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Prof. Maria Ángeles Serrano, University of Barcelona

IMT School for Advanced Studies Lucca
2024





To Orietta, Oscar and Valerio





Contents

List of Figures xi

List of Tables xiii

Acknowledgements xv

Vita and Publications xvii

Abstract xxi

1 Introduction 1

2 Discrete entropy-based econometric models 9
2.1 Modelling positive weights . . . . . . . . . . . . . . . . . . 9
2.2 Statistical network models . . . . . . . . . . . . . . . . . . . 11

2.2.1 Econometric models . . . . . . . . . . . . . . . . . . 12
2.2.2 Maximum-entropy models . . . . . . . . . . . . . . 16

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Continuous entropy-based econometric models 44
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Statistical network models . . . . . . . . . . . . . . . . . . . 46

3.2.1 Conditional models . . . . . . . . . . . . . . . . . . 46
3.2.2 Integrated models . . . . . . . . . . . . . . . . . . . 55

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.1 Model selection via performance indicators . . . . . 58

vii



3.3.2 Model selection via statistical tests . . . . . . . . . . 63

3.3.3 Model selection via information criteria . . . . . . . 64

3.3.4 The Shannon-Fisher plane . . . . . . . . . . . . . . . 66

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 The DyGyS Python package . . . . . . . . . . . . . . . . . . 73

4 Beyond the deterministic estimation of parameters in conditional
models 75
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Minimization of the KL divergence . . . . . . . . . . . . . . 76

4.3 Estimation of the parameters . . . . . . . . . . . . . . . . . 78

4.3.1 ‘Deterministic’ parameter estimation . . . . . . . . . 78

4.3.2 ‘Annealed’ parameter estimation . . . . . . . . . . . 79

4.3.3 ‘Quenched’ parameter estimation . . . . . . . . . . 80

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 ‘Scalar’ variant of the CEM . . . . . . . . . . . . . . 82

4.4.2 ‘Vector’ variant of the CEM . . . . . . . . . . . . . . 84

4.4.3 ‘Econometric’ variant of the CEM . . . . . . . . . . 87

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Triadic structure of the Dutch Production Multiplex 92
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 The Dutch Production Multiplex . . . . . . . . . . . . . . . 96

5.3 Maximum-entropy randomization methods . . . . . . . . 98

5.3.1 Binary benchmarks . . . . . . . . . . . . . . . . . . . 99

5.3.2 Conditional weighted benchmarks . . . . . . . . . . 101

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.1 Binary Motif Analysis . . . . . . . . . . . . . . . . . 109

5.4.2 Weighted Motif Analysis . . . . . . . . . . . . . . . 114

5.4.3 The NuMeTriS Python package . . . . . . . . . . . . 119

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Conclusions 123

viii



A Discrete-valued models 128
A.1 Estimating the GM parameters . . . . . . . . . . . . . . . . 128
A.2 Econometric models . . . . . . . . . . . . . . . . . . . . . . 130

A.2.1 Poisson model . . . . . . . . . . . . . . . . . . . . . . 130
A.2.2 Negative binomial model . . . . . . . . . . . . . . . 131
A.2.3 Zero-inflated Poisson model . . . . . . . . . . . . . 132
A.2.4 Zero-inflated negative binomial model . . . . . . . 133

A.3 Maximum-entropy models . . . . . . . . . . . . . . . . . . . 134

B Continuous-valued models 139
B.1 Conditional models . . . . . . . . . . . . . . . . . . . . . . . 139

B.1.1 Conditional exponential model . . . . . . . . . . . . 140
B.1.2 Conditional gamma model . . . . . . . . . . . . . . 141
B.1.3 Conditional Pareto model . . . . . . . . . . . . . . . 142
B.1.4 Conditional log-normal model . . . . . . . . . . . . 142

B.2 Integrated models . . . . . . . . . . . . . . . . . . . . . . . . 143
B.3 Turning structural models into econometric ones . . . . . . 145

B.3.1 Conditional exponential model . . . . . . . . . . . . 146
B.3.2 Conditional gamma model . . . . . . . . . . . . . . 146
B.3.3 Conditional Pareto model . . . . . . . . . . . . . . . 147
B.3.4 Conditional log-normal model . . . . . . . . . . . . 147

B.4 The Shannon-Fisher plane . . . . . . . . . . . . . . . . . . . 148
B.4.1 Conditional exponential model . . . . . . . . . . . . 148
B.4.2 Conditional gamma model . . . . . . . . . . . . . . 149
B.4.3 Conditional Pareto model . . . . . . . . . . . . . . . 149
B.4.4 Conditional log-normal model . . . . . . . . . . . . 150

C Three, different parameter estimation procedures 151
C.1 The functional form of conditional models . . . . . . . . . 151
C.2 Estimating the parameters . . . . . . . . . . . . . . . . . . . 152

C.2.1 ‘Scalar’ or homogeneous variant of the CEM . . . . 152
C.2.2 ‘Vector’ or weakly heterogeneous variant of the CEM155
C.2.3 ‘Tensor’ variant of the CEM . . . . . . . . . . . . . . 155
C.2.4 ‘Econometric’ variant of the CEM . . . . . . . . . . 156

ix



D Maximum-entropy models for motifs detection 158
D.1 Binary null models . . . . . . . . . . . . . . . . . . . . . . . 158

D.1.1 The Directed Binary Configuration Model (DBCM) 158
D.1.2 The Reciprocal Binary Configuration Model (RBCM) 159

D.2 Conditional weighted null models . . . . . . . . . . . . . . 161
D.2.1 Conditional Reconstruction Model A . . . . . . . . 161
D.2.2 Conditionally Reciprocal Weighted Configuration

Model . . . . . . . . . . . . . . . . . . . . . . . . . . 162

x



List of Figures

1 Scatter plot of the entire set of positive WTW weights wij
versus the values predicted by different specifications of
the GM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Performance of econometric models versus the performance
of ME models in reproducing binary network statistics. . . 24

3 Performance of econometric models versus the performance
of ME models in reproducing weighted network statistics. 26

4 Percentage of times the empirical value of a given network
statistics is compatible with its ensemble distribution, ac-
cording to a KS test at the significance level of 5%. . . . . . 29

5 Percentage of times the empirical value of a given network
statistics is compatible with its ensemble distribution, ac-
cording to a KS test at the significance level of 5%. . . . . . 31

6 Reconstruction Accuracy for eigenvector, Katz, closeness
and betweenness centrality measures. . . . . . . . . . . . . 32

7 Average Spearman Rank Correlations for eigenvector and
Katz centrality measures. . . . . . . . . . . . . . . . . . . . . 34

8 Performance of the negative binomial model versus the
performance of the ME model described by the Hamilto-
nian H(2), in reproducing binary and weighted network
statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9 Reconstruction accuracy for the network statistics of interest. 61

xi



10 Reconstruction accuracy RAw
m for the Gleditsch and the

BACI datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . 62
11 AIC values for the binary and the full log-likelihood of our

ME models for the Gleditsch and the BACI datasets. . . . . 67
12 Shannon-Fisher plane for each, conditional ME model with

continuous-valued weights. . . . . . . . . . . . . . . . . . . 69

13 Estimations of the parameter β, entering the definition of
the homogeneous version of the CEM. . . . . . . . . . . . . 83

14 Estimations of the parameter β166 entering the definition
of the weakly heterogeneous version of the CEM. . . . . . 85

15 Estimations of the parameters β0, ρ, α and γ, entering the
definition of the econometric version of the CEM. . . . . . 86

16 Graphical representation of a multi-layer production net-
work and of the existing 13 triadic motifs. . . . . . . . . . . 93

17 Normalized Triadic Occurrences and Fluxes for the aggre-
gated network and a sample of commodity layers. . . . . . 108

18 Triadic, binary motifs analysis: directed vs reciprocal model.110
19 Comparison of DBCM and RBCM on motif statistics across

commodities . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
20 Triadic, weighted motifs analysis: directed vs reciprocal

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
21 Comparison of DBCM + CReMA and RBCM + CRWCM

on motif statistics across commodities . . . . . . . . . . . . 116

22 Estimations of the parameters β168, β170 and β171, entering
the definition of the weakly heterogeneous version of the
CEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

23 Empirical CDFs for the parameters entering the definition
of the econometric version of the CEM. . . . . . . . . . . . 156

xii



List of Tables

1 Accuracy of ME and econometric models in reconstructing
both the Gleditsch and the BACI datasets. . . . . . . . . . . 27

2 Ranking of ME and econometric models, according to the
AIC and BIC values. . . . . . . . . . . . . . . . . . . . . . . 36

3 One-lagged accuracy, quantifying the performance of ME
and econometric models in providing one-lagged predic-
tions on both the Gleditsch and the BACI datasets. . . . . . 38

4 Performance of ME and econometric models in providing
accurate predictions of weights, on both the Gleditsch and
the BACI datasets. . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Summary of the Model specifications used in chapter 2. . . 42

6 Summary of the models and specific constraints used in
chapter 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Compatibility between the distributions of the expected
values of the statistics output by the ME models and their
empirical counterparts. . . . . . . . . . . . . . . . . . . . . . 60

8 Increments of the four indicators composing the confusion
matrix when passing from the UBCM to the integrated ex-
ponential model. . . . . . . . . . . . . . . . . . . . . . . . . 65

9 Summary of the Model specifications used in chapter 3. . . 73

10 Summary of the models and specific constraints used in
chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xiii



11 Description of global network statistics across commodity
layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

12 Summary of the Model specifications used in chapter 5. . . 122
13 Summary of the models and specific constraints used in

chapter 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xiv



Acknowledgements

I am grateful to my advisor, Diego Garlaschelli, for his guid-
ance throughout my ‘doctoral journey’ and his contribution
to the projects that led to the papers presented in chapter 2,
chapter 3, chapter 4 and chapter 5.

I am also deeply indebted with my co-advisor, Tiziano Squar-
tini, for his guidance, his feedback and his contribution to the
papers upon which chapter 2, chapter 3 and chapter 4 are
based.

I would also like to thank Frank P. Pijpers for the opportunity
he gave me to conduct my research at CBS-Statistics Nether-
lands, in The Hague, and his contribution to the paper pre-
sented in chapter 5.

My PhD journey has been a long and winding road, filled
with both triumphs and setbacks, breakthroughs and frus-
trations. I am immensely grateful for the many individuals
who have enriched my experience during these years, start-
ing with Ivan and Arturo, my very first friends at IMT.

My heartfelt appreciation extends to the entire Networks com-
munity, both seniors and juniors, whose insights, often shared
during our lively Nedos discussions or aperitivo gatherings,
have been invaluable in expanding my knowledge and broad-
ening my perspectives. It would be impossible to single out
each member of the IMT community, but I am deeply thank-
ful for their camaraderie and the countless laughter shared
over coffee breaks.

Special thanks also to my friends back in Salerno, especially
Matteo, Rosario, Francesco & Anna Rita, Antonio, Vito, Benedetta
and The Twins, who have always welcomed me with open

xv



arms and made returning home a joyous occasion. Their un-
wavering support and willingness to engage in stimulating
conversations have been a source of immense comfort and
inspiration.

My deepest gratitude also goes to my family, who have been
my unwavering pillars of support throughout my academic
journey. I am forever indebted to my mother and father for
their unwavering belief in me and their tireless efforts to en-
sure I received the education I desired. My brother Valerio
deserves special recognition for instilling in me a strong sense
of discipline and a problem-solving mindset.

Finally, I owe an immeasurable debt of gratitude to Veronica
and her family. Her unwavering support, unwavering belief
in me and genuine affection have been the driving forces be-
hind my success. I cherish every moment we shared.

xvi



Vita

April 6, 1991 Born in Salerno (IT)

2014 Bachelor’s Degree in Physics
University of Salerno, Fisciano (IT)

2017 Master’s Degree in Physics (110/110 cum laude)
University of Salerno, Fisciano (IT)

2017 Visiting Erasmus Trainee
IFISC Institute for Cross-Disciplinary Physics and
Complex Systems, University of the Balearic Islands,
Palma de Mallorca (E)

2018-2023 PhD Student in Systems Science (track in ENBA)
IMT School for Advanced Studies, Lucca (IT)

2022 Statistical Researcher Intern
Statistics Netherlands, The Hague (NL)

2022 Guest Researcher
Lorentz Institute for Theoretical Physics, Leiden (NL)

2022-2023 Research Collaborator
IMT School for Advanced Studies, Lucca (IT)

2023-2024 Post-Doctoral Researcher
Scuola Normale Superiore, Pisa (IT)

xvii



Publications

1. M. Di Vece, F. P. Pijpers and D. Garlaschelli, Commodity-specific triads in the
Dutch inter-industry production network, arXiv:2305.12179 (2023) (currently
under review at Scientific Reports).

2. M. Di Vece, D. Garlaschelli and T. Squartini, Deterministic, quenched, and an-
nealed parameter estimation for heterogeneous network models, Physical Review
E 108, 054301 (2023).

3. M. Di Vece, D. Garlaschelli and T. Squartini, Reconciling econometrics with
continuous maximum-entropy network models, Chaos Solitons and Fractals
166, 112958 (2023).

4. M. Di Vece, D. Garlaschelli and T. Squartini, Gravity models of networks: in-
tegrating maximum-entropy and econometric approaches, Physical Review Re-
search 4, 033105 (2022).

xviii



Presentations

1. Commodity-specific triads in the Dutch inter-industry production network.
NetSci-X 2024 (Venezia, 22-25 January 2024).

2. Reconciling econometrics with maximum-entropy network models.
NetSci 2023 (Vienna, 10-14 July 2023).

3. Deterministic, quenched or annealed? Differences in the parameter estimation of
heterogeneous network models.
FinEcoNets, NetSci 2023 (Vienna, 10 July 2023).

4. Commodity-specific triads in the Dutch inter-industry production network.
‘Complex networks: theory, methods, and applications’ Lake Como School
(Como, 22-26 May 2023).

5. Maximum-Entropy models for Network Regression Analysis on Trade Data.
NetSci 2022 (online, 25-29 July 2022).

6. Gravity models of networks: integrating maximum entropy and econometric ap-
proaches.
Networks 2021 (online, 5-10 July 2021).

7. Gravity models of networks: integrating maximum entropy and econometric ap-
proaches.
Conference of the Italian Society of Statistical Physics (Parma, 23-25
June 2021).

Posters

1. Network econometrics: unbiased estimation of extensive and intensive margins.
Entropy 2021 (5-7 May 2021).

2. The topology of the International Trade: comparing network-based and economet-
ric approaches.
NetSci 2020 (online, 17-25 September 2020).

xix



Codes

1. DyGyS: DYadic GravitY regression models with Soft constraints
Available at https://pypi.org/project/DyGyS/

2. NuMeTriS: Null Models for Triadic Structures
Available at https://pypi.org/project/NuMeTriS/

xx

https://pypi.org/project/DyGyS/
https://pypi.org/project/NuMeTriS/


Abstract

Trade networks are mathematical representations of the ex-
changes established by countries, industries, firms or individ-
uals. The present thesis collects works aimed at overcoming
the limitations characterizing the econometric recipes tradi-
tionally employed to study the aforementioned systems, by
introducing a novel framework, based upon the maximum-
entropy formalism. In chapter 2 we develop a novel class of
models to study networks with discrete weights, capable of
accommodating both structural and econometric parameters,
finding that they outperform standard, econometric models [1].
In chapter 3 we extend the aforementioned set of models to
study networks with continuous weights [2]. In chapter 4
we go beyond the ‘deterministic’ optimization procedure pre-
scribed by econometrics to specify conditional models, con-
sidering two, alternative estimation recipes characterized by
different ways of averaging over the topological randomness:
what we find is that the ‘annealed’ recipe, prescribing to max-
imize a generalized likelihood function, is to be preferred, re-
gardless of the heterogeneity of weights [3]. Finally, in Chap-
ter 5, we delve into the extent to which the triadic structures
embedded within the Dutch multi-commodity production net-
work align with maximum-entropy conditional models [4].
Our findings reveal that for the vast majority of commodities,
these models effectively replicate the observed triadic struc-
tures, exhibiting minimal deviations.

xxi



Chapter 1

Introduction

The ever-increasing availability of data is shedding light on the structure
of human interactions, revealing that the latter can be well-represented
by mathematical objects called networks, i.e. collections of nodes con-
nected by edges - an abstraction which is so general to allow for the study
of a wide range of interactions.

The 2008 financial crisis clearly pointed out that ‘network effects mat-
ter’ [5] with trade linkages being the preferential route of interaction be-
tween world countries: as the disappearance of a link, or a change in its
‘weight’, can lead to the transmission of shocks [6, 7, 8, 9, 10, 11, 12, 13],
understanding the structural properties of economic networks has be-
come necessary to increase the resilience of the entire economic-financial
system.

An important class of economic networks is the one defined by trade
exchanges, where the nodes (i.e. the ‘actors’) can be countries, industries
or firms: two examples are provided by production networks, whose
nodes are firms and whose edges are input/output relationships, and the
World Trade Web (WTW), whose nodes are countries and whose edges
are import/export relationships.

The surge in global trade data has spurred researchers from diverse
fields like economics, network science, and social sciences to investigate
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its network structure through empirical analysis, complementing the es-
tablished theoretical framework in traditional trade economics.

These efforts have resulted in a substantial body of research explor-
ing the structural characteristics of the World Trade Web (WTW), high-
lighting its unique features and patterns compared to other real-world
networks [14, 16, 17, 18, 19, 20, 21, 22, 23, 5, 15, 9].

One strand of this research focuses on the binary properties of the
WTW, examining the network’s connectivity based solely on the pres-
ence or absence of trade relationships between countries. Studies in this
area have revealed a high density of connections, a skewed and heavy-
tailed distribution of the number of trade partners per country, disassor-
tative mixing by degree (indicating a tendency for countries with many
trade partners to connect with those with fewer), a hierarchical organi-
zation, the presence of a core of highly interconnected countries, and a
bow-tie structure [19, 20, 22, 15, 24].

Another stream of research delves into the weighted properties of
the WTW, considering the trade volume associated with each link and
the overall trade volume of each country. These studies have uncovered
right-skewed and heavy-tailed distributions of trade volume and trade
partner strength (indicating a concentration of high-volume trade rela-
tionships), disassortative mixing by strength (showing a link between
trade volume and connection strength), and a high weighted clustering
coefficient (demonstrating that countries with many trade partners tend
to have more connected partners) [6].

Theoretical models of international trade can be broadly divided into
two categories: econometric models and network models, with the lat-
ter primarily rooted in statistical physics. The earliest international trade
model, proposed in 1962 by Dutch economist Jan Tinbergen, employed a
relationship analogous to the law of gravity to simulate trade flows be-
tween countries [25]. This model, known as the GM, has been shown to
accurately predict positive trade volumes [26, 27, 28, 29]. While the GM
has been successfully applied to various networks, including migration
flows [30, 31], mobility and traffic patterns [32, 33, 34], communication
streams [35], and spreading phenomena [36, 37], it has been criticized for
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predicting that all countries will trade with each other. This prediction
contradicts empirical data, which indicates that a significant proportion
(up to half) of possible trade relationships are absent [38]. Since overes-
timating connections can lead to inaccurate network effects [5], the pure
GM should not be considered a reliable model of the World Trade Web
(WTW) [29].

Since the 1960s, economists have been working to address the limi-
tations of the gravity model. Early approaches, such as those proposed
by Eaton and Tamura [39] and Martin and Pham [40], involved round-
ing low-volume trade flows to zero, but the arbitrary threshold used in
this method raised conceptual concerns. In response, Helpman, Melitz,
and Rubinstein [41] introduced a two-step estimation procedure: first,
a probit model is used to predict the likelihood of a trade relationship,
and then, an Ordinary Least Squares (OLS) regression is employed to es-
timate the corresponding trade volume. Another alternative, proposed
by Silva and Tenreyro [42], is to estimate the gravity equation in a multi-
plicative rather than additive manner using a Poisson Pseudo Maximum
Likelihood (PPML) method. This approach provides robust estimates of
trade flows, but it is sensitive to the presence of many zero trade flows. In
response, zero-inflated (ZI) methods have been developed, such as those
proposed by Burger and Winkelmann [43, 44]. These models involve
a logit estimation to determine the presence of a trade relationship fol-
lowed by either a Poisson (ZIP) or a negative binomial (ZINB) regression
to estimate the corresponding trade volume. In 2013, Dueñas and Fagi-
olo demonstrated that the weighted structure of the World Trade Web
(WTW) can be accurately predicted by gravity models only when the
network’s topological structure is also specified [45]. This finding shifts
the focus from solely predicting trade flows to also reconstructing the
network’s topology.

Physics-inspired approaches, like the maximum-entropy framework,
enable us to investigate structural network properties and determine
the most unbiased probability distribution that aligns with these fea-
tures. Studies have demonstrated that solely fixing the degree sequence
of world countries can accurately replicate higher-order binary charac-
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teristics, such as the average nearest-neighbor degree and the clustering
coefficient [19, 46, 47, 48, 49, 50, 29]. Nevertheless, when the analysis is
confined to a purely weighted framework, this outcome is not observed.
In this instance, the strength sequence alone is not a reliable constraint
for replicating the average nearest-neighbor strength and the weighted
clustering coefficient [51, 52]. In fact, accurate reconstruction of weighted
characteristics can only be achieved by simultaneously constraining both
degrees and strengths [53, 54, 55].

So far, econometric and physics-inspired approaches have mostly pro-
ceeded on separate paths, the former focusing on the effects of economic
covariates, such as gross domestic products (GDPs) and geographical
distances, on the intensity of trade (usually defined as the yearly dol-
lar value of the traded products) and the latter focusing on the accurate
estimation of purely structural properties while ignoring the genuinely
economic characteristics of the agents. More specifically, most econo-
metric models estimate the parameters of a regression: for instance, the
expected volume of trade between the countries i and j is estimated via
the Gravity Model (GM) specification reading

⟨wij⟩GM = ρGDPαi GDPβj d
γ
ij (1.1)

where ρ is a dimensional parameter ‘adjusting’ the unit of measure, GDPi
is the gross domestic product of country i, GDPj is the gross domestic
product of country j and dij is their geographic distance1; instead, the
parameters α, β, γ account for the impact of the economic factors onto
the trade volumes. Interestingly, recipes like the one above are not capa-
ble of accurately reproducing the value of any network statistics without
taking the whole structure as input [45]. By contrast, most of the physics-
inspired models that have been proposed so far are based upon entropy-
maximization [46, 51, 50, 56, 57, 58, 29], a general prescription leading to
the definition of statistical ensembles induced by constraining a subset
of network properties [59, 60, 61, 62, 63, 58, 51].

1The GM specification can be modified by adding other covariates such as common
language, common religion and regional trade agreements [41].
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A first attempt of combining the econometric and the physics-inspired
approaches is represented by the reformulation of maximum-entropy
models as hidden variable, or fitness, models [64, 19, 20, 65, 66, 29]. In this
approach, the Lagrange multipliers, employed to enforce the chosen con-
straints, are identified with empirical, macroeconomic factors (e.g. the
GDP of countries); a second attempt is represented by the approach pro-
posed in [29] where a logit model describes the presence of each, single
link and a GM specification describes the expected, conditional weight
- although the total amount of empirical trade is not compatible with
the one predicted by the model, which underestimates the former by a
factor of 104 [1]. Another type of maximum-entropy model, inspired
by the literature on random spatial networks, is discussed by Boguna et
al. [67]. This model was found to exhibit small-worldness and non-zero
clustering in the thermodynamic limit. This approach was extended to
weighted networks using a two-step process [68] that controls for the de-
pendence of link weight on topological measures such as degree and ge-
ometrical measures such as geographical distance. With a more abstract
space, inspired by the coupling between popularity, resulting in higher
degree centrality, and similarity, resulting in a function of trade friction
in the trading of countries, Garcia-Perez et al. produced an unweighted
backbone of the WTW [69] capable of exploring significant trade chan-
nels. Still, identifying the best way of integrating entropy-based models
with econometric specifications (e.g. one guaranteeing that both network
statistics and their variability is accurately reproduced in order to achieve
a sufficiently precise description of economic, marginal effects) remains
a debated issue.

In this thesis, we try to make progress by introducing a class of entropy-
based models capable of intaking both structural constraints (e.g. the
number of links, the degree sequence, the total volume of trade) and a
flexible GM specification. As we will show in chapter 2 and chapter 3,
these models admit two different formulations, i.e. the integrated and
the conditional one, depending on whether the probability distributions
describing the binary adjacency matrix and the weights are either de-
pendent or independent; besides, we consider the two, aforementioned
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formulations for models admitting both discrete and continuous weights.
Remarkably, any of the aforementioned models can be derived by invok-
ing the Minimum Discrimination Information Principle, prescribing to opti-
mize either the discrete or the continuous version of the Kullback-Leibler
divergence in a constrained fashion.

For what concerns discrete models, we find the physics-inspired ones
to outperform traditional, econometric models, such as the Poisson and
the negative binomial ones as well as their zero-inflated counterparts [43],
in reproducing both network statistics and their variability, as confirmed
by model selection criteria. For what concerns continuous models, we
find each of them to have pros and cons: for instance, 1) models driven
by the exponential and the gamma distributions lead to better reproduce
higher-order network statistics such as the average nearest neighbors
strength and the clustering coefficient; 2) models driven by the gamma
and the lognormal distributions perform best in reproducing data vari-
ability; 3) the model driven by the exponential distribution leads to the
most resilient configurations against shocks concerning trade volumes.

Conditional models are characterized by a log-likelihood that can be
separated into a purely structural part and a conditional, weighted one.
As a consequence, the optimization problem can be split into two sub-
problems, each one dealing with a smaller number of parameters: thus,
from a purely computational perspective, solving conditional models is
more ‘convenient’ than solving the integrated ones; still, individuating
the best optimization procedure remains a debated issue.

In econometrics, conditional, or hurdle, models are optimized by tun-
ing the parameters defining the distribution of weights on the unique,
empirical realization of the binary adjacency matrix [70] although the
weights are assigned to any realization output by the binary model of
choice. To avoid inconsistencies, a recipe has been introduced in [63],
where a generalized log-likelihood, obtained upon averaging over the
topological randomness, is maximized. Chapter 4 is devoted to compare
the two, aforementioned recipes with a third one, prescribing to estimate
each parameter on the entire ensemble of configurations output by the
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binary model of choice and, then, average the values constituting this
set. The second and the third procedures differ in the way the average
over the topological randomnes is carried out: according to the jargon
employed in the physics of disordered systems, we name them annealed
and quenched, respectively.

While the deterministic, annealed and quenched estimates are equiv-
alent for models with homogeneous weights, annealed and quenched
estimates are significantly different from the deterministic one for mod-
els constraining the strength sequences as well as the models introduced
in [2]. A test on a snapshot of a sparse network, i.e. the Bitcoin Lightning
Network, also reveals that the quenched estimate can be biased when
the parameters are node-specific: this is the case of an empirically con-
nected node that is found to be disconnected in certain model-induced
instances, hence the corresponding parameter cannot be evaluated. This
leads us to conclude that overcoming the limitations of the deterministic
estimate is indeed possible although the quenched approach should be
applied with caution (in fact, the sparser the network, the higher the po-
tential bias).

In chapters 2, 3 and 4 we focus on the aggregated representation
of the WTW: as this configuration is highly reciprocal, the system can
be regarded as an undirected network. When, instead, the correspond-
ing multiplex representation is considered (with different products being
traded on different layers), the aforementioned, highly reciprocal struc-
ture is typically lost [14] and link directionality starts playing a major
role. Chapter 5 is devoted to study the reciprocity structure, as well
as its impact on the emergence of triadic motifs, of the 2018 domestic
Dutch Production Multiplex, constructed from the data collected by CBS-
Statistics Netherlands [71]. Employing conditional models encoding in-
formation 1) on link and weight directionality and 2) on link and weight
reciprocity and using the annealed approach to estimate parameters al-
lows us to conclude that 1) the aggregated version of the Dutch Produc-
tion Network is not informative of the structure of the Dutch Production
Multiplex (more specifically, of the abundance of motifs that are present
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in the single layers); 2) for more than half of the layers, the abundance
of binary and weighted motifs is well-described by a conditional model
encoding information on link and weight reciprocity.

The aforementioned work represents a quite unique example in the
literature, the only other study addressing the emergence of motifs - al-
though for just a single, representative commodity - being [72], dealing
with Japanese data and concluding that triads occuring more frequently
than expected (i.e. the ‘open’ ones) are a byproduct of the intrinsic com-
plementarity of the input/output relationships established by firms [73];
our study, on the contrary, proposes a simplified explanation for mo-
tif emergence, primarily involving constraints on lower-order quantities.
However, situations may arise where these quantities alone are insuf-
ficient to fully comprehend the functional structures of individual com-
modities. In such instances, a meticulous case-by-case approach emerges
as indispensable.
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Chapter 2

Discrete entropy-based
econometric models

This chapter illustrates the results of the analysis published in [1]. Upon im-
plementing the Minimum Discrimination Information Principle in its simplest
form, i.e. maximizing Shannon entropy in a constrained fashion, we derive
physics-inspired models capable of accommodating both structural and econo-
metric parameters. Then, we compare their performance with that of state-
of-the-art econometric recipes in reproducing the structural properties of both
the BACI dataset [74, 75] and the Gleditsch dataset [38], finding that physics-
inspired models outperform econometric models.

2.1 Modelling positive weights

From a merely econometric point of view, the simplest exercise is that
of reproducing the realized (positive) trade volumes (link weights) of
the WTW. To this aim, we have considered two different datasets. The
first one is curated by Gleditsch [38] and includes yearly trade volumes,
yearly GDP values (both reported in millions of US dollars) and the
(time-independent) matrix of geographic distances between capital cities
of all countries in the data. The second one is the BACI dataset, a de-
tailed description of which can be found in [74, 75]. For both datasets
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Figure 1: WTW weights wij versus the values predicted by different spec-
ifications of the GM: (1) GM with ρ = β = 1 and γ = 0, depicted in •; (2)
GM with β = 1, γ = 0 and ρ tuned by requiring that the total weight is
reproduced, i.e. W =

∑︁
i<j wij =

∑︁
i<j⟨wij⟩GM = ⟨W ⟩GM, depicted in •;

(3) GM with β = 1, γ = −1 and ρ tuned as above, depicted in •; (4) full GM
where all parameters are tuned as described in Appendix A.1, depicted in
•. While moving from a parameter-free model to a single-parameter model
largely improves the goodness-of-fit, see (a), the net effect of rising the num-
ber of explanatory variables is that of decreasing the dispersion around the
identity, see (b). Further rising the number of parameters, instead, does not
add much to the picture provided by the third specification of the GM, see
(c). Results refer to the year 2000 of the dataset curated by Gleditsch [38].

we have selected and analyzed eleven years: 1990-2000 for the Gleditsch
dataset and 2007-2017 for the BACI one. The year 2000 of the Gled-
itsch dataset - i.e. the one with the largest number of countries (176) -
is the snapshot we have selected to graphically illustrate the results of
our analyses. We have always considered the undirected (symmetrized)
version of the weighted trade matrix, whose generic entry reads wij ≡
(expij + expji)/2, i.e. wij is the bilateral trade volume defined as the
arithmetic mean of the export volume from country i to country j and of
the export volume from country j to the country i.

Our econometric exercise is carried out by comparing the empirical,
positive weights of the WTW, in the year 2000, with four, different speci-
fications of the following econometric function

⟨wij⟩GM = f(ωi, ωj , dij |θ) = ρ(ωiωj)
βdγij (2.1)

where ωi = GDPi/GDP is the GDP of country i divided by the arith-
metic mean of GDPs, dij is the geographic distance between the capitals
of countries i and j and θ ≡ (ρ, β, γ). The first specification of the model
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above is characterized by the assignment ρ = β = 1 and γ = 0 and its
performance in reproducing the positive weights of the WTW is shown
in Fig. 1(a). The overall poor performance of this version of the GM sig-
nals the presence of both a scaling problem - estimates are positively cor-
related with observations, only shifted to the right - and of a dimensional
problem - in fact, pure numbers appear on the right-hand side while the
WTW weights are measured in (multiples of) dollars.

A second specification of the GM solves both problems at once. This
specification is characterized by the assignment β = 1 and γ = 0 while ρ
is treated as a free parameter, tuned by requiring that the total weight is
reproduced, i.e. that W =

∑︁
i<j wij =

∑︁
i<j⟨wij⟩GM = ⟨W ⟩GM: the fit is,

now, much more accurate, as shown in Fig. 1(b). The model can be fur-
ther enriched by adding dyadic factors such as the geographic distances
between capitals: some more accuracy in the description of the empirical
data is indeed gained, as the reduced dispersion of the cloud of points
around the identity witnesses. Quite remarkably, the picture does not
change much if, now, we let the entire set of parameters to be tuned as
described in Appendix A.1 (see Fig. 1(c)).

Although the GM leads to a good prediction of the positive weights,
its intrinsic limitation is that of not allowing the topological structure
of the WTW to be correctly recovered. In fact, it outputs only positive
weights, hence inducing a trivial, fully-connected structure: upon defin-
ing1 aij = Θ[⟨wij⟩GM], ∀ i < j, it is evident that aij = 1, ∀ i < j. In order
to overcome such a limitation, one can ‘refine’ the plain gravity model
by ‘dressing’ it with a probability distribution capable of accounting for
the null entries as well.

2.2 Statistical network models

In very general terms, we need to define a statistical network model, i.e. a
set of mathematical relationships between the random variables that are
of interest for our network description. Two broad classes of such mod-

1The position aij = Θ[wij ] means that aij = 1 whenever wij > 0 and aij = 0 if and
only if wij = 0.
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els can be identified, i.e. the econometric ones and the ones rooted into
statistical physics. In what follows, we will deal with (either econometric
or physics-rooted) discrete statistical models.

2.2.1 Econometric models

Let us start with the description of some of the most representative mem-
bers of the econometric class of models.

Poisson model

The simplest model in this class prescribes to consider ⟨wij⟩GM = ρ(ωiωj)
βdγij

as the expected value of the Poisson probability mass function

qPois
ij (wij) =

z
wij

ij e−zij

wij !
; (2.2)

since ⟨wij⟩Pois = zij , the explanatory power of the GM is retained upon
requiring that ⟨wij⟩Pois = ⟨wij⟩GM, i.e. by posing

zij ≡ ρ(ωiωj)βdγij . (2.3)

The expected topology of the network is determined by the entries of
the adjacency matrix implied by the model, is captured by the expression
⟨aij⟩Pois = pPois

ij = 1−qPois
ij (0) = 1−e−zij (see Appendix A.2 for a detailed

description of the procedure to estimate the parameters of the Poisson
model).

Negative binomial model

The main drawback of the Poisson model is that of predicting a variance
of the weights that is necessarily equal to their average value. In general,
this may be different from what empirical analyses suggest. In order
to overcome this problem, econometricians have considered a different
probability mass function, namely the negative binomial one with the
introduction of the overdispersion2 parameter α = m−1 [76]:

2In the Poisson case, one has that σ2
Pois[wij ] = zij = ⟨wij⟩Pois; hence, variance cannot be

adjusted independently from the mean. In the negative binomial case, instead, σ2
NB[wij ] =
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qNB
ij (wij) =

(︃
m+ wij − 1

wij

)︃(︃
1

1 + αzij

)︃m(︃
αzij

1 + αzij

)︃wij

. (2.4)

One finds that ⟨wij⟩NB = mαzij = zij . The requirement that the
expected value of the negative binomial distribution coincides with the
prediction coming from the GM, i.e. ⟨wij⟩NB = ⟨wij⟩GM, can be, again,
realized by posing zij ≡ ρ(ωiωj)

βdγij . Predictions about the topology
are, now, carried out via the expression ⟨aij⟩NB = pNB

ij = 1 − qNB
ij (0) =

1−
(︂

1
1+αzij

)︂m
(see Appendix A.2 for a detailed description of the proce-

dure to estimate the parameters of the negative binomial model).

Zero-inflated Poisson model (ZIP model)

The main drawback of the econometric models above is that of failing in
reproducing the link density of the WTW. For instance, the latter equals
c = 2L

N(N−1) ≃ 0.63 in year 2000: it turns out that, while the Poisson
model overestimates this quantity, the negative binomial one underesti-
mates it, i.e.

⟨c⟩NB < c < ⟨c⟩Pois (2.5)

where ⟨c⟩Pois =
∑︁
i<j p

Pois
ij ≃ 0.68 and ⟨c⟩NB

∑︁
i<j p

NB
ij ≃ 0.60. For this

reason, econometricians have defined ZI models, i.e. two-step recipes
whose general form reads

Q(W) =
∏︂
i<j

qij(wij) =
∏︂
i<j

p
aij
ij (1− pij)1−aij · qij(wij |aij)

=
∏︂
i<j

p
aij
ij (1− pij)1−aij

∏︂
i<j

qij(wij |aij) = P (A)Q(W|A)

(2.6)

a relationship indicating that the probability of the (network represented
by the) weighted adjacency matrix W can be obtained as the product
of the probability P (A) of observing the purely binary adjacency ma-
trix A and the conditional probability Q(W|A) - where, for consistency,

zij(1 + αzij) = zij

(︂
1 +

zij
m

)︂
= ⟨wij⟩NB(1 + α⟨wij⟩NB) = ⟨wij⟩NB

(︂
1 +

⟨wij⟩NB
m

)︂
and

the variance can be increased to overcome the problem of overestimating the link density.
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A = Θ[W], i.e. aij = Θ[wij ], ∀ i < j.

The simplest ZI model is the Poisson one, defined by the positions

pZIP
ij =

Gij
1 +Gij

(1− e−zij ), (2.7)

qZIP
ij (wij |aij = 1) =

⎧⎨⎩
z
wij
ij e−zij

(1−e−zij )wij !
, wij > 0

0, wij ≤ 0
. (2.8)

Notice that 1 − pZIP
ij = 1

1+Gij
+

Gij

1+Gij
e−zij , i.e. the connection between

nodes i and j can be missing either because a link is not there (with prob-
ability 1

1+Gij
) or because a link is there but has zero weight (with proba-

bility Gij

1+Gij
e−zij ). Consistently, i and j are connected because the weight

is not zero (with probability 1− e−zij ).
In order to ‘dress’ the GM, we need to identify some of the parameters

of the Poisson model with the usual econometric function. Since

⟨wij⟩ZIP = pZIP
ij ⟨wij |aij⟩ZIP = pZIP

ij

zij
1− e−zij

=
Gij

1 +Gij
zij , (2.9)

we can make the identification zij ≡ ρ(ωiωj)βdγij . Upon doing so, we are
treating zij as an ‘effective’ conditional weight: in fact, Eq. (2.9) can be
understood as describing an aleatory experiment that combines a logit
with a full Poisson step. According to this interpretation, zij would rep-
resent a Poisson-like expected weight, conditional to the success of the
logit step, i.e. zij =

⟨wij⟩ZIP

p
logit
ij

, with plogit
ij =

Gij

1+Gij
.

A second econometric identification is, however, needed: we will pro-
ceed by imposing

Gij = δωiωj (2.10)

(see Appendix A.2 for a detailed description of the procedure to estimate
the parameters of the ZIP model).

Zero-inflated negative binomial model (ZINB model)

The ZI version of the negative binomial model, instead, is defined by
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pZINB
ij =

Gij
1 +Gij

(1− τij), (2.11)

qZINB
ij (wij |aij = 1) =

(︃
m+ wij − 1

wij

)︃(︃
1

1− τij

)︃(︃
1

1 + αzij

)︃m(︃
αzij

1 + αzij

)︃wij

(2.12)

where the conditional distribution qZINB
ij (wij |aij = 1) is so defined for

wij ≥ 0 and is 0 otherwise; as the for the plain negative binomial model,

α = m−1 and τij =
(︂

1
1+αzij

)︂m
. Moreover, as for the ZIP model, 1 −

pZINB
ij = 1

1+Gij
+

Gij

1+Gij
τij , i.e. the connection between nodes i and j can

be missing either because a link is not there (with probability 1
1+Gij

) or

because a link is there but has zero weight (with probability Gij

1+Gij
τij);

consistently, i and j are connected because the weight is not zero (with
probability 1− τij).

In order to ‘dress’ the GM, we need to identify some of the parame-
ters of the negative binomial model with the usual econometric function.
Upon considering that

⟨wij⟩ZINB = pZINB
ij ⟨wij |aij⟩ZINB = pZINB

ij

zij
1− τij

=
Gij

1 +Gij
zij , (2.13)

we can make the identification zij ≡ ρ(ωiωj)
βdγij and Gij ≡ δωiωj . As

for the ZIP case, we are treating zij as a negative binomial-like expected
weight, conditional to the success of a logit step, i.e. zij =

⟨wij⟩ZINB

p
logit
ij

, with

p
logit
ij =

Gij

1+Gij
(see Appendix A.2 for a detailed description of the proce-

dure to estimate the parameters of the ZINB model).

Let us notice that, while the ZIP model provides a better estimation
of the link density than the Poisson model, the ZINB and the negative
binomial ones basically perform in the same way. In fact,

⟨c⟩ZINB < c ≃ ⟨c⟩ZIP (2.14)

since c = 2L
N(N−1) ≃ 0.63, ⟨c⟩ZIP =

∑︁
i<j p

ZIP
ij ≃ 0.63 and ⟨c⟩ZINB =∑︁

i<j p
ZINB
ij ≃ 0.60, a result suggesting that both variants of the negative

binomial model will perform poorly in reproducing the binary proper-
ties of the WTW.
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2.2.2 Maximum-entropy models

The members of the second class of network models are the ones defined
within the framework of traditional statistical mechanics. All of them
can be derived by performing a constrained maximization of Shannon
entropy [48] where the constraints represent the available information
about the system at hand.

The simplest, yet non trivial, maximum-entropy (ME) model that can
be considered comes from the maximization of the binary Shannon func-
tional

S = −
∑︂
A

P (A) lnP (A) (2.15)

constrained to reproduce the entire degree sequence, {ki(A)}Ni=1, of the
network. This model is known under the name of Undirected Binary
Configuration Model (UBCM) and has been shown to accurately repro-
duce many (binary) properties of a wide spectrum of real-world sys-
tems [46]. The UBCM is described by the probability mass function

P (A) =
∏︂
i<j

p
aij
ij (1− pij)1−aij (2.16)

which is factorized into the product of Bernoulli probability mass func-
tions (one for each pair of nodes) with

pUBCM
ij =

xixj
1 + xixj

(2.17)

(where xi is the Lagrange multiplier controlling for the degree of node
i). Importantly, the logit model admitting the presence of a single, global
constant can be derived from entropy maximization upon re-parametrizing
the Lagrange multipliers of the UBCM [77]: the identification xi ≡

√
δωi,

in fact, leads to

p
logit
ij =

Gij
1 +Gij

=
δωiωj

1 + δωiωj
; (2.18)

although the functional form above is not the most general one (for in-
stance, dyadic factors such as geographic distances could be added as
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well), it is the form we will adopt in what follows. In the network litera-
ture, the above formulation of the logit model has been named density-
corrected Gravity Model (dcGM) [78] and popularized [19] as a partic-
ular case of the so-called fitness model [64]; interestingly, it has been
proven to perform remarkably well for the task of reconstructing the
topology of networks from partial information [77].

Conditional models

Since we are interested in reproducing the structural properties of weighted
networks, we need to complement the purely binary step above with a
recipe for reconstructing weights. The entropy-based framework han-
dles such a requirement via the maximization of conditional Shannon
functionals allowing the specification of P (A) to be disentangled from
that of Q(W|A) [63].

When discrete weighted models are considered, a useful quantity is
the conditional Shannon entropy

S(W|A) = −
∑︂
A∈A

P (A)
∑︂
WA

Q(W|A) logQ(W|A) (2.19)

where the first sum runs over all binary configurations within the ensem-
ble A and the second sum runs over all weighted configurations that are
compatible with a specific binary structure, represented by the adjacency
matrix A, i.e. such that WA = {W : Θ[W] = A}.

Conditional maximization proceeds by specifying a set of weighted
constraints that, in the discrete case, read

1 =
∑︂
WA

P (W|A), ∀A ∈ A (2.20)

⟨Cα⟩ =
∑︂
A∈A

P (A)
∑︂
WA

Q(W|A)Cα(W), ∀ α (2.21)

the first condition ensuring the normalization of the conditional prob-
ability mass function and the vector {Cα(W)} representing the ‘proper’
set of weighted constraints. Differentiating the corresponding Lagrangean
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functional with respect to Q(W|A) and equating the result to zero leads
to

Q(W|A) =

{︄
e−H(W)

ZA
, W ∈WA

0, W /∈WA

(2.22)

where H(W) =
∑︁
α ψαCα is the so-called Hamiltonian, listing the con-

strained, weighted quantities and ZA =
∑︁

WA
e−H(W) is the partition

function for fixed A.

The explicit functional form of Q(W|A) can be obtained only once
the functional form of the constraints has been specified as well. To this
aim, let us consider the Hamiltonian

H(W) =
∑︂
i<j

ϕijwij , (2.23)

where weights are modelled as non-negative integer variables, i.e. wij ∈
N, ∀ i < j. This choice induces a conditional probability mass function
reading

Q(W|A) =
∏︂
i<j

qij(wij |aij) =
∏︂
i<j

y
wij−aij
ij (1− yij)aij (2.24)

(with e−ψij = e−ϕij = yij). Let us, now, turn the model above into a
proper econometric one. To this aim, let us proceed by analogy. All
zero-inflated recipes identify zij with a conditional expected weight, a
prescription that, in our case, would translate into its identification with
⟨wij |aij⟩ = 1

1−yij . This choice, however, would lead to an inconsistency,
since zij > 0 is a positive, real number while ⟨wij |aij⟩ must necessarily
exceed 1 as it represents the expected weight conditional to the existence
of a connection. An alternative, consistent identification reads

1

1− yij
= 1 + zij (2.25)

which, in turn, induces the conditional probability mass function

Q(W|A) =
∏︂
i<j

qij(wij |aij) =
∏︂
i<j

(︃
zij

1 + zij

)︃wij−aij (︃ 1

1 + zij

)︃aij
.(2.26)
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Models of the kind are also known as hurdle models: quite remark-
ably, entropy maximization allows us to recover them in a fully princi-
pled way, i.e. by eliminating the (otherwise unavoidable) ambiguity that
accompanies the choice of the distribution (supposedly) describing the
positive values of an economic system.

The hurdle-geometric (HG) model derived above, however, suffers
from a number of limitations, the most relevant of which is that of failing
in reproducing basic network quantities such as the WTW total weight.
As an illustrative example, while W =

∑︁
i<j wij ≃ 109, in the year 2000,

we find that ⟨W ⟩HG ≃ 105. In order to overcome such a limitation, we
have considered the conditional probability mass function induced by
the Hamiltonian

H(W) =
∑︂
i<j

(ϕ0 + ϕij)wij = ϕ0W +
∑︂
i<j

ϕijwij . (2.27)

Upon identifying e−ϕ0 = y0 and e−ϕij = yij =
zij

1+zij
(see Eq. (2.25)),

we obtain the modified, econometric model

qij(wij |aij) =
(︃
y0zij
1 + zij

)︃wij−aij (︃1 + zij − y0zij
1 + zij

)︃aij
. (2.28)

We are now ready to fully specify the suite of discrete entropy-models
that we will compare with the aforementioned, purely econometric ones:
to this aim, we need to fully specify the functional form

Q(W) =
∏︂
i<j

qij(wij) =
∏︂
i<j

p
aij
ij (1− pij)1−aij · qij(wij |aij)

=
∏︂
i<j

p
aij
ij (1− pij)1−aij

∏︂
i<j

qij(wij |aij) = P (A)Q(W|A);

(2.29)

the two, most obvious choices are represented by the models

QTSF(W) = Plogit(A)Q(W|A) =
∏︂
i<j

(p
logit
ij )aij (1− plogit

ij )1−aij · qij(wij |aij)

(2.30)
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and

QTS(W) = PUBCM(A)Q(W|A) =
∏︂
i<j

(pUBCM
ij )aij (1− pUBCM

ij )1−aij · qij(wij |aij)

(2.31)

combining the weighted, conditional step induced by the Hamiltonian
defined in Eq. (2.27), respectively with the purely binary logit model
and the Undirected Binary Configuration Model - the acronyms stand
for ‘two-step fitness’ model and ‘two-step’ model and recall the names
originally used to define them [20, 66].

Integrated models

Less trivial choices are represented by models whose both binary and
weighted portions are jointly determined by the constraints. They can
all be recovered as specifications of the generic Hamiltonian

H(W) =
∑︂
i<j

[θijaij + (ϕ0 + ϕij)wij ] =
∑︂
i<j

θijaij + ϕ0W +
∑︂
i<j

ϕijwij ;

(2.32)

in what follows, we will consider two different instances of such a func-
tion, defined by the choices θij = θ0 and θij = θi + θj . In other words,
while we let the weighted parts of these models coincide and read as in
Eq. (2.28), we allow for the binary part to vary, either constraining the
total number of links, L, or the entire degree sequence, {ki(A)}Ni=1. In
the first case, our Hamiltonian reads

H(1)(W) = θ0L+ ϕ0W +
∑︂
i<j

ϕijwij (2.33)

and instances the model in Eq. (2.29) with

p
(1)
ij =

xy0zij
1 + zij − y0zij + xy0zij

(2.34)

q
(1)
ij (wij |aij) =

(︃
y0zij
1 + zij

)︃wij−aij (︃1 + zij − y0zij
1 + zij

)︃aij
(2.35)
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(having posed e−θ0 = x, e−ϕ0 = y0 and e−ϕij = yij =
zij

1+zij
); in the

second case, it reads

H(2)(W) =
∑︂
i

θiki + ψ0W +
∑︂
i<j

ψijwij (2.36)

and instances the model in Eq. (2.29) with

p
(2)
ij =

xixjy0zij
1 + zij − y0zij + xixjy0zij

(2.37)

q
(2)
ij (wij |aij) =

(︃
y0zij
1 + zij

)︃wij−aij (︃1 + zij − y0zij
1 + zij

)︃aij
(2.38)

(having posed e−θi = xi, e−ϕ0 = y0 and e−ϕij = yij =
zij

1+zij
). Ap-

pendix A.3 provides a detailed description of the procedure we have
adopted to estimate the parameters entering into the definition of our
basket of discrete ME models.

So far, we have turned entropy-based models into econometric ones
via a suitable, econometric transformation of the Lagrange multipliers
defining the proper ‘physical’ models. The entropy-based formalism,
however, also offers the opportunity to define statistical models in a fully
data-driven fashion. To this aim, let us consider the Hamiltonian

HUECM(W) =
∑︂
i

[θiki + ϕisi] =
∑︂
i<j

[(θi + θj)aij + (ϕi + ϕj)wij ]

(2.39)

that constrains both degrees and strengths. The model induced by the
latter ones is called Undirected Enhanced Configuration Model (UECM)
and represents the best-performing one for the task of network recon-
struction in presence of full information about the constraints [56, 54].

Remarkably, all models considered in this section can be compactly
derived by combining a logit-like probability mass function describing
the binary network structure with the conditional expression defined in
Eq. (2.28). To prove this, it is enough to notice that all the Bernoulli-like
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probability mass functions characterizing our models can be compactly
re-written as

pij =
x′ix
′
j

1 + x′ix
′
j

(2.40)

where

(x′ix
′
j)

logit = δωiωj , (2.41)

(x′ix
′
j)

UBCM = xixj , (2.42)

(x′ix
′
j)

(1) =
xy0zij

1 + zij − y0zij
, (2.43)

(x′ix
′
j)

(2) =
xixjy0zij

1 + zij − y0zij
, (2.44)

(x′ix
′
j)

UECM =
xixjyiyj
1− yiyj

. (2.45)

2.3 Results

Let us, now, test and compare the performance of our two, broad classes
of models in reproducing the topological properties of the WTW. To this
aim, let us consider both the local properties, such as the degrees and the
strengths, and the higher-order ones such as the average nearest neigh-
bors degree (ANND)

knni =

∑︁N
j(̸=i)=1 aijkj

ki
, ∀ i (2.46)

(which gives information about the degree correlations), the clustering
coefficient (BCC)

ci =

∑︁N
j( ̸=i)=1

∑︁N
k( ̸=i,j)=1 aijajkaki

ki(ki − 1)
, ∀ i (2.47)

(which counts the percentage of node i’s partners that are also partners
themselves). We will also consider their weighted counterparts, i.e. the
average nearest neighbors strength (ANNS)
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snni =

∑︁N
j(̸=i)=1 aijsj

ki
, ∀ i (2.48)

(which gives information about the strength correlations) and the weighted
clustering coefficient (WCC)

cwi =

∑︁N
j( ̸=i)=1

∑︁N
k(̸=i,j)=1 wijwjkwki

ki(ki − 1)
, ∀ i (2.49)

(that weighs the closed triangular patterns that node i establishes with
other trade partners). We will also test the accuracy of the reconstruction
provided by the methods in our basket by considering properties like the
true positive rate (TPR)

⟨TPR⟩ = ⟨TP⟩
L

=

∑︁
i<j aijpij

L
(2.50)

(i.e. the percentage of links correctly recovered by a given reconstruction
method), the specificity (SPC)

⟨SPC⟩ = ⟨TN⟩(︁
N
2

)︁
− L

=

∑︁
i<j(1− aij)(1− pij)(︁

N
2

)︁
− L

(2.51)

(i.e. the percentage of zeros correctly recovered by a given reconstruction
method), the positive predictive value (PPV)

⟨PPV⟩ = ⟨TP⟩
⟨L⟩

=

∑︁
i<j aijpij

⟨L⟩
(2.52)

(i.e. the percentage of links correctly recovered by a given reconstruc-
tion method with respect to the total number of predicted links) and the
accuracy (ACC)

⟨ACC⟩ = ⟨TP⟩+ ⟨TN⟩(︁
N
2

)︁ (2.53)

(measuring the overall performance of a given reconstruction method in
correctly placing both links and zeros).
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Figure 2: Performance of econometric models (top row) versus the perfor-
mance of ME models (bottom row) in reproducing: (a), (d) the degrees; (b),
(e) the ANND; (c), (f) the BCC. Empirical points are indicated as •; econo-
metric and ME models are indicated as follows: • - Poisson; • - Negative
Binomial; • - ZIP; • - ZINB; • - H(1); • - H(2); • - TS; • - TSF. Results refer to
the year 2000 of the dataset curated by Gleditsch [38].

Fig. 2 sums up the comparisons carried out between the econometric
models and the ME ones. The comparison between the empirical cumu-
lative density function (CDF) of the degrees and the ones output by the
econometric models reveals the latter ones to be able to predict an overall
similar functional form (see Fig. 2(a) and Fig. 2(d)); still, the prediction
obtained by any of the ME models is much closer to the empirical trend.
More quantitatively, one can implement the Kolmogorov-Smirnov (KS)
test to check the goodness of any of the models considered in the present
work to replicate the empirical degrees: while any of the ME models
provides estimates of the degrees that are compatible with the empirical
CDF (at the significance level of 5%), only the ZIP model predicts degrees
that are compatible with the empirical ones: in fact, the p-values of the
ME models read p(1) ≃ 0.06, p(2) ≃ 0.99, pTS ≃ 0.99, pTSF ≃ 0.32 while
the p-values of the econometric models read pPois ≃ 0.001, pNB ≃ 0.0008,
pZIP ≃ 0.63, pZINB ≃ 0.001.

Coming to the higher-order properties, it is evident that the major-
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ity of the econometric models fails to overlap with the empirical cloud
of points (see Fig. 2(b)): the one providing the best prediction is the ZIP
model, whose performance represents quite an improvement with re-
spect to the one provided by the ‘plain’ Poisson model. While this is
quite evident for what concerns the prediction of the ANND values, the
performances of the ZIP and of the ‘plain’ Poisson model become less dif-
ferent when tested on the BCC values. On the contrary, the performance
of the ZINB model closely resembles that of the negative binomial one
when tested both on the ANND and on the BCC. As for the local proper-
ties, the KS test reveals that the only model outputting predictions com-
patible with the empirical values (at the significance level of 5%) is the
ZIP one: in fact, pANND

ZIP ≃ 0.38, pBCC
ZIP ≃ 0.08).

For what concerns ME models, the ones performing best are those
constraining the degrees, i.e. the model induced by H(2) and its two-
step counterpart, whose topological estimation step is carried out by em-
ploying pUBCM

ij . The evidence that their performances in reproducing the
purely binary structure of a network are very similar lets us suspect that
p
(2)
ij ≃ pUBCM

ij and conclude that the purely econometric information en-

coded into p(2)ij does not add much to what is already conveyed by the
purely topological one. On the other hand, ME models not constrain-
ing the degrees provide predictions differing from the empirical trends
to quite a large extent; still, as the KS test reveals, the only ME model
outputting predictions that are not compatible with the empirical values
(at the significance level of 5%) is the one induced by H(1).

The overall accuracy of our models in reproducing a network topol-
ogy can be proxied by the index ∆L = |⟨L⟩ − L|/L amounting at ∆Pois

L ≳

∆NB
L = ∆ZINB

L ≃ 6% while ∆ZIP
L ≃ 0.5% and ∆ME

L = 0 for each ME
model. This is confirmed by our analysis of single link statistics: in fact,
⟨ACC⟩(2) ≃ 0.83 attains the largest value, followed by ⟨ACC⟩TS ≃ 0.81

and ⟨ACC⟩ZIP ≃ 0.77. Remarkably, ⟨PPV⟩(2) ≃ 0.86 attains the largest
value, indicating that the ME model induced by H(2) is the one placing
links best among all the models in our basket.

Let us, now, consider the weighted properties (see Fig. 3). Overall, the
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Figure 3: Performance of econometric models (top row) versus the perfor-
mance of ME models (bottom row) in reproducing: (a), (d) the strengths; (b),
(e) the ANNS; (c), (f) the WCC. Empirical points are indicated as •; econo-
metric and ME models are indicated as follows: • - Poisson; • - Negative
Binomial; • - ZIP; • - ZINB; • - H(1); • - H(2); • - TS; • - TSF. Results refer to
the year 2000 of the dataset curated by Gleditsch [38].

distribution of the strengths is reproduced quite well by all models con-
sidered here, although no one explicitly constrains them. This seems to
indicate that the purely econometric information ‘feeded’ into our mod-
els indeed plays a role - which, however, is limited to ensure that the
intensive margins (and the related properties, as we will see) are accu-
rately predicted. The larger explanatory power of econometric models
becomes now evident: all of them output predictions that are compatible
with the empirical values. Although the same result holds true for ME
models, the latter ones are outperformed by purely econometric models
- the best-performing ones in predicting the strengths being the Poisson-
like ones.

Coming to the higher-order properties, let us notice that the best-
performing econometric models in reproducing the ANNS values are the
ZIP and the ‘plain’ Poisson ones whose performances differ less than in
the ANND case - although the KS test lets the ZIP model win. On the
other hand, the ZINB and the negative binomial models (whose perfor-
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Dataset H(1) H(2) TSF TS Poisson ZIP Negative Binomial ZINB
Gleditsch90 0.72 0.81 0.73 0.79 0.75 0.75 0.68 0.70
Gleditsch91 0.69 0.78 0.70 0.77 0.73 0.73 0.65 0.68
Gleditsch92 0.70 0.79 0.71 0.77 0.73 0.73 0.65 0.68
Gleditsch93 0.70 0.79 0.71 0.78 0.74 0.74 0.66 0.69
Gleditsch94 0.70 0.79 0.72 0.78 0.75 0.75 0.66 0.69
Gleditsch95 0.70 0.80 0.72 0.80 0.75 0.76 0.68 0.69
Gleditsch96 0.72 0.81 0.73 0.81 0.76 0.77 0.68 0.69
Gleditsch97 0.73 0.82 0.74 0.81 0.77 0.77 0.69 0.71
Gleditsch98 0.73 0.82 0.74 0.81 0.77 0.77 0.69 0.71
Gleditsch99 0.73 0.82 0.74 0.81 0.77 0.77 0.69 0.72
Gleditsch00 0.74 0.82 0.74 0.81 0.78 0.77 0.70 0.72

BACI07 0.83 0.88 0.83 0.87 0.84 0.84 0.76 0.77
BACI08 0.83 0.88 0.83 0.87 0.85 0.84 0.76 0.77
BACI09 0.84 0.88 0.84 0.87 0.84 0.84 0.76 0.77
BACI10 0.85 0.89 0.85 0.88 0.85 0.85 0.77 0.78
BACI11 0.85 0.89 0.85 0.88 0.86 0.85 0.77 0.78
BACI12 0.85 0.89 0.85 0.88 0.86 0.85 0.77 0.78
BACI13 0.85 0.90 0.85 0.89 0.86 0.86 0.77 0.78
BACI14 0.85 0.90 0.85 0.89 0.86 0.85 0.77 0.78
BACI15 0.85 0.90 0.85 0.89 0.85 0.84 0.77 0.78
BACI16 0.84 0.90 0.84 0.89 0.85 0.84 0.76 0.78
BACI17 0.85 0.90 0.85 0.89 0.85 0.85 0.77 0.78

Table 1: Accuracy of ME and econometric models in reconstructing both the
Gleditsch and the BACI datasets. The best-performing models are H(2) and
TS.

mances are, again, very similar) completely fail in capturing the empir-
ical values. All predictions from ME models overlap with the empirical
ANNS values: as the KS test reveals, the only ME model outputting pre-
dictions that are not compatible with the empirical values (at the signifi-
cance level of 1%) is the one induced by H(1). For what concerns the val-
ues of the WCC, both the econometric and the ME models perform quite
satisfactorily in capturing its rising trend; however, the KS test reveals
that only the econometric models and the TS model output predictions
compatible with the WCC empirical values (at the significance level of
1%).

To proxy the accuracy of our models in reproducing the weighted
network structure we have considered the index ∆W = |⟨W ⟩ −W |/W
amounting at ∆ZINB

W ≃ 95%, ∆NB
W = 60%, ∆ZIP

W ≃ 0.3% and ∆Pois
W ≃ 0

while ∆ME
W = 0 for the ME models constraining the total weight and

∆TS
W ≳ ∆TSF

W ≃ 0.2% for the ME two-step ones.
In order to understand if the conclusions above can be generalized,
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let us calculate the accuracy of all models in our basket, for all years
constituting our two datasets: the results, summed up in Tab. 1, confirm
that modelH(2) systematically outperforms all competing models. As an
additional test, we computed a Kolmogorov-Smirnov (KS) compatibility
frequency fsm. The KS compatibility frequency quantifies the proportion
of times the distribution of a given expected statistic s under modelm co-
incides with the empirical distribution, as determined by the two-sample
KS test. A value of fsm = 0.8 indicates that the model’s expected statis-
tic distribution aligns with the empirical distribution for 80% of the data
points. The results, shown in Fig. 4, point out that ME models are the
ones for which compatibility is largest.

In addition to the measures above, we also investigate centrality met-
rics, which quantify the structural importance of individual nodes.

The eigenvector centrality of node i is defined as the i-th entry of the
eigenvector corresponding to the largest eigenvalue of the (weighted)
adjacency matrix. Since it is real and symmetric, its eigenvalues are guar-
anteed to exist and be real-valued.

The Katz centrality of node i is defined as the i-th entry

Ki =
[︂
(I− ξA)

−1 · 1
]︂
i

(2.54)

where I is the identity matrix whose dimensions coincide with those of
the adjacency matrix A, 1 is the N -dimensional vector of ones and ξ is
a parameter strictly less than the reciprocal of the maximum eigenvalue.
Katz centrality generalizes the degree centrality, accounting for the total
number of possible walks originating from a source node. The weighted
version of Katz Centrality can be calculated upon substituting A with
W.

The closeness centrality of node i is defined as

ci =
N − 1∑︁
j di,j

(2.55)

where di,j is the distance of the shortest path connecting node i and node
i. It is the inverse of the farness, i.e. the average distance of a node from
all the other ones.
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Figure 4: Percentage of times the empirical value of a given network statis-
tics is compatible with its ensemble distribution, according to a KS test at
the significance level of 5% (left, for the Gleditsch dataset; right, for the
BACI dataset): a value of 1 means that the given network statistic is com-
patible with the model-induced ensemble distribution across all years of the
considered dataset. Generally speaking, ME models are the ones for which
compatibility is largest - although econometric models are characterized by
a compatibility which is large as well whenever weighted measures are con-
sidered.
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The betweenness centrality of node i is defined as

bi =
∑︂
j ̸=i ̸=k

σjk(i)

σjk
(2.56)

i.e. as the sum, over all origin-destination pairs - with the exclusion of
node i, of the fraction of shortest paths crossing node i. It quantify to
which extent a given node acts as a bridge, connecting different pairs
of nodes. Unfortunately, closeness and betweenness centrality lack a
straightforward extension to weighted networks: therefore, we will fo-
cus on their binary variants only.

In Fig. 5, we inspect the compatibility between the empirical and the
theoretical - according to the discrete models considered in the present
chapter - distributions of our centrality measures. Analogously to the
previous exercise, a compatibility f = 1 indicates the existence of a p-
value larger than 0.05 (further implying that the null hypothesis that the
empirical and the theoretical sets of measures come from the same distri-
bution cannot be rejected), for each year. The results are strongly dataset
dependent: for example, for what concerns the Gledistch dataset, ME
methods generally outperform, or (at least) perform competitively when
compared to, econometric approaches - the only exception being consti-
tuted by the weighted Katz centrality; on the other hand, for what con-
cerns the BACI dataset, ME methods typically outperform econometric
approaches only for closeness and betweenness centrality.

A different perspective is provided by the Reconstruction Accuracy
(RAs

m) of model m for statistic s depicted in Fig. 6. The reconstruction
accuracy RAs

m, expressed as a percentage, measures the fraction of node-
specific values of statistic s falling within the confidence intervals (CIs)
generated by sampling from the theoretical distribution of model m at a
significance level of 5%. Figure 6 shows the average RA across the years,
accompanied by confidence intervals illustrating the variability of this
average. On both datasets, the ME models named TS and H(2) steadily
outperform the others, including the econometric ones.

The ranking induced by the eigenvector centrality plays a critical role
in International Trade Economics, as it reveals the network-related com-
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Figure 5: Percentage of times the empirical value of a given network statis-
tics is compatible with its ensemble distribution, according to a KS test at
the significance level of 5% (left, for the Gleditsch dataset; right, for the
BACI dataset): a value of 1 means that the given network statistic is com-
patible with the model-induced ensemble distribution across all years of
the considered dataset. Compatibility on these measures strictly depends
on the dataset at hand. For Gledistch, high compatibility of ME models is
observed, with the exception of the weighted Katz Centrality; for the Baci
dataset, a higher compatibility (even if low on absolute terms) of eigenvec-
tor centralities is observed for the Poisson Model, while ME are performing
better for closeness and betweenness centrality measures.
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Figure 6: Reconstruction Accuracy for eigenvector, Katz, closeness and be-
tweenness centrality measures, calculated as the percentage of node-specific
values of the statistics s falling within the CI, induced by model m, at
the significance level of 5%; yearly percentages are, then, averaged. The
whiskers represent the 2.5 and 97.5 percentiles of each RAs

m distribution,
across different years. For both datasets (Gledistch on the left and Baci on
the right), the methods H(2) and TS significantly outperform the others.
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parative advantage that a country possesses in terms of influence. The
accuracy in reproducing the empirical ranking can be assessed by com-
puting the Spearman Rank Correlation R, a metric that lies within the
interval (−1, 1): a Spearman correlation of −1 indicates the presence of
a perfectly negative correlation, a Spearman correlation of 0 indicates
independence, a Spearman correlation of 1 the presence of a perfectly
positive correlation. Therefore, a larger value hints at a larger similar-
ity between the empirical and theoretical rankings. Figure 7 shows the
average Spearman Rank Correlation, accompanied by confidence inter-
vals illustrating the variability of this average, for both the Gledistch (left
panel) and the BACI (right panel) datasets, and each model under inves-
tigation. As evident from the figure, the Poisson model and its Zero-
Inflated counterpart consistently outperform other models in replicating
the ranking of weighted centrality measures; conversely, the ME models
named H(2) and TS outperform the others in replicating the ranking of
binary centrality measures.

Let us, now, ask ourselves if a criterion exist to carry out a principled
comparison of the performance of the models considered in the present
work. The answer is positive and lays in the adoption of the popular
Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC), respectively defined as

AIC = 2K − 2L (2.57)

and

BIC = K lnn− 2L (2.58)

where L is the log-likelihood of the tested model evaluated at its maxi-
mum, K is the number of parameters characterizing the model itself and
n is the cardinality of the set of observations - estimated as N(N − 1)/2

for undirected network data. Model selection based on these criteria pre-
scribes to rank models according to either their AIC or BIC value and
choose the one minimizing it. Table 2 shows both the AIC and the BIC
values for all the models considered here.
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Figure 7: Average Spearman Rank Correlations for eigenvector and Katz
centrality measures. An higher value corresponds to a higher correlation
between the empirical and the model-induced ranking. The whiskers rep-
resent the 2.5 and 97.5 percentiles of the Spearman cross correlation mea-
sures, across different years. For binary measures, the ME methods signif-
icantly display a higher correlation in ranking; conversely, Poisson and its
Zero-Inflated analog display higher ranking correlations for the weighted
measures.
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Quite surprisingly, the negative binomial model is the favored one
among the econometric models, followed by its zero-inflated version;
however, its bad performance in reproducing the empirical trends makes
the choice of including it among the most suitable recipes for modelling
trade data highly questionable. On the other hand, the ZIP model per-
forms much better in reconstructing the trends of both local and higher-
order properties although being much less parsimonious than both ver-
sions of the negative binomial model. Apparently, then, the question
about which model to prefer - i.e. the favored one by information criteria
or the best-performing one in reproducing trends? - cannot be properly
answered by just considering purely econometric models. On the other
hand, such a question can be unambiguously answered as soon as one
switches to the class of maximum-entropy models: now, both the AIC-
and the BIC-based rankings favor the model described by the Hamilto-
nian H(2) - the one encoding the information about the degree sequence
and the total weight, plus admitting a tunable function of the weights
- i.e. precisely the most accurate in replicating many (if not all of the)
empirical trends.

For the sake of comparison, we have included into the basket of maximum-
entropy models the Undirected Enhanced Configuration Model (UECM),
i.e. the model performing best in presence of complete information about
the constraints - degrees and strengths, in the specific case - of a given
networked system: as evident from the table, it is disfavored with re-
spect to the model described by the Hamiltonian H(2), an evidence sig-
nalling that while the information encoded into the degrees is essential
(i.e. the latter ones must be explicitly constrained), the one carried by the
strengths appears to be ‘less fundamental’ since providing a good ap-
proximation of them is enough to obtain an overall good reconstruction.

In order to understand if the conclusions above can be generalized,
let us calculate the Akaike weights for the models in our basketM. The
Akaike weight for the i-th model is defined as

wi =
e−∆i/2∑︁
m e
−∆m/2

, (2.59)
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Model ∆L ∆W AIC BIC
Poisson ≃ 0.07 0∗ ≃ 5088080.1 ≃ 5088105.1

ZI Poisson ≃ 4.5 · 10−3 ≃ 3.3 · 10−3 ≃ 5052767.3 ≃ 5052800.6
Negative Binomial ≃ 0.06 ≃ 0.59 ≃ 175693.2 ≃ 175726.6

ZI Negative Binomial ≃ 0.06 ≃ 0.95 ≃ 176071.4 ≃ 176113.1

ME model H(1) 0∗ 0∗ ≃ 182909.5 ≃ 182951.2
ME model H(2) 0∗ 0∗ ≃ 174050.0 ≃ 175550.4

TS 0∗ ≃ 6.8 · 10−3 ≃ 176129.1 ≃ 177629.5
TSF 0∗ ≃ 2.2 · 10−3 ≃ 185940.2 ≃ 185981.8

UECM 0∗ 0∗ ≃ 186602.8 ≃ 189536.8

Table 2: Ranking of ME and econometric models, according to the AIC and
BIC values. While the negative binomial model is the favored one among
the econometric models, it performs badly in reproducing both local and
higher-order topological properties; on the other hand, the ZIP model re-
produces the higher-order statistics quite accurately but is disfavored by
both AIC and BIC. The solution to this dilemma comes from considering a
different class of reconstruction models, i.e. the maximum-entropy ones: be-
side being the favored one by information criteria, the H(2) model achieves
a very good reconstruction of both binary and weighted network properties
(since ∆L = |⟨L⟩−L|/L and ∆W = |⟨W ⟩−W |/W , the symbol 0∗ indicates
that the model exactly reproduces the corresponding constraint). Results
refer to the year 2000 of the dataset curated by Gleditsch [38].

with ∆i = AICi − min{AICm}m∈M. Results on the dataset curated by
Gleditsch show that the negative binomial and the H(2) models ‘com-
pete’, in the sense that H(2) performs best (i.e. wH(2)

≃ 1) in the (bunches
of) years 1990-1993 and 1997-2000 while the negative binomial model
performs best (i.e. wNB ≃ 1) in the (bunch of) years 1994-1996. For what
concerns the BACI dataset, instead, the competing models are three: in
fact, while H(2) performs best in the (bunches of) years 2007, 2009 and
2015-2017, the negative binomial outperforms the others in the (bunches
of) years 2008 and 2010-2014; however, the ZINB model has a positive,
non-negligible Akaike weight in the years 2008, 2012 and 2014, hence
performing as well as the negative binomial one.

Let us now consider a couple of additional exercises, carried out on
both datasets considered in the present work.

The first one concerns link prediction and was carried out by follow-

36



ing the reference [79]. Specifically, we have approached link prediction
from a temporal perspective, inspecting the accuracy achieved by our re-
construction models at time t+1 given the knowledge about the network
topology (for the maximum-entropy models) and other exogenous vari-
ables (for the purely econometric models) at time t. In other words, we
opted for a one-lagged link prediction, calculating the log-likelihood

L1l = ln

⎡⎣∏︂
i<j

(︂
p
(t)
ij

)︂a(t+1)
ij

(︂
1− p(t)ij

)︂1−a(t+1)
ij

⎤⎦ (2.60)

for each statistical model in our basket, the coefficients
{︂
p
(t)
ij

}︂N
i,j=1

be-

ing the probabilities output by any model at time t and the coefficients{︂
a
(t+1)
ij

}︂N
i,j=1

being the entries of the adjacency matrix at time t+1. When

carried out on the pairs of years 1993-1994, 1994-1995, 1995-1996, 1996-
1997, 1997-1998, 1998-1999 and 1999-2000 of the dataset curated by Gled-
itsch and on the pairs of years 2008-2009, 2009-2010, 2010-2011, 2013-
2014, 2014-2015,2015-2016 and 2016-2017 of the BACI dataset, the exer-
cise above shows H(2) to outperform not only the entire class of econo-
metric models but also the purely binary, maximum-entropy ones - as
confirmed by the Akaike weights induced by the log-likelihood above.

To provide a more refined picture of the performance of our models
in providing one-lagged predictions, we have also calculated their one-
lagged accuracy, defined as

⟨ACC⟩1l =
⟨TP⟩1l + ⟨TN⟩1l(︁

N
2

)︁ (2.61)

with ⟨TP⟩1l =
∑︁
i<j a

(t+1)
ij p

(t)
ij and ⟨TN⟩1l =

∑︁
i<j

(︂
1− a(t+1)

ij

)︂(︂
1− p(t)ij

)︂
.

The results are reported in Tab. 3 and confirm what has been previously
said: H(2) is the one performing best.

As a second exercise, we have tested the accuracy of our models in es-
timating link-specific weights - hence, carrying out what we have called
a ‘weight prediction’ exercise. To this aim, we have considered each ex-
pected weight and calculated the confidence interval enclosing the 95%
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Dataset H(1) H(2) TSF TS Poisson ZIP Negative Binomial ZINB
Gleditsch94 0.70 0.79 0.72 0.77 0.75 0.74 0.66 0.69
Gleditsch95 0.71 0.80 0.72 0.78 0.75 0.75 0.66 0.69
Gleditsch96 0.72 0.80 0.73 0.80 0.76 0.76 0.67 0.70
Gleditsch97 0.73 0.82 0.74 0.80 0.77 0.77 0.67 0.70
Gleditsch98 0.73 0.82 0.74 0.81 0.77 0.77 0.69 0.71
Gleditsch99 0.73 0.82 0.74 0.81 0.77 0.77 0.69 0.71
Gleditsch00 0.73 0.82 0.74 0.81 0.77 0.77 0.69 0.71

BACI09 0.84 0.88 0.84 0.87 0.85 0.84 0.76 0.77
BACI10 0.84 0.88 0.84 0.87 0.85 0.84 0.76 0.77
BACI11 0.85 0.89 0.85 0.88 0.86 0.85 0.77 0.78
BACI14 0.85 0.89 0.85 0.88 0.86 0.85 0.77 0.78
BACI15 0.85 0.89 0.85 0.88 0.86 0.85 0.77 0.78
BACI16 0.84 0.88 0.84 0.88 0.85 0.84 0.77 0.78
BACI17 0.85 0.89 0.85 0.88 0.85 0.84 0.77 0.78

Table 3: One-lagged accuracy, quantifying the performance of ME and
econometric models in providing one-lagged predictions on both the Gled-
itsch and the BACI datasets. H(2) and TS are systematically the best-
performing models.

of total probability around it. On the practical side, we have sampled
1000 configurations from the ensemble induced by each model in our
basket and calculated the (ensemble-induced) 2.5 and 97.5 percentiles for
each specific weight; then, we have calculated the percentage of empiri-
cal weights ‘falling’ within the corresponding CIs - now treated as error
bars accompanying the point-estimate of each weight. The results of this
exercise are reported in in Tab. 4: as it can be appreciated, maximum-
entropy models compete with both the negative binomial and the ZINB
ones - although the latter (slightly) outperform the former.

Finally, to assess the presence of heteroskedasticity, we employ the
White and the Breusch-Pagan tests. It consistently return p-values lower
than 0.05, indicating that the residuals exhibit heteroskedasticity, for all
methods and across all years. As highlighted in the introduction, het-
eroskedasticity poses a significant challenge in parameter estimation, aris-
ing from various sources. In our case, employing the conventional grav-
ity model for weight estimation raises concerns about the so-called ‘omit-
ted variable bias’: this issue can be addressed by incorporating addi-
tional factors into the model specification, such as common language,
colonial history, etc. Alternatively, we can either introduce fixed-effects
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Dataset H(1) H(2) TSF TS Poisson ZIP Negative Binomial ZINB
Gleditsch90 0.96 0.96 0.94 0.96 0.62 0.67 0.98 0.97
Gleditsch91 0.96 0.96 0.94 0.96 0.63 0.71 0.98 0.97
Gleditsch92 0.96 0.96 0.94 0.96 0.63 0.70 0.98 0.97
Gleditsch93 0.96 0.96 0.94 0.96 0.64 0.69 0.98 0.97
Gleditsch94 0.96 0.96 0.94 0.96 0.64 0.67 0.98 0.97
Gleditsch95 0.96 0.96 0.94 0.96 0.61 0.68 0.98 0.97
Gleditsch96 0.96 0.96 0.94 0.96 0.60 0.65 0.98 0.97
Gleditsch97 0.96 0.96 0.94 0.96 0.60 0.63 0.98 0.97
Gleditsch98 0.96 0.96 0.94 0.96 0.61 0.63 0.98 0.97
Gleditsch99 0.96 0.96 0.94 0.96 0.61 0.62 0.98 0.97
Gleditsch00 0.96 0.96 0.95 0.96 0.60 0.63 0.97 0.97

BACI07 0.93 0.95 0.92 0.95 0.43 0.43 0.97 0.97
BACI08 0.92 0.94 0.91 0.94 0.40 0.40 0.97 0.97
BACI09 0.93 0.95 0.92 0.95 0.43 0.43 0.97 0.97
BACI10 0.92 0.94 0.91 0.95 0.41 0.41 0.97 0.97
BACI11 0.92 0.94 0.90 0.94 0.38 0.39 0.97 0.97
BACI12 0.91 0.94 0.90 0.94 0.38 0.38 0.97 0.97
BACI13 0.91 0.93 0.90 0.93 0.37 0.38 0.97 0.97
BACI14 0.91 0.93 0.90 0.94 0.38 0.39 0.97 0.97
BACI15 0.91 0.94 0.91 0.94 0.41 0.41 0.97 0.97
BACI16 0.92 0.94 0.91 0.94 0.40 0.41 0.97 0.97
BACI17 0.91 0.94 0.91 0.94 0.39 0.39 0.97 0.97

Table 4: Performance of ME and econometric models in providing accurate
predictions of weights, on both the Gleditsch and the BACI datasets, quan-
tified by calculating the percentage of empirical weights falling within the
confidence interval enclosing the 95% probability around the correspond-
ing expected value. Our maximum-entropy models compete with both the
negative binomial and the ZINB ones - although the latter (slightly) outper-
form the former.

parameters or adopt a White Variance-Covariance matrix for the weights,
in order to mitigate the impact of heteroskedasticity.

2.4 Discussion

The 2008 global financial crisis has dramatically clarified that bilateral
trade relationships can explain only a small fraction of the impact that
an economic shock, originating in a given country, can have on another
country which is not a direct trade partner, urging researchers in eco-
nomics to adopt a network-aware perspective; this, in turn, has moti-
vated us to carry out a methodological comparison on real-world cases,
with the aim of clarifying pros and cons of both approaches.

Researchers in economics have dealt with the issue of reconstructing
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a network topology by approaching the simpler problem of reproducing
the number of missing connections - or, equivalently, the link density. For
instance, as we see from the chosen snapshot of the dataset curated by
Gleditsch [38], although the error of the Poisson model in reproducing L
is overall small (amounting at ∆Pois

L ≃ 7%), it can be further reduced by
adopting the zero-inflated version of it; on the contrary, inflating zeros
does not improve the performance of the negative binomial model in re-
producing the link density as it already underestimates L. The ability of
a model in reproducing a global quantity such as the link density proxies
its ability in providing a good estimation of local as well as higher-order
topological properties (i.e. the degrees, the ANND and the BCC): from
this point of view, the zero-inflated Poisson model is the one performing
best among the econometric models. However, it is largely disfavored
by information criteria such as AIC and BIC, a result suggesting that it
may be not parsimonious enough.

Some of the problems of purely econometric models are solved by
looking at a different class of statistical models, i.e. the physics-inspired
ones. In particular, the model described by the Hamiltonian H(2) =∑︁
i θiki + ψ0W +

∑︁
i<j ψijwij provides a very accurate reconstruction

while being favored by information criteria. Remarkably, although it is
defined by N + 1 purely topological constraints, both AIC and BIC re-
veal the latter to be ‘irreducible’, i.e. necessary to provide a satisfactory
explanation of the network generating process. For the sake of compar-
ison, Fig. 8 explicitly shows the performance of the models favored by
the adopted information criteria (i.e. the negative binomial model and
its zero-inflated version) with that of the ME model described by H(2): it
is evident that the ME model outperforms the purely econometric ones,
still achieving a good ranking.

Looking at the class of ME models in more detail, our analysis indi-
cates that the information carried by the strengths is not as ‘fundamental’
as the one carried by the degrees: this is evident upon considering that 1)
the UECM is always disfavored with respect to the models just constrain-
ing the degrees; 2) the second best-performing ME model is (always) the
two-step one, defined by a first purely topological step, accounting for
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Figure 8: Performance of the negative binomial model versus the perfor-
mance of the ME model described by the Hamiltonian H(2), in reproducing:
(a) the degree distribution; (b) the ANND; (c) the BCC; (d) the strength dis-
tribution; (e) the ANNS; (f) the WCC. While a look at Tab. 1 suggests the
negative binomial to be the econometric model performing best, this is defi-
nitely not the case as explicitly plotting its predictions against the empirical
trends reveals. Notice that in (d) the distributions of strength induced by
H(2) and by the negative binomial model overlap for a large range of val-
ues whereas, for other statistics, H(2) produces the best fit - confirming the
importance of a good topological estimation. Empirical points are indicated
•; econometric and ME models are indicated as follows: • - Negative Bi-
nomial; • - H(2). Results refer to the year 2000 of the dataset curated by
Gleditsch [38].

the degrees, followed by an econometric-wise estimation of the weights.
On top of that, we explicitly notice that topological information (e.g. the
one provided by the link density or the degree sequence) usually cor-
relates with node-specific, economic covariates; hence, excluding such
information from the model may lead to the so-called ‘omitted variable’
bias. As proved by AIC and BIC, ME models represent the best com-
promise between goodness-of-fit and parsimony: in fact, they allow for
structural information to be included, keeping the aforementioned type
of bias low, while leading to a better description of economic systems
than that provided by traditional, econometric models.
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Model pij ⟨wij |aij = 1⟩
POIS 1− e−zij zij (1− e−zij )

−1

NB2 1− (1 + αzij)
−m zij

1−(1+αzij)−m

ZIP x̂ij

1+x̂ij
(1− e−zij ) zij

1−e−zij

ZINB x̂ij

1+x̂ij
[1− (1 + αzij)

−m]
zij

1−(1+αzij)−m

TSF x̂ij

1+x̂ij

1+zij
1+zij−y0zij

TS xixj

1+xixj

1+zij
1+zij−y0zij

H(1)
xy0zij

1+zij−y0zij+xy0zij
1+zij

1+zij−y0zij
H(2)

xixjy0zij
1+zij−y0zij+xixjy0zij

1+zij
1+zij−y0zij

Table 5: Models used in this chapter with columns indicating the
model-induced probability connection pij and the weight conditional
on the link presence ⟨wij |aij = 1⟩. The parameter zij =
exp{ρ+ β ln(ωiωj) + γ ln(Dij)} stands for the log-link gravity specifica-
tion, while x̂ij = exp{θ + ln(ωiωj)− ln(Dij)} stands for the gravity speci-
fication used in the logistic binary model.

Our findings may indicate a route towards reconciling econometric
and maximum-entropy approaches, suggesting how to build a model
that combines the pros of both: the importance of purely structural in-
formation (highlighted by physics-inspired models) can be accounted for
by a model whose first step that is purely topological in nature (notice,
in fact, that the TSF model is disfavored with respect to the TS one) and
a second step that takes care of estimating the weighted structure: such
an estimation can rest upon econometric considerations, driving the re-
parametrization of otherwise purely structural models.

In Table 5 we sum up the weighted models explored in this chapter
with the specifications related to the model-induced probability connec-
tion pij and to the conditional weight ⟨wij |aij = 1⟩ (conditional on the
established link), while in Table 6 the relative structural constraints are
portrayed for each model. In this last table, objects the ”hat” apex is
used to identify the constrained quantities that are approximated with a
log-link function in terms of constant and economic covariates.

42



Model Type Binary
Constraints

Weighted
Constraints

TSF C-Int {k̂i} Wtot, ŵij
TS C-Int {ki} Wtot, ŵij
H(1) I-Int

∑︁
i ki = L Wtot, ŵij

H(2) I-Int {ki} Wtot, ŵij

Table 6: Entropy-based models used in this chapter with columns indicat-
ing the type of induced weights, relative binary constraints and weighted
constraints. The type is annotated with C or I for conditional and integrated
model respectively, and with Int and Cont for models inducing integer and
continuous link weights. Constraints can be topological quantities or their
approximation through economic factors. When an approximation in terms
of a gravity log-link function is performed, it is indicated with the hat sym-
bol.
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Chapter 3

Continuous entropy-based
econometric models

This chapter illustrates the results of the analysis published in [2]. Here, we ex-
tend the set of models introduced and discussed in the previous chapter to accom-
modate continuous-valued weights. Then, we test the performance of these novel
models in reproducing the structural properties of both the BACI dataset [74,
75] and the Gleditsch dataset [38], describing the pros and cons of each of them;
additionally, we study the resilience, against shocks on the weights, of the corre-
sponding statistical ensemble by considering the related Shannon-Fisher plane.
Finally, we develop the DyGyS Python package1, equipped with the solvers for
both discrete-valued and continuous-valued, entropy-based econometric models
and routines to 1) explicitly sample the related statistical ensembles and 2) com-
pute a bunch of network statistics.

3.1 Introduction

As we have seen in the previous chapter, the traditional GM, although ac-
curate in reproducing the positive trade volumes, cannot replicate struc-
tural network properties, unless the topology is completely known [6].
In order to overcome such a limitation, it needs to be ‘dressed’ with a

1Available at https://github.com/MarsMDK/DyGyS.

44

https://github.com/MarsMDK/DyGyS


probability distributionQ(W) that produces ⟨W⟩GM as an expected value
while accounting for null outcomes as well (i.e. those entries reading
wij = 0 and representing missing links in the network) [41].

Although maximum-entropy models have been also studied from an
econometric perspective (see [57] for a discussion of the economic rel-
evance of the constraints defining the Poisson and the geometric net-
work models), it is only recently that progresses have been made to rec-
oncile the two approaches above, either allowing for economic factors
parametrizing the maximum-entropy probability distribution producing
links and weights [19, 20, 8, 65, 66, 29, 1] or by introducing network-
related statistics into otherwise purely econometric models [80]. On the
one hand, the novel framework enriches the methods developed by net-
work scientists with an econometric interpretation; on the other, it en-
larges the list of candidate distributions usable for econometric purposes.

Here, we refine the theoretical picture provided in the previous chap-
ter, by introducing models to infer the topology and the weights of undi-
rected networks defined by continuous-valued data. In order to do so,
we present a theoretical, physics-inspired framework capable of accom-
modating both integrated and conditional, continuous models, our goal
being threefold: 1) testing the performance of both classes of models on
the WTW in order to understand which one is best suited for the task;
2) offering a principled derivation of the conditional, econometric mod-
els that are currently available; 3) enlarging the list of continuous-valued
distributions to be used for econometric purposes. From an economet-
ric point of view, our work moves along the methodological guidelines
defining the class of Generalized Linear Models (GLMs) [81] while en-
riching it with distributions defined by both econometric and structural
parameters; from the point of view of statistical physics, our work ex-
pands the class of maximum-entropy network models [58], endowing
them with macroeconomic factors.
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3.2 Statistical network models

3.2.1 Conditional models

Discrete maximum-entropy models can be derived by performing a con-
strained maximization of Shannon entropy [59, 60, 61]. In case of con-
tinuous probability distributions, mathematical problems are known to
affect the definition of Shannon entropy and the resulting inference pro-
cedure. One must, thus, introduce the Kullback-Leibler (KL) divergence
DKL(Q||R) of a distributionQ from a prior distributionR and re-interpret
the maximization of the entropy of Q as the minimization of DKL(Q||R)
from a given prior distribution R. In formulas, the KL divergence2 is
defined as

DKL(Q||R) =
∫︂
W
Q(W) ln

Q(W)

R(W)
dW (3.1)

where W is one of the possible values of a continuous random variable
(in our setting, an entire network with continuous-valued link weights),
W is the set of possible values that W can take, Q(W) is the (multivari-
ate) probability density function to be estimated and R(W) plays the
role of prior distribution - the divergence of Q(W) from which must be
minimized. Such an optimization scheme embodies the so-called Mini-
mum Discrimination Information Principle (MDIP), originally proposed
by Kullback and Leibler [84] and implementing the idea that, given a
prior distribution R(W) and new information that becomes available,
an updated distribution Q(W) should be chosen in order to make its
discrimination from R(W) as hard as possible; equivalently, the MDIP
demands that new data produce an information gain that is as small as
possible.

In order to introduce the class of conditional models, we write the
posterior distribution Q(W) as

2The use of the KL divergence is, now, widespread in the fields of information the-
ory [82] and machine learning [83], e.g. as a loss function within the Generative Adver-
sarial Network (GAN) scheme - the aim of the ‘generating’ neural network being that of
producing samples that cannot be distinguished from those constituting the training set by
the ‘discriminating’ neural network).
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Q(W) = P (A)Q(W|A) (3.2)

where A denotes the adjacency matrix for the binary projection of the
weighted network W. The above equation allows us to split the KL di-
vergence into the following sum of three terms

DKL(Q||R) = S(Q,R)− S(P )− S(Q|P ) (3.3)

where

S(P ) = −
∑︂
A∈A

P (A) lnP (A) (3.4)

is the Shannon entropy of the probability distribution describing the bi-
nary projection of the network structure,

S(Q|P ) = −
∑︂
A∈A

P (A)

∫︂
WA

Q(W|A) lnQ(W|A)dW (3.5)

is the conditional Shannon entropy of the probability distribution of the
weighted network structure given the binary projection and

S(Q,R) = −
∑︂
A∈A

P (A)

∫︂
WA

Q(W|A) lnR(W)dW (3.6)

is the cross entropy quantifying the amount of information required to
identify a weighted network sampled from the distribution Q(W) by
employing the distribution R(W). When continuous models are consid-
ered, S(Q|P ) is defined by a first sum running over all the binary config-
urations within the ensemble A and an integral over all the weighted con-
figurations that are compatible with a specific, binary structure - embod-
ied by the adjacency matrix A, i.e. such that WA = {W : Θ[W] = A}.

The expression for S(Q,R) can be further manipulated as follows.
Upon separating the prior distribution itself into a purely binary part
and a conditional, weighted one, one can write

R(W) = T (A)R(W|A) (3.7)

an expression that allows us to write S(Q,R) as
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S(Q,R) =−
∑︂
A∈A

P (A) lnT (A)−
∑︂
A∈A

P (A)

∫︂
WA

Q(W|A) lnR(W|A)dW

(3.8)

which, in turn, allows the KL divergence to be re-written as

DKL(Q||R) = DKL(P ||T ) +DKL(Q||R) (3.9)

i.e. as a sum of the addenda

DKL(P ||T ) =
∑︂
A∈A

P (A) ln
P (A)

T (A)
, (3.10)

DKL(Q||R) =
∑︂
A∈A

P (A)

∫︂
WA

Q(W|A) ln
Q(W|A)

R(W|A)
dW (3.11)

with T (A) representing the binary prior and R(W|A) representing the
conditional, weighted one. In what follows, we will deal with completely
uninformative priors: this amounts at considering the somehow ‘simpli-
fied’ expression

−S(Q) = −S(P )− S(Q|P ) (3.12)

with

S(P ) = −
∑︂
A∈A

P (A) lnP (A), (3.13)

S(Q|P ) = −
∑︂
A∈A

P (A)

∫︂
WA

Q(W|A) lnQ(W|A)dW. (3.14)

The (independent) constrained optimization of S(P ) and S(Q|P ) rep-
resents the starting point for deriving the members of the class of condi-
tional models.

Choosing the binary constraints

As discussed in section 2.2.2, the functional form controlling for the bi-
nary part of conditional models can be derived by carrying out a con-
strained maximization of the binary Shannon entropy
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S(P ) = −
∑︂
A∈A

P (A) lnP (A). (3.15)

Again, we will again consider the UBCM model, characterized by a
probability that any two nodes establish a connection reading

pUBCM
ij =

xixj
1 + xixj

, (3.16)

in turn ensuring the entire degree sequence of the network at hand to
be reproduced, and the fitness model (FM), characterized by the pair-
specific probability coefficient

pFM
ij =

δωiωj
1 + δωiωj

, (3.17)

requiring the estimation of a global parameter only, i.e. δ. Remarkably,
the FM has been proven to reproduce the (binary) properties of a wide
spectrum of real-world systems [46, 20] as accurately as the UBCM, al-
though requiring much less information.

Choosing the weighted constraints

The constrained maximization of S(Q|P ) proceeds by specifying the fol-
lowing set of weighted constraints

1 =

∫︂
WA

P (W|A)dW, ∀A ∈ A (3.18)

⟨Cα⟩ =
∑︂
A∈A

P (A)

∫︂
WA

Q(W|A)Cα(W)dW, ∀ α (3.19)

the first condition ensuring the normalization of the probability distribu-
tion and the vector {Cα(W)} representing the ‘proper’ set of weighted
constraints (weights are, now, treated as continuous random variables,
i.e. wij ∈ R+

0 , ∀ i < j). They induce the distribution reading

Q(W|A) =

{︄
e−H(W)

ZA
, W ∈WA

0, W /∈WA

(3.20)
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where H(W) =
∑︁
α ψαCα is the so-called Hamiltonian, listing the con-

strained quantities, and ZA =
∫︁
WA

e−H(W)dW is the partition function,
conditional on the ‘fixed topology’ A.

The explicit functional form ofQ(W|A) can be obtained only once the
functional form of the constraints has been specified. In what follows, we
will deal with the Hamiltonian reading

H(W) =
∑︂
i<j

f(wij |βij , ξij , γij) (3.21)

with the Lagrange multipliers (βij , ξij , γij) satisfying the following re-
quirements:

• βij ≡ β0 + βij , where β0 is the Lagrange multiplier associated with
the total weight

∑︁
i<j wij ≡ W1 and βij encodes the dependence

on purely econometric quantities;

• ξij will be kept either in its dyadic form, to constrain the logarithm
of each weight, or in its global form, ξij ≡ ξ0, to constrain the sum
of the logarithms of the weights, i.e.

∑︁
i<j ln(wij) ≡W2;

• γij ≡ γ0 plays the role of the Lagrange multiplier associated with
(a function of) the total variance of the logarithms of the weights,
i.e.
∑︁
i<j ln

2(wij) ≡W3.

Conditional exponential model. Let us start by considering the sim-
plest, conditional model, defined by the positions γij = ξij = 0 and
inducing the Hamiltonian

H(W) =
∑︂
i<j

f(wij |β0 + βij) =
∑︂
i<j

(β0 + βij)wij ; (3.22)

inserting the expression above into Eq. 3.20 leads to the distribution

Q(W|A) =
∏︂
i<j

qij(wij |aij) =
∏︂
i<j

e−(β0+βij)wij

ζij
=
∏︂
i<j

(β0 + βij)e
−(β0+βij)wij

(3.23)
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and each node pair-specific distribution induces a (conditional) expected
weight reading

⟨wij |aij = 1⟩ = 1

β0 + βij
. (3.24)

From a purely topological point of view, constraining each weight and
their total sum is redundant. However, this is no longer true when turn-
ing the conditional, exponential model into a proper econometric one. Its
econometric re-parametrization should be consistent with the literature
on trade, stating that the weights are monotonically increasing functions
of the gravity specification, i.e. ⟨wij⟩GM = eρ+β·ln(ωiωj)+γ·ln(dij) ≡ zij ,
∀ i < j and with eρ ≡ τ ; for this reason, the link function usually asso-
ciated with the exponential distribution prescribes to identify the linear
predictor with the inverse of the purely econometric parameter of the
model, i.e.

βij ≡ z−1ij , (3.25)

a position that turns Eq. 3.24 into

⟨wij |aij = 1⟩ = 1

β0 + z−1ij
=

zij
1 + β0zij

; (3.26)

notice that the only structural constraint is, now, represented by the total
weight (see also Appendix B.1).

Conditional gamma model. Let us, now, consider a different Hamil-
tonian, constraining each weight, their total sum and the sum of their
logarithms, i.e.

H(W) =
∑︂
i<j

f(wij |β0 + βij , ξ0)

=
∑︂
i<j

[(β0 + βij)wij + ξ0 ln(wij)] =
∑︂
i<j

βijwij + β0W1 + ξ0W2;

(3.27)

it induces the distribution reading
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Q(W|A) =
∏︂
i<j

qij(wij |aij)

=
∏︂
i<j

e−(β0+βij)wij−ξ0 ln(wij)

ζij
=
∏︂
i<j

(β0 + βij)
1−ξ0

Γ(1− ξ0)
e−(β0+βij)wijw−ξ0ij ;

(3.28)

each node pair-specific distribution is characterized by a (conditional)
expected weight reading

⟨wij |aij = 1⟩ = 1− ξ0
β0 + βij

(3.29)

and by a (conditional) expected logarithmic weight reading

⟨ln(wij)|aij = 1⟩ = ψ(1− ξ0)− ln(β0 + βij) (3.30)

where the function ψ(x) = Γ′(x)/Γ(x) is the so-called digamma function.

Such a model can be turned into a proper, econometric one by consid-
ering the inference scheme of the gamma model with inverse response,
which allows us to identify the linear predictor with the inverse of the
purely econometric parameter of the model, i.e.

βij ≡ z−1ij (3.31)

a position that, in turn, leads to the expressions

⟨wij |aij = 1⟩ = 1− ξ0
β0 + z−1ij

=
(1− ξ0)zij
1 + β0zij

(3.32)

(allowing the conditional, exponential model to be recovered in case ξ0 =

0, i.e. when the constraint on the sum of the logarithms of the weights is
switched-off) and

⟨ln(wij)|aij = 1⟩ = ψ(1− ξ0)− ln
(︁
β0 + z−1ij

)︁
(3.33)

(see also Appendix B.1).
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Conditional Pareto model. Constraining a slightly more complex func-
tion of the weights, i.e. their logarithm, leads to the Hamiltonian

H(W) =
∑︂
i<j

f(wij |ξij) =
∑︂
i<j

ξij ln(wij) (3.34)

which, in turn, induces the distribution

Q(W|A) =
∏︂
i<j

qij(wij |aij)

=
∏︂
i<j

e−ξij ln(wij)

ζij
=
∏︂
i<j

w
−ξij
ij

ζij
=
∏︂
i<j

(ξij − 1)

m
1−ξij
ij

w
−ξij
ij (3.35)

where mij is the minimum, node pair-specific weight allowed by the
model. Each node pair-specific distribution is characterized by a (con-
ditional) expected weight reading

⟨wij |aij = 1⟩ =
(︃
ξij − 1

ξij − 2

)︃
mij . (3.36)

Such a model can be turned into a proper, econometric one by con-
sidering the positions

ξij − 2 ≡ z−1ij , mij ≡ wmin (3.37)

ensuring that the expected weights are monotonically increasing func-
tions of the gravity specification and leading to the expression

⟨wij |aij = 1⟩ = (1 + zij)wmin (3.38)

where wmin is the empirical, minimum weight (see also Appendix B.1).

Let us explicitly notice that the derivation of the gamma and Pareto
distributions within the maximum-entropy framework has been already
studied in [85]; here, however, we aim at making a step further by indi-
viduating a suitable re-definition of these parameters capable of turning
them into proper, econometric ones.
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Conditional log-normal model. Adding a global constraint on (a func-
tion of) the total variance of the logarithms of the weights to the Hamil-
tonian defining the Pareto model leads to the expression

H(W) =
∑︂
i<j

f(wij |γ0, ξij)

=
∑︂
i<j

[ξij ln(wij) + γ0 ln
2(wij)] =

∑︂
i<j

ξij ln(wij) + γ0W3; (3.39)

the Hamiltonian above induces a distribution reading

Q(W|A) =
∏︂
i<j

qij(wij |aij)

=
∏︂
i<j

e−ξij ln(wij)−γ0 ln2(wij)

ζij
=
∏︂
i<j

e−ξij ln(wij)−γ0 ln2(wij)√︂
π
γ0
e

(ξij−1)2

4γ0

;

(3.40)

each node pair-specific distribution is characterized by a (conditional)
expected weight reading

⟨wij |aij = 1⟩ = e
3−2ξij

4γ0 , (3.41)

by a (conditional) expected, logarithmic weight reading

⟨ln(wij)|aij = 1⟩ = 1− ξij
2γ0

(3.42)

and by a (conditional) logarithmic weight whose squared expectation
reads

⟨ln2(wij)|aij = 1⟩ = 2γ0 + (1− ξij)2

4γ20
. (3.43)

Such a model can be turned into a proper, econometric one by con-
sidering the position

1− ξij ≡ ln(zij) (3.44)

ensuring that the expected weights are monotonically increasing func-
tions of the gravity specification and leading to the expressions
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⟨wij |aij = 1⟩ = e
1+2 ln(zij)

4γ0 , (3.45)

⟨ln(wij)|aij = 1⟩ = ln(zij)

2γ0
, (3.46)

⟨ln2(wij)|aij = 1⟩ = 2γ0 + ln2(zij)

4γ20
(3.47)

(see also Appendix B.1).

3.2.2 Integrated models

The MDIP can be also implemented straightforwardly, i.e. by carrying
out a constrained optimization of DKL(Q||R). In this second case, the
following set of constraints

1 =

∫︂
W
Q(W)dW, (3.48)

⟨Cα⟩ =
∫︂
W
Q(W)Cα(W)dW, ∀ α (3.49)

can be specified, with obvious meaning of the symbols. Differentiat-
ing the corresponding Lagrangean functional with respect to Q(W) and
equating the result to zero leads to

Q(W) =
R(W)e−H(W)∫︁

WR(W)e−H(W)dW
(3.50)

whereH(W) =
∑︁
α ψαCα is, again, the Hamiltonian andZ =

∫︁
W e−H(W)dW

is the ‘integrated’ partition function.
The explicit functional form of Q(W) can be obtained only once the

functional form of both the prior distribution and the constraints has
been specified as well. In what follows, we will deal with completely
uninformative priors, a choice that amounts at considering the simpli-
fied expression

Q(W) =
e−H(W)∫︁

W e−H(W)dW
; (3.51)

notice that the result above could have been also derived by carrying out
a constrained minimization of
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DKL(Q||R) =
∫︂
W
Q(W) lnQ(W)dW ≡ −S(Q) (3.52)

i.e. of (minus) the functional named differential entropy into which the
KL divergence ‘degenerates’ in case completely uninformative priors are
considered.

Choosing the constraints

Let us, now, specify the functional form of the constraints. In what fol-
lows, we will deal with a specific instance of the generic Hamiltonian

H(W) =
∑︂
i<j

f(wij |αij , βij); (3.53)

in particular, one could pose αij ≡ α0, a choice that would lead to con-
strain the total number of links, or αij ≡ αi + αj , a choice that would
lead to constrain the whole degree sequence. In what follows we will
employ the second functional form and pose βij ≡ β0 + βij , where β0 is
the Lagrange multiplier associated with the total weight and βij encodes
the dependence on purely econometric quantities. Our choices induce
the Hamiltonian of the so-called integrated exponential model, i.e.

H(W) =
∑︂
i<j

f(wij |αi + αj , β0 + βij)

=
∑︂
i<j

[(αi + αj)aij + (β0 + βij)wij ] =
∑︂
i

αiki +
∑︂
i<j

βijwij + β0W1

that leads to the distribution

Q(W) =
∏︂
i<j

qij(wij)

=
∏︂
i<j

(xixj)
aije−(β0+βij)wij

Zij
=
∏︂
i<j

(xixj)
aije−(β0+βij)wij

1 + xixj(β0 + βij)−1
(3.54)

where xi ≡ e−αi . The generic node pair-specific distribution induces a
probability for nodes i and j to be connected reading

pij = 1− qij(0) =
xixj(β0 + βij)

−1

1 + xixj(β0 + βij)−1
=

xixjζij
1 + xixjζij

; (3.55)
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besides, the corresponding expected weight reads

⟨wij⟩ =
pij

β0 + βij
. (3.56)

Equation 3.55 clarifies why the models considered in the present sec-
tion are classified as ‘integrated’: each node pair-specific probability of
connection is a function of the parameters controlling for both topolog-
ical and weighted properties. Models of the kind are, thus, capable of
‘integrating’ information concerning a network structure with informa-
tion concerning its weights, hence employing them in a joint fashion to
define both inference steps.

The recipe for the econometric reparametrization of the integrated
exponential model can read as the one of its conditional counterpart, i.e.

βij ≡ z−1ij (3.57)

a position that turns Eq. 3.56 into

⟨wij⟩ =
pij

β0 + z−1ij
(3.58)

where

pij =
xixj

xixj + β0 + z−1ij
(3.59)

(see also Appendix B.2).

3.3 Results

The performance of the two classes of models in reproducing the topo-
logical properties of the WTW has been tested on the two, usual datasets,
i.e. the Gleditsch one (covering 11 years, from 1990 to 2000 [38]) and the
BACI one (covering 11 years, from 2007 to 2017 [75]).

To carry out our analyses, we have sampled the ensemble induced
by each model as follows. First, the presence of a link connecting any
two nodes i and j is established with probability pij ; numerically, this is
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realized by drawing a real number uij from U(0, 1), i.e. the uniform dis-
tribution with unit support, and comparing it with pij : if u ≤ pij , then i
and j are linked, otherwise they are not. Once the presence of a link is es-
tablished, it is loaded with a weight by employing the inverse transform
sampling technique: a second random variable η, uniformly distributed
between 0 and 1, is set equal to the value of the complementary cumula-
tive distribution function

F (vij) =

∫︂ vij

0

q(wij |aij = 1)dwij ; (3.60)

then, inverting the equation F (vij) = η, one obtains the value of the
random variable vij to be assigned as a link weight to the pair i, j (with
i < j). Each ensemble is repeatedly sampled in order to obtain 104 con-
figurations. The error accompanying the estimate of any quantity of in-
terest is quantified via the confidence intervals (CI) induced by the en-
semble distribution of the quantity itself.

3.3.1 Model selection via performance indicators

Let us consider two measures of goodness-of-fit, i.e. the Kolmogorov-
Smirnov (KS) compatibility frequency fsm and the reconstruction accu-
racy RAs

m, already defined in the previous chapter.
The network statistics for which the values RAs

m and fsm have been
computed are the degree sequence

ki =

N∑︂
j(̸=i)=1

aij , ∀ i (3.61)

(which gives information about the tendency of node i to connect to other
trade partners), the average nearest neighbors degree

knni =

∑︁N
j(̸=i)=1 aijkj

ki
, ∀ i (3.62)

the clustering coefficient

ci =

∑︁N
j(̸=i)=1

∑︁N
k(̸=i,j)=1 aijajkaki

ki(ki − 1)
, ∀ i; (3.63)
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for what concerns the weighted statistics, we have considered the strength
sequence

si =

N∑︂
j(̸=i)=1

wij , ∀ i (3.64)

(which gives information about the trade flow of a country), the average
nearest neighbors strength

snni =

∑︁N
j(̸=i)=1 aijsj

ki
, ∀ i (3.65)

the weighted clustering coefficient

cwi =

∑︁N
j(̸=i)=1

∑︁N
k(̸=i,j)=1 wijwjkwki

ki(ki − 1)
, ∀ i. (3.66)

KS compatibility frequency

Table 7 lists the values of fsm for both binary and weighted network statis-
tics. For what concerns the binary statistics, we report the performance
of three, different models, i.e. the UBCM, the FM and the integrated ex-
ponential model (denoted as I-Exp).

For what concerns the Gleditsch dataset, compatibility is observed for
every year; for what concerns the BACI dataset, instead, this is no longer
true: in fact, the FM outputs predictions that are not compatible with
the empirical values for a large number of years and irrespectively from
the considered quantity; the UBCM and the I-Exp (i.e. the models con-
straining the degrees), instead, output predictions whose compatibility
depends on the considered quantity: higher-order statistics are the ones
for which the two aforementioned models ‘fail’ to the larger extent. Over-
all, these results lead us to prefer the UBCM as the ‘first step-algorithm’
of our conditional models.

Let us, now, comment on the performance of our models in repro-
ducing weighted statistics. As it can be appreciated upon looking at
Tab. 7, the only models outputting predictions whose distributions are

59



Dataset Model fki fknn f ci

Gleditsch I-Exp 1 1 1
Gleditsch UBCM 1 1 1
Gleditsch FM 1 1 1

BACI I-Exp 1 0.09 0.09
BACI UBCM 1 0.09 0.09
BACI FM 0.09 0.09 0.09

Dataset Model fsi fsnn f cw

Gleditsch I-Exp 1 1 0.18
Gleditsch C-Exp 1 1 0.18
Gleditsch C-Pareto 0 0 0
Gleditsch C-Gamma 1 1 0.27
Gleditsch C-Lognormal 1 0 0

BACI I-Exp 1 1 1
BACI C-Exp 1 1 1
BACI C-Pareto 0 0 0
BACI C-Gamma 1 1 1
BACI C-Lognormal 0 0 0

Table 7: Compatibility between the distributions of the expected values of
the statistics output by the models considered in the present work and their
empirical counterparts for the Gleditsch (left) and the BACI (right) dataset.
A large value of fs

m indicates a large percentage of years for which the dis-
tribution of the network statistic predicted by model m is compatible with
the empirical one. While all models seem to perform quite well in repro-
ducing the binary statistics on the Gleditsch dataset, this is no longer true
when considering the BACI dataset, on which the UBCM outperform the
FM - a result that leads us to prefer the former as the ‘first step-algorithm’
of our conditional models. For what concerns the set of weighted statis-
tics, the models constraining W1 (i.e. the integrated exponential model, the
conditional exponential model and the conditional gamma model) clearly
outperform the others.

compatible with the empirical analogues are the integrated exponential
one, the conditional exponential one and the conditional gamma one. On
the other hand, employing only logarithmic constraints (as for the con-
ditional Pareto model and the conditional log-normal model) does not
help improving the accuracy of the description of the system at hand.
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Reconstruction accuracy

So far, we have inspected the compatibility of the distributions of the em-
pirical values of each network statistics with the ones of their expected
values under each of our models. Let us, now, quantify the extent to
which each model is able to recover node-wise information by comput-
ing the RAs

m values.

Figure 9: Reconstruction accuracy for the (a) binary and (b) weighted net-
work statistics, calculated as the percentage of node-specific values of the
statistics s falling within the CI, induced by model m, at the significance
level of 5%; yearly percentages are, then, averaged. The whiskers represent
the 2.5 and 97.5 percentiles of each RAs

m distribution, across different years.
Overall, all models perform quite well in reproducing the degrees, with the
only exception of the FM - whence our choice of employing the UBCM as the
‘first step-algorithm’ of our conditional models. For what concerns higher-
order, binary statistics, both the UBCM and the I-Exp perform quite well
while the performance of the FM is much poorer - a result that holds true
for both the Gleditsch (left panels) and the BACI (right panels) dataset. For
what concerns the weighted statistics, only the average nearest neighbors
strength is satisfactorily recovered - however, only by the (integrated and
conditional) exponential models and the conditional gamma one.
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Figure 9 shows the temporal average of the latter ones (i.e. across the
years covered by our datasets), with the whiskers representing their vari-
ation, i.e. an indication of the stability of each model performance. For
what concerns the binary statistics (see Fig. 9(a)), both the UBCM and
the I-Exp perform quite well in reproducing them; on the other hand, the
performance of the FM is much poorer. For what concerns the weighted
statistics (see Fig. 9(b)), only the average nearest neighbors strength is
satisfactorily recovered by the (integrated and conditional) exponential
models and the conditional gamma one. Still, they are found to perform
poorly on the other statistics, i.e. the strength, that is only recovered
in distribution on both datasets, and the weighted clustering coefficient,
that is only recovered in distribution on the BACI dataset. For what con-
cerns the lognormal model, it performs better than competitors in repro-
ducing the strength sequence and the weighted clustering coefficient on
the Gleditsch dataset but worse than them on the BACI dataset, causing
its behavior to be dataset-dependent.

1990 1992 1994 1996 1998 2000

0.2

0.4

0.6

0.8

1.0

RA
w

2008 2010 2012 2014 2016

I-Exp
C-Exp
C-Pareto
C-Gamma
C-Lognormal

Figure 10: Reconstruction accuracy RAw
m for the Gleditsch dataset (left

panel) and the BACI dataset (right panel). All models perform quite well in
reproducing the weights (across all years, on both datasets) with the only
exception of the conditional Pareto model. Overall, the best-performing
model on the Gleditsch dataset is the integrated exponential while the best-
performing model on the BACI dataset is the conditional gamma model.

Finally, let us inspect the reconstruction accuracy of our models when
tested on link weights. Specifically, let us consider RAw

m, i.e. the percent-
age of empirical weights falling within the CIs, induced by model m, at
the significance level of 5% [63]: as Fig. 10 shows, all models perform
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quite well in reproducing the weights (across all years, on both datasets)
with the only exception of the conditional Pareto model. Overall, the
best-performing model on the Gleditsch dataset is the integrated expo-
nential one while the best-performing model on the BACI dataset is the
conditional gamma model.

Confusion matrix

The UBCM and the integrated exponential model perform similarly in
reproducing the binary statistics, on both datasets. Let us, now, compare
them in reproducing the four indicators composing the so-called confu-
sion matrix, i.e. the true positive rate ⟨TPR⟩ = ⟨TP⟩/L =

∑︁
i<j aijpij/L

(measuring the percentage of links correctly recovered by a given recon-
struction method), the specificity ⟨SPC⟩ = ⟨TN⟩/(N(N − 1)/2 − L) =∑︁
i<j(1 − aij)(1 − pij)/(N(N − 1)/2 − L) (measuring the percentage of

zeros correctly recovered by a given reconstruction method), the positive
predictive value ⟨PPV⟩ = ⟨TP⟩/⟨L⟩ =

∑︁
i<j aijpij/⟨L⟩ (measuring the

percentage of links correctly recovered by a given reconstruction method
with respect to the total number of links predicted by it) and the accuracy
⟨ACC⟩ = (⟨TP⟩+⟨TN⟩)/N(N−1)/2 (measuring the overall performance
of a given reconstruction method in correctly placing both links and ze-
ros).

The results are reported in Tab. 8, that shows the increments of the
four indicators, defined as ∆X = ⟨X⟩I-Exp − ⟨X⟩UBCM with X = TPR,
SPC, PPV, ACC. Notice that each entry of the table is positive, a result
signalling that the integrated exponential model steadily performs bet-
ter than the UBCM. This is further confirmed by the (non-parametric)
Wilcoxon rank-sum test on the ensemble distributions of the statistics to
compare: all increments are significant, at the 1% level.

3.3.2 Model selection via statistical tests

Let us now rigorously test if constraining the entire degree sequence
leads to a significantly better description of our data than that obtain-
able by just constraining the total number of links.
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Upon solving the model constraining the entire degree sequence and
the one constraining the total number of links, we are able to construct
a vector reading (Xm

i , Y
m
i ) where Xm

i is either RAs
m or fsm for the i-th

statistics under the ‘L-constrained version’ of model m; on the other
hand, Y mi is either RAs

m or fsm for the i-th statistics under the ‘k-constrained
version’ of model m - naturally, both values have been considered for
the same year, keeping the same set of weighted constraints. Pairing
statistics as described above allows us to employ the (non-parametric)
Wilcoxon signed-rank test for testing the hypotheses RAs

k ≤ RAs
L and

fsk ≤ fsL, i.e. that the models just constraining L perform better, in re-
producing the statistics s, than those constraining the entire degree se-
quence.

Our results let us conclude that, for both datasets, constraining the
degree sequence leads to a significant improvement, at the level of 5%,
of the reconstruction accuracy of the average nearest neighbors degree,
the clustering coefficient, the strength and the average nearest neighbors
strength; on the other hand, constraining the degree sequence does not
lead to any significant improvement of the reconstruction accuracy of the
weighted clustering coefficient. For what concerns the KS compatibil-
ity frequency, a significant improvement, at the level of 5%, is observed
in the description accuracy of the average nearest neighbors degree, the
clustering coefficient and the average nearest neighbors strength.

3.3.3 Model selection via information criteria

Let us, now, compare the performance of our models in a more general
fashion. To this aim, let us consider AIC [86], reading AICm = 2k − 2Lm
where k is the number of free parameters of model m and Lm is its log-
likelihood, evaluated at its maximum.

The purely binary log-likelihood induced by model m is readily ob-
tained from Eq. (2.16) and reads

L(b)
m = lnP (A) =

∑︂
i<j

[aij ln pij + (1− aij) ln(1− pij)] (3.67)

where aij is the generic entry of the empirical adjacency matrix and pij is
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Dataset ∆TPR ∆SPC ∆PPV ∆ACC

Gleditsch 90 0.017 0.026 0.017 0.020
Gleditsch 91 0.016 0.020 0.016 0.018
Gleditsch 92 0.015 0.019 0.015 0.017
Gleditsch 93 0.015 0.019 0.015 0.017
Gleditsch 94 0.013 0.018 0.013 0.015
Gleditsch 95 0.013 0.019 0.013 0.016
Gleditsch 96 0.012 0.019 0.012 0.015
Gleditsch 97 0.013 0.022 0.013 0.016
Gleditsch 98 0.013 0.022 0.013 0.016
Gleditsch 99 0.013 0.023 0.014 0.017
Gleditsch 00 0.014 0.023 0.014 0.017

Dataset ∆TPR ∆SPC ∆PPV ∆ACC

BACI 07 0.007 0.037 0.007 0.012
BACI 08 0.006 0.035 0.006 0.010
BACI 09 0.005 0.031 0.005 0.009
BACI 10 0.005 0.032 0.005 0.009
BACI 11 0.005 0.029 0.006 0.008
BACI 12 0.005 0.033 0.005 0.009
BACI 13 0.005 0.034 0.005 0.009
BACI 14 0.005 0.031 0.005 0.008
BACI 15 0.005 0.028 0.005 0.008
BACI 16 0.003 0.021 0.004 0.006
BACI 17 0.004 0.028 0.004 0.007

Table 8: Increments of the four indicators composing the confusion ma-
trix, i.e. the true positive rate (TPR), the specificity (SPC), the positive pre-
dicted value (PPV) and the accuracy (ACC) when passing from the UBCM
to the integrated exponential model for the Gleditsch (left table) and the
BACI (right table) datasets. All increments are significant at the 1% level,
according to the (non-parametric) Wilcoxon rank-sum test on the ensemble
distributions of the statistics to compare.

the model-dependent probability that node i and node j establish a con-
nection. The ‘binary’ AIC values (normalized by the yearly maximum,
across models, for better visualization) are reported in Fig. 11(a): the in-
tegrated exponential model outperforms the others, across all years, for
both datasets. This result suggests that the information gained by in-
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cluding economic factors into the connection probabilities predicted by
it does not affect the parsimony of its description, allowing it to perform
better than the UBCM.

When, instead, the ‘full’ log-likelihood is considered, reading

L(f)
I-m = lnQ(W) =

∑︂
i<j

ln qij(wij) (3.68)

for integrated models and

L(f)
C-m = lnP (A) + lnQ(W|A)

=
∑︂
i<j

[aij ln pij + (1− aij) ln(1− pij) + ln qij(wij |aij)] (3.69)

for conditional models (see Fig. 11(b)), the conditional log-normal and
gamma models compete, outperforming the other ones - although the
performance of the first one in predicting the network statistics of inter-
est, on the BACI dataset, is less remarkable than that of the competing
models (see Fig. 2b).

3.3.4 The Shannon-Fisher plane

We, now, complement the analysis of our models performance, in terms
of realized likelihood, with an investigation of our models ‘sensitivity’,
in terms of the variability of the likelihood across network configura-
tions sampled from the model. To this end, for each conditional model
we build the so-called Shannon-Fisher plane [87], a technique that has
acquired some popularity in the study of time-series - for instance it has
been employed to understand ordinal patterns [88], quantify the degree
of stochasticity [89], classify financial stock markets [90] and build indi-
cators of economic efficiency [91].

Within our context, we can use the Shannon-Fisher technique to project
a given model onto a plane by assigning two coordinates to each con-
nected dyad, i.e. to each pair of nodes such that aij = 1, where aij is
taken from the empirical adjacency matrix of the network. The y coordi-
nate in the plane is Shannon entropy
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Figure 11: AIC values for the (a) binary and the (b) ‘full’ log-likelihood,
normalized by the yearly maximum, across models, for better visualization,
for the Gleditsch (left panels) and the BACI (right panel) datasets: a lower
AIC value is associated to a better performance. Our plots clearly show that
constraining the degree sequence increases a model performance in repro-
ducing a network topology: moreover, the integrated exponential model
steadily outperforms the UBCM, signalling that the information gain due
to inclusion of economic variables does not affect the parsimony of its de-
scription. For what concerns the capability of our models in reproducing
weighted properties, the conditional log-normal and gamma models com-
pete, outperforming the other ones.

Sij = −
∫︂
qij(w|aij=1) ln qij(w|aij = 1)dw

=

∫︂
qij(w|aij = 1)[Hij(w) + ln ζij ]dw = ⟨Hij⟩+ ln ζij , (3.70)

which quantifies the degree of uncertainty encoded into the link weight.
Note that, since entropy is constructed from a continuous pdf, it can
attain negative values: this is a well-known problem that can be regu-
larized by introducing the KL divergence with respect to a continuous,
uniform pdf; however the result will only consist in an overall shift and
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rescaling of the y coordinate that are inessential for our discussion.
The x coordinate in the plane is the Fisher Information Measure (FIM),

defined as

Fij =

∫︂
qij(w|aij = 1)

(︃
∂ ln qij(w|aij = 1)

∂w

)︃2

dw (3.71)

=

∫︂
qij(w|aij = 1)

(︃
∂[−Hij(w)− ln ζij ]

∂w

)︃2

dw (3.72)

=

∫︂
qij(w|aij = 1)

(︃
∂Hij(w)

∂w

)︃2

dw (3.73)

=

∫︂
qij(w|aij = 1)

(︁
H ′ij(w)

)︁2
dw = ⟨(H ′ij)2⟩ (3.74)

and quantifying the (average) change in probability induced by small
changes in the value of the link weight. In other words, the expression
Fij = ⟨(H ′ij)2⟩ captures the ‘sensitivity’ of the dyadic probability distri-
bution with respect to small changes in the corresponding random vari-
able3. Notice that this sensitivity is not captured by Shannon entropy
which is indifferent to any reordering of the values of the random vari-
able, provided each value retains its probability.

As different, connected dyads are described by probability distribu-
tions with different parameters, scattering all connected dyads in the
plane provides an overall representation of the model identified by qij(w|aij =
1): different models are described by different probability distributions,
hence have different projections in the Shannon-Fisher plane (see Ap-
pendix D for the explicit values of Sij and Fij for all the conditional
models considered here).

As Fig. 12 shows, both the conditional exponential model and the
conditional log-normal model follow a decreasing pattern; on average,
however, the conditional exponential model is characterized by a smaller
FIM, i.e. a smaller ‘sensitivity’ to variations of the related random vari-
able. On the other hand, the conditional Pareto model collapses onto a
single point while the conditional gamma model is characterized by a

3Notice that the presence of the derivative requires qij(w|aij = 1) to be continuous
throughout the domain of integration: this is why we consider only conditional models
with aij = 1 so that there is no ‘jump’ in the unconditional qij(w) from w = 0 to w > 0.
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Figure 12: Shannon-Fisher plane for each conditional model considered in
the present chapter. For each pair of nodes (i, j) that are connected in the
real network (aij = 1), we consider the conditional weight distribution
qij(w|aij = 1) and plot the corresponding differential Shannon entropy (y-
axis) versus the Fisher Information Measure (x-axis). The results shown cor-
respond to the year 2000 of the Gleditsch dataset (left panel) and to the year
2017 of the BACI dataset (right panel). The dyads of both the conditional ex-
ponential and the conditional log-normal model follow a decreasing trend,
those of the conditional Pareto model collapse onto a single point, while
those of the gamma model are characterized by a diverging Fisher Infor-
mation Measure independently of their entropy (symbolically depicted as a
vertical line at the right edge of the plot). The results show that, while differ-
ent models (except the Pareto) produce similar values of the entropy, their
Fisher measure can be very different (note the logarithmic scale of the x-
axis). The conditional exponential is the model for which, for a given value
of the entropy, the Fisher measure is the minimum one, corresponding to
the minimum variability in likelihood across different sampled configura-
tions.

diverging FIM (because of the divergence of the first two negative mo-
ments, see Appendix D).

It is interesting to notice that, if we consider the sum of the y values
of all the connected dyads for a given model (a sort of ‘area under the
curve’), we obtain the Shannon entropy for the entire network, condi-
tional on the empirical, binary adjacency matrix A:
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S(Q) = −
∫︂
WA

Q(W|A) lnQ(W|A)dW =
∑︂

i<j|aij=1

Sij (3.75)

(notice that the dyadic entropy of q(wij |aij = 0) is zero because the value
aij = 0 leads to the value wij = 0 deterministically).

The above expression also coincides with ‘minus’ the average like-
lihood of the configurations sampled from the model, hence providing
an (inverse) average ‘goodness of fit’ of the weighted model. Similarly,
summing the x values of all the connected dyads gives an overall value
of the FIM, hence the average change of the likelihood of the configura-
tions sampled from the model. Therefore, the results shown in Fig. 12
indicate that while different models (except the Pareto) are characterized
by similar values of the overall ‘goodness of fit’, the conditional expo-
nential model attains the (overall) minimum FIM, thereby producing the
most stable outcome, in terms of the likelihood of the realized configura-
tions, when used to sample weighted networks.

3.4 Discussion

The analysis carried out in the previous chapter led the ZIP model to be
identified as the one performing best among the econometric ones; still,
it was also found to be largely disfavored by information criteria such as
AIC and BIC. This dilemma was solved upon looking at a different class
of statistical models, i.e. the physics-inspired ones: the latter have been
found to outperform the purely econometric models for reconstruction
purposes, the reason lying in the higher accuracy achieved by them in
estimating the topological structure of networks.

Here, we extend the work carried out there by, first, introducing mod-
els to infer the topology and the weights of (undirected, weighted) net-
works defined by continuous-valued data and, then, turning them into
proper, econometric ones: in order to do so, we present a theoretical,
physics-inspired framework based upon the constrained minimization
of the KL divergence - hence, implementing the Minimum Discrimina-
tion Information Principle - and capable of accommodating both inte-
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grated and conditional (continuous) models.

The main difference between the models belonging to these classes
lies in the way the estimation of the topology is carried out; while condi-
tional models disentangle the purely binary step from the (conditional)
weighted one, integrated models do not, letting both topological and
weighted constraints determine all relevant, structural features of a net-
work. An example of integrated models is provided by the UECM, de-
fined by constraints such as the degree and the strength sequences and
described by a mixed Bernoulli-geometric [56, 53] (also called Bose-Fermi [54])
distribution; examples of conditional models are provided by the CReMA

and the CReMB [63]. From a more econometric perspective, hurdle mod-
els are conditional in nature while zero-inflated models can be thought
as integrated, the estimation steps being carried out by selecting a distri-
bution out of a basket of available ones.

Our analysis leads to several conclusions: 1) constraining the en-
tire degree sequence leads to a statistically significant improvement in
the reconstruction accuracy of the WTW. In particular, the integrated
exponential model, described by the Hamiltonian H(W) =

∑︁
i αiki +∑︁

i<j βijwij + β0W1, provides a very accurate, structural reconstruction
while being favored by information criteria: although it is defined by
N + 1 purely topological constraints, AIC reveals them as ‘irreducible’,
i.e. necessary to provide a satisfactory explanation of the network gener-
ating process; 2) when considering weighted quantities, the conditional
gamma model is the one performing best (although it competes with
the integrated exponential one in reproducing properties such as the
weights, on some of the temporal snapshots covered by our datasets), ac-
cording to information criteria. To be noticed, however, that if strengths
are not explicitly constrained - jointly with the degrees - maximum-entropy
models recover them only ‘in distribution’ while failing to reproduce
their exact values. The same consideration holds true for the weighted
clustering coefficient.

Coming to comparing the models belonging to the classes considered
in the present work, the two, best-performing ones are the integrated
exponential model and the conditional gamma model, i.e. the ones con-
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straining the total weight (although the conditional exponential model
constrains the total weight as well, it is outperformed by the conditional
gamma one within the class of conditional model): hence, W1 seems to
constitute a somehow fundamental quantity to be necessarily accounted
for in order to achieve a good reconstruction accuracy. From an economic
point of view, the parameter β0 constraining the total weight can be in-
terpreted as a sort of ‘shadow price’ to be paid by everyone to exchange
goods.

Additional information is provided by our analysis of the Shannon-
Fisher plane, which combines Shannon entropy, i.e. the (inverse) like-
lihood of a model, with the Fisher Information Measure, i.e. the aver-
age variability of the likelihood itself across different, sampled config-
urations: the conditional exponential model turns out the be the least
variable, hence the most stable. It is worth noticing that our maximum-
entropy approach is formulated for canonical ensembles, i.e. for ‘soft
constraints’, which implies that different realizations of the network have
fluctuating values of the weighted sufficient statistics: these fluctuations
‘originate’ the FIM; by contrast, if we were to formulate microcanonical
models with ‘hard constraints’, the sufficient statistics would not fluctu-
ate and the overall FIM would be zero. Therefore, the Shannon-Fisher
plane shows that, among the canonical models considered here, the con-
ditional exponential one is the closest to the ‘least soft’ extreme while the
conditional gamma lies at the opposite ‘softest’ extreme, i.e. where the
FIM diverges. As a question left for future research, it would be inter-
esting to relate the behavior of the FIM to the phenomenon of ensemble
non-equivalence [92].

Overall, we believe the framework proposed in this contribution to
have the potential of reconciling the approach adopted by network sci-
entists for reconstructing economic networks, and focusing on the purely
structural aspects of a network formation, with the approach character-
izing econometrics, tailored to inform these same models with macro-
economic quantities. From an operative point of view, our (classes of)
models combine the pros of both approaches: the importance of purely
structural information (highlighted by physics-inspired models) can be
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Model pij ⟨wij |aij = 1⟩
I-Exp xixj

xixj+β0+z
−1
ij

zij
1+β0zij

C-Exp xixj

1+xixj

zij
1+β0zij

C-Gamma xixj

1+xixj

(1−ξ0)zij
1+β0

C-Lognormal xixj

1+xixj
exp
{︂

3−2ξij
4γ0

}︂
C-Pareto xixj

1+xixj
(1 + zij)wmin

Table 9: Models used in this chapter with columns indicating the
model-induced probability connection pij and the weight conditional
on the link presence ⟨wij |aij = 1⟩. The parameter zij =
exp{ρ+ β ln(ωiωj) + γ ln(Dij)} stands for the log-link gravity specifica-
tion, while x̂ij = exp{θ + ln(ωiωj)− ln(Dij)} stands for the gravity speci-
fication used in the logistic binary model.

accounted for by constraining the entire degree sequence; on top of that,
a second step is needed to estimate a network weighted structure: al-
though the information provided by the total weight cannot be discarded
without affecting the overall performance of a model, such an estimation
can rests upon purely econometric considerations.

In Table 9 we sum up the weighted models explored in this chapter
with the specifications related to the model-induced probability connec-
tion pij and to the conditional weight ⟨wij |aij = 1⟩ (conditional on the
established link), while in Table 10 the relative structural constraints are
portrayed for each model. In this last table, objects the ”hat” apex is
used to identify the constrained quantities that are approximated with a
log-link function in terms of constant and economic covariates.

3.5 The DyGyS Python package

As an additional result, we release a Python package named DyGyS (an
acronym stating for ‘DYadic GravitY regression models with Soft con-
straints’), available at https://github.com/MarsMDK/DyGyS: it con-
tains the routines to implement all the models discussed in the present
chapter as well as those considered in the previous one.
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Model Type Binary Constraints Weighted Constraints
I-Exp I-Cont {ki} Wtot, ŵij
C-Exp C-Cont {ki} Wtot, ŵij

C-Gamma C-Cont {ki} Wtot,
∑︁
j<i ln(wij), ŵij

C-Lognormal C-Cont {ki}
∑︁
j<i ln

2(wij), ln(ŵ)ij
C-Pareto C-Cont {ki} ln(ŵ)ij

Table 10: Entropy-based models used in this chapter with columns indicat-
ing the type of induced weights, relative binary constraints and weighted
constraints. The type is annotated with C or I for conditional and integrated
model respectively, and with Int and Cont for models inducing integer and
continuous link weights. Constraints can be topological quantities or their
approximation through economic factors. When an approximation in terms
of a gravity log-link function is performed, it is indicated with the hat sym-
bol.
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Chapter 4

Beyond the deterministic
estimation of parameters in
conditional models

This chapter illustrates the results of the analysis documented in [3]. Here, we
deal with the problem of estimating parameters of conditional models. Econo-
metric recipes prescribe to carry out an optimization procedure treating the
topology as deterministic, even when it is the outcome of a probabilistic model.
In order to overcome the limitations of this approach, we devise two, different
procedures (hereby named ‘annealed’ and ‘quenched’) that correspond to alter-
native ways of averaging over the topological randomness. For models whose
weighted structure is homogeneous, the three procedures are equivalent, inde-
pendently from the binary recipe; for models whose weighted structure is het-
erogeneous, the ‘annealed’ and ‘quenched’ approaches lead to the same estimate,
which is often incompatible with the ‘deterministic’ one. When the considered
configurations are sparse, however, the ‘quenched’ approach may lead to a biased
estimation of node-specific parameters, a circumstance leading us to prefer the
‘annealed’ one (which is also the most convenient from a numerical perspective).
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4.1 Introduction

Simultaneously modelling the establishment of a connection and the cor-
responding weight poses a serious challenge. Econometrics prescribes
to estimate binary and weighted parameters either separately, within
the context of hurdle models [70], or jointly, within the context of zero-
inflated models [43]; in both cases, the GM specification [25] ⟨wij⟩GM =

f(ωi, ωj , dij |ϕ) = ρ(ωiωj)
αdγij , where ωi ≡ GDPi/GDP is the GDP of

country i divided by the arithmetic mean of the GDPs of all countries,
dij is the geographic distance between the capitals of countries i and j

and ϕ ≡ (ρ, α, γ) is a vector of parameters, is interpreted as the expected
value of a probability distribution whose functional form is arbitrary.
On the other hand, the approach rooted in statistical physics constructs
maximum-entropy distributions, constrained to satisfy certain network
properties [82, 59, 93, 58, 62].

In chapter 2 and chapter 3 these approaches have been integrated
within the framework induced by the constrained optimization of the
KL divergence [84]: in particular, two, broad classes of models have been
constructed, i.e. the integrated and conditional ones, defined by differ-
ent, probabilistic rules to place links and load them with weights. For
what concerns integrated models, they follow from a single, constrained
optimization of the KL divergence [54]; for what concerns conditional
models, they are disentangled and the functional form of the weight dis-
tribution follows from a conditional, optimization procedure [63]. Still,
the prescriptions adopted by the two approaches to carry out the estima-
tion of the parameters entering into the definition of each model differ.

4.2 Minimization of the KL divergence

As already discussed in section 3.2.1, the functional form of continuous,
conditional network models can be identified through the constrained
minimization of the KL divergence of a distribution Q from a prior dis-
tribution R, i.e.
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DKL(Q||R) =
∫︂
W
Q(W) ln

Q(W)

R(W)
dW (4.1)

where W is one of the possible values of a continuous random variable,
W is the set of possible values that W can take, Q(W) is the (multivari-
ate) probability density function to be estimated andR(W) plays the role
of prior distribution, whose divergence from Q(W) must be minimized:
in our setting, W represents an entire network whose weights, now, obey
the property wij ∈ R+

0 , ∀ i < j. In case of uninformative priors, this
framework leads to considering the (somehow, simplified) expression

−S(Q) = −S(P )− S(Q|P ) (4.2)

i.e. ‘minus’ the joint entropy, where

S(P ) = −
∑︂
A∈A

P (A) lnP (A) (4.3)

is the Shannon entropy of the probability distribution describing the bi-
nary projection of the network structure [58, 62] and

S(Q|P ) = −
∑︂
A∈A

P (A)

∫︂
WA

Q(W|A) lnQ(W|A)dW (4.4)

is the conditional Shannon entropy of the probability distribution de-
scribing the weighted network structure [1, 2, 63]. The functional form of
P (A) can be determined by carrying out the usual, constrained maximi-
sation of Shannon entropy [58, 62]; remarkably, any set of (binary) con-
straints considered in what follows will lead to the same expression for
P (A), i.e. P (A) =

∏︁
i<j p

aij
ij (1−pij)1−aij with pij = xij/(1+xij): specif-

ically, the position xij ≡ x individuates the Undirected Binary Random
Graph Model (UBRGM), the position xij ≡ xixj individuates the Undi-
rected Binary Configuration Model (UBCM) and the position xij ≡ δωiωj
individuates the Logit Model (LM) [64].

On the other hand, the functional form ofQ(W|A) can be determined
by carrying out the constrained maximization of S(Q|P ), the set of con-
straints being, now,
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1 =

∫︂
WA

P (W|A)dW, ∀A ∈ A, (4.5)

⟨Cα⟩ =
∑︂
A∈A

P (A)

∫︂
WA

Q(W|A)Cα(W)dW, ∀ α; (4.6)

while the first condition ensures the normalization of the probability dis-
tribution, the vector {Cα(W)} represents the proper set of weighted con-
straints. The distribution induced by such an optimisation problem reads

Q(W|A) =
e−H(W)

ZA
=

e−H(W)∫︁
WA

e−H(W)dW
(4.7)

if W ∈WA and 0 otherwise. While the HamiltonianH(W) =
∑︁
α ψαCα(W)

lists the constraints, the quantity at the denominator is the partition func-
tion, conditional on the fixed topology A [63].

For mathematical convenience, we will consider separable Hamilto-
nians, i.e. functions that can be written as sums of node pair-specific
Hamiltonians, i.e. H(W) =

∑︁
i<j Hij(wij); this choice leads to the result

Q(W|A) =
e−

∑︁
i<j Hij(wij)∫︁

WA
e−

∑︁
i<j Hij(wij)dW

=
∏︂
i<j

e−Hij(wij)[︂∫︁ +∞
mij

e−Hij(wij)dwij

]︂aij =
∏︂
i<j

e−Hij(wij)

ζ
aij
ij

(4.8)

(with mij being the pair-specific, minimum weight allowed by a given
model and ζij being the corresponding partition function), irrespectively
from the specific, functional form ofHij(wij) [2] (see also Appendix C.1).

4.3 Estimation of the parameters

Several, alternative recipes are viable to estimate the parameters entering
into the definition of continuous, conditional network models.

4.3.1 ‘Deterministic’ parameter estimation

The simplest one prescribes to consider the traditional likelihood func-
tion
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lnQ(W∗) = ln[P (A∗)Q(W∗|A∗)] = lnP (A∗) + lnQ(W∗|A∗) (4.9)

with W∗ (A∗) being the empirical, weighted (binary) adjacency matrix;
its maximization allows the parameters entering into the definition of the
purely topological distribution and those entering into the definition of
the conditional, weighted one to be estimated in a totally disentangled
fashion [2]. In fact, maximizing

Lψ = lnQ(W∗|A∗) =

= −H(W∗)− lnZA∗ = −H(W∗)− ln

[︃∫︂
WA∗

e−H(W)dW

]︃
(4.10)

with respect to the unknown parameters leads us to find the vector of
values ψ∗ satisfying the vector of relationships

⟨C⟩A∗(ψ∗) ≡ C∗ (4.11)

which stands for the set of relationships ⟨Cα⟩A∗(ψ∗) ≡ C∗α, ∀ α, each one
equating the model-induced, average value of the corresponding con-
straint to its empirical value, marked with an asterisk.

This first approach to parameter estimation can be named as ‘deter-
ministic’, to stress that A∗ is considered as not being subject to variation;
otherwise stated, this recipe - which is the most common in econometrics
- prescribes to estimate the parameters entering into the definition of the
conditional, weighted probability distribution by assuming the network
topology to be fixed.

4.3.2 ‘Annealed’ parameter estimation

Topology, however, is a random variable itself, obeying the probability
distribution P (A). As a consequence, the ‘deterministic’ recipe for pa-
rameter estimation could lead to inconsistencies, should the description
of A∗ provided by P (A) be not accurate enough. The variability induced
by P (A) can be properly accounted for by considering the generalised
likelihood [63]
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Gψ =
∑︂
A∈A

P (A) lnQ(W∗|A) =

= −H(W∗)−
∑︂
A∈A

P (A) ln

[︃∫︂
WA∗

e−H(W)dW

]︃
= ⟨Lψ⟩ (4.12)

whose maximization leads us to find the vector of values ψ∗ satisfying
the vector of relationships∑︂

A∈A
P (A)⟨C⟩A(ψ∗) = ⟨C⟩(ψ∗) = C∗ (4.13)

which stands for the set of relationships ⟨Cα⟩(ψ∗) ≡ C∗α, ∀ α. Taking
this average is conceptually similar to taking the ‘annealed’ average in
physics: parameter estimation is carried out while random variables -
again, the entries of the adjacency matrix - are left to vary.

Interestingly, the ‘deterministic’ recipe is a special case of the ‘an-
nealed’ recipe since the former can be recovered by posingP (A) ≡ δA,A∗ :
in this case, in fact,

Gψ = −H(W∗)−
∑︂
A∈A

δA,A∗ lnZA = −H(W∗)− lnZA∗ = Lψ; (4.14)

similarly,
∑︁

A∈A δA,A∗⟨C⟩A(ψ∗) = ⟨C⟩A∗(ψ∗) = C∗.

4.3.3 ‘Quenched’ parameter estimation

A viable alternative to properly account for the variability induced by
P (A) is that of reversing the two operations of ‘likelihood maximization’
and ‘ensemble averaging’: in other words, one can 1) numerically sam-
ple the ensemble of configurations induced by P (A), 2) maximize the
likelihood lnQ(W∗|A) for each, generated network, 3) take the average
of the resulting set of parameters, according to the formula∑︂

A∈A
P (A)ψ∗(A) = ⟨ψ∗⟩ (4.15)

the estimation of the α-th parameter being assumed to coincide with the
average ⟨ψ∗α⟩.
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Taking this average is conceptually similar to taking the ‘quenched’
average in physics: random variables - in the specific case, the entries
of the adjacency matrix - are frozen, parameter estimation is carried out
and, only at the end, the values of the parameters are averaged over the
ensemble of configurations induced by P (A).

As our models inherit their functional form from the constrained min-
imization of the KL divergence, each parameter controls for a specific
constraint: when employing the ‘deterministic’ recipe, such a circum-
stance makes each parameter configuration-dependent; when employ-
ing either the ‘annealed’ or the ‘quenched’ recipe, instead, accounting for
the variability of a network structure induces a sort of ‘loss of memory’
about its empirical, purely topological details.

4.4 Results

In order to test if the ‘deterministic’, ‘annealed’ and ‘quenched’ prescrip-
tions lead to the same estimation, let us focus on a number of variants
of the Conditional exponential model (CEM), induced by the positions
HCEM
ij = βijwij and ζCEM

ij = β−1ij :

Q(W) = P (A)Q(W|A) =
∏︂
i<j

p
aij
ij (1− pij)1−aij

∏︂
i<j

β
aij
ij e

−βijwij ; (4.16)

naturally, qij(wij = 0|aij = 0) = 1 (i.e. if nodes i and j are not connected,
the weight of the corresponding link is zero with probability equal to
one) and qij(wij > 0|aij = 1) = βije

−βijwij .
In what follows, we will consider three, different instances of pij =

xij/(1 + xij), corresponding to

• the UBRGM, defined by posing xij ≡ x and induced by the max-
imization of S(P ) while constraining the total number of links,
L(A∗) ≡ L∗ =

∑︁
i<j a

∗
ij , i.e.

pUBRGM
ij ≡ x

1 + x
; (4.17)
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• the UBCM, defined by posing xij ≡ xixj and induced by the max-
imization of S(P ) while constraining the whole degree sequence,
{ki(A∗)}Ni=1 ≡ {k∗i }Ni=1 with k∗i =

∑︁
j( ̸=i) a

∗
ij , i.e.

pUBCM
ij ≡ xixj

1 + xixj
; (4.18)

• two, different instances of the LM, both representing a fitness-driven
version of the UBCM, (again) induced by constraining the total
number of links, L(A∗) ≡ L∗ =

∑︁
i<j a

∗
ij . The first one is defined

by posing xij ≡ δωiωj , i.e.

pLM
ij ≡

δωiωj
1 + δωiωj

(4.19)

and has been employed to study the year 2017 of the BACI version
of the WTW [75], that is a network of N = 171 nodes and a link
density of d = 0.87. The second one is defined by posing xij ≡
δsisj , i.e.

pLM
ij =

δsisj
1 + δsisj

(4.20)

and has been employed to study the 01/03/2019 snapshot of the
Bitcoin Lightning Network (BLN) [94], that is a network of N =

5012 nodes and a link density of d = 0.003.

4.4.1 ‘Scalar’ variant of the CEM

Let us start by considering the ‘scalar’ or homogeneous variant of the
CEM, defined by the position βij ≡ β, ∀ i < j. In this case, the ‘de-
terministic’ recipe for parameter estimation prescribes to maximize the
likelihood

Lψ =
∑︂
i<j

[−βw∗ij + a∗ij lnβ] = −βW ∗ + L∗ lnβ (4.21)
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Figure 13: Estimations of the parameter β, entering the definition of the ho-
mogeneous version of the CEM, where the binary topology is either ‘deter-
ministic’ (black) or generated via the UBRGM (blue), the UBCM (green) and
the LM (red). The deterministic approach leads to a single estimate, while
the other approaches lead to either a single, ‘annealed’ estimate (vertical,
solid lines) or to a whole distribution of ‘quenched’ estimates (empirical
distribution constructed over an ensemble of 5.000 binary configurations
with theoretical curves, Binomial or Poisson-Binomial, dependent on the
binary model; the corresponding average value is indicated by a vertical,
dash-dotted line). The ‘annealed’ parameter estimates, the average values
of the ‘quenched’ parameter distributions and the ‘deterministic’ parameter
estimate coincide. Data refers to the year 2017 of the BACI version of the
WTW [75].

where W (W∗) ≡ W ∗ =
∑︁
i<j w

∗
ij and whose optimization leads to the

expression β = L∗/W ∗. The ‘annealed’ recipe prescribes to maximize the
likelihood

Gψ =
∑︂
i<j

[−βw∗ij + pij lnβ] = −βW ∗ + ⟨L⟩ lnβ (4.22)

whose optimization leads to the expression β = ⟨L⟩/W ∗. The ‘quenched’
recipe, on the other hand, prescribes to calculate the average

⟨β⟩ =
∑︂
A∈A

P (A)β(A) =
∑︂
A∈A

P (A)
L(A)

W ∗
=
⟨L⟩
W ∗

(4.23)

since, now, β(A) = L(A)/W ∗.
In the case of the ‘scalar’ variant of the CEM, the estimations coin-

cide for any null model preserving the total number of links, i.e. ensur-
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ing that ⟨L⟩ = L∗, regardless of the network density. Such a result is
confirmed by Fig. 13 where each recipe has been implemented on the
WTW, by adopting the distributions induced by the UBRGM (blue), the
UBCM (green) and the LM (red). Specifically, the ‘deterministic’ estima-
tion (black, solid line) and the ‘annealed’ estimations (blue, green and
red, solid lines) overlap; moreover, each ‘annealed’ estimation overlaps
with the the corresponding, ‘quenched’ estimation, i.e. the average value
of the related, ‘quenched’ distribution (blue, green and red, dash-dotted
lines).

In the case of the UBRGM-induced, homogeneous version of the CEM,
the ‘quenched’ distribution of the parameter β(A) = L(A)/W ∗ ‘inherits’
the distribution of the total number of links, i.e. L ∼ Bin(N(N − 1)/2, p),
with p = 2L∗/N(N − 1): more precisely, Wβ ∼ Bin(N(N − 1)/2, p); anal-
ogously for the UBCM- and the LM-induced, homogeneous versions of
the CEM - the only difference being that, now, L obeys two, different,
Poisson-Binomial distributions.

4.4.2 ‘Vector’ variant of the CEM

Let us, now, consider the ‘vector’ or weakly heterogeneous variant of the
CEM, defined by the position βij ≡ βi + βj , ∀ i < j. In this case, the
‘deterministic’ recipe for parameter estimation prescribes to maximize
the likelihood

Lψ =
∑︂
i<j

[−(βi + βj)w
∗
ij + a∗ij ln(βi + βj)] = −

∑︂
i

βis
∗
i +

∑︂
i<j

a∗ij ln(βi + βj)

(4.24)

where si(W∗) ≡ s∗i =
∑︁
j( ̸=i) w

∗
ij and whose optimization requires to

solve the system of equations

s∗i =
∑︂
j( ̸=i)

a∗ij
βi + βj

, ∀ i. (4.25)

The ‘annealed’ recipe, instead, prescribes to maximize the likelihood
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Figure 14: Estimations of the parameter β166 entering the definition of the
weakly heterogeneous version of the CEM, where the binary topology is ei-
ther ‘deterministic’ (black) or generated via the UBRGM (blue), the UBCM
(green) and the LM (red). The deterministic approach leads to a single esti-
mate, while the other approaches lead to either a single, ‘annealed’ estimate
(vertical, solid lines) or to a whole distribution of ‘quenched’ estimates (his-
tograms with normal density curves having the same average and standard
deviation, constructed over an ensemble of 5.000 binary configurations; the
average value is indicated by a vertical, dash-dotted line). Each ‘annealed’
parameter estimate coincides with the average value of the corresponding
‘quenched’ distribution although the distributions induced by the three, bi-
nary recipes are well separated. In addition, the ‘deterministic’ parameter
estimate is very close to the UBCM-induced, ‘annealed’ one. Data refers to
the year 2017 of the BACI version of the WTW [75].

Gψ =
∑︂
i<j

[−(βi + βj)w
∗
ij + pij ln(βi + βj)] = −

∑︂
i

βis
∗
i +

∑︂
i<j

pij ln(βi + βj)

(4.26)

whose optimization requires to solve the system of equations

s∗i =
∑︂
j(̸=i)

pij
βi + βj

, ∀ i (4.27)

(notice that both the ‘deterministic’ and the ‘annealed’ version of the
‘vector’ variant of the CEM are alternative instances of the so-called CReMA,
introduced in [63]). The ‘quenched’ recipe, on the other hand, requires
to solve the system of equations ⟨βi⟩ =

∑︁
A∈A P (A)βi(A), ∀ i which no

longer have an explicit expression. Devising some sort of approximation
is, however, possible. Let us start by re-writing Eq. 4.27 as
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Figure 15: Estimations of the parameters (from top left to bottom right) β0,
ρ, α and γ, entering the definition of the econometric version of the CEM,
where the binary topology is either ‘deterministic’ (black) or generated via
the UBRGM (blue), the UBCM (green) and the LM (red). The determinis-
tic approach leads to a single estimate, while the other approaches lead to
either a single, ‘annealed’ estimate (vertical, solid lines) or to a whole distri-
bution of ‘quenched’ estimates (histograms with kernel density curves, con-
structed over an ensemble of 5.000 binary configurations; the corresponding
average value is indicated by a vertical, dash-dotted line). Each ‘annealed’
parameter estimate coincides with the average value of the corresponding
‘quenched’ distribution although the distributions induced by the three, bi-
nary recipes may overlap or not; the ‘deterministic’ estimate, instead, over-
laps with the other, two ones only for the parameter α, under the UBCM-
induced, binary recipe. Data refers to the year 2017 of the BACI version of
the WTW [75].

βi =
1

s∗i

∑︂
j( ̸=i)

pij
1 + βj/βi

, ∀ i (4.28)

and consider the node whose coefficient is the largest one. This allows
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us to write βi ≃
∑︁
j(̸=i) pij/s

∗
i = ⟨ki⟩/s∗i : in case we implemented the

UBRGM, we would obtain βi(A) ≃ 2L(A)/Ns∗i , hence expecting the
‘quenched’ distribution of Ns∗i βi/2 to coincide with Bin(N(N − 1)/2, p);
if, on the other hand, we implemented the UBCM, we would obtain
βi(A) ∝ ki(A)/s∗i , hence expecting the ‘quenched’ distribution of s∗i βi
to obey a Poisson-Binomial. Again, the estimations coincide for any
null model preserving the structural properties characterizing the binary
recipe implemented.

More generally, the mutual relationships between the estimations pro-
vided by the three recipes are node-dependent (see Fig. 14, illustrating
the case-study of node 166 of the WTW and Fig. 22 in Appendix C.2): in
general, however, each ‘annealed’ estimation overlaps with the average
value of the related ‘quenched’ distribution. Moreover, the ‘determinis-
tic’ estimation is very close to the UBCM-induced, ‘annealed’ one; such
a result is a consequence of the accurate description of the empirical net-
work topology provided by the UBCM - in fact, much more accurate than
the ones provided by the UBRGM and the LM: indeed, the better the ap-
proximation pij ≃ aij , ∀ i < j, the closer the ‘annealed’ estimation to the
‘deterministic’ one.

This is even more evident when considering the ‘tensor’ variant of
the CEM, in which case the three optimization procedures lead to the ex-
pressions βdet = a∗ij/ŵij , ∀ i < j and βann = ⟨β⟩que = pij/ŵij , ∀ i < j

- with ŵij representing an estimate of the empirical weight w∗ij ; if, how-
ever, ŵij ≡ w∗ij , ∀ i < j then, for consistency, pij ≡ a∗ij and the three
recipes coincide.

4.4.3 ‘Econometric’ variant of the CEM

As a third case-study, let us focus on the ‘econometric’ variant of the
CEM, defined by posing βij ≡ β0+z−1ij , ∀ i < j, where zij ≡ eρ(ωiωj)αdγij
represents the GM specification traditionally employed to analyze undi-
rected, weighted, trade networks and β0 is a structural parameter to be
tuned in order to ensure that ⟨W ⟩ = W ∗. In this case, the ‘deterministic’
recipe for parameter estimation prescribes to maximize the likelihood
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Lψ =
∑︂
i<j

[−(β0 + z−1ij )w∗ij + a∗ij ln
(︁
β0 + z−1ij

)︁
] (4.29)

whose optimization requires to solve the system of equations

W ∗ =
∑︂
i<j

a∗ij

β0 + z−1ij
, (4.30)

∑︂
i<j

w∗ij ·
∂z−1ij
∂ϕ

=
∑︂
i<j

a∗ij

β0 + z−1ij
·
∂z−1ij
∂ϕ

. (4.31)

The ‘annealed’ recipe, instead, prescribes to maximize the likelihood

Gψ =
∑︂
i<j

[−(β0 + z−1ij )w∗ij + pij ln
(︁
β0 + z−1ij

)︁
] (4.32)

whose optimization requires to solve the system of equations

W ∗ =
∑︂
i<j

pij

β0 + z−1ij
, (4.33)

∑︂
i<j

w∗ij ·
∂z−1ij
∂ϕ

=
∑︂
i<j

pij

β0 + z−1ij
·
∂z−1ij
∂ϕ

. (4.34)

The ‘quenched’ recipe, on the other hand, requires to solve the sys-
tem of equations ⟨β0⟩ =

∑︁
A∈A P (A)β0(A) and ⟨ϕ⟩ =

∑︁
A∈A P (A)ϕ(A)

which no longer have an explicit expression.
Figures 15 and 23 in Appendix C.2 illustrate the case-study of the

WTW: although the ‘quenched’ distributions induced by the three, bi-
nary recipes are characterized by different shapes that may overlap (as
in the case of the parameters ρ - under the UBRGM-induced and UBCM-
induced binary recipes - and γ - under all, binary recipes) or not (as in
the case of the parameters β0 and α), ‘annealed’ and ‘quenched’ estima-
tions always coincide (the only, small discrepancy being observable for
the parameter β0, under the UBRGM-induced, binary recipe). The ‘de-
terministic’ estimation, instead, is compatible with the other, two ones
only for the parameter α, under the UBCM-induced, binary recipe.
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Sparse networks deserve a separate discussion. The results concern-
ing the homogeneous and econometric variant of the BLN, defined by
posing βij ≡ β0 + z−1ij , ∀ i < j, with zij ≡ eρ(sisj)

α, are analogous to the
ones shown for the WTW - in the latter case, the ‘annealed’ estimates of
β0, ρ and α are very close to their ‘quenched’ counterparts, the relative
error RE = |(ϕann

i − ϕque
i )/ϕann

i | amounting at ≃ 10−3 for β0 and ≃ 10−4

for ρ, α. On the contrary, these conclusions no longer hold true when the
weakly heterogeneous variant of the CEM is considered: in this case, in
fact, carrying out the ‘quenched’ approach can lead to binary configura-
tions with disconnected nodes, a circumstance that impairs the correct
estimation of the corresponding parameters; carrying out the ‘annealed’
estimation, instead, remains a feasible task.

4.5 Discussion

The present contribution focuses on three recipes for estimating the pa-
rameters entering into the definition of statistical network models, i.e.
the ‘deterministic’, ‘annealed’ and ‘quenched’ ones. In order to imple-
ment them, we have considered several variants of the CEM, i.e. the
homogeneous one (defined by one, global parameter), the weakly het-
erogeneous one (defined by N , local parameters) and the econometric
one (defined by four, global parameters), each one combined with three,
different recipes for estimating the network topology (i.e. the UBRGM,
the UBCM and the LM).

The ‘deterministic’ recipe, routinely employed in econometrics to de-
termine the so-called hurdle models [70], prescribes to estimate the pa-
rameters associated with the weighted constraints on the empirical re-
alization of the network topology. Since it considers A∗ as not being
subject to variation, its use is recommended whenever Var[aij ] = pij(1−
pij) ≃ 0 or, equivalently, pij ≃ aij , ∀ i < j, i.e. whenever the binary
random variables can be safely considered as deterministic or, more in
general, whenever their (scale of) variation is negligible with respect to
the (scale of) variation of the weighted random variables.

Accounting for such a variability in a fully consistent manner can
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be achieved upon adopting either the ‘annealed’ recipe (according to
which parameters are estimated on the average network topology) or the
‘quenched’ recipe (according to which parameters are, first, estimated on
a large number of binary configurations and, then, averaged); the main
difference between these procedures lies in the order in which the two
operations of ‘averaging’ (of the entries of the binary adjacency matrix)
and ‘maximization’ (of the related likelihood function) are taken. Inter-
estingly, no variant of the CEM is sensitive to this choice (neither the
purely structural ones nor the ‘econometric’ one); while, however, the
coincidence of the ‘annealed’ and ‘quenched’ estimates for purely struc-
tural models can be explicitly verified, this is no longer true when the
‘econometric’ variant is considered: in this case, in fact, one can proceed
only numerically.

This evidence reveals the main limitation of the ‘quenched’ approach,
i.e. the need of resorting upon an explicit sampling of the chosen, bi-
nary ensemble. As any ‘good’ sampling algorithm must lead to a faithful
representation of the parent distribution, we are left with the following
question: is this always guaranteed, in all cases of interest to us?

This seems to be the case for dense networks. As shown in [48], a
study of the coefficient of variation of the constraints defining the ‘vec-
tor’ variant of the CEM (i.e. the ratio between standard deviation and
expected value of each degree) reveals it to vanish in the asymptotic
limit: in other words, the fluctuations affecting each degree vanish, a
result guaranteeing that the degree sequence of any configuration in the
ensemble remains ‘close enough’ to the empirical one.

When sparse networks are, instead, considered, the coefficient of vari-
ation of the constraints defining the ‘vector’ variant of the CEM remains
finite in the asymptotic limit: in other words, the fluctuations affecting
each degree do not vanish, a result implying that the degree sequence
of any configuration in the ensemble may largely differ from the empir-
ical one; to provide a concrete example, nodes whose empirical degree
is ‘small’ may disconnect, hence inducing the resolution of a system of
equations which is not even compatible with the set of constraints defin-
ing the original problem. Overcoming such a limitation implies quantify-
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ing the bias affecting the estimates in cases like these: although possible,
calculations of this kind are far beyond the scope of the present paper.

Overall, then, two alternatives exist to overcome the main limitation
of the ‘deterministic’ estimation recipe, i.e. that of ignoring the variety
of structures that are compatible with a given probability distribution
P (A), namely the ‘annealed’ and ‘quenched’ ones. As the ‘quenched’
recipe requires an explicit sampling the ensemble - potentially leading
to inconsistent estimates for sparse configurations - we believe the ‘an-
nealed’ one to represent the better alternative, 1) being unbiased by defi-
nition, 2) being convenient from a numerical point of view, 3) reducing to
the ‘deterministic’ recipe in case the empirical configuration is not sub-
ject to variation.
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Chapter 5

Triadic structure of the
Dutch Production
Multiplex

This chapter illustrates the results of the analysis documented in [4]. Here, we
test the maximally-random character of triadic structures in the Dutch Produc-
tion Multiplex, constructed from the data collected by CBS-Statistics Nether-
lands. To this aim, we employ a novel (weighted, conditional) null model capable
of controlling for both the directionality and the reciprocity of links - hence, of
detecting deviations of the empirical number of triads from the expected one due
to the abundance of patterns, the concentration of money on them or both. We
find that 1) analyzing the aggregated structure, as routinely done in the litera-
ture on production networks, is not sufficient to characterize their layer-specific,
triadic structure; 2) most layers are characterized by a maximally-random tri-
adic structure while the remaining ones display (overall) small deviations from
the expected behavior.

5.1 Introduction

The increasing availability of data at the industry and firm level has led
to the appearance of a vast number of studies analyzing the system of
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Figure 16: (a) Graphical representation of the Dutch multi-layer production
network and (b) the existing 13 triadic motifs. For illustrative purposes, we
represent three industries/firms i, j and k on three commodity group layers,
namely from the top to the bottom (1) Cereals, (2) Beer/Malt, (3) Bread and
other bakery products. Industries/Firms can trade different products by
connecting themselves according to the 13 possible connected subgraphs.

customer-supplier trade relationships, i.e. the production network, estab-
lished by industries [95, 96, 97, 98, 99, 100] or firms [101, 110, 116, 117,
118, 119, 120, 121, 122, 102, 71, 103, 104, 105, 106, 107, 108, 109, 73, 111,
112, 72, 113, 114, 115] and their impact on country-level macroeconomic
statistics.

Even in the time of globalization - characterized by highly-interconnected,
global supply chains - domestic production networks are still relevant1.
The heterogeneity of production interlinkages plays an essential role in
amplifying economic growth [111] and in propagating shocks [95, 118]
related to both endogenous events (such as the 2008 financial crisis [123,
124]) and exogenous events (such as Hurricane Sandy [106], the Great
East Asian Earthquake [117, 104], the Covid-19 pandemic [122, 105, 100]).

While aggregated information about single firms is contained in most
National Statistical Institutes’ repositories, reliable data on input/output
relationships is available only for a small number of countries. For in-
stance, 1) the Compustat dataset contains the major customers of the

1It has been shown that for a small country as Belgium, while almost all firms directly
or indirectly import and export to foreign firms, these exchanges represent the minority of
domestic firms’ total revenues [121].
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publicly listed firms in the USA [101]; 2) FactSet Revere dataset contains
major customers of publicly listed firms at a global level, with a focus on
the USA, Europe and Asia [107]; 3) the dataset collected by Tokyo Shoko
Research Ltd. (TSR) [117] and the one collected by Teikoku DataBank
Inc. (TDB) [112] (commercially available in Japan) are characterized by
a large coverage of Japanese firms but with a limited amount of com-
mercial partners; 4) country-specific datasets2 contain the yearly value
of transaction data among VAT-liable firms [120, 122]; 5) the Costa Rican
and Dominican Republic datasets contains the yearly value of transac-
tion data among all domestic firms [132, 133].

In production networks, user firms connect to supplier firms to buy
goods for their own production: customer-supplier relationships are,
thus, characterized by an intrinsic granularity that is usually neglected.
The economic theory solves the problem of product granularity by as-
suming that industries and firms supply a specific product [95, 98], an
assumption often not holding in reality, as single firms can possess more
than a production pipeline, hence being capable of supplying multiple
products - e.g. Samsung, a telecommunication company, sells house-
hold appliances too and multinational companies such as Amazon and
Google supply a large number of different products.

CBS-Statistics Netherlands has recently produced two datasets con-
cerning the multi-layer production network for domestic, intermediate
trade of Dutch firms for 2012 [71] and 2018 [116], each layer correspond-
ing to a different product exchanged by a firm for its own production
process, as illustratively depicted in Fig. 16(a): the presence of product
granularity makes it a valuable source for the analysis of commodity-
specific structural patterns. These datasets have been recently used to
prove the complementarity structure of production networks [73] by com-
paring the number of 3- and 4-cycles with the outcome of a null model
taking into consideration the in-degree and out-degree distributions: firms
are matched according to a deterministic procedure that is shown to de-
crease the dataset quality by originating a bias in the network density

2Among which the ones for Brazil [125], Belgium [120], Ecuador [126], Hungary [122],
Kenya [127], Spain [128], Turkey [129], Rwanda and Uganda [130] and West Bengal [131].
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and the degree distribution, as shown in [113] for a subset of known
links of the production network collected by Dun & Bradstreet (whose
dataset contains the customers of the largest 500 suppliers in the Dutch
Economy).

Here, we consider the 2018 version of the CBS-Statistics Netherlands
datasets to construct an inter-industry network over which inspecting
the abundance of triadic motifs and anti-motifs, i.e. over- and under-
occurrences of the patterns represented in Fig. 16(b). Triadic and tetradic
subgraphs are understood to play the role of ‘building blocks’ of complex
networks [134] (e.g. as functional modules in biological networks [135,
136], homophily-driven structures in social networks [137], complementarity-
driven structures in production networks [72, 73]) and their temporal
variability has been proven capable of providing early-warning signals
of topological collapse in interbank networks [138, 10, 8] and stock mar-
ket networks [124]. Besides, the triadic structure of the majority of real-
world networks has been proven to be maximally-random [139] and,
once constrained, capable of determining their global structure [140].
By contrast, research on weighted, triadic motifs and anti-motifs is still
underdeveloped: to the best of our knowledge, only one study focuses
on their abundance in trade networks, by implementing a probabilistic
model based on random walks [141].

The task of detecting motifs calls for a definition of the randomiza-
tion method employed for computing random expectations: here, we
focus on the class of maximum-entropy ones. The latter [59, 60, 61] con-
struct probability distributions that are maximally-random by construc-
tion. Available, global or local quantities are enforced as a constraints
and their Lagrange multipliers are numerically determined by invok-
ing the maximum-of-the-likelihood principle [142]. Such a framework
has been proven to successfully reconstruct economic and financial sys-
tems [143, 62, 49, 58] such as the WTW (whose topology and weights
can be accurately predicted [19, 46, 51] in both an integrated [56] and a
conditional fashion [63], by either imposing purely structural constraints
or defining hybrid models accommodating economic factors as well [29,
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1, 2]), interbank networks [78] and interfirm networks (e.g. the ones
determined by the payment flows established by Dutch firms that are
clients of ABN-Amro or ING [103]). Two studies using the maximum-
entropy formalism are worth to be mentioned: a theoretical one whose
authors compute the z-score associated to each, triadic occurrence ana-
lytically [50] and an applied one where triadic motifs are recognized as
early-warning indicators of the 2008 financial crisis [10]. Our contribu-
tion goes in this direction, using maximum-entropy methods that con-
strain the degree and the strength sequences to study the abundance of
triadic connections and the amount of money associated with them char-
acterizing the different layers of the Dutch Production Multiplex.

5.2 The Dutch Production Multiplex

The Dutch Production Multiplex has been constructed by CBS-Statistics
Netherlands as follows. Firm-level data is obtained from the General
Business Register (ABR), containing data for over 1.700.000 firms: after
removing the micro-firms with an annual net turnover below 10.000 €,
≃ 900.000 firms remain, accounting for ≃ 99.5% of the Dutch economy
output in 2018.

The breakdown in commodities3 is 1) derived from the Structural
Business Statistics survey for commercial industries, 2) derived from the
Prodcom survey for manufacturing industries and 3) estimated by Na-
tional Accounts for non-commercial industries; a breakdown in inter-
mediate supply/use per firm has been, then, carried out by employing
intermediate purchases as the distributional key; a third breakdown in
commodity groups has been realized by integrating data from the SBS
and Prodcom surveys.

The resulting dataset has been, then, compared with the industry-
level supply/use tables at the SBI4 Standard Industry Classification and
appropriate rescaling of supply/use per firm has been performed by us-
ing the Iterative Proportion Fitting algorithm. Once supply/use per firm

3In most cases, data about the breakdown in commodities is available for industries as
a whole and not for individual organizations within industries.
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and per commodity is obtained, their in-degree distribution is estimated
via the stylized facts concerning Japanese firms, connecting supply and
use to out- and in-degree sequences, respectively [115].

Suppliers and users are, then, matched according to a determinis-
tic procedure that takes into account (1) their trade capacity (encoded by
their net turnover), (2) their mutual distance, (3) the presence of a link be-
tween their industries, (4) the observed relationship in the Dun & Brad-
street dataset. Finally, the resulting interfirm network at the 650 com-
modity level is compared with the (known) inter-industry network at the
250 commodity level and consequent adjustments are done to weights
and links.

Even if the 2018 version of the CBS production network [116] repre-
sents an improvement of the 2012 version, having more auxiliary micro-
data and industry-level data, the intensive imputation procedure and
the presence of biases contained in the previous version [113] let us pre-
fer not to use the interfirm multilayer production network as it is. In-
stead, we took advantage of the tested coherence between the interfirm
network at the 192 commodity level and the inter-industry network as
the key point of our pre-processing: specifically, we aggregated the 650

commodity groups into 192, coherently with industry-level known tables
and, then, we aggregated firms according to their SBI5 Standard Indus-
try Classification. Passing from SBI4 to SBI5 leads to better resolve indus-
tries, thus increasing their number from 132 to 870. Finally, we cleaned
for intra-industry trade4 and obtain a multi-layer inter-industry produc-
tion network containing linkages and weights for 862 industries (nodes)
and 187 commodity groups (layers).

The resulting dataset, while being the most reliable and detailed multi-
product, inter-industry domestic production network for intermediate
use, has, at least, two, clear limitations, i.e. 1) the lack of (known) firm
granularity, which is a necessary ingredient to unveil more detailed net-

4Intra-industry trade is relevant for both intensive (weights) and extensive margins
(links) but the lack of self-loops in triadic structures makes them irrelevant for the present
analysis.
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work anomalies - especially when intra-industry, supply-and-use rela-
tionships are considered; (2) the presence of potential imputation biases
affecting the passage from SBI4 to SBI5. Nonetheless, we believe that
our findings shed light on the role of product granularity in modeling
production networks and characterizing their triadic structure.

5.3 Maximum-entropy randomization methods

The main goal of randomization methods is that of generating statistical
ensembles of networks which are maximally-random given the available
data5: in our case, we randomize each layer of our multiplex separately.
Statistical measures of interest are, then, extracted as ensemble averages.

The available data - constraining the entropy maximization - consists
of the supplier’s (user’s) tendency to supply (use) a specific commod-
ity and its output(input): the obtained statistical ensemble of networks,
thus, represents the possible realizations of the system once suppliers’
and users’ tendencies and taken into account. Hence, if the empirical
statistics showed significant deviations from the model-induced ensem-
ble averages, they would signal the presence of higher-order correlations
not explained by the structural constraints themselves.

Reliable data is available for 187 commodity groups and not for each,
specific commodity, an evidence implying that a group can contain simi-
lar, although distinct, products. A supplier of one of the products belong-
ing to a group can simultaneously be a user of a different product within
the same group, leading to possibly reciprocated links among industries:
this leads us to consider models that encode the tendency to establish as
well as reciprocate supply/use relationships.

5The maximum-entropy framework guarantee unbiasedness with respect to the missing
data, as also proven by the independent tests [144, 145, 146, 147].

98



5.3.1 Binary benchmarks

For binary, directed graphs, the maximum-entropy formalism prescribes
to maximize the functional reading

S(P ) = −
∑︂
A∈A

P (A) lnP (A) (5.1)

subject to the normalization of the probability distribution∑︂
A∈A

P (A) = 1 (5.2)

and to the vector of constraints {C∗α}, i.e.∑︂
A∈A

P (A)Cα(A) = C∗α, ∀ α. (5.3)

Solving the optimization problem above leads to the canonical prob-
ability distribution reading

P (A) =
e−

∑︁
α θαCα(A)∑︁

A∈A e
−

∑︁
α θαCα(A)

≡ e−H(A)∑︁
A∈A e

−H(A)
(5.4)

where the graph Hamiltonian is defined as H(A) ≡
∑︁
α θαCα(A). Let us,

now, focus on the binary benchmarks constraining local properties.

The Directed Binary Configuration Model (DBCM)

The DBCM is defined by the out-degree and in-degree sequences, rep-
resenting the number of industries node i sells to and the number of
industries node i buys from, respectively. Upon writing

H(A) =
∑︂
i

[αouti kouti (A) + αini k
in
i (A)] (5.5)

the probability distribution can be re-written as the product of Bernoulli-
like probabilities, i.e.

P (A) =
∏︂
i ̸=j

p
aij
ij (1− pij)1−aij (5.6)
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where pij denotes the probability that supplier i and user j are connected
and equals the expression

pij =
xouti xinj

1 + xouti xinj
(5.7)

with xouti ≡ e−αout
i and xini ≡ e−α

in
i .

The maximum-of-the-likelihood principle leads to numerically deter-
mine the Lagrange parameters {αouti } and {αini } upon solving the system
of 2N coupled equations

kouti (A∗) =
∑︂
j(̸=i)

aij =
∑︂
j( ̸=i)

pij = ⟨kouti ⟩, ∀ i (5.8)

kin∗i (A∗) =
∑︂
j(̸=i)

aji =
∑︂
j( ̸=i)

pji = ⟨kini ⟩, ∀ i (5.9)

where N is the number of industries in the network and ⟨kouti ⟩ and ⟨kini ⟩
denote the ensemble average of the i-th out-degree and the i-th in-degree,
respectively.

The Reciprocal Binary Configuration Model (RBCM)

The RBCM is defined by the sequences of non-reciprocated out-degrees
{k→i }, non-reciprocated in-degrees {k←i } and reciprocated degrees {k↔i }.
Upon writing

H(A) =
∑︂
i

[α→i k
→
i (A) + α←i k

←
i (A) + α↔i k

↔
i (A)] (5.10)

where k→i (A) =
∑︁
j( ̸=i) aij(1−aji) ≡

∑︁
j(̸=i) a

→
ij , k←i (A) =

∑︁
j(̸=i) aji(1−

aij) ≡
∑︁
j(̸=i) a

←
ij and k↔i (A) =

∑︁
j(̸=i) aijaji ≡

∑︁
j( ̸=i) a

↔
ij , the probabil-

ity distribution can be written as the product of Bernoulli-like probabili-
ties, i.e.

P (A) =
∏︂
i<j

(︁
p→ij
)︁a→ij (︁p←ij )︁a←ij (︁p↔ij )︁a↔ij (︁p↮ij )︁a↮ij (5.11)

where
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p→ij =
x→i x

←
j

1 + x→i x
←
j + x←i x

→
j + x↔i x

↔
j

, (5.12)

p←ij =
x←i x

→
j

1 + x→i x
←
j + x←i x

→
j + x↔i x

↔
j

, (5.13)

p↔ij =
x↔i x

↔
j

1 + x→i x
←
j + x←i x

→
j + x↔i x

↔
j

, (5.14)

p↮ij =
1

1 + x→i x
←
j + x←i x

→
j + x↔i x

↔
j

(5.15)

and x→i ≡ e−α
→
i , x←i ≡ e−α

←
i , x↔i ≡ e−α

↔
i are the Lagrange multipliers

controlling for the non-reciprocated out-degree, the non-reciprocated in-
degree and the reciprocated degree of node i, respectively.

The maximum-of-the-likelihood principle leads to numerically deter-
mine the Lagrange multipliers above upon solving the system of 3N cou-
pled equations

k→i (A∗) =
∑︂
j( ̸=i)

a→ij =
∑︂
j ̸=i

p→ij = ⟨k→i ⟩, ∀ i (5.16)

k←i (A∗) =
∑︂
j( ̸=i)

a←ij =
∑︂
j(̸=i)

p←ij = ⟨k←i ⟩, ∀ i (5.17)

k↔i (A∗) =
∑︂
j( ̸=i)

a↔ij =
∑︂
j(̸=i)

p↔ij = ⟨k↔i ⟩, ∀ i (5.18)

where N is the number of industries in the network.

5.3.2 Conditional weighted benchmarks

When inspecting network weights, the numeric nature of the involved
trade volumes drive the choice towards the basket of benchmarks to be
used: if the weights are discrete-valued, the constrained entropy max-
imization leads to a family of geometric distributions [1, 51, 148]; if,
in contrast, the weights are continuous-valued, the constrained entropy
maximization leads to a family of exponential distributions [63, 2]. Here,
we stick to conditional models for continuous-valued weights, which are
well-defined only after the functional form of P (A) has been determined.
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Maximizing the conditional Shannon entropy

S(Q|P ) = −
∑︂
A∈A

P (A)

∫︂
WA

Q(W|A) lnQ(W|A)dW (5.19)

given the normalization of the related probability∫︂
WA

Q(W|A) = 1 (5.20)

and the set of constraints {C∗α}∑︂
A∈A

P (A)

∫︂
WA

Q(W|A)Cα(W)dW = C∗α, ∀ α; (5.21)

leads us to obtain

Q(W|A) =

{︄
e−H(W)∫︁

WA
e−H(W)dW

, W ∈WA

0, W /∈WA

(5.22)

where WA stands for the ensemble of weighted configurations compati-
ble with A and H(W) ≡

∑︁
α βαCα(W).

Parameters are estimated using the maximum-of-the-likelihood esti-
mation, reading

LW|A = −Hβ⃗(W)− lnZβ⃗,A (5.23)

where Zβ⃗,A is the conditional partition function an explicit computation of
which is feasible only once A is known. As we have seen in the previ-
ous chapter, however, estimating parameters on the empirical topology
neglects its intrinsic variability: this problem can be solved by consider-
ingthe generalized log-likelihood

Gβ⃗ = −Hβ⃗(⟨W⟩)−
∑︂
A∈A

P (A) lnZβ⃗,A (5.24)

where P (A) is the probability induced by the binary model. In what
follows, we will employ the estimation based on Gβ⃗ [63].
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The Conditional Reconstruction Model A (CReMA)

When randomizing a weighted adjacency matrix W , trade marginals
such as the out-strength souti =

∑︁
j(̸=i) wij and the in-strength sini =∑︁

j(̸=i) wji - indicating the total output and total input of industry i,
respectively - are usually constrained [51, 56]. Solving such a problem
leads to

H(W) =
∑︂
i

[βouti souti + βini s
in
i ] (5.25)

in turn, inducing

Q(W|A) =
∏︂
i ̸=j
aij=1

qij(wij |aij = 1) =
∏︂
i̸=j
aij=1

[︂(︁
βouti + βinj

)︁
e−(β

out
i +βin

j )wij

]︂aij
(5.26)

i.e. the product of dyadic exponential distributions, conditional on the
establishment of the link and regulated by the related, node-specific La-
grange parameters. By maximizing the generalized log-likelihood6 we
obtain the system of 2N coupled equations reading

souti =
∑︂
j( ̸=i)

fij
βouti + βinj

= ⟨souti ⟩, ∀ i (5.27)

sini =
∑︂
j( ̸=i)

fji
βini + βoutj

= ⟨sini ⟩, ∀ i (5.28)

whose resolution leads us to find βouti and βini for each industry.

The Conditionally Reciprocal Weighted Configuration Model (CRWCM)

In order to take into account reciprocity, we develop a novel model that
accounts for the different nature of links whose weights are sampled,
namely reciprocated and non-reciprocated ones. This choice leads to the
definition of four trade marginals for each supplier/user, namely

6Such a procedure is equivalent at maximizing the sum of the logarithms of the dyadic

conditional probabilities qij(wij |aij = 1) =
[︂(︂

βout
i + βin

j

)︂
e−(βout

i +βin
j )

]︂fij
.
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• the non-reciprocated out-strength s→i , which measures the output
of supplier i to users from which it does not buy, i.e

s→i =
∑︂
j( ̸=i)

a→ij wij =
∑︂
j(̸=i)

w→ij (5.29)

• the non-reciprocated in-strength s←i , which measures the input of
industry i from suppliers to which it does not supply, i.e

s←i =
∑︂
j( ̸=i)

a←ij wji =
∑︂
j(̸=i)

w←ij (5.30)

• the reciprocated out-strength s↔,outi , measuring the output of sup-
plier i to users from which it also buys from, i.e

s↔,outi =
∑︂
j( ̸=i)

a↔ij wij =
∑︂
j(̸=i)

w↔,outij (5.31)

• and the reciprocated in-strength s↔,ini , measuring the input of user
i from suppliers to which it also supplies to, i.e.

s↔,ini =
∑︂
j( ̸=i)

a↔ij wji =
∑︂
j(̸=i)

w↔,inij (5.32)

Solving the constrained maximum-entropy problem implies writing
the graph Hamiltonian

H(W) =
∑︂
i

[β→i s
→
i + β←i s

←
i + β↔,outi s↔,outi + β↔,ini s↔,ini ] (5.33)

leading to

Q(W|A) =
∏︂
i̸=j
aij=1

qij(wij |aij = 1) (5.34)

where qij(wij |aij) depends on the dyadic state, namely⎧⎪⎨⎪⎩
(β→i + β←j )e−(β

→
i +β←j )w→ij , for w→ij > 0

(β↔,outi + β↔,inj )e−(β
↔,out
i +β↔,in

j )w↔,out
ij , for w↔,outij > 0

0, for wij = 0

(5.35)
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Layer-Statistics Min Lower Quartile Median Upper Quartile Max
N 4 62 149 544 822
L 3 203 678 2076 15198

Wtot 0.95 239 768 2027 23767

rt 0 0.01 0.05 0.14 0.78
rw 0 0.01 0.08 0.28 0.78

Table 11: Description of the distribution of statistics such as the number
of active industries N , the number of links L, the total weight Wtot, the
topological reciprocity rt and the weighted reciprocity rw across commodity
layers of the inter-industry network.

The resulting generalized log-likelihood is separable into a reciprocal
and a non-reciprocal component, i.e. Gβ⃗ = G→

β⃗
+ G↔

β⃗
(see also Appendix

B): the Lagrange parameters β⃗ are retrieved by maximizing Gβ⃗ , which
amounts at solving two uncoupled, systems of 2N coupled equations
reading

s→i =
∑︂
j(̸=i)

f→ij
β→i + β←j

= ⟨s→i ⟩, ∀ i (5.36)

s←i =
∑︂
j(̸=i)

f←ij
β←i + β→j

= ⟨s←i ⟩, ∀ i (5.37)

for the non-reciprocal sub-problem and

s↔,outi =
∑︂
j(̸=i)

f↔ij

β↔,outi + β↔,inj

= ⟨s↔,outi ⟩, ∀ i (5.38)

s↔,ini =
∑︂
j(̸=i)

f↔ij

β↔,ini + β↔,outj

= ⟨s↔,ini ⟩, ∀ i (5.39)

for the reciprocal sub-problem.
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5.4 Results

Measuring empirical reciprocity statistics

The presence of data on product granularity gives us the opportunity to
study heterogeneity across commodity layers. Let us consider in Table 11
the number of layer-active industries N , the number of links L, the total
weight Wtot, and reciprocity measures such as the topological reciprocity
rt, defined as the ratio of reciprocated links to L, i.e.

rt =
L↔

L
=

∑︁
i,j ̸=i a

↔
ij∑︁

i,j ̸=i aij
. (5.40)

and its weighted counterpart rw, defined as the ratio of total weight on
reciprocated links to W , i.e.

rw =
W↔tot
Wtot

=

∑︁
i,j ̸=i w

↔,out
ij∑︁

i,j ̸=i wij
. (5.41)

The median for N is 149, meaning that for around 50% of commod-
ity layers there are less than 149 active industries (as suppliers or users).
At the same time, 25% of commodity layers have less than 62 industries,
and another 25% have more than 544 industries. Consequently, indus-
tries are specialized among a small number of business activities for half
of the commodity groups but, a small, and not negligible, number of
layers is characterized by a high number of active industries and hence
of industry heterogeneity. Some examples are suppliers of plastic goods
that are sold to users with heterogeneous specializations, for instance,
Bread, Beer, Cereals, Fish, etc. Also the distributions regarding the num-
ber of commodity-specific links L and the related total weight Wtot have
wide distributions, with a minimum with few digits, respectively 3 and
0.95 (in millions of euro), and a maximum in 5 digits, respectively 15198

and 23767, implying a high degree of heterogeneity in network structure
across commodity layers.

Passing from the commodity global statistics to rt and rw, we see a
high degree of heterogeneity also in this case, namely a minimum value
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of 0 stands for layers where no link is reciprocated, i.e. users and suppli-
ers represent two distinct sets of nodes (bipartite graph). Instead, in the
majority of the commodities (above 75%) there is a not-null reciprocity. In
fact, the median is respectively 0.05 and 0.08. There is also the presence
of a small number of commodities (below 10%) which are characterized
by a large reciprocity, with a maximum of 0.78 for both rt and rw.

Reciprocity can arise for different reasons: (1) the aggregation from
firms to industries or (2) the aggregation of products. To mention the
first case, consider two firms A and B in the industry i and other two
firms C and D in industry j. Suppose firm A supplies to firm D, while
firm C supplies to firm B, in the same commodity layer. Once the firms
are aggregated in the related industries, a reciprocated link emerges be-
tween them, even if reciprocity is not present at the firm level.
The second case follows from the fact that if each commodity layer rep-
resents a unique product, that could be represented by the finest CPA
product classification (with around 5000 products), and we take into ac-
count only intermediate supply and use, it is not reasonable to think that
firms are at the same time suppliers and users (of that specific product).
Instead, in case of product aggregation, firms may be suppliers of a prod-
uct inside that commodity group and also users of another product in-
side that same commodity group.

Let us now move to the analysis of triads. We define triadic occur-
rencesNm, the number of times a specific m-subgraph appears and triadic
fluxes Fm, the total amount of money circulating on each m-subgraph.
In Fig. 17, we depict their values normalizing by their sum across the
m-types. The normalized Nm and Fm can be considered as the relative
importance of a specific type of triadic subgraph in the network. The ag-
gregated network (depicted in blue), where the weights of all commod-
ity groups are summed, and three commodity layers, namely ‘Cereals’
(in green), ‘Gas/Hot Water/City Heating (in orange) and ‘Agricultural
Services’ (in pink) are displayed.

In the aggregated network, the structures that occur relatively more
are m = 1, represented by a supplier connected to two users and m = 13,
the totally reciprocated cyclical triad. While m = 13 is probably due to
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Figure 17: Normalized Triadic Occurrences (a) and Fluxes (b): the Aggre-
gated Network (− • −) presents a high occurrence of subgraphs m = 1
and m = 13, representing open-Vs and completely reciprocated triads, re-
spectively. The latter covers most of the total amount of money traded. The
Cereals commodity layer (−•−), with a high occurrence of subgraph m = 1.
A relatively high amount of money is distributed across m = 1, m = 4 and
m = 6. Gas/Hot Water/City Heating layer (− • −) with a predominant
occurrence and flux in subgraph m = 1. Agricultural Services layer (−•−),
with a highly heterogenous spectrum of occurrences and fluxes. Completely
cyclical triads have a high occurrence in the aggregated network, but break
apart when passing to single commodity layers as G.H.C and Cereals, if
not for rare cases such as Agricultural Services. In single commodity lay-
ers m = 1 receives the highest concentration of money, signalling a large
amount of money flows over structures that greatly depend on a limited
number of suppliers, which control the market.

product aggregation, the predominance of m = 1 is a signal of structural
dependency on a limited number of suppliers. However, when normal-
ized Fm are investigated, m = 13 still contain the majority of the vol-
umes. A similar profile, in the binary case, is given by the Agricultural
Services, with the predominance of m = 1 and m = 13. At the same
time a relatively smaller amount of money is concentrated on m = 13

with respect to the aggregated case, while m = 1 and m = 11 carry a
greater amount of money. During the product disaggregation weights on
m = 13 in the aggregated network are redistributed on other subgraphs,
especially m = 1. In ‘Cereals’ and ‘Gas/Hot Water/City Heating’ these
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differences are even larger, with a relevant increase of triadic occurrences
and fluxes on m = 1, further increasing the dependency of the network
on a limited amount of suppliers. Note that when counting the different
triads in Fig. 17 they are not nested, i.e. a subgraph of type m = 8 re-
quires two reciprocated links and hence does not contain two subgraphs
of type m = 1, which contain only non-reciprocated links. Consequently,
the number and fluxes over all triadic subgraphs are structurally inde-
pendent across different types.

5.4.1 Binary Motif Analysis

We analyze the number of occurrences Nm of all the possible triadic con-
nected subgraphs, depicted in Fig. 1(b). To quantify their deviations to
randomized expectations, we define the binary z-score of subgraph m

z [Nm] =
Nm(A∗)− ⟨Nm⟩

σ [Nm]
(5.42)

where Nm(A∗) is the number of occurrences of the m-type subgraph
in the empirical adjacency matrix, ⟨Nm⟩ is its model-induced expected
number of occurrences, and σ [Nm] is the model-induced standard devi-
ation.

An analytical procedure [50] has been developed to compute the bi-
nary z-scores for the binary case. However, the assumption on the con-
fidence intervals - represented as the interval (−3, 3) - holds true only
if the ensemble distribution of Nm is Normal for each m. For all the
commodities, m-types, and binary null models, we test the assumption
using a Shapiro Test [149]. According to the test, Nm ensemble distri-
butions are in a large proportion not normal at the 5% confidence level.
Consequently, we must use a numeric approach. Networks are sampled
according to the DBCM recipe by (1) computing the induced connection
probability pij;DBCM and (2) establishing a link between industry i and
j if and only if a uniformly distributed random number uij ∈ U(0, 1) is
below pij;DBCM . The analogous recipe for RBCM requires (1) comput-
ing the set of connection probabilities for non-reciprocated connection
between i and j, namely p→ij , p←ij and p ̸↔ij , and reciprocated connection
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   0 deviating motifs
 According to RBCM
    (~52% of layers)

   1 deviating motifs
 According to RBCM
    (~21% of layers)

   2 deviating motifs
 According to RBCM
    (~12% of layers)

Triadic types

Commodity-Specific Networks

Figure 18: Triadic binary motif analysis: DBCM (•) vs RBCM (•). (a) Anal-
ysis of the aggregated network with a single representative commodity.
Numerous motifs and anti-motifs are present using DBCM and RBCM as
null models. (b-d) Commodity groups where RBCM reproduces all the tri-
adic structures, and they are, respectively, Cereals, Electrical Components,
and the Construction of Tunnels, Waterways, and Roads. (e-f) Commod-
ity groups with one network motif, namely Bread and Gasoline. (g) Com-
modity group with two network motifs, namely Beer/Malt. The CIs are
computed by extracting the 2.5-th and 97.5-th percentile from an ensem-
ble distribution of 500 graphs. The numerous motifs and anti-motifs in the
aggregated network can be seen as the aggregation of commodity groups
presenting very few characteristic patterns.
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Figure 19: Comparison DBCM (•) vs. RBCM (•): (a) Empirical Counter
Cumulative Distribution Function ECCDF of the number of deviating bi-
nary triadic motifs and anti-motifs across commodity layers. (b) Number of
commodities ch(m) having a m-type motif (overoccurrence). (c) Number of
commodities cl(m) having a m-type anti-motif (underoccurrence). RBCM
explains more triadic structures than DBCM, as shown in the difference of
their ECCDF . Passing from DBCM to RBCM reduces the number of m mo-
tifs across commodities, with the exception of m = 6, and anti-motifs, with
the exception of m = 8. The deviation of those triads is, hence, due to three-
node correlations that go beyond directional and reciprocal tendencies of
supply/use among industries. RBCM, hence, signals an increased vulner-
ability to demand shocks originating from the bankrupcty of industries of
type k in sub-types m = 6 and an increased resiliency to supply/demand
shocks of industries of type j in triadic formations m = 8.

p↔ij , generate a uniform random variable uij ∈ (0, 1) and (2) establishing
the appropriate links in the dyad in the following way:

• a non-reciprocated link from i to j if uij ≤ p→ij ;

• a non-reciprocated link from j to i if uij ∈ (p→ij , p
→
ij + p←ij ];

• a reciprocated link from i to j (and from j to i) if uij ∈ (p→ij +

p←ij , p
→
ij + p←ij + p↔ij ];

• no links from i to j and from j to i otherwise.

In both cases, we generate a realization ofA and extract theNm statis-
tic. ⟨Nm⟩ and σ [Nm], are the average and standard deviation of Nm
extracted from the ensemble distribution of 500 realizations of A. Af-
ter having computed z [Nm], we also extract the 2.5-th and 97.5-th per-
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centiles from the ensemble distribution of Nm over all models and we
standardize them using Eq. (5.42) by replacing the empirical Nm with
the percentile. Such measures will serve as the 95% CI for the z-score.

The results for the aggregated inter-industry network are in Fig. 18(a).
The z-scores computed with respect to the DBCM are depicted in blue on
the left panel, while the z-scores computed with respect to the RBCM are
depicted in orange on the right panel. The corresponding confidence
intervals at the 5% percent are depicted with the same color (blue or or-
ange) but in slight transparency. The majority of Nm are not reproduced
by the randomized methods, i.e. the z-scores are outside the confidence
intervals. Specifically, only N8 is reproduced by the DBCM, while both
N1 and N9 are reproduced by the RBCM. Discounting reciprocal infor-
mation does not only increase the number of triads that are statistically
well described, but potentially changes their type, implying a qualita-
tively different z-score profile. At the same time, in the aggregated pic-
ture, m = 1 and m = 9 are seen as described by a null model implement-
ing reciprocity, i.e. neither high dependency on suppliers (m = 1), nor
unstable feedback loops (m = 9), where industries supply to each other
in a cyclical fashion, are revealed. The aggregated network, is hence,
characterized by a multitude of structures that are not well described by
the null model and are due to additional three-node correlations but is
relatively resilient to supply shocks and cyclical input/output. By disag-
gregating from the aggregated monolayer to the multi-commodity net-
work, the majority of commodity-layers have triadic structures which
are statistically reproduced by the reciprocal null model. Only 1 or 2 mo-
tifs or anti-motifs are present for the majority of the remaining commodi-
ties, a result indicating that beneath the aggregated picture, commodity
groups are characterized by a small number of commodity-specific motifs
and anti-motifs.

In Fig. 18(b-d) z-score profiles for three commodity layers are dis-
played, namely Cereals, Electrical Components, and the Construction of
Tunnels, Waterways, and Roads. RBCM well describes all subgraph oc-
currences (zNm

is within CI), while the DBCM signals the presence of
anti-motifs for m = 10, m = 11 and m = 12 for Cereals, and anti-motif
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m = 12 and motif m = 13 for the Construction layer. In Fig. 18(e-f) two
z-score profiles are displayed - namely for Bread & other Bakery Prod-
ucts and Gasoline - for which RBCM signals the presence of at least a
motif or anti-motif. A motif m = 12 is present for the former layer while
an anti-motif for m = 4 is present for the latter. Notice that for Bread
the DBCM does not signal any motif or anti-motif, implying that devia-
tions can emerge by introducing information on the reciprocal structure.
Moreover, subgraphm = 9 in Bread and the majority of subgraphs in the
Gasoline commodity layer are characterized by a degenerate Confidence
Interval: in all of the generated synthetic networks Nm=9 correspond
to the empirical N∗9 with null variance, i.e. the constraints imposed on
the ensemble totally describe the specific m-type motif, a matter which
can arise regardless of the lack of statistics in the related Nm. Finally,
in Fig. 18(g) the z-profile for the commodity layer Beer/Malt is consid-
ered. The DBCM signals a large number of motifs, specifically for m = 2,
m = 10, and m = 11, and anti-motifs for m = 3 and m = 8. In contrast,
the RBCM signals a lone motif m = 3 and an anti-motif m = 6.
In Fig. 19(a), the empirical counter cumulative distribution for the num-
ber of deviating binary triads is shown. Introducing reciprocal structure
information reduces the number of motifs and anti-motifs present across
commodities. For instance, the percentage of commodities with at least a
motif or anti-motif is 61% when compared to the DBCM, and 48% when
compared to the RBCM, while the percentage of commodities having at
least two motifs or anti-motifs is 46% when compared to the DBCM and
27% when compared to the RBCM.

Lastly, we identify the occurrence of m-type of motifs and anti-motifs
across commodities by introducing two quantities, ch(m) and cl(m). ch(m)

represents the number of commodities having a motif of type m while
cl(m) represents the same measure for anti-motifs. The addition of the
reciprocal structure reduces the number of commodity-specific motifs for
each subgraph type, with the exception of motif m = 6 as depicted in
Fig. 19(b), and the number of anti-motifs for each type, with the excep-
tion of anti-motif m = 8 as depicted in Fig. 19(c). The reciprocal null
model, hence, reveals a higher number of commodities that are relatively
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more vulnerable to demand shock due to bankruptcy of industries of
type k in triadic formationsm = 6, while it reveals an increased resilience
to supply/demand shocks originating from bankruptcy of industries of
type j in formations m = 8.

5.4.2 Weighted Motif Analysis

While the bankruptcy of an entire industry is unrealistic, a shock due to
a decrease in the flow of goods among industries can propagate along
the supply chain, with side effects on the real economy. This implies
that not only binary information is important for shock propagation but
also weighted information, namely the amount of money circulating on
connected structures.

Consider the triadic flux Fm on motif m, defined as the total money
circulating on triadic subgraphs of typem. We characterize the deviation
of empirical Fm to null models by defining the weighted z-scores as

z [Fm] =
Fm(W ∗)− ⟨Fm⟩

σ [Fm]
(5.43)

where ⟨Fm⟩ is the model-induced average amount of money circulating
on motif m and σ [Fm] represents the model-induced standard deviation
over the ensemble of network realizations.

The theoretical benchmark (or null model) is built by using a com-
bination of binary and conditional weighted models, depending on the
wanted constraints. If we deem reciprocal information of negligible im-
portance we should use the combination of models given by DBCM, for
the sampling of the binary adjacency matrix, and the CReMA, constrain-
ing the out-strength and in-strength sequences. If we deem reciprocal
information necessary, a combination of the RBCM and CRWCM should
be used. We compare here the two to establish the importance of the
addition of reciprocity information for the detection of weighted motifs.

In operative terms, using a two-step model such as the DBCM+CReMA

reduces to (1) establishing a link between industries i and j when a uni-
form random number uij ∈ U(0, 1) is such that uij ≤ pij;DBCM , (2) if i
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   0 deviating motifs
      According to 
  RBCM+CRWCM
   (~55% of layers)

   1 deviating motifs
       According to 
    RBCM+CRWCM
    (~20% of layers)

   2 deviating motifs
      According to 
    RBCM+CRWCM
    (~11% of layers)

Commodity-Specific Networks

Triadic types

Figure 20: Triadic weighted motif analysis: DBCM+CReMA (•) vs
RBCM+CRWCM (•). (a) Analysis of the aggregated network with a
single representative commodity. A large number of motifs and anti-
motifs are present when using DBCM+CReMA, while three motifs are
present when using the RBCM+CRWCM. (b-d) Commodity groups where
RBCM+CRWCM reproduces all the triadic structures, and they are, respec-
tively, Seeds, Metal Components for Doors & Windows, and Airline Ser-
vices. (e-f) Commodity groups with one network motif, namely Coffee/Tea
and Textile raw materials and products. (g) Commodity group with two
network motifs, namely Shipping Services. The CIs are computed by ex-
tracting the 2.5-th and 97.5-th percentile from an ensemble distribution of
500 graphs. Passing from the aggregated network to the disaggregated
product layers unveils the presence of a few commodity-specific motifs and
anti-motifs.
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Figure 21: Comparison DBCM+CReMA (•) vs. RBCM+CRWCM (•): (a) Em-
pirical Counter Cumulative Distribution Function ECCDF of the number
of deviating binary triadic motifs and anti-motifs across commodity layers.
(b) The number of commodities ch(m) having a m-type motif. (c) The num-
ber of commodities cl(m) having a m-type anti-motif. RBCM+CRWCM ex-
plains slightly more triadic fluxes than DBCM+CReMA, as shown in the dif-
ference of their ECCDF . Passing from the directed to the reciprocal model
reduces the number of anti-motifs, with the exception of m = 8. In con-
trast, it changes qualitatively the motif profile, with a slight dominance of
m = 11-type motifs when the directed model is used and a clear dominance
of m = 1-type motifs when the reciprocal model is used. The reciprocated
model unveils a vulnerability to supply shocks originating from a decrease
in supply volumes of industries of type j in formations m = 1.

and j are connected, sampling wij by using the inverse transform sam-
pling method technique, i.e., we generate a uniformly distributed ran-
dom variable ηij ∈ U(0, 1) such that

F (vij) =

∫︂ vij

0

qCReMA
(wij |aij = 1)dwij = ηij , (5.44)

then we invert the relationship finding the weight vij to load on the link
(i, j).

The network sampling for the RBCM+CRWCM follows the same con-
cepts with two major differences: (1) a link is established using the RBCM
recipe and (2) the dyadic conditional weight probability qCReMA

(wij |aij =
1) is substituted with qCRWCM (wij |aij = 1) in the inverse transform
sampling.

In Fig. 20(a) the z-score profile for the aggregated network with a
single representative commodity is depicted using the directed (in blue
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on the left panel) or the reciprocal models (in orange on the right panel).
There is a large number of motifs and anti-motifs when the benchmark
model is directed, only F3 does not deviate significantly.

When reciprocity information is considered, the picture changes: only
three motifs, namelym = 6, m = 11, andm = 13, are identified, and four
anti-motifs, namely m = 3, m = 8, m = 10, and m = 12, are found when
the reciprocal null model is employed. This model’s enhanced accuracy
unveils a higher-than-expected volume of financial activity on sub-types
characterized by a single exclusive user and two suppliers utilizing each
other’s products (m = 6), two users supplying to each other while em-
ploying a product from the same supplier (m = 11), and entirely cyclical
triads (m = 13). In contrast, a lower-than-expected level of financial ac-
tivity transpires in open triads with two reciprocated ties (m = 8), one
reciprocated link and one exclusive user (m = 3), or in closed triads of
type m = 10 and m = 12. While it might be contended that the height-
ened concentration of funds on m = 13 is attributable to aggregation
bias, it is crucial to recognize that aggregation solely accounts for the
increased monetary worth of the particular sub-type in absolute terms,
not for the weighted motif obtained after adjusting for the statistical null
model. Please, bear in mind that the emergence of these specific motifs
cannot be easily explained without delving into greater detail, given the
representative commodity scheme, while the picture cannot be merely
reduced to a higher activity on open triads and a lower activity on closed
triads.

Similarly to the binary case, passing from the aggregated network to
the disaggregated product-level layers, it is possible to identify a small
number of commodity-specific weighted motifs and anti-motifs.

In Fig. 20(b-d) three commodity layers are depicted for which no mo-
tifs and anti-motifs are present when z-scores are computed using the
reciprocal model. They are ‘Seeds’, ‘Metal components for Doors & Win-
dows’ and ‘Airline Services’. In the ‘Seeds’ layer, the directed model
signals the presence of an anti-motif for m = 5. In the second layer,
no deviations are registered by both null models but CIs are of differ-
ent nature, in fact, the reciprocal model allows a more restricted range
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of z-scores with respect to the directed model for m = 9. In the ‘Air-
line Services’ layer, for both models, no deviations are present and three
CIs are degenerate for m = 5, m = 9, and m = 10. In Fig. 20(e-f) the
z-scores relative to the commodity groups ‘Coffee/Tea’ and ‘Textile raw
materials and products’ are depicted, for which 1 motif is present by us-
ing the reciprocal model. For both the directed and reciprocal models
there is a weighted motif m = 2 in the ‘Coffee/Tea’ layer. In contrast,
in the Textile products layer the directed model signals an anti-motif for
m = 2, while the reciprocal model signals a motif for m = 1. If Fig. 20(g)
the z-score profile for the commodity layer ‘Shipping Services’ is shown:
the directed model signals a large number of anti-motifs, specifically for
m = 5, m = 7 and m = 12, while it registers a motif for m = 11. The
reciprocal model, instead, registers a motif for m = 4 and anti-motifs for
m = 5 and m = 12. Different commodity layers call for different motifs
and anti-motifs which are due to their specific characteristics. In this pa-
per, we refrain from characterizing every single commodity layer, but a
specific and thorough analysis is possible by visualizing the number of
triadic sub-types, the z-score profile for Nm and their weighted analogs.

The empirical counter cumulative distribution ECCDF(# deviating
W∆) for the number of deviating weighted triads is depicted in Fig. 21(a).
The number of deviating triadic fluxes is steadily lower using the recip-
rocal model. Fm are maximally random for 49% when the directed model
benchmark is used and for 55% according to the reciprocal model. The
reduction of the number of motifs is however not as significant as in the
binary case.

In Fig. 21(b-c) we plot the weighted analogous of ch(m) and cl(m).
Reciprocal information decreases the occurrence of all types of anti-motifs
across commodities, with the exception of m = 8. Instead, the profile in-
duced by ch(m) is significantly different using the two null models. For
instance, according to the directed model, F1 is almost always well pre-
dicted, instead, it is the most occurring motif according to the reciprocal
model. At the same time, reciprocity unveils the dependency of more
than 40 commodity layers on the supply of a limited amount of suppli-
ers, which in this case control the market. In fact, the high presence of

118



m = 1 weighted motif signals the vulnerability of the industry-industry
network to supply shocks provoked by a reduction of supply volumes.

5.4.3 The NuMeTriS Python package

As an additional result, we release a Python package named NuMeTriS
(an acronym stating for ‘Null Models for Triadic Structures’), available at
https://github.com/MarsMDK/NuMeTriS: it contains the routines
to implement all the models discussed in the present chapter.

5.5 Discussion

The study of triadic motifs on production networks is still in its infancy
due to a scarcity of reliable data. In the existing literature, only binary
triadic motifs on one production network, the Japanese one, have been
characterized for a single representative commodity [72], while the Hun-
garian dataset has been analyzed only for triadic occurrences without
recurring to a null model [150]. The Japanese study revealed a sim-
ple but significant pattern: open triadic subgraphs are over-represented
while closed triadic subgraphs are under-represented. This phenomenon
was attributed to complementarity, where economic actors connect in
tetradic structures - better explained by open triads - due to complemen-
tary needs [73].

Our findings corroborate the notion that an analysis based on a sin-
gle representative commodity is insufficient to fully characterize a pro-
duction network. Product-level data is essential for disaggregating the
network into layers that are characterized by commodity-specific binary
motifs and anti-motifs. Moreover, we found that the majority of layers
exhibit maximally random triadic structures when the reciprocal struc-
ture is considered.

At the level of binary motifs, we detected that cyclical reciprocated
triadic subgraphs, which are dominant in the aggregated network, break
up in the disaggregated product layers, where open triangles become
dominant, especially m = 1. However, using the RBCM as a bench-
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mark, we proved that m = 1 is always well described. Conversely, the
completely cyclical triads, even if partially broken in the disaggregated
layers, are often over-represented compared to the benchmark estimate.
In general, constraining the reciprocation capacity of industries - by con-
straining the reciprocated degrees - is of the foremost importance when
characterizing triadic motifs, as explained by the better accuracy and the
decrease in binary triadic motifs and anti-motifs when using RBCM as a
benchmark compared to DBCM.

We also characterized weighted motifs and anti-motifs, defined as the
amount of money circulating on triadic subgraphs, with a novel model
which constrains strengths, decomposing them according to the charac-
ter of the corresponding links. This type of analysis is totally novel in the
context of production networks, and rarely seen with benchmark mod-
els [141]. We find a non-trivial result already when analyzing the aggre-
gated network, subgraphs that are well explained in binary terms - their
occurrence is well described by the statistical ensemble induced by the
DBCM or RBCM - can be not well described in weighted terms, meaning
that even if a binary triadic subgraph has the expected occurrence it can
accommodate an unexpected concentration of money. Furthermore, we
identified a high presence of m = 1 weighted motifs across commodity
layers, a signal of commodity-specific dependency on a limited number
of suppliers, which control the market. This implies that a large number
of layers are vulnerable to supply shocks, which can arise due to a de-
crease in supplied volumes (and not only to the supplier’s bankruptcy as
in the binary case).

Changing the benchmark from a directed to a reciprocal model signif-
icantly changes the identity of motifs and anti-motifs across commodi-
ties. Hence, it is essential to take into account the type of the correspond-
ing link in which weights are sampled by constraining reciprocated and
non-reciprocated strengths.

Overall, our results indicate that product-level information is strictly
necessary to identify triadic structures and fluxes in production networks.
We hope that our study can encourage Statistics Bureaus around the
world to implement policies and techniques to reveal or reconstruct a re-
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liable product heterogeneity for firm-level transaction data. Our analysis
also shows that most commodity-specific layers can be reconstructed via
null models that incorporate reciprocity while maintaining dyads inde-
pendent. For these layers, network reconstruction methods of the type
introduced in [103], if extended to incorporate reciprocity, are likely to
perform well in replicating the properties of the entire layers starting
from partial, node-specific information. Most other layers show at most
one or a couple of deviating triadic motifs that are unexplained by the
null model. For these layers, additional information is needed to achieve
a good reconstruction. Once a rigorous product analysis has been per-
formed, experts in the single commodity can interpret why such triadic
formations over-occur or under-occur, accommodating an excessive or
insufficient amount of trade volume, unveiling the detailed structure of
the commodity-specific production networks.

In order to suggest improvements for further research, we conclude
by noticing that our study is subject to two main limitations. First, an
industry-level analysis inherently yields results that differ from those
obtained from firm-level studies and underestimates the risk associated
with exogenous and endogenous shocks [151]. Second, the dataset ana-
lyzed pertains to industries at the SBI5 level, a classification intermedi-
ate between firms and SBI4-level industries. Analyzing the dataset at the
firm level was not feasible due to potential biases arising from the de-
terministic imputation and degree distribution assumptions, which are
exacerbated when dealing with highly granular data. Conversely, ana-
lyzing industries at the SBI4 level, which encompasses a maximum of 132
industries, would imply that for a substantial number of commodities,
very few industries are active. Consequently, the null model would triv-
ially replicate, in a statistical sense, the triadic structures for the majority
of commodity layers due to a lack of relevant observations. However,
the same biases anticipated at the firm level can arise, even if mitigated,
by selecting SBI5-level industries. This could potentially lead to biases
in our analysis, especially in the type of motifs and anti-motifs found for
each commodity. However, in order to validate all of our ‘fingerprints’
we would need fully empirical data for industries at the SBI5 level for
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Model pij ⟨wij |aij = 1⟩

DBCM+CReMA

xouti xinj
1 + xouti xinj

(βouti + βinj )−1

RBCM+CRWCM
x→i x

←
j + x↔i x

↔
j

x→i x
←
j + x←i x

→
j + x↔i x

↔
j + 1

wout,→ij + wout,↔ij

Table 12: Models used in this chapter with columns indicating
the model-induced probability connection pij and the weight condi-
tional on the link presence ⟨wij |aij = 1⟩. The parameter zij =
exp{ρ+ β ln(ωiωj) + γ ln(Dij)} stands for the log-link gravity specifica-
tion, while x̂ij = exp{θ + ln(ωiωj)− ln(Dij)} stands for the gravity speci-
fication used in the logistic binary model.

Model Type Binary
Constraints

Weighted Constraints

DBCM+CReMA C-Cont {kouti , kini } {souti , sini }
RBCM+CRWCM C-Cont {k→i , k←i , k↔i } {s→,outi , s→,ini } ∩

{s↔,outi , s↔,ini }

Table 13: Entropy-based models used in this chapter with columns indicat-
ing the type of induced weights, relative binary constraints and weighted
constraints. The type is annotated with C or I for conditional and integrated
model respectively, and with Int and Cont for models inducing integer and
continuous link weights. Constraints can be topological quantities or their
approximation through economic factors. When an approximation in terms
of a gravity log-link function is performed, it is indicated with the hat sym-
bol.

each of the 187 commodities, an information that is not available in any
country until now, to the best of our knowledge.

In Table 12 we sum up the weighted models explored in this chapter
with the specifications related to the model-induced probability connec-
tion pij and to the conditional weight ⟨wij |aij = 1⟩ (conditional on the
established link), while in Table 13 the relative structural constraints are
portrayed for each model.
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Chapter 6

Conclusions

This thesis sums up our efforts to reconcile econometric and physics-
inspired approaches for the description of economic systems.

Econometricians are typically interested in defining methods to es-
timate the unbiased effect of the independent variables, or regressors,
onto the dependent one. However, when those methods are used to re-
construct the characteristics of the WTW, they fall short in describing
the network statistics of interest [45]: more precisely, they either pro-
vide accurate point-wise estimations (as in the case of the ZIP model) or
well-reproduce data variability (as in the case of the negative binomial
model). On the other hand, we show in chapter 2 and chapter 3 that
maximum-entropy models induced by both structural and econometric
constraints are capable of achieving both goals, for both discrete-valued
and continuous-valued systems. Besides, in the case of discrete systems,
maximum-entropy models compete, if not outperform, the aforemen-
tioned, econometric recipes in all such aspects.

These methods can be defined either in a conditional or in an inte-
grated fashion, depending on the recipe adopted to sample weights: if
the binary probability distribution can be treated as independent from
the weighted one, we are considering a conditional model; if the bi-
nary probability distribution cannot be treated as independent from the
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weighted one, we are considering an integrated model. Interestingly, the
best models to accurately predict over 20 years of WTW network statis-
tics are (both the conditional and the integrated version of) the exponen-
tial model and the gamma model; according to information criteria, in-
stead, the log-normal model should be preferred - a sort of trade-off that
lead us to opt for exponential and gamma models, given their greater sta-
bility and an overall similar score to the one achieved by the log-normal
model.

A Shannon-Fisher analysis of our models also reveals that the statis-
tical ensemble induced by the exponential model is less susceptible to
changes in the value of the weights while the gamma model is character-
ized by a diverging Fisher Information Measure, an evidence indicating
that it is maximally susceptible to changes in the value of the weights:
overall, then, in case of noisy data, the exponential model should be pre-
ferred.

When considering the problem of estimating parameters of condi-
tional, weighted models, several solutions are viable. The estimation
procedure traditionally pursued in econometrics considers a network
topology as deterministic, hence ignoring the structural variability in-
duced by the binary probability distribution.

In order to overcome this problem, we devise two alternative proce-
dures in chapter 4, namely the ‘annealed’ and the ‘quenched’ one: the
first approach estimates the parameters by defining a generalized log-
likelihood where the topological randomness is averaged over the al-
lowed binary configurations; the second approach estimates the parame-
ters on each, sampled (binary) configuration, averaging them a posteriori.
The two procedures are equivalent for models with a global constraint on
weights and coincide with the ‘deterministic’ estimate. When consider-
ing models either constraining local properties or defined by econometric
quantities, the two procedures lead to estimates that strongly depend on
the adopted, binary model, with the ‘annealed’ and ‘quenched’ estimates
that coincide while being significantly different from the ‘deterministic’
one.
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Moreover, in case sparse graphs are considered, the ‘quenched’ ap-
proach can lead to biased estimates for nodes with a low degree - in fact,
the ones that are poorly-connected in the empirical network can be dis-
connected in single realizations: whenever this happens, it is not possible
to estimate the corresponding parameter. This problem leads us to prefer
the ‘annealed’ approach which does not require any explicit sampling.

In chapter 5, we explore the triadic structure of the multi-commodity,
inter-industry production network constructed by CBS-Statistics Nether-
lands. As information about domestic production networks is rarely
available, the dataset our analysis is based upon represent a quite unique
example in the current literature. The analysis of the binary version of
this network reveals most layers to be characterized by an abundance
of the 13 triadic motifs that is maximally-random when reciprocal and
non-reciprocal degrees are constrained - an evidence showing that infor-
mation on reciprocity must be accounted for by any model designed to
reproduce third-order quantities. On the other hand, the analysis of the
weighted version of this network reveals that models constraining reci-
procity identify statistically significant structures that are quite different
from those identified by models not constraining this information.

Overall, our results indicate that product-level information is strictly
necessary to identify triadic structures and fluxes in production networks
and that they can be effectively described by models that incorporate
both individual and reciprocal tendencies for link establishment and sup-
ply/use for most commodities. We hope that our study can encour-
age Statistics Bureaus around the world to implement policies and tech-
niques to reveal, or reconstruct, a reliable product heterogeneity for firm-
level transaction data. Once a rigorous product analysis has been per-
formed, experts in the single commodity can interpret why such triadic
formations over-occur or under-occur, accommodating an excessive or
insufficient amount of money, unveiling the detailed structure of the
commodity-specific production networks.

While the present thesis offers methodologies to reconcile Network
Science and Econometrics, the methods can be further enhanced. For
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instance, as observed in chapter 2, Maximum Entropy (ME) methods
with Gravity-like specifications exhibit heteroscedasticity. A simple so-
lution would be incorporating a White Variance-Covariance matrix for
the weights. However, we propose a more comprehensive approach by
expanding the models to panel data, specifically adopting the Kullback-
Leibler (KL) formalism for Temporal Networks with and without mem-
ory. This would provide econometricians with an information-theoretic
alternative to the widely used Poisson Pseudo-Maximum Likelihood with
dyadic fixed-effects for panel data.

Another potential area for improvement lies in the methods intro-
duced in chapter 5, including the reciprocal model composed of the Re-
ciprocal Binary Configuration Model (RBCM) for the binary part and the
Conditionally Reciprocal Weighted Model (CRWCM) for the weighted
part. We would like to investigate whether the CRWCM could be fur-
ther refined by incorporating constraints on macro production functions,
following the approach introduced in [103]. This modification would
enhance the method’s accuracy and enable the identification of triadic
structures that are not adequately explained by individual or reciprocal
tendencies but rather by production capabilities. Conversely, the recip-
rocal model could be simplified by employing a Gravity log-link specifi-
cation instead of node-specific parameters.

Additionally, this thesis elucidates the process of transitioning from
a Maximum-Entropy structural model to a more econometric-oriented
model by approximating Lagrange parameters with constant and eco-
nomic factors. This results in a more parsimonious model, as evidenced
by reduced AIC and BIC values, without significantly lose overall per-
formance.

Finally, chapter 4 examines the bias introduced in parameter estima-
tion when the conventional deterministic approach is implemented in
conditional models. This deterministic approach, widely used in hur-
dle models, is theoretically sound under the assumption of complete
independence between the binary and weight distributions. However,
it also entails the presumption that the empirical realization is the sole
determinant, overlooking all other realizations generated by the chosen
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binary model even though the weights are derived after sampling con-
nections from the binary distribution. Our findings indicate that this ap-
proach results in parameter estimates that diverge from those obtained
employing the annealed approach, which considers the entire probabil-
ity matrix induced by the binary model, and are inconsistent with the
ensemble distribution of parameter estimates produced by the quenched
approach. Consequently, we advocate for the adoption of the annealed
approach over the traditional deterministic one to reestablish sampling
consistency.
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Appendix A

Discrete-valued models

Appendix A, based on [1], further expands on the models presented in chapter 2.
The first section discusses the estimation of the parameters defining the classical
gravity model via the LS and PPML techniques. The second section discusses
the estimation of the parameters defining the negative binomial model, the Pois-
son model and their zero-inflated counterparts via the likelihood maximization
technique. The third section focuses on the discrete-valued distributions arising
from the maximum-entropy principle and illustrates the set of first-order condi-
tions to be satisfied for maximizing the corresponding log-likelihood function.

A.1 Estimating the GM parameters

Here, we consider two different specifications of the GM, i.e.

⟨wij⟩(1)GM = ρ(ωiωj)d
−1
ij (A1)

and

⟨wij⟩(2)GM = ρ(ωiωj)
βdγij ; (A2)

the parameters appearing in both specifications of the GM can be es-
timated by implementing a Non linear-Least-Squares (NLS) regression,
i.e. by solving the optimization problem
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arg minθ

⎧⎨⎩∑︂
i<j

[wij − ⟨wij⟩GM]
2

⎫⎬⎭ (A3)

which, in turn, translates into solving the equation∑︂
i<j

[wij − ⟨wij⟩GM]
∂⟨wij⟩GM

∂θi
= 0, ∀ i; (A4)

however, such a procedure is known to produce biased estimations. In
fact, it leads to the set of conditions∑︂

i<j

[︂
wij − ⟨wij⟩(1)GM

]︂
⟨wij⟩GM = 0 (A5)

for the first GM specification and⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁
i<j

[︂
wij − ⟨wij⟩(2)GM

]︂
⟨wij⟩GM = 0∑︁

i<j

[︂
wij − ⟨wij⟩(2)GM

]︂
⟨wij⟩GM ln(ωiωj) = 0∑︁

i<j

[︂
wij − ⟨wij⟩(2)GM

]︂
⟨wij⟩GM ln dij = 0

(A6)

for the second GM specification. Since the conditions above are known to
‘weigh’ more larger weights, Silva and Tenreyro [42] propose to employ a
Poisson Pseudo-Maximum Likelihood (PPML) estimator, leading to the
set of conditions ∑︂

i<j

[︂
wij − ⟨wij⟩(1)GM

]︂
= 0 (A7)

for the first GM specification and⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁
i<j

[︂
wij − ⟨wij⟩(2)GM

]︂
= 0∑︁

i<j

[︂
wij − ⟨wij⟩(2)GM

]︂
ln(ωiωj) = 0∑︁

i<j

[︂
wij − ⟨wij⟩(2)GM

]︂
ln dij = 0

(A8)

for the second GM specification. Remarkably, the PPML estimator lets
the purely topological conditionW =

∑︁
i<j wij =

∑︁
i<j⟨wij⟩GM = ⟨W ⟩GM

(i.e. the preservation of the total weight) to be recovered for both GM
specifications.
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A.2 Econometric models

This section is devoted to the detailed description of the econometric
models considered in the present work. When coming to estimate the
parameters entering into the definition of any of the econometric models
considered above, we invoke the maximum-of-the-likelihood principle,
prescribing to maximize the function

L = lnQ(W) (A9)

where the optimization is carried out with respect to the set of parame-
ters characterizing each specific model.

In the present contribution we have considered undirected networks,
hence the parameters associated to node-specific regressors of the same
economic variable (e.g. the GDPs of the country of origin and destina-
tion) are equal. In such a framework we have employed the specifica-
tions zij = ρ(ωiωj)

βdγij and Gij = δ(ωiωj) where ωi = GDPi

GDP
, i.e. the

GDP of each country is divided by the mean value of all GDPs. We
would also like to stress that the parameters entering into the definition
of zij are equal to those employed for the standard GM specification, i.e.
zij = eX·θ, as evident upon taking as regressors the natural logarithm of
the GDPs and that of the geographic distance, i.e.

zij = eX·θ = eβ lnωi+β lnωj+γ ln dij+c = ρ(ωiωj)
βdγij (A10)

having posed c = ln ρ.

A.2.1 Poisson model

The probability mass function of the Poisson model reads

qPois
ij (wij) =

z
wij

ij e−zij

wij !
; (A11)

where zij = ρ(ωiωj)
βdγij . In what follows, we will substitute wij ! with

Γ[wij + 1], as routinely done in the packages for solving econometric
models. Its log-likelihood reads
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LPois =
∑︂
i<j

[wij ln zij − zij − ln Γ[wij + 1]] (A12)

whose optimization leads to the set of equations∑︂
i<j

[︃
wij
zij
− 1

]︃
∂zij
∂θi

= 0, ∀ i (A13)

reading, more explicitly,⎧⎪⎨⎪⎩
∑︁
i<j [wij − ⟨wij⟩Pois] = 0∑︁
i<j [wij − ⟨wij⟩Pois] ln(ωiωj) = 0∑︁
i<j [wij − ⟨wij⟩Pois] ln dij = 0;

(A14)

notice that the set of equations above coincides with eqs. (A8). The Pois-
son model remains the most used one because it ensures that a network
total weight is reproduced - a desirable feature to correctly estimate the
weights of a network, as also observed for the ‘plain’ GM.

A.2.2 Negative binomial model

The probability mass function of the Negative Binomial model reads

qNB
ij (wij) =

(︃
m+ wij − 1

wij

)︃(︃
1

1 + αzij

)︃m(︃
αzij

1 + αzij

)︃wij

(A15)

where α = m−1 to handle overdispersion and zij = ρ(ωiωj)
βdγij . By re-

placing each binomial coefficient with the corresponding Gamma func-
tion, one recovers the expression

LNB =
∑︂
i<j

[wij ln(αzij)− (m+ wij) ln(1 + αzij)

+ lnΓ[m+ wij ]− ln Γ[wij + 1]− ln Γ[m]]; (A16)

its optimization leads to the set of equations∑︂
i<j

[︃
wij − zij

zij(1 + αzij)

]︃
∂zij
∂θi

= 0, ∀ i (A17)

and
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∑︂
i<j

[︄
wij − zij
α(1 + αzij)

−m2

(︄
Γ
′
[m+ wij ]

Γ[m+ wij ]
− Γ

′
[m]

Γ[m]

)︄]︄
= 0 (A18)

reading, more explicitly,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑︁
i<j

[︂
wij−⟨wij⟩NB

VarNB[wij ]

]︂
= 0∑︁

i<j

[︂
wij−⟨wij⟩NB

VarNB[wij ]

]︂
ln(ωiωj) = 0∑︁

i<j

[︂
wij−⟨wij⟩NB

VarNB[wij ]

]︂
ln dij = 0∑︁

i<j

[︃
wij−⟨wij⟩NB
α(1+αzij)

−m2

(︃
Γ
′
[m+wij ]

Γ[m+wij ]
− Γ

′
[m]

Γ[m]

)︃]︃
= 0.

(A19)

Notice that the negative binomial model does not constrain the total
weight of a network, whence its bad performance in reproducing the
other weighted structural properties.

A.2.3 Zero-inflated Poisson model

The zero-inflated version of the Poisson model is defined by a functional
form reading

Q(W) =
∏︂
i<j

qij(wij)

=
∏︂
i<j

p
aij
ij (1− pij)1−aij · qij(wij |aij) = P (A)Q(W|A) (A20)

and inducing the following log-likelihood

L = lnQ(W)

= lnP (A) + lnQ(W|A)

=
∑︂
i<j

[aij ln pij + (1− aij) ln(1− pij) + ln qij(wij |aij)] (A21)

where

pZIP
ij =

Gij
1 +Gij

(1− e−zij ), (A22)

qZIP
ij (wij |aij) =

[︄
z
wij

ij e−zij

(1− e−zij )wij !

]︄aij
(A23)
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with zij = ρ(ωiωj)
βdγij and Gij = δωiωj ; hence,

LZIP =
∑︂
i<j

[aij lnGij − aij ln
(︁
1 +Gije

−zij
)︁
+ ln

(︁
1 +Gije

−zij
)︁
− ln(1 +Gij)

+wij ln zij − aijzij − aij ln Γ[wij + 1]]. (A24)

Its optimization leads to the set of equations⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑︁
i<j

[︃
aij−pZIP

ij

1+Gije
−zij

]︃
= 0∑︁

i<j

[︂
wij −

(︂
aij+Gije

−zij

1+Gije
−zij

)︂
zij

]︂
= 0∑︁

i<j

[︂
wij −

(︂
aij+Gije

−zij

1+Gije
−zij

)︂
zij

]︂
ln(ωiωj) = 0∑︁

i<j

[︂
wij −

(︂
aij+Gije

−zij

1+Gije
−zij

)︂
zij

]︂
ln dij = 0

(A25)

with a clear meaning of the symbols.

A.2.4 Zero-inflated negative binomial model

As for the ZIP model, the zero-inflated version of the negative binomial
model induces a log-likelihood reading

L = lnQ(W)

= lnP (A) + lnQ(W|A)

=
∑︂
i<j

[aij ln pij + (1− aij) ln(1− pij) + ln qij(wij |aij)] (A26)

where

pZINB
ij =

Gij
1 +Gij

(1− τij), (A27)

qZINB
ij (wij |aij) =

(︃
m+ wij − 1

wij

)︃aij (︃ τij
1− τij

)︃aij (︃ αzij
1 + αzij

)︃wij

(A28)

with α = m−1, τij =
(︂

1
1+αzij

)︂m
, zij = ρ(ωiωj)

βdγij and Gij = δωiωj .
Hence,
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LZINB =
∑︂
i<j

[aij lnGij − aij ln(1 +Gijτij) + ln(1 +Gijτij)− ln(1 +Gij)

+wij ln(αzij)− wij ln(1 + αzij)−maij ln(1 + αzij) + aij ln Γ[m+ wij ]

−aij ln Γ[wij + 1]− aij ln Γ[m]] (A29)

whose optimization leads to the set of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︁
i<j

[︃
aij−pZINB

ij

1+Gijτij

]︃
= 0∑︁

i<j

[︂
wij −

(︂
aij+Gijτij
1+Gijτij

)︂]︂(︂
zij

1+αzij

)︂
= 0∑︁

i<j

[︂
wij −

(︂
aij+Gijτij
1+Gijτij

)︂]︂(︂
zij

1+αzij

)︂
ln(ωiωj) = 0∑︁

i<j

[︂
wij −

(︂
aij+Gijτij
1+Gijτij

)︂]︂(︂
zij

1+αzij

)︂
ln dij = 0∑︁

i<j

(︂
aij+Gijτij
1+Gijτij

)︂(︂
m2 ln (1 + αzij)− mzij

1+αzij

)︂
+

+
∑︁
i<j

[︃
wij

α(1 + αzij)
−m2aij

(︃
Γ
′
[m+wij ]

Γ[m+wij ]
− Γ

′
[m]

Γ[m]

)︃]︃
= 0.

(A30)

A.3 Maximum-entropy models

This section is devoted to the detailed description of the maximum-entropy
models considered in the present work. As for the econometric ones, the
estimation of the set of parameters defining each model is carried out by
maximizing the corresponding log-likelihood function, L = lnQ(W).

ME models are derived by maximizing Shannon entropy under a
suitable set of constraints. The generic probability mass function reads

Q(W) =
∏︂
i<j

qij(wij)

=
∏︂
i<j

p
aij
ij (1− pij)1−aij · qij(wij |aij)

=
∏︂
i<j

p
aij
ij (1− pij)1−aij · y

wij−aij
ij (1− yij)aij = P (A)Q(W|A)

(A31)

and induces the log-likelihood
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L = lnQ(W)

= lnP (A) + lnQ(W|A)

=
∑︂
i<j

[aij ln pij + (1− aij) ln(1− pij) + ln qij(wij |aij)]. (A32)

In order to turn maximum-entropy models into proper econometric
ones, we have posed yij

1−yij = zij = ρ(ωiωj)
βdγij , with ωi = GDPi

GDP
.

Let us start instantiating the ME formalism by considering the Hamil-
tonian

H(1)(W) = θ0L+ ψ0W +
∑︂
i<j

ψijwij (A33)

that leads to

L(1) = L lnx+W ln y0

+
∑︂
i<j

[wij ln zij − wij ln(1 + zij) + ln(1 + zij − y0zij)

− ln(1 + zij − y0zij + xy0zij)] (A34)

whose optimization leads to solve the following set of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︁
i<j [aij − p

(1)
ij ] = 0∑︁

i<j [wij − ⟨wij⟩(1)] = 0∑︁
i<j [wij − ⟨wij⟩(1)]

(︂
1

1+zij

)︂
= 0∑︁

i<j [wij − ⟨wij⟩(1)]
(︂

ln(ωiωj)
1+zij

)︂
= 0∑︁

i<j [wij − ⟨wij⟩(1)]
(︂

ln dij
1+zij

)︂
= 0

(A35)

the first equation guaranteeing that the total number of links is preserved,
i.e.

L = ⟨L⟩ =
∑︂
i<j

xy0zij
1 + zij − y0zij + xy0zij

=
∑︂
i<j

p
(1)
ij (A36)

and the second equation guaranteeing that the total weight is preserved,
i.e.
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W = ⟨W ⟩ =
∑︂
i<j

p
(1)
ij (1 + zij)

1 + zij − y0zij
=
∑︂
i<j

⟨wij⟩(1). (A37)

On the other hand, the Hamiltonian

H(2)(W) =
∑︂
i

θiki + ψ0W +
∑︂
i<j

ψijwij (A38)

leads to the expression

L(2) =
∑︂
i

ki lnxi +W ln y0

+
∑︂
i<j

[wij ln zij − wij ln(1 + zij) + ln(1 + zij − y0zij)

− ln(1 + zij − y0zij + xixjy0zij)] (A39)

whose optimization requires to solve the set of equations below⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︁
j(̸=i)[aij − p

(2)
ij ] = 0, ∀ i∑︁

i<j [wij − ⟨wij⟩(2)] = 0∑︁
i<j [wij − ⟨wij⟩(2)]

(︂
1

1+zij

)︂
= 0∑︁

i<j [wij − ⟨wij⟩(2)]
(︂

ln(ωiωj)
1+zij

)︂
= 0∑︁

i<j [wij − ⟨wij⟩(2)]
(︂

ln dij
1+zij

)︂
= 0

(A40)

the first set of N equations guaranteeing that each degree is preserved,
i.e.

ki = ⟨ki⟩ =
∑︂
j( ̸=i)

xixjy0zij
1 + zij − y0zij + xixjy0zij

=
∑︂
j( ̸=i)

p
(2)
ij (A41)

and the (N + 1)-th equation guaranteeing that the total weight is pre-
served, i.e.

W = ⟨W ⟩ =
∑︂
i<j

p
(2)
ij (1 + zij)

1 + zij − y0zij
=
∑︂
i<j

⟨wij⟩(2). (A42)

The factorized probability mass function Q(W) = P (A)Q(W|A) al-
lows us to design two-step models, i.e. network models whose binary
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estimation step can be defined independently from the weighted one. To
this aim, let us combine the probability distribution of the Undirected Bi-
nary Configuration Model, inducing a single-link probability coefficient
reading pUBCM

ij =
xixj

1+xixj
, with the usual weighted, conditional one, i.e.

qij(wij |aij) =
(︂
y0zij
1+zij

)︂wij−aij
·
(︂

1+zij−y0zij
1+zij

)︂aij
. As a result, one obtains

LTS =
∑︂
i

ki lnxi + (W − L) ln y0

+
∑︂
i<j

[− ln(1 + xixj) + (wij − aij) ln zij − wij ln(1 + zij)

+aij ln(1 + zij − y0zij)]
(A43)

whose optimization requires to solve the set of equations below⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︁
j(̸=i)[aij − pTS

ij ] = 0, ∀ i∑︁
i<j [wij − ⟨wij⟩TS] = 0∑︁
i<j [wij − ⟨wij⟩TS]

(︂
1

1+zij

)︂
= 0∑︁

i<j [wij − ⟨wij⟩TS]
(︂

ln(ωiωj)
1+zij

)︂
= 0∑︁

i<j [wij − ⟨wij⟩TS]
(︂

ln dij
1+zij

)︂
= 0

(A44)

the first set of N equations guaranteeing that each degree is preserved,
i.e.

ki = ⟨ki⟩ =
∑︂
j(̸=i)

xixj
1 + xixj

=
∑︂
j(̸=i)

pTS
ij =

∑︂
j( ̸=i)

pUBCM
ij (A45)

and the (N+1)-th equation guaranteeing that the total conditional weight
is preserved, i.e.

W = ⟨W ⟩ =
∑︂
i<j

aij(1 + zij)

1 + zij − y0zij
=
∑︂
i<j

⟨wij⟩TS. (A46)

The amount of structural information to constrain can be further re-
duced by imagining a two-step model whose binary estimation step en-
codes a larger amount of ‘economic’ information. To this aim, let us com-
bine the probability distribution of the density-corrected Gravity Model,
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inducing a single-link probability coefficient reading pTSF
ij =

Gij

1+Gij
, with

the usual weighted, conditional one, i.e. qij(wij |aij = 1) =
(︂
y0zij
1+zij

)︂wij−aij
·(︂

1+zij−y0zij
1+zij

)︂aij
. As a result, one obtains

LTSF =
∑︂
i<j

[aij lnGij − ln(1 +Gij) + (W − L) ln y0

+(wij − aij) ln zij − wij ln(1 + zij) + aij ln(1 + zij − y0zij)]
(A47)

whereGij = δωiωj . Its optimization leads to the resolution of the follow-
ing set of equations⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑︁
i<j [aij − pTSF

ij ] = 0∑︁
i<j [wij − ⟨wij⟩TSF] = 0∑︁
i<j [wij − ⟨wij⟩TSF]

(︂
1

1+zij

)︂
= 0∑︁

i<j [wij − ⟨wij⟩TSF]
(︂

ln(ωiωj)
1+zij

)︂
= 0∑︁

i<j [wij − ⟨wij⟩TSF]
(︂

ln dij
1+zij

)︂
= 0

(A48)

the first equation guaranteeing that the total number of links is preserved,
i.e.

L = ⟨L⟩ =
∑︂
j( ̸=i)

Gij
1 +Gij

=
∑︂
j(̸=i)

pTSF
ij =

∑︂
j(̸=i)

pdcGM
ij (A49)

and the second equation guaranteeing that the total conditional weight
is preserved, i.e.

W = ⟨W ⟩ =
∑︂
i<j

aij(1 + zij)

1 + zij − y0zij
=
∑︂
i<j

⟨wij⟩TSF. (A50)
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Appendix B

Continuous-valued models

Appendix B, based on [2], further expands on the models presented in chap-
ter 3. The first section discusses the so-called conditional models, characterized
by a separate estimation of purely structural and weighted parameters: the cor-
responding log-likelihood as well as the set of first-order conditions required to
maximize it are illustrated therein. The second section discusses the so-called
integrated models, characterized by a joint estimation of purely structural and
weighted parameters. The third section focuses on the model-dependent rules to
enrich (otherwise) purely structural models with economic factors. The fourth
section derives the expressions of the dyadic Shannon entropy and Fisher Infor-
mation Measure for each, conditional model which are, then, used to construct
the related Shannon-Fisher plane.

B.1 Conditional models

Any member of the class of conditional models is described by the ex-
pression

Q(W|A) =
e−H(W)∫︁

WA
e−H(W)dW

(B1)

the single instances being characterized by different expressions of the
Hamiltonian. Since, however, each Hamiltonian considered here is a sum
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over the node pairs, the result

Q(W|A) =
e−

∑︁
i<j Hij(wij)∫︁

WA
e−

∑︁
i<j Hij(wij)dW

=
∏︂
i<j

e−Hij(wij)[︂∫︁ +∞
mij

e−Hij(wij)dwij

]︂aij =
∏︂
i<j

e−Hij(wij)

ζ
aij
ij

(B2)

holds irrespectively from the specific functional form of Hij(wij). Notice
thatmij is the minimum, pair-specific weight allowed by the model. The
identifications

Hij(wij) ≡ f(wij |θ, zij(ψ)) (B3)

and

L ≡ lnQ(W|A) (B4)

lead to estimate parameters by solving the (coupled) systems of purely
structural equations ∂L

∂θ = 0 and econometric-like equations ∂L
∂τ = 0, i.e.⎧⎨⎩

∑︁
i<j|aij=1

[︂
∂f(wij |θ,zij(ψ))

∂θ + 1
ζij

(︂
∂ζij
∂θ

)︂]︂
= 0∑︁

i<j|aij=1

[︂
∂f(wij |θ,zij(ψ))

∂zij
+ 1

ζij

(︂
∂ζij
∂zij

)︂]︂
∂zij
∂ψ = 0.

(B5)

Notice that the estimation of the parameters carried out by maximiz-
ing the conditional likelihood, and letting only the positive weights to
be accounted for, is perfectly consistent with the theory of hurdle mod-
els [152, 70]: although alternative estimation procedures can be devised
(see, for example, [63]), in the present paper, we will stick to the proper,
econometric one - which has been already employed in our compan-
ion paper [1], to estimate the parameters of conditional, discrete-valued
models.

B.1.1 Conditional exponential model

The conditional exponential model is defined by the expression

Hij(wij) = (β0 + βij)wij (B6)
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that induces the following node pair-specific partition function

ζij =

∫︂ +∞

0

e−(β0+βij)wijdwij =
1

β0 + βij
. (B7)

After the econometric reparametrization, according to which βij ≡
z−1ij , the log-likelihood function of the conditional exponential model
reads

L =
∑︂
i<j

(aij=1)

[−(β0 + z−1ij )wij − ln(ζij)]; (B8)

hence, its maximization leads to the system of equations{︄∑︁
i<j|aij=1[⟨wij |aij = 1⟩ − wij ] = 0∑︁
i<j|aij=1[⟨wij |aij = 1⟩ − wij ]∂α(z−1ij ) = 0

(B9)

where ⟨wij |aij = 1⟩ = zij
1+β0zij

. Notice that we have a condition on the
parameters, reading β0 + βij > 0.

B.1.2 Conditional gamma model

The conditional gamma model is defined by the expression

Hij(wij) = (β0 + βij)wij + ξ0 ln(wij) (B10)

and induces the following node pair-specific partition function

ζij =

∫︂ ∞
0

e−(β0+βij)wijw−ξ0ij dwij =
Γ(1− ξ0)

(β0 + βij)1−ξ0
. (B11)

After the econometric reparametrization, according to which βij ≡
z−1ij , the log-likelihood function of the conditional gamma model reads

L =
∑︂
i<j

(aij=1)

[−(β0 + z−1ij )wij − ξ0 ln(wij)− ln(ζij)]; (B12)

hence, its maximization leads to the system of equations
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⎧⎪⎨⎪⎩
∑︁
i<j|aij=1[⟨wij |aij = 1⟩ − wij ] = 0∑︁
i<j|aij=1[⟨ln(wij)|aij = 1⟩ − ln(wij)] = 0∑︁
i<j|aij=1[⟨wij |aij = 1⟩ − wij ]∂α(z−1ij ) = 0

(B13)

where ⟨wij |aij = 1⟩ =
zij(1−ξ0)
1+β0zij

and ⟨ln(wij)|aij = 1⟩ = ψ(1 − ξ0) −
ln
(︁
β0 + z−1ij

)︁
. Notice that we have conditions on the parameters, reading

β0 + βij > 0 and ξ0 < 1.

B.1.3 Conditional Pareto model

The conditional Pareto model is defined by the expression

Hij(wij) = ξij ln(wij) (B14)

that induces the following node pair-specific partition function

ζij =

∫︂ +∞

mij

e−ξij ln(wij)dwij =

∫︂ +∞

mij

w
−ξij
ij dwij =

m
1−ξij
ij

ξij − 1
. (B15)

After the econometric reparametrization, according to which ξij−2 ≡
z−1ij andmij ≡ wmin, the log-likelihood function of the conditional Pareto
model reads

L =
∑︂
i<j

(aij=1)

[−(2 + z−1ij ) ln(wij)− ln(ζij)]; (B16)

hence, its maximization leads to the system of equations∑︂
i<j|aij=1

[⟨ln(wij)|aij = 1⟩ − ln(wij)]∂α(z
−1
ij ) = 0 (B17)

where ⟨ln(wij)|aij = 1⟩ = ln(wmin) +
zij

1+zij
. Notice that we have condi-

tions on the parameters, reading wmin > 0 and ξij > 2.

B.1.4 Conditional log-normal model

The conditional log-normal model is defined by the expression
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Hij(wij) = ξij ln(wij) + γ0 ln
2(wij) (B18)

that induces the following node pair-specific partition function

ζij =

∫︂ +∞

0

e−ξij ln(wij)−γ0 ln2(wij)dwij

=

∫︂ +∞

−∞
e(1−ξij)tije−γ0t

2
ijdtij =

√︃
π

γ0
e

(ξij−1)2

4γ0 (B19)

a result that is readily obtained by putting tij = ln(wij) and exploiting

the relationship
∫︁ +∞
−∞ e−ax

2+bx+cdx =
√︁

π
a e

b2

4a+c.
After the econometric reparametrization, according to which 1−ξij ≡

ln(zij), the log-likelihood function of the conditional log-normal model
reads

L =
∑︂
i<j

(aij=1)

[(ln(zij) + 1) ln(wij)− γ0 ln2(wij)− ln(ζij)]; (B20)

hence, its maximization leads to the system of equations{︄∑︁
i<j|aij=1[⟨ln

2(wij)|aij = 1⟩ − ln2(wij)] = 0∑︁
i<j|aij=1[⟨ln(wij)|aij = 1⟩ − ln(wij)]∂α ln(zij) = 0

(B21)

where ⟨ln2(wij)|aij = 1⟩ = 2γ0+ln2(zij)

4γ2
0

and ⟨ln(wij)|aij = 1⟩ = ln(zij)
2γ0

.
Notice that we have a condition on the parameters, reading γ0 > 0.

B.2 Integrated models

Any member of the class of integrated models is described by the expres-
sion

Q(W) =
e−H(W)∫︁

W e−H(W)dW
(B22)

the single instances being characterized by different expressions of the
Hamiltonian. Since, however, each Hamiltonian considered here is a sum
over the node pairs, the result
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Q(W) =
e−

∑︁
i<j Hij(wij)∫︁

W e−
∑︁

i,j Hij(wij)dW

=
∏︂
i<j

e−Hij(wij)∑︁
aij=0,1

∫︁
Θ[wij ]=aij

e−Hij(wij)dwij
=
∏︂
i<j

e−Hij(wij)

Zij
(B23)

holds irrespectively from the specific functional form of Hij(wij). The
identifications

Hij(wij) ≡ f(wij |θ, zij(ψ)) (B24)

and

L ≡ lnQ(W) (B25)

lead to estimate parameters by solving the (coupled) systems of purely
structural equations ∂L

∂θ = 0 and econometric-like equations ∂L
∂ψ = 0, i.e.⎧⎨⎩

∑︁
i<j

[︂
∂f(wij |θ,zij(ψ))

∂θ + 1
Zij

(︂
∂Zij

∂θ

)︂]︂
= 0∑︁

i<j

[︂
∂f(wij |θ,zij(ψ))

∂zij
+ 1

Zij

(︂
∂Zij

∂zij

)︂]︂
∂zij
∂ψ = 0.

(B26)

The integrated exponential model we have considered in the present
paper is defined by the expression

Hij(wij) = (αi + αj)aij + (β0 + βij)wij (B27)

that induces the following node pair-specific partition function

Zij =

1∑︂
aij=0

∫︂
Θ[wij ]=aij

e−(αi+αj)aij−(β0+βij)wijdwij

= 1 + e−(αi+αj)

∫︂ +∞

0

e−(β0+βij)wijdwij = 1 +
e−(αi+αj)

β0 + βij
. (B28)

After the econometric re-parametrization, according to which βij ≡
z−1ij , the log-likelihood function of the exponential model reads

L =
∑︂
i<j

[−(αi + αj)aij − (β0 + z−1ij )wij − ln(Zij)]; (B29)
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hence, its maximization leads to the system of equations⎧⎪⎨⎪⎩
⟨ki⟩ − ki = 0, ∀ i
⟨W ⟩ −W = 0∑︁
i<j [⟨wij⟩ − wij ]∂α(z

−1
ij ) = 0

(B30)

where ki =
∑︁
j(̸=i) aij is the empirical degree of node i, wij is the empiri-

cal, pair-specific weight andW =
∑︁
i<j wij is the empirical, total weight;

⟨ki⟩ =
∑︁
j( ̸=i) pij , ⟨wij⟩ and ⟨W ⟩ =

∑︁
i<j⟨wij⟩ are their expected coun-

terparts.
Notice that we have a condition on the parameters, reading β0+βij >

0.

B.3 Turning structural models into econometric
ones

So far, we have derived two classes of models, by explicitly solving the
constrained maximization of a number of functionals derived from the
KL divergence. As the functional form of the probability distributions
belonging to the two classes (solely) depends on the enforced constraints,
such models ‘are born’ as purely structural ones.

In order to turn them into candidate models to be employed for econo-
metric purposes, we need to properly transform (some of) the Lagrange
multipliers into functions of the econometric quantities of relevance for
the problem at hand. In this respect, the theory of GLMs provides help-
ful suggestions about how to proceed; besides, one can figure out some
(sets of) basic requirements such a transformation should satisfy:

• the transformation should turn the expected values ⟨wij⟩ and ⟨wij |aij =
1⟩ into positive, monotonically increasing functions of zij ;

• the transformation should not violate the mathematical require-
ments to have well-defined (first and second) distribution moments.

In what follows, we will focus on the conditional models.
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B.3.1 Conditional exponential model

It is characterized by the expression

⟨wij |aij = 1⟩ = 1

β0 + βij
(B31)

that can be turned into an econometric one by posing

⟨wij |aij = 1⟩ = 1

β0 + βij
≡ g(zij) (B32)

according to the prescription informing the so-called generalized linear
models (GLMs). Before specifying the functional form of g, let us con-
sider that the dyadic parameter βij must be decreasing in zij - a require-
ment that can be justified upon identifying βij as the ‘shadow price’ that
countries i and j have to pay to trade a unity of goods [153]; analogously,
β0 can be interpreted as modelling a global tax that everyone has to pay
to exchange goods - independently of its trade ‘capacity’. These consid-
erations lead us to impose βij ≡ z−1ij , a choice inducing the expression

⟨wij |aij = 1⟩ = 1

β0 + z−1ij
=

zij
1 + β0zij

(B33)

which violates none of the requirements listed at the beginning of the
section.

B.3.2 Conditional gamma model

It is characterized by the expressions

⟨wij |aij = 1⟩ = 1− ξ0
β0 + βij

, (B34)

⟨ln(wij)|aij = 1⟩ = ψ(1− ξ0)− ln(β0 + βij) (B35)

(where ψ(x) = Γ′(x)/Γ(x) is the digamma function) that can be turned
into econometric ones by posing βij ≡ z−1ij , according to considerations
which are analogous to those driving the econometric reparametrization
of the conditional, exponential model. This choice induces the expres-
sions

146



⟨wij |aij = 1⟩ = 1− ξ0
β0 + z−1ij

=
(1− ξ0)zij
1 + β0zij

, (B36)

⟨ln(wij)|aij = 1⟩ = ψ(1− ξ0)− ln
(︁
β0 + z−1ij

)︁
; (B37)

notice that the conditional, exponential model is recovered in case ξ0 =

0 (i.e. when the constraint on the sum of the logarithms of weights is
switched-off).

B.3.3 Conditional Pareto model

It is characterized by the expression

⟨wij |aij = 1⟩ =
(︃
ξij − 1

ξij − 2

)︃
mij (B38)

that can be turned into an econometric one by posing

⟨wij |aij = 1⟩ =
(︃
ξij − 1

ξij − 2

)︃
mij ≡ g(zij) (B39)

according to the prescription informing the GLMs. Upon considering
that 1) the (conditional) expected value is well defined only if ξij − 2 > 0

and that 2) a linear relationship between the former and zij would be
desirable, a suitable reparametrization may read ξij−2 ≡ z−1ij and mij ≡
wmin, in turn leading to

⟨wij |aij = 1⟩ = (1 + zij)wmin (B40)

which violates none of the requirements listed at the beginning of the
section.

B.3.4 Conditional log-normal model

It is characterized by the expressions

⟨ln(wij)|aij = 1⟩ = 1− ξij
2γ0

, (B41)

⟨ln2(wij)|aij = 1⟩ = 2γ0 + (1− ξij)2

4γ20
. (B42)
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Upon considering that the logarithm of weights can admit negative
values, i.e. whenwij ∈ (0, 1), and that there are no theoretical restrictions
on the sign of ⟨ln(wij)|aij = 1⟩, a suitable reparametrization may read
1− ξij ≡ ln(zij), in turn leading to

⟨ln(wij)|aij = 1⟩ = ln(zij)

2γ0
, (B43)

⟨ln2(wij)|aij = 1⟩ = 2γ0 + ln2(zij)

4γ20
(B44)

which violate none of the requirements listed at the beginning of the sec-
tion.

B.4 The Shannon-Fisher plane

Here, starting from the conditional probability density function qij(w|aij =
1), for each connected dyad we compute explicitly the continuous Shan-
non entropy Sij and the Fisher Information Measure (FIM) Fij needed to
construct the Shannon-Fisher plane introduced in section 3.3.4. We do so
for each model separately.

B.4.1 Conditional exponential model

The conditional exponential model is defined by the probability distri-
bution

qij(wij |aij = 1) = (β0 + βij)e
−(β0+βij)wij (B45)

inducing a Shannon entropy reading

Sij = ⟨Hij⟩+ ln ζij = 1− ln[β0 + βij ] (B46)

and a FIM reading

Fij = ⟨(H ′ij)2⟩ = (β0 + βij)
2; (B47)

as the value of the parameter β0 + βij increases, Shannon entropy de-
creases while Fisher Information Measure increases as well.
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B.4.2 Conditional gamma model

The conditional gamma model is defined by the probability distribution

qij(wij |aij = 1) =
(β0 + βij)

1−ξ0

Γ(1− ξ0)
w−ξ0ij e−(β0+βij)wij (B48)

inducing a Shannon entropy reading

Sij = ⟨Hij⟩+ ln ζij = − ln[β0 + βij ] + ξ0ψ(1− ξ0) + lnΓ(1− ξ0) + (1− ξ0)
(B49)

and a FIM reading

Fij = ⟨(H ′ij)2⟩ = (β0 + βij)
2 + 2ξ0(β0 + βij)⟨w−1ij |aij = 1⟩+ ξ20⟨w−2ij |aij = 1⟩

= (β0 + βij)
2

[︃
1 + 2ξ0

Γ(−ξ0)
Γ(1− ξ0)

+ ξ20
Γ(−1− ξ0)
Γ(1− ξ0)

]︃
; (B50)

the expression above does not diverge for the values of the parameter
ξ0 ensuring that the (first) two, negative moments, ⟨w−1ij |aij = 1⟩ and
⟨w−2ij |aij = 1⟩, of the (conditional) gamma distribution do not diverge as
well, i.e. ξ0 < −1.

B.4.3 Conditional Pareto model

The conditional Pareto model is defined by the probability distribution

qij(wij |aij = 1) =
ξij − 1

m
1−ξij
ij

w
−ξij
ij (B51)

inducing a Shannon entropy reading

Sij = ⟨Hij⟩+ ln ζij =

(︃
ξij

ξij − 1

)︃
− ln[ξij − 1] + lnmij (B52)

and a FIM reading

Fij = ⟨(H ′ij)2⟩ =
ξ2ij
m2

(︃
ξij − 1

ξij + 1

)︃
; (B53)

the expression above holds true for the values of the parameter ξij en-
suring that the Pareto distribution exists, i.e. ξij > 1. Besides, the con-
vergence of the second, negative moment of the (conditional) Pareto dis-
tribution ensures that its FIM does not diverge as well.
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B.4.4 Conditional log-normal model

The conditional log-normal model is defined by the probability distribu-
tion

qij(wij |aij = 1) =
e−ξij ln(wij)−γ0 ln2(wij)√︂

π
γ0
e

(ξij−1)2

4γ0

(B54)

inducing a Shannon entropy reading

Sij = ⟨Hij⟩+ ln ζij =
1− ξij
2γ0

+
1

2

[︃
1 +

1

2
ln

(︃
π

γ0

)︃]︃
(B55)

and a FIM reading

Fij = ⟨(H ′ij)2⟩ = eξij/γ0(1 + 2γ0 + ξij + ξ2ij); (B56)

the expression above holds true for the values of the parameter γ0 ensur-
ing that the log-normal distribution exists, i.e. γ0 > 0.
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Appendix C

Three, different parameter
estimation procedures

Appendix C, based on [3], expands on the different procedures to estimate pa-
rameters presented in chapter 4. The first section provides a brief overview of
the topic for conditional models. The second section focuses on the implementa-
tion of the three parameter estimation methods named ‘deterministic’, ‘annealed’
and ‘quenched’ for three types of models, i.e. scalar (or homogeneous), vector (or
weakly heterogeneous), tensor (or strongly heterogeneous) ones.

C.1 The functional form of conditional models

The constrained maximization of S(Q|P ) proceeds by specifying the set
of weighted constraints reading

1 =

∫︂
WA

P (W|A)dW, ∀A ∈ A, (C1)

⟨Cα⟩ =
∑︂
A∈A

P (A)

∫︂
WA

Q(W|A)Cα(W)dW, ∀ α (C2)

the first condition ensuring the normalisation of the probability distri-
bution and the vector {Cα(W)} representing the proper set of weighted
constraints. The distribution induced by them reads
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Q(W|A) =
e−H(W)

ZA

=
e−H(W)∫︁

WA
e−H(W)dW

=
e−

∑︁
i<j Hij(wij)∫︁

WA
e−

∑︁
i<j Hij(wij)dW

=
∏︂
i<j

e−Hij(wij)[︂∫︁ +∞
mij

e−Hij(wij)dwij

]︂aij =
∏︂
i<j

e−Hij(wij)

ζ
aij
ij

(C3)

if W ∈ WA and 0 otherwise - since each Hamiltonian considered in the
present paper is separable, i.e. a sum of node pairs-specific Hamiltoni-
ans: in formulas, H(W) =

∑︁
i<j Hij(wij).

C.2 Estimating the parameters

Let us, now, provide general expressions for the ‘deterministic’ and the
‘annealed’ recipe for parameter estimation. The first one follows from
writing

Lψ = lnQ(W∗|A∗)

= −H(W∗)− ln

[︃∫︂
WA∗

e−H(W)dW

]︃
=
∑︂
i<j

Hij(w
∗
ij)− ln

∏︂
i<j

ζ
aij
ij =

∑︂
i<j

[Hij(w
∗
ij)− a∗ij ln ζij ] (C4)

while the second one follows from writing

Gψ =
∑︂
A∈A

P (A) lnQ(W∗|A) = ⟨Lψ⟩ =
∑︂
i<j

[Hij(w
∗
ij)− pij ln ζij ]. (C5)

C.2.1 ‘Scalar’ or homogeneous variant of the CEM

In the particular case of the UBRGM-induced, homogeneous variant of
the CEM, one can derive the ‘quenched’ distribution of the parameter β
upon considering that it is a function of the discrete, random variable L.
Since L ∼ Bin(N(N − 1)/2, p), with p = 2L∗/N(N − 1), one finds that

β ∼
(︃N(N−1)

2

W ∗β

)︃
pW

∗β(1− p)
N(N−1)

2 −W∗β (C6)
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an expression allowing us to derive the expected value of β, i.e.

⟨β⟩ =

N(N−1)
2W∗∑︂
β=0

β

(︃N(N−1)
2

W ∗β

)︃
pW

∗β(1− p)
N(N−1)

2 −W∗β

=
N(N − 1)

2W ∗
p =
⟨L⟩
W ∗

=
L∗

W ∗
(C7)

as well as its variance. Since

⟨β2⟩ =

N(N−1)
2W∗∑︂
β=0

β2

(︃N(N−1)
2

W ∗β

)︃
pW

∗β(1− p)
N(N−1)

2 −W∗β

=
N(N − 1)

2(W ∗)2
p+

N(N − 1)

2(W ∗)2

[︃
N(N − 1)

2(W ∗)2
− 1

]︃
p2 (C8)

we have that

Var[β] = ⟨β2⟩ − ⟨β⟩2 =
N(N − 1)

2(W ∗)2
p(1− p) = Var[L]

(W ∗)2
=

L∗

(W ∗)2

[︃
N(N − 1)− 2L∗

N(N − 1)

]︃
(C9)

with Var[L] = N(N − 1)/2 · p(1 − p). Since the distribution obeyed by
L converges to the normal distribution N (L∗,Var[L]), the distribution
obeyed by β converges to the distribution

g(β) =
W ∗√︁

2πVar[L]
e−

(W∗β−L∗)2
2Var[L]

=
1√︁

2πVar[L]/(W ∗)2
e
− (β−L∗/W∗)2

2Var[L]/(W∗)2
1√︁

2πVar[β]
e−

(β−β∗)2
2Var[β] = N (β∗,Var[β])

(C10)

with β∗ = L∗/W ∗ and Var[β] = Var[L]/(W ∗)2.

In the case of the UBCM-induced, homogeneous version of the CEM,
L obeys the Poisson-Binomial (PB) distribution reading
PB(N(N − 1)/2, {pUBCM}Ni,j=1) whose normal approximation reads
N (L∗,Var[L]), with Var[L] =

∑︁
i<j p

UBCM
ij (1 − pUBCM

ij ); as a consequence,
the distribution obeyed by β converges toN (β∗,Var[β]), with β∗ = L∗/W ∗

and Var[β] = Var[L]/(W ∗)2.
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Figure 22: Estimations of the parameters β168, β170 and β171 (top panels,
from left to right), entering the definition of the weakly heterogeneous ver-
sion of the CEM, where the binary topology is either ‘deterministic’ (black)
or generated via the UBRGM (blue), the UBCM (green) and the LM (red).
The deterministic approach leads to a single estimate, while the other ap-
proaches lead to either a single, ‘annealed’ estimate (vertical, solid lines)
or to a whole distribution of ‘quenched’ estimates (histograms with nor-
mal density curves having the same average and standard deviation, con-
structed over an ensemble of 5.000 binary configurations; the average value
is indicated by a vertical, dash-dotted line). Each ‘annealed’ estimate over-
laps with the average value of the related ‘quenched’ distribution, although
1) the latter ones are well separated in the case of node 168, 2) only partly
overlapped in the case of node 171, 3) the UBCM-induced and the LM-
induced ones overlap while the UBRGM-induced one remains well sepa-
rated in the case of node 170. Moreover, the ‘deterministic’ estimates are al-
ways very close to (if not overlapping with) the UBCM-induced, ‘annealed’
ones. Although the empirical and theoretical CDFs (respectively depicted
as solid lines and dotted lines in the bottom panels) seem to be in a very
good agreement, the Anderson-Darling test never rejects the normality hy-
pothesis only for node 166 and does not reject the normality hypothesis in
the case of the UBCM-induced distribution of estimates for node 168.

In the case of the LM-induced, homogeneous version of the CEM, L
obeys the Poisson-Binomial distribution reading PB(N(N−1)/2, {pLM}Ni,j=1)

whose normal approximation reads N (L∗,Var[L]), with
Var[L] =

∑︁
i<j p

LM
ij (1−pLM

ij ); as a consequence, the distribution obeyed by
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β converges toN (β∗,Var[β]), with β∗ = L∗/W ∗ and Var[β] = Var[L]/(W ∗)2.

C.2.2 ‘Vector’ or weakly heterogeneous variant of the CEM

As pointed out in the main text, each ‘annealed’ estimation overlaps with
the average value of the related ‘quenched’ distribution although 1) the
latter ones are well separated, in the case of node 168, 2) only partly
overlapped, in the case of node 171, 3) the UBCM-induced and the LM-
induced ones overlap while the UBRGM-induced one remains well sep-
arated, in the case of node 170 (see Fig. 22). Moreover, the ‘deterministic’
estimation is always very close to the UBCM-induced, ‘annealed’ one - a
result that may be a consequence of the accurate description of the em-
pirical network topology provided by the UBCM - evidently, much more
accurate than those provided by the UBRGM and the LM.

Each solid line in Fig. 22 represents a normal distribution whose av-
erage value and variance coincide with the ones of the corresponding
sample distribution: although the empirical and theoretical CDFs seem
to be in (a very good) agreement, the Anderson-Darling test never re-
jects the normality hypothesis only for node 166 and does not reject the
normality hypothesis in the case of the UBCM-induced distribution of
values for node 168.

C.2.3 ‘Tensor’ variant of the CEM

Let us, now, leave βij in its tensor form and constrain the set of weight-
specific estimates ŵij , ∀ i < j. In this case, the three recipes lead to the
following estimates
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Figure 23: Empirical CDFs for the parameters (from left to right) β0, ρ, α
and γ entering the definition of the econometric version of the CEM, where
the binary topology is either ‘deterministic’ (black) or generated via the
UBRGM (blue), the UBCM (green) and the LM (red). The deterministic ap-
proach leads to a single estimate, while the other approaches lead to either
a single, ‘annealed’ estimate (vertical, solid lines) or to a whole distribu-
tion of ‘quenched’ estimates (constructed over an ensemble of 5.000 binary
configurations; the corresponding average value is indicated by a vertical,
dash-dotted line). The shapes of the ‘quenched’, cumulative distributions
induced by the three, binary recipes are very similar.

Lψ =
∑︂
i<j

[−βijŵij + a∗ij lnβij ] =⇒ βij =
a∗ij
ŵij

(C11)

Gψ =
∑︂
i<j

[−βijŵij + pij lnβij ] =⇒ βij =
pij
ŵij

(C12)

⟨βij⟩ =
∑︂
A∈A

P (A)βij(A) =
∑︂
A∈A

P (A)
aij
ŵij

=⇒ ⟨βij⟩ =
pij
ŵij

(C13)

a result signalling large differences between the ‘deterministic’ recipe, on
the one hand, and the ‘quenched’ and ‘annealed’ recipes, on the other -
that, instead, coincide. If, however, ŵij ≡ w∗ij , ∀ i < j then, for consis-
tency, pij ≡ a∗ij and the three recipes coincide.

C.2.4 ‘Econometric’ variant of the CEM

As Figs. 15 and 23 show, the ‘deterministic’ estimation is always quite
different from the other, two ones - the only exception being represented
by the parameter α, under the UBCM-induced, binary recipe. Such a
result should warn from employing the ‘deterministic’ estimation recipe
tout court as ignoring the variety of structures that are compatible with a
given probability distribution P (A) will, in general, affect the estimation
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of the parameters of interest.
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Appendix D

Maximum-entropy models
for motifs detection

Appendix D, based on [4], expands on the structural models presented in chap-
ter 5. The first section focuses on binary models, i.e. the Directed Binary
Configuration Model (DBCM), constraining the out-degree and in-degree se-
quences, and the Reciprocal Binary Configuration Model (RBCM), constrain-
ing the non-reciprocated and reciprocated degrees. The second section focuses
on weighted, conditional models, i.e. the CReMA, constraining the out-strength
and in-strength sequences, and the CRWCM, constraining the out-strength and
in-strength sequences according to the type of link (i.e. reciprocated or not) sup-
porting the corresponding weight. Both types of models are numerically deter-
mined via the ‘annealed’ approach discussed in chapter 4).

D.1 Binary null models

D.1.1 The Directed Binary Configuration Model (DBCM)

The DBCM is the maximum-entropy model constraining the out-degree
and in-degree sequences. The corresponding Hamiltonian is

H(A) =
∑︂
i

[αouti kouti + αini k
in
i ] =

∑︂
i ̸=j

(αouti + αinj )aij (D1)
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and the partition function reads

Z =
∑︂
A

e−H(A)

=
∑︂
A

e−
∑︁

i̸=i(α
out
i +αin

j )aij =
∏︂
i ̸=j

∑︂
aij=0,1

(xouti xinj )aij =
∏︂
i̸=i

(1 + xouti xinj )

(D2)

where x(·)i = e−α
(·)
i with (·) = {out, in}. After computing the partition

function, one gets

P (A) =
e−H(A)

Z
=
∏︂
i ̸=j

(︁
xouti xinj

)︁aij
1 + xouti xinj

(D3)

allowing us to define a the log-likelihood function as

L = lnP (A)

= −H(A)− lnZ =
∑︂
i

[kouti lnxouti + kini lnxini ]−
∑︂
i̸=j

ln
(︁
1 + xouti xinj

)︁
;

(D4)

parameters are, then, estimated by solving the following set of equations:

∂L
∂αouti

= −kouti +
∑︂
j( ̸=i)

xouti xinj
1 + xouti xinj

= 0, ∀ i (D5)

∂L
∂αini

= −kini +
∑︂
j(̸=i)

xini x
out
j

1 + xini x
out
j

= 0, ∀ i (D6)

D.1.2 The Reciprocal Binary Configuration Model (RBCM)

The RBCM is the maximum-entropy model constraining the reciprocated
and non-reciprocated degree sequences. The corresponding Hamilto-
nian is

H(A) =
∑︂
i

(α→i k
→
i + α←i k

←
i + α↔i k

↔
i ) =

=
∑︂
i<j

(α→i + α←j )a→ij + (α←i + α→j )a←ij + (α↔i + α↔j )a↔ij (D7)
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and the partition function reads

Z =
∑︂
A

e−H(A)

=
∑︂
A

∏︂
i<j

(x→i x
←
j )a

→
ij (x←i x

→
j )a

←
ij (x↔i x

↔
j )a

↔
ij

=
∏︂
i<j

∑︂
{aij}

(x→i x
←
j )a

→
ij (x←i x

→
j )a

←
ij (x↔i x

↔
j )a

↔
ij

=
∏︂
i<j

(1 + x→i x
←
j + x←i x

→
j + x↔i x

↔
j ) (D8)

where xyi = e−α
y
i with · = {→,←,↔}. After computing the partition

function, one gets

P (A) =
e−H(A)

Z
=
∏︂
i<j

(x→i x
←
j )a

→
ij (x←i x

→
j )a

←
ij (x↔i x

↔
j )a

↔
ij

1 + x→i x
←
j + x←i x

→
j + x↔i x

↔
j

(D9)

allowing us to define the log-likelihood function as

L = lnP (A) =

= −H(A)− lnZ =

=
∑︂
i

[k→i lnx→i + k←i lnx←i + k↔i lnx↔]−
∑︂
i<j

ln
(︁
1 + x→i x

←
j + x←i x

→
j + x↔i x

↔
j

)︁
;

(D10)

parameters are, then, estimated by solving the following set of equations:

∂L
∂α→i

= −k→i +
∑︂
j(̸=i)

x→i x
←
j

1 + x→i x
←
j + x←i x

→
j + x↔i x

↔
j

, ∀ i (D11)

∂L
∂α←i

= −k←i +
∑︂
j(̸=i)

x←i x
→
j

1 + x→i x
←
j + x←i x

→
j + x↔i x

↔
j

, ∀ i (D12)

∂L
∂α↔i

= −k↔i +
∑︂
j(̸=i)

x↔i x
↔
j

1 + x→i x
←
j + x←i x

→
j + x↔i x

↔
j

, ∀ i (D13)
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D.2 Conditional weighted null models

D.2.1 Conditional Reconstruction Model A

The CReMA is the conditional maximum-entropy model constraining the
out- and in-strength sequences. The corresponding Hamiltonian is

H(W) =
∑︂
i

(βouti souti + βini s
in
i ) =

∑︂
i ̸=j

(βouti + βinj )wij (D14)

and the partition function reads

ZA =

∫︂
WA

∏︂
i̸=j

e−(β
out
i +βin

j )wijdwij =

(︄
1

βouti + βinj

)︄aij
. (D15)

After computing the partition function, one gets

Q(W|A) =
∏︂
i ̸=j

[︂
(βouti + βinj )e−(β

out
i +βin

j )wij

]︂aij
(D16)

allowing us to define the log-likelihood function as

L = −
∑︂
i

(βouti souti + βini s
in
i ) +

∑︂
i̸=j

aij ln
(︁
βouti + βinj

)︁
; (D17)

in order to account for the variability of the binary adjacency matrix A,
we average the log-likelihood function over the ensemble and obtain its
generalized version

G = −
∑︂
i

(βouti souti + βini s
in
i ) +

∑︂
i ̸=j

pij ln
(︁
βouti + βinj

)︁
(D18)

whose maximization leads to

∂G
∂βouti

= −souti +
∑︂
j(̸=i)

pij
βouti + βinj

, ∀ i (D19)

∂G
∂βini

= −sini +
∑︂
j(̸=i)

pji
βini + βoutj

, ∀ i (D20)
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D.2.2 Conditionally Reciprocal Weighted Configuration
Model

The CRWCM is a conditional maximum-entropy model constraining out-
and in-strength sequences, by dividing them according to the reciprocal
charcater of the underlying links. The Hamiltonian is

H(W) =
∑︂
i

(β→i s
→
i + β←i s

←
i ) +

(︂
β↔,outi s↔,outi + β↔,ini s↔,ini

)︂
≡
∑︂
i̸=j

Hij(wij) (D21)

where

Hij(wij) = (β→i + β←j )a→ij wij + (β↔,outi + β↔,inj )a↔ij wij . (D22)

It induces the partition function

ZA =

∫︂
WA

e−
∑︁

i̸=j Hij(wij)dwij =
∏︂
i̸=j

∫︂ ∞
0

e−Hij(wij)dwij =
∏︂
i̸=j

ζij (D23)

where the dyadic-specific conditional partition function ζij reads

ζij =

(︄
1

β→i + β←j

)︄a→ij (︄
1

β↔,outi + β↔,inj

)︄a↔ij
(D24)

i.e. ζij = (β→i + β←j )−1 if a→ij = 1 and ζij = (β↔,outi + β↔,inj )−1 if a↔ij = 1.
After computing the partition function, one gets

Q(W|A) =
∏︂
i̸=j

e−Hij(wij)

ζij
. (D25)

allowing us to define the log-likelihood function as

L =
∑︂
i̸=j

[−Hij(wij) + ln ζij ]; (D26)

in order to account for the variability of the binary adjacency matrix A,
we average the log-likelihood function over the ensemble and obtain its
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generalized version G = G→ + G↔ that can be decoupled into a non-
reciprocated component G→ and a reciprocated component G↔, reading

G→ =
∑︂
i ̸=j

[−(β→i + β←j )wij + p→ij ln
(︁
β→i + β←j

)︁
] (D27)

and

G↔ =
∑︂
i ̸=j

[︂
−(β↔,outi + β↔,inj )wij + p↔ij ln

(︂
β↔,outi + β↔,inj

)︂]︂
(D28)

respectively. Hence, maximizing it amounts at solving the two sub-problems

∂G
∂β→i

= −s→i +
∑︂
j( ̸=i)

p→ij
β→i + β←j

, ∀ i (D29)

∂G
∂β←i

= −s←i +
∑︂
j( ̸=i)

p←ij
β←i + β→j

, ∀ i (D30)

and

∂G
∂β↔,outi

= −s↔,outi +
∑︂
j(̸=i)

p↔ij

β↔,outi + β↔,inj

, ∀ i (D31)

∂G
∂β↔,ini

= −s↔,ini +
∑︂
j(̸=i)

p↔ij

β↔,ini + β↔,outj

, ∀ i (D32)

163



Bibliography

[1] Marzio Di Vece, Diego Garlaschelli, and Tiziano Squartini. “Grav-
ity models of networks: Integrating maximum-entropy and econo-
metric approaches”. en. In: Physical Review Research 4.3 (Aug. 2022),
p. 033105. ISSN: 2643-1564. DOI: 10.1103/PhysRevResearch.
4.033105.

[2] Marzio Di Vece, Diego Garlaschelli, and Tiziano Squartini. “Rec-
onciling econometrics with continuous maximum-entropy network
models”. en. In: Chaos, Solitons & Fractals 166 (Jan. 2023), p. 112958.
ISSN: 09600779. DOI: 10.1016/j.chaos.2022.112958.

[3] Marzio Di Vece, Diego Garlaschelli, and Tiziano Squartini. “De-
terministic, quenched, and annealed parameter estimation for het-
erogeneous network models”. In: Phys. Rev. E 108 (5 2023), p. 054301.
DOI: 10.1103/PhysRevE.108.054301.

[4] Marzio Di Vece, Frank P. Pijpers, and Diego Garlaschelli. Commodity-
specific triads in the Dutch inter-industry production network. 2023.
arXiv: 2305.12179 [physics.soc-ph]. (Currently under re-
view at Scientific Reports).

[5] Frank Schweitzer et al. “Economic Networks: The New Challenges”.
en. In: Science 325.5939 (July 2009), pp. 422–425. ISSN: 0036-8075,
1095-9203. DOI: 10.1126/science.1173644.

[6] Giorgio Fagiolo. “The international-trade network: gravity equa-
tions and topological properties”. en. In: Journal of Economic Inter-
action and Coordination 5.1 (June 2010), pp. 1–25. ISSN: 1860-711X,
1860-7128. DOI: 10.1007/s11403-010-0061-y.

[7] Fabio Saracco et al. “Detecting early signs of the 2007–2008 cri-
sis in the world trade”. en. In: Scientific Reports 6.1 (July 2016),
p. 30286. ISSN: 2045-2322. DOI: 10.1038/srep30286.

164

https://doi.org/10.1103/PhysRevResearch.4.033105
https://doi.org/10.1103/PhysRevResearch.4.033105
https://doi.org/10.1016/j.chaos.2022.112958
https://doi.org/10.1103/PhysRevE.108.054301
https://arxiv.org/abs/2305.12179
https://doi.org/10.1126/science.1173644
https://doi.org/10.1007/s11403-010-0061-y
https://doi.org/10.1038/srep30286


[8] T. Squartini and D. Garlaschelli. “Stationarity, non-stationarity and
early warning signals in economic networks”. en. In: Journal of
Complex Networks 3.1 (Mar. 2015), pp. 1–21. ISSN: 2051-1310, 2051-
1329. DOI: 10.1093/comnet/cnu012.

[9] Stefano Schiavo, Javier Reyes, and Giorgio Fagiolo. “International
trade and financial integration: a weighted network analysis”. en.
In: Quantitative Finance 10.4 (Apr. 2010), pp. 389–399. ISSN: 1469-
7688, 1469-7696. DOI: 10.1080/14697680902882420.

[10] Tiziano Squartini, Iman van Lelyveld, and Diego Garlaschelli. “Early-
warning signals of topological collapse in interbank networks”.
en. In: Sci Rep 3.1 (Nov. 2013), p. 3357. ISSN: 2045-2322. DOI: 10.
1038/srep03357.

[11] Raja Kali and Javier Reyes. “Financial Contagion on the Interna-
tional Trade Network”. en. In: Economic Inquiry 48.4 (Oct. 2010),
pp. 1072–1101. ISSN: 00952583. DOI: 10.1111/j.1465-7295.
2009.00249.x.

[12] Raja Kali and Javier Reyes. “The architecture of globalization: a
network approach to international economic integration”. en. In:
Journal of International Business Studies 38.4 (July 2007), pp. 595–
620. ISSN: 0047-2506, 1478-6990. DOI: 10.1057/palgrave.jibs.
8400286.

[13] Michele Starnini, Marián Boguñá, and M. Ángeles Serrano. “The
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[67] Marián Boguñá et al. “Small worlds and clustering in spatial net-
works”. In: Phys. Rev. Res. 2 (2 2020), p. 023040. DOI: 10.1103/
PhysRevResearch.2.023040. URL: https://link.aps.
org/doi/10.1103/PhysRevResearch.2.023040.

[68] Antoine Allard et al. “The geometric nature of weights in real
complex networks”. In: Nature Communications 8.1 (Jan. 2017), p. 14103.
ISSN: 2041-1723. DOI: 10.1038/ncomms14103. URL: https:
//doi.org/10.1038/ncomms14103.
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