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Abstract

This dissertation presents new methods to synthesize distur-
bance sets and input constraints set for constrained linear
time-invariant systems. Broadly, we formulate and solve op-
timization problems that (a) compute disturbance sets such
that the reachable set of outputs approximates an assigned
set, and (b) compute input constraint sets guaranteeing the
stabilizability of a given set of initial conditions. The pro-
posed methods find application in the synthesis and analy-
sis of several control schemes such as decentralized control,
reduced-order control, etc., as well as in practical system de-
sign problems such as actuator selection, etc.

The key tools supporting the develpment of the aforemen-
tioned methods are Robust Positive Invariant (RPI) sets. In
particular, the problems that we formulate are such that they
co-synthesize disturbance/input constraint sets along with
the associated RPI sets. This requires embedding existing
techniques to compute RPI sets within an optimization prob-
lem framework, that we facilitate by developing new results
related to properties of RPI sets, polytope representations, in-
clusion encoding techniques, etc.

In order to solve the resulting optimization problems, we de-
velop specialized structure-exploiting solvers that we numer-
ically demonstrate to outperform conventional solution meth-
ods. We also demonstrate several applications of the meth-
ods we propose for control design. Finally, we extend the
methods to tackle data-driven control synthesis problems in
an identification-for-control framework.
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Notation

• Rn denotes the set of real vectors of dimension n, and Rm×n de-
notes the set of matrices of dimension m× n.

• Li denotes row i, and Lij denotes the element in row i and column
j of matrix L

• rank(L), Im(L), and null(L) denote the rank, image-space and null-
space of matrix L respectively

• ρ(L) denotes the spectral radius of a square matrix L

• L ≤M denotes elementwise inequality of two matrices L,M of the
same dimensions

• 1, 0, and I denote all-ones, all-zeros and identity matrix respec-
tively, with dimensions specified if the context is ambiguous

• Inm denotes the set of natural numbers between two integers m and
n, i.e, Inm := {m, . . . , n}

• diag(x) ∈ Rn×n is a matrix constructed with diagonal elements xi

of the vector x ∈ Rn

1



Chapter 1

Overview

1.1 Introduction

In order to design effective control strategies for real-world plants, it is
important to be able to predict the behaviour of the plant under the influ-
ence of a given control strategy. This prediction can be performed using
dynamical models, which describe the input-output relationship of the
plant. Such dynamical models can be obtained from an understanding
of the physics of the underlying plant, through system/parameter iden-
tification strategies, or a combination of both. Since the plant can be a
very complex system, this approach however can encounter several prac-
tical limitations. Identifying a dynamical model of the plant typically
involves making several choices regarding the parameterization, and a
complex plant can require a complex model parameterization for accu-
rate predictions. Such models might not be amenable to use in a control
design framework. On the other hand, a dynamical model that is simple
enough for controller design might pose the risk that during online op-
erations, the plant can violate its safety constraints leading to potentially
catastrophic results. A reasonable trade-off between model complexity
and prediction accuracy is presented by uncertainty descriptions. These
descriptions capture the plant-model mismatch, and are appended to the
dynamical models such that they can predict a range of future plant be-
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haviours. Using simple dynamical models in conjunction with corre-
sponding uncertainty descriptions, robust control strategies ensure safe
operation for all predicted future plant behaviours in the presence of un-
certainty. Since the actual plant behaviour is expected to be one of the
predicted behaviours, guarantees regarding safe closed-loop operation
with the controller can be provided.

1.2 Robust Invariant sets

An important tool used in the analysis of uncertain systems and synthe-
sis of robust control strategies is the Robust Invariant set, that we intro-
duce in this section. We consider a discrete-time model of a dynamical
system written as

x(t+ 1) = fOL(x(t), u(t), w(t)), (1.1)

with current state vector x(t), current input u(t), and current disturbance
(or uncertainty) vector w(t). Such a model is used to predict the next
state x(t + 1) of the plant. We consider further that the system is subject
to pointwise-in-time constraints of the form

y(t) = g(x(t), u(t)) ∈ Y . (1.2)

We now define a Robust Control Invariant (RCI) set for the system.

Definition 1.1. Given a set of disturbances W , a set C(W) in the state-space
is an RCI set for System (1.1)-(1.2) if and only if for each x ∈ C(W), there
exists some control input u such that g(x, u) ∈ Y , and g(fOL(x, u, w), u) ∈ Y
for every w ∈W .

Hence, the system can be enforced to evolve ad infinitum inside an
RCI set by appropriately selecting a control input u(t) at the current state
x(t). In order to select the control input u(t), typically a control strategy
is designed (assuming that w(t) is unmeasured) as

u(t) = K(x(t)). (1.3)

3



The resulting closed-loop system given by

x(t+ 1) = fCL(x(t), w(t)) (1.4)

is an autonomous system, where fCL(x,w) = fOL(x,K(x), w). For the
autonomous system, we now define a Robust Positive Invariant (RPI)
set.

Definition 1.2. Given a set of disturbances W , a set X (W) in the state-space
is an RPI set for the autonomous system in (1.4) with feedback law in (1.3) and
subject to constraints (1.2) if and only if for each x ∈ X (W), g(x,K(x)) ∈ Y
holds, and g(fCL(x,w),K(x)) ∈ Y for all disturbances w ∈W .

According to the definition of the RPI set, if x(t0) ∈ X (W) at some
time instant t0, then the autonomous system always satisfies its con-
straints, i.e., g(x(t), u(t)) ∈ Y holds for all t ≥ t0. This is a key property
that is used in the design and analysis of robust control and estimation
schemes, and also in the analysis and design of autonomous systems.

1.2.1 Applications of Robust Invariant sets

Since RCI sets define regions of the state-space in which the system can
be enforced to evolve ad infinitum, they prove to be very useful in safety-
critical applications. For example, RCI sets formulated as superlevel sets
of control barrier functions are discussed in, e.g., [2, 3], and are used to
project the system input onto a set of safe inputs that guarantees that the
system state remains inside the RCI set. They are also used extensively as
terminal sets in Model Predictive Control (MPC) schemes, e.g., [83, 70],
etc, in order to guarantee recursive feasibility. Moreover, in the case of
uncertain linear systems, contractive RCI sets can be used to define Con-
trol Lyapunov functions through the Minkowski functional [16]. They
also find applications in designing local control laws in a non-cooperative
game setup [113], generating risky scenarios for safety-ensuring controller
synthesis [27], etc.

On the other hand, since RPI sets define regions of the state-space
in which an autonomous system evolves ad infinitum, they are natu-
rally linked to stability analysis. It is well known that level sets of Lya-
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punov functions are RPI sets, which provide sufficient conditions to es-
tablish stability of equilibrium points [60, 59, 16]. Hence, they are used
to synthesize Lyapunov functions for stability analysis, e.g. [19, 92, 121].
In [14, 15], feedback laws are derived to enforce invariance of a given
arbitrary set, and stability of the derived law is established by demon-
strating that the Minkowski functional over the given set is a Lyapunov
function. For systems with persistently exciting additive disturbances,
Input-to-State (ISS) Lyapunov functions [57] that demonstrate stability
to ultimate-bounded regions rather than isolated equilibrium points are
synthesized [72]. In applications such as Model Predictive Control (MPC),
RPI sets are used as terminal sets to provide recursive feasibility guar-
antees [58, 119, 67, 18]. Moreover, in robust MPC approaches such as
tube-based Robust MPC [87, 118] they are used to bound the deviation
of a perturbed trajectory from a nominal one. A similar usage can also
be found in several reference governor schemes [40, 41]. Several state
estimation schemes are designed around minimizing the volume of the
region in which the estimation error is bounded, thus naturally using RPI
sets in their synthesis [90, 153].

1.2.2 Computation of Robust Invariant sets

Since Robust Invariant sets are invaluable tools for system and control
analysis and design, methods to synthesize such sets is a very active area
of research. Regarding RCI sets, one of the most popular and general pro-
posal follows from the set iterations presented in [11]. These iterations
are developed for general dynamical systems, and have been specialized
over time to several classes of systems. An extensively studied appli-
cation involves the case of LTI systems with polytopic constraints [148],
where the conditions for finite time determination are discussed. Broad
variants of these set iterations involve the outside-in and inside-out pro-
cedures [58]. Inside-out procedures, e.g. [32] initialize the iterations at a
known RCI set, and expand out with each iterate being an RCI set. On
the other hand, outside-in procedures only synthesize an RCI set upon
convergence. However, if they converge, outside-in procedures converge
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to the Maximal RCI (MRCI) set, which is the union of all RCI sets. Re-
cently, conditions for the convergence of the inside-out procedure to the
MRCI set were studied in [78]. In order to avoid expensive set-projection
operations, several methodologies are studied to compute tight approxi-
mations of the MRCI set, e.g., [37, 5, 159]. In [125], methods to compute
arbitrarily tight approximations of the MRCI set for an LTI system with
constraint set given as a union of polytopes is studied. For details regard-
ing approaches adopted for computing RCI sets for nonlinear systems,
we refer to [129] and the references therein.

In this thesis, we focus for a majority part on RPI sets, with specific
attention paid to LTI systems with additive disturbances and polytopic
constraints. Hence, we now proceed with a brief summary of relevant
literature regarding computational methods for RPI sets for LTI systems.
Of particular interest are the Maximal and the minimal RPI sets (MRPI
and mRPI respectively) [16]. The mRPI set is the smallest RPI contained
in all RPI sets X (W), while the MRPI set is the largest RPI that is the
union of all RPI sets. The problem of computing RPI sets for linear sys-
tems has been extensively studied. In [44, 63, 106], the MRPI set was
exactly computed for such systems with additive disturbances and poly-
topic model uncertainty and polytopic constraints, and the methods have
been implemented in the software package MAXIS-G [91]. Similar itera-
tions were used to compute the MRPI set in the presence of quasi-smooth
nonlinear constraints in [153]. Computation of this set in the presence
of state-dependent and scaled disturbances was studied in [130]. While
these approaches can compute the MRPI set exactly, they might not be
suitable for high-order and/or very slow systems due to high compu-
tational requirements and complexity of the resulting MRPI set. Hence,
several methods to approximate the MRPI sets with RPI sets of a fixed
complexity/representation have been developed. For example, in [19,
Chapter 5], ellipsoidal invariant sets are computed for linear systems as
sublevel sets of quadratic Lyapunov function. In [124, 123], an RPI set
parameterized as a polytope is computed for linear systems with poly-
topic uncertainty using LMI techniques. It is well understood from [16]
that, while ellipsoidal sets can be representationally simple, they can be
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excessively conservative. On the other hand, while polytopic sets can
be less conservative, they can be excessively complex. In [103], RPI sets
with a semi-ellipsoidal representation were synthesized in order to strike
a trade-off between complexity and conservativeness. In [1], a method
was presented to construct polytopic RPI sets starting from a contrac-
tive ellipsoidal set. More recent techniques focus on co-synthesizing a
feedback controller (1.3) along with a corresponding RPI set for the re-
sulting autonomous system (1.4) by fixing the RPI set parameterization.
For example, in [139], a linear feedback gain and corresponding RPI
sets parameterized as ellipsoids and hyperboxes are computed. RPI sets
parameterized as low-complexity polytopes, i.e., polytopes with twice
the number of hyperplanes as the state dimension, were co-synthesized
along with corresponding linear static feedback laws in [17] by itera-
tively solving a nonlinear program. Similar low-complexity polytopic
RPI sets with linear feedback laws were synthesized for linear systems
with norm-bounded uncertainty and additive disturbances in [138], that
was later extended to compute full-complexity polytopes in [74, 75]. In
[49, 48] low and full-complexity polytopic RPI sets with associated linear
static feedback laws for linear systems with additive uncertainty as well
as a rational parameter dependence were synthesized. While the MRPI
set can be computed exactly in the case of linear systems subject to addi-
tive disturbances under restrictions of strict stability and the origin being
included in the nonempty interior of the constraint sets, exact computa-
tion of the mRPI set, even if well defined, is impossible except under
very restrictive assumptions [63, 16, 135]. Hence, typically outer (RPI)
approximations of the mRPI set are sought. A popular technique in [112,
111] involves appropriately scaling the 0-reachable set to compute arbi-
trarily tight RPI approximations of the mRPI set, that was extended in
[66] to also accomodate polytopic model uncertainty. Alternatively, tight
RPI approximations can also be computed by shrinking an ellipsoidal
RPI set obtained as the level set of an ISS-Lyapunov function, as shown
in [85, 141]. Since these approaches can be excessively computationally
intensive as they involve Minkowski sums, and the resulting approxima-
tions non-viable for online control synthesis, there exist many methods
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to compute tight RPI approximations of the mRPI set with a predefined
complexity. In [115, 118, 144], the smallest polytope with predefined nor-
mal vectors to the hyperplanes was used to approximate the mRPI set.
Low-complexity polytopic RPI approximations of the mRPI set, along
with the associated invariance inducing linear feedback controller were
synthesized in [140]. Moreover, the methods in [74, 75] can also be used
to compute full-complexity polytopic RPI sets and associated feedback
laws.

The problem of computing RPI sets for nonlinear systems is typi-
cally more involved. Methods to compute invariant sets based on back-
ward reachable sets from piecewise affine (PWA) linear systems were
presented in [114, 46]. Such approaches however can be very computa-
tionally intensive. Alternatively, exploiting the link between Lyapunov
functions and RPI sets, methods to synthesize piecewise Lyapunov func-
tions with piecewise level sets that are RPI sets were developed [22, 69,
25, 152]. A useful tool in this regard is Sum-of-Squares (SOS) program-
ing [108], that allows for the reformulation of polynomial constraints into
Linear Matrix Inequalities (LMIs) using which convex computation of
polynomial Lyapunov functions can be performed. Such tools have also
been used in the synthesis of invariant sets using occupancy measures
[52], and based on solving a Bellman type equation [157, 158]. Some
recent results on the computation of parameter-dependent RPI sets [50,
29] present attractive approaches for the synthesis of robust control algo-
rithms with reduced conservativeness.

1.3 Thesis outline and contributions

As demonstrated in Section 1.2, most of the contributions regrading the
computation of RPI sets are based on the assumption that the set of in-
puts/disturbances are known a priori. Moreover, they also assume that
a model of the plant is known beforehand. While this assumption is
reasonable in many applications, the control practitioner must suitably
define the set of inputs/disturbances, and perform system identification
in order to identify a model of the plant in question. In this thesis, we fo-
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cus the developments by exclusively considering uncertain linear time-
invariant (LTI) plant models of the form

x(t+ 1) = Ax(t) +Bu(t) +Bww(t),

y(t) = Cx(t) +Du(t) +Dww(t),

(1.5a)
(1.5b)

with state x ∈ Rnx , input u ∈ Rnu , output y ∈ Rny and unmeasured
disturbance w ∈ Rnw . Considering that the system in (1.5) is subject to
output constraints y ∈ Y , we tackle the following questions:

1. Assuming that system (1.5) is autonomous because either (a) ma-
trices B and D are all-zero matrices, or (b) a stabilizing linear feed-
back gain u = Kx is designed a priori, how can we compute an ap-
propriate disturbance setW such that under the action of arbitrary
disturbances w ∈ W , the set of reachable outputs approximates the
assigned output constraint set Y?

2. Given a set of initial conditions X0 of system (1.5), i.e., x(0) ∈ X0

and a set of persistently exciting disturbancesW , i.e., w(t) ∈ W for
all t ≥ 0, how can we compute an input constraint set U such that
with inputs u ∈ U , system (1.5) can be regulated while robustly
respecting the constraints y ∈ Y?

3. Given a dataset of state and input measurements from a plant, how
can we identify an LTI model (1.5) along with synthesizing a ro-
bustly regulating controller with reduced conservativeness?

As we will demonstrate in this thesis, the aforementioned questions
can be tackled by using RPI sets parameterized by the input/disturbance
constraint sets. Hence, for each of the questions, we formulate and solve
optimization problems that co-synthesize the sets of interest. In this the-
sis, we address the formulation of and the solution methods for these
optimization problems, and is organized as follows:

• In Chapter 3, we address Question 1, i.e., the problem computing
appropriate input disturbance sets for constrained output reacha-
bility. To this end, we first parameterize the disturbance set as a
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polytope with a priori known normal vectors to the hyperplanes.
Then, we formulate an optimization problem to solve for the right-
hand-side parameters of the polytope. In this problem, we enforce
constraints that the set of reachable outputs formulated using the
minimal RPI set approximates the assigned output constraint set
Y . Since obtaining an explicit representation of the minimal RPI
set is generally impossible, we approximate it in the optimization
problem formulation with an RPI set parameterized as a polytope
with a priori fixed normal vectors. We show that the smallest RPI
set (in terms of inclusions) with the chosen parameterization is
uniquely defined, that allows us to bring the optimization formu-
lation into an implementable form. In this form, the constraints
are formulated using support functions over polytopes that can be
difficult to resolve since they are nonsmooth. Hence, in the sec-
ond part of the chapter, we develop an optimization algorithm to
solve the formulated problem based on smoothening-techniques.
We adopt notions of parametric optimization theory to treat the
support functions as implicit functions, based on which we de-
velop a sensitivity-based Primal-Dual Interior Point solver. Finally
we demonstrate the efficacy of the proposed formulation and opti-
mization algorithm to tackle Question 1 using numerical examples.
The content of this chapter is based primarily on [97, 96].

• In Chapter 4, we apply the techniques developed in Chapter 3 to
synthesize a decentralized MPC control scheme. In particular, we
consider a system composed of dynamically coupled subsystems
and subject to coupled constraints on the output. We decouple
these dynamics and constraints by computing state-constraint sets
on the individual subsystems, that satisfy the requirement that if
the subsystems satisfy their local constraints, then the overall sys-
tem constraints are satisfied. This chapter is based on [94].

• In Chapter 5, we reconsider Question 1, and present an alternative
methodology to compute disurbance sets that guarantee constraint
satisfaction. This method is based on using implicitly-parameterized
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RPI sets to approximate the mRPI set within the formulation of the
optimization problem, instead of using a RPI set parameterized as
a polytope with prespecified normal vectors. The implicit RPI sets
permit to specify a priori the RPI approximation error, thus over-
coming the first drawback of the approach proposed in Chapter 3.
Then, we present a novel disturbance set parameterization, that al-
lows for encoding the set of feasible disturbance sets as a polytope,
thus overcoming the second drawback of the approach in Chap-
ter 3. We demonstrate the efficacy of the method to tackle Ques-
tion 1, and compare its performance against the approach of Chap-
ter 3. Finally, we show an application of the method to synthesize
a reduced-order MPC scheme. This chapter is based on [98].

• In Chapter 6, we address Question 2, i.e., the problem of computing
input constraint sets U that can be used to guarantee robust regu-
lation of given set of initial conditions. To this end, we assume that
the plant is equipped with a tube-based Robust MPC controller,
the properties of which we exploit to formulate and solve an op-
timization problem to compute the smallest input constraint set U
that guarantees recursive feasibility. We use a positively invariant
terminal set parameterized by the input constraint set within the
optimization problem, and solve the optimization problem akin to
[44]. We demonstrate the efficacy of the proposed method using
an actuator selection problem, in which the input constrant set U
is parameterized using discrete variables, and the size of the set is
related to an economic cost. This chapter is based on [100].

• In Chapter 7, we address Question 3, i.e., the problem of identifying
an LTI model along with synthesizing a tube-based Robust MPC
controller using a dataset of state and input measurements from a
plant. To this end, we characterize a set of LTI models that can ro-
bustly represent the plant behaviour with formal guarantees. Then,
we use this set to formulate and solve an optimization problem
that, along with selecting an LTI model, also computes correspond-
ing RPI sets and invariance-inducing feedback controllers. This
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problem is solved using a sequential convexification approach for-
mulated through Linear Matrix Inequality (LMI) approximations.
This chapter is based on [99].
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Chapter 2

Preliminaries

In this chapter, we present some preliminary results that will be used in
the developments in the sequel. The first part of this chapter is devoted
to recalling some basic mathematical tools, that will be used in the sec-
ond part to recall some results from literature regarding Robust Positive
Invariant (RPI) sets.

2.1 Set operations and representations

Given two general sets S1,S2 ⊂ Rn, the set operations that we will most
frequently encounter in this thesis are

• Linear Transformation: LS1 := {y : y = Lx, x ∈ S1}, L ∈ Rm×n

• Minkowski sum: S1 ⊕ S2 := {z : z = x+ y, x ∈ S1, y ∈ S2}

• Minkowski difference: S1 ⊖ S2 := {z : z + y ∈ S1, ∀ y ∈ S2}

We refer the reader to [63, 131] for details regarding the properties of
these operations for general sets S1 and S2. A useful tool while analyzing
properties of sets is the support function. The support function of a set
S ⊂ Rn evaluated at some y ∈ Rn is defined as

hS(y) := sup
x∈S

y⊤x. (2.1)
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If S is a bounded set, then hS(y) is bounded above for all y ∈ Rn such that
sup operator can be replaced by the max operator. If the set S is compact
and convex, then it is the intersection of its supporting halfspaces, i.e.,

S =
⋂︂

y∈Rn

{x : y⊤x ≤ hS(y)}. (2.2)

Moreover, the inclusion S1 ⊆ S2 holds if and only if

hS1(y) ≤ hS2(y), ∀ y ∈ Rn. (2.3)

For some compact sets S1 and S2 in Rn and some p-norm ball defining

d̄pH(S1,S2) := min
ϵ
{ϵ : S2 ⊆ S1 ⊕ ϵBnp }, (2.4)

the p-norm induced Hausdorff distance between S1 and S2 is given by

dpH(S1,S2) := max{d̄pH(S1,S2), d̄pH(S2,S1)}. (2.5)

If the inclusion S1 ⊆ S2 holds, then dpH(S1,S2) = d̄pH(S1,S2). In this the-
sis, we primarily use the ∞-norm induced Hausdorff distance. Hence,
we denote d∞H (S1,S2) by dH(S1,S2) for simplicity of notation.

Polytopes

We focus our developments primarily using sets parameterized as poly-
topes. A polytope is a bounded polyhedron, and a polyhedron S ⊂ Rn

is an intersection of a finite-number of halfspacesHi, i.e.,

S :=

s⋂︂
i=1

Hi, whereHi := {x : Mix ≤ qi} for some M⊤
i ∈ Rn, qi ∈ R.

The polyhedron S can be equivalently represented as

S = {x : Mx ≤ q},

where ≤ denotes the elementwise inequality. Every polytope is also
uniquely characterized by its finite-number of vertices, i.e.,

{x[i], i ∈ IvS1 } = vert(S). (2.6)
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A polytope is said to be in a minimal-representation [6] if the removal of a
halfspaceHi would not change it. Moreover if the vector q ≥ 0, then the
origin is included in the polytope, i.e., 0 ∈ S. If q > 0, then the origin is
included in the nonempty interior int(S) ⊂ S, i.e., 0 ∈ int(S). A polytope
is said to be full-dimensional if it includes a nonempty translated p-norm
ball defined as Bnp := {x : ∥x∥p ≤ 1} in Rn, i.e,

∃ x0 ∈ Rn, ϵ > 0 : {x0} ⊕ ϵBnp ⊆ S (2.7)

For polytopes S1 = {x : Mx ≤ q} and S2 = {x : Nx ≤ r}, the
Minkowski sum S1 ⊕ S2 can be computed as

S1 ⊕ S2 = {z : z = x+ y, Mx ≤ q, Ny ≤ r}

=

{︃
z : ∃ x :

[︃
M 0
−N N

]︃ [︃
x
z

]︃
≤
[︃
q
r

]︃}︃
= Πz

(︃{︃[︃
x
z

]︃
:

[︃
M 0
−N N

]︃ [︃
x
z

]︃
≤
[︃
q
r

]︃}︃)︃
,

where Πz(.) is the projection operator onto the components z.
Over a polytope S = {x : Mx ≤ q}, the support function defined in

(2.1) can be computed by solving the Linear Program (LP)

hS(y) = max
x
{y⊤x s.t. Mx ≤ q}. (2.8)

We recall the following properties of support functions from [63] for any
polytopes S,P ⊂ Rn, vectors y ∈ Rn and z ∈ Rm, scalar α ≥ 0 and
matrix L ∈ Rm×n:

1. hαS(y) = hS(αy) = αhS(y)

2. hS⊕P(y) = hS(y) + hP(y)

3. hLS(z) = hS(L
⊤z).

Using support functions, polytope S can equivalently be expressed as

S = {x : Mx ≤ q} =
s⋂︂

i=1

{x : Mix ≤ hS(M
⊤
i )} (2.9)
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following from (2.2), i.e., as an intersection of a finite number of halfs-
paces. Thus, in general the inequality hS(M

⊤
i ) ≤ qi holds for all com-

ponents i ∈ Is1, with strict inequality hS(M
⊤
i ) < qi implying that the

halfspaceHi = {x : Mix ≤ qi} is redundant in the definition of S.
The Minkowski difference between a polytope S and some set P can

be computed using support functions as

S ⊖ P :=

s⋂︂
i=1

{x : Mix ≤ qi − hP(M
⊤
i )}. (2.10)

Then if P is a polytope, then the Minkowski difference can be computed
by solving r number of LPs from (2.8).

Given a polytope S1 = {x : Mx ≤ q} and S2 = {x : Nx ≤ r} with
q ∈ Rs1 and r ∈ Rs2 , the inclusion S1 ⊆ S2 holds if and only if

hS1(N
⊤
i ) ≤ hS2(N

⊤
i ) ≤ ri, ∀ i ∈ Is21 . (2.11)

Then if S2 does not contain any redundant hyperplanes, the inclusion
can be verified by solving s2 number of LPs as

hS1
(N⊤

i ) =

{︄
max

x
Nix

s.t. Mx ≤ q

}︄
≤ ri, ∀ i ∈ Is21 . (2.12)

Because of strong duality of LPs [132], the equality{︄
max

x
Nix

s.t. Mx ≤ q

}︄
=

{︄
min
λi≥0

λiq

s.t. λiM = Ni,

}︄
(2.13)

holds, where λi ∈ R1×s1 , and the LP on the right-hand-side is the dual
LP corresponding to the LP defining the support function hS1(N

⊤
i ) on

the left-hand-side. Defining the set

Λ := {Λ ∈ Rs2×s1 : Λ ≥ 0, ΛM = N},

it then follows from (2.12) and (2.13) that the inclusion S1 ⊆ S2 holds if
and only if

∃ Λ ∈ Λ : Λq ≤ r. (2.14)
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Finally, if the inclusion S1 ⊆ S2 holds, and the vertices {y[i], i ∈ IvS2
1 }

are known a priori such that

S2 = ConvHull(y[i], i ∈ IvS2
1 ) (2.15)

where ConvHull(.) is the convex-hull operator, then the Hausdorff dis-
tance dH(S1,S2) is given by the value of the LP

min
ϵ,{x[i],z[i],i∈I

vS2
1 }

ϵ

s.t. x[i] + z[i] = y[i], i ∈ IvS2
1 ,

x[i] ∈ S1, z[i] ∈ ϵBn∞, i ∈ IvS2
1 .

(2.16)

Having recalled these basic tools, we will now present some fundamental
concepts regarding RPI sets for LTI systems of the form in Equation (1.5).

2.2 RPI sets for LTI systems

In this section, we recall some fundamental concepts regarding RPI sets
for LTI systems of the form in (1.5). To this end, we assume that the
system is equipped with a linear static feedback law of the form u = Kx,
resulting in the closed-loop system

x(t+ 1) = (A+BK)x(t) +Bww(t)

y(t) = (C +DK)x(t) +Dww(t).

(2.17a)
(2.17b)

We denote the closed-loop matrices by

AK := A+BK, CK := C +DK

in the sequel. Assuming that the disturbance set W is given, i.e., w(t) ∈
W for all t ≥ 0, a set X (W) ⊂ Rnx is RPI for this system if and only if it
satisfies the inclusion

AKX (W)⊕BwW ⊆ X (W). (2.18)

If the sets W and X (W) are polytopes defined as

W := {w : Fiw ≤ ϵwi , ∀ i ∈ ImW
1 },

X (W) := {x : Eix ≤ ϵxi , ∀ i ∈ ImX
1 },

(2.19a)
(2.19b)
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then exploting basic properties of support functions and (2.11), the RPI
condition in (2.18) can equivalently be written as

∀ i ∈ ImX
1

⎧⎨⎩ hAKX (W)(E
⊤
i ) + hBwW(E⊤

i ) ≤ hX (W)(E
⊤
i )

⇔ hX (W)(A
⊤
KE⊤

i ) + hW(B⊤
wE⊤

i ) ≤ hX (W)(E
⊤
i ).

Hence, given the sets in (2.19), the RPI inclusion in (2.18) can be verified
by solving 3 ×mX number of LPs. Moreover, if the set X (W) does not
contain any redundant hyperplanes, then hX (W)(E

⊤
i ) = ϵxi , such that the

inclusion can be verified by solving 2×mX number of LPs. Alternatively,
by exploting the duality conditions in (2.14), the RPI inclusions can be
verified if the set X (W) does not contain any redundant hyperplanes by
checking the existence of matrices nonnegative Λ ≥ 0, M ≥ 0 satisfying

ΛE = EAK , MF = EBw, Λϵ
x +Mϵw ≤ ϵx. (2.20)

Assuming that the output of the system in (2.17b) is subject to polytopic
constraints Y as

y ∈ Y := {y : Giy ≤ gi, ∀ i ∈ ImY
1 }, (2.21)

the output inclusion

CKX (W)⊕DwW ⊆ Y (2.22)

can be verified using support functions as

∀ i ∈ ImY
1

⎧⎨⎩ hCKX (W)(G
⊤
i ) + hDwW(G⊤

i ) ≤ gi

⇔ hX (W)(C
⊤
KG⊤

i ) + hW(D⊤
wG

⊤
i ) ≤ gi.

(2.23)

Since X (W) is an RPI set, if the initial state x(0) ∈ X (W) then it
holds that x(t) ∈ X (W), ∀ t ≥ 0 for all future disturbance sequences
w(t) ∈ W , ∀ t ≥ 0. Then, if inclusion (2.22) is verified, it implies that
the system always satisfies its constraints, i.e., y(t) ∈ Y , ∀ t ≥ 0. This
property permits X (W) to be used as a terminal set in MPC techniques
in order to provide recursive feasibility guarantees.
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2.2.1 The minimal RPI set

What are the conditions that guarantee the existence of an RPI set X (W)
satisfying inclusion (2.22)?

Given some disturbance set W , the set of states that can be reached by
the system from the origin in t-steps is given by

X t(W) :=

{︄
x(t) : x(t) =

t−1∑︂
k=0

At−k−1
K Bww(k), ∀ w(k) ∈W

}︄
, (2.24)

the limit of which is referred to as the 0-reachable set Xm(W), i.e.,

Xm(W) := lim
t→∞

X t(W). (2.25)

If the following assumptions are satisfied:

1. The spectral radius of AK is strictly less that 1, i.e., ρ(AK) < 1;

2. The origin belongs to the compact and convex disturbance set W ,
i.e., 0 ∈W ,

then the reachable sets satisfy the inclusions

X t(W) ⊆ X t+1(W) ⊆ Xm(W), ∀t ≥ 0,

and the 0-reachable set Xm(W) is a uniquely-defined compact and con-
vex set that contains the origin [63, Theorem 4.1]. Moreover, is satisfies

AKXm(W)⊕BwW = Xm(W),

from which it can be observed that it satisfies the RPI condition in (2.18).
Hence, Xm(W) is an RPI set. Infact, it was shown in [63, Corollary 4.2]
that Xm(W) is the minimal RPI (mRPI) set, i.e., it is the smallest (in an
inclusion sense) RPI set of the system, such that

X (W) is RPI =⇒ Xm(W) ⊆ X (W). (2.26)
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In a set-theoretic notation, the mRPI set can be expressed using Minkowski
sums as

Xm(W) =

∞⨁︂
k=0

Ak
KBwW . (2.27)

Hence, from the inclusions in (2.26) and (2.22), we observe that there
exists an RPI set X (W) satisfying the output-constraint set inclusion if
and only if the mRPI set satisfies the inclusion as

CKXm(W)⊕DW ⊆ Y , (2.28)

thus answering the aforementioned question. Unfortunately, from the
infinite Minkowski sum in (2.27), we see that in general, the mRPI set
Xm(W) cannot be computed exactly. Hence, one typically attempts to
compute RPI sets that tightly approximate the mRPI set. The character-
ization and computation of such RPI sets is an active research area, e.g.,
[112, 144], etc.

2.2.2 The maximal RPI set

What is the largest RPI set X (W) satisfying inclusion (2.22)?

We recall that inclusion (2.28) is necessary and sufficient for the ex-
istence of an RPI set satisfying inclusion (2.22). Since the origin belongs
to the mRPI set Xm(W), it is hence necessary that the origin belongs to
the output-constraint set Y for inclusion (2.28) to be satisfied. Assuming
that inclusion (2.28) is satisfied, the Maximal RPI (MRPI) set XM(W) sat-
isfying inclusion (2.22) is defined as the union of all RPI sets satisfying
inclusion (2.22), i.e.,

XM(W) :=
⋃︂
{X (W) : (2.18), (2.22)}.

It was shown in [63] that the MRPI set XM(W) is the limit set of the
iterations

O0(W) := {x : CKx ∈ Y0(W)}
Ot+1(W) := Ot(W) ∩ {x : CKAt+1

K x ∈ Yt+1(W)},
(2.29)

(2.30)
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i.e.,

XM(W) = O∞(W) :=
⋂︂
t≥0

Ot(W),

where the sets Y0(W) and Yt+1(W) are defined as

Y0(W) := Y ⊖DwW ,

Yt+1(W) := Yt ⊖ CKAt
KBwW .

Moreover, if the tighter inclusion

CKXm(W)⊕DW ⊆ int(Y) ⊂ Y (2.31)

holds, then there exists some t∗ ≥ 1 such that

O∞(W) = Ot∗(W) = Ot∗+1(W).

Such an index t∗ is called the finite-determination index, and the set
O∞(W) is said to be finitely-determined, i.e., it can be computed exactly
in finite-time.

2.2.3 Tube-based Robust Model Predictive Control

In order to demonstrate some control design applications of the methods
presented in this thesis, we use the tube-based Robust Model Predictive
Control (RMPC) scheme presented in [87]. We recap here some basic
design ideas of this scheme, and present its relevant properties. In the
remaining chapters in this thesis, we recall the scheme, with notation
specialized to the problem being tackled in the respective chapters.

We recall the LTI System (1.5) with dynamics

x(t+ 1) = Ax(t) +Bu(t) +Bww(t),

y(t) = Cx(t) +Du(t) +Dww(t),

(2.32a)
(2.32b)

that is subject to output constraints y ∈ Y and persistent disturbances
w ∈ W . The tube-based RMPC scheme in [87] can be used to robustly
regulate the state of System (2.32), and is constructed as follows.
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First, a feedback gain K is assumed to be known a priori such that
ρ(AK) < 1, where AK = A + BK. Then, exploiting linearity the state
and output are split into nominal and perturbed components as

x = x̂+∆x, y = ŷ +∆y, (2.33)

and the control input is parameterized as

u = û+K∆x, (2.34)

where û is the nominal control input. Then, denoting CK = C+DK, the
dynamics of the nominal and perturbed systems are written as

Nominal system

{︄
x̂(t+ 1) = Ax̂(t) +Bû(t),

ŷ(t) = Cx̂(t) +Dû(t)

Perturbed system

{︄
∆x̂(t+ 1) = AK x̂(t) +Bww(t),

∆ŷ(t) = CK x̂(t) +Dww(t)

(2.35)

(2.36)

For the perturbed system in (2.36), an RPI set X (W) is constructed that
satisfies the RPI inclusion

AKX (W)⊕BwW ⊆ X (W). (2.37)

Then, it can be observed that the state of System (2.32) belongs to a tube
of cross-section X (W) around the nominal system state x̂, and the out-
put of System (2.32) belongs to a tube of cross-section CKX (W)⊕DWW
around the nominal system output ŷ, i.e.,

x(t) ∈ x̂(t)⊕X (W) =⇒

{︄
x(t+ 1) ∈ x̂(t+ 1)⊕X (W)

y(t) ∈ ŷ(t)⊕ CKX (W)⊕DwW
(2.38)

The RMPC scheme exploits this property to guarantee constraint satis-
faction by enfocing the output constraint inclusion

ŷ(t)⊕ CKX (W)⊕DwW ⊆ Y , ∀ t ≥ 0.

These constraints are enforced by solving, at each time-instant t the
following Quadratic Program (QP) that is parameterized by the current
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state measurement x(t) of the plant:

min
z

t+N−1∑︂
s=t

∥x̂(s)∥2Q + ∥û(s)∥2R + ∥x̂(t+N)∥2P

s.t. x(t) ∈ x̂(t)⊕X (W),

x̂(s+ 1) = Ax̂(s) +Bû(s), s ∈ It+N−1
t ,

Cx̂(s) +Dû(s) ∈ Y ⊖ (CKX (W)⊕DwW), s ∈ It+N−1
t+1 ,

x̂(t+N) ∈ T (W),

(2.39)

where z := {x̂(t), . . . , x̂(t+N), û(t), . . . , û(t+N−1)}. Uniquely, the initial
nominal state x̂(t) is an optimization variable in the QP formulation, that
is used to establish robust exponential stability of the RMPC scheme. If
QP (2.39) is successfully solved, then the control input

u(t) = û∗(t) +K(x(t)− x̂∗(t))

is applied to the plant. Feasibility of the QP is ensured if the perturbation
due to the disturbance is not too large with respect to the constraints, i.e.,

CKX (W)⊕DwW ⊆ int(Y).

Moreover, in order to guarantee recursive feasibility of the RMPC scheme,
the terminal set T (W) is selected as a Positive invariant set for the nom-
inal system controlled by the feedback law û = Kx̂, i.e.,

AKT (W) ⊆ T (W), (2.40)

that is also constraint admissible, i.e.,

T (W) ⊆ {x̂ : CK x̂ ∈ Y ⊖ (CKX (W)⊕DwW)}. (2.41)

Finally, the cost matrices (Q,R, P ) along with the feedback gain K are
assumed to satisfy the dissipativity condition

A⊤
KPAK − P ⪯ −(Q+K⊤RK)

to ensure robust exponential stability of the closed-loop system with the
RMPC controller to the RPI set X (W).
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Figure 1: Closed-loop tube-based RMPC performance. The RPI set X (W) com-
puted using methods from [144], and terminal set T (W) selected as the MPI set,
computed using [44].

In Figure 1, we illustrate the controller performance on a randomly
generated system with Y = 5B2∞. Further details of this system are given
in Appendix A. The gray lines indicate the actual plant trajectories, and
the green lines indicate the nominal trajectories. Observe that the nomi-
nal plant trajectories always belong in the RPI tube around the nominal
trajectory. Thus, the RMPC scheme regulates the whole tube of trajec-
tories instead of a single point to the RPI set instead of the origin, thus
guaranteeing robust constraint satisfaction and stability.
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Chapter 3

Computation of Input
Disturbance Sets for
Constrained Output
Reachability

3.1 Introduction

The theory of set invariance plays an important role in the analysis of un-
certain dynamical systems by providing the tools useful for the synthesis
of robust controllers that can satisfy constraints in the presence of distur-
bances [16]. Of particular importance are RPI sets, the computation of
which is a very active area of research as discussed in the introduction.
These sets have successfuly been used in several applications such as
Robust MPC [87, 116, 120], fault-tolerant control [104], state-observer de-
sign [90], etc. A key observation in these applications, however, is that
they are developed under the assumption that the disturbance set is known
a priori

In many practical cases, however, while the set of admissible states
can be estimated from sensor measurements or pre-specified from given
constraints to be satisfied, the disturbance set is unknown, leaving the de-
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signer the task of suitably defining it, especially in case one must satisfy
a given set of constraints on the system, e.g., encoding known physical
limitations, or undesired states. For example, in a decentralized MPC
(DeMPC) application such as [120, 94], the dynamic coupling between
subsystems is modeled as an additive disturbance. Then, the disturbance
set for a given subsystem represents the state-constraint sets of the neigh-
boring subsystems. Another example is presented in [39], in which the
tracking references are modeled as disturbances acting on a system, such
that a feasible disturbance set is the set of all feedforward tracking refer-
ences guaranteeing constraint satisfaction. In both these cases, it is desir-
able to compute the largest feasible disturbance sets. In particular, a large
disturbance set in the DeMPC case ensures that the region of attraction
of the DeMPC scheme in which recursive feasibility and stability is guar-
anteed is maximized. Similarly, in the reference tracking case, a large
disturbance set ensures that the operating range of the tracking control
system is maximized.

In this chapter, we propose a method to tackle disturbance set com-
putation problems such as those described above. In particular, we com-
pute a set of disturbances such that the corresponding output reachable
set approximately matches an assigned one. This method is centered
on the formulation of an optimization problem, with the input distur-
bance set being the unknown and the approximation error between the
obtained and assigned output set being the objective function to mini-
mize. We propose the formulation of the optimization problem for stable
linear systems and polytopic sets: since the construction of the output set
requires the computation of an RPI set, we adopt the notions of [118, 144]
to encode the computation of a parametrized RPI set within the problem.
The chapter is organized as follows. We define the problem we solve in
Problem 3.2. Then in Section 3.3, we present the main parameterizations
we adopt, and present theoretical results that help us bring the problem
into an implementable form. In Section 3.4, we develop a specialized
smoothening-based interior-point solver for the resulting optimization
problem.
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3.2 Problem Definition

Consider the linear time-invariant discrete-time system

x(t+ 1) = Ax(t) +Bw(t),

y(t) = Cx(t) +Dw(t),

(3.1a)
(3.1b)

with state x ∈ Rnx , output y ∈ Rny and additive disturbance w ∈ Rnw .
We assume that a set of output constraints is given:

Y := {y : Gy ≤ g} with g ∈ RmY . (3.2)

We define the reachable set of states from the origin, i.e., from x(0) = 0,
under the action of disturbances w(t) ∈ W for all t ≥ 0 in t-time steps as

X (t,W) :=

{︄
x : x =

t−1∑︂
k=0

At−k−1Bw(k), ∀ w(k) ∈ W

}︄
,

and the corresponding set of t-step reachable outputs as

Y(t,W) := CX (t,W)⊕DW.

Observing that the reachable set of states satisfies the inclusion

X (t,W) ⊆ X (t+ 1,W), ∀ t ≥ 0,

if the disturbance setW is compact, convex, and contains the origin, we
define the limit of reachable set of states as

Xm(W) := lim
t→∞

X (t,W), (3.3)

and the corresponding limit set of reachable outputs as

Ym(W) := CXm(W)⊕DW. (3.4)

Then, our goal is to compute a disturbance setW that satisfies

Ym(Y) = Y, (3.5)
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i.e., the reachable set of outputs is equal to the assigned set of outputs
Y . Unfortunately, satisfying the equality in (3.5) exactly might not be
feasible in general. This is because the set Y is user-specified and hence
can be of an arbitrary shape, while the reachable set of outputs Ym(Y)
is defined by the system matrices (A,B,C,D) and the parameterization
adopted to represent the disturbance set W . Thus, we instead focus on
computing a disturbance setW that satisfies the inclusion

Ym(W) ⊆ Y, (3.6)

and minimizes the distance between the reachable set of outputs Ym(W)

and the assigned output set Y . To this end, we tackle the optimization
problem

min
W

dY(Ym(W))

s.t. Ym(W) ⊆ Y,
0 ∈ W,

(3.7a)

(3.7b)
(3.7c)

where dY(Ym(W)) measures the disturbance between the sets Y and
Ym(W), and Constraint (3.7b) enforces the desired inclusion in (3.6). Re-
garding the distance function dY(Ym(W)), a classical choice is to use the
Hausdorff distance between the sets Ym(W) and Y . In this chapter, we
consider a slightly more general formulation with

dY(Ym(W)) := min
ϵ
{∥ϵ∥1 : Y ⊆ Ym(W)⊕ B(ϵ)} (3.8)

defined using the set B(ϵ) := {y : Hy ≤ ϵ}, in which normal vectors
{H⊤

i , i ∈ InB
1 } are specified a priori by the user. Since dY(·) is monotonic,

i.e, for all compact sets S1,S2 ⊆ Y ,

S1 ⊆ S2 ⊆ Y =⇒ dY(S1) ≥ dY(S2), (3.9)

Problem (3.7) computes a disturbance setW that maximizes the coverage
of Y by the reachable outputs while enforcing inclusion (3.6). Moreover,
it prioritizes coverage of Y by the output reachable set Ym(W) in direc-
tions indicated by the normal vectors H⊤

i to the set B(ϵ).
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Before tackling Problem (3.7), we observe that the reachable state set
Xm(W) in (3.3) is given by the infinite Minkowski sum

Xm(W) =

∞⨁︂
t=0

AtBW. (3.10)

This implies that, except under very restrictive assumptions on (A,B,W) [135],
computing an exact finite-dimensional representation of the set Xm(W),
and hence Ym(W), is in general impossible. Thus, Problem (3.7) is in
general impossible to solve exactly. This can, however, be ameliorated
by adopting the notion of RPI sets, as we now explain. To this end, we
make the following standing assumption of System (7.1).

Assumption 3.1. System (7.1) is strictly stable, i.e., ρ(A) < 1. □

We know from [63] that under Assumption 3.1, if the disturbance set
W is compact, convex and contains the origin, then the set Xm(W) ex-
ists, is compact, convex, and contains the origin. By basic properties of
the Minkowski sum, the set Ym(W) also inherits these properties. Fur-
thermore, it was also shown in [63] that Xm(W) is the smallest (in an
inclusion sense) RPI set of System (3.1a), i.e., if a set XRPI(W) satisfies
the RPI inclusion

AXRPI(W)⊕BW ⊆ XRPI(W), (3.11)

then the set Xm(W) is included in the RPI set, i.e.,

Xm(W) ⊆ XRPI(W). (3.12)

Hence, Xm(W) is also referred to as the minimal RPI (mRPI) set. Then,
defining a set of outputs corresponding to some RPI set XRPI(W) as

YRPI(W) := CXRPI(W)⊕DW ⊇ Ym(W), (3.13)

the desired output constraint inclusion in (3.6) formulating Constraint (3.7b)
can be enforced through

YRPI(W) ⊆ Y. (3.14)
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Thus, we propose to tackle Problem (3.7) by replacing the output reach-
able set Ym(W) with some outer-approximating set YRPI(W) defined us-
ing some suitable finite-dimensional RPI set XRPI(W).

From inclusion (3.13) and the monotonicity property of the distance
function dY(·) in (3.9), it follows that

dY(YRPI(W)) ≤ dY(Ym(W)) (3.15)

for any disturbance setW and finite-dimensional RPI set XRPI(W) satis-
fying inclusion (3.13). This implies that if we replace Ym(W) in the ob-
jective of Problem (3.7) with YRPI(W), then we would be minimizing a
lower-bound, which is undesirable. Hence, we propose to instead select
some index l > 0, and minimize the distance between the l-step output
reachable set and the output constraint set Y . In other words, for some
user-specified index l > 0, we define the l-step reachable set as

S(l,W) :=

l−1⨁︂
t=0

CAtBW ⊕DW. (3.16)

Then observing that for any l > 0, by monotonicity the distance function
satisfies

dY(Ym(W)) ≤ dY(S(l,W)), (3.17)

we propose to tackle the following optimization problem to minimize an
upper-bound to Problem (3.7):

min
W

dY(S(l,W))

s.t. YRPI(W) ⊆ Y,
0 ∈ W.

(3.18a)

(3.18b)
(3.18c)

The main questions to tackle in order to solve Problem (3.18) are

1. How to choose a representation for the disturbance setW?

2. How to choose a representation of the RPI set XRPI(W) required to
formulate Constraint (3.18b)?

3. How to solve the resulting optimization problem?
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In the rest of this chapter, we tackle these questions using an Explicit RPI
framework, i.e., we introduce the RPI set XRPI(W) as a decision variable
into Problem (3.18).

Remark 3.1. Since the setXRPI(W) is RPI, with persistent disturbances w(t) ∈
W, ∀ t ≥ 0 from any disturbance setW feasible for Problem (3.18), we are guar-
anteed that the output of System (7.1) satisfies the constraints y(t) ∈ Y, ∀ t ≥ 0
from any initial state x(0) ∈ XRPI(W), and is not restricted to x(0) = 0. □.

3.3 Explicit RPI approach to solve Problem (3.18)

In this approach, we focus on the computation of a disturbance set W
parametrized as the polytope

W(ϵw) := {w : Ftw ≤ ϵwt , ∀ t ∈ ImW
1 } = {w : Fw ≤ ϵw}. (3.19)

We assume that the normal vectors {F⊤
t ∈ Rnw , t ∈ ImW

1 } to W(ϵw)

are given a priori, and restrict our attention to computing the vector
ϵw. Given the disturbance set parameterization in (3.19), the constraint
0 ∈ W can be enforced simply as ϵw ≥ 0.

Nonconvexity due to parameterization (3.19)

Before we proceed with formulating Problem (3.7) with the polytopic
disturbance set parameterization in (3.19) and then approximating it as
Problem (3.18), we present a brief discussion regarding the inherent non-
convexity associated with this parameterization. To this end, we first
write out Constraint (3.7b) as

Ym(ϵw) =
∞⨁︂
t=0

CAtBW(ϵw)⊕DW(ϵw) (3.20)

by recalling the definition of the mRPI set from (3.10) and the output
reachable set Ym(·) from (3.4). Note that we slightly abuse notation with
using Ym(ϵw) instead of Ym(W(ϵw)). This is because we assume that the
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matrix F is fixed a priori. Then, we define the set of all feasible distur-
bance set parameters ϵw as

OY(F ) := {ϵw ≥ 0 : Ym(ϵw) ⊆ Y}.

By properties of support functions, ϵw ∈ OY(F ) if and only if

∞∑︂
t=0

hW(ϵw)((GjCAtB)⊤) + hW(ϵw)((GjD)⊤) ≤ gj , ∀ j ∈ ImY
1 . (3.21)

Considering two feasible vectors ϵw,1, ϵw,2 ∈ OY(F ), a scalar ζ ∈ [0, 1],
and the convex combination

ϵ̃w := ζϵw,1 + (1− ζ)ϵw,2,

the inclusion
W(ζϵw,1)⊕W((1− ζ)ϵw,2) ⊆W(ϵ̃w)

holds for a general disturbance set parameterizing matrix F (from dual-
ity in Linear Programing (LP)). This implies that for any arbitrary vector
r ∈ Rnw , the support function inequality

hW(ζϵw,1)(r) + hW((1−ζ)ϵw,2)(r) ≤ hW(ϵ̃w)(r)

holds, such that ϵ̃w does not necessarily belong toOY(F ). Hence, Problem
(3.7) is in general nonconvex. However, as we show in the following result,
there exist special cases of parametrization of F for which convexity of
the problems holds.

Proposition 3.1. Suppose that the disturbance set W(ϵw) is parametrized with
F = [F̃⊤ − F̃⊤]⊤, where F̃ ∈ Rnw×nw , and the matrix F̂ := (F̃ F̃⊤)−1F̃ is
well-defined. Then, OY(F ) is convex. □

Proof. We note that if hW(ζϵw)(F
⊤
t ) = ζϵwt for all t ∈ ImW

1 , then

W(ζϵw,1)⊕W((1− ζ)ϵw,2) = W(ϵ̃w)

holds for all ϵw,1, ϵw,2 ∈ Oy(F ), ζ ∈ [0, 1] and ϵ̃w = ζϵw,1 + (1 − ζ)ϵw,2,
such that ϵ̃w ∈ Oy(F ).
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Hence, we show in the sequel that the support function equality

hW(ϵw)(F
⊤
t ) =

{︄
max
w

Ftw

s.t. Fw ≤ ϵw

}︄
= ϵwt

holds for all t ∈ ImW
1 under the assumption on F . Since hW(ϵw)(F

⊤
t ) ≤ ϵwt

in general, it is sufficient to show the existence of a primal variable w
satisfying Ftw = ϵwt , along with dual variables [λ⊤ µ⊤]⊤ ≥ 02nw

and
slack variables s ≥ 02nw satisfying the LP optimality conditions [102]

F̃⊤λ− F̃⊤µ = F⊤
t , Fw + s = ϵw, [λ⊤ µ⊤]⊤ ◦ s = 0. (3.22)

We first write the dual feasible condition as λ = µ+ F̂F⊤
t by multiplying

F̂ on both sides, and denote column t of Inw
by e[t]. Then, by definition

of F̂ , and have F̂F⊤
t = e[t] if t ∈ Inw

1 , and F̂F⊤
t = −e[t−nw] if t ∈ I2nw

nw+1.
Then, setting the dual variables λ = e[t] and µ = 0 for all t ∈ Inw

1 , and
µ = e[t−nw] and λ = 0 for all t ∈ I2nw

nw+1, we note that [λ⊤ µ⊤]⊤ ◦ s = 0
implies st = 0, or equivalently that the primal variable w satisfies Ftw =
ϵwt .

In the Explicit RPI approach, we focus on general polytopic parametriza-
tions of W(ϵw), for which Problem (3.7) is generally nonconvex. This is
motivated primarily by the fact that parametrizations of W(ϵw) that en-
sure convexity of Problem (3.7) might be excessively conservative in cer-
tain applications, e.g. decentralized MPC [94], in which the disturbance
sets represent state-constraint sets of dynamically coupled subsystems.

3.3.1 Polytopic parameterization of the RPI set

We propose to use a RPI set XRPI(ϵ
w) parameterized as the polytope

X(ϵx) := {x : Eix ≤ ϵxi , ∀ i ∈ ImX
1 } = {x : Ex ≤ ϵx} (3.23)

to formulate Problem (3.18), in which we assume that the normal vectors
{E⊤

i ∈ Rnx , i ∈ ImX
1 } to X(ϵx) are given a priori. In order to formu-

late Problem (3.18) to compute a disturbance set W(ϵw) using the RPI set
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X(ϵx), we first introduce the support functions

∀ i ∈ ImX
1 ,

⎧⎪⎪⎨⎪⎪⎩
ci(ϵ

x) := hAX(ϵx)(E
⊤
i ),

di(ϵ
w) := hBW(ϵw)(E

⊤
i ),

bi(ϵ
x) := hX(ϵx)(E

⊤
i ).

We then recall that the set X(ϵx) is RPI for a given disturbance set W(ϵw)

if and only if it verifies the inclusion

AX(ϵx)⊕BW(ϵw) ⊆ X(ϵx), (3.24)

which can be written using the support functions introduced above as

c(ϵx) + d(ϵw) ≤ b(ϵx). (3.25)

We then define the set of all vectors ϵx characterizing an RPI set X(ϵx) for
a given disturbance set parameter ϵw ≥ 0 as

E(d(ϵw)) := {ϵx ≥ 0 : c(ϵx) + d(ϵw) ≤ b(ϵx)}. (3.26)

In the definition of E(d(ϵw)), we enforce ϵx ≥ 0 since every RPI set X(ϵx)
corresponding to a disturbance set W(ϵw) with ϵw ≥ 0 contains the ori-
gin, such that ϵx ≥ 0. Using the set E(d(ϵw)), we define

ϵx(ϵw) := argmin
¯
ϵx

dH(Xm(ϵ
w),X(

¯
ϵx))

s.t.
¯
ϵx ∈ E(d(ϵw)),

(3.27)

where dH(Xm(ϵ
w),X(ϵx)) is the Hausdorff distance between the mRPI set

Xm(ϵ
w) and the set X(ϵx), such that for a given disturbance set parameter

ϵw ≥ 0, the set X(ϵx(ϵw)) is the tightest RPI approximation parameterized
as the polytope X(ϵx) to the mRPI set Xm(ϵ

w). We then propose to use
the set X(ϵx(ϵw)) as the RPI set XRPI(W(ϵw)) in the formulation of Prob-
lem (3.18).

Then, in order to encode Constraint (3.18b) for the disturbance set
W(ϵw) and RPI set X(ϵx(ϵw)), we first define the associated output set as

Y(ϵx(ϵw), ϵw) := CX(ϵx(ϵw))⊕DW(ϵw), (3.28)

34



that is equivalent to the set YRPI(ϵ
w) in the definition of Problem (3.18).

Then, we define the support functions

∀ k ∈ ImY
1 ,

{︄
lk(ϵ

x) := hCX(ϵx)(G
⊤
k ),

mk(ϵ
w) := hDW(ϵw)(G

⊤
k ).

using which we encode the constraint Y(ϵx(ϵw), ϵw) ⊆ Y as

l(ϵx(ϵw)) +m(ϵw) ≤ g. (3.29)

Hence, for the disturbance parameterization W(ϵw) and RPI set param-
eterization X(ϵx), we propose to formulate Problem (3.18) as the bilevel
optimization problem

min
ϵw

dY(S(l,W(ϵw)))

s.t. l(ϵx) +m(ϵw) ≤ g,

ϵw ≥ 0,

ϵx := argmin
¯
ϵx

dH(Xm(ϵ
w),X(

¯
ϵx)) s.t.

¯
ϵx ∈ E(d(ϵw)).

(3.30a)

(3.30b)
(3.30c)
(3.30d)

In the definition of Problem (3.30), we drop the dependence of ϵx on ϵw

for simplicity of notation. Since we explicitly compute the vector ϵx in
Problem (3.30) that computing an explicit representation of the RPI set
X(ϵx), we refer to the current approach as an Explicit RPI (ERPI) ap-
proach.

In the rest of this section, we focus on the development of methods
to solve Problem (3.30). Before we do so, we discuss the rationale be-
hind the formulation of Problem (3.30). To this end, we first note that a
conventional formulation of Problem (3.18) follows for a disturbance set
W(ϵw) and an RPI set X(ϵx) as

min
ϵx,ϵw

dY(S(l,W(ϵw)))

s.t. c(ϵx) + d(ϵw) ≤ b(ϵx),

l(ϵx) +m(ϵw) ≤ g,

ϵw ≥ 0,

(3.31a)

(3.31b)
(3.31c)
(3.31d)

in which instead of Constraint (3.30d), Constraint (3.31b) simply enforces
that X(ϵx) is an RPI set corresponding to W(ϵw). Then, the formulation
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of Problem (3.18) is justified only if it is not more conservative that Prob-
lem (3.31). To this end, we recall from [118] that given some ϵw ≥ 0,
the set X(ϵx(ϵw)) is the smallest RPI set contained in all RPI sets X(ϵx)
parameterized with fixed normal vectors defining the matrix E, i.e.,

X(ϵx(ϵw)) ⊆ X(ϵx), ∀ ϵx ∈ E(d(ϵw)).

By basic properties of Minkowski sums and monotonicity of support
functions, it follows that

l(ϵx(ϵw))⊕m(ϵw) ≤ l(ϵx)⊕m(ϵw), ∀ ϵx ∈ E(d(ϵw)).

This implies any solution ϵw of Problem (3.31) is feasible for Problem (3.30),
such that the optimal value of Problem (3.30) is no worse than that of
Problem (3.31). On the other hand, any solution (ϵx(ϵw), ϵw) of Prob-
lem (3.30) is feasible for Problem (3.31), since ϵx = ϵx(ϵw) satisfies the
RPI condition. However, the constraint sets of Problems (3.30) and (3.31)
are nonconvex since support functions are concave in their argument.
Hence, it is justified to directly use ϵx = ϵx(ϵw) to while formulating the
problem, since it implies that we optimize directly using the RPI set X(ϵx)
that will be the least conservative for a given W(ϵw). As we will show in
the sequel, this is also advantageous from an implementation viewpoint.

3.3.2 Existence conditions for a polytopic RPI set

Since ϵw is an optimization variable in Problem (3.30), we must ensure
that for every feasible ϵw ≥ 0, there exists an RPI set parameterized as
X(ϵx). In other words, we must ensure that the set E(d(ϵw)) character-
izing the vectors ϵx defining RPI sets X(ϵx) for a given disturbance set
W(ϵw) is nonempty for all feasible ϵw ≥ 0. Hence, we now formulate
the requirements that matrix E must satisfy to ensure that E(d(ϵw)) is
nonempty for every ϵw ≥ 0.

Assumption 3.2. Matrix E is chosen such b(1) = 1, and there exists an
ϵ̂x ≥ 0 satisfying the inequality c(ϵ̂x) + 1 ≤ b(ϵ̂x). □

Assumption 3.2 implies that there exists an RPI set X(ϵ̂x) for the sys-
tem x(t + 1) = Ax(t) + w̃(t) with w̃ ∈ X(1). In the following result, we
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show that there always exists an RPI set X(ϵx) for system (3.1a) with the
disturbance set W(ϵw) under Assumption 3.2.

Proposition 3.2. If Assumption 3.2 holds, then there always exists an ϵx ≥ 0
satisfying c(ϵx) + d(ϵw) ≤ b(ϵx) for all ϵw ≥ 0 . □

Proof. Under Assumption 3.2, there exist nonnegative multipliers vari-
ables Λ̂c ∈ RmX×mX and Λ̂b ∈ RmX×mX satisfying

Λ̂⊤
c ϵ̂x + 1 ≤ Λ̂⊤

b ϵ̂x, Λ̂⊤
c E = EA, Λ̂⊤

bE = E,

by LP duality and Farkas’ lemma [16]. There exists an ϵx ≥ 0 satisfying
the RPI condition

c(ϵx) + d(ϵw) ≤ b(ϵx)

for any given ϵw ≥ 0 if and only if there exist nonnegative multiplier
variables Λc and Λb satisfying

Λ⊤
c ϵx + d(ϵw) ≤ Λ⊤

b ϵx, Λ⊤
c E = EA, Λ⊤

bE = E.

The proof is concluded by noting that ϵx = ||d(ϵw)||∞ϵ̂x, Λc = Λ̂c, and
Λb = Λ̂b satisfy these conditions.

Remark 3.2. Assumption 3.2 can be verified by checking the boundedness of
LP (8) in [144]. An iterative procedure to obtain a matrix E that verifies As-
sumption 3.2 was presented in [81]. □

3.3.3 Elimination of Xm(ϵ
w) from (3.30d)

Having established that E(d(ϵw)) is nonempty for any ϵw ≥ 0 under As-
sumption 3.2, we will now eliminate the mRPI set Xm(ϵ

w) from Problem
(3.30d). To this end, we recall the following results from [118] (special-
ized to the case of an autonomous stable LTI system), which state that the
solution of Problem (3.30d) can be obtained using fixed-point iterations
for a given ϵw ≥ 0. We denote d(ϵw) by d for ease of notation.

Lemma 3.1. [118, Theorems 1 and 2, Corollary 1] Suppose Assumption 3.2
holds, and

H(d) := {ϵx : 0 ≤ ϵx ≤ ∥d∥∞ ϵ̂x}.

Then, for any ϵw ≥ 0, the following results hold:
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1. For all
¯
ϵx ∈ H(d), it holds that c(

¯
ϵx)+d ∈ H(d), and there exists atleast

one solution ϵx∗(d) ∈ H(d) for the fixed-point equations

c(ϵx∗(d)) + d = b(ϵx∗(d)), b(ϵx∗(d)) = ϵx∗(d).

Hence, the set of all fixed-point solutions

R(d) := {ϵx ∈ H(d) : c(ϵx) + d = b(ϵx), b(ϵx) = ϵx}

is nonempty;

2. Starting from the initial-condition ϵx[0] = 0, the sequence generated by the
iterations ϵx[k+1] := c(ϵx[k]) + d converges to a fixed-point solution

lim
k→∞

ϵx[k] := ϵx∗(0,d) ∈ R(d).

Moreover, ϵx∗(0,d) is the minimal fixed-point, i.e.,

ϵx∗(0,d) ≤ ¯
ϵx, ∀

¯
ϵx ∈ R(d) ⊆ E(d).

Consequently, the set X(ϵx∗(0,d)) satisfies satisfies

Xm(ϵ
w) ⊆ X(ϵx∗(0,d)) =

⋂︂
¯
ϵx∈E(d)

X(
¯
ϵx),

and hence is the minimal parametrized RPI set.

□

From Lemma 3.1.2, we see that ϵx∗(0,d(ϵw)) is the solution of the Prob-
lem (3.30d), since the RPI set X(ϵx∗(0,d(ϵw))) satisfies the inequality

dH(Xm(ϵ
w),X(ϵx∗(0,d(ϵw)))) ≤ dH(Xm(ϵ

w),X(
¯
ϵx))

over all
¯
ϵx ∈ E(d(ϵw)). Since this solution also satisfies ϵx∗(0,d(ϵ

w)) ≤
¯
ϵx

over all feasible
¯
ϵx ∈ E(d(ϵw)), it has the smallest norm-1 value over all

feasible
¯
ϵx ∈ E(d(ϵw)). Hence, we write Problem (3.30d) equivalently as

ϵx = argmin
¯
ϵx
∥
¯
ϵx∥1

s.t.
¯
ϵx ∈ E(d(ϵw)).

(3.32)
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Thus, in the rest of this section, we tackle Problem (3.30) formulated with
constraint (3.30d) replaced by (3.32) that is independent of the mRPI set
Xm(ϵ

w). This results in Problem (3.30) being equivalent to

min
ϵw

dY(S(l,W(ϵw)))

s.t. l(ϵx) +m(ϵw) ≤ g,

ϵw ≥ 0,

ϵx := argmin
¯
ϵx
∥
¯
ϵx∥1 s.t.

¯
ϵx ∈ E(d(ϵw)).

(3.33a)

(3.33b)
(3.33c)
(3.33d)

In the sequel, we transform Problem (3.33) into an implementable form
under the following feasibility assumption on output constraint set Y ,
which results in ϵw = 0 being a feasible solution.

Assumption 3.3. The origin belongs to the output constraint set Y , such that
g ≥ 0. □

3.3.4 Characterization of RPI Constraints

In this subsection, we show that the minimal parametrized RPI con-
straint (3.32) in Problem (3.33) can be replaced by the equality c(ϵx) +

d(ϵw) = ϵx, i.e., the equivalence

(3.32) ⇐⇒ c(ϵx) + d(ϵw) = ϵx (3.34)

holds. For simplicity, we denote d(ϵw) by d in the sequel, since the results
are presented for a fixed ϵw ≥ 0. We recall from Lemma 3.1 that the fixed-
point solution

ϵx∗(0,d) = argmin
ϵx
∥
¯
ϵx∥1

s.t.
¯
ϵx ∈ E(d)},

exists, and satisfies the fixed-point equations

c(ϵx∗(0,d)) + d = b(ϵx∗(0,d)) = ϵx∗(0,d).

We recall further thatR(d) ⊆ E(d) is the set of all fixed-points, i.e.,

R(d) := {ϵx ∈ H(d) : c(ϵx) + d = b(ϵx), b(ϵx) = ϵx}.
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Then, if there exists a unique fixed-point ϵx#(d) ∈ R(d), we will then have
that ϵx∗(0,d) = ϵx#(d). Moreover, since we know that

b(c(ϵx) + d) = c(ϵx) + d

for every ϵx ∈ E(d) from [118, Proposition 1], every ϵx ∈ E(d) that satis-
fies c(ϵx) + d = ϵx satisfies b(ϵx) = ϵx. Hence, the existence of a unique
fixed-point ϵx#(d) ∈ R(d) implies that we can replace constraint (3.32) by
c(ϵx) + d = ϵx. In the following result, uniqueness of ϵx#(d) was shown
under a slightly more restrictive assumption.

Lemma 3.2. [144, Theorem 3] Suppose Assumption 3.2 holds and d > 0, then
there exists a unique fixed-point ϵx#(d) ∈ R(d). □

We now present a brief discussion regarding the restrictions imposed
by the assumption d > 0: recalling the definition of the support function

di = max
w

EiBw

s.t. Fw ≤ ϵw,

we see that di > 0 for all i ∈ ImX
1 only if EiB ̸= 0 for each i ∈ ImX

1

and ϵw > 0. While the condition ϵw > 0 can be enforced easily through
a linear constraint in Problems (3.33), the former condition holds only if
the additional assumption E⊤

i /∈ null(B⊤) (or the stronger assumption
rank(B) = nx) is satisfied: these assumptions restrict the class of systems
and RPI set parametrizations that are often encountered. Moreover, they
lead to excessively conservative RPI set parametrizations. For example,
an uncontrollable system would require an RPI set that always includes
the origin within its interior.

We prove next that there exists a unique fixed-point ϵx#(d) ∈ R(d) if
d ≥ 0 (rather than d > 0). To this end, we first characterize the fixed-
points using the following LP, similarly to [144]:

max
c,x:={xi,i∈ImX

1 }

mX∑︂
i=1

ci

s.t. ci − EiAxi ≤ 0, i ∈ ImX
1 ,

Exi ≤ c+ d, i ∈ ImX
1 ,

(3.35a)

(3.35b)

(3.35c)

and we denote the set of all optimizers (c∗,x∗) of LP (3.35) as S.
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Proposition 3.3. Suppose Assumption 3.2 holds. Then if ϵ̄x ∈ R(d) there
exists a (c̄, x̄) ∈ S such that c̄i = EiAx̄i and ϵ̄x = c̄+ d. □

Proof. If Assumption 3.2 holds, Lemma 3.1.1 entails thatR(d) is nonempty
for every d ≥ 0. At every fixed-point solution ϵ̄x ∈ R(d), ϵ̄x = c(ϵ̄x) + d
holds. Define

x̄i := argmax
xi

EiAxi

s.t. Exi ≤ ϵ̄x,

and c̄i := EiAx̄i. By definition of c(·) we have ϵ̄xi = c̄i + di for each
i ∈ ImX

1 . We combine the LPs defining x̄i into a single LP by defining

x̄ := {x̄i, i ∈ ImX
1 },

and adopting an epigraph form [20] by introducing variables ci to obtain

max
c,x

mX∑︂
i=1

ci

s.t. ci − EiAxi ≤ 0, i ∈ ImX
1

Exi ≤ c̄+ d, i ∈ ImX
1 ,

(3.36)

(3.37)

(3.38)

in which we write ϵ̄x = c̄+ d.
Since (c,x) = (c̄, x̄) is feasible for LP (3.36), and the optimal value is∑︁mX

i=1 c̄i, we can replace c̄ by c to obtain LP (3.35), and (c̄, x̄) will be one
of the optimizers.

Proposition 3.3 entails that every fixed-point ϵ̄x ∈ R(d) can be ex-
pressed as ϵ̄x = c̄ + d for some c̄ ∈ Πc∗S (Note that, for now, Πc∗S
need not be singleton). In Theorem 3.1, we exploit this property to show
that the fixed-point is unique. To this end, we first present the following
general result that we use later to establish uniqueness.

Lemma 3.3. Let M ∈ Rp×p be a matrix with Mij ≥ 0,∀ i, j ∈ Ip1, and

N := M(I+ diag(M1))−1 , i.e., Nij =
Mij

1 +
∑︁p

k=1 Mjk
.

Then, it holds that

1. Z := I−N⊤ is invertible;
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2. ρ(N⊤) < 1.

□

Proof.

1. Matrix Z is invertible if and only if Z⊤ is invertible. Suppose there
exists some q ∈ Rp satisfying

Nq + 1 ≤ q, q ≥ 0, (3.39)

such that Nq < q holds. Then, it follows that

(I−N)q > 0, and q ≥ 0,

which, by [45, Theorems 4.1, 4.6], implies that I − N is invertible.
This is because Z is a Z-matrix [45, Definition 1], since the fact that
Nii ≤ 1 implies that the diagonal elements Zii ≥ 0 for all i ∈ Ip1,
and all the off-diagonal elements Zij ≤ 0,∀ i, j ∈ Ip1.
We show next that indeed there exists some q ∈ Rp satisfying (3.39).
To this end, we introduce a slack variable s ∈ Rp in the aforemen-
tioned formulation, and write (3.39) equivalently as[︁

N − I I
]︁ [︃q

s

]︃
= −1,

[︃
q
s

]︃
≥ 0. (3.40)

By Farkas’ lemma [132, Corollary 7.1d], there exist [q⊤ s⊤]⊤ satis-
fying (3.40) if and only if

ζ⊤1 ≤ 0, ∀ ζ ∈ T := {ζ : N⊤ζ ≥ ζ, ζ ≥ 0}.

Since ζ ≥ 0 for every ζ ∈ T , ζ⊤1 ≤ 0 holds if and only if the only ζ
that satisfies N⊤ζ ≥ ζ is ζ = 0, i.e., T = {0}.
To show T = {0}, we rewrite N⊤ζ ≥ ζ as

(I+ diag(M1))−⊤M⊤ζ ≥ ζ

(using the definition of N ), and multiply both sides by the positive
diagonal matrix (I+ diag(M1)) to obtain

M⊤ζ ≥ ζ + diag(M1)ζ ⇔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑︁p
i=1 Mi1ζi ≥ ζ1 +

∑︁p
k=1 M1kζ1,∑︁p

i=1 Mi2ζi ≥ ζ2 +
∑︁p

k=1 M2kζ2,

...∑︁p
i=1 Mipζi ≥ ζp +

∑︁p
k=1 Mpkζp.
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We further manipulate these inequalities as

p∑︂
i=1

Mi1ζi ≥ ζ1 +M11ζ1 +M12ζ1 + · · ·+M1pζ1 → Row 1

M12ζ1 ≥ ζ2 +

p∑︂
k=1

M2kζ2 −
p∑︂

i=2

Mi2ζi → Row 2

...

M1pζ1 ≥ ζp +

p∑︂
k=1

Mpkζp −
p∑︂

i=2

Mipζi → Row p

Substituting Rows 2-p in Row 1 to replace M1iζ1 terms, we obtain

p∑︂
i=1

Mi1ζi ≥
p∑︂

l=1

ζl +

p∑︂
j=1

Mj1ζj +

p∑︂
j=2

p∑︂
k=2

Mjkζj −
p∑︂

j=2

p∑︂
i=2

Mijζi,

which, after elementary operations, yields

p∑︂
l=1

ζl ≤ 0.

Hence, the set

T =

{︄
ζ :

p∑︂
l=1

ζl ≤ 0, ζ ≥ 0

}︄
= {0},

such that
ζ⊤1 ≤ 0, ∀ ζ ∈ T .

Thus, there exists some q ∈ Rp satisfying (3.39), concluding the
proof of the first claim.

2. Since

(I−N⊤)−1 =

∞∑︂
k=0

(N⊤)k

is well-defined, it implies limk→∞(N⊤)k = 0, or, equivalently, that
the spectral radius ρ(N⊤) < 1.
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Theorem 3.1. Suppose that Assumption 3.2 holds and d ≥ 0, then there exists
a unique fixed-point ϵx#(d) ∈ R(d). □

Proof. By Assumption 3.2, Lemma 3.1 entails R(d) ̸= ∅, and the fixed-
point ϵ̄x = ϵx∗(0,d) reached from ϵx[0] = 0 with the iterations ϵx[k+1] =

c(ϵx[k]) + d is the minimal fixed-point, i.e.,

ϵ̄x ≤ ϵ̃x, ∀ ϵ̃x ∈ R(d). (3.41)

In order to show uniqueness of this fixed-point, we show that the iter-
ations ϵx[k+1] = c(ϵx[k]) + d starting from any initial-condition ϵx[0] ≥ ϵ̄x

converge to ϵ̄x. Since this initial condition can be any other fixed-point
ϵ̃x ∈ R(d) \ {ϵ̄x}, we will conclude the proof by noting that iterations
with ϵx[0] = ϵ̃x converging to ϵ̄x implies ϵ̃x = ϵ̄x.

To this end, we observe that Proposition 3.3 entails that there exists
some optimizer c̄ ∈ Πc∗S of LP (3.35) such that ϵ̄x = c̄ + d. Then, we
write the dual LP of LP (3.35) as

min
(λ,η):={λi,ηi,i∈ImX

1 }

mX∑︂
i=1

ηi
⊤
d

s.t. λi = 1 +

mX∑︂
j=1

ηji , i ∈ ImX
1 ,

ηi
⊤
E = λiEiA, i ∈ ImX

1 ,

λi ≥ 0, ηi ≥ 0mX
, i ∈ ImX

1

(3.42a)

(3.42b)

(3.42c)

(3.42d)

where λi and ηi are the dual variables associated to constraints (3.35b)
and (3.35c) respectively. We denote the optimal dual variables corre-
sponding to c̄ as λ∗

i and ηi∗, and define matrix Θ∗ with rows

Θ∗
i :=

ηi∗
⊤

λ∗
i

,

where λ∗
i ≥ 1 by (3.42b). We recall that

c̄ = Θ∗(c̄+ d) = Θ∗ϵ̄x,

since c̄ optimizes LP (3.35) ([144, Theorem 4]).
Then we apply Lemma 3.3 with

M = [η1∗ · · · ηmX∗],
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such that N = Θ∗. Hence, ρ(Θ∗) < 1 from Lemma 3.3(b).
For any ϵx ∈ H(d), it follows that

ci(ϵ
x) =

{︄
max

x
EiAx

s.t. Ex ≤ ϵx

}︄
=

⎧⎨⎩ min
γ≥0

γ⊤ϵx

s.t. γ⊤E = EiA,

⎫⎬⎭ ≤ Θ∗
i ϵ

x,

where the second equality follows from strong duality for LPs, and the
inequality follows since γ⊤ = Θ∗

i is feasible for the dual LP. This implies

c(ϵx) ≤ Θ∗ϵx, ∀ ϵx ∈ H(d).

Hence, for the iterations ϵx[k+1] = c(ϵx[k]) + d from any ϵx[0] ∈ H(d), we
obtain

ϵx[k+1] ≤ Θ∗ϵx[k] + d.

Subtracting by ϵ̄x = Θ∗ϵ̄x + d, the inequality

ϵx[k+1] − ϵ̄x ≤ Θ∗(ϵx[k] − ϵ̄x)

follows. Applying recursively, the inequality

ϵx[k] − ϵ̄x ≤ (Θ∗)k(ϵx[0] − ϵ̄x)

holds. If ϵ̄x ≤ ϵx[0], then ϵ̄x ≤ ϵx[k] for all k ≥ 0 by monotonicity of c(·), and
definition of ϵ̄x. Then, ρ(Θ∗) < 1 implies (Θ∗)k → 0 as k →∞, such that

∀ δ > 0, ∃ k <∞ : ϵx[k] − ϵ̄ ≤ δ1. (3.43)

If the initial condition

ϵx[0] = ϵ̃x ∈ R(d) \ {ϵ̄x},

i.e., the iterations start at some fixed-point that is not the minimal fixed-
point ϵ̄x, then ϵx[k] = ϵ̃x for all k ≥ 1, since ϵ̃x is a fixed-point.

From (3.43), this implies ϵ̃x ≤ ϵ̄x + δ1 for every δ > 0. From (3.41),
we know that ϵ̄x ≤ ϵ̃x. Suppose there exist some index i ∈ ImX

1 such that
ϵ̄xi < ϵ̃xi . Then, for every arbitrary scalar β ∈ (0, ϵ̃xi − ϵ̄xi ), ϵ̃

x ≰ ϵ̄x + β1
holds, which contradicts (3.43) with ϵx[k] = ϵ̃x. Hence,

ϵx#(d) = ϵ̄x = ϵ̃x,

which concludes the proof.
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Remark 3.3. We note that ρ(Θ∗) ∈ [ρ(A), 1): Let (α, κα) be an eigenpair of
A, such that Aκα = ακα. Multiplying by E, we obtain

Θ∗(Eκα) = α(Eκα)

since Θ∗E = EA from (3.42b)-(3.42c). Hence, the eigenvalues of A are a subset
of the eigenvalues of Θ∗. □

This theorem validates (3.34) and allows us to replace constraint (3.32)
by the equivalent functional equality c(ϵx) + d = ϵx in Problem (3.33)

Remark 3.4. While we assume that 0 ∈W(ϵw), there exist cases where this is
not known a priori. Such cases can be accommodated in Problems (3.33) by con-
sidering the disturbance set parametrization {w̄} ⊕W(ϵw), where 0 ∈ W(ϵw)
if ϵw ≥ 0, and w̄ represents the origin offset. Then, an RPI set parametrized as
{x̄} ⊕ X(ϵx) satisfies

{Ax̄+Bw̄} ⊕AX(ϵx)⊕BW(ϵw) ⊆ {x̄} ⊕ X(ϵx),

or equivalently EAx̄+ EBw̄ − Ex̄+ c(ϵx) + d(ϵw) ≤ b(ϵx), the first part of
which can be eliminated by using the state offset x̄ = (I−A)−1Bw̄. □

3.3.5 Implementation of Problem (3.33)

Using the result in Theorem 3.1 and recalling the definition of the dis-
tance function dY(l,W(ϵw)) from (3.8), we write Problem (3.33) equiva-
lently as

min
ϵx,ϵw,ϵ

∥ϵ∥1

s.t. c(ϵx) + d(ϵw) = ϵx,

l(ϵx) +m(ϵw) ≤ g,

Y ⊆
l−1⨁︂
t=0

CAtBW(ϵw)⊕DW(ϵw)⊕ B(ϵ),

ϵw ≥ 0.

(3.44a)

(3.44b)
(3.44c)

(3.44d)

(3.44e)

In order to implement Constraint (3.44d), we assume to know the ver-
tices of the output constraint set Y .

Assumption 3.4. The vertices {y[p], p ∈ IvY1 } = vert(Y) are known a priori.
□
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Then, inclusion (3.44d) verifies if and only if (ϵw, ϵ) ∈ Ξ, where

Ξ :=

{︃
(ϵw, ϵ) :

∀ p ∈ IvY1 ,∃ {w[pt], t ∈ Il0} ∈W(ϵw),b[p] ∈ B(ϵ) :
y[p] =

∑︁l−1
t=0 CAl−1−tBw[pt] +Dw[pl] + b[p]

}︃
,

Defining the variables z := {w[pt],b[p], p ∈ IvY
1 , t ∈ Il0}, Problem (3.44)

can hence be implemented as

min
ϵx,ϵw,ϵ,z

∥ϵ∥1

s.t. c(ϵx) + d(ϵw) = ϵx,

l(ϵx) +m(ϵw) ≤ g,

(ϵw, ϵ) ∈ Ξ,

ϵw ≥ 0,

(3.45a)

(3.45b)
(3.45c)
(3.45d)
(3.45e)

Remark 3.5. If the vertices {y[p], p ∈ IvY1 } of the output constraint set Y are
not known, then Constraint (3.44d) can be encoded as a set of linear constraints
directly in terms of the hyperplane notation of Y using the sufficient conditions
for polytopic inclusions presented in [127, Theorem 1]. □

3.4 Numerical Optimization

In this section, we develop a numerical optimization algorithm in order
to solve Problem (3.45).

3.4.1 Related literature and Problem setup

The central difficulty in solving Problem (3.45) arises from the fact that
the constraints are nonsmooth and nonconvex, since they are defined
using support functions over polytopes. A typical approach to tackle
such problems is to resort to the Karush-Kuhn-Tucker (KKT) optimality
conditions [102]: Since the support functions are defined using Linear
Programs (LPs), they can be replaced by their corresponding optimality
conditions. The resulting lifted reformulation [7] is a Mathematical Pro-
gram with Complementarity Conditions (MPCC) [61] that can be tackled
by mixed-integer programming [161]. However, this approach exhibits
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an exponential increase in the number of binary variables with the sys-
tem dimension. An alternative is to use smoothening-based approaches,
in which the nonsmooth complementarity KKT condition is replaced by
a smooth approximation [109, 77], that can then be solved with an off-
the-shelf nonlinear programming solver (NLP) like IPOPT [151]. Smooth
formulations can also be derived using approaches based on zeroing the
duality-gap [4, 154]. Such approaches were previously considered for
invariant-set design in [68]. These reformulations too, however, suffer
from the curse of dimensionality.

In this section, we present an approach based on implicit functions [7],
in which the support functions formulating the optimization problem are
treated as implicit functions of the parameters of the disturbance and RPI
sets, and sensitivities of these functions are calculated using parametric
optimization theory [23]. We introduce a smoothening-based approach

Nonunique representations of the set W(ϵw)

We note that, in general, there exist infinitely many values of ϵw charac-
terizing a given set W(ϵw) because of redundant hyperplanes, i.e., there
can exist ϵw,1, ϵw,2 such that

ϵw,1 ̸= ϵw,2, with W(ϵw,1) = W(ϵw,2).

This nonuniqueness can negatively affect our optimization procedure. In
order to tackle it, we define the support functions

qt(ϵ
w) := hW(ϵw)(F

⊤
t ), ∀ t ∈ ImW

1 .

We then note that

W(ϵw,1) = W(ϵw,2) ⇐⇒ q(ϵw,1) = q(ϵw,2),

and there exists a unique ϵw such that W(ϵw) = W(ϵw,1) = W(ϵw,2) and
ϵw = q(ϵw). In W(ϵw), the redundant hyperplanes are tangent to the set.
Hence, we encourage the computation of such an unique ϵw by append-
ing 1

2σ ∥ϵ
w − q(ϵw)∥22 to the objective function in Problem (3.45), where
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σ > 0 is some user-defined scalar, resulting in

min
z

∥ϵ∥1 +
1

2
σ ∥ϵw − q(ϵw)∥22

s.t. c(ϵx) + d(ϵw) = ϵx,

AEz = bE,

l(ϵx) +m(ϵw) ≤ g,

AIz ≤ bI,

(3.46a)

(3.46b)

(3.46c)
(3.46d)

(3.46e)

where z := {ϵw, ϵx, ϵ, z} is the optimization vector, and the linear con-
straint set

{z : AEz = bE, AIz ≤ bI}

captures the constraints ϵw ≥ 0 and (ϵx, ϵw, ϵ) ∈ Ξ. While any σ > 0

is suitable, we observed that large values can slow down the conver-
gence rate of the NLP approach we propose in the sequel to solve Prob-
lem (3.46).

The rest of this section is devoted to the development of an optimiza-
tion algorithm to solve Problem (3.46). Firstly, we introduce the pro-
posed smoothening procedure and discuss the feasibility of the resulting
smoothened problem. The smoothened approximation is then used later
to develop a PDIP solver.

3.4.2 Smooth approximation

In order to solve Problem (3.46), we note that given (ϵx, ϵw), the sup-
port functions ci(ϵ

x),di(ϵ
w), lk(ϵ

x),mk(ϵ
w), qt(ϵ

w) can be evaluated by
solving the corresponding linear programs. In order to clarify this point
and aid further developments, we introduce the following parametric LP
with parameter ϵ ∈ Rm:

max
z∈Rn

r⊤z s.t. Pz ≤ ϵ. (3.47)

We label the primal-dual solution pair of Problem (3.47) as ({z∗}, {λ∗})
(we omit the dependence of {z∗}, {λ∗} on ϵ for simplicity), and the value
function as

v(ϵ) := r⊤z∗.
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v(ϵ) r⊤ P ϵ z∗ λ∗ s∗ n m

ci(ϵ
x) EiA E ϵx zci λci sci nx mX

di(ϵ
w) EiB F ϵw zdi λdi sdi nw mW

lk(ϵ
x) GkC E ϵx zlk λlk slk nx mX

mk(ϵ
w) GkD F ϵw zmk λmk smk nw mW

qt(ϵ
w) Ft F ϵw zqt λqt sqt nw mW

Table 1: Support functions

We use v(ϵ) to represent any of the support functions involved in the
formulation of Problem (3.46), as described in Table 1. In other words, at
a given (ϵx, ϵw), the support functions are defined as

ci(ϵ
x) := EiAzci ,

di(ϵ
w) := EiBzdi ,

lk(ϵ
x) := GkCzlk ,

mk(ϵ
w) := GkDzmk ,

qt(ϵ
w) := Ftz

qt .

Problem (3.47) can be equivalently written using slack variables as

max
z∈Rn,s∈Rm

r⊤z s.t. Pz+ s = ϵ, s ≥ 0, (3.48)

with the primal-dual solution pair ({z∗, s∗}, {λ∗}). This solution satisfies
the KKT conditions of Problem (3.48), i.e.,

P⊤λ∗ = r∗, Pz∗ + s∗ = ϵ, λ∗ ◦ s∗ = 0, (3.49)

along with λ∗, s∗ ≥ 0.
A popular approach to solve Problem (3.46) involves a KKT-based re-

formulation. This reformulation involves introducing the optimization
variables (z∗,λ∗, s∗) into Problem (3.46), replacing v(ϵ) with r⊤z∗, and
appending the KKT conditions (3.49) as constraints on Problem (3.46).
However, by this approach the problem dimension increases quadrat-
ically with the number of hyperplanes defining the sets X(ϵx), W(ϵw),
and Y through the variables λ∗ and s∗. For example, the constraint
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c(ϵx) + d(ϵw) = ϵx requires m2
X +mXmW additional optimization vari-

ables {λci , λdi , i ∈ ImX
1 }, thus increasing the problem complexity. Hence,

we resort to using an implicit-function approach, in which the support
functions v(ϵ) are treated as implicit functions of ϵ. It is well-known that
these functions are in general nonsmooth in their parameter ϵ [7]. This
implies that standard derivative-based NLP solvers cannot be applied to
solve Problem (3.46). In the sequel, we present a suitable smoothening-
based approximation of v(ϵ), and a corresponding smoothened approx-
imate formulation of Problem (3.46) that can then be solved by introduc-
ing a minor modification by any standard NLP solver.

Regularization and smooth formulation

We now focus on computing the first and second order sensitivities of
v(ϵ)

∇ϵv(ϵ) = r⊤
∂z∗

∂ϵ
, ∇2

ϵϵv(ϵ) =

n∑︂
l=1

rl
∂2z∗l
∂ϵ2

, (3.50)

for a given value of ϵ ≥ 0. We know from [38, Theorem 3.2.2] that if the
linear independence constraint qualification (LICQ) condition, second-
order sufficient conditions (SOSC), and strict complementary slackness
(SCS) are satisfied at the solution of the LP (3.48)1, then the solution
(z∗,λ∗, s∗) is a continuously differentiable function of ϵ in a neighbor-
hood of (z∗,λ∗, s∗). However, for an arbitrary ϵ ≥ 0 these conditions
might be violated, and hence we propose the following approximation.
Following [128], let us first regularize the LP (3.47) using primal and dual
regularization parameters κ := (κp, κd) > 0 as

max
z,θ

r⊤z− 0.5(∥κpz∥22 + ∥θ∥
2
2)

s.t. Pz+ κdθ ≤ ϵ.

(3.51)

We label the primal-dual solution of Problem (3.51) as ({zκ, θκ}, {λκ}),
and denote

vκ(ϵ) := r⊤zκ.

1For precise definitions of LICQ, SOSC and SCS, we refer to [102].
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The ℓ2-regularization term in (3.51) ensures that the feasible set of the
Quadratic Program (QP) (3.51) contains a nonempty interior and satisfies
LICQ and SOSC at the unique solution ({zκ, θκ}, {λκ}).

Proposition 3.4. vκ(ϵ)→ v(ϵ) quadratically as κ→ 0. □

Proof.

• (Part 1) For some κd > 0, consider the QP

max
z,θ

r⊤z− 0.5 ∥θ∥22

s.t. Pz+ κdθ ≤ ϵ

(3.52)

and let ({zκd , θκd}, {λκd}) be the corresponding primal-dual solu-
tion. Problem (3.51) is a perturbed version of QP (3.52), with per-
turbation parameter κp over variables z. Then, since Problem (3.52)
satisfies LICQ as the matrix [P κdI] is full rank for all κd > 0, we
know from [84, Theorem 2] that there exists some κ̄p such that if
κp ∈ [0, κ̄p], the unique primal solution of Problem (3.51) is also a
primal solution of Problem (3.52), i.e., (zκd , θκd) = (zκ, θκ). Hence,

vκ(ϵ) = vκd(ϵ) := r⊤zκd , ∀ κp ∈ [0, κ̄p]. (3.53)

• (Part 2) Let us show now that as κd → 0, vκd(ϵ) → v(ϵ) quadrati-
cally. The dual problem of (3.47) can be rewritten as

min
λ

ϵ⊤λ

s.t. P⊤λ = r,

λ ≥ 0.

(3.54a)

(3.54b)
(3.54c)

Let ({λ∗}, {α∗, ζ∗}) denote the corresponding primal-dual solution,
where α∗ and ζ∗ are the optimal dual variables corresponding to
constraints (3.54b) and (3.54c) respectively. We also write the dual
problem corresponding to Problem (3.52) as

min
λ

ϵ⊤λ+ 0.5 ∥κdλ∥22

s.t. P⊤λ = r,

λ ≥ 0,

(3.55a)

(3.55b)
(3.55c)
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with corresponding primal-dual solution ({λκd}, {ακd , ζκd}), where
ακd and ζκd are the optimal dual variables corresponding to con-
straints (3.55b) and (3.55c) respectively.

Problem (3.55) is a perturbed version of the LP (3.54), with pertur-
bation parameter κd. Then, from [84, Theorem 1] we know that
there exists some κ̄d such that if κd ∈ [0, κ̄d], the unique optimal
primal solution of Problem (3.55) is also an optimal primal solu-
tion of Problem (3.54), i.e., λ∗ = λκd . Then, since Problems (3.47)
and (3.54) have a zero duality-gap due to strong duality, we have
v(ϵ) = r⊤z∗ = ϵ⊤λ∗. However, since λκd is an optimal dual solu-
tion of Problem (3.47) (equivalently an optimal primal solution of
Problem (3.54)) for all κd ∈ [0, κ̄d], we have

v(ϵ) = ϵ⊤λκd , ∀ κd ∈ [0, κ̄d]. (3.56)

• (Part 3) Since Problems (3.52) and (3.55) also have a zero duality
gap,

vκd(ϵ)− 0.5 ∥θκd∥22 = ϵ⊤λκd + 0.5 ∥κdλ
κd∥22

holds. From the KKT conditions of Problem (3.52), θκd = −κdλ
κd

follows, such that

vκd(ϵ) = ϵ⊤λκd + ∥κdλ
κd∥22 .

Then, it follows from (3.56) that

vκd(ϵ) = v(ϵ) + ∥κdλ
κd∥22 ≥ 0, ∀ κd ∈ [0, κ̄d]. (3.57)

Moreover, we have that for every κd,1, κd,2 such that 0 ≤ κd,1 <
κd,2 ≤ κ̄d,

vκd,1(ϵ)− vκd,2(ϵ) = (κ2
d,1 − κ2

d,2) ∥λκd∥22 < 0.

Thus, vκd(ϵ) is strictly-increasing in κd ∈ [0, κ̄d], and is lower-
bounded by v(ϵ) so that

vκd(ϵ)→ v(ϵ) as κd → 0. (3.58)

Hence, for κp ∈ [0, κ̄p] and κd ∈ [0, κ̄d], vκ(ϵ) converges to v(ϵ)
quadratically in κd from (3.53) and (3.58).
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While the value of vκ(ϵ) of Problem (3.51) converges to the optimal
value v(ϵ) of Problem (3.47), SCS might still be violated at the opti-
mizer {zκ, θκ} of Problem (3.51), since there might exist weakly active
constraints at the solution. We resolve this issue by eliminating the in-
equality constraints in Problem (3.51) using a log-barrier formulation
with some barrier parameter µ > 0 as

max
z,θ,s

r⊤z− 0.5(∥κpz∥22 + ∥θ∥
2
2) + µ

m∑︂
i=1

log(si)

s.t. Pz+ κdθ + s = ϵ,

(3.59)

where π := (κp, κd, µ). We label the primal-dual solution pair of Problem
(3.59) as ({zπ, θπ, sπ}, {λπ}), and define

vπ(ϵ) := r⊤zπ.

Since Problem (3.51) satisfies LICQ and SOSC, we known from [89, Propo-
sition 8.2] that

(zπ, θπ,λπ)→ (zκ, θκ,λκ) as µ→ 0, (3.60)

such that from Theorem 3.4 and (3.60), we have

vπ(ϵ)→ v(ϵ) as π → 0. (3.61)

Hence, vπ(ϵ) is a smooth approximation of v(ϵ), based on which we pro-
pose to approximate Problem (3.46) as

min
z

∥ϵ∥1 + 0.5σ ∥ϵw − qπ(ϵw)∥22
s.t. cπ(ϵx) + dπ(ϵw)− ϵx = 0,

AEz = bE,

lπ(ϵx) +mπ(ϵw) ≤ g,

AIz ≤ bI.

(3.62a)

(3.62b)

(3.62c)
(3.62d)

(3.62e)

for some π > 0, and solve Problem (3.62) for reducing values of π such
that we solve Problem (3.46) at termination.
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To solve Problem (3.46) for a given π, we propose to use an NLP ap-
proach, that requires the evaluation of values and sensitivities of vπ(ϵ)

for any given ϵ ≥ 0. For a given ϵ ≥ 0, vπ(ϵ) = r⊤zπ can be evaluated
by solving the KKT conditions of Problem (3.59) as

R(zπ,λπ, sπ, ϵ) :=

⎡⎣ P⊤λπ + κ2
pz

π − r
Pzπ − κ2

dλ
π + sπ − ϵ

λπ ◦ sπ − µ1

⎤⎦ = 0, (3.63)

along with λπ, sπ > 0, in which θπ = −κdλ
π is used to eliminate θπ ,

and sπ is the optimal slack variable. These conditions can be solved by
Algorithm 1, where

Sπ := diag(sπ),
Λπ := diag(λπ),

∂R(λπ, sπ) :=

⎡⎣κ2
pI P⊤ 0
P −κ2

dI I
0 Sπ Λπ

⎤⎦ .

At the solution (zπ,λπ, sπ), the sensitivities, i.e.,

∇ϵv
π(ϵ) = r⊤

∂zπ

∂ϵ
, ∇2

ϵϵv
π(ϵ) =

n∑︂
l=1

rl
∂2zπl
∂ϵ2

. (3.64)

can then be evaluated using the IFT [38]. The first-order sensitivities can
be obtained by solving the linear system

∂R(λπ, sπ)

⎡⎣∂zπ/∂ϵ∂λπ/∂ϵ
∂sπ/∂ϵ

⎤⎦ =

⎡⎣0I
0

⎤⎦ , (3.65)

and the second-order sensitivities can be obtained by solving the follow-
ing linear system [23] for each component j ∈ Im1 :

∂R(λπ, sπ)

⎡⎢⎢⎣
∂2zπ

∂ϵϵj
∂2λπ

∂ϵϵj
∂2sπ

∂ϵϵj

⎤⎥⎥⎦ = −

⎡⎣ 0
0

diag(∂S
π

∂ϵj
)∂λ

π

∂ϵ + diag(∂Λ
π

∂ϵj
)∂s

π

∂ϵ

⎤⎦ . (3.66)

In the following, we argue that as π → 0, the sensitivities of vπ(ϵ)

computed as in (3.65) converge to the generalized gradient of v(ϵ). We
focus on an intuitive definition of these objects in the sequel, referring
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the reader to [156] for a formal treatment. Using (3.63), (3.64) and (3.65),
we write

∇ϵv
π(ϵ) = λπ⊤P

∂zπ

∂ϵ
+ κ2

pz
π⊤ ∂zπ

∂ϵ

= λπ⊤ − λπ⊤ ∂sπ

∂ϵ
+

(︃
κ2
pz

π⊤ ∂zπ

∂ϵ
+ κ2

dλ
π⊤ ∂λπ

∂ϵ

)︃
= λπ⊤ − µ1⊤(Λπ)−1 ∂λ

π

∂ϵ
+

(︃
κ2
pz

π⊤ ∂zπ

∂ϵ
+ κ2

dλ
π⊤ ∂λπ

∂ϵ

)︃
.

(3.67)

For every ϵ ≥ 0 and π = (κp, κd, µ) > 0, the values of (zπ,λπ, sπ) solv-
ing (3.63) and their sensitivities with respect to ϵ solving (3.65) are well-
defined. Hence, from (3.67), we get

∇ϵv
π(ϵ)→ λπ⊤ as π → 0. (3.68)

We recall from (3.60) that λπ → λκ as µ → 0. From Part 1 in Proposi-
tion 3.4 and [84, Theorem 2], it can be shown that λκ → λκd as κp → 0.
Moreover, λ∗ = λκd for any κd ∈ [0, κ̄d] from Part 2 in Proposition 3.4.
Hence, λπ → λ∗ as π → 0. This implies that ∇ϵv

π(ϵ) → λ∗⊤
as π → 0

from (3.68). We know from parametric linear programming [12] that ev-
ery optimal dual variable λ∗ of Problem (3.47) belongs to the generalized
gradient of v(ϵ) with respect to ϵ. Hence, as the approximation param-
eter π → 0, the gradients of the proposed smoothening approximation
vπ(ϵ) converge to the generalized gradient of the nonsmooth function
v(ϵ), such that the gradient consistency property discussed in [156, Def-
inition 2.6] is satisfied. This property ensures that by solving Problem
(3.62) as an NLP for reducing values of π → 0, with sensitivities evalu-
ated as in (3.65) and (3.66), we approach a stationary point of the original
nonsmooth Problem (3.46).

Feasibility of Problem (3.62)

We must ensure that Problem (3.62) is feasible for all π > 0. To this end,
we prove the following result.

Proposition 3.5. Given some π = (κp, κd, µ) > 0, if there exists some ϵw ≥ 0
such that dπ(ϵw) ≥ 0, then there exists an ϵx satisfying (3.62b), i.e.,

cπ(ϵx) + dπ(ϵw) = ϵx.
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Algorithm 1: Solve KKT conditions in (3.63)
Result: Return (zπ,λπ, sπ);
Input: π > 0, ϵ ≥ 0, Initial guess (zπ,λπ > 0, sπ > 0);
while ∥R(zπ,λπ, sπ, ϵ)∥∞ > δtol do

123

1. Solve ∂R(λπ, sπ)

⎡⎣∆z
∆λ
∆s

⎤⎦ = −R(zπ,λπ, sπ, ϵ);

2. Compute largest α ∈ (0, 1] by backtracking such that
λπ + α∆λ > 0 and sπ + α∆s > 0;

3. Update zπ ← zπ + α∆z, λπ ← λπ + α∆λ, sπ ← sπ + α∆s;
end

□

Proof. Given some ϵw ≥ 0 such that dπ(ϵw) ≥ 0, we observe from (3.63)
that (3.62b) is feasible if and only if there exist variables

{ϵx, zci,π, λci,π, sci,π,∀i ∈ ImX
1 }

solving the set of equations formulating the KKT conditions as

EiAzci,π + dπ
i (ϵ

w)− ϵxi = 0,

E⊤λci,π + κ2
pz

ci,π −A⊤E⊤
i = 0,

Ezci,π − κ2
dλ

ci,π + sci,π − ϵx = 0,

λci,π ◦ sci,π − µ1 = 0,

(3.69a)

(3.69b)

(3.69c)
(3.69d)

along with λci,π, sci,π > 0 for all i ∈ ImX
1 . In the sequel, we show that

such variables exist for every π > 0. For brevity, we denote by d, zi, λi,
and si, respectively, dπ(ϵw), zci,π, λci,π , and sci,π . Introducing ci = EiAzi

into (3.69) and eliminating (3.69a), we equivalently obtain

ci − EiAzi = 0,

E⊤λi + κ2
pz

i −A⊤E⊤
i = 0,

Ezi − κ2
dλ

i + si − c− d = 0,

λi ◦ si − µ1 = 0.

(3.70a)

(3.70b)

(3.70c)

(3.70d)

Hence, we focus on demonstrating the existence of variables

{c, zi, λi, si,∀i ∈ ImX
1 }
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solving (3.70) for any π > 0. To this end, we consider the following QP

max
zi,c,θi

mX∑︂
i=1

J (ci, zi, θi, κpi)

s.t. ci − EiAzi = 0, ∀i ∈ ImX
1 ,

Ezi + κdi
θi − c ≤ d, ∀i ∈ ImX

1 ,

(3.71a)

(3.71b)

(3.71c)

where the objective function

J (ci, zi, θi, κpi) := ci − 0.5
(︂⃦⃦

κpiz
i
⃦⃦2
2
+
⃦⃦
θi
⃦⃦2
2

)︂
,

and κpi
, κdi

> 0 are individual regularization constants for each i ∈ ImX
1 .

Problem (3.71) can be approximated as

max
zi,c,θi,si

mX∑︂
i=1

⎛⎝J (ci, zi, θi, κpi
) + µωi

mX∑︂
j=1

log(sij)

⎞⎠
s.t. ci − EiAzi = 0, ∀i ∈ ImX

1 ,

Ezi + κdi
θi − c+ si = d, ∀i ∈ ImX

1 ,

(3.72a)

(3.72b)

(3.72c)

where ωi > 0 are individual logarithmic-barrier weights selected sepa-
rately for each i ∈ ImX

1 . Since Problem (3.71) is feasible (with all variables
set to 0), bounded (since it is a strongly convex quadratic program), and
the feasible set contains a nonempty interior, the primal-dual solution

{{c∗, (zi∗, θi∗, si∗)}, {α∗
i , β

i∗}, i ∈ ImX
1 }

of Problem (3.72) exists and is unique for every (κpi
, κdi

, ωi) > 0, where
αi∗, βi∗ are the optimal dual variables associated to constraints (3.72b)
and (3.72c) respectively [89, Theorem 8.1]. These variables solve the KKT
conditions of (3.72), written after eliminating θi∗ = −κdiβ

i∗ as

α∗
i − 1−

mX∑︂
k=1

βi∗
k = 0,

c∗i − EiAzi∗ = 0,

E⊤βi∗ + κ2
pi
zi∗ − α∗

iA
⊤E⊤

i = 0,

Ezi∗ − κ2
di
βi∗ + si∗ − c∗ − d = 0,

βi∗ ◦ si∗ − ωiµ1 = 0,

(3.73a)

(3.73b)

(3.73c)

(3.73d)

(3.73e)
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along with βi∗, si∗ > 0, for each i ∈ ImX
1 . Since α∗

i ≥ 1 from (3.73a), we
can select the regularization and barrier parameters

κpi =
√︁
α∗
i κp, κdi = κd/

√︁
α∗
i , ωi = α∗

i . (3.74)

Then, Equations (3.73b)-(3.73e) are such that (3.70) is solved by

{c, zi, λi, si} = {c∗, zi∗, βi∗/α∗
i , s

i∗},

thus concluding the proof.

Remark 3.6. The result in Proposition 3.5 is independent of Assumption 3.2,
i.e., there exists an ϵx satisfying cπ(ϵx) + dπ(ϵw) = ϵx for any π > 0, even if
there exists no finite ϵx satisfying the RPI condition

c(ϵx) + d(ϵw) ≤ b(ϵx).

This is a consequence of the regularization parameters κpi
, κdi

> 0 that guar-
antee that Problem (3.71) is bounded. If Assumption 3.2 does not hold, we know
from [144] that Problem (3.71) with (κpi , κdi) = 0 is unbounded above. In this
case,

mX∑︂
i=1

ϵxi →∞, as (κpi
, κdi

)→ 0

by continuity of the optimal value of Problem (3.71). □

3.4.3 Solution algorithm

Since Problem (3.62) is smooth, it can be solved by using standard NLP
techniques such as Sequential Quadratic Programming and PDIP meth-
ods. In this section, we present an algorithm based on the PDIP method
[102] to solve Problem (3.46), by approximately solving Problem (3.62)
for reducing values of π. In order to recall the PDIP method, we write
Problem (3.62) for simplicity as

min
z

fπ(z)

s.t. hπ
E(z) = 0,

hπ
I (z) ≤ 0,

(3.75)
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where fπ(z) denotes the objective (3.62a), hπ
E(z) = 0 denotes the equal-

ity constraints (3.62b) and (3.62c), and hπ
I (z) ≤ 0 denotes the inequality

constraints (3.62d) and (3.62e). Let γ := [γ⊤
E γ⊤

I ]⊤ with γE and γI denote
the dual variables associated with constraints hπ

E(z) = 0 and hπ
I (z) ≤ 0

respectively. The Lagrangian of Problem (3.75) is

Lπ(z, γ) := fπ(z) + γ⊤
E hπ

E(z) + γ⊤
I hπ

I (z).

PDIP methods aim at finding stationary points that satisfy SOSC of the
PDIP-KKT conditions of Problem (3.75) written as

Kτ,π(z, γ, ζ) :=

⎡⎢⎢⎣
∇zLπ(z, γ)

hπ
E(z)

hπ
I (z) + ζ

ζ ◦ γI − τ1

⎤⎥⎥⎦ = 0, (3.76)

along with ζ, γI > 0, for some barrier parameter τ > 0 using suitably
adapted Newton iterates. It is useful to observe that the equations in
(3.76) can be reformulated as the KKT conditions of the primal interpre-
tation of the log-barrier approach written as

min
z,ζ

fπ(z)− τ

nI∑︂
n=1

log(ζn)

s.t. hπ
E(z) = 0,

hπ
I (z) + ζ = 0.

(3.77)

As τ → 0, the solution of Problem (3.77) approaches that of Problem
(3.75). Hence, PDIP methods progressively reduce the barrier parameter
τ , such that at convergence, Problem (3.75), i.e., Problem (3.62) is solved.
In our approach, along with reducing the value of τ , we also reduce π

such that, at convergence, Problem (3.46) is solved.
Algorithm 2 summarizes the proposed PDIP solution method. In

Step 1, the functions vπ(ϵ) and their sensitivities are evaluated, and Step
2 builds the necessary vectors, gradients, and the Hessian of the La-
grangian ∇2

zzLπ . In Step 3, ∇2
zzLπ is regularized to ensure that it is posi-

tive definite in the nullspace of∇zh
π
E, thus guaranteeing descent. In Step

4, a linear system is solved to compute a Newton direction. Then in Step
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5, an upper-bound to the step length ᾱ is computed to ensure positivity
of ζ and γI. In Step 6, a globalization method is employed to compute
a steplength α ∈ (0, ᾱ], e.g., a line-search or filter method [102], and the
variables are finally updated in Step 7. In our solver, along with updat-
ing the barrier parameter τ using some θτ ∈ (0, 1), we also update the
smoothening parameter π using some θπ ∈ (0, 1). In Steps 1 and 7, we
always warm-start the variables (zπ,λπ, sπ) using previously computed
values to evaluate vπ(ϵ) using Algorithm 1.

We make the following assumptions to ensure that the smoothening
parameters π = (κp, κd, µ) > 0 are chosen such that Problem (3.75) is
feasible, thus guaranteeing that the multipliers γ computed over the it-
erations of Algorithm 2 are bounded.

Assumption 3.5. The values of the smoothening parameter π > 0 formulating
Problem (3.75) and chosen in Algorithm 2 are such that: (a) there exists an
ϵw ≥ 0 such that dπ(ϵw) ≥ 0; (b) the pair (ϵx, ϵw) satisfying (3.62b), i.e.,
cπ(ϵx) + dπ(ϵw) = ϵx also satisfies (3.62d), i.e., lπ(ϵx) +mπ(ϵw) ≤ g. □

Assumption 3.5(a) is necessary to satisfy the hypothesis of Proposi-
tion 3.5, and can typically be satisfied by choosing a small µ > 0: Given
some ϵw ≥ 0 and π > 0, let (zdi,π,λdi,π, sdi,π) be the optimal primal,
dual, and slack variables solving the KKT conditions in (3.63). Since
dπ
i (ϵ

w) = EiBzdi,π , it follows that

dπ
i (ϵ

w) = λdi,π
⊤
ϵw + κ2

p||zdi,π||22 + κ2
d||λdi,π||22 − µmX .

Since λdi,π > 0 for every π > 0 and ϵw ≥ 0, it holds that

λdi,π
⊤
ϵw + κ2

p||zdi,π||22 + κ2
d||λdi,π||22 > 0.

Then, a small µ > 0 can ensure dπ
i (ϵ

w) ≥ 0. While a similar reasoning can
be applied to guarantee the Assumption 3.5(b) is satisfied, a characteri-
zation of the set of values π satisfying Assumption 3.5(b) is left for future
research. We observed in our numerical examples that Assumption 3.5(b)
was never violated.

As we will demonstrate in the examples, using Algorithm 2 to solve
Problem (3.62) can help in reaching a solution using a reduced number of
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iterations, as compared to approaches based on the KKT-reformulation.
The main drawbacks of the proposed method are the following:

• A procedure to obtain a feasible initial point is not defined. This is
because, for a given π > 0 and ϵw ≥ 0 satisfying Assumption 3.5,
we cannot compute an ϵx satisfying (3.62b), i.e.,

cπ(ϵx) + dπ(ϵw) = ϵx,

using the result in Proposition 3.5. The reason is that the value
of the optimal dual variables α∗

i required to select the parameters
in (3.74) for given π are not known a priori, since α∗

i depends on
{κpi

, κdi
, ωi} and vice-versa. Hence, in our implementation, we

use a scaling-based procedure described in [133, 97] to (infeasibly)
initialize ϵw and ϵx;.

• While a pre-factorized KKT matrix of vπ(ϵ) results in almost-free
computation of the sensitivities in (3.65), building the Hessian ma-
trix ∇2

ϵϵv
π(ϵ) with these derivatives can be expensive with respect

to memory requirements.

3.5 Numerical examples

3.5.1 Computation of safe reference-sets for supervisory
control

We consider the system

z(t+ 1) =

[︃
1.1 0.2
−0.3 0.4

]︃
z(t) +

[︃
1 0
0.1 1

]︃
u(t)

with input-constraints u ∈ Û := {u : |u| ≤ [2 1.5]⊤}, and equipped with
an LQI-tracking controller such that z tracks a reference signal w: an
integral-action state q with dynamics q(t+ 1) = q(t) + z(t)− w(t) is ap-
pended, and the state x = [z⊤ q⊤]⊤ is introduced. Then, an LQI feedback
gain

K =

[︃
−1.19 −0.1439 −0.3154 0.0213
0.2777 −0.6497 −0.0037 −0.3724

]︃
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Figure 2: Results of solving Problem (3.46). Tight RPI set Xµ(ϵ
w) is computed

with µ = 10−6. Top-right plot shows the tracking performance with w sampled
from the vertices of W(ϵw). Bottom-right plot shows resulting closed-loop inputs.

is computed corresponding to matrices Q = diag(I, 0.5I) and R = I. The
resulting closed-loop system with u = Kx has the dynamics

x(t+ 1) =

⎡⎢⎢⎣
−0.09 0.0561 −0.3154 0.0213
−0.1413 −0.2641 −0.0353 −0.3702

1 0 1 0
0 1 0 1

⎤⎥⎥⎦x(t) +

⎡⎢⎢⎣
0 0
0 0
−1 0
0 −1

⎤⎥⎥⎦w(t).

We aim to design a supervisory controller for this system that saturates
the references as

w ∈W(ϵw) = {w : |w| ≤ ϵ̄w}

such that u ∈ Û always holds. We assume that the supervisory controller
cannot access the state x(t) of the system, such that W(ϵw) should guarantee
input-constraint satisfaction for all reachable x.

Since the mRPI set Xm(ϵ
w) is the set of set of all reachable x, the con-

straint u ∈ Û is equivalent to

KXm(ϵ
w) ⊆ Û.

Hence, we solve Problem (3.46) with the output equation (3.1b) formu-
lated using C = K,D = 0, output-constraint set Y = Û, and the mRPI
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setXm(ϵ
w) approximated using the RPI set X(ϵx) = {x : Ex ≤ ϵx}, where

the matrix E is composed of hyperplanes defining the set ⊕4
t=0A

tBW(1)

(A,B denote the matrices of the closed-loop system). This choice results
in mX = 112. The result of solving this problem using Algorithm 2 is
shown in Figure 2 (Plotted using the MPT-toolbox [53]). The computed
saturation bounds are w̄1 = 2.3819, w̄2 = 1.2108.

We also plot the set KXµ(ϵ
w), where Xµ(ϵ

w) is an RPI set satisfying

Xµ(ϵ
w) ⊆ Xm(ϵ

w)⊕ µBnx
∞ .

This set is computed using the method in [111] for µ = 10−6. Using
this set and the triangle inequality, we compute dH(Xm(ϵ

w),X(ϵx)) ≤
0.3007, indicating that X(ϵx) is a fairly tight approximation of the mRPI
set. Closed-loop trajectories are plotted with references w sampled from
the vertices of W(ϵw), for which the input response satisfies the input-
constraints. Hence, if x(0) ∈ X(ϵx), the supervisory controller can com-
mand any reference w ∈ W(ϵw) with guaranteed input-constraint satis-
faction.

Remark 3.7. The mRPI set is suitable to formulate the problem in Example
A since we do not have access to the state x(t). If this limitation is overcome,
then a reference governor scheme [40] is more suitable to design the supervisory
controller, which uses control invariant sets to guarantee constraint satisfaction.
□

3.5.2 Comparison of Algorithm 2 with a lifted KKT-based
approach

In this subsection, we employ Algorithm 2 to solve 16 randomly gener-
ated instances of Problem (3.46). The dimensions of these instances are
reported in Table 2. In our implementation, we set: σ = 10−6 in objec-
tive (3.46a); initialize µ = 10−3, κp, κd = 10−2, τ = 10−2; update with
θπ, θτ = 0.1; set tolerances for τ and µ as 10−7 and 10−8, respectively;
update κp ← θπκp and κd ← θπκd only when τ = 10−7 and µ = 10−8;
set tolerance for κp, κd equal to 10−4; use Hessian regularization based
on eigenvalue modification of the reduced Hessian [102, Page 50] in Step
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2 4 6 8 10 12 14 16

10 2

10 3

Alg. 2 Alg. 1 to evaluate vπ(ϵ) Total by Algs. 1 and 2 IPOPT for (3.79a)

2 4 6 8 10 12 14 16
Example #

10 -8

10 -6

10 -4

Alg. 1 IPOPTAlg. 2 IPOPT for Problem (3.79a)

Figure 3: (Top) Comparison of the number of iterations; (Bottom) Error in RPI
constraint (3.44b) satisfaction.

3; use the merit function proposed in [107] within the line-search proce-
dure in Step 6. We terminate the algorithm with parameters τ = 10−7,
µ = 10−8, κp, κd = 10−4 to ensure that vπ(ϵ) are close to v(ϵ) at termi-
nation. Our computational experience suggests that maintaining µ < τ

facilitates faster convergence: This choice implies that vπ(ϵ) is close v(ϵ)

while tracking the central path of Problem (3.62). A formalization of this
reasoning is left for future study. When updating κp, κd, we start reduc-
ing the regularization parameters κ2

p, κ
2
d from 10−4 to 10−8 close to the

solution, i.e., when τ = 10−7 and µ = 10−8, in order to avoid numeri-
cal difficulties resulting in inaccurate sensitivity evaluations. At termi-
nation of Algorithm 1, we compare the values v(ϵ) and vπ(ϵ) in order
to examine the impact of the smoothening parameter π > 0. We ob-
tain ∥v(ϵ)− vπ(ϵ)∥∞ = 4.127.10−6 for the presented examples, with the
norm taken over all the support functions v = {ci,di, lk,mk, qt} in all 16
examples.

We compare the performance of Algorithm 2 with the KKT-based
approach presented in [4]. In this approach, the LPs formulating Prob-
lem (3.46) are replaced by their KKT-optimality conditions, resulting in
a lifted formulation. For numerical robustness, we consider the regular-
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ized LP (QP) in (3.51) in lieu of (3.47), such that v(ϵ) = r⊤z∗ is replaced
by vκ(ϵ) = r⊤zκ. The KKT optimality conditions of Problem (3.51) can
be written as

P⊤zκ + κ2
pz

κ = r, Pzκ − κ2
dλ

κ ≤ ϵ, λκ ≥ 0,

λκ⊤ϵ− r⊤zκ + κ2
p ∥zκ∥

2
2 + κ2

d ∥λκ∥22 = 0,

(3.78)

in which the fourth condition is the zero-duality gap condition that is
equivalent to the strict-complementarity condition. Substituting the op-
timality conditions in (3.78) for each vπ(ϵ) in Problem (3.46), we obtain
the NLP

min
z,z∗,λ∗≥0

∥ϵ∥1 + σ

mW∑︂
t=1

(ϵwt − Ftz
qt)2

s.t. EiAzci + EiBzdi = ϵxi ,

Ezci − κ2
dλ

ci ≤ ϵx, F zdi − κ2
dλ

di ≤ ϵw,[︃
E⊤λci + κ2

pz
ci

F⊤λdi + κ2
pz

di

]︃
=

[︃
A⊤E⊤

i

B⊤E⊤
i

]︃
,[︄

ϵx
⊤
λci − EiAzci + κ2

p ∥zci∥22 + κ2
d ∥λci∥22

ϵw
⊤
λdi − EiBzdi + κ2

p

⃦⃦
zdi
⃦⃦2
2
+ κ2

d

⃦⃦
λdi
⃦⃦2
2

]︄
= 0,

GkCzlk +GkDzmk ≤ gk,

Ezlk − κ2
dλ

lk ≤ ϵx, F zmk − κ2
dλ

mk ≤ ϵw,[︃
E⊤λlk + κ2

pz
lk

F⊤λmk + κ2
pz

mk

]︃
=

[︃
C⊤G⊤

k

D⊤G⊤
k

]︃
,[︄

ϵx
⊤
λlk −GkCzlk + κ2

p

⃦⃦
zlk
⃦⃦2
2
+ κ2

d

⃦⃦
λlk
⃦⃦2
2

ϵw
⊤
λmk −GkDzmk + κ2

p ∥zmk∥22 + κ2
d ∥λmk∥22

]︄
= 0,

F zqt − κ2
dλ

qt ≤ ϵw,

F⊤λqt + κ2
pz

qt = F⊤
t ,

ϵw
⊤
λqt − Fkz

qt + κ2
p ∥zqt∥22 + κ2

d ∥λqt∥22 = 0,

∀i ∈ ImX
1 , ∀k ∈ ImY

1 , ∀t ∈ ImW
1 ,

AEz = bE, AIz ≤ bI,

(3.79a)

where z∗ ∈ RmX(nx+nw)+mY (nx+nw)+mWnw are the primal variables and
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λ∗ ∈ RmX(mX+mW )+mY (mX+mW )+m2
W are the dual variables satisfying

(3.78). We solve the NLP in (3.79a) using the IPOPT [151] interior-point
solver. We supply the solver with exact evaluations of the gradients and
the Hessian, select a global tolerance level of 10−7 for termination, and
terminate the algorithm after 2500 iterations if the solution has not yet
been found.

The results of initializing both Algorithm 2 and the NLP (3.79a) at the
same point are shown in Table 2. In the table, we indicate the problem
dimensions, and the values of ∥ϵ∥1 at the termination of Algorithm 2 and
IPOPT for solving (3.79a). The dimensions of the matrices E ∈ RmX×nx ,
F ∈ RmW×nw , and H ∈ RmB×ny selected for these examples are:

nx, nw = 2⇒ mX ,mW = 20,

nx, nw = 3⇒ mX ,mW = 84,

nx, nw = 4⇒ mX ,mW = 160,

ny = 2⇒ mB = 6, ny = 3⇒ mB = 42.

We observe that the values of ∥ϵ∥1 at termination are close for the two
algorithms. In Figure 3 (top plot), we compare the number of itera-
tions for the termination of the algorithms. For Algorithm 2, we plot
both the upper and lower level iterations. The lower iterations count
the total number of interior-point iterations performed in Steps 1 and 6

for evaluating vπ(ϵ) using Algorithm 1 with δtol = 10−12. We note that
these iterations are significantly cheaper than the PDIP iterations to solve
Problem (3.79a), Moreover, they can be parallelized reducing computa-
tional time further. The upper iterations count the interior-point itera-
tions as described in Algorithm 2. We observe that in the majority of
cases, IPOPT terminates at the maximum iteration limit, i.e., the toler-
ance of 10−7 is not met even after 2500 iterations. While the obtained
value at termination is feasible for Problem (3.79a), local optima are not
reached. This is especially pronounced for higher dimensional systems,
e.g., Cases 9-16. In the case of Algorithm 2, however, we observe much
quicker convergence. In Figure 3 (bottom plot), using the obtained value
of ϵw at termination, we recompute ϵx that satisfies the RPI constraint
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c(ϵx) + d(ϵw) = ϵx. We label this vector as ϵxexact, and evaluate the error
with respect to ϵxterm, i.e., the value of ϵx at the termination of the algo-
rithms. We observe that the regularization terms κ2

p, κ
2
d = 10−8 at the

termination of both the algorithms do not have a significant effect on the
RPI constraint satisfaction.
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Algorithm 2: Smoothing-based PDIP algorithm for Problem
(3.46)

Result: Return z;
Input: System matrices (A,B,C,D); Output-constraint set Y in

hyperplane and vertex notations; Matrices E,F,H
parameterizing polytopes X(ϵx),W(ϵw),B(ϵ) respectively;

Initialize: τ, π > 0, (z, γ, ζ), (zπ,λπ, sπ);
while τ ,π,∥∇zLπ, hπ

E,max(0, hπ
I )∥∞ > δtol do

123
1. Evaluate vπ(ϵ),∇ϵv

π(ϵ),∇2
ϵϵv

π(ϵ) for each
vπ(ϵ) = {cπi (ϵx),dπ

i (ϵ
w), lπk (ϵ

x),mπ
k (ϵ

w), qπ
t (ϵ

w)} using
Algorithm 1, and Equations (3.65) and (3.66);
2. Compute fπ , hπ

E, hπ
I ,∇zf

π ,∇zh
π
E,∇zh

π
I , ∇2

zzLπ ;
3. Compute regularized Hessian B approximating∇2

zzLπ and
ensuring descent for Problem (3.77);
4. Compute Newton direction by solving⎡⎢⎢⎣

B ∇zh
π
E ∇zh

π
I 0

∇zh
π⊤

E 0 0 0

∇zh
π⊤

I 0 0 I
0 0 Z GI

⎤⎥⎥⎦
⎡⎢⎢⎣
∆z
∆γE
∆γI
∆ζ

⎤⎥⎥⎦ = −

⎡⎢⎢⎣
∇zLπ

hπ
E

hπ
I + ζ

ζ ◦ γI − τ1

⎤⎥⎥⎦,
where Z := diag(ζ), GI := diag(γI);
5. Compute largest ᾱ ∈ (0, 1] such that ζ + ᾱ∆ζ ≥ ϵ̄ζ and
γI + ᾱ∆γI ≥ ϵ̄γI for some ϵ̄ > 0;
6. Globalization method yielding α ∈ (0, ᾱ];
7. Update (z, γ, ζ)← (z, γ, ζ) + α(∆z,∆γE,∆γI,∆ζ);
if ∥Kτ,π(z, γ, ζ)∥∞ < τ then

123Update τ ← θττ , π ← θππ
end

end
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# (nx, nw, ny) Algorithm 2 IPOPT for (3.79a)
1 (2, 2, 2) 2.7422 2.7422
2 (2, 2, 3) 33.3250 33.2500
3 (2, 3, 2) 1.4002 1.4706
4 (2, 3, 3) 16.9777 16.8023
5 (2, 4, 2) 2.7422 3.0815
6 (2, 4, 3) 27.0213 26.8366
7 (3, 2, 2) 2.0244 2.9159
8 (3, 2, 3) 21.3772 21.0908
9 (3, 3, 2) 2.1299 3.0646
10 (3, 3, 3) 25.2940 26.6438
11 (3, 4, 2) 20.8378 28.6038
12 (4, 2, 3) 0.8741 1.0193
13 (4, 2, 2) 27.3955 27.6824
14 (4, 3, 3) 1.8457 2.1947
15 (4, 3, 2) 27.2488 27.2586
16 (4, 4, 3) 22.1434 25.0673

Table 2: Dimension of random systems, along with a comparison of the values of
∥ϵ∥1 at the termination of Algorithm 2 and NLP (3.79a) when solved with IPOPT.
For each example, the target output set is Y = Bny

∞ .
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Chapter 4

Computation of
Least-Conservative
State-Constraint Sets for
Decentralized MPC with
Dynamic and Constraint
Coupling

4.1 Introduction

Model Predictive Control (MPC) of interconnected systems has been an
active area of research, driven by practical requirements posed by com-
munication and computation limitations [8]. Several control schemes sat-
isfying these requirements have been proposed, which are based on de-
composition methods of either the coupled system or of the centralized
optimization problem [82]. These schemes are broadly divided into two
categories: distributed MPC (DMPC) and decentralized MPC (DeMPC),
with the division usually being defined based on the communication be-
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tween the controllers. With respect to interconnection patterns, the two
broad categories are dynamic coupling and constraint coupling.

Dynamic couplings lead to interactions between the states of dis-
parate constituent subsystems, thus requiring coordination between lo-
cal controllers. Tube-based MPC [87] has been used as an effective frame-
work to tackle this coordination problem. By modeling the state interac-
tions as local disturbances, local controllers can be designed that explic-
itly take these disturbances into account to ensure robust constraint satis-
faction. An example that uses this framework is the DMPC scheme pro-
posed in [35], which accommodates both dynamic and constraint cou-
pling. This scheme requires communication between the controllers of
reference trajectories, and true states and inputs. On the DeMPC side,
schemes that do not require communication between the controllers have
been proposed. The lack of communication introduces unavoidable con-
servativeness, which should be tackled is a structured way. For example,
in [120], local tube-based MPC controllers are synthesized using feed-
back gains, which are computed by solving an offline optimization prob-
lem that minimizes the conservativeness. However, the scheme only ac-
commodates dynamic coupling and not constraint coupling. A common
theme among these approaches is the adoption of the method presented
in [112] to compute tight outer approximations of the minimal Robust
Positive Invariant (mRPI) set, which is an essential ingredient of tube-
based MPC. Thus, broadly the current problem belongs to the broader
class of problems related to computing decentralized RPI sets. For ex-
ample, in [117], RPI sets for dynamically coupled systems with summa-
rized information regarding the connected subsystems are characterized
and computed. In [28], such information is used to progressively shrink
ellipsoidal terminal PI sets. Without making such summarized informa-
tion assumptions, LMI-based methods are presented in [101] to compute
fully-decentralized zonotopic RPI sets for systems with decoupled con-
straints, along with corresponding invariance inducing feedback gains.
While this approach can be extended to accommodate systems with cou-
pled constraints, a comparison is a subject of future study. In [43], zono-
topic RCI sets are synthesized an a similar setting by not fixing the con-
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troller parameterization to a linear law, and adopting a compositional
framework.

Recently, building on the work presented in [118], a one-step ap-
proach to compute outer approximations of the mRPI set has been pre-
sented in [144]. This approach, which allows for very quick online re-
computation of a small RPI set, has been purposed in the development
of a DMPC scheme in [145]. The recomputation leads to disturbance sets
which reduce in size as the set-points are reached, therefore improving
the performance of the overall distributed scheme.

In this chapter, we present a method to compute state-constraint sets
for local tube-based MPC controllers [87] used within the DeMPC scheme
of [120]. We consider linear time-invariant systems which can be cou-
pled in both dynamics and constraints. The method is centered on the
formulation of an offline optimization problem, which is developed us-
ing a set-based framework. The decoupled state-constraint sets are com-
puted such that (a) the corresponding output set is the least conservative
inner-approximation of the coupled constraint set, and (b) feasibility and
stability of the local tube-based MPC controllers is ensured. The formu-
lation of the optimization problem relies on the results on polytopically
parameterized RPI sets developed in Chapter 3.

4.2 Decentralized Tube-Based MPC of Coupled
Linear Systems

4.2.1 System Description

We consider a linear time-invariant system of the form

x(t+ 1) = Ax(t) +Bu(t), (4.1)

with state x ∈ Rnx , input u ∈ Rnu . This system is subject to constraints

U := {u : Guu ≤ gu}, gu ∈ RmU ,

Y := {y ∈ Rny : y = Cx, Gyy ≤ gy}, gy ∈ RmY .

(4.2a)
(4.2b)
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Assumption 4.1. The sets U and Y are full-dimensional polytopes containing
the origin in their interior. □

We assume that the system in (4.1) can be partitioned into M subsys-
tems, each with dynamics described by

x[i](t+ 1) = A[ii]x[i](t) +B[i]u[i](t) +
∑︂
j∈Li

A[ij]x[j](t), (4.3)

where i indicates the ith subsystem with states x[i] ∈ Rni
x and inputs

u[i] ∈ Rni
u . The overall state and input vectors are then

x(t) = [x[1](t)
⊤, .., x[M ](t)

⊤]⊤,

u(t) = [u[1](t)
⊤, .., u[M ](t)

⊤]⊤.

respectively. The set Li indicates the indices of the neighbors of i which
are dynamically coupled to it, i.e.,

Li := {j ∈M : i ̸= j, A[ij] ̸= 0}.

From (4.3), we have B = diag(B[1], · · · , B[M ]). In addition, we assume
that the input constraints are decoupled, i.e., U =

∏︁
i∈M Ui, with u[i] ∈ Ui

being the input constraint on individual subsystem i. Note that unlike
in related literature [110, 120, 62], we do not assume Y to be decoupled
between the subsystems. Our aim is to solve the following fully decen-
tralized MPC problem:

Problem 4.1. Design M model predictive controllers Ci, one per subsystem i,
described by (4.3), such that

(a) The state x is regulated to 0;

(b) System constraints (4.2) are satisfied;

(c) Each controller Ci has access only to local states x[i];

(d) There is no communication between the controllers.

In order to solve Problem 4.1, we adopt the DeMPC scheme of [120],
which uses the tube-based MPC approach [87] to design each controller
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Ci. In the original approach, state-constraint sets Xi on individual sub-
system i are known a priori, while we only know the coupled constraint
Y . Hence, in the next subsection, we recall the scheme in [120] for ar-
bitrary state-constraint sets Xi, and use the properties of the scheme to
derive requirements on Xi in order to satisfy the coupled constraint Y .

4.2.2 DeMPC Formulation

In order to formulate the controller as decentralized, we model all cou-
plings as disturbances. Accordingly, we rewrite (4.3) as

x[i](t+ 1) = A[ii]x[i](t) +B[i]u[i](t) + w[i](t), (4.4)

that is subject to the additive disturbance

w[i](t) :=
∑︂
j∈Li

A[ij]x[j](t).

As in standard tube-based MPC (recall from Section 2.2.3), we assume
that each subsystem i is equipped with a pre-designed feedback controller
K[i] ∈ Rni

u×ni
x satisfying the following assumptions.

Assumption 4.2.

1. Each matrix pair (A[ii], B[i]) is controllable;

2. ∀ i ∈ IM1 , ρ(AK[i]
) < 1, where AK[i]

:= A[ii] +B[i]K[i];

3. ρ(AK) < 1, where AK := A+BK and K := diag(K[1], · · · ,K[M ]).
□

Using K[i], we parameterize the control input as

u[i](t) = û[i](t) +K[i]∆x[i](t), (4.5)

where ∆x[i](t) := x[i](t) − x̂[i](t) is the state error with respect to the
nominal system

x̂[i](t+ 1) = A[ii]x̂[i](t) +B[i]û[i](t). (4.6)
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We also define the input error ∆u[i](t) := u[i](t)− û[i](t). Using (4.4), (4.5)
and (4.6), the dynamics of the error system for subsystem i can be derived
as

∆x[i](t+ 1) = AK[i]
∆x[i](t) + w[i](t). (4.7)

Since we assume that the state of each subsystem i is constrained to the
set Xi, we have

w[i](t) ∈ Wi :=
⨁︂
j∈Li

A[ij]Xj . (4.8)

Given the disturbance setWi, the error state ∆x[i] always belongs to the
corresponding mRPI set ∆Xi(Wi):

∆x[i](t) ∈ ∆Xi(Wi) :=

∞⨁︂
t=0

(︁
AK[i]

)︁tWi. (4.9)

In the following, we first formulate tube-based robust MPC controllers Ci
by relying on sets Xi and ∆Xi(Wi) and afterwards discuss the properties
that these sets must satisfy in order to guarantee that y ∈ Y . Each Ci is
based on solving

min
z[i]

t+N−1∑︂
s=t

⃦⃦
x̂[i](s)

⃦⃦2
Q[i]

+
⃦⃦
û[i](s)

⃦⃦2
R[i]

+
⃦⃦
x̂[i](t+N)

⃦⃦2
P[i]

s.t. x[i](t) ∈ x̂[i](t)⊕∆Xi(Wi),

x̂[i](s+ 1) = A[ii]x̂[i](s) +B[i]û[i](s), s ∈ It+N[i]−1
t ,

x̂[i](s) ∈ Xi ⊖∆Xi(Wi), s ∈ It+N[i]−1
t+1 ,

û[i](s) ∈ Ui ⊖K[i]∆Xi(Wi), s ∈ It+N[i]−1
t ,

x̂[i](t+N) ∈ X t
i ,

(4.10a)

(4.10b)

(4.10c)

(4.10d)

(4.10e)

(4.10f)

with the optimization vector

z[i] := {x̂[i](t), · · · , x̂[i](t+N), û[i](t), · · · , û[i](t+N − 1)}.

The nominal model (4.6) is used to perform predictions of state evolu-
tions, as indicated in (4.10c). The initial state is left as a free variable
to be optimized through constraint (4.10b), and the predicted state and
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input constraints are tightened through constraints (4.10d) and (4.10e),
such that the actual subsystem state x[i](t) ∈ Xi and u[i](t) ∈ Ui for all
t. The feedback gain K[i] is chosen to be the terminal control law, and
terminal set X t

i is chosen to be a feasible Positive Invariant (PI) set for
the autonomous system

x̂[i](t+ 1) = AK
[i]x̂[i](t),

i.e., it satisfies the PI inclusion

AK
[i]X

t
i ⊆ X t

i ,

while belonging to the tightened constraint set as

X t
i ⊆ {x̂[i] : x̂[i] ∈ Xi ⊖∆Xi(Wi), K[i]x̂[i] ∈ Ui ⊖K[i]∆Xi(Wi)}.

The matrices Q[i] > 0 and R[i] > 0 are chosen such that K[i] is the associ-
ated LQ control gain for nominal system i, and P[i] is the solution of the
corresponding Discrete Algebraic Riccati Equation. Upon solving (6.8),
control input u[i](t) = û[i](t)+K[i](x[i](t)− x̂[i](t)) is applied to the plant.

We recall the properties of the DeMPC scheme from [120], and derive
requirements on Xi in the following result.

Proposition 4.1. Suppose Assumptions 4.1 and 4.2 hold, and for each i ∈ IM1 ,
sets Xi satisfy

∆Xi(Wi) ⊆ int(Xi),

K[i]∆Xi(Wi) ⊆ int(Ui).

(4.11a)
(4.11b)

(a) For each controller Ci, we denote the feasible set

XN
i := {x[i] : (4.10b)-(4.10f) feasible for x[i](t) = x[i]}.

Then if x[i](0) ∈ XN
i , the controlled system in (4.3) satisfies x[i](t) ∈

Xi and u[i](t) ∈ Ui for all t ≥ 0, and the state x of System (4.1) is
asymptotically stabilized to the origin with region of attraction Πi∈MXN

i .

(b) Defining C[i] ∈ Rny×ni
x as the matrix composed of columns of matrix C

multiplying states x[i] of subsystem i, if the inclusion
M⨁︂
i=0

C[i]Xi ⊆ Y. (4.12)

is satisfied, then the controllers Ci solve Problem 4.1.
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□

Proof.

(a) The conditions in (4.11) ensure that constraint sets in (4.10d) and
(4.10e) are non-empty. This leads to non-empty feasible sets XN

i .
For a given subsystem i, if w[i](t) ∈ Wi for all t ≥ 0, then the proof
of recursive feasibility and asymptotic stability of state x[i] of sub-
system i to the mRPI set ∆Xi(Wi) follows from [87]. Since for ev-
ery i ∈ IM1 , x[i](0) ∈ XN

i implies x[i](t) ∈ Xi for all t ≥ 0 because
of closed-loop action by the controller Ci on subsystem i, it then
indeed holds that w[i](t) ∈ Wi for all t ≥ 0 by definition of w[i].
Hence, each substate x[i] is asymptotically stabilized to ∆Xi(Wi),
such that the state x of the overall system (4.1) is asymptotically
stabilized to Πi∈M∆Xi(Wi) from any x ∈ Πi∈MXN

i . Then, the
proof of stability to the origin follows from the observation that the
set Πi∈M∆Xi(Wi) is Positive Invariant for the closed-loop system
x(t+ 1) = AKx(t). For further details the reader is refered to [120,
Theorem 1].

(b) The condition in (4.12) translates to

Xi =

⎧⎨⎩x[i] : ∀ x[j] ∈ Xj , C[i]x[i] +
∑︂
j∈Li

C[j]x[j] ∈ Y

⎫⎬⎭ , ∀ i ∈ IM1 .

This implies that if (4.12) holds, then x[i] ∈ Xi for all i ensures y ∈ Y .
The fact that the former is guaranteed by Part (a) concludes the
proof.

From Assumptions 4.1 and 4.2, we see that requirements (4.11) and
(4.12) can be satisfied by compact sets Xi, which we compute in the next
section.

Remark 4.1. Note that requirement (4.12) results in conservative setsXi, since
it enforces that the control applied to the subsystem must satisfy system con-
straints Y , for every possible control applied by the neighbors. This is unavoid-
able, unless communication is introduced. In case full state information of all
neighbors were available to Ci, one could formulate the local constraint set as⎧⎨⎩x[i] : ∃x[j] ∈ Xj , C[i]x[i] +

∑︂
j∈Li

C[j]x[j] ∈ Y

⎫⎬⎭ ⊇ Xi.
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4.3 Computation of State-Constraint Sets Xi

In this section, we present a formulation and a solution procedure to
compute the sets Xi that satisfy requirements (4.11) and (4.12). To this
end, we introduce the system

∆x(t+ 1) = Ã∆x(t) + B̃x(t), (4.13)

where the matrices Ã := diag(AK
[1], · · · , A

K
[M ]) and

B̃ :=

⎡⎢⎢⎣
0 A[12] · · · A[1M ]

A[21] 0 · · · A[2M ]

· · · · · · 0 · · ·
A[M1] A[M2] · · · 0

⎤⎥⎥⎦
capture the dynamic coupling between the subsystems. For this system,
we introduce the sets

X :=
∏︂
i∈M

Xi, ∆X (X ) :=
∏︂
i∈M

∆Xi(Wi).

The set ∆X (X ) is the mRPI set of states corresponding to the system
(4.13) when driven by disturbances x(t) ∈ X , given by

∆X (X ) :=
∞⨁︂
t=0

ÃtB̃X . (4.14)

We make the following assumption on the sets Xi.

Assumption 4.3. Each Xi is a compact convex set containing the origin. □

Assumption 4.3 implies that the mRPI set ∆X (X ) is a compact convex
set containing the origin [63]. In order to encode inclusions (4.11), we
introduce scalars ϕx, ϕu ∈ [0, 1), and write the inclusions as

∆X (X ) ⊆ ϕxX , K∆X (X ) ⊆ ϕuU. (4.15)

The values of ϕx and ϕu are tuning parameters which are related to the
strength of dynamic coupling. Larger values correspond to increased
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permissible dynamic coupling, and hence increased size of setsXj . How-
ever, this also corresponds to increased dynamical disturbance from the
neighboring subsystems, resulting in increased constraint tightening, and
a larger stabilization region. Thus, the scalars ϕx and ϕu are tuning fac-
tors that must be selected depending on the application at hand.

Considering requirement (4.12), we first note that

CX =

M⨁︂
i=0

C[i]Xi ⊆ Y, (4.16)

by definition of X . Ideally, one would like to satisfy the inclusion

CX ⊆ Y

with equality. This would imply that the sets Xi are chosen such that all
the points in set Y are reachable by Cx. This, however, might not be fea-
sible given requirements (4.15). Hence, we choose to instead minimize
the approximation error of the output-constraint set Y by the output-
reachable set CX , similarly to Chapter 3. We recall that this approxima-
tion error is defined as

dY(CX ) :=min
ϵ
∥ϵ∥1

s.t. Y ⊆ CX ⊕ B(ϵ),

where the normal vectors {H⊤
i , i ∈ ImB

1 } of the set B(ϵ) := {y : Hy ≤ ϵ}
are user-specified. From these requirements, we obtain the following
optimization problem for fixed scalars ϕx and ϕu:

min
ϵ,X=Πi∈MXi

∥ϵ∥1

s.t. ∆X (X ) ⊆ ϕxX ,
K∆X (X ) ⊆ ϕuU,

CX ⊆ Y,
Y ⊆ CX ⊕ B(ϵ),
0 ∈ Xi, i ∈ IM1 .

(4.17a)

(4.17b)
(4.17c)
(4.17d)
(4.17e)

(4.17f)

Our approach explicitly tackles the issue of conservativeness discussed
in Remark 4.1: The sets Xi are computed such that CX is the largest
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feasible inner-approximation of Y , i.e., dY(CX ) is minimized while en-
suring feasibility and stability of Ci. This implies that the overall system
output y = Cx is restricted to the least conservative subset of Y when
controllers Ci safely regulate the system state x to the origin.

Remark 4.2. The structure of (4.13) follows from the assumption of a block-
diagonal matrix B, i.e., decoupled inputs. The approach can be extended to
accommodate coupled inputs and input constraints through minor reformula-
tions. □

4.3.1 Finite-Dimensional Parameterization

As discussed in Chapter 3, Problem (4.17) is in general intractable since it
is formulated with the mRPI set ∆X (X ) that in general evades an explicit
representation. Hence, we apply the techniques proposed in Chapter 3 in
order to solve it approximately. In particular, we parameterize the setsXi

and ∆Xi(Wi) as polytopes, such that the sets X and ∆X (X ) are cartesian
products of these polytopes.

We parameterize each set Xi using a finite-dimensional vector ϵx,i as

Xi = Xi(ϵ
x,i) := {x[i] : F

ix[i] ≤ ϵx,i},

where the normal vectors {(F i
j )

⊤ ∈ Rni
x , j ∈ Im

i
X

1 } are fixed a priori.
Since the corresponding mRPI sets ∆Xi(Wi) are in general not finitely
determined [16], we rely on an outer RPI approximation, parameterized
using a finite-dimensional vector ϵ∆x,i as

∆Xi(Wi) ⊆ ∆Xi(ϵ
∆x,i) := {∆x[i] : E

i∆x[i] ≤ ϵ∆x,i},

where the normal vectors {(Ei
j)

⊤ ∈ Rni
x , j ∈ Im

i
∆X

1 } are fixed a priori.
The overall state-constraint set is hence

X = X(ϵx) : =

⎧⎪⎨⎪⎩x :

⎡⎢⎣F
1

. . .
FM

⎤⎥⎦x ≤

⎡⎢⎣ ϵx,1

...
ϵx,M

⎤⎥⎦
⎫⎪⎬⎪⎭

= {x : Fx ≤ ϵx},
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and the corresponding mRPI set is approximated as

∆X (X(ϵx)) ⊆ ∆X(ϵ∆x) : =

⎧⎪⎨⎪⎩∆x :

⎡⎢⎣E
1

. . .
EM

⎤⎥⎦∆x ≤

⎡⎢⎣ ϵ∆x,1

...
ϵ∆x,M

⎤⎥⎦
⎫⎪⎬⎪⎭

= {∆x : E∆x ≤ ϵ∆x}.

For convenience of notation, we also define

mX :=

M∑︂
i=1

mi
X , m∆X :=

M∑︂
i=1

mi
∆X ,

such that ϵx ∈ RmX and ϵ∆x ∈ Rm∆X .
In order to obtain a close approximation of the equality constraint

(4.14) for a given disturbance set X(ϵx), we use the parameterized RPI
set ∆X(ϵ∆x) that minimizes dH(∆X (X(ϵx)),∆X(ϵ∆x)).

Finally, since ∆X (X(ϵx)) ⊆ ∆X(ϵ∆x), we replace ∆X (X(ϵx)) by ∆X(ϵ∆x)

in inclusions (4.15). Note that process noise can be accommodated in this
framework through matrix B̃ and parameterized sets X .

In terms of the above parameterized sets, Problem (4.17) is approxi-
mated as the following bilevel optimization problem:

Problem 4.2.

min
ϵx≥0,ϵ

∥ϵ∥1

s.t. ∆X(ϵ∆x) ⊆ ϕxX(ϵx),
K∆X(ϵ∆x) ⊆ ϕuU,

CX(ϵx) ⊆ Y,
Y ⊆ CX(ϵx)⊕ B(ϵ),
ϵ∆x = argmin

¯
ϵ∆x

dH(∆X (X(ϵx)),∆X(
¯
ϵ∆x)),

s.t. Ã∆X(
¯
ϵ∆x)⊕ B̃X(ϵx) ⊆ ∆X(

¯
ϵ∆x).

(4.18a)

(4.18b)

(4.18c)
(4.18d)
(4.18e)

(4.18f)

4.3.2 Inclusion encoding

In order to encode the RPI inclusion

Ã∆X(ϵ∆x)⊕ B̃X(ϵx) ⊆ ∆X(ϵ∆x),
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we introduce the support-functions

∀ i ∈ Im∆X
1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ci
(︁
ϵ∆x
)︁
:= hÃ∆X(ϵ∆x)

(︁
E⊤

i

)︁
,

di (ϵ
x) := hB̃X(ϵx)

(︁
E⊤

i

)︁
,

bi
(︁
ϵ∆x
)︁
:= h∆X(ϵ∆x)

(︁
E⊤

i

)︁
,

such that the RPI inclusion can equivalently be written as

c(
¯
ϵ∆x) + d(ϵx) ≤ b(

¯
ϵ∆x). (4.19)

Then, assuming that for the system in (4.13) the matrices E and F

satisfy Assumption 3.2, we know from Theorem 3.1 that

(4.18f) ⇐⇒ c(ϵ∆x) + d(ϵx) = ϵ∆x, (4.20)

such that the we replace the lower-level problem by the equality

c(ϵ∆x) + d(ϵx) = ϵ∆x.

In order to encode inclusions (4.18b), (4.18c) and (4.18d), we introduce
the support-functions

∀ i ∈ ImX
1

{︄
gx
i

(︁
ϵ∆x
)︁
:= h∆X(ϵ∆x)

(︁
E⊤

i

)︁
,

fx
i (ϵx) := hX(ϵx)

(︁
E⊤

i

)︁
,

∀ i ∈ ImU
1

{︂
gu
i

(︁
ϵ∆x
)︁
:= hK∆X(ϵ∆x)

(︂
Gu⊤

i

)︂
,

∀ i ∈ ImY
1

{︂
gy
i (ϵ

x) := hCX(ϵx)

(︂
Gy⊤

i

)︂
,

and define the vector-valued functions

g(ϵx, ϵ∆x) :=

⎡⎣gx(ϵ∆x)
gu(ϵ∆x)
gy(ϵx)

⎤⎦ , f(ϵx) :=

⎡⎣ϕxf
x(ϵx)

ϕug
u

gy

⎤⎦ .

Then, we replace (4.18b), (4.18c) and (4.18d) by the functional inequality

g(ϵx, ϵ∆x) ≤ f(ϵx). (4.21)
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Finally, in order to encode inclusion (4.18e), we assume to know the
vertices of the set Y , i.e.,

{y[i], i ∈ IvY1 } = vert(Y),

using which we encode the inclusion as (ϵx, ϵ) ∈ Ξ, where

Ξ :=
{︁
(ϵx, ϵ) : ∀ i ∈ IvY1 ,∃{x[i] ∈ X(ϵx),b[i] ∈ B(ϵ)} : y[i] = Cx[i] + b[i]

}︁
.

Thus, using the aforementioned inclusion encodings, we write Prob-
lem (4.2) equivalently as

min
ϵx,ϵ∆x,ϵ,z

∥ϵ∥1

s.t. c(ϵ∆x) + d(ϵx) = ϵ∆x,

g(ϵx, ϵ∆x) ≤ f(ϵx),

(ϵx, ϵ) ∈ Ξ,

ϵx ≥ 0,

(4.22a)

(4.22b)

(4.22c)
(4.22d)
(4.22e)

where z := {x[i],b[i], i ∈ IvY1 } are the auxiliary variables required to en-
code the set Ξ. This problem is now in the form of Problem (3.30), such
that we solve it using any of the techniques proposed in Chapter 3. In the
numerical example, we solve the resulting optimization problem with
the smoothening-based Interior Point solver presented in Section 3.4.

4.3.3 Integration with Controllers Ci
Upon solving (4.22), we recover constraint setsXi from the solution X(ϵx).
Then, we compute the setsWi given by (4.8). For eachWi, we compute
RPI sets ∆X̃i(Wi) by following the method presented in [111] to tightly
approximate ∆Xi(Wi). By construction, we obtain

∆Xi(Wi) ⊆ ∆X̃i(Wi) ⊆ ∆Xi(ϵ
∆x,i)

for a tight enough ∆X̃i(Wi). Using Xi and ∆X̃i(Wi), we construct the
optimization problems in (6.8) solved by Ci. We use Proposition 4.1 to
check the validity of a given initial state.
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Remark 4.3. One can directly use the RPI sets ∆Xi(ϵ
∆x,i) in place of ∆Xi(Wi).

However, this results in a smaller feasible region XN[i]

i , and increases conserva-
tiveness of Ci. □

Remark 4.4. The proposed formulation allows one to introduce specific condi-
tions to be satisfied by the parameterization of the sets X , e.g., symmetry con-
straints can be imposed; and the inclusion of a feasible region of the state-space
in X can be imposed through the sufficiency conditions presented in [127]. □

Remark 4.5. The computed sets Xi can be used to synthesize local controllers
Ci using other methods, e.g. [26]. □

4.4 Numerical Example

We consider an LTI plant composed of three discrete-time double inte-
grators given by

A[ii] =

[︃
1 1
0 1

]︃
, B[i] =

[︃
0.5
1

]︃
, ∀ i ∈ I31,

that are dynamically coupled through the matrix

B̃ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
0 0 0.0480 −0.0060 −0.0480 −0.0600
0 0 0 0 0 0

0.0360 −0.0240 0 0 0.0360 0.0240
0 0 0 0 0 0

0.0360 0.0360 0.0120 0.0600 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

i.e., A = diag(A[11], A[22], A[33]) + B̃, and B = diag(B[1], B[2], B[3]).
Each integrator is subject to local constraints

−1 ≤ x[i] ≤ 1, −1 ≤ u[i] ≤ 1, ∀ i ∈ I31.

and the overall system is subject to coupled constraints

x[1]1 − x[2]1 ≤ 0.99, x[2]1 − x[3]1 ≤ 0.99,

which represent collision avoidance specifications on the integrators.
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In order to design local MPC controllers Ci for each subsystem i, we
first equip each system with an LQR feedback gain, corresponding to

Q[i] = I, ∀ i ∈ I31, R[1] = 1, R[2] = 5, R[3] = 10.

Then, we parameterize each state-constraint set Xi as the uniform poly-
tope Xi(ϵ

x,i) with m1
X = 8, m2

X = 12 and m3
X = 10. We also parameterize

each RPI set ∆Xi(ϵ
∆x,i) in the same way as Xi(ϵ

x,i). Finally, we select
ϕx = 0.3 and ϕu = 0.5. By parameterizing ∆Xi(ϵ

∆x,i) with the same set
of normal vectors as Xi(ϵ

x,i) for each i ∈ I31, we simplfy the condition

gx
(︁
ϵ∆x
)︁
≤ ϕxf

x(ϵx)

in (4.21) to the linear inequality ϵ∆x ≤ ϕxϵ
x. Based on these parame-

terizations, we formulate Problem (4.22) as Problem (3.45), that we then
solve using the smoothening-based interior-point solver presented in Sec-
tion 3.4.

The results obtained are plotted in Figure 4. Using the sets Xi, we
compute tighter RPI sets ∆X̃i(Wi) ⊆ ∆Xi(ϵ

∆x,i) using the method in
[111]. The resulting sets ∆X̃i(Wi) approximate the mRPI sets ∆Xi(Wi)

as

∆Xi(Wi) ⊆ ∆X̃i(Wi) ⊆ ∆Xi(Wi)⊕ 10−4Bnx
∞ .

Using this set, we perform constraint tightening for the MPC controllers
as

Xi ⊖ X̃i(Wi), Ui ⊖K[i]X̃i(Wi).

Finally, inside the tightened constraint set we use the Maximal Positive
Invariant set, computed as in [44], as the terminal set X terminal

i . The
results of synthesizing the tube-MPC controllers Ci using these sets is
plotted in Figure 4. For comparison, we synthesize a standard central-
ized MPC controller for System (4.1), and enforce the constraints (4.2) in-
side this MPC controller. This controller solver the following QP at each
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timestep t, that is parameterized by the current state measurement x(t):

min
v

t+N−1∑︂
s=t

∥x(s)∥2Q + ∥u(s)∥2R + ∥x(N)∥2P

s.t. x(s+ 1) = Ax(s) +Bu(s), s ∈ It+N−1
t ,

Cx(s) ∈ Y, u(s) ∈ U, s ∈ It+N−1
t ,

x(t+N) ∈ Xt,

(4.23a)

(4.23b)

(4.23c)

(4.23d)

with variables v := {x(t+ 1), · · · ,x(t+N),u(t), · · · ,u(t+N − 1)}, and
the cost matrices Q = diag(Q[1], · · · , Q[M ]) and R = diag(R[1], · · · , R[M ]).
We select P as the minimum trace matrix that satisfies the matrix in-
equality AK⊤

PAK −P ⪯ −(Q+K⊤RK), computed using well-known
techniques [21]. For the current example, we obtain

P =

⎡⎢⎢⎢⎢⎢⎢⎣
2.4306 1.1516 −0.0615 0.1401 0.0869 0.3060
1.1516 2.6234 −0.0273 −0.0398 0.0153 0.2239
−0.0615 −0.0273 2.9340 2.2977 0.0007 −0.0000
0.1401 −0.0398 2.2977 6.0911 0.1748 0.4379
0.0869 0.0153 0.0007 0.1748 3.3027 3.2482
0.3060 0.2239 −0.0000 0.4379 3.2482 9.4144

⎤⎥⎥⎥⎥⎥⎥⎦ .

Finally, we select Xt as the Maximal Positive Invariant set for the
closed-loop system x(t + 1) = AKx(t) satisfying the system constraints
as Xt ⊆ {x : Cx ∈ Y, Kx ∈ U}. We observe that, while the closed-loop
performance deteriorates as expected in the DeMPC case, we achieve our
objectives for controller design, i.e., we stabilize the closed-loop system
while satisfying constraints in a decentralized manner.
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Figure 4: Computed sets and simulation results in state space with MPC con-
trollers formulated with horizon N = 5. Red dots indicate initial states x[i](0).
DeMPC controllers Ci restrict the system state as x[i] ∈ Xi to satisfy the con-
straints in (4.2), while centralized MPC does not require this restriction.
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Chapter 5

Computation of Safe
Disturbance Sets using
Implicit RPI sets

In this chapter, we revisit Problem (3.18), i.e., the problem of computing
a disturbance set such that the corresponding set of reachable outputs
approximates an assigned set, while remaining constrained in it. Unlike
the approach used in Chapter 3 however, we solve the problem using an
implicit RPI set parameterization. For convenience, we recall that Prob-
lem (3.18) is written as

min
W

dY(S(l,W))

s.t. YRPI(W) ⊆ Y,
0 ∈ W.

(5.1a)

(5.1b)
(5.1c)

The output constraint set Y is given as the polytope

Y = {y : Giy ≤ gi, ∀ i ∈ ImY
1 } = {y : Gy ≤ g},

and the distance function defining the objective is given for some user-
specified index l > 0 as

dY(S(l,W)) := min
ϵ
{∥ϵ∥1 : Y ⊆ S(l,W)⊕ B(ϵ)}
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using the set B(ϵ) = {y : Hy ≤ ϵ}, in which normal vectors {H⊤
i , i ∈ InB

1 }
are specified a priori by the user, and the set S(l,W) is the l-step output
reachable set.

In Implicit RPI (IRPI) approach that we present in this chapter tack-
les directly the following main drawbacks of the Explicit RPI (ERPI) ap-
proach presented in Chapter 3:

1. Given matrix A of system (7.1), it is not well understood how to
select a matrix E satisfying Assumption 3.2, i.e., it is not clear how
to parameterize an RPI set X(ϵx).

2. The approximation error of an RPI set X(ϵx) with respect to the
mRPI set Xm(W(ϵw)) cannot be specified a priori.

3. The disturbance set parameterization W(ϵw) is such that the result-
ing set of feasible disturbance sets satisfying the output inclusion
condition CX(ϵx(ϵw))⊕DW(ϵw) ⊆ Y is nonconvex and nonsmooth,
thus requiring the implementation of a specialized solver.

We tackle Issues 1 and 2 by directly using IRPI sets. In particular, the RPI
set parameterization is such that we need not fix a representation for the
set a priori, but rather only specify an approximation error with respect
to the mRPI set. In order to tackle Issue 3, we present a novel disturbance
set parameterization that will result in the set of feasible disturbance sets
being a polyhedron, from which any point can be selected by using a
simple Linear Programing (LP) solver. However, we work under the fol-
lowing slightly restrictive assumption on the set Y that was not required
in Chapter 3.

Assumption 5.1. The output constraint setY contains the origin in its nonempty
interior, such that g > 0. □

We refer to our approach as using implicit RPI sets, since unlike in
Chapter 3 we do not explicitly compute a representation of the RPI set,
but rather use an implicit representation parameterized by the distur-
bance set. In the development of our methods, we use some notation
and basic results regarding set operations that we describe next for con-
venience.
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Preliminaries and notation

Given compact set S ⊂ Rn, and matrices T ∈ Rl×n, M ∈ Rq×n, we
denote by hTS(M) the q-dimensional vector with elements hTS(M

⊤
i ),

i.e.,

hTS(M) := [hTS(M
⊤
1 ) · · · hTS(M

⊤
q )]

⊤.

Given S = z̄⊕{z : −ϵz ≤ z ≤ ϵz} shaped as a box with z̄, ϵz ∈ Rn and
any vector p ∈ Rl×1, the support function is given by [16, Chapter 6]:

hTS(p) = p⊤Tz̄ + |p⊤T|ϵz. (5.2)

Proposition 5.1. [131] Let X ,Y,Z ⊂ Rn be any compact and convex sets
containing the origin, M ∈ Rm×n be any matrix of adequate dimension, and
α ≥ β > 0 be any scalars.
(a) X ⊆ Y ⇒MX ⊆MY ; (b) X ⊆ Y ⇔ X ⊕Z ⊆ Y ⊕ Z ;
(c) αX ⊕ βX = (α+ β)X ; (d) X ⊆ X ⊕ Y ;
(e) If X = ConvHull(x[i], i ∈ Iv1), then X ⊆ Y⊕Z holds if and only if for each
i ∈ Iv1 , there exist y[i] ∈ Y and z[i] ∈ Z such that x[i] = y[i] + z[i].

5.1 Implicit RPI set parametrization

In this section, we approximate Problem (3.7) using arbitrarily tight RPI
approximations of the mRPI set Xm(W). To that end, we will rely on the
following definition.
Definition: Given a disturbance set W , for a given µ > 0, an RPI set
Xµ(W) is a µ-RPI set for System (3.1a) if it satisfies the inclusions

Xm(W) ⊆ Xµ(W) ⊆ Xm(W)⊕ µBnx
∞ . □ (5.3)

Essentially, a µ-RPI set approximates the mRPI set with approxima-
tion error µ. Using a µ-RPI set Xµ(W) as the RPI set XRPI(W), we define
the corresponding set of outputs as

Yµ(W) := CXµ(W)⊕DW,
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which is used as the set YRPI in Problem (3.18). Using this set, we write
Problem (3.18) as

min
W

dY(S(l,W))

s.t. Yµ(W) ⊆ Y,
0 ∈ W.

(5.4a)

(5.4b)
(5.4c)

The rationale for formulating Problem (5.4) is the following. From the
inclusions in (5.3) and basic properties of the Minkowski sum, the inclu-
sions

CXm(W)⊕DW ⊆ CXµ(W)⊕DW ⊆ CXm(W)⊕DW ⊕ µCBnx
∞ . (5.5)

Then defining the sets of disturbance sets

P1 := {W : 0 ∈ W, CXm(W)⊕DW ⊕ µCBnx
∞ ⊆ Y},

P2 := {W : 0 ∈ W, CXµ(W)⊕DW ⊆ Y},
P3 := {W : 0 ∈ W, CXm(W)⊕DW ⊆ Y}.

Observe that P2 is the feasible set of Problem (5.4), and P3 is the feasible
set of Problem (3.7). From the inclusions in (5.5), we observe that the
feasible sets satisfy

P1 ⊆ P2 ⊆ P3. (5.6)

Moreover, for any µ1, µ2 such that 0 < µ1 < µ2, the inclusions

CXm(W)⊕DW ⊕ µ1CBnx
∞ ⊆ CXm(W)⊕DW ⊕ µ2CBnx

∞

follow, which implies that as the value of the RPI set approximation error
µ reduces, the set P1 goes closer to P3. For any µ > 0, since the inclu-
sions in (5.6) always hold, it implies that as µ reduces, the feasible set of
Problem (5.4) approximates better (from inside) the feasible set of Prob-
lem (3.7), thus leading to reduced conservativeness in Problem (5.4) in
comparison to Problem (3.7).

Thus, in order to make it possible to specify the desired approxima-
tion error a priori, we will exploit the approximation property (5.3) of
µ-RPI sets to provide strong guarantees when approximating the mRPI
setXm(W) in the formulation of Problem (3.7). To this end, we recall next
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the following result from [111] that can be used to compute a µ-RPI set,
provided that the disturbance setW is known. Since in our setting that is
not the case, we will have to develop some additional theoretical results
in order to be able to exploit it.

Lemma 5.1. [111, Section III-B] Suppose that Assumption 3.1 holds. For some
index s > 0, scalars α ∈ [0, 1), λ ∈ [0, 1], and disturbance set W such that
0 ∈ W , if

As(BW ⊕ λBnx
∞ ) ⊆ α(BW ⊕ λBnx

∞ ) (5.7)

holds, then the parametrized set

R(s, α, λ,W) := (1− α)−1
s−1⨁︂
t=0

At(BW ⊕ λBnx
∞ ) (5.8)

is RPI for System (3.1a) with persistent disturbances w ∈ W . Moreover, if for
some scalar µ > 0, the inclusion

(1− α)−1
s−1⨁︂
t=0

At(αBW ⊕ λBnx
∞ ) ⊆ µBnx

∞ (5.9)

holds, thenR(s, α, λ,W) is a µ-RPI set. □

We briefly recall the rationale behind Lemma 5.1. For any compact
and convex disturbance set W containing the origin and for any index
s > 0, the inclusion

X (s,W) :=

s−1⨁︂
t=0

AtBW ⊆
∞⨁︂
t=0

AtBW (3.10)
= Xm(W)

holds. Then, we know from [112, Theorem 1] that if, for some index s > 0

and a scalar α ∈ [0, 1), the inclusion

AsBW ⊆ αBW (5.10)

holds, the scaled set (1 − α)−1X (s,W) is RPI for System (3.1a) with dis-
turbance setW . However, as noted in [111], there might not exist some
parameters (s, α) satisfying inclusion (5.10) unless the origin is included
in the interior of the set BW . This can occur, for example, if the rank of
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matrix B is smaller than nx, thus posing a structural restriction on the
applicability of [112, Theorem 1]. To overcome this limitation, a modi-
fication proposed in [111] involves perturbing the disturbance set with
some λ ∈ [0, 1] as

W̃(λ) := BW ⊕ λBnx
∞ .

Then, since the interior of the set W̃(λ) is nonempty for every λ ∈ (0, 1],
there always exists some (s, α) satisfying the inclusion in (5.7), i.e.,

AsW̃(λ) ⊆ αW̃(λ). (5.11)

From [112, Theorem 1], it then follows that the set R(s, α, λ,W) defined
in (5.8) is RPI for the modified system

x(t+ 1) = Ax(t) + w̃(t) (5.12)

with disturbance set W̃(λ). Finally, the result in Lemma 5.1 follows
from [111, Lemma 2], which states that every RPI set of System (5.12)
with disturbance set W̃(λ) is an RPI set for System (3.1a) with distur-
bance setW . For the reasoning behind inclusion (5.9) that leads toR(s, α, λ,W)

being a µ-RPI set, the reader is referred to [111, Theorem 3].
Lemma 5.1 provides an important result that enables us to construct

an RPI set XRPI(W) parameterized as the µ-RPI set R(s, α, λ,W). Using
this set, we define the corresponding output set as

O(s, α, λ,W) := CR(s, α, λ,W)⊕DW ⊇ Ym(W), (5.13)

that represents the set YRPI(W) in Problem (3.18). Hence, we write Prob-
lem (3.18) for the µ-RPI set based parameterization as

min
W

dY(S(l,W))

s.t. O(s, α, λ,W) ⊆ Y,
0 ∈ W,

(5.14a)

(5.14b)
(5.14c)

in which we recall that the objective is defined using the l-step reachable
set of outputs

S(l,W) :=

l−1⨁︂
t=0

CAtBW ⊕DW. (5.15)
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Before we tackle Problem (5.14), however, we must ensure that the set
R(s, α, λ,W) formulating O(s, α, λ,W) in (5.13) is µ-RPI. According to
Lemma 5.1, this is guaranteed if the parameters (s, α, λ) are such that
inclusions (5.7) and (5.9) hold at the optimal solution. In order to guar-
antee that these inclusions hold, the following three approaches can be
considered.

(1) Iterative verification: Problem (5.14) is solved with some arbitrary
parameters (s, α, λ). At the optimizer, inclusions (5.7) and (5.9)
are checked with the chosen (s, α, λ). If they are verified, then
R(s, α, λ,W) is a µ-RPI set and the procedure terminates. Else, the
parameters (s, α, λ) are recomputed at the optimizer to verify (5.7)
and (5.9), and the procedure is repeated with the updated (s, α, λ).

(2) Optimizing over (s, α, λ): The parameters (s, α, λ) are appended as
optimization variables, and inclusions (5.7) and (5.9) are appended
as constraints in Problem (5.14).

(3) Preselecting (s, α, λ): Problem (5.14) is solved with (s, α, λ) chosen
a priori such that inclusions (5.7) and (5.9) hold for all feasible dis-
turbance setsW .

While Approach (1) is viable, it requires a strategy to update the pa-
rameters (s, α, λ) after each iteration in order to guarantee convergence.
The development of such strategies is a subject of future research. Ap-
proach (2), while presenting a more attractive alternative since the opti-
mizer is guaranteed to verify inclusions (5.7) and (5.9) by construction,
results in a computationally intractable optimization problem. Further
study of this approach too will be the subject of future research. In this
chapter, we adopt Approach (3), i.e., we select parameters (s, α, λ) such
that inclusions (5.7) and (5.9) are verified by all disturbance setsW feasi-
ble for Problem (5.14). In the next subsection, we present this approach.

5.1.1 Preselecting RPI set parameters (s, α, λ)

By definition, the requirement on parameters (s, α, λ) to adopt Approach
(3) is that inclusions (5.7) and (5.9) must be verified for all feasible distur-
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bance setsW of Problem (5.14). In this chapter, we relax this requirement
to the following.

• Requirement (a): For some user-specified γ > 0, parameters (s, α, λ) are
such that inclusions (5.7) and (5.9) hold for all disturbance sets

W ∈ Lγ := {W : 0 ∈ W, BW ⊆ γBnx
∞ }. (5.16)

As we will show in the sequel, the restriction BW ⊆ γBnx
∞ over the dis-

turbance sets permits us to characterize a set of parameters (s, α, λ) sat-
isfying the requirement. The formulation of Requirement (a) motivates
us to impose the additional constraint BW ⊆ γBnx

∞ in Problem (5.14) to
obtain

min
W

dY(S(l,W))

s.t. O(s, α, λ,W) ⊆ Y,
BW ⊆ γBnx

∞ ,

0 ∈ W,

(5.17a)

(5.17b)
(5.17c)
(5.17d)

such that if parameters (s, α, λ) satisfy Requirement (a), the setR(s, α, λ,W)

formulating O(s, α, λ,W) is µ-RPI for every feasible disturbance setW .
We impose the following additional requirement on the parameters

(s, α, λ) to guarantee feasibility of Problem (5.17).

• Requirement (b): Parameters (s, α, λ) are such that there exists a distur-
bance setW ∈ Lγ satisfying constraint (5.17b).

In the following result, we translate Requirements (a) and (b) into suffi-
cient conditions on the parameters (s, α, λ).

Lemma 5.2. If the parameters s > 0, α ∈ [0, 1) and λ ∈ [0, 1] verify the
inclusion

λ(1− α)−1
s−1⨁︂
t=0

CAtBnx
∞ ⊆ Y, (5.18)

then there exists some disturbance set W ∈ Lγ for any γ > 0 such that the
inclusion O(s, α, λ,W) ⊆ Y holds. Moreover, if for some user-specified scalars
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µ, γ > 0, the inclusions

As(γ + λ)Bnx
∞ ⊆ αλBnx

∞ ,

(1− α)−1
s−1⨁︂
t=0

At(αγ + λ)Bnx
∞ ⊆ µBnx

∞ ,

(5.19)

(5.20)

hold, then R(s, α, λ,W) is a µ-RPI set corresponding to any disturbance set
W ∈ Lγ . □

Proof. Note that, by (5.13), we have

O(s, α, λ,W) = (1− α)−1
s−1⨁︂
t=0

CAt(BW ⊕ λBnx
∞ )⊕DW.

Consequently, if inclusion (5.18) holds, then the inclusionO(s, α, λ,W) ⊆
Y is satisfied byW = {0} ∈ Lγ , concluding the proof of the first claim.

For the second claim, if inclusion (5.19) holds, then for anyW ∈ Lγ ,
the inclusions

As(BW ⊕ λBnx
∞ ) ⊆ As(γ + λ)Bnx

∞ → Since BW ⊆ γBnx
∞

⊆ αλBnx
∞ → Directly from (5.19)

⊆ α(BW ⊕ λBnx
∞ ) → Since 0 ∈ αBW

follow from basic properties of set operations in Proposition 5.1, such
that inclusion (5.7) holds. Similarly, if inclusion (5.20) holds, then for
every disturbance setW ∈ Lγ , the inclusions

(1− α)−1
s−1⨁︂
t=0

At(αBW ⊕ λBnx
∞ )

⊆ (1− α)−1
s−1⨁︂
t=0

At(αγ + λ)Bnx
∞ → Since BW ⊆ γBnx

∞

⊆ µBnx
∞ → Directly from (5.20)

follow from basic properties of set operations in Proposition 5.1, such
that inclusion (5.9) holds. Consequently, by Lemma 5.1, R(s, α, λ,W) is
a µ-RPI set.

As per Lemma 5.2, parameters (s, α, λ) that verify inclusions (5.19)-
(5.20) satisfy Requirement (a), and those that verify inclusion (5.18) sat-
isfy of Requirement (b). Hence, if parameters (s, α, λ) verifying inclu-
sions (5.18)-(5.20) are used to formulate Problem (5.17), then the problem
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is guaranteed to be feasible, and for every feasible disturbance setW , the
set R(s, α, λ,W) formulating O(s, α, λ,W) is µ-RPI. In the next section,
we present an approach to compute such parameters (s, α, λ).

5.1.2 Computing RPI set parameters (s, α, λ)

In this subsection, we present an algorithm to compute parameters (s, α, λ)
satisfying inclusions (5.18)-(5.20). To this end, we define the set of all
parameters (s, α, λ) satisfying these inclusions for some user-specified
scalars γ, µ > 0 as

Λγ,µ := {(s, α, λ) : s > 0, α ∈ [0, 1), λ ∈ [0, 1], (5.18)− (5.20)} .

Then, suitable parameters (s, α, λ) can be selected by solving

min
s,α,λ

s s.t. (s, α, λ) ∈ Λγ,µ. (5.21)

In Problem (5.21), we compute the smallest index s satisfying inclusions (5.18)-
(5.20). This formulation is motivated by the fact that the index s charac-
terizes the number of Minkowski sums defining the set O(s, α, λ,W) in
Constraint (5.17b), and a smaller number of Minkowski sums are desir-
able for reduced computational complexity. Unfortunately, solving Prob-
lem (5.21) directly is not viable since s is a discrete variable. Thus, we pro-
pose to instead follow an iterative procedure to solve Problem (5.21) that
involves incrementing s, and searching for feasible parameters (α, λ).

For some s > 0, we define the set of parameters (α, λ) as

Lγ,µ(s) := {(α, λ) : (s, α, λ) ∈ Λγ,µ}, (5.22)

based on which we define the optimization problem

H(s)

⎧⎨⎩max
α,λ

α+ λ

s.t. (α, λ) ∈ Lγ,µ(s).
(5.23)

Using this optimization problem, we define the iterative procedure to
solve Problem (5.21) in Algorithm 3.
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Algorithm 3: Solving Problem (5.21)
Result: Return (s, α, λ);
Input: Matrices A,C,G, vector g, scalars γ, µ > 0;
Initialize: s = 0, conv = 0;
while conv = 0 do

1. s← s+ 1;
2. Solve H(s) for (α, λ);
if H(s) is feasible then

conv ← 1
end

end

In the formulation of H(s), we maximize α+λ for numerical stability.
However, since we aim for feasibility, any objective can be used. We now
show that H(s) can be implemented as a Second-Order Cone Program
(SOCP) [20, Sec 4.4.2]. Note that since α ∈ [0, 1) and λ ∈ [0, 1], H(s) is
bounded if feasible.

Implementation of H(s)

In order to implement H(s), we need to encode inclusions (5.18)-(5.20)
formulating the constraint set of the problem. We do so using support
functions, as we now elaborate. Recalling the definition of the output
constraint set Y = {y : Gy ≤ g} with G ∈ RmY×ny from (3.2), and denot-
ing Ĩnx

:= [Inx
− Inx

]⊤, we note from properties of support functions
that

(5.18) ⇐⇒ λ

1− α

s−1∑︂
t=0

hCAtBnx
∞ (G) ≤ g,

(5.19) ⇐⇒ (γ + λ)hAsBnx
∞ (Ĩnx

) ≤ αλ1,

(5.20) ⇐⇒ αγ + λ

1− α

s−1∑︂
t=0

hAtBnx
∞ (Ĩnx) ≤ µ1.

(5.24a)

(5.24b)

(5.24c)
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Exploiting Equation (5.2), we then define the constants

L[s] :=

s−1∑︂
t=0

hCAtBnx
∞ (G) =

s−1∑︂
t=0

|GCAt|1,

θ[s] := min
i∈ImY

1

{︄
gi

L
[s]
i

}︄
,

M [s] :=

⃦⃦⃦⃦
⃦
s−1∑︂
t=0

hAtBnx
∞ (Ĩnx

)

⃦⃦⃦⃦
⃦
∞

=

⃦⃦⃦⃦
⃦
s−1∑︂
t=0

|Ĩnx
At|1

⃦⃦⃦⃦
⃦
∞

,

(5.25a)

(5.25b)

(5.25c)

and observe that the support function

hAsBnx
∞ (Ĩnx

) = |Ĩnx
As|1 ≤ ∥As∥∞ 1,

following the usual definition of∞-norm for matrices. Note that L[s] ∈
RmY following from dimensions of matrix G. Then, the support function
inequalities (5.24a)-(5.24c) can be written after simple algebraic manipu-
lations as

(5.24a) ⇐⇒ λ ≤ (1− α)θ[s],

(5.24b) ⇐⇒ (γ + λ) ∥As∥∞ ≤ αλ,

(5.24c) ⇐⇒ (αγ + λ)M [s] ≤ (1− α)µ.

(5.26a)
(5.26b)

(5.26c)

Hence, for a given s > 0, H(s) can be written as

max
α,λ

α+ λ

s.t. (5.26a), (5.26b), (5.26c),
α ∈ [0, 1), λ ∈ [0, 1].

(5.27a)

(5.27b)
(5.27c)

While Constraints (5.24a) and (5.24c) in Problem (5.27) are linear in (α, λ),
Constraint (5.26b) is nonlinear. However, it can be written as a second-
order cone (SOC) by exploiting the fact that α, λ ≥ 0 in the feasible do-
main as follows. In these arguments, we denote ζ := ∥As∥∞ for nota-
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tional convenience.

(γ + λ)ζ ≤ αλ

⇔ γζ ≤ (α− ζ)λ

⇔ 4γζ ≤ 4(α− ζ)λ

⇔ 4γζ + (α− ζ)2 + λ2 ≤ 4(α− ζ)λ+ (α− ζ)2 + λ2

⇔ 4γζ + (α− ζ − λ)2 ≤ (α− ζ + λ)2

⇔
√︁
4γζ + (α− ζ − λ)2 ≤ α− ζ + λ

⇔
⃦⃦⃦⃦[︃

2
√
γζ

α− ζ − λ

]︃⃦⃦⃦⃦
2

≤ α− ζ + λ.

(5.28a)
(5.28b)
(5.28c)

(5.28d)

(5.28e)

(5.28f)

(5.28g)

Taking the square-root on both sides of the inequality in (5.28f) is valid
since α−ζ ≥ 0 from (5.28b) such that α−ζ+λ ≥ 0, and the left-hand-side
of (5.28e) is nonnegative. The inequality in (5.28g) is an SOC, such that
Problem (5.27) is an SOCP in two-dimensions that can be solved very
efficiently using off-the-shelf solvers.

Termination of Algorithm 3

Algorithm 3 terminates in finite time if and only if, for the user-specified
γ, µ > 0, there exists some index s > 0 such that H(s) is feasible. This is
equivalent to the existence of some s > 0 such that the domain Lγ,µ(s)

of H(s) defined in (5.22) is nonempty, that is in turn equivalent to non-
emptiness of the set Λγ,µ. In the following result, we show that indeed
Λγ,µ is a nonempty set.

Theorem 5.1. Suppose that Assumptions 5.1 and 3.1 hold. Then the set Λγ,µ of
parameters (s, α, λ) verifying (5.18)-(5.20) is nonempty for any user-specified
γ > 0 and µ > 0. □

Proof. For any given γ, µ > 0 and some s > 0, we recall from (5.26c) that
inclusion (5.20) is verified if and only if

αγ + λ

1− α
M [s] ≤ µ. (5.29)

By rearranging this inequality, we obtain

α ≤ µ− λM [s]

µ+ γM [s]
. (5.30)
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Recalling the definition of M [s] from (5.25c), we define its limit

M̂ := lim
s→∞

M [s],

and observe that since the set
⨁︁∞

t=0 A
tBnx

∞ is compact under Assump-
tion 3.1 [63] and the inclusion

s−1⨁︂
t=0

AtBnx
∞ ⊆

∞⨁︂
t=0

AtBnx
∞ (5.31)

holds for any s > 0, the inequalities M [s] ≤ M̂ < ∞ hold. This implies
that

µ− λM̂

µ+ γM̂
≤ µ− λM [s]

µ+ γM [s]

holds for any s > 0. Hence, for some user-specified γ, µ > 0, if we select
parameters α, λ ∈ (0, 1) verifying the inequality

α ≤ µ− λM̂

µ+ γM̂
, (5.32)

then inclusion (5.20) will be verified for any s > 0.
Regarding inclusion (5.18), we recall from (5.26a) that it holds if and

only if
λ

1− α
≤ θ[s] ⇐⇒ α ≤ 1− λ

θ[s]
. (5.33)

Recalling the definition of θ[s] from (5.25b), we define its limit

θ̂ := lim
s→∞

θ[s]. (5.34)

From the definition of L[s] in (5.25a), we observe that L[s]
i is monotoni-

cally nondecreasing in s for each component i ∈ ImY
1 and g is a constant,

θ[s] is monotonically nonincreasing in s. In fact, it can be observed from
that

L̂i := lim
s→∞

L
[s]
i , θ̂ = min

i∈ImY
1

{︃
gi

L̂i

}︃
.

Since L̂i < ∞ under Assumption 3.1 and gi > 0 under Assumption 5.1
for each component i ∈ ImY

1 , the inequalities θ[s] ≥ θ̂ > 0 hold. This
implies that

1− λ

θ̂
≤ 1− λ

θ[s]
,
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such that that if we select some α, λ ∈ (0, 1) satisfying

α ≤ 1− λ

θ̂
, (5.35)

then inclusion (5.18) will be verified for any s > 0.
Thus, if there exist parameters α, λ ∈ (0, 1) verifying inequalities (5.32)

and (5.35), then these parameters verify inclusions (5.20) and (5.18) for
all s > 0. We now demonstrate the existence of such parameters. To this
end, we define

q̂ := min

{︄
min{µ, M̂}

M̂
, θ̂

}︄
, (5.36)

and select λ = δq̂ for some δ ∈ (0, 1). For any user-specified µ > 0, we
have q̂ ∈ (0, 1) since θ̂, M̂ > 0. This implies that λ = δq̂ ∈ (0, 1) for any
δ ∈ (0, 1). We also define

r̂(δ) := min

{︄
µ− δq̂M̂

µ+ γM̂
, 1− δq̂

θ̂

}︄
. (5.37)

Then, substituting λ = δq̂ in inequalities (5.32) and (5.35), we observe
that if r̂(δ) ∈ (0, 1), then any α ∈ (0, r̂(δ)] verifies these inequalities.
Hence, it remains to show that r̂(δ) ∈ (0, 1).

To that end, we note that since the inequalities

µ− δq̂M̂ < µ+ γM̂ and δq̂/θ̂ > 0

hold for every δ ∈ (0, 1), we always have r̂(δ) < 1. In order to show
that r̂(δ) > 0, we consider the following two cases, which are based on
Equation (5.36).

Case 1: if
q̂ =

µ

M̂
≤ θ̂, (5.38)

then for any δ ∈ (0, 1), we have either

r̂(δ) = (1− δ)

(︃
µ

µ+ γM̂

)︃
or r̂(δ) = 1− δ

(︃
µ

M̂θ̂

)︃
.

Since µ, γ, M̂ > 0, the first option satisfies r̂(δ) > 0. Regarding the second
option, inequality (5.38) implies

δµ < µ ≤ M̂ θ̂ =⇒ 1− δ

(︃
µ

M̂θ̂

)︃
= r̂(δ) > 0.
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Case 2: if

q̂ = θ̂ ≤ µ

M̂
, (5.39)

then for any δ ∈ (0, 1), we have either

r̂(δ) =

(︄
µ− δθ̂M̂

µ+ γM̂

)︄
or r̂(δ) = 1− δ

Since δ ∈ (0, 1), the second option always satisfies r̂(δ) > 0. Regarding
the first option, inequality (5.39) implies

δM̂ θ̂ < M̂θ̂ ≤ µ =⇒ µ− δM̂ θ̂ > 0,

such that r̂(δ) > 0 since µ, γ, M̂ > 0. Thus, for any δ ∈ (0, 1), we have
r̂(δ) ∈ (0, 1), such that the parameters λ = δq̂ and α ∈ (0, r̂(δ)] verify
inclusions (5.20) and (5.18) for all s > 0.
Now, we show that there exists some α ∈ (0, r̂(δ)] and s > 0 also satisfy-
ing inclusion (5.19) with λ = δq̂. To this end, we recall from (5.26b) that
inclusion (5.19) is verified if and only if

(γ + λ) ∥As∥∞ ≤ αλ (5.40)

holds. Then, defining

α[s](λ) :=
(︂
1 +

γ

λ

)︂
∥As∥∞ , (5.41)

we observe that for a given λ ∈ (0, 1), γ > 0 and s > 0, α[s](λ) is the
smallest value of α verifying inequality (5.40). This implies that if λ = δq̂,
then α[s](δq̂) verifies (5.40). Then, since Assumption 3.1 entails that [54]

lim
s→∞

∥As∥∞ = 0,

there always exists some index s = ŝ(δ) such that α[ŝ(δ)](δq̂) ≤ r̂(δ). Since
such a triplet of parameters

(s = ŝ(δ), α ∈ (0, r̂(δ)], λ = δq̂), ∀ δ ∈ (0, 1), (5.42)

also satisfies (5.20) and (5.18), the set Λγ,µ is nonempty.
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Thus, using Algorithm 3, feasible parameters (s, α, λ) can be com-
puted, using which Problem (5.17) can be formulated with the guarantee
that the set R(s, α, λ,W) is µ-RPI for every feasible disturbance set W .
We now recall again the formulation of this problem, in which we explic-
itly incorporate the objective dY(·) defined in Equation (3.8):

min
ϵ,W

∥ϵ∥1

s.t. O(s, α, λ,W) ⊆ Y,
BW ⊆ γBnx

∞ ,

0 ∈ W,

Y ⊆ S(l,W)⊕ B(ϵ).

(5.43a)

(5.43b)
(5.43c)
(5.43d)
(5.43e)

In the sequel, we present an optimization algorithm to solve Problem (5.43)
after selecting an appropriate representation for the disturbance setW .

Remark 5.1. The conservativeness introduced due to constraint (5.43c), i.e.,
BW ⊆ γBnx

∞ , in Problem (5.43) with respect to Problem (5.14), can be elim-
inated by selecting a γ > 0 large enough such that every disturbance set W
feasible for constraint (5.43b) satisfies constraint (5.43c), thus rendering con-
straint (5.43c) inactive and making Problem (5.43) fully equivalent to Prob-
lem (5.14). This, however, increases the complexity of Problem (5.43). As γ > 0
increases for some fixed λ ∈ (0, 1) and s > 0, the smallest value of α = α[s](λ)
verifying inequality (5.40) increases, as observed from the definition of α[s](λ)
in Equation (5.41). Then, the value s > 0 required to verify inequalities (5.30)
and (5.33) with α = α[s](λ) increases. This implies that the set O(s, α, λ,W)
defined in (5.13) and formulating constraint (5.43b) requires a larger number
of Minkowski sums for its characterization, such that the complexity of Prob-
lem (5.43) increases. □

5.2 Solving Problem (5.43)

In this section, we present a tractable encoding of the constraints of Prob-
lem (5.43), following which we present an optimization algorithm to
solve the resulting problem.
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5.2.1 Inclusions (5.43b) and (5.43c)

To encode inclusion (5.43b), i.e., O(s, α, λ,W) ⊆ Y , we recall that the
constraint set is given by Y = {y : Gy ≤ g}, and the set O(s, α, λ,W) is
defined in Equation (5.13) as

O(s, α, λ,W) = (1− α)−1
s−1⨁︂
t=0

CAt(BW ⊕ λBnx
∞ )⊕DW.

Defining the matrices

Ḡ[t] := (1− α)−1GCAt, ∀ t ∈ Is−1
0 , (5.44)

we observe that the inclusion is verified if and only if the support func-
tion inequality

s−1∑︂
t=0

hBW(Ḡ[t]) + hDW(G) ≤ g − λ

s−1∑︂
t=0

hBnx
∞ (Ḡ[t]) (5.45)

holds . Similarly, inclusion (5.43c), i.e., BW ⊆ γBnx
∞ , is verified if and

only if the support function inequality

hBW(Ĩnx
) ≤ γ1, (5.46)

holds according to basic properties of support functions. In order to en-
code the support function inequalities in (5.45) and (5.46) efficiently, we
propose to use the disturbance set parameterization

W = ConvHull
(︂
W(w̄[j], ϵ

w
[j]), j ∈ IN1

)︂
,

W(w̄[j], ϵ
w
[j]) := w̄[j] ⊕ {w : −ϵw[j] ≤ w ≤ ϵw[j]},

(5.47a)

(5.47b)

i.e., as a convex hull of boxes {W(w̄[j], ϵ
w
[j]), j ∈ IN1 } where N ≥ 1 is a

user-specified amount of boxes, such thatW is characterized by param-
eters {w̄[j], ϵ

w
[j] ∈ Rnw , j ∈ IN1 }. This parameterization presents a rep-

resentational advantage over popular polytopic parameterizations such
as zonotopes [127] that are constrained to be symmetric and hence can
be conservative, and a computational advantage over parameterizations
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such as halfspace-representations [97], zonotopic intersections [Althoff2011],
constrained zonotopes [Scott2016], etc. that are not immediately amenable
to a simple encodings of the support function inequalities (5.45)-(5.46).
Finally, it requires fewer parameters than simple vertex notations (N ×
2nw as opposed to N × 2nw ).

In order to encode the support function inclusions in (5.45) and (5.46)
for the disturbance set parameterization in (5.47), we rely on the follow-
ing general result regarding support functions over convex hulls of poly-
topes.

Proposition 5.2. Given any polytopes {Qj ⊂ Rn, j ∈ Iq1}, and denoting the
convex hull

Q̂ := ConvHull(Qj , j ∈ Iq1),

then for any matrix T ∈ Rl×n and vector p ∈ Rl, the support function for the
set TQ̂ at p is given by

hTQ̂(p) = max
j∈Iq1

hTQj
(p). □ (5.48)

Proof. Since the set Q̂ is a polytope that is the convex hull of polytopes
{Qj , j ∈ Iq1}, we know that

vert(Q̂) ⊆
q⋃︂

j=1

vert(Qj),

∄ z̃ : z̃ ∈
q⋃︂

j=1

Qj , z̃ /∈ Q̂.

(5.49a)

(5.49b)

Defining r := T⊤p, we know from the support function definition that
(5.48) holds if and only if

max
z∈Q̂

r⊤z = max
j∈Iq1

{︃
max

z[j]∈Qj

r⊤z[j]

}︃
. (5.50)

We now prove (5.50) by contradiction. Suppose that

max
z∈Q̂

r⊤z > max
j∈Iq1

{︃
max

z[j]∈Qj

r⊤z[j]

}︃
, (5.51)
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which holds if and only if there exists a vertex z∗ ∈ vert(Q̂) such that

r⊤z∗ = max
z∈Q̂

r⊤z and z∗ /∈
q⋃︂

j=1

vert(Qj).

Since this contradicts (5.49a), (5.51) cannot hold. Now, suppose

max
z∈Q̂

r⊤z < max
j∈Iq1

{︃
max

z[j]∈Qj

r⊤z[j]

}︃
, (5.52)

which holds if and only if there exists some z̃∗ such that

z̃∗ ∈
q⋃︂

j=1

Qj and z̃∗ /∈ Q̂.

Since this contradicts (5.49b), (5.52) cannot hold and the proof is com-
plete.

Using Proposition 5.2 with Qj = W(w̄[j], ϵ
w
[j]), q = N and Q̂ = W

as per the definition of the disturbance set in (5.47), and recalling the
expression for support functions of over boxes from (5.2), the support
function over W for any given matrix T ∈ Rl×nw and vector p ∈ Rl is
obtained as

hTW(p) = max
j∈IN1

{p⊤Tw̄[j] + |p⊤T|ϵw[j]}. (5.53)

We now exploit (5.53) to encode (5.45)-(5.46) as linear inequalities. Firstly,
inequality (5.45) holds by Equation (5.53) if and only if

s−1∑︂
t=0

(︃
max
j∈IN1

{︂
Ḡ[t]Bw̄[j] + |Ḡ[t]B|ϵw[j]

}︂)︃
+(︃

max
j∈IN1

{︂
GDw̄[j] + |GD|ϵw[j]

}︂)︃

≤ g − λ

s−1∑︂
t=0

|Ḡ[t]|1. (5.54)

To encode (5.54), we introduce Q := {Q[t] ∈ RmY , t ∈ Is−1
0 } and r ∈

RmY , along with the inequalities

∀ j ∈ IN1 ,

∀ t ∈ Is−1
0

⎧⎨⎩ Ḡ[t]Bw̄[j] + |Ḡ[t]B|ϵw[j] ≤ Q[t],

GDw̄[j] + |GD|ϵw[j] ≤ r.
(5.55)
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Then, the inequality in (5.54) holds if and only if there exists some (Q, r)

satisfying the inequalities in (5.55) along with

s−1∑︂
t=0

Q[t]i + ri ≤ gi − λ

s−1∑︂
t=0

|Ḡ[t]i|1, ∀ i ∈ ImY
1 . (5.56)

Thus, we encode the support function inequality in (5.45) for the dis-
turbance set parameterization in (5.47) as the linear inequalities (5.55)
and (5.56). Similarly, support function inequality (5.46) holds according
to Equation (5.53) if and only if

Ĩnx
Bw̄[j] + |Ĩnx

B|ϵw[j] ≤ γ1, ∀ j ∈ IN1 . (5.57)

5.2.2 Inclusions (5.43d) and (5.43e)

We encode inclusion (5.43d), i.e., 0 ∈ W , by enforcing the inclusion 0 ∈
W(w̄[1], ϵ

w
[1]) for simplicity through[︃

Inw

−Inw

]︃
0 ≤

[︄
ϵw[1]
ϵw[1]

]︄
+

[︃
Inw

−Inw

]︃
w̄[1] (5.58)

since 0 ∈W(w̄[1], ϵ
w
[1]) implies 0 ∈ W from (5.47).

In order to encode inclusion (5.43e), i.e., Y ⊆ S(l,W)⊕B(ϵ), we recall
from (5.15) that the l-step reachable set S(l,W) is

S(l,W) =

l−1⨁︂
t=0

CAtBW ⊕DW.

Then, we note that that the inclusion holds if and only if the support
function inequality

hY(p) ≤
l−1∑︂
t=0

hCAtBW(p) + hDW(p) + hB(ϵ)(p) (5.59)

is verified for all p ∈ Rny . If the hyperplane notation of W is known,
then the result in [127, Theorem 1] can be used to to derive sufficient lin-
ear conditions for the inequality in (5.59). Unfortunately, since the hyper-
plane notation is unknown a priori because of the parameterization ofW
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in (5.47), we instead rely on Proposition 5.1(e) to encode inclusion (5.43e).
Denoting

{y[i], i ∈ IvY1 } := vert(Y),

and recalling the definition of S(l,W) from (5.15), we know from Propo-
sition 5.1(e) that inclusion (5.43e) holds if and only if

∀ i ∈ IvY1 , ∃
{︄ {︂

{w1
[it], t ∈ Il−1

0 }, w2
[i]

}︂
∈ W,

b[i] ∈ B(ϵ),

such that y[i] =
l−1∑︂
t=0

CAl−1−tBw1
[it] +Dw2

[i] + b[i],

(5.60a)

(5.60b)

where, for each i ∈ IvY1 , feasible disturbance sequences in (5.60a) drive
the output of System (7.1) in l-steps to some

y[i](l) :=

l−1∑︂
t=0

CAl−1−tBw1
[it] +Dw2

[i],

that belongs in the vicinity of vertex y[i] as y[i] − y[i](l) ∈ B(ϵ). We will
show in the sequel that the conditions in (5.60) verifying inclusion (5.43e)
can be tractably encoded using necessary and sufficient conditions for
the disturbance set parameterization in (5.47). To that end, we assume to
know the vertices of the output constraint set Y .

Assumption 5.2. The vertices {y[i], i ∈ IvY1 } are known. □

In order to encode the conditions in (5.60), we need to enforce the
point-wise constraints w1

[it] ∈ W and w2
[i] ∈ W in (5.60a). According to

the parameterization ofW in (5.47), these constraints can be enforced by
guaranteeing that points w1

[it] and w2
[i] belong to the convex hull of boxes

W(w̄[j], ϵ
w
[j]) as

w1
[it],w

2
[i] ∈ ConvHull(W(w̄[j], ϵ

w
[j]), j ∈ IN1 ).

In the following result, we show that this condition is equivalent to en-
forcing w1

[it] and w2
[i] to belong to convex hulls of points, with each point

belonging to a box W(w̄[j], ϵ
w
[j]).
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Figure 5: Illustration of Proposition 5.3 forW parameterized as a convex hull of
N = 3 boxes.

Proposition 5.3. Given the disturbance set parametrization in Equation (5.47),
there exists some w ∈ W if and only if there exist some w[j] ∈W(w̄[j], ϵ

w
[j]) for

each j ∈ IN1 such that w ∈ ConvHull(w[j], j ∈ IN1 ). □

Proof. Sufficiency follows by observing that

w ∈ ConvHull(w[j] ∈W(w̄[j], ϵ
w
[j]), j ∈ IN1 ) =⇒ w ∈ W

from Equation (5.47). For the necessary condition, we define

{v[ji], i ∈ I2
nw

1 } := vert(W(w̄[j], ϵ
w
[j])),

and note that if w ∈ W , then there exist p[ji] ≥ 0 satisfying

w =
N∑︂
j=1

(︄
2nw∑︂
i=1

p[ji]v[ji]

)︄
,

N∑︂
j=1

2nw∑︂
i=1

p[ji] = 1, (5.61)

by convexity ofW . Then, we define p̂[j] :=
∑︁2nw

i=1 p[ji], and consider the
two following cases:

1) If p̂[j] > 0 : Set v̂[j] :=

(︄
2nw∑︂
i=1

p[ji]v[ji]

)︄
/p̂[j];

2) If p̂[j] = 0 : Select any v̂[j] ∈W(w̄[j], ϵ
w
[j]).

We note that v̂[j] ∈ W(w̄[j], ϵ
w
[j]) in Case 1, and Case 2 occurs if and only

if p[ji] = 0 for all i ∈ I2nw

1 . Finally, we observe that the equations in (5.61)
can be rearranged as

w =

N∑︂
j=1

p̂[j]v̂[j],

N∑︂
j=1

p̂[j] = 1.
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Variable Dimension Variable Dimension
x 2Nnw + (s+ 1)mY β vY ×N(l + 1)
w vY × (l + 1)nw z nB + vY × ny

w̄ vY ×N(l + 1)nw

Table 3: Dimensions of variables defined in (5.64).

Setting w[j] = v̂[j] ∈W(w̄[j], ϵ
w
[j]) concludes the proof.

We illustrate the idea of Proposition 5.3 in Figure 5. Using this re-
sult, we replace inclusions w1

[it],w
2
[i] ∈ W in (5.60a) with the equivalent

inclusions

w1
[it] ∈ W

1
[it] := ConvHull(w̄1

[itj] ∈W(w̄[j], ϵ
w
[j]), j ∈ IN1 ),

w2
[i] ∈ W

2
[i] := ConvHull(w̄2

[ij] ∈W(w̄[j], ϵ
w
[j]), j ∈ IN1 ), (5.62)

by introducing variables w̄1
[itj], w̄

2
[ij] ∈ W(w̄[j], ϵ

w
[j]). Then, we write the

conditions in (5.60) equivalently as

∀ j ∈ IN1 , ∀ t ∈ Il−1
0 , ∀ i ∈ IvY1 ,

y[i] =

l−1∑︂
t=0

CAl−1−tBw1
[it] +Dw2

[i] + b[i],

w1
[it] =

N∑︂
j=1

β1
[itj]w̄

1
[itj], w

2
[i] =

N∑︂
j=1

β2
[ij]w̄

2
[ij],

w̄1
[itj] ∈W(w̄[j], ϵ

w
[j]), w̄

2
[ij] ∈W(w̄[j], ϵ

w
[j]),

N∑︂
j=1

β1
[itj] = 1, β1

[itj] ≥ 0,

N∑︂
j=1

β2
[ij] = 1, β2

[ij] ≥ 0,

b[i] ∈ B(ϵ),

(5.63a)

(5.63b)

(5.63c)

(5.63d)

(5.63e)

(5.63f)

in which the variables β1
[itj] and β2

[ij] are introduced to encode the convex-
hull inclusions in (5.62) through (5.63c) and (5.63e).

Thus, we encode constraints (5.43b)-(5.43e) as (5.55)-(5.57), (5.58) and
(5.63) respectively. For simplicity of notation in the sequel, we denote the
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Constraint #
(5.55)-(5.57), (5.58) (s+ 1)mY + 2(nx + nw) Lin. ineq.

(5.63b) vY × ny Lin. eq.
(5.63c) vY × (l + 1)nw Bilin. eq.
(5.63d) vY × 2N(l + 1)nw Lin. ineq.
(5.63e) vY ×N(l + 1) Lin. ineq., vY × (l + 1) Lin. eq
(5.63f) vY × nB Linear ineq.

Table 4: Number of constraints.

collections of variables

x := {{w̄[j], ϵ
w
[j], j ∈ IN1 },Q, r},

w := {w1
[it],w

2
[i], i ∈ IvY1 , t ∈ Il−1

0 },

w̄ := {w̄1
[itj], w̄

2
[ij], i ∈ IvY1 , t ∈ Il−1

0 , j ∈ IN1 },

β := {β1
[itj], β

2
[ij], i ∈ IvY1 , t ∈ Il−1

0 , j ∈ IN1 },

z := [ϵ⊤ b⊤[1] · · · b
⊤
vY

]⊤,

(5.64a)

(5.64b)

(5.64c)

(5.64d)

(5.64e)

and denote v := {x,w, w̄,β, z}. Over these variables, we denote the
constraints in (5.55)-(5.57), (5.58) and (5.63) as

x satisfies (5.55)-(5.57), (5.58) ⇔ Ax ≤ b,

w, z satisfy (5.63b) ⇔ Cww +Czz = h,

w, w̄,β satisfy (5.63c) ⇔ g(w̄,β) = w,

x, w̄ satisfy (5.63d) ⇔ Dxx+Dw̄w̄ ≤ 0,

β satisfies (5.63e) ⇔ β ≥ 0, Tββ = 1,

z satisfies (5.63f) ⇔ Ezz ≤ 0.

(5.65a)
(5.65b)
(5.65c)
(5.65d)
(5.65e)
(5.65f)

The definitions of the matrices formulating (5.65) are given in Appendix B.
Finally, we define the cost vector c := [1⊤

nB
0⊤
nyvY

]⊤, such that c⊤z =
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∥ϵ∥1 . Then, we write Problem (5.43) as

min
v={x,w,w̄,β,z}

c⊤z

s.t. Ax ≤ b,

Dxx+Dw̄w̄ ≤ 0,

Cww +Czz = h,

Ezz ≤ 0,

β ≥ 0, Tββ = 1,

g(w̄,β) = w.

(5.66a)

(5.66b)
(5.66c)
(5.66d)
(5.66e)
(5.66f)
(5.66g)

The number of variables and constraints defining Problem (5.66) are shown
in Tables 3 and 4 respectively, in which we observe that the number of
variables and constraints scale linearly with the number of vertices vY of
the output constraint set Y . This problem is composed of a linear objec-
tive and polyhedral constraints, along with bilinear equality constraints
in (5.66g) resulting from (5.63c). Since this problem is smooth, it can be
solved to local optimality using any off-the-shelf NonLinear Programing
(NLP) solver [102].

5.3 Approximate solutions of Problem (5.43)

While an NLP approach can be used to solve Problem (5.43) as discussed
in the Section 5.2, the implementation of NLP solvers can be cumber-
some in practice. Moreover, the quality of solutions computed by an NLP
solver depends on the initial point. Hence, in this section, we present two
simpler approaches to solve Problem (5.43) that are based on linear pro-
graming. In the first approach, we approximately solve Problem (5.66)
using an alternating-minimization algorithm. The output of this algo-
rithm can be used to initialize an NLP solver to solve Problem (5.66). In
the second approach, we use a convex hull of zonotopes parameteriza-
tion of the disturbance setW , and exploit Proposition 5.2 to formulate an
LP approximation of Problem (5.43).
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5.3.1 Alternating-minimization approach

In this approach, we use the convex hull of boxes parameterization in (5.47)
of the disturbance setW . For this parameterization, we recall from Sec-
tion 5.2 that Problem (5.43) can be formulated as Problem (5.66). While
Problem (5.66) is composed of bilinear equality constraints (5.66g), we
observe that the problem reduces to an LP for a fixed value of β. Hence,
we propose to approximate Problem (5.66) as the LP

P(βf)

⎧⎪⎪⎨⎪⎪⎩
{x∗,w(βf), w̄∗, z(βf)} := argmin

x,w,w̄,z
c⊤z

s.t. (5.66b)− (5.66e),
g(w̄,βf) = w,

where βf is some value of β that satisfies constraint (5.66f)
A special case of arises when the number of boxes parameterizing

the disturbance set is equal to the number of vertices of the output con-
straint set Y , i.e., N = vY . Then, problem P(βf) can be solved with the
components of βf selected as

∀ i ∈ IvY1 ,∀ t ∈ Is−1
0 , β1

[itj], β
2
[ij] =

{︄
1, if i = j,

0, otherwise.
(5.67)

This is equivalent to enforcing the disturbance sequences {{w1
[it], t ∈

Il−1
0 }, w2

[i]} corresponding to vertex y[i] of the disturbance set Y inside
the box W(w̄[i], ϵ

w
[i]), instead of in the setW as done in (5.60a).

While P(βf) provides an efficient way to approximate Problem (5.66),
conservativeness can be reduced further by also optimizing over β. To
this end, we observe that Problem (5.66) reduces to an LP also for a fixed
value of w̄. Based on this observation, we propose to solve the LP

Q(w̄∗)

⎧⎪⎪⎨⎪⎪⎩
{w∗, z∗,β∗} := argmin

w,z,β
c⊤z

s.t. (5.66d)− (5.66f),
g(w̄∗,β) = w,

where w̄∗ is an optimizer of problem P(βf). Using LPs P(βf) and Q(w̄∗),
we define an alternating-minimization procedure in Algorithm 4 to ap-
proximately solve Problem (5.66), in which we select βf = β∗ and repeat
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Algorithm 4: Alternating-minimization for Problem (5.66)

Result: Return v
[ι]
∗ ;

Input: Initial β = β
[0]
∗ satisfying (5.66f),ζ > 0;

Initialize: conv = 0, ι = 1;
while conv = 0 do

1. Solve P(β[ι−1]
∗ ) for

{︂
x
[ι]
∗ ,w(β

[ι−1]
∗ ), w̄

[ι]
∗ , z(β

[ι−1]
∗ )

}︂
;

2. Solve Q(w̄
[ι]
∗ ) for

{︂
w

[ι]
∗ , z

[ι]
∗ ,β

[ι]
∗

}︂
;

if ι > 1 and c⊤z
[ι]
∗ ≥ c⊤z

[ι−1]
∗ − ζ then

conv ← 1
Else v

[ι]
∗ ←

{︂
x
[ι]
∗ ,w

[ι]
∗ , w̄

[ι]
∗ ,β

[ι]
∗ , z

[ι]
∗

}︂
, ι← ι+ 1;

end
end

the steps. We use the superscript [ι] to denote the iteration index. This
procedure can be interpreted as follows. Using P(βf), a disturbance set
W characterized by variables x is computed as a function of βf . This
computation involves selecting the disturbance sequences w(βf). Then
using Q(w̄∗), these disturbance sequences are updated to w∗ by optimiz-
ing over β, while the setsW1

[it] andW2
[i] defined in (5.62) and character-

ized by w̄∗ are kept fixed.

Proposition 5.4. Algorithm 4 terminates in finite time for any ζ > 0 with
feasible iterates. □

Proof. For any ι > 0, since (w(β
[ι−1]
∗ ), z(β

[ι−1]
∗ )) computed by P(β[ι−1]

∗ )

are feasible for Q(w̄
[ι]
∗ ), whose optimizers (w

[ι]
∗ , z

[ι]
∗ ) are in turn feasible

for P(β[ι]
∗ ), the inequalities

c⊤z(β
[ι−1]
∗ ) ≥ c⊤z

[ι]
∗ ≥ c⊤z(β

[ι]
∗ ) ≥ c⊤z

[ι+1]
∗ (5.68)

hold, such that c⊤z(β[ι]
∗ ) and c⊤z

[ι]
∗ are nonincreasing in [ι]. By construc-

tion of Problem (5.66), we know that c⊤z ≥ 0 for all feasible z. Thus,
c⊤z(β

[ι]
∗ ) and c⊤z

[ι]
∗ are bounded below, such that for every ζ > 0, there

exists some ι < ∞ such that c⊤z[ι]∗ ≥ c⊤z
[ι−1]
∗ − ζ holds, concluding the

proof of finite termination. Feasibility of the iterates v
[ι]
∗ follows by not-
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ing that P(β[ι−1]
∗ ) and Q(w̄

[ι]
∗ ) enforce the same constraints over v

[ι]
∗ as

Problem (5.66).

5.3.2 Zonotopes-based LP approximation

In this approach, we parameterize the disturbance setW as a convex hull
of zonotopes as

W = ConvHull
(︁
W(w̄[j], c̄[j]), j ∈ IN1

)︁
,

W(w̄[j],M[j]) = w̄[j] ⊕M[j]diag(c̄[j])B
k[j]
∞ ,

(5.69a)

(5.69b)

with parameters {w̄[j] ∈ Rnw , c̄[j] ∈ Rk[j] , ∀j ∈ IN1 }, where M[j] ∈ Rnw×k[j]

is some user-specified matrix defined with unit column vectors. This pa-
rameterization is adopted from [47], in which it was shown that w ∈
W(w̄[j], c̄[j]) if

∃ q ∈ [−c̄[j], c̄[j]] : w = w̄[j] +M[j]q. (5.70)

Moreover, from basic properties of support functions and (5.2) the sup-
port function over W(w̄[j], c̄[j]) for any T ∈ Rm×nw and p ∈ Rm is given
by

hTW(w̄[j],c̄[j])(p) = p⊤Tw̄[j] + |p⊤TM[j]diag(c̄[j])|1, (5.71)

such that from Proposition 5.2, the support function overW is

hTW(p) = max
j∈IN1

{p⊤Tw̄[j] + |p⊤TM[j]diag(c̄[j])|1}. (5.72)

We now formulate Problem (5.43) for the disturbance set parameter-
ization in (5.69) by exploiting (5.70) and (5.72). We first encode Con-
straint (5.43b) , i.e.,

O(s, α, λ,W) ⊆ Y,

in the same vein as (5.55)- (5.56) by exploiting Equation (5.72). In partic-
ular, introducing {Q[t] ∈ RmY , t ∈ Is−1

0 } and r ∈ RmY , we encode the
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inclusion using the linear inequalities

∀ j ∈ IN1 ,

∀ t ∈ Is−1
0

⎧⎨⎩ Ḡ[t]Bw̄[j] + |Ḡ[t]BM[j]diag(c̄[j])|1 ≤ Q[t],

GDw̄[j] + |GDM[j]diag(c̄[j])|ϵw[j] ≤ r,

s−1∑︂
t=0

Q[t]i + ri ≤ gi − λ

s−1∑︂
t=0

|Ḡ[t]i|1, ∀ i ∈ ImY
1 .

(5.73a)

(5.73b)

We recall that matrices G[t] are defined in Equation (5.44). Then, we en-
code Constraint (5.43c), i.e., BW ⊆ γBnx

∞ , by exploiting Equation (5.72),
similarly to (5.57) as

ĨnxBw̄[j] + |ĨnxBM[j]diag(c̄[j])|1 ≤ γ1, ∀ j ∈ IN1 . (5.74)

To encode Constraint (5.43d), i.e., 0 ∈ W , we enforce that 0 ∈W(w̄[1], c̄[1])

for simplicity, that holds as per (5.70) if

∃ q0 ∈ [−c̄[1], c̄[1]] : 0 = w̄[1] +M[1]q0. (5.75)

Finally, to encode Constraint (5.43e), i.e., Y ⊆ S(l,W) ⊕ B(ϵ), we adopt
Proposition 5.1(e), similarly to (5.60). However, in order to derive an
LP approximation of Problem (5.43), we fix N = vY , i.e., the number of
zonotopes parameterizing the disturbance set is equal to the number of
vertices of Y , and encode Constraint (5.43e) using the sufficient condi-
tions

∀ i ∈ IvY1 , ∃
{︄ {︂

{w1
[it], t ∈ Il−1

0 }, w2
[i]

}︂
∈W(w̄[i], c̄[i]),

b[i] ∈ B(ϵ),

such that y[i] =
l−1∑︂
t=0

CAl−1−tBw1
[it] +Dw2

[i] + b[i].

(5.76a)

(5.76b)

This encoding approximates the conditions in (5.60), by replacing the
inclusions {{w1

[it], t ∈ Il−1
0 }, w2

[i]} ∈ W with {{w1
[it], t ∈ Il−1

0 }, w2
[i]} ∈

W(w̄[i], c̄[i]). Exploiting (5.70), these inclusions hold if

∀ i ∈ IvY1 , ∀ t ∈ Il−1
0 , ∃ q1[it], q

2
[i] ∈ [−c̄[i], c̄[i]]

: w1
[it] = w̄[i] +M[i]q

1
[it], w2

[i] = w̄[i] +M[i]q
2
[i]. (5.77)
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Thus, for the disturbance set parameterization in (5.69) with N = vY ,
Problem (5.43) can be approximated as the LP

min
ẑ
∥ϵ∥1

s.t. (5.73), (5.74), (5.75), (5.76b), (5.77),
b[i] ∈ B(ϵ), ∀ i ∈ IvY1 ,

(5.78a)

(5.78b)
(5.78c)

with the optimization variables

ẑ :=

{︃
{w̄[j], c̄[j], j ∈ IvY1 }, {Q[t], r, t ∈ Is−1

0 }, q0, ϵ,
{w1

[it], q
1
[it],w

2
[i], q

2
[i],b[i], i ∈ IvY

1 , i ∈ Il−1
0 }

}︃
.

We present two numerical examples in this section, with the SOCP
computations in Algorithm 3 performed using MOSEK [93], and LP com-
putations in Algorithm 4 performed using Gurobi [51]. We use the out-
put of Algorithm 4 to initialize the Primal-Dual Interior Point solver
IPOPT [151] to solve Problem (5.66). Finally, the MPT-toolbox [53] was
used to plot the sets. The computations were performed on a laptop with
an Intel i7-7500U processor and 16GB of RAM running MATLAB R2017b
on Ubuntu 16.04.

5.3.3 Simple Illustrative Example

We consider the randomly generated system

A =

⎡⎣−0.5844 −0.2378 −0.2015
−0.2378 0.0368 0.6915
−0.2015 0.6915 −0.0162

⎤⎦ , B =

⎡⎣ 0 0.8974
0 −1.8597

0.8903 0.9479

⎤⎦,
C =

[︃
0 2.0091 −0.1402

−0.9894 0 1.1447

]︃
, D =

[︃
−0.8078 0
0.9676 0.6751

]︃
,

with output constraint set Y = {y : Gy ≤ 1} defined with

G =

[︃
−0.4489 −1.9691 1.0364 1.4018 −0.9868
2.1848 1.2596 0.8726 −0.3397 −2.0995

]︃⊤
.

We select µ = 10−3 and γ = 0.2 in Algorithm 3. Using the MOSEK [93]
SOCP solver, we converge in 0.19s with s = 59, α = 6.789 × 10−4, λ =
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6.784 × 10−5. Then, we select N = 4 boxes in R2 to parametrize W
in (5.47), and use l = s = 59 to formulate (5.63). Finally, we choose a
uniform 6-sided polytope in R2 to define B(ϵ), using which we formulate
Problem (5.66).

To solve Problem (5.66), we first implement Algorithm 4 with β ini-
tialized with β1

[itj] = 1/N and β2
[ij] = 1/N . The algorithm terminates

in 10 iterations with ∥ϵ∥1 = 1.0962, and requires an average of 0.3792s
per iteration. In Figure 6, we plot with thick blue lines the disturbance
set and the corresponding output reachable set obtained at the termina-
tion of Algorithm 4. We also plot the values of ∥ϵ∥1 computed over the
iterations of Algorithm 4.

We use the output of the algorithm to initialize IPOPT to solve Prob-
lem (5.66). At termination, we obtain ∥ϵ∥1 = 1.055. We plot the dis-
turbance set along with the corresponding output reachable set solving
Problem (5.66) in also Figure 6 as well. In order to solve Problem (5.66)
efficiently with IPOPT, we observe that the only contribution to the La-
grangian Hessian stems from the bilinear constraints, which are nonzero
only on off-diagonal blocks. Because IPOPT computes a positive-definite
Hessian approximation by simply adding a positive diagonal matrix, we
observed that it is beneficial to neglect the contribution to the Lagrangian
Hessian of these bilinear terms. We therefore pass a zero Hessian approx-
imation to IPOPT. In our experience, this modification permits IPOPT to
quickly converge to a local minimum. For the current example, IPOPT
converges in 281 iterations requiring 14.7236s. If instead the exact La-
grangian Hessian is passed, IPOPT converges with ∥ϵ∥1 = 1.0826 in 994

iterations requiring 69.1807s. We compare our results with those ob-
tained by tackling Problem (3.7) using the Explicit RPI (ERPI) set ap-
proach in Chapter 3. In this approach, the mRPI set is approximated
with an RPI set parameterized with fixed normal vectors, and the ap-
proach computes an explicit representation of the RPI set along with a
disturbance set also parameterized with fixed normal vectors. We select
163 hyperplanes to parameterize the RPI set, and 16 hyperplanes to pa-
rameterize the disturbance set. At the termination of the procedure in
Chapter 3, we obtain ∥ϵ∥1 = 1.2039, demonstrating that the implicit RPI

120



Figure 6: (Top) Convergence of Algorithm 4 : The inequalities in (5.68) hold, and
the algorithm converges at ι = 10 with ||ϵ||1 = 1.0962; (Bottom-Left) The dis-
turbance setW , along with boxes W(w̄[j], ϵ

w
[j]) composingW in (5.47); (Bottom-

Right) Output constraint set Y and the output-reachable set O(s, α, λ,W). Black
lines are the output trajectories y(t) of the system when initialized with x(0) = 0
(Yellow dot) and subject to random inputs w ∈ W . As expected, we observe that
y ∈ O(s, α, λ,W) ⊂ Y always holds. The thick blue lines indicate the solution at
the termination of Algorithm 4, and think green lines indicate the sets computed
using the ERPI approach in Chapter 3.

set approach proposed in the current chapter can compute disturbance
sets with reduced conservativeness. We plot these results in Figure 6.
While the solution of the ERPI approach can potentially be refined fur-
ther by increasing the number of hyperplanes parameterizing the RPI
set, it would result in greatly increased computational expense. This is
because the number of variables and constraints in the ERPI approach
increase quadratically with the number of hyperplanes parameterizing
the RPI set. We now study the effect of number of boxes N parame-
terizing the disturbance set W in (5.47) on the procedure to solve Prob-
lem (5.66). To this end, we parameterizeW with number of boxes rang-
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Figure 7: Effect of number of boxes N parameterizing the disturbance setW on
Problem (5.66). The nonmonotonicity of ∥ϵ∥1 is because of the nonlinear nature
of the problem. However, as expected in general smaller values of ∥ϵ∥1 are ob-
tained as N increases. Red lines indicate solution of IPOPT when initialized with
output of Algorithm 4, and green lines indicate solution with initial guess all-
zero. Observe that smaller values of ∥ϵ∥1 are computed if IPOPT is initialized
with the solution of Algorithm 4.

ing from N = 1 till N = 10. For each N , we first simulate Algorithm 4
with β1

[itj] = 1/N and β2
[ij] = 1/N . Then, we use the output of Algo-

rithm 4 to initialize IPOPT to solve Problem (5.66). In Figure 7, we plot
the values of ∥ϵ∥1 obtained at the termination of Algorithm 4 and IPOPT.
We also plot the total CPU time required for each procedure. We observe
that as expected, the optimal value of ∥ϵ∥1 reduces in general as the num-
ber of boxes N used to parameterize W increases. However, this trend
is not strictly monotonic, owing to the nonlinear nature of the optimiza-
tion procedure, which converges to a local minimum. We also observe
that Algorithm 4 terminates in the majority of cases in under 10s, while
IPOPT requires around 30s for larger values of N in addition to the time
required for initialization using Algorithm 4. From this observation, we
infer that if only a reasonably good solution of Problem (5.66) instead of
minimizer is desired, then the output of Algorithm 4 can be considered
as a viable solution. In Figure 7, we also plot the value of ∥ϵ∥1 and the
correspond computation time for IPOPT if initialized with an all-zero
vector (shown in green). We observe that the values of ∥ϵ∥1 are larger
than when initialized with the output of Algorithm 4, motivating the use
of a good initial guess to initialize IPOPT.
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Finally, we apply the heuristics proposed in Section 5.3 to approxi-
mate Problem (5.43) as an LP. The resulting solutions are plotted in Fig-
ure 8. The solution indicated as Approximation 1 is obtained by solving
LP P(β) with N = vY = 5 boxes to parameterize the disturbance setW
in (5.47), and the components of β are fixed as in Equation (5.67). The
solution corresponds to ∥ϵ∥1 = 1.2058, and the LP is solved in 0.4751s.
The solution indicated as Approximation 2 is obtained by solving the LP
in (5.78) with N = vY = 5 zonotopes parameterizing the disturbance set
W in (5.69). For each j ∈ IN1 , we fix matrices M[j] ∈ R2×40 with columns
uniformly sampled from B22 . The solution corresponds to ∥ϵ∥1 = 1.0521,
and the LP is solved in 145.2394s. The large increase in computational
time in the case of Approximation 2 is attributed to the fact that the dis-
turbance set is parameterized by vYnw +

∑︁vY
j=1 k[j] = 210 parameters,

whileW is parameterized with 2vYnw = 20 in the case of Approximation
1. For comparison, we fix N = 9 boxes to parameterize the disturbance
set, and solve Problem (5.66) using IPOPT (initialized with the solution
of Algorithm 4). The results obtained at termination are plotted with
thick black lines in Figure 8, and they correspond to ∥ϵ∥1 = 1.0103. This
solution is computed in 40.5979s. From this observation, we infer that
while LP (5.78) can be used to compute disturbance sets with reduced
conservativeness that LP P(β), the increased computational time moti-
vates the use of Algorithm 4 along with an NLP solver such as IPOPT to
solve Problem (5.66) in practice.

5.3.4 Comparison against the ERPI approach of Chapter 3

We compare the performance of the method proposed in this chapter
using Implicit RPI sets (IRPI) with the Explicit RPI (ERPI) approach pro-
posed in Chapter 3 to tackle Problem (3.7) over 24 randomly generated
systems with dimensions shown in Table 5. The values of ρ(A) of the sys-
tems are plotted in Figure 9-(Top). For each example, we use the output
constraint set Y = Bny

∞ and matrix H = [Iny
− Iny

]⊤ to define B(ϵ).
For our IRPI approach, we first use Algorithm 3 to compute the pa-

rameters (s, α, λ) that parameterize the RPI set R(s, α, λ,W) in Equa-

123



Figure 8: LP approximations of Problem (5.43). Approximation 1 corresponds
to the solution of P(β) with β chosen as (5.67). Approximation 2 is obtained by
solving LP (5.78) with k[j] = 40. The black sets are obtained by solving Prob-
lem (5.66) with N = 9 boxes.

tion (5.8) with µ = 10−2 and γ = 1. The values of these parameters s are
shown in Table 5, and (α, λ) are plotted in Figure 9-(Top). The average
runtime of Algorithm 3 over all 24 examples in 0.3411s. Then, we set N =

5 number of boxes to parameterize the disturbance set in (5.47), and se-
lect l = s to parameterize the set S(l,W) formulating Constraint (5.43e).
To solve the resulting optimization problem (5.66), we first run Algo-
rithm 4. We then use the output of the algorithm to initialize IPOPT
to solve problem (5.66). We label the total runtime of Algorithm 4 and
IPOPT to solve problem (5.66) as tIRPI, and the objective value as ∥ϵIRPI∥1.

Regarding the ERPI approach, we recall that it uses an RPI set param-
eterized as the polytope

XRPI(W) := {x : Eix ≤ ϵxi , i ∈ ImX
1 }

to approximate the mRPI set Xm(W) in Problem (3.7), with the normal
vectors {E⊤

i , i ∈ ImX
1 } fixed a priori. It also considers a disturbance set

parameterized as the polytope

W := {w : Fix ≤ ϵwi , i ∈ ImW
1 }
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# (nx, nw, ny, s,mX ,mW ) # (nx, nw, ny, s,mX ,mW )
1 (2, 2, 2, 8, 12, 6) 2 (2, 2, 3, 15, 12, 6)
3 (2, 3, 2, 12, 18, 42) 4 (2, 3, 3, 2, 18, 42)
5 (2, 4, 2, 9, 20, 80) 6 (2, 4, 3, 17, 8, 80)
7 (3, 2, 2, 13, 34, 6) 8 (3, 2, 3, 14, 34, 6)
9 (3, 3, 2, 16, 36, 42) 10 (3, 3, 3, 16, 35, 42)
11 (3, 4, 2, 7, 34, 80) 12 (3, 4, 3, 11, 34, 80)
13 (4, 2, 2, 18, 68, 6) 14 (4, 2, 3, 4, 8, 6)
15 (4, 3, 2, 18, 74, 42) 16 (4, 3, 3, 10, 75, 42)
17 (4, 4, 2, 7, 80, 80) 18 (4, 4, 3, 13, 53, 80)
19 (5, 2, 2, 7, 67, 6) 20 (5, 2, 3, 6, 20, 6)
21 (5, 3, 2, 5, 72, 42) 22 (5, 3, 3, 6, 102, 42)
23 (5, 4, 2, 5, 118, 80) 24 (5, 4, 3, 7, 108, 80)

Table 5: Randomly generated systems

# (nx, nw, ny, ρ(A), s, ∥ϵIRPI∥1 , tIRPI[s], µIRPI)
1 (10, 5, 2, 0.6975, 40, 0.5166, 45.4723, 0.0073)
2 (20, 10, 3, 0.69, 38, 1.0529, 258.9705, 0.0062)
3 (50, 20, 4, 0.699, 42, 1.3626, 1.1432× 104, 0.0064)
4 (100, 20, 2, 0.8, 76, 0.3093, 197.892, 0.0061)

Table 6: Higher-dimensional systems

with normal vectors {F⊤
i , i ∈ ImW

1 } also fixed a priori. The dimensions
(mX ,mW ) are shown in Table 5. We solve the optimization problem
resulting from the ERPI approach using the specialized smoothening-
based interior-point algorithm presented in Section 3.4. We label the run-
time of this algorithm as tERPI, and the objective value as ∥ϵERPI∥1.

In Figure 9-(Bottom) , we plot the ratios of objective values ∥ϵ∥1, and
the solution times. We observe that our IRPI approach computes much
smaller values of ∥ϵ∥1 than the ERPI approach, in a computation time
that is significantly smaller. The smaller values of ∥ϵ∥1 yielded by the
IRPI approach stem from the fact that we do not enforce a specific rep-
resentation of the RPI set a priori, while the reduced computational time
stems from the fact that the convex hull of boxes adopted for the distur-
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Figure 9: Comparison against the ERPI approach. The Implicit RPI approach
tackles Problem (3.7) with reduced conservativeness and improved computa-
tional efficiency.

bance setW in (5.47) allows very cheap evaluations of the support func-
tions. We remark that the smallest value of ∥ϵERPI∥1 / ∥ϵIRPI∥1 is 1.0042

obtained for Example 8.
At the output of the ERPI approach, we construct the sets XRPI(W),

and compute their approximation error with respect to the mRPI set.
In other words, we compute the smallest values of µERPI that verify
XRPI(W) ⊆ Xm(W) ⊕ µERPIBnx

∞ . We plot these values in Figure 9-(Top),
in which we observe that the ERPI set approximation error is larger than
µ = 10−2 used for our IRPI approach. We also recompute the IRPI
set approximation error µIRPI, i.e., the smallest value of µIRPI verifying
R(s, α, λ,W) ⊆ Xm(W) ⊕ µIRPIBnx

∞ . As expected, these values satisfy
µIRPI ≤ µ = 10−2 over all the examples. While the RPI approximation er-
ror µERPI can potentially be reduced and brought close to µIRPI by choos-
ing a larger mX thus reducing conservativeness of the ERPI approach, it
will result in an increased computational complexity. On the other hand,
the approach proposed in this chapter computes less conservative solu-
tions with much lower computational complexity, thus demonstrating
the efficacy of using IRPI sets to tackle Problem (3.7).

Finally, we use our IRPI approach to tackle Problem (3.7) for higher
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dimensional systems. Because of the large values of nx, the large num-
ber of hyperplanes mX required to represent an RPI set in the ERPI ap-
proach results in the system running out of memory, thus effectively
failing to tackle Problem (3.7). On the other hand, the IRPI approach
succeeds in tackling Problem (3.7) The system details and the results of
the IRPI approach are shown in Table 6, in which we select the parame-
ters (µ, γ,Y, H,N, l) in the same way as for the examples in Table 5. We
observe that despite being successful, the computation time of the IRPI
approach scales poorly with dimension of the output constraint set Y .
This is because the number of vertices vY = 2ny leads in an exponen-
tial increase in the number of variables and constraints defining Prob-
lem (5.66) (can be observed from Tables 3-4) with ny . This issue can be
tackled if we can encode the inclusion Y ⊆ S(l,W)⊕ B(ϵ) directly using
the hyperplane representation of Y . The development of such techniques
is the subject of future research.

5.3.5 Dynamics decoupling for reduced-order MPC

We consider an LTI system given by[︃
x[1](t+ 1)
x[2](t+ 1)

]︃
=

[︃
A[11] A[12]

A[21] A[22]

]︃ [︃
x[1](t)
x[2](t)

]︃
+

[︃
B[1]

0

]︃
u(t),

y(t) = C[1]x[1](t) + C[2]x[2](t),

(5.79a)

(5.79b)

that is subject to input and output constraints u ∈ U and y ∈ Y respec-
tively. For this system, we aim to design an MPC controller that satisfies
the following requirements:

1. Regulate the substate x[1] with inputs u ∈ U with no access to sub-
state x[2] and output y, and no knowledge of matrices

(A[21], A[22], C[1], C[2]).

2. Satisfy given output constraints y ∈ Y .

We make the following assumptions on System (5.79).
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Assumption 5.3. (a) ρ(A[22]) < 1; (b) The output constraint set Y is a poly-
tope containing the origin in its interior.

Remark 5.2. These design requirements are different from the ones tackled in
other Reduced-Order MPC schemes, e.g., [137], in which the constraints are
not coupled, and (A[21], A[22]) are used to perform set-membership estimation
of x[2]. □

Since we are only interested in regulating the substate x[1] of Sys-
tem (5.79a), we write its dynamics separately as

x[1](t+ 1) = A[11]x[1](t) +B[1]u(t) +A[12]x[2](t). (5.80)

In the sequel, we treat System (5.80) as an uncertain LTI plant with ad-
ditive disturbance x[2], for which we design a robust MPC (RMPC) con-
troller that satisfies the aforementioned requirements. To this end, we
make the following observations.

We first note that substate x[2] depends on substate x[1] as

x[2](t+ 1) = A[22]x[2](t) +A[21]x[1](t). (5.81)

Then, given some compact convex set X[1] containing the origin, if the
substate x[1] satisfies

x[1](t) ∈ X[1], ∀ t ≥ 0, (5.82)

then the substate x[2] always belongs to the mRPI set Xm(X[1]) of Sys-
tem (5.81) with disturbance set X[1], i.e.,

x[2](t) ∈ Xm(X[1]) :=

∞⨁︂
t=0

At
[22]A[21]X[1], ∀ t ≥ 0, (5.83)

if x[2](0) ∈ Xm(X[1]). Note that under Assumption 5.3(a) the mRPI set
Xm(X[1]) is compact, convex and unique [63]. Inclusion (5.83) implies
that if System (5.80) is constrained as x[1] ∈ X[1], then the additive distur-
bance acting on the system always satisfies x[2] ∈ Xm(X[1]). Based on this
observation, we propose to design a tube-based RMPC controller [87]
for System (5.80) to robustly satisfy the state-constraints x[1] ∈ X[1] in the
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presence of additive disturbances x[2] ∈ Xm(X[1]). Since this controller
does not require measurements of x[2] for its implementation, we satisfy
Requirement (1).

Now, we focus on designing the state-constraint set X[1]. To this end,
we formulate conditions on X[1] to satisfy Requirements (1)-(2). We note
that System (5.79) must satisfy

y(t) = C[1]x[1](t) + C[2]x[2](t) ∈ Y, ∀ t ≥ 0 (5.84)

as per Equation (5.79b). Then, since x[1] ∈ X[1] implies that x[2] ∈ Xm(X[1]),
it is sufficient to enforce the inclusion

Ym(X[1]) := C[1]X[1] ⊕ C[2]Xm(X[1]) ⊆ Y (5.85)

in order to satisfy (5.84), such that Requirement (2) is satisfied. The ne-
cessity of inclusion (5.85) follows from Requirement (1), according to
which the inclusion in (5.84) must hold for all x[2] ∈ Xm(X[1]) since the
controller cannot access measurements of (x[2](t), y(t)). Thus, we pro-
pose to design a state constraint set X[1] for System (5.80) satisfying in-
clusion (5.85).

Based on these observations, we propose the following 2-step pro-
cedure to synthesize an MPC controller satisfying the aforementioned
requirements.

1. Design a set X[1] satisfying inclusion (5.85).

2. Design an RMPC controller for System (5.80) with state constraint
set X[1], input constraint set U (given a priori) and disturbance set
x[2] ∈ Xm(X[1]).

For Step (1) of this design procedure, we propose to solve the opti-
mization problem

min
X[1]

dY(Ym(X[1]))

s.t. Ym(X[1]) ⊆ Y,
0 ∈ X[1],

(5.86a)

(5.86b)
(5.86c)
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that computes a set X[1] while enforcing inclusion (5.85) through con-
straint (5.86b), and minimizes the approximation error of the output con-
straint setY by the output-reachable setYm(X[1]) through objective (5.86a).
Observing that Problem (5.86) is analogous to Problem (3.7) with

matrices (A,B,C,D)← (A[22], A[21], C[2], C[1]),

disturbance setW ← X[1],

(5.87a)
(5.87b)

we tackle Problem (5.86) using the methods described in this chapter to
compute an optimal state-constraint set X[1].

For Step (2), we design a tube-based Robust MPC (RMPC) controller [87]
to control System (5.80) with state constraint set x[1] ∈ X[1] obtained by
solving Problem (5.86) and disturbance set x[2] ∈ Xm(X[1]) as defined in
Equation (5.83). Note that in principle any robust MPC scheme can be
used, e.g., [26, 71]. Since the disturbance set (i.e., the mRPI set Xm(X[1]))
cannot generally be explicity computed, we propose to use the µ-RPI set
R(s, α, λ,X[1]) defined in Equation (5.8) for system matrices (5.87a) as
the disturbance set in place of the mRPI set Xm(X[1]). Since the µ-RPI set
satisfies the inclusion

Xm(X[1]) ⊆ D(X[1]) := R(s, α, λ,X[1]),

an RMPC controller that is designed to be robust against the larger distur-
bance set D(X[1]) is robust against the smaller disturbance set Xm(X[1]).

We will now briefly recap the tube-based RMPC design procedure
from [87] for System (5.80) subject to constraints x[1] ∈ X[1] and u ∈ U ,
and disturbances x[2] ∈ D(X[1]). Assuming to know a feedback gain K[1]

such that matrix AK
[11] := A[11] + B[1]K[1] is strictly stable, the RMPC de-

sign procedure involves splitting the state x[1] into nominal and perturbed
components as x[1] = x̂[1]+∆x[1], and parameterizing the control input as
u = û+K[1]∆x[1], where the nominal and perturbed components satisfy
the dynamics

x̂[1](t+ 1) = A[11]x̂(t) +B[1]û(t),

∆x[1](t+ 1) = AK
[1]∆x[1](t) +A[12]x[2](t).

(5.88a)

(5.88b)
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Then, an RPI set ∆X[1] is computed for the perturbed System (5.88b) with
disturbances x[2] ∈ D(X[1]). This set satisfies the usual RPI inclusion

AK
[1]∆X[1] ⊕A[12]D(X[1]) ⊆ ∆X[1]

and can be computed using, e.g., [112, 111, 144]. It is then used to com-
pute a control input

u(t) = û∗(t) +K[1](x[1](t)− x̂[1]∗(t)),

where (û∗(t), x̂[1]∗(t)) solve the following Quadratic Program (QP) pa-
rameterized by the current measured state x[1](t):

min
xMPC

t+L−1∑︂
s=t

⃦⃦⃦⃦[︃
x̂[1](s)− xtgt

û(s)− utgt

]︃⃦⃦⃦⃦2
S[1]

+
⃦⃦
x̂[1](t+ L)− xtgt

⃦⃦2
P[1]

s.t. x̂[1](s+ 1) = A[11]x̂[1](s) +B[1]û(s), s ∈ It+L−1
t ,

x̂[1](s) ∈ X[1] ⊖∆X[1], s ∈ It+L−1
t+1 ,

û(s) ∈ U ⊖K[1]∆X[1], s ∈ It+L−1
t+1 ,

x[1](t)− x̂[1](t) ∈ ∆X[1],

x̂[1](t+ L)− xtgt ∈ Xterm,

(5.89)

where xMPC := {x̂[1](t), . . . , x̂[1](t+L), û(t), . . . , û(t+L−1)},, and (xtgt, utgt)

are the reference state and input to track. For details regarding the condi-
tions that the terminal set Xterm and cost matrices (S[1], P[1]) must satisfy
to guarantee recursive feasibility and exponential stability, we refer the
reader to [87]. Here we focus on the tightened constraints

X[1] ⊖∆X[1], U ⊖K[1]∆X[1]

used in the formulation of QP (7.3). We note that these tightened con-
straints are nonempty if the inclusions

∆X[1] ⊆ interior(X[1]), K[1]∆X[1] ⊆ interior(U). (5.90)

are verified. Hence, we make the following assumption to guarantee
feasibility of Problem (7.3).
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Assumption 5.4. The inclusions in (5.90) are verified. □

We note that, since X[1] is the optimization variable in Problem (5.86),
inclusions (5.90) can in principle be appended as constraints over X[1].
However, encoding such constraints requires further results that will be
a subject of future work. We remark that if Problem (5.86) is instead tack-
led using the ERPI approach in Chapter 3, then these inclusions can be
appended as constraints with minor modifications, such that Assump-
tion 5.4 would be satisfied by construction. Note that such inclusions
were appended as constraints while formulating the DeMPC problem in
Chapter 4, in particular, in Constraint (4.18b) as ∆X[1] ⊆ ϕxX[1], where
ϕx ∈ (0, 1) is some user-specified design parameter.

As an example, we consider System (5.79) with matrices

A[11] =

[︃
1.0000 1.0000

0 1.0000

]︃
, A[12] =

[︃
−0.0524 −0.3299 0.3061 0.2773
−0.0048 −0.1020 0.1244 −0.1044

]︃
,

A[21] =

⎡⎢⎢⎣
0 0.0204
0 0.0344
0 −0.0339
0 0.0134

⎤⎥⎥⎦, A[22] =

⎡⎢⎢⎣
−0.0790 0.2854 −0.0377 0.6949
0.2854 −0.2284 0.2752 0.3536
−0.0377 0.2752 0.6021 −0.2824
0.6949 0.3536 −0.2824 −0.0129

⎤⎥⎥⎦,
C[1] =

[︃
0.9407 −0.3282
−0.6624 −0.7257

]︃
, C[2] =

[︃
0.8716 0.3587 0.2407 0.5116
−0.1863 0.1624 0.7122 1.7494

]︃
,

B[1] = [0.5 1]⊤, and subject to input-constraints

U = {u : ∥u∥∞ ≤ 0.7}.

For Step (1) of the design procedure to compute a state-constraint set
X[1], we solve Problem (5.86) using the methods proposed in this chapter.
To this end, we set the system matrices as per (5.87a). Then, recollecting
that we aim to compute a disturbance setW that we will use as the state-
constraint set X[1], we formulate Problem (5.43) using parameters s =

150, λ = 2.931×10−5, α = 5.195×10−4 that are computed by Algorithm 3
for µ = 10−3 and γ = 0.1 in 0.44s. We parametrize the set B(ϵ) used to
define dY(·) in Equation (3.8) with nB = 8 vectors {H⊤

i , i ∈ InB
1 } sampled

uniformly from the surface of B2∞.
Finally, we parametrize the disturbance set in (5.47) with N = 4 boxes

in R2, and select l = s = 150 to formulate constraint (5.43e). In order to

132



Figure 10: Results approximating Problem (5.86) as Problem (5.66) to compute
X[1] =W . The blue lines indicate the boundaries of corresponding sets obtained
at termination of Algorithm 4.

solve the resulting Problem (5.66), we first implement Algorithm 4. The
algorithm was initialized with each β1

[itj], β
2
[ij] = 1/N , and it terminates

in ι = 16 iterations with ∥ϵ∥1 = 0.9726, consuming an average of 0.7655s
per iteration. We then use the output of the algorithm to initialize IPOPT
to solve Problem (5.66). At termination, we obtain ∥ϵ∥1 = 0.8828. In
Figure 10, we show the sets obtained at the termination of Algorithm 4,
and those computed using IPOPT.

We then use the state-constraint set X[1] =W to synthesize the RMPC
controller in (7.3) for system (5.80). To this end, we synthesize an LQR-
feedback gain with S[1] = diag(10, 1, 1), following which we select P[1]

to be the solution of the DARE, and compute an RPI set ∆X[1] with
300 hyperplanes using the single-LP procedure in [144]: the computed
set satisfies the inclusions in (5.90). Finally, we select the terminal set
Xterm as the maximal positive invariant set computed using the proce-
dure in [44]. The results of synthesizing the RMPC controller in (7.3) for
this parametrization, and applied to control the full-scale system (5.79)
is shown in Figure 11. For comparison, we synthesize a full-order MPC
controller that has a feedback of the full-state [x⊤

[1](t) x[2](t)
⊤] for all t ≥ 0,

and uses the full-scale system (5.79) as the prediction model. In this con-
troller, we directly constraint y ∈ Y along with u ∈ U , and define the cost
using matrices (S[1], P[1]) as done in (7.3) along with a regularization term
10−6||x[2]||22 to guarantee positive definiteness of the cost. Finally, we use
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Figure 11: Comparison of closed-loop performance between reduced-order MPC
controller (in blue) and full-order MPC controller (in red). While the full-order
MPC controller satisfies y ∈ Y despite x[1] /∈ X[1], the reduced-order MPC con-
troller maintains x[1] ∈ X[1] to ensure that y ∈ Y . The black dots indicate x[1](0)
and y(0) in bottom-left and bottom-right plots respectively.

the same terminal constraint set (i.e., only over x[1]) as done in (7.3). We
observe in the figure that, as expected, the tracking performance with the
reduced-order MPC controller is worse when compared to the full-order
MPC controller, since the reduced-order controller requires x[1] ∈ X[1] to
ensure that y ∈ Y . However, we achieve the goals of the controller syn-
thesis procedure, i.e., we perform reference tracking while ensuring that
y ∈ Y without requiring measurements of neither x[2] nor y. Moreover,
because of the reduced-order nature, the average iteration time of the
proposed MPC controller is 0.015s, while the full-order MPC controller
requires 0.033s when solved with the Gurobi QP solver.
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5.4 Comparison with parametric sensitivity
analysis-based approach

In this section, we compare our approach to computing a safe distur-
bance set using the 0-reachable set, with the parametric sensitivity ap-
proach presented in [160]. We specialize the approach of [160] to the case
of an autonomous LTI system for the purpose of comparison. Moreover,
we assume for simplicity that the system matrices are C = I and D = 0,
such that the output-constraint set Y is the state-constraint set.

Given a template disturbance set W̃ satisfying the usual assumptions
of compactness and including the origin, the approach of [160] can be
used to compute the largest scaling factor σ ∈ [0, σ̄] such that some given
state x ∈ Y is included in the Maximal RPI (MRPI) set corresponding to
the scaled disturbance set σW̃ , where σ̄ ≥ 0 is some user-specified scalar.
In other words, for each x ∈ Y , a function V (x) is computed that satisfies

w ∈ σW̃, ∀ σ ∈ [0, V (x) ≤ σ̄]⇒ x ∈ O∞(σW̃). (5.91)

We refer the reader to Section 2.2.2 for details regarding the MRPI set.
In order to compute the function V (x), a value iteration technique was
proposed, the fixed-point of which was shown in [160, Theorem 3] to be
recoverable from the MRPI set of the augmented uncertain system

x(t+ 1) = Ax(t) +Bw(t), w(t) ∈ σW̃
σ(t+ 1) = σ(t)

subject to the constraints (x, σ) ∈ Y × [0, σ̄]. This set can be computed as
the limit of the set iterations

Õ0 :=

{︃(︃
x
σ

)︃
: Gx ≤ g, σ ∈ [0, σ̄]

}︃
Õt+1 :=

{︃(︃
x
σ

)︃
∈ Õt :

(︃
Ax+Bw

σ

)︃
∈ Õt, ∀ w ∈ σW̃

}︃

=

⎧⎪⎪⎨⎪⎪⎩
(︃
x
σ

)︃
:

⎡⎢⎢⎣
Mx

t A Mσ
t + hW̃(Mx

t B)
0 −1
0 1

Mx
t Mσ

t

⎤⎥⎥⎦[︃xσ
]︃
≤

⎡⎢⎢⎣
nt

0
σ̄
nt

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ ,

where Õt =

{︃(︃
x
σ

)︃
: Mx

t x+Mσ
t σ ≤ nt

}︃
.

(5.92a)

(5.92b)

(5.92c)

(5.92d)

135



Note that in the computation of the set Õt+1, positive homogeneity of
support functions is exploited. Then, for a given x ∈ Y , the value func-
tion V (x) satisfying (5.91) is given by

V (x) = max{ σ : (x, σ) ∈ Õ∞},

and the MRPI set for the system x(t + 1) = Ax(t) + Bw(t) with distur-
bances w ∈ σW̃ is given by

O∞(σW̃) = {x : Mx
∞x ≤ n∞ −Mσ

∞σ}. (5.93)

It follows immediately that the maximal scaled disturbance set that the
system can tolerate is σ̂W̃ , where

σ̂ = max

{︃
σ : ∃ x :

(︃
x
σ

)︃
∈ Õ∞

}︃
.

Such a maximal scaling factor σ̂ has also been studied previously, e.g.,
[133], where-in it was referred to as the critical scaling factor. It implies
that for any scaled disturbance set σW̃ with σ > σ̂, there does not ex-
ist an RPI set for the system inside the constraint set. Moreover, the
largest mRPI set corresponding to the maximal scaled disturbance set in
included in the smallest MRPI set O∞(σ̂W̃), i.e.,

Xm(σ̂W̃) =

∞⨁︂
t=0

AtB(σ̂W̃) ⊆ O∞(σ̂W̃) ⊆ Y. (5.94)

Now considering the reachable set-based methodology proposed in
this chapter, we observe that an arbitrarily tight lower bound to σ̂ can
be computed by solving a single LP. In particular, given a template dis-
turbance set W̃ , safety of a scaled disturbance set σW̃ can be enforced
as

σ

s−1∑︂
t=0

hBW̃(Ḡ[t]) ≤ g − λ

s−1∑︂
t=0

hBnx
∞ (Ḡ[t]), (5.95)

where the parameters (s, α, λ) are chosen appropriately for given (µ, γ)

following Algorithm 3. Then, the largest scaling factor for given RPI set
approximation error µ > 0 can be computed by solving the LP

σµ := max
σ

σ s.t. (5.95), σhBW(Ĩnx
) ≤ γ1. (5.96)
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Figure 12: (Left) Set Õ∞ obtained at termination of iterations in (5.92);
(Right) Corresponding smallest MRPI set and largest mRPI set defined in (5.93)
and (5.94) respectively.

Clearly, σµ is a nondecreasing sequence with decreasing µ, and is upper-
bounded by σ̂. Moreover, for every σ ∈ [0, σµ] for every µ > 0, the
disturbance set σW̃ is a safe disturbance set, i.e., the inclusions

Xm(σW̃) ⊆ Y, ∀ σ ∈ [0, σµ], ∀ µ > 0

hold. On the other hand, defining

σt = max

{︃
σ : ∃ x :

(︃
x
σ

)︃
∈ Õt

}︃
,

and observing that σt is a nonincreasing sequence in t with σ̂ = limt→∞ σt,
we see that a disturbance set σtW̃ is safe if and only if σ̂ = σt, thus re-
quiring finite termination of the set iterations in (5.92).

Example

As an illustrative example, we consider the randomly generated system

x(t+ 1) =

[︃
0.8044 −0.1734
0.1734 0.8044

]︃
x(t) +

[︃
0.8264 0.5298
0.5460 0

]︃
w(t),

and choose the template disturbance set W̃ as a regular hexagon in R2.
In Figure (12), we plot the sets obtained using the approach presented
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Figure 13: Comparison between the approach of [160] and the 0-reachable set
based approach to compute the largest safe disturbance set.

in [160]. As expected, the smallest MRPI set O∞(σ̂W̃) and the largest
mRPI set Xm(σ̂W̃) are very close to each other while satisfying the inclu-
sion in (5.94). In Figure 13, we plot the values of σµ for reducing values
of µ obtained by solving LP (5.96). We observe that we monotonically
approach σ̂ from below as µ reduces.
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Chapter 6

Input Constraint Sets for
Robust Regulation of
Linear Systems

6.1 Introduction

Constrained systems with unknown but bounded disturbances can be
robustly stabilized using several control strategies, e.g., Robust Model
Predictive Control (RMPC) schemes [87, 26, 42]. The main components
that are required to synthesize controllers using these schemes are: a) a
model of the system to control, including the descriptions of the state
constraints and model uncertainty set; b) tuning parameters defining
the cost function; c) a set of feasible inputs (the input constraint set).
Then, the RMPC controller solves an online optimization problem to
compute inputs that belong to the input constraint set, such that the
system is stabilized from a given set of initial conditions. Component
(a) can be obtained by using a system identification procedure, e.g., [79,
105, 95]; component (b) can be obtained by some tuning procedure, e.g.,
by preference-based calibration [164], or, if a desired linear feedback is
available, through a controller matching procedure, e.g., [34, 162]. In this
chapter, we tackle the computation of component (c), i.e., the input con-
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straint set.
Typically, the input constraint set is directly characterized by the pa-

rameters that describe the technical specifications of the actuators. For
example, pump parameters such as impeller size and motor capacity dic-
tate the set of flow-rate inputs [56]. These parameters are usually selected
during the system design phase by optimizing a criterion that captures
various specifications such as costs, reliability, performance, etc. Hence,
the procedures employed in the system design phase dictate the input
constraints enforced in the control design phase. Given a set of input
constraints, the set of initial-conditions from which the system can be ro-
bustly regulated is called the Maximal Robust Control Invariant (MRCI)
set [58, 126, 134]. Then, given a desired set of initial-conditions of the sys-
tem, the input constraint set could be undersized, i.e., the initial-condition
set is not included in the MRCI set, or oversized, i.e., a potentially smaller
input constraint set could be used to stabilize the system from those
initial-conditions. In this chapter, we present a methodology to bridge
the system design and control design phases by computing an optimally-
sized input constraint set that explicitly accounts for the stabilizability
requirements, i.e., it computes the actuator parameters that optimize the
selection criterion used in the system design phase, while ensuring that
the MRCI set corresponding to the resulting input constraint set contains
a desired set of initial states. We also present a simple extension to the
proposed methods to account for the modification in the system dynam-
ics that can accompany actuator selection, thus enhancing its practical-
ity as an engineering tool. In the rest of this chapter, we refer to the
selection criterion as the input constraint set size, which is meant in an
extended sense as a user-defined optimality metric. We consider linear
time-invariant systems of the form

x(t+ 1) = Ax(t) +Bu(t) +Bww(t), (6.1)

with state x ∈ Rnx , control input u ∈ Rnu , additive bounded disturbance
w ∈ W ⊂ Rnw , and subject to state constraints x ∈ X . In order to design
the actuators for a given set Ω ⊂ Rn of initial states, one can formulate
the following problem:
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Problem 6.1. Find the smallest set U of input constraints required to ro-
bustly regulate x(t), i.e., to guarantee constraint satisfaction x ∈ X with
inputs u ∈ U for all possible disturbances w ∈ W , from all initial states
x(0) ∈ Ω.

Note that the existence of a solution to Problem 6.2 entails the exis-
tence of a control law κ with a corresponding nonempty Robust Positive
Invariant (RPI) set Xκ ⊇ Ω, as we will clarify in Section 6.2. Similar prob-
lems have been tackled previously in the context of actuator selection:
in [147], the smallest number of actuators required to drive all x(0) ∈ Ω

to some subset of the state-space is computed for a diagonal matrix B;
in [146], the minimal actuator set problem is solved with an additional
upper bound on the control effort required to reach the desired subset; in
[136], an algorithm is presented to perform the actuator selection online,
in a model predictive control fashion. However, none of these works
consider systems with uncertainties and state constraints. The closest
approach to the one we discuss was presented in [122], in which set-
invariance properties were used to formulate an actuator-saturation de-
sign problem. Similar to the contribution in this chapter, it is assumed
that a set of desired initial conditions is given a priori, and safe actuator
saturation limits are computed. However, differently from our approach,
it is assumed that the system is equipped with a static feedback law (re-
quiring to work with positive invariant sets, rather than control invariant
sets), and both uncertainty and state constraints can not be included in
the formulation of the problem.

Unfortunately, as we will discuss in Section 6.2, solving Problem 6.1
might be difficult, so we propose to rely on RMPC to define κ and re-
formulate the problem in the following more tractable, though slightly
conservative, way:

Problem 6.2. Find the smallest input constraint set U required to guarantee
recursive feasibility of the RMPC scheme presented in [87] for all x(0) ∈ Ω.

This second formulation is justified by the observation that, in prac-
tice, the technique of choice for enforcing robust invariance is often RMPC.
To address Problem 6.2, we formulate an optimization problem by using
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tools of set invariance and provide an algorithm to solve it. We prove
that the algorithm always terminates, and analyze its properties that are
of practical significance.

This chapter is organized as follows. In Section 6.2 we formulate the
problem introduced above of determining the input constraint set. Then,
in Section 6.3 we develop an algorithm to compute the set U , and present
its relevant properties. In Section 6.4, we discuss the implementation
of the developed algorithm. Finally in Section 6.5 we present three nu-
merical examples, with the first to illustrate some basic properties of the
methods, the second showing an application of the methods to perform
actuator selection with practical considerations, and the third to show
the scalability of the proposed methodology.

6.2 Problem formulation

In this section, we formulate Problems 6.1 and 6.2 by recalling the con-
cepts of control invariance from [58], and the tube-based RMPC scheme
from [87].

Formulation of Problem 6.1:

Problem 6.1 can be formulated using the Maximal Robust Control Invariant
(MRCI) set X∞, which is such that [58, Definition 2.5] XRCI ⊆ X∞ ∈ X,
for all XRCI satisfying

x ∈ XRCI ⇒
{︃
x ∈ X ,
∃u ∈ U : , Ax+Bu+Bww ∈ XRCI, ∀w ∈ W

X := {XRCI : (6.2) holds}.

(6.2)

(6.3)

This implies that for every initial state x(0) ∈ X∞ of system (7.1) and
every time instant N ≥ 1, there exists an admissible control sequence
u(k) ∈ U,∀ k ∈ IN−1

0 resulting in an admissible state sequence x(k) ∈
X∞,∀ k ∈ IN0 for all possible disturbances w(k) ∈ W . Then, Problem 6.1
can be formulated as

min
U

f(U) s.t. Ω ⊆ X∞(U), (6.4)
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where f(U) is, e.g., a measure of the size of the input constraint set U ,
and we made the dependence of X∞ on U explicit. Note that, if X∞(U)
is known, one can define a control law κ as a function which, for each
x ∈ X∞, selects any input u which satisfies (6.2). Then, the associated
maximum RPI (MRPI) set satisfies Xκ = X∞.

Problem 6.1 guarantees that state constraints can be robustly satis-
fied at all times and the system is regulated to X∞. However, solving
(6.4) is difficult, since one needs to solve an optimization problem with
variable U and the MRCI set as a function of U . Additionally, one is
often interested in regulating the state of system (7.1) to a smaller tar-
get neighborhood of the origin. A popular technique that allows one to
achieve this objective is RMPC. In RMPC, robust invariance is enforced
by requiring that the RMPC control law is able to steer all initial states
x(0) to a target RPI set [58, Definition 2.1] in N -steps. This implicitly
defines a second larger RPI set (the feasible domain of RMPC) which ap-
proximates the MRCI set X∞, but is by definition no larger, and hence a
certain degree of conservativeness is introduced. Note that, rather than
constructing the MRPI set first and defining a control law κ next, this
second approach amounts to the opposite, which defines the mechanism
used to formulate Problem 6.2.

Formulation of Problem 6.2:

In this chapter, we present the formulation for the tube-based RMPC
scheme from [87], which is constructed using the disturbance-free nomi-
nal system

x̂(t+ 1) = Ax̂(t) +Bû(t), (6.5)

and a parametrized system input

u(t) = û(t) +K(x(t)− x̂(t)), (6.6)

where K is a static feedback gain. Defining AK := A+BK, the following
standing assumptions are made.

Assumption 6.1.
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(a) the static gain K is such that ρ (AK) < 1;

(b) the sets X and W are compact, convex, and contain the origin in their
nonempty interiors.

□

We will now recall again the tube-based RMPC formulation presented
in (6.8), and apply it to the single system case using the notation in this
chapter. Defining ∆x := x − x̂ and ∆u := u − û, an RPI set ∆X is com-
puted for the uncertain system ∆x(t + 1) = AK∆x(t) + Bww(t), which
satisfies the property

∆x(t) ∈ ∆X =⇒ ∆x(t+ 1) ∈ ∆X , ∀ w(t) ∈ W.

This property implies that if the current system state x(t) ∈ x̂(t) ⊕ ∆X ,
and an input is computed as in (6.6), then the successive system state
satisfies x(t + 1) ∈ x̂(t + 1) ⊕ ∆X , i.e., the system state always belongs
to the uncertainty tube x̂⊕∆X . Then, from (6.6) the system input always
belongs to the set û⊕K∆X .

Since the uncertainty tubes define all possible future evolutions of
system (7.1), the RMPC scheme provides robust constraint satisfaction
using the tightened constraint sets X ⊖ ∆X and U ⊖ K∆X . These sets
guarantee that, if x̂(t) ∈ X ⊖ ∆X and û(t) ∈ U ⊖ K∆X , then the state
and input satisfy x(t) ∈ X and u(t) ∈ U , and x(t+ 1) ∈ X .

Assumption 6.2. The RPI set ∆X is small enough such that the origin belongs
to the nonempty interior of the tightened constraint sets, i.e.,

0 ∈ int(X ⊖∆X ), 0 ∈ int(U ⊖K∆X ). (6.7)

The nominal input û(t) is computed at each time instant by measur-
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ing x(t) and solving the following optimization problem [87]:

min
z

t+N−1∑︂
s=t

∥x̂(s)∥2Q + ∥û(s)∥2R + ∥x̂(t+N)∥2P

s.t. x(t) ∈ x̂(t)⊕∆X ,
x̂(s+ 1) = Ax̂(s) +Bû(s), s ∈ It+N−1

t ,

x̂(s) ∈ X ⊖∆X , s ∈ It+N−1
t+1 ,

û(s) ∈ U ⊖K∆X , s ∈ It+N−1
t ,

x̂(t+N) ∈ X t,

(6.8a)

(6.8b)

(6.8c)

(6.8d)

(6.8e)

(6.8f)

where z := {x̂(t), . . . , x̂(t + N), û(t), . . . , û(t + N − 1)}. The parameters
K and P are chosen to satisfy the Discrete Algebraic Riccati Equation
that solves the LQR problem for the nominal system (6.5) with positive
definite matrices Q and R. The terminal set X t in (6.8f) is chosen to be a
positive invariant (PI) set satisfying

AKX t ⊆ X t ⊆ X ⊖∆X , KX t ⊆ U ⊖K∆X , (6.9)

which ensures that with û(s) = Kx̂(s) for all s ≥ t +N , we have x̂(s) ∈
X t. Denoting the optimal solution of problem (6.8) by

z∗ := {x̂∗(t), . . . , x̂∗(t+N), û∗(t), . . . , û∗(t+N − 1)},

the input u(t) := û∗(t) +K(x(t)− x̂∗(t)) is applied to the plant.
The set of all initial states x(0) of system (7.1) from which the RMPC

controller is recursively feasible and stabilizing [87, Proposition 2] is the
N -step controllable set [58, Definition 2.3] defined as

KN (U,X t) := K̂N (U,X t)⊕∆X , (6.10)

where K̂N (U,X t) is the N -step nominal controllable set, i.e., the set of all
initial states x̂(0) of the nominal system (6.5) for which there exists an
admissible nominal control sequence that drives it to the PI terminal set
X t in N -steps with an admissible nominal state evolution. Mathemati-
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cally, it is defined as

K̂N (U,X t) :=

⎧⎪⎪⎨⎪⎪⎩x̂(0) : ∃

⎧⎪⎪⎨⎪⎪⎩
û(t) ∈ U ⊖K∆X ,
x̂(t) ∈ X ⊖∆X ,

x̂(t+ 1) = Ax̂(t) +Bû(t),

∀ t ∈ IN−1
0

⎫⎪⎪⎬⎪⎪⎭ : x̂(N) ∈ X t

⎫⎪⎪⎬⎪⎪⎭ .

(6.11)

By (6.10) and (6.11), the N -step controllable set KN (U,X t) is an RPI
set for the RMPC scheme. Hence, by fixing the control law κ to be
the RMPC scheme, we approximate the MRCI set X∞ by the RPI set
KN (U,X t) (feasible domain of RMPC). Since all initial states x(0) of sys-
tem (7.1) belonging to this set can be driven to the smaller target RPI set
x(N) ∈ X t⊕∆X with an admissible state and input evolution, a desired
set of initial conditions Ω is stabilizable if the inclusion

Ω ⊆ KN (U,X t) (6.12)

holds. Based on this observation, Problem 6.2 that approximates Problem
6.1 can be formulated as

min
U,N,K,X t,∆X

f(U)

s.t. Ω ⊆ KN (U,X t),

AKX t ⊆ X t ⊆ X ⊖∆X ,
KX t ⊆ U ⊖K∆X ,
0 ∈ int(U ⊖K∆X ).

(6.13a)

(6.13b)

(6.13c)

(6.13d)
(6.13e)

In this chapter, we assume that the feedback gain K and RPI set ∆X are given
a priori and optimize over U , X t and N .

Conservativeness of the proposed approach: The requirement to drive
x(N) to a target RPI subset of the MRCI set, and the input parametriza-
tion in (6.6) with a static linear feedback law introduce conservativeness
into (6.13) as compared to (6.4). Moreover, additional conservativeness
is introduced by fixing K and ∆X , since they affect both the uncertainty
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tube and the PI terminal set X t. Jointly solving (6.13) also over these
variables is a subject of future research. We note that (6.13) can also be
formulated for the RMPC scheme proposed in [26]. Since the scheme
uses exact uncertainty tubes, ∆X is not present in the resulting formu-
lation. This reduces conservativeness in the proposed approach, as we
demonstrate in Example 6.5.1.

Remark 6.1. The formulation in (6.8) assumes full knowledge of the state x(t).
In case only an estimate is available, one can enlarge the RPI set ∆X to ac-
count for the estimation error, provided it is bounded. Further details of this
formulation can be found in [88]. □

6.3 Computation of Sets U and X t

We now discuss the computation of the smallest set U and a correspond-
ing terminal set X t that solves Problem 6.2. To this end, we parameterize
U with a finite-dimensional vector ϵ ∈ Rnϵ such that U = U(ϵ), and de-
fine the size (or any other measure to be minimized) of U as the scalar
function f (ϵ) : Rnϵ → R. We note that f(ϵ) = f(U(ϵ)), where f(·) is used
to formulate (6.13).

Assumption 6.3. Set U(ϵ) and function f (ϵ) satisfy:

(a) U(ϵ) is compact and convex for all ϵ; moreover, for all δ ≥ 0, there exists
an ϵ such that δBnu

∞ ⊆ U(ϵ);

(b) The value of f(ϵ) is a measure of the set U(ϵ), i.e.,

U(ϵ1) ⊂ U(ϵ2) =⇒ 0 ≤ f(ϵ1) < f(ϵ2) <∞.

□

Assumption 6.3(a) ensures that there always exists a parameter ϵ such
that U(ϵ) includes any compact subset of Rnu containing the origin. Then,
in Assumption 6.3(b), we ensure that f (ϵ) is well defined for every U(ϵ),
and the inequalities enforce strict monotonicity properties on f (ϵ) with
respect to U(ϵ). We provide a clarifying example next.

One possible parametrization of the input constraint set is the polytope

U(ϵ) = {u : Fuu ≤ ϵ}.
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Then, examples of the size function that satisfy Assumption 6.3(b) are:

1. If a vector c > 0 is such that each ci denotes the unit cost of actuation in
direction i, then

f(ϵ) = c⊤ϵ

denotes the total cost of selecting the input constraint set U(ϵ);

2. Defining the ellipsoidM := {u : u⊤Ru ≤ 1}, the size function

f(ϵ) = min{α : U(ϵ) ⊆ αM}

denotes the upper bound to the largest energy input u⊤Ru into system
(7.1).

In the sequel, we propose an algorithm to compute the parameter ϵ

such that U(ϵ) satisfies the requirements (6.7),(6.9),(6.12), and minimizes
f (ϵ). To this end, we formulate an optimization problem in Subsection
6.3.1 that is equivalent to (6.13). In Subsection 6.3.2, we develop an al-
gorithm to solve the optimization problem, and discuss its properties in
Subsection 6.3.3. In Subsection 6.3.4, we analyze the variation of the size
of the optimal input constraint set with the horizon length N .

6.3.1 Input Constraint Set Computation Problem

For the finite dimensional parametrization U = U(ϵ) of the input con-
straint set, we write the N -step controllable set defined in (6.10) as

KN (ϵ,X t) := KN (U(ϵ),X t).

Then, we define the tightened constraint admissible set

C(ϵ) := {x̂ : x̂ ∈ X ⊖∆X , Kx̂ ∈ U(ϵ)⊖K∆X},

such that system (6.5) with nominal input û = Kx̂ satisfies

x̂(t+ 1) = AK x̂(t), x̂(t) ∈ C(ϵ) =⇒ û(t) ∈ U(ϵ). (6.14)
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Based on these sets, consider the following optimization problem that is
equivalent to (6.13) for a fixed K, ∆X and N :

(ϵ̂N , T̂f) := argmin
ϵ,T

f (ϵ)

s.t. Ω ⊆ KN (ϵ, T ) ,
AKT ⊆ T ⊆ C(ϵ),
δBnu

∞ ⊆ U(ϵ)⊖K∆X ,

(6.15a)

(6.15b)
(6.15c)
(6.15d)

where constraint (6.15c) ensures that T is a PI subset of C(ϵ), thus sat-
isfying (6.9); constraint (6.15b) is equivalent to (6.12); constraint (6.15d)
formulated with some scalar δ > 0 ensures that (6.7) is satisfied.

Since the problem defined in (6.15) involves optimizing over PI sets
T , solving it directly can be computationally challenging. To tackle this
issue, we introduce the i-step feedback admissible set

Oi(ϵ) :=
{︁
x̂ : At

K x̂ ∈ C(ϵ), ∀ t ∈ Ii0
}︁
,

which is the set of initial states of system (6.14) that remain inside C(ϵ)
for i steps. Then, O∞(ϵ) is the Maximal Positive Invariant (MPI) subset
of C(ϵ) [58, Definition 2.3]. Using this set, we propose to relax problem
(6.15) by enforcing T = O∞(ϵ), thus formulating the problem:

PN :

⎧⎪⎪⎨⎪⎪⎩
ϵN := argmin

ϵ
f (ϵ)

s.t. Ω ⊆ KN (ϵ,O∞(ϵ)) ,

δBnu
∞ ⊆ U(ϵ)⊖K∆X .

(6.16a)

(6.16b)
(6.16c)

The constraint equivalent to (6.15c) is eliminated from the formulation of
PN since the inclusions

AKO∞(ϵ) ⊆ O∞(ϵ) ⊆ C(ϵ)

hold by construction [44] under Assumptions 6.1 and 6.2. In the fol-
lowing result, we show that PN is not more conservative than problem
(6.15), i.e., if ϵ̂N solves PN then it must also solve (6.15).

Proposition 6.1. Suppose Assumptions 6.1, 6.2 and 6.3 hold. If problem (6.15)
is feasible, then PN is feasible and f(ϵN ) = f(ϵ̂N ). □
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Proof. Feasibility of problem (6.15) implies bounded solution under As-
sumption 6.3. This solution satisfies

T̂f ⊆ O∞(ϵ̂N ),

since O∞(ϵ̂N ) is the MPI subset of C(ϵN ) [58, Definition 2.2] under As-
sumptions 6.1 and 6.2. Hence, ϵ̂N is feasible for PN , which implies that
the optimal value f(ϵN ) ≤ f(ϵ̂N ). The proof is concluded by noting that
f(ϵ̂N ) ≤ f(ϵN ) since (ϵN ,O∞(ϵN )) is feasible for problem (6.15).

Remark 6.2. If Assumptions 6.1, 6.2 and 6.3 hold, and U is parametrized as
U(ϵ) = {u : Fuu ≤ ϵ}, then the constraint set of problem (6.15) is convex.
Then, if f(ϵ) is chosen to be a convex function, (6.15) is a convex optimization
problem. Moreover, if f(ϵ) is a strictly convex function (for example, f(ϵ) =

∥ϵ∥22), then the optimizer ϵ̂N is guaranteed to be unique. Since problem PN

is also convex, then ϵN = ϵ̂N along with f(ϵN ) = f(ϵ̂N ) if f(ϵ) is strictly
convex. □

Remark 6.3. In the formulation of PN , we assume that the dynamics of sys-
tem (7.1) are unaffected by a change in input constraint set parameter ϵ. This
assumption, however, might not be valid in certain scenarios. For example, a
modification in the engine mass and inertia affect the dynamic properties of a
car. In such cases, one can formulate constraint (6.16b) with the modified dy-
namical system

x(t+ 1) = Ax(t) +Bu(t) +Bww(t) + g(x(t), u(t), w(t), ϵ).

The development of structure exploiting approaches to tackle this problem is a
subject of future research. A simple approach, that we present in Example 6.5.3,
models this modification as an increase in uncertainty by parametrizing the dis-
turbance setW as W(ϵ). This follows from the observation that g(x, u, w, ϵ) lies
in a compact set for all x ∈ X , u ∈ U(ϵ) and w ∈ W under Assumptions 6.1
and 6.3. □

6.3.2 Solution Algorithm

We now present an iterative algorithm to solve problem PN . We require
a tailored algorithm since the set O∞(ϵ) formulating constraint (6.16b) is
not known apriori. To this end, consider the variant Pi,N of PN obtained
by replacing the MPI set O∞(ϵ) with the i-step feedback admissible set
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Algorithm 5: Algorithm to solve PN given A,B,K,X ,∆X ,Ω, N
Initialize: Initialize i ≥ 0;
1) Solve Pi,N for ϵi,N ;
2) If Oi(ϵ

i,N ) is PI, stop. Else, increment i, go to Step 1;
Return: U = U(ϵi,N ) , X t = O∞(ϵi,N )

Oi(ϵ) in constraint (6.16b). The resulting optimization problem is written
as

Pi,N :

⎧⎪⎪⎨⎪⎪⎩
ϵi,N := argmin

ϵ
f (ϵ)

s.t. Ω ⊆ KN (ϵ,Oi(ϵ)) ,

δBnu
∞ ⊆ U(ϵ)⊖K∆X .

(6.17a)

(6.17b)
(6.17c)

Problem Pi,N is related to problem PN as follows: for every parame-
ter ϵ satisfying constraint (6.16c), there exists a finite MPI set termination
index [44, Theorem 4.1] given by

i∗(ϵ) := min {i : AKOi(ϵ) ⊆ Oi(ϵ)} <∞, (6.18)

such that Oi(ϵ) = O∞(ϵ) for all i ≥ i∗(ϵ). Labeling ϵi,N as the solution
of Pi,N , this implies that if i ≥ i∗(ϵi,N ), then Oi(ϵ

i,N ) is a PI set, and ϵi,N

is a feasible solution to PN . Hence, we propose to solve a sequence of
problems Pi,N for increasing values of i, and terminating the sequence
at index i = iN at which the PI condition is satisfied. We summarize this
procedure in Algorithm 5.

Computational considerations: We will discuss how to formulate Pi,N

in practice for polyhedral sets in Section 6.4. In this case, the problem
has linear constraints and a monotonic (possibly convex) cost, such that
efficient algorithms can be deployed. The case of ellipsoidal sets is both
more involved to analyze and more conservative, and is not discussed
further in this chapter.

Remark 6.4. Algorithm 5 follows a reasoning similar to the recursive compu-
tation of the MPI set proposed in [63, 44]. Index i is incremented until the
invariance condition is satisfied. The difference is that we also recursively com-
pute the input constraint set along with the MPI set in order to solve PN . □

151



6.3.3 Feasibility, Convergence and Optimality of Algorithm
5

In this section, we show that Algorithm 5 solves PN . To this end, we will
first formulate requirements on the initial-condition set Ω and horizon
length N for Pi,N to be feasible. Then, we will show that Algorithm
5 terminates at some finite index iN . Finally, we will show that PN is
solved at termination, i.e., f(ϵN ) = f(ϵiN ,N ).

Feasibility of Pi,N

Problem Pi,N is feasible only if all initial-states x(0) ∈ Ω are controllable
in N steps. In order to formalize this statement, we introduce the sets
O∞(∞) and KN (∞,O∞(∞)), which we define using unconstrained in-
puts, i.e., u ∈ Rnu . The set O∞(∞) is the MPI subset of C(∞) = X ⊖∆X
for system (6.14), and KN (∞,O∞(∞)) is an N -step controllable set [58]
with unconstrained inputs u. Using these sets, we formulate the follow-
ing N -step controllability assumption:

Assumption 6.4. All x(0) ∈ Ω are included in the N -step unconstrained
controllable set, i.e., Ω ⊆ KN (∞,O∞(∞)). □

Proposition 6.2. Suppose Assumptions 6.1, 6.2, 6.3, and 6.4 hold. Then prob-
lem Pi,N is feasible and bounded. □

Proof. Under Assumption 6.4, there exists a sequence of inputs

{uz(t), t ∈ IN−1
0 }

such that xz(N) ∈ O∞(∞) ⊕ ∆X from each xz(0) = z ∈ Ω. Under
Assumption 6.3, there exists an ϵ satisfying

{uz(t) ∈ U(ϵ), t ∈ IN−1
0 }, ∀ z ∈ Ω

and C(ϵ) = X ⊖ ∆X . These conditions guarantee the existence of an
ϵ <∞ such that, for all i, we have

Ω ⊆ KN (ϵ,O∞(∞)) ⊆ KN (ϵ,Oi(ϵ)).

Hence, ϵ is feasible for Pi,N , with boundedness imposed by constraint
(6.16c).

152



Termination of Algorithm 5

If we characterize an index ιδ that is the maximum value of the MPI set
termination index i∗(ϵ) for all parameters ϵ satisfying constraint (6.16c),
then for all indices i ≥ ιδ , the solution ϵi,N of problem Pi,N satisfies the PI
condition AKOi(ϵ

i,N ) ⊆ Oi(ϵ
i,N ). Then, there exists a termination index

iN ≤ ιδ for Algorithm 5. However, characterizing ιδ is not computation-
ally possible, since the set of all ϵ satisfying constraint (6.16c) is open. In
the following result, we establish an upper bound to iN that can, in fact,
be computed. To this end, consider the set

Cδ := {x̂ : x̂ ∈ X ⊖∆X ,Kx̂ ∈ δBnu
∞ } , (6.19)

which satisfies Cδ ⊆ C(ϵi,N ) for all i, and the index

kδ := min{i : Ai+1
K (X ⊖∆X ) ⊆ Cδ}. (6.20)

The existence of kδ follows from Assumptions 6.1 and 6.2.

Proposition 6.3. Suppose Assumptions 6.1, 6.2, 6.3, and 6.4 hold, then Algo-
rithm 5 terminates at an index iN ≤ kδ . □

Proof. The following inclusions hold for all i:

Oi(ϵ
i,N ) ⊆ C(ϵi,N ) ⊆ X ⊖∆X . (6.21)

Then at the index kδ , we have

Akδ+1
K Okδ

(︁
ϵkδ,N

)︁
⊆ Akδ+1

K C
(︁
ϵkδ,N

)︁
⊆ Akδ+1

K (X ⊖∆X ) ⊆ Cδ ⊆ C
(︁
ϵkδ,N

)︁
from (6.19), (6.20), and (6.21). By definition of the feedback admissible
set, the first and the last terms imply Okδ+1(ϵ

kδ,N ) = Okδ
(ϵkδ,N ). Then,

AKOkδ
(ϵkδ,N ) ⊆ Okδ

(ϵkδ,N )

from [44, Theorem 2.2].

Smaller values of the tuning factor δ result in a smaller set Cδ . This
increases the upper bound kδ to the termination index iN of Algorithm 5,
resulting in a larger number of iterations. However, from the formulation
of Pi,N , we see that a smaller value of δ results in a smaller lower bound
on the optimal value of f(ϵi,N ) (through constraint (6.16c)). Hence, δ
dictates the trade-off between optimality and computational difficulty.
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Solution to PN

We finally show that the termination of Algorithm 5 corresponds to the
solution of PN , i.e., the optimal values coincide as f(ϵiN ,N ) = f(ϵN ). We
reason as follows : for all indices i < iN , the PI condition is not satisfied,
which implies ϵi,N is not feasible for PN . Hence, we must show that if
Pi,N is solved for some i > iN , then the optimal value f(ϵi,N ) cannot be
smaller than f(ϵiN ,N ).

Proposition 6.4. If Assumptions 6.1, 6.2, 6.3 and 6.4 hold, then f(ϵN ) = f(ϵiN ,N ).
□

Proof. Since the inclusion Oi+1(ϵ
i,N ) ⊆ Oi(ϵ

i,N ) holds for all i, the solu-
tion ϵi+1,N of Pi+1,N is feasible for Pi,N . Then, the optimal values are
non-decreasing as f(ϵi,N ) ≤ f(ϵi+1,N ). Hence, f(ϵiN ,N ) ≤ f(ϵi,N ) for all
i > iN , thus concluding the proof.

Remark 6.5. In some cases, Ω might violate the N -step controllability condi-
tion. Then, we propose to solve the optimization problem

Ω̃ := argmin
Ω̃

d(Ω, Ω̃) s.t. Ω̃ ⊆ KN (∞,O∞(∞)), (6.22)

where d(Ω, Ω̃) is some distance metric. Since (6.22) guarantees that Ω̃ satisfies
Assumption 6.4, the aforementioned properties of Algorithm 5 continue to hold
for the projected initial-condition set Ω̃. □

Remark 6.6. Since Oi(ϵ
iN ,N ) = OiN (ϵiN ,N ) for all i ≥ iN , the solution ϵiN ,N

of PiN ,N is feasible for all Pi,N with i ≥ iN . This implies f(ϵi,N ) = f(ϵiN ,N )

for all i ≥ iN . Hence, Algorithm 5 can be initialized at any index i = iinit ≥ 0,
and incremented in Step 3 with any iincr ≥ 1, i.e., i ← i + iincr. Moreover, if
iinit = kδ from (6.20), then Algorithm 5 terminates in one iteration. □

6.3.4 Effect of the Horizon Length on the Input Constraint
Set Size

In this section, we discuss the effect of the horizon length N on the opti-
mal input constraint set size. In particular, we show that f(ϵN ) is mono-
tonically non-increasing and convergent in N .

To this end, we use an auxiliary optimization problem P̃N that com-
putes the smallest input constraint set required to maintain the state of
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system (7.1) inside the constraint set X for N steps. It is formulated by
replacing the target set O∞(ϵ) in constraint (6.16b) by X ⊖∆X , such that
KN (ϵ,X ⊖ ∆X ) is an N -step admissible set [58, Definition 2.11]. We label
the solution of this problem as ϵ̃N , and write it as follows.

P̃N :

⎧⎪⎪⎨⎪⎪⎩
ϵ̃N := argmin

ϵ
f (ϵ)

s.t. Ω ⊆ KN (ϵ,X ⊖∆X ) ,
δBnu

∞ ⊆ U(ϵ)⊖K∆X .

(6.23a)

(6.23b)
(6.23c)

Proposition 6.5. Suppose Assumptions 6.1, 6.2, 6.3, and 6.4 hold. Then,

(i) f(ϵN ) ≥ f(ϵN+1);

(ii) limN→∞ f(ϵN ) exists.

□

Proof. For all ϵ satisfying constraint (6.16c), the N -step stabilizable and
admissible sets satisfy the inclusions

KN (ϵ,O∞(ϵ))⊆ KN+1(ϵ,O∞(ϵ))

⊆ KN+1(ϵ,X ⊖∆X ) ⊆ KN (ϵ,X ⊖∆X ),

from [58, Propositions 2.3, 2.4]. The first inclusion implies ϵN is feasi-
ble for PN+1, hence f(ϵN ) ≥ f(ϵN+1). The remaining two inclusions
respectively imply f(ϵ̃N ) ≤ f(ϵN ) and f(ϵ̃N ) ≤ f(ϵ̃N+1) by the same
reasoning. Hence, {f(ϵN )}N is a non-increasing sequence, that is lower
bounded by the non-decreasing sequence {f(ϵ̃N )}N . Thus, finite limits
limN→∞ f(ϵN ) and limN→∞ f(ϵ̃N ) exist.

This result implies that the problem minN PN which is equivalent to
(6.13) can be solved by choosing a large enough value of N .

6.4 Polytopic Implementation of Algorithm 5

In this section we discuss the implementation of Algorithm 5 using poly-
topic sets

X := {x : Hxx ≤ hx} , W := {w : Fww ≤ fw}

155



satisfying Assumption 6.1(b) with hx > 0 and fw ≥ 0. A feedback gain
K is assumed to be computed apriori. Then, we compute a polytopic RPI
set

∆X := {∆x : H∆∆x ≤ h∆}

for the system x(t + 1) = AKx(t) + Bww(t) with established methods,
e.g., those given in [112, 144]. Using ∆X , we tighten the state constraint
set as X ⊖∆X =

{︁
x̂ : Hxx̂ ≤ hx − h̄x

}︁
, where each component

h̄x
j = max

∆x∈∆X
Hx

j ∆x.

We choose an input constraint set U parameterized as the polytope

U(ϵ) := {u : Fuu ≤ ϵ}

and satisfying Assumption 6.3(a). Then, the tightened input constraint
set is U(ϵ)⊖K∆X = {û : Fuû ≤ ϵm(ϵ)− ϵ̄}, where each component

ϵmj (ϵ) := max
u∈U(ϵ)

Fu
j u, ϵ̄j := max

∆x∈∆X
Fu
j K∆x.

The function ϵm(ϵ) is such that if U(ϵm(ϵ)) contains any redundant hy-
perplanes, then they are tangent to the set. We now show that ϵm(ϵi,N ) =

ϵi,N .

Proposition 6.6. Suppose Assumptions 6.1, 6.2, 6.3 and 6.4 hold, then we
always have ϵm(ϵi,N ) = ϵi,N . □

Proof. We prove this result by contradiction. Suppose that for a given
ϵi,N , there exists some ϵ < ϵi,N such that U(ϵi,N ) = U(ϵ). By Assumption
6.3(b), f(ϵ) < f(ϵi,N ) follows, which is a contradiction since f(ϵi,N ) is
the optimal value of Pi,N .

This result permits us to directly tighten the input constraint set as

U(ϵ)⊖K∆X = {û : Fuû ≤ ϵ− ϵ̄}.
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Using these definitions, we write the i-step feedback admissible set as
Oi(ϵ) := {x̂ : S[i]x̂ ≤ q[i](ϵ)}, where

S[i] :=

⎡⎢⎢⎢⎢⎢⎣

[︃
Hx

FuK

]︃
A0

K

...[︃
Hx

FuK

]︃
Ai

K

⎤⎥⎥⎥⎥⎥⎦ , q[i](ϵ) :=

⎡⎢⎢⎢⎢⎢⎣

[︃
hx − h̄x

ϵ− ϵ̄

]︃
...[︃

hx − h̄x

ϵ− ϵ̄

]︃
⎤⎥⎥⎥⎥⎥⎦ .

We then use these sets to formulate problem Pi,N with a vertex notation
of the initial-condition set Ω = {x[k]

0 , k ∈ INΩ
1 } as

ϵi,N = arg min
ϵ,z[k]∀k∈INΩ

1

f (ϵ)

s.t. H∆x
[k]
0 ≤ h∆ +H∆x̂[k](0)

x̂[k](s+ 1) = Ax̂[k](s) +Bû[k](s), s ∈ IN−1
0 ,

Hxx̂[k](s) ≤ hx − h̄x, s ∈ IN−1
1 ,

Fuû[k](s) ≤ ϵ− ϵ̄, s ∈ IN−1
0 ,

S[i]x̂[k](N) ≤ q[i](ϵ),

ϵ− ϵ̄ ≥ δλ,

(6.24)

where z[k] := {x̂[k](0), . . . , x̂[k](N), û[k](0), . . . , û[k](N − 1)}. The first con-
straint implies x

[k]
0 ∈ x̂[k](0) ⊕ ∆X , and the last constraint encodes the

inclusion δBnu
∞ ⊆ U(ϵ)⊖K∆X , where

λj := max
u∈Bnu

∞
Fju.

The details of the formulation of Pi,N with a hyperplane notation Ω =

{x : RΩx ≤ rΩ} is given in [100].
For the computed ϵi,N , we verify if the set Oi(ϵ

i,N ) is PI by checking
for the existence of a matrix Λp satisfying

Λp ≥ 0, Λpq[i](ϵi,N ) ≤ q[i](ϵi,N ), ΛpS[i] = S[i]AK ,

which are necessary and sufficient conditions for the positive invariance
inclusion AKOi(ϵ

i,N ) ⊆ Oi(ϵ
i,N ) to hold [127].
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Figure 14: Numerical results for Example 1. (Upper-left plot) Optimal input con-
straint set size f(ϵN ) computed by Algorithm 5, along with the lower bound
f(ϵ̃N ). These values satisfy the monotonically convergent properties discussed
in Proposition 6.5. (Upper-right plot) Optimal input constraint set parameters
ϵN computed by Algorithm 5. The sets are not necessarily nested. (Lower-left
plot) Terminal sets computed by Algorithm 5 for N = 2, 11, 30 (Lower-right plot)
Corresponding controllable sets for N = 2, 11, 30. The parameters ϵN are com-
puted such that the terminal set and controllable set align towards Ω̃.

Remark 6.7. Since PN explicitly minimizes the input constraint set size, the
resulting closed-loop performance of the RMPC controller with sets U = U(ϵN )
and X t = O∞(ϵN ) might be unsatisfactory. This can be ameliorated by for-
mulating the objective function of PN with a trade-off parameter κp ≥ 0, e.g.,
as

d(ϵ, z) := f(ϵ) + κp

NΩ∑︂
k=1

(︄
N−1∑︂
s=0

(︃⃦⃦⃦
x̂[k](s)

⃦⃦⃦2
Q

)︃
+
⃦⃦⃦
x̂[k](N)

⃦⃦⃦2
P

)︄
. (6.25)

Then, the optimal value of d is non-increasing in N . The formulation of an
objective function similar to (6.25) if Ω is given in a hyperplane notation is a
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subject of future research. □

6.5 Numerical Examples

In this section we present three numerical examples, with the first aimed
at illustrating the properties of the approach, the second being a practi-
cal example in which we use the proposed methods to size pneumatic
actuators for a force control application, and the third demonstrating the
scalability of problem Pi,N . We choose affine and piecewise affine size
functions for these examples. This choice results in a Linear Program
(LP) or Mixed-Integer LP (MILP), respectively, which we solve using the
CPLEX solver [31]. We remark that other choices of size functions can be
used in their formulation.

6.5.1 Illustrative system

The goal of the following example is to illustrate some fundamental prop-
erties of the approach. Consider the unstable system with dynamics

x(t+ 1) =

[︃
1.4 1
−1 0.1

]︃
x(t) +

[︃
1
3

]︃
u(t) + w(t)

and state constraints x ∈ 5B2∞. We equip the system with a feedback
controller K which is the solution of the Riccati equation for matrices
Q = 0.01I and R = 1. The disturbance set isW = 0.1B2∞, for which we
compute the RPI set ∆X as a polytope with 200 facets using the method
presented in [144]. The initial-condition set is Ω = {x0

[k], k ∈ I41}, where
x0
[1] = [−4, 4]⊤, x0

[2] = [−4, 6]⊤, x0
[3] = [−6, 6]⊤ and x0

[4] = [−6, 4]⊤. Since
this set does not satisfy Assumption 6.4, we follow the discussion in Re-
mark 3 and compute the set Ω̃ =

{︂
x̃0
[k], k ∈ I41

}︂
by solving the problem in

(6.22) with the distance

d
(︂
Ω, Ω̃

)︂
=

4∑︂
k=1

⃦⃦⃦
x0
[k] − x̃0

[k]

⃦⃦⃦
1
.
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This choice implies problem (6.22) is an LP, and results in x̃0
[1] = [−4, 4]⊤,

x̃0
[2] = [−4, 5]⊤, x̃0

[3] = [−4.9876, 4.9983]⊤ and x̃0
[4] = [−5, 4]⊤, satisfying

Assumption 6.4.
We parametrize the input constraint set U using ϵ ∈ R2 as the satura-

tion U(ϵ) = {u : −ϵ2 ≤ u ≤ ϵ1} with ϵ1, ϵ2 ≥ 0, and use the size function
f(ϵ) = ϵ1 + ϵ2. Then, Pi,N is also an LP. We select a tuning factor of
δ = 10−4, for which the upper bound to the termination index (6.20) of
Algorithm 5 is kδ = 28. The corresponding results are shown in Figure
14. We report that Algorithm 5 converges at index i = 2 for N = 3, 5,
i = 3 for N = 2, 4, 11, i = 5 for N = 8, 10, 13, 16, 18, and i = 6 for all
other values of N . In Figure 14-upper-left plot, we see that f(ϵN ) is non-
increasing and convergent, and is lower bounded by f(ϵ̃N ). This follows
from Proposition 6.5. We also plot f(

¯
ϵN ), which is obtained by formulat-

ing Problem PN with recursive feasibility conditions in [26]. Since this
formulation uses exact uncertainty tubes, the resulting f(

¯
ϵN ) is less con-

servative than f(ϵN ) [163]. In the upper-right plot, we see that, despite
f(ϵN ) being non-increasing, the sets U(ϵN ) are not nested, i.e.,

U(ϵN+1) ̸⊆ U(ϵN ).

This is because f(ϵN+1) < f(ϵN ) does not necessarily imply U(ϵN+1) ⊂
U(ϵN ) as per Assumption 6.3(b). However, this inclusion holds at N =

3, 5, 11, 13, 16, 18, 26, at which the termination index of Algorithm 5 in-
creases ([44, Theorem 4.1]). In order to demonstrate the effect of δ on the
performance of the algorithm, we plot the optimal values f(ϵN ) in the
upper-left plot when δ = 10−1 is chosen in Algorithm 5. As discussed in
Section 6.3.3, this choice results in conservative values of f(ϵN ). How-
ever, the termination index upper bound (6.20) is kδ = 8, thus resulting
in reduced computational difficulty. We report that Algorithm 5 then
converges at i ≤ 5 for N = 2, . . . , 10. The lower-left plot shows the termi-
nal sets O∞(ϵN ) ⊕ ∆X , and the lower-right plot shows the feasible sets
KN (ϵN ,O∞(ϵN )). We observe that these sets are not nested since they
correspond to different input constraint sets. The terminal sets computed
by Algorithm 5 are such that KN (ϵN ,O∞(ϵN )) are aligned in the direc-
tion of Ω̃, thus minimizing the actuation effort required for stabilizing.
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The closed-loop trajectories with the RMPC controller for N = 30 are
shown. We also formulate PN with the objective in (6.25) with κp = 0.01

to improve closed-loop performance, which we solve using Algorithm 5
for N = 30. The resulting nominal state cost

4∑︂
k=1

Nsim∑︂
t=0

x̂[k](t)⊤Qx̂[k](t)

for Nsim = 70 reduces from 2.9447 to 2.8777, while the nominal input cost

4∑︂
k=1

Nsim−1∑︂
t=0

û[k](t)⊤Rû[k](t)

increases from 0.7132 to 0.7524.

6.5.2 Actuator selection

The goal of the following example is to demonstrate a simple application
of the methods presented in this chapter to select a set of pneumatic ac-
tuators and corresponding compressors for the mass-spring-damper sys-
tem shown in Figure 15: Actuators 1 and 2 are double-acting pneumatic
cylinders, that provide force inputs to masses m1 and m3 respectively.
The force acting on m1 is u1 = Ac

1P
c
11−(Ac

1−ac1)P
c
12, where Ac

1 and ac1 are
the cylinder bore and piston-rod cross-sectional areas respectively, and
(P c

11, P
c
12) are pressures acting on the left and right sides of the piston re-

spectively. These pressures are given by the Pneumatic Valves module,
which responds to a force command by adjusting the position of a 3/5-
servo-valve [55]. This adjustment is performed to the pressure P̂1 of the
airflow incoming from Compressor 1, which has the volumetric flowrate
q1 = Ac

1x
v
1 if xv

1 > 0, and q2 = (Ac
1 − ac1)x

v
1 otherwise (where xv

1 is the ve-
locity of m1). Hence, sizing the actuators for this system involves select-
ing the areas (Ac

i , a
c
i ) of the actuators and compressor pressures P̂i, since

they dictate the force limits on the system, and the compressor flowrate
capacity required for actuation.

We consider a discretized model of the mass-spring-damper system,
obtained using the forward Euler scheme with a time step of 0.1s. We
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assume that this model has additive disturbance inputs w acting on the
velocity states, with w ∈ W = 10−5B3∞. We equip the system with a
static feedback gain K, that is the solution of the Riccati equation with
matrices Q = I and R = I. For this system, we compute an RPI set ∆X
as a polytope in R6 with 1812 faces using the method in [144]. The states
of this system are constrained as

X = {x : |xp
i | ≤ x̂p, |xv

i | ≤ x̂v
i , x

p
i − xp

i+1 ≤ x̂p − gp},

where gp is the minimum gap between the masses. In order to parametrize
the input constraint set, we assume that the piston-rod cross-sectional
area is constrained as aci = 0.1Ac

i , and the compressors supply a constant
pressure of P̂i = 104 N/m2, following which we introduce the design
vector ϵ := [Ac

1 A
c
2]

⊤. Hence, U is parametrized as

U(ϵ) =
{︃
u :

[︃
−(Ac

1 − ac1)P̂1

−Ac
2P̂2

]︃
≤ u ≤

[︃
Ac

1P̂1

(Ac
2 − ac2)P̂2

]︃}︃
. (6.26)

Then, to compute the vector ϵ, we use the criterion f(ϵ) = fM(ϵ) + fP(ϵ),
with fM and fP defined as follows:

• Since each Ac
i represents material costs, it is natural to consider the

criterion fM(ϵ) := Ac
1 +Ac

2 to minimize.

• Since velocities |xv
i | ≤ x̂v

i , corresponding maximum compressor
flowrates are q̂i = Ac

i x̂
v
i . We assume that the compressors are

priced according to their maximum flowrate capacities as

Type 1 2 3 4 5

Capacity (×10−4m3/s) 0.1 0.15 0.2 0.25 0.35

Price (×10−2) 1.0 1.1 1.2 1.3 1.4

We encode this criterion as the piecewise constant function fP(ϵ) :=

β1+β2, where βi = 1e−2 if Ac
i x̂

v
i ∈ [0, 0.1]e−4, βi = 1.1e−2 if Ac

i x̂
v
i ∈

(0.1, 0.15]e−4, βi = 1.2e−2 if Ac
i x̂

v
i ∈ (0.15, 0.2]e−4, βi = 1.3e−2 if

Ac
i x̂

v
i ∈ (0.2, 0.25]e−4 and βi = 1.4e−2 if Ac

i x̂
v
i ∈ (0.25, 0.35]e−4.

Then, the largest feasible area to ensure that the maximum feasible
velocity can be reached is Âc

i := 0.35e−4/x̂v
i .
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We also consider the loading effects of the actuators: compressibility of
air modifies the stiffness and damping within the system [155]. Then, the
modified dynamics of the system can be written as

x(t+ 1) = Ax(t) +Bu(t) +Bww(t) + g(x(t), u(t), ϵ).

To account for this modification, we follow Remark 6.3: we introduce the
appended disturbance

w̃ := Bww + g(x, u, ϵ),

such that x(t + 1) = Ax(t) + Bu(t) + w̃(t) is the modified system. Since
X , U(ϵ) andW are compact, w̃ lies in a parametrized disturbance set, i.e.,
w̃ ∈ BwW(ϵ). We use the scaling parametrization

W(ϵ) = (1 + κd(ϵ))W, where κd(ϵ) := 250(Ac
1 +Ac

2).

In order to formulate Pi,N with the parametrized disturbance set W(ϵ),
we first note that the RPI set scales with W(ϵ) as (1 + κd(ϵ))∆X . Using
positive homogeneity of support functions, we derive the formulation
of Pi,N by replacing h∆, h̄x, ϵ̄ and q[i](ϵ) in (6.24) by the parametrized
versions

(1 + κd(ϵ))h
∆, (1 + κd(ϵ))h̄

x, (1 + κd(ϵ))ϵ̄ and q̄[i](ϵ, κd(ϵ))

respectively. Hence, Pi,N is an optimization problem with linear con-
straints and a piecewise affine objective function. We formulate the re-
sulting problem as a Mixed-Integer Linear Program (MILP) using the
method presented in [36]. We consider the initial-condition set Ω to
be the vertices of X , with the modification xv

1, x
v
3 = 0. Then, we for-

mulate and solve the projection problem in (6.22) to obtain an initial-
condition set Ω̃ for which Pi,N is feasible for all N ≥ 2 as follows. Defin-
ing κ̂d := 250(Âc

1 + Âc
2), the largest possible parametrized RPI set is

(1 + κ̂d)∆X . Using this set, we compute the MPI set Ô∞(ϵ̂) and the 2-
step stabilizable set K̂2(ϵ̂, Ô∞(ϵ̂)) where ϵ̂ := [Âc

1 Âc
2]

⊤, based on which
we formulate problem in (6.22) with the constraint Ω̃ ⊆ K̂2(ϵ̂, Ô∞(ϵ̂)). We
choose Ω̃ to be a set of vertices with the same cardinality as Ω, and the
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f(ϵN ), δ = 10−4

f(ϵ̃N )

Ac1

Ac2

Figure 16: Numerical results for Example 2 with constraints x̂p = 0.8m, x̂v
1 , x̂

v
3 =

0.15m/s, x̂v
2 = 1m/s, gp = 10−3m. (Left) Optimal input constraint set size f(ϵN )

computed by Algorithm 5, along with the lower bound f(ϵ̃N ). (Right) Corre-
sponding actuator areas in m2. These values compose the parameter vector ϵN .

distance function to be the sum of 1-norm of the difference between the
vertices, such that resulting problem is an LP. Using Ω̃ and Pi,N , we then
compute optimal ϵ for different horizon lengths by applying Algorithm
5. The results are shown in Figure 16. We note that the upper bound to
the termination index of Algorithm 5 is now computed using the largest
possible parametrized disturbance set (1 + κ̂d)W . For δ = 10−4, this
bound equals kδ = 1200.
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Figure 15: Schematic of the mass-spring-damper system. The Pneumatic Valves
module regulates the compressor flow pressure. Units: mi in Kg, Ks

i in N/m,
Kd

i in Ns/m, Ac
i , a

c
i in m2.

In Figure 16 (left plot), we see that the results in Proposition 6.5 con-
tinue to hold, i.e., f(ϵN ) is non-increasing and convergent in N . This is
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because the stabilizable and admissible sets for a given input and distur-
bance set are nested sequences in N . This plot can be used as a tool to de-
cide the minimum horizon length required given an upper bound on the
budget allotted for pump selection. For example, if the maximum budget
spent on pumps must not exceed 0.025 units, then the RMPC controller
must have N ≥ 6. In the right plot, the corresponding optimal actuator
areas that can provide the required maximum flowrates q̂i = Ac

i x̂
v
i are

shown, which correspond to the following optimal compressor types:

Horizon length N 2 3 4 5 6 7 8 9 10

Compressor 1 Type 5 4 4 4 3 3 2 2 2

Compressor 2 Type 5 3 3 3 2 2 2 1 1

6.5.3 Scalability of Pi,N

The goal of the following example is to demonstrate scalability of prob-
lem Pi,N . We consider the disturbance free system x(t+1) = Ax(t)+u(t),
where matrix A has diagonal components Amm = 1, and off-diagonal
components Amn = 0.01,m ̸= n. The system is subject to constraints
X = Bnx

∞ , and the initial-condition set is Ω = 0.2Bnx
∞ . We parametrize

the input constraint set as U(ϵ) = {u : −ϵ1 ≤ u ≤ ϵ1}, where ϵ is a
scalar, and choose f(ϵ) = ϵ. We equip the system with a feedback con-
troller K which is the solution of the Riccati equation for matrices Q = I

and R = 0.1I. Then, we use both vertex and hyperplane notations of
Ω to formulate Pi,N with i = 10, N ∈ [2, 10] and state-space dimen-
sion nx ∈ [2, 10]. The resulting problems are LPs in both cases. The
computational time spent by the solver and the number of variables and
constraints, are shown in Figure 17.
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nx nx nx

Figure 17: Numerical results for Example 3, demonstrating the solution time,
number of variables, and number of constraints in the formulation of Pi,N when
Ω is given in vertex and hyperplane notations. The different lines correspond to
horizon lengths N = 2, · · · , 10.

We observe that the dimension nx significantly affects solver perfor-
mance in the vertex notation, since the number of vertices in Ω increases
exponentially with nx. This issue is avoided if Pi,N is formulated using
Ω in a hyperplane notation [100]. However, since the conditions used
to encode the inclusion constraint Ω ⊆ KN (ϵ,Oi(ϵ)) are only sufficient,
this might lead to conservative solutions f(ϵi,N ). We report that in this
example, there was no increase in conservativeness.

6.6 Comparison with parameteric sensitivity
analysis-based approach

In this section, we compare our approach to computing the smallest in-
put constraint set guaranteeing safe regulation with the parametric sensi-
tivity analysis approach presented in [160]. We consider a slightly mod-
ified version of the approach presented in [160], by aiming to compute
the smallest input constraint set rather than the largest disturbance set.

Given a template polytopic input constraint set Ũ := {u : Fuu ≤ 1},
the approach of [160] can be adapted to compute the smallest scaling
factor σ ∈ [0, σ̄] such that some given state x ∈ X in included in the
MRCI set X∞(σŨ). In other words, for each x ∈ X , a function V (x) is
computed that satisfies

x ∈ X∞(σŨ), ∀ σ ∈ [V (x), σ̄]. (6.27)
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Then, given a set of initial conditions Ω, the smallest input constraint set
scaling factor required to robustly stabilize all x(0) ∈ Ω is given by

σ̂ := max
x∈Ω

V (x).

In order to compute such a V (x), we construct the MRCI set for the au-
gumented system

x(t+ 1) = Ax(t) +Bu(t) +Bww(t), u(t) ∈ σŨ , w(t) ∈ W,

σ(t+ 1) = σ(t)

subject to the constraints (x, σ) ∈ X × [0, σ̄]. This set can be computed as
the limit of the set iterations

X̃ 0 :=

{︃(︃
x
σ

)︃
: Hxx ≤ hx, σ ∈ [0, σ̄]

}︃

X̃ t+1 :=

⎧⎨⎩
(︃
x
σ

)︃
∈ X̃ t : ∃ u ∈ σŨ :

(︃
Ax+Bu+Bww

σ

)︃
∈ X̃ t,

∀ w ∈ W

⎫⎬⎭

= Π(x,σ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝x
σ
u

⎞⎠ :

⎡⎢⎢⎢⎢⎣
Mx

t A Mσ
t Mx

t B
0 −1 Fu

0 −1 0
0 1 0

Mx
t Mσ

t 0

⎤⎥⎥⎥⎥⎦
⎡⎣xσ
u

⎤⎦

≤

⎡⎢⎢⎢⎢⎣
nt − hW(MtBw)

0
0
σ̄
nt

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where X̃ t =

{︃(︃
x
σ

)︃
: Mx

t x+Mσ
t σ ≤ nt

}︃
.

(6.28a)

(6.28b)

(6.28c)

(6.28d)

We hypothesize that the function V (x) satisfying (6.27) is given by

V (x) = min
{︂
σ :
(︁
x, σ

)︁
∈ X̃∞

}︂
. (6.29)

A proof of the aforementioned statement would require an extension
to [160, Theorem 3], that we leave for future research. Then, the MRCI
set for an input constraint set U = σŨ is given by

X∞(σŨ) = {x : Mx
∞x ≤ n∞ −Mσ

∞σ}. (6.30)
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Figure 18: (Left) Set X̃∞ obtained at termination of iterations in (6.28); (Right)
Corresponding smallest MRCI set containing Ω. Also shown is the smallest 20-
step stabilizable set that includes Ω, and driving each x(0) ∈ Ω to the MPI termi-
nal set O∞(σ201) in atmost 20 timesteps.

Now considering the stabilizable set approximation of the MRCI set-
based approach presented in this chapter, we note that for a given hori-
zon length N , the smallest scaling factor required to robustly stabilize
all initial states x(0) ∈ Ω is obtained as the solution of the optimization
problem

σN := min
σ

σ s.t. Ω ⊆ KN (σ1,O∞(σ1)), δBnu
∞ ⊆ σŨ ⊖K∆X , (6.31)

that can be solved exactly using a finite number of LPs according to
Proposition 6.3. Moreover, σN is a nonincreasing sequence in N . How-
ever, since we fix the controller parameterization, we expect limN→∞ σN >

σ̂. On the other hand, defining

σ̂t = min
σ
{σ : Mx

t x+Mσ
t σ ≤ nt, ∀ x ∈ Ω} ,

we observe that σ̂t is a nondecreasing sequence in t, with σ̂ = limt→∞ σ̂t.
Hence, in order to compute σ̂, we require finite termination of the set
iterations in (6.28).
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Figure 19: Comparison between the approach of [160] and the stabilizable set-
based approach to compute the smallest regulating input constraint set.

Example

As an illustrative example, we consider the uncertain unstable system

x(t+ 1) ∈
[︃
1.1 1
0 1

]︃
x(t) +

[︃
0.5
1

]︃
u(t)⊕ 0.1Bnx

∞ ,

subject to state constraints X = 5Bnx
∞ . As a template input constraint set,

we use the polytope Ũ = B1∞. In Figure 18, we plot the sets obtained us-
ing the approach of [160]. We note that due to instability, the slice of X̃∞

corresponding to σ = 0, i.e., {x : Mx
∞x ≤ n∞} = ∅. In order to compare

with the approach presented in this chapter, we equip the system with
a feedback gain K corresponding to LQR matrices Q = I and R = I,
and use an RPI set ∆X parameterized as the minimal parameterized RPI
set with 92 hyperplanes [97]. In Figure 19, we observe that as expected,
σN approaches σ̂ from above, with each σN being a feasible scaling fac-
tor. However, there exists a gap at termination because of the tube-MPC
parameterization of the feedback control law.
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Chapter 7

Data-driven synthesis of
Robust Invariant Sets and
Controllers

7.1 Introduction

In this chapter, we present a data-driven approach to identify an LTI
model of a plant from a given dataset of state and input measurements,
and synthesize an RMPC controller to robustly control the plant. In par-
ticular, we consider LTI plant models of the form

x(t+ 1) = Ax(t) +Bu(t) + w(t), (7.1)

with state constraints x ∈ X ⊂ Rnx , input constraints u ∈ U ⊂ Rnu ,
and additive unknown but bounded disturbances w ∈ W . This model is
hence parameterized by (A,B,W). For this model, we aim to synthesize
a tube-based RMPC controller from [87], as discussed previously in Sec-
tion 2.2.3. In order to synthesize this controller, in addition to the model
(A,B,W), we also require a feedback gain K and an RPI set in which the
state of the system

x(t+ 1) = (A+BK)x(t) + w(t)
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can be enforced to persistently belong. Moreover, we also require a posi-
tive invariant terminal set to guarantee recursive feasibility.

Typically, the system identification and controller synthesis phases
are independent of each other. In order to perform system identification,
i.e., identify a model (A,B,W), physics-based, regression approaches
and/or set-membership approaches [80, 64] can be used. Given an iden-
tified model (A,B,W), one can then compute RPI sets using one of the
several techniques available in literature. These sets can then be used to
synthesize the RMPC controller. A drawback of this approach however
is the following. In order to compute the RPI sets, one makes several
parametric choices such as structure of the feedback laws, and represen-
tation of the RPI sets. Then, it can happen that the identified model
(A,B,W) identified a priori is not necessarily optimal for the control
synthesis problem, i.e., there might exist some other model (A,B,W)

that can be identified from the dataset, and can be used to synthesize
RPI sets with reduced conservativeness, this improving the controller
performance. This was an observation also presented in [24], in which
the authors demonstrated that by concurently selecting a system model
while synthesizing RPI sets, one can obtain RPI sets with more favorable
characteristics.

Based on this observation, the main contributions of the chapter are
the following. Given a dataset of state and input measurements from
the plant, we characterize a set of models (A,B,W) that can describe
the plant behavior, and use nonlinear matrix inequality (NLMI)-based
results from [76] on RPI set computation to formulate a NonLinear Pro-
gram with Matrix Inequalities (NLPMI) that selects a model (7.1) along
with suitable RPI sets and a corresponding feedback matrix K. We then
present a method to solve the NLPMI based on a Sequential Convex Pro-
gramming (SCP) approach that we tailor to preserve feasibility of the
iterates and satisfy a cost decrease condition. Finally, we demonstrate
the efficacy of the method using a simple numerical example.

Alternative methods that directly compute feedback controllers us-
ing an implicit plant description based on measured trajectories were
presented in [33, 9, 10, 30, 150]. In [13], these methods were used to syn-
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thesize controllers that induce robust invariance in a given polyhedral
set. However, these methods cannot be used directly to select a model
and synthesize RPI sets optimized for RMPC synthesis.

Notation: P(A, b) := {x ∈ Rn : −b ≤ Ax ≤ b} is a symmetric poly-
tope, and E(Q, r) := {x ∈ Rn : x⊤Qx ≤ r} is an ellipsoid. The set of m
dimensional positive vectors is denoted as Rm

+ , positive definite m ×m

diagonal matrices is denoted as Dm
+ , positive definite m ×m symmetric

matrices as Sm+ . Given matrix T ∈ Rn×m,

∥T∥∞ := max
i∈In1

m∑︂
j=1

|Tij |

is the ∞-norm of the matrix. We define ∥v∥2S := v⊤Sv, and use ∗ to
represent symmetrically identifiable matrix entries. We write

C1P(A1, b1)⊕ C2P(A2, b2) = [C1 C2]P(diag(A1, A2), [b
⊤
1 b

⊤
2 ]

⊤),

where diag(A1, A2) :=

[︃
A1 0
0 A2

]︃
is a block-diagonal matrix.

7.2 Problem formulation

7.2.1 Background

We briefly recall the tube-based RMPC scheme from [87]. Given system
(7.1), consider the nominal model x̂(t+ 1) = Ax̂(t) + Bû(t), and param-
eterize the plant input as

u(t) = û(t) +K(x(t)− x̂(t)),

where K is a static feedback gain. Assuming that the feedback gain
is stabilizing for (A,B), the state error ∆x := x − x̂ with dynamics
∆x(t+ 1) = (A+BK)∆x(t) + w(t) belongs to the RPI set ∆X

if ∆x(0) ∈ ∆X , and (A+BK)∆X ⊕W ⊆ ∆X . (7.2)

Hence, x always belongs to the uncertainty tube with cross-section ∆X
around x̂, i.e., x(t) ∈ x̂(t)⊕∆X ,∀t ≥ 0. The RMPC scheme then enforces
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x̂ ∈ X ⊖∆X and û ∈ U ⊖K∆X , and computes

z := {x̂(t), . . . , x̂(t+N), û(t), . . . , û(t+N − 1)}

online given x(t) by solving

min
z

t+N−1∑︂
s=t

⃦⃦⃦[︁
x̂(s)⊤ û(s)⊤

]︁⊤⃦⃦⃦2
HQ

+ ∥x̂(t+N)∥2PQ

s.t. x̂(s+ 1) = Ax̂(s) +Bû(s), s ∈ It+N−1
t ,

x̂(s) ∈ X ⊖∆X , û(s) ∈ U ⊖K∆X , s ∈ It+N−1
t+1 ,

x(t) ∈ x̂(t)⊕∆X , x̂(t+N) ∈ X t, (7.3)

where X t is the terminal set. We assume that the set ∆X is small enough
for feasibility of Problem (7.3), i.e.,

∆X ⊂ X , K∆X ⊂ U , (7.4)

and X t is a PI set for x̂(t+ 1) = (A+BK)x̂(t) that satisfies

(A+BK)X t ⊆ X t ⊆ X ⊖∆X , KX t ⊆ U ⊖K∆X . (7.5)

Then the feasible set

ΩN := {x : (7.3) is feasible with x(t) = x}

is such that for each x(t) ∈ ΩN , there recursively exists an optimal solu-
tion

z∗ := {x̂∗(t), . . . , x̂∗(t+N), û∗(t), . . . , û∗(t+N − 1)}

[87, Proposition 2]. Then, the input u(t) := û∗(t) +K(x(t)− x̂∗(t)) is ap-
plied to the plant. Moreover, if (HQ, PQ) are such that PQ is the solution
of the Discrete Algebraic Riccati equation (DARE) formulated using HQ

for the system (A,B), and K is corresponding optimal feedback gain,
∆X is exponentially stable from every x ∈ ΩN [87, Theorem 1].

7.2.2 Problem description

We consider a plant with dynamics

x(t+ 1) = ftr(x(t), u(t), v(t))
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that is subject to bounded inputs u(t) and unknown but bounded distur-
bances v(t) ∈ Vtr ⊂ Rnv . Assuming that ftr and Vtr are unknown, we
collect a dataset

D := {xD(t), uD(t), t ∈ IT1 }

of state-input measurements from the plant. Using D, we propose a
method to compute

(A,B,W,K,∆X ,X t)

that satisfy (7.1), (7.2), (7.4), (7.5) required for RMPC synthesis, while op-
timizing some criterion. In the sequel, we assume that we are interested
in modeling the plant in a bounded subset Φ∗ ⊂ Rnx+nu of state-input
vectors [x⊤ u⊤]⊤. If ftr is open-loop stable, then Φ∗ can also represent
the set of all possible state-input vectors that are reachable by the plant.
Then, we assume that the set

ΦT := {[xD(t)
⊤ uD(t))

⊤]⊤, t ∈ IT1 }

of measured state-input vectors is a subset of Φ∗, i.e., ΦT ⊆ Φ∗. We also
define

J∗ :=

⎧⎨⎩
⎡⎣ x
u
x+

⎤⎦ :
x+ = ftr(x, u, v),

∀ [x⊤ u⊤]⊤ ∈ Φ∗, ∀v ∈ Vtr

⎫⎬⎭ .

Since Φ∗, Vtr and u are assumed to be bounded, J∗ is also a bounded set.
Finally, we denote the measured subset built using D as

JT := {[xD(t)
⊤ uD(t)

⊤ xD(t+ 1)⊤]⊤, t ∈ IT−1
1 } ⊆ J∗

.

Remark 7.1. Given (A,B,K), matrices (HQ, PQ) satisfying the DARE can
be computed using the procedure in [162]. Hence, our approach involves tuning
the MPC scheme. Combining our approach with other MPC tuning methods
such as [86] is a subject of future research. □

7.3 Identification based on invariant sets

To compute (A,B,W,K,∆X ,X t) using the dataset D by optimization,
we first characterize the set of models (A,B,W) that are suitable to model
the underlying plant.
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7.3.1 Characterization of feasible models

We consider LTI models of the form in (7.1) to model the underlying
plant, with the disturbance set parametrized as

W := P(F, d) = {w : −d ≤ Fw ≤ d}

We assume for simplicity that the normal vectors {Fi ∈ Rnx , i ∈ ImW
1 }

are fixed a priori. Then, an LTI model (A,B, d) is suitable for RMPC
synthesis if it can capture all possible state transitions of the plant as

ftr(x, u, v) ∈ Ax+Bu⊕ P(F, d),
∀ [x⊤ u⊤]⊤ ∈ Φ∗, ∀ v ∈ Vtr.

(7.6)

Defining the prediction error ζ(A,B, z) := x+ −Ax−Bu with

z := [x⊤ u⊤ x⊤
+]

⊤,

a model (A,B, d) satisfies (7.6) if and only if

ζ(A,B, z) ∈ P(F, d), ∀ z ∈ J∗

by definition of J∗. Hence,

Σ∗ := {(A,B, d) : ζ(A,B, z) ∈ P(F, d), ∀ z ∈ J∗}

characterizes the set of all models (A,B, d) satisfying (7.6). However, we
cannot construct Σ∗ since we only access the measured subset JT ⊆ J∗.
Hence, we instead characterize

ΣT (θT ) :=

⎧⎪⎨⎪⎩
⎛⎝A,
B,
d

⎞⎠ :

ζ(A,B, z) ∈ P(F, d− κT (A,B)1)

κT (A,B) = ∥F [−A −B I]∥∞ θT ,

d > κT (A,B)1, ∀ z ∈ JT

⎫⎪⎬⎪⎭
using JT , where θT := d∞(J∗,JT ) is the Hausdorff distance between
the sets JT and J∗ in∞-norm, and is given by

d∞(J∗,JT ) := max
z∗∈J∗

min
z∈JT

∥z − z∗∥∞

since the inclusion JT ⊆ J∞ holds for every T > 0.
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Assumption 7.1. (a) ΣT (θT ) ̸= ∅; (b) For all scalars θ > 0, there exists some
T̃ <∞ such that d∞(J∗,JT̃ ) ≤ θ. □

Assumption 7.1 implies that as T →∞, the set J∗ is densely covered
by JT : this is an assumption on the persistence of excitation of inputs,
and bound-exploring property of the disturbances acting on the under-
lying plant [142, Section 3.2].

Theorem 7.1. If Assumption 1 holds, then the inclusion (7.6) holds for all
models (A,B, d) ∈ ΣT (θT ). □

Proof. We show that ζ(A,B, z) ∈ P(F, d) for all z ∈ J∗ and for all models
(A,B, d) ∈ ΣT (θT ). For any (A,B, d) ∈ ΣT (θT ), clearly

ζ(A,B, z) ∈ P(F, d− κT (A,B)1) ⊂ P(F, d), ∀ z ∈ JT .

By definition of the Hausdorff distance, for every remaining vector

z̄ ∈ J∗ \ JT := {z̃ : z̃ ∈ J∗, z̃ /∈ JT },

there exists some measured vector z ∈ JT satisfying ||z − z̄||∞ ≤ θT .
Then, for any (A,B, d) ∈ ΣT (θT ),

Fζ(A,B, z̄) = F (ζ(A,B, z̄)− ζ(A,B, z) + ζ(A,B, z))

≤ F [−A −B I](z̄ − z) + d− κT (A,B)1

≤ ||F [−A −B I](z̄ − z)||∞1+ d− κT (A,B)1

≤ ||F [−A −B I]||∞ ∥(z̄ − z)∥∞ 1+ d− κT (A,B)1

≤ ||F [−A −B I]||∞θT1+ d− κT (A,B)1 = d,

where the second step follows from definition of ΣT (θT ), and third step
from the definition of∞-norm, the fourth step from the Cauchy-Schwarz
inequality, and the fifh step from the the inequality ||z̄ − z||∞ ≤ θT . Us-
ing similar arguments, the condition−d ≤ Fζ(A,B, z̄) follows, thus con-
cluding that ζ(A,B, z̄) ∈ P(F, d),∀ z̄ ∈ J∗ \ JT .

Theorem 7.1 implies that every (A,B, d) ∈ ΣT (θT ) ⊆ Σ∗ is a feasi-
ble model for RMPC synthesis. However, ΣT (θT ) cannot be constructed
from data since θT is unknown. To tackle this issue, we follow the stan-
dard approach of inflating the disturbance set using some parameter
(e.g., [142]): we propose to select some θ̂T > 0, and approximate ΣT (θT )

with Σ̂T := ΣT (θ̂T ) under the following assumption.
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Assumption 7.2. θ̂T ≥ θT= d∞(J∗,JT ). □

Under Assumption 7.2, we have Σ̂T ⊆ ΣT (θT ). Hence, every uncer-
tain LTI model (A,B, d) ∈ Σ̂T is suitable for RMPC synthesis. We assume
in the sequel that Assumption 7.2 is satisfied by some user-defined θ̂T .
We then encode Σ̂T with linear constraints as

Σ̂T =

⎧⎪⎨⎪⎩
⎛⎝A,
B,
d

⎞⎠ :

ζ(A,B, z) ∈ P(F, d− λθ̂T1), d > λθ̂T1,

−Z ≤ F [−A −B I] ≤ Z,Z ≥ 0,∑︁2nx+nu

j=1 Zij ≤ λ,∀ i ∈ ImW
1 ,∀ z ∈ JT

⎫⎪⎬⎪⎭
using the definition of ∞-norm for matrices, where Z ∈ RmW×(2nx+nu)

+

is a slack variable matrix. We reiterate that since Assumption 7.2 can-
not be verified directly using data, robustness guarantees with respect
to the underlying plant can only be provided in theory. However, if As-
sumption 7.1(b) holds, the distance θT → 0 for large T . Hence, guessing
some θ̂T ≈ 0 can satisfy Assumption 7.2 for large datasets. Moreover,
the validity of a given θ̂T can be checked by verifying the existence of
a model (A,B, d) ∈ Σ̂T explaining a validation dataset. On the other
hand, computation of a θ̂T satisfying Assumption 7.2 is a fundamental
issue in data-driven methods: while statistical techniques such as, e.g.,
bootstrapping can be used, the development of such methods is a future
research subject.

Remark 7.2. (a) In [142], an optimal LTI model set is first computed, from
which a model is selected and then feedback controllers are synthesized. We
combine all three phases in the current work; (b) In [10], the closed-loop dynam-
ics of an unknown LTI plant with a known disturbance set is characterized in
terms of the measured dataset, and parametrized by unknown but bounded dis-
turbance sequences. Then, a controller is synthesized for all feasible LTI models.
We instead use a model-dependent disturbance set. While the assumption of a
known disturbance set is as strict as Assumption 7.2, comparison with [10] is a
subject of future research. □

7.3.2 Robust PI set design

We will now compute a feedback gain K and corresponding invariant
sets ∆X and X t for some (A,B, d) ∈ Σ̂T . To this end, we parametrize the
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RPI set as
∆X = P(

¯
P,

¯
b),

¯
b ∈ R¯

m
+ ,

the PI terminal set as

X t = P(P̄, b̄), b̄ ∈ Rm̄
+ ,

and assume that the constraint sets are

X = P(V x, vx), vx ∈ Rmx
+ , U = P(V u, vu), vu ∈ Rmu

+ .

Then, for some (A,B, d) ∈ Σ̂T , if (K,
¯
P,

¯
b, P̄, b̄) satisfies

(A+BK)P(
¯
P,

¯
b)⊕ P(F, d) ⊆ P(

¯
P,

¯
b),

(A+BK)P(P̄, b̄) ⊆ P(P̄, b̄),
P(

¯
P,

¯
b)⊕ P(P̄, b̄) ⊆ X ,

KP(
¯
P,

¯
b)⊕KP(P̄, b̄) ⊆ U ,

(7.7a)
(7.7b)
(7.7c)
(7.7d)

it can be used to synthesize the RMPC scheme (since (7.7a) implies (7.2),
(7.7b) implies (7.5), (7.7c)-(7.7d) imply the constraint inclusions in (7.4)-
(7.5)). We encode (7.7a)-(7.7d) using Theorem 7.2.

Theorem 7.2. [76, Theorem 2] For some C ∈ Rn×nc

, M c ∈ Rmc×n, bc ∈
Rmc

+ , M0 ∈ Rm0×n, bo ∈ Rmo

+ , the inclusion CP(M c, bc) ⊆ P(M0, b0) holds
if

∀ i ∈ Im
0

1 , ∃Lc
[i] ∈ Dmc

+

such that [︄
2b0i − bc

⊤
Lc
[i]b

c M0
i C

∗ M c⊤Lc
[i]M

c

]︄
≻ 0.

□

Remark 7.3. The condition in Theorem 7.2 is necessary and sufficient for the
inclusion CP(M c, bc) ⊆ P(M0, b0) if a non-strict inequality ⪰ is used. How-
ever, we only use the sufficiency property given by ≻ for numerical robustness.
□

Hence, (7.7a) ⇐= ∀i ∈ I¯m1 ,∃
¯
D[i] ∈ D ¯

m
+ ,W[i] ∈ DmW

+ s.t.⎡⎢⎣2¯bi −¯
b⊤

¯
D[i]¯

b− d⊤W[i]d
¯
P i ¯

P i(A+BK)

∗ F⊤W[i]F 0

∗ ∗
¯
P⊤

¯
D[i]¯

P

⎤⎥⎦ ≻ 0, (7.8)
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(7.7b) ⇐= ∀ i ∈ Im̄1 ,∃ D̄[i] ∈ Dm̄
+ s.t.[︄

2b̄i − b̄
⊤
D̄[i]b̄ P̄ i(A+BK)

∗ P̄
⊤
D̄[i]P̄

]︄
≻ 0, (7.9)

(7.7c) ⇐= ∀ i ∈ Imx
1 ,∃

¯
S[i] ∈ D ¯

m
+ , S̄[i] ∈ Dm̄

+ s.t.⎡⎢⎣2v
x
i −¯

b⊤
¯
S[i]¯

b− b̄
⊤
S̄[i]b̄ V x

i V x
i

∗
¯
P⊤

¯
S[i]¯

P 0

∗ ∗ P̄
⊤
S̄[i]P̄

⎤⎥⎦ ≻ 0, (7.10)

(7.7d) ⇐= ∀ i ∈ Imu
1 ,∃

¯
R[i] ∈ D ¯

m
+ , R̄[i] ∈ Dm̄

+ s.t.⎡⎢⎣2v
u
i −¯

b⊤
¯
R[i]¯

b− b̄
⊤
R̄[i]b̄ V u

i K V u
i K

∗
¯
P⊤

¯
R[i]¯

P 0

∗ ∗ P̄
⊤
R̄[i]P̄

⎤⎥⎦ ≻ 0. (7.11)

We now formulate a criterion to select the variables formulating (7.8)-
(7.11) along with (A,B, d) ∈ Σ̂T , leading to an optimization problem. In
this formulation, we assume that the matrices (

¯
P, P̄, F ) are known a pri-

ori. While this assumption increases conservativeness in our approach,
it simplifies the solution procedure. We note that a good set of hyper-
planes (

¯
P, P̄ ) can guessed for some initial (A,B, F, d) using [76], and kept

constant for our approach. Moreover, our approach can be extended to
optimize over (

¯
P, P̄ ) using the results in [73]. However, we skip further

details here.

7.3.3 Identification criterion

For RMPC synthesis, it is desirable to compute a small RPI set ∆X to re-
duce constraint tightening, and to regulate the system to a small neigh-
borhood of the origin [87]. Hence, we minimize ∥

¯
b∥1, since it corresponds

to computing the smallest (in an inclusion sense) RPI set represented by
fixed hyperplanes

¯
P [118, Corollary 1].

Moreover, we know from [87, Proposition 2] that a large terminal
set X t maximizes the region of attraction ΩN . Hence, we maximize the
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size of X t by minimizing a distance metric between X t and the state
constraint set X as follows: let B(ϵ̄) := P(Ē, ϵ̄) ⊂ Rnx with ϵ̄ ∈ Rmϵ

+

and Ē fixed a priori; then, we minimize ∥ϵ̄∥1 subject to the inclusion
X ⊆ P(P̄, b̄) ⊕ B(ϵ̄). Assuming to know the vertices {x[i], i ∈ Im

v
x

1 } of
X , (b̄, ϵ̄) ∈ S̄ implies X ⊆ P(P̄, b̄)⊕ B(ϵ̄) where

S̄ := {(b̄, ϵ̄) : x[i] ∈ P(P̄, b̄)⊕ P(Ē, ϵ̄),∀ i ∈ Im
v
x

1 }.

Finally, since the performance matrices (HQ, PQ) formulating the RMPC
controller in (7.3) are fixed by (A,B,K) as noted in Remark 7.1, we in-
troduce a way to tune the closed-loop performance: We evaluate the per-
formance using the system x̂(t + 1) = Ax̂(t) + Bû(t) inside the terminal
set as

x̂(0) ∈ X t, û(t) = Kx̂(t),

∞∑︂
t=0

∥x̂(t)∥2Q̃ + ∥û(t)∥2R̃ ≤ r̃, (7.12)

where Q̃ ∈ Snx
+ and R̃ ∈ Snu

+ are user-defined performance matrices, and
we minimize r̃. Then, if Θ̃ ∈ Snx

+ satisfies

(A+BK)⊤Θ̃(A+BK)− Θ̃ + Q̃+K⊤R̃K ≺ 0, (7.13)

the left-hand-side of the inequality in (7.12) is upper bounded by ∥x̂(0)∥2Θ̃
[65]. Hence, (7.12) is satisfied if the inclusion P(P̄, b̄) ⊆ E(Θ̃, r̃) holds,
thus imposing an upper bound on the size of the terminal set. Following
the S-procedure [19, Section 2.6.3], the inclusion P(P̄, b̄) ⊆ E(Θ̃, r̃) holds
if

∃M̃ ∈ Dm̄
+ s.t. P̄

⊤
M̃P̄ − Θ̃ ≻ 0, r̃ − b̄

⊤
M̃ b̄ > 0. (7.14)

Based on these considerations, we formulate the identification problem
as the following NLPMI

min
ZNL

α∥
¯
b∥1 + β∥ϵ̄∥1 + γr̃

s.t. (A,B, d) ∈ Σ̂T , (b̄, ϵ̄) ∈ S̄, (7.8)− (7.11), (7.13)− (7.14)

(7.15)

where α, β, γ ≥ 0 are user-defined weights, and

ZNL :=

(︃
A,B, d,Z, λ,K,

¯
b, b̄, Θ̃, r̃, M̃, ϵ̄, {

¯
D[i],W[i], i ∈ I¯m1 },

{D̄[i], i ∈ Im̄1 }, {¯
S[i], S̄[i], i ∈ Imx

1 }, {¯
R[i], R̄[i], i ∈ Imu

1 }

)︃
.
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7.3.4 Feasible SCP for Problem (7.15)

In order to solve Problem (7.15), a standard SCP approach can be adopted,
in which a sequence of SDPs approximating (7.15) are solved. However,
to guarantee feasibility of the iterates, we adopt the following SCP pro-
cedure. Starting from an initial feasible iterate ZNL, we solve a sequence
of SDPs formulated using sufficient LMI conditions for the constraints
of Problem (7.15), such that the method produces feasible iterates. The
sufficient LMI conditions are formulated using convex underestimates
[143] of the NLMI constraints at the current iterate. Moreover, the objec-
tive value of (7.15) is non-increasing over the iterates, such that global-
ization is unnecessary and we terminate when the objective value does
not reduce further.

Convex SDP approximation

Given a feasible iterate ZNL for Problem (7.15), we formulate sufficient
LMI conditions for (7.8)-(7.11), (7.13), (7.14) using the following result.

Proposition 7.1. [76, Lemma 2.1] Let matrices L, L ∈ Rm×n and D, D ∈ Sm+ ,
and define the matrix functions

LL,D
L,D := L⊤D−1L+ L⊤D−1L− L⊤D−1DD−1L,

and
NL,D := L⊤D−1L.

Then,NL,D ⪰ LL,D
L,D andNL,D = LL,D

L,D. Hence, if there exists (L,D) such that
NL,D ≻ 0, then there exists (L,D) such that NL,D ⪰ LL,D

L,D ≻ 0. □

This result implies that if NL,D ≻ 0, then the LMI LL,D
L,D ≻ 0 is a con-

vex underestimate and a sufficient condition for NL,D ≻ 0. We will now
use this property to formulate sufficient LMIs for (7.8)-(7.11), (7.13), (7.14).
The claimed SCP feasibility and cost decrease are then obtained as a
corollary.

Theorem 7.3. Suppose that ZNL is feasible for (7.15). Then:
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(i) RPI condition (7.8): For each i ∈ I¯m1 , there exists (A,B,d,K,
¯
b, ˆ
¯
D[i], Ŵ[i])

satisfying the LMI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 −B⊤
¯
P⊤
i 0 K

∗ ˆ
¯
D[i] 0

¯
b 0 0

∗ ∗ Ŵ[i] d 0 0

∗ ∗ ∗ 2
¯
bi + L

B⊤
¯
P⊤

i ,I

B⊤
¯
P⊤

i ,I ¯
Pi

¯
PiA

∗ ∗ ∗ ∗ L
F,W−1

[i]

F,Ŵ[i]
0

∗ ∗ ∗ ∗ ∗ L¯
P,

¯
D−1

[i]

¯
P ˆ

¯
D

[i]

+ LK,I
K,I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≻ 0, (7.16)

and (A,B,d,K,
¯
b, ˆ

¯
D−1

[i] , Ŵ
−1
[i] ) satisfies (7.8).

(ii) PI condition (7.9): The following LMI is satisfied by some (A,B,K, b̄, ˆ̄D[i])
for each i ∈ Im̄1 :

⎡⎢⎢⎢⎢⎢⎣
I 0 −B⊤P̄⊤

i K

∗ ˆ̄D[i] b̄ 0

∗ ∗ 2b̄i + L
B⊤P̄⊤

i ,I

B⊤P̄⊤
i ,I

P̄iA

∗ ∗ ∗ L
P̄,D̄−1

[i]

P̄, ˆ̄D[i]

+ LK,I
K,I

⎤⎥⎥⎥⎥⎥⎦ ≻ 0, (7.17)

and (A,B,K, b̄, ˆ̄D−1
[i] ) satisfies (7.9).

(iii) Constraint inclusions (7.10), (7.11): For each i ∈ Imx
1 , there exists

(
¯
b, b̄, ˆ

¯
S[i],

ˆ̄S[i]), and for each i ∈ Imu
1 , there exists (K,

¯
b, b̄, ˆ

¯
R[i],

ˆ̄R[i]) satisfy-
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ing the LMIs ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ˆ
¯
S[i] 0

¯
b 0 0

∗ ˆ̄S[i] b̄ 0 0
∗ ∗ 2vxi V x

i V x
i

∗ ∗ ∗ L¯
P,

¯
S−1

[i]

¯
P,ˆ

¯
S

[i]

0

∗ ∗ ∗ ∗ L
P̄ ,S̄−1

[i]

P̄ , ˆ̄S[i]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≻ 0,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ˆ
¯
R[i] 0

¯
b 0 0

∗ ˆ̄R[i] b̄ 0 0
∗ ∗ 2vui V u

i K V u
i K

∗ ∗ ∗ L¯
P,

¯
R−1

[i]

¯
P, ˆ

¯
R

[i]

0

∗ ∗ ∗ ∗ L
P̄ ,R̄−1

[i]

P̄ , ˆ̄R[i]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≻ 0,

(7.18)

(7.19)

and (
¯
b, b̄, ˆ

¯
S−1

[i] ,
ˆ̄S−1
[i] ) , (K,

¯
b, b̄, ˆ

¯
R−1

[i] ,
ˆ̄R−1
[i] ) satisfy (7.10), (7.11).

(iv) Dissipativity condition (7.13): There exists (A,B,K, Θ̃) satisfying
the LMI ⎡⎢⎢⎢⎢⎢⎣

I 0 0 −B⊤ K

∗ Q̃−1 0 0 I

∗ ∗ R̃−1 0 K

∗ ∗ ∗ LI,Θ̃

I,Θ̃
+ LB⊤,I

B⊤,I
A

∗ ∗ ∗ ∗ Θ̃+ LK,I
K,I

⎤⎥⎥⎥⎥⎥⎦ ≻ 0, (7.20)

and (A,B,K, Θ̃) satisfies (7.13).

(v) Performance ellipsoid inclusion condition (7.14): There exists (b̄, Θ̃, r̃, ˆ̃M)
satisfying the LMI

LP̄,M̃−1

P̄, ˆ̃M
− Θ̃ ≻ 0,

[︄
ˆ̃M b̄
∗ r̃

]︄
≻ 0, (7.21)

and (b̄, Θ̃, r̃, ˆ̃M−1) satisfies (7.14).

Proof. The proof follows by using the Schur complement and Proposi-
tion 7.1 on (7.8)-(7.11). We detail the proof of Part (i), since Parts (ii)-(v)
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follow with similar arguments.
Part (i) : As (A,B,K,

¯
b, d,

¯
D[i],W[i]) in ZNL satisfy (7.8), we take a Schur

complement of the (1, 1) block to obtain⎡⎢⎢⎢⎢⎣
¯
D−1

[i] 0
¯
b 0 0

∗ W−1
[i] d 0 0

∗ ∗ 2
¯
bi

¯
Pi

¯
PiA+

¯
PiBK

∗ ∗ ∗ F⊤W[i]F 0
∗ ∗ ∗ ∗

¯
P⊤

¯
D[i]

¯
P

⎤⎥⎥⎥⎥⎦ ≻ 0. (7.22)

Defining Ŵ[i] := W−1
[i] and ˆ

¯
D[i] := ¯

D−1
[i] , Eq. (7.22) is nonlinear in vari-

ables (B,K, ˆ
¯
D[i], Ŵ[i]) in the blocks (4, 4), (5, 5), (3, 5) and (5, 3). Then,

we write (7.22) as⎡⎢⎢⎢⎢⎢⎣
ˆ
¯
D[i] 0

¯
b 0 0

∗ Ŵ[i] d 0 0
∗ ∗

¯
Ni,33

¯
Pi

¯
PiA

∗ ∗ ∗ NF,Ŵ[i]
0

∗ ∗ ∗ ∗
¯
Ni,55

⎤⎥⎥⎥⎥⎥⎦− ¯
K⊤

i ¯
Ki ≻ 0, (7.23)

where
¯
Ni,33 := 2

¯
bi+NB⊤

¯
P⊤

i ,I, ¯
Ni,55 := N

¯
P, ˆ

¯
D

[i]
+NK,I, and

¯
Ki := [0 0 −

B⊤
¯
P⊤
i 0 K] (with the function N.,. defined in Proposition 7.1). Taking

Schur complement of (7.23),⎡⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 −B⊤
¯
P⊤
i 0 K

∗ ˆ
¯
D[i] 0

¯
b 0 0

∗ ∗ Ŵ[i] d 0 0
∗ ∗ ∗ 2

¯
bi +NB⊤

¯
P⊤

i ,I ¯
Pi

¯
PiA

∗ ∗ ∗ ∗ NF,Ŵ[i]
0

∗ ∗ ∗ ∗ ∗ N
¯
P, ˆ

¯
D

[i]
+NK,I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≻ 0 (7.24)

results, with all nonlinear components collected in the diagonal blocks.
Using Proposition 7.1 on these components, we conclude that (7.16) is a
sufficient LMI condition for (7.24).

Corollary 7.1. Suppose that ZNL is feasible for Problem (7.15). Then, the so-
lution of the SDP

minZ α ∥
¯
b∥1 + β ∥ϵ̄∥1 + γr̃

s.t. (A,B,d) ∈ Σ̂T , (b̄, ϵ̄) ∈ S̄, (7.16)− (7.21),
(7.25)
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Algorithm 6: Update solution of Problem (7.15)
1) Obtain an initial feasible solution ZNL for (7.15);
2) Solve SDP (7.25) for Z, recover ZNL from the solution;
2) Evaluate the objective value α ∥

¯
b∥1 + β ∥ϵ̄∥1 + γr̃;

4) If there is a reduction from previous iteration, repeat Step 2
using ZNL for linearization. Else, terminate.

Z :=

(︄
A,B,d,Z,λ,K,

¯
b, b̄, Θ̃, r̃, ˆ̃M , ϵ̄, { ˆ

¯
D[i], Ŵ [i], i ∈ I¯m1 },

{ ˆ̄D[i], i ∈ Im̄1 }, {ˆ¯
S[i],

ˆ̄S[i], i ∈ Imx
1 }, { ˆ¯

R[i],
ˆ̄R[i], i ∈ Imu

1 }

)︄
,

is feasible for Problem (7.15), and satisfies the cost decrease condition

α ∥
¯
b∥1 + β ∥ϵ̄∥1 + γr̃ ≤ α ∥

¯
b∥1 + β ∥ϵ̄∥1 + γr̃.

□

Proof. The feasibility of Z for Problem (7.15) follows from Theorem 7.3,
and the cost decrease condition holds since ZNL is feasible for Problem
(7.25).

We propose the procedure in Algorithm 6 to solve Problem (7.15).
The convergence of this algorithm can be studied using the results in
[143, Chapter 4], and is left for future research.

Initialization procedure

We propose the following procedure to compute an initial feasible solu-
tion ZNL.

(i) Select some θ̂T > 0 through a guess to characterize Σ̂T .

(ii) Solve the LP
min
A,B,d

{∥d∥1 s.t. (A,B, d) ∈ Σ̂T }

for an initial feasible model (A,B, d).

(iii) Use the method in [76] to compute an initial RPI set ∆X = P(
¯
P,

¯
b)

satisfying (7.7a) along with a feedback gain K, while enforcing
P(

¯
P,

¯
b) ⊂ X and KP(

¯
P,

¯
b) ⊂ U .
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(iv) Compute the tightened constraint set

O0 := {x : x ∈ X ⊖∆X ,Kx ∈ U ⊖K∆X},

and then compute a PI set X t = P(P̄, b̄) using the method in [76]
for x(t+ 1) = (A+BK)x(t).

(v) Compute the remaining variables formulating Problem (7.15) by
solving

min
ZI

{r̃ s.t. (7.8)−−(7.11), (7.13)−−(7.14)},

with the optimization variables

ZI :=

(︃
{
¯
D[i],W[i], i ∈ I¯m1 }, {D̄[i], i ∈ Im̄1 }, {¯

S[i], S̄[i], i ∈ Imx
1 },

{
¯
R[i], R̄[i], i ∈ Imu

1 }, Θ̃, r̃, M̃

)︃
.

Remark 7.4. In Steps (ii),(iii), the methods in [76] guarantee the feasibility of
the SDP in Step (v), since they are also formulated using Theorem 7.2. Other
methods, e.g. [144, 44], can also be used if the feasibility of Step (v) is ensured.
□

7.4 Numerical example

We consider a nonlinear mass-spring-damper system with dynamics

F = mẍ + (Kx + KNLx
2) + (cẋ + cNLẋ

2) + Fδ,

where u = F, x = [x ẋ]⊤, and constraints X = {x : ||x||∞ ≤ 0.8},
U = {u : ||u||∞ ≤ 2.5}. We simulate the plant using ode45 integra-
tion to build the dataset D with T = 1000 at a 0.1s time interval. We
set KNL, cNL = 0.12, and uniformly sample the parameters m,K, c in
(0.44, 0.56) and Fδ in (−0.12, 0.12) at every timestep 0.1s. We then use
Algorithm 6 to synthesize a model and RPI sets required for RMPC syn-
thesis. To this end, we follow the initialization procedure described in
Section 7.3-4(b) to obtain an initial feasible ZNL for Problem (7.15). We
first parametrize the disturbance set W with mW = 10 hyperplanes.
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ẋ

x

ẋ

x

∥
¯
b∥1 ∥ϵ̄∥1 r̃

Initial 10 6.847 6
Adapt 5.564 4.005 20.613

Fix 6.557 4.513 14.865

Figure 20: Results of Algorithm 1. Gray sets-X , Green sets-Initialization, Blue
sets-(A,B, d) as optimization variables, Red sets - Fix (A,B, d) to initial values.

Then, following Step (i), we characterize the set Σ̂T with θ̂T = 1 · 10−3.
Then, we compute the initial model

A =

[︃
0.9967 0.0951
−0.0637 0.9036

]︃
, B =

[︃
0.0098
0.1914

]︃
and ∥d∥1 = 0.5816 following Step (ii). We initialize the feedback gain as
K = [−0.4140 −2.3734] which is the optimal LQR gain corresponding to
matrices Q̃ = diag(1, 15) and R̃ = 1. Then, we compute an RPI set ∆X =

(
¯
P,

¯
b) following Step (iii) with

¯
m = 10 hyperplanes using [144]. Similarly,

we compute the PI terminal set X t = P(P̄, b̄) following Step (iv) with
m̄ = 15 hyperplanes using [44]. Finally, with Step (v) we compute the
remaining variables formulating ZNL. We parameterize B(ϵ̄) with mϵ =

10 for terminal set maximization. The results obtained with Algorithm 6
with weights α = 1, β = 1, γ = 0.1 using the MOSEK SDP solver [93]
in MATLAB are shown in Figure 20. For the purpose of comparison,
we also plot the results when the model (A,B, d) is fixed to the initial
value. We observe that by allowing Algorithm 6 to adapt the system
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model using Σ̂T , we obtain a lower objective value with a larger terminal
set X t and a smaller RPI set ∆X . The model at termination is

A =

[︃
0.9967 0.0951
−0.0625 0.8990

]︃
, B =

[︃
0.0098
0.1958

]︃
and ∥d∥1 = 0.5833, and the computed feedback gain is K = [−1.7062 −
2.6306]: the model consists of a larger disturbance set than the initialized
value, with (A,B, d) optimizing (7.15) instead of best fitting the data. In
case the model is fixed to the initial value, the feedback gain at termina-
tion is K = [−1.0033 −3.0882]. In order to study the effect of the parame-
ter θ̂T characterizing Σ̂T , we run Algorithm 1 for increasing values of θ̂T .
The objective values at termination are 11.631 for θ̂T = 1 · 10−3, 11.659
for θ̂T = 1.2 · 10−3, 11.668 for θ̂T = 1.3 · 10−3, 13.4376 for θ̂T = 1.5 · 10−3:
we observe that conservativeness increases with θ̂T , while increasing ro-
bustness with respect to the underlying plant. Note that this trend is not
guaranteed since Problem (7.15) is an NLPMI.

Computational Complexity: The SDP in (7.25) consists of an LMI con-
straint with

¯
m(2nx +mW + nu +

¯
m+ 1) + m̄(nx + nu + m̄+ 1) + (mx +

mu)(2nx +
¯
m+ m̄+ 1) + (3nx + 2nu) + (nx + m̄+ 1) + nx = 1086 rows,

nxm
v
x = 8 linear equality constraints, and 2mWT + 2mW (2nx + nu) +

(2nx + nu) +mW + 2mv
x(m̄ +mϵ) = 20275 linear inequality constraints

over 2(n2
x + nxnu + nxm

v
x + 1) +mW (2nx + nu + 1) +

¯
m(

¯
m+mW + 1+

mx +mu) + m̄(m̄ + 2 +mx +mu) +mϵ = 638 variables. Over multiple
runs, the average solving time for the SDP in (7.25) on a laptop with an
Intel i7-7500U processor and 16GB of RAM running Ubuntu 16.04 is ap-
proximately 1.57s when the model is allowed to adapt, and 0.78s when
the model is fixed. We note that the number of LMI constraints and vari-
ables scale quadratically in m̄ and

¯
m. Hence, the approach can be com-

putationally expensive if a large number of hyperplanes are required for
RPI set representation. Comparing our approach to [24] using data from
a real-world system is a subject of future work.
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Chapter 8

Conclusions

The main objective of this thesis was methods to synthesize disturbance
and input constraint sets for linear time-invariant (LTI) systems subject
to constraints. To this end, optimization problems were formulated to
compute desirable large/small distrubance and input constraint sets, as
dictated by the problem specifications. A central tool in the development
of these methods was the Robust Positive Invariant (RPI) set, and com-
putation of RPI sets was embedded in the aforementioned optimization
problems. Hence, the problems were designed to co-synthesize distur-
bance/input constraint sets along with the corresponding RPI sets. In
order to facilitate the formulation of such optimization problems, new re-
sults regarding RPI sets were presented. In order to solve the resulting
optimization problems, structure-exploiting solvers were developed that
were demonstrated numerically to outperform conventional methods.

In Chapter 3, the problem of computing a safe disturbance set for an
LTI system subject to output constraints was considered. Essentially, a
safe disturbance set ensures that the corresponding reachable set of out-
puts is included in the output constraint set. Then, an optimization prob-
lem was formulated to compute a safe disturbance set that minimizes the
distance between the reachable set of outputs and the constraint set. The
reachable set of outputs is characterized by the minimal Robust Posi-
tive Invariant (mRPI) set, such that the optimization problem constrains
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the mRPI set inside the constraint set. Unfortunately, computing an ex-
plicit representation of the mRPI is generally impossible, implying that
the formulated optimization problem cannot be solved exactly. In order
to tackle this issue, an RPI set parameterized as a polytope with fixed nor-
mal vectors was used to approximate the mRPI set. New results were de-
veloped proving that if an RPI set with the user-specified normal vectors
exists, then the smallest such RPI set is unique, and satisfies a functional
equality formulated using support functions over polytopes. This equal-
ity was used to formulate an optimization problem to compute a safe dis-
turbance set parameterized as a polytope. In order to solve the resulting
optimization problem, a smoothening-based interior-point solver was
developed. The development of a specialized solver was necessary since
the optimization problem was formulated using support functions that
are inherently nonsmooth. The smoothening approach was developed
by adopting results from parameteric optimization theory, and treating
support functions as implicit functions of their parameters. Feasibility of
the smoothened optimization problem was proven, and numerical effi-
cacy as compared to alternative formulations was demonstrated.

In Chapter 4, the methods developed in Chapter 3 were used to syn-
thesize a decentralized Model Predictive Control (DeMPC) scheme for a
linear system composed of dynamically coupled subsystems and subject
to coupled constraints. This scheme was developed by considering each
dynamic coupling as an additive disturbance, such that the disturbance
set is defined by the state constraint sets of the neighbors. In order to
satisfy the coupled constraint, the state constraint set of each subsystem
was designed by explicitly minimizing the conservativeness using the
approach of Chapter 3, and locally regulating tube-based Robust MPC
(RMPC) controllers were designed for robust constraint satisfaction. A
numerical example was presented demonstrating these aspects, and the
closed-loop behavior was compared against a centralized MPC scheme.

In Chapter 5, the problem of computing safe disturbance sets was
reconsidered. An alternative approach based on implicit RPI sets was
presented to tackle the problem, in which the mRPI set within the opti-
mization problem framework was approximated with an RPI set whose
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approximation error with respect to the mRPI set could be specified a pri-
ori. This tackles the first issue encountered in the approach in Chapter 3.
New results were developed to facilitate embedding the computation of
such an RPI set within the optimization problem. Then, a novel distur-
bance set parameterization based on convex hull of polytopes was pre-
sented. This parameterization allows for the computation of disturbance
sets without a priori fixing the orientation of the normal vectors, thus re-
ducing conservativeness. Moreover, it also permits the characterization
of the set of safe disturbance sets as a polyhedron by exploiting new re-
sults concerning support functions over convex hull of polytopes. This
tackles the second issue posed by the approach of Chapter 3. In order
to solve the resulting optimization problem, off-the-shelf solvers can be
used. New approximate solution methods based on linear programing
were also presented. The proposed method was demonstrated to vastly
outperform the approach of Chapter 3, both with respect to conservative-
ness in the solution, and computational complexity. Using the methods,
a reduced-order MPC scheme was developed.

In Chapter 6, the problem of computing the smallest input constraint
set that guarantees robust stabilizability of a given set of initial condi-
tions of a constrained uncertain LTI system was presented. The size of
the input constraint set was defined by a function that could represent,
for example, economic considerations, such that the proposed techniques
can be used to solve practical problems such as actuator selection/de-
sign. In order to tackle the problem, it is assumed that the system is
equipped with a tube-based RMPC controller, formulated with unknown
input constraint set and terminal set. Then, an optimization problem was
formulated with these sets as the optimization variables, and the input
constraint set size as the objective. The constraints were defined using
robust stabilization properties of the RMPC scheme. In order to solve
the optimization problem, an iterative procedure was developed. Finite-
time termination and optimality of the iterative procedure was shown.
Also, the effect of RMPC horizon length on the solution of the procedure
was discussed. Numerical examples demonstrating the efficacy of the
procedure were presented. The methods were also extended to consider
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the effect of variation of the input constraint set on the system dynamics.
These methods were applied to perform actuator selection in a practical
problem.

In Chapter 7, a data-driven framework for RPI set synthesis was pre-
sented. In particular, it was assumed that an input-state dataset was col-
lected from a plant. Using this dataset, a method was presented to select
an uncertain LTI model of the plant that is characterized by the system
matrices along with the disturbance set, and co-synthesize RPI sets along
with corresponding invariance-inducing static feedback laws. Theoreti-
cal guarantees were provided to ensure that the identified model set ac-
counts for unseen data, i.e, any model in the identified model set can ro-
bustly represent all possible plant behaviors. An optimization problem
based on NonLinear Matrix Inequalities (NLMI) was formulated, with
the objective being a system identification criterion optimizing for tube-
based RMPC synthesis. The resulting optimization problem was solved
using Semidefinite Programing (SDP) formulated with LMI-based con-
vex underestimators from a feasible initial point. Reduced conservative-
ness of the proposed method as opposed to a sequential system identifi-
cation and controller design scheme was demonstrated using a numeri-
cal example.

8.1 Future Work

There exist several directions of future research. Broadly, they are (a)
clarifying the issues associated with the current methods, (b) extending
the methods to accommodate a broader class of systems, and (c) the de-
velopment of efficient numerical optimization algorithms.

Chapter 3: The first research question is the characterization of set of
matrices E of pre-specified complexity satisfying Assumption 3.2. These
matrices parameterize RPI sets of the uncertain LTI system, and they can
currently be characterized using bilinear conditions through LP duality.
However, characterizing them using linear conditions can simplify the
identification of such matrices, thus expanding their practical applicabil-
ity. The second research question is the a priori specification of approx-
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imation error of an RPI set parameterized with matrix E with respect
to the mRPI set. In order to facilitate such a specification, an additional
constraint enforcing the inclusion of the RPI set inside a µ-RPI set can
be formulated, where µ is the approximation error. This can be done by
adopting the results in Chapter 5, and inclusion encoding can be per-
formed using existing results from literature. However, a more attractive
direction is the characterization of matrices E that guarantee an upper-
bound on the approximation error. With respect to the smoothening-
based optimization algorithm, efficient Hessain computation/approxi-
mation methods can be derived, since the current method is very de-
manding with respect to memory requirements. Finally, extension of the
method to accommodate the computation of a static feedback law, and
development of results regarding polytopic sets can also be considered.

Chapter 4: Extension of the method to co-synthesize local static linear
feedback laws satisfying Assumption 4.2 can be considered. Moreover,
the extensions of the scheme to exploit partial communication between
the controllers is a viable research direction, and explicit enforcement
of RMPC feasibility from a given set of initial states can improve the
practical applicability of the scheme.

Chapter 5: Future research can be directed towards the computation of
safe disturbance sets for polytopic systems. This requires the extension
of results in the chapter to ensure that the µ-RPI condition is satisfied for
all systems belonging to a given polytopic set, as well as development of
efficient inclusion encoding techniques inside the output constraint set.
We believe that the methods in this chapter present a much improved ap-
proach (both with respect to conservativeness and computational com-
plexity) as compared to those in Chapter 3 for safe disturbance set com-
putation, and hence should be adopted in practice if additional require-
ments such as those in Assumption 5.4 are not present. Thus, the devel-
opment of inclusion encoding techniques to satisfy requirements such
as Assumption 5.4 by construction also presents an attractive research
direction. Such techniques can also be used to accommodate the inclu-
sion corresponding to the distance condition, thus eliminating nonlin-
earities in the eventual optimization problem formulation. Alternatively,
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the configuration-constrained polytopic parameterization presented re-
cently in [149] provides a very attractive opportunity, owing to the fact
that they permit encoding both inner and outer inclusions using linear
inequalities. Such properties also allow for the design of DeMPC con-
straint sets presented in Chapter 4 using implicit RPI sets through linear
programs, thus reducing conservativeness further, while also being con-
siderably cheaper in terms of computational requirements.

Chapter 6: Results permitting the co-synthesis of a linear static feed-
back law, along with the input constraint set and terminal set can be de-
veloped. Moreover, the formulation can be enhanced to explicitly ac-
count for modification in the dynamics while performing actuator selec-
tion. At the moment, we lump this modification into the uncertainty set.
However, by exploiting the structure of the modification, solutions with
reduced conservativeness can be computed.

Chapter 7: Efficient methods to estimate the robustness parameter θ̂T
satisfying Assumption 7.2 can be developed. Moreover, modifications
to Theorem 7.1 in order to reduce the conservativeness in the model set
can be considered. While the proposed methods can be extended using
existing results from literature to accommodate the identification of LTI
models with parametric uncertainty, development of a result similar to
Theorem 7.1 for robustness guarantees in the presence of parametric un-
certainty is a future research subject.
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Appendix A

Illustrative example details

The matrices used in Example (A) are the following.

A =

[︃
1.3 1
0 1

]︃
,

B =

[︃
0.5
1

]︃
,

C =

[︃
0.8871 1.2831
0.1371 −2.5575

]︃
,

D =

[︃
−1.8067
−0.5819

]︃
,

Bw =

[︃
0.5316 1.1882
1.0656 0.3695

]︃
,

Dw =

[︃
0.4630 1.3621
1.0368 −1.8349

]︃
,

F =

[︃
38.4106 −8.5980 −9.3035 −2.0243 2.7624 8.2472
27.9082 14.8918 −6.7597 −19.2643 −26.2888 −25.3847

]︃⊤
,

W = {w : Fw ≤ 1} ,
Q = diag(1, 10), R = 1, K =

[︁
−0.6543 −1.2067

]︁
.
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Appendix B

Implementation of
Constraints (5.65)

Defining P[l] :=
[︁
CAl−1B CAl−2B . . . CAB CB D

]︁
, we imple-

ment constraints Cww +Czz = h and Dxx+Dw̄w̄ ≤ 0 as

Cw⏟ ⏞⏞ ⏟⎡⎢⎢⎣
P[l]

. . .
P[l]

⎤⎥⎥⎦

w⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1
[10]

...
w1

[1l−1]

w2
[1]

...
w1

[vY0]

...
w1

[vY l−1]

w2
[vY ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

Cz⏟ ⏞⏞ ⏟⎡⎢⎢⎣
0 I

...
. . .

0 I

⎤⎥⎥⎦z =

h⏟ ⏞⏞ ⏟⎡⎢⎢⎣
y[1]

...
y[vY ]

⎤⎥⎥⎦,

Dx⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎢⎢⎣
IN ⊗

[︃
−I
−I

]︃
IN ⊗

[︃
−I
I

]︃
0 0

...
...

...
...

IN ⊗
[︃
−I
−I

]︃
IN ⊗

[︃
−I
I

]︃
0 0

⎤⎥⎥⎥⎥⎥⎥⎦x+

Dw̄⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

IN(l+1) ⊗
[︃
I
−I

]︃
. . .

IN(l+1) ⊗
[︃
I
−I

]︃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
w̄ ≤ 0,

196



where w̄ :=
[︂
w̄⊤

[1] . . . w̄⊤
[vY ]

]︂⊤
, with each element defined as

w̄[i] :=
[︂
w̄1⊤

[i01] . . . w̄
1⊤

[i0N ] . . . w̄
1⊤

[i l−1 1] . . . w̄
1⊤

[i l−1 N ] w̄2⊤

[i1] . . . w̄
2⊤

[iN ]

]︂⊤
.

We implement constraint Tββ = 1 with Tβ = IvY(l+1) ⊗ 11×N , where

β :=
[︂
β̄⊤
[1] . . . β̄⊤

[vY ]

]︂⊤
with each element defined as

β̄[i] :=
[︂
β1⊤

[i01] . . . β
1⊤

[i0N ] . . . β
1⊤

[i l−1 1] . . . β
1⊤

[i l−1 N ] β2⊤

[i1] . . . β
2⊤

[iN ]

]︂⊤
.

Denoting ÎN :=
[︁
ImY · · · ImY

]︁⊤ ∈ RmYN×mY , we implement constraint
Ax ≤ b as

A⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IN ⊗ |Ḡ[0]B| IN ⊗ Ḡ[0]B −ÎN
IN ⊗ |Ḡ[1]B| IN ⊗ Ḡ[1]B −ÎN

...
...

. . .

IN ⊗ |Ḡ[s−1]B| IN ⊗ Ḡ[s−1]B −ÎN
IN ⊗ |GD| IN ⊗GD −ÎN

ImY ImY . . . ImY ImY

IN ⊗ |ĨnxB| IN ⊗ ĨnxB[︁
−Inw

0
]︁ [︁

−Inw
0
]︁[︁

−Inw
0
]︁ [︁

Inw
0
]︁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϵw[1]
...

ϵw[N ]

w̄[1]

...
w̄[N ]

Q[0]

...
Q[s−1]

r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

b⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

0

0

g − λ
∑︁s−1

t=0 |Ḡ[t]|1

γ1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Finally, we implement constraint Ezz ≤ 0 with Ez =

⎡⎢⎣−I H
...

. . .
−I H

⎤⎥⎦ .
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