
IMT School for Advanced Studies, Lucca
Lucca, Italy

Efficient and Accurate Analysis of Two Classes of
Transparent Generative Models

PhD Program in Systems Science

Track in Computer Science and Systems Engineering

XXXV Cycle

By

Francesca Randone

2024

mailto:francesca.randone@imtlucca.it

The dissertation of Francesca Randone is approved.

PhD Program Coordinator: Alberto Bemporad, IMT School for
Advanced Studies Lucca

Advisor: Prof. Mirco Tribastone, IMT School for Advanced Studies
Lucca

Co-Advisor: Prof. Luca Bortolussi, Università degli Studi di Trieste

The dissertation of Francesca Randone has been reviewed by:

Prof. Ezio Bartocci, Vienna University of Technology

Prof. Laura Carnevali, University of Florence

IMT School for Advanced Studies Lucca
2024

Contents

List of Figures viii

List of Tables xi

Acknowledgements xiv

Vita and Publications xvi

Abstract xix

1 Background 8
1.1 Approximation of Population Processes 8

1.1.1 Markov Population Processes 8
1.1.2 Mean-field Approximation 9
1.1.3 Linear Noise Approximation 11

1.2 Examples . 11

2 Dynamic Boundary Projection 15
2.1 State-of-the-Art . 15

2.1.1 Proposed Approach 18
2.2 Derivation of DBP . 20

2.2.1 Assumptions . 20
2.2.2 Joint Process . 21
2.2.3 Augmented Truncation Approximations 24
2.2.4 Dynamic Boundary Projection 28

2.3 Convergence . 33

v

2.3.1 Decomposition as a Perturbed Dynamical System . 33
2.3.2 Convergence of the Linear Non-Perturbed System . 35
2.3.3 Convergence Result 38

2.4 Examples . 41
2.4.1 Coxian Queuing Systems 42
2.4.2 Malware Propagation Model 46
2.4.3 Egalitarian Processor Sharing 48

3 h-scaling 54
3.1 Scaled Processes . 54

3.1.1 h-scaling . 54
3.1.2 Static Scaling . 56
3.1.3 Scaled Dynamic Boundary Projection 57

3.2 Limit Behaviour . 60
3.2.1 Preservation of the Mean-Field Limit 60
3.2.2 Preservation of the LNA 63

3.3 Multi-scale Approximation 64
3.4 Examples . 65

3.4.1 Egalitarian Processor Sharing 66
3.4.2 Malware Propagation 68

4 Inference of Probabilistic Programs With Moment-Matching Gaus-
sian Mixtures 71
4.1 State-of-the-Art . 71

4.1.1 Motivating Example 72
4.1.2 Proposed Approach 74
4.1.3 Other Related Work 78

4.2 Background . 79
4.3 Syntax and Exact Probabilistic Semantics 83

4.3.1 Syntax . 83
4.3.2 Supported Programs 86
4.3.3 Exact Probabilistic Semantics 87

4.4 Gaussian Semantics . 90
4.5 Universal Approximation Theorem 98

4.5.1 Satisfaction of the Hypotheses 98

vi

4.5.2 Preliminary Results 100
4.5.3 Proof of Theorem 9 101

5 Second Order Gaussian Approximation 104
5.1 Second Order Gaussian Approximation 104

5.1.1 Overview . 104
5.1.2 Distributivity of Transfer Functions 108
5.1.3 SOGAprune . 110
5.1.4 Computational Cost 111

5.2 Numerical Evaluation . 115
5.2.1 Posterior Mean Estimation 115
5.2.2 Maximum a Posteriori Estimation 121
5.2.3 Mixtures of Continuous and Discrete Distributions 123
5.2.4 Bayesian Inference for Collaborative Filtering . . . 123

6 Conclusion 126

vii

List of Figures

1 Example of the application of BP on T (2,2)
(0,0) . A reaction

from (2, 1) to (3, 2) is redirected to (2, 2), the state in the
current truncation closest to the real target state. 25

2 DBP applied to an M/Cox/N queuing system where the
truncation is applied to n1 jobs waiting for service in the
first phase of a two-phase Coxian distribution. 43

3 DBP applied to the M/Cox/N queuing systems with K =

5 and K = 10 phases for the Coxian service-time distribu-
tion. 45

4 Numerical results for the malware propagation model with
unique attractor orbit (δ = 0.50) for mean-field approxi-
mation, 1/N and 1/N2 expansions in Gast, Bortolussi, and
Tribastone, 2019, and DBP. 46

5 Numerical results for the malware propagation model with
orbit cycle (δ = 0.10) for mean-field approximation, 1/N
and 1/N2 expansions in Gast, Bortolussi, and Tribastone,
2019, and DBP. 47

6 Numerical results for the unstable malware propagation
model (δ = 0.1) comparing DBP with bound n = (15, 15)

and BP on different truncations T (n)
y 47

7 Numerical results for the egalitarian processor sharing queu-
ing system with K = 2 classes using different DBP trunca-
tion parameters. 49

viii

8 Comparison between DBP with n = (32, 4) and the 1/N ,
1/N2 expansions from Gast, Bortolussi, and Tribastone,
2019 for the queuing system with egalitarian process shar-
ing presented in Section 2.4.3. 50

9 Numerical results for the estimation of the average queue
length of the egalitarian processor sharing queuing system
with K = 3 and K = 4 classes of customers. 52

10 Numerical results for the egalitarian processor sharing queu-
ing system with 3 classes of customers. 52

11 Numerical results for the egalitarian processor sharing queu-
ing system with 4 classes of customers. 52

12 Application of static h-scaling to the M/M/k/N queue.
ME = true mean computed by numerically solving the mas-
ter equation. 57

13 h-scaling and scaled DBP applied to the M/M/k queue. . . 61

14 Application of h-scaling and scaled DBP to Egalitarian Pro-
cessor Sharing with two classes of customers. 67

15 From above: average number of active, dormant and sus-
ceptible agents in the Malware Propagation model com-
puted using h-scaling and scaled DBP. 69

16 Left part: general approximation scheme used in Gaussian
Semantics. In program location Pi, the exact semantics of
the program transforms a GM G into a non-GM distribu-
tion D. In the same program location, Gaussian Semantics
transform G into another GM GD, that approximates D

using moment-matching. Right part: concrete example.
The Gaussian distribution G is transformed by the exact
semantics into a truncated Gaussian D and by the second-
order Gaussian Semantics into the red Gaussian distribu-
tion GD. 75

ix

17 Plot of: a) a non-degenerate 2-dimensional Gaussian; b)
a degenerate Gaussian whose covariance matrix has rank
1; c) a degenerate Gaussian with null covariance matrix
(Dirac delta). Considering mixtures of possibly degener-
ate Gaussians, allow us to capture (mixtures of) both con-
tinuous and discrete distributions. 80

18 Control-flow graph representation of Algorithm 2 84
19 Reparametrizations for transforming random assignments

involving distributions depending on variable parameters
y, z into assignments only involving distributions with con-
stant parameters. 86

20 Marginal pdf of x1 at node v2 in Algorithm 2 given by
exact semantics (true) and the Gaussian Semantics with
R = 2, 3 and 4. In the legend, we report the KL divergence
with the true distribution and the time needed to compute
the approximating GM. 97

x

List of Tables

1 Transient average queue length (normalized by N) at time
t = 100 (computed by simulation) and mean-field esti-
mate for an M/Cox/N queue with arrivals at rate Nλ,
with λ = 0.75, and a two-phase Coxian distribution with
unitary service time and varying variance (V). 17

2 Runtimes (in s) for simulations (SIM) and DBP with bound
(n1, N,N) for the two-phase Coxian distribution; the num-
ber of equations refers to the size of the resulting DBP
models. The solution of the mean-field system takes 0.06s
on average. 44

3 Parameters for Coxian service time distribution with a larger
number of phases. 45

4 Runtimes (in s) for simulations (SIM), mean-field (MF) and
DBP for the M/Cox/N queuing system with N = 5 and
Coxian distributed service times with K = 5 and K = 10

phases, unitary mean and variance V = 5. 45

5 Runtimes (in s) for simulations (SIM), mean-field (MP),
DBP, and expansions in 1/N and 1/N2 (EXP) for the Mal-
ware Propagation Model with N = 50 agents. 46

6 Runtimes (in s) for simulations (SIM), mean-field (MF),
DBP and 1/N2 expansion (EXP) for the egalitarian proces-
sor sharing queuing system with K = 2,3, and 4 classes of
customers. 51

xi

7 Approximated value of the AQL of the M/M/k queue at
steady state (t=5000), with relative error, number of equa-
tion and reduction in the number of equations when h-
scaling and scaled DBP are applied. h-scaling with h = 1

is considered the ground truth. 61

8 Approximated values of the Egalitarian Processor Sharing
model at steady state (t=1000), with relative error, num-
ber of equations, reduction in the number of equations,
and computational time (in seconds) when h-scaling and
scaled DBP are applied. h-scaling with h = 1 is considered
the ground truth. 67

9 Total relative error in the mean dynamics of the Malware
Propagation model at steady state (t=5), with the num-
ber of equations, reduction in the number of equations
and computational time (in seconds) when h-scaling and
scaled DBP are applied. h-scaling with h = 1 is considered
the ground truth . 70

10 Summary of the theoretical results used to compute the
moments of transformed Gaussian Mixtures. N (µ,Σ) de-
notes a Gaussian distribution with mean µ and covariance
matrix Σ, c is any real constant and a, b are vectors in Rd

defining the hyper-rectangle [a, b] = {x ∈ Rd : ai ≤ xi ≤ bi}. 76

11 Function implementing node semantics in SOGA and SO-
GAprune. The input arguments input p, input dist are re-
trieved by the parent nodes’ attributes p, dist. The argu-
ments expr, trunc and K are stored in node attributes when
the cfg is compiled from the program script. 111

12 Results using STAN, PSI, AQUA and SOGA. ‘—’: discrete
posterior not supported; ‘mem’: out of memory error; ‘err’:
tool returns error state. For SOGA, C: final number of
components; d: dimensionality of the output vector. 117

xii

13 Comparison between Pyro’s Variational Inference, SOGA
and true values of the models of Table 3 with continuous
posterior. For Pyro’s VI we report the values and the run-
times for 3 different learning rates (l.r.), together with the
number of steps needed to meet our stopping criterion
(steps). By ’not converged’, we mean that the stopping
criterion was not met after 10k steps of gradient descent.
True values are obtained using PSI or, when not available,
using STAN or AQUA, denoted by ∗. 118

14 Application of pruning to models whose computation time
was greater than 1 s and at least ten times larger than the
worst performing competitor. For models yielding a time-
out the number of components C is the one reached before
time-out. 120

15 Comparison between Pyro and SOGA for MAP estima-
tion. Models with ‘(P)’ were pruned when SOGA was ap-
plied. True values are derived optimizing the exact poste-
rior, or from samples (denoted with ‘*’). 122

16 Runtimes (in seconds) for the models proposed Wu et al.
(2018) comprising mixtures of discrete and continuous dis-
tributions. We do not report values, since all methods
identify the exact posterior. 123

17 Runtimes (in seconds) for the collaborative filtering model
N (cfk, 1). 124

18 Comparison between Pyro and SOGA for Variational In-
ference on Collaborative Filtering models. 125

xiii

Acknowledgements

Any person asked about his or her PhD will probably give
an answer involving the word “challenging”. For me, it is the
same, but overcoming this challenge was possible also thanks
to the people who accompanied me through this journey.

First, I must thank my advisor, Mirco Tribastone, a fantastic
mentor and irreplaceable support through doubts and (the
many) rejections. Thanks especially for his enthusiasm and
for teaching me how to have fun doing this job, which can be
quite demanding but incredibly satisfying.

My co-advisor, Luca Bortolussi also deserves my deepest grati-
tude for first showing me “the dark side of mathematics” and
eventually convincing me that computer science could be at
least as enjoyable. If today I am at least partially a computer
scientist, it is thanks to him.

I must also thank other professors and researchers I met along
my journey. Rocco De Nicola, for first introducing me to formal
methods and logic in his courses, Joost-Pieter Katoen for let-
ting me visit his amazing research group at RWTH Aachen in
what has been an incredibly formative experience and Emilio
Incerto for his patience in working with the code written by a
mathematician.

Thanks to Giuseppe and Serenella, with whom I shared the ups
and downs of the PhD, both inside and outside IMT’s walls.

Finally, I need to thank the two people who made me the one
I am, without which all this could not have been possible.
Thanks to my parents for understanding and being present
for me no matter what; each of my achievements is theirs as
well.

xiv

To conclude, I would like to quote a young and promising
Italian philosopher and computer scientist with a sentence
that expresses how I genuinely feel about computer science
and life in general: “L’uomo non è fatto per programmare”
(“Man was not made for programming”).

xv

Vita

November 9, 1995 Born, Siracusa, Italy

2014 - 2017 Bachelor Degree in Mathematics
Final mark: 110/110 cum laude
Università degli Studi di Catania, Italy

2017 - 2019 Master Degree in Mathematics
Final mark: 110/110 cum laude
Università degli Studi di Trieste, Italy

2019-2023 PhD Scholarship
IMT School for Advanced Studies, Lucca

Apr 2023 - June 2023 Visiting PhD Student
RWTH Aachen, Germany

xvi

Publications

1. F. Randone, L. Bortolussi, M. Tribastone, “Refining mean-field approxima-
tions by dynamic state truncation.” Proceedings of the ACM on Measurement
and Analysis of Computing Systems, 5(2), 1-30, 2021.

2. F. Randone, L. Bortolussi, M. Tribastone, “Jump Longer to Jump Less:
Improving Dynamic Boundary Projection with h-Scaling.” Quantitative
Evaluation of Systems: 19th International Conference, QEST, Warsaw, Poland,
September 12–16, 2022, pp. 150-170, Cham: Springer International Pub-
lishing, 2022.

3. F. Randone, L. Bortolussi, E. Incerto, M. Tribastone, “Inference of Proba-
bilistic Programs with Moment-Matching Gaussian Mixtures.” Proceedings
of the ACM on Programming Languages, 8(POPL), 1882-1912.

xvii

Presentations

1. F. Randone, “Refining mean-field approximations by dynamic state trun-
cation.” SIGMETRICS conference, online, 2021.

2. F. Randone, “Jump Longer to Jump Less: Improving Dynamic Boundary
Projection with h-Scaling.”, QEST conference, Warsaw, Poland, 2022.

3. F. Randone, “Refining Deterministic Approximations Of Stochastic Reac-
tion Networks Through Dynamic Boundary Projection”, Chemical Reac-
tion Networks Workshop, Politecnico di Torino, 2022.

4. F. Randone, “Dynamic Boundary Projection: Refining Deterministic Ap-
proximations Of Stochastic Reaction Networks”, Mathematics of Reaction
Networks, online, 2023.

5. F. Randone, “Refining Deterministic Approximations Of Stochastic Reac-
tion Networks Through Dynamic Boundary Projection”, SIAM Conference
on Dynamical Systems, Portland, 2023.

6. F. Randone, “Inference of Probabilistic Programs with Moment-Matching
Gaussian Mixtures”, RWTH, Aachen, 2023.

7. F. Randone, “Inference of Probabilistic Programs with Moment-Matching
Gaussian Mixtures”, SySMA Workshop, Lucca, 2023.

8. F. Randone, “Inference of Probabilistic Programs with Moment-Matching
Gaussian Mixtures”, POPL conference, London, 2024.

xviii

Abstract

While widely used, generative models pose the challenging
task of deriving and analyzing their underlying distribution.
In this thesis, we focus on two classes of transparent genera-
tive models and present new methods to tackle this task.

Markov Population Processes use Continuous Time Markov
Chains to describe the evolution of populations over time.
Their analysis is often hindered by state-space explosion, tack-
led with deterministic approximation or truncation techniques.
We propose a method, Dynamic Boundary Projection, that
couples an exact stochastic description of a subset of states
and a deterministic approximation that dynamically shifts the
subset across the state space. The resulting finite set of ODEs
is asymptotically exact. We show that our method performs
well in terms of accuracy and runtimes on challenging sys-
tems. We also propose an extension that further reduces the
number of equations while maintaining good accuracy.

Probabilistic Programs leverage the power of programming
languages to define probabilistic models; however, no one-
fit-for-all solution exists to derive the posterior distribution.
We define a family of approximating semantics, Gaussian Se-
mantics, that leverages moment-matching and the approxi-
mation power of Gaussian Mixtures to approximate the joint
probability distribution over program variables. As the num-
ber of the moments matched increases, Gaussian Semantics
tends to the exact semantics. We implement an instance of
Gaussian Semantics that matches the first two order moments
and show that our implementation performs competitively
with respect to other state-of-the-art inference methods and
excellently on two classes of models taken from the literature.

xix

Introduction

Generative models are a class of statistical models that allow sampling
from an underlying joint probability distribution (Ng and M. Jordan,
2001). They have attracted substantial attention within the scientific com-
munity due to their multifaceted applications and theoretical significance,
which has led to applications in computer vision (Goodfellow et al., 2014),
natural language processing (Kingma et al., 2014), style transfer (Gatys,
Ecker, and Bethge, 2016) and data augmentation (Ohno, 2020).

However, analyzing generative models presents unique challenges,
particularly in deriving the underlying distribution and extracting mean-
ingful statistical properties. For example, to properly model a distribu-
tion, a generative model might be required to encode high-dimensional
distributions, conditional dependencies between the variables, and time-
dependence of the parameters. Over the years, specific techniques have
been developed for each modeling paradigm to tackle these challenges,
but how to best deal with each of them remains an open question (Good-
fellow et al., 2014).

A major distinction in generative models is between black box and
transparent models. Black box models, such as Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014), excel at capturing complex
patterns in data and generating high-quality samples. However, they are
generally not interpretable and make it difficult to directly encode in the
model previous domain knowledge (Song et al., 2021; Dijk, Teräsvirta,
and Franses, 2002).

On the other hand, transparent models, like Markov population pro-

1

cesses and probabilistic programs, offer interpretability and provide clear
insights into how the model arrives at its predictions. They allow a gen-
erative description of the model, exploiting previous knowledge of the
phenomenon under analysis. This comes at the cost of limiting their abil-
ity to capture intricate patterns in highly complex datasets (Bishop and
Nasrabadi, 2006).

Since the landscape of generative models is extremely vast and intri-
cate, in this thesis, we restrict our attention to transparent models, and
particularly to the two following classes.

• Markov population processes. In this case, the generative model is
given as a Continuous Time Markov Chain, defining an underlying
time-variable probability distribution over the state space (Kurtz,
1970).

• Probabilistic programs. In this case, an ad hoc programming lan-
guage semantics is used to specify a joint probability distribution
over program variables (Kozen, 1983).

In both cases, it is desirable not only to sample from the underlying
distribution but also to extract some of its notable statistical quantities,
such as the average dynamics for Markov population processes or the
posterior mean for probabilistic programs. While an exact derivation of
these quantities is generally unfeasible, accurate and efficient approxi-
mations are possible.

We briefly present the two cases in more detail.

Markov Population Processes

Markov population processes represent systems of N interacting agents
(Benaim and Le Boudec, 2008a). They have been used to represent net-
work protocols (Cecchi, Borst, and Leeuwaardena, 2015), information-
spreading algorithms (Chaintreau, Le Boudec, and Ristanovic, 2009), peer-
to-peer networks (Massoulié and Vojnovic, 2005), caching algorithms (Gast
and Van Houdt, 2015), garbage collection (Van Houdt, 2013), and load

2

balancing strategies (Mitzenmacher, 2001; Gast and Bruno, 2010; Tsitsik-
lis and Xu, 2011; Minnebo and Van Houdt, 2013; Xie et al., 2015).

In population processes, it is assumed that the interacting agents are
divided into classes across which they can randomly transition. The
system state is described by a state vector, whose components indicate
how many agents of each class are present in the system at time t and
changes according to discrete transitions fired at state-dependent expo-
nential rates. The underlying Markov Chain has a state for each possible
value of the state vector, therefore, its state space is usually very large
(≈ O(Nm) where m is the dimension of the state vector) or even infi-
nite. Analyzing the exact dynamics of such systems would require the
solution of a large system of ODEs, called the Master (or Kolmogorov)
Equation, yielding one equation for each state, which in many cases is
unfeasible (Van Kampen, 1992). Due to the state space’s exponential ex-
plosion, simulation-based approaches quickly become computationally
intensive (Gillespie, 2007).

Over the years, a number of approximation techniques have been
proposed. In particular, a wide class of methods relies on truncation
techniques (Munsky and Khammash, 2007; Kuntz et al., 2019; Gupta,
Mikelson, and Khammash, 2017), in which the Master Equation is trun-
cated to a finite number of states for which computations can be per-
formed efficiently. Another class of methods is instead based on the
seminal theorem by Kurtz (Kurtz, 1970), which guarantees that under
suitable hypothesis, as N tends to infinity, the average dynamics of the
normalized system tends to the solution of a system of m ODEs. This
deterministic approximation does not give guarantees when N is finite
and can generally deviate significantly from the true dynamics of the
systems in the presence of noise, such as high variance and oscillations.
To overcome these limitations, various refinements of Kurtz’s approxi-
mation have been proposed (Gast, Bortolussi, and Tribastone, 2019; Gast
and Van Houdt, 2015).

The first contribution of this thesis is to present a method called Dy-
namic Boundary Projection (DBP) (Randone, Bortolussi, and Tribastone,
2021) that couples the truncation approach and deterministic approxima-

3

tion à la Kurtz. In DBP, a truncated version of the Master Equation, de-
scribing the stochastic evolution of a hyper-rectangular subset of states,
is shifted through the state space to follow the significant portion of
the probability mass. This dynamical shifting is provided by coupling
the truncated Master Equation with a deterministic function, which can
be seen as the deterministic approximation of an auxiliary process that
keeps track of the hyper-rectangle in which the original process evolves.
For systems exhibiting oscillatory behaviors or high variance, DBP is
more accurate than state-of-the-art deterministic approximations while
keeping computational times lower than those needed to solve the full
Master Equation or perform simulations.

Despite this gain in computational performances, the system of equa-
tions yielded by DBP is still subject to exponential explosion. To tackle
this problem and improve the approach’s scalability, the states’ subset
can be rescaled. Intuitively, this amounts to covering the same portion
of the state space with fewer rescaled states. This procedure yields a
scaled DBP method, further reducing computational times (Randone,
Bortolussi, and Tribastone, 2022).

Derivation of DBP and its scaled version, together with their appli-
cations to some examples are the subject of Chapters 1 (background and
notation), 2 (DBP) and 3 (scaled DBP) and refer to the following publica-
tions:

• F. Randone, L. Bortolussi, M. Tribastone, “Refining mean-field ap-
proximations by dynamic state truncation.” Proceedings of the ACM
on Measurement and Analysis of Computing Systems, 5(2), 1-30, 2021,

• F. Randone, L. Bortolussi, M. Tribastone, “Jump Longer to Jump
Less: Improving Dynamic Boundary Projection with h-Scaling.”
Quantitative Evaluation of Systems: 19th International Conference, QEST,
Warsaw, Poland, September 12–16, 2022, pp. 150-170, Cham: Springer
International Publishing, 2022.

4

Probabilistic Programs

Probabilistic programming languages extend standard programming lan-
guages with probabilistic primitives such as random assignments and
observe statements. They allow representing complex probability dis-
tribution and enable modeling uncertainty in a wide array of applica-
tions, ranging from machine learning and artificial intelligence to statis-
tical modeling and data analysis (Gordon et al., 2014).

Defining the semantics of a probabilistic program has been a well-
studied problem since the seminal work of Kozen (Kozen, 1983). One
of the most-used definitions of the semantics of a probabilistic program
sees the program as a transformer over the space of probability distribu-
tions. Taking this approach, starting from an initial distribution, also
called prior distribution, each program instruction transforms the joint
distribution over the program variables. The problem of determining
the distribution carried by a probabilistic program, called the posterior
distribution, is commonly referred to as ”probabilistic inference.”

Various techniques have been proposed to tackle this problem, rely-
ing on Monte Carlo Markov Chain sampling (Nori et al., 2014; Goodman
et al., 2008; V. Mansinghka, Selsam, and Perov, 2014; Pfeffer, 2009; A.
Chaganty, Nori, and Rajamani, 2013), variational inference (Bingham et
al., 2019; M. I. Jordan et al., 1999; Kucukelbir et al., 2015), symbolic exe-
cution (Gehr, Misailovic, and Vechev, 2016; Narayanan et al., 2016; Saad,
Rinard, and V. K. Mansinghka, 2021), volume computation (Holtzen, Van
den Broeck, and Millstein, 2020; Huang, Dutta, and Misailovic, 2021),
and moment-based invariants (Katoen et al., 2010; Chakarov and Sankara-
narayanan, 2014; Barthe et al., 2016; Bartocci, Kovács, and Stankovič,
2020; Moosbrugger et al., 2022). Some of the main challenges lay at
the interplay between discrete and continuous distributions (Wu et al.,
2018), the possible conflicting behaviors of loops and observe statements
(Olmedo et al., 2018), and non-termination (Barthe et al., 2016).

The second main contribution of this thesis is to propose a family
of semantics, defined using the transformer approach, called Gaussian
Semantics, which can be used to approximate arbitrarily well the exact

5

semantics of a probabilistic program. Gaussian Semantics exploit the ap-
proximation power of Gaussian Mixtures (Lo, 1972) to approximate the
distribution carried by the program. In particular, programs are seen
as control flow graphs in which each node acts as a transformer on a
probability distribution. Each semantics is parameterized by a map as-
sociating each node with the order of the moments to be matched. In
a program interpreted according to Gaussian Semantics, each node re-
ceives as input a Gaussian Mixture, transforms it according to the exact
semantics, and outputs a new Gaussian Mixture matching the true dis-
tribution up to a certain order of moments. Notably, in this process, it is
not needed to compute the exact transformed distribution, but only its
first moments. This, and the Gaussian assumption, significantly simplify
the inference problem. Moreover, as the number of moments matched
increases, the output distribution yielded by Gaussian Semantics tends
to the exact output distribution under mild conditions on the program.

Despite convergence being guaranteed in theory, matching moments
above the second order is practically very difficult due to the necessity
of solving a polynomial system of equations (Lasserre, 2009). There-
fore, an efficient implementation of Gaussian Semantics exists only for
the first two-order moments and goes under the name of Second Order
Gaussian Approximation (SOGA). Experimental results show that this
method can perform accurate inference on various benchmarks from the
literature, even when competing approaches do not support inference
on the given problem or scale poorly. Moreover, SOGA performs signif-
icantly better than its competitors on two classes of models taken from
the machine learning literature, namely, models involving mixtures of
continuous and discrete distributions (Wu et al., 2018) and collaborative
filtering models (Koren, Rendle, and Bell, 2021). The derivation of Gaus-
sian Semantics and the SOGA algorithm are the subject of Chapters 4 and
5, respectively, and refer to the following publication:

• F. Randone, L. Bortolussi, E. Incerto, M. Tribastone, “Inference of
Probabilistic Programs with Moment-Matching Gaussian Mixtures.”
Proceedings of the ACM on Programming Languages, 8(POPL), 1882-
1912.

6

Candidate’s Contribution

Since the work presented in the thesis was published with other co-
authors, we specify for each publication the candidate’s contribution.

• “Refining mean-field approximations by dynamic state truncation.”
Francesca Randone developed the theory and performed the nu-
merical experiments, under the supervision of Luca Bortolussi and
Mirco Tribastone.

• “Jump Longer to Jump Less: Improving Dynamic Boundary Pro-
jection with h-Scaling.” Francesca Randone developed the theory
and performed the numerical experiments, under the supervision
of Luca Bortolussi and Mirco Tribastone.

• “Inference of Probabilistic Programs with Moment-Matching Gaus-
sian Mixtures.” Francesca Randone developed the theory. The
proof of the convergence theorem was developed by Francesca Ran-
done and Luca Bortolussi. The implementation of SOGA and the
numerical experiments were carried out by Francesca Randone and
Emilio Incerto. Luca Bortolussi and Mirco Tribastone supervised
the project.

7

Chapter 1

Background

In this first chapter, we introduce some of the background and notation
needed to understand Chapter 2 and 3. In particular, in the first section,
we introduce Markov population processes and their common approx-
imations, while Section 1.2 is devoted to presenting the examples that
will appear in the later chapters.

1.1 Approximation of Population Processes

1.1.1 Markov Population Processes

We consider a Markov population process (X(t) ∈ S)t≥0 as a process
evolving on a set S ⊆ Nm. We denote by H(S) ⊆ Rm the convex hull
of S. The initial state of X(t) is denoted by x̄0 ∈ S. Given a finite set of
jump vectors L ⊆ Zm and a set of transition functions fl : H(S) → R≥0,
for l ∈ L, X(t) makes transitions at rate fl(x) from state x to state x + l

for each l ∈ L.
The exact dynamics of X(t) can be described by its Master Equation

(ME), describing the evolution of the probability P (x; t) of being in state
x at time t:

dP (x)

dt
=
∑︂
l∈L

fl(x− l)P (x− l; t)−
∑︂
l∈L

fl(x)P (x; t) ∀x ∈ S. (1.1)

8

The mean dynamics of X(t) is then given by E[X(t)] =
∑︁

x∈S xP (x; t).

1.1.2 Mean-field Approximation

Due to the quick growth of the state space, solving (1.1) is rarely fea-
sible, and it is common to resort to approximations. One of the most
common approaches, called mean-field approximation, uses a classic limit
result, first stated by Kurtz (Kurtz, 1970). In the original formulation,
such approximation relies on the density-dependent assumption, which is
not required to apply our method. Therefore, we give a general defini-
tion of mean-field approximation and then specialize it in the case of a
density-dependent process.

Defining the drift f as

f(x) =
∑︂
l∈L

lfl(x), (1.2)

the mean-field approximation of X(t) is the solution to the Cauchy prob-
lem: {︄

dx
dt = f(x(t))

x(0) = x̄0.
(1.3)

Density-Dependent Processes

Suppose that the process X has size γN̄ and there exists a sequence of
processes

(︁
XN

)︁
N≥N0

such that XN̄ = X and each XN has size γN with
limN→∞ γN = ∞. In the most general case, every XN is defined on a
state space SN , has initial condition xN

0 and performs transitions x →
x+ lN firing with rate fN

l (x) for each l in a given set L.
Given a sequence

(︁
XN

)︁
N≥N0

, we consider the sequence of normal-

ized processes
(︂
X̂

N
)︂
N≥N0

, where each process has state vector X̂
N

=

1
γN

XN , starts in x̂N
0 =

xN
0

γN
and performs transitions x → x+ lN

γN
with rate

f̂
N

l (x) = fN
l (γNx). We denote the normalized state space by Ŝ

N
.

A particular case is given when the original sequence of processes
is density-dependent, whereby γN grows linearly with N , for each N and

9

l ∈ L there exists a vector vl such that l̂
N

= vl
γN

and for each N and
l ∈ L there exists a (locally) Lipschitz continuous and (locally) bounded

function gl : E → R≥0 such that f̂
N

l (x) = γNgl(x).

Finally, we define the drift FN : Ŝ
N

→ Rm as

FN (x) =
∑︂
l∈L

l̂
N
f̂
N

l (x).

Under these assumptions the following theorem holds.

Theorem 1 (Convergence to deterministic limit for MPPs (Bortolussi,

Hillston, et al., 2013a)). Let E ⊆ Rm be a closed set such that ∪N Ŝ
N

⊆ E.
Suppose that there exists x0 ∈ E such that limN x̂N

0 = x0 and a Lipschitz
vector field F : E → Rm such that

lim
N

sup
x∈ŜN

∥FN (x)− F (x)∥ = 0.

Assuming the rates of convergence in Theorem 4.2 of Bortolussi, Hillston, et al.,
2013a are verified, for any fixed time instant T > 0 and ∀ ϵ ≥ 0

lim
N→∞

P

(︃
sup

0≤t≤T
∥X̂

N
(t)− x̂(t)∥ > ϵ

)︃
= 0

where x̂(t) is the solution to the initial value problem:{︄
dx̂
dt = F (x̂(t))

x̂(0) = x0

(1.4)

and x̂(t) ∈ E ∀ t ≥ 0.

Observe that in the case of density-dependent processes, the drift is
independent of N and the hypotheses of the Theorem hold trivially.

Moreover, if X is a density-dependent process admitting a determin-
istic limit defined by Equation (1.4) we have x(t) = γN x̂(t). In particular,
while x̂(t) approximates the normalized process, and therefore the aver-
age proportion of agents in a certain class, Nx̂(t) approximates the mean
number of agents in each class.

10

1.1.3 Linear Noise Approximation

Another classic limit result has been obtained by Van Kampen (Van Kam-
pen, 1992) applying a “size expansion” to the ME. It takes into account
the stochastic fluctuations of the process around its deterministic limit.
It can be proved that, in a first-order approximation, such fluctuations
behave as a Gaussian process with zero mean. The result is stated in the
following theorem.

Theorem 2 (Convergence to Linear Noise Approximation for MPPs (Van
Kampen, 1992)). Consider a sequence of density-dependent MPPs

(︁
XN

)︁
N≥N0

,
each starting in XN (0) = Nx0̂ and suppose that the drift F (x) is continuously
differentiable in E. Then, letting

(︂
X̂

N
)︂
N≥N0

denote the sequence of normal-

ized processes and x̂(t) the solution of the initial value problem in (1.4) we have
that

lim
N→∞

√
N∥X̂

N
− x̂(t)∥ = ξ(t) (1.5)

where ξ(t) is a Gaussian process identified by equations of the first two moments:

dµi

dt
=
∑︂
j

(︄∑︂
l∈L

∂fl
∂xj

(x̂(t))

)︄
µj(t) (1.6)

dΣij

dt
=
∑︂
k

(︄∑︂
l∈L

li
∂fl
∂xk

(x̂(t))

)︄
Σkj(t) +

∑︂
k

(︄∑︂
l∈L

lj
∂fl
∂xk

(x̂(t))

)︄
Σik(t)+

+
∑︂
l∈L

liljfl(x̂(t))

(1.7)

1.2 Examples

Example 1 (M/M/k queue). In the following chapters, we will use the M/M/k
queue as a running example. It is defined by the following transition classes,
denoting exogenous arrivals with Poisson rate λ and service with rate µ, respec-
tively:

l1 = +1, at rate λ,
l2 = −1 at rate µmin(x, k).

11

Its Master Equation can be written as:

dP (x)

dt
=

⎧⎪⎨⎪⎩
−λP (0; t) + µmin(1, k)P (1; t) if x = 0

−(λ+ µmin(x, k))P (x; t) + λP (x− 1; t)+

+µmin(x+ 1, k)P (x+ 1; t) else

Assuming at time 0 the queue is in a state with 0 customers, the solution of the
following Cauchy problem gives its mean-field approximation:{︄

dx
dt = λ+ µmin(x(t), k)

x(0) = 0

A variation of the M/M/k queue is the M/M/k/N queue, in which no
more than N jobs are accepted in the queue. The transition classes are:

l1 = +1 at rate λI{x<N},

l2 = −1 at rate µmin(x, k)

while the Master Equation becomes:

dP (x)

dt
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−λP (0; t) + µmin(1, k)P (1; t) if x = 0

−µmin(N, k)P (N ; t) + λP (N − 1, t) if x = N

−(λ+ µmin(x, k))P (x; t)+

+µmin(x+ 1, k)P (x+ 1; t)+

+λP (x− 1; t) if x = 1, . . . , N − 1

Observe that, differently from the M/M/k queue, in the M/M/k/N queue,
the Master Equation is actually a finite system of ODEs.

Again, assuming at time 0 the queue is in a state with 0 customers, the
mean-field approximation of the M/M/k/N queue is given by the solution of
the following Cauchy problem:{︄

dx
dt = λI{x<N} + µmin(x(t), k)

x(0) = 0.

Example 2 (Coxian Queueing Systems). We consider an M/Cox/N queu-
ing system with Poisson arrivals with rate Nλ and service rate with a two-phase
Coxian distribution, where we assume that the system is density-dependent with
size N . The three degrees of freedom of the Coxian distribution are identified

12

by parameters p (probability of transitioning from first to second phase of ser-
vice), and µ1, µ2 (exponential rates at each stage). Following Bolch et al., 2005,
a service-time distribution with mean E and variance V can be obtained by
setting p = E2/(2V), µ1 = 2/E and µ2 = E/V . Using a standard state
space description (Bolch et al., 2005), the queuing system can be represented as
a Markov population process with state x = (xQ1 , xQ2 , xS) where: xQ1 is the
number of jobs requiring the first phase of service; xQ2 is the number of jobs
in second phase; and xS is the number of servers available for the first phase of
service. Thus, the queue length in state x is xQ1

+ xQ2
. For a system with N

independent servers, the jump vectors and the associated transition functions
are given by:

l1 = +eQ1
, at rate Nλ,

l2 = −eQ1
− eS + eQ2

at rate pµ1 min(xQ1
, xS),

l3 = −eQ1
at rate (1− p)µ1 min(xQ1

, xS),

l4 = −eQ2
+ eS at rate µ2(N − xS),

where ei denotes the canonical vector with the i-th coordinate equal to one.
Observe that, due to the presence of the minimum in the transition functions,

the mean-field approximation has a Lipschitz continuous but non-differentiable
drift.

Larger Number of Phases We can also consider M/Cox/N queues whose
service time is distributed according to a Coxian distribution with more phases.
A K-phase Coxian distribution is defined by the parameter vectors (p1, . . . , pK−1)
and (µ1, . . . , µK). Thus, the queuing system is represented by a Markov pop-
ulation process with state descriptor x = (xQ1

, . . . , xQK
, xS1

, . . . xSK−1
). For

N independent servers, we define the following transition functions:

a1 = +eQ1
, fa1

= Nλ,

d1 = −eQ1
, fd1

= (1− p1)µ1 min(xQ1
, xS1

),

. . .

ai = −eQi−1
− eSi−1

+ eQi
+ eSi

fai
= pi−1µi−1 min(xQi−1

, xSi−1
),

di = −eQi
− eSi

+ eS1
fdi

= piµi min(xQi
, xSi

),

. . .

aK = −eQK−1
− eSK−1

+ eQK
faK

= pK−1µK−1 min(xQK−1
, xSK−1

)

dK = −eQK
+ eS1 fdK

= µK min

(︄
xQK

, N −
K−1∑︂
i=1

xSi

)︄
.

13

Example 3 (Malware Propagation Model). We consider the malware prop-
agation model from Gast, Bortolussi, and Tribastone, 2019 (also proposed in
Benaim and Le Boudec, 2008a and Khouzani, Sarkar, and Altman, 2012). It
is composed of N nodes, where each node can be dormant (D), active (A), or
susceptible (S). Since the total number of nodes is constant, the model can be
described by the state vector x = (xD, xA), where the number of susceptible
nodes at each state is given by N − xD − xA. The process evolves according to
the following transitions and jump vectors:

l1 = −eD + eA at rate
(︃
1 +

10xA

xD +Nδ
xD

)︃
,

l2 = −eA at rate 5xA,

l3 = +eD at rate
(︃
β +

10

N
xD

)︃
(N − xD − xA).

In Gast, Bortolussi, and Tribastone, 2019, it is discussed that there exists a
parameter value δ∗ ≈ 0.18 such that for δ > δ∗ the mean-field approximation
has a unique attractor; instead, for δ < δ∗ the ODE has an orbit cycle, which
may cause significant approximation errors.

Example 4 (Egalitarian Processor Sharing). We consider a simplified version
of a queuing system with generalized processor sharing proposed in Parekh and
Gallager, 1993 and Parekh and Gallager, 1994. We apply an egalitarian policy
whereby all customers are assigned the same weight; in particular, we use the
rate functions adopted in L. Zhu, Casale, and Perez, 2020. A system with K
classes of customers can be represented as a Markov population process with
state x = (xQ1

, . . . , xQK
), where each component identifies a class of customers

in the queue. The jump vectors and the transition functions associated with the
process are:

ai = +eQi
, at rate Nλi,

di = −eQi
, at rate µ

xQi∑︁K
j=1 xQj +N

,

for i = 1, . . . ,K.

14

Chapter 2

Dynamic Boundary
Projection

The following two chapters of this thesis are devoted to efficient approx-
imation and analysis of Markov population processes. Section 2.1 covers
broadly the current state-of-the-art on the mean-field approximation of
Markov population processes and presents an overview of our approach.
In Section 2.2, the equations for Dynamic Boundary Projection are for-
mally derived, first stating the assumptions under which our approach
is applicable (Section 2.2.1), then introducing the joint process (Section
2.2.2) and augmented truncation approximations (Section 2.2.3), and fi-
nally introducing the whole dynamical framework (Section 2.2.4). Our
main convergence theorem is proved in Section 2.3. Our proof is divided
into three steps: first the dynamical system is decomposed into a lin-
ear and non-linear part (Section 2.3.1), then convergence for each part is
proved separately in Section 2.3.2 and 2.3.3. Finally, numerical examples
are presented in Section 2.4.

2.1 State-of-the-Art

Mean-field models are a well-known technique for the analysis of stochas-
tic systems describing a population of N interacting objects (Benaim and

15

Le Boudec, 2008a; Kurtz, 1978). When N is large, the exact analysis of
such models using Equation 1.1 is generally prohibitive: since closed-
form solutions are available only in special cases, one must resort to com-
putationally demanding numerical simulations to cope with state spaces
that grow exponentially with mN in the worst case, where m ≪ N is the
cardinality of the state space of the individual object. Mean-field theory,
instead, provides a simple system of differential (or difference) equations
of size m, in the form of Equation 1.3, with guarantees of convergence un-
der mild hypotheses on the stochastic system as N goes to infinity both
in the transient and in the steady-state (Theorem 1).

The asymptotic results of convergence of mean-field theory provide
no guarantees as to the quality of the approximation for finite N , which
is model- and parameter-dependent in general. This has stimulated re-
search into providing error bounds (Ying, 2016; Ying, 2017; X. Liu, Ying,
et al., 2020; Bortolussi and Hayden, 2013) and rates of convergence (R.W.R.
Darling and J. Norris, 2008; Gast, 2017; Vasantam and Mazumdar, 2019).

Recently, the problem of refining the mean-field approximation has
attracted the attention of the performance evaluation community. Gast
demonstrated that the expected value of a performance functional con-
verges to the mean-field limit at rate O(1/N) (Gast, 2017), both in the
transient and in the stationary regime (under the assumption of a unique
attractor that is exponentially locally stable). Later, Gast and Van Houdt
used a Lyapunov argument to compute the constant associated with the
1/N term for the steady-state expectation of such functionals, effectively
providing a refinement of the approximation for finite N (Gast and Van
Houdt, 2017). The method is further extended with an expansion of the
term 1/N2 for both the transient and the steady-state regimes (Gast, Bor-
tolussi, and Tribastone, 2019; Grima, 2010).

These mean-field refinements fundamentally assume differentiability
of the drift, i.e., the vector field of the limit system. This rules out their ap-
plicability to a class of queuing models for which corrections to the mean-
field estimates of average queue lengths may be desirable. As a motivat-
ing example, let us consider the M/Cox/N queue introduced in Example
2. Table 1 shows the errors between the average queue length (normal-

16

Table 1: Transient average queue length (normalized by N) at time t = 100
(computed by simulation) and mean-field estimate for an M/Cox/N queue
with arrivals at rate Nλ, with λ = 0.75, and a two-phase Coxian distribution
with unitary service time and varying variance (V).

Scaling V = 5 V = 10 V = 20

N = 1 6.09 8.23 10.27

N = 5 1.47 1.89 2.30

N = 10 0.97 1.10 1.25

Mean field approximation 0.75 0.75 0.75

ized by N) and its mean-field approximation for service times distributed
with a two-phase Coxian distribution with unitary mean and increasing
variance, using the already mentioned fitting formulae in Bolch et al.,
2005. The simulations, computed at an arbitrary time t = 100 for which
the mean-field approximation approaches a stationary regime, show er-
rors that decrease with N , but can be large for small N ; in particular,
the errors increase with the variance of the Coxian distribution for any
fixed N . Furthermore, the mean-field approximation numerically shows
insensitivity to the service process variance, always equal to λ—a fact
that has been discussed in a more general setting in Bramson, Lu, and
Prabhakar, 2010.

We conclude that the mean-field approximation may not adequately
represent the stochastic queue length dynamics for finite, small, N . The
aforementioned mean-field refinement results cannot be applied in this
particular case since they require differentiability of the drift. However,
for the model taken into consideration, the presence of the minimum
function in the rate transitions of the population process makes the drift
piece-wise linear and non-differentiable 1.

1For instance, in the special case of exponentially distributed service times, i.e., for an
M/M/N queue, service occurs with rate µmin(X,N) where X is the queue length and µ
is the service rate.

17

2.1.1 Proposed Approach

Due to the substantial lack of a satisfying approximation method for pop-
ulation processes with non-differentiable drift, we present a new method
to refine average estimates. Although the main application lies with
mean-field models, the method does not make use of the determinis-
tic ODE equation as the limit behavior of the re-scaled Markov process
when N goes to infinity; in particular, it does not assume a density-
dependent process. Instead, it starts from the equation for the “true”
average evolution of a population process X(t),

dE [X(t)]

dt
= E [f(X(t))] ,

where f is the drift defined in (1.2) (Singh and Hespanha, 2006; Van
Kampen, 2007; Bortolussi, Hillston, et al., 2013b). When f is not lin-
ear, dependence on higher order moments is introduced in the left-hand
side, preventing a direct solution of the previous equation. Hence the ap-
proximation of the average essentially consists in assuming E [f(X(t))] ≈
f(E [X(t)]) in the above equation, yielding

dE [X(t)]

dt
= f(E [X(t)]). (2.1)

In the case of density-dependent models, the rescaled process XN (t)/N

with drift f converges to the solution of the ODE dx(t)/dt = f(x(t)) as N
tends to infinity, which has the same functional form as (2.1) but x(t) is
interpreted as a density/proportion of objects rather than a population.
For this reason, we shall still refer to (2.1) as the equations for the mean-
field approximation.

Our proposal for refining average estimates is based on the defini-
tion of an auxiliary process Y (t), depending on the original process X(t),
such that each state y of Y (t) identifies a hyper-rectangular subset of
states in which X(t) is at time t. Using a suitable state space trunca-
tion, the transition rate matrix governing the evolution of the probabil-
ity distribution of X(t) on y can be expressed as a function of y alone.
Specifically, we consider a truncation-and-augmentation scheme where

18

the transition rates toward states outside a given truncation are redi-
rected to the “closest” state on its boundary. Augmented truncations pre-
serve the stochasticity of the transition rate matrix of the truncated pro-
cess, as opposed to the classical approaches for Markov chains in discrete
(Seneta, 1967; Seneta, 1968) and continuous (Tweedie, 1971; Tweedie,
1973) time; they have received attention due to theoretical guarantees
on the convergence of their stationary distributions to that of the origi-
nal process (Hart and Tweedie, 2012) and the possibility to provide use-
ful lower and upper bounds on the steady-state probability of single
states (Y. Liu, Li, and Masuyama, 2018; Y. Liu and Li, 2018; Masuyama,
2017). Importantly for our refinement method, with the proposed aug-
mentation it is possible to approximate Y (t)—which is non-Markovian—
as a time-inhomogeneous Markov population process for which we can
write equations for the mean-field approximation.

Overall, this results in a family of refined approximations depend-
ing on a parameter n ∈ Nm that gives the size of the truncation, i.e.,
the volume of the hyper-rectangle that defines the truncated state space.
For any finite n, the approximation consists in a system of ODEs where
the Master Equation governing the transient probability distribution of
the truncated process is modulated by a continuous variable represent-
ing the mean-field equations of Y (t). Effectively, this leads to a dynamic
shift of the truncation across the state space of the original process. Due
to the specific choice of truncation scheme, we call our method dynamic
boundary projection (DBP).

Theoretically, the main formal result concerns a statement of asymp-
totic correctness. It is proved that, as n → ∞ and under the assumption
of boundedness of the drift, the family of DBP approximations converge
to the original population process X(t). Usually, truncation approxima-
tion methods yield linear systems of ODEs (Dinh and Sidje, 2016; Kuntz
et al., 2019) for which component-wise or total variation convergence of
the solution to the Master Equation can be proved using standard tech-
niques (see Munsky and Khammash, 2006a and Hart and Tweedie, 2012
for convergence over finite time intervals and stationary distributions,
respectively). DBP yields a nonlinear ODE system due to the coupling of

19

the (linear) Master Equation with the (usually nonlinear) drift of X(t). In
this case, we need a stronger convergence result, namely uniform conver-
gence in 1-norm in a suitable Banach space, and a different proof strategy,
which we base on a perturbation argument for nonlinear ODEs.

From a numerical viewpoint, we apply DBP to three examples. First,
we consider the aforementioned Coxian queuing system to show how
the refinements can improve the mean-field approximation such that it
is not insensitive to the variance of the service-time distribution. As dis-
cussed this is done on a population process that has a non-differentiable
drift, hence available mean-field refinement methods are not applicable.
Second, we consider the model of malware propagation (Gast, Borto-
lussi, and Tribastone, 2019) presented in Example 3 to show the instabil-
ity in the computation of the refined 1/N and 1/N2 terms in the presence
of orbit cycles in the mean-field approximation. Under these conditions,
we numerically show that DBP does not exhibit instability and can im-
prove the mean-field approximations, while it performs similarly to the
refined scheme of Gast, Bortolussi, and Tribastone, 2019 if the mean-field
model has a unique attractor. Finally, we consider the multi-class queu-
ing system (Parekh and Gallager, 1994) with processor sharing discipline
presented in Example 4 as a case study to show how the choice of the
parameter n may impact the quality of the approximation.

2.2 Derivation of DBP

2.2.1 Assumptions

From now on we will assume that the following two assumptions on the
drift are verified:

(H1) there exists a constant L > 0 such that

∥f(x+ h)− f(x)∥1 ≤ L∥h∥1 ∀x, x+ h ∈ H(S);

(H2) there exists a constant C > 0 such that

∥f(x)∥1 ≤ C ∀x ∈ H(S).

20

The first condition (local Lipschitz continuity) ensures the existence and
uniqueness of the solution of (1.3). The second condition (boundedness
of the drift) is required to prove uniform convergence in 1-norm of the
proposed approximation to the original process (see Section 2.3). Ob-
serve that these conditions have to hold on the convex hull H(S) and
not only on the set of states since in our approximation f(x) will also be
evaluated on continuous values of x.

Remark 1. We stress that this formulation does not assume density depen-
dence. Hence, from now on each state of the Markov population process will be
an unscaled population vector (rather than a vector describing the proportions
of objects in every local state). The mean-field equation (1.3) is thus interpreted
as the approximate dynamics of the average populations.

Remark 2. The hypothesis S ⊆ Nm can be easily extended to the case S ⊆ Zm.
However, presenting the theory using the former hypothesis is more convenient
since all our examples will evolve on Nm.

2.2.2 Joint Process

We now define a second process Y (t) depending on X(t), whose value
identifies the truncation in which X is at time t. We fix a bound n ∈ Nm

and define for each y ∈ S the set of states:

T (n)
y = {x ∈ S : yi ≤ xi ≤ yi + ni ∀ i = 1, . . . ,m}. (2.2)

We say that T (n)
y is a (hyper-rectangular) truncation of the state space

indexed by y.
For every x, y ∈ S we define Π(n)(x, y) ∈ Zm as:

Π
(n)
i (x, y) =

⎧⎪⎨⎪⎩
xi if xi < yi

xi − ni if xi > yi + ni

yi if yi ≤ xi ≤ yi + ni

∀ i = 1, . . . ,m.

Intuitively, Π(n)(x, y) returns a vector y′ such that the truncation T (n)
y′ is

the closest truncation to T (n)
y that contains x. We use Π(n)(x, y) to build

a coupled process Y (t) that tracks the truncation in which X(t) is at time
t. We define

Y (t) = yk ∀t ∈ [tk, tk+1),

21

where

y0 = Π(n)(x̄0, 0), yk = Π(n)(X(tk), yk−1),

t0 = 0, tk = inf
{︂
t > tk−1 : X(t) ̸∈ T (n)

yk−1

}︂
.

According to this definition, Y (t) = yk means that at time t the original
process X(t) is in a state belonging to the truncation T (n)

yk ; Y (t) changes
value whenever X(t) makes a jump into a state x outside the current
truncation. Observe that Y (t) is uniquely defined although x may belong
to different truncations: the new value of Y (t) is the truncation contain-
ing the current state closest to the previous truncation.

Denoting the characteristic function by I, the joint process (X(t), Y (t))

is a time-homogeneous continuous-time Markov chain defined by the
following transitions:

- (X(t), Y (t)) jumps from (x, y) to (x+ l, y) with rate I{x+l∈T (n)
y }fl(x)

for every l ∈ L;

- (X(t), Y (t)) jumps from (x, y) to (x + l,Π(n)(x + l, y)) with rate
I{x+l ̸∈T (n)

y }fl(x) for every l ∈ L.

By definition of Π(n), the joint process evolves only on states (x, y) such
that x ∈ T (n)

y .
The Master Equation for the transient joint probability distribution

P (x, y; t) of (X(t), Y (t)) is:

dP (x, y)

dt
= −

[︄∑︂
l∈L

fl(x)

]︄
P (x, y; t)+ (2.3)

+
∑︂
l∈L

[︄
fl(x− l)P (x− l, y; t)+

+
∑︂

y′:Π(n)(x,y′)=y

I{x ̸∈T (n)

y′ }fl(x− l)P (x− l, y′; t)

]︄
.

(2.4)

The sum in (2.3) accounts for the outgoing probability flux from (x, y)

due to all possible jumps, whether exiting the current truncation or not.

22

The first summand in (2.4) accounts for the incoming probability flux
into state (x, y) due to the transitions taking place in states (x′, y) be-
longing to the same truncation T (n)

y (observe that if x − l ̸∈ T (n)
y , then

P (x − l, y; t) = 0 for all t). The second summand in (2.4) accounts for
the incoming probability flux due to those transitions starting in states
(x′, y′) belonging to different truncations T (n)

y′ but having (x, y) as target
state.

Example. Let us consider the M/M/k queue of Example 1 and let us write the
Master Equation of the joint process (X(t), Y (t)). The summand in (2.3) and
the first summand in (2.4) can be rewritten directly, so we focus on the second
summand in (2.4). For this term, the only non-zero contributions are given by
those x and y′ satisfying:

x ̸∈ T (n)
y′ ⇒ (x < y′) ∨ (x > y′ + n),

x− l ∈ T (n)
y′ ⇒ y′ ≤ x− l ≤ y′ + n,

Π(n)(x, y′) = y.

Applying the first two conditions with l1 = +1 gives x = y′ + n+ 1, while
from the last condition, we get y′ = y− 1; thus, this term appears in the Master
Equation only when x = y + n. This agrees with the intuition that when the
process is in (y − 1 + n, y − 1) (last state of the truncation indexed by y − 1)
and a new customer arrives, it jumps to the next truncation, indexed by y.

Applying the same argument to the service transition, we get x = y′ − 1
and y′ = y+1, so that this term appears in the equation only when x = y. That
is, from state (y + 1, y + 1) (the first state of the truncation indexed by y + 1),
upon service the process jumps to the previous truncation, indexed by y.

The resulting Master Equation is:

d

dt
Px,y(t) =− (λ+ µmin(x, k))Px,y(t)+

+ λPx−1,y(t) + µmin(x+ 1, k)Px+1,y(t)+

+ I{x=y+n}λPy+n−1,y−1(t)+

+ I{x=y}µmin(y + 1, k)Py+1,y+1(t).

From (2.3)-(2.4) we can derive the expression for the exact mean of

23

X(t) as it follows:

E[X(t)] =
∑︂
x∈S

xP (x; t) =
∑︂
x∈S

∑︂
y:x∈T (n)

y

xP (x, y; t)

=
∑︂
y∈S

∑︂
x∈T (n)

y

xP (x, y; t)

=
∑︂
y∈S

P (y; t)
∑︂

x∈T (n)
y

xP (x| y; t).

We observe that we can express all the states in a truncation T (n)
y

shifting by y the states in T (n)
0 so that the previous expression can be

rewritten as

E[X(t)] =
∑︂
y∈S

P (y; t)
∑︂

x∈T (n)
0

(x+ y)P (x+ y| y; t). (2.5)

The above expression is exact. In Section 2.2.3 we consider an approx-
imation of the inner sum by means of a truncation of the state space.
Based on this, in Section 2.2.4 we study a mean-field approximation of
the outer sum. We prove the asymptotic correctness of these approxima-
tions in Section 2.3.

2.2.3 Augmented Truncation Approximations

Let us fix a value of n. Since the inner sum of (2.5) considers only states
in a truncation T (n)

y , we aim to provide an approximate distribution of
X(t) on such subset of the state space. In order to do so, we consider
an augmented truncation (see, e.g., Y. Liu, Li, and Masuyama, 2018 and
references therein). Applying an augmented truncation corresponds to
restricting the transition rate matrix of X(t) to the states in T (n)

y and redi-
recting the transitions from states x ∈ T (n)

y to states x′ ̸∈ T (n)
y to new

target states x∗ ∈ T (n)
y , with the same rates.

By doing this, it is possible to define a new process X(n)
y (t) with tran-

sition rate matrix Q(n)(y), such that if X(t) and X
(n)
y (t) start from the

same initial condition in T (n)
y , they will evolve identically until t∗ =

24

(0,0)

(0,3)

(0,2)

(0,1)

(5,0)(4,0)(3,0)(2,0)(1,0)

(0,4)

x

x'x*

Figure 1: Example of the application of BP on T (2,2)

(0,0) . A reaction from (2, 1)

to (3, 2) is redirected to (2, 2), the state in the current truncation closest to
the real target state.

inf{t > 0 : X(t) ̸∈ T (n)
y }. At time t∗, X(t) jumps outside T (n)

y , while X
(n)
y

will perform a transition with an identical rate to a state still in T (n)
y .

Observe that the transitions that need to be redirected are those start-
ing in states “on the border” of a truncation. This leads us to define the
following sets

∂T (l,n)
y =

{︂
x ∈ T (n)

y : x+ l ̸∈ T (n)
y

}︂
, for l ∈ L,

∂T (n)
y =

⋃︂
l∈L

T (l,n)
y =

{︂
x ∈ T (n)

y : ∃ l ∈ L s.t. x+ l ̸∈ T (n)
l

}︂
for which it is immediate to show that:

∂T (l,n)
y+w = ∂T (l,n)

y + w =
{︂
x+ w : x ∈ ∂T (l,n)

y

}︂
.

We introduce a specific augmented truncation that we call boundary
projection (BP), in which every jump from x ∈ ∂T (l,n)

y is redirected with
same rate to a state x∗ defined as:

x∗
i =

⎧⎪⎨⎪⎩
min(yi + ni, x

′
i) if x′

i > xi

max(yi, x
′
i) if x′

i < xi

xi if x′
i = xi.

(2.6)

Essentially, x∗ is the projection of the target state on the boundary of the
current truncation; in other words, it is the state in the current truncation
closest to the real target state (see Figure 1).

25

After performing the augmentation, for each state x ∈ T (n)
y we have

a set of jump vectors L̃(n)
(x) such that for every l ∈ L we can now define

a new vector l̃
(n)

(x) given by:

l̃
(n)

(x) =

{︄
l if x ̸∈ ∂T (l,n)

y ,

x∗ − x if x ∈ ∂T (l,n)
y ,

where x∗ is the target state in which the transition x → x + l has been
redirected and the associated transition rates are f

l̃
(n)

(x)
(x) = fl(x).

With this choice, the transition rate matrices Q(n)(y) have the same
functional form for every y. This will be derived by the following invari-
ance property.

Proposition 1. Assume that x ∈ ∂T (l,n)
y and for X(n)

y transition l is redirected
to state x∗ ∈ T (n)

y , defined by BP as in (2.6). Then, for any w ∈ Zm, for the
process X(n)

y+w, the transition from x + w ∈ ∂T (l,n)
y+w is redirected to x∗ + w ∈

T (n)
y+w.

Proof. Suppose that for a truncation T (n)
y and a state x ∈ ∂T (l,n)

y , apply-
ing Boundary Projection the transition l is redirected to x∗ given by (2.6).
Let w ∈ Zm. Then, x + w ∈ ∂T (l,n)

y+w and the transition is redirected to
(x+ w)∗ such that:

• if (x+ w + l)i > (x+ w)i, then

min(yi +wi +ni, xi +wi + li) = wi +min(yi +ni, xi + li) = wi +x∗
i ;

• if (x+ w + l)i < (x+ w)i, then

max(yi + wi, xi + wi + li) = wi +max(yi, xi + li) = wi + x∗
i .

We can now derive the Master Equation for X
(n)
y . Observe that for

each truncation the total number of states is N (n) =
∏︁m

i=1(ni + 1). For a
fixed y, using the definition in (2.6), we obtain the rate transition matrix
Q(n)(y) where each component [Q(n)

y]x,x′ for x, x′ ∈ T (n)
y is given by:

[Q(n)(y)]x,x′ =

{︄∑︁
l∈L I{x′+l̃

(n)
(x′)=x}fl(x

′) if x ̸= x′,

−
∑︁

l∈L I{l̃(n)
(x)̸=0}fl(x) if x = x′,

26

Observe that if a transition starting in x is redirected to x itself, we re-
move this transition from the approximated process X(n)

y . Since Proposi-
tion 1 assures the invariance by translation of the target states, and all the
states in a given truncation T (n)

y can be written shifting by y the states in
T (n)
0 , for x, x′ ∈ T (n)

0 we can rewrite the previous matrix as follows:

[Q(n)(y)]x,x′ =

{︄∑︁
l∈L I{x′+l̃

(n)
(x′)=x}fl(x

′ + y) if x ̸= x′

−
∑︁

l∈L I{l̃(n)
(x)̸=0}fl(x+ y) if x = x′.

(2.7)

We can see from this expression that the functional form of the transi-
tion rate matrix remains the same as y varies. Then, the resulting Master
Equation for BP can be written as:

dP
(n)
y

dt
= Q(n)(y)P (n)

y (· ; t) (2.8)

where P
(n)
y (· ; t) is an N (n)-dimensional vector indexed by the states in

T (n)
0 and each component P (n)

y (x; t) gives the probability of X(n)
y being

in the state x+ y.

We can now approximate the inner sum in (2.5) using P
(n)
y (· ; t) as an

approximation for P (· + y| y; t). This is justified by the fact that if the
original process X(t) never exits the truncation T (n)

y for all 0 ≤ t ≤ T ,
where T is a given finite time horizon, then P

(n)
y (· ; t) = P (· + y| y; t) for

all 0 ≤ t ≤ T . The resulting approximation is:

E[X(t)] ≈
∑︂
y∈S

P (y; t)
∑︂

x∈T (n)
0

(x+ y)P (n)
y (x; t). (2.9)

Example. Let us now apply BP to the M/M/k queue in T (n)
y . We have

∂T (−1,n)
y = {y} and ∂T (+1,n)

y = {y + n}, thus we need to redirect the transi-
tions y → y− 1 and y+n → y+n+1. According to (2.6), they will have new
target states y and y + n, respectively. Observe that since the transitions are
redirected to the starting states in both cases, we will remove these transitions
from the approximated process.

27

The Master Equation of the approximated process on T (n)
y is then given by:

dP
(n)
y (x)

dt
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−λP
(n)
y (0; t) + +µmin(1 + y, k)P

(n)
y (1; t) if x = 0

−µmin(n+ y, k)P
(n)
y (n; t) + λP

(n)
y (n− 1; t) if x = n

−(λ+ µmin(x+ y, k))P
(n)
y (x; t)+

+λP
(n)
y (x− 1; t)+

+µmin(x+ 1 + y, k)P
(n)
y (x+ 1; t) else

where P (n)
y (x; t) is interpreted as the probability of X(n)

y being in the state x+y.
Observe that this is equivalent to an M/M/k/n queue in which there are always
at least y jobs in the queue. Moreover, choosing a different value of y does not
change the functional form of the vector field Q(n)(y).

2.2.4 Dynamic Boundary Projection

To approximate the outer sum in (2.9), from (2.3)-(2.4) we can derive
the equations for the evolution of the marginal probability distribution
P (y; t) =

∑︁
x∈S P (x, y; t) of the joint process.

After some simple manipulations, we get:

dP (y)

dt
= −

∑︂
l∈L

∑︂
x∈S

I{x+l ̸∈T (n)
y }fl(x)P (x, y; t)+

+
∑︂
l∈L

∑︂
x

∑︂
y′:Π(n)(x+l,y′)=y

I{x+l ̸∈T (n)

y′ }fl(x)P (x, y′; t),
(2.10)

where the first term on the right-hand side describes the outgoing prob-
ability flux from T (n)

y , due to transitions taking place in states x ∈ ∂T (n)
y ;

the second term instead describes the incoming probability flux into T (n)
y

due to transitions from states x ∈ ∂T (n)
y′ such that x+ l ∈ T (n)

y for some l.
Observe that since in general Y (t) is not Markovian, it is not possible to
express the equations for Y (t) in a closed form independent from X(t).

Similarly to what done in (2.5), we now express all the states in a
truncation T (n)

y shifting by y the states in T (n)
0 . For a fixed y, the possible

values of y′ such that Π(n)(x+ l, y′) = y can be obtained shifting by y the
values of y′ such that Π(n)(x+ l, y′) = 0. This follows from the following
property.

Proposition 2. Π(n)(x, y) = Π(n)(x− y, 0) + y for all x, y ∈ S.

28

Proof. Proceeding by cases:

Π
(n)
i (x, y) = xi − ni ⇔ xi > yi + ni ⇔

⇔ xi − yi > ni ⇔ Π
(n)
i (x− y, 0) = xi − yi − ni;

Π
(n)
i (x, y) = xi ⇔ xi < yi ⇔ xi − yi < 0 ⇔ Π

(n)
i (x− y, 0) = xi − yi;

Π
(n)
i (x, y) = yi ⇔ yi ≤ xi ≤ yi + ni ⇔

⇔ 0 < xi − yi < ni ⇔ Π
(n)
i (x− y, 0) = 0.

Thus we have Π(n)(x + y′ + l, y′) = y if and only if Π(n)(x + l, 0) =
y − y′; therefore, for a fixed y, the values taken by y′ are given exactly by
y −Π(n)(x+ l, 0) for l ∈ L and all x ∈ ∂T (l,n)

0 . This leads us to define the
function Y(l,n)(x) = Π(n)(x+ l, 0) for all l ∈ L, x ∈ ∂T (l,n)

0 .

Example. For an M/M/k queue and a fixed y, we want to find the values of
y′ for which Π(n)(x+ l, y′) = y, i.e., we want to find the truncations T (n)

y′ from

which we can transition to T (n)
y . As discussed, this happens when an arrival

takes place in (n+ y−1, y−1) and when a service takes place in (y+1, y+1);
thus, the possible values of y′ are exactly y − 1 and y + 1. We can obtain these
values also in the following way:

• if l = −1, ∂T (−1,n)
0 = {0}, so y′ = y−Y(−1,n)(0) = Π(n)(−1, 0) = −1;

• if l = +1, ∂T (+1,n)
0 = {n}, so y′ = y−Y(+1,n)(n) = Π(n)(n+1, 0) = 1.

We now replace the joint probabilities with the conditionals and rewrite
(2.10) as (time dependence is suppressed to improve readability):

dP (y)

dt
= −

∑︂
l∈L

∑︂
x∈∂T (l,n)

0

fl(x+ y)P (x+ y| y)P (y)+

+
∑︂
l∈L

∑︂
x∈∂T (l,n)

0

fl(x+ y − Y(l,n)(x))P (x+ y − Y(l,n)(x)| y − Y(l,n)(x))P (y − Y(l,n)(x)).

29

Again we can approximate the conditional probabilities P (· + y| y; t)
with P

(n)
y (· ; t). The resulting approximated equation for P (y, t) is:

dP (y)

dt
≈
∑︂
l∈L

∑︂
x∈∂T (l,n)

0

fl(x+ y)P (n)
y (x; t)P (y; t)+

+
∑︂
l∈L

∑︂
x∈∂T (l,n)

0

fl(x+ y − Y(l,n)(x))P
(n)

y−Y(l,n)(x)
(x; t)P (y − Y(l,n)(x); t).

(2.11)

By doing this, we are approximating the non-Markovian process Y (t)
as a time-inhomogeneous Markov process Y (n). Indeed, while the (ex-
act) conditional probabilities P (· + y| y; t) depend on X(t) and cannot
be computed knowing only the state of Y (t) at a previous time instant,
the approximated probabilities P (n)

y (· ; t) depend on the value of Y (n)(t)
alone. In light of this, (2.11) can be interpreted as the Master Equation of
Y (n), in which the first summand describes the outgoing probability flow
from a state y and the second summand represents the incoming prob-
ability flow to state y from states y − Y(l,n)(x). In particular, Y (n)(t) is
a Markov population process with jump vectors Y(l,n)(x) and transition
functions fl(x+y)P

(n)
y (x; t) for all l ∈ L and x ∈ ∂T (l,n)

0 , where P
(n)
y (x; t)

is a function of y, since it is the solution of system (2.8), with transition
matrix Q(n)(y). Observe that the transition functions are time-dependent
since P

(n)
y (· ; t) is. Thus we can write the mean-field approximation of

Y (n), which gives:

dY (n)

dt
=
∑︂
l∈L

∑︂
x∈∂T (l,n)

0

Y(l,n)(x)fl(x+ Y (n)(t))P
(n)

Y (n)(x; t) (2.12)

We can now approximate the distribution P (y; t) appearing in (2.9)
with a delta distribution peaked on the state Y (n) solution of (2.12). The
result is the following approximation of the mean:

E[X(t)] ≈
∑︂

x∈T (n)
0

(x+ Y (n)(t))P
(n)

Y (n)(x; t). (2.13)

The quantities appearing in this approximation are governed by the fol-
lowing set of equations, which we call the dynamic boundary projection

30

(DBP) of X(t):

dY (n)

dt
=
∑︂
l∈L

∑︂
x∈∂T (l,n)

0

Y(l,n)(x)fl(x+ Y (n)(t))P (n)(x; t) (2.14)

dP (n)

dt
= Q(n)(Y (n))P (n)(· , t). (2.15)

Observe that we removed the subscript Y (n) from P (n) since from now
on we will always consider a single truncated Master Equation with
time-varying transition rate matrix Q(n)(Y (n)).

The initial conditions for the DBP equations are given by those of the
joint process (X(t), Y (t)), which have been defined as (X(0), Y (0)) =

(x̄0,Π
(n)(0, x̄0)) = (x̄0, ȳ0). Since x̄0 ∈ T (n)

ȳ0
we can rewrite x̄0 as x̄∗

0 + ȳ0

with x̄∗
0 ∈ T (n)

0 . Then we set the initial conditions for (2.14)-(2.15) as:

Y (n)(0) = ȳ0 P (n)(x; 0) =

{︄
1 if x = x̄∗

0,

0 else.
(2.16)

The DBP equations can be interpreted in the following way. We are
considering all possible augmented truncation approximations of X on
the sets (T (n)

y : y ∈ S). For each of these approximations, (2.15) repre-
sents the associated Master Equation, which depends on the considered
subset through the parameter Y (n). The value of such parameter evolves
according to (2.14) and can be seen as a continuous approximation of the
“most probable” truncation on which X is evolving at time t. Observe
that due to the mean-field approximation, we are now considering con-
tinuous values of Y (n). Moreover we can now interpret the r.h.s. of (2.13)
as if P (n)(x; t) gives the probability at time t of a state x+ Y (n)(t).

Example. For the M/M/k queue, applying DBP gives the following:

dP (n)(x)

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λP (n)(0; t) + µmin(1 + Y (n)(t), k)P (n)(1; t) if x = 0

−µmin(n+ Y (n)(t), k)P (n)(n; t)+

+λP (n)(n− 1; t) if x = n

−(λ+ µmin(x+ Y (n)(t), k))P (n)(x; t)+

+λP (n)(x− 1; t)+

+µmin(x+ 1 + Y (n)(t), k)P (n)(x+ 1; t) else

dY (n)

dt
= −µmin(Y (n)(t), k)P (n)(0; t) + λP (n)(n; t).

31

The approximate mean evolution of X is thus given by:

E[X(t)] ≈ Y (n)(t) +
n∑︂

i=0

iP (n)(i; t).

To highlight the relation between DBP, the mean-field approximation
of X(t), and its full Master Equation for the transient probability distri-
bution, we consider the two degenerate cases associated with n = 0 and
n = ∞. According to the definition in (2.2), these correspond to a single-
state truncation and an infinite truncation covering the whole state space,
respectively.

Proposition 3. The following two propositions hold:

• For n = 0, the DBP equations (2.14)-(2.15) yield the mean-field approxi-
mation of X(t).

• For n = ∞, the DBP equations (2.14)-(2.15) yield the Master Equation
of X(t).

Proof. Let us start from the case n = 0. For n = 0 we have T (n)
0 = {0}

so every truncation has a single state. By definition, the generator of a
process with a single state is 0, so in (2.15) we have:

dP 0

dt
= 0 ⇒ P 0(t) = P 0(0) = 1 ∀t.

Substituting this in (2.14):

dY 0

dt
=
∑︂
l∈L

Y(l,0)(0)fl(Y
0(t)) =

∑︂
l∈L

lfl(Y
0(t)).

Let us now consider n = ∞. For n = ∞ we have T ∞
0 = S so the

truncation covers the whole state space. Since there is no state outside
the considered truncation, we do not need any augmentation and (2.15)
for n = ∞ is exactly the Master Equation. Moreover, ∂T (l,∞)

0 = ∅ for any
l, since no transitions exit the observed state so we have:

dY ∞

dt
= 0 ⇒ Y ∞(t) = Y ∞(0) = 0 ∀t.

Observe that, in particular, the second result suggests the conver-
gence for the solutions of the DBP equations proved in the next section.

32

2.3 Convergence

Consider the DBP equations in (2.14)-(2.15) with initial condition as in
(2.16). We denote the solution of the associated Cauchy problem with
the (m + N (n))-dimensional vector Z(n) = [Y (n), P (n)]T . Recall that by
Proposition 3 we know that Z∞ = [0, P∞]T is the solution to the Master
Equation of the original process X(t).

For a fixed T > 0 and for every n ∈ Nm, Z(n) and Z∞ can be im-
mersed in the Banach space C = (C0([0, T],Rm × [0, 1]|S|), ∥ · ∥∞), where
we assume that Rm × [0, 1]|S| is equipped with the 1-norm. For each
solution, Y (n) (resp., Y ∞) denotes the continuous component, evolving
in Rm, while P (n) (resp., P∞) denotes a probability distribution over S.
Observe that for a fixed n if x ̸∈ T (n)

0 then P (n)(x; t) = 0 ∀ t ∈ [0, T].

2.3.1 Decomposition as a Perturbed Dynamical System

Before proving our result of convergence, we rewrite system (2.14)-(2.15)
suitably. We extend the matrix Q(n)(y) to a new matrix A(n)(y) so that
(2.14)-(2.15) can be written in matrix form. To do so we define the (m +
N (n))× (m+N (n)) block-matrix:

A(n)(y) =

⎡⎢⎢⎣
0 R(n)(y)

0 Q(n)(y)

⎤⎥⎥⎦ (2.17)

where the upper-left block has dimensions m×m and R(n)(y) is defined
component-wise for i = 1, . . . ,m and x ∈ T (n)

0 as:

[R(n)(y)]i,x =
∑︂

l∈L(x)

I{x∈∂T (l,n)
0 }Y

(l,n)
i (x)fl(x0 + y).

Using this matrix, we can rewrite the DBP equations (2.14)-(2.15) as:

dZ(n)

dt
= A(n)(Y (n)(t))Z(n)(t). (2.18)

Our proof relies on the decomposition of this system into two parts: a
linear one and a non-linear one acting as a perturbation. To do so, in the
previous equation we rewrite A(n)(Y (n)) as A(n)(0)+∆A(n)(Y (n)) where

33

we have set ∆A(n)(Y (n)) = A(n)(Y (n)) − A(n)(0). Then, (2.18) takes the
form:

dZ(n)

dt
= (A(n)(0) + ∆A(n)(Y (n)(t))Z(n)(t) (2.19)

We will refer to this system as the non-linear perturbed system. Instead, we
define the linear non-perturbed system given by:

dZ
(n)
Λ

dt
= A(n)(0)Z

(n)
Λ (t) (2.20)

whose solution we denote by Z
(n)
Λ = [Y

(n)
Λ , P

(n)
Λ]T ∈ C.

Proof Strategy. With this decomposition, we first prove convergence
of the linear part in Section 2.3.2. Then, the convergence result for the
full system will be proved in Section 2.3.3. The proofs will be based on
the observation that the family of distributions (P∞(· ; t) : t ∈ [0, T]) is
tight in P(S) (Ethier and Kurtz, 2009a), due to the fact that the function
P∞(· ; t) is continuous in t and we are considering a compact interval
[0, T], so we have that

∀ ϵ > 0 ∃K ⊆ S compact s.t. sup
t∈[0,T]

∑︂
x ̸∈K

P∞(x; t) ≤ ϵ.

This property can be rephrased by considering the states outside a
truncation T (n)

0 and saying that there exists a non-negative sequence C(n)

such that:
sup

t∈[0,T]

∑︂
x ̸∈T (n)

0

P∞(x; t) ≤ C(n) n→∞−−−−→ 0

In particular, we can restrict the previous sum to states on the border
of a truncation (that can be viewed as states outside a suitable smaller
truncation). As a result, we can express the tightness property in the
following form:

sup
t∈[0,T]

∑︂
x∈∂T (n)

0

P∞(x; t) ≤ C(n) n→∞−−−−→ 0. (2.21)

In the rest of this section the proofs are presented for S = Nm since
the general case S ⊂ Nm can be easily derived from it. In the latter case
the limit behavior as n → ∞ is intended for n ∈ Nm and ni → sup{xi :
x ∈ S} for all i.

34

2.3.2 Convergence of the Linear Non-Perturbed System

Theorem 3. Suppose that hypothesis (H2) holds. Then Z
(n)
Λ solution of the

linear non-perturbed system (2.20) is such that:

lim
n→∞

∥Z(n)
Λ − Z∞∥∞ = 0

and, in particular, for some non-negative real sequence {λ(n)}n∈Nm :

lim
n→∞

sup
t∈[0,T]

∥P (n)
Λ (· ; t)− P∞(· ; t)∥1 = 0, (2.22)

lim
n→∞

sup
t∈[0,T]

∥Y (n)
Λ (t)∥1 ≤ lim

n→∞
λ(n) = 0. (2.23)

We start by proving (2.22). Using (2.7) with y = 0, we write explicitly
the equations for P (n)

Λ (x, t) :

dP
(n)
Λ (x)

dt
= −

∑︂
l∈L

I{l̃(n)
(x) ̸=0}fl(x)P

(n)
Λ (x; t)+

+
∑︂

x′∈T (n)
0

x′ ̸=x

∑︂
l∈L

I{x′+l̃
(n)

(x′)=x}fl(x
′)P

(n)
Λ (x′; t).

(2.24)

Observe that the dynamics of P
(n)
Λ do not depend on Y

(n)
Λ so we can

solve these components independently and then plug the solution in the
equations for Y (n)

Λ .

We introduce a new function P̃
(n)

(t) = (P̃
(n)

(x∞; t), P̃
(n)

(x; t) : x ∈
T (n)
0) whose evolution is given by the system of ODEs:

dP̃
(n)

(x)

dt
= −

∑︂
l∈L

fl(x)P̃
(n)

(x; t) +
∑︂

x′∈T (n)
0

∑︂
l∈L

I{x′+l=x}fl(x
′)P̃

(n)
(x′; t)

(2.25)

dP̃
(n)

(x∞)

dt
=
∑︂
l∈L

∑︂
x∈∂T (l,n)

0

fl(x)P̃
(n)

(x; t) (2.26)

with initial conditions P̃
(n)

(x; 0) = P (n)(x; 0) and P̃
(n)

(x∞; 0) = 0.

35

Comparing (2.24) with (2.25)-(2.26) one can conclude that:

P̃
(n)

(x; t) ≤ P
(n)
Λ (x; t) ≤ P̃

(n)
(x; t)+ P̃

(n)
(x∞; t) ∀ t ∈ [0, T], ∀x ∈ T (n)

0 .

Therefore, (2.22) will be proved if we prove that the following two
limits hold:

lim
n→∞

sup
t∈[0,T]

∑︂
x∈Nm

|P̃ (n)
(x; t)− P∞(x; t)| = 0, (2.27)

lim
n→∞

sup
t∈[0,T]

P̃
(n)

(x∞; t) = 0. (2.28)

Let us start by proving the first limit. We have:

d(P̃
(n)

(x)− P∞(x))

dt
= −

∑︂
l∈L

(P̃
(n)

(x; t)− P∞(x; t))fl(x)+

+
∑︂
l∈L

I{x−l∈T (n)
0 }(P̃

(n)
(x− l; t)− P∞(x− l; t))fl(x− l)+

+
∑︂
l∈L

I{x−l ̸∈T (n)
0 }P

∞(x− l; t)fl(x− l).

Integrating between 0 and t gives:

P̃
(n)

(x; t)− P∞(x; t) = −
∫︂ t

0

∑︂
l∈L

(P̃
(n)

(x; s)− P∞(x; s))fl(x) ds+

+

∫︂ t

0

∑︂
l∈L

I{x−l∈T (n)
0 }(P̃

(n)
(x− l; s)− P∞(x− l; s))fl(x− l) ds+

+

∫︂ t

0

∑︂
l∈L

I{x−l ̸∈T (n)
0 }P

∞(x− l; s)fl(x− l) ds.

We consider the absolute value and sum over x ∈ T (n)
0 , to obtain:∑︂

x∈T (n)
0

|P̃ (n)
(x; t)− P∞(x; t)| ≤

≤ 2

∫︂ t

0

∑︂
l∈L

∑︂
x∈T (n)

0

|P̃ (n)
(x; s)− P∞(x; s)|fl(x) ds+

+

∫︂ t

0

∑︂
l∈L

∑︂
x∈∂T (l,n)

0

P∞(x− l; s)fl(x− l) ds.

36

Now, applying (H2) and tightness of P∞ (2.21):∑︂
x∈T (n)

0

|P̃ (n)
(x; t)− P∞(x; t)| ≤

≤ 2|L|C
∫︂ t

0

|P̃ (n)
(x; s)− P∞(x; s)| ds+ |L|TCC(n).

Applying Gronwall’s inequality (Ethier and Kurtz, 2009a) to
∑︁

x∈T (n)
0

|P̃ (n)
(x; t)−

P∞(x; t)|:

sup
t∈[0,T]

∑︂
x∈T (n)

0

|P̃ (n)
(x; t)− P∞(x; t)| ≤ e2T |L|C |L|TCC(n).

Finally, we can apply the tightness property of P∞ again to conclude
that:

sup
t∈[0,T]

sup
x∈Nm

|P̃ (n)
(x; t)− P∞(x; t)| ≤

≤ sup
t∈[0,T]

sup
x∈T (n)

0

|P̃ (n)
(x; t)− P∞(x; t)|+ sup

t∈[0,T]

∑︂
x ̸∈T (n)

0

P∞(x; t) ≤

≤ e2T |L|C |L|TCC(n) + C(n) → 0.

We have thus proved that (2.27) holds.
Limit (2.28) follows easily by observing that the previous proof im-

plies that tightness property holds also for the distribution P̃
(n)

(possibly
for a different sequence C(n)). So we have:

dP̃
(n)

(x∞)

dt
=
∑︂
l∈L

∑︂
x∈∂T (l,n)

0

P̃
(n)

(x; t)fl(x) ≤ |L|CC(n) → 0.

This concludes the proof of (2.22).
We now prove (2.23). In virtue of the uniform convergence of P (n)

Λ to
P∞ we can apply the tightness property also to this distribution (possi-
bly considering a different sequence C(n)). We have:⃦⃦⃦⃦
⃦dY (n)

Λ

dt

⃦⃦⃦⃦
⃦
1

=

⃦⃦⃦⃦
⃦⃦⃦∑︂
l∈L

∑︂
x∈∂T (l,n)

0

Y(l,n)(x)fl(x)P
(n)
Λ (x; t)

⃦⃦⃦⃦
⃦⃦⃦
1

≤ ml̄|L|CC(n) → 0.

37

wher l̄ = max
l∈L

max
i=1,...,m

|li|.
This concludes the proof of Theorem 3.

2.3.3 Convergence Result

We now proceed to prove the convergence of the non-linear perturbed
system by exploiting the results already proved for the linear counter-
part. Our main result is stated in the following theorem.

Theorem 4. Suppose that hypotheses (H1) and (H2) hold. Then Z(n) solution
of the non-linear perturbed system (2.19) satisfies:

lim
n→∞

∥Z(n) − Z∞∥∞ = 0

and, in particular

lim
n→∞

sup
t∈[0,T]

∥P (n)(· ; t)− P∞(· ; t)∥1 = 0, (2.29)

lim
n→∞

sup
t∈[0,T]

∥Y (n)(t)∥1 = 0. (2.30)

We start by proving the following proposition.

Proposition 4. Hypothesis (H1) implies that there exists a constant K > 0
such that:

∥∆A(n)(y)∥1 ≤ K∥y∥1 ∀ y ∈ Rm
≥0,∀n ∈ Nm

Proof. Using (2.17) we can estimate the 1-norm of ∆A(n)(y) as:

∥∆A(y)(y)∥1 = max
j∈{1,...,m}∪T (n)

0

∑︂
i∈{1,...,m}∪T (n)

0

|[∆A(n)((y))]i,j | ≤

≤ (mv̄ + 2) max
x∈T (n)

0

∑︂
l∈L

|fl(y + x)− fl(x)|

where the last inequality follows from the fact that, for a fixed column
indexed by x ∈ T (n)

0 , we have that the term mv̄
∑︁

l∈L |fl(y + x) − fl(x)|
takes into account the components of the submatrix R(n)(y) and the term
2
∑︁

l∈L |fl(y + x)− fl(x)| takes into accounts the components in the sub-
matrix Q(n)(y) (observe that at most |L| of the non-diagonal entries of a
given column are non-zero since they correspond to the reactions start-
ing in the observed state indexing that column).

38

Applying (H1) to the r.h.s. of the previous inequality our assertion
follows immediately.

It is possible to verify by direct derivation that Z(n)(t) can be ex-
pressed as:

Z(n)(t) = Z
(n)
Λ (t) +

∫︂ t

0

e(t−s)A(n)(0)∆A(n)(Y (n)(s))Z(n)(s) ds. (2.31)

The operator etA
(n)(0) is uniformly bounded under our current hypothe-

ses, i.e., for a constant M > 0 we have

∥etA
(n)(0)∥ ≤ M ∀ t ∈ [0, T],∀n ∈ Nm.

This can be proved using an argument similar to that used in the proof
of Proposition 4 so that we have:

∥A(n)(0)∥1 = max
j∈{1,...,m}∪T (n)

0

∑︂
i∈{1,...,m}∪T (n)

0

|[A(n)(0)]i,j | ≤

≤ ml̄|L|C + |L|C + |L|C ≤ (ml̄ + 2)|L|C.

Let us now prove (2.30). Let us fix a constant H ≫ 2 and define:

∆
(n)
1 = sup

{︄
δ ≥ 0 : sup

s∈[0,T]

∥Z(n)(s)∥1 ≤ H

}︄
.

For n sufficiently large, we have that ∥Z(n)(0)∥1 = 1 so ∆
(n)
1 > 0. Sup-

pose ∆
(n)
1 < +∞, then, by continuity, ∥Z(n)(∆

(n)
1)∥1 = H . Let n suffi-

ciently large be fixed and consider 0 ≤ t ≤ ∆
(n)
1 . From (2.31), we have:

∥Y (n)(t)∥1 ≤ ∥Y (n)
Λ (t)∥1 + tMKH sup

s∈[0,t]

∥Y (n)(s)∥1.

Now, suppose that lim infn ∆
(n)
1 ∈

[︁
0, 1

4MKH

]︁
, then for a suitable subse-

quence nk we have ∆
(nk)
1 < 1

2MKH ∀ k. Then

sup
t∈[0,∆

(nk)

1]

∥Y (nk)(t)∥1 ≤ λ(nk) +
1

2
sup

s∈[0,∆
(nk)

1]

∥Y (n)(s)∥1

and
sup

t∈[0,∆
(nk)

1]

∥Y (nk)(t)∥1 ≤ 2λ(nk) n→∞−−−−→ 0

39

which contradicts the continuity hypothesis ∥Z(n)(∆
(n)
1)∥1 = H ≫ 2,

since this implies ∥Y (n)(∆
(n)
1)∥1 > H − 1 ≫ 1. We have thus proved that

limn inf ∆
(n)
1 > 1

4MKH .
We can then set t∗1 = 1

4MKH , for which we have, provided n is suffi-
ciently large:

sup
t∈[0,t∗1]

∥Y (n)(t)∥1 ≤ λ(n) +
1

4
sup

t∈[0,t∗1]

∥Y (n)(s)∥1

and
sup

t∈[0,t∗1]

∥Y (n)(t)∥1 ≤ 2λ(n) n→∞−−−−→ 0.

Now, if t∗1 ≥ T we have completed our proof; if not, we need to iterate
the argument to extend the interval. To do this, we define:

∆
(n)
2 = sup

{︄
δ ≥ 0 : sup

s∈[t∗1 ,t
∗
1+δ]

∥Z(n)(s)∥1 ≤ H

}︄
.

Observe that because of the previous step, for n sufficiently large we have
∥Z(n)(t∗1)∥1 ≤ 2λ(n) ≪ H so, for such values of n, ∆(n)

2 > 0. Moreover,
by continuity, if ∆(n)

2 < ∞, ∥Z(n)(t∗1 + ∆
(n)
2)∥1 = H . Now for t∗1 ≤ t ≤

t∗1 +∆
(n)
2 and for n sufficiently large:

∥Y (n)(t)∥1 ≤ ∥Y (n)
Λ (t)∥1 + t∗1MKH sup

s∈[0,t∗1]

∥Y (n)(s)∥1+

+ (t− t∗1)MKH sup
s∈[t∗1 ,t]

∥Y (n)(s)∥1 ≤

≤ ∥Y (n)
Λ (t)∥1 +

1

2
2λ(n) + (t− t∗1)MKH sup

s∈[t∗1 ,t]

∥Y (n)(s)∥1.

Using an argument similar to the one used before we can prove that
lim infn ∆

(n)
2 > 1

4MKH , and set t∗2 = t∗1 +
1

4MKH = 2t∗1 so that

sup
t∈[0,t∗2]

∥Y (n)(t)∥1 ≤ 4λ(n).

If t∗2 ≥ T we can conclude; if not, we can reiterate the procedure as many
times as needed. Since each time the interval is extended by a constant

40

quantity, the whole [0, T] interval is covered by a finite number h of iter-
ations, and we get:

sup
t∈[0,T]

∥Y (n)(t)∥1 ≤ 2hλ(n) → 0.

Let us now prove (2.29). This follows easily by observing that from
(2.31), and from and the convergence of Y (n), we have

sup
t∈[0,T]

∥P (n)(· ; t)− P
(n)
Λ (· ; t)∥1 ≤

≤ TKM sup
t∈[0,T]

∥Y (n)(t)∥1

(︄
1 + sup

t∈[0,T]

∥Y (n)(t)∥1

)︄
≤ TKM(2hλ(n))(2hλ(n) + 1)

n→∞−−−−→ 0.

Since by the previous theorem we have already proved the uniform
convergence of P (n)

Λ to P (n), this concludes the proof of Theorem 4.

2.4 Examples

This section applies DBP to the three examples of density-dependent
Markov population processes with scaling parameter N introduced in
Chapter 1. As noted in Remark 1, DBP does not generally require the
hypothesis of density-dependence for its applicability, and examples of
non density-dependent models could also be presented. The choice of
using density-dependent examples is justified by the wide diffusion of
this class of models and to ease the comparison with existing refining
approaches. For the presented cases, as discussed, the mean-field solu-
tion x(t) represents the limit behavior of the re-scaled population pro-
cess XN (t)/N . Thus, for any given N , we will compare the DBP re-
finement of the unscaled process E[XN (t)] against the mean-field ap-
proximation of expected populations given by Nx(t). As ground truth,
we take the average trajectory using Gillespie’s direct stochastic simu-
lation algorithm (Gillespie, 2007). The stopping criterion was chosen as
follows: along the simulated time horizon we fix 100 equidistant time
steps, and at each time step we compute the 95% confidence interval. If
the semi-amplitude of the interval is greater than 1% of the mean at that
step the number of simulations is increased by 1k runs or 10k runs (if

41

the number of simulations has already exceeded 50k). This procedure is
applied to all observed outputs.

Stochastic simulation as well as the numerical solutions of the mean-
field equations and the DBP equations were performed in Matlab. The
DBP equations were generated from a prototype implementation within
the (Java-based) software tool ERODE (Cardelli et al., 2017). In the run-
time comparisons, we do not report the time taken to generate the DBP
Matlab file because we found it to be negligible with respect to the so-
lution time. The expansions from Gast, Bortolussi, and Tribastone, 2019
were computed using the Python-based implementation therein reported.
Since the considered implemented computes both expansions simultane-
ously. All experiments were conducted on a laptop equipped with a 2.8
GHz Intel i7 quad-core processor and 16 GB RAM.

2.4.1 Coxian Queuing Systems

We consider the M/Cox/N queuing system with Poisson arrivals with
rate Nλ and service rate with a Coxian distribution, which was intro-
duced in Example 2. We separate the cases in which the Coxian distribu-
tion has two phases or a larger number of phases due to the significant
difference in the sizes of the systems.

Two-phase Coxian distribution We first consider as service rate a two-
phase Coxian distribution. We set the initial condition x̄0 = (0, 0, N). As
observed, the mean-field approximation has a Lipschitz continuous but
non-differentiable drift, for which available results of mean-field refine-
ment in Gast, Bortolussi, and Tribastone, 2019 are not applicable.

Figure 2 compares the transient evolution of average queue lengths
for λ = 0.75 and different variances (using a unitary mean service time as
in Table 1) and for various truncations in the form n = (n1, N,N), i.e., by
truncating the number of jobs requiring first-phase service to n1. In gen-
eral, the mean-field approximation does not behave satisfactorily and, as
mentioned in Section 1, provides estimates for long enough time hori-
zons that are insensitive to the service time distribution. DBP can refine
the mean in all cases, although larger values of n1 are needed to improve
the accuracy with larger variances of the service-time distribution.

Table 2 reports the runtimes as well as the size of the resulting system
of equations when applying DBP. As expected, the computational cost of
the DBP analysis grows with n1 and is larger than that of the mean-field

42

0 25 50 75 100 125 150 175 200
0

2

4

6

8

10

12

14

16

Av
er

ag
e

Qu
eu

e
Le

ng
th

N=1, SCV=5

0 25 50 75 100 125 150 175 200
0

2

4

6

8

10

12

14

16
N=1, SCV=10

0 25 50 75 100 125 150 175 200
0

2

4

6

8

10

12

14

16
N=1, SCV=20

0 25 50 75 100 125 150 175 200
0

2

4

6

8

10

12

14

Av
er

ag
e

Qu
eu

e
Le

ng
th

N=5, SCV=5

0 25 50 75 100 125 150 175 200
0

2

4

6

8

10

12

14

N=5, SCV=10

0 25 50 75 100 125 150 175 200
0

2

4

6

8

10

12

14

N=5, SCV=20

0 25 50 75 100 125 150 175 200
t

0

2

4

6

8

10

12

14

Av
er

ag
e

Qu
eu

e
Le

ng
th

N=10, SCV=5

0 25 50 75 100 125 150 175 200
t

0

2

4

6

8

10

12

14
N=10, SCV=10

0 25 50 75 100 125 150 175 200
t

0

2

4

6

8

10

12

14
N=10, SCV=20

DBP - n1 = 5 DBP - n1 = 15 DBP - n1 = 25 DBP - n1 = 50 sim mean-field

Figure 2: DBP applied to an M/Cox/N queuing system where the trunca-
tion is applied to n1 jobs waiting for service in the first phase of a two-phase
Coxian distribution.

43

Table 2: Runtimes (in s) for simulations (SIM) and DBP with bound
(n1, N,N) for the two-phase Coxian distribution; the number of equations
refers to the size of the resulting DBP models. The solution of the mean-field
system takes 0.06s on average.

N V
SIM DBP

n1 = 10 n1 = 30 n1 = 50 n1 = 100
Time # runs Time Time Time Time

(22 eqs.) (62 eqs.) (102 eqs.) (202 eqs.)

1 5 204 130k 0.07 0.08 0.14 0.19
1 10 224 140k 0.08 0.10 0.14 0.21
1 20 213 140k 0.12 0.22 0.27 0.40

(66 eqs.) (186 eqs.) (306 eqs.) (606 eqs.)

5 5 574 70k 0.37 0.85 1.32 2.58
5 10 944 100k 0.45 0.90 1.43 2.71
5 20 1331 130k 0.53 0.97 1.56 2.82

(121 eqs.) (341 eqs.) (561 eqs.) (1111 eqs.)

10 5 487 29k 0.93 2.72 4.37 8.85
10 10 889 60k 0.93 2.90 4.54 9.22
10 20 1622 100k 1.02 3.01 4.53 9.24

solution. However, it can refine the mean estimate at a small fraction
(no more than about 2% across all cases) of the time taken to perform
stochastic simulation.

Larger Number of Phases We use a Coxian distribution with more
phases to show how our method behaves with larger models. Figure
3 shows the results for K = 5 and K = 10 with N = 5. The Coxian
parameters are manually tuned so as to have a unitary mean and vari-
ance V = 5 and are reported in Table 3. For K = 5 we used bounds in
the form n = (n1, 1, 1, 1, 1, 0, 0, 0, 0), with n1 = 2, 5, 10; for K = 10 we
used the bounds n1 = 5, 10, 20, n2 = . . . = n4 = 1, n5 = n19 = 0. Run-
times are reported in Table 4. Since we are using modest truncations,
even if the computational time is larger than that of the classic mean-
field approximation, for each of the chosen bounds, it does not exceed
2.2s. Nonetheless, in Figure 3 it is possible to see that the approximation
is consistently improved.

44

0 25 50 75 100 125 150 175 200

0

1

2

3

4

5

6

7

Av
er

ag
e

Qu
eu

e
Le

ng
th

K=5

sim
mean-field
DBP - n1 = 2
DBP - n1 = 5
DBP - n1 = 10

0 25 50 75 100 125 150 175 200

0

1

2

3

4

5

6

7

Av
er

ag
e

Qu
eu

e
Le

ng
th

K=10

sim
mean-field
DBP - n1 = 5
DBP - n1 = 10
DBP - n1 = 20

Figure 3: DBP applied to the M/Cox/N queuing systems with K = 5 and
K = 10 phases for the Coxian service-time distribution.

Table 3: Parameters for Coxian service time distribution with a larger num-
ber of phases.

K µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10

5 1.5136 0.5045 0.5045 0.1261 0.1261 - - - - -
10 1.8809 0.6270 0.6270 0.3135 0.3135 0.2821 0.1881 0.1567 0.0784 0.0784

K p1 p2 p3 p4 p5 p6 p7 p8 p9

5 0.10 0.10 0.85 0.80 - - - - -
10 0.20 0.20 0.20 0.50 0.50 0.80 0.80 0.80 0.80

Table 4: Runtimes (in s) for simulations (SIM), mean-field (MF) and DBP for
the M/Cox/N queuing system with N = 5 and Coxian distributed service
times with K = 5 and K = 10 phases, unitary mean and variance V = 5.

K Method Parameters Time

5

SIM 80k runs 604
MF - 0.22
DBP n1 = 2, 57 eqs. 0.41
DBP n1 = 5, 105 eqs. 1.04
DBP n1 = 10, 185 eqs. 1.95

10

SIM 100k runs 953
MF - 0.36
DBP n1 = 5, 67 eqs. 0.43
DBP n1 = 10, 107 eqs. 0.79
DBP n1 = 20, 187 eqs. 2.20

45

0 1 2 3 4 5

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0
Dormant

0 1 2 3 4 5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Active

0 1 2 3 4 5

0

5

10

15

20

25

30

Susceptible

DBP - n=(24,24) 1/N expansion 1/N2 expansion sim mean-field

Figure 4: Numerical results for the malware propagation model with
unique attractor orbit (δ = 0.50) for mean-field approximation, 1/N and
1/N2 expansions in Gast, Bortolussi, and Tribastone, 2019, and DBP.

Table 5: Runtimes (in s) for simulations (SIM), mean-field (MP), DBP, and
expansions in 1/N and 1/N2 (EXP) for the Malware Propagation Model
with N = 50 agents.

Model δ
SIM MF DBP EXP

n = (24, 24) 1/N 1/N2

Time #runs Time Time #eqs. Time Time

Stable 0.5 100 21k 0.06 0.83 628 0.07 0.42
Unstable 0.1 2819 380k 0.08 2.17 628 0.06 0.39

2.4.2 Malware Propagation Model

Here we consider the malware propagation model presented in Example
3, in the two cases δ > δ∗ (stable model) and δ < δ∗ (unstable model).

Stable Model To show the error behavior in the case of a stable mean-
field approximation, we set N = 50, δ = 0.5, β = 0.1, and x̄0 = (x̄D, x̄A) =
(25, 25), as done in Gast, Bortolussi, and Tribastone, 2019. Figure 4 com-
pares DBP applied with bound n = (24, 24), against the 1/N and 1/N2

expansion approximations proposed in Gast, Bortolussi, and Tribastone,
2019. We found that these methods all perform comparably with each
other in terms of accuracy, improving the mean-field estimation (espe-
cially for the average population of dormant nodes), while the 1/N2 ex-
pansion is faster than DBP (see Table 5).

46

0 2 4 6 8 10
0

10

20

30

40

50 Dormant

0 2 4 6 8 10
0

10

20

30

40

50 Active

0 2 4 6 8 10
0

10

20

30

40

50 Susceptible

DBP - n=(24,24) 1/N expansion 1/N2 expansion sim mean-field

Figure 5: Numerical results for the malware propagation model with orbit
cycle (δ = 0.10) for mean-field approximation, 1/N and 1/N2 expansions
in Gast, Bortolussi, and Tribastone, 2019, and DBP.

0 2 4 6 8 10
0

10

20

30

40

50
Dormant

0 2 4 6 8 10

10

20

30

40

50

60

Active

0 2 4 6 8 10

0

20

40

60

80

Susceptible

DBP - n=(30,30) BP - n=(30,30), y=(20,20) BP - n=(40,40), y=(10,10) BP - n=(44,44), y=(6,6) sim

Figure 6: Numerical results for the unstable malware propagation model
(δ = 0.1) comparing DBP with bound n = (15, 15) and BP on different
truncations T (n)

y .

47

Unstable Model Using δ = 0.1, Figure 5 shows the presence of an orbit
cycle in the mean-field approximation. We recall that an orbit cycle is any
solution curve of (1.3) that is not an equilibrium point (Perko, 2013). The
presence of such orbit causes instability to both the expansions 1/N and
1/N2. Instead, using the same n as in the previous case, DBP exhibits
damped oscillatory behavior that refines the mean-field approximation,
especially over longer time horizons when the oscillations tend to fade
away. Runtimes can be found in Table 5.

Impact of Dynamic Shift of Truncation The structure of this model al-
lows us to show the impact of the dynamic shift. To do so, we consider
the unstable model with N = 100, δ = 0.1, β = 0.2 and compare DBP
against different BPs that are not modulated by the mean-field approx-
imation, i.e., solutions to systems in the form of (2.8). Figure 6 shows
the results of DBP with n = (30, 30) and BP applied on a truncated state
space T n

y with different values of n and y (defined as in (2.2)). We use
initial condition x̄0 = (x̄D, x̄A) = (50, 50). Observe that with this choice,
when applying BP, we are forced to choose a truncation containing the
initial state. The results indicate that DBP significantly outperforms BP
for the same size of the truncated state space n = (30, 30). Since the
Master Equations for the truncated state space have the same functional
form in DBP and BP, the difference in behavior is due to the dynamic
shift of the truncation by the coupling with the two mean-field equations
that approximate the average population of dormant and active nodes.
To achieve comparable accuracy with DBP, BP requires much larger state
spaces—i.e., using n = (44, 44), corresponding to over a twofold increase
of the truncated state space size (2025 states for BP, 961 states for DBP).

2.4.3 Egalitarian Processor Sharing

Finally, we discuss the queuing system with egalitarian processor shar-
ing of Example 4.

We consider models with K = 2, 3, 4 classes, always setting the ini-
tial condition to x̄0 = (0, . . . , 0) and N = 1. For K = 2 classes, we
first show how the choice of the bound n can impact the accuracy of the
approximation. In fact, when the arrival rates λi are different, we ex-
pect that the probability mass in each truncation will be concentrated on
states with xQi

> xQj
for λi > λj ; specifically, we expect that the ratio

between the mean number of class-i customers and the mean number of

48

0 100 200 300 400 500

0

2

4

6

8

10

12

14

Cl
as

s 1
 A

ve
ra

ge
 Q

ue
ue

 L
en

gt
h

0 100 200 300 400 500

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Cl
as

s 2
 A

ve
ra

ge
 Q

ue
ue

 L
en

gt
h

n′b (576 states) n′u (585 states) nb (49 states) nu (51 states) sim mean-field

Figure 7: Numerical results for the egalitarian processor sharing queuing
system with K = 2 classes using different DBP truncation parameters.

class-j customers is approximately equal to λi

λj
. This suggests a heuris-

tic of unbalanced bounds where each dimension is set proportionally to
the arrival rate of each class. We will show that applying this heuristic,
instead of considering balanced bounds of the form ni = nj for any i
and j, improves the approximation. In particular, we will show a direct
comparison for K = 2 and then apply this heuristic also for K = 3 and
K = 4. We recall that in this case the number of states used by DBP is
N (n) =

∏︁K
k=1(nk+1) where nk is the bound chosen for class k, while the

number of equation is given by N (n) +K.

Case K = 2 To show the impact of the choice of n, we take two pairs
of vectors. The pair nb = (6, 6) and n′

b = (23, 23) considers two trun-
cations of increasing size which are balanced, i.e., nQ1 = nQ2 ; the pair
nu = (16, 2) and n′

u = (64, 8) considers two truncations where nQ1 =
8nQ2

. These values have been chosen such that the number of states in
the truncated state spaces for nb and nu, as well as those for n′

b and n′
u,

are similar. This way, the difference in the accuracy may be more di-
rectly related to the choice of the truncation. Figure 7 shows the results
of the approximations for the average queue lengths for both classes of
customers. They indicate that using a balanced truncation leads to less
accurate approximations than an unbalanced truncation with a compara-

49

0 100 200 300 400 500

0

2

4

6

8

10

12

14

16
Cl

as
s 1

 A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

0 100 200 300 400 500

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Cl
as

s 2
 A

ve
ra

ge
 Q

ue
ue

 L
en

gt
h

DBP - n=(64,8) 1/N expansion 1/N2 expansion sim mean-field

Figure 8: Comparison between DBP with n = (32, 4) and the 1/N , 1/N2 ex-
pansions from Gast, Bortolussi, and Tribastone, 2019 for the queuing system
with egalitarian process sharing presented in Section 2.4.3.

ble number of states. Nevertheless, every DBP approximation improves
the mean-field estimates in all cases considered here.

Using N as scaling parameter, this model admits a mean-field limit
with a differentiable drift; therefore, applying the 1/N and 1/N2 refine-
ments proposed in Gast, Bortolussi, and Tribastone, 2019 is possible. Fig-
ure 8 compares the refinements against the most accurate DBP approxi-
mation shown in Fig. 7, i.e., n′

u = (64, 8). With this choice of bound, DBP
is superior to both refinements across the transient regime. As the trajec-
tories approach stationarity, the 1/N2 refinement and DBP accuracy be-
come comparable. The runtime comparison, reported in Table 6, shows
that the 1/N2 expansion requires less computational time (for K = 2 as
well as in the forthcoming cases).

Case K = 3, 4 For K = 3 we chose λ1 = 0.8, λ2 = 0.4, λ3 = 0.1, µ = 1.5.
Following the same argument applied for K = 2, we chose the bounds
for Q1, Q2, Q3 proportionally, so we set n = (16, 8, 2), (24, 12, 4), (32, 16, 4)
and (36, 18, 5). For K = 4 and rates constants λ1 = 0.8, λ2 = 0.4, λ3 =
0.2, λ4 = 0.1, µ = 2 we chose n = (8, 4, 2, 1), (12, 6, 3, 2), (16, 8, 4, 2) and
(20, 10, 5, 3). Results for the average queue length are shown in Figure
9 while the results for per-class queue lengths are reported in Figure 10
and 11. In these cases, DBP performs comparably to the 1/N2 expansion,

50

Table 6: Runtimes (in s) for simulations (SIM), mean-field (MF), DBP and
1/N2 expansion (EXP) for the egalitarian processor sharing queuing system
with K = 2,3, and 4 classes of customers.

K Method Parameters Time

2

SIM 150k runs 924
MF - 0.07

DBP n = (6, 6), 51 eqs. 0.10
DBP n = (16, 2), 53 eqs. 0.08
DBP n = (23, 23), 578 eqs. 0.69
DBP n = (64, 8), 587 eqs. 0.74
EXP 1/N 0.05
EXP 1/N2 0.32

3

SIM 180k runs 1209
MF - 0.07

DBP n = (16, 8, 2), 462 eqs. 0.80
DBP n = (24, 12, 3), 1303 eqs. 13.65
DBP n = (32, 16, 4), 2808 eqs. 27.25
DBP n = (36, 18, 5), 4221 eqs. 31.15
EXP 1/N 0.25
EXP 1/N2 3.88

4

SIM 360k runs 1192
MF - 0.04

DBP n = (8, 4, 2, 1), 274 eqs. 0.40
DBP n = (12, 6, 3, 2), 1096 eqs. 7.34
DBP n = (16, 8, 4, 2), 2299 eqs. 14.19
DBP n = (20, 10, 5, 3), 5558 eqs. 31.37
EXP 1/N 0.17
EXP 1/N2 4.89

51

0 100 200 300 400 500

0

2

4

6

8

10

12

Av
er

ag
e

Qu
eu

e
Le

ng
th

K = 3

n = (16, 8, 2)
n = (24, 12, 3)
n = (32, 16, 4)
n = (36, 18, 5)
1/N expansion
1/N2 expansion
sim
mean-field

0 25 50 75 100 125 150 175 200

0

1

2

3

4

5

6

Av
er

ag
e

Qu
eu

e
Le

ng
th

K = 4

n = (8, 4, 2, 1)
n = (12, 6, 3, 2)
n = (16, 8, 4, 2)
n = (20, 10, 5, 3)
1/N expansion
1/N2 expansion
sim
mean-field

Figure 9: Numerical results for the estimation of the average queue length
of the egalitarian processor sharing queuing system with K = 3 and K = 4
classes of customers.

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

Cl
as

s 1
 A

ve
ra

ge
 Q

ue
ue

 L
en

gt
h

0 100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Cl
as

s 2
 A

ve
ra

ge
 Q

ue
ue

 L
en

gt
h

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0
Cl

as
s 3

 A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

n = (16, 8, 2)
n = (24, 12, 3)

n = (32, 16, 4)
n = (36, 18, 5)

1/N expansion
1/N2 expansion

sim
mean-field

Figure 10: Numerical results for the egalitarian processor sharing queuing
system with 3 classes of customers.

0 25 50 75 100 125 150 175 200
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Cl
as

s 1
 A

ve
ra

ge
 Q

ue
ue

 L
en

gt
h

0 25 50 75 100 125 150 175 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Cl
as

s 2
 A

ve
ra

ge
 Q

ue
ue

 L
en

gt
h

0 25 50 75 100 125 150 175 200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cl
as

s 3
 A

ve
ra

ge
 Q

ue
ue

 L
en

gt
h

0 25 50 75 100 125 150 175 200
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Cl
as

s 4
 A

ve
ra

ge
 Q

ue
ue

 L
en

gt
h

n = (8, 4, 2, 1) n = (12, 6, 3, 2) n = (16, 8, 4, 2) n = (20, 10, 5, 3) 1/N expansion 1/N2 expansion sim mean-field

Figure 11: Numerical results for the egalitarian processor sharing queuing
system with 4 classes of customers.

52

although it tends to better approximate the transient evolution. Regard-
ing runtimes, the best DBP approximations take significantly longer than
the 1/N2 expansions; however, DBP is still very competitive with respect
to stochastic simulation, always requiring less than 3% runtime.

53

Chapter 3

h-scaling

Although the results in the previous chapter have shown that for certain
MPPs DBP can significantly improve the estimation of the average dy-
namics of the system, the number of equations to be solved still scales
exponentially in the dimension of the state vector. While the choice of n
can help tackle this problem, as shown in Table 8, here we propose a sec-
ond technique, called h-scaling, that can be used on its own or coupled
with DBP to reduce the number of equations in any truncated version
of the Master Equation. In Section 3.1 we first introduce h-scaling, how
it can be used as a direct approximation of the Master Equation (static
scaling), and how it can be coupled with DBP (scaled DBP). Preservation
of limit results for the scaled process is proved in Section 3.2. Section 3.3
introduces a multi-scale version of h-scaling, while numerical examples
are shown in Section 3.4.

3.1 Scaled Processes

3.1.1 h-scaling

Consider an MPP as defined in Section 1.1.1. Let R(S) be a minimal
(with respect to inclusion) hyper-rectangle in Nm containing S and let
vR ∈ R(S) be such that (vR)i = min{xi|x ∈ R(S)}. We can imagine S as a
subset of vertices of the m-dimensional grid covering R(S) having edges
of length 1, where vR is the vertex of R(S) with minimal components.
We want to cover R(S) with a coarser grid to contain fewer vertices in

54

the original hyper-volume.
To do this, we fix a scalar parameter h > 1; in some cases, h can be

chosen to be a vector, extending all the present results, as will be dis-
cussed in Section 3.3. Now, recall that by H(D) denotes the convex hull
in Rm of any discrete set D. We define the state space of the scaled pro-
cess as:

Sh = {x = vR + h(k1e1 + . . .+ kmem)|ki ∈ N ∀ i = 1, ...,m} ∩H(R(S))

where ei is the m-dimensional with 1 as i-th component and 0 else.
We now define a process Xh evolving on Sh. We set

Xh(0) = vR + h⌊x0 − vR
h

⌋ ∈ Sh (3.1)

and define the set transitions of Xh as Lh = {hl | l ∈ L}, each associ-
ated with rate 1

hfl(x)I{x+hl∈Sh}. We call the process Xh so defined the
h-scaling of X .

Example. Consider again the M/M/k queue introduced in Example 1 and
assume that the queue starts with zero customers, i.e., X(0) = 0.

The original state space is S = N and H(R(S)) = R≥0 so we will have that
Sh it is still infinite, with |S| = |Sh|, but it is different from S :

Sh = {hn |n ∈ N}.

The h-scaling is Xh, such that Xh(0) = 0 and Xh evolves according to the
following transitions:

lh1 = h at rate
λ

h
,

lh2 = −h at rate
µ

h
min(x, k).

(3.2)

Now consider the M/M/k/N queue from the same Example. In this case,
S = {0, 1, . . . , N} and the h-scaling for the M/M/k/N queue is defined by the
transitions:

lh1 = h at rate
λ

h
I{x<h⌊N

h ⌋},

lh2 = −h at rate
µ

h
min(x, k).

(3.3)

Therefore, in this case, Sh = {0, h, . . . , h⌊N
h ⌋} so we are indeed reducing

the number of states as |Sh| = ⌊N
h ⌋+ 1 ≤ N + 1 = |S|.

55

Interpretation of h-scaling. When h is an integer, a physical interpre-
tation of the process Xh is possible. For example, consider the M/M/k
of the example and set h = 2. X2 is a process performing transitions
x → x + 2 with rate λ

2 and x → x − 2 with rate µ
2 min(x, k). This means

that in X2 every event involves two perfectly synchronized agents that
arrive and leave the queue together, and each event takes place after
a time which is, on average, exactly two times the average time after
which a single agent would perform that transition given the same ini-
tial conditions. For h ∈ Q, the state space of Xh takes values in the real
space. However, since the components of the state vector of an MPP
represent population counts, non-integer values escape physical intelli-
gibility. Nevertheless, we will show that rational values of h are useful
to tune the accuracy of the approximation.

3.1.2 Static Scaling

A first approximation can be obtained simply by solving the Master Equa-
tion for Xh, yielding fewer equations than the one for X . This is possible
when the state space is finite or when we consider a sufficiently large
truncation of an infinite state space to contain most of the probability
mass (Munsky and Khammash, 2006b). We will call this approximation
static scaling.

Without loss of generality, let us consider the finite state space S =
{0, 1, . . . , N1}×. . .×{0, 1, . . . , Nm}, thus |S| =

∏︁m
i=1(Ni+1) is the number

of equations of the Master Equation. Applying h-scaling for h > 1 gives
as new state space Sh = {0, h, . . . , h⌈N1

h ⌉}× . . .×{0, h, . . . , h⌈Nm

h ⌉}, with
|Sh| =

∏︁m
i=1

(︁
⌈Ni

h + 1⌉+ 1
)︁
≤ |S|. For all x ∈ Sh the Master Equation for

Xh can be written as

dPh(x)

dt
=
∑︂
l∈L

1

h
fl(x− hl)Ph(x− hl; t)−

∑︂
l∈L

1

h
fl(x)I{x+hl∈Sh}P

h(x; t).

(3.4)

We can then approximate E[X] by solving (3.4) and computing

E[Xh] =
∑︂
x∈Sh

xPh(x).

Example. As we have seen, h-scaling applied to an M/M/k/N queue yields (3.3).

56

0 200 400 600 800 1000
Time (s)

0

5

10

15

20

25
Av

er
ag

e
Qu

eu
e

Le
ng

th
ME - 51 eqs.
h=1.1 - 45 eqs.
h=1.2 - 41 eqs.
h=1.3 - 38 eqs.
h=1.4 - 35 eqs.
h=1.5 - 33 eqs.
h=1.6 - 31 eqs.
h=1.7 - 29 eqs.
h=1.8 - 27 eqs.
h=1.9 - 26 eqs.
h=2.0 - 25 eqs.
mean-field

0 25 50 75 100 125 150 175 200
10
12
14
16
18
20
22
24

Figure 12: Application of static h-scaling to the M/M/k/N queue. ME =
true mean computed by numerically solving the master equation.

The Master Equation for Xh is then

dPh(x)

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λ
hP

h(0; t) + µ
h min(h, k)Ph(h; t) x = 0

−
(︁
λ
h + µ

h min(x, k)
)︁
Ph(x; t)+

+λ
hP

h(x− h; t)+

+µ
h min(x+ h, k)Ph(x+ h; t) x ̸= 0, h⌊N

h ⌋
−µ

h min
(︁
h⌊N

h ⌋, k
)︁
Ph
(︁
h⌊N

h ⌋; t
)︁
+

+λ
hP

h
(︁
h
(︁
⌊N
h ⌋ − 1

)︁
; t
)︁

x = h⌊N
h ⌋

In Figure 12 we can see the results for h = 1.2, 1.4, 1.6, 1.8, 2.0 applied to an
M/M/k/N queue with parameters k = 4, N = 50, λ = 3.95, µ = 1. We can
see that the number of equations is progressively reduced up to 50% while the
mean estimated using the h-scaling still keeps a low relative error with respect
to the true mean (at steady-state no more than 4% of the true value).

3.1.3 Scaled Dynamic Boundary Projection

We can now combine h-scaling with DBP. We now assume that X evolves
on a state space S ⊆ Nm (not necessarily finite) and that DBP with pa-
rameter n ∈ Nm can be applied to X yielding system (2.14)-(2.15), con-

57

sisting of N (n) + m equations. We will show how to apply DBP to the
scaled process Xh and how this reduces the number of approximating
equations.

In this case, our idea is to cover the portion of the state space inside a
truncation T (n)

y with a coarser grid. To do so, we define the truncations:

T h(n, y) = {x = y + h(k1e1 + . . .+ kmem) | ki ∈ N ∀ i = 1, . . . ,m}
∩H(T (n)

y). (3.5)

Observe that the states in T h(n, y) are not necessarily in Sh (although
they are if y ∈ Sh). Moreover, T h(n, y) has N h(n) =

∏︁m
i=1

(︁
⌊ni

h ⌋+ 1
)︁
≤

N (n) states for any y. This implies that the number of equations in scaled
DBP is reduced by a factor 1

hm , and we have relatively heavier reductions
as the dimensionality of the state space increases. Once the definition of
truncation in Sh is clarified, the derivation of the equations for scaled
DBP follows, step-by-step, the one for the original process. It is detailed
below.

The equations for scaled DBP with parameters n and h are given by:

dY (n,h)

dt
=
∑︂
l∈L

∑︂
x∈∂T h

l (n,0)

Yh
l (n, x)

1

h
fl(x+ Y (n,h)(t))P (n,h)(x; t)

dP (n,h)

dt
= Q(n,h)(Y (n,h)(t))P (n,h)(· , t).

(3.6)

Derivation of Scaled DBP

Having defined the truncations in Section 3.5, we proceed as in the deriva-
tion for DBP.

The border sets for the scaled truncations are defined as:

∂T h
l (n, y) =

{︁
x ∈ T h(n, y) : x+ hl ̸∈ T h(n, y)

}︁
, for l ∈ L,

∂T h(n, y) =
⋃︂
l∈L

T h
l (n, y) =

{︁
x ∈ T h(n, y) : ∃ l ∈ L s.t. x+ hl ̸∈ T h(n, y)

}︁
We can then define the boundary projection of Xh on T h(n, y), in

which every jump from x ∈ ∂Tl(n, y) to x′ is redirected with same rate to
x∗ defined as:

x∗
i =

⎧⎪⎨⎪⎩
min(yi + h⌊ni

h ⌋, x′
i) if x′

i > xi

max(yi, x
′
i) if x′

i < xi

xi if x′
i = xi.

58

After performing the augmentation, we get the jump vectors l(n,h)(x)
defined exactly as before. Then, letting X

(n,h)
y be the boundary projection

of Xh on T h(n, y), its transition matrix Q(n,h)(y) can be written for x, x′ ∈
T h(n, 0) as:

[Q(n,h)(y)]x,x′ =

{︄∑︁
l∈L I{x′+l(n,h)(x′)=x}

1
hfl(x

′ + y) if x ̸= x′

−
∑︁

l∈L I{l(n,h)(x)̸=0}
1
hfl(x+ y) if x = x′.

So the Master Equation for X(n,h)
y as:

dP
(n,h)
y

dt
= Q(n,h)(y)P (n,h)

y (· ; t)

where P
(n,h)
y (· ; t) is an N h(n)-dimensional vector.

Again, to pass to DBP, we need to define the functions:

Π
(n,h)
i (x, y) =

⎧⎪⎨⎪⎩
xi xi < yi

yi + h⌈xi −
(︁
yi + ⌊ni

h ⌋
)︁
⌉ xi > yi + ni

yi yi ≤ x ≤ yi + ni.

∀x, y ∈ Sh

Yh
l (n, x) = Π(n,h)(x+ l, 0) ∀ l ∈ L, ∀x ∈ ∂T h

l (n, 0).

Observe that the second case in the definition of Π(n,h)(x, y) is motivated
by the fact that x may not be in the form y+h(k1e1+ . . .+kmem), and, to
mirror what happens in classic DBP, we want the function to return the
closes y′ in this form so that T h(n, y′) contains x.

Then the equations for scaled DBP with parameter n are given by:

dY (n,h)

dt
=
∑︂
l∈L

∑︂
x∈∂T h

l (n,0)

Yh
l (n, x)

1

h
fl(x+ Y (n,h)(t))P (n,h)(x; t)

dP (n,h)

dt
= Q(n,h)(Y (n,h)(t))P (n,h)(· , t).

(3.7)

Again, supposing X(0) = x0 with probability 1, to define the initial
condition we set: [︂

Y (n)(0)
]︂
i
= max

(︂
0, x0,i − h

⌊︂ni

h

⌋︂)︂
x∗
0 = h

⌊︂x0 − Y (n)(0)

h

⌋︂
P (n)(x; 0) =

{︄
1 if x = x∗

0,

0 else.

59

Example. We now consider the M/M/k queue with λ = 3.85, µ = 1 and
k = 4. In principle, the model has an infinite state space, but it converges to its
steady state distribution, so it is possible to select a finite truncation of the state
space so that the probability mass outside it is arbitrarily small. To select the
minimal truncation that we can take as ground truth, we start by considering
the Master Equation with 500 states and progressively reduce the number of
states so the error introduced is less than 0.001% of the Average Queue Length
(AQL) at steady state. We obtain that we need 375 equations to capture the
queue’s dynamics correctly.

DBP can be applied to this system to reduce the number of equations needed
to approximate the system’s dynamics. We see that using n = 170, the relative
error between the DBP approximation and the solution of the Master Equation
at steady state is less than 1%.

We can further reduce the number of equations by coupling DBP with h-
scaling at the price of a bigger error; this yields the equations:

dY (n,h)

dt
= −

µ

h
min

(︂
Y (n,h(t), k

)︂
P (n,h)(0; t) +

λ

h
P (n,h)

(︃
h

(︃⌊︂N
h

⌋︂
− 1

)︃
; t

)︃

dP (n,h)(x)

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λ
h
P (n,h)(0; t) + µ

h
min

(︁
h+ Y (n,h)(t), k

)︁
P (n,h)(h; t) x = 0

−
(︂

λ
h
+ µ

h
min

(︁
x+ Y (n,h)(t), k

)︁)︂
P (n,h)(x; t)+

+λ
h
P (n,h)(x− h; t)+

+µ
h
min

(︁
x+ h+ Y (n,h)(t), k

)︁
P (n,h)(x+ h; t) x ̸= 0, h⌊N

h
⌋

−µ
h
min

(︂
h⌊N

h
⌋+ Y (n,h)(t), k

)︂
P (n,h)

(︂
h⌊N

h
⌋; t

)︂
+

+λ
h
P (n,h)

(︂
h
(︂
⌊N

h
⌋ − 1

)︂
; t
)︂

x = h⌊N
h
⌋

As seen from Figure 13 and Table 7, for the same value of h, scaled DBP
performs better than h-scaling while yielding a heavier reduction in the number
of equations. We will see that this is the case also for more complex examples.

3.2 Limit Behaviour

We now prove that for a fixed h > 1 the approximating process Xh shares
the same limiting behaviour as X . To lighten the notation, we will as-
sume vR = 0.

3.2.1 Preservation of the Mean-Field Limit

Suppose that the original process X is part of a sequence
(︁
XN

)︁
N≥N0

satisfying the hypotheses of Theorem 1. Fix h > 1 and consider a new se-

60

0 1000 2000 3000 4000 5000
Time (s)

0

5

10

15

20

25

30

35

40

Av
er

ag
e

Qu
eu

e
Le

ng
th

DBP
ME
scaled DBP h=1.1
static h=1.1
scaled DBP h=1.25
static h=1.25
scaled DBP h=1.5
static h=1.5

Figure 13: h-scaling and scaled DBP applied to the M/M/k queue.

h-scaling scaled DBP

h err # eqs. red. err # eqs. red.

1.0 - 376 - 0.91% 172 54.25%
1.1 9.25% 341 9.31% 7.54% 156 58.51%
1.25 22.78% 301 19.94% 19.29% 138 63.29%
1.5 45.50% 251 33.24% 37.4% 115 69.41%

Table 7: Approximated value of the AQL of the M/M/k queue at steady
state (t=5000), with relative error, number of equation and reduction in the
number of equations when h-scaling and scaled DBP are applied. h-scaling
with h = 1 is considered the ground truth.

61

quence
(︁
XN,h

)︁
N≥N0

where each XN,h is obtained applying the h-scaling
to XN .

It is immediate to observe that the new sequence
(︁
XN,h

)︁
N≥N0

still
satisfies the hypotheses of the theorem, and, in particular, for every N

FN,h(x) =
∑︂
l∈L

hl̂
n 1

h
f̂
N

l (x) = FN (x),

which means that under the proposed scaling the drift function is pre-
served for every N and independent of h. This implies that the deter-
ministic limit process x̂(t) defined by (1.4) is exactly the same for both

sequences (in fact, observe that limN h⌊xN
0

h ⌋ = x0, so also the limiting
initial condition is the same).

This can be summed up in the following theorem:

Theorem 5. Consider a sequence of processes
(︁
XN

)︁
N≥N0

and consider the
sequence of approximating processes

(︁
XN,h

)︁
N≥N0

obtained applying h-scaling
for a fixed h > 1. If the original sequence admits a deterministic limit x̂ in
the sense of Theorem 1, then the sequence of approximating processes admits the
same limit.

In the special case of density-dependent processes for all l ∈ L the
scaled transitions have transition vectors h

γn
vl and rate function γN

h gl(x).
This is equivalent to saying that the sequence

(︁
XN,h

)︁
N≥N0

is a density-
dependent family with respect to the parameter γN

h . This is the same ob-
servation that in Ciocchetta et al., 2009 led to prove the limit behaviour
for h → 0, and it is easily explained by the fact that we are approximat-
ing systems of size γN with systems of size γN

h scaling coherently both
the magnitude of the jumps and the transition rates, which are the two
quantities involved in the density-dependence assumption.

Extension to Other Mean-Field Limit Results. The fact that the de-
terministic approximation is preserved with exactly the same limit drift
F allows us to extend to

(︁
XN,h

)︁
N≥N0

other limit results, provided they
hold for the original sequence. In particular, if E is compact and the ODE
in (1.4) admits a globally asymptotically stable fixed point x∗, every se-
quence of invariant measures of XN tends weakly to the Dirac distribu-
tion centered on x∗ (Benaim and Le Boudec, 2008b). The same is true
for any sequence of invariant measures of the sequence

(︁
XN,h

)︁
N≥N0

.

62

Analogously, we can straightforwardly extend to
(︁
XN,h

)︁
N≥N0

results re-
lated to mean-field independence (Benaim and Le Boudec, 2008b), both
in transient and steady-state, and to fast simulation (RWR Darling and
J. R. Norris, 2008) provided the original sequence satisfies the required
assumptions.

3.2.2 Preservation of the LNA

Similarly to the mean-field limit, we assume that our original process X
belongs to a sequence of processes

(︁
XN

)︁
N≥N0

satisfying the hypotheses
of Theorem 2. Again, we fix h > 1 and consider a sequence

(︁
XN,h

)︁
N≥N0

obtained by applying the h-scaling to each process of the original se-
quence. Then, the following result hold:

Theorem 6. Suppose that for the sequence
(︁
XN

)︁
N≥N0

the hypotheses of The-
orem 2 are verified and, in addition:

• equation (1.4) admits a globally asymptotically stable equilibrium x∗;

• for each N XN (0) = Nx̂0;

• for each N γN = N .

Then, letting µ(t) and Σ(t) denote the mean and the covariance matrix of lim-
iting Gaussian process for the original sequence, we have that the sequence of
approximating processes

(︁
XN,h

)︁
N≥N0

admits a Gaussian limiting process with
mean µh(t) and covariance matrix Σh(t) such that:

lim
t→∞

µh(t) = lim
t→∞

µ(t) = 0 and Σh(t) = Σ(t)∀ t ≥ 0.

Proof. Theorem 2 guarantees that under the hypothesis µ(t) and Σ(t) ex-
ist. The rest of the proof is obtained by following the same derivation
used in Van Kampen, 1992 with the ansatz:

X̂
N,h

(t) = x̂(t) +

√︃
h

N
ξh(t). (3.8)

and verifying that ξh(t) is a Gaussian Process whose mean µh(t) and
covariance Σh(t) satisfy exactly the same ODEs as µ(t) and Σ(t), i.e. (1.6)
and (1.7).

Furthermore, in the sequence of the approximated processes,
(︁
XN,h

)︁
N≥0

we have redefined the initial conditions as XN,h(0) = h⌊Nx̂0

h ⌋, while the

63

initial condition for the deterministic process remains unchanged. There-
fore, when setting the initial condition for µh(y) we need to take into ac-
count that for the ansatz to be valid at time t = 0 the Gaussian Limit Pro-
cess possibly has a non-zero mean, namely µh(0) =

√︂
h
N

(︁
⌊Nx̂0

h ⌋ −Nx̂0

)︁
.

So, in general, ξh(t), describing the fluctuations of XN,h, is different
from ξ(t), describing the fluctuations of XN , since µh(0) ̸= µ(0) = 0 (ob-
serve that instead the covariance matrix is still the same, i.e., Σh(t) =
Σ(t)∀ t ≥ 0). However, equation (1.6) is exactly the variational equation
associated with the ODEs defining the deterministic limit (1.4), so, re-
gardless of its initial condition, its solution must tend to 0 as x̂(t) tends
to the equilibrium x∗. This implies limt→∞ µh(t) = limt→∞ µ(t) = 0.

Observe that all the introduced hypotheses are needed for the correct
application of the ansatz: the differentiability of the drifts is needed to
apply the Taylor expansion as in Van Kampen, 1992, while the presence
of a globally asymptotically stable equilibrium ensures that the ansatz
remains valid for t ∈ [0,+∞).

3.3 Multi-scale Approximation

In some cases, it can be useful to consider, instead of a single scalar pa-
rameter h, an m-dimensional vector h ∈ Rm, hi ≥ 1 ∀ i = 1, . . . ,m. In this
case we will re-scale the jumps in different components using different
values hi. This can be desirable when one component evolves on a much
larger space than the others. However, we cannot arbitrarily choose h,
since we need to preserve the quantities transformed by the transitions.
If in the original process a agents of class i transition into b agents of
class j, the scaling parameters hi and hj must be chosen so that the cor-
responding transition preserves this conversion in the scaled process.

We can index the components of the original process with the set I =
{1, . . . ,m}. We say that component i transitions to j, written i ↔ j, if
a sequence of transitions transforms an agent of class i into an agent of
class j. We require that when choosing h, if i ↔ j, then hi = hj . We call
a vector h satisfying this assumption a valid h-scaling vector.

Observe that the constraints on h depend not on the rate functions
but only on the transition vectors l. The scalar case corresponds to hi =
hj ∀i, j ∈ I .

All previous results can be extended to the multi-scale case, provided
h is a valid vector. For an application, see Section 3.4.1.

64

Example. Consider again the Egalitarian Processor Sharing system with K
classes of customers of Example 4.

In this system, agents cannot transition from one class into another so we
can consider any h-scaling vectors with hi ̸= hj for each i, j ∈ I .

Example. Consider the Malware Propagation model introduced in Example 3.
Since D ↔ A, we need to set hD = hA for each valid h-scaling vector, i.e., we
cannot use a multi-scale approach in this case.

For a valid h-scaling vector h we define the scaled state space Sh as

Sh = {x = vR+(k1h1e1+ . . .+kmhmem)|ki ∈ N∀ i = 1, ...,m}∩H(R(S)).

The scaled process Xh will have initial condition Xh(0) with compo-
nents Xh

i (0) = (vR)i + hi⌊ (x0)i−(vR)i
hi

⌋ ∈ Sh.
Finally, we observe that, by definition of valid h-scaling vector, for

each transition vector l ∈ L, the scaling parameters hi associated with
non-null components of l, i.e. components i such that li ̸= 0, are all equal
to a certain value hl. Then, for all l ∈ L, we define the transitions of Xh

as having transition vector hll and rate function 1
hl
fl(x)I{x+hll∈Sh}.

3.4 Examples

We look again at the Egalitarian Processor Sharing and the Malware
Propagation Model. While in the previous chapter, the average over
a sufficient number of simulations was taken as ground truth, we now
compare our results with the solution of the Master Equation (truncated
to a sufficient number of states when necessary). We compute the error
as the L1 norm of the difference between the vector E[X(t)], the average
evolution of X at time t computed by the (truncated) Master Equation,
and the same quantity computed using h-scaling or scaled DBP. Results
show while computing the mean from the original Master Equation re-
quires a prohibitive amount of time this can be reduced significantly by
applying h-scaling and even more efficiently using DBP and its scaled
version. All experiments were performed on a laptop with a 2.8 GHz
Intel i7 quad-core processor and 16 GB RAM.

Effect of h scaling on simulation time.

One could wonder if any computational gain can be achieved by simu-
lating the rescaled process Xh instead of the original process. Observe

65

that (3.8) implies that Var(Xh(t)) = hVar(X(t)), so the approximating
process obtained by h-scaling has higher variance. This has an unlucky
consequence: the number of simulations needed to achieve a certain ac-
curacy when we use Gillespie’s Stochastic Simulation Algorithm to es-
timate a functional of the process will also increase! In particular, if we
require that the confidence interval for the estimated quantity is smaller
than a certain percentage of the estimated mean, we expect the number
of simulations to increase proportionally to the variance, i.e., proportion-
ally to h.

On the other hand, it is known that the time needed for a single sim-
ulation scales with the inverse of the average time needed for the next
transition to occur (Anderson and Koyama, 2012). Such average time
is the inverse of the sum of all transition rates computed in the current
state. Since in h-scaling all rates are divided by h, the time needed for
each simulation scales with 1

h .
Overall, we expect that the time for simulating a sufficient number

of Xh(t) trajectories is comparable to that needed to achieve the same
accuracy by simulating X(t). So, our scaling does not achieve any com-
putational advantage when we deal with simulations on infinite state
spaces. However, it can be coupled with Dynamic Boundary Projection
to speed up the method while still achieving a low approximation error.

3.4.1 Egalitarian Processor Sharing

For the Egalitarian Processor Sharing model we set the parameters to
N = 5, λ1 = N · 0.5, λ2 = N · 0.4, µ = N and the initial condition to
xQ1

(0) = xQ2
(0) = 0.

The considered model has an infinite state space. However, choosing
a truncation of the type

{(xQ1
, xQ2

)|xQ1
≤ N1, xQ2

≤ N2}

for sufficiently large parameters N1, N2, it is possible to approximate the
mean dynamics with arbitrary accuracy.

We start by setting N1 = 150, N2 = 120 and progressively reduce
the state space until the error introduced exceeds the 0.001% of the AQL
at steady state. We find that to keep the error below the chosen thresh-
old we need to set N1 = 135, N2 = 108. This truncation corresponds to
an approximated Master Equation with almost 15000 equations, so the
time needed to solve it is considerably high (≈ 8 hours). We can apply

66

Table 8: Approximated values of the Egalitarian Processor Sharing model
at steady state (t=1000), with relative error, number of equations, reduction
in the number of equations, and computational time (in seconds) when h-
scaling and scaled DBP are applied. h-scaling with h = 1 is considered the
ground truth.

h-scaling scaled DBP

h AQL err # eqs. red. time AQL err # eqs. red. time

(1.0, 1.0) 53.97 - 14824 - 3.09e4 53.46 0.94% 4049 72.70% 4.44e3
(1.5, 1.2) 57.23 6.04% 8281 44.14% 1.67e4 55.36 2.57% 2211 85.01% 1.73e3
(2.0, 1.6) 61.19 13.38% 4624 68.81% 5.43e3 57.12 5.83% 1298 91.26% 5.20e2
(2.5, 2.0) 64.95 20.35% 3025 79.59% 1.40e3 58.26 7.94% 843 94.32% 1.43e2
(3.0, 2.4) 68.39 26.71% 2116 85.72% 8.99e2 58.82 8.97% 578 96.11% 1.18e2

0 200 400 600 800 1000
Time (s)

0

10

20

30

40

50

60

70

Av
er

ag
e

Qu
eu

e
Le

ng
th

a) Static h-scaling

ME
h=(1.5, 1.2)
h=(2.0, 1.6)
h=(2.5, 2.0)
h=(3.0, 2.4)

0 200 400 600 800 1000
Time (s)

b) Scaled DBP

DBP
h=(1.5, 1.2)
h=(2.0, 1.6)
h=(2.5, 2.0)
h=(3.0, 2.4)

Figure 14: Application of h-scaling and scaled DBP to Egalitarian Processor
Sharing with two classes of customers.

67

static h-scaling to reduce the number of equations and consequently the
computational time, but this comes at the cost of a relative error that can
reach 27% of the AQL at steady state (see Table 8 and Figure 14a). In gen-
eral the computational time is proportional to the number of equations
for static h-scaling is N h(n) =

∏︁m
i=1(⌊

ni

h + 1⌋), while for scaled DBP is
N h(n) + 2.

For this example, DBP already provides a significative advantage by
allowing us to achieve an error of less than 1% by choosing n = (70, 56)
that corresponds to roughly 4000 equations. This reduces the compu-
tational time significantly. Moreover using scaled DBP with the same h
used for the static case shows that a smaller relative error can be achieved
with a smaller number of equations by reducing the computational time
to less than 2 minutes with a relative error of less than 10% (see Table 8
and Figure 14b).

3.4.2 Malware Propagation

For the Malware Propagation Model we consider N = 80 agents and
initial conditions xD(0) = xA(0) = 40.

Since this system has a finite state space given by {(xD, xA)|xA+xD ≤
N}, its Master Equation can be solved exactly. Taking into account the
constraint, the Master Equation yields (N+1)·(N+2)

2 equations, instead of
(N + 1)2, and the same is true for static h-scaling (12 (⌊

N
h ⌋ + 1)(⌊N

h ⌋ + 2)
equations). Analogously, in DBP and scaled DBP the only states of the
truncation with probability greater than 0 will be the states (xA, xB) such
that xA + Y

(n,h)
A (t) + xB + Y

(n,h)
B (t) ≤ 80. However since the component

Y (n,h) varies in time we write the equations for all (n+ 1)2 states.
We measure the error as the sum of the relative errors on the three

components S,A,D at steady state. Again, we choose n for DBP by re-
quiring that the error is below 1%. This happens when we set n = 50
and significantly reduce the number of equations and the computational
time. Moreover, using scaled DBP allows us to outperform static h-
scaling in terms of accuracy and further reduce the computational times
while keeping the error below 10% (see Figures 15 and Table 9).

68

0 1 2 3 4 5
Time (s)

15

20

25

30

35

40

Av
er

ag
e

nu
m

be
r o

f a
ct

iv
e

ag
en

ts

ME
DBP
static h =1.25
scaled h =1.25
static h =1.5
scaled h =1.5
static h =1.75
scaled h =1.75
static h =2.0
scaled h =2.0

3.0 3.5 4.0 4.5 5.0
17

18

19

20

21

22

0 1 2 3 4 5
Time (s)

15

20

25

30

35

40

Av
er

ag
e

nu
m

be
r o

f d
or

m
an

t a
ge

nt
s

3.0 3.5 4.0 4.5 5.0
24

25

26

27

28

0 1 2 3 4 5
Time (s)

0

10

20

30

40

50

Av
er

ag
e

nu
m

be
r o

f s
us

ce
pt

ile
 a

ge
nt

s

ME
DBP
static h =1.25
scaled h =1.25
static h =1.5
scaled h =1.5
static h =1.75
scaled h =1.75
static h =2.0
scaled h =2.03.0 3.5 4.0 4.5 5.0

32

33

34

35

36

Figure 15: From above: average number of active, dormant and susceptible
agents in the Malware Propagation model computed using h-scaling and
scaled DBP.

69

Table 9: Total relative error in the mean dynamics of the Malware Propa-
gation model at steady state (t=5), with the number of equations, reduction
in the number of equations and computational time (in seconds) when h-
scaling and scaled DBP are applied. h-scaling with h = 1 is considered the
ground truth

h-scaling scaled DBP

h err # eqs. red. time err # eqs. red. time

1.0 - 3321 - 5.19e3 0.87% 2601 21.68% 2.38e3
1.25 2.92% 2145 35.41% 1.73e3 2.22% 1681 49.38% 1.00e3
1.5 5.91% 1485 55.28% 6.61e2 4.28% 1156 65.19% 6.18e2
1.75 7.68% 1081 67.45% 3.20e2 6.23% 841 74.68% 1.63e2
2.0 12.1% 861 74.07% 2.48e2 8.06% 676 79.64% 1.00e2

70

Chapter 4

Inference of Probabilistic
Programs With
Moment-Matching
Gaussian Mixtures

This chapter and the next one deal with the inference problem for bounded
probabilistic programs. In particular, in this chapter, we introduce Gaus-
sian Semantics, a family of approximating semantics whose practical im-
plementation is the object of the next chapter. In Section 4.1, we intro-
duce the state-of-the-art and our approach using a motivating example.
In Section 4.2, we report some background material specific to the next
two chapters. The control-flow syntax and exact semantics for proba-
bilistic programs analyzed are introduced in Section 4.3, while Gaussian
Semantics are introduced in Section 4.4. Our main theoretical result, the
universal approximation theorem, is stated and proved in Section 4.5.

4.1 State-of-the-Art

Probabilistic programming languages are programming languages aug-
mented with primitives expressing probabilistic behaviours (Gordon et
al., 2014). Examples are random assignments (“program variable x is
distributed according to the probability distribution D”), probabilistic

71

choices (“do P1 with probability p else P2) or conditioning (“variable x
is distributed according to D, under the constraint that it can only take
positive values”). This has enabled a variety of applications, such as the
analysis of randomized algorithms, machine learning and biology (Gor-
don et al., 2014).

Given a probabilistic program, there are different equivalent ways in
which its semantics can be defined (Kozen, 1983). Following Kozen’s Se-
mantics 2 (Kozen, 1979), here we see a program as a transformer: given
an initial joint distribution over the program variables, each instruction
in the program transforms that joint distribution into a possibly different
one, for example, due to the presence of probabilistic assignments or con-
ditional statements. In this framework, we are interested in the inference
problem: given a program P and an initial distribution D over program
variables, what is the distribution over program variables after executing
P ? Borrowing from Bayesian inference, we will sometimes refer to the
initial distribution D as the prior distribution over program variables and
to the distribution obtained after executing P as the posterior distribution.
Then, the inference problem boils down to computing the posterior.

Over the years, many approaches have tackled this problem: numer-
ical methods based on Monte Carlo Markov chain (MCMC) sampling
(Hastings, 1970; Nori et al., 2014; Goodman et al., 2008; V. Mansinghka,
Selsam, and Perov, 2014; Pfeffer, 2001; A. Chaganty, Nori, and Raja-
mani, 2013), variational inference (VI) (Bingham et al., 2019; M. I. Jor-
dan et al., 1999; Kucukelbir et al., 2015), symbolic execution (Gehr, Mi-
sailovic, and Vechev, 2016; Narayanan et al., 2016; Saad, Rinard, and
V. K. Mansinghka, 2021), volume computation (Holtzen, Van den Broeck,
and Millstein, 2020; Filieri, Păsăreanu, and Visser, 2013; Huang, Dutta,
and Misailovic, 2021), and approaches based on moment-based invari-
ants (Barthe et al., 2016; Chakarov and Sankaranarayanan, 2014; Katoen
et al., 2010; Bartocci, Kovács, and Stankovič, 2020; Moosbrugger et al.,
2022). Overall, each method presents its own pros and cons, and is tai-
lored to particular classes of programs.

4.1.1 Motivating Example

As a motivating example, consider the Tracking n model reported in
Algorithm 1 and adapted from Wu et al. (2018). It describes a Gaussian
process evolving on a bi-dimensional space for n steps and starting from
coordinates (2, -1) (lines 1-5). A radar is positioned in (0,0) and can sense
the process if it is at a squared distance (dist, line 6) of less than 10 units

72

Algorithm 1 Tracking n adapted from (Wu et al., 2018)

1: x = 2, y = −1
2: for i in range(n) do
3: x = x+ gauss(0, 1)
4: y = y + gauss(0, 1)
5: end for
6: dist = x2 + y2

7: if dist > 10 then
8: out = 1
9: else

10: out = 0
11: end if
12: if out = 1 then
13: obs dist = 10
14: else
15: obs dist = gauss(dist, 1)
16: end if
17: observe(out == 1)
18: return obs dist

from the radar. Therefore, the process can be either out of scope (out = 1,
line 8) or in scope (out = 0, line 10). When the process is out of scope,
the radar returns an observed distance of 10 (line 13) and a noisy mea-
surement of the true distance else (line 15). Therefore, the distribution
over obs dist is a mixture of δ10, i.e., a Dirac delta centered in 10, and
a Gaussian with mean dist. However, if we observe that the process is
out of scope (line 17), the posterior over obs dist is just δ10 because any
continuous distribution puts zero mass on a single point. Therefore, the
exact posterior over obs dist is a distribution placing probability 1 on 10.

While this program may seem quite simple, performing inference
may be challenging. Using PSI (Gehr, Misailovic, and Vechev, 2016),
an exact symbolic solution returns a formula for the posterior mean of
obs dist in less than a second, which, however, contains several non-
simplified integrals. This is because, in line 6, computing dist requires
computing the probability density function (pdf) of the product of two
continuous distributions, and this requires symbolic integration. At-
tempting to integrate it numerically using Mathematica [Wolfram Re-
search, Inc.] did not terminate after 30 minutes on a common machine.

73

One can resort to approximate approaches; however, many methods,
such as STAN’s MCMC sampling (Carpenter et al., 2017), Pyro’s VI (Bing-
ham et al., 2019) and AQUA’s quantization (Huang, Dutta, and Mis-
ailovic, 2021), do not support discrete posteriors, therefore this particular
program cannot be encoded in their syntax. BLOG is a probabilistic pro-
gramming language relying on probabilistic relational model represen-
tation and likelihood weighting sampling (Milch, Marthi, and Russell,
2004), that has been extended by Wu et al. (2018) for mixtures of contin-
uous and discrete distribution such as the one in our example. It com-
putes the exact posterior in 0.516 s for n = 1 and about 5 s for n = 100.
A similar behaviour is exhibited by applying Pyro’s variable elimination
(Obermeyer et al., 2019), which computes the exact posterior in 0.192 s
for n = 1 and about 9 s for n = 100 (see Table 16).

4.1.2 Proposed Approach

We present an overview of our approach by examining separately: the
choice of representation for the distributions, how the approximation
is performed at each program location, the asymptotic correctness and
the particular implementation presented in the next chapter. Finally, we
consider again the motivating example, to show how our approximation
method performs inference on it.

Representation. The difficulty in performing inference on the previ-
ous program stems from various factors: PSI’s exact engine returns non-
simplified integrals, requiring computationally expensive numerical in-
tegration. STAN’s sampling, Pyro’s VI and AQUA’s quantization can-
not be applied in this case, but in general, can incur long computational
times and out-of-memory errors (see Section 5.2). BLOG’s and Pyro’s ad
hoc sampling perform best, but increasing the number of steps hinders
scalability. To complement all these techniques, we present a new ap-
proximate analytical method that does not require integration or sampling
and that relies on a compact representation of the joint distribution using
moment-matching Gaussian mixtures (GMs). Our choice of representa-
tion is based on some desirable properties of GMs, and, in particular,
the following three: i) they can encode both continuous and discrete dis-
tributions (using degenerate GMs); ii) their moments can be computed
exactly and efficiently; iii) they are universal approximators, so we can
always increase the number of components in our representation to get

74

Figure 16: Left part: general approximation scheme used in Gaussian Se-
mantics. In program location Pi, the exact semantics of the program trans-
forms a GM G into a non-GM distribution D. In the same program location,
Gaussian Semantics transform G into another GM GD , that approximates
D using moment-matching. Right part: concrete example. The Gaussian
distribution G is transformed by the exact semantics into a truncated Gaus-
sian D and by the second-order Gaussian Semantics into the red Gaussian
distribution GD .

a better approximation. These considerations lead to the definition of a
family of approximating semantics called Gaussian Semantics.

Local approximation. We define Gaussian Semantics so that it is closed
with respect to the class of (degenerate) GMs, meaning that, at every pro-
gram location, the Gaussian Semantics of a program transforms a GM
into a GM. In particular, we proceed as in the general approximation
scheme proposed by Boyen and Koller (1998): given a GM G, the exact
semantics of a program location would transform it in a different dis-
tribution D, which is not necessarily a GM. However, we approximate
D with a new GM GD and define the Gaussian Semantics as semantics
that transform G into GD at that program location. This process is rep-
resented in Figure 16. Performing this at every program location ap-
proximates the whole program semantics. In particular, we choose to
approximate D with GD using moment-matching, meaning that GD is a
GM having the same moments of D up to a certain order r. This is conve-
nient for two reasons: first, it avoids computing the full pdf of D, as only
its first r moments are needed to find GD; second, since D is obtained as
a transformation of a GM, it can be expressed as a linear combination of
transformed Gaussians, and its moments can be computed analytically
using the results summarized in Table 10.

To sum up, in Gaussian Semantics, each program location is associ-
ated with an integer r, and the semantics acts on a GM G performing
two steps: first, it computes the first r order moments of the transformed
distribution D, using the results in Table 10; then, it finds a new GM

75

Operation Theoretical Result Computes moments for:

Sum of Gaussians Closed w.r.t linear transformations
c1N (µ1,Σ1) + c2N (µ1,Σ2)Billingsley, 2008

Conditioning
Gaussians to xi == c

Closed w.r.t. conditioning N (µ,Σ |xi == c)Bishop and Nasrabadi, 2006

Conditioning
Gaussians to x ∈ [a, b]

Iterative formulas N (µ,Σ |x ∈ [a, b])Kan and Robotti, 2017

Product of Gaussian Isserlis’ Theorem N (µ1,Σ1)N (µ2,Σ2)Wick, 1950

Table 10: Summary of the theoretical results used to compute the moments
of transformed Gaussian Mixtures. N (µ,Σ) denotes a Gaussian distribution
with mean µ and covariance matrix Σ, c is any real constant and a, b are
vectors in Rd defining the hyper-rectangle [a, b] = {x ∈ Rd : ai ≤ xi ≤ bi}.

GD having same moments as D up to order r. More than one moment-
matching GM GD can exist, therefore, we give a heuristic to determine a
unique GD for any r. We base our heuristics, called max entropy matching,
on the maximum entropy principle (Kullback and Leibler, 1951).

Asymptotic correctness. Our first technical contribution is theoretical:
we provide a universal approximation result stating that, under mild
conditions, when the order of moments matched at each program lo-
cation grows, the family of Gaussian Semantics converges to the exact
probabilistic semantics. While our result exploits the well-known uni-
versal approximation power of GMs (Lo, 1972), it is a non-trivial con-
sequence of it. The density of GMs guarantees the existence of a GM
arbitrarily close to a target distribution; however, for a probabilistic pro-
gram, the target distribution is generally not known. Here, we give a
constructive method to build the approximating GM.

Implementation. Besides the definition of Gaussian Semantics, we look
at how they can be practically computed. Unfortunately, it turns out that
while the formulas in Table 10 allow us to compute moments up to any
order, finding a moment-matching GM is a hard task. In fact, finding
a moment-matching GM for moment orders higher than two requires
the solution of a constrained system of polynomial equations, for which
no analytical solution is known (Lasserre, 2009). Despite this, when only
the first two orders of moments are matched, our matching boils down to
using a single Gaussian distribution with a given mean and covariance,

76

and no system of equations needs to be solved. We call this particular
instance Second Order Gaussian Approximation (SOGA) and present an al-
gorithm that implements it.

In general, the posterior computed by SOGA is a GM whose number
of components grows exponentially in the number of conditional state-
ments. To help cope with this, we introduce a pruning strategy that keeps
the number of components in the GMs below a user-specified threshold
by merging components with minimal cost. Using a prototype imple-
mentation, we compare SOGA on a corpus of benchmarks against state-
of-the-art tools representative of different inference methods: MCMC
sampling (STAN), symbolic execution (PSI), quantization (AQUA), VI
(Pyro). Even when it is not the best-performing method, it still provides
the flexibility to model both continuous and discrete posteriors, unlike
STAN and AQUA, which only support the former. Additionally, it en-
ables reaching numerical solutions in reasonable runtimes when PSI re-
turns non-simplified integrals that demand computationally prohibitive
times for numerical integration. When applied to the analyzed bench-
marks, pruning significantly reduced the computational time without
incurring noticeable approximation errors.

Importantly, we highlight that SOGA is particularly useful for per-
forming inference on two classes of programs: those involving mixtures
of continuous and discrete distributions and collaborative filtering mod-
els. Most state-of-the-art approaches do not support the first class, even
though it is known that this kind of distribution arises in various appli-
cation domains (Gao et al., 2017; Kharchenko, Silberstein, and Scadden,
2014; Pierson and Yau, 2015). Thanks to its GM representation, SOGA
can easily encode these distributions. When tested on benchmarks intro-
duced specifically for this problem, SOGA is able to perform inference
faster than dedicated methods such as (Wu et al., 2018), while identi-
fying the exact posterior. Collaborative filtering models are an estab-
lished framework to model recommendation systems and have been ex-
tensively investigated in the machine learning community (Koren, Ren-
dle, and Bell, 2021). SOGA can deal with a large number of variables
without incurring large computational times or out-of-memory errors,
as happens with alternative methods.

Application to Motivating Example. In our motivating example, at
line 6, to approximate the distribution of dist after the assignment dist =
x2 + y2, SOGA proceeds as follows. It first computes the means and co-

77

variance matrices of x2 and y2 using Isserlis’ theorem (Wick, 1950) (ob-
serve that x and y are Gaussian, but x2 and y2 are not). Then, it ap-
proximates the distributions of x2 and y2 with two Gaussians having the
computed means and covariance matrices. Finally, it exploits the closed-
ness of Gaussians with respect to sum to approximate the distribution of
dist with the sum of the Gaussians approximating x2 and y2. Therefore,
while in the exact semantics, after line 6, dist does not have a GM dis-
tribution, in SOGA it does. This significantly simplifies the subsequent
computations. Indeed, when entering the if statement at line 7, dist is
conditioned to dist > 10. Performing conditioning in the exact semantics
requires computing the integral of the pdf of dist over the set of vectors
satisfying dist > 10. Instead, in SOGA dist is Gaussianly distributed,
therefore we can compute the moments of the conditioned distribution
using the formulas from Kan and Robotti (2017), and then approximate
the conditioned distribution with a Gaussian having given mean and co-
variance matrix. Overall, for Algorithm 1 SOGA computes the output,
which in this case is exact, in 0.042 s for n = 1 and in 0.192 s for n = 100,
performing significantly better than BLOG and Pyro.

4.1.3 Other Related Work

In addition to the techniques already mentioned, volume computation
can be quite efficient for discrete models (Filieri, Păsăreanu, and Visser,
2013; Holtzen, Van den Broeck, and Millstein, 2020); however, it cannot
be applied to continuous distributions. Moreover, while all the above
methods use a pdf representation of the distributions, more recently, rep-
resentations using generating functions have been investigated, but only
for discrete distributions (Chen et al., 2022).

The approximation-by-Gaussian approach is also common to Laplace
approximation (Tierney and Kadane, 1986). Laplace approximation is a
mode-matching strategy and is computationally more intense than VI, as
it is based on an optimization process to find the mode. Generally, it is
inferior to VI (Bishop and Nasrabadi, 2006). Another kind of Gaussian
approximation is Gaussian Smoothing (Chaudhuri and Solar-Lezama,
2010; Chaudhuri and Solar-Lezama, 2011), although it does target nei-
ther probabilistic programs nor the inference problem.

Finally, our approach can be ascribed to the practice, common in
many branches of mathematics, of studying universal approximators. One
shows that a given function belonging to a certain class is shown to
be approximated, arbitrarily closely, by another family of (parameter-

78

ized) functions. Notable examples are polynomials (Pérez and Quin-
tana, 2006), and neural networks (Hornik, Stinchcombe, and White, 1989;
D.-X. Zhou, 2020).

4.2 Background

We now introduce some of the notation and the concepts that will be
used in this and in the next chapter.

Notation. Given a Boolean value B, ¬B denotes its negation. For a
vector x ∈ Rd, x \ xi denotes a vector in Rd−1 obtained from x by sup-
pressing the i-th component; x[xi = E(x)] denotes a vector x ∈ Rd in
which the i-th component is replaced with the expression E(x); ∥x∥ de-
notes the 2-norm; diag(d1, . . . , ds) denotes the Rs×s diagonal matrix hav-
ing d1, . . . , ds as diagonal elements.

Probability Distributions. We always deal with distribution over Rd

and use x ∼ D to denote that the stochastic vector x is distributed ac-
cording to distribution D. We always assume that a distribution D can
be specified by its probability density function (pdf) fD : Rd → R≥0.
For x ∼ D, and a set A ⊆ Rd, the probability of A under D, denoted by
PD(A), can be expressed as the Lebesgue integral PD(A) =

∫︁
A
fD(x)dx.

Sometimes, we will find it more convenient to refer to the probability
measure induced by D on the measurable space (Rd,B(Rd)), where B(Rd)
is the Borel σ-algebra on Rd. By probability measure, we mean a func-
tion m : B(Rd) → [0, 1] that satisfies the following two properties: i)
m(∅) = 0 and m(Rd) = 1; ii) m(∪i∈NAn) =

∑︁
i∈N m(An) for any count-

able collection of disjoint sets An ⊂ Rd. For a distribution D the asso-
ciated measure as mD(A) is given by mD(A) = PD(A) =

∫︁
A
fD(x) dx

for every A ∈ B(Rd). Moreover, due to the presence of conditional
branches and observe statements, we must consider distributions con-
ditioned to subsets of Rd. Letting IA be the characteristic function of set
A ⊂ Rd, D|A will denote the distribution of D truncated (or conditioned)
to A, whose pdf is given by fD|A = 1

PD(A)fDIA. Observe that fD|A is
obtained by setting fD to 0 outside A and then by dividing it by PD(A)
so that the induced measure is still a probability measure. Given a d-
dimensional random vector x ∼ D and a subvector x′ = (xi1 , . . . , xis)

79

Figure 17: Plot of: a) a non-degenerate 2-dimensional Gaussian; b) a degen-
erate Gaussian whose covariance matrix has rank 1; c) a degenerate Gaus-
sian with null covariance matrix (Dirac delta). Considering mixtures of pos-
sibly degenerate Gaussians, allow us to capture (mixtures of) both continu-
ous and discrete distributions.

with i1, . . . , is ∈ {1, . . . , d}, we denote by Margx′(D) the marginal dis-
tribution of D, obtained integrating out the components not in x′, i.e.
x′ ∼ Margx′(D) =

∫︁
Rd−s fD(x)d(x \ x′).

Gaussian Distributions and Mixtures. Gaussian distributions with mean
µ and covariance matrix Σ are denoted by N (µ,Σ) and have pdf:

fN (µ,Σ) =
1√︁

(2π)ddet(Σ)
exp

(︃
−1

2
(x− µ)TΣ−1(x− µ)

)︃
If the rank of the covariance matrix is d0 such that 0 < d0 < d, we can
consider the following density:

fN (µ,Σ) =
1√︁

(2π)d0det∗(Σ)
exp

(︃
−1

2
(x− µ)TΣ+(x− µ)

)︃
where det∗ is the pseudo-determinant defined as (I is the identity matrix)

det∗(Σ) = lim
α→0

det(Σ + αI)
αd−d0

and Σ+ is the generalized inverse (also called Moore-Penrose pseudoin-
verse), defined as the matrix Σ+ satisfying the following properties

ΣΣ+Σ = Σ, Σ+ΣΣ+ = Σ+,

(ΣΣ+)T = ΣΣ+, (Σ+Σ)T = Σ+Σ.

80

If the rank of the covariance matrix is 0, we interpret the Gaussian as a
Dirac delta distribution centered in µ. For further details, we refer the
reader to Florescu, 2014.

We refer to mixtures as the scalar products of two vectors (p1, . . . , pC)
and (D1, . . . , DC) such that

∑︁C
i=1 pi = 1, 0 < pi ≤ 1, and Di is the distri-

bution of the i-th component, with i = 1, . . . , C. The numbers pi are called
mixing coefficients. We will denote a mixture as M = p1D1 + . . .+ pCDC ,
thus indicating that M has pdf fM (x) = p1fD1

(x) + . . . + pCfDC
(x).

When C = 1, we recover the case of a single distribution. A special
case is given by Gaussian Mixtures (GMs) in which Di = N (µi,Σi) for
i = 1, . . . , C, with mean vectors and covariance matrices µi,Σi. We as-
sume (µi,Σi) ̸= (µj ,Σj) for i ̸= j. The set of GMs is dense in the set of
probability distributions with respect to the weak topology (Lo, 1972),
meaning that for any probability distribution, one can always find a GM
that approximates it arbitrarily close with respect to a particular metric,
the Levy-Prokhorov distance. Since we consider Dirac deltas as particu-
lar Gaussian distributions, discrete distributions over a finite set of val-
ues are included in the set of GMs.

Weak Convergence For a sequence of random vectors Xn ∼ Dn with
cdfs FDn

we say that Dn converge weakly to D, with F , if for every conti-
nuity point x of F (i.e. points for which limy→x F (y) = F (x)) it holds:

lim
n

FDn
(x) = FD(x).

We denote weak convergence with Dn
n→∞−−−−→ D. Equivalently, the cor-

responding measures converges weakly, denoted by mDn

n→∞−−−−→ mD.
Interestingly, the space of distributions with the weak topology is metriz-
able, i.e. we can define a metric such that weak convergence is equivalent
to convergence in the metric. This metric is the Levy-Prokhorov distance
that for two measures m,m′ on (Rd,B(Rd)) is defined as:

dLP (m,m′) = inf{ϵ > 0 |m(A) ≤ m′(Aϵ) + ϵ and m′(A) ≤ m′(Aϵ) + ϵ,

∀A ∈ B(Rd)} (4.1)

where for A ⊆ Rd, Aϵ = {x ∈ Rd | ∃ y ∈ A s.t. ∥x− y∥ ≤ ϵ}.
Let Bϵ(x) be the ball of radius ϵ centered in x, defined as Bϵ(x) = {y ∈

Rd | ∥x− y∥ < ϵ}. For a set A ⊆ Rd we define the interior of A as the set:

int(A) = {x ∈ A | ∃ ϵ > 0 s. t. Bϵ(x) ⊂ A}.

81

The closure of A as the set

Ā = {x ∈ Rd | ∀ ϵ > 0Bϵ(x) ∩A ̸= ∅}.

The boundary of A as the set ∂A = Ā \ int(A).
Given a measure m on (Rd,B(Rd)) and A ∈ B(Rd) we say that A is an

m-continuity set if m(∂A) = 0.
The following theorem on weak convergence will be used to prove

our main result. Observe that, in particular, if h is discontinuous on the
border of an m-continuity set, Theorem 7 holds for h.

Theorem 7 (Mapping Theorem). Suppose h : Rd → Rd is measurable and
that the set H of its discontinuities is such that mD(H) = 0. If Dn → D in the
Levy-Prokhorov metric, then h(Dn) → h(D).

Distributions Determined by Their Moments. Let x ∼ D. For r =
(r1, . . . , rd), with ri ∈ N, ∀ i define the r-th central moment of X as

E[xr] =

∫︂
Rd

xr1
1 . . . xrd

d fD(x)dx.

Letting r vary over all vectors in Nd such that r1 + . . . + rd = r, we
obtain the set of all r-th order central moments of D. Observe that, for
any D, E[x0] = 1. Since the construction of our semantics relies on the
Method of Moments, we need to ensure that this converges to the correct
distribution. This is true only if no other distribution has all moments
equal to those of the target one (Billingsley, 2008). We say that in this
case, the target distribution is determined by its moments, formalized next.

Definition 1. A distribution D is determined by its moments, if for any other
distribution D′ such that for all r1, . . . , rd ≥ 0∫︂

Rd

xr1
1 . . . xrd

d fD(x)dx =

∫︂
Rd

xr1
1 . . . xrd

d fD′(x)dx

it holds that mD = mD′ .

The following theorem relates the moment-matching of distributions
determined by their moments with weak convergence.

Theorem 8 (Billingsley (2008)). Suppose X ∼ D, Xn ∼ Dn, and D is a
distribution determined by its moments, while Dn has moments of all orders. If
for all r > 0

lim
n

E[Xr
n] = E[X]

82

then Dn → D in the Levy-Prokhorov metric.

4.3 Syntax and Exact Probabilistic Semantics

4.3.1 Syntax

Following Kozen (1979), we will consider probabilistic programs as trans-
formers over distributions D defined over a vector of variables taking
values in Rd. Similarly to Chaudhuri and Solar-Lezama (2011), we rep-
resent programs in a control flow-graph (cfg) syntax (P. Cousot and R.
Cousot, 1977). We use as explanatory example the simple program in
Algorithm 2.

A program is a directed graph P = (V,E) where V is set of nodes and
E is the set of edges. Specifically, we consider directed acyclic graphs
(DAGs) of bounded depth. Each node belongs to one of five types in Γ =
{entry, state, test, observe, exit}. We denote the fact that a node v ∈ V is of
a given type γ ∈ Γ with v : γ. The nodes satisfy the following properties.

• A node v : entry has no incoming edge and one outgoing edge.

• A node v : state has any number of incoming edges and one outgo-
ing edge. A function cond is defined on the set of state nodes, such
that cond : {v ∈ V | v : state} → {true, false, none} and cond(v) =
none if and only if the parent of v is not a test node.

• A node v : test has one incoming edge and two outgoing edges to-
ward state nodes v1, v2 such that cond(v1) = true and cond(v2) =
false.

• A node v : observe has one incoming edge and one outgoing edge.

• A node v : exit has any number of incoming edges and no output
edge.

Moreover, for each program, there is exactly one v ∈ V such that v : entry
and one v ∈ V such that v : exit, and they correspond to the root and the
only leaf of the DAG representing the program, respectively. The control-
flow syntax for Algorithm 2 is represented in Figure 18.

Variables are defined as

z := x | g g := gm([π1, . . . , πs], [µ1, . . . , µs], [σ1, . . . , σs]) | gauss(µ, σ)

83

Figure 18: Control-flow graph representation of Algorithm 2

84

Algorithm 2 Example

1: entry {v0 : entry}
2: x1 = gauss(0, 1) {v1 : state}
3: if x1 > 0 {v2 : test}
4: x2 = 2x1 + 1 + gauss(0, 0.1) {v3 : state}
5: else
6: x2 = −2x1 + 1 + gauss(0, 0.1) {v4 : state}
7: end if
8: skip {v5 : state}
9: observe(x2 < 3) {v6 : observe}

10: exit {v7 : exit}

where x is an output variable, i.e., a variable on which to compute the
posterior distribution, and g denotes a fresh read-only variable distributed
according to univariate GMs with mixing coefficients πi, means µi and
variances σ2

i , i = 1, . . . , s. For the sake of brevity, in our examples, we
will also use read-only variables denoted by gauss(µ, σ) which is syn-
tactic sugar for gm([1], [µ], [σ]). We use read-only variables to perform
random assignments, as it is done in lines 2, 4, and 6 of Algorithm 2 and
to encode Boolean conditions depending on arbitrary distributions.

The vector of output variables is denoted by x = (x1, . . . , xd). The
vector z augmented with read-only variables instead is denoted by z =
(x1, . . . , xd, g1, . . . , gn−d). We denote the distribution of the augmented
vector with Dz . We assume read-only variables are dropped after the
assignment is performed or the condition is evaluated, marginalizing
them out. For example, in line 4 of Algorithm 2, the assignment x2 =
2x1+1+gauss(0, 0.1) is performed by augmenting the vector x = (x1, x2)
to z = (x1, x2, g), with g being an independent standard Gaussian, and
assigning x2 with 2x1 + 1+ g. After the new posterior on z is computed,
g is marginalized out, returning to the vector x = (x1, x2).

State nodes are labelled by either skip or assignment instructions of
the type xi = E(z) where E(z) is an expression of the following form:

E(z) := c1 · z1 + . . .+ cn · zn + c | zi1 · zi2 (4.2)

where c, c1, . . . , cn are scalar.
Test and observe nodes are labeled by linear Boolean conditions (LBCs)

85

x = Bernoulli(y) →

{︄
z = Uniform(0, 1)

if z < y {x = 1} else {x = 0}

x = Normal(y, z) → x = y + z ·Normal(0, 1)

x = Uniform(y, z) → x = y + (z − y) · Uniform(0, 1)

x = Laplace(y, c) → x = y + Laplace(0, c)

x = Exponential(c/y) → x = y · Exponential(c)

Figure 19: Reparametrizations for transforming random assignments in-
volving distributions depending on variable parameters y, z into assign-
ments only involving distributions with constant parameters.

of the following form:

B(z) := true | false | c1 · z1 + . . .+ cn · zn ▷◁ c | zi□ c (4.3)

where c, c1, . . . , cn are real scalar constants, ▷◁ ∈ {<,≤,≥, >} and □ ∈
{==, !=}. We associate an LBC with the set, defined on the space of
augmented variables

JB(z)K = {z ∈ Rn s.t. B(z) holds }. (4.4)

where JtrueK = Rn and JfalseK = ∅. Observe that an expression or LBC
can have at most d output variables but any finite number of read-only
variables.

4.3.2 Supported Programs

Our syntax rules out general distributions depending on non-constant
parameters, unbounded loops, and non-polynomial functions. We briefly
comment on the limitations of this approach, how they can be mitigated,
and when they are shared by other techniques.

Probabilistic Assignments. Probabilistic assignments assign read-only
variables to output variables. This is not a limitation since dependence
between variables can be encoded using multiple assignments. For what
concerns the restriction on GM distributions, instead, we exploit the al-
ready discussed density of GMs in the space of distribution (Lo, 1972),

86

and assign a GM arbitrarily close to the target distribution. In this sense,
we will assume that we are approximating non-GM distributions with a
GM whenever we refer to non-GM distributions.

Finally, probabilistic assignments will involve only distributions de-
pending on constant parameters. This restriction is more difficult to over-
come and is shared with other tools based on moment-based techniques,
such as Bartocci, Kovács, and Stankovič (2020) and Moosbrugger et al.
(2022). This is because it is not always possible to derive how the mo-
ments change if one or more parameters of a distribution are probabilis-
tic. As in Moosbrugger et al. (2022), this limitation can be mitigated by
performing suitable reparametrizations, as the one reported in Figure 19.

Iterations. We restrict our attention to loops bounded by determinis-
tic constants (as in our illustrating example in Algorithm 1), similarly
to Gehr, Misailovic, and Vechev (2016), Huang, Dutta, and Misailovic
(2021), Holtzen, Van den Broeck, and Millstein (2020), Albarghouthi et
al. (2017) and Nori et al. (2014). If guarantees on almost sure termina-
tion can be given, the true distribution of the loop can be approximated
by a bounded unrolled loop with a sufficiently large number of itera-
tions (Kozen, 1979).

Polynomial Programs. Differently from Gehr, Misailovic, and Vechev
(2016), Huang, Dutta, and Misailovic (2021), and Carpenter et al. (2017),
we consider programs involving only the arithmetic operations +,−,∗,
and ˆ. This assumption is common to other approaches relying on moment-
based techniques such as Bartocci, Kovács, and Stankovič (2020) and
Moosbrugger et al. (2022), due to the fact that non-polynomial func-
tions (such as the logarithm) may generate distributions that are not de-
termined by their parameters. We remark that from expressions such
as (4.2) and (4.3), general polynomial expressions and boolean condi-
tions can be obtained, respectively, by chaining state nodes and nesting
conditional statements. A probabilistic choice, i.e., x is assigned e1 with
probability p or e2 with probability 1− p, is encoded using the LBC y < q
where y is a standard Gaussian and q is the Gaussian p-quantile.

4.3.3 Exact Probabilistic Semantics

The “exact” semantics follows Kozen’s Semantics 2 (Kozen, 1979). Since
we are using the control-flow syntax of P. Cousot and R. Cousot (1977),

87

we are close to the collecting semantics in Chaudhuri and Solar-Lezama
(2011): we combine the semantics of the nodes to define the semantics
of the paths, then define the semantics of the program as a sum over the
semantics of the paths. This semantics is particularly convenient for our
method because it gives the posterior distribution as a mixture, similarly
to Y. Zhou et al. (2020).

Given a program P = (V,E), we define a path π as an ordered se-
quence of nodes π = v0 · · · vn with v0 : entry, vn : exit and (vi−1, vi) ∈
E, ∀ i = 1, . . . n. The successor of node vi in path π is denoted as sπ(vi) =
vi+1. The set of all paths of P is denoted by ΠP . We define the semantics
of a path π, denoted by JπK, as a pair (p,D), where p ≥ 0 and D is a prob-
ability distribution on Rd. The semantics JπK composes the semantics of
the nodes along path π, i.e., JπK = JvnKπ ◦ . . . ◦ Jv0Kπ. The semantics of
each node is defined as follows.

• The entry node outputs the pair (1, δ0), δ0 being a Dirac delta cen-
tered on the zero vector:

if v : entry, JvKπ = (1, δ0).

• A state node v takes as input a pair (p,D) and returns a pair (p,D′)
depending on its label. If it is labelled by skip, it returns (p,D). If
it is labelled by xi = E(z), it returns (p,D′) with D′ the distribution
of the vector x[xi = E(z)]:

if v : state, JvKπ(p,D) =

{︄
(p,D) if v is labelled by skip

(p,D′) if v is labelled by xi = E(z).

• A test node v labelled by B(z) takes as input a pair (p,D) returns
(p′, D′) depending on the value of cond(sπ(v)). In particular, first,
the augmented vector z and its distribution Dz are considered. If
cond(sπ(v)) = true , then the node computes the probability of the
boolean condition evaluating to true, i.e. PDz

(JB(z)K). Then, it
conditions the current distribution to such event, i.e. Dz | JB(z)K.
The result is the output pair (p · PDz (JB(z)K),Margx(Dz | JB(z)K)).
Similarly, if cond(sπ(v)) = false the output of the node is the pair
(p · PDz

(J¬B(z)K),Margx(Dz | J¬B(z)K)). To overcome conditioning
with respect to zero-probability events we assume that whenever

88

PDz (JB(z)K) = 0 (resp.PDz (J¬B(z)K) = 0) the output pair is (0, D):

if v : test, JvKπ(p,D) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(p · PDz (JB(z)K),Margx(Dz | JB(z)K))
cond(sπ(v)) = true ∧PDz

(JB(z)K) ̸= 0

(p · PDz
(J¬B(z)K),Margx(Dz | J¬B(z)K))

cond(sπ(v)) = false ∧PDz
(J¬B(z)K) ̸= 0

(0, D) else.

• For an observe node v labelled by B(z) we condition the current dis-
tribution to JB(z)K. Observe that if B(z) only contains read-only
variables, conditioning does not affect the distribution of the out-
put variables x. If B(z) = xi == c the node returns a distribu-
tion D′ having pdf 1

I fD(x, xi = c)δc(xi) with I =
∫︁
Rd−1 fD(x, xi =

c)d(x \ xi). In all other cases conditioning is treated as usual:

if v : observe, JvKπ(p,D) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(p · I,D′) B(z) = xi == c

(p · PDz (JB(z)K), D | JB(z)K)
B(z) ̸= xi == c∧PDz (JB(z)K) > 0

(0, D) else.

• The exit node v takes as input (p,D) and outputs the same pair
(p,D):

if v : exit, JvKπ(p,D) = (p,D).

The semantics of the program P is then defined as:

JP K =
∑︂

(p,D)=JπK:
π∈ΠP

p∑︂
(p′,D′)=JπK

π∈ΠP

p′
D. (4.5)

Example 5. For the program in Algorithm 2, we have only two paths, πT =
v0v1v2v3v5v6v7 and πF = v0v1v2v4v5v6v7 corresponding to evaluations of the
conditional statement as true or false, respectively. To compute the semantics
of πT we start from v0, that outputs (1, δ0). This pair is taken as input by v1,
which is a state node assigning gauss(0, 1) to x1, so its output is (1,N (0,Σ1))
with Σ1 = diag(1, 0) (corresponding to the distribution in Figure 2b). This
pair is taken as input by the test node v2. Since we are considering πT , for
which sπT

(v2) = v3, and cond(v3) = true, the semantics of v2 in this path

89

conditions N (0,Σ1) to x1 > 0. Therefore in this path the output of v2 is
(0.5,N (0,Σ1)|Jx1 > 0K), where 0.5 = PN (0,Σ1)(Jx1 > 0K). This pair is
taken as input by v3, which updates the distribution of x2 and therefore out-
puts a new pair (0.5, D3). We can proceed until we compute the output of v7,
which gives the final pair JπT K = (pT , DT). In the same way, we compute
JπF K = (pF , DF), and finally, the semantics of the whole program as the mix-
ture (pTDT + pFDF)/(pT + pF).

4.4 Gaussian Semantics

Gaussian Semantics is a family of semantics closed with respect to GMs.
Each node takes as input and returns a GM over the program variables.
This is done by composing the exact semantics of a node with an oper-
ator TGM

r acting on the output distribution of JvKπ . In particular, TGM
r

transforms any distribution D into a GM G, having the same moments
of D up to order r. Therefore, we call TGM

r the moment-matching operator.
Formally, we use a map R : V → N0 to associate each node v ∈ V with
the highest order of moments that will be matched at v. The semantics of
a node is then:

JvKRπ =

{︄
JvKπ if v : entry, exit(︂
I, TGM

R(v)

)︂
◦ JvKπ if v : state, test, observe

(4.6)

where I is the identity acting on the first element of the pair (p,D), and
TGM
R(v) is the moment-matching operator. The Gaussian Semantics of paths

and programs are defined similarly to the exact semantics as:

JπKR = JvnKRπ ◦ . . .◦Jv0KRπ and JP KR(D0) =
∑︂

(p,D)=JπKR

π∈ΠP

p∑︂
(p′,D′)=JπKR

π∈ΠP

p′
D.

Example 6. We have seen in Algorithm 2 that the exact semantics is not
closed with respect to GMs. For example, node v2 takes as input a Gaussian
but returns a truncated Gaussian, which is not a GM. If, instead, we consider
Gaussian Semantics with R(v2) = 3, the output of v2 will be a GM match-
ing the first three order moments of N (0,Σ1) | Jx > 0K. Two steps are re-
quired to compute Jv2KRπ . In the first step, we compute the first R(v2) = 3
order moments of the output distribution of Jv2Kπ . Therefore, we compute
the first order moments E[x1] = 0.7979 and E[x2] = 0, the second order

90

moments E[x2
1] = 1,E[x1x2] = E[x2

2] = 0 and the third order moments
E[x3

1] = 1.5958,E[x2
1x2] = E[x1x

2
2] = E[x3

2] = 0. Observe that, thanks to
the results in Table 10, this is significantly easier than computing the whole pdf
of the output distribution. The second step involves finding a GM having the
computed moments. This is generally more complex and is performed by the
operator TGM

r . In the rest of the section, we will assume that the computation
of the moments is done using the aforementioned formulas, and we focus on the
definition of the operator TGM

r and the derivation of its properties.

Moment-Matching Operator In general, the operator TGM
r (D) acts on

distributions D =
∑︁C

i=1 piDi that are mixtures (possibly of a single com-
ponent). The moments of D are computed as a linear combination of the
moments of its components: if x ∼ D =

∑︁C
i=1 piDi and xi ∼ Di, then

E[xn] =
∑︁C

i=1 piE[xn
i]. Therefore, when computing the moments of D,

we first compute the moments of every component Di. Then, it makes
sense to define TGM

r (D) so that when it acts on a mixture D (C > 1),
it recursively acts on each component of the mixture, moment-matching
each of them. When, instead, TGM

r acts on a non-mixture distribution D
(C = 1), it returns a GM having moments up to order r equal to those of
D. This second action is encoded by a second operator matchr.

TGM
r (D) =

{︄∑︁C
i=2 piT

GM
r (Di) if D =

∑︁C
i=1 piDi and C > 1

matchr(D) otherwise.
(4.7)

We require that matchr(D) satisfies the following two conditions:

R1) for any distribution D, matchr(D) is a GM;

R2) matchr(D) has central moments up to order r equal to those of D.

The existence of the operator matchr is guaranteed by the following re-
sult, derived from Schmüdgen (2017, Theorem 17.2), stating that that, for
any finite sequence of moments, there exists a moment-matching discrete
distribution putting positive mass on a number of points smaller than or
equal to the number of matched moments. Since discrete distributions
are GMs, the Proposition holds.

Proposition 5. For any r ∈ N0, there exists an operator matchr satisfying R1
and R2.

91

Proof. We need to show that for any distribution D we are able to find a
GM matching the first r-th order moments of D. To do this, consider a
d-dimensional random variable x ∼ D and let r ∈ N0 be fixed. Let us
define the set

N (r) =

{︄
α = (α1, . . . , αd) :

d∑︂
i=1

αi ≤ r

}︄

and the associated truncated moment sequence (sα)α∈N (r), with sα = E[Xα].
By Theorem 17.2 in Schmüdgen, 2017, there exists a C-atomic positive
measure (i.e. a discrete measure placing positive probability mass on C
points), with C ≤ |N (r)|, such that∫︂

Rd

xαdm = sα ∀α ∈ N . (4.8)

Since N (r) is finite for any r, there exist a C-atomic measure mr sat-
isfying (4.8) for every α ∈ N (r) for any truncated moment sequence
(sα)α∈N (r). Moreover, since s0 = 1, mr is a probability measure, and
therefore it is induced by a finite mixture of Dirac deltas. Since any finite
mixture of Dirac deltas is a GM, the proof concludes.

Example 7. In our example, we want to match a total of 10 moments, a zeroth-
order moment (which is always 1), two first-order, three second-order, and four
third-order moments. Theorem 17.2 in Schmüdgen (2017) ensures that there ex-
ists at least one discrete distribution (therefore a GM) with C ≤ 10 components
that has exactly the given moments.

Proposition 5 ensures the existence of at least one GM matching the
moments of D up to order r. In general, letting GMr(D) denote the set
of all finite GMs matching the moments of D up to order r, we may have
that |GMr(D)| > 1. For matchr to be well-defined, we need to uniquely
identify a moment-matching GM in GMr(D). This can be done using
different heuristics: we propose one based on the principle of maximum
entropy, which we call the max entropy matching (MEM).

Max Entropy Matching MEM can be summed up as follows: whenever
|GMr(D)| > 1 we choose the GM G having the least number of compo-
nents (in order to minimize the number of parameters to be fit) and min-
imizing a certain cost function. Any remaining tie is resolved by com-
paring the vectors of parameters P that identify the GMs with respect to

92

the lexicographic ordering detailed below. We select our cost function as
the sum of the opposite of the differential entropy plus a penalty term,
where the differential entropy for a distribution D with pdf fD is defined
as (Cover, 1999)

H(D) = −
∫︂
Rd

fD(x) log(fD(x)) dx. (4.9)

Intuitively, the principle of maximum entropy asserts that the distribution
maximizing entropy is the one that minimizes the number of assump-
tions on the distribution (Cover, 1999). Therefore, by maximizing H(D),
we are, in some sense, choosing the most general moment-matching dis-
tribution. We add to H(D) a penalty term to avoid uncontrolled growth
of the parameter values.

For inducing a lexicographic ordering on GMs, consider a Gaussian
mixture p1D1 + . . . + pCDC where Di ∼ N (µi,Σi), i = 1, . . . , C. Since
it is uniquely identified by its parameters we can order them in a vector
(pi, µi,Σi)i=1,...,C in the following way:

• p1 ≥ p2 ≥ . . . ≥ pC ;

• if pi = pi+1 then either of the following two conditions holds:

– there exists j ∈ {1, . . . , d} such that µi(s) = µi+1(s)∀ s < j
and µi(j) > µi+1(j) (means are ordered according to the lexi-
cographic order);

– if µi = µi+1 there exists j ∈ {1, . . . , d2} such that Σi(s) =
Σi+1(s)∀ s < j and Σi(j) > Σi+1(j), where Σ is converted
into a vector using lexicographic ordering, i.e.

Σ = (Σ(0, 0), . . . ,Σ(0, c∗),Σ(1, 0), . . . ,Σ(1, c∗), . . . ,Σ(c∗, c∗))

This procedure allows us to consider a set of parameters P as a vector

P = (p1, p2, . . . , pC , µ1(0), µ1(1), . . . , µC(d),

Σ1(0, 0), . . . ,Σ1(d, d), . . . ,ΣC(0, 0), . . . ,ΣC(d, d)).

For two set of parameters P1, P2 we say that P1 ≻ P2 if P1 is greater
then P2 according to the lexicographic ordering, i.e. if exists i such that
P1(j) = P2(j)∀j < i and P1(i) > P2(i). Observe that ≻ is a total order,
i.e. if P1 ̸= P2 necessarily either P1 ≻ P2 or P2 ≻ P1.

Then, the procedure to compute matchr(D) is the following.

93

1) Find c∗ = min {c : ∃G =
∑︁c

s=1 psN (µs,Σs) ∈ GMr(D)} .

2) Find the set P such that P = (p1, . . . , pc∗ , µ1, . . . , µc∗ ,Σ1, . . . ,Σc∗) ∈
P if and only if the GM with parameters P matches the moments
of D up to the r-th order.

3) Find the set P∗ given by:

P∗ = argmin
P

{︄
−H

(︄
c∗∑︂
i=1

piN (µi,Σi)

)︄
+

c∗∑︂
i=1

(︁
∥µi∥22 + ∥Σi∥22

)︁}︄
.

(4.10)

4) If |P∗| > 1 choose P ∗ ∈ P∗ maximum with respect to ≻.

The following proposition guarantees that MEM leaves us with a
well-defined operator matchr. It is again proved using Theorem 17.2
from Schmüdgen (2017), and by noticing that P is a compact set, there-
fore Eq. (4.10) is well-defined.

Proposition 6. For any D and r the max entropy matching uniquely identifies
matchr(D).

Proof. By Proposition 5 GMr(D) is non-empty, and by Theorem 17.2 in
Schmüdgen, 2017 there is at least one moment-matching mixture such
that C < |N (r)|, therefore c∗ is well-defined. Once c∗ is fixed, the set of
parameters P is the set of solutions of a system of polynomial equations
equating the moments of the mixture of c∗ components, expressed as
functions of pi, µi and Σi, to the moments of D (S. Wang, A. T. Chaganty,
and Liang, 2015). Being the set of solutions of a polynomial system, P is
closed. Moreover, since by Example 12.2.8 in Cover, 1999 for fixed mo-
ments the entropy is bounded from above, −H is bounded from below,
and we can choose M > 0 so that P∗ ⊆ P∩

(︂
[0, 1]c

∗ × [0,M]dc
∗+ 1

2d(d+1)c∗
)︂

.
Then, P∗ is compact. Finally, the maximum with respect to the lexico-
graphic ordering can be seen as maximizing projections of the vector of
parameters P on different coordinates in a given order. Since P∗ is com-
pact, the set of maximals with respect to the lexicographic ordering is
non-empty, but since the lexicographic ordering is a total order the set of
maximals can have only one element which is uniquely defined.

We remark that the choice of MEM is arbitrary, as other cost functions
could be introduced. However, it has various benefits. (i) To guarantee

94

that Proposition 6 holds, one needs a bounded cost function. (ii) Using
entropy leads to a parallelism with VI: SOGA itself can be seen as a form
of VI since it involves the minimization of the reverse differential en-
tropy (Kullback and Leibler, 1951). However, correspondence with VI is
lost when higher-order moments are considered because the minimizer
of the reverse differential entropy is not analytically expressible for GMs.
(iii) In the spirit of minimizing the number of assumptions on the approx-
imating distribution, the approach looks more pleasing mathematically.

Example 8. While Schmüdgen (2017) ensures that we can find a moment-
matching GM with 10 components, it is easy to check that c∗ = 2 is the min-
imum number of components required to match three order moments. In fact,
c∗ > 1, since for a single Gaussian, given the mean and the covariance matrix,
all the other moments are fixed (so, we can match the first two order moments
but not the third). For c = 2 instead we can consider the GM G with pdf
pN (m,S) + (1− p)N (m′, S′) such that m,m′, S, S′ satisfy the system:

pmi + (1− p)m′
i = E[xi] for i = 1, 2

p(m2
i + Si,i) + (1− p)(m′2

i + S′
i,i) = E[x2

i] for i = 1, 2

p(m1m2 + S1,2) + (1− p)(m′
1m

′
2 + S′

1,2) = E[x1x2]

p(m3
i + 3miSi,i) + (1− p)(m′3

i + S′
i,i) = E[x3

i] for i = 1, 2

p(miSj,j + 2mjSi,j +mim
2
j)+

+ (1− p)(m′
iS

′
j,j + 2m′

jS
′
j,j +m′

im
′2
j) = E[xix

2
j] for i, j = 1, 2, i ̸= j

0 < p < 1, S1,1S2,2 − S2
1,2 ≥ 0, S′

1,1S
′
2,2 − S′2

1,2 ≥ 0

In the system, we equate the moments of G (l.h.s) with those of x ∼ D (r.h.s,
computed in Example 6). Moreover, we look for solutions such that 0 < p < 1
and S, S′ are positive semidefinite (last line). Since the system is polynomial,
using SMT solvers over reals we can check it is satisfiable; therefore, c∗ = 2.
Now, we should determine the set P of all solutions and find those that minimize
the cost function. Since finding all solutions is generally impossible, we directly
proceed to optimize our cost function numerically, constraining the variables
to satisfy the previous system. We find the approximate solution p = 0.572,
m = (0.471, 0), m′ = (1.236, 0) and S = diag(0.066, 0), S′ = diag(0.426, 0).
The approximating GM is shown in the green line of Figure 20, while the blue
line shows the true non-Gaussian distribution.

The example shows that the difficult step in computing a Gaussian
Semantics of arbitrary order is 2). Finding the parameters of a moment-

95

matching GM requires the solution of a system of polynomial equations,
like the one in the example. This problem is notoriously hard to solve, as
no analytical solution exists (Lasserre, 2009). Performing numerical opti-
mization can solve the problem approximately, but is in general numer-
ically unstable and requires relatively long computational times (in our
example, using scipy (Virtanen et al., 2020), it took sround 7 s to match
a single Gaussian!). While we leave open the problem of solving 2) ef-
ficiently in the general case, the following lemma gives two important
properties of matchr, which will be used to derive our second-order ap-
proximation.

Lemma 1. The following two properties hold:

i) when r = 2, match2(D) is a single Gaussian variable with mean and
covariance matrix equal to those of D;

ii) if D is Gaussian, for any r ≥ 2 matchr(D) = D.

Proof. The first point follows observing that, since we want to match
the first two order moments, a single Gaussian variable can be used, so
c∗ = 1. Moreover, since we have a single component with mean and co-
variance matrix fixed, the set P has a single set of parameters, and MEM
reduces to approximating D with a Gaussian having the same mean and
covariance matrix.

On the other hand, if D is Gaussian, for r ≥ 2 we always have c∗ = 1,
and the set P has a single set of parameters, so matchr(D) = D.

We conclude the section with a consequence of Lemma 1. It follows
from ii) that TGM

r has the desirable property of leaving GMs unaltered,
i.e. if M is a GM TGM

r (M) = M for all r ≥ 2. As a consequence, Gaussian
Semantics coincides with the exact semantics for programs only involv-
ing GMs, and in particular, for programs involving only discrete distri-
butions (mixtures of deltas).

Proposition 7. Let P = (V,E) be such that every read-only variable in the
program is a finite discrete distribution. Then, for any R, JP KR = JP K.

Proof. Since truncations, linear combinations and products of discrete
distributions are discrete distributions, only discrete distributions are
generated in the execution of JP K. By Lemma 1 applying the moment-
matching operator TGM

r to them leaves them unaltered, so the conclu-
sion follows.

96

2 1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8
M

ar
gi

na
l p

df
 o

f v
ar

ia
bl

e
x 1

 a
t v

2

true
R = 2 | KL = 1.29 | time = 0.002s
R = 3 | KL = 1.71 | time = 7.204s
R = 4 | KL = 1.36 | time = 457.7s

Figure 20: Marginal pdf of x1 at node v2 in Algorithm 2 given by exact
semantics (true) and the Gaussian Semantics with R = 2, 3 and 4. In the
legend, we report the KL divergence with the true distribution and the time
needed to compute the approximating GM.

Example 9. Consider a second Gaussian semantics that maps v2 to R(v2) =
2. In this case, we want to match only the first two order moments, namely
E[x1],E[x2],E[x2

1],E[x2
2],E[x1x2]. As noticed before, in this case c∗ = 1, since

we can take the Gaussian N (µ,Σ) with µ = (0.7979, 0) and Σ = diag(1, 0)
and it will have required moments. Observe that we do not need to solve any
system or optimization problem.

In general, for a fixed number of moments matched, we expect Gaussian Se-
mantics to approximate reasonably well the matched moments but not necessar-
ily the whole distribution (see Section 5.2.2 for further discussion). Indeed, let
us compare the exact posterior distribution with the ones obtained distribution
when R = 2, 3, 4, respectively, using Kullback-Leibler (KL) divergence (Kull-
back and Leibler, 1951). The KL divergence between two distributions P and Q
is a standard way to evaluate the error committed in approximating P with Q.
In our case, we take as P the truncated Gaussian and as Q the GMs obtained
matching different order moments. The respective values are 2.29 (R=2), 1.71
(R=3) and 1.36 (R=4), so the higher-order Gaussian semantics indeed improves
the approximation. Figure 20 compares the true marginal pdf of x1 at node v2
(blue solid line) with the second- (orange dashed), third- (green dash-dotted) and
fourth (red dotted) approximations. The advantages of fitting only a finite num-
ber of moments are mainly computational. Indeed, it can be seen from the legend
that as the number of moments matched grows, increasing KL accuracy comes
at increasing computational cost.

97

4.5 Universal Approximation Theorem

Our main convergence result states that, for well-behaved programs, it
is possible to find a map R so that the output distribution yielded by
the semantics J·KR is arbitrarily close to that of J·K in the Levy-Prokhorov
metric (Ethier and Kurtz, 2009b). By “well-behaved” we mean that the
distributions in the exact semantics are determined by their moments
and that they induce measures m such that sets in the form (4.4) are m-
continuity sets. Formally,

Theorem 9. Assume that P = (V,E) is a program such that for each v ∈ V
and each path π ∈ ΠP the output distribution D of JvKπ satisfies the following:

H1) D is determined by its moments;

H2) if D is the input distribution for a test or observe node v′, then the set
defined by the LBC labelling v′ is an mDz

-continuity set.

Then there exists a sequence of maps (Rk : V → N0)k∈N such that:

JP KR
k k→∞−−−−→ JP K. (4.11)

where the convergence is intended in the weak topology, or equivalently, in the
Levy-Prokhorov metric.

4.5.1 Satisfaction of the Hypotheses

Before giving an outline of the proof, we briefly comment on the hy-
potheses.

First, observe that H1 and H2 are sufficient but not necessary. In par-
ticular, if the hypotheses of Proposition 7 are satisfied, convergence holds
trivially, even when H1 or H2 are violated.

Hypothesis H1 is common to other works considering moment-based
approximation, such as in Bartocci, Kovács, and Stankovič (2020) and
Moosbrugger et al. (2022) and is needed to guarantee that the method
of moments converges to the true distribution (Billingsley, 2013). For a
given program, it is possible to perform static analysis to check whether
the arising distributions are determined by their moments, exploiting
known results on moment determinacy (see, for example, the moment-
generating function characterization in Billingsley, 2013). Notably, to ap-
ply these results is not necessary to compute the exact pdf of the arising
distributions, but it is sufficient to keep track of their type. In fact, for

98

some classes of distributions, moment-determinacy is established: this
is true for finite discrete distributions, Gaussians, uniforms, Poissons,
exponentials, truncations and mixtures thereof (Billingsley, 2013). The
case studies analyzed in this thesis feature such distributions. On the
contrary, log-normal distributions are not determined by their moments.
However, as long as moments are computable, Gaussian Semantics can
still be applied: in this case no formal guarantee of convergence towards
the true distribution is given, but the method still provides an analytical
approximation for the moments.

Hypothesis H2 guarantees that when distributions are conditioned
to sets in the form (4.4), weak convergence is preserved. This require-
ment can be falsified if D has degenerate components that place positive
probability mass on the boundary of the set defined by the LBC. This
could happen, for instance, if a component is a Dirac measure centered
on any point of ∂JB(x)K. For example, consider line 12 of Tracking n in
Section 4.1.1, where out can be 1 or 0 with probability > 0. This falsifies
H2. However, such cases can be statically detected, and the program can
be transformed into one that uses the equivalent condition as out > 0.5,
so that H2 holds. More in general, continuity corrections such as those
performed in Laurel and Misailovic (2020) can be adopted.

Example 10. Algorithm 2 satisfies H1 since the joint at each location is either
a mixture of Gaussians or truncated Gaussians, for which moment-determinacy
is known. Moreover, the two LBCs checked in the program are x1 > 0 (line 3)
and x2 < 3 (line 9). Before checking x1 > 0, x1 has non-degenerate Gaussian
distribution, and therefore the set x1 = 0 (border of Jx1 > 0K) has measure
0. Similarly, before line 9, x2 is Gaussian-distributed with σ > 0, therefore
x2 = 3 (border of Jx2 < 3K) has again probability 0. We conclude that also H2
is verified.

Algorithm 1 in Section 4.1.1, each marginal is obtained by Gaussians, per-
forming sums, squares, or conditioning. Here, to check moment-determinacy,
we use a result in Billingsley (2008), which states that if the moment-generating
function (mgf) of a distribution is defined in an interval of 0, then the distribu-
tion is determined by its moments. Using symbolic integration, we can compute
the mgf of the product of two Gaussians and verify that it is defined in an inter-
val of 0. Therefore, the distribution is determined by its moments and H1 holds.
For H2, we have already shown how to correct the condition in line 12 so that
H2 is verified. For the if statement in line 7, observe that before entering it, the
marginal w.r.t. to dist is the distribution of x2 + y2, which is continuous, and
therefore the point 10 has measure 0 with respect to it. Therefore also H2 holds.

99

4.5.2 Preliminary Results

The proof of the main theorem relies on two auxiliary results: first, we
show that the exact semantics preserves weak convergence (Lemma 2);
second, we prove that, given a weakly converging sequence of distribu-
tions Dn, it is always possible to choose a sequence of integers rn such
that TGM

rn (Dn) converges to the same limit (Lemma 3).

Lemma 2. Let P be a program, π = (v0, . . . , vn) ∈ ΠP and vi ∈ π be fixed.
Suppose (pn, Dn) is a sequence of pairs such that the following conditions are
satisfied:

• 0 ≤ pn ≤ 1 ∀n and pn
n→∞−−−−→ p in R;

• Dn
n→∞−−−−→ D;

• D is determined by its moments;

• if vi : test or vi : observe and vi is labelled by an LBC defining the set
JB(z)K, JB(z)K is an mDz

-continuity set;

• JviKπ(p,D) = (p′, D′) such that p′ ̸= 0.

Then JviKπ(pn, Dn) → JviKπ(p,D).

Proof. Let us consider separately the possible types of vi.
If vi : entry, exit there is nothing to prove.
Suppose vi : state. If vi is indexed by skip, there is nothing to prove.

If it is indexed by an assignment instruction xj = E(z) the conclusion fol-
lows from Theorem 7 with h : Rn → Rd such that

[h(z)]k =

{︄
xk if k ̸= j

E(z) if k = j.

Suppose vi : test and cond(vi) = true and set JviKπ(pn, Dn) = (p′n, D
′
n)

and JviKπ(p,D) = (p′, D′). By hypothesis p′ ̸= 0. First observe that p′n =
pn · PDn,z

(JB(z)K) → p · PDz
(JB(z)K), again because of Theorem 7 and

the fact that by hypothesis the set JB(z)K must be an mDz
-continuity set.

From this it follows that, starting from some n0 > 0, p′n > 0, ∀n > n0.
Let z∗ ∈ Rn be such that mDn,z (z

∗) = 0∀n. We can then define

h(z) =

{︄
z if z ∈ JB(z)K
z∗ else.

100

h is mDz -measurable and its set of discontinuity points is given by
∂JB(z)K, so that mDz

(∂JB(z)K) = 0 because we are assuming that the sets
JB(z)K are mDz

-continuity sets. So applying again Theorem 7 we have
that

1

p′n
mDn,z

◦ h−1 → 1

p′
mDz

◦ h−1.

Moreover, Rn−d is a continuity set for any measure (since it has no bor-
der), so when applying the operator Margx, the weak convergence is pre-
served. The conclusion follows observing that Margx(

1
p′
n
mDn ◦ h−1) =

mD′
n

and Margx(
1
p′mD ◦ h−1) = mD′ . Convergence for cond(vi) = false

follows from the same argument.
If vi : observe, we can apply the same argument used for v : test.

Lemma 3. Given a weakly converging sequence of distributions Dn → D for
each n ∈ N it is possible to find an integer rn ∈ N0 such that

TGM
rn (Dn)

n→∞−−−−→ D.

Proof. Consider the distribution space over Rd with the Levy-Prokhorov
metric dLP . Consider the family of sequences TGM

r (Dn) where n, r ∈ N.
We want to show that for each n, it is possible to fix rn such that

∀ ϵ > 0∃n0 s.t. ∀n ≥ n0 dLP

(︁
TGM
rn (Dn), D

)︁
< ϵ.

Let ϵ > 0 be fixed and ϵn be a real sequence such that ϵn → 0 and |ϵn| <
ϵ
2 ∀n. By Theorem 8, TGM

r (Dn)
r→∞−−−→ Dn ∀n, so there exists r̄n such that

∀ r > r̄n dLP

(︁
TGM
r (Dn), Dn

)︁
< ϵn. Moreover let n0 be such that ∀n > n0

dLP (Dn, D) < ϵ
2 . Then, for each n we can choose rn > r̄n and we have

that ∀n > n0:

dLP

(︁
TGM
rn (Dn), D

)︁
, < dLP

(︁
TGM
rn (Dn), Dn

)︁
+ dLP (Dn, D) < ϵn +

ϵ

2
< ϵ.

4.5.3 Proof of Theorem 9

We first prove that the theorem is true for programs P such that ∀π ∈ ΠP

if JπK = (p′, D′) it holds p′ ̸= 0. Then we prove that, given this, the
conclusion generalizes to any P in the hypotheses of the theorem.

101

Suppose that P is such that ∀π ∈ ΠP such that JπK = (p′, D′) it holds
p′ ̸= 0. Let π = v0 · · · vn ∈ ΠP be fixed such that JπK = (p′, D′) with
p′ ̸= 0. We want to prove that:

JP KR
k
=

∑︂
(pk,Dk)=JπKR

k

π∈ΠP

pk∑︂
(p′k,D

′
k)=JπKR

k

π∈ΠP

p′k
Dk →

∑︂
(p,D)=JπK:

π∈ΠP

p∑︂
(p′,D′)=JπK

π∈ΠP

p′
D = JP K.

(4.12)
Observe that since |ΠP | < ∞ this is implied by:

JπKR
k

→ JπK. (4.13)

By definition of path semantics, we can prove (4.13) by showing that
for every i = 0, . . . , n it is possible to choose Rk(vi)∀ k ∈ N such that the
output of JviKR

k

π converges to the output JviKπ .
For i = 0, we can set Rk(v0) to any value, as this does not affect the

final distribution. In fact Jv0KR
k

π = Jv0Kπ = (1, δ0).
For i = 1 if v1 : exit there is nothing to prove. If not we set Rk(v1) = k

and let (p′0, D′
0) be Jv1Kπ(1, δ0). Then:

Jv1KR
k

π (1, δ0) =
(︁
I, TGM

k

)︁
◦ Jv1Kπ(1, δ0) =

(︁
I, TGM

k

)︁
(p′0, D

′
0) =

=
(︁
p′0, T

GM
k (D′

0)
)︁

and by Theorem 8 TGM
k (D′

0) → D′
0.

So we have proved that the statement holds for i = 0 and i = 1. Now
suppose that it holds for some i > 1 and let us prove that it holds for
i+ 1.

If vi+1 : exit there is nothing to prove. If not let (pk, Dk) be output of
JviKR

k

π . By inductive hypothesis (pk, Dk) → (p̄, D̄) = JviKπ . Then:

Jvi+1KR
k

π (pk, Dk) =
(︂
I, TGM

Rk(vi+1)

)︂
◦ Jvi+1Kπ(pk, Dk).

Let (p′k, D
′
k) be Jvi+1Kπ(pk, Dk). By hypothesis p′k ̸= 0 (or JπK(D) =

(0, D′)) so we can apply Lemma 2 to get (p′k, D
′
k) → Jvi+1Kπ(p̄, D̄) =

(p̄′, D̄
′
), so

Jvi+1KR
k

π (pk, Dk) =
(︂
I, TGM

Rk(vi+1)

)︂
(p′k, D

′
k) =

(︂
p′k, T

GM
Rk(vi+1)

(D′
k)
)︂
.

Then, by Lemma 3 we can choose a sequence of integers sk such that
setting Rk(vi+1) = sk TGM

Rk(vi+1)
(D′

k) → D̄
′. Thus, we have set Rk(vi+1) =

sk so that Jvi+1KR
k

π (pk, Dk) → Jvi+1Kπ(p̄, D̄).

102

Now suppose that for JπK = (0, D′) for some π, we want to prove
that (4.12) still holds. In this case the path π does not contribute to the
output distribution of computed by JP K(D). Moreover, there exist i such
that at vi the output pair is (0, D′′) while for all j < i the output at vj is
(p(j), D(j)) with p(j) ̸= 0. The statement then holds up to node vi, that
takes in input a sequence (pk, Dk) → (p′′, D′′). Letting JviKR

k

π (pk, Dk) =
(p′k, D

′
k) and using the same argument as in the proof of Lemma 2 we can

prove p′k → 0. So (4.12) will hold even if (4.13) does not.

103

Chapter 5

Second Order Gaussian
Approximation

As discussed in Examples 8 and 9 of the previous chapter, while im-
plementing an arbitrary order Gaussian Semantics may be difficult, it
is straightforward to compute the Gaussian Semantics associated with
R = 2. In this chapter, we propose Second Order Gaussian Approxima-
tion (SOGA), an algorithm that implements this particular case. A proto-
type implementation of SOGA can be found at https://zenodo.org/
records/10026970. In Section 5.1, we introduce an overview of the al-
gorithm and its computational cost, while in Section 5.2 we present the
numerical evaluation of the algorithm.

5.1 Second Order Gaussian Approximation

5.1.1 Overview

SOGA implements Second-Order Gaussian Semantics, i.e. the Gaussian
Semantics that at each node of the control-flow graph matches the first
two order moments (mean and covariance matrix).

In our implementation, SOGA accepts programs in a Python-like syn-
tax, then compiled into a formal control-flow graph. SOGA recursively
visits the nodes of the control-flow graph in a breadth-first fashion to
compute the semantics of all paths.

104

https://zenodo.org/records/10026970
https://zenodo.org/records/10026970

We assume that each node in the control-flow graph has two attribute
lists of children and parents, whose elements point, respectively, to chil-
dren and parent nodes. Furthermore, each node has two attributes, p and
dist: p is a non-negative scalar proportional to the probability of reach-
ing that node, while dist stores the output distribution (in the form of a
GM) computed by that semantics of the node. Nodes have type-specific
attributes: nodes of type test and observe have an attribute LBC storing an
LBC expression; nodes of type state have an attribute cond taking value
true, false or none and an attribute expr storing an assignment expression.

To apply SOGA we create a queue visit queue containing the entry
node. Then we apply iteratively SOGA on pop(visit queue). When called
on a new node, the algorithm first accesses the attributes p and dist of its
parents, and invokes merge dist on the list of pairs (p,D). Then, computes
the semantics corresponding to the node type as follows:

• if v : entry, it initializes node.p to 1, node.dist to δ0 and node.trunc
to none;

• if v : observe, it saves the LBC in node.trunc, and calls the function
approx trunc;

• if v : test, it does nothing;

• if v : state, it checks if node.cond = true or node.cond = false and
in that case retrieves the LBC condition from the parent test node.
Then it calls the function approx trunc. This results in a new pair
(p, dist) on which the function apply rule is applied. Finally, the
output is stored in node.p, node.dist;

• if v : exit, after merging the resulting distribution is returned as the
approximated output distribution of the whole program.

After executing the semantics of the node the queue is updated by
pushing the children nodes of the current node. This is detailed in Al-
gorithms 3-7. The computation of the moments of the transformed dis-
tributions is performed by the functions apply rule(input dist, expr) and
approx trunc(input dist, trunc), which are detailed below.

105

Algorithm 3 SOGA (node : entry):

node.p = 1;
node.dist = [d · gm([1], [0], [0])];
node.trunc = none
for child in node.children do

push(visit queue, child)
end for

Algorithm 4 SOGA (node : observe):

input list = []
for par in node.parents do

input list.append((par.p, par.dist))
end for
node.p, node.dist = merge dist(input list)
node.trunc = node.LBC
I, node.dist = approx trunc(node.dist, node.trunc)
node.p = node.p · I
for child in node.children do

push(visit queue, child)
end for

Algorithm 5 SOGA (node : test):

for par in node.parents do
input list.append((par.p, par.dist))

end for
node.p, node.dist = merge dist(input list)
for child in node.children do

push(visit queue, child)
end for

106

Algorithm 6 SOGA (node : state):

for par in node.parents do
input list.append((par.p, par.dist))

end for
node.p, node.dist = merge dist(input list)
if node.cond == true

trunc = node.parent.LBC
else if node.cond == false
trunc = not node.parent.LBC

end if
if node.cond! = none

p′, node.dist = approx trunc(node.dist, trunc)
node.p = node.p · p′

end if
node.dist = apply rule(node.dist, node.expr)
for child in node.children do

push(visit queue, child)
end for

Algorithm 7 SOGA (node : exit, p, dist, trunc):

for par in node.parents do
input list.append((par.p, par.dist))

end for
node.p, node.dist = merge dist(input list)
return node.dist

Function apply rule. It implements the semantics of a state node. It
takes as input the current mixture input dist and an expression expr of
type (4.2). It returns a new distribution dist obtained applying expr and
TGM
2 to input dist. To compute the moments of the transformed dis-

tribution dist, and therefore its second-order approximation, it uses the
results in Table 10: when expr is a linear transformation, it applies the
formulas for the sum of multivariate Gaussians (Billingsley, 2013); when
expr involves products, it applies Isserlis’ theorem (Wick, 1950).

107

Function approx trunc It implements the semantics of a test or an ob-
serve node. It takes as input the current mixture input dist and a set
trunc defined by an LBC of type (4.3). It returns the probability mass p,
given by the probability that input dist satisfies trunc, and a new mixture
distribution dist, representing the GM approximating input dist condi-
tioned to trunc. Again, it applies the results in Table 10 to compute dist:
in particular, when the LBC expresses inequality constraints the formu-
las in Kan and Robotti (2017) are used; when instead the LBC has the
form xi == c it uses the formulas from Bishop and Nasrabadi (2006).

Function merge dist Merging is performed whenever a node is accessed
prior to applying its semantics: merge dist collects all the output pairs
(p,D) computed at the parent nodes, and merges them together in a sin-
gle GM. Given the set of s parents’ pairs (p1, D1), . . . , (ps, Ds), the func-
tion returns probability mass input p = p1 + . . . + ps and a new GM
input dist = 1

input p (p1D1 + . . . + psDs). For an exit node, the output of
this function is the output distribution of the program.

5.1.2 Distributivity of Transfer Functions

SOGA explores the control-flow graph in a breadth-first fashion, per-
forming merges when required. On the other end, the exact and the
Gaussian semantics are defined as a sum over all execution paths, lead-
ing to an apparent discrepancy. To ensure that SOGA indeed computes
the Gaussian Semantics associated with the map R(v) = 2 we show in
Proposition 8 that the transfer function of the exact semantics is distribu-
tive with respect to the merge operation.

To do this, for a set of pairs (pi, Di) we define the merge operator

merge((p1, D1), . . . , (ps, Ds)) =

(︄
s∑︂

i=1

pi,

s∑︂
i=1

pi∑︁s
j=1 pj

Di

)︄
= (P,D).

We show that computing the semantics of a node after performing a
merge gives the same output distribution as computing the semantics
of each pair and then merging the results. This distributivity transfers
straightforwardly to Gaussian Semantics, since it is computed by com-
posing the exact semantics with the operator TGM

r , which is distributive
with respect to merging by Definition 4.7. This, in turn, justifies com-
puting the semantics exploring the control-flow graph in a breadth-first
fashion as SOGA does.

108

Proposition 8. Let (pi, Di) be pairs with pi ≥ 0 and Di a distribution for
i = 1, . . . , s. Let v be a node of type state, test, observe or exit. Then

merge(JvK(p1, D1), . . . , JvK(ps, Ds)) = JvK(merge((p1, D1), . . . , (ps, Ds)))
(5.1)

Proof. Let (p̃i, D̃i) = JvK(pi, Di) for i = 1, . . . , s. Then the L.H.S. of Equa-
tion 5.1 becomes

merge(JvK(p1, D1), . . . , JvK(ps, Ds)) =

(︄
s∑︂

i=1

p̃i,

s∑︂
i=1

p̃i∑︁s
j=1 p̃j

D̃i

)︄
= (P̃ , D̃).

For the R.H.S. let:

JvK(merge((p1, D1), . . . , (ps, Ds))) = JvK(P,D) = (P̂ , D̂).

Let us show for each type of node that P̃ = P̂ and D̃ = D̂. We ob-
serve that for v : state, with v labeled by skip, and for v : exit conclusion
follows trivially. We examine the remaining cases separately.

• Let v : state and suppose v is labelled by xk := E(z) then p̃i = pi and
D̃i is the distribution of x[xk = E(z)] where x ∼ Di. Then P̃ = P
and D̃ =

∑︁s
i=1

pi

P D̃i. On the other hand P̂ = P = P̃ and D̃ is the
distribution of y[yk = E(z)] where y ∼ D =

∑︁k
i=1

pi

P Di. Therefore
D̂ =

∑︁k
i=1

pi

P D̃i = D̃.

• Let v : test. To ease the notation, let us assume cond(sπ(v)) = true
and B(z) = B(x), but the argument works analogously in the other
cases. In this case p̃i = pi ·PDi

(JB(x)K) and D̃i = Di | JB(x)K. There-
fore P̃ =

∑︁s
i=1 pi · PDi

(JB(x)K) and D̃ =
∑︁s

i=1
pi·PDi

(JB(x)K)
P̃

(Di |
JB(x)K). On the other hand P̂ = P ·PD(JB(x)K) = P ·

∑︁s
i=1

pi

P PDi(JB(x)K) =∑︁s
i=1 piPDi

(JB(x)K) = P̃ . Moreover, D̂ = D | JB(x)K. Therefore, D̂
has density

fD(x)IJB(x)K
PD(JB(x)K)

=

s∑︂
i=1

piPDi
(JB(x)K)

PD(JB(x)K)
fDi

(x)IJB(x)K
PDi

(JB(x)K)

which is the same as the one of
∑︁s

i=1
piPDi

(JB(x)K)
P̃

(Di | JB(x)K) =

D̃. Observe that we have assumed that for at least one i p̃i ̸= 0.
However, if that is not the case PD(JB(x)K) = 0 and the conclusion
still holds.

109

• Let v : observe. If B(x) has a probability greater than zero conclu-
sion follows as in the previous case. If B(x) has the form xk == c

we can use the same argument, but we need to replace PDi
(JB(x)K)

with the normalization constant Ii =
∫︁
Rd−1 fDi

(x, xi = c)d(x \ xi).

5.1.3 SOGAprune

To improve the scalability of SOGA we propose a second version of the
algorithm, called SOGAprune, in which the user can introduce at script
level the instruction prune(K), K being an integer number. When the
script is compiled in a cfg, the prune instruction is compiled in a new
node of type prune. When accessed, the function node semantics in-
vokes the function prune dist(input dist,K).

Function prune dist It prunes the current distribution input dist to keep
the number of its components below a user-specified bound K. The
pruning is performed similarly to Chaudhuri and Solar-Lezama (2010).
In particular, for each pair of components i, j in the input distribution
input dist, having mixing coefficients πi, πj , means µi, µj and covariance
matrices Σi,Σj , we compute the mean µ′ =

πiµi+πjµj

πi+πj
and the cost cost(i, j) =

πi∥µ′ − µi∥+ πj∥µ′ − µj∥.
After computing the cost for all pairs (i, j) such that i ̸= j and i, j <

K, the pair (i, j) with minimal cost is substituted with a single compo-
nent having mean µ′ and covariance matrix Σ′ with

Σ′ =
πi

πi + πj

(︁
Σi + µT

i µi

)︁
+

πj

πi + πj

(︁
Σj + µT

j µj

)︁
− µ′Tµ′.

Observe that µ′ and Σ′ are exactly the mean ad the covariance matrix
of the mixture πi

πi+πj
N (µi,Σi) +

πj

πi+πj
N (µj ,Σj). This produces the best

possible approximation of the two components (Chaudhuri and Solar-
Lezama, 2010). The procedure is iterated until the number of compo-
nents is less than K (observe that after the first two components have
been merged into a new one, we need to recompute the cost only for the
pairs in which the new component appears).

A summary of how the semantics of each node is implemented is
reported in Table 11.

110

Type Function Input Computing

state apply rule input dist,
expr

First two order moments of the components of
the distribution obtained applying expr to input dist

text,
observe

approx trunc input dist,
trunc

Probability mass (or normalization constant) and
first two order moments of the components of the

distribution obtained truncating input dist to trunc

prune prune dist input dist,
K

Distribution input dist iteratively pruned
until the number of components is ≤ K

Table 11: Function implementing node semantics in SOGA and SO-
GAprune. The input arguments input p, input dist are retrieved by the par-
ent nodes’ attributes p, dist. The arguments expr, trunc and K are stored in
node attributes when the cfg is compiled from the program script.

5.1.4 Computational Cost

We first compute the computational cost without pruning, then we dis-
cuss how pruning affects it.

Cost without Pruning. Let |V | denote the total number of nodes, |T |
the number of test nodes, |TO| the number of test and observe nodes and
|S| the number of state nodes. W.l.o.g. we assume for simplicity that
all read-only variables are pushed to an initial distribution D0 over Rn;
thus the output of the entry node is (1, D0) and all assignments only
use output variables. By doing this we compute an upper bound on
the true computational cost since the dimensions corresponding to read-
only variables are dropped after marginalization. Letting C0 denote the
number of components of D0, the output distribution will have at most
C ≤ Cmax = 2|T |C0 components.

We consider the cost to access a node and perform elementary op-
erations, such as assignments and products, constant. Expressions expr
and trunc are assumed to be stored in suitable data structures accessi-
ble in constant time, so storage and reading of them are also considered
elementary operations. Overall, elementary operations contribute to the
total computational cost with a term O(|V |), which is however domi-
nated by the computational cost of executing approx trunc, apply rule and
merge dist. We examine their cost separately.

The function approx trunc is invoked once when an observe node is ac-
cessed and twice when a test node is accessed, for the true and the false
branch respectively. When B(z) is in the form c1 · z1 + . . .+ cn · zn ▷◁ c

111

a singular value decomposition is performed to change coordinates, so
that in the new set of coordinates the truncation set is a hyper-rectangle
(cost O(n3), (Gu and Eisenstat, 1995)). Then, a new mixing coefficient
has to be computed for each component to convert the truncated GM
into a mixture of truncated Gaussians (cost O(n)). Finally, for each trun-
cated Gaussian, the first two order moments are computed using the
formulas in Kan and Robotti (2017) (cost O(n4), see paragraph below).
When B(z) is in the form xi == c, to apply the formulas in Bishop and
Nasrabadi (2006), matrix multiplication must be performed, amounting
to cost O(n2) (Skiena, 2008). Overall, we have a cost of O

(︁
|TO|Cmaxn

4
)︁
.

The function apply rule is invoked every time a state node is accessed.
Since affine transformations require matrix multiplication (cost O(n3)),
the total cost is O

(︁
|S|Cmaxn

3
)︁
.

Finally, the function merge dist is invoked whenever a node is ac-
cessed and performs a scalar product. It contributes for a cost O (|V |Cmax) .

The total cost of SOGA is therefore

O
(︁
|TO|Cmaxn

4
)︁
+O

(︁
|S|Cmaxn

3
)︁
+O (|V |Cmax) ≤ O(|V |2|T |C0n

4),
(5.2)

that is, linear in the number of nodes |V | and in the initial number of
components C0, polynomial in the dimensionality of the augmented in-
put space n and exponential in the number of test nodes |T |, i.e., linear in
the number of paths.

Moments of Truncated Gaussians We derive the computational cost of
computing the first two order central moments of a d-dimensional Gaus-
sian distribution truncated to a hyper-rectangle [a, b] = [a1, b1] × . . . ×
[ad, bd] in the special case in which a1 > −∞, ai = −∞∀ i = 2, . . . , d and
b = ∞∀ i = 1, . . . , d. Observe that this case and the symmetric one with
b1 < ∞ are the only ones arising in executing SOGA, because we restrict
conditional branches to have the form in 4.3. To carry out the computa-
tion we use the recursive formulas from Kan and Robotti, 2017 reported
below.

Let r = (r1, . . . , rd) ∈ Nd
0. We define:

F d
r (a, b, µ,Σ) =

∫︂
[a,b]

xrfN (µ,Σ)(x)dx.

If X is a Gaussian with mean µ and covariance matrix Σ truncated to

112

[a, b] we have that

E[Xr] =
F d
r (a, b, µ,Σ)

F d
0 (a, b, µ,Σ)

so, if we compute F d
r for all r such that

∑︁d
i=1 ri ≤ 2 we can retrieve the

first two order moments of the truncated Gaussian in O(d2) operations.
Observe that due to the particular form of our hyper-rectangles F d

0

can be computed in costant time, as if d = 1.
To compute F d

r for other value of r we use the recursive formula:

F d
r+ei(a, b, µ,Σ) = µiF

d
r (a, b, µ,Σ) + eTi Σcr (5.3)

where

cr,j = kjF
d
r−ej (a, b, µ,Σ) + a

kj

j fN (µj ,Σj,j)(aj)F
d−1
r(j)

(a(j), b(j), µ̃
a
j , Σ̃j)

(5.4)

µ̃a
j = µ(j) +Σ(j),j

aj − µj

Σj,j
(5.5)

Σ̃j = Σ(j),(j) −
1

Σj,j
Σ(j),jΣj,(j) (5.6)

and for a vector v the notation v(j) denotes the vector obtained from v
suppressing the index j. Moreover, it is understood that when aj = −∞
the second term at the right hand side of (5.4) is 0.

To compute moments of order 1, i.e. F d
ei(a, b, µ,Σ) for i = 1, . . . , d, we

set r = 0 in (5.3). We first compute c0 for which we have

c0,1 = fN (µi,Σ1,1)(a1)F
d−1
r(1)

(a(1), b(1), µ̃
a
1 , Σ̃1) = fN (µi,Σ1,1)(a1)

since [a(1), b(1)] = Rd−1 and
c0,j = 0.

Therefore c0 is computed in constant time and the only computational
cost in computing the first order moments is due to the (d × d) · (d × 1)
matrix multiplication eTi Σc0, which is O(d2). Since we need to compute
d first order moments, the total cost is O(d3).

To compute moment of order 2, we set r = es and compute F d
es+ei(a, b, µ,Σ)

as s, i = 1, . . . , d. We first need to compute ces for which we have:

ces,1 =

{︄
F d
0 (a, b, µ,Σ) + a1fN (µ1,Σ1,1)(a1) if s = 0

fN (µ1,Σ1,1)(a1)F
d−1
es(1)

(a(1), b(1), µ̃
a
1 , Σ̃1) if s ̸= 0.

(5.7)

113

ces,j =

{︄
F d
0 (a, b, µ,Σ) if s = j

0 if s ̸= j.

As s = 2, . . . , d we need to compute F d−1
es(1)

(a(1), b(1), µ̃
a
1 , Σ̃1). However

since this are the first order moments of a gaussian with mean µa
1 in

[a(1), b(1)] = Rd−1, computing the previous quantity amounts to com-
puting µ̃a

1 which can be done in O(d) operations. Once this is done, ces,j
can be computed for every s and j in O(d2) operations. Finally, we need
to perform again the matrix multiplication eT1 Σces , this time for d(d−1)

2
times, for a total computational cost of O(d4).

Effect of Pruning. Let us now consider the effect of introducing some
prune(K) instructions. Let |P | be the number of pruning nodes and |T |bet
be the maximum number of subsequent test nodes without pruning in-
structions between them. Then |T |bet ≤ |T | and |T |bet = |T | if no prun-
ing instructions have been introduced in the program. Then, the maxi-
mum number of components a mixture can have before pruning occurs
is Cmax = K2|T |bet (assuming w.l.o.g. |C0| < K).

The function prune dist is invoked at most |P | times. When invoked,
it first computes the cost for all possible pairs of components, which
is at most Cmax(Cmax − 1). The computation of the cost function for
each pair has cost O(n), while the computation of the covariance ma-
trix (cost O(n2)) is performed for a single pair. At its first iteration, the
computational cost of prune dist is, therefore, O(C2

maxn). After this, new
costs are computed for at most Cmax − K times, but each time only for
C < Cmax pairs of components. The whole cost of the function is there-
fore O(C2

maxn).
Substituting in (5.2) one gets that the computational cost with prun-

ing is bounded by:

O(|V |K2|T |betn4) +O(K222|T |betn) ≤ O(|V |K222|T |betn4). (5.8)

Comparing (5.2) with (5.8) one can conclude that pruning is only
effective in reducing the computational cost when the overhead intro-
duced by pruning (K222|T |bet) is less demanding than dealing with the
full space of paths (C02

|T |). To keep the overhead contained one could
use small values of K while keeping also |T |bet small (e.g. by introducing
many pruning instructions). However, this introduces an additional level
of approximation which can hinder the accuracy of SOGA.

114

5.2 Numerical Evaluation

We split the numerical evaluation into four parts. In Section 5.2.1 we
compare SOGA with four baseline tools representative of different infer-
ence methods for estimating the posterior mean: STAN for MCMC (Car-
penter et al., 2017), PSI for exact symbolic analysis (Gehr, Misailovic, and
Vechev, 2016), AQUA for quantization of posterior distributions (Huang,
Dutta, and Misailovic, 2021) and Pyro for VI (Bingham et al., 2019). In
Section 5.2.2 we compare SOGA against Pyro in performing Maximum
A Posteriori (MAP) estimation (Gelman et al., 2013), to test how well
our method is able to capture the posterior distribution, in addition to
its moments. Finally, in Sections 5.2.3 and 5.2.4, we evaluate SOGA’s
performance on two applications that have been extensively studied in
the literature, owing to their significant practical impact. The first ap-
plication is inference on models involving mixtures of continuous and
discrete distributions, as in Kharchenko, Silberstein, and Scadden (2014),
Pierson and Yau (2015), and Gao et al. (2017); the second application is
Bayesian inference on collaborative filtering (Zhao, Zhang, and J. Wang,
2013).

5.2.1 Posterior Mean Estimation

We start by comparing SOGA with STAN for MCMC (Carpenter et al.,
2017), PSI for exact symbolic analysis (Gehr, Misailovic, and Vechev,
2016), and AQUA for quantization of posterior distributions (Huang,
Dutta, and Misailovic, 2021) and Pyro for VI (Bingham et al., 2019). We
consider the case studies from these tool’s reference papers (Carpenter
et al., 2017; Gehr, Misailovic, and Vechev, 2016; Huang, Dutta, and Mi-
sailovic, 2021), excluding those which could not be encoded in our syn-
tax. This choice is intended to stress SOGA in the analysis of programs
that were not designed to enhance its properties. Overall out of 31 to-
tal models, 13 were left out: 9 because of non-parametrizable distribu-
tions depending on variable parameters, and 4 because of the presence
of non-polynomial functions (taken from: STAN - 1, PSI - 3, AQUA -
8, Pyro - 1). The remaining 18 models can be found in Carpenter et
al. (2017) (Bernoulli), Gehr, Misailovic, and Vechev (2016) (BayesPoint-
Machine, Burglar, ClickGraph, ClinicalTrial, CoinBias, DigitRecognition,
Grass, MurderMistery, NoisyOr, SurveyUnbias, TrueSkills, TwoCoins)
and Huang, Dutta, and Misailovic (2021) (Altermu, Altermu2, NormalMix-
tures, RadarQuery, TimeSeries).

115

The considered programs are listed in Table 12. Pruning was applied
after every test and observe nodes (repeating it only once if they occur
subsequently) for programs whose computation time was greater than
1 s and at least ten times larger than the worst performing tool. We set
K = 0.015Cmax except for NormalMixtures ; there, since Cmax exceeded
the tens of thousands, we set K = 30. With this strategy, the pruning
algorithm was invoked only in 4 out of the 18 considered programs.

The experiments were performed on a laptop equipped with a 2.8 GHz
Intel i7 quad-core processor and 16 GB RAM, CmdStan v2.30.1 and Wol-
fram Mathematica 13.1 (Wolfram Research, Inc.), setting a time-out thresh-
old at 600 s.

Results

Table 12 collects the results where time refers to the average runtimes (in
seconds) out of 10 executions and value refers to the computed expected
value of a target variable in the model. For each model we specify the
kind of distributions involved: B=Bernoulli, Be=Beta, D=Discrete, G(∗)
=Gaussian (with non-constant mean), U=Uniform. For STAN, we indi-
cate the time needed to obtain a 5% confidence interval whose ampli-
tude is contained in 1% of the mean (up to a maximum of 105 samples).
For PSI we report the sum of the time needed to generate the symbolic
formula and that needed to integrate it when in the presence of non-
simplified integrals (observe that in the original paper, only the time for
symbolic computation was considered). For VI, due to high sensitivity
with respect to the hyperparameters (Hoffman et al., 2013), we proceed
using three different learning rates (0.01, 0.005, 0.001). To ease the com-
parison, we report the most accurate estimation in Table 12, while the
full set of experimental results is reported in Table 13. The number of it-
erations of the stochastic gradient descent is increased from a minimum
of 100 to a maximum of 10k, stopping the optimization if the difference
between the estimated mean posterior and the mean posterior estimated
100 steps before is less than 1% of the current estimation. For SOGA, run-
times labeled with ∗ indicate that the pruning algorithm was invoked. Fi-
nally, we highlight the fastest method with a grey background. For accu-
racy evaluation, we consider PSI’s results as ground truth when available
(i.e., when PSI terminates and the integration is successfully computed
within the timeout threshold). We made this choice since PSI is an exact
method and the only guaranteed to be exact among the evaluated tools.

Only in one example, BayesPointMachine, SOGA performs poorly in

116

M
od

el
D

is
t.

ST
A

N
A

Q
U

A
Py

ro
(V

I)
PS

I
SO

G
A

tim
e

va
lu

e
tim

e
va

lu
e

tim
e

va
lu

e
tim

e
va

lu
e

tim
e

va
lu

e
C

d

Be
rn

ou
lli

B,
U

0.
17

0.
25

0
0.

84
0.

24
7

4.
51

0.
25

0
0.

38
0.

25
0

1.
28

∗
0.

25
2

27
2

Ba
ye

sP
oi

nt
M

ac
hi

ne
G

∗
51

.0
0.

05
6

m
em

60
.4

9
0.

04
6

er
r

2.
20

0.
01

1
1

9
Bu

rg
la

r
B

—
—

—
0.

12
0.

00
3

0.
06

0.
00

3
4

6
C

lic
kG

ra
ph

B,
U

10
2

0.
54

0
m

em
3.

13
0.

56
6

1.
10

0.
61

4
20

8∗
0.

63
0

35
6

C
lin

ic
al

Tr
ia

l
B,

U
—

—
—

0.
97

0.
75

5
92

.2
∗

0.
75

3
23

5
C

oi
nB

ia
s

B,
Be

0.
07

0.
42

0
0.

91
0.

38
3

0.
91

0.
41

9
0.

34
0.

41
7

0.
61

0.
41

5
64

2
D

ig
it

R
ec

og
ni

ti
on

D
—

—
—

er
r

4.
46

4.
45

3
10

2
G

ra
ss

B
—

—
—

0.
08

0.
70

8
0.

09
0.

70
8

28
10

M
ur

de
rM

is
te

ry
B

—
—

—
0.

12
0.

01
6

0.
01

0.
01

6
2

2
N

oi
sy

O
r

B
—

—
—

0.
16

0.
81

4
0.

16
0.

81
4

25
6

10
Su

rv
ey

U
nb

ia
s

B,
G

,U
0.

10
0.

80
0

1.
08

0.
56

7
2.

89
0.

77
0

18
.5

0.
80

0
1.

56
0.

79
9

12
8

4
Tr

ue
Sk

ill
s

G
∗

0.
04

10
4.

0
m

em
1.

30
10

1.
4

to
0.

05
10

4.
7

1
6

Tw
oC

oi
ns

B
—

—
—

0.
10

0.
33

3
0.

01
0.

33
3

3
3

A
lt

er
m

u
G

∗
19

.0
0.

00
9

1.
32

0.
00

0
33

.1
0.

03
0

to
0.

16
0.

00
0

1
5

A
lt

er
m

u2
G

∗ ,
U

15
.0

0.
17

0
0.

79
0.

15
5

5.
50

0.
09

8
28

4
0.

15
5

0.
36

0.
15

6
4

3
N

or
m

al
M

ix
tu

re
s

G
∗ ,

U
0.

38
0.

28
6

1.
27

0.
28

6
10

4.
89

0.
29

5
to

50
.4

∗
0.

29
8

30
4

R
ad

ar
Q

ue
ry

B,
G

∗ ,
U

14
4

5.
00

0
0.

90
6.

33
3

er
r

7.
75

6.
33

3
6.

34
5.

94
0

20
16

8
Ti

m
eS

er
ie

s
G

∗ ,
U

0.
37

-1
.6

00
1.

67
-1

.5
75

26
.1

5
-1

.7
01

to
3.

79
-1

.5
90

19
4

Ta
bl

e
12

:R
es

ul
ts

us
in

g
ST

A
N

,P
SI

,A
Q

U
A

an
d

SO
G

A
.‘

—
’:

di
sc

re
te

po
st

er
io

r
no

ts
up

po
rt

ed
;‘

m
em

’:
ou

to
fm

em
or

y
er

ro
r;

‘e
rr

’:
to

ol
re

tu
rn

s
er

ro
r

st
at

e.
Fo

r
SO

G
A

,C
:

fin
al

nu
m

be
r

of
co

m
po

ne
nt

s;
d

:
di

m
en

si
on

al
it

y
of

th
e

ou
tp

ut
ve

ct
or

.

117

Pyro (VI) SOGA True value
Model l.r. steps value time value time

Bernoulli 0.01 2000 0.247 4.51
0.252 1.28 0.250.005 500 0.282 1.438

0.001 1700 0.306 4.44

BayesPointMachine 0.01 5800 0.046 60.49
0.011 2.20 0.056*0.005 not converged

0.001 not converged

ClickGraph 0.01 200 0.566 3.13
0.63 208 0.6140.005 200 0.504 3.03

0.001 400 0.490 6.36

CoinBias 0.01 200 0.419 0.91
0.41 0.61 0.410.005 1100 0.425 5.233

0.001 900 0.403 4.36

SurveyUnbias 0.01 500 0.770 2.89
0.80 1.56 0.800.005 800 0.743 4.42

0.001 900 0.701 5.02

TrueSkills 0.01 200 101.4 1.30
104.7 0.05 104*0.005 200 100.79 1.31

0.001 200 100.16 1.48

Altermu 0.01 not converged
0.000 0.16 0*0.005 1400 0.030 33.1

0.001 not converged

Altermu2 0.01 1300 8.713 29.52
0.156 0.36 0.1550.005 5700 -9.624 150.39

0.001 200 0.098 5.50

NormalMixtures 0.01 400 0.344 28.80
0.298 50.4 0.286*0.005 1700 0.295 104.89

0.001 300 0.500 17.77

TimeSeries 0.01 2800 -1.832 59.128
-1.590 3.79 -1.600*0.005 900 -2.257 19.87

0.001 1100 -1.701 26.15

Table 13: Comparison between Pyro’s Variational Inference, SOGA and true
values of the models of Table 3 with continuous posterior. For Pyro’s VI
we report the values and the runtimes for 3 different learning rates (l.r.),
together with the number of steps needed to meet our stopping criterion
(steps). By ’not converged’, we mean that the stopping criterion was not
met after 10k steps of gradient descent. True values are obtained using PSI
or, when not available, using STAN or AQUA, denoted by ∗.

118

terms of accuracy, estimating a value of 0.011 for a parameter estimated
by STAN as 0.054±2e−4. We remark, however, that this program turned
out to be particularly difficult to solve for AQUA (which issued an out-
of-memory error) and PSI (which was not able to complete the symbolic
computation of the posterior). On the other examples, SOGA yields very
good accuracy, with a relative error below 7% across all comparable mod-
els. We now discuss a detailed comparison of runtimes against each tool
method.

STAN STAN does not support discrete posteriors; hence it could not
analyze eight models. For the models that can be analyzed by both,
SOGA outperforms STAN in terms of runtimes on Altermu, Altermu2,
and RadarQuery. By contrast, STAN outperforms SOGA in Bernoulli
and NormalMixtures. We attribute this to the presence of non-Gaussian
priors and a large number of observations, resulting in a high number of
components and truncations to be computed. Both have similar perfor-
mance on the remaining models.

AQUA SOGA is more flexible than AQUA in that it supports discrete
posteriors. On ClickGraph, and TrueSkills AQUA issued an out-of-memory
error while SOGA could approximate the posterior mean. We ascribe
this issue to the fact that AQUA uses tensors, whose dimension rapidly
increases with the number of distributions. In particular, in AQUA each
distribution must be stored in the tensor, while SOGA can use fresh read-
only variables which are dropped once the marginal over the output vari-
ables is evaluated. Notably, SOGA outperforms AQUA also on Altermu,
Altermu2 and TimeSeries proposed in the AQUA paper (Huang, Dutta,
and Misailovic, 2021). Instead, AQUA is more efficient than SOGA in
RadarQuery, Bernoulli and NormalMixtures, for the same reasons ex-
plained for STAN.

Pyro Being a gradient-based method, Pyro’s VI offers limited support
for discrete variables,1 so that, similarly to STAN and AQUA, we were
not able to encode models with discrete posterior. In addition, we found
that the encoding of RadarQuery incurred runtime errors. For the re-
maining models, VI is comparable to SOGA when not less accurate and
taking longer runtimes. Noticeable exceptions are BayesPointMachine,

1https://pyro.ai/examples/enumeration.html

119

https://pyro.ai/examples/enumeration.html

Model Time Value C

Bernoulli 11.97 0.252 1774
ClickGraph to 2304

ClinicalTrial to 1508
NormalMixtures to 97714

Table 14: Application of pruning to models whose computation time was
greater than 1 s and at least ten times larger than the worst performing com-
petitor. For models yielding a time-out the number of components C is the
one reached before time-out.

where, as already noticed, SOGA is not able to achieve a good accuracy
and ClickGraph, where SOGA incurs long runtimes even with pruning.
On the other hand, VI exhibits a significant sensitivity with respect to the
choice of the hyperparameters, which can result in non-convergence and
sloppy approximations for poor choices of the parameters, as shown in
Table 13.

PSI Similarly, PSI outperforms SOGA on Bernoulli, ClickGraph, and
ClinicalTrial. However, on six models (SurveyUnbias, TrueSkills, Al-
termu, Altermu2, RadarQuery, and TimeSeries) PSI timed out or resulted
in long runtimes. This behavior can be explained by the presence of dis-
tributions dependent on variable parameters (SurveyUnbias, Trueskills,
Radar) or by the high number of observations (Altermu, Altermu2, Time-
Series). In Altermu, PSI could not compute a symbolic formula within
the time-out threshold, while in BayesPointMachine, TrueSkills, and Time-
Series the formula contained non-simplified integrals, whose integration
in Mathematica took longer than the time-out threshold. Notably, for
models involving only Bernoulli distributions (Burglar, Grass, Murder-
Mistery, NoisyOr, TwoCoins), for which both tools are exact, their per-
formance is comparable.

Performance of Pruning. In Table 14 we report the runtimes, values,
and number of components C for SOGA without pruning applied to the
four models that required the application of pruning (Bernoulli, Click-
Graph, ClinicalTrial, NormalMixtures). All models share the occurrence
of GM distributions with more than 1000 components. For Bernoulli,
pruning allowed comparable runtimes with respect to the best-performing

120

tool, while base SOGA was about 9 times slower (11.97 s). In addition,
base SOGA computed an output indistiguishable from the pruned ver-
sion up to the third decimal digit. For the other three cases base SOGA
was unable to compute a numerical result within the time out threshold.
Applying pruning allowed SOGA to complete the computation before
the time out while achieving excellent accuracy with respect to ground
truth.

5.2.2 Maximum a Posteriori Estimation

Since SOGA approximates the posterior with a Gaussian mixture, it can
also compute the Maximum a Posteriori (MAP) estimate by simply re-
turning the mean of the GM component with the largest weight. Here
we compare its performance against Pyro, in which MAP estimation can
be performed using a different parametrizing distribution than the one
used for the mean posterior inference2. To get a baseline for the MAP
value, we first generate the symbolic posterior using PSI and then opti-
mize it numerically. For models in which PSI is not able to compute the
exact posterior, we estimate the ground truth by taking 10k samples from
the posterior and binning them into 50 intervals; then, MAP is the mid-
point of the interval with the most samples. We tested the same models
with continuous posterior reported in Table 12, except Altermu2, since,
by visual inspection, we found that it has a flat posterior.

Results are reported in Table 15. Due to Pyro’s sensitivity to hy-
perparameters observed in the previous section, we tested three differ-
ent values of learning rate, confirming the sensitivity issues. These ex-
periments show that SOGA performs relatively worse than in the esti-
mation of the posterior mean. This is expected because SOGA is de-
signed to match means and variances, but it does not necessarily ap-
proximate the whole distribution. However, compared to Pyro, it is still
able to obtain the closest estimation for BayesPointMachine, ClickGraph,
TrueSkills, Altermu and NormalMixtures, while it is outperformed by
Pyro in Bernoulli, CoinBias, SurveyUnbias and TimeSeries. Finally, we
note that analyzing Bernoulli with SOGAprune degrades the MAP esti-
mation, unlike in the posterior mean.

2https://pyro.ai/examples/mle_map.html

121

https://pyro.ai/examples/mle_map.html

Pyro SOGA True value
Model l.r. steps value time value time

Bernoulli 0.01 200 0.200 0.20
0.220 11.97 0.2000.005 200 0.200 0.20

0.001 800 0.200 0.83

Bernoulli (P) 0.01 200 0.200 0.20
0.290 1.28 0.2000.005 200 0.200 0.20

0.001 800 0.200 0.83

BayesPointMachine 0.01 900 0.000 7.83
0.005 not converged
0.001 not converged

0.011 2.20 0.032 ± 0.002*

ClickGraph 0.01 700 0.417 9.51
0.005 300 0.490 4.23
0.001 200 0.501 2.98

0.861 208 1.000

CoinBias 0.01 200 0.400 0.63
0.493 0.61 0.4000.005 200 0.400 0.65

0.001 700 0.398 2.32

SurveyUnbias 0.01 700 0.964 3.46
0.755 1.56 1.0000.005 1000 0.943 4.88

0.001 2200 0.847 11.53

TrueSkills 0.01 200 101.6 0.99
0.005 200 100.8 0.97
0.001 200 100.2 1.03

104.7 0.05 104.8 ± 0.681*

Altermu 0.01 not converged
0.005 not converged
0.001 not converged

0.000 0.16 0.114 ± 0.092*

NormalMixtures (P) 0.01 1100 0.236 49.48
0.005 300 0.477 14.98
0.001 200 0.500 9.72

0.276 50.4 0.275 ± 0.005*

TimeSeries 0.01 3100 -1.564 55.37
-1.494 3.79 -1.604 ± 0.021*0.005 1100 -1.497 26.64

0.001 2800 -1.347 2800

Table 15: Comparison between Pyro and SOGA for MAP estimation. Mod-
els with ‘(P)’ were pruned when SOGA was applied. True values are de-
rived optimizing the exact posterior, or from samples (denoted with ‘*’).

122

Runtimes (s)

Model SOGA PSI BLOG VE

IndianGPA 0.099 0.180 0.516 0.192
Scale 0.013 0.120 0.810 0.150

Tracking 1 0.042 to 0.803 0.143
Tracking 5 0.046 to 1.044 0.394

Tracking 10 0.046 to 1.330 0.670
Tracking 50 0.110 to 2.886 4.095

Tracking 100 0.192 to 5.054 8.885
Tracking 150 0.271 to 6.602 13.723

Table 16: Runtimes (in seconds) for the models proposed Wu et al. (2018)
comprising mixtures of discrete and continuous distributions. We do not
report values, since all methods identify the exact posterior.

5.2.3 Mixtures of Continuous and Discrete Distributions

Mixtures of continuous distributions and discrete probability masses ap-
pear in different domains such as in Kharchenko, Silberstein, and Scad-
den (2014), Pierson and Yau (2015), and Gao et al. (2017). Languages such
as STAN and AQUA do not support them. Ad hoc methods have been
proposed in Tolpin et al. (2016) and Nitti, De Laet, and De Raedt (2016).
More recently Wu et al. (2018) extended the sampling techniques used
in BLOG for more accurate inference. We test SOGA on the three bench-
marks proposed by Wu et al. (2018) and compare its runtimes against
PSI, BLOG, and variable elimination (VE) as implemented in Pyro (Ober-
meyer et al., 2019). IndianGPA and Scale are reported exactly as in the
original paper, while the Tracking n example from Section 4.1.1 is adapted
since it was originally cast as a control problem. All examples have a
Dirac delta posterior, which is computed exactly by all. However, SOGA
is the fastest and the one which scales better as the number of steps n
increases.

5.2.4 Bayesian Inference for Collaborative Filtering

Collaborative filtering models are well-known in machine learning for
applications to recommendation systems (Koren, Rendle, and Bell, 2021).
We target the problem of Bayesian inference on the latent factor model

123

SOGA STAN AQUA VI

k Ground truth time value time value time value time value

1 2 0.16 1.86 0.94 1.90 1.64 1.83 18.90 1.79
2 25 0.18 24.28 4.87 24.00 mem 25.10 23.93
3 -5 0.19 -5.79 7.63 -5.80 mem 26.40 -5.82
5 -30 0.22 -31.98 7.22 -32.00 mem 23.19 -31.47

10 151 0.30 149.75 5.42 150.00 mem 20.04 146.39
20 70 0.60 73.76 14.10 74.00 mem 23.18 69.92

Table 17: Runtimes (in seconds) for the collaborative filtering model
N (cfk, 1).

proposed in Hofmann and Puzicha (1999), which arises after a singular
value decomposition and serves as the basis for solving an optimiza-
tion problem (Zhao, Zhang, and J. Wang, 2013). The model assumes
noisy observations sampled from N (cfk, 1) where cfk has the form cfk =
a1b1+ . . .+akbk + c, where ai, bi, and c are unknown latent variables. As
noticed in Nishihara, Minka, and Tarlow (2013), performing Bayesian in-
ference on these models is particularly difficult due to non-identifiability
(Tsiatis, 1975) and symmetry (Neal, 1999) of the parameters. For exam-
ple, switching the distributions of ai and bi will result in the same distri-
bution for cfk, which is the only one observed. In some cases, one may
still want to model each parameter separately to allow for more flexibil-
ity. In this particular case, though not solving the problem of symmetry
and non-identifiability, SOGA can estimate the distribution of cfk faster
than its competitors. Results are shown in Table 17 for various values
of k. PSI results are not reported because the tool was able to produce a
symbolic formula only up to k = 3; however, even in these cases, numer-
ical integration of the non-simplified integrals required more than 600 s.
Although STAN’s estimates are accurate and close to SOGA’s ones, its
runtimes are longer due to the increased cost of sampling, which is ex-
ponential in the number of variables. As above, we attribute AQUA’s
out-of-memory error to its tensor based representation. For VI, we re-
port results for the learning rate 0.005, which we found to be the one
performing best in average, among the tested ones. A full set of exper-
iment results are shown in Table 18. VI exhibits an accuracy compara-
ble to SOGA’s, but significantly longer runtimes. We observe, however,
that thanks to vectorization, VI’s runtimes do not significantly increase
with k. Overall, the excellent runtime performance of SOGA is due the

124

SOGA Pyro

k Ground truth time value l.r. time value

1 2 0.16 1.86
0.01 12.86 1.79
0.005 18.90 1.84
0.001 20.21 0.51

2 25 0.18 24.28
0.01 14.07 23.49
0.005 25.10 23.93
0.001 30.49 6.75

3 -5 0.19 -5.79
0.01 15.72 -5.51
0.005 26.40 -5.82
0.001 30.61 -1.86

5 -30 0.22 -31.98
0.01 18.49 -32.21
0.005 23.19 -31.47
0.001 31.49 -6.21

10 151 0.30 149.75
0.01 11.16 148.92
0.005 20.04 146.39
0.001 30.71 9.83

20 70 0.60 73.76
0.01 10.94 68.51
0.005 23.18 69.92
0.001 30.73 6.87

Table 18: Comparison between Pyro and SOGA for Variational Inference on
Collaborative Filtering models.

particular structure of the models, which exhibit Gaussian posteriors on
variables combined in a scalar product without introducing truncations
that could slow down the computations.

125

Chapter 6

Conclusion

The present thesis presents two methods for the efficient and accurate
analysis of two classes of transparent generative models, namely Markov
population processes and probabilistic programs.

The first two chapters presents a method, called Dynamic Boundary
Projection (DBP), that can be used to refine mean-field approximations of
Markov population processes, i.e., Markov Chains representing the evo-
lution of systems of N interacting agents. It is based on a system of differ-
ential equations for the transient probability distribution of a state space
truncation, which is modulated by a mean-field approximation that es-
sentially shifts such truncation across the whole state space. DBP is pa-
rameterized by a vector n that defines the size of the state space trunca-
tion. Thus, it leads to a family of approximations indexed by n for a given
Markov population process. Importantly, for each distinct n, one needs
to solve a different system of DBP equations in general. In this respect, it
is different from related work on this subject. In particular, the method
by Gast et al. computes the constants associated with the terms 1/N and
1/N2 of expansions of the mean-field equation for density-dependent
Markov processes (Gast, Bortolussi, and Tribastone, 2019), where N is
the scaling parameter. These constants correct the mean-field approxi-
mations for all N . Another difference with respect to the related work is
that DBP neither makes scaling assumptions nor requires differentiabil-
ity of the drift of the mean-field approximation.

Theoretically, asymptotic convergence to the original population pro-
cess is proved when n tends to infinity (uniformly over a finite time hori-
zon). As with many convergence results, however, this does not give

126

directly useful insights as to the behavior of the approximation for fi-
nite n. Hence natural questions that arise may be based on establish-
ing analogies with the literature on mean-field refinements, in partic-
ular, to study the following: i) whether DBP can be used to compute
mean estimates of an arbitrary functional of a Markov population pro-
cess; ii) whether suitable conditions hold to extend convergence to the
steady state; iii) whether it is possible to establish rates of convergence
or error bounds. Tackling these bounds is particularly difficult due to the
non-linear nature of the systems yielded by DBP, for which a straightfor-
ward adaption of classic results does not work.

The present formulation of DBP is proved to be asymptotically cor-
rect only for systems exhibiting a bounded and Lipschitz drift. Relax-
ing these hypotheses might be of great interests to broaden the scope
of applicability of DBP, especially since unbounded drift (in the form of
mass-action rate functions) are very common in biological systems and
can be the cause of unstable behaviours, oscillations and high-variance
distributions Van Kampen, 1992.

The advantage of DBP is that the freedom to choose n can be ex-
ploited to improve the accuracy of the approximations. This has been
used in the analysis of the malware propagation model (Gast, Bortolussi,
and Tribastone, 2019; Benaim and Le Boudec, 2008a; Khouzani, Sarkar,
and Altman, 2012) where DBP has been shown to avoid instabilities ex-
hibited with 1/N and 1/N2 size expansions. The main disadvantage is
that, since DBP relies on truncations of the state space, it is still subject
to the well-known curse of dimensionality that affects Markov population
processes. For systems with many dimensions, the values of the param-
eter n must be kept small to avoid large computational times. However,
the numerical results have shown that, even for modest truncations, the
classical mean-field estimations are improved. Suitable heuristics for the
choice of n can help mitigate this problem, as we discussed in the exam-
ple of the queuing system with egalitarian processor sharing. However,
these heuristics are model-dependent, and in general, it is unclear how
to fix n to achieve better approximations. In this regard, deriving exact
error bounds depending on n could be particularly interesting.

This motivates the extension of the method proposed in Chapter 3.
To lessen the curse of dimensionality we propose to study the dynam-
ics of a rescaled Markov population process. This method sees the state
space of the original process as a multi-dimensional grid of size h = 1
and covers it with a coarser grid with length h > 1, rescaling transition
rates by a factor 1

h . The resulting process has an exponentially smaller

127

state space with respect to the number of dimensions. Moreover, it al-
lows for different components of the original process to be rescaled with
different parameters as long as they preserve some conservation proper-
ties. Examples show that the ME of the rescaled process can be solved in
less time than the original one, where the difference in seconds can be up
to orders of magnitude. The scaling can be coupled with DBP, resulting
in a double advantage: the number of equations needed to apply DBP
is reduced, and, using the same h, better accuracy can be achieved than
applying h-scaling directly.

A similar idea to the one proposed in this chapter was proposed in
Ciocchetta et al., 2009 in the context of biochemical networks modeling
using the process algebra Bio-PEPA. There the terminology CTMC with
levels was used to denote different discretization of the same Bio-PEPA
model, obtained by applying the equivalent of different scaling as the
ones proposed here. While the re-scaling of jump magnitudes and rate
function is the same, our work substantially differs from the one in Cioc-
chetta et al., 2009 for several reasons. First, we use the proposed scaling
for approximating a given system, while in Ciocchetta et al., 2009 the dif-
ferent discretizations are treated as systems on their own. Second, our
scaling can be applied to a generic Markov population process, abstract-
ing away from a process algebraic description. Third, we propose the
introduction of different re-scaling factors for different classes of agents,
stating formally under which conditions this is possible. Theoretically,
in Ciocchetta et al., 2009, it is proved that as the scaling parameter h tends
to 0, the associated family of systems satisfies the density-dependent as-
sumption, so the associated process’s dynamics tend to the mean-field
limit. Here we study the case h > 1 and its convergence properties to a
mean-field or to an LNA, proving that these limits are preserved in the
re-scaled sequence.

Again, a natural question is whether it is possible to establish an error
bound depending on h or at least some convergence rate toward such
limits. While this is unclear, we leave these questions open for future
work.

Chapters 4 and 5 deal with a different kind of generative models,
namely probabilistic programs. We see a PP as a distribution transformer
and propose an approximate analytical method to infer the final distri-
bution carried by a bounded PP, once the initial distribution is fixed.

Our method is based on the definition of Gaussian Semantics, a fam-
ily of approximations parametrized by the moment order to match against
a Gaussian mixture at each location of a probabilistic program. The uni-

128

versal approximation theorem states that such a family converges to the
true semantics. Although, in principle, any program location could be
treated with different moment-order matching, in practice, this is a diffi-
cult problem that requires solving a system of nonlinear equations.While
the system is guaranteed to have a solution, finding it using SMT solvers
over reals or numerical methods yields poor results, due to long com-
putational times and numerical instability. Therefore we leave open the
general problem of implementing Gaussian Semantics for any order of
moments. However, we provide an analytical method that matches second-
order moments of the exact probabilistic semantics (SOGA). The numer-
ical results for the case studies demonstrate high quality of the approxi-
mation and that SOGA complements state-of-the-art methods for proba-
bilistic inference and in particular for inference on models with mixtures
of discrete and continuous distributions and for Bayesian inference on
collaborative filtering models. Due to the efficiency shown by SOGA, we
believe that in these cases our method can effectively be used as an alter-
native to sampling. Exploring other tailored applications of our method
is left for future work.

While SOGA performed satisfactorily on all tested benchmarks, it
could not be applied to some of the models from the same reposito-
ries, due to the limitations of our syntax. Extending the latter to in-
clude general distributions depending on non-constant parameters, un-
bounded loops and non-polynomial functions would widen its scope of
applicability. A possible way to overcome the former restriction could
be learning offline the approximating distributions as a function of the
variable parameters, but how to do this efficiently is currently not clear,
even though of great interest. For what concerns unbounded loops, we
observed that for almost surely terminating programs, the loops can be
unrolled for a finite number of iterations so that the error committed
in the approximation is arbitrarily small. This suggests that increasing
the number of unrolled iterations together with the number of moments
matched should preserve our convergence theorem, even in the case of
almost surely terminating unbounded programs. Similarly, one could
exploit convergence results for polynomial approximations to extend the
convergence result to sequences of polynomial programs that approx-
imate programs featuring non-polynomial functions, similarly to what
has been done in Kofnov et al., 2022; Kofnov et al., 2023. We leave the
possibility to explore these extensions of our convergence results in fu-
ture work.

To improve the accuracy of the approximation, one might devise al-

129

gorithms for higher-order moments. While an extension to exact higher-
order moment matching seems hard, a relaxed moment problem could
be defined as an optimization problem, as proposed in Hansen, 2010.

Finally, another interesting direction is given by differentiability of
Gaussian Semantics, which was not formally proved in the current paper.
Differentiable programming has been gaining popularity in the past few
years thanks to its wide applicability in machine learning application
Baydin et al., 2018. Providing an approximating differentiable semantics
for probabilistic programs would be of great interest to perform gradient
based optimization on programs, as done for example in Cui and H. Zhu,
2021.

130

Bibliography

Albarghouthi, Aws et al. (2017). “Fairsquare: probabilistic verification of
program fairness”. In: Proceedings of the ACM on Programming Lan-
guages 1.OOPSLA, pp. 1–30.

Anderson, David F and Masanori Koyama (2012). “Weak error analysis
of numerical methods for stochastic models of population processes”.
In: Multiscale Modeling & Simulation 10.4, pp. 1493–1524.

Barthe, Gilles et al. (2016). “Synthesizing probabilistic invariants via Doob’s
decomposition”. In: International Conference on Computer Aided Verifi-
cation. Springer, pp. 43–61.

Bartocci, Ezio, Laura Kovács, and Miroslav Stankovič (2020). “Mora-automatic
generation of moment-based invariants”. In: International Conference
on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, pp. 492–498.

Baydin, Atilim Gunes et al. (2018). “Automatic differentiation in machine
learning: a survey”. In: Journal of Marchine Learning Research 18, pp. 1–
43.

Benaim, Michel and Jean-Yves Le Boudec (2008a). “A class of mean field
interaction models for computer and communication systems”. In:
Performance evaluation 65.11-12, pp. 823–838.

— (2008b). “A class of mean field interaction models for computer and
communication systems”. In: Performance evaluation 65.11-12, pp. 823–
838.

Billingsley, Patrick (2008). Probability and measure. John Wiley & Sons.
— (2013). Convergence of probability measures. John Wiley & Sons.
Bingham, Eli et al. (2019). “Pyro: Deep universal probabilistic program-

ming”. In: The Journal of Machine Learning Research 20.1, pp. 973–978.
Bishop, Christopher M and Nasser M Nasrabadi (2006). Pattern recogni-

tion and machine learning. Vol. 4. 4. Springer.

131

Bolch, Gunter et al. (2005). Queueing networks and Markov chains: modeling
and performance evaluation with computer science applications. Wiley.

Bortolussi, Luca and Richard A Hayden (2013). “Bounds on the devi-
ation of discrete-time Markov chains from their mean-field model”.
In: Performance Evaluation 70.10, pp. 736–749.

Bortolussi, Luca, Jane Hillston, et al. (2013a). “Continuous approxima-
tion of collective system behaviour: A tutorial”. In: Performance Eval-
uation 70.5, pp. 317–349.

— (2013b). “Continuous approximation of collective system behaviour:
A tutorial”. In: Performance Evaluation 70.5, pp. 317–349.

Boyen, Xavier and Daphne Koller (1998). “Tractable inference for com-
plex stochastic processes”. In: Proceedings of the Fourteenth conference
on Uncertainty in artificial intelligence, pp. 33–42.

Bramson, Maury, Yi Lu, and Balaji Prabhakar (2010). “Randomized Load
Balancing with General Service Time Distributions”. In: Proceedings
of the ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, pp. 275–286.

Cardelli, Luca et al. (2017). “ERODE: A tool for the evaluation and re-
duction of ordinary differential equations”. In: International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, pp. 310–328.

Carpenter, Bob et al. (2017). “Stan: A probabilistic programming lan-
guage”. In: Journal of statistical software 76.1.

Cecchi, Fabio, Sem C Borst, and JSH van Leeuwaardena (2015). “Mean-
field analysis of ultra-dense csma networks”. In: ACM SIGMETRICS
Performance Evaluation Review 43.2, pp. 13–15.

Chaganty, Arun, Aditya Nori, and Sriram Rajamani (2013). “Efficiently
sampling probabilistic programs via program analysis”. In: Artificial
Intelligence and Statistics. PMLR, pp. 153–160.

Chaintreau, Augustin, Jean-Yves Le Boudec, and Nikodin Ristanovic (2009).
“The age of gossip: spatial mean field regime”. In: 37.1, pp. 109–120.

Chakarov, Aleksandar and Sriram Sankaranarayanan (2014). “Expecta-
tion invariants for probabilistic program loops as fixed points”. In:
International Static Analysis Symposium. Springer, pp. 85–100.

Chaudhuri, Swarat and Armando Solar-Lezama (2010). “Smooth inter-
pretation”. In: ACM Sigplan Notices 45.6, pp. 279–291.

— (2011). “Smoothing a program soundly and robustly”. In: International
Conference on Computer Aided Verification. Springer, pp. 277–292.

Chen, Mingshuai et al. (2022). “Does a program yield the right distri-
bution? Verifying probabilistic programs via generating functions”.

132

In: International Conference on Computer Aided Verification. Springer,
pp. 79–101.

Ciocchetta, Federica et al. (2009). “Some investigations concerning the
CTMC and the ODE model derived from Bio-PEPA”. In: Electronic
Notes in Theoretical Computer Science 229.1, pp. 145–163.

Cousot, Patrick and Radhia Cousot (1977). “Abstract interpretation: a
unified lattice model for static analysis of programs by construction
or approximation of fixpoints”. In: Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pp. 238–
252.

Cover, Thomas M (1999). Elements of information theory. John Wiley &
Sons.

Cui, Guofeng and He Zhu (2021). “Differentiable synthesis of program
architectures”. In: Advances in Neural Information Processing Systems
34, pp. 11123–11135.

Darling, R.W.R. and J.R. Norris (2008). “Differential equation approxi-
mations for Markov chains”. In: Probab. Surveys 5, pp. 37–79. DOI:
10.1214/07-PS121.

Darling, RWR and James R Norris (2008). “Differential equation approx-
imations for Markov chains”. In: Probability surveys 5, pp. 37–79.

Dijk, Dick van, Timo Teräsvirta, and Philip Hans Franses (2002). “Smooth
transition autoregressive models—a survey of recent developments”.
In: Econometric reviews 21.1, pp. 1–47.

Dinh, Khanh N and Roger B Sidje (2016). “Understanding the finite state
projection and related methods for solving the chemical master equa-
tion”. In: Physical biology 13.3, p. 035003.

Ethier, Stewart N and Thomas G Kurtz (2009a). Markov processes: charac-
terization and convergence. Vol. 282. John Wiley & Sons.

— (2009b). Markov processes: characterization and convergence. Vol. 282. John
Wiley & Sons.

Filieri, Antonio, Corina S Păsăreanu, and Willem Visser (2013). “Reliabil-
ity analysis in symbolic pathfinder”. In: 2013 35th International Con-
ference on Software Engineering (ICSE). IEEE, pp. 622–631.

Florescu, Ionut (2014). Probability and stochastic processes. John Wiley &
Sons.

Gao, Weihao et al. (2017). “Estimating mutual information for discrete-
continuous mixtures”. In: Advances in neural information processing sys-
tems 30.

133

https://doi.org/10.1214/07-PS121

Gast, Nicolas (2017). “Expected values estimated via mean-field approx-
imation are 1/N -accurate”. In: Proceedings of the ACM on Measurement
and Analysis of Computing Systems 1.1, pp. 1–26.

Gast, Nicolas, Luca Bortolussi, and Mirco Tribastone (2019). “Size expan-
sions of mean field approximation: Transient and steady-state analy-
sis”. In: Performance Evaluation 129, pp. 60–80.

Gast, Nicolas and Gaujal Bruno (2010). “A mean field model of work
stealing in large-scale systems”. In: ACM SIGMETRICS Performance
Evaluation Review 38.1, pp. 13–24.

Gast, Nicolas and Benny Van Houdt (2015). “Transient and steady-state
regime of a family of list-based cache replacement algorithms”. In:
Proceedings of the 2015 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pp. 123–136.

— (2017). “A refined mean field approximation”. In: Proceedings of the
ACM on Measurement and Analysis of Computing Systems 1.2, pp. 1–28.

Gatys, Leon, Alexander Ecker, and Matthias Bethge (2016). “A Neural
Algorithm of Artistic Style”. In: Journal of Vision 16.12, pp. 326–326.

Gehr, Timon, Sasa Misailovic, and Martin Vechev (2016). “PSI: Exact sym-
bolic inference for probabilistic programs”. In: International Conference
on Computer Aided Verification. Springer, pp. 62–83.

Gelman, Andrew et al. (2013). Bayesian data analysis. CRC press.
Gillespie, Daniel T (2007). “Stochastic simulation of chemical kinetics”.

In: Annu. Rev. Phys. Chem. 58, pp. 35–55.
Goodfellow, Ian et al. (2014). “Generative adversarial nets”. In: Advances

in neural information processing systems 27.
Goodman, Noah D et al. (2008). “Church: a language for generative mod-

els”. In: Proceedings of the Twenty-Fourth Conference on Uncertainty in
Artificial Intelligence, pp. 220–229.

Gordon, Andrew D et al. (2014). “Probabilistic programming”. In: Future
of Software Engineering Proceedings, pp. 167–181.

Grima, Ramon (2010). “An effective rate equation approach to reaction
kinetics in small volumes: Theory and application to biochemical re-
actions in nonequilibrium steady-state conditions”. In: The Journal of
chemical physics 133.3.

Gu, Ming and Stanley C Eisenstat (1995). “A divide-and-conquer algo-
rithm for the symmetric tridiagonal eigenproblem”. In: SIAM Journal
on Matrix Analysis and Applications 16.1, pp. 172–191.

Gupta, Ankit, Jan Mikelson, and Mustafa Khammash (2017). “A finite
state projection algorithm for the stationary solution of the chemical
master equation”. In: The Journal of chemical physics 147.15, p. 154101.

134

Hansen, Lars Peter (2010). “Generalized method of moments estimation”.
In: Macroeconometrics and Time series Analysis. Springer, pp. 105–118.

Hart, Andrew G and Richard L Tweedie (2012). “Convergence of invari-
ant measures of truncation approximations to Markov processes”. In.

Hastings, W Keith (1970). “Monte Carlo sampling methods using Markov
chains and their applications”. In.

Hoffman, Matthew D et al. (2013). “Stochastic variational inference”. In:
Journal of Machine Learning Research.

Hofmann, Thomas and Jan Puzicha (1999). “Latent class models for col-
laborative filtering”. In: IJCAI. Vol. 99. 1999.

Holtzen, Steven, Guy Van den Broeck, and Todd Millstein (2020). “Scal-
ing exact inference for discrete probabilistic programs”. In: Proceed-
ings of the ACM on Programming Languages 4.OOPSLA, pp. 1–31.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White (1989). “Multi-
layer feedforward networks are universal approximators”. In: Neural
networks 2.5, pp. 359–366.

Huang, Zixin, Saikat Dutta, and Sasa Misailovic (2021). “Aqua: Auto-
mated quantized inference for probabilistic programs”. In: Interna-
tional Symposium on Automated Technology for Verification and Analysis.
Springer, pp. 229–246.

Jordan, Michael I et al. (1999). “An introduction to variational methods
for graphical models”. In: Machine learning 37.2, pp. 183–233.

Kan, Raymond and Cesare Robotti (2017). “On moments of folded and
truncated multivariate normal distributions”. In: Journal of Computa-
tional and Graphical Statistics 26.4, pp. 930–934.

Katoen, Joost-Pieter et al. (2010). “Linear-invariant generation for proba-
bilistic programs”. In: International Static Analysis Symposium. Springer,
pp. 390–406.

Kharchenko, Peter V, Lev Silberstein, and David T Scadden (2014). “Bayesian
approach to single-cell differential expression analysis”. In: Nature
methods 11.7, pp. 740–742.

Khouzani, MHR, Saswati Sarkar, and Eitan Altman (2012). “Maximum
damage malware attack in mobile wireless networks”. In: IEEE/ACM
Transactions on Networking 20.5, pp. 1347–1360.

Kingma, Durk P et al. (2014). “Semi-supervised learning with deep gen-
erative models”. In: Advances in neural information processing systems
27.

Kofnov, Andrey et al. (2022). “Moment-based invariants for probabilistic
loops with non-polynomial assignments”. In: International Conference
on Quantitative Evaluation of Systems. Springer, pp. 3–25.

135

Kofnov, Andrey et al. (2023). “Exact and Approximate Moment Deriva-
tion for Probabilistic Loops With Non-Polynomial Assignments”. In:
arXiv preprint arXiv:2306.07072.

Koren, Yehuda, Steffen Rendle, and Robert Bell (2021). “Advances in col-
laborative filtering”. In: Recommender systems handbook, pp. 91–142.

Kozen, Dexter (1979). “Semantics of probabilistic programs”. In: 20th An-
nual Symposium on Foundations of Computer Science (FOCS 1979). IEEE,
pp. 101–114.

— (1983). “A probabilistic pdl”. In: Proceedings of the fifteenth annual ACM
symposium on Theory of computing, pp. 291–297.

Kucukelbir, Alp et al. (2015). “Automatic variational inference in Stan”.
In: Advances in neural information processing systems 28.

Kullback, Solomon and Richard A Leibler (1951). “On information and
sufficiency”. In: The annals of mathematical statistics 22.1, pp. 79–86.

Kuntz, Juan et al. (2019). “Stationary distributions of continuous-time
Markov chains: a review of theory and truncation-based approxima-
tions”. In: arXiv preprint arXiv:1909.05794.

Kurtz, Thomas G (1970). “Solutions of ordinary differential equations as
limits of pure jump Markov processes”. In: Journal of applied Probability
7.1, pp. 49–58.

— (1978). “Strong approximation theorems for density dependent Markov
chains”. In: Stochastic Processes and their Applications 6.3, pp. 223–240.

Lasserre, Jean Bernard (2009). Moments, positive polynomials and their ap-
plications. Vol. 1. World Scientific.

Laurel, Jacob and Sasa Misailovic (2020). “Continualization of probabilis-
tic programs with correction”. In: European Symposium on Program-
ming. Springer, Cham, pp. 366–393.

Liu, Xin, Lei Ying, et al. (2020). “Beyond Scaling: Calculable Error Bounds
of the Power-of-Two-Choices Mean-Field Model in Heavy-Traffic”.
In: arXiv preprint arXiv:2012.06613.

Liu, Yuanyuan and Wendi Li (2018). “Error bounds for augmented trun-
cation approximations of Markov chains via the perturbation method”.
In: Advances in Applied Probability 50.2, pp. 645–669.

Liu, Yuanyuan, Wendi Li, and Hiroyuki Masuyama (2018). “Error bounds
for augmented truncation approximations of continuous-time Markov
chains”. In: Operations Research Letters 46.4, pp. 409–413.

Lo, J (1972). “Finite-dimensional sensor orbits and optimal nonlinear fil-
tering”. In: IEEE Transactions on information theory 18.5, pp. 583–588.

136

Mansinghka, Vikash, Daniel Selsam, and Yura Perov (2014). “Venture: a
higher-order probabilistic programming platform with programmable
inference”. In: arXiv preprint arXiv:1404.0099.

Massoulié, Laurent and Milan Vojnovic (2005). “Coupon replication sys-
tems”. In: Proceedings of the 2005 ACM SIGMETRICS International Con-
ference on Measurement and modeling of computer systems, pp. 2–13.

Masuyama, Hiroyuki (2017). “Error bounds for last-column-block-augmented
truncations of block-structured Markov chains”. In: Journal of the Op-
erations Research Society of Japan 60.3, pp. 271–320.

Milch, Brian, Bhaskara Marthi, and Stuart Russell (2004). “BLOG: Rela-
tional modeling with unknown objects”. In: ICML 2004 workshop on
statistical relational learning and its connections to other fields, pp. 67–73.

Minnebo, Wouter and Benny Van Houdt (2013). “A fair comparison of
pull and push strategies in large distributed networks”. In: IEEE/ACM
Transactions on Networking 22.3, pp. 996–1006.

Mitzenmacher, Michael (2001). “The power of two choices in random-
ized load balancing”. In: IEEE Transactions on Parallel and Distributed
Systems 12.10, pp. 1094–1104.

Moosbrugger, Marcel et al. (2022). “This is the moment for probabilistic
loops”. In: Proceedings of the ACM on Programming Languages 6.OOP-
SLA2, pp. 1497–1525.

Munsky, Brian and Mustafa Khammash (2006a). “The finite state projec-
tion algorithm for the solution of the chemical master equation”. In:
The Journal of Chemical Physics 124.4, p. 044104.

— (2006b). “The finite state projection algorithm for the solution of the
chemical master equation”. In: The Journal of chemical physics 124.4,
p. 044104.

— (2007). “A multiple time interval finite state projection algorithm for
the solution to the chemical master equation”. In: Journal of Computa-
tional Physics 226.1, pp. 818–835.

Narayanan, Praveen et al. (2016). “Probabilistic inference by program
transformation in Hakaru (system description)”. In: International Sym-
posium on Functional and Logic Programming. Springer, pp. 62–79.

Neal, Radford M (1999). “Erroneous results in “Marginal likelihood from
the Gibbs output””. In: minmeo, University of Toronto.

Ng, Andrew and Michael Jordan (2001). “On discriminative vs. genera-
tive classifiers: A comparison of logistic regression and naive bayes”.
In: Advances in neural information processing systems 14.

137

Nishihara, Robert, Thomas Minka, and Daniel Tarlow (2013). “Detect-
ing parameter symmetries in probabilistic models”. In: arXiv preprint
arXiv:1312.5386.

Nitti, Davide, Tinne De Laet, and Luc De Raedt (2016). “Probabilistic
logic programming for hybrid relational domains”. In: Machine Learn-
ing 103.3, pp. 407–449.

Nori, Aditya et al. (2014). “R2: An efficient MCMC sampler for proba-
bilistic programs”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 28. 1.

Obermeyer, Fritz et al. (2019). “Tensor variable elimination for plated fac-
tor graphs”. In: International Conference on Machine Learning. PMLR,
pp. 4871–4880.

Ohno, Hiroshi (2020). “Auto-encoder-based generative models for data
augmentation on regression problems”. In: Soft Computing 24.11, pp. 7999–
8009.

Olmedo, Federico et al. (2018). “Conditioning in probabilistic program-
ming”. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 40.1, pp. 1–50.

Parekh, Abhay K and Robert G Gallager (1993). “A generalized processor
sharing approach to flow control in integrated services networks: the
single-node case”. In: IEEE/ACM Transactions on Networking 3, pp. 344–
357.

— (1994). “A generalized processor sharing approach to flow control in
integrated services networks: The multiple node case”. In: IEEE/ACM
Transactions on Networking 2.2, pp. 137–150.

Pérez, Dilcia and Yamilet Quintana (2006). “A survey on the Weierstrass
approximation theorem”. In: arXiv preprint math/0611038.

Perko, Lawrence (2013). Differential equations and dynamical systems. Vol. 7.
Springer Science & Business Media.

Pfeffer, Avi (2001). “IBAL: A probabilistic rational programming language”.
In: IJCAI. Citeseer, pp. 733–740.

— (2009). “Figaro: An object-oriented probabilistic programming lan-
guage”. In: Charles River Analytics Technical Report 137, p. 96.

Pierson, Emma and Christopher Yau (2015). “ZIFA: Dimensionality re-
duction for zero-inflated single-cell gene expression analysis”. In: Genome
biology 16.1, pp. 1–10.

Randone, Francesca, Luca Bortolussi, and Mirco Tribastone (2021). “Re-
fining mean-field approximations by dynamic state truncation”. In:
Proceedings of the ACM on Measurement and Analysis of Computing Sys-
tems 5.2, pp. 1–30.

138

Randone, Francesca, Luca Bortolussi, and Mirco Tribastone (2022). “Jump
Longer to Jump Less: Improving Dynamic Boundary Projection with
h-Scaling”. In: Quantitative Evaluation of Systems: 19th International Con-
ference, QEST 2022, Warsaw, Poland, September 12–16, 2022, Proceedings.
Springer, pp. 150–170.

Saad, Feras A, Martin C Rinard, and Vikash K Mansinghka (2021). “SPPL:
probabilistic programming with fast exact symbolic inference”. In:
Proceedings of the 42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, pp. 804–819.

Schmüdgen, Konrad (2017). The moment problem. Vol. 9. Springer.
Seneta, E (1967). “Finite approximations to infinite non-negative matri-

ces”. In: Proc. Camb. Phil. Soc. Vol. 63. 4, p. 983.
— (1968). “Finite approximations to infinite non-negative matrices, II:

refinements and applications”. In: Mathematical Proceedings of the Cam-
bridge Philosophical Society. Vol. 64. 2. Cambridge University Press,
pp. 465–470.

Singh, Abhyudai and Joao Pedro Hespanha (2006). “Lognormal moment
closures for biochemical reactions”. In: IEEE 45th Conference on Deci-
sion and Control (CDC), pp. 2063–2068.

Skiena, SS (2008). The Algorithm Design Manual. Springer Publishing Com-
pany.

Song, Yang et al. (2021). “Maximum likelihood training of score-based
diffusion models”. In: Advances in Neural Information Processing Sys-
tems 34, pp. 1415–1428.

Tierney, Luke and Joseph B Kadane (1986). “Accurate approximations for
posterior moments and marginal densities”. In: Journal of the american
statistical association 81.393, pp. 82–86.

Tolpin, David et al. (2016). “Design and implementation of probabilistic
programming language anglican”. In: Proceedings of the 28th Sympo-
sium on the Implementation and Application of Functional programming
Languages, pp. 1–12.

Tsiatis, Anastasios (1975). “A nonidentifiability aspect of the problem of
competing risks.” In: Proceedings of the National Academy of Sciences
72.1, pp. 20–22.

Tsitsiklis, John N and Kuang Xu (2011). “On the power of (even a lit-
tle) centralization in distributed processing”. In: ACM SIGMETRICS
Performance Evaluation Review 39.1, pp. 121–132.

Tweedie, Richard L (1971). “Truncation procedures for non-negative ma-
trices”. In: Journal of Applied Probability 8.2, pp. 311–320.

139

Tweedie, Richard L (1973). “The calculation of limit probabilities for de-
numerable Markov processes from infinitesimal properties”. In: Jour-
nal of Applied Probability, pp. 84–99.

Van Houdt, Benny (2013). “A mean field model for a class of garbage
collection algorithms in flash-based solid state drives”. In: ACM SIG-
METRICS Performance Evaluation Review 41.1, pp. 191–202.

Van Kampen, N. G. (2007). Stochastic Processes in Physics and Chemistry.
3rd. Elsevier.

Van Kampen, Nicolaas Godfried (1992). Stochastic processes in physics and
chemistry. Vol. 1. Elsevier.

Vasantam, Thirupathaiah and Ravi R Mazumdar (2019). “Fluctuations
Around the Mean-Field for a Large Scale Erlang Loss System Un-
der the SQ (d) Load Balancing”. In: 2019 31st International Teletraffic
Congress (ITC 31). IEEE, pp. 1–9.

Virtanen, Pauli et al. (2020). “SciPy 1.0: Fundamental Algorithms for Sci-
entific Computing in Python”. In: Nature Methods 17, pp. 261–272.
DOI: 10.1038/s41592-019-0686-2.

Wang, Sida, Arun Tejasvi Chaganty, and Percy S Liang (2015). “Estimat-
ing mixture models via mixtures of polynomials”. In: Advances in
Neural Information Processing Systems 28.

Wick, Gian-Carlo (1950). “The evaluation of the collision matrix”. In:
Physical review 80.2, p. 268.

Wolfram Research, Inc. (2022). Mathematica. Version 13.2. URL: https:
//www.wolfram.com/mathematica.

Wu, Yi et al. (2018). “Discrete-continuous mixtures in probabilistic pro-
gramming: Generalized semantics and inference algorithms”. In: In-
ternational Conference on Machine Learning. PMLR, pp. 5343–5352.

Xie, Qiaomin et al. (2015). “Power of d choices for large-scale bin packing:
A loss model”. In: ACM SIGMETRICS Performance Evaluation Review
43.1, pp. 321–334.

Ying, Lei (2016). “On the approximation error of mean-field models”. In:
ACM SIGMETRICS Performance Evaluation Review 44.1, pp. 285–297.

— (2017). “Stein’s method for mean field approximations in light and
heavy traffic regimes”. In: Proceedings of the ACM on Measurement and
Analysis of Computing Systems 1.1, pp. 1–27.

Zhao, Xiaoxue, Weinan Zhang, and Jun Wang (2013). “Interactive collab-
orative filtering”. In: Proceedings of the 22nd ACM international confer-
ence on Information & Knowledge Management, pp. 1411–1420.

140

https://doi.org/10.1038/s41592-019-0686-2
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica

Zhou, Ding-Xuan (2020). “Universality of deep convolutional neural net-
works”. In: Applied and computational harmonic analysis 48.2, pp. 787–
794.

Zhou, Yuan et al. (2020). “Divide, conquer, and combine: a new infer-
ence strategy for probabilistic programs with stochastic support”. In:
International Conference on Machine Learning. PMLR, pp. 11534–11545.

Zhu, Lulai, Giuliano Casale, and Iker Perez (2020). “Fluid approximation
of closed queueing networks with discriminatory processor sharing”.
In: Performance Evaluation 139, p. 102094.

Unless otherwise expressly stated, all original material of whatever
nature created by Francesca Randone and included in this thesis,
is licensed under a Creative Commons Attribution Noncommercial
Share Alike 3.0 Italy License.

Check on Creative Commons site:

https://creativecommons.org/licenses/by-nc-sa/3.0/it/legalcode/

https://creativecommons.org/licenses/by-nc-sa/3.0/it/deed.en

Ask the author about other uses.

https://creativecommons.org/licenses/by-nc-sa/3.0/it/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/legalcode/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/deed.en
mailto:francesca.randone@imtlucca.it

	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract
	Background
	Approximation of Population Processes
	Markov Population Processes
	Mean-field Approximation
	Linear Noise Approximation

	Examples

	Dynamic Boundary Projection
	State-of-the-Art
	Proposed Approach

	Derivation of DBP
	Assumptions
	Joint Process
	Augmented Truncation Approximations
	Dynamic Boundary Projection

	Convergence
	Decomposition as a Perturbed Dynamical System
	Convergence of the Linear Non-Perturbed System
	Convergence Result

	Examples
	Coxian Queuing Systems
	Malware Propagation Model
	Egalitarian Processor Sharing

	h-scaling
	Scaled Processes
	h-scaling
	Static Scaling
	Scaled Dynamic Boundary Projection

	Limit Behaviour
	Preservation of the Mean-Field Limit
	Preservation of the LNA

	Multi-scale Approximation
	Examples
	Egalitarian Processor Sharing
	Malware Propagation

	Inference of Probabilistic Programs With Moment-Matching Gaussian Mixtures
	State-of-the-Art
	Motivating Example
	Proposed Approach
	Other Related Work

	Background
	Syntax and Exact Probabilistic Semantics
	Syntax
	Supported Programs
	Exact Probabilistic Semantics

	Gaussian Semantics
	Universal Approximation Theorem
	Satisfaction of the Hypotheses
	Preliminary Results
	Proof of Theorem 9

	Second Order Gaussian Approximation
	Second Order Gaussian Approximation
	Overview
	Distributivity of Transfer Functions
	SOGAprune
	Computational Cost

	Numerical Evaluation
	Posterior Mean Estimation
	Maximum a Posteriori Estimation
	Mixtures of Continuous and Discrete Distributions
	Bayesian Inference for Collaborative Filtering

	Conclusion

