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Abstract

This dissertation presents new methods to synthesize distur-
bance sets and input constraints set for constrained linear
time-invariant systems. Broadly, we formulate and solve op-
timization problems that (a) compute disturbance sets such
that the reachable set of outputs approximates an assigned
set, and (b) compute input constraint sets guaranteeing the
stabilizability of a given set of initial conditions. The pro-
posed methods �nd application in the synthesis and analy-
sis of several control schemes such as decentralized control,
reduced-order control, etc., as well as in practical system de-
sign problems such as actuator selection, etc.

The key tools supporting the develpment of the aforemen-
tioned methods are Robust Positive Invariant (RPI) sets. In
particular, the problems that we formulate are such that they
co-synthesize disturbance/input constraint sets along with
the associated RPI sets. This requires embedding existing
techniques to compute RPI sets within an optimization prob-
lem framework, that we facilitate by developing new results
related to properties of RPI sets, polytope representations, in-
clusion encoding techniques, etc.

In order to solve the resulting optimization problems, we de-
velop specialized structure-exploiting solvers that we numer-
ically demonstrate to outperform conventional solution meth-
ods. We also demonstrate several applications of the meth-
ods we propose for control design. Finally, we extend the
methods to tackle data-driven control synthesis problems in
an identi�cation-for-control framework.
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Notation

• Rn denotes the set of real vectors of dimension n, and Rm � n de-
notes the set of matrices of dimension m � n.

• L i denotes row i , and L ij denotes the element in row i and column
j of matrix L

• rank(L ), Im( L), and null( L ) denote the rank, image-space and null-
space of matrix L respectively

• � (L ) denotes the spectral radius of a square matrix L

• L � M denotes elementwise inequality of two matrices L; M of the
same dimensions

• 1, 0, and I denote all-ones, all-zeros and identity matrix respec-
tively, with dimensions speci�ed if the context is ambiguous

• In
m denotes the set of natural numbers between two integers m and

n, i.e, In
m := f m; : : : ; ng

• diag(x) 2 Rn � n is a matrix constructed with diagonal elements x i

of the vector x 2 Rn

1



Chapter 1

Overview

1.1 Introduction

In order to design effective control strategies for real-world plants, it is
important to be able to predict the behaviour of the plant under the in�u-
ence of a given control strategy. This prediction can be performed using
dynamical models, which describe the input-output relationship of the
plant. Such dynamical models can be obtained from an understanding
of the physics of the underlying plant, through system/parameter iden-
ti�cation strategies, or a combination of both. Since the plant can be a
very complex system, this approach however can encounter several prac-
tical limitations. Identifying a dynamical model of the plant typically
involves making several choices regarding the parameterization, and a
complex plant can require a complex model parameterization for accu-
rate predictions. Such models might not be amenable to use in a control
design framework. On the other hand, a dynamical model that is simple
enough for controller design might pose the risk that during online op-
erations, the plant can violate its safety constraints leading to potentially
catastrophic results. A reasonable trade-off between model complexity
and prediction accuracy is presented by uncertainty descriptions. These
descriptions capture the plant-model mismatch, and are appended to the
dynamical models such that they can predict a range of future plant be-
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haviours. Using simple dynamical models in conjunction with corre-
sponding uncertainty descriptions, robust control strategies ensure safe
operation for all predicted future plant behaviours in the presence of un-
certainty. Since the actual plant behaviour is expected to be one of the
predicted behaviours, guarantees regarding safe closed-loop operation
with the controller can be provided.

1.2 Robust Invariant sets

An important tool used in the analysis of uncertain systems and synthe-
sis of robust control strategies is the Robust Invariant set, that we intro-
duce in this section. We consider a discrete-time model of a dynamical
system written as

x(t + 1) = fOL (x(t); u(t); w(t)) ; (1.1)

with current state vector x(t), current input u(t), and current disturbance
(or uncertainty) vector w(t). Such a model is used to predict the next
state x(t + 1) of the plant. We consider further that the system is subject
to pointwise-in-time constraints of the form

y(t) = g(x(t); u(t)) 2 Y : (1.2)

We now de�ne a Robust Control Invariant (RCI) set for the system.

De�nition 1.1. Given a set of disturbancesW , a setC(W ) in the state-space
is an RCI set for System(1.1)-(1.2) if and only if for eachx 2 C(W ), there
exists some control inputu such thatg(x; u) 2 Y , andg(fOL (x; u; w); u) 2 Y
for everyw 2 W .

Hence, the system can be enforced to evolve ad in�nitum inside an
RCI set by appropriately selecting a control input u(t) at the current state
x(t). In order to select the control input u(t), typically a control strategy
is designed (assuming that w(t) is unmeasured) as

u(t) = K(x(t)) : (1.3)

3



The resulting closed-loop system given by

x(t + 1) = fCL (x(t); w(t)) (1.4)

is an autonomous system, where fCL (x; w) = fOL (x; K(x); w). For the
autonomous system, we now de�ne a Robust Positive Invariant (RPI)
set.

De�nition 1.2. Given a set of disturbancesW , a setX (W ) in the state-space
is an RPI set for the autonomous system in(1.4)with feedback law in(1.3)and
subject to constraints(1.2) if and only if for eachx 2 X (W ), g(x; K(x)) 2 Y
holds, andg(fCL (x; w); K(x)) 2 Y for all disturbancesw 2 W .

According to the de�nition of the RPI set, if x(t0) 2 X (W ) at some
time instant t0, then the autonomous system always satis�es its con-
straints, i.e., g(x(t); u(t)) 2 Y holds for all t � t0. This is a key property
that is used in the design and analysis of robust control and estimation
schemes, and also in the analysis and design of autonomous systems.

1.2.1 Applications of Robust Invariant sets

Since RCI sets de�ne regions of the state-space in which the system can
be enforced to evolve ad in�nitum, they prove to be very useful in safety-
critical applications. For example, RCI sets formulated as superlevel sets
of control barrier functionsare discussed in, e.g., [2, 3], and are used to
project the system input onto a set of safe inputs that guarantees that the
system state remains inside the RCI set. They are also used extensively as
terminal sets in Model Predictive Control (MPC) schemes, e.g., [83, 70],
etc, in order to guarantee recursive feasibility. Moreover, in the case of
uncertain linear systems, contractive RCI sets can be used to de�ne Con-
trol Lyapunov functions through the Minkowski functional [16]. They
also �nd applications in designing local control laws in a non-cooperative
gamesetup [113], generating risky scenarios for safety-ensuring controller
synthesis [27], etc.

On the other hand, since RPI sets de�ne regions of the state-space
in which an autonomous system evolves ad in�nitum, they are natu-
rally linked to stability analysis. It is well known that level sets of Lya-
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punov functions are RPI sets, which provide suf�cient conditions to es-
tablish stability of equilibrium points [60, 59, 16]. Hence, they are used
to synthesize Lyapunov functions for stability analysis, e.g. [19, 92, 121].
In [14, 15], feedback laws are derived to enforce invariance of a given
arbitrary set, and stability of the derived law is established by demon-
strating that the Minkowski functional over the given set is a Lyapunov
function. For systems with persistently exciting additive disturbances,
Input-to-State (ISS) Lyapunov functions [57] that demonstrate stability
to ultimate-bounded regions rather than isolated equilibrium points are
synthesized [72]. In applications such as Model Predictive Control (MPC),
RPI sets are used as terminal sets to provide recursive feasibility guar-
antees [58, 119, 67, 18]. Moreover, in robust MPC approaches such as
tube-based Robust MPC [87, 118] they are used to bound the deviation
of a perturbed trajectory from a nominal one. A similar usage can also
be found in several reference governor schemes [40, 41]. Several state
estimation schemes are designed around minimizing the volume of the
region in which the estimation error is bounded, thus naturally using RPI
sets in their synthesis [90, 153].

1.2.2 Computation of Robust Invariant sets

Since Robust Invariant sets are invaluable tools for system and control
analysis and design, methods to synthesize such sets is a very active area
of research. Regarding RCI sets, one of the most popular and general pro-
posal follows from the set iterations presented in [11]. These iterations
are developed for general dynamical systems, and have been specialized
over time to several classes of systems. An extensively studied appli-
cation involves the case of LTI systems with polytopic constraints [148],
where the conditions for �nite time determination are discussed. Broad
variants of these set iterations involve the outside-inand inside-outpro-
cedures [58]. Inside-out procedures, e.g. [32] initialize the iterations at a
known RCI set, and expand out with each iterate being an RCI set. On
the other hand, outside-in procedures only synthesize an RCI set upon
convergence. However, if they converge, outside-in procedures converge
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to the Maximal RCI (MRCI) set, which is the union of all RCI sets. Re-
cently, conditions for the convergence of the inside-out procedure to the
MRCI set were studied in [78]. In order to avoid expensive set-projection
operations, several methodologies are studied to compute tight approxi-
mations of the MRCI set, e.g., [37, 5, 159]. In [125], methods to compute
arbitrarily tight approximations of the MRCI set for an LTI system with
constraint set given as a union of polytopes is studied. For details regard-
ing approaches adopted for computing RCI sets for nonlinear systems,
we refer to [129] and the references therein.

In this thesis, we focus for a majority part on RPI sets, with speci�c
attention paid to LTI systems with additive disturbances and polytopic
constraints. Hence, we now proceed with a brief summary of relevant
literature regarding computational methods for RPI sets for LTI systems.
Of particular interest are the Maximal and the minimal RPI sets (MRPI
and mRPI respectively) [16]. The mRPI set is the smallest RPI contained
in all RPI sets X (W ), while the MRPI set is the largest RPI that is the
union of all RPI sets. The problem of computing RPI sets for linear sys-
tems has been extensively studied. In [44, 63, 106], the MRPI set was
exactly computed for such systems with additive disturbances and poly-
topic model uncertainty and polytopic constraints, and the methods have
been implemented in the software package MAXIS-G [91]. Similar itera-
tions were used to compute the MRPI set in the presence of quasi-smooth
nonlinear constraints in [153]. Computation of this set in the presence
of state-dependent and scaled disturbances was studied in [130]. While
these approaches can compute the MRPI set exactly, they might not be
suitable for high-order and/or very slow systems due to high compu-
tational requirements and complexity of the resulting MRPI set. Hence,
several methods to approximate the MRPI sets with RPI sets of a �xed
complexity/representation have been developed. For example, in [19,
Chapter 5], ellipsoidal invariant sets are computed for linear systems as
sublevel sets of quadratic Lyapunov function. In [124, 123], an RPI set
parameterized as a polytope is computed for linear systems with poly-
topic uncertainty using LMI techniques. It is well understood from [16]
that, while ellipsoidal sets can be representationally simple, they can be
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excessively conservative. On the other hand, while polytopic sets can
be less conservative, they can be excessively complex. In [103], RPI sets
with a semi-ellipsoidal representation were synthesized in order to strike
a trade-off between complexity and conservativeness. In [1], a method
was presented to construct polytopic RPI sets starting from a contrac-
tive ellipsoidal set. More recent techniques focus on co-synthesizing a
feedback controller (1.3) along with a corresponding RPI set for the re-
sulting autonomous system (1.4) by �xing the RPI set parameterization.
For example, in [139], a linear feedback gain and corresponding RPI
sets parameterized as ellipsoids and hyperboxes are computed. RPI sets
parameterized as low-complexity polytopes, i.e., polytopes with twice
the number of hyperplanes as the state dimension, were co-synthesized
along with corresponding linear static feedback laws in [17] by itera-
tively solving a nonlinear program. Similar low-complexity polytopic
RPI sets with linear feedback laws were synthesized for linear systems
with norm-bounded uncertainty and additive disturbances in [138], that
was later extended to compute full-complexity polytopes in [74, 75]. In
[49, 48] low and full-complexity polytopic RPI sets with associated linear
static feedback laws for linear systems with additive uncertainty as well
as a rational parameter dependence were synthesized. While the MRPI
set can be computed exactly in the case of linear systems subject to addi-
tive disturbances under restrictions of strict stability and the origin being
included in the nonempty interior of the constraint sets, exact computa-
tion of the mRPI set, even if well de�ned, is impossible except under
very restrictive assumptions [63, 16, 135]. Hence, typically outer (RPI)
approximations of the mRPI set are sought. A popular technique in [112,
111] involves appropriately scaling the 0-reachable set to compute arbi-
trarily tight RPI approximations of the mRPI set, that was extended in
[66] to also accomodate polytopic model uncertainty. Alternatively, tight
RPI approximations can also be computed by shrinking an ellipsoidal
RPI set obtained as the level set of an ISS-Lyapunov function, as shown
in [85, 141]. Since these approaches can be excessively computationally
intensive as they involve Minkowski sums, and the resulting approxima-
tions non-viable for online control synthesis, there exist many methods
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to compute tight RPI approximations of the mRPI set with a prede�ned
complexity. In [115, 118, 144], the smallest polytope with prede�ned nor-
mal vectors to the hyperplanes was used to approximate the mRPI set.
Low-complexity polytopic RPI approximations of the mRPI set, along
with the associated invariance inducing linear feedback controller were
synthesized in [140]. Moreover, the methods in [74, 75] can also be used
to compute full-complexity polytopic RPI sets and associated feedback
laws.

The problem of computing RPI sets for nonlinear systems is typi-
cally more involved. Methods to compute invariant sets based on back-
ward reachable sets from piecewise af�ne (PWA) linear systems were
presented in [114, 46]. Such approaches however can be very computa-
tionally intensive. Alternatively, exploiting the link between Lyapunov
functions and RPI sets, methods to synthesize piecewise Lyapunov func-
tions with piecewise level sets that are RPI sets were developed [22, 69,
25, 152]. A useful tool in this regard is Sum-of-Squares (SOS) program-
ing [108], that allows for the reformulation of polynomial constraints into
Linear Matrix Inequalities (LMIs) using which convex computation of
polynomial Lyapunov functions can be performed. Such tools have also
been used in the synthesis of invariant sets using occupancy measures
[52], and based on solving a Bellman type equation [157, 158]. Some
recent results on the computation of parameter-dependent RPI sets [50,
29] present attractive approaches for the synthesis of robust control algo-
rithms with reduced conservativeness.

1.3 Thesis outline and contributions

As demonstrated in Section 1.2, most of the contributions regrading the
computation of RPI sets are based on the assumption that the set of in-
puts/disturbances are known a priori. Moreover, they also assume that
a model of the plant is known beforehand. While this assumption is
reasonable in many applications, the control practitioner must suitably
de�ne the set of inputs/disturbances, and perform system identi�cation
in order to identify a model of the plant in question. In this thesis, we fo-

8



cus the developments by exclusively considering uncertain linear time-
invariant (LTI) plant models of the form

x(t + 1) = Ax (t) + Bu(t) + Bw w(t);

y(t) = Cx(t) + Du(t) + Dw w(t);

(1.5a)

(1.5b)

with state x 2 Rn x , input u 2 Rn u , output y 2 Rn y and unmeasured
disturbance w 2 Rn w . Considering that the system in (1.5) is subject to
output constraints y 2 Y , we tackle the following questions:

1. Assuming that system (1.5) is autonomous because either (a) ma-
trices B and D are all-zero matrices, or (b) a stabilizing linear feed-
back gain u = Kx is designed a priori, how can we compute an ap-
propriatedisturbance set W such that under the action of arbitrary
disturbances w 2 W , the set of reachable outputs approximates the
assigned output constraint set Y?

2. Given a set of initial conditions X0 of system (1.5), i.e.,x(0) 2 X 0

and a set of persistently exciting disturbances W, i.e.,w(t) 2 W for
all t � 0, how can we compute an input constraint set U such that
with inputs u 2 U, system (1.5) can be regulated while robustly
respecting the constraints y 2 Y ?

3. Given a dataset of state and input measurements from a plant, how
can we identify an LTI model (1.5) along with synthesizing a ro-
bustly regulating controller with reduced conservativeness?

As we will demonstrate in this thesis, the aforementioned questions
can be tackled by using RPI sets parameterized by the input/disturbance
constraint sets. Hence, for each of the questions, we formulate and solve
optimization problems that co-synthesize the sets of interest. In this the-
sis, we address the formulation of and the solution methods for these
optimization problems, and is organized as follows:

• In Chapter 3, we address Question 1, i.e., the problem computing
appropriate input disturbance sets for constrained output reacha-
bility. To this end, we �rst parameterize the disturbance set as a
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polytope with a priori known normal vectors to the hyperplanes.
Then, we formulate an optimization problem to solve for the right-
hand-side parameters of the polytope. In this problem, we enforce
constraints that the set of reachable outputs formulated using the
minimal RPI set approximates the assigned output constraint set
Y. Since obtaining an explicit representation of the minimal RPI
set is generally impossible, we approximate it in the optimization
problem formulation with an RPI set parameterized as a polytope
with a priori �xed normal vectors. We show that the smallest RPI
set (in terms of inclusions) with the chosen parameterization is
uniquely de�ned, that allows us to bring the optimization formu-
lation into an implementable form. In this form, the constraints
are formulated using support functions over polytopes that can be
dif�cult to resolve since they are nonsmooth. Hence, in the sec-
ond part of the chapter, we develop an optimization algorithm to
solve the formulated problem based on smoothening-techniques.
We adopt notions of parametric optimization theory to treat the
support functions as implicit functions, based on which we de-
velop a sensitivity-based Primal-Dual Interior Point solver. Finally
we demonstrate the ef�cacy of the proposed formulation and opti-
mization algorithm to tackle Question 1 using numerical examples.
The content of this chapter is based primarily on [97, 96].

• In Chapter 4, we apply the techniques developed in Chapter 3 to
synthesize a decentralized MPC control scheme. In particular, we
consider a system composed of dynamically coupled subsystems
and subject to coupled constraints on the output. We decouple
these dynamics and constraints by computing state-constraint sets
on the individual subsystems, that satisfy the requirement that if
the subsystems satisfy their local constraints, then the overall sys-
tem constraints are satis�ed. This chapter is based on [94].

• In Chapter 5, we reconsider Question 1, and present an alternative
methodology to compute disurbance sets that guarantee constraint
satisfaction. This method is based on using implicitly-parameterized
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RPI sets to approximate the mRPI set within the formulation of the
optimization problem, instead of using a RPI set parameterized as
a polytope with prespeci�ed normal vectors. The implicit RPI sets
permit to specify a priori the RPI approximation error, thus over-
coming the �rst drawback of the approach proposed in Chapter 3.
Then, we present a novel disturbance set parameterization, that al-
lows for encoding the set of feasible disturbance sets as a polytope,
thus overcoming the second drawback of the approach in Chap-
ter 3. We demonstrate the ef�cacy of the method to tackle Ques-
tion 1, and compare its performance against the approach of Chap-
ter 3. Finally, we show an application of the method to synthesize
a reduced-order MPC scheme. This chapter is based on [98].

• In Chapter 6, we address Question 2, i.e., the problem of computing
input constraint sets U that can be used to guarantee robust regu-
lation of given set of initial conditions. To this end, we assume that
the plant is equipped with a tube-based Robust MPC controller,
the properties of which we exploit to formulate and solve an op-
timization problem to compute the smallestinput constraint set U
that guarantees recursive feasibility. We use a positively invariant
terminal set parameterized by the input constraint set within the
optimization problem, and solve the optimization problem akin to
[44]. We demonstrate the ef�cacy of the proposed method using
an actuator selection problem, in which the input constrant set U
is parameterized using discrete variables, and the size of the set is
related to an economic cost. This chapter is based on [100].

• In Chapter 7, we address Question 3, i.e., the problem of identifying
an LTI model along with synthesizing a tube-based Robust MPC
controller using a dataset of state and input measurements from a
plant. To this end, we characterize a set of LTI models that can ro-
bustly represent the plant behaviour with formal guarantees. Then,
we use this set to formulate and solve an optimization problem
that, along with selecting an LTI model, also computes correspond-
ing RPI sets and invariance-inducing feedback controllers. This
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problem is solved using a sequential convexi�cation approach for-
mulated through Linear Matrix Inequality (LMI) approximations.
This chapter is based on [99].
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Chapter 2

Preliminaries

In this chapter, we present some preliminary results that will be used in
the developments in the sequel. The �rst part of this chapter is devoted
to recalling some basic mathematical tools, that will be used in the sec-
ond part to recall some results from literature regarding Robust Positive
Invariant (RPI) sets.

2.1 Set operations and representations

Given two general sets S1; S2 � Rn , the set operations that we will most
frequently encounter in this thesis are

• Linear Transformation: LS1 := f y : y = Lx; x 2 S1g, L 2 Rm � n

• Minkowski sum: S1 � S 2 := f z : z = x + y; x 2 S1; y 2 S2g

• Minkowski difference: S1 	 S 2 := f z : z + y 2 S1; 8 y 2 S2g

We refer the reader to [63, 131] for details regarding the properties of
these operations for general setsS1 and S2. A useful tool while analyzing
properties of sets is the support function. The support function of a set
S � Rn evaluated at some y 2 Rn is de�ned as

hS (y) := sup
x 2S

y> x: (2.1)
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If S is a bounded set, thenhS (y) is bounded above for all y 2 Rn such that
supoperator can be replaced by the max operator. If the set S is compact
and convex, then it is the intersection of its supporting halfspaces, i.e.,

S =
\

y2 Rn

f x : y> x � hS (y)g: (2.2)

Moreover, the inclusion S1 � S 2 holds if and only if

hS1 (y) � hS2 (y); 8 y 2 Rn : (2.3)

For some compact setsS1 and S2 in Rn and some p-norm ball de�ning

�dp
H (S1; S2) := min

�
f � : S2 � S 1 � � Bn

p g; (2.4)

the p-norm induced Hausdorff distance between S1 and S2 is given by

dp
H (S1; S2) := max f �dp

H (S1; S2); �dp
H (S2; S1)g: (2.5)

If the inclusion S1 � S 2 holds, then dp
H (S1; S2) = �dp

H (S1; S2). In this the-
sis, we primarily use the 1 -norm induced Hausdorff distance. Hence,
we denote d1

H (S1; S2) by dH (S1; S2) for simplicity of notation.

Polytopes

We focus our developments primarily using sets parameterized as poly-
topes. A polytope is a bounded polyhedron, and a polyhedron S � Rn

is an intersection of a �nite-number of halfspaces H i , i.e.,

S :=
s\

i =1

H i ; where H i := f x : M i x � qi g for some M >
i 2 Rn ; qi 2 R:

The polyhedron S can be equivalently represented as

S = f x : Mx � qg;

where � denotes the elementwise inequality. Every polytope is also
uniquely characterized by its �nite-number of vertices, i.e.,

f x [i ]; i 2 I vS
1 g = vert( S): (2.6)

14



A polytope is said to be in a minimal-representation[6] if the removal of a
halfspaceH i would not change it. Moreover if the vector q � 0, then the
origin is included in the polytope, i.e., 0 2 S. If q > 0, then the origin is
included in the nonempty interior int( S) � S , i.e.,0 2 int( S). A polytope
is said to be full-dimensional if it includes a nonempty translated p-norm
ball de�ned as Bn

p := f x : kxkp � 1g in Rn , i.e,

9 x0 2 Rn ; � > 0 : f x0g � � Bn
p � S (2.7)

For polytopes S1 = f x : Mx � qg and S2 = f x : Nx � r g, the
Minkowski sum S1 � S 2 can be computed as

S1 � S 2 = f z : z = x + y; Mx � q; Ny � r g

=
�

z : 9 x :
�

M 0
� N N

� �
x
z

�
�

�
q
r

��

= � z

���
x
z

�
:
�

M 0
� N N

� �
x
z

�
�

�
q
r

���
;

where � z (:) is the projection operator onto the components z.
Over a polytope S = f x : Mx � qg, the support function de�ned in

(2.1) can be computed by solving the Linear Program (LP)

hS (y) = max
x

f y> x s.t. Mx � qg: (2.8)

We recall the following properties of support functions from [63] for any
polytopes S; P � Rn , vectors y 2 Rn and z 2 Rm , scalar � � 0 and
matrix L 2 Rm � n :

1. h� S (y) = hS (�y ) = �h S (y)

2. hS�P (y) = hS (y) + hP (y)

3. hL S (z) = hS (L > z).

Using support functions, polytope S can equivalently be expressed as

S = f x : Mx � qg =
s\

i =1

f x : M i x � hS (M >
i )g (2.9)
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following from (2.2), i.e., as an intersection of a �nite number of halfs-
paces. Thus, in general the inequality hS (M >

i ) � qi holds for all com-
ponents i 2 I s

1, with strict inequality hS (M >
i ) < q i implying that the

halfspaceH i = f x : M i x � qi g is redundant in the de�nition of S.
The Minkowski difference between a polytope S and some setP can

be computed using support functions as

S 	 P :=
s\

i =1

f x : M i x � qi � hP (M >
i )g: (2.10)

Then if P is a polytope, then the Minkowski difference can be computed
by solving r number of LPs from (2.8).

Given a polytope S1 = f x : Mx � qg and S2 = f x : Nx � r g with
q 2 Rs1 and r 2 Rs2 , the inclusion S1 � S 2 holds if and only if

hS1 (N >
i ) � hS2 (N >

i ) � r i ; 8 i 2 I s2
1 : (2.11)

Then if S2 does not contain any redundant hyperplanes, the inclusion
can be veri�ed by solving s2 number of LPs as

hS1 (N >
i ) =

(
max

x
N i x

s.t. Mx � q

)

� r i ; 8 i 2 I s2
1 : (2.12)

Because of strong duality of LPs [132], the equality

(
max

x
N i x

s.t. Mx � q

)

=

(
min
� i � 0

� i q

s.t. � i M = N i ;

)

(2.13)

holds, where � i 2 R1� s1 , and the LP on the right-hand-side is the dual
LP corresponding to the LP de�ning the support function hS1 (N >

i ) on
the left-hand-side. De�ning the set

� := f � 2 Rs2 � s1 : � � 0; � M = N g;

it then follows from (2.12) and (2.13) that the inclusion S1 � S 2 holds if
and only if

9 � 2 � : � q � r: (2.14)

16



Finally, if the inclusion S1 � S 2 holds, and the vertices f y[i ]; i 2 I
vS 2
1 g

are known a priori such that

S2 = ConvHull( y[i ]; i 2 I
vS 2
1 ) (2.15)

where ConvHull( :) is the convex-hull operator, then the Hausdorff dis-
tancedH (S1; S2) is given by the value of the LP

min
�; f x [ i ] ;z [ i ] ;i 2 I

v S 2
1 g

�

s.t. x [i ] + z[i ] = y[i ]; i 2 I
vS 2
1 ;

x [i ] 2 S1; z[i ] 2 � Bn
1 ; i 2 I

vS 2
1 :

(2.16)

Having recalled these basic tools, we will now present some fundamental
concepts regarding RPI sets for LTI systems of the form in Equation (1.5).

2.2 RPI sets for LTI systems

In this section, we recall some fundamental concepts regarding RPI sets
for LTI systems of the form in (1.5). To this end, we assume that the
system is equipped with a linear static feedback law of the form u = Kx ,
resulting in the closed-loop system

x(t + 1) = ( A + BK )x(t) + Bw w(t)

y(t) = ( C + DK )x(t) + Dw w(t):

(2.17a)

(2.17b)

We denote the closed-loop matrices by

AK := A + BK; C K := C + DK

in the sequel. Assuming that the disturbance set W is given, i.e., w(t) 2
W for all t � 0, a setX (W ) � Rn x is RPI for this system if and only if it
satis�es the inclusion

AK X (W ) � Bw W � X (W ): (2.18)

If the sets W and X (W ) are polytopes de�ned as

W := f w : Fi w � � w
i ; 8 i 2 Im W

1 g;

X (W ) := f x : E i x � � x
i ; 8 i 2 Im X

1 g;

(2.19a)

(2.19b)
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then exploting basic properties of support functions and (2.11), the RPI
condition in (2.18) can equivalently be written as

8 i 2 Im X
1

8
<

:

hA K X (W ) (E >
i ) + hB w W (E >

i ) � hX (W ) (E >
i )

, hX (W ) (A>
K E >

i ) + hW (B >
w E >

i ) � hX (W ) (E >
i ):

Hence, given the sets in (2.19), the RPI inclusion in (2.18) can be veri�ed
by solving 3 � mX number of LPs. Moreover, if the set X (W ) does not
contain any redundant hyperplanes, then hX (W ) (E >

i ) = � x
i , such that the

inclusion can be veri�ed by solving 2� mX number of LPs. Alternatively,
by exploting the duality conditions in (2.14), the RPI inclusions can be
veri�ed if the set X (W ) does not contain any redundant hyperplanes by
checking the existence of matrices nonnegative� � 0; M � 0 satisfying

� E = EA K ; MF = EB w ; � � x + M� w � � x : (2.20)

Assuming that the output of the system in (2.17b) is subject to polytopic
constraints Y as

y 2 Y := f y : Gi y � gi ; 8 i 2 Im Y
1 g; (2.21)

the output inclusion

CK X (W ) � Dw W � Y (2.22)

can be veri�ed using support functions as

8 i 2 Im Y
1

8
<

:

hCK X (W ) (G>
i ) + hD w W (G>

i ) � gi

, hX (W ) (C>
K G>

i ) + hW (D >
w G>

i ) � gi :
(2.23)

Since X (W ) is an RPI set, if the initial state x(0) 2 X (W ) then it
holds that x(t) 2 X (W ); 8 t � 0 for all future disturbance sequences
w(t) 2 W ; 8 t � 0. Then, if inclusion (2.22) is veri�ed, it implies that
the system always satis�es its constraints, i.e., y(t) 2 Y ; 8 t � 0. This
property permits X (W ) to be used as a terminal set in MPC techniques
in order to provide recursive feasibility guarantees.
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2.2.1 The minimal RPI set

What are the conditions that guarantee the existence of an RPI setX (W )
satisfying inclusion(2.22)?

Given some disturbance set W , the set of states that can be reached by
the system from the origin in t-steps is given by

X t (W ) :=

(

x(t) : x(t) =
t � 1X

k=0

A t � k � 1
K Bw w(k); 8 w(k) 2 W

)

; (2.24)

the limit of which is referred to as the 0-reachable setX m (W ), i.e.,

X m (W ) := lim
t !1

X t (W ): (2.25)

If the following assumptions are satis�ed:

1. The spectral radius of AK is strictly less that 1, i.e., � (AK ) < 1;

2. The origin belongs to the compact and convex disturbance set W ,
i.e., 0 2 W ,

then the reachable sets satisfy the inclusions

X t (W ) � X t +1 (W ) � X m (W ); 8t � 0;

and the 0-reachable setX m (W ) is a uniquely-de�ned compact and con-
vex set that contains the origin [63, Theorem 4.1]. Moreover, is satis�es

AK X m (W ) � Bw W = X m (W );

from which it can be observed that it satis�es the RPI condition in (2.18).
Hence, X m (W ) is an RPI set. Infact, it was shown in [63, Corollary 4.2]
that X m (W ) is the minimal RPI (mRPI) set, i.e., it is the smallest (in an
inclusion sense) RPI set of the system, such that

X (W ) is RPI =) X m (W ) � X (W ): (2.26)
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In a set-theoretic notation, the mRPI set can be expressed using Minkowski
sums as

X m (W ) =
1M

k=0

Ak
K Bw W : (2.27)

Hence, from the inclusions in (2.26) and (2.22), we observe that there
exists an RPI setX (W ) satisfying the output-constraint set inclusion if
and only if the mRPI set satis�es the inclusion as

CK X m (W ) � DW � Y ; (2.28)

thus answering the aforementioned question. Unfortunately, from the
in�nite Minkowski sum in (2.27), we see that in general, the mRPI set
X m (W ) cannot be computed exactly. Hence, one typically attempts to
compute RPI sets that tightly approximate the mRPI set. The character-
ization and computation of such RPI sets is an active research area, e.g.,
[112, 144], etc.

2.2.2 The maximal RPI set

What is the largest RPI setX (W ) satisfying inclusion(2.22)?

We recall that inclusion (2.28) is necessary and suf�cient for the ex-
istence of an RPI set satisfying inclusion (2.22). Since the origin belongs
to the mRPI set X m (W ), it is hence necessary that the origin belongs to
the output-constraint set Y for inclusion (2.28) to be satis�ed. Assuming
that inclusion (2.28) is satis�ed, the Maximal RPI (MRPI) set X M (W ) sat-
isfying inclusion (2.22) is de�ned as the union of all RPI sets satisfying
inclusion (2.22), i.e.,

X M (W ) :=
[

f X (W ) : (2.18); (2.22)g:

It was shown in [63] that the MRPI set X M (W ) is the limit set of the
iterations

O 0(W ) := f x : CK x 2 Y 0(W )g

O t +1 (W ) := O t (W ) \ f x : CK A t +1
K x 2 Y t +1 (W )g;

(2.29)

(2.30)
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i.e.,

X M (W ) = O 1 (W ) :=
\

t � 0

O t (W );

where the setsY 0(W ) and Y t +1 (W ) are de�ned as

Y 0(W ) := Y 	 Dw W ;

Y t +1 (W ) := Y t 	 CK A t
K Bw W :

Moreover, if the tighter inclusion

CK X m (W ) � DW � int( Y ) � Y (2.31)

holds, then there exists somet � � 1 such that

O 1 (W ) = O t � (W ) = O t � +1 (W ):

Such an index t � is called the �nite-determination index, and the set
O 1 (W ) is said to be �nitely-determined, i.e., it can be computed exactly
in �nite-time.

2.2.3 Tube-based Robust Model Predictive Control

In order to demonstrate some control design applications of the methods
presented in this thesis, we use the tube-based Robust Model Predictive
Control (RMPC) scheme presented in [87]. We recap here some basic
design ideas of this scheme, and present its relevant properties. In the
remaining chapters in this thesis, we recall the scheme, with notation
specialized to the problem being tackled in the respective chapters.

We recall the LTI System (1.5) with dynamics

x(t + 1) = Ax (t) + Bu(t) + Bw w(t);

y(t) = Cx(t) + Du(t) + Dw w(t);

(2.32a)

(2.32b)

that is subject to output constraints y 2 Y and persistent disturbances
w 2 W . The tube-based RMPC scheme in [87] can be used to robustly
regulate the state of System (2.32), and is constructed as follows.
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First, a feedback gain K is assumed to be known a priori such that
� (AK ) < 1, where AK = A + BK . Then, exploiting linearity the state
and output are split into nominal and perturbed components as

x = x̂ + � x; y = ŷ + � y; (2.33)

and the control input is parameterized as

u = û + K � x; (2.34)

where û is the nominal control input. Then, denoting CK = C + DK , the
dynamics of the nominal and perturbed systems are written as

Nominal system

(
x̂(t + 1) = Ax̂(t) + B û(t);

ŷ(t) = Cx̂(t) + D û(t)

Perturbed system

(
�^x(t + 1) = AK x̂(t) + Bw w(t);

�^y(t) = CK x̂(t) + Dw w(t)

(2.35)

(2.36)

For the perturbed system in (2.36), an RPI setX (W ) is constructed that
satis�es the RPI inclusion

AK X (W ) � Bw W � X (W ): (2.37)

Then, it can be observed that the state of System (2.32) belongs to a tube
of cross-sectionX (W ) around the nominal system state x̂, and the out-
put of System (2.32) belongs to a tube of cross-sectionCK X (W ) � DW W
around the nominal system output ŷ, i.e.,

x(t) 2 x̂(t) � X (W ) =)

(
x(t + 1) 2 x̂(t + 1) � X (W )
y(t) 2 ŷ(t) � CK X (W ) � Dw W

(2.38)

The RMPC scheme exploits this property to guarantee constraint satis-
faction by enfocing the output constraint inclusion

ŷ(t) � CK X (W ) � Dw W � Y ; 8 t � 0:

These constraints are enforced by solving, at each time-instant t the
following Quadratic Program (QP) that is parameterized by the current
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state measurementx(t) of the plant:

min
z

t + N � 1X

s= t

kx̂(s)k2
Q + kû(s)k2

R + kx̂(t + N )k2
P

s:t : x(t) 2 x̂(t) � X (W );

x̂(s + 1) = Ax̂(s) + B û(s); s 2 I t + N � 1
t ;

Cx̂(s) + D û(s) 2 Y 	 (CK X (W ) � Dw W ); s 2 I t + N � 1
t +1 ;

x̂(t + N ) 2 T (W );

(2.39)

where z := f x̂(t); : : : ; x̂(t+ N ); û(t); : : : ; û(t+ N � 1)g. Uniquely, the initial
nominal state x̂(t) is an optimization variable in the QP formulation, that
is used to establish robust exponential stability of the RMPC scheme. If
QP (2.39) is successfully solved, then the control input

u(t) = û� (t) + K (x(t) � x̂ � (t))

is applied to the plant. Feasibility of the QP is ensured if the perturbation
due to the disturbance is not too largewith respect to the constraints, i.e.,

CK X (W ) � Dw W � int( Y ):

Moreover, in order to guarantee recursive feasibility of the RMPC scheme,
the terminal set T (W ) is selected as a Positive invariant set for the nom-
inal system controlled by the feedback law û = K x̂, i.e.,

AK T (W ) � T (W ); (2.40)

that is also constraint admissible, i.e.,

T (W ) � f x̂ : CK x̂ 2 Y 	 (CK X (W ) � Dw W )g: (2.41)

Finally, the cost matrices (Q; R; P ) along with the feedback gain K are
assumed to satisfy the dissipativity condition

A>
K PAK � P � � (Q + K > RK )

to ensure robust exponential stability of the closed-loop system with the
RMPC controller to the RPI set X (W ).
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Figure 1: Closed-loop tube-based RMPC performance. The RPI setX (W ) com-
puted using methods from [144], and terminal set T (W ) selected as the MPI set,
computed using [44].

In Figure 1, we illustrate the controller performance on a randomly
generated system with Y = 5B2

1 . Further details of this system are given
in Appendix A. The gray lines indicate the actual plant trajectories, and
the green lines indicate the nominal trajectories. Observe that the nomi-
nal plant trajectories always belong in the RPI tube around the nominal
trajectory. Thus, the RMPC scheme regulates the whole tube of trajec-
tories instead of a single point to the RPI set instead of the origin, thus
guaranteeing robust constraint satisfaction and stability.
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Chapter 3

Computation of Input
Disturbance Sets for
Constrained Output
Reachability

3.1 Introduction

The theory of set invariance plays an important role in the analysis of un-
certain dynamical systems by providing the tools useful for the synthesis
of robust controllers that can satisfy constraints in the presence of distur-
bances [16]. Of particular importance are RPI sets, the computation of
which is a very active area of research as discussed in the introduction.
These sets have successfuly been used in several applications such as
Robust MPC [87, 116, 120], fault-tolerant control [104], state-observer de-
sign [90], etc. A key observation in these applications, however, is that
they are developed under the assumption that the disturbance set is known
a priori

In many practical cases, however, while the set of admissible states
can be estimated from sensor measurements or pre-speci�ed from given
constraints to be satis�ed, the disturbance set is unknown, leaving the de-
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signer the task of suitably de�ning it, especially in case one must satisfy
a given set of constraints on the system, e.g., encoding known physical
limitations, or undesired states. For example, in a decentralized MPC
(DeMPC) application such as [120, 94], the dynamic coupling between
subsystems is modeled as an additive disturbance. Then, the disturbance
set for a given subsystem represents the state-constraint sets of the neigh-
boring subsystems. Another example is presented in [39], in which the
tracking references are modeled as disturbances acting on a system, such
that a feasible disturbance set is the set of all feedforward tracking refer-
ences guaranteeing constraint satisfaction. In both these cases, it is desir-
able to compute the largestfeasible disturbance sets. In particular, a large
disturbance set in the DeMPC case ensures that the region of attraction
of the DeMPC scheme in which recursive feasibility and stability is guar-
anteed is maximized. Similarly, in the reference tracking case, a large
disturbance set ensures that the operating range of the tracking control
system is maximized.

In this chapter, we propose a method to tackle disturbance set com-
putation problems such as those described above. In particular, we com-
pute a set of disturbances such that the corresponding output reachable
set approximately matches an assigned one. This method is centered
on the formulation of an optimization problem, with the input distur-
bance set being the unknown and the approximation error between the
obtained and assigned output set being the objective function to mini-
mize. We propose the formulation of the optimization problem for stable
linear systems and polytopic sets: since the construction of the output set
requires the computation of an RPI set, we adopt the notions of [118, 144]
to encode the computation of a parametrized RPI set within the problem.
The chapter is organized as follows. We de�ne the problem we solve in
Problem 3.2. Then in Section 3.3, we present the main parameterizations
we adopt, and present theoretical results that help us bring the problem
into an implementable form. In Section 3.4, we develop a specialized
smoothening-based interior-point solver for the resulting optimization
problem.
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3.2 Problem De�nition

Consider the linear time-invariant discrete-time system

x(t + 1) = Ax (t) + Bw(t);

y(t) = Cx(t) + Dw(t);

(3.1a)

(3.1b)

with state x 2 Rn x , output y 2 Rn y and additive disturbance w 2 Rn w .
We assume that a set of output constraints is given:

Y := f y : Gy � gg with g 2 Rm Y : (3.2)

We de�ne the reachable set of states from the origin, i.e., from x(0) = 0,
under the action of disturbances w(t) 2 W for all t � 0 in t-time steps as

X (t; W) :=

(

x : x =
t � 1X

k=0

A t � k � 1Bw(k); 8 w(k) 2 W

)

;

and the corresponding set of t-step reachable outputs as

Y(t; W) := CX (t; W) � DW:

Observing that the reachable set of states satis�es the inclusion

X (t; W) � X (t + 1 ; W); 8 t � 0;

if the disturbance set W is compact, convex, and contains the origin, we
de�ne the limit of reachable set of states as

Xm (W) := lim
t !1

X (t; W); (3.3)

and the corresponding limit set of reachable outputs as

Ym (W) := CXm (W) � DW: (3.4)

Then, our goal is to compute a disturbance set W that satis�es

Ym (Y) = Y; (3.5)
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i.e., the reachable set of outputs is equal to the assigned set of outputs
Y. Unfortunately, satisfying the equality in (3.5) exactly might not be
feasible in general. This is because the setY is user-speci�ed and hence
can be of an arbitrary shape, while the reachable set of outputs Ym (Y)
is de�ned by the system matrices (A; B; C; D ) and the parameterization
adopted to represent the disturbance set W. Thus, we instead focus on
computing a disturbance set W that satis�es the inclusion

Ym (W) � Y ; (3.6)

and minimizes the distance between the reachable set of outputs Ym (W)
and the assigned output set Y. To this end, we tackle the optimization
problem

min
W

dY (Ym (W))

s.t. Ym (W) � Y ;

0 2 W ;

(3.7a)

(3.7b)

(3.7c)

where dY (Ym (W)) measures the disturbance between the setsY and
Ym (W), and Constraint (3.7b) enforces the desired inclusion in (3.6). Re-
garding the distance function dY (Ym (W)) , a classical choice is to use the
Hausdorff distance between the sets Ym (W) and Y. In this chapter, we
consider a slightly more general formulation with

dY (Ym (W)) := min
�

fk � k1 : Y � Y m (W) � B(� )g (3.8)

de�ned using the set B(� ) := f y : Hy � � g, in which normal vectors
f H >

i ; i 2 In B
1 g are speci�ed a priori by the user. Since dY (�) is monotonic,

i.e, for all compact sets S1; S2 � Y ,

S1 � S2 � Y =) dY (S1) � dY (S2); (3.9)

Problem (3.7) computes a disturbance setW that maximizes the coverage
of Y by the reachable outputs while enforcing inclusion (3.6). Moreover,
it prioritizes coverage of Y by the output reachable set Ym (W) in direc-
tions indicated by the normal vectors H >

i to the set B(� ).
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Before tackling Problem (3.7), we observe that the reachable state set
Xm (W) in (3.3) is given by the in�nite Minkowski sum

Xm (W) =
1M

t =0

A t B W: (3.10)

This implies that, except under very restrictive assumptions on (A; B; W) [135],
computing an exact �nite-dimensional representation of the set Xm (W),
and hence Ym (W), is in general impossible. Thus, Problem (3.7) is in
general impossible to solve exactly. This can, however, be ameliorated
by adopting the notion of RPI sets, as we now explain. To this end, we
make the following standing assumption of System (7.1).

Assumption 3.1. System(7.1) is strictly stable, i.e.,� (A) < 1. �

We know from [63] that under Assumption 3.1, if the disturbance set
W is compact, convex and contains the origin, then the set Xm (W) ex-
ists, is compact, convex, and contains the origin. By basic properties of
the Minkowski sum, the set Ym (W) also inherits these properties. Fur-
thermore, it was also shown in [63] that Xm (W) is the smallest (in an
inclusion sense) RPI set of System (3.1a), i.e., if a setXRPI (W) satis�es
the RPI inclusion

AXRPI (W) � B W � X RPI (W); (3.11)

then the set Xm (W) is included in the RPI set, i.e.,

Xm (W) � X RPI (W): (3.12)

Hence, Xm (W) is also referred to as the minimal RPI (mRPI) set. Then,
de�ning a set of outputs corresponding to some RPI set XRPI (W) as

YRPI (W) := CXRPI (W) � DW � Y m (W); (3.13)

the desired output constraint inclusion in (3.6) formulating Constraint (3.7b)
can be enforced through

YRPI (W) � Y : (3.14)
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Thus, we propose to tackle Problem (3.7) by replacing the output reach-
able setYm (W) with some outer-approximating set YRPI (W) de�ned us-
ing some suitable �nite-dimensional RPI set XRPI (W).

From inclusion (3.13) and the monotonicity property of the distance
function dY (�) in (3.9), it follows that

dY (YRPI (W)) � dY (Ym (W)) (3.15)

for any disturbance set W and �nite-dimensional RPI set XRPI (W) satis-
fying inclusion (3.13). This implies that if we replace Ym (W) in the ob-
jective of Problem (3.7) with YRPI (W), then we would be minimizing a
lower-bound, which is undesirable. Hence, we propose to instead select
some index l > 0, and minimize the distance between the l-step output
reachable set and the output constraint set Y. In other words, for some
user-speci�ed index l > 0, we de�ne the l-step reachable set as

S(l; W) :=
l � 1M

t =0

CA t B W � DW: (3.16)

Then observing that for any l > 0, by monotonicity the distance function
satis�es

dY (Ym (W)) � dY (S(l; W)) ; (3.17)

we propose to tackle the following optimization problem to minimize an
upper-bound to Problem (3.7):

min
W

dY (S(l; W))

s.t. YRPI (W) � Y ;

0 2 W :

(3.18a)

(3.18b)

(3.18c)

The main questions to tackle in order to solve Problem (3.18) are

1. How to choose a representation for the disturbance set W?

2. How to choose a representation of the RPI setXRPI (W) required to
formulate Constraint (3.18b)?

3. How to solve the resulting optimization problem?
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In the rest of this chapter, we tackle these questions using an Explicit RPI
framework, i.e., we introduce the RPI set XRPI (W) as a decision variable
into Problem (3.18).

Remark 3.1. Since the setXRPI (W) is RPI, with persistent disturbancesw(t) 2
W; 8 t � 0 from any disturbance setW feasible for Problem(3.18), we are guar-
anteed that the output of System(7.1)satis�es the constraintsy(t) 2 Y ; 8 t � 0
from any initial statex(0) 2 X RPI (W), and is not restricted tox(0) = 0. � .

3.3 Explicit RPI approach to solve Problem (3.18)

In this approach, we focus on the computation of a disturbance set W
parametrized as the polytope

W(� w ) := f w : Ft w � � w
t ; 8 t 2 Im W

1 g = f w : Fw � � w g: (3.19)

We assume that the normal vectors f F >
t 2 Rn w ; t 2 Im W

1 g to W(� w )
are given a priori, and restrict our attention to computing the vector
� w . Given the disturbance set parameterization in (3.19), the constraint
0 2 W can be enforced simply as � w � 0.

Nonconvexity due to parameterization (3.19)

Before we proceed with formulating Problem (3.7) with the polytopic
disturbance set parameterization in (3.19) and then approximating it as
Problem (3.18), we present a brief discussion regarding the inherent non-
convexity associated with this parameterization. To this end, we �rst
write out Constraint (3.7b) as

Ym (� w ) =
1M

t =0

CA t B W(� w ) � DW(� w ) (3.20)

by recalling the de�nition of the mRPI set from (3.10) and the output
reachable setYm (�) from (3.4). Note that we slightly abuse notation with
using Ym (� w ) instead of Ym (W(� w )) . This is because we assume that the
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matrix F is �xed a priori. Then, we de�ne the set of all feasible distur-
bance set parameters� w as

OY (F ) := f � w � 0 : Ym (� w ) � Yg :

By properties of support functions, � w 2 O Y (F ) if and only if

1X

t =0

hW(� w ) ((Gj CA t B )> ) + hW(� w ) ((Gj D)> ) � gj ; 8 j 2 Im Y
1 : (3.21)

Considering two feasible vectors � w; 1; � w; 2 2 O Y (F ), a scalar � 2 [0; 1],
and the convex combination

~� w := �� w; 1 + (1 � � )� w; 2;

the inclusion

W(�� w; 1) � W((1 � � )� w; 2) � W(~� w )

holds for a general disturbance set parameterizing matrix F (from dual-
ity in Linear Programing (LP)). This implies that for any arbitrary vector
r 2 Rn w , the support function inequality

hW(�� w; 1 ) (r ) + hW((1 � � ) � w; 2 ) (r ) � hW(~� w ) (r )

holds, such that ~� w does not necessarily belong toOY (F ). Hence,Problem
(3.7)is in general nonconvex. However, as we show in the following result,
there exist special cases of parametrization of F for which convexity of
the problems holds.

Proposition 3.1. Suppose that the disturbance setW(� w ) is parametrized with
F = [ ~F > � ~F > ]> , where ~F 2 Rn w � n w , and the matrixF̂ := ( ~F ~F > ) � 1 ~F is
well-de�ned. Then,OY (F ) is convex. �

Proof. We note that if hW(�� w ) (F >
t ) = �� w

t for all t 2 Im W
1 , then

W(�� w; 1) � W((1 � � )� w; 2) = W(~� w )

holds for all � w; 1; � w; 2 2 O y (F ), � 2 [0; 1] and ~� w = �� w; 1 + (1 � � )� w; 2,
such that ~� w 2 O y (F ).
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Hence, we show in the sequel that the support function equality

hW(� w ) (F
>
t ) =

(
max

w
Ft w

s.t. Fw � � w

)

= � w
t

holds for all t 2 Im W
1 under the assumption on F . SincehW(� w ) (F >

t ) � � w
t

in general, it is suf�cient to show the existence of a primal variable w
satisfying Ft w = � w

t ; along with dual variables [� > � > ]> � 02n w and
slack variables s � 02n w satisfying the LP optimality conditions [102]

~F > � � ~F > � = F >
t ; F w + s = � w ; [� > � > ]> � s = 0: (3.22)

We �rst write the dual feasible condition as � = � + F̂F >
t by multiplying

F̂ on both sides, and denote column t of I n w by e[t ]. Then, by de�nition
of F̂ , and have F̂F >

t = e[t ] if t 2 In w
1 , and F̂F >

t = � e[t � n w ] if t 2 I2n w
n w +1 .

Then, setting the dual variables � = e[t ] and � = 0 for all t 2 In w
1 , and

� = e[t � n w ] and � = 0 for all t 2 I2n w
n w +1 , we note that [� > � > ]> � s = 0

implies st = 0 , or equivalently that the primal variable w satis�es Ft w =
� w

t .

In the Explicit RPI approach, we focus on general polytopic parametriza-
tions of W(� w ), for which Problem (3.7) is generally nonconvex. This is
motivated primarily by the fact that parametrizations of W(� w ) that en-
sure convexity of Problem (3.7) might be excessively conservative in cer-
tain applications, e.g. decentralized MPC [94], in which the disturbance
sets represent state-constraint sets of dynamically coupled subsystems.

3.3.1 Polytopic parameterization of the RPI set

We propose to use a RPI setXRPI (� w ) parameterized as the polytope

X(� x ) := f x : E i x � � x
i ; 8 i 2 Im X

1 g = f x : Ex � � x g (3.23)

to formulate Problem (3.18), in which we assume that the normal vectors
f E >

i 2 Rn x ; i 2 Im X
1 g to X(� x ) are given a priori. In order to formu-

late Problem (3.18) to compute a disturbance setW(� w ) using the RPI set
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X(� x ), we �rst introduce the support functions

8 i 2 Im X
1 ;

8
>><

>>:

ci (� x ) := hA X( � x ) (E >
i );

d i (� w ) := hB W(� w ) (E >
i );

bi (� x ) := hX( � x ) (E >
i ):

We then recall that the set X(� x ) is RPI for a given disturbance set W(� w )
if and only if it veri�es the inclusion

AX(� x ) � B W(� w ) � X(� x ); (3.24)

which can be written using the support functions introduced above as

c(� x ) + d(� w ) � b(� x ): (3.25)

We then de�ne the set of all vectors � x characterizing an RPI setX(� x ) for
a given disturbance set parameter � w � 0 as

E(d(� w )) := f � x � 0 : c(� x ) + d(� w ) � b(� x )g: (3.26)

In the de�nition of E(d(� w )) , we enforce � x � 0 since every RPI setX(� x )
corresponding to a disturbance set W(� w ) with � w � 0 contains the ori-
gin, such that � x � 0. Using the set E(d(� w )) , we de�ne

� x (� w ) := arg min
�
� x

dH (Xm (� w ); X(
�
� x ))

s.t.
�
� x 2 E(d(� w )) ;

(3.27)

where dH (Xm (� w ); X(� x )) is the Hausdorff distance between the mRPI set
Xm (� w ) and the setX(� x ), such that for a given disturbance set parameter
� w � 0, the setX(� x (� w )) is the tightest RPI approximation parameterized
as the polytope X(� x ) to the mRPI set Xm (� w ). We then propose to use
the set X(� x (� w )) as the RPI setXRPI (W(� w )) in the formulation of Prob-
lem (3.18).

Then, in order to encode Constraint (3.18b) for the disturbance set
W(� w ) and RPI setX(� x (� w )) , we �rst de�ne the associated output set as

Y(� x (� w ); � w ) := CX(� x (� w )) � DW(� w ); (3.28)
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that is equivalent to the set YRPI (� w ) in the de�nition of Problem (3.18).
Then, we de�ne the support functions

8 k 2 Im Y
1 ;

(
l k (� x ) := hC X(� x ) (G>

k );
m k (� w ) := hD W(� w ) (G>

k ):

using which we encode the constraint Y(� x (� w ); � w ) � Y as

l (� x (� w )) + m (� w ) � g: (3.29)

Hence, for the disturbance parameterization W(� w ) and RPI set param-
eterization X(� x ), we propose to formulate Problem (3.18) as the bilevel
optimization problem

min
� w

dY (S(l; W(� w )))

s.t. l (� x ) + m (� w ) � g;

� w � 0;

� x := arg min
�
� x

dH (Xm (� w ); X(
�
� x )) s.t.

�
� x 2 E(d(� w )) :

(3.30a)

(3.30b)

(3.30c)

(3.30d)

In the de�nition of Problem (3.30), we drop the dependence of � x on � w

for simplicity of notation. Since we explicitly compute the vector � x in
Problem (3.30) that computing an explicit representation of the RPI set
X(� x ), we refer to the current approach as an Explicit RPI (ERPI) ap-
proach.

In the rest of this section, we focus on the development of methods
to solve Problem (3.30). Before we do so, we discuss the rationale be-
hind the formulation of Problem (3.30). To this end, we �rst note that a
conventional formulation of Problem (3.18) follows for a disturbance set
W(� w ) and an RPI setX(� x ) as

min
� x ;� w

dY (S(l; W(� w )))

s.t. c(� x ) + d(� w ) � b(� x );

l (� x ) + m (� w ) � g;

� w � 0;

(3.31a)

(3.31b)

(3.31c)

(3.31d)

in which instead of Constraint (3.30d), Constraint (3.31b) simply enforces
that X(� x ) is an RPI set corresponding to W(� w ). Then, the formulation
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of Problem (3.18) is justi�ed only if it is not more conservative that Prob-
lem (3.31). To this end, we recall from [118] that given some � w � 0,
the set X(� x (� w )) is the smallest RPI set contained in all RPI setsX(� x )
parameterized with �xed normal vectors de�ning the matrix E , i.e.,

X(� x (� w )) � X(� x ); 8 � x 2 E(d(� w )) :

By basic properties of Minkowski sums and monotonicity of support
functions, it follows that

l (� x (� w )) � m (� w ) � l (� x ) � m (� w ); 8 � x 2 E(d(� w )) :

This implies any solution � w of Problem (3.31) is feasible for Problem (3.30),
such that the optimal value of Problem (3.30) is no worse than that of
Problem (3.31). On the other hand, any solution (� x (� w ); � w ) of Prob-
lem (3.30) is feasible for Problem (3.31), since� x = � x (� w ) satis�es the
RPI condition. However, the constraint sets of Problems (3.30) and (3.31)
are nonconvex since support functions are concave in their argument.
Hence, it is justi�ed to directly use � x = � x (� w ) to while formulating the
problem, since it implies that we optimize directly using the RPI set X(� x )
that will be the least conservative for a given W(� w ). As we will show in
the sequel, this is also advantageous from an implementation viewpoint.

3.3.2 Existence conditions for a polytopic RPI set

Since � w is an optimization variable in Problem (3.30), we must ensure
that for every feasible � w � 0, there exists an RPI set parameterized as
X(� x ). In other words, we must ensure that the set E(d(� w )) character-
izing the vectors � x de�ning RPI sets X(� x ) for a given disturbance set
W(� w ) is nonempty for all feasible � w � 0. Hence, we now formulate
the requirements that matrix E must satisfy to ensure that E(d(� w )) is
nonempty for every � w � 0.

Assumption 3.2. Matrix E is chosen suchb(1) = 1, and there exists an
�̂ x � 0 satisfying the inequalityc(�̂ x ) + 1 � b(�̂ x ). �

Assumption 3.2 implies that there exists an RPI set X(�̂ x ) for the sys-
tem x(t + 1) = Ax (t) + ~w(t) with ~w 2 X(1). In the following result, we
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show that there always exists an RPI setX(� x ) for system (3.1a) with the
disturbance set W(� w ) under Assumption 3.2.

Proposition 3.2. If Assumption 3.2 holds, then there always exists an� x � 0
satisfyingc(� x ) + d(� w ) � b(� x ) for all � w � 0 . �

Proof. Under Assumption 3.2, there exist nonnegative multipliers vari-
ables �̂ c 2 Rm X � m X and �̂ b 2 Rm X � m X satisfying

�̂ >
c �̂ x + 1 � �̂ >

b �̂ x ; �̂ >
c E = EA; �̂ >

b E = E;

by LP duality and Farkas' lemma [16]. There exists an � x � 0 satisfying
the RPI condition

c(� x ) + d(� w ) � b(� x )

for any given � w � 0 if and only if there exist nonnegative multiplier
variables � c and � b satisfying

� >
c � x + d(� w ) � � >

b � x ; � >
c E = EA; � >

b E = E:

The proof is concluded by noting that � x = jjd(� w )jj1 �̂ x , � c = �̂ c , and
� b = �̂ b satisfy these conditions.

Remark 3.2. Assumption 3.2 can be veri�ed by checking the boundedness of
LP (8) in [144]. An iterative procedure to obtain a matrixE that veri�es As-
sumption 3.2 was presented in [81]. �

3.3.3 Elimination of Xm(� w) from (3.30d)

Having established that E(d(� w )) is nonempty for any � w � 0 under As-
sumption 3.2, we will now eliminate the mRPI set Xm (� w ) from Problem
(3.30d). To this end, we recall the following results from [118] (special-
ized to the case of an autonomous stable LTI system), which state that the
solution of Problem (3.30d) can be obtained using �xed-point iterations
for a given � w � 0. We denote d(� w ) by d for ease of notation.

Lemma 3.1. [118, Theorems 1 and 2, Corollary 1] Suppose Assumption 3.2
holds, and

H(d) := f � x : 0 � � x � k dk1 �̂ x g:

Then, for any� w � 0, the following results hold:
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1. For all
�
� x 2 H (d), it holds thatc(

�
� x )+ d 2 H (d), and there exists atleast

one solution� x
� (d) 2 H (d) for the �xed-point equations

c(� x
� (d)) + d = b(� x

� (d)) ; b(� x
� (d)) = � x

� (d):

Hence, the set of all �xed-point solutions

R(d) := f � x 2 H (d) : c(� x ) + d = b(� x ); b(� x ) = � x g

is nonempty;

2. Starting from the initial-condition� x
[0] = 0, the sequence generated by the

iterations� x
[k+1] := c(� x

[k ]) + d converges to a �xed-point solution

lim
k !1

� x
[k ] := � x

� (0; d) 2 R (d):

Moreover,� x
� (0; d) is the minimal �xed-point, i.e.,

� x
� (0; d) �

�
� x ; 8

�
� x 2 R (d) � E (d):

Consequently, the setX(� x
� (0; d)) satis�es satis�es

Xm (� w ) � X(� x
� (0; d)) =

\

�
� x 2E (d )

X(
�
� x );

and hence is the minimal parametrized RPI set.

�

From Lemma 3.1.2, we see that� x
� (0; d(� w )) is the solution of the Prob-

lem (3.30d), since the RPI setX(� x
� (0; d(� w ))) satis�es the inequality

dH (Xm (� w ); X(� x
� (0; d(� w )))) � dH (Xm (� w ); X(

�
� x ))

over all
�
� x 2 E(d(� w )) . Since this solution also satis�es � x

� (0; d(� w )) �
�
� x

over all feasible
�
� x 2 E(d(� w )) , it has the smallest norm-1 value over all

feasible
�
� x 2 E(d(� w )) . Hence, we write Problem (3.30d) equivalently as

� x = arg min
�
� x

k
�
� x k1

s.t.
�
� x 2 E(d(� w )) :

(3.32)
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Thus, in the rest of this section, we tackle Problem (3.30) formulated with
constraint (3.30d) replaced by (3.32) that is independent of the mRPI set
Xm (� w ). This results in Problem (3.30) being equivalent to

min
� w

dY (S(l; W(� w )))

s.t. l (� x ) + m (� w ) � g;

� w � 0;

� x := arg min
�
� x

k
�
� x k1 s.t.

�
� x 2 E(d(� w )) :

(3.33a)

(3.33b)

(3.33c)

(3.33d)

In the sequel, we transform Problem (3.33) into an implementable form
under the following feasibility assumption on output constraint set Y,
which results in � w = 0 being a feasible solution.

Assumption 3.3. The origin belongs to the output constraint setY, such that
g � 0. �

3.3.4 Characterization of RPI Constraints

In this subsection, we show that the minimal parametrized RPI con-
straint (3.32) in Problem (3.33) can be replaced by the equality c(� x ) +
d(� w ) = � x , i.e., the equivalence

(3.32) () c(� x ) + d(� w ) = � x (3.34)

holds. For simplicity, we denote d(� w ) by d in the sequel, since the results
are presented for a �xed � w � 0. We recall from Lemma 3.1 that the �xed-
point solution

� x
� (0; d) = arg min

� x
k
�
� x k1

s.t.
�
� x 2 E(d)g;

exists, and satis�es the �xed-point equations

c(� x
� (0; d)) + d = b(� x

� (0; d)) = � x
� (0; d):

We recall further that R(d) � E (d) is the set of all �xed-points, i.e.,

R(d) := f � x 2 H (d) : c(� x ) + d = b(� x ); b(� x ) = � x g:
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Then, if there exists a unique �xed-point � x
# (d) 2 R (d), we will then have

that � x
� (0; d) = � x

# (d). Moreover, since we know that

b(c(� x ) + d) = c(� x ) + d

for every � x 2 E(d) from [118, Proposition 1], every � x 2 E(d) that satis-
�es c(� x ) + d = � x satis�es b(� x ) = � x . Hence, the existence of a unique
�xed-point � x

# (d) 2 R (d) implies that we can replace constraint (3.32) by
c(� x ) + d = � x . In the following result, uniqueness of � x

# (d) was shown
under a slightly more restrictive assumption.

Lemma 3.2. [144, Theorem 3] Suppose Assumption 3.2 holds andd > 0, then
there exists a unique �xed-point� x

# (d) 2 R (d). �

We now present a brief discussion regarding the restrictions imposed
by the assumption d > 0: recalling the de�nition of the support function

d i = max
w

E i Bw

s.t. Fw � � w ;

we see that d i > 0 for all i 2 Im X
1 only if E i B 6= 0 for each i 2 Im X

1

and � w > 0. While the condition � w > 0 can be enforced easily through
a linear constraint in Problems (3.33), the former condition holds only if
the additional assumption E >

i =2 null( B > ) (or the stronger assumption
rank(B ) = nx ) is satis�ed: these assumptions restrict the class of systems
and RPI set parametrizations that are often encountered. Moreover, they
lead to excessively conservative RPI set parametrizations. For example,
an uncontrollable system would require an RPI set that always includes
the origin within its interior.

We prove next that there exists a unique �xed-point � x
# (d) 2 R (d) if

d � 0 (rather than d > 0). To this end, we �rst characterize the �xed-
points using the following LP, similarly to [144]:

max
c;x := f x i ;i 2 I

m X
1 g

m XX

i =1

ci

s.t. ci � E i Ax i � 0; i 2 Im X
1 ;

Ex i � c + d; i 2 Im X
1 ;

(3.35a)

(3.35b)

(3.35c)

and we denote the set of all optimizers (c� ; x � ) of LP (3.35) asS.
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Proposition 3.3. Suppose Assumption 3.2 holds. Then if�� x 2 R (d) there
exists a(�c; �x) 2 S such that�ci = E i A�x i and�� x = �c + d. �

Proof. If Assumption 3.2 holds, Lemma 3.1.1 entails that R(d) is nonempty
for every d � 0. At every �xed-point solution �� x 2 R (d), �� x = c(�� x ) + d
holds. De�ne

�x i := arg max
x i

E i Ax i

s.t. Ex i � �� x ;

and �ci := E i A�x i . By de�nition of c(�) we have �� x
i = �ci + d i for each

i 2 Im X
1 . We combine the LPs de�ning �x i into a single LP by de�ning

�x := f �x i ; i 2 Im X
1 g;

and adopting an epigraph form [20] by introducing variables ci to obtain

max
c;x

m XX

i =1

ci

s.t. ci � E i Ax i � 0; i 2 Im X
1

Ex i � �c + d; i 2 Im X
1 ;

(3.36)

(3.37)

(3.38)

in which we write �� x = �c + d.
Since(c; x) = ( �c; �x) is feasible for LP (3.36), and the optimal value isP m X

i =1 �ci , we can replace�c by c to obtain LP (3.35), and (�c; �x) will be one
of the optimizers.

Proposition 3.3 entails that every �xed-point �� x 2 R (d) can be ex-
pressed as �� x = �c + d for some �c 2 � c � S (Note that, for now, � c � S
need not be singleton). In Theorem 3.1, we exploit this property to show
that the �xed-point is unique. To this end, we �rst present the following
general result that we use later to establish uniqueness.

Lemma 3.3. LetM 2 Rp� p be a matrix withM ij � 0; 8 i; j 2 Ip
1, and

N := M (I + diag( M 1)) � 1 , i.e., N ij =
M ij

1 +
P p

k=1 M jk
:

Then, it holds that

1. Z := I � N > is invertible;
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2. � (N > ) < 1.

�

Proof.

1. Matrix Z is invertible if and only if Z > is invertible. Suppose there
exists someq 2 Rp satisfying

Nq + 1 � q; q� 0; (3.39)

such that Nq < q holds. Then, it follows that

(I � N )q > 0; and q � 0;

which, by [45, Theorems 4.1, 4.6], implies that I � N is invertible.
This is becauseZ is a Z -matrix [45, De�nition 1], since the fact that
N ii � 1 implies that the diagonal elements Z ii � 0 for all i 2 Ip

1,
and all the off-diagonal elements Z ij � 0; 8 i; j 2 Ip

1.

We show next that indeed there exists someq 2 Rp satisfying (3.39).
To this end, we introduce a slack variable s 2 Rp in the aforemen-
tioned formulation, and write (3.39) equivalently as

�
N � I I

�
�
q
s

�
= � 1;

�
q
s

�
� 0: (3.40)

By Farkas' lemma [132, Corollary 7.1d], there exist [q> s> ]> satis-
fying (3.40) if and only if

� > 1 � 0; 8 � 2 T := f � : N > � � �; � � 0g:

Since� � 0 for every � 2 T , � > 1 � 0 holds if and only if the only �
that satis�es N > � � � is � = 0, i.e.,T = f 0g.

To show T = f 0g, we rewrite N > � � � as

(I + diag( M 1)) �> M > � � �

(using the de�nition of N ), and multiply both sides by the positive
diagonal matrix (I + diag( M 1)) to obtain

M > � � � + diag( M 1)� ,

8
>>>>>><

>>>>>>:

P p
i =1 M i 1� i � � 1 +

P p
k=1 M 1k � 1;

P p
i =1 M i 2� i � � 2 +

P p
k=1 M 2k � 2;

...
P p

i =1 M ip � i � � p +
P p

k=1 M pk � p:
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We further manipulate these inequalities as

pX

i =1

M i 1� i � � 1 + M 11� 1 + M 12� 1 + � � � + M 1p� 1 ! Row 1

M 12� 1 � � 2 +
pX

k=1

M 2k � 2 �
pX

i =2

M i 2� i ! Row 2

...

M 1p� 1 � � p +
pX

k=1

M pk � p �
pX

i =2

M ip � i ! Row p

Substituting Rows 2-p in Row 1 to replace M 1i � 1 terms, we obtain

pX

i =1

M i 1� i �
pX

l =1

� l +
pX

j =1

M j 1� j +
pX

j =2

pX

k=2

M jk � j �
pX

j =2

pX

i =2

M ij � i ;

which, after elementary operations, yields

pX

l =1

� l � 0:

Hence, the set

T =

(

� :
pX

l =1

� l � 0; � � 0

)

= f 0g;

such that
� > 1 � 0; 8 � 2 T :

Thus, there exists someq 2 Rp satisfying (3.39), concluding the
proof of the �rst claim.

2. Since

(I � N > ) � 1 =
1X

k=0

(N > )k

is well-de�ned, it implies lim k !1 (N > )k = 0, or, equivalently, that
the spectral radius � (N > ) < 1.
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Theorem 3.1. Suppose that Assumption 3.2 holds andd � 0, then there exists
a unique �xed-point� x

# (d) 2 R (d). �

Proof. By Assumption 3.2, Lemma 3.1 entails R(d) 6= ; , and the �xed-
point �� x = � x

� (0; d) reached from � x
[0] = 0 with the iterations � x

[k+1] =
c(� x

[k ]) + d is the minimal �xed-point, i.e.,

�� x � ~� x ; 8 ~� x 2 R (d): (3.41)

In order to show uniqueness of this �xed-point, we show that the iter-
ations � x

[k+1] = c(� x
[k ]) + d starting from any initial-condition � x

[0] � �� x

converge to �� x . Since this initial condition can be any other �xed-point
~� x 2 R (d) n f �� x g, we will conclude the proof by noting that iterations
with � x

[0] = ~� x converging to �� x implies ~� x = �� x .
To this end, we observe that Proposition 3.3 entails that there exists

some optimizer �c 2 � c � S of LP (3.35) such that �� x = �c + d. Then, we
write the dual LP of LP (3.35) as

min
( � ;� ):= f � i ;� i ;i 2 I

m X
1 g

m XX

i =1

� i >
d

s.t. � i = 1 +
m XX

j =1

� j
i ; i 2 Im X

1 ;

� i >
E = � i E i A; i 2 Im X

1 ;

� i � 0; � i � 0m X ; i 2 Im X
1

(3.42a)

(3.42b)

(3.42c)

(3.42d)

where � i and � i are the dual variables associated to constraints (3.35b)
and (3.35c) respectively. We denote the optimal dual variables corre-
sponding to �c as � �

i and � i � , and de�ne matrix � � with rows

� �
i :=

� i � >

� �
i

;

where � �
i � 1 by (3.42b). We recall that

�c = � � (�c + d) = � � �� x ;

since �c optimizes LP (3.35) ([144, Theorem 4]).
Then we apply Lemma 3.3 with

M = [ � 1� � � � � m X � ];
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such that N = � � . Hence, � (� � ) < 1 from Lemma 3.3(b).
For any � x 2 H (d), it follows that

ci (� x ) =

(
max

x
E i Ax

s.t. Ex � � x

)

=

8
<

:

min
 � 0

 > � x

s.t.  > E = E i A;

9
=

;
� � �

i � x ;

where the second equality follows from strong duality for LPs, and the
inequality follows since  > = � �

i is feasible for the dual LP. This implies

c(� x ) � � � � x ; 8 � x 2 H (d):

Hence, for the iterations � x
[k+1] = c(� x

[k ]) + d from any � x
[0] 2 H (d), we

obtain
� x

[k+1] � � � � x
[k ] + d:

Subtracting by �� x = � � �� x + d, the inequality

� x
[k+1] � �� x � � � (� x

[k ] � �� x )

follows. Applying recursively, the inequality

� x
[k ] � �� x � (� � )k (� x

[0] � �� x )

holds. If �� x � � x
[0] , then �� x � � x

[k ] for all k � 0 by monotonicity of c(�), and

de�nition of �� x . Then, � (� � ) < 1 implies (� � )k ! 0 ask ! 1 , such that

8 � > 0; 9 k < 1 : � x
[k ] � �� � � 1: (3.43)

If the initial condition

� x
[0] = ~� x 2 R (d) n f �� x g;

i.e., the iterations start at some �xed-point that is not the minimal �xed-
point �� x , then � x

[k ] = ~� x for all k � 1, since~� x is a �xed-point.
From (3.43), this implies ~� x � �� x + � 1 for every � > 0. From (3.41),

we know that �� x � ~� x . Suppose there exist some indexi 2 Im X
1 such that

�� x
i < ~� x

i . Then, for every arbitrary scalar � 2 (0; ~� x
i � �� x

i ), ~� x � �� x + � 1
holds, which contradicts (3.43) with � x

[k ] = ~� x . Hence,

� x
# (d) = �� x = ~� x ;

which concludes the proof.
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Remark 3.3. We note that� (� � ) 2 [� (A); 1): Let (�; � � ) be an eigenpair of
A, such thatA� � = �� � . Multiplying by E, we obtain

� � (E� � ) = � (E� � )

since� � E = EA from(3.42b)-(3.42c). Hence, the eigenvalues ofA are a subset
of the eigenvalues of� � . �

This theorem validates (3.34) and allows us to replace constraint (3.32)
by the equivalent functional equality c(� x ) + d = � x in Problem (3.33)

Remark 3.4. While we assume that0 2 W(� w ), there exist cases where this is
not known a priori. Such cases can be accommodated in Problems(3.33)by con-
sidering the disturbance set parametrizationf �wg � W(� w ), where0 2 W(� w )
if � w � 0, and �w represents the origin offset. Then, an RPI set parametrized as
f �xg � X(� x ) satis�es

f A �x + B �wg � AX(� x ) � B W(� w ) � f �xg � X(� x );

or equivalentlyEA �x + EB �w � E �x + c(� x ) + d(� w ) � b(� x ), the �rst part of
which can be eliminated by using the state offset�x = ( I � A) � 1B �w. �

3.3.5 Implementation of Problem (3.33)

Using the result in Theorem 3.1 and recalling the de�nition of the dis-
tance function dY (l; W(� w )) from (3.8), we write Problem (3.33) equiva-
lently as

min
� x ;� w ;�

k� k1

s.t. c(� x ) + d(� w ) = � x ;

l (� x ) + m (� w ) � g;

Y �
l � 1M

t =0

CA t B W(� w ) � DW(� w ) � B(� );

� w � 0:

(3.44a)

(3.44b)

(3.44c)

(3.44d)

(3.44e)

In order to implement Constraint (3.44d), we assume to know the ver-
tices of the output constraint set Y.

Assumption 3.4. The verticesf y[p]; p 2 I vY
1 g = vert( Y) are known a priori.

�
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Then, inclusion (3.44d) veri�es if and only if (� w ; � ) 2 � , where

� :=
�

(� w ; � ) :
8 p 2 I vY

1 ; 9 f w[pt ]; t 2 I l
0g 2 W(� w ); b[p] 2 B(� ) :

y[p] =
P l � 1

t =0 CA l � 1� t B w[pt ] + Dw[pl ] + b [p]

�
;

De�ning the variables z := f w[pt ]; b[p]; p 2 I vY
1 ; t 2 I l

0g, Problem (3.44)
can hence be implemented as

min
� x ;� w ;�;z

k� k1

s.t. c(� x ) + d(� w ) = � x ;

l (� x ) + m (� w ) � g;

(� w ; � ) 2 � ;

� w � 0;

(3.45a)

(3.45b)

(3.45c)

(3.45d)

(3.45e)

Remark 3.5. If the verticesf y[p]; p 2 I vY
1 g of the output constraint setY are

not known, then Constraint(3.44d)can be encoded as a set of linear constraints
directly in terms of the hyperplane notation ofY using the suf�cient conditions
for polytopic inclusions presented in [127, Theorem 1]. �

3.4 Numerical Optimization

In this section, we develop a numerical optimization algorithm in order
to solve Problem (3.45).

3.4.1 Related literature and Problem setup

The central dif�culty in solving Problem (3.45) arises from the fact that
the constraints are nonsmooth and nonconvex, since they are de�ned
using support functions over polytopes. A typical approach to tackle
such problems is to resort to the Karush-Kuhn-Tucker (KKT) optimality
conditions [102]: Since the support functions are de�ned using Linear
Programs (LPs), they can be replaced by their corresponding optimality
conditions. The resulting lifted reformulation [7] is a Mathematical Pro-
gram with Complementarity Conditions (MPCC) [61] that can be tackled
by mixed-integer programming [161]. However, this approach exhibits

47



an exponential increase in the number of binary variables with the sys-
tem dimension. An alternative is to use smoothening-based approaches,
in which the nonsmooth complementarity KKT condition is replaced by
a smooth approximation [109, 77], that can then be solved with an off-
the-shelf nonlinear programming solver (NLP) like IPOPT [151]. Smooth
formulations can also be derived using approaches based on zeroing the
duality-gap [4, 154]. Such approaches were previously considered for
invariant-set design in [68]. These reformulations too, however, suffer
from the curse of dimensionality.

In this section, we present an approach based on implicit functions [7],
in which the support functions formulating the optimization problem are
treated as implicit functions of the parameters of the disturbance and RPI
sets, and sensitivities of these functions are calculated using parametric
optimization theory [23]. We introduce a smoothening-based approach

Nonunique representations of the set W(� w )

We note that, in general, there exist in�nitely many values of � w charac-
terizing a given set W(� w ) because of redundant hyperplanes, i.e., there
can exist � w; 1; � w; 2 such that

� w; 1 6= � w; 2; with W(� w; 1) = W(� w; 2):

This nonuniqueness can negatively affect our optimization procedure. In
order to tackle it, we de�ne the support functions

qt (� w ) := hW(� w ) (F
>
t ); 8 t 2 Im W

1 :

We then note that

W(� w; 1) = W(� w; 2) () q(� w; 1) = q(� w; 2);

and there exists a unique � w such that W(� w ) = W(� w; 1) = W(� w; 2) and
� w = q(� w ). In W(� w ), the redundant hyperplanes are tangent to the set.
Hence, we encourage the computation of such an unique � w by append-
ing 1

2 � k� w � q(� w )k2
2 to the objective function in Problem (3.45), where
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� > 0 is some user-de�ned scalar, resulting in

min
z

k� k1 +
1
2

� k� w � q(� w )k2
2

s:t : c(� x ) + d(� w ) = � x ;

AE z = bE ;

l (� x ) + m (� w ) � g;

A I z � bI ;

(3.46a)

(3.46b)

(3.46c)

(3.46d)

(3.46e)

where z := f � w ; � x ; �; z g is the optimization vector, and the linear con-
straint set

f z : AE z = bE ; A I z � bI g

captures the constraints � w � 0 and (� x ; � w ; � ) 2 � . While any � > 0
is suitable, we observed that large values can slow down the conver-
gence rate of the NLP approach we propose in the sequel to solve Prob-
lem (3.46).

The rest of this section is devoted to the development of an optimiza-
tion algorithm to solve Problem (3.46). Firstly, we introduce the pro-
posed smoothening procedure and discuss the feasibility of the resulting
smoothened problem. The smoothened approximation is then used later
to develop a PDIP solver.

3.4.2 Smooth approximation

In order to solve Problem (3.46), we note that given (� x ; � w ), the sup-
port functions ci (� x ); d i (� w ); l k (� x ); m k (� w ); qt (� w ) can be evaluated by
solving the corresponding linear programs. In order to clarify this point
and aid further developments, we introduce the following parametric LP
with parameter � 2 Rm :

max
z2 Rn

r > z s.t. Pz � � : (3.47)

We label the primal-dual solution pair of Problem (3.47) as (f z� g; f � � g)
(we omit the dependence of f z� g; f � � g on � for simplicity), and the value
function as

v(� ) := r > z� :
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v(� ) r > P � z� � � s� n m

ci (� x ) E i A E � x zc i � c i sc i nx mX

d i (� w ) E i B F � w zd i � d i sd i nw mW

l k (� x ) Gk C E � x zl k � l k sl k nx mX

m k (� w ) Gk D F � w zm k � m k sm k nw mW

qt (� w ) Ft F � w zqt � qt sqt nw mW

Table 1: Support functions

We use v(� ) to represent any of the support functions involved in the
formulation of Problem (3.46), as described in Table 1. In other words, at
a given (� x ; � w ), the support functions are de�ned as

ci (� x ) := E i Azc i ;

d i (� w ) := E i B zd i ;

l k (� x ) := Gk Czl k ;

m k (� w ) := Gk Dzm k ;

qt (� w ) := Ft zqt :

Problem (3.47) can be equivalently written using slack variables as

max
z2 Rn ;s2 Rm

r > z s.t. Pz + s = � ; s � 0; (3.48)

with the primal-dual solution pair (f z� ; s� g; f � � g). This solution satis�es
the KKT conditions of Problem (3.48), i.e.,

P > � � = r � ; Pz � + s� = � ; � � � s� = 0; (3.49)

along with � � ; s� � 0.
A popular approach to solve Problem (3.46) involves a KKT-based re-

formulation. This reformulation involves introducing the optimization
variables (z� ; � � ; s� ) into Problem (3.46), replacing v(� ) with r > z� , and
appending the KKT conditions (3.49) as constraints on Problem (3.46).
However, by this approach the problem dimension increases quadrat-
ically with the number of hyperplanes de�ning the sets X(� x ), W(� w ),
and Y through the variables � � and s� . For example, the constraint
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c(� x ) + d(� w ) = � x requires m2
X + mX mW additional optimization vari-

ablesf � c i ; � d i ; i 2 Im X
1 g, thus increasing the problem complexity. Hence,

we resort to using an implicit-function approach, in which the support
functions v(� ) are treated as implicit functions of � . It is well-known that
these functions are in general nonsmooth in their parameter � [7]. This
implies that standard derivative-based NLP solvers cannot be applied to
solve Problem (3.46). In the sequel, we present a suitable smoothening-
based approximation of v(� ), and a corresponding smoothened approx-
imate formulation of Problem (3.46) that can then be solved by introduc-
ing a minor modi�cation by any standard NLP solver.

Regularization and smooth formulation

We now focus on computing the �rst and second order sensitivities of
v(� )

r � v(� ) = r > @z�

@�
; r 2

�� v(� ) =
nX

l =1

r l
@2z�

l

@� 2 ; (3.50)

for a given value of � � 0. We know from [38, Theorem 3.2.2] that if the
linear independence constraint quali�cation (LICQ) condition, second-
order suf�cient conditions (SOSC), and strict complementary slackness
(SCS) are satis�ed at the solution of the LP (3.48)1, then the solution
(z� ; � � ; s� ) is a continuously differentiable function of � in a neighbor-
hood of (z� ; � � ; s� ). However, for an arbitrary � � 0 these conditions
might be violated, and hence we propose the following approximation.
Following [128], let us �rst regularize the LP (3.47) using primal and dual
regularization parameters � := ( � p ; � d ) > 0 as

max
z;�

r > z � 0:5(k� pzk2
2 + k� k2

2)

s.t. Pz + � d � � � :

(3.51)

We label the primal-dual solution of Problem (3.51) as (f z� ; � � g; f � � g),
and denote

v � (� ) := r > z� :

1For precise de�nitions of LICQ, SOSC and SCS, we refer to [102].
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The `2-regularization term in (3.51) ensures that the feasible set of the
Quadratic Program (QP) (3.51) contains a nonempty interior and satis�es
LICQ and SOSC at the unique solution (f z� ; � � g; f � � g).

Proposition 3.4. v � (� ) ! v(� ) quadratically as� ! 0. �

Proof.

• (Part 1) For some � d > 0, consider the QP

max
z;�

r > z � 0:5k� k2
2

s.t. Pz + � d � � �

(3.52)

and let (f z� d ; � � d g; f � � d g) be the corresponding primal-dual solu-
tion. Problem (3.51) is a perturbed version of QP (3.52), with per-
turbation parameter � p over variables z. Then, since Problem (3.52)
satis�es LICQ as the matrix [P � d I ] is full rank for all � d > 0, we
know from [84, Theorem 2] that there exists some �� p such that if
� p 2 [0; �� p ], the unique primal solution of Problem (3.51) is also a
primal solution of Problem (3.52), i.e., (z� d ; � � d ) = ( z� ; � � ). Hence,

v � (� ) = v � d (� ) := r > z� d ; 8 � p 2 [0; �� p ]: (3.53)

• (Part 2) Let us show now that as � d ! 0, v � d (� ) ! v(� ) quadrati-
cally. The dual problem of (3.47) can be rewritten as

min
�

� > �

s.t. P > � = r ;

� � 0:

(3.54a)

(3.54b)

(3.54c)

Let (f � � g; f � � ; � � g) denote the corresponding primal-dual solution,
where � � and � � are the optimal dual variables corresponding to
constraints (3.54b) and (3.54c) respectively. We also write the dual
problem corresponding to Problem (3.52) as

min
�

� > � + 0 :5k� d � k2
2

s.t. P > � = r ;

� � 0;

(3.55a)

(3.55b)

(3.55c)

52



with corresponding primal-dual solution (f � � d g; f � � d ; � � d g), where
� � d and � � d are the optimal dual variables corresponding to con-
straints (3.55b) and (3.55c) respectively.

Problem (3.55) is a perturbed version of the LP (3.54), with pertur-
bation parameter � d . Then, from [84, Theorem 1] we know that
there exists some �� d such that if � d 2 [0; �� d ], the unique optimal
primal solution of Problem (3.55) is also an optimal primal solu-
tion of Problem (3.54), i.e., � � = � � d . Then, since Problems (3.47)
and (3.54) have a zero duality-gap due to strong duality, we have
v(� ) = r > z� = � > � � . However, since � � d is an optimal dual solu-
tion of Problem (3.47) (equivalently an optimal primal solution of
Problem (3.54)) for all � d 2 [0; �� d ], we have

v(� ) = � > � � d ; 8 � d 2 [0; �� d ]: (3.56)

• (Part 3) Since Problems (3.52) and (3.55) also have a zero duality
gap,

v � d (� ) � 0:5k� � d k2
2 = � > � � d + 0 :5k� d � � d k2

2

holds. From the KKT conditions of Problem (3.52), � � d = � � d � � d

follows, such that

v � d (� ) = � > � � d + k� d � � d k2
2 :

Then, it follows from (3.56) that

v � d (� ) = v(� ) + k� d � � d k2
2 � 0; 8 � d 2 [0; �� d ]: (3.57)

Moreover, we have that for every � d;1, � d;2 such that 0 � � d;1 <
� d;2 � �� d ,

v � d ; 1 (� ) � v � d ; 2 (� ) = ( � 2
d;1 � � 2

d;2) k� � d k2
2 < 0:

Thus, v � d (� ) is strictly-increasing in � d 2 [0; �� d ], and is lower-
bounded by v(� ) so that

v � d (� ) ! v(� ) as � d ! 0: (3.58)

Hence, for � p 2 [0; �� p ] and � d 2 [0; �� d ], v � (� ) converges to v(� )
quadratically in � d from (3.53) and (3.58).
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While the value of v � (� ) of Problem (3.51) converges to the optimal
value v(� ) of Problem (3.47), SCS might still be violated at the opti-
mizer f z� ; � � g of Problem (3.51), since there might exist weakly active
constraints at the solution. We resolve this issue by eliminating the in-
equality constraints in Problem (3.51) using a log-barrier formulation
with some barrier parameter � > 0 as

max
z;�; s

r > z � 0:5(k� pzk2
2 + k� k2

2) + �
mX

i =1

log(si )

s.t. Pz + � d � + s = � ;

(3.59)

where � := ( � p ; � d ; � ). We label the primal-dual solution pair of Problem
(3.59) as(f z� ; � � ; s� g; f � � g), and de�ne

v � (� ) := r > z� :

Since Problem (3.51) satis�es LICQ and SOSC, we known from [89, Propo-
sition 8.2] that

(z� ; � � ; � � ) ! (z� ; � � ; � � ) as � ! 0; (3.60)

such that from Theorem 3.4 and (3.60), we have

v � (� ) ! v(� ) as � ! 0: (3.61)

Hence,v � (� ) is a smooth approximation of v(� ), based on which we pro-
pose to approximate Problem (3.46) as

min
z

k� k1 + 0 :5� k� w � q� (� w )k2
2

s:t : c� (� x ) + d � (� w ) � � x = 0;

AE z = bE ;

l � (� x ) + m � (� w ) � g;

A I z � bI :

(3.62a)

(3.62b)

(3.62c)

(3.62d)

(3.62e)

for some � > 0, and solve Problem (3.62) for reducing values of � such
that we solve Problem (3.46) at termination.
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To solve Problem (3.46) for a given � , we propose to use an NLP ap-
proach, that requires the evaluation of values and sensitivities of v � (� )
for any given � � 0. For a given � � 0, v � (� ) = r > z� can be evaluated
by solving the KKT conditions of Problem (3.59) as

R(z� ; � � ; s� ; � ) :=

2

4
P > � � + � 2

pz� � r
Pz � � � 2

d � � + s� � �
� � � s� � � 1

3

5 = 0; (3.63)

along with � � ; s� > 0, in which � � = � � d � � is used to eliminate � � ,
and s� is the optimal slack variable. These conditions can be solved by
Algorithm 1, where

S� := diag( s� );
� � := diag( � � );

@R(� � ; s� ) :=

2

4
� 2

p I P > 0
P � � 2

d I I
0 S� � �

3

5 :

At the solution (z� ; � � ; s� ), the sensitivities, i.e.,

r � v � (� ) = r > @z�

@�
; r 2

�� v � (� ) =
nX

l =1

r l
@2z�

l

@� 2 : (3.64)

can then be evaluated using the IFT [38]. The �rst-order sensitivities can
be obtained by solving the linear system

@R(� � ; s� )

2

4
@z� =@�
@� � =@�
@s� =@�

3

5 =

2

4
0
I
0

3

5 ; (3.65)

and the second-order sensitivities can be obtained by solving the follow-
ing linear system [23] for each component j 2 Im

1 :

@R(� � ; s� )

2

6
6
4

@2 z �

@�� j
@2 � �

@�� j
@2 s�

@�� j

3

7
7
5 = �

2

4
0
0

diag( @S�

@� j
) @� �

@� + diag( @� �

@� j
) @s�

@�

3

5 : (3.66)

In the following, we argue that as � ! 0, the sensitivities of v � (� )
computed as in (3.65) converge to the generalized gradient of v(� ). We
focus on an intuitive de�nition of these objects in the sequel, referring
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the reader to [156] for a formal treatment. Using (3.63), (3.64) and (3.65),
we write

r � v � (� ) = � � > P
@z�

@�
+ � 2

pz� > @z�

@�

= � � > � � � > @s�

@�
+

�
� 2

pz� > @z�

@�
+ � 2

d � � > @� �

@�

�

= � � > � � 1> (� � ) � 1 @� �

@�
+

�
� 2

pz� > @z�

@�
+ � 2

d � � > @� �

@�

�
:

(3.67)

For every � � 0 and � = ( � p ; � d ; � ) > 0, the values of (z� ; � � ; s� ) solv-
ing (3.63) and their sensitivities with respect to � solving (3.65) are well-
de�ned. Hence, from (3.67), we get

r � v � (� ) ! � � > as � ! 0: (3.68)

We recall from (3.60) that � � ! � � as � ! 0. From Part 1 in Proposi-
tion 3.4 and [84, Theorem 2], it can be shown that � � ! � � d as � p ! 0.
Moreover, � � = � � d for any � d 2 [0; �� d ] from Part 2 in Proposition 3.4.
Hence, � � ! � � as � ! 0. This implies that r � v � (� ) ! � � >

as � ! 0
from (3.68). We know from parametric linear programming [12] that ev-
ery optimal dual variable � � of Problem (3.47) belongs to the generalized
gradient of v(� ) with respect to � . Hence, as the approximation param-
eter � ! 0, the gradients of the proposed smoothening approximation
v � (� ) converge to the generalized gradient of the nonsmooth function
v(� ), such that the gradient consistency property discussed in [156, Def-
inition 2.6] is satis�ed. This property ensures that by solving Problem
(3.62) as an NLP for reducing values of � ! 0, with sensitivities evalu-
ated as in (3.65) and (3.66), we approach a stationary point of the original
nonsmooth Problem (3.46).

Feasibility of Problem (3.62)

We must ensure that Problem (3.62) is feasible for all � > 0. To this end,
we prove the following result.

Proposition 3.5. Given some� = ( � p ; � d ; � ) > 0, if there exists some� w � 0
such thatd � (� w ) � 0, then there exists an� x satisfying(3.62b), i.e.,

c� (� x ) + d � (� w ) = � x :
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Algorithm 1: Solve KKT conditions in (3.63)
Result: Return (z� ; � � ; s� );
Input: � > 0, � � 0, Initial guess (z� ; � � > 0; s� > 0);
while kR (z� ; � � ; s� ; � )k1 > � tol do

123

1: Solve @R (� � ; s� )

2

4
� z
� �
� s

3

5 = �R (z� ; � � ; s� ; � );

2: Compute largest � 2 (0; 1] by backtracking such that
� � + � � � > 0 and s� + � � s > 0;

3: Update z�  z� + � � z, � �  � � + � � � , s�  s� + � � s;
end

�

Proof. Given some � w � 0 such that d � (� w ) � 0, we observe from (3.63)
that (3.62b) is feasible if and only if there exist variables

f � x ; zc i ;� ; � c i ;� ; sc i ;� ; 8i 2 Im X
1 g

solving the set of equations formulating the KKT conditions as

E i Azc i ;� + d �
i (� w ) � � x

i = 0 ;

E > � c i ;� + � 2
pzc i ;� � A> E >

i = 0;

Ezc i ;� � � 2
d � c i ;� + sc i ;� � � x = 0;

� c i ;� � sc i ;� � � 1 = 0;

(3.69a)

(3.69b)

(3.69c)

(3.69d)

along with � c i ;� ; sc i ;� > 0 for all i 2 Im X
1 . In the sequel, we show that

such variables exist for every � > 0. For brevity, we denote by d; zi ; � i ,
and si , respectively, d � (� w ); zc i ;� ; � c i ;� , and sc i ;� . Introducing ci = E i Az i

into (3.69) and eliminating (3.69a), we equivalently obtain

ci � E i Az i = 0 ;

E > � i + � 2
pzi � A> E >

i = 0;

Ez i � � 2
d � i + si � c � d = 0;

� i � si � � 1 = 0:

(3.70a)

(3.70b)

(3.70c)

(3.70d)

Hence, we focus on demonstrating the existence of variables

f c; zi ; � i ; si ; 8i 2 Im X
1 g
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solving (3.70) for any � > 0. To this end, we consider the following QP

max
z i ;c;� i

m XX

i =1

J (ci ; zi ; � i ; � p i )

s:t : ci � E i Az i = 0; 8i 2 Im X
1 ;

Ez i + � d i �
i � c � d; 8i 2 Im X

1 ;

(3.71a)

(3.71b)

(3.71c)

where the objective function

J (ci ; zi ; � i ; � p i ) := ci � 0:5
� 

 � p i z
i

 2

2 +

 � i


 2

2

�
;

and � p i ; � d i > 0 are individual regularization constants for each i 2 Im X
1 .

Problem (3.71) can be approximated as

max
z i ;c;� i ;s i

m XX

i =1

0

@J (ci ; zi ; � i ; � p i ) + �! i

m XX

j =1

log(si
j )

1

A

s:t : ci � E i Az i = 0; 8i 2 Im X
1 ;

Ez i + � d i �
i � c + si = d; 8i 2 Im X

1 ;

(3.72a)

(3.72b)

(3.72c)

where ! i > 0 are individual logarithmic-barrier weights selected sepa-
rately for each i 2 Im X

1 . Since Problem (3.71) is feasible (with all variables
set to 0), bounded (since it is a strongly convex quadratic program), and
the feasible set contains a nonempty interior, the primal-dual solution

ff c� ; (zi � ; � i � ; si � )g; f � �
i ; � i � g; i 2 Im X

1 g

of Problem (3.72) exists and is unique for every (� p i ; � d i ; ! i ) > 0, where
� i � ; � i � are the optimal dual variables associated to constraints (3.72b)
and (3.72c) respectively [89, Theorem 8.1]. These variables solve the KKT
conditions of (3.72), written after eliminating � i � = � � d i �

i � as

� �
i � 1 �

m XX

k=1

� i �
k = 0 ;

c�
i � E i Az i � = 0 ;

E > � i � + � 2
p i

zi � � � �
i A> E >

i = 0;

Ez i � � � 2
d i

� i � + si � � c� � d = 0;

� i � � si � � ! i � 1 = 0;

(3.73a)

(3.73b)

(3.73c)

(3.73d)

(3.73e)
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along with � i � ; si � > 0, for each i 2 Im X
1 . Since� �

i � 1 from (3.73a), we
can select the regularization and barrier parameters

� p i =
p

� �
i � p ; � d i = � d=

p
� �

i ; ! i = � �
i : (3.74)

Then, Equations (3.73b)-(3.73e) are such that (3.70) is solved by

f c; zi ; � i ; si g = f c� ; zi � ; � i � =� �
i ; si � g;

thus concluding the proof.

Remark 3.6. The result in Proposition 3.5 is independent of Assumption 3.2,
i.e., there exists an� x satisfyingc� (� x ) + d � (� w ) = � x for any � > 0, even if
there exists no �nite� x satisfying the RPI condition

c(� x ) + d(� w ) � b(� x ):

This is a consequence of the regularization parameters� p i ; � d i > 0 that guar-
antee that Problem(3.71)is bounded. If Assumption 3.2 does not hold, we know
from [144] that Problem(3.71)with (� p i ; � d i ) = 0 is unbounded above. In this
case,

m XX

i =1

� x
i ! 1 ; as (� p i ; � d i ) ! 0

by continuity of the optimal value of Problem(3.71). �

3.4.3 Solution algorithm

Since Problem (3.62) is smooth, it can be solved by using standard NLP
techniques such as Sequential Quadratic Programming and PDIP meth-
ods. In this section, we present an algorithm based on the PDIP method
[102] to solve Problem (3.46), by approximately solving Problem (3.62)
for reducing values of � . In order to recall the PDIP method, we write
Problem (3.62) for simplicity as

min
z

f � (z)

s.t. h�
E (z) = 0;

h�
I (z) � 0;

(3.75)
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where f � (z) denotes the objective (3.62a),h�
E (z) = 0 denotes the equal-

ity constraints (3.62b) and (3.62c), andh�
I (z) � 0 denotes the inequality

constraints (3.62d) and (3.62e). Let := [  >
E  >

I ]> with  E and  I denote
the dual variables associated with constraints h�

E (z) = 0 and h�
I (z) � 0

respectively. The Lagrangian of Problem (3.75) is

L � (z;  ) := f � (z) +  >
E h�

E (z) +  >
I h�

I (z):

PDIP methods aim at �nding stationary points that satisfy SOSC of the
PDIP-KKT conditions of Problem (3.75) written as

K �;� (z; ; � ) :=

2

6
6
4

r zL � (z;  )
h�

E (z)
h�

I (z) + �
� �  I � � 1

3

7
7
5 = 0; (3.76)

along with �;  I > 0, for some barrier parameter � > 0 using suitably
adapted Newton iterates. It is useful to observe that the equations in
(3.76) can be reformulated as the KKT conditions of the primal interpre-
tation of the log-barrier approach written as

min
z;�

f � (z) � �
n IX

n =1

log(� n )

s:t : h�
E (z) = 0;

h�
I (z) + � = 0:

(3.77)

As � ! 0, the solution of Problem (3.77) approaches that of Problem
(3.75). Hence, PDIP methods progressively reduce the barrier parameter
� , such that at convergence, Problem (3.75), i.e., Problem (3.62) is solved.
In our approach, along with reducing the value of � , we also reduce �
such that, at convergence, Problem (3.46) is solved.

Algorithm 2 summarizes the proposed PDIP solution method. In
Step 1, the functions v � (� ) and their sensitivities are evaluated, and Step
2 builds the necessary vectors, gradients, and the Hessian of the La-
grangian r 2

zzL � . In Step 3, r 2
zzL � is regularized to ensure that it is posi-

tive de�nite in the nullspace of r zh�
E , thus guaranteeing descent. In Step

4, a linear system is solved to compute a Newton direction. Then in Step
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5, an upper-bound to the step length �� is computed to ensure positivity
of � and  I . In Step 6, a globalization method is employed to compute
a steplength � 2 (0; �� ], e.g., a line-search or �lter method [102], and the
variables are �nally updated in Step 7. In our solver, along with updat-
ing the barrier parameter � using some � � 2 (0; 1), we also update the
smoothening parameter � using some � � 2 (0; 1). In Steps 1 and 7, we
always warm-start the variables (z� ; � � ; s� ) using previously computed
values to evaluate v � (� ) using Algorithm 1.

We make the following assumptions to ensure that the smoothening
parameters � = ( � p ; � d ; � ) > 0 are chosen such that Problem (3.75) is
feasible, thus guaranteeing that the multipliers  computed over the it-
erations of Algorithm 2 are bounded.

Assumption 3.5. The values of the smoothening parameter� > 0 formulating
Problem(3.75) and chosen in Algorithm 2 are such that: (a) there exists an
� w � 0 such thatd � (� w ) � 0; (b) the pair (� x ; � w ) satisfying (3.62b), i.e.,
c� (� x ) + d � (� w ) = � x also satis�es(3.62d), i.e.,l � (� x ) + m � (� w ) � g. �

Assumption 3.5(a) is necessary to satisfy the hypothesis of Proposi-
tion 3.5, and can typically be satis�ed by choosing a small � > 0: Given
some � w � 0 and � > 0, let (zd i ;� ; � d i ;� ; sd i ;� ) be the optimal primal,
dual, and slack variables solving the KKT conditions in (3.63). Since
d �

i (� w ) = E i B zd i ;� , it follows that

d �
i (� w ) = � d i ;� >

� w + � 2
p jj zd i ;� jj2

2 + � 2
d jj � d i ;� jj2

2 � �m X :

Since� d i ;� > 0 for every � > 0 and � w � 0, it holds that

� d i ;� >
� w + � 2

p jj zd i ;� jj2
2 + � 2

d jj � d i ;� jj2
2 > 0:

Then, a small � > 0 can ensured �
i (� w ) � 0. While a similar reasoning can

be applied to guarantee the Assumption 3.5(b) is satis�ed, a characteri-
zation of the set of values � satisfying Assumption 3.5( b) is left for future
research. We observed in our numerical examples that Assumption 3.5(b)
was never violated.

As we will demonstrate in the examples, using Algorithm 2 to solve
Problem (3.62) can help in reaching a solution using a reduced number of
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iterations, as compared to approaches based on the KKT-reformulation.
The main drawbacks of the proposed method are the following:

• A procedure to obtain a feasible initial point is not de�ned. This is
because, for a given� > 0 and � w � 0 satisfying Assumption 3.5,
we cannot compute an � x satisfying (3.62b), i.e.,

c� (� x ) + d � (� w ) = � x ;

using the result in Proposition 3.5. The reason is that the value
of the optimal dual variables � �

i required to select the parameters
in (3.74) for given � are not known a priori, since � �

i depends on
f � p i ; � d i ; ! i g and vice-versa. Hence, in our implementation, we
use a scaling-based procedure described in [133, 97] to (infeasibly)
initialize � w and � x ;.

• While a pre-factorized KKT matrix of v � (� ) results in almost-free
computation of the sensitivities in (3.65), building the Hessian ma-
trix r 2

�� v � (� ) with these derivatives can be expensive with respect
to memory requirements.

3.5 Numerical examples

3.5.1 Computation of safe reference-sets for supervisory
control

We consider the system

z(t + 1) =
�

1:1 0:2
� 0:3 0:4

�
z(t) +

�
1 0

0:1 1

�
u(t)

with input-constraints u 2 Û := f u : juj � [2 1:5]> g, and equipped with
an LQI-tracking controller such that z tracks a reference signal w: an
integral-action state q with dynamics q(t + 1) = q(t) + z(t) � w(t) is ap-
pended, and the statex = [ z> q> ]> is introduced. Then, an LQI feedback
gain

K =
�

� 1:19 � 0:1439 � 0:3154 0:0213
0:2777 � 0:6497 � 0:0037 � 0:3724

�
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Figure 2: Results of solving Problem (3.46). Tight RPI set X � (� w ) is computed
with � = 10 � 6 . Top-right plot shows the tracking performance with w sampled
from the vertices of W(� w ). Bottom-right plot shows resulting closed-loop inputs.

is computed corresponding to matrices Q = diag( I ; 0:5I ) and R = I . The
resulting closed-loop system with u = Kx has the dynamics

x(t + 1) =

2

6
6
4

� 0:09 0:0561 � 0:3154 0:0213
� 0:1413 � 0:2641 � 0:0353 � 0:3702

1 0 1 0
0 1 0 1

3

7
7
5 x(t) +

2

6
6
4

0 0
0 0

� 1 0
0 � 1

3

7
7
5 w(t):

We aim to design a supervisory controller for this system that saturates
the references as

w 2 W(� w ) = f w : jwj � �� w g

such that u 2 Û always holds. We assume that the supervisory controller
cannot access the statex(t) of the system, such thatW(� w ) should guarantee
input-constraint satisfaction for all reachablex.

Since the mRPI setXm (� w ) is the set of set of all reachablex, the con-
straint u 2 Û is equivalent to

K Xm (� w ) � Û :

Hence, we solve Problem (3.46) with the output equation (3.1b) formu-
lated using C = K; D = 0 , output-constraint set Y = Û , and the mRPI
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setXm (� w ) approximated using the RPI set X(� x ) = f x : Ex � � x g, where
the matrix E is composed of hyperplanes de�ning the set � 4

t =0 A t B W(1)
(A,B denote the matrices of the closed-loop system). This choice results
in mX = 112. The result of solving this problem using Algorithm 2 is
shown in Figure 2 (Plotted using the MPT-toolbox [53]). The computed
saturation bounds are �w1 = 2 :3819, �w2 = 1 :2108.

We also plot the set K X� (� w ), where X� (� w ) is an RPI set satisfying

X� (� w ) � X m (� w ) � � Bn x
1 :

This set is computed using the method in [111] for � = 10 � 6. Using
this set and the triangle inequality, we compute dH (Xm (� w ); X(� x )) �
0:3007, indicating that X(� x ) is a fairly tight approximation of the mRPI
set. Closed-loop trajectories are plotted with references w sampled from
the vertices of W(� w ), for which the input response satis�es the input-
constraints. Hence, if x(0) 2 X(� x ), the supervisory controller can com-
mand any reference w 2 W(� w ) with guaranteed input-constraint satis-
faction.

Remark 3.7. The mRPI set is suitable to formulate the problem in Example
A since we do not have access to the statex(t). If this limitation is overcome,
then a reference governor scheme [40] is more suitable to design the supervisory
controller, which uses control invariant sets to guarantee constraint satisfaction.
�

3.5.2 Comparison of Algorithm 2 with a lifted KKT-based
approach

In this subsection, we employ Algorithm 2 to solve 16 randomly gener-
ated instances of Problem (3.46). The dimensions of these instances are
reported in Table 2. In our implementation, we set: � = 10 � 6 in objec-
tive (3.46a); initialize � = 10 � 3, � p , � d = 10 � 2, � = 10 � 2; update with
� � ; � � = 0 :1; set tolerances for � and � as 10� 7 and 10� 8, respectively;
update � p  � � � p and � d  � � � d only when � = 10 � 7 and � = 10 � 8;
set tolerance for � p ; � d equal to 10� 4; use Hessian regularization based
on eigenvalue modi�cation of the reduced Hessian [102, Page 50] in Step
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Alg. 2 Alg. 1 to evaluate v � (� ) Total by Algs. 1 and 2 IPOPT for (3.79a)

Alg. 2 IPOPT for Problem (3.79a)

Figure 3: (Top) Comparison of the number of iterations; (Bottom) Error in RPI
constraint (3.44b) satisfaction.

3; use the merit function proposed in [107] within the line-search proce-
dure in Step 6. We terminate the algorithm with parameters � = 10 � 7,
� = 10 � 8, � p ; � d = 10 � 4 to ensure that v � (� ) are close tov(� ) at termi-
nation. Our computational experience suggests that maintaining � < �
facilitates faster convergence: This choice implies that v � (� ) is closev(� )
while tracking the central path of Problem (3.62). A formalization of this
reasoning is left for future study. When updating � p , � d , we start reduc-
ing the regularization parameters � 2

p ; � 2
d from 10� 4 to 10� 8 close to the

solution, i.e., when � = 10 � 7 and � = 10 � 8, in order to avoid numeri-
cal dif�culties resulting in inaccurate sensitivity evaluations. At termi-
nation of Algorithm 1, we compare the values v(� ) and v � (� ) in order
to examine the impact of the smoothening parameter � > 0. We ob-
tain kv(� ) � v � (� )k1 = 4 :127:10� 6 for the presented examples, with the
norm taken over all the support functions v = f ci ; d i ; l k ; m k ; qt g in all 16
examples.

We compare the performance of Algorithm 2 with the KKT-based
approach presented in [4]. In this approach, the LPs formulating Prob-
lem (3.46) are replaced by their KKT-optimality conditions, resulting in
a lifted formulation. For numerical robustness, we consider the regular-
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ized LP (QP) in (3.51) in lieu of (3.47), such that v(� ) = r > z� is replaced
by v � (� ) = r > z� . The KKT optimality conditions of Problem (3.51) can
be written as

P > z� + � 2
pz� = r ; Pz � � � 2

d � � � � ; � � � 0;

� � > � � r > z� + � 2
p kz� k2

2 + � 2
d k� � k2

2 = 0 ;

(3.78)

in which the fourth condition is the zero-duality gap condition that is
equivalent to the strict-complementarity condition. Substituting the op-
timality conditions in (3.78) for each v � (� ) in Problem (3.46), we obtain
the NLP

min
z;z� ;� � � 0

k� k1 + �
m WX

t =1

(� w
t � Ft zqt )2

s.t. E i Azc i + E i B zd i = � x
i ;

Ezc i � � 2
d � c i � � x ; F zd i � � 2

d � d i � � w ;
�

E > � c i + � 2
pzc i

F > � d i + � 2
pzd i

�
=

�
A> E >

i
B > E >

i

�
;

"
� x >

� c i � E i Azc i + � 2
p kzc i k2

2 + � 2
d k� c i k2

2

� w >
� d i � E i B zd i + � 2

p


 zd i


 2

2 + � 2
d


 � d i


 2

2

#

= 0;

Gk Czl k + Gk Dzm k � gk ;

Ezl k � � 2
d � l k � � x ; F zm k � � 2

d � m k � � w ;
�

E > � l k + � 2
pzl k

F > � m k + � 2
pzm k

�
=

�
C> G>

k
D > G>

k

�
;

"
� x >

� l k � Gk Czl k + � 2
p


 zl k


 2

2 + � 2
d


 � l k


 2

2

� w >
� m k � Gk Dzm k + � 2

p kzm k k2
2 + � 2

d k� m k k2
2

#

= 0;

F zqt � � 2
d � qt � � w ;

F > � qt + � 2
pzqt = F >

t ;

� w >
� qt � Fk zqt + � 2

p kzqt k2
2 + � 2

d k� qt k2
2 = 0 ;

8i 2 Im X
1 ; 8k 2 Im Y

1 ; 8t 2 Im W
1 ;

AE z = bE ; A I z � bI ;

(3.79a)

where z� 2 Rm X (n x + n w )+ m Y (n x + n w )+ m W n w are the primal variables and
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� � 2 Rm X (m X + m W )+ m Y (m X + m W )+ m 2
W are the dual variables satisfying

(3.78). We solve the NLP in (3.79a) using the IPOPT [151] interior-point
solver. We supply the solver with exact evaluations of the gradients and
the Hessian, select a global tolerance level of10� 7 for termination, and
terminate the algorithm after 2500iterations if the solution has not yet
been found.

The results of initializing both Algorithm 2 and the NLP (3.79a) at the
same point are shown in Table 2. In the table, we indicate the problem
dimensions, and the values of k� k1 at the termination of Algorithm 2 and
IPOPT for solving (3.79a). The dimensions of the matrices E 2 Rm X � n x ,
F 2 Rm W � n w , and H 2 Rm B � n y selected for these examples are:

nx ; nw = 2 ) mX ; mW = 20;

nx ; nw = 3 ) mX ; mW = 84;

nx ; nw = 4 ) mX ; mW = 160;

ny = 2 ) mB = 6 ; ny = 3 ) mB = 42:

We observe that the values of k� k1 at termination are close for the two
algorithms. In Figure 3 (top plot), we compare the number of itera-
tions for the termination of the algorithms. For Algorithm 2, we plot
both the upper and lower level iterations. The lower iterations count
the total number of interior-point iterations performed in Steps 1 and 6
for evaluating v � (� ) using Algorithm 1 with � tol = 10 � 12. We note that
these iterations are signi�cantly cheaper than the PDIP iterations to solve
Problem (3.79a), Moreover, they can be parallelized reducing computa-
tional time further. The upper iterations count the interior-point itera-
tions as described in Algorithm 2. We observe that in the majority of
cases, IPOPT terminates at the maximum iteration limit, i.e., the toler-
ance of 10� 7 is not met even after 2500 iterations. While the obtained
value at termination is feasible for Problem (3.79a), local optima are not
reached. This is especially pronounced for higher dimensional systems,
e.g., Cases9-16. In the case of Algorithm 2, however, we observe much
quicker convergence. In Figure 3 (bottom plot), using the obtained value
of � w at termination, we recompute � x that satis�es the RPI constraint
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c(� x ) + d(� w ) = � x . We label this vector as � x
exact , and evaluate the error

with respect to � x
term , i.e., the value of � x at the termination of the algo-

rithms. We observe that the regularization terms � 2
p ; � 2

d = 10 � 8 at the
termination of both the algorithms do not have a signi�cant effect on the
RPI constraint satisfaction.
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Algorithm 2: Smoothing-based PDIP algorithm for Problem
(3.46)

Result: Return z;
Input: System matrices(A; B; C; D ); Output-constraint set Y in
hyperplane and vertex notations; Matrices E; F; H
parameterizing polytopes X(� x ); W(� w ); B(� ) respectively;

Initialize: �; � > 0, (z; ; � ), (z� ; � � ; s� );
while � ,� ,kr zL � ; h�

E ; max(0; h�
I )k1 > � tol do

123
1: Evaluate v � (� ); r � v � (� ); r 2

�� v � (� ) for each
v � (� ) = f c�

i (� x ); d �
i (� w ); l �

k (� x ); m �
k (� w ); q�

t (� w )g using
Algorithm 1, and Equations (3.65) and (3.66);

2: Compute f � , h�
E , h�

I , r zf � , r zh�
E , r zh�

I , r 2
zzL � ;

3: Compute regularized Hessian B approximating r 2
zzL � and

ensuring descent for Problem (3.77);

4: Compute Newton direction by solving

2

6
6
4

B r zh�
E r zh�

I 0
r zh� >

E 0 0 0
r zh� >

I 0 0 I
0 0 Z GI

3

7
7
5

2

6
6
4

�z
�  E

�  I

� �

3

7
7
5 = �

2

6
6
4

r zL �

h�
E

h�
I + �

� �  I � � 1

3

7
7
5;

where Z := diag( � ), GI := diag(  I );
5: Compute largest �� 2 (0; 1] such that � + �� � � � ��� and
 I + �� �  I � �� I for some �� > 0;

6: Globalization method yielding � 2 (0; �� ];
7: Update (z; ; � )  (z; ; � ) + � (�z ; �  E ; �  I ; � � );
if kK �;� (z; ; � )k1 < � then

123Update �  � � � , �  � � �
end

end
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