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Abstract

At the intersection between neuroimaging and network science, network
neuroscience has brought remarkable opportunities to advance the un-
derstanding of the human brain. At macroscale, the brain can be seen
as a complex system relying on communication between its regions. Ad-
vanced neuroimaging techniques can map functional and structural brain
communication, enabling the study of network-level alterations in neuro-
logical disorders during development. To improve reproducibility and
provide a robust characterization of neurological disorders, collaborative
initiatives involving neuroimaging data collection across multiple sites
have started to emerge. However, multisite data acquisition poses sig-
nificant challenges for managing increasingly larger and more complex
datasets, especially for data analysis pipelines required for whole-brain
network analysis. To this end, the current work aims to (1) assess differ-
ent data harmonization techniques and (2) characterize structural and
functional network alterations in mild traumatic brain injury. In addition
to the typical applications for whole-brain network analysis, network
science can be utilized for advanced time series analysis and address chal-
lenges for signal processing in functional neuroimaging. Visibility graphs
can map time series into networks where nodes represent time points,
and have rapidly found applications across areas of science, including
resting state functional neuroimaging. However, to validate their use, the
current work aims to test if task activity can be identified based on the
local network centrality (node degree) in synthetically generated data and
event-related task fMRI time series.

The Advancing Concussion in Pediatrics (A-CAP) study is the largest
study of mild traumatic brain injury to date, and was used to address

xix



the first two aims of this work. To understand network-level alterations
following mild traumatic brain injury in the pediatric population, the
current work validates the use of ComBat harmonization for network
analysis pipelines and tests for longitudinal alterations in network topol-
ogy. ComBat harmonization had improved performance in removing
site effects when applied on network parameters instead of edge-wise
connectivity weights, and demonstrated excellent within-site consistency
with the network parameters before harmonization for structural and
functional networks. Network parameters based on structural and func-
tional connectivity show no effects of injury before or after harmonization
in the post-acute phase following mild TBI. However, further longitudinal
analysis of global and nodal abnormalities in the functional connectome
indicates that variability in time post-injury, post-concussive symptoms,
biological sex, and age moderate the effect of injury in local and global
functional network topology.

To address the third aim of the current work, two datasets were used.
First, synthetic data was generated to resemble well-controlled event-
related task fMRI signals, by adding varying levels of noise. An accuracy
score was defined to compare the identifiability of task events based on
visibility graph transformation versus the raw fMRI time series across
noise levels. The results were replicated using a slow, event-related picture
presentation dataset, with extensive scanning of four participants. When
applied to time series analysis, visibility graphs can accurately identify
task events and are robust to gaussian noise in synthetic time series
and to participant motion in real task fMRI data. The current work
addresses substantial contributions in mapping the human brain using
neuroimaging and network science.

xx



Chapter 1

Introduction

The development of functional magnetic resonance imaging (fMRI) in
the early 1990s has generated abundant research, with applications for
cognitive and clinical neuroscience (Glover, 2011). Neuroimaging, how-
ever, was not the only field to undergo outstanding developments during
the ’90s. The understanding of the physics of complex systems and net-
work science has undergone extensive developments almost in parallel
(Vespignani, 2018; Louridas, 2018; Iñiguez, Battiston, and Karsai, 2020;
Bullmore and Sporns, 2009). At the intersection between neuroimaging
and complex systems, network neuroscience has recently emerged as a
tool for quantifying brain communication across different scales (Bassett
and Sporns, 2017).

At macroscale, network neuroscience is most often used to map and
describe the brain in terms of interactions between regions (Bullmore and
Sporns, 2009). In this perspective, each brain region can be seen as a node,
and the relationship between brain regions is represented as links (edges).
Network science-based tools can, however, map virtually any system
into a mathematical form, that is the adjacency matrix. This flexibility
provides other possible applications for neuroimaging. More recently
developed algorithms can transform temporal sequences in networks.
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These techniques are promising for functional neuroimaging because
they can achieve more flexible ways of analyzing brain data, allowing
researchers to extract complex features derived from signal changes across
time.

The work addresses applications of network science in neuroimaging with
significant clinical and methodological implications, including managing
network analyses for multi-site data collection, approaching how func-
tional brain networks and their interaction with structural connectome
can be impacted by traumatic brain injuries in children, and testing new
applications of temporal networks in functional neuroimaging time-series
analysis based on visibility graphs.

1.1 Brain networks based on structural and func-
tional neuroimaging

One of the most interesting topics in cognitive neuroscience addresses the
question of whether mental operations rely on the localized activity at
the level of brain regions, or are represented as distributed, network-level
phenomena (McIntosh, 2000). Functional localization emphasizes that
areas of the brain act as highly segregated modules responsible for specific
functions. Until relatively recently, most of the fMRI literature has focused
on localizing brain activity when participants perform certain operations
during a scanning session. An ingredient contributing to the development
of network neuroscience is the hypothesis that the physiological basis
for information processing and mental representations relies on dynamic
interactions between segregated brain regions (Bressler, 1995; McIntosh,
2000; Friston, 2002).

Using non-invasive neuroimaging techniques, connections among brain
regions can be mapped at both, structural and functional levels. Map-
ping white matter connectivity between brain regions using diffusion
magnetic resonance imaging (DTI) and whole-brain tractography is a
common technique to characterize macroscale structural communica-
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tion non-invasively (Sporns, Tononi, and Kötter, 2005; Bullmore and
Sporns, 2009; C. Stam, 2014). Networks constructed with DTI have a di-
rect anatomical interpretation because they emphasize properties of white
matter bundles connecting voxels corresponding to different brain areas
(Gong, He, Concha, Lebel, Donald W. Gross, et al., 2009b). For example,
fractional anisotropy (FA) assesses the degree to which water molecules
can diffuse within a voxel (Alexander et al., 2007). When water diffusion
occurs along one axis, FA values are higher, indicative of denser axonal
packing, larger axonal diameter, or high myelination. Free water diffusion
in all directions reflects lower FA values, which may be interpreted in
terms of axonal degeneration and demyelination (Alexander et al., 2007).
Using a brain parcellation, FA values can represent weights connecting
pairs of brain regions (see Figure 1.1).

At the functional level, the interaction between brain regions can be mea-
sured using resting-state fMRI. This technique was widely adopted in
the study of the functional connectome, providing simple means for data
collection, because it does not require the performance of a specific task
by study participants. At rest, fMRI is thought to capture intrinsic brain
activity originating in spontaneous BOLD oscillation at different locations
in the brain (Stephen M. Smith et al., 2013). The mapping of functional
connectivity using this approach relies on establishing statistical depen-
dencies between localized time series originating in BOLD signal changes
(Avena-Koenigsberger, Misic, and Sporns, 2018). Specifically, functional
networks can be constructed following the extraction of average time
courses from regions across the brain using a parcellation (see Figure 1.1,
A). An edge is defined for each pair of brain regions, by calculating the
similarity between the time series, usually by means of Pearson correla-
tion, reflecting connectivity strength. In functional connectivity matrices,
higher values are indicative of enhanced synchrony among pairs of re-
gions. In a typical network analysis workflow, structural and functional
connectivity matrices are constructed at the participant level (Figure 1.1,
B).

After obtaining connectivity weights, a threshold is typically applied in

3



Figure 1.1: Overview of functional and structural connectivity matrix con-
struction. A. A parcellation (middle) can be used to define regions of interest
for both, rs-fMRI (left) and tractography data (right). B. In both cases, con-
nectivity weights are mapped into a region-by-region matrix. In this case,
both matrices are symmetric and weighted. For functional data, Pearson
correlation between pairs of regions is commonly used for the definition of
connectivity weights, which implies the existence of negative connections
(left). C. A visualization of the connectivity matrices corresponding to the
functional (Pearson correlation values – left) and the structural (fractional
anisotropy values – right) connectomes for the same participant.

order to remove the weakest connections. Following the application of
a threshold to the connectivity matrices, either a weighted (as depicted
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in Figure 1.1, B) or binary adjacency matrix can be constructed. Matrix
thresholding has generated significant controversy in the literature be-
cause the choice of an appropriate threshold can influence the topology
of the participant-level networks. A threshold is commonly defined using
either an absolute or a proportional value. Although there is no standard
for the decision of a specific value for absolute or proportional threshold-
ing, an aspect that is often ignored in the literature is the preservation of
fully-connected networks (Bordier, Nicolini, and Bifone, 2017; Nicolini
et al., 2020). In fully connected networks, nodes are linked in a manner
that prevents the breakage of the network into components. Components
arise when one or more nodes are separated by the main network (see
Figure 1.2). Different thresholding techniques may be appropriate for dif-
ferent neuroimaging modalities. Unlike DTI-based connectivity matrices
where links reflect direct anatomical connections between regions of the
brain, functional brain networks based on fMRI are usually constructed by
calculating statistical dependencies between time series, which provides
a more indirect method to characterize brain communication. It has been
proposed that proportional thresholds may provide more appropriate
control for overall differences in network density (i.e. the ratio between
existing connections to the total number of possible connections; Achard
and Ed Bullmore, 2007;Wijk, C. J. Stam, and Daffertshofer, 2010). Dif-
ferences in network density can lead to spurious between-group effects
because other metrics, such as efficiency and clustering coefficient, can be
influenced by overall network density (Achard and Ed Bullmore, 2007;
Wijk, C. J. Stam, and Daffertshofer, 2010).

1.2 Common properties of structural and func-
tional brain networks

Once neuroimaging data is mapped into an adjacency matrix, network
science tools can summarize the architecture of complex interactions be-
tween brain regions. Graph theory describes how the information flows
across a network and its applicability to neuroimaging data brings an
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elegant way of condensing the considerable amount of data by quanti-
fying brain architecture into meaningful numbers. When using graph
theory, it is common to describe the topological brain architecture based
on the segregation-integration dichotomy, which can be approached at a
systemic (global or whole-brain) or local level (e.g., at the level of brain re-
gions). Measures of integration rely on the idea that optimal information
flow takes place via shorter path lengths (see Figure 1.2). For instance,
information would need to travel through a lower number of regions
(thus shorter path length) to arrive from the source to its destination (Ed
Bullmore and Sporns, 2012; Rubinov et al., 2015). Global efficiency is
calculated as the inverse of the path length that is required, on average, to
transmit information between brain regions (Latora and Marchiori, 2001).

Brain segregation emphasizes the concept that denser information commu-
nication takes place between subsets of nodes, also named cliques (for a
smaller number of regions) or modules (for a bigger number of regions).
clustering coefficient (Watts and Strogatz, 1998) quantifies the number of
triangles (or closed connections) that surround each node. These can be
considered cliques rather than modules because the presence of a ”trian-
gle” implies the existence of mutual connections across only three nodes.
At the global level, the clustering coefficient can be calculated as the av-
erage across all nodes of the network. Thus, a higher global clustering
coefficient suggests higher local segregation in a network.

The tendency of nodes to form connections in small groups (i.e., cliques)
does not necessarily imply a separation of the network into bigger groups
of nodes, or modules. In addition to the clustering coefficient, modularity
is typically used to capture the natural segregation of a network (Fornito,
Zalesky, and Edward Bullmore, 2016, p. 271) and can be measured by
partitioning a network into non-overlapping modules (Newman, 2004), al-
though optimization algorithms for overlapping modules exist (e.g. (Palla
et al., 2005). Small world topology reflects the balance between integration
and segregation, characterizing networks with high clustering but short
path length, allowing inter-modular information transmission to take
place despite higher segregation.
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Figure 1.2: A summary of common network properties.

The way information travels into the brain can also be influenced by ex-
ternal damage. Under perturbation, networks can be affected to different
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extents depending on their configuration. A robust topology implies that
a network is more resilient to perturbation, such as the random removal
of some of its links. Brain networks are thought to be organized in a way
that protects them from injury, and this organization might be particu-
larly relevant in TBI. Core-periphery organization (Borgatti and Everett,
2000; Rombach et al., 2014) has been proposed as a property of complex
networks to support the integration of information. Core-periphery or-
ganization describes a system in terms of two groups of nodes: a core,
which is composed of highly connected nodes that occupy a topologically
central position in the network, and a periphery, formed by nodes that are
weakly connected with each other and moderately connected to the core
(Fornito, Zalesky, and Edward Bullmore, 2016, p. 179). This type of orga-
nization is thought to reflect the robustness of the network by increasing
the resilience to random node failures (Peixoto and Bornholdt, 2012), and
emerges in networks that are susceptible to resource limitations (that is,
networks with scarce resources and where forming connections is costly
(Csermely et al., 2013; Fornito, Zalesky, and Edward Bullmore, 2016).

1.3 Network analysis of mild Traumatic Brain
Injury using multisite neuroimaging

A promising application of network neuroscience is the characterization
of brain mechanisms involved in impairments of neurological function.
Traumatic Brain Injury (TBI) affects 30–40 million people each year world-
wide (Maas et al., 2017a), with about half of the population sustaining a
TBI during their lifetime in the United States (Whiteneck et al., 2016). TBI
occurs when a sudden external force causes damage to the brain and can
result in significant functional impairment, including loss of conscious-
ness and posttraumatic amnesia (David K. Menon et al., 2010). Up to 90%
of the cases of TBI are mild in severity (i,e., concussion; Thurman,2016;
Babl et al., 2017), with no or only a brief loss of consciousness (less than
30 minutes), posttraumatic amnesia for less than 24 hours, and Glasgow
Coma Scale score between 13 and 15.
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Mild TBI could potentially cause brain network-level perturbations be-
cause psychical head injuries can result in alterations of white-matter
bundles across the brain (Blennow et al., 2016; Langlois, Rutland-Brown,
and Wald, 2006). This effect can be visible using conventional structural
imaging across severe forms of TBI, however, cases with mild severity
are typically not associated with visible structural damage (Shin et al.,
2017; Palacios et al., 2017). Structural alteration can however be statisti-
cally identified based on advanced neuroimaging across mild TBI. In a
recent report, we showed that some alterations occur across white matter
tracks, although they are moderated by other variables, including time
post-injury, age, gender, or the presence of persistent symptoms (Ashley L
Ware, Keith Owen Yeates, et al., 2022). The problem of considering poten-
tial significant moderators to account for the heterogeneity of mild injuries
has been raised, but the study of moderating variables requires higher
statistical power, therefore this issue is typically not properly addressed
in the current literature. This potentially results in mixed findings across
studies. For example, reports testing for an overall effect of injury across
adults with mild TBI showed mixed results for functional connectome
abnormalities in terms of connectivity strength (Morelli et al., 2021) and
global network topology (Kim et al., 2022; Yan et al., 2017; Horn et al., 2017;
Yan et al., 2017; Caeyenberghs et al., 2017; Churchill et al., 2021; Pandit
et al., 2013; Y. Zhou, 2017), highlighting that mild TBI might demonstrate
significant heterogeneity across age groups and imaging modalities.

The diversity and heterogeneity of pathophysiological mechanisms under-
lying mild TBI pose significant challenges to its study using neuroimaging.
On one hand, methodological differences in study design can have a sig-
nificant influence on the conclusions drawn from mild TBI neuroimaging
research, for example, the choice of an appropriate comparison group
(Ware, Shukla, et al., 2022; Ware, Yeates, et al., 2021; Wilde et al., 2019). A
recent study has demonstrated that structural connectome across mild
TBI children does not show an overall difference in the post-acute phase
when compared with children that suffered orthopedic injuries, however,
both mild TBI and orthopedic injury groups differ in global topology
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relative to typical development (Ware, Yeates, et al., 2021). Whereas most
of the TBI literature uses a comparison group comprising individuals un-
affected by any type of injury (Imms et al., 2019), children with orthopedic
injuries may be more similar in terms of motion artifact, which is a major
factor to take into consideration in neuroimaging studies. In a previous
analysis (Ware, Shukla, et al., 2022), we showed that the amount of DTI
volumes demonstrating gross motion artifact differs between typically
developing children and those that had either mild TBI or OI (see Fig-
ure 1.3). Procedures for data curation to prevent the impact of motion
artifacts exist (Power, Mitra, et al., 2014), but systematic between-group
differences due to motion artifacts can be more challenging to account
for (Dziemian, Barańczuk-Turska, and Langer, 2022). Taken together, the
results mentioned above suggest that orthopedic injury may represent a
more conservative comparison group for mild TBI, but it may provide
appropriate control systematic group differences in motion artifact.

The prognostic utility of neuroimaging in pediatric mild TBI is limited
by the scarcity of studies with appropriate statistical power required to
capture mild TBI heterogeneity and retain the risk of statistical errors
under control. However, the high cost of neuroimaging data acquisition
(Mumford and Thomas E. Nichols, 2008) can substantially constrain the
ability of a single research center to collect large amounts of scans. Re-
searchers increasingly address the issue of poor reproducibility following
the recruitment of small samples in the published literature (Button et al.,
2013; Turner et al., 2018; Grady et al., 2021). In addition, the research
questions addressed in the field oftentimes relate to small effect sizes and
may require larger samples for reliable inference (Stephen M Smith and
Thomas E Nichols, 2018; Noble, Scheinost, and Constable, 2020). Collab-
orative approaches can address this problem by collectively acquiring
neuroimaging data using similar study protocols across multiple centers.
In pediatric mild TBI, the Advancing Concussion Assessment in Pediatrics
study (A-CAP; Keith Owen Yeates et al.; 2017) is the largest dataset cur-
rently available, which recruited longitudinal multimodal neuroimaging
data at 5 hospitals across Canada.
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Figure 1.3: Differences in motion between typical development, orthopedic
injury, and mild TBI children based on DTI scans. Compared to a normal DTI
volume (A), motion artifact produces visible image distortions (B) on DTI
images. Children with post-acute orthopedic injury (OI) and mild traumatic
brain injury (TBI) show a stronger relationship between age and motion
artifact compared to typically developing children (TD) based on the number
of DTI volumes with visible motion artifact (Ware, Shukla, et al., 2022)

With the increased availability of multisite neuroimaging datasets, a topic
that started to gain significant attention in the neuroscience community
is multisite harmonization (Pinto et al., 2020; Fortin, Parker, et al., 2017;
Fortin, Cullen, et al., 2018; Pomponio et al., 2020; Adrian I. Onicas et al.,
2022). Significant progress has been made with respect to analyzing data
using multiple scanners, but the current literature lacks a comprehensive
evaluation of multisite harmonization in the context of network analy-
ses. The need for such an evaluation is motivated by the data analysis
pipeline required for a graph-theory study. In a typical connectome study,
multi-site harmonization is performed at the level of the connectivity
weights (Kurokawa et al., 2021; Yu, Linn, et al., 2018), which represent
pairwise connection strength among brain regions (e.g., average fractional
anisotropy for structural or Pearson correlation between pairs of brain
regions for functional connectivity). The harmonized connectivity values

11



can then be used for the group-level analysis. However, graph theory
analysis takes place after connections have been mapped in a network.
This implies at least two possibilities for data harmonization: similar to a
typical connectivity study, data harmonization can be performed prior to
the calculation of network parameters (i.e., matrix harmonization, at the
level of connectivity weights) or after network parameters are calculated
(i.e., parameter harmonization).

Currently, no study has assessed whether one method performs better
than the other. A typical connectivity study may perform univariate
group analysis, by applying a statistical test over connectivity weights
from a set of brain regions (or average weights across multiple pairs
of regions). However, the algorithmic operations for calculating global
network parameters take as input all the connection weights simultane-
ously. Unlike univariate statistics based on individual connection weights,
global network parameters measure interactions across regions across the
whole brain, generating new features for the group-level statistical model.
Data harmonization performed at the level of connection weights does
not guarantee the reduction of site effects across the network as a whole.
It is unclear how multisite harmonization affects the distribution of the
final data. Specifically, global network parameters are computed based
on participant-level adjacency matrices and data harmonization involves
the application of a group-level statistical model that includes site as a
covariate. Participant-level matrices could contain new variability that
is unrelated to the original topology, which may influence the accurate
estimation of network parameters.

An efficient multisite harmonization method may reduce site effects but
preserve the within-site (original) variability. Currently, assessments of
multisite harmonization techniques rely on testing the efficiency of remov-
ing site effects without careful consideration of how within-site variability
changes (Pinto et al., 2020; Fortin, Parker, et al., 2017; Fortin, Cullen,
et al., 2018; Pomponio et al., 2020). In addition, the validity of the data is
justified by quantifying the relationship between age and neuroimaging
data before and after harmonization. However, a significant or higher age
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correlation does not necessarily imply an improvement in data accuracy,
especially in the absence of ground truth (such as a large single-site study
for a reference value). Significant age correlation can exist in the absence of
accurate data preparation. For example, motion artifact is a well-known
source of bias that can increase age correlations across neuroimaging
modalities (Barkovich et al., 2019). In psychometrics, the reliability of a
given instrument is typically measured using the intraclass correlation
coefficient (Koo and M. Y. Li, 2016). This methodology calculates the
correlation between different evaluations using the same psychological
instrument, and it is different from the typical Pearson or Spearman corre-
lation in that it accounts for data dependency when multiple methods are
applied to the same numbers. Intraclass correlation may represent a more
appropriate approach to understanding whether multisite harmonization
techniques alter data variability. Its applications have also been extended
to neuroimaging, for example by measuring the consistency of structural
and functional network metrics across repeated evaluations of the same
participants (Telesford et al., 2010; Tsai, 2018). This methodology could
be used to test if common data harmonization procedures demonstrate
efficiency in preserving within-site variability, a topic that is discussed in
detail in Chapter 2.

1.4 Mapping fMRI time series into networks

The approaches discussed above summarized typical pipelines for con-
nectome mapping and network analysis during resting state, but the
observation that fMRI signal oscillations over time arise as a consequence
of brain activity has been initially and extensively studied using task
fMRI. Task fMRI relies on identifying localized functional brain responses
elicited following an activity carried out during the scan (Song et al., 2002;
Lee et al., 2010; Bowman, 2014). In its most simple forms, task fMRI may
imply a finger-tapping activity, or simply visualizing different categories
of images separated in time (Drobyshevsky, Baumann, and Schneider,
2006). More complex task designs can involve activities characterized by
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increased cognitive demands, such as adaptations of cognitive tasks tar-
geting memory or attention processes that are widely used in behavioral
studies of cognition (Diamond, 2013). Early studies observed that distinct
regions respond to specific sensory, motor, cognitive or emotional events,
which led to the hypothesis that regions that repond to similar events may
show synchronized hemodynamic activity during task performance or at
rest.

Similar to the functional connectome mapping, linear methods represent
a gold standard to quantifying changes in BOLD signal intensity in task
fMRI. This typically involves identifying brain regions that become active
in response to the onset of events. A statistically significant response
localized in the brain can be identified with mass univariate analysis. The
word univariate describes the fact that each of the time series (i.e., from
each voxel) is separately modeled, independent from those extracted from
other voxels, thus resulting in massive testing of the same hypothesis
across multiple locations in the brain (e.g., voxels). General Linear Model-
ing (GLM) is commonly used to assess brain activation, and it relies on
fitting a predefined model (based on a basis function) to the time series
extracted from each voxel (Karl Friston et al., 1994; K. J. Friston, Holmes,
et al., 1995). GLM-based mass univariate analysis is relatively straight-
forward to implement using neuroimaging software, but it may not fully
capture the variability of the fMRI signal due to the assumption that the
shape of response changes occur uniformly following task events (e.g.,
the presentation of an image), whereas significant variability has been
reported (Cignetti et al., 2016; Duann et al., 2002; Handwerker, Ollinger,
and D’Esposito, 2004; Pedregosa et al., 2015; Steffener et al., 2010; Lin et al.,
2018). The features extracted based on the GLM are statistical quantities
(e.g. beta values) that can be submitted to the group analysis.

Macroscale networks in neuroscience usually map interactions between
pairs of brain regions (E. T. Bullmore and Bassett, 2011). However, specific
algorithms can construct networks at the level of individual time series.
Visibility graphs (Lacasa, Luque, et al., 2008; Lacasa, Nicosia, and Latora,
2015) are a promising tool that can be used for such transformations,

14



where nodes represent time points instead of brain regions. Studies using
visibility graph transformation for functional neuroimaging have started
to emerge, for example on signals derived from electroencephalography
(EEG) and fMRI. Several reports using EEG highlighted the utility of visi-
bility graphs for mapping large-scale functional connectivity (Ahmadlou,
Ahmadi, et al., 2013; Yu, Hillebrand, et al., 2017), machine learning-based
detection of epileptic seizures (L. Wang et al., 2017; Mohammadpoory,
Nasrolahzadeh, and Haddadnia, 2017) or classification of sleep stages
(G. Zhu, Y. Li, and Wen, 2014). One fMRI study assessed the modular
structure of the visibility graphs in time series extracted from regions of
the limbic system, demonstrating differences between patients suffering
from psychiatric disorders and healthy controls (Sannino et al., 2017).
These reports used visibility graph transformation during resting state.
However, it is not currently understood whether visibility graph topology
can uncover information relevant to signal changes originating from brain
activity. The hypothesis that temporal networks derived using visibility
graphs capture information about brain activity can be tested by means
of task fMRI.

Task fMRI may be appropriate for testing whether the topology of tem-
poral graphs derived with visibility transformation contains information
about brain activity, because fMRI signal changes evoked during the
task have well-controlled onsets and durations, that can be identified in
the temporal network topology. An implication of mapping functional
neuroimaging data to networks is the possibility of using network science-
based tools for characterizing signal oscillations in the brain. This field
has the potential to substantially contribute to the analysis of fMRI time
series because temporal networks constructed using algorithms such as
visibility graphs can be used to extract features that may be able to cap-
ture more complex, non-linear properties (Zou et al., 2019) specific to
BOLD oscillations (K. J. Friston, Josephs, et al., 1998). However, there is
currently no study to test if visibility graphs encode task information in
the resulting temporal networks. This limits the application of visibility
graph mapping for functional neuroimaging and an important aim of the
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current work is to address the gap between dynamic changes in brain
signals and the derived temporal networks. Task paradigms that elicit
functional responses in sensory cortices such as the primary visual cortex
may provide an appropriate means to reliably assess the efficiency of visi-
bility graphs because sensory cortices reliably respond to experimentally
designed task events (Buracas, Fine, and Boynton, 2005). Tasks performed
during an fMRI scan typically fall into two categories: block or event-
related designs (Carrig, Kolden, and Strauman, 2009). The two designs
differ in how task events (e.g., the presentation of an image on the screen)
are temporally distributed. During a block design, participants may be
required to perform an action for slightly longer periods of time, in task
blocks that are separated by periods of rest. In event-related designs, task
events are shorter in duration (e.g., 1 second) and can be either evenly
distanced in time or presented at variable intervals. The usage of an
event-related instead of block design allows testing whether the timing
to signal peak observed on raw time series corresponds to local visibility
graph topology. In Chapter 4, we answer whether visibility graphs can
identify task events in synthetic and real event-related fMRI time series
during a picture presentation task.
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Chapter 2

Multisite harmonization of
structural DTI networks in
children: An A-CAP Study

The analysis of large, multisite neuroimaging datasets provides a promis-
ing means for robust characterization of brain networks that can reduce
false positives and improve reproducibility. However, the use of different
MRI scanners introduces variability to the data. Managing those sources
of variability is increasingly important for the generation of accurate
group-level inferences. ComBat is one of the most promising tools for
multisite (multiscanner) harmonization of structural neuroimaging data,
but no study has examined its application to graph theory metrics derived
from the structural brain connectome. The present work evaluates the
use of ComBat for multisite harmonization in the context of structural
network analysis of diffusion-weighted scans from the Advancing Con-
cussion Assessment in Pediatrics (A-CAP) study. Scans were acquired
on 6 different scanners from 484 children aged 8.00-16.99 years [Mean =
12.37 +/- 2.34 years; 289 (59.7 %) Male] approximately 10 days follow-
ing mild traumatic brain injury (n = 313) or orthopedic injury (n = 171).
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Whole brain deterministic diffusion tensor tractography was conducted
and used to construct a 90x90 weighted (average fractional anisotropy)
adjacency matrix for each scan. ComBat harmonization was applied sepa-
rately at one of two different stages during data processing, either on the
(i) weighted adjacency matrices (matrix harmonization) or (ii) global net-
work metrics derived using unharmonized weighted adjacency matrices
(parameter harmonization). Global network metrics based on unharmo-
nized adjacency matrices and each harmonization approach were derived.
Robust scanner effects were found for unharmonized metrics. Some scan-
ner effects remained significant for matrix harmonized metrics, but effect
sizes were less robust. Parameter harmonized metrics did not differ by
scanner. Intraclass correlations (ICC) indicated good to excellent within-
scanner consistency between metrics calculated before and after both
harmonization approaches. Age correlated with unharmonized network
metrics, but was more strongly correlated with network metrics based on
both harmonization approaches. Parameter harmonization successfully
controlled for scanner variability while preserving network topology and
connectivity weights, indicating that harmonization of global network
parameters based on unharmonized adjacency matrices may provide op-
timal results. The current work supports the use of ComBat for removing
multiscanner effects on global network topology.
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2.1 Introduction

Network neuroscience has become a popular approach to characterize
brain structure in vivo in healthy and clinical populations (Bassett and
Sporns, 2017; Bullmore and Sporns, 2009; C. Stam, 2014). The structural
connectome can be mapped using diffusion-weighted MRI (Bullmore and
Sporns, 2009; Gong, He, Concha, Lebel, Donald W Gross, et al., 2009a;
Iturria-Medina, Canales-Rodrıéguez, et al., 2007; Iturria-Medina, Sotero,
et al., 2008), a non-invasive technique that is sensitive to white matter
microstructure (Lerch et al., 2017).

Pediatric mild traumatic brain injury (mTBI) is a prevalent global public
health concern (Cassidy et al., 2004; Thurman, 2016; Centers for Disease
Control and Prevention [CDC], 2015; Keith Owen Yeates, 2010) that is
characterized by subtle and diffuse alterations in brain tissue (reviewed
in Mayer, Kaushal, et al., 2018; Lindsey et al., 2021). The neurobiology
of pediatric mTBI remains poorly understood (see Mayer, Kaushal, et al.,
2018). White matter microstructural alterations can occur after pediatric
mTBI, and multiple studies have examined specific white matter tracts
using diffusion tensor imaging (DTI; Schmidt et al., 2018; Lindsey et al.,
2021; Ashley L Ware, Ayushi Shukla, et al., 2020). Emerging evidence
indicates that pediatric mTBI can alter global and regional brain networks
(Imms et al., 2019; Sharp, Scott, and Leech, 2014; Ware, Yeates, et al., 2021;
Watson, DeMaster, and Ewing-Cobbs, 2019). Thus, network neuroscience
may be a potentially promising tool that could provide a robust charac-
terization of network mechanisms involved in this important and highly
prevalent neurological disorder.

Large, multisite neuroimaging studies of pediatric mTBI have become
increasingly common to reduce false positive results from small samples,
increase statistical power, and enhance reproducibility and generalizabil-
ity of results (Poldrack et al., 2017; Maas et al., 2017b). For instance, the
Advancing Concussion Assessment in Pediatrics (A-CAP) study (Keith
Owen Yeates et al., 2017) is the largest neuroimaging study of pediatric
mTBI to date, with recruitment occurring at 5 children’s hospitals across
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Canada including longitudinal MRI assessment using 6 different scan-
ners. The A-CAP study has the potential to increase scientific and clinical
knowledge about neurobiological outcomes in pediatric mTBI. However,
using multiple MRI scanners introduces non-biological data variability
due to different scanner systems, models, and sequence protocols, among
other factors (Pinto et al., 2020; T. Zhu et al., 2011; A. H. Zhu et al., 2019;
Fortin, Parker, et al., 2017). Managing these non-biological sources of
variability in multisite studies is increasingly important to generate accu-
rate group-level inferences and enable detection of underlying biological
phenomena (Pinto et al., 2020).

ComBat is a widely used method for multisite (multiscanner) harmo-
nization that originated from techniques used for genomics data (W. E.
Johnson, C. Li, and Rabinovic, 2007). It is one of the most well-validated
tools for multiscanner harmonization of structural neuroimaging data
that makes no assumptions about the origin of scanner variation (Fortin,
Parker, et al., 2017). ComBat implements a multivariate linear mixed
effects regression with terms for biological variables and site to model
the features of interest; the model parameters are estimated using an em-
pirical Bayes approach. For diffusion tractography, ComBat has already
demonstrated higher performance for multiscanner harmonization than
other methods such as removal of artificial voxel effect by linear regres-
sion (RAVEL) and functional normalization of metrics (Fortin, Parker,
et al., 2017).

Unlike a general linear model approach that includes site or scanner as a
fixed effect covariate, ComBat demonstrates better outlier robustness to
account for small within-scanner sample sizes by borrowing information
across features to shrink estimates towards a common mean (Beer et al.,
2020; W. E. Johnson, C. Li, and Rabinovic, 2007). The multiplicative
scanner effects are also corrected by removing heteroscedasticity of model
errors across scanners (Fortin, Cullen, et al., 2018). Furthermore, ComBat
preserves the variability contributed by true biological effects (e.g., sex
and age; Fortin, Parker, et al., 2017). However, no study has yet examined
whether ComBat is suitable for graph theory metrics derived from the
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structural connectome based on DTI.

Unlike tractography, which yields a final value for each white matter
tract, connectome analyses use weighted adjacency matrices to calculate
network parameters. In tractography or region-of-interest analyses, mul-
tisite harmonization is performed on final metrics (e.g., average fractional
anisotropy measures; Fortin, Parker, et al., 2017; Kurokawa et al., 2021;
Zavaliangos-Petropulu et al., 2019). However, graph theory analysis takes
place after connections in a network have been mapped, mathematically
represented as an adjacency matrix, and summarized by the computation
of network parameters (E. T. Bullmore and Bassett, 2011). Two distinct ap-
proaches to data harmonization are therefore possible in network analysis:
(1) before the calculation of network parameters (i.e., matrix harmoniza-
tion; harmonization at the level of connectivity weights), or (2) after the
calculation of network parameters (i.e., parameter harmonization). Identi-
fying the optimal timing of data harmonization during data processing
and analysis may influence the harmonization of multisite data, and hence
has important implications for the accuracy of conclusions drawn from
multisite connectivity studies.

To our knowledge, the performance of ComBat for multiscanner harmo-
nization in studies of network topology and neurological disorders has
not been evaluated. Therefore, the present study examined the applica-
tion of two approaches to data harmonization across sites in a sample of
DTI scans from children with mTBI or mild orthopedic injury (OI).
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2.2 Methods

2.2.1 Study design and procedure

Data were drawn from the Advancing Concussion Assessment in Pedi-
atrics (A-CAP) study (Keith Owen Yeates et al., 2017), a multisite prospec-
tive, cohort study with longitudinal follow-up in children [Mean age
(range) = 12.37 +/- 2.34 years (8.00-16.99 years); 289 (59.7 %) Male] with
pediatric mTBI (n = 313) or mild orthopedic injury (OI; n = 171). Briefly,
children were recruited within 48 hours of injury from 5 children’s hospi-
tals across Canada, all of which were members of Pediatric Emergency
Research Canada (PERC; Bialy et al., 2018), and returned for 3 post-injury
follow-up assessments: post-acute (targeted for 10 days post-injury), 3
months, and 6 months. Injuries and acute signs and symptoms were
assessed during an initial emergency department visit that took place
within 48 hours post-injury.

The study was conducted with the approval of the research ethics board
at each study site. All participants provided written informed assent
and parents/guardians provided written informed consent (Keith Owen
Yeates et al., 2017). This study examined data from the MRI scans collected
during the post-acute visit, as previously described (Ayushi Shukla et al.,
2021).

2.2.2 Diffusion MRI

Eligible participants completed a 3T MRI scan without sedation at the
post-acute visit (see Ayushi Shukla et al., 2021 for details). In brief, thirty
diffusion-weighted images with different diffusion gradient encoding
directions were acquired at b=900 s/mm2, along with 5 images at b=0
s/mm2, with 2.2 mm isotropic resolution at all sites (General Electric:
TR/TE=6, 12 s/70, 90 ms; Siemens: 6.3, 7.8 s/55, 90 ms; Keith Owen
Yeates et al., 2017). Data collected in Montreal was acquired using 2
different scanners, coded as Montreal 1 and Montreal 2, for a total of
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6 scanners (“sites”): Calgary (General Electric), Edmonton (Siemens),
Montreal 1 (General Electric), Montreal 2 (Siemens), Ottawa (Siemens)
and Vancouver (General Electric).

2.2.2.1 Quality assurance

Visual quality checks of all raw images were conducted to identify and
exclude scans with structural abnormalities/incidental findings, scanner
artifacts (e.g., warping), incomplete acquisition, or not collected using
the standardized scan parameters. Data that passed the initial quality
assessment were subsequently rated for motion by two trained analysts.
Discrepancies were resolved through a third reviewer blind to initial
ratings. Diffusion-weighted volumes with severe motion artifact were
removed, and any scans with >7 volumes with severe motion artifact
were excluded from subsequent analysis (Ware, Shukla, et al., 2022).

2.2.2.2 Structural connectome

Detailed image processing methodology has been previously described
(Ware, Yeates, et al., 2021). Briefly, ExploreDTI (AJBSJJDK Leemans et al.,
2009) was used to preprocess diffusion images, calculate the diffusion
tensor, conduct whole brain fiber tractography, and compute an adjacency
matrix for each participant. Preprocessing included correction for signal
drift (Vos et al., 2017), eddy currents, subject motion with rotation of
the B-matrix (Alexander Leemans and Jones, 2009), and susceptibility
distortions (Veraart et al., 2013). A deterministic streamline approach was
used for whole brain fiber tractography (randomized seed points; seed
and tractography FA threshold = 0.10; step size = 0.50 mm; angle threshold
= 30◦; step size = 0.5 mm; streamline length 50-500 mm). The resulting
whole brain fiber tractography was extracted and used to compute an
adjacency matrix for each participant.

The automated anatomical labeling (AAL-90, Tzourio-Mazoyer et al.,
2002) template was used to define 90 nodes in native (diffusion) space
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using functions from open-source software packages in MATLAB R2019a
(see Ware, Yeates, et al., 2021). Fully connected 90 x 90 adjacency matrices
were constructed using the average FA of passing fibers among nodes in
ExploreDTI for each participant and an absolute threshold of 0.1.

2.2.3 Global Network Metrics and Multisite Harmoniza-
tion

The following global network parameters were calculated in MATLAB us-
ing the GRETNA software toolbox (http://www.nitrc.org/projects/gretna;
J. Wang et al.,2015): global efficiency, global clustering coefficient, small
worldness, modularity, and density. Network parameters were normal-
ized against 1,000 randomly generated matrices.

Global network parameters were evaluated before harmonization and
after two different harmonization approaches: matrix harmonization and
parameter harmonization. The steps used for each approach are sum-
marized in Figure 2.1. For both harmonization approaches, ComBat v1.0.5
(https://github.com/Jfortin1/ComBatHarmonization/tree/master/R) was
conducted in R v3.6.3 (R Core Team, 2020; https://www.R-project.org/) to
harmonize the data for scanner differences. A covariate matrix with group
(mTBI/OI), age at injury, and biological sex was included to preserve this
variance:

mod <− model.matrix(∼ injury + age+ gender)

2.2.3.1 Matrix harmonization

For matrix harmonization, weighted connectivity matrices were harmo-
nized for multiple scanners and global network parameters were calcu-
lated using the harmonized connectivity matrix for each participant (see
Figure 2.1). First, the lower diagonal values of each connectivity matrix
were extracted to construct a dataframe of 4,005 columns corresponding
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to node connection pairs among the 90 defined brain regions (nodes),
excluding self-connections [i.e., principal diagonal; (n(n-1))/2]. This was
done because undirected adjacency matrices are diagonally symmetrical.
ComBat was then used to harmonize those extracted values:

neuroCombat(dat = LowerDiagonal, batch = Site,mod = mod)

After the harmonization of the extracted connectivity weights, the ad-
justed square and symmetric weighted matrices were reconstructed for
each participant and subsequently used to calculate global network pa-
rameters. During matrix harmonization, many of the connection weights
that were 0 before harmonization (i.e., indicating that no connection ex-
isted between two nodes) were transformed to negative values. To correct
for this transformation, an additional masking step was applied to re-
assign negative weights to 0 prior to graph analysis. Specifically, the
masking step multiplied the binary connectivity matrix derived before
harmonization with the harmonized weighted connectivity matrix for
each participant (see Figure 2.1).

2.2.3.2 Parameter harmonization

For parameter harmonization, the raw global network metrics (i.e., calcu-
lated before harmonization) were harmonized for multiple scanners using
ComBat. Each parameter was harmonized in separate models because the
distribution of each parameter is not necessarily related to the distribution
of other parameters. The empirical bias estimation option was not applied
(i.e., eb=FALSE) during parameter harmonization because each global
network parameter was harmonized separately (i.e., number of features
< n). For each global network metric, the following model was used to
harmonize the data:

neuroCombat(dat = Parameter, batch = Site,mod = mod, eb = FALSE)
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Figure 2.1: Overall study procedure illustrating the data processing steps
for the generation global network parameters (A) before harmonization,
and the implementation of (B) matrix harmonization and (C) parameter
harmonization.
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2.2.4 Statistical analysis

2.2.4.1 Harmonization performance assessment

Statistical analyses were conducted using R v3.6.3. To evaluate the perfor-
mance of each harmonization approach (i.e., adjacency matrix or network
parameters), the effect of site was examined using separate one-way
ANOVA models for each global network parameter. Non-significant scan-
ner effects (p >0.05) were interpreted as a successful removal of variability
due to different scanners.

The proportion of significant (p <0.05) post-hoc pairwise between-site
comparisons was evaluated by calculating the number of significant un-
corrected pairwise comparisons across scanners, divided by the total
number of possible pairwise comparisons (i.e., n = 15). Correction for mul-
tiple comparisons was not applied for post-hoc t-tests followup analysis,
providing a more conservative evaluation of scanner effects.

2.2.4.2 Within-scanner consistency following data harmonization

The within-scanner consistency of the global network metrics before
(unharmonized) and after each harmonization approach (matrix harmo-
nization, parameter harmonization) was examined by calculating the
Intraclass Correlation Coefficient (ICC), with ICC <0.50, 0.50 ≤ ICC <

0.75, 0.75 ≤ ICC < 0.90, and ICC ≥ 0.9 indicative of poor, moderate,
good, and excellent consistently, respectively (Koo and M. Y. Li, 2016).
Successful harmonization would reduce the effect of site while preserv-
ing the within-scanner variability for each parameter observed before
harmonization.

2.2.4.3 Biological variability

To evaluate whether ComBat harmonization preserves biological variabil-
ity, analysis of covariance (ANCOVA) was used to examine the effect of
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site, age at injury, sex, and group (mTBI, OI) on each network parameter.
Significant effects involving age at injury were further examined using
Pearson correlations, which were compared using a back-transformed
average Fisher’s Z procedure for dependent and overlapping correlations
(Hittner, May, and Silver, 2003), as implemented using the cocor package
(Diedenhofen and Musch, 2015). Overlapping correlations were used
to conduct the following pairwise comparisons of age correlations: (1)
matrix harmonization vs unharmonized data, (2) parameter harmoniza-
tion vs unharmonized data, and (3) parameter harmonization vs matrix
harmonization.

Within-scanner age correlations on the unharmonized data were calcu-
lated to provide a reference value for the expected age correlation for each
network parameter following harmonization. The reference value was
calculated based on the means of within-site age correlations, weighted by
the corresponding sample size of each scanner. Weighted means were cal-
culated because sites with a greater number of participants may influence
the correlation values to a greater extent than sites with smaller cohorts.
Successful preservation of age-related biological variability across all scan-
ners following harmonization would approximate the weighted mean of
within-scanner age-correlations. Group differences between mTBI and OI
were calculated using t-test.
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2.3 Results

2.3.1 Presence of site/scanner effects before harmonization

Before harmonization, all global network metrics differed by site (see
Table 2.2; Figure 2.2, A; Figure 2.3, A). The largest site effect was observed
for global efficiency [F(5) = 651.08, p <.001], with 14 of 15 (93%) significant
between-site comparisons, followed by modularity [F(5) = 309.87, p <.001;
13 (86%) significant between-site comparisons], density [F(5) = 286.23, p
<.001; 13 (86%) significant between-site comparisons], small worldness
[F(5) = 182.93, p <.001; 12 (80%) significant between-site comparisons] and
clustering coefficient [F(5) = 86.38, p <.001; 12 (80%) significant between-
site comparisons].

2.3.2 Matrix harmonization

Main effects of site remained significant for global network metrics af-
ter matrix harmonization (Table 2.2; Figure 2.2, B; Figure 2.3, B). How-
ever, pairwise site differences were less pervasive after harmonization
for global efficiency [F(5) = 3.88, p <.001; 4 (26%) significant between-site
comparisons] and small worldness [F(5) = 170.69, p <.001; 11 (73%) sig-
nificant between-site comparisons], but not for modularity [F(5) = 158.06,
p <.001; 13 (86%) significant between-site comparisons], density [F(5) =
286, p <.001; 13 (86%) significant between-site comparisons] or cluster-
ing coefficient [F(5) = 295.44, p <.001; 15 (100%) significant between-site
comparisons].

Within-site consistency of unharmonized and matrix harmonized metrics
ranged from poor to excellent (Figure 2.3, B). The highest consistency
was observed for density [ICC = 1.00], which is the only parameter that
measures the presence of connections but ignores their weights. Global
efficiency and modularity also had excellent ICCs [Mean (range) = 0.96
(0.91, 0.99) for both], whereas consistency was good for small worldness
[Mean (range) = 0.85 (0.57, 0.95)] and poor for clustering coefficient [Mean
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(range) = 0.21 (0, 0.62)].

2.3.3 Network parameter harmonization

Site was not significantly associated with global network metrics after
parameter harmonization (Table 2.2; Figure 2.2, C; Figure 2.3, C). The
within-site pre-post harmonization ICCs (Figure 2.3, C) were consistently
excellent for global efficiency [Mean (range) = 0.99 (0.99, 1)] and density
[Mean (range) = 0.98 (0.97, 1)], and good to excellent for clustering coeffi-
cient [Mean (range) = 0.97 (0.86, 1)] and modularity [Mean (range) = 0.91
[0.85, 0.99)] and moderate to excellent for small worldness [Mean (range)
= 0.86 (0.73, 0.99)].

2.3.4 Relationships between network topology and age
before and after harmonization

Age significantly correlated with the following unharmonized network
parameters (Figure 2.4, A): global efficiency (R = 0.16, p <.001), clustering
coefficient (R = 0.13, p <.003) and density (R = 0.12, p <.006). After matrix
harmonization (Figure 2.4, B), the correlation between age and global
efficiency (R = 0.38, p <.001) was larger than before harmonization (z =
3.63, p <.001). After parameter harmonization, age-correlations increased
(Figure 2.4, C) for efficiency (R = 0.44, p <.001), clustering coefficient
(R = 0.21, p <.001) and density (R = 0.27, p <.001), although only age
correlations for efficiency (z = 4.71, p <.001) and density (z = 2.40, p <.016)
were significantly larger compared to the unharmonized data.

No significant correlations with age were observed for modularity and
small worldness before harmonization, but modularity significantly cor-
related with age following matrix harmonization (R = -0.11, p =.018), and
both parameters showed significant age relationships following param-
eter harmonization (modularity: R = -0.15, p <.001; small worldness: R
= -0.13, p <.003), although the coefficients were not significantly higher
compared to the unharmonized data (p >.05). Clustering coefficient (z =
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0.26, p <.008) and density (z = 2.40, p <.016) were significantly stronger
following parameter as compared to matrix harmonization. Within-group
age correlations are reported in Table 2.4. No significant effects of sex or
group were observed for any of the network parameters (see Table 2.4).

Table 2.1: Demographic information for the participants at each site.

Site Participants
n (%)

Sex
n (%) male

Age*
M (SD) years

Group*
n (%) mTBI

DPI*
M (SD)

Calgary 120 (24.7%) 71 (59.1%) 12.9 (2.2) 83 (69.1%) 8.8 (3.3)

Edmonton 114 (23.5%) 67 (58.7%) 12.5 (2.3) 75 (65.7%) 9.3 (5.1)

Montreal 1 28 (5.7%) 18 (64.2%) 11.4 (2.0) 25 (89.2%) 10.3 (4.2)

Montreal 2 20 (4.1%) 10 (50%) 12.5 (2.2) 15 (75%) 12.4 (4.8)

Ottawa 57 (11.7%) 30 (52.6%) 11.9 (2.2) 39 (68.4%) 15.8 (4.7)

Vancouver 145 (29.9%) 93 (64.1%) 12.0 (2.4) 76 (52.4%) 11.7 (5.1)

Total 484 289 (59.7%) 12.3 (2.3) 313 (64.4%) 10.9 (5.1)

Note. * Significant effect of site on age (F = 3.73, p <.01), group(χ2 = 18.3, p<.001) and DPI
(F = 21.5, p <.001); DPI - days post injury, M - mean, SD - standard deviation.
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Figure 2.2: Violin plots illustrating the distribution of values across sites for
global network parameters calculated (A) before harmonization, after (B)
matrix and (C) parameter harmonization.
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Figure 2.3: Heatmaps illustrating pairwise between-site differences and t-
values (lower diagonal) and within-site ICCs (principal diagonal) for the
global network parameters calculated (A) before harmonization and after (B)
matrix and (C) parameter harmonization.
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Figure 2.4: Scatter plots illustrating the Pearson correlations between age at
injury and each global network parameter calculated (A) before harmoniza-
tion and after (B) matrix and (C) parameter harmonization.
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2.4 Discussion

The popularity of large, representative datasets from collaborative, mul-
tisite research initiatives and structural connectomics has increased in
recent years. Previous studies demonstrated that ComBat can control
for site (scanner) differences while preserving biological variability (e.g.,
due to group, age, sex) for several MRI modalities (Pomponio et al.,
2020; Fortin, Cullen, et al., 2018; Fortin, Parker, et al., 2017; Yu, Linn,
et al., 2018). This is the first study to validate the use of ComBat for
the structural connectome. Here, ComBat was successfully used to har-
monize structural connectivity data based on diffusion-weighted MRI
across multiple scanners (“sites”). Parameter harmonization reduced
the variability associated with different scanners to a greater extent than
matrix harmonization, although both approaches reduced site differences
in global network metrics. As expected, both harmonization approaches
also preserved biological effects of age on network parameters. Moreover,
expected age-related associations with global network parameters were
stronger after applying parameter as opposed to matrix harmonization.
Overall, the results extend the validity of using ComBat harmonization to
network parameters derived using diffusion-weighted MRI.

Parameter harmonization showed superior performance for removing
scanner effects compared to matrix harmonization. Furthermore, parame-
ter harmonization is more computationally efficient. Matrix harmoniza-
tion requires a series of steps that involve value translation. Specifically,
connectivity weights were deconstructed from the matrices by extracting
the lower (or upper) diagonal elements, organized in a high dimensional
data frame for harmonization, and reconstructed back in square matrices
following harmonization. In some instances, this approach transformed
connection weights that were initially 0 (i.e., no connection exists be-
tween two nodes in unharmonized data) to negative values, requiring
an additional step reassigning these values to zero before graph analysis.
Thus, matrix harmonization preserved the location, but not the strength
of connections among node pairs. In contrast, parameter harmonization
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requires only one step. This appears beneficial in preserving the true
global properties of the network, as illustrated by the reduced variability
of the within-site consistency between the parameter harmonized and
unharmonized global network metrics (see Figure 2.3).

Before harmonization, global efficiency exhibited more robust site ef-
fects than other measures, such as the clustering coefficient. Matrix har-
monization reduced (e.g. global efficiency), introduced (e.g., clustering
coefficient) or maintained (e.g., density) site effects compared to the un-
harmonized data. The variable performance of matrix harmonization
across different metrics may indicate that properties of the network other
than the pairwise connection strengths are affected by scanner. Except
for density, global parameters included in the present analysis encode
information about the topology (i.e., location) as well as the weights of
connections among distinct brain regions. Density, which reflects the
number of connections regardless of their strengths, did not demonstrate
differences in the magnitude of site effects following matrix harmoniza-
tion (see Figure 2.2 and Figure 2.3), indicating that site differences are
present in topological properties of the network beyond the strengths of
pairwise connections (e.g., the number or location of connections).

In addition, clustering coefficient quantifies segregation across brain re-
gions (i.e., nodes) by counting the occurrence of existing connections
between groups of three nodes. Since matrix harmonization does not alter
the location of connections, groups of connected nodes maintain their
configuration before and after harmonization. Furthermore, the mag-
nitude of scanner effects might differ slightly among connections, and
matrix harmonization might differently impact the reciprocal connection
strengths across groups of nodes (i.e., it targets pairs of nodes), poten-
tially explaining the variable performance for removing site effects in the
case of clustering coefficient (see Figure 2.3, A and B). These topological
properties may be better controlled by parameter harmonization, because
global parameters already encode this information.

Correlations between age and network parameters were generally larger
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following both harmonization approaches, but were slightly more robust
following parameter harmonization. One exception was the relationship
between age and clustering coefficient, which weakened following matrix
harmonization. This is in line with the other results, suggesting that
matrix harmonization may be problematic for clustering coefficient.

The detection of significant age effects following parameter harmoniza-
tion, even in the absence of significant correlations for the unharmonized
data, raises the question of whether additional variability was added
to the data during harmonization that might have artificially boosted
the relationship between age and network topology. Further analyses
suggest this is not the case, because the age correlation following parame-
ter harmonization were closer to the weighted means of within-scanner
correlations before harmonization (see Table 2.3).

In addition, previous studies show relationships between age and global
network topology in typical development (Z. Chen et al., 2013; Koenis
et al., 2015; Lim et al., 2015) and children with TBI (Watson, DeMaster,
and Ewing-Cobbs, 2019). This indicates that parameter harmonization
may better preserve age-related biological variability compared to ma-
trix harmonization and to the unharmonized data, although differences
between the two harmonization approaches were small.

The children with mTBI and OI did not differ in any global network
metrics before or after each harmonization approach. This was expected
given that DTI and NODDI indices of white matter microstructure did
not differ between groups previously in this sample (Ayushi Shukla et al.,
2021; Ware, Yeates, et al., 2021) and other pediatric samples at similar
time points (Wilde et al., 2019). Another study compared a subset of this
sample (children recruited at the Calgary site) to typically developing chil-
dren and also did not find global or regional (nodal) network differences
between mTBI and mild OI groups post-acutely, but did find an effect of
injury more generally relative to typical development (Ware, Yeates, et al.,
2021).

In the present analysis, matrix harmonization introduced negative values
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in the connectivity matrices. Interestingly, the negative weights corre-
spond to unharmonized 0 values, indicating that in some cases, missing
connections between pairs of regions can receive negative values follow-
ing ComBat harmonization. Across the A-CAP sample, the insertion of
negative values has occurred across 13.4% of the total connections, how-
ever, these values were generally very small, with a mean of -0.036 (see
Figure A.1). To address this issue, the negative values were set back to
0, which preserves the original topology of participant-level adjacency
matrices, by preventing the insertion of new connections following the
harmonization of connectivity weights. Data scaling procedures may
provide an alternative to handle the occurrence of negative values, how-
ever, scalar transformations can impact the participant-level topology by
the addition of positive weights to the values that were 0 both, before
and after harmonization. In this scenario, the 0-connections remaining in
the matrices following re-scaling would be represented by the minimum
negative values, resulting in the insertion of positive weights across true
0 connections, impacting the original topology at participant level. Future
analyses might address how different strategies for the scaling of connec-
tivity weights could be applied to reduce site effects while preventing
the participant-specific network topology, which also implies (at least
partially) the preservation of within-site variability. This limitation of
the current work, however, emphasizes that matrix harmonization pro-
vides a more challenging method for managing between-site variability,
and underlines the efficiency of parameter harmonization for the specific
application of graph analysis.

The current study did not address the effect of data harmonization ap-
plied prior to the generation of adjacency matrices, which is an additional
possibility to account for the variability across different scanners (e.g.,
using methods described by Fortin, Sweeney, et al., 2016; Leek et al.,
2012; Fortin, Parker, et al., 2017). It has been suggested that connectome
generation can be stable across scanners based on the derived network
parameters (Bonilha et al., 2015). While future studies may consider this,
data harmonization prior to connectome construction is increased in com-
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plexity, involving additional processing steps. These include warping the
data into a common space and deconstructing brain images to build a
voxel by participant data frame, which does not allow for the construction
of adjacency matrices in native diffusion space. Following voxelwise
harmonization, data would need to be reconstructed into subject-specific
brain images (i.e., harmonized FA maps), which may impose substan-
tial feasibility challenges due to the high computational complexity and
number of additional transformations involved in this process.

There are some limitations to the current work. Weighted connectivity
matrices were analyzed in this study; future multisite studies might ex-
amine whether differences in binary matrices relate differently to the
effects of site. We did not assess the influence of different thresholds on
harmonization. In addition, the current study used only one parcellation
for the construction of adjacency matrices, and future studies might fo-
cus on whether other parcellations are similarly affected by site effects
particularly when running matrix harmonization. While most methods
use similar preprocessing steps, slight variations in these steps and how
they are applied can impact calculated diffusion metrics, and thus may
be important to explore in future studies. Data acquisition in the current
study included single shell diffusion-weighted data. Multishell acquisi-
tion protocols may be differently affected by site effects, which might be
addressed in future studies. Lastly, the current study used deterministic
tractography, and future analyses might consider testing the effect of
harmonization on networks derived using probabilistic tractography, as
the two approaches have been shown to differ in terms of within- and
between-scanner consistency (Bonilha et al., 2015).

42



2.4.1 Conclusions

The present paper validates the utility of ComBat harmonization in the
context of graph theoretical analysis for structural connectivity derived
from DTI. The harmonization of global parameters derived from unhar-
monized adjacency matrices provided superior performance as compared
with the harmonization of connectivity weights for removing between-
site differences, preserving the within-site variability and preserving age-
related biological variability in the data.
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Chapter 3

Functional network
alterations in mild traumatic
brain injury

Mild traumatic brain injury (TBI) is the most common form of TBI across
the pediatric population, but its effects on global functional brain net-
work topology are not well understood. The post-acute and longitudinal
impact of mild TBI on global network topology was assessed in a multi-
site resting-state study. Functional magnetic resonance imaging (fMRI)
was recorded post-acutely (n = 502, mean age = 12,5 +/- 2,3 years, 59,7%
males), at 3 months (n = 197, mean age =12,3 +/- 2,4 years, 56,8% males)
and 6 months post-injury (n = 219, mean age = 12,5 +/- 2,4 years, 62,1%
males) from children (N = 671) with mild TBI (n = 386, mean age = 12.34
+/- 2.41 years, 62.2% males) and orthopedic injury (OI; n = 199, mean
age = 12.50 +/- 2.17 years, 55.8% males). Global and local graph theory
metrics were derived using proportionally thresholded weighted adja-
cency matrices based on Pearson correlation between pairs of regions
defined using the 90 ROI AAL atlas. Following ComBat harmonization,
multiple linear mixed-effects models were used to investigate the rela-
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tions of group (mild TBI, OI), time post-injury, age at injury, sex, and
three-way interactions of group by time by age and group by time by
sex and their lower order interactions controlling for the random effect
of participant. This approach was repeated to compare graph metrics
among symptom groups, by classifying mild TBI with and without per-
sistent symptoms based on pre-injury and 1-month post-injury symptom
ratings. The false discovery rate (FDR) was used to correct for multiple
comparisons. Functional abnormalities at both global and local network
levels were demonstrated in children following mild TBI relative to OI,
and those differences were moderated by time post-injury, age, and sex.
Alterations in degree centrality, nodal efficiency, and clustering coefficient
amplify 3 months post-injury and appear more distributed across pari-
etal, temporal, and occipital cortices. These abnormalities occur more
frequently in females, and tend to reduce at 6 months post-injury, localiz-
ing across occipital areas. Global metrics differed at 3 months post-injury,
indicating a lower clustering coefficient in older mild TBI children and
in females with persistent symptoms relative to OI, probably reflecting
a more distributed pattern of local alterations present at 3 months after
the injury. Network topology differentiated mild TBI with from those
without persistent symptoms or OI longitudinally, however with limited
prognostic utility based on the post-acute between-group differences.
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3.1 Introduction

The median annual incidence of Traumatic Brain Injury (TBI) across chil-
dren and youths has been estimated at 691 per 100,000 population treated
in emergency departments and 74 per 100,000 treated in hospital (Thur-
man, 2016), although the real incidence might be underestimated because
many individuals do not seek medical attention (Setnik and Bazarian,
2007). The most common causes of TBI include falls (especially among
children between 5 and 14 years) and motor vehicle injuries (particularly
among youths aged 15 and older), and the majority of injuries are classi-
fied as mild in severity (Cassidy et al., 2004; Thurman, 2016). Mild TBI
can lead to post-concussive symptoms manifested as psychical, cognitive,
emotional, and somatic changes, including dizziness, confusion, irritabil-
ity, and fatigue (Zemek, M. H. Osmond, and Barrowman, 2013), and
persistent symptoms can occur and last for 6 months or more (Grabowski
et al., 2017). Clinical management of mild TBI is affected by the scarcity of
sensitive and specific diagnostic tools that account for its heterogeneous
pathophysiology (Martinez and Stabenfeldt, 2019).

Mild TBI is associated with axonal damage (Blennow et al., 2016; Lan-
glois, Rutland-Brown, and Wald, 2006), which may lead to changes in
brain function, for example by altering the information flow establishing
communication between brain regions (Y. Zhou and Lui, 2013). Structural
damage at microscopic and molecular levels associated with mild TBI
is not detectable by conventional imaging (Shin et al., 2017). The anal-
ysis of temporal correlations based on spontaneous blood-oxygenation-
level- dependent (BOLD) oscillation using resting-state functional MRI
(rsfMRI) can be used to map brain functional communication noninva-
sively (Stephen M. Smith et al., 2013; Avena-Koenigsberger, Misic, and
Sporns, 2018). Functional neuroimaging based on rs-fMRI is promising for
the study of mild TBI, because patients with no structural abnormalities
following conventional structural imaging (e.g., CT/MRI) can demon-
strate alterations in functional connectivity (Palacios et al., 2017; Shin
et al., 2017)

46



Network neuroscience uses mathematical tools such as graph theory
to characterize the overall brain topology (Bassett and Sporns, 2017).
Brain injuries can change information flow between regions, and may
alter local and global level communication (Alstott et al., 2009; Aerts
et al., 2016). The description of the functional brain architecture based
on graph theory can help better understand mild TBI pathophysiology
by characterizing disruptions that affect overall brain communication
(C. Stam, 2014). Combined with functional neuroimaging, graph theory
could overcome the heterogeneity (e.g., in terms of location) of the injuries
observed in the pediatric population with mild TBI (Dennis et al., 2017).

Currently, it is not understood how functional brain topology is affected
following mild TBI in children. In the adult population, contrasting
findings were reported, including increased, reduced, or no differences
in global efficiency (Kim et al., 2022; Yan et al., 2017; Horn et al., 2017;
Yan et al., 2017; Caeyenberghs et al., 2017; Churchill et al., 2021; Pandit
et al., 2013), clustering coefficient (Kim et al., 2022; Horn et al., 2017; Yan
et al., 2017; Y. Zhou, 2017; Pandit et al., 2013), modularity (Han et al., 2014;
Messé et al., 2013), small-world topology (reviewed in Caeyenberghs
et al.,2017 and overall functional connectivity (reviewed in Morelli et
al.,2021). This inconsistency may mimic the heterogeneity of mild TBI,
because the presence of functional alterations may vary depending on
moderating variables which are not properly accounted for, including
the presence of postconcussive symptoms (Si et al., 2018; Mortaheb et al.,
2021; Madhavan et al., 2019; Lange et al., 2015; Shumskaya et al., 2012),
time post-injury (Belanger et al., 2005; Ashley L Ware, Keith Owen Yeates,
et al., 2022), or differences in age (Bittencourt-Villalpando et al., 2021;
Imms et al., 2019) and gender (Si et al., 2018; T. M. Yeates et al., 2022).

The analysis of the functional brain architecture based on graph theory
could help advance knowledge about neural markers that are specific
and sensitive to pediatric mild TBI and occur in global and local net-
work functioning (C. Stam, 2014). Despite this, little is known about the
functional connectome in pediatric mild TBI. Two underpowered studies
have examined the functional connectome in children with moderate and
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severe injuries (i.e., complicated mild, moderate, and severe TBI) and
found atypical global network organization, including lower modularity,
higher small worldness, and lower assortativity; (Botchway et al., 2022),
and altered rich-club organization (Verhelst et al., 2018). Studies address-
ing structural connectome alterations have found evidence indicative of
increased segregation and reduced efficiency of information flow, which
can occur after mild TBI in children and suggest that the functional con-
nectome could also be disrupted, at global and local network levels (Ware,
Yeates, et al., 2021; Imms et al., 2019).

To address significant knowledge gaps, this prospective, longitudinal
study investigated whether the functional topology of the brain and its
trajectory across time post-injury is altered following pediatric mild TBI,
and whether alterations are related to symptom persistence at 1-month
post-injury. Specifically, changes between the post-acute (e.g., 2-33 days
post-injury) and chronic (i.e., 3- or 6-months post-injury via random
assignment) functional connectome of children with mild TBI or mild
orthopedic injury (OI) were compared.
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3.2 Methods

3.2.1 Study Design and Procedure

Data were drawn from the Advancing Concussion Assessment in Pedi-
atrics (A-CAP) study (Keith Owen Yeates et al., 2017). This multisite study
used a prospective, concurrent cohort design to study outcomes longi-
tudinally in pediatric mild TBI versus orthopedic injury. We recruited
children between 8-16.99 years of age who presented within 48 hours of
sustaining a mild TBI or orthopedic injury to the emergency department
of five children’s hospitals across Canada, of which all are members of the
Pediatric Emergency Research Canada (PERC) network Bialy et al.; Keith
Owen Yeates et al.: Alberta Children’s Hospital (Calgary), Children’s
Hospital of Eastern Ontario (Ottawa), Centre Hospitalier Universitaire
Sainte-Justine (Montreal), Stollery Children’s Hospital (Edmonton), and
British Columbia Children’s Hospital (Vancouver).

Information about the acute clinical presentation and mechanism of in-
jury, and a demographic questionnaire were collected at the post-acute
follow-up (Keith Owen Yeates et al., 2017). Enrolled participants at each
site returned for three additional follow-up assessments: a post-acute
assessment (i.e., targeted for 10 days post-injury; range 2-33 days) and
two chronic assessments, at 3 and 6 months post-injury. Overall study
attrition rates were 15%, 25%, and 28% for the post-acute, 3-month, and
6-month assessments, respectively, similar to other studies of pediatric
mild TBI (Keith Owen Yeates et al., 2017). All eligible participants (i.e.,
without MRI contraindication; see details below) completed 3T MRI at the
post-acute assessment and were randomly assigned to complete a second
MRI scan at 3 or 6 months post-injury.

The study was conducted with the approval of the research ethics board
at each study site. All participants provided written informed assent and
parents/guardians provided written informed consent.
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3.2.2 Participants

3.2.2.1 Mild Traumatic Brain Injury

Children included in the mild TBI group sustained a blunt head trauma
resulting in at least one of the following three criteria, consistent with
the World Health Organization definition of mild TBI: i) observed loss
of consciousness, ii) Glasgow Coma Scale score of 13-14, or iii) at least
one acute sign or symptom of concussion as noted by emergency de-
partment medical personnel on a standard case report form, including
post-traumatic amnesia, focal neurological deficits, vomiting, headache,
dizziness, or other mental status changes (MTBI, 2004). Children were
excluded if they demonstrated delayed neurological deterioration (e.g.,
Glasgow Coma Scale score < 13), required neurosurgical intervention,
or had loss of consciousness > 30minutes or post-traumatic amnesia >

24hours (Keith Owen Yeates et al., 2017).

3.2.2.2 Mild Orthopedic Injury

Children with mild orthopedic injury sustained an upper or lower extrem-
ity fracture, sprain, or strain due to blunt force trauma, associated with
Abbreviated Injury Scale score ≤ 4 (i.e., ”mild” severity; Committee on
Injury Scaling, 1998) Children were excluded from the orthopedic injury
group if they had head trauma, symptoms of concussion, or any injury
requiring surgical intervention or procedural sedation (Keith Owen Yeates
et al., 2017).

3.2.2.3 Exclusion Criteria

Both injury groups were subject to the following exclusion criteria: any
other severe injury as defined by an Abbreviated Injury Scale score > 4;
hypoxia, hypotension, or shock during or following the injury; previous
concussion within 3 months prior or any prior TBI requiring hospital-
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ization; premorbid neurological disorder or severe neurodevelopmental
disability; injury resulting from non-accidental trauma; severe psychiatric
disorder requiring hospitalization within the past year; or contraindica-
tions to MRI (e.g., metallic implants, orthodontia).

3.2.2.4 Symptoms

The Health and Behavior Inventory was used to assess cognitive and
somatic symptoms. This measure has good internal consistency and test-
retest reliability and has been adopted as a core measure in the Common
Data Elements for Pediatric TBI (Adelson et al., 2012; McCauley et al., 2012;
O’Brien et al., 2021). Total premorbid (pre-injury) symptoms were rated
by parents during the post-acute visit, and total post-injury symptoms
were rated by both parents and children weekly and also at each follow-
up assessment (Ayr et al., 2009). A reliable change index (z-score) score
comparing total 1-month post-injury symptom scores to premorbid scores
was calculated using the following formulas based on regression analyses
using data from the OI group for child ratings (O’Brien et al., 2021):

z = (post− injuryscore(3.44 + (0.50 ∗ premorbidscore)))/6.89

and parent ratings:

z = (post− injuryscore(2.32 + (0.52 ∗ premorbidscore)))/6.683

Results were used to classify children with mild TBI into two groups
using a critical z-score >1.65 (one-tailed p <.05): (i) children with mild
TBI and persistent symptoms (significant increase at 1-month post-injury
relative to premorbid) and (ii) without persistent symptoms (no significant
increase at 1-month post-injury relative to premorbid; Ledoux et al.,2019;
Mayer, D. D. Stephenson, et al., 2020)
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3.2.3 Magnetic Resonance Imaging

Eligible participants completed at least one 3T MRI scan without sedation
that included T1-weighted and resting state functional MRI (rs-fMRI)
sequences (Keith Owen Yeates et al., 2017). T1-weighted images were
acquired with 0.8 mm isotropic resolution at all sites using FSPGR BRAVO
sequences (General Electric: TR/TE/TI = 7.9, 8.25/3.6/600 ms, 4:47 min;
Siemens: MPRAGE with TR/TE/TI = 1880, 2200/2.5, 2.9/948 ms, 5:28
min). Functional images were acquired using a single shot gradient echo
planar imaging (EPI) sequence with a scan duration of 8 minutes and 10
seconds (TR = 2000ms, TE = 30ms, field of (FOV) = 23 cm, 36 slices, voxel
dimensions = 3.6mm3). At all sites, children were asked to keep their eyes
open, not think of anything in particular, and look at a cross presented
on the screen. Foam padding was used to minimize head motion and
headphones were used to minimize noise.

3.2.3.1 Quality Assurance

T1-weighted and resting state fMRI (rs-fMRI) DICOM data were con-
verted into NIfTI format using the dcm2niix tool in MRIcron (https://
github.com/rordenlab/dcm2niix).

Initial visual quality assurance of raw images was conducted for both
image types to identify and exclude scans that demonstrated structural
abnormalities at the time of the scan, scanner artifacts such as aliasing or
warping, incomplete acquisition, reduced FOV (i.e., cropped), or were not
collected using the default scan parameters.

3.2.3.2 Image Processing

Images were processed using a Nipype implementation of commands
from the Advanced Normalization Tools (ANTs) v2.2.0, FMRIB’s Software
Library (FSL) v5.0.9, and Analysis of Functional Neuroimages (AFNI)
v20160207. (Avants et al., 2008)(Tustison et al., 2010)]
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3.2.3.2.1 T1-Weighted Images

The T1-weighted (T1w) images were corrected for intensity non-uniformity
with N4BiasFieldCorrection (Nicholas J. Tustison et al., 2010), distributed
with ANTs 2.2.0 (Avants et al., 2008), and used as T1w-reference. The
T1w-reference was then skull-stripped with a Nipype implementation
of the antsBrainExtraction.sh workflow (ANTs), using OASIS30ANTs
as the target template. Volume-based spatial normalization to standard
space was performed through nonlinear registration with antsRegistra-
tion (ANTs 2.2.0), using brain-extracted versions of both T1w reference
and the T1w template. The MNI’s unbiased standard MRI template for
pediatric data (4.5 to 18.5 years age range; Fonov et al., 2011), was used for
spatial normalization (TemplateFlow ID: MNIPediatricAsym: cohort-5).

3.2.3.2.2 Functional image preprocessing

To correct for susceptibility distortions, a deformation field that was esti-
mated based on the fMRIprep fieldmap-less approach was used (Esteban
et al., 2019) This approach applies a deformation field that was calculated
during co-registration [implemented using ANTs (antsRegistration.sh) us-
ing constrained nonzero deformation along the phase encoding direction
with modulation of the average fieldmap template (Treiber et al., 2016)]
of each functional image to the reference T1-weighted image for each
scan (Wang et al., 2017) Each functional image was co-registered to the
T1-weighted image using FSL FLIRT (Jenkinson & Smith, 2001) with the
boundary-based registration cost-function (Greve & Fischl, 2009). Nine
degrees of freedom were used to configure the co-registration to account
for any remaining distortions in the functional image. Functional images
were then slice-time corrected using AFNI 3dTshift (Cox & Hyde, 1997).

Transformation matrices (i.e., six corresponding rotation and translation
parameters associated with in-scanner head motion) were estimated for
each functional image before spatiotemporal filtering using FSL MCFLIRT
(Jenkinson et al., 2002). Framewise displacement was calculated in FSL

53



motion outliers (Theodore D. Satterthwaite et al., 2013; Jenkinson et al.,
2002). Functional images were slice-time corrected using AFNI 3dTshift
(Cox and Hyde, 1997). To minimize the smoothing effects of other ker-
nels, each function image was warped in template space with a single
interpolation step by composing all of the transformation parameters (i.e.,
transform matrices, susceptibility distortion correction, co-registrations to
T1-weighted template space), using the Lanczos interpolation configura-
tion (Lanczos, 1964) in ANTs antsApplyTransforms.

3.2.3.2.3 Denoising

Each functional run was denoised using AFNI’s 3dTproject, accounting
for the following regressors (see Ciric et al., 2017: (1) 6 motion parameters
(3 rotations and translations in x y and z directions), (2) global, white mat-
ter and cerebrospinal fluid signal, (4) derivatives, squares and squared
derivatives of each noise regressor, (5) framewise displacement motion
spikes (see below), and (6) linear and polynomial trends. All regres-
sors were detrended, by regressing out linear and polynomial trends. A
whole-brain mask was generated and used to extract global signal. Next,
to ensure that signals pertained to gray matter, white matter and cere-
brospinal fluid signals were extracted from eroded segmentation masks
(Power, Plitt, et al., 2017).

Head motion was estimated using the framewise displacement (FD) rela-
tive root mean squared (RMS; Jenkinson et al., 2002), which was calculated
during time-series realignment using FSL MCFLIRT (Theodore D. Sat-
terthwaite et al., 2013). Motion spikes were defined by as FD threshold
≥ 0.25 mm (Satterthwaite et al., 2013) and were included in the model as
dummy variables (i.e., spike regression, as defined in Ciric et al., 2017).
High-pass filtering at a threshold ≥ 0.01 Hz was applied in the same
model to account for low frequencies. To preserve connectivity informa-
tion at higher frequencies, no high-frequency threshold was applied for
temporal filtering (Boubela et al., 2013; Chen Glover, 2015; Gohel Biswal,
2015; Lin et al., 2015; Niazy et al., 2011). This can improve the stability of
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pairwise connections and maintain similar effects to bandpass filtering
for motion mitigation (Graff et al., 2022). Scans were excluded for gross
motion if they had an average FD RMS ≥ 0.20 mm or ≥ 60 (25%) volumes
with FD RMS ≥ 0.25 mm (see Ciric et al., 2017).

Figure 3.1: Summary data for the overall A-CAP study sample and the
derivation of the current sample.

3.2.4 Network Construction

The 90 supratentorial region Automated Anatomical Label atlas (AAL-90;
Tzourio-Mazoyer et al.,2002) was used to identify 90 nodes (brain regions).
First, the AAL-90 atlas was co-registered to the pediatric template (antsreg-
istration.sh, with multilabel interpolation). The labeled template was then

55



used to identify and extract the corresponding time series for each node
from the denoised functional images. Significant signal dropout (>50% of
the voxels) was demonstrated in the bilateral gyrus rectus (n scans = 154)
and was therefore excluded from further analysis. Across the remaining
88 regions, significant signal dropout (> 50%) was demonstrated for 15
scans, which were excluded from subsequent analyses. The resulting 88
time series were then used to construct 88 x 88 weighted connectivity
matrices using Pearson correlation.

To factor out the variability in network density across scans (Achard and
Ed Bullmore, 2007; Wijk, C. J. Stam, and Daffertshofer, 2010) and improve
the stability of graph theoretical measures (Garrison et al., 2015), a pro-
portional threshold was applied to the weighted matrices. Percolation
analysis was used to identify the threshold that removes the weakest
connections while ensuring matrices are fully connected (Bordier, Nicol-
ini, and Bifone, 2017; Nicolini et al., 2020). For this approach, multiple
proportional thresholds (i.e., values that range between 0.01 and 1 at a
step = 0.01) were applied recursively to identify the value at which the
matrices become fragmented. Percolation analysis was used due to the
lack of consensus in the literature for threshold definition, and to avoid
network fragmentation across scans (Bordier, Nicolini, and Bifone, 2017).
A proportional threshold of 0.25 preserved fully connected matrices in
more than 98% of the scans. Scans from fragmented (not fully connected)
adjacency matrices were excluded from the current analysis (n = 19).

3.2.4.1 Network Metrics

Graph theoretical metrics based on the absolute weighted connectivity ma-
trix of each scan and 1,000 randomly generated networks were calculated
in MATLAB using the GRaph thEoreTical Network Analysis (GRETNA)
toolbox v.2.0 (J. Wang et al., 2015) and Brain Connectivity Toolbox (BCT;
https://sites.google.com/site/bctnet/; Mikail Rubinov and Sporns, 2010).
Global metrics included clustering coefficient, small-worldness, global
efficiency, coreness (i.e., core-periphery organization), and modularity.
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Nodal network metrics included clustering coefficient, local efficiency,
betweenness centrality, and degree centrality (Rubinov & Sporns, 2010; J.
Wang et al., 2015).

3.2.5 Multi-Scanner Harmonization

Prior to the final analysis, network metrics were harmonized for site
(scanner) differences using ComBAT in RStudio v1.1.383 (R v4·0.3) (Fortin
et al., 2017; R Core Team, 2017; RStudio Team, 2020). Group, time (days)
post-injury, age at injury, and sex were included in the covariate matrix
during harmonization, and model fitting was conducted with participant
as a random effect. This approach is validated for network analysis
(Onicas et al., 2022).

3.2.6 Statistical Analyses

Demographic data were analyzed using t-tests for continuous variables
and 2 techniques for categorical variables.

The statistical approach is similar to that used to examine the diffusion
MRI data for the A-CAP study (Ware et al., 2022). Multiple linear mixed-
effects models were computed in RStudio (R Core Team, 2017; RStu-
dio Team, 2020) using the lmerTest package to investigate the relations
of group (TBI, OI), the linear and quadratic effects of time (days) post-
injury, age at injury, sex, and group by time by age, group by time by
sex, and their lower-order interactions on each harmonized network met-
ric, controlling for the random effect of participant (Bates et al., 2015;
Kuznetsova et al., 2017; Ware et al., 2022) Hemisphere did not moderate
group differences in preliminary analyses. Therefore, only the main effect
of hemisphere was included in each model. This approach was repeated
to compare functional network metrics among symptom status groups
(i.e., TBI with persistent symptoms, TBI without persistent symptoms)
and OI. The final model is given by the following formulas for global and
nodal metrics, respectively:
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Global metric Group * (T + T2) * (Age + Sex) + (1|P)

or

Local metric Group * (T + T2) * (Age + Sex) + Hemisphere + (1 | P)

Where T is time and P is participant. To correct for multiple comparisons,
the false discovery rate (FDR) was used at corrected P-thresholds < .05
for local (regional) metrics to account for 44 regions bilaterally (Benjamini
Hochberg, 1995).

For follow-up analyses for all significant (i.e., survived correction for mul-
tiple comparisons) group effects or group-interaction terms, standardized
effect size (i.e., Cohen’s d) was assessed for group differences within the
context of the final model for each network metric, with small, medium,
and large effect size indicated by |0.20| ≤ d < |0.50|, |0.50| ≤ d < |0.80|,
and d geq |0.80| (Cohen, 1988).

Group differences within the respective context of the average days post-
injury at each assessment for interactions with time post-injury, in male
and female children for interactions with sex, and in younger (i.e., 10th
percentile age at injury) and older (90th percentile age at injury) for in-
teractions with age at injury (see supplemental Fig. 1). Only the effects
with a d 95% confidence interval range that excluded 0 were considered
to be robust and are described below. The BrainNet Viewer toolbox in
MATLAB R2019a was used to display nodal level results (Xia et al., 2013).
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3.3 Results

3.3.1 Sample

Information about the overall A-CAP study sample and the derivation
of the current sample has been published (Ware et al., 2022) and is sum-
marized in Table 3.1. Overall, of 3,075 eligible children, 967 consented
to participate, and 846 returned for at least one assessment. The A-CAP
study attrition rates were similar to other pediatric mild TBI studies (post-
acute: 15%; 3 months: 25%; 6 months: 28%). A total of 671 children
completed at least one MRI, for a total of 1144 completed scans. Or-
thodontia and scheduling difficulties were the most common reasons that
MRI was not completed. Children who completed an MRI were slightly
younger (M=12·23, SD=2·38 years; t=5.29, p<.001) and more often male
(402 male/266 female; 2=6.22, p=.013), but were similar in terms of race
and parental education relative to children who did not complete an MRI
(M=13·29, SD=2·37 years; 88 male/90 female).

A total of 661 children completed rs-fMRI at least once, for a total of 1,130
scans. Of those, 261 (23%; 179 mild TBI/82 OI) scans were excluded after
quality checks; 104 (9.2%; 72 mild TBI/32 OI) for gross motion; 46 (3.0%;
35 mild TBI/11 OI) for incomplete or wrong acquisition, 4 (0.3%; 1 mild
TBI/3 OI) for structural abnormalities, 35 (3.0%; 23 mild TBI/12 OI) for
scanner artifacts, 35 (3.0%; 23 mild TBI/12 OI) for poor registration, and
15 for signal dropout (1.3%, 10 mild TBI/5 OI). However, 13 scans were
excluded for signal dropout in regions other than the gyrus rectus (1%;
9 TBI/4 OI) and 20 (2%; 12 mild TBI/8 OI) were excluded because the
network topology was fragmented following thresholding. Thus, the
final sample included 918 scans: 502 post-acute (n = 329 mild TBI), 197
longitudinal scans at 3 months (n = 133 mild TBI), and 219 (n = 141 TBI)
at 6 months post-injury.
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3.3.2 Sociodemographic and Injury Characteristics

The final sample of children with mild TBI did not differ from mild OI in
terms of age at the time of injury, sex, parental education, race, average
framewise displacement (i.e., motion), or whether the injury occurred
during sport/recreation, but did differ in terms of injury mechanism (see
Table 3.1). Detailed information on the efficiency of data harmonization is
presented in Figures B1–B5. Children who returned at follow-ups did not
differ significantly from those who did not return in terms of age, sex, race,
or parental education, except that at 6 months, when the children who
returned had higher parental education than those who did not return.

3.3.3 Global network metrics

Global network measures with injury and symptom group effects that
survived correction for multiple comparisons are illustrated in Figure 3.2
and statistical results are presented in Tables 3.2 and 3.3.

3.3.3.1 Injury groups

Differences in global clustering coefficient (Cp) between the injury groups
were moderated by age at injury and time post-injury, whereby it was
lower after mild TBI relative to OI 3 months post-injury in older children
(Figure 3.2, A and Table 3.2).

3.3.3.2 Symptom groups

Time post-injury and sex moderated differences in global clustering coef-
ficient among persistent symptom groups based on parent report (Figure
3.2 B and Table 3.3). In females, the clustering coefficient was lower in
mild TBI with persistent symptoms at 3 months post-injury relative to OI.
Global metrics did not differ among persistent symptom groups based on
child report.

60



Table 3.1: Overall sample demographic and injury characteristics

mild TBI OIVariable n = 386 n = 199
p

value

Age [mean (SD)] 12.34 (2.41) 12.50 (2.17) 0.448
Site MRI (%) 0.002

Calgary-GE 90 (23.3) 40 ( 20.1)
Edmonton-Prisma 80 (20.7) 41 ( 20.6)
Montreal-GE 23 ( 6.0) 5 ( 2.5)
Montreal-Prisma 14 ( 3.6) 7 ( 3.5)
Ottawa-Skyra 95 (24.6) 33 ( 16.6)
Vancouver-GE 84 (21.8) 73 ( 36.7)

Gender = Male (%) 240 (62.2) 111 ( 55.8) 0.159
Maternal education (%) 0.953

No certificate, diploma or degree 10 ( 2.8) 3 ( 1.6)
High school diploma or equivalent 48 (13.3) 25 ( 13.7)
Trades certificate or diploma 32 ( 8.9) 16 ( 8.8)
2-year college diploma 70 (19.4) 39 ( 21.4)
4-year bachelors degree 139 (38.6) 63 ( 34.6)
Masters degree 43 (11.9) 26 ( 14.3)
Doctoral degree (PhD or similar) 12 ( 3.3) 6 ( 3.3)
Medical degree 6 ( 1.7) 4 ( 2.2)

Race (%) 0.427
White 268 (69.4) 138 ( 69.3)
Asian 30 ( 7.8) 12 ( 6.0)
Black 16 ( 4.1) 6 ( 3.0)
Latinx 8 ( 2.1) 7 ( 3.5)
Indigenous 7 ( 1.8) 2 ( 1.0)
Other/Mixed 51 (13.2) 26 ( 13.1)
Unknown 6 ( 1.6) 8 ( 4.0)

Mechanism of injury (%) <.001
Fall 127 (43.9) 80 ( 48.5)
Bicycle related 6 ( 2.1) 9 ( 5.5)
Motor vehicle collision 3 ( 1.0) 0 ( 0.0)
Struck object 85 (29.4) 33 ( 20.0)
Struck person 58 (20.1) 20 ( 12.1)
Other 4 ( 1.4) 12 ( 7.3)
Unknown 6 ( 2.1) 11 ( 6.7)
Sport-related injury (%) 248 (85.8) 136 ( 82.9) 0.493

FD [mean (SD)] 0.08 (0.04) 0.08 (0.04) 0.064
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Figure 3.2: Differences in global network metrics between groups were
moderated by time post-injury age at injury, and sex. Graphs illustrate
the moderating effects of (A) time post-injury and age for global clustering
coefficient between children with mild TBI and OI, and (B) time post-injury
and biological sex for differences in global clustering coefficient among the
symptom groups based on parent-reported symptoms at 1-month post-injury.
Robust group differences (i.e., Cohen’s d 95% confidence interval excluded
0) indicated with *.

3.3.4 Local network metrics

Local network results are reported in Figures 3.3–3.6 (for statistical results
see Table 3.2 and Table 3.3).

3.3.4.1 Injury groups

Regional (nodal) network metrics with injury group effects that survived
correction for multiple comparisons are illustrated in Figure 3.3 (for sta-
tistical results see Table 3.2). Time post-injury moderated differences in
degree centrality (Dc) of the superior occipital gyrus, nodal efficiency
(Ne) of the superior parietal gyrus, and clustering coefficient (NCp) of
the fusiform gyrus (Figure 3.4, A). These nodal metrics showed lower
values among mild TBI participants compared to OI post-acutely (Dc of

62



Figure 3.3: Differences in local network metrics between injury groups by
sex (A), by time post-injury by sex (B), and between symptom groups (parent
report) by time post-injury by sex (C).

the superior occipital gyrus), at 3 months post-injury (the NCp of the
fusiform gyrus and nodal efficiency of the superior parietal gyrus).

Biological sex moderated group differences in nodal efficiency and clus-
tering coefficient across time (Figure 3.4, B). In females, Ne of the superior
occipital gyrus was lower after mild TBI relative to OI post-acutely, and
the superior occipital, lingual, and angular gyri had lower efficiency at
3 months post-injury. Similarly, there was reduced clustering coefficient
after mild TBI as compared with OI for the postcentral gyrus at 3 months
post-injury. However, there was higher efficiency for the middle occipital
gyrus at 6 months after mild TBI compared to OI. Among males, efficiency
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was reduced for the lingual gyrus 6 months after mild TBI compared to
OI.

Figure 3.4: Differences in regional (nodal) graph metrics between the injury
groups were moderated by time post-injury and biological sex. Graphs il-
lustrate the moderating effects of (A) time post-injury for degree centrality
(Dc), nodal efficiency (Ne), and clustering coefficient (NCp), and (B) time
post-injury by sex for nodal efficiency (Ne) and clustering coefficient (NCp).
Robust differences between the groups (i.e., Cohen’s d 95% confidence inter-
val excluded 0) are denoted by *.
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3.3.4.2 Symptom groups

Regional metrics differed among symptom groups based on parent report
over time (see Figure 3.5 and Figure 3.6); statistical results are summarized
in Table 3.3). No differences survived FDR correction based on the child
report.

Time post-injury and biological sex moderated differences between symp-
tom groups in Dc, NCp (Figure 3.5) and Ne (Figure 3.6). In females, Ne
of the calcarine fissure, cuneus, lingual, and superior occipital gyri were
lower in mild TBI without persistent symptoms relative to OI post-acutely
(Figure 3.6). At 3 months post-injury, females with persistent symptoms
following mild TBI showed lower Dc of the lingual gyrus (Figure 3.5),
NCp of the postcentral gyrus and the calcarine fissure (Figure 3.5) and
Ne of the angular gyrus, calcarine fissure, cuneus, inferior occipital gyrus,
lingual gyrus, middle and superior occipital gyrus (Figure 3.6) relative
to OI. Relative to mild TBI without persistent symptoms, those with per-
sistent symptoms showed lower Dc of the cuneus and middle occipital
gyrus (Figure 3.5), and Ne of the cuneus, lingual, middle, and inferior
occipital gyrus (Figure 3.6) at 3 months post-injury. However, at 6 months
post-injury, Dc of the lingual (Figure 3.5) and NCp and Ne of the calcarine
fissure (Figure 3.6) were higher in mild TBI with persistent symptoms
relative to OI .

Females without persistent symptoms also differed from OI, demonstrat-
ing lower NCp of the postcentral gyrus (Figure 3.5) and Ne of the angular
gyrus (Figure 3.6) at 3 months post-injury. In contrast, they showed
higher Dc (Figure 3.5) and Ne (Figure 3.6) of the middle occipital gyrus
at 6 months post-injury. In males with persistent symptoms, Ne of the
inferior occipital gyrus was higher at 3 months post-injury, but Ne of the
cuneus and calcarine fissure was lower at 6 months post-injury, relative
to OI (Figure 3.6). The Dc of the cuneus was also lower across males
with persistent symptoms relative to OI and to those without persistent
symptoms at 6 months post-injury (Figure 3.5).
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3.4 Discussion

This is the largest functional connectome study in children with mild TBI
to date, and the first to longitudinally assess the effect of time post-injury
on functional network alterations in the pediatric population. Changes in
functional network topology occurred across injury and symptom groups,
however, the differences were moderated by time post-injury, age, and
biological sex. The current findings provide evidence of functional net-
work abnormalities that tend to peak at 3 months post-injury, occur more
often in females than in males, and among children with post-concussive
symptoms at 1 month post-injury than in those without post-concussive
symptoms. Differences in global network topology (i.e., clustering coef-
ficient), emerged at 3 months and normalized by 6 months post-injury.
However, nodal alterations emerged post-acutely, amplified/expanded at
3 months, and reduced at 6 months post-injury. This is the first study to
address the heterogeneity of mild TBI in the pediatric population and take
into account the variability associated with time post-injury, the presence
of persistent post-concussive symptoms, biological sex, and age at injury.

The effect of group on global network metrics was moderated by time post-
injury, age, and the presence of post-concussive symptoms. Specifically,
the results are indicative of less segregated network topology, suggesting a
decrease in local interactions between brain regions (Bullmore and Sporns,
2009) across older children with mild TBI and females with postconcussive
symptoms at 3 months post-injury. Due to the lack of longitudinal studies,
especially in pediatric mild TBI, comparisons with the existing literature
are difficult. However, the absence of a main effect of group for global
metrics is somewhat consistent with some previous reports. For example,
a recent report assessed the functional connectome in a pediatric sample
and showed no differences in transitivity (a measure of segregation similar
to the clustering coefficient) and global efficiency among children with
mild TBI at an average of 2.8 years after the injury (Botchway et al.,
2022). Another study in adults with mild TBI showed no functional
changes in global parameters at 19.6 days post-injury (Kim et al., 2022),
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and the presence of persistent symptoms was not associated with changes
in clustering coefficient postacutely (Hou et al., 2019). However, the
mentioned reports include small sample sizes and are more heterogeneous
in terms of time post-injury or injury severity.

Local differences were demonstrated postacutely and were more promi-
nent across females following mild TBI. Degree centrality of the superior
occipital cortex was the only metric to show an effect across both, males
and females, and nodal efficiency of the same brain region had an effect
in females following mild TBI, probably due to changes in the inferior
fronto-occipital fasciculus previously reported in other studies of mild
TBI (Liu et al., 2022; Jia et al., 2021). These post-acute differences did
not predict persistent symptoms status at one-month post-injury, limiting
the prognostic utility of graph-derived measures, probably due to higher
variability in the persistent symptom group post-acutely. This variabil-
ity could originate in differences across symptom dimensions (i.e., so-
matic, cognitive), pointing to the possible existence of different subgroups
among children with persistent symptoms. In addition, this variability
may relate to the limitations of self-report measurements. Specifically, the
parent-based report may be subject to a biased perception of premorbid
symptoms, which was demonstrated to affect the accuracy of estimating
postconcussive symptom severity at one month post-injury (Brooks et al.,
2014).

Local metrics showed differences across time, suggesting that localized
network alterations tend to emerge earlier than global network alterations,
and persist by 6 months post-injury. Local alterations among females with
persistent symptoms were more distributed at 3 months post-injury and
included parietal, temporal, and occipital regions. The presence of a more
distributed pattern of differences among injury groups may explain the
changes in the global segregation that occurred at 3 months post-injury. In
addition, the reduction in local alterations from 3 to 6 months post-injury
may explain the absence of longitudinal global alterations. Specifically,
the presence of a more distributed pattern of functional communication
across individual nodes likely influenced the overall network topology.
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A higher number of brain regions differed across females with persistent
symptoms and were prominent in the occipital cortex. Regional homo-
geneity abnormalities were reported in post-acute and chronic mild TBI
in adults (Vedaei et al., 2021; Brooks et al., 2014). These could be related
to changes in visual attention reported in TBI across severity levels (see
Alnawmasi, Mani, and Khuu, 2022 for a meta-analysis) and/or eye move-
ment and visual acuity (see Armstrong, 2018 for a review). In addition,
structural studies of the A-CAP sample indicate that differences in cortical
thickness and structural nodal graph topology show similar abnormalities
across females with persistent symptoms (Ware et al., 2022; Ware et al.,
2022, under review).

The current study has some limitations. Participants were recruited from
emergency departments and may not be representative of individuals
who do not seek medical attention (Setnik & Bazarian, 2007). The current
sample generally included children from families of high socioeconomic
status, thus the results may not be generalizable to the broader population.
Although children with orthopedic injuries having any head trauma or
signs or symptoms of concussion were excluded from this group, the
possibility of occult or sub-concussive brain injury cannot be entirely
ruled out (Barber Foss et al., 2019; McAllister et al., 2014; Sollmann et
al., 2018). The persistent symptom status was assessed at a single time
point, which does not account for changes in symptom status across
time. Further studies may consider assessing specific symptom profiles
(e.g., cognitive versus somatic symptoms) over time. Weighted adjacency
matrices were based on the AAL atlas, and used absolute correlation
values following a proportional threshold. Other studies may assess
whether different methodological choices influence group differences
(Hallquist & Hillary, 2018). Lastly, no main effects of injury group or
persistent symptoms status were demonstrated, however, multivariate
analyses combining different graph theoretical features in the same model
may be used to evaluate whether between-group differences emerge in a
more distributed manner following concussion. Specifically, combining
information across brain regions and graph metrics may uncover clinically
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relevant information to distinguish the effect of injury type, for example
by addressing the possibility that brain regions are affected differently in
distinct participants from the same group.
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Chapter 4

Mapping event-related
fMRI time series into graphs

Identification of signal changes in time series is critical for decoding
fMRI task-evoked brain activity. The applicability of task fMRI data
analysis has often been limited to linear modeling, usually by applying
a convolution with an HRF. However, this assumes the uniformity of
the HRF shape across time, whereas the BOLD response demonstrates
considerable variability. Visibility graphs are a method that converts time
series to graphs and allows using tools of complex systems for time series
analysis. This transformation remains immune to differences in signal
amplitude and linear trends and was shown to conserve properties of
time series. However, it is not clear whether the topology of the temporal
networks incorporates stimulus-evoked changes in the BOLD signal. To
address this issue, synthetic event-related fMRI time series with varying
levels of noise were simulated. Following VG transformation, time points
corresponding to task events were expected to demonstrate increased
degree centrality, and improved task detection based on the VG degree
sequence as compared with the time series prior to VG transformation. An
accuracy measure for task activity identification was defined based on the
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overlap between the highest degree nodes and the expected timing of the
hemodynamic response peak. The same measure was derived based on
the intensity of the untransformed time series. The visibility graph degree
demonstrated increased task event detection accuracy compared to the
raw fMRI signal intensity, lower noise correlations, and improved signal-
to-noise ratio compared to the untransformed time series. The results
were replicated using a slow, event-related picture presentation dataset,
with extensive scanning of four participants. Specifically, the time series
extracted from V1 showed increased task-detection accuracy and lower
correlations with in-scanner motion. A living minus non-living stimulus
contrast showed consistent event detection accuracy of the ventral visual
pathway across the four participants. Visibility graph topology conserves
BOLD changes associated with task events, supporting their applicability
for non-linear analysis of fMRI time series. The possibility to detect events
without the use of explicit basis functions has implications for the fMRI
analysis and may provide a valuable resource for modeling brain activity.
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4.1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a well-established
non-invasive neuroimaging modality for measuring the variability of
oxygen delivery and blood flow in the gray matter based on changes in
blood oxygenation-level dependent (BOLD) signal (Ogawa et al., 1992;
Glover, 2011; Huettel, 2012; K. J. Friston, Fletcher, et al., 1998; Dale,
1999; Huettel, 2012). Task-fMRI is a technique that can elicit localized
BOLD signal changes in response to task events (Song et al., 2002; Lee
et al., 2010; Bowman, 2014), which are interpreted as evidence of neural
activity (Ogawa et al., 1992; Gauthier and A. P. Fan, 2019; Logothetis
and Wandell, 2004; Hillman, 2014). Typically, task fMRI modeling relies
on the parametric mapping of the time series following the occurrence
of individual task events, known as the General Linear Model (GLM;
Karl Friston et al.,1994;K. J. Friston, Holmes, et al.,1995;Worsley and
K. J. Friston,1995). Task evoked BOLD signal intensity changes between
2-5 % (G. Chen et al., 2015; Bowman, 2014) tend to peak between 4-6
seconds after stimulus onset and are followed by a signal intensity drop
(Handwerker, Ollinger, and D’Esposito, 2004; Henson et al., 2002). GLM
relies on fitting a Hemodynamic Response Function (HRF) around the
occurrence of each event by finding model parameters (β) that minimize
the least square distance between the time-series and the expected basis
function (Pernet, 2014; K. J. Friston, Fletcher, et al., 1998; Rosen, Buckner,
and Dale, 1998).

The GLM framework makes strong assumptions about signal and noise
variability in fMRI time series (M. M. Monti, 2011; C. J. Long et al., 2005).
Task-correlated changes in the BOLD signal are modeled uniformly and
invariably based on a data-independent basis function that follows the
shape of the canonical HRF (Liao et al., 2002; Pedregosa et al., 2015). HRF
variability can manifest in the latency, shape, width or magnitude of the
signal and can originate in multiple sources, including inter-individual
differences, brain areas, or scanning parameters (Cignetti et al., 2016; Du-
ann et al., 2002; Handwerker, Ollinger, and D’Esposito, 2004; Pedregosa
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et al., 2015; Steffener et al., 2010; Lin et al., 2018). The recognition of this
problem led to increasingly complex modeling approaches, for example
by applying a mixture of basis functions (i.e., a basis set) to the fMRI
signal (Cignetti et al., 2016; Rosa, Figueiredo, and Silvestre, 2015; Steffener
et al., 2010), although capturing the variability of HRF response remains
challenging (Lindquist et al., 2009). GLM modeling shows poor test-retest
reliability for task fMRI data analysis, which limits its applicability for
accurate subject and group-level inferences (M. L. Elliott et al., 2020; M. M.
Monti, 2011).

While linear models are typically used for fMRI time series analysis, non-
linear techniques can help better capture more complex features that
characterize temporal signal changes, which could overcome the variabil-
ity in BOLD responses during task fMRI. Complex network approaches
are promising for the analysis of dynamical systems based on time-series
(Zou et al., 2019), because they are able to extract topological information
from time series, by constructing temporal graphs (i.e., time points be-
come nodes) based on the pattern of signal intensity changes over time.
A temporal network can be mapped using the Visibility Graph algorithm
(VG; (Lacasa, Luque, et al., 2008; Lacasa, Nicosia, and Latora, 2015)),
where relationships between pairs of time points is established based
on a geometric condition given by signal intensity. The topology of VG
temporal networks constructed is insensitive to linear transformations
and conserves properties of the original time series: periodic time series
are converted in regular graphs, random series results in random graphs,
and fractal series are converted in scale-free networks (Lacasa, Nicosia,
and Latora, 2015).

VG transformation has recently found applications in time series analysis
across fields of science, including functional neuroimaging (Silva et al.,
2021; Zou et al., 2019). Some reports applied visibility graph transforma-
tion on signals derived from electroencephalography (EEG) and fMRI.
EEG studies highlighted the utility of VG for mapping large-scale func-
tional connectivity (Ahmadlou, Ahmadi, et al., 2013; Yu, Hillebrand, et al.,
2017), machine learning-based detection of epileptic seizures (L. Wang
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et al., 2017; Mohammadpoory, Nasrolahzadeh, and Haddadnia, 2017)
or classification of sleep stages (G. Zhu, Y. Li, and Wen, 2014; Cai, An,
and Gao, 2020) and Alzheimer’s disease (Ahmadlou, H. Adeli, and A.
Adeli, 2010). Two fMRI studies used the similarity between regional time
series based on VG topology. Sannino et al. (2017) assessed the pairwise
similarity in the modular structure of the visibility graphs across regional
time series, demonstrating differences between patients suffering from
psychiatric disorders and healthy controls across regions of the limbic sys-
tem. Another study (Gao et al., 2022) successfully classified Alzheimer’s
disease using topological features derived from regional time series and
found abnormal connectivity based on the similarity between pairwise
VG degree sequences across patients. Hasson et al. (2018) further found
that local dynamics of VG degree can identify regional differences be-
tween N2 sleep stage and wakefulness in fMRI time-series. Interestingly,
they found the top and bottom degree distribution asymmetry, rather
than the propensity of localized extreme events, was informative for dif-
ferentiating sleep stages during resting-state. This suggests that both,
high and low degree nodes (time points) could derive informative signal
features from fMRI time series during rest.

However, no study has evaluated whether individual task events can be
identified based on time series network topology following VG mapping.
Testing if VG can recover task activity from fMRI time series can provide a
basis for their application in functional neuroimaging and extend the pos-
sibilities for task fMRI data analysis. For example, the conversion of fMRI
time series into visibility graphs can allow for the use of network science
methods for characterizing functional brain responses and can generalize
the use of more advanced methods for statistical learning based on graphs.
In addition, the adoption of more naturalistic paradigms, including con-
tinuous stimulation tasks such as narrative listening or movie watching
motivates the development of methods that can be applied in the absence
of information about event onsets. Whereas differences in the VG de-
gree distribution may recover relevant signal features for the modeling
of resting-state fMRI time-series in sleep and wakefulness (Hasson et al.,
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2018), local maxima could be informative for identifying event-related
hemodynamic activity. Specifically, localized extreme events may occur
in the VG sequence following task event onset, exhibiting higher degree
centrality corresponding to hemodynamic signal peaks. To address this
question, the current study aims at caracterizing the role of VG degree se-
quence using synthetically generated and real fMRI data collected during
an picture presentation task.

4.2 Methods

4.2.1 Datasets

Two datasets have been used for the purposes of this study. The first
dataset was generated synthetically to resemble task fMRI data with
varying levels of noise. The second dataset contains comprehensive
scanning of four participants during a picture presentation event-related
task, allowing for the evaluation of the within-participant consistency of
our results.

4.2.1.1 Synthetic event-related data

To test whether VG can identify task events in time series data, we first
generated synthetic event-related data that resembles the repetitive oc-
currences of an HRF with varying degrees of normally distributed noise
(see Figure 4.1, A). Specifically, 99 HRFs were generated over 4,000 time
points using the gampdf function in Matlab 2018b. Each HRF peaks at
6 time points and gradually decreases over a duration of 20 time points,
with another 20 time points break between each occurrence.

Normally distributed noise of 4,000 time points duration was generated
using the randn function. The noise time series was multiplied with
values between 0.1 and 1, with a step of 0.01, in order to obtain TS with
different levels of ”spikiness”. Finally, the simulated BOLD fMRI signal
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was calculated as the sum between the HRF TS and each noise TS. This
resulted in 36 discrete time series containing varying levels of noise. The
procedure for generating synthetic fMRI TS was repeated 1,000 times to
increase the generality of the observations.

4.2.1.2 BOLD5000 dataset

An openly available event-related BOLD fMRI dataset was used in order
to generalize the results to real data. The BOLD5000 dataset was collected
during a slow event-related task consisting of the presentation of visual
stimuli (https://bold5000.org; N. Chang et al., 2019) and included a high
dimensional anatomical scanning session and 15 functional scanning
sessions from 3 participants (CSI1 - male, age 27; CSI2 - female, age
26; CSI3 - female, age 24; all right-handed). An additional participant
underwent one anatomical and 9 functional scanning sessions (CSI4 -
female, age 25; right-handed).

Each functional session consisted of either 8 or 10 runs of 37 slow event-
related image presentation trials. In total, the dataset contains 510 runs:
142 runs were collected for participants CSI1, CSI2, and CSI3, and 84
runs for participant CSI4 respectively. The stimuli were drawn from
three image databases: the Common Objects in Context (COCO, n = 2,000
stimuli), ImageNet (n = 1,916 stimuli), and Scene UNderstanding (SUN, n
= 1,000 stimuli). Each stimulus was presented for 1 second, followed by a
9 seconds fixation cross.

4.2.1.2.1 Data acquisition

Detailed information about data acquisition is available in the dataset
description paper (N. Chang et al., 2019). Data were acquired using a
3T Siemens Verio MR scanner. Functional images were collected using
a T2*-weighted gradient recalled echoplanar imaging multi-band pulse
sequence with the following scanning parameters: 69 slices co-planar
with the AC/PC; in-plane resolution=2×2mm; 106×106 matrix size; 2mm
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slice thickness, no gap; interleaved acquisition; field of view=212mm;
phase partial Fourier scheme of 6/8; TR=2000 ms; TE=30ms; flip an-
gle=79 degrees; multi-band factor=3; phase encoding direction=PA. The
T1 MPRAGE scan was collected using the following parameters: 176 sagit-
tal slices; 1mm isovoxel resolution; field of view=256mm; TR=2300ms;
TE=1.97ms; TI=900ms: flip angle=9 degrees; GRAPPA acceleration fac-
tor=2; bandwidth=240Hz/Px.

4.2.1.2.2 Data preprocessing

Data preprocessing was performed using fMRIPrep 1.1.428 https://github
.com/poldracklab/fmriprep; Esteban et al.,2019). Each T1w (T1-weighted)
volume was corrected for intensity non-uniformity (INU) using N4BiasField
Correction v2.1.030 and skull-stripped using antsBrainExtraction.sh v2.1.0
(using the OASIS template). Spatial normalization to the ICBM 152 Non-
linear Asymmetrical template version 2009c (Fonov et al., 2009) was
performed through nonlinear registration with the antsRegistration tool
of ANTs v2.1.034, using brain-extracted versions of both T1w volume
and template. Brain tissue segmentation of cerebrospinal fluid (CSF),
white matter (WM), and gray matter (GM) were performed on the brain-
extracted T1w using fast35 (FSL v5.0.9). Functional data were motion
corrected using mcflirt (FSL v5.0.936) and distortion corrected using
3dQwarp (AFNI v16.2.0737). This was followed by co-registration to
the corresponding T1w using boundary-based registration (Greve and Fis-
chl, 2009) with 9 degrees of freedom, using bbregister (FreeSurfer v6.0.1).
Transformations from the motion correction, the field distortion correction
warp and BOLD-to-T1w were concatenated and applied in a single step
using antsApplyTransforms (ANTs v2.1.0) and Lanczos interpolation.

4.2.1.2.3 Denoising

Noise regression included 6 motion parameters, their derivatives, and
spike regression of frame-to-frame displacement > 0.25 was performed
with AFNI’s 3dTproject. Time series were extracted from each denoised
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functional image in the subject space using a bilateral V1 mask derived
from Juelich probabilistic atlas at a 75 % threshold. The V1 mask was
intersected with the segmentation-based binary gray matter masks of each
participant (generated by thresholding the probabilistic masks at ¿75 %)
and with the functional masks from each run. This was done prior to data
extraction to reduce the probability of including non-gray matter signals.
The overlap between the masks and each participant’s T1w was visually
checked. Average time series from each run were further extracted from
bilateral V1 masks and imported in Matlab for VG construction and
statistical analyses.

4.2.2 Visibility graph construction

Natural visibility graphs were constructed on each synthetic time series
as described in Lacasa et. al (2008), using the visibility MATLAB function
available on Github (https://github.com/danielemarinazzo/Visibility
LA5C data). The natural visibility graph algorithm establishes a connec-

tion between node (time-point) i and j depending on the ”height” of node
k that lies between them, which is given by the condition:

yk < yi + (yj − yi)
k − i

j − i

Thus, a connection between time points i and j is established if the time-
point k has lower intensity relative to its neighbors, allowing to draw an
imaginary line between i and j without passing through k. If time point
k has high intensity relative to i and j, the connection is not established,
node k thus blocking the visibility between nodes i and j. The adjacency
matrices generated by the natural visibility algorithm are binary and
undirected (symmetric).

VG degree sequence has been obtained by building the graphs over each
time series (i.e., scanning run). The node degree sequence of a time series
describes the VG degree adjacent to each time point (see Figure 4.1, B).
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Figure 4.1: Procedure for generating synthetic fMRI signal (A) and Visibility
Graph construction (B). The synthetic signal (A, right) was generated as the
sum between a repeated HRF time series (A, left) and varying levels of noise
(A, middle). The visibility graph algorithm was applied on each synthetic
time series (B, left), resulting in a binary, symmetric, and fully connected
network (B, middle). The Visibility Graph degree sequence is calculated as
the degree of each node (time point) of the network (B, right). Please note
that the degree sequence emphasizes the node peak, rather than a gradual
HRF.

4.2.3 Data analysis

4.2.3.1 Accuracy estimation

4.2.3.1.1 Synthetic data

An accuracy measure was defined in order to establish the sensitivity
of VG in identifying signal peaks following the onset of task events.
We estimated the accuracy to define the extent to which high-intensity
time points could be identified following stimulus presentation (and not
somewhere else in the time series) by: (1) ordering the two time series
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(VG degree sequence and fMRI time series) from the highest to the lowest
(see Figure 2, A), and (2) calculating the percentage of cases in which
the highest intensity time points (n = 99, with is given by the number
of stimulus presentations) occurred at around 6 ± 3 time points after
the corresponding stimulus onset, out of the total number of simulated
stimulus presentations. The accuracy values indicate the proportion of
high-degree nodes occurring within the windows search where signal
peaks are expected to occur following stimulus presentation. Higher
accuracy thus reflects a higher probability of spikes occurring around
the expected HRF peaks, rather than somewhere else in the time series.
This indicates that high signal intensities (in the raw fMRI time series) or
high degree nodes (in the VG degree sequence) tend to appear following
the occurrence of stimulus presentation. Accuracy values were obtained
for each noise level (n=36) across 1,000 iterations of generating synthetic
signal.

The significance of the differences between accuracy values corresponding
to the two time series (VG degree sequence versus raw synthetic signal)
was established using a permutation procedure. The 1,000 accuracy values
obtained from the two time series (VG degree and the original signal)
were permuted 10,000 times by shifting the label of the time series. The
null distribution represents the shuffled accuracy levels (i.e., when the
label of VG degree or raw synthetic time series are being permuted). We
calculated the extent to which the real difference between accuracy values
when using VG degree versus the original signal deviates from the non-
parametric null distribution. This was done by counting the number of
times a value of the null distribution is more extreme (i.e., either higher
or lower) than the real difference in accuracy, out of the total number of
permutations. This allows for a non-parametric definition of a p-value for
each level of noise.

4.2.3.1.2 BOLD5000 dataset

After V1 time series extraction (described in the previous subsection),

87



the accuracy values were calculated similarly to the synthetic data, for
each scanning run across sessions and across participants. Because the
data was collected with a repetition time (TR) of 2 seconds, we calculated
the expected HRF as the onset + 3 TR (6 seconds). As described for the
synthetic data, we ordered the time points from the denoised signal before
and after constructing VG and saved the indices of the 37 highest values
(i.e, 37 is the number of known task onsets per run, which are expected
to show high node degree). The number of times a high-intensity time-
point was adjacent to the corresponding signal peak was counted by
searching inside a 3 TR window, defined by the TR corresponding to the
expected HRF peak +/- 1 TR. This procedure preserves a distance of 3
TR between windows. The comparison between VG transformation and
original signals’ accuracy was performed at the participant level.

4.2.3.2 Noise assessment

4.2.3.2.1 Synthetic data

We estimated the influence of noise based on the original signal and the
VG degree sequence by computing the correlation between the noise
alone (i.e., before combining it with the repeated HRF) and the synthetic
fMRI time series before and after the VG transformation. The Kendall
correlation between the synthetic fMRI signal and gaussian noise was
used as a proxy for assessing the influence of noise versus signal (i.e.,
the repeated occurence of the HRF). Replicating this procedure for VG
degree sequence allows to compare the influence of noise in the original
synthetic fMRI time series versus following VG transformation. Here,
we used Kendall correlation to (1) account for the differences in the two
distributions via non-parametric testing and (2) obtain an estimate that is
similar to the interpretation of accuracy, thus making it more comparable.
Kendall correlation uses signal intensity directly, rather than the variance
as is the case with other non-parametric alternatives such as Spearman
correlation.

An estimate of signal-to-noise ratio (SNR) was obtained by calculating
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the difference between accuracy and absolute noise correlations for each
of the time series, across noise levels, and across the 1,000 iterations. This
difference was obtained because, both the accuracy as well as the absolute
correlation vary in a range of 0 to 1, therefore subtracting the two should
provide information about how the influence of signal (i.e., accuracy)
compares to the influence of noise (i.e., via noise correlation).

4.2.3.2.2 BOLD5000 dataset

Because real fMRI data do not provide complete control over signal and
noise variability as is the case with the synthetic time series, we estimated
the influence of noise by counting the number of significant correlations
between each time series (original vs VG) and the corresponding FD
across all sessions and runs. We used FD for the noise correlation analysis
because it is a well-recognized and measurable source of bias in the fMRI
data (Power, Barnes, Snyder, Schlaggar, Petersen, 2012; Power et al., 2014).
A higher number of significant correlations between the two was consid-
ered an indication of more motion-related noise for the specific method
(that is, the original signal or the VG degree sequence). Peristimulus maps
were also calculated by averaging the signal within each run and session.

4.2.3.3 Voxelwise Analysis

Voxelwise analysis was run at the level of each participant to obtain
statistical maps of a living minus non-living stimulus contrast. The classi-
fication of living (e.g., depictions of humans, living animals, plants; n =
2445) and non-living (e.g., images of tools, artifacts, buildings, food; n =
2471) stimuli was done by a trained analyst (author AO).

For the voxelwise analysis, an accuracy value was obtained from each
functional image (i.e., run) as described above, by counting the correspon-
dence between signal and expected peaks based on stimulus onsets from
each stimulus category (living and nonliving). The voxelwise accuracy
maps separately obtained for each stimulus category quantify the extent

89



to which the highest peaks of the visibility degree sequence and fMRI
time series respond overlap to the onsets of each stimulus category. A
living minus nonliving contrast was calculated by subtracting the two
accuracy maps within each run. A one-sample permutation test was im-
plemented using FSL randomise, based on the accuracy contrast maps
to assess the significant differences between the two stimulus categories.
FWR-corrected p values were obtained using Threshold Free Cluster En-
hancement (TFCE) with 10,000 permutations. Voxels that passed the
FWR-corrected threshold of 0.01 were considered significant.

4.3 Results

4.3.1 Synthetic event-related fMRI time series

The procedure for generating synthetic data is illustrated in Figure 4.1.
An accuracy score was obtained by calculating the proportion of highest
degree nodes (n = 99, see Figure 4.1, A) that corresponded to the expected
HRF peaks following stimulus onset (located between 6 +/- 3 s). Unlike
the synthetic fMRI time series, the VG degree sequence shows more
abrupt changes around the expected HRF peaks, followed by a more
sudden decrease in degree (Figure 4.1, B).

Average accuracy values over 1,000 iterations for each noise level are
represented in Figure 4.2, C. Both, the VG degree sequence and fMRI time
series showed a tendency to decreased accuracy with increasing noise
level (Fig 4.2, C, r = -0.99, p < 0.001 for both, VG degree sequence and raw
fMRI time series).

VG exhibited higher accuracy compared to the fMRI signal, but this effect
is dependent on the level of noise. The average difference in accuracy
between the VG and the original signal tends to gradually drop at increas-
ing levels of gaussian noise. The effect size of the difference in accuracy
between the two methods was large across noise levels between 0.1 and
0.5 [Cohen’s D mean ± SD (range) = 3.26 ± 1.62 (0.92, 5.42)], where accu-
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Figure 4.2: Synthetic fMRI analysis results. An accuracy score was calculated
by first ordering the two time series according to their intensity (A), and
then calculating the sum of time points that were adjacent to the expected
HRF peak, divided by the number of events in the scan. The peristimulus
plot tends to peak around 6 s post-stimulus presentation for both, the fMRI
time series and VG degree sequence. C illustrates the accuracy (left), noise
correlations (middle), and signal-to-noise ratio (right) of the two time series.
The plot on the left side shows the average accuracy across 1000 iterations for
the VG degree sequence (blue) versus synthetic signal (red) across different
levels of noise. The VG degree sequence (purple) exhibits significantly higher
accuracy across most noise levels. VG degree and fMRI accuracy tend to drop
and converge with increasing noise until the difference between the two is
no longer significant (light red shade). With increasing noise (C, middle), the
fMRI time series (green) tends to exhibit higher noise correlations, whereas
the VG degree time series (purple) tends to stabilize (around 0.55) as the
noise level increases. Please note that VG degree sequence (purple) has
consistently lower noise correlation values compared to the synthetic fMRI
signal (green). The signal-to-noise ratio (C, right) was calculated as the mean
accuracy value minus the mean noise-correlation value corresponding to
each noise level, and VG (purple) exhibits improved SNR compared to the
fMRI time series (green).
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racy levels for the raw fMRI time series ranged between 0.607 and 0.726
(mean ± SD = 0.670 ± 0.033), and VG accuracy was between 0.639 and
0.859 (mean ± SD = 0.767 ± 0.07), all p < 0.001. Medium-to-small effect
sizes were present across noise levels between 0.525 and 0.650 [Cohen’s
D mean ± SD (range) = 0.471 ± 0.2 (0.22, 0.735)], where the accuracy of
the fMRI time series ranged between 0.539 and 0.596 (mean ± SD = 0.566
± 0.022), and VG accuracy was between 0.547 and 0.624 (mean ± SD =
0.585 ± 0.029), all p < 0.001. However, the effect sizes across noise levels
higher than 0.650 were very small [Cohen’s D between 0.15 and 0.006;
mean accuracy fMRI +/- SD (range) = 0.466 +/- 0.036 (0.415, 0.527); mean
accuracy VG +/- SD (range) = 0.466 +/- 0.039 (0.411, 0.533)].

Correlations between either VG degree sequence or fMRI time series and
noise showed a different pattern across the two methods (Figure 4.2, C).
The fMRI time series showed higher noise correlations [mean ± SD (range)
= 0.758 ± 0.090 (0.545, 0.866) compared to the VG degree sequence (mean
± SD (range) = 0.558 ± 0.019 (0.479, 0.567)]. Mean correlations tended
to increase linearly to a greater extent as more noise was added to the
raw fMRI time-series (r = 0.969, p < 0.001), compared to the VG degree
sequence (r = 0.672, p < 0.001).

Signal-to-noise ratio (SNR) was calculated as the difference between ac-
curacy and noise correlations and had a tendency to linearly decrease
with increasing noise levels for both methods (both r = -0.99, p < 0.001).
However, the signal-to-noise ratio was significantly higher when using
VG compared to the raw fMRI time series across noise levels [d mean ±
SD = 6.87 ± 0.51; mean SNR fMRI ± SD (range) = -0.184 ± 0.187 (0.45, 0.18);
mean SNR VG ± SD (range) = 0.061 ± 0.163 (0.155, 0.378), all p < 0.001).

4.3.2 Task event detection on BOLD5000 dataset

V1 analysis of real event-related fMRI data from the BOLD5000 dataset
was performed by calculating an accuracy score within a 3-TR window
search centered on the expected HRF peak. Higher accuracy was ob-
served for VG degree sequence compared to the original signal across
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Figure 4.3: ROI analysis results based on the BOLD5000 dataset across all
participants (A) and within-participant (B). VG mean accuracy (left) shows
higher values across participants, compared to the fMRI time series. VG
showed lower mean correlation values between each time series and the
corresponding FD vector (middle) compared to the fMRI time series. Peri-
stimulus plots (right) show that both time series tend to peak around 6 s
posit-stimulus onset.
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all participants [see Figure 4.3; CSI1 (d = 1.1, p < 0.001), CSI2 ( d = 1.5,
p < 0.001); CSI3 (d = 1.6, p < 0.001; CSI4 (d = 2.4, p < 0.001)]. Overall,
the proportion of significant correlations (uncorrected p < 0.05) between
signal and FD were higher in the original signal compared to the VG
degree. This pattern was visible for all except one participant that had
an equal number of significant FD correlations across the two methods
(across 9 out of 139 runs for participant CSI1).

Peristimulus plots show significant variability of the HRFs across partici-
pants for both the original signal as well as the VG degree. On average,
the peak of the HRF was consistently centered on 6 seconds post-stimulus
presentation for both of the time series. This was true for all except
one participant (i.e., participant CSI3), which exhibited more variability
between 4 and 8 seconds post-stimulus onset.

Participant-level results using a one-sample t-test for the living minus non-
living stimuli show consistently higher accuracy in bilateral occipital and
occipital fusiform cortices, suggesting a similar pattern of brain activity
across the four participants. Figure 4.4 illustrates the FWR-corrected t
statistical maps from the participant-level permutation text. Significant
activation clusters that survived TFCE correction are presented in Table
4.1.
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Figure 4.4: Voxelwise results for the living minus nonliving contrast from
BOLD5000 dataset (one sample t-test at the level of each participant). The
rows illustrate the FWE-corrected significant t values from each participant.
On each column, the figure illustrates: right lateral view (column 1), left
lateral view (column 2), and inferior view (column 3) of the right (upper
images) and left cortices (lower images). The results indicate a consistent pat-
tern of higher accuracy for living compared to non-living stimuli in bilateral
occipital and occipital fusiform cortices.
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4.4 Discussion

The current work evaluated if temporal networks derived using VG trans-
formation preserves event related task-evoked hemodynamic activity of
synthetic time series and real fMRI data. The VG degree sequence could
successfully recover task activity because signal changes associated with
task events were converted to high-degree nodes. Unlike the GLM ap-
proach, VG mapping is performed without using a basis function to define
the HRF shape, which is promising for applications in fMRI time series
analysis where linear modeling has limited utility, including the analysis
of continuous task designs. The accuracy of identifying task events was
consistently higher compared to the raw fMRI time series, supporting the
hypothesis that VG topology contains signal changes associated with task
events. The degree sequence of VG demonstrated robustness to gaussian
noise added to synthetic data and motion-related noise based on frame-
wise displacement in real fMRI data. Voxelwise results of a living minus
non-living whole-brain contrast replicated previously reported activation
maps using the GLM approach, showing consistent participant-level pat-
terns across the ventral pathway, which suggests that VG transformation
embodies similar signal features to those previously observed with GLM.

VG transformation emphasizes signal peaks associated with task events
relative to the raw fMRI signals. In well-controlled, simulated data, the
VG degree sequence of the fMRI time series may amplify the signal in-
tensity of time points corresponding to HRF peaks. Task-evoked signal
intensity changes result in temporal nodes with a high degree centrality,
as evidenced by the correspondence between high-degree nodes and the
timing of the expected HRF peaks. However, this effect depends on the
level of noise added to the time series, indicating that VG mapping may
provide improved task detection in time series with relatively lower noise
levels. This result was successfully replicated using real event-related task
fMRI time series extracted from V1 during the picture presentation task,
suggesting that VG contains task event information under real conditions
and task events accurately identified based on VG degree sequence com-
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pared with the raw fMRI time series. This is the first evidence to show
what task activity can be recovered based on the topology of the tempo-
ral graphs, and extends previous findings using resting-state fMRI and
EEG. Specifically, previous studies focused on quantifying the similarity
between pairs of region-wise temporal graphs to derive properties similar
to functional connectivity, for example, based on the mutual information
VG partitions or the correlation between VG degree sequences. However,
it was not clear whether VG topology incorporates signal changes evoked
during task. The pivotal advantage of VG transformation is that task-
induced variations can be identified without relying on a basis function,
by localizing highly connected nodes (time points) across the time series.
Voxelwise results based on accuracy differences for the living minus non-
living contrast exhibited consistent patterns across participants. These
results are consistent with previous studies showing increased activation
for this contrast based on GLM analysis, including the lateral occipital
cortices, inferior frontal gyrus, fusiform gyrus, and posterior parts of the
superior temporal gyrus (see Derderian, X. Zhou, and L. Chen, 2021 for a
meta-analysis).

The influence of noise is an important issue for fMRI, and VG degree
sequence demonstrated robustness to gaussian and, to some extent, to
participant motion spikes. Despite a decrease in accuracy across higher
levels of gaussian noise in the synthetic time series, the VG degree se-
quence showed lower noise correlations relative to the raw time series
(see Figure 4.2, C). In addition, at relatively lower noise levels, both sig-
nals showed gradually increasing correlations with the gaussian noise,
but VG degree tended to stabilize, and the raw time series continually
increased, suggesting that VG might show better robustness to gaussian
noise. The estimation of signal-to-noise ratio was calculated as the dif-
ference between task event identification accuracy and noise correlations
and it decreased across both VG degree and raw synthetic time series as
more noise was added. However, the VG degree sequence exhibited sys-
tematically higher signal-to-noise ratios compared to the raw time series
across all noise levels. This suggests that VG transformation of the time
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series could improve signal detection, although whether this effect can
extend to real fMRI data may be more challenging to estimate provided
the more complex noise structure specific to real fMRI data, which may
not necessarily follow a gaussian distribution.

The proposed technique expands previous work addressing non-linear
time-series processing for task fMRI. Several implications are worth men-
tioning. VG graph mapping can offer new possibilities for signal analysis
using statistical learning techniques adapted for graphs, temporal com-
munity detection (Zheng et al., 2021), or network properties such as
complexity or fractality (Bhaduri and Ghosh, 2015). Such approaches are
becoming increasingly popular in the literature (Zou et al., 2019), and one
interesting question future studies may address is whether VG topology
can accurately differentiate between event-related signal intensity peaks
and noise variability including motion spikes in fMRI time series, which
could help separate signal and noise variability for task and resting-state
acquisitions. The study of VG mapping in event-related fMRI can provide
a promising basis to stimulate new applications for fMRI modeling, for ex-
ample across experimental settings where information about event onsets
is not available (Saarimäki, 2021). Continuous stimulation in tasks such
as movie watching or story listening can be more challenging to model
based on GLM in the absence of systematic control over stimulus onset
and duration. Another promising future application may address signals
from brain areas where task-related oscillations do not follow the shape
of the canonical HRF. Recent evidence indicates that white matter areas
can elicit BOLD responses following task events (M. Li et al., 2019), where
the HRF manifests higher spatial and temporal variability compared to
gray matter, making this type of response challenging to predict using
pre-established basis functions.

The current work has several limitations. Due to the VG construction
algorithm, frame-to-frame movement spikes may bias the degree distri-
bution, artificially introducing extreme events that are not related to task
events. To overcome this problem, additional variables of no interest
need to be inserted in the model during noise regression (i.e., by dummy
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coding each movement spike as a separate variable), which may further
reduce signal variability by the loss of degrees of freedom associated
with a given TS. Consequently, the proposed modeling technique may
exhibit increased sensitivity to noise across scans suffering from severe
movement, potentially limiting its applicability in children and patient
populations. The current dataset contained scans collected from highly
trained participants which demonstrated reduced in-scanner motion ar-
tifact, and future studies may test how VG topology is affected in time
series with higher in-scanner participant motion. The current analysis
tested VG in fMRI time series with known task event information (i.e.,
onset and duration) and further studies may focus on assessing how this
information can be used to model fMRI time series in experiments with
unknown task events onsets for example by using global parameters of
node classification techniques. In addition, participant-level contrasts
were derived in the current study, and future studies may address the
applicability of VG for group-level analysis. In this analysis, VG degree
and the original fMRI signal showed similar HRF shapes, suggesting
that both time-series tend to peak at the same timing following stimulus
onset, both in synthetic (see Figure 4.2) and real fMRI data (see Figure
4.3). However, future analyses may consider a more detailed evaluation
of the relationship between original fMRI signal and the VG degree se-
quence, including the influence of temporal autocorrelation function of
the fMRI signal in VG topological features. Lastly, the efficiency of VG
was assessed using the degree sequence, however, testing the relevance
of other local and global graph properties and how combining different
features can contribute for different applications in fMRI data analysis
may be of interest for future analyses.
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Chapter 5

Conclusion

The current work addressed several issues relevant to the field of network
neuroscience. The collection of large neuroimaging datasets can improve
inference by increasing statistical power, however, flexibility in analytical
workflows and how it may affect research results represent a growing
concern in neuroimaging (e.g., Botvinik-Nezer et al., 2020). As multi-site
data collection and the use of network science techniques become more
prevalent in neuroimaging, evaluating the impact of harmonization pro-
cedures on the reliability of network metrics can aid in making better
analytical decisions. The results presented in Chapter 2 show that dif-
ferences in data harmonization workflows can affect structural network
topology in a multi-site study of pediatric mild traumatic brain injury.
The harmonization of network parameters was found to be more efficient
than matrix harmonization in removing scanner effects and preserving
the biological effects of age on network topology. The results extend the
validity of using ComBat harmonization to network parameters derived
using diffusion-weighted MRI and show that the harmonization of con-
nectivity matrices can alter the original variability in network topology,
resulting in variable performance across different metrics.

Rigorous data harmonization of network metrics derived using graph
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theory can help address complex questions about the impact of mild TBI in
functional network topology. The analysis of the largest study of pediatric
mild TBI to date, the A-CAP study, expands the understanding of the
heterogeneity specific to the pediatric population. In Chapter 3, functional
abnormalities at both the global and local brain network levels were
demonstrated in children following mTBI relative to OI. Those differences
were moderated by time-post-injury, biological sex, age at injury, and
symptom persistence at 1-month post-injury. Postacute abnormalities in
functional network topology did not predict symptom persistence at 1-
month post-injury, however, longitudinal topological changes were more
prominent among children with persistent symptoms. Local alterations
may affect females more than males and may occur more frequently at 3
months post-injury, with a tendency to reduce at 6 months. The results
highlight that mild TBI is best contextualized within clinical subtypes by
emphasizing the role of moderating variables on brain function.

Finally, linear methods for fMRI signal processing and connectome map-
ping provide a valuable contribution to the field of network neuroscience,
however, incorporating data analytical models that capture non-linear
features of hemodynamic variability is critical to accurately measure brain
function. Applications of graph theory in neuroscience typically address
networks where nodes represent brain regions, but temporal networks,
where nodes represent time-points, are promising for time series anal-
ysis. Methodological approaches for time series analysis derived using
functional neuroimaging remain a pivotal topic in cognitive and clini-
cal neuroscience, and Chapter 4 addresses whether temporal networks
constructed using VG transformation can preserve the event-related task-
evoked hemodynamic activity. By analyzing synthetic and real fMRI data,
we found that VG degree sequence successfully recovered task activity
by converting signal changes associated with task events to high-degree
nodes. The accuracy of identifying task events was consistently higher
compared with the initial fMRI time series, supporting the hypothesis
that VG topology contains signal changes associated with task events.
The degree sequence of VG demonstrated robustness to noise added to
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synthetic data and motion-related noise in real fMRI data. In addition,
the voxelwise analysis of a living minus non-living stimulus contrast
showed consistent participant-level statistical patterns across the ventral
visual pathway, suggesting that VG transformation embodies similar sig-
nal features to those previously observed with GLM. The results raise
new possibilities for fMRI data analysis beyond the typical approaches
based on linear modeling.
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Supplementary information
for Chapter 2
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Figure A.1: Distribution of negative connection weights following matrix
harmonization.
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Appendix B

Supplementary information
for Chapter 3
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Table A.1. Inclusion and exclusion criteria for the A-CAP study. ED –
Emergency Department, OI – Orthopedic Injury, GCS – Glasgow Coma

Scale, LOC – Loss of Consciousness, PTA – Post-Traumatic Amnesia

114



Table B.1: Demographic information of participants by scanning session
across sites

Site Participants Sex
n (%)
male

Age
M (SD)
years

DPI
M (SD)

N (%) n (%)
mTBI

Post-acute

All sites 502 329 300 12.5 (2,3) 11,4 (5,4)
Calgary 107 (21,3%) 75 (14,9%) 67 (13,3%) 13,2 (2,1) 8,8 (3,6)

Edmonton 108 (21,5%) 72 (14,3%) 63 (12,5%) 12,8 (2,3) 9,0 (4,9)
Montreal 1 23 (4,6%) 19 (3,8%) 14 (2,8%) 12,0 (2,0) 9,9 (4,0)
Montreal 2 20 (4,0%) 13 (2,6%) 10 (2,0%) 12,9 (2,3) 12,6 (4,7)

Ottawa 108 (21,5%) 81 (16,1%) 61 (12,2%) 11,9 (2,4) 16,0 (5,0)
Vancouver 136 (27,1%) 69 (13,7%) 85 (16,9%) 12,2 (2,4) 11,8 (5,2)

3 months

All sites 197 133 112 12.3 (2,4) 96,6 (8,7)
Calgary 46 (23,4%) 32 (16,2%) 31 (15,7%) 13,1 (2,4) 95,2 (8,1)

Edmonton 36 (18,3%) 26 (13,2%) 17 (8,6%) 12,7 (2,3) 100,2 (10,3)
Montreal 1 9 (4,6%) 8 (4,1%) 5 (2,5%) 12,0 (1,3) 95,7 (12,1)
Montreal 2 11 (5,6%) 7 (3,6%) 5 (2,5%) 12,6 (2,7) 99,6 (11,7)

Ottawa 40 (20,3%) 29 (14,7%) 20 (10,2%) 11,6 (2,3) 96,5 (7,5)
Vancouver 55 (27,9%) 31 (15,7%) 34 (17,3%) 12,0 (2,5) 94,9 (7,1)

6 months

All sites 219 141 136 12.5 (2,4) 186,0 (11.0)
Calgary 51 (23,3%) 38 (17,4%) 32 (14,6%) 12,8 (2,1) 187,8 (8,3)

Edmonton 55 (25,1%) 33 (15,1%) 34 (15,5%) 12,9 (2,4) 188,8 (14,5)
Montreal 1 4 (1,8%) 3 (1,4%) 2 (0,9%) 11,0 (0,6) 200,8 (9,4)
Montreal 2 7 (3,2%) 4 (1,8%) 4 (1,8%) 13,3 (1,8) 198,2 (5,8)

Ottawa 44 (20,1%) 30 (13,7%) 22 (10,0%) 12,0 (2,6) 178,7 (7,1)
Vancouver 58 (26,5%) 33 (15,1%) 42 (19,2%) 12,2 (2,4) 184,8 (8,7)

115



Figure B.1: Results summarising the assessment of ComBat harmonization
for efficiency.
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Figure B.2: Results summarising the assessment of ComBat harmonization
for clustering coefficient.
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Figure B.3: Results summarising the assessment of ComBat harmonization
for modularity.
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Figure B.4: Results summarising the assessment of ComBat harmonization
for small worldness.
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Figure B.5: Results summarising the assessment of ComBat harmonization
for core-periphery organization.

120



Bibliography

Achard, Sophie and Ed Bullmore (Feb. 2007). “Efficiency and Cost of Eco-
nomical Brain Functional Networks”. In: PLoS Computational Biology
3.2. [Online; accessed 2022-06-30], e17.

Adelson, P David et al. (2012). “Common data elements for pediatric
traumatic brain injury: recommendations from the working group on
demographics and clinical assessment”. In: Journal of neurotrauma 29.4,
pp. 639–653.

Aerts, Hannelore et al. (Dec. 2016). “Brain networks under attack: robust-
ness properties and the impact of lesions”. In: Brain 139.Pt, p. 12. ISSN:
1460-2156. DOI: 10.1093/brain/aww194. eprint: 27497487.

Ahmadlou, Mehran, Hojjat Adeli, and Anahita Adeli (Sept. 2010). “New
diagnostic EEG markers of the Alzheimer’s disease using visibility
graph”. In: J. Neural Transm. 117.9, pp. 1099–1109. ISSN: 1435-1463. DOI:
10.1007/s00702-010-0450-3.

Ahmadlou, Mehran, Khodabakhsh Ahmadi, et al. (2013). “Global organi-
zation of functional brain connectivity in methamphetamine abusers”.
In: Clinical neurophysiology 124.6, pp. 1122–1131.

Alexander, Andrew L. et al. (July 2007). “Diffusion tensor imaging of
the brain”. In: Neurotherapeutics 4.3, p. 316. DOI: 10.1016/j.nurt.
2007.05.011.

Alnawmasi, Mohammed M, Revathy Mani, and Sieu K Khuu (2022).
“Changes in the components of visual attention following traumatic
brain injury: A systematic review and meta-analysis”. In: Plos one 17.6,
e0268951.

Alstott, Jeffrey et al. (2009). “Modeling the impact of lesions in the human
brain”. In: PLoS computational biology 5.6, e1000408.

121

https://doi.org/10.1093/brain/aww194
27497487
https://doi.org/10.1007/s00702-010-0450-3
https://doi.org/10.1016/j.nurt.2007.05.011
https://doi.org/10.1016/j.nurt.2007.05.011


Armstrong, Richard A (2018). “Visual problems associated with traumatic
brain injury”. In: Clinical and Experimental Optometry 101.6, pp. 716–
726.

Avants, B. B. et al. (Feb. 1, 2008). “Symmetric Diffeomorphic Image Reg-
istration with Cross-Correlation: Evaluating Automated Labeling of
Elderly and Neurodegenerative Brain”. In: Medical Image Analysis.
Special Issue on The Third International Workshop on Biomedical
Image Registration – WBIR 2006 12.1, pp. 26–41. ISSN: 1361-8415.
DOI: 10.1016/j.media.2007.06.004. URL: https://www.
sciencedirect.com/science/article/pii/S1361841507000606
(visited on 05/29/2022).

Avena-Koenigsberger, Andrea, Bratislav Misic, and Olaf Sporns (2018).
“Communication dynamics in complex brain networks”. In: Nature
Reviews Neuroscience 19.1, p. 17.

Ayr, Lauren K et al. (2009). “Dimensions of postconcussive symptoms in
children with mild traumatic brain injuries”. In: Journal of the Interna-
tional Neuropsychological Society 15.1, pp. 19–30.

Babl, Franz E. et al. (June 2017). “Accuracy of PECARN, CATCH, and
CHALICE head injury decision rules in children: a prospective cohort
study”. In: Lancet 389.10087, pp. 2393–2402. ISSN: 1474-547X. DOI: 10.
1016/S0140-6736(17)30555-X. eprint: 28410792.

Barkovich, Matthew J et al. (2019). “Challenges in pediatric neuroimag-
ing”. In: Neuroimage 185, pp. 793–801.

Bassett, Danielle S and Olaf Sporns (2017). “Network neuroscience”. In:
Nature neuroscience 20.3, pp. 353–364.

Beer, Joanne C et al. (2020). “Longitudinal combat: A method for harmo-
nizing longitudinal multi-scanner imaging data”. In: Neuroimage 220,
p. 117129.

Belanger, Heather G. et al. (May 2005). “Factors moderating neuropsy-
chological outcomes following mild traumatic brain injury: A meta-
analysis”. In: J. Int. Neuropsychol. Soc. 11.3, pp. 215–227. ISSN: 1469-7661.
DOI: 10.1017/S1355617705050277.

Bhaduri, Susmita and Dipak Ghosh (July 2015). “Electroencephalographic
Data Analysis With Visibility Graph Technique for Quantitative As-
sessment of Brain Dysfunction”. In: Clin. EEG Neurosci. 46.3, pp. 218–
223. ISSN: 1550-0594. DOI: 10.1177/1550059414526186. eprint:
24781371.

Bialy, Liza et al. (2018). “Pediatric emergency research Canada: origins
and evolution”. In: Pediatric emergency care 34.2, pp. 138–144.

122

https://doi.org/10.1016/j.media.2007.06.004
https://www.sciencedirect.com/science/article/pii/S1361841507000606
https://www.sciencedirect.com/science/article/pii/S1361841507000606
https://doi.org/10.1016/S0140-6736(17)30555-X
https://doi.org/10.1016/S0140-6736(17)30555-X
28410792
https://doi.org/10.1017/S1355617705050277
https://doi.org/10.1177/1550059414526186
24781371


Bittencourt-Villalpando, M et al. (2021). “Disentangling the effects of age
and mild traumatic brain injury on brain network connectivity: A
resting state fMRI study”. In: Neuroimage: clinical 29, p. 102534.

Blennow, Kaj et al. (2016). “Traumatic brain injuries”. In: Nature reviews
Disease primers 2, p. 16084.

Bonilha, Leonardo et al. (2015). “Reproducibility of the structural brain
connectome derived from diffusion tensor imaging”. In: PloS one 10.9,
e0135247.

Bordier, Cécile, Carlo Nicolini, and Angelo Bifone (2017). “Graph Analysis
and Modularity of Brain Functional Connectivity Networks: Searching
for the Optimal Threshold”. In: Frontiers in Neuroscience 11. [Online;
accessed 2022-06-30].

Borgatti, Stephen P and Martin G Everett (2000). “Models of core/periphery
structures”. In: Social networks 21.4, pp. 375–395.

Botchway, Edith et al. (2022). “Resting-State Network Organisation in
Children with Traumatic Brain Injury”. In: Cortex.

Botvinik-Nezer, Rotem et al. (June 2020). “Variability in the analysis of
a single neuroimaging dataset by many teams”. In: Nature 582.7810,
pp. 84–88. ISSN: 1476-4687. DOI: 10.1038/s41586-020-2314-9.

Bowman, F DuBois (2014). “Brain imaging analysis”. In: Annual review of
statistics and its application 1, pp. 61–85.

Bressler, Steven L (1995). “Large-scale cortical networks and cognition”.
In: Brain Research Reviews 20.3, pp. 288–304.

Brooks, Brian L. et al. (Mar. 2014). “Perception of Recovery After Pediatric
Mild Traumatic Brain Injury Is Influenced by the “Good Old Days”
Bias: Tangible Implications for Clinical Practice and Outcomes Re-
search”. In: Arch. Clin. Neuropsychol. 29.2, pp. 186–193. ISSN: 0887-6177.
DOI: 10.1093/arclin/act083.

Bullmore, Ed and Olaf Sporns (2012). “The economy of brain network
organization”. In: Nature Reviews Neuroscience 13.5, p. 336.

Bullmore, Edward T and Danielle S Bassett (2011). “Brain graphs: graph-
ical models of the human brain connectome”. In: Annual review of
clinical psychology 7, pp. 113–140.

Bullmore and Olaf Sporns (2009). “Complex brain networks: graph theo-
retical analysis of structural and functional systems”. In: Nature reviews
neuroscience 10.3, pp. 186–198.

Buracas, Giedrius T., Ione Fine, and Geoffrey M. Boynton (Mar. 2005).
“The Relationship between Task Performance and Functional Magnetic
Resonance Imaging Response”. In: J. Neurosci. 25.12, p. 3023. DOI:
10.1523/JNEUROSCI.4476-04.2005.

123

https://doi.org/10.1038/s41586-020-2314-9
https://doi.org/10.1093/arclin/act083
https://doi.org/10.1523/JNEUROSCI.4476-04.2005


Button, Katherine S et al. (2013). “Power failure: why small sample size
undermines the reliability of neuroscience”. In: Nature reviews neuro-
science 14.5, pp. 365–376.

Caeyenberghs, Karen et al. (2017). “Mapping the functional connectome in
traumatic brain injury: What can graph metrics tell us?” In: Neuroimage
160, pp. 113–123.

Cai, Qing, Jianpeng An, and Zhongke Gao (Dec. 2020). “A multiplex
visibility graph motif-based convolutional neural network for charac-
terizing sleep stages using EEG signals”. In: Brain Sci. Adv. 6.4, pp. 355–
363. ISSN: 2096-5958. DOI: 10.26599/BSA.2020.9050016.

Carrig, Madeline M, Gregory G Kolden, and Timothy J Strauman (2009).
“Using functional magnetic resonance imaging in psychotherapy re-
search: A brief introduction to concepts, methods, and task selection”.
In: Psychotherapy Research 19.4-5, pp. 409–417.

Cassidy, J David et al. (2004). “Incidence, risk factors and prevention of
mild traumatic brain injury: results of the WHO Collaborating Centre
Task Force on Mild Traumatic Brain Injury”. In: Journal of rehabilitation
medicine 36.0, pp. 28–60.

Centers for Disease Control and Prevention [CDC] (2015). “Report to
congress on traumatic brain injury in the United States: epidemiology
and rehabilitation”. In: National Center for Injury Prevention and Control
2, pp. 1–72.

Chang, Nadine et al. (2019). “BOLD5000, a public fMRI dataset while
viewing 5000 visual images”. In: Scientific data 6.1, pp. 1–18.

Chen, Gang et al. (2015). “Detecting the subtle shape differences in hemo-
dynamic responses at the group level”. In: Frontiers in Neuroscience 9,
p. 375.

Chen, Zhang et al. (2013). “Graph theoretical analysis of developmental
patterns of the white matter network”. In: Frontiers in human neuro-
science 7, p. 716.

Churchill, N. W. et al. (Mar. 2021). “Long-term changes in the small-world
organization of brain networks after concussion”. In: Sci. Rep. 11.6862,
pp. 1–14. ISSN: 2045-2322. DOI: 10.1038/s41598-021-85811-4.

Cignetti, Fabien et al. (2016). “Pros and cons of using the informed basis set
to account for hemodynamic response variability with developmental
data”. In: Frontiers in neuroscience 10, p. 322.

Ciric, Rastko et al. (July 1, 2017a). “Benchmarking of Participant-Level
Confound Regression Strategies for the Control of Motion Artifact in
Studies of Functional Connectivity”. In: NeuroImage 154, pp. 174–187.
ISSN: 1053-8119. DOI: 10.1016/j.neuroimage.2017.03.020.

124

https://doi.org/10.26599/BSA.2020.9050016
https://doi.org/10.1038/s41598-021-85811-4
https://doi.org/10.1016/j.neuroimage.2017.03.020


— (July 2017b). “Benchmarking of participant-level confound regression
strategies for the control of motion artifact in studies of functional
connectivity”. In: NeuroImage. Cleaning up the fMRI time series: Miti-
gating noise with advanced acquisition and correction strategies 154.
[Online; accessed 2022-05-29], pp. 174–187.

Cox, Robert W. and James S. Hyde (1997). “Software Tools for Analysis and
Visualization of fMRI Data”. In: NMR in Biomedicine 10.4-5, pp. 171–
178. ISSN: 1099-1492. DOI: 10.1002/(SICI)1099-1492(199706/
08)10:4/5<171::AID-NBM453>3.0.CO;2-L. URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%
291099-1492%28199706/08%2910%3A4/5%3C171%3A%3AAID-
NBM453%3E3.0.CO%3B2-L (visited on 05/29/2022).

Csermely, Peter et al. (2013). “Structure and dynamics of core/periphery
networks”. In: Journal of Complex Networks 1.2, pp. 93–123.

Dale, Anders M (1999). “Optimal experimental design for event-related
fMRI”. In: Human brain mapping 8.2-3, pp. 109–114.

Dennis, Emily L et al. (2017). “Diverging volumetric trajectories following
pediatric traumatic brain injury”. In: Neuroimage: clinical 15, pp. 125–
135.

Derderian, Kimberly D., Xiaojue Zhou, and Lang Chen (Oct. 2021). “Category-
specific activations depend on imaging mode, task demand, and
stimuli modality: An ALE meta-analysis”. In: Neuropsychologia 161,
p. 108002. ISSN: 0028-3932. DOI: 10.1016/j.neuropsychologia.
2021.108002.

Diamond, Adele (2013). “Executive Functions”. In: Annu. Rev. Psychol. 64,
p. 135. DOI: 10.1146/annurev-psych-113011-143750.

Diedenhofen, Birk and Jochen Musch (2015). “cocor: A comprehensive
solution for the statistical comparison of correlations”. In: PloS one
10.4, e0121945.

Drobyshevsky, Alexander, Stephen B. Baumann, and Walter Schneider
(June 2006). “A rapid fMRI task battery for mapping of visual, motor,
cognitive, and emotional function”. In: Neuroimage 31.2, pp. 732–744.
ISSN: 1053-8119. DOI: 10.1016/j.neuroimage.2005.12.016.

Duann, Jeng-Ren et al. (2002). “Single-trial variability in event-related
BOLD signals”. In: Neuroimage 15.4, pp. 823–835.
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Iñiguez, Gerardo, Federico Battiston, and Márton Karsai (2020). “Bridging
the gap between graphs and networks”. In: Communications Physics
3.1, pp. 1–5.

Iturria-Medina, Yasser, Erick Jorge Canales-Rodrıéguez, et al. (2007).
“Characterizing brain anatomical connections using diffusion weighted
MRI and graph theory”. In: Neuroimage 36.3, pp. 645–660.

Iturria-Medina, Yasser, Roberto C Sotero, et al. (2008). “Studying the
human brain anatomical network via diffusion-weighted MRI and
Graph Theory”. In: Neuroimage 40.3, pp. 1064–1076.

Jenkinson, Mark et al. (Oct. 1, 2002). “Improved Optimization for the Ro-
bust and Accurate Linear Registration and Motion Correction of Brain
Images”. In: NeuroImage 17.2, pp. 825–841. ISSN: 1053-8119. DOI: 10.
1006/nimg.2002.1132. URL: https://www.sciencedirect.
com/science/article/pii/S1053811902911328 (visited on
05/29/2022).

Jia, Xiaoyan et al. (Oct. 2021). “A Longitudinal Study of White Matter
Functional Network in Mild Traumatic Brain Injury”. In: J. Neurotrauma
38.19, pp. 2686–2697. ISSN: 1557-9042. DOI: 10.1089/neu.2021.
0017. eprint: 33906419.

Johnson, W Evan, Cheng Li, and Ariel Rabinovic (2007). “Adjusting batch
effects in microarray expression data using empirical Bayes methods”.
In: Biostatistics 8.1, pp. 118–127.

Kim, Eunkyung et al. (Sept. 2022). “An exploratory study on functional
connectivity after mild traumatic brain injury: Preserved global but
altered local organization”. In: Brain Behav. 12.9, e2735. ISSN: 2162-3279.
DOI: 10.1002/brb3.2735.

128

https://doi.org/10.1371/journal.pone.0171031
https://doi.org/10.1371/journal.pone.0171031
https://doi.org/10.1089/brain.2018.0629
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1006/nimg.2002.1132
https://www.sciencedirect.com/science/article/pii/S1053811902911328
https://www.sciencedirect.com/science/article/pii/S1053811902911328
https://doi.org/10.1089/neu.2021.0017
https://doi.org/10.1089/neu.2021.0017
33906419
https://doi.org/10.1002/brb3.2735


Koenis, Marinka MG et al. (2015). “Development of the brain’s struc-
tural network efficiency in early adolescence: a longitudinal DTI twin
study”. In: Human Brain Mapping 36.12, pp. 4938–4953.

Koo, Terry K and Mae Y Li (2016). “A guideline of selecting and reporting
intraclass correlation coefficients for reliability research”. In: Journal of
chiropractic medicine 15.2, pp. 155–163.

Kurokawa, Ryo et al. (2021). “Cross-scanner reproducibility and harmo-
nization of a diffusion MRI structural brain network: A traveling
subject study of multi-b acquisition”. In: NeuroImage, p. 118675.

Lacasa, Lucas, Bartolo Luque, et al. (2008). “From time series to complex
networks: The visibility graph”. In: Proceedings of the National Academy
of Sciences 105.13, pp. 4972–4975.

Lacasa, Lucas, Vincenzo Nicosia, and Vito Latora (2015). “Network struc-
ture of multivariate time series”. In: Scientific reports 5.1, pp. 1–9.

Lanczos, C. (Jan. 1964). “Evaluation of Noisy Data”. In: Journal of the
Society for Industrial and Applied Mathematics Series B Numerical Anal-
ysis 1.1, pp. 76–85. ISSN: 0887-459X. DOI: 10.1137/0701007. URL:
https://epubs.siam.org/doi/10.1137/0701007 (visited on
05/29/2022).

Lange, Rael T. et al. (Feb. 2015). “Diffusion Tensor Imaging Findings
and Postconcussion Symptom Reporting Six Weeks Following Mild
Traumatic Brain Injury”. In: Arch. Clin. Neuropsychol. 30.1, pp. 7–25.
ISSN: 0887-6177. DOI: 10.1093/arclin/acu060.

Langlois, Jean A, Wesley Rutland-Brown, and Marlena M Wald (2006).
“The epidemiology and impact of traumatic brain injury: a brief overview”.
In: The Journal of head trauma rehabilitation 21.5, pp. 375–378.

Latora, Vito and Massimo Marchiori (2001). “Efficient behavior of small-
world networks”. In: Physical review letters 87.19, p. 198701.

Ledoux, Andrée-Anne et al. (2019). “Natural progression of symptom
change and recovery from concussion in a pediatric population”. In:
JAMA pediatrics 173.1, e183820–e183820.

Lee, Jin Hyung et al. (2010). “Global and local fMRI signals driven by neu-
rons defined optogenetically by type and wiring”. In: Nature 465.7299,
pp. 788–792.

Leek, Jeffrey T et al. (2012). “The sva package for removing batch effects
and other unwanted variation in high-throughput experiments”. In:
Bioinformatics 28.6, pp. 882–883.

Leemans, AJBSJJDK et al. (2009). “ExploreDTI: a graphical toolbox for
processing, analyzing, and visualizing diffusion MR data”. In: Proc
Intl Soc Mag Reson Med. Vol. 17. 1.

129

https://doi.org/10.1137/0701007
https://epubs.siam.org/doi/10.1137/0701007
https://doi.org/10.1093/arclin/acu060


Leemans, Alexander and Derek K Jones (2009). “The B-matrix must be
rotated when correcting for subject motion in DTI data”. In: Magnetic
Resonance in Medicine: An Official Journal of the International Society for
Magnetic Resonance in Medicine 61.6, pp. 1336–1349.

Lerch, Jason P et al. (2017). “Studying neuroanatomy using MRI”. In:
Nature neuroscience 20.3, pp. 314–326.

Li, Muwei et al. (Mar. 2019). “Characterization of the hemodynamic re-
sponse function in white matter tracts for event-related fMRI”. In: Nat.
Commun. 10.1140, pp. 1–11. ISSN: 2041-1723. DOI: 10.1038/s41467-
019-09076-2.

Liao, Chien Heng et al. (2002). “Estimating the delay of the fMRI re-
sponse”. In: NeuroImage 16.3, pp. 593–606.

Lim, Sol et al. (2015). “Preferential detachment during human brain de-
velopment: age-and sex-specific structural connectivity in diffusion
tensor imaging (DTI) data”. In: Cerebral Cortex 25.6, pp. 1477–1489.

Lin, Fa-Hsuan et al. (2018). “Relative latency and temporal variability
of hemodynamic responses at the human primary visual cortex”. In:
Neuroimage 164, pp. 194–201.

Lindquist, Martin A et al. (2009). “Modeling the hemodynamic response
function in fMRI: efficiency, bias and mis-modeling”. In: Neuroimage
45.1, S187–S198.

Lindsey, Hannah M et al. (2021). “Diffusion-Weighted Imaging in Mild
Traumatic Brain Injury: A Systematic Review of the Literature”. In:
Neuropsychology Review, pp. 1–80.

Liu, Yin et al. (June 2022). “Neuropathological Mechanisms of Mild Trau-
matic Brain Injury: A Perspective From Multimodal Magnetic Res-
onance Imaging”. In: Front. Neurosci. 16. ISSN: 1662-453X. DOI: 10.
3389/fnins.2022.923662.

Logothetis, Nikos K and Brian A Wandell (2004). “Interpreting the BOLD
signal”. In: Annu. Rev. Physiol. 66, pp. 735–769.

Long, Christopher J et al. (2005). “Nonstationary noise estimation in
functional MRI”. In: NeuroImage 28.4, pp. 890–903.

Louridas, Panos (2018). “Review of Network Science by Albert-Làaszlò
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Messé, Arnaud et al. (2013). “Specific and evolving resting-state network
alterations in post-concussion syndrome following mild traumatic
brain injury”. In: PloS one 8.6, e65470.

Mohammadpoory, Zeynab, Mahda Nasrolahzadeh, and Javad Haddad-
nia (2017). “Epileptic seizure detection in EEGs signals based on the
weighted visibility graph entropy”. In: Seizure 50, pp. 202–208.

Monti, Martin M (2011). “Statistical analysis of fMRI time-series: a critical
review of the GLM approach”. In: Frontiers in human neuroscience 5,
p. 28.

Morelli, Nathan et al. (Sept. 2021). “Resting state functional connectiv-
ity responses post-mild traumatic brain injury: a systematic review”.
In: Brain Inj. 35.11, pp. 1326–1337. ISSN: 0269-9052. DOI: 10.1080/
02699052.2021.1972339.

Mortaheb, Sepehr et al. (Sept. 2021). “Neurophysiological Biomarkers of
Persistent Post-concussive Symptoms: A Scoping Review”. In: Front.
Neurol. 12, p. 687197. ISSN: 1664-2295. DOI: 10.3389/fneur.2021.
687197. eprint: 34566837.

131

https://doi.org/10.1089/neu.2018.5739
30024343
https://doi.org/10.1016/j.apmr.2010.05.017
https://doi.org/10.1080/02699052.2021.1972339
https://doi.org/10.1080/02699052.2021.1972339
https://doi.org/10.3389/fneur.2021.687197
https://doi.org/10.3389/fneur.2021.687197
34566837


MTBI, C (2004). “Methodological issues and research recommendations
for mild traumatic brain injury: the WHO Collaborating Centre Task
Force on Mild Traumatic Brain Injury”. In: J Rehabil Med 43, pp. 113–25.

Mumford, Jeanette A. and Thomas E. Nichols (Jan. 2008). “Power cal-
culation for group fMRI studies accounting for arbitrary design and
temporal autocorrelation”. In: Neuroimage 39.1, pp. 261–268. ISSN: 1053-
8119. DOI: 10.1016/j.neuroimage.2007.07.061.

Newman, M. E. J. (June 2004). “Fast algorithm for detecting community
structure in networks”. In: Phys. Rev. E 69 (6), p. 066133. DOI: 10.
1103/PhysRevE.69.066133. URL: https://link.aps.org/
doi/10.1103/PhysRevE.69.066133.

Nicolini, Carlo et al. (May 2020). “Scale-resolved analysis of brain func-
tional connectivity networks with spectral entropy”. In: NeuroImage
211. [Online; accessed 2022-06-30], p. 116603.

Noble, Stephanie, Dustin Scheinost, and R Todd Constable (2020). “Clus-
ter failure or power failure? Evaluating sensitivity in cluster-level
inference”. In: Neuroimage 209, p. 116468.

O’Brien, Heidi et al. (2021). “Normative and psychometric characteristics
of the health and behavior inventory among children with mild ortho-
pedic injury presenting to the emergency department: Implications for
assessing postconcussive symptoms using the Child Sport Concussion
Assessment Tool 5th Edition (Child SCAT5)”. In: Clinical Journal of
Sport Medicine 31.5, e221–e228.

Ogawa, S. et al. (July 1992). “Intrinsic signal changes accompanying sen-
sory stimulation: functional brain mapping with magnetic resonance
imaging.” In: Proc. Natl. Acad. Sci. U.S.A. 89.13, pp. 5951–5955. DOI:
10.1073/pnas.89.13.5951.

Onicas, Adrian I. et al. (2022). “Multisite Harmonization of Structural DTI
Networks in Children: An A-CAP Study”. In: Front. Neurol. 0. ISSN:
1664-2295. DOI: 10.3389/fneur.2022.850642.

Palacios, Eva M. et al. (Apr. 2017). “Resting-State Functional Connectivity
Alterations Associated with Six-Month Outcomes in Mild Traumatic
Brain Injury”. In: J. Neurotrauma 34.8, pp. 1546–1557. ISSN: 1557-9042.
DOI: 10.1089/neu.2016.4752. eprint: 28085565.

Palla, Gergely et al. (2005). “Uncovering the overlapping community struc-
ture of complex networks in nature and society”. In: nature 435.7043,
p. 814.

Pandit, Anand S. et al. (May 2013). “Traumatic brain injury impairs small-
world topology”. In: Neurology 80.20, pp. 1826–1833. ISSN: 1526-632X.
DOI: 10.1212/WNL.0b013e3182929f38. eprint: 23596068.

132

https://doi.org/10.1016/j.neuroimage.2007.07.061
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1103/PhysRevE.69.066133
https://link.aps.org/doi/10.1103/PhysRevE.69.066133
https://link.aps.org/doi/10.1103/PhysRevE.69.066133
https://doi.org/10.1073/pnas.89.13.5951
https://doi.org/10.3389/fneur.2022.850642
https://doi.org/10.1089/neu.2016.4752
28085565
https://doi.org/10.1212/WNL.0b013e3182929f38
23596068


Pedregosa, Fabian et al. (2015). “Data-driven HRF estimation for encoding
and decoding models”. In: NeuroImage 104, pp. 209–220.

Peixoto, Tiago P and Stefan Bornholdt (2012). “Evolution of robust net-
work topologies: Emergence of central backbones”. In: Physical review
letters 109.11, p. 118703.

Pernet, Cyril R (2014). “Misconceptions in the use of the General Linear
Model applied to functional MRI: a tutorial for junior neuro-imagers”.
In: Frontiers in neuroscience 8, p. 1.
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