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Abstract

Model predictive control (MPC) of nonlinear systems suffers
a trade-off between model accuracy and real-time compu-
tational burden. This thesis presents an interpretative and
adaptive MPC (IA-MPC) framework for nonlinear systems,
which is related to the widely used approximation method
based on successive linearization MPC and Extended Kalman
Filtering (SL-MPC-EKF). First, we introduce a solution algo-
rithm for linear MPC that is based on the combination of Co-
ordinate Descent and Augmented Lagrangian (CDAL) ideas.
The CDAL algorithm enjoys three features: (i) it is construction-
free, in that it avoids explicitly constructing the quadratic pro-
gramming (QP) problem associated with MPC; (ii) is matrix-
free, as it avoids multiplications and factorizations of matri-
ces; and (iii) is library-free, as it can be simply coded without
any library dependency, 90-lines of C-code in our implemen-
tation. We specialize the algorithm for both state-space for-
mulations of MPC and formulations based on AutoRegres-
sive with eXogenous terms models (CDAL-ARX). The the-
sis also presents a rapid-prototype MPC tool based on the
gPROMS platform, in which the qpOASES and CDAL algo-
rithm was integrated. In addition, based on an equivalence
between SS-based and ARX-based MPC problems we show,
we investigate the relation between the proposed IA-MPC
and the classical SL-MPC-EKF method. Finally, we test and
show the effectiveness of the proposed IA-MPC framework
on four typical nonlinear MPC benchmark examples.
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Chapter 1

Introduction

1.1 Motivation and research objective

Model Predictive Control (MPC) is an advanced technique to control
multi-input multi-output systems subject to constraints [32]. MPC has
been widely used in diverse industrial areas, such as process [88], power
electronics [33], aerospace [25], etc. The core idea of MPC is to predict
the evolution of the controlled system through a dynamical model, solve
an optimization problem over a finite time horizon, only implement the
control input at the current time, and then repeat the optimization at the
next sample step [88, 12]. After major developments in the field of MPC
over the past three decades, MPC for linear plants described by the linear
state-space model has made significant progress in theoretical stability
analysis and real-time numerical algorithm implementation [56]. How-
ever, most industrial plants are nonlinear, and their constrained non-
linear MPC (NMPC) formulation is a non-convex optimization problem
that encounters practical difficulties in terms of computational complex-
ity and algorithm implementation, such as solving it within sampling
time on embedded platforms. It is known that a trade-off exists between
the described accuracy of the nonlinear model and the online NMPC
computation cost: the more accurate/complicated the model, the greater
the online computational cost.
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This thesis presents an interpretative and adaptive MPC (IA-MPC)
framework for nonlinear systems. In the IA-MPC framework, a linear
state-space model is first obtained by performing the linearization of a
first-principle-based model at the initial point. And then, an equivalent
autoregressive with extra input (ARX) model is obtained via the SS-to-
ARX transformation. This novel acquisition of ARX model allows us to
keep the interpretability of a first-principle-based model and the adaptiv-
ity of the ARX model simultaneously. In online closed-loop control, the
ARX model parameters are feedback corrected by using the Extended
Kalman Filter (EKF) algorithm; and the corresponding ARX-based MPC
problems are efficiently solved by the proposed CDAL-ARX algorithm
with construction-free, matrix-free, and library-free features. The effec-
tiveness of our IA-MPC method was illustrated by four nonlinear typical
benchmarks.

1.2 Thesis outline and contributions

The thesis is structured into two parts: the first part (Chapters 2-4) fo-
cuses on the SS-based MPC and ARX-based MPC problem formulations
and their solving algorithms, whereas the following part (Chapters 5-6)
focuses the equivalence of the SS-based MPC and ARX-based MPC prob-
lem and the IA-MPC framework. The content in this thesis is mainly
based on the work published in [115, 116, 114, 113, 112]. Chapter 2
presents a simple and fast coordinate descent Augmented Lagrangian
(CDAL) solver for SS-based MPC problems. Chapter 3 presents the in-
tern work at Siemens Process System Enterprise, in which the CDAL al-
gorithm and the open-source qpOASES solver [29] both have been inte-
grated into the professional process modeling platform, gPROMS. Chap-
ter 4 presents the extension of the CDAL solver, that is, developing a
CDAL-ARX algorithm for ARX-based MPC problems. Chapter 5 presents
the equivalence relationship between the SS-based MPC and ARX-based
MPC problem. Chapter 6 presents how the widely used successive lin-
earization MPC with EKF framework inspires our IA-MPC based on
the equivalence of SS-based MPC and ARX-based MPC problems. Our
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IA-MPC framework combines the EKF algorithm to update the ARX
model parameter and the CDAL-ARX algorithm to solve the correspond-
ing ARX-based MPC problem.

The outline of the chapters, which are meant to be as self-contained
as possible, is the following:

• Chapter 2, A Simple and Fast Coordinate Descent Augmented La-
grangian Solver for MPC:

This chapter presents a novel Coordinate Descent Augmented La-
grangian (CDAL) solver for linear parameter-varying MPC prob-
lems. At each iteration, an augmented Lagrangian (AL) subprob-
lem is solved by coordinate descent (CD), exploiting the structure
of the MPC problem. The CDAL solver enjoys three main proper-
ties: (i) it is construction-free, in that it avoids explicitly constructing
the quadratic programming (QP) problem associated with MPC;
(ii) is matrix-free, as it avoids multiplications and factorizations of
matrices; and (iii) is library-free, as it can be simply coded with-
out any library dependency, 90-line of C-code in our implementa-
tion. To favor convergence speed, CDAL employs a reverse cyclic
rule for the CD method, the accelerated Nesterov’s scheme for up-
dating the dual variables, a simple diagonal preconditioner, and
an efficient coupling scheme between the CD and AL methods.
We show that CDAL competes with other state-of-the-art meth-
ods, both in the case of unstable linear time-invariant and linear
parameter-varying prediction models.

The content of this Chapter and this abstract are reprinted from:

L. Wu and A. Bemporad, “A Simple and Fast Coordinate-Descent
Augmented Lagrangian Solver for Model Predictive Control,” in

IEEE Transactions on Automatic Control, doi:
10.1109/TAC.2023.3241238.

• Chapter 3, A rapid-prototype MPC tool based on gPROMS:
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This chapter presents a rapid-prototype MPC tool based on the
gPROMS platform, with support for the whole MPC design work-
flow. The gPROMS-MPC tool can not only directly interact with
a first-principle-based gPROMS model for closed-loop simulations
but also utilizes its mathematical information to derive simplified
control-oriented models, basically via linearization techniques. It
can inherit the interpretability of the first-principle-based gPROMS
model, unlike the PAROC framework [87] in which the control-
oriented models are obtained from black-box system identification
based on gPROMS simulation data. The gPROMS-MPC tool allows
users to choose when to linearize, such as at each sampling time
(successive linearization) or some specific points to obtain one or
multiple good linear models. The gPROMS-MPC tool implements
our previous construction-free CDAL and the online parametric
active-set qpOASES algorithms to solve sparse or condensed MPC
problem formulations, respectively, for possible successive lineariza-
tion or high state-dimension cases. The CDAL algorithm is also
matrix-free and library-free, thus supporting embedded C-code gen-
eration. After many example validations of the tool, here we only
show one example to investigate the performance of different MPC
schemes.

The content of this Chapter and this abstract are reprinted from:

L. Wu and M. Nauta, “A rapid-prototype MPC tool based on
gPROMS platform,” submitted, available in arXiv preprint,

arXiv::2209.00092.

• Chapter 4, A construction-free coordinate descent augmented La-
grangian method for embedded linear MPC based on ARX models:

This chapter proposes a construction-free algorithm for solving lin-
ear MPC problems based on autoregressive with exogenous terms
(ARX) input-output models. The solution algorithm relies on a
coordinate-descent augmented Lagrangian (CDAL) method pre-
viously proposed by the authors, which we adapt here to exploit

4



the special structure of ARX-based MPC. The CDAL-ARX algo-
rithm enjoys the construction-free feature, in that it avoids explic-
itly constructing the quadratic programming (QP) problem associ-
ated with MPC, which would eliminate construction costs when
the ARX model changes/adapts online. For example, the ARX
model parameters are linear-varying with scheduling signals, or
recursively adapted from streaming input-output data with cheap
computation cost, which make the ARX model widely used in adap-
tive control. Moreover, the implementation of the resulting CDAL-
ARX algorithm is matrix-free and library-free, and hence amenable
for deployment in industrial embedded platforms. We show the ef-
ficiency of CDAL-ARX in two numerical examples, also in compar-
ison with MPC implementations based on other general-purpose
quadratic programming solvers

The content of this Chapter and this abstract are reprinted from:

L. Wu and A. Bemporad, “A construction-free coordinate descent
augmented Lagrangian method for embedded linear MPC based
on ARX models,” accepted by IFAC WC 2023, available in arXiv

preprint, arXiv:2207.06098.

• Chapter 5, Equivalence of SS-based MPC and ARX-based MPC:

Two kinds of control-oriented models used in MPC are the state-
space (SS) model and the input-output ARX model. The SS model
has interpretability when obtained from the modeling paradigm,
and the ARX model is black-box but adaptable. This chapter aims
to introduce the interpretability into the ARX model and thus pro-
poses the modeling paradigm for the acquisition of ARX model. By
first linearizing the first-principle-based models, interpretative SS
models can be acquired and then transformed into equivalent ARX
models based on the SS-to-ARX transformation theory. This chap-
ter presents the Cayley-Hamilton, Observer-Theory, and Kalman
Filter based SS-to-ARX transformation, showing that choosing the
ARX model order should depend on the process noise to achieve

5



a good closed-loop performance rather than the fitting criteria in
data-driven ARX identification paradigm. The resulted interpreta-
tive ARX model can be adopted in the adaptive MPC framework by
adding an online updating scheme for the ARX model. An AFTI-16
MPC example is used to illustrate the equivalence of SS-based MPC
and ARX-based MPC problems and to investigate the robustness of
different SS-to-ARX transformations to noise.

The content of this Chapter and this abstract are reprinted from:

L. Wu, “Equivalence of SS-based MPC and ARX-based MPC,”
submitted, available in arXiv preprint, arXiv:2209.00107.

• Chapter 6, An interpretative and adaptive MPC for nonlinear sys-
tems:

Model predictive control (MPC) for nonlinear systems suffers a
trade-off between the model accuracy and real-time computational
burden. One widely used approximation method is the successive
linearization MPC with the EKF (SL-MPC-EKF) method, in which
the EKF algorithm is to handle unmeasured disturbances and un-
available full states information. Inspired by this, an interpretative
and adaptive MPC (IA-MPC) method, is presented in this chap-
ter. In our IA-MPC method, a linear state-space model is firstly
obtained by performing the linearization of a first-principle-based
model at the initial point, and then this linear state-space model
is transformed into an equivalent ARX model. This interpretative
ARX model is then updated online by the EKF algorithm, which is
modified as a decoupled one without matrix-inverse operator. The
corresponding ARX-based MPC problem are solved by our previ-
ous construction-free, matrix-free and library-free CDAL-ARX al-
gorithm. This simple library-free C-code implementation would
significantly reduce the difficulty in deploying nonlinear MPC on
embedded platforms. The performance of the IA-MPC method
is tested against the nonlinear MPC with EKF and SL-MPC-EKF

6



method in four typical nonlinear benchmark examples, which show
the effectiveness of our IA-MPC method.

The content of this Chapter and this abstract are reprinted from:

L. Wu, “An interpretative and adaptive MPC for nonlinear
systems,” submitted, available in arXiv preprint, arXiv:2209.01513.

Concluding remarks that highlight the contributions of this thesis and
notes on relevant open problems for future research are included in Chap-
ter 7.
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Chapter 2

A Simple and Fast
Coordinate-Descent
Augmented-Lagrangian
Solver for MPC

2.1 Introduction

Apart from small-scale linear time-invariant (LTI) MPC problems whose
explicit MPC control law can be obtained [14], deploying an MPC con-
troller in an electronic control unit requires an embedded Quadratic Pro-
gramming (QP) solver. In the past decades, the MPC community has
made tremendous research efforts to develop embedded QP algorithms,
based on interior-point methods [108, 111], active-set algorithms [28, 8],
gradient projection methods [81], the alternating direction method of
multipliers (ADMM) [17, 103], and other techniques [58, 40, 7, 97, 98].

A demanding requirement for industrial MPC applications is code
simplicity, for easily being verified, validated, and maintained on em-
bedded platforms. In this respect, the interior-point and active-set meth-
ods require more complicated arithmetic operations in their algorithm
implementations when compared to first-order optimization methods

8



like gradient projection and ADMM. The first-order optimization meth-
ods are quite appealing in embedded MPC since their embedded im-
plementations could only involve additions and multiplications (no di-
visions, square roots, etc.). However, most of the proposed approaches
require that the MPC-to-QP transformation is explicitly constructed for
consumption by the solver, such as for preconditioning, estimating the
Lipschitz constant of the cost gradient, and factorizing matrices. This
may not be an issue for linear time-invariant (LTI) MPC problems, in
which the MPC-to-QP construction and other operations on the prob-
lem matrices can be done offline. But for some linear parameter-varying
(LPV) or for linear time-varying MPC problems in which the linear dy-
namic model, cost function, and/or constraints change at run time, an
explicit online MPC-to-QP construction increases the complexity of the
embedded code and computation time. Avoiding an explicit MPC-to-
QP construction can be called a construction-free property of an MPC
solver. The barrier interior-point FastMPC solver [108] and the active-
set based BVLS solver [98] are construction-free; they directly use the
model and weight matrices to define the MPC problem without con-
structing a QP problem. However, their complicated implementations
are not matrix-free as involving Cholesky or QR factorizations arithmetic
operations during iterations. The well-known simple and efficient first-
order method OSQP [103] is not construction-free and matrix-free when
applied to solve LPV-MPC problems, as it requires that matrix factoriza-
tions are computed and cached on each sampling time. The OSQP uti-
lizes its own LDLT solver to perform matrix factorizations, thus being
library-free.

2.1.1 Contribution

By combining the coordinate descent (CD) and augmented Lagrangian
(AL) methods, in this chapter, we develop a construction-free, matrix-
free, and library-free solver for LTI and LPV MPC problems that are par-
ticularly suitable for embedded industrial deployment.

Coordinate descent has received extensive attention in recent years

9



due to its application to machine learning [42, 20, 95]. In this chapter, we
will exploit the special structure arising from linear MPC formulations
when applying CD. In [96, 70, 67], the authors also use AL to solve linear
MPC problems with input and state constraints using the fast gradient
method [71] to solve the associated subproblems. The Lipschitz con-
stant of the cost gradient and convexity parameters [96] are needed to
achieve convergence, and computing them requires, in turn, the Hessian
matrix of the subproblem, hence constructing the QP problem. As the
Hessian matrix of the AL subproblem is close to a block diagonal matrix,
this suggests the use of the CD method to solve such a QP subproblem,
due to the fact that CD does not require any problem-related parameter.
Moreover, only small matrices are involved in running the CD method,
namely the matrices of the linear prediction model and the weight ma-
trices. As a result, the proposed CDAL algorithm does not require the
QP construction phase and is extremely simple to implement. In addi-
tion, each update of the optimization vector has a computation cost per
iteration that is quadratic with the state and input dimensions and linear
with the prediction horizon.

To improve the convergence speed of CDAL, we propose four tech-
niques: a reverse cyclic rule for CD, Nesterov’s acceleration [71], precon-
ditioning, and efficient coupling between CD and AL. While the use of
a reverse cyclic rule in CD still preserves convergence, when the MPC
problem is solved by warm-starting it from the shifted previous optimal
solution, the gap between the initial guess and the new optimal solution
is mainly caused by the last block of variables, and computing the last
block at the beginning tends to reduce the overall number of required
iterations to converge, as we will verify in the numerical experiments
reported in this chapter. We employ Nesterov’s acceleration scheme for
updating the dual vector to improve computation speed and a heuris-
tic preconditioner that simply scales the state variables. In addition, an
efficient coupling scheme between CD and AL methods is proposed to
reduce the computation cost of each CD iteration. To analyze the role
of each component of CDAL and its computational performance with
respect to other solvers (FastMPC, µAO-MPC, OSQP, and MATLAB’s
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quadprog), we conduct numerical experiments on an ill-conditioned
problem of LTI-MPC control of an open-loop unstable AFTI-16 aircraft,
and on LPV-MPC control of a continuously stirred tank reactor (CSTR).

2.1.2 Notation

H ≻ 0 (H ⪰ 0) denotes positive definiteness (semi-definiteness) of a
square matrix H , H ′ (or z′) denotes the transpose of a matrix H (or vector
z), Hi,j denotes the element of a matrix H on the ith row and the jth
column, Hi,·, H·,j denote the ith row vector, and jth column vector of
matrix H , respectively. For a vector z, ∥z∥2 denotes the Euclidean norm
of z, z̸=i the subvector obtained from z by eliminating its ith component
zi.

2.2 Model Predictive Control

Consider the following MPC formulation for tracking problems

min
1

2

T−1∑
t=0

∥Wy (yt+1 − rt+1)∥22 + ∥Wu (ut − ur
t )∥

2
2

+ ∥W∆u∆ut∥22
s.t. xt+1 = Axt +But, t = 0, . . . , T − 1

yt+1 = Cxt+1, t = 0, . . . , T − 1

ut = ut−1 +∆ut, t = 0, . . . , T − 1

xmin ≤ xt ≤ xmax, t = 1, . . . , T

umin ≤ ut ≤ umax, t = 0, . . . , T − 1

∆umin ≤ ∆ut ≤ ∆umax, t = 0, . . . , T − 1

x0 = x̄0, u−1 = ū−1 (2.1)

in which xt ∈ Rnx is the state vector, ut ∈ Rnu the input vector, ∆ut =

ut − ut−1 the vector of input increments, yt ∈ Rny the output vector, rt
and ur

t are the output and input set-points, and x̄0 and ū−1 denote the
current state and the previous input vectors, respectively. We assume

11



that Wy = W ′
y ⪰ 0, Wu = W ′

u ⪰ 0, W∆u = W ′
∆u ≻ 0. The formula-

tion (2.1) could be extended to include time-varying bounds on x and
u along the prediction horizon, linear equality constraints or box con-
straints on the terminal state xT for guaranteed closed-loop convergence,
as well as affine prediction models. To simplify the notation, in the sequel
we consider the following reformulation of (2.1)

min
1

2

T∑
t=1

x̂′
t(Ĉ

′Ŵ Ĉ)x̂t − x̂′
t(Ĉ

′Ŵ r̂t) +
1

2
û′
t−1W∆uût−1

s.t. x̂t+1 = Âxt + B̂ût, t = 0, . . . , T − 1

x̂min ≤ x̂t ≤ x̂max, t = 1, . . . , T

ûmin ≤ ût ≤ ûmax, t = 0, . . . , T − 1

x̂0 =
[ x̄0
ū−1

]
(2.2)

where x̂t = [ xt
ut−1 ] ∈ Rn̂x , n̂x = nx + nu, ût = ∆ut ∈ Rnu , Â = [A B

0 I ] ∈
Rn̂x×n̂x , B̂ = [BI ] ∈ Rn̂x×nu , Ĉ = [C 0

0 I ], Ŵ =
[
Wy 0
0 Wu

]
, r̂t =

[
rt

ur
t−1

]
. The

vector z of variables to optimize is

z =
[
û′
0 x̂′

1 û′
1 . . . û′

T−1 x̂′
T

]′ ∈ RT (n̂x+nu)

The inequality constraints on state and input variables, whose number is
2T (n̂x + nu), are

z ≤ z ≤ z̄ ⇔
{

x̂min ≤ x̂t ≤ x̂max,∀t = 1, . . . , T
ûmin ≤ ût ≤ ûmax,∀t = 0, . . . , T − 1

where x̂min = [ xmin
umin

], x̂max = [ xmax
umax

], ûmin = ∆umin and ûmax = ∆umax.
At each sample step, the MPC problem (2.1) can be recast as the following
quadratic program (QP)

min
1

2
z′Hz + h′z

s.t. z ≤ z ≤ z̄

Gz = g (2.3)
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where H = H ′ ⪰ 0, H ∈ Rnz×nz , nz = T (n̂x+nu), h ∈ Rnz , G ∈ RTn̂x×nz ,
and g ∈ RTn̂x are defined as

H =


R 0 . . . 0 0
0 Q . . . 0 0
...

...
. . .

...
...

0 0 . . . R 0
0 0 . . . 0 Q

,
R = W∆u

Q = Ĉ ′Ŵ Ĉ

G =


B̂ −I 0 0 . . . 0 0 0

0 Â B̂ −I . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . Â B̂ −I



h =


−Ĉ′Ŵ r̂1
−Ĉ′Ŵ r̂2

...
−Ĉ′Ŵ r̂T

, g =


−Âx̂0

0
...
0


Clearly matrix G is full row-rank. Note that A,B,C,Wy,Wu,W∆u and
the upper and lower bounds on x, u, and ∆u in (2.1) may change at each
controller execution.

2.3 Algorithm

2.3.1 Augmented Lagrangian Method

We solve the convex quadratic programming problem (2.3) by applying
the augmented Lagrangian method. The bound-constrained Lagrangian
function L : Z × RT×n̂x → R is given by

L(z,Λ) = 1

2
z′Hz + z′h+ Λ′(Gz − g)

Where Z = {z ≤ z ≤ z̄} and Λ ∈ RTn̂x is the vector of Lagrange multi-
pliers associated with the equality constraints in (2.3). The dual problem
of (2.3) is

max
Λ∈RTn̂x

ϕ(Λ) (2.4)

13



where ϕ(Λ) = minz∈Z L(z,Λ). Assuming that Slater’s constraint qual-
ification holds, the optimal value of the primal problem (2.3) and of its
dual (2.4) coincide. However, ϕ(Λ) is not differentiable in general [16], so
that any subgradient method for solving (2.4) would have a slow conver-
gence rate. Under the AL framework, the augmented Lagrangian func-
tion

Lρ(z,Λ) =
1

2
z′Hz + z′h+ Λ′(Gz − g) +

ρ

2
∥Gz − g∥2 (2.5)

is used instead, where the parameter ρ > 0 is a penalty parameter. The
corresponding augmented dual problem is defined as:

max
Λ∈RTn̂x

ϕρ(Λ) (2.6)

where ϕρ(Λ) = minz∈Z Lρ(z,Λ) is differentiable provided that H + ρG′G

≻ 0. The dual problem (2.4) and the augmented dual problem (2.6)
share the same optimal solution [15, see chapter 2 subsection 2.2], and
most important ϕρ(Λ) is concave and differentiable, with gradient [16,
73] ∇ϕρ(Λ) = Gz∗(Λ) − g, where z∗(Λ) denotes the optimal solution of
the inner problem minz∈Z Lρ(z,Λ) for a given Λ. Moreover, the gradient
mapping ∇ϕρ : RT×n̂x → RT×n̂x is Lipschitz continuous, with a Lips-
chitz constant given by Lϕ = ρ−1 [55].

Let Fρ(z; Λ
k) = 1

2z
′HAz + (hk

A)
′z, where hk

A = 1
ρh+G′Λk −G′g, and

HA = 1
ρH +G′G has the block-sparse structure

HA =



ϕ1 ϕ2 0 0 0 . . . 0 0 0
ϕ′
2 ϕ3 ϕ4 ϕ5 0 . . . 0 0 0
0 ϕ′

4 ϕ1 ϕ2 0 . . . 0 0 0
0 ϕ′

5 ϕ′
2 ϕ3 ϕ4 . . . 0 0 0

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 . . . ϕ3 ϕ4 ϕ5

0 0 0 0 0 . . . ϕ′
4 ϕ1 ϕ2

0 0 0 0 0 . . . ϕ′
5 ϕ′

2 ϕ6


and ϕ1 = 1

ρR + B̂′B̂, ϕ2 = −B̂′, ϕ3 = 1
ρQ +

(
I + Â′Â

)
, ϕ4 = Â′B̂, ϕ5 =

−Â′, ϕ6 = 1
ρQ+ I . Since G is full rank, the matrix HA ≻ 0. According to
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[15], the AL algorithm can be formulated in scaled form as follows:

zk+1 = argmin
z∈Z

Fρ(z; Λ
k) (2.7a)

Λk+1 = Λk + (Gzk+1 − g) (2.7b)

Which involves the minimization step of the primal vector z and the up-
date step of the dual vector Λ. As shown in [15], the convergence of AL
can be assured for a large range of values of ρ. Typically, the larger the
penalty parameter, the faster the AL algorithm is to converge, but the
more difficult (2.7a) is to solve, due to a larger condition number of the
Hessian matrix of subproblem (2.7a). The convergence rate of the AL
algorithm (2.7) is O(1/k) according to [39]. To improve the speed of the
AL method, [47] proposed an accelerated AL algorithm, whose iteration-
complexity is O(1/k2) for linearly constrained convex programs, by us-
ing Nesterov’s acceleration technique. The accelerated AL algorithm is
summarized in Algorithm 1.

Algorithm 1 Accelerated augmented Lagrangian method [47]

Input: Initial guess z0 ∈ Z and Λ0; maximum number Nout of iterations;
parameter ρ > 0.

1. Set α1 ← 1; Λ̂0 ← Λ0;

2. for k = 1, 2, · · · , Nout do

2.1. zk ← argminz∈Z Fρ(z; Λ̂
k−1);

2.2. Λk ← Λ̂k−1 + (Gzk − g);

2.3. if ∥Λk − Λ̂k−1∥22 ≤ ϵ, stop;

2.4. αk+1 ←
1+
√

1+4α2
k

2 ;

2.5. Λ̂k ← Λk + αk−1
αk+1

(Λk − Λk−1);

3. end.

For solving the strongly convex box-constrained QP (2.7a), the fast
gradient projection method was used in [96, 67]. Inspired by the fact that
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the Gauss-Seidel method in solving block tridiagonal linear systems is
efficient [1], in this chapter, we propose the use of the cyclic CD method
to make full use of block sparsity and avoid the explicit construction of
matrix HA. Note that in the gradient projection method or fast gradient
projection method [67], the Lipschitz constant parameter deriving from
matrix HA needs to be calculated or estimated to ensure convergence.
Therefore, for linear MPC problems that change at runtime, such meth-
ods would be less preferable than a cyclic CD. In this chapter, by making
full use of the structure of the subproblem, we will implement a cyclic
CD method that requires fewer computations, as we will detail in the
next section.

2.3.2 Coordinate Descent Method

The idea of the CD method is to minimize the objective function along
only one coordinate direction at each iteration while keeping the other
coordinates fixed [63, 110]. In [64, 65], the authors showed that the CD
method is convergent in convex differentiable minimization problems,
and the rate of convergence is at least linear. We first give a brief intro-
duction of the CD method to solve (2.7a). Under the assumption that the
set of optimal solutions is nonempty and that the objective function Fρ is
convex, continuously differentiable, and strictly convex with respect to
each coordinate, the CD method proceeds iteratively for k = 0, 1, . . . , as
follows:

choose ik ∈ {1, 2, . . . , nz} (2.8a)

zk+1
ik

= argmin
zik∈Z

Fρ(zik , z
k
̸=ik

; Λ̂k) (2.8b)

where with a slight abuse of notation we denote by Fρ(zik , z
k
̸=ik

; Λ̂k) the
value Fρ(z; Λ̂

k) when z ̸=ik = zk̸=ik
is fixed. The convergence of the it-

erations in (2.8) for k → ∞ depends on the rule used to choose the co-
ordinate index ik. In [65], the authors show that the almost cyclic rule
and Gauss-Southwell rule guarantee convergence. Here we use the almost
cyclic rule, that provides convergence according to the following lemma:
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Lemma 1 ([65]) Let
{
zk
}

be the sequence of coordinate-descent iterates (2.8),
where every coordinate index is iterated upon at least once on every N successive
iterations, N ≥ nz . The sequence

{
zk
}

converges at least linearly to the optimal
solution z∗ of problem (2.7a).

In this chapter, we will use the reverse cyclic rule

ik = nz − (kmodnz)

To exploit the fact that the shifted previous optimal solution is used as a
warm start. The chosen rule clearly satisfies the assumptions of Lemma 1
for convergence. The implementation of one pass through all nz coordi-
nates using reverse cyclic CD is reported in Procedure 2. In Procedure 2,
the Lagrangian variable Λ̂ ∈ RT×n̂x is divided into {λ̂0, . . . , λ̂T−1}, where
each λ̂t−1 ∈ Rn̂x . For a given symmetric M ∈ Rns×ns ⪰ 0, d ∈ Rns , the
operator CCD[s,s̄] {M,d} used in Procedure 2 represents one pass itera-
tion of the reverse cyclic CD method through all ns coordinates sns

, . . . , s1

for the following box-constrained QP

min
s∈[s,s̄]

1

2
s′Ms+ s′d (2.9)

that is to execute the following ns iterations

for i = ns, . . . , 1

si ←
[
si − 1

Mi,i
(Mi,·s+ di)

]s̄i
si

end

(2.10)

where [si]
s̄i
si

is the projection operator

[si]
s̄i
si

=

 s̄i if si ≥ s̄i
si if si < si < s̄i
si if si ≤ si

(2.11)

Note that in Procedure 2, Steps 2, 3, 4.1, and 4.2 all involve the same
operator CCD. In Procedure 3, we exemplify an efficient way to evaluate
such an operator for Step 4.2 of Procedure 2, as the approach is similar
for evaluating Steps 2, 3, and 4.1, where σ records the sum of squared
coordinate variations.
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Procedure 2 Full pass of reverse cyclic coordinate descent on all block
variables
Input: Λ̂ = {λ̂0, . . . , λ̂T−1}, U = {û0, · · · , ûT−1}, X = {x̂0, x̂1, · · · , x̂T };
MPC settings Â, B̂, Q, R, ûmin, ûmax, x̂min, x̂max; parameter ρ > 0.

1. σ ← 0;

2. {x̂T , σ} ← CCD
x̂T∈[x̂min,x̂max]

{ 1ρQ + I,−λ̂T−1 − Âx̂T−1 − B̂ûT−1 −

Ĉ ′Ŵ r̂T , σ};

3. {ûT−1, σ} ← CCD
ûT−1∈[ûmin,ûmax]

{ 1ρR+ B̂′B̂, B̂′(λ̂T−1+ Âx̂T−1− x̂T ), σ};

4. for t = T − 2, T − 3, . . . , 0 do

4.1. {x̂t+1, σ} ← CCD
x̂t+1∈[x̂min,x̂max]

{ 1ρQ+ I + Â′Â,−(λ̂t + Âx̂t + B̂ût) +

Â′(λ̂t+1 + B̂ût+1 − x̂t+2)− Ĉ ′Ŵ r̂t, σ};

4.2. {ût, σ} ← CCD
ût∈[ûmin,ûmax]

{ 1ρR+ B̂′B̂, B̂′(λ̂t + Âx̂t − x̂t+1), σ};

5. end.

Output: Û , X̂ , σ.

2.3.3 Preconditioning

Preconditioning is a common heuristic for improving the computational
performance of first-order methods. The optimal design of precondition-
ers has been studied for several decades, but such a computation is often
more complex than the original problem and may become prohibitive if
it must be executed at runtime. Diagonal scaling is heuristic precondi-
tioning that is very simple and often beneficial [34, 105]. In this chap-
ter, we propose to make the change of state variables x̄ = Ex̂, where
E ∈ Rn̂x×n̂x is a diagonal matrix whose ith entry is

Ei,i =
√
Qi,i + Â′

·,iÂ·,i (2.12)
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Procedure 3 Evaluation of CCD in Step 4.2 of Procedure 2

Input: λ̂t, ût, x̂t, x̂t+1; MPC settings Â, B̂, R, ûmin, ûmax; parameter ρ > 0;
update amount σ ≥ 0.

1. V ← λ̂t + Âx̂t + B̂ût − x̂t+1;

2. for i = nu, . . . , 1 do

2.1. s← 1
ρRi,·ût + (B̂·,i)

′V ;

2.2. θ ←
[
ût,i − s

1
ρRii+(B̂′B̂)ii

]ûmax,i

ûmin,i

;

2.3. ∆← θ − ût,i;

2.4. σ ← σ +∆2;

2.5. ût,i ← θ;

2.6. V ← V +∆B̂·,i;

3. end.

Output: ût, σ.

and replace the prediction model x̂t+1 = Âx̂t + B̂ût by

x̄t+1 = Āx̄t + B̄ût

where Ā = EÂE−1 and B̄ = EB̂. The weight matrix Q and constraints
[x̂min, x̂max] are scaled accordingly by setting Q̄ = E−1QE−1 and x̄min =

E−1x̂min, x̄max = E−1x̂max.

2.3.4 Efficient coupling scheme between CD and AL method

We are now ready to couple CD and AL to solve the posed MPC prob-
lem (2.1) efficiently. We first note that updating ût and x̂t+1 for all t in-
volves computing a similar temporary vector V in Procedure 3. As V is,
in fact, the next update of the dual vector Λ in Algorithm 1, we modify
Procedure 3 as shown in Procedure 4. The overall solution method de-
scribed in the previous subsections is summarized in Algorithm 5, which
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Procedure 4 Modified Procedure 3 to efficiently couple CD and AL

Input: λt, ût; MPC settings Â, B̂, R, ûmin, ûmax; parameter ρ > 0; update
amount σ ≥ 0.

1. for i = nu, . . . , 1 do

1.1. s← 1
ρRi,·ût + (B̂·,i)

′λt;

1.2. θ ←
[
ût,i − s

1
ρRii+(B̂′B̂)ii

]ûmax,i

ûmin,i

;

1.3. ∆← θ − ût,i;

1.4. σ ← σ +∆2;

1.5. ût,i ← θ;

1.6. λt ← λt +∆ · B̂·,i;

2. end.

Output: ût, λt, σ.

we call CDAL. Note that the main update of the Lagrangian variables in
Algorithm 5 is placed early in Step 3.1, unlike in Algorithm 1, due to the
use of the proposed efficient coupling scheme. The AL (outer) iterations
are executed for maximum Nout iterations, and the CD (inner) iterations
for at most Nin iterations. The tolerances ϵout and ϵin are used to stop the
outer and inner iterations, respectively. Algorithm 5 is matrix-free and
library-free, and we could implement it in 90 lines of C code.

2.4 Numerical Examples

We test the performance of the CDAL solver against other solvers in two
numerical experiments. The first one is the ill-conditioned AFTI-16 con-
trol problem [48, 11] based on LTI-MPC, used in the Model Predictive
Control Toolbox for MATLAB [13]. The main goals of this experiment
include investigating whether our proposed simple heuristic precondi-
tioner, the reverse cyclic rule, and Nesterov’s acceleration scheme are
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Algorithm 5 Accelerated reverse cyclic CDAL algorithm for linear (or
linearized) MPC
Input: primal/dual warm-start U = {û0, û1, · · · , ûT−1}, X =

{x̂0, x̂1, · · · , x̂T }, Λ−1 = Λ0 = {λ0, λ1, · · · , λT−1}; MPC settings {Â, B̂,

Ĉ, Wy , Wu ,W∆u, ∆umin, ∆umax, umin, umax, xmin, xmax}; Algorithm set-
tings {ρ,Nout, Nin ϵout, ϵin}

1. Obtain preconditioned X̄ = {x̄0, · · · , x̄T }, Ā, B̄, Q̄, x̄min, x̄max ac-
cording to Section 2.3.4

2. α1 ← 1; Λ̂0 ← Λ0;

3. for k = 1, 2, · · · , Nout do

3.1. for t = 0, . . . , T − 1 do

3.1.1. λk
t = λ̂k−1

t + Āx̄t + B̄ût − x̄t+1;

3.2. for kin = 1, 2, · · · , Nin do

3.2.1. U, X̄, σ ← Procedure 2 with use of Procedure 4;
3.2.2. if σ ≤ ϵin break the loop;

3.3. if ∥Λk − Λ̂k−1∥22 ≤ ϵout stop;

3.4. αk+1 ←
1+
√

1+4α2
k

2 ;

3.5. Λ̂k ← Λk + αk−1
αk+1

(Λk − Λk−1);

4. Recover X from X̄

5. end.

Output: U,X,Λ
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helpful, and provide a detailed comparison with other solvers. The sec-
ond experiment demonstrates the benefits of the construction-free prop-
erty in LPV-MPC of a CSTR [100], in which the prediction model is ob-
tained by linearizing a nonlinear model of the process at each sample
step. The reported simulation results were obtained on a MacBook Pro
with 2.7 GHz 4-core Intel Core i7 and 16GB RAM. Algorithm 5 is exe-
cuted in MATLAB via a C-mex interface.

2.4.1 AFTI-16 Benchmark Example

The open-loop unstable linearized AFTI-16 aircraft model reported in
[48, 11] is 

ẋ =

 −0.0151 −60.5651 0 −32.174
−0.0001 −1.3411 0.9929 0
0.00018 43.2541 −0.86939 0

0 0 1 0

x
+

 −2.516 −13.136
−0.1689 −0.2514
−17.251 −1.5766

0 0

u
y =
[

0 1 0 0
0 0 0 1

]
x

The model is sampled using zero-order hold every 0.05 s. The input con-
straints are |ui| ≤ 25◦, i = 1, 2, the output constraints are −0.5 ≤ y1 ≤ 0.5

and −100 ≤ y2 ≤ 100. The control goal is to make the pitch angle y2

track a reference signal r2. In designing the MPC controller we take
Wy = diag([10,10]), Wu = 0, W∆u = diag([0.1, 0.1]), and the prediction
horizon is T = 5.

To investigate the effects of the three techniques (the reverse cyclic
rule, acceleration, and preconditioning) that we have introduced to im-
prove the efficiency of the CDAL algorithm, we performed closed-loop
simulations on eight schemes with fixed ρ = 1. These are: 0-CDAL, the
basic scheme, without acceleration and reverse cyclic rule; R-CDAL, the
scheme with the Reverse cyclic rule; A-CDAL, the Accelerated scheme;
AR-CDAL, the Accelerated scheme with the Reverse cyclic rule, and
their respective schemes with preconditioner, namely P-0-CDAL, P-R-
CDAL, P-A-CDAL, and finally CDAL, that includes all the proposed
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techniques. The stopping criteria are defined by ϵin = 10−6, ϵout = 10−4,
and Nout, Nin are set to the large enough value 5000 in order to guaran-
tee good-quality solutions. The computational load associated with the
above schemes is listed in Table 2.1, in which the last column, ”cost”, rep-
resents the closed-loop performance, and adopts the average MPC cost
1
T

∑T−1
t=0 ∥Wy (yt+1 − rt+1)∥22 +

∥∥Wu

(
ut+1 − ur

t+1

)∥∥2
2
+ ∥W∆u∆ut∥22 over

the closed-loop simulation time T , showing that it is almost the same for
all schemes. The associated closed-loop trajectories are reported in Fig-
ure 2.1, which shows that the pitch angle correctly tracks the reference
signal from 0◦ to 10◦ and then back to 0◦ and that both the input and
output constraints are satisfied.

Since each MPC execution requires different numbers of inner and
outer iterations, the average (”avg”) and maximum (”max”) number of
iterations (or CPU time) are computed over the entire closed-loop exe-
cution. It can be observed that the maximum and average number of
inner-loop iterations of R-CDAL are smaller than that of 0-CDAL (espe-
cially the maximum number), while their outer-loop iterations are almost
the same, which shows that the reverse cyclic rule provides a significant
improvement. Although A-CDAL has fewer outer-loop iterations, it has
more inner-loop iterations than 0-CDAL on average. Therefore it does
not result in a significant reduction in total computation time. We can see
that AR-CDAL achieves fewer iterations both in the inner loop and outer
loop and has better average and worst-case computation performance. It
can also be seen from Table 2.1 that preconditioning significantly reduces
the number of outer-loop iterations.

Next, we investigate the effect on computation efficiency of param-
eter ρ, that we expect to tend to trade off feasibility versus optimality.
In particular, we expect larger values of ρ to favor feasibility, i.e., pro-
vide more inner-loop iterations and fewer outer-loop iterations, and vice
versa. The computational performance results obtained by performing
closed-loop simulations using the final CDAL algorithm for different
values of ρ between 0.01 and 1 are listed in Table 2.2. When the parame-
ter value is between 0.01 and 0.1, the CDAL algorithm has a very similar
computational burden.
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Figure 2.1: Linear AFTI-16 closed-loop performance

Table 2.1: Computational performance of different schemes

method sum of inner iters outer iters time (ms) cost
avg max avg max avg max

0-CDAL 8577 79615 339 2104 4.9 55.3 42.3
R-CDAL 7298 72693 340 2103 4.3 53.2 42.5
A-CDAL 7437 57026 45 297 4.0 41.1 42.5
AR-CDAL 6207 51884 44 205 3.8 39.5 42.5
P-0-CDAL 3467 13386 33 171 2.1 11.4 42.5
P-R-CDAL 1757 13430 33 171 1.0 10.9 42.5
P-A-CDAL 3299 12161 13 60 1.7 9.7 42.5
CDAL 1543 12508 13 60 0.85 9.5 42.5
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To further illustrate the efficiency of CDAL, Table 2.2 also lists the re-
sults obtained by using other solvers. Here the fastMPC solver is also
a construction-free solver which provides a free C-mex code. We also
made comparisons with the µAO-MPC solver v1.0.0-beta [119], which
is based on an augmented Lagrangian method together with Nesterov’s
gradient method. The µAO-MPC differs from CDAL in the way the sub-
problems are solved, and the outer loop not involving an acceleration
scheme. The state-of-the-art first-order method for QP, the OSQP solver
v0.6.2 [103], and MATLAB’s built-in QP solver (quadprog) are also used
for comparison. For a fair comparison, each solver setting is chosen to
at least ensure each share the same objective cost and constraint viola-
tion. When the parameter ρ of the CDAL is 0.01, the CDAL is faster than
the other solvers. Regarding the µAO-MPC, OSQP, and quadprog solver,
we split between QP problem construction time (including the required
matrix factorizations) and pure solution time. Note that in this case, the
controller is LTI-MPC, and hence the MPC problem construction and ma-
trix factorizations required by these non-construction-free solvers can be
performed offline. On the other hand, in the case of LPV-MPC problems,
the total computation time would be spent online, and the embedded
code would also include routines for problem construction and matrix
factorization functions. Instead, CDAL does not require any construc-
tion or factorizations, thus making the solver very lean and fast also in a
time-varying MPC setting, as investigated next.

2.4.2 Nonlinear CSTR Example

To illustrate the performance of CDAL when the linear MPC formula-
tion (2.1) changes at runtime, we consider the control of the CSTR system
[100], described by the continuous-time nonlinear model

dCA

dt = CA,i − CA − k0e
−EaR

T CA
dT
dt = Ti + 0.3Tc − 1.3T + 11.92k0e

−EaR
T CA

y = CA

(2.13)

where CA is the concentration of reagent A, T is the temperature of the
reactor, and CA,i is the inlet feed stream concentration, which is assumed
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Table 2.2: Computational load of CDAL with different values of ρ and com-
parison with other solvers

Solver solver setting time (ms) cost
avg max

CDAL ρ = 1 0.85 9.5 42.561
ρ = 0.5 0.72 7.1 42.590
ρ = 0.2 0.53 4.2 42.612
ρ = 0.1 0.47 3.8 42.619
ρ = 0.05 0.42 3.3 42.618
ρ = 0.01 0.41 3.2 42.618

fastMPC maxit = 5, k = 0.1 0.54 4.2 42.627
µAO-MPC µ = 0.05 7.0* 68.1* 42.627

in iter=100,ex iter=100 8** 69**

OSQP N = 5000, ϵ = 10−6 0.6* 10.1* 42.627
1.5** 13.8**

quadprog default 10.3* 20.6* 42.622
11** 22**

* : pure solution time, without including matrix factorization
** : total time (MPC construction + solution)
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to have the constant value 10.0 kgmol/m3. The process disturbance
comes from the inlet feed stream temperature Ti, which has slow fluc-
tuations represented by Ti = 298.15 + 5 sin(0.05t) K. The manipulated
variable is the coolant temperature Tc. The constants k0 = 34930800 and
EaR = −5963.6 (in MKS units).

The initial state of the reactor is at a low conversion rate, with CA =

8.57 kgmol/m3, T = 311 K. The control objective is to adjust the reactor
state to a high reaction rate with CA = 2 kgmol/m3. The MPC con-
troller manipulates the coolant temperature Tc to track a concentration
reference as well as reject the measured disturbance Ti. Due to its non-
linearity, the model in (2.13) is linearized online at each sampling step:

dx

dt
≈ f(xt, ut−1, p) +

∂f

∂x

∣∣∣∣
xt,ut−1,p

(x− xt) +
∂f

∂u

∣∣∣∣
xt,ut−1,p

(u− ut−1)

where f(x, u, p) is the mapping defined in (2.13) for x = [CA T ]′, u = Tc,
p = [CA,i Ti]

′. By setting Ac = ∂f
∂x

∣∣∣
xt,ut−1,p

, Bc = ∂f
∂u

∣∣∣
xt,ut−1,p

, ec =

f(xt, ut−1, p)−Acxt−Bcut−1, we get the following linearized continuous-
time model

d

dt
x = Acx+Bcu+ ec

We use the forward Euler method with sampling time Ts = 0.5 minutes
to obtain the following discrete-time model

xt+1 = Adxt +Bdut + ed

where Ad = I + TsAc, Bd = TsBc, ed = Tsec. Although held constant
over the prediction horizon, clearly matrices Ad, Bd and the offset term ed

change at runtime, which makes the controller an LPV-MPC. Regarding
the performance index, we choose weights Wy = 1, Wu = 0, W∆u = 0.1.
The physical limitation of the coolant jacket is that its rate of change ∆Tc

is subject to the constraint [−1, 1] K when considering the sampling time
Ts = 0.5 minutes. The prediction horizon is T = 10 steps.

We again compare CDAL with fastMPC, µAO-MPC, OSQP, and quad-
prog solvers in the LPV-MPC setting described above. CDAL is run with
ϵin = 10−6, ϵout = 10−4, ρ = 0.01, and Nout = Nin = 5000. For a fair
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Figure 2.2: Nonlinear CSTR closed-loop performance

comparison, each solver setting is chosen to at least ensure each share
the same objective cost and constraint violation. The closed-loop simula-
tion results of CDAL and other solvers almost coincide and are plotted in
Figure 2.2, from which it can be seen that CA tracks the reference signal
well, and the fluctuation of Ti is effectively suppressed.

The computational load and closed-loop performance associated with
CDAL and other solvers are reported in Table 2.3. In this successive
linearization-based MPC example, the problem-construction time is com-
parable with the problem-solving time for the results of non-construction-
free solvers. If we only compare the solution time, CDAL is faster than
other solvers except for OSQP, but indeed the MPC construction time
must be included for comparison, which leads to CDAL being faster
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than OSQP. Because of the construction-free, matrix-free, and library-free
features, CDAL has an advantage in industrial embedded deployment
when the optimization problem associated with MPC is constructed on-
line, and this operation has a cost that is comparable to the solution time.

Table 2.3: Computational performance of CDAL and other solvers

Solver solver setting time (ms) cost
avg max

CDAL ρ, ϵin, ϵout = 0.01, 10−6, 10−4 0.3 0.6 0.02202
fastMPC maxit=5,k = 0.1 0.5 7.2 0.030170
µAO-MPC µ = 0.01 1.4* 10.1* 0.02202

in iter=100,ex iter=10 2.1** 15.2**

OSQP default 0.15* 0.37* 0.02219
0.6** 5.5**

quadprog default 1.6* 9.7* 0.02219
1.8** 13.3**

* : solution time
** : MPC construction time + solution time

2.5 Conclusion

This chapter has proposed a construction-free, matrix-free, and library-
free MPC solver, based on a cyclic coordinate-descent method in the aug-
mented Lagrangian framework. We showed that the method is efficient
and competes with other existing methods, thanks to the use of a re-
verse cyclic rule, Nesterov’s acceleration, a simple heuristic precondi-
tioner, and an efficient coupling scheme. Compared to many QP solu-
tion methods proposed in the literature, CDAL avoids constructing the
QP problem, which makes it particularly appealing for some scenarios
in which its online construction is required and has a comparable com-
putation time to solving itself.
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Chapter 3

A rapid-prototype MPC
tool based on gPROMS
platform

3.1 Introduction

Developing a novel chemical or pharmaceutical process can take decades
and hundreds of millions of dollars, and first-principle-based modeling
or digital-twin technology can speed up development and reduce costs.
The gPROMS’ digital-twin technology [102] provides powerful and easy-
to-use process modeling capabilities, rich physical property databases
and model libraries, integrated experimental design, parameter estima-
tion, and optimization capabilities.

During the process design phase, the process sometimes requires a
controller to maintain stability or simultaneously is explored together
with the controller design. The process often appears as a multi-input
multi-output (MIMO) plant, and using a multi-PID controller scheme
would be cumbersome or complicated for relatively inexperienced pro-
cess engineers. Model predictive control (MPC) is developed for control-
ling MIMO plants subject to constraints [69], and MPC has been widely
used in diverse industrial areas, such as process [88], and aerospace [25],
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power electronics [33], etc. In the design workflow of an MPC controller
for a physical plant, firstly, with the help of professional process model-
ing software such as gRPOMS, Aspen Plus [5], or general-purpose mod-
eling software MATLAB/Simulink [24], a high-fidelity model based on
the first-principle is established. The first-principle-based model could
be as complex as possible, like introducing distributed parameter model
to describe spatial-time relationships, which is usually a large mixed sys-
tem of integral, partial differential, and algebraic equations (IPDAEs)
[77]. The first-principle-based model can be calibrated from the experi-
mental data with the use of parameter estimation or validated. The main
objective of developing a first-principle-based model is to explore the op-
timal design space of the physical process, and another objective is to val-
idate the designed controller scheme via closed-loop simulations. A key
part of MPC design is how to obtain a simplified control-oriented pre-
diction model of the physical process to predict its likely evolution. One
approach is to use system identification methods to obtain a simplified
model from experimental data, such as the open-loop step-response data.
Getting open-loop experimental data is sometimes expensive or even for-
bidden for safety reasons. As an alternative, the simulation data of first-
principle-based models can be used for system identification. Another
approach is based on the linearization of first-principle-based model at
some operating points.

3.1.1 Related works

In the PAROC framework [87] developed by Pistikopoulos et.al, sim-
ulation data are generated from first-principle-based gPROMS models
and then used by MATLAB’s system identification and model reduction
toolbox to obtain multiple approximate linear state-space models. Based
on these linear state-space models, explicit/multi-parametric MPC algo-
rithms [10, 14] are implemented on MATLAB side. The closed-loop simu-
lations are performed via the gPROMS ModelBuilder® tool gO:MATLAB,
which couples the computation of the gPROMS and MATLAB. Although
the PAROC framework takes advantage of MATLAB’s power in MPC de-
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sign and gPROMS’ benefits in professional process modeling, the PAROC
framework obviously does not take full advantage of the mathemati-
cal information of existing first-principle-based gPROMS models. The
control-oriented model obtained by their method is still a black-box model
and does not inherit the interpretability from the first-principle-based
gPROMS model. By directly linearizing the first-principle-based gPROMS
model, we can obtain interpretative simplified control-oriented models.
In the previous gNLMPC [82], the nonlinear gPROMS model is directly
used to construct a nonlinear MPC problem, which is solved by using
the built-in numerical optimization capabilities of the gPROMS platform.
Clearly, the gNLMPC would have good closed-loop performance but at
a high online computation cost. In fact, linear model-based MPC is suc-
cessful in the vast majority of process industry applications even though
many manufacturing processes are inherently nonlinear [89].

3.1.2 Contribution

This chapter presents the development of a rapid-prototype MPC tool
based on the gPROMS platform. The gPROMS-MPC tool employs the
online successive linearization strategy to linearize a general nonlinear
first-principle-based gPROMS model, based on the supporting automatic
differentiation capability of gPROMS model. The gPROMS-MPC tool
implements our previous construction-free CDAL algorithm in Chapter
2 and the widely-used open-source qpOASES v3.2 algorithm [29] in the
gPROMS platform (gPROMS Process v2.2.2), based on sparse and con-
densed MPC formulations, respectively.

The online successive linearization strategy is an effective solution to
deal with nonlinear MPC problems [18, 27], by achieving a good trade-
off between computational cost and closed-loop control performance. In
addition to linearization at each sampling time, the gPROMS-MPC tool
allows users to decide when to perform the linearization at a lower sam-
pling frequency or at some specific points to derive one or multiple in-
variant linear state-space models in embedded MPC design. The em-
bedded MPC design is the final step of the MPC design workflow, that
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is, evaluating whether the chosen one or multiple invariant linear state-
space models meet the closed-loop performance requirements under the
computation limits from embedded platforms. Since our construction-
free CDAL algorithm is also matrix-free and library-free, which makes
the gPROMS-MPC tool being suitable for embedded code generation.
The gPROMS-MPC is competent in completing all the workflow only on
the gPROMS platform.

3.2 MPC problem formulation

gPROMS models typically comprise mixed sets of non-linear differential
and algebraic equations, which can be written in the form

f(ẋ, x, y, u) = 0 (3.1)

where x(t) and y(t) are the sets of differential and algebraic variables, re-
spectively (both of which are unknowns to be determined by the gPROMS
simulation), while ẋ(t) are the derivatives of x(t) with respect to time t,
u is the set of input variables that are given functions of time. Now con-
sider the current time point (xc, yc, uc) on the simulation trajectory. A
linear model can be obtained by linearising the Eqn (3.1) at this point,

∂f

∂x
δx+

∂f

∂ẋ
˙δx+

∂f

∂y
δy +

∂f

∂u
δu = 0 (3.2)

where δx = x− xc, δy = y − yc and δu = u− uc.

3.2.1 Linearized State-Space model with minimal subset
of differentials

Most first-principle-based gPROMS models involve thousands of equa-
tions and variables. When performing linearization, by specifying: a
set of input variables U , and a set of output variables Y , gPROMS can
provide the automatical variables-reduction technique according to vari-
ables dependencies. gPROMS provides the following linearized model

˙δX = AδX +BδU

δY = CδX +DδU
(3.3)
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where the state variables X are determined automatically by gPROMS’
built-in Linearise as the minimal subset of x that is necessary to express
the effects of the specified inputs U on the specified outputs Y via rela-
tionships of the above eqn (3.2).

Before being applied to MPC problem, the continuous-time state-space
model (3.3) requires to be discretized to discrete-time form. Our MPC
tool currently utilizes the one-step Euler discretization method. Given a
sampling time Ts, we have the following discrete-time state-space model,

δXt+1 = AdδXt +BdδUt + e

δYt = CdδXt +DdδUt

(3.4)

where Ad = I + TsA, Bd = TsB, Cd = C, Dd = D, e = Tsf(xc, ẋc, yc, uc).
Our MPC tool considers an MPC tracking problem, thus a ∆-formulation
augmented state-space model is used,

X̂t+1 = ÂX̂t + B̂Ût + ê

∆Yt = ĈX̂t

where X̂t =

[
δXt

δUt−1

]
, Ût = ∆δUt denotes the increment of δUt, Â =[

Ad Bd

0 I

]
, B̂ =

[
Bd

I

]
, ê =

[
e
0

]
, Ĉ =

[
Cd 0

]
, and D is a zero

matrix and thus eliminated. Our MPC tool considers the case that box
constraints are subject to the increased input, the input, and the output.
The MPC tracking problem is shown below,

min
1

2

T−1∑
t=0

∥(δYt+1 − δr)∥2Wy +
∥∥∥∆Ût

∥∥∥2
W∆u

s.t. X̂t+1 = ÂX̂t + B̂∆Ût + ê, t = 0, 1, . . . , T − 1

δYt+1 = ĈX̂t+1, t = 0, . . . , T − 1

∆Umin ≤ ∆Ût ≤ ∆Umax, t = 0, . . . , T − 1

Umin − Uc ≤ δUt ≤ Umax − Uc, t = 0, . . . , T − 1

Ymin − Yc ≤ δYt ≤ Ymax − Yc, t = 1, . . . , T

X̂0 = 0 (3.5)
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where δr = r − Yc and r denotes the desired tracking set-points. W y ≻
0 and W∆u ≻ 0 denote the weights matrices of the output and input,
respectively. Note that the initial values of X̂ are zeros. [∆Umin,∆Umax],
[Umin, Umax] and [Ymin, Ymax] denote the box-constraints of the specified
increased input, input, and output, respectively.

3.2.2 Condensed and Sparse formulation

Solving the above MPC tracking problem (3.5) requires constructing it
into a quadratic programming (QP) problem. There are two kinds of
MPC-to-QP construction, one is the condensed construction that elim-
inates the states, and another is the sparse construction that keeps the
states in the resulting QP problem. Eliminating all states from the MPC
problem (3.5) to yield a smaller-scale, condensed QP problem of the form:

min
1

2
z′Hcz + h′

cz

s.t. glc ≤ Gcz ≤ guc

zlc ≤ z ≤ zuc (3.6)

where the vector of decision variables only comprises the increase con-

trol inputs, z def
=
[
∆Û ′

0,∆Û ′
1, · · · ,∆Û ′

T−1

]′
, and its Hessian matrix Hc is

dense.
The problem (3.5) can also yield a structured QP problem by keeping

the discrete-time state-space model as equality constraints,

min
1

2
z′Hsz + h′

sz

s.t. Bsz = bs

gls ≤ Gsz ≤ gus

zls ≤ z ≤ zus (3.7)

where the vector of decision variables comprise both the states and the

increased control inputs z def
=
[
∆Û ′

0, X̂
′
1,∆Û ′

1, X̂
′
2, · · · ,∆Û ′

T−1, X̂
′
T

]′
, and

and its Hessian matrix Hs is sparse.
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Whether the sparse formulation (3.7) or the compressed formulation
(3.6) is more computationally advantageous, mainly depends on the num-
ber of the states nx, the control input nu and the length of the prediction
horizon T [53]. The condensed formulation (3.6) is obviously preferable
when the number of states is large, which would often be the case when
spatial-temporal equations are involved. If the ratio nx

nu
is small and the

prediction horizon is long, the sparse formulation (3.7) is often more effi-
cient. Moreover, the choice may also depend on whether the condensing
procedure (the state elimination) requires to be done once offline (like the
LTI MPC case) or performed online, as is the case where the gPROMS-
MPC tool utilizes the online successive linearization strategy for nonlin-
ear systems. Thus, the gPROMS-MPC tool implements the two formula-
tions to allow users to choose.

3.3 Implementation of our MPC tool

The implementation of the gPROMS-MPC tool is based on the gPROMS
Foreign Process Interface, which is a C/C++ interface to allow devel-
opers’ custom code to interact dynamically with the gPROMS model at
runtime. Although many optimization algorithms can solve MPC prob-
lems, the online successive linearization strategy used in the gPROMS-
MPC tool clearly encourages us to adopt our previous construction-free
CDAL algorithm in Chapter 2 and a parametric active-set qpOASES v3.2
algorithm [29] from an efficiency perspective. The CDAL and qpOASES
solve the sparse (3.7) and condensed (3.6) QP formulations from the MPC
problem, respectively.

The CDAL is based on the coordinate descent (CD) and augmented
Lagrangian (AL) methods. The outer loop involves the accelerated AL
iteration, and the inner loop (solving the AL subproblem) uses the CD
method, exploiting the structure of the MPC problem. And an efficient
CD-AL coupling scheme and preconditioner are proposed in the imple-
mentation of the CDAL to speed up computation. Its most notable fea-
ture is that the CDAL directly solves the MPC formulation (3.5) without
resorting to an explicit MPC-to-QP construction. Clearly, the construction-

36



free feature is suitable for the online successive linearization strategy used
in the gPROMS-MPC tool to avoid the online construction cost. Espe-
cially in some online successive linearization based MPC problems, its
online construction cost is comparable to the online solving itself thanks
to warm-starting, gradually changing set-points, and slowly updating
dynamics. In addition, our CDAL is also matrix-free (avoids multiplica-
tions and factorizations of matrices) and library-free (without any library
dependency), and its 90-line C-code implementation makes it competent
in the work of embedded MPC code generation. The detailed description
and implementation of the CDAL algorithm are presented in Chapter 2.

Although gPROMS provides minimal state-space realization, its de-
rived linear state-space model still involves large state dimensions for
some plants, especially when it involves spatial-time equations. In these
cases, solving the condensed QP formulation associated with MPC is a
better choice. The condensed QP formulation (3.6) is solved by calling
the qpOASES package, which is an open-source C++ implementation of
the online parametric active set strategy [29]. The qpOASES not only sup-
ports warm-starting strategy and also supports solving QPs with time-
varying Hessian matrices, which makes it suitable for the online succes-
sive linearization-based MPC problems. In addition to integrating the
called qpOASES package for efficiently online solving QPs, the gPROMS-
MPC tool efficiently implements the online condensed MPC-to-QP con-
struction. Herein the main condensed equation listed in (3.8),


δY1

δY2

...
δYT

 = G


X̂1

X̂2

...
X̂T

 = GM


Û0

Û1

...
ÛT−1

+Gm (3.8)

where M =


B̂ 0 · · · 0

ÂB̂ B · · · 0
...

...
. . .

...
ÂT−1B̂ ÂT−2B̂ · · · B̂

,
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m =


e

Âe+ e
...

ÂT−1e+ ÂT−2e+ · · ·+ e

, G =


Ĉ 0 · · · 0

0 Ĉ · · · 0
...

...
. . .

...
0 0 · · · Ĉ

.

Then, the dense hessian matrix Hc and gradient vector hc of the con-
densed QP formulation (3.6) are

Hc = (GM)′


W y 0 · · · 0
0 W y · · · 0
...

...
. . .

...
0 0 · · · W y

 (GM) +


W∆u 0 · · · 0
0 W∆u · · · 0
...

...
. . .

...
0 0 · · · W∆u



hc = (GM)′


W y 0 · · · 0
0 W y · · · 0
...

...
. . .

...
0 0 · · · W y


Gm−


δr
δr
...
δr




To exploit the above structures, the gPROMS-MPC tool implements an
efficient condensing procedure, which shares the same idea with the An-
dersson et al. work [2] via the use of OpenBLAS v0.3.20 [117].

3.4 Application example of Flash-Separation

The developed gPROMS-MPC tool worked well on some MPC bench-
mark examples in the literature, such as the ill-conditioned AFTI-16 [11]
and nonlinear CSTR [100], which demonstrates the effectiveness of its
functionality. To further validate the correctness of the gPROMS-MPC
tool when applied to the commercial built-in gPROMS Model Library
(gML), this section presents the MPC controller design for a flash separa-
tion of a mixture of eight components. To investigate the performances
of different control schemes, three control schemes are used for compari-
son, namely multi-PID scheme, successive-linearization-based MPC (SL-
MPC) scheme, and linear MPC scheme. The multi-PID scheme is built
as shown in Figure 3.1, which involves one source model (Feed NG),
one pipeline model (P1), one flash drum model (Drum), two value mod-
els (V1 and V2), two sink models (gas product and liquid product), one
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stream analyzer model (S1) that only pass the mass flowrate and three
continuous-time PID controller models (liquid control and flow control
are connected as the cascade PID). The parameters of the flowsheet with
PID scheme are listed in Table 3.1.

In the SL-MPC and linear MPC schemes, the MPC controller is used
to replace three PID models and the stream analyzer model, and other
model parameters remain the same. The MPC controller directly ma-
nipulates the stem position of two valves simultaneously to regulate the
pressure and liquid level fraction of the Drum, namely a two-input-two-
output plant. As for the MPC settings, the prediction horizon is 10,
the sampling time is 0.02 s, the constraints come from the physical con-
straints of the two values V1 and V2, that is, box-constraints [0, 1] The
cost weights of the increased input and the output are W∆u = diag([1, 1])

and W y = diag([100, 100]), respectively. The difference between the SL-
MPC and linear MPC scheme is that the former updates the linear state-
space model at each sampling time via linearization along the trajectory,
and the latter only utilizes one linear state-space model that is linearized
at the initial point. As we mentioned in Section 3.1, even though many
manufacturing processes are inherently nonlinear, the performance of
linear MPC scheme often satisfies requirements in the vast majority of
process industry applications. Thus, obtaining a good linear state-space
model, with good close-loop performance in operating ranges, is the key
part, which is also the most time-consuming and labor-intensive step in
the whole MPC design workflow. That is what the gPROMS-MPC tool
does, being an MPC design platform based on gPROMS’ powerful mod-
eling capability.

The simulation scenario is to track the desired setpoints of liquid level
and pressure fraction from the initial steady-state condition in which
pressure = 69 bar and liquid level fraction = 0.5. The simulation time
is from 0 to 300 seconds, and the desired setpoints of liquid level frac-
tion are 0.4, 0.5, and 0.4 at every 100 second, and the desired setpoint of
pressure keeps at 69 bar all the time. The comparison simulation results
are shown in Figure 3.2(a), 3.2(b), 3.2(c) and 3.2(d), which are liquid level
fraction, pressure, liquid mass flowrate and vapour mass flowrate, re-
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Figure 3.1: Flash separation flowsheet under the continuous-time PID con-
trol scheme
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Table 3.1: The settings of flash separation with PID scheme

model name model parameters

Feed NG components name and mass fraction (kg/kg):
[METHANE=0.5202], [ETHANE=0.1504],
[PROPANE=0.1180], [I-BUTANE=0.0167],

[N-BUTANE=0.0462], [I-PENTANE=0.0098]
[N-PENTANE, 0.0090],[N-HEXANE, 0.0006]

pressure = 70 bar, Vapour mass fraction = 0.95 kg/kg

P1 Inner diameter = 0.152606 m, length = 10 m
Friction facotr correlation: Fully turbulent

Drum Shape: Drum, Orientation: Vertical,
Diameter = 0.5 m, Volume = 3 m3

Include effect of hydrostatic pressure

V1 Phase: Vapour, Flow relation:
Fisher universal gas sizing equation,

Flow coefficient = 200000 scfh−1psi−1,
Recovery factor = 34.8, Leakage fraction = 0,

Inherent characteristic: Linear

V2 Phase: Liquid, Flow relation: Fisher equation
Flow coefficient = 100 scfh−1psi−1,

Leakage fraction = 0
Inherent characteristic: Linear,

pressure control Controller action: Direct, gain = 1000,
Integral time constant = 5, initial setpoint: 69 bar

Process variable: Pressure,
Manipulated variable: Stem position

liquid control Controller action: Direct, gain = 10,
Integral time constant = 1, initial setpoint: 0.5

Process variable: Liquid level fraction,
Manipulated variable: mass flowrate

flow control Controller action: Reverse, gain = 100,
Integral time constant = 10,

setpoint: from liquid control
Process variable: Mass flowrate,

Manipulated variable: Stem position
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spectively. The results show that the closed-loop control performance of
the SL-MPC and MPC scheme is better than the PID scheme, having less
integral overshoot and oscillation, and the SL-MPC and MPC scheme
have almost the same tracking performance, which can be explained by
the fact that the nonlinearity of the flash-separation example is not strong
in operating ranges. It shows that the linearized model at the initial equi-
librium point can be used in embedded MPC code generation.

(a) Liquid level fraction v.s. time (b) Pressure v.s. time

(c) Liquid mass flowrate v.s. time (d) Vapour mass flowrate v.s. time

Figure 3.2: Comparison results of PID, SL-MPC, and MPC scheme in the
flash-separation example

3.5 Conclusion

This chapter develops the gPROMS-MPC tool, which not only interacts
directly with the gPROMS first-principle-based model for closed-loop
simulations but also utilizes its mathematical information to derive the
linearized state-space model for MPC design. The gPROMS-MPC tool
adopts the online successive linearization-based MPC to handle general
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nonlinear systems and also allows users to choose when to linearized,
such as at some specific points, to obtain one or multiple linear models
for later embedded MPC design. The gPROMS-MPC tool implements
our previous construction-free CDAL and the online parametric active-
set qpOASES algorithm. The CDAL is also matrix-free and library-free,
which provides benefits in embedded C-code generation.

The derived linear model from the gPROMS is a state-space formu-
lation (input-state-output), which would suffer high state-dimension is-
sues and require a state estimation algorithm in embedded MPC deploy-
ment. They could be addressed to some extent by using the model reduc-
tion technique to reduce state dimension, but we recommend transform-
ing it into an equivalent input-output ARX model as illustrated in Chap-
ter 5, to avoid designing a state estimation algorithm. And the resulting
ARX-based MPC problem can be solved by our extended CDAL-ARX
algorithm in the next Chapter 4.
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Chapter 4

A construction-free CDAL
algorithm for embedded
ARX-based MPC

4.1 Introduction

In earlier MPC developments, some methods shared the same reced-
ing horizon control idea, under different names. The Model Predictive
Heuristic Control (MPHC) [94], the Model Algorithmic Control (MAC)
[91] used a finite impulse response model, the Dynamic Matrix Control
(DMC) employed a truncated step-response model [23], and the Gener-
alized Predictive Control (GPC) involved a transfer function model [22].
As the MPC field has grown, state-space (SS) models replaced input-
output (I/O) models, and most MPC theory is based on SS formula-
tions [68].

However, in industrial control applications, MPC based on input-
output models, such as the autoregressive model with exogenous terms
(ARX) model, may still be preferable [88], for two main reasons: (1) there
is no need for a state-observer; (2) I/O models are easier to identify and
to adapt online (such as using recursive least-squares or Kalman Filter
algorithms), which makes them widely used in adaptive control [6]. In
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particular, the latter is particularly appealing in practical cases in which
the dynamics of the systems changes during operations, such as in the
case of changes of mass and inertia in rockets due to fuel consump-
tion, wear of heating equipment in chemical processes, and many oth-
ers. In fact, an observable SS model can be equivalently transformed
into an ARX model, and the next Chapter 5 shows the equivalence of
SS-based MPC and ARX-based MPC problems. In Chapter 5, we pro-
posed an alternative for the acquisition of ARX model based on the first-
principle-based modeling paradigm, rather than the data-driven identi-
fication paradigm. This allows us to acquire ARX models using many
existing first-principle-based models in different engineering fields. The
resulting interpretative ARX model can be adopted in an adaptive MPC
framework by adding an online updating scheme for the ARX model, see
Chapter 6. A common practice in MPC is to first formulate a quadratic
programming (QP) problem in terms of a control-oriented prediction
model and MPC parameters, and then pass it to the optimization solver.
Such a problem construction step can be performed offline when the pre-
diction model is fixed. Otherwise, it requires to be repeated online when
the prediction model or MPC parameters are varying. In such varying
cases, the online computation time includes both constructing and solv-
ing the QP problem associated with MPC. Indeed, often constructing and
solving the MPC problem have comparable costs, such as when warm-
starting strategies are employed, and set-points change slowly. The on-
line construction of the MPC problem becomes necessary in the adap-
tive ARX-based MPC framework, and the case of linear parameter vary-
ing ARX (LPV-ARX) models, in which model parameters depend on a
measured time-varying signal, the so-called scheduling variable. Thus, a
construction-free ARX-MPC algorithm, in that MPC-to-QP construction
is explicitly eliminated, would significantly save the computational loads
in those cases.
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4.1.1 Related works and Contribution

Some ARX-based MPC algorithms in the literature first convert the ARX
model into SS form, treat the problem as a standard SS-based MPC prob-
lem [43], and then construct and solve a condensed or sparse quadratic
programming (QP) problem. In fact, the ARX-to-SS transformation is
not necessary in condensed and sparse MPC-to-QP constructions, which
only depend on whether to eliminate or keep the ARX output variables.
Choosing the condensed or sparse construction only depends on the total
online computation cost (constructing and solving) [53], in time-varying
ARX-based MPC problems. The OSQP solver, based on the alternating
direction method of multipliers (ADMM), can directly consume the ARX
model as equality constraints, which is the sparse QP formulation by
keeping the output variables of the ARX model. However, it still em-
ploys an explicit MPC-to-QP construction to formulate the equality con-
straint matrix, and more importantly, the OSQP solver needs to repeat-
edly factorize and cache the Hessian matrix of the quadratic objective
at each sampling time, in time-varying ARX-based MPC problems. In
[99], the dynamic equality constraint from the ARX model was relaxed
by using a large penalty parameter, and it resulted in an ill-conditioning
bounded variable least-squares (BVLS) problem, although the active-set
based method was used to mitigate the numerical difficulties to some
extent. Besides computation efficiency, easy-to-deployment of an ARX-
MPC algorithm should also be considered, in which the code simplicity
and library-dependency are important. In this respect, compared to the
active-set or interior-point based methods, the first-order method, such
as the primal or dual fast gradient method, the ADMM method, is sim-
pler but also becomes complicated in time-varying cases, in that some
offline operations have to be performed online [52].

This chapter presents a simple and efficient algorithm for solving
ARX-based MPC problems. Based on the coordinate-descent augmented
Lagrangian method, the resulting CDAL-ARX algorithm enjoys three
main features: (i) it is construction-free, in that it avoids the online MPC-
to-QP construction in time-varying ARX cases to save computation cost;
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(ii) is matrix-free, in that it avoids multiplications and factorizations of
matrices, which are required by other first-order methods in time-varying
ARX cases; and (iii) is library-free, as our 150-lines of C-code implemen-
tation is without any library dependency, which matters in embedded
deployment.

4.2 ARX-based MPC problem formulation

Consider the multi-input multi-output (MIMO) ARX model described by

yt =

na∑
i=1

A(i)yt−i +

nb∑
i=1

B(i)ut−i (4.1)

where yt ∈ Rny and ut ∈ Rnu are the output and input of the sys-
tem, respectively, A(i) ∈ Rny×ny , i = 1, . . . , na, and B(i) ∈ Rny×nu ,
i = 1, . . . , nb, and na, nb define the model order of the ARX model.

This chapter considers the following MPC tracking formulation based
on the ARX model (4.1)

minY,U,∆U
1

2

T∑
t=1

∥(yt − rt)∥2Wy + ∥∆ut−1∥2W∆u

s.t. yt =

na∑
i=1

A(i)yt−i +

nb∑
i=1

B(i)ut−i, t = 1, . . . , T

∆ut = ut − ut−1, t = 0, . . . , T − 1
ymin ≤ yt ≤ ymax, t = 1, . . . , T
umin ≤ ut ≤ umax, t = 0, . . . , T − 1
∆umin ≤ ∆ut ≤ ∆umax, t = 0, . . . , T − 1

(4.2)

where T is the prediction horizon, W y ≻ 0 and W∆u ≻ 0 are diagonal
weights matrices on the outputs and the input increments, respectively,
rt, t = 1, . . . , T are the future desired set-point vectors, ∆ut−1 are the in-
put increments, [ymin, ymax], [umin, umax], and [∆umin,∆umax] define box
constraints on outputs, inputs, and input increments, respectively, and
Y = (y1, . . . , yT ), U = (u0, . . . , uT−1), and ∆U = (∆u0, . . . ,∆uT−1) are
the optimization variables.
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4.3 Coordinate Descent Augmented Lagrangian
method

In Chapter 2, we proposed the CDAL algorithm for SS-based MPC prob-
lems. We want to adapt here the method to solve problem (4.2) with-
out computing a state-space realization of the ARX model (4.1) while re-
taining the construction-free, matrix-free, and library-free properties of
CDAL.

4.3.1 Augmented Lagrangian method

The following assumptions are needed to ensure the convergence of the
Augmented Lagrangian method.

Assumption 1 Problem (4.2) has a feasible solution.

Note that Assumption (1) is satisfied in all practical situations in which
the reference rt is far enough from the output bounds and the prediction
horizon T is long enough.

Assumption 2 The equality constraint matrix arising from stacking all the
equality constraints in (4.1) is full rank at the optimal solution of the problem.

Let Y , U , and ∆U denote the hyper-boxes on Y , U , and ∆U , respec-
tively, defined by the box constraints in (4.2), respectively. The bound-
constrained Augmented Lagrangian function Lρ : Y ×U ×∆U ×RTny ×
RTnu → R is given by

Lρ(Y, U,∆U,Λ,Γ) =
1

2

T∑
t=1

∥(yt − rt)∥2Wy + ∥∆ut−1∥2W∆u

+

T∑
t=1

λ′
t

(
na∑
i=1

A(i)yt−i +

nb∑
i=1

B(i)ut−i − yt

)

+
ρ

2

T∑
t=1

∥∥∥∥∥
na∑
i=1

A(i)yt−i +

nb∑
i=1

B(i)ut−i − yt

∥∥∥∥∥
2

2

+

T∑
t=1

γ′
t (ut−2 +∆ut−1 − ut−1) +

ρ

2

T∑
t=1

∥ut−2 +∆ut−1 − ut−1∥ ∥22

(4.3)
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where Λ = {λt} and Γ = {γt},∀t = 1, . . . , T are the dual vectors asso-
ciated with the equality constraints induced by the ARX model and the
input increments, respectively, and ρ is the penalty parameter. Accord-
ing to [15], the scaled AL method (ALM) iterates the following updates

(Y k, Uk,∆Uk) = argmin
1

ρ
Lρ(Y,U,∆U,Λk−1,Γk−1) (4.4a)

λk
t = λk−1

t +

na∑
i=1

A(i)ykt−i +

nb∑
j=1

B(i)uk
t−i − ykt

,∀t = 1, . . . , T

(4.4b)

γk
t = γk−1

t + uk
t−1 +∆uk

t − uk
t ,∀t = 1, . . . , T (4.4c)

The minimization step (4.4a) updates the primal vector, Steps (4.4b) and
(4.4c) update the dual vectors. We refer the reader to [15] for a well-
known convergence proof of ALM under Assumptions 1, 2. To improve
the speed of convergence of ALM, [47] proposed an accelerated version
of ALM whose convergence rate is O(1/k2) for linearly constrained con-
vex programs by using Nesterov’s acceleration technique [71]. The accel-
erated ALM algorithm for MPC problems has been summarized in our
previous Chapter 2.

4.3.2 Coordinate-descent method

Sub-problem (4.4a) is a strongly convex box-constrained QP problem,
which can be solved by many methods. Among others, as we showed in
Chapter 2, problem (4.4a) can be solved by a simple coordinate-descent
method, which minimizes the objective function along only one coor-
dinate direction at each iteration while keeping the other coordinates
fixed [110]. A convergence proof of at-least linear convergence when
solving convex differentiable minimization problems was shown in [65].
Under Assumption 1 (non-emptiness of the feasible set) and since the
objective function Lρ(·) is continuously differentiable and convex with
respect to each coordinate, the CD method proceeds repeatedly for k =
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Algorithm 6 Accelerated augmented Lagrangian method [47]

Input: Initial guess Y 0 ∈ Y , U0 ∈ U , ∆U0 ∈ ·U , Λ0 and Γ0; maximum
number Nout of iterations; parameter ρ > 0, ϵ > 0.

1. Set α1 = 1; Λ̂0 = Λ0; Γ̂0 = Γ0;

2. for k = 1, 2, · · · , Nout do

2.1. (Y k, Uk,∆Uk) = argmin 1
ρLρ(Y, U,∆U, Λ̂k−1,

Γ̂k−1)

2.2. for t = 1, 2, · · · , T do

2.2.1. λk
t = λ̂k−1

t +
∑na

i=1 A(i)ykt−i +
∑nb

j=1 B(i)uk
t−i − ykt

2.2.2. γk
t = γ̂k−1

t + (uk
t−2 +∆uk

t−1 − uk
t−1);

2.3. if ∥Λk − Λ̂k−1∥22 + ∥Γk − Γ̂k−1∥22 ≤ ϵ, stop;

2.4. αk+1 =
1+
√

1+4α2
k

2 ;

2.5. Λ̂k = Λk + αk−1
αk+1

(Λk − Λk−1);

3. end.

Output: Y Nout , UNout , ∆UNout .

1, 2, . . . , as follows:

choose jk ∈ {1, 2, . . . , nz} (4.5a)

zkjk = argmin
zjk∈Z

1

ρ
Lρ(zjk , z

k−1
̸=jk

,Λk−1,Γk−1) (4.5b)

where

z =
[
y′1 u′

0 ∆u′
0 . . . y′T u′

T−1 ∆u′
T−1

]′
is the optimization vector, z ∈ Z ≜ Y × U ×∆U , Z ⊆ Rnz , nz ≜ T (ny +

nu+nu). Lρ(zjk , z
k−1
̸=jk

,Λk−1,Γk−1) denotes by the valueLρ(z,Λ
k−1,Γk−1)

when z̸=jk = zk̸=jk
is fixed. Here z̸=jk denotes the subvector obtained

from z by eliminating its jkth component zjk . The convergence of the
iterations (4.5) depends on the coordinate picking rule, namely how jk is
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chosen. Existing research works have analyzed the influence of different
coordinate selection rules such as the cyclic rule [38], Gauss-Southwell
rule [76], the greedy rule [75], and the random selection rule [72], on
the convergence rate of the coordinate descent method. We choose the
simplest variant using cyclic coordinate search to favor implementation
simplicity. In fact, the cyclic implementation preserves the order of opti-
mization variables with respect to the prediction horizon t, type (output
y, input u, or input increment ∆u), and component. The implementa-
tion of one pass through all nz coordinates using cyclic CD is reported
in Procedure 7. In Procedure 7, the operator {s, σ} = CCD{M,d, σ}s̄s
represents one pass iteration of the reverse cyclic CD method through
all its ns coordinates s1, . . . , sns

for the following box-constrained QP
mins∈[s,s̄]

1
2s

′Ms+ s′d, that is to execute the following ns iterations

for i = 1, . . . , ns

ŝi ← max(si,min(s̄i, si − 1
Mi,i

(Mi,·s+ di))

σ ← σ + (ŝi − si)
2

si ← ŝi
end

(4.6)

The quantities et, ft, gt used in Procedure 7 are defined for t = 1, · · · , T
as follows:

et = −W yr − (λt +

na∑
i=1

A(i)yt−i +

nb∑
i

B(i)ut−i)

+

min(na,T−t)∑
ni=1

A(ni)
′(λt+ni

+

na∑
i̸=ni

A(i)yt+ni−i +

nb∑
i=1

B(i)ut+ni−i − yt+ni
)

ft = −(γt + ut−2 +∆ut−1) + (γt+1 +∆ut + ut)

+

min(nb,T−t+1)∑
ni=1

B(ni)
′(λt+ni +

na∑
i=1

A(i)yt+ni−i +

nb∑
i ̸=ni

B(i)ut+ni−i − yt+ni)

gt = γt + ut−2 − ut−1
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Procedure 7 Full pass of cyclic coordinate descent on all block variables
Input: Λ = {λ1, . . . , λT }, Γ = {γ1, . . . , γT }, Y = {y1, · · · , yT },
U = {u0, · · · , uT−1}, ∆U = {∆u0, · · · ,∆uT−1}; MPC settings
A(1), . . . , A(na), B(1), . . . , B(nb), W y , W∆u, ymin, ymax, umin, umax,
∆umin, ∆umax; parameter σ, ρ > 0.

1. σ ← 0;

2. for t = 1, . . . , T − 1 do

2.1. j = min(na, T − t);

2.2. {yt, σ} ← CCD{ 1ρW
y + I +

∑j
i=1 A(i)′A(i), et, σ}ymax

ymin
;

2.3. j = min(nb, T − t+ 1);

2.4. {ut−1, σ} ← CCD{2I +
∑j

i=1 B(i)′B(i), ft, σ}umax
umin

;

2.5. {∆ut, σ} ← CCD{ 1ρW
∆u + I, gt, σ}∆umax

∆umin
;

3. {yT , σ} ← CCD{ 1ρW
y + I, eT , σ}ymax

ymin
;

4. {uT−1, σ} ← CCD{I +B(1)′B(1), fT , σ}umax
umin

;

5. {∆uT−1, σ} ← CCD{ 1ρW
∆u + I, gT , σ}∆umax

∆umin
;

6. end.

Output: Y , U , ∆U , Λ, Γ, σ.

eT = −W yr − (λT +

na∑
i=1

A(i)yT−i +

nb∑
i=1

B(i)uT−i)

fT = −(γT + uT−2

+∆uT−1) +B(1)′(λT +

na∑
i=1

A(i)yT−i +

nb∑
i ̸=1

B(i)uT−i − yT )

gT = γT + uT−2 − uT−1

which shows that they involve several matrix-vector multiplications. It
would greatly affect the computation efficiency since their computational
cost is proportional to the product of the inner iterations and the outer
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iterations. To eliminate their explicit calculation, we propose here below
an efficient coupling scheme between CD and AL that reduces the cost
per iteration, without changing the rate of convergence of the algorithm.

4.3.3 Efficient coupling scheme between CD and AL

Our proposed efficient coupling scheme exploits the fact that CD only
updates one coordinate each time, and the execution (4.6) of the opera-
tor CCD(·) involves the next update of dual Lagrangian vectors. Here
we take Step 2.2 of Procedure 7 as an example, which has been modi-
fied from equation (4.6) to Procedure 8. Note that the dual Lagrangian
vectors used in Procedure 8 have been updated before Procedure 8. The
symbols {Dy

0 , D
y
1 , . . . , D

y
T−1} denote the diagonal elements of their Hes-

sian matrices used in Step 2.2 and 3

for t = 1, . . . , T − 1
j = min(na, T − t);

Dy
t ← diag

(
1
ρW

y + I +
∑j

i=1 A(i)′A(i)
)

end
Dy

T−1 ←
1
ρW

y + I

(4.7)

To avoid repeating division operations, the values { 1
Dy

0
, 1
Dy

1
, . . . , 1

Dy
T−1
}

are cached before the iterations start. The other steps involving the oper-
ator CCD(·) in Procedure 7 follow the same idea.

4.3.4 Algorithm

Summarizing all the ingredients described in the previous sections, we
obtain the construction-free ARX-based MPC Algorithm 9, which we
call CDAL-ARX. Here, construction-free means that CDAL-ARX directly
uses the ARX model coefficients without the need to construct a QP prob-
lem explicitly. Note that the main update of the Lagrangian variables
in Algorithm 9 is placed early in Step 2.1, which is different from the
original version of Algorithm 1 in Chapter 2 because the CD method al-
lows the use of our proposed efficient coupling scheme. The quantities
Nout and Nin denote the maximum number of AL (outer-loop) and CD
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Procedure 8 One pass of cyclic coordinate descent for Step 2.2 of Proce-
dure 7 after using efficient coupling scheme
Input: j = min(na, T − t); yt+1, λt, λt+1, . . . , λt+j ; parameter ρ > 0;
update amount σ ≥ 0.

1. for i = 1, . . . , ny do

1.1. s← −λt,i +
∑j

ni=1 A(ni)
′
:,iλt+ni

;

1.2. θ ←
[
yt,i −

1
ρW

y
i (yt,i−ri)+s

Dy
t,i

]ymax,i

ymin,i

;

1.3. ∆← θ − yt,i;

1.4. σ ← σ +∆2;

1.5. yt,i ← θ;

1.6. λt,i ← λt,i +∆;

1.7. for ni = 1, . . . , j do

1.7.1. λt+ni
← λt+ni

+∆ ·A(ni):,i

2. end.

Output: yt, λt, λt+1, . . . , λt+j , σ.

(inner-loop) iterations, respectively. The tolerances ϵout and ϵin define the
stopping criteria of the outer and inner iterations, respectively.

4.4 Numerical example

In this section, we test our proposed ARX-based MPC algorithm against
other MPC solvers, which rely on condensed or sparse MPC-to-QP con-
struction, respectively. The best choice between condensed and sparse
QP forms mainly depends on the number of outputs ny , control inputs
nu, and the length of the prediction horizon T [53]. For numerical com-
parisons with our ARX-based MPC algorithm, this chapter considers
both condensed and sparse MPC-to-QP constructions, which are then
solved by the qpOASES [29] and OSQP [104], respectively. The reported
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Algorithm 9 Accelerated cyclic CDAL algorithm for ARX-based MPC
Input: primal/dual warm-start Y = {y1, y2, · · · , yT }, U =
{u0, u1, · · · , uT−1}, ∆U = {∆u0,∆u1, · · · ,∆uT−1}, Λ−1 = Λ0 = {λ1,
λ2, · · · , λT }, Γ−1 = Γ0 = {γ1, γ2, · · · , γT }; History input and
output data {y0, y−1, . . . , y1−na}, {u−1, u−2, . . . , u1−nb

}; MPC settings
{A(1), A(2), . . . , A(na), B(1), B(2), . . . , B(nb), W y , W∆u, ymin, ymax,
umin, umax, ∆umin, ∆umax}; Algorithm settings {ρ,Nout, Nin ϵout, ϵin}

1. α1 ← 1; Λ̂0 ← Λ0; Γ̂0 ← Γ0;

2. for k = 1, 2, · · · , Nout do

2.1. for t = 1, 2, · · · , T do

2.1.1. λk
t = λ̂k−1

t + (
∑na

i=1 A(i)ykt−i +
∑nb

j=1 B(i)uk
t−i − ykt )

2.1.2. γk
t = γ̂k−1

t + (uk
t−2 +∆uk

t−1 − uk
t−1);

2.2. for kin = 1, 2, · · · , Nin do

2.2.1. (Y, U,∆U, σ)← Procedure 7 with use of Procedure 8;
2.2.2. if σ ≤ ϵin break the loop;

2.3. if ∥Λk − Λ̂k−1∥22 + ∥Γk − Γ̂k−1∥22 ≤ ϵout stop;

2.4. αk+1 ←
1+
√

1+4α2
k

2 ;

2.5. Λ̂k ← Λk + αk−1
αk+1

(Λk − Λk−1);

3. end.

Output: Y,U,∆U,Λ,Γ
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comparison simulation results were obtained on a MacBook Pro with a
2.7 GHz 4-core Intel Core i7 and 16GB RAM. Algorithm 9, qpOASES v3.2
and OSQP v0.6.2 are all executed in MATLAB R2020a via their C-mex
implementations.

4.4.1 Problem Descriptions

1. Time-changing ARX model example: one notable feature of ARX model
is its online adaptability, making it particularly appealing in prac-
tical cases in which the system dynamic changes operations. In
such time-changing ARX model examples, our CDAL-ARX algo-
rithm can take advantage of its construction-free feature to avoid
the computation cost of the online construction step in comparison
to other algorithms. We tested CDAL-ARX on randomly-generated
two-input-two-output ARX models with order na = 4 and nb = 4

and time-varying system matrices. For demonstration purposes,
here below we report one instance of them, whose ARX model ma-
trix parameters are listed as follows,

A(i)t = A(i) + 0.1M t, i = 1, . . . 4
B(i)t = B(i) + 0.1M t, i = 1, . . . 4

(4.8)

where A(1)=
[

0.9 0.1
0.1 0.9

]
, A(2)=

[
0.7 0.1
0.1 0.7

]
, A(3)=

[
0.5 0.1
0.1 0.5

]
,

A(4)=
[

0.3 0.1
0.1 0.3

]
, B(1)=

[
1 0.5
0.5 1

]
, B(2)=

[
0.8 0.4
0.4 0.8

]
,

B(3)=
[

0.6 0.3
0.3 0.6

]
, B(4)=

[
0.4 0.2
0.2 0.4

]
,M t=

[
sin( t

10 ) cos( t
10 )

cos( t
10 ) sin( t

10 )

]
.

2. DNN-based LPV-ARX model example: one particular type of LPV
input-output representation is LPV-ARX model, and its scheduling
variable can be piecewise affine (PWA) maps. Modern deep neural
network theory tells that deep ReLU networks can represent expo-
nentially many more PWA regions than shallow one swith a fixed
amount of memory [101]. We tested on CDAL-ARX on randomly-
generated two-input-two-output quasi-LPV-ARX models of larger
order na = 6 and nb = 6, whose coefficient matrices are piecewise
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affine (PWA) maps of the scheduling vector wt−1[
yt(1)
yt(2)

]
=

[
N1(wt−1)

′

N2(wt−1)
′

]
xt−1 (4.9)

where xt−1 =
[
y′t−1, . . . , y

′
t−6, u

′
t−1, . . . , u

′
t−6

]′ ∈ R24, wt−1 = [y′t−1,
. . . , y′t−6, u

′
t−2, . . . , u

′
t−6]

′ ∈ R22, and N1, N2 ∈ R22 → R24 are deep
feedforward neural networks with three layers and ReLU activa-
tion function, namelyN1(wt−1)=W1,3 max(0,W1,2 max(0,W1,1wt−1

+b1,1) +b1,2)+b1,3,N2(wt−1)=W2,3 max(0,W2,2 max(0,W2,1wt−1+

b2,1) + b2,2) + b2,3. Here we choose the number of neurons in each
hidden layer as three times the number of inputs according to [101],
that is, W1,1 and W2,1 ∈ R66×22, b1,1 and b2,1 ∈ R66, W1,2 and W2,2 ∈
R66×66, b1,2 and b2,2 ∈ R66, W1,3 and W2,3 ∈ R24×66, b1,3 and b2,3 ∈
R24. For demonstration purposes, we define b1,3, b2,3 by collecting
the coefficients defining A(1), . . . , A(4), A(4), A(4), B(1), . . . , B(4),
B(4), B(4) as in (4.8); the remaining network parameters are ran-
domly generated uniformly between 0 and 0.1. At each time t, the
linear model consumed by our CDAL-ARX algorithm is given by
evaluating the deep ReLU networks as in (4.9).

In both examples, we use the same MPC parameters Wy = I , W∆u =

0.1I , [ymin, ymax] = [−1, 1], [umin, umax] = [−1, 1], [∆umin,∆umax] = [−1, 1].
Different prediction horizon lengths T are used to investigate numerical
performance, namely T = 10, 20, and 30. Their history input-output con-
ditions are both zeros. For example, y−3 = y−2 = y−1 = y0 = [0 0]′, and
u−3 = u−2 = u−1 = [0 0]′ for the first case. In the two examples, the
closed-loop simulation is run over 200 sampling steps, and the desired
references for y1 and y2 are randomly changed every 20 steps. Warm-
start is used in all solvers (qpOASES, OSQP, CDAL-ARX). We keep de-
fault solver settings in both qpOASES and OSQP, so that they produce so-
lutions of similar precision, that are measured in terms of Euclidean dis-
tance (since qpOASES belongs to the class of active-set methods, in prin-
ciple, it always provides a high-precision solution at termination, so its
solution quality cannot be tuned as easily as in the case of ADMM). For a
fair comparison, in the two examples we set ϵin = 10−6 and ϵout = 10−6
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under ρ = 1 to define the stopping criteria of our CDAL-ARX solver, so
to obtain closed-loop control sequences with similar precision. In both
examples, the generated closed-loop simulation results are almost indis-
tinguishable, as shown in Figure 4.1(a) and 4.1(b), respectively, which
show good tracking performance and no violation in input and output
constraints.

Using the qpOASES and OSQP solvers requires the online construc-
tion of the QP problem, whose computation time must be counted in
the total time. Table 4.1 lists the solution time of CDAL-ARX and lists
the construction and solution time when using qpOASES (condensed
construction) and OSQP (sparse construction). From Table 4.1, it can
be noticed that CDAL-ARX is always solving the MPC problem in a
smaller CPU time when compared to the sum of construction and so-
lution time of qpOASES and OSQP. Moreover, as the prediction horizon
increases, qpOASES and OSQP may fail to solve the problem due to the
ill-conditioning issue. Note also that the computation time of CDAL-
ARX is often shorter than the pure solution time of qpOASES and OSQP
(i.e., not counting the construction time), which seems to indicate that the
reported speed-ups are due to both adopting the proposed augmented
Lagrangian method and avoiding the construction step.

4.5 Conclusion

This chapter introduced a solution algorithm for solving MPC problems
based on ARX models that avoid constructing the associated QP problem
explicitly. Due to its matrix-free and library-free features, the proposed
CDAL-ARX algorithm can be useful in adaptive embedded linear MPC
applications based on ARX models, especially when combined with a
fast and robust recursive linear identification method.
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(a) Time-varying ARX model
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(b) DNN-based LPV-ARX model

Figure 4.1: Closed-loop tracking results
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Table 4.1: Computation time (ms) of CDAL-ARX and comparison with
other solvers

Examples T CDAL-ARX qpOASES OSQP
avg, max avg, max avg, max

Time-varying ARX

10 0.14, 1.5 0.42*, 2.8* 0.41*, 2.9*

0.08†, 1.4† 0.18†, 0.92†

20 0.25, 2.8 1.2*, 6.3* 1.0*, 3.8*

0.18†, 4.4† 1.9†, 17†

30 0.36, 3.6 2.6*, 10.2* 2.4*, 8.1*

fail 22†, 48†

DNN-based LPV-ARX

10 0.51, 2.5 0.46*, 3.2* 0.42*, 3.6*

0.57†, 3.9† 1.1†, 14†

20 1.2, 4.6 1.2*, 5.5* 0.97*, 4.5*

fail 16†, 32†

30 2.0, 7.3 3.1*, 10.8* 2.8*, 8.9*

fail fail
*construction time, †solution time. For qpOASES and OSQP, the time to evaluate
the MPC law is the sum of construction and solution time.
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Chapter 5

Equivalence of SS-based
MPC and ARX-based MPC

5.1 Introduction

One critical component for a successful MPC controller is how to obtain
a simplified control-oriented prediction model of the physical process to
predict its likely evolution. Two main kinds of control-oriented models
used in MPC are the state-space (SS) and input-output models. Most
earlier MPC methods employ a different types of input-output models.
Input-output models were almost superseded by state-space models af-
ter three decades of MPC development [68], and the SS model provides
a series of mature theories to address controllability, observability, op-
timal control, etc., elegantly [45, 46]. Furthermore, a SS model can be
regarded as interpretative when obtained from the first-principle-based
modeling paradigm. In contrast, the input-output model, such as the
Auto-Regressive model with eXogenous (ARX) terms model, is a black-
box model without interpretability [61].

Nonetheless, input-output models are still prevalent and preferred in
industrial MPC applications. One reason is that most industrial control
application scenarios cannot measure full state information, which is re-
quired by state-space-based (SS-based) MPC. In that context, an observer
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(or estimator), like the well-known Luenberger observer, the Kalman Fil-
ter, and the moving horizon estimator [92], is adopted to estimate full
states from streaming input-output data. The simultaneous deployment
of an observer and MPC not only increases tuning difficulties and on-
line computation costs when the dimension of states is large. Clearly,
an input-output ARX model-based (ARX-based) MPC does not require
cooperating with an online observer. Another reason is that the input-
output ARX model is widely used in adaptive control [6], and its cheap
online adaptation cost is attributed to the linear relationship between in-
put and output. The adaptability of input-output ARX models is very
appealing in practical industrial scenarios where practical plants suffer
changing dynamics in their whole life operation cycle, such as in the case
of fouling of heating equipment in chemical processes, changes of mass
and inertia in rockets due to fuel consumption, and many others.

The input-output ARX model has long been considered black-box
because its acquisition is through a data-driven paradigm such as sys-
tem identification methods. Conversely, the SS model can be obtained
either through the first-principle-based modeling paradigm or through
the data-driven paradigm. The first-principle-based modeling paradigm
typically builds nonlinear SS models with interpretability, which can de-
rive simplified control-oriented models for MPC via linearization on op-
erating ranges or online successive linearization. Speaking of adapt-
ability, compared to the ARX model, the SS model is inferior in this re-
spect. For the SS model to achieve adaptability, there are two approaches:
one is when the SS model comes from the first-principle-based model-
ing paradigm, the joint estimation of model parameters and states can
be adopted via the dual Extended Kalman Filter (EKF) [109]; the other
is when the SS model comes from the data-driven paradigm, the on-
line subspace identification algorithm, like Multivariable Output Error
State Space (MOESP) [106] and Numerical algorithms for Subspace State
Space System Identification (N4SID) algorithms [80], can be adopted.
Compared to the online ARX identification method, both two are more
computationally heavy and complicated, especially the subspace meth-
ods of the latter are based on robust numerical tools such as QR decom-
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position and singular value decomposition, which are not suitable for on-
line schemes. An online updating scheme of the MIMO ARX model can
be decomposed into some multi-input-single-output models, which then
can be updated parallelly by recursive-least-squares (RLS) or Kalman Fil-
ter (KF) algorithms without matrix-inverse operations in that case. It
seems that interpretability and adaptability were hard to preserve simul-
taneously in a control-oriented model from a computational perspective.

The relationship between the SS model and the ARX model has been
investigated. The ARX model can be transformed into an SS model,
and vice versa. Most literature treats the ARX-based MPC problem as
a standard SS-based MPC problem by converting the ARX model into
the SS model, see [43]. In [4], Aoki and Havenner only revealed that
the SS model could be transformed into the ARX model by using the
Cayley-Hamilton theorem [31], without further discussing its applica-
tion in MPC. In [86, 84], Minh et al. found that an SS model can be trans-
formed into an equivalent ARX model in terms of an observer gain, and
this enables a unifying input-output and state-space perspectives for pre-
dictive control. The control input of their proposed predictive controllers
was a linear combination of past input-output data [83, 59, 85]. Their
predictive control schemes did not introduce constraints capabilities like
modern MPC technology, only showing that the relationship between SS
and ARX model can provide an interpretation of why it is not necessary
to perform an explicit state-space model identification and observer de-
sign. Few works explored the application values of the SS-to-ARX trans-
formation.

Black-box ARX models without interpretability cannot exploit nu-
merous existing first-principle-based models like the SS model. Simul-
taneously persevering the interpretability and adaptability is a desired
solution for safety-critical and adaptive MPC applications. To address
these issues, this chapter leverages an equivalent SS-to-ARX transforma-
tion to introduce interpretability into an adaptive ARX model. Firstly,
this chapter present how an SS model can be transformed into a unique
equivalent ARX model via the Cayley-Hamilton (CH) theorem [31, 4].
Note that the order of the transformed ARX model is equal to the state
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dimensions of the original SS model in this CH-based SS-to-ARX trans-
formation. However, the closed-loop performance of the transformed
ARX-based MPC is sensitive to process noise and measurement noise,
because the transformed ARX-based MPC controller is essentially equiv-
alent to the SS-based MPC controller with a deadbeat observer in that
case. A deadbeat observer is a minimum-time observer which is sensitive
to process noise and measurement noise. To reduce the noise sensitivity
existing in CH-based transformation, a generalized SS-to-ARX transfor-
mation was presented based on the Observer-Theory (OT), which can
be viewed as an extension of CH-based transformation. Furthermore,
this chapter derived the Kalman Filter (KF) based SS-to-ARX transforma-
tion, which shares the same ARX structure with the OT-based SS-to-ARX
transformation, explaining why OT-based SS-to-ARX transformation is
robust to noise.

This chapter presents an alternative to obtaining the input-output
ARX model based on a first-principle-based paradigm, rather than a data-
driven paradigm. By firstly linearizing existing first-principle-based (high-
fidelity) models among different fields, we can obtain an (or multiple)
interpretative SS model at the operating range. And then, the interpreta-
tive SS model is transformed into an (or multiple) equivalent ARX model
based on the SS-to-ARX transformation theory presented in this chapter.
The ARX model obtained from this paradigm can be considered to in-
herit the interpretability, and the ARX-based MPC problem can also be
adaptive when combing an online updating scheme for the ARX model,
to handle time-varying dynamics. This is the basis of the next Chap-
ter 6, which is an interpretive and adaptive MPC framework. More im-
portantly, this chapter reveals that choosing the order of an ARX model
should depend on the process and measurement noise, to achieve a good
closed-loop performance. This is totally different from the choosing rule
of ARX model order in a data-driven paradigm, which is based on fitting
criteria.

The structure of the chapter is as follows. Section 5.2 firstly defines
the state-space based MPC tracking problem in its subsection 5.2.1, and
the subsection 5.2.2, 5.2.3 and 5.2.4 present the derivations of the CH-
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based, OT-based, and KF-based SS-to-ARX transformations, respectively.
In Section 5.4, numerical experiments are presented. Finally, we draw
conclusions in Section 5.5. H ≻ 0 (H ⪰ 0) denotes positive definiteness
(semi-definiteness) of a square matrix H . For a vector z, ∥z∥2H denotes the
operation z′Hz. H ′ (or z′) denotes the transpose of matrix H (or vector
z).

5.2 Problem Description and Methods

5.2.1 State-space based MPC problem

This chapter considers the following discrete-time state-space model,

xt+1 = Axt +But (5.1a)

yt = Cxt (5.1b)

where each {xt} ∈ Rn are the state variables, each {ut} ∈ Rq are the
input variables and each {yt} ∈ Rm are the output variables. Then, a
state-space based tracking MPC formulation is shown as follows,

min

T−1∑
t=0

∥(yt+1 − rt+1)∥2Wy
+ ∥∆ut∥2W∆u

s.t. xt+1 = Axt +But, t = 0, . . . , T − 1

yt = Cxt, t = 1, . . . , T

ut = ut−1 +∆ut, t = 0, . . . , T − 1

ymin ≤ yt ≤ ymax, t = 1, . . . , T

umin ≤ ut ≤ umax, t = 0, . . . , T − 1

∆umin ≤ ∆ut ≤ ∆umax, t = 0, . . . , T − 1

x0 = x̂0 (5.2)

where {rt} are the desired output tracking reference signals, {yt} are the
measured outputs subject to bound constraints [ymin, ymax], {ut} are the
control inputs subject to bound constraints [umin, umax], {∆ut} are control
input increments subject to bound constraints [∆umin,∆umax], Wy ≻ 0
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and W∆u ≻ 0 are the diagonal weights matrices. x̂0 is the estimated
value of full state variable at current time t, which is estimated by estima-
tion algorithm or observer. We assume that only the measured outputs,
inputs, and input increments have box-constraints; the states do not.

5.2.2 Cayley-Hamilton based SS-to-ARX transformation

Based on the states evolution equation (5.1a), calculating from previous
time t− n time to current time t can lead to the following equation

xt = Anxt−n

+
[
B,AB, · · · , An−1B

]


ut−n

ut−n+1

...
ut−1

 (5.3)

By writing down each output equation (5.1b) from previous time t−n to
current time t,

yt−n = Cxt−n

yt−n+1 = CAxt−n + CBut−n

yt−n+2 = CA2xt−n + CBut−n+1 + CABut−n

...

yt = CAnxt−n

+
[
CB,CAB, · · · , CAn−1B

]


ut−n

ut−n+1

...
ut−1



(5.4)

Here the Cayley-Hamilton theorem [31] is introduced to remove the state
vector xt−n. The Cayley–Hamilton theorem states that every square ma-
trix satisfies its own characteristic equation. For a given n × n matrix A,
then the characteristic polynomial of A is defined as pA(λ) = det(λIn −
A), the determinant is also a degree-n monic polynomial in λ, pA(λ) =

λn + c1λ
n−1 + · · · + cn−1λ + cn. One can create an analogous polyno-

mial pA(A) in the matrix A instead of the scalar variable λ, defined as
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pA(A) = An + c1A
n−1 + · · · + cn−1A + cnIn. The Cayley–Hamilton the-

orem states that this polynomial expression is equal to the zero matrices,
which allows An to be expressed as a linear combination of the lower
matrix powers of A.

An + c1A
n−1 + · · ·+ cn−1A+ cnIn =

 0 · · · 0
...

. . .
...

0 · · · 0

 (5.5)

By substituting this equation (5.5) into the output equations (5.4) from
previous t − n time to current time t, we can obtain the following trans-
formed ARX model

yt + c1yt−1 + · · ·+ cn−1yt−n+1 + cnyt−n

= Θ1ut−1 +Θ2ut−2 +Θ3ut−3 + . . .+Θnut−n

(5.6)

where Θ1 = CB,Θ2 = CAB+ c1CB,Θ3 = CA2B+ c1CAB+ c2CB, · · · ,
Θn = CAn−1B + c1CAn−2B + · · ·+ cn−1CB.

Let us call the above SS-to-ARX transformation the CH-based trans-
formation, which implies that the order of the ARX model is equal to the
state dimension of the SS model. But the CH-based transformation suf-
fers the noise sensitivity issues. The next subsection 5.2.3 shows that the
observed-theory-based (OT-based) SS-to-ARX transformation is a gener-
alized transformation theory, which can be robust to noise.

5.2.3 Observer-Theory based SS-to-ARX transformation

Utilizing a gain matrix L in the SS model (5.1) to begin the derivation of
the SS-to-ARX transformation as follows

xt+1 = Axt +But − Lyt + Lyt

= (A− LC)xt +But + Lyt
(5.7)
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Based on the above evolution equation (5.7), calculating from previous
time t− p to current time t can lead to the following equation

xt = (A− LC)pxt−p +

p∑
i=1

(A− LC)i−1Lyt−i

+

p∑
i=1

(A− LC)i−1But−i

(5.8)

If a gain matrix L exists such that (A− LC)p vanishes to zero, i.e.,

(A− LC)k ≡ 0, k ≥ p (5.9)

From linear system theory, the existence of such a gain matrix L is as-
sured as long as the system is observable. Thus, the term (A− LC)pxt−p

in (5.8) is zero for k ≥ p, then multiplying the matrix C on both sides of
the equation (5.8) can derive the following ARX model,

yt =

k∑
i=1

C(A− LC)i−1Lyt−i

+

k∑
i=1

C(A− LC)i−1But−i

(5.10)

Next, we provide the analysis to tell why the gain matrix L can be
viewed as an observer gain. The original state-space model (5.1) has an
observer gain L of the following form

x̂t+1 = Ax̂t +But + L(yt − ŷt)

ŷt = Cx̂t

(5.11)

where x̂t is the estimated state. The state estimation error can be denoted
as et = xt − x̂t, then et follows the dynamic equation,

et+1 = (A− LC)et (5.12)

Thus, the estimated state x̂t will converge the actual value xt as t tends
to infinity if the matrix A− LC is asymptotically stable, namely the con-
dition (5.9), that is why we call (5.10) is the OT-based SS-to-ARX trans-
formation.
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In fact, the connection between CH-based and OT-based SS-to-ARX
transformation can be established by a generalized Cayley-Hamilton the-
orem. Defining a sequence matrices {Mi}, each of them belongs to Rn×m.
As long as km ≥ n then it is guaranteed for an observable system that
{Mi} exists such that

Ap +M1CAp−1 +M2CAp−2 + . . .+MpC = 0 (5.13)

which is a generalized Cayley-Hamilton theorem. Following the same
idea of the standard Cayley-Hamilton-based derivation in section 5.2.2,
can derive a general ARX model as follows

yt =

p∑
i=1

(
Āiyt−i + B̄iut−i

)
(5.14)

We omit this detailed derivation since the OT-based SS-to-ARX transfor-
mation is more easily computable, only required to satisfy the condition
(5.9) such as using pole placement methods.

5.2.4 Kalman Filter based SS-to-ARX transformation

This section shows the derivation of the SS-to-ARX transformation in the
presence of process and measurement noise. It tells that an ARX model
can be equivalent to an SS model with its optimal Kalman filter.

Consider the case where the state-space model (5.1) has process and
measurement noises

xt+1 = Axt +But + wt

yt = Cxt + vt
(5.15)

where the process noise wt and measurement noise vt are two zero mean
white noise with covariances Q and R, respectively. The linear stochastic
state-space (5.15) model can also be expressed in the form of a Kalman
filter

x̂t+1 = Ax̂t +But +Kϵt

yt = Cx̂t + ϵt
(5.16)
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where ϵt is a white sequence of residual with covariance Σ = CPC ′ + R

and P is the unique positive definite symmetric solution of the algebraic
Riccati equation

P = APA′ −APC ′(CPC ′ +R)−1CPA′ +Q

The Kalman filter gain K is given by K = APC ′(CPC ′+R)−1 = APC ′(Σ)−1.
Then, the system (5.16) can be expressed as

x̂t+1 = Ax̂t +But +Kϵt −Kyt +Kyt

= Ax̂t +But +Kϵt −KCx̂t −Kϵt +Kyt

= (A−KC)x̂t +But +Kyt

yt = Cx̂t + ϵt

(5.17)

Based on the above evolution equation (5.17), calculating from previous
time t− p1 to current time t can lead to the following equation

yt = C(A−KC)p1 x̂t +

p1∑
i=1

C(A−KC)i−1Kyt−i

+

p1∑
i=1

C(A−KC)i−1But−i + ϵt

(5.18)

Provided that p1 is enough large such that

(A−KC)k ≈ 0, k ≥ p1

then the input-output model (5.18) can be approximated by the following
ARX model

yt =

p1∑
i=1

C(A−KC)i−1Kyt−i

+

p1∑
i=1

C(A−KC)i−1But−i + ϵt

(5.19)

which has the same structure as equation (5.11) of the deterministic case,
only that the value of p1 may be larger than p. This shows that the equa-
tion (5.11) is also robust to noise, and its noise robustness increases as
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the order increases. More importantly, it tells that directly online identi-
fying an ARX model can replace the design procedure of a Kalman Filter
in which the process and measurement noise covariances require to be
estimated.

5.3 ARX-based MPC problem

After the above discussions, an interpretative SS model can be equiv-
alently transformed into an adaptive ARX model. Thus, the SS-based
MPC problem (5.2) has the following equivalent ARX-based MPC prob-
lem,

min

T−1∑
k=0

∥(yt+1 − rt+1)∥2Wy
+ ∥∆ut∥2W∆u

s.t. yt =

p∑
i=1

(Aiyt−i +Biut−i), t = 1, . . . , T

ut = ut−1 +∆ut, t = 0, . . . , T − 1

ymin ≤ yt+1 ≤ ymax, t = 0, . . . , T − 1

umin ≤ ut ≤ umax, t = 0, . . . , T − 1

∆umin ≤ ∆ut ≤ ∆umax, t = 0, . . . , T − 1 (5.20)

where the past input-output data {u−1, · · · , u1−p}, {y0, · · · , y1−p} needs
to be provided.

Traditionally, solving the ARX-based MPC problem (5.20) has to be
first constructed into a condensed Quadratic Programming (QP) problem
or a sparse QP problem via the construction procedure, and then apply
some standard QP algorithms to obtain a solution. The previous Chap-
ter 4 proposed a construction-free ARX-baed MPC algorithm suitable for
our considered application scenarios. And it has presented the princi-
ple of the construction-free ARX-baed MPC algorithm and the numeri-
cal comparisons with other non-construction-free algorithms. Thus, this
study applies our construction-free ARX-baed MPC algorithm to solve
the ARX-based MPC problem (5.20) and not provides numerical com-
parisons with other algorithms due to limited space. Moreover, the main
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purpose of this study is to present the equivalence of SS-based MPC and
ARX-based MPC and investigate the robustness of different SS-to-ARX
transformations to noise via closed-loop simulations.

5.4 Numerical example

This section utilizes a classical open-loop unstable AFTI-16 aircraft ex-
ample to show the equivalence of SS-based MPC and ARX-based MPC
and investigate the sensitivity of different SS-to-ARX transformations to
the process and measurement noise. The reported comparison simula-
tion results were obtained on a MacBook Pro with 2.7 GHz 4-core Intel
Core i7 and 16GB RAM, and ARX-based MPC problems are solved by
our C-mex implementation of previous Chapter 4 in MATLAB (2020a).

The two-input-two-output plant is continuous-time linearized AFTI-
16 aircraft model reported in [48, 11] as follows

ẋ =

 −0.0151 −60.5651 0 −32.174
−0.0001 −1.3411 0.9929 0
0.00018 43.2541 −0.86939 0

0 0 1 0

x
+

 −2.516 −13.136
−0.1689 −0.2514
−17.251 −1.5766

0 0

u
y =
[

0 1 0 0
0 0 0 1

]
x

The sampling time of designing a digital controller is 0.05 s, and the cor-
responding discrete-time model using exact discretization is

xt+1 =

[
0.0093 −3.0083 −0.1131 −1.6081

4.7030 × 10−6 0.9862 0.0478 3.8501 × 10−6

3.7028 × 10−6 2.0833 1.0089 −4.3616 × 10−6

1.3556 × 10−7 0.0526 0.0498 1

]
xt

+

[
−0.0804 −0.6347
−0.0291 −00143
−0.8679 −0.0917
−0.0216 −0.0022

]
ut

yt =
[

0 1 0 0
0 0 0 1

]
xt

Three SS-to-ARX transformations are designed through different poles
placement: the first one is based on Cayley-Hamilton theorem from the
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subsection 5.2.2, named as ARX-CH, its ARX coefficients matrices are

A1 =
[

3.9944 0
0 3.9944

]
, A2 =

[
−5.8834 0

0 −5.8834

]
A3 =

[
3.7837 0

0 3.7837

]
, A4 =

[
−0.8947 0

0 −0.8947

]
B1 =

[
−0.0291 −0.0143
−0.0216 −0.0022

]
, B2 =

[
0.0461 0.0386
0.0199 0.0012

]
B3 =

[
−0.0049 −0.0343
0.0213 0.0026

]
, B4 =

[
−0.0121 0.0100
−0.0196 −0.0016

]
the second and third ARX transformations are based on observer-theory
from the subsection 5.2.3, and their poles are placed at [0.01, 0.02, 0.03, 0.04]
and [0.04, 0.08, 0.12, 0.16], named ARX-OT-1 and ARX-OT-2, respectively.
Based on their truncation errors, the order of ARX-OT-1 and ARX-OT-2
are 4 and 6, respectively. We simulate three scenarios with different pro-
cess and measurement noises magnitude, that is, q = r = 0, q = r =

0.01, q = r = 0.05. The SS-based MPC is cooperated with the Kalman
filter with the given known noise covariances matrices, named SS-KF.
The input constraints are |ui| ≤ 25◦, i = 1, 2, the output constraints are
−0.5 ≤ y1 ≤ 0.5 and −100 ≤ y2 ≤ 100. The control goal is to make
the pitch angle y2 track a reference signal r2. In designing the MPC con-
troller we take Wy = diag([10,10]), Wu = 0, W∆u = diag([0.1, 0.1]), and
the prediction horizon is T = 10.

The Figure 5.1(a) is the closed-loop performance results of ARX-CH
under q = r = 0, namely without any noise. The ARX-OT-1 and ARX-
OT-2 and SS-KF transformations all coincide with the same plot results
(thus omitted), which shows that the tracking performance is good, and
there are no constraint violations in input and output. It tells the equiv-
alence of SS-based and ARX-based MPC problems under the presented
SS-to-ARX transformation theory. But the ARX-CH transformation suf-
fers bad closed-loop performance under noise q = r = 0.01 see Fig-
ure 5.1(b), and diverges under noise q = r = 0.05 (thus no figure).
It shows that the Cayley-Hamilton transformation is very sensitive to
noise. The Figure 5.2, 5.3 and 5.4 are the closed-loop control simulation
results of ARX-OT-1, ARX-OT-2 and SS-KF, under noise q = r = 0.01

and q = r = 0.05, respectively. Clearly, they all are more robust than
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ARX-CH, and the order of better control performance is ARX-OT-1 and
ARX-OT-2 and SS-KF, which is represented by the average MPC track-
ing cost. It also shows that the larger values of placed poles can be more
robust to noise, and the closed-loop performance can approximate the
optimal Kalman Filter, but more orders of the ARX model requires.

5.5 Conclusion

This chapter proposes the first-principle-based modeling paradigm for
the acquisition of ARX model. This paradigm firstly obtains control-
oriented SS models through linearizing the first-principle-based (high-
fidelity) models, which are then transformed into equivalent ARX mod-
els via the Cayley-Hamilton, Observer-Theory, and Kalman Filter based
SS-to-ARX transformations presented in this chapter. Numerical results
of the AFTI-16 MPC numerical example show the equivalence of SS-
based and ARX-based MPC problems and the noise robustness of differ-
ent SS-to-ARX transformations, which point out that choosing the ARX
model order should depend on the process and measurement noise, to
achieve a good closed-loop performance, rather than depending on fit-
ting criteria in data-driven ARX identification paradigm. This interpre-
tative ARX model can naturally be adopted in an adaptive MPC frame-
work by adding an online updating scheme for the ARX model; see the
next Chapter 6.
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(a) q = r = 0.0, average MPC tracking cost = 8511.2422
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(b) q = r = 0.01, average MPC tracking cost = 26002.4804

Figure 5.1: The closed-loop control performance of ARX-CH
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(a) q = r = 0.01, average MPC tracking cost = 8628.8547
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(b) q = r = 0.05, average MPC tracking cost = 9772.1471

Figure 5.2: The closed-loop control performance of ARX-Ob1
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(a) q = r = 0.01, average MPC tracking cost = 8604.6714
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(b) q = r = 0.05, average MPC tracking cost = 9583.1624

Figure 5.3: The closed-loop control performance of ARX-Ob2
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(a) q = r = 0.01, average MPC tracking cost = 8596.0559
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(b) q = r = 0.05, average MPC tracking cost = 9043.3026

Figure 5.4: The closed-loop control performance of SS-KF
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Chapter 6

An interpretative and
adaptive MPC for nonlinear
systems

6.1 Introduction

After major developments in the field of MPC over the past three decades,
MPC for linear plants described by the linear state-space model has made
significant progress in theoretical stability analysis and real-time numer-
ical algorithm implementation [56]. However, most industrial plants are
nonlinear, and their constrained nonlinear MPC (NMPC) formulation is
a non-convex optimization problem that encounters practical difficulties
in terms of computational complexity and algorithm implementation,
such as solving it within sampling time on embedded platforms. It is
known that a trade-off exists between the described accuracy of the non-
linear model and the online NMPC computation cost: the more accu-
rate/complicated the model, the greater the online computational cost.

Most industrial approaches are based on linear models obtained from
the linearization technique in solving MPC problems for nonlinear sys-
tems. A nonlinear plant generally admits a locally-linearized model when
considering regulating a particular operating point. In most cases, a lin-
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ear MPC yield adequate performance, especially for chemical process
industries. This approach with one linear model has an advantage in de-
signing and deploying the offline explicit MPC solutions based on multi-
parametric quadratic programming [14] and the online MPC solutions
based on fast convex optimization algorithms for embedded platforms to
satisfy real-time requirements. For tracking problems that operate over
a wide range of operating conditions, multiple linear model based MPC
addresses the non-adequate accuracy issue in one linear model based
MPC. Multiple linear models are also called linear parameter varying
(LPV), often used in the context of gain-scheduling, namely an MPC
controller scheduled by linear models [21]. One approach for obtaining
an LPV model is the online successive linearization at the current states
based on a first-principles model [54].

One improved approach is the linear time-varying (LTV) model, ob-
tained from linearizing the nonlinear model at each prediction horizon
[26]. However, the LTV-MPC approach comes at a higher computational
cost than the LPV-MPC approach. Since the states and inputs during
the prediction horizon are unknown, the typical way utilizes the shifted
optimal inputs sequence of the previous MPC solution as the inputs,
and the states are calculated by integrating the nonlinear model. An-
other successful and broadly used approach is the real-time iteration
(RTI) scheme. The RTI approach assumes that the MPC solution at the
current time is very similar to the solution obtained at the previous time.
Under this assumption, a full Newton step can be taken, providing an
excellent approximation of the fully converged NMPC solution. Not
only that, but the RTI algorithm also divides the whole computation into
preparation phase and feedback phase phases, to achieve a shorter feed-
back delay [35]. The RTI-NMPC approach has been implemented into
the open-source software ACADO Toolkit, which allows exporting the
optimized C-code for deployment [90, 41]. Another approximate scheme
in the literature is the Continuation/GMRES method [78]. In [78, 79, 50],
the authors also provide its full implementation within the tool Auto-
GenU to support the C-code generation.

In addition to the above approximating approaches, incorporating
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nonlinearity directly into the MPC problem can provide a systematic way
of dealing with systems with nonlinear dynamics, constraints, and objec-
tives but at the cost of heavy online computation. Solving the resulting
non-convex optimization problem relies on an efficient and reliable non-
linear programming algorithm, which has been alleviated to some extent
with the advent of tailored and professional software tools, such as the
CasADi [3] and FORCES NLP [118].

To further reduce the online computation cost of NMPC, the tremen-
dous advances in machine learning and deep learning inspired many
works, such as learning a globally-linear model or learning an efficient
representation of approximated MPC laws via deep neural networks.
Herein we only name a few works related to MPC for nonlinear systems.
In [51], the author utilized a lifting operator, called the Koopman opera-
tor, to lift the nonlinear dynamics into a higher dimensional space where
its evolution is approximately linear. Then an MPC controller based on
the lifted linear model can replace the NMPC. The lifted linear model can
be learned by a user-defined dictionary library or deep neural networks
from data [66, 44]. Another approach that directly learns the approxi-
mated MPC law to reduce the online computation cost has been explored
in the literature. In [49], the authors show that a neural network can rep-
resent exactly the MPC law described by the piecewise affine function in
the case of linear MPC. The authors further extended to the case of non-
linear systems [62], in which the deep neural network is utilized to learn
the robust nonlinear MPC law.

In the practice of the MPC technique, in addition to numerical op-
timization algorithms needed to solve the MPC problem, another crit-
ical ingredient is estimation algorithms. Generally, the nonlinear dy-
namic model can be an interpretative first-principle state-space model or
a black-box model built from experimental data via system identification
(or modern machine learning) in an NMPC setting. A nonlinear first-
principle state-space model can provide interpretability that is preferred
in practice, but it often suffers the issues like unavailable full-state in-
formation, unmeasured disturbance, or unmodeled time-varying terms.
Therefore, these cases require a state estimation algorithm or a joint state
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parameter estimation algorithm in which unmeasured disturbances and
unmodeled time-varying terms are considered as parameters to be esti-
mated. Many state estimation methods for nonlinear systems exist. The
well-known extended Kalman Filter (EKF) is undoubtedly the predomi-
nant state estimation technique [74], and the EKF has also been applied
in many joint state-parameter estimation applications [107, 30].

The identified nonlinear black-box model used in NMPC can be di-
vided into two categories: state-space or input-output formulation, such
as state-space based recurrent neural networks (RNNs) or input-output
based neural-network autoregressive model with exogenous inputs. One
obvious advantage of input-output based models over state-space based
models is that input-output based models do not require an state estima-
tion algorithm to estimate the generally higher-dimensional states. De-
spite this, input-output based models still require an online estimation
algorithm to update the model parameters when discrepancies happen
between the model output predictions and the streaming output mea-
surements. The linear input-output ARX models are well known for their
adaptability allowing efficient online recursive estimation algorithms,
like recursive least-squares (RLS) or Kalman Filter [37]. In fact, nonlinear
ARX models also have good adaptability, updating their model parame-
ters online via the EKF algorithm [9].

As discussed above, the EKF algorithm is an essential component in
NMPC practice, both for the first-principle based and black-box models.
The EKF is based on the first-order linearization of nonlinear dynamics
around the previously estimated vectors. Although the first-order linear
approximation used by the EKF is sometimes not accurate enough, other
advanced techniques can provide better estimation accuracy, but this
comes at the cost of complicated implementation and expensive com-
putational costs. The ease of implementation and computation burden
are of great importance, especially in the cooperation of NMPC and EKF.
Despite the widely practical usefulness of the EKF, its convergence and
stability guarantee requires strict conditions, such as satisfying the non-
linear observability rank condition and having sufficiently small initial
estimation error as well as disturbing noise term [93, 60]. In this chap-
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ter we assume that the EKF algorithm will not suffer from divergence
problems in its applications.

It is worth noting that the widely used SL-MPC approach and the
EKF algorithm are both based on linearization techniques. Their combi-
nation, namely the SL-MPC with the EKF method presented in [57], has
become a common choice to handle the nonlinear first-principle based
model in the industrial practice of NMPC technique.In its EKF part, the
states and unknown disturbances are recursively updated from the stream-
ing input-output data based on the linearization of the discrete-time non-
linear model. In its SL-MPC part, the control input is calculated based
on the estimated states and disturbances at the current time and the lin-
earized state-space model, which is also updated online based on the
linearization of a first-principle model at the estimated states and distur-
bances. Thus, the SL-MPC with the EKF method, in a sense, is utilizing
the EKF algorithm and the streaming input-output data to continuously
update online a linear state-space model, which is under the represen-
tation of states defined by the first-principle-based model. And a linear
input-output plant could have infinite equivalent linear state-space re-
alizations via coordinate transformation. The previous Chapter 5 also il-
lustrated that a linear state-space model can be equivalently transformed
into an input-output ARX model, which is well known for its adaptibil-
ity. In this chapter, the SL-MPC with EKF method is the starting point to
derive our interpretative and adaptive MPC (IA-MPC) method, which is
illustrated in detail in Section 6.2.

6.1.1 Contribution

In our IA-MPC method, a linear state-space model is first obtained by
performing the linearization of a first-principle based model at the initial
point, then transformed into an equivalent ARX model; all of these are
performed offline. This offline ARX model acquisition not only makes
the black-box ARX model inherit the interpretability of the first-principle
based model but also exploits its adaptive nature; this is why we call our
method Interpretive and Adaptive MPC (IA-MPC). In the online closed-
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loop control, the EKF algorithm is used to update the ARX model pa-
rameters, and the previous construction-free CDAL-ARX algorithm in
Chapter 4 is used to compute the MPC control input.

The advantage of our IA-MPC method are sumarized as follows:

1. In addition to the gained interpretability and adaptability, the ac-
quisition of the offline ARX model also makes it possible to have
a sufficiently small initial estimation error in ARX model parame-
ters. All the EKF algorithm needs to do is the system tracking (or
feedback correction), not the system identification.

2. Compared to the EKF algorithm in the SL-MPC method, the EKF
algorithm in our IA-MPC method can be decoupled when updat-
ing the ARX model parameters, thanks to the decoupling feature
of ARX model. The decoupled EKF computation avoids matrix in-
version and only involves scalar division, even allowing parallel
calculation according to the number of outputs.

3. The corresponding ARX-based MPC problem is solved by our pre-
vious construction-free, matrix-free, and library-free CDAL-ARX
algorithm. Thus, our IA-MPC method would significantly reduce
the difficulty in deploying nonlinear MPC on embedded platforms.

6.2 Successive Linearization NMPC with EKF

This section considers a MPC tracking problem for nonlinear systems
subject to the input and output constraints, considering a first-principle
nonlinear model as follows

ẋ = f(x, u, d) (6.1a)

y = g(x, d) (6.1b)

where x ∈ Rnx , u ∈ Rnu , and y ∈ Rny are the states, inputs, and out-
puts, respectively. And d ∈ Rnd denotes the unmeasured disturbances.
In industrial NMPC practice, one efficient approach for handling the
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Figure 6.1: Schematic diagram of successive linearization NMPC with EKF

nonlinearity of a first-principle model is based on successive lineariza-
tion, which is applied both in state estimation and MPC computation
[57]. Then, an output-feedback nonlinear MPC combines a state estima-
tor (EKF) and a state-feedback successive linearization NMPC, and its
schematic diagram is shown in Figure 6.1.

6.2.1 Extended Kalman Filter

The extended Kalman Filter exploits the idea that performs the lineariza-
tion at each sampling time to approximate the nonlinear system as a
time-varying system and apply the linear filtering theory. In digital con-
troller design, u and d are assumed to a constant value between the sam-
pling time. Thus, a discrete-time model of (6.1) can be formulated as
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follows:

xk = Fts(xk−1, uk−1, dk−1) (6.2a)

yk = g(xk, dk) (6.2b)

where Fts(xk−1, uk−1, dk−1) represents the the terminal state vector ob-
tained by integrating the ordinary differential equation (6.1a) for one
sample interval ts with the initial condition of xk−1 and constant inputs
of uk−1 and dk−1. For a better state estimation, the unmeasured distur-
bance should also be estimated simultaneously. In general, d can be mod-
eled as the following stochastic difference equation

dk = dk−1 + wk−1 (6.3)

where wk−1 is white noise sequence. Combining the Eqn (6.2a) with (6.3),
the following augmented model is obtained[

xk

dk

]
=

[
Fts(xk−1, uk−1, dk−1)

dk−1 + wk−1

]
(6.4a)

yk = g(xk, dk) + vk (6.4b)

where the measurement noise sequence vk is often to appear in the mea-
sured output yk. By linearizing (6.4) at {x̂k−1, d̂k−1}, the EKF computes
the new estimates [x̂′

k, d̂
′
k]

′ from the feedback measurement yk and the
model prediction (6.4a)[

xk

dk

]
≈

[
Fts

(
x̂k−1, uk−1, d̂k−1

)
d̂k−1

]
(6.5a)

+ Φk−1

[
xk−1 − x̂k−1

dk−1 − d̂k−1

]
+

[
0
I

]
wk−1

yk ≈ g
(
x̂k−1, d̂k−1

)
(6.5b)

+ Θk−1

[
xk−1 − x̂k−1

dk−1 − d̂k−1

]
+ vk

where

Φk−1 =

[
Λk−1 Λd

k−1

0 I

]
Θk−1 =

[
Hk−1 Hd

k−1

] (6.6)
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Λk−1,Λd
k−1, Hk−1 and Hd

k−1 are calculated using the following formula

Λk−1 =
∂Fts (x,u,d)

∂x |x=x̂k−1,u=uk−1,d=d̂k−1
(6.7a)

Λd
k−1 =

∂Fts (x,u,d)
∂d |x=x̂k−1,u=uk−1,d=d̂k−1

(6.7b)

Hk−1 = ∂g(x,d)
∂d |x=x̂k−1,d=d̂k−1

(6.7c)

Hd
k−1 = ∂g(x,d)

∂d |x=x̂k−1,d=d̂k−1
(6.7d)

where ∂Fts/∂x and ∂Fts/∂d represent Jacobian matrices of Fts with re-
spect to x and d, respectively. And ∂g/∂x and ∂g/∂d represent Jacobian
matrices of g with respect to x and d, respectively. Thus, we can con-
clude the EKF computation procedure which has been well presented
and analysed, see Table 6.1.

Table 6.1: EKF for state estimation

Step Formula

Initialization P0 = ϵI , ϵ is a large number,
Initial guess x̂0, d̂0,
Q is the process noise covariance of {x, d},
R is the measurement noise covariance.

1-Prediction
[

x̂k

d̂k

]
=

[
Fts(x̂k−1, uk−1, d̂k−1)

d̂k−1

]
2-Correction

[
x̂k

d̂k

]
=

[
x̂−
k

d̂−k

]
+Kk

(
yk − g(x̂−

k , d̂
−
k )
)

P−
k = Φk−1Pk−1Φ

′
k−1 +Q

Kk = P−
k Θ′

k−1

(
Θk−1P

−
k Θ′

k−1 +R
)−1

Pk = (I −KkΘk−1)P
−
k

6.2.2 Successive Linearization NMPC

By recursively handling the streaming input-output data (uk−1, yk−1),
the EKF algorithm could calculate the new estimated states and distur-
bances (x̂k, d̂k). The (x̂k, d̂k) is not only used as the nominal values to
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linearize the nonlinear first-principle model but also used as the initial
conditions of the linearized state-space model in the SL-MPC method.
Note that the continuous-time model (6.1) has to be transformed into the
discrete-time model for digital MPC design. Two approaches, first discre-
tise then linearise and first linearise then discretise, have been reported. The
EKF algorithm presented in Section 6.2.1 is based on the first discretise
then linearise approach. In the context of SL-MPC, it is more common
to use the first linearise then discretise. Here the continuous-time first-
principle-based model (6.1) is linearized at current points {x̂k, uk−1, d̂k},

ẋ ≈ Ac(x− x̂k) +Bc(u− uk−1) + ec (6.8a)

y ≈ C(x− x̂k) + hc (6.8b)

where Ac = ∂f
∂x |x̂k,uk−1,d̂k

, Bc = ∂f
∂u |x̂k,uk−1,d̂k

, ec = f(x̂k, uk−1, d̂k), C =
∂g
∂x |x̂k,d̂k

and hc = g(x̂k, d̂k). Here the differential eqn (6.8a) has to be dis-
cretized for obtaining a discrete-time model. The discretization method
includes the exact and the approximated discretization. One common
discretization method is the the one-step Euler’s approximate method,
then a discrete-time model is obtained as follows

xk+1 = Axk +Buk + e (6.9a)

yk = Cxk + h (6.9b)

where e = ts (ec −Acx̂k −Bcuk−1), A = I+tsAc, B = tsBc, h = hc−Cx̂k.
Then, a MPC tracking problem formulation is listed as follows

min
1

2

T−1∑
k=0

∥(yk+1 − rk+1)∥2Wy + ∥∆uk∥2W∆u

s.t. Eqn (6.9a), k = 0, . . . , T − 1

Eqn (6.9b), k = 1, . . . , T

uk = uk−1 +∆uk, k = 0, . . . , T − 1

ymin ≤ yk ≤ ymax, k = 1, . . . , T

umin ≤ uk ≤ umax,∆umin ≤ ∆uk ≤ ∆umax, k = 0, . . . , T − 1

x0 = x̂k (6.10)
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The MPC tracking problem (6.10) can be solved by many quadratic
programming (QP) algorithms, such as the active-set, the interior-point,
and the ADMM-based solver. The model parameters {A,B, e, C, h} in
(6.9) are related to the recursively updated estimates {x̂k, d̂k} and the last
control input uk−1, it means that the MPC tracking problem (6.10) has to
be reformulated at each sampling time. Most QP solvers require explicit
condensing or sparse MPC-to-QP construction. In such an SL-MPC sce-
nario, the MPC-to-QP construction has to be performed online at each
sampling time, as does solve the QP problem. Indeed, often the online
MPC-to-QP construction has a comparable computational cost to solv-
ing the QP problem itself online, especially when warm-starting strate-
gies are employed. Chapter 2 presented a construction-free CDAL solver,
that can avoid explicit MPC-to-QP construction in state-space MPC prob-
lems.

6.3 Interpretative and Adaptive MPC

Compared to the exact NMPC method, the approximate method, SL-
MPC with EKF, could significantly reduce the online computational bur-
den for nonlinear output-feedback MPC problems. Nonetheless, the SL-
MPC with EKF involves linearizations twice, and its embedded imple-
mentation, including integrator, linearizer, EKF, and time-changing MPC
problem solver, remains a difficult task for control engineers.

In the SL-MPC with the EKF method, the model parameters {A,B, e, C, h}
of the model (6.10) are dependant to the last control input uk−1 and the
{x̂k, d̂k}, which are recursively estimated by the EKF algorithm. In a
sense, the model is recursively updated (or feedback corrected) by the
EKF algorithm. And our previous work in Chapter 5 illustrates that
an observable linear state-space (SS) model can be equivalently trans-
formed into an ARX model, which will be also introduced in the fol-
lowing subsection 6.3.1. Adding an SS-to-ARX transformation step in
SL-MPC with the EKF method would not affect the closed-loop control
performance. However, an additional SS-to-ARX transformation step re-
lies on choosing the observer design and additional matrix-matrix mul-
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tiplication cost, which makes it no advantage in the online SL-MPC with
the EKF method. This inspired us to update the ARX model directly by
the EKF algorithm from the streaming input-output data, to avoid an ex-
plicit SS-to-ARX transformation. By viewing the ARX model parameters
as states of a system, the EKF algorithm could recursively update the
ARX model parameters. In fact, a system divides the states and parame-
ters according to their changing rate, states change fast, and parameters
change slowly. And this ARX model identification and tracking by the
Kalman Filter based algorithm has been widely used in adaptive control
[36].

As the EKF algorithm requires a sufficiently small error in initial esti-
mates, and the data-driven identification (initialization) of ARX model is
black-box without interpretability like a first-principle-based model, we
propose the introduction of the off-line SS-to-ARX transformation in our
interpretative and adaptive MPC IA-MPC framework. The main steps
of our IA-MPC framework are listed in Table 6.2. Its Step 1 to 3 are per-
formed offline, and the Step 1 is to obtain a linear state-space model by
linearizing a first-principle-based model at the initial point; the optional
Step 2 is to obtain a minimal state-space realization by using model re-
duction when the state dimension is large such as in distributed param-
eter models or computational fluid dynamic models; After possible state
elimination, the Step 3 is to obtain an equivalent ARX model by designing
an SS-to-ARX transformation. In addition to the gained interpretability
and consistent initial estimates, this ARX model acquisition also avoids
the difficulty in choosing the ARX model orders in data-driven ARX
model identification. The detailed equivalent SS-to-ARX transformation
will be illustrated in the following subsection 6.3.1. The Step 4 is the on-
line closed-loop MPC control, in which the ARX model parameters are
updated by the EKF algorithm from streaming input-output data (see
the subsection 6.3.2) and a corresponding ARX-based MPC problem are
solved by our previous construction-free CDAL-ARX algorithm (see the
subsection 6.3.3). For a comparison with the traditional SL-MPC with
EKF framework shown in Figure 6.1, the schematic diagram of our IA-
MPC framework is shown in Figure 6.2.
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Table 6.2: Interpretative and Adaptive MPC framework

Step Detailed description

1
obtain a linear state-space model based on
the linearization of a first-principle-based
model at the initial point

2(optional)

obtain a minimal realization by using model
reduction when states dimension is large such as
in distributed parameter models or
computational fluid dynamic models

3
design an SS-to-ARX transformation to obtain
an equivalent ARX model (robust to process
and measurement noises)

4
combine the online EKF update of ARX models
and ARX-based MPC algorithms to be used in
closed-loop simulations

Figure 6.2: Schematic diagram of interpretative and adaptive MPC
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6.3.1 Equivalent SS-to-ARX transformation

In Section 5.2.2, we concluded three SS-to-ARX transformations, namely
the Cayley-Hamilton-based, Observer-Theory-based, and Kalman-Filter-
based transformations. The Cayley-Hamilton-based transformation can
derive the unique and equivalent ARX model but with sensitivity to
noises. The Observer-Theory-based and Kalman-Filter-based transfor-
mations have the same structure in the transformed ARX model, and the
latter one requires a larger order than the former one.

6.3.2 ARX model update with decoupled EKF algorithm

By viewing the time-varying ARX model parameters as system states, an
ARX model can be reformulated as the following state-space form

θk = θk−1 + wk (6.11a)

yk = φ′
kθk + vk (6.11b)

where {wk} is a sequence of independent random vectors and {vk} is a
output noise sequence. Although the variances of {wk} and {vk} are un-
known in real applications, and the actual parameters {θk} may change
differently from the above random walk model (6.11a), the EKF algo-
rithm can still work very well [19].

Writing the Eqn (6.11b) as the following separated formulation

yk(j) = φ′
kθk(j) + vk(j), j = 1, . . . , ny (6.12)

where ny denotes the dimensions of y, yk(j) denotes the j-th element of
yk. θk and φk have the following relationship

θk =
[
θk(1)

′ θk(2)
′ . . . θk(ny)

′ ]′
θk(j)

′ = [Ψ1(j, :), . . . ,Ψp(j, :),Ω1(j, :), . . . ,Ωp(j, :), ζ(j)]

φ′
k =

[
y′k−1, . . . , y

′
k−p, u

′
k−1, . . . , u

′
k−p, 1

] (6.13)

The advantage of the above separated ARX formulation is that it allows
the EKF algorithm to run in a parallel way and avoids the matrix-inverse
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operation, only involving scalar division, compared to the EKF in the SL-
MPC (see Tab. 6.1). We list the EKF computation scheme of our IA-MPC
framework in Tab. 6.3.

Table 6.3: EKF for ARX model updating

Step Formula

Initialization P0 = ϵI , ϵ is a large number,
initial value θ(1), . . . , θ(ny) from Step 3 in Tab. 6.2,
Q is the process noise covariance,
r is the measurement noise covariance.

1-Prediction θ̂−k (j) = θ̂k−1(j), j = 1, . . . , ny

2-Correction θ̂k(j) = θ̂−k (j) +Kk

(
yk(j)− φ′

kθ̂
−
k (j)

)
,

j = 1, . . . , ny

P−
k = Pk−1 +Q

Kk = 1
φ′

kP
−
k φk+r

P−
k φk

Pk = (I −Kkφ
′
k)P

−
k

6.3.3 Construction-free ARX-based MPC algorithm

In our IA-MPC framework, the ARX model is updated by the EKF algo-
rithm at each sampling time. Thus it leads to the corresponding time-
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changing ARX-based MPC tracking problem as follows.,

min
1

2

T−1∑
k=0

∥(yk+1 − rk+1)∥2Wy + ∥∆uk∥2W∆u

s.t. yk =

p∑
i=1

Ψ̂iyk−i +

p∑
i=1

Ω̂iuk−i + ζ̂, k = 1, . . . , T

uk = uk−1 +∆uk, k = 0, . . . , T − 1

ymin ≤ yk ≤ ymax, k = 1, . . . , T

umin ≤ uk ≤ umax, k = 0, . . . , T − 1

∆umin ≤ ∆uk ≤ ∆umax, k = 0, . . . , T − 1 (6.14)

In such a time-changing setting, the computation time spent in construct-
ing its optimization problem and solving itself should be considered to-
gether. Indeed, often the online MPC-to-QP construction has a com-
parable computational cost to solving the MPC problem itself online,
especially when warm-starting strategies are employed. Our previous
construction-free CDAL-ARX algorithm can avoid the explicit MPC-to-
QP construction, thus allowing it to be suitable for this scenario. In ad-
dition to the notable construction-free feature, our CDAL-ARX is also
matrix-free and library-free, which makes it practically useful in embed-
ded deployment.

6.4 Numerical Examples

In this section, we test the performance of our proposed IA-MPC method
against other two methods, namely the nonlinear MPC method with
EKF and the SL-MPC with EKF method. Their MPC solutions are based
on CasADi v3.5.5[3] and our previous CDAL algorithm for state-space
model based MPC in Chapter 2, respectively, except for the same EKF
computational procedure. The reported simulations are executed in MAT-
LAB R2020a on a MacBook Pro with 2.7 GHz 4-core Intel Core i7 and
16GB RAM. Four typical nonlinear MPC numerical examples are used to
investigate whether our IA-MPC method works well and provides com-
parisons with traditional methods.
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6.4.1 Problem descriptions

1. Two tank problem: we consider the cascaded two tanks system,
which is a fluid level control system. The input signal controls
the water pump that pumps the water from a reservoir into the
upper water tank. The water of the upper water tank also flows
through a small opening into the lower water tank. The water of
the lower water tank flows through a small opening into the reser-
voir. Herein without considering the overflow effect, we adopt
Bernoulli’s principle and conservation of mass to derive the fol-
lowing first-principle model:

ẋ1 = −k1
√
x1 + k2u

ẋ2 = k1
√
x1 − k3

√
x2

y = x2

(6.15)

where x1 and x2 are the water level of the upper and lower water
tank, respectively. The full states cannot be measured only the x2

as the measured output y. u is the input signal, and k1, k2 and k3

are constants depending on the system properties; herein we adopt
value 0.5 for all of them. The sampling time of discrete digital con-
trol is 0.2 s, and the control goal is to make the output y track the
given reference signal subject to the input constraints 0 ≤ u ≤ 2

and the input increment constraints −0.5 ≤ ∆u ≤ 0.5.

2. Bilinear motor problem: one common nonlinear control benchmark
is a bilinear DC motor plant, whose equation is described as fol-
lows,

ẋ1 = − (Ra/La)x1 − (km/La)x2u+ ua/La

ẋ2 = −(B/J)x2 + (km/J)x1u− τl/J

y = x2

(6.16)

where x1 and x2 are the rotor current and angular velocity, respec-
tively. The full states cannot be measured only the x2 as the mea-
sured output y. The control input u is the stator current. The
system parameters are La = 0.314, Ra = 12.345, km = 0.253,
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J = 0.00441, B = 0.00732, τl = 1.47, ua = 60. The bilinearity
of (6.16) appears between the state and the control input. The sam-
pling time of discrete digital control is 0.01 s, and the control goal
is to make the output y track the given reference signal subject to
the input constraints 0 ≤ u ≤ 2 and the input increment constraints
−1 ≤ ∆u ≤ 1.

3. CSTR problem: one typical nonlinear process control benchmark
is a continuous stirred tank reactor (CSTR) problem, which is de-
scribed by the following continuous-time nonlinear model,

ĊA = CA,i − CA − k0e
−EaR

T CA

Ṫ = Ti + 0.3Tc − 1.3T + 11.92k0e
−EaR

T CA

y = T

(6.17)

where CA is the concentration of reagent A, T is the temperature
of the reactor, CA,i is the inlet feed stream concentration, which
is assumed to have the constant value 10.0 kgmol/m3. The un-
measured disturbance comes from the inlet feed stream tempera-
ture Ti, which has slow fluctuations represented by Ti = 298.15 +

5 sin(0.05t) K. The manipulated variable is the coolant tempera-
ture Tc. The constants k0 = 34930800 and EaR = −5963.6 (in MKS
units). The sampling time of discrete digital control is 0.5 s, and the
control goal is to manipulate the coolant temperature Tc to track a
higher temperature of the reactor (equals a higher conversion rate)
as well as reject the unmeasured disturbance Ti. The physical con-
straints come from the input increment constraints −1 ≤ ∆Tc ≤ 1.
Note that the unmeasured disturbance Ti is estimated by the EKF
algorithm in SL-MPC and NMPC methods.

4. Van der Pol oscillator problem: we consider the nonlinear Van der
Pol oscillator with a time-varying parameter, and its dynamics are
given by,

ẋ = v

v̇ = µ(t)(1− x2)v − x+ u
(6.18)
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where x is the position, v is the velocity, u is the control input and
µ(t) is a piecewise function defined as

µ(t) =

{
1 if t ≤ 50

3 if t > 50

The sampling time of discrete digital control is 0.2 s, and the control
goal is to make the output y track the given reference signal subject
to the input constraints−10 ≤ u ≤ 10 and the input increment con-
straints −10 ≤ ∆u ≤ 10. Note that the unmeasured time-varying
parameter µ(t) is estimated by the EKF algorithm in SL-MPC and
NMPC methods.

6.4.2 Problems settings

The above four problems share the same MPC and EKF settings: the
MPC prediction horizon Np = 10, the MPC output weight Wy = 10

and the MPC input increment weight W∆u = 0.1, the initial error co-
variance matrix of EKF P0 = 10I , the process noise covariance matrix of
EKF Q = 0.01I and the measurement noise covariance of EKF R = 0.01.
We consider two simulation scenarios, that is, without and with process
noises, respectively.

1. Two tank problem: its process noise scenario is given a random
noise 0.05×rand(2,1), and the initial conditions are x1 = 1, x2 = 1

and u = 1 for obtaining the linearized state-space model, which is
then transformed into the ARX model with order p = 3 by using
poles [0.01, 0.02]. Its tracking signal is randomly selected every 20

s in the range [1, 3].

2. Bilinear motor problem: its process noise scenario is given a random
noise 1×rand(2,1), and the initial conditions are x1 = 5.2542, x2 =

−19.2205 and u = 1 for obtaining the linearized state-space model,
which is then transformed into the ARX model with order p = 5

by using poles [0.05, 0.1]. Its tracking signal is randomly selected
every 0.4 s in the range [−10, 10].
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3. CSTR problem: its process noise scenario is given a random noise
0.1×rand(2,1), and the initial state of the reactor is at a low con-
version rate, with CA = 8.57 kgmol/m3, T = 311 K, and then
the linearized state-space model around the initial conditions is
transformed into the ARX model with order p = 3 by using poles
[0.01, 0.02]. Its tracking signal gradually changes from 311.2639 K
to 370 K during 50 100 s and then holds constant.

4. Van der Pol oscillator problem: its process noise scenario is given a
random noise 1×rand(2,1), and the initial conditions are x1 = 0,
x2 = 0 and u = 0 for obtaining the linearized state-space model,
which is then transformed into the ARX model with order p = 3 by
using poles [0.005, 0.01]. Its tracking signal switches between 0 and
1 every 10 s.

Their simulation results are plotted in Figure 6.3, 6.4, 6.5 and 6.6, re-
spectively. The Two tank and Bilinear motor problem have no unknown
disturbances, and the NMPC, SL-MPC, and our IA-MPC method gener-
ate the same offset-free tracking performances subject to the input con-
straints in their noise-free scenario, which are plotted in Figure 6.3(a)
and 6.4(a). The CSTR and Van der Pol oscillator problems have the un-
known time-varying disturbance. It is found that our IA-MPC method
generates better offset-free tracking performances than the NMPC and
SL-MPC method under the given EKF setting in their noise-free scenario,
which are plotted in Figure 6.5(a) and 6.6(a). Under the process noises,
our IA-MPC method generates better noise robustness than the NMPC
and SL-MPC method in the four problems, which are plotted in Figure
6.3(b), 6.4(b), 6.5(b) and 6.6(b). As expected, the online computation time
of the exact NMPC method is much longer than the approximate SL-
MPC and IA-MPC method, and the online computation time of the SL-
MPC and IA-MPC method are almost the same since they both utilized
our developed construction-free CDAL method, having no online con-
struction time.
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(b) Comparison of IA-MPC, SL-MPC, and NMPC methods with
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Figure 6.3: The closed-loop control performances in the Two tank problem
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(b) Comparison of IA-MPC, SL-MPC, and NMPC methods with
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Figure 6.4: The closed-loop control performances in the Bilinear motor prob-
lem
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Figure 6.5: The closed-loop control performances in the CSTR problem
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Figure 6.6: The closed-loop control performance in the Van der Pol problem
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6.5 Conclusion

This chapter proposed a novel interpretative and adaptive MPC (IA-
MPC) method for nonlinear systems, which was inspired by the SL-MPC
with EKF method. In our IA-MPC method, a linear state-space model
is firstly obtained by performing the linearization of a first-principle-
based model at the initial point, and then an equivalent ARX model
is obtained via the SS-to-ARX transformation. This novel initialization
of ARX model allows us to keep the interpretability of a first-principle-
based model and the adaptivity of the ARX model. The closed-loop con-
trol involves the EKF algorithm to update the ARX model parameters
recursively and our previously developed construction-free CDAL-ARX
algorithm to calculate the MPC control input. Note that our proposed
implementation of our IA-MPC method is well suited for embedded
platforms, thanks to its library-free C-code simple enough. The effec-
tiveness of our IA-MPC method was illustrated by four nonlinear typical
benchmarks.
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Chapter 7

Conclusion

The main objective of this thesis was to address the high computation
burden of MPC in nonlinear systems and the difficulty in deploying
NMPC onto embedded platforms.

7.1 Summary of contributions

• Chapter 2 presented a construction-free, matrix-free, and library-
free MPC solver, based on a cyclic coordinate-descent method in
the augmented Lagrangian framework. We showed that the method
is efficient and competes with other existing methods, thanks to the
use of a reverse cyclic rule, Nesterov’s acceleration, a simple heuris-
tic preconditioner, and an efficient coupling scheme. Compared
to many QP solution methods proposed in the literature, CDAL
avoids constructing the QP problem, which makes it particularly
appealing for some scenarios in which its online construction is re-
quired and has a comparable computation time to solving itself.

• Chapter 3 showed the development of a rapid-prototype MPC tool
based on gPROMS platform. Our gPROMS-MPC tool not only in-
teracts directly with gPROMS first-principle-based models for closed-
loop simulations but also utilizes the mathematical information of
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gPROMS first-principle-based models to derive the linearized state-
space model for MPC design. Our gPROMS-MPC tool allows users
to choose when to linearize, such as performing linearization at
each sampling time (called successive linearization) or at some spe-
cific points to obtain one or multiple good linear models for lin-
ear MPC design. Compared to previous approaches, using simula-
tion data of gPROMS first-principle-based models to obtain linear
models by performing system identification like the PAROC frame-
work, the approach of our gPROMS-MPC tool is not only time-
saving but also interpretative. Considering possible successive lin-
earization or high state-dimension cases, our previous construction-
free CDAL and the online parametric active-set qpOASES algorithm
are implemented in our gPROMS-MPC tool, based on sparse and
condensed QP formulations from MPC, respectively. Note that our
construction-free CDAL is also matrix-free and library-free, thus
having the support for embedded C-code generation.

• Chapter 4 introduced a solution algorithm for solving MPC prob-
lems based on ARX models that avoid constructing the associated
QP problem explicitly. Due to its matrix-free and library-free fea-
tures, the proposed CDAL-ARX algorithm can be useful in adap-
tive embedded linear MPC applications based on ARX models, es-
pecially when combined with a fast and robust recursive linear
identification method.

• Chapter 5 theoretically introduced the Cayley-Hamilton, Observer-
Theory, and Kalman Filter based SS-to-ARX transformations. Nu-
merical experiment results of the AFTI-16 are presented to show
the equivalence between SS-based and ARX-based MPC problems
and analyze the robustness of different SS-to-ARX transformations
to noises. This equivalence is suggested to be used in an inter-
pretative and adaptive MPC framework. That is, an interpretative
SS model is firstly obtained from linearizing a first-principle-based
model and transformed into an equivalent ARX model, and then
this equivalent ARX-based MPC controller can be updated online.
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• Chapter 6 proposed a novel interpretative and adaptive MPC (IA-
MPC) method for nonlinear systems, which was inspired by the
SL-MPC-EKF method. In our IA-MPC method, a linear state-space
model is first obtained by performing the linearization of a first-
principle-based model at the initial point, and then an equivalent
ARX model is obtained via the SS-to-ARX transformation. This
novel initialization of ARX model allows us to keep the interpretabil-
ity of a first-principle-based model and the adaptivity of the ARX
model. The closed-loop control involves the EKF algorithm to up-
date the ARX model parameters recursively and our previously
developed construction-free CDAL-ARX algorithm to calculate the
MPC control input. Note that the proposed implementation of our
IA-MPC method is well suited for embedded platforms, thanks
to its library-free C-code simple enough. The effectiveness of our
IA-MPC method was illustrated by four nonlinear typical bench-
marks.

7.2 Open problems for future research

Based on the contributions of our methods and algorithms discussed in
this thesis, in this section, we discuss possible future works and relevant
problems that remain to be addressed, and further research is strongly
encouraged.

• Extension to nonlinear optimal control problem: Our proposed
CDAL and CDAL-ARX algorithm are developed for on linear state-
space and ARX-based MPC problems. Although the online suc-
cessive linearization strategy for handling the model nonlinearity
is a good choice and suitable for our construction-free CDAL and
CDAL-ARX algorithm, a broader class of nonlinear optimal con-
trol problems, involving nonlinear objective index or constraints,
widely exists in practical applications, like motion planning and
trajectory optimization in robotics. It was shown that the Aug-
mented Lagrangian framework could be extended for general non-
linear programming problems. In our future work, based on the
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CDAL algorithm framework, some modifications, like online adap-
tive changing of ρ parameter value, will be used to develop an effi-
cient and robust nonlinear optimal control algorithm.

• More practical industrial applications: The gPROMS modeling
platform has been widely used in the process industry, such as
fuel cell energy, natural gas processing, oilfield, formulated prod-
uct manufacture, etc. In their control design workflow, our rapid-
prototype gPROMS-MPC tool could play an important role in eas-
ing the difficulties of MPC technology implementation. Further-
more, our future work will mainly focus on extending our gPROMS-
MPC tool to solve the economic MPC problem, which often ap-
pears in process industries.

• Deep ReLUs based LPV-ARX identification for MPC The linear
parameter varying (LPV) approach is widely used in the control
field, including MPC, because it can take advantage of well-established
linear controller design methods. This allows, for example, the ap-
plication of linear MPC schemes with lower computational costs in
MPC for nonlinear plants. And the LPV-MPC approach is one of
the successful approaches for handling nonlinear plants, even for
strongly nonlinear plants, due to the intrinsic robustness of MPC.
The two LPV modeling approaches are state-space and input-output,
and the input-output LPV-ARX model is preferred in practical use.
Most existing data-driven LPV-ARX modeling technique resort to
mixed integer programming techniques to learn different regions.
The modern deep neural network (DNN) theory tells us that Deep
ReLU networks can represent exponentially many more linear re-
gions than shallow ones for a fixed amount of memory. Our future
work will utilize the efficient representation and powerful learning
ability of Deep ReLUs, to develop a Deep ReLUs-based LPV-ARX
identification framework for MPC. And our CDAL-ARX algorithm
can then be used to solve the corresponding LPV-ARX-based MPC
problems.

• Applications to large-scale systems: In the first-principle-based
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modeling field, the distributed parameter models and computa-
tional fluid dynamic models are often used to describe the spatial-
time equations, resulting to a complicated integral, partial differ-
ential, and algebraic equations (IPDAEs). For these large-scale sys-
tems, some auto-differential software, like gPROMS, could be used
to derive their large-scale linear state-space models over different
operating ranges. And then, our illustrated SS-to-ARX equivalence
theorem can be used to obtain extremely compact input-output
LPV-ARX models. This analytical derivation of LPV-ARX models
could exploit hundreds and thousands of existing first-principle-
based models and are of interpretability, unlike the data-driven
paradigms. And our CDAL-ARX algorithm can then be used to
solve the corresponding LPV-ARX-based MPC problems.

• Guaranteed feasibility and stability analysis for IA-MPC: The fo-
cus of this thesis was on an efficient algorithm for MPC in nonlin-
ear systems. Like the SL-MPC with EKF method lacks a rigorous
theoretical stability guarantee but is still widely adopted in many
practical applications for its effectiveness. Its connected IA-MPC
method, presented in this thesis, is also practically useful. Our
future work will also focus on analyzing the stability guarantee
of the IA-MPC framework, borrowing from work such as adap-
tive control of linear time-varying systems. Except for the stabil-
ity guarantee, the feasibility of online MPC problems possibly oc-
curs, which may be due to hard output constraints. Our future
extensions of the approach to handle soft output constraints, are
to introduce slack variables in the output constraints in our CDAL
algorithm that simultaneously handles the feasibility and the full-
rank requirement 1. Moreover, we will also exploit the covariance
matrix that directly quantifies the uncertainty associated with ARX
model parameters to set up robust MPC schemes.
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