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Abstract

Prosocial behaviors – such as helping others, donating, and
cooperating – are often considered key to evolutionary suc-
cess. Therefore, it is of great interest to understand under
what conditions these behaviors can emerge and/or can be
sustained at a population level. Following a dual process
approach, I study whether and how cognition can affect the
evolution of collaboration, cooperation, and generosity. I do
this by employing stochastic stability analysis techniques and
agent-based simulations. For each prosocial behavior consid-
ered, I find that cognition can play an important role in the
diffusion of prosocial behaviors, sometimes fostering them
and other times hampering them. These results shed light on
recent experimental evidence and, at the same time, suggest
new interesting research avenues.
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Chapter 1

Introduction

This thesis is a collection of three papers studying the evolution of proso-
cial behaviors following a dual process perspective.

The term ’prosocial behaviors’ covers a wide range of behaviors whose
common feature is that they provide a benefit to others. Helping others,
cooperating, collaborating, and donating are typical examples of proso-
cial behaviors. These behaviors are extensively studied in many fields
such as economics, psychology, and biology.

From an economic perspective, prosocial behaviors are interesting for
many reasons. In fact, given that performing prosocial behaviors often
(although not necessarily) comes at a cost one might wonder why indi-
viduals engage in these behaviors in the first place: Is it because of indi-
vidual preferences? If so, are these preferences by nature or by nurture?
Or do individuals perform prosocial behaviors because of other exter-
nal mechanisms such as repeated interactions, kinship, reciprocation, or
even fear of punishment? Moreover, given that prosocial behaviors ben-
efit others, if they come at no cost or at a cost lower than the benefit they
provide then they are welfare-enhancing. With this perspective in mind,
it is of particular interest to understand whether and how prosocial be-
haviors can be promoted, but also how to eliminate disruptive elements.

In each paper contained in this thesis, I develop and analyze models
of the evolution of prosocial behaviors. Even though each model focuses
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on a distinct prosocial behavior and tries to answer different open ques-
tions in the relevant literature, they all aim at providing explanations of
why prosocial behaviors may emerge even in societies in which individ-
uals are self-interested, i.e. agents are always assumed to care merely
about their own payoff. In addition, all models share a dual process ap-
proach to cognition and the use of evolutionary techniques.

In this thesis, the term cognition refers specifically to the process by
which an agent chooses the amount and the type of information to ex-
ploit when revising (or implementing) its strategy. Moreover, all the
papers adopt a dual process approach to cognition. According to dual
process theories of cognition, human decision-making can be seen as
the result of the interplay between two modes of reasoning: intuition,
which is quick and relies on heuristics, and deliberation, which is slow
and requires careful scrutiny of available information, costs, and benefits
(Evans and Stanovich, 2013). Following recent applications of dual pro-
cess theories of cognition (Bear and David G Rand, 2016; Jagau and Vee-
len, 2017), I model deliberative thinking as an individual’s ability to ob-
tain more accurate information. More precisely, given that in each model
considered individuals engage in different strategic interactions, in the
setups considered obtaining more accurate information via deliberation
translates into the ability of an agent to recognize the specific type of
interaction it is currently engaged in. This in turn allows the agent to
behave differently in the various types of interactions (of course if this is
beneficial). Even though the effect of deliberating is the same in all the
models developed, the models differ in the way they assume agents in-
cur into deliberation. On the one hand, the model in Chapter 2 assumes
exogenous deliberation and, so, an agent either always or never deliber-
ates depending on its type. On the other hand, the models in Chapter 3
and Chapter 4 assume that each individual chooses its cognitive mode
after a cost-benefit evaluation and, so, in these models cognition is en-
dogenous.

Evolutionary selection is studied within a population games approach.
In fact, all the papers feature a population (or multiple populations) of
agents that interact over time. More precisely, in every period of time,
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agents are randomly matched into couples – in case of an endogenous in-
teraction structure, random matching may be restricted to sub-samples
of the entire population – and each couple plays a stage game that is
meant to capture the tension between adopting a prosocial behavior (co-
operating, collaborating, being fair) and not doing so. After each inter-
action, agents revise their strategy with positive probability following
a certain revision protocol (myopic best reply, imitation, reinforcement
learning). After agents have revised their strategy (if they had the chance
to do so), a new time period begins.

These kinds of setups are often characterized by inertia, i.e., agents
are not guaranteed to revise their strategy in each period of time, and
myopia, i.e., when revising their strategy, agents consider only current
information about the system or about payoffs, but they do not account
for possible future trajectories of the system. Under these conditions, the
population games at hand behave as Markov chains, and consequently,
they are usually studied via either stochastic processes or agent-based
simulation techniques.

The population games considered present multiple equilibria, which
significantly reduce the possibility of deriving clear predictions from the
model. When this is the case, I employ stochastic stability analysis. Stochas-
tic stability analysis (Foster and Young, 1990; H. P. Young, 1993; Kandori,
Mailath, and Rob, 1993; Freidlin and Wentzell, 1984) is an equilibrium
selection device. In short, under the assumption that agents make mis-
takes with a small probability ε, stochastic stability analysis selects the
equilibria that are relatively easier to reach in terms of mistakes. In prov-
ing sufficient conditions for stochastically stable states, I often exploit the
radius-coradius theorems in Ellison (2000).

When employing stochastic stability analysis, the population game is
studied under two different dynamics, which are usually referred to as
unperturbed and perturbed dynamics.

Under unperturbed dynamics, agents revise their strategy according
to their revision protocol without making mistakes. Under these dynam-
ics, the goal is to characterize all the recurrent classes or absorbing sets.
An absorbing set of the system is a set of states such that if the system
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reaches one of the states belonging to the absorbing set, then (under un-
perturbed dynamics) the system will remain indefinitely in states belong-
ing to the absorbing set.

Under perturbed dynamics, instead, agents revise their strategy ac-
cording to their revision protocol most of the time, but they also make
mistakes with positive probability ε. Under these dynamics, there are no
absorbing sets, as the system may leave every set of states with positive
probability (eventually via mistakes). Moreover, starting from any state,
σ, the system can reach with positive probability any other state, so the
population game constitutes an ergodic Markov chain. But then, it has a
unique invariant distribution, denoted by µε, which can be interpreted as
a probability distribution over the state space Σ such that, for each σ ∈ Σ,
the probability of being in state σ approximates the fraction of time spent
by the system in state σ in the long run. This probability distribution ex-
ists and is unique for any given ε > 0; however, as it is customary in the
literature, we focus on the limit distribution µ∗ for ε → 0.

The limit distribution µ∗ corresponds to the limit of the invariant dis-
tribution as mutations become arbitrarily small, and it is an approxima-
tion of the invariant distribution for sufficiently small values of the mu-
tation rate ε. States to which the limit distribution associates positive
probabilities are said to be stochastically stable. Such states must be-
long to some absorbing set of the system in the unperturbed dynamics
(H. P. Young, 1993).

The remaining part of the thesis is structured as follows: Chapter 2,
Chapter 3, and Chapter 4 contain the three papers while Chapter 5 con-
cludes.

The first paper, presented in Chapter 2, is a joint work with Ennio
Bilancini and Leonardo Boncinelli. In the paper, we study the evolution
of conventions in the Stag Hunt Game. In particular, we are interested
in analyzing under which conditions the payoff dominant convention –
in which players choose risky but socially optimal collaboration – is the
expected evolutionary outcome. In this regard, previous studies have
shown that the structure of interaction can foster the adoption of the
payoff dominant convention (Oechssler, 1997; Anwar, 2002; Bhaskar and
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Vega-Redondo, 2004; Pin, E. Weidenholzer, and S. Weidenholzer, 2017);
moreover, recent experimental evidence (Belloc et al., 2019; Bilancini,
Boncinelli, and Paolo, 2021) has found that cognition may play a role
too. By combining these considerations, we consider an evolutionary
game where: (i) agents choose a location to interact locally, (ii) interac-
tions are sometimes global and sometimes local, and (iii) agents can be
either fine or coarse reasoners, i.e., agents are able or not, respectively,
to distinguish between global and local interactions. We show that the
structure of interaction and the mode of reasoning affect the selection of
social conventions. Further, we find that the coexistence of coarse and
fine reasoning may favor or hinder the adoption of the payoff dominant
action depending on the structure of interactions. In particular, if inter-
actions are mostly local, then fine reasoning increases the diffusion of the
payoff dominant action. Instead, if interactions are sufficiently global,
then fine reasoners are never more collaborative than coarse reasoners
and they may even disrupt the emergence of payoff dominant conven-
tions.

The second paper, reported in Chapter 3, is also a joint work with
Ennio Bilancini and Leonardo Boncinelli. In this paper, we study the
co-evolution of cooperation and cognition with an endogenous interac-
tion structure. We built upon an evolutionary model (Bear and David G
Rand, 2016; Jagau and Veelen, 2017) in which agents interact over time
and are randomly matched to play either an anonymous one-shot or an
infinitely repeated prisoners’ dilemma. However, agents can recognize
the actual game they are playing only under deliberation which comes at
a cost randomly sampled from a generic distribution. We introduce a set
of identical locations and impose that only agents in the same location
interact with each other (endogenous structure of interaction). We show
that depending on the actual distribution of deliberation costs the system
is characterized by either two or three types of absorbing sets: (i) an in-
tuitive defection set, (ii) dual process cooperation states, and eventually
(iii) dual process defection states. Moreover, we find that the presence
of an endogenous interaction structure enlarges the parameter space in
which dual process cooperation states are stochastically stable and, in
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particular, we show that if dual process cooperation states are absorbing
then they are also stochastically stable.

The third paper is reported in Chapter 4. In it, I develop a model for
the evolution of fair splits and harsh rejections in the Ultimatum Game.
The model features two types of reinforcement learning agents, namely
proposers and receivers, who are randomly matched to play either an
Ultimatum Game or a simplified Bargaining Game. Agents know the rel-
ative frequency of each game, but they are unable to distinguish whether
they are playing one game or another in a specific interaction unless they
incur a deliberation cost randomly sampled from a known (uniform) dis-
tribution. I find that depending on the cost distribution considered, pro-
posers’ may evolve to follow different kinds of strategies while receivers’
equilibrium behavior is independent of the cost distribution considered.
These results can account for the emergence of fair offerings and fre-
quent rejections in the Ultimatum Game. Further, the model provides
several predictions regarding the effects of cognitive manipulations on
proposers’ and receivers’ behaviors and underlines a potential limitation
in the effectiveness of cognitive manipulations – namely, endogenous re-
ceivers’ deliberation probabilities.
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Chapter 2

The Structure of Interaction
and Modes of Reasoning
Can Shape the Evolution of
Conventions

2.1 Introduction

We study how social conventions are shaped in the long run by the fre-
quency of local social interactions (as opposed to global ones) when agents
are mobile across the locations where local interactions take place (as in
Oechssler, 1997; Ely, 2002; Bhaskar and Vega-Redondo, 2004) and the
population consists of two types of myopic best responders: coarse rea-
soners (who cannot distinguish between local and global interactions)
and fine reasoners (who can condition their actions on whether their cur-
rent interaction is local or global).

Interest in this setting stems from a desire to understand whether and
how the evolution of conventions may be affected by the heterogeneity
of the mode of reasoning in the population when the mode of reason-
ing allows distinguishing between local and global interactions. While
the degree of locality of interactions has been shown to play a role in
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the selection of conventions (see Newton, 2018, and references therein),
its interplay with the mode of reasoning has not yet been investigated.
In particular, taking into account parallel work on the evolution of co-
operation (Jagau and Veelen, 2017), one can reasonably expect that the
interplay between the degree of locality and the mode of reasoning leads
to non-trivial results in terms of convention selection for both global and
local interactions.

We focus on the evolution of conventions in the Stag Hunt game. The
Stag Hunt game is often viewed as a paradigmatic representation of the
obstacles to social cooperation (Skyrms, 2004). In fact, in the game, two
players must simultaneously decide whether they want to collaborate
with the other agent (hunt a Stag) or work on their own (hunt a Hare).
Social cooperation can either provide the highest attainable payoff (if the
other player cooperates too) or the lowest possible one (if the other agent
does not cooperate), while individualistic behavior provides a higher ex-
pected payoff if the opponent’s behavior is uncertain. It is of particular
interest to understand under which conditions the payoff dominant con-
vention is selected and, thus, social cooperation may thrive as coordina-
tion on the payoff dominant convention is socially optimal.

The structure of interaction is modeled as a mixture of random en-
counters in a chosen location and random encounters in the whole pop-
ulation. This is a convex combination of two interaction structures that
have been extensively explored in the literature on the evolution of con-
ventions. Under random encounters in the whole population (Kandori,
Mailath, and Rob, 1993; Kandori and Rob, 1995; H. P. Young, 1993), the
risk dominant convention tends to be established, instead under random
encounters in a chosen location (Oechssler, 1997; Anwar, 2002; Bhaskar
and Vega-Redondo, 2004; Pin, E. Weidenholzer, and S. Weidenholzer,
2017) there is room for the evolution of the payoff dominant convention.
Under certain circumstances – such as limited location capacity or im-
possibility of re-optimizing together location choice and play – the payoff
dominant and the risk dominant convention may co-exist. The literature
has further investigated other structures of interactions that do not be-
long to the convex combination we consider. There are models where in-
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teraction occurs with exogenously given neighbors – as in Ellison (1993),
where players are arranged on a circle and interact with the two imme-
diate neighbors.1 In these models, the risk dominant convention is se-
lected in the long run if agents adopt a best response rule when updat-
ing behavior (Peski, 2010).2 The literature has also considered models
with endogenous network formation, where agents choose with whom
to interact (Goyal and Vega-Redondo, 2005; Jackson and Watts, 2002;
Staudigl and S. Weidenholzer, 2014; Bilancini and Boncinelli, 2018). In
these models, the payoff dominant convention is shown to emerge in the
long run if the single interaction is sufficiently costly or the total number
of interactions per agent is sufficiently constrained. Our setting with lo-
cal and global interactions combines some features characterizing mod-
els with exogenous network formation with features peculiar to models
with endogenous network formation. In fact, under global interactions,
each agent is connected with every other player in the society, and no
agent can modify its pool of potential partners like in an exogenous fully-
connected network. Instead, under local interactions, each agent inter-
acts only with the other players staying in the same location, and it can
partially decide with whom to interact by choosing one or another loca-
tion. This feature of local interactions makes them resemble endogenous
interaction structures despite having agents limited to choose between
groups of agents (the ones staying in a given location) with whom to in-
teract rather than between individual agents with whom to interact as in
endogenous networks.

We assume that all agents in our model follow myopic best response,
a widely adopted behavioral rule in evolutionary models (Newton, 2018).
Behavioral rules other than myopic best response have also been consid-
ered in the literature. A prominent rule is imitation, which typically fa-

1See S. Weidenholzer (2010) for a survey on the evolution of social coordination under
local interactions.

2If the behavioral rule is instead imitation, then the payoff dominant convention can
emerge if interactions are neither global nor limited to the immediate neighbors (Alós-
Ferrer and S. Weidenholzer, 2006; Alós-Ferrer and S. Weidenholzer, 2008) or if information
transmission about average earned payoff is costly and agents have many neighbors (Cui,
2014). Long-run behaviors depend on the specification of the imitation rule and the com-
munication structure (Chen, Chow, and Wu, 2013).
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vors the long-run selection of the payoff dominant convention (Robson
and Vega-Redondo, 1996; Alós-Ferrer and S. Weidenholzer, 2008).

Heterogeneity in the mode of reasoning is modeled by introducing
two different types of myopic best responders (coarse reasoners and fine
reasoners) who differ in their ability to condition their best response to
information about the type of interaction. Specifically, coarse reason-
ers myopically choose a single best reply to the distribution of behav-
iors (over both local and global interactions), while fine reasoners my-
opically choose two best replies: one for local interactions and one for
global interactions. Basically, coarse reasoners cannot distinguish if an
interaction is local or global, although they are aware of the likelihood
that it is one or the other. In other words, we model finer reasoning as
the ability to obtain and process more accurate information about the
features of the interaction, which translates into the possibility for fine
reasoners to condition their action on the type of interaction (this is rem-
iniscent of, e.g., Bear and David G Rand, 2016; Jagau and Veelen, 2017).
This setup can be seen as a simplified version of dual process theories
of reasoning where two modes of reasoning are possible for decision-
making: intuition, which is quick and relies on heuristics, and delibera-
tion, which is slow and requires careful scrutiny of available information,
costs, and benefits (Evans and Stanovich, 2013). Our simplification is that
an agent’s reasoning mode is exogenous, i.e., it cannot switch from being
coarse to being fine reasoner or vice versa. This is mainly done for the
purpose of keeping the model tractable. In Section 2.5, we discuss the ex-
pected consequences of having an endogenous reasoning mode, which
is also an interesting avenue for further research. Alternatively, the het-
erogeneity in the mode of reasoning characterizing our setup can be in-
terpreted as the effect associated with the adoption of different heuristics
by coarse and fine reasoners (Gigerenzer and Gaissmaier, 2011). Follow-
ing this alternative approach, both types of agents adopt a heuristic as
they myopically best reply and, so, they optimize their behavior without
taking into account past information (only the current state of the system
matters) and without considering potential strategy updates from other
agents. However, coarse and fine reasoners adopt different heuristics as
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the former further discard information regarding the degree of locality
of interactions.

Evolutionary selection is studied both by means of stochastic stabil-
ity analysis and by performing agent-based simulations of the model. In
proving sufficient conditions for stochastically stable states, we crucially
exploit the radius-coradius theorems in Ellison (2000). We then provide
simulation results indicating that the conclusions we obtain by perform-
ing stochastic stability analysis on sub-regions of the parameter space
can actually be extended over the entire parameter space.

We find that different conventions can be selected in the long run de-
pending on the probability of random local interactions and the fraction
of fine reasoners in the population. More precisely, if the probability of
local interactions is below a certain threshold, then independently of the
fraction of fine reasoners in the population selection favors a semi-risk
dominant convention in which coarse reasoners play the risk dominant
convention while fine reasoners play the payoff dominant convention
locally and the risk dominant one globally; moreover, agents are sepa-
rated in distinct locations according to type. Instead, if the probability
of local interactions is higher than that threshold, then the selected con-
vention depends on the fraction of fine reasoners in the population. In
particular, if the fraction of fine reasoners is higher than a given thresh-
old, then selection favors a semi-payoff dominant convention in which
coarse reasoners play the payoff dominant convention while fine reason-
ers play the payoff dominant convention locally and the risk dominant
one globally; instead, if the fraction of fine reasoners is below that thresh-
old, then selection favors a payoff dominant convention in which every
agent plays the payoff dominant convention in each type of interaction.

The main contribution of this paper is to uncover the non-trivial in-
terplay between the structure of interaction and the heterogeneity in the
modes of reasoning for the evolution of conventions. In particular, it is
found that more fine reasoners in the population do not necessarily lead
to greater efficiency: in equilibrium coordination on the payoff dominant
action may either increase or decrease, and this holds for miscoordina-
tion too. More specifically, the current paper brings together multiple
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streams of literature, providing contributions to each of them. First, it
contributes to the literature on the evolution of conventions by showing
that the heterogeneity in the mode of reasoning may matter in the se-
lection of the ruling convention. Second, it contributes to the evolution-
ary literature on location-choice models by showing that heterogeneity
in the mode of reasoning may give rise to the co-existence of conven-
tions as well as to the full separation of agents’ mode of reasoning even
in the absence of frictions to mobility. Third, it contributes to the liter-
ature studying whether prosocial behaviors (such as social cooperation)
are related to different modes of reasoning, showing that no mode of
reasoning is always beneficial to cooperation in the Stag Hunt game but
that, instead, what mode fosters cooperation depends on both the fre-
quency of local interactions and the fraction of coarse reasoners. Finally,
it provides interesting theoretical predictions – regarding, for example,
the effects of cognitive manipulations on the likelihood that subjects co-
ordinate on the payoff dominant convention – that can be empirically
tested with laboratory experiments.

The remaining part of the paper is structured as follows: Section 2.2
illustrates the model, Section 2.3 and Section 2.4 present the main re-
sults, and Section 2.5 concludes. All proofs and intermediate results are
collected in the appendices.

2.2 The Model

Consider a population of agents N = {1, . . . , N} indexed by n and a set
of locations L = {1, . . . , L} with L ≥ 2 indexed by ℓ. Time is discrete and
denoted by t ∈ N.

At the beginning of each period of time t, agents interact in a round-
robin tournament fashion and the type of interaction they experience is
determined probabilistically. More precisely, interactions can be either
local or global in the following sense: with probability p ∈ (0, 1) each
agent interacts with every other agent staying in its current location (local
interactions) while with probability 1− p each agent interacts with every
other agent in the population (global interactions). In either case, agents
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are randomly matched to play a Stag Hunt game as depicted in Figure 1.
In the game, each player chooses an action between A (Hare, work indi-
vidually) and B (Stag, cooperate). We assume that b > a > c > d > 0 and
a+ c > b+ d so that in a one-shot interaction A is risk dominant while B

is payoff dominant.

P2
A B

P1

A a, a c, d

B d, c b, b

Figure 1: The Stag Hunt game.

In the following, we will denote with α = a−d
a−d+b−c the probability

with which action B is played in the mixed strategy equilibrium of the
Stag Hunt game so that if a proportion α of agents plays action B then
both A and B are best replies. We can also interpret α as the size of the
basin of attraction of the risk dominant action A.

In this model, an agent can remain unmatched if interactions are lo-
cal and if the agent is alone in its current location. We assume that an
unmatched agent earns a reservation payoff of u. For simplicity, we set
u = 0 although our results hold for any u < d, i.e., for any reserva-
tion payoff lower than the minimum payoff achievable in the Stag Hunt
game.

There are two types of agents in the population, distinguished by
their mode of reasoning. A fraction q ∈ (0, 1) of the population is made
of fine reasoners who can condition the action they play in the Stag Hunt
game on the type of interaction (i.e., local or global) they are facing, while
a fraction 1 − q of the population is made of coarse reasoners who play
the same action in both types of interaction. We denote with C and F ,
respectively, the set of coarse reasoners and the set of fine reasoners so
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that C∪F = N and C∩F = ∅. Moreover, we indicate with i ∈ C a generic
coarse reasoner and with j ∈ F a generic fine reasoner.

We denote the strategy of agent n ∈ N at time t by means of a vector
σnt = (ℓnt, lnt, gnt) where ℓnt ∈ L is the location chosen by agent n at
time t, lnt ∈ {A,B} is the action agent n plays in local interactions, and
gnt ∈ {A,B} is the action played in global interactions. By assumption
it must be lit = git for every coarse reasoner i ∈ C as coarse reasoners
cannot condition their action on the type of interaction they are facing.
We indicate the state of the system at time t via a matrix Σt = (σnt)n∈N ∈
Σ where Σ = LN × {A,B}N × {A,B}N is the state space. Finally, we
denote the current state of the system excluding agent n′ via the matrix
Σ−n′t = (σnt)n∈N :n̸=n′ .

The system evolves according to synchronous myopic best reply with
inertia and uniform random mistakes. More precisely, at the end of each
period of time t, every agent n ∈ N has a fixed probability ρ ∈ (0, 1)

to revise its strategy. If given a revision opportunity, with probability
1 − ε ∈ (0, 1] the agent myopically best replies to the current state of
the system Σt by choosing a strategy providing the maximum expected
payoff and randomizing over best replies if the best reply is not unique;
instead, with probability ε the agent makes a mistake and adopts a strat-
egy uniformly at random. Formally, let

πnt(σ) = E[π(σ; Σ−nt)]

be the expected payoff of agent n associated to strategy σ given that the
other agents adopt strategies Σ−nt. With probability 1− ε the agent best
replies to the current state of the system, selecting with positive proba-
bility a strategy σ∗ if and only if

σ∗ ∈ argmax
σ

πnt(σ)

Instead, with probability ε the agent makes a mistake and, so, it chooses
a strategy uniformly at random.

The system described induces a Markov chain over the state space
Σ. We say that the system evolves according to unperturbed dynamics
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if ε = 0, while we say that the system evolves according to perturbed
dynamics if ε > 0. We study the two cases in turn.

2.3 Unperturbed Dynamics

In this section we study the dynamics of the system in the absence of
mistakes: an agent myopically best replies to the current state of the sys-
tem with probability one. In this dynamics every strict Nash equilibrium
is an absorbing state: if the system reaches a state in which each agent
adopts its unique best reply to the current state of the system at time
t then it will stay there with probability one at any time t + k, for any
k > 0. In the following, we characterize all the absorbing states of the
system and we show that no other absorbing set exists.

We begin with some needed additional notation. We use an ad hoc
labeling to refer to the states of the system where every coarse reasoner
i ∈ C adopts strategy σi = (ℓ∗, X,X), X ∈ {A,B}, and where every fine
reasoner j ∈ F adopts strategy σj = (ℓ∗∗, Y, Z), Y,Z ∈ {A,B}, made of
the following three components:

• The action played by coarse reasoners: X ;

• The spatial distribution of types: if coarse reasoners and fine rea-
soners stay in the same location, i.e., if ℓ∗ = ℓ∗∗, then X will be
followed by the symbol “-”; if, instead, coarse and fine reasoners
are segregated according to type, i.e. if ℓ∗ ̸= ℓ∗∗, then X will be
followed by the symbol “/”;

• The actions played by fine reasoners in local (Y ) and global (Z)
interactions: Y Z.

For example, the label A-BA refers to the states of the system in which
σi = (ℓ∗, A,A) for every i ∈ C and σj = (ℓ∗, B,A) for every j ∈ F with
everybody choosing the same location ℓ∗ ∈ L. Note that there are L

distinct states like this, one for each location in L.
By adopting this notation we aim at stressing that the specific location

chosen by agents is not of particular interest as all locations are identical:
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what really matters is whether coarse and fine reasoners stay in the same
or in a different location.

With this notation at hand, we can state our first result.

Theorem 1. If the population is large enough, then all the states of the following
types are absorbing:

(1.1) A-AA, if p, q ∈ (0, 1);

(1.2) A-AB, if p ∈ (0, 1) and q ∈
(︁
α,min

{︁
α

1−p , 1
}︁)︁

;

(1.3) A-BA, if p ∈ (0, 1) and q ∈
(︁
α,min

{︁
α
p , 1

}︁)︁
;

(1.4) A/BA, if p ∈
(︁
0, a−d

b−d

)︁
and q ∈ (0, 1);

(1.5) B-AB, if p ∈ (0, 1) and q ∈
(︁
1− α,min

{︁
1−α
p , 1

}︁)︁
;

(1.6) B-BA, if p ∈ (0, 1) and q ∈
(︁
1− α,min

{︁
1−α
1−p , 1

}︁)︁
;

(1.7) B-BB, if p ∈ (0, 1);

Further:

(1.8) there are no absorbing sets other than the states of types A-AA, A-AB,
A-BA, A/BA, B-AB, B-BA, and B-BB.

The proof of Theorem 1 is reported in Appendix A. Here we provide a
sketch of how we prove it. We first derive an expression for the expected
payoff of an agent in a generic state of the system. Then, we obtain three
conditions (one for coarse reasoners and two for fine reasoners) which
allow us to easily determine the myopic best reply of an agent of either
type in a generic state of the system. With these conditions at hand, we
then show that each state of the types listed in Theorem 1 is a strict Nash
equilibrium of the system and, consequently, an absorbing state. Finally,
we show that there are no other absorbing sets of the system by provid-
ing an algorithm according to which, starting from any state, the system
reaches with positive probability one of the absorbing states in Theo-
rem 1, implying that all states different from those of the types listed in
Theorem 1 are transient and not absorbing.

According to Theorem 1 the system is characterized by several types
of absorbing states and most of them are such only in a sub-region of the

16



parameter space (p, q) as it can be seen in Figure 2. A simple way to inter-
pret this result is that in an absorbing state the following conditions must
hold. First, in equilibrium agents of the same type must adopt the same
strategy because they are identical. Second, given that the set of strate-
gies available to coarse reasoners is a strict subset of the set of strategies
available to fine reasoners, in equilibrium coarse reasoners cannot obtain
a strictly higher expected payoff than fine reasoners. Third, in an absorb-
ing state of the system, there must be some coordination between coarse
reasoners and fine reasoners: they must coordinate at least in one among
local and global interactions.

2.4 Perturbed Dynamics

In this section, we study the dynamics of the system in the presence of
mistakes: an agent myopically best replies to the current state of the sys-
tem with probability 1 − ε and adopts a new strategy at random with
probability ε, with ε > 0. In the following, we focus on the long-run
behavior of the system.

To study the long-run behavior of such a system, we employ two
different techniques. In Section 2.4.1, we employ stochastic stability to
identify the absorbing states (of the unperturbed dynamics) that may be
selected in the long run, i.e., that may be stochastically stable for some
value of p and q. Moreover, we provide sufficient conditions on p and q

for an absorbing state to be selected. Then, in Section 2.4.2 we use agent-
based simulations of the model to analyze the long-run behavior of the
system in the entire (p, q)-space.

2.4.1 Stochastic Stability Analysis

As already mentioned in Chapter 1, the stochastically stable states of the
system must belong to some absorbing set or state of the system under
unperturbed dynamics (H. P. Young, 1993). In our setup, this implies that
only the absorbing states of the types listed in Theorem 1 are candidates
to be stochastically stable states.
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Figure 2: Absorbing states according to Theorem 1. States that according
to Theorem 1 can give rise to absorbing states of the system in the (p, q)
parameter space in which they actually are absorbing states. Case a = 4,
b = 5, c = 3, d = 1 and, consequently, α = 0.6 and (a− d)/(b− d) = 0.75.
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To determine the stochastically stable states of the system we em-
ploy radius-coradius arguments (Ellison, 2000). We apply them to op-
portunely selected partitions {Ω,Ω−1} of the set of absorbing states and
then we compute (i) the minimum number of mistakes required to leave
the basin of attraction of Ω, i.e., the radius of Ω or R(Ω), and (ii) the max-
imum minimum number of mistakes required to enter into the basin of
attraction of Ω starting from an absorbing state belonging to Ω−1, i.e., the
coradius of Ω or CR(Ω). If R(Ω) > CR(Ω) then all the stochastically sta-
ble states of the system are contained in Ω. We refer to stochastically sta-
ble sets to indicate sets containing only stochastically stable states. This
is useful when we refer to the types of states listed in Figure 2 because if
any single state of a given type is stochastically stable then all states of
that type are so.

In Theorem 2 we identify the types of absorbing states of the system
that are never stochastically stable.

Theorem 2. If the population is large enough, then all the absorbing states of
the types A-AA, A-AB, A-BA, and B-AB are never stochastically stable.

The proof is reported in Appendix B and is based on radius-coradius
arguments applied to two sets of absorbing states, namely Ω and {A-AA,
A-AB, A-BA, B-AB}. The main idea is to show that the radius of the basin
of attraction of Ω is strictly larger than one, while its coradius is equal to
one. This implies that all the stochastically stable states are contained in
Ω and, consequently, all the absorbing states of the types A-AA, A-AB,
A-BA, and B-AB are never stochastically stable.

We repeat this reasoning by analyzing separately two following cases:
the case q ∈

(︁
0,min

{︁
1−α
1−p , 1

}︁)︁
and the case q ∈

(︁
min

{︁
1−α
1−p , 1

}︁
, 1
)︁
. In the

first case we set Ω = {A/BA, B-BA, B-BB} while in the second case we
consider Ω = {A/BA, B-BB}. We repeat the analysis twice because if q ∈(︁
min

{︁
1−α
1−p , 1

}︁
, 1
)︁

then states of the type B-BA are not absorbing states
and the parameters p and q are such that starting from a state of the type
B-BA the system may reach with positive probability – i.e., without any
mistake taking place – an absorbing state of the type A-BA which does
not belong to the basin of attraction of Ω. Therefore, if we set Ω = {A/BA,
B-BA, B-BB} in the entire parameter space, then the radius of Ω would
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be equal to zero and, hence, we could not establish whether absorbing
states of the types A-AA, A-AB, A-BA, or B-AB are stochastically stable
or not.

By stating that all the absorbing states of the types A-AA, A-AB, A-
BA, and B-AB are never stochastically stable, Theorem 2 implies that
only absorbing states of the types A/BA, B-BA, and B-BB are candidate
stochastically stable states of the system. This result allows us to derive a
first conclusion: in a stochastically stable state of the system fine reason-
ers must play the payoff dominant action, B, in local interactions. The
main reason behind this result is that starting from any absorbing state in
which fine reasoners play the risk dominant action in local interactions,
i.e., absorbing states of the types A-AA, A-AB, and B-AB, one mistake
is enough to lead with positive probability the system into another ab-
sorbing state in which fine reasoners play the payoff dominant action in
local interactions. In fact, if one agent makes a mistake and adopts strat-
egy (ℓ′, B, Z) where ℓ′ is an empty location and Z ∈ {A,B}, then every
fine reasoner will strictly prefer strategy (ℓ′, B, Y ) with Y ∈ {A,B} to its
current strategy (ℓ∗, A, Y ) involving playing the risk dominant action lo-
cally as this new strategy allows perfect local coordination on the payoff
dominant convention.

In Theorem 3 we further analyze the set of stochastically stable states
of the system, and we provide sufficient conditions for the stochastic sta-
bility of the absorbing states of the types A/BA, B-BA, and B-BB.

Theorem 3. If the population is large enough, then all and only absorbing states
of the following types are stochastically stable:

(3.1) A/BA, if p ∈
(︁
0, 2α−1

α

)︁
and q ∈ (0, 1);

(3.2) B-BA, if p ∈
(︁
a−d
b−d , 1

)︁
and q ∈

(︁
2(1− α), 1

)︁
;

(3.3) B-BB, if p ∈
(︁
a−d
b−d , 1

)︁
and q ∈

(︁
0, 1− α

)︁
.

The proof is reported in Appendix C. The proof requires several steps.
However, each step follows approximately the same logic: we first con-
struct a partition of the set of absorbing states of the system into Ω and
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Ω−1 such that the set Ω contains only one among the remaining candi-
date types of stochastically stable states (A/BA, B-BA, and B-BB), we
then compute the radius and the coradius of Ω and we finally find the
region in the (p, q) parameter space such that the radius is larger than the
coradius. Note that if convenient we also include into the set Ω absorb-
ing states that according to Theorem 2 are never stochastically stable. The
inclusion of such absorbing states may simplify the computation of the
coradius of Ω or it may be necessary to guarantee that the radius is larger
than the coradius. In either case, this does not invalidate our conclusions
as by Theorem 2 such states are never stochastically stable.

Sketch of the Proof. For the proof of point (3.1) we have to consider sepa-
rately two regions of the parameter space and compute the radius and
the coradius for different partitions of the set of absorbing states.

First, we analyse the case p ∈
(︁
0, 2α−1

α

)︁
and q ∈

(︁
0,min

{︁
1−α
1−p , 1

}︁)︁
and we consider the following partition of absorbing sets: Ω = {A/BA,
A-AA} and Ω−1 = {B-BA, B-BB, A-AB, A-BA, B-AB}. We find that the
radius of Ω is larger than its coradius if at least p ∈

(︁
0, 2α−1

α

)︁
. There-

fore, if p ∈
(︁
0, 2α−1

α

)︁
all the stochastically stable states of the system are

contained in Ω; but then, given that states of the type A-AA are never
stochastically stable, we can conclude that if p ∈

(︁
0, 2α−1

α

)︁
then the set of

absorbing states of the type A/BA is stochastically stable.
Second, we consider the case p ∈

(︁
0, 2α−1

α

)︁
and q ∈

(︁
min

{︁
1−α
1−p , 1

}︁
, 1
)︁

and we set Ω′ = {A/BA, A-AA, A-BA} and Ω′−1 = {A-AB, B-AB, B-BB}.
We again show that if p ∈

(︁
0, 2α−1

α

)︁
then the radius of Ω′ is strictly larger

than its coradius and, so, we conclude that also if p ∈
(︁
0, 2α−1

α

)︁
and q ∈(︁

min
{︁

1−α
1−p , 1

}︁
, 1
)︁

then the set of states of the type A/BA is stochastically
stable as by Theorem 2 absorbing states of the types A-AA and A-BA are
never stochastically stable.

By combining the two previous results we can conclude that if p ∈(︁
0, 2α−1

α

)︁
then the set of absorbing states of the type A/BA is stochasti-

cally stable.
To prove point (3.2) we analyse the case p ∈

(︁
a−d
b−d , 1

)︁
and we consider

the partition of absorbing states into Ω′′ = {A-AA, A-BA, B-BA} and
Ω′′−1 = {B-BB, A-AB, B-AB}. We find that if q ∈

(︁
2(1 − α), 1

)︁
then the

radius of Ω′′ is larger than its coradius and, consequently, all the stochas-
tically stable states are contained into Ω′′. But then, given that by Theo-
rem 2 states of the types A-AA and A-BA are never stochastically stable,
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if p ∈
(︁
a−d
b−d , 1

)︁
and q ∈

(︁
2(1 − α), 1

)︁
the set of states of the type B-BA is

stochastically stable.
Finally, point (3.3) of Theorem 3 is a direct implication of Theorem 1

and Theorem 2. In fact, by Theorem 1 only states of the types A-AA and
B-BB are absorbing if p ∈

(︁
a−d
b−d , 1

)︁
and q ∈

(︁
0, 1−α

)︁
; while by Theorem 2

absorbing states of the type A-AA are never stochastically stable.

Note that Theorem 3 predicates the stochastic stability of the sets of
all states of each type A/BA, B-BA, and B-BB, i.e., that the states of a
given type are either all stochastically stable or none. This is because
each state of a given type is equally likely to be reached, in the following
sense: if the system is in an absorbing state, say σ′, of a given type, then
(i) either one or two mistakes can lead the system with positive proba-
bility into any other absorbing state of the same type, say σ′′, and (ii) the
same number of mistakes (either one or two) may lead the system with
positive probability from σ′′ to σ′. This fact is a direct consequence of
the assumption that locations are identical: given that all locations are
the same, there is no reason why agents should prefer one location over
another in the long run and so, stochastic stability analysis cannot select
among states of the same type characterized by different equilibrium lo-
cation choices.

In Figure 3 we provide a graphical representation of the implications
of Theorem 3 for a given set of payoffs (a = 4, b = 5, c = 3, and d = 1) by
coloring the regions in the (p, q)-space where states of type A/BA, B-BA,
and B-BB are or can be stochastically stable.

If the frequency of local interactions is sufficiently small, then the set
of states of the type A/BA is stochastically stable. In other words, a semi-
risk dominant convention is selected: if interactions are global all agents
play the risk dominant action, instead if interactions are local coarse rea-
soners coordinate on the risk dominant action, while fine reasoners play
the payoff dominant action. However, given that agents are segregated
according to their type, agents perfectly coordinate among themselves in
both local and global interactions. This guarantees the sustainability of
the semi-risk dominant convention independently of the fraction of fine
reasoners q in the population.
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Figure 3: Stochastically stable states according to Theorem 3. Types of
stochastically stable states according to Theorem 3 in the (p, q) parameter
space together with uncertainty regions. Case a = 4, b = 5, c = 3, d = 1
and, consequently, α = 0.6 and (a− d)/(b− d) = 0.75.

On the contrary, if the frequency of local random interactions is suf-
ficiently high, then two different scenarios are possible and, more pre-
cisely, the actual long-run prediction depends on the fraction of fine rea-
soners in the society.

First, if the fraction of fine reasoners is sufficiently large, then the set
of states of the type B-BA is stochastically stable, selecting a semi-payoff
dominant convention. In such a convention if interactions are local then
all agents play the payoff dominant action; instead, if interactions are
global fine reasoners play the risk dominant action, while coarse reason-
ers stick to the payoff dominant action. Moreover, all agents stay in a
single location. In this convention, miscoordination may arise. It hap-
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pens in every global interaction in which a fine reasoner is matched with
a coarse reasoner. As a consequence, the probability of miscoordination
is decreasing both in the probability of local interactions p and in the
fraction of fine reasoners in the society q.

If instead, the fraction of fine reasoners is sufficiently small, then the
set of states of the type B-BB is stochastically stable. So, stochastic sta-
bility selects the payoff dominant convention in which all agents play
the payoff dominant action independently of the type of interaction they
face; moreover, all agents stay in the same location. This convention al-
lows for perfect coordination on the payoff dominant for all levels of p
and q that do not compromise stochastic stability.

Figure 3 also highlights that Theorem 3 characterizes stochastically
stable states only for a portion of the parameter space. Broadly speaking
there are two areas of uncertainty regarding what states are stochastically
stable. For intermediate values of the probability of local interactions p

we cannot say whether the semi-risk dominant convention or the two
payoff dominant conventions are selected, while for intermediate values
of the fraction of fine reasoners q and a sufficiently high probability of
local interactions p it is unclear whether the semi-payoff or the payoff
dominant conventions are selected.

Overall, these findings suggest that if interactions are mostly global
social coordination is attained together with segregation by types of rea-
soners and with fine reasoners being more often collaborative in local
interactions; instead, if interactions are mostly local social coordination
is attained without segregation but possibly with fine reasoners being
less often collaborative in global interactions.

Hence, on the one hand, a greater frequency of local interactions can
be very beneficial for the diffusion of the payoff dominant convention
since it can move the system from a semi-risk dominant convention to
a (semi-)payoff dominant convention. On the other hand, a greater fre-
quency of fine reasoners in the population may both be positive or neg-
ative for the diffusion of the payoff dominant action. In fact, if interac-
tions are mostly global then the higher the fraction of fine reasoners in
the population the more agents play the payoff dominant action in local
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interactions. Instead, if interactions are mostly local, then a higher frac-
tion of fine reasoners in the population can have two distinct negative
effects on the diffusion of the payoff dominant action: first, it may cause
a switch from the payoff dominant convention (B-BB) to the semi-payoff
dominant convention (B-BA), second if the semi-payoff dominant con-
vention is in place a higher frequency of fine reasoners decreases the use
of the payoff dominant action in global interactions.

Interestingly, there is an interaction between the frequency of local in-
teractions and the fraction of fine reasoners in the population: the gains
associated with an increase in the frequency of local interactions is weakly
decreasing in the fraction of fine reasoners in the population. This holds
because if the population of fine reasoners is large enough, then an in-
crease in the frequency of local interactions implies a switch from the
semi-risk dominant convention (A/BA) to the semi-payoff dominant con-
vention (B-BA) rather than to the payoff dominant convention (B-BB).

2.4.2 Simulation Analysis

The stochastic stability analysis performed in Section 2.4.1 provides sharp
predictions about the long-run behavior of the system in the perturbed
dynamics, but only for a portion of the (p, q) parameter space. To com-
plete the analysis we employ agent-based simulations exploring the long-
run behavior of the system in the entire parameter space. An additional
advantage of agent-based simulations is that they allow us to study the
evolution of the system for fixed small population size and non-vanishing
mistake probability, less demanding conditions with respect to those of
Theorem 2 and Theorem 3.

We run simulations setting N = 100, L = 3, ρ = 0.2, and ε = 0.1.
Moreover, we explore the (p, q)-space for p, q ∈ {0.1, 0.2, . . . , 0.9} for a
total of 92 = 81 combinations. For each of these combinations, we per-
form 10 independent simulations of the model and in each simulation
we run the system for 105 iterations.

In each iteration every agent is given a revision opportunity with
probability 0.2 and, if the case, the agent revises its strategy according to

25



myopic best reply with probability 0.9 (selecting the strategy that maxi-
mizes the expected payoff and randomizing over best replies if the best
reply is not unique); instead, with probability 0.1, the agent selects a
strategy uniformly at random.

The results presented below are obtained by assuming the following
payoffs in the Stag Hunt game: a = 4, b = 5, c = 3, and d = 1. We
have selected these parameter values so as to avoid extreme values of
the thresholds of interest, specifically getting α = 0.6 and a−d

b−d = 0.75. In
Appendix D we report robustness tests of the findings presented here by
considering variations of these payoffs.

Applying Theorem 1 we know what types of states are absorbing in
which regions of the (p, q) parameter space, but by Theorem 2 we can
exclude that states of type A-AA, A-AB, A-BA, and B-AB are visited a
significant amount of time in the long run. By Theorem 3 we obtain that
the system spends most of the time in absorbing states of the type A/BA
if p ∈ (0, 0.33), of the type B-BA if p ∈ (0.75, 1) and q ∈ (0.8, 1), and
of the type B-BB if p ∈ (0.75, 1) and q ∈ (0, 0.4). We summarize these
conclusions in Table 1. Note that the system is never expected to spend
most of the time in a specific absorbing state of a given type, but rather
to move frequently from one absorbing state to another of the same type
but characterized by a different location or locations.

Simulation results are illustrated in Figure 4. Specifically, for each
pair (p, q) ∈ {0.1, 0.2, . . . , 0.9}2 we report the average fraction of agents
playing the payoff dominant action by type of agent (coarse vs fine rea-
soner) and type of interaction (local vs global interaction). These aver-
age values have been computed as follows: first, for each simulation,
we compute the fraction of coarse [fine] reasoners playing the payoff
dominant action in local [global] interactions in each time period t =

1000, . . . , 100000; second, we compute the average fraction of coarse [fine]
reasoners playing the payoff dominant action in local [global] interac-
tions to obtain a simulation-specific average; third, we average these
values over the 10 independent simulations performed for a given pair
(p, q).

The results in Figure 4 suggest that for p ≤ 0.6 the system spends
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Type Absorbing Stochastically Stable

p q p q

A-AA
(︁
0.00, 1.00

)︁ (︁
0.00, 1.00

)︁
∅ ∅

A-AB
(︁
0.00, 1.00

)︁ (︁
0.60, 0.60

1−p

)︁
∅ ∅

A-BA
(︁
0.00, 1.00

)︁ (︁
0.60, 0.60

p

)︁
∅ ∅

A/BA
(︁
0.00, 0.75

)︁ (︁
0.00, 1.00

)︁ (︁
0.00, 0.33

)︁ (︁
0.00, 1.00

)︁
B-AB

(︁
0.00, 1.00

)︁ (︁
0.40, 0.40

p

)︁
∅ ∅

B-BA
(︁
0.00, 1.00

)︁ (︁
0.40, 0.40

1−p

)︁ (︁
0.75, 1.00

)︁ (︁
0.80, 1.00

)︁
B-BB

(︁
0.00, 1.00

)︁ (︁
0.00, 1.00

)︁ (︁
0.75, 1.00

)︁ (︁
0.00, 0.40

)︁
Table 1: Theoretical predictions for the simulations setup. Values of p and
q for which states of a given type are absorbing according to Theorem 1 and
for which absorbing states of a given type are guaranteed to be stochasti-
cally stable according to Theorem 2 and Theorem 3. Case a = 4, b = 5,
c = 3, d = 1.

most of the time in states of the type A/BA, independently of the fraction
of fine reasoners q. Instead, for p > 0.6 two alternative scenarios are
possible. More precisely, if q < 0.5 then the system spends most of the
time in states of the type B-BB, while if q ≥ 0.5 then the system spends
most of the time in states of the type B-BA. We illustrate these findings
graphically in Figure 5 together with the results in Section 2.4.1.

In Appendix D we report the results obtained for different values of
the payoffs in the Stag Hunt game. By combining these results it appears
that the threshold value of the probability of local interactions, p∗ – which
separates the area in which the semi-risk dominant convention (A/BA)
is stochastically stable from the area in which the payoff dominant con-
ventions (B-BA and B-BB) are stochastically stable – is always between α

and a−d
b−d . Moreover, the threshold value of the fraction of fine reasoners

in the population, q∗ – that separates the region where the payoff domi-
nant convention (B-BB) is selected from the region where the semi-payoff
dominant convention (B-BA) is selected – approaches its lower-bound
(1−α) if α is high, while it tends to be closer to its upper-bound 2(1−α)

if α is low.

Overall, these findings suggest that the qualitative results provided
by Theorem 3 hold more generally: the threshold values for the suffi-
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Figure 4: Simulations results. Average proportion of agents playing the
payoff dominant action B by type of agent (coarse vs fine reasoner) and type
of interaction (local vs global interaction); standard errors in parentheses.
Case a = 4, b = 5, c = 3, d = 1.

cient conditions seem to extend naturally to nearby regions of the (p, q)

parameter space and they hold also for non-vanishing mistakes proba-
bilities and relatively small population size.
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Figure 5: Stochastically stable states by combining Theorem 3 and sim-
ulation results. Types of stochastically stable states in the (p, q) parameter
space: uniformly colored regions refer to both stochastic stability and sim-
ulation results, while striped regions refer to simulation results only. Case
a = 4, b = 5, c = 3, d = 1.

2.5 Discussion

We have considered a finite population of agents who myopically best
reply with a small probability of making a mistake, and we have studied
how the mode of reasoning and the structure of interaction can affect the
evolution of conventions in this setup.

We have found that if interactions are mostly global then selection
favors conventions where agents are separated into different locations
according to their mode of reasoning, with coarse reasoners playing the
risk dominant action in all interactions and fine reasoners playing the
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Qualitative summary of results
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“h
ig

h”

semi-risk dominant semi-payoff dominant

fine reasoners locally fine reasoners globally
play payoff dominant play risk dominant

“l
ow

” semi-risk dominant payoff dominant

fine reasoners locally
play payoff dominant

↑
→ “low” “high”

fraction p of local interactions

Table 2: Summary of results. Qualitative summary of results in terms of
conventions selected in the long run.

risk dominant action globally and the payoff dominant action locally. If
instead, interactions are mostly local, then all agents stay in the same
location and there are two cases: if coarse reasoners are sufficiently nu-
merous then all agents play the payoff dominant action both globally
and locally, while if coarse reasoners are not numerous enough then they
play the payoff dominant action and fine reasoners play the risk domi-
nant action globally and the payoff dominant action locally. This implies
that the co-existence of coarse and fine reasoning may favor or hamper
the adoption of the payoff dominant action depending on the structure of
interactions. Table 2 summarizes such qualitative features of our results.

We have provided sufficient conditions for these results based on the
fraction of fine reasoners and the frequency of local interactions. We have
also provided numerical simulations of the model indicating that our
findings hold in the entire parameter space, for small but non-negligible
probabilities of mistakes, and for populations of size as small as one hun-
dred agents.

From the comparison of the welfare associated with viable long-run
outcomes, we can draw some conclusions. By looking at Table 2, we see
that increasing the fraction of fine reasoners (moving vertically in the ta-
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ble) turns out to be welfare enhancing if interactions are mostly global be-
cause the long-run outcome remains the same (semi-risk dominant con-
vention) and fine reasoners are more prosocial than coarse reasoners in
this case. Instead, if interactions are mostly local then increasing the frac-
tion of fine reasoners turns out to be welfare-reducing because it changes
the long-run outcome from full adoption of Stag (payoff dominant con-
vention) to a partial adoption of it (semi-payoff dominant convention).
Furthermore, we notice that increasing the fraction of local interactions
(moving horizontally in the table) is always welfare-enhancing.

A simplifying assumption in our model is that agents are always fine
reasoners or coarse reasoners. In fact, we can expect real decision-makers
to reason sometimes coarsely and sometimes finely depending on the
choice problem faced, i.e., we can expect the mode of reasoning to be en-
dogenous. Such endogeneity could disrupt the equilibria where fine rea-
soners and coarse reasoners co-exist, behave differently, and possibly live
in different locations, as all agents might end up facing the same payoff
structure and, therefore, following the same optimal behavior. However,
if we allow for heterogeneity in cognitive abilities, i.e., different costs
to reason finely, we may obtain that in equilibrium agents have hetero-
geneous probabilities to resort to fine reasoning, so that an equilibrium
may arise where individuals are segregated in different locations and be-
have differently according to their mode of reasoning. Further research
is needed to establish the precise conditions for this to happen, but we
can already note that only for states where everybody plays the payoff
dominant action both locally and globally (i.e., of the B-BB type) we can
be confident that all agents will reason coarsely (since coordination is ob-
tained without conditioning actions to the type of interaction), while for
all other states which turned out to be stochastically stable in our model
(i.e., of the A/BA and B-BA types) there are good reasons to expect that
those with small costs of fine reasoning will reason finely (since condi-
tioning one’s action to the type of interaction allows better coordination)
while those with high costs will not.

If, instead, we follow the literature on cognition and cooperation (Bear
and David G Rand, 2016; Bear, Kagan, and David G Rand, 2017; Jagau
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and Veelen, 2017; Mosleh and David G Rand, 2018) in assuming that
all agents draw their cost to reason finely from a common distribution,
then our intuition is that the quality of our results would be preserved
only under additional assumptions. One promising candidate in this re-
gard is the assumption that the choice of location is conditional on the
mode of reasoning, as in this case behaviors would potentially be ex-
post heterogeneous across locations and modes of reasoning. Another
promising candidate is to introduce a constraint to the maximum num-
ber of agents to interact with, either by introducing constraints at the
local level (Dieckmann, 1999; Anwar, 2002; Shi, 2013; Pin, E. Weiden-
holzer, and S. Weidenholzer, 2017) or by imposing a maximum number
of neighbors in a network structure (Staudigl and S. Weidenholzer, 2014;
Bilancini and Boncinelli, 2018; Cui and S. Weidenholzer, 2021), which
would work against having all agents in the same location while adopt-
ing the same mode of reasoning and action.

Further, keeping the mode of reasoning exogenous allows us to pre-
dict, in a simple and neat way, the effects of controlled manipulations
of the extent of fine reasoning, as one would attempt to do in behav-
ioral experiments. Actually, our findings can shed light on the existing
experimental evidence on the effects of manipulating reasoning in the
one-shot Stag Hung game (Belloc et al., 2019; Bilancini, Boncinelli, and
Paolo, 2021) which suggests that greater reflection leads to a greater like-
lihood of playing the risk dominant action. In particular, if one interprets
the interactions in experiments as global, then fine reasoning during the
experiment would lead to playing the risk dominant action more or less
often with respect to coarse reasoning depending on what coarse rea-
soners do in equilibrium, i.e., depending on the ruling social convention
that coarse reasoners take with them in the experiment. So, the fact that
greater reflection leads to a greater probability of playing the risk dom-
inant action might be due to the fact that the ruling convention is the
semi-payoff dominant (as indicated in Table 2).

Our results can also be interpreted in light of the recent lively de-
bate on what mode of reasoning is more conducive to prosocial behavior
(Zaki and Mitchell, 2013; Capraro, 2019). If we interpret Stag as a risky
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and collaborative action and Hare as a safe and individualistic action
(Skyrms, 2004), then coordination on Stag can be seen as more prosocial
than Hare. From this perspective, we can conclude that fine reasoning is
more prosocial than coarse reasoning if interactions are mostly global; if,
instead, interactions are mostly local, then coarse reasoning is as proso-
cial (when fine reasoners are few) or more prosocial (if fine reasoners are
numerous) than fine reasoning.

A last remark stems from the observation that fine reasoners and
coarse reasoners may end up in the long run living in different loca-
tions, which is what happens in A/BA: this outcome is reminiscent of
real-world phenomena characterized by globalization and polarization,
which is a widespread phenomenon at least for online interactions. We
stress that when this cognitive segregation happens, the frequency of in-
teraction with a fine reasoner is larger for a fine reasoner than for a coarse
reasoner. This creates a novel form of assortativity – namely, assortativ-
ity in cognition – which deserves further investigation both theoretically,
along the lines of Bilancini, Boncinelli, and Vicario (2022), and empiri-
cally.
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Chapter 3

The Co-Evolution of
Cooperation and Cognition
Under Endogenous
Population Structure

3.1 Introduction

In this paper, we study the co-evolution of cooperation and cognition
in the presence of an endogenous interaction structure. More precisely,
we analyze a model that builds on Bear and David G Rand (2016) while
(i) addressing the limitations highlighted in Jagau and Veelen (2017), (ii)
allowing for an endogenous interaction structure (Santos, Pacheco, and
Lenaerts, 2006; Mosleh and David G Rand, 2018), and (iii) being analyti-
cally tractable.

The focus is on the evolutionary emergence and sustainability of indi-
vidual cooperation (i.e., paying a cost to benefit someone else) in a pris-
oners’ dilemma game (Axelrod and Hamilton, 1981; David G. Rand and
Martin A. Nowak, 2013). More precisely, we study the evolution of co-
operation in a large population of agents playing a prisoners’ dilemma
game which can be either one-shot and anonymous or infinitely repeated.
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In both types of prisoners’ dilemmas, agents can play one among the fol-
lowing two actions: Always Defect (AllD) and Tit-for-Tat (TFT). The pay-
off structures of the games are such that Always Defect is strictly dom-
inant in the anonymous and one-shot game, while Tit-for-Tat is weakly
dominant in the repeated game.

Evolution also shapes players’ mode of reasoning which is modeled
following dual process theories of cognition (Evans and Stanovich, 2013).
Broadly speaking, dual process theories of cognition conjecture the ex-
istence of two possible modes or types of reasoning: one fast, cheap,
and heuristic-based (intuition), the other slow, costly, and based on cost-
benefit evaluations (deliberation). In our model, intuition gives rise to a
generalized or unconditional response over average opponents’ behav-
ior. Instead, deliberation leads to actions that are conditional on whether
the game played is one-shot and anonymous or repeated, but it comes
at a cost. This generates a trade-off between error-prone intuition and
costly deliberation.

An endogenous interaction structure is introduced via a set of loca-
tions. Topologically speaking, the presence of a set of locations gives
rise to a series of disconnected fully-connected networks: within each
location, all players are connected and may be randomly matched into
couples to play a prisoners’ dilemma game, while players staying in dif-
ferent locations are not connected and, thus, have no chance to interact.
However, whenever given a revision opportunity a player may decide
to migrate from one location to another in order to maximize its payoff.
Within this setup, we analyze whether an endogenous interaction struc-
ture may foster the emergence and/or the evolutionary sustainability of
cooperation.

We analyze the co-evolution of cooperation and cognition by means
of stochastic stability techniques (Foster and Young, 1990; H. P. Young,
1993; Kandori, Mailath, and Rob, 1993) and, more precisely, we deter-
mine the stochastically stable states of the system via radius-coradius ar-
guments (Ellison, 2000). Broadly speaking, the stochastically stable states
of the system are those states that are relatively easier to reach in terms
of mistakes if we assume that agents can make mistakes with small but
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positive probability.
Our main contribution is the analytical evolutionary account of the

emergence of cooperation with players deciding to play TFT under in-
tuition and deliberating with positive probability if repeated games are
frequent enough. This result may also explain why in experimental set-
tings individuals are observed to cooperate even in one-shot anonymous
interactions.

The remaining part of the paper is structured as follows: Section 3.2
describes the model, Section 3.3 provides two examples of stochastic sta-
bility analysis in an alternative version of the model with a single loca-
tion, Section 3.4 illustrates the main results, Section 3.5 checks the robust-
ness of the results with respect to the choice of the revision protocol, and
Section 3.6 concludes.

3.2 The model

Consider a set, A, of A agents or players indexed by a = 1, . . . , A and a
set, L, of L ≥ 2 locations denoted by ℓ = 1, . . . , L. Time is discrete and
indexed by t = 0, 1, ....

In each period of time t, each agent randomly interacts with another
agent staying in the same location. Randomly matched agents play a
one-shot and anonymous prisoners’ dilemma (PD) with probability 1−p,
while with probability p they play an infinitely repeated PD. In Figure 6
we report the normal-form representation of the two games.

Figure 6: One-shot and infinitely repeated Prisoners’ Dilemmas. Normal-
form representation of the one-shot and anonymous Prisoners’ dilemma (to
the left) and of the infinitely repeated Prisoners’ dilemma (to the right).
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In both games in every round of play, each agent must decide whether
to pay a cost c > 0 to provide a benefit b > c to the other agent. Follow-
ing Bear and David G Rand (2016), agents can play either Always Defect
(AllD) or Tit-For-Tat (TFT): by playing AllD an agent decides to never
pay the cost of cooperation while by playing TFT the agent pays the cost
of cooperation in the first round and in all the subsequent rounds of play
it copies the choice made by the opponent in the previous round. In case
of an infinitely repeated PD agents’ payoff corresponds to the average
payoff obtained in the individual rounds of play and, consequently, in
such a game agents can obtain a strictly positive payoff, b − c, only if
both play TFT otherwise they both receive a null payoff. Finally, we as-
sume that if a player is alone in a given location, then it plays alone: it
eventually pays the cost of cooperation c if – according to its strategy –
it chooses TFT but it has no chance to receive a benefit b from another
player.

Players also choose their cognitive style: they can play either in an in-
tuitive or a deliberative way. Under intuition they play without knowing
the type of prisoners’ dilemma they are currently playing; instead, under
deliberation, they have this information and can condition their action
on the type of game played. However, deliberation comes at a cost, k,
which is stochastically sampled decision-by-decision from a generic dis-
tribution g(k) ∈ [0,K] with a cumulative distribution G(k) in [0, 1]. We
assume that K ≥ min{c, (b − c)}. This assumption guarantees that for
any value of p ∈ (0, 1) fully deliberating strategies - strategies according
to which the agent decides to pay the cost of deliberation for any possi-
ble randomly sampled cost of deliberation - cannot give rise to absorbing
states.

Figure 7 represents the entire game played by two randomly matched
players staying in the same location.

Given this setup, we can fully describe agent a’s strategy via a vector
σa,t = (ℓa,t, ia,t, oa,t, ra,t, ka,t) where:

• ℓa,t ∈ {1, . . . , L} denotes the location chosen by agent a at time t;

• ia,t ∈ [0, 1] is the probability with which agent a plays TFT under
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Figure 7: The entire game played. Extensive-form representation of the en-
tire game played by two randomly matched agents. First, Nature randomly
chooses whether the game played is anonymous and one-shot or infinitely
repeated. Then, the actual costs of deliberation of player a and player a′ are
randomly sampled, and, consequently, the two agents deliberate or don’t.
Finally, the two agents play the prisoners’ dilemma. Agent a’s information
sets are: {A, B}, {E, F}, and {C, D, G, H}. Agent a′’s information sets are:
{A, C}, {E, G}, and {B, D, F, H}.

intuition at time t;

• oa,t ∈ [0, 1] and ra,t ∈ [0, 1] denote the probabilities with which
agent a plays TFT under deliberation at time t conditional on the
game being, respectively, one-shot and anonymous or infinitely re-
peated;

• ka,t ∈ [0,K] is the maximum cost that agent a is willing to pay to
deliberate at time t.

Following the terminology adopted in Bear and David G Rand (2016),
we say that a strategy is intuitive if according to it an agent never de-
liberates, while we say that a strategy is dual process if it prescribes to
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deliberate with positive probability. Moreover, a strategy will be con-
sidered cooperative [defective] if it prescribes playing TFT [AllD] under
intuition. Consequently, strategies of type (ℓ, 0, 0, 1, 0), (ℓ, 0, 0, 1, k), (ℓ,
1, 0, 1, k), and (ℓ, 1, o, r, 0) will be referred to as, respectively, intuitive
defection strategy, dual process defection strategy, dual process cooper-
ation strategy, and intuitive cooperation strategy.

In each period of time t, the state of the system can be described via a
matrix

St = (ℓt, it,ot, rt,kt)

where ℓt = (ℓ1,t, . . . , ℓA,t)
T , it = (i1,t, . . . , iA,t)

T , ot = (o1,t, . . . , oA,t)
T ,

rt = (r1,t, . . . , rA,t)
T , and kt = (k1,t, . . . , kA,t)

T .

The system is characterized by synchronous learning. More precisely,
at the end of each period of time t each agent a has a fixed probability
ρa ∈ (0, 1) to be given a revision opportunity. We assume ρa = ρa,σ +

ρa,γ where ρa,σ ≥ 0 is the probability with which player a is given a
full-strategy revision opportunity while ρa,γ ≥ 0 is the probability with
which player a is given a game-play revision opportunity with which the
agent can revise all its strategy components except the location-choice.
In each case, if given a revision opportunity the agent revises its strategy
choice so as to maximize its payoff given the current state of the system
St (myopic best reply).

In Figure 8 we report an example of a generic state of the system and
strategy updating.

We assume that when revising their strategy choice agents can make
a mistake with probability ε ≥ 0. If an agent makes a mistake then it
selects its new strategy completely at random (uniform mistakes). In the
following, we will say that the system evolves according to unperturbed
dynamics if ε = 0, while we will say that the system evolves according
to perturbed dynamics if ε > 0.
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Figure 8: A generic state of the system. Graphical representation of a
generic state of the system and its evolution over time (case A = 4, L = 2).
Each agent is described via the strategy it adopts. For example, at time t
in location 1 the agent on the bottom right position adopts a dual process
defection strategy as it plays AllD both under intuition and under delibera-
tion if the PD is one-shot, while it plays TFT under deliberation if the PD is
infinitely repeated. Moreover, it deliberates with positive probability as its
threshold cost of deliberation is k′′ > 0. At the end of time t, two agents are
given a revision opportunity: they both choose location 2 (as it is the one
with more cooperative agents) and adopt a dual process defection strategy.
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3.3 Stochastic Stability with a Single Location

Before providing the main results of the paper obtained with the setup
presented in Section 3.2 and characterized by multiple locations (L ≥ 2)
we illustrate two examples of stochastic stability analysis under the as-
sumption that there is a single location L = 1 which implies that all
agents must stay in the same location. This version of the model co-
incides with the one in Jagau and Veelen (2017) with the additional as-
sumption that K is such that fully deliberating absorbing states, i.e. ab-
sorbing states in which agents choose a threshold cost of deliberation
such that they always deliberate, do not exist.

By employing the results in Jagau and Veelen (2017) we know that the
single location setup is characterized by the following absorbing states:

• (0,0,1,0) if p ∈ (0, 1);

• (0,0,1,kd) if p ∈
(︁
0, c

c+G(kd)(b−c)

)︁
with every kd such that kd =

p(b− c)G(kd) if any;

• (1,0,1,kc) if p ∈
(︁
0, c

b

)︁
with the unique kc = (1− p)c.

The two examples of stochastic stability analysis provided in the fol-
lowing show that in the absence of an endogenous interaction structure
(i.e, if L = 1) stochastic stability considerations crucially depend on the
actual distribution of deliberation costs G(·); moreover, dual process co-
operation strategies do not necessarily (and usually do not) prevail in the
entire parameter space in which they give rise to absorbing states under
unperturbed dynamics.

These findings are significantly different from the ones we provide in
Section 3.4. This suggests that an endogenous interaction structure plays
a crucial role in the evolution of dual process cooperation and provides
an additional reason why our setup is of interest.
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3.3.1 Example 1

Consider the case L = 1, b = 2, c = 1, K = 1 and assume that the
distribution of deliberation costs is

G(k) =

⎧⎪⎪⎨⎪⎪⎩
0 if k < 0

k if 0 ≤ k ≤ K

1 if k > K

(3.1)

Then, the absorbing states of the system are:

• The intuitive defection absorbing state (0,0,1,0) if p ∈ (0, 1);

• The dual process cooperation absorbing state (1,0,1,kc) if p ∈(︁
0.5, 1

)︁
with the unique kc = (1− p)c.

There are no other absorbing states. In Figure 9 we illustrate the optimal
threshold costs of deliberation for strategies prescribing to play AllD un-
der intuition and strategies prescribing to play TFT.

Consider the system under perturbed dynamics (ε > 0) with p ∈(︁
0.5, 1

)︁
and consider the partition of the absorbing state of the system

into Ω = {(1,0,1,kc)} and Ω−1 = {(0,0,1,0)}.
It can be showed1 that if the population is large enough then one mis-

take can never lead with a positive probability the system into the basin
of attraction of Ω−1 starting from the dual process cooperation absorbing
state (1,0,1,kc). But then, if the population is large enough the radius of
the basin of attraction of Ω is strictly larger than one, formally R(Ω) > 1.

Assume that at time t the system is in the intuitive defection absorb-
ing state (0,0,1,0). In such a state, every agent plays AllD under in-
tuition and never deliberates and so (τoa (St), τ

r
a (St)) = (0, 0) for every

agent a ∈ A. Assume now that at the end of time t one agent, say
a′, adopts by mistake the dual process cooperation strategy (1, 0, 1, kc)

with kc = (1 − p)c. Then, at the beginning of time t + 1 it will be(︁
τoa (St+1), τ

r
a (St+1)

)︁
=

(︁ 1−G(kc)
A−1 , 1

A−1

)︁
for every agent a ̸= a′. But then,

1The argument is similar to the one employed in the proof of Theorem 5 and for this
reason it is omitted here. In general, every step that is not explicitly proved in this section
relies on one or more results reported in Appendix E.
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Figure 9: Optimal threshold costs of deliberation in Example 1. Myopic
best reply thresholds for strategies prescribing to play AllD under intuition
and for strategies prescribing to play TFT under intuition if the distribution
of deliberation costs is the one in Equation (3.1)

it can be shown that for every agent a ̸= a′ the best reply to the current
state of the system belongs to the set

BRa(St+1) ⊆
{︁
(0, 0, 1, k′), (1, 0, 1, kc)

}︁
with k′ = p(b − c)τ ra (St+1) > 0 and kc = (1 − p)c and, so, they will be
willing to adopt either the optimal dual process cooperation strategy or
they will be willing to adopt a dual process defection strategy:

• In the first scenario with positive probability at the end of time t+1

every agent a ̸= a′ will be given a revision opportunity and will
adopt strategy (1, 0, 1, kc) and consequently the system will have
reached the dual process cooperation absorbing state.
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• In the second scenario with positive probability at the end of time
t + 1 every agent a ̸= a′ will be given a revision opportunity and
will adopt strategy (0, 0, 1, k′). Then, at the beginning of time t+ 2

it will be
(︁
τoa (St+2), τ

r
a (St+2)

)︁
=

(︁ 1−G(kc)
A−1 , (A−2)G(k′)+1

A−1

)︁
for every

agent a ̸= a′. But then, for every agent a ̸= a′ the best reply to the
current state of the system will belong to the set

BRa(St+2) ⊆
{︁
(0, 0, 1, k′′), (1, 0, 1, kc)

}︁
with k′′ = p(b − c)τ ra (St+2) > k′ and kc = (1 − p)c and, so, they
will be willing to adopt either the optimal dual process coopera-
tion strategy or they will be willing to adopt a dual process defec-
tion strategy with a higher threshold cost of deliberation than their
current one. This process will continue with positive probability
until all agents a ̸= a′ will be given a revision opportunity and will
find it optimal to adopt a dual process cooperation strategy and, so,
until the system will reach the dual process cooperation absorbing
state.

We have argued that for every p ∈ (0.5, 1) a single mistake can lead with
positive probability the system into the basin of attraction of Ω starting
from the intuitive defection state. But then the coradius of the basin of
attraction of Ω is equal to one, formally CR(Ω) = 1.

Hence, if the population is large enough then for every p ∈
(︁
0.5, 1

)︁
we

have R(Ω) > 1 = CR(Ω) and so the dual process cooperation absorbing
state is stochastically stable. Therefore, in this case, the dual process co-
operation absorbing state is stochastically stable in the entire parameter
space in which it is an absorbing state.

3.3.2 Example 2

Consider now the case L = 1, b = 4, c = 1, K = 3 with a large population
of agents. Assume that the distribution of deliberation costs is

G(k) =

⎧⎨⎩ 0 if k < K

1 if k ≥ K
(3.2)
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Then, the absorbing states of the system are:

• The intuitive defection absorbing state (0,0,1,0) if p ∈ (0, 1);

• The dual process cooperation absorbing state (1,0,1,kc) if p ∈(︁
0.25, 1

)︁
with the unique kc = (1−p)c. Technically given the distri-

bution of deliberation costs this is an intuitive cooperation absorb-
ing state.

There are no other absorbing states. In Figure 10 we illustrate the optimal
threshold costs of deliberation for strategies prescribing to play AllD un-
der intuition and strategies prescribing to play TFT under intuition un-
der the assumptions made on the distribution of deliberation costs. Note
that for any threshold cost of deliberation strictly lower than K the prob-
ability of deliberation is null and, so, any strategy with a threshold cost
of deliberation below K implies never deliberating and always playing
under intuition.

Consider the system under perturbed dynamics (ε > 0) with p ∈(︁
0.25, 1

)︁
and consider the partition of the absorbing state of the system

into Ω = {(1,0,1,kc)} and Ω−1 = {(0,0,1,0)}.
In this scenario, we need to compute the radius and the coradius of

Ω as it is not true that one mistake can lead with positive probability
the system into the basin of attraction of Ω starting from the intuitive
defection absorbing state.

Assume that at the end of time t the system is in the dual process
cooperation absorbing state (1,0,1,kc). Given the distribution of delib-
eration costs in Equation (3.2), in such state it must be (τoa (St), τ

r
a (St)) =

(1, 1) for every agent a ∈ A. Assume that µA agents adopt by mistake the
intuitive defection strategy (0, 0, 1, 0). Then, given that the population is
large at time t+1 it will be (τoa (St+1), τ

r
a (St+1)) ∼ (1−µ, 1−µ) for every

agent a ∈ A. The minimum number of agents making a mistake required
to lead with positive probability the system into the intuitive defection
absorbing state is the one such that Equation (E.3) holds with equality
and so

1− µ =
(1− p)c

p(b− c)
⇔ µ =

pb− c

p(b− c)
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Figure 10: Optimal threshold costs of deliberation in Example 2. Myopic
best reply thresholds for strategies prescribing to play AllD under intuition
and for strategies prescribing to play TFT under intuition if the distribution
of deliberation costs is the one in Equation (3.2)

But then, the radius of the basin of attraction of Ω is R(Ω) = pb−c
p(b−c)A.

Assume that at the end of time t the system is in the intuitive defec-
tion absorbing state (0,0,1,0). In such state it must be (τoa (St), τ

r
a (St)) =

(0, 0) for every agent a ∈ A. Assume that µA agents adopt by mistake
the dual process cooperation strategy (1, 0, 1, kc). Then, given that the
population is large at time t+1 it will be (τoa (St+1), τ

r
a (St+1)) ∼ (µ, µ) for

every agent a ∈ A. The minimum number of agents making a mistake
required to lead with positive probability the system into the dual pro-
cess cooperation absorbing state is the one such that Equation (E.3) holds
with equality and so

µ =
(1− p)c

p(b− c)
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But then, the coradius of the basin of attraction of Ω is CR(Ω) = (1−p)c
p(b−c)A.

The radius of Ω is larger than its coradius if

pb− c

p(b− c)
A >

(1− p)c

p(b− c)
A ⇔ p >

2c

b+ c

which is a strictly more demanding condition than p > c
b .

3.4 Results

In this section, the two main results of the paper are reported: the first
one lists the absorbing sets of the system under unperturbed dynamics,
while the second one identifies the stochastically stable states of the sys-
tem under perturbed dynamics.

The analysis of both absorbing and stochastically stable states of the
system is performed focusing on pure strategies. Such simplification is
without loss of generality given our focus on long-run outcomes and the
fact that absorbing states in mixed strategies are never stochastically sta-
ble (H. P. Young, 1993).

3.4.1 Unperturbed Dynamics

We consider first the system under unperturbed dynamics and, so, we
consider the case in which if an agent is given a revision opportunity then
it myopically best replies to the current state of the system with unitary
probability. Under such dynamics, the main interest lies in determining
the absorbing sets of the system. We do this in Theorem 4.

Theorem 4. Consider the system under unperturbed dynamics (ε = 0). The
absorbing sets of the system are:

• (L, 0, 0, 1, 0) if p ∈ (0, 1);

• (ℓ∗, 0, 0, 1, kd) if p ∈
(︁
0, c

c+G(kd)(b−c)

)︁
with every kd such that kd =

p(b− c)G(kd) if any;

• (ℓ∗, 1, 0, 1, kc) if p ∈
(︁
c
b , 1

)︁
with the unique kc = (1− p)c.

There are no other absorbing sets.
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In Figure 11 we provide a graphical representation of the absorbing
sets of the system listed in Theorem 4, while the proof of Theorem 4 is
reported in Appendix E and it is conveniently divided into four lemmas.

First, we show that the intuitive defection set (L, 0, 0, 1, 0) is ab-
sorbing in the entire parameter space. This absorbing set contains all
the states2 in which all players adopt the intuitive defection strategy and
select a location at random. More precisely, all players are indifferent
between staying in their current location, moving to another inhabited
location, and moving into an empty location as all these alternatives pro-
vide them a null payoff. Despite receiving a null payoff every agent my-
opically best replies to the current state of the system by keeping an intu-
itive defection strategy as every alternative strategy provides a negative
expected payoff. This is the case because every other strategy implies
paying with positive probability the cost of cooperation – and eventu-
ally a cost of deliberation – without the possibility of receiving a benefit
of cooperation as in these states the rate of cooperation is null in both
one-shot and anonymous and infinitely repeated prisoners’ dilemmas.

This first result is consistent with the findings in Bear and David G
Rand (2016) and Jagau and Veelen (2017) who also find that the intuitive
defection strategy can be sustained as an equilibrium in the entire pa-
rameter space. In addition, according to our model, intuitive defection is
associated with high players’ mobility. More precisely, every distribution
of agents ranging from full concentration in one location to complete dis-
persion over the various locations is feasible and this is the case because,
in an intuitive defection environment, social interactions do not provide
any benefit to agents.

Second, we show that dual process defection states (ℓ∗, 0, 0, 1, kd)
with kd = (kd, . . . , kd) and kd = p(b − c)G(kd) are absorbing states if
p ∈

(︁
0, c

c+G(kd)(b−c)

)︁
. In a dual process defection absorbing state, all

agents play AllD under intuition, deliberate with positive probability,
and if they do so then they play optimally. Moreover, all players stay in
the same location. In such states, the rate of cooperation is null in one-

2The intuitive defection set is composed by AL states where AL corresponds to the
number of ways in which A agents can be distributed over L locations.
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Figure 11: Absorbing states according to Theorem 4. Graphical representa-
tion of the absorbing sets of the system (case A = 4, L = 2). In the intuitive
defection absorbing set, all agents adopt the intuitive defection strategy and
are indifferent between staying in one location or another. In a dual process
defection [cooperation] absorbing state all agents adopt a dual process de-
fection [cooperation] strategy with the same optimal threshold cost of de-
liberation and they all stay in the same location.
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shot and anonymous interactions while it is equal to G(kd) in the case of
infinitely repeated prisoners’ dilemmas.

It is worth underlying that dual process defection absorbing states do
not necessarily exist and if they do there may be multiple types of dual
process defection absorbing states differing not only in the equilibrium
location choice but also in the equilibrium threshold cost of deliberation.
This is the case because depending on the actual distribution of delibera-
tion costs G(·) there may be none, one, or multiple kd : kd = p(b−c)G(kd).
In general, there are as many dual process defection absorbing states as
the number of locations times the number of threshold costs of deliber-
ation such that kd = p(b − c)G(kd). In case there exist multiple types
of dual process defection absorbing states the various types can be or-
dered from the least to the most socially desirable by simply comparing
the equilibrium threshold cost of deliberation: the higher kd the higher
the rate of cooperation in infinitely repeated interactions and the higher
agents’ expected payoff.

Third, we show that each dual process cooperation state (ℓ∗, 1, 0, 1,
kc) with kc = (kc, . . . , kc) and kc = (1 − p)c is an absorbing state if
p ∈ ( cb , 1). In each of the L dual process cooperation absorbing states all
agents play TFT under intuition, deliberate with positive probability, and
if they do so then they play the dominant strategy of the game they are
currently facing. Moreover, all players stay in the same location. In such
states, the rate of cooperation is equal to 1−G(kc) in one-shot and anony-
mous interactions while it is equal to 1 in the case of infinitely repeated
prisoners’ dilemmas. These are the highest cooperation rates that may
characterize an absorbing set of the system. Consequently, dual process
cooperation absorbing states are the ones in which agents achieve the
highest expected payoff and, thus, are socially optimal.

Also, this result is consistent with the findings in Bear and David G
Rand (2016) and Jagau and Veelen (2017): both the parameter space in
which such states are absorbing and the condition on the optimal thresh-
old cost of deliberation coincide. Moreover, our finding that in dual pro-
cess cooperation absorbing states all agents stay in the same location is
a natural extension of the results in Bear and David G Rand (2016) and
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Jagau and Veelen (2017) given our location choice setting.

Finally, we formally prove that the system under unperturbed dy-
namics does not have other absorbing sets than the intuitive defection
set, (eventually) the set of dual process defection states, and the set of
dual process cooperation states. We do this by showing that starting from
a generic state the system will always reach – with a positive probability
– one of the aforementioned absorbing sets. But then, we can conclude
that there are no absorbing sets other than the ones listed in Theorem 4.

The results in Theorem 4 give rise to a problem of multiplicity of
equilibria: for any possible probability that the prisoners’ dilemma is
infinitely repeated, p, at least two kinds of equilibria exist and, so, we do
not have a clear prediction regarding the behavior of the system despite
it being of particular interest given that the different kinds of absorbing
sets can always be ranked in terms of social desirability.

3.4.2 Perturbed Dynamics

We consider now the system under perturbed dynamics and, so, we as-
sume that if given a revision opportunity an agent can make a mistake
with positive probability; if this happens then the agent selects a strat-
egy uniformly at random rather than following myopic best reply. Un-
der perturbed dynamics the system becomes ergodic and, thus, it is no
more characterized by absorbing sets: with positive probability, the sys-
tem may leave from any set of states and reach any other state.

Within this setting, we aim at solving the problem of multiplicity of
equilibria arising from Theorem 4 by identifying the stochastically stable
states of the system. These are the states in which the system is expected
to spend a significant amount of time if the system evolves as t → ∞ and
ε → 0.

Stochastic stability analysis can be performed only if the number of
states of the system is finite. However, the model considered so far is
characterized by an infinite state space as each agent’s threshold cost of
deliberation is a continuous variable. We then assume that agents choose
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their threshold cost of deliberation from the following discrete set:

K = {0, δ, 2δ, . . . , 1− 2δ, 1− δ, 1}

with δ ∈ { 1
n : n ∈ N}. We require that the set of discrete thresholds cost

of deliberation and, more precisely, δ satisfies the two following condi-
tions. First, δ must be such that kc, kd ∈ K for kc = (1 − p)c and for any
kd : kd = p(b − c)G(kd) given G(·). This assumption guarantees that all
the absorbing sets in Theorem 4 are still attainable in the discrete version
of the model and, consequently, that the discretization performed does
not drive the results reported in Theorem 5. Second, δ must be small
enough so that if in the non-discrete version of the model an agent’s mis-
take generates a profitable deviation for another player then this must
hold in the discrete version of the model too; in addition, such profitable
deviation must be attainable. This assumption guarantees that the dis-
cretization of the model does not affect the minimum number of mis-
takes required to lead with positive probability the system from a state
S to state S′ for any possible couple of states (S, S′). A δ satisfying the
previous conditions always exists. More precisely, any

δ =
1

α L.C.M.
(︁
kc, {kd}∀kd:kd=p(b−c)G(kd)

)︁
where L.C.M. denotes the least common multiple and α is a large enough
constant.

In Theorem 5 we report our main result under perturbed dynamics.

Theorem 5. Consider the system under perturbed dynamics (ε > 0). If p ∈(︁
c
b , 1

)︁
, then all the stochastically stable states of the system are contained in

the set of dual process cooperation states {(ℓ∗,1,0,1,kc)}Lℓ∗=1 with kc =
(kc, . . . , kc) and kc = (1− p)c.

We report the proof of Theorem 5 in Appendix F. In summary, we par-
tition the set absorbing sets characterizing the system under unperturbed
dynamics (Theorem 4) into two sets: the set of dual process cooperation
states Ω, and its complementary set, Ω−1, containing the intuitive defec-
tion set and dual process defection absorbing states. We then show that
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if p ∈
(︁
c
b , 1

)︁
one mistake may lead with positive probability the system

into the basin of attraction of Ω starting from any state belonging to Ω−1

and, consequently, the coradius of the basin of attraction of Ω is equal to
one, formally CR(Ω) = 1. Moreover, we show that if the population is
large enough then one mistake is never enough to make the system leave
the basin of attraction of Ω starting from a dual process cooperation state
and, therefore, the radius of the basin of attraction of Ω is strictly larger
than one, formally R(Ω) > 1. By combining these two results we can
conclude that if p ∈

(︁
c
b , 1

)︁
then

R(Ω) > 1 = CR(Ω)

and, thus, all the stochastically states of the system are contained in Ω.
But then, given that Ω contains only dual process cooperation states it
must be that if p ∈

(︁
c
b , 1

)︁
dual process cooperation states are the only

stochastically stable states.
According to Theorem 5 dual process cooperation states are stochas-

tically stable in the entire parameter space in which they are absorbing
states under unperturbed dynamics. This result holds for any distribu-
tion of deliberation costs G(·). Instead, in the case with a single location
– as the two examples in Section 3.3 show – dual process cooperation
states usually evolve in a subset of the parameter space in which they
are absorbing states; moreover, the parameter space in which they evolve
crucially depends on the actual distribution of deliberation costs. There-
fore, the presence of an endogenous interaction structure does not only
guarantee that dual process cooperation is favored by evolution for any
value of p such that it gives rise to absorbing states but it also does this
independently of the actual distribution of deliberation costs.

3.5 Strategy Revision with the Moran Process

To check whether our results crucially depend on the revision protocol
adopted in this section we consider the model with L ≥ 1 locations and
we assume that the system evolves according to the Moran process with
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uniform mistakes. More precisely, at the end of each period of time one
agent, say a′, is randomly selected to revise its strategy. With probability
ε > 0 agent a′ adopts a new strategy uniformly at random while with
probability 1 − ε > 0 it copies the strategy of another agent a ̸= a′. In
particular, agent a′ copies the strategy currently adopted by agent a with
the probability

pa′,a(St) =
eiπa(St)∑︁

α̸=a′ eiπα(St)

where i > 0 is the intensity of selection and πa(St) is the expected payoff
of agent a given the state of the system at time t.

We simulate the model setting the following parameter values: b = 4,
c = 1, A = 50, i = 10, ε = 0.05, g(·) ∼ U(0, 3). We also assume that the
probability that the game is an infinitely repeated prisoners’ dilemma
takes values in p ∈ {0.05, 0.10, 0.15, . . . , 0.90, 0.95} while the number of
locations is such that L ∈ {1, 2, 3, 5, 10, 25}. For each (p, L) combination
we perform 5 independent agent-based simulations of the model. Each
simulation begins from a randomly selected initial state and consists of
105 iterations.

In Figure 12 we report the simulation results. More precisely, we plot
the average probability to play Tit-For-Tat under intuition and the aver-
age threshold cost of deliberation as a function of p. Such average values
are computed over all the simulations characterized by the same p and
L excluding the first 104 iterations (the first 10% iterations) to neutralize
initialization bias.

Overall the figure indicates that there is a qualitative difference in the
behavior of the system as the number of locations changes from one to
more than one. In particular, in the case with more than one location
lower values of p sustain dual process cooperation as the main model
with myopically best replying agents would predict given the assump-
tions made. In addition, we observe that in the case with multiple lo-
cations even when dual process cooperation cannot be sustained – as it
does not give rise to absorbing states of the system – the average behavior
of the system is inconsistent with an intuitive defection scenario. In fact,
in cases with more than one location even for low values of p a significant
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Figure 12: Simulations results. Average probability to play TFT under in-
tuition (above) and average threshold cost of deliberation (below) and their
standard errors by the number of locations L.
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amount of agents play TFT under intuition and agents tend to deliberate
frequently. Instead, in the case L = 1 for low values of p we observe
most agents playing AllD under intuition and a limited use of delibera-
tion which is in line with an intuitive defection scenario (given the pres-
ence of mistakes). We interpret this as the result of an indirect revision
protocol combined with mistakes. More precisely, if there is more than
one location the following series of events may occur: a location becomes
empty, an agent makes a mistake and by doing so it moves into an empty
location and it adopts a ’cooperative’ strategy, the agent is then copied by
other agents and a cooperative cluster emerges. Such a cooperative clus-
ter may survive even for relatively long periods of time as the following
considerations hold: if a cooperative cluster emerges then the agents be-
longing to the cluster obtain a higher payoff than agents staying in loca-
tions in which intuitive defection has developed and so such agents will
be the ones with the highest probability to be copied by others; moreover,
cooperative clusters can be disrupted only through mistakes and, in par-
ticular, only if an agent makes a mistake and adopts a ’defective’ strategy
in the location where the cooperative cluster has emerged. Note that the
higher the number of locations the higher the probability that a coopera-
tive cluster emerges and that such a cluster lasts for a significant amount
of time. In fact, as the number of locations increases (i) the probability
that at least one location is empty increases, (ii) the probability that an
agent who has made a mistake and has adopted a cooperative strategy
in a previously empty location is selected to be copied is unaffected by
the number of locations ceteris paribus, and (iii) the probability that an
agent adopts by mistake a defective strategy in the location where the
cooperative cluster has emerged decreases. Note also that this different
behavior of the system with multiple locations would not be observed
if agents were myopically best responders. In fact, under myopic best
reply, rather than having the chance of being copied by others, an agent
adopting a cooperative strategy in an empty location would make it prof-
itable for all the other agents to adopt a dual process defection strategy in
the location where the mistake was made, and so no cooperative cluster
would emerge for low values of p.
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3.6 Conclusion

In this paper, we have analyzed a model of co-evolution of cooperation
and cognition with an endogenous interaction structure.

Following Bear and David G Rand (2016) and Jagau and Veelen (2017),
we have considered a model in which agents are randomly matched to
play a prisoners’ dilemma which can be either one-shot and anonymous
or infinitely repeated. In addition, agents are uninformed about the type
of interaction they are facing, and to retrieve this information they need
to engage in costly deliberation. The presence of different types of games
together with incomplete information generates a trade-off between in-
tuitively defecting – which is the dominant strategy in case the interac-
tion is one-shot and anonymous – and intuitively cooperating – which
is optimal in infinitely repeated interactions. In the evaluation of such a
trade-off, agents must also consider that different strategies imply differ-
ent optimal levels of deliberation.

We have enriched this setting by introducing a set of locations and by
allowing agents to choose the location in which they want to stay. Such
a decision determines the set of agents with which an agent interacts as
only agents staying in the same location can be matched to play a pris-
oners’ dilemma. This gives rise to an endogenous interaction structure.

We have shown that the model presents at most three types of absorb-
ing sets: (i) an intuitive defection set in which agents play Always Defect
under intuition, never deliberate, and are indifferent with respect to their
location choice, (ii) dual process cooperation states in which agents play
Tit-For-Tat (cooperate) under intuition, deliberate with positive probabil-
ity and all agents are concentrated in the same location, and (iii) depend-
ing on the actual distribution of deliberation costs none, one or more
kinds of dual process defection absorbing states in which all agents de-
fect under intuition, deliberate with positive probability and stay in the
same location. This first result represents a natural extension of the find-
ings in Bear and David G Rand (2016) and Jagau and Veelen (2017) in a
location-choice setting.

We have then performed equilibrium selection via stochastic stability
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analysis and we have found that dual process cooperation states are the
only stochastically stable states in the entire parameter space in which
they are absorbing states. This in turn implies that in our model intuitive
cooperation is favored by evolution in a larger parameter space than in
Bear and David G Rand (2016). This result implies that an endogenous
interaction structure promotes cooperation.
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Chapter 4

A Dual Process Model for
the Evolution of Fair Splits
and Harsh Rejections in the
Ultimatum Game

4.1 Introduction

Since the first experimental work dealing with the Ultimatum Game (Güth,
Schmittberger, and Schwarze, 1982) there has been great interest in un-
derstanding why subjects’ behavior differs so markedly from standard
game theoretical arguments. In fact, while the latter predicts almost null
offers and full acceptance of any positive offer, experimental evidence
points to ’fair’ offers – with the average offer being frequently between
40% and 50% of the amount to split – and frequent rejection of ’unfair’
offers (Güth and M. G. Kocher, 2014).

However, the disagreement between theoretical predictions and ex-
perimental evidence might not be as strong as it might seem at a first
glance. In fact, it is essential to remember that theoretical predictions are
derived under many assumptions, and their validity is restricted to the
situations in which such assumptions hold. In the case of an Ultimatum
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Game, for example, players must believe that the game is anonymous
and one-shot. Still, they must also be convinced that the receiver has no
bargaining power other than being able to reject the offer. But what if
this is not the case?

With this reasoning in mind, I develop a model of the evolution of
Ultimatum Game bargaining in which proposers and receivers interact
over time in either Ultimatum Games or simplified Bargaining Games.
Hence, agents face different kinds of interactions. Following dual pro-
cess theories of cognition (Evans and Stanovich, 2013) and their recent
applications to the case of cooperation (Bear and David G Rand, 2016;
Jagau and Veelen, 2017), I assume that although agents know the prob-
ability with which they are playing one game or another, they do not
know the actual game they are playing in a given interaction. To obtain
this information, agents need to pay a deliberation cost which is ran-
domly sampled from a known and fixed distribution. Both proposers
and receivers can choose their cognitive effort, and they do so by select-
ing a threshold cost of deliberation, which represents the maximum cost
they are willing to pay to deliberate. In a given interaction, if an agent
pays the deliberation cost, then it deliberates, and it gets to know the
type of game it is currently facing and, consequently, it can condition its
behavior to the game played; while if the agent does not deliberate, then
it must play without knowing the actual game. Both proposers and re-
ceivers update their strategies according to reinforcement learning. More
precisely, each agent is characterized by sets of propensities, with each
propensity expressing the agent’s attitude to choose a given action, such
as selecting a given threshold cost of deliberation, making a given offer,
and accepting or rejecting an offer. After every interaction, each agent
revises its propensities according to Roth-Erev reinforcement (Erev and
Roth, 1998).

To my knowledge, this is the first model analyzing the evolution of
Ultimatum Game bargaining within a dual process cognition framework.
This is of great interest because – in the attempt to understand whether
differences between theoretical predictions and experimental findings in
the Ultimatum Game are driven by intuitive behaviors – many experi-

62



mental studies have applied cognitive manipulations to subjects playing
the Ultimatum Game (see Capraro (2019) for a review). Some papers find
intuition increasing (or equivalently deliberation decreasing) both the of-
fers made by proposers (Cappelletti, Güth, and Ploner, 2011; Achtziger,
Alós-Ferrer, and Wagner, 2016; Halali, Bereby-Meyer, and Ockenfels,
2013) and receivers’ rejection rates (Sutter, M. Kocher, and Strauß, 2003;
Knoch et al., 2006; Cappelletti, Güth, and Ploner, 2011; Grimm and Men-
gel, 2011; Neo et al., 2013; Achtziger, Alós-Ferrer, and Wagner, 2016).
However, some other works suggest that cognitive manipulations gener-
ate either no effects (Clare Anderson, 2010; Cappelletti, Güth, and Ploner,
2011) or even opposite effects to the ones just mentioned (Clare Ander-
son, 2010; Halali, Bereby-Meyer, and Ockenfels, 2013). However, despite
these unclear results in the experimental literature, no theoretical work
has directly tackled the issue.

Some theoretical papers have suggested other possible explanations
for the experimental evidence on Ultimatum Game bargaining. For ex-
ample, reputation (Martin A Nowak, Page, and Sigmund, 2000; André
and Baumard, 2011), structured interactions (Page, Martin A Nowak,
and Sigmund, 2000; Alexander, 2007), and mistakes (David G. Rand, Tar-
nita, et al., 2013) have been argued to give rise to fair offers. A more com-
prehensive review and classifications of models providing explanations
for the evolution of fairness in the Ultimatum Game can be found in De-
bove, Baumard, and André (2016). These models are certainly of great
interest. However, they seem to provide only partial explanations of
the phenomenon. In fact, these contributions either cannot fully explain
why experimental subjects deviate from theoretical predictions in one-
shot and anonymous Ultimatum Game bargaining, which do not feature
elements such as reputation and structured interactions; or they rely on
relatively high mistake probabilities.

On the one side, I find that receivers consistently end up adopting
the same strategy: they do not accept an offer unless it is as large as their
outside option, which depends on their cognitive contingency (intuition,
deliberation if the game is an Ultimatum Game, and deliberation if the
game is a simplified Bargaining Game). Moreover, receivers’ delibera-
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tion patterns are significantly affected by the offer made by the proposer.
In fact, while null offers or generous offers, i.e., offers equal or above
50% of the value to split, always make receivers deliberate relatively in-
frequently; medium to low offers push receivers to deliberate more, and
this especially holds for given offer-specific probabilities that the game
is a simplified Bargaining Game. This implies that proposers’ behavior
can significantly impact receivers’ reliance on deliberation (endogenous
receivers’ deliberation).

On the other side, I find that proposers follow different strategies de-
pending on the width of the cost distribution considered. More precisely,
if the cost distribution has large support (and, so, on average high delib-
eration costs must be paid to guarantee frequent deliberation), proposers
adopt a pooling strategy according to which they always make the same
offer, which is equal to receivers’ intuitive outside option. Instead, if the
cost distribution is narrow, proposers switch to the following differenti-
ated strategy: if they deliberate and find out that the game is a simpli-
fied Bargaining Game, they make an offer equal to the receivers’ outside
option under deliberation if the game is a simplified Bargaining Game;
otherwise, they offer to receivers their intuitive outside option. Further,
I find that proposers’ deliberation patterns mainly depend on the pro-
posers’ own strategy. More precisely, proposers tend to deliberate more
frequently the more their strategy is differentiated, which happens for
intermediate values of the probability that the game is a simplified Bar-
gaining Game.

Finally, the model predicts huge variability in rejection rates condi-
tional on a given offer being made by proposers. Such heterogeneity can
be found both across offers made and for a given offer as different prob-
abilities of playing a simplified Bargaining Game are considered. More-
over, even in the absence of mistakes, the model generates rejections rates
of about 5%− 10%.

The paper provides a new theoretical explanation for many findings
in the experimental literature employing the Ultimatum Game, such as
proposers making fair offers, receivers frequently rejecting strictly posi-
tive offers, and possibly the existence of cross-country differences in be-
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havior. Further, the model provides interesting predictions about the
effects of cognitive manipulations in the Ultimatum Game and further
suggests new research questions regarding proposers’ and receivers’ be-
havior and their strategic interaction in the Ultimatum Game.

The remaining part of the paper is structured as follows: in Section 4.2
I present the theoretical framework considered, in Section 4.3 I illustrate
and discuss the main results, and Section 4.4 concludes and provides
insights for future research.

4.2 The Model

Consider a population composed of two types of agents: a set, I, of I
proposers indexed by i = 1, . . . , I and a set, J , of J receivers indexed by
j = 1, . . . , J . Time is discrete and indexed by t = 0, 1, . . ..

In each period of time t, proposer-receiver couples are randomly gen-
erated. Randomly matched agents play either a simplified Bargaining
Game (BG) – with probability β ∈ (0, 1) – or an Ultimatum Game (UG)
– with probability 1 − β. In Figure 13, I report the extensive form repre-
sentation of the two games. As the figure shows, the two games have a
similar structure. An amount α > 0 must be split between the proposer
and the receiver. The proposer moves first and chooses how much to of-
fer to the receiver given a discrete set of possible offers p ∈ {0, . . . , P}.
Once received an offer, the receiver decides whether to accept, Acc, or to
reject, Rej, it. If the receiver accepts the offer, then the suggested split is
implemented. Instead, if the receiver rejects the offer, then agents’ pay-
offs depend on the actual game played. If the agents are playing an UG,
then they both get a null payoff. Instead, if they are playing a simpli-
fied BG, then the receiver gets a payoff of π = δα

1+δ while the proposer
gets a payoff of δπ where δ ∈ (0, 1) corresponds to the discounting factor
with which agents would discount the amount α were they playing an
infinitely repeated Bargaining Game (Rubinstein, 1982). I interpret these
last payoffs as the ones characterizing the sub-game perfect Nash Equi-
librium of the infinitely repeated Bargaining Game in case the amount
to split is δα – the amount α is discounted because such payoffs are
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achieved after a first rejection from the receiver.
Agents do not know the type of game they are playing; to obtain this

information, they need to engage in costly deliberation. A deliberation
cost, cit [cjt], is randomly sampled decision-by-decision and indepen-
dently for each agent from a known distribution C(·) ∈ [0, C]. Each agent
chooses a threshold cost of deliberation, kit [kjt(p)], which corresponds
to the maximum deliberation cost the agent is willing to pay to deliberate
– note that a receiver’s threshold cost of deliberation may depend on the
actual offer p made by the proposer. I assume that agents choose their
threshold cost of deliberation from a discrete set K = {0, . . . , k, . . . ,K}.
If an agent’s threshold cost of deliberation is larger than its sampled de-
liberation cost, i.e. if, for example, kit ≥ cit, then the agent deliberates
and, consequently, it becomes informed about which game it is currently
facing and, thus, it can condition its offer [decision to accept or reject the
offer] on whether the game is an UG or a simplified BG.

I consider reinforcement learning agents. Every agent has weights
or propensities associated with each possible behavior it may adopt. In
particular, every proposer’s strategy is characterized by four vectors of
propensities:

1. W k
it = (wit,0, . . . , wit,k, . . . , wit,K) which contains one propensity

for each available threshold cost of deliberation k;

2. W Int
it = (wInt

it,0, . . . , w
Int
it,p, . . . , w

Int
it,P ) containing one propensity for

each available offer p; these propensities are used if the proposer
plays under intuition;

3. WUG
it = (wUG

it,0 , . . . , w
UG
it,p , . . . , w

UG
it,P ) containing one propensity for

each available offer p; these propensities are used if the proposer
plays under deliberation and it finds out that the game is an UG;

4. WBG
it = (wBG

it,0 , . . . , w
BG
it,p , . . . , w

BG
it,P ) containing one propensity for

each available offer p; these propensities are used if the proposer
plays under deliberation and it finds out that the game is a simpli-
fied BG.
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Figure 13: Ultimatum Game and simplified Bargaining Game. Extensive
form representations of the Ultimatum Game (a) and of the simplified Bar-
gaining Game (b) under the assumption P = α, i.e., the maximum offer the
proposer can make is equal to the entire amount to split.
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Instead, every receiver’s strategy can be described by the following four
matrices:

1. W k
jt =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

w0
jt,0 · · · w0

jt,k · · · w0
jt,K

...
. . .

...
. . .

...
wp

jt,0 · · · wp
jt,k · · · wp

jt,K
...

. . .
...

. . .
...

wP
jt,0 · · · wP

jt,k · · · wP
jt,K

⎞⎟⎟⎟⎟⎟⎟⎟⎠
This (P,K) matrix contains all the receiver’s propensities associ-
ated with threshold costs of deliberation. The (p, k)-th element is
the propensity associated to threshold k given that the proposer
has offered an amount p;

2. W Int
jt =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

w0,Int
jt,Acc w0,Int

jt,Rej
...

...
wp,Int

jt,Acc wp,Int
jt,Rej

...
...

wP,Int
jt,Acc wP,Int

jt,Rej

⎞⎟⎟⎟⎟⎟⎟⎟⎠
This (P, 2) matrix contains the receiver’s propensities to accept or
reject the offer p made by the proposer given that the receiver is
playing under intuition;

3. WUG
jt =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

w0,UG
jt,Acc w0,UG

jt,Rej
...

...
wp,UG

jt,Acc wp,UG
jt,Rej

...
...

wP,UG
jt,Acc wP,UG

jt,Rej

⎞⎟⎟⎟⎟⎟⎟⎟⎠
This (P, 2) matrix contains the receiver’s propensities to accept or
reject the offer p made by the proposer given that the receiver is
playing under deliberation and it has found out that the game is an
UG;
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4. WBG
jt =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

w0,BG
jt,Acc w0,BG

jt,Rej
...

...
wp,BG

jt,Acc wp,BG
jt,Rej

...
...

wP,BG
jt,Acc wP,BG

jt,Rej

⎞⎟⎟⎟⎟⎟⎟⎟⎠
This (P, 2) matrix contains the receiver’s propensities to accept or
reject the offer p made by the proposer given that the receiver is
playing under deliberation and it has found out that the game is a
simplified BG.

In every period of time t, each agent behaves according to its current
propensities unless it makes a mistake. More precisely, when making a
choice in a given information set an agent chooses behavior s′ among
the available behaviors in the set S with probability proportional to its
current weight:

Pr(s′) = (1− ε)
ws′∑︁
s∈S ws

+ ε
1

|S|

where ε ∈ [0, 1) is the error rate with which an agent selects a behavior
at random rather than following its propensities.

After each interaction, every agent updates its relevant weights, i.e.,
the ones among which it has selected its behavior. It does this by dis-
counting each weight by a factor φ ∈ (0, 1) and by adding to the chosen
weights the payoff obtained. In particular, if in a given information set an
agent has chosen option s′ among the ones in the set S then the propen-
sity associated with each choice s ∈ S is updated as follows:

wt+1,s = φwt,s + payoff Is=s′

where Is=s′ is an indication function taking value 1 if an only if s =

s′. Therefore, propensities associated with unused behaviors are simply
discounted while propensities associated with used behaviors are first
discounted and then increased by the payoff they have contributed to
generate. Discounting allows an agent to gradually forget information
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provided by past play and, consequently, it makes an agent weigh more
current payoff information. To initialize the model one must choose a
baseline value of propensities, say w, which determines agents’ behavior
in the first rounds of play.
To summarize, in each period of time:

1. Randomness is resolved: (i) proposers and receivers are randomly
matched into couples, (ii) the game played by the two agents is
randomly selected, and (iii) each agent’s actual cost of deliberation
is sampled from the distribution C(·);

2. Agents play the game according to their propensities and payoffs
are realized;

3. Each agent updates its propensities using payoff information.

4.2.1 Model Example

To better illustrate the model, I provide a simple example. Consider the
case in which at time t proposer i and receiver j are randomly matched
to play an Ultimatum Game.

Assume that the amount to split is α = 10 and that proposers can
make any offer p ∈ {0, 5, 10}. Assume also that the cost distribution
is C(·) ∼ U(0, 1), that at time t proposer i has been assigned a cost of
deliberation cit = 0.13, while receiver j faces a cost cjt = 0.3. Further,
assume that agents must choose their threshold cost from the set k ∈
{0, 0.5, 1}. Finally assume that δ = 0.6 so that π = 3.75, agents make a
mistake in implementing their strategy with probability ε = 0.1 and they
discount propensities with a discounting factor φ = 0.9.

Assume that proposer i’s strategy at time t is:

1. W k
it = (wit,0, wit,0.5, wit,1) = (5, 10, 0);

2. W Int
it = (wInt

it,0, w
Int
it,5, w

Int
it,10) = (8, 8, 8);

3. WUG
it = (wUG

it,0 , w
UG
it,5 , w

UG
it,10) = (12, 4, 0);

4. WBG
it = (wBG

it,0 , w
BG
it,5 , w

BG
it,10) = (1, 95, 4).
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This means that, for example, proposer i selects threshold kit = 0.5

with probability:

Prob(kit = 0.5) = (1− ε)
wit,0.5∑︁
k∈K wit,k

+ ε
1

|K|

= (1− 0.1)
10

15
+ 0.1

1

3

= 0.63

Moreover, Prob(kit = 0) = 0.3 and Prob(kit = 1) = 0.03.
Assume now that proposer i chooses kit = 0.5. But then, given that

cit = 0.13 < 0.5 = kit, proposer i deliberates. Consequently, the vec-
tor WUG

it = (12, 4, 0) will determine proposer i’s offer choice – as by
assumption the game is an UG.

Assume that according to its propensities in WUG
it proposer i offers

pit = 5 and that receiver j accepts the offer. Then proposer i will ob-
tain a payoff of uit = α − pit = 10 − 5 = 5. Then, proposer i will up-
date its propensities in W k

it and WUG
it , while the ones contained in W Int

it

and WBG
it will remain the same. For example, given its play (pit = 5)

and given the payoff it has obtained (uit = 5) proposer i will update
its propensities associated with making offers under deliberation if the
game is an UG as follows:

WUG
it+1 = (φ× wUG

it,0 , φ× wUG
it,5 + uit, φ× wUG

it,10)

= (0.9× 12, 0.9× 4 + 5, 0.9× 0)

= (10.8, 8.6, 0)

Similar reasoning applies to receiver j’s strategy implementation and
strategy revision. The main difference is that the receiver will implement
its strategy conditionally on the offer it has received from the proposer.
For example, given that the proposer has offered pit = 5, the receiver
will choose its threshold cost of deliberation and – given its cognitive
contingency – whether to accept or reject the offer by considering only
the propensities associated with an offer p = 5 (in the example made
only the second row of each matrix would matter). Moreover, only a
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specific row of each matrix used will be updated after the receiver has
obtained its payoff (again, the row associated with offer p = 5).

4.3 Results

I simulate the model by setting the parameters to the following values.
First, I = J = 50 and so both proposer’ and receivers’ populations are
made up of fifty agents. This in turn implies that in every period of time,
every proposer is matched with a unique receiver, and the other way
around: no agent is left unmatched. I let the system evolve for 106 iter-
ations and, so, t = 0, . . . , 106. With respect to the UG and simplified BG
parameters, I set the amount to split to α = 10 and allow each proposer
to choose its offer p from the set {0, 1, . . . , 10}. This together with setting
agents’ patience factor to δ = 0.8 implies π = δα

1+δ = 4.4. I assume that
agents make a mistake in implementing their strategy with probability
ε = 0.05 and that while revising their strategy they discount old propen-
sities by φ = 0.99. All propensities are initially set to w = 100, thus,
generating an initial random behavior of the system. Regarding the cog-
nitive part of the model, I assume that time-agent idiosyncratic costs of
deliberation are randomly sampled from a distribution C(·) ∼ U(0, C)

with C ∈ {0.25, 0.5, 1, 2}. Moreover, agents choose a threshold cost of
deliberation from the set K = {0, 1

8C,
2
8C, . . . , C} and, consequently, the

maximum threshold cost an agent may choose always corresponds to
the maximum deliberation cost that may be sampled from the distribu-
tion C(·). Moreover, independently of the maximum threshold cost avail-
able to agents, they can always choose from a fixed amount of threshold
costs of deliberation. Finally, I focus the analysis on the case in which
the probability that the game is a simplified Bargaining Game β belongs
to the set {0.1, 0.2, . . . , 0.9}. For each possible combination of β and C

values, I perform five independent simulations of the model.

In the following, I present first the results concerning receivers’ be-
havior, then the ones regarding proposers’ behavior, and finally, I com-
bine these findings to analyze implied rejection rates.
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4.3.1 Results: Proposers’ Equilibrium Play

I begin by analyzing the proposers’ equilibrium play. In Figure 14 I plot
the average offer made by proposers in the three possible cognitive con-
tingencies (intuition, deliberation if the game is an UG, and deliberation
if the game is a simplified BG) as a function of β by considered cost dis-
tribution.

Figure 14: Proposers’ behavior. Proposers’ average offer under intuition,
under deliberation if the game is an UG, and under deliberation if the game
is a simplified BG and their standard errors as a function of β by cost distri-
bution.

The first interesting result is that the proposers’ equilibrium play is
not unique: depending on the distribution of deliberation costs consid-
ered different proposers’ strategies may be favored by evolution. More
precisely, if the cost distribution is wide (case C = 2) proposers evolve to
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offer roughly the same amount independently of their specific cognitive
contingency. Such an equilibrium offer is increasing in the probability
that the game is a simplified BG and it is quite close to βπ. As one moves
to intermediate cost distributions (cases C = 1 and for low values of β
case C = 0.5) proposers evolve to make differentiated offers. In particu-
lar, under intuition and under deliberation if the game is an UG they still
make offers close to βπ; while they make fair offers (close to π) under
deliberation if the game is a simplified BG. Finally, in the case of narrow
cost distributions (cases C = 0.5 for low values of β and C = 0.25), pro-
posers further differentiate their strategy: in addition to making offers
close to π if they deliberate and find out that the game is a simplified BG
they also make consistently higher offers under intuition than under de-
liberation if the game is an UG even though the difference between the
two is small. However, it is reasonable to believe that as the maximum
cost of deliberation goes to zero proposers evolve to make differentiated
offers in all cognitive contingencies with offers made under deliberation
if the game is an UG approaching zero.

These findings suggest that experimental cognitive manipulations in
the UG should have little to no effect on proposers’ behavior unless sub-
jects have developed their strategies in a context characterized by both
negligible deliberation costs (small C) and (eventually) frequent bargain-
ing interactions (high β). Moreover, if such conditions are met, then
one should find increased reliance on intuitive behaviors associated with
(weakly) increasing proposers’ offers in the UG, but never the other way
around.

Another feature that is worth discussing is the shape of the average
offers made under intuition and under deliberation if the game is an UG
as a function of β for different cost distributions. In fact, even though
independently of C (i) these measures are increasing in β, (ii) start from
a minimum of one, and (iii) reach a maximum of about four, different
patterns are observed. In fact, if the cost distribution is wide (case C = 2)
as β increases the average offers made in the UG game rise at an approx-
imately constant rate and, consequently, offers are almost linear in β.
Instead, in the case of narrow cost distributions the average offers made

74



under intuition and the ones made under deliberation if the game is an
UG tend to stay at their minimum level for increasingly more values of
β; only for medium-high values of β offers begin to increase and they do
so at a fast rate.

The previous considerations imply that in most of the values of β

considered proposers tend to offer less in the UG if the maximum cost
of deliberation is low. For example, if β = 0.5 then in the case C = 0.25

proposers’ average offers in the UG are close to one, while if C = 2 then
such offers are more than three times as large. I interpret this as the
benefit proposers obtain by adopting a credible differentiated strategy.
However, this becomes clearer if one considers the receivers’ behavior.
For this reason, I defer the explanation to Section 4.3.2.

Figure 15 reports proposers’ probability to deliberate – which cor-
responds to the average threshold cost of deliberation chosen over the
maximum deliberation cost C – as a function of β for the different cost
distributions considered.

As the figure shows proposers’ probability to deliberate decreases
less than proportionally as the cost distribution widens. However, the
probability that the game is a simplified BG does not have a clear and
consistent effect on proposers’ propensity to deliberate across the cost
distributions considered. Despite this, in the case of most cost distribu-
tions (with the exception of the case C = 2) one can find either one or two
peaks of deliberation levels. This might be explained by looking at Fig-
ure 14. In fact, peaks of proposers’ propensity to deliberate occur for val-
ues of β such that the difference between the average offer made under
deliberation if the game is a simplified BG game and the average offers
made in the other cognitive contingencies is locally maximal. Therefore,
it seems that proposers’ propensity to deliberate is mostly determined by
proposers’ own strategy: they will have higher incentives to deliberate
as they adopt more differentiated strategies.

This finding can also provide an interesting interpretation of why
proposers adopt less differentiated strategies in the case of cost distri-
butions with high C. In fact, given that wider cost distributions make
deliberation more costly for a fixed probability of deliberation (or equiv-
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Figure 15: Proposers’ deliberation patterns. Average proposers’ probabil-
ity to deliberate and their standard errors as a function of β by cost distri-
bution.

alently they make deliberation less frequent for a fixed threshold cost
of deliberation), by adopting less differentiated strategies in the case of
wide cost distribution proposers’ decrease their own incentive to delib-
erate and, thus, avoid incurring into costly deliberation.

4.3.2 Results: Receivers’ Equilibrium Play

Figure 16 provides a synthetic description of receivers’ game-play equi-
librium behavior. More precisely, the figure reports receivers’ average
minimum accepted offer (MAO) under intuition, receivers’ MAO under
deliberation if the game is an UG, and receivers’ MAO under delibera-
tion if the game is a simplified BG as a function of β separately for the
different cost distributions considered. I define the MAO of a receiver
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in a given cognitive contingency as the minimum offer p such that the
receiver is willing to accept the offer p with probability 0.5 or higher con-
ditional on being in that cognitive contingency.

Figure 16: Receivers’ behavior. Receivers’ average MAO under intuition,
under deliberation if the game is an UG, and under deliberation if the game
is a simplified BG and their standard errors as a function of β by assumed
cost distribution.

As the figure shows, on the one hand, receivers’ behavior under de-
liberation is independent of the probability that the game played is a sim-
plified BG. In fact, if receivers deliberate then independently of the actual
value of β their MAO is equal to five under deliberation if the game is a
simplified BG, while it is consistently equal to zero if they deliberate and
find out that the game is an UG. On the other hand, receivers’ average
MAO under intuition is (i) increasing in β, (ii) bounded below by the av-
erage MAO under deliberation if the game is an UG, and (iii) bounded
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above by the average MAO under deliberation if the game is a simplified
BG. Overall, receivers’ MAO under intuition is often close to the value
βπ.

These findings can be interpreted as follows: a receiver does not ac-
cept an offer unless such offer is at least as large as the receiver’s expected
outside option given its current cognitive contingency where a receiver’s
outside option corresponds to the payoff it can secure itself by rejecting
the proposer’s offer. In fact, a receiver’s outside option is null if it de-
liberates and it finds out that the game is an UG, while it corresponds
to π = 4.4 (given α = 10 and δ = 0.8) if the receiver deliberates and it
finds out that the game played is a simplified BG. Moreover, given that
under intuition a receiver does not know the type of game it is currently
playing, but it knows the probability it is playing one game or another,
then a receiver’s expected outside option under intuition is βπ as with
probability β the game is a simplified BG, and consequently, its outside
option is π = 4.4, while with probability 1−β the game is an UG, and its
outside option is null.

It is also interesting to underline that while receivers’ MAO under
intuition is often close to βπ, in the case of narrow cost distributions, re-
ceivers are less demanding and this is more evident for low and medium
values of β. This is clearly illustrated by the different shapes assumed
by the average MAO under intuition for different cost distributions: for
C = 2 the average MAO under intuition is almost linear in β, while in
the case C = 0.25 it is flat for low values of β.

This finding can be accounted for by the previous interpretation (i.e.,
a receiver does not accept an offer unless it is as large as its expected
outside option) by recognizing that a receiver’s expected outside option
does not depend solely on receiver’s cognitive contingency and the type
of game played, but it may also be affected by the proposer’s behavior.
More precisely, in the case of narrow cost distributions proposers adopt
a differentiated strategy such that they make a low offer under intuition
and under deliberation if they find out that the game is an UG, while
they make a high offer under deliberation if the game is a simplified BG.
Given that proposers adopt this kind of differentiated strategy, receivers’
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expected outside option conditional on observing a low offer is lower
than βπ. In fact, given proposers’ behavior, conditional on observing a
low offer from the proposer a receiver should expect to be in a simplified
BG with probability β

(︁
1−E[C(kp)]

)︁
where E[C(kp)] is the expected prob-

ability that a proposer deliberates. But then, receiver’s expected outside
option is β

(︁
1 − E[C(kp)]

)︁
π < βπ. Interestingly, this outside option is de-

creasing in proposers’ expected probability to deliberate. But then, when
adopting a differentiated strategy of this kind, proposers face a trade-off
between their level of deliberation and the offer they must make to en-
sure acceptance from receivers: deliberating more allows to reduce the
offer made but increases deliberation costs and vice versa. If this is the
case, one can explain the flattening of average MAO and offers in the case
of narrow cost distributions. In fact, by looking at Figure 15, one can ob-
serve that in the cases C = 0.25 and C = 0.5 (in which proposers adopt
differentiated strategies) for low values of β proposers significantly in-
crease their level of deliberation as β increases. This implies a significant
decrease of

(︁
1 − E[C(kp)]

)︁
which counteracts the increase of β and, so,

keeps MAO and offers at low levels. Moreover, MAO and offers become
increasing in β as proposers stabilize their level of deliberation (because
it becomes too costly to deliberate more).

In any case, the results reported in Figure 16 provide clear predic-
tions regarding the effects of cognitive manipulations on the behavior
of experimental subjects playing as receivers in the UG. In fact, these
results imply that increased reliance on deliberation always decreases
receivers’ rejection rates in the UG. Moreover, differences between the
rejection rates under intuition and the ones under deliberation become
more evident as β increases.

I move now to the analysis of the receivers’ decision to deliberate.
In Figure 17 I report the average probability that a receiver deliberates
conditional on being offered an amount p. These measures are reported
separately by assumed cost distribution.

The most interesting cases to analyze are receivers’ probabilities to
deliberate conditional on offers p ∈ {1, 2, 3, 4}. Therefore, I will describe
the main findings associated to Figure 17 by focusing only on these of-
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Figure 17: Receivers’ deliberation patterns. Average receivers’ probabil-
ity to deliberate given that the proposer has offered an amount p and their
standard errors as a function of β by cost distribution.

fers. Afterward, I will comment on the cases p ∈ {0, 5, 6, 7, 8, 9, 10} which
are of lower interest for the following reasons: (i) they do not present in-
teresting patterns and (ii) in equilibrium proposers never make this kind
of offers (as seen in Section 4.3.1).

As the cost distribution widens, i.e., as C increases, receivers tend
to rely less frequently on deliberation. However, they do so less than
proportionally as in the case of proposers. Another interesting result re-
garding changes in the cost distribution is that receivers’ deliberation
patterns change and, more precisely, they specialize as the cost distribu-
tion widens. This specialization pattern is twofold.

The first specialization in deliberation patterns refers to changes in
deliberation across different values of β as the cost distribution changes
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conditional on a given offer p. More precisely, if the maximum cost of
deliberation, C, is low then receivers tend to deliberate with the same
(high) probability for most values of β. However, as the cost distribution
widens even though receivers tend to deliberate less frequently ceteris
paribus they decrease by different extents their probability to deliberate
depending on the specific value of β. Consider, for example, the case p =

2. As C increases receivers deliberate less frequently but such a decrease
in deliberation is significantly more pronounced for extreme values of β.
Therefore, as deliberation costs increase – conditional on being offered
an amount p – receivers give up deliberating more or less depending on
the actual value of β.

The second form of receivers’ specialization in deliberation patterns
refers to changes in deliberation patterns for different offers made by
proposers. More precisely, as the costs of deliberation increase depend-
ing on the specific value of β receivers tend to concentrate their cognitive
efforts on the cases in which they are offered some specific amount. In
particular, if β is low receivers deliberate relatively more if they get of-
fered p = 1. However, as β increases receivers switch to deliberate more
in case they receive an offer p = 2 (middle values of β), p = 3 (middle-
high values of β), or p = 4 (high β). Moreover, this tendency is more
pronounced for high values of C.

I interpret this second form of specialization in receivers’ deliberation
patterns as endogenous receivers’ deliberation. This gives rise to inter-
esting strategic considerations as in principle a proposer could affect the
likelihood that a receiver incurs into deliberation to its own benefit. But,
more generally, even if the proposer does not make strategic offers it will
still usually affect the receivers’ propensity to deliberate via the offer it
makes. If this is the case, proposers’ behavior can in principle alter the in-
tended effects of cognitive manipulations in experimental settings. Con-
sider, for example, a time delay treatment on proposers and receivers. If
proposers under time delay make really low offers, say zero or one, then
such low offers may push receivers to play intuitively (contrary to the
intended effect of the time delay treatment) and to reject the offer.

Finally, by comparing Figure 17 with Figure 15 it is clear that receivers
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tend to deliberate more frequently than proposers. This is likely due to
the differences in strategic complexity across types of agents which in
turn affect receivers’ and proposers’ expected benefits from deliberation.
Consider a receiver’s point of view. Given an offer p, either incurring
into deliberation is useless (cases p = 0 or p ≥ 5 which however almost
never occur given proposers’ equilibrium play) or deliberating has a piv-
otal role (cases p ∈ {1, 2, 3, 4}) as it tells the receiver whether it is optimal
to accept or reject the offer and, so, it allows a receiver to achieve the
highest payoff conditional on proposer’s offer and the actual game being
played. Consider now a proposer’s point of view. Even though delib-
erating informs the proposer about its optimal play, the actual outcome
a proposer will get will crucially depend on the receiver’s play and, in
particular, on whether it will deliberate or not.

I move now to the analysis of receivers’ deliberation patterns if they
are offered an amount p ≥ 5. Given receivers’ game-play behavior, they
accept this kind of offer in any cognitive contingency and, consequently,
deliberation does not provide any benefit. Despite this, receivers’ prob-
abilities to deliberate conditional on being offered amounts p ≥ 5 are
consistently bounded away from zero, they are higher in the case of nar-
row cost distributions, and they are close to 0.5 if C = 0.25. I interpret
these findings as evidence of low evolutionary pressure on receivers’ de-
liberation patterns in case they are offered generous amounts. In fact,
given the cost distributions considered and offers p ≥ 5, even if a re-
ceiver pays the maximum possible deliberation cost it will still obtain a
high payoff by accepting the offer and such payoff will not be signifi-
cantly lower than the one obtainable by paying zero deliberation costs.
For example, if p = 6 and C = 0.25, choosing the maximum threshold
cost available, i.e., k = 0.25, implies (i) always deliberating, (ii) paying
on average a deliberation cost of 0.125 and so to obtain an expected pay-
off of 5.875 while choosing the minimum threshold cost available, i.e.,
k = 0, implies never deliberating and, thus, obtaining an expected pay-
off of 6 which is not significantly higher than the one obtained by always
paying the deliberation cost. Of course, as the cost distribution widens
evolutionary selection of receivers’ deliberation patterns conditional on
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generous offers becomes stronger and it does so especially for relatively
less generous offers. This explains why as one considers wider cost dis-
tributions receivers’ probabilities to deliberate conditional on receiving
an offer p ≥ 5 become more heterogeneous.

Finally, consider the case in which a receiver is offered an amount
p = 0. As Figure 17 shows this is the scenario in which receivers de-
liberate less frequently. This is likely the combination of no incentive to
deliberate (as in the case of offers p ≥ 5) together with stronger selection
pressure. The low incentive to deliberate arises because independently
of the actual game played receivers are in expectation better off by reject-
ing a null offer. In fact, accepting the offer implies a null payoff, while
rejecting the offer implies an expected payoff of βπ – or β

(︁
1−E[C(kp)]

)︁
π

if proposers adopt a differentiated strategy. Instead, the higher selection
pressure comes from the fact that βπ is always smaller than any generous
offer considered before. This can also explain why receivers’ probability
to deliberate conditional on being offered an amount p = 0 is increasing
in β: for low values of β receivers expected payoff is small and so selec-
tion pressure on deliberation patterns is strong while for high values of
β receivers’ expected payoff converges to π = 4.44 which can be consid-
ered as a ’generous offer’ and, consequently, (i) the strength of selection
is low and (ii) receivers probability to deliberate gets close to the ones of
generous offers.

4.3.3 Results: Play in the Ultimatum Game

In this section I combine the findings related to receivers’ and proposers’
equilibrium behavior to derive predictions regarding expected rejection
rates in the Ultimatum Game; that is the rejection rates predicted by the
model conditional on the game being an UG. I compute two types of re-
jection rates. The first ones are conditional rejection rates, i.e, measures
of the average probability that a receiver rejects a given offer p condi-
tional on the game being an UG. These quantities can be derived by sim-
ply looking at receivers’ equilibrium propensities. The second type of
rejection rates are expected rejection rates computed by taking into ac-
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count simultaneously proposers’ and receivers’ expected behaviors. In
other words, these are the rejections rates one should observe in an UG
according to the model.

I begin by presenting the results related to conditional rejection rates.
Conditional rejection rates are computed as follows. For any given (β,C)

combination I compute the average receivers’ rejection rate conditional
on receiving an offer p both under intuition and under deliberation if the
game is an UG. Then, for any possible offer p, I derive the probability
that a receiver plays intuitively or according to deliberation given that it
has been offered an amount p. Finally, I use this information regarding
receivers’ probability to deliberate as weights for intuitive and delibera-
tive rejection rates, thus obtaining conditional rejection rates.

In Figure 18 I report receivers’ conditional rejection rates by offer p as
a function of β for each cost distribution considered.

Overall conditional rejection rates are decreasing in the offer p: by
making a higher offer a proposer usually guarantees himself a higher
chance of having its offer accepted. However, there are some exceptions
to this general rule. For example, in the case C = 1 for many intermediate
values of β if a proposer offers four rather than three then it faces a higher
rejection rate. I explain this in the light of Figure 17 which describes
receivers’ deliberation patterns conditional on the offer received. In fact,
by offering four rather than three a proposer triggers lower deliberation
on the receivers’ side which in turn increases receivers’ rejection rates
as rejection rates under intuition tend to be higher than the ones under
deliberation if the game is an UG.

As in the case of receivers’ probability to deliberate given an offer p I
now distinguish rejection rates conditional on offers p ∈ {1, 2, 3, 4} from
the ones conditional on null offers and the ones conditional on generous
offers p ≥ 5.

As the figure shows, receivers’ rejection rates conditional on being of-
fered an amount p ∈ {1, 2, 3, 4} are weakly increasing (non-decreasing) in
β for a given cost distribution. More precisely, they tend to be stable and
close to zero for low values of β but once β reaches a critical level (which
depends both on p and C) conditional rejection rates increase dramati-
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Figure 18: Conditional rejection rates. Average receivers’ conditional re-
jection rates in the Ultimatum Game and their standard errors as a function
of β by cost distribution.

cally until they converge to a maximum level. I explain this pattern as
follows. For low values of β receivers tend to accept any offer both under
intuition and under deliberation if the game is an UG and, consequently,
conditional rejection rates are close to zero for low values of β. However,
as β increases receivers begin to reject low offers under intuition (in or-
der, offers equal to one, two, three). After receivers start to reject offer p
under intuition, rejection rates conditional on offer p remain low as long
as receivers deliberate frequently enough conditional on being offered
an amount p; when they stop doing so rejection rates rise steadily. This
explains why conditional rejection rates begin to increase after β reaches
a critical value that depends both on p and C.

It is interesting to underline that conditional rejections rates reach a
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maximum level that is increasing in C and also depends on p. This is
because the maximum level reached by conditional rejection rates is de-
termined by the probability that receivers incur into deliberation given
that they have been offered an amount p. More precisely, if receivers de-
liberate a fraction of times x then conditional rejection rates can be up to
1−x as under deliberation receivers always accept the offer if the game is
an UG. This together with the findings that deliberation levels are lower
in the case of wide cost distributions and they also depend on p – as seen
in Section 4.3.2 – explains why the maximum level of conditional rejec-
tion rates is higher in the case of wide cost distributions and also depends
on the offer p.

Conditional rejection rates of fair offers p ≥ 5 are always close to zero,
as expected, given that both under intuition and under deliberation if the
game is an UG receivers always accept these kinds of offers. Instead, re-
jection rates conditional on null offers are always high, but they are never
equal to one. This holds because it is always the case that under intuition
receivers reject null offers while under deliberation they accept zero of-
fers with high probability. Despite these opposing effects the first one
(intuitive rejection) dominates as receivers deliberate with low probabil-
ity if they are offered nothing. Interestingly, the shape of the conditional
rejection rates associated with null offers closely remembers receivers’
probability to deliberate conditional on p = 0 inverted.

It is worth underlining that the model can account for high condi-
tional rejection rates in the UG for offers up to 40% of the value to split.

I move now to the analysis of overall rejection rates implied by the
model. These rejection rates have been computed as follows. For any
(β,C) combination I have derived proposers’ expected probability to
make any possible offer under intuition and under deliberation if the
game is an UG; moreover, I have computed proposers’ probability to
incur into deliberation. With these measures at hand, I have derived the
probabilities that proposers make any given offer in the UG. Then, I com-
bined these measures with the corresponding conditional rejection rates
to derive a measure of overall rejection rates. The rejection rates thus
obtained are illustrated in Figure 19.
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Figure 19: Expected rejection rates. Overall expected rejection rates in the
Ultimatum Game and their standard errors as a function of β by cost dis-
tribution. These rejection rates are computed by taking into account both
proposers’ behavior and receivers’ conditional rejection rates.

As the figure shows, expected rejection rates in the UG are overall in-
creasing in the probability that the game is a simplified BG. This might
be expected as the higher β the more receivers are demanding and, thus,
the more they should reject offers. However, interestingly rejection rates
in the UG are not monotonically increasing in β. In fact, expected rejec-
tion rates present multiple peaks and troughs. By comparing this finding
with Figure 14 it seems that implied rejection rates decrease at values of β
in correspondence of which proposers’ average offer switches from one
value (say p′) to the next available one (p′ + 1).

There is no clear relationship between expected rejection rates in the
UG and the cost distribution considered. However, rejection rates are
slightly lower in the case of narrow cost distributions. Moreover, un-
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der narrower distributions expected rejection rates are more stable and
monotone.

Overall, in the absence of players’ mistakes in implementing their
strategy, the model predicts rejection rates between 5% and 10%. These
figures are significantly lower than the rejection rates observed in the
laboratory but still can explain a relevant part of the phenomenon.

Appendix G and Appendix H report some robustness checks. The
former analyses the role played by the shape of the cost distribution,
while the latter studies the effects associated with changes in agents’ pa-
tience factor.

4.4 Conclusion

I have considered an evolutionary model featuring proposers and re-
ceivers interacting over time in Ultimatum Games and simplified Bar-
gaining Games. Following recent modelings of dual process theories of
cognition these agents cannot recognize the type of interaction they are
facing unless they incur costly deliberation. I study how agents’ behav-
ior both in terms of game-play (offers and minimum accepted offers) and
in terms of deliberation patterns is affected by changes in the probability
that the game is a simplified BG and as deliberation costs are drawn from
different uniform cost distributions.

In terms of game-play behavior, I found that depending on the cost
distribution considered proposers end up following different strategies.
More precisely, if the cost distribution is wide they adopt a pooling strat-
egy according to which they always make offers close to the receivers’
outside option under intuition. Instead, if the cost distribution is nar-
row, proposers switch to a differentiated strategy: under intuition and
under deliberation if the game is an UG they still offer an amount equal
to the receivers’ intuitive outside option, while under deliberation if the
game is a simplified BG they make an offer equal to the receivers’ out-
side option in the simplified BG. Instead, receivers consistently evolve to
play the same strategy which requires them to accept only offers higher
than or equal to their outside option conditional on their cognitive con-
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tingency. Interestingly enough receivers’ outside option does not depend
solely on their cognitive contingency and the probability of a simplified
BG, but it may also be affected by proposers’ behavior.

According to these results, cognitive manipulations fostering sub-
jects’ reliance on intuition in experimental settings should have either
no effect or slightly increase proposers’ offers in the UG; moreover, these
manipulations should increase receivers’ rejection rates.

In terms of deliberation patterns, I found that overall receivers tend
to deliberate more frequently than proposers. I interpret this as the effect
of differences in strategic complexity faced by the two types of agents
which in turn affects agents’ expected benefits deriving from incurring
into deliberation. Moreover, I found evidence of endogenous delibera-
tion patterns: receivers’ reliance on deliberation is crucially affected by
proposers’ behavior. This implies that in theory proposers may strate-
gically induce receivers to deliberate more or less to their own benefit.
Moreover, even if this was not the case the presence of endogenous de-
liberation patterns on the receivers’ side has important implications in
terms of cognitive manipulations in the lab. In fact, proposers’ behavior
could in principle exacerbate or neutralize the intended effects of cogni-
tive manipulations on receivers.

I have also analyzed rejection rates in the UG. First, I have computed
conditional rejection rates, i.e., the probability with which a receiver re-
jects would reject any given offer in the UG. I found that the model can
generate high rejection rates conditional on receiving a given offer. More-
over, while rejection rates are in general decreasing in the offer made
there are circumstances in which offering more can increase rejection
rates. This happens when offering more significantly reduces receivers’
probability to deliberate. Then, I have also computed overall rejection
rates generated by proposers’ and receivers’ combined behaviors. By do-
ing this I found rejection rates between 5% and 10%. These rejection rates
are significantly below the ones observed in experimental settings. How-
ever, it is worth stressing that these rejection rates are generated without
taking into account possible mistakes on the proposers’ and receivers’
sides. By including mistakes the differences between model predictions
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and experimental findings would be much smaller.
The model considered in this paper can account for several recur-

rent findings in experiments dealing with the UG such as generous of-
fers made by proposers, frequent rejections of positive offers, and poten-
tially cross-country differences in behavior in the UG. It also provides
interesting predictions regarding the effects of cognitive manipulations
on proposers’ and receivers’ behaviors. Further, the results obtained hint
at potential issues associated with the implementation of cognitive ma-
nipulations in the UG given that receivers’ deliberation patterns may be
significantly affected by proposers’ behavior. It is certainly of interest
to study whether this phenomenon is actually present in experimental
studies and whether it can significantly impact or even neutralize the in-
tended effects of cognitive manipulations. If this is the case, it would
be of primary importance to develop experimental setups that can take
into account or sterilize the effects of receivers’ endogenous deliberation
patterns.

Other interesting avenues for future research are, for example, the
following. First, it could be interesting to analyze whether the results are
robust to different revision protocols such as imitation and myopic best
reply. Second, it could be of interest to develop a similar model within
a signaling setting to study more carefully how much information re-
ceivers can extract from proposers’ offers and on the other side whether
and to what extent can proposers strategically exploit receivers’ informa-
tion acquisition from the offer received. Finally, it might also be of use to
replicate the setup considered in this paper within an experimental set-
ting. To this end a preliminary step could be the definition of measures
of the probability subjects expect to incur into bargaining interactions
rather than ultimatum interactions in their daily life.
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Chapter 5

Conclusion

In this thesis, I have presented three papers studying the evolution of
prosocial behaviors with a dual process perspective.

The first paper, reported in Chapter 2, is a joint work with Ennio Bi-
lancini and Leonardo Boncinelli. In the paper, we have studied the evo-
lution of collaboration conceived as playing the payoff dominant con-
vention in the Stag Hunt game. More precisely, we have analyzed how
agents’ cognition and the structure of interaction together affect the emer-
gence of the payoff dominant convention.

We have considered a finite population of myopically best replying
agents and a set of locations in which agents locate themselves. Agents
are randomly matched to play a Stag Hunt game. Sometimes only agents
staying in the same location are matched (local interactions) while other
times agents are matched independently of their location choice (global
interactions). Finally, there are two types of agents: fine reasoners who
can distinguish local from global interactions and coarse reasoners who
cannot.

By considering this setup we have found that if interactions are mostly
global then selection favors conventions where agents are separated into
different locations according to their mode of reasoning, with coarse rea-
soners playing the risk dominant action in all interactions and fine rea-
soners playing the risk dominant action globally and the payoff dom-
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inant action locally. If instead, interactions are mostly local, then all
agents stay in the same location and there are two cases: if coarse reason-
ers are sufficiently numerous then all agents play the payoff dominant
action both globally and locally, while if coarse reasoners are not numer-
ous enough then they play the payoff dominant action and fine reasoners
play the risk dominant action globally and the payoff dominant action lo-
cally. This implies that the co-existence of coarse and fine reasoning may
favor or hamper the adoption of the payoff dominant action depending
on the structure of interactions.

These results hint at an interesting interplay between cognition and
the structure of interaction. In particular, depending on whether interac-
tions are mostly local or global increased reliance on fine reasoning may
be either beneficial or detrimental to the diffusion of collaboration. This
in turn has interesting welfare implications. Moreover, the setting ana-
lyzed allows to derive several testable predictions regarding the effects
of cognitive manipulations on the tendency to coordinate on the payoff
dominant convention.

The second paper, reported in Chapter 3, is also a joint work with En-
nio Bilancini and Leonardo Boncinelli. In the paper, we have analyzed a
model of co-evolution of cooperation and cognition with an endogenous
interaction structure.

The model builds on the one in Bear and David G Rand (2016) and on
the findings in Jagau and Veelen (2017) and introduces an endogenous
interaction structure. More precisely, We have considered a population
of agents and a set of locations in which agents locate themselves. Over
time agents staying in the same location are randomly matched to play
a prisoners’ dilemma which can be either one-shot and anonymous or
infinitely repeated. However, agents need to engage in costly delibera-
tion to recognize the type of interaction they are facing. The presence of
different types of games together with incomplete information generates
a trade-off between intuitively defecting – which is the dominant strat-
egy in case the interaction is one-shot and anonymous – and intuitively
cooperating – which is optimal in infinitely repeated interactions. In the
evaluation of such a trade-off, agents must also consider that different
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strategies imply different optimal levels of deliberation.

We have shown that at most three types of absorbing sets exist: (i) an
intuitive defection set in which agents defect under intuition, never de-
liberate, and are indifferent with respect to their location choice, (ii) dual
process cooperation states in which agents cooperate under intuition, de-
liberate with positive probability and all agents stay in the same location,
and (iii) depending on the actual distribution of deliberation costs none,
one, or more kinds of dual process defection absorbing states in which
all agents defect under intuition, deliberate with positive probability and
stay in the same location. Afterward, we have shown that dual process
cooperation states are the only stochastically stable states in the entire
parameter space in which they are absorbing states. This in turn implies
that in our model dual process cooperation is favored by evolution in a
larger parameter space than in Bear and David G Rand (2016) and, so,
that an endogenous interaction structure promotes cooperation.

Finally, in Chapter 4 I have presented a model for the evolution of fair
splits and harsh rejections in the Ultimatum Game.

In the model, reinforcement learning proposers and receivers inter-
act over time in Ultimatum Games and simplified Bargaining Games,
but they cannot recognize which one they are playing unless they incur
costly deliberation.

On the one hand, I found that receivers significantly change their
reliance on deliberation depending on the amount they get offered by
proposers, and in the case of specific offers, they may be willing to in-
cur relatively high costs of deliberation. Moreover, receivers consistently
evolve to play the same strategy which requires them to accept only of-
fers higher than or equal to their outside option conditional on their cog-
nitive contingency. On the other hand, I found that proposers deliberate
less frequently than receivers and they tend to keep fixed their delib-
eration patterns. However, depending on the cost distribution consid-
ered proposers end up following different strategies. More precisely, if
the cost distribution is wide they adopt a pooling strategy according to
which they always make offers close to the outside option of receivers
under intuition. Instead, if the cost distribution is narrow they switch to

93



a differentiated strategy: under intuition and under deliberation if the
game is an UG they still offer an amount equal to the receivers’ intuitive
outside option, while under deliberation if the game is a simplified BG
they make an offer equal to receivers’ outside option in the simplified
BG.

By focusing on agents’ behaviors conditional on playing an UG, I
found that the model can account for fair offers and harsh rejections.
Moreover, these results provide several predictions regarding the effects
of cognitive manipulations on proposers’ and receivers’ behavior. In
addition, the finding that receivers’ deliberation patterns can be signif-
icantly influenced by proposers’ behavior suggests interesting strategic
considerations but also hints that proposers’ behavior might counter-
act the intended effects of cognitive manipulations which in turn could
explain why the experimental literature has frequently found mixed re-
sults.

Even though each of the three papers presented focuses on a differ-
ent prosocial behavior, they all contribute to the relevant literature by
suggesting possible mechanisms affecting the emergence of the proso-
cial behavior considered. Moreover, they all do this with a dual process
approach. Finally, each paper opens up interesting avenues for future
research.
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Appendix A

Chapter 2: Proof of
Theorem 1

Before providing the proof of Theorem 1, we introduce some useful con-
cepts. This is necessary because of the location choice setting we analyse.
More precisely, even if we allow for a large enough population so that
in global interactions each agent becomes negligible there always exist
states of the system in which really few agents stay in a given location.
In such states the evaluation of which is the best location – and, thus, the
best reply – to choose can be different from one agent to another. For
this reason we need to consider location- and agent-specific measures in
order to describe the behavior of each agent and, consequently, of the
system.

For convenience, in the following we will set A = 0 and B = 1 so
that, for example, lnt = 0 means that at time t agent n plays action A if
the interaction is local. Moreover, let ⟨ℓ⟩t denote the number of agents
staying in location ℓ at time t and let Inℓt be an indicator function that
takes value one if agent n stays in location ℓ at time t, i.e., if ℓnt = ℓ, and
zero otherwise.

Let ΛA
ℓt be the probability that at time t a randomly selected agent in
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location ℓ plays action A if the interaction is local. Then,

ΛA
ℓt =

⎧⎪⎨⎪⎩
1

⟨ℓ⟩t

∑︂
n:ℓnt=ℓ

(1− lnt) if ⟨ℓ⟩t > 0

0 if ⟨ℓ⟩t = 0

and let ΛB
ℓt be the probability that at time t a randomly selected agent in

location ℓ plays action B if the interaction is local. Then,

ΛB
ℓt =

⎧⎪⎨⎪⎩
1

⟨ℓ⟩t

∑︂
n:ℓnt=ℓ

lnt if ⟨ℓ⟩t > 0

0 if ⟨ℓ⟩t = 0

Note that:

• If ⟨ℓ⟩t > 0 (location ℓ is non-empty at time t), then ΛA
ℓt = 1− ΛB

ℓt;

• If ⟨ℓ⟩t = 0 (location ℓ is empty at time t), then ΛA
ℓt = ΛB

ℓt = 0.

Let λA
nℓt denote agent n’s probability at time t to be matched with a

randomly selected agent n′ ̸= n staying in location ℓ and playing action
A if the interaction is local (if ℓnt ̸= ℓ, this is the probability in case agent
n moved into location ℓ). Then,

λA
nℓt =

⎧⎨⎩
⟨ℓ⟩tΛA

ℓt − (1− lnt)Inℓt
⟨ℓ⟩t − Inℓt

if ⟨ℓ⟩t − Inℓt > 0

0 if ⟨ℓ⟩t − Inℓt = 0

Let λB
nℓt denote agent n’s probability at time t to be matched with a

randomly selected agent n′ ̸= n staying in location ℓ and playing action
B if the interaction is local (again if ℓnt ̸= ℓ, this is the probability if agent
n moved into location ℓ). Then,

λB
nℓt =

⎧⎨⎩
⟨ℓ⟩tΛB

ℓt − lntInℓt
⟨ℓ⟩t − Inℓt

if ⟨ℓ⟩t − Inℓt > 0

0 if ⟨ℓ⟩t − Inℓt = 0

Note that the following relations holds:
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• if ℓnt ̸= ℓ (agent n is not staying in location ℓ), then λA
nℓt = ΛA

ℓt and
λB
nℓt = ΛB

ℓt;

• if ⟨ℓ⟩t − Inℓt > 0 and so (i) location ℓ is non-empty and (ii) if agent
n stays in location ℓ then agent n is not alone in location ℓ, then
λA
nℓt = 1− λB

nℓt (and a fortiori ΛA
ℓt = 1− ΛB

ℓt);

• if ℓnt = ℓ (agent n stays in location ℓ), ⟨ℓ⟩t − Inℓt > 0 (agent n

is not alone in location ℓ), and lnt = 0 (agent n plays action A in
local interactions), then λB

nℓt ≥ ΛB
ℓt with strict inequality if ΛB

ℓt > 0.
Moreover, λB

nℓt ≥ λB
n′ℓt for every n′ ̸= n;

• if ℓnt = ℓ (agent n stays in location ℓ), ⟨ℓ⟩t − Inℓt > 0 (agent n

is not alone in location ℓ), and lnt = 1 (agent n plays action B in
local interactions), then λB

nℓt ≤ ΛB
ℓt with strict inequality if ΛB

ℓt < 1.
Moreover, λB

nℓt ≤ λB
n′ℓt for every n′ ̸= n.

Let Γt be the probability at time t that an agent plays action B if the
interaction is global. Then,

Γt =
1

N

N∑︂
n=1

gnt

where gnt = 1 if agent n at time t plays the payoff dominant action B

under global interactions, while gnt = 0 if agent n at time t plays the risk
dominant action A under global interactions.

Moreover, let γnt denote the probability at time t that agent n is matched
with another agent n′ ̸= n playing action B if the interaction is global.
Then,

γnt =
NΓt − gnt
N − 1

If N ≥ 2, γnt is always well defined. Note also that 1 − γnt denotes the
probability at time t that agent n is matched with another agent playing
action A if the interaction is global. Moreover, by definition:

• if gnt = 1 (agent n plays action B in global interactions), then γnt ≤
Γt with strict inequality if Γt < 1. Moreover, γnt ≤ γn′t for every
n′ ̸= n;
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• if gnt = 0 (agent n plays action A in global interactions), then γnt ≥
Γt with strict inequality if Γt > 0. Moreover, γnt ≥ γn′t for every
n′ ̸= n.

These definitions allow us to define a player’s expected payoff as-
sociated to a given strategy and to determine an agent’s best reply in
a generic state of the system. More precisely, we can express agent n’s
expected payoff associated to strategy (ℓ, x, y) at time t as follows:

πnt(ℓ, x, y) = p
[︁
λB
nℓt

(︁
xb+ (1− x)c

)︁
+ λA

nℓt

(︁
xd+ (1− x)a

)︁]︁
+ . . .

. . .+ (1− p)
[︁
γnt

(︁
yb+ (1− y)c

)︁
+ (1− γnt)

(︁
yd+ (1− y)a

)︁]︁
This generic expression for the expected payoff of an agent allows us

to easily derive the following conclusion: if N ≥ 2, then a strategy, say
(ℓ′, x′, y′), prescribing to move into an empty location or to stay alone
in a location is never a best reply to the current state of the system. In
fact, there always exists at least one strategy providing a strictly higher
payoff which is a strategy (ℓ′′, x′, y′) such that ⟨ℓ′′⟩t−Inℓt > 0: such alter-
native strategy implies the same expected payoff in global interactions,
but a strictly higher expected payoff in local interactions. Note also that
if strategy (ℓ, x, y) does not imply being alone in a location, then we can
substitute λA

nℓt with 1− λB
nℓt.

A fine reasoner j ∈ F will adopt with positive probability a strat-
egy prescribing to play action B in global interactions if πjt(ℓ, x,B) ≥
πjt(ℓ, x,A) holds for some ℓ ∈ L, x ∈ {A,B} and, consequently, if

γjt ≥ α (A.1)

otherwise it will adopt a strategy prescribing to play action A in global
interactions.

Note that the optimal location choice crucially depends on the action
played in local interactions. More precisely, if an agent decides to play
action B in local interactions, then it will find it optimal to locate itself
in the non-empty location with maximal λB

nℓt. In fact, πjt(ℓ
′, B, y) ≥

πjt(ℓ
′′, B, y) if and only if λB

jℓ′t ≥ λB
jℓ′′t. Instead, if an agent decides to
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play action A in local interactions, then it will find it optimal to locate
itself in the non-empty location with maximal λA

jℓt or equivalently in the
non-empty location with minimal λB

jℓt.

Let ℓB be the non-empty location with maximal λB
jℓt and let ℓA be the

non-empty location with minimal λB
jℓt. Then, fine reasoner j will adopt

with positive probability a strategy prescribing to play action B in local
interactions if πjt(ℓ

B , B, y) ≥ πjt(ℓ
A, A, y) and so if:

λB
jℓBt

b− d

a− d+ b− c
+ λB

jℓAt

a− c

a− d+ b− c
≥ α (A.2)

Note that the LHS of Equation (A.2) is a weighted average of λB
jℓBt and

λB
jℓAt and fine reasoner j will be willing adopt with positive probabil-

ity a strategy prescribing to play action B in local interactions if and
only if such weighted average is larger than or equal to α. In general,
this is a more demanding condition than λB

jℓBt ≥ α. In fact, it must
not only hold λB

jℓBt ≥ α but also there must be no non-empty location
with λB

jℓAt sufficiently low to make it more convenient to play action A
in such location. In other words, we may say that Equation (A.2) is an
optimality condition for playing action B in local interactions discounted
by the opportunity-cost of playing locally action A. In fact, by exploiting
λB
jℓAt = 1− λA

jℓAt we can rewrite Equation (A.2) as:

λB
jℓBtb+ (1− λB

jℓBt)d ≥ λA
jℓAta+ (1− λA

jℓAt)c

which requires that the expected payoff of playing action B in location
ℓB is larger than the opportunity-cost of playing action A in location ℓA.

Finally, note that if there is only a single non-empty location ℓ′ then ℓB =

ℓA = ℓ′ and, consequently, Equation (A.2) simplifies to λB
jℓ′t ≥ α.

The location choice by coarse reasoners follows the same logic as the
one by fine reasoners: agents locate themselves in the location that al-
lows them to maximize local coordination given the action they decide to
play in local (and global) interactions. Let ℓB be the non-empty location
with maximal λB

iℓt and let ℓA be the non-empty location with minimal
λB
iℓt. Then, coarse reasoner i will adopt with positive probability strategy
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(ℓB , B,B) if πit(ℓ
B , B,B) ≥ πit(ℓ

A, A,A) which requires:

p
(︂
λB
iℓBt

b− d

a− d+ b− c
+ λB

iℓAt

a− c

a− d+ b− c

)︂
+ (1− p)γit ≥ α (A.3)

otherwise coarse reasoner i will adopt strategy (ℓA, A,A). Note that the
term on the LHS is a weighted average with weights (p, 1−p) of fine rea-
soners’ local and global optimality conditions. This implies that if both
Equation (A.1) and Equation (A.2) are satisfied, then also Equation (A.3)
must hold.

With these tools in hand we can now prove Theorem 1. The proof
of Theorem 1 consists in proving eight distinct lemmas (Lemma A.1 to
Lemma A.8) referring to points (1.1)-(1.8) of the statement of the theorem.

Lemma A.1. All the states of the type A-AA are absorbing if p, q ∈ (0, 1)

Proof. Assume that the system is in a state of the type A-AA. Then, every
n ∈ N adopts strategy (ℓ∗, A,A). Therefore, for every agent n ∈ N it
must be λB

nℓ∗ = 0 and γn = 0. Moreover, given that location ℓ∗ is the
only non-empty location, (i) we can express Equation (A.2) as λjℓ∗ ≥ α
and (ii) no agent has an incentive to change location choice as this would
imply moving into an empty location.

States of the type A-AA are absorbing states if neither Equation (A.1)
nor Equation (A.2) nor Equation (A.3) are satisfied. This holds for every
p, q ∈ (0, 1) because λB

nℓ∗ = 0 and γn = 0 for every n ∈ N .
Hence, all the states of the type A-AA are absorbing if p, q ∈ (0, 1).

Lemma A.2. If the population is large enough, then all the states of the type
A-AB are absorbing if p ∈ (0, 1) and q ∈

(︁
α,min

{︁
α

1−p , 1
}︁)︁

.

Proof. Assume that the system is in a state of the type A-AB. Then, ev-
ery i ∈ C adopts strategy (ℓ∗, A,A), while every j ∈ F adopts strategy
(ℓ∗, A,B). Therefore, if the population is large enough for every agent
n ∈ N it must be λB

nℓ∗ = 0 and γn = q. Moreover, given that location
ℓ∗ is the only non-empty location, (i) we can express Equation (A.2) as
λjℓ∗ ≥ α and (ii) no agent has an incentive to change location choice as
this would imply moving into an empty location.

States of type A-AB are absorbing states if:

• Equation (A.1) holds strictly. This is the case if γj = q > α;
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• Equation (A.2) does not hold. This is the case as λB
jℓ∗ = 0 < α;

• Equation (A.3) does not hold. This is the case if q < α
1−p .

Hence, if the population is large enough then all the states of the type
A-AB are absorbing if p ∈ (0, 1) and q ∈

(︁
α,min

{︁
α

1−p , 1
}︁)︁

.

Lemma A.3. If the population is large enough, then all the states of the type
A-BA are absorbing if p ∈ (0, 1) and q ∈

(︁
α,min

{︁
α
p , 1

}︁)︁
.

Proof. Assume that the system is in a state of the type A-BA. Then, ev-
ery i ∈ C adopts strategy (ℓ∗, A,A), while every j ∈ F adopts strategy
(ℓ∗, B,A). Therefore, if the population is large enough for every agent
n ∈ N it must be λB

nℓ∗ = q and γn = 0. Moreover, given that location
ℓ∗ is the only non-empty location, (i) we can express Equation (A.2) as
λjℓ∗ ≥ α and (ii) no agent has an incentive to change location choice as
this would imply moving into an empty location.

States of type A-BA are absorbing if:

• Equation (A.1) does not hold. This is the case as γj = 0 < α;

• Equation (A.2) holds strictly. This is the case if λB
jℓ∗ = q > α;

• Equation (A.3) does not hold. This is the case if q < α
p .

Hence, if the population is large enough then all the states of the type
A-BA are absorbing if p ∈ (0, 1) and q ∈

(︁
α,min

{︁
α
p , 1

}︁)︁
.

Lemma A.4. If the population is large enough, then all the states of the type
A/BA are absorbing if p ∈

(︁
0, a−d

b−d

)︁
and q ∈ (0, 1).

Proof. Assume that the system is in a state of the type A/BA. In such a
state, every i ∈ C adopts strategy (ℓ∗, A,A), while every j ∈ F adopts
strategy (ℓ∗∗, B,A) with ℓ∗∗ ̸= ℓ∗. Therefore, if the population is large
enough for every agent n ∈ N it must be λB

nℓ∗ = λB
nℓA = 0, λB

nℓ∗∗ =
λB
nℓB = 1 and γn = 0. Moreover, no agent has an incentive to move into

a location ℓ′ ̸= ℓ∗, ℓ′ ̸= ℓ∗∗ as this would imply moving into an empty
location.

States of the type A/BA are absorbing states if:

• Equation (A.1) does not hold. This is the case as γj = 0 < α;

• Equation (A.2) holds strictly. This is always the case because b−d
a−d+b−c >

α = a−d
a−d+b−c ;
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• Equation (A.3) does not hold. This is the case if p b−d
a−d+b−c < α and,

so, if p < a−d
b−d .

Hence, if the population is large enough then all the states of the type
A/BA are absorbing if p ∈

(︁
0, a−d

b−d

)︁
and q ∈ (0, 1).

Lemma A.5. If the population is large enough, then all the states of the type
B-AB are absorbing if p ∈ (0, 1) and q ∈

(︁
1− α,min

{︁
1−α
p , 1

}︁)︁
.

Proof. Assume that the system is in a state of the type B-AB. Then, ev-
ery i ∈ C adopts strategy (ℓ∗, B,B), while every j ∈ F adopts strategy
(ℓ∗, A,B). Therefore, if the population is large enough for every agent
n ∈ N it must be λB

nℓ∗ = 1− q and γn = 1. Moreover, given that location
ℓ∗ is the only non-empty location, (i) we can express Equation (A.2) as
λjℓ∗ ≥ α and (ii) no agent has an incentive to change location choice as
this would imply moving into an empty location.

States of the type B-AB are absorbing if:

• Equation (A.1) holds strictly. This is always the case because γj =
1 > α;

• Equation (A.2) does not hold. This is the case if λB
jℓ∗ = 1 − q < α

and, so, q > 1− α;

• Equation (A.3) holds strictly. This is the case if p(1−q)+(1−p) > α
and, so, q < 1−α

p .

Hence, if the population is large enough then all the states of the type
B-AB are absorbing if p ∈ (0, 1) and q ∈

(︁
1− α,min

{︁
1−α
p , 1

}︁)︁
.

Lemma A.6. If the population is large enough, then all the states of the type
B-BA are absorbing if p ∈ (0, 1) and q ∈

(︁
1− α,min

{︁
1−α
1−p , 1

}︁)︁
.

Proof. Assume that the system is in a state of type B-BA. Then, every i ∈
C adopts strategy (ℓ∗, B,B), while every j ∈ F adopts strategy (ℓ∗, B,A).
Therefore, if the population is large enough for every agent n ∈ N it must
be λB

nℓ∗ = 1 and γn = 1 − q. Moreover, given that location ℓ∗ is the only
non-empty location, (i) we can express Equation (A.2) as λjℓ∗ ≥ α and (ii)
no agent has an incentive to change location choice as this would imply
moving into an empty location.

States of the type B-BA are absorbing if:
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• Equation (A.1) does not hold. This is the case if γj = 1− q < α and,
so, q > 1− α;

• Equation (A.2) holds strictly. This is always the case because λB
jℓ∗ =

1 > α;

• Equation (A.3) holds strictly. This is the case if p+(1−p)(1−q) > α
and, so, q < 1−α

1−p .

Hence, if the population is large enough then all the states of the type
B-BA are absorbing if p ∈ (0, 1) and q ∈

(︁
1− α,min

{︁
1−α
1−p , 1

}︁)︁
.

Lemma A.7. All the states of the type B-BB are absorbing if p, q ∈ (0, 1).

Proof. Assume that the system is in a state of the type B-BB. Then, every
n ∈ N adopts strategy (ℓ∗, B,B). Therefore, for every agent n ∈ N it
must be λB

nℓ∗ = 1 and γn = 1. Moreover, given that location ℓ∗ is the
only non-empty location, (i) we can express Equation (A.2) as λjℓ∗ ≥ α
and (ii) no agent has an incentive to change location choice as this would
imply moving into an empty location.

States of the type B-BB are absorbing states if both Equation (A.1),
Equation (A.2), and Equation (A.3) are strictly satisfied and this hold for
every p, q ∈ (0, 1) because λB

nℓ∗ = 1 and γn = 1 for every n ∈ N .
Hence, all the states of the type B-BB are absorbing if p, q ∈ (0, 1).

Lemma A.8. There are no absorbing sets other than the states of types A-AA,
A-AB, A-BA, A/BA, B-AB, B-BA, and B-BB.

Proof. We provide an algorithm showing that starting from any possible
state the system converges with positive probability to an absorbing state
among the states of types A-AA, A-AB, A-BA, A/BA, B-AB, B-BA, and
B-BB. In Figure A.1 we provide a sketch of such algorithm.

Assume that the system is in a generic state and set t = 0. Then, two
scenarios are possible: either there is at least one fine reasoner j′ willing
to adopt or to keep a strategy prescribing to play action B in global inter-
actions (Scenario 1) or there is none (Scenario 2).

Consider first Scenario 1. Given that there is at least one fine reasoner,
say j′, willing to adopt or to keep a strategy prescribing to play action
B in global interactions, then with positive probability at the end of time
t = 0 only agent j′ will be given a revision opportunity and will adopt
such a strategy.
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Generic state

2

Fine: (ℓj1, x, A)

Coarse: (ℓi1, z, z)

2.2

Fine: (ℓj2, A,A)

Coarse: (ℓi2, z, z)

A-AA

∄j ∈ F :
Eq. (A.2)

holds

2.1

Fine: (ℓj2, B,A)

Coarse: (ℓi2, z, z)

2.1.2

Fine: (ℓj3, B,A)

Coarse: (ℓi3, A,A) 2.1.2.2

Fine: (ℓj4, B,A)

Coarse: (ℓi4, A,A)

A-BA or
A/BA∄j ∈ F :

Eq. (A.2)
not holds

2.1.2.1

Fine: (ℓj4, A,A)

Coarse: (ℓi4, A,A)

A-AA

∃j ∈ F :
Eq. (A.2)
not holds

∄i ∈ C:
Eq. (A.3)

holds

2.1.1

Fine: (ℓj3, B,A)

Coarse: (ℓi3, B,B) 2.1.1.2

Fine: (ℓj4, B,A)

Coarse: (ℓi4, B,B)

B-BA∄j ∈ F :
Eq. (A.1)

holds

2.1.1.1

Fine: (ℓj4, B,B)

Coarse: (ℓi4, B,B)

B-BB

∃j ∈ F :
Eq. (A.1)

holds

∃i ∈ C:
Eq. (A.3)

holds

∃j ∈ F :
Eq. (A.2)

holds

∄j ∈ F :
Eq. (A.1)

holds

1

Fine: (ℓj1, x, B)

Coarse: (ℓi1, z, z)

1.2

Fine: (ℓj2, A,B)

Coarse: (ℓi2, z, z)

1.2.2

Fine: (ℓj3, A,B)

Coarse: (ℓi3, A,A) 1.2.2.2

Fine: (ℓj4, A,B)

Coarse: (ℓi4, A,A)

A-AB∄j ∈ F :
Eq. (A.1)
not holds

1.2.2.1

Fine: (ℓj4, A,A)

Coarse: (ℓi4, A,A)

A-AA

∃j ∈ F :
Eq. (A.1)
not holds

∄i ∈ C:
Eq. (A.3)

holds

1.2.1

Fine: (ℓj3, A,B)

Coarse: (ℓi3, B,B) 1.2.1.2

Fine: (ℓj4, A,B)

Coarse: (ℓi4, B,B)

B-AB or B-
BB∄j ∈ F :

Eq. (A.2)
holds

1.2.1.1

Fine: (ℓj4, B,B)

Coarse: (ℓi4, B,B)

B-BB

∃j ∈ F :
Eq. (A.2)

holds

∃i ∈ C:
Eq. (A.3)

holds
∄j ∈ F :

Eq. (A.2)
holds

1.1

Fine: (ℓj2, B,B)

Coarse: (ℓi2, z, z)

B-BB

∃j ∈ F :
Eq. (A.2)

holds

∃j ∈ F :
Eq. (A.1)

holds

Figure A.1: Summary of the arguments used in the proof of Lemma A.8.
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At time t = 1 it must be γj′1 = γj′0 ≥ α as at time t = 0 Equation (A.1)
was satisfied. Moreover, given that agent j′ now plays action B in global
interactions it must also be γj′1 ≤ γj1 for every j ̸= j′. But then, for every
other fine reasoner Equation (A.1) must hold and so every fine reasoner
must be willing to adopt or to keep a strategy prescribing to play action
B in global interactions. But then with positive probability at the end of
time t = 1 every fine reasoner j ̸= j′ will be given a revision opportunity
and will adopt a strategy prescribing to play action B in global interac-
tions.

At the beginning of time t = 2 the system will be in a state in which
every fine reasoner adopts a strategy prescribing to play action B in global
interactions. Then, two scenarios are possible: either there is at least one
fine reasoner j′ willing to adopt or to keep strategy (ℓj′3, B,B) for some
ℓj′3 ∈ L (Scenario 1.1) or there is none (Scenario 1.2).

Consider first Scenario 1.1. Given that there is at least one fine rea-
soner j′ willing to adopt or to keep strategy (ℓj′3, B,B) for some ℓj′3 ∈ L,
then with positive probability at the end of time t = 2 only agent j′ will
be given a revision opportunity and will adopt strategy (ℓj′3, B,B).

At the beginning of time t = 3 (λj′13, . . . , λj′L3) = (λj′12, . . . , λj′L2)
must be such that Equation (A.2) is satisfied as otherwise adopting strat-
egy (ℓj′3, B,B) would have not been a best reply for agent j′. More-
over, given that agent j′ now adopts strategy (ℓj′3, B,B) it must also be
λB
j′ℓj′33

≤ ΛB
ℓj′33

and λB
j′ℓ3 = ΛB

ℓ3 for any ℓ ̸= ℓj′3. If at time t = 3 there is
at least one fine reasoner j ̸= j′ adopting a strategy prescribing to play
action A in local interactions, then it must be

(λB
j13, . . . , λ

B
jℓ3, . . . , λ

B
jL3) ≥ (λB

j′13, . . . , λ
B
j′ℓ3, . . . , λ

B
j′L3)

But then, Equation (A.2) must hold for every fine reasoner j adopting
a strategy prescribing to play action A in local interactions and, conse-
quently, every such fine reasoner must be willing to adopt with positive
probability strategy (ℓj4, B,B). But then with positive probability at the
end of time t = 3 every fine reasoner adopting a strategy prescribing to
play action A in local interactions will be given a revision opportunity
and will adopt strategy (ℓj4, B,B).

At the beginning of time t = 4 the system will be in a state in which
every fine reasoner j adopts a strategy of type (ℓj4, B,B). In such a
state every coarse reasoner i adopting a strategy of the type (ℓi4, A,A)
for some ℓi4 ∈ L must be willing to adopt strategy (ℓi5, B,B) for some
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ℓi5 ∈ L. In fact for every such coarse reasoner it must be

(λB
i14, . . . , λ

B
iℓ4, . . . , λ

B
iL4, γi4) ≥ (λB

j14, . . . , λ
B
jℓ4, . . . , λ

B
jL4, γj4)

where j is a generic fine reasoner. But given that (λB
j14, . . . , λ

B
jL4, γj4) is

such that both Equation (A.1) and Equation (A.2) are satisfied, then a for-
tiori (λB

i14, . . . , λ
B
iL4, γi4) must be such that Equation (A.3) holds. But then,

with positive probability at the end of time t = 4 every coarse reasoner
adopting a strategy of type (ℓi4, A,A) will be given a revision opportu-
nity and will adopt strategy (ℓi5, B,B).

At the beginning of time t = 5 the system will be in a state in which
all agents play action B in both local and global interactions. But then,
the system will be in an absorbing state of the type B-BB.

Consider now Scenario 1.2 in which there is no fine reasoner j′ willing
to adopt or to keep strategy (ℓj′3, B,B) for some ℓj′3 ∈ L. But then every
fine reasoner j must be willing to adopt or to keep strategy (ℓj3, A,B) for
some ℓj3 ∈ L. But then, with positive probability at the end of time t = 2
every fine reasoner will be given a revision opportunity and will adopt
such strategy.

At time t = 3 the system will be in a state in which each fine reasoner
j adopts a strategy of type (ℓj3, A,B). Then two scenarios are possible:
either there is at least one coarse reasoner, say i′, willing to adopt or to
keep strategy (ℓi′4, B,B) for some ℓi′4 ∈ L (Scenario 1.2.1) or there is none
(Scenario 1.2.2).

Consider first Scenario 1.2.1. Given that there is at least one coarse
reasoner i′ willing to adopt or to keep strategy (ℓi′4, B,B) for some ℓi′4 ∈
L, then with positive probability at the end of time t = 3 only agent i′

will be given a revision opportunity and will adopt strategy (ℓi′4, B,B).
At the beginning of time t = 4 for every coarse reasoner i adopting a

strategy prescribing to play action A in both local and global interactions
it must be

(λB
i14, . . . , λ

B
iℓ4, . . . , λ

B
iL4, γi4) ≥ (λB

i′14, . . . , λ
B
i′ℓ4, . . . , λ

B
i′L4, γi′4)

But, given that (λB
i′14, . . . , λ

B
i′ℓ4, . . . , λ

B
i′L4, γi′4) is such that Equation (A.3)

is satisfied, then the same must be true also for (λB
i14, . . . , λ

B
iℓ4, . . . , λ

B
iL4, γi4).

Consequently, each coarse reasoner i adopting a strategy of type (ℓi4, A,A)
must be willing to adopt with positive probability strategy (ℓi5, B,B) for
some ℓi5 ∈ L. But then, with positive probability at the end of time
t = 4 every coarse reasoner i adopting a strategy prescribing to play A
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in both local interactions will be given a revision opportunity and will
adopt strategy (ℓi5, B,B).

At the beginning of time t = 5 the system will be in a state in which
every coarse reasoner i adopts a strategy of type (ℓi5, B,B) while every
fine reasoner j adopts a strategy of type (ℓj5, A,B). Then two scenar-
ios are possible. If there is at least one fine reasoner j′ willing to adopt
strategy (ℓj′6, B,B) for some ℓj′6 ∈ L (Scenario 1.2.1.1), then we are back
to Scenario 1.1 and the system will move with positive probability into
an absorbing state of type B-BB. If, instead, there is no fine reasoner j′

willing to adopt strategy (ℓj′6, B,B) for some ℓj′6 ∈ L (Scenario 1.2.1.2),
then every fine reasoner j must be willing to keep a strategy of type
(ℓj6, A,B) for some ℓj6 ∈ L. Let ℓ∗ be the location with minimum Λℓ5

and ℓ∗∗ be the location with maximum Λℓ5, then with positive probabil-
ity at the end of time t = 5 all coarse reasoners i such that ℓi5 ̸= ℓ∗ and all
fine reasoners j such that ℓj5 ̸= ℓ∗∗ will be given a revision opportunity
and each coarse reasoner given a revision opportunity will adopt strat-
egy (ℓ∗, B,B) while every fine reasoner given a revision opportunity will
adopt strategy (ℓ∗∗, A,B).

At the beginning of time t = 6 the system will be a state in which
every coarse reasoner i adopts strategy (ℓ∗, B,B) while every fine rea-
soner j adopts strategy (ℓ∗∗, A,B). Then, two scenarios are possible: if
ℓ∗ ̸= ℓ∗∗ then every fine reasoner j must now be willing to adopt strategy
(ℓ∗, B,B) and, consequently, the system will reach an absorbing state of
type B-BB; if, instead, ℓ∗ = ℓ∗∗ the system will have reached an absorbing
state of type B-AB.

Consider now Scenario 1.2.2 in which there is no coarse reasoner i′

willing to adopt or to keep strategy (ℓi′4, B,B) for some ℓi′4 ∈ L. But
then every coarse reasoner i must be willing to adopt a strategy of type
(ℓi4, A,A) for some ℓi4 ∈ L. But then, with positive probability at the end
of time t = 3 every coarse reasoner will be given a revision opportunity
and will adopt such strategy.

At the beginning of time t = 4 the system will be in a state in which
every coarse reasoner i adopts strategy (ℓi4, A,A) while every fine rea-
soner j adopts strategy (ℓj4, A,B). Then two scenarios are possible: ei-
ther there is at least one fine reasoner, say j′, willing to adopt strategy
(ℓj′5, A,A) for some ℓj′5 ∈ L (Scenario 1.2.2.1) or there is none (Scenario
1.2.2.2).

Consider first Scenario 1.2.2.1. Given that there is at least one fine
reasoner j′ willing to adopt strategy (ℓj′5, A,A) for some ℓj′5 ∈ L, then
with positive probability at the end of time t = 4 only agent j′ will be
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given a revision opportunity and will adopt strategy (ℓj′5, A,A).
At time t = 5 every fine reasoner j ̸= j′ must be willing to adopt

strategy (ℓj6, A,A) as

(λB
j15, . . . , λ

B
jℓ5, . . . , λ

B
jL5) ≤ (λB

j′15, . . . , λ
B
j′ℓ5, . . . , λ

B
j′L5)

and (λB
j′15, . . . , λ

B
j′ℓ5, . . . , λ

B
j′L5) is such that Equation (A.2) holds. Then,

with positive probability at the end of time t = 5 every fine reasoner j
will be given a revision opportunity and will adopt strategy (ℓj5, A,A).

At the beginning of time t = 6 the system will be in a state in which
every agent adopts a strategy prescribing to play action A in both local
and global interactions. But then the system will reach an absorbing state
of type A-AA.

Consider now Scenario 1.2.2.2 in which there is no fine reasoner j′

willing to adopt strategy (ℓj′5, A,A) for some ℓj′5 ∈ L. But then every
fine reasoner j must be willing to keep a strategy of type (ℓj5, A,B) for
some ℓj5 ∈ L. Given that all agents play action A in local interactions, ev-
ery agent must be indifferent between staying in his current location and
moving into a non-empty location. But then, with positive probability at
the end of time t = 4 every agent will be given a revision opportunity
and every coarse reasoner will adopt strategy (ℓ∗, A,A) while every fine
reasoner will adopt strategy (ℓ∗, A,B). Therefore, the system will have
reached an absorbing state of type A-AB.

Consider now Scenario 2 in which there is no fine reasoner willing
to adopt or to keep a strategy prescribing to play action B in global in-
teractions, then every fine reasoner must be willing to adopt a strategy
prescribing to play action A in global interactions. But then with positive
probability at the end of time t = 0 every fine reasoner will be given a
revision opportunity and will adopt such a strategy.

At time t = 1 the system will be in a state in which every fine rea-
soner adopts a strategy prescribing to play action A in global interac-
tions. Then, two scenarios are possible: either there is at least one fine
reasoner, say j′, willing to adopt or to keep strategy (ℓj′2, B,A) for some
ℓj′2 ∈ L (Scenario 2.1) or there is none (Scenario 2.2).

Consider first Scenario 2.1. Given that there is at least one fine rea-
soner j′ willing to adopt or to keep strategy (ℓj′2, B,A) for some ℓj′2 ∈ L,
with positive probability at the end of time t = 1 only agent j′ will be
given a revision opportunity and will adopt strategy (ℓj′2, B,A).

At the beginning of time t = 2 it must be λB
j′ℓj′22

= λB
j′ℓj′21

≥ α as
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otherwise (ℓj′2, B,A) would have not been a best reply; moreover, given
that agent j′ now adopts strategy (ℓj′2, B,A) it must also be λB

j′ℓj′22
≤

ΛB
ℓj′22

and λB
j′ℓ2 = ΛB

ℓ2 for any ℓ ̸= ℓj′2. If at time t = 2 there is at least
one fine reasoner j adopting strategy (ℓj2, A,A), then such fine reasoners
must be willing to adopt with positive probability strategy (ℓj3, B,A) for
some ℓj3 ∈ L as

(λB
j12, . . . , λ

B
jℓ2, . . . , λ

B
jL2) ≥ (λB

j′12, . . . , λ
B
j′ℓ2, . . . , λ

B
j′L2)

and (λB
j′12, . . . , λ

B
j′ℓ2, . . . , λ

B
j′L2) is such that Equation (A.2) holds. But

then with positive probability at the end of time t = 2 every fine rea-
soner j adopting strategy (ℓj2, A,A) will be given a revision opportunity
and will adopt strategy (ℓj3, B,A) with ℓj3 ∈ L.

At the beginning of time t = 3 the system will be in a state in which
every fine reasoner j adopts a strategy of type (ℓj3, B,A). Then, two
scenarios are possible: either there is at least one coarse reasoner, say i′,
willing to adopt or to keep strategy (ℓi′4, B,B) with ℓi′4 ∈ L (Scenario
2.1.1) or there is none (Scenario 2.1.2).

Consider first Scenario 2.1.1. Given that there is at least one coarse
reasoner i′ willing to adopt or to keep strategy (ℓi′4, B,B) with ℓi′4 ∈ L,
then with positive probability at the end of time t = 3 only agent i′ will
be given a revision opportunity and will adopt strategy (ℓi′3, B,B).

At time t = 4 every coarse reasoner i adopting strategy (ℓi4, A,A)
must be willing to adopt a strategy of type (ℓi4, B,B) for some ℓi4 ∈ L as

(λB
i14, . . . , λ

B
iℓ4, . . . , λ

B
iL4, γi4) ≥ (λB

i′14, . . . , λ
B
i′ℓ4, . . . , λ

B
i′L4, γi′4)

and (λB
i′14, . . . , λ

B
i′ℓ4, . . . , λ

B
i′L4, γi′4) is such that Equation (A.3) holds. But

then, with positive probability at the end of time t = 4 every coarse rea-
soner i adopting strategy (ℓi4, A,A) will be given a revision opportunity
and will adopt strategy (ℓi5, B,B).

At the beginning of time t = 5 the system will be in a state in which
every coarse reasoner i adopts strategy (ℓi5, B,B) while every fine rea-
soner j adopts strategy (ℓj5, B,A). Then, if there is at least one fine rea-
soner j′ willing to adopt strategy (ℓj′6, B,B) (Scenario 2.1.1.1), then we
are back to Scenario 1.1 and the system will reach an absorbing state of
type B-BB. Instead, If there is no fine reasoner j′ willing to adopt strat-
egy (ℓj′6, B,B) (Scenario 2.1.1.2), then given that every agent is adopting
a strategy prescribing to play action B in local interactions each agent
is indifferent between every non-empty location choice. But then, with
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positive probability at the end of time t = 5 every agent will be given a re-
vision opportunity and all coarse reasoners will adopt strategy (ℓ∗, B,B)
while every fine reasoner will adopt strategy (ℓ∗, B,A). Consequently
the system will reach an absorbing state of type B-BA.

Consider now Scenario 2.1.2 in which there is no coarse reasoner i′

willing to adopt or to keep strategy (ℓi′4, B,B) for some ℓi′4 ∈ L, then
every coarse reasoner i must be willing to adopt strategy (ℓi4, A,A) for
some ℓi4 ∈ L. But then, with positive probability at the end of time
t = 3 every coarse reasoner i will be given a revision opportunity and
will adopt strategy (ℓi4, A,A).

At the beginning of time t = 4 the system will be in a state in which
every coarse reasoner i adopts strategy (ℓi4, A,A) while every fine rea-
soner j adopts strategy (ℓj4, B,A). Then, if there is at least one fine rea-
soner j′ willing to adopt strategy (ℓj′5, A,A) (Scenario 2.1.2.1), then we
are back to Scenario 1.2.2.1 and the system will reach an absorbing state
of type A-AA. Instead, If there is no fine reasoner j′ willing to adopt strat-
egy (ℓj′5, A,A) (Scenario 2.1.2.2), then every fine reasoner j must be will-
ing to keep strategy (ℓj5, B,A). Let ℓ∗ be the location with minimum Λℓ5

and ℓ∗∗ be the location with maximum Λℓ5 (in case of multiple maxima
[minima] the maximal [minimal] location is randomly selected among
them), then with positive probability at the end of time t = 4 all coarse
reasoners i such that ℓi5 ̸= ℓ∗ and all fine reasoners j such that ℓj5 ̸= ℓ∗∗

will be given a revision opportunity and each coarse reasoner given a
revision opportunity will adopt strategy (ℓ∗, A,A) while every fine rea-
soner given a revision opportunity will adopt strategy (ℓ∗∗, B,A).

At the beginning of time t = 6 the system will be in an absorbing state
either of type A/BA (if ℓ∗ ̸= ℓ∗∗) or of type A-BA.

Consider now Scenario 2.2 in which there is no fine reasoner j′ willing
to adopt or to keep strategy (ℓj′2, B,A) for some ℓj′2 ∈ L. But then every
fine reasoner j must be willing to adopt a strategy of type (ℓj2, A,A) for
some ℓj2 ∈ L. But then, with positive probability at the end of time t = 1
every fine reasoner j will be given a revision opportunity and will adopt
strategy (ℓj2, A,A).

At the beginning of time t = 2 the system will be in a state in which
every fine reasoner j adopts strategy (ℓj2, A,A). In such a state every
coarse reasoner i adopting a strategy of type (ℓi2, B,B) for some ℓi2 ∈ L
must be willing to adopt strategy (ℓi3, A,A) for some ℓi3 ∈ L. In fact for
every such coarse reasoner it must be

(λB
i12, . . . , λ

B
iℓ2, . . . , λ

B
iL2, γi2) ≤ (λB

j12, . . . , λ
B
jℓ2, . . . , λ

B
j′L2, γj2)
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where j is a generic fine reasoner. But given that (λB
j12, . . . , λ

B
j′L2, γj2) is

such that neither Equation (A.1) nor Equation (A.2) are satisfied, then we
can conclude that (λB

i12, . . . , λ
B
iL2, γi2) must be such that Equation (A.3)

does not hold. But then, with positive probability at the end of time
t = 2 every coarse reasoner i adopting a strategy of type (ℓi2, B,B) will
be given a revision opportunity and will adopt strategy (ℓi3, A,A).

At the beginning of time t = 3 the system will be in a state in which
every agent adopts a strategy prescribing to play action A in local inter-
actions. But then, every agent must be indifferent between staying in his
current location and moving into a non-empty location. But then, with
positive probability at the end of time t = 3 every agent will be given
a revision opportunity and will adopt strategy (ℓ∗, A,A). Therefore, the
system will have reached an absorbing state of type A-AA.

Hence, there are no absorbing sets other than the states of types A-
AA, A-AB, A-BA, A/BA, B-AB, B-BA, and B-BB.

Theorem 1. If the population is large enough, then all the states of the following
types are absorbing:

(1.1) A-AA, if p, q ∈ (0, 1);

(1.2) A-AB, if p ∈ (0, 1) and q ∈
(︁
α,min

{︁
α

1−p , 1
}︁)︁

;

(1.3) A-BA, if p ∈ (0, 1) and q ∈
(︁
α,min

{︁
α
p , 1

}︁)︁
;

(1.4) A/BA, if p ∈
(︁
0, a−d

b−d

)︁
and q ∈ (0, 1);

(1.5) B-AB, if p ∈ (0, 1) and q ∈
(︁
1− α,min

{︁
1−α
p , 1

}︁)︁
;

(1.6) B-BA, if p ∈ (0, 1) and q ∈
(︁
1− α,min

{︁
1−α
1−p , 1

}︁)︁
;

(1.7) B-BB, if p, q ∈ (0, 1);

Further:

(1.8) there are no absorbing sets other than the states of types A-AA, A-AB,
A-BA, A/BA, B-AB, B-BA, and B-BB.

Proof. The theorem follows as a direct consequence of the joint consider-
ation of results in Lemma A.1 to Lemma A.8, and in case the population
size is sufficiently large to satisfy the most demanding condition on pop-
ulation sizes among Lemma A.2, Lemma A.3, Lemma A.4, Lemma A.5,
and Lemma A.6.
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Appendix B

Chapter 2: Proof of
Theorem 2

Let S, S′ be two sets of absorbing states. In the following, we will denote
with M(S, S′) the minimum number of mistakes required to lead with
positive probability the system into the basin of attraction of S′ starting
from an absorbing state belonging to S. Moreover, for ease of exposition
we will refer to the set of states of a given type, say X-YZ, by simply
writing X-YZ so that, for example, A/BA ∈ S means that all the states of
the type A/BA belong to the set S.

We now provide some preliminary results that are needed in order to
prove Theorem 2.

Lemma B.1. Let S′ = {A-AA, A-AB, A-BA, B-AB}. If the population is large
enough and states of the type A/BA are absorbing, then one mistake is never
enough to lead with positive probability the system into the basin of attraction
of S′ starting from a state of the type A/BA, i.e., M(A/BA, S′) > 1.

Proof. Let S′ = {A-AA, A-AB, A-BA, B-AB} and consider an absorbing
state of the type A/BA where agents are agglomerated according to their
type. Note that, if the population is large enough, then a single mistake
by any agent will have a negligible effect on the expected payoff of other
agents in case they keep their current strategy and, moreover, the other
agents can possibly increase their expected payoff only if the mistaken
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agent has moved into an empty location and coordinating locally with it
provides a better payoff than their current local interactions.

Assume also that the system is in an absorbing state of the type A/BA1.
Then, every i ∈ C adopts strategy (ℓ∗, A,A) while every j ∈ F adopts
strategy (ℓ∗∗, B,A).

Table B.1 reports the expected payoff that an agent n ∈ N would
obtain by adopting strategy σnt+1 at time t + 1 given that at time t the
system was in an absorbing state of the type A/BA and that at the end
of time t an agent n′ ∈ N , n′ ̸= n has adopted by mistake strategy σn′t.
The table reports such expected payoff for each possible combination of
(σnt+1, σn′t) under the assumption that the population is large enough.

σnt+1
σn′t

(ℓ′, A,A) (ℓ′, A,B) (ℓ′, B,A) (ℓ′, B,B)

(ℓ∗, A,A) a a− a a−

(ℓ∗∗, A,A) pc+ (1− p)a pc+ (1− p)a− pc+ (1− p)a pc+ (1− p)a−

(ℓ′, A,A) a a− pc+ (1− p)a pc+ (1− p)a−

(ℓ∗, A,B) pa+ (1− p)d pa+ (1− p)d+ pa+ (1− p)d pa+ (1− p)d+

(ℓ∗∗, A,B) pc+ (1− p)d pc+ (1− p)d+ pc+ (1− p)d pc+ (1− p)d+

(ℓ′, A,B) pa+ (1− p)d pa+ (1− p)d+ pc+ (1− p)d pc+ (1− p)d+

(ℓ∗, B,A) pd+ (1− p)a pd+ (1− p)a− pd+ (1− p)a pd+ (1− p)a−

(ℓ∗∗, B,A) pb + (1 − p)a pb + (1 − p)a− pb + (1 − p)a pb + (1 − p)a−

(ℓ′, B,A) pc+ (1− p)a pc+ (1− p)a− pb+ (1− p)a pb+ (1− p)a−

(ℓ∗, B,B) d d+ d d+

(ℓ∗∗, B,B) pb+ (1− p)d pb+ (1− p)d+ pb+ (1− p)d pb+ (1− p)d+

(ℓ′, B,B) d d+ pb+ (1− p)d pb+ (1− p)d+

Table B.1: Effects of one mistake in an absorbing state of the type A/BA.
Expected payoff of agent n at time t+ 1 if agent n decides to adopt strategy
σnt+1 given that at time t the system was in an absorbing state of the type
A/BA and that at the end of time t agent n′ ̸= n has adopted by mistake
strategy σn′t = (ℓ′, x, y) with ℓ′ ̸= ℓ∗, ℓ∗∗. Strategies available to coarse
reasoners in gray, current strategies of coarse and fine reasoners in bold. +
[−] indicates that the expected payoff is approximated from above [below]
under the assumption of a large enough population.

1By Theorem 1 a state of the type A/BA is an absorbing state if p ∈
(︁
0, a−d

b−d

)︁
. If, instead,

p ∈ (a−d
b−d

, 1), then for every coarse reasoner i ∈ C πit(ℓ
∗, A,A) < πit(ℓ

∗∗, B,B). But then,
with positive probability at the end of the next period of time every i ∈ C will be given
a revision opportunity and will adopt strategy (ℓ∗∗, B,B). Consequently, without any
mistake the system will reach a state of the type B-BA and, so, the analysis in Lemma B.2 is
the one of interest.
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As the table shows, in most cases the expected payoff provided by
the current strategy adopted by agent n, σi = (ℓ∗, A,A) if i ∈ C and
σj = (ℓ∗∗, B,A) if j ∈ F , is strictly higher than the one associated to
alternative strategies after agent n′ has adopted by mistake strategy σn′t.
However, some cases are worth discussing.

The population must be large enough in order to guarantee the fol-
lowing inequalities:

• πit+1(ℓ
∗, A,A) > πit+1(ℓ

∗∗, B,B) for every i ∈ C, i ̸= n′ if σn′t ∈
{(ℓ′, A,B), (ℓ′, B,B)};

• πit+1(ℓ
∗, A,A) > πit+1(ℓ

′, B,B) for every i ∈ C, i ̸= n′ if σn′t =
(ℓ′, B,B);

• πjt+1(ℓ
∗∗, B,A) > πjt+1(ℓ

∗∗, B,B) for every j ∈ F , j ̸= n′ if σn′t ∈
{(ℓ′, A,B), (ℓ′, B,B)};

• πjt+1(ℓ
∗∗, B,A) > πjt+1(ℓ

′, B,B) for every j ∈ F , j ̸= n′ if σn′t =
(ℓ′, B,B).

Moreover, if σn′t = (ℓ′, A,A) or σn′t = (ℓ′, A,B), then πit+1(ℓ
∗, A,A) =

πit+1(ℓ
′, A,A) and, so, every coarse reasoner i ̸= n′ is indifferent be-

tween keeping strategy (ℓ∗, A,A) and adopting strategy (ℓ′, A,A). But
then with positive probability at then end of the next period of time ev-
ery agent i ∈ C, i ̸= n′ will be given a revision opportunity and will
adopt strategy (ℓ′, A,A). Consequently, the system will reach a different
absorbing state of the type A/BA which does not belong to the basin of
attraction of S′.

If either σn′t = (ℓ′, B,A), or σn′t = (ℓ′, B,B), then πjt+1(ℓ
∗∗, B,A) =

πjt+1(ℓ
′, B,A) and, so, every fine reasoner j ̸= n′ is indifferent between

keeping strategy (ℓ∗∗, B,A) and adopting strategy (ℓ′, B,A). But then
with positive probability at then end of the next period of time every fine
reasoner j ∈ F , j ̸= n′ will be given a revision opportunity and will
adopt strategy (ℓ′, B,A). Consequently, the system will reach a different
absorbing state of the type A/BA which does not belong to the basin of
attraction of S′.

Hence, if S′ = {A-AA, A-AB, A-BA, B-AB}, the population is large
enough, and states of the type A/BA are absorbing, then M(A/BA, S′) >
1.
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Lemma B.2. Let S′ = {A-AA, A-AB, A-BA, B-AB}. If the population is large
enough and states of the type B-BA are absorbing, then one mistake is never
enough to lead with positive probability the system into the basin of attraction
of S′ starting from a state of the type B-BA, i.e., M(B-BA, S′) > 1.

Proof. Let S′ = {A-AA, A-AB, A-BA, B-AB} and consider an absorbing
state of the type B-BA where all agents stay in the same location. Note
that, if the population is large enough, then a single mistake by any agent
will have a negligible effect on the expected payoff of other agents in
case they keep their current strategy and, moreover, the other agents can
possibly increase their expected payoff only if the mistaken agent has
moved into an empty location and coordinating locally with it provides
a better payoff than their current local interactions.

Assume that the system is in an absorbing state of the type B-BA2.
Then, every i ∈ C adopts strategy (ℓ∗, B,B) while every j ∈ F adopts
strategy (ℓ∗, B,A).

Table B.2 reports the expected payoff that an agent n ∈ N would
obtain by adopting strategy σnt+1 at time t + 1 given that at time t the
system was in an absorbing state of the type B-BA and that at the end
of time t an agent n′ ∈ N , n′ ̸= n has adopted by mistake strategy σn′t.
The table reports such expected payoff for each possible combination of
(σnt+1, σn′t) under the assumption that the population is large enough.

As the table shows, in most cases the expected payoff provided by
the current strategy adopted by agent n, σi = (ℓ∗, B,B) if i ∈ C and
σj = (ℓ∗, B,A) if j ∈ F , is strictly higher than the one associated to
alternative strategies after agent n′ ̸= n has adopted by mistake strategy
σn′t. However, some cases are worth discussing.

2By Theorem 1 a state of the type B-BA is an absorbing state if q ∈
(︁
1 −

α,min
{︁

1−α
1−p

, 1
}︁)︁

.
If q ∈ (0, 1 − α), then for every fine reasoner j ∈ F πjt(ℓ

∗, B,A) < πjt(ℓ
∗, B,B). But

then, with positive probability at the end of the next period of time every j ∈ F will be
given a revision opportunity and will adopt strategy (ℓ∗, B,B). Consequently, without
any mistake the system will reach an absorbing state of the type B-BB. Therefore, if q ∈
(0, 1− α), the analysis in Lemma B.3 is the one of interest.
If, instead, q ∈

(︁
min

{︁
1−α
1−p

, 1
}︁
, 1

)︁
, then for every coarse reasoner i ∈ C πit(ℓ

∗, B,B) <

πit(ℓ
∗, A,A). But then, with positive probability at the end of the next period of time every

i ∈ C will be given a revision opportunity and will adopt strategy (ℓ∗, A,A). Consequently,
without any mistake the system will reach a state of type A-BA which belongs to the basin
of attraction of S′. In other words, if q ∈

(︁
min

{︁
1−α
1−p

, 1
}︁
, 1

)︁
then with positive probability

– without any mistake – the system can reach the basin of attraction of S′ starting from a
state of type B-BA.
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Case σn′t = (ℓ′, A, y)

σnt+1
σn′t

(ℓ′, A,A) (ℓ′, A,B)

(ℓ∗, A,A) pc+ (1− p)[qa+ (1− q)c](+) pc+ (1− p)[qa+ (1− q)c]−

(ℓ′, A,A) pa+ (1− p)[qa+ (1− q)c](+) pa+ (1− p)[qa+ (1− q)c]−

(ℓ∗, A,B) pc+ (1− p)[qd+ (1− q)b](−) pc+ (1− p)[qd+ (1− q)b]+

(ℓ′, A,B) pa+ (1− p)[qd+ (1− q)b](−) pa+ (1− p)[qd+ (1− q)b]+

(ℓ∗, B,A) pb + (1 − p)[qa + (1 − q)c](+) pb + (1 − p)[qa + (1 − q)c]−

(ℓ′, B,A) pd+ (1− p)[qa+ (1− q)c](+) pd+ (1− p)[qa+ (1− q)c]−

(ℓ∗, B,B) pb + (1 − p)[qd + (1 − q)b](−) pb + (1 − p)[qd + (1 − q)b]+

(ℓ′, B,B) pd+ (1− p)[qd+ (1− q)b](−) pd+ (1− p)[qd+ (1− q)b]+

Case σn′t = (ℓ′, B, y) with ℓ′ ̸= ℓ∗

σnt+1
σn′t

(ℓ′, B,A) (ℓ′, B,B)

(ℓ∗, A,A) pc+ (1− p)[qa+ (1− q)c] pc+ (1− p)[qa+ (1− q)c](−)

(ℓ′, A,A) pc+ (1− p)[qa+ (1− q)c] pc+ (1− p)[qa+ (1− q)c](−)

(ℓ∗, A,B) pc+ (1− p)[qd+ (1− q)b] pc+ (1− p)[qd+ (1− q)b](+)

(ℓ′, A,B) pc+ (1− p)[qd+ (1− q)b] pc+ (1− p)[qd+ (1− q)b](+)

(ℓ∗, B,A) pb + (1 − p)[qa + (1 − q)c] pb + (1 − p)[qa + (1 − q)c](−)

(ℓ′, B,A) pb+ (1− p)[qa+ (1− q)c] pb+ (1− p)[qa+ (1− q)c](−)

(ℓ∗, B,B) pb + (1 − p)[qd + (1 − q)b] pb + (1 − p)[qd + (1 − q)b](+)

(ℓ′, B,B) pb+ (1− p)[qd+ (1− q)b] pb+ (1− p)[qd+ (1− q)b](+)

Table B.2: Effects of one mistake in an absorbing state of the type B-BA.
Expected payoff of agent n at time t+ 1 if agent n decides to adopt strategy
σnt+1 given that at time t the system was in an absorbing state of the type
B-BA and that at the end of time t agent n′ ̸= n has adopted by mistake
strategy σn′t = (ℓ′, x, y) with ℓ′ ̸= ℓ∗, ℓ∗∗. Strategies available to coarse
reasoners in gray, current strategies of coarse and fine reasoners in bold. +
[−] indicates that the expected payoff is approximated from above [below]
under the assumption of a large enough population.

The population must be large enough in order to guarantee the fol-
lowing inequalities:

• πit+1(ℓ
∗, B,B) > πit+1(ℓ

∗, A,A) for every i ∈ C, i ̸= n′ if σn′t =
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(ℓ′, A,A);

• πjt+1(ℓ
∗, B,A) > πjt+1(ℓ

∗, B,B) for every j ∈ F , j ̸= n′ if σn′t ∈
{(ℓ′, A,B), (ℓ′, B,B)};

• πjt+1(ℓ
∗, B,A) > πjt+1(ℓ

′, B,B) for every j ∈ F , j ̸= n′ if σn′t =
(ℓ′, B,B).

Moreover, if σn′t = (ℓ′, B,A) or σn′t = (ℓ′, B,B), then πit+1(ℓ
∗, B,B) =

πit+1(ℓ
′, B,B) for every coarse reasoner i ̸= n′ and πjt+1(ℓ

∗, B,A) =
πjt+1(ℓ

′, B,A) for every fine reasoner j ̸= n′. Then, every coarse rea-
soner i ̸= n′ is indifferent between keeping strategy (ℓ∗, B,B) and adopt-
ing strategy (ℓ′, B,B) while every fine reasoner j ̸= n′ is indifferent be-
tween keeping strategy (ℓ∗, B,A) and adopting strategy (ℓ′, B,A). But
then with positive probability at then end of the next period of time ev-
ery agent n ∈ N , n ̸= n′ will be given a revision opportunity and will
adopt strategy (ℓ′, B,B) if n ∈ C or strategy (ℓ′, B,A) if n ∈ F . Conse-
quently, the system will reach a different absorbing state of the type B-BA
which does not belong to the basin of attraction of S′.

Finally, if σn′t ∈ {(ℓ′, A,A), (ℓ′, A,B)}, then for every coarse reasoner
i ∈ C

πit+1(ℓ
∗, B,B) > πit+1(ℓ

′, A,A) ⇔
⇔ pb+ (1− p)[qd+ (1− q)b] > pa+ (1− p)[qa+ (1− q)c] ⇔

⇔ (b− c)− p(a− c) > (1− p)q(a− d+ b− c) ⇔

⇔ q <
1− α

1− p
− p

1− p

a− c

a− d+ b− c

But then, if q ∈
(︁
min{ 1−α

1−p−
p

1−p
a−c

a−d+b−c , 1},min{ 1−α
1−p , 1}

)︁
, coarse reason-

ers prefer strategy (ℓ′, A,A) to strategy (ℓ∗, B,B). Therefore, with posi-
tive probability at the end of the next period of time every agent i ∈ C will
be given a revision opportunity and will adopt strategy (ℓ′, A,A). Con-
sequently, the system will reach an absorbing state of the type A/BA,
which does not belong to the basin of attraction of S′.

Hence, if S′ = {A-AA, A-AB, A-BA, B-AB}, the population is large
enough, and states of the type B-BA are absorbing, then M(B-BA, S′) >
1.

Lemma B.3. Let S′ = {A-AA, A-AB, A-BA, B-AB}. If the population is large
enough, then one mistake is never enough to lead with positive probability the
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system into the basin of attraction of S′ starting from an absorbing state of the
type B-BB, i.e., M(B-BB, S′) > 1.

Proof. Let S′ = {A-AA, A-AB, A-BA, B-AB} and consider an absorbing
state of the type B-BB where all agents stay in the same location. Note
that, if the population is large enough, then a single mistake by any agent
will have a negligible effect on the expected payoff of other agents in
case they keep their current strategy and, moreover, the other agents can
possibly increase their expected payoff only if the mistaken agent has
moved into an empty location and coordinating locally with it provides
a better payoff than their current local interactions.

Assume that the system is in a state of type B-BB. Then, every n ∈ N
adopts strategy (ℓ∗, B,B). Moreover, by Theorem 1 states of type B-BB
are absorbing states if p, q ∈ (0, 1).

Table B.3 reports the expected payoff that an agent n ∈ N would
obtain by adopting strategy σnt+1 at time t + 1 given that at time t the
system was in an absorbing state of the type B-BB and that at the end of
time t an agent n′ ∈ N , n′ ̸= n has adopted by mistake strategy σn′t.
The table reports such expected payoff for each possible combination of
(σnt+1, σn′t) under the assumption that the population is large enough.

σnt+1
σn′t

(ℓ′, A,A) (ℓ′, A,B) (ℓ′, B,A) (ℓ′, B,B)

(ℓ∗, A,A) c+ c c+ c
(ℓ′, A,A) pa+ (1− p)c+ pa+ (1− p)c c+ c
(ℓ∗, A,B) pc+ (1− p)b− pc+ (1− p)b pc+ (1− p)b− pc+ (1− p)b
(ℓ′, A,B) pa+ (1− p)b− pa+ (1− p)b pc+ (1− p)b− pc+ (1− p)b
(ℓ∗, B,A) pb+ (1− p)c+ pb+ (1− p)c pb+ (1− p)c+ pb+ (1− p)c
(ℓ′, B,A) pd+ (1− p)c+ pd+ (1− p)c pb+ (1− p)c+ pb+ (1− p)c
(ℓ∗, B,B) b− b b− b
(ℓ′, B,B) pd+ (1− p)b− pd+ (1− p)b b− b

Table B.3: Effects of one mistake in an absorbing state of the type B-BB.
Expected payoff of agent n at time t + 1 if agent decides to adopt strategy
σnt+1 given that at time t the system was in an absorbing state of the type
B-BB and that at the end of time t agent n′ ̸= n has adopted by mistake
strategy σn′t = (ℓ′, x, y) with ℓ′ ̸= ℓ∗, ℓ∗∗. Strategies available to coarse
reasoners in gray, current strategy of coarse and fine reasoners in bold. +
[−] indicates that the expected payoff is approximated from above [below]
under the assumption of a large enough population.

As the table shows, in most cases the expected payoff provided by the
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current strategy adopted by agent n, σn = (ℓ∗, B,B), is strictly higher
than the one associated to alternative strategies after agent n′ ̸= n has
adopted by mistake strategy σn′t. However, some cases are worth dis-
cussing.

The population must be large enough in order to guarantee the fol-
lowing inequalities:

• πnt+1(ℓ
∗, B,B) > πnt+1(ℓ

∗, A,A) for every n ∈ N , n ̸= n′ if σn′t ∈
{(ℓ′, A,A), (ℓ′, B,A)};

• πnt+1(ℓ
∗, B,B) > πnt+1(ℓ

′, A,A) for every n ∈ N , n ̸= n′ if σn′t ∈
{(ℓ′, A,A), (ℓ′, B,A)};

• πjt+1(ℓ
∗, B,B) > πjt+1(ℓ

∗, B,A) for every j ∈ F , j ̸= n′ if σn′t ∈
{(ℓ′, A,A), (ℓ′, B,A)};

• πjt+1(ℓ
∗, B,B) > πjt+1(ℓ

′, B,A) for every j ∈ F , j ̸= n′ if σn′t =
(ℓ′, B,A);

Moreover, if σn′t = (ℓ′, B,A) or σn′t = (ℓ′, B,B), then πnt+1(ℓ
∗, B,B) =

πnt+1(ℓ
′, B,B) for every n ∈ N and, so, every agent n ̸= n′ is indiffer-

ent between keeping strategy (ℓ∗, B,B) and adopting strategy (ℓ′, B,B).
But then, with positive probability at then end of the next period of time
every agent n ∈ N , n ̸= n′ will be given a revision opportunity and will
adopt strategy (ℓ′, B,B). Consequently, the system will reach a different
absorbing state of the type B-BB which does not belong to the basin of
attraction of S′.

Hence, if S′ = {A-AA, A-AB, A-BA, B-AB} and the population is
large enough, then M(B-BB, S′) > 1.

Lemma B.4. Let S′ = {A-AA, A-AB, A-BA, B-AB}. If the population is large
enough, then one mistake can lead with positive probability the system outside
the basin of attraction of S′ starting from any absorbing state belonging to S′,
i.e., M(S′, S′−1) = 1.

Proof. Let S′ = {A-AA, A-AB, A-BA, B-AB} and assume that the popu-
lation is large enough.
We need to show that a single mistake can lead with positive probability
the system outside the basin of attraction of S′ starting from any absorb-
ing state belonging to S′ and, so, starting from absorbing states of the
type A-AA, A-AB, A-BA, and B-AB. In the following, we prove this sep-
arately for the four types of absorbing states.
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Case: From an absorbing state of the type A-AA
Assume that the system is in an absorbing state of the type A-AA. Then,
every n ∈ N adopts strategy (ℓ∗, A,A). Moreover, by Theorem 1 states
of the type A-AA are absorbing if p, q ∈ (0, 1).

Assume that at the end of time t a fine reasoner j′ ∈ F adopts by
mistake strategy σj′t = (ℓ′, B,A) with ℓ′ ̸= ℓ∗. Then, at then end of time
t+ 1 for every j ∈ F , j ̸= j′

πjt+1(ℓ
′, B,A) = pb+ (1− p)a > a = πjt+1(ℓ

∗, A,A)

and, so, every fine reasoner j ̸= j′ strictly prefers strategy (ℓ′, B,A) to
strategy (ℓ∗, A,A). But then with positive probability at then end of the
next period of time every fine reasoner j ∈ F , j ̸= j′ will be given a revi-
sion opportunity and will adopt strategy (ℓ′, B,A). Consequently, if the
population is large enough the system will reach a state of the type A/BA
which does not belong to the basin of attraction of S′ (see Lemma B.1).

Therefore, if the system is in an absorbing state of the type A-AA
and the population is large enough one mistake can lead with positive
probability the system outside the basin of attraction of S′.

Case: From an absorbing state of the type A-AB
Assume that the system is in an absorbing state of the type A-AB. Then,
every i ∈ C adopts strategy (ℓ∗, A,A) while every j ∈ F adopts strategy
(ℓ∗, A,B).

According to Theorem 1 states of type A-AB are absorbing states if
condition q ∈

(︁
α,min

{︁
α

1−p , 1
}︁)︁

holds. Moreover, by Theorem 1 if states
of type A-AB are not absorbing the system will reach another absorbing
state and, consequently, either the analysis of a different absorbing state
belonging to S′ is the relevant one or the system will exit without any
mistake the basin of attraction of S′.

Consider the case q ∈
(︁
α,min

{︁
α

1−p , 1
}︁)︁

. Assume that at the end of
time t a fine reasoner j′ ∈ F adopts by mistake strategy σj′t = (ℓ′, B,B)
with ℓ′ ̸= ℓ∗. Then, at then end of time t+1 for every fine reasoner j ̸= j′

πjt+1(ℓ
′, B,B) = pb+ (1− p)[qb+ (1− q)d] > . . .

. . . > pa+ (1− p)[qb+ (1− q)d] = πjt+1(ℓ
∗, A,B)

and, so, every fine reasoner j ̸= j′ strictly prefers strategy (ℓ′, B,B) to
strategy (ℓ∗, A,B). But then with positive probability at then end of the
next period of time every fine reasoner j ∈ F , j ̸= j′ will be given a
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revision opportunity and will adopt strategy (ℓ′, B,B). Consequently,
the system will reach a state of type A/BB which by Theorem 1 is never
an absorbing state. More precisely, given q ∈

(︁
α,min

{︁
α

1−p , 1
}︁)︁

, in such
state for every coarse reasoner i ∈ C

πit+2(ℓ
′, B,B) = pb+ (1− p)[qb+ (1− q)d] > . . .

. . . > pa+ (1− p)[qc+ (1− q)a] = πit+2(ℓ
∗, A,A)

and, so, every coarse reasoner strictly prefers strategy (ℓ′, B,B) to strat-
egy (ℓ∗, A,A). But then with positive probability at then end of the next
period of time every coarse reasoner i ∈ C will be given a revision oppor-
tunity and will adopt strategy (ℓ′, B,B). But then the system will reach
an absorbing state of the type B-BB which does not belong to the basin of
attraction of S′.

Therefore, if the system is in an absorbing state of the type A-AB,
then one mistake may lead with positive probability the system outside
the basin of attraction of S′.

Case: From an absorbing state of the type A-BA
Assume that the system is in an absorbing state of the type A-BA. Then,
every i ∈ C adopts strategy (ℓ∗, A,A) while every j ∈ F adopts strategy
(ℓ∗, B,A).

By Theorem 1 states of the type A-BA are absorbing states if q ∈(︁
α,min

{︁
α
p , 1

}︁)︁
. Moreover, by Theorem 1 if states of the type A-BA are

not absorbing the system will reach another absorbing state and, conse-
quently, either the analysis of a different absorbing state belonging to S′

is the relevant one or the system will exit without any mistake the basin
of attraction of S′.

Consider the case q ∈
(︁
α,min

{︁
α
p , 1

}︁)︁
. Assume that at the end of time

t a fine reasoner j′ ∈ F adopts by mistake strategy σj′t = (ℓ′, B,A) with
ℓ′ ̸= ℓ∗. Then, at then end of time t+1 for every other fine reasoner j ∈ F ,
j ̸= j′

πjt+1(ℓ
′, B,A) = pb+(1−p)a > p[qb+(1−q)a]+(1−p)a ≈ πjt+1(ℓ

∗, B,A)

and, so, every fine reasoner j ̸= j′ strictly prefers strategy (ℓ′, B,A) to
strategy (ℓ∗, B,A). But then with positive probability at then end of the
next period of time every agent j ∈ F , j ̸= j′ will be given a revision
opportunity and will adopt strategy (ℓ′, B,A). Consequently, the system
will reach a state of the type A/BA which does not belong to the basin of
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attraction of S′ (see Lemma B.1).
Therefore, if the system is in an absorbing state of the type A-BA and

the population is large enough one mistake may lead with positive prob-
ability the system outside the basin of attraction of S′.

Case: From an absorbing state of the type B-AB
Assume that the system is in an absorbing state of the type B-AB. Then,
every i ∈ C adopts strategy (ℓ∗, B,B) while every j ∈ F adopts strategy
(ℓ∗, A,B).

By Theorem 1 states of the type B-AB are absorbing states if q ∈(︁
1 − α,min

{︁
1−α
p , 1

}︁)︁
. Moreover, by Theorem 1 if states of the type B-

AB are not absorbing the system will reach another absorbing state and,
consequently, either the analysis of a different absorbing state belonging
to S′ is the relevant one or the system will exit without any mistake the
basin of attraction of S′.

Consider the case q ∈
(︁
1−α,min

{︁
1−α
p , 1

}︁)︁
. Assume that at the end of

time t a fine reasoner j′ ∈ F adopts by mistake strategy σj′t = (ℓ′, B,B)
with ℓ′ ̸= ℓ∗. Then, at then end of time t+ 1 for every other fine reasoner
j ∈ F , j ̸= j′

πjt+1(ℓ
′, B,B) = b > p[qa+ (1− q)d] + (1− p)b ≈ πjt+1(ℓ

∗, A,B)

and, so, every fine reasoner j ̸= j′ strictly prefers strategy (ℓ′, B,B) to
strategy (ℓ∗, A,B). Moreover, for every coarse reasoner i ∈ C

πit+1(ℓ
′, B,B) = b > p[qd+ (1− q)b] + (1− p)b ≈ πit+1(ℓ

∗, B,B)

and, so, every coarse reasoner strictly prefers strategy (ℓ′, B,B) to strat-
egy (ℓ∗, B,B). But then with positive probability at the end of the next
period of time every agent n ∈ N , n ̸= n′ will be given a revision oppor-
tunity and will adopt strategy (ℓ′, B,B). Consequently, the system will
reach an absorbing state of the type B-BB which does not belong to the
basin of attraction of S′.

Therefore, if the system is in an absorbing state of the type B-AB one
mistake can lead with positive probability the system outside the basin
of attraction of S′.

But then, we can conclude that if S′ = {A-AA, A-AB, A-BA, B-AB}
and the population is large enough, then M(S′, S′−1) = 1.

Theorem 2. If the population is large enough, then all the absorbing states of
the types A-AA, A-AB, A-BA, and B-AB are never stochastically stable.
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Proof. We consider separately the cases q ∈
(︁
0,min

{︁
1−α
1−p , 1

}︁)︁
and q ∈(︁

min
{︁

1−α
1−p , 1

}︁
, 1
)︁

and for each case we show that the statement holds.

Consider the case q ∈
(︁
0,min

{︁
1−α
1−p , 1

}︁)︁
. In this region of the param-

eter space all the absorbing states in Theorem 1 may be absorbing states.
Therefore, consider the following partition of the absorbing states of the
system:

• Ω = {A/BA, B-BA, B-BB};

• Ω−1 = {A-AA, A-AB, A-BA, B-AB}

Given q ∈
(︁
0,min

{︁
1−α
1−p , 1

}︁)︁
, then either states of the type B-BA are ab-

sorbing or they belong to the basin of attraction of the set of states of the
type B-BB. In addition, either states of the type A/BA are absorbing or
they belong to the basin of attraction of the set of states of the types B-BA
and B-BB. Therefore, by combining Lemma B.1-Lemma B.3 we can con-
clude that one mistake is never enough to lead the system with positive
probability outside the basin of attraction of Ω, i.e., M(Ω,Ω−1) > 1 and,
consequently, the radius of the basin of attraction of Ω is strictly larger
than one, i.e., R(Ω) > 1.
Moreover, by Lemma B.4 one mistake is enough to lead the system out-
side the basin of attraction of Ω−1 starting from any absorbing state be-
longing to Ω−1. But given that Ω and Ω−1 form a partition of the set of
absorbing states of the system this means that one mistake is enough to
make the system enter the basin of attraction of Ω starting from any ab-
sorbing state belonging to Ω−1 and, so, the coradius of Ω is equal to one,
i.e., CR(Ω) = 1.
By combining these results we can conclude that if q ∈

(︁
0,min

{︁
1−α
1−p , 1

}︁)︁
and the population is large enough then

R(Ω) > 1 = CR(Ω)

and, so, all the stochastically stable states of the system are contained in
Ω and, consequently, all the absorbing states of the types A-AA, A-AB,
A-BA, and B-AB are never stochastically stable.

Consider now the case q ∈
(︁
min

{︁
1−α
1−p , 1

}︁
, 1
)︁
. In this region of the

parameter space all the absorbing states in Theorem 1 except states of
the type B-BA may be absorbing states. Therefore, consider the following
partition of the absorbing states of the system:
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• Ω = {A/BA, B-BB};

• Ω−1 = {A-AA, A-AB, A-BA, B-AB}

Given q ∈
(︁
min

{︁
1−α
1−p , 1

}︁
, 1
)︁
, states of the type A/BA are always absorb-

ing. Therefore, by combining Lemma B.1 and Lemma B.3 we can con-
clude that one mistake is never enough to lead the system with positive
probability outside the basin of attraction of Ω, i.e., M(Ω,Ω−1) > 1 and,
consequently, the radius of the basin of attraction of Ω is strictly larger
than one, i.e., R(Ω) > 1.
Moreover, by Lemma B.4 one mistake is enough to lead the system out-
side the basin of attraction of Ω−1 starting from any absorbing state be-
longing to Ω−1. But given that Ω and Ω−1 form a partition of the set
of absorbing states of the system – in the (p, q)-region considered – this
means that one mistake is enough to make the system enter the basin of
attraction of Ω starting from any absorbing state belonging to Ω−1 and,
so, the coradius of Ω is equal to one, i.e., CR(Ω) = 1.
By combining these results we can conclude that if q ∈

(︁
min

{︁
1−α
1−p , 1

}︁
, 1
)︁

and the population is large enough then

R(Ω) > 1 = CR(Ω)

and, so, all the stochastically stable states of the system are contained in
Ω and, consequently, all the absorbing states of the types A-AA, A-AB,
A-BA, and B-AB are never stochastically stable.

Given that if the population is large enough all the absorbing states of
the types A-AA, A-AB, A-BA, and B-AB are neither stochastically stable
if q ∈

(︁
0,min

{︁
1−α
1−p

}︁
, 1
)︁

nor if q ∈
(︁
min

{︁
1−α
1−p , 1

}︁
, 1
)︁
, then they are never

stochastically stable.
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Appendix C

Chapter 2: Proof of
Theorem 3

As in Appendix B, we will denote with M(S, S′) the minimum number
of mistakes required to lead with positive probability the system into the
basin of attraction of S′ starting from an absorbing state belonging to S –
where both S and S′ are sets of absorbing states. Moreover, we will refer
to the set of states of a given type, say X-YZ, by simply writing X-YZ.

We begin by stating some preliminary results that are needed to prove
Theorem 3.

Lemma C.1. Let S = {A-AB,A-BA,B-AB,B-BA,B-BB} and let S′ ⊆ S,
then (1 − α)N mistakes can lead with positive probability the system into an
absorbing state of the type A-AA starting from any absorbing state in S′, i.e.,
M(S′,A-AA) ≤ (1− α)N .

Proof. Let S = {A-AB,A-BA,B-AB,B-BA,B-BB} and let S′ ⊆ S. By as-
sumption in each absorbing state belonging to S′ all agents stay in the
same location.

If (1 − α)N agents adopt by mistake strategy (ℓ∗, A,A), then both
Equation (A.1) and Equation (A.2) will not hold for every fine reasoner
j ∈ F ; in addition, Equation (A.3) will not hold for every coarse rea-
soner i ∈ C. In other words, all agents will be willing to adopt strategy
(ℓ∗, A,A). But then, with positive probability at the end of the next pe-
riod of time all agents except the ones who made a mistake will be given
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a revision opportunity and will adopt strategy (ℓ∗, A,A). Consequently,
the system will reach an absorbing state of the type A-AA.

Therefore, if S = {A-AB,A-BA,B-AB,B-BA,B-BB} and S′ ⊆ S, then
M(S′,A-AA) ≤ (1− α)N .

Lemma C.2. Let S = {A-AB,A-BA,B-AB,B-BA,B-BB} and let S′ ⊆ S, then
the minimum number of mistakes required to lead with positive probability the
system into the basin of attraction of S′ starting from an absorbing state of the
type A-AA is

M(A-AA, S′) = min
{︁
αN,M(A/BA, S′) + 1

}︁
Proof. Let S = {A-AB,A-BA,B-AB,B-BA,B-BB} and let S′ ⊆ S. More-
over, assume that the system is in an absorbing state of the type A-AA.
Then, every agent n ∈ N adopts strategy (ℓ∗, A,A).

The minimum number of mistakes required to make the system enter
directly – without mistakes involving agents moving into empty loca-
tions – the basin of attraction of S′ is αN . Moreover, by Lemma B.4 if
the system is in an absorbing state of the type A-AA a single mistake can
lead with positive probability the system into a state of the type A/BA.
From there M(A/BA, S′) mistakes can lead with positive probability the
system into the basin of attraction of S′. Consequently, this path requires
M(A/BA, S′) + 1 mistakes.

Hence, if S = {A-AB,A-BA,B-AB,B-BA,B-BB} and S′ ⊆ S, then

M(A-AA, S′) = min
{︁
αN,M(A/BA, S′) + 1

}︁

Note that if states of the type A/BA are not absorbing states then
they belong to the basin of attraction of the set of states of the type B-
BA if p ∈

(︁
a−d
b−d , 1

)︁
and q ∈

(︁
1 − α, 1

)︁
. But then, if p ∈

(︁
a−d
b−d , 1

)︁
and

q ∈
(︁
1− α, 1

)︁
we can restate Lemma C.2 as

M(A-AA, S′) = min
{︁
αN,M(B-BA, S′) + 1

}︁
Lemma C.3. Let S = {A-AB,A-BA,B-AB,B-BA,B-BB} and let S′ = S \
A-BA. If the population is large enough, then the minimum number of mistakes
required to lead with positive probability the system into the basin of attraction
of S starting from an absorbing state of the type A/BA is either larger than
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(1− α)N or such that:

M(A/BA, S) =

⎧⎪⎨⎪⎩
(1− q)N − 1 if q ∈

(︁
min

{︁
1−α
1−p , 1

}︁
, 1
)︁(︃

α−p b−d
a−d+b−c

(1−p)+ p
1−q

a−c
a−d+b−c

)︃
N otherwise

Moreover, the minimum number of mistakes required to lead with positive prob-
ability the system into the basin of attraction of S′ starting from an absorbing
state of the type A/BA is either larger than (1− α)N or such that:

M(A/BA, S′) =

(︃
α− p b−d

a−d+b−c

(1− p) + p
1−q

a−c
a−d+b−c

)︃
N

Proof. Let S = {A-AB,A-BA,B-AB,B-BA,B-BB} and let S′ = S \ A-BA.
Assume that the system is in an absorbing state of the type A/BA in
which every coarse reasoner i ∈ C adopts strategy (ℓ∗, A,A) while every
fine reasoner j ∈ F adopts strategy (ℓ∗∗, B,A). By Theorem 1 it must be
p ∈

(︁
0, a−d

b−d

)︁
.

We begin by computing separately for each absorbing state belonging
to the set S the minimum number of mistakes required to lead the system
into it starting from an absorbing state of the type A/BA.

Case: To reach an absorbing state of the type A-AB
Assume that also states of the type A-AB are absorbing. Then, by Theo-
rem 1 it must be q ∈

(︁
α,min

{︁
α

1−p , 1
}︁)︁

.
Given that in an absorbing state of the type A/BA all agents play

action A in global interactions, γj = 0 for every fine reasoner j ∈ F .
Moreover, given that in the arrival state coarse reasoners still play action
A in both local and global interactions, at least αN mistakes will be re-
quired for Equation (A.1) to be satisfied for every fine reasoner and, so,
to reach an absorbing state of the type A-AB.

Therefore, if both states of the type A/BA and states of the type A-AB
are absorbing, then

M(A/BA,A-AB) ≥ αN

Case: To reach an absorbing state of the type A-BA
Assume that also states of the type A-BA are absorbing. Then, by Theo-
rem 1 it must be q ∈

(︁
α,min

{︁
α
p , 1

}︁)︁
.

Given that states of the type A/BA differ from states of the type A-BA
only in having agents segregated according to type, the system can reach
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a state of the type A-BA in two possible ways: (i) by mistake (1− q)N −1
coarse reasoners adopt strategy (ℓ∗∗, A,A) or (ii) by mistake qN − 1 fine
reasoners adopt strategy (ℓ∗, B,A). However, given that states of type
A-BA are absorbing if q ∈

(︁
α,min

{︁
α
p , 1

}︁)︁
, then the first path is the one

requiring the minimum amount of mistakes.
Hence, if both states of type A/BA and states of type A-BA are ab-

sorbing states, then

M(A/BA,A-BA) = (1− q)N − 1

Case: To reach an absorbing state of the type B-AB
Assume that also states of the type B-AB are absorbing. Then, by Theo-
rem 1 it must be q ∈

(︁
1− α,min

{︁
1−α
p , 1

}︁)︁
.

Assume that by mistake all coarse reasoners but one adopt strategy
(ℓ∗∗, B,B) and, so, (1−q)N−1 mistakes are made. Then, the system will
reach with positive probability a state of the type B-BA. In a state of this
type all agents stay in the same location and play B in local interactions;
therefore, at least additional (1−α)N mistakes will be needed to make it
convenient for fine reasoners to adopt strategy (ℓ∗∗, A,B). But then, this
path requires more than (1− α)N mistakes.

Assume now that by mistake all fine reasoners but one adopt strategy
(ℓ∗, A,B) and, so, qN − 1 mistakes are made. But then, given that q >
1− α, this path requires more than (1− α)N mistakes.

Assume that by mistake fN fine reasoners adopt strategy (ℓ∗∗, A,B).
Then given that in a state of the type A/BA all agents play A in global
interactions at least αN > (1− α)N mistakes will be required to make it
convenient for fine reasoners to play B globally.

Assume that by mistake kN coarse reasoners adopt strategy (ℓ∗, B,B)
and that such mistakes are enough to make it convenient for coarse rea-
soners to adopt strategy (ℓ∗∗, B,B). Then the system will reach with pos-
itive probability a state of the type B-BA. At this point at least (1 − α)N
additional mistakes will be needed to make it convenient for fine reason-
ers to adopt strategy (ℓ∗∗, A,B) as in a state of the type B-BA all agents
play action B locally. But then this path requires at least (1 − α)N mis-
takes.

Hence, if both states of the type A/BA and states of the type B-AB are
absorbing states, then

M(A/BA,B-AB) > (1− α)N
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Case: To reach an absorbing state of the type B-BA
Assume that also states of the type B-BA are absorbing. Then, by Theo-
rem 1 it must be q ∈

(︁
1− α,min

{︁
1−α
1−p , 1

}︁)︁
.

If by mistake all coarse reasoners but one adopt strategy (ℓ∗∗, B,B)
and, so, (1− q)N − 1 mistakes are made, then the system will reach with
positive probability a state of type B-BA.

If by mistake all fine reasoners but one adopt strategy (ℓ∗, B,A), then
qN − 1 mistakes are made. But given that q > 1 − α this process will
require at least (1− α)N mistakes.

If by mistake kN coarse reasoners adopt strategy (ℓ∗, B,B), then it
must be λB

iℓ∗ = k
1−q , λiℓ∗∗ = 1, γi = k, and Equation (A.3) will hold for

every coarse reasoner i ∈ C if

p

(︃
b− d

a− d+ b− c
+

k

1− q

a− c

a− d+ b− c

)︃
+ (1− p)k > α ⇔

⇔ p
k

1− q

a− c

a− d+ b− c
+ (1− p)k > α− p

b− d

a− d+ b− c
⇔

⇔ k >
α− p b−d

a−d+b−c

(1− p) + p
1−q

a−c
a−d+b−c

If this holds, the system will reach with positive probability a state of the
type B-BA. Note that given q < 1−α

1−p this alternative always requires less
mistakes than (1 − q)N (under the large population assumption the −1
can be disregarded). In fact,

1− q <
α− p b−d

a−d+b−c

(1− p) + p
1−q

a−c
a−d+b−c

⇔

⇔ (1− p)(1− q) + p
a− c

a− d+ b− c
< α− p

b− d

a− d+ b− c
⇔

⇔ (1− p)− q(1− p) < α− p ⇔

⇔ q >
1− α

1− p

If kN coarse reasoners adopt by mistake strategy (ℓ∗∗, B,B), more
mistakes will be required to make the system reach with positive prob-
ability a state of the type B-BA with respect to the previous case as now
λB
iℓ∗ = 0, λiℓ∗∗ = 1, γi = k. A similar reasoning applies in case fN

fine reasoners adopt by mistake strategy (ℓ∗, B,A) as this would imply
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λB
iℓ∗ = f

1−q+f , λiℓ∗∗ = 1, γi = 0.
Hence, if both states of type A/BA and states of type B-BA are ab-

sorbing states, then

M(A/BA,B-BA) =

(︃
α− p b−d

a−d+b−c

(1− p) + p
1−q

a−c
a−d+b−c

)︃
N

Case: To reach an absorbing state of the type B-BB
By Theorem 1 states of the type B-BB are absorbing in the entire parame-
ter space and, so, no additional assumption are needed.

The minimum number of mistakes required to lead the system into
an absorbing state of the type B-BB starting from an absorbing state of
the type A/BA is attained different ways depending on the area of the
parameter space considered.

If q ∈
(︁
0,min

{︁
1−α
1−p , 1

}︁)︁
, the easiest way for the system to reach a

state of the type B-BB starting from an absorbing state of the type A/BA
requires passing through a state of the type B-BA. M(A/BA,B-BA) mis-
takes are enough to make the system reach with positive probability a
state of the type B-BA starting from an absorbing state of the type A/BA.
At this point

1. If q ∈ (0, 1−α), then states of the type B-BA are not absorbing states
and fine reasoners prefer strategy (ℓ∗∗, B,B) to strategy (ℓ∗∗, B,A).
Consequently, without additional mistakes the system will reach
an absorbing state of the type B-BB;

2. If q ∈
(︁
1 − α,min

{︁
1−α
1−p , 1

}︁)︁
, states of the type B-BA are absorbing

states and additional [α − (1 − q)]N mistakes – by fine reasoners
adopting strategy (ℓ∗∗, B,B) – will be needed to make the system
reach with positive probability an absorbing state of the type B-BB.

If, instead, q ∈
(︁
min

{︁
1−α
1−p , 1

}︁
, 1
)︁

passing through a state of the type
B-BA is no longer the best option. In fact, in this case states of the type B-
BA are not absorbing and in such states coarse reasoners prefer strategy
(ℓ∗, A,A) to strategy (ℓ∗, B,B). However, if αN agents adopt by mistake
strategy (ℓ∗, B,B) – this is the minimum number of mistakes required to
make it convenient for fine reasoners to play B globally – then the system
will reach with positive probability an absorbing state of the type B-BB.

Hence, if states of the type A/BA are absorbing, then M(A/BA,B-BB)
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is equal to⎧⎪⎪⎪⎨⎪⎪⎪⎩
M(A/BA,B-BA) if q ∈

(︁
0, 1− α

)︁
M(A/BA,B-BA) +

[︁
α− (1− q)

]︁
N if q ∈

(︁
0,min

{︁
1−α
1−p , 1

}︁)︁
αN if q ∈

(︁
min

{︁
1−α
1−p , 1

}︁
, 1
)︁

But then we can conclude that

M(A/BA, S) =

⎧⎪⎨⎪⎩
(1− q)N − 1 if q ∈

(︁
min

{︁
1−α
1−p , 1

}︁
, 1
)︁(︃

α−p b−d
a−d+b−c

(1−p)+ p
1−q

a−c
a−d+b−c

)︃
N otherwise

Moreover, it must be

M(A/BA, S′) =

(︃
α− p b−d

a−d+b−c

(1− p) + p
1−q

a−c
a−d+b−c

)︃
N

Lemma C.4. Let S = {A-AB,B-AB,B-BB}. If the population is large enough,
then the minimum number of mistakes required to lead with positive probability
the system into the basin of attraction of S starting from an absorbing state of
the type A-BA is:

M(A-BA, S) = [α− p(1− α)]N

Proof. Let S = {A-AB,B-AB,B-BB}. Assume that the system is in an
absorbing state of the type A-BA in which every coarse reasoner i ∈ C
adopts strategy (ℓ∗, A,A), while every fine reasoner j ∈ F adopts strat-
egy (ℓ∗, B,A). By Theorem 1 it must be p ∈ (0, 1) and q ∈

(︁
α,min

{︁
α
p , 1

}︁)︁
.

We begin by computing separately for each absorbing state belonging
to S the minimum number of mistakes required to lead the system into
it starting from an absorbing state of the type A-BA.

Case: To reach an absorbing state of the type A-AB
Assume that also states of the type A-AB are absorbing. Then, by Theo-
rem 1 it must be q ∈

(︁
α,min

{︁
α

1−p , 1
}︁)︁

.
Given that in an absorbing state of the type A-BA all agents play ac-

tion A in global interactions, γj = 0 for every fine reasoner j ∈ F . More-
over, given that in the arrival state coarse reasoners still play action A in
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both local and global interactions, at least αN mistakes will be required
for Equation (A.1) to be satisfied for every fine reasoner and, so, to reach
an absorbing state of the type A-AB.

Therefore, if both states of the type A-BA and states of the type A-AB
are absorbing, then

M(A-BA,A-AB) ≥ αN

Case: To reach an absorbing state of the type B-AB

Assume that also states of the type B-AB are absorbing. Then, by Theo-
rem 1 it must be q ∈

(︁
1− α,min

{︁
1−α
p , 1

}︁)︁
.

If kN coarse reasoners adopt by mistake strategy (ℓ∗, B,B) and such
amount of mistakes is enough for Equation (A.3) to hold, then with posi-
tive probability the system will reach an absorbing state of the type B-BA.
But given that in a state of the type B-BA all agents play strategy B locally,
at least additional (1−α)N mistakes will be required to reach an absorb-
ing state of the type B-AB. Therefore, this path requires at least (1− α)N
mistakes.

If fN fine reasoners adopt by mistake strategy (ℓ∗, A,B), then at least
αN mistakes will be required for Equation (A.1) to hold.

If fN fine reasoners adopt by mistake strategy (ℓ∗, A,B) and kN
coarse reasoners adopt strategy (ℓ∗, B,B), then:

E[πi((ℓ
∗, A,B), σ−i)] ≥ E[πi((ℓ

∗, A,A), σ−i)] for every i ∈ C ⇔
⇔ (f + k)b+ (1− f − k)d ≥ (f + k)c+ (1− f − k)a ⇔

⇔ (f + k)(a− d+ b− c) ≥ (a− d) ⇔
⇔ f + k ≥ α > 1− α

Therefore, if both states of the type A-BA and states of the type A-AB
are absorbing, then

M(A-BA,B-AB) > (1− α)N

Case: To reach an absorbing state of the type B-BB

By Theorem 1 states of the type B-BB are absorbing in the entire parame-
ter space and, so, no additional assumption are needed.

Assume that by mistake kN coarse reasoners adopt strategy (ℓ∗, B,B)
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and fN fine reasoners adopt strategy (ℓ∗, B,B). Then,

E[πi((ℓ
∗, B,B), σ−i)] ≥ E[πi((ℓ

∗, A,A), σ−i)] for every i ∈ C ⇔
⇔ p[(q + k)b+ (1− q − k)d] + (1− p)[(k + f)b+ (1− k − f)d] ≥
≥ p[(q + k)c+ (1− q − k)a] + (1− p)[(k + f)c+ (1− k − f)a] ⇔

⇔ pq(a− d+ b− c) + k(a− d+ b− c) + (1− p)f(a− d+ b− c) ≥ a− d ⇔
⇔ k + (1− p)f ≥ α− pq

This amount of mistakes is enough to reach a state of type B-BA.
However, additional mistakes are needed to reach a state of type B-BB
and, more precisely, M(B-BA,B-BB) = [q−(1−α)]N additional mistakes
are needed.

But then, the minimum number of mistakes required to lead with
positive probability the system into an absorbing state of the type B-BB
starting from an absorbing state of the type A-BA is such that:{︄

k = α− pq − (1− p)f

f = q − (1− α)
⇒

⇒ k + f = α− pq − (1− p)[q − (1− α)] + q − (1− α) ⇔
⇔ k + f = α− pq + p[q − (1− α)] ⇔

⇔ k + f = α− p(1− α)

Hence, if states of the type A-BA are absorbing, then M(A-BA,B-BB) =
[α− p(1− α)]N .

But then, we can conclude that

M(A-BA, S) = [α− p(1− α)]N

Lemma C.5. Let S = {A-AB,B-AB,B-BB}. If the population is large enough,
then the minimum number of mistakes required to lead with positive probability
the system into the basin of attraction of S starting from an absorbing state of
the type B-BA is:

M(B-BA, S) = [q − (1− α)]N

Proof. Let S = {A-AB,B-AB,B-BB}. Assume that the system is in an
absorbing state of the type B-BA in which every coarse reasoner i ∈
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C adopts strategy (ℓ∗, B,B) while every fine reasoner j ∈ F adopts
strategy (ℓ∗, B,A). By Theorem 1 it must be p ∈ (0, 1) and q ∈

(︁
1 −

α,min
{︁

1−α
1−p , 1

}︁)︁
.

We begin by computing separately for each absorbing state belonging
to S the minimum number of mistakes required to lead the system into
it starting from an absorbing state of the type B-BA.

Case: To reach an absorbing state of the type A-AB
Assume that also states of the type A-AB are absorbing. Then, by Theo-
rem 1 it must be q ∈

(︁
α,min

{︁
α

1−p , 1
}︁)︁

.
If the population is large enough, in an absorbing state of the type

B-BA γn = 1 − q and λnℓ∗ = 1 for every agent n ∈ N . But then, at least
[α − (1 − q)]N = [q − (1 − α)]N fine reasoners must adopt by mistake
strategy (ℓ∗, A,B) in order for Equation (A.1) to hold. Note that eventu-
ally additional mistakes may be needed in order to reach an absorbing
state of the type A-AB.

Therefore, if both states of the type B-BA and states of the type A-AB
are absorbing, then M(B-BA,A-AB) ≥ [q − (1− α)]N .

Case: To reach an absorbing state of the type B-AB
Assume that also states of the type B-AB are absorbing. Then, by Theo-
rem 1 it must be q ∈

(︁
1− α,min

{︁
1−α
p , 1

}︁)︁
.

If the population is large enough, in an absorbing state of the type
B-BA γn = 1 − q and λnℓ∗ = 1 for every agent n ∈ N . But then, at least
[α − (1 − q)]N = [q − (1 − α)]N fine reasoners must adopt by mistake
strategy (ℓ∗, A,B) in order for Equation (A.1) to hold. Note that addi-
tional mistakes may be required in order for Equation (A.2) not to hold
and, so, to lead with positive probability the system into an absorbing
state of the type B-AB.

Therefore, if both states of the type B-BA and states of the type B-AB
are absorbing, then M(B-BA,B-AB) ≥ [q − (1− α)]N .

Case: To reach an absorbing state of the type B-BB
By Theorem 1 states of the type B-BB are absorbing in the entire parame-
ter space and, so, no additional assumption are needed.

If the population is large enough, in an absorbing state of the type
B-BA γn = 1 − q and λnℓ∗ = 1 for every agent n ∈ N . But then, at least
[q− (1−α)]N fine reasoners must adopt by mistake strategy (ℓ∗, A,B) in
order for Equation (A.1) to hold and, consequently, to lead with positive
probability the system into an absorbing state of the type B-BB.
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Therefore, if states of the type B-BA are absorbing, then it must be
M(B-BA,B-BB) = [q − (1− α)]N .

But then, we can conclude that

M(B-BA, S) = [q − (1− α)]N

Given these results, we can now prove Theorem 3

Theorem 3. If the population is large enough, then all and only absorbing states
of the following types are stochastically stable:

(3.1) A/BA, if p ∈
(︁
0, 2α−1

α

)︁
and q ∈ (0, 1);

(3.2) B-BA, if p ∈
(︁
a−d
b−d , 1

)︁
and q ∈

(︁
2(1− α), 1

)︁
;

(3.3) B-BB, if p ∈
(︁
a−d
b−d , 1

)︁
and q ∈

(︁
0, 1− α

)︁
.

Proof. We prove the three statements separately.
We begin with (3.1). The proof of this part of the theorem is divided

in two main parts that consider different regions of the parameter space:
in the first we consider p ∈

(︁
0, a−d

b−d

)︁
and q ∈

(︁
0,min

{︁
1−α
1−p , 1

}︁)︁
while in

the second we consider p ∈
(︁
0, a−d

b−d

)︁
and q ∈

(︁
min

{︁
1−α
1−p , 1

}︁
, 1
)︁
. This dis-

tinction is required in order to obtain valid radius-coradius arguments.

Consider first the case p ∈
(︁
0, a−d

b−d

)︁
and q ∈

(︁
0,min

{︁
1−α
1−p , 1

}︁)︁
. Within

this region all the absorbing states in Theorem 1 may be absorbing states.
Let Ω = {A/BA, A-AA} and Ω−1 = {B-BA, B-BB, A-AB, A-BA, B-AB}.

Given this partition of the set of absorbing states, by Lemma C.1
(1 − α)N are enough to lead with positive probability the system into
the basin of attraction of Ω. But then,

CR(Ω) ≤ (1− α)N

Moreover, by combining Lemma C.2 and Lemma C.3 we have

R(Ω) =
(1− p)(a− d)− p(b− a)

(1− p)(a− d+ b− c) + p 1
1−q (a− c)

N
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Therefore, if p ∈
(︁
0, a−d

b−d

)︁
and q ∈

(︁
0,min

{︁
1−α
1−p , 1

}︁)︁
, then all the

stochastically stable states of the system are contained in Ω if:

(1− p)(a− d)− p(b− a)

(1− p)(a− d+ b− c) + p 1
1−q (a− c)

N > (1− α)N ⇔

⇔ (a− d)− (b− c) > p

[︃
(a− d) + (b− a)− (b− c) +

1− α

1− q
(a− c)

]︃
⇔

⇔ α− (1− α) > p

[︃
α− a− c

a− d+ b− c
+

1− α

1− q

a− c

a− d+ b− c

]︃
⇔

⇔ 2α− 1 > p

[︃
α− a− c

a− d+ b− c

(︃
1− 1− α

1− q

)︃]︃
⇔

⇔ p <
2α− 1

α− a−c
a−d+b−c

(︂
1− 1−α

1−q

)︂
which for q < α is always larger than 2α−1

α . This together with the fact
that states of the type A-AA are never stochastically stable – by Theo-
rem 2 – allows us to conclude the following: if the population is large
enough, then all and only absorbing states of the type A/BA are stochas-
tically stable if p ∈

(︁
0, 2α−1

α

)︁
and q ∈

(︁
0,min

{︁
1−α
1−p , 1

}︁)︁
.

Consider now the case p ∈
(︁
0, a−d

b−d

)︁
and q ∈

(︁
min

{︁
1−α
1−p , 1

}︁
, 1
)︁
. Within

this area of the parameter space states of the type B-BA are never absorb-
ing states. Consider, then, the following partition of absorbing states:
Ω′ = {A-AA, A-BA, A/BA} and Ω′−1 = {A-AB, B-AB, B-BB}.

Given this partition of the set of absorbing states, by Lemma C.1
(1 − α)N are enough to lead with positive probability the system into
the basin of attraction of Ω′. But then,

CR(Ω′) ≤ (1− α)N

By combining Lemma C.2-Lemma C.4, if q ∈
(︁
min

{︁
1−α
1−p , 1

}︁
, 1
)︁

and
p ∈

(︁
0, a−d

b−d

)︁
, then the radius of the basin of attraction of Ω′−1 is

R(Ω′) = [α− p(1− α)]N

Therefore, if p ∈
(︁
0, a−d

b−d

)︁
and q ∈

(︁
min

{︁
1−α
1−p , 1

}︁
, 1
)︁
, then all the
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stochastically stable states of the system are contained in Ω if:

R(Ω′) > CR(Ω′) ⇔
⇔ [α− p(1− α)]N > (1− α)N ⇔

⇔ 2α− 1 > p(1− α)

⇔ p <
2α− 1

1− α

which is always larger than 2α−1
α . This together with the fact that states of

the types A-AA and A-BA are never stochastically stable – by Theorem 2
– allows us to conclude the following: if the population is large enough,
then all and only absorbing states of the type A/BA are stochastically
stable if p ∈

(︁
0, 2α−1

α

)︁
and q ∈

(︁
min

{︁
1−α
1−p , 1

}︁
, 1
)︁
.

Given that all and only absorbing states of the type A/BA are stochas-
tically stable both if p ∈

(︁
0, 2α−1

α

)︁
and q ∈

(︁
0,min

{︁
1−α
1−p , 1

}︁)︁
and if

p ∈
(︁
0, 2α−1

α

)︁
and q ∈

(︁
min

{︁
1−α
1−p , 1

}︁
, 1
)︁
, the we can conclude that they

are stochastically stable if p ∈
(︁
0, 2α−1

α

)︁
and q ∈

(︁
0, 1

)︁
.

We now prove (3.2). Consider the case p ∈
(︁
a−d
b−d , 1

)︁
and q ∈ (2(1 −

α), 1); moreover, consider the following partition of absorbing states:
Ω′′ = {A-AA, A-BA, B-BA} and Ω′′−1 = {B-BB, A-AB, B-AB}.

Given this partition of the set of absorbing states, by Lemma C.1
(1 − α)N are enough to lead with positive probability the system into
the basin of attraction of Ω′′. But then,

CR(Ω′′) ≤ (1− α)N

Within the area of the parameter space considered states of the type
A/BA are never absorbing states and, in particular, if the system is in a
state of the type A/BA then without any mistake it reaches with positive
probability an absorbing state of the type B-BA. But then, we can restate
Lemma C.2 as follows:

M(A-AA,Ω′′−1) = min
{︁
(αN,M(B-BA,Ω′′−1))

}︁
This together with CR(Ω′′) ≤ (1 − α)N implies that the area such that
R(Ω′′) < CR(Ω′′) is not tightened by the the presence of states of the type
A-AA into Ω′′.

Moreover, by combining Lemma C.4 and Lemma C.5 we can con-
clude that the minimum number of mistakes required to lead with posi-
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tive probability the system outside the basin of attraction of Ω′′ is

R(Ω′′) = [q − (1− α)]N

Therefore, if p ∈
(︁
a−d
b−d , 1

)︁
and q ∈ (2(1−α), 1), then the stochastically

stable states of the system are contained in Ω′′ if

R(Ω′′) > CR(Ω′′) ⇔ [q − (1− α)]N > (1− α)N ⇔ q > 2(1− α)

But given that by Theorem 2 states of the types A-AA and A-BA are
never stochastically stable we can conclude that if the population is large
enough, then all and only absorbing states of the type B-BA are stochas-
tically stable if p ∈

(︁
a−d
b−d , 1

)︁
and q ∈

(︁
2(1− α), 1

)︁
.

We, finally, prove (3.3). Consider the case p ∈
(︁
a−d
b−d , 1

)︁
and q ∈

(︁
0, 1−

α
)︁
. By Theorem 1 if p ∈

(︁
a−d
b−d , 1

)︁
and q ∈ (0, (1 − α)), only states of the

types A-AA and B-BB are absorbing states and, consequently, candidate
stochastically stable states. However, by Theorem 2 states of the type
A-AA are never stochastically stable.

Therefore, if p ∈
(︁
a−d
b−d , 1

)︁
and q ∈ (0, (1 − α)), all and only states of

the type B-BB are stochastically stable.

Hence, if the population is large enough, then all and only absorbing
states of the following types are stochastically stable:

(3.1) A/BA, if p ∈
(︁
0, 2α−1

α

)︁
and q ∈ (0, 1);

(3.2) B-BA, if p ∈
(︁
a−d
b−d , 1

)︁
and q ∈

(︁
2(1− α), 1

)︁
;

(3.3) B-BB, if p ∈
(︁
a−d
b−d , 1

)︁
and q ∈

(︁
0, 1− α

)︁
.
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Appendix D

Chapter 2: More Simulation
Results

We report the simulation results obtained by considering variations of
the payoffs characterizing the Stag Hunt game with respect to the one
reported in the main text. In particular, we consider two extreme and op-
posite scenarios. In the first scenario the payoffs characterizing the Stag
Hunt game imply an extremely high value of α which in turn implies
that the risk dominant convention tends to provide a higher expected
payoff even if only few agents adopt it. Instead, in the second scenario
the payoffs are such that α is close to 0.50 and, so, even though A is the
risk dominant convention it provides a higher expected payoff only if
almost 50% of agents adopt it.

D.1 Simulation results with high α

First, we consider a case in which the basin of attraction of the risk dom-
inant action is large by assuming a = 4.5, b = 5, c = 4.3, d = 1. Given
these payoffs, we have α = 0.83 and a−d

b−d = 0.87. In Table D.1 for each
type of absorbing states in Theorem 1 we report the area in the (p, q)

parameter space in which each state is absorbing and the sufficient con-
ditions for it being stochastically stable.
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Type Absorbing Stochastically Stable

p q p q

A-AA
(︁
0.00, 1.00

)︁ (︁
0.00, 1.00

)︁
∅ ∅

A-AB
(︁
0.00, 1.00

)︁ (︁
0.83, 0.83

1−p

)︁
∅ ∅

A-BA
(︁
0.00, 1.00

)︁ (︁
0.83, 0.83

p

)︁
∅ ∅

A/BA
(︁
0.00, 0.87

)︁ (︁
0.00, 1.00

)︁ (︁
0.00, 0.79

)︁ (︁
0.00, 1.00

)︁
B-AB

(︁
0.00, 1.00

)︁ (︁
0.17, 0.17

p

)︁
∅ ∅

B-BA
(︁
0.00, 1.00

)︁ (︁
0.17, 0.17

1−p

)︁ (︁
0.87, 1.00

)︁ (︁
0.34, 1.00

)︁
B-BB

(︁
0.00, 1.00

)︁ (︁
0.00, 1.00

)︁ (︁
0.87, 1.00

)︁ (︁
0.00, 0.17

)︁
Table D.1: Theoretical predictions for the simulations setup, high α. Val-
ues of p and q such that states of a given type are absorbing states and val-
ues of p and q such that they are stochastically stable. Case a = 4.5, b = 5,
c = 4.3, d = 1.

Given our theoretical results, we expect the system to spend most of
the time in the set of states of the type:

• A/BA if p ∈ (0.00, 0.79) irrespective of the fraction of fine reason-
ers, q;

• B-BA if p ∈ (0.87, 1.00) and q ∈ (0.34, 1.00);

• B-BB if p ∈ (0.87, 1.00) and q ∈ (0.00, 0.17).

In Figure D.1 for each combination of p and q considered we report
by type of agent and type of interaction the average diffusion of the the
payoff dominant action. As the figure shows, the system spends most
of the time in the set of states of the type A/BA for values of p lower
than or equal to 0.80. Instead, for higher values of p the system spends
most of the time in the set of states of the type B-BB if the fraction of fine
reasoners in the population, q, is lower than or equal to 0.20; while if fine
reasoning is more widespread the system spends most of the time in the
set of states of the type B-BA.
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Figure D.1: Simulation results, high α. Average proportion of agents play-
ing the payoff dominant action B by type of agent (coarse vs fine reasoner)
and type of interaction (local vs global interaction); standard errors in paren-
theses. Case a = 4.5, b = 5, c = 4.3, d = 1.

D.2 Simulation results with low α

We now consider a case in which the basin of attraction of the risk dom-
inant action is relatively small by setting a = 4, b = 5.5, c = 3, d = 1.3

which in turn implies α = 0.52 and a−d
b−d = 0.64. In Table D.2 for each type

of absorbing state in Theorem 1 we report the area in the (p, q) parame-
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ter space in which states of such type are absorbing and the sufficient
conditions for it being stochastically stable.

Type Absorbing Stochastically Stable

p q p q

A-AA
(︁
0.00, 1.00

)︁ (︁
0.00, 1.00

)︁
∅ ∅

A-AB
(︁
0.00, 1.00

)︁ (︁
0.52, 0.52

1−p

)︁
∅ ∅

A-BA
(︁
0.00, 1.00

)︁ (︁
0.52, 0.52

p

)︁
∅ ∅

A/BA
(︁
0.00, 0.64

)︁ (︁
0.00, 1.00

)︁ (︁
0.00, 0.08

)︁ (︁
0.00, 1.00

)︁
B-AB

(︁
0.00, 1.00

)︁ (︁
0.48, 0.48

p

)︁
∅ ∅

B-BA
(︁
0.00, 1.00

)︁ (︁
0.48, 0.48

1−p

)︁ (︁
0.64, 1.00

)︁ (︁
0.96, 1.00

)︁
B-BB

(︁
0.00, 1.00

)︁ (︁
0.00, 1.00

)︁ (︁
0.64, 1.00

)︁ (︁
0.00, 0.48

)︁
Table D.2: Theoretical predictions for the simulations setup, low α. Val-
ues of p and q such that states of a given type are absorbing states and values
of p and q such that they are stochastically stable. Case a = 4, b = 5.5, c = 3,
d = 1.3.

Given our theoretical results, we expect the system to spend most of
the time in the set of states of the type:

• A/BA if p ∈ (0.00, 0.08) irrespective of the fraction of fine reason-
ers, q;

• B-BA if p ∈ (0.64, 1.00) and q ∈ (0.96, 1.00);

• B-BB if p ∈ (0.64, 1.00) and q ∈ (0.00, 0.48).

In Figure D.2 for each combination of p and q considered we report by
type of agent and type of interaction the average diffusion of the payoff
dominant action. As the figure shows, the system spends most of the
time in the set of states of the type A/BA for values of p lower than or
equal to 0.50. Instead, for higher values of p the system spends most of
the time in the set of states of the type B-BB if the fraction of fine reasoners
in the population, q, is lower than or equal to 0.50; otherwise, the system
spends most of the time in the set of states of the type B-BA. We also
notice that in this case the simulations provide less clear-cut predictions.
We believe that this may be caused by the relatively low value of α which
implies that, even though action A is risk dominant, almost half of the
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population must adopt action A for it to be the best reply and we believe
that this weakens the diffusion of the risk dominant action.

Figure D.2: Simulation results, low α. Average proportion of agents play-
ing the payoff dominant action B by type of agent (coarse vs fine reasoner)
and type of interaction (local vs global interaction); standard errors in paren-
theses. Case a = 4, b = 5.5, c = 3, d = 1.3.
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Appendix E

Chapter 3: Proof of
Theorem 4

Consider the system under unperturbed dynamics (ε = 0). Assume that
at time t the system is in state St. Let τ ra,ℓ(St) [τoa,ℓ(St)] be agent a’s prob-
ability to receive the cooperation benefit, b, from a random opponent
conditional on the game played being an infinitely repeated [one-shot
and anonymous] prisoners’ dilemma under the assumption that agent a
stays in location ℓ if this is not the case in state St.

Let Aℓ,t denote the number of agents in location ℓ at time t, index a
generic agent in location ℓ at time t by α = 1, . . . , Aℓ,t, and let Ia,ℓ,t be an
indicator function taking value 1 if player a stays in location ℓ at time t

and, so, if ℓa,t = ℓ. Then τ ra,ℓ(St) can be expressed as: τ ra,ℓ(St) =

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Aℓ,t − Ia,ℓ,t

Aℓ,t∑︂
α=1
α ̸=a

[︁
G(kα,t)rα,t + (1−G(kα,t))iα,t

]︁
if Aℓ,t − Ia,ℓ,t > 0

0 if Aℓ,t − Ia,ℓ,t = 0
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while τoa,ℓ(St) =

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Aℓ,t − Ia,ℓ,t

Aℓ,t∑︂
α=1
α ̸=a

[︁
G(kα,t)oα,t + (1−G(kα,t))iα,t

]︁
if Aℓ,t − Ia,ℓ,t > 0

0 if Aℓ,t − Ia,ℓ,t = 0

Given that agents know the current state of the system, each agent a

has all the information required to compute τ ra,ℓ(St) and τoa,ℓ(St) for each
location ℓ.

In the following we will denote with BRa(St) the set of best replies
of agent a given the current state of the system.

Proposition E.1. Consider the system under unperturbed dynamics (ε = 0).
Assume that at the end of time t agent a is given a game-play revision opportu-
nity and let (ℓ, ia,t, oa,t, ra,t, ka,t) denote its current strategy. Then,

BRa(St) ⊆ {(ℓ, 0, 0, 1, kd), (ℓ, 1, 0, 1, kc)} (E.1)

with kd = p(b− c)τ ra,ℓ(St) and kc = (1− p)c.

Proof. Let (ℓ, ia,t, oa,t, ra,t, ka,t) denote the strategy adopted by agent a at
the beginning of time t. Assume that at the end of time t agent a is given
a game-play revision opportunity.

Given that agent a has been given a game-play revision opportunity,
it cannot change its location choice and, consequently, it will remain in
location ℓ. Formally, ℓa,t+1 = ℓ.

In addition, agent a will set oa,t+1 = 0 and ra,t+1 = 1 as playing
AllD is a strictly dominant strategy in the one-shot and anonymous pris-
oners’ dilemma while playing TFT is a weakly dominant strategy in the
infinitely repeated prisoners’ dilemma.

Given that our interest lies in finding the stochastically stable states
of the system and given that equilibria in mixed strategies are never
stochastically stable, we focus on the case in which agent a chooses ei-
ther ia,t+1 = 0 or ia,t+1 = 1.

If agent a sets ia,t+1 = 0 (i.e., it decides to play AllD under intuition),
then its expected payoff will be

πD
a,ℓ(St) = G(kd)p(b− c)τ ra,ℓ(St) + (1− p)bτoa,ℓ(St)−

∫︂ kd

0

tg(t) dt
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where kd is the optimal threshold cost of deliberation that satisfies the
first order condition

∂πD
a,ℓ(St)

∂kd
= g(kd)p(b− c)τ ra,ℓ(St)− g(kd)kd = 0 ⇔ kd = p(b− c)τ ra,ℓ(St)

Therefore, if agent a sets ia,t+1 = 0, then it finds it optimal to choose
ka,t+1 = kd.

If, instead, agent a chooses ia,t+1 = 1 (i.e., it decides to play TFT
under intuition), then its expected payoff will be

πC
a,ℓ(St) = p(b−c)τ ra,ℓ(St)+(1−p)bτoa,ℓ(St)−(1−G(kc))(1−p)c−

∫︂ kc

0

tg(t) dt

where kc is the optimal threshold cost of deliberation that satisfies the
first order condition

∂πC
a,ℓ(St)

∂kc
= g(kc)(1− p)c− g(kc)kc = 0 ⇔ kc = (1− p)c

Therefore, if agent a chooses ia,t+1 = 1, then it finds it optimal to set
ka,t+1 = kc.

But then, given that the location choice is fixed to the current location
ℓ, agent a will myopically best reply to the current state of the system by
choosing either strategy (ℓ, 0, 0, 1, kd) or strategy (ℓ, 1, 0, 1, kc) with kd =
p(b− c)τ ra,ℓ(St) and kc = (1− p)c.

Hence, in the system under unperturbed dynamics if at the end of
time t agent a is given a game-play revision opportunity and the current
location choice of agent a is ℓa,t = ℓ, then

BRa(St) ⊆ {(ℓ, 0, 0, 1, kd), (ℓ, 1, 0, 1, kc)}

Corollary E.1. Consider the system under unperturbed dynamics (ε = 0).
Assume that at the end of time t agent a is given a full-strategy revision oppor-
tunity. Then,

BRa(St) ⊆
{︁(︁

(ℓ, 0, 0, 1, kd), (ℓ, 1, 0, 1, kc)
)︁L
ℓ=1

}︁
(E.2)

with kd = p(b− c)τ ra,ℓ(St) and kc = (1− p)c.
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The result follows immediately from Proposition E.1. More precisely,
it can be obtained by simply iterating the arguments used in Proposi-
tion E.1 for each possible location ℓ ∈ L.

We now introduce some definitions that are useful to prove Theo-
rem 4.

We say that location ℓ′ is at least as good as location ℓ for agent a given
the state of the system at time t, formally ℓ′ ≿a,St

ℓ, if πD
a,ℓ′ ≥ πD

a,ℓ and
πC
a,ℓ′ ≥ πC

a,ℓ.
We say that location ℓ′ is indifferent to location ℓ for agent a, ℓ′ ∼a,St

ℓ,
if ℓ′ ≿a,St

ℓ and ℓ ≿a,St
ℓ′. Finally, we say that location ℓ′ is preferred to

location ℓ for agent a, formally ℓ′ ≻a,St ℓ, if ℓ′ ≿a,St ℓ but not ℓ ≿a,St ℓ
′.

Such location-ordering is informative about the desirability for agent
a to move into one or another location and this turns out to be useful to
analyse an agent’s best reply if given a full-strategy revision opportunity.
For example, if ℓ′ ≿a,St ℓ and ℓ′ ̸∈ BRa(St) then it must also be that ℓ ̸∈
BRa(St). If, instead, ℓ′ ≻a,St

ℓ, then ℓ ̸∈ BRa(St). More interestingly, if
ℓ′ ≻a,St

ℓ for all ℓ ∈ L, ℓ ̸= ℓ′, then we can conclude that agent a will move
(or remain) into location ℓ′ if given a full-strategy revision opportunity.

Proposition E.2. The following statements hold:

P.E.2.1 - If
(︁
τoa,ℓ′(St), τ

r
a,ℓ′(St)

)︁
≥

(︁
τoa,ℓ(St), τ

r
a,ℓ(St)

)︁
, then ℓ′ ≿a,St ℓ;

P.E.2.2 - If
(︁
τoa,ℓ′(St), τ

r
a,ℓ′(St)

)︁
>

(︁
τoa,ℓ(St), τ

r
a,ℓ(St)

)︁
, then ℓ′ ≻a,St

ℓ;

P.E.2.3 - If
(︁
τoa,ℓ′(St), τ

r
a,ℓ′(St)

)︁
=

(︁
τoa,ℓ(St), τ

r
a,ℓ(St)

)︁
, then ℓ′ ∼a,St ℓ;

Proof. Consider the expected payoff obtained by agent a in case it adopts
the optimal dual process defection strategy in a generic location ℓ

πD
a,ℓ(St) = G

(︁
p(b− c)τ ra,ℓ(St)

)︁
p(b− c)τ ra,ℓ(St) + . . .

. . .+ (1− p)bτoa,ℓ(St)−
∫︂ p(b−c)τr

a,ℓ(St)

0

tg(t) dt

Such payoff depends on the location choice via τoa,ℓ(St) and τ ra,ℓ(St). In
particular,

∂πD
a,ℓ(St)

∂τ ra,ℓ(St)
= g(kd)kdp(b− c) +G(kd)p(b− c)− g(kd)kdp(b− c) > 0
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∂πD
a,ℓ(St)

∂τoa,ℓ(St)
= (1− p)b > 0

and, so, the following implications must hold:

DD1 - If
(︁
τoa,ℓ′(St), τ

r
a,ℓ′(St)

)︁
≥

(︁
τoa,ℓ(St), τ

r
a,ℓ(St)

)︁
, then πD

a,ℓ′(St) ≥ πD
a,ℓ(St);

DD2 - If
(︁
τoa,ℓ′(St), τ

r
a,ℓ′(St)

)︁
>

(︁
τoa,ℓ(St), τ

r
a,ℓ(St)

)︁
, then πD

a,ℓ′(St) > πD
a,ℓ(St);

DD3 - If
(︁
τoa,ℓ′(St), τ

r
a,ℓ′(St)

)︁
=

(︁
τoa,ℓ(St), τ

r
a,ℓ(St)

)︁
, then πD

a,ℓ′(St) = πD
a,ℓ(St).

Consider now the expected payoff obtained by agent a in case it adopts
the optimal dual process cooperation strategy in a generic location ℓ

πC
a,ℓ(St) = p(b−c)τ ra,ℓ(St)+(1−p)bτoa,ℓ(St)−(1−G(kc))(1−p)c−

∫︂ kc

0

tg(t) dt

Such payoff depends on the location choice via τoa,ℓ(St) and τ ra,ℓ(St). In
particular

∂πC
a,ℓ(St)

∂τ ra,ℓ(St)
= p(b− c) > 0,

∂πC
a,ℓ(St)

∂τoa,ℓ(St)
= (1− p)b > 0,

and, so, the following implications must hold:

DC1 - If
(︁
τoa,ℓ′(St), τ

r
a,ℓ′(St)

)︁
≥

(︁
τoa,ℓ(St), τ

r
a,ℓ(St)

)︁
, then πC

a,ℓ′(St) ≥ πC
a,ℓ(St);

DC2 - If
(︁
τoa,ℓ′(St), τ

r
a,ℓ′(St)

)︁
>

(︁
τoa,ℓ(St), τ

r
a,ℓ(St)

)︁
, then πC

a,ℓ′(St) > πC
a,ℓ(St);

DC3 - If
(︁
τoa,ℓ′(St), τ

r
a,ℓ′(St)

)︁
=

(︁
τoa,ℓ(St), τ

r
a,ℓ(St)

)︁
, then πC

a,ℓ′(St) = πC
a,ℓ(St).

DD1 together with DC1, DD2 together with DC2, and DD3 together
with DC3 imply, respectively, P.E.2.1, P.E.2.2, and P.E.2.3.

Proposition E.2 tells us that
(︁
τoa,ℓ(St), τ

r
a,ℓ(St)

)︁
may provide sufficient

information to compare different locations in terms of agents’ location
preferences.

The previous results are silent on whether agent a will choose a strat-
egy prescribing to play AllD or TFT under intuition. If given a game-play
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revision opportunity agent a will decide to play TFT under intuition if
πC
a,ℓ(St) > πD

a,ℓ(St) and, so, if

(1−G(kd))p(b− c)τ ra,ℓ(St) +

∫︂ kd

0

tg(t) dt > . . .

. . . > (1−G(kc))(1− p)c+

∫︂ kc

0

tg(t) dt

(E.3)

where the LHS contains all the elements that depend on τ ra,ℓ(St) as kd =

p(b− c)τ ra,ℓ(St). The derivative of the LHS with respect to τ ra,ℓ(St) is

∂LHS

∂τ ra,ℓ(St)
= (1−G(kd))p(b− c)− g(kd)kdp(b− c) + g(kd)kdp(b− c)

= (1−G(kd))p(b− c) ≥ 0

Therefore, the higher τ ra,ℓ(St) the higher the likelihood that Equation (E.3)
holds. To make this more salient we can also express Equation (E.3) as

τ ra,ℓ(St) >
(1−G(kc))(1− p)c+

∫︁ kc

kd tg(t) dt
(1−G(kd))p(b− c)

(E.4)

We now introduce an ordering of agents according to their level of
cooperation and, in particular, by their probability to provide the benefit
of cooperation.

We say that agent a′ is at least as cooperative as agent a if the follow-
ing inequalities hold:

G(ka′,t)ra′,t + (1−G(ka′,t))ia′,t ≥ G(ka,t)ra,t + (1−G(ka,t))ia,t)

G(ka′,t)oa′,t + (1−G(ka′,t))ia′,t ≥ G(ka,t)oa,t + (1−G(ka,t))ia,t)

Moreover, we say that agent a′ is more cooperative than agent a if it is at
least as cooperative as agent a but agent a is not at least as cooperative
as agent a′. Finally, we say that agent a′ is maximally cooperative if there
does not exist any agent a that is more cooperative than a′. Note that
there may be more than one maximally cooperative agent.

In the following we will often use the concept of maximally cooper-
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ative agent by considering only the subset of agents staying in a given
location; in that case, we will say that agent a′ is maximally cooperative
in location ℓ.

Proposition E.3. Assume that agent a′ and agent a stay in the same location
ℓ′. If agent a′ is at least as cooperative as agent a and if Equation (E.3) holds in
location ℓ for agent a′, then Equation (E.3) must necessarily hold in location ℓ
for agent a too.

Proof. Assume that agent a′ and agent a stay in the same location ℓ′, that
agent a′ is at least as cooperative as agent a, and that Equation (E.3) holds
in location ℓ for agent a′.

For any location ℓ ∈ L we can express τ ra′,ℓ(St) as

τ ra′,ℓ(St) =
1

Aℓ,t − Ia′,ℓ,t

[︃
Const+ Ia,ℓ,t

[︁
G(ka,t)ra,t + (1−G(ka,t))ia,t

]︁]︃
and τ ra,ℓ(St) as

τ ra,ℓ(St) =
1

Aℓ,t − Ia,ℓ,t

[︃
Const+ Ia′,ℓ,t

[︁
G(ka′,t)ra′,t + (1−G(ka′,t))ia′,t

]︁]︃
where

Const =

Aℓ,t∑︂
α=1

α̸=a,a′

[︁
G(kα,t)rα,t + (1−G(kα,t))iα,t

]︁
But given that agent a′ is at least as cooperative as agent a, it must be that

G(ka′,t)ra′,t + (1−G(ka′,t))ia′,t ≥ G(ka,t)ra,t + (1−G(ka,t))ia,t)

which together with Ia′,ℓ,t = Ia,ℓ,t for every ℓ ∈ L – because agent a′ and
agent a stay in the same location – implies that τ ra,ℓ(St) ≥ τ ra′,ℓ(St) for
every ℓ ∈ L. But then, for every location ℓ ∈ L it must be

(1−G(kda,t))p(b− c)τ ra,ℓ(St) +

∫︂ kd
a,t

0

tg(t) dt ≥

. . . ≥ (1−G(kda′,t))p(b− c)τ ra′,ℓ(St) +

∫︂ kd
a′,t

0

tg(t) dt

as this expression is increasing in τ ra,ℓ(St).
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Given that by assumption Equation (E.3) holds in location ℓ for agent
a′, it must be

(1−G(kda′,t))p(b− c)τ ra′,ℓ(St) +

∫︂ kd
a′,t

0

tg(t) dt > . . .

. . . > (1−G(kc))(1− p)c+

∫︂ kc

0

tg(t) dt

which together with the previous result implies

(1−G(kda,t))p(b− c)τ ra,ℓ(St) +

∫︂ kd
a,t

0

tg(t) dt > . . .

. . . > (1−G(kc))(1− p)c+

∫︂ kc

0

tg(t) dt

and, so, Equation (E.3) must hold in location ℓ for agent a too.
Hence, if agent a′ is at least as cooperative as agent a and if Equa-

tion (E.3) holds in location ℓ for agent a′, then Equation (E.3) must neces-
sarily hold in location ℓ for agent a too.

Corollary E.2. Assume that agent a′ is maximally cooperative in its current
location ℓ′. If Equation (E.3) holds in location ℓ for agent a′, then Equation (E.3)
must necessarily hold in location ℓ for every other agent staying in location ℓ′.

The result follows immediately from Proposition E.3 and the defini-
tion of maximally cooperative agent in a given location. Corollary E.2
tells us that if an agent that is maximally cooperative in a given location
ℓ′ ∈ L is willing to adopt a dual process cooperation strategy if moving
(or staying) in location ℓ′′ ∈ L then any other agent staying in location ℓ′

must be willing to adopt a dual process cooperation strategy if moving
or staying in location ℓ′′ ∈ L.

At this point we can provide the prove of our first main result.

Theorem 4. Consider the system under unperturbed dynamics (ε = 0). The
absorbing sets of the system are:

• (L, 0, 0, 1, 0) if p ∈ (0, 1);

• (ℓ∗, 0, 0, 1, kd) if p ∈
(︁
0, c

c+G(kd)(b−c)

)︁
with every kd such that kd =

p(b− c)G(kd) if any;
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• (ℓ∗, 1, 0, 1, kc) if p ∈
(︁
c
b , 1

)︁
with the unique kc = (1− p)c.

There are no other absorbing sets.

Proof.

Lemma E.1. The intuitive defection set (L, 0, 0, 1, 0) is absorbing if p ∈ (0, 1).

Proof. Assume that at time t the system is in a state belonging to the set
(L, 0, 0, 1, 0). In such state each player adopts an intuitive defection
strategy and stays in a randomly chosen location. Therefore, it must be
τ ra,ℓ(St) = 0 and τoa,ℓ(St) = 0 for each agent a and for each location ℓ. But
then, by Proposition E.2 it must be ℓ′ ∼a,St

ℓ for each ℓ ∈ L and for every
a ∈ A. Consequently, if at the end of time t an agent a ∈ A is given a
full-strategy revision opportunity then such agent is indifferent between
staying in its current location and moving into any other location. More-
over, by Corollary E.1

BRa(St) ⊆
{︁
{(ℓ, 0, 0, 1, kd), (ℓ, 1, 0, 1, kc)}Lℓ=1

}︁
with kd = p(b− c)τ ra,ℓ(St) = 0 and kc = (1− p)c for each location ℓ ∈ L.

Adopting an intuitive defection strategy (as kd = 0) in any location ℓ
provides a null expected payoff, while adopting a dual process coopera-
tion strategy in any location ℓ provides an expected payoff of

πC
a,ℓ(St) = −(1−G(kc))(1− p)c−

∫︂ kc

0

tg(t) dt < 0

But then, no agent has an incentive to adopt a dual process cooperation
strategy and

BRa(St) ⊆
{︁
{(ℓ, 0, 0, 1, kd)}Lℓ=1

}︁
with kd = p(b − c)τ ra,ℓ(St) = 0 for every location ℓ ∈ L. Therefore, if
the system is in a state belonging to the intuitive defection set then every
player a ∈ A best replies to the current state of the system by keeping an
intuitive defection strategy randomizing the location-choice. But then,
the system will remain within the intuitive defection set.

Hence, the intuitive defection set (L, 0, 0, 1, 0) is absorbing if p ∈
(0, 1).

Lemma E.2. Dual process defection states (ℓ∗, 0, 0, 1, kd) are absorbing if
p ∈

(︁
0, c

c+G(kd)(b−c)

)︁
with every kd : kd = p(b− c)G(kd) if any.
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Proof. Assume that at time t the system is in a state of type (ℓ∗, 0, 0,
1, kd). In such state every agent plays AllD under intuition, stays in
location ℓ∗, and sets its threshold cost of deliberation to its optimal value
kd = p(b − c)G(kd) > 01. Note that depending on G(·) there may be
none, one or multiple values of kd > 0 such that kd = p(b − c)G(kd). In
the following we consider the case in which G(·) is such that there exists
at least one kd > 0 satisfying the previous condition. If this is the case,
in a dual process defection state (ℓ∗, 0, 0, 1, kd) for each agent a ∈ A it
must be

• τ ra,ℓ(St) = 0 and τoa,ℓ(St) = 0 for each location ℓ ̸= ℓ∗;

• τ ra,ℓ∗(St) = G(kd) and τoa,ℓ∗(St) = 0

But then, by Proposition E.2 it must be ℓ∗ ≻a,St
ℓ for each agent a ∈ A

and each location ℓ ∈ L, ℓ ̸= ℓ∗. Consequently, every agent a strictly
prefers staying in its current location ℓ∗ (i.e., no agent has an incentive to
change its location-choice). This together with Corollary E.1 implies that
for each agent a ∈ A

BRa(St) ⊆ {(ℓ∗, 0, 0, 1, kd), (ℓ∗, 1, 0, 1, kc)}

with kd = p(b− c)G(kd) > 0 and kc = (1− p)c.
Adopting a dual process defection strategy in location ℓ∗ with the

optimal threshold cost of deliberation kd = p(b − c)G(kd) > 0 provides
an expected payoff of

πD
a,ℓ∗(St) = G(kd)p(b− c)G(kd)−

∫︂ kd

0

tg(t) dt

while adopting a dual process cooperation strategy in location ℓ∗ with
the optimal threshold cost of deliberation kc = (1 − p)c provides an ex-
pected payoff of

πC
a,ℓ∗(St) = p(b− c)G(kd)− (1−G(kc))(1− p)c−

∫︂ kc

0

tg(t) dt

Agents prefer keeping a dual process defection strategy if

(1−G(kd))p(b− c)G(kd)− (1−G(kc))(1− p)c <

∫︂ kc

kd

tg(t) dt

1For the case kd = p(b− c)G(kd) = 0 see Lemma E.1.

156



Integration by parts yields∫︂ kc

kd

tg(t) dt = G(kc)(1− p)c−G(kd)p(b− c)G(kd)−
∫︂ kc

kd

G(z) dz

But then, the previous inequality is satisfied if and only if

(1−G(kd))p(b− c)G(kd)− (1−G(kc))(1− p)c < . . .

. . . < G(kc)(1− p)c−G(kd)p(b− c)G(kd)−
∫︂ kc

kd

G(z) dz ⇔

⇔ p(b− c)G(kd)− (1− p)c < −
∫︂ kc

kd

G(z) dz ⇔

⇔ −
∫︂ kc

kd

1 dz < −
∫︂ kc

kd

G(z) dz ⇔

⇔
∫︂ kc

kd

(︁
1−G(z)

)︁
dz > 0

which holds if and only if kd < kc and, so,

⇔ p(b− c)G(kd) < (1− p)c ⇔ p <
c

c+G(kd)(b− c)

Therefore, if p ∈
(︁
0, c

c+G(kd)(b−c)

)︁
and the system is in a dual pro-

cess defection state it must be BRa(St) = (ℓ∗, 0, 0, 1, kd) with kd = p(b −
c)G(kd) for every a ∈ A. But then, the system will remain in the dual
process defection state (ℓ∗, 0, 0, 1, kd).

Hence, dual process defection states (ℓ∗, 0, 0, 1, kd) are absorbing if
p ∈

(︁
0, c

c+G(kd)(b−c)

)︁
with every kd : kd = p(b− c)G(kd) if any.

Lemma E.3. Dual process cooperation states (ℓ∗, 1, 0, 1, kc) are absorbing if
p ∈ ( cb , 1) with the unique kc = (1− p)c.

Proof. Assume that at time t the system is in a dual process cooperation
state (ℓ∗, 1, 0, 1, kc). In such state every agent plays TFT under intu-
ition, stays in location ℓ∗, and sets its threshold cost of deliberation to the
optimal value kc = (1− p)c. But then, for every agent a ∈ A it must be

• τ ra,ℓ(St) = 0 and τoa,ℓ(St) = 0 for each location ℓ ̸= ℓ∗;

• τ ra,ℓ∗(St) = 1 and τoa,ℓ∗(St) = 1−G(kc).
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But then, by Proposition E.2 it must be ℓ∗ ≻a,St ℓ for each agent a ∈ A
and each location ℓ ∈ L, ℓ ̸= ℓ∗. Consequently, every agent a strictly
prefers staying in its current location (i.e., no agent has an incentive to
change its location-choice). This together with Corollary E.1 implies that
for each agent a ∈ A

BRa(St) ⊆ {(ℓ∗, 0, 0, 1, kd), (ℓ∗, 1, 0, 1, kc)}

with kd = p(b− c) and kc = (1− p)c.
Adopting a dual process defection strategy in location ℓ∗ with the op-

timal threshold cost of deliberation kd = p(b − c) provides an expected
payoff of

πD
a,ℓ∗(St) = G(kd)p(b− c) + (1− p)b(1−G(kc))−

∫︂ kd

0

tg(t) dt

while adopting a dual process cooperation strategy in location ℓ∗ with
the optimal threshold cost of deliberation kc = (1 − p)c provides an ex-
pected payoff of

πC
a,ℓ∗(St) = p(b−c)+(1−p)b(1−G(kc))−(1−G(kc))(1−p)c−

∫︂ kc

0

tg(t) dt

Agents prefer keeping a dual process cooperation strategy if

p(b− c)− (1−G(kc))(1− p)c−
∫︂ kc

0

tg(t) > G(kd)p(b− c)−
∫︂ kd

0

tg(t) dt ⇔

⇔ (1−G(kd))p(b− c)− (1−G(kc))(1− p)c >

∫︂ kc

kd

tg(t) dt

Integration by parts yields∫︂ kc

kd

tg(t) dt = G(kc)(1− p)c−G(kd)p(b− c)−
∫︂ kc

kd

G(t) dt
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But then, the previous inequality is satisfied if and only if

⇔ p(b− c)− (1− p)c > −
∫︂ kc

kd

G(z) dz ⇔

⇔ −
∫︂ kc

kd

1 dz > −
∫︂ kc

kd

G(z) dz ⇔

⇔
∫︂ kc

kd

(︁
1−G(z)

)︁
dz < 0

which holds if and only if kd > kc and, so, if

⇔ p(b− c) > (1− p)c ⇔ p >
c

b

Therefore, if p ∈ ( cb , 0) it must be BRa(St) = (ℓ∗, 1, 0, 1, kc) with kc =
(1 − p)c for each agent a ∈ A. Consequently, the system will remain in
the dual process cooperation state (ℓ∗, 1, 0, 1, kc).

Hence, dual process cooperation states (ℓ∗, 1, 0, 1, kc) are absorbing
if p ∈ ( cb , 1) with the unique kc = (1− p)c.

Lemma E.4. There are no other absorbing sets than the ones in Lemma E.1,
Lemma E.3, and Lemma E.2.

Proof. Assume that the system is in a generic state of the system S0 that
does not belong to the absorbing sets (L, 0, 0, 1, 0), (ℓ∗, 0, 0, 1, kd) with
every kd : kd = p(b − c)G(kd), and (ℓ∗, 1, 0, 1, kc) with the unique
kc = (1− p)c.

With positive probability at the end of time 0 all the players will be
given a game-play revision opportunity. In either case, by Corollary E.1
at the beginning of time 1 all the players will adopt either a strategy
of type (ℓa,1, 0, 0, 1, k

d) with kd = p(b − c)τ ra,ℓa,1
(S0) ≥ 0 or of type

(ℓa,1, 1, 0, 1, k
c) with kc = (1− p)c.

We now show that with positive probability the system can reach a
state in which each non-empty location ℓ is characterized by having all
agents adopting the same strategy among (ℓ, 1, 0, 1, kc) with kc = (1−p)c,
(ℓ, 0, 0, 1, kd) with kd > 0 : kd = p(b− c)G(kd), and (ℓ, 0, 0, 1, 0).

For each non-empty location ℓ, let a′, a′′, . . . denote the agents cur-
rently in location ℓ ordered from the maximally cooperative to the least
cooperative (eventually breaking ties randomly). Then, fixed a location
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ℓ, with positive probability at the end of time 1 only agent a′, a maxi-
mally cooperative agent in location ℓ, will be given a game-play revision
opportunity. Then, the following scenarios are possible:

1 Agent a′ adopts or keeps strategy (ℓ, 1, 0, 1, kc). Given that a′ is
a maximally cooperative agent in location ℓ, then it is at least as
cooperative as any other agent in location ℓ; moreover, given that
a′ has adopted or kept a dual process cooperation strategy Equa-
tion (E.3) must hold for agent a′. Consequently, by Corollary E.2
Equation (E.3) must hold for any other agent in location ℓ. But
then, with positive probability at the end of time 2 all the agents
staying in location ℓ (eventually except agent a′) will be given a
game-play revision opportunity and each of them will adopt strat-
egy (ℓ, 1, 0, 1, kc). But then, with positive probability the system
will reach a state in which each agent in location ℓ adopts strategy
(ℓ, 1, 0, 1, kc) with kc = (1− p)c.

2 Agent a′ adopts an intuitive defection strategy. But then, it must be
that kd = p(b − c)τa′,ℓ(S1) = 0 and, so, all the other agents in loca-
tion ℓ must be adopting an intuitive defection strategy. Moreover,
given that agent a′ has adopted an intuitive defection strategy too,
now all the agents in location ℓ adopt strategy (ℓ, 0, 0, 1, 0).

3 Consider the case in which agent a′ adopts a dual process defection
strategy (ℓ, 0, 0, 1, kd) with kd > 0. Then, with positive probability
at the end of period 2 only agent a′′, who at the end of time 1 was
the second maximally cooperative agent, will be given a game-play
revision opportunity. Two scenarios are possible2:

3.1 Agent a′′ adopts a dual process cooperation strategy. But then,
at the end of time 3 agent a′′ will be at least as cooperative
as any the other agent in location ℓ; moreover, Equation (E.3)
must hold for agent a′′. But then, by Corollary E.2 Equa-
tion (E.3) must hold for any other agent staying in location
ℓ. Then, with positive probability at the end of time 3 every
agent in location ℓ (eventually except a′′) will be given a game-
play revision opportunity and each of them will adopt a dual

2Note that agent a′′ cannot adopt an intuitive defection strategy as agent a′ has adopted
a dual process defection strategy at the end of the previous period and, consequently, kd =
p(b− c)τa′′,ℓ(S1) > 0.
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process cooperation strategy. But then, with positive probabil-
ity the system will reach a state in which each agent in location
ℓ adopts strategy (ℓ, 1, 0, 1, kc) with kc = (1− p)c.

3.2 Agent a′′ adopts a dual process defection strategy. In this case
we repeat all the steps from 3 by considering the next player
in the original ranking. If this process is repeated until all the
players in location ℓ have been given a second revision oppor-
tunity, then the system will have reached a situation in which
all the agents in location ℓ adopt a dual process defection strat-
egy (eventually with agents choosing different threshold costs
of deliberation). Now,

3.2.1 If at least one agent has the incentive to adopt a dual pro-
cess cooperation strategy, then by the arguments in point
1 with positive probability all the agents in location ℓ will
eventually adopt a dual process cooperation strategy;

3.2.2 If no agent has the incentive to adopt a dual process coop-
eration strategy, then let Dℓ,t denote the set of agents in lo-
cation ℓ that are currently willing to decrease their thresh-
old cost of deliberation if given a game-play revision op-
portunity. Then, with positive probability all the agents
in Dℓ,t will be given a game-play revision opportunity at
the end of the current period of time and by construction
each of them will decrease its threshold cost of delibera-
tion. With positive probability this process of providing
a game-play revision opportunity only to players willing
to decrease their threshold cost of deliberation will con-
tinue until the set Dℓ,t will become empty. At this point
three scenarios are possible: (a) all agents in location ℓ
have adopted an intuitive defection strategy (ℓ, 0, 0, 1, 0)
(ii), (b) all agents in location ℓ have adopted a dual pro-
cess defection strategy (ℓ, 0, 0, 1, kd) with kd > 0 : kd =
p(b − c)G(kd), or (c) all the agents in location ℓ are now
willing to increase (or keep unchanged) their threshold
cost of deliberation. In this last scenario, with positive
probability at the end of the next period of time all the
agents in location ℓ will be given a game-play revision
opportunity and each of them will increase (or keep un-
changed) its threshold cost of deliberation. This process
will continue with positive probability until either (a’) all
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agents in location ℓ adopt a dual process defection strat-
egy (ℓ, 0, 0, 1, kd) with kd > 0 : kd = p(b − c)G(kd) or (b’)
all agents in location ℓ adopt a dual process cooperation
strategy (ℓ, 1, 0, 1, kc).

By repeating these steps separately for each non-empty location, with
positive probability the system will reach a state in which in each non-
empty location all the players adopt the same strategy among (ℓ, 1, 0, 1, kc)
with kc = (1 − p)c, (ℓ, 0, 0, 1, kd) with kd > 0 : kd = p(b − c)G(kd) and
(ℓ, 0, 0, 1, 0). However, in different locations different strategies may have
emerged. Then,

• If in all the non-empty locations the intuitive defection strategy has
emerged, then the system has reached the intuitive defection set
(Lemma E.1);

• If in at least one location, say ℓ′, the dual process defection strat-
egy has emerged3, but in no location the dual process cooperation
strategy has emerged, then the system will reach a dual process de-
fection absorbing state. More precisely, such absorbing state will
be characterized by the highest kd > 0 : kd = p(b− c)G(kd) that has
emerged. To see this denote with kD

′
the maximum threshold cost

of deliberation that has emerged and denote with ℓ′ the location in
which it has emerged (randomly selecting one if kD

′
has emerged

in more than one location). Then, for every agent a ∈ A it must be
τ ra,ℓ′(St) = G(kD

′
) ≥ τ ra,ℓ(St) and τoa,ℓ′(St) = 0 ≥ 0 = τ ra,ℓ(St) for

all ℓ ̸= ℓ′ as by construction kD
′

is the highest threshold. Conse-
quently, if at the end of the current period of time all the agents not
staying in location ℓ′ will be given a full-strategy revision oppor-
tunity, then by Proposition E.2 and Lemma E.2 they will all adopt
strategy (ℓ′, 0, 0, 1, kD

′
) and, so, the system will have reached a dual

process defection absorbing state.

• If in at least one location, say ℓ′, the dual process cooperation strat-
egy has emerged4, then the system will reach a dual process coop-
eration absorbing state. In fact, for every agent it must be τ ra,ℓ′(St) =

3Note that in this scenario it must be p ∈
(︁
0, c

c+G(kd)(b−c)

)︁
; otherwise in no location

the dual process defection strategy would have emerged.
4Note that in this scenario it must be that p ∈ ( c

b
, 1); otherwise, in no location the dual

process cooperation strategy would have emerged.
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1 ≥ τ ra,ℓ(St) and τoa,ℓ′(St) = (1 − G(kc)) ≥ τ ra,ℓ(St) for all ℓ ̸= ℓ′.
But then, with positive probability at the end of the current pe-
riod of time all the agents staying in location ℓ ̸= ℓ′ will be given a
full-strategy revision opportunity and then by Proposition E.2 and
by Lemma E.3 they will all adopt strategy (ℓ′, 1, 0, 1, kc) and, so,
the system will have reached a dual process cooperation absorbing
state.

We have shown that starting from a generic state of the system that does
not belong to the absorbing sets (L, 0, 0, 1, 0), (ℓ∗, 0, 0, 1, kd) with every
kd : kd = p(b − c)G(kd), and (ℓ∗, 1, 0, 1, kc) with the unique kc = (1 −
p)c the system will enter with positive probability either a dual process
cooperation absorbing state, or a dual process defection absorbing state,
or the intuitive defection state.

Hence, there are no other absorbing sets other than the ones in Lemma E.1,
Lemma E.3, and Lemma E.2.

The results in Lemma E.1, Lemma E.3, Lemma E.2, and Lemma E.4
together imply Theorem 4.
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Appendix F

Chapter 3: Proof of
Theorem 5

Theorem 5. Consider the system under perturbed dynamics (ε > 0). If p ∈(︁
c
b , 1

)︁
then all the stochastically stable states of the system are contained in

the set of dual process cooperation states {(ℓ∗,1,0,1,kc)}Lℓ∗=1 with kc =
(kc, . . . , kc) and kc = (1− p)c.

Proof. Consider the system under perturbed dynamics (ε > 0) and as-
sume p ∈ ( cb , 1). Let Ω and Ω−1 be a partition of the set of absorbing sets
of the system under unperturbed dynamics (see Theorem 4) such that Ω
is the set of all the dual process cooperation states of type (ℓ, 1, 0, 1, kc)
with kc = (kc, . . . , kc) and kc = (1− p)c while Ω−1 contains the intuitive
defection set (L, 0, 0, 1, 0) and all the dual process defection states of
type (ℓ, 0, 0, 1, kd) with kd = (kd, . . . , kd) and kd = p(b− c)G(kd) for any
kd : kd = p(b− c)G(kd) if any.

Given this partition of the set of absorbing sets of the system under
unperturbed dynamics, we show that under perturbed dynamics one
mistake can lead with positive probability the system into the basin of
attraction of Ω starting from any state in Ω−1 and, in particular, from
any state belonging to the intuitive defection set (L, 0, 0, 1, 0) [1] and
from any dual process defection state of type (ℓ, 0, 0, 1, kd) with kd =
p(b − c)G(kd) [2]. This in turn implies that the coradius of Ω is equal
to one. We then show that one mistake is never enough to lead with
positive probability the system outside the basin of attraction of Ω start-
ing from any dual process cooperation state of type (ℓ, 1, 0, 1, kc) with
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kc = (1 − p)c [3]. But then the radius of Ω must be strictly larger than
one.

[1] Minimum number of mistakes from the intuitive defection set to Ω:
Assume that the system is in a state belonging to the intuitive defection
set (L, 0, 0, 1, 0). In such a state, if given a full-strategy revision oppor-
tunity every agent best replies to the current state of the system by keep-
ing an intuitive defection strategy and randomizing the location choice.
But then, with positive probability (without any mistake) the system will
reach a state – still belonging to the intuitive defection set – in which at
least one location, say ℓ′, is empty. Once the system has reached a state of
this kind assume that at the end of the next period of time t an agent, say
a′, is given a full-strategy revision opportunity and by mistake it adopts
a dual process cooperation strategy in the empty location ℓ′, i.e., it adopts
strategy (ℓ′, 1, 0, 1, kc) with kc = (1− p)c.

In period t+1 the system will be in a state in which agent a′ is the only
agent in location ℓ′ and it adopts a dual process cooperation strategy,
while all other agents are distributed across the remaining locations (or
a subset of them) and each of such agents adopts an intuitive defection
strategy. But then, for every agent a ̸= a′ it must be(︁
τoa,ℓ′(St+1), τ

r
a,ℓ′(St+1)

)︁
= (1−G(kc), 1) > (0, 0) =

(︁
τoa,ℓ(St+1), τ

r
a,ℓ(St+1)

)︁
for each location ℓ ̸= ℓ′ and, so, by Proposition E.2 for each agent a ̸= a′

it must be ℓ′ ≻a,t+1 ℓ for each ℓ ̸= ℓ′. Therefore, if an agent a ̸= a′ is
given a full-strategy revision opportunity, then it will best reply to the
current state of the system by moving into location ℓ′. This together with
Corollary E.1 implies that, if given a full-strategy revision opportunity,
each agent a ̸= a′ will either adopt strategy (ℓ′, 1, 0, 1, kc) with kc =
(1 − p)c or strategy (ℓ′, 0, 0, 1, kd) with kd = p(b − c). However, given
p ∈ ( cb , 1) they will strictly prefer adopting a dual process cooperation
strategy.

But then, with positive probability at the end of time t+1 every agent
a ̸= a′ will be given a full-strategy revision opportunity and each of them
will best reply to the current state of the system by adopting strategy (ℓ′,
1, 0, 1, kc) with kc = (1− p)c. At this point the system will have reached
a dual process cooperation state of type (ℓ′, 1, 0, 1, kc) with kc = (1−p)c.

Therefore, if p ∈ ( cb , 1) one mistake can lead with positive probability
the system into the basin of attraction of Ω starting from a generic state
belonging to the intuitive defection set.
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[2] Minimum number of mistakes from a dual process defection state
to Ω: Assume that at the end of time t the system is in a dual process
defection state of type (ℓ∗, 0, 0, 1, kd) with kd : kd = p(b − c)G(kd).
In such a state all agents stay in the same location ℓ∗ and adopt a dual
process defection strategy.

Assume that at the end of time t an agent, say a′, is given a full-
strategy revision opportunity and by mistake it adopts a dual process
cooperation strategy in an empty location, i.e., it adopts strategy (ℓ′, 1, 0,
1, kc) with kc = (1− p)c.

In period t+ 1 the system will be in a state in which all agents except
agent a′ stay in location ℓ∗ and adopt a dual process defection strategy,
while agent a′ stays in location ℓ′ and adopts a dual process cooperation
strategy. But then, for every agent a ̸= a′ it must be(︁

τoa,ℓ′(St+1), τ
r
a,ℓ′(St+1)

)︁
= (1−G(kc), 1)(︁

τoa,ℓ∗(St+1), τ
r
a,ℓ∗(St+1)

)︁
= (0, G(kd))(︁

τoa,ℓ(St+1), τ
r
a,ℓ(St+1)

)︁
= (0, 0) ∀ℓ ̸= ℓ∗, ℓ′

But then
(︁
τoa,ℓ′(St+1), τ

r
a,ℓ′(St+1)

)︁
>

(︁
τoa,ℓ(St+1), τ

r
a,ℓ(St+1)

)︁
for each ℓ ̸= ℓ′

and, so, by Proposition E.2 it must be ℓ′ ≻a,t+1 ℓ for each ℓ ̸= ℓ′ and for
each agent a ̸= a′. Therefore, if at the end of time t + 1 an agent a ̸= a′

is given a full-strategy revision opportunity, then it will best reply to the
current state of the system by moving into location ℓ′. This together with
Corollary E.1 implies that, if given a full-strategy revision opportunity at
the end of period t+ 1, each agent a ̸= a′ will either adopt strategy (ℓ′, 1,
0, 1, kc) with kc = (1 − p)c or strategy (ℓ′, 0, 0, 1, kd) with kd = p(b − c).
However, given p ∈ ( cb , 1) each agent a ̸= a′ will strictly prefer adopting
a dual process cooperation strategy.

But then, with positive probability at the end of time t+1 every agent
a ̸= a′ will be given a full-strategy revision opportunity and each of them
will best reply to the current state of the system by adopting strategy (ℓ′,
1, 0, 1, kc) with kc = (1− p)c. At this point the system will have reached
a dual process cooperation state of type (ℓ′, 1, 0, 1, kc) with kc = (1−p)c.

Therefore, if p ∈ ( cb , 1) one mistake can lead with positive probability
the system into the basin of attraction of Ω starting from a dual process
defection state of type (ℓ, 0, 0, 1, kd) with kd = p(b− c)G(kd).

Hence, if p ∈ ( cb , 1) one mistake can lead with positive probability the
system into the basin of attraction of Ω starting from any state belonging
to Ω−1. Consequently, CR(Ω) = 1.
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[3] Lower bound for the minimum number of mistakes from Ω to Ω−1:
Assume that at the end of time t the system is in a dual process cooper-
ation state of type (ℓ∗, 1, 0, 1, kc) with kc = (1 − p)c. In such state all
agents stay in the same location ℓ∗ and adopt the optimal dual process
cooperation strategy.

Assume that at the end of the current period of time t an agent, say
a′, is given a revision opportunity and it makes a mistake by deciding to:
(i) stay in its current location ℓ∗1, (ii) play AllD under intuition, and (iii)
deliberate if the cost of deliberation is lower than or equal to k′ ≥ 0. In
other words, assume that by mistake agent a′ adopts strategy (ℓ∗, 0, 0, 1,
k′).

Then, at time t+ 1 for every agent a ̸= a′ it must be

(︁
τoa,ℓ∗(St+1), τ

r
a,ℓ∗(St+1)

)︁
=

(︃
(A− 2)[1−G(kc)]

A− 1
,
(A− 2) +G(k′)

A− 1

)︃
(︁
τoa,ℓ(St+1), τ

r
a,ℓ(St+1)

)︁
= (0, 0) ∀ℓ ̸= ℓ∗

and, so, by Proposition E.2 for every agent a ̸= a′ and each location ℓ ̸= ℓ∗

it will be ℓ∗ ≻a,t+1 ℓ and, consequently, if given a full-strategy revision
opportunity each agent a ̸= a′ will decide to stay in location ℓ∗.

Consider the case in which at the end of time t + 1 an agent a ̸= a′

is given a revision opportunity. Then, agent a prefers keeping its current
dual process cooperation strategy rather than adopting a dual process
defection strategy with the optimal threshold cost of deliberation k′′ =
p(b− c)τ ra,ℓ∗(St+1) if

τ ra,ℓ∗(St+1) >
(1−G(kc))(1− p)c+

∫︁ kc

k′′ tg(t) dt
(1−G(k′′))p(b− c)

⇔

⇔ (A− 2) +G(k′)

A− 1
> . . .

. . . >

(1−G(kc))(1− p)c+
∫︁ (1−p)c

p(b−c)
(A−2)+G(k′)

A−1

tg(t) dt

(1−G(k′′))p(b− c)

(F.1)

1Note that the scenario in which agent a′ decides to stay in its current location rather
than moving into an empty location is the one in which agents a ̸= a′ who will be given
a revision opportunity in the next period of time have a higher incentive to switch to AllD
under intuition. In fact, if a′ moved into an empty location then no agent a ̸= a′ would
have an incentive to change location choice unless agent a′ adopted a dual process coop-
eration strategy (or an even more cooperative strategy). But in this case the system would
still remain in the basin of attraction of Ω.
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Such condition is most demanding for G(k′) = 0, i.e., in case agent a′

has adopted an intuitive defection strategy. Moreover, such condition is
satisfied independently of G(·) if

A− 2

A− 1
>

(1−G(kc))(1− p)c+G(kc)(1− p)c− p(b− c)A−2
A−1G(k′′)

(1−G(k′′))p(b− c)
⇔

⇔ A− 2

A− 1
p(b− c) > (1− p)c

As the number of agents A grows large this condition converges to p ∈
( cb , 1).

But then, if p ∈ ( cb , 1) and the population is large enough one mistake
is never enough to make the system exit with positive probability the
basin of attraction of Ω. Hence, the radius of the basin of attraction of Ω
is at least equal to two.

We have shown that if the population is large enough and p ∈ ( cb , 1)
then:

1. One mistake can lead with positive probability the system into the
basin of attraction of Ω starting from any state belonging to Ω−1

and, so, CR(Ω) = 1;

2. One mistake is never enough to lead with positive probability the
system outside the basin of attraction of Ω starting from a state be-
longing to Ω and, so, R(Ω) ≥ 2.

But then, we have R(Ω) ≥ 2 > 1 = CR(Ω). Therefore, if p ∈ ( cb , 1) and
the number of agents A is large enough then all the stochastically stable
states of the system are contained in the set of dual process cooperation
states Ω =

{︁
{(ℓ,1,0,1,kc)}Lℓ=1

}︁
.

Note that all the states belonging to Ω =
{︁
{(ℓ,1,0,1,kc)}Lℓ=1

}︁
are

stochastically stable. In fact, we can show that one mistake is enough to
lead with positive probability the system into any dual process cooper-
ation state of type (ℓ∗,1,0,1,kc) with kc = (1 − p)c to any other dual
process cooperation state, say (ℓ′,1,0,1,kc) with ℓ′ ̸= ℓ∗.

Consider the case in which at time t the system is in a dual process
cooperation state of type (ℓ∗,1,0,1,kc) with kc = (1 − p)c. Moreover,
assume that at the end of time t an agent, say a′, is given a full-strategy
revision opportunity and by mistake it adopts a dual process cooperation
strategy in an empty location, i.e., it adopts strategy (ℓ′, 1, 0, 1, kc)2.

2Any other strategy that is more cooperative than this strategy – as the intuitive cooper-
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Then, at time t+ 1 for every agent a ̸= a′ it will be(︁
τoa,ℓ′(St+1), τ

r
a,ℓ′(St+1)

)︁
= (1−G(kc), 1)(︁

τoa,ℓ∗(St+1), τ
r
a,ℓ∗(St+1)

)︁
= (1−G(kc), 1)(︁

τoa,ℓ(St+1), τ
r
a,ℓ(St+1)

)︁
= (0, 0) ∀ℓ ̸= ℓ∗, ℓ′

and, so, by Proposition E.2 every agent a ̸= a′ will be ℓ′ ≻a,t+1 ℓ∗ and,
consequently, if given a full-strategy revision opportunity each agent a ̸=
a′ will be indifferent between staying in its current location or moving
into location ℓ′ keeping a dual process cooperation strategy3. But then,
with positive probability at the end of time t + 1 every agent a ̸= a′

will be given a full-strategy revision opportunity and each of them will
adopt strategy (ℓ′, 1, 0, 1, kc) with kc = (1 − p)c. Consequently, with one
mistake the system will have reached a dual process cooperation state of
type (ℓ′,1,0,1,kc) with ℓ′ ̸= ℓ∗.

Given that this reasoning can be applied to any couple of locations
(ℓ, ℓ′) one mistake can lead with positive probability the system from any
dual process cooperation state in Ω to any other dual process cooperation
state state in Ω.

Hence, if the population is large enough and p ∈ ( cb , 1) then all the
states belonging to the set Ω =

{︁
{(ℓ∗,1,0,1,kc)}Lℓ∗=1

}︁
are stochastically

stable.

ation strategy – would be fine too
3This must be the case because τra,ℓ∗ (St) = 1 was such that Equation (E.3) was satisfied

in location ℓ∗ for each agent. But, given τr
a,ℓ′ (St+1) = 1 ≥ τra,ℓ∗ (St), Equation (E.3) must

hold in location ℓ′ at time t+ 1 for every agent a ̸= a′.

170



Appendix G

Chapter 4: Different Cost
Distributions

I repeat the analyses reported in Chapter 4 by considering different cost
distributions. More precisely, in the main text deliberation costs were
drawn from a uniform distribution and different widths of the uniform
distribution have been considered. Instead, here I fix the width of the dis-
tribution to C = 1 and consider cost distributions other than the uniform.
In Figure G.1 I report the probability density functions (PDF) of the dis-
tributions analyzed: a truncated normal distribution, a cost distribution
characterized by a continuously increasing PDF, and one with a contin-
uously decreasing PDF. Despite being defined in the same interval (for
comparability purposes) these distributions present quite different prop-
erties. In particular, if the uniform and the normal distribution present
the same expected value, the increasing [decreasing] distribution has a
relatively high [low] expected value.

The findings reported in the next figures suggest that the shape of the
cost distribution does not play a crucial role. More generally, I expect
that the main results hold for any sufficiently smooth deliberation cost
distribution – i.e. if the cost distribution is such that small changes in the
threshold cost do not lead to huge differences in the probability to incur
deliberation.
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Figure G.1: Distributions analyzed. Probability density functions of the
distributions analyzed.

The most significant differences are observed in the case of a decreas-
ing PDF which has a relatively low expected cost of deliberation. The
results associated with the decreasing PDF are quite comparable with
the ones found in the case of a uniform distribution in the case C = 0.5

(see Chapter 4). This suggests that regarding the cost distribution what
really matters is the expected cost associated with that distribution rather
than the actual shape or the width of the distribution.
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Figure G.2: Proposers’ behavior. Proposers’ average offer under intuition,
under deliberation if the game is an UG, and under deliberation if the game
is a simplified BG and their standard errors as a function of β by cost distri-
bution.
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Figure G.3: Proposers’ deliberation patterns. Average proposers’ probabil-
ity to deliberate and their standard errors as a function of β by cost distri-
bution.
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Figure G.4: Receivers’ behavior. Receivers’ average minimum accepted
offer under intuition, under deliberation if the game is an UG, and under
deliberation if the game is a simplified BG and their standard errors as a
function of β by assumed cost distribution.
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Figure G.5: Receivers’ deliberation patterns. Average receivers’ probabil-
ity to deliberate given that the proposer has offered an amount p and their
standard errors as a function of β by cost distribution.
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Figure G.6: Conditional rejection rates. Average receivers’ conditional re-
jection rates in the Ultimatum Game and their standard errors as a function
of β by cost distribution.
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Figure G.7: Expected rejection rates. Overall expected rejection rates in
the Ultimatum Game and their standard errors as a function of β by cost
distribution.
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Appendix H

Chapter 4: Different
Patience Factors

I repeat the analyses reported in Chapter 4 by considering different pa-
tience factors. More precisely, in the main text I considered the case in
which both proposers and receivers had a patience factor of δ = 0.8.

In the model, the patience factor determines the agents’ payoff in the
simplified Bargaining Game in case the receiver rejects the offer made by
the proposer. In other words, it affects the receivers’ outside option in the
simplified BG and it also indirectly affects the receivers’ outside option
under intuition. Consequently, from a theoretical point of view, I expect
that if agents are less patient then receivers should be less demanding
and should tend to accept more often unfair offers.

The next figures report the simulation results obtained by considering
patience factors δ ∈ {0.2, 0.5, 0.8}. These findings substantially confirm
the theoretical predictions just made.

One thing that is worth mentioning is the potential role played by
cognitive manipulations on agents’ level of patience. In particular, cog-
nitive manipulations may affect agents’ patience in such a way that the
change in patience counteracts the expected effects of increased/decreased
reliance on intuition. Consider, for example, the case of a time pressure
treatment that increases subjects’ reliance on intuition. According to the
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results obtained in Chapter 4 this should increase receivers’ MAOs and,
consequently, make them more demanding. However, if time pressure
also makes receivers more impatient and, consequently, decreases their
MAO, then – depending on which effect dominates – receivers might
both become more demanding, less demanding, or not change their be-
havior (if the two effects compensate each other). Further research on
this topic might be of interest.

Figure H.1: Proposers’ behavior. Proposers’ average offer under intuition,
under deliberation if the game is an UG, and under deliberation if the game
is a simplified BG and their standard errors as a function of β by cost distri-
bution.
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Figure H.2: Proposers’ deliberation patterns. Average proposers’ probabil-
ity to deliberate and their standard errors as a function of β by cost distri-
bution.
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Figure H.3: Receivers’ behavior. Receivers’ average minimum accepted
offer under intuition, under deliberation if the game is an UG, and under
deliberation if the game is a simplified BG and their standard errors as a
function of β by assumed cost distribution.
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Figure H.4: Receivers’ deliberation patterns. Average receivers’ probabil-
ity to deliberate given that the proposer has offered an amount p and their
standard errors as a function of β by cost distribution.
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Figure H.5: Conditional rejection rates. Average receivers’ conditional re-
jection rates in the Ultimatum Game and their standard errors as a function
of β by cost distribution.
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Figure H.6: Expected rejection rates. Overall expected rejection rates in
the Ultimatum Game and their standard errors as a function of β by cost
distribution. These rejection rates are computed by taking into account both
proposers’ behavior and receivers’ conditional rejection rates.
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