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Abstract

System performance is getting attention by industry as it af-

fects user experience, and much research focused on perfor-

mance evaluation approaches. Profiling is the most straight-

forward approach to performance evaluation of software sys-

tems, despite being limited to shallow analyses. Conversely,

software performance models excel in representing complex

interactions between components. Still, practitioners do not

integrate performance models in the software development

cycle, as the learning curve is too steep, and the approaches

do not adapt well to incremental development practices. In

this thesis, we propose three approaches towards automatic

learning of performance models. The first approach employs

a Recurrent Neural Network (RNN) to extract a full Queue-

ing Network (QN) model of the system; the second one cal-

ibrates a Layered Queueing Network (LQN) using an RNN;

the third one presents µP, a framework that allows the user

to develop microservice systems and obtain the correspond-

ing LQN model from source code analysis. We considered

the microservices architecture as it is embraced by influen-

tial players (e.g., Amazon, Netflix). Those approaches have

two advantages: i) minimal user intervention to flatten the

learning curve; ii) continuous synchronization between soft-

ware and performance model, such as each software devel-

opment iteration is reflected on the model. We validated our

approaches on several benchmarks taken from the literature.

The models we generate can be queried to predict the sys-

tem behavior under conditions significantly different from

the learning setting, and the results show sensible advance-

ments in the quality of the predictions.

xvi



Chapter 1

Introduction

1.1 Motivation

Performance engineering has attracted much attention in the industry.

Indeed, performance metrics such as throughput and response time are

essential factors in users’ willingness to interact with a software system,

besides the standard functional requirements (e.g., correctness). Among

the wealth of statements, we point out the reaction of two big players:

Walmart (in 2012) is concerned that “We are not the fastest retail site on

the internet today” [Bix12], and “page speed will be a ranking factor for

mobile searches” in Google since 2018 [Goo18].

Performance engineering literature generally describes complex sys-

tems through models, which use mathematical abstractions to represent

the various aspects of the system component’s interactions [Bol+05; Ste07].

We can divide performance models into two categories: black-box and

white-box performance models.

Black-box models describe the systems as a whole (hence they do

not require in-deep knowledge of the system) but are limited to shallow

analyses. Those models are generally easy to construct as they do not

require in-deep knowledge of the system. The most known approach to

black-box modeling is profiling. Profiling is performed by stimulating the

system under different conditions (e.g., inputs, configuration files) and
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observing their effects on the system’s performance. Tools like Gprof an-

alyze the observed data and highlight the critical points that affect the

overall system performance. Profiling can easily be automated as it does

not require expertise in performance evaluation. However, it cannot gen-

eralize its findings beyond the tested inputs; therefore, it cannot be used

in predictive analysis [ZH12].

Conversely, white-box models excel in representing complex inter-

actions between components but require proficiency in the performance

evaluation domain to obtain accurate results. Among white-box models,

we cite Stochastic Petri Nets, Stochastic Process Algebras, and Queuing

Networks [CMI11]. Unlike profiling, the explicit modeling of each com-

ponent allows for predictive analysis. This allows for more extensive

analysis in contexts not seen at the model construction phase, e.g., we

can see how the system reacts under different load levels or when reallo-

cating resources (what-if analysis). Unfortunately, this comes at the price

of more demanding mathematical skills (to develop, test, and validate

the models) and deep knowledge of the software under study. Those

steep entry barriers prevent a broader usage in software development

practices [WFP07].

Automatic performance model generation lessens the entry barrier by em-

bedding performance annotations in software modeling languages but

does not integrate seamlessly with modern software development prac-

tices. The most known example is MARTE [Obj07] extension to UML,

which generates software artifacts (i.e., a code skeleton) and their associ-

ated performance models [Bal+04; Koz10]. This approach accounts only

for the first artifact generation: subsequent modifications to the software

require the developer to manually reflect the changes on the performance

model [Gar+13]. Hence, this approach is unsuitable for current software

development techniques (e.g., continuous integration, AGILE practices)

that dictate short and frequent code revision cycles.

This thesis proposes three advancements to the state-of-the-art auto-

matic performance model generation of distributed multithreaded sys-

tems starting from minimal but targeted profiling information. We will

employ profiling at different levels of granularity to produce white-box

2



performance models that keep a relation between the parts of the systems

under analysis and the corresponding model parts. Those approaches

combine the advantages of the techniques described in this section:

• the simplicity of profiling, applied to individual components of the

system rather than the system as a whole;

• the prediction power of white-box models, as we describe the com-

ponents individually;

• the usability of automatic modeling, as we do not require user in-

tervention in the model construction procedure;

• the incrementality of new software development practices, as we

can limit the model construction procedure to the modified part

through the model-to-system component relation.

1.2 Main contribution

Here, we will describe the three approaches at the core of this thesis.

These approaches share a common design pattern, shown in Figure 1.

The approaches start from a distributed system and define a targeted pro-

filing scheme that extracts the required data. The data is then processed

by a machine learning algorithm that produces a performance model. We

then evaluate the model quality by considering several scenarios the ma-

chine learning algorithm does not see, e.g., different load or distributed

system deployment (what-if configuration). These modifications are ap-

plied both on the model and the original system, and we compare the

predicted performance metrics (e.g., throughput, response time, and CPU

utilization) with the ones observed under the new configuration.

We now move to a more detailed description of the methodologies.

In the first approach, Learning Queuing Networks by Recurrent Neural Net-

works [GIT20], a Recurrent Neural Network (RNN) analyzes the number

of pending requests (queue length) at each system component to produce

a Queueing Network (QN). QN models attracted attention in the perfor-

mance engineering literature as they are versatile in representing various

3



Throughput

Response

time

CPU 

utilization

What-if new 

configuration

Targeted

Profiling

Machine 

learning

Performance

model

Performance

metrics

Distributed 

Application

Figure 1: Design pattern of the approaches presented in this thesis.

systems, e.g., component-based systems [Koz10], web services [DI04],

and adaptive systems [Arc+15; ITT17]. We refer the reader to Section 2.1

for a more complete description of the QN formalism. The only input of

this approach is the components’ queue lengths, obtainable through OS

system calls; therefore, it is suitable for systems where the source code

can not be modified.

In the second approach, Service Demands Estimation in Layered Queue-

ing Networks [GIT], a RNN analyzes each system component to calibrate

a Layered Queueing Network (LQN) that models the system. The LQN

formalism [FAW+09] is an extension of QN that better captures the syn-

chronization patterns between system components. Section 2.2 gives a

broader description of the LQN formalism. This approach differs from

the previous one as it calibrates a hand-made model rather than generat-

ing one, but it can capture both synchronous and asynchronous commu-

nication.

The third approach, µP: A Development Framework for Predicting Perfor-

mance of Microservices by Design [GIT23], defines a framework (called µP)

4
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Figure 2: Relations between the three approaches

to develop microservice systems with an associated performance model

without further user input beyond writing the source code. Microser-

vice systems are made of many simple components, usually deployed

on cloud architectures, that interact with each other through a restful

API [RR08]. We targeted those systems as they have industrial appli-

cations, e.g., Amazon, Netflix, and Spotify embraced the microservice

architecture [Blo13; sta15; Gol15]. Section 1.3 will provide more insights

into the microservice architecture. The proposed framework (called µP)

provides an API that the developers use to code their system (similar

to the popular Node.js or Java Spring Boot ones) and a set of point-and-

click tools to extract the system model, modify the model, and predict the

response time and cloud utilization under the new running conditions.

Specifically, this approach produces an LQN performance model by ana-

lyzing access logs generated by µP’s profiling infrastructure (included in

the framework and entirely transparent for the developer).

Figure 2 exposes the relations between the three approaches. The

least intrusive approach is the first one (see Chapter 3), albeit more lim-

ited in applicability. This approach requires only the queue lengths of

5



each system component and produces a calibrated QN model of the sys-

tem. It discovers the system model from scratch alike the third approach,

but, similarly to the second approach, it uses an RNN to calibrate the

model. This approach uses the QN formalism, which cannot capture

some synchronization patterns found in distributed software systems.

The second approach (see Chapter 4) uses the more expressive LQN

formalism and requires the user to provide an uncalibrated model of

the system as well as the queue lengths of each component. This ap-

proach can be applied to existing software, as the queue lengths can be

seamlessly monitored through OS calls. The user-provided uncalibrated

model guides the construction of the RNN, which discovers the service

times that best fit the queue lengths, leading to the calibrated model.

The third approach (see Chapter 5) starts from the source code of the

microservice system and the logs of some exploratory runs of the system

to produce a calibrated LQN model. In this approach, the user has to

write the system using the µP framework; therefore it is more suited to

new systems. Unlike the second approach, it does not require a user-

provided description of the model, but it extracts the structure of the

system from the source code. After that, µP uses the exploratory runs to

extract the service times of the components.

1.3 The microservice architecture: an interest-

ing case study

Among distributed systems, microservice architectures make a good case

study for this thesis due to their popularity and unclear effect on system

performance.

A microservice system comprises several small loosely coupled com-

ponents called microservices [Ric18]. Each microservice performs a small

set of functions (called endpoints) and relies on collaboration to per-

form its scope. Microservices collaborate by exchanging messages us-

ing language-agnostic protocols like HTTP or JSON. Microservices al-

low for a highly flexible deployment, where they might be added or re-

moved at runtime; hence they do not know the network location of each

6



other [Ric18].

Microservice architectures are popular for the extra-functional prop-

erties they guarantee [Ent19; Mod14; Gro19]. Performance is one of the

considered properties, but it is hard to quantify how the deployment

or the communication patterns influence it [Llo+18]. For example, in a

survey of 17 in-depth interviews with software practitioners [BFW+19],

only half of the interviewed subjects have a favorable opinion on the in-

fluence of the Microservice Architecture (MSA) on performance, while

the other half remain neutral. With µP, we aim to close this gap by ex-

plicitly modeling the relationship between deployment, communication

patterns, and observed performance.

1.4 Thesis organization

The remainder of the thesis is organized as follows. Chapter 2 presents

the background of this thesis, i.e., the mathematical abstractions used

in the following chapters, as well as a review of related works. Chap-

ter 3 presents the QN estimation approach (Learning Queuing Networks by

Recurrent Neural Networks). Chapter 4 discusses the LQN calibration ap-

proach (Service Demands Estimation in Layered Queueing Networks). Chap-

ter 5 shows the µP framework and how it can be used to develop real

systems (µP: A Development Framework for Predicting Performance of Mi-

croservices by Design). Finally, Chapter 6 wraps up and presents some

future lines of research.

7



Chapter 2

Background

This section will briefly introduce the tools used in the technical part of

this thesis (i.e., Chapters 3, 4, and 5). Section 2.1 presents the Queue-

ing Networks (QN) performance model and its fluid approximation. Sec-

tion 2.2 introduces the Layered extension on the QN model. Section 2.3

briefly introduces the Neural Networks, used in Chapters 3 and 4. Sec-

tion 2.4 concludes with some lines of research related to this thesis.

2.1 Queueing Networks

The Queueing Networks (QN) model represents a system as a set of sta-

tions, each one performing a specific work upon request by clients. Sta-

tions perform their work through a number of indistinguishable servers,

each one performing the station’s work independently to other servers.

For this thesis we assume that the time needed to complete the i-th sta-

tion work follows an exponential distribution whose average is 1/µi.

Clients represent customers of the system. Each client asks for work to a

station, waits for a free server (on a FCFS policy) if there is none, and then

get the required service by one server. We call queue length of a station i

the number of clients that are being serviced or wait for a free server at i.

In this thesis, we study closed systems, where the number of clients is

constant throughout time. This contrasts to open systems, where clients

8



continuously enter and leave the system. More precisely, in a closed sys-

tem, clients who got the requested service always ask for work at another

station chosen probabilistically, while in open systems, they might (prob-

abilistically) choose to exit the system. The closed system assumption is

not restrictive: in our approaches, we use the clients to stress the sys-

tems’ performance and probabilistic behavior, which does not depend

on the client’s identity. Rather, this assumption proves useful for two

reasons. Firstly, in the RNN-based methods, we can simplify the learn-

ing error function (see Sections 3.1.4 and 4.2.2, where the denominator

of the formula is constant). Secondly, this allows the stress of the sys-

tems under heavy load without incurring the effects of a potentially un-

bounded number of clients. In a closed system, load is realized by having

many clients. Once the system is saturated, the clients need more time

to traverse the network; therefore, their request rate (i.e., how many new

clients perform a new request per unit of time) is indirectly regulated so

the system can handle them. In an open system, load is realized by rais-

ing the request rate of the system. If the system is in severe saturation,

the arrival rate is larger than the exit rate (the number of clients served

per unit of time). Since there is no link between exit and request rate, the

number of clients in the system grows indefinitely and leads to spurious

behavior (e.g., connection timeouts, OS running out of resources).

Formally, we define a closed QN by the following:

• N : the number of clients in the network;

• M : the number of stations;

• s = (s1, . . . , sM ): the vector of concurrency levels, where si gives

the number of servers at station i, with 1 ≤ i ≤M ;

• µ = (µ1, . . . , µM ): the vector of service rates, i.e., 1/µi > 0 is the

mean service demand at station i, with 1 ≤ i ≤M ;

• P = (Pi,j)1≤i,j≤M : the routing probability matrix, where each ele-

ment Pi,j ≥ 0 gives the probability that a client goes to station j

upon completion at station i;

9



M1

M2

M3

<μ1,s1>

<μ2,s2>

P1,2

P1,3 <μ3,s3>
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Figure 3: Load balancing example

• x (0) = (x1 (0) , . . . ,xM (0)): the initial condition, i.e., xi (0) is the

number of clients at station i at time 0.

We remark that, in a closed QN, P is a stochastic matrix (i.e., each

row sums up to 1) because clients that got served always ask for an-

other service (potentially the same if the client got served by station i

and Pi,i > 0).

QNs have also a graphical representation. Each station is represented

with a rectangle followed by a circle, annotated with its concurrency

level and its service rate. The routing probability matrix is represented

with directed arcs, where the arc connecting station i with station j bears

the label Pi,j .

Figure 3 represents the running example we use through this section.

It represents a load-balancing system with 3 stations. Requests from sta-

tion 1 are forwarded to stations 2 and 3 with probabilities P1,2 and P1,3,

respectively; then clients return to station 1. In the following, stations 2

and 3 are the computation units, while 1 is the dispatching unit.

2.1.1 Markov chain semantics

Given a QN, we can define a continuous-time Markov chain (CTMC) that

represents the evolution of the queue length at each station over time.

The CTMC state is ~X = (X1, . . . , XM ), where Xi is the queue length of

station i. For each station i at most si clients can be served concurrently:

10



if Xi ≤ si, all the Xi clients proceed with rate µi; otherwise, si clients are

served with rate µi while the remainder (Xi − si) wait for a free server.

After the service of station i, clients go to station j with probability Pi,j .

We model this evolution through a Markov population process (MPP).

This representation has two advantages over the traditional CTMC one:

i) it is more compact (i.e., we do not need to explicitly represent the evo-

lution for each possible state); ii) it has a direct mapping on the learning

algorithm presented in Chapter 3. MPP’s transitions are represented by

jump vectors and associated transition functions defined over ~X [Bor+13].

The jump vector h(ij) represents the movement of one client from station

i to station j. More formally, the jump vector h(ij) is the evolution from

the state ~X to state ~X + h(ij), where

~X + h(ij) = (X1, . . . , Xi − 1, . . . , Xj + 1, . . . , XM ).

Function q represents the transition rate between two states. We write

h(ij)’s rate as q( ~X, ~X + h(ij)).

Given this, the CTMC is defined by

q( ~X, ~X + h(ij)) = Pi,jµi min(Xi, si), i, j = 1, . . . ,M. (2.1)

In the running example of Figure 3, the jump vectors are

h(12) = (−1,+1, 0) h(13) = (−1, 0,+1)

h(21) = (+1,−1, 0) h(31) = (+1, 0,−1)

where the first row represents a client moving from the dispatching unit

towards one computation unit, and vice-versa for the second row. The

transition rates are:

q( ~X, ~X + h(12)) = P1,2µ1 min(X1, s1)

q( ~X, ~X + h(13)) = P1,3µ1 min(X1, s1)

q( ~X, ~X + h(21)) = P2,1µ2 min(X2, s2)

q( ~X, ~X + h(31)) = P3,1µ3 min(X3, s3)

Given the initial condition x (0) and the transition function of Equa-

tion (2.1), the CTMC is completely defined and simulable [Gil07], albeit
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Figure 4: Three simulations of the running example’s CTMC.

untractable. Namely, the number of equations grows combinatorially

with the number of clients and stations, as it considers each possible di-

vision of N clients among M stations. The following section introduces

an approximation to avoid this problem.

In Figure 4, we show three independent simulations in the time in-

terval [0, 1] of the running example CTMC, where we set s1 = 1000,

s2 = 30, s3 = 25, µ1 = 1, µ2 = µ3 = 11. The simulations start with

x (0) = (26, 86, 0). On the x axis, we have the simulation time, while

the y axis has the queue lengths of the three stations M1 (green line), M2

(cyan line), and M3 (blue line).

2.1.2 Fluid Approximation

QNs admit a tractable approximation as a system of ordinary differen-

tial equations (ODEs) called fluid approximation. The fluid approximation

represents the system using M ordinary differential equations, regard-

less of the number of clients. Among the applications of fluid approx-

imation, we list network protocols [CBL15] and load balancing strate-

gies [GB10; Xie+15].

We consider the average effect of clients flowing into and out of the

station for each station. The evolution of each station is described in an

equation. Given a station k, its equation contains the jump vectors h(ik)

and h(kj) that represent the arrival of one client from station i and the exit

of one client towards station j, respectively, weighted by the transition

rates (q( ~X, ~X+h(ik)) and q( ~X, ~X+h(kj)), respectively). The ODE system

12



is written as:

dxk (t)

dt
=
∑

h(ij)

h
(ij)
k q(~x(t), ~x(t) + h(ij)), k = 1, . . . ,M. (2.2)

where ~x = (~x1, . . . , ~xM ) are the variables of the fluid approximation, and

h
(ij)
k is the k-th coordinate of the jump vector. We recall that, given the

jump vector h(ij):

h
(ij)
k =











−1 if i = k

+1 if j = k

0 otherwise

The solution for each coordinate xk (t) is the approximation of the

average queue length of station k at time t according to the CTMC se-

mantics [Bor+13]. This approximation is asymptotically exact [Kur70],

i.e., with enough servers and clients circulating the system, the ODE so-

lution and the expected queue length of the stochastic process become

indistinguishable.

The fluid approximation for the load balancer running example (Fig-

ure 3) is:

dx1 (t)

dt
= −µ1 min(x1 (t) , s1) + µ2 min(x2 (t) , s2)+

+µ3 min(x3 (t) , s3)

dx2 (t)

dt
= −µ2 min(x2 (t) , s2) +P1,2µ1 min(x1 (t) , s1)

dx3 (t)

dt
= −µ3 min(x3 (t) , s3) +P1,3µ1 min(x1 (t) , s1)

In Figure 5, we show the fluid approximation integration against one

CTMC simulation, the average of 10 and 100 simulations, respectively.

We kept the parameters of the previous section, i.e., s1 = 1000, s2 =

30, s3 = 25, µ1 = 1, µ2 = µ3 = 11. The solid lines represent the

CTMC-derived data, while the dashed lines depict the fluid approxima-

tion. The more simulations are considered, the more the fluid approxi-

mation matches the observations.

From Equation (2.2) we can derive other performance metrics, e.g.,

throughput, utilization, and response time. In [TGH12; Tri+12] there is a

study of these results in a process algebra [Hil96].
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Figure 5: Fluid approximation (dashed line) against one CTMC simulation,
the average of 10 and 100 simulations (solid lines).

This thesis focuses on QNs without self-loops (i.e., clients that request

another service from the same station immediately after leaving it). In

the fluid approximation, we can choose the self-loop probabilities freely

if we tune the remaining elements of the probability matrix and the ser-

vice rates. More formally, we rewrite Equation (2.2) to single out the rates

due to self loops Pk,k:

dxk (t)

dt
=
∑

i 6=k

Pi,kµi min(xi (t) , si) + (Pk,k − 1)µk min(xk (t) , sk) (2.3)

and prove the following theorem:

Theorem 2.1.1. For each π ∈ [0, 1)M , stochastic matrix P and µ≥ 0 where

(2.3) holds, there exist P̂ and µ̂ such as for each k:

1. dxk(t)
dt

=
∑

i 6=k P̂i,kµ̂i min(xi (t) , si)

+ (P̂k,k − 1)µ̂k min(xk (t) , sk);

2. P̂k,k = πk;

3.
∑

i P̂k,i = 1;

4. ∀i P̂k,i ≥ 0;

5. µ̂k ≥ 0.

Proof. Available in Appendix A.
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Figure 6: Simple LQN example.

This means that fluid approximation does not distinguish a network

with self-loops from another without self-loops having the remaining pa-

rameters tuned accordingly.

We now rewrite (2.3) to remove the self-loops:

dxk (t)

dt
=
∑

i 6=k

Pi,kµi min(xi (t) , si)− µk min(xk (t) , sk) (2.4)

2.2 Layered Queueing Networks

The approaches presented in Chapters 4 and 5 use an extension of the tra-

ditional QN model called Layered Queueing Network (LQN) [FAW+09].

This section will briefly describe this extension together with its graphi-

cal representation.

Figure 6 shows a simple LQN model. LQN models are composed

of tasks, depicted as large parallelograms (named T1 and T2 in Figure 6),

each one representing a set of correlated behaviors. Each task is available

in multiple identical and independent copies according to its replication

factor (10 and 4, respectively, for T1 and T2). Task multiplicity represents

the threadpool size, which says how many software threads can perform

work in each replica concurrently (1 for T1 and 2 for T2).

Processors represent hardware resources, i.e., the hardware resources

that physically execute each thread. Processors are represented with cir-

cles, bearing the number of available hardware threads (6 for P). Proces-
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sors are linked to the tasks they are executing with solid lines (processor

P linked to task T2). In the LQN model, if a task is not linked to a pro-

cessor, it is assumed to have a dedicated processor with enough cores to

execute all its threads concurrently without contention on the hardware

resources (T1).

An entry is a type of service that a task can perform. The LQN graph-

ical notation represents an entry with a small box at the top of the task’s

parallelogram (in Figure 6, they are e1 and e2). The behavior of each en-

try is described by a direct acyclic graph (DAG) of activities and control

nodes.

Activities are used to describe (i) computational work (i.e., CPU us-

age, like calc1, calc2, and calc3 in Figure 6) with its average duration

written between square brackets; (ii) synchronous calls where the exe-

cution moves to the called entries and the caller retains the thread (e.g.,

in Figure 6 the activity invoke calls the e2 entry); (iii) asynchronous calls

where the caller releases the thread before making the invocation. Solid

arrows connect activities to the called entries, while dashed arrows are

used for asynchronous calls. There are special activities without CPU de-

mand used to represent the termination of an entry’s logic (finish1 and

finish2 in Figure 6).

Control nodes are points where the execution flow branches concur-

rently (AND-nodes, symbol ‘&’, see e2’s logic in Figure 6) and probabilis-

tically (OR-nodes, symbol ‘+’). Finally, join nodes (symbol ‘&’) identify

locations where concurrent branches synchronize.

We will use the following functions, some taken from [Tri13].

• rate(a) for each activity a returns the inverse of the average time

needed to complete action a on a’s processor.

• prob(d, i) for each OR-node d is the probability that the successor of

d is Γi
d’s root.

• proc(a) returns a’s processor. It corresponds to act−1(a) in [Tri13].
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2.3 Neural Networks

This section briefly explores the machine learning tool used in Chapters 3

and 4: the Neural Network (NN). NN is a machine learning local optimiza-

tion tool that takes inspiration from how the mammals’ nervous systems

are organized [GKP19]. NNs take several inputs and produce one or

more outputs by continuously combining them. NNs are organized in

layers. A layer takes several inputs and computes each output by apply-

ing a non-linear differentiable function to a (weighted) linear combina-

tion of its inputs. Layers form a chain: the outputs of one layer are the

inputs of the following one, with the first layer taking directly the NN in-

puts and the last layer being the final output of the NN. The more layers

there are in an NN, the more expressive the outputs of the NN (i.e., they

can represent complex functions).

The optimization procedure tweaks each layer’s linear combination

weights to find the values that minimize the error function (i.e., a deriv-

able function that measures how far the NN outputs from the desired

ones). The learning procedure is guided by a set of input and matching

outputs, usually randomly partitioned into two parts: the training set and

validation set. The splits for training–validation set is usually 80%–20%

or 90%–10% of the provided data. The optimization procedure is itera-

tive: in each iteration (called epoch in NN jargon), it applies the learning

algorithm and computes the error function on the validation set. The

optimization stops when the error function on the validation set is not

decreasing over the epochs.

The learning algorithm dictates how the weights are updated dur-

ing the epoch. The most common one is Gradient Descent, which uses

the gradient of the error function applied to the training data w.r.t. the

weights. In this thesis, we will use the Adam algorithm [KB15], which is

derived from Gradient Descent, and is more suited towards large datasets

and many weights to learn (like the problems we will explore in Chap-

ters 3 and 4).

Learning algorithms’ behaviors are usually tuned using hyperparame-

ters, i.e., values set before the optimization procedure that condition how
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the search proceeds. One common hyperparameter (used by Adam) is

the learning rate, which conditions how much the weights can be changed

at every iteration. A small learning rate makes the search generally more

precise but slower and more prone to finding local minima in the error

function; a larger learning rate leads to a faster search, but it might skip

large zones of the search space (that might contain the optimal weights).

Hyperparameters tuning is a complex task requiring considerable work

to attain effective NN optimization procedures.

2.4 Related work

In this section, we discuss techniques related to the following lines of

research: performance prediction from programs, generation of perfor-

mance models from programs, and estimation of parameters in QNs.

2.4.1 White-box Performance Prediction

White-box performance models are applied to systems where we know

their inner details, except for some non-functional parameters. White-

box techniques (the ones we consider in this thesis) keep a piecewise as-

sociation between the model and the system (i.e., they have explanatory

power) [Val+17].

PerfPlotter uses probabilistic symbolic execution [GDV12] to analyze

the system’s source code and extract a probability distribution on the de-

sired performance metric (e.g, response time) [CLL16]. PerfPlotter is lim-

ited to single-threaded applications (therefore, it cannot capture thread

contention) and does not produce a predictive model.

Some works extract performance models from execution logs, simi-

larly to µP (see Chapter 5). In [IWF07], the authors define an algorithm

that explores the execution log, observes how the components interact,

and maps those interactions on the LQN formalism to produce a model.

In [BHK11], the procedure targets component-based systems. Those ap-

proaches still require user intervention, and their models do not evolve

with the system development. Instead, µP defines comprehensive log-
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ging that tracks the components’ performance and the overall system

infrastructure, starting from the source code only. Since the model is de-

fined using only the execution log and the source code, we can say that

the model evolves along with the code. The code-to-model link allows

for ad-hoc logging, which improves prediction accuracy. For instance,

in [BHK11], authors report that the performance models obtained via

their approach have a mean percentage error of response time prediction

greater than 50% in cases of high load (i.e., average utilization close to

50%). In Section 5.3 we show that µP can produce very accurate models

from a similar system reporting prediction errors less than 10% under

extreme operating conditions, i.e., with average utilization of the bottle-

neck microservice very close to 100%. Similarly, in [COQ21], a maximum

relative prediction error of 21% is reported when the learned models are

used to detect the saturation point of Teastore [KES+18]. Still, in Sec-

tion 5.3, µP estimates performance quantities with less than 10% of error

in all case studies, including Teastore.

Research in QN parameters estimation usually focuses on the service

demands estimation problem when the system is in steady-state [Spi+15].

A system is in a steady state when its evolution does not depend on its

initial condition: this usually happens after enough time passes from its

startup. The precise quantification of this time depends on the system

under study. The steady-state assumption is very powerful, leading to

many analytical results for QNs [Bol+05]. Many results from the litera-

ture work under the steady-state assumption, using various techniques:

linear regression [Pac+08], quadratic programming [INT18], non-linear

optimization [Men08; AM17], clustering regression [CDS10], indepen-

dent component analysis [Sha+08], pattern matching [CS14], Gibbs sam-

pling [WC13; SJ11], and maximum likelihood [Wan+16].

There has been some research also in the LQN direction, using the

Kalman Filters to estimate time-dependent parameters monitoring uti-

lization and response times of the system [ZWL08]. It has been extended

to predict ahead-of-time parameters evolution [ZLW11], or to attain QoS

targets with a control-based approach that updates system parameters

[Zhe+05].
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The approach we propose for QN estimation (see Chapter 3) advances

the state of the art as it estimates both service demands and QN routing

probabilities (i.e., its topology). Moreover, we drop the steady-state as-

sumption as the RNN uses the fluid approximation (see Section 3.1), and

actually, the RNN works on traces that include the transient dynamics.

Another work that uses the fluid approximation for service-demand es-

timation is [INT18].

Some works use data that is not readily available in a real use-case,

e.g. [Liu+06; CDS10; Sha+08; Kal+11; CS14; ZWL08; ZLW11]. In a vir-

tualized context, typical in Platform-as-a-Service environments, metrics

like utilization might not be available as they depend on the specific

hardware running the system, which contradicts the virtualization pa-

radigm. The three approaches presented in this thesis use quantities that

do not require explicit hardware support (i.e., the queue length obtained

by querying the OS networking stack) or use execution logs.

2.4.2 Black-box Performance Prediction

Black-box approaches build performance models using only external in-

formation of the system but are inaccurate when predicting unseen con-

texts. Black-box approaches complement the role of the white-box tech-

niques. Rather than keeping a piecewise relation between the system and

the model, black-box models estimate the overall input-performance re-

lation. Those limitations make black-box models computationally easier

to manage than white-box ones. Still, black-box approaches are unsuit-

able when the model is used to predict the system in conditions very far

from the ones observed in the learning phase (e.g., the testing conditions

used in this thesis).

Even though black-box techniques are the focus of this thesis, we

will give a brief overview of them for completeness reasons. Black-box

models proved effective in specific contexts, e.g., variability-intensive

systems (i.e, where the performance depends on the specific configu-

ration) [Sie+12; Sie+15], online data-intensive systems [SW18], and in

modeling data dependencies [Gra+20].
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Many techniques are used to generate black-box models: machine

learning [Guo+13; Sie+15; Val+17; Jam+18; RL19; GLD+21; Gro+21a],

regression [JPG19; Gro+21b] and specifically linear regression [Sie+12],

markov processes [Kha+16; Kha+20], and reduction to other known prob-

lems (e.g. the multiple-choice knapsack problem [BWB+19]).

2.4.3 Program-driven Generation of Performance Models

In the literature, program-driven generation of performance models has

been less explored than the model-driven approach [CMI11]. Brosig

et al. derive a component-based performance model from applications

running on the Java EE platform [BKK09; BHK11]. Hrischuk et al. ex-

tracts LQN software performance models from distributed applications

that communicate via remote procedure calls [HRW95]. Tarvo and Reiss

analyze task-oriented applications to generate discrete-event simulation

models [TR14]. In task-oriented applications, the workload is divided

into tasks (indivisible jobs) assigned to a pool of worker threads. Tarvo

and Reiss justified the simulation model approach to avoid explicitly

modeling performance-related phenomena such as queuing effects, inter-

thread synchronization, and hardware contention. The approaches pro-

posed in this thesis measure and include those phenomena in the analyt-

ical model, thus forfeiting the need for a simulation model.
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Chapter 3

Learning Queueing
Networks by Recurrent
Neural Networks

This chapter focuses on automatically extracting a white-box QN model

from a distributed system.

As detailed in Section 2.1, a QN model describes a system as a set of

users (clients) that probabilistically visit a set of resources (stations) that

perform some specific work upon request. Each station is described by

the time needed to perform their work (service demand) and the maxi-

mum number of requests that can be served at the same time (concurrency

level). Clients are characterized by how they probabilistically access the

resources (routing matrix).

Only part of the QN parameters is easily deducible from a distributed

system deployment. For example, the concurrency level of each machine

is the number of cores on the processor chip or the number of assigned

CPU cores to the virtual machine for bare-metal or virtualized setups, re-

spectively. Instead, tracking the service demands and how clients access

the resources (the routing matrix) is harder.

In this chapter, we will construct a full QN model given the set of

resources and their concurrency level. We will discover the resources’
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service demands and the clients’ routing matrix, observing the evolution

of resource queue lengths over time.

Many approaches exist to learn a performance model from data (Sec-

tion 2.4 gives an overview). Among QN fitting approaches, many works

estimated the service demands only ([Spi+15]), while we did not find ap-

proaches that estimate service demands and the topology (i.e., the rout-

ing matrix) together. The main obstacle is that this is a nonlinear problem.

Indeed, the service demands and the routing matrix are multiplied to-

gether in the dynamical equations that describe the QN evolution (see

Equation (2.1) in Section 2.1.1), and both need to be fitted. Moreover, we

also face the scalability problem, as the exact equations that rule the QN

grow combinatorially with the number of resources and clients in the

system (see Section 2.1.2).

Our proposal solves both problems, and it is scalable. Section 3.1

describes a new Recurrent Neural Network (RNN) architecture that en-

codes the Fluid Approximation of the QN dynamics in an interpretable

fashion: each RNN weight (concurrency levels, routing probabilities, and

service rates) is associated to the QN parameter. Fluid Approximation

solves the scalability problem by keeping only one equation per sta-

tion while giving an accurate average queue length estimation (see Sec-

tion 2.1.2 for more details). Still, the Fluid Approximation leads to a

non-linear problem. For this reason, we use RNNs to estimate service

demands and the routing matrix, as they proved effective in fitting non-

linear systems [Mit97].

The connection between ODEs and RNNs is not new in the litera-

ture [Pea89; Che+18], and some approaches use Neural Networks to ex-

tract black-box performance models (see Section 2.4.2 for more details).

Still, we did not find applications of customized RNN architectures that

extract a white-box performance model. We think that this chapter fills

an interesting niche as it leverages the best of three worlds:

• neural networks are a versatile tool in model fitting, with a lively

research community;

• the custom architecture encodes the knowledge we have on the sys-
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tem dynamics in the RNN, which in turn requires less training data

to obtain a reliable estimation;

• white-box performance models allow for accurate what-if analysis: for

each change in the system, we know which parameter must be al-

tered to obtain a prediction under the new setting.

The key technical contribution of this approach is to define a direct

association between the Fluid Approximation and the RNN activation

functions and layers. To the best of our knowledge, this is the first ap-

proach that brings together the learning capability of machine learning

and the expressiveness of analytical performance models, confirming

that “AI will be at the core of performance engineering” [Lit19].

The remainder of this chapter is organized as follows. Section 3.1 de-

scribes how we encode the Fluid Approximation in an RNN cell, and

how we define the error function used both in learning and in the exper-

imental phase. Section 3.2 applies the approach on synthetic benchmarks

on randomly generated QNs and a real web application developed using

the load balancing architectural style. We test the model using what-if

analysis, i.e., we compare the system dynamics under unseen configura-

tions with one predicted by the model when applying the same modifica-

tions. We experienced prediction errors under 10% across a validation set

of 2000 instances that changed the system workload, number of servers,

and routing probabilities.

3.1 Learning methodology

This section proposes an RNN architecture that encodes the Fluid Ap-

proximation dynamics in an interpretable fashion, i.e., the quantities to es-

timate (routing probabilities, service rates) as RNN weights.
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Figure 7: RNN encoding

3.1.1 ODE Discretization

Our encoding works on a time-discretized version of the Fluid Approxi-

mation. Firstly, we rewrite the Fluid Approximation in matrix notation:

dx (t)

dt
= −µmin (x (t) , s) +P

T
µmin(x (t) , s)

where x (t) is the M -dimensional vector of each station queue lengths at

time t. We now introduce a finite-step approximation for a small time

duration ∆t:

x (t+∆t) = x (t) + ∆t ·
(

− µmin (x (t) , s) + µPmin(x (t) , s)
)

that can be rewritten as

x (t+∆t) = x (t) + ∆t · u (t) · (µ⊙ (P− I)) (3.1)

where u (t) = min (x (t) , s), I is the identity matrix of appropriate di-

mension, and ⊙ is the operator where if C = a⊙B, then Ci,j = ai ·Bi,j .

3.1.2 RNN Encoding

Equation (3.1) can be directly encoded in the RNN. The first layer of the

RNN is an M -dimensional input layer x̂0 that corresponds to the queue

lengths’ initial condition. After that, there are H − 1 cells, where the
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h-th cell computes the evolution of the queue lengths at time h∆t, de-

noted by x̂h (see Fig. 7). Using the time-discretized version of the Fluid

Approximation (Equation (3.1)), the h-th cell computes x̂h = x̂h−1 +

∆t · ûh−1 · (µ⊙ (P− I)), where ûh−1 estimates u ((h− 1)∆t) as ûh−1 =

min (s, x̂h−1).

The weights to learn are the matrix P (made of M(M − 1) weights,

since the diagonal is empty as we avoid self-loops) and the vector µ

(made of M weights).

Since we are interested in a white-box model, we introduce some fea-

sibility constraints that force the learning algorithm to explore valid val-

ues (i.e., values that do not violate physical constraints). Specifically, we

require that P is a stochastic matrix (each element is non-negative and

each row sums up to 1), that there are no self-loops (Pi,i = 0 for each i),

and the rates are non-negative (µ ≥ 0). We impose the stochasticity of

P by clamping the learned values in the range [0,∞) and dividing the

values in each row by their sum. By restricting to valid values, we keep

the link between learned values and their physical counterparts in reality

(explainable machine learning [SWM17]).

Since we have a white-box model, we can forecast how the system

would behave if we change part of it (what-if analysis) as we can repli-

cate the same alterations on the learned values. A traditional approach

without constraints generates a black-box model where the learned val-

ues might not be valid (e.g., a negative probability). Non-valid values

break the link, so it’s unclear how to replicate the system changes on the

learned values. In the latter case, we must learn the model from scratch

at each system change.

As a running example, we will use the load balancer system pre-

sented in Section 2.1, Figure 3. The RNN encoding for the h-th cell (i.e.,

the queue length transient evolution at time h∆t) of our running exam-
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ple is:

ûh−1,1 = max (s1, x̂h−1,1)

ûh−1,2 = max (s2, x̂h−1,2)

ûh−1,3 = max (s3, x̂h−1,3)

x̂h,1 = x̂h−1,1 +∆t (−µ1ûh−1,1 + µ2P2,1ûh−1,2 + µ3P3,1ûh−1,3)

x̂h,2 = x̂h−1,2 +∆t (µ1P1,2ûh−1,1 − µ2ûh−1,2 + µ3P3,2ûh−1,3)

x̂h,3 = x̂h−1,3 +∆t (µ1P1,3ûh−1,1 + µ2P2,3ûh−1,2 − µ3ûh−1,3)

3.1.3 Input data

We train the RNN over a set of traces. Each trace is made of H vectors:

x̃0, x̃1, ..., x̃H−1 ∈ R
M
≥0. The i-th component x̃h,i of the vector x̃h rep-

resents a sample of the queue length of station i at time h · ∆t. Since

the Fluid Approximation estimates the average queue lengths, it should

match the average of several independent executions that start with the

same initial condition. At the same time, we need traces that start with

different initial conditions to explore the distinct behaviors of the system.

3.1.4 Learning function

The learning error function err measures the maximum number of ill-

positioned clients in the prediction across each trace’s time interval. More

precisely, err minimizes the maximum relative error between the queue

lengths estimated by the RNN according to the discretized Fluid Approx-

imation, x̂h, and the measurements x̃h. We define err as:

err =
maxH−1

h=1 ‖x̃h − x̂h‖

2N
· 100 (3.2)

where ‖ · ‖ is the L1 norm. Since we are considering closed QNs with a

fixed number of N circulating clients (see Section 2.1), the quantity ‖x̃h−

x̂h‖/(2N) measures the proportion of clients that are “misplaced” (i.e.,

predicted to be in a different station) at each time step. Since a misplaced

client is counted twice (once when missing in a queue and once when is

extra in another queue), we divide the norm by 2.
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Figure 8: Simulations of the queue lengths using the learned parameters
and the ground-truth ones for the running example.

We apply the methodology to our running example (the load balancer

of Figure 3). Suppose that the original system has s = (1000, 30, 25) and

µ = (1, 11, 11), and P is set at

P =





0 0.5 0.5
1 0 0
1 0 0





Using the experimental setup (discussed in the next section), we gener-

ated a training dataset of 50 traces, each with a different randomly gen-

erated initial population vector. Each trace was the average of 500 in-

dependent simulations considering the transient evolutions of the queue

lengths. Figure 8 compares the queue lengths predicted with the param-

eters learned using the RNN vs the ground-truth ones. We observe high

accuracy on the training set: for example, Figure 8a shows a trace taken

from it. We now use the learned parameters to predict (what-if analysis)

a load balancer with the same structure and service rates but different

concurrency levels (s = (1000, 6, 1)). We generate the what-if traces with

s = (1000, 6, 1) and predict using the learned QN with the concurrency

levels set at s = (1000, 6, 1). Figure 8b shows one trace from the what-if

set and its predicted dynamics. The marked lines represent the simu-

lations using the learned parameters, while solid lines use the ground-

truth parameters. The prediction is accurate despite bottleneck shifts and
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longer transient dynamics compared to the ones used for learning (e.g.

the one in Figure 8b).

3.2 Numerical Evaluation

This section evaluates our approach’s accuracy using synthetic bench-

marks and a real case study. The RNN architecture is implemented using

the Keras framework [Cho+15] with the TensorFlow backend [MAA15].

We learned the models using a machine with the Intel(R) Xeon(R) CPU

E7-4830 v4 at 2.00GHz with 500 GB of RAM, running 4.15.0-55-generic

Linux kernel.

3.2.1 Synthetic case studies

Training phase In the synthetic case studies, we considered ten ran-

domly generated QNs, five with M = 5 and five with M = 10 stations.

For each QN, we generate at random a M ×M stochastic routing ma-

trix without self loops, M service rates in the interval [4.0, 30.0], and M

integer concurrency levels in the interval {15, 16, . . . , 30}. For each of

those QNs, we generate 100 traces with a distinct initial population vec-

tor, where each station has a random number of clients in {0, . . . , 40}.

Therefore, the total number of clients varies in the trace set between 1 and

40 ·M (we excluded the population vector with no clients). Each trace

is then the average of 500 independent stochastic simulations (generated

using Gillespie’s algorithm [Gil07]) that start with the same population

vector.

The traces set is split into 50 for the training and 50 for validation

(chosen at random). During the learning phase, we use the Adam algo-

rithm [KB15] with a learning rate equal to 0.05 until the error computed

on the validation set does not improve by at least 0.01% in the last 50

iterations. The average learning time is 74 minutes for the 5-station QNs

and 86 minutes for the 10-station QNs.
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Discretization methodology We want to discuss two important hyper-

parameters: the time horizon T of the stochastic simulations and the dis-

cretization interval ∆t. Those two parameters contribute to the depth

(number of cells) of the RNN as T = (H − 1)∆t. T and ∆t must be cho-

sen with care, as they impact the duration of the learning phase and the

quality of the model:

• if T is too short, the trace might not expose the full dynamics of the

network;

• if T is too long, a significant part of the trace is in a steady state,

where there is no information about the network dynamics, and

lengthens the learning time without improving the model;

• if ∆t is too short, the RNN is unnecessarily deep, and the learning

time increases;

• if ∆t is too long, the discretization might skip important dynamics

affecting the model quality.

We set T = 10 and ∆t = 0.01 in our synthetic experiments, hence H =

1000.

Testing phase: what-if analysis To test the predictive power of the

learned parameters, we perform the so-called “what-if” analysis. What-

if analysis tests the learned models against new conditions unseen at

learning time. What-if analysis mimics a real use of the learned model

and evaluates if it captured the spirit of the system rather than just echo-

ing the observed traces. Firstly, we test the predictive power under differ-

ent client populations and the concurrency levels seen during learning.

Then, we test unseen concurrency levels with the client populations used

in the learning phase.

What-if analysis over client population In this paragraph, we exper-

iment, for each QN, with 100 new (i.e, not used in the learning phase)

initial population vectors and compare the traces generated using the
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Figure 9: What-if instances for synthetic case studies. a) Prediction error
over the number of clients in each instance. b) Prediction error statistics for
each network size.

learned parameters (routing matrix and service rates) against the ground-

truth ones. As with the learning phase, a trace is an average of 500 inde-

pendent stochastic simulations that start with the prescribed initial con-

dition.

In the scatterplot of Figure 9a, for each instance, we plot the predic-

tion error (err, see Equation (3.2)) over the number of clients circulating

the system. Green markers correspond to M = 5 cases, while blue ones

are the M = 10 cases. In all cases, we observe errors under 10%. The

box plots in Figure 9b show the prediction error distribution for each

network size. Box plots are drawn as follows: the line inside the box is

the median error, the box plots’ upper and lower sides are the 25th and

75th percentiles, and the upper and lower limit of the dashed line rep-

resent the extreme points not to be considered outliers, and in red we

draw the outliers (12 with M = 5, 4 with M = 10). Those box plots show

no statistically significant difference in the prediction quality between

the two QN sizes. Figure 10 plots the predicted and ground-truth traces

for the instance with the most significant prediction error (err = 9.41%).

This case has 5 stations and starts with the (unseen) population vector

(86,111,13,15,28). The solid line represents the ground-truth dynamics,
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Figure 10: Ground-truth queue lengths plotted against the learned QN on
the case with the highest error among the synthetic what-if over client pop-
ulation.
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Figure 11: a) Prediction error of the what-if instances over the concurrency
level of the most utilized station. b) Prediction error statistics for M = 5
and M = 10.

while the dashed line represents the evolution predicted by the RNN-

learned QN. Still, this case shows a good generalizing power for all the

station dynamics.

What-if over concurrency levels We validate the predictive power of

the learned QN under varying concurrency levels. For each of the ten

QNs, we found the station with the highest ratio between the steady-

state queue length and its concurrency level (bottleneck) and added mul-

tiples of 20 servers to this station until it was not the bottleneck anymore.

Then we compared the traces using the learned routing matrix and ser-

vice rates against the ground-truth routing matrix and service rates, us-

ing the new concurrency levels and the population vectors used at learn-

ing time. We kept the error function used in learning (see Equation (3.2)).

Figure 11a shows the prediction error of this experiment, exposing

prediction errors under 5% across all instances. Even in this setting,

Figure 11b does not report a significant difference in the prediction er-

ror for the two network sizes. Figure 12 compares the queue lengths of

the what-if instance (after bottleneck switch) that reported the maximum

prediction error (i.e., 4.5%) against the original ones (before bottleneck
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Figure 12: Ground-truth and predicted queue lengths on the test case with
the maximum prediction error in the what-if over concurrency levels.
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Figure 13: Case study architecture.

switch) that had a prediction error of 3.1%. The cyan line are the original

conditions’ ground-truth dynamics, while the green lines plot the RNN

prediction. The red line shows the ground-truth traces after the concur-

rency increase in the bottleneck station from 17 to 37 servers, while the

blue line depicts the RNN prediction under such change. Although the

bottleneck switch from station 3 to station 2 also significantly impacted

the other stations’ dynamics, the prediction is good and fully captured

the spirit of the what-if.

This result shows that the models we obtained are versatile enough

to provide insights in situations where the original QN was not exer-

cised. Therefore, the learning procedure produces an effective white-box

model, i.e., we do not need to repeat the learning procedure if the system

changes, but we apply the modifications directly to the model.

3.2.2 Real case study

Setup This section presents an in-house developed web application em-

ulating a load-balancing system whose load is configurable. Figure 13

depicts each node’s system architecture and concurrency level. It con-

tains five components.

• W is the reference station. It is a multi-threaded Python program

where each of the N clients is assigned a process that iteratively

waits for an exponentially distributed time (whose parameter is
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supplied at deploy time) and then issues a request to the load bal-

ancer.

• LB is the load balancer. It is implemented in Node.js [TV10] and

routes the user requests with equal probability to one of the three

replicas of the web-server. The implementation allows for differ-

ent probabilities (e.g., 1/4 to C1 and C2, 1/2 to C3) by setting the

weights accordingly.

• C1, C2, and C3, are the three replicas of the web server that serve

the request from the user. They are implemented using the multi-

threaded NodeJs Clusters1, and the service time is extracted from

an exponential distribution. Each replica has its exponential dis-

tribution parameter and concurrency level to make the case study

more interesting.

Even though the service time is parametric, we do not know their exact

time distribution, as factors like communication details or NodeJs inter-

nals influence it.

We computed the queue lengths of the components (the input traces

of the learning procedure, see Section 3.1.3) by parsing their access logs,

an approach followed by [Wan+16]. Other works, like [ITT17], record

the TCP backlog of the components. Our proposed setup allows sam-

pling data every ∆t = 0.01 s, capturing all the system dynamics without

slowing the application cycle. The replication package for this evaluation

is publicly available at https://zenodo.org/record/3679251.

Model Learning The training dataset comprises 50 traces, each corre-

sponding to a different population vector with between 0 and 30 clients

in each station. As we did for the synthetic case studies (see Section 3.2.1),

each trace is the average queue length dynamics observed in 500 inde-

pendent executions starting with the same configuration.

The case study is modeled with the QN on the right side of Figure 13.

The components W and LB (workload generator and load balancer) are

1https://nodejs.org/api/cluster.html
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Figure 14: Real system dynamics (i.e., marked lines) versus the RNN-
learned QN (i.e., solid lines) in the what-if cases over increased population
N = 26k.

condensed in the station M1, as the delay introduced by the load balancer

is negligible; the other stations, M2, M3, M4, each model a component

(respectively C1, C2, and C3). The parameters in the bottom right part

of Figure 13 will be learnt by the RNN. As we did in Section 3.2.1, the

learning uses half of the traces while the remainder acts as a validation

set. We used the Adam [KB15] learning algorithm with the learning rate

set to 0.01, repeated until the validation set error in the last 50 iterations

does not improve by at least 0.01%. On average, Adam takes 27 minutes

to learn, with a validation error of 3.89%.

What-if analysis We will now evaluate the prediction quality of the

learned QN versus the real system when changing the number of clients,

the LB forwarding policy (hence, the QN’s routing probabilities), and the

three web-server’s concurrency levels (i.e, the QN’s concurrency levels).

Since we are confronted with a real system, in this section, we follow

37



0 1 2 3 4 5 6
t(s)

0

10

20

30

40

50

60

70

80

90

Q
u
e
u
e
 L

e
n
g
th

M
1
 RNN-learned QN

M
1
 Real System

M
2
 RNN-learned QN

M
2
 Real System

M
3
 RNN-learned QN

M
3
 Real System

M
4
 RNN-learned QN

M
4
 Real System

(a) err=5.98%

0 1 2 3 4 5 6
t(s)

0

10

20

30

40

50

60

70

80

90

Q
u
e
u
e
 L

e
n
g
th

M
1
 RNN-learned QN

M
1
 Real System

M
2
 RNN-learned QN

M
2
 Real System

M
3
 RNN-learned QN

M
3
 Real System

M
4
 RNN-learned QN

M
4
 Real System

(b) err=6.10%

Figure 15: Real and predicted dynamics after bottleneck solution. a) By
increasing the concurrency level of M3. b) By changing LB’s routing proba-
bility.

a realistic scenario where we discover the bottleneck and solve it using

only the information provided by the model. The bottleneck is found by

increasing the original number of clients (26, in this example) in the QN

model by a factor k = 2, . . . , 5 until we find that station M3 is saturated.

We validate the findings by running the real system with the increased

loads and plot the queue length dynamics in Figure 14. We observe that

the most used component is C2 (corresponding to the station M3), and

the prediction error is less than 10% across all instances.

We consider two alternative strategies for solving the bottleneck on

C2/M3:

(a) we increase the concurrency level of C2/M3 from 5 to 8;

(b) we change the routing probabilities from LB/M1 to the web-servers

C1/M2, C2/M3, C3/M4 to, 0.35, 0.20 and 0.45 respectively.

Figure 15 compares the predicted dynamics with the real system dynam-

ics when applying each strategy, starting from the case k = 4. Figure 14c

shows the original dynamics, Figure 15a applies the (a) strategy and Fig-

ure 15b applies the (b) strategy. As expected, both strategies relieved the

pressure on C2/M3, and the learned model predicts so with an error of

about 6% on the real system.
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Chapter 4

Service Demands
Estimation in Layered
Queueing Networks

Layered Queueing Network (LQN, see Section 2.2 for a discussion) is an

expressive model for performance evaluation of software systems. How-

ever, the accuracy of the performance prediction depends on a precise es-

timation of LQN service demands [Bau+18]. Service demands estimation

(also known as model calibration) is an open problem, and Section 2.4.1

gives an overview of the many attempts. The literature lacks an approach

for layered systems with many interacting software and hardware lay-

ers. For example, an approach based on single-user workload [KN17]

fails with fork/join synchronizations or asynchronous communication

as they create multiple simultaneous requests in the system that gener-

ate contention.

This chapter proposes the first methodology, to the best of our knowl-

edge, where using queue-length measurements only, we can calibrate an

LQN, i.e., automatically derive LQN service demands. As in the QN ap-

proach (presented in Chapter 3) we use queue lengths as inputs since

they can be obtained without altering the system being measured: we

can use operating system primitives for TCP traffic inspection [Wan+18;
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ITT17], or through log inspection. We retained Recurrent Neural Net-

works (RNNs) as the estimator, as it proved successful in Chapter 3 and

nonlinear models in general [Mit97].

This task is hard from a mathematical point of view, as there is no

closed-form analytic expression for LQNs, unlike QNs. Therefore, we

cannot encode the estimation problem as an optimization problem, where

the model’s dynamics are constrained against observed traces [KLK20].

Similarly to Chapter 3, we use a compact system of approximate equa-

tions (the fluid approximation [Tri13]), instead of the exact but exponen-

tially large system of equations. Like the QN fluid approximation, the

LQN fluid approximation is a set of non-linear ordinary differential equa-

tions (ODEs) that grows with the number of tasks and processors de-

scribing each resource’s mean queue length dynamics. Its complexity is

independent of the number of clients in the system and can be encoded

in an RNN. See Section 3.1.2 for a more exhaustive discussion about the

connection between RNNs and ODEs.

This chapter concludes with an analysis of the effectiveness and accu-

racy of our approach, using a wealth of already validated LQN models

taken from the literature, together with a real application. The predic-

tion quality is assessed by how accurately the learned models match the

steady-state response times when the system is altered (what-if analysis)

and runs in configurations such as the system load not seen at learning

time. The analysis reported prediction errors of less than 5% across a

validation set of hundred instances.

4.1 Approach

This section presents an algorithm to create the fluid approximation from

an LQN. In [Tri13] a process algebra is used to do the LQN to fluid ap-

proximation conversion; instead, we take a different approach that keeps

a more direct relation between the LQN components and the resulting

differential equations leading to a more straightforward RNN encoding.

This approach highlights easy-to-probe quantities, hence it is possible to

produce the learning traces for the RNN. Also, as we will see in Sec-
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tion 4.3, it leads to accurate models of considered case studies.

The first phase of the LQN to fluid approximation transformation is

called inlining, described in Section 4.1.1. Inlining replaces the entry calls

with the activities that describe them. We can now define the inlined

LQN stochastic process (see Section 4.1.2). From the stochastic process,

we can build the fluid approximation (see Section 4.1.3), more straight-

forward to study than the original process, and simulate the LQN (Sec-

tion 4.3). We then convert the fluid approximation into a Recurrent Neu-

ral Network (RNN; Section 4.2.1) to learn the model from the data.

4.1.1 LQN inlining

LQN inlining transforms the original LQN model into an equivalent that

explicitly models the execution paths. We need this procedure to define

a new version of fluid approximation that distinguishes entry executions

that originate from different calls, unlike the one presented in [Tri13]. In-

lining starts with the main entry, i.e., the one that represents the main

workload and calls the others, which usually represents the behavior

of a system user. It recursively replaces every synchronous and asyn-

chronous call with a copy of the called entry and some extra nodes to

manage the caller and called entry threadpools. The effect is similar to

the inlining expansion procedure presented in [Aho+07]. Inlining also

adds nodes to the fork/join structures. The other activities, nodes, and

functions presented in Section 2.2 (i.e., rate, proc, and prob) are preserved

in the inlined variant. Since we are considering closed systems, the last

activity in the inlined version is connected to the first one. In the remain-

der of this section, we detail the replacement procedure for the consid-

ered patterns: asynchronous communication, synchronous communica-

tion, and fork/join structure (see also Figure 16).

Asynchronous communication Asynchronous communication is per-

formed when an entry calls the destination entry, releases the thread be-

fore invocation, and reacquires it after the call (see Section 2.2). The LQN

graphical representation realizes this pattern with an activity linked to
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E2 a inline(E2)r2 q2

rel(q1) = T1

q1 r1

acq(r2) = T2 rel(q2) = T2 acq(r1) = T1

(a) Asynchronous communication.

T1

a
T2

E2 a inline(E2)r2 q2

acq(r2) = T2 rel(q2) = T2

(b) Synchronous communication.
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&

A B &

inline(A) j

inline(B) w

(c) Fork and join.

Figure 16: Unrolling patterns. The left part depicts the original LQN, while
the right one the corresponding unrolled graph. Hollow dots mark the be-
ginning of the pattern, filled dots mark the end.
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the called entry through a dashed arrow. Inlining introduces two node

types, release and acquire nodes, representing when a thread is released

into or acquired from a threadpool, respectively. Inlining also introduces

two functions, rel and acq that map the release and acquire nodes with

the threadpool they operate on. Release nodes are represented with pen-

tagons, while acquire nodes use the rounded rectangle symbol. Intu-

itively, the acquire node represents the requests directed to the entry that

are queued on the task’s port, while the release nodes represent the en-

try’s responses traveling on the network.

Figure 16a represents the inlining for the LQN asynchronous commu-

nication pattern. On the left, we see an LQN fragment with an activity a

in task T1 that calls an entry inside task T2 whose body is E2 (the cloud).

On the right, we see the inlined variant with the following elements: i)

activity a, left unchanged; ii) the release node q1 that releases a thread to

T1’s threadpool (i.e., rel(q1) = T1); iii) the acquire node r2 that acquires a

thread from T2’s threadpool (i.e., acq(r2) = T2); iv) the inlined version of

E2 (i.e., inline(E2)); v) the release node q2 that releases the thread to T2’s

threadpool (i.e., rel(q2) = T2); vi) the acquire node r1 that reacquires a

thread from T1’s threadpool (i.e., acq(r1) = T1). The function definitions

presented in Section 2.2 for the activities and nodes arising from the in-

lining of E2 are left unchanged (e.g., for activities x ∈ inline(E2), proc(x)

is the processor assigned to task T2).

Synchronous communication We have synchronous communication

when an entry calls the destination entry without releasing the thread

during the invocation (see Section 2.2). The LQN graphical represen-

tation realizes this pattern with an activity linked to the called entry

through a solid arrow. Figure 16b represents the inlining for the LQN

synchronous communication pattern. On the left, we see the LQN frag-

ment representing this communication pattern, on the right the inlined

variant. Inlining is similar to asynchronous communication without the

q1 and r1 nodes.
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D

select
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Figure 17: Running example: a distributed system.

Fork and join Fork and join pattern is used when the execution flow

is split into two concurrent paths that eventually synchronize and merge

(see Section 2.2). The LQN graphical representation represents this pat-

tern through an AND-node with two arcs that lead to the two concur-

rent branches, with a further AND-node at the synchronization point.

Figure 16c depicts the fork and join pattern inlining between the two

branches A and B. The inlining defines two types of nodes, join and

wait nodes, that represent the executions that completed one of the two

branches and wait for the other branch completion to synchronize. We

depict join and wait nodes with a hexagon and a diamond, respectively.

The inlining replaces the A branch with its inlined variant inline(A) and

a join node j, while B is replaced with its inlined variant inline(B) and

the wait node w. The nodes j and w represent the terminated executions

of A and B, respectively. If there is an execution both in j and w, the syn-

chronization is completed, and then merge and continue with the activity

after j. The pairing of the fork branches to A and B is arbitrary and leads

to equivalent representations.

Running Example We apply inlining to the running example in Fig-

ure 17. Figure 17 represents a distributed system where the clients (TA

task) calls in sequence a computation service B (in TB task) and a database

query D (in TD task). In the considered deployment, the two tasks TB

and TD share a common processor PBD. We observe that this system is

not representable through a QN model (as two tasks share the same pro-

cessor): therefore the technique presented in Chapter 3 is not applicable

in this context. The unrolling produces the sequence of nodes think1,
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think1 rB compB qB

think2rDselectqD

rate(...)=10
proc(...)=PA

rate(...)=20
proc(...)=PBD

rate(...)=10
proc(...)=PA

rate(...)=25
proc(...)=PBD

acq(...)=TB rel(...)=TB

acq(...)=TDrel(...)=TD

Figure 18: Example after applying inlining. We reported the value of the
functions rate, acq, rel, proc under the corresponding node.

rB, compB, qB, think2, rD, select, qD. The nodes represent, respectively:

when clients think, clients wait for a thread to execute B, TB runs the

computation service, releases the thread, clients think once more, clients

wait for a thread to execute D, TD executes the database query, releases

the thread. The jobs start at think1 and repeat after qD. Figure 18 contains

the details of the inlining.

4.1.2 Inlined LQN stochastic process

We now define the stochastic process underlying the inlined LQN. Sim-

ilar to what we did in Section 2.1.1 for QNs, we define it through the

inlined LQN state and the transitions as a set of jump vectors h with as-

sociated propensities q( ~X, ~X + h).

The number of elements in the inlined LQN state vector ~X is the num-

ber of nodes and activities in the inlined LQN plus the number of tasks in

the original LQN. For each inlined node or activity n, ~Xn is the number

of jobs on n, while for each task T, ~XT is the number of free threads in

task T’s threadpool. Therefore, the number of elements in ~X is the num-

ber of nodes and activities in the inlined LQN plus the number of tasks.

Similarly to the definition for QNs, it is independent of the number of

jobs circulating in the system.

The following will define the inlined LQN stochastic process as jump
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vectors (representing the action induced by each node or activity) and

associated propensities. For each node, action, or task i, we indicate as
~Xi the multiplicity of i in the inlined LQN state, and with hi the jump

vector element corresponding to i. Given two nodes or activities x and y,

x→ y indicates an arc between x and y in the inlined LQN. We conclude

this section by showing the stochastic process induced by the running

example inlined LQN.

Activities After completing the computation, every job in activity a

evolves in the successor x (i.e., a → x). The probability of completing

each job is proportional to i) the number of jobs in a (i.e., ~Xa); ii) the

length of a’s computation, represented by rate(a); iii) the contention fac-

tor on a’s processor (i.e., sP where P = proc(a)). Generally, several ac-

tivities share P, and we need to define a scheduling policy to share P’s

CPUs. If there are more CPUs in P than jobs in activities willing to use it,

all jobs proceed unaffected (each job gets a dedicated CPU). Conversely,

we apply the CFS sharing policy that proportionally slows the jobs (i.e.,

each job gets the same ratio of access to the CPU). sP is defined as:

sP = min

(

MP
∑

b|proc(b)=P
~Xb

, 1

)

.

where MP is the multiplicity of P (i.e., the number of CPUs). We observe

that without contention sP = 1, conversely sP < 1.

Formally, the jump vector h induced by a and the corresponding

propensity q( ~X, ~X + h) are:

hi =











−1 if i = a

+1 if i = x

0 otherwise

; q( ~X, ~X + h) = ~Xa · rate(a) · sP (4.1)

where a → x, P = proc(a), and sP is the CFS sharing policy defined

before.

Acquire nodes Jobs in acquire nodes r evolve in the subsequent node

x (i.e, r → x) as soon as a thread is available in the affected threadpool
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T = acq(r). The thread acquisition is immediate, i.e., it happens with a

rate (speed) much higher than any computation in the LQN. We model

this rate with the constant H such as H >> rate(a) for each activity

a. This ensures that the scheduling activities happen before the compu-

tations as far as they are enabled (i.e., positive propensity) [Tri13]. This

allows modeling transitions in two timescales, one representing very fast

events like processor scheduling and the other for regular events like ap-

plication service demands. Similarly to the activity case, the propensity

is the product of i) the number of jobs in r (i.e., ~Xr); ii) the immediate tran-

sition rate H ; iii) the contention factor on the threadpool T, gT. gT models

the division of the free threads ~XT among all the requests, according to

the GPS policy. gT is defined as:

gT = min

(

~XT
∑

n|acq(n)=T
~Xn

, 1

)

.

where ~XT is the number of free threads in T. If there are enough free

threads, each request is fulfilled (gT = 1); otherwise, they are divided

proportionally to the number of requests (gT < 1).

We are now ready to formally define the jump vector h induced by r

and its propensity q( ~X, ~X + h):

hi =











−1 if i ∈ {r, T}

+1 if i = x

0 otherwise

; q( ~X, ~X + h) = ~Xr ·H · gT (4.2)

Release nodes Release nodes q immediately release the thread T =

rel(q) and evolve to the next node x (i.e., q → x). Alike acquire nodes,

this action is immediate. The propensity of this node is also proportional

to the number of jobs in q (i.e., ~Xq). The jump vector h induced by q and

its propensity q( ~X, ~X + h) are:

hi =











−1 if i = q

+1 if i ∈ {x, T}

0 otherwise

; q( ~X, ~X + h) = H · ~Xq (4.3)
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OR-nodes OR-nodes o evolve immediately into one branch according

to their probabilities. We encode this by creating a jump vector h for each

branch, that moves to the branch’s first node x (o→ x). The propensity is

proportional to the number of jobs in o ( ~Xo), the immediate rate H , and

the probability of choosing that branch (prob(o, x)). We remark that each

job chooses a branch independently from the others. We define the jump

vectors h and propensities q( ~X, ~X + h) as:

hi =











−1 if i = o

+1 if i = x

0 otherwise

; q( ~X, ~X + h) = ~Xo ·H · prob(o, x) (4.4)

Fork and join structures: AND, join, wait nodes To clarify the discus-

sion, we present the nodes involved in fork and join structures (i.e., AND,

join, wait nodes) together. AND-nodes f, which represent where the fork-

ing happens, evolve immediately into both branches. For each branch,

we define a jump vector h that leads to the first node of the branch x

(f→ x) and the corresponding propensity q( ~X, ~X + h) as follows:

hi =











−1 if i = f

+1 if i = x

0 otherwise

; q( ~X, ~X + h) = H · ~Xf (4.5)

Join nodes j wait for a job in corresponding wait node w (i.e., the one

with w→ j) to ensure that both branches are completed; after that, the job

goes in x, i.e., the successor of j (j → x). The propensity of this transition

is proportional to the number of jobs that completed both branches, i.e.,

min( ~Xj, ~Xw), and the immediate action rate H . Therefore, we define the

jump vector h and propensity q( ~X, ~X + h) as follows:

hi =











−1 if i ∈ {j,w}

+1 if i = x

0 otherwise

; q( ~X, ~X + h) = min
(

~Xj, ~Xw

)

·H (4.6)

We do not define a jump vector for w, as j’s jump vector already models

its effect.
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Running example We continue the running example (Figure 17) and

define the stochastic process induced by the inlined LQN of Figure 18. To

simplify the discussion, we enumerate the jump vectors as h(1), h(2), . . . ,

h(8), with the corresponding propensities q( ~X, ~X + h(1)), q( ~X, ~X + h(2)),

. . . , q( ~X, ~X + h(8)).

We observe that the number of clients is at most 10, as the concur-

rency level of the processor. Therefore ~Xthink1 + ~Xthink2 ≤ 10, hence:

sPA
= min

(

10

~Xthink1 + ~Xthink2

, 1

)

= 1

We also get:

sPBD
= min

(

8

~XcompB + ~Xselect

, 1

)

gTB
= min

(

~XTB

~XrB

, 1

)

gTD
= min

(

~XTD

~XrD

, 1

)

We get the following jump vectors:

think1 , rB , compB , qB , think2 , rD , select , qD , TB , TD

h(1) = ( −1 , +1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )
h(2) = ( 0 , −1 , +1 , 0 , 0 , 0 , 0 , 0 , −1 , 0 )
h(3) = ( 0 , 0 , −1 , +1 , 0 , 0 , 0 , 0 , 0 , 0 )
h(4) = ( 0 , 0 , 0 , −1 , +1 , 0 , 0 , 0 , +1 , 0 )
h(5) = ( 0 , 0 , 0 , 0 , −1 , +1 , 0 , 0 , 0 , 0 )
h(6) = ( 0 , 0 , 0 , 0 , 0 , −1 , +1 , 0 , 0 , −1)
h(7) = ( 0 , 0 , 0 , 0 , 0 , 0 , −1 , +1 , 0 , 0 )
h(8) = ( +1 , 0 , 0 , 0 , 0 , 0 , 0 , −1 , 0 , +1)

(4.7)
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with the following propensities:

q( ~X, ~X + h(1)) = 10 ~Xthink1

q( ~X, ~X + h(2)) = H ~XrB
min

(

~XTB

~XrB

, 1

)

q( ~X, ~X + h(3)) = 20 ~XcompB min
(

8
~XcompB+ ~Xselect

, 1
)

q( ~X, ~X + h(4)) = H ~XqB

q( ~X, ~X + h(5)) = 10 ~Xthink2

q( ~X, ~X + h(6)) = H ~XrD
min

(

~XTD

~XrD

, 1

)

q( ~X, ~X + h(7)) = 25 ~Xselect min
(

8
~XcompB+ ~Xselect

, 1
)

q( ~X, ~X + h(8)) = H ~XqD

(4.8)

We briefly describe each jump vector:

• h(1) is induced by the activity think1 and represents jobs completing

that activity with propensity proportional to the number of jobs in

think1 (i.e., ~Xthink1), the rate of think1 (rate(think1) = 1/0.1 = 10),

and the processor scheduling factor sPA
= 1;

• h(2) is induced by the acquire node rB and represents jobs com-

peting for a thread from task TB with propensity proportional to

the number of jobs in rB (i.e., ~XrB
), the immediate rate H , and the

scheduling factor gTB
;

• h(3) is induced by the activity compB and represents jobs complet-

ing that activity with propensity proportional to the number of jobs

in compB (i.e., ~XcompB), the rate of compB (rate(compB) = 1/0.05 =

20), and the processor scheduling factor sPBD
;

• h(4) is induced by the release node qB and represents jobs that re-

lease their thread to task TB’s threadpool with propensity propor-

tional to the number of jobs in qB ( ~XqB
) and the immediate rate H ;

• h(5) is induced by the activity think2 and represents jobs completing

that activity with propensity proportional to the number of jobs in

think2 (i.e., ~Xthink2), the rate of think2 (rate(think2) = 1/0.1 = 10), and

the processor scheduling factor sPA
= 1;
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• h(6) is induced by the acquire node rD and represents jobs com-

peting for a thread from task TD with propensity proportional to

the number of jobs in rD (i.e., ~XrD
), the immediate rate H , and the

scheduling factor gTD
;

• h(7) is induced by the activity select and represents jobs completing

that activity with propensity proportional to the number of jobs in

select (i.e., ~Xselect), the rate of select (rate(select) = 1/0.04 = 25),

and the processor scheduling factor sPBD
;

• h(8) is induced by the release node qD and represents jobs that re-

lease their thread to task TD’s threadpool with propensity propor-

tional to the number of jobs in qD ( ~XqD
) and the immediate rate H .

4.1.3 Fluid approximation

Once we have all the jump vectors and the propensities, we can define

the fluid approximation analogously to Section 2.1.2. The fluid approxi-

mation is defined as:

Ẋ( ~X)i =

R
∑

l=1

h
(l)
i q( ~X, ~X + h(l)) (4.9)

where i is an activity, node or task, and R is the number of jump vectors

(see Section 4.1.2).

4.2 Learning methodology

We estimate the LQN service demands through a Recurrent Neural Net-

work (RNN). The approach is similar to the one presented in Chapter 3:

the RNN considers a discretized version of the fluid approximation pre-

sented in Section 4.1.1, where each cell computes one advancement step

from the (projected) LQN state to the next one. Unlike the QN approach,

it is limited to estimating the service demands without learning the struc-

ture.
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4.2.1 The integration method and the RNN

The RNN cell is built to mimic one step of the time-discretized LQN ac-

cording to the fluid approximation. The cell has a structure that depends

on the structure of the LQN being studied, with the service rates left as

weights to be learned. This way, we directly connect the RNN weights

and the system parameters, as in Chapter 3. Owing to the connection

between RNN weights and the LQN model (i.e., we have a white-box

model), we also keep the advantages of Chapter 3’s approach: we can

predict the dynamics of the system under different conditions than the

ones seen at learning time, as we can replicate the system modifications

on the model.

We apply the Strang Splitting method [MS16] to deal with stiffness

in the fluid approximation. The fluid approximation introduces the term

H to approximate instantaneous events, a large constant wrt. the rates

to be learned (see Section 4.1.1). With such a different magnitude from

other terms, this term introduces stiffness in the solution [AP98], which

should, in principle, be dealt with using tiny integration steps. Such tiny

integration steps create a deep RNN, with many cells that are slow to in-

tegrate and require vast amounts of memory. Thanks to Strang Splitting,

we decompose differential equations as a sum of differential operators,

each with its own timescale, which allows us to treat them differently.

We apply Strang Splitting by separating the equation terms into two

operators: the ones that embed the H coefficient (that we call fast oper-

ators) are integrated over a shorter horizon. In contrast, the remaining

ones (the slow operators) are integrated over a longer time horizon. We re-

alize this by defining a vector F of length R where Fl = 1 if q( ~X, ~X+h(l))

contains H (i.e., the propensity associated to the jump vector h(l) contains

H), otherwise Fl = 0. We now incorporate F into the fluid approxima-
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Algorithm 1 Forward Euler plus Strang splitting schema.

Require: X̂(t),∆t

Ensure: X̂(t+∆t)
1: X1 ← X̂(t) + Ẋf (X̂(t))0.5∆t
2: X2 ← X1 + Ẋs(X1)∆t
3: X̂(t+∆t)← X2 + Ẋf (X2)0.5∆t

tion equation (see Equation (4.9)) in this way:

Ẋf ( ~X)i =

r
∑

l=1

h
(l)
i Flq( ~X, ~X + h(l))

Ẋs( ~X)i =

r
∑

l=1

h
(l)
i (1− Fl)q( ~X, ~X + h(l)) (4.10)

for each node, activity, and task i.

Algorithm 1 computes the integration of Ẋ on the interval [0,∆] with

X(0) = x using the Strang Splitting technique and the forward Euler

method [AP98]. The fast operator is repeated multiple times, interleaved

with the slow ones, to compensate for the different integration horizons.

With this approach, we reduce the computation costs where the equation

is less stiff. The RNN cell computes X̂(t + ∆t) given X̂(t) with one fast

integration using 0.5∆t horizon, followed by a slow integration using ∆t

horizon and another fast integration using 0.5∆t horizon. This method

does not guarantee the integration quality but proved satisfactorily pre-

cise if the integration step ∆t is small enough.

Running example We apply Algorithm 1 to the running example. We

observe that, among the propensities (see Equation (4.8)), q( ~X, ~X+h(2)),

q( ~X, ~X + h(4)), q( ~X, ~X + h(6)), and q( ~X, ~X + h(8)) belong to the fast

operator, while the remainder ones to the slow operator; hence, F =

(0, 1, 0, 1, 0, 1, 0, 1).

We now obtain the fluid approximation for fast and slow operators
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(see Equation (4.10)) as follows:

Ẋf ( ~X) = h(2)q( ~X, ~X + h(2)) + h(4)q( ~X, ~X + h(4))+

+h(6)q( ~X, ~X + h(6)) + h(8)q( ~X, ~X + h(8))

=
∑

l∈{2,4,6,8} h
(l)q( ~X, ~X + h(l))

and

Ẋs( ~X) = h(1)q( ~X, ~X + h(1)) + h(3)q( ~X, ~X + h(3))+

+h(5)q( ~X, ~X + h(5)) + h(7)q( ~X, ~X + h(7))

=
∑

l∈{1,3,5,7} h
(l)q( ~X, ~X + h(l))

We are ready to incorporate the operators into the algorithm. We

compute the integration of the LQN on X̂(t) over a step of size ∆t (i.e.,

X̂(t + ∆t)). Firstly, we integrate the fast operator on X̂(t) over the first

half of the step (0.5∆t):

X1 = X̂(t) + Ẋf (X̂(t))0.5∆t

= X̂(t) +
(

∑

l∈{2,4,6,8} h
(l)q(X̂(t), X̂(t) + h(l))

)

0.5∆t

Now, we integrate the slow operator on X1 over the whole integra-

tion step ∆t:

X2 = X1 + Ẋs(X1)∆t

= X1 +
(

∑

l∈{1,3,5,7} h
(l)q(X1, X1 + h(l))

)

∆t

We conclude by integrating the fast operator on X2 over the second

half of the integration step (0.5∆t):

X̂(t+∆t) = X2 + Ẋf (X2)0.5∆t

= X2 +
(

∑

l∈{2,4,6,8} h
(l)q(X2, X2 + h(l))

)

0.5∆t

4.2.2 RNN setting

The RNN we propose learns the service rates from a set of traces. Intu-

itively, they represent the speed of the computational part of the systems:

in the running example, we learn the rates µthink1, µthink2, µcompB , and
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µselect. The traces contain the queue lengths, sampled at regular time in-

tervals, and are all of the same length. The traces set is partitioned in the

training set (80%) and the validation set (the remaining 20%).

The RNN is trained with the Adam algorithm [KB15] using the learn-

ing rate set at 0.1 and the integration step ∆t = 0.002. The learning con-

tinues until the error computed on the validation set does not improve

for 30 iterations. We use the Mean Absolute Error (MAE) as the error

function between the ground truth traces and the RNN-predicted ones,

divided by the total number of jobs in the system (which is fixed, thanks

to the closed system assumption, see Section 2.1). Intuitively, it measures

the proportion of misplaced jobs in the queues by the prediction.

4.3 Numerical Evaluation

We evaluate our method’s estimation accuracy through synthetic and

real case studies. Specifically, we measure the relative prediction er-

ror on the response time between the one observed in the original sys-

tem against the one predicted by the LQN using the learned service de-

mands. The replication package for this experimentation is available at

https://doi.org/10.5281/zenodo.8330607.

4.3.1 Synthetic case studies

We considered three LQN models taken from the literature:

• Distributed Shop (shop) [Tri13];

• Microservices (msrv) [GCW19];

• Group Communication Server (gcs) [PS02].

We generated 40 different instances for each of the three case stud-

ies by sampling random values for each model parameter: number of

clients, task threadpool size, service rates, processor multiplicities, and

branch probabilities. Table 1 shows the sampling range of each model’s

parameters. To improve the coverage of the domain of our approach,
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Case study Clients
Threadpool

sizes
Processor

multiplicities
Activity

service times

shop [10, 100] [2, 60] [1, 60] [0.002, 1]
msrv [50, 200] [1, 70] [1, 20] [0.004, 1]
gcs [80, 150] [5, 100] [5, 100] [0.002, 0.1]

Table 1: Instances generation ranges. OR-nodes probabilities are generated
in [0, 1] and form sound probability distributions.

some synchronous calls are transformed into asynchronous ones. As

said, the RNN must learn each activity service rate in the LQNs.

Setup We now describe how we make the learning dataset traces (the

sum of training and validation set) for each LQN instance. We consid-

ered 100 distinct initial population vectors, each one being a valid state in

the LQN fluid approximation (see Section 4.1.2 for more details), plus the

extreme ones where all system user start in each of the LQN entries. Each

of the starting points, together with the LQN fluid approximation, is sim-

ulated 100 times using StochKit [San+11], sampled every 0.2 time-units,

to obtain traces 5 time-units long, and we use the average of such traces.

For the learning phase, we used a Google Cloud Compute Engine in-

stance with 96 vCPUs, where each Compute Engine instance learned up

to 5 instances in parallel. The learning phases took (on average) 6h45m

for each shop instance, 5h09m for each msrv instance, and 6h34m for

each gcs instance.

What-if To evaluate the quality of the model in scenarios not used in

the learning phase, we perform a what-if analysis on the number of jobs

circulating the system. Namely, we compared the response times using

the true parameters against the learned parameters where the LQN has

k∈{2, · · · , 10} times the jobs used at learning time. This range allows us

to test the system under different saturation levels (i.e., moderate to se-

vere). This allows us to see if our model fits the system correctly, rather

than just replicating the observed inputs. In the first three boxplots of
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Figure 19: Response time prediction accuracy with population sizes not
used during the learning.

Figure 19, we see: on the top line the average response time of all in-

stances, on the x-axis of the plot the job multiplication factor k, on the

y-axis the response time prediction error (in percentage). In each box

plot, the red line is the average prediction error, the box represents val-

ues between the 25th and 75th percentile, whiskers extend to extreme

values, and red crosses are outliers; on the top x axis, the average ob-

served response times. We observe that the response time is always pre-

dicted with at most a 5% error even when the response time increases,

thus with a good generalization across all the case studies.
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4.3.2 Real Case Study

We now apply our approach to a real case study, i.e., on the data ex-

tracted from a Java implementation of the msrv [GCW19] case study.

The objective of this section is to show that:

1. it is possible to measure, in a real system, the number of jobs in

each state of the LQN fluid approximation;

2. the GPS thread scheduler is easily implementable in a real system;

3. (as a consequence of 1 and 2) this approach is effectively usable in

a real context;

In the Java-based implementation of msrv, we associate each task to

a Java HttpServer 1 where each context corresponds to an entry, while

entry calls are realized through (synchronous or asynchronous) HTTP

requests. Each HttpServer stores the incoming requests in a set and

associates each to the requested entry. HttpServer is associated with

a threadpool of workers that continuously pick one request from the in-

coming set uniformly at random (realizing GPS) and serve it. The Java

implementation stores the number of clients in each fluid approximation

state in a Redis database 2. The Redis database is a large-scale key-value

database with many industrial applications that executes operations on

different elements concurrently: therefore, its impact on performance is

negligible. We obtain the learning traces by periodically sampling the

queue lengths from the database during the executions. We run our case

study on a machine using the Linux kernel, where processor cores are

scheduled using the CFS policy 3. The Java implementation is paramet-

ric, alike the synthetic case study, such as to test the learning under many

configurations.

1https://javadoc.scijava.org/Java14/jdk.httpserver/module-summa

ry.html
2https://redis.io/
3https://www.kernel.org/doc/html/latest/scheduler/sched-design-

CFS.html
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Setup For the real case study, we generated 40 instances alike to Sec-

tion 4.3.1. We generated 100 traces for each instance, with between 50

and 200 clients. Each trace is 5 seconds long, with the queue lengths

sampled from Redis every 0.2 seconds. The RNNs completed the learn-

ing procedure in about 5 hours on Google Cloud Compute Engine.

What-if We repeated the analysis of Section 4.3.1 on the real case study,

performing a what-if analysis on the number of clients that circulate the

system. The plot labeled real of Figure 19 shows the prediction error

on the real case study, in line with the synthetic counterpart (msrv). We

observe analogous prediction errors, with few outlier instances between

5% and 6%.

4.3.3 Discussion of the results

In this section, we proved that, for the synthetic case studies:

• we can calibrate three different LQN models taken from the litera-

ture, each one instantiated with 40 different choices of parameters,

using synthetic data;

• we can perform what-if analysis over the number of clients circu-

lating the system and accurately predict the new response time.

With the real case study, we proved that:

• we can easily implement the GPS scheduling policy;

• we can extract the performance data needed to calibrate the LQN

from a running real system;

• the procedure exposed in this chapter is applicable in a real context;

• the calibration procedure leads to an LQN model that produces re-

liable predictions of the real system.
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Chapter 5

µP: A Development
Framework for Predicting
Performance of
Microservices by Design

The technique proposed in Chapter 4 requires significant user interven-

tion in the modeling process. The developer must provide an accurate

description of the system internals (e.g., deployment schema, and inter-

action patterns) to enjoy faithful performance predictions. This require-

ment is a barrier to adopting performance evaluation practices: the de-

veloper must be knowledgeable of both the software domain and the

modeling techniques to craft accurate models. Moreover, modern soft-

ware engineering dictates continuous development cycles that imply fre-

quent revisions to the performance model.

In this chapter, we want to overcome this requirement by automati-

cally deriving the full model of the system. We already attempted this in

Chapter 3’s approach, where we require minimal information about the

system (the queue lengths), but it is limited to simple systems. We need

to relax those assumptions by adopting a more expressive model, such

as LQNs, to study industrial cloud applications. Conversely to what we
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Figure 20: Overview of µP.

did in Chapter 4, we extract details about the internal structure of the

system from its source code.

We concentrate on the microservice (MS) architecture, which is ubiq-

uitous in cloud-based software system design. Its key concept is to de-

velop applications as a suite of small interacting components, i.e., mi-

croservices, each running in its own process and communicating with

lightweight mechanisms such as restful API [RR08]. This paradigm has

attracted the attention from the industry; indeed, major vendors such

as Amazon, Netflix, and Spotify have reportedly embraced MS [Blo13;

sta15; Gol15]. We remark that LQNs provide constructs that directly

map over MS primitives such as fork/join behavior, synchronous and

asynchronous communication.

This chapter proposes µP, a framework to develop MS systems with

predictable performance without further developer intervention beyond

writing the actual code. The developer must adopt the APIs made avail-

able by µP, whose interface is similar to several state-of-the-art frame-

works (e.g., Node.js and Java Spring Boot). To make this performant-by-

construction objective possible, µP automatically generates an underlying

performance model based on a fragment of layered queuing networks

(LQNs) [FAW+09].
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Figure 20 depicts an overview of µP. The starting point is the source

code written using µP’s API. From this, µP derives the static part of the

performance model, i.e., which microservices and endpoints are avail-

able and their communication patterns. The static part of the model is

an LQN with all the task, entries, activities, and arcs but lacking the ex-

ecution time parameters and branching probabilities, which are learned

at run-time. To this end, the system is deployed on the target platform

and exercised through short explorative executions issued by a single

user. During this phase, only application-level information is recorded,

i.e., the execution time of each endpoint. This is readily available from

lightweight monitoring tools (e.g., for the Java-based µP API, we rely

on the nanoTime method) and represents a major difference with re-

spect to state-of-the-art approaches based on profiling and monitoring,

which discover the relationship between system’s performance and its

configurations by using low-level information such as CPU timing or

I/O ratio [COQ21], which may not always be accessible. At the end of

this analysis, we get a calibrated LQN model (i.e., with branching proba-

bilities and execution times) that represents each part of the distributed

system. µP provides several tools for developers to conduct what-if anal-

yses without modifying the code. What-if analysis can answer questions

regarding load variation (which will be the response time and through-

put if we double the number of users), horizontal scalability (what will

be the system dynamics after replicating one or more of its microservices)

62



and vertical scalability (what happens if we assign to some microservices

an increased amount of CPU cores).

Using a Java prototype, we analyze the predictive power of µP gen-

erated performance models of four benchmark MS applications. Our ex-

periments show prediction errors consistently lower than ∼10% also un-

der operating conditions not included in the datasets used for learning

which exposed significant variations to response time and CPU utiliza-

tion.

Running example Figure 21 shows the architecture of the running ex-

ample used in this chapter. We will indicate microservice instances us-

ing the monospaced font. It has two microservices (A and B), plus a

Registry. This running example is similar to the one analyzed in Chap-

ter 4, plus the Registry microservice. The registry is a standard utility

microservice that allows for a highly flexible MS deployment where com-

ponents might come and leave the system at runtime. It is the only com-

ponent that knows the identity of each instance of the microservices and

the network topology. Each MS is equipped with different endpoints,

denoted by an oblique line. A offers the epA endpoint that interacts with

B and the database. B offers the epB endpoint that computes and returns

a text. Registry offers the register endpoint to register a new live

instance of a microservice and the resolve endpoint to return the URI

of an instance.

The remainder of the chapter is organized as follows. Section 5.1

presents the µP framework API. Section 5.2 describes how µP builds the

performance model from the code and the log of the explorative execu-

tions. Finally, Section 5.3 presents the numerical evaluation.

5.1 µP: Framework API

The API of µP is designed as a lightweight API that embeds the main

concepts of the MS paradigm. Its API is similar to the most popular

frameworks, like Spring Boot and Node.js. Figure 22 shows the class di-

agram. µP is language-agnostic, i.e., any object-oriented language with
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Registry

+ «EP» resolve(comm)
+ «EP» register(comm)

MS

+ poolSize: int
+ replicas: int
+ port: int
+ registry: URI

+ main(args)

Communication

+ params: Map<String,String>

+ call(dest_ms, path, cparams): µPFuture<String>
+ respond(body)
+ query(db_name, qry_name, coll_name, qry_txt): 
                                         µPFuture <Document[]>

0..*

µPFuture<T>

+ «override» T get()

0..*
java.util.concurrent.

Future<T>

«annotation»
EP

+ path: String

Figure 22: UML class diagram of µP’s API.

message-passing technology is suitable for implementation. In this chap-

ter, we consider a Java-based prototypical implementation and, in addi-

tion to the methods discussed in this section, µP applications are com-

patible with all the libraries of a standard Java application.

The abstract class MS represents the central actor of µP: developers

subclass it to write their microservices (see Section 5.1.1). Methods that

encode endpoints are annotated with EP. Registry is the microservice

that implements the registry. The Communication class handles the

communication between microservice and databases. Our implementa-

tion directly supports MongoDB databases; as future work, we plan to

support other DBMSs. Finally, µPFuture is our specialization of Java’s

Future.

5.1.1 Microservices Definition

In µP, each microservice is defined by subclassing MS and by specifying

the TCP port on which it accepts incoming requests; replicas, the

number of independent copies of the microservice (replicas); and pool-

Size, the threadpool size of each replica. Here we assume that microser-

vice replicas are equivalent and independent; we leave non-equivalent

replicas as future work.
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The body of each endpoint is written as a regular void method with

the @EP annotation and takes a Communication object as input. The

@EP annotation has one attribute, called path, that specifies the end-

point’s path. The Communication class encapsulates the communica-

tion infrastructure of the framework.

Call to endpoints The Communication.call(dest ms, path,

cparams) method establishes an asynchronous point-to-point channel

between the calling microservice and the called one, i.e., dest ms, at

path path. At each invocation, µP spawns an auxiliary thread (in addi-

tion to those that form the threadpool of a microservice) responsible for

managing the communication. The auxiliary thread contacts the registry

through resolve to get the URI of a random replica of the microservice

dest ms (each replica of dest ms has the same probability of being cho-

sen). It then contacts the chosen replica and calls the specified endpoint

(path) with the parameters stated in cparams. Each time the call

method is invoked, it returns a µPFuture, i.e., an object representing

the communication. The µPFuture class has the method get() which

blocks until the auxiliary thread gets the callee’s response. As said, µP’s

default communication pattern is asynchronous; the developer can real-

ize a synchronous communication by invoking the get() method of the

µPFuture object [DCJ07].

Database communication We treat databases as blackbox entities with

internals unknown to µP. The developers must register database instances

through the Registry.register, passing as parameters the database

name and the URI at which it is reachable. µP applications then interact

with databases using the Communication.query method. Communi-

cation.query(db name, qry name, coll name, qry txt) rep-

resents a specialized version of call to perform a query on a MongoDB

database. The db name argument specifies the name of the database to

contact, qry name is a label that identifies the query, coll name is the

name of the collection in the database to query, and qry txt is a string

with the JSON encoding of the query. The return value of Communica-
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1 class A extends MS {

2 poolSize = 5; replicas = 1;

3 @EP("/epA/") public void epA(comm){

4 bfuture = comm.call("B", "/epB/", comm.params);

5 bstr = bfuture.get();

6 dq = comm.query("db", "qry", "tr",

"{\"_id\":\""+comm.params["word"]+"\"}");

7 qstr = dq.get();

8 ans = bstr + "=>" + qstr[0];

9 comm.respond(ans);}

10 }

11 class B extends MS {

12 poolSize = 2; replicas = 1;

13 @EP("/epB/") public void epB(comm){

14 hw = "hello" + "world";

15 comm.respond(hw);}

16 }

Figure 23: Microservices definitions using µP.

tion.query is a future that terminates with the returned records from

the database.

End of the endpoint Once the endpoint is completed, it sends the re-

sponse to the caller via the Communication.respond method.

Running Example Figure 23 shows the code for our running example,

using an object-oriented pseudolanguage. The A microservice (with 5

threads) is implemented at lines 1–10. A’s only endpoint, epA (lines 3–9),

calls the B microservice (line 4) and the database (line 6), then it returns

the response. The B microservice is implemented at lines 11–16. B de-

fines the epB endpoint (lines 13–15) that computes a string (line 14) and

returns it (line 15).

5.1.2 Microservice Instantiation

µP microservices are launched as regular Java programs. Registry is

launched without arguments, while the user-defined microservices re-

quire the URI at which the Registry is listening (i.e., MS.registry).
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Upon startup, each MS instantiates an HTTP server listening on the mi-

croservice’s port and advertises itself to the registry by calling the re-

gister endpoint. Upon receiving a request, a microservice determines

the target endpoint to call (i.e., the annotated method) by looking at the

request path and executes requests one after the other in a first-come-

first-served fashion.

5.2 µP: LQN Model Derivation

The µP framework produces the LQN model of an MS system in two

phases: static and dynamic analysis. The former derives the structure

of the corresponding LQN model. The latter calibrates the LQN param-

eters (i.e., service demands and branch probabilities) using the logs of

explorative execution runs.

5.2.1 Static analysis

The static analysis parses the MS system source code using JavaParser 1,

looks for syntactic features (e.g., annotations, declarations, or if state-

ments), and maps them into LQN constructs. The output of this phase is

an uncalibrated LQN, i.e., an LQN model with all tasks, entries, nodes,

activities, and arcs, but without any numeric value such as service-time

distribution and branch probability (see Section 2.2 for a detailed de-

scription of the LQN paradigm). In the following, we describe the static

analysis process of µP.

Network communication Network communication is directly repre-

sented by a task (called Net) that describes all the network communi-

cations between the system components. Unlike other tasks, Net does

not have a software code counterpart but represents a hidden system re-

source.

We assume the network bandwidth is large enough to deliver the

messages without contention. The µP generated LQN model represents

1https://javaparser.org/
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this by assigning an infinite concurrency level to the Net task. Section 6.2

mentions a possible future research direction to mitigate such assump-

tion; however, in our case studies, it did not affect the model prediction

quality even under severe load (see Section 5.3).

Each endpoint call (i.e., an invocation of Communication.call)

generates a specific entry in the Net task that models the network time re-

quired for sending the request and receiving the corresponding response.

Net entries allow us to separate the time spent communicating on the

network from the time spent computing the response. We distinguish the

two times as the contention affects only computation time, not commu-

nication time. This is important for accurate predictions under various

load levels (see Section 5.3.1). Instead, this distinction does not apply to

communication involving Registry or databases as those entities are

concurrent enough to not suffer from contention. Thus, we include net-

work time inside the Registry and query service time without degrad-

ing model accuracy.

Databases Each database is modeled as a task whose entries represent

queries. Queries are performed through the Communication.query

API (see Section 5.1.1). We identify databases by looking for the indi-

vidual db name arguments of Communication.query; then we popu-

late each task with an entry for each query (i.e., the distinct qry name

arguments among Communication.query calls that share the same

db name). Designing an accurate concurrency model for databases is

an open problem [OK12]; therefore, we assume that the database is not

the critical component of the system. Our solution models each database

as an infinite server (i.e., each database task has an infinite threadpool).

Each entry in the database task models the time to perform a query and

its network communication without considering the inner details. The

LQN model is flexible enough to incorporate a more accurate database

description if available: we refer the reader to Section 6.2 for more details.

However, in the case studies considered in Section 5.3, this assumption

did not impair the model prediction power.
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namic analysis (see Section 5.2.2).

Figure 24: Static analysis applied to Figure 23.

Microservices µP translates each microservice class to an LQN task

with the same name. The parser identifies the microservice classes by

looking for class declarations that inherit from µP’s MS class (see Sec-

tion 5.1.1). The threadpool size is the number of software threads as-

signed to them (i.e., MS.poolSize of Figure 22); the replication number

is the number of replicas of the microservice (i.e., MS.replicas of Fig-

ure 22). Although those parameters are statically identified, the devel-

oper can use µP tools to change them to perform what-if analysis under

new deployment scenarios.

Endpoints Each Endpoint is translated in an entry inside the corre-

sponding microservice’s task. The parser identifies endpoints by looking

for EP-annotated methods within microservice classes. The body of each

such method is analyzed to produce its LQN representation.

Endpoint’s logic From the endpoint source code, we derive the corre-

sponding entry’s control flow (i.e., the LQN encoding of how the end-

point interacts with each other). As a first step we transform the original

MS code into a semantically equivalent version but without loops (via

loop unwinding [Aho+07]) and method invocations (via inline expan-

sion [Aho+07]).
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We then analyze the inlined and unrolled endpoint code to generate

its control flow graph (CFG) [All70], i.e., a graph where each node corre-

sponds to a program statement, and arcs connect adjacent statements. In

our case, nodes of the CFG form a direct acyclic graph (DAG) and gen-

erally have one outbound arc, except for if and switch statements that

have multiple outbound arcs (one for each possible branch), and the last

statement that does not have any outbound arc.

To carry out the translation of an endpoint in the corresponding LQN,

we divide the CFG nodes into two categories: local and remote. State-

ments performing computations that do not contact other microservices

or databases (e.g., assignments, insertion in a list, ...) are annotated with

local. Remote nodes, instead, represent invocations to one of the fol-

lowing µP methods: Communication.call, Communication.query,

µPFuture.get, or Communication.respond (i.e., the µP communi-

cation APIs). We annotate remote nodes with the name of the invoked

method. In µP, we model explicitly how microservices communicate. On

the other hand, we collate groups of adjacent local nodes together. For

example, complex algorithms that do not involve communication (e.g.,

sorting) appear as a single node in the final LQN model while their possi-

bly variable runtimes will be captured through service time distributions

(see Section 5.2.2).

Once the CFG is built, we traverse it to extract all the possible paths,

each modeling a distinct sequence of operations. In our benchmarks,

we observed at most two paths in an endpoint. This is because the MS

architecture favors compact reusable endpoints [Ric18] with limited con-

cerns, leading to simple control flows. Each path is then converted into

its LQN representation by replacing path nodes with the corresponding

LQN components. The LQN translation of local and remote nodes is de-

tailed below.

A Communication.call node is translated into an LQN AND-node

which splits the logic of the entry into two concurrent branches (i.e., fork-

ing behavior): a main thread that follows the regular execution flow

of the endpoint and an auxiliary thread that takes care of the commu-

nication asynchronously. This mapping mechanism allows the model-
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ing of the synch/asynch communication paradigm underlying modern

MS frameworks (i.e., Node.js asynch/await [LML17] or Java callable fu-

ture [UMF18]). The auxiliary thread induced by Communication.-

call node c has two activities: i) reg c, that represents the interaction

with Registry; ii) comm c, that calls Net’s exchange c (i.e., the entry

that represent c’s network communication time) and the destination end-

point’s entry (i.e., the one whose @EP annotation bears the Communica-

tion.call’s path argument). We remark that reg c is a load indepen-

dent delay (i.e., invariant to the active users in the system) as Registry

functionality is simple.

A Communication.query node is translated similarly to Commu-

nication.call without the call to exchange c, as µP factors the com-

munication time into the database query’s service time (see the Network

communication paragraph).

The CFG nodes labeled with µPFuture.get are translated into a

join node that terminates the corresponding Communication.call or

Communication.query auxiliary branch.

A local node n is translated into an activity comp n representing the

local computation with a stochastic computational weight as described

in Section 5.2.2.

A CFG path ends with a Communication.respond node, namely

r. When we encounter it, we create an activity resp r and mark it as

conclusive.

Finally, we connect the endpoint’s LQN entry to an OR-node with

an arc towards the first activity of each path, to encode the path choice

probabilistically.

Running example We apply static analysis on the source code of Fig-

ure 23 to derive the (uncalibrated) LQN model of Figure 24b. First, µP

creates an LQN model containing a task for each microservice definition,

i.e., the A and the B tasks that correspond to the A and B microservices

defined at line 1, and 3 of Figure 23. We then complete the declaration of

those tasks by assigning the corresponding replication factor and thread-

pool size (i.e., the attributes poolSize and replicas in Figure 23).
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Now that the outer structure of the LQN model is defined, µP ana-

lyzes the code of each endpoint, i.e., epA at lines 4–9, and epB at lines 14–

15 of Figure 23. Figure 24a depicts the annotated CFGs of those end-

points. Each node shows the annotation, the invoked endpoint or query

name (in case of remote nodes), and the CFG node identifier. Here we

use the line number as the node identifier such that the CFG node gener-

ated by the source code in line 4 has the 4 suffix. As expected, µP finds

only one path in both the CFGs since there are no conditional statements

neither in epA nor in epB. To simplify the discussion, we focus on build-

ing the LQN corresponding to epA while epB is similarly constructed.

The epA CFG (see Figure 24a) begins with a Communication.call

node which maps to the call towards the endpoint epB of line 4 of Fig-

ure 23. It identifies a microservice communication, which generates: the

task Net (as it is the first communication) and the Net’s exchange 4 en-

try that models the corresponding network time. In the epA’s LQN entry,

this Communication.call triggers the creation of an AND-node and

an auxiliary thread with two activities: i) reg 4 (registry invocation); ii)

comm 4, that calls Net’s exchange 4 entry and the B’s epB entry (i.e.,

the destination entry). The next node in the CFG corresponds with a

µPFuture.get and is translated into a join node that closes the previ-

ous communication (i.e., by blocking the main thread until a response is

received).

Proceeding with the encoding, µP translates the next CFG node, i.e.,

the one with the Communication.query annotation corresponding to

the statement in line 6 of Figure 23. This node is a database interaction

and generates a new task (db) which models the db database with the

qry entry. In the epA entry, the Communication.query is translated

similarly to a Communication.call node, i.e., we add in the model

the activities reg 6 (registry interaction), and comm 6 that calls the db’s

qry (i.e., the entry modeling the query). Analogously, we translate the

subsequent µPFuture.get node into a join node ending the database

communication. The next CFG node, i.e., the one with the local an-

notation, is mapped into the comp 8 activity, which stands for the lo-

cal computation at line 8 of Figure 23. Finally, the node annotated with
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Communication.respond, concludes this path and is mapped in the

LQN model with the resp 9 activity terminating the logic of the entry.

To consider endpoints with multiple paths, µP adds a probabilistic

choice as the first action of each entry (the initial OR node). This allows

us to model a probabilistic choice of the path to execute, and the proba-

bility is proportional to the number of times a path has been observed in

the explorative phase.

The uncalibrated LQN model of the running example is shown in

Figure 24b, where values indicated with ‘?’ will be estimated by dynamic

analysis of Section 5.2.2.

5.2.2 Dynamic analysis

Dynamic analysis completes (calibrates) the LQN model of Section 5.2.1

by computing service time distributions and branch probabilities using

the log of the system’s exploratory runs. We generate the logs by exciting

the endpoints of interest using a single-user workload to avoid resource

contention between concurrent requests. For each endpoint, we compute

the confidence interval of the observed execution time (i.e., the time span

between the beginning of a service and when it sends back the response)

using the batch means procedure [FY97]. We stop this exploratory phase

when, for each endpoint, the 95% confidence interval is wide at most 1%

of its average. µP does not directly instrument database queries; rather,

we use an indirect approach to quantify database performance through

endpoints’ logs that invoke them. This approach allows using commer-

cial DBMSs, where modifying their source code is impossible or hard.

We observe that considering a single-user workload is not a limita-

tion. More precisely, if there are multiple classes of users, we can perform

the explorative execution with a workload that probabilistically chooses

which behavior to take among the possible ones.

This section first discusses the log structure, then details the model

calibration procedure. We apply this procedure to the running example

to obtain its final LQN model.
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Log Structure Each endpoint automatically keeps a distinct log (i.e., a

sequence of events) for each of its executions. We call event a step in

the endpoint’s execution: those are generated and stored by µP frame-

work implementation. µP defines five types of events: begin, end,

commStart, contactDest and commFinish. The first two events de-

limit each log: begin, emitted when the endpoint execution begins;

end, emitted by the invocation of Communication.respond (that con-

cludes each endpoint code). Thus, the overall endpoint’s execution time

is the interval between the begin and end events. Each invocation of

Communication.call and Communication.query produces three

events: i) commStart, immediately after invocation; ii) contactDest,

when the microservice/database request is sent to the destination; iii)

commFinish, when the microservice/database response is received. The

events have an associated set of attributes. All the events have the time

attribute, the timestamp of when the event was emitted. Communica-

tion events have an extra attribute, called dest, that identifies the called

endpoint or database query.

Model calibration Once the exploratory phase is completed, we per-

form a quantitative analysis of its execution logs. First, µP estimates the

mean execution time of each endpoint by averaging the difference be-

tween the time attribute of the begin and the end events for each ex-

ecution of the same endpoint. Then, the logs corresponding to several

executions of the same endpoint are partitioned according to the CFG

path that generated them. For example, to calibrate the LQN model of

an endpoint with two distinct execution paths (e.g., due to an if statement

in the code), the logs generated by that endpoint will be partitioned into

two subsets, each corresponding to a specific path. Then by following

the corresponding CFGs, µP identifies in the log the events necessary for

calibrating the activities that represent them in the LQN model.

µP first calibrates the LQN activities related to communication, i.e.,

the CFG nodes annotated with Communication.call and Communi-

cation.query. In particular, for each communication node c present

in an endpoint’s CFG, we scan each log of each partition looking for the
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communication events whose dest attribute is the destination of c. To

finalize the calibration µP tracks the following time intervals: i) reg c

(i.e., the registry interaction time) is the time between the commStart

and contactDest events; ii) exchange c (i.e., the network communi-

cation time in case the node is contacting another endpoint) is the time

between the commStart and contactDest events minus the mean ex-

ecution time of contacted endpoint; iii) db c (i.e., the contacted query ex-

ecution time in case the node is submitting a query) the time between

the commStart and contactDest events. We then calibrate the activi-

ties reg c, exchange c, and the contacted query entry by fitting a service

time distribution on, respectively, reg c, exchange c, and db c among all

the logs of a partition. In our case studies (see Section 5.3), the normal

distribution leads to precise models. comm n does not perform compu-

tational work; hence it does not need calibration.

Subsequently, µP calibrates all the activities comp n that correspond

to a local node n in the CFG. Similarly to the database’s case, µP does

not explicitly track CPU times, which must be indirectly estimated. We

do this because a direct estimate of the CPU times of each activity would

be hardly applicable in practice (i.e., a developer would have to explic-

itly delimit CPU-bound computation). Instead, µP uses the communi-

cation API events to indirectly infer the length of the local computation,

relieving the developer from the logging onus. In µP an endpoint is as-

sumed to perform local computation whenever it is not communicating,

and vice versa. For each local CFG node n, we need to find its the de-

limiting events, i.e., the pre n and post n events. To do this, we look

at the nodes adjacent to n in the path. For example, if n is between

the nodes m and p annotated, respectively, with µPFuture.get and

Communication.respond, this means that n happens after the end

of the communication m (hence, pre n is the commFinish event with

the dest attribute set to m’s destination) and immediately before termi-

nating the endpoint (hence, post n is the end event). Then, we calibrate

comp n using the time between the pre n and post n events. The resp ac-

tivities, generated from Communication.respond CFG nodes do not

need calibration.
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# Endpoint Event time dest

1

A.epA

begin 68 —
2 commStart 68 B.epB
3 contactDest 74 B.epB
4 commFinish 88 B.epB
5 commStart 88 db.qry
6 contactDest 95 db.qry
7 commFinish 107 db.qry
8 end 111 —
9

B.epB
begin 77 —

10 end 86 —

Table 2: Running example logs.

As final step µP calibrates branch probabilities (i.e., the OR nodes

generated by path translations see Section 5.2.1). We compute those

probabilities as the ratio between each partition size over the sum of the

sizes of all the partition of an endpoint (i.e., how many execution logs of

that endpoint followed each path).

Running example We now calibrate the model of Figure 24b, using one

explorative execution produced by a workload generator that contacts

the epA endpoint. Table 2 shows the generated logs, separated by a hor-

izontal line. The first column contains an identifier we use to pinpoint

individual events throughout this section. The second column states the

name of the endpoint that generated that log. The third, fourth, and fifth

columns indicate the event type, time, and dest attribute (for commu-

nication events only).

As a first step, we calibrate the communications. The call of line 4

appears in the log with the events 2 , 3 , and 4 . We assign to reg 4

the time interval between events 2 and 3 ( 2 – 3 , for short) and to ex-

change 4 the interval 3 – 4 minus the B.epB execution time. Similarly,

the database invocation of line 6 corresponds to events 5 , 6 , and 7

: we calibrate reg 6 with the interval 5 – 6 and epB with the interval

6 – 7 .
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Figure 25: Running example’s final model.

We consider the local computation activities. The activity comp 8 is

calibrated with the interval 7 – 8 , and comp 14 with 9 – 10 .

The probability calibration phase assigns 1 to all the arcs out of OR-

nodes, as each endpoint has only one path.

Figure 25 shows the final running example’s calibrated LQN model.

5.3 Numerical Evaluation

Case studies We evaluated µP using four benchmarks often used in

performance evaluation literature: Acme Air [TS21], JPetStore [JA18],

Tea Store [KES+18], and Teacher Management System [WDC20]. Acme

Air is a booking system for a fictional airline carrier. It offers account

management, flight search, booking, and check-in procedures. This case

study is analyzed by the scientific community [Ade+17; RPT19]. JPet-

Store is an online shop for exotic animal retailers. The website offers

account management, animal catalog browsing, cart management, and

checkout. Several papers use this case study [EH11; HRH08; Kal+21].

Tea Store is an e-shop for tea retailers. The website offers account man-

agement, tea catalog browsing, a recommendation system, cart manage-
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ment, and checkout. This case study is often used in performance eval-

uation, e.g. [COQ21], which we compare against (see Section 5.3.3). Un-

like the previous ones, Teacher Management System (TMS) is a real case

study used by the Texas Educator Certification training and testing pro-

gram.

To evaluate the accuracy of the µP generated models, we implemented

each case study using µP API such as their functionality matched the

publicly available implementations. Then, we stressed the models’ pre-

diction power by predicting the systems’ behaviors (response time and

utilization) under load and deployment conditions far from the one ex-

plored at learning time (what-if analysis). Those values were compared

to the ground-truth performance indices observed when concretely ap-

plying the new loads and deployment conditions and observed low dis-

crepancy with the predicted indices. Our implementation of µP, of the

case studies, the generated models, logs and data used to perform this

numerical analysis is available online 2.

Performance indices We evaluated the generated models using two

steady-state indices: 1) mean end-to-end response time, i.e., the average

time of a full user-system interaction; 2) microservices’ utilization, i.e.,

the ratio of threads that are busy servicing requests for each microser-

vice.

Deployment The case studies were deployed on the Google Cloud Plat-

form. Each microservice and workload generator had a dedicated c2-

standard-16 machine (16 CPUs and 64GB of RAM).

Model learning We learned the performance models of each case study

using one exploratory execution run lasting 500 seconds after a discarded

warmup phase of 50s. This time horizon attained the steady state condi-

tion in all cases on our platform. Table 3 gives details about the size of

the learned models.

2https://github.com/giulio-garbi/mup
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AcmeAir JPetStore TeaStore TMS

Tasks 4 6 7 6
Entries 17 23 70 18

Activities 35 50 192 36
Nodes 23 32 110 24

OR-nodes 11 14 30 12
Arcs 64 91 341 66
Paths 11 14 31 12

Table 3: LQN model sizes of the case studies.

Model validation We considered three kinds of what-if analysis:

• W1 (system load): can the models predict response time under in-

creasing load?

• W2 (vertical scaling): can the models predict microservices’ utiliza-

tion when varying processors multiplicity and threadpool sizes?

• W3 (horizontal scaling): can the models predict utilization when us-

ing replicated instances of each microservice?

During the learning phase, µP uses traces obtained from a workload

composed of only one client and deployed with a replication factor equal

to 1 (i.e., one software thread and one replica for each microservice). The

changes induced by W1, W2, and W3 expose contention behavior unseen

in the learning phase, which will be predicted by the µP LQN model.

Therefore, if the predictions under the tested scenarios are accurate, we

can conclude that the generated LQN model is resilient enough to pro-

duce reliable performance analyses under operating conditions signifi-

cantly different from those used in learning.

We validated our approach by comparing the system’s measurements

against the simulation of the corresponding LQN model. To accommo-

date minor semantical differences between the models generated by µP

compared to the general-purpose LQN, we developed a custom LQN

simulator (i.e., tailored on the LQN fragment considered by µP).

79



1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

Clients

0

10

20

30

40

R
T

 (
s
)

0

5

10

R
T

 e
rr

o
r 

%

AcmeAir

Ground truth response time Predicted response time Response time prediction errorLegend:

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

Clients

0

100

200

300

R
T

 (
s
)

0

5

10

R
T

 e
rr

o
r 

%

TMS

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

Clients

0

20

40

60

80

R
T

 (
s
)

0

5

10

R
T

 e
rr

o
r 

%

JPet Store

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

Clients

0

100

200

R
T

 (
s
)

0

5

10

R
T

 e
rr

o
r 

%

Tea Store

Figure 26: System load what-if (W1).

For each considered scenario, we simulated its model to collect the

steady-state measures, and we observed that 6000 (simulated) seconds is

enough to reach such state: indeed, those simulations (each one lasting

less than 30s wall clock time) yielded confidence intervals whose width

is at most 0.76% of the statistical means (at a 95% confidence level). To

validate our results, we assume that each software thread corresponds to

a core of the underlying hardware processor; anyways, µP models can

accommodate any combination of threadpool size and processor multi-

plicity.

5.3.1 W1: System Load What-if

We validated µP models’ prediction capabilities under system load vari-

ation by scaling the number of clients up to 512. Figure 26 shows the

prediction error results. This scaling significantly changed the response

time (axis RT) up to 15 times the original one. In Figure 26, the black ×

and # markers refer to the ground-truth and predicted system response

time, respectively. The red + markers indicate the prediction errors. De-

spite significant changes in the performance indices, µP models accu-
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rately track the system response time with a prediction error of less than

10% in all cases (up to 8.13%).

5.3.2 Performance Scaling What-if

We now stress the predictive power of the µP-generated models by con-

sidering two different performance scaling scenarios: vertical and hori-

zontal. Vertical scalability varies the microservices’ threadpool size (i.e.,

poolSize in Figure 22), while the horizontal scalability affects microser-

vices’ number of independent copies (i.e., replicas in Figure 22). This

experiment reproduces the logic underlying a performance-driven auto-

scaler [GCW19] that uses µP model predictions to change the deployment

schema of each case study. The considered autoscaler works as follows: if

a microservice is a bottleneck (i.e., its utilization level is ≥ 85%), we dou-

ble its resources (poolSize in the vertical autoscaler, replicas in the

horizontal autoscaler); otherwise we double the number of clients. This ex-

perimentation tests two aspects: i) it mimics a typical microservices use

case where the system is gaining new users and reacts by changing the

deployment schema in the most effective way (i.e., relieving the load on

the most stressed component); ii) we verify that µP effectively produces

white-box models, i.e., each component is fitted individually rather than

the system as a whole.

Vertical Scaling What-if (W2) Figure 27a shows the vertical scalability

results obtained by applying the vertical autoscaler on the case studies.

Unlike Figure 26, for each analyzed benchmark, the black markers (i.e.,

× and #) identify the absolute value of the ground-truth and predicted

microservices’ utilization, respectively. In contrast, the red + identifies

the relative percentage error between the ground truth and predicted re-

sponse times. The x-axis is labelled using the k-p-B pattern, where: i) k

is the number of clients; ii) B is the most utilized microservice; iii) p is

parallelism level of B (i.e., poolSize). Correspondingly we plot B’s uti-

lization in the left y-axis (in black) and the error between the measured

and simulated response time in the right y-axis (in red). The model accu-

81



(a) Vertical Scaling (W2).

(b) Horizontal Scaling (W3).

Figure 27: Performance Scaling What-ifs. Each label in the x-axis is in the
form k-p-B, where: k is the number of clients; B is the most utilized mi-
croservice; p is parallelism level of B.
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rately predicted the changes in threadpool sizes, with prediction errors

always less than 10% (i.e., at most 8.61%) in all the considered config-

urations. Interestingly, these experiments produced different bottleneck

shifts, i.e., when the autoscaler behavior induced a variation in the bot-

tleneck microservice. For example, in Acmeair, 128 users caused the bot-

tleneck microservice to be main, which then becomes auth after scaling

the previous bottleneck. This behavior was accurately predicted by the

µP generated model. In Figure 27 we highlighted bottleneck shifts by

using a light gray background in the plot.

Finally, the prediction error over B’s utilization is at most (in absolute

terms) 0.01 in AcmeAir, 0.04 in JPetStore, 0.09 in TeaStore, and 0.07 in

TMS.

Horizontal Scaling What-if (W3) We applied the horizontal autoscaler

and obtained the results of Figure 27b. Here, in the x-axis labels, p is B’s

replicas number. Similarly to W2, there are bottleneck shifts in this

experiment, and it induced a different scaling pattern (e.g., in AcmeAir

the second bottleneck shift happens at the last steps, and in the TMS case

study, the qms microservice is a bottleneck in one step). This allowed us

to test the model under different conditions (i.e., a different multiplicity

ratio between the microservices). The prediction accuracy is in line with

W2. The response time prediction errors are less than 10% (i.e., at most

8.13%), while the prediction error over B’s utilization is at most 0.01 in

AcmeAir, 0.04 in JPetStore, 0.08 in Tea Store, and 0.08 in TMS.

5.3.3 Discussion of the Results

W1, W2, and W3 strongly support the claim that, through µP, conduct-

ing highly accurate performance predictions for microservices is possi-

ble. Low errors in predicting the system response time (constantly under

10%) witness that the model is very accurate even under critical oper-

ating conditions (i.e., bottleneck shifts among microservices with task

utilization very close to 1, see Figure 27). We can confidently say that

µP is suitable for performance-driven self-adaptive applications [ITT17;
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GCW19], even when the system’s operating point moves around its sat-

uration. In this scenario, µP significantly outperforms state of the art

approaches [BHK11; COQ21] that reports prediction errors ≥ 21% and

≥ 50%, respectively. Nonetheless, differently from [IWF07; BHK11], µP

does not require developer intervention beyond writing the actual sys-

tems code, as these levels of accuracy are achieved by design.
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Chapter 6

Conclusions and Future
Work

This thesis presented three different methodologies for learning white-

box performance models of distributed systems. The advantage of white-

box models is a clear connection between each piece of the model and a

specific counterpart in the system.

• Chapter 3 uses a recurrent neural network (RNN) to generate a

queueing network (QN) model of the system by monitoring the

number of pending requests at each system component over time.

The novelty of this approach is that the RNN structure mimics an

approximation of the QN dynamics (the fluid approximation) as

a set of ordinary differential equations (ODE), where the learned

weights map directly onto the QN parameters.

• Chapter 4 employs the RNN to calibrate a layered queueing net-

work (LQN) of the system, i.e., calculate the speed of each LQN

component, by observing how many requests are in each state of

the system in an exploratory run. Similarly to the QN approach,

the RNN is based on the fluid approximation (albeit extended to

cater to LQN models), still enjoying the weights-to-LQN parame-

ter mapping.
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• Chapter 5 describes µP, a framework to develop a microservice-

based system that by-design automatically generates a performance

model without further developer intervention beyond writing the

actual systems code.

The three methodologies are applied to several case studies, synthetic

and real implementation of benchmarks from the literature. The results

prove that the generated models are accurate.

As the three methodologies generate white-box models, we can use

them to do what-if analysis, i.e., predict the impact of a change in the

original system’s performance indices by applying the same change to

the model. We demonstrated low prediction errors (under 10% on the

considered performance indices) in all the methodologies and tested case

studies even though the changes significantly altered the system behav-

ior. This means that the produced models are accurate to each compo-

nent (instead of just modeling the overall system), thus catching the spirit

of white-box models.

6.1 Threat to validity

Here we briefly discuss the criticalities of the three approaches.

Chapter 3’s approach targets a fragment of the QN model, which re-

stricts its applicability. This in principle rules out virtualized deploy-

ments where more than one node shares the same computation unit, or

where the communication between the nodes is both synchronous and

asynchronous. Although the QN modeling language cannot describe the

inner behavior of each node, it might be enough for a coarser description

of the system where each computation unit is treated as black box. This

model proves useful if we have software that is too complex to model in

detail where we can only act on the deployment (e.g., to scale up or down

the number of processors available to each node), or where we do not

have information about the inner structure (e.g., closed source software).

We can resort to more expressive models if we need a detailed descrip-

tion of each computation unit: the approaches presented in Chapters 4

and 5 use the LQN modeling language.
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Chapter 4 overcomes the limitations of Chapter 3’s approach by em-

ploying a more expressive language. In comparison to Chapter 3, it re-

quires that the user provides an uncalibrated LQN model of the system

(i.e., a description of its internal structure). This might seem a strong

limitation, but the literature provides several methods to automatically

produce such models (see Section 2.4.1).

Chapter 5 relieves the user from this task by analyzing the system

source code. It provides the µP framework, whose internal structure

has a direct mapping on the LQN model, that the programmer uses to

develop the distributed software and obtain the associated model. At

present µP does not handle systems that do not conform to its API. Al-

though this seems necessary to achieve performance by construction, var-

ious reasons could dictate interactions with components outside the de-

veloper’s control: legacy code, third-party components, or systems that

are too complex to be modeled explicitly. To mitigate this limitation, it is

possible to exploit an indirect modeling method similar to the one used

with databases or the network (see Section 5.2.1). Alternatively, encod-

ing previous knowledge about them in the model is always feasible, e.g.,

by using techniques that produce queueing networks (see Section 2.4.1),

or by employing the approaches of Chapters 3 and 4 on the legacy parts

of the software.

More generally, the model calibration phase depends on the specific

hardware platform used during learning: to overcome this issue, one

could use transfer learning techniques to adapt the runtimes to a differ-

ent platform [Jam+17].

6.2 Future Work

For the techniques of Chapters 3 and 4 we plan to improve the learning

procedure acting from two different angles:

• reducing the amount of exploratory trace used by the learning in-

frastructure, by stressing the system parts that require more infor-

mation using e.g. active learning [Kal+19]
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• improving the learning infrastructure itself, using other learning

methodologies such as residual networks [ZK16];

• automating the choice of the NN learning rate, which is a critical

parameter to attain good prediction quality.

We also plan to improve µP (Chapter 5) by considering other DBMSs

with known concurrency models (e.g., [DCS16]) and by using different

logging strategies [Lin+16] to face the clock drift problem.
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Appendix A

Proof of Theorem 2.1.1

Proof of Theorem 2.1.1. We construct P̂ and µ̂ as follows:

P̂k,i =











πk if i = k
Pk,i

1−Pk,k
(1− πk) if Pk,k < 1 and i 6= k

1−πk

M−1 otherwise

µ̂k =

{

Pk,k−1
πk−1 µk if Pk,k < 1

0 otherwise

We prove that, for each i 6= k we have P̂k,iµ̂k = Pk,iµk and (P̂k,k −
1)µ̂k = (Pk,k − 1)µk. Then (1) follows by substitution.

We now consider the case Pk,k < 1.

P̂k,iµ̂k =
Pk,i

1−Pk,k

(1− πk)
Pk,k − 1

πk − 1
µk

=
Pk,i

Pk,k − 1
(πk − 1)

Pk,k − 1

πk − 1
µk

= Pk,iµk.

(P̂k,k − 1)µ̂k = (πk − 1)
Pk,k − 1

πk − 1
µk

= (Pk,k − 1)µk.

We now consider the case Pk,k = 1. We remark that, in this case, Pk,i = 0
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if i 6= k.

P̂k,iµ̂k =
1− πk

M − 1
0 = 0 = 0µk = Pk,iµk.

(P̂k,k − 1)µ̂k = (πk − 1)0 = 0 = 0µk = (Pk,k − 1)µk.

The point (2) is true by definition of P̂. Statement (3) can be shown as
follows. When Pk,k < 1:

∑

i

P̂k,i = P̂k,k +
∑

i 6=k

P̂k,i

= πk +
∑

i 6=k

Pk,i

1−Pk,k

(1− πk)

= πk + 1− πk = 1

where the last statement follows because
∑

i Pk,i = 1,
∑

i 6=k Pk,i = 1 −
Pk,k. When Pk,k = 1:

∑

i

P̂k,i = P̂k,k +
∑

i 6=k

P̂k,i

= πk +
∑

i 6=k

1− πk

M − 1

= πk +
M − 1

M − 1
(1− πk)

= πk + 1− πk = 1

Statement (4) can be shown observing that 0 ≤ πk < 1, 1 − Pk,k ≥ 0
(since Pk,k ≤ 1) and 1 − πk > 0. Statement (5) can be shown observing
that µk ≥ 0, Pk,k − 1 ≤ 0 and πk − 1 < 0.
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