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Abstract

This research takes place in the context of the optimized monitoring and detec-
tion of Internet of Things (IoT) resource-constraints attacks. Meanwhile, the In-
ternet of Everything (IoE) concept is presented as a wider extension of IoT. How-
ever, the IoE realization meets critical challenges, including the limited network
coverage and the limited resources of existing network technologies and smart
devices. The IoT represents a network of embedded devices that are uniquely
identifiable and have embedded software required to communicate between the
transient states. The IoT enables a connection between billions of sensors, actu-
ators, and even human beings to the Internet, creating a wide range of services,
some of which are mission-critical. However, IoT networks are faulty; things
are resource-constrained in terms of energy and computational capabilities. For
IoT systems performing a critical mission, it is crucial to ensure connectivity,
availability, and device reliability, which requires proactive device state moni-
toring.
This dissertation presents an approach to optimize the monitoring and detection
of resource-constraints attacks in IoT and IoE smart devices. First, it has been
shown that smart devices suffer from resource-constraints problems; therefore,
using lightweight algorithms to detect and mitigate the resource-constraints at-
tack is essential. Practical analysis and monitoring of smart device resources’
are included and discussed to understand the behaviour of the devices before
and after attacking real smart devices. These analyses are straightforwardly
extended for building lightweight detection and mitigation techniques against
energy and memory attacks. Detection of energy consumption attacks based
on monitoring the package reception rate of smart devices is proposed to de-
tect energy attacks in smart devices effectively. The proposed lightweight algo-
rithm efficiently detects energy attacks for different protocols, e.g., TCP, UDP,
and MQTT. Moreover, analyzing memory usage attacks is also considered in
this thesis. Therefore, another lightweight algorithm is also built to detect the
memory-usage attack once it appears and stops. This algorithm considers mon-
itoring the memory usage of the smart devices when the smart devices are
Idle, Active, and Under attack. Based on the presented methods and monitoring
analysis, the problem of resource-constraint attacks in IoT systems is systemat-
ically eliminated by parameterizing the lightweight algorithms to adapt to the
resource-constraint problems of the smart devices.

xxv



Chapter 1

Introduction

The term ”Internet of Things (IoT)” was first coined by Kevin Ashton, the Executive Di-
rector of Auto-ID laboratories at the Massachusetts Institute of Technology (MIT), in 1999 [1].
Kevin Ashton predicted that computers or other objects would be able to gather informa-
tion without human intervention during his presentation for the Procter and Gamble supply
chain system. Since then, the IoT has emerged as one of the most promising research dis-
ciplines in the field of smartness in this past decade [2]. Given the smartness and real-time
monitoring, which do not require human intervention, IoT services have greatly relieved
human life. IoT has many applications, such as smart homes, smart transportation, smart
agriculture, supply chain systems, smart metering, smart grids, smart healthcare systems,
industrial automation, smart retail, and more. The number of smart devices is expected to
increase to 3.6 billion in 2025 [3, 4]. According to the International Data Corporation (IDC),
the collective sum of the global data could grow from 33 ZB in 2018 to 175 ZB in 2025, where
90 ZB of data will be created on IoT devices by 2025 [5]. IoT applications are frequently em-
ployed because they offer high efficiency, automation, and comfort. Many IoT devices and
users are connected to the Internet, generating huge volumes of data. However, it exposes
systems to fundamental security problems in relation to confidentiality, integrity, and avail-
ability. To successfully use the ever-growing IoT applications, security, privacy, and trust
must be addressed to secure IoT devices and user privacy from attackers [2].

An IoT is a smart network connected to various other smart devices and data centres.
An IoT device continuously gathers and analyzes data with the help of sensors from the sur-
rounding environment. The majority of devices are autonomous and function with minimal
human intervention. Some smart devices have unique identifications for authentication [6].
Low power and low memory consumption are the main characteristics of IoT devices. In-
telligent devices can be placed in remote areas for data collection and transmission. IoT
application is expanding into Artificial Intelligence (AI), cloud, big data, and smart systems
such as smart homes and offices. An IoT system typically consists of three major stages [7, 8,
6]: collecting, transferring, and analyzing data. The first stage involves data collection and
transmission, where sensor antennas and microcontrollers are involved. This stage is also
known as the physical layer. The second stage concerns data transfer to an IoT hub or a gate-
way using a network. The last stage is data analysis, which comprises user data and other
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data sources which may be hosted in the cloud. Any breach in those stages will lead to criti-
cal information leaks from sensor-based devices. Recently various vulnerabilities started to
emerge in smart devices due to the lack of advanced encryption and authentication systems;
Chapter 2 discusses IoT, IoT security, and application vulnerabilities in detail.

In IoT systems, energy and memory consumption attacks are becoming frequent and de-
tecting such attacks is necessary to protect the IoT system from vulnerability threats that
could lead to accessing the home network and attacking the smart devices. The resource-
constrained problems make IoT systems vulnerable to different attacks affecting resources,
e.g., energy, memory, Central Processing Unit (CPU), etc. Although many IoT applications
are not time-sensitive, there is a whole class of mission-critical applications, particularly
those that target human safety where timely intervention is essential. Examples are appli-
cations for critical control, health monitoring, and fault detection [9, 10, 11]. Taking health
monitoring as an example, as illustrated in Figure 1, the focus lies on aggregating, gathering,
and extracting information related to a patient’s health, such as heart rate. The collected data
from sensors is then stored in a cloud or a Database (DB). Afterwards, the fetched data can
be used for further calculations. For example, ambulances could automatically be notified in
emergencies and locate the patient through Global Positioning System (GPS) signals. High
reliability is critical in this situation, where data must be processed and shared immediately
and within strict constraints. Unfortunately, resource constraints impose hard-duty cycles

Heart rate monitor

Hub

Sensor

Accelerometer

Electrocardiograph

Hub

Thermometer

Figure 1. Health Monitoring with IoT.

to maximize longevity [12], which can cause unreliable connectivity. According to the IEEE,
reliability definition is ”the ability of a system or component to perform its required func-
tions under stated conditions and for a specified time [13].” Therefore, it is mandatory to
monitor the resources of the IoT system, analyze attack effects in terms of energy and mem-
ory constraints and build lightweight algorithms to detect resource constraint attacks. The
absence of any monitoring and mitigation mechanisms for detecting device faults would
dramatically reduce the performance of an IoT network, which renders monitoring the IoT
devices a vital research area that will significantly develop the security of the IoT systems.
An effective and efficient resources monitoring and detection mechanism could significantly
improve the robustness of devices, IoT devices connectivity, and reliability, which will sig-
nificantly increase stakeholders’ uptake of the technology.
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1.1 Research Motivation
IoT is a global network and service architecture with connectivity and self-configuring

capabilities based on open-standard and interoperable protocols. The IoT consists of het-
erogeneous objects with identities and physical and virtual properties that are securely inte-
grated into the Internet [14, 11]. The main goal of the IoT is to enable things to be connected
anywhere, anytime, with anything. IoT created many applications that touch every aspect of
human life by connecting billions of things to the Internet. For example, health monitoring,
wearables [15], military applications such as intrusion detection in remote or hostile envi-
ronments, smart homes, smart cities [16], smart grids [17] and others. Smart devices suffer
from resource constraints, such as energy and memory limitations. Consequently, attackers
employ various techniques to gain unauthorized access to the data stored on these devices
or cause damage by exploiting their resources. Therefore, making IoT devices available for
the end-users is critical, and preventing resource constraint attacks is essential. This thesis
aims to analyze the effect of resource-constraint attacks in IoT systems and to develop solu-
tions that consider the resources of these devices and protect them from resource-constraint
attacks. Any similar smart devices with the same architecture as industrial IoT devices or
on the consumers’ side can utilize and apply the concept of the presented solutions in this
thesis. A monitoring system has been developed to control and detect resource-constrained
attacks in smart devices. In the initial stage, the monitoring system is utilized to analyze the
impact of resource constraint attacks, such as energy and memory attacks. Then, depending
on the collected results by the first stage, lightweight detection algorithms are introduced to
monitor energy and memory usage and detect an attack from start to end.

The cybersecurity threats in IoT systems are broadening and becoming increasingly so-
phisticated. Hacking and destroying smart devices could compromise systems availability
or, worse, lead to fatal accidents that could affect people. The scenario considered in this the-
sis concerns the security of smart devices against resource constraint attacks. The final results
show high efficiency in detecting resource constraint attacks. This work studies and analyzes
the effect of resource-constraint attacks on IoT devices regarding communication protocols,
attack rates, payload sizes, and victim devices’ ports state as the vital factors in determin-
ing victim devices’ energy and memory consumption. Early detection of resource-constraint
attacks on IoT devices is performed, as described in Chapter 3. A lightweight algorithm
has been developed to detect energy consumption attacks in IoT systems, considering three
different protocols: Transmission Control Protocol (TCP), User Datagram Protocol (UDP),
and Message Queue Telemetry Transport (MQTT) protocol. Further details regarding this
algorithm are reported in Chapter 4. Additionally, an analysis and detection algorithm for
memory usage attacks in IoT systems is presented in Chapter 5, which involves calculating
memory usage tasks to determine normal and abnormal behaviours.

1.2 Research Objectives and Methodology

1.2.1 Resource Monitoring Requirements

In general, the monitoring mechanisms deployed in IoT networks and smart devices
have two primary objectives: detecting and localizing network faults and identifying attacks
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on smart home devices [11]. To accomplish these goals, it is essential to provide suitable tools
and capabilities for overseeing the state of devices and the network, ensuring the availability
of smart devices, maintaining connectivity between different devices and nodes, and detect-
ing potential attacks that exploit the resource constraints of smart devices. Implementing a
robust monitoring infrastructure makes it possible to identify the root causes of problems
and map their symptoms, enabling appropriate corrective actions to be taken. Therefore, the
monitoring infrastructure should encompass the entire smart home network domain to effec-
tively detect resource-limiting attacks on smart home devices [11]. IoT devices and networks
operate at an immense scale, potentially encompassing millions or even billions of devices
and network nodes. To ensure comprehensive detection of resource constraint attacks, it is
crucial to embed resource monitors in appropriate locations throughout the network strate-
gically. Given the limited resources of smart devices, minimising the costs associated with
monitoring and detection is imperative, including energy consumption and memory usage.
Monitoring the energy and memory constraints is essential for maintaining the availability
of smart devices in both home and industrial wireless environments and enabling the early
detection of resource consumption attacks. Furthermore, it is essential to analyze the impact
of resource constraint attacks and study the behaviour of smart devices when subjected to
such attacks. This analysis can facilitate the development of suitable detection algorithms
designed explicitly for resource constraint attacks.

Monitoring resource usage Detecting energy consumption
attacks

Detecting memory usage
attacks Improving performances

Research
Objectives

Monitor smart devices' energy
consumption and detect the
attack.

Minimize resource consumption by
detecting it's sources attacks.
Maximize the life-time of IoT
devices.

The detection algorithms
designed for the resource-

constrained IoT devices

Lightweight algorithm to  monitor
and detect the memory usage of

IoT devices

Figure 2. Research Objectives.

To review the requirements for the proposed solutions as shown in Figure 2:

• monitors should be able to analyze the effect of resource constraint attacks to study
their behaviour in the IoT environment;

• monitoring the resources usage should allow one to detect different behaviours of the
smart devices, e.g., Idle, Active, under attack;
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• the monitoring of energy and memory constraints should be minimal to satisfy the
low-cost, low-power IoT devices;

• improves the performance by designing the detection algorithms for resource-constrained
IoT devices.

1.2.2 Research Methodology
To achieve the stated goals, the research methodology employed is as follows (Figure 3):

• extensive studies of state-of-the-art monitoring and detection of the resources of IoT
devices and especially the IoT energy consumption and memory usage for different
protocols;

• identifying monitoring requirements and research goals;

• modelling and formulating the corresponding IoT resources optimization problem;

• creating precise analytical solutions for relevant issues and evaluating proposed mod-
els for complexity and reliability;

• extensive tests on real smart devices for performance evaluations to confirm the effi-
ciency and effectiveness of the proposed models;

• definition of lightweight algorithms for detecting resource constraint attacks in IoT
devices.

Optimized
monitoring for IoT

resources?

Identification of the
monitoring requirements

+
research objectives

Energy cyber attacks to
smart healthcare devices:

A Testbed
To analyze the impact of

the attack

 Designing lightweight
algorithm:

Detection of energy
consumption cyber

attacks on smart devices

 Mitigating and analysis
memory usage attack in

IoT system

Literature review on
resources monitoring

+
IoT protocols + resource
constraints attacks, e.g.
energy and memory and

recent technologies

1 2

345

Figure 3. Research Methodology.

1.3 Research Contributions
The aim is to target resource-efficient monitoring of smart devices in IoT systems, which

contributes to energy and memory savings and enables the detection of resource constraint
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attacks. The first contribution is experimenting with energy consumption attacks on smart
home devices. It aims to observe the behaviour of smart devices, protocols, and networks
and infer their states.

It can also collect different information about the devices like online or offline, Internet
Protocol (IP) address, and Medium Access Control (MAC) address. Also, identifying port
status (open/closed, filtered/not filtered, and others). Moreover, monitoring the smart de-
vices’ energy consumption and checking their connectivity once disconnected from the main
Access Point (AP) and once it connects to the Fake Access Points (F-APs) attacks. This work
better explains the effect of Distributed Denial of Services (DDoS), energy-consumption Dis-
tributed Denial of Services (EC-DDoS), and F-AP attacks on smart healthcare devices within
a wireless network. In this work, a practical combination of DDoS and F-AP attacks was de-
signed to impact the energy of real smart devices, e.g., Raspberry Pi1 and Arduino2. It also
offers a better understanding of monitoring the resources of smart devices and analyzing
the impact of the attack for building lightweight algorithms to detect energy attacks in IoT
systems. This contribution is a baseline for the next contribution, as it helps to fully under-
stand the resources’ monitoring of IoT devices and build a detection mechanism based on
the packet reception rate analysis.

Therefore, in the second contribution, an algorithm was designed to detect energy con-
sumption attacks in smart devices. The technique employed in this contribution aims to de-
tect energy consumption attacks on smart home devices by monitoring the packet reception
rate and energy consumption to determine the final results’ status as normal or abnormal
behaviours. The algorithm considers different protocols and device statuses to detect the
attack, including TCP, UDP, and MQTT. The algorithm shows high efficiency in detecting
energy consumption attacks in smart home devices compared to other algorithms that use
the current energy consumption measurement for detecting this attack. As this algorithm
is easy to use and not expensive to implement, it also considers the resource constraints of
smart devices. The key observations made from this work present a thorough understanding
of the packet reception rate of IoT devices within a home wireless environment. Moreover, it
shows the detection of energy consumption attacks depending on measuring the packet rate
received by the smart device. This contribution offers a better understanding of studying the
packet reception for different protocols of smart devices and detecting energy consumption
attacks.

The main goal of this thesis is to protect smart IoT devices from resource-constrained at-
tacks. Therefore, the work presented in Chapter 5 studied the effect of memory usage attacks
on smart devices and analyzed the impact of the presented attack to build a lightweight al-
gorithm to protect the smart device from such attacks. This contribution considers different
behaviours on the memory of smart devices. Memory usage is measured under different sce-
narios, including read and write operations, with or without the attack, to evaluate the best
detection of memory usage attacks. A mitigation technique is also simulated, and the results
are assessed by implementing the proposed technique on smart devices such as Raspberry
Pi and Arduino. The current memory usage of the smart device is also measured to monitor
the memory usage to discriminate between normal and abnormal behaviours. Therefore,
this algorithm design is a protection strategy for smart devices to maintain their integrity,

1https://www.raspberrypi.com/documentation/
2https://store.arduino.cc/
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Figure 4. Main Topics covered in this thesis.

seamlessly make them available to legitimate users, and protect them from memory attacks
by considering their resource constraints. The results demonstrate high efficiency in an-
alyzing, detecting, and mitigating memory usage attacks in smart devices within the IoT
environment, specifically in the pillar of ”Things” in the Internet of Everything (IoE) frame-
work. This experiment can be extended to similar smart devices with the same architecture
as this study uses. The IoE, which builds upon the ”four pillars” of people, data, process,
and things [18], extends business and industrial processes to enhance people’s lives [19].
Thus, the monitoring analysis and detection methods can be further extended to include
other smart devices within the IoE environment. Chapter 2 gives more information about
IoT and IoE environments.

To summarize the contributions made towards addressing the challenges in monitoring
and detecting IoT resources efficiently (as illustrated in Figure 4 and 5), the proposed solu-
tions are as follows:

• Energy Cyber Attacks on Smart Healthcare Devices [20] aim to enhance our under-
standing of the impact of DDoS, EC-DDoS, and F-APs attacks on smart healthcare
devices’ energy consumption and connectivity within a home wireless network. Ad-
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ditionally, this study analyzes the effects of energy consumption attacks within a smart
home system.

• The Detection of Energy Consumption Cyber Attacks on Smart Devices [21] aims to
monitor the network, ports, device statuses, energy consumption, and packet recep-
tion rate of smart devices. The key observations from this study provide a comprehen-
sive understanding of the packet reception rate of IoT devices within a home wireless
environment and how energy consumption attacks can be detected by measuring the
received packet rate from smart devices.

• Detection and Analysis of Memory Usage Attacks in IoE Systems [22] involve moni-
toring the memory usage of smart devices to understand the impact of memory usage
attacks on these devices. Additionally, a lightweight mitigation mechanism is devel-
oped to detect and mitigate memory usage attacks promptly when the attack begins
and ceases.

The achieved results are presented in Chapter 3,4, and5, contributing to the overall under-
standing of the topic.

1.4 Thesis Outline
This thesis investigates the security of the IoT system, particularly the security of IoT

devices. It consists of seven chapters, including the introduction, conclusions, and appendix.
The main aim of the thesis is to contribute to securing IoT devices.

Chapter 2 presents background information regarding IoT and IoE, including IoT and
IoE security and attack mitigation, and a description of some IoT and IoE applications. It
also presents related studies about resource constraint attacks in IoT systems and discusses
current detection mechanisms.

Chapter 3 describes the energy monitoring system, presents and analyzes the energy
attack, and displays the results of the effect of the energy cyberattacks on real IoT devices.

Chapter 4 presents the techniques used to detect energy consumption attacks by study-
ing the packet reception rate and showing the final results of mitigating and detecting such
attacks.

Chapter 5 explores memory usage attacks and their impact on smart sensors. Detection
methods are also presented to mitigate memory usage attack effects on smart devices.

Chapter 6 wraps up the thesis with some concluding remarks and introduces possible
topics for future research.

Finally, Chapter 7 contains essential details about the databases utilized in the experi-
ments of this thesis. Additionally, it provides comprehensive information about the energy
consumption tools and technologies employed to measure smart devices’ energy and mem-
ory usage.
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Chapter 2

Background and Related
Studies

Wireless communications are widely used in transportation, military, industrial, and
healthcare applications and play a significant role in industry and the whole of society. The
IoE is a superset of the IoT, which means a connection between people, processes, data, and
things. It connects all these concepts into one cohesive world. IoE builds on the pillars of
IoT, which include an intelligent network system. IoE is, therefore, a global network through
which people, things, and intelligent devices are connected and can share information and
services. The IoT paradigm, which heavily relies on wireless communication, has already
received considerable attention. IoT is considered, in fact, to be one aspect of the future, and
it could have a very significant impact on our lives. Some aspects of our world may be able
to improve thanks to the benefits provided by IoT. Looking at what might be called a down-
side, however, it is possible to see that there could be certain security issues amongst all of
these connections. The vulnerability of IoT sensors to hacking is a significant concern. Due
to their limited computing, storage, and network capabilities, they can be more susceptible
to attacks compared to endpoint devices like tablets and smartphones. Therefore, it becomes
crucial to establish robust security and privacy protocols in IoT networks to safeguard the
integrity, authenticity, and confidentiality of IoT-based services. Ensuring confidence in the
security measures deployed is essential for maintaining the trustworthiness of these services.

This chapter considers IoT and IoE potential security attacks and discusses existing so-
lutions that deal with some issues. Moreover, related work and background reading about
Chapter 3, 4, and 5 reviewed in this chapter as well.

This chapter is organized as follows. Section 2.1 provides a general introduction to IoT
and IoE, the different security issues in the literature, and sheds some light on the current
security solutions. Section 2.2 presents the definition of IoE, expectations, applications, and
challenges. Section 2.3 and 2.4 provide different information about IoT, such as its defini-
tions, relevant technologies, architecture, IoT standards and protocols, applications, security
challenges, and current mitigation of the IoT. Finally, the related work and background read-
ing of Chapter 3, 4, and 5 are presented in Section 2.5.
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2.1 Introduction

The IoE paradigm is based on the convergence of the digital and physical world to make
this world smarter with intelligence, cognition, and connectivity. IoE is a system that inter-
connects billions of heterogeneous physical devices, computing elements, objects, animals,
and humans that can set up, share, and self-organize their limited resources to achieve a
system-wide goal [23]. The main objective of IoE networks is to enhance the performance of
the underlying IoT physical infrastructures by providing services to humans [24]. The IoT
is the foundation for a wide range of intelligent application domains, such as smart cities,
healthcare, and transportation. It plays a crucial role in enabling the three key aspects of a
smart city, known as the 3Is: Instrumentation, Interconnections, and Intelligence. The IoT
is fundamental to achieving these components. On the other hand, the IoE is a broader
concept that includes the IoT as one of its integral components [18]. IoT is a network of
physical devices, vehicles, appliances, and other objects embedded with sensors, software,
and connectivity capabilities that can collect and exchange data over the Internet. The smart
devices in IoT environments typically focus on specific functions and interactions between
devices, such as smart thermostats, wearable fitness trackers, or home security systems [25].
On the other hand, IoE represents a broader concept that extends beyond just physical de-
vices. It encompasses the convergence of people, processes, data, and things, as shown in
Figure 6, creating an interconnected digital ecosystem. IoE encompasses not only IoT devices
but also includes social, mobile, cloud, and other technological elements. It aims to create
intelligent and dynamic connections across various domains, such as healthcare, transporta-
tion, manufacturing, and more. In terms of cybersecurity, both IoT and IoE pose significant
challenges [26]. However, IoE introduces additional complexities due to the interconnected
nature of various elements, e.g., scale and complexity, ecosystem collaboration, system re-
silience, data security and privacy, etc. The main reason behind the security challenges of
IoE compared to IoT is IoE involves a more extensive network of interconnected devices,
services, and platforms, resulting in a larger attack surface and increased complexity [27].

The IoT is a collection of computing devices connected through the Internet. Such a net-
working system provides communication capabilities to objects used in everyday life. The
IoT sensors have unique identifiers and can exchange data without human intervention. IoT
plays an essential role in our daily life by exploiting Wireless Sensor Networks (WSN) ca-
pabilities [28, 29]. IoT will allow more data to be collected from the physical world. The
commercialisation of the next wave of AI technologies will surely be accompanied by Ma-
chine Learning (ML) from IoT data. With its rapid evolution, the IoT can be considered an
enabling technology in many applications, such as transportation, military, industrial, and
healthcare. The primary purpose of these applications is to improve the quality of daily life.
Indeed, IoT supports objects to acquire computing capabilities and make decisions based on
the data exchanged over the Internet. Some of these actions need to be done by a person,
but other activities can be used to facilitate the comfort of human lives [30]. The hardware
techniques evolution, such as expanding the module’s bandwidth by incorporating cogni-
tive radio-based networks to address the under-utilization of the frequency spectrum, are
supporting the tremendous growth of IoT [31, 32, 33].

In this scenario, IoT systems generate massive amounts of data transmitted via a net-
working infrastructure in which many computing devices communicate among them. It
poses another serious problem because, in such a hyper-connected society, the risk of be-
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ing a target of a cyber-attack can be very high, and generating a large amount of data in IoT
systems can become very attractive to hackers. Indeed, these data might contain personal in-
formation or information used by automated processes employed for automatic control, e.g.,
in smart cities. Furthermore, evaluating the cyber risk in such a distributed network is chal-
lenging because an attacker could take away customers’ data. Security attacks may occur in
the central unit, i.e., server-side, the sensors, and the communication. The security of WSN,
Machine-to-Machine (M2M), and Cyber-Physical System (CPS) is rising in the context of IoT
with IP which is the primary standard for connectivity. The entire architecture must also be
secured from attackers who might threaten the data’s privacy, integrity, authenticity, or con-
fidentiality [33]. Today, IoT developers and manufacturers must cope with these problems
by introducing security by design and mitigating security issues. Several techniques can be
used to protect the data, the devices, the protocols, or the server by resorting to 1) access con-
trol (e.g., passwords, two-Factor-Authentication (2FA), etc.); 2) built-in restrictions embedded
by the manufacturer; 3) cryptography (e.g., utilization of security protocols that encrypt the
data exchanged between the IoT device and the server); 4) network security (e.g., firewalls
implementation on the server-side); 5) confidentiality (e.g., data stored in the cloud, etc.). This
chapter reviews IoT and IoE in different aspects, such as IoT and IoE applications, security
and challenges of IoT and IoE, and current studies on security mitigation of IoT and IoE.
This chapter represents an introduction to the problem statement and a solid foundation for
the main solutions of smart devices in the next chapters.

2.2 The Internet of Everything (IoE): An Overview

2.2.1 The birth of IoE

Undoubtedly, the development of the IoT stimulated the creation of the IoE concept. IoT
refers to the process of connecting various types of electrical or electronic equipment to the
Internet. Recently, IoT technology has rapidly advanced by focusing on connecting M2M
communications across various communication protocols, networks, and applications. This
includes technologies such as 802.11ah, Industrial IoT, and NB-IoT. [34]. Such prosperous
IoT ecosystems pave a solid foundation for the IoE’s communications with broad coverage
and ubiquitous connection. However, the real birth of the IoE concept comes from enabling
automated machines through ubiquitous Internet, big data processing, and AI. Back in 2012,
Cisco offered the idea that the IoE is based on the ”four pillars” of people, data, process, and
objects [18] [35]. This perspective highlights that the IoE encompasses a holistic intercon-
nection of not just ”things” but also automated processes and human-based interactions. It
extends beyond the IoT’s scope of merely connecting devices and machines to include the
integration of intelligent machines and people-driven processes [18]. Moreover, the prolif-
eration of big data and AI technologies brings new bricks for IoE’s construction. In recent
years, more relevant literature has replenished IoE’s essence, e.g., gathering big data that
is hidden from the Internet, utilizing different AI algorithms, and enabling all devices and
machines with automated abilities [36] [37] [38] [39]. IoE has the ability to enable automated
intelligence by extracting and analyzing real-time data from millions of linked devices and
then making smart, proactive decisions. While the IoE concept has been presented and dis-
cussed for a long time, its implementation is still in its early stages. Despite challenges in the
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full realization of IoE, the attractive vision of IoE will never prevent us from implementing
IoE. The following sections discuss the definition of IoE, enabling technologies, and chal-
lenges.

2.2.2 Definition of IoE
IoE represents an expansion of the IoT, encompassing the interconnection of people, pro-

cesses, data, and things, as depicted in Figure 6. It brings together these elements to form a
unified ecosystem. Building upon the foundations of the IoT, the pillars of IoE are character-
ized as follows:

IoE
Domain

Data

Processes People

Things
Transforming data into
insights enables more
informed decision-
making.

Devices and objects that
contribute data to the IoE

and utilize that data to
execute actions efficiently.

Enabling people to
connect in meaningful
and advantageous
manners.

The method of
conveying valuable
intelligence from one
location to another.

Figure 6. Internet of Everything domains.

• People: people play a vital role in the IoE environment, contributing their personal
insights through various means of communication such as smart sensors, social net-
works, and smartwatches. These data are collected and analyzed on servers to provide
relevant information for personal, industry, or business needs. This enables timely
decision-making and issue resolution [40].

• Data: data transmission in the IoE environment follows a similar pattern to traditional
IoT networks. The collected data from devices can be transmitted directly or undergo
initial processing at the edge layer. While raw data from smart devices may not hold
significant value, once transformed, classified, and analyzed either by the device itself
or the cloud server at the edge layer, the resulting data becomes invaluable content.
This data enables control and monitoring and facilitates accurate and swift decision-
making, empowering smart solutions [40].

• Process: the process is based on various systems such as AI, computer vision, deep
learning, social networks, or other technologies that help to deliver the proper infor-
mation to the designated people, devices, or places at the expected time. This process
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will extract information from data, and the network will control the data communi-
cation. The main purpose of processes is to get the optimum outcome for further
processing or decision-making.

• Things: things encounter the definition of IoT. Different sensing components are em-
bedded with physical items that serve the purpose of data collection. Smart devices
must have communication capabilities, e.g., wireless or wired, for transmitting data,
e.g., generated and processed data, to the right destination across the IoT system.

The massive growth of smartphones, smart hospitals, smart home devices, smart grids,
and population are initially key concepts of the IoE. This concept is followed by the appear-
ance of wearable devices, computers [41], and intelligent transportation systems. Initially,
the concept of IoE was coined by Cisco Systems in 2013, and it is the most popular technol-
ogy in today’s world. The IoT is just a tiny subset of the IoE. It describes a world where
trillions of intelligent devices have sensors to verify, measure, and estimate their positions,
all connected over public or private networks that use specific protocols. According to Cisco
Systems, a market of devices could reach 50 billion by 2024 [42]. The communication infras-
tructure in an IoE environment is enhanced by using sensors or intelligent systems attached
to each device. Every sensor node or intelligent system is connected using a WSN. The sensor
node is used to detect various parameters, such as motion, humidity, temperature, pressure,
lights, and others [43]. IoE provides advanced capabilities within the area of information
sharing, but this requires appropriate measures to be taken in the initial phases of its design
and implementation to be widely accepted in all domains of the IoE aspects.
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Figure 7. Comprehensive IoE Architecture.

Figure 7 depicts the overall structure of the IoE system [44] [45]. The IoE system com-
bines blocks of a visualized data centre, connected devices, and intelligent networks. A
virtual data centre consists of desktop virtualization software, an operating system, and oth-
ers. The IoE system interfaces with an intelligent network to deliver services to various
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interconnected smart devices, including smart sensors, actuators, mobile terminals, wear-
able devices, and even human users. These devices fall into three categories: machine-to-
machine, human-to-human, and machine-to-human interactions. To support high-speed,
low-latency, and high-quality IoE services, the system utilizes an optical fibre network as
its backbone [44] [45]. Alternatively, a wireless network may be used as a substitute for the
fibre-optic network [40].

2.2.3 Three Expectations of IoE
The concept of IoE is to connect electronic devices (i.e., terminal nodes of IoE) to the Inter-

net, then analyze massive data generated from connected terminal nodes, thereby offering
intelligent applications for advancing certain aspects of human society. IoE is expected to
fulfil three key expectations for achieving this concept: To fulfil the IoE concept, three pri-
mary expectations have been identified. These expectations involve establishing a scalable
network architecture with ubiquitous coverage, creating a global computing facility to facil-
itate intelligent decision-making, and supporting diverse applications, as indicated by the
concept of diversity. Figure 8 showcases these three expectations and their typical enabling
technologies [18].
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Figure 8. Three fundamental expectations of IoE (i.e., scalability, intelligence, and di-
versity) [18]

1. Scalability: Establishing a scalable network for IoE aims to create an elastic and widespread
infrastructure that covers diverse geographical scenarios, such as rural, urban, under-
water, terrestrial, aerial, and space environments. The primary objective of the scal-
able IoE network is to fulfil various communication requirements by ensuring massive
access, wide coverage, and ubiquitous connectivity. This entails integrating multiple
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communication technologies with varying transmission distances (ranging from a few
meters to a thousand meters) and different network topologies (including star, hybrid,
and point-to-point topologies). Key communication networks forming the founda-
tion of IoE include Wireless Local Area Networks (WLAN), Mobile Cellular Networks
(MCN), satellite networks, WSN, and Mobile Ad Hoc Networks (MAHN). The scal-
ability of IoE facilitates efficient data collection and serves as a valuable resource for
intelligent analytics [18].

2. Intelligence: enables predictions, decisions, actions, and intelligent analysis for all
smart devices in IoE system. In particular, IoE needs to gather massive data from its
broad and scalable network, extract useful information, e.g., decisions or smart com-
mands from the collected data, and then use this information to enable intelligent ac-
tions or controls for everything. The computing infrastructure consists of distributed
database and storage systems, on top of which different big data processing tech-
niques are deployed. Storage systems and databases play a crucial role in storing and
preserving the accumulated IoT data. To cater to various intelligent applications, di-
verse big data processing algorithms, such as predictive, descriptive, and prescriptive
analytical schemes, are employed [41, 18]. IoE’s intelligence, facilitated by distributed
computing facilities, can be categorized into edge, cloud, and local intelligence. It sug-
gests that computing resources and intelligent algorithms are strategically distributed
across the edge, local (terminal nodes), and remote cloud environments. Orchestrat-
ing local, edge, and cloud intelligence becomes essential to achieve IoE’s overarching
global intelligence [18].

3. Diversity: IoE encompasses a wide range of applications that facilitate automated and
people-based processes. The successful implementation of various IoE applications re-
lies heavily on the intelligence and scalability of the IoE framework, as these factors
determine computing security, energy efficiency, network performance, and overall
capability. The automated and people-based processes of IoE give rise to diverse cat-
egories of applications, and depending on specific application requirements, IoE’s di-
versity can be classified into three categories, including technology diversity, which
encompasses various Information and Communication Technologies (ICT) technolo-
gies; stereoscopic diversity, which involves different spatial positions; and geograph-
ical diversity, which pertains to different geographical regions. IoE brings about ad-
ditional diversities such as intelligence, equipment, and mobility, expanding its range
of applications. Ultimately, these diverse applications converge to fulfil a crucial role
in IoE [18].

2.2.4 IoE Applications
This section presents and discusses the relative IoE applications as follows:

A. Smart Home: By employing a unified communication system, it combines various home
services to ensure an efficient, secure, and comfortable home operation. This integration
incorporates intelligent features and offers high flexibility to cater to diverse needs. Typi-
cally, smart homes operate through web interfaces or dedicated applications. They utilize
the Arduino board with an Ethernet shield or WiFi connection as the equipment control
module, which is integrated into the smart home. The software component of the control
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module employs communication protocols. Smart homes comprise smart devices and
sensors integrated into an intelligent system, providing management, monitoring, sup-
port, and responsive services. This integration offers many benefits, including economic,
social, health-related, emotional, sustainability, and security advantages.

B. Agriculture: IoE has gained prominence across various sectors, including agriculture,
where it offers benefits such as remote monitoring and control of agricultural systems
through mobile devices. This integration allows for monitoring parameters like soil
moisture, water levels, humidity, and temperature using WSN. Implementing IoT-based
smart systems in agriculture involves using drones, sensors, and robots for tasks like
spraying and weeding and monitoring humidity and temperature [18, 46]. This intercon-
nected system allows all smart devices to be monitored and controlled remotely via the
Internet. Studies, such as the one mentioned in [47], have demonstrated the effectiveness
of smart irrigation frameworks powered by renewable energy sources in significantly
improving crop yield and agricultural productivity. Data collected from sensors is used
to predict climate conditions using techniques like radial basis function networks. This
anticipated climate information is then utilized to regulate smart irrigation systems and
monitor them through a web application.

C. Industry: There have been limited studies on the impact of IoT or IoE technologies in the
industrial environment [48]. The adoption of these technologies in such environments
requires careful consideration. Implementing IoT or IoE systems in industrial settings
involves balancing the need for improvement and testing while adhering to existing sys-
tem principles and requirements, managing risks, and organizing tasks using the IoT
or IoE platform. Solutions that aim to reduce operational expenses must prioritize sta-
bility and flexibility [18, 46]. According to [49], Cyber-Physical Systems (CPS) is one
such system that meets the requirements of IoT through the utilization of cloud comput-
ing services. SCADA systems are commonly employed in industrial CPSs to monitor
and control critical infrastructure. However, like any emerging internet-based system,
IoT-based SCADA systems present security challenges. While they offer cost efficiency,
flexibility, and scalability through the use of cloud computing, they also introduce critical
risks and privacy concerns due to the storage of data in third-party-operated servers [18,
46].

Other IoE applications include smart cities, smart health, and smart environment moni-
toring.

2.2.5 IoE Challenges
IoE challenges are reflected in the following four constraints: security, battery, comput-

ing, and coverage constraint. The four constraints are discussed in detail as follows:

A. Security constraint: Many potential security threats are encountered in IoE, attributed
to the vulnerabilities of communication protocols and resource limitations of IoE nodes.
Specifically, the current IoE mainly adopts low-cost and simplified access protocols (i.e.,
NB-IoT, Low-power Wireless Personal Area Networks (LoWPAN)) to reduce network
costs. At the same time, it makes the communications vulnerable to malicious attacks
such as eavesdropping and forging. On the one hand, the data emitted from end nodes
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can be wiretapped (or eavesdropped) by malicious nodes; on the other hand, pseudo-
base-stations can easily forge the normal IoE communication links to obtain IoE data [50].
Therefore, an effective but easily deployed security mechanism is required to protect IoE
communications from malicious attacks.

B. Battery constraint: IoE nodes or devices suffer from the battery constraint. IoE devices
are generally power-limited due either to hardware cost or portability concerns. IoE
uses low-power or battery-free communication technologies to access network infras-
tructure nodes, e.g., BS, AP, and IoT gateways. One inevitable fact is that battery-limited
nodes are easily exhausted and eventually lose connections with IoE [18]. Furthermore,
the adversary uses the battery constraint issues to attack these nodes by affecting their
resource-constrained. Thus, developing a sustainable detecting or mitigation algorithm
for battery-constrained nodes is necessary to prevent future attacks.

C. Computing constraints: In IoE, most terminal nodes lack sufficient computing capabil-
ities to process local intelligent algorithms. Traditionally, the prevalent approach has
been to transmit all data to remote cloud servers, which provide centralized intelligence
for big data processing. However, this cloud computing paradigm introduces significant
latency, especially for latency-sensitive IoE applications in the future. Additionally, the
growing number of IoE computing tasks not only burdens the cloud servers but also
leads to congestion in the backbone communications of IoE, raising concerns about pri-
vacy risks. To address these challenges, it is imperative to fully leverage both edge and
local computing resources, complementing centralized cloud servers and enabling per-
vasive intelligence across all aspects of IoE [18].

D. Coverage constraint: The deployment of IoE communication infrastructures in rural ar-
eas poses challenges due to the difficulty and high cost involved. Consequently, achiev-
ing comprehensive coverage for IoE nodes in these areas becomes a significant challenge.
Deploying existing communication networks in coverage-constrained regions is not eco-
nomically viable due to the imbalance between construction costs and expected benefits.
Notably, IoE projects in these areas do not necessitate continuous and ubiquitous com-
munication. Therefore, a cost-effective solution lies in providing flexible and recoverable
coverage, catering to on-demand IoE communications for specific periods in coverage-
constrained areas [18].

2.3 The Internet of Things (IoT): An Overview

2.3.1 What is IoT?
IoT refers to a variety of devices that are connected through the network. Significantly,

the IoT paradigm starts by providing a kind of smartness to an object and continues by pro-
viding that object with the capability to perform actions based on the exchanged data. This
concept has been applied in different domains in the last few years. As shown in Figure 9,
today, we have IoT applications covering transportation, smart cities, e-health, smart sen-
sors, automotive, banking, industrial IoT, and wearable devices. The primary purpose of
these smart devices is to collect data and make intelligent decisions. However, IoT applica-
tions consist of various devices that use software, hardware, communication technologies,
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protocols, and standards. The definition of IoT comes from the convergence of multiple tech-
nologies [51], such as real-time analytics, embedded systems, etc. Devices send their data
through the network without the need of human intervention. IoT applications facilitate our
daily lives and improve industrial systems’ performance.

Figure 10 depicts an example of smart metering. The appliances are connected through
the Internet and send their data to the smart-meter control unit, which sends data to the
server. With IoT devices, the user can implement the remote reading of energy consump-
tion (water, gas, and electricity). This solution saves time and money by automating remote
data collection. Also, analyzing these data makes it possible to identify problems or anoma-
lies whose preventive treatment may significantly improve the operational processes. One
way to facilitate data management is by using the cloud and using it to enable devices to ex-
change sensors’ data. When the cloud receives the data, it might trigger specific actions, such
as sending an alert or automatically adjusting some parameters, without user intervention.
Typically, a user can control IoT devices by acting on a dedicated User Interface (UI).

2.3.2 Relevant IoT technology trends

In general, IoT systems are composed of hardware, middleware, and platforms [52]. Some
examples of these components are reported in this section and depicted in Figure 11.
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Hardware

IoT projects employ various types of configurable and programmable hardware prod-
ucts. Among the most popular, we would like to mention the following ones, ranging from
individual devices to full-blown platforms.

• Particle1: A fully-integrated IoT platform that offers everything to build an IoT device.
This solution consists of the hardware, software, and connectivity needed to build
a reliable, secure, and scalable IoT device. Besides, the Particle device cloud gives
control over all the customer’s devices.

• Arduino2: An open-source computer hardware and software platform that can be used
for implementing embedded system projects. Its digital devices can sense physical
movements and can be easily controlled to provide reliable and accessible communica-
tions between physical objects [53]. Also, the platform provides Arduino IoT Cloud, a
powerful service allowing anyone to create IoT applications in a few simple steps [54].

• Raspberry Pi3: A standalone computer system. It is a very cheap and popular plat-

1https://www.particle.io/
2https://www.arduino.cc/
3https://www.raspberrypi.org/
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form that includes network interfaces such as Wi-Fi, Ethernet, and Bluetooth. More-
over, it supports different programming languages and has many input-output (I/O)
interfaces. It is undoubtedly a flexible and more powerful solution for many IoT
projects [55].

• Intel Galileo4: An Arduino-certified development board based on Intel x86 architec-
ture. The primary goal of this platform is to broaden Arduino projects [56]. In addi-
tion, Intel Galileo enables complex IoT projects with dedicated board extensions, e.g.,
DevKit.

• Samsung Gear5 A smartwatch with Tizen operating system. It is a wearable IoT de-
vice that collects users’ personal digital information by assembling and processing the
data related to the environment, daily routines, and communities and enabling smart
digital services based on this pool of information [57]. This technology supports and
implements IoT forensics, and thus, the possibility of using the data collected by these
devices for forensics analysis [58].

4https://www.intel.com
5https://www.samsung.com/it/wearables/gear/:
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• BeagleBoard6: A device based on a high-performance Texas Instruments Sitara proces-
sor, typically equipped with an open-source GNU/Linux distribution, an open hard-
ware design, and with available add-on daughter boards. It is the right choice for IoT
developers because it is supported by the Microsoft Azure platform.

All the devices listed above are used as bricks during the development of any IoT project.

Middleware

The middleware layer is used to play different roles that depend on the context in which
it is used. Middleware generally provides services to lower and upper layers and is account-
able for establishing connections between devices. A middleware connects applications, op-
erating systems, and networks [52] and abstracts from the complexities of specific hardware,
simplifying application development [59].

• ARM mbed OS7: A free, open-source embedded real-time operating system (RTOS)
designed IoT devices. It is designed for an Arm microcontroller and includes many
useful features for security and connectivity and drivers for sensors and I/O devices.

• Android Things8: An Android-based embedded operating system platform provided
by Google that is also known as Brillo. It is aimed to be used with low-power and
memory-constrained IoT devices. It supports Bluetooth Low Energy (BLE) and Wi-Fi.
Along with Brillo, Google also introduced the Weave protocol, which is mainly used
for communication with other compatible devices.

• Intel System Studio9: A cross-platform tool suite that simplifies application develop-
ment for systems and IoT devices. It offers tools to build, analyze and debug the code
to boost application performance and power efficiency and strengthen systems relia-
bility.

• TinyML10: A tiny ML platform useful for a smart device that needs to include ML ar-
chitectures, techniques, and tools for performing on-device analytics. This framework
includes various sensing modalities (vision, audio, motion, environmental, human
health monitoring, etc.) and can be used in IoT projects to add machine intelligence to
devices.

These operating systems represent the bridge between devices and the Internet, where
there are platforms to develop and control IoT devices.

Platforms

An IoT platform comprises several integrated services supporting data storage, process-
ing, analytics, and visualization.

Several leading IoT platforms have been selected, which are commonly utilized by many
IoT projects to leverage their features and implement innovative applications.

6https://beagleboard.org/bone
7https://os.mbed.com/mbed-os/
8https://developer.android.com/things
9https://beagleboard.org/bone

10https://www.tinyml.org/home/index.html
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• Amazon Web Service (AWS) IoT11: A cloud service that connects IoT devices to other
devices and AWS cloud services. AWS IoT provides software that supports the inte-
gration of devices into AWS IoT-based solutions. This platform provides an operating
system, communication protocols, security services, and analytics tools [60].

• Microsoft Azure IoT12: A collection of managed services from perimeter devices to the
cloud that permits connecting, monitoring, and controlling billions of IoT assets. It
also includes security and operating systems for devices and equipment and data and
analytics that help businesses create, deploy, and manage IoT applications. It provides
a two-way connection between devices and platforms connected to the IoT, providing
strong security mechanisms that ensure scalability and easy integration with the sys-
tem [61].

• Google Cloud IoT13: A complete set of tools to connect, process, store, and analyze data
both at the edge and in the cloud. The platform consists of scalable and fully man-
aged cloud services. It includes an integrated software stack for edge computing with
machine learning capabilities to support IoT projects [62].

• IBM Waston IoT14: A platform that supports the quick implementation of IoT projects.
It is a completely managed, cloud-hosted service designed to get value from IoT de-
vices. It provides features such as device recording, connectivity, control, quick view,
and data storage.

2.3.3 IoT Architecture
As already mentioned, IoT enables the communications of billions of smart objects. There-

fore, an IoT architecture has to support this tremendous undertaking. The literature reports
many contributions to these aspects. Figure 12 depicts the three layers model. It is a variant
of the open system interconnection (OSI) model. The variation goes toward simplifying the
model to represent a smart device better. Thus the model adopted in this chapter considers
perception layer, network layer and application layer [63], as follows:

• The perception layer is a physical device and communication layer that consists of
sensors and actuators that sense, aggregate, and process data, then transfer the data to
the network layer. This layer is classified into the perception node, e.g., sensors, con-
trollers, physical objects, and actuators, and the perception network that interconnects
this layer with the network layer. Data is acquired and controlled at the perception
node, while control instructions for sending and managing data are carried out at the
perception network layer. Perception layer technologies include all types of sensors,
such as ZigBee, Radio Frequency Identification (RFID), sensor nodes, and sensor gate-
ways.

• The network layer is a communication layer that transmits the aggregated data and
storage awareness from the perception layer to the application layer using different

11https://aws.amazon.com/it/iot/
12https://azure.microsoft.com/en-us/overview/iot/
13https://cloud.google.com/solutions/iot/
14https://www.ibm.com/cloud/internet-of-things
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devices such as routers, gateways, and switches. The network layer includes mobile
networks, cloud computing, and the Internet.

• The application layer is a visible messaging layer to interact with end-users. This
layer comprises applications such as smart cities, smart grids, healthcare systems, and
intelligent transportation protocols. An application layer protocol is distributed over
multiple end systems, where the application in one end system uses a protocol to
exchange information packets with an application in another end-system[64].

Alongside the growth of IoT, in recent years, we have seen the development of the stan-
dardization of IoT. Many organizations are involved in this important task, including the
International Telecommunication Union (ITU), the European Telecommunication Standards
Institute (ETSI), the 3rd Generation Partnership Project (3GPP), the World Wide Web Con-
sortium (W3C), the Institute of Electrical and Electronics Engineers (IEEE), the Internet En-
gineering Task Force (IETF) and the Organization for the Advancement of Structured Infor-
mation Standards (OASIS) [63].

As described in Figure 13 each IoT layer uses different protocols and standards. The per-
ception layer and communication technology use WiFi, 4G/5G, LoRaWAN, IEEE 802.15.4,
and others. The network uses Internet Protocol version 6 (IPv6), 6LoWPAN, Low-power, and
Lossy Networks (LLNs), mDNS, TLS, and DTLS. The application layer typically includes
MQTT, Constrained Application Protocol (CoAP), HyperText Transfer Protocol (HTTP), and
eXtensible Markup Language (XML). The rest of the section describes standards and proto-
cols used by IoT devices grouped for each layer.

2.3.4 IoT Standard and Protocols
Various standards have been introduced to assess the services and relevance that are uti-

lized for IoT solutions to link several things to the Internet in IoT common standards [65] [66].
Although multiple protocols have been developed, they are not all required for a single IoT
application simultaneously. The IoT protocols for a given application are chosen considering
the nature of the application [45]. The most common IoT protocols (depicted in Figure 13),
which are utilized in a variety of applications, are listed below:
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A. Message Queue Telemetry Transport (MQTT)

MQTT is a messaging transport protocol that performs data aggregation of the envi-
ronmental data and sends it to a web server [67]. This protocol is based on the TCP
subscribe and publish messaging model and is intended for lightweight M2M, server-
to-server, and machine-to-server interactions [68, 45]. Here, the clients act as publishers-
subscribers, and the server should act as a broker where the clients are connected to the
server through TCP. Generally, the subscriber registers for a particular task in a device,
and the data are generated and transferred to subscribers by the publishers through bro-
kers [69]. MQTT is appropriate for utilization in things with limited resources, like those
with low power and computing capabilities connected to low bandwidth or unstable
networks. However, the MQTT protocol is not suited for usage with all IoT applications
because it operates over TCP, and the overhead is raised because it uses topic names as
texts [70, 45].

B. Constrained Application Protocol

The IETF, Constrained RESTful Environments (CoRE) research team developed the CoAP,
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which is a HTTP is functional and lightweight application layer protocol [71]. As most
IoT devices have limited power and storage, the CoAP protocol extends the function-
alities of HTTP (which has a relatively high complexity) by fulfilling the needs of IoT
devices [72]. This protocol shows how to build a web transfer protocol called REpre-
sentational State Transfer (REST) on the upper level of HTTP. The CoAP uses the UDP
because it is simple in nature and has a small message size and layout, which helps to
decrease the need for bandwidth, utilize resources, and decrease the overhead of TCP
handshaking before data transfer [73]. This protocol has two sub-layers: the messag-
ing sub-layer and the request/response sub-layer. The first sub-layer (messaging) de-
termines the replications and ensures efficient data transmission over the UDP through
exponential backoff as UDP is constrained by error recovery technique. On the contrary,
the REST communications are handled by the request/response sub-layer. There are four
kinds of messages in CoAP: confirmable, non-confirmable, reset, and acknowledgement.
The CoAP enables efficient delivery, congestion control, and flow control for IoT appli-
cations in resource-constrained and unsynchronized objects [74]. The CoAP has several
drawbacks, including increased communication delay, packet delivery instability, and
the inability to transfer complicated data [75].

C. Extensible Messaging and Presence Protocol (XMPP)
eXtensible Messaging and Presence Protocol (XMPP) is a protocol that ensures low band-
width communication and short message transfer, making it ideal for video conferencing,
publish-subscribe systems, telepresence, multi-party chatting, and talking in IoT [76]. For
instant messaging applications, XMPP is appropriate for authentication, security mea-
sures, access control, hop-by-hop and end-to-end encryption, and interoperability with
various protocols. This protocol serves three functions: client, server, and gateway, and
it facilitates two-way communications between any two of these roles [77]. In this sce-
nario, the client connects to the server through a TCP protocol and transfers data using
the XML streaming standard; the server is in charge of the connection management and
routing of the message, and the gateway ensures reliable connectivity among distributed
systems. This protocol allows communication among a variety of applications as it is
flexible and simple in nature. However, XMPP requires high computing capabilities de-
vices, consumes bandwidth of the network, transfers simple types of data, and cannot
provide QoS [78].

D. Advanced Message Queuing Protocol (AMQP)
Advanced Message Queuing Protocol (AMQP) is an open platform messaging standard
that is utilized at the application level to provide message services such as privacy, queu-
ing, durability, and routing [79]. AMQP ensures reliable and consistent information ex-
change using message-passing primitives such as one-to-one, one-to-many, and exactly-
once delivery. This protocol needs a stable transport protocol architecture, and mid-
dleware serves as a gateway between applications and available resources, connecting
institutions and mechanisms throughout time and space. The message and exchange
queues are the two main steps in the AMQP data transmission process. In a message
queue paradigm, messages are kept until they are delivered to the recipient. The mes-
sages are transmitted in an appropriate sequence in another scenario (exchange queue
model) [80]. AMQP also enables the publish/subscribe communication architecture and
point-to-point data transfer. There are two kinds of messages found in AMQP: the bare
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messages provided by the sender and annotated messages available to the recipient.
However, AMQP requires comparatively higher bandwidth and does not guarantee re-
source discovery [81].

E. Bluetooth Low Energy (BLE)
BLE, an extended version of Bluetooth offers a small radio with reduced power con-
sumption to operate for a longer period for controlling and monitoring applications [82].
The protocol stack utilized in BLE is almost identical to the standard of conventional
Bluetooth technology, but it has a larger coverage, approximately 100 meters, with low
latency [79]. The devices that employ the BLE standard are categorized into master and
slave. The master devices are the ones that play the most important roles and link to
slaves. Additionally, the slaves can access and subscribe to several master devices. BLE
enables devices to investigate as masters or slave channels in star topology [83]. This
technology turns off the radio while in idle time and only turns it on to broadcast or
receive minimal data packets, resulting in minimal energy consumption. A gateway
(another BLE device with network connectivity) is required for BLE devices while trans-
ferring data over the Internet.

F. Zigbee
Zigbee is a communication standard that ensures reliable, low power, and cost-effective
data transfer, but it covers a small range of communication [84]. Zigbee supports star,
cluster-tree, and P2P network topologies. A controller, in general, is in charge of the
structure and can be found in the middle of a star network, at the root of a tree or cluster
architecture, or anywhere else in a P2P topology [85]. There are two stacks in Zigbee stan-
dard, ZigBee and ZigBee Pro; these stacks allow mesh network architectures to operate
with various applications, allowing for low storage and processing power implementa-
tions.

G. Z-Wave
Z-Wave was initially developed by ZenSys (presently Sigma Designs) but was then im-
proved by Z-Wave Alliance [6]. Z-wave was applied as a wireless network protocol;
different from ZigBee, Z-wave defines all protocol layers and supports communication,
networking, and application layer protocols [86]. Z-wave can support mesh networking,
broadcasting, and multi-casting [86]. This technology operates in ISM band frequency
(900 MHz) and allows a transmission rate of 0.04 Mbps. The recent version of Z-Wave
technology can support up to 0.200 Mbps and covers about 30 m point-to-point commu-
nication [87]. Thus, it is applied for specific applications which require tiny and minia-
ture data transmission, such as home automation services [88] [89], Home Automation
Networks, health care control, and smart energy [86]. It has a specific architecture based
on a controller and slave nodes. Controllers are able to manage the slaves using send-
ing commands. Indeed, in wireless technology, routing protocols should ensure reliable
packet transfer and maintain connectivity between different nodes [90]. These protocols
are always performed through a source routing algorithm. The routing method requires
that the controller keeps a table of the whole network topology. This controller is asked
to submit the path inside the packet [90].

H. Low-Power Wireless Personal Area Networks (LoWPAN
LoWPAN are made up of a variety of cost-effective devices that are linked via wire-
less communication. This protocol has many applications in IoT architectures due to its

27



small packet sizes, low computing power, low data throughput, and low latency [91, 45].
Additionally, the 6LoWPAN protocol was introduced by incorporating the most recent
release of the IPv6 and LoWPAN. 6LoWPAN makes it easier to maintain the administra-
tive process by allowing each constrained object to be accessed independently within the
network. Additionally, it is in charge of segmenting and reorganizing IPv6 traffic, guar-
anteeing unitary routing, reducing protocol stack headers, and providing compliance
with the higher levels [92]. This protocol eliminates overall packet overhead as it does
not include the extra header information during routing. Besides, 6LoWPAN contains
a mesh address header to enable packet routing in a mesh architecture, but it is unable
to provide detailed information on routing to the link layer. 6LoWPAN has various ad-
vantages, including ad-hoc self-organization, robust connectivity, standard compatibility,
and low power consumption [45].

Finally, the Data Distribution Service (DDS) provides low-latency data connectivity, ex-
treme reliability, and scalable architecture for mission-critical IoT applications [93]. IoT de-
vices sense and act upon physical environments, and the network layer needs a standard
Domain Name System (DNS) to catalogue and discover resources efficiently. Multicast DNS
(mDNS) [94] and DNS Service Discovery (DNS-SD) [95] are widely used today to discover
resources and services offered by IoT devices. IoT devices are uniquely identified by a net-
work address called IPv6. The IETF developed the IPv6 Low-power Wireless Personal Area
Networks (6LoWPAN), which is used as an adaptation layer that allows sensor nodes to im-
plement the IP [96]. This protocol is an adaptation layer allowing the transfer of IPv6 packets
over IEEE 802.15.4 networks and overcomes the small size of the Maximum Transmission
Unit (MTU), which is 127 bytes. Furthermore, IETF designed the routing protocol for LLNs
as a link-independent distance-vector routing protocol, which is based on IPv6 for resource-
constrained nodes [62]. The RPL is a tree-based routing protocol in which nodes build a
Destination Oriented Directed Acyclic Graph (DODAG) by exchanging distance vectors and
roots with a controller. It can be considered as the standard routing protocol for IoT [97,
98]. There are several other kinds of networks involved in IoT communications, namely
mobile communications: cellular networks (3G, 4G, 5G, 6G), WLAN, Wireless Personal Area
Networks (WPAN), and world-wide communications [63].

In the perception layer, one of the main standards that support low power and lossy net-
works (LLNs) is the IEEE 802.15.4 standard, which forms the backbone of WSNs as part of
the IoT. This standard defines the physical and data-link layers of the network and provides
a framework of operation at low costs [99]. However, physical devices and communication
evolved to the Low-Power-Wide-Area-Network (LPWAN) and the Low-Rate Wireless Per-
sonal Area Network (LR-WPAN) [100]. LPWAN and LR-WPAN have been developed to
help small sensor communications. These last two protocols have been designed to meet
typical requirements of WSN, namely, burst and low-power communications for long-range
links.

LR-WPAN described two low-level layers which have to be controlled, e.g., the physical
layer and the MAC layer. On the other hand, LPWAN is used for long-range communication
devices and sensors. It supports low-power and low-bit-rate communications. Long-range
(LoRa15) defines the physical layer of an LPWAN protocol, and it uses a proprietary Chirp
Spread Spectrum (CSS) modulation. In this case, the other higher layer protocols are defined

15https://lora-alliance.org/

28



by LoRaWAN, which is a network protocol that manages the routing, the data rate, and the
frequency selection as well. Sigfox16 is an LPWAN network operator which introduces a so-
lution of end-to-end IoT connectivity based on its patented technologies. BLE is a de-facto
key wireless technology for WSNs and wearable smart devices. This protocol, released by
Bluetooth Special Interest Group (SIG)17, offers a wider range, lower latency, and minimal
power than Bluetooth. Long-Term Evolution Advanced (LTE-A)18 provides sufficient scal-
ability and flexibility to adapt to the M2M communications and IoT applications in cellular
networks [101]. Wi-Fi is the most ubiquitous wireless Internet connectivity technology today.
Unfortunately, it was developed many years before the IoT era, and its energy consumption
represents the major barrier to its use in small sensors. Low-power Wi-Fi solves this problem
by integrating Wi-Fi into emerging IoT applications and battery-operated devices [102].

2.3.5 IoT Applications

Due to the self-sufficiency of each IoT component, its role can be defined in various
semi-automated or fully automated environments. The early adopters of IoT, such as the
transportation, healthcare, and automotive industries, have witnessed significant positive
impacts from its implementation. However, to provide a structured classification, this work
adopts the three-layered IoT application taxonomy presented by [103]. This taxonomy cate-
gorizes IoT applications into different classes, including Service-oriented Applications (SoA),
RFID-oriented applications, WSN, Supply Chain Management (SCM), healthcare (e.g., m-
health and e-health), cloud-based services, smart society, and social computing. Each of
these classes primarily corresponds to specific application domains, which may involve one
or more layers of the IoT architecture [33].

Figure 14. General Standardization of IoT Application.

This section focuses on describing the domain applications relevant to this chapter. A
service-oriented application refers to a versatile architectural approach employed for au-
tomating business processes by integrating various components within each environment

16https://www.sigfox.com/en
17https://www.bluetooth.com/
18https://www.3gpp.org/technologies/keywords-acronyms/97-lte-advanced
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across the enterprise network. However, as the IoT service applications expand, the environ-
ment may involve diverse third-party components [33]. The IoT service architecture must
possess robust features to ensure effective integration, capability, and interoperability in such
heterogeneous environments. This enables the components to efficiently address business
requirements through rapid development or by leveraging existing resources through reuse
and integration [104, 105]. Simultaneously, RFID technology is widely recognized for its
ability to connect objects through RFID tags. This technology relies on the perception layer
for environmental sensing and the network layer for communication handling. It is essential
to validate the security mechanisms in both these layers to ensure safe and secure function-
alities [106]. WSN plays a pivotal role as a fundamental component in the IoT ecosystem
and can be considered as the precursor to IoT [107]. WSN consists of sensor nodes (motes)
managed by a coordinator (sink) and utilizes a diverse range of protocols organized in a
multi-layered structure to facilitate communication and data transmission [108] [109].

IoT plays a crucial role in supply chain management processes across various application
domains. This enables automated data transfer from suppliers to consumers, streamlining
the entire supply chain [110]. IoT applications in the healthcare system have witnessed sig-
nificant advancements in recent years. Wearable devices, such as sensors, are extensively
utilized in IoT-based healthcare systems, collecting sensitive data. However, these devices
are susceptible to adversarial environments, making it crucial to implement robust security
mechanisms to prevent malicious interactions with the coordinator system [111]. Cloud-
based services serve as the backend infrastructure for IoT, categorized into stationary and
mobile applications. Given the resource constraints and limited communication coverage
and mobility of IoT devices, there is a high demand for efficient packet forwarding in cloud-
based services within IoT environments. Social computing in IoT resembles a social net-
work structure, where each node represents an interconnected device that establishes social
relationships with other connected devices. This process operates fully automated under
predefined rules, monitored by a coordinator [33].

The concept of a smart society revolves around leveraging accurate city information at
the right time and in the appropriate context to make optimal decisions for various events.
To establish an IoT-based smart city, a multitude of wired and wireless sensors are being
deployed. The main challenge in building smart societies lies in integrating and linking the
vast amounts of city data generated by diverse smart systems and sensors into a central-
ized platform. Furthermore, ensuring the privacy and security of the collected data poses
a significant challenge due to the potential risks associated with handling large volumes of
sensitive information [112]. It is equally important to secure smart devices, as adversaries
often exploit resource constraint vulnerabilities to target these devices [33].

2.4 Requirements and Challenges in IoT

2.4.1 IoT Security Challenges
We live in a hyper-connected society, and massive numbers of smart devices surround

us. In this scenario, IoT security plays a crucial role. In this section, an analysis of security
requirements, attacks, and vulnerabilities associated with this technology is conducted.

A contribution by Jurcut et al. [113] reviews different market-available solutions that deal
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with IoT security. In this work, the author addresses the complexity of securing and mon-
itoring the environment of IoT smart devices by presenting different detection mechanisms
that consider the resource constraints of the IoT devices. Another research paper by Ali et
al. [114] reviews different lightweight algorithms used to protect IoE devices from attack-
ers and presents some authentication methods for enhancing the authentication of IoT. Al-
aba et al. [115] categorizes the issues of IoT security in terms of communication, data, and
architecture; also, they discuss IoT hardware and network threats. Another survey by [116]
discussed the privacy, confidentiality, access control, and data security of IoT. Their investi-
gation includes home appliances connected by WSN, Mobile Edge Computing (MEC), fog
computing, cloud computing, access control, and trust management mechanisms. Zhou et
al. [117] state the security and privacy requirements for the next generation of cloud-based
IoT systems. Zhang et al. [118] investigate the main security issues of IoT by focusing on
authentication, authorization, privacy, and the need for cryptographic tools to mitigate soft-
ware vulnerabilities and malware attacks. Other researchers discuss encrypting the com-
munications between clients and servers to guarantee privacy, confidentiality, and authen-
ticity [119]. Moreover, the problems are addressed at various layers within the IoT stack to
ensure proper data usage, secure communications, and applications.

IIoT

IoT

CONFIDENTIALITY

INTEGRITY AVAILABILITY

Figure 15. IoT CIA security model.

I. Security requirements

IoT applications can be classified as consumer IoT, named IoT, and Industrial Internet of
Things (IIoT) [120]. Depending on this division, the author will consider IoT security chal-
lenges. The Confidentiality, Integrity, and Availability (CIA) triad (see Figure 15) is a well-
known model that defines the security requirements and supports organizations to define
the core security objectives of their systems [121]. Satisfaction of CIA properties ensures data
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security of IoT and IIoT devices. Moreover, the IoT inherits all security requirements as a net-
work. However, it also has numerous constraints and limitations regarding resources and
devices, including computational and power resources, which pose additional challenges.

A. Classical Security Requirements

Confidentiality maintains privacy and protects proprietary information between the two
devices involved in communication by implementing mathematical algorithms to trans-
form data into a form that is not readily intelligible. This property is usually guaranteed
through specific mechanisms for data encryption or access control [121].

Integrity refers to the protection of useful information from the attacker or external inter-
ference during data transit or rest through some common methods like data integrity al-
gorithms that prevent data alteration. Two categories of integrity properties can be iden-
tified: i) connection-oriented integrity that guarantees that messages are received as sent
without duplication, insertion, modification, reordering, or replays, and ii) connection-
less integrity that protects messages’ modifications and improper information destruc-
tion [121].

Availability ensures timely and reliable access to resources by authorized parties. This
property is guaranteed through hardware redundancy, firewall, and software mainte-
nance [121].

IoT and IIoT emphasize these requirements differently (see Figure 15). IoT security is
more concerned with confidentiality to avoid stealing private information. IIoT security
is more concerned with data integrity to avoid unplanned system outages. Besides the
above deliberations, other security requirements deal with Authentication, Access con-
trol, and Accountability (AAA) [121]. The priority of these requirements in IoT and IIoT
depends on the task performed by the device.

Authentication is concerned with assuring the authenticity of the communication. At the
time of connection initialization, the service assures that the two communicating entities
are those they claim to be. During the communication, it assures that the exchange of
messages is not interfered with by a third-party device that can masquerade as one of the
two entities [121].

Access control specifies access rights or privileges to resources in order to enable different
users to access the required resources [121]

Accountability ensures that devices or individuals are responsible for their actions in
case of theft or an abnormal event. This security goal calls for uniquely tracing actions of
a specific device [122].

B. Specific Security Requirement

Information security encompasses all strategies to preserve, restore, and ensure informa-
tion security in computer systems against attack. IoT inherits all security requirements as
a network, but it also has numerous constraints and limitations regarding resources and
devices, including computational and power resources, which define additional chal-
lenges. Therefore, resources efficiency could be considered one of the security requirements
used to ensure that the adversary will not carry out attacks on the IoT architecture, lead-
ing to increased resource usage due to duplicated or faked service requests [123].
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II. IoT security attacks

The three levels of IoT architecture depicted in Section 2.3.3 are all prone to security
attacks. In this section, security attacks are identified and classified according to these three
levels.

A. Perception layer security
Very often, the devices used in IoT are low-power and memory-constrained IoT devices.
It is thus challenging to implement cryptography protocols and other authentication
mechanisms needed to protect them. It is also essential to distinguish between sensors
and actuators. The first sense information and make it available remotely, whereas the
latter are devices that can be controlled remotely [124] and perform specific actions. Some
devices falling into this category and commonly used at the perception layer are listed
below:

• perception nodes: RFID nodes and tags;

• sensor nodes: wireless sensors composed of Radio Frequency (RF) transceiver, Micro-
Controller Unit (MCU), memory, and a power source;

• actuator gateways: smart-sensors that check and record temperature, electricity, hu-
midity, pressure, speed, and other magnitudes.
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Figure 16. Perception layer security attacks.

These devices could be subjected to many security attacks, as shown in Figure 16, de-
scribed below.

(a) Denial of Services (DoS): the adversary degrades the node from correct service de-
livery by exploiting its features. Examples are jamming attacks (intentional inter-
ferences that disrupt wireless communications), and sleep deprivation attacks (adver-
saries drain the energy of the IoT devices by forcing sensor nodes to stay awake
and drain the system battery with useless tasks [125].
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(b) Data communication attacks: the adversary attack data during the transmission.

(i) Confidentiality attack: unauthorized interception of private information. This
attack invades privacy via, e.g., eavesdropping (capturing and decoding data
sent over the wireless link to obtain sensitive information) or a Man-In-The-
Middle attack (MITM) (the attacker intercepts the communication between the
victims and injects new messages while each endpoint is not able to detect the
intruder) [121].

(b) Integrity attack: modification of data in transit over a wireless network in order
to mislead the receiver or facilitate another attack, via, e.g., the frame injection
(the attacker injects frames into the wireless communication in order to display
malicious content on a legitimate channel) [121].

(c) Physical attacks: the devices are attacked by unauthorized access to the hardware
components. This approach is effective if the attacker has the target or a copy of the
target. Examples are node tampering (an unauthorized modification of the device
in which the adversary hacks the device by physically replacing some hardware
components to get access to private information), and malicious code injection (the
attacker injects a malicious code into the IoT device to get control of it) [126].

(d) Side channel attacks: a technique in which the information is leaked through a chan-
nel other than deliberately engineered for communication. These attacks require
the attacker to be close enough to the target and, e.g., use fault injection (the attacker
leaks information about the target by monitoring the effects at the lower layer of
a fault such as a clock glitching, voltage glitching, overclocking, and electromag-
netic injection) or Emission Security (EmSec) (the opponent exploits electromagnetic
leakage intercepting information carried by electromagnetic emanations) [121].

Perception layer attacks can cause serious effects, leading to different issues. In this con-
text, once for accidentally revealing user data to Facebook and Google via third-party
trackers embedded into their Android applications, and once due to an IoT security
breach, cybercriminals successfully hacked into several families’ connected doorbells
and home monitoring systems. The attacker could access live feeds from the cameras
around consumers’ homes and communicate remotely using the devices’ integrated mi-
crophones and speakers. Over 35 people in 15 families reported that attackers were ver-
bally harassing them [127].

B. Network layer security
The network layer must ensure that the data sent over communication channels (the air)
cannot be altered. The main purpose of the network layer is to transmit the gathered
information received from the perception layer to the application layer through existing
communication networks. Network-level security analysis focuses on the threats that
may occur to IoT communications, as shown in Figure 17.

(a) Routing attacks: these attacks modify the routing path during communication. In a
sinkhole attack, attackers force their nodes to respond to the routing requests. Thus,
they can use the packet node for malicious activity on the network [128]. The worm-
hole attack causes a breakdown to the operation of the 6LoWPAN by creating a tun-
nel between two nodes, and a packet is routed to a malicious node instead of the
original destination [129].
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Figure 17. Network level security attacks.

(b) Authentication attack: IoT devices must be authenticated using critical management
systems. Any mistake on the system network may expose the system to different
types of vulnerabilities. The Sybil attack uses a malicious node to forge false identi-
ties that act as multiple distinct nodes. Moreover, the adversary may thus be able
to control devices over the network, influence the network operations, and disrupt
middleware services [130]. The discovery of neighbouring devices protocol common in
IoT can be used for MITM attacks.

(c) DoS: the adversary degrades the network performance. An IP fragmentation attack
may cause resource depletion and a buffer overflow. Duplicating the fragments sent
by malicious resources will affect the packet re-assembly and block the processing
of other legitimate packets [131].

(d) Confidentiality attack: unauthorized interception of sensitive information. This at-
tack invades privacy but leaves confidential data intact. Privacy attacks of cloud-based
IoT are different types of attacks that violate the identity or the location privacy and
might affect the cloud-based IoT platforms; consequently, the data on the IoT cloud
can be accessed by malicious attackers [132].

Network attacks can cause serious effects, leading to a complete shutdown. The US elec-
tricity grid was attacked in late 2017. The attacker gained remote access to energy sector
networks. Then, they conducted network reconnaissance, moved laterally, and collected
information about industrial control systems. The attackers successfully switched off the
power for a couple of hours [133]. A DDoS attack hit a DNS service provider in October
2016 [134]. The attack lasted for a few hours, affecting the services of Twitter, GitHub,
and other services.

C. Application layer security
As previously discussed, there are countless applications that implement industrial au-
tomation or smart home functionalities. Possible applications for IoT and IIoT are:

• IIoT: industry 4.0, smart-grid;

• wearables: smart watch, e-health;
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Figure 18. Application level security attacks.

• transportation: intelligent transportation systems, Vehicle-to-Vehicle (V2V) and Vehicle-
to-Infrastructure (V2I) systems;

• smart-city: smart-building and smart-environment.

Security issues for this level mainly focus on attacking IoT applications through the in-
terface or the languages used to facilitate IoT projects. This section reviews the most
important application-level security attacks that are depicted in Figure 18 and are also
possible for IoT systems.

(a) Code injection: the software security in which various vulnerabilities in IoT can come
from codes and languages used to write a specific code (e.g., SQL, XML, JSON, etc.).
The programmer needs to be more careful about testing the code before publishing
it. Web security deals with IoT applications that can be represented through the web.
This interface is vulnerable to different types of attacks such as SQL injection and
Cross-Site Scripting (XSS) [135].

(b) Information leakage: The attacker can steal data by knowing the vulnerabilities of the
service or application and the threats of the IoT security that can cause information
leakage. Since IoT devices are deeply connected to our lives and industrial appli-
cations, data leakage might lead to social damage or economic losses [136]. The
authenticity of third-party applications cannot be checked, and when the end-user
installs this software, it might corrupt the IoT system [137].

(c) DoS attack: A hacker makes several attempts as an authenticated user and logs
into the system, interrupting the normal working of the network [126]. A DDoS
attack disrupts the normal traffic of a targeted service by flooding the victim or its
surrounding infrastructure with a flood of Internet traffic.

(d) Misconfiguration: IoT devices and their applications should be configured appro-
priately. Indeed, an attacker might exploit a misconfiguration in the application,
operating system, DB, and protocols to implement an attack that might damage the
whole IoT network. For instance, an IP misconfiguration may put at risk the perfor-
mance of the whole system [138].
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In addition to exploiting weaknesses of IoT applications, attackers can also use Open-
Source Intelligence (OSINT) tools to gather information on IoT targets. The IP device
search engines such as Shodan19 and Censys20 build searchable databases storing the in-
formation of the devices connected on the Internet and provide access to query for any
user [139].
Shodan is a tool that lets anyone search for IoT devices online. Like Google, it pings every
webpage to create an extensive list of them. Shodan records any metadata, which is then
publicly broadcast. These metadata are named banner. For instance, the banner is the
header for HTTP, while for FTP, it is the welcome string. The banner is the fundamental
unit of data for these IP search engines. Shodan supports different types of filters to
make its search engine more accurate and easy to use. These filters include country, city,
device type, port, and product. It works by relying on servers around the world that
crawl the Internet to access devices. It also generates a random Internet Protocol version
4 (IPv4) address and a random port before invoking such a service to obtain the banner.
Moreover, Shodan collects information about the devices, such as the location, hostname,
and operating system. This collected information can be seen using the Shodan API or
Shodan website [139].
Censys is newer than Shodan, and it is a search engine that allows users to query the de-
vices and networks on the Internet. Unlike Shodan, which captures the data in banners,
Censys is built upon the Zmap21 that is a faster alternative to Nmap and can scan the
entire Internet address space in a short time. That makes it possible to have an almost
real-time update on every IP address and consequently of the IoT’s banners [139].
The application layer attacks could also cause severe effects on the IoT system. In March
2018, Cambridge Analytica successfully gained access to confidential information on
more than 50 million Facebook users [140]. Also, in July 2015, a team of researchers
was able to hijack the vehicle over the Sprint cellular network by exploiting a firmware
update vulnerability. They discovered that they could control the vehicle’s speed and
turn it off from the road [127] by attacking the application layer of that vehicle.

2.4.2 IoT Security Mitigations

IoT projects are exposed to various vulnerabilities of different IoT components such as
applications, interfaces, networks, communication, and firmware protocols. However, a
good strategy to secure IoT systems is to define security mitigations for the different layers
and understand how these solutions can improve the IoT communication chain. Undoubt-
edly, cooperation between layers can make overall IoT security more robust.

I. Perception layer

The IoT devices and sensors belonging to the perception layer are typically used in low-
power and lossy networks, where memory, energy, and processing power are constricted

19https://www.shodan.io/
20https://censys.io/
21https://zmap.io/
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compared to the localization of network nodes in conventional Internet platforms. Conse-
quently, employing authentication schemes based on public-key encryption may prove im-
practical due to their high computational requirements and storage demands. Consequently,
incorporating a lightweight cryptographic protocol becomes challenging when considering
factors such as context awareness, ease of deployment, and scalability. It is important to
consider various types of attacks that can occur in the perception layer. In the following
lines, we will delve into the problems associated with these attacks and discuss mitigation
strategies for each type [109]:

Jamming attack is a form of DoS attack where the attacker floods the network with a high
range of malicious signals to disturb the communication and to deplete their resources such
as bandwidth, battery life, and storage. Generally, the jamming attack can occur in a wireless
medium through different situations such as collisions and interference, noises. However,
attackers use jamming attacks in WSNs to interfere with the physical transmission of signals
during the communication process. In WSNs, the perception and MAC layers are prone to
jamming attacks. Recent research proposed methods for detecting jamming attacks in WSNs.
These methods use prior information about communication behaviours during jammed and
normal conditions, which can be tracked by using indicators and metrics obtained from
different layers. Young et al. [141] proposed a solution that relies on measuring the signal
strength to determine noises by comparing the observed values with statistically significant
correct ones. Mistra et al. [142] proposed a centralized approach, a fuzzy inference-based
system, to detect the jamming attack by using three inputs received from the sensor node
in the network. These inputs are the total packets received during a specific period and the
received signal strength (RSS). These values are used to differentiate between the current
RSS and the normal RSS. After that, these values are used by the base station to compute
the packet drop per terminal (PDPT) and signal-to-noise ratio (SNR), which are further used
as inputs for the fuzzy inference system to obtain the jamming index. The jamming index
varies from 0 to 100 and is used to determine the intensity of the jamming attack, which can
range from a situation of no-jamming to absolute jamming.

Sleep deprivation attack causes energy consumption and reduces the lifetime of devices
and sensors. For detecting or minimizing the effects of this attack, Pirretti et al. [143] in-
vestigated three different methods: the random vote scheme, the round-robin scheme, and
the hash-based scheme. The random vote scheme counteracts the selection of a malicious
node by randomizing cluster head selection. In the round-robin technique, each node ben-
efits from becoming a cluster head at least once. This method is more scalable than the
random vote scheme. Unfortunately, the round-robin scheme introduced an important over-
head. However, researchers introduced the hash-based scheme to overcome this problem. In
this method, each node generates a random number and then broadcasts its number’s hash
within the cluster. This information is then used for the cluster head selection. Tapalina et
al. [125] proposed a hierarchical framework based on distributed collaborative mechanisms
to detect the sensor nodes that are affected by the sleep deprivation attack in WSNs. They
use a cluster-based mechanism in an energy-efficient manner. The proposed model uses an
anomaly detection technique to avoid false intrusion. To mitigate the attack, the proposed
model physically excludes malicious nodes from the network and rejects fake packets. Bhat-
tasali et al. [144] proposed a framework for mitigating sleep deprivation attacks without
using MAC-based protocols. The framework reduces energy consumption by limiting long-
distance communications and relies on a cluster-based approach where the cluster is divided
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into several sectors. The framework relies on a five-layer model of WSNs.
By eavesdropping, an adversary can acquire data and detect sensitive information of a

user. Many research efforts have been made to develop techniques that detect intruders
inside a WNS. Indeed, these systems prevent the intruder from causing damage to the net-
work or stealing data [145]. Wang et al. [146] proposed an Intrusion Detection System (IDS)
for WNSs that derive the detection probability by considering the sensing range, the trans-
mission range, and node density. On the other hand, Silva et al. [147] explained that by using
IDS, we could acquire information related to the attack techniques, helping in the devel-
opment of prevention systems in distributed WNSs. Recently, researchers introduced new
IDS based on ML techniques. Anthi et al. [148] proposed a three-layer IDS that used a su-
pervised approach. Indeed, it classifies the IoT device’s normal behaviour, identifies the
malicious packets, and, finally, classifies the attack. Besides, in the literature, many contri-
butions propose physical layer security solutions to avoid eavesdropping. These physical
layer techniques aim to hide the mere existence of a node or the fact that communication
is taking place. Security at the physical layer was mainly intended as the use of a spread
spectrum technique [149]. Moreover, Soderi et al. [150] proposed to combine watermarking
with a jamming receiver to draw a secure region around the legitimate receiver.

MITM is a kind of attack where an adversary could listen to the communication between
two endpoints or more. The MITM attacker can modify, intercept, change, or replace the
communication traffic of the target victim. This type of attack could be executed in different
communication channels such as GSM, UMTS, Long-Term Evolution (LTE), Bluetooth, near-
field communication (NFC), and Wi-Fi [151]. Cryptography techniques could be applied
to the data to avoid this type of attack. Mahalle et al. [152] presented a solution designed to
safeguard the system against DoS, replay attacks, and MITM attacks. The proposed protocol,
known as Identity Authentication and Capability-Based Access Control (IACAC), utilizes
the Diffie-Hellman algorithm based on Elliptic Curve Cryptography (ECC) to generate keys.
This approach enables devices to authenticate their peers by relying on encrypted secret
keys.

Frame injection is a kind of code injection attack classified by OWASP Top 10 [153]. This
type of attack has different aspects, which allow hackers to redirect users to other malicious
websites used for phishing and similar attacks. Zhiping et al. [154] finds that channel state
information (CSI) could solve the issue of this attack.

With the node tampering, the attacker could damage the sensor node by replacing the en-
tire code or part of its hardware or even electronically interrogating the nodes to gain access
and alter sensitive information. For example, routing tables or shared cryptographic keys
impact the operation of higher communication layers. This type of attack sends physical
alerts to compromised nodes to obtain sensitive data, such as the encryption key. Tiberti et
al. [155] proposed a defence from these attacks relying on Blockchain-based and computing
cryptographically secure hashes for checking the content. Raymond et al. [156] introduced a
framework in which replay protection and strong link-layer authentication could also miti-
gate node tampering attacks.

In malicious code injection, an attacker could damage the IoT system by modifying the
information and sending the wrong data to other nodes, dropping the packets, and stealing
the private data and encryption key. We can use anti-virus, firewalls, worm detectors, and
IDS, and keep the system up-to-date to mitigate the effect of this type of attack [157].

Emissions Security (EmSec) is concerned with preventing attacks exploiting emissions,
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namely radiated or conducted electromagnetic signals. There are different aspects of Emsec
attacks. Active and passive Emsec measures are strictly related to ElectroMagnetic Compat-
ibility (EMC) and Radio Frequency Interference (RFI), which can disrupt systems acciden-
tally. The trouble begins when the emitted energy holds sensitive data, so an eavesdropper
can interpret and analyze such compromising emanations to steal information; thus, data
encryption is essential. It is crucial to realize that these emissions shall be considered as an
additional Virtual ElectroMagnetic (VEM) interface [158].

II. Network layer

This layer facilitates data connectivity to perception layer devices to accomplish the func-
tionality of different applications in the application layer. The network layer is considered
to be the connectivity provider for other layers. Therefore, there are probable security flaws
that could compromise the operations of IoT architecture.

The sinkhole attack is one of the most destructive routing attacks in the IoT context. It col-
lapses the network communication by generating additional traffic on the network. Sinkhole
attacks compromise nodes, create fake information, and send routing requests to neighbour
nodes. Cervantes et al. [159] proposed an IDS system for identifying sinkhole attacks on
6LoWPAN networks for IoT. Kashif et al. [160] proposed a new protocol, RAEED, for detect-
ing sinkhole and DoS attacks. Ibrahim et al. [161] presented a new mechanism for detecting
sinkhole attacks using the hop count technique in WSNs.

The wormhole attack is an internal attack that listens to the activities on the network with-
out modifying them. There are different techniques used to detect wormhole attacks. Gupta
et al. [162] presented a detection technique without using any hardware, such as a directional
antenna and precisely synchronized clock. This approach is known as a wormhole attack de-
tection protocol using a hound packet. It could detect the wormhole attack in the network
or the nodes that were making this type of attack. Hu et al. [163] introduced the notion of a
packet leash as a general mechanism for detecting and, thus, defending against wormhole
attacks. A leash is any information that is added to a packet designed to restrict the packet’s
maximum allowed transmission distance. Leashes are produced to defend against worm-
holes over a single-hop wireless transmission. They proposed geographic leashes and tem-
poral leashes. The temporal leash ignores any packets with a limited lifetime. Instead, a ge-
ographical leash ignores any messages from an unknown distance. Lai et al. [164] proposed
the RPL routing protocol-based wormhole detection technique without using any hardware
requirements or any particular nodes.

The Sybil attack is caused by malicious Sybil nodes which use fake identities to corrupt
the IoT functionality and even violate data privacy. The fake identities on the network may
result in spamming, launching phishing attacks, or disseminating malware. Demirbas et
al. [130] used the signal strength measurements to detect this type of attack by deploying
detector nodes to compute the location of the sender during message communication. The
presence of another message communication with the same sender location but a different
sender’s identity indicates a Sybil attack. The assumptions of the proposed approach make
it usable for static networks.

The IoT deployment architecture requires that every device should be identified uniquely
on the network. The message communication for identification should be secure to ensure
that the data being transferred to a device in the end-to-end communication reaches the spec-
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ified target [165]. ECC can be used to secure neighbour discovery. The public key signatures
of the ECC are used to identify nodes in the neighbour discovery phase. The symmetric
and asymmetric keys management systems are used depending on the application require-
ments [117].

Privacy attack of cloud-based IoT: Cloud computing is considered a high-risk environment
for developers, consumers, and businesses because the environment cannot be defined or
controlled. Verification of log messages is used to protect cloud-based IoT from insertion,
withholding, modification, and reordering of messages. Encryption, obfuscation, encrypted
data processing, trusted platform module, sticky policy, anonymization, data segmentation,
trusted third-party mediator, and key management can be used to mitigate the effect of
cloud-based attacks and protect the information in the cloud [166].

III. Application layer

This section describes the different security attacks that may occur at the IoT application
layer.

SQL injection is the most common web hacking technique. It consists of inserting a SQL
query as input data from the client to the application. SQL injection enables an adversary
to spoof identity, disclose, modify, delete, or make data unavailable on a system [167]. The
OWSAP project [135] gives different recommendations of countermeasures for securing IoT.
The security mechanisms include testing interfaces against injection, avoiding weak pass-
words, and using HTTPS protocols and firewalls. Furthermore, it is crucial to regularly
update the firmware or software installed on the device using an encrypted transmission
mechanism. The updated files should be obtained from a secure server and undergo proper
signing and validation processes before installation. This ensures the integrity and security
of the device’s software, minimizing the risk of potential vulnerabilities[109].

XSS: is a kind of injection attack in which a malicious script is injected into trusted web-
sites. XSS occurs when an adversary uses a web application to send malicious codes in the
form of a browser-side script to another end-user. To mitigate the impact of XSS, OWSAP
recommended implementing a Content Security Policy (CSP). CSP is a browser-side mecha-
nism that allows the developer to create source whitelists for client-side resources of the web
application, e.g., images, JavaScript, CSS, CSP, etc., through a special HTTP header, notifies
the browser to execute or render resources only from that sources [135].

Phishing attacks are concerned with stealing users’ credentials and then using them to
hack and gain access to IoT devices and steal sensitive data. Phishing attacks send fraudulent
transmitters that appear to the end-user as reliable resources. This type of attack can be
contrasted by using specific algorithms to classify the spam email, check the contents of
the emails, learn more about the limited data set, and develop a model that classifies and
predicts whether an email is dangerous [168].

The Application layer DDoS attack is designed to attack the application by concentrating on
specific issues and vulnerabilities. The DDoS attack involves different types of attacks such
as UDP flood, ICMP/PING flood, Ping of Death, SYN flood, and Zero-day DDoS. Yin et
al. proposed an algorithm to detect DDoS attacks. The main purpose of this algorithm is
to detect whether an attack has occurred, find the real DDoS attack, and block the DDoS
attack at the source. Thus, the simulation result of the proposed algorithm could detect the
IoT devices from which a DDoS attack is launched within a shorter time and mitigate DDoS
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attack [169].
In the literature, several contributions offer solutions to the security issues described

above. A classification based on the IoT architecture is proposed, specifically addressing
mitigations for each layer, including the perception, network, and application layers. A
summary of important research results are presented in Tables 2, 3 and 4. In particular, in
accordance with the layered architecture proposed in this chapter, each table lists the IoT
security issues and countermeasures for the corresponding layer.

This section concludes by mentioning design tools available to developers for verifying
the security properties of protocols. These tools belong to the category of formal methods
and support the security by design development model. An example is provided in [170],
where a general framework based on the IoT-Lysa specification language is proposed that
relies on formal semantics, taking into account the costs and benefits of using encrypted
communications.

The following section presents and discusses energy and memory usage attacks in smart
devices in IoT and IoE systems. The next section also presents related work and background
studies of energy and memory attacks and discusses possible detection mechanisms used in
IoT and IoE smart devices.

2.5 Related Work and Background Reading

2.5.1 Energy Consumption Attacks
Energy-based attacks are often categorised as IoT sensing domain attacks, where the

smart devices and sensors are the target [190]. Dabbagh and Rayes in [190] described the
sensing domain attacks like vampire attacks, jamming attacks, sinkhole attacks, and selective-
forwarding attacks. The vampire attack, among others, is considered an energy-based attack
because it aims to destroy the battery of sensors. The researchers also identified four types
of vampire attacks based on the techniques used to destroy power: Denial of Sleep, stretch
attack, flooding attack, and carousel attack. Patil and Sharma in [191] also described several
DoS attacks for wireless sensors. The authors mentioned two attacks that waste the energy
of sensors, among others: Denial of Sleep and vampire attacks. Another category of attacks
is related to DoS, but they can waste energy indirectly. These are jamming attacks, wormhole
attacks, and path-based DoS attacks.

Energy consumption attacks and their analysis will be described in Chapter 3 and 4.

A. Fake Access Points Attacks

One of the most challenging security problems for wireless networks is detecting F-AP
attacks. This attack is also called the rogue AP attack or the evil twin attack [192].

Detection of rogue AP attacks in the wireless network of a smart healthcare system is an
essential aspect of wireless security [193]. A rogue device detection system using various
techniques such as site survey, noise checking, MAC address list checking, and wireless
traffic analysis has been proposed in [194]. The authors concentrated on detecting internal
rogue devices, such as devices connected via a wireless network and used by employees on a
corporate network. However, this approach cannot be applied to IoT devices due to resource
constraints.
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Table 2. Perception layer security.

Issue Effect Countermeasure Ref.

Jamming
attack

− DoS;
− Communication

blockage.

− Interference detection;
− Implement reactive strategies based on

the signal-to-interference-plus-noise ratio
(SINR) measurements;

− Game-theory anti-jamming techniques.

[141]
[171]

Sleep de-
privation

attack

− Energy consumption;
− Reduce the lifetime of

the sensor.

− Round robin and hash-based schemes for
the cluster head selection;

− Device authentication.
[172]
[143]
[173]

Eavesdrop-
ping

− Unauthorized inter-
ception of private
information;

− Privacy violation.

− Physical layer security;
− Protocol encryption (e.g., HIP, IPSec). [150]

[174]

MITM

− Unauthorized inter-
ception of private
information;

− Communication
blockage.

− Physical layer security;
− Protocol encryption (e.g., HIP, IPSec)
− Authentication scheme (e.g., HIP)

[114]
[149]
[175]
[176]
[150]
[174]

Frame
injection

− Modification of data
in transit;

− Communication
spoofing and block-
age.

− Channel state information analysis.
[154]

Node
tampering

− Unauthorized access
to the hardware;

− Damage the hard-
ware.

− Disable testing and debugging tools;
− Remove the unused interfaces such as USB

ports;
− Strengthening hardware design. [122]

Emissions
Security

− Exploiting electro-
magnetic information
leakage;

− Completely passive
attack.

− Improve electromagnetic shielding;
− Apply electromagnetic compatibility

norms;
− Improve the firmware.

[158]
[121]

Mehndi et al. [195] proposed an approach that considers the Mac Address, Service Set
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Table 3. Network layer security.

Issue Effect Countermeasure Ref.

Sinkhole
attack

− DoS;
− Data leakage.

− Authentication of the sender and the re-
ceiver by using a hash chain method;

− Attack detection is based on the attacker’s
reputation in the network.

[165]
[128]
[177]
[159]

Wormhole
attack

− DoS;
− Packets redirection

and messages are
tunnelled in the wrong
direction.

− Apply integrity checks on the forward
packets;

− Apply cryptography techniques for secur-
ing the nodes from the compromised wire-
less node.

[178]
[179]
[179]

Sybil
attack

− DoS and network dis-
ruption;

− Spoofing multiple
nodes identities.

− Adversary received signal strength indica-
tion (RSSI) based detection scheme;

− Location verification;
− Blockchain to establish the validity and in-

tegrity of transactions between nodes.

[180]
[181]
[130]
[182]

Discover
neighbour

devices

− DoS. − Neighbour authentication based on a pub-
lic key signature. [165]

IP frag-
mentation

attack

− DoS and Disruption;
− Incomplete packets

can cause operating
systems and security
appliance vulnerabili-
ties.

− Cryptographic techniques to verify that re-
ceived fragments belong to the same packet;

− Timestamp and nonce added to the frag-
mented packets at the 6LoWPAN adapta-
tion layer.

[125]
[183]
[131]

Privacy
attack of
cloud-

based IoT

− Privacy violation;

− Controlling and verifying messages at dif-
ferent levels to protect the system.

− End-to-end security, i.e., cryptography for
providing secure communication between
IoT devices and the cloud.

[117]
[132]

Identifier (SSID), and signal strength of the AP to decide whether the AP is rogue or not. In
detecting authorized APs, the MAC addresses of all visible APs are matched against a list
of authorized APs. Tools such as Ettercap22, Wireshark23, and Snort24 are used for filtering

22https://ettercap.github.io/ettercap/
23http://www.wireshark.org/
24http://www.snort.org/
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Table 4. Application layer security.

Issue Effect Countermeasure Ref.

SQL
injection

− Spoofing identity;
− Destroying data;
− Get Admin rights.

− Use of prepared statements with defined
queries;

− Enforcing least privilege;
− Escaping all user supplied input. [135]

XSS

− Stealing credentials;
− Delivering malware to

the victim.

− Using frameworks that automatically es-
cape XSS by design;

− Enabling a content security policy. [135]

Phishing
attack

− User’s credential
spoofing;

− Gain access to IoT
devices, like security
cameras.

− Aggregate a set of legitimate information
from the end-user that the attacker cannot
exploit. [184]

Third-
party

software
security

− Data leakage.
− Data encryption before saving them in the

cloud;
− Access control policies. [185]

DDoS

− Device’s resources de-
pletion;

− Denying the user of
available bandwidth
and resources.

− Machine learning detection schemes that
detect deviations from normal traffic pat-
terns;

− Zero-day attack signature extraction.

[186]
[187]
[188]

IP miscon-
figuration

− Decreases system per-
formance and reliabil-
ity;

− Unpredictable be-
haviour of the attack.

− Prevent misconfigurations. [189]
[138]

instances where the MAC address is spoofed. While Kilincer, Ertam, and Şengür [196] pro-
posed an automated technique for detecting and preventing F-APs attacks in the network of
IoT devices. The proposed experiment uses a Single Board Computer (SBC) and a wireless
antenna (ODROID module). The operation was about: 1) creating an F-APs, 2) scanning
the surroundings using the SBC and WiFi modules, and 3) detecting fake AP broadcasts.The
F-APs have been assigned to an unauthorized Virtual Local Area Network (VLAN). This
study [196] is limited and focuses on F-APs attack detection and prevention. However, the
data collected about the network and some attacks are still possible without connecting.
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B. DDoS and EC-DDoS Attacks

DDoS and EC-DDoS attacks are security threats by attackers that enter the WiFi network
coverage area and inject many forged packets. Adversaries use this attack for two purposes:
restricting usage of the WiFi bandwidth and preventing licensed users from communicating
with the licensed AP to paralyze or reduce the WiFi network’s performance [197].

Various studies have been dedicated to investigating the repercussions of DDoS attacks
on web servers, mainly when these attacks originate from compromised IoT devices. For
example, Kambourakis [198], Marzano [199], Tushir [200], and Kolias [201] discussed the
outbreak of the Mirai botnet (and its variants), which compromised IoT devices to launch a
DDoS attack against data centres. They claim that even naive techniques can be used to take
control of such devices and create a massive and highly disruptive army of zombie devices.
Liu and Qiu [202] investigated de-authentication and disassociation DDoS attacks involv-
ing overwhelming wireless devices with fake de-authentication and disassociation packets.
They observed that increasing the attack rate leads to a drop in TCP throughput and a rise
in UDP packet loss. Furthermore, they proposed a client-device-based queuing model to
demonstrate that the existing IEEE 802.11w standard fails to address de-authentication and
disassociation issues at high attack rates. Moreover, there are different approaches to moni-
toring IoT devices’ energy consumption to detect IoT cyberattacks. Tushir et al. [200] quan-
titatively studied the impact of DDoS attacks on smart home IoT devices and their energy
consumption. However, they did not present any detection or mitigation solutions.

Despite this, many developed methods exist to detect and prevent DDoS and F-AP at-
tacks in IoT systems. The presented approach in Chapter 3 focused primarily on assessing
the impact of the combination of DDoS, EC-DDoS, and F-APs attacks on energy consump-
tion, response time, and connectivity of smart healthcare devices. Therefore, the problem
addressed in Chapter 3 is the energy consumption efficiency of smart IoT devices. The chap-
ter focuses on studying the energy consumption of smart devices in various states, such as
”Idle,” ”Active,” and ”Under Attack.” Specifically, a combination of DDoS and F-APs attacks
is implemented to impact the energy resources of smart healthcare devices. The proposed
energy monitoring mechanisms facilitate the analysis of smart devices’ energy behaviour
both with and without attacks. The chapter’s objective is to better understand the impact of
DDoS, EC-DDoS, and F-APs attacks on the energy consumption and connectivity of smart
healthcare devices within a wireless network. The results demonstrate the cumulative effect
of DDoS and F-APs attacks on smart healthcare devices in different states. Notably, F-APs
attacks contribute to 45% of the total effect, while DDoS attacks account for 55%.

Overall, the findings validate the effectiveness of the proposed testbed model in achiev-
ing comprehensive monitoring coverage of smart healthcare devices’ energy consumption.
This solution also aids in developing a detection mechanism against energy attacks in IoT
systems. Therefore, in the subsequent chapter, a lightweight detection mechanism will be
constructed to identify energy attacks in smart devices as presented in Chapter 4.

2.5.2 Detecting of Energy Consumption Attacks

Detecting energy consumption attacks is one of the essential tasks to be considered as
its effects might cause severe problems to the privacy and reliability of the smart device.
Since researchers develop many schemes and methods, but due to the constrained environ-
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ment, e.g., low computational power and low energy of IoT, these techniques are not feasible.
Therefore, an added line of protection that considers resource constraints should be built into
IoT devices and networks to defend IoT-based organizations from cyber threats [203].

Various authors have presented detection techniques for energy consumption attacks in
IoT systems. In [204], the focus is on promoting the use of more efficient smart devices as
a key principle of energy efficiency. Home automation control is vital in achieving efficient
and sustainable operations by minimizing energy losses, optimizing energy usage, and ef-
fectively managing the system’s operational level. In the study [205], various home energy
management systems are assessed to identify differences in functionality and quality, focus-
ing on discovering opportunities for energy savings through behavioural and operational
approaches. The adoption of energy-efficient scenarios is often influenced by their poten-
tial benefits in terms of comfort, convenience, and security. The study [206] introduces a
detection framework for IoT systems that relies on energy consumption analysis. The pro-
posed methodology involves analyzing the energy consumption patterns of smart devices
and categorizing their attack status, distinguishing between cyberattacks and physical at-
tacks. The framework employs a two-stage approach, using a short time window for initial
rough attack detection and a longer time window for more precise attack detection. In the
study by Felius et al.[207], various techniques were proposed to manage smart home systems
and reduce energy consumption. The first approach, feed-forward control, involves real-
time monitoring of interference factors and implementing appropriate adjustments based
on known parameters. This system compensates directly for external factors such as wind,
solar radiation, and internal heat gain. Another method explored is Model Predictive Con-
trol (MPC)[207], which predicts the system’s future behaviour using models and adjusts the
system accordingly. Additionally, Fuzzy Logic Control was introduced, which does not re-
quire a complex mathematical model but relies on user experience quality to control the
system effectively. The paper by Hoffmann et al. [208] explored energy consumption analy-
sis approaches, but it was concluded that these approaches might not be suitable for devices
like smartphones due to significant differences in their typical energy consumption in real-
world scenarios. Moreover, the presence of noise in the system caused by unpredictable
user and environmental interactions could result in numerous false alarms. Practical tests
were conducted, and it was found that the additional power consumed by malicious appli-
cations is too minimal to be noticeable, considering the mean error rates of state-of-the-art
measurement tools. However, the study did indicate that DDoS attacks could be detected
by analyzing the energy consumption patterns of similar devices. In this paper [209], the
author presents a method for detecting IoT attacks by analyzing the energy consumption
of smart devices, taking into account user preferences related to energy consumption. The
primary objective is to improve the accuracy of IoT cyberattack detection and pinpoint the
presence of IoT malware on these devices. The study involves analyzing the IoT software
opcode sequences to enable the detection of various IoT device performances, including DoS
and DDoS attacks. To the best of our knowledge, the work in Chapter 3 is the first to detect
energy consumption attacks in smart home devices, depending on measuring the packet
reception rates by the smart devices.

To the best of the author’s knowledge, the presented work [21] in Chapter 4 is the first
work to detect energy consumption attacks in smart home devices, depending on measur-
ing the packet reception rates by smart devices. The author builds a lightweight detection
algorithm to detect energy attacks in smart devices. Therefore, Chapter 4 presents a com-
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prehensive solution for detecting energy attacks in IoT systems. A monitoring mechanism is
developed to track both the packet reception rate and energy consumption of smart devices.
Monitoring these parameters enables a deeper understanding of the device’s behaviour un-
der different states (Idle, Active, and under attack). The proposed algorithm is designed to
detect energy attacks across protocols such as MQTT, TCP, and UDP.

The results of the study demonstrate the effectiveness of the algorithm in providing com-
plete monitoring coverage for detecting energy attacks in IoT systems. The successful detec-
tion of energy attacks is achieved by monitoring the packet reception rate and measuring the
energy consumption of the smart devices. These findings are significant for implementing
packet reception rate monitoring in critical IoT networks.

2.5.3 Memory Consumption Attacks
In Chapter 5, a pioneering approach is presented that elevates the originality compared

to existing studies by focusing on detecting memory attacks based on meticulous monitor-
ing of memory usage in smart devices within the IoE and IoT domains. The ubiquity of the
IoE has catalyzed an unprecedented level of interconnectedness among people, data, things,
and processes [210, 211], necessitating rigorous cybersecurity evaluation akin to traditional
features like durability, suitability for purpose, and maintenance [212]. Despite the bur-
geoning emphasis on IoE security in legislation and common standards, standardized and
independent verification of IoE devices remains in its infancy. Several authors have explored
memory analysis to prevent and identify attacks in the IoE environment proactively [211].
Memory analysis has garnered considerable attention among malware researchers [213]. Re-
searchers such as Vömel et al.[214] have surveyed various memory acquisition and anal-
ysis techniques. Rathnayaka et al.[215] have observed that successful malware infections
leave traces in memory. Zaki et al.[216] have investigated artifacts left by rootkits at the
kernel level, including driver and module modifications, SSDT and IDT hooks, and call-
backs. Aghaeikheirabady[217] has presented an analysis approach that compares features
extracted from memory, such as function calls, DLLs, and registry information, to enhance
accuracy. Although the approach achieves an overall accuracy of 98% using Naı̈ve Bayes, it
is associated with a high false positive rate exceeding 16%.

Similarly, Mosli et al.[218] introduced a technique for malware detection based on ex-
tracting API calls, registry, and imported libraries from memory images. Although individ-
ual feature experiments achieved up to 96% accuracy using the SVM classifier on registry
activities, their subsequent work[219] focused on utilizing process handles in memory for
malware detection. The experiment showed that malware commonly used process handles,
mutants, and section handles, achieving a modest accuracy slightly above 91% with the ran-
dom forest classifier. In another study, Duan et al.[220] presented an approach to extract live
DLL features from memory to detect malware variants. The hidden Naı̈ve Bayes classifier
achieved an accuracy of 90%. Additionally, Dai et al.[221] proposed a malware detection
and classification approach based on converting memory images into fixed-size grayscale
images and extracting features using gradient histograms. The neural network classifier
achieved an accuracy of 95.2%. Moreover, in a previous work by the authors, API calls from
behaviour analysis and memory analysis were combined into a single vector representation
for each sample, demonstrating that memory analysis can overcome the limitations of be-
haviour analysis [222].
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In this innovative study, the memory usage of smart devices in both the IoE and IoT
environments is diligently monitored to detect memory usage attacks and mitigate resource
constraint challenges. A specialized testbed environment is meticulously utilized to measure
the memory usage of smart devices before and after attacks on the IoE and IoT environments.
The proposed model focuses on continuous memory usage monitoring of smart devices,
enabling the detection of memory usage attacks. The model encompasses three crucial steps:
a lightweight monitoring mechanism to continuously monitor memory usage, a detection
mechanism to identify the initiation and cessation of memory usage attacks, and a mitigation
process to prevent further reading and writing to memory, blacklist affected smart devices,
and disconnect them from Internet access.

This pioneering approach is meticulously applied and tested on a range of smart devices,
including Raspberry Pi and Arduino, each with distinct architectures. Various Python and C
libraries are adeptly utilized for monitoring memory usage. The detection and mitigation al-
gorithm has demonstrated remarkable efficiency in detecting memory usage attacks within
IoT systems. By continuously monitoring and analyzing the current and previous memory
measurements, the algorithm categorizes memory usage in smart devices as normal or ab-
normal. Moreover, the technique is thoughtfully designed to be lightweight, considering the
resource constraints intrinsic to smart devices.

The experiments conducted as part of this study, as showcased in [22], provide empirical
evidence of the effectiveness of the proposed approach for detecting and classifying memory
usage attacks. These evaluations include an assessment of classification accuracy, memory
usage monitoring, and attack detection. The results attest to the robustness and reliability
of the proposed mechanism, underscoring its potential to bolster the security posture of IoT
and IoE environments significantly. Finally, the algorithm presented in Chapter 5 demon-
strates high efficiency in detecting memory usage attacks in smart devices. The memory
usage during detection fluctuates between two normal states: Idle and Active. For instance,
memory usage remains below 35% for the Raspberry Pi and less than 16% for the Arduino.
Additionally, CPU usage is measured for the Raspberry Pi, registering a final percentage of
less than 2.5% during the detection mechanism.
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Chapter 3

Analysis of the Impact of
Energy Consumption Attacks
on Smart Devices

The rapid growth of IoT technology has revolutionized human life by inaugurating the
concept of smart healthcare, smart devices, smart city, and smart grid. The security of IoT
devices has emerged as a significant concern, particularly in the healthcare domain, where
recent attacks have exposed critical vulnerabilities in IoT security. In addition, in IoT net-
works, the connected devices are vulnerable to attacks such as attacks that affect the resource
constraints of healthcare devices, e.g., energy consumption attacks. Therefore, this chapter
defines the impact of DDoS and F-APs attacks on WiFi smart healthcare devices and stud-
ies the underlying reasons from the perspective of the attacker, victim device, and AP. This
work focuses on IoT devices’ connectivity and energy consumption when attacked. The
main key findings of this chapter are as follows: (i) the minimum and maximum attack rate
of DDoS attacks that cause service disruptions on the victim side, and (ii) the minimum-the
higher effect of EC-DDoS and F-APs attacks on the energy consumption of the smart health-
care devices.This study highlights the importance of communication protocols, attack rates,
payload sizes, and the state of victim devices’ ports as key factors influencing the energy
consumption of these devices. These findings contribute to a comprehensive understanding
of the potential vulnerabilities of IoT devices in smart healthcare environments. They serve
as a solid foundation for future research endeavours aimed at developing effective defence
solutions to mitigate the impact of energy consumption attacks.

This chapter is organized as follows: Section 3.1 provides detailed insights into the re-
search problems, offering a clear understanding of the motivations and objectives driving
the study. Section 3.2 serves as a general introduction to the chapter. In Section 3.3, the at-
tack scenarios and assumptions are explained. Section 3.4 outlines the energy monitoring
objectives used in the experiments of this chapter. The testbed scenario, data collection pro-
cess, F-APs setup, and the most significant influential factors are presented in Section 3.5.
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In Section 3.6, different results regarding network scans, disconnections caused by DDoS
attacks, energy consumption measurements, and the effects of EC-DDoS and F-APs on en-
ergy consumption are described. Lastly, Section 3.7 provides the experimental evaluation,
illustrating the impact of energy consumption attacks on smart devices. The content of this
chapter is mainly taken from [20].

3.1 Problem Statement, Motivation and Objectives
The problem addressed in this chapter is the efficient, full monitoring of the smart de-

vices’ resource constraint problems and detection of resource constraint attacks within IoT
systems. We target the detection and mitigation of resource-constraints attacks. The pri-
mary goal of the energy monitoring mechanism is to ensure resilient network connectivity.
The objective is to detect energy consumption faults in a proactive and efficient manner by
continuously monitoring the energy usage of smart devices. This includes monitoring the
status of all devices within the network. This chapter provides energy monitoring mecha-
nisms in order to detect energy attacks in smart devices. This study has been done in real
smart IoT devices, and the final results show the effect of EC-DDos, DDoS, and F-APs at-
tacks on smart healthcare devices. The monitoring mechanism of energy consumption must
have minimal effect on the energy consumption of smart devices within the IoT system. En-
ergy consumption attacks have been analysed on smart healthcare devices because of their
important effects on the healthcare community.

Therefore, new threats constantly emerge since IoT healthcare devices operate in an in-
terconnected and interdependent environment. Moreover, as IoT healthcare devices are typ-
ically used in an unattended environment, intruders may maliciously access these devices.
Eavesdropping can access privately owned information from the communication channel
because IoT devices are usually linked through wireless networks. In addition to these se-
curity issues, IoT devices cannot afford to incorporate advanced security features because
of their limited energy and processing power. Therefore, it is essential to study the effect
of malicious attacks on the energy consumption of smart healthcare devices and show their
impact, as smart healthcare systems are much more vulnerable and sensitive to their pri-
vacy and security. More importantly, considering the massive amount of smart healthcare
devices on the market, the impact of energy consumption attacks cannot be neglected. Our
main contribution is studying the effect of a practical combination of F-APs and DDoS at-
tacks on smart healthcare devices. The main purpose of choosing DDoS and F-APs attacks
as their impact on IoT security is high, so many researchers are working on solutions [223].
Thus, we target the energy consumption of smart devices. In the first step, we design a smart
system to measure the current consumption of smart healthcare devices. Also, we build a
testbed to monitor the smart devices and capture devices’ status, e.g., On or Off, network
traffic, and energy consumption. We identify several critical influential factors, particularly
in terms of communication protocol, Attack Rate (AR), payload size, and victim devices’ port
status. We study the impact of these factors on the victim devices’ resource constraints, such
as energy consumption. In the second part of the contribution, the attacker disconnects the
smart devices from the local AP by sending DDoS attacks. At the same time, we study the
effect of EC-DDoS on energy consumption by sending malicious attacks to affect the energy
resources of smart devices. Also, we implement real-time energy monitoring on real smart
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devices to register the effect of the attack. In the last part of the contribution, we designed
the F-AP to force the smart devices to connect to it once it disconnected from the local AP
by DDoS attack. The F-AP is designed to automatically send malicious attacks,e.g., DDoS,
EC-DDoS, or others, affecting smart devices’ energy consumption.

This contribution gives a valuable understanding of the effect of DDoS and F-AP attacks
on the energy consumption of smart healthcare devices by presenting a testbed and real en-
ergy consumption tests. Energy consumption attacks can destroy smart devices and impact
patients’ lives. The analysis of this research is used to build detection mechanisms for energy
attacks in IoT devices as described in Chapter 4.

3.2 Introduction
IoT smart devices play a vital role in various aspects of human life, such as healthcare

and transportation [40, 222]. The IoT has brought about a transformative impact on technol-
ogy and society, continuously increasing the number of IoT devices. According to a report
by Cisco, it is projected that approximately 29.3 billion networked devices will be connected
to the Internet by 2023 [224]. As the number and heterogeneity of smart devices are accel-
erating rapidly, it is becoming challenging to maintain the security of these devices [225].
IoT footprints have been identified in various domains such as manufacturing, agriculture,
transportation, electric grid, and healthcare [226]. In an IoT-based healthcare system, secu-
rity is the primary concern as the data is directly related to human beings [227]. An Intensive
Care Unit (ICU) is a special and critically operational hospital department where special-
ized treatment is given to patients requiring critical medical care. Usually, patients who are
acutely unwell or injured severely and require continuous medical care are admitted to the
ICU. The equipment and devices concerned in the ICU play a vital role in keeping the patient
alive and healthy. In such a scenario, any communication breakdown due to a cybersecurity
breach may cause severe effects on a patient’s life and even death in some instances [228].

Moreover, smart healthcare devices typically interact through different wireless commu-
nication protocols that allow adversaries to perform different attack types. For example,
eavesdropping, creating F-APs, DDoS, and EC-DDoS [229]. Attackers use DDoS attacks
to launch malicious traffic to damage target smart healthcare devices by affecting their re-
sources and disconnecting them from the legitimate AP. EC-DDoS attacks lead to an increase
in the target’s energy consumption to destroy it by sending malicious traffic. F-APs attacks
force smart healthcare devices to connect to an alternative AP, monitor the transferred pack-
ets, and then launch malicious attacks to consume more energy. Typically, most IoT de-
vices have limited processing capabilities, and applying advanced security techniques to
each device is challenging [230]. Using them in the smart healthcare system may also give
unauthorized access to cybercriminals to monitor patients’ private data and exploit sensi-
tive information or send attacks to consume more energy and destroy smart devices [231].
Previous studies have focused on conducting static and dynamic analyses and implement-
ing defences against DDoS and F-AP attacks. However, a significant limitation of existing
dynamic analyses is that they are primarily carried out in virtual environments, hindering
accurate measurement of resource consumption for compromised devices, especially energy
usage [18]. To overcome this challenge, this work addresses the issue by conducting exper-
iments in a controlled environment using real-world devices. This approach enables gath-
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ering precise data on the impact of attacks on resource-constrained IoT healthcare devices
within a cost-effective experimental setup.

In this chapter, we study the effect of DDoS, EC-DDoS, and F-APs attacks on WiFi con-
nectivity and energy consumption perspectives. The results show the significant damage
that could be caused by these attacks and draw attention to the urgent need for effective
defence solutions. This chapter can be used as a framework to test smart healthcare devices’
security and create security standards for robust, predictable, and tamper-free operations.
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Figure 19. Testing Environment.

3.3 Attack Scenario and Assumption
Attack Scenarios. Figure 20 illustrates the potential scenarios where DDoS, EC-DDoS,

and F-APs attacks can be applied. First, F-AP is designed to look like the actual AP. In
those scenarios, the attacker can set an F-AP to launch different attacks to affect the energy
resources of smart healthcare devices. The F-AP signals could be more vital to the victim
than the actual AP. Once disconnected from the actual AP by sending DDoS attacks, the tool
forces smart healthcare devices to automatically reconnect to the F-AP, allowing the attacker
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to intercept all the traffic to that smart healthcare device, such as MITM attacks. Sniffing
tools can also be applied to get or edit the information sent or received from the victim’s
devices. Additionally, the attackers may use F-AP and EC-DDoS attacks to destroy smart
healthcare devices by affecting resource usage, e.g., energy consumption.
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(Linux)
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(Linux)
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X
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 measurement
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Sniffer
(Linux)

Ethernet
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Figure 20. Attacking Scenarios.

Assumptions. The attacks we consider require the attacker to send DDoS attacks to force
the device to disconnect from the legitimate AP and affect its resources. Then, the adversary
could set up the F-APs attack at different locations. The adversary may set the F-APs at a
distance from the victim to avoid being caught. As a result, the smart device is connected
to the F-APs created by the attacker. The potential F-APs attack relies on sniffing over the
WiFi to capture all packets travelling to and from the monitored smart device. Also, the F-
AP is designed to affect the energy consumption of smart devices by automatically sending
malicious attacks to connected smart devices.

Therefore, in this chapter, we investigate the effect of F-APs and EC-DDoS attacks on
smart healthcare devices’ energy consumption by implementing them with malware de-
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signed to increase the energy consumption of smart healthcare devices and destroy them.
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Figure 21. Sequence diagram showing an attacker intercepting and affecting energy
measurement of the smart healthcare devices.

3.4 Energy Monitoring Objectives
Energy monitoring mechanisms, in general, aim at detecting and localizing energy at-

tacks, providing the appropriate tools for overseeing the energy state and availability of
devices. The necessary corrective energy measures can be taken by mapping symptoms
of detected energy problems to possible attack causes. Therefore, we developed a smart
circuit using a non-invasive current sensor, as shown in Figure 22, to measure the current
consumption of smart healthcare devices. This smart circuit samples voltage, ampere, watt,
and current per second. The current consumption values for each smart healthcare device
are stored in the DB. In our experiment, we use the Joule (J) values to calculate the energy
consumption of smart devices.

Let us describe the energy (E) measurement footprints considering the set of different
device statuses in the absence or the presence of the attack.

E(d) = f(e(d), n, ATK) and n ∈ [0, 1] (3.1)

Where (ed) the energy measurement (e) of the smart device (d) at a point in time in the ab-
sence or presence of cyberattacks (ATK), and n is the number of energy measurements in
a time interval, ”f(e(d), n) ∈ [0, 1]” where 0 is the minimum energy consumption measure-
ment, and 1 presents the maximum energy consumption measurement in the absence or
presence of the attack. The smart IoT devices’ energy consumption is calculated and anal-
ysed before and after attacking the smart devices. The main purpose of this calculation is to
study the effect of the energy consumption attack and build a solid foundation for detecting
this type of attack as described in Chapter 4.
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Figure 22. Circuit for measuring current consumption.

3.5 Proposed Testing Environment
In this section, we explore various attack scenarios targeting smart healthcare devices

and provide insights into the testbed, network scan, and data collection process. The testbed
serves as a platform to investigate the impact of DDoS and F-AP attacks on energy con-
sumption. Additionally, we analyze the status of devices and ports to identify potential
vulnerabilities and weak points in the system.

3.5.1 Experiment Setup
There are two types of attacks on IoT devices: internal and external. Internal attacks

happen when the adversary has access to the local network; this is possible by hacking the
WiFi or gaining access to IoT devices. For example, attackers may gain access to the device
by launching internal attacks to access a local Linux-based device remotely or by sending
packets from outside the network for the external attack. For instance, if the attacker can
force smart healthcare devices to disconnect from the actual AP and connect to the F-APs,
then the adversary can send packets to the device outside the local network.

The testbed contains different smart healthcare devices, e.g., Arduino and Raspberry Pi,
as proof of concept. Furthermore, three Linux-based images were created using Docker, as
shown in Figure 19. These images involve 1) an attacker sending malicious packets to the
victim devices, 2) a sniffer for capturing WiFi traffic, and 3) a control system to scan the
network and get different information about the port and devices’ status.
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Figure 23. Energy Consumption of the Raspberry Pi (Normal).

Moreover, we created the F-APs using a TP-Link TLWN772N USB adapter and a Linux-
based software system. Then, we designed a smart meter to measure the energy consump-
tion of smart healthcare devices using a non-invasive current sensor [232] with an Arduino
and some other resistors. Also, we used different software tools for attacking data genera-
tion and collection. On the adversary side, we used Nmap1 to launch a network scan and
identify devices’ status, such as online or offline, IP address, and MAC address. Then, we ran
a TCP/UDP port scan on the victim devices to identify port status (open/closed, filtered/not
filtered, and others). Furthermore, we used hping32 to generate DDoS and EC-DDoS attacks
by adjusting the AR, source IP address, destination IP address, payload, attack type, flags
of TCP sessions (SYN, ACK, FIN, push, or urgent), and port types. In addition, we used
hostapd (host access point daemon) and dnsmasq with a TP-Link TLWN772N USB adapter
to create the F-APs. Hostapd is a user-space daemon software enabling a network interface
card to act as an AP and authentication server. Dnsmasq is a lightweight, easy-to-configure
DNS forwarder designed to provide DNS (and, optionally, DHCP and TFTP) services to a
small-scale network. The TP-Link TLWN772N is a USB adapter that acts as an F-AP.

We used tshark to evaluate the impact of EC-DDoS and F-APs attacks on the resource
constraints of smart healthcare devices and capture WiFi traffic. Figures 20 and 25 show the

1https://nmap.org/
2https://www.kali.org/tools/hping3/
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Figure 24. Energy Consumption of the Arduino (Normal).

attacking scenarios. Different stages are used to run our experiment. In the first stage, we
measure the energy consumption once the device is turned On. Another measurement is
used when the device is connected to the AP. Then, we run a network scan to capture the
port and device status. Once we ensure that the device is connected to the Internet, we send
DDoS and EC-DDoS attacks for two purposes: first, to consume more energy, and second, to
disconnect the device from the local AP. Then, we run energy consumption measurements
to calculate the energy consumption of the devices and study the devices’ behaviours under
DDoS and EC-DDoS attacks. Next, we run the F-APs attack on smart devices. We first
check whether the devices are already disconnected from the local AP. We then force the
smart devices to connect to the F-APs and finally start measuring the energy consumption of
smart healthcare devices. Also, we study the behaviour of smart devices in terms of energy
consumption and connectivity. The F-AP works as a MITM attack. The F-APs are used for
different purposes: 1) monitoring the devices, 2) sending malicious packets to consume more
energy, and 3) affecting the CPU usage of the smart healthcare devices.

3.5.2 Collecting Data
We built a smart healthcare test environment by deploying different smart devices, as

shown in Figure 25. Data is aggregated from various smart devices for analysis purposes.
Moreover, the aggregated data is categorized into behavioural and network data. Behavioural
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Algorithm 1 the affecting of F-APs and DDoS attacks on energy consumption

1: procedure SMARTDEVICE(a) ▷ consume more energy of (a).
2: Sniff air for network scanning
3: E1: energy consumption before the attack
4: E2: energy consumption after the attack
5: if a = connected then ▷ a is connected to the AP
6: Calculate energy consumption
7: Disconnect using DDoS attack
8: else if a = disconnected then ▷ from the actual AP
9: Send DDoS attack

10: Calculate energy consumption after the attack
11: if E1(a) < E2(a) then
12: Connect the device to F-APs
13: Send malicious attack to consume more energy
14: else if E1(a) < E2(a) then ▷ energy consumption after attack
15: Send another packet of DDoS attack
16: Consume more energy and disconnect the devices
17: else
18: Try to consume more energy
19: Calculate energy consumption, AR, survival duration (SD), and threshold(AR)
20: while E1 ̸= 0 do ▷ Consume more energy to destroy the device
21: E1(a)← E2(a)
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data refers to the status of the smart devices, like On or Off, and the device’s readings. Net-
work data refers to smart healthcare devices’ TCP and UDP packet data. We integrate this
data to learn typical behaviours in a smart healthcare environment.

A

C

B

D

E

A and B: Meter to measure
Power Consumption.
C and D: Smart Devices.
E: Local Access Point

Figure 25. Proof of Concept for Wireless Network smart healthcare devices.

Figure 21 shows different phases of our attack scenario; in the first phase, we control
the smart devices by switching them On or Off ; this is essential to calculate the energy con-
sumption of the smart devices before launching any attack. In the second phase, we measure
the energy consumption of the smart devices for at least 30 minutes to calculate the average
energy consumption before launching any attack; then, we start sniffing the network to get
information about ports and devices’ status. In the final phase, we launch DDoS and EC-
DDoS attacks to impact smart devices’ connectivity and energy consumption. Simultane-
ously, the energy consumption of appliances is measured to show the impact of this attack
on the energy consumption of smart healthcare devices. After that, once the devices are dis-
connected from the legitimate AP using DDoS attacks, we calculate AR, Survival Duration
(SD), and the threshold of the AR. Next, we force the devices to connect to the F-APs, where
the fourth phase will start. In this phase, we start monitoring and collecting information
about the smart devices using F-APs facilities. We then launch malicious attacks through the
F-APs to consume more energy and study the behaviours of smart devices’ energy consump-
tion under F-APs attacks. Through that, we achieve the main purpose of destroying smart
healthcare devices by using energy consumption attacks caused by F-AP and EC-DDoS at-
tacks, as shown in Figure 26.
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Figure 26. Energy Consumption affects before and after attacking smart healthcare
devices.

3.5.3 Setting up a Fake Access Point
We used hostapd (host access point daemon) and dnsmasq with a TP-Link TLWN772N

USB adapter to create the F-APs attack, broadcast a fake signal, and capture the victim’s
packets. The F-AP configures the same SSID, Basic Service Set Identifier (BSSID), broadcast
channel, and security settings as the legitimate AP. The scenario with the F-APs attack is
reported in Figure 20. The monitor mode of the F-APs is enabled using airmon-ng start for
capturing attack injections or packets from and to the smart healthcare devices. The F-APs
work as an MITM attack to capture packets transferred between the smart devices and the
server. Moreover, the F-AP is designed to send malicious attacks to consume more energy of
the connected smart healthcare devices3.

3.5.4 Determining the weak side
In this section, the primary focus lies in examining the impact of disconnections and

power consumption. We specifically consider victim devices with varying hardware config-
urations, such as differences in CPU, WiFi chip, and memory. It is important to note that
these devices may exhibit diverse responses when subjected to a given attack. Arduino and
Raspberry Pi are considered.

The port state and communication protocol can significantly influence victims’ responses
during an attack. Accordingly, Three types of attacks are conducted in this study: TCP-SYN,

3https://github.com/developerZA/EnergyConsumptionAttack.git
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UDP, and Internet Control Message Protocol (ICMP) echo request attacks. For TCP-SYN
and UDP attacks, targets with different port states, such as open, closed, filtered, and open-
filtered, are selected. In the case of ICMP attacks, the port number is not specified.

Considering that smart IoT devices have limited resources, their behaviour can vary sig-
nificantly depending on the payload size of the attack packets. Therefore, the payload of at-
tack packets is configured with two settings: 0 B, representing no payload (NP), and 1500 B,
representing high payload (HP). This allows us to explore the impact of payload size on the
devices’ responses to the attacks.

The relationship between DDoS and EC-DDoS attacks and the Attack Rate (AR) has been
acknowledged as having a direct impact. In Section 3.6.2, we analyse AR’s effect on service
disruption by determining the minimum AR required to disconnect devices from the legiti-
mate Access Point (AP). Furthermore, in Section 3.6, we investigate the impact of EC-DDoS
and F-APs attacks on the energy consumption of smart healthcare devices.

3.6 Experimental results and analysis

In this section, we describe an experimental workplace to test the effect of DDoS, EC-
DDoS, and F-APs attacks on the energy consumption of smart healthcare devices. This ex-
periment focuses on collecting incoming malicious attacks and the usage statistics of a victim
device and analyzing the attack effects on the victim devices in terms of energy. The network
scan of the smart devices is used to obtain the status of the ports and then to determine the
weak side of smart devices by calculating their AR and SD. Moreover, we study the effect of
EC-DDoS and F-APs attacks on energy consumption.

3.6.1 Network Scan

The network scan operation involves gathering crucial information about the victim’s
smart devices, including their online or offline status, IP address, and MAC address [109].
On the other hand, the port scan enables an attacker to determine the status of TCP and
UDP ports on the target devices. The ports can be in one of the following states: open,
closed, filtered, or open-filtered. For a comprehensive overview, Table 5 presents the port
statuses observed for the devices utilized in our testbed.

Table 5. Network scan result in terms of port status for TCP and UDP protocols.

.

Device TCP scanned ports UDP scanned ports

Raspberry Pi
3 open, 998 open-filtered,
65389 filtered and 0 closed

ports

4 open and 700 open-filtered
and 0 closed ports

Arduino
1 open, 22 filtered, 1000

open-filtered and 0 closed
ports

1000 open-filtered ports
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3.6.2 Attack Rate and DDoS Attacks
In our study, the threshold AR is defined as the minimum AR, measured in Packets

Per Second (PPS), that leads to the disconnection of the victim’s device from the AP. The
SD represents the time duration between the commencement of an attack and the resulting
device disconnection caused by the attack. To capture a comprehensive range of attack sce-
narios, we have configured the maximum attack duration to vary between 8 and 30 minutes.
During the experimentation, ICMP, TCP-SYN, and UDP attacks were launched against the
victim devices, targeting their open, filtered, and closed ports. This enabled the collection of
their respective threshold AR and SD values for analysis.

The AR applied to the Raspberry Pi is between 500 to 10, 000 PPS for both NP and PH.
In contrast, the AR sent to the Arduino for NP attacks is between 100 to 800 PPS, as the
threshold AR is 800 PPS. We did not use a PH attack against the Arduino because it discon-
nects with minimal AR. Table 6 reports the average SD in minutes for the smart devices. We
can see that the Arduino device disconnects in all cases with different attacks. Instead, the
Raspberry Pi disconnects only with low packets. The Raspberry Pi survives with a higher
AR than the Arduino, with 20 k packets at NP. The AR of the Arduino is 800 packets at NP
and 200 packets at PH. The tshark files show that the Raspberry Pi broadcasts probe requests
and sends de-authentication packets to the legitimate AP. The main difference between the
smart devices is that the Raspberry Pi has more powerful hardware than the Arduino.

Table 6. Survival Duration (SD) caused by DDoS attack.

Survival
Duration

Raspberry Pi Arduino
NP [Minutes] PH [Minutes] NP [Minutes] PH [Minutes]

SD (ICMP) 7.58 none 3.6 3.13
SD (TCP) 6.2 none 3.3 2.44
SD (UDP) 7.8 none 3.8 2.44

Through the experiment, when we calculate the received AR by the victim devices, we
find that the victim devices rarely receive the actual AR sent by the attacker. For example,
we sent about 15 k packets to the open ports of the Raspberry Pi; the received packets were
about 14544 packets. Also, we can notice that the increase in the average packet rates sent
by the attacker causes an approximately logarithmic increase in the received packets by the
victim.

3.7 Experimental Evaluation

3.7.1 Energy Consumption Attack and IoT devices
To calculate the energy consumption of the devices versus the incoming attack reception

rate of the victim devices, we need to collect the data from both the sensors and the tshark
data. Therefore, all data relevant to this experiment is stored automatically in the DB. Dur-
ing the process of packet collection, the attacks are initiated using TCP, UDP, and ICMP flood
commands. The topology illustrated in Figure 20 is employed to send the malevolent TCP,
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UDP, and ICMP traffic individually to the target device. Throughout this procedure, the vic-
tim device records all usage statistics related to energy consumption and connectivity. Each
attack simulation persists for a duration of 1 second, summing up to a total of 30 minutes,
with corresponding usage statistics being recorded over the same duration.

Figure 27 shows the device’s energy consumption when its status is On in the absence
of attacks on that device. The standard energy consumption of the Raspberry Pi is between
1.410 J and 1.420 J per second. However, the current consumption varies from 1.410 J to
more than 3.3 J per second after launching TCP-SYN attacks on open ports of the Raspberry
Pi. In contrast, we can notice that the energy consumption increases to more than 3.60 J per
second after launching ICMP attacks on open ports of the Raspberry Pi. Additionally, the
energy consumption fluctuates between 1.4 J and 3.50 J per second after launching a UDP
flood attack because of the overload that might have happened on the Raspberry Pi’s open
ports.
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Figure 27. Raspberry Pi Energy Consumption under EC-DDoS Attack.

Figure 28 shows the current consumption of the Arduino when its status is On in the
absence of attacks. The standard energy consumption of the Arduino is between 1.060 J
and 1.065 J per second. In contrast, the energy consumption varies from 1.065 J to more
than 1.75 J per second after launching TCP-SYN attacks on NP. At the same time, the energy
consumption increases slightly from 1.15 J to 1.25 J per second after sending an ICMP attack.
The UDP flood attack causes an increase in energy consumption from 1.25 J to more than
1.50 J per second.
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Figure 28. Arduino Energy Consumption under EC-DDoS Attacks.

It is important to note that the EC-DDoS attack rates employed by the attacker in this
study remained below the threshold of DDoS attack rates that result in disconnection on
smart healthcare devices. In the next section, we study the smart devices’ energy consump-
tion behaviour under F-APs attacks.

3.7.2 Energy Consumption and F-APs Attacks
Once the devices are disconnected from the legitimate AP, the F-APs attack takes over its

responsibility to consume more energy and monitor them.
The signal of the F-APs is more vital to the victim’s smart devices than the legitimate

AP. When the devices are disconnected, the signal from the F-APs will be sent to the smart
devices to force them to connect to affect their energy resources. Afterwards, the monitoring
mode of the F-APs will be enabled to monitor packets transferred from and to the smart
devices. At this stage, the sniffer is essential to launch further attacks on the target device
and collect information about it, such as IP and port status. The F-AP is designed to be more
flexible in sending malicious packets automatically to affect the energy resources once the
smart devices are connected.

The required time for the Raspberry Pi to connect to the F-APs is between 3 and 5 min-
utes. While the Arduino takes 7 to 10 minutes, sometimes we force the Arduino to connect
to the F-APs. Figure 29 shows how the energy consumption of the Raspberry Pi changed
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Algorithm 2 Fake Access Points Attack

1: procedure SMARTDEVICE, F-APS(a,b) ▷ consume more energy of (a).
2: Sniff air for network scanning
3: Measure energy consumption of SH
4: if a ⊆ b then
5: if a = connected then ▷ a is connected to F-APs
6: Sniff air for network scanning
7: Send malicious packets
8: Calculate energy consumption after the attack
9: else if a = NotConnected then

10: Try to reconnect it to F-APs
11: while a ̸⊆ b do ▷ if there are no new devices
12: Sniff air for finding new devices

Figure 29. Raspberry Pi and Arduino Energy Consumption under F-APs Attack.

after connecting it to the F-APs; the malicious packets were randomly selected and sent to
the Raspberry Pi. The energy consumption increases to more than 4.00 J per second. At
the same time, the energy consumption of the Arduino increases slightly to reach more than
2.00 J per second after connecting it to the F-AP. Therefore, we can conclude that the F-APs
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attack successfully affects smart healthcare devices’ energy consumption.

3.7.3 Results and Discussion
In our experiment, we studied the effect of DDoS, EC-DDoS, and F-APs attacks against

the Raspberry Pi and Arduino for about 30 to 60 minutes and measured the energy consump-
tion. During such attacks, the smart devices continuously receive the packets and spend
resources processing these packets. Our analysis shows that effective DDoS attacks can be

Figure 30. Raspberry Pi and Arduino Energy Consumption under Attacks where the F-
APs affect 45% of the energy consumption of the Raspberry Pi and the Arduino, while
the affection of EC-DDoS attack is about 55%.

launched at NP if the victim replies to ICMP packets. ICMP or TCP-SYN/UDP attacks could
be used on open and closed ports. However, to launch EC-DDoS attacks that cost the victim
device’s maximum energy without being disconnected from the legitimate AP, the attacker
can launch a PH TCP-SYN attack against open ports or ICMP attacks if the device responds
to ICMP packets.

Moreover, to force the smart healthcare devices to connect to the F-AP attack, the sig-
nals of the latter should appear stronger to the victim than the legitimate APs. The attacker
launches malicious attacks through the F-AP to induce maximal energy consumption with-
out being disconnected by considering the threshold of the AR. Figure 30 shows the overall
infection of EC-DDoS and F-APs attacks on both devices (Arduino and Raspberry Pi); as
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it can be seen, the energy consumption of the Raspberry Pi device varies from 1.42 J to be
more than 3 J per second. At the same time, the energy consumption of the Arduino varies
from 1.06 J per second to more than 2 J per second. It is observed that DDoS, EC-DDoS,
and F-APs attacks significantly impact the energy consumption of IoT devices. When an IoT
device experiences a flood of TCP, UDP, and ICMP packets, it leads to significant increases
in energy usage, which can ultimately result in the destruction of the IoT devices. This study
aims to enhance the comprehension of energy consumption attacks caused by the combined
impact of F-AP, DDoS, and EC-DDoS attacks on smart healthcare systems. The analysis of
resource consumption in such scenarios provides valuable insights into the impact of DDoS
and F-AP attacks on resource-constrained smart healthcare environments. Furthermore, it
facilitates future research in developing lightweight defence mechanisms against these types
of attacks. As such, the following equation represents the impact of the EC-DDoS attack on
energy consumption:

ECDDOS = Enormal + α× Pattack (3.2)

where ECDDOS represents the energy consumption during a DDoS attack, Enormal rep-
resents the energy consumption under normal operating conditions, Pattack represents the
power consumed specifically due to the attack, and α is a scaling factor that quantifies the
impact of the attack on energy consumption.
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Chapter 4

Detection of Energy
Consumption Cyber Attacks on
Smart Devices

With the spread of IoT technologies, there is a growing concern about the security of
smart home devices. Smart home devices suffer from resource-constrained problems, and
these devices and sensors could be connected to unreliable and untrustworthy networks.
Nevertheless, securing IoT technology is mandatory due to the relevant data handled by
these devices. Preventing energy attacks and securing the IoT infrastructure is a crucial
challenge in modern smart homes. One potential solution to address abnormal behaviour of
IoT devices and detect IoT cyberattacks is through energy consumption monitoring.

Moreover, building a lightweight algorithm for securing IoT devices is essential to con-
sider the limitations of its resources. This chapter presents a lightweight technique for de-
tecting energy consumption attacks on smart home devices based on analyzing the received
packets by the smart devices. The proposed algorithm considers three different protocols,
TCP, UDP, and MQTT, and different device statuses, like Idle, active, and when it is under
attack. Moreover, it considers the resource constraints of the smart devices for detecting
abnormal behaviours and sending an alert to the administrator as soon as the attack is de-
tected. The proposed approach effectively detects energy consumption attacks by measuring
the packet reception rate of the smart devices for different protocols.

We have organized this chapter as follows: Section 4.1 provides detailed insights into the
research problems, offering a clear understanding of the motivations and objectives driving
the study. Section 4.2 serves as a general introduction to the chapter. Our proposal, including
metrics definition, methodology, and the detection algorithm, is described in Section 4.3.
In Section 4.4, we present the testbed scenario used to test the algorithm, along with the
final results of detecting energy consumption attacks for different protocols using packet
reception rate measurement. Finally, in Section 4.5, we present the results and discussions.
The content of this chapter is mainly derived from [21].
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4.1 Problem Statement, Motivation and Objectives
The problem addressed in this research is detecting the smart devices’ resource con-

straints problems. This chapter targets the detection and mitigation of energy consumption
attacks. We aim to provide a lightweight detection mechanism that considers the smart de-
vices’ resource constraints. This chapter provides a detection mechanism to detect energy
attacks in smart devices. This study has been done in real smart IoT devices, and the final
results show high efficiency in detecting energy consumption attacks in smart home devices.

Consequently, security is the main issue that restricts the adoption of IoT in social life.
Many researchers have been working to make the IoT a more reliable and secure technol-
ogy so that it can be adopted in society to make some aspects of human life more manage-
able and convenient. Since researchers develop many schemes and methods, but due to
the constrained environment, e.g., low computational power and low energy of IoT, these
techniques are not feasible. Therefore, an added line of protection that considers resource
constraints should be built into IoT devices and networks to defend IoT-based organizations
from cyber threats. Our main contribution is building a lightweight algorithm to detect
energy consumption attacks in smart homes deployed directly at sensors. It applies real-
time packet rate measurement to discriminate between smart devices’ normal and abnormal
packet reception rate behaviours. Therefore, normal behaviour is determined by evaluating
the packet reception rate and energy consumption of smart devices during attack-free in-
tervals. Conversely, any significant deviation from this established normal behaviour in the
packet reception rate signifies abnormal behaviour. In this work, we consider three different
protocols such as TCP, UDP, and MQTT. We also consider the different device statuses, such
as Idle, active, and when it is under attack, to evaluate the best detection of energy consump-
tion attack. We simulate the detection algorithm and assess the results by applying the pro-
posed algorithm to the smart devices themselves, such as the Raspberry Pi1. We measure the
current consumption of the smart device to monitor the energy while measuring the packet
reception rate to discriminate between normal and abnormal behaviours. Therefore, this al-
gorithm design is a protection strategy for IoT devices to maintain their integrity, seamlessly
make them available to legitimate users, and protect them from energy consumption attacks
by considering their resource constraints.

4.2 Introduction
The IoT can incorporate many heterogeneous devices such as cameras, smart meters [233],

vehicles, and others transparently while providing open access to various data generated by
such devices to provide new services to citizens and companies [234]. The IoT paradigm can
be extremely massive and complex. It may contain tens of thousands of sensors, actuators,
and gateways. Devices can communicate with gateways via different protocols, whereas
gateways may connect with the internet and cloud-based apps via a similarly diverse range
of protocols [235]. IoT technology’s services find applications in many domains such as au-
tomotive, medical aids, smart grids, and many others [236]. The relevant data exchanged
between smart IoT devices are more vulnerable to attacks since they are often deployed in a
hostile and insecure environment [237].

1https://www.raspberrypi.com/documentation/
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In this complex architecture, data can be processed by various heterogeneous entities.
Data transmission, security, and integrity are key aspects to be considered. As a result, pro-
tocols and technologies are required to provide data security, access management, and flow
data transmission [238]. Many recent studies have been conducted to cope with security is-
sues in the IoT paradigm [239] [240]. Some of these studies concentrate on security issues at a
particular layer, whereas other approaches aim at providing end-to-end security [241]. Sev-
eral methods and protocols have been suggested, primarily concerned with reducing energy
consumption and increasing the network lifetime [242] [243]. Therefore, security solutions
are mandatory to protect IoT devices from intruder attacks. This paper aims to secure low-
resource IoT devices, such as smart home devices, against energy consumption attacks [244].
In smart homes, detecting energy consumption attacks is required to protect the energy from
vulnerability threats that could access the home network and attack the smart devices. Mon-
itoring the energy consumption of IoT devices provides a potential method for identifying
devices engaged in energy-intensive attacks. Furthermore, an energy consumption analysis-
based approach offers increased security, particularly in scenarios where the device’s kernel
has already been compromised. Once a device has been compromised, ensuring data in-
tegrity becomes challenging, and its trustworthiness cannot be guaranteed [209] [203]. One
of the most significant areas of study today revolves around the efficient utilization of en-
ergy resources. Approximately one-third of the total energy consumption is attributed to
specific losses, where energy is unintentionally consumed [245]. Moreover, there is an antic-
ipated increase in energy consumption in the future. Growing awareness of the importance
of energy conservation and efficiency has also contributed to the development of the mod-
ern smart home concept [203]. Initially, the concept of a smart home focused on connecting
sensors and devices over a network to enable remote access, monitoring, and control of the
living environment, providing convenience to users. However, in the current stage, it also
encompasses optimizing energy usage in buildings and addressing malware and IoT cyber-
attack detection within smart home infrastructures. Monitoring the energy consumption of
IoT devices serves as a potential method for detecting attacks that require significant energy
consumption [243], such as DDoS attacks [246] and crypto-mining attacks [203].

In this chapter, we build a lightweight algorithm that considers the resource constraints
for smart devices to detect energy consumption attacks. The algorithm is used to monitor
the packet reception rate of the smart devices on different protocols. In this algorithm, we
used the following protocols: TCP, UDP, and MQTT, as they are popular protocols used
nowadays with IoT systems [247, 248]. We also consider different devices’ statuses, such
as Idle, active, and when they could be under attack. The algorithm automatically fetches
the packets’ reception rate and divides them into different behaviours, such as normal and
abnormal, depending on the presence and absence of the energy consumption attacks. At the
same time, the energy consumption of the smart devices is measured to determine the packet
reception rate’s behaviour and to specify whether the packet reception rate’s behaviour is
normal or abnormal. This algorithm successfully detected energy consumption attacks in
smart home devices with a cost-efficient experimental setup.
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4.3 Packet Monitoring Mechanisms

4.3.1 Proposed Algorithm

In this section, we present the algorithm to detect energy consumption attacks in smart
home devices by monitoring the packet rate received by the smart devices. The algorithm
considers different protocols like TCP, UDP, and MQTT and different device statuses such as
active, Idle, and under attack. The proposed algorithm is depicted in Figure 61.

The algorithm has three phases, 1) collecting phase where the algorithm collects samples of
the number of received packets for different statuses when the device is Idle, active, or under
attack and divides the collected packets from different protocols, e.g., TCP, UDP, and MQTT,
into normal or abnormal behaviours; 2) calculating phase, which calculates the collected sam-
ples and compares the final results of the fetching packets with the energy measurements to
determine whether the state of packets measurements is caused by an energy consumption
attack, then divides the final results into (normal, or abnormal behaviour); and 3) detection
phase where the algorithm applies different conditions to classify if there is an energy con-
sumption attack or not. We build the algorithm inside the Python scripts to automatically
fetch packets and analyse normal and abnormal behaviours.

In the detection stage of the proposed technique, the packet reception rate of IoT devices
for different protocols is measured and analyzed. If the IoT device has abnormally high
received packets, it may have carried out an energy consumption attack. Therefore, smart
devices should stop listening to the received packets of such a port. Simultaneously, there
should be a counter (x) on the total time that the smart device stops listening; if it exceeds (x)
times, then the algorithm should register it as abnormal behaviour. Our algorithm considers
the (x = 3) times. However, in our specific scenario, we chose 3 times as a threshold to dis-
cern whether the rise in packet reception rate is due to an attack or simply normal behaviour
by checking the energy measurement of the smart device.
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Algorithm 3 A Technique to Detect Energy Consumption Attack
1: Input: PROT, PKT, d
2: Output: Normal or Abnormal
3: if N(d) = f(PROT, PKT, k) then
4: return to monitor packet rate
5: else
6: Make the device stop licensing for x time
7: counter = counter + 1
8: if counter > 3 then
9: registers the device as having abnormal behaviour

10: check energy consumption
11: else
12: return to monitor packet rate

4.3.2 Packet Measurements

To effectively build a technique to detect energy consumption attacks in IoT systems, it
is necessary to take into account the different protocols used for different IoT devices. This
algorithm considers three different protocols, e.g., TCP, UDP, and MQTT. Also, it considers
different device statuses, e.g., Idle, active, and when it is under attack.

With the aim of IoT energy consumption attack detection at the learning stage, the packet
reception rate of each IoT device in the IoT network in the absence or the presence of an
IoT energy consumption attack is measured at a specific interval and at equal sub-intervals
of time. Based on these measurements, the number of normal N(d) received packets of
IoT devices are constructed, part of them labelled as normal behaviour and entered into the
database (DB) to deal with them later on.

Let us describe the normal (N ) packet reception rate measurement in the absence of
energy consumption attacks.

N(d) = f(PROT, PKT, k) and k ∈ [0, 1] (4.1)

The expression N(d) = f(PROT, PKT, k) represents a function f that calculates the
normal behavior N(d) based on following inputs:

Where N(d) is the normalized receiving packets of an IoT device (d), where d is a certain
smart home device, (PKT ) represents the received packets at a point in time in the absence
of an energy consumption attack for a specific protocol (PROT ), and K is the number of
packet measurements within a specific time, n(d) = f(PROT, PKT, k) ∈ [0, 1] where 0 is
the minimum received packets, and 1 is the maximum received packets by the smart devices
for a specific protocol. Therefore, the function f takes these parameters (PROT, PKT, k)
and produces a numerical output N(d) and sets the final decision of this output to normal
or abnormal decision.
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4.3.3 Energy Measurements

With the aim of IoT energy consumption attack detection at the learning stage, the en-
ergy consumption measurements of each IoT device in the IoT network in the presence or
the absence of IoT energy consumption attacks are measured at a specific interval and at
equal sub-intervals of time. Based on these measurements, the number of received packets
of IoT devices on N(d) are constructed, part of them labelled as normal behaviour and others
as abnormal behaviour and entered into the DB to deal with them later on. The energy con-
sumption measurement is essential at the first stage as it is used to determine the behaviour
of the packet reception rate as normal or abnormal.

To achieve this objective, we infected IoT devices with malicious attacks capable of ex-
ecuting IoT energy consumption attacks, e.g., flooding attacks. Subsequently, we measured
the energy consumption of each IoT device under different statuses, both in the presence
and absence of IoT cyberattacks, at specific intervals and equal sub-intervals of time. In this
experiment, we designed a smart circuit using a non-invasive current sensor 2 with Arduino,
capacitors, and other resistors to measure the current consumption of smart home devices.
This smart circuit samples voltage, ampere, watt, and current per second. In our experiment,
we use the Joule (J) values to calculate the energy consumption of smart devices, as shown
in Figure 34.

Let us describe the energy (E) measurement footprints considering the set of different
device statuses in the absence or the presence of the attack.

E(d) = f(e(d), PROT, k) and k ∈ [0, 1] (4.2)

The expression E(d) = f(e(d), PROT, k) denotes a function f that calculates the energy
consumption E(d) of a smart device (d). Here are the components of this expression:

Where (ed) the energy measurement (e) of the smart device (d) at a point in time in the
absence or presence of cyberattacks for a specific protocol (PROT ), and K is the number of
energy measurements in a time interval, f(e(d), k) ∈ [0, 1] where 0 is the minimum energy
consumption measurement, and 1 presents the maximum energy consumption measure-
ment in the absence or presence of the attack. In essence, the function f takes into account
the current energy consumption e(d) and the used protocol PROT to compute the over-
all energy consumption E(d) of the smart device (d). Therefore, we calculated the energy
consumption for every 3 minute for a specific smart device; the time for each energy con-
sumption measurement is also registered and entered into the DB. It’s important to note that
we set the measurement of the energy to 3 minutes, but it also could take on any value, and
these parameters could adapt to the particular scenario being evaluated. However, in our
specific scenario, we set it to 3 minutes to optimize resource usage, considering the hardware
capabilities and network bandwidth. This parameter is highly adjustable based on the sys-
tem’s capabilities. We opted for 3 minutes in this experimental setup to streamline resource
usage. The measurements collected over this duration are sent in a single request to the DB,
effectively conserving resources.

2https://tinyurl.com/mrxyvr46

74



0 250 500 750 1000 1250 1500 1750
Time (s)

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

E
ne

rg
y 

C
on

su
m

pt
io

n 
(J

ou
le

)

En
er

gy
 C

on
su

m
pt

io
n 

du
e 

to
 a

tta
ck

Before Attack
After Attack

Figure 32. Energy consumption measurement of normal and abnormal behaviours of
the Raspberry Pi device.

4.3.4 Calculation of normal and abnormal behaviours

In order to calculate the packet reception rate for each IoT device in normal and abnor-
mal cases, we have divided the code into different parts:1) The first part is to fetch the packet
reception rate for each protocol separately, depending on the set of protocols used in our
system, 2) We measure the packet reception as shown in Equation 4.1 for the active smart
devices with the absence of the attack and for each protocol separately and register the final
results as normal behaviours, 3) Then, we measure the current consumption of the smart
device in the case of normal behaviour as shown in Equation 4.2 and monitor the packet
reception rate with the energy consumption when the status of the smart device is On with
the absence of the attack. The monitoring mode continuously fetches the packet, calculates
energy for about 30 minutes, and stores the final results for every 3 minutes in the DB, 4) For
calculating abnormal behaviours, we send malicious attacks to consume energy for about 30
minutes to the active smart devices. At this time, we start calculating the energy consump-
tion and the packet reception rate for each protocol separately. Then, we compare the final
results with the normal behaviours of such a device. In case of abnormal behaviour, we store
the final result for every 3 minutes in the DB as abnormal behaviours, 5) For printing the
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final results and displaying the normal with the abnormal behaviours, we fetch the stored
data from the DB and start calculating the normal with abnormal behaviours, 6) In case there
is abnormal behaviour with fetching the packets compared to normal behaviours, we notify
the system administrator to register the entire case as abnormal behaviour.

4.4 Implementation and Analysis

4.4.1 Experimentation and Discussion
In this section, we describe the testbed scenario that we used to test the algorithm. Also,

we show the final results of detecting energy consumption attacks for different protocols
using packet reception rate measurement.

Smart devices
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Energy
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Algorithm

Packets rate
measurements

Packets
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Behaviors

Malicious Attack Wi-Fi
Connection

USB
Connectionsending packets

calculate packet rate

calculate energy consumption

Figure 33. Testing Environment.

The Testbed Scenario

We used Raspberry Pi as a smart home device in this experiment. We used different
software tools for attacking data generation and collection. On the adversary side, we used
Nmap3 to launch a network scan and identify devices’ status, such as online or offline, IP
address, and MAC address. Different tools are used to generate malicious attacks on the
victim side, such as hping34. We designed a smart circuit using a non-invasive current sensor
with Arduino, capacitors, and other resistors to measure the current consumption of smart
home devices. This smart circuit samples voltage, ampere, watt, and current per second. In

3https://nmap.org/
4https://www.kali.org/tools/hping3/
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Figure 34. Testbed scenario showing the devices used in our experiment and the sensor
used to measure the energy consumption.

our experiment, we use the Joule (J) values to calculate the energy consumption of smart
devices.

We analyze the packet rate received by the smart home device to detect energy consump-
tion attacks. We built a program using pyshark5 to sniff and fetch packets automatically and
store the final results in the DB6.

Table 7. Packets analysis depends on protocol type and energy consumption.

PROT
Normal Behavior Abnormal Behavior

Packet E [J] Packet E [J]

TCP 2000÷ 6000 ≤ 1.42 > 6000 > 1.42

UDP 2000÷ 6000 ≤ 1.42 > 6000 > 1.42

MQTT 2000÷ 6000 ≤ 1.42 > 6000 > 1.42

The total average received packets by the smart devices is calculated by estimating the
average rate of the received packets in 30 minutes compared to the abnormal behaviour.

5https://pypi.org/project/pyshark/
6https://github.com/developerZA/ATechniuqeToDetectEnergy.git
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We divided the packet reception rate into different slots. For every 3 minute, we calculated
the average of the received packets in the absence of the attack and stored the final results
in the DB as normal behaviour. The same calculation is applied to the smart home device
when it is under attack. Then, the final results are stored in the DB for further calculations.
The detection system keeps monitoring the received packets, and in case there are abnormal
behaviours received by such a device, we register that case as abnormal behaviour.

To calculate the average received packets by the smart devices of the TCP protocol. We
analyzed all the received packets and divided them into different types, such as packets re-
ceived, re-transmission, and acknowledged, as shown in Figure 36. However, Figure 1(a) in
35 illustrates an attacker targeting smart devices through the access point. The primary func-
tion of TCP/IP is to ensure reliable data transmission between two hosts, typically a receiv-
ing smart device and a transmitting attacker. In this experiment, we launched a TCP/SYN
attack, causing a flood of packets towards the victim devices to consume more resources.

In our experiment, we need the average of the received packet by the smart devices
that cause an increase in energy consumption. Then, we used the final calculation to detect
energy consumption attacks.

Attacker

Access point

Smart
devices

Server Client

Time

SYN

SYN

ACK

Data + ACK

Data + ACK

Data + ACK

Packet flow

(a) (b)

Figure 35. (a) Network with an attacker and smart device and (b) TCP/IP connection
timing diagram

Through the 30 minutes in the absence or the presence of the attack, we study the re-
ceived packets by the smart devices for different protocols such as TCP, UDP, and MQTT.
Also, we study the total number of times the smart devices stopped listening to understand
if energy consumption attacks source the received packets. The normal average of the re-
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Figure 36. Packet received, re-transmission, and acknowledged for the TCP protocol.

ceived packets for TCP protocol in 30 minutes fluctuates between 2 k and 5 k packets, as
shown in Figure 37.

In this experiment, for every 3 minute, we calculated the normal and abnormal be-
haviour. So, for the first 3 minutes, the normal behaviour of the received packet is less than
5 k packets, while the abnormal received packets in the first 3 minutes in the presence of the
attack are more than 6 k packets. The detection system registers the first case of the first 3
minutes as abnormal behaviour. We also calculate the normal and abnormal behaviours for
the total of 30 minutes by calculating the average of the packet reception rates of the normal
behaviours and comparing it with the average of the abnormal behaviours to register the
entire case of the 30 minutes as normal or abnormal behaviour.

In the case of UDP protocol, it is not easy to customize the actual receiving packet as
the state of such a port cannot be confirmed by network scan using Nmap7 because the port
does not send any response. So, in our calculation, as shown in Figure 38, we calculate the
normally received packets of UDP protocol by the smart device. We monitor the packet re-
ception rate of the smart devices for 30 minutes to check the normal and abnormal receiving
packets of the Raspberry Pi. The normal behaviour of the receiving packets is between 1 k

7https://nmap.org/
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Figure 37. Packet reception rate of normal and abnormal behaviours of the TCP proto-
col.

and 3 k packets. In contrast, the abnormal behaviour of the received packets by the smart
device is between 9 k and more than 12 k packets. Figure 39 shows the behaviour of the sub-
scribed packet’s rate of the MQTT protocol. We study different behaviours of this protocol
by registering the number of published and subscribed packets of the smart home device. To
detect an energy consumption attack in the case of the MQTT protocol, we consider the num-
ber of subscribed packets as they affect the energy resources of the smart devices. Therefore,
the normal behaviours of the MQTT protocol are registered to be less than 6 k packets, while
the abnormal behaviours reached more than 8 k packets. In this algorithm, we also consider
the case where we do not have to specify the protocol by calculating the average received
packets for all the used protocols. We find that the normal behaviour of the packet reception
rate of the Raspberry Pi is between 1500 packets and less than or equal to 6 k packets. The
abnormal behaviour of the total received packets is between 7 k and more than 12 k packets,
as shown in Figure 40.
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Figure 38. Packet reception rate of normal and abnormal behaviours of the UDP proto-
col.

4.5 Results and Analysis

In this experiment, an IoT device was deliberately infected with malicious software
to conduct various flooding attacks on a target within an isolated network. The energy
consumption footprints and packet reception rate measurements of these IoT devices were
recorded during the experiments, both in normal operating conditions and when the device
was subjected to malicious attacks. Each energy consumption footprint and packet reception
rate measurement were taken at intervals of 5 seconds over a period of 3 minutes, captur-
ing the device’s behaviour during both attack and normal operation scenarios. A total of 30
minutes of calculation measurement of received packets and the energy consumption foot-
prints of both in the presence of attacks and normal functioning smart devices were built.
It’s important to note that 30 minutes of measurement could take on any value, and these
parameters could adapt to the particular scenario being evaluated. However, in our specific
scenario, we set it to 3 minutes to optimize resource usage, considering the hardware capa-
bilities and network bandwidth. This parameter is highly adjustable based on the system’s
capabilities. We opted for 3 minutes in this experimental setup to streamline resource us-
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Figure 39. Packet subscribed rate of normal and abnormal behaviours of the MQTT
protocol.

age. The measurements collected over this duration are sent in a single request to the DB,
effectively conserving resources.

The results of this experiment showed high efficiency of energy consumption attack de-
tection based on the packet reception rate analysis. At the same time, the analysis of the
packet reception rate for different protocols was considered. As it can be seen from Fig-
ure 40, the abnormal behaviour registered once the packets reached more than 6 k packets
for different protocols. This analysis is done for different types of protocols and different
devices’ statuses.

This experiment shows high efficiency in detecting energy consumption attacks as it is
not expensive to implement in a smart home device and considers the smart device’s re-
source constraint. Compared to calculating the energy consumption of the devices for de-
tecting energy consumption attacks in smart homes. Additionally, the energy consumption
during the detection of the energy attack fluctuates between 1.2 J and 1.5 J, indicating a high
efficiency in energy utilization during the attack detection.
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Figure 40. General cases (Normal behaviour Vs Abnormal behaviour) for TCP, UDP,
and MQTT altogether, where the effect of each protocol in normal behaviour is as fol-
lows: TCP effect is about 45 %, and UDP affect about 30 %, and the MQTT effect is
about 20 %. While the impact of TCP is about 40 %, MQTT is about 40 %, and 20 % of
UDP is in the presence of the attack.
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Chapter 5

Mitigating and Analysis of
Memory Usage Attack in IoE
system

Marketing forces toward smart homes are also accelerating the spread of IoE devices in
households. An obvious risk of the rapid adoption of these smart devices is that many lack
controls for protecting the privacy and security of end users from attacks designed to disrupt
lives and incur financial losses. In today’s context, the smart home system encompasses
the management of essential life support processes in various settings, ranging from small-
scale systems like commercial offices, apartments, and cottages to larger, highly automated
complexes such as commercial and industrial establishments. One of the critical tasks to be
solved by the concept of a modern smart home is the problem of preventing the usage of IoE
resources. Recently, there has been a rapid increase in attacks on consumer IoE devices.

Memory corruption vulnerabilities constitute a significant class of vulnerabilities in soft-
ware security through which attackers can gain control of an entire system. Numerous
memory corruption vulnerabilities have been found in IoE firmware already deployed in
the consumer market. The objective of this chapter is to analyze and provide an in-depth
explanation of resource usage attacks. To facilitate the dynamic analysis of these attacks, a
cost-effective simulation environment is developed. Additionally, controlled resource usage
attacks are conducted on resource-constrained victim IoE devices, allowing for the monitor-
ing of their resource consumption, including CPU and memory utilization. We also build
a lightweight algorithm to detect memory usage attacks in the IoE environment. The result
shows high efficiency in detecting and mitigating memory usage attacks by detecting when
the intruder starts and stops the attack.

We have structured this chapter as follows: Section 5.1 outlines the main motivation and
objectives of this chapter. Section 5.2 provides a general introduction to the chapter. In Sec-
tions 5.3 and 5.4, we offer a comprehensive description of the threat and testbed scenarios.
Section 5.5 presents a static analysis of resource usage attacks, showcasing both normal and
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abnormal memory and CPU usage of the smart devices. Next, in Section 5.6, we present
our proposal, which includes metrics definition, methodology, and the detection algorithm.
Finally, we present the results and discussions in Section 5.7. The content of this chapter
heavily draws from [22].

5.1 Motivation and Objectives
IoE is a fast-growing field with capabilities to revolutionize the whole industry. As

per market trends, more than 20 billion of smart devices will be deployed in the next five
years [249]. These interconnected devices will be generating sensitive data which needs to
be protected. The field of IoE is making leaps and bounds technologically. There are multi-
ple limitations while deploying IoE devices daily, e.g., battery life and lightweight compu-
tation. Therefore, building a novel security mechanism aims to protect the functionalities
and privacy of sensitive IoE network environments, including healthcare, smart cities, etc.
However, due to the substantial number of nodes in the environment and their restricted
computing capabilities, securing smart nodes in the IoE environment is essential to protect
the data and make the devices available to end-users. A lightweight mitigation technique
should be considered to protect smart devices from resource-constraint attacks such as DoS,
DDoS, and other malicious attacks. Our main contribution is building a lightweight tech-
nique to detect memory usage attacks in smart devices deployed directly at sensors. It ap-
plies real-time memory usage calculation to discriminate between different memory usage,
e.g., read/write to memory. In this work, we consider different behaviours on the memory
of smart devices. We measure the memory usage when there is read and write, under or
without the attack, to evaluate the best detection of memory usage attack. We simulate the
mitigation technique and assess the results by applying the proposed technique to smart de-
vices, such as the Raspberry Pi1 and Arduino. We measure the current memory usage of the
smart device to monitor the memory usage to discriminate between normal and abnormal
behaviours. Therefore, this algorithm design is a protection strategy for IoE devices to main-
tain their integrity, seamlessly make them available to legitimate users, and protect them
from memory attacks by considering their resource constraints.

5.2 Introduction
IoE is an extension of IoT, which aims to connect network devices with specialized sen-

sors or actuators through the Internet [250]. These sensors and actuators enable the detection
and response to environmental changes such as light, temperature, sound, and vibration. By
incorporating additional components, IoE significantly expands the capabilities of IoT, pro-
viding enhanced experiences for businesses, individuals, and countries. Unlike traditional
IoT, IoE leverages data and processes to create more meaningful and valuable interactions
with the environment[251][252], as depicted in Figure 41. The ultimate goal of IoE is to boost
operational efficiency, offer new business opportunities, and improve the quality of our lives.
Better to relate to this idea; take the scenario of a person uncertain about closing a gas valve

1https://www.raspberrypi.com/documentation/
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at home. An IoE solution allows a user to automatically check the gas valve’s status and
close it remotely if necessary [212] [253].

Despite the potential benefits of IoE, it also brings significant security risks to its users.
With the increasing number of IoE devices and their growing importance in our daily lives,
the connection between the physical world and cyberspace introduced by IoE amplifies the
vulnerability of smart devices to cyber attacks. Attacks on IoE systems can directly im-
pact the well-being and safety of end users, as exemplified by the potential threat of an
attacker intentionally causing a gas leak in a gas value scenario [254] [255]. The lack of

Data

IoE ThingsProcesses

People

Figure 41. The Definition of Internet of Everything (IoE).

awareness regarding the quantity and characteristics of IoE devices around us is a cause for
concern, especially considering the potential security risks they pose. Recent security inci-
dents have highlighted the vulnerabilities of IoE systems. One notable incident is the DDoS
attack against Dyn in 2016, which involved the Mirai botnet comprising around 100, 000 IoE
hosts such as cameras and routers. The attack on Dyn’s DNS caused a widespread outage
of major websites like Netflix and CNN [256] [257]. Furthermore, attacks targeting the re-
sources of sensors and actuators can render smart devices inaccessible to end-users. These
incidents underscore the importance of addressing security challenges in the IoE landscape.

In light of these evolving threats, it is crucial to increase awareness of the potential secu-
rity risks associated with IoE [258]. This can be achieved through systematic risk assessments
and the use of effective visualizations to educate end users. Home users, in particular, are
at a higher vulnerability level as they are increasingly surrounded by IoE devices such as
hands-free speakers, baby monitors, and security cameras. However, they often lack the
necessary resources and expertise to identify and address IoE-related threats, leaving them
exposed to potential security risks. It is therefore important to empower home users with
the knowledge and tools to remediate these risks and minimize their impact [252]. There-
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fore, in this chapter, we mainly focus on analyzing the memory usage attack in smart devices
and mitigating the effect of this attack by building a lightweight algorithm to detect memory
usage attacks by calculating the memory usage of the smart device.

To accomplish this goal in home networks, we first identify memory usage attacks in
smart home devices. Next, we analyze the effect of the attack by sending malicious attacks
to affect the resources of the smart devices and calculate its effect on memory usage. We
then elicit and document threats in the form of threat scenarios. Once specified, we build a
lightweight algorithm to detect and mitigate the effect of the attack on memory usage.

5.3 Testbed Scenario
We used Raspberry Pi and Arduino as smart home devices in this experiment. We used

different software tools for attacking data generation and collection. On the adversary side,
we used Nmap2 to launch a network scan and identify devices’ status, such as online or
offline, IP address, and MAC address. Different tools can generate malicious attacks on the
victim side, such as hping33. We used tshark tool 4 to evaluate the impact of memory usage
attacks on smart devices and capture WiFi traffic.

We also created a module inside the smart device to monitor memory usage and regis-
ter all memory behaviours in the DB. The monitoring mode registers the behaviour of the
smart devices once it is Idle, active, and under attack. Different stages are used to run our
experiment. In the first stage, we monitor the memory usage once the device is Idle, Active,
and under attack. Then, we run a network scan to capture the port and device status. Once
we ensure that the device is connected to the Internet, we send memory usage attacks for
two purposes: first, to affect the memory, and second, to consume more memory usage and
study the behaviour of the attack. Then, we run memory usage monitoring to calculate the
memory usage of the devices and study the devices’ behaviours before and after the attack.

5.4 Threat Scenarios and Threat Model
This section provides a brief overview of the design of memory usage attacks on IoE

smart devices. The objective of a memory usage attack is to disrupt the functioning of a smart
device by launching malicious attacks, such as DoS or DDoS attacks, specifically targeting
the device’s memory. This type of attack focuses on vulnerable IoE and embedded devices,
which often lack robust built-in security protections and face resource-constraint challenges.

5.4.1 Threat Scenario
The smart devices of IoE suffer from low computation problems such as low energy and

memory. The resource-constraints problems encourage attackers to attack these devices by
flooding the smart devices with malicious attacks. In this chapter, we consider a scenario

2https://nmap.org/
3https://www.kali.org/tools/hping3/
4https://www.wireshark.org/
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Figure 42. Testbed scenario showing the devices used in our experiment.

where the attacker has infiltrated the control network and possesses the ability to communi-
cate with the smart devices. This can occur either through insider threats, where individuals
with authorized access abuse their privileges, or through external hackers. Once inside the
control network, the attacker has a plethora of attack options at their disposal, including
malicious attacks. The focus of this chapter is to examine memory usage attacks specifically
targeting smart devices in IoE systems.

The threat scenario used in our experiment was first to scan the network and get dif-
ferent information about the port and devices’ status. For scanning the network, we install
Nmap on Kali-Linux. In this scenario, the attacker can send a malicious attack to the smart
device to affect its resources in terms of memory. The IP address, port, and device status are
stored in the DB for further calculation. After scanning the network, we start the monitoring
mode of the smart device’s memory usage once the device is Idle and active, and when we
send a malicious attack using hping3 tools to the smart device. In this case, we study the
memory behaviour before and after attacking the smart devices. We also store all informa-
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Figure 43. Testing Environment.

tion about the memory, such as memory in total, memory usage, and CPU usage before and
after attacking the smart devices.

In particular, the source code consists of three different parts:

• Memory usage attack: This module commences with the DoS and DDoS attack to send
malicious attacks to the smart devices and affect their memory.

• Scanner: This module scans the network and gets different information about the
smart devices. Also, it sends the IP address of the attacked smart devices for further
calculation

• Memory-monitoring-mode: This module monitors the memory usage of the smart de-
vices when it is Idle, active, and under attack. The monitoring mode helps to register
different memory behaviours for detecting such attacks.

5.4.2 Threat Model
This chapter presents a model for attacks on the memory usage of smart devices in IoE

systems. The model provides a clear understanding of the possible attack vectors. Addition-
ally, a lightweight algorithm 5 is developed for detecting these attacks on smart devices. In
this model, we denote the attacker as ATK, the smart devices as d, and the memory usage

5https://github.com/developerZA/MitigationMemoryAttack.git
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as MEM . Each attack originates from the attacker ATK and targets a specific smart device
d. This relationship can be represented as follows:

ATK 7→ mem→ D (5.1)

where atk ∈ ATK, d ⊂ D, mem ∈ MEM . The notation 7→ maps the attacker (ATK) to the
victim’s (D) memory (mem). For calculating the memory usage and CPU usage of the smart
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Figure 44. Schematic diagram of the proposed method.

devices before and after attacking the memory, the following equation math represents this
calculation. Let us describe the memory usage measurement (MEM ) footprints considering
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the set of different device statuses in the attack’s absence or presence.

MEM(d) = f(mem(d), ATK, n) and n ∈ [0, 1] (5.2)

The expression (MEM(d) = f(mem(d), ATK, n)) represents a function f that calculates
a memory usage measurement denoted as MEM(d) for a specific IoT device (d) with or
without the attack ATK.

Where (memd) the memory usage measurement (mem) of the smart device (d) at a point
in time in the absence or presence of cyberattacks for a specific attack (ATK), and n is the
number of memory usage measurements in a time interval, f(mem(d), ATK, n) ∈ [0, 1]
where 0 is the minimum memory usage measurement, and 1 presents the maximum memory
usage measurement in the absence or presence of the attack. In essence, the function f takes
into account the current memory usage measurement mem(d) and also considers if there is
an attack ATK to compute the overall normal memory usage measurement MEM(d) of the
smart device (d).

The CPU (CPU(d)) usage measurement is also calculated for the Raspberry Pi device as
follows:

CPU(d) = f(cpu(d), ATK, n) and n ∈ [0, 1] (5.3)

The expression (CPU(d) = f(cpu(d), ATK, n)) represents a function f that calculates
the CPU usage measurement denoted as CPU(d) for a specific IoT device (d) with or without
the attack ATK.

Where (cpud) is the CPU usage measurement (cpu) of the smart device (d) at a point
in time in the absence or presence of cyberattacks for a specific attack (ATK), and n is the
number of CPU usage measurements in a specific time, f(cpu(d), ATK, n) ∈ [0, 1] where 0 is
the minimum CPU usage measurement, and 1 presents the maximum CPU usage measure-
ment in the absence or presence of the attack. Therefore, the function f takes into account
the current CPU usage measurement cpu(d) and also considers if there is an attack ATK to
compute the overall normal CPU usage measurement CPU(d) of the smart device (d).

We do not calculate the CPU usage for the Arduino, as it is a microcontroller. We focus
only on the maximum memory usage through or without the attack using a particular library
called MemoryFree and pgmStrToRAM. And we also calculate micros() or millis() before and
after sending the malicious attack. We also calculate the thread time for different statuses of
the smart device, e.g., Idle, Active, and under attack.

5.5 Static Analysis of Resource Usage Attack
The smart devices used in this experiment were infected with malicious software used

to carry out different malicious attacks on a target on an isolated network. During the ex-
periments, the memory usage footprints of the smart devices were obtained under normal
operating conditions, as well as when these smart devices carry out cyberattacks. Each mem-
ory usage footprint was obtained by taking measurements after 5 s within 1 minute when
the smart device performs an attack and normal operation. A total of 10 minutes of calcula-
tion measurement of memory usage footprints of both in the presence of attacks and normal
functioning smart devices were built. It’s important to note that taking the measurement
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Figure 45. Raspberry Pi (Memory Usage Before and After the Attack).

footprint could take on any value, and these parameters could adapt to the particular sce-
nario being evaluated. In our particular scenario, we configured it for a total of 1 minute to
optimize resource usage, considering hardware capabilities and network bandwidth. This
setting is highly flexible. For this experimental setup, we chose 1 minute intervals to consol-
idate measurements in a single request to the DB, effectively conserving resources.

During the process of packet collection, the attacks are initiated using the same flood
commands for TCP and UDP. The topology, as illustrated in Figure 43, is utilized where
the malicious TCP and UDP traffic is sent separately to the victim device, while all relevant
usage statistics are recorded on the victim device. Each attack is simulated for a duration
of 1 minute, and the corresponding usage statistics are recorded for the same duration. In
the first period of 10 minutes, no attacks are sent, and all usage statistics are recorded and
stored in the database. The same procedure is repeated once the second period begins after
the malicious attacks have been launched.

The result of this experiment shows the memory usage footprint when the device is Idle,
Active, and under attack. Therefore, the normal usage of the memory of the Raspberry
Pi device in the absence of the attack fluctuates between 10% to 36%. This percentage is
divided between two different states of the smart device; when it is Idle, the percentage
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is between 10 and 20%, and when it is Active, the percentage is more than 25% but less
than 37% as shown in Figure 45. Moreover, the percentage of memory usage changed after
sending the malicious attack, and the percentage changed to be more than 66% per minute.
We also calculate the CPU usage of the smart devices to check the CPU status before and after
attacking the memory of the smart devices. Figure 46 shows the normal CPU usage for the
Idle and Active statuses of the Raspberry Pi device. The normal CPU usage for Idle devices is
between 0.55% to 0.88%. The memory usage of the Active smart devices is between 0.88% to
1.50%. At the same time, the CPU usage is more than 1.5% once we send the malicious attack
to the smart devices. We also calculate the memory usage of another smart device (Arduino).
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Figure 46. Raspberry Pi (CPU Usage Before and After the attack).

The main purpose of using two different devices is to show how the algorithm works for
different devices which implement different architectures. For printing the memory usage
of the Arduino device, we used a specific library to get the free usage memory for different
statuses of the smart device, e.g., Idle, Active, and under attack. Therefore, the memory
usage for the first status, as shown in Figure 47, fluctuates between 8.1% to 11%, and for the
Active status, it is between 11% to less than 16%. The memory usage percentage changes to
more than 17% and less than 50% once we send a malicious attack to the smart device.

The results and analyses of this experiment assisted us in understanding the impact of
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Figure 47. Arduino (Memory Usage Before and After the attack).

the memory usage attack on smart devices and building a lightweight algorithm to protect
these devices from such an attack. The following section describes the detection algorithm
and presents some results.

5.6 Threat Mitigation

This chapter introduces a detection mechanism and response to cyber-attacks on smart
devices’ memory usage. We also propose a lightweight algorithm to detect such memory
changes inside smart devices by monitoring memory usage. Once the attack is detected, the
algorithm will force the memory to stop listening to such an attack (e.g., stop reading and
writing to memory). We also disconnect the victim devices from the Internet automatically.
We implement this algorithm in the smart devices themselves. The presented mechanism
records the response of the attack and memory usage for different states such as Idle, Active,
and under attack. The detection algorithm detects any breach in the memory usage of smart
devices.
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5.6.1 Proposed Algorithm

The attacker aims to consume more memory usage of the smart device, and the moni-
toring mode of the presented algorithm updates and registers all different cases of memory
behaviours before and after the attack. We record the change on memory for every 3 second
for 1 minute. According to the data obtained from the testbed, the attacker can change the
memory usage within 67% of wrong values during 10 minutes in total.

This Algorithm 4 takes the recorded readings from the DB for each smart device in the
IoE system. The variable Diff stores the subtraction of previous (before sending such attack)
and current (after sending malicious attack) smart devices reading. For instance, the maximum
memory usage of the smart devices for Idle and Active smart devices are given in Figure 42.
The variable Diff stores the difference between the previous and current memory usage
readings. For instance, the maximum sudden memory usage change expected in the mem-
ory of the smart device is given by subtracting the value of the maximum memory usage
when the device is under attack minus the minimum memory usage when the device is
Active and Idle before sending any attack.

ReadingThreshold = Maxusage(MEM) −Minusage(MEM) (5.4)

Once the variable Diff exceeds the expected value, the variable T1 (referred to as ”Timer”)
is reset, and we proceed to verify whether an alert message has been sent to the administra-
tion. If not, we increment the counter1 variable, which keeps a record of the number of
times the difference between the previous and current memory usage readings exceeds the
maximum allowable value. Once the counter1 variable surpasses the maximum allowable
value, it triggers the sending of an alert message, indicating that the memory usage of the
specific smart device is under a memory usage attack. At this stage, we take further action
by suspending all reading and writing operations to and from memory and disconnecting
the smart device from the Internet. The IP addresses of all victim devices are then stored in
the blacklist of our database to implement this action effectively.

Through experimentation, we consider the scenario when the attacker stops the attack.
When the Diff value is less than Readingthreshold value, we compare whether the variable
counter is greater than zero, and then we increase T1. We can assume the attack stops if the
variable is greater than the T imeThreshold variable. Finally, we reset the alert: counter1 and
T1 variables.

After detecting the memory usage attack of such a device (d), we put all the victim de-
vices on a blacklist. Then, once the attack is detected on such a device, we first stop any
operation on the memory, e.g., read and write on memory. We disconnect the Internet con-
nection of the smart device (d) to prevent any further attack on the smart device’s memory
usage. The next section presents different results regarding detecting memory usage attacks.

Therefore, the mitigation is summarized in the following steps:

1. add the victim smart devices’ IP to a black-list;

2. stop any reading/writing to the smart device;

3. disconnect the smart device from the Internet.
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Algorithm 4 A Technique to Detect Memory Usage Attack
1: Input: d,Diff, C1, T1, Alert
2: Output1: Normal(M1)
3: Output2: Abnormal (M2)
4: Final Result: Output1 or Output2
5: M1 : Readingmemory−usage

6: MEM(d) = f(mem(d), ATK, n)
7: M2 : Readingmemory−usage

8: ReadingThreshold = Maxusage(MEM) −Minusage(MEM)

9: Diff = M1−M2
10: if M2 = M1 then
11: if Diff > ReadingThreshold then
12: ResetT1
13: if Alert ==′ On′ then
14: monitor memory
15: else
16: C1 = C1 + 1
17: if C1 > Max(memory−usage) then
18: Alert ==′ On′

19: Attack detected
20: Detect the main source (X)
21: Stopped Reading/Writing on Memory from (X)
22: Disconnect the smart device (d) from the Internet
23: else
24: Return back to monitor memory
25: else
26: if C1 > 0 then
27: T1 = T1 + 1
28: if T1 > ThresholdT then
29: Reset Alert
30: Reset C1
31: Reset C1
32: Attack stopped
33: else
34: return back to monitor memory
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Attack Starts

Figure 48. Raspberry Pi (Detecting the memory usage Attack.)

5.7 Experimentation and Discussion

5.7.1 Results

We ran malicious attacks on the smart device to check the memory usage before and
after the attack. Figure 48 shows the mechanisms of our algorithm to fetch the attack once
it is started. The monitoring mode of the memory usage sends memory usage readings to
the algorithm, and inside the algorithm, there is a statistics comparison between normal
and abnormal cases. As described in Section 5.4, we first check the behaviour of the smart
devices once there is an attack, and we register all different cases for memory usage, e.g.,
Idle, Active, and under attack. The main purpose of this analysis is to study the attack first
and then to build a mitigation mechanism to detect memory attacks.

Figure 48 and 49 shows the presented results of detecting the attack once it starts; we
can notice that the attack starts when the memory usage is greater than 37%, and the Diff
variable is greater than the expected memory usage value. At this stage, the smart device d is
passed through different operations, e.g., stop reading/writing on d, disconnect d from the
Internet to stop any further attack, and send an alert to the administration about the status

97



of the smart device.
The detection algorithm also notified the administration once the attack stopped. This

stage will help with further operations. Through this experiment, we also studied the be-

Attack Starts

Attack Stops

Figure 49. Raspberry Pi (Detecting the memory usage once the attack starts and when
it stops).

haviour of the CPU usage of the Raspberry Pi device under the same attack. Figure 50 shows
the behaviour of the CPU usage before and after attacking the memory of the smart devices.
We also applied the same detection algorithm to study the behaviour of the mitigation algo-
rithm on the CPU and whether this algorithm detects the attack or not.

The same calculation is applied to the Arduino, and the detection algorithm records dif-
ferent variables about the attack once it is started and stopped. Figure 51 shows the recorded
results of detecting the attack. We can notice that the attack started when the memory usage
percentage increased to be more than 16%, and for detecting the attack when it is stopped,
once the memory usage percentage decreased to be less than 20%. Once the system detects
that the attack on the smart device d has ceased, it may take actions such as disconnecting
the smart device from the Internet or stopping the actual attack at the main source.

The algorithm also stores all victim devices’ IPs in the black-list, so when there is an
attack on the smart device, we disconnect the smart device to prevent any further attack. We
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also prevent further access to the database until the administration team solves the issue.
Finally, this algorithm shows high efficiency in detecting memory usage attacks in smart
devices. The memory usage during detection fluctuates between two normal states: Idle and
Active. For instance, memory usage remains below 35% for the Raspberry Pi and less than
16% for the Arduino. Additionally, CPU usage is measured for the Raspberry Pi, registering
a final percentage of less than 2.5% during the detection mechanism.
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Figure 51. Arduino (Detecting the memory usage once the attack starts and when it
stops).
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Chapter 6

Conclusion and Future
Developments

6.1 Conclusions
Nowadays, the security of IoT has become a crucial topic for researchers. By connecting

billions of things to the Internet, IoT and IoE created a plethora of applications that im-
pact every aspect of human life. Mission-critical, time-sensitive applications require robust
connectivity and strict reliability constraints. However, IoT devices face challenges due to
resource constraints, resulting in problems. Therefore, ensuring continuous device availabil-
ity and communication reliability are critical factors in guaranteeing a constant, confident,
and reliable flow of application data.

The lack of a detection mechanism to identify resource constraint attacks would signifi-
cantly impact the performance of devices and networks. In this thesis, we have introduced
optimized methods for monitoring and detecting such attacks in real smart devices. The
primary objective of these monitoring mechanisms is to analyze the impact of resource con-
straint attacks and develop detection and mitigation methods to minimize their severity.
Throughout our research, we have focused on various topics, and the following points sum-
marize our key findings and results:

Smart devices
Energy Memory
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Memory
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Figure 52. Thesis Conclusions.
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6.1.1 Analysis of the impact of Energy Consumption Attacks on
Smart Devices

Chapter 3 studied the impact of EC-DDoS and F-APs attacks on the resource usage of dif-
ferent smart healthcare devices and, more specifically, on energy consumption. First, Docker
images were utilized to collect data, scan the smart devices’ networks, and sniff the net-
work. Then, the calculations of the AR, SD, and threshold of the AR were conducted on the
victim’s side. The main purpose of the calculation is to study the effect of DDoS attacks on
the connectivity of smart healthcare devices. Influential factors such as ports, device state,
attack type (i.e., protocols used), and AR were also examined. Furthermore, the analysis
focused on examining the effects of DDoS, EC-DDoS, and F-APs attacks on the energy con-
sumption of smart devices. Specifically, the F-APs attack was designed to affect the energy
resources of the smart devices by automatically sending malicious attacks to the connected
smart healthcare devices. This research provides a deeper understanding of the impact of
DDoS, EC-DDoS, and F-APs attacks on the energy consumption and connectivity of smart
healthcare devices within wireless networks. The analysis results of this chapter show the
behaviour of smart devices under energy consumption attacks, which helps future works to
build the best detection mechanisms that consume less energy and detect or mitigate energy
consumption attacks with IoT systems. Furthermore, future extensions of this work may
consider exploring additional scenarios. For instance, the effects of combining DDoS attacks
and F-APs on the memory usage of smart healthcare devices could be investigated.

6.1.2 Detection of Energy Consumption Cyber Attacks on Smart
Devices

The IoT is an Internet of smart objects where smart objects communicate with each other.
IoT objects are deployed in an open medium with dynamic topology. Due to a lack of in-
frastructure and centralized management, IoT presents serious vulnerabilities to security
attacks, such as energy consumption attacks, as smart devices suffer from resource con-
straints. Therefore, security is an essential prerequisite for the real-world deployment of
IoT. In Chapter 4, a new technique is proposed for detecting energy consumption attacks in
smart home devices based on the IoT devices’ packet rate analysis. This technique considers
the received packets related to the IoT devices for different protocols such as TCP, UDP, and
the subscribed packets of the MQTT protocol. Therefore, with the aim of energy consump-
tion attack detection, the packet reception rate of the IoT devices is calculated and analyzed
for each protocol separately or all the protocols simultaneously. The algorithm considers
different protocols and device statuses, demonstrating high efficiency in detecting energy
consumption attacks in smart home devices compared to other algorithms that use the cur-
rent energy consumption measurement to detect this attack. As this algorithm is easy to use
and not expensive to implement, it also considers the resource constraints of smart devices.

The key observations made from Chapter 4 present a thorough understanding of the
packet reception rate of IoT devices within a home wireless environment. And how the
energy consumption attacks could be detected depending on measuring the packet rate re-
ceived by the smart devices. Future research will focus on identifying the main sources con-
tributing to high energy consumption in smart home environments by detecting the attack
type.
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6.1.3 Mitigating and Analysis of Memory usage attack in IoE sys-
tem

The IoE is the beginning of a new era of technology in Internet-based smart communi-
cation and connecting smart devices. The security of IoE pillars is important as some suffer
from resource constraints problems. Chapter 5 proposed an approach that can detect and
classify memory usage attacks using memory-based features extracted from the memory us-
age of the smart device. The approach represents a mitigation method to detect the attack
once it appears in the memory usage of the smart devices. First, memory usage is monitored
using a specific tool implemented in Python script and C language to fetch different data
about memory usage. Then, all the fetched data is stored in the DB for further calculation.
Second, the behaviour of the attack is studied, and memory usage readings are recorded be-
fore and after the attack. In this work, both static and dynamic analyses of the memory usage
attack are conducted. In particular, we have conducted all the experiments in an isolated and
cost-efficient experimental setup. It is observed that malicious attacks, e.g., flooding attacks,
have a significant impact on the resources of the IoE smart devices. When an IoE edge de-
vice is flooded with malicious attacks, there are significant increases in CPU and memory
usage. This analysis helps in building the detection algorithm. The detection method relies
on monitoring the memory usage to compare different variables of the memory reading. It is
also able to detect the attack on time once it happens. Moreover, it can detect if the intruder
stops the attack or not. We also build an alert message inside the algorithm to send different
notifications to the administration once the attack is detected. Moreover, all victim devices
are disconnected from the Internet, and all read/write operations to and from memory are
also stopped. In the future, we will focus on detecting the main sources of memory usage
attacks in the IoE environment.

6.2 Future developments
This thesis aims to investigate resource constraints attack smart devices within the Inter-

net of Things and Internet of Everything with a particular focus on analyzing the effect of
resource constraint attacks. The study discussed the impact of resource-constrained attacks
and the development of lightweight algorithms for detecting resource-constrained attacks,
such as energy and memory attacks. Along this line of research, several research areas can be
potentially identified. To gain a comprehensive outlook, future developments can be broadly
divided into four categories (i) network challenges, (ii) data security challenges, (iii) physical
layers challenges, and (iv) industrial scenario challenges.

6.2.1 Network challenges
The rapid development of IoT devices and networks in various forms generates enor-

mous amounts of data, which in turn demand careful authentication and security. Therefore,
another approach could be applied to develop an algorithm to detect the main sources of re-
source constraint attacks in IoT and IoE systems since smart devices suffer from resource
constraint problems. Therefore, it is essential to detect the main sources of resource con-
straint problems and mitigate the attack at the early stage. An IDS is a security detection
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system that can monitor the network and detect threats [259]. Artificial Neural Network
(ANN) intrusion detection could be used to gather and analyze information from various
parts of the IoT network and identify resource constraints attacks [260, 18].

Consider an IoT network of n sensor nodes, where n − 1 nodes function as clients, and
one node acts as a server relay for data analytics. The network traffic can be captured non-
intrusively using a network tap to avoid altering live traffic. The server node acknowledges
the data received from the sensor nodes and responds with relevant data, enabling the sensor
nodes to adapt and respond to events, as depicted in Figure 53 on the left side.

In this context, the attack could be from an external intruder. The attacker only targets
the server node, as it analyzes, logs, and responds to the sensor nodes. To implement this
experiment, we can send different malicious attacks that affect the resources of the smart
devices. The IDS system will try to identify the main sources of resource constraint attacks,
and ANN will be able to detect resource constraint attacks in the future by learning from
the current behaviours. The detection could be able to classify normal and threat patterns.
The ANN model could be used to validate against a simulated IoT network, demonstrating
over n% accuracy. It could be used to identify successfully different types of attacks and
showed good performances in terms of true and false positive rates. We could also intro-
duce different types of attacks to test the method’s reliability and improve the framework’s
accuracy. Therefore, this idea could be used to present a resource constraint threat analysis
of the IoT and uses an ANN to combat these threats. A multi–layer perceptron [261, 18], a
type of supervised ANN, could be used to train using internet packet traces, then assess its
ability to thwart resource constraint attacks [262, 18]. This idea focuses on classifying normal
and threat patterns on an IoT Network.

S1 S2 ........ Sn

RN

Neural
Network
IDS

Client (sensor nodes)

Server

Relay

S1 S2 ........ Sn

RN

Neural
Network
IDS

Server

Relay

Attacker

Normal behavior Network under attack

Figure 53. Experimental architecture to mitigate the main sources of resource-
constraints attacks in IoT or IoE systems.

The application of IDS based on Tiny Machine Learning (TinyML) has recently gained
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notable attention because of its distinctive attributes and capabilities, making it applicable
in various IoT contexts. Recent research has advocated for utilizing TinyML-based IDS
to enhance IoT security. Various researchers leverage TinyML for fault detection in IoT
system smart devices. For instance, in [263], the author applied TinyML to improve Gas
Metal–Oxide–Semiconductor (GMOS) sensor outcomes. Their setup included a GMOS sen-
sor detecting ethanol and acetone, an Arduino board, and LEDs indicating gas detection.
The training was conducted using Edge Impulse (EI). The neural network comprised an in-
put layer with 24 features, 30 neurons for one hidden layer, and 20 neurons for another, with
three classes in the output layer. The detection success rate for each gas (ethanol, acetone,
and no gas) in the test set was 100%. Resource usage comprised 1.7 KB of RAM and 19.5 KB
of flash memory, with a latency of 1 ms. In this paper [264], the author advances the exist-
ing jamming detection and classification techniques by proposing an efficient IoT approach
based on TinyML. A deep learning model is trained and deployed on an IoT edge device,
specifically a Raspberry Pi, using TensorFlow lite. The model, constructed with TensorFlow,
comprehensively covers two prevalent jamming types, constant and periodic, alongside the
normal channel state. The Raspberry Pi is linked to a Software Defined Radio (SDR) for real-
time WiFi channel sensing, capturing Received Signal Strength (RSS) readings. The TinyML
model evaluates these readings to identify the presence and type of jamming. Furthermore,
an extensive testing campaign is conducted to thoroughly assess and demonstrate the effi-
cacy of the proposed TinyML-based edge detection approach. Therefore, utilizing TinyML
in the context of detecting resource-constrained attacks on devices is a promising approach
to conserving energy and memory while timely identifying potential attacks.
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6.2.2 Industrial challenges
The IIoT is revolutionizing the operations of numerous industrial enterprises, elevating

their capabilities to new heights. By seamlessly integrating the physical and digital realms
with minimal human intervention, IIoT has a profound impact on the economy and modern
business landscape [265, 30]. The data generated by the IIoT is leveraged by artificial intel-
ligence systems to perform intelligent tasks, such as optimizing the efficiency of intercon-
nected machines, error correction, and preventive maintenance. However, the widespread
integration of IIoT comes with the risk of facing sophisticated security threats at different lev-
els of the connectivity and communications infrastructure it encompasses. Ensuring avail-
ability, confidentiality, and integrity becomes challenging due to the diverse and complex
nature of IIoT infrastructures. As a result, potential mistrust in network operations and con-
cerns about privacy breaches or the loss of crucial personal data and sensitive information of
network end-users may arise [30]. Machine learning algorithms can be applied to efficiently
detect benign and malicious nodes in IIoT networks to secure IIoT networks from various
attacks efficiently. The contributions of applying a machine learning algorithm in IIoT are
to effectively detect benign and malicious nodes in an IIoT network and provide a novel
method for using information through transfer learning while avoiding catastrophic forget-
ting of previously learned data. We can design a model that can add new information to an
already-trained network without starting training from scratch again. The designed model
could be combined with other algorithms, e.g., distributed sleep scheduling algorithm, to
boost energy efficiency. Furthermore, we can train the designed model on extensive datasets
involving many attack scenarios to enhance the model’s effectiveness.

6.2.3 Secure big-data transmissions
In the modern era, numerous big-data applications have emerged, encompassing diverse

areas like large-scale monitoring of smart cities, healthcare, agriculture, and more. However,
the transmission of big data presents significant challenges due to various factors. Chief
among them is the unavailability of services and protocols capable of efficiently handling
data transmission in the range of 70 to 160 Tbits per second [266] [267], making the process
complex. Additionally, the high density of traffic renders real-time monitoring of data trans-
mission practically infeasible. To tackle these hurdles, the development of Deep Learning
(DL) offers a promising solution by providing security protection for the vast volumes of
data being transmitted. DL exhibits practical features that can be further refined to effec-
tively manage and process such large-scale data transmission.

6.2.4 Data security challenges
Due to the increase of smart devices on the Internet and the number of transmitted data

that has increased significantly, data security issues have also increased. Thus, securing
smart devices’ data is essential. Therefore, the transmission must occur at high rates and
offer reliability through high secrecy, low packet loss, and small delay. Furthermore, those
smart devices must be affordable to justify their implementation on an IoT system-wide
scale, thus having low power consumption and the most cost-efficient embedded process-
ing unit possible [268]. Since the main source of information security in today’s landscape
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is provided through cryptography, the secrecy constraint [269] can negatively affect most of
these criteria. As a result of the growth in the availability of portable and connected equip-
ment with high processing capabilities, the safety measures implemented need to match this
computational power with proportionally more prolonged and more complex keys so as not
to be vulnerable to brute-force attacks from well-equipped malicious devices [268], [270].
However, this approach is not sustainable because it produces increasingly long authen-
tication routines due to the increased computational overhead and processing cost due to
the implemented security algorithms. Moreover, the current solution is not suitable for the
resource constraints problems of smart devices in IoT systems. Therefore, we can apply
Physical Layer Security (PLS) techniques as additional protection to increase the secrecy of
wireless communications in IoT and IoE environments. As the name suggests, PLS could be
applied at the physical layer, making it an alternative that can be used with low processing
cost compared to cryptography, which is more oriented towards the computational side of
the network stack on the application layer.

However, Physical Layer Authentication (PLA) can also be used to prevent malicious
users from spoofing IoT devices’ information, and the first critical step is effective authen-
tication [271]. And PLA employs unique characteristics inherent to wireless signals and
physical devices and is promising in the IoT due to its flexibility, low complexity, and trans-
parency to higher layer protocols [272]. Therefore, PLS and PLA could be used to ensure IoT
devices’ data confidentiality, availability, and reliability [271].

6.2.5 Physical layer
PLS [273] is an emerging technique proposed to enhance wireless transmissions by ex-

ploiting the physical characteristics of the wireless channel. It presents low computational
cost and overhead by injecting an interfering signal into potential eavesdroppers’ wiretap
channels. The key principle of PLS is to permit the secure transmission of confidential data
using efficient signal-processing techniques [271]. Moreover, PLS has been recognized as a
possible approach for achieving confidentiality at the physical layer by utilizing the inherent
randomness of wireless communications. It can be used to provide secure wireless commu-
nications without using a key to encrypt them. Also, DL has emerged as a viable option to
address various security concerns and enhance the performance of conventional PLS [211]
techniques in wireless networks [274] [275]. DL is a strong data exploration technique that
can be used to learn normal and abnormal behaviour of 5G and beyond wireless networks
in an insecure channel paradigm. Also, since DL techniques can successfully predict future
instances by learning from existing ones, they can successfully predict new attacks, which
frequently involve mutations of earlier attacks. Thus, motivated by the benefits of DL and
PLS, we can combine PLS and DL to solve various security concerns in 5G, 6G, smart devices
resource constraints in IoE, and beyond networks, e.g., supply chain risk, spectrum sharing,
network slicing, and others [211]. Furthermore, DL appears to be viable for addressing se-
curity issues and designing PLS techniques for 5G and beyond networks. Especially, pre-5G
networks partially addressed privacy concerns by storing user data in databases owned by
mobile operators [276]. Additionally, 5G and beyond networks will confront new security is-
sues due to the rise in User Equipment (UE), services, heterogeneity of connected UEs, high
privacy concerns, and new requirements to support various IoT technologies. Addition-
ally, most 5G apps are decentralized, allowing UEs to join or leave the network whenever
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they choose [277]. Therefore, PLS is a strong data exploration technique that can be used
to learn the normal and abnormal behaviour of wireless networks based on how UEs and
base stations communicate with each other. We can also use the combination of PLS and
DL to predict and detect memory attacks in smart devices from the viewpoint of physically
attacking the memory [278]. We can also use the PLS and DL to predict the main sources of
resource constraint attacks before they happen on the smart devices by sending alerts of the
different behaviours of the smart devices [279] [211].
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Chapter 7

Appendix

This section includes crucial details about the databases and tables used in the experi-
ments of Chapters 3, 4, and 5. These elements are vital for data collection, organization, and
analysis, contributing to the study’s findings. Additionally, it provides information about
the energy consumption tools utilized to measure smart devices’ energy usage accurately
and the technologies used to measure and monitor the memory usage of smart devices.

7.1 Technologies
The fake access point created by the author in Chapter 3 is implemented on a virtual ma-

chine by using tp-link (TL-WN722N) as shown in Figure 55. We run malicious attacks, net-
work scans, and sniffers on different Docker images. In particular, the control panel docker
contains all the scripts that manage the population of malicious attacks. It also includes the
network scan to scan the network and ports of the smart devices. Another docker image has
a sniffer to capture the WiFi traffic of the IoT system. We use hping3, tshark, and Nmap inside
the docker images for running different things, e.g., malicious attacks, sniffing and fetching
the packets automatically and for launching network scans and identifying devices status.

For monitoring the memory of Chapter 5, we used different libraries in Python and C
languages. For example, we used os, psutil, and memory-monitoring, and for the C language,
we used MemoryFree and pgmStrToRAM.

The main technologies used for implementing the lightweight algorithms are MySQL,
Python, C, and Matlab.

7.2 Database
The database used to store all information related to the smart devices we use the MySQL

database. MySQL is an open-source SQL relational database management system that’s de-
veloped and supported by Oracle. The server of the database uses to store data securely and
return it in response to another request by the software applications. Figures 56, 57, and 58
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Figure 55. TP-Link (TL-WN722N) USB Adapter

shows the database’s structure that contains all the smart devices data for Chapters 3, 4,
and 5. The description of each table is described as follows:

Figure 56. Chapter 3 Database Schema.

1. Devices table has all the devices information: deviceId represents the smart device ID
used in the expirement; name is the name of the smart device.

2. DevicesStatus table contains all the devices statuses, e.g., Idle, Active, under attack; devi-
ceId is a foreign key from Device table represents the devices used by the experiment.

3. Attack table contains all the information related to the malicious attacks: attakType
refers to the type of attack used against the smart devices, e.g., DDoS, F-APs, and
others.

4. energy measurement table saves all the information of all the smart devices energy mea-
surement: watt refers to current energy measurement; hours contains a number of
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hours used to measure the energy of the smart device; time contains the information
about the starting and ending time of measuring the energy; device id is the smart
device.

5. Attack rate table contains all the information about the attack rate calculations: attack
rate stores the attack rate of such a smart device (device id).

6. Survival duration table stores the survival duration of the smart devices: Survival is the
survival duration of the smart device (device id).

7. Protocol table stores the protocols used for the experiment of Chapter 4.
8. Packet reception rate table stores the packet received by the smart devices: packet is the

number of packets received by the smart device (device id) and for a specific protocol
(protocol id) within a specific type of attack (attack id).

Figure 57. Chapter 4 Database Schema.

9. memory usage table contains all information about the memory usage of the smart de-
vices (device id) for different statuses: memory usage stores the memory usage of the
smart device within a specific time (time) with or without the attack (attack id).

10. CPU usage table contains all information about the CPU usage of the smart devices
(device id) for different statuses: CPU usage stores the CPU usage of the smart device
within a specific time (time) with or without the attack (attack id).

11. blacklist table stores all the information about the victim smart devices: ip is the IP of
the victim smart device; date the date of inserting the smart device (device id) into the
blacklist;

111



Figure 58. Chapter 5 Database Schema.

7.3 Power Measurements
We developed a smart circuit using a non-invasive current sensor, as shown in Figure 60,

to measure the current consumption of smart healthcare devices. This smart circuit samples
voltage, ampere, watt, and current per second. The current consumption values for each
smart healthcare device are stored in the DB. In our experiment, we use the Joule (J) values
to calculate the energy consumption of smart devices.

Within this smart circuit, we can measure the current consumption of the smart device in
n seconds. So in our experiment in chapter 3, we measure the energy consumption for every
(3) seconds in a total of (30) minutes.

To run this smart circuit, we used Arduino UNO with four types of resistors; one of the
resistors is 330 Ω linked with led to show once the start of measuring the energy consumption
by the smart devices. Other three resistors sized 10k Ω connected with the circuit of the smart
sensor. We also used a capacitor 10 uF.

We also need to install EmonLib.h library for reading data from the non-invasive current
sensor.
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Figure 60. Schematic Sketch for Figure 34 from chapter 4.
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Table 8. Components for Power Consumption Measurements.

.

Component Value
Arduino UNO3 —
Resistor 330 Ω
Resistor 10 k Ω
Resistor 10 k Ω
Capacitor 10 uf
LED —
Non-invasive current sensor 30 A

Start
Calculate Average
packets received
(A) by the sensor

during (x) minutes.

No

Yes

if A<= y

Make the device
stop licensing for a

period of time
C++

Yes

No

if C > 3check the energy
consumption

Abnormal
Behavior

Yes

No

if M <= z

Energy
Consumption

Attack detected
End

A= Average of received packets.
y= Normal received packets.
M= Median energy consumption
every x minute.
C= Counter of the number of
times that the devices stopped
licensing.

Figure 61. A Technique to Detect Energy Consumption Attack for the algorithm in
Chapter 5.
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