
IMT School for Advanced Studies Lucca

Lucca, Italy

Model Predictive Control for Legged Robots

PhD Program in Systems Science - Track in Computer
Science and Systems Engineering

XXXIII Cycle

By

Niraj Rathod

2023

http://www.imtlucca.it
https://www.nirajrathod.com/

The dissertation of Niraj Rathod is approved.

Program Coordinator: Prof. Alberto Bemporad,
IMT School for Advanced Studies Lucca, Italy

Supervisor: Prof. Alberto Bemporad,
IMT School for Advanced Studies Lucca, Italy

Co-supervisor: Dr. Michele Focchi,
DLS Lab, Istituto Italiano di Tecnologia, Genova, and
University of Trento, Italy

Co-supervisor: Assoc. Prof. Mario Zanon,
IMT School for Advanced Studies Lucca, Italy

The dissertation of Niraj Rathod has been reviewed by:

Assoc. Prof. Andrea Del Prete,
Industrial Engineering Department,
University of Trento, Italy

Assoc. Prof. Dimitrios Kanoulas,
Computer Science Department,
University College London, United Kingdom

IMT School for Advanced Studies Lucca

2023

http://www.imtlucca.it

To my parents,

Suman and Jogram

Contents

List of Figures x

List of Tables xiii

Acknowledgements xiv

Vita and Publications xvi

Abstract xxi

1 Introduction 1
1.1 Motivation . 2
1.2 Legged Locomotion in a Nutshell 3
1.3 Optimal Planning for Legged Locomotion 4
1.4 Contribution . 5

1.4.1 Model Validation and Trajectory Optimization . . . 5
1.4.2 NMPC with Mobility 5
1.4.3 Two-Stage Optimization 6

1.5 Outline . 7

2 Related Work 9
2.1 Dynamic Robot Models for TO and MPC 10
2.2 Solution Methods for MPC 11
2.3 Leg Mobility in Predictive Control 13
2.4 Optimal Reference Generator for MPC 14

3 Legged Robots 16
3.1 Robot Description . 16

3.1.1 HyQ . 17

vii

3.1.2 AlienGo . 18
3.2 Mathematical Models for Legged Robots 18

3.2.1 Rigid Body Dynamics 19
3.2.2 Centroidal Dynamics 21
3.2.3 Single Rigid Body Dynamics 22

3.3 Model Validation . 23
3.3.1 Closed-Loop Model 24
3.3.2 Approximate Model Selection 27
3.3.3 Trunk Controller . 29

3.4 Model Validation Results . 31
3.4.1 Validation Setup . 31
3.4.2 Results . 33

3.5 Summary . 40

4 Trajectory Optimization for Legged Locomotion 41
4.1 Model Predictive Control 42
4.2 Optimal Control Problem 43
4.3 Discrete-time Optimal Control Problem 45

4.3.1 Sequential Optimal Control 46
4.3.2 Simultaneous Optimal Control 47

4.4 Optimal Planning for Legged Robot 48
4.4.1 LTV-Based Trajectory Optimization 49
4.4.2 Sequential Quadratic Programming 51
4.4.3 Results . 55

4.5 Summary . 61

5 Nonlinear MPC for Legged Locomotion 62
5.1 Locomotion Framework . 63
5.2 NMPC Formulation . 65

5.2.1 Cost . 66
5.2.2 Robot Model . 67
5.2.3 Friction Cone and Unilateral constraints 69

5.3 Locomotion-Enhancing Features 70
5.3.1 Mobility and Mobility Factor 70
5.3.2 ZMP Margin . 73
5.3.3 Force Robustness . 74

5.4 Reference Generator . 74
5.4.1 Gait Scheduler . 76
5.4.2 Robocentric Stepping 77
5.4.3 Vision-based Foothold Adaptation 78

viii

5.5 Whole-Body Controller . 79
5.5.1 WBC Interface . 79
5.5.2 Feedback Wrench . 79
5.5.3 Projection of the GRFs 80
5.5.4 Mapping GRFs to Joint Torques 81
5.5.5 Joint-Space PD . 81

5.6 Real-Time Iteration for NMPC 82
5.7 Simulation and Experimental Results 84

5.7.1 Implementation Details 84
5.7.2 Simulations . 87
5.7.3 Experiments . 92

5.8 Summary . 98

6 Two-Stage Optimization 99
6.1 NMPC with Optimal Reference Generator 99
6.2 Locomotion Framework with the Optimal Reference Gen-

erator . 100
6.2.1 LIP Model Optimization 101
6.2.2 QP Mapping . 102

6.3 Simulation and Experimental Result 103
6.3.1 Implementation Details 103
6.3.2 Simulations . 104
6.3.3 Experiments . 104

6.4 Summary . 110

7 Conclusions 111
7.1 Summary . 111
7.2 Future Directions . 113

A Angular Velocity 115

B Model Validation 116

C QP Formulation 123

References 125

ix

List of Figures

1 A schematic overview of the components involved in
Legged locomotion. 3

2 Quadruped robots used in this dissertation 17
3 A leg of HyQ robot. 18
4 Representation of a quadruped robot as floating base system. 20
5 A closed-loop controller scheme 25
6 A closed-loop controller representation of Fig. 5 with two

separate controllers. Controller 1 represents the closed-
loop controller related to the selected part of the model
under validation. On the other hand, Controller 2 repres-
ents the closed-loop controller related to the part of the
high-fidelity model not considered in the validation. 26

7 Elements of the trunk controller in the closed-loop 29
8 Body orientation from pitch validation results. 33
9 Body angular velocity from pitch validation results. 34
10 CoM position from pitch validation results. 35
11 CoM velocity from pitch validation results. 36
12 The X component plots of GRFs at respective legs from the

pitch validation results. 37
13 The Y component plots of GRFs at respective legs from the

pitch validation results. 38
14 The Z component plots of GRFs at respective legs from the

pitch validation results. 39

15 Illustration of the RHP utilized in the MPC scheme. 43
16 Classification chart of an OCP. 45
17 CoM position plots from LTVOpt and SQPOpt results. . . 57

x

18 CoM velocity plots from LTVOpt and SQPOpt results. . . . 57
19 Orientation plots from LTVOpt and SQPOpt results. 58
20 Angular velocity plots from LTVOpt and SQPOpt results. . 58
21 GRFs Z component from SQP results. 59

22 Block diagram of the planning pipeline with the NMPC in
our locomotion framework. 64

23 HyQ schematic . 67
24 Manipulability ellipsoid changing with leg configuration. . 71
25 Slices of the mobility factor function for the RF leg. 72
26 Gait schedule for a walk. 76
27 Representation of the robocentric stepping. 78
28 Simulation of pallet crossing scenario. 88
29 Comparison of the robot pitch θ in simulation. 89
30 Walk into a V-shaped chimney simulation: GRFs of LF. . . 90
31 Walk into a V-shaped chimney simulation: Normal force

versus tangential force. 90
32 Plot of the ZMP margin mc used to measure locomotion

stability. 91
33 CoM X-Y position and yaw ψ in omni-directional walk ex-

periment. 93
34 The longitudinal ṗc,x, lateral ṗc,y and angular ωz velocity

of the robot in omni-directional walk experiment. 94
35 GRFs from one gait cycle in the omni-directional walk ex-

periment. 95
36 IIT’s quadruped robot HyQ traversing a static pallet with

the mobility enhanced real-time NMPC. 96
37 Planned (red) and Actual (dashed blue) pitch of the robot

base while traversing a static pallet in the experiment. . . . 96
38 Robot base pitch achieved during the swing of RF leg

while traversing a repositioned pallet. 97

39 Overview of the locomotion framework with the ORG. . . 101
40 Simulation result of scenario (a) with AlienGo performing

a forward trot. 105
41 Simulation result of scenario (a) with AlienGo performing

a forward pace. 106
42 Experiment scenario (a): Aliengo moving forward with

the zero commanded lateral velocity. 106
43 The GRFs in the experiment for scenario (a) 107

xi

44 Activation of ORG in the experiment scenario (a). 108
45 Experiments, scenario (b), sequence of screenshots. 109
46 Experiment scenario (b): CoM Y position of the robot. . . . 109

47 CoM position from the yaw validation results. 116
48 CoM velocity from the yaw validation results. 117
49 Body orientation from the yaw validation results. 118
50 Body angular velocity from the yaw validation results. . . 119
51 The X component plots of GRFs at respective legs from the

yaw validation results. 120
52 The Y component plots of GRFs at respective legs from the

yaw validation results. 121
53 The Z component plots of GRFs at respective legs from the

yaw validation results. 122

xii

List of Tables

1 Types of dynamic model commonly appear in legged lo-
comotion. 12

2 LTVOpt and SQP parameters 56
3 Weights used in the LTVOpt and SQP 56

4 NMPC parameters . 85
5 Weights used in the NMPC 86

xiii

Acknowledgements

First and foremost, I express my deepest gratitude to my ad-
visor Prof. Alberto Bemporad for such a rewarding thesis ex-
perience. I shall always be thankful for your guidance and
support throughout the research work. I am also very grate-
ful to my co-advisor Dr. Michele Focchi for your caring, pa-
tience, and unconditional support throughout my thesis. You
have been a great help during the downfalls and an inspira-
tion during my research experience. Your energy and excite-
ment for research are unparallel that has boosted my confid-
ence. I could have never hoped for a co-advisor better than
you. I sincerely thank my co-advisor Dr. Mario Zanon for his
help. Thanks for introducing me to the world of optimal con-
trol, without which this work would not have been possible
to achieve.

Besides my advisors, I thank Dr. Claudio Semini for the col-
laboration opportunity with the DLS Lab at IIT Genova. He
and the entire DLS have been very kind and supportive dur-
ing my visits to the Lab. From DLS Lab, I would like to
thank Amit, Abdelarhman, Chundri, Geoff, Gianluca, Luca,
Romeo, Mattia, Matteo, Marco, Salvatore, Shamel, Octavio,
Victor, and Ylenia for your generous support during lab ex-
periments and brainstorming on the research topics. Thanks
to DLS administrative staff for supporting the bureaucracy
during my visits to DLS Lab. Last but not least, I would like
to especially thank Angelo for collaborating with me on the
PhD research. It has been a pleasure working with you.

I would like to thank my colleagues and friends from the
DYSCO lab at IMT Lucca for their company. Special thanks
to my friends Sampath, Laura, Jeniya, Manas, Surya, Pavan,
Mengia, and Chinmay for being there for me during my PhD.
You have motivated me during the most challenging peri-
ods and were the backbone of life here at IMT. I am deeply
grateful to my dear friend Vihang for his support during the

xiv

PhD research. Thanks for pushing me to reach my best level
and always encouraging me. I want to thank my friends Gi-
ulia, Laura, Marie, Amina, Divya, Kapil, and Akash for your
pleasant company during my stay in Genova for the research
period. My deepest gratitude goes to the IMT administrative
staff for their continuous support and help to PhD students at
IMT. I shall forever cherish my roommate Emiliano’s support
and company during PhD studies.

I also take this opportunity to thank my friends from my
current workplace, Vito, Domenico, Leonardo, Tommaso,
Francesco, and Andrea, for always keeping a positive and
uplifting environment in the office while I was finalizing my
thesis writing. Special thanks to my friends from Crema
Daniele, Federica, Alessandro, and Massimo, for allowing
me to blend in this new city with your warm company. I
can never thank my friends Akash, Vignesh, Stefano, Harish,
Nitin, Mauro, Giacomo, Katarina, Paolo, and Luca enough.
You have all been a source of love, joy, and energy since I
have known you.

From the bottom of my heart, I wish to thank my family
members Sunita, Ashok, Arti, Vinod, Vidya, Santosh, Van-
ita, Tulsiram, Arjun, Vaishali, Shrikant, and Dipali for root-
ing for me during my PhD studies, without which this jour-
ney would have never happened. Kudos to my nieces Vaish-
navi, Akanksha, Nivita, Sanchiti, Swara, and Mishti, and my
nephews Himanshu, Aditya, Parth, Mayank, and Advait for
keeping a smile on my face. You all are such a source of love
and joy for me. Last, I would like to thank my mother and
father for your unconditional love, belief in me, and support
throughout my life. Words are never enough to express my
gratitude for your sacrifices to get me where I am today.

xv

Vita

Feb. 24, 1989 Born in Parasram Naik Tanda, India

2007 – 2011 B.Tech in Instrumentation & Control
College Of Engineering Pune, India

2011 – 2014 System Engineer
Emerson Export Engineering Centre (EEEC)
Pune, India

2014 – 2017 M.Sc. in Automation and Control Engineering
Politecnico di Milano, Italy

2015 – 2016 Research Intern
Ricerca sul Sistema Energetico SpA
Italy

2017 – 2022 PhD in Computer Science and Systems Engineering
IMT School for Advanced Studies Lucca
Italy

2018 – 2021 Affiliated Researcher
Dynamic Legged Systems Lab, IIT Genova
Italy

2022 – Present Control Systems Research Engineer
R&D, VHIT Spa
Italy

xvi

Publications

Journal papers and Conference proceedings

a. A. Bratta, M. Focchi, N. Rathod, and C. Semini, “Optimization-Based Ref-
erence Generator for Nonlinear Model Predictive Control of Legged Ro-
bots”, Robotics 2023, 12(1), 6, 2023. (url)

b. N. Rathod, A. Bratta, M. Focchi, M. Zanon, O. Villarreal, C. Semini, A. Be-
mporad, “Model Predictive Control with Environment Adaptation for
Legged Locomotion”, IEEE Access, vol. 9, pp. 145710-145727, 2021. (url)

c. A. Bratta, N. Rathod, M. Zanon, O. Villarreal, A. Bemporad, C. Semini, M.
Focchi, “Towards a Nonlinear Model Predictive Control for Quadrupedal
Locomotion on Rough Terrain”, Italian Institute of Robotics and Intelligent
Machines (I-RIM) Conference, 3rd edition, Rome, Italy, 2021. (url)

d. N. Rathod, A. L. Bella, G. Puleo, R. Scattolini, A. Rossetti, C. Sandroni,
“Modelling and predictive control of a solar cooling plant with flexible
configuration”, Journal of Process Control, vol. 76, pp. 74-86, 2019.(url)

Workshops

a. N. Rathod, A. Bratta, M. Focchi, M. Zanon, O. Villarreal, C. Semini, A.
Bemporad, “Real-time MPC with Mobility-enhanced Feature for Legged
Locomotion”, Towards Real-World Deployment of Legged Robots, ICRA, Xi’an
China, 2021. (url)

b. N. Rathod, M. Focchi, M. Zanon, A. Bemporad, “Optimal control based re-
planning for Quadruped robots”, Numerical Optimization for Online Multi-
Contact Planning and Control, Robotics: Science and Systems, Freiburg, Ger-
many, 2019.

xvii

https://www.mdpi.com/2218-6581/12/1/6
https://ieeexplore.ieee.org/document/9564053
https://iit-dlslab.github.io/papers/bratta21irim.pdf
https://doi.org/10.1016/j.jprocont.2019.01.009
https://drive.google.com/file/d/10WNSLPmtg8H3XUHsRwA4qKySVoKbKGst/view

xviii

Acronyms

Notation Description
CD Centroidal Dynamics.
CMM Centroidal Momentum Matrix.
CNN Convolutional Neural Network.
CoM Center of Mass.

DDP Differential Dynamic Programming.
DLS Dynamic Legged System.
DoF Degrees of Freedom.

GRF Ground Reaction Force.

HAA Hip Adduction-Abduction.
HFE Hip Flexion-Extension.
HPU Hydraulic Pressure Unit.
HyQ Hydraulically actuated Quadruped.

IIT Istituto Italiano Tecnologia.
IMU Inertial Measurement Unit.

KFE Knee Flexion-Extension.

LF Left-Front.
LIP Linear Inverted Pendulum.
LIPOpt LIP model Optimization.
LP Linear Programming.
LTI Linear Time-Invariant.
LTV Linear Time-Varying.
LTVOpt LTV-Based Trajectory Optimization.

xix

Notation Description

MPC Model Predictive Control.

NLP Nonlinear Programming.
NMPC Nonlinear Model Predictive Control.

OCP Optimal Control Problem.
ODE Ordinary Differential Equation.
ORG Optimization-Based Reference Generator.

PD Proportional-Derivative.

QP Quadratic Programming.
QPMap QP Mapping.

RBD Rigid Body Dynamics.
RF Right-Front.
RHP Receding Horizon Principle.
ROS Robot Operating System.
RTI Real-Time Iteration.

SLQ Sequential Linear Quadratic.
SQP Sequential Quadratic Programming.
SQPOpt SQP-Based Trajectory Optimization.
SRBD Single Rigid Body Dynamics.

TO Trajectory Optimization.

VFA Vision-based Foothold Adaptation.

WBC Whole-Body Control.

ZMP Zero Moment Point.

xx

Abstract

Optimal planning is essential when it comes to autonomy in
legged locomotion. In the last few decades, different optim-
ization techniques have been presented to design a legged lo-
comotion framework, such as Trajectory Optimization (TO)
and Model Predictive Control (MPC). The choice of a dy-
namic model utilized while synthesizing these planners plays
a pivotal role because the chosen model defines the accuracy
of the planning and also becomes a deciding factor for the
computational cost of these techniques. In the first part of
this thesis, we propose a closed-loop validation procedure for
the Single Rigid Body Dynamics (SRBD) model and its vari-
ants used for optimal planning. Thereafter, we introduce a
Linear Time-Varying (LTV) based TO for legged locomotion,
followed by the simulation results and discussion on its lim-
itations in re-planning.

Re-planning in legged locomotion is crucial to track the de-
sired user velocity while adapting to the terrain and reject-
ing external disturbances. In the second part of this thesis,
we propose and test in experiments a real-time Nonlinear
Model Predictive Control (NMPC) tailored to a legged robot
to achieve dynamic locomotion on various terrains. We in-
troduce a novel mobility-based criterion to define an NMPC
cost that enhances the locomotion of quadruped robots while
maximizing leg mobility and improving adaptation to the ter-
rain features. The NMPC is based on the Real-Time Iteration
(RTI) scheme that allows us to re-plan online at 25Hz with a
prediction horizon of 2 seconds. In simulations, the NMPC is
tested to traverse a set of pallets of different sizes, walk into a
V-shaped chimney, and locomote over rough terrain. In real
experiments, we demonstrate the effectiveness of our NMPC
with the mobility feature that allowed IIT’s 87 kg quadruped
robot HyQ to achieve an omni-directional walk on flat terrain,
traverse a static pallet, and adapt to a repositioned pallet dur-
ing a walk.

xxi

In the final part of this thesis, we present the extension of
the NMPC with other dynamic gaits, i.e., trot and pace.
We also introduce an Optimization-Based Reference Gener-
ator (ORG) that computes dynamically feasible trajectories
for the state and control input based on the Linear Inver-
ted Pendulum (LIP) model-based optimization and Quad-
ratic Programming (QP) based mapping. These feasible tra-
jectories are passed to the NMPC to cope with the disturb-
ances while following the user-defined trajectories with the
dynamic gaits. We show the effectiveness of this two-stage
optimization scheme in simulations and experiments per-
formed on the AlienGo robot to trot in a straight line and
to recover from the external disturbances while trotting. We
also compare the performance of the two-stage scheme with
respect to a traditional heuristic reference generator in an ex-
periment.

xxii

Chapter 1

Introduction

Automating repetitive tasks has been an essential part of modern human
life. In the last few decades, automation has made its way into our day-
to-day life due to technological advancements. Decades of research and
scientific discoveries have contributed to finding tailored solutions for
automating mundane tasks in industries as well as our daily lives. Ro-
bots have gained popularity for being one of these mediums to perform
automated tasks. Although robots are deployed in industries to perform
meticulous and repetitive tasks, their other potential has also been real-
ized. Be it a state-of-the-art humanoid, quadruped robot, cleaning ro-
bot, robotic lawn mower, or robot as a companion, robots have broken
through what was once considered a repetitive task-performing machine
in an industrial setup. These applications have opened up different pos-
sibilities for robots in a broader spectrum that could demand the agility
to navigate through challenging environments. Unlike industrial robots,
where the environment is usually predictable, robots in these scenarios
may face rough terrains while performing any given task.

Of all the robot types, legged robots have gained immense popularity
not only in the research and development domain but also in the public
eye in the last two decades. One of the reasons to be welcomed by soci-
ety is their resemblance to human beings and animals. However, these
robots are of interest not merely because they resemble living beings but
because of their agility to perform tasks in undefined and uneven terrain,
unlike flying or wheeled robots. These robots resemble the fundamental
anatomy of human beings, and animals, therefore, possess similar nav-
igational advantages.

1

The focus of this dissertation is on the development and improve-
ment of the navigational capability for legged robots using state-of-the-
art control techniques. In the following sections, we motivate the thesis
topic, list the contribution and outline the content of this dissertation.

1.1 Motivation

From a research and development point of view, robotics blends many
engineering disciplines, such as mechanical, electrical, electronics, math-
ematical, computer, and control engineering. Building a sophisticated
working robot requires a unique and extraordinary harmony of these
engineering disciplines. The multidisciplinary approach required by the
robotics domain has also given rise to state-of-the-art humanoids and
quadrupeds.

Even though legged robots resemble living beings, these robots lack
sensory mechanisms and intelligence identical to living beings that have
undergone rigorous evolution over thousands of years. While design-
ing animal-like robots, the focus has not been to replicate exact mech-
anics or behavior as living beings but to cherry-pick only those that al-
low a legged robot to navigate through the environment with the help
of equipped actuators and sensors. Besides the mechanical design of
legged robots, the development of their intelligence has seen exponen-
tial growth in the last few decades. The increased computational power
of computers has allowed many complex algorithms to run on these ro-
bots with lightning speed and efficiency.

When it comes to the navigational capability of a legged robot, it is in-
comparable to living beings with similar anatomy since they do not share
similar actuation and sensory elements. Even if some of these sensing
elements are present in robots, how a robot processes information dif-
fers significantly from an animal during locomotion. Therefore, extens-
ive research currently focuses on developing the intelligence for legged
robots to improve their navigational capabilities. Improving the navig-
ation capability of a legged robot requires efficient use of the informa-
tion about the environment and rapidly processing that information to
choose a locomotion strategy to navigate through challenging terrains
optimally. In this dissertation, we focus on developing a real-time op-
timal motion planning scheme that improves the navigational capability
of a legged robot to locomote through challenging environments.

2

Operation

Sensing

Motion
planning

Figure 1: A schematic overview of the components involved in Legged lo-
comotion.

1.2 Legged Locomotion in a Nutshell

There are broadly three essential aspects to legged locomotion, as depic-
ted in Fig. 1. The sensing and motion planning modules are where the
information about the robot and environment is collected and processed
to operate the tasks defined for a legged robot. We will briefly discuss
these aspects in the following.

Motion planning

This module defines a task for the robot at a higher level and can be
generated heuristically or with the intelligent algorithms aware of the
robot’s dynamics and environment. This module is where also adaptive
planning is performed to cope with the changes in the environment and
improvise the robot’s motion according to the disturbances acting on the
robot, such as external pushes. Motion adaptation is achieved through
re-planning by continuously processing the information about the envir-
onment and acting accordingly.

Sensing

This module makes the robot aware of its state and environment by read-
ing through various sensors, such as a camera. The broad classification of
these sensors is 1) Proprioceptive, which measures the robot’s state (e.g.,
body position), and 2) Exteroceptive, which measures the environment
state (e.g., temperature, pressure, mapping). This information is fed to
the motion planning module to plan a desired locomotion.

3

Operation

In this step, the robot executes the planned motion provided by the mo-
tion planning module. After digesting the updated information from the
sensing module, the motion planner sends a motion plan to the robot
either to execute task-specific locomotion or to adapt to the changes if
diverted from the original plan due to disturbance or changes in the en-
vironment.

The scope of this dissertation lies in the motion planning module to
develop a real-time motion planning strategy for a legged robot. Next,
we will introduce this strategy.

1.3 Optimal Planning for Legged Locomotion

Trajectory Optimization (TO) has been utilized in Legged robots for a
long time and has proven one of the successful approaches to improve
the locomotion of legged robots. Use of TO has shown outstanding res-
ults, such as achieving a back-flip with a biped Atlas™ BostonDynamics
(2023). Recently, Cassie AgilityRobotics (2023) has set a Guinness world
record for the fastest 100m by a bipedal robot. However, there is still
scope for improvement regarding the robot’s posture while walking. A
robot can maintain a flat base while climbing a staircase or adapt its pose
while performing the same task. In the first case, the robot might lose leg
mobility during navigation, eventually hindering its ability to navigate
through a challenging environment. On the other hand, if the robot con-
tinuously adjusts its body posture to align with the plane of the terrain,
then the leg mobility of the robot increases. Further, this also allows a
robot to reach desired footholds while walking.

In this work, we address the problem of leg mobility of a legged
robot in an Nonlinear Model Predictive Control (NMPC) setup. This
work also addresses the fundamental issue of the computation time in
real-time implementation of the NMPC tailored for legged locomotion.
Further, we also study the efficacy of a two-stage optimization scheme
in which a real-time Optimization-Based Reference Generator (ORG)
provides physically feasible references to the NMPC. In the following
sections, we describe the contribution of this dissertation.

4

1.4 Contribution

The contribution of this dissertation is divided into three major parts.
The first part focuses on the Single Rigid Body Dynamics (SRBD) model
validation and TO for legged locomotion. In the second part, we propose
a real-time NMPC for environment adaptation and show its performance
in simulation and experiments. In the last part of the thesis, we extend
the application of our NMPC to cope with external disturbances with the
help of an optimal reference generator.

1.4.1 Model Validation and Trajectory Optimization

In the first part of the dissertation, we propose a method for the closed-
loop validation of the SRBD model for a legged robot. In particular,
we begin with the continuous-time SRBD model and derive its discrete-
time nonlinear and Linear Time-Varying (LTV) versions. Then, we per-
form validation with respect to the data obtained from the high-fidelity
model of Hydraulically actuated Quadruped (HyQ). Next, we use the
LTV model to first design the LTV-Based Trajectory Optimization (LT-
VOpt) and then SQP-Based Trajectory Optimization (SQPOpt). Finally,
we present and discuss the result of these TO methods in simulation for
HyQ robot.

1.4.2 NMPC with Mobility

In the second part of this dissertation which is a major contribution, we
demonstrate in experiments with our 87 kg HyQ robot Semini et al. (2011)
that a suitably formulated NMPC can tackle rough terrain locomotion,
account for leg mobility, and provide optimal base orientation while be-
ing real-time feasible. Indeed, optimizing for leg mobility allows our
NMPC to devise a robot base orientation and height that improves lo-
comotion on rough terrain. This is particularly useful to achieve envir-
onment adaptation on rough terrains. Another advantage is that minimal
heuristics is required from the user, i.e., no reference trajectory for the
robot’s height, and its base roll and pitch orientation is needed. This
work is a system integration on the same line of our previous work Mas-
talli et al. (2020). However, while in Mastalli et al. (2020) only offline
optimization was performed, here we achieve real-time feasible online
replanning in an MPC fashion. To achieve this goal:

5

a. We consider a simplified SRBD model that describes the angular
and translational dynamics of the robot base but neglects the dy-
namics of legs.

b. We employ the Real-Time Iteration (RTI) scheme Diehl et al.
(2005b,a); Gros et al. (2020) that allows us to run our NMPC on-
line with the prediction horizon of 2 s (50 nodes) as opposed to the
0.5 s (125 nodes) used by Neunert et al. (2018). Differently from
Cebe et al. (2020) (that re-plans at each foot touchdown event), we
continuously re-plan at the rate of 25Hz.

c. We run our NMPC on a single computer along with the rest of
our locomotion framework1 unlike in Cebe et al. (2020); Neunert
et al. (2018) where they use dedicated computers for their TO and
NMPC, respectively.

We show in simulation the robot traversing a set of pallets of dif-
ferent dimensions placed relatively at varying distances, walking into
a V-shaped chimney and over randomly generated rough terrain. We
present experimental results that demonstrate the capability of our NMPC
to generate an omni-directional walk and to traverse a pallet for our
quadruped robot HyQ. We tested the re-planning capability of our ap-
proach by pushing a pallet in front of the robot while walking, such that
the control algorithm has to re-plan online in order to adapt to a dynam-
ically changing environment.

1.4.3 Two-Stage Optimization

In the second part of the contributions, we present the NMPC with envir-
onment adaptation for crawl gait on HyQ robot. In this work, we extend
the application of the NMPC with ORG for trot and pace gait on the Ali-
enGo robot. We modify our framework to introduce the Optimization-
Based Reference Generator (ORG) instead of the heuristic reference gen-
erator presented in the previous contribution. The ORG provides phys-
ically feasible references to the NMPC that allow the NMPC to trot and
pace in simulation. We compare the performance of the ORG with the
heuristic reference generator. Finally, the experiment shows that the two-
stage optimization, i.e., NMPC with ORG, enables the robot to cope with
external disturbances while trotting.

1Except the perception related modules that run on a dedicated computer

6

1.5 Outline

This dissertation is organized into different chapters to discuss the
background and literature survey of the thesis topic, robot models, and
validation of the chosen model for the TO and NMPC, TO based on two
different techniques, NMPC for environment adaptation, and finally,
NMPC with the optimization-based reference generator. We end the
manuscript by concluding remarks and future works based on the topics
discussed in this dissertation. In the following, we outline the content of
each chapter.

Chapter 2 presents the literature survey on the related work to this
dissertation. In this chapter, we analyze state-of-the-art related to 1)
dynamic models used in TO and NMPC, 2) solution methods for MPC,
3) environment adaptation with the leg mobility inside the NMPC, and
4) two-stage planning with NMPC and optimal reference generator.

Chapter 3 starts by describing the quadruped robots used in this work.
Further, it discusses the most common robot models for optimal plan-
ning and describes the SRBD model and its discrete-time and LTV
forms. This chapter closes with the model validation of the SRBD model
performed for the HyQ robot.

Chapter 4 briefly discusses MPC and OCP concepts. Then, it discusses
direct methods for the solution of OCP and describes sequential and
simultaneous optimal control. Ultimately, we propose the LTV-based
and SQP-based trajectory optimization for legged robot and close the
chapter with simulation results.

Chapter 5 starts with an overview of our locomotion planning pipeline
and describes the NMPC setup. Then, we describe leg mobility and
other features of our NMPC design. Thereafter, we describe the genera-
tion of references for the NMPC, followed by a section on the WBC. We
then summarize the RTI scheme for our NMPC. Finally, we demonstrate
several simulation and experimental results with HyQ robot.

Chapter 6 introduces our modified locomotion framework with the
ORG. In this chapter, we discuss the setup of the NMPC with ORG to
perform dynamic locomotion with trot and pace gait. Then, we discuss
the elements involved in the design of the ORG. At the end of the

7

chapter, we present the result of two-stage optimization with NMPC
and ORG in simulation and experiment on the AlienGo robot.

Chapter 7 draws conclusions and discusses the final thoughts on the work
presented in this dissertation. This chapter also highlights possible fu-
ture directions to the work presented in this dissertation.

8

Chapter 2

Related Work

The main advantage of legged robots with respect to their wheeled coun-
terpart is their ability to traverse complex and unstructured environment
such as forests, obstacles, and debris. However, the control of legged ro-
bots poses complex problems related to underactuation (the body is con-
trolled only indirectly through the legs), and to the hybrid nature of the
forces required to generate motion, since the robot needs to establish and
interrupt contact between its feet and the ground. The control design
for legged robots was initially dealt with by using heuristic approaches
which yielded successful results such as in the walking machines from
Raibert (1986), the virtual model control of Pratt et al. (2001) and in the
heuristic locomotion planning for quadrupedal robots by Focchi et al.
(2020a). However, heuristic approaches have several limitations, for ex-
ample: 1) they cannot be easily generalized to all kinds of terrain and
motions; 2) they cannot account for the future state of the robot hence,
they have no possibility to guarantee physical feasibility of the planned
trajectories. The challenge of avoiding these undesirable myopic behavi-
ors in heuristic planning approaches has motivated the research towards
new optimization-based predictive locomotion planning.

Formulating the locomotion planning as an optimization problem al-
lows one to represent high-level locomotion tasks as cost functions and
system dynamics using constraints. Besides robot dynamics, the loco-
motion tasks should also respect the contact dynamics such as unilat-
eral force and friction cone constraints, that are critical to stabilize the
locomotion. The use of optimization techniques to design WBC has en-
abled legged robots to traverse soft terrains Fahmi et al. (2020) and to

9

be versatile in terms of type of gait and motions that a legged robot can
achieve Bellicoso et al. (2017). The aforementioned examples are based
on the solution of a Quadratic Program that only considers the instant-
aneous Kuindersma et al. (2014) effects of the joint torques on the robot’s
base. Further, similar to heuristic approaches mentioned earlier, these
approaches do not consider the information about the future states of
the robot and hence cannot assure recursive feasibility.

In order to address this issue, several approaches make use of TO-
based locomotion planning considering the full dynamics of the ro-
bot Neunert et al. (2017); Posa et al. (2016). However, these approaches
usually suffer from high computational time hence they are often re-
stricted to offline (open-loop) use. In general, offline planners Aceituno-
Cabezas et al. (2018); Melon et al. (2020) neither adapt to quick terrain
changes nor cope with state drifts and uncertainties. To address this is-
sue the concept of online re-planning can be used. Online re-planning
can intrinsically cope with the problem of error accumulation in planned
motion that is common in real scenarios.

For online re-planning, MPC has gained broad interest in the robot-
ics community for legged locomotion. Moreover, the intrinsic feedback
mechanism offered by MPC can compensate for modeling errors and dis-
turbances acting on the system provided that the MPC is executed at a
sufficiently high rate in closed-loop.

2.1 Dynamic Robot Models for TO and MPC

A careful choice of the dynamic model by the MPC formulation is typic-
ally required to achieve a desired re-planning frequency in closed-loop,
given the limited computational resources available for online computa-
tions. For example, using a full dynamics model of legged robots inside
MPC Neunert et al. (2018); Koenemann et al. (2015) with long prediction
horizon may result in an optimization problem which requires excessive
computations for real-time deployment at high sampling rates. Using
approximate models is a way to reduce the complexity of the optim-
ization, trading the accuracy with computational efficiency. Following
this line, Dai et al. (2014) used a Centroidal Dynamics (CD) plus a full-
kinematic model to enforce the kinematic limits in TO to plan complex
behaviors on the humanoid robot Atlas. The CD model considers contact
forces as input and links the linear and angular momentum of the robot
to the external wrench Orin et al. (2013).

10

A simplified version of the CD model is the SRBD model where the
inertia of the legs is neglected (assumption of massless legs) and the ro-
bot’s body and legs are lumped into a single rigid body. This model is
well suited for quadrupeds, since they usually concentrate their mass
and inertia in the robot base, unlike humanoids. The SRBD model was
used for TO Winkler et al. (2018) and MPC Bledt et al. (2017) to jointly
optimize for footholds, Center of Mass (CoM) trajectories and contact
forces. By further linearizing the angular part of the dynamics of the
SRBD, Di Carlo et al. (2018) was able to achieve a variety of quadrupedal
gaits in experiments but their approach was not suitable for motions that
involve large variations from the horizontal orientation. The simplest
among all the approximate models mentioned earlier is the Linear Inver-
ted Pendulum (LIP) and it has been used inside MPC for quadruped Hor-
vat et al. (2017) and biped Herdt et al. (2010) locomotion. However, there
are two main limitations in LIP model, namely it neglects angular dy-
namics and assumes constant robot height. Additionally, it does not ac-
count for friction cones, so that the contact stability on non-flat terrain
can not be guaranteed. A comprehensive list of models and their charac-
teristics has been reported in Table 1. In chapter 3, we will briefly review
some of these models commonly used in the TO and MPC.

2.2 Solution Methods for MPC

While models play an important role in obtaining computationally light
MPC formulations, the choice of solution method is also paramount
to achieve fast online re-planning with MPC. A Differential Dynamic
Programming (DDP) based approach demonstrated the real-time per-
formance with whole-body MPC Koenemann et al. (2015) on HRP-2 hu-
manoid. Recently, Grandia et al. (2019) proposed a DDP-based MPC us-
ing a kinodynamic model which re-plans at a frequency of 15Hz with a
prediction horizon of 1 s on a quadruped. The main drawback of DDP
based approaches is the difficulty in implementing hard-inequality and
switching constraints. Hard-inequality constraints need to be implemen-
ted as penalties (e.g., with relaxed-barriers) Hauser and Saccon (2006)
while the switching constraints are formulated using Augmented Lag-
rangian methods Lantoine and Russell (2012); Li and Wensing (2020).
Though not obvious at first sight, these methods are essentially equival-
ent to direct optimal control based on multiple-shooting Bock and Plitt
(1984) in combination with some form of Nonlinear Programming (NLP)

11

Ta
bl

e
1:

Ty
pe

s
of

dy
na

m
ic

m
od

el
co

m
m

on
ly

ap
pe

ar
in

le
gg

ed
lo

co
m

ot
io

n.
V

ar
ia

bl
e
z

,
f i

,
F
c

an
d
τ

ar
e

th
e

Z
er

o
M

om
en

t
Po

in
t

(Z
M

P)
,

co
nt

ac
t

fo
rc

e,
G

ro
un

d
R

ea
ct

io
n

Fo
rc

e
(G

R
F)

an
d

to
rq

ue
,

re
sp

ec
ti

ve
ly

.
Pa

ra
m

et
er
n

is
th

e
nu

m
be

r
of

jo
in

ts
.S

ym
bo

ls
×

an
d
✓

re
pr

es
en

ts
if

th
e

co
rr

es
po

nd
in

g
fe

at
ur

e
is

pr
es

en
to

r
ab

se
nt

in
th

e
m

od
el

.

M
od

el
D

oF
Fl

ig
ht

ph
as

e
U

ne
ve

n
te

rr
ai

n
A

ng
ul

ar
D

yn
am

ic
s

Fr
ic

ti
on

co
ns

tr
ai

nt
To

rq
ue

co
ns

tr
ai

nt
In

pu
t

LI
P

(w
al

ki
ng

)
2

×
×

×
×

×
z

LI
P

+
Fl

yw
he

el
2

×
×

✓
×

×
z

SL
IP

(R
un

ni
ng

)
3

✓
✓

×
×

×
F
c

Po
in

tM
as

s
3

×
✓

×
×

×
F
c

SR
BD

6
✓

✓
✓

✓
×

f i
C

D
6+

n
✓

✓
✓

✓
×

f i
R

BD
6+

n
✓

✓
✓

✓
✓

τ
,f

i

12

solvers using barrier functions in the real-time iteration scheme Diehl
et al. (2005b). One such framework is provided by acados Verschueren
et al. (2019).

In addition to DDP-based MPC, there also exist a few implement-
ations of NLP-based MPC for legged robots. One such NMPC imple-
mentation with CoM dynamics plus full kinematic model was demon-
strated in Farshidian et al. (2017) using a Sequential Linear Quadratic
(SLQ) algorithm for a trotting gait on flat terrain. Neunert et al. Neu-
nert et al. (2018) achieved a fast re-planning frequency of 80-170 Hz for a
small prediction horizon of 0.5 s (125 nodes) with their NMPC using the
full dynamics of the robot, and optimizing foot locations, swing timing,
and locomotion sequences along with full-body dynamics. However, in
the real experiments they have only demonstrated slow trotting on flat
terrain. Moreover, since their approach does not consider the map of the
terrain, it has limited application on uneven terrain conditions. An inter-
esting observation is that they did not see a noticeable degradation in the
closed-loop performance of the NMPC when the re-planning frequency
was dropped until 30 Hz, demonstrating that the predictive nature of the
MPC empowers the robot to tolerate much lower re-planning frequency.
A similar observation was made in Bledt and Kim (2019) with an MPC
scheme which optimizes foot locations, but requires a heuristic condi-
tioning of the cost function. In their experiments, the robot is stable if
the re-planning occurs at 20 Hz, unstable for lower frequencies and the
performance improvement is observed over 40 Hz.

2.3 Leg Mobility in Predictive Control

The aforementioned approaches have been successful in controlling
legged robots, but neglected an important aspect of these robots, which is
usually referred to as mobility. In this paper, we define the mobility as the
attitude of the robot leg to arbitrarily change its foot position Sciavicco
et al. (2000). We noticed that maximizing mobility improves terrain ad-
aptation hence it is advantageous to account for it in the motion planning
of legged robots. Furthermore, as discussed in Section 5.3.1, adding mo-
bility in the NMPC cost eliminates the need to specify references for the
roll, pitch and height of the robot.

To achieve kinematically suitable configurations for the legs, a com-
mon heuristic is to align the robot base with the terrain inclination (es-
timated in Focchi et al. (2020a) via fitting an averaging plane through the

13

stance feet). This approach aims to bring the legs as close as possible
to the middle of their workspaces in order to avoid the violation of the
kinematic limits. Optimization of mobility allows to achieve a similar
behaviour in an automatic way. Fankhauser et al. in Fankhauser et al.
(2018) maximized mobility by encoding it in a cost function that penal-
izes the distance with respect to a default foot position. Recently, Cebe
et al. (2020) implemented TO using an SRBD model and also incorporat-
ing the feet positions in the optimization. They re-plan only at the feet
touchdowns due to the high computation demand of their TO algorithm
and showed experimental results on uneven terrain. Since their planner
does not plan during the swing phase of the legs, they do not run their
planner in an MPC fashion. Apart from the previously mentioned con-
tributions, to the best of our knowledge no prior work has addressed the
mobility with MPC in legged locomotion.

2.4 Optimal Reference Generator for MPC

The importance of the MPC approach in legged locomotion is evident
in the presence of disturbances since the high-frequency re-planning of
MPC allows a legged robot to comply with external pushes, e.g., in Med-
uri et al. (2023). One of the shortcomings of a standard MPC implement-
ation is related to the fact that the robot becomes transparent to external
pushes, i.e., at each re-planning instance, the MPC delivers a trajectory
starting from an actual robot position. Therefore, changes in the gen-
eration of Cartesian reference position are required to return to the ori-
ginal position after a push. A common practice is to exploit user-defined
values as references in the MPC Di Carlo et al. (2018), but this approach
requires a user to manually change the reference velocity in order to com-
pensate for the deviation caused by a push.

Another possible solution is to add a simple Cartesian Proportional-
Derivative (PD) controller parallel to the MPC that attracts the CoM po-
sition to the reference Grimminger et al. (2020). However, this control
strategy has some notable limitations, in particular: 1) the PD wrench is
unaware of the wrench provided by the MPC; therefore, these two con-
trollers can conflict and violate the feasibility; 2) the PD is unaware of
the hybrid dynamics of the legged robot, i.e., the intermittent contacts
and the (possible) under-actuation. Moreover, footholds play an essen-
tial role in the robot’s agility since their coherence with the CoM can
improve the stability when the robot reacts to an external disturbance. 3)

14

Finally, change in the feet trajectories is not considered in this approach,
which is crucial to deal with lateral pushes.

A third possibility is to track a fixed goal inside the MPC cost
function. This addresses the first issue of the aforementioned PD +
MPC architecture; because a constant position is included in the MPC
cost, and the conflict is resolved by providing feasible Ground Reaction
Forces (GRFs). However, this solution suffers from the fact that it is only
able to apply a limited resistive force before the legs lose their control
authority (e.g., when the CoM/Zero Moment Point (ZMP) goes out of
the support polygon), and therefore is of restricted applicability. Also, in
this case, footholds are not generally designed to be consistent with the
resulting CoM trajectory since they are usually computed with simple
heuristics.

In addition, the MPC typically uses references for GRFs that are
computed with the crude heuristic (e.g., dividing the robot weight
across the legs on the ground). These values are purely vertical GRF
components, often dynamically infeasible for the robot base motion.
Accurately tuning the weights for the different cost terms is a tedious
task Bouyarmane and Kheddar (2018), and having more physically
meaningful references is a preferable solution Bledt and Kim (2019). To
address this problem, Bjelonic et al. (2022) use the result of an offline TO
as cost terms for their MPC.

The contribution of this dissertation lies in developing a computa-
tionally efficient real-time NMPC that runs in closed-loop at a suitable
frequency and supports environment adaptation. We utilize a validated
SRBD model inside the NMPC and incorporate the mobility cost that al-
lows a legged robot to improve leg mobility for environment adaptation.
The performance of the NMPC is witnessed in various simulation and
experimental setups while crawling. Lastly, we introduce the ORG that
provides physically informed reference trajectory to the NMPC to cope
with the disturbances while trotting and pacing.

In this chapter, we have conducted a literature survey on the relev-
ant work related to MPC for legged locomotion, leg mobility inside the
MPC, and the need for ORG in two-stage optimization with the MPC. In
the following chapters, we will describe this dissertation’s contribution
(refer to section 1.4) in detail.

15

Chapter 3

Legged Robots

This chapter begins by describing the state-of-the-art robots developed
by the Dynamic Legged System (DLS) lab of Istituto Italiano Tecnologia
(IIT), Genova, Italy and Unitree Robotics that are utilized in this work.
This chapter discusses some of the main dynamic models of the legged
system. These models are briefly described in this chapter’s first part,
including their usage inside the optimal control for the legged system.
Ultimately, we validate the Single Rigid Body Dynamics (SRBD) model
in a closed-loop against the data collected from our robot’s high-fidelity
simulation environment.

3.1 Robot Description

In this dissertation, we have worked on the HyQ and AlienGo Unitree
(2022) robots for simulation and experimentation purposes. HyQ is
a fully torque-controlled Hydraulically actuated Quadruped robot de-
veloped in the Advanced Robotics lab since 2011. On the other hand,
AlienGo is an electric robot developed by Unitree Robotics and launched
in 2019. These legged robots are equipped with four legs, each of which
has 3-DoFs, namely a hip joint for Hip Adduction-Abduction (HAA),
a hip joint for Hip Flexion-Extension (HFE), and a knee joint for Knee
Flexion-Extension (KFE). We will briefly describe both of these robots in
the following.

16

(a) HyQ (b) AlienGo

Figure 2: Quadruped robots used in this dissertation

3.1.1 HyQ

HyQ, as shown in Fig. 2a, weighs around 90 kg and runs with an off-
board HPU. It is roughly 1m long and 0.5m wide, with each leg measur-
ing around 0.78m in a fully-extended configuration Semini et al. (2011).
This robot carries three perception sensors: an Inertial Measurement
Unit (IMU), a stereo camera and a LIDAR. All these sensors, along with
leg odometry, are utilized by the state estimator Nobili et al. (2017) to
provide the HyQ’s body pose and velocity estimates with respect to the
world.

Figure 3 shows the anatomy of HyQ’s leg, which weighs around
6.5 kg. In HyQ, all four HAA joints are driven by rotatory hydraulic
motors and equipped with strain-gauge-based torque sensors. Linear
hydraulic cylinders actuate the remaining eight joints of HFE and KFE in
the sagittal plane. Torques on these eight joints are computed with load
cells by measuring the force applied by the cylinders. All the twelve
joints of HyQ are furnished with relative optical and absolute magnetic
encoders for position measurements.

Various locomotion capabilities of HyQ with different gaits have been
demonstrated in experiments such as crawl Focchi et al. (2020a), trot
Barasuol et al. (2013) and bound Orsolino et al. (2017). In this dissertation
we mainly emphasize crawl gait that relies on WBC and is supervised by
NMPC.

17

Figure 3: A leg of HyQ robot representing HAA, HFE and KFE joints.

3.1.2 AlienGo

AlieGo Unitree (2022) robot weighs around 22 kg and has a dimension in
stand: length = 0.65m, width 0.31m, and height = 0.6m. It is equipped
with a 2D LIDAR, a 3D LIDAR, an RGB-D Camera, an IMU, a GPS, and
Ultrasonic sensors. The robot, as depicted in Fig. 2b, has twelve joints
each actuated by high-torque brushless DC motors. It is powered by
14.4V , 6Ah LiPo battery that provides up to 2 hours of continuous op-
eration. Intel core i7/i5 CPU performs the main motion control, whereas
the perception master runs on Nvidia TX2 GPU. This robot can reach up
to 1.5m/s.

3.2 Mathematical Models for Legged Robots

While the simulation environment of a robot desires high-fidelity mod-
els, in predictive control, the complexity of a model utilized depends
on the accuracy required in a given application. Some models might
provide more accurate predictions than others at the cost of significant
computation time in the MPC setting. Depending on the requirements
and application, one could trade-off between accuracy and computation
time while choosing a model for MPC. In what follows, we will intro-
duce some of the most relevant robot models from the literature which
have been extensively used either for simulation or predictive control.

18

Convention

A variable with the left subscript of a variable denotes its frame of refer-
ence. For example, Cω represents the angular velocity of the robot base
expressed in the Center of Mass (CoM) frame C. Note that, unless expli-
citly specified, all the relevant quantities in this dissertation are defined
in the inertial frameW . Throughout this dissertation we define (a, . . . , b)
as the column vector stacking any generic column vectors a, . . . , b.

3.2.1 Rigid Body Dynamics

Legged robots are categorized as floating base systems in which the base
is free to move instead of being fixed in space. Since the base can freely
move, it can be connected to a fixed inertial frame through a fictitious 6-
Degrees of Freedom (DoF) joint Featherstone (2008). Figure 4 represents
a floating base system with the 6-DoF joint at the CoM and connected to
the Inertial frame. Therefore, the floating base systems can be modeled
similarly to the generalized manipulator equation of motions by consid-
ering the kinematic tree with a specific number of joints, i.e., n. Consid-
ering q = (qb,qj) ∈ SE(3)×Rn, which holds the position and orientation
of the base and angular position of each joint, we can represent the Rigid
Body Dynamics (RBD) model with,

M(q)q̈+ h(q, q̇) = S⊤τ + Jc(q)
⊤F (3.1)

where M ∈ R(6+n)×(6+n) is the joint space inertia matrix, vector h ∈
R(6+n) incorporates the effect of centrifugal, Coriolis and gravity terms,
Selection matrix S ∈ R(6+n)×n applies torque τ ∈ Rn only to the n
actuated joint rows. Finally, the contact Jacobian Jc maps forces F =
(f1, ..., fnc

) ∈ R3nc at the nc end-effectors to 6 + n dimensional general-
ized forces.

Equation (3.1) can further be split into 6 unactuated and n actuated
rows as[︃

Mb(q) Mbj(q)
Mjb(q) Mj(q)

]︃ [︃
q̈b

q̈j

]︃
+

[︃
hb(q, q̇)
hj(q, q̇)

]︃
=

[︃
06×n

In×n

]︃
τ +

[︃
J⊤
cb(q)

J⊤
cj(q)

]︃
F (3.2)

where Mb ∈ R6×6 is the composite rigid body inertia matrix related to
the unactuated part, and Mj ∈ Rn×n is the joint mass matrix representing
the actuated part in the joint space inertia matrix M. The coupling terms
between actuated and unactuated are captured by matrices Mbj ∈ R6×n

19

Inertial
Frame

Robot
Base Frame

Figure 4: Representation of a quadruped robot as a floating base system.
The floating base is connected to the Inertial frame through a fictitious 6-
DoFs joint.

and Mjb ∈ Rn×6. Vectors hb ∈ R6 and hj ∈ Rn correspond to the effect of
centrifugal, Coriolis and gravity terms for the actuated and unactuated
dynamics, respectively. The actuated and unactuated contact Jacobians
are denoted by J⊤

cb ∈ R3nc×6 and J⊤
cj ∈ R3nc×n.

The RBD model captures the dynamics of the whole body of the
legged system hence commonly referred to as whole-body dynamics or full-
body dynamics model. Notice that the joint-space inertial matrix M, vector
h, and contact Jacobian Jc are nonlinearly dependent on joint configur-
ation q and generalized velocity q̇. Furthermore, the coupling between
actuated and unactuated dynamics in (3.2) also contributes to the non-
linearity, increasing the complexity of the overall model.

A large number of variables and nonlinear complexity of this model
makes it challenging to utilize in predictive control. However, the RBD
model has been employed in some applications for Trajectory Optimiz-
ation (TO) Posa et al. (2016); Neunert et al. (2017) and MPC Koenemann
et al. (2015); Neunert et al. (2018); Mastalli et al. (2022) in legged loco-
motion. Incorporating the RBD model in predictive control strategies
often results in a large optimization problem formulation. Therefore, it
might impact the real-time implementation on real hardware due to con-
siderable computation time required to solve the resulting optimization
problem. Next, we will discuss a modified and simpler version of the
RBD model.

20

3.2.2 Centroidal Dynamics

The CoM is a location where the total mass of a robot is concentrated, and
it is of utmost importance while expressing the robot’s dynamics. It is a
point where a robot’s overall linear and angular momentum is defined
if the total momentum is conserved. Thus, one of the ways to simplify
the RBD model is to consider the dynamics of a robot projected at the
CoM. This can be achieved by selecting the first row of (3.2) related to the
unactuated dynamics, i.e., CoM dynamics. If the change of momentum
is expressed in a frame attached at the CoM of a robot, then the first row
of (3.1) can be rewritten as

A(q)q̈+ Ȧ(q)q̇ =

[︃
mg +

∑︁nc

i=1 fi∑︁nc

i=1 pcfi × fi

]︃
(3.3)

where the CMM A ∈ R6×(6+n) maps the generalized velocities of the
robot into its spatial momentum in a common reference frame attached
to its CoM Orin et al. (2013). Parameter m represents the mass of a ro-
bot, and g is the gravitational acceleration. The distance between CoM
position pc ∈ R3 and the position of ith foot pf,i ∈ R3 is denoted by
pcf,i ∈ R3. The Ground Reaction Force (GRF) at foot i is given by fi ∈ R3.

Since this formulation concerns the dynamics of a robot projected at
CoM, also known as centroid, it is named Centroidal Dynamics (CD). In-
tuitively, the CD model deals with the change of linear and angular mo-
mentum of the robot projected at the CoM under external forces. For this
model, we make a point feet assumption for the legged robot, which is
reasonable for quadrupeds. Henceforth, we continue with this assump-
tion throughout this dissertation while discussing the simplified models.

We must emphasize that in (3.3), matrix A depends on the joint state,
which is a source of nonlinearity in the robot dynamics. On a positive
note, the number of variables decreases in the CD model with respect
to the RBD model because the joint torques are absent in this formula-
tion. Also, the number of dynamic equations is reduced from 6 + n to
6, with respect to the RBD model. Therefore, from a predictive control
perspective, this model is easier to deal with when compared to the RBD
model. This model, along with a kinematic model, has been used by Dai
et al. (2014) in TO on the Atlas robot. However, dependency on the joint
state can still be problematic for predictive control because of extra n
joint variables and the nonlinear dependency of matrix A on them. This
joint state dependency can be removed with some assumptions, which
we will explain in the next section.

21

3.2.3 Single Rigid Body Dynamics

A simpler version of the CD is derived by making the following two
main assumptions.

Assumption 1. The influence of the inertia of the legs is neglected. There-
fore, they are considered massless, so the contribution of momentum from joint
velocity is eliminated.

Assumption 2. The full-body inertia of a robot remains equal to the one in a
nominal joint position.

This assumption is valid for robots with the high base-to-leg mass ra-
tio. To name a few, in HyQ Semini et al. (2011), Cassie AgilityRobotics
(2017), PADWQ Kim et al. (2021) and ANYMal Hutter et al. (2016), the
base majorly contributes to the total mass of the robot. In these robots,
their small leg masses do not contribute significantly to the momentum
of a robot, even for a quick leg motion. Further, the leg position of these
robots has a negligible contribution to the total inertia of the robot. With
assumptions 1 and 2 into consideration, the robot dynamics can be ex-
pressed with Newton-Euler equations of motion for a single rigid body,

mv̇c = mg +

nc∑︂
i=1

fi (3.4a)

Ic(Φ) ω̇ + ω × Ic(Φ)ω =

nc∑︂
i=1

pcfi × fi (3.4b)

wherem is the robot mass, v̇c ∈ R3 is the CoM acceleration, Ic(Φ) ∈ R3×3

is the inertia tensor, ω̇ ∈ R3 is the angular acceleration of the robot’s
base. The robot base orientation is represented by Φ and its angular ve-
locity by ω. This model deals with the linear (3.4a) and angular dynam-
ics (3.4b) of a robot assuming that it is a single rigid body, thus referred
to as a Single Rigid Body Dynamics (SRBD). Although (3.4a) is linear,
(3.4b) represents nonlinear angular dynamics, bringing nonlinearity to
the overall dynamic model. The derivation of this model, starting from
the CD model, has been explained in this thesis Winkler (2018).

This model has been employed by TO Winkler et al. (2018) and
MPC Bledt et al. (2017) to jointly optimize for footholds, CoM trajectories
and GRFs. To tackle the nonlinearity, Di Carlo et al. (2018) linearized the
angular part of the SRBD model demonstrated a variety of quadrupedal

22

gaits in experiments with the MPC setup for moderate terrain inclina-
tions.

3.3 Model Validation

The process of determining if the model accurately represents the sys-
tem’s behavior is called model validation Aumann (2007). Model val-
idation verifies both the conceptual and operational aspects Kerr and
Goethel (2014) of the model. Conceptually, it checks if the underly-
ing theory or assumptions are justifiable. Operationally, it checks if the
model output agrees with the validation data collected from the system.
The model validation is performed by collecting simulated data from the
model against the data obtained from the actual system.

Model validation plays an important role in model identification
techniques to validate an identified model against the validation data.
Similarly, it is vital to validate models derived from physical laws often
composed of parameters (for example, mass, inertial, and heat coeffi-
cient) along with the physical variables. In real-world examples, these
model parameters are either heuristically calculated through experi-
ments or estimated. Therefore, the accuracy of the physics-based model
relies on the parameters used within these models. Apart from concep-
tual and operational verification, model validation also helps to verify
the accuracy of the parameters used by the model.

Generally, approximate models are derived from the com-
plex/detailed model of a system. The approximate models are
usually less complex and have fewer variables than the complex model.
Model validation also checks the accuracy of the approximate model
with respect to the detailed model.

The approximations made to derive an approximate model may in-
volve discretizing or linearizing the original continuous-time system or
combinations of both of these techniques. One may study the impact of
chosen discretization method and sampling time on the accuracy of the
model based on the application. In the case of linearization, one could
inspect how the system behaves at the linearization points and its accur-
acy when perturbed from these linearization points. Model linearization
is also helpful to access the local stability at an equilibrium point of a
nonlinear dynamical system.

For a stable system, validating the model by providing the inputs
and cross-checking the output against the validation data is relatively

23

straightforward. The inputs given to the model are exactly the ones
provided to the physical system while collecting output validation data.
On the other hand, for an unstable system, a closed-loop system is re-
quired to carry out the validation process. A closed-loop system means
that a stabilizing controller must be added to stabilize the unstable dy-
namics of the system. This closed-loop controller stabilizes the system
while operating at a given nominal condition to avoid the divergence
of the state trajectories. The references passed to the closed-loop sys-
tem specify these nominal operating conditions. A schematic of such a
closed-loop system is shown in Fig. 5.

3.3.1 Closed-Loop Model

The nonlinear dynamics governed by any of the RBD, CD, or SRBD mod-
els are unstable and require a stabilizing controller for proper function-
ing at the nominal conditions. One of the popular stabilizing controllers
used for nonlinear mechanical systems is Proportional-Derivative (PD).
Intuitively, when a mass-spring-damper system is considered, the pro-
portional term of the PD controller is analogous to the spring and the
derivative term to the damper. In a PD controller, the higher the pro-
portional gain, the smaller the state error, whereas increasing the deriv-
ative gain damps the system response. For legged robots, the PD con-
troller is synthesized in the Cartesian space. Therefore, it aims to control
the robot’s position and orientation, ensuring locomotion stability. This
controller can also be coupled with the feed-forward control and grav-
ity compensation terms. In the context of legged robots, we name the
combination of PD, gravity compensation, and feed-forward controller
as trunk controller. Refer to Fig. 7 for the graphical structure of such a
trunk controller in the closed-loop setup.

Consider a closed-loop system depicted in Fig. 5 with a high-fidelity
robot model governed by a system of nonlinear equations,

ẋ̃(t) = f(x̃(t), ũ(t)) (3.5)

In our case, this high-fidelity model mathematically represents the
dynamics of a real legged robot. Let x̃(t) = (xsel(t), x̂(t)) ∈ Rnxf and
ũ(t) = (usel(t), û(t)) ∈ Rnuf so that the entire model can be divided into
two parts. The selected state xsel(t) and control input usel(t) represent
part of the model that we would like to approximate with a reduced
order model. On the flip side, state x̂(t) and control input û(t) represent

24

Trunk
controller

+

-
Robot

Feed-
forward

Feedback

Figure 5: A closed-loop controller scheme where the state reference x̃ref ,
feed-forward CoM acceleration ṽcref and feed-forward angular acceleration
ω̇̃ref are the exogenous inputs to the closed-loop system. In this scheme
a real robot is represented by a high-fidelity model and it is controlled by
controller composed of feedback and feed-forward control actions.

the part of the high-fidelity model that will not be considered inside the
approximate model.

We also assume that the control law for the separated control inputs
can be synthesized with

usel(t) = κ(xsel(t),x
ref
sel (t)) (3.6a)

û(t) = κ̂(x̂(t), x̂ref(t)) (3.6b)

The separated closed-loop control scheme can be visualized in Fig. 6,
where two different controllers control the robot.

Further, let us say that the robot dynamics are approximated by an-
other nonlinear system,

ẋ(t) = g(x(t),u(t)), (3.7)

for example, the SRBD model. Where x(t) ∈ Rnxa and u(t) ∈ Rnua are the
state and control inputs of this approximate model. We assume that the
state and control input of the approximate model is contained in the state
set of the high-fidelity model, i.e., x(t) ⊆ x̃(t) and u(t) ⊆ ũ(t) or they can
be represented as a function of the state and input of the high-fidelity
model. For validation, we also select the state xsel(t) ∈ Rnxa and control
input usel(t) ∈ Rnua from the high-fidelity model to compare with the
state and control input of approximate model during validation.

25

Figure 6: A closed-loop controller representation of Fig. 5 with two separate
controllers. Controller 1 represents the closed-loop controller related to the
selected part of the model under validation. On the other hand, Controller
2 represents the closed-loop controller related to the part of the high-fidelity
model not considered in the validation.

If the control law for the approximate model is given by u(t) =
κ(x(t),xref(t)) similar to the one for the (3.6a), then for an equivalent
control law κ(·) for both the closed-loop systems, for a given reference
xref(t) and for any chosen control law κ̂ for the excluded dynamics, from
the validation we may find,

x(t) ≃ xsel(t) (3.8a)
u(t) ≃ usel(t) (3.8b)

Then, we can say that

g(x(t),u(t)) ≈ f(x̃(t), ũ(t)) (3.9)

Equation (3.9) establishes the equivalence relationship between the ap-
proximate model and the real robot or high-fidelity model only if (3.8)
holds true. We would like to stress that the approximate model only cap-
tures the state dynamics of the selected state xsel(t) from the high-fidelity
model. Moreover, the selected state analogous to the state vector of the
approximate model will be the variables of interest while designing the
NMPC in this dissertation. The control law for the excluded state κ̂ can
be synthesized with any of the available techniques, and the validation
process described in this section can be performed without a loss of gen-
erality.

26

In the following sections, we will select an approximate model for
our validation procedure and describe the architecture of the closed-loop
controller.

3.3.2 Approximate Model Selection

One of the elements involved in our model validation process is an ap-
proximate model. The approximate model is chosen with a goal in mind
to utilize it for optimal planning. This dissertation aims to conduct sim-
ulations and experiments involving robot position and orientation dy-
namics with the optimal planner. Thus, a chosen model should include
both linear and angular dynamics. At the same time, we require this
model to be less complex with respect to the RBD and CD models. Lastly,
the model should use minimum state variables to define linear and angu-
lar robot dynamics. Of all the models described in Section 3.2, the SRBD
model fulfills our requirements. Therefore, we choose the SRBD model
to design the optimal planning algorithms.

The robot dynamics in SRBD model is governed by (3.4), and it can
be represented as the continuous-time state-space model:⎡⎢⎢⎣

ṗc

v̇c

Φ̇
ω̇

⎤⎥⎥⎦ =

⎡⎢⎢⎣
vc

1/m
∑︁4

i=1 fi + g
E−1(Φ)ω

−I−1
c (Φ)(ω × Ic(Φ)ω) +

∑︁4
i=1 I

−1
c (Φ)(pfi − pc)× fi

⎤⎥⎥⎦ (3.10)

where the robot CoM velocity is denoted by vc. The sequence of Z-Y -X
Euler angles Diebel (2006) Φ = (ϕ, θ, ψ) i.e., roll (ϕ), pitch (θ) and yaw
(ψ) represent the robot base orientation. The Euler angle rates matrix E(Φ)

establishes a relationship between the Euler Angles rates Φ̇ and angular
velocity ω as discussed in Appendix A. Defining the state and control
vectors as x = (pc, vc, Φ, ω), and u = (f1, . . . , f4), (5.4) can be concisely
written as:

ẋ(t) = gc(x(t),u(t),pf(t)), (3.11)

where vector pf = (pf1 , . . . ,pf4) collects the foot positions of all the ro-
bot legs and it is a parameter inside the state space model (3.11). The
discrete-time representation of this model can be given by,

xk+1 = gd (xk,uk,pk) (3.12)

27

This discrete-time model can be obtained by exploiting any of the
state-of-the-art numerical integrations schemes Quirynen (2017); Butcher
(2003); Hairer et al. (1993, 1996).

Linearization and Discretization

Apart from the validation of the SRBD model, we would like to valid-
ate the Linear Time-Varying (LTV) representation of this model obtained
by linearizing over the state and control input trajectories. The main
reason for validating the LTV is that it is used by 1) LTVOpt and SQP-
Opt algorithms, 2) the solution method used for NMPC, i.e., RTI scheme
uses LTV model obtained by the linearizing on initial guess Diehl et al.
(2005b). Hence, it is essential to carry the validation of the LTV model
to check the accuracy with respect to the continuous-time SRBD model.
The usage of the LTV model in optimal planning is detailed in sections
4.4.1, 4.4.2 and 5.6 for various planner designs.

If we consider the nonlinear dynamical model (3.11) and apply the
first-order Taylor series approximation around linearization points x̄ and
ū with a fixed value of parameter p̄f , then we obtain,

ẋ(t) =
∂g(x(t),u(t), p̄f)

∂x(t)

⃓⃓⃓⃓
x=x̄,u=ū

(x(t)− x̄)

+
∂g(x(t),u(t), p̄f)

∂u(t)

⃓⃓⃓⃓
x=x̄,u=ū

(u(t)− ū)

+ g(x̄, ū, p̄f)

(3.13)

Defining the Jacobian matrix resulting from the partial derivative with
respect to x and u as Ac and Bc we have,

ẋ(t) = Ac(x(t)− x̄) +Bc(u(t)− ū) + g(x̄, ū, p̄f) (3.14)

Rearranging the terms leads to

ẋ(t) = Acx(t) +Bcu(t) + g(x̄, ū, p̄f)−Acx̄−Bcū (3.15)

Setting rc = g(x̄, ū, p̄f)−Acx̄−Bcū and after discretization by the explicit
Euler with sampling time Ts gives,

xk+1 = xk + Ts [Acx(t) +Bcu(t) + rc]

= (I+ Ts Ac)xk + (TsBc)uk + Ts rc

= Axk +Buk + r

(3.16)

28

where, A = I + Ts Ac, B = TsBc and r = Ts rc. Equation (3.16) is a lin-
earized model of the nonlinear system (3.11) at the linearization points
x̄ and ū. This model can be a good approximation when the system op-
erates around these linearization points. However, if the linearization
points are time-varying, this model can be generalized over the lineariz-
ation trajectory xL

k ∈ R(nx×Nℓ) and uL
k ∈ R(nu×Nℓ),

xk+1 = Akxk +Bkuk + rk (3.17)

where Nℓ is a length of linearization trajectory. Equation (3.17) is a
discrete-time representation of the LTV system.

3.3.3 Trunk Controller

The objective of the trunk controller is to compensate for the tracking
error on the robot state x while stabilizing the robot at nominal condi-
tions specified through the state reference xref . The output of the trunk
controller is a wrench 1composed of feed-forward wrench Wff , feedback
wrench Wfb and the wrench resulting from the gravity compensation
Wg = (mg, 03×1). This wrench is later mapped into the GRFs before
sending to the robot. Figure 7 shows the schematic of the elements of the
trunk controller in the closed-loop.

Wt = Wff +Wfb −Wg (3.18)

PD
controller

Robot
+

-

Trunk
controller

+

-

+

Figure 7: Elements of the trunk controller in the closed-loop

1A wrench is a vector of forces and torque that arise by applying Newton’s laws on the
rigid body.

29

Feedforward Controller

The feed-forward wrench is calculated assuming that the Coriolis and
centrifugal forces are negligible, which is valid for the slow motions of a
robot.

Wff =

[︃
mv̇cref

Icω̇ref

]︃
(3.19)

where v̇cref and ω̇ref are references for the CoM acceleration and angular
acceleration of a robot.

Feedback Controller

To define the desired feedback wrench obtained from a Cartesian imped-
ance, we use the approach of Focchi et al. (2016) given by:

Wfb = K

[︃
pcref − pc

e(wR
⊤
b wRref)

]︃
+D

[︃
vcref − vc

ωref − ω

]︃
(3.20)

where wRb and wRref ∈ R3×3 are the rotation matrices representing the
actual and reference orientation of the base with respect to the inertial
frame, respectively. Function e(·) : R3×3 → R3 is a mapping from a rota-
tion matrix to the associated rotation vector. References for the CoM pos-
ition, CoM velocity, and angular velocity of a robot are represented with
pcref , vcref , and ωref , respectively. Diagonal matrices K and D contain the
proportional and derivative gains and carry the meaning of impedances.

Ground Reaction Forces

The total wrench Wt (3.18) computed by the trunk controller must be
mapped into the GRFs before sending it to the robot. Inspired by Focchi
et al. (2016), we set the right hand-side of (3.4) equal to the total wrench,

[︃
I . . . I

[pcf,1×] . . . [pcf,4×]

]︃
⏞ ⏟⏟ ⏞

A

⎡⎢⎣ f1
...
f4

⎤⎥⎦
⏞ ⏟⏟ ⏞

u

= Wt (3.21)

Therefore, the GRFs can be obtained by the following transformation,

u = A#
s Wt (3.22)

30

where A#
s is a Moore-Penrosei pseudo inverse of matrix As = AS ∈

R6×12. Selection matrix S ∈ R12×12 is diagonal and picks only the GRFs
generated from the stance legs during this computation. In other words,
the GRFs corresponding to the swinging legs are set to zero.

Remark: This closed-loop validation procedure applies to any other
controller different from the trunk controller mentioned in this section.
For example, a popular alternative is the Whole-Body Control (WBC),
which solves the optimization problem and provides the instantaneous
control input to the robot. Refer Section 5.5.1 for more details on WBC.

3.4 Model Validation Results

The SRBD model incorporates both the linear and angular dynamics of
the robot. We are particularly interested in validating the nonlinear dy-
namics involved in this model. Because the objective is to use this model
inside an optimal planner and perform locomotion that involves signi-
ficant variations in pitch and yaw orientations while crawling. Further,
we validate the linear dynamics given by the SRBD model without any
additional changes in the validation process. For validation, we collect
the data from the HyQ simulator while crawling at varying forward ve-
locity. The robot crawls with a large body pitch or yaw variation during
this locomotion. The user commands the robot with a joystick to crawl
forward while changing the body pitch or yaw. In the following sections,
we will describe the validation setup and results.

3.4.1 Validation Setup

The locomotion software framework for HyQ is developed in Robot Op-
erating System (ROS) OpenRobotics (2022). We use Gazebo Koenig and
Howard (2004); OSRF (2014) simulator for our locomotion framework
that provides a robust physics engine, high-quality graphics, and con-
venient programmatic and graphical interfaces. A robot-specific library
called RobCoGen Frigerio et al. (2016) that generates optimized code for
kinematics and dynamics routines commonly encountered in robotics is
utilized for the kinematic and dynamic engines of the HyQ robot.

The validation of the computer simulation of HyQ developed in
Gazebo with respect to the real data obtained during locomotion is re-
ported in Frigerio et al. (2017). Therefore, we rely on the high-fidelity

31

simulator of HyQ to obtain the validation data for this work. The valid-
ation data are collected from the closed-loop system discussed in section
3.3.1 and depicted in Fig. 5.

To validate the approximate model, i.e., the SRBD model, we use
the trunk controller (refer to section 3.3.3) in closed-loop with the SRBD
model. The same PD gains are used while collecting the validation
data from the HyQ simulator and for the PD controller inside the
closed-loop system with the SRBD model under validation. The val-
ues for these gains are K = diag(1500, 1500, 1500, 300, 300, 300) and
D = diag(1500, 1500, 1500, 200, 200, 200).

We validate three different versions of the SRBD model: 1)
continuous-time nonlinear model (3.10), 2) discrete-time nonlinear
model (3.12), and 3) discrete-time LTV model (3.17). To simulate the
continuous-time nonlinear model, we choose the variable order ode15s
MATLAB (2022a) integrator. On the other hand, for both the discrete-
time nonlinear and discrete-time LTV model, we select the explicit Euler
integrator to discretize with a sampling time of 40ms. We want to stress
that the choice of sampling time is based on the frequency at which we
aim to run our optimal planner online, i.e., ≈ 25Hz. Furthermore, the
validation results obtained utilizing this sampling time are acceptable
for the simulations and experiments performed in this dissertation.

Linearization Trajectory for LTV Model

Obtaining the LTV form of the SRBD requires linearization trajectories
for the robot’s state and control inputs. In our case, these trajectories
are not known a priori. Therefore, we choose the initial condition of the
state x0, compute the control inputs u0 as a function of the x0 and xref

0

with the trunk controller, as explained in section 3.3.3. We utilize x0 and
computed u0 to linearize the SRBD model at time instance k = 0 as de-
tailed in section 3.3.2. Then, we simulate this linear model to predict the
state x1 starting from initial condition x0 and applying control input u0.
Again, using state x1, we compute u1 with the trunk controller. Then, we
obtain a linearized model of the SRBD using x1 and u1, and the process
repeats for the duration of the simulation. With this method, we obtain a
linearized model of the system based on the available state feedback and
computed control inputs using this state feedback. The obtained model
is therefore time-varying over the duration of the simulation.

32

3.4.2 Results

In this section, we show the validation results of the varying pitch with
the forward walk of the HyQ robot. A similar validation is performed for
varying yaw while crawling, and the results are reported in Appendix B.

The validation related to angular dynamics are demonstrated in Fig. 8
and 9. The pitch angle θ shows very good fit to the validation data for all
the models. For roll ϕ and yaw ψ angles, the PD controller tracks small
references (in the order of 10−6); therefore, the difference between the
validation data and model simulation is observed. It is worth noticing
that the variation from the validation data about these references is due
to the model approximation, and it is acceptable for our work. A good
tracking of the angular velocities specifically for ωy can be seen in Fig. 9.

-0.01

0

0.01

-0.2

0

0.2

10 15 20 25 30 35
-5

0

5
10 -3

Figure 8: Body orientation from the pitch validation results. Yellow, red,
and cyan lines represent the continuous-time nonlinear, discrete-time non-
linear, and discrete-time LTV models, respectively. Black and dotted blue
lines correspond to the validation data and references to the PD controller

Figure 10 shows the plots of the CoM position where all three models
closely fit the X-Y positions and show a similar trend for the Z position
with respect to the validation data. The discontinuity in the X-Y posi-
tion for the references is due to heuristic planning Focchi et al. (2020a)

33

-0.05

0

0.05

0.1

-0.2

0

0.2

10 15 20 25 30 35

-0.02

0

0.02

Figure 9: Body angular velocity from the pitch validation results. Yellow,
red, and cyan lines represent the continuous-time nonlinear, discrete-time
nonlinear, and discrete-time LTV models, respectively. Black and dotted
blue lines correspond to the validation data and references to the PD con-
troller

34

0.5

1

1.5

-0.1

0

0.1

10 15 20 25 30 35
0.55

0.555

0.56

Figure 10: CoM position from the pitch validation results. Yellow, red, and
cyan lines represent the continuous-time nonlinear, discrete-time nonlinear,
and discrete-time LTV models, respectively. Black and dotted blue lines
correspond to the validation data and references to the PD controller.

developed for crawl gait. The validation results for CoM velocities are
shown in Fig. 11, where all the models follow the trends of validation
data.

While performing a closed-loop validation of the SRBD model, the
PD controller, in addition to tracking the reference trajectories, also com-
pensates for the model discrepancy. Hence it is not sufficient to validate
only the state of this model but also the control inputs. As explained
in section 3.3.1, the approximate model’s control inputs and states must
match the validation data with a certain accuracy for successful valida-
tion.

The validation result of GRFs are reported in Fig. 12, 13, and 14. The
X , Y , and Z components of the GRFs follow the validation data for all
the models. We would like to stress that the adjustments made in GRFs
by the PD controller in closed-loop with these three versions of the SRBD
model to track the state references. Further, these three models show
similar validation results even after the additional approximations intro-
duced by discretization to obtain the discrete-time model and approxim-

35

-0.2

0

0.2

0.4

-0.5

0

0.5

10 15 20 25 30 35
-0.02

0

0.02

0.04

Figure 11: CoM velocity from the pitch validation results. Yellow, red, and
cyan lines represent the continuous-time nonlinear, discrete-time nonlinear,
and discrete-time LTV models, respectively. Black and dotted blue lines
correspond to the validation data and references to the PD controller

36

-50

0

50

-50

0

50

-50

0

50

10 15 20 25 30 35
-50

0

50

Figure 12: The X component plots of GRFs at respective legs from the pitch
validation results. Yellow, red, and cyan lines represent the continuous-time
nonlinear, discrete-time nonlinear, and discrete-time LTV models, respect-
ively. The black line corresponds to the validation data.

37

-50

0

50

-50

0

50

-50

0

50

10 15 20 25 30 35
-50

0

50

Figure 13: The Y component plots of GRFs at respective legs from the pitch
validation results. Yellow, red, and cyan lines represent the continuous-time
nonlinear, discrete-time nonlinear, and discrete-time LTV models, respect-
ively. The black corresponds to the validation data.

38

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

10 15 20 25 30 35
0

100

200

300

400

Figure 14: The Z component plots of GRFs at respective legs from the pitch
validation results. Yellow, red, and cyan lines represent the continuous-time
nonlinear, discrete-time nonlinear, and discrete-time LTV models, respect-
ively. The black line corresponds to the validation data.

39

ation by discretization and linearization to obtain the LTV model. Note
that there is no reference for GRFs in these plots since the trunk control-
ler computes them without a need for GRFs references (refer to section
3.3.3).

Since this model validation is performed on the SRBD model that will
be used inside the NMPC formulation, it is acceptable if the model ap-
proximately replicates the behavior of the validation data. This means
that the SRBD model is only an approximation of the real robot and
the control decision made by NMPC will be based on this approxima-
tion. The output of the NMPC is usually provided to the downstream
controller that runs at a higher frequency than NMPC and takes care of
the faster dynamics as well as compensates for the model discrepancy.
Therefore, providing approximate but feasible state and input references
to the downstream controller is sufficient. We will discuss the structure
of the locomotion framework with NMPC and downstream controller in
Chapter 5.

3.5 Summary

In this chapter, we have introduced the HyQ and AlienGo robots, dis-
cussed various mathematical models for legged robots and presented
the model validation results of the SRBD model for the HyQ robot. In
the next chapter, we will use this validated LTV model to develop two
optimal planners.

40

Chapter 4

Trajectory Optimization for
Legged Locomotion

An exhaustive list of Trajectory Optimization (TO) applied in robotics is
documented in Almasri and Uyguroğlu (2021). Since TO allows formu-
lating a particular robot task using optimization problem formulation, it
has provided remarkable results in legged locomotion Posa et al. (2016);
Neunert et al. (2017); Aceituno-Cabezas et al. (2018); Melon et al. (2020).
However, mitigating tracking errors while following the optimized tra-
jectories from TO can be challenging if online re-planning occurs at a
low frequency. Therefore, the current robot state used by TO is updated
less frequently. This problem can be addressed using Receding Horizon
Principle (RHP) principle in the Model Predictive Control (MPC) setting,
where the current robot state is fed back to the optimization problem
each time the MPC algorithm is called. This solution allows incorpor-
ating the latest information on the robot state in MPC, thus mitigating
tracking errors by computing the optimized trajectories with the current
robot state.

In the following sections, we will briefly introduce MPC and discuss
the Optimal Control Problem (OCP) formulation that arises when solv-
ing an MPC or a TO problem. Then, we present two TO-based planners
using the LTV model presented in the previous chapter. These TO-based
planners will form the basis of the NMPC formulation presented in the
next chapter.

41

4.1 Model Predictive Control

MPC has been famous in the process industry over the past few dec-
ades. Moreover, some of its first usage dates back to the 1980’s Qin and
Badgwell (2003); Bauer and Craig (2008). The advancement in the com-
putational power of the new-age computing devices has allowed MPC
to break through in the realm of embedded applications. Since the past
decade, MPC has gained immense popularity in legged locomotion and
has become a preferred technology for research as well as commercial ap-
plications in this domain Neunert et al. (2018); Koenemann et al. (2015);
Di Carlo et al. (2018); Bledt et al. (2017). The prominent characteristics of
MPC listed below make it a compelling and suitable control strategy in
various applications.

• Different control goals can be expressed in terms of the cost func-
tion inside an optimization problem

• It allows one to embed state and control input constraints directly

• Incorporates system model while evaluating the optimal control
law

Particularly, MPC involves an optimization problem formulation that is
composed of several ingredients listed as follows:

• Mathematical model of the system

• Constraints on the state and control inputs

• Cost function

• Optimization algorithm to solve an OCP that uses the preceding
three ingredients

• The Receding Horizon Principle (RHP) principle: Given the system
state xk at any sampling instance k, solve an optimization problem
to find the future control input sequence u = (uk, . . . ,uk+N−1) and
apply only the first control input uk to the system. At the next time
instance k+1, a new optimization problem is solved by reading the
state of the system at k+1, along the prediction horizon [k+1, k+N]
and the process repeats. In short, MPC involves repetitively solv-
ing an OCP at each sampling instance in the RHP fashion. Figure 15
depicts the RHP principle.

42

...

Figure 15: Illustration of the RHP utilized in the MPC scheme (Source:
Behrendt (2009)).

Numerical optimization methods sit at the core of solving an MPC
problem, and choosing the suitable solution algorithm can drastically af-
fect the accuracy, reliability, and performance of the MPC solution. The
solution algorithm, generally called the optimization algorithm, solves
an OCP derived from an MPC formulation. These optimization al-
gorithms rely on numerical methods Rawlings et al. (2019). The choice
of these numerical methods for MPC is typically based on the trade-off
between the accuracy and computation time. Some methods can find the
solution of the OCP with the same accuracy as others with significantly
lower computation time. Moreover, there is a reliability aspect, i.e., some
methods succeed finding approximate solution of the OCP while oth-
ers might fail. Since the optimization problem formulation arising from
MPC falls under the paradigm of OCP, in the next section, we will intro-
duce a generic formulation of continuous-time OCP. Further, we proceed
to define the discrete-time version of the OCP that is of prime interest to
this work.

4.2 Optimal Control Problem

Often, the system dynamics are available in continuous-time ODE, sim-
ilar to (3.11). In this scenario, the state x(t) and control inputs u(t) are
defined in continuous-time. To take care of these dynamics in MPC or TO

43

setting, a solution to a continuous-time OCP might be required1. Con-
sider the continuous-time trajectories of state xc(.) and uc(.) are defined
in the time interval of interest t ∈ [0, 0 + T], where T is a prediction ho-
rizon. Then, a generic form of such an OCP formulation can be given by

min
xc(.),uc(.)

∫︂ T

0

ℓc (x(t),u(t)) + ℓcT (x(T)) (4.1a)

s.t. x(0) = x0, (4.1b)
x(t) = fc (x(t),u(t)) , t ∈ [0, T], (4.1c)
hc (x(t),u(t)) ≤ 0, t ∈ [0, T], (4.1d)
x(T) ∈ XT (4.1e)

where ℓc and ℓcT are the stage and terminal costs, respectively. Equation
(4.1b) uniquely defines the value for the initial state x(0) that marks the
starting point of the state trajectory xc(.) in the solution of the OCP (4.1).
Equation (4.1c) introduces the continuous-time system dynamics in the
OCP, and (4.1d) represents the algebraic path constraints on the state
and control input. Finally, (4.1e) enforces constraint on the terminal state
x(T) to be contained in a chosen terminal state XT.

In continuous-time OCP, time t runs through infinitely many points
in the interval t ∈ [0, T]. Hence, continuous-time OCP is an infinite-
dimensional optimization problem with infinite-dimensional optimiza-
tion variables and constraints.

The OCP (4.1) problem can be solved with several existing numer-
ical methods, and their pictorial classification is laid out in Fig. 16.
A common factor these methods share is that, at some point, the
infinite-dimensional problem requires discretization. The first category
of these methods are based on the Hamilton-Jacobi-Bellman (HJB) equa-
tion called Dynamic Programming Bertsekas (2005), which suffers from
the curse of dimensionality and is thus limited to small scale applica-
tions. The second category of methods is based on Pontryagin maximum
principle Gamkrelidze (1999) and is known as Indirect methods. They are
characterized by first optimize and then discretize approach. The third
category of methods is called Direct methods, where the optimization
problem is first discretized and then optimized. The indirect methods

1This is depends on the synthesis method chosen for an MPC or a TO problem formu-
lation. One might opt for the discrete-time OCP to solve an MPC or a TO problem which
will be explained in the following sections of this chapter.

44

Sequential

Dynamic Programming
(Hamilton-Jacobi-
Bellman Equation)

Indirect Methods
(Pontryagin maximum

principle)

Direct Methods
(Conversion to

Nonlinear
Program (NLP))

Single Shooting Collocation

Simultaneous

Optimal control

Multiple Shooting

Figure 16: Classification chart of an OCP (Inspired by Diehl et al. (2005a)).

provide accurate, reliable and fast solutions, but they are challenging to
initialize Wensing et al. (2022) and do not allow one to incorporate state
inequality constraints directly. On the other hand, direct methods are
widely used in the robotics community for motion generation Wensing
et al. (2022) and, in general, for MPC Rawlings et al. (2019) applications.
These methods allow one to incorporate the state inequality constraints
directly. A solution method called RTI Diehl et al. (2005b,a) utilized in
this dissertation for the NMPC falls in the third category. Therefore, we
will briefly discuss direct methods in what follows.

4.3 Discrete-time Optimal Control Problem

The conversion of continuous-time OCP to discrete-time leads to what
is commonly known as NLP Rawlings et al. (2019). We start with the
continuous-time OCP (4.1) to express the NLP formulation. First, the
continuous time t is divided intoN points of equal length h. The continu-
ous time cost (4.1a) is replaced with the finite sum of the cost evaluated
at each sampling instance k. Defining the predicted state and control in-
put with xs := {x0, . . . ,xN} and us := {u0, . . . ,uN−1}, respectively, an

45

NLP can be expressed as

min
xs,us

N−1∑︂
k=0

ℓ (xk,uk) + ℓT (xN) (4.2a)

s.t. x0 = x̂0, (4.2b)

xk+1 = fd (xk,uk) , k ∈ IN−1
0 , (4.2c)

h (xk,uk) ≤ 0, k ∈ IN−1
0 , (4.2d)

xN ∈ XT (4.2e)

Similar to continuous-time OCP, the initial condition is introduced by
(4.2b). The system dynamics (4.2c) is presented in discrete-time that
can be obtained through any state-of-the-art integration schemes, for
example, it could be a simple explicit Euler method. Again, the path
constraints on the decision variables are defined with (4.2d) only at the
sampling instance k. Ultimately, the terminal constraint is introduced
with (4.2e).

The are multiple ways to convert the (4.2) problem into NLP. First,
based on how the optimization algorithm handles the simulation and
optimization problems, we will categorize them into sequential and sim-
ultaneous optimal control. Then, we will go through their respective
subcategories.

4.3.1 Sequential Optimal Control

In sequential optimal control, first, a forward simulation determines xs

for a given initial condition x0 and initial values of control input traject-
ory us. This can be achieved by replacing all the values xk ∀ k ∈ (0, N] as
a function of the initial state and the corresponding control input uk. For
instance,

x1 = fd(x0,u0), (4.3a)
x2 = fd(fd(x0,u0),u1), (4.3b)

... (4.3c)
xN = fd(fd(x0,u0), . . . , f(x0,uN−2),uN−1). (4.3d)

Second, the control input us is updated in each iteration to move closer
to an optimal solution. Due to its sequential nature of first performing

46

a forward simulation followed by finding optimal control inputs, it is
called sequential optimal control.

A famously known Single shooting method falls under this category of
optimal control. This approach exploits a reduced number of decision
variables because the state trajectory is completely removed as a func-
tion of the initial state and control input. Further, this approach results
in a dense structure of hessian and gradients, and it can be preferable
for a stable system and with an optimization solver that can not exploit
the sparsity Rawlings et al. (2019). This method demands the initializ-
ation of the control input trajectory us. Moreover, in this approach, the
initial guess for state trajectory xs can not be provided to the optimiza-
tion solver.

4.3.2 Simultaneous Optimal Control

The NLP (4.2) considers the state xs and control input us trajectories as
decision variables. One could directly feed this problem to a suitable op-
timization algorithm to determine the solution. While finding the solu-
tion, if (4.2b) and (4.2c) are respected, then xs and us trajectories are con-
sistent with the initial condition and simulation model. This is true for
any feasible solution. Since the optimization algorithm solves simulation
and optimization problems simultaneously, it is named the simultaneous
optimal control. In this approach, at the intermediate steps of comput-
ing the solution, the state trajectory xs might not be a valid simulation
corresponding to the control input us Rawlings et al. (2019).

Although the simultaneous method involves state and control input
as decision variables, leading to increased problem size, it results in a
sparse structure. Many optimization solvers can exploit this sparsity
Frison and Diehl (2020); Banjac et al. (2018) that potentially increase the
computational performance while finding the solution. This method is
preferable for nonlinear unstable systems and a problem with state con-
straints since they can be directly imposed inside the formulation.

The simultaneous approach can further be subclassified into Direct
collocation and Direct multiple shooting methods. In the direct colloca-
tion method, all the continuous functions in the problem definition of
a continuous-time OCP are approximated by a polynomial spline. The
advantages of using polynomials are: i) They require a small number of
coefficients to define, ii) They are easy to integrate or derivative in terms
of these coefficients. On the other hand, in direct multiple shooting, the
state trajectory is divided into multiple segments, and each segment is

47

introduced as a separate simulation problem. This is in contrast with
the single shooting method where an entire trajectory is formulated as
a single simulation problem. Both in single and multiple shooting, the
simulation methods can be chosen from any of the state-of-the-art integ-
ration schemes Quirynen (2017); Butcher (2003); Hairer et al. (1993, 1996)
such as explicit/implicit Euler and Runge-Kutta methods.

In this section, we have discussed a general OCP formulation and
briefly laid out a background for the subcategories of direct solution
methods. In the next section, we will dive into applying some of these
methods for the optimal control of legged locomotion.

4.4 Optimal Planning for Legged Robot

This section aims to design a TO-based planner to provide feasible tra-
jectories for a legged robot for dynamic locomotion. These locomotion
involve capturing the information about the angular dynamics of the ro-
bot that are described by nonlinear equations as detailed in section 3.2.
Moreover, physical constraints exist on the state and control inputs in-
volved during optimal planning. These constraints can also be nonlinear
in nature, such as the robot feet contact model. In our case, we opt for
a nonlinear SRBD model of a quadruped robot for OCP formulations.
The SRBD model gives a reasonable approximation of the dynamics for
a quadruped because most of the robot mass is concentrated in the trunk.
Hence, the legs can be considered mass-less, and the joint dynamics can
be neglected. However, the OCP formulation can easily be extended to
any other nonlinear robot model. Further, these OCP formulations usu-
ally include a linearized form of these robot models while transcribing
into discrete-time form Andersson et al. (2019). Indeed, one can linear-
ize these models and incorporate them inside Linear Programming (LP)
or Quadratic Programming (QP) to synthesize a TO problem. Addition-
ally, linear constraints or linearized forms of nonlinear constraints can
also be imposed in TO formulations, such as bounds on state and control
inputs. These constraints can be in the form of equalities or inequalit-
ies. The advantage is that the LP and QP problems can be solved using
corresponding off-the-shelf solvers.

Next, we will explain our LTV-Based Trajectory Optimization (LTV-
Opt) formulation and its merits. Then, we discuss our SQP algorithm
for optimal planning. We also give insight into the performance of these
two techniques and compare their results. After that, we motivate our

48

path for selecting RTI algorithm for our NMPC that will be discussed
thoroughly in the next chapter.

4.4.1 LTV-Based Trajectory Optimization

The objective of this work is to enable a legged robot to perform dynamic
locomotion autonomously with optimal planning. Therefore, capturing
its dynamics with certain accuracy during optimal planning is essen-
tial. This is done by using a suitable robot model inside an optimiza-
tion formulation. One could utilize a nonlinear model of the robot for
the optimal planning to solve the resulting OCP using solvers such as
IpoptWächter and Biegler (2006), SNOPTGill et al. (2002), KNITRO Byrd
et al. (2006), and fmincon MATLAB (2022b). However, using these non-
linear models inside an OCP can be computationally demanding due to
their complexity. Hence, a remedy can be to incorporate a linearized ver-
sion of a nonlinear model in the optimization formulation.

The first candidate for the linearized model is an LTI model. This
model is obtained by linearizing a nonlinear model at a given lineariza-
tion point. Typically, a legged robot performs a dynamic task that might
be difficult to capture with a single operating point. Thus, it is challen-
ging to determine a single linearization point (x̄, ū) to obtain a linear
model that can represent its dynamics with a certain degree of accuracy
while performing dynamic tasks, such as walking on a pile of rubble.
Further, the LTI model is accurate only in the neighborhood of a linear-
ization point and can become unusable for the dynamics that deviate
from the linearization point by a certain amount. Hence, a more accurate
model than LTI is desirable. A suitable candidate for our TO formula-
tion is the LTV model, obtained by linearizing over a set of lineariza-
tion trajectories (xL

k , uL
k) instead of a single point. The advantage of an

LTV model is that it allows one to locally approximate the dynamics of a
system at multiple linearization points over a trajectory known a priori.
Moreover, an LTV model combined with either a linear or quadratic cost
function can also be solved with an LP or a QP solver, respectively.

LTVOpt Formulation

The proposed LTV-based TO formulation consists of a cost function
(4.4a) to track references of the state xp ∈ Rnx×N and control input
up ∈ Rnu×N variables, where nx and nu denote the number of state
and control inputs, respectively. The discrete time control intervals N

49

are obtained by dividing the prediction horizon T by the sampling time
Ts. Further, the initial condition (4.4b) and LTV dynamic model (4.4c) are
imposed with the equality constraints in this formulation, whereas the
path constraints on the state and control inputs are introduced through
inequalities (4.4d).

min
xp,up

N−1∑︂
k=0

∥ xk − xref
k ∥2Wx

+ ∥ uk − uref
k ∥2Wu

+ ∥ xN − xref
N ∥2WxN

(4.4a)

s.t. x0 = x̂0, (4.4b)

xk+1 = Akxk +Bkuk + rk, k ∈ IN−1
0 , (4.4c)

Ckxk +Dkuk + hk ≥ 0, k ∈ IN−1
0 (4.4d)

Vector x̂0 is the current system state. The weight matrices Wx, Wu and
WxN

are used to define the relative importance of the respective cost
terms inside the formulation. Matrices Ak, Bk, Ck, Dk, and vectors
rk and hk are obtained by linearizing the nonlinear dynamics and con-
straints. Next, we will specify the dynamic model and constraints intro-
duced in this formulation.

Robot Model

In our case, to obtain the LTV model (3.17), we rely on linearizing the
SRBD model (3.11) over a set of state x ∈ R12 and control input u ∈ R12

trajectories. We choose the reference trajectory (xref , uref) as a lineariz-
ation trajectory since the robot needs to track some of these references
depending on a user-defined goal.

Friction Cone and Unilateral Constraints

Friction cone constraints are encoded with their square pyramid approx-
imation:

−µifz,i ≤ fx,i ≤ µifz,i (4.5a)
−µifz,i ≤ fy,i ≤ µifz,i (4.5b)

f z ≤ fz,i ≤ f z (4.5c)

50

where, f z and f z are upper and lower bounds on GRFs Z component, re-
spectively, and µi is the friction coefficient of the contact surface. Choos-
ing fz greater than or equal to zero enforces unilateral constraints on the
normal forces fz. The friction cone and unilateral constraint are repres-
ented by (4.4d) in the LTVOpt formulation.

Reference Generation

The references to obtain the LTV form of the SRBD model and required
in the tracking cost (4.4a) are generated using heuristics. The CoM X-Y
positions are computed by integrating the user X-Y velocities with the
explicit Euler method. The CoM Z position is set equal to the height
of the robot. The references for base orientation are chosen to be zero,
except if the user defines a heading velocity, then the yaw is computed
by integrating this velocity. The reference angular velocities are also set
to zero. The foot location is generated similarly to the one reported by
Focchi et al. (2020b). Finally, the normal GRFs are computed by dividing
the robot mass by the number of feet on the ground. More details on the
reference generation are given in section 5.4 of the next chapter.

The LTVOpt formulation uses reference trajectory to linearize the
model of the system. Often, the reference trajectories are not dynam-
ically feasible, meaning that these trajectories do not obey the robot’s dy-
namics. Therefore, the LTV model linearized over this trajectory can be
inaccurate and lead to the infeasible solution of the LTVOpt (4.4). Many
tackle this problem with a widely known solution method called SQP.
In SQP, several iterations of QP problems are performed to achieve a
dynamically feasible solution while respecting the constraints. In the fol-
lowing sections, we will describe the SQP formulation and present the
results obtained from both techniques.

4.4.2 Sequential Quadratic Programming

SQP is a popular algorithm that solves an NLP by iteratively solving local
quadratic approximations (QPs) of the problem Nocedal and Wright
(2006). At each SQP iteration, the solution from the previous step is re-
cycled to define an initial guess (xL

k ,u
L
k), which is then used to construct

a QP approximation of the NLP (4.2), given by

min
∆x,∆u

N−1∑︂
k=0

1

2

[︃
∆xk

∆uk

]︃⊤
Hk

[︃
∆xk

∆uk

]︃
+ J⊤

k

[︃
∆xk

∆uk

]︃
(4.6a)

51

s.t. ∆x0 = x̂0 − xL
0 , (4.6b)

∆xk+1 = Ak∆xk +Bk∆uk + rk, (4.6c)
Ck∆xk +Dk∆uk + hk ≥ 0, (4.6d)

where, ∆xk = xk − xL
k ,∆uk = uk −uL

k , x̂0 is the current system state, ak
is the parameter, and

Ak =
∂f(x,u,ak)

∂x

⃓⃓⃓⃓
xL
k ,u

L
k

, Bk =
∂f(x,u,ak)

∂u

⃓⃓⃓⃓
xL
k ,u

L
k

,

Ck =
∂h(x,u,ak)

∂x

⃓⃓⃓⃓
xL
k ,u

L
k

, Dk =
∂h(x,u,ak)

∂u

⃓⃓⃓⃓
xL
k ,u

L
k

,

rk = g
(︁
xL
k ,u

L
k ,ak

)︁
− xL

k+1, hk = h
(︁
xL
k ,u

L
k ,ak

)︁
Jk = Wk

[︃
xL
k − xref

k

uL
k − uref

k

]︃
(4.7)

Matrix Hk is the diagonal blocks of a suitable approximation of the Lag-
rangian Hessian. Since our problem relies on a least-squares cost, we
adopt the popular Gauss-Newton Hessian approximation Diehl et al.
(2005b); Gros et al. (2020) that gives Hk = Wk.

The pseudo-code of the SQP is laid out in Algorithm 1. This algorithm
takes an initial condition x̂0 and reference trajectories (xref ,uref) as in-
puts and returns the optimal trajectories (xsqp, usqp) when the algorithm
is terminated based on the tolerances ζl and ζe (usually set to machine
precision) on the Lagrangian ∆L(∆x,∆u) Nocedal and Wright (2006)
and 1-norm of the equality constraints fd(xL,uL), respectively. In the
first iteration of this algorithm, the linearization trajectories (xL,uL) are
set equal to the input references. In the following iterations, these tra-
jectories are updated with the previous QP solution trajectories.. The
algorithm also relies on computing the sensitivities to formulate the QP
(4.6).

One of the essential aspects of the SQP algorithm is to find the New-
ton step α that can be calculated with a globalization method. One of
these methods is called backtracking line search Nocedal and Wright
(2006) as described in Algorithm 2. This algorithm takes as inputs lin-
earization trajectories (xL,uL) and Lagrange multiplier λ from the SQP
algorithm and computes α by evaluating the merit functionM . The merit
function comprises the NLP (4.2a) cost function and 1-norm of equality
constraints as expressed in line 2 of Algorithm 2. The algorithm termin-

52

Algorithm 1 SQP with line search

Input: initial state x̂0, reference trajectory xref ,uref

1: while ∥ [∆L(∆x,∆u)] ∥1≥ ζl or ∥ fd(xL,uL) ∥1≥ ζe do
2: if firstIteration then
3: Set initial guess to reference trajectory

(xL,uL)← (xref ,uref)

4: else
5: Set initial guess to shifted (xL,uL)

xL
k ← xk+1 ∀ k = 0, 1, · · · , N − 1

xL
N ← xN−1

uL
k ← uk+1 ∀ k = 0, 1, · · · , N − 2

uL
N−1 ← uN−2

6: end if
7: Evaluate rk,hk, and the sensitivities Ak,Bk,Ck,Dk,Hk, Jk at

(xL,uL,a) according to (4.7)
8: Formulate and solve QP (4.6) to obtain Newton direction ∆x, ∆u

and Lagrange multiplier λ
9: Perform a line-search with Algorithm 2 to find a Newton step
α ∈ (0, 1] that guarantees descent

10: Update initial guess with the newton step:
xL ← xL + α∆x

uL ← uL + α∆u

11: end while
return (xsqp, usqp) = (xL,uL)

53

Algorithm 2 Backtracking line search

Input: xL, uL, λ
1: Initialization: α← 1, β ← (0, 1], σ ←∥ λ ∥∞
2: Compute merit function:

M ← ℓ(xL,uL) + σ ∥ fd(xL,uL) ∥1
3: while conv == false do
4: Take a full step:

xL
next ← xL + α∆x

uL
next ← uL + α∆u

5: Compute merit at new linearization points:
Mnext ← ℓ(xL

next,u
L
next) + σ ∥ fd(xL

next,u
L
next) ∥1

6: if Mnext <=M or α == 0 then
7: conv← true
8: else
9: α← β ∗ α

10: end if
11: end while

return: α

54

ates when the merit function Mnext value with an updated value of α is
smaller or equal to the original value M or when α is 0.

Henceforth, we refer to the optimal planning based on the SQP al-
gorithm as SQP-Based Trajectory Optimization (SQPOpt). For SQPOpt,
we keep the same setup as LTVOpt for what regards the robot model,
inequality constraints and reference generation as described in section
4.4.1.

4.4.3 Results

The parameters and weights used for the LTVOpt and SQPOpt al-
gorithms are listed in Tables 2 and 3, respectively. Since both of these
formulations involve linearization/sensitivity computation, we rely on
CasADi Andersson et al. (2019) tool, which has the symbolic framework
to compute derivatives efficiently using algorithmic differentiation. The
linearization and discretization using the explicit Euler method are per-
formed as described in section 3.3.2. The LTVOpt (4.4) and a QP (4.6) sub-
problem of SQP can be reformulated as QP as described in Appendix C.
Therefore, it allows accessible interfaces to many off-the-shelf QP solvers.
We solve the resulting QP for LTVOpt and SQPOpt using Gurobi Gurobi
Optimization, LLC (2023).

The results from the LTVOpt and SQPOpt are shown in Fig. 17-21 for
HyQ robot with crawl gait. The robot crawls with the user-commanded
forward velocity of 0.05m/s, and the references are generated based on
this goal. A tracking cost on CoM velocity ensures that the robot follows
the target forward velocity. We do not track the CoM X-Y position be-
cause we let the planning algorithm to optimize them based on the linear
velocities. The CoM Z position is tracked to maintain the robot height of
0.55m. The base orientation and angular velocities are penalized min-
imizing the deviation from zero references. The GRFs are penalized in
the tracking cost to optimize them around the reference values while re-
specting the dynamic feasibility and friction and cone constraints.

The CoM position and velocity output in Fig. 17 and 18 show similar
trends for both methods. Note that the references are computed from the
heuristic. Therefore, both algorithms calculate the feasible state x and
control input u trajectory for the robot, respecting the dynamics given
the SRBD model and friction and unilateral constraints. The feasibility

1Note that some of these parameters not required for LTVOpt, therefore not applicable
to it.

55

Table 2: LTVOpt1and SQP parameters

Parameter Symbol Value Unit

Number of state nx 12 -
Number of control inputs nu 12 -
Prediction horizon T 4 s
Sampling time Ts 0.04 s
Number of control intervals N 100 -
Friction coefficient µ 0.7 -
GRFs lower bound f z 0 N

GRFs upper bound f z 500 N
Initial Newton step α 1 m
Scaling factor β 0.9 -
Lagrangian tolerance ζl 10−6 -
Equality tolerance ζe 10−6 -

Table 3: Weights used in the LTVOpt and SQP

Cost Weight Value

State

Wpc
diag(0, 0, 1000)

Wv diag(100, 100, 100)
WΦ diag(100, 100, 100)
Wω diag(100, 100, 100)

Force
Wux 1× 10−3

Wuy
1× 10−3

Wuz
1× 10−5

56

0

0.1

0.2

-0.04

-0.02

0

0 0.5 1 1.5 2 2.5 3 3.5 4
0.5495

0.55

0.5505

Figure 17: CoM position plots from LTVOpt and SQPOpt results. Red line
is the output of SQPOpt, dashed cyan line is the result of LTVOpt and black
dashed line is CoM reference position.

0.03

0.04

0.05

0.06

-0.03

-0.02

-0.01

0

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.02

0

0.02

Figure 18: CoM velocity plots from LTVOpt and SQPOpt results. Red line
is the output of SQPOpt, dashed cyan line is the result of LTVOpt and black
dashed line is CoM reference velocity.

57

-1

0

1

2

3
10 -4

-10

-5

0

5
10 -4

0 0.5 1 1.5 2 2.5 3 3.5 4

-2

-1

0

1

2
10 -3

Figure 19: Orientation plots from LTVOpt and SQPOpt results. Red line is
the output of SQPOpt, dashed cyan line is the result of LTVOpt and black
dashed line is CoM reference orientation.

-4
-2
0
2
4

10 -3

-0.01

0

0.01

0 0.5 1 1.5 2 2.5 3 3.5 4
-5

0

5
10 -3

Figure 20: Angular velocity plots from LTVOpt and SQPOpt results. Red
line is the output of SQPOpt, dashed cyan line is the result of LTVOpt and
black dashed line is CoM reference angular velocity.

58

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

Figure 21: GRFs plots from LTVOpt and SQPOpt results. Red line is the out-
put of SQPOpt, dashed cyan line is the result of LTVOpt and black dashed
line is reference GRFs.

59

of the solution is higher in the SQPOpt compared to the LTVOpt, since
the SQP algorithm performs several iterations to respect the Lagrangian
ζl and equality constraint tolerances ζe.

As demonstrated in Fig. 19 and 20, the base orientations and angular
velocities are similar for both methods except for yaw ψ and angular
velocity ωz. However, the variance of ψ and ωz is small (order of 10−3).

The normal components of control inputs, i.e., GRFs, have similar
trends for both these methods. The variance of the output from LTVOpt
and SQPOpt with respect to the reference GRFs clearly show that the
reference GRFs are not dynamically feasible. Indeed, these components
are computed by dividing the total robot mass among the feet on the
ground for a crawl gait. Therefore, these methods compute dynamically
feasible GRFs based on the LTV model and respecting the friction and
cone constraints.

The choice of weights in these algorithms plays a crucial role while
finding the solution. Increasing the weights on the tracking cost (4.4a)
and (4.6a) decides which optimization variable is prioritized the most
while optimizing. For example, increasing relatively the weights on
GRFs tracking cost with respect to the other cost terms prioritizes track-
ing the GRFs references while finding the optimal solution. Therefore,
achieving the right balance between the different cost terms inside these
optimization problems to achieve a particular goal can be a cumbersome
task Bouyarmane and Kheddar (2018). In our case, we choose the weight
with the trial and error method. We tune the weights of the different cost
terms relative to each other to obtain the desired outcome.

Solution Time

The average solution time by LTVOpt is 200ms, whereas the SQPOpt
takes roughly 1-1.2 s to solve the optimization problem until conver-
gence. Since one of the goals of this dissertation is to re-plan in the RHP
fashion at a frequency higher than 20Hz for locomotion stability and per-
formance Bledt and Kim (2019), the solution time required by both of
these algorithms is limiting to reaching this goal.

Dynamic Feasibility

LTVOpt is a promising solution to achieve optimal motion planning, but
since it is linearized over a reference trajectory, its solution might be dy-
namically infeasible. However, from the results presented before, it can

60

be verified that the output of the LTVOpt is very similar to the converged
SQPOpt. Further, in the context of the SQP algorithm, solving the LTV-
Opt is equivalent to solving the first iteration of the SQP. Therefore in
some cases, it might not be necessary to solve the problem until con-
vergence if the first iteration of SQPOpt, i.e., the solution of LTVOpt, is
similar to the converged SQPOpt solution. Moreover, one could use the
solution of the previous LTVOpt to warm-start the following LTVOpt
formulation. By warm-start, we mean to utilize the solution of the previ-
ous LTVOpt as linearization trajectory for the following LTVOpt formu-
lation instead of using the reference trajectory each time the re-planning
is performed. This is a valid approach when the robot follows a planned
trajectory and does not diverge significantly from the planned trajectory.
Also, with the warm-start strategy, the computation time of LTVOpt can
improve.

Reasoning on this line, we propose a formulation based on a well-
known solution method called RTI in the next chapter to achieve per-
formance in terms of dynamic feasibility and solution time for our
NMPC. The RTI is specifically tailored for real-time implementation
and also inherits the convergence properties SQP under certain assump-
tions Diehl et al. (2005b).

4.5 Summary

This chapter briefly described a standard MPC scheme and OCP formu-
lation. We also discussed the discrete-time OCP formulation, followed
by a short discussion on direct methods. Then, we proposed two solution
methods for optimal planning for a legged robot, i.e., LTVOpt and SQP-
Opt. We presented their formulations, algorithms, and implementation
details, followed by the results obtained from them in simulation. Later,
we discussed that the LTVOpt has an advantage in the computational as-
pect, whereas SQPOpt gives a converged and dynamically feasible solu-
tion to the OCP. Considering these two aspects, in the next chapter, we
will introduce our NMPC planner based on the RTI solution scheme that
inherits the advantages of LTVOpt and SQPOpt.

61

Chapter 5

Nonlinear MPC for Legged
Locomotion

The use of MPC Koenemann et al. (2015); Farshidian et al. (2017); Neu-
nert et al. (2018); Bledt and Kim (2019); Grandia et al. (2019) in legged
locomotion has picked up a pace in the last two decades. Linear MPC
for the legged locomotion is utilized to achieve a variety of gaits. How-
ever, some of these approaches either neglect Herdt et al. (2010); Horvat
et al. (2017) angular dynamics or require the linearization Di Carlo et al.
(2018) of angular dynamics that is not suitable for the motions that in-
volve substantial variation from the horizontal position. To address this
issue, NMPC can be utilized where the nonlinear dynamics of the robot
can be included as equality constraints. The NMPC also allows one to
include nonlinear inequality constraints in contrast to the linear inequal-
ities required by the linear MPC. Lastly, in the NMPC, the cost function
can be non-quadratic, i.e., linear or nonlinear. This dissertation aims to
achieve environment adaptation by legged robots that involve consider-
able angular (nonlinear) dynamics. Therefore, we select the NMPC for
optimal re-planning.

This work includes a simplified SRBD model with stance status para-
meters inside the NMPC formulation to eliminate the complementarity
constraints contributing to the computational benefits. Further, we in-
clude leg mobility in the NMPC cost to improve the base orientation,
enabling the robot to adapt to rough terrains. To the best of our know-
ledge, apart from the work mentioned in Section 2.3, this is the first im-

62

plementation of mobility inside the NMPC for legged locomotion. The
proposed NMPC runs at 25Hz with a prediction horizon of 2 s (50 nodes)
on the a single computer along with the rest of the locomotion frame-
work. The efficacy of the NMPC proposed in this dissertation is demon-
strated through several simulations and experimental scenarios on chal-
lenging terrains.

This chapter reprints the content of the following article Rathod et al.
(2021a) that is under a Creative Commons License (CC BY-NC-ND 4.0).

N. Rathod, A. Bratta, M. Focchi, M. Zanon, O. Villarreal, C.
Semini, and A. Bemporad. Model predictive control with envir-
onment adaptation for legged locomotion, IEEE Access, vol. 9, pp.
145710-145727, 2021.

In this chapter, we describe the setup and ingredients required to de-
velop our NMPC for legged locomotion. The chapter begin with the loco-
motion framework overview spotting different elements involved along
with the NMPC. Then we present formulation of our NMPC, followed by
the explanation regarding different enhancement feature that empower
our NMPC. We also discuss about the reference generator, WBC and a
solution method RTI in the last three sections of this chapter. Finally, we
present simulation and experimental results with the NMPC on the HyQ
robot.

5.1 Locomotion Framework

Fig. 22 illustrates the planning pipeline of our locomotion framework.
The reference generator, as discussed in Section 5.4, takes the user input
(longitudinal, lateral and angular velocity), schedule of the gait (e.g., a
crawl) timing, the initial state of the robot, and a map of the terrain to
generate reference trajectories for the state xref and control input uref re-
quired by the NMPC. The reference generator also provides a vector of
parameters a to the NMPC, that includes foot locations and sequences of
contact status. The NMPC running at 25Hz delivers the optimal traject-
ories of the state xp and control input up, as detailed in Section 5.2. All
the components of the Whole-Body controller (highlighted with dashed
box in Fig. 22) are discussed in Section 5.5. The WBC interface interpolates
the optimal state xp at a rate of 250Hz to generate a desired signal xd for
a Cartesian virtual impedance controller Focchi et al. (2016). The WBC

63

To
rq

u
e

M
a
p

p
in

g

N
M

P
C

R
e
fe

re
n

c
e

g
e
n

e
ra

to
r

P
D

+

+

+

-

U
s
e
r

In
p

u
t

L
e
g

S

e
q

u
e
n

c
e

W
B

C
in

te
rf

a
c
e

G
ri

d
 M

a
p

S
ta

te
 E

s
ti

m
a
to

r

Jo
in

t
To

rq
u

e
C

o
n

tr
o
l

Q
P

O
p

ti
m

iz
a
ti

o
n

Jo
in

t
S

p
a
c
e

P
D

++

W
h

o
le

-B
o
d

y
 C

o
n

tr
o
ll
e
r

G
a
it

sc

h
e
d

u
le

r

V
FA

Fi
gu

re
22

:
Bl

oc
k

di
ag

ra
m

of
th

e
pl

an
ni

ng
pi

pe
lin

e
w

it
h

th
e

N
M

PC
in

ou
r

lo
co

m
ot

io
n

fr
am

ew
or

k.
Th

e
re

fe
re

nc
e

ge
ne

ra
to

r
pr

ov
id

es
th

e
re

fe
re

nc
es

(x
re

f
,
u
re

f
)

to
N

M
PC

af
te

r
re

ce
iv

in
g

th
e

us
er

in
pu

ts
.

Th
en

th
e

N
M

PC
pa

ss
es

op
ti

m
al

st
at

e
x
p

an
d

co
nt

ro
lx

p
tr

aj
ec

to
ri

es
to

th
e

W
ho

le
-B

od
y

C
on

tr
ol

le
r.

Th
e

to
rq

ue
τ
d

is
gi

ve
n

as
re

fe
re

nc
e

to
lo

w
le

ve
lj

oi
nt

to
rq

ue
co

nt
ro

lle
r.

Th
e

st
at

e
es

ti
m

at
or

pr
ov

id
es

th
e

st
at

e
es

ti
m

at
io

n
x̂

to
th

e
re

qu
ir

ed
bl

oc
ks

.
Fi

na
lly

,t
he

he
ig

ht
m

ap
is

ge
ne

ra
te

d
by

G
ri

d
M

ap
an

d
gi

ve
n

to
th

e
re

fe
re

nc
e

ge
ne

ra
to

r.

64

interface also computes the feedforward wrench Wd
ff that is added to a

feedback wrench Wd
fb that renders the Cartesian impedance. Moreover,

the WBC interface provides the joint position qd and velocities q̇d to a
Joint Space PD controller running at 1 kHz. After acquiring the feedback
and feed-forward wrenches, a QP optimization computes the vector of
desired GRFs fd accounting for the friction cone constraints and pen-
alizing the the difference between fd and up coming from the NMPC
solution. Then, fd is mapped to the torque vector τ ∗ that is added to
the Joint Space PD torques τfb resulting into the total desired torque τd.
Ultimately, τd is passed to a low-level joint torque controller as reference
Boaventura et al. (2015).

An online state estimator Nobili et al. (2017) that runs at 500Hz
provides the estimation of the robot state x̂ to all the components inside
our locomotion framework that require it. A dedicated on-board com-
puter takes inputs from an RGB-D camera (RealSense) mounted in front
of the robot and generates a 2.5D heightmap at the rate of 30Hz using the
Grid Map library from Fankhauser and Hutter (2016). This heightmap is
later sent to the reference generator.

5.2 NMPC Formulation

In our planning algorithm, we choose a real-time NMPC formulation
because it has the ability to handle both the nonlinear system dynamics
and the constraints, explicitly. NMPC is based on solving an OCP given
the current state x̂0 of the system. Only the first element of the optimized
input trajectory is applied to the system, then the state is measured and
the OCP is solved again based on the new state measurement to close the
loop.

We define the decision variables as the predicted state and control
input with xp := {x0, . . . ,xN} and up := {u0, . . . ,uN−1}, respectively,
such that an NLP formulation can be stated as:

min
xp,up

N−1∑︂
k=0

ℓ (xk,uk,ak) + ℓT (xN) (5.1a)

s.t. x0 = x̂0, (5.1b)

xk+1 = f (xk,uk,ak) , k ∈ IN−1
0 , (5.1c)

h (xk,uk,ak) ≤ 0, k ∈ IN−1
0 , (5.1d)

65

where, ℓ : Rnx × Rnu × Rna → R is the stage cost function; ℓT : Rnx → R
is the terminal cost function. The initial condition (5.1b) is expressed by
setting x0 equal to the state estimate x̂0 received from the state estimator.
The vector of model parameters ak is not optimized but it is computed
externally by the reference generator and provided to the optimization
problem formulation. The nonlinear system dynamics are introduced by
the equality constraints (5.1c). Finally, the path constraints are included
with (5.1d) which, for example, can be bounds on the decision variables.
The NLP (5.1) is defined for a prediction horizon T that is divided into N
discrete time control intervals of lengths Ts = T

N . Hereafter, we will refer
to Ts as the sampling time.

5.2.1 Cost

In our NMPC formulation we use a cost function of the form:

ℓ (xk,uk,ak) = ℓt + ℓm + ℓr, (5.2a)

ℓt = ∥ xk − xref
k ∥2Q + ∥ uk − uref

k ∥2R, (5.2b)

ℓm = ∥ Cphfk − Cp
ref
hfk
∥2M, (5.2c)

ℓr = ρ ∥ Kuk ∥2P (5.2d)

• The tracking cost (5.2b) is associated to state and control input and
the references trajectories xref

k ,uref
k are provided by the reference

generator for each sampling instance k (refer to Section 5.4).

• The mobility cost (5.2c) is one of the contributions of this work that
accounts for improving the leg mobility by penalizing the differ-
ence between the hip-to-foot distance Cphf and the reference value
Cp

ref
hf of maximum mobility. This cost allows the NMPC to optimize

the robot base orientation (e.g. align it to the terrain shape) in order
to increase the leg mobility which has as a desirable consequence to
stay far from kinematic limits during locomotion. The derivation
of Cp

ref
hf is detailed separately in Section 5.3.1.

• In some locomotion scenarios Focchi et al. (2016), to cope with un-
certainties in the contact normal estimation and increase robustness
to external disturbances, it is desirable to have the GRFs fi as close
as possible to the center of the friction cone. This can be achieved
with by penalizing X-Y components of u in a frame K (see Fig. 23)
that is aligned to the normal of the contact and it is included in our

66

cost function by a control input regularization term (5.2d), refer to
Section 5.3.3 for the details.

The positive definite weight matrices Q ∈ Snx
+ ,R ∈ Snu

+ , M ∈ S12+ ,
P ∈ Snu

+ act as important tuning parameters in the NMPC formulation.
The regularization factor ρ decides the trade-off between force robust-
ness cost (5.2d) and both the tracking (5.2b) and mobility (5.2c) cost. Fi-
nally, we define the terminal cost ℓT =∥ xN−xref

N ∥QN
and use the weight

matrix QN = Q for this cost.

5.2.2 Robot Model

The inertial frame W and the CoM frame C are shown in Fig. 23. The
CoM frame is aligned with the base of the robot and its origin is located
at the CoM.

Figure 23: HyQ schematic showing the inertial frame (W), the CoM frame
(C) attached to the CoM of the robot, and the contact frame (K). The robot
legs are shown in the default configuration.

We use a simplified reduced-order SRBD model Winkler et al. (2018)
defined in a 6D space that describes the translational and angular dy-
namics of the robot while neglecting the dynamics of its swinging legs.
This is a valid approximation for the HyQ robot because most of its mass
is concentrated in the base, as mentioned in Semini et al. (2011) (the mass
of the base is 61 kg and the mass of each leg is 6.5 kg). The robot is approx-
imated as a rigid body with the inertia computed considering the robot

67

in a default leg configuration as shown in Fig. 23. We choose to define
the SRBD model in the CoM frame (specifically the angular dynamics)
because this choice yields a constant inertia tensor. Thus, the angular dy-
namic equations are much simpler i.e., less non-linear because the inertia
tensor is not time varying. In the SRBD model, GRFs are applied as in-
puts to control the position and orientation of the robot base. The SRBD
model is:

mv̇c = mg +

4∑︂
i=1

δifi (5.3a)

CIc Cω̇ + Cω × CIcCω =

4∑︂
i=1

δiCpcf,i × Cfi (5.3b)

where m is the robot mass, v̇c ∈ R3 is the CoM acceleration, g is the
gravitational acceleration, fi ∈ R3 is the ground reaction force at foot
i, CIc ∈ R3×3 is the inertia tensor computed at the CoM frame origin,
Cω̇ ∈ R3 is the angular acceleration of the robot’s base, pcf,i ∈ R3 is the
distance between the CoM position pc ∈ R3 and the position pf,i ∈ R3 of
foot i. We introduce binary parameters δi = {0, 1} to define whether foot
i is in contact with the ground and can therefore generate contact forces
or not.

The robot dynamics governed by (5.3) can be expressed as the
continuous-time state-space model:⎡⎢⎢⎣

ṗc

v̇c

Φ̇

Cω̇

⎤⎥⎥⎦ =

⎡⎢⎢⎣
vc

1/m
∑︁4

i=1 δifi + g
E′−1(Φ)Cω

−CI
−1
c (Cω × CIcCω) +

∑︁4
i=1 δiCI

−1
c Cpcf,i × Cfi

⎤⎥⎥⎦ (5.4)

where vc is the CoM velocity of the robot. The robot base orientation
is represented by the sequence of Z-Y -X Euler angles 1 Diebel (2006)
Φ = (ϕ, θ, ψ) i.e., roll (ϕ), pitch (θ) and yaw (ψ), respectively. The relation
between the Euler Angles rates Φ̇ and angular velocity Cω is well-known
and discussed in Appendix A for the sake of completeness. We define
the state and control vectors as x = (pc, vc, Φ, Cω), and u = (f1, . . . , f4).

1Note that Euler angles can suffer from singularities that occur in certain configura-
tions Younes et al. (2012). Because in this work we do not consider motions that involve
such configurations, using Euler angles does not pose any issue. A singularity-free imple-
mentation is out of the scope of this work and is left for future research.

68

Equation (5.4) can be concisely written as:

ẋ(t) = g(x(t),u(t),a(t)), (5.5)

where a = (pf , δ) is a vector of parameters that includes the feet posi-
tions pf and the contact status δ ∈ R4. One of the things required by the
NLP formulation 5.1 is a model of the robot.

The rigid-body dynamics (5.5) are discretized using numerical integ-
ration Quirynen (2017); Butcher (2003); Hairer et al. (1993, 1996) to obtain
the discrete-time model:

xk+1 = f (xk,uk,ak) , (5.6)

which defines equality constraints (5.1c) imposed at every stage k in
MPC to ensure that the state trajectory satisfies the system dynamics for
the given control inputs.

One specific feature of legged robots is the need to ensure that the
values of the GRFs equal to zero for a swinging leg. This is typically
done by introducing complementarity constraints Cebe et al. (2020); Vil-
larreal et al. (2020). These constraints, however, pose several difficulties
in the solution of the optimization problem, since the vast majority of the
NLP algorithms cannot handle them and tailored solvers are required.
Ultimately, this results in a significant increase in computation time. An
alternative to complementarity constraints consists in providing the se-
quence of contact status δ as input parameters in the state space model
(5.5). In this manner, a contact mode δi is multiplied with the terms in-
volving force fi in (5.4) and the contribution of that force is nullified dur-
ing the swing phase of the corresponding leg i. Hence, there is no more
need to include complementarity constraints separately in (5.1) which
results in fewer constraints and, consequently, in a relatively smaller
NMPC formulation.

5.2.3 Friction Cone and Unilateral constraints

Friction cone and unilateral constraints used by the NMPC formula-
tion are detailed in section 4.4.1. These constraints are represented by
h (xk,uk,ak) ≤ 0 in the NMPC formulation.

69

5.3 Locomotion-Enhancing Features

In this section we discuss the main distinctive features of our approach,
which we found relevant to improve locomotion ability of our quad-
ruped robot. These features are mobility, force robustness and ZMP margin.

5.3.1 Mobility and Mobility Factor

Terrain adaptability is vital when it comes to locomotion of the legged ro-
bots. Adjusting the posture of the robot depending on the environment is
important for safe locomotion. A way to enable our NMPC to choose ro-
bot orientation adaptively to any terrain is to employ the concept of mo-
bility Focchi et al. (2017). In order to rigorously discuss mobility in math-
ematical terms, we first define it in words as the attitude of a manipulator
(leg) to arbitrarily change end-effector position/orientation Sciavicco
et al. (2000).

In order to penalize low leg mobility in the cost function (5.2c) we
need to compute the reference value of hip-to-foot distance Cp

ref
hfk

. Our
goal in this section is to define a convenient metric to represent mobility
and compute Cp

ref
hfk

corresponding to the maximum value of such a met-
ric. Among several ways to compute mobility Focchi et al. (2017), the
velocity transformation ratio Yoshikawa (1984) allows one to evaluate
mobility in a particular direction. However, the velocity transformation
ratio cannot be used in our setting because it requires prior knowledge
of the evolution of the relative foot position with respect to CoM. In our
case it is not available in advance because it is an output of the NMPC.

As an alternative approach, we consider the volume of the manipulab-
ility ellipsoid

(︁
v(JJ⊤)−1v = 1

)︁
Sciavicco et al. (2000) as a metric to eval-

uate mobility. A change in the volume of the manipulability ellipsoid
with different leg configurations is visualized in Fig. 24 (left). Inspecting
Fig. 24 (top right), it can be seen that the maximum volume V is in the
vicinity of the most extended leg configuration because the mobility be-
comes very big in the X and Y direction, even if it is still very limited in
the Z direction. However, because it is desirable to achieve a good mo-
bility in all the directions of the leg configuration, a better metric is the
one that also accounts for the isotropy of the manipulability ellipsoid. A
measure of the isotropy of an ellipsoid can be expressed as the inverse of
its eccentricity E. Hence, a new manipulability index that we call mobility
factor (5.7) can be defined in terms of both the eccentricity and the volume
of manipulability ellipsoid. Again from Fig. 24, it can be visualized that

70

-0.8
0

-0.6

0.5-0.2

-0.4

-0.2

-0.4

0

0

0

2

4

6

0.2 0.4 0.6
0

50

100

Figure 24: Manipulability ellipsoid changing with leg configuration (left) of
the right front leg. Volume of the ellipsoid (top right) and Eccentricity of the
ellipsoid (bottom right).

to keep a good mobility (left plot) in all directions, the volume (top right
plot) should be maximized while the eccentricity (bottom right plot) as
small as possible. Defining a foot Jacobian J(q) ∈ R3×3 computed at
a particular joint configuration q, the volume V of a manipulability el-
lipsoid is evaluated as a product of the eigenvalues of

(︁
J(q)J(q)⊤

)︁−1

while the eccentricity is the ratio between its maximum and minimum
eigenvalue Focchi et al. (2017). First, the volume and eccentricity of ma-
nipulability ellipsoid are normalized by their ranges V̄ and Ē. Then we
define the mobility factor as:

mf = β
V

V̄
− γE

Ē
(5.7)

The minus sign in (5.7) represents conflicting contributions of the V and
E in the definition of the mobility factor (i.e. the goal is to achieve high
volume and low eccentricity). Parameters β and γ are introduced to find
a best trade-off between volume and eccentricity while deciding a mo-
bility factor.

The mobility factor is a convex nonlinear function mf : R3 → R that
can be numerically evaluated inside the workspace of each leg. By se-

71

-0.7 -0.6 -0.5 -0.4
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-4

0.2

-2

0.20

0

0
-0.2 -0.2

Figure 25: Slices of the mobility factor function for the RF leg: the left figure
plots it against the X-Y components keeping Z constant. The red dot in
the left plot represents the maxima. The right figure plots it against the Z
component for a constant X-Y foot position.

lecting β = 1 and γ = 4, and after conducting a numerical analysis for all
the feet positions in the workspace of a leg of the HyQ robot we found
that hip-to-foot distance Cphf = (0, 0,−0.55)m maximizes mf . In Fig.
25 (left) we show a slice of the scalar function mf in the X-Y plane for
Cphf,z = −0.55m obtained for the RF leg. Instead, in Fig. 25 (right) we
plot mf against the change of foot position in the Z direction consid-
ering the hip under the foot (X = 0, Y = 0) which clearly highlights
Cphf,z = −0.55m corresponding to the maximum value of the mobility
factor mf (i.e., around 0.41). We use the output of this analysis as a ref-
erence for the hip-to-foot distance Cp

ref
hf in the mobility cost (5.2c) for all

the legs.
In the mobility cost, we multiply δi to the term corresponding to the

ith leg. Thus, the mobility cost solely accounts for stance legs because the
robot can only use them to control its base orientation. Since, including
the mobility cost enables NMPC to provide the optimal base orientation
for a particular locomotion that retains mobility, there is no need to sep-
arately specify tracking cost for roll and pitch in the NMPC. This relieves
a user from the burden of implementing a customized heuristic (e.g., to
align the robot base to the terrain), as was necessary in, e.g., Focchi et al.
(2020a); Gehring et al. (2015); Villarreal et al. (2020). The relative tracking

72

task for the CoM Z position is no longer required either, because maxim-
izing the mobility in the Z direction automatically takes care of keeping
an average distance of hips from the terrain to Cphf,z, consequently keep-
ing the robot base at a certain height.

Moreover, the yaw motion results by penalizing the mobility cost
along the X-Y directions. This has the effect of driving the hips of the
robot base over the feet, naturally aligning the base to the feet, similar
to what was done in Raiola et al. (2020). However, a tracking cost on
yaw was still necessary in the NMPC to track the heading velocity ωusr

z

commanded by the user and to avoid oscillations.
Remark: The concept of mobility is model independent hence, it can

also be used with other models such as full body dynamics in the MPC
setting.

5.3.2 ZMP Margin

In legged locomotion, the robot is often operated close to unstable con-
figurations which require a controller to continuously compensate for
model inaccuracies and external disturbances while maintaining loco-
motion stability. However, a configuration in which the ZMP Wieber
(2006) is close to the boundary of the support polygon Bretl and Lall
(2008) could cause instability even with small perturbations due to the
loss of control authority.

In our case, the reference generator computes references for the GRFs
by dividing the robot mass with the number of legs as explained in Sec-
tion 5.4. Penalizing GRFs Z component heavily in the tracking cost (5.2b)
ensures that they stay close to the reference, consequently maintaining a
higher loading on the diagonally opposite leg to the swinging one, and
therefore maintaining some margin for the locomotion stability. To eval-
uate the locomotion stability, we define the ZMP margin which is com-
puted as the minimum of the distance of the ZMP from each support
polygon edge, i.e.,

mc = min(d) (5.8)

where d is a vector of the distances of ZMP projection (on a horizontal
plane) from the support polygon edges.

73

5.3.3 Force Robustness

Similar to the considerations on mobility, in order to effectively com-
pensate for disturbances acting on the system, robustness in the GRFs
is required. The closer the GRF is to the friction cone boundary, the less
lateral force is available to compensate for perturbations. An approach
penalizing GRFs that are in the vicinity of the cone boundaries has been
proposed in Focchi et al. (2016); Fahmi et al. (2020) inside the WBC. These
WBC based approaches instantaneously generate GRFs that are as close
as possible to the normals of the cones while yielding the prescribed res-
ultant wrench on the robot base. However, WBC does not account for the
future state of the robot and hence, it leaves some room for the NMPC
to compensate for the contact normal estimation error and recover from
external disturbances. Introducing these margins on GRFs from the cone
boundaries is especially important in some scenarios, such as the one
reported in simulation in Section 5.7.2.

In this paper, we adopt a similar idea to Focchi et al. (2016); Fahmi
et al. (2020) and introduce the additional cost term (5.2d) in the NMPC,
which penalizes the tangential components of GRFs in the contact frame
K (see Fig. 23) to obtain the resultant GRFs as close as possible to the
contact normals. The weight matrix P used in this cost is defined in Table
5 (Chapter 5.7). Note that it is required to penalize the X-Y components
higher than Z component of GRFs in the contact frame to achieve this
behaviour.

5.4 Reference Generator

In our approach, the NMPC requires a reference trajectory of the state
and control input along with the model parameters i.e., foot positions
and contact status. For the very first run of the NMPC, this reference
trajectory also serves as an initial guess. The references are generated for
the length of control intervals N , since the reference generator is called
before every iteration of the NMPC in order to obtain prompt adaptation
to terrain changes and user set-point. Our reference generator is based
on heuristics and it takes as inputs:

• the user commanded longitudinal and lateral CoM velocity
Hvusr

c ∈ R2 in the horizontal frameH,1

1The horizontal frame is placed like the CoM frame but with the Z-axis aligned with
the gravity

74

• user commanded heading velocity ωusr
z ∈ R,

• current pose of the robot (pc,Φ),

• current feet positions pf ∈ R12,

• heightmap of the terrain

The reference generator outputs:

• the references for the NMPC cost: states xref ∈ Rnx×(N+1), control
uref ∈ Rnu×N ,

• parameters a of the model: sequence of the contact status δ (∈
R4×N) and sequence of the foot locations pf (∈ R12×N),

• normals of the terrain at the foothold locations, which are provided
as inputs to the NMPC for the cone constraints.

First we compute the X-Y components of the total velocity vref
c ∈ R3,

which depend on both vusr
c and the X-Y components of the tangential

velocity due to the heading velocity1 ωusr = (0, 0, ωusr
z).

vref
c,(x,y) = vusr

c + (ωusr × pref
c)(x,y) (5.9)

The X-Y CoM position pref
c,(x,y) is obtained by integrating the vref

c,(x,y) (in
the world frame) with the explicit Euler scheme. The references for CoM
Z, roll and pitch are set to 0 because we do not track them in the NMPC
cost (5.2b). Instead, the reference for the yaw ψ is obtained by integrating
the user defined yaw rate ψ̇

usr
with Φ̇

usr
= E−1(Φref)ωusr (see Appendix

A for the transformation between angular velocity and Euler rates). The
reference for angular velocity, instead, coincides with ωusr.

The references for GRFs uref are calculated by simply dividing the
total mass of the robot by the number of legs in stance. Dividing the
forces equally onto the legs is correct only if the robot is static, but, in
case of dynamic conditions, it is a better approximation than passing no
references to the NMPC.

The sequence of contact status δ and of footholds are computed by the
gait scheduler and robocentric stepping strategy, respectively. It is import-
ant to mention that the reference generator does not compute the swing
trajectories and they are obtained from the WBC interface discussed in
Section 5.5.1.

1Note that if the vref
c,(x,y)

is computed in the CoM frame, then the contribution of head-
ing velocity is null.

75

Premature
haptic flag

Delayed
haptic flag

Gait counter

Gait counter

Figure 26: Gait schedule for a walk. Offsets o = [0.05, 0.3, 0.55, 0.8], duty-
factors Df = [0.85, 0.85, 0.85, 0.85]. The red arrows represent the trigger
ltri for a swing leg i. Right part shows the fast-forwarding (top) or re-
winding (bottom) of the gait counter to recover synchronization between
actual (haptic) and planned touchdown.

5.4.1 Gait Scheduler

The gait scheduler is logically decoupled from the reference trajectory
generation and determines if a leg is either in swing or in stance (δi) at
each time instance for the entire gait cycle as shown in Fig. 26 (left).

The leg duty factor Di and offsets oi can be used to encode different
gaits such as crawl, trot and pace. The gait scheduler implements a time
parametrization s ∈ [0, 1] (stride phase) which is normalized about the
cycle time duration Tc such that the leg duty factor Di and offsets oi are
independent from the cycle time. Each trigger ltri (red arrow in Fig. 26
(left)) corresponds to a new lift-off event. We can express the value of δ
for leg i as:

δi =

{︄
1, s < oi ∨ s > ((oi + (1−Di)) mod 1)

0, otherwise
(5.10)

Every time the reference generator is called, it extracts N points from
the gait schedule starting from an index called gait counter. It keeps
memory of the index of the gait schedule achieved by the previous call
of the reference generator. The synchronization between the first point

76

of a contact sequence δik computed by the reference generator and the
actual contact state of the robot avoids the reference generator to com-
pute a zero reference force while the leg is in stance and vice-versa. In
case of premature or delayed touchdown events, the synchronization is
lost and the gait counter is shifted backwards or forward to re-conciliate
the planned touchdown with the actual touchdown as shown in Fig. 26
(right). This is a crucial feature when dealing with rough terrains.

5.4.2 Robocentric Stepping

The choice of foothold is a key element in locomotion, since it deals with
the kinematic limits of the robot. Inspired by Raibert (1986), we use an
approach that continuously computes footholds consistent with the cur-
rent position of the robot. To compute a foothold for a swinging leg i, we
consider its hip position hi instead of using the foot position at the mo-
ment of lift-off. In this way a disturbance acting on the robot or a tracking
error occurred during a swing can be recovered in the following swing.
For leg i, dropping the index to simplify the notation and defining the
lift-off trigger as ltrk = δk ∧ δk+1, the foot position is computed as:

pfk+1
=

{︄
ptd
fk

ltrk = 1

pfk ltrk = 0
(5.11)

Notice that at the lift-off condition ltr = 1 at instance k, pf is set equal
to the touchdown point ptd

f and it is kept constant until the next lift-off
event occurs. The X-Y component of the touchdown point is given by:

ptd
fk,(x,y)

= hk + αT d
sw(v

usr
c + (ωusr × pbh)(x,y)) (5.12)

The second term in (5.12) represents the step length (red arrow in Fig. 27)
which is computed with respect to the hip instead of the previous foot
location. Parameter α is an empirically chosen scaling factor. Parameter
T d
sw is the default swing duration computed starting from user-defined

offsets o and duty-factors Df . The distance between hip and center of
the base is denoted by pbh ∈ R3. A 2.5D heightmap of the terrain is eval-
uated in correspondence of the touchdown point ptd

fk,(x,y)
to obtain ptd

fk,z

that does not penetrate the terrain. If ptd
f is located near to an edge or

leads to collisions (e.g., of the foot or the shin) during the step cycle, this
can be harmful for the robot’s balance. To prevent this from happening,
the robot acquires a local heightmap in the vicinity of the touchdown

77

Figure 27: Representation of the robocentric stepping strategy and of the
Swing Frame, located at the lift-off point. The red arrow shows the distance
between the touchdown point ptd

f and the hip h. The blue vector Lsw con-
nects lift-off and touchdown point.

point ptd
f and adjusts the foot landing location using the Vision-based

Foothold Adaptation (VFA) module presented in Villarreal et al. (2019),
which works as follows.

5.4.3 Vision-based Foothold Adaptation

The robot acquires a local heightmap in the vicinity of the touchdown
location ptd

f extracting it from the full 2.5D heightmap surrounding the
robot. The local heightmap corresponds to a 15× 15 grid centered at ptd

f

with a resolution of 16 cm2. The VFA adjusts the foot landing location
to avoid collisions, sharp edges, narrow gaps/holes, and footholds that
are outside the workspace of the swinging leg, using a pre-trained CNN.
The CNN has low computational time (≈ 0.2ms per adjustment), which
allows the robot to adapt the landing location of the feet without com-
promising the computation of the control action provided by the NMPC.
Details on how the CNN is trained can be found in Villarreal et al. (2019).

78

5.5 Whole-Body Controller

In this section, we describe the WBC that tracks planned trajectories xp

and up provided by the NMPC. The WBC first computes feed-forward
Wd

ff and feedback Wd
fb wrenches from the planned trajectories and then

the sum of these wrenches are mapped into GRFs through the QP op-
timization (5.16). The WBC also maps the GRFs into the joint torques
τ ∗. This joint torque along with low-impedance feedback torque τfb res-
ults in the total torque τd required by the low-level joint torque control
block. Refer to Fig. 22 for the block representation of WBC inside our
locomotion framework.

5.5.1 WBC Interface

In our planning framework, the NMPC runs at re-planning frequency of
25Hz whereas the WBC requires state and control inputs at 250Hz (we
will call this the WBC frequency). Hence, we introduce a WBC interface
block that re-samples state and control inputs at the WBC frequency. In
particular, in order to obtain the desired ud we use a zero-order hold filter
of up. The planned states xp from the NMPC, instead, are re-sampled
with a linear interpolation to obtain xd. 1

Finally, the feed-forward wrench Wff ∈ R6 is computed from the
desired GRFs ud as:

Wd
ff =

[︂∑︁4
i=1 u

d
i

∑︁4
i=1 p

d
cf,i × ud

i

]︂⊤
(5.13)

5.5.2 Feedback Wrench

We use the approach of Focchi et al. (2016) to define desired feedback
wrench obtained from a Cartesian impedance and briefly recall it next
for completeness:

Wd
fb = K

[︃
pd
c − pc

e(wR
⊤
b wRd)

]︃
+D

[︃
vd
c − vc

ωd
b − ωb

]︃
(5.14)

where wRb and wRd ∈ R3×3 are the rotation matrices representing ac-
tual and desired orientation of the base with respect to the inertial frame,

1The rigorous approach is to use the model (5.3) to predict the evolution of the system
in the Ts time interval, considering the up coming from the NMPC, but for the motions
considered in this paper the result is very similar, so a linear interpolation is a fair approx-
imation.

79

respectively, e(·) : R3×3 → R3 is a mapping from a rotation matrix to the
associated rotation vector. Matrices K and D are diagonal matrices con-
taining the proportional and derivative gains and they can be interpreted
as impedances.

Remark: At each re-planning instance of NMPC, the state reference
is computed from the current state of the robot x̂0. Thus, at each re-
planning instance the feedback term is nullified.

5.5.3 Projection of the GRFs

While the feedforward wrenches Wd
ff provided by MPC satisfy the fric-

tion cone and unilateral constraints by construction, this guarantee is
lost with the addition of the feedback term Wd

fb to the wrenches. There-
fore, one needs to project the total wrenches Wd

ff + Wd
fb onto the set of

wrenches that satisfy the constraints. The matrix representation

[︃
δ1I . . . δ4I

δ1 [pcf,1×] . . . δ4 [pcf,4×]

]︃
⏞ ⏟⏟ ⏞

A

⎡⎢⎣ f1
...
f4

⎤⎥⎦
⏞ ⏟⏟ ⏞

f

= Wd
ff +Wd

fb⏞ ⏟⏟ ⏞
b

(5.15)

is derived from a simplified SRBD model Focchi et al. (2016) and allows
us to map the desired wrenches into GRFs . To compute the desired GRFs
fd we solve the following QP:

fd = argmin
f

∥ Af − b ∥2Sw
+ ∥ f − ud ∥2Tw

(5.16a)

s.t. d ≤ Cf ≤ d (5.16b)

The term ∥ f −ud ∥2Tw
in the cost (5.16) allows the tracking of the desired

forces ud received from the NMPC. Matrices Sw ∈ S6+ and Tw ∈ S12+ are
positive-definite weight matrices. Inequality (5.16b) encodes the friction
cone and unilateral constraints similar to (4.5) for which further details
can be found in Focchi et al. (2016). It is important to note that gravity
compensation is already incorporated in the NMPC formulation through
the SRBD model.

80

5.5.4 Mapping GRFs to Joint Torques

The GRFs fd must be mapped into joint torques τ ∗. We do so by exploit-
ing the joint dynamics:

τ ∗ = −J(q)⊤fd + h(q, q̇) (5.17)

where J(q) ∈ Rnu×n is the contact Jacobian and h(q, q̇) the vector of
gravity/Coriolis terms in the leg joint dynamics. The number of joints is
denoted by n. We neglect the joint acceleration contribution, because it
is very small with respect to the other terms.

5.5.5 Joint-Space PD

A 1 kHz Joint-Space PD is put in cascade with the WBC before send-
ing torques to the low-level controller. In this way, we track the de-
sired trajectories of the swinging legs and we increase the robustness in
case a foot loses contact with the ground. The WBC interface provides
the joint trajectories qd and q̇d required by the Joint-Space PD. To com-
pute the joint trajectories, inverse kinematics is required which in turn
needs the swing trajectory psw

f . We define the swing frame S Raiola et al.
(2020) (Fig. 27), whose X-axis is aligned with the vector that links lift-off
and touchdown point (Lsw), Y -axis is perpendicular to the X-axis of the
swing frame and to the Z-axis of the world frame. Finally the Z-axis is
such that S is a counter-clockwise coordinate system. The origin of the
swing frame S coincides with the lift-off point. In this way the swing
trajectory lies on the X-Z plane and we shape it as a semi-ellipse with
Lsw and Hsw as lengths of the axes:

Sp
sw
f =

⎡⎣Lsw

2 (1− cos(πfswtsw))
0.0

Hswsin(πfswtsw)

⎤⎦ (5.18)

where tsw is the time elapsed from the beginning of a swing and fs =
1/T d

sw is the swing frequency. We map Sp
sw
f and its derivative in the iner-

tial frameW to obtain psw
f and ṗsw

f , respectively. Finally, after evaluating
the relative foot position Cpcf and velocity Cṗcf we can obtain qd and q̇d

via inverse kinematics.

81

5.6 Real-Time Iteration for NMPC

One of the main drawbacks of NMPC is its computational burden,
thus efficient tailored algorithms are necessary in order to achieve fast
sampling rates for complex systems with fast dynamics. While many
approaches have been developed for optimal control, a complete discus-
sion about all possible approaches is beyond the scope of this paper. We
focus on direct multiple shooting methods derived from SQP that have
been specifically developed for real-time NMPC Diehl et al. (2005a).

In multiple shooting methods both state x and control input u are
decision variables unlike in single shooting where the decision vector
only includes the control input. We ought to stress that this does not
increase the computational complexity with respect to single shooting
(where computations are moved from linear algebra to the evaluation of
derivatives). Furthermore, multiple-shooting allows one to provide an
initial guess also for the state trajectory, which is typically beneficial for
unstable systems in an NMPC context Diehl et al. (2005a).

While in SQP one solves several QPs until convergence is reached,
the RTI scheme consists in solving a single QP per sampling time. This
is motivated by the observation that in NMPC two subsequent problems
have very similar solutions. Therefore, by reusing the solution of the
previous NMPC problem, one obtains a very good initial guess for the
next problem, which essentially only needs to correct for external per-
turbations and model mismatch. For all details on the RTI scheme, we
refer to Diehl et al. (2005b); Gros et al. (2020) and references therein. We
limit ourselves to observe that, since the linearization trajectory (xL

k ,u
L
k)

is known before the next state measurement is available, one can already
evaluate the functions and their derivatives (4.7) before the initial state
x̂0 is available. Consequently, the QP can be constructed and prepared
beforehand; note that this also includes the first factorization of the QP
Hessian. Once x̂0 is available, one only has to finish solving the QP.
Therefore, while the overall sampling time must still be long enough to
prepare the next QP, the latency between the time at which x̂0 is avail-
able and the time at which the control input can be applied to the system
is very small. Algorithm 3 covers the steps involved in the RTI scheme.

Note that in the RTI scheme proposed above, the functions and their
derivatives (4.7) are evaluated along a guess obtained from the previ-
ous solution, rather than along the reference trajectory. Another import-
ant aspect to highlight is the fact that there exist several approaches to
compute (4.7). One choice consists of first linearizing the continuous-

82

Algorithm 3 RTI for NMPC

Input: reference trajectory xref ,uref and parameter a
Preparation phase:

1: if FirstIteration then
2: Set initial guess to reference trajectory

(xL,uL)← (xref ,uref)
3: else
4: Set initial guess to shifted (xL,uL)

xL(k)← x(k + 1) ∀k = 0, 1, · · · , N − 1
xL(N)← x(N − 1)
uL(k)← u(k + 1) ∀k = 0, 1, · · · , N − 2
uL(N − 1)← u(N − 2)

5: end if
6: Evaluate rk,hk and the sensitivities Ak,Bk,Ck,Dk,Hk, Jk at

(xL,uL,a) according to (4.7)
7: Formulate QP (4.6) omitting x̂0 and prepare all possible computa-

tions
Feedback phase:

8: Read and pass initial state x̂0 to QP (4.6) to compute (∆x,∆u)
9: Take the full Newton step

(xL,uL)← (xL,uL) + (∆x,∆u)
return NMPC solution (xP,uP) = (xL,uL)

83

time system dynamics and then using the matrix exponential to obtain
a discrete-time linear system. This approach presents some advantages,
but can be computationally demanding. For the time-varying and in-
feasible references, however, it is preferred to first discretize and then lin-
earize Gros et al. (2020). In this work we deal with time-varying and
infeasible references, hence we opt for first discretize and then linear-
ize approach. An advantage of this apporach is that after numerically
approximating the discrete-time dynamics, the linearization can be ob-
tained at a desired accuracy.

A very popular way to obtain discret-time dynamics is with the ex-
plicit Euler integrator, which is computationally inexpensive, but can be
inaccurate and unstable. Therefore, it is usually more efficient to resort to
higher-order integration schemes, such as, e.g., the popular Runge-Kutta
methods. Finally, we should further stress that there also exist implicit in-
tegration schemes, which require more computations per step, but they
are typically much more stable and accurate than explicit schemes for
some classes of systems. Unfortunately, the selection of the least compu-
tationally demanding integrator which delivers sufficient accuracy de-
pends on the problem setting and typically requires some trial-and error
approach, which can be educated using some guidelines based on the
theoretical properties of each integrator Quirynen (2017); Quirynen et al.
(2014); Hairer et al. (1993, 1996); Butcher (2003).

In this work, we relied on the RTI implementation provided by
acados Verschueren et al. (2019), which consists of tailored efficient
implementations of QP solvers, numerical integration schemes, and all
other components of the RTI scheme.

5.7 Simulation and Experimental Results

In this section we discuss the implementation details and results ob-
tained from the simulations and experiments with the NMPC scheme
proposed in Chapter 5.

5.7.1 Implementation Details

To check the efficacy of our RTI based NMPC algorithm with the pro-
posed features mentioned in Section 5.3, we performed several simula-
tions and experiments in challenging scenarios. The simulation and ex-
periments were performed on the HyQ robot of mass m = 87 kg. The

84

CoM is computed considering the mass of the individual link of the ro-
bot and the actual position of the links’ CoM. The position of the links’
CoM in their local frame is obtained from their CAD models. The feed-
back gains used in the WBC are K = diag(1500, 1500, 1500, 100, 100, 100)
and D = diag(1000, 1000, 1000, 50, 50, 50). We chose the weights Sw =
diag(5, 5, 10, 10, 10, 10) and Tw = diag(1000, · · · , 1000) for the QP (5.16).
The parameters and weights used by the NMPC are reported in Table 4
and 5, respectively. In all of our simulations and experiments, we do not
set any weights on the CoM position (pc), roll (ϕ) and pitch (θ) tasks be-
cause we wanted the NMPC to sort out these CoM quantities autonom-
ously.

Table 4: NMPC parameters

Parameter Symbol Value Unit

Number of state nx 12 -
Number of control inputs nu 12 -
Number of model parameters na 16 -
Prediction horizon T 2 s
Sampling time Ts 0.04 s
Number of control intervals N 50 -
Friction coefficient µ 0.7 -
GRFs lower bound f z 0 N

GRFs upper bound f z 500 N
Hip-to-foot distance reference Cp

ref
hf,i (0.0, 0.0,−0.55) m

Regularization parameter ρ 3× 10−5 -

Discretization

For discretization of the dynamic constraints, we mainly investigated
two integration schemes, i.e, a single step of the explicit Euler of order 1
and implicit midpoint method of order 2 due to their low computational
complexity that favors our real-time implementation needs. We chose
the implicit midpoint method of order 2 because of its stability and ac-
curacy properties. The sampling time Ts = 40ms was chosen and it was
sufficient to conduct NMPC computation online along with the other ne-
cessary computations for the re-planning.

85

Table 5: Weights used in the NMPC

Cost Weight Value

State

Qpc
diag(0, 0, 0)

Qv diag(100, 100, 100)
QΦ diag(0, 0, 100)
Qω diag(100, 100, 1000)

Force
Rx 1× 10−3

Ry 1× 10−3

Rz 8× 10−4

Mobility
Mx 1× 10−4

My 2× 10−3

Mz 1000

Force
robustness

Px 100
Py 100
Pz 1

NMPC Software

We use the acados software package Verschueren et al. (2019) to im-
plement the RTI scheme described in Section 5.6. Since acados comes
with a Python interface allowing rapid prototyping, we first tuned the
algorithm in simulation and then used the generated C-code to per-
form real experiments. We employ the QP solver High-Performance In-
terior Point Method (HPIPM) Frison and Diehl (2020), which exploits
the sparsity structure of the MPC QP sub-problem (4.6), and supports
inequality constraints.

The computation time required by the NMPC was in the range of 5-
7ms with the prediction horizon of 2 s and control intervalsN equal to 50
on the on-board computer (a Quad Core Intel Pentium PC104 @ 1GHz)
of HyQ for all the experiments. This computation time corresponds to
the feedback phase of the RTI scheme where the QP (4.6) is solved after
receiving the current state of the robot. The preparation phase of the RTI
takes about 2-3ms which is a fraction of the sampling time we chose.
Refer to Section 5.6 for more details on these phases of the RTI scheme.
Even though the computation time of NMPC is mostly consistent, we ob-

86

served some outliers. Hence we opted for a conservative approach to run
the NMPC at 25Hz to guarantee that the computation time stays always
less than 40ms. Besides the computation time of the NMPC, we also ac-
count for the time required by other blocks such as reference generator
so that the total computation time does not exceed 40ms.

Integration with the Locomotion Framework

The NMPC is integrated in a ROS node that publishes xp and up at a
frequency of 25 Hz. The on-board computer along with our locomotion
framework (WBC Interface, WBC, etc., illustrated in Fig. 22) runs a real-
time node that subscribes to the topic of the NMPC ROS node. ROS
is not a real-time operating system, so it can introduce quite a signific-
ant and unpredictable communication delay if the NMPC is run on an
external (e.g. more powerful) computer. These delays are difficult to
compensate for and they can cause a loss of synchronization between
the NMPC ROS node and the WBC interface. Therefore, we decided
to launch the NMPC node natively on the on-board computer to avoid
communication delays between two different computers. Even though
we chose not to use a more powerful dedicated off-board computer for
the NMPC ROS node, we obtained a better performance in the overall
implementation by avoiding the communication delays of ROS.

5.7.2 Simulations

We show our NMPC planner in action on challenging terrain starting
with simulations. The main simulations are pallet crossing, walking over
unstructured rough terrain and walk into a V-shaped Chimney.

Pallet Crossing

In this simulation, HyQ traverses pallets of different heights, placed at
varying distances form each other. This simulation highlights the im-
portance of including mobility in the NMPC formulation (5.2c). In par-
ticular, the simulation scenario includes a set of pallets, each one of 1m
length, with variable heights between 0.13 and 0.17m and placed at un-
equal gap lengths ranging from 0.2 and 0.7m. We performed multiple
trials commanding the robot to move forward at different velocities i.e.,
0.05m/s and 0.1m/s to show the repeatability of our approach. To avoid
stepping on undesired locations such as pallet edges and to prevent foot

87

or shin collisions, the nominal footholds are adjusted by using the VFA
(refer to Section 5.4.2). Fig. 28 shows the results of five different trials for
each of the commanded velocities. The top plot shows the pitch angle
θ of the robot as it traverses the scenario. Since the robot is only com-
manded to move along its X direction with a constant forward velocity
and the foot locations are provided as known quantities to the NMPC,
the adjustment in pitch is the result of minimizing the deviation from the
hip-to-foot distance configuration corresponding to high mobility for all
four legs. Without this feature, the robot would maintain a constant hori-
zontal orientation (see Fig. 29) eventually reaching low mobility in some
legs as shown in the attached video Rathod et al. (2021b) for a single
pallet simulation.

-0.1

-0.05

0

0.05

0.1

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

Figure 28: Simulation of pallet crossing scenario for five different trials com-
manding the robot to cross at 0.1 m/s (blue) and 0.05 m/s (red). The top
graph shows the pitch angle and the dashed vertical lines indicate the edges
of the pallets for that specific location in the plot. The bottom graph shows
the CoM Z position for all the trials and the feet trajectories for one of the
trials performed at 0.1 m/s. The color of swings are related to the different
legs.

We have also showed in the accompanying video Rathod et al.
(2021b) the simulation of a walk on randomly generated rough terrain
(using terrain generation tool by Abbyasov et al. (2020)) with the for-
ward velocity of 0.3m/s further stressing the advantages of mobility cost
mentioned earlier.

88

10 20 30 40 50 60 70 80
-0.2

-0.1

0

0.1

0.2

Figure 29: Comparison of the robot pitch θ in simulation with and without
mobility cost in the NMPC. The red and green lines represent the planned
pitch values delivered by the NMPC. The blue and black dashed lines are
actual pitch of the robot. Without mobility cost, the robot maintains a hori-
zontal orientation, whereas the robot pitches to improve leg mobility when
it is included.

Walk into a V-shaped Chimney

In this simulation, we show HyQ walking at 0.03m/s commanded velo-
city in the X direction into a V-shaped chimney with friction coefficient
µ = 0.7 and walls inclined at 35◦ to the ground. This simulation exploits
the cone constraints and force robustness cost defined inside the NMPC
formulation that is vital for the success of this task. The robot receives
an online update of the map of the environment through an on-board
camera to get the information about the normals at the location of the
contact. These normals are used to formulate the force robustness cost
(5.2d) in the contact frameK. With this cost, the NMPC provides optimal
GRFs to stay close to the normals of the friction cones at the contacts.

As shown in the accompanying video Rathod et al. (2021b), without
the cone constraints the robot slips while climbing the chimney and ul-
timately falls. When the force robustness cost is enabled, the forces are
regularized to stay in the middle of the cones, thanks to the robustness
feature described in Section 5.3.3. In this case the robot walks success-
fully into the chimney. In Fig. 30, it can be seen that the longitudinal
and lateral components of the GRF at the LF foot stay within the bound
µfz (in red) imposed by the cone constraints. Moreover, Fig. 31 plots

89

the normal versus the tangential force of the GRF together with the cone
bound µfz (red line). The picture shows that the GRF stays well within
the bound without any violation. Therefore, including the force regu-
larization term enables the NMPC to account for the estimation error in
the orientation of contact normals and increase robustness to the external
disturbances.

0 2 4 6 8

0

100

200

300

400

Figure 30: Walk into a V-shaped chimney simulation: GRFs of LF leg for a
single gait cycle with cone constraints and regularization cost. Both the lon-
gitudinal fx and lateral fy lie conservatively within the bound µfz imposed
by cone constraints.

0 50 100 150 200 250
0

100

200

300

Figure 31: Walk into a V-shaped chimney simulation: Normal force fz
versus tangential force

√︁
f2
x + f2

y of the LF leg for a single gait cycle ex-
pressed in the contact frame. The red line is the cone bound µfz.

90

0 1 2 3 4 5 6
0

0.1

0.2

0.3

Figure 32: Plot of the ZMP marginmc used to measure locomotion stability.
The robot is pushed immediately after 2 s with lateral force of 200N while
walking on a flat terrain at 0.1m/s CoM X velocity. The discontinuities are
due to the switching between 3/4 stance legs in a crawl gait.

ZMP Margin Simulation

Apart from the simulation mentioned above, we also have added in the
attached video Rathod et al. (2021b), the simulations regarding the ZMP
margin (refer to Section 5.3.2) and the importance of the re-planning at
a higher rate. For the ZMP margin simulation, the robot is pushed with
200N of lateral force for 1 s both in case of sufficient (higher weight on
GRFs Z) and no (lower weight on GRFs Z) ZMP margin. The ZMP mar-
gin plots for this simulation can be seen in Fig. 32 where the ZMP margin
is improved in case of the red line compared to the blue one because the
GRFs Z components are penalized relatively more (100 times) for the red
line. Because of the improved margin the robot walks stably, whereas it
falls while walking when there is no margin.

Re-planning Simulation

In the second simulation, the robot is commanded with a constant CoM
X velocity and heading velocity simultaneously. In case of re-planning
at lower rate of 0.8Hz, the robot becomes unstable and falls due to in-
crease in the model uncertainties and tracking errors. We would like to
stress that when the re-planning is done at a lower frequency than 25Hz,

91

the robot is in open-loop for the time interval between two consecutive
re-planning instances, hence, it is no more NMPC but an online open-
loop trajectory optimization. On the other hand, at a higher re-planning
frequency of 25Hz the robot walks successfully because the NMPC com-
pensates for the model uncertainties and tracking errors.

5.7.3 Experiments

We performed three different experiments to demonstrate the real-time
implementation of our NMPC running on the on-board computer of the
robot as follows.

Omni-directional Walk

With this experiment, we show the omni-directional walk performed by
HyQ with the NMPC on a flat terrain. This experiment validates that
the NMPC computes feasible trajectories after receiving different velo-
city commands from the user while walking. In this experiment, the ro-
bot is commanded with a longitudinal velocity Hvusr

c,x by the user to walk
forward/backward and then a lateral velocity Hvusr

c,y . Finally, a heading
velocity ωusr

z is commanded to turn in the left/right direction. Fig. 33
shows the CoM X-Y position and yaw angle of the robot base and it can
be noticed that the actual values track very closely the planned traject-
ories provided by the NMPC. Fig. 34 depicts the deviation of the actual
velocities from the reference values while following the planned traject-
ories form NMPC. It can be seen in Fig. 35 that the GRFs generated by
the WBC are compliant with the planned values up and again the ac-
tual values of GRFs track closely the planned values. From these plots,
it can be observed that the continuous re-planning with NMPC plays an
important role to achieve good tracking of the planned trajectory.

Traversing a Static Pallet

The purpose of this experiment is to demonstrate that the mobility cost
(5.2c) incorporated in the NMPC formulation provides the necessary
body pitch for the robot to traverse over a static pallet (refer Fig. 37) while
maintaining good leg mobility. The pallet used in this experiment is
0.13m in height and 0.8m in length. Fig. 37 shows that the robot pitches
up while climbing up the pallet and pitches down consequently while
climbing down from the pallet. As shown in the attached video Rathod

92

0

0.5

1

1.5

-0.1

0

0.1

0.2

0 20 40 60 80 100 120

0

0.2

0.4

Figure 33: CoM X-Y position and yaw ψ in omni-directional walk exper-
iment. The blue, dotted red and dashed green line represent the actual,
planned and reference values, respectively.

93

-0.1

0

0.1

0.2

-0.2

0

0.2

0 20 40 60 80 100 120

-0.1

0

0.1

Figure 34: The longitudinal ṗc,x, lateral ṗc,y and angular ωz velocity of the
robot in omni-directional walk experiment. The blue, dotted red and the
green line represent the actual, planned and reference values, respectively.

94

0

200

400

0

200

400

0

200

400

23 24 25 26 27 28 29 30
0

200

400

Figure 35: GRFs from one gait cycle in the omni-directional walk experi-
ment (We show only one cycle for better visibility of the data). The green,
dotted red and dashed blue line represent the output from WBC i.e., fd

z,i,
planned and reference values, respectively.

95

et al. (2021b) in the simulation, the NMPC maintains the horizontal base
orientation when the mobility cost is deactivated. This causes a reduced
hip-to-foot distance while stepping up/down on the pallet ultimately
resulting in low leg mobility. When mobility cost is activated, it directs
the NMPC solution to achieve the necessary pitch that allows to maintain
the hip-to-foot distance at the reference value and hence the leg mobil-
ity is improved. Moreover, the VFA provides the corrected foot position
(i.e., to avoid shin or feet collisions with the edges of the pallet) to the
NMPC and this further enhances the overall locomotion.

Figure 36: IIT’s quadruped robot HyQ traversing a static pallet with the
mobility enhanced real-time NMPC.

0 20 40 60 80 100
-0.15

-0.1

-0.05

0

0.05

0.1

Figure 37: Planned (red) and Actual (dashed blue) pitch of the robot base
while traversing a static pallet in the experiment at a commanded CoM X
velocity of 0.03m/s.

96

Traversing a Repositioned Pallet

In this experiment we test our NMPC to plan the robot motion in real-
time by adapting the changes in the environment with the help of VFA.
As it can be seen from the attached video Rathod et al. (2021b), when the
pallet (0.13m in height and 0.8m in length) is pushed in front of HyQ
while walking, the heightmap detects the pallet and the VFA provides
updated foot locations to the NMPC. The NMPC after receiving these
updated foot locations delivers a solution by pitching up the robot base
in order to adapt to the change in the environment while maintaining the
mobility. Even though the mobility cost is defined for the stance legs, it
is interesting to notice that the NMPC decides to adjust the base pitch
while swinging the RF leg onto the pallet (see Fig. 38) by forecasting
the change in hip-to-foot distance at the touchdown. This experiment
highlights the advantage of the predictive control over the traditional
control apporaches for its ability to incorporate the knowledge of the
future states. It also validates the effectiveness of our mobility cost in the
NMPC coupled with the VFA to adapt to the changes in the locomotion
environment.

-0.15

-0.1

-0.05

0

18 19 20 21 22 23 24 25

-0.5

-0.4

-0.3

Figure 38: Robot base pitch achieved during the swing of RF leg while tra-
versing a repositioned pallet in the experiment a commanded CoM X ve-
locity of 0.05m/s. The red and dashed blue line are planned and actual
values.

97

5.8 Summary

In this chapter, we have introduced our locomotion framework with the
NMPC. Then, we discussed in detail our NMPC formulation and its in-
gredients. We proposed SRBD model with contact status as parameter
that allowed us to eliminate unnecessary complementarity constraints
in the NMPC formulation. Further, we described our features inside
NMPC formulation namely, 1) mobility and mobility factor 2) ZMP mar-
gin 3) force robustness, to enhance environment adaptation during a lo-
comotion in challenging scenarios. After that, we presented a tailored
reference generator for the NMPC, and described the WBC and RTI
scheme for the NMPC. Finally, we have demonstrated the effectiveness
our NMPC in several simulations and experiments for a crawl gait on
HyQ robot.

98

Chapter 6

Two-Stage Optimization

This chapter discusses the two-stage optimization scheme of NMPC with
a novel Optimization-Based Reference Generator (ORG) to perform trot
and pace gait in simulation and experiments. First, we motivate a need
for feasible references for the NMPC formulation. Then, we describe
the ORG formulation that provides the physically feasible trajectory to
the NMPC based on optimization techniques. Finally, we present the
simulation and experimental result on the AlienGo robot with our two-
stage optimization framework.

This chapter briefly explains the author’s contribution to the follow-
ing article. For more details, readers are encouraged to refer to the article.

A. Bratta, M. Focchi, N. Rathod, and C. Semini. Optimization-
Based Reference Generator for Nonlinear Model Predictive Con-
trol of Legged Robots. Robotics 2023, 12(1), 6, 2023. doi:
10.3390/robotics12010006

6.1 NMPC with Optimal Reference Generator

In the previous chapter, we demonstrated the performance of our NMPC
in simulations and experiments with a crawl gait. Crawl is a static-
ally stable gait where the robot follows a regime of switching between
three and four legs in stance alternatively. Because this gait is statically
stable, it does not excite underactuation dynamics to a great extent at

99

lower speeds as compared to the other gaits where a robot has two feet
on the ground during a swing phase, e.g., trot and pace. The under-
actuation dynamics the robot faces while performing these gaits can be
challenging to control, especially during locomotion involving large an-
gular motions. Therefore, in this section, we investigate the performance
of our NMPC for these other gaits. As we will discuss later in the results,
the NMPC moves laterally without feasible references while trotting in a
straight line. Therefore, we propose an approach where the ORG com-
putes feasible references considering the underactuation to drive the ro-
bot to a desired target. These feasible references are passed to the NMPC,
enabling the robot to reach a desired goal while trotting or pacing.

Generally, in an MPC formulation, a tracking cost is involved that
requires references for the optimization variables being tracked. This is
applicable in our NMPC as formulated in (5.2). These references are usu-
ally generated with heuristics, for example, as described in Section 5.4
and Di Carlo et al. (2018). These heuristically generated references might
not be dynamically feasible for particular locomotion. Furthermore, the
performance of NMPC relies on the references used in the cost and might
be hampered when subjected to disturbances such as external push to the
robot. In our case, the references also act as the linearization trajectory
in the first iteration of the RTI scheme used inside our NMPC. Therefore,
it is essential to generate feasible references to increase the robustness of
the NMPC inside our locomotion framework.

In the first part of this chapter, we present the extension of our
locomotion framework with the ORG. Further, we discuss how the
optimization-based reference generator provides feasible references to
the NMPC, improving its performance to compensate for the disturb-
ances acting on the robot while executing a user-defined task. In addi-
tion, we present the results of our modified locomotion framework on an
electric robot AlienGo Unitree (2022).

6.2 Locomotion Framework with the Optimal
Reference Generator

The locomotion framework with our novel ORG is depicted in Fig. 39. In
this framework, in place of a heuristic reference generator, the ORG is in-
cluded that provides feasible/physically informed reference trajectories
to the NMPC to realize a specific goal defined by the user. These ref-

100

erences are utilized by the NMPC to provide feasible trajectories to the
downstream controllers, i.e., WBC and PD joint controller. The NMPC
uses a nonlinear SRBD model in its formulation. Therefore, it optim-
izes and outputs feasible state trajectories for the linear and angular dy-
namics while tracking the references provided by the ORG. In this work,
the footholds are computed with the robocentric stepping (refer to 5.4.2)
using the optimized velocity by the LIPOpt to obtain the consistency
between the CoM position and footholds.

 Optimization-Based
Reference
Generator

Aliengo Robot

 User Input
NMPC
Chapter 5

Whole-Body
Controller

+
PD Joint

Controller
Section 5.5

Figure 39: Overview of the locomotion framework. The optimization-based
reference generator presented in this work is integrated with the NMPC
presented in Chapter 5. The WBC + PD controllers described in Section 5.5
allows a robot to track the trajectories computed by the NMPC. We have
used the quadruped robot AlienGo for the simulations and experiments.

The proposed ORG consists of two main components, i.e., the LIP
model Optimization (LIPOpt) and QP Mapping (QPMap). The LIPOpt
finds feasible values of CoM position, CoM velocity, and ZMP position
by utilizing the LIP model inside an optimization problem. Using these
values, the QPMap finds feasible GRFs by solving a QP problem. Finally,
these values are used by the NMPC inside a tracking cost. These ORG
components are briefly discussed in the following two sections.

6.2.1 LIP Model Optimization

During locomotion, a quadruped robot experiences underactuation, and
the dynamics caused by the underactuation are prominent in the gaits
such as trot. The ORG is designed to consider these underactuation by

101

utilizing a LIP-based optimization to generate the references. In this for-
mulation, the CoM trajectories are optimized and subjected to the Zero
Moment Point (ZMP) constraints for a user-defined task. The ZMP is a
point where the moment generated by the tangential components of the
GRFs becomes zero. Imposing ZMP inside a supporting polygon while
finding GRFs, satisfies unilateral constraints. This optimization problem
takes the actual state of the robot xact

c,0 , footholds pf , and contact status δ
as inputs. It is represented by,

xg
c ,w

g = argminLIPOpt(xact
c,0 ,pf , δ) (6.1)

where xg
c includes the X-Y components of the CoM position and linear

velocity. Variable wg denotes the ZMP position, which is an input to
the LIP model. The formulation is detailed in Bratta et al. (2023a). After
obtaining the feasible trajectories from LIPOpt, we will explain how they
are used to find the feasible GRFs in the following section.

6.2.2 QP Mapping

Apart from the robot state x, the NMPC tracking cost also includes con-
trol inputs GRFs as optimization variables. Thus, this term inside the
cost requires GRFs references. Furthermore, along with the state refer-
ences, the control inputs references also act as linearization trajectories
for the first iteration of the RTI scheme (refer to section 5.6). Therefore
the quality of these references plays a vital role in the performance of the
NMPC algorithm.

Since in the previous section, the CoM linear quantities and ZMP pos-
ition are computed using the LIP model inside an optimization problem,
these optimized values can further be exploited to find the feasible tra-
jectories of the GRFs by solving the following QP,

uqp = argminQPMap(xg
c ,w

g) (6.2)

This formulation considers GRFs only for the stance legs depending on
the type of gait. The advantage is that the number of optimization vari-
ables are reduced since the optimization is performed only for the legs
with non-zero GRFs. This translates into the reduction of the solution
time for this QP problem. The cost term in (6.2) includes a regularization
term on GRFs and also a term to minimize the angular momentum rate
produced by the GRFs (refer to Bratta et al. (2023a) for more details). The
constraints utilized in this formulation are:

102

• An equation relating GRFs to the ZMP position

• Gravity compensation

• An equation to guarantee coherency between X-Y CoM accelera-
tion computed with the LIP model and SRBD model inside NMPC

In summary, out of the state reference xref = (pref
c , vref

c , Φref , Cω
ref),

pref
x,y and vref

x,y are the output of LIPOpt, i.e., xg
x. The CoM height pref

c,z

equals the desired robot height and vref
z is set to zero. References for roll

ϕref and pitch θref are also set to zero, whereas the yaw ψref is computed
by integrating the user-defined yaw rate as mentioned in Section 5.4.
The reference GRFs uref = uqp are obtained by solving the QPMap (6.2).
After briefly discussing the setup of the ORG, next, we will present the
results of the new locomotion framework in simulation and experiments.

6.3 Simulation and Experimental Result

The ORG empowers the NMPC by providing feasible references to re-
cover from disturbances and avoid drifting when faced with uncertain-
ties. In this section, we discuss some scenarios in simulation and exper-
iments to evaluate the potentiality of our work in practice. We perform
the simulations and experiments on the 22 kg quadruped robot AlienGo.
First, we show trot and pace forward walk in simulations. Then, we con-
sider the trot as a template gait for our experiments due to its inherently
unstable nature. To show the effectiveness of ORG and NMPC together,
we tailored two template scenarios: (a) motion along a straight line and
(b) recovery from external pushes.

6.3.1 Implementation Details

The sampling time Ts is 40ms, and the prediction horizon 2 s is defined
for ORG and NMPC. Therefore, the control horizon for both of them, Ng

and N , are equal to 50. The loop frequency of 25Hz is maintained for the
ORG similar to the NMPC. This guarantees that references are always
available to the NMPC at each call. Table 5 in Bratta et al. (2023a) reports
the values of the weighting matrices for the ORG, which have been tuned
with a trial-and-error procedure. The NMPC weights are kept equal to
those reported in Table 5, and the WBC parameters are mentioned in
Section 5.7.1. Cycle time Tc = 1 s and duty factor D = 0.65 are used for

103

trot parameters. Instead, for pace gait, these parameters are configured
to be Tc = 1.3 s and D = 0.7.

We use the HPIPM Frison and Diehl (2020) solver integrated into
acados Verschueren et al. (2019) library to solve the problem (6.1). The
problem (6.1) is solved using eiquadprog Guennebaud et al. (2017)
since it offers a more straightforward interface for the QPs. Both
reference generator and NMPC run on an Intel Core i7-10750H CPU
@2.60 GHz. The solution time by LIPOpt is in the range of 2-4ms with a
prediction horizon of 2 s and thus Ng = 50 , while the time required by
each QPMap is negligible, around 0.01 ms.

In this section, we will call the output of the reference generator as
reference, the output of the NMPC as plan, and the robot state estimated
by the state estimator as actual.

6.3.2 Simulations

In the first simulation, the robot is commanded to walk forward with
a velocity of 0.08m/s. The robot follows the reference X position and
velocity computed by the ORG, as shown in Fig. 40 . Since the NMPC
receives feasible trajectories from the ORG, the tracking of both the plan
and actual signals is good.

Similarly, in the second simulation, the robot paces at a commanded
forward velocity of 0.08m/s. Similar to the case of trot and as shown
in Fig. 41, the robot shows a good tracking of the references provided
by the ORG, further optimized by NMPC and WBC to follow the user-
defined task. The footage of both of these simulations are recorded in an
accompanying video Bratta et al. (2023b).

6.3.3 Experiments

In this section, we present experimental results for scenarios (a) and (b)
performed on a real robot. In the first experiment, we perform scenario
(a), where the robot is commanded to walk in a straight line, as illus-
trated in Fig. 42. This figure demonstrates that when the NMPC and
heuristic reference generator (dashed lines) are used together, the robot
is unable to walk in a straight line while trotting. Indeed, the robot suf-
fers lateral and backward (less visible) drifts for two reasons: (1) Trot
is an unstable gait. Thus, the CoM always diverges between two four-
legged-stance events in opposite directions. Furthermore, any minute
mechanical asymmetry in the robot can result in a cumulative drift in one

104

0

0.5

1

5 10 15 20
-0.1

0

0.1

0.2

Figure 40: Simulation result of scenario (a) with AlienGo performing a for-
ward trot. In this simulation, the user commands the robot to trot with a
forward velocity of 0.08m/s. The yellow, blue, and red lines represent the
reference, output of the NMPC and actual value of the CoM position and
velocity, respectively.

direction; and (2) Since AlienGo has c-shaped legs, they create nonzero
moments about the pitch axis during a leg swing.

On the other hand, when the ORG is activated to provide references
to the NMPC, the robot succeeds in reaching the goal and prevents major
drifts in the CoM Y position from the original trajectory (see the continu-
ous line in Fig. 42). The GRFs Z components for a short period of the
experiment for better visibility of the data are plotted in Fig. 43. This fig-
ure shows a satisfactory tracking of the references by the plan and actual
signals. Since the NMPC uses a more detailed model in its formulation,
the values computed by the NMPC diverge slightly from the references
while maintaining the reference signal trend.

Figure 44 shows the change in the reference lateral velocity (yellow
line) computed by the ORG. When the average Y position p̄c,y (red line)
exceeds the bounds p̄bound

y (green and violet dashed lines), the refer-
ence generator mode is switched from heuristics to ORG, and the ORG
provides lateral velocity references to the NMPC to bring back the CoM
Y position close to the goal. A threshold of 1 cm around the constant goal
is chosen to activate the ORG. Once the goal is reached, the reference gen-
erator automatically resets to heuristic, and the reference velocity equals
the user-defined value, i.e., 0. The continuous change of the reference

105

0

1

2

5 10 15 20
0

0.1

0.2

Figure 41: Simulation result of scenario (a) with AlienGo performing a for-
ward pace. In this simulation, the user commands the robot to pace with a
forward velocity of 0.08m/s. The yellow, blue and red lines represent the
reference, output of the NMPC and actual value of the CoM position and
velocity, respectively.

0 5 10 15 20 25
-0.2

-0.15

-0.1

-0.05

0

0.05

Figure 42: Experiment, scenario (a): Aliengo moving forward with the user
set zero lateral velocity. The dashed line represents the actual CoM Y posi-
tion when the reference generator is set to heuristic mode. In this case, the
robot diverges from the goal of pact

c,y = 0, since no correction is made in the
reference trajectory in this mode of operation. On the flip side, a continuous
line shows the actual CoM Y position when the reference generator auto-
matically switches between heuristic to ORG according to the error on CoM
Y position. Due to the corrections provided by the ORG, AlienGo stays
close to the goal.

106

0

100

200

0

100

200

0

100

200

12.5 13 13.5 14 14.5 15 15.5
0

100

200

Figure 43: The GRFs in the experiment for scenario (a): Aliengo moving
forward with the zero commanded lateral velocity. The plan from NMPC
(dashed red line) follows the references provided by ORG (green line). The
actual GRFs (dotted blue line) also follows the plan with some modifications
to compensate for the disturbances.

107

0 5 10 15 20 25
-0.1

-0.05

0

0.05

0.1

Figure 44: Experiment scenario (a): AlienGo moving forward with zero
commanded lateral velocity. The peaks in the reference velocity (yellow
line) represent the moment in which the average Y position (red line) crosses
the threshold (dashed lines) around the initial position, and during those
moments, the ORG is activated.

generator mode from heuristic to ORG justifies the need for the higher
level module that provides corrected reference trajectories to the NMPC
during a trot.

In the last experiment, we show the efficacy of our ORG in dealing
with external disturbances (see Figure 45). We would like to clarify that
the task is not to reject the disturbance, but to cope with it in order to
recover from its effect. An analysis of techniques to reject disturbances
goes beyond the scope of this work. Figure 46 shows the CoM Y position
of the robot during the experiment for scenario (b), in which the robot re-
ceives two manually applied pushes. The threshold on the error is set to
1 cm (dashed purple line). During a push, the robot resists this disturb-
ance. Due to the high-frequency re-planning of the NMPC and corrective
references provided by ORG during these pushes, it maintains stability
and thus avoids falling. Once the pushing force is removed, the reference
generator drives the robot back toward the initial position. Similar to the
previous cases, the reference generator activates the ORG mode when
the robot diverges from the goal.

Readers are encouraged to check the footage of these experiments in
the accompanying video Bratta et al. (2023b).

108

Figure 45: Experiments, scenario (b), sequence of screenshots. The robot
moves forward (picture 1) and is suddenly pushed with a stick (picture 2).
Once the push is removed (picture 3), the optimized reference generator
automatically drives the robot back to its initial position. Finally, the robot
follows the user-defined velocity (picture 4).

0 5 10 15 20 25
-0.1

-0.05

0

Figure 46: Experiment scenario (b): CoM Y position of the robot. The robot
is pushed twice during the motion. It automatically comes back to the initial
position when the push is removed.

109

6.4 Summary

In this chapter, we started by motivating the need for a two-stage op-
timization scheme, i.e., NMPC with the ORG. Then, we presented the
locomotion framework of this two-stage optimization architecture. After
that, we introduced the components of the ORG, LIPOpt, and QPMap.
The LIPOpt optimizes the CoM quantities based on the LIP model, and
the QP finds the optimal GRFs . These quantities are then used by the
NMPC as linearization trajectory for the first RTI iteration and as refer-
ences inside the tracking cost. Finally, we show the effectiveness of the
two-stage optimization scheme on the AlienGo robot in simulations and
experiments. We also compare the performance of the ORG with respect
to the heuristic reference generator from Chapter 5 in experiments.

110

Chapter 7

Conclusions

The goal of this dissertation has been to design a real-time optimal plan-
ner for legged locomotion that enhances the locomotion based on the
features included in the planner formulation. Important aspects while
designing such an optimal planner are 1) the choice of a suitable robot
model, 2) a tailored planning algorithm, and 3) the computational effi-
ciency and reliability of the solution.

In the second chapter, we laid out the background for existing meth-
ods. After choosing a suitable model in chapter 3, which establishes the
basis of this dissertation, we have proposed methods for optimal plan-
ning in the following chapters.

7.1 Summary

In this section, we summarize the contributions of this dissertation and
draw some conclusions based on these contributions. In the following,
we cover them for each of the contributions.

Model Validation

In the first part of this dissertation, we discussed different models used in
legged locomotion for TO and MPC purposes. After selecting the SRBD
model for our work, we derived its state-space form in continuous-time,
discrete-time, and also LTV form. We also proposed a method to perform
a closed-loop validation of these models. We show in the validation res-

111

ults that all these models fit the validation data for the varying pitch and
yaw motions while crawling. Based on the result obtained from model
validation, we selected the LTV form of the SRBD model for the devel-
opment of the TO and NMPC algorithms.

Trajectory Optimization for Legged Locomotion

In the second part of this dissertation, we have briefly introduced the
idea of MPC and OCP. We then described in brevity the direct methods
for OCP solution followed by the description of the single shooting and
multiple shooting methods. Next, we proposed two TO methods based
on the LTV model derived from the continuous-time SRBD model. The
first method, called LTVOpt is solved using an off-the-shelf QP solver
that has an advantage over the second method in terms of computation
time. However, this method uses reference trajectories for linearization
to obtain LTV model that might lead to dynamic infeasibility. The second
method, called SQPOpt addresses this drawback by iteratively QP ap-
proximation to the original OCP formulation until convergence. How-
ever, the second method is computationally expensive. We also showed
in simulation results that the solution of LTVOpt is similar to the con-
verged SQPOpt. Therefore, we set requirements for a method that com-
bines the advantages of both methods, i.e., low computational cost and
dynamic feasibility for our NMPC formulation. The chosen method is
called RTI.

Nonlinear MPC for Legged Locomotion

In this work, we have demonstrated in experiments a real-time NMPC
which leverages optimization of leg mobility to achieve terrain adapt-
ation. The contact sequence parameters embedded inside the SRBD
model allows us to encode the complementarity constraints directly and
without enforcing these constraints separately in the NMPC. We ex-
ploited the RTI scheme for our NMPC that enabled us to close the loop
at 25Hz on the NMPC with a prediction horizon of 2 s. Closing the loop
on NMPC at 25Hz allows us to compensate for the state drifts due to
model uncertainties and tracking errors, and also adapt to the changes
in the environment while following user velocity commands both in the
simulations and experiments.

In our NMPC, the mobility cost penalizes the hip-to-foot distance
from a reference value corresponding to a high mobility factor, and

112

hence it directs the NMPC to compute essential robot orientation to
maintain high mobility while respecting the kinematic limits. This is
evident from the pallet experiments where we included VFA to correct
undesired foot positions defined by the heuristics and avoid possible
foot and shin collision. Accounting for the ZMP margin in our NMPC
improved the locomotion stability of the robot in all of our experiments
and simulation by keeping a sufficiently large ZMP margin from support
polygon boundaries. Incorporating a force robustness term in the NMPC
ensures that the GRFs stay close to the contact normals, enabling the
robot to cope with the estimation error of the orientation of the contact
normals.

Two-Stage Optimization

As the last contribution of this dissertation, we have introduced a two-
stage optimization scheme with the NMPC and ORG. We have motiv-
ated the requirement for the ORG: 1) to tackle the underactuation dy-
namics, 2) to satisfy the need for physically informed trajectories as refer-
ences for the NMPC, and 3) to cope with the external disturbances. The
novel ORG is composed of two components, the LIPOpt and QPMap.
The LIPOpt and QPMap optimize the CoM quantities and GRFs, respect-
ively, that are fed to NMPC as the references for the tracking cost and
linearization trajectory for the first RTI iteration. The effectiveness of the
proposed two-stage architecture is demonstrated on the AlienGo robot
for trot and pace gaits in simulations. With the same robot, we have also
reported the results for trot gait in experiments to cope with external dis-
turbances. Lastly, in an experiment, we have compared the performance
of the ORG with the heuristic reference generator presented in chapter 5.

7.2 Future Directions

With our NMPC, we have performed successful dynamic locomotion in
simulation and experiments on different rough terrains. With two-stage
optimization, we have also demonstrated the robustness of our approach
when subjected to external disturbances. After taking a bird’s-eye view
of the presented work in this dissertation, we enlist some of the possible
future directions related to our work.

113

• The performance of our NMPC is evaluated with the SRBD model
in simulation and experiments. In the future, we would like to
compare its performance with respect to the detailed model such
as CD in terms of the accuracy of the optimization variables and
computational cost.

• We currently rely on VFA to correct the undesired foothold com-
puted by the heuristic. In our future work, we would like to ex-
tend our NMPC formulation to optimize the step timing and foot
locations.

• A comparative study of LTI-MPC, LTV-MPC, and NMPC for
legged locomotion to investigate the relative performances, limita-
tions, and applicability is a promising future direction to our cur-
rent work.

• Tuning the weights in the optimization problem for both the NMPC
and ORG is tedious and time-consuming. Developing an auto-
tuning algorithm to tune these weights automatically is a desirable
future direction for our work.

• The NMPC formulated in this dissertation is based on the uniform
grid to obtain the discrete-time form of the SRBD model. In the
future, we would like to study the impact of the nonuniform grid
discretization method (fine at the beginning of the prediction hori-
zon and coarse at the end) on the computational performance and
accuracy of the solution.

114

Appendix A

Angular Velocity

We employ the Z-Y -X convention Diebel (2006) for the Euler angles se-
quence Φ = (ϕ, θ, ψ)⊤ to represent the orientation of the robot base
where, ϕ, θ and ψ are the roll, pitch and yaw, respectively. The angu-
lar velocity in inertial and CoM frame is related to the Euler angle rates
with the following relations:

ω = E(Φ) Φ̇ (A.1)

Cω = E′(Φ) Φ̇ (A.2)

E(Φ) and E′(Φ) are the Euler angle rates matrix and conjugate Euler angle
rates matrix respectively given by,

E(Φ) =

⎡⎣cos(θ) cos(ψ) − sin(ψ) 0
cos(θ) sin(ψ) cos(ψ) 0
− sin(θ) 0 1

⎤⎦ (A.3)

E′(Φ) =

⎡⎣1 0 − sin(θ)
0 cos(ϕ) cos(θ) sin(ϕ)
0 − sin(ϕ) cos(θ) cos(ϕ)

⎤⎦ (A.4)

Remark: E depends on pitch and yaw, whereas E′ on roll and pitch.
Thus, the Euler angle rates Φ̇ is

Φ̇ = E−1(Φ)ω (A.5)

Φ̇ = E′−1(Φ) Cω (A.6)

115

Appendix B

Model Validation

0.5

1

1.5

2

-0.1

0

0.1

0.2

10 15 20 25 30 35
0.55

0.555

0.56

Figure 47: CoM position from the yaw validation results. Yellow, red, and
cyan lines represent the continuous-time nonlinear, discrete-time nonlinear,
and discrete-time LTV models, respectively. Black and dotted blue lines
correspond to the validation data and references to the PD controller.

116

0

0.2

0.4

-0.5

0

0.5

10 15 20 25 30 35

-0.02

0

0.02

Figure 48: CoM velocity from the yaw validation results. Yellow, red, and
cyan lines represent the continuous-time nonlinear, discrete-time nonlinear,
and discrete-time LTV models, respectively. Black and dotted blue lines
correspond to the validation data and references to the PD controller

117

-0.01

0

0.01

-0.02

-0.01

0

10 15 20 25 30 35

-0.2

0

0.2

Figure 49: Body orientation from the yaw validation results. Yellow, red,
and cyan lines represent the continuous-time nonlinear, discrete-time non-
linear, and discrete-time LTV models, respectively. Black and dotted blue
lines correspond to the validation data and references to the PD controller

118

-0.05

0

0.05

-0.05

0

0.05

10 15 20 25 30 35

-0.2

0

0.2

Figure 50: Body angular velocity from the yaw validation results. Yellow,
red, and cyan lines represent the continuous-time nonlinear, discrete-time
nonlinear, and discrete-time LTV models, respectively. Black and dotted
blue lines correspond to the validation data and references to the PD con-
troller

119

-50

0

50

-50

0

50

-50

0

50

10 15 20 25 30 35
-50

0

50

Figure 51: The X component plots of GRFs at respective legs from the yaw
validation results. Yellow, red, and cyan lines represent the continuous-time
nonlinear, discrete-time nonlinear, and discrete-time LTV models, respect-
ively. The black line corresponds to the validation data.

120

-50

0

50

-50

0

50

-50

0

50

10 15 20 25 30 35
-50

0

50

Figure 52: The Y component plots of GRFs at respective legs from the yaw
validation results. Yellow, red, and cyan lines represent the continuous-time
nonlinear, discrete-time nonlinear, and discrete-time LTV models, respect-
ively. The black line corresponds to the validation data.

121

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

10 15 20 25 30 35
0

100

200

300

400

Figure 53: The Z component plots of GRFs at respective legs from the yaw
validation results. Yellow, red, and cyan lines represent the continuous-time
nonlinear, discrete-time nonlinear, and discrete-time LTV models, respect-
ively. The black line corresponds to the validation data.

122

Appendix C

QP Formulation

The standard QP from can be written as

min
w

1

2
w⊤Pw + q⊤w (C.1a)

s. t. wmin ≤ Acw ≤ wmax (C.1b)

where w ∈ Rn is the optimization variable. The objective function is
defined by a positive semidefinite matrix P ∈ Sn+

P = diag (Px,Pu)

Px = diag (Q,Q, · · · ,QN)

Pu = diag (R, · · · ,R)

(C.2)

and vector q ∈ Rn

q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Qxr

−Qxr

...
−QN xr

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(C.3)

123

The linear constraints are defined by matrix Ac ∈ Rm×n

Ac =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I 0 0 · · · 0 0 0 · · · 0
A −I 0 · · · 0 B 0 · · · 0
0 A −I · · · 0 0 B · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · −I 0 0 · · · B
I 0 0 · · · 0 0 0 · · · 0
0 I 0 · · · 0 0 0 · · · 0
0 0 I · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · I 0 0 · · · 0
0 0 0 · · · 0 I 0 · · · 0
0 0 0 · · · 0 0 I · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 0 0 · · · I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C.4)

Vectors wmin ∈ Rm and wmax ∈ Rm are given by

wmin =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x0

r
...
r

xmin

...
xmin

umin

...
umin

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

wmax =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x0

r
...
r

xmax

...
xmax

umax

...
umax

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C.5)

124

References

B. Abbyasov, R. Lavrenov, A. Zakiev, K. Yakovlev, M. Svinin, and E. Magid. Auto-
matic tool for gazebo world construction: from a grayscale image to a 3d solid
model. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 7226–7232, 2020. doi: 10.1109/ICRA40945.2020.9196621. 88

B. Aceituno-Cabezas, C. Mastalli, D. Hongkai, M. Focchi, A. Radulescu, D. G.
Caldwell, J. Cappelletto, J. C. Grieco, G. Fernando-Lopez, and C. Semini. Sim-
ultaneous Contact, Gait and Motion Planning for Robust Multi-Legged Loco-
motion via Mixed-Integer Convex Optimization. In IEEE Robot. Autom. Lett.,
2018. 10, 41

AgilityRobotics. Cassie, 2017. URL https://youtu.be/Is4JZqhAy-M. 22

AgilityRobotics. Cassie robot, 2023. URL https://agilityrobotics.com/
news/2022/cassie-sets-a-guinness-world-record. 4

E. Almasri and M. K. Uyguroğlu. Trajectory optimization in robotic applications,
survey of recent developments. Preprints, May 2021. 41

J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl. Cas-
ADi – A software framework for nonlinear optimization and optimal con-
trol. Mathematical Programming Computation, 11(1):1–36, 2019. doi: 10.1007/
s12532-018-0139-4. 48, 55

C. A. Aumann. A methodology for developing simulation models of complex
systems. Ecological Modelling, 202(3):385–396, 2007. doi: 10.1016/j.ecolmodel.
2006. 23

G. Banjac, B. Stellato, N. Moehle, P. Goulart, A. Bemporad, and S. Boyd. Embed-
ded code generation using the OSQP solver. 2017 IEEE 56th Annual Conference
on Decision and Control, CDC 2017, 2018-January(Cdc):1906–1911, 2018. doi:
10.1109/CDC.2017.8263928. 47

125

https://youtu.be/Is4JZqhAy-M
https://agilityrobotics.com/news/2022/cassie-sets-a-guinness-world-record
https://agilityrobotics.com/news/2022/cassie-sets-a-guinness-world-record

V. Barasuol, J. Buchli, C. Semini, M. Frigerio, E. R. De Pieri, and D. G. Caldwell. A
reactive controller framework for quadrupedal locomotion on challenging ter-
rain. In IEEE International Conference on Robotics and Automation (ICRA), pages
2554–2561, 5 2013. doi: 10.1109/ICRA.2013.6630926. 17

M. Bauer and I. K. Craig. Economic assessment of advanced process control -
A survey and framework. Journal of Process Control, 18(1):2–18, 2008. ISSN
09591524. doi: 10.1016/j.jprocont.2007.05.007. 42

M. Behrendt. Mpc scheme basic, 2009. URL https://creativecommons.
org/licenses/by-sa/3.0. via Wikimedia Commons. 43

C. D. Bellicoso, F. Jenelten, P. Fankhauser, C. Gehring, J. Hwangbo, and M. Hut-
ter. Dynamic locomotion and whole-body control for quadrupedal robots. In
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3359–3365, 2017. doi: 10.1109/IROS.2017.8206174. 10

D. P. Bertsekas. Dynamic Programming and Optimal Control, volume I. Athena
Scientific, Belmont, MA, USA, 3rd edition, 2005. 44

M. Bjelonic, R. Grandia, M. Geilinger, O. Harley, V. S. Medeiros, V. Pajovic,
E. Jelavic, S. Coros, and M. Hutter. Offline motion libraries and online mpc
for advanced mobility skills. The International Journal of Robotics Research, 41
(9-10):903–924, 2022. doi: 10.1177/02783649221102473. 15

G. Bledt and S. Kim. Implementing regularized predictive control for simul-
taneous real-time footstep and ground reaction force optimization. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
6316–6323, 2019. doi: 10.1109/IROS40897.2019.8968031. 13, 60, 62

G. Bledt and S. Kim. Implementing regularized predictive control for simul-
taneous real-time footstep and ground reaction force optimization. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
6316–6323, 2019. doi: 10.1109/IROS40897.2019.8968031. 15

G. Bledt, P. M. Wensing, and S. Kim. Policy-regularized model predictive control
to stabilize diverse quadrupedal gaits for the mit cheetah. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 4102–
4109, 2017. doi: 10.1109/IROS.2017.8206268. 11, 22, 42

T. Boaventura, J. Buchli, C. Semini, and D. Caldwell. Model-based hydraulic
impedance control for dynamic robots. Robotics, IEEE Transactions on, 31(6):
1324–1336, Dec 2015. ISSN 1552-3098. doi: 10.1109/TRO.2015.2482061. 65

H. Bock and K. Plitt. A multiple shooting algorithm for direct solution of optimal
control problems*. In 1984 IFAC Proceedings Volumes, volume 17, pages 1603–
1608, 1984. doi: https://doi.org/10.1016/S1474-6670(17)61205-9. 11

126

https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0

BostonDynamics. Atlas™, 2023. URL https://www.bostondynamics.com/
atlas. 4

K. Bouyarmane and A. Kheddar. On weight-prioritized multitask control of hu-
manoid robots. IEEE Transactions on Automatic Control, 63(6):1632–1647, 2018.
doi: 10.1109/TAC.2017.2752085. 15, 60

A. Bratta, M. Focchi, N. Rathod, and C. Semini. Optimization-based reference
generator for nonlinear model predictive control of legged robots. Robotics, 12
(6), 2023a. doi: 10.3390/robotics12010006. URL https://www.mdpi.com/
2218-6581/12/1/6. 102, 103

A. Bratta, M. Focchi, N. Rathod, and C. Semini. Video of the optimization-
based reference generator simulations and experiments, 2023b. URL https:
//youtu.be/Jp0D8_AKiIY. 104, 108

T. Bretl and S. Lall. Testing static equilibrium for legged robots. IEEE Transactions
on Robotics, 24(4):794–807, 2008. doi: 10.1109/TRO.2008.2001360. 73

J. C. Butcher. Numerical Methods for Ordinary Differential Equations. J. Wiley, 2003.
28, 48, 69, 84

R. H. Byrd, J. Nocedal, and R. A. Waltz. Knitro: An Integrated Package for Nonlinear
Optimization. Springer US, Boston, MA, 2006. ISBN 978-0-387-30065-8. doi:
10.1007/0-387-30065-1 4. 49

O. Cebe, C. Tiseo, G. Xin, H.-c. Lin, J. Smith, and M. Mistry. Online Dynamic
Trajectory Optimization and Control for a Quadruped Robot. arXiv, 2020. 6,
14, 69

H. Dai, A. Valenzuela, and R. Tedrake. Whole-body Motion Planning with
Simple Dynamics and Full Kinematics. IEEE-RAS Int. Conf. Humanoid Robot.,
2014. 10, 21

J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim. Dynamic locomotion in
the mit cheetah 3 through convex model-predictive control. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1–9,
2018. doi: 10.1109/IROS.2018.8594448. 11, 14, 22, 42, 62, 100

J. Diebel. Representing Attitude: Euler Angles, Unit Quaternions, and Rotation
Vectors. Matrix, 58:1–35, 2006. 27, 68, 115

M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber. Fast Direct Multiple Shooting
Algorithms for Optimal Robot Control. In Fast Motions in Biomechanics and
Robotics, Heidelberg, Germany, 2005a. 6, 45, 82

127

https://www.bostondynamics.com/atlas
https://www.bostondynamics.com/atlas
https://www.mdpi.com/2218-6581/12/1/6
https://www.mdpi.com/2218-6581/12/1/6
https://youtu.be/Jp0D8_AKiIY
https://youtu.be/Jp0D8_AKiIY

M. Diehl, H. G. Bock, and J. P. Schlöder. A real-time iteration scheme for non-
linear optimization in optimal feedback control. SIAM J. Control Optim., 43(5):
1714–1736, 2005b. ISSN 03630129. doi: 10.1137/S0363012902400713. 6, 13, 28,
45, 52, 61, 82

S. Fahmi, M. Focchi, A. Radulescu, G. Fink, V. Barasuol, and C. Semini. STANCE:
Locomotion adaptation over soft terrain. IEEE Trans. Robot. (T-RO), 36(2):443–
457, Apr. 2020. doi: 10.1109/TRO.2019.2954670. 9, 74

P. Fankhauser and M. Hutter. A Universal Grid Map Library: Implementation
and Use Case for Rough Terrain Navigation. In A. Koubaa, editor, Robot Oper-
ating System, Vol. 1, chapter 5. Springer, Cham, Switzerland, 2016. ISBN 978-3-
319-26052-5. doi: 10.1007/978-3-319-26054-9{\ }5. 65

P. Fankhauser, M. Bjelonic, C. Dario Bellicoso, T. Miki, and M. Hutter. Robust
rough-terrain locomotion with a quadrupedal robot. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 5761–5768, 2018. doi: 10.
1109/ICRA.2018.8460731. 14

F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler, and J. Buchli. Real-time
motion planning of legged robots: A model predictive control approach. In
Humanoid Robot. (Humanoids), 2017 IEEE-RAS 17th Int. Conf., pages 577–584.
IEEE, 2017. 13, 62

R. Featherstone. Rigid Body Dynamics Algorithms. Springer-Verlag, Berlin, Heidel-
berg, 2008. ISBN 0387743146. 19

M. Focchi, A. del Prete, I. Havoutis, R. Featherstone, D. G. Caldwell, and
C. Semini. High-slope terrain locomotion for torque-controlled quadruped
robots. Auton. Robots, pages 1–14, 2016. ISSN 1573-7527. doi: 10.1007/
s10514-016-9573-1. 30, 63, 66, 74, 79, 80

M. Focchi, R. Featherstone, R. Orsolino, D. G. Caldwell, and C. Semini. Viscosity-
based height reflex for workspace augmentation for quadrupedal locomotion
on rough terrain. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5353–5360, 2017. doi: 10.1109/IROS.2017.8206430.
70, 71

M. Focchi, R. Orsolino, M. Camurri, V. Barasuol, C. Mastalli, D. G. Caldwell, and
C. Semini. Heuristic Planning for Rough Terrain Locomotion in Presence of External
Disturbances and Variable Perception Quality, pages 165–209. Springer, Cham,
Switzerland, 2020a. ISBN 978-3-030-22327-4. doi: 10.1007/978-3-030-22327-4
9. 9, 13, 17, 33, 72

M. Focchi, R. Orsolino, M. Camurri, V. Barasuol, C. Mastalli, D. G. Caldwell,
and C. Semini. Heuristic Planning for Rough Terrain Locomotion in Pres-
ence of External Disturbances and Variable Perception Quality. In A. Grau,

128

Y. Morel, A. Puig-Pey, and F. Cecchi, editors, Adv. Robot. Res. From Lab to Mark.
ECHORD++ Robot. Sci. Support. Innov., pages 165–209. Cham, Switzerland:
Springer International Publishing, Cham, Switzerland:, 2020b. ISBN 978-3-
030-22327-4. doi: 10.1007/978-3-030-22327-4 9. URL https://doi.org/
10.1007/978-3-030-22327-4_9. 51

M. Frigerio, J. Buchli, D. G. Caldwell, and C. Semini. RobCoGen: a code gener-
ator for efficient kinematics and dynamics of articulated robots, based on Do-
main Specific Languages. Journal of Software Engineering for Robotics (JOSER), 7
(1):36–54, 2016. 31

M. Frigerio, V. Barasuol, M. Focchi, D. G. Caldwell, and C. Semini. Validation of
computer simulations of the hyq robot. In International Conference on Climbing
and Walking Robots (CLAWAR), 2017. 31

G. Frison and M. Diehl. HPIPM: a high-performance quadratic programming
framework for model predictive control. arXiv, 2020. 47, 86, 104

R. V. Gamkrelidze. Discovery of the maximum principle. Journal of Dynamical
and Control Systems, 5(4):437–451, Oct 1999. ISSN 1573-8698. doi: 10.1023/A:
1021783020548. URL https://doi.org/10.1023/A:1021783020548. 44

C. Gehring, C. D. Bellicoso, S. Coros, M. Bloesch, P. Fankhauser, M. Hutter, and
R. Siegwart. Dynamic trotting on slopes for quadrupedal robots. In 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
5129–5135, 2015. doi: 10.1109/IROS.2015.7354099. 72

P. E. Gill, W. Murray, and M. A. Saunders. Snopt: An sqp algorithm for large-
scale constrained optimization. SIAM J. Optimization, 12(4):979–1006, 2002.
doi: https://doi.org/10.1137/S1052623499350013. 49

R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter. Feedback mpc for torque-
controlled legged robots. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4730–4737, 2019. doi: 10.1109/IROS40897.
2019.8968251. 11, 62

F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wüthrich, M. Naveau,
V. Berenz, S. Heim, F. Widmaier, T. Flayols, J. Fiene, A. Badri-Spröwitz, and
L. Righetti. An open torque-controlled modular robot architecture for legged
locomotion research. IEEE Robotics and Automation Letters, 5(2):3650–3657,
2020. doi: 10.1109/LRA.2020.2976639. 14

S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl. From linear to
nonlinear MPC: bridging the gap via the real-time iteration. Int. J. Control, 93
(1):62–80, 2020. ISSN 13665820. doi: 10.1080/00207179.2016.1222553. 6, 52, 82,
84

129

https://doi.org/10.1007/978-3-030-22327-4_9
https://doi.org/10.1007/978-3-030-22327-4_9
https://doi.org/10.1023/A:1021783020548

G. Guennebaud, A. Furfaro, L. Di Gaspero, and S. Benjamin. eiquadprog, 2017.
URL https://github.com/fx74/uQuadProg. 104

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL
https://www.gurobi.com. 55

E. Hairer, S. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I.
Springer Series in Computational Mathematics. Springer, Berlin, 2nd edition,
1993. 28, 48, 69, 84

E. Hairer, S. Norsett, and G. Wanner. Solving Ordinary Differential Equations II –
Stiff and Differential-Algebraic Problems. Springer Series in Computational Math-
ematics. Springer, Berlin, 2nd edition, 1996. 28, 48, 69, 84

J. Hauser and A. Saccon. A barrier function method for the optimization of tra-
jectory functionals with constraints. In Proceedings of the 45th IEEE Conference
on Decision and Control, pages 864–869, 2006. doi: 10.1109/CDC.2006.377331.
11

A. Herdt, H. Diedam, P. B. Wieber, D. Dimitrov, K. Mombaur, and M. Diehl.
Online walking motion generation with automatic footstep placement. Ad-
vanced Robotics, 24(5-6):719–737, 2010. ISSN 01691864. doi: 10.1163/
016918610X493552. 11, 62

T. Horvat, K. Melo, and A. J. Ijspeert. Model predictive control based framework
for com control of a quadruped robot. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3372–3378, 2017. doi: 10.1109/
IROS.2017.8206176. 11, 62

M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis, J. Hwangbo,
K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm, S. Bachmann, A. Melzer, and
M. Hoepflinger. Anymal - a highly mobile and dynamic quadrupedal robot. In
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 38–44, 2016. doi: 10.1109/IROS.2016.7758092. 22

L. A. Kerr and D. R. Goethel. Chapter twenty one - simulation modeling
as a tool for synthesis of stock identification information. In S. X. Cadrin,
L. A. Kerr, and S. Mariani, editors, Stock Identification Methods (Second Edi-
tion), pages 501–533. Academic Press, San Diego, second edition edition, 2014.
ISBN 978-0-12-397003-9. doi: https://doi.org/10.1016/B978-0-12-397003-9.
00021-7. URL https://www.sciencedirect.com/science/article/
pii/B9780123970039000217. 23

J. Kim, T. Kang, D. Song, and S.-J. Yi. Design and control of a open-source,
low cost, 3d printed dynamic quadruped robot. Applied Sciences, 11(9), 2021.
ISSN 2076-3417. doi: 10.3390/app11093762. URL https://www.mdpi.com/
2076-3417/11/9/3762. 22

130

https://github.com/fx74/uQuadProg
https://www.gurobi.com
https://www.sciencedirect.com/science/article/pii/B9780123970039000217
https://www.sciencedirect.com/science/article/pii/B9780123970039000217
https://www.mdpi.com/2076-3417/11/9/3762
https://www.mdpi.com/2076-3417/11/9/3762

J. Koenemann, A. D. Prete, Y. Tassa, E. Todorov, O. Stasse, M. Bennewitz, and
N. Mansard. Whole-body model-predictive control applied to the HRP-2 hu-
manoid. In IEEE/RSJ Int. Conf. Intell. Robot. Syst., pages 3346–3351, 2015. doi:
10.1109/IROS.2015.7353843. 10, 11, 20, 42, 62

N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-
source multi-robot simulator. In 2004 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 3, pages
2149–2154 vol.3, 2004. doi: 10.1109/IROS.2004.1389727. 31

S. Kuindersma, F. Permenter, and R. Tedrake. An efficiently solvable quad-
ratic program for stabilizing dynamic locomotion. In 2014 IEEE International
Conference on Robotics and Automation (ICRA), pages 2589–2594, 2014. doi:
10.1109/ICRA.2014.6907230. 10

G. Lantoine and R. P. Russell. A hybrid differential dynamic programming al-
gorithm for constrained optimal control problems. part 1: Theory. Journal of
Optimization Theory and Applications, 154(2):382–417, Aug 2012. ISSN 1573-
2878. doi: 10.1007/s10957-012-0039-0. 11

H. Li and P. M. Wensing. Hybrid systems differential dynamic programming for
whole-body motion planning of legged robots. IEEE Robotics and Automation
Letters, 5(4):5448–5455, 2020. ISSN 23773766. doi: 10.1109/LRA.2020.3007475.
11

C. Mastalli, I. Havoutis, M. Focchi, D. G. Caldwell, and C. Semini. Motion plan-
ning for quadrupedal locomotion: Coupled planning, terrain mapping and
whole-body control. IEEE Trans. Robot. (T-RO), pages 1–14, 2020. 5

C. Mastalli, W. Merkt, G. Xin, J. Shim, M. Mistry, I. Havoutis, and S. Vijayakumar.
Agile maneuvers in legged robots: a predictive control approach. 2022. 20

MATLAB. ode15s. Natick, Massachusetts, United State, 2022a. URL https:
//www.mathworks.com/help/matlab/ref/ode15s.html. 32

MATLAB. fmincon. Natick, Massachusetts, United State, 2022b. URL https:
//www.mathworks.com/help/optim/ug/fmincon.html. 49

A. Meduri, P. Shah, J. Viereck, M. Khadiv, I. Havoutis, and L. Righetti. Biconmp:
A nonlinear model predictive control framework for whole body motion plan-
ning. IEEE Transactions on Robotics, pages 1–18, 2023. doi: 10.1109/TRO.2022.
3228390. 14

O. Melon, M. Geisert, D. Surovik, I. Havoutis, and M. Fallon. Reliable trajector-
ies for dynamic quadrupeds using analytical costs and learned initializations.
In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages
1410–1416, 2020. doi: 10.1109/ICRA40945.2020.9196562. 10, 41

131

https://www.mathworks.com/help/matlab/ref/ode15s.html
https://www.mathworks.com/help/matlab/ref/ode15s.html
https://www.mathworks.com/help/optim/ug/fmincon.html
https://www.mathworks.com/help/optim/ug/fmincon.html

M. Neunert, F. Farshidian, A. W. Winkler, and J. Buchli. Trajectory Optimization
Through Contacts and Automatic Gait Discovery for Quadrupeds. IEEE Robot.
Autom. Lett., 2(3):1502–1509, 2017. ISSN 23773766. doi: 10.1109/LRA.2017.
2665685. 10, 20, 41

M. Neunert, M. Stauble, M. Giftthaler, C. D. Bellicoso, J. Carius, C. Gehring,
M. Hutter, and J. Buchli. Whole-Body Nonlinear Model Predictive Control
Through Contacts for Quadrupeds. IEEE Robot. Autom. Lett., 3(3):1458–1465,
2018. ISSN 23773766. doi: 10.1109/LRA.2018.2800124. 6, 10, 13, 20, 42, 62

S. Nobili, M. Camurri, V. Barasuol, M. Focchi, D. G. Caldwell, C. Semini, and
M. Fallon. Heterogeneous sensor fusion for accurate state estimation of dy-
namic legged robots. In Proceedings of Robotics: Science and Systems, Boston,
USA, July 2017. 17, 65

J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Opera-
tions Research and Financial Engineering. Springer New York, 2006. ISBN
9780387400655. URL https://link.springer.com/book/10.1007/
978-0-387-40065-5. 51, 52

OpenRobotics. Ros, 2022. URL https://www.ros.org/. 31

D. E. Orin, A. Goswami, and S.-H. Lee. Centroidal dynamics of a humanoid
robot. Auton. Robots, 35(2-3):161–176, jun 2013. ISSN 0929-5593. doi: 10.1007/
s10514-013-9341-4. 10, 21

R. Orsolino, M. Focchi, D. G. Caldwell, and C. Semini. A combined limit cycle -
zero moment point based approach for omni-directional quadrupedal bound-
ing. In International Conference on Climbing and Walking Robots (CLAWAR), 2017.
17

OSRF. Gazebo, 2014. URL http://gazebosim.org/. 31

M. Posa, S. Kuindersma, and R. Tedrake. Optimization and stabilization of
trajectories for constrained dynamical systems. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 1366–1373, 2016. doi:
10.1109/ICRA.2016.7487270. 10, 20, 41

J. Pratt, C.-M. Chew, A. Torres, P. Dilworth, and G. Pratt. Virtual model con-
trol: An intuitive approach for bipedal locomotion. The International Journal of
Robotics Research, 20(2):129–143, 2001. doi: 10.1177/02783640122067309. 9

S. J. Qin and T. A. Badgwell. Process Control Dynamic. Control Engineering Prac-
tice, 11:733–764, 2003. ISSN 09670661. 42

132

https://link.springer.com/book/10.1007/978-0-387-40065-5
https://link.springer.com/book/10.1007/978-0-387-40065-5
https://www.ros.org/
http://gazebosim.org/

R. Quirynen. Numerical Simulation Methods for Embedded Optimization. PhD
thesis, Arenberg Doctoral School, Dept. Eng. Sci., KU Leuven, Leuven, Bel-
gium, Dept. Math. Phys., Univ. Freiburg, Freiburg im Breisgau, Germany, Jan.
2017. p. 327. 28, 48, 69, 84

R. Quirynen, M. Vukov, M. Zanon, and M. Diehl. Autogenerating Microsecond
Solvers for Nonlinear MPC: a Tutorial Using ACADO Integrators. Optimal
Control Applications and Methods, 36:685–704, 2014. 84

M. H. Raibert. Legged robots that balance. MIT press, 1986. 9, 77

G. Raiola, E. Mingo Hoffman, M. Focchi, N. Tsagarakis, and C. Semini. A simple
yet effective whole-body locomotion framework for quadruped robots. Fron-
tiers in Robotics and AI, 7:159, 2020. ISSN 2296-9144. doi: 10.3389/frobt.2020.
528473. 73, 81

N. Rathod, A. Bratta, M. Focchi, M. Zanon, O. Villarreal, C. Semini, and A. Be-
mporad. Model predictive control with environment adaptation for legged
locomotion. IEEE Access, 9:145710–145727, 2021a. doi: 10.1109/ACCESS.2021.
3118957. 63

N. Rathod, A. Bratta, M. Focchi, M. Zanon, O. Villarreal, C. Semini, and A. Bem-
porad. Video of the model predictive control with environment adaptation for
legged locomotion, 2021b. URL https://youtu.be/r0-KIiw0eWM. 88, 89,
91, 92, 97

J. Rawlings, D. Mayne, and M. Diehl. Model Predictive Control: Theory, Com-
putation, and Design. Nob Hill Publishing, LLC, Santa Barbara, CA 93117,
2019. ISBN 9780975937730. URL https://sites.engineering.ucsb.
edu/˜jbraw/pubs_books.html. 43, 45, 47

L. Sciavicco, B. Siciliano, and B. Sciavicco. Modelling and Control of Robot Ma-
nipulators. Springer-Verlag, Berlin, Heidelberg, 2nd edition, 2000. ISBN
1852332212. 13, 70

C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella, and D. G.
Caldwell. Design of hyq - a hydraulically and electrically actuated quadruped
robot. IMechE Part I: Journal of Systems and Control Engineering, 225(6):831–849,
2011. doi: 10.1177/0959651811402275. 5, 17, 22, 67

R. Unitree. Aliengo, 2022. URL https://www.unitree.com/en/aliengo/.
16, 18, 100

R. Verschueren, G. Frison, D. Kouzoupis, N. van Duijkeren, A. Zanelli, B. Nov-
oselnik, J. Frey, T. Albin, R. Quirynen, and M. Diehl. Acados - A modular
open-source framework for fast embedded optimal control. arXiv, 2019. ISSN
23318422. 13, 84, 86, 104

133

https://youtu.be/r0-KIiw0eWM
https://sites.engineering.ucsb.edu/~jbraw/pubs_books.html
https://sites.engineering.ucsb.edu/~jbraw/pubs_books.html
https://www.unitree.com/en/aliengo/

O. Villarreal, V. Barasuol, M. Camurri, L. Franceschi, M. Focchi, M. Pontil, D. G.
Caldwell, and C. Semini. Fast and continuous foothold adaptation for dy-
namic locomotion through cnns. IEEE Robotics and Automation Letters, 4(2):
2140–2147, 2019. doi: 10.1109/LRA.2019.2899434. 78

O. Villarreal, V. Barasuol, P. M. Wensing, D. G. Caldwell, and C. Semini. MPC-
based controller with terrain insight for dynamic legged locomotion. In 2020
IEEE International Conference on Robotics and Automation (ICRA), pages 2436–
2442, 2020. doi: 10.1109/ICRA40945.2020.9197312. 69, 72

A. Wächter and L. T. Biegler. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming.
Mathematical Programming, 106(1):25–57, Mar 2006. ISSN 1436-4646.
doi: 10.1007/s10107-004-0559-y. URL https://doi.org/10.1007/
s10107-004-0559-y. 49

P. M. Wensing, M. Posa, Y. Hu, A. Escande, N. Mansard, and A. D. Prete.
Optimization-based control for dynamic legged robots, 2022. 45

P.-B. Wieber. Trajectory free linear model predictive control for stable walking
in the presence of strong perturbations. In 2006 6th IEEE-RAS International
Conference on Humanoid Robots, pages 137–142, 2006. doi: 10.1109/ICHR.2006.
321375. 73

A. W. Winkler. Optimization-based motion planning for legged robots. page 100,
2018. URL https://doi.org/10.3929/ethz-b-000272432. 22

A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli. Gait and Trajectory Op-
timization for Legged Systems Through Phase-Based End-Effector Parameter-
ization. IEEE Robot. Autom. Lett., 3(3):1560–1567, 2018. ISSN 23773766. doi:
10.1109/LRA.2018.2798285. 11, 22, 67

T. Yoshikawa. Analysis and Control of Robot Manipulators with Redundancy.
In M. Brady and R. Paul, editors, Robot. Res. First Int. Symp., pages 735–747,
Cambridge, MA, USA, 1984. MIT Press. doi: 10.1.1.18.7268. 70

A. B. Younes, J. D. Turner, D. Mortari, and J. L. Junkins. A Survey of attitude
error representations, 2012. 68

https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.3929/ethz-b-000272432

Unless otherwise expressly stated, all original material of whatever
nature created by Niraj Rathod and included in this thesis, is li-
censed under a Creative Commons Attribution Noncommercial
Share Alike 2.5 Italy License.

Check creativecommons.org/licenses/by-nc-sa/2.5/it/ for the legal
code of the full license.

Ask the author about other uses.

http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
http://creativecommons.org/licenses/by-nc-sa/2.5/it/
mailto:niraj.rathod@imtlucca.it

	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Legged Locomotion in a Nutshell
	1.3 Optimal Planning for Legged Locomotion
	1.4 Contribution
	1.4.1 Model Validation and to
	1.4.2 nmpc with Mobility
	1.4.3 Two-Stage Optimization

	1.5 Outline

	2 Related Work
	2.1 Dynamic Robot Models for to and mpc
	2.2 Solution Methods for MPC
	2.3 Leg Mobility in Predictive Control
	2.4 Optimal Reference Generator for mpc

	3 Legged Robots
	3.1 Robot Description
	3.1.1 HyQ
	3.1.2 AlienGo

	3.2 Mathematical Models for Legged Robots
	3.2.1 Rigid Body Dynamics
	3.2.2 Centroidal Dynamics
	3.2.3 Single Rigid Body Dynamics

	3.3 Model Validation
	3.3.1 Closed-Loop Model
	3.3.2 Approximate Model Selection
	3.3.3 Trunk Controller

	3.4 Model Validation Results
	3.4.1 Validation Setup
	3.4.2 Results

	3.5 Summary

	4 to for Legged Locomotion
	4.1 Model Predictive Control
	4.2 Optimal Control Problem
	4.3 Discrete-time Optimal Control Problem
	4.3.1 Sequential Optimal Control
	4.3.2 Simultaneous Optimal Control

	4.4 Optimal Planning for Legged Robot
	4.4.1 ltv-Based to
	4.4.2 sqp
	4.4.3 Results

	4.5 Summary

	5 Nonlinear mpc for Legged Locomotion
	5.1 Locomotion Framework
	5.2 NMPC Formulation
	5.2.1 Cost
	5.2.2 Robot Model
	5.2.3 Friction Cone and Unilateral constraints

	5.3 Locomotion-Enhancing Features
	5.3.1 Mobility and Mobility Factor
	5.3.2 ZMP Margin
	5.3.3 Force Robustness

	5.4 Reference Generator
	5.4.1 Gait Scheduler
	5.4.2 Robocentric Stepping
	5.4.3 Vision-based Foothold Adaptation

	5.5 Whole-Body Controller
	5.5.1 WBC Interface
	5.5.2 Feedback Wrench
	5.5.3 Projection of the GRFs
	5.5.4 Mapping GRFs to Joint Torques
	5.5.5 Joint-Space PD

	5.6 Real-Time Iteration for NMPC
	5.7 Simulation and Experimental Results
	5.7.1 Implementation Details
	5.7.2 Simulations
	5.7.3 Experiments

	5.8 Summary

	6 Two-Stage Optimization
	6.1 NMPC with Optimal Reference Generator
	6.2 Locomotion Framework with the Optimal Reference Generator
	6.2.1 LIP Model Optimization
	6.2.2 QP Mapping

	6.3 Simulation and Experimental Result
	6.3.1 Implementation Details
	6.3.2 Simulations
	6.3.3 Experiments

	6.4 Summary

	7 Conclusions
	7.1 Summary
	7.2 Future Directions

	A Angular Velocity
	B Model Validation
	C QP Formulation
	References

