarly, the displacement vector
of any material point belonging to the middle surface of the interface
domain in the reference configuration ūe can be calculated through the
isoparametric scheme from the nodal vales

ūe = NMd (4.81)

where d denotes nodal displacement vector and is expressed as

d = (u1,v1,u2,v2,u3,v3,u4,v4,u5,v5,u6,v6,u7,v7,u8,v8)
T (4.82)

In line with derivations proposed for 3D application [22], the convec-
tive shear vector s, tangential vector t and normal vector n to the middle
surface in the deformed configuration, see Fig. 93, are defined via the
differentiation of average position vector with respect to the natural co-
ordinates ξ and η, which is expressed as

s =
∂x̄e

∂ξ
, t =

∂x̄e

∂η
, n = s × t (4.83)
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Figure 93: A sketch of three-dimensional interface element with element
nodes and integration points

The gap vector g can be determined by multiplying the nodal displace-
ment vector of the interface element with an appropriate operator L,
which provides the difference between the bottom and upper surface
displacements, and its expression is given by

ge = NLd (4.84)

where the difference matrix is defined as

L =


−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1

 (4.85)

To distinguish the different fracture modes such as Mode 1 and Mode
2, the constitutive relationship between the traction and gap vector of
the interface is usually defined in the local frame given by Eq. (4.71).
Therefore, the gap vector in this local frame needs to be computed by
multiplying the gap vector in the global frame with a rotation matrix
operator

ge
loc = Rge = RNLd (4.86)

The rotation matrix reads

R =

sx sy sz
tx ty tz
nx ny nz

 (4.87)
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where its coefficients are all components of the convective normal and
tangential vectors defined in Eq. (4.83). It is worth noting that this ro-
tation operator is a function of the displacement vector in this large de-
formation setting. This dependency is subsequently considered in the
consistent linearization of the discrete version of interface contribution
to the Principle of Virtual Work solved by the Newton-Rapson scheme in
this study. Note that this dependency on displacements will also lead to
a geometrical contribution to the stiffness matrix. Regarding the virtual
variation described in Eq. (4.75), the partial derivative of the local gap
vector with respect to nodal displacements is given by

∂ge
loc

∂d
= R(d)NL +

∂R(d)
∂d

NLd (4.88)

where the differentiation of rotation matrix R with respect to the compo-
nents of displacement vector d is a third-order tensor. For convenience,
the operator B = NL is introduced to simplify the above equation as

∂ge
loc

∂d
= R(d)B +

∂R(d)
∂d

Bd (4.89)

Inserting Eq. (4.89) into Eq. (4.75) for the virtual variation, where the
displacement vector u is replaced by the nodal vector d, the following
general variational form of interface element considering both geometri-
cal and material nonlinearity is derived as

δΠe
intf = δdT

∫
S0

(
R(d)B +

∂R(d)
∂d

Bd
)T

T dS = δdTfe
int (4.90)

where the vector δd represents the kinematically admissible virtual nodal
displacement, and fe

int is a nonlinear function of the nodal displacement
vector, which stands for the internal force vector of interface at the el-
ement level in the Newton-Rapson iterative solution scheme. The lin-
earization for the computation of the incremental correction of nodal dis-
placement is derived by

Ke,k∆dk+1 = −fe,k
int (4.91a)

dk+1 = dk +∆dk+1 (4.91b)
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For convenience, in case of no confusion, the superscript k is omitted
in the following. The element stiffness Ke =

∂fe
int

∂d is evaluated by the
displacement solution field at the iteration k, which is given by

Ke =

∫
S0

[
2BT ∂RT

∂d
T +

(
BTRT + dTBT ∂RT

∂d

)
∂T
∂d

]
dS (4.92)

In this formulation, the second derivative of the rotation matrix with re-
spect to the displacement vector that arises for the linearization is omit-
ted for convenience. It was pointed out in [126] that this term has an al-
most negligible effect on the simulation results and thus it is reasonable
to neglect it. The derivative of cohesive traction vector with respect to
the nodal displacement vector can be obtained by chain rule as follows,

∂T
∂d

=
∂T
∂gloc

∂gloc

∂d
= CR(d)B +

∂R(d)
∂d

Bd (4.93)

where the tangent material stiffness matrix C = ∂T
∂gloc

has been given in
Sec. (4.2.1). Substituting Eq. (4.93) into Eq. (4.92), we can get the follow-
ing element stiffness matrix

Ke = Ke
mat + Ke

geom (4.94a)

Ke
mat =

∫
S0

BTRTCRB dS (4.94b)

Ke
geom =

∫
S0

(
2BT ∂RT

∂d
T + dTBT ∂RT

∂d
C
∂R
∂d

Bd

)
dS

+

∫
S0

(
BTRTC

∂R
∂d

Bd + dTBT ∂RT

∂d
CRB

)
dS

(4.94c)

where Ke
geom and Ke

mat are the element geometrical stiffness matrix and
material stiffness matrix, respectively. In small displacement, the ele-
ment stiffness reduces to only material stiffness contribution, while in
large displacement, the geometrical stiffness term also needs to be con-
sidered for the sake of accuracy. The present formulation has been im-
plemented as a user element UEL in the finite element software ABAQUS.
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4.2.3 Numerical examples

In this section, the coupled CZM in the three-dimensional interface ele-
ment framework is firstly validated by comparing the numerical results
with the experimental results in [221], and then difference between the
specific energy required for peeling and crushing of a PV module is dis-
cussed to underline the potential application of the proposed modeling
approach to design novel methods for PV recycling.

To better illustrate the constitutive behaviour of polynomial CZM
and the performance of this 3D interface element, a benchmark simu-
lation with one single element under uniaxial tension is performed, see
the sketch in Fig. 94. The upper and lower bodies are both modeled us-
ing solid shell elements with rigid material properties, while the middle
ply is modeled with the present large deformation interface finite ele-
ment. The bottom surface of the lower body is constrained in the loading
direction, and its reaction force is computed as the peeling force. Trac-
tion stress is calculated from reaction force divided by the interface area.
In the simulation, the maximum stress of polynomial CZM is kept with
the constant value of 0.3 MPa. The predictive traction vs. separation
curves with different ultimate displacements ranging from 1 mm to 15
mm are shown in Fig. 95. The simulation results clearly demonstrate the
generalized characteristics of the polynomial CZM incorporated into the
3D large deformation interface element. It can be seen that the stiffness
of traction-separation curves before the peak traction decreases with in-
creased ultimate displacement value. For each case, the resultant curve
presents a softening stage when traction reaches the maximum value 0.3
MPa, and complete separation occurs at the corresponding ultimate dis-
placement.

In the following, the large deformation interface element and polyno-
mial CZM coupled with humidity dose model are applied for numerical
study on the basis of the experimental work reported in [221] to prove
the validity of the proposed modeling framework. In the experimental
study, the degradation of adhesion strength between the backsheet and
encapsulant layers at different humidity and temperature levels after a
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Figure 94: A sketch of one single element simulation

Table 6: Testing conditions for Photovoltaic modules.

RH

T(◦C) 85% 65% 45%

95
√

85
√ √ √

65
√

certain time interval was investigated in detail. The encapsulant material
is EVA with a thickness of 0.4 mm, and the backsheet is composed of two
layers of PolyEthylene Terephthalate (PET) with a total thickness of 0.25
mm. Laminates were cut by CO2 laser into the peel strips with a width
of 10 mm and length of 100 mm for each one, see Fig. 96(a). The first 15
mm for each specimen was peeled off before the test to form a tap that
can be held by the grip of the testing machine. Well-controlled 90-degree
peeling tests were performed in the environmental chambers to obtain
the adhesion strength during exposure to the damp-heat conditions. The
loading speed is 50 mm/min for each test. The indoor accelerated tests
were performed at five different temperature and humidity conditions,
as listed in Table 6.

For the numerical simulation as shown in Fig. 96(b), the upper back-
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Figure 95: Traction separation curves of one single element simulation with
different ultimate displacement values

sheet ply and lower ply are modeled using the 8-node solid shell ele-
ments in which both enhanced assumed strain method [252, 253] and
assumed natural strain method [254, 255] are adopted to alleviate differ-
ent locking phenomena. As elastic material properties of the backsheet
are not given in [221], the values corresponding to the standard materials
in the PV system [256, 52] are adopted in this study, see Table 5. Young’s
modulus of the backsheet is 2.8 GPa, and Poisson’s ratio is set to 0.2.
For the lower layer, its elastic properties are selected as the same values
of glass properties with almost vanishing Poisson’s ratio and Young’s
modulus equal to 73 GPa. Another uncertainty comes from how peeling
extension was measured since it was not clearly pointed out in the ex-
perimental study. In the simulation, vertical displacement at the upper
crack edge position (see Fig. 96(b)) is adopted. The size of solid shell ele-
ments for modeling the substrate layers is 1 mm, and the total number of
solid shell elements is 2000. The middle ply with a thickness of 0.2 mm is
modeled as the interface using the large deformation interface elements.
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Figure 96: (a) 90-degree peeling test, and (b) discretization

There are a total number of 850 interface finite elements in this model.
All the nodal degrees of freedom at the bottom surface are constrained,
and vertical displacement boundary conditions are applied at the crack
tip end of the laminate to peel off the upper backsheet. Reaction forces
at all the constrained nodes add up to define the peeling force.

The displacement contour plot for the finite element model under
large deformation used for peeling simulation is shown in Fig. 97. Sim-
ulation results regarding peeling force vs. vertical displacement of ficti-
tious extension tip for different exposure duration at the same condition
85 ◦C/85% RH are plotted in Fig. 98. In this case, the only changeable pa-
rameter is the exposure duration, while all the other conditions are kept
constant to investigate the effect of exposure on the adhesion degrada-
tion. All four curves for different exposure duration show a similar pat-
tern. The peeling force increases gradually from the beginning of the
peeling process as the loading displacement boundary condition is ap-
plied to the crack end of the specimen, and when the gaps of crack tip
reach the ultimate displacement value set in the cohesive zone model,
debonding occurs in these elements and the curves present an even plat-
form during the subsequent crack propagation process.
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Figure 97: Displacement contour in the peeling direction along the simula-
tion process
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Figure 98: Peeling force vs. displacement curves obtained from simulation
at the condition 85 ◦C/85% RH.
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Figure 99: Comparison of adhesion strength between experiment and sim-
ulation with different exposure duration at the same condition 85 ◦C/85%
RH.

In the experimental study [221], it is pointed out that testing curves
for peeling presents inescapable differences even for the same batch of
specimen due to the imperfect lamination quality and variation of the
manufacturing process of materials. Therefore, the obtained experimen-
tal data of adhesion strength were the approximate average value for
each test at a certain exposure and environmental condition. For calcu-
lation of numerical values, the resultant simulation curve is firstly in-
tegrated from the starting of debonding to the end. Then the adhesion
strength can be obtained via the division of the integration value by the
corresponding range. Comparison between experimental and numerical
adhesion strength values for different exposure at a certain hygrother-
mal condition corresponding to 85 ◦C/85% RH is shown in Fig. 99. It
is clearly demonstrated that exposure time significantly impacts PV in-
terfacial adhesion as the strength of 22.81 N/cm degrades to 5.64 N/cm
after exposure to the damp-heat condition for 72 hours. For the expo-
sure duration of 0 h, 24 h, 48 h, and 72 h, numerical results correlate with
individual experimental results very well, as shown in Fig. 99.
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Figure 100: Peeling force vs. displacement curves obtained from simulation
at the condition 85 ◦C.
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Figure 101: Comparison of adhesion strength between experiment and sim-
ulation for different relative humidity values at the same condition 85 ◦C
and exposure duration of 72 h.
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Figure 102: Peeling force vs. displacement curves obtained from simulation
at the condition 85% RH.

Peeling force vs. vertical extension displacement curves for different
relative humidity conditions obtained from finite element simulation are
shown in Fig. 100. The temperature and exposure time are kept con-
stant in this case, and set as 85 ◦C and 72 h, respectively. The curves
show the different plateau values of the peeling force for the three dif-
ferent conditions. Higher relative humidity at the same temperature and
exposure condition leads to increased degradation of adhesion strength.
A comparison of adhesion strength at different humidity levels between
experiment and simulation is shown in Fig. 101. Overall, the agreement
between numerical predictions and experimental results is fairly good
for any RH level.

Resultant curves for different temperature values at the condition of
85% RH with exposure time of 72 h are shown in Fig. 102. As mentioned
before, temperature is regarded as the accelerating factor of humidity
that indirectly affects the adhesion strength. The high-temperature con-
dition would result in significant adhesion degradation in the PV system.
As shown in Fig. 103, adhesion strength decreases from 15.17 N/cm to
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Figure 103: Comparison of adhesion strength between experiment and sim-
ulation for different temperature values at the same condition 85% RH and
exposure duration of 72 h.

1.93 N/cm when the temperature increases from 65 ◦C to 95 ◦C. The
numerical prediction matches the experimental results very well with
slight difference for all the three cases. It should be pointed out that
adhesion strength between different plies in PV laminate is affected by
many additional complex failure mechanisms in the outdoor environ-
ment, and the comprehensive degradation model would require further
work. This study mainly focuses on a reliable modeling method of the ef-
fect of steady humidity and temperature conditions following the exper-
imental work [221]. In addition to the variation of same batch specimens,
there are some other inevitable experimental error sources due to other
failure mechanisms triggered during testing. Taking these into account,
the difference between simulation and experiment can be acceptable.

To further assess the modeling strategy proposed in this study, all the
numerical results obtained for different humidity, temperature, and ex-
posure time conditions are compared with experimental results in terms
of adhesion strength versus humidity dose values, as shown in Fig. 104.
The experimental curve is obtained by curve fitting with all the exper-
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Figure 104: Comparison of adhesion strength versus humidity dose for dif-
ferent conditions between experimental fitting and numerical results

imental results reported in [221]. As mentioned in Sec. 4.2.1, humidity
dose is introduced to provide a groundwork insight into the hygrother-
mal effect on adhesion, and it is defined in Eq. (4.67). This definition
allows assessing the unified environmental influence under different rel-
ative humidity and temperature conditions. It can be seen that the pre-
dictions of adhesion strength show an exponential decay with respect
to humidity dose values and also perfectly agree with the experimental
fitting curve.

Although a PV system can produce green power for 25-30 years dur-
ing its service phase, the total environmental impact should be assessed
throughout its entire lifetime. Much attention has been focused on the
environmentally friendly manufacturing of PV modules nowadays, but
efforts toward the treatment of end-of-life products are still limited. Re-
cycling can not only effectively prevents the toxic and hazardous sub-
stances in PV products from entering the groundwater and soil, and
thus causing negative biochemical effects on the environment [195, 257],
but also conserves precious metal materials such as Silver, Germanium,
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Cadmium, etc. and energy-intensive pure material such as Silicon wafer
[258]. In general, recycling of end-of-life PV products can significantly
reduce carbon emission and global energy consumption, and alleviate
lifecycle depletion of Silicon as well [55], which helps meet the grow-
ing demand of this raw material in PV industry. Despite these benefits,
it is very difficult for recycling to be widely recognized without taking
the economic factor into account. Studies [259, 257] have shown that
recycling Silicon PV modules lacks economic sustainability due to high
energy consumption of the adopted recycling process. Following the re-
moval of external Aluminum frame and junction box of end-of-life PV
products for recycling, the remainder of PV panel is usually subjected to
the industrial crushing process including blade rotor crushing without
any controlling sieve and hammer crushing with controlling sieve [260],
which would inevitably consume a lot of energy and thus increase the
recycling cost. An innovative idea is to explore the present modeling ap-
proach to virtually assess the efficacy of a different way to disassemble
PV modules by peeling of the set of bonded laminae from the glass cover,
to circumvent the crushing step.

The histogram of peeling energy per unit mass of testing specimen
for different temperature and relative humidity conditions is shown in
Fig. 105. At the same relative humidity, the specific energy required for
peeling in high temperature condition is much lower than that in low
temperature condition. At 85% RH, the maximum peeling energy in the
65 ◦C condition is equal to 1.572 J/g, which is approximately eight times
the energy value of 0.2 J/g required for the 95 ◦C condition. Conclusion
can be drawn that end-of-life PV modules installed in high temperature
areas are much easier to be recycled by the peeling method compared to
those installed in cold areas, since adhesion degradation is accelerated by
temperature as mentioned before. Besides, it is also noted that moisture
has the same negative effect as temperature on the required specific en-
ergy. Less energy would be required under increased relative humidity
or moisture to peel off the different plies of PV laminate for recycling. At
the temperature conditions of 85 ◦C, the peeling energy in 45% RH is 1.12
J/g, while in 85% RH condition, only specific energy value of 0.584 J/g is
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Figure 105: Comparison of the required specific energy for different relative
humidity and temperature conditions

required as high relative humidity causes more severe adhesion degra-
dation in PV, which means end-of-life PV installed in hot-humid areas
should be more easily recycled through peeling. It should be pointed out
that standard qualification tests to assess the constant temperature and
moisture effect on the adhesion of PV is carried out in the 85 ◦C and 85%
RH condition. Different specific peeling energy values for different expo-
sure times 0 h, 24 h, 48 h and 72 h at this condition are listed in Fig. 105. It
is clear that PV modules subjected to the hygrothermal degradation are
prone to be recycled by peeling as compared with brand new products,
since longer exposure times leads to less required specific peeling energy,
as can be seen from the standard damp-heat condition of 85 ◦C and 85%
RH.

To highlight the tremendous advantage of exploring peeling method
for recycling over conventional crushing strategy, the tentative analysis
and comparison between these two methods are discussed here. Rela-
tionship of average particle size with required crushing energy per unit
mass of PV modules reported in [261] is shown in Fig. 106. The ba-
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Figure 106: Relationship of average particle size with the required specific
energy for crushing in recycling of PV [261]

sic trend is that particles during the crushing process of end-of-life PV
modules concentrate on smaller size fraction with the increased energy.
In [261], various models were adopted to fit the experimental results,
and it was concluded that Walker’s model is the best one to describe the
relationship between particle size and specific energy required for recy-
cling by crushing and fragmentation of PV modules. From this fitting
curve and experimental results shown in Fig. 106, it can be evaluated
that the input energy to dismantle the PV panel into 5 mm particles for
subsequent recycling is approximately 180 J/g, which is more than hun-
dred time the estimated specific energy required by peeling. Therefore,
it can be concluded that recycling by peeling should be a much more
economically promising method as compared to crushing, due to the ex-
tremely low energy consumption. The modeling framework proposed
in this work can be very advantageous to explore new peeling setups
to optimize disassembling operations and replace crushing for recycling
end-of-life PV panels in the foreseeable future.
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Chapter 5

Conclusion and future
developments

5.1 Summary and further developments for the
multiphysics modeling of photovoltaic mod-
ules

In this work, a comprehensive 3D finite element computational frame-
work has been established for the modeling of multi-field problems in
the thin-walled photovoltaic laminate with polymeric interface [16]. To
simulate the thermo-mechanical response of the very thin laminae in
the PV module, the consistent derivation of solid shell element formu-
lation incorporating the EAS and ANS methods to alleviate the different
locking pathologies is proposed. Besides, a 3D thermo-mechanical in-
terface element formulation is developed to model the polymeric encap-
sulant layers between different laminae with a traction-separation con-
stitutive law using the fractional calculus method for the description of
rheologically complex thermo-visco-elastic behaviour. Moreover, given
the difference of time scales between the moisture diffusion and thermo-
mechanical problems, a staggered scheme is proposed to solve the partial
differential equations governing the thermo-elasticity and heat transfer
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problems in different laminae and polymeric interfaces, and then update
the diffusion coefficient in the moisture diffusion analysis as well as its
subsequent solution.

The computational methodology is successfully applied to the sim-
ulation of three standard qualification tests requested by the Interna-
tional Electrotechnical Commission, namely the damp heat test, humid-
ity freeze test, and thermal cycling test. In the damp heat case, the numer-
ical prediction is compared with the analytical solution together with ex-
perimental data, and good consistency proves the validity of the model-
ing method. To see the difference of moisture diffusion with and without
thermo-mechanical coupling, the simulation of temperature dependent
moisture diffusion in the humidity freeze case with cyclic temperature
boundary condition is performed and compared with the previous damp
heat simulation, which shows the capabilities of the proposed methodol-
ogy for the modeling of spatial and temporal variation of moisture con-
centration inside the EVA layer. Finally, the thermal cycling test of a PV
minimodule with a central crack in the middle solar cell is also simulated
with a different cyclic temperature boundary condition from that of the
humidity freeze test, and the predicted trend of crack enhanced mois-
ture diffusion is experimentally validated with the electric degradation
EL images taken at different stages. With this proposed computational
tool at hand, it is possible to numerically perform the durability analysis
of PV modules under different complex environmental conditions and
thus open new possibilities for the design of more reliable products in
the PV industry.

Future improvement on this modeling framework can be focused on
the incorporation of swelling deformation into the mechanical energy
part, more accurate material modeling of the EVA polymer layers, estab-
lishment of the quantitative connection between the diffusion and oxida-
tion, more comprehensive description regarding the influence of differ-
ent environmental factors on the reaction kinetics, and so on.
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5.2 Concluding remarks and further developments
for the global-local crack modeling of solar
cells in the photovoltaic modules

In this work, a global-local phase field approach using the enhanced as-
sumed strain solid shell formulation at finite deformation with the ef-
ficient quasi-Newton monolithic solution is proposed for the numerical
prediction of solar cell crack events in the PV modules. The EAS method
for the treatment of volumetric and Poisson thickness locking was em-
ployed through the postulation of multi-field variational framework, and
the ANS method to alleviate the transverse shear and trapezoidal locking
effects was also taken into account in the shell formulation [131].

Aiming at improving the computational efficiency without the sacri-
fice of robustness, an efficient quasi-Newton solution scheme is imple-
mented within the phase field solid shell formulation in a monolithic
manner, and its performance is demonstrated by comparison with the
popular staggered Newton scheme through different paradigmatic bound-
ary value problems, including single edge notched tension and shear,
fracture of cylindrical structure under mixed bending and tension, and
computationally demanding fatigue induced crack growth. Significant
computational gains of the quasi-Newton monolithic scheme can be ob-
served in all the numerical examples. It is also found that this scheme
is very robust, capable of solving different benchmark problems of vary-
ing complexity without convergence issues frequently occurring in the
conventional monolithic Newton solution.

Besides, in case that crack growth in the local region of interest has
minor effect on the global stiffness, a specific global-local approach in
the 3D setting tailored for the phase filed modeling with solid shells is
proposed to save computational cost. Coarse mesh can be adopted for
the global model while the mesh of local model can be more refined to
deal with the appropriate displacement-phase field problem. The capa-
bility of this approach was demonstrated by simulating the crack growth
of cylindrical thin-walled structure under both static and fatigue cyclic
loadings, which could open up new possibilities in tackling realistic in-
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dustrial problems concerning fracture events in large-scale thin-walled
structures.

The proposed computational framework is subsequently extended to
the fracture modeling of silicon solar cells in the photovoltaic modules by
the incorporation of fracture anisotropy. Its capability to predict the pref-
erential crack growth is demonstrated by the tension of a square plate
consisting of two grains. Although the fracture anisotropy has negligible
influence on the mechanical response in the simulation of this simple ex-
ample, the different electrically inactive area in the silicon cells resulting
from the crack patterns will lead to the different power loss, which is of
great significance to the evaluation of PV performance. Besides, accord-
ing to the experimental evidence, the silicon solar cell cracking barely has
influence on the global stiffness of the photovoltaic module, and to save
computational cost, the global local approach is adopted for the simu-
lation of crack events of silicon solar cells when the photovoltaic mod-
ules are subjected to the two different loadings including tension and
three point bending. The present modeling strategy constitutes a major
progress with respect to the state of the art, since it provides the first
proof of concept of a computational methodology integrating structural
mechanics considerations for real PV installations and advanced fracture
mechanics models for the assessment of damage distributions in solar
cells.

Future developments regarding this modeling framework include the
extension to the multifield problems as different environmental factors
(such as moisture and temperature) influence the crack propagation, im-
provement on the global local approach by incorporation of adaptive
mesh refinement and two-way coupling of global and local fields, ex-
tension to the high-cyle fatigue and dynamical cracking, and so on.

5.3 Final conclusions and futher developments
for the recycling of photovoltaic modules

In the first part of this section, a thermodynamically consistent large-
deformation theory for the modeling of the coupled EVA polymer-solvent
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system has been presented in order to address the technical problems re-
garding the recycling of end-of-life PV modules [38]. The computational
framework accounts for the solvent diffusion in the EVA layers, swelling
and elastic deformation of EVA in solvents with different solubility pa-
rameters and molar volumes, as well as effects of crosslinking and me-
chanical constraints. The solvent diffusion and resulting swelling of EVA
layers lead to the high risks of destroying the intactness of silicon cell lay-
ers, which is the key problem in PV recycling as pointed out in [72]. The
computational modeling in this work is a first attempt to address this
technical issue that is of great importance to the PV industry.

The numerical method was firstly applied to simulate the swelling ex-
periments of EVA in three solvents of different nature according to [244],
and very good agreement with the testing data has been achieved, which
demonstrates the reliability of this method. Given the crosslinking of
EVA in PV lamination, the second example has addressed its effects on
the complex behaviour of polymer-solvent system, and also taken into
account the coupled shrinking effects in the presence of mechanical con-
straints. The reduced volume change of EVA layer with higher initial
crosslinking and mechanical constraints from substrate can be predicted
for the different polymer-solvent systems. The last example concerns the
modeling of complete PV laminates in the 3D setting to study the defor-
mation of silicon cell layer induced by the solvent penetration and sub-
sequent swelling of EVA layers. Solvents with different basic properties
such as viscosity and molar volumes have direct impact on the coupled
responses of PV modules, which further influences the recovery of non-
destructive silicon wafers.

The proposed study allows to design virtual experimental procedures
for the evaluation of effective impact of the coupled mechanisms on the
recovery of structure-intact silicon wafers in PV recycling using the or-
ganic solvent method. Specifically, with the known basic properties of
solvents and EVA copolymer used in PV modules, it is possible to iden-
tify suitable mechanical boundary conditions to guarantee the high in-
tegrity of reclaimed silicon wafers during the recycling process of end-of-
life products. In the future work, the modeling framework can be com-
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bined with phase field fracture approach proposed in chapter 3 to pro-
vide a more comprehensive methodology for the investigation of non-
destructive recovery of silicon solar cells in the PV recycling using the
solvent method.

In the second part of this work, to investigate the adhesion degrada-
tion of PV laminates due to humidity ingress and temperature effects, a
modeling framework coupling the cohesive zone model with a humidity
dose model was proposed in this study [1]. A 3D interface finite element
considering large deformation including both geometrical and material
nonlinearity is also established to accurately simulate the interfacial fail-
ure in the 90-degree peeling test. The corresponding FE implementation
is based on the variational form of interface contribution to the Princi-
ple of Virtual Work of the whole mechanical system, and its subsequent
consistent linearization considering large deformation is also detailed.
To validate the modeling strategy, peeling between the backsheet and
the encapsulant layer (EVA) has been simulated to assess the adhesion
strength at different hygrothermal environments after certain exposure
duration. Numerical results have been compared with experimental re-
sults [221] under different conditions of exposure time, humidity and
temperature, and they correlate with damp-heat test results very well.
All the predicted adhesion strength values show exactly the same expo-
nential decay trend as the experimental one. With the aid of this mod-
eling framework, considering large deformation and coupling of both
temperature and humidity, a realistic numerical simulation of peeling
for recycling of end-of-life PV panels is possible. Compared with the tra-
ditional crushing in PV recycling process, it has been assessed that the
specific required energy for peeling is much lower, which indicates that
the modeling framework proposed in this work can be very valuable for
PV industry to virtually explore new economical solutions for recycling.

It has to be concluded that though adhesion strength, which is greatly
affected by environmental moisture and temperature, is of utmost sig-
nificance to the durability and performance of PV modules, no suitable
modeling method within the large deformation framework addresses
these factors. However, this modeling method can be beneficial to the
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PV industry. For instance, to virtually peel off the different plies of end-
of-life PV laminates for recycling so as to estimate how much energy
it would require, such a reliable tool would help a lot since both large
deformation and degradation due to hygrothermal effect in outdoor en-
vironment needs to be considered in this case. Regarding the possible
future development on this work, the spatial variation of moisture and
temperature along the interface can be taken into account for a more ac-
curate prediction of the adhesion strength by the incorporation of the
diffusion process in the modeling framework. Besides, future attempts
with regard to the establishment of a more comprehensive mathematical
formulation on the relationship between the environmental factors and
degraded adhesion strength can be made as well.
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[69] Venkat Aryan, Mercè Font-Brucart, and Daniel Maga. “A com-
parative life cycle assessment of end-of-life treatment pathways
for photovoltaic backsheets”. In: Progress in Photovoltaics: Research
and Applications 26.7 (2018), pp. 443–459.

[70] Valeria Fiandra et al. “End-of-life of silicon PV panels: A sustain-
able materials recovery process”. In: Waste Management 84 (2019),
pp. 91–101.

[71] Lingen Zhang and Zhenming Xu. “Separating and recycling plas-
tic, glass, and gallium from waste solar cell modules by nitrogen
pyrolysis and vacuum decomposition”. In: Environmental Science
& Technology 50.17 (2016), pp. 9242–9250.

200



[72] Takuya Doi et al. “Experimental study on PV module recycling
with organic solvent method”. In: Solar Energy Materials and Solar
Cells 67.1-4 (2001), pp. 397–403.

[73] Sukmin Kang et al. “Experimental investigations for recycling of
silicon and glass from waste photovoltaic modules”. In: Renewable
Energy 47 (2012), pp. 152–159.

[74] DS Prasad et al. “Process optimization studies of essential param-
eters in the organic solvent method for the recycling of waste
crystalline silicon photovoltaic modules”. In: Solar Energy Mate-
rials and Solar Cells 245 (2022), p. 111850.

[75] Ke Li et al. “A green method to separate different layers in photo-
voltaic modules by using DMPU as a separation agent”. In: Solar
Energy Materials and Solar Cells 245 (2022), p. 111870.

[76] Youngjin Kim and Jaeryeong Lee. “Dissolution of ethylene vinyl
acetate in crystalline silicon PV modules using ultrasonic irradia-
tion and organic solvent”. In: Solar energy materials and solar cells
98 (2012), pp. 317–322.

[77] Wen-Hsi Huang et al. “Strategy and technology to recycle wafer-
silicon solar modules”. In: Solar Energy 144 (2017), pp. 22–31.

[78] Yang Liu et al. “Recycling high purity silicon from solar grade sil-
icon cutting slurry waste by carbothermic reduction in the electric
arc furnace”. In: Journal of Cleaner Production 224 (2019), pp. 709–
718.

[79] Jongsung Park et al. “An eco-friendly method for reclaimed sil-
icon wafers from a photovoltaic module: from separation to cell
fabrication”. In: Green Chemistry 18.6 (2016), pp. 1706–1714.

[80] Jun-Kyu Lee et al. “Simple pretreatment processes for success-
ful reclamation and remanufacturing of crystalline silicon solar
cells”. In: Progress in Photovoltaics: Research and Applications 26.3
(2018), pp. 179–187.

[81] M Gagliardi and M Paggi. “Multiphysics analysis of backsheet
blistering in photovoltaic modules”. In: Solar Energy 183 (2019),
pp. 512–520.

[82] Pietro Lenarda and Marco Paggi. “A geometrical multi-scale nu-
merical method for coupled hygro-thermo-mechanical problems
in photovoltaic laminates”. In: Computational Mechanics 57 (2016),
pp. 947–963.

201



[83] Zeng Liu et al. “A multifield coupled thermo-chemo-mechanical
theory for the reaction-diffusion modeling in photovoltaics”. In:
International Journal for Numerical Methods in Engineering (2023).

[84] Marco Paggi, Mauro Corrado, and Maria Alejandra Rodriguez.
“A multi-physics and multi-scale numerical approach to microc-
racking and power-loss in photovoltaic modules”. In: Composite
Structures 95 (2013), pp. 630–638.

[85] Ulrich Eitner et al. “Thermal stress and strain of solar cells in pho-
tovoltaic modules”. In: Shell-like Structures. Springer, 2011, pp. 453–
468.

[86] Marco Paggi, Sarah Kajari-Schröder, and Ulrich Eitner. “Thermo-
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