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Abstract

In order to provide better quality on a variety of equipment, services and
new technologies to the community, periodic materials as laminates and
periodic structures as foams are constantly gaining more attention world-
wide, due to the fact that these structures present suitable mechanical
behaviours, enhanced physical properties and are yet low-cost. There-
fore, it is crucial to understand how these structures respond for different
physical and mechanical problems. The present thesis exploits how cer-
tain periodic structures behave and respond under thermo-mechanical
loading and fracture phenomena.
In the first part of the thesis, a multi-scale variational-asymptotic ho-
mogenization method for periodic microstructured materials for ther-
moelastic problems with one relaxation time is exploited. The asymp-
totic expansions of the micro-displacement and the micro-temperature
fields are rewritten on the transformed Laplace space and expressed as
power series of the microstructural length scale, leading to a set of re-
cursive differential problems over the periodic unit cell. The solution of
such cell problems leads to the perturbation functions. Up-scaling and
down-scaling relations are then defined, and the latter allow expressing
the microscopic fields in terms of the macroscopic ones and their gra-
dients. The variational-asymptotic scheme to establish an equivalence
between the equations at macro-scale and micro-scale is developed. Av-
erage field equations of infinite order are also derived. The efficiency
of the proposed technique was tested in relation to a bi-dimensional or-
thotropic layered bodies with orthotropy axis parallel to the direction
of the layers, where the mechanical and temperature constitutive prop-
erties were well established. The dispersion curves of the homogenized
medium, truncated at the first order are compared with the dispersion
curves of the heterogeneous continuum obtained by the Floquet-Bloch
theory. The results obtained with the two different approaches show a
very good agreement.
The second part of the thesis is focused on assessing the occurrence of
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fracture in Triply Periodic Minimal Surfaces (TPMS) foams subjected
to compressive loading. TPMS, described by the mathematics commu-
nity, may be exploited as a backbone for developing a new class of foams
with open porosity for a wide range of engineering and biomedical appli-
cations. Therefore, a comprehensive analysis of their fracture response
is fundamental and is herein attempted. To this aim, a 3D phase field
model is outlined and applied to TPMS foam structures under com-
pression, with the goal to predict critical points for crack nucleation,
potential crack paths, and the stiffness and maximum compressive stress
of the unit cell, which can be related to the apparent Young’s modulus
and apparent strength of a macro-scale composite made of such TPMS
unit cells. A careful mesh sensitivity analysis was conducted on the
specimens, to provide guidelines on how to identify the optimal finite el-
ement discretization consistent with the internal length scale parameter
of the phase field approach to fracture. The major predicted mechanical
properties for five different TPMS open foams, and for different levels
of porosity, are summarized in Ashby plots. The predicted trends are in
agreement with previous results on TPMS taken from the literature and
show that TPMS can outperform standard Aluminium open foams.
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Chapter 1

Introduction

1.1 Periodic materials

Periodic structures, such as composite laminates consisting of substructures period-
ically arranged, have been drawn attention because of their inherent characteristics
that the periodicity attribute bring. For instance, periodic layered materials present
unique dynamical features which make them act as mechanical filters in wave propa-
gation. Apart from man-made materials and motivated by Richard’s Feynman quote
"We are not to tell nature what she’s gotta be... She’s always got better imagination
than we have.", nature provides fundamental structures that, once they are unre-
vealed by science, they might be utilized and replicated for our own purposes. So
much so, soap films, as known as minimal surfaces, and the periodic minimal sur-
faces structures, have been widely identified and applied in a broad range of scientific
fields. Overall, the present thesis addresses some physical and mechanical problems,
mathematically modelling them using some cutting-edge techniques in thermoelastic
wave propagation and fracture mechanics, which the capability of the models are
assessed over materials with periodic features. This section mainly concerns to a
brief discussion on these periodic materials (partially taken from [16, 17]).

1.1.1 Layered materials and applications

A layered material, or simply a laminate, is an example of a composite material
which is made of a combination of materials stacked on each other to form a new
material system, which will present enhanced chemical resistance and tailoring prop-
erties compared with the conventional materials one by one separately, as raw steel
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[18]. A notorious example from history that can be cited is the Japanese Samurai
swords. Samurai warriors combined laminated metals to forge their swords, these
combinations allow designing desired shapes and contours, and aside from aesthet-
ics, these combinations were aimed to produce structural advantages as, low weight
and high stiffness at the same time, which leads to less susceptibility to breakage
upon impact, and even more affordable swords. With the fast industrial develop-
ment, composite materials are being currently used in the components of aircraft,
helicopters, satellites, space shuttles, automotive vehicles, among other applications
[19], some examples are displayed in Fig. 1. It has been analyzed the dynamical
characteristics of wave propagation in periodic layered materials, where they work
as mechanical filters for the frequency bands [20].

(a) Automotive vehicles engineering. Source
[21].

(b) Aerospace engineering. Source [22].

Figure 1: Industrial applications of laminated composites.

Composite materials, as well as laminates, can be viewed from their physical
properties which are classified either the microscopic and macroscopic level to de-
scribe the scale of material characterization. The term macroscopic is related to
the properties of the bulk, in other words, it concerns to the overall behaviour of
the system, in the context of the present work, to the layered material as a whole,
meaning that a macromechanical analysis considers the averaged properties of the
composite. Whereas, the term microscopic deals with the constituents properties
and elements of the composite, it refers to the fundamental structure of the mat-
ter. Thus, a micromechanical analysis recognizes the heterogeneity of the material,
and calculated properties from this analysis might serve as basis for input into the
analysis for predicting macrostructural properties. Naturally, from the definition of
anisotropy, an orthotropic continuum means that the mechanical, physical, thermal
and electrical properties of the material are different in three mutually orthogonal
directions [23].

Nowadays, material availability, economics and market competitiveness are dic-
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tating the role laminate composites are playing in engineering design by the optimiza-
tion of the cost-effective manufacturing process. In fact, for some aircraft structural
components, more than 30% weight savings in existing metal structures are achieved
by using composite materials, representing impressive performance gains [1]. Fig. 2
shows an example of a laminate periodic-like composite used in aircraft fuselage skin.
Additionally, modeling combined phenomena as elasticity and heat transfer on multi-
phase materials containing a periodic microstructure, such as laminates, is a topic of
vast importance in modern applications, such as aerospace, aircraft, biomedical and
electronics [24–28]. Laminates are also often engaged in photovoltaic modules. Re-
garding to thermoelastic phenomenon, thermo-elastic deformations in photovoltaic
laminates have been analytically investigated in [29]. Nonetheless, a plethora of
problems are assumed on heterogeneous continuum with a small accuracy over the
microstructural length scale. Furthermore, deriving the solution of standard physi-
cal phenomena, as the governing thermoelastic partial differential equation with one
relaxation time tackled in Chapter 2, may be cumbersome both analytically and
numerically, due to the periodicity of the media [30, 31].

Figure 2: Laminated panel in aircraft fuselage skin. Taken from [1].

In order to provide a novel perspective to approach the solution of several phe-
nomena within composite materials, specially layered medias, the multi-scale vari-
ational asymptotic homogenization arises among them, which has been well estab-
lished in earlier works [32–35]. Multi-scale variational asymptotic homogenization
show themselves as effective tools for determining the responses of the microscopic
phases on the overall properties of the composites, by replacing the heterogeneous
continuum by an equivalent homogenized model, whose solutions are good approxi-
mations of the real ones, but are characterized by constitutive tensors not affected by
the fast variable which gives rapid oscillations due to the underlying microstructure.
Therefore, such procedure is computationally effective [36, 37].
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1.1.2 Triply Periodic Minimal Surfaces and their applications

As it will be seen forthcoming in Chapter 3, Section 3.1.1, a minimal surface can
be interpreted as a surface that is locally area minimizing when a boundary curve
is given, specifically they may also be defined as surfaces with zero mean curvature
[38, 39], i.e. the arithmetic average of the principal curvatures vanishes everywhere
on the surface. Started by Plateau’s experiments over surface tension with soap
films in the mid of the 19th Century [40], those experiments had demonstrated the
existence of stable surfaces with least area bounded by a closed curve, and known
nowadays as Plateau’s Problem. Lately, resolving Plateau’s problem regards to the
minimization of the energetic cost of the surface, since the total interfacial energy
depends on the amount of interface, and hence, on the principal curvatures [41].

Intuitively, a legitimate question rises, beside soap films, whether such behaviour
is reproduced by nature. Indeed, minimal surfaces are frequently seen in natural
objects, for instance, in beetle shells, weevils exoskeletons [2, 3] (see Fig. 3), crus-
tacean skeletons [42–45], trabecular bone [46, 47], whose interface presents mean
curvature near to zero everywhere. Figs. 4 and 5 show minimal surfaces structures
in butterfly wing scales [4, 5, 48], where interestingly the blue color seen over the
butterfly wing in Fig. 5 is particularly patterned by the mathematical geometry of a
minimal surface, rather than other biological-chemical feature [6]. In what concerns
to engineering applications, minimal surfaces have been widely used in several areas
of knowledge. The engineer Otto Frei designed the Olympic stadium, depicted in
Fig. 6, in Munich for the 1972 Summer Olympics based on minimal surfaces [49].

In this context, Triply Periodic Minimal Surfaces (TPMS) are minimal surfaces
which have periodicity throughout the three space dimensions. TPMS struts are
flourishing as objects of great interest to physicists, biologists, and mathematicians
[50, 51]. From the standing point of mechanics, it has proved TPMS are not only
geometrically extremal but extremal for heat and mass transport, electric conduc-
tion, leading to applications involving chemical reactions, permeability (see Fig. 7a),
catalytic converters, fuel cells, batteries electrodes (Fig. 7b) and heat exchangers
[52–58].

Studies demonstrate that TPMS sheet solids are a type of scaffold architecture
with significant potential benefits for tissue engineering and bone replacement, as
illustrated in Fig. 8 [8, 60, 61], and most recently for osseo-integration in root
implant [62]. On this regard, thanks to developed automated assembly and additive
manufacturing (AM) techniques [63–66], progress have been made in manufacturing
TPMS cellular materials for engineering applications for orthopedic applications
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Figure 3: Weevil Lamprocyphus Augustus exoskeleton. Adapted from [2, 3].

Figure 4: Callophrys Rubi butterfly wing scales. Adapted from [4, 5].

[59, 67–70]. They also showed enhanced mechanical properties when compared to
other cellular structures, and thus are promising candidates for various technological
applications regarding compressive and tensile regimes [71, 72].

On one hand, analysis from experimental tests of TPMS geometries in quasi-
static compressional regimes are being pursuit. On the other hand, fewer studies are
exploiting numerical models on TPMS structures to assess fracture behaviour and
deformation mechanism (see for example [73–75]). Consequently, as good headway is
being made on developing, implementing and analyzing methods for brittle fracture
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Figure 5: Morpho Sulkowskyi butterfly wing scales. Adapted from [6].

Figure 6: Olympic Stadium in Munich. Source [7]

for solid shells [76], fiber composites [77, 78], and for surfaces with complex topologies
[79], Chapter 3 evidences the numerical phase field model applied to open foams
TPMS like structures.
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(a) Nonclogging scaffold composed of a semipermeable
membrane with Primitive design. Taken from [59].

(b) Energy storage nano-3D Li-
ion/sulfur system made of functional
anode and cathode nanonetworks
separated by a Gyroid-like electrolyte
phase within a single 3D nanostructure.
Adapted from [53].

Figure 7: Usage of TPMS structures in different engineering applications.

(a) Femur bone scaffold composed of Di-
amond internal architecture.

(b) Iliac bone scaffold composed of Primitive internal
architecture

Figure 8: TPMS scaffolds bone engineering. Adapted from [8].

1.2 Generalized thermoelasticity theory and ho-
mogenization techniques

The thermoelasticity phenomenon bonds together a set of theories [80]. Namely,
the general theory of heat conduction, thermal stresses, and strains set up by ther-
mal flow in elastic bodies, and the reverse effect of temperature distribution caused
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by the elastic deformation itself leading to thermoelastic energy dissipation. The
generalized thermoelastic theory to be tackled forthcoming in Chapter 2 (partially
taken from [16]), plays a relevant role when wave propagation is being analysed and
reported in certain specific regimes, where the traditional theory lacks to describe
experimental observations. Furthermore, given the fact that deriving the solution of
the generalized thermoelastic problem on a material with periodic micro-structure
by analytical and/or numerical methods can be worrisome, an homogenization tech-
nique for the generalized thermoelastic problem is further derived, opening another
path for obtaining the solution.

1.2.1 Thermoelastic problem with one thermal relaxation time

The main theory of thermoelasticity based on Fourier’s law of heat conduction,
leaves thermal perturbations propagate at infinite velocity in a diffusive manner,
once the coupled displacement-temperature governing equation is a parabolic-type
partial differential equation [80–82]. In practical terms, this means that when a
temperature gradient is suddenly produced in some region of the sample, this entails
in an instantaneous disturbance at each point of the material [83, 84]. However, there
are some experimental observations, as [85] pinpointed, where the temperature acts
like a wave propagating through the body with finite speed, commonly referred to as
second sound [86, 87]. The pattern of the heat wave propagation has been observed
in superfluids, inhomogeneous materials like sand and processed meat, [88, 89], and
in pure crystals, [90]. Moreover, this factor contradicts the physical affirmation that
for a finite time interval a disturbance of bounded support may only generate the
response of a bounded support [85, 91, 92].

In order to overcome such a paradox above described, recent developments were
made as [93] mentions, and a couple of generalized thermoelastic theories have flour-
ished. The idea of a generalized thermoelasticity with one relaxation time was intro-
duced in [94] by Lord-Shulman, originally proposed by Maxwell [95] in the context
of theory of gases, and later by Cattaneo [96] in the context of heat conduction in
rigid bodies [85]. In this theory, a modified law of heat conduction including both
the heat flux and its time derivative replaces the conventional Fourier’s law [97].
The heat equation associated to this theory becomes hyperbolic and hence elimi-
nates the paradox of the propagation of thermal signals with an infinite speed. The
equations of motion and constitutive relations, remain the same for both theories of
thermoelasticity, the uncoupled theory and the coupled one [94].
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1.2.2 Variational-Asymptotic homogenization on materials with
periodic microstructure

At this stage, it must be highlighted that various homogenization methods have
being applied to study the overall properties of multi-phase periodic materials, which
may be classified in asymptotic technique [98–102], variational asymptotic schemes
[37, 103–106], analytical paths [107–111], and computational approaches [100, 112–
120]. In what concerns to periodic materials in presence of thermoelastic effects,
as seen in [121–123], the homogenization method has been investigate therein, and
developed in the context of thermoelastic periodic material with pertinent physical
applications highlighted in [124]. Furthermore, a variational-asymptotic technique
for thermoelastic periodic materials was brought in [125].

As a matter of fact, cutting edge research regarding asymptotic homogenization
techniques, variational-asymptotic approaches and computational methods are be-
ing made along several multi-phase materials in presence of certain phenomena. For
instance, the asymptotic homogenization technique over piezoelectric composite ma-
terials may be found in [126–129] and on thermal-piezoelectric materials with a peri-
odic microstructure via asymptotic schemes can be checked in [130]. Also, multiscale
homogenization schemes have been applied to characterize the behaviour and the
global constitutive properties of viscoelastic heterogeneous materials with periodic
microstructure [131–134]. Particularly, in the latter case, the variational-asymptotic
homogenization method was proposed in order to characterize the propagation of
dispersive waves in viscoelastic materials with periodic microstructure. Likewise, the
homogenization approach for describing the elastic, thermal and diffusive properties
of periodic materials on periodic layered materials in presence of thermal-diffusion
has been explored by [135–137]. Effective analysis on heterogeneous continuum in
presence of thermal-mechanical and thermal-magneto-electro-elastic deformations
have been studied by [138–140] and [141], respectively.

1.3 Phase Field to brittle fracture
In the field of Fracture Mechanics, Phase Field to brittle fracture theory approxi-
mates the crack discontinuity sharp edges incorporating a continuous variable, called
the phase field function, by which a continuous and well behaved transition describes
the solid phases during some loading regime between the fully broken and intact
states. Postulated by Griffith in 1921 [142], his approach is based on the equilibrium
of the energy of the system. Expressly, Griffith introduced the concept of energy
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release rate 𝒢 as being the energy released per unit area by a crack in brittle elastic
materials. It was also noted by him that failure of a quasi-static crack occurs when
the energy release rate reaches a critical value dissipated by the surface for any rate
of evolution of the area (𝒢 = 𝒢𝑐), named the critical energy release rate 𝒢𝑐, con-
sidered as a material property, and the crack grows monotonic and continuously in
time. In fact, as long as 𝒢 < 𝒢𝑐, the system remains stable, i.e. the crack length
does not change, since the energy released is less than energy required to occur the
propagation of the crack tip. A posteriori, it was postulated the irreversibility crite-
rion of the fracture process and the evolution of the crack area 𝐴̇ [143–146]. Thus,
the modified/generalized Griffith’ criteria can be condensed as⎧⎨⎩ 𝐴̇ ≥ 0 Irreversibility

(𝒢𝑐 − 𝒢) ≤ 0 Griffith’s criterion
𝐴̇(𝒢𝑐 − 𝒢) = 0 Energy Conservation

, (1.1)

known also as Kuhn-Tucker conditions [147].
Having established that, such a procedure, which will be outlined in Chapter

3 Sec. 3.2, is then presented and detailed so the fracture mechanisms of TPMS
topologies can be derived by the implementation of a finite element method for
phase field, which states the framework among compressive experimental works.
The progress that have been made in these regards are briefly introduced in this
section (partially taken from [17]).

1.3.1 Quasi-static uniaxial compressive Phase Field modelling
to TPMS

The pioneering formulation of phase field theory from Griffith’s energy-based crite-
rion is particularly attractive by the ability to elegantly simulate complicated quasi-
static fracture processes including crack nucleation, propagation and branching of
cracks The theory is governed by a minimization problem of an energy functional as
a function of the displacement field and the crack surface, where the crack surface
is battered by a function that regularizes the discontinuity of the original energy
functional, as described by Francfort [148]. The minimization of this functional of
the solid results in a set of admissible cracks and displacement fields on the material.
Nonetheless, this problem is rather cumbersome to be tackled since the crack surface
is not known a priori. Driven by this issue, the phase field approximation emerged,
which regularizes the variational formulation, i.e., overcomes the crack discontinuity,
and thus eases the numerical implementation of the problem. The regularization,
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initially presented in [149] for image segmentation, was applied by Bourdin et al.
[143] to fracture in brittle materials. This regularization replaces the use of the crack
surface as a variable by a continuous scalar field, called crack phase field, which in-
terpolates continuously and smoothly between the state of intact material and the
state of fully damaged material. Such an approximation regularizes the topology of
a crack surface through the so-called crack surface density function, governed by the
new variable set by a regularization parameter responsible for controlling the width
of the damaged region.

Experimental studies in quasi-static compressional regimes have been proposed
[13, 68, 150–153] to assess stiffness, strength, energy absorption, and also perme-
ability of TPMS structures (see for instance Fig. 9). The effect of the volume
fraction (also defined as the complement to unity of porosity) has also been scru-
tinized [154–157]. Numerical results by [158] have shown that a volume fraction of
30% is desirable or cell in-growth in bone tissue engineering. The energy absorption
ability of some graded and uniform open foam TPMS specimens made via AM were
discussed in [12, 64], whereby also micro-cracks were registered during compression
tests.

Mechanical properties were derived through AM fabricated TPMS lattices having
Titanium alloy Ti–6Al–4V [159–161], and Aluminium alloy Al–Si10–Mg [13, 162], as
main materials. In the latter, it was stated that choosing a small unit cell size can
avoid low-strain structural failure caused by localized fracture and crack propagation.
In addition, thereby it has been stated that due to the complex geometry, the crack
initiation site is difficult to be spotted, as well as the crack paths were complicated to
be determined. At this point, it is worthy noting that inherent problems of different
AM techniques and different microstructure properties of the material might lead to
different crack patterns, where inevitable micro defects from the fabrication process
might serve as nucleation sites, as well as contribute to smaller volume fraction
values of the manufactured lattices compared with the effective volume fractions of
the TPMS original CAD models, see for example Fig. 10 [9, 163]. For instance, in
[164], it was noted that excess of Ti–6Al–4V alloy powders adhered to the surface
of the sample led to a thicker sheet, affecting the geometry accuracy and roughness
of the fabricated specimens. In [68], microscopic images showed crack formation
sites at manufacturing imperfections and at small pores in the bulk. Besides, due
to the TPMS continuous rate of curvature, TPMS cells do not have notches (sharp
zones), which can act as stress concentrators, minimizing crack nucleation sites from
staircase effect inherent to AM techniques, as seen in Fig. 11 [10]. By so, TPMS tend
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to present improved fatigue resistance in comparison to other conventional lattice
structures (truss-based) with the same volume fraction.
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(a) Aluminium alloy TPMS sheet networks additively manufactured under compression.
Adapted from [13].

(b) Maraging steel TPMS sheet networks additively manufactured
under compression. Taken from [151].

Figure 9: TPMS metal based lattices fabricated using AM techniques under com-
pressive loading.
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(a) Primitive cluster lattice.

(b) IWP cluster lattice.

Figure 10: Micro defects identification from scanned and reconstructed TPMS lat-
tices additively manufactured. Taken from [9].

So far, the majority of simulation work for structural integrity analysis of TPMS
has been confined to the identification of elastic instabilities and plasticity [9, 150,
158, 165]. On that account, the present work exploits the phase field approach to
fracture to numerically tackle and characterize the above open issues, assessing/es-
timating brittle fracture, crack sites, nucleation, propagation and branching under
uniaxial compressive loads of TPMS unit cell open foams. Furthermore, such a char-
acterization will be advantageous in understanding how the damage pattern might
correlate to the TPMS geometry and their aforementioned mechanical properties,
advancing on the researches made to date.

1.4 Aims and structure of the dissertation

Inspired by those studies where the mechanical and physical phenomena are ex-
ploited on periodic material, this work presents novel contributions on these regards.
More precisely, the work presents an original theoretical framework to characterize
the overall properties, namely elastic and thermal, of multi-phase periodic materials
governed by Lord-Shulman generalized thermoelasticity equation via variational-
asymptotic homogenization. The procedure replaces the heterogeneous continuum
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(a) Octahedron truss
based.

(b) Gyroid sheet network
based.

Figure 11: Illustration of residual particles attached after AM processing technique.
Adapted from [10].

by some homogeneous model led by an homogenization approach, combining the
generalized theory of thermoelasticity with periodic spatially dependent one time re-
laxation with the homogenization technique in periodic laminated materials, which
are in constant growth on a plethora of applications in engineering and in overall
technology. Moreover, from the studies and results over fracture mechanics afore-
mentioned, it is suffice to say that robust breakthrough relationships between TPMS
cell geometries and their numerical performances from phase field theory must be
established. Thus, the objective towards this endeavour is also modelling fracture
over TPMS by means of phase field, furnishing to the academia a powerful tool to
characterize and estimate the evolution of damage caused by the crack propagation
over TPMS foam topologies.

Throughout Chapter 2, the Lord-Shulman generalized thermoelastic governing
equations are homogenized and applied to the laminated periodic material. In the
following, Section 2.1 recalls the fundamentals of thermoelasticity with one relax-
ation time at the micro-scale, which describe the non-homogeneous medium, in the
time domain. Subsequently, the generalized thermoelasticity with one relaxation
time is transformed by the bi-lateral Laplace transform, once the relaxation time
varies within the material phase. Such a strategy takes the real time dependent
input to the Laplace domain (complex frequency domain), aiming the separation
of the fast from the slow variables in a periodic media and by so separating as
well the time relaxation time from the partial derivative in time contained in the
differential operator induced by Maxwell-Cattaneo law. In Sections 2.2 and 2.3,
the micro-displacement and micro-temperature fields are rewritten as power series

15



expansions of the microstructural length scale, such that a cascade of recursive non-
homogeneous differential problems is defined over the periodic unit cell. From this
point, the solvability conditions are imposed to these recursive differential problems,
arising from the down-scaling relations, which are written in terms of the perturba-
tion functions. Sections 2.4 deals with the substitution of the down-scaling relations
into the microscopic field equations, producing the governing equations at infinite
order given in closed form in terms of the microscopic constitutive properties and the
perturbation functions. The variational-asymptotic to establish an equivalence be-
tween the equations at macro-scale and micro-scale procedure and the zeroth order
truncation is tackled in Section 2.5. Thereby, truncating the average field equation
of infinite at the zeroth order, and by a variational problem over the power-like
functional, the global constitutive tensors are defined.

Some analytical applied examples are stated in Section 2.6. Whereby, wave
propagation analysis from related dispersion functions are reported, in order to as-
sess the capability of the method through the study of thermal wave propagation
over a two-dimensional bi-layered continuum with a periodic microstructure with
orthotropic phases and axis of orthotropy parallel to the direction of layering. The
overall mechanical and thermal properties are analytically determined in terms of the
physico-mechanical parameters of the microstructure, which are dependent on the
relaxation time. By determining the frequency equation, it furnishes the necessary
tools to obtain the frequency spectrum of the material in order to analyse and com-
pare the wave propagation of the variational-asymptotic homogenized model with
the heterogeneous media via Bloch waves. So much so, throughout Section 2.7, the
method is applied for studying the overall properties of two-dimensional bi-layered
orthotropic composites. Specifically, the overall elastic, thermal dilatation and ther-
mal conduction tensors are determined in their analytic form, a benchmark and some
analysis are pursuit. In addition, it has been analysed the behaviour of the absence
of the relaxation time, comparing with different scenarios containing it. Needless to
say that, the generalized Lord-Shulman thermoelastic problem studied becomes the
conventional thermoelastic problem in presence of a vanishing relaxation time.

Further mathematical details exploring the Euler-Lagrange equation via power-
like functional at micro-scale are outlined in Appendix A. The derivation of frequency
spectrum and ad hoc background via Floquet-Bloch theory within the heterogeneous
continuum, as well as the dispersion relations through the transfer matrix theory,
which allows the benchmark analysis against the homogenized model, have been
substantially developed in Appendices B, C and D.
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Subsequently, a consistent quasi-static uniaxial compressive Phase Field model
using spectral diagonalization of the strain tensor has been proposed, among a clear
definition of Minimal Surfaces, as well as the concept of Triply Periodic Minimal
Surfaces, and their derivation/generation in CAD models are exploited in Chapter
3. Furthermore, the novelty application of the phase field scheme in TPMS unit
cell foams is exhaustively dealt and contrasted with existing literature, analyzing
fracture mechanics in TPMS on compressive regimes. To this aim, Section 3.1 is
dedicated in establishing the mathematical concept of a minimal surface and TPMS
from some different theoretical standing points, presenting as well a brief overview of
some notorious historical minimal surfaces and their shaped soap films. Section 3.2
presents the phase-field variational approximation to brittle fracture theory. More-
over, thereof the mathematical background in which the phase field finite element
method has been derived, is shown in Section 3.2. The finite element model has
been developed and implemented on the open-source software FEniCS [166], seen in
Section 3.3. Still, by assigning a thickness to the thin minimal surfaces, CAE-CAD
models of TPMS are designed utilizing either the software Mathematica [167], or
by the software developed at the University of Nottingham, FlattPack, they have
been imported into the phase field FEM. Also throughout Section 3.3, by setting the
boundary conditions and material properties, an extensive mesh sensitivity analysis
has been conducted over the unit cells of the following TPMS geometries: Primi-
tive, Gyroid, IWP, Diamond and Neovius. Ultimate compressive stresses and the
apparent Young’s moduli in compression are calculated via the stress-strain curves
predicted by the phase field simulations. Section 3.4 delineates the characterization
of the fracture patterns and the deformation behaviour of the five TPMS unit cell
foams studied. Ultimately, in Section 3.5, the estimated mechanical properties of
the five types of TPMS unit cells, for different porosity values, have been reported
on Ashby charts [152, 168, 169], describing the relationship among them. Moreover,
in order to provide also quantitative indications to materials scientists for further
research and applications of TPMS in different fields, Section 3.5 confronts and
compares those properties with the ones from open cell aluminium alloy foams, and
TPMS sheet networks of several different metallic alloys, available in the literature
up to date.

The main conclusions achieved in this research thesis are beheld in Chapter 4.
Furthermore, future developments are summarized as well.
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Chapter 2

Variational-Asymptotic
Homogenization of
Lord-Shulman Thermoelastic
Equation in Bi-Dimensional
Laminated Material

As previously mentioned, this Chapter derives the variational asymptotic homog-
enization scheme for the Lord-Shulman thermoelastic equation. Later, the ho-
mogenized model is applied to bi-dimensional periodic laminated material with an
orthotropy axis parallel to the layering direction, whose thermal, compressional-
thermal and shear waves are derived from the dispersion relations and compared
with the results from the heterogeneous continuum via Floquet-Bloch theory, which
is outlined in Appendix 4.2. The content of this Chapter is mainly taken from [16].

2.1 Derivation of thermoelasticity with one relax-
ation time in the Laplace domain

Throughout this Section, the generalized Lord-Shulman thermoelasticity theory is
recalled, in relation to an heterogeneous periodic composite material, which will be
taken to the Laplace domain.
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Let consider an heterogeneous composite material L, Fig. 12, under the assump-
tion of small strains (for instance a stretching load), which leads to a process of
exchanging mechanical energy into thermal energy under the action of externally
applied thermal-mechanical loadings. Such procedure is then followed by temper-
ature variances and strains within the body, all of which vanish upon the removal
of the mentioned thermal-mechanical loadings. The continuum L is described as
a linear thermoelastic Cauchy medium [85, 91, 92] under stresses induced by body
forces and temperature changes due to heat source.

On each point of the material is endowed with a displacement field 𝑢(x, 𝑡) = 𝑢𝑖𝑒𝑖

and a relative temperature field 𝜃(x, 𝑡) = 𝑇 (x, 𝑡) − 𝑇0, where 𝑇 (x, 𝑡) is the abso-
lute temperature, 𝑇0 is a reference stress-free temperature. The coupled consti-
tutive relations link the stress tensor 𝜎(x, 𝑡) = 𝜎𝑖𝑗𝑒𝑖 ⊗ 𝑒𝑗 , the heat flux vector
q(x, 𝑡) = 𝑞𝑖𝑗𝑒𝑖 ⊗ 𝑒𝑗 , and the entropy per unit of volume 𝜂(x, 𝑡) = 𝜂𝑖𝑗𝑒𝑖 ⊗ 𝑒𝑗 , to the
aforementioned relevant fields 𝑢(x, 𝑡), 𝜃(x, 𝑡), that is

𝜎(x, 𝑡) = C(x)𝜀(x, 𝑡) − 𝛼(x)𝜃(x, 𝑡) , (2.1a)

q(x, 𝑡) + 𝜏(x)𝜕q(x, 𝑡)
𝜕𝑡

= −K̄(x)∇𝜃(x, 𝑡) , (2.1b)

𝜂(x, 𝑡) = 𝛼(x)𝜀(x, 𝑡) + 𝐶𝐸

𝑇0
𝜃(x, 𝑡) , (2.1c)

where 𝜀(x, 𝑡) = 𝜀𝑖𝑗𝑒𝑖 ⊗ 𝑒𝑗 is the strain tensor, C = 𝐶𝑖𝑗ℎ𝑘e𝑖 ⊗ e𝑗 ⊗ eℎ ⊗ e𝑘 is the
fourth-order elastic tensor, K̄ = 𝐾̄𝑖𝑗e𝑖 ⊗ e𝑗 is the second-order thermal conductivity
tensor, 𝛼 = 𝛼𝑖𝑗e𝑖 ⊗ e𝑗 is the second-order stress-temperature tensor, 𝐶𝐸 is the spe-
cific heat at zero strain, and for convenience we define 𝑝 = 𝐶𝐸/𝑇0. The Eqs. ẽqref are
symmetric, due to the symmetries of the tensor given by the microscopic orthotropy
structure of the material. Besides, as aforementioned, to avoid the physical para-
dox of infinite speed for the propagation of heat signal in the classical thermoelastic
equations [92], which are parabolic, a space dependent relaxation time 𝜏 is intro-
duced, known as the Maxwell-Cattaneo law replacing the Fourier law for thermal
conduction, in order to transform them into hyperbolic equations.

As the material is under the effect of small displacements, then the micro-strain
tensor is defined as

𝜀(x, 𝑡) = 1
2
(︀
∇𝑢(x, 𝑡) + ∇𝑇 𝑢(x, 𝑡)

)︀
, (2.2)

where ∇𝑢 is the gradient of the micro-displacement 𝑢(x, 𝑡).
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The following balance equations hold

∇ · (𝜎(x, 𝑡)) + b(x, 𝑡) = 𝜌(x)ü(x, 𝑡), (2.3a)
∇ · (q(x, 𝑡)) − 𝑟(x, 𝑡) = −𝑇0𝜂̇(x, 𝑡) , (2.3b)

with b = 𝑏𝑖e𝑖 being the body forces, 𝑟 the heat source per unit time per unit
volume and 𝜌 is the mass density. Throughout, 𝑡 stands for the time coordinate, the
superimposed dot denotes the derivative in relation to time, and consider 𝑟 = 𝑟/𝑇0.

Figure 12: 3𝐷 continuum domain L with periodic cell 𝒜 and its dimensionless unit
cell 𝒬.

With the thermoelasticity constitutive equations and equilibrium equations well
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established, we may thus introduce the periodic microstructure of an heterogeneous
composite material theory [170]. Let a point be identified by the position vector
x = 𝑥1𝑒1 +𝑥2𝑒2 +𝑥3𝑒3 ∈ R3 related to a system of coordinates with origin at point
𝑂 and written in terms of the orthogonal base {𝑒1, 𝑒2, 𝑒3}, on the three-dimensional
heterogeneous material L characterized by a certain periodic microstructure. Let
also 𝒜 = [0, 𝜖] × [0, 𝛿𝜖] × [0, 𝛾𝜖] be a periodic cell with characteristic size 𝜖 defined
by three orthogonal periodic vectors 𝑣1, 𝑣2 and 𝑣3, written as 𝑣1 = 𝑑1𝑒1 = 𝜖𝑒1,
𝑣2 = 𝑑2𝑒2 = 𝛿𝜖𝑒2 and 𝑣3 = 𝑑3𝑒3 = 𝛾𝜖𝑒3. The material domain is set up by attaching
three-dimensionally the cell 𝒜 in accordance to the directions 𝑣1, 𝑣2 and 𝑣3, see Fig.
12.

Due to the periodicity of the material, throughout the work the superscript
m refers to the micro-scale. Therefore, C𝑚(x, 𝑡) = 𝐶𝑚

𝑖𝑗ℎ𝑘e𝑖 ⊗ e𝑗 ⊗ eℎ ⊗ e𝑘 is the
fourth-order micro-elastic tensor, K̄𝑚(x, 𝑡) = 𝐾̄𝑚

𝑖𝑗 e𝑖 ⊗ e𝑗 is the second-order micro-
thermal-conductivity tensor, 𝛼𝑚(x, 𝑡) = 𝛼𝑚

𝑖𝑗 e𝑖 ⊗ e𝑗 is the second-order micro-stress
temperature tensor, 𝜌𝑚(x) is the material density, 𝑝𝑚(x) is the specific heat at zero
micro strain, and 𝜏𝑚(x) is the micro relaxation time. Furthermore, they obey the
following conditions

C𝑚(x + 𝑣𝑖) = C𝑚(x), (2.4a)
K̄𝑚(x + 𝑣𝑖) = K̄𝑚(x), (2.4b)
𝛼𝑚(x + 𝑣𝑖) = 𝛼𝑚(x), (2.4c)
𝜌𝑚(x + 𝑣𝑖) = 𝜌𝑚(x), (2.4d)
𝑝𝑚(x + 𝑣𝑖) = 𝑝𝑚(x), (2.4e)
𝜏𝑚(x + 𝑣𝑖) = 𝜏𝑚(x), (2.4f)

where 𝑖 = 1, 2, 3, for all x ∈ 𝒜.
In the following derivation, let us define 𝐿 and 𝜖 as the macroscopic length and the

microstructural length, respectively, where 𝐿 >> 𝜖, which gives the condition where
the scales might be separated since the macroscopic length is taken to be much
larger than the microstructural one. Let us also suppose that the heterogeneous
material undergoes to L-periodic body forces 𝑏(x, 𝑡), having zero mean values over
the continuum L = [0, 𝐿] × [0, 𝛿𝐿] × [0, 𝛾𝐿], hence L defined as above represents a
portion of the continuum. Now, regarding the dimensionless cell, let us rescale the
periodic cell 𝒜 by a factor equals to the characteristic length 𝜖, this implies that
the non-dimensional cell model of the periodic microstructure is then 𝒬 = [0, 1] ×
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[0, 𝛿] × [0, 𝛾]. Moreover, from such rescaling process it arises two variables namely,
the macroscopic (or slow) variable x ∈ 𝒜 in charge of measuring the slow oscillations
within the continuum, and the microscopic (or fast) variable 𝜉 = x/𝜖 ∈ 𝒬 responsible
in evaluating the fast heat propagation wave within the composite [34, 35, 98, 171].
Thanks to cell 𝒬, the properties presented in (2.4) are now redefined as 𝒬-periodic
over 𝒬 so the terms can be expressed by the microscopic variable 𝜉 as

C𝑚(x) = C𝑚
(︁

x, 𝜉 = x
𝜖

)︁
, (2.5a)

K̄𝑚(x) = K̄𝑚
(︁

x, 𝜉 = x
𝜖

)︁
, (2.5b)

𝛼𝑚(x) = 𝛼𝑚
(︁

x, 𝜉 = x
𝜖

)︁
, (2.5c)

𝜌𝑚(x) = 𝜌𝑚
(︁

x, 𝜉 = x
𝜖

)︁
, (2.5d)

𝑝𝑚(x) = 𝑝𝑚
(︁

x, 𝜉 = x
𝜖

)︁
, (2.5e)

𝜏𝑚(x) = 𝜏𝑚
(︁

x, 𝜉 = x
𝜖

)︁
. (2.5f)

Along with the 𝒬-periodicity assumptions made for the relations (2.4), regarding
the micro-scale, the governing equations are finally obtained by plugging the micro-
scale constitutive Eqs (2.1𝑎) to (2.2) into the micro-scale balance Eqs. (2.3𝑎) and
(2.3𝑏), also hiding the arguments for a cleaner notation, one provides

∇ · (C𝑚∇u − 𝛼𝑚𝜃) + b = 𝜌𝑚ü , (2.6a)
q + 𝜏𝑚q̇ = −(𝑇0)−1K̄𝑚∇𝜃 , (2.6b)
∇ · q + 𝛼𝑚∇u̇ + 𝑝𝑚𝜃 = 𝑟 . (2.6c)

In the particular scenario where the relaxation time 𝜏𝑚(x, 𝜉) = 𝜏 > 0 is assumed as
a constant, the governing Eqs. (2.6𝑎) and (2.6𝑏) result into

∇ · (C𝑚∇u − 𝛼𝑚𝜃) + b = 𝜌𝑚ü , (2.7a)
∇ ·
(︀
−(𝑇0)−1K̄𝑚∇𝜃

)︀
+ 𝛼𝑚𝒟(∇u̇) + 𝑝𝑚𝒟(𝜃) = 𝒟(𝑟) , (2.7b)

where the differential operator 𝒟 = 1 + 𝜏𝑚𝜕/𝜕𝑡 depending on the relaxation time
𝜏𝑚 is introduced.

22



At this point it must be highlighted that, since the periodic cell 𝒬 is composed
by two different phase materials, the relaxation time 𝜏𝑚 must be considered as space
dependent, which means 𝜏(x, 𝜉) is a 𝒬-periodic function and hence varies within the
composite material. For this reason, rather than continuing with the Eq. (2.6𝑏),
we apply the time bilateral Laplace transform, or analogously the Fourier transform
with complex argument [172, 173] to the Eqs. (2.1𝑏), (2.1𝑐), (2.6𝑎) and (2.6𝑐), in
order to separate the time relaxation 𝜏𝑚 from the partial derivative in time contained
in the differential operator 𝒟.

To clarify ideas, the time bilateral Laplace transform of a function 𝑓 : R → R is
defined as [172],

ℒ {𝑓(𝑡)} = 𝑓(𝑠) =
∫︁ +∞

−∞
𝑓(𝑡)e−𝑠𝑡d𝑡, 𝑠 ∈ C, (2.8)

where the Laplace argument 𝑠 and the Laplace transform 𝑓 are complex valued (i.e.
𝑓 : C → C ). Whereas from an analytical standing point in [172], the inverse Laplace
transform of a function 𝑓(𝑠) is defined as

ℒ−1
{︁
𝑓(𝑠)

}︁
= 𝑓(𝑡) = 1

2𝜋i

∫︁ 𝑥+i∞

𝑥−i∞
e𝑡𝑠𝑓(𝑠)d𝑠, (2.9)

where the integration is along the vertical line ℜ𝑠 = 𝑥 inside the region of conver-
gence. The Laplace transform of the 𝑛−th derivative of 𝑓 with respect to 𝑡 is given
by the identity ℒ {𝜕𝑛𝑓(𝑡)/𝜕𝑡𝑛} = 𝑠𝑛𝑓(𝑠). The convolution between two functions
𝑓1 and 𝑓2 is defined as (𝑓1(𝑡) * 𝑓2(𝑡)) =

∫︀∞
−∞ 𝑓1(𝑢)𝑓2(𝑡 − 𝜔)d𝜔, and it follows that

the Laplace transform convolution rule of two time dependent functions 𝑓1 and 𝑓2

is given as ℒ {𝑓1(𝑡) * 𝑓2(𝑡)} = ℒ {𝑓1(𝑡)} ℒ {𝑓2(𝑡)} .
Having established this, the governing equations on the transform space are

∇ ·
(︁
C𝑚∇û − 𝛼𝑚𝜃

)︁
+ b̂ = 𝜌𝑠2û , (2.10a)

q̂ + 𝜏𝑚𝑠q̂ = −(𝑇0)−1K̄𝑚∇𝜃 , (2.10b)
∇ · q̂ + 𝛼𝑚∇û + 𝑝𝑚𝑠𝜃 = 𝑟 , (2.10c)

where 𝑠 is the unknown complex angular frequency (𝑠 ∈ C), and û, 𝜃, q̂, b̂, 𝑟, are
respectively, the bilateral Laplace transformed of the micro-displacement field, the
micro-temperature field, the heat flux, the body forces and the heat source.

Proceeding with the substitutions, Eqs. (2.6𝑎), (2.6𝑏) and (2.6𝑐) become on the
Laplace transform space,
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∇ ·
(︁
C𝑚∇û − 𝛼𝑚𝜃

)︁
+ b̂ = 𝜌𝑚𝑠2û , (2.11a)

∇ ·
(︁

−K𝑚∇𝜃
)︁

+ 𝑠𝛼𝑚∇û + 𝑝𝑚𝑠𝜃 = 𝑟 , (2.11b)

where, due the plugging we assume

K𝑚 (x, 𝜉, 𝑠) = K̄𝑚(x, 𝜉)
(1 + 𝜏𝑚(x, 𝜉)𝑠)𝑇0

, (2.12)

with a K𝑚 well behaved over the defined domain.
The interface Σ between two different phases 𝑖 and 𝑗 in the periodic cell 𝒜, holds

the jump of the values of function 𝑓 at it, written as [[𝑓 ]] = 𝑓 𝑖(Σ) − 𝑓 𝑗(Σ), follows
that

[[𝑢̂]]|x∈Σ = 0, (2.13a)[︁[︁(︁
C𝑚∇𝑢̂ − 𝛼𝑚𝜃

)︁
· n
]︁]︁⃒⃒⃒

x∈Σ
= 0, (2.13b)[︁[︁

𝜃
]︁]︁⃒⃒⃒

x∈Σ
= 0, (2.13c)[︁[︁

−K𝑚∇𝜃 · n
]︁]︁⃒⃒⃒

x∈Σ
= 0, (2.13d)

representing the conditions of continuity for a bounded interface, where the outward
normal to the interface Σ is indicated by the vector n. In case that 𝜏𝑚 is constant
within the phases of the material, and applying Laplace inverse transform we arrive
in Eqs. (2.7𝑎) and (2.7𝑏) again.

On behalf of the time domain 𝑡, let us apply the inverse Laplace transform to
the field Eqs. (2.11𝑎) and (2.11𝑏), and due to the dependency on the variable 𝑠 that
K holds on Eq. (2.12), which gives

ℒ−1
{︁

K𝑚∇𝜃
}︁

= ℒ−1 {K𝑚} * ∇𝜃, (2.14)

the field equations (2.7𝑎) and (2.7𝑏), might be rewritten as an integral-differentiable
form, therefore

∇ · (C𝑚∇u − 𝛼𝑚𝜃) + b = 𝜌𝑚ü , (2.15a)
∇ ·
(︀
ℒ−1 {K𝑚} * ∇𝜃 − 𝛼𝑚𝑢̇

)︀
+ 𝑟 = 𝑝𝑚𝜃 (2.15b)
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known also as the field equations of a continuum with one time relaxation of first
order.

We must point out here that, from the 𝒬-periodicity of microscopic constitutive
tensors in Eqs. (2.5), (2.11a), (2.11b), and bearing in mind the ℒ-periodicity of the
body forces, the micro-fields, displacement and temperature (either both Laplace
transformed or not) are dependent on the fast variable 𝜉 and the slow one x, besides
both fields may be written as 𝑢̂ = 𝑢̂

(︀
x, 𝜉 = x

𝜖

)︀
and 𝜃 = 𝜃

(︀
x, 𝜉 = x

𝜖

)︀
. In addition,

given the fact of the 𝒬-periodicity of their coefficients, any attempt in deriving the
solution of the set of PDEs (2.11𝑎) and (2.11𝑏) might be rather cumbersome both
analytically and numerically. Nevertheless, the homogenization technique arrives in
this context to barter the microstructured continuum by an equivalent homogeneous
one, where the solutions will be an approximation to those from (2.11𝑎) and (2.11𝑏),
however on this scenario the coefficients will not be affected by the fast variable 𝜉,

which gives rapid oscillations led by the underlying microstructure previously held,
and overall such procedure might be quite effective computationally.

Forward to the next Section, the homogenization technique on a bi-phase periodic
microstructure composite subjected to thermal sources and periodic body forces will
be applied over the equations of thermoelasticity with one time relaxation on the
Laplace transformed domain, namely Eqs. (2.11𝑎) and (2.11𝑏).

2.2 Asymptotic expansions of microscopic field equa-
tions in the Laplace domain

The micro-displacement 𝑢 and micro-temperature 𝜃, inspired by the asymptotic
approach developed in [32, 34, 35, 105], are expressed as power series in terms of
𝜖, as well known as the asymptotic expansions in terms of 𝜖 that separates the fast
variable 𝜉 = x/𝜖 from the slow one x, i.e. in the hypothesis of scale separation,
diving into the components, follows that

𝑢ℎ

(︁
x, x
𝜖
, 𝑡
)︁

=
+∞∑︁
𝑙=0

𝜖𝑙𝑢
(𝑙)
ℎ = 𝑢

(0)
ℎ

(︁
x, x
𝜖
, 𝑡
)︁

+ 𝜖𝑢
(1)
ℎ

(︁
x, x
𝜖
, 𝑡
)︁

+ 𝜖2𝑢
(2)
ℎ

(︁
x, x
𝜖
, 𝑡
)︁

+ 𝒪(𝜖3),
(2.16a)
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𝜃
(︁

x, x
𝜖
, 𝑡
)︁

=
+∞∑︁
𝑙=0

𝜖𝑙𝜃(𝑙) = 𝜃(0)
(︁

x, x
𝜖
, 𝑡
)︁

+ 𝜖𝜃(1)
(︁

x, x
𝜖
, 𝑡
)︁

+ 𝜖2𝜃(2)
(︁

x, x
𝜖
, 𝑡
)︁

+ 𝒪(𝜖3).
(2.16b)

The Laplace transform (2.8) is applied to Eqs. (2.16a) and (2.16b), which leads
to

ℒ
(︁
𝑢ℎ

(︁
x, x
𝜖
, 𝑡
)︁)︁

=
+∞∑︁
𝑙=0

𝜖𝑙𝑢̂
(𝑙)
ℎ = 𝑢̂

(0)
ℎ

(︁
x, x
𝜖
, 𝑠
)︁

+ 𝜖𝑢̂
(1)
ℎ

(︁
x, x
𝜖
, 𝑠
)︁

+ 𝜖2𝑢̂
(2)
ℎ

(︁
x, x
𝜖
, 𝑠
)︁

+ 𝒪(𝜖3),
(2.17a)

ℒ
(︁
𝜃
(︁

x, x
𝜖
, 𝑡
)︁)︁

=
+∞∑︁
𝑙=0

𝜖𝑙𝜃(𝑙) = 𝜃(0)
(︁

x, x
𝜖
, 𝑠
)︁

+ 𝜖𝜃(1)
(︁

x, x
𝜖
, 𝑠
)︁

+ 𝜖2𝜃(2)
(︁

x, x
𝜖
, 𝑠
)︁

+ 𝒪(𝜖3).
(2.17b)

It is noteworthy that both asymptotic expansions above are equivalent to the
asymptotic expansions on the time domain 𝑡, (2.16a) and (2.16b).

Now, let us consider the formulas coming from the chain rule of differentiation

𝐷

𝐷𝑥𝑘
𝑢̂
(︁

x, 𝜉 = x
𝜖

)︁
=
[︂
𝜕𝑢̂ℎ(x, 𝜉)
𝜕𝑥𝑘

+ 𝜕𝑢̂ℎ(x, 𝜉)
𝜕𝜉𝑘

𝜕𝜉𝑘

𝜕𝑥𝑘

]︂⃒⃒⃒⃒
𝜉=

x
𝜖

=

=
[︂
𝜕

𝜕𝑥𝑘
𝑢̂ℎ(x, 𝜉) + 1

𝜖
𝑢̂ℎ,𝑘

]︂⃒⃒⃒⃒
𝜉=

x
𝜖

,

(2.18a)

𝐷

𝐷𝑥𝑗
𝜃
(︁

x, 𝜉 = x
𝜖

)︁
=
[︃
𝜕𝜃(x, 𝜉)
𝜕𝑥𝑗

+ 𝜕𝜃(x, 𝜉)
𝜕𝜉𝑗

𝜕𝜉𝑗

𝜕𝑥𝑗

]︃⃒⃒⃒⃒
⃒
𝜉=

x
𝜖

=

=
[︂
𝜕

𝜕𝑥𝑗
𝜃(x, 𝜉) + 1

𝜖
𝜃,𝑗

]︂⃒⃒⃒⃒
𝜉=

x
𝜖

,

(2.18b)

which introduces the macroscopic derivatives 𝜕𝑢̂ℎ/𝜕𝑥𝑘, 𝜕𝜃/𝜕𝑥𝑗 , and the microscopic
derivatives 𝑢̂ℎ,𝑘, 𝜃,𝑗 on the transformed Laplace domain. Applying them to the
asymptotic expansions (2.17a) and (2.17b), one leads to
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𝐷

𝐷𝑥𝑘
𝑢̂
(︁

x, 𝜉 = x
𝜖

)︁
=
[︃(︃

𝜕𝑢̂
(0)
ℎ

𝜕𝑥𝑘
+ 𝜖

𝜕𝑢̂
(1)
ℎ

𝜕𝑥𝑘
+ 𝜖2

𝜕𝑢̂
(2)
ℎ

𝜕𝑥𝑘
+ · · ·

)︃
+

+1
𝜖

(︁
𝑢̂0

ℎ,𝑘 + 𝜖𝑢̂
(1)
ℎ,𝑘 + 𝜖2𝑢̂

(2)
ℎ,𝑘 + · · ·

)︁]︂⃒⃒⃒⃒
𝜉=

x
𝜖

,

(2.19a)

𝐷

𝐷𝑥𝑗
𝜃
(︁

x, 𝜉 = x
𝜖

)︁
=
[︃(︃

𝜕𝜃(0)

𝜕𝑥𝑗
+ 𝜖

𝜕𝜃(1)

𝜕𝑥𝑗
+ 𝜖2

𝜕𝜃(2)

𝜕𝑥𝑗
+ · · ·

)︃
+

+1
𝜖

(︁
𝜃0

,𝑗 + 𝜖𝜃
(1)
,𝑗 + 𝜖2𝜃

(2)
,𝑗 + · · ·

)︁]︂⃒⃒⃒⃒
𝜉=

x
𝜖

.

(2.19b)

The homogenization procedure of the Eqs. (2.11a) and (2.11b) searches for solu-
tions of the micro-displacement 𝑢̂ℎ and micro-temperature 𝜃, as decompositions of
increasing powers of the microscopic length 𝜖. In order to do so, the replacement of
the asymptotic expansions (2.17a) and (2.17b) must be done into the microscopic
field equations on the Laplace domain (2.11a) and (2.11b), respectively. Rearrang-
ing properly the terms with equal powers 𝜖, and taking advantage of the derivative
Eqs, (2.19a) and (2.19b), yield to the following asymptotic field equations

⎛⎝𝜖−2
(︁
𝐶𝑚

𝑖𝑗ℎ𝑘𝑢̂
(0)
ℎ,𝑘

)︁
,𝑗

+ 𝜖−1

⎡⎣(︃𝐶𝑚
𝑖𝑗ℎ𝑘

(︃
𝜕𝑢̂

(0)
ℎ

𝜕𝑥𝑘
+ 𝑢̂

(1)
ℎ,𝑘

)︃)︃
,𝑗

+

+ 𝜕

𝜕𝑥𝑗

(︁
𝐶𝑚

𝑖𝑗ℎ𝑘𝑢̂
(0)
ℎ,𝑘

)︁
−
(︁
𝛼𝑚

𝑖𝑗 𝜃
(0)
)︁

,𝑗

]︂
+ 𝜖0

⎡⎣(︃𝐶𝑚
𝑖𝑗ℎ𝑘

(︃
𝜕𝑢̂

(1)
ℎ

𝜕𝑥𝑘
+ 𝑢̂

(2)
ℎ,𝑘

)︃)︃
,𝑗

+

+ 𝜕

𝜕𝑥𝑗

(︃
𝐶𝑚

𝑖𝑗ℎ𝑘

(︃
𝜕𝑢̂

(0)
ℎ

𝜕𝑥𝑘
+ 𝑢̂

(1)
ℎ,𝑘

)︃)︃
−
(︁
𝛼𝑚

𝑖𝑗 𝜃
(1)
)︁

,𝑗
+

− 𝜕

𝜕𝑥𝑗

(︁
𝛼𝑚

𝑖𝑗 𝜃
(0)
)︁

+ 𝑏̂𝑖 − 𝜌𝑚𝑠2𝑢
(0)
ℎ

]︂
+ 𝜖

⎡⎣(︃𝐶𝑚
𝑖𝑗ℎ𝑘

(︃
𝜕𝑢̂

(2)
ℎ

𝜕𝑥𝑘
+ 𝑢̂

(3)
ℎ,𝑘

)︃)︃
,𝑗

+

+ 𝜕

𝜕𝑥𝑗

(︃
𝐶𝑚

𝑖𝑗ℎ𝑘

(︃
𝜕𝑢̂

(1)
ℎ

𝜕𝑥𝑘
+ 𝑢̂

(2)
ℎ,𝑘

)︃)︃
−
(︁
𝛼𝑚

𝑖𝑗 𝜃
(2)
)︁

,𝑗
− 𝜕

𝜕𝑥𝑗

(︁
𝛼𝑚

𝑖𝑗 𝜃
(1)
)︁

− 𝜌𝑚𝑠2𝑢̂
(1)
ℎ

]︃
+

+ 𝒪(𝜖2)
)︀⃒⃒

𝜉= x
𝜖

= 0,

(2.20a)
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⎛⎝𝜖−2
(︁
𝐾𝑚

𝑖𝑗 𝜃
(0)
,𝑗

)︁
,𝑖

+ 𝜖−1

⎡⎣(︃𝐾𝑚
𝑖𝑗

(︃
𝜕𝜃(0)

𝜕𝑥𝑗
+ 𝜃

(1)
,𝑗

)︃)︃
,𝑖

+ 𝜕

𝜕𝑥𝑖

(︁
𝐾𝑚

𝑖𝑗 𝜃
(0)
,𝑗

)︁
+

−
(︁
𝛼𝑚

𝑖𝑗 𝑠𝑢̂
(0)
𝑖,𝑗

)︁]︁
+ 𝜖0

⎡⎣(︃𝐾𝑚
𝑖𝑗

(︃
𝜕𝜃(1)

𝜕𝑥𝑗
+ 𝜃

(2)
,𝑗

)︃)︃
,𝑖

+ 𝜕

𝜕𝑥𝑖

(︃
𝐾𝑚

𝑖𝑗

(︃
𝜕𝜃(0)

𝜕𝑥𝑗
+ 𝜃

(1)
,𝑗

)︃)︃
+

− 𝛼𝑚
𝑖𝑗 𝑠

(︃
𝜕𝑢̂

(0)
𝑖

𝜕𝑥𝑗
+ 𝑢̂

(1)
𝑖,𝑗

)︃
𝑟 − 𝑝𝑚𝑠𝜃(0)

]︃
+ 𝜖

⎡⎣(︃𝐾𝑚
𝑖𝑗

(︃
𝜕𝜃(2)

𝜕𝑥𝑗
+ 𝜃

(3)
,𝑗

)︃)︃
,𝑖

+

+ 𝜕

𝜕𝑥𝑖

(︃
𝐾𝑚

𝑖𝑗

(︃
𝜕𝜃(1)

𝜕𝑥𝑗
+ 𝜃

(2)
,𝑗

)︃)︃
− 𝛼𝑚

𝑖𝑗 𝑠

(︃
𝜕𝑢̂

(1)
𝑖

𝜕𝑥𝑗
+ 𝑢̂

(2)
𝑖,𝑗

)︃
− 𝑝𝑚𝑠𝜃(1)

]︃
+

+ 𝒪(𝜖2)
]︀)︀⃒⃒

𝜉= x
𝜖

= 0,

(2.20b)

where the Eq. (2.20a) is the homogenized micro-displacement field, and the Eq.
(2.20b) is the homogenized micro-temperature field.

Recalling the interface conditions (2.13𝑎) − (2.13𝑑), they may be rewritten in
terms of the components, thus

[[𝑢̂ℎ]]|x∈Σ = 0, (2.21a)[︂[︂(︂
𝐶𝑚

𝑖𝑗ℎ𝑘

𝐷𝑢̂ℎ

𝐷𝑥𝑘
− 𝛼𝑚

𝑖𝑗 𝜃

)︂
𝑛𝑗

]︂]︂⃒⃒⃒⃒
x∈Σ

= 0, (2.21b)[︁[︁
𝜃
]︁]︁⃒⃒⃒

x∈Σ
= 0, (2.21c)[︃[︃

−𝐾𝑚
𝑖𝑗 (𝑠) 𝐷𝜃

𝐷𝑥𝑗
𝑛𝑖

]︃]︃⃒⃒⃒⃒
⃒
x∈Σ

= 0. (2.21d)

Also, once the micro fields 𝑢̂(x, 𝜉, 𝑠), and 𝜃(x, 𝜉, 𝑠) are supposed to be 𝒬-periodic
regular functions of the variable x, it is then possible to write the interface conditions
(2.21𝑎) to (2.21𝑑) in terms of the fast variable 𝜉. [34]. Therefore the asymptotic
expansions (2.16𝑎) and (2.16𝑏), among the derivative formulae (2.19a) and (2.19b),
and the interface conditions (2.21𝑎) and (2.21𝑏) are rewritten in terms of 𝜖 as
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[︁[︁
𝑢̂

(0)
ℎ

]︁]︁⃒⃒⃒
𝜉∈Σ1

+ 𝜖
[︁[︁
𝑢̂

(1)
ℎ

]︁]︁⃒⃒⃒
𝜉∈Σ1

+ 𝜖2
[︁[︁
𝑢̂

(2)
ℎ

]︁]︁⃒⃒⃒
𝜉∈Σ1

+ 𝒪(𝜖3) = 0,

1
𝜖

[︁[︁(︁
𝐶𝑚

𝑖𝑗ℎ𝑘 𝑢̂
(0)
ℎ,𝑘

)︁
𝑛𝑗

]︁]︁⃒⃒⃒
𝜉∈Σ1

+

+ 𝜖0

[︃[︃(︃
𝐶𝑚

𝑖𝑗ℎ𝑘

(︃
𝜕𝑢̂

(0)
ℎ

𝜕𝑥𝑘
+ 𝑢̂

(1)
ℎ,𝑘

)︃
− 𝛼𝑚

𝑖𝑗 𝜃
(0)

)︃
𝑛𝑗

]︃]︃⃒⃒⃒⃒
⃒
𝜉∈Σ1

+

+ 𝜖

[︃[︃(︃
𝐶𝑚

𝑖𝑗ℎ𝑘

(︃
𝜕𝑢̂

(1)
ℎ

𝜕𝑥𝑘
+ 𝑢̂

(2)
ℎ,𝑘

)︃
− 𝛼𝑚

𝑖𝑗 𝜃
(1)

)︃
𝑛𝑗

]︃]︃⃒⃒⃒⃒
⃒
𝜉∈Σ1

+

+ 𝜖2

[︃[︃(︃
𝐶𝑚

𝑖𝑗ℎ𝑘

(︃
𝜕𝑢̂

(2)
ℎ

𝜕𝑥𝑘
+ 𝑢̂

(3)
ℎ,𝑘

)︃
− 𝛼𝑚

𝑖𝑗 𝜃
(2)

)︃
𝑛𝑗

]︃]︃⃒⃒⃒⃒
⃒
𝜉∈Σ1

+ 𝒪(𝜖3) = 0,

(2.22)

and the interface conditions (2.21𝑐) and (2.21𝑑) become

[︁[︁
𝜃(0)
]︁]︁⃒⃒⃒

𝜉∈Σ1
+ 𝜖

[︁[︁
𝜃(1)
]︁]︁⃒⃒⃒

𝜉∈Σ1
+ 𝜖2

[︁[︁
𝜃(2)
]︁]︁⃒⃒⃒

𝜉∈Σ1
+ 𝒪(𝜖3) = 0,

1
𝜖

[︁[︁(︁
𝐾𝑚

𝑖𝑗 𝜃
(0)
,𝑗

)︁
𝑛𝑖

]︁]︁⃒⃒⃒
𝜉∈Σ1

+ 𝜖0

[︃[︃(︃
𝐾𝑚

𝑖𝑗

(︃
𝜕𝜃(0)

𝜕𝑥𝑗
+ 𝜃

(1)
,𝑗

)︃)︃
𝑛𝑖

]︃]︃⃒⃒⃒⃒
⃒
𝜉∈Σ1

+

+ 𝜖

[︃[︃(︃
𝐾𝑚

𝑖𝑗

(︃
𝜕𝜃(1)

𝜕𝑥𝑗
+ 𝜃

(2)
,𝑗

)︃)︃
𝑛𝑖

]︃]︃⃒⃒⃒⃒
⃒
𝜉∈Σ1

+

+ 𝜖2

[︃[︃(︃
𝐾𝑚

𝑖𝑗

(︃
𝜕𝜃(2)

𝜕𝑥𝑗
+ 𝜃

(3)
,𝑗

)︃)︃
𝑛𝑖

]︃]︃⃒⃒⃒⃒
⃒
𝜉∈Σ1

+

+ 𝒪(𝜖3) = 0,

(2.23)

where Σ1 denotes the interface between two different phases in the unit cell 𝒬.
In fact, the fields (2.20𝑎) and (2.20𝑏), as power series obtained from the homog-

enization asymptotic process, usually have the following structure,

1
𝜖2
𝑓

(0)
𝑖 (x) + 1

𝜖
𝑓

(1)
𝑖 (x) + 𝜖0𝑓

(2)
𝑖 (x) + 𝜖𝑓

(3)
𝑖 (x) + · · · + 𝜖𝑙𝑓

(𝑙+2)
𝑖 (x) + 𝑏̂𝑖(x) = 0,

(2.24a)
1
𝜖2
𝑔(0)(x) + 1

𝜖
𝑔(1)(x) + 𝜖0𝑔(2)(x) + 𝜖𝑔(3)(x) + · · · + 𝜖𝑙𝑔(𝑙+2)(x) + 𝑟(x) = 0, (2.24b)

where the set of functions 𝑓 (0)
𝑖 , · · · , 𝑓 (𝑙+2)

𝑖 and 𝑔(0), · · · , 𝑔(𝑙+2), with 𝑙 ∈ N, are such
that the dependency goes only over the slow variable x, and are determined imposing
the solvability conditions (seen in Sec. 2.3) on the class of the 𝒬-periodic functions.
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2.3 Recursive differential problems and their solu-
tions

The asymptotic field Eqs. (2.20a) and (2.20b) produce a cascade of recursive differ-
ential problems that determine sequentially the solutions of the displacements 𝑢̂(0),

𝑢̂(1),..., and also solutions of the temperature 𝜃(0), 𝜃(1)..., respectively. For this
matter, at the order 𝜖−2, the differential problems that arise from Eqs. (2.20a) and
(2.20b) are, respectively,

(︁
𝐶𝑚

𝑖𝑗ℎ𝑘𝑢̂
(0)
ℎ,𝑘

)︁
,𝑗

= 𝑓
(0)
𝑖 (x), (2.25a)(︁

𝐾𝑚
𝑖𝑗 𝜃

(0)
,𝑗

)︁
,𝑖

= 𝑔(0)(x), (2.25b)

with interface conditions

[︁[︁
𝑢̂

(0)
ℎ

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0, (2.26a)[︁[︁(︁
𝐶𝑚

𝑖𝑗ℎ𝑘 𝑢̂
(0)
ℎ,𝑘

)︁
𝑛𝑗

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0, (2.26b)[︁[︁
𝜃(0)
]︁]︁⃒⃒⃒

𝜉∈Σ1
= 0, (2.26c)[︁[︁(︁

𝐾𝑚
𝑖𝑗 𝜃

(0)
,𝑗

)︁
𝑛𝑖

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0. (2.26d)

As matter of fact, since we are searching for solutions in the class of 𝒬-periodic
solutions 𝑢̂(0)

ℎ and 𝜃(0), it can be checked [34, 35] that there exists a unique solution
of the Eqs. (2.25a) and (2.25b), up to a constant, more specifically, since they are
elliptic differential equations in the divergence forms, with vanishing mean values of
the source terms over the unit cell 𝒬, implies the existence of a 𝒬-periodic regular
solution. Such result gives rise to the also known as solvability condition for these
differential problems, implying that the source terms are 𝑓 (0)

𝑖 (x) = 0 and 𝑔(0)(x) = 0,
therefore the differential problems (2.25a) and (2.25b), take the form

(︁
𝐶𝑚

𝑖𝑗ℎ𝑘𝑢̂
(0)
ℎ,𝑘

)︁
,𝑗

= 0, (2.27a)(︁
𝐾𝑚

𝑖𝑗 𝜃
(0)
,𝑗

)︁
,𝑖

= 0. (2.27b)
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Hence, the solution of the first term of the macroscopic displacement expansion field
transformed is given by

𝑢̂
(0)
ℎ (x, 𝜉, 𝑠) = 𝑈̂𝑀

ℎ (x, 𝑠), (2.28)

and the solution for the first term of the macroscopic temperature expansion field is
given by

𝜃(0)(x, 𝜉, 𝑠) = Θ̂𝑀 (x, 𝑠). (2.29)

It is important to notice here that both solutions 𝑈̂𝑀
ℎ (x, 𝑠) and Θ̂𝑀 (x, 𝑠) are no

longer dependent on the fast variable.
Proceeding with the succeeding terms related to 𝜖−1 in Eqs., (2.20a) and (2.20b),

and using recursively the two solutions above obtained, it follows that

(︁
𝐶𝑚

𝑖𝑗ℎ𝑘𝑢̂
(1)
ℎ,𝑘

)︁
,𝑗

+ 𝐶𝑚
𝑖𝑗ℎ𝑘,𝑗

𝜕𝑈̂𝑀
ℎ

𝜕𝑥𝑘
− 𝛼𝑚

𝑖𝑗,𝑗Θ̂𝑀 = 𝑓
(1)
𝑖 (x), (2.30a)(︁

𝐾𝑚
𝑖𝑗 𝜃

(1)
,𝑗

)︁
,𝑖

+𝐾𝑚
𝑖𝑗,𝑖

𝜕Θ̂𝑀

𝜕𝑥𝑗
= 𝑔(1)(x), (2.30b)

since 𝑈̂𝑀
ℎ,𝑘 = 0 and Θ̂𝑀

,𝑗 = 0. The interface conditions are, respectively,

[︁[︁
𝑢̂

(1)
ℎ

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0, (2.31a)[︃[︃(︃
𝐶𝑚

𝑖𝑗ℎ𝑘

(︃
𝜕𝑈̂𝑀

ℎ

𝜕𝑥𝑘
+ 𝑢̂

(1)
ℎ,𝑘

)︃
− 𝛼𝑚

𝑖𝑗 Θ̂𝑀

)︃
𝑛𝑗

]︃]︃⃒⃒⃒⃒
⃒
𝜉∈Σ1

= 0, (2.31b)

[︁[︁
𝜃(1)
]︁]︁⃒⃒⃒

𝜉∈Σ1
= 0, (2.31c)[︃[︃(︃

𝐾𝑚
𝑖𝑗

(︃
𝜕Θ̂𝑀

𝜕𝑥𝑗
+ 𝜃

(1)
,𝑗

)︃)︃
𝑛𝑖

]︃]︃⃒⃒⃒⃒
⃒
𝜉∈Σ1

= 0. (2.31d)

Likewise, the solvability condition on the class of 𝒬-periodic functions guarantees
that

𝑓
(1)
𝑖 (x) =⟨𝑓 (1)

𝑖 (x)⟩ = ⟨𝐶𝑚
𝑖𝑗ℎ𝑘,𝑗⟩𝜕𝑈̂

𝑀
ℎ

𝜕𝑥𝑘
− ⟨𝛼𝑚

𝑖𝑗,𝑗⟩Θ̂𝑀 , (2.32a)

𝑔(1)(x) =⟨𝑔(1)(x)⟩ = ⟨𝐾𝑚
𝑖𝑗,𝑖⟩

𝜕Θ̂𝑀

𝜕𝑥𝑗
, (2.32b)
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where ⟨(·)⟩ = 1
|𝒬|
∫︀

𝒬(·)𝑑𝜉 and |𝒬| = 𝛿𝛾 gives the mean value over the unit cell 𝒬.
Moreover, the 𝒬-periodicity of the components 𝐶𝑚

𝑖𝑗ℎ𝑘, 𝛼
𝑚
𝑖𝑗 and 𝐾𝑚

𝑖𝑗 , along with the
divergence theorem, entail both 𝑓

(1)
𝑖 (x) = 0 and 𝑔(1)(x) = 0, thus the differential

problems

(︁
𝐶𝑚

𝑖𝑗ℎ𝑘𝑢̂
(1)
ℎ,𝑘

)︁
,𝑗

+ 𝐶𝑚
𝑖𝑗ℎ𝑘,𝑗

𝜕𝑈̂𝑀
ℎ

𝜕𝑥𝑘
− 𝛼𝑚

𝑖𝑗,𝑗Θ̂𝑀 = 0, ∀𝜕𝑈̂
𝑀
ℎ

𝜕𝑥𝑘
, Θ̂𝑀 (2.33a)(︁

𝐾𝑚
𝑖𝑗 𝜃

(1)
,𝑗

)︁
,𝑖

+𝐾𝑚
𝑖𝑗,𝑖

𝜕Θ̂𝑀

𝜕𝑥𝑗
= 0, ∀𝜕Θ̂𝑀

𝜕𝑥𝑗
(2.33b)

have the following solutions, respectively

𝑢̂
(1)
ℎ (x, 𝜉, 𝑠) =𝑁 (1,0)

ℎ𝑝𝑞1
(𝜉)

𝜕𝑈̂𝑀
𝑝

𝜕𝑥𝑞1

+ 𝑁̃
(1,0)
ℎ (𝜉)Θ̂𝑀 , (2.34a)

𝜃(1)(x, 𝜉, 𝑠) =𝑀 (1,0)
𝑞1

(𝜉, 𝑠)𝜕Θ̂𝑀

𝜕𝑥𝑞1

, (2.34b)

where 𝑁 (1,0)
ℎ𝑝𝑞1

, 𝑁̃
(1,0)
ℎ and 𝑀 (1,0)

𝑞1 , are the perturbation functions, which each of them
depends on the fast variable 𝜉. On Sec. 2.3.1, in order to impose uniqueness of the
homogenized solutions 𝑢̂ℎ and 𝜃, the perturbation functions must be supposed to
have zero mean value over the unit cell 𝒬 and so 𝑁 (1,0)

ℎ𝑝𝑞1
, 𝑁̃

(1,0)
ℎ and 𝑀

(1,0)
𝑞1 comply

with the normalization condition, which means that

⟨𝑁 (1,0)
ℎ𝑝𝑞1

⟩ = 1
|𝒬|

∫︁
𝒬
𝑁

(1,0)
ℎ𝑝𝑞1

(𝜉)𝑑𝜉 = 0, (2.35a)

⟨𝑁̃ (1,0)
ℎ ⟩ = 1

|𝒬|

∫︁
𝒬
𝑁̃

(1,0)
ℎ (𝜉)𝑑𝜉 = 0, (2.35b)

⟨𝑀 (1,0)
𝑞1

⟩ = 1
|𝒬|

∫︁
𝒬
𝑀 (1,0)

𝑞1
(𝜉, 𝑠)𝑑𝜉 = 0. (2.35c)

At order 𝜖0, the differential problems are
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(︃
𝐶𝑚

𝑖𝑗ℎ𝑘

(︃
𝜕𝑢̂

(1)
ℎ

𝜕𝑥𝑘
+ 𝑢̂

(2)
ℎ,𝑘

)︃)︃
,𝑗

+ 𝜕

𝜕𝑥𝑗

(︃
𝐶𝑚

𝑖𝑗ℎ𝑘

(︃
𝜕𝑢̂

(0)
ℎ

𝜕𝑥𝑘
+ 𝑢̂

(1)
ℎ,𝑘

)︃)︃
−
(︁
𝛼𝑚

𝑖𝑗 𝜃
(1)
)︁

,𝑗
+

− 𝜕

𝜕𝑥𝑗

(︁
𝛼𝑚

𝑖𝑗 𝜃
(0)
)︁

− 𝜌𝑚𝑠2𝑢̂
(0)
𝑖 = 𝑓

(2)
𝑖 (x),

(2.36a)(︃
𝐾𝑚

𝑖𝑗

(︃
𝜕𝜃(1)

𝜕𝑥𝑗
+ 𝜃

(2)
,𝑗

)︃)︃
,𝑖

+ 𝜕

𝜕𝑥𝑖

(︃
𝐾𝑚

𝑖𝑗

(︃
𝜕𝜃(0)

𝜕𝑥𝑗
+ 𝜃

(1)
,𝑗

)︃)︃
+

− 𝛼𝑚
𝑖𝑗

(︃
𝜕𝑢̂

(0)
𝑖

𝜕𝑥𝑗
+ 𝑢̂

(1)
𝑖,𝑗

)︃
− 𝜌𝑚𝑠𝜃(0) = 𝑔(2)(x).

(2.36b)

Considering the solutions (2.28), (2.34a) at order 𝜖−2 and 𝜖−1, respectively, from
the displacement expansion, and the solutions (2.29), (2.34b), at order 𝜖−2 and 𝜖−1,
respectively, from the temperature expansion, the differential problems (2.36a) and
(2.36b) are turned into

(︁
𝐶𝑚

𝑖𝑗ℎ𝑘𝑢̂
(2)
ℎ,𝑘

)︁
,𝑗

+
(︂(︁

𝐶𝑚
𝑖𝑗ℎ𝑘𝑁

(1,0)
ℎ𝑝𝑞1

)︁
,𝑗

+ 𝐶𝑚
𝑖𝑞1𝑝𝑘 +

(︁
𝐶𝑚

𝑖𝑘ℎ𝑗𝑁
(1,0)
ℎ𝑝𝑞1,𝑗

)︁)︂ 𝜕2𝑈̂𝑀
𝑝

𝜕𝑥𝑞1𝜕𝑥𝑘
+

+
(︂(︁

𝐶𝑚
𝑖𝑗ℎ𝑘𝑁̃

(1,0)
ℎ

)︁
,𝑗

+ 𝐶𝑚
𝑖𝑘ℎ𝑗𝑁̃

(1,0)
ℎ,𝑗 −

(︁
𝛼𝑚

𝑖𝑗𝑀
(1,0)
𝑘

)︁
,𝑗

− 𝛼𝑚
𝑖𝑘

)︂
𝜕Θ̂𝑀

𝜕𝑥𝑘
+

− 𝜌𝑚𝑠2𝑈̂𝑀
𝑖 = 𝑓

(2)
𝑖 (x),

(2.37a)

(︁
𝐾𝑚

𝑖𝑗 𝜃
(2)
,𝑗

)︁
,𝑖

+
(︂(︁

𝐾𝑚
𝑖𝑗 𝑀

(1,0)
𝑞1

)︁
,𝑖

+𝐾𝑚
𝑞1𝑗 +

(︁
𝐾𝑚

𝑗𝑖𝑀
(1,0)
𝑞1,𝑖

)︁)︂ 𝜕2Θ̂𝑀

𝜕𝑥𝑞1𝜕𝑥𝑗
+

−
(︁
𝛼𝑚

𝑖𝑗𝑁
(1,0)
𝑖𝑝𝑞1,𝑗 + 𝛼𝑚

𝑝𝑞1

)︁
𝑠
𝜕𝑈̂𝑀

𝑝

𝜕𝑥𝑞1

−
(︁
𝛼𝑚

𝑖𝑗 𝑁̃
(1,0)
𝑖,𝑗 + 𝑝𝑚

)︁
𝑠Θ̂𝑀 = 𝑔(2)(x),

(2.37b)

with interface conditions
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[︁[︁
𝑢̂

(2)
ℎ

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0,[︃[︃(︃
𝐶𝑚

𝑖𝑗ℎ𝑘

(︃
𝑁

(1,0)
ℎ𝑝𝑞1,𝑗

𝜕2𝑈̂𝑀
𝑝

𝜕𝑥𝑞1𝜕𝑥𝑘
+ 𝑁̃

(1,0)
ℎ

𝜕Θ̂𝑀

𝜕𝑥𝑘
+ 𝑢̂

(2)
ℎ,𝑘

)︃

− 𝛼𝑚
𝑖𝑗𝑀

(1,0)
𝑞1

𝜕Θ̂𝑀

𝜕𝑥𝑞1

)︃
𝑛𝑗

]︃]︃⃒⃒⃒⃒
⃒
𝜉∈Σ1

= 0,

(2.38a)

[︁[︁
𝜃(2)
]︁]︁⃒⃒⃒

𝜉∈Σ1
= 0,[︃[︃(︃

𝐾𝑚
𝑖𝑗

(︃
𝑀 (1,0)

𝑞1

𝜕2Θ̂𝑀

𝜕𝑥𝑞1𝜕𝑥𝑗
+ 𝜃

(2)
,𝑗

)︃)︃
𝑛𝑖

]︃]︃⃒⃒⃒⃒
⃒
𝜉∈Σ1

= 0.
(2.38b)

Simmetrizing the terms with the derivative of second order on the two differential
problems (2.37a) and (2.37b), and once again, from the solvability condition of
differential problem on the class of 𝒬-periodic functions and the divergence theorem
lead to, respectively,

𝑓
(2)
𝑖 (x) =1

2

⟨
𝐶𝑚

𝑖𝑞1𝑝𝑘 + 𝐶𝑚
𝑖𝑘ℎ𝑗𝑁

(1,0)
ℎ𝑝𝑞1,𝑗 + 𝐶𝑚

𝑖𝑘𝑝𝑞1
+ 𝐶𝑚

𝑖𝑞1ℎ𝑗𝑁
(1,0)
ℎ𝑝𝑘,𝑗

⟩ 𝜕2𝑈̂𝑀
𝑝

𝜕𝑥𝑞1𝜕𝑥ℎ
+

+
⟨
𝐶𝑚

𝑖𝑘ℎ𝑗𝑁̃
(1,0)
ℎ,𝑗 − 𝛼𝑚

𝑖𝑘

⟩ 𝜕Θ̂𝑀

𝜕𝑥𝑘
−
⟨
𝜌𝑚
⟩
𝑠2𝑈̂𝑀

𝑖 ,

(2.39a)

𝑔(2)(x) =1
2

⟨
𝐾𝑚

𝑞1𝑗 +𝐾𝑚
𝑗𝑖𝑀

(1,0)
𝑞1,𝑖 +𝐾𝑚

𝑗𝑞1
+𝐾𝑚

𝑞1𝑖𝑀
(1,0)
𝑗,𝑖

⟩ 𝜕2Θ̂𝑀

𝜕𝑥𝑞1𝜕𝑥𝑗
−

+
⟨
𝛼𝑚

𝑖𝑗𝑁
(1,0)
𝑖𝑝𝑞1,𝑗 + 𝛼𝑚

𝑝𝑞1

⟩
𝑠
𝜕𝑈̂𝑀

𝑝

𝜕𝑥𝑞1
−
⟨
𝛼𝑚

𝑖𝑗 𝑁̃
(1,0)
𝑖,𝑗 + 𝑝𝑚

⟩
𝑠Θ̂𝑀 .

(2.39b)

Note that, even though the interface conditions (2.38𝑎) and (2.38𝑏) are simetrized
as well, they are kept hidden on this regard.

Consequently, the solution for each 𝑈̂𝑀
𝑝 , Θ̂𝑀 and their derivatives of the differ-

ential problems above, at the order 𝜖0, are

𝑢̂
(2)
ℎ (x, 𝜉, 𝑠) = 𝑁

(2,0)
ℎ𝑝𝑞1𝑞2

(𝜉)
𝜕2𝑈̂𝑀

𝑝

𝜕𝑥𝑞1𝜕𝑥𝑞2

+ 𝑁̃
(2,1)
ℎ𝑞1

(𝜉)𝜕Θ̂𝑀

𝜕𝑥𝑞1

+ 𝑠2𝑁
(2,2)
ℎ𝑞1

(𝜉)𝑈̂𝑀
𝑝 , (2.40a)

𝜃(2)(x, 𝜉, 𝑠) = 𝑀 (2,0)
𝑞1𝑞2

(𝜉) 𝜕2Θ̂𝑀

𝜕𝑥𝑞1𝜕𝑥𝑞2

+ 𝑠𝑀̃ (2,1)
𝑝𝑞1

(𝜉)
𝜕𝑈̂𝑀

𝑝

𝜕𝑥𝑞1

+ 𝑠𝑀 (2,1)(𝜉)Θ̂𝑀 , (2.40b)
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where 𝑁 (2,0)
ℎ𝑝𝑞1𝑞2

, 𝑁̃
(2,1)
ℎ𝑞1

, 𝑁
(2,2)
ℎ𝑞1

, 𝑀
(2,0)
𝑞1𝑞2 , 𝑀̃

(2,1)
𝑝𝑞1 and 𝑀 (2,1) are the perturbation func-

tions depending on the parameters 𝜉 and 𝑠.

2.3.1 Cell problems and perturbation functions
The solutions of Eqs. (2.11𝑎) and (2.11𝑏) provide that the inhomogeneous cell prob-
lems at the different orders of 𝜖 can be expanded in terms of the perturbation func-
tions. In regards to them, such perturbation functions depend exclusively on the
microstructure features such as, material geometry and mechanical properties, where
the last one influences the displacements and temperature due to the heterogeneity
of the material. Despite the existence of the homogenized solution 𝒬-periodic holds
without any other assumption [33, 34, 174], it is noteworthy that imposing the nor-
malization conditions (2.35𝑎) − (2.35𝑐) to the cell problems, sooner established on
this section, the uniqueness of the perturbation functions is also held.

At this stage, the structure of these cell problems is exploited at the different
orders of 𝜖, for elasticity and thermal diffusion problems. For this purpose, the recur-
sive differential problems of the elastic and thermal fields will be treated separately
for each order of 𝜖.

On behalf of the elastic problem at the order 𝜖−1, plugging the Eq. (2.34𝑎) of
the solution 𝑢

(1)
𝑘 , into the differential problem (2.30𝑎), lead to two cell problems:

(︁
𝐶𝑚

𝑖𝑗ℎ𝑘 𝑁
(1,0)
ℎ𝑝𝑞1,𝑘

)︁
,𝑗

+ 𝐶𝑚
𝑖𝑗𝑝𝑞1,𝑗 = 0, (2.41a)(︁

𝐶𝑚
𝑖𝑗ℎ𝑘𝑁̃

(1,0)
ℎ,𝑘

)︁
,𝑗

− 𝛼𝑚
𝑖𝑗,𝑗 = 0. (2.41b)

Similarly, from Eq. (2.30𝑏) and in consideration of the solution (2.34𝑏), after
substitution, the cell problem at the order 𝜖−1 takes the form

(︁
𝐾𝑚

𝑖𝑗 𝑀
(1,0)
𝑞1,𝑗

)︁
,𝑖

+𝐾𝑚
𝑖𝑞1,𝑖 = 0. (2.42)

Therefore, for the terms at the order 𝜖−1, we obtain the following set of cell problems

(︁
𝐶𝑚

𝑖𝑗ℎ𝑘 𝑁
(1,0)
ℎ𝑝𝑞1,𝑘

)︁
,𝑗

+ 𝐶𝑚
𝑖𝑗𝑝𝑞1,𝑗 = 0, (2.43a)(︁

𝐶𝑚
𝑖𝑗ℎ𝑘𝑁̃

(1,0)
ℎ,𝑘

)︁
,𝑗

− 𝛼𝑚
𝑖𝑗,𝑗 = 0, (2.43b)(︁

𝐾𝑚
𝑖𝑗 𝑀

(1,0)
𝑞1,𝑗

)︁
,𝑖

+𝐾𝑚
𝑖𝑞1,𝑖 = 0, (2.43c)
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with interface conditions expressed in terms of perturbation functions 𝑁 (1,0)
ℎ𝑝𝑞1

, 𝑁̃
(1,0)
ℎ ,

𝑀
(1,0)
𝑞1 as

[︁[︁
𝑁

(1,0)
ℎ𝑝𝑞1

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0, (2.44a)[︁[︁(︁
𝐶𝑚

𝑖𝑗ℎ𝑘

(︁
𝛿ℎ𝑝 𝛿𝑘𝑞1 +𝑁

(1,0)
ℎ𝑝𝑞1,𝑘

)︁)︁
𝑛𝑗

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0, (2.44b)[︁[︁
𝑁̃

(1,0)
ℎ

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0, (2.44c)[︁[︁(︁
𝐶𝑚

𝑖𝑗ℎ𝑘

(︁
𝑁̃

(1,0)
ℎ,𝑘 − 𝛼𝑚

𝑖𝑗

)︁)︁
𝑛𝑗

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0, (2.44d)[︁[︁
𝑀 (1,0)

𝑞1

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0, (2.44e)[︁[︁(︁
𝐾𝑚

𝑖𝑗

(︁
𝑀

(1,0)
𝑞1,𝑗 + 𝛿𝑗𝑞1

)︁)︁
𝑛𝑖

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0, (2.44f)

where the symmetries from the respective tensors are passed to the perturbation
functions, for instance 𝑁 (1,0)

ℎ𝑝𝑞1
= 𝑁

(1,0)
ℎ𝑞1𝑝 , since 𝐶𝑚

𝑖𝑗𝑝𝑞1,𝑗 = 𝐶𝑚
𝑖𝑗𝑞1𝑝,𝑗 .

Once the perturbation functions 𝑁 (1,0)
ℎ𝑝𝑞1

, 𝑁̃
(1,0)
ℎ and 𝑀

(1)
𝑞1 are determined, from

the differential problem (2.36𝑎) and recalling the solution 𝑢
(2)
𝑘 in Eq. (2.40𝑎), one

derives the three following cell problems, at the order 𝜖0, and symmetrizing with
respect to indices 𝑞1 and 𝑞2, leads to

(︁
𝐶𝑚

𝑖𝑗ℎ𝑘 𝑁
(2,0)
ℎ𝑝𝑞1𝑞2,𝑘

)︁
,𝑗

+ 1
2

[︂(︁
𝐶𝑚

𝑖𝑗ℎ𝑞2
𝑁

(1,0)
ℎ𝑝𝑞1

)︁
,𝑗

+ 𝐶𝑚
𝑖𝑞1𝑝𝑞2

+ 𝐶𝑚
𝑖𝑞2ℎ𝑗 𝑁

(1,0)
ℎ𝑝𝑞1,𝑗+

+
(︁
𝐶𝑚

𝑖𝑗ℎ𝑞1
𝑁

(1,0)
ℎ𝑝𝑞2

)︁
,𝑗

+ 𝐶𝑚
𝑖𝑞2𝑝𝑞1

+ 𝐶𝑚
𝑖𝑞1ℎ𝑗 𝑁

(1,0)
ℎ𝑝𝑞2,𝑗

]︂
= 1

2

⟨
𝐶𝑚

𝑖𝑞1𝑝𝑞2
+ 𝐶𝑚

𝑖𝑞2ℎ𝑗 𝑁
(1,0)
ℎ𝑝𝑞1,𝑗+

+ 𝐶𝑚
𝑖𝑞2𝑝𝑞1

+ 𝐶𝑚
𝑖𝑞1ℎ𝑗 𝑁

(1,0)
ℎ𝑝𝑞2,𝑗

⟩
,

(2.45a)(︁
𝐶𝑚

𝑖𝑗ℎ𝑘 𝑁̃
(2,1)
ℎ𝑞1,𝑘

)︁
,𝑗

+
[︂(︁
𝐶𝑚

𝑖𝑗ℎ𝑞1
𝑁̃

(1,0)
ℎ

)︁
,𝑗

+ 𝐶𝑚
𝑖𝑞1ℎ𝑗 𝑁̃

(1,0)
ℎ,𝑗 −

(︁
𝛼𝑚

𝑖𝑗 𝑀
(1,0)
𝑞1

)︁
,𝑗

−

+ 𝛼𝑚
𝑖𝑞1

]︀
=
⟨
𝐶𝑚

𝑖𝑞1ℎ𝑗 𝑁̃
(1,0)
ℎ,𝑗 − 𝛼𝑚

𝑖𝑞1

⟩ (2.45b)

(︁
𝐶𝑚

𝑖𝑗ℎ𝑘 𝑁
(2,2)
ℎ𝑝,𝑘

)︁
,𝑗

− 𝜌𝑚𝛿𝑖𝑝 = − ⟨𝜌𝑚⟩ 𝛿𝑖𝑝, (2.45c)

with interface conditions in terms of perturbation functions as
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[︁[︁
𝑁

(2,0)
ℎ𝑝𝑞1𝑞2

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0, (2.46a)[︂[︂[︂
𝐶𝑚

𝑖𝑗ℎ𝑘𝑁
(2,0)
ℎ𝑝𝑞1𝑞2,𝑘 + 1

2

(︁
𝐶𝑚

𝑖𝑗ℎ𝑞2
𝑁

(1,0)
ℎ𝑝𝑞1

+ 𝐶𝑚
𝑖𝑗ℎ𝑞1

𝑁
(1,0)
ℎ𝑝𝑞2

)︁]︂
𝑛𝑗

]︂]︂⃒⃒⃒⃒
𝜉∈Σ1

= 0, (2.46b)[︁[︁
𝑁̃

(2,1)
ℎ𝑞1

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0, (2.46c)[︁[︁(︁
𝐶𝑚

𝑖𝑗ℎ𝑘𝑁̃
(2,1)
ℎ𝑞1,𝑘 +

(︁
𝐶𝑚

𝑖𝑗ℎ𝑞2
𝑁̃

(1,0)
ℎ 𝛿𝑘𝑞1 − 𝛼𝑚

𝑖𝑗𝑀
(1,0)
𝑞1

)︁)︁
𝑛𝑗

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0, (2.46d)[︁[︁
𝑁

(2,2)
ℎ𝑝

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0, (2.46e)[︁[︁(︁
𝐶𝑚

𝑖𝑗ℎ𝑘𝑁
(2,2)
ℎ𝑝,𝑘

)︁
𝑛𝑗

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0. (2.46f)

Analogously, for the thermal homogenized field at the order 𝜖0, replacing solution
(2.40𝑏) into the differential problem (2.36𝑏), one gives the next three cell problems

(︁
𝐾𝑚

𝑖𝑗 𝑀
(2,0)
𝑞1𝑞2,𝑗

)︁
,𝑖

+ 1
2

[︂(︁
𝐾𝑚

𝑖𝑞2
𝑀 (1,0)

𝑞1

)︁
,𝑖

+𝐾𝑚
𝑞1𝑞2

+𝐾𝑚
𝑖𝑞2
𝑀

(1,0)
𝑞1,𝑖 +

(︁
𝐾𝑚

𝑖𝑞1
𝑀 (1,0)

𝑞2

)︁
,𝑖

+

+𝐾𝑚
𝑞2𝑞1

+𝐾𝑚
𝑞1𝑖 𝑀

(1,0)
𝑞2,𝑖

]︁
= 1

2

⟨
𝐾𝑚

𝑞1𝑞2
+𝐾𝑚

𝑞2𝑖 𝑀
(1,0)
𝑞1,𝑖 +𝐾𝑚

𝑞2𝑞1
+𝐾𝑚

𝑞1𝑖 𝑀
(1,0)
𝑞2,𝑖

⟩
,

(2.47a)(︁
𝐾𝑚

𝑖𝑗 𝑀̃
(2,1)
𝑝𝑞1,𝑗

)︁
,𝑖

−
[︁
𝛼𝑚

𝑖𝑗 𝑁
(1,0)
𝑖𝑝𝑞1,𝑗 + 𝛼𝑚

𝑝𝑞1

]︁
= −

⟨
𝛼𝑚

𝑖𝑗 𝑁
(1,0)
𝑖𝑝𝑞1,𝑗 + 𝛼𝑚

𝑝𝑞1

⟩
, (2.47b)(︁

𝐾𝑚
𝑖𝑗 𝑀

(2,1)
,𝑗

)︁
,𝑖

−
[︁
𝛼𝑚

𝑖𝑗 𝑁̃
(1,0)
𝑖,𝑗 + 𝑝𝑚

]︁
= −

⟨
𝛼𝑚

𝑖𝑗 𝑁̃
(1,0)
𝑖,𝑗 + 𝑝𝑚

⟩
, (2.47c)

and, in terms of perturbation functions, the interface conditions become

[︁[︁
𝑀 (2,0)

𝑞1𝑞2

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0, (2.48a)[︂[︂[︂
𝐾𝑚

𝑖𝑗 𝑀
(2,0)
𝑞1𝑞2,𝑗 + 1

2

(︁
𝐾𝑚

𝑖𝑞2
𝑀 (1,0)

𝑞1
+𝐾𝑚

𝑖𝑞1
𝑀 (1,0)

𝑞2

)︁]︂
𝑛𝑖

]︂]︂⃒⃒⃒⃒
𝜉∈Σ1

= 0. (2.48b)[︁[︁
𝑀̃ (2,1)

𝑝𝑞1

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0, (2.48c)[︁[︁(︁
𝐾𝑚

𝑖𝑗 (𝑠)𝑀̃ (2,1)
𝑝𝑞1,𝑗

)︁
𝑛𝑖

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0. (2.48d)[︁[︁
𝑀 (2,1)

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0, (2.48e)[︁[︁(︁
𝐾𝑚

𝑖𝑗 (𝑠)𝑀 (2,1)
,𝑗

)︁
𝑛𝑖

]︁]︁⃒⃒⃒
𝜉∈Σ1

= 0. (2.48f)
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2.3.2 Down-scaling and up-scaling relations

On one hand, the feasibility of expressing the microscopic fields 𝑢̂ℎ(x, 𝜉, 𝑠) and
𝜃(x, 𝜉, 𝑠) as asymptotic expansions of powers of the microscopic length 𝜖 in terms
of the macroscopic fields 𝑈̂𝑀

ℎ (x, 𝑠), Θ̂𝑀 (x, 𝑠), their gradients and in terms of the
𝒬-periodic perturbation functions arises from the solution of the cell problems at
different orders of 𝜖 developed in Sec. 2.3.1. From the expansions (2.16𝑏) and
(2.16𝑎), and considering the solutions in (2.28), (2.29), (2.34a), (2.34b), (2.40a)
and (2.40b) of cell problems at the different orders of 𝜖, one derives the down-
scaling relations of the transformed micro-displacement field and the transformed
micro-temperature field, respectively,

𝑢̂ℎ

(︁
x, x
𝜖
, 𝑠
)︁

=
[︃
𝑈̂𝑀

ℎ (x, 𝑠) + 𝜖

(︃
𝑁

(1,0)
ℎ𝑝𝑞1

(𝜉)𝜕𝑈̂
𝑀
ℎ

𝜕𝑥𝑞1

+ 𝑁̃
(1,0)
ℎ (𝜉)Θ̂𝑀

)︃
+

+ 𝜖2

(︃
𝑁

(2,0)
ℎ𝑝𝑞1𝑞2

(𝜉) 𝜕2𝑈̂𝑀
ℎ

𝜕𝑥𝑞1𝜕𝑥𝑞2
+ 𝑁̃

(2,1)
ℎ𝑞1

(𝜉)𝜕Θ̂𝑀

𝜕𝑥𝑞1

+ 𝑠2𝑁
(2,2)
ℎ𝑝 (𝜉)𝑈̂𝑀

ℎ

)︃
+

+ 𝒪(𝜖3)
]︀⃒⃒

𝜉= x
𝜖

,

(2.49a)

𝜃
(︁

x, x
𝜖
, 𝑠
)︁

=
[︃

Θ̂𝑀 (x, 𝑠) + 𝜖

(︃
𝑀 (1,0)

𝑞1
(𝜉)𝜕Θ̂𝑀

𝜕𝑥𝑞1

)︃
+

+ 𝜖2

(︃
𝑀 (2,0)

𝑝𝑞1𝑞2
(𝜉) 𝜕2Θ̂𝑀

𝜕𝑥𝑞1𝜕𝑥𝑞2
+ 𝑠𝑀̃ (2,1)

𝑝𝑞1
(𝜉)𝜕Θ̂𝑀

𝜕𝑥𝑞1

+ 𝑠2𝑀
(2,1)
ℎ𝑝 (𝜉)Θ̂𝑀

)︃
+

+ 𝒪(𝜖3)
]︀⃒⃒

𝜉= x
𝜖

.

(2.49b)

Noteworthy, the 𝒬-periodic perturbation functions 𝑁 (1,0)
ℎ𝑝𝑞1

, 𝑁̃
(1,0)
ℎ , 𝑁

(2,0)
ℎ𝑝𝑞1𝑞2

, 𝑁̃
(2,0)
ℎ𝑞1

,

𝑁
(2,2)
ℎ𝑝 , 𝑀

(1,0)
𝑞1 , 𝑀

(2,0)
𝑞1𝑞2 , 𝑀̃

(2,1)
𝑝𝑞1 , 𝑀 (2,1), cast the effect of microstructural inhomo-

geneities of the material through their dependency on the fast variable 𝜉 = x/𝜖,
whereas the macro-fields 𝑢̂(x, 𝑠), and 𝜃(x, 𝑠) are L-periodic functions and therefore
rely only on the slow variable x [130].

On the other hand, also known as the up-scaling relations, they allow the defini-
tion of the macroscopic fields in terms of the microscopic ones. This means that the
macroscopic fields may be defined as the mean values of microscopic Eqs. (2.49𝑎)
and (2.49𝑏) over the unit cell 𝒬, thus it follows that
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𝑈̂ℎ(x, 𝑠) .=
⟨
𝑢̂ℎ

(︁
x, x
𝜖

+ 𝜁, 𝑠
)︁⟩

= 1
|𝒬|

∫︁
𝒬
𝑢̂ℎ

(︁
x, x
𝜖

+ 𝜁, 𝑠
)︁
𝑑𝜁 =

= 1
|𝒬|

∫︁
𝒬
𝑢ℎ (x, 𝜉, 𝑠) 𝑑𝜉 = ⟨𝑢̂ℎ (x, 𝜉, 𝑠)⟩ ,

(2.50a)

Θ̂(x, 𝑠) .=
⟨
𝜃
(︁

x, x
𝜖

+ 𝜁, 𝑠
)︁⟩

= 1
|𝒬|

∫︁
𝒬
𝜃
(︁

x, x
𝜖

+ 𝜁, 𝑠
)︁
𝑑𝜁 =

= 1
|𝒬|

∫︁
𝒬
𝜃 (x, 𝜉, 𝑠) 𝑑𝜉 =

⟨
𝜃 (x, 𝜉, 𝑠)

⟩
,

(2.50b)

where the variable 𝜁 ∈ 𝒬 has been introduced and the vector 𝜖𝜁 ∈ 𝒜 defines all
the possible translations of the heterogeneous medium compared to a grid of cells
having characteristic size 𝜖, with respect to the L-periodic body force b̂(x) [35, 171].
Besides, the mean value operator of the left hand side is taken over the variable 𝜁,

whereas the mean value operator of the right hand side has become over 𝜉.

2.4 Average field equation of infinite order

Recalling the structure of the field Eqs. (2.24𝑎) and (2.24𝑏) and substituting each
𝑓

(𝑙)
𝑖 (x) and 𝑔(𝑙)(x), obtained from each relative recursive differential problem into

them, one derives the average field equations of infinite order

𝑛
(2,0)
𝑖𝑝𝑞1𝑞2

𝜕2𝑈̂𝑀
ℎ

𝜕𝑥𝑞1𝜕𝑥𝑞2

+ 𝑛̃
(2,0)
𝑖𝑞1

𝜕Θ̂𝑀

𝜕𝑥𝑞1

− 𝑛
(2,2)
𝑖𝑝 𝑠2𝑈̂𝑀

ℎ + 𝒪 (𝜖) + 𝑏̂𝑖 = 0, (2.51a)

𝑤(2,0)
𝑞1𝑞2

𝜕2Θ̂𝑀

𝜕𝑥𝑞1𝜕𝑥𝑞2

− 𝑤̃(2,1)
𝑝𝑞1

𝑠
𝜕𝑈̂𝑀

ℎ

𝜕𝑥𝑞1

− 𝑤(2,1)𝑠Θ̂𝑀 + 𝒪 (𝜖) + 𝑟 = 0, (2.51b)

where the constant global constitutive tensors factors are
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𝑛
(2,0)
𝑖𝑝𝑞1𝑞2

= 1
2

⟨
𝐶𝑚

𝑖𝑞1𝑝𝑞2
+ 𝐶𝑚

𝑖𝑞2ℎ𝑗𝑁
(1,0)
ℎ𝑝𝑞1,𝑗 + 𝐶𝑚

𝑖𝑞2𝑝𝑞1
+ 𝐶𝑚

𝑖𝑞1ℎ𝑗𝑁
(1,0)
ℎ𝑝𝑞2,𝑗

⟩
, (2.52a)

𝑛̃
(2,0)
𝑖𝑞1

=
⟨
𝐶𝑚

𝑖𝑞1ℎ𝑗𝑁̃
(1,0)
ℎ,𝑗 − 𝛼𝑚

𝑖𝑞1

⟩
, (2.52b)

𝑛
(2,2)
𝑖𝑝 = ⟨𝜌𝑚⟩ 𝛿𝑖𝑝, (2.52c)

𝑤(2,0)
𝑞1𝑞2

= 1
2

⟨
𝐾𝑚

𝑞1𝑞2
+𝐾𝑚

𝑞2𝑖𝑀
(1,0)
𝑞1,𝑖 +𝐾𝑚

𝑞2𝑞1
+𝐾𝑚

𝑞1𝑖𝑀
(1,0)
𝑞2,𝑖

⟩
, (2.52d)

𝑤̃(2,1)
𝑝𝑞1

=
⟨
𝛼𝑚

𝑖𝑗𝑁
(1,0)
𝑖𝑝𝑞1,𝑗 + 𝛼𝑚

𝑝𝑞1

⟩
, (2.52e)

𝑤(2,1) =
⟨
𝛼𝑚

𝑖𝑗 𝑁̃
(1,0)
𝑖,𝑗 − 𝑝𝑚

𝑖𝑞1

⟩
. (2.52f)

In the interest of deriving explicit solutions of the Eqs. (2.51𝑎) and (2.51𝑏), the
macroscopic variables 𝑈̂𝑀

ℎ and Θ̂𝑀 are asymptotically expanded as follows

𝑈̂𝑀
ℎ (x, 𝑠) =

+∞∑︁
𝑗=0

𝜖𝑗𝑈̂
(𝑗)
ℎ (x, 𝑠) , (2.53a)

Θ̂𝑀 (x, 𝑠) =
+∞∑︁
𝑗=0

𝜖𝑗Θ̂(𝑗) (x, 𝑠) . (2.53b)

By plugging the solutions (2.53𝑎) and (2.53𝑏), into the Eqs. (2.51𝑎) and (2.51𝑏),
the asymptotic expansions of the average field equations of infinite order become

𝑛
(2,0)
𝑖𝑝𝑞1𝑞2

(︃
𝜕2𝑈̂

(0)
ℎ

𝜕𝑥𝑞1𝜕𝑥𝑞2

+ 𝜖
𝜕2𝑈̂

(1)
ℎ

𝜕𝑥𝑞1𝜕𝑥𝑞2

+ 𝜖2
𝜕2𝑈̂

(2)
ℎ

𝜕𝑥𝑞1𝜕𝑥𝑞2

+ · · ·

)︃
+

𝑛̃
(2,0)
𝑖𝑞1

(︃
𝜕Θ̂(0)

𝜕𝑥𝑞1

+ 𝜖
𝜕Θ̂(1)

𝜕𝑥𝑞1

+ 𝜖2
𝜕Θ̂(2)

𝜕𝑥𝑞1

+ · · ·

)︃
+

− 𝑛
(2,2)
𝑖𝑝 𝑠2

(︁
𝑈̂

(0)
ℎ + 𝜖𝑈̂

(1)
ℎ + 𝜖2𝑈̂

(2)
ℎ

)︁
+ · · · + 𝑏̂𝑖 = 0,

(2.54a)

𝑤(2,0)
𝑞1𝑞2

(︃
𝜕2Θ̂(0)

𝜕𝑥𝑞1𝜕𝑥𝑞2

+ 𝜖
𝜕2Θ̂(1)

𝜕𝑥𝑞1𝜕𝑥𝑞2

+ 𝜖2
𝜕2Θ̂(2)

𝜕𝑥𝑞1𝜕𝑥𝑞2

+ · · ·

)︃
−

+ 𝑤̃(2,1)
𝑝𝑞1

𝑠

(︃
𝜕𝑈̂

(0)
ℎ

𝜕𝑥𝑞1

+ 𝜖
𝜕𝑈̂

(1)
ℎ

𝜕𝑥𝑞1

+ 𝜖2
𝜕𝑈̂

(2)
ℎ

𝜕𝑥𝑞1

+ · · ·

)︃
+

− 𝑤(2,1)𝑠
(︁

Θ̂(0) + 𝜖Θ̂(1) + 𝜖2Θ̂(2)
)︁

+ · · · + 𝑟 = 0.

(2.54b)
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Rearranging the terms at the same order of 𝜖 in (2.54𝑎) and (2.54𝑏), an infinite set of
macroscopic hierarchical differential problems expressed in terms of the sensitivities
𝑈̂

(𝑗)
ℎ and Θ̂(𝑗) of both macroscopic displacement 𝑈̂𝑀

ℎ and macroscopic temperature
Θ̂𝑀 fields can be determined. Thus,

𝜖0

(︃
𝑛

(2,0)
𝑖𝑝𝑞1𝑞2

𝜕2𝑈̂
(0)
ℎ

𝜕𝑥𝑞1𝜕𝑥𝑞2

+ 𝑛̃
(2,0)
𝑖𝑞1

𝜕Θ̂(0)

𝜕𝑥𝑞1

− 𝑛
(2,2)
𝑖𝑝 𝑠2𝑈̂

(0)
ℎ + 𝑏̂𝑖

)︃
+

+ 𝜖

(︃
𝑛

(2,0)
𝑖𝑝𝑞1𝑞2

𝜕2𝑈̂
(1)
ℎ

𝜕𝑥𝑞1𝜕𝑥𝑞2

+ 𝑛̃
(2,0)
𝑖𝑞1

𝜕Θ̂(1)

𝜕𝑥𝑞1

− 𝑛
(2,2)
𝑖𝑝 𝑠2𝑈̂

(1)
ℎ + 𝑠

(1)
𝑖 (x, 𝑠)

)︃
+

+ 𝜖2

(︃
𝑛

(2,0)
𝑖𝑝𝑞1𝑞2

𝜕2𝑈̂
(2)
ℎ

𝜕𝑥𝑞1𝜕𝑥𝑞2

+ 𝑛̃
(2,0)
𝑖𝑞1

𝜕Θ̂(2)

𝜕𝑥𝑞1

− 𝑛
(2,2)
𝑖𝑝 𝑠2𝑈̂

(2)
ℎ + 𝑠

(2)
𝑖 (x, 𝑠)

)︃
+ 𝒪(𝜖3) = 0,

(2.55a)

𝜖0

(︃
𝑤(2,0)

𝑞1𝑞2

𝜕2Θ̂(0)

𝜕𝑥𝑞1𝜕𝑥𝑞2

− 𝑤̃(2,1)
𝑝𝑞1

𝑠
𝜕𝑈̂

(0)
ℎ

𝜕𝑥𝑞1

− 𝑤(2,1)𝑠Θ̂(0) + 𝑟

)︃
+

+ 𝜖

(︃
𝑤(2,0)

𝑞1𝑞2

𝜕2Θ̂(1)

𝜕𝑥𝑞1𝜕𝑥𝑞2

− 𝑤̃(2,1)
𝑝𝑞1

𝑠
𝜕𝑈̂

(1)
ℎ

𝜕𝑥𝑞1

− 𝑤(2,1)𝑠Θ̂(1) + 𝜐(1)(x, 𝑠)
)︃

+

+ 𝜖2

(︃
𝑤(2,0)

𝑞1𝑞2

𝜕2Θ̂(2)

𝜕𝑥𝑞1𝜕𝑥𝑞2

− 𝑤̃(2,1)
𝑝𝑞1

𝑠
𝜕𝑈̂

(2)
ℎ

𝜕𝑥𝑞1

− 𝑤(2,1)𝑠Θ̂(2) + 𝜐(2)(x, 𝑠)
)︃

+ 𝒪(𝜖3) = 0,

(2.55b)

Therefore, the recursive problem at the macroscopic scale at order 𝜖0 reads

𝑛
(2,0)
𝑖𝑝𝑞1𝑞2

𝜕2𝑈̂
(0)
ℎ

𝜕𝑥𝑞1𝜕𝑥𝑞2

+ 𝑛̃
(2,0)
𝑖𝑞1

𝜕Θ̂(0)

𝜕𝑥𝑞1

− 𝑛
(2,2)
𝑖𝑝 𝑠2𝑈̂

(0)
ℎ + 𝑏̂𝑖 = 0, (2.56a)

𝑤(2,0)
𝑞1𝑞2

𝜕2Θ̂(0)

𝜕𝑥𝑞1𝜕𝑥𝑞2

− 𝑤̃(2,1)
𝑝𝑞2

𝑠
𝜕𝑈̂

(0)
ℎ

𝜕𝑥𝑞1

− 𝑤(2,1)𝑠Θ̂(0) + 𝑟 = 0, (2.56b)

while the generic recursive problem at the macroscopic scale of order 𝜖𝑟 with 𝑙 ∈ Z,
𝑙 ≥ 1 is found as

𝑛
(2,0)
𝑖𝑝𝑞1𝑞2

𝜕2𝑈̂
(𝑙)
ℎ

𝜕𝑥𝑞1𝜕𝑥𝑞2

+ 𝑛̃
(2,0)
𝑖𝑞1

𝜕Θ̂(𝑙)

𝜕𝑥𝑞1

− 𝑛
(2,2)
𝑖𝑝 𝑠2𝑈̂

(𝑙)
ℎ + 𝑠

(𝑙)
𝑖 (x, 𝑠) = 0, (2.57a)

𝑤(2,0)
𝑞1𝑞2

𝜕2Θ̂(𝑙)

𝜕𝑥𝑞1𝜕𝑥𝑞2

− 𝑤̃(2,1)
𝑝𝑞2

𝑠
𝜕𝑈̂

(𝑙)
ℎ

𝜕𝑥𝑞1

− 𝑤(2,1)𝑠Θ̂(𝑙) − 𝜐(𝑙)(x, 𝑠) = 0, (2.57b)
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where the functions 𝑠(𝑙)
𝑖 (x, 𝑠) and 𝜐(𝑙)(x, 𝑠) are the source terms 𝒬-periodic fields,

which depend both on the higher order constant tensors that appear in the terms at
orders equal or higher than 𝜖𝑚 of the Eqs. (2.51𝑎) and (2.51𝑏), and on the sensitiv-
ities 𝑈̂ (𝑗)

ℎ and Θ̂(𝑗) from macroscopic hierarchical differential problems of an order
lower than 𝜖𝑚.

2.5 Approximation of the power-like functional via
truncation of its asymptotic expansion

A variational-asymptotic procedure [35, 105] is exploited to furnish a finite order
governing equation to establish an equivalence among the Eqs. (2.11a) and (2.11b)
at the macro-scale. For this matter, on the periodic domain L, let the power-like
functional Λ be expressed in terms of the energy-like density 𝜆𝑚 at the micro-scale

Λ(𝑢, 𝜃) = 𝜕

𝜕𝑡

∫︁
L

𝜆𝑚

(︁
x, x
𝜖

)︁
𝑑x =

= 𝜕

𝜕𝑡

∫︁
L

(︂
1
2𝜌

𝑚𝑢̇ * 𝑢̇ + 1
2∇𝑢 * (C𝑚∇𝑢) − 1

2∇𝑢 * (𝛼𝑚𝜃) − 𝑢 * 𝑏

)︂
𝑑x +

(2.58)

−
∫︁
L

(︂
1
2∇𝜃 *

(︀
ℒ−1 {K𝑚} * ∇𝜃

)︀
+ 1

2𝜃 * (𝛼𝑚∇𝑢̇) + 1
2𝜃 * (𝑝𝑚𝜃) − 𝜃 * 𝑟

)︂
𝑑x .

Now, applying the Laplace transform on ℒ(Λ), the functional above is taken to the
Laplace domain and expressed in terms of the power-like density 𝜆̂𝑚 as follows

ℒ{Λ} = Λ̂(𝑢̂, 𝜃) =
∫︁
L

𝜆̂𝑚

(︁
x, x
𝜖

)︁
𝑑x =

=
∫︁
L

𝑠

(︂
1
2𝜌

𝑚𝑠2𝑢̂ · 𝑢̂ + 1
2∇𝑢̂ : (C𝑚∇𝑢̂) − 1

2∇𝑢̂ : (𝛼𝑚𝜃) − 𝑢̂ · 𝑏̂

)︂
𝑑x +

(2.59)

−
∫︁
L

(︂
1
2∇𝜃 ·

(︁
K𝑚∇𝜃

)︁
+ 1

2𝑠𝜃 (𝛼𝑚 : ∇𝑢̂) + 1
2𝑠𝜃(𝑝

𝑚𝜃) − 𝜃𝑟

)︂
𝑑x ,

where the symbol : indicates the tensor double inner product. Note that the Euler-
Lagrange equation from the functional (2.59) agrees with the demonstration pre-
sented in the Appendix A which leads to the field equations at the micro-scale
(2.11𝑎) and (2.11𝑏).
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As it was introduced at the Eqs. (2.50a) and (2.50b), the transformed power-
like functional Λ̂ and its corresponding power-like density 𝜆̂𝑚 are dependent by
the translation parameter 𝜁 ∈ 𝒬. Which means, the perturbation functions 𝑁 (1,0)

ℎ𝑝𝑞1
,

𝑁̃
(1,0)
ℎ , 𝑁

(2,0)
ℎ𝑝𝑞1𝑞2

, 𝑁̃
(2,0)
ℎ𝑞1

, 𝑁
(2,2)
ℎ𝑝 , 𝑀

(1,0)
𝑞1 , 𝑀

(2,0)
𝑞1𝑞2 , 𝑀̃

(2,1)
𝑝𝑞1 , 𝑀 (2,1), determined from the

cell problems in Sec. 2.3.1, also depend on the translation variable 𝜁. Besides, the
power-like density 𝜆̂𝑚 in the Laplace domain complies with the property

𝜆̂𝜁
𝑚

(︁
x, x
𝜖

)︁
= 𝜆̂𝑚

(︁
x, x
𝜖

+ 𝜁
)︁
, (2.60)

implying that the Laplace transformed of the power-like functional Λ̂, depends on
the parameter 𝜁, one has

Λ̂𝜁 = Λ̂(𝜁) =
∫︁
L

𝜆̂𝜁
𝑚

(︁
x, x
𝜖

)︁
𝑑x =

∫︁
L

𝜆̂𝑚

(︁
x, x
𝜖

+ 𝜁
)︁
𝑑x. (2.61)

Let Λ̂𝑚 be the average transformed power-like functional at the micro-scale

Λ̂𝑚=̇⟨Λ̂𝜁⟩ = 1
|𝒬|

∫︁
𝒬

[︂∫︁
L

𝜆̂𝑚

(︁
x, x
𝜖

+ 𝜁
)︁
𝑑x
]︂
𝑑𝜁 =

=
∫︁
L

[︂
1

|𝒬|

∫︁
𝒬

Λ̂(𝜁)𝑑𝜁

]︂
𝑑x =

∫︁
L

⟨
𝜆̂𝑚

(︁
x, x
𝜖

)︁⟩
𝑑x,

(2.62)

where the Fubini’s theorem was applied in the third equality.
Since the power-like functional Λ̂𝜁 is averaged by the translated realizations of

the microstructure, which entails that the transformed power-like density at the
micro-scale satisfies

⟨
𝜆̂𝑚

(︁
x, x
𝜖

+ 𝜁
)︁⟩

= 1
|𝒬|

∫︁
𝒬
𝜆̂𝑚

(︁
x, x
𝜖

+ 𝜁
)︁
𝑑𝜁 =

= 1
|𝒬|

∫︁
𝒬
𝜆̂𝑚

(︁
x, 𝜉

)︁
𝑑𝜉 = ⟨𝜆̂𝑚(x, 𝜉)⟩,

(2.63)

consequently, this ensures that the average transformed power-like functional ⟨Λ̂𝜁⟩
at the micro-scale does not rely on the translation variable 𝜁.

Through a similar variational approach made in the Appendix A, we will deter-
mine the governing field equations at the macro-scale and the overall constitutive
tensors, finding the Euler-Lagrange equation of the power-like function from the
down-scaling relations (2.49a) and (2.49b). So, let us once again introduce the
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down-scaling relations related to the transformed micro-displacement 𝑢̂(x, 𝜉, 𝑠), and
to the transformed micro-temperature 𝜃(x, 𝜉, 𝑠), i.e.

𝑢̂ℎ

(︁
x, x
𝜖
, 𝑠
)︁

= 𝑈̂𝑀
ℎ (x, 𝑠) + 𝜖

(︃
𝑁

(1,0)
ℎ𝑝𝑞1

(𝜉)𝜕𝑈̂
𝑀
ℎ

𝜕𝑥𝑞1

+ 𝑁̃
(1,0)
ℎ (𝜉)Θ̂𝑀

)︃
+ 𝒪(𝜖2), (2.64a)

𝜃
(︁

x, x
𝜖
, 𝑠
)︁

= Θ̂𝑀 (x, 𝑠) + 𝜖

(︃
𝑀 (1,0)

𝑞1
(𝜉)𝜕Θ̂𝑀

𝜕𝑥𝑞1

)︃
+ 𝒪(𝜖2), (2.64b)

and applying the gradients (2.18a) and (2.18b) to the down-scaling relations above,
one gives

𝐷𝑢̂ℎ

𝐷𝑥𝑘
= 𝜕𝑈̂𝑀

ℎ

𝜕𝑥𝑘
+𝑁

(1,0)
ℎ𝑝𝑞1,𝑘

𝜕𝑈̂𝑀
𝑝

𝜕𝑥𝑞1

+ 𝑁̃
(1,0)
ℎ,𝑘 Θ̂𝑀 + 𝜖

(︃
𝑁

(1,0)
ℎ𝑝𝑞1

𝜕2𝑈̂𝑀
𝑝

𝜕𝑥𝑞1𝜕𝑥𝑘
+ 𝑁̃

(1,0)
ℎ

𝜕Θ̂𝑀

𝜕𝑥𝑘

)︃
+

+ 𝒪(𝜖2) = 𝐵
(1,0)
ℎ𝑘𝑝𝑞1

𝜕𝑈̂𝑀
ℎ

𝜕𝑥𝑞1

+ 𝐵̃
(1,0)
ℎ𝑘 Θ̂𝑀 + 𝒪(𝜖),

(2.65)

where 𝐵(1,0)
ℎ𝑘𝑝𝑞1

= 𝛿ℎ𝑝𝛿𝑘𝑞1 +𝑁
(1,0)
ℎ𝑝𝑞1,𝑘 and 𝐵̃

(1,0)
ℎ𝑘 = 𝑁̃

(1,0)
ℎ,𝑘 , and

𝐷𝜃ℎ

𝐷𝑥𝑗
= 𝜕Θ̂𝑀

𝜕𝑥𝑗
+𝑀

(1,0)
𝑞1,𝑗

𝜕Θ̂𝑀

𝜕𝑥𝑞1

+ 𝜖𝑀 (1,0)
𝑞1

𝜕2Θ̂𝑀

𝜕𝑥𝑞1𝜕𝑥𝑗
+ 𝒪(𝜖2) =

= 𝐴
(1,0)
𝑗𝑞1

𝜕Θ̂𝑀

𝜕𝑥𝑞1

+ 𝒪(𝜖),
(2.66)

where 𝐴(1,0)
𝑗𝑞1

= 𝛿𝑗𝑞1 +𝑀
(1,0)
𝑞1,𝑗 . The tensors 𝐵(1,0)

ℎ𝑘𝑝𝑞1
, 𝐵̃

(1,0)
ℎ𝑘 and 𝐴

(1,0)
𝑗𝑞1

are called local-
ization tensors and are also 𝒬-periodic functions in relation to the fast variable 𝜉,

once the perturbation functions and their gradients are 𝒬-periodic functions.

Thus, plugging the down-scaling relations truncated at the first order (2.64a),
(2.64b) and their gradients (2.65), (2.66), into the transformed power-like functional
(2.59), it results
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Λ̂𝑚(𝑈̂𝑀
ℎ , Θ̂𝑀 ) =

∫︁
L

⟨𝜆̂𝑚(x, 𝜉)⟩𝑑x =

=𝑠
[︂

1
2𝑠

2⟨𝜌𝑚⟩
∫︁
L

𝑈̂𝑀
ℎ 𝑈̂𝑀

ℎ 𝑑x + +

+
⟨

1
2𝐵

(1,0)
𝑖𝑗𝑙𝑟1

𝐶𝑚
𝑖𝑗ℎ𝑘𝐵

(1,0)
ℎ𝑘𝑝𝑞1

⟩∫︁
L

𝜕𝑈̂𝑀
𝑙

𝜕𝑥𝑟1

𝜕𝑈̂𝑀
𝑝

𝜕𝑥𝑞1

𝑑x +

+
⟨

1
2𝐵

(1,0)
𝑖𝑗𝑙𝑟1

𝐶𝑚
𝑖𝑗ℎ𝑘𝐵̃

(1,0)
ℎ𝑘

⟩∫︁
L

𝜕𝑈̂𝑀
𝑙

𝜕𝑥𝑟1

Θ̂𝑀𝑑x +

+
⟨

1
2 𝐵̃

(1,0)
𝑖𝑗 𝐶𝑚

𝑖𝑗ℎ𝑘𝐵
(1,0)
ℎ𝑘𝑝𝑞1

⟩∫︁
L

Θ̂𝑀 𝜕𝑈̂𝑀
𝑙

𝜕𝑥𝑞1

𝑑x +

+
⟨

1
2 𝐵̃

(1,0)
𝑖𝑗 𝐶𝑚

𝑖𝑗ℎ𝑘𝐵̃
(1,0)
ℎ𝑘

⟩∫︁
L

Θ̂𝑀 Θ̂𝑀𝑑x +

−
⟨
𝐵

(1,0)
𝑖𝑗𝑙𝑟1

𝛼𝑚
𝑖𝑗

⟩∫︁
L

𝜕𝑈̂𝑀
𝑙

𝜕𝑥𝑟1

Θ̂𝑀𝑑x +

−
⟨
𝐵̃

(1,0)
𝑖𝑗 𝛼𝑚

𝑖𝑗

⟩∫︁
L

Θ̂𝑀 Θ̂𝑀𝑑x −
∫︁
L

𝑈̂𝑀
ℎ 𝑏̂ℎ𝑑x

]︂
+

−
⟨

1
2𝐴

(1,0)
𝑖𝑟1

𝐾𝑚
𝑖𝑗 𝐴

(1,0)
𝑗𝑞1

⟩∫︁
L

𝜕Θ̂𝑀

𝜕𝑥𝑟1

𝜕Θ̂𝑀

𝜕𝑥𝑞1

𝑑x +

−1
2𝑠⟨𝑝

𝑚⟩
∫︁
L

Θ̂𝑀 Θ̂𝑀𝑑x +
∫︁
L

𝑟Θ̂𝑀𝑑x + 𝒪(𝜖2).

(2.67)

Using the concept of the variation of a functional to use the necessary condition
for a functional to have an extremum [175], the stability condition of the transformed
power-like functional Λ̂𝑚 is given by the governing equation of a non-local homo-
geneous continuum, in other words, one arises to the first variation of the average
transformed power-like functional 𝛿Λ̂𝑚(𝑈̂𝑀

ℎ , 𝛿𝑈̂𝑀
ℎ , Θ̂𝑀 , 𝛿Θ̂𝑀 ), thus
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𝛿Λ̂𝑚 =
∫︁
L

𝑠

[︃
𝑠2⟨𝜌𝑚⟩𝑈̂𝑀

𝑙 −
⟨
𝐵

(1,0)
𝑖𝑗𝑙𝑟1

𝐶𝑚
𝑖𝑗ℎ𝑘𝐵

(1,0)
ℎ𝑘𝑝𝑞1

⟩ 𝜕2𝑈̂𝑀
𝑝

𝜕𝑥𝑞1𝜕𝑥𝑟1

+

−
⟨

1
2𝐵

(1,0)
𝑖𝑗𝑙𝑟1

𝐶𝑚
𝑖𝑗ℎ𝑘𝐵̃

(1,0)
ℎ𝑘

⟩
𝜕Θ̂𝑀

𝜕𝑥𝑟1

+

−
⟨

1
2 𝐵̃

(1,0)
𝑖𝑗 𝐶𝑚

𝑖𝑗ℎ𝑘𝐵
(1,0)
ℎ𝑘𝑙𝑞1

⟩
𝜕Θ̂𝑀

𝜕𝑥𝑞1

+
⟨
𝐵

(1,0)
𝑖𝑗𝑙𝑟1

𝛼𝑚
𝑖𝑗

⟩ 𝜕Θ̂𝑀

𝜕𝑥𝑟1

− 𝑏̂𝑙

]︃
𝛿𝑈̂𝑀

𝑙 𝑑x +

+
∫︁
L

[︃
𝑠

(︃⟨
1
2𝐵

(1,0)
𝑖𝑗𝑙𝑟1

𝐶𝑚
𝑖𝑗ℎ𝑘𝐵̃

(1,0)
ℎ𝑘

⟩
𝜕𝑈̂𝑀

𝑙

𝜕𝑥𝑟1

+
⟨

1
2 𝐵̃

(1,0)
𝑖𝑗 𝐶𝑚

𝑖𝑗ℎ𝑘𝐵
(1,0)
ℎ𝑘𝑝𝑞1

⟩
𝜕𝑈̂𝑀

𝑝

𝜕𝑥𝑞1

+

−
⟨
𝐵̃

(1,0)
𝑖𝑗 𝐶𝑚

𝑖𝑗ℎ𝑘𝐵̃
(1,0)
ℎ𝑘

⟩
Θ̂𝑀 −

⟨
𝐵

(1,0)
𝑖𝑗𝑙𝑟1

𝛼𝑚
𝑖𝑗

⟩ 𝜕𝑈̂𝑀
𝑙

𝜕𝑥𝑟1

− 2
⟨
𝐵̃

(1,0)
𝑖𝑗 𝛼𝑚

𝑖𝑗 Θ̂𝑀
⟩)︃

+

+
⟨
𝐴

(1,0)
𝑖𝑟1

𝐾𝑚
𝑖𝑗 𝐴

(1,0)
𝑗𝑞1

⟩ 𝜕2Θ̂𝑀

𝜕𝑥𝑟1𝑥𝑞1

− 𝑠⟨𝑝𝑚⟩Θ̂𝑀 + 𝑟

]︃
𝛿Θ̂𝑀𝑑x,

(2.68)

where the divergence theorem has been applied in the first variation of the trans-
formed power-like functional (2.68).

As previously mentioned, such first variation must vanish for all admissible 𝛿𝑈̂𝑀
ℎ ,

𝛿Θ̂𝑀 i.e, 𝛿Λ̂𝑚(𝑈̂𝑀
ℎ , 𝛿𝑈̂𝑀

ℎ , 𝛿Θ̂𝑀 , 𝛿Θ̂𝑀 ) = 0, and hence the Euler-Lagrange differential
equation associated to the variational problem (2.68), by truncating at the zeroth
order, it leads to the following two equations

𝑠2⟨𝜌𝑚⟩𝑈̂𝑀
𝑙 −

⟨
𝐵

(1,0)
𝑖𝑗𝑙𝑟1

𝐶𝑚
𝑖𝑗ℎ𝑘𝐵

(1,0)
ℎ𝑘𝑝𝑞1

⟩ 𝜕2𝑈̂𝑀
𝑝

𝜕𝑥𝑞1𝜕𝑥𝑟1

+

+
⟨
𝐵

(1,0)
𝑖𝑗𝑙𝑞1

𝛼𝑚
𝑖𝑗 −𝐵

(1,0)
ℎ𝑘𝑙𝑞1

𝐶𝑚
𝑖𝑗ℎ𝑘𝐵̃

(1,0)
𝑖𝑗

⟩ 𝜕Θ̂𝑀

𝜕𝑥𝑞1

− 𝑏̂𝑙 = 0,
(2.69a)

⟨
𝐴

(1,0)
𝑖𝑟1

𝐾𝑚
𝑖𝑗 𝐴

(1,0)
𝑗𝑞1

⟩ 𝜕2Θ̂𝑀

𝜕𝑥𝑟1𝑥𝑞1

+

+ 𝑠

(︃⟨
𝐵

(1,0)
ℎ𝑘𝑝𝑞1

𝐶𝑚
𝑖𝑗ℎ𝑘𝐵̃

(1,0)
𝑖𝑗

⟩ 𝜕𝑈̂𝑀
𝑙

𝜕𝑥𝑞1

−
⟨
𝐵

(1,0)
𝑖𝑗𝑝𝑞1

𝛼𝑚
𝑖𝑗

⟩ 𝜕𝑈̂𝑀
𝑙

𝜕𝑥𝑞1

)︃
+

− 𝑠⟨𝑝𝑚 + 2𝐵̃(1,0)
𝑖𝑗 𝛼𝑚

𝑖𝑗 + 𝐵̃
(1,0)
𝑖𝑗 𝐶𝑚

𝑖𝑗ℎ𝑘𝐵̃
(1,0)
ℎ𝑘 ⟩Θ̂𝑀 + 𝑟 = 0,

(2.69b)

which are clearly developed in terms of the Laplace transformed macro-temperature
and macro-displacement among with their gradients. Since the Eqs. (2.69a) and
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(2.69b) are set by positive definite constitutive tensors, one implies that the exis-
tence and the uniqueness of their solutions are endorsed by the Legendre-Hadamard
condition [176].

Rearranging and rewriting the Eqs. (2.69a) and (2.69b) in terms of the consti-
tutive tensors, one gives

𝐶𝑙𝑟1𝑝𝑞1

𝜕2𝑈̂𝑀
𝑝

𝜕𝑥𝑞1𝜕𝑥𝑟1

− 𝛼𝑙𝑞1

𝜕Θ̂𝑀

𝜕𝑥𝑞1

+ 𝑏̂𝑙 = 𝜌𝑠2𝑈̂𝑀
𝑙 , (2.70a)

𝐾𝑟1𝑞1

𝜕2Θ̂𝑀

𝜕𝑥𝑟1𝑥𝑞1

− 𝑠𝛼𝑙𝑞1

𝜕𝑈̂𝑀
𝑙

𝜕𝑥𝑞1

+ 𝑟 = 𝑝𝑠Θ̂𝑀 , (2.70b)

where the overall constitutive tensors are defined as

𝐶𝑙𝑟1𝑝𝑞1 =
⟨
𝐵

(1,0)
𝑖𝑗𝑙𝑟1

𝐶𝑚
𝑖𝑗ℎ𝑘𝐵

(1,0)
ℎ𝑘𝑝𝑞1

⟩
, (2.71a)

𝐾𝑟1𝑞1 =
⟨
𝐴

(1,0)
𝑖𝑟1

𝐾𝑚
𝑖𝑗 𝐴

(1,0)
𝑗𝑞1

⟩
, (2.71b)

𝛼𝑙𝑞1 =
⟨
𝐵

(1,0)
𝑖𝑗𝑙𝑞1

𝛼𝑚
𝑖𝑗 −𝐵

(1,0)
ℎ𝑘𝑙𝑞1

𝐶𝑚
𝑖𝑗ℎ𝑘𝐵̃

(1,0)
𝑖𝑗

⟩
, (2.71c)

𝑝 = ⟨𝑝𝑚 + 2𝐵̃(1,0)
𝑖𝑗 𝛼𝑚

𝑖𝑗 + 𝐵̃
(1,0)
𝑖𝑗 𝐶𝑚

𝑖𝑗ℎ𝑘𝐵̃
(1,0)
ℎ𝑘 ⟩, (2.71d)

𝜌 = ⟨𝜌𝑚⟩. (2.71e)

Note that, at this stage, the Eqs. (2.70a) and (2.70b) are the macro-scale equiv-
alent to the field Eqs. (2.11a) and (2.11b) on the transformed Laplace space. More-
over, by applying the inverse Laplace transform (2.9) to them, and recalling the
identity (2.14), the field equations at the macro-scale corresponding to the Eqs.
(2.7a) and (2.7b) are recast on the time domain as

𝐶𝑙𝑟1𝑝𝑞1

𝜕2𝑈𝑀
𝑝

𝜕𝑥𝑞1𝜕𝑥𝑟1

− 𝛼𝑙𝑞1

𝜕Θ̇𝑀

𝜕𝑥𝑞1

+ 𝑏̂𝑙 = 𝜌𝑈̈𝑀
𝑙 , (2.72a)

ℒ−1 {𝐾𝑟1𝑞1} * 𝜕2Θ𝑀

𝜕𝑥𝑟1𝑥𝑞1

− 𝛼𝑙𝑞1

𝜕𝑈̇𝑀
𝑙

𝜕𝑥𝑞1

+ 𝑟 = 𝑝Θ̇𝑀 . (2.72b)

In addition, Sec. 2.4 considers higher order terms in the asymptotic expansions
at the microscopic scale, along with the macroscopic constitutive tensors and source
terms, states an alternative path to obtain higher order field equations and the
possibility of a more precise modeling of the thermoelastic heterogeneous continuum.
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2.6 Wave propagation in homogenized continuum
In this Section, we exploit the wave propagation along the homogenized continuum,
which is equivalent to the heterogeneous thermoelastic periodic material. Such pro-
cedure consists in applying the Fourier transform to Eqs. (2.70a) and (2.70b), with
respect to the macroscopic variable x ∈ R3, in order to derive these field equations
at the macro-scale defined over the complex frequency 𝑠, and also defined over the
wave vector 𝑘 = (𝑘1, 𝑘2, 𝑘3)𝑇 ∈ C3 ((𝑘1, 𝑘2, 𝑘3) are the wave numbers and 𝑇 identi-
fies transpose vector), in other terms, the thermoelastic field Eqs. (2.7a) and (2.7b),
initially defined on the space-time domain (x, 𝑡) ∈ R3 ×R, will be taken to the wave
vector-frequency domain (𝑘, 𝑠) ∈ C3 × C [177].

Proceeding the same way as made in Sec. 2.1, we begin defining the space
Fourier transform and its properties that will be used throughout the work [172].
Let 𝑓 : R3 → R be an arbitrary function defined over the domain x ∈ R3, the
complex space Fourier transform is defined as,

ℱ(𝑓(x)) = 𝑓(𝑘) =
∫︁
R3
𝑓(x)e−i𝑘·xdx, 𝑘 ∈ C3, (2.73)

where 𝑓 : C3 → C.
The Fourier transform of the derivative of order 𝑛 + 𝑚 of 𝑓 with respect to 𝑥𝑛

𝑗

and 𝑥𝑚
𝑟 is given by the identityℱ

{︀
𝜕𝑛+𝑚𝑓(x)𝜕𝑥𝑛

𝑗 𝜕𝑥
𝑚
𝑟

}︀
= (i𝑘𝑗)𝑛(i𝑘𝑟)𝑚𝑓(𝑘).

Transforming the macro-scale field Eqs. (2.70a) and (2.70b) into the Fourier
transformed space, one has

𝐶𝑙𝑟1𝑝𝑞1(i𝑘𝑞1)(i𝑘𝑟1) ˇ̂
𝑈𝑀

𝑝 − 𝛼𝑙𝑞1(i𝑘𝑞1) ˇ̂Θ𝑀 + ˇ̂
𝑏𝑙 = 𝜌𝑠2 ˇ̂

𝑈𝑀
𝑙 , (2.74a)

𝐾𝑟1𝑞1(i𝑘𝑞1)(i𝑘𝑟1) ˇ̂Θ𝑀 − 𝑠𝛼𝑙𝑞1(i𝑘𝑞1) ˇ̂
𝑈𝑀

𝑙 + ˇ̂𝑟 = 𝑝𝑠
ˇ̂Θ𝑀 . (2.74b)

In case of free wave propagation, we take the external influences (source terms)
being zero, such as the heat source equivalent ˇ̂𝑟, and the body force equivalent ˇ̂

𝑏, so
the equations above might be rephrased to the compact form as

[︀
C̄(𝑘 ⊗ 𝑘) + 𝜌𝑠2𝐼

]︀
· ˇ̂
𝑈𝑀 + i(𝛼𝑘) ˇ̂Θ𝑀 = 0, (2.75a)

[K : (𝑘 ⊗ 𝑘) + 𝑝𝑠] ˇ̂Θ𝑀 + i𝑠(𝛼𝑘) · ˇ̂
𝑈𝑀 = 0, (2.75b)

where the tensor C̄ corresponds to the shift C̄ = 𝐶𝑙𝑝𝑟1𝑞1e𝑙 ⊗ e𝑝 ⊗ e𝑟1 ⊗ e𝑞1 , with
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𝐶𝑙𝑝𝑟1𝑞1 = 𝐶𝑙𝑝𝑟1𝑞1 . Note that, the system of linear equations formed by Eqs. (2.75a)
and (2.75b) may be rewritten in a matricial form as

[︂
C̄(𝑘 ⊗ 𝑘) + 𝜌𝑠2𝐼 i𝑘𝛼

i𝑠𝑘𝛼 K : (𝑘 ⊗ 𝑘) + 𝑝𝑠

]︂[︃ ˇ̂
𝑈𝑀

ˇ̂Θ𝑀

]︃
=
[︂

0
0

]︂
. (2.76)

The matricial system (2.76), is an eigenproblem that provides the frequency
spectrum as an implicit function of the wave vector 𝑘 and the complex frequency
𝑠, which is given by the frequency equation 𝐹 (𝑘, 𝑠) = det([𝐻(𝑘, 𝑠)]) = 0, also
known as implicit dispersion relation, where the matrices in the system (2.76) are
named as [𝐻(𝑘, 𝑠)][𝑉 ] = [0]. Since the implicit function 𝐹 (𝑘, 𝑠) = 0 is a complex
function, it can be rephrased in terms of its real part and imaginary part as 𝐹 (𝑘, 𝑠) =
ℜ𝑒(𝐹 (𝑘, 𝑠)) + iℑ𝑚(𝐹 (𝑘, 𝑠)) = 0, or simply{︂

ℜ𝑒(𝐹 (𝑘, 𝑠)) = 0
ℑ𝑚(𝐹 (𝑘, 𝑠)) = 0 , (2.77)

which represents the collection of branches (frequency spectrum) by the hyper-
surfaces ℜ𝑒(𝐹 (𝑘, 𝑠)) and ℑ𝑚(𝐹 (𝑘, 𝑠)) into the space (𝑘, 𝑠) ∈ C4, such hyper-surface
𝐹 (𝑘, 𝑠) is also seen in mathematics as a level set of the complexed-valued function 𝐹 .
As [177] pinpoints, from a mathematical standpoint, there is no reason to choose real
over complex values for either the frequency or the wave vector. What matters is ac-
tually the physical meaning that might be associated to them. Having described the
implicit dispersion function, from this stage on we emphasize two possible lanes that
might provide us the dispersion spectrum, and finally analyse the wave propagation
either with spatial damping or with the damping in time, [178].

Particularly, before presenting the time damping path to analyse the wave propa-
gation, we briefly introduce the concepts of inhomogeneous waves and homogeneous
waves, for more details see [178]. An harmonic homogeneous wave is defined when
𝑛𝑟 = 𝑛𝑖 = 𝑛 occurs, this scenario means that the direction 𝑛 leads both the real
wave vector direction and the attenuation factor direction to become an unique di-
rection of propagation. When 𝛾 ≡ 0, the wave is called homogeneous, in other
words the angle 𝛾 being zero implies that the real wave vector and the attenua-
tion directions coincide. Moreover, physically it can also be quoted as [179] does,
homogeneous waves have the property that their surfaces of constant phase are par-
allel to their surfaces of constant amplitude whereas inhomogeneous waves have the
property that their surfaces of constant phase are perpendicular to their surfaces of
constant amplitude.
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In these circumstances, for the first case, let us consider the complex angular
frequency as 𝑠 = i𝜔 with 𝜔 ∈ R in the implicit dispersion relation (2.77). Thus
the dispersion relation dependence goes over to the complex wave vector 𝑘 and
the angular frequency 𝜔. Therefore, the dispersion relation associated to generic
inhomogeneous harmonic waves holds

{︂
ℜ𝑒(𝐹 (ℜ𝑒(𝑘),ℑ𝑚(𝑘), 𝜔)) = 0
ℑ𝑚(𝐹 (ℜ𝑒(𝑘),ℑ𝑚(𝑘), 𝜔)) = 0 , (2.78)

where the intersection between these two hyper-surfaces defines the frequency spec-
trum of the material as an hyper-curve immersed in R7. More specifically, such
hyper-curve describes the relation between the angular frequency 𝜔 and the complex
vector 𝑘, which can be expressed as 𝑘 = ℜ𝑒(𝑘)+iℑ𝑚(𝑘) = ‖ℜ𝑒(𝑘)‖𝑛𝑟+i‖ℑ𝑚(𝑘)‖𝑛𝑖,

where 𝑛𝑟, 𝑛𝑖 are versors (i.e ‖𝑛𝑟‖ = ‖𝑛𝑖‖ = 1 and 𝑛𝑟,𝑛𝑖 ∈ R3), representing the
direction of the normal to planes of constant phase and planes of constant amplitude
of the propagating wave, respectively. Moreover, in the particular case of the homo-
geneous harmonic waves characterized by 𝑛𝑟 = 𝑛𝑖 = 𝑛 and for the complex wave
expressed in the form 𝑘 = (‖ℜ𝑒(𝑘)‖ + 𝑖‖ℑ𝑚(𝑘)‖)𝑛 = 𝜅𝑛, the dispersion relation is
obtained by specializing (2.78) in the form

{︂
ℜ𝑒(𝐹 (ℜ𝑒(𝜅),ℑ𝑚(𝜅), 𝜔)) = 0
ℑ𝑚(𝐹 (ℜ𝑒(𝜅),ℑ𝑚(𝜅), 𝜔)) = 0 , (2.79)

a three dimensional hyper-surface whose intersection is a curve immersed in R3.

Nonetheless, in the second case of wave propagation with attenuation in time,
let us assume in the set of Eqs. (2.77) the complex frequency being as 𝑠 = ℜ𝑒(𝑠) +
iℑ𝑚(𝑠), the wave vector such that 𝑘 ∈ R3, and let us also fix a direction of the wave
vector 𝑘 = 𝜅𝑛, where 𝑛 is its versor and 𝜅 = ||𝑘|| ∈ R, thus (2.77) becomes

{︂
ℜ𝑒(𝐹 (𝜅,ℜ𝑒(𝑠),ℑ𝑚(𝑠))) = 0
ℑ𝑚(𝐹 (𝜅,ℜ𝑒(𝑠),ℑ𝑚(𝑠))) = 0 , (2.80)

and hence taking the intersection between the two hyper-surfaces from (2.80), one
yields a hyper-curve 𝑠(𝜅)-curves immersed in R3, given a certain propagation direc-
tion 𝑛.
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2.7 Illustrative example: homogenization procedure
on a bi-phase orthotropic layered material

In this section, in order to contrast the results found by the analysis of the hetero-
geneous approach stressed in Appendix B, the homogenized formulation obtained
in Sec. 2.7 is now applied for a layered two-dimensional infinite thermoelastic body
with orthotropic phases having the orthotropy axes parallel to the layering direc-
tion 𝑒1. Analytical precise formulae for the overall elastic, thermal dilatation and
thermal conduction tensors are determined. Subsequently, we compare the results
of the heterogeneous model developed in Appendix B, against those from the model
obtained proceeding with the first order homogenization technique, both under the
same hypothesis, by finding their dispersions spectrum seen in Sec. 2.6.

2.7.1 Perturbation functions and overall constitutive tensors

Let us assume a layered body composed by two phases where the first order ho-
mogenization process will be applied on the system. As may seen in Fig. 13, let
the domain 𝒜 made by two layered materials be defined having thickness s1 and
s2, where 𝑑2 = 𝜖 = s1 + s2, and 𝜂 = s1/s2. Also the domain displays orthotropic
phases, which it coincides with the axis that determines the layering direction 𝑒1.

The perturbation functions at the order 𝜖−1, 𝑁
(1,0)
ℎ𝑝𝑞1

𝑁̃
(1,0)
ℎ , 𝑀

(1,0)
𝑞1 are analytically

obtained by the solutions of the three cell problems presented in (2.43) formulated
in Sec. 2.7, along with the interface conditions in (2.44). Due to the microstruc-
ture symmetry, these functions rely exclusively on the microscopic (fast) component
𝜉2, which is perpendicular to the layering direction 𝑒1. Considering only non-zero
perturbations functions, they are given by
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Figure 13: Heterogeneous bi-dimensional domain bi-phase layered periodic cell.

𝑁
(1,0)1
112 = 𝑁

(1,0)1
121 𝑁

(1,0)2
112 = 𝑁

(1,0)2
121

=
(︀
𝐶(2)

1212 − 𝐶(1)
1212

)︀
𝜉(1)

2

𝐶(2)
1212𝜂 + 𝐶(1)

1212
, =

𝜂
(︀
𝐶(2)

1212 − 𝐶(1)
1212

)︀
𝜉(2)

2

𝐶(2)
1212𝜂 + 𝐶(1)

1212
, (2.81a)

𝑁
(1,0)1
211 =

(︀
𝐶(2)

1122 − 𝐶(1)
1122

)︀
𝜉(1)

2

𝐶(2)
2222𝜂 + 𝐶(1)

2222
, 𝑁

(1,0)2
211 =

𝜂
(︀
𝐶(2)

1122 − 𝐶(1)
1122

)︀
𝜉(2)

2

𝐶(2)
2222𝜂 + 𝐶(1)

2222
, (2.81b)

𝑁
(1,0)1
222 =

(︀
𝐶(2)

2222 − 𝐶(1)
2222

)︀
𝜉(1)

2

𝐶(2)
2222𝜂 + 𝐶(1)

2222
, 𝑁

(1,0)2
222 =

𝜂
(︀
𝐶(2)

2222 − 𝐶(1)
2222

)︀
𝜉(2)

2

𝐶(2)
2222𝜂 + 𝐶(1)

2222
, (2.81c)

𝑁̃
(1,0)1
2 =

(︀
𝛼(1)

22 − 𝛼(2)
22
)︀
𝜉(1)

2

𝐶(2)
2222𝜂 + 𝐶(1)

2222
, 𝑁̃

(1,0)2
2 =

𝜂
(︀
𝛼(2)

22 − 𝛼(1)
22
)︀
𝜉(2)

2

𝐶(2)
2222𝜂 + 𝐶(1)

2222
, (2.81d)

𝑀
(1,0)1
2 =

(︀
𝐾(2)

22 −𝐾(1)
22
)︀
𝜉(1)

2

𝐾(2)
22 𝜂 +𝐾(1)

22
, 𝑀

(1,0)2
2 =

𝜂
(︀
𝐾(1)

22 −𝐾(2)
22
)︀
𝜉(2)

2

𝐾(2)
22 𝜂 +𝐾(1)

22
, (2.81e)

where the superscript 𝑖 = {1, 2} denotes for the phase 1 and the phase 2, respectively.
Moreover, the dimensionless vertical variables 𝜉(1)

2 and 𝜉(2)
2 centered in each layer

are such that, 𝜉(1)
2 ∈ [−𝜂/2(𝜂 + 1), 𝜂/2(𝜂 + 1)] and 𝜉(2)

2 ∈ [−1/2(𝜂 + 1), 1/2(𝜂 + 1)] ,
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agreeing with the Fig. 13.

In particular, once the perturbation functions 𝑀 (1,0)
𝑞1 depend on the complex an-

gular frequency 𝑠 (see Eqs. (2.12) and (2.34b)), such dependency is evaluated, but di-
mensionless. As may be seen in Fig. 14, the complex absolute value of the dimension-
less perturbation function, which is ‖𝑀 (1,0)

2 ‖, is analytically computed by the Eqs.
in (2.81e), with respect to the phase 1 and the phase 2, taking the following values for
dimensionless parameters 𝜂 = 1, 𝜏 (2)/𝜏 (1) = 3 and 𝐾̄(2)

22 /𝐾̄
(1)
22 = 10. Such a function

depends on the fast variable 𝜉2, which is perpendicular to the transversal direction
𝑒1 and to the dimensionless complex parameter 𝑠𝜏 (1) = ℜ𝑒(𝑠𝜏 (1)) + iℑ𝑚(𝑠𝜏 (1)). It
must be noted in Fig. 14(𝑎) that the function ‖𝑀 (1,0)

2 (𝜉2,ℜ𝑒(𝑠𝜏 (1)))‖ presents a sin-
gularity along the variable 𝜉2, whereas the function ‖𝑀 (1,0)

2 (𝜉2,ℑ𝑚(𝑠𝜏 (1)))‖ displays
the absence of any sort of singularities regardless the variable.

As previously mentioned, we also derive the non-vanishing overall elastic, thermal
dilatation and thermal conduction tensors corresponding to a first order equivalent
continuum. Thus, from the perturbation functions (2.81a), (2.81b) and (2.81c) are
used into Eq. (2.71a), hence the overall elastic tensors 𝐶𝑙𝑟1𝑝𝑞1 are expressed as

Figure 14: Dimensionless complex absolute value of the perturbation function 𝑀
(1,0)
2

for the dimensionless parameters assumed 𝜂 = 1, 𝜏 (2) /𝜏 (1) = 3 and 𝐾̄(2)
22 /𝐾̄(1)

22 = 10.

(𝑎) ‖𝑀
(1,0)
2 ‖ vs. ℜ𝑒(𝑠𝜏 (1) ) and 𝜉2; (𝑏) ‖𝑀

(1,0)
2 ‖ vs. ℑ𝑚(𝑠𝜏 (1) ) and 𝜉2.
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𝐶1111 = 𝜂2𝐶(1)
1111𝐶

(2)
2222 + +𝐶(2)

1111𝐶
(1)
2222

(𝜂 + 1)
(︀
𝐶(1)

2222 + 𝜂𝐶(2)
2222

)︀ +

+
𝜂
(︁
𝐶(2)

1111𝐶
(2)
2222 + 𝐶(2)

1111𝐶
(1)
2222 −

(︀
𝐶(1)

1122 − 𝐶(2)
1122

)︀2
)︁

(𝜂 + 1)
(︀
𝐶(1)

2222 + 𝜂𝐶(2)
2222

)︀ ,

(2.82a)

𝐶1122 = 𝜂𝐶(1)
1122𝐶

(2)
2222 + 𝐶(2)

1122𝐶
(1)
2222

𝐶(1)
2222 + 𝜂𝐶(2)

2222
, (2.82b)

𝐶1212 = (𝜂 + 1)𝐶(1)
1212𝐶

(2)
1212

𝐶(1)
1212 + 𝜂𝐶(2)

1212
, (2.82c)

𝐶2222 = (𝜂 + 1)𝐶(1)
2222𝐶

(2)
2222

𝐶(1)
2222 + 𝜂𝐶(2)

2222
. (2.82d)

Similarly, for the thermal dilatation components follows that from the perturbation
functions (2.81a) to (2.81d) into Eqs. (2.71a) and (2.71c), one provides

𝛼11 = 𝜂2𝐶(2)
2222𝛼

(1)
11 + 𝐶(1)

2222𝛼
(2)
11

(𝜂 + 1)(𝐶(1)
2222 + 𝜂𝐶(2)

2222)
+

+
𝜂
(︀
𝐶(1)

2222𝛼
(1)
11 + 𝐶(2)

2222𝛼
(2)
11 −

(︀
𝛼(1)

22 − 𝛼(2)
22
)︀ (︀
𝐶(1)

1122 − 𝐶(2)
1122

)︀)︀
(𝜂 + 1)(𝐶(1)

2222 + 𝜂𝐶(2)
2222)

,

(2.83a)

𝛼22 = 𝜂𝐶(2)
2222𝛼

(1)
22 + 𝛼(2)

22𝐶
(1)
2222

𝜂𝐶(2)
2222 + 𝐶(1)

2222
. (2.83b)

The specific heat 𝑝 and the mass density 𝜌 in the Eqs. (2.71d) and (2.71e) respec-
tively, are obtained following the same steps made latter for the elastic, and thermal
dilatations tensors, giving

𝑝 =
𝑝(1)𝜂2𝐶(2)

2222 +
(︁
𝑝(1)𝐶(1)

2222 + 𝑝(2)𝐶(2)
2222 + 2

(︀
𝛼(1)

22 − 𝛼(2)
22
)︀2
)︁
𝜂 + 𝑝(2)𝐶(1)

2222(︀
𝜂𝐶(2)

2222 + 𝐶(1)
2222

)︀
(𝜂 + 1)

, (2.84a)

𝜌 = 𝜂𝜌(1) + 𝜌(2)

𝜂 + 1 . (2.84b)

Still in this matter, from the perturbation functions (2.81e) and Eq. (2.71b), the
components of the overall thermal conduction tensor are
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𝐾11(𝑠) = 𝜂𝐾(1)
11 (𝑠) +𝐾(2)

11 (𝑠)
𝜂 + 1 , (2.85a)

𝐾22(𝑠) = (𝜂 + 1)𝐾(1)
22 (𝑠)𝐾(2)

22 (𝑠)
𝜂𝐾(2)

22 (𝑠) +𝐾(1)
22 (𝑠)

. (2.85b)

Consequently, from Eq. (2.12), the corresponding parts of the overall thermal con-
duction tensor namely 𝐾11(𝑠) and 𝐾22(𝑠), are also dependent on the complex angu-
lar frequency 𝑠, which ends up being rewritten in terms of the relaxation times 𝜏 (1),

𝜏 (2), the specific heat 𝑇0 and also the thermal conductivity tensors defined at the
begining of the theory. After the respective substitutions of Eq. (2.12) into both
equations in Eqs. (2.85), the equivalent components for overall thermal conduction
tensor are, respectively:

Figure 15: Dimensionless complex absolute value of the non-vanishing overall ther-
mal conduction tensor components with 𝜂 = 1, 𝜏 (2) /𝜏 (1) = 3 and 𝐾̄(2)

22 /𝐾̄(1)
22 = 10. (𝑎)

‖𝐾11𝑇0/𝐾̄(1)
11 ‖ vs. ℜ𝑒(𝑠𝜏 (1) )×ℑ𝑚(𝑠𝜏 (1) ); (𝑏) ‖𝐾̄22𝑇0/𝐾(1)

22 ‖ vs. ℜ𝑒(𝑠𝜏 (1) )×ℑ𝑚(𝑠𝜏 (1) ).

𝐾11(𝑠) = 𝜂𝐾̄(1)
11 (𝑠𝜏 (2) + 1) + 𝐾̄(2)

11 (𝑠𝜏 (1) + 1)
𝑇0(𝜂 + 1)(𝑠𝜏 (1) + 1)(𝑠𝜏 (2) + 1) , (2.86a)

𝐾22(𝑠) = (𝜂 + 1)𝐾̄(1)
22 𝐾̄

(2)
22

𝑇0
(︀
𝜂𝐾̄(2)

22 (𝑠𝜏 (1) + 1) + 𝐾̄(1)
22 (𝑠𝜏 (2) + 1)

)︀ . (2.86b)

The Fig. 15 displays the complex absolute value of the dimensionless overall
thermal conduction tensor components ‖𝐾11𝑇0/𝐾̄

(1)
11 ‖ and ‖𝐾22𝑇0/𝐾̄

(1)
22 ‖ in terms
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of the dimensionless complex frequency (ℜ𝑒(𝑠𝜏 (1)),ℑ𝑚(𝑠𝜏 (1))), for the same dimen-
sionless parameters 𝜂 = 1, 𝜏 (2)/𝜏 (1) = 3 and 𝐾̄(2)

22 /𝐾̄
(1)
22 = 10 already assumed when

it was analyzed the perturbation function 𝑀
(1,0)
2 . Still in the regard of the Fig. 15,

note that the Eq. (2.86a) presents a quadratic behaviour in its denominator and
hence, as expected, it does display two poles, whereas the equation for 𝐾22, namely
Eq. (2.86b), has a linear nature in its denominator, giving only one pole.

2.7.2 Comparative analysis: heterogeneous material vs. ho-
mogenized solid

Under the same hypothesis assumed in the beginning of this Section, herein we
proceed with a comparative analysis between the results obtained from the hetero-
geneous modelling procedure developed in the Sec. B via Floquet-Bloch theory, and
the homogenized first order model approached in the previous sections of the gener-
alized thermoelastic problem with the derived overall elastic, thermal dilatation and
thermal conduction constants.

For the considered two-dimensional body with the orthotropy axes perpendicular
to the layering direction 𝑒2 and the wave vector taken such as 𝑘1 = 0, i.e the prop-
agation axes is exclusively along the 𝑒2. For this scenario we consider an uncoupled
problem which means that the dilatation tensor is assumed zero. Having said so,
on the one hand by plugging overall constitutive tensors displayed in the set of Eqs.
(2.82), (2.84) and (2.86) into the homogenized specialized governing equations from
(2.70a), (2.70b) and following the procedure reported in Sec. 2.6, the dispersive
relation (2.80) (for 𝜅 = 𝑘2) provides the explicit functions

𝑘2(𝑠) = ±
i𝑠
√︁
𝐶(1)

1212𝐶
(2)
1212 (𝜂𝜌(1) + 𝜌(2))

(︀
𝜂𝐶(2)

1212 + 𝐶(1)
1212

)︀
𝐶(1)

1212𝐶
(2)
1212(𝜂 + 1)

, (2.87)

or in its inverse form

𝑠(𝑘2) = ±
i𝑘2(𝜂 + 1)

√︁
𝐶(1)

1212𝐶
(2)
1212 (𝜂𝜌(1) + 𝜌(2))

(︀
𝜂𝐶(2)

1212 + 𝐶(1)
1212

)︀
(𝜂𝜌(1) + 𝜌(2))

(︀
𝜂𝐶(2)

1212 + 𝐶(1)
1212

)︀ , (2.88)

corresponding to the dispersion relation associated to the shear waves, giving rise to
the standard non-dispersive behaviour. Similarly

𝑘2(𝑠) = ±
i𝑠
√︁
𝐶(1)

2222𝐶
(2)
2222 (𝜂𝜌(1) + 𝜌(2))

(︀
𝜂𝐶(2)

2222 + 𝐶(1)
2222

)︀
𝐶(1)

2222𝐶
(2)
2222(𝜂 + 1)

, (2.89)
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with the inversion function as

𝑠(𝑘2) = ±
i𝑘2(𝜂 + 1)

√︁
𝐶(1)

2222𝐶
(2)
2222 (𝜂𝜌(1) + 𝜌(2))

(︀
𝜂𝐶(2)

2222 + 𝐶(1)
2222

)︀
(𝜂𝜌(1) + 𝜌(2))

(︀
𝜂𝐶(2)

2222 + 𝐶(1)
2222

)︀ , (2.90)

corresponding to the dispersion relation associated to the compressional waves, pro-
viding once again the standard non-dispersive behaviour. Finally, for dispersion
relation associated to the thermal waves,

𝑘2(𝑠) = ±
i
√︁

Z0
[︀
𝑠2
(︀
𝜂𝐾̄(2)

22 𝜏 (1) + 𝐾̄(1)
22 𝜏 (2)

)︀
+ 𝑠

(︀
𝜂𝐾̄(2)

22 + 𝐾̄(1)
22
)︀]︀

𝐾̄(1)
22 𝐾̄

(2)
22 (𝜂 + 1)

(︀
𝜂𝐶(2)

2222 + 𝐶(1)
2222

)︀ , (2.91)

where Z0 = 𝑇0

(︁
𝜂2𝑝(1)𝐶(2)

2222 + 𝜂
(︁
𝑝(1)𝐶(1)

2222 + 2
(︀
𝛼(1)

22 − 𝛼(2)
22
)︀2
)︁

+ 𝑝(2)𝐶(1)
2222

)︁
, or in its

inverse form

𝑠(𝑘2) =
Z0
(︀
𝜂𝐾̄(2)

22 + 𝐾̄(1)
22
)︀

±
√︀

Z1(𝑘2)
2Z0

(︀
𝜂𝐾̄(2)

22 𝜏 (1) + 𝐾̄(1)
22 𝜏 (2)

)︀ , (2.92)

with the function Z1(𝑘2) defined as

Z1(𝑘2) = Z 2
0
(︀
𝜂𝐾̄(2)

22 + 𝐾̄(1)
22
)︀2 +

− 4𝑘2
2Z0

(︀
𝜂𝐾̄(2)

22 𝜏
(1) + 𝐾̄(1)

22 𝜏
(2)
)︀

(𝜂 + 1)2 (︀𝜂𝐶(2)
2222 + 𝐶(1)

2222
)︀2 (︀

𝐾̄(1)
22 𝐾̄

(2)
22
)︀2
.

(2.93)

It is important to notice here that, the dispersion relations (2.91) and (2.92) are
expressed, as expected, in terms of both phases of the micro-thermal-conductivity
tensor components 𝐾̄(1)

22 and 𝐾̄(2)
22 , as well as the relaxation times 𝜏 (1) and 𝜏 (2) .

In respect of characterizing harmonic waves in the homogenized continuum, it is
worth noting that for these above equations and their respective inverse forms allow
us to either describe them by spatial damping or time damping as previously seen
in Sec. 2.6.

On the other hand, followed from the Appendices B and C, the dispersion rela-
tions for the heterogeneous bi-dimensional body with the orthotropy axes perpen-
dicular to the layering direction 𝑒2 and the wave vector taken such as 𝑘1 = 0, with
𝑑2 = 𝑑(1) + 𝑑(2) are given by
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Figure 16: Dimensionless dispersion functions associated to thermal waves when
𝑘1 = 0. Comparison between a first order homogenized model (light blue curve and
light red curve) with its respective heterogeneous one (dark blue curve and dark red
curve), and assuming the numerical values for the dimensionless parameters as 𝜂 = 1,
𝜏 (2) /𝜏 (1) = 3, 𝐾̄(2)

22 /𝐾̄(1)
22 = 3, 𝑝(2) /𝑝(1) = 3 and 𝑝(1) 𝑇0/

(︀
𝜏 (1) 𝐾̄(1)

22
)︀

= 1. (𝑎) 𝜔𝜏 (1)

vs. ℜ𝑒(𝑘2𝜖) × ℑ𝑚(𝑘2𝜖); (𝑏) zoomed view of the angular frequency spectrum 𝜔𝜏 (1)

vs. ℜ𝑒(𝑘2𝜖) × ℑ𝑚(𝑘2𝜖); (𝑐) view of the plane 𝜔𝜏 (1) × ℜ𝑒(𝑘2𝜖); (𝑑) view of the plane
𝜔𝜏 (1) × ℑ𝑚(𝑘2𝜖).

𝑘2(𝑠) = 1
i𝑑2

⎡⎣ln

⎛⎝−𝐼𝑗

1(𝑠) ±
√︁(︀

𝐼𝑗

1(𝑠)
)︀2 − 4

2

⎞⎠− 2𝜋i𝑛

⎤⎦ , with 𝑛 ∈ Z, 𝑗 = 1, 2, 3,

(2.94)58



where the details about the invariants 𝐼𝑗

1(𝑠) are brought in Appendix D.

For the case in which the wave number 𝑘1 is assumed zero and when 𝑠 = i𝜔,
the Fig. 16 exhibits the behaviour of the thermal wave propagation given by Eqs.
(2.92) and (2.93) for the homogenized material represented in light blue and light
red curves, while the thermal wave function (2.94) for the heterogeneous solid via
Floquet-Bloch theory is presented in dark blue and light red curves, where the
parameters have been set as 𝜂 = 1, 𝜏 (2)/𝜏 (1) = 3, 𝐾̄(2)

22 /𝐾̄
(1)
22 = 3, 𝑝(2)/𝑝(1) = 3 and

𝑝(1)𝑇0/
(︀
𝜏 (1)𝐾̄(1)

22
)︀

= 1. Both light and dark blue lines stand for the translations of
their respective dispersion curves due to the periodicity of the material along 𝑒2

around ℜ𝑒(𝑘2𝜖) = 2𝜋𝑛, which they go all along the real wave number axis ℜ𝑒(𝑘2𝜖).
The dispersion relations of the homogenized model can also be determined seeking
solutions from the governing Eqs. (2.70a) and (2.70b) (with source terms assumed
zero) of the forms 𝑈̂

𝑀 = ˇ̂
𝑈𝑀 exp[i(𝑘 · x + 2𝜋𝑛)] and Θ̂𝑀 = ˇ̂Θ𝑀 exp[i(𝑘 · x +

2𝜋𝑛)] (with 𝑛 ∈ Z) for the displacement and temperature, respectively. When
𝑛 = 0 one arrives to the functions (2.88), (2.90), (2.91), while when 𝑛 = −1, 𝑛 =
1 one produces the translated curves drawn in light blue displayed in the Figs.
16(𝑎) and 16(𝑐). Besides, since a first order homogenization was applied one may
notice an accurate approximation between the light curves and dark ones along the
thermal wave propagation, in other words the dispersion function derived from the
homogenization process shows a very good agreement with the dispersion function
obtained taking advantage of the Floquet–Bloch theory, seen in Appendixes B, C and
D, for the interval 2𝜋(1−𝑛)/3 < ℜ𝑒(𝑘2𝜖) < 2𝜋(1+𝑛)/3,∀𝑛 ∈ Z. The Figs. 16(𝑎) and
16(𝑐) show the dispersion functions associated to 𝑛 = −1, 𝑛 = 0 and 𝑛 = 1, where
may be observed that for a low frequency the curves of the heterogeneous continuum
(dark red) are quite precise in respect to those obtained from the homogenization
process of the material (light red). For a high frequency can be noticed that the
curves of the heterogeneous continuum (dark red) are well approximated with a
tiny deviation when compared to the translated curves (𝑛 = −1 and 𝑛 = 1) gotten
from the homogenization process of the material (light blue). Fig. 16(𝑏) shows a
zoom of the thermal wave propagation by attenuation in space seen in Fig. 16(𝑎).
The dimensionless angular frequency 𝜔𝜏 (1) by the dimensionless real wave number
ℜ𝑒(𝑘2𝜖) plane and the dimensionless angular frequency 𝜔𝜏 (1) by the dimensionless
attenuation factor ℑ𝑚(𝑘2𝜖) plane are represented in 16(𝑐) and 16(𝑑), respectively.

For a better understanding of the first order homogenization facing its het-
erogeneous version, the Fig. 17 has been made varying some parameters, where
dark curves represent the heterogeneous material obtained via Floquet-Bloch the-
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Figure 17: Dimensionless dispersion functions associated to thermal waves when
𝑘1 = 0. Comparison between homogenized models (light curves) and their respec-
tive heterogeneous ones (dark curves) given different values of the parameters. (𝑎)
fixed parameters 𝜂 = 1, 𝑝(1) 𝑇0/

(︀
𝜏 (1) 𝐾̄(1)

22
)︀

= 1 with 𝜏 (2) /𝜏 (1) = 3, 𝐾̄(2)
22 /𝐾̄(1)

22 = 3,

𝑝(2) /𝑝(1) = 3 (red curves); 𝜏 (2) /𝜏 (1) = 5, 𝐾̄(2)
22 /𝐾̄(1)

22 = 5, 𝑝(2) /𝑝(1) = 5 (green curves);
𝜏 (2) /𝜏 (1) = 10, 𝐾̄(2)

22 /𝐾̄(1)
22 = 10, 𝑝(2) /𝑝(1) = 10 (blue curves); (𝑏) fixed parameters

𝜏 (2) /𝜏 (1) = 3, 𝐾̄(2)
22 /𝐾̄(1)

22 = 3, 𝑝(2) /𝑝(1) = 3, 𝑝(1) 𝑇0/
(︀
𝜏 (1) 𝐾̄(1)

22
)︀

= 1, thickness as 𝜂 = 1
(red curves), 𝜂 = 10 (blue curves).

ory, whereas light curves are for the first order homogenized model. Essentially,
Fig. 17(𝑎) displays three zoomed different situations for the thermal wave propaga-
tion when 𝜂 = 1 and 𝑝(1)𝑇0/

(︀
𝜏 (1)𝐾̄(1)

22
)︀

= 1, namely the curves in red were plotted
setting 𝜏 (2)/𝜏 (1) = 3, 𝐾̄(2)

22 /𝐾̄
(1)
22 = 3, 𝑝(2)/𝑝(1) = 3, for the second scenario the

curves in green were generated choosing 𝜏 (2)/𝜏 (1) = 5, 𝐾̄(2)
22 /𝐾̄

(1)
22 = 5, 𝑝(2)/𝑝(1) = 5,

and for the third situation the curves in blue were plotted choosing the parameters
𝜏 (2)/𝜏 (1) = 10, 𝐾̄(2)

22 /𝐾̄
(1)
22 = 10, 𝑝(2)/𝑝(1) = 10. Furthermore, regarding the behaviour

led by the different values of the dimensionless parameters taken, it can be noted in
the Fig. 17(𝑎) that an increase in the parameters 𝜏 (2)/𝜏 (1) , 𝐾̄(2)

22 /𝐾̄
(1)
22 and 𝑝(2)/𝑝(1) ,

produces curves that bend less sharply, and hence have smaller curvatures. With
an analogous idea, Fig. 17(𝑏) displays two scenarios varying the thickness that are
𝜂 = 1 represented by the red curves and 𝜂 = 10 represented by the blue curves, while
the parameters 𝜏 (2)/𝜏 (1) = 3, 𝐾̄(2)

22 /𝐾̄
(1)
22 = 3, 𝑝(2)/𝑝(1) = 3 and 𝑝(1)𝑇0/

(︀
𝜏 (1)𝐾̄(1)

22
)︀

= 1,
are fixed. Analysing the Fig. 17(𝑏), it is notable that a decrease in the dimensionless
thickness induce to bigger curvatures along the wave propagation. From these com-
parisons between the wave for the heterogeneous solid and their respectives for the
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homogenized model illustrated in Fig. 17, it may be verified a good matching for
the wave propagation between the two models exemplified considering the interval
2𝜋(1 − 𝑛)/3 < ℜ𝑒(𝑘2𝜖) < 2𝜋(1 + 𝑛)/3,∀𝑛 ∈ Z.

Figure 18: Dimensionless dispersion functions associated to compressional-
thermal waves when 𝑘1 = 0, 𝜂 = 1, 𝜏 (2) /𝜏 (1) = 3, 𝐶(2)

2222/𝐶(1)
2222 = 3,

𝐾̄(2)
22 /𝐾̄(1)

22 = 3, 𝑝(2) /𝑝(1) = 3, 𝜌(2) /𝜌(1) = 2, (𝛼(1)
22 𝑇0)/𝐶(1)

2222 = 1/100,

𝛼(2)
22 𝑇0/𝐶(2)

2222 = 1/10, 𝛼(1)
22 𝜂
√︀

𝐶(1)
2222/𝜌(1) /𝐾̄(1)

22 = 1/100, 𝛼(2)
22 𝜂
√︀

𝐶(1)
2222/𝜌(1) /𝐾̄(2)

22 =
1/10, 𝑝(1) 𝑇0𝜂

√︀
𝐶(1)

2222/𝜌(1) /𝐾̄(1)
22 = 1 and 𝜏 (1)

√︀
𝐶(1)

2222/𝜌(1) /𝜖 = 1/10.

(𝑎) 𝜔𝜖
√︀

𝜌(1) /𝐶(1)
2222 vs. ℜ𝑒(𝑘2𝜖) × ℑ𝑚(𝑘2𝜖); (𝑏) zoomed view of the angular fre-

quency spectrum 𝜔𝜖
√︀

𝜌(1) /𝐶(1)
2222 vs. ℜ𝑒(𝑘2𝜖) × ℑ𝑚(𝑘2𝜖); (𝑐) view of the plane

𝜔𝜖
√︀

𝜌(1) /𝐶(1)
2222 × ℜ𝑒(𝑘2𝜖); (𝑑) view of the plane 𝜔𝜖

√︀
𝜌(1) /𝐶(1)

2222 × ℑ𝑚(𝑘2𝜖).

Likewise the previous comparative test, under the hypothesis when the wave
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number 𝑘1 is assumed zero and the complex frequency is taken as 𝑠 = i𝜔, the
compressional-thermal wave function of the heterogeneous continuum via Floquet-
Bloch theory and the compressional-thermal waves of the first order homogenized
material are illustrated in the Fig. 18 by the dark blue and red lines, and the
light blue and red lines, respectively. The dimensionless parameters were chosen as
𝜂 = 1, 𝜏 (2)/𝜏 (1) = 3, 𝐶(2)

2222/𝐶
(1)
2222 = 3, 𝐾̄(2)

22 /𝐾̄
(1)
22 = 3, 𝑝(2)/𝑝(1) = 3, 𝜌(2)/𝜌(1) = 2,

(𝛼(1)
22 𝑇0)/𝐶(1)

2222 = 1/100, 𝛼(2)
22 𝑇0/𝐶

(2)
2222 = 1/10, 𝛼(1)

22 𝜂
√︁
𝐶(1)

2222/𝜌(1)/𝐾̄(1)
22 = 1/100,

𝑝(1)𝑇0𝜂
√︁
𝐶(1)

2222/𝜌(1)/𝐾̄(1)
22 = 1, 𝛼(2)

22 𝜂
√︁
𝐶(1)

2222/𝜌(1)/𝐾̄(2)
22 = 1/10 and

𝜏 (1)

√︁
𝐶(1)

2222/𝜌(1)/𝜖 = 1/10. Figs. 18(𝑎) and 18(𝑐), both light and dark blue lines
stand for the translations of their respective dispersion curves due to the periodicity
of the material along 𝑒2 around ℜ𝑒(𝑘2𝜖) = 2𝜋𝑛, which they go all along the real wave
number axis ℜ𝑒(𝑘2𝜖). Moreover, one may observe a precise estimation between the
light lines and dark ones along the compressional-thermal wave propagation. This
means that the dispersion function derived from the first order homogenization pro-
cess yield to a quite good matching when contrasted against the dispersion function
determined with the Floquet–Bloch theory for the heterogeneous solid, elucidated in
Appendixes B, C and D, for the interval 2𝜋(1−𝑛)/3 < ℜ𝑒(𝑘2𝜖) < 2𝜋(1+𝑛)/3,∀𝑛 ∈ Z.
The Figs. 18(𝑎) and 18(𝑐), exhibit the dispersion functions when 𝑛 = −1, 𝑛 = 0 and
𝑛 = 1, where may be noted that for a low frequency the curves of the heterogeneous
continuum (dark red) are matched very well for those obtained from the homoge-
nization process of the material (light red), in addition the same observation may
be seen for the translated blue lines. Fig. 18(𝑏) shows a zoom of the compressional-
thermal wave propagation by spatial damping seen in Fig. 18(𝑎). A bi-dimensional
view of the dimensionless angular frequency 𝜔𝜖

√︁
𝜌(1)/𝐶(1)

2222 by the dimensionless real

wave number ℜ𝑒(𝑘2𝜖) plane and the dimensionless angular frequency 𝜔𝜖
√︁
𝜌(1)/𝐶(1)

2222
by the dimensionless attenuation factor ℑ𝑚(𝑘2𝜖) plane are represented in 18(𝑐) and
18(𝑑), respectively. It is worthy of note that, the branches of the spectrum char-
acterized when the real part ℜ𝑒(𝑘2𝜖) is set fixed as ℑ𝑚(𝑘2𝜖) varies, as expected,
which characterize the first frequency stop-band for quasi-compressional waves and
which propagate perpendicularly to the layering direction, they are unable to be
approximated by the frequency spectrum obtained from the homogenized first or-
der model, as showed in the Fig. 18(𝑑). In order to overcome such encumbrance,
it is feasible to use a perturbative technique, which will lead to a local asymptotic
approximation of the compressional-thermal wave through local explicit and closed-
form parametric expressions in the space of complex wave number and the angular
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frequency [137, 180].

The Fig. 19 compares some cases of the compressional-thermal wave assum-
ing different values of the dimensionless parameters, where the dark lines repre-
sent the waves obtained for the heterogeneous material via Floquet-Bloch theory,
while the light lines are for the first order homogenized model. The Figs. 19(𝑎)
and 19(𝑏) were generated taking the following values for dimensionless parame-
ters (𝛼(1)

22 𝑇0)/𝐶(1)
2222 = 1/100, 𝛼(2)

22 𝑇0/𝐶
(2)
2222 = 1/10, 𝛼(1)

22 𝜂
√︁
𝐶(1)

2222/𝜌(1)/𝐾̄(1)
22 = 1/100,

𝛼(2)
22 𝜂
√︁
𝐶(1)

2222/𝜌(1)/𝐾̄(2)
22 = 1/10, 𝜏 (1)

√︁
𝐶(1)

2222/𝜌(1)/𝜖 = 1/10 and

𝑝(1)𝑇0𝜂
√︁
𝐶(1)

2222/𝜌(1)/𝐾̄(1)
22 = 1. Assuming 𝜂 = 1, Fig. 19(𝑎) shows three zoomed

different cases for the compressional-thermal wave propagation. Therefore, the
red lines were plotted setting 𝜏 (2)/𝜏 (1) = 3, 𝐶(2)

2222/𝐶
(1)
2222 = 3, 𝐾̄(2)

22 /𝐾̄
(1)
22 = 3,

𝑝(2)/𝑝(1) = 3, 𝜌(2)/𝜌(1) = 2, the green lines were drawn choosing 𝜏 (2)/𝜏 (1) = 5,
𝐶(2)

2222/𝐶
(1)
2222 = 5, 𝐾̄(2)

22 /𝐾̄
(1)
22 = 5, 𝑝(2)/𝑝(1) = 5, 𝜌(2)/𝜌(1) = 4, and finally the

lines in blue represent the situation in which 𝜏 (2)/𝜏 (1) = 10, 𝐶(2)
2222/𝐶

(1)
2222 = 10,

𝐾̄(2)
22 /𝐾̄

(1)
22 = 10, 𝑝(2)/𝑝(1) = 10, 𝜌(2)/𝜌(1) = 6. Taking a look closely at the cur-

vatures of the compressional-thermal waves plotted in the Fig. 19(𝑎), it may be
affirmed that increasing the numerical values of 𝜏 (2)/𝜏 (1) , 𝐶(2)

2222/𝐶
(1)
2222, 𝐾̄

(2)
22 /𝐾̄

(1)
22 ,

𝑝(2)/𝑝(1) and 𝜌(2)/𝜌(1) , the curves show a tendency of having smaller curvatures. The
compressional-thermal waves behaviour is foretold in matters of different values of
the thickness 𝜂, the Fig. 19(𝑏) displays two scenarios where is fixed 𝜏 (2)/𝜏 (1) = 3,
𝐶(2)

2222/𝐶
(1)
2222 = 3, 𝐾̄(2)

22 /𝐾̄
(1)
22 = 3, 𝑝(2)/𝑝(1) = 3, 𝜌(2)/𝜌(1) = 2, and varying the thick-

ness that are 𝜂 = 1 and 𝜂 = 20 represented by the red and blue lines, respec-
tively. Such comparisons provided by the Fig. 19 shows a good agreement of the
compressional-thermal wave propagation between the two models exemplified con-
sidering the interval 2𝜋(1 − 𝑛)/3 < ℜ𝑒(𝑘2𝜖) < 2𝜋(1 + 𝑛)/3,∀𝑛 ∈ Z.

Some plots of the shear waves may be seen in Fig. 20, where red lines stand for the
central shear wave, blue lines for the translated shear waves, and the nuances in the
color distinguish the shear curve of the heterogeneous continuum (dark lines) from
the shear wave first order homogenized (light lines). In regards to de capability of the
first order homogenization process for the shear wave, it also shows itself in a good
agreement with its heterogeneous continuum from the Floquet-Bloch theory. The
Fig. 20 was drawn adopting the dimensionless parameters as 𝜂 = 1, 𝐶(2)

1212/𝐶
(1)
1212 = 1

and 𝜌(2)/𝜌(1) = 2. Note that, as verified for the compressional-thermal wave, and with
a cleaner comprehension looking at the Fig. 20(𝑑), also the frequency stop-bands
of the shear wave propagating perpendicularly to the layering direction is not well
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Figure 19: Dimensionless dispersion functions associated to compressional-
thermal waves when 𝑘1 = 0, (𝛼(1)

22 𝑇0)/𝐶(1)
2222 = 1/100, 𝛼(2)

22 𝑇0/𝐶(2)
2222 = 1/10,

𝛼(1)
22 𝜂
√︀

𝐶(1)
2222/𝜌(1) /𝐾̄(1)

22 = 1/100, 𝛼(2)
22 𝜂
√︀

𝐶(1)
2222/𝜌(1) /𝐾̄(2)

22 = 1/10,

𝑝(1) 𝑇0𝜂
√︀

𝐶(1)
2222/𝜌(1) /𝐾̄(1)

22 = 1 and 𝜏 (1)
√︀

𝐶(1)
2222/𝜌(1) /𝜖 = 1/10. (𝑎) 𝜂 = 1, with

𝜏 (2) /𝜏 (1) = 3, 𝐶(2)
2222/𝐶(1)

2222 = 3, 𝐾̄(2)
22 /𝐾̄(1)

22 = 3, 𝑝(2) /𝑝(1) = 3, 𝜌(2) /𝜌(1) = 2, (red
curves); 𝜏 (2) /𝜏 (1) = 5, 𝐶(2)

2222/𝐶(1)
2222 = 5, 𝐾̄(2)

22 /𝐾̄(1)
22 = 5, 𝑝(2) /𝑝(1) = 5, 𝜌(2) /𝜌(1) = 4,

(green curves); 𝜏 (2) /𝜏 (1) = 10,
𝐶(2)

2222/𝐶(1)
2222 = 10, 𝐾̄(2)

22 /𝐾̄(1)
22 = 10, 𝑝(2) /𝑝(1) = 10, 𝜌(2) /𝜌(1) = 6, (blue curves);

(𝑏) fixed parameters 𝜏 (2) /𝜏 (1) = 3, 𝐶(2)
2222/𝐶(1)

2222 = 3, 𝐾̄(2)
22 /𝐾̄(1)

22 = 3, 𝑝(2) /𝑝(1) = 3,
𝜌(2) /𝜌(1) = 2, thickness as 𝜂 = 1 (red curves), 𝜂 = 20 (blue curves).

described by the first order homogenization technique developed. As aforementioned,
to remedy this issue the shear waves may be approached by a perturbative method
through explicit and closed-form parametric expressions, in which will approximate
locally the real spectrum of the non-homogeneous material [137, 180].

The Fig. 21(𝑎) exhibits three zoomed different cases for the shear wave propa-
gation for a fixed thickness 𝜂 = 1. The red lines represent the choices for the param-
eters as 𝐶(2)

1212/𝐶
(1)
1212 = 1, 𝜌(2)/𝜌(1) = 2, the green lines stand for 𝐶(2)

1212/𝐶
(1)
1212 = 5,

𝜌(2)/𝜌(1) = 5, and lastly, the lines that approximate locally the real spectrum of
the heterogeneous material in blue correspond to the case when 𝐶(2)

1212/𝐶
(1)
1212 = 10,

𝜌(2)/𝜌(1) = 10. From a quick analysis over the Fig. 21(𝑎), it can be assured that the
curvatures of the shear waves are reduced numerically due to a rise in the values
of the non-dimensional parameters 𝐶(2)

1212/𝐶
(1)
1212 and 𝜌(2)/𝜌(1) . Varying the thickness

𝜂 namely 𝜂 = 1 (red curves) and 𝜂 = 20 (blue curves), and adopting the dimen-
sionless parameters as 𝐶(2)

1212/𝐶
(1)
1212 = 1, 𝜌(2)/𝜌(1) = 2, both shear waves for these

assumptions are contrasted in the Fig. 21(𝑏). Essentially, the Fig. 21 illustrates the
good estimation of the shear wave propagation between the two models developed
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Figure 20: Dimensionless dispersion functions associated to shear waves when
𝑘1 = 0, 𝜂 = 1, 𝐶(2)

1212/𝐶(1)
1212 = 1 and 𝜌(2) /𝜌(1) = 2. (𝑎) 𝜔𝜖

√︀
𝜌(1) /𝐶(1)

1212 vs.
ℜ𝑒(𝑘2𝜖)×ℑ𝑚(𝑘2𝜖); (𝑏) zoomed view of the angular frequency spectrum 𝜔𝜖

√︀
𝜌(1) /𝐶(1)

1212

vs. ℜ𝑒(𝑘2𝜖) × ℑ𝑚(𝑘2𝜖); (𝑐) view of the plane 𝜔𝜖
√︀

𝜌(1) /𝐶(1)
1212 × ℜ𝑒(𝑘2𝜖); (𝑑) view of

the plane 𝜔𝜖
√︀

𝜌(1) /𝐶(1)
1212 × ℑ𝑚(𝑘2𝜖).

considering the interval 2𝜋(1 − 𝑛)/3 < ℜ𝑒(𝑘2𝜖) < 2𝜋(1 + 𝑛)/3,∀𝑛 ∈ Z.
In order to analyse the effects of the presence of the relaxation time in the ther-

moelastic equation of Lord-Shulman, Fig. 22 displays a few compressional-thermal
waves for four different values of the dimensionless relaxation time 𝜏 (1)

√︁
𝐶(1)

2222/𝜌(1)/𝜖

of the phase 1 of the layered material and choosing the dimensionless relaxation
time parameter between the layers as 𝜏 (2)/𝜏 (1) = 1, while the other parameters
were set fixed throughout the curves as 𝜂 = 1, 𝐶(2)

2222/𝐶
(1)
2222 = 3, 𝐾̄(2)

22 /𝐾̄
(1)
22 =

65



Figure 21: Dimensionless dispersion functions associated to shear waves when 𝑘1 = 0.
(𝑎) setting 𝜂 = 1, with 𝐶(2)

1212/𝐶(1)
1212 = 1, 𝜌(2) /𝜌(1) = 2, (red curves); 𝐶(2)

1212/𝐶(1)
1212 = 5,

𝜌(2) /𝜌(1) = 5, (green curves); 𝐶(2)
1212/𝐶(1)

1212 = 10 and 𝜌(2) /𝜌(1) = 10, (blue curves); (𝑏)
fixed 𝐶(2)

1212/𝐶(1)
1212 = 1, 𝜌(2) /𝜌(1) = 2, thickness as 𝜂 = 1 (red curves); 𝜂 = 20 (blue

curves).

3, 𝑝(2)/𝑝(1) = 3, 𝜌(2)/𝜌(1) = 2, (𝛼(1)
22 𝑇0)/𝐶(1)

2222 = 1/100, 𝛼(2)
22 𝑇0/𝐶

(2)
2222 = 1/10,

𝛼(1)
22 𝜂
√︁
𝐶(1)

2222/𝜌(1)/𝐾̄(1)
22 = 1/100, 𝛼(2)

22 𝜂
√︁
𝐶(1)

2222/𝜌(1)/𝐾̄(2)
22 = 1/10 and

𝑝(1)𝑇0𝜂
√︁
𝐶(1)

2222/𝜌(1)/𝐾̄(1)
22 = 1. For such a comparison, once again, the light curves

represent the homogenized model, whereas the dark curves indicate the waves charac-
terized by the heterogeneous continuum. The red curves stand for 𝜏 (1)

√︁
𝐶(1)

2222/𝜌(1)/𝜖 =

0, the green lines represent the waves for 𝜏 (1)

√︁
𝐶(1)

2222/𝜌(1)/𝜖 = 1/10, the waves in

blue are representing the case in which 𝜏 (1)

√︁
𝐶(1)

2222/𝜌(1)/𝜖 = 1, and the lines with a

yellow color indicate the scenario where 𝜏 (1)

√︁
𝐶(1)

2222/𝜌(1)/𝜖 = 10. Over this analysis,
as expected, it can be seen that the red lines, the ones where the dimensionless
relaxation time were set zero, have smaller curvature as compared to the rest of the
curves, and of course as the relaxation time increases, the curvature of the curves
also increases. This implies that on one hand for low frequencies the dispersion
curves associated with the quasi-thermal waves present an imaginary part of the
dimensionless wave number (which characterizes the spatial damping of the wave)
that in modulus tends to decrease as the dimensionless relaxation time increases.
On the other hand, we observe the real part of the dimensionless wave number that
in modulus tends to increase as the dimensionless relaxation time increases. Specif-
ically, it is possible to observe very different qualitatively scenarios of the frequency
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band structure of the layered material as the dimensionless relaxation time of phase
1 varies, often obtaining phenomena of increasingly complex and dense frequency
band structures at low frequencies as the dimensionless relaxation time grows. Fur-
thermore, a good accuracy of the dispersion curves obtained from the homogenized
model is also found here.

Figure 22: Dimensionless dispersion functions associated to compressional-
thermal waves when 𝑘1 = 0, 𝜂 = 1, 𝜏 (2) /𝜏 (1) = 1, 𝐶(2)

2222/𝐶(1)
2222 = 3,

𝐾̄(2)
22 /𝐾̄(1)

22 = 3, 𝑝(2) /𝑝(1) = 3, 𝜌(2) /𝜌(1) = 2, (𝛼(1)
22 𝑇0)/𝐶(1)

2222 = 1/100,

𝛼(2)
22 𝑇0/𝐶(2)

2222 = 1/10, 𝛼(1)
22 𝜂
√︀

𝐶(1)
2222/𝜌(1) /𝐾̄(1)

22 = 1/100, 𝛼(2)
22 𝜂
√︀

𝐶(1)
2222/𝜌(1) /𝐾̄(2)

22 =
1/10, 𝑝(1) 𝑇0𝜂

√︀
𝐶(1)

2222/𝜌(1) /𝐾̄(1)
22 = 1, 𝜏 (1)

√︀
𝐶(1)

2222/𝜌(1) /𝜖 = 0 (red curves);
𝜏 (1)
√︀

𝐶(1)
2222/𝜌(1) /𝜖 = 1/10 (green curves); 𝜏 (1)

√︀
𝐶(1)

2222/𝜌(1) /𝜖 = 1 (blue curves);
𝜏 (1)
√︀

𝐶(1)
2222/𝜌(1) /𝜖 = 10 (yellow curves); (𝑎) 𝜔𝜖

√︀
𝜌(1) /𝐶(1)

2222 vs. ℜ𝑒(𝑘2𝜖) × ℑ𝑚(𝑘2𝜖);
(𝑏) view of the plane 𝜔𝜖

√︀
𝜌(1) /𝐶(1)

2222 × ℑ𝑚(𝑘2𝜖).

Lastly, it is noteworthy that in the case where the dimensionless relaxation time
of phase 1 is 𝜏 (1)

√︁
𝐶(1)

2222/𝜌(1)/𝜖 = 0, and the parameter between the relaxation times
is 𝜏 (2)/𝜏 (1) = 1, we find the particular case of classical thermoelasticity. In fact, in
this situation, the relaxation times of the phases are zero (i.e. 𝜏𝑚 = 0), and the
field equations of the periodic material in the Laplace transformed space (2.11a) and
(2.11b) return to be those of the standard thermoelastic problem, since the thermal
conduction constitutive tensor K𝑚 from Eq. (2.12) becomes 𝑠−independent again.
In this particular scenario, the asymptotic variational homogenization technique
proposed here leads to the same global constitutive tensors that are obtained by
applying the multi-field asymptotic homogenization procedure proposed in [137],
focused exclusively in the study of the classical thermoelasticity without considering
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the phenomenon of mass diffusion.
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Chapter 3

Fracture characterization in
Triply Periodic Minimal
Surfaces unit cell foams via
Phase Field theory

This Chapter is mainly taken from [17]. Firstly, the definition and generation of
TPMS is introduced, so the issue of numerically characterize the occurrences of
fracture, as well as the propagation paths in TPMS sheet networks by means of
the regularization theory of phase field is then derived. The present endeavour is
complemented by the validation of the results along several experimental studies
present in literature.

3.1 Definition of minimal surfaces and mathemat-
ical characterization of TPMS structures

3.1.1 Minimal surfaces and soap films

Before introducing the definition of Triply Periodic Minimal Surfaces, let be de-
fined the concept of a Minimal Surface. Minimal Surfaces are surfaces of minimal
area subject to certain boundary conditions, which relates to a variational problem.
Nevertheless, they can also be geometrically characterized by their mean curvature,
which is
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𝐻(𝑞) = 𝑘2 + 𝑘1

2 , (3.1)

with 𝑞 a point on the surface 𝑞 ∈ 𝑆𝑋 and 𝑘1 and 𝑘2 are the principal curvatures
for some regular surface 𝑆𝑋 , defined for some parametrization 𝑋 in R3, which are
determined by taking the maximum and minimum values of the curvatures of the
curves formed by the intersection of the surface 𝑆𝑋 with the orthogonal planes
perpendicular to the tangent plane to the surface on a given point on 𝑆𝑋 (see Fig.
23). The principal curvatures may also be obtained by finding the eigenvalues of the
Gauss map of the surface 𝑆𝑋 [38]. Geometrically, such curvatures of these intrinsic
curves measure the change in direction of the tangent plane of that surface at a given
point. On a minimal surface, the curvature along the principal curvature planes are
equal and opposite at all point of the surface 𝑆𝑋 , i.e

𝐻(𝑞) = 0, ∀𝑞 ∈ 𝑆𝑋 . (3.2)

hence, if its mean curvature is identically zero, the surface 𝑆𝑋 it is called minimal.

Figure 23: Curvature planes and principal curvatures. Adapted from [11].

Intuitively, mean curvature zero can be interpreted as Hoffman et al. [181] quoted
’Loosely speaking, one imagines the surface as made up of very many rubber bands,
stretched out in all directions; on a minimal surface the forces due to the rubber
bands balance out, and the surface does not need to move to reduce tension’.
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At this stage, it is worth mentioning that the definition of mean curvature does
not depend on the parameterization 𝑋 of the surface 𝑆𝑋 taken. Given the definition
above, the trivial example of a minimal surface is the plane, since the curvature of any
intrinsic curve lying on the plane is always zero, therefore 𝐻(𝑞) = (𝑘1 + 𝑘2)/2 = 0.

Another essential geometric quantity in the description of surfaces is the Gaussian
curvature, which is defined as

𝐾(𝑞) = 𝑘1𝑘2, with 𝑞 ∈ 𝑆𝑋 , (3.3)
that is, the product of the principal curvatures of 𝑆𝑋 . Analogously, the Gaussian
curvature is also independent of the parametrization 𝑋 of 𝑆𝑋 . An interesting feature
of the minimal surfaces is that there are no compact minimal surfaces. A quick
remark, a surface is compact if it is a compact topological space, since the surface
is a subset of R3, if the surface is closed and bounded, then it is a compact set.
[38]. In fact, let 𝑆𝑋 be a minimal surface, then 𝐻 ≡ 0, and so 𝑘1 = −𝑘2. Thus,
from the Gaussian curvature one has 𝐾(𝑞) = 𝑘1𝑘2 = 𝑘1(−𝑘1) = −(𝑘1)2 ≤ 0 for all
𝑞 ∈ 𝑆𝑋 , and given the fact that the Gaussian curvature function defined over the
minimal surface 𝑆𝑋 is continuous, one entails that the Gaussian curvature is always
non-positive, implying that a minimal surface is unbounded.

The problem of finding a surface that has the smallest area bounded by a given
closed curve is the Plateau’s Problem [40]. From the standing point of the calculus
of variations, where the mean curvature 𝐻 appears naturally in the first variation
of area [38, 182], the problem can be seen as follows

Figure 24: Normal variation of the surface 𝑆𝑋 .

𝐴(𝜖) =
∫︁∫︁
Ω

√︀
𝐸𝐺− 𝐹 2

√︀
1 − 4𝐻𝜖𝜂(𝑢, 𝑣) +𝑄(𝜖)𝑑𝑢𝑑𝑣, (3.4)
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where 𝑄′(0) = 0, and thus lim
𝜖→0

(𝑄(𝜖)/𝜖) = 0.
Therefore, 𝐴′(0) = 0 if and only if 𝐻 ≡ 0. This fact guarantees that for any

variation of the surface 𝑆 in the direction of the normal vector, if the mean curvature
vanishes everywhere, it entails that 𝑆𝑋 is minimal, with the initial definition [38,
183]. It can be concluded that any bounded and closed region of a minimal surface is
a critical point for the area functional at any normal variation of that bounded and
closed region. Note that, the critical point provides a relative minimum, which makes
the word minimal be inadequate in this context, even though such terminology is
enshrined throughout history.

As aforementioned, the great notoriety of minimal surfaces came with the pos-
sibility of interpret them as soap films, which has leveraged studies over time in
various areas of mathematics and other science fields. As such, consider drowning
a thin wire frame that shapes a sharp curve in a mixture of soap and water, after
removing it from the solution, a thin film of soap will appear having the wire frame
as its boundary, which is in equilibrium under the action of the surface tension of the
liquid [184]. It is worth emphasizing that every minimal surface can be represented
as a soap film from a wire frame, however, not every soap film is a minimal surface
in the sense of the present definition, for instance, a soap bubble, which is nothing
more but a sphere, it can easily be shown that the mean curvature of a sphere is
always positive for the entire sphere [185].

Several well known examples of minimal surfaces and their soap films forms are
frequently mentioned namely, the helicoid Fig. 25, and the catenoid Fig. 26. The
helicoid, which is shaped by a double helix curve, the same design shown in the
DNA’s shape [186], posses the property of being the only ruled minimal surface, i.e.
generated by straight lines, in addition to the plane [183]. Whereas, the catenoid,
formed between two axial rings, is the only minimal surface of revolution, beside the
plane. Fig. 27 display the famous minimal surface of Scherk, which can be obtained
by the minimal surface differential equation, assuming a parametrized solution in
which the variables can be separated [183, 187].

Notwithstanding, beyond the classical definition of a vanishing mean curvature,
and Plateau’s Problem, there is a plethora of different ways, yet equivalent, to define
minimal surfaces, and therefore TPMS, as described in the forthcoming.

3.1.2 Characterization of Triply Periodic Minimal Surfaces

Mathematically, a TPMS is a minimal surface in R3 that is invariant under a rank-3
lattice of translations, meaning that a TPMS is periodic along all three dimensional
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(a) Helicoid minimal surface. (b) Helicoid soap film. Source
[188].

Figure 25: Helicoid.

(a) Catenoid minimal surface. (b) Catenoid soap
film. Source [189].

Figure 26: Catenoid.

directions. Figs. 28 and 29 depict some well known TPMS examples. Fig. 28a and
Fig. 28b, display respectively, the unit cell and a three cells cluster of the Schwarz
Primitive minimal surface. Whereas Fig. 29a and Fig. 29b, display respectively, the
unit cell and a three cells cluster of the Schoen Gyroid minimal surface [191].

Minimal surfaces, and consequently TPMS can be precisely defined by the
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(a) Minimal sur-
face of Scherk.

(b) Surface of Scherk soap
film. Source [190].

Figure 27: Surface of Scherk.

(a) Schwarz Primitive unit cell sur-
face.

(b) Schwarz Primitive three cells clus-
ter surface.

Figure 28: Schwarz Primitive minimal surface.

Weierstrass-Enneper representation [38, 39, 182], as in the following: let 𝑤 = 𝑢+ 𝑖𝑣

be the complex variable defined on a open set 𝒟 ∈ C, thus the Weierstrass-Enneper
parametrization is
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(a) Schoen Gyroid unit cell surface. (b) Schoen Gyroid three cells cluster
surface.

Figure 29: Schoen Gyroid minimal surface.

𝑥(𝑤) = ℜ𝑒
(︂∫︁ 𝑤

𝑤0

𝑒i𝜃(1 − 𝜏2)𝑅(𝜏)𝑑𝜏
)︂
,

𝑦(𝑤) = ℜ𝑒
(︂∫︁ 𝑤

𝑤0

𝑒i𝜃𝑖(1 − 𝜏2)𝑅(𝜏)𝑑𝜏
)︂
, (3.5)

𝑧(𝑤) = ℜ𝑒
(︂∫︁ 𝑤

𝑤0

𝑒i𝜃2𝜏𝑅(𝜏)𝑑𝜏
)︂
,

where 𝑅(𝜏) (Weierstrass function) is a non vanishing analytic function defined on
a simply connected domain in C, and the multiplication by a complex number of
unit magnitude is known as the Bonnet transformation by the Bonnet angle 𝜃 [192,
193], which has been an useful tool in generating new TPMS by converting the free
boundary problem to the Plateau’s problem [194–196]. The minimal surfaces are
determined by integrating the coordinates in Eqs. (3.5), which analytical solutions
constructed by reflection or rotation (through the Bonnet angle) about the patch
boundary entirely generates the surface for some TPMS [197–199]. Nonetheless, in
practice, computing the complex integrals using Weierstrass-Enneper representation
(3.5) can be rather worrisome to be tackled, and by consequence evaluate their
effective properties.

As matter of fact, once the TPMS are characterized for its periodicity in the three
independent Cartesian directions, such surfaces can be approximated by the periodic
nodal surfaces (PNS) of a sum defined in terms of the Fourier series [51, 200, 201],
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Ψ(𝑟) =
∑︁

k
𝐹 (k) cos[k · 𝑟 − 𝛼(k)] = 𝐶, (3.6)

where 𝑟 ∈ D ⊂ R3, D a closed set dependent of k, which are the TPMS function
periodicities, 𝛼(k) is a phase shift, and the structure factor 𝐹 (k) is an amplitude
associated with a given k−vector. Naturally, the quality of the approximation of
a TPMS by nodal surfaces depends on the number of terms in the Fourier series
(3.6). However, the minimal surface is satisfactorily reproduced by truncating such
series to the leading point and setting the level surface 𝐶 = 0, where the resulting
minimal surface will split the space into two sub-domains of equal volumes [202,
203]. For a nodal surface described by the Eq. (3.6), the mean curvature and the
Gaussian curvature are given in terms of the unit normal vector field n [182, 203, 204],
respectively, as

H = ∇ · n, (3.7)

K = n · ∇2n + [∇ · n]2 + [∇ × n]2
2 , (3.8)

with n = ∇Ψ(𝑟)/‖∇Ψ(𝑟)‖.

In the present work, the decision of taking a specific definition among all re-
lies on how the mathematical description of the surface will unravel the analytical,
numerical and experimental steps. It is noteworthy that although representing the
TPMS through a truncation of the Fourier series (3.6) does not give a surface with
an exact zero mean curvature in Eq. (3.7), the viability is quite simple and ac-
cessible [201, 202, 205], once the truncated series to the leading term give rise to
an implicit function (as known as isosurface) essentially formed of a combination of
trigonometric functions. Such an approach has been capable of producing several nu-
merical studies in the area of mechanics showing the multi-functionality of the TPMS
[52, 206, 207], their mechanical properties by means of finite elements analysis (FEA)
[73, 208], and additive manufactured TPMS prototypes [13, 57, 60, 71, 75, 161], as
well as in tissue engineering via AM in order to predict experimentally, with the aid
of FEA, responses of cellular TPMS models [61, 63, 64, 160, 209].
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3.2 Phase Field approach to fracture: Variational
formulation and weak form model

Let us consider an arbitrary 𝑛-dimensional solid body Ω in the Euclidean space R𝑛,

with its external boundary 𝜕Ω ∈ R𝑛−1, in which an evolving internal discontinuity
Γ ∈ R𝑛−1 is postulated. The position of a material point is denoted by the vector
x in the global Cartesian frame within the bulk. The body is characterized by the
kinematic displacement field u(x) and the strain field is defined as a symmetric
gradient (∇𝑠(·)) of the displacement field, i.e. 𝜀(x) := ∇𝑠(u(x)) for all x ∈ Ω. The
external boundary of the body 𝜕Ω ∈ R𝑛−1 is split into two disjoint sets, namely
𝜕Ωu ⊂ 𝜕Ω and 𝜕Ωt ⊂ 𝜕Ω, with 𝜕Ωt ∪ 𝜕Ωu = 𝜕Ω and 𝜕Ωt ∩ 𝜕Ωu = ∅, such that the
displacement boundary conditions are prescribed as ū(x) for x ∈ 𝜕Ωu, and traction
conditions are given by 𝜎 · n = t̄(x) for x ∈ 𝜕Ωt, where n denotes the outward
normal unit vector to the body, and 𝜎 is the Cauchy stress tensor, as shown in Fig.
30a. Therefore, the external potential energy functional is defined by

Πext(u) =
∫︁

𝜕Ω
t · u dS +

∫︁
Ω

b · u dV, (3.9)

where b : Ω −→ R𝑛 is the distributed body force.

(a) Sharp crack in the bulk. (b) Phase field regularization.

Figure 30: Schematic illustration of diffusive cracks.

The variational approach to fracture governing crack nucleation, propagation
and branching according to Griffith’s theory [142, 144, 210] is set up through the
definition of the following total energy functional [144, 145, 211] in a quasi-elastic
loading regime
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Π(u,Γ) = ΠΩ(u,Γ) + ΠΓ(Γ) + Πext(u), (3.10)

where ΠΩ(u,Γ) identifies the elastic energy stored in the damaged body given by a
volume integral, while the energy required to create the crack complying with the
Griffith criterion is denoted by ΠΓ(Γ) given by a surface integral. Therefore, the
total energy functional (3.10) reads

Π(u,Γ) =
∫︁

Ω∖Γ
𝜓𝑒(𝜀) dV +

∫︁
Γ

𝒢𝑐dS + Πext(u), (3.11)

where 𝜓𝑒(𝜀) is the elastic energy density function that depends upon the strain field
𝜀(u), and 𝒢𝑐 is the fracture energy. In this scenario, at any given pseudo-time step
𝑡 ∈ [0, 𝑇 ], minimizing the functional (3.11) results in a crack set Γ𝑡 ⊂ Ω (Γ𝑡 ⊃ Γ𝑡),
and a quasi-static displacement field u𝑡 : Ω −→ R𝑛, which is discontinuous over Γ𝑡.

However, the path to solve this problem is very tortuous since the crack surface Γ
is unknown a priori [143, 148].

To regularize the problem, i.e. the replacement of the crack surface variable
by the phase field variable, introduces a smooth continuous bounded scalar field
damage function 𝑠(x, 𝑡) with 𝑠 ∈ [0, 1], [143, 144, 149], where 𝑠 = 0 represents an
intact material, and 𝑠 = 1 identifies the fully damaged state (see Fig.30b). Hence,
the dissipated surface energy associated with the crack in the bulk Ω is approximated
by

ΠΓ =
∫︁

Γ
𝒢𝑐(x, 𝑠)dS ∼=

∫︁
Ω

𝒢𝑐𝛾
𝑙(𝑠,∇𝑠) dV. (3.12)

where 𝛾𝑙(𝑠,∇𝑠) stands for the so-called crack surface energy density function. Ac-
cording to [145], the function 𝛾𝑙(𝑠,∇𝑠) is given by

𝛾𝑙(𝑠,∇𝑠) = 1
2𝑙 𝑠

2 + 𝑙

2 |∇𝑠|2, (3.13)

where 𝑙 ∈ R+ stands for a regularization parameter related to the smeared crack
width, responsible for controlling the width of the transition zone of the regularized
crack. Thus, when the characteristic regularization parameter tends to zero (𝑙 → 0),
then the formulation outlined in Eq. (3.12) tends to its respective term in Eq. (3.10)
in the sense of the so-called Γ-convergence [212–214].

In what regards the dependency of the energy density of the bulk 𝜓(𝜀, 𝑠) in Eq.
(3.11), is split in a tension/compression to prevent cracking under compresses loads,
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and due to the regularization of the crack Γ by the phase field variable 𝑠, it also
becomes 𝑠(x) dependent, which means that

𝜓𝑒(u, 𝑠) = 𝑔(𝑠)𝜓+(𝜀(u)) + 𝜓−(𝜀(u)), (3.14)

where 𝑔(𝑠) is a monotonically decreasing function representing the energetic degra-
dation function characterized by the initial elastic energy function applied only in
tension 𝜓+, as proposed in [145].

Note that, since the phase field variable 𝑠 is bounded, the degradation function
chosen 𝑔(𝑠) = (1 − 𝑠)2 + 𝑘𝑙 [143] is bounded as well, mapping 𝑔(𝑠) : [0, 1] → [1, 0],
with 𝑘𝑙 = 𝒪(𝑙) > 0 a parameter that defines a residual stiffness to prevent numerical
instabilities in the computational implementation, and simultaneously preventing
that the resulting system of equations becomes ill-conditioned and 𝜓± the tensile
and compressive part of the strain energy density as defined in [145]. Besides, the
energetic degradation function 𝑔(𝑠) satisfies the following phase field conditions,
which are

• The intact solid happens when 𝑔(0) = 1, while 𝑔(1) = 0 provides the fully
broken state of the initial elastic energy.

• The function 𝑔(𝑠) is indeed monotonically decreasing. In fact, 𝑔′(𝑠) = 𝑑𝑔/𝑑𝑠 <

0.

• When the material is completely broken, 𝑔(𝑠) is forced to stay complying
𝑔′(1) = 0. This condition avoids the localization band to grow orthogonally.

Hence, based on the previous regularizing assumptions within the framework of
the phase field approach [143–145], the potential energy of the system in Eq. (3.10)
can be recast as

Π𝑙(u, 𝑠) =
∫︁

Ω
[(1 − 𝑠)2 + 𝑘𝑙]𝜓+(𝜀(u)) + 𝜓−(𝜀(u)) dV+

+
∫︁

Ω

𝒢𝑐

2

[︂
𝑠2

𝑙
+ 𝑙|∇𝑠|2

]︂
dV + Πext(u).

(3.15)

The Eq. (3.15) regularizes the energy functional from Griffith’s theory in Eq.
(3.11) in the sense of Γ−convergence under the following restated Griffith’s criteria
[142, 143],
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• Irreversibility: The cracks only grow in time, meaning that Γ̇(𝑡) ≥ 0 or
Γ𝑡 ⊆ Γ𝑡+1. Over the regularized framework, one must have the function 𝑔(𝑠)
monotonically decreasing, i.e 𝑔′(𝑠) = 𝑑𝑔/𝑑𝑠 < 0.

• Optimality Condition : The first variation of the total energy functional,
with the variation (𝛿u, 𝛿𝑠) of (u, 𝑠), gives

– 𝛿Π = 0 for each (𝛿u, 𝛿𝑠) > 0,
– 𝛿Π > 0 for (𝛿u, 𝛿𝑠) = 0.

• Energy Conservation: The regularized energy functional Eq. (3.15) (and
of course Eq. (3.10)) must preserve the energy in time 𝑡 ∈ [0, 𝑇 ] as the cracks
evolve, which means

Π̇ =
∫︁

𝜕Ω
(𝜎 · 𝑛) · u̇dS −

∫︁
Ω

ḃ · udV −
∫︁

𝜕Ω𝑡

˙̄t · udS, (3.16)

with stress 𝜎 defined as usual rate change of total energy with respect to strain
𝜀. i.e 𝜎 = 𝜕𝜓𝑒(𝜀)/𝜕𝜀.

Furthermore, the solution (u, 𝑠) of the total regularized energy functional in
Eq. (3.15) along with the restated Griffith’s criteria [142, 143], is then obtained by
minimizing the first variation of the functional in Eq. (3.15) (𝛿Π𝑙(u, 𝑠)) in terms of
Gateaux derivative for the variation (𝛿u, 𝛿𝑠) of (u, 𝑠), which also derives the phase
field Euler-Lagrangian governing equations under quasi-static conditions, giving

[︀
(1 − 𝑠)2 + 𝑘𝑙

]︀
∇ · 𝜎(x) + 𝑏 = 0 on Ω, (3.17a)
with 𝜎 · n = t̄ on 𝜕Ω𝑡, (3.17b)

𝒢𝑐(x)
[︁𝑠
𝑙

− 𝑙Δ𝑠
]︁

− 2(1 − 𝑠) (𝜓+(𝜀(u)) + 𝜓−(𝜀(u))) = 0 on Ω, (3.17c)

with ∇𝑠 · n = 0 on 𝜕Ω, (3.17d)

where n is the outward normal vector on 𝜕Ω.
The weak form corresponding to the phase field model for brittle fracture numer-

ically implemented in the TPMS unite cell open lattices can be derived from Eqs.
(3.17) following a standard Galerkin procedure. In particular, a standard derivation
[143–145] leads Eq. (3.14) to the Cauchy stress tensor from the strain energy density,

𝜎(u, 𝑠) = 𝑔(𝑠)𝜎+ + 𝜎− = 𝑔(𝑠)𝜕𝜓+(𝜀)
𝜕𝜀

+ 𝜕𝜓−(𝜀)
𝜕𝜀

, (3.18)
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and the weak form of the coupled displacement and phase field damage problem
according to Eq. (3.15) [145] is

𝛿Π𝑙 =
∫︁

Ω
𝜎(u) : 𝜀(v)dV −

∫︁
Ω

2𝐻+(𝜀)(1 − 𝑠)𝜑 dV+

+
∫︁

Ω
𝒢𝑐

{︁𝑠𝜑
𝑙

+ 𝑙∇𝑠 · ∇𝜑
}︁

dV + 𝛿Πext,

(3.19)

where 𝐻+(𝜀) = max𝜏∈[0,𝑡]
{︀
𝜓𝑒

+(𝜀(𝜏))
}︀

is the strain history function, accounting for
the irreversibility of crack formation [145],v is the vector of the displacement test
functions defined on H1

0(Ω), 𝜑 stands for the phase field test function defined on
H1

0(Ω). Eq. (3.19) holds for every test functions v and 𝜑. The external contribution
to the variation of the bulk functional in Eq. (3.19) is defined as follows,

𝛿Πext(u,v) =
∫︁

𝜕Ωt

t · v dS +
∫︁

Ω
b · v dV. (3.20)

Given the prescribed loading condition u𝑛 and t𝑛 at step 𝑛, the mechanical
problem and the phase field problem are formulated, respectively, as finding u ∈
U =

{︀
u |u = u𝑛 on 𝜕Ω𝑢,u ∈ H1(Ω)

}︀
, such that

∫︁
Ω

𝜎(u) : 𝜀(v)dV −
∫︁

𝜕Ω
t · vdS −

∫︁
Ω

b · vdV = 0, ∀v ∈ H1
0(Ω), (3.21)

and by finding 𝑠 ∈ 𝑆 where 𝑆 =
{︀
𝑠 | 𝑠 = 0 on Γ, 𝑠 ∈ H1(Ω)

}︀
such that ∀𝜑 ∈ H1

0(Ω),
gives

∫︁
Ω

𝒢𝑐𝑙∇𝑠 · ∇𝜑dV +
∫︁

Ω

(︂
𝒢𝑐

𝑙
+ 2𝐻+(𝜀)

)︂
𝑠𝜑dV −

∫︁
Ω

2𝐻+(𝜀)𝜑dV = 0. (3.22)

The quasi-static evolution problem for brittle fracture was performed using isopara-
metric linear triangular finite elements for the spatial discretization of the domain,
and a staggered solution scheme is considered. Staggered schemes based on alter-
nate minimization explore the convexity of the energy functional with respect to
each individual variable, namely u and 𝑠, see also Cavuoto et al. [215] for more
details. The schematic staggered pseudo-code for the mechanical and phase field
model based on the weak form in Eqs. (3.21) and (3.22), is displayed in Scheme (1).

At this stage, it is fundamental to remark that, in order to predict crack trajecto-
ries in TPMS unit cell open foams under tensile/compressive stress states, the phase

81



Algorithm 1 Staggered iterative scheme for multi-phase field fracture at a step
𝑛 ≥ 1

1: Input: Displacements and phase fields (u𝑛−1, 𝑠𝑛−1) and prescribed loads
(u𝑛,T𝑛):

2: Initialize (u0, 𝑠0) := (u𝑛−1, 𝑠𝑛−1);
3: for 𝑘 ≥ 1 staggered iteration do:
4: Given 𝑠𝑘−1, solve the mechanical problem: ℰu(u, 𝑠𝑘−1; v) = 0 for u, set

u := u𝑘;
5: Given u𝑘, solve the phase field problem ℰ𝑠(u𝑘, 𝑠;𝜑) = 0 and set 𝑠 := 𝑠𝑘;
6: if max{||u𝑘 − u𝑘−1||/||u𝑘−1||, |𝑠𝑘 − 𝑠𝑘−1|/|𝑠𝑘|} < tol: then
7: set (u𝑘, 𝑠𝑘) := (u𝑛, 𝑠𝑛);
8: else 𝑘 + 1 → 𝑘.
9: end if

10: end for
11: Output: (u𝑛, 𝑠𝑛).

field finite element method was formulated by decomposing the strain energy density
𝜓𝑒(u, 𝑠) in Eq. (3.14), based on the spectral diagonalization according to [145], in
active and passive parts, in order to apply the degradation of the material response
only in tension. The variational formulation is then implemented on FEniCS [166]
environment.

The length scale 𝑙 is deeply inserted for modelling phase field, considering that
for a sufficiently small length scale 𝑙0, the functional (3.15) converges to the total
potential energy functional (3.10), in the sense that the global minimizers of Π𝑙

will also converge to that of Π. This entails that the length scale must be carefully
chosen, rather than setting it arbitrarily. In the context of the uniaxial tension of
a homogeneous bar, the length scale 𝑙 was experimentally determined in [211, 216–
218], and well summarized in [219]. Thereby, the length scale 𝑙 value is linked to the
apparent material strength. Particularly, as proposed in [220], once these material
properties such as Young’s modulus 𝐸, critical energy release rate 𝒢𝑐 are known,
then the characteristic length 𝑙 can be set as

𝑙 = 27
256

(︂
𝒢𝑐𝐸

𝜎2
max

)︂
. (3.23)

The failure stress 𝜎max can either be obtained by using the closed-form relation
𝜎max =

√︀
𝒢𝑐𝐸/𝐿 where 𝐿 is the characteristic size of the specimen, or obtained

through tensile tests, and afterwards the length scale 𝑙 can be evaluated through Eq.
(3.23).
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3.3 TPMS modelling in the Phase Field FEM and
analysis on compressive regime

In order to apply the phase field scheme to the TPMS lattices, the computer-aided
design (CAD) modelling is performed assuming the approximated isosurface estab-
lished by the truncation of the Fourier series (3.6) to generate unit cells of the TPMS
topologies. Using the software developed at the University of Nottingham, namely
FLatt-Pack [221], printable triangular mesh struts spatially discretized by the pa-
rameter 𝜇, are then generated as STL files by offsetting (−𝐶 ≤ Ψ(𝑥, 𝑦, 𝑧) ≤ 𝐶) the
minimal surface controllable by its volume fraction (or relative density) 𝜌* = 𝑉𝑙𝑎𝑡𝑡/𝑉

of the lattice, which is the ratio between the inner volume of the TPMS unit open
cell lattice 𝑉𝑙𝑎𝑡𝑡 and the enclosing cubic unit open cell volume 𝑉, controllable by the
level set 𝐶. The spatial discretization factor 𝜇 divides the cell size 𝐿 into 𝜇 elements
of size 𝐿/𝜇, in each direction. The relationship between the volume fraction of the
TPMS cell 𝜌* and the level set 𝐶 can be seen in [71, 222, 223]. Usually, the level
set 𝐶 indicates an offset (thickness) of the surface in the normal direction and/or in
the opposite direction to vary the volume fraction 𝜌* at each TPMS lattice type.

Additionally, before importing them to the finite element environment FEniCS,
uniform tetrahedral meshes are constructed by transferring the STL triangular meshes
into the pre-processing software HyperMesh [224], producing the necessary tetrahe-
dral solid assessed and converted to MSH file by Gmsh software [225]. As stated
in [226], it is recommended that uniform meshes should be used for phase field
models, in particular for brittle fracture simulation. Even though 3D continuum
tetrahedral-like meshes might present less accuracy over the edges of the surface
when a phase field finite element technique is playing a role (contact problems for
instance [227, 228]), the choice of working with them rather than using hexahe-
dral solid shells is based on the complexity that the topology of a TPMS type may
take, thus facilitating the representation of the surface curvatures more accurately
[157, 229–231].

The TPMS types chosen to have the phase field scheme applied are the Schwarz
Primitive (P) (Fig. 31a), Schoen Gyroid (G) (Fig. 31b), Schoen-I-WP (IWP) (Fig.
31c), Schwarz Diamond (D) (Fig. 31d) and Neovius (N) (Fig. 31e) expressed as
isosurfaces, respectively, as
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ΨP(𝑥, 𝑦, 𝑧) = cos(k𝑥𝑥) + cos(k𝑦𝑦) + cos(k𝑧𝑧) − 𝐶, (3.24a)
ΨG(𝑥, 𝑦, 𝑧) = cos(k𝑥𝑥) sin(k𝑦𝑦) + cos(k𝑦𝑦) sin(k𝑧𝑧) + cos(k𝑧𝑧) sin(k𝑥𝑥) − 𝐶,

(3.24b)
ΨIWP(𝑥, 𝑦, 𝑧) =2(cos(k𝑥𝑥) cos(k𝑦𝑦) + cos(k𝑦𝑦) cos(k𝑧𝑧) + cos(k𝑥𝑥) cos(k𝑧𝑧))

− (cos(2k𝑥𝑥) + cos(2k𝑦𝑦) + cos(2k𝑧𝑧)) − 𝐶,

(3.24c)
ΨD(𝑥, 𝑦, 𝑧) = cos(k𝑥𝑥) cos(k𝑦𝑦) cos(k𝑧𝑧) − sin(k𝑥𝑥) sin(k𝑦𝑦) sin(k𝑧𝑧) − 𝐶,

(3.24d)
ΨN(𝑥, 𝑦, 𝑧) =3(cos(k𝑥𝑥) + cos(k𝑦𝑦) + cos(k𝑧𝑧))

+ 4(cos(k𝑥𝑥) cos(k𝑦𝑦) cos(k𝑧𝑧)) − 𝐶,
(3.24e)

where the periodicity components are k𝑖 = 2𝜋𝑛𝑖/𝐿𝑖 for each direction 𝑖 = 𝑥, 𝑦, 𝑧,

having 𝑛𝑖 as the number of cell repetitions, and 𝐿𝑖 correspond to the absolute length
of the structure.

3.3.1 Boundary conditions for quasi-static uniaxial compres-
sive loading

Let u(x) = (u𝑥(x),u𝑦(x),u𝑧(x)), with x = (𝑥, 𝑦, 𝑧) ∈ 𝜕Ω, be the displacement field,
and let u0 be the magnitude of the applied displacement. The brittle fracture phase
field, deformation behaviour and mechanical properties of the TPMS structures are
investigated under the boundary conditions subjected to an uniaxial compressive
loading of the quasi-static phase field model having on the top face u𝑧 = u0 in
the normal direction together with free u𝑥, u𝑦, and u free on the lateral faces. In
order to avoid any rigid body movement, such as slipping, the bottom face has been
constrained by u𝑧 = 0, and on a small region of the bottom by u𝑥 = u𝑦 = 0. Namely,
the lateral free boundary condition set up allows the open celled lattices to deform
without any interference due to the absence of neither neighbor cells nor walls.
The finite element meshes of all TPMS topologies, with the described boundary
conditions, are depicted in Fig. 31.

3.3.2 Mesh sensitivity analysis
With the aim of reducing the computation time of numerical simulations, which are
demanding in 3D, a mesh sensitivity analysis has been carried out throughout the
analysis of the outcomes of the compressive stress-strain curves for different mesh
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(a) (b) (c)

(d) (e)

Figure 31: Unit cells of TPMS structures, boundary conditions and applied uniaxial
load: (a) Schwarz Primitive; (b) Schoen Gyroid; (c) Schoen-I-WP; (d) Schwarz Dia-
mond; (e) Neovius.

refinements of a single unit cell of the Primitive, Gyroid, IWP, Diamond and Neovius
TPMS. The outcomes from the present analysis are assessed in Secs. 3.4 and 3.5. For
such a purpose, the material adopted for the lattices was Aluminium alloy [13]. The
Young’s modulus and Poisson’s ratio of this material are, respectively, 𝐸 = 82GPa
and 𝜈 = 0.33. The fracture toughness 𝒢𝑐, and the apparent tensile strength 𝜎max,

are taken from a broad range of previous evaluations through AM [232–236]. In
accordance, from Eq. (3.23), a length scale 𝑙0 is the order of 10−4mm. The fracture
toughness 𝒢𝑐 is set in the order of 10−4J/mm2.

The unit cells were generated with dimensions of 8mm×8mm×8mm each, which
means that the enclosing cubic unit cell volume is 𝑉 = 𝐿3 = 512mm3, and the per-
centage volume fraction, 𝜌*, was 20%. Force-displacement curves were numerically
predicted to compute the stress-strain curves by dividing the force by the apparent
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cross-sectional area 𝐴 = 𝐿2 and the displacement by 𝐿. A maximum quasi-static
compressive displacement of 10−3mm was applied along all the simulations of the
lattices. The spatial discretization values 𝜇 taken to perform the mesh analysis for
the Primitive unit cells were 𝜇 = 15 to 𝜇 = 70, for the Gyroid unit cell meshes were
𝜇 = 20 to 𝜇 = 75, and for the IWP, Neovius and Diamond meshes were 𝜇 = 25 to
𝜇 = 75, in increments of 5.

The stress-strain curves of the series of Primitive, Gyroid, IWP, Diamond and
Neovius lattices are plotted in Figs. 32a, 33a, 34a, 35a and 36a. During loading, it
can be noted a linear elastic behaviour at low strains up to the critical stress point.

The stress-strain curves of the unit cells begin to show significant deformations
right after the peak compressive stress is reached, followed by a drastic drop in
the curves, losing their load-bearing capacity. This characteristic is also observed
in compressive tests with clusters of TPMS additively fabricated [150, 151, 164],
although clusters of TPMS are employed and their global collapse may different
from the local failure of a single cell.

Here, the apparent Young’s modulus of the different discretized TPMS was found
by calculating the slope of the first linear elastic region, i.e. up to 0, 2% strain level.
Figs. 32b, 33b, 34b, 35b and 36b depict how the apparent Young’s modulus varies
depending on mesh refinement (corresponding to a different value of 𝜇). A synthesis
of the mesh sensitivity analysis for the different TPMS is provided in Tabs. 1 to 5,
with the value of 𝜇, the number of finite elements, the apparent Young’s modulus
𝐸*, and the apparent strength 𝜎𝑚𝑎𝑥,𝑐.

Although to ensure an accurate estimation of fracture patterns it is necessary to
have a finite element size ℎ = 𝐿/𝜇 of the order of ℎ << (1/5∼1/10)𝑙0 [144, 237]. It
can be noted from the previous results that the absolute error deviations from the
finest meshes is quite stable even for coarser discretizations. In particular, in order
to improve computational efficiency of the herein model and to ensure an accurate
estimation of the crack as it evolves, a dual-mesh adaptive approach proposed in
[238] can also be implemented to avoid the analysis of too fine meshes requesting very
long simulations. The finest mesh discretizations chosen ensure apparent Young’s
moduli and maximum compressive stresses as tabulated in Table 6, together with
their respective standard deviations based on the above series of simulations at
different discretizations calculated from Tabs. 1 to 5. It is also observed that among
the five TPMS unit cells studied at 20% of volume fraction, the Neovius structure
gives the stiffest topology, giving an average Young’s modulus of 𝐸̄* = 6.98GPa,
and an average maximum stress of 𝜎max,𝑐 = 52.1MPa, followed by IWP, Diamond,
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(a) Stress–strain curves for different spatial dis-
cretizations.

(b) Young’s modulus dependency on the spatial
discretization.

Figure 32: Mesh sensitivity analysis of the Primitive unit cells at 20% volume frac-
tion.

𝜇 N. of elements 𝐸*(𝜇) [GPa] 𝜎max,𝑐(𝜇) [MPa]
15 21875 2.05 12.2
20 48045 2.04 10.7
25 68945 1.93 10.2
30 133611 1.89 9.9
35 194478 2.04 10.6
40 298375 1.95 10.0
45 394161 1.99 10.2
50 495644 2.01 10.3
55 621951 2.00 10.1
60 783464 2.01 10.3
65 904353 1.98 10.0
70 1157245 2.02 10.2

Table 1: Primitive: spatial discretization 𝜇; number of finite elements; apparent
Young’s modulus 𝐸*; ultimate compressive stress 𝜎max,𝑐.

Gyroid, and Primitive, the latter being the less stiff strut among all five TPMS
studied, having averages of 𝐸̄* = 1.99GPa and 𝜎max,𝑐 = 10.4MPa. In order to
map and to compare the stiffness among all the five kinds of TPMS under the
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(a) Stress–strain curves for different spatial dis-
cretizations.

(b) Young’s modulus dependency on the spatial
discretization.

Figure 33: Mesh sensitivity analysis of the Gyroid unit cells at 20% volume fraction.

𝜇 N. of elements 𝐸*(𝜇) [GPa] 𝜎max,𝑐(𝜇) [MPa]
20 50425 2.91 16.43
25 90900 2.13 9.73
30 146380 2.24 10.33
35 229317 2.02 7.13
40 306548 2.53 10.82
45 434392 2.41 10.21
50 550416 2.47 10.88
55 715508 2.44 10.68
60 788926 2.67 12.49
65 1056405 2.48 9.91
70 1257132 2.53 10.88
75 1537369 2.50 10.51

Table 2: Gyroid: spatial discretization 𝜇; number of finite elements; apparent Young’s
modulus 𝐸*; ultimate compressive stress 𝜎max,𝑐.

developed phase field scheme, in Sec. 3.5, unit cells with different volume fractions
have been generated by setting one single value of discretization for each TPMS
topology. Table 6 will also be helpful as an additional guideline when setting the
proper spatial discretization 𝜇 that better optimizes the relation between finer mesh
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(a) Stress–strain curves of the simulated IWP
unit cells at different spatial discretizations.

(b) Spatial discretization × Derived Young’s
modulus.

Figure 34: Mesh sensitivity analysis of the IWP unit cells at 20% volume fraction.

𝜇 N. of elements 𝐸*(𝜇) [GPa] 𝜎max,𝑐(𝜇) [MPa]
25 80317 5.10 22.3
30 141942 4.92 17.4
35 230306 4.88 20.9
40 294595 5.20 27.5
45 405429 5.00 18.3
50 558742 4.86 16.9
55 678209 5.12 18.5
60 871902 5.08 21.5
65 1057063 4.83 16.5
70 1230149 5.04 18.4

Table 3: IWP: spatial discretization 𝜇; number of finite elements; apparent Young’s
modulus 𝐸*; ultimate compressive stress 𝜎max,𝑐.

and computational time in the following volume fraction analysis in Sec. 3.5, for
each of the five TPMS. It can be highlighted that crack patterns through all five
TPMS were independent of the spatial discretization 𝜇 simulated, nonetheless, one
also can observe that the finer the meshes became, the thinner the smeared crack
region became, as expected for a phase field model.
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(a) Stress–strain curves for different spatial dis-
cretizations.

(b) Young’s modulus dependency on the spa-
tial discretization.

Figure 35: Mesh sensitivity analysis of the Diamond unit cells at 20% volume frac-
tion.

𝜇 N. of elements 𝐸*(𝜇) [GPa] 𝜎max,𝑐(𝜇) [MPa]
25 101166 4.53 28.5
30 151999 3.97 23.0
35 227730 4.22 25.0
40 309889 4.44 26.6
45 473513 4.33 23.1
50 584342 4.63 26.7
55 716617 4.91 29.7
60 925827 4.65 259
65 1073706 4.81 27.1
70 1386746 4.90 29.1

Table 4: Diamond: spatial discretization 𝜇; number of finite elements; apparent
Young’s modulus 𝐸*; ultimate compressive stress 𝜎max.

The simulations were run in parallel with a MPI implementation of FEniCS.
Throughout, for the coarsest meshes, a server with 100GB of RAM and from 4 to
6 cores has been used to run from 4 to 6 MPI simulations in parallel. Simulations
run from 30 minutes up to 20 hours. For the finest meshes, different partitions have
been considered. On the medium memory partition, the average RAM utilized was
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(a) Stress–strain curves for different spatial
discretizations.

(b) Young’s modulus dependency on the spa-
tial discretization.

Figure 36: Mesh sensitivity analysis of the Neovius unit cells at 20% volume fraction.

𝜇 N. of elements 𝐸*(𝜇) [GPa] 𝜎𝑚𝑎𝑥,𝑐(𝜇) [MPa]
25 95363 8,04 68,8
30 124734 7.37 55.5
35 174635 6.33 48.2
40 266917 6.76 49.8
45 352847 6.65 48.6
50 465175 6.89 50.1
55 607940 6.82 49.2
60 752578 6.95 49.9
65 864469 6.92 50.1
70 1085643 6.99 50.4

Table 5: Neovius: spatial discretization 𝜇; number of finite elements; apparent
Young’s modulus 𝐸*; ultimate compressive stress 𝜎max.

200GB and from 4 to 6 cores were used, whereas the standard memory partition
utilized 125GB and from 8 to 10 cores, which CPU time varying from 20 up to
roughly 72 hours, for both machine partitions.

Having established the present analysis, one might notice that throughout the
simulations, the phase field pattern and deformation behaviour of the five TPMS unit
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TPMS 𝐸̄* [GPa] 𝜎max,𝑐 [MPa]
Primitive 1.99 ± 0.04 10.4 ± 0.6
Gyroid 2.44 ± 0.23 10.8 ± 2.5
IWP 5.01 ± 0.12 19.8 ± 3.3
Diamond 4.54 ± 0.30 26.5 ± 2.3
Neovius 6.98 ± 0.45 52.1 ± 6.2

Table 6: Apparent Young’s modulus and ultimate compressive stresses for a volume
fraction of 20% from simulations, average values and standard deviations.

cells studied are essentially the same for the several spatial discretizations analysed,
and therefore the phase field model proposed well captures and characterizes the
crack nucleation, branching, propagation and deformation mechanism. Additionally,
choosing meshes near 300, 000 tetrahedral elements are capable to pursuit the further
analyses on volume fraction in unit cell TPMS specimens with dimensions of 8mm×
8mm×8mm made in Sec. 3.5. A similar approach was taken in [165], whereas along
other investigative studies [158, 231, 239], TPMS unit cell meshes of around 50, 000
elements were sufficient to ensure finite element mesh independent results.

Moreover, one might wonder the reasons on conducting simulations only over
unit cells of TPMS. In order to optimize the computational cost, elastic and yield
properties of TPMS struts can be investigated using single unit cells for various set
ups of boundary conditions given the periodicity of the structures. As quoted in
[5], the periodicity fact allows the derivation of the elastic compressive responses
on a single unit cell, but in order to evaluate post-yield properties, an analysis on
TPMS clusters rather than single unit cells is necessary, although it is computa-
tionally more expensive. A plethora of studies have used a single unit cell to derive
deformation behaviour, failure, plateau stress, among other properties and validate
the experimental tests. Although experimental tests were conducted on TPMS clus-
ters in [151, 154], a compressive uniaxial finite element method was applied on the
TPMS unit cells to extract mechanical properties of the unit cell TPMS microlat-
tices, and thus validating the experimental tests taken on TPMS cluster lattices. In
[208] interpenetrating phase composites (IPC) TPMS unit cells were studied using
a finite element method in order to predict effective electrical/thermal conductivity
and elastic moduli of a couple of types of TPMS-based IPC’s. Also, a full numeri-
cal work by [157] derived the elastic parameters and deformation behaviour of the
Primitive structure and its variation.

Concerning to TPMS clusters, elastic mechanical properties and post-yield char-
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acterizations, namely deformation and failure mechanisms, energy absorption are
being investigated and captured utilizing specimens with enough unit cells (clus-
ters) of TPMS (please see [9, 60, 164]). Throughout, it can be observed deformation
through the development of shear bands with a certain angle with respect to the
loading direction, bulging, barrelling and failure by horizontal layer-by-layer col-
lapse. More importantly, the after failure behavioural features have been brought
to attention when functionally graded TPMS are being evaluated either experimen-
tally or numerically [12, 64, 163, 223]. In essence, various works structurally derived
elastic and plastic properties and responses of TPMS, however no numerical crack
characterization on TPMS has taken place in literature, which is performed in the
next section.

3.4 Phase Field prediction of fracture patterns

Based on the careful mesh sensitivity analysis made in Sec. 3.3.2, the following
phase field characterizations of the TPMS unit cells have the spatial discretization
corresponding to 𝜇 = 65. TPMS parameters and dimensions as well as phase field
finite element parameters selected to pursue the following estimations are the same
assumed in Sec. 3.3.2. For the sake of spotting crack initiation sites, propagation
and nucleation the contour plots of the phase field damage variable in the post-peak
regime are shown in the sequence of Figs. 37, 39, 41, 42 and 43 for an increasing level
of strain, for all TPMS analyzed. Figs. 37a, 39a, 41a, 42a and 43a are displaying
front views (𝑦𝑧-plane) of the TPMS lattices under the phase field model, whereas
Figs. 37b, 39b, 41b, 42b and 43b. Meanwhile, the deformation behaviour of the
TPMS unit cells can be seen in Fig. 44.

Fig. 37 shows cracks appearing in the directions either parallel or perpendicular
to the loading of the Primitive strut, with failure occurring under the form of arch
bridges, bifurcating to sub-cracks on the top and bottom of the unit cell. Crack
formation in the direction to the loading was observed coming from the inside of
the unit cell, in agreement with the experimental results derived in [68]. Whereby
the cracks in the perpendicular direction nucleate from outside and propagate to-
wards inside. Analogously, the crack pattern over the Primitive unit cell right above
described is also in very good agreement with the results obtained in [12] (see Fig.
38a). In particular, for the cracks nucleating parallel to the loading direction, they
occur after the failure of the hollows, then the arch bridge like semicircular parts
were loaded, concentrating the stress in the top of the arch bridge. Some sub-cracks
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(a) Phase field P65 front view at 1%, 2%, 3% strains.

(b) Phase field P65 perspective view at 1%, 2%, 3% strains.

Figure 37: Primitive unit cell crack sites, nucleation, propagation and branching, for
1%, 2%, and 3% of strain.

are formed by the propagation of these parallel cracks along the top and bottom of
Primitive, as a kind of crown like, perpendicular to the loading direction, thereby
descried as sub-hollow layers. Even though the material utilized in [12] is different
from the Aluminium alloy used here, the crack patterning is similar. As observed
and summarized in [14], regardless of the base material, the topology of the unit
cell dictates the stress/strain distribution within the TPMS unit cell under loading
regimes, but post-yield properties depend on the material.

Still in Fig. 37, at a strain of 1%, two horizontal cracks appear and further
nucleate at higher strain levels. Based on this scenario, it is conjectured that when
fatigue takes place and the lattice collapses, both initial cracks meet, assembling to
one branch on the exact deformed/broken spot. The deformation mechanism (see
Fig. 44a) relates to barrelling behaviour (barrel-shaped), which is in good agreement
with previous works [68, 152].

For the Gyroid, nucleation, propagation, and branching are shown in Fig. 39,
at strains of 0.75% and 1.5%. Cracks are predominantly seen inside of the unit
cell, however fractures are also spotted on the boundaries, propagating towards the
inside of the cell, resembling a pattern seen in the cluster lattices of the Gyroid
in [12]. A contrast of this patterning is shown in Fig. 38b. Fig. 40 compares
the crack initiation and propagation in the aluminium alloy based Gyroid lattice
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(a) (b)

Figure 38: Comparative illustration of the crack pattern in compressive regime
derived in [12] (above lattices), and the developed phase field model (below cells).
(a) Primitive; (b) Gyroid. Subfigures on experiments adapted from [12].

from compressive experimental tests made in [13], against the present phase field
model Gyroid unit cell. It can be noted that the phase field crack initiates at in-
parts of the unit cell, in agreement with the characterization previously made. As
the strain grows, fractures begin to initiate also on the curved band boundaries of
the Gyroid. Notwithstanding, the TPMS clusters studied throughout literature are
made of ductile material, which may also experience ovalization and instabilities
that cannot be predicted from compressive tests on single cells.

IWP phase field characterization is beheld in Fig. 41. The deformation and
fracture process of IWP cell shows a dominated expansion on top and bottom of
the surface, forming four handles-like, observed in Fig. 44c at 1.5% strain. In
the upcoming section, it will be remarked that as the volume fraction of IWP cell
increases, these handle features become thicker enough to contain this stretching
behaviour, letting the deformation stress be dislocated to the mid height region of
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(a) Phase field G65 front view at 0, 75%, 1, 5% strains.

(b) Phase field G65 perspective view at 0, 75%, 1, 5% strains.

Figure 39: Gyroid unit cell crack sites, nucleation, propagation and branching, for
0.75% and 1.5% of strain.

the strut.
Phase field behaviour of Diamond and Neovius unit cells are depicted at increas-

ing strains of 0.88% and 1.75%, in Figs. 42 and 43, respectively. Diamond phase
field is characterized by cracks nucleating with a small inclined angle to the loading
direction. as the strain grows, crack initiate over the top of the cell, propagating
along the surface curvature perpendicular to the bottom (xy-plane). Cracking on
Neovius cells form and evolve in the parallel direction to the loading, secondary
cracks nucleate perpendicular to the loading direction when high strain values are
reached. A bloating-like deformation behaviour is seen in both Diamond, which
is in good agreement with the outcomes seen in [153], and Neovius samples, both
depicted at strains of 1.75% in Figs. 44d and 44e.

Notably, during the compression simulations performed, a couple of cracks spread
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Figure 40: Comparison at low strains between the crack initiation and propagation
in the aluminium alloy based Gyroid lattice from experimental tests made in [13], and
the present phase field simulated Gyroid unit cell. Subfigures on experiments adapted
from [13].

and get connected as the load continues, succeeding in the collapse of the cells and
consequently the drop of the stress. Furthermore, the propagation of the cracks
within the TPMS lattices exhibit a particular characteristic as consequence of the
overall property of self similarity of TPMS. As such, in what regards to the phase
field propagation and cell bending, Primitive, IWP, Diamond and Neovius present
an uniform pattern led by their geometry design. On the other hand, Gyroid clusters
would need to undergo through the phase field scheme to identify and characterize
patterns coming from its geometric nature, since a solo unit cell analyzed was not
sufficient to infer any pattern.
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(a) Phase field IWP65 front view at 0, 75%, 1, 5% strains.

(b) Phase field IWP65 perspective view at 0, 75%, 1, 5% strains.

Figure 41: IWP unit cell crack sites, nucleation, propagation and branching, for
0.75% and 1.5% of strain.

3.5 Effect of the volume fraction on mechanical
properties

Guided by the derived numerical results on the mesh sensitivity analysis conducted
in Sec. 3.3.2) for a volume fraction of 20%, the study is herein extended to assess
the effect of the volume fraction (or, analogously, the porosity) on the apparent
mechanical properties. Here we set the discretization parameter 𝜇 = 35 for the
Primitive surfaces, 𝜇 = 40 for the Gyroid, IWP and Neovius unit cells, while 𝜇 = 50
is used for the Diamond lattices. Figs. 45 to 49 depict the TPMS unit cells for
different volume fractions.

The volume fraction, which is also related to the porosity as its complement to
unity, plays an important role in determining the mechanical properties of porous
foams, as typically plotted in Ashby plots [152, 168, 169]. Here, the quantities
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(a) Phase field D65 front view at 0, 88%, 1, 75% strains.

(b) Phase field D65 perspective view at 0, 88%, 1, 75% strains.

Figure 42: Diamond unit cell crack sites, nucleation, propagation and branching, for
0.88% and 1.75% of strain.

of interest for the Ashby plots (apparent Young’s modulus, compressive strength,
and volume fraction) of lattice TPMS structures are extracted from numerical sim-
ulations and examined, see the charts provided in linear, seen in Fig. 50, and
bi-logarithmic scales, depicted in Fig. 51.

It is noteworthy that the compressive strength of the open unit cells is an in-
creasing function of the volume fraction. The trend in the stiffness of the TPMS
discussed in Sec. 3.3.2 for a volume fraction of 20%, is confirmed as the volume frac-
tion increases, i.e. Neovius being the stiffest, followed by IWP, Diamond, Gyroid
and Primitive. The same trend occurs for the load carrying capacity in compression,
see Fig.50a or 51a.

It can be observed that in between the volume fraction interval of [35%, 40%] the
Primitive unit cell overtakes the Gyroid unit cell in terms of the apparent Young’s
modulus 𝐸*. Moreover, the results are in reasonable agreement with the findings
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(a) Phase field N65 front view at 0, 88%, 1, 75% strains.

(b) Phase field N65 perspective view at 0%, 0, 88%, 1, 75% strains.

Figure 43: Neovius unit cell crack sites, nucleation, propagation and branching, for
0.88% and 1.75% of strain.

presented in [158, 164], where the latter stated that for low volume fractions, the
more relative discrepancy regarding to the elastic properties through the manipu-
lation of the unit cells was found, such a behaviour being clearly evidenced in the
bi-logarithmic charts, Figs. 51a, 51b and 51c. Particularly, Fig. 51b highlights
that, for low volume fractions, the Gyroid cell underperforms all the other TPMS
in terms of supported maximum compressive stress 𝜎max,𝑐. O the other hand, for
higher volume fractions, the less performant TPMS becomes the Primitive one.

In what regards the nucleation sites and deformation for the Primitive cells, the
crack initiation sites and their branching seem to happen at the same regions seen
in the Primitive at 𝜌* = 20%, as the volume fraction increases. Meanwhile, the
fracture tips tend to primarily appear at arch bridges of the Primitive geometry,
among with barrelling, but uniform, deformation behaviour. From the deformed
cells, crumbled regions at the fractured zones perpendicular to the loading are seen,
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(a) (b) (c)

(d) (e)

Figure 44: Deformed unit cell TPMS structures at strains of: (a) Schwarz Primitive
3%; (b) Schoen Gyroid 1.5%; (c) Schoen-I-WP 1.5%; (d) Schwarz Diamond 1.75%;
(e) Neovius 1.75%.

(a) 𝜌* = 10%. (b) 𝜌* = 30%. (c) 𝜌* = 50%.

Figure 45: Primitive unit cell at different values of volume fraction.

which interconnect the arch bridges of the lateral faces. Interestingly, at lower
strains, the cracks initiate firstly and propagate more rapidly for the cells with
higher volume fractions. The Primitive with 𝜌* = 55%, for instance, is almost
entirely crushed, while the Primitive at 𝜌* = 10% resembles the original minimal
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(a) 𝜌* = 15%. (b) 𝜌* = 35%. (c) 𝜌* = 55%.

Figure 46: Gyroid unit cell at different values of volume fraction.

(a) 𝜌* = 15%. (b) 𝜌* = 35%. (c) 𝜌* = 55%.

Figure 47: IWP unit cell at different values of volume fraction.

(a) 𝜌* = 15%. (b) 𝜌* = 35%. (c) 𝜌* = 55%.

Figure 48: Diamond unit cell at different values of volume fraction.

surface, at mid strain values.
The crack pattern predicted by the phase field model for the Gyroid type unit

cells is essentially similar for all the volume fractions, meaning that crack sites
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(a) 𝜌* = 15%. (b) 𝜌* = 30%.

Figure 49: Neovius unit cell at different values of volume fraction.

formed fairly correspond to the ones described at 𝜌* = 20%. However, cracks tend to
expand quicker on the Gyroid geometries with higher volume fractions. A stretching
deformation behaviour mostly concentrates on the bottom boundary of the Gyroid
lattices. The ratio between the surface areas of the stretched deformed bottom and
the deformed top, indicates a slightly bigger expanded area on the bottom plan of
the open cell.

In Diamond cells, crack nucleation begins on the boundaries of the faces. In this
case, cracks originated on the lateral faces initiate angled to loading direction and
propagate to the inside of the cells. Subsequently, secondary cracks nucleating on
the top of the cells propagate downward parallel to loading, guided by Diamond’s
surface curvature. On the contrary of what is spotted for the Primitive cells, crack
development firstly appears on Diamond lattices at lower volume fractions. Under
compressive loading, a uniform expansion of the Diamond unit cells can be noticed
in all volume fractions as the strain varies.

IWP struts differ in the cracking pattern as volume fractions varies. Up to
𝜌* = 25%, nucleation first appears over top and bottom of the surfaces, propagating
parallel to the loading direction. In spite of this trend, IWP cells with volume
fraction above 25% show a surrounding crack nucleation at the middle region of
the surfaces, perpendicular to the loading direction, which could be relevant for
fatigue failure. The compressive deformation behaviour predicted by the phase field
model verified that the IWP unit cell lattices have a uniform and smooth stretching
deformation perpendicular to the loading at all volume fractions registered, which
is in good matching with the finding made in [240].
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Phase field characterization and deformation mechanisms of the Neovius cells at
increasing volume fraction do not present significant differences from those observed
for 𝜌* = 20% in Sec. 3.4.

Figs. 52 and 53 compare the TPMS unit cell responses with experimental data
from metallic TPMS currently available in the literature [14]. For a certain level set
𝐶 in Eq. (3.6), a solid-network (skeleton-network) is defined as being the solid of
one of the sub-domains divided by the resulting surface, while the remaining sub-
domain is assumed to be a void. Sheet-network is considered to be the thickened
resulting minimal surface, as described in Sec. 3.3. Sheet-networks TPMS show
improved mechanical properties as compared to solid-networks. As expected, from
Fig. 52, over the volume fraction interval studied, the various apparent Young’s
moduli of the five TPMS unit cells analyzed by the present phase field framework
lie majorly on the sheet-networks region, represented by the black color, showing
reasonable agreement with the existing experimental compressive works on metallic
TPMS lattices.

Despite a bigger overlapping of the regions in Fig. 53, revealing that the superi-
ority of TPMS sheet-networks over solid-networks is less evident when compressive
peak stresses are examined, the ultimate compressive stress predicted by the phase
field approach lie in good agreement with the experimental data of the metallic
TPMS samples. Evidently, although the simulations performed by the phase field
numerical model were on single unit cells, the numerical results showed great poten-
tial among the studies in the literature.

An open cell foam is comprehended as a porous structure in which its pores
are interconnected to each other forming a network scaffold. In this instance, once
TPMS based lattices split the three dimensional space into two intertwined domains
by their porous topologies, and in the absence of solid cell walls, TPMS are systemat-
ically studied as open cellular foams. Therefore, the mechanical properties derived
in the previous sections are now compared against the available data concerning
compressive quasi-static uniaxial regime on open cell aluminium alloy foams. The
major results to be compared with the actual outcomes are taken from the extensive
review made in [15].

Fig. 54 shows the structural stiffness values of open cell Aluminium alloy foams,
represented by the derived Young’s modulus of the equivalent continuum, plotted
against the volume fraction. Whereby, the results from the phase field for the Prim-
itive, Gyroid, IWP, Diamond and Neovius are plotted with the data grouped in
[15]. It can be noted that, over the comparable range of volume fraction, TPMS
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foams exhibit considerably superior stiffness increasing with the volume fraction, as
compared to the majority of the other existing Aluminium foams. The compressive
strength of the various Aluminium alloy foams available in literature and TPMS as
a function of volume fraction are presented in Fig. 55. Over the comparable range
of volume fraction, the load bearing capacity of the five TPMS specimens studied
by the phase field model are higher than the other listed foams, which can indicate
superior advantage to be chosen in engineering problems where the load bearing
capability plays an important role.
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(a) Apparent Young’s modulus 𝐸* vs. volume fraction 𝜌*.

(b) Ultimate compressive stress 𝜎max,𝑐 vs. volume fraction 𝜌*.

(c) 𝜎max,𝑐 vs. 𝐸*.

Figure 50: Ashby charts (linear scales).
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(a) Apparent Young’s modulus 𝐸* vs. volume fraction 𝜌*.

(b) Ultimate compressive stress 𝜎max,𝑐 vs. volume fraction 𝜌*.

(c) 𝜎max,𝑐 vs. 𝐸*.

Figure 51: Ashby charts (bi-logarithmic scales).
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Figure 52: Ashby bi-logarithmic diagram comparing the numerically predicted
Young’s modulus 𝐸* vs. volume fraction 𝜌* of the tested TPMS, with experimen-
tal data from metallic TPMS [14]. For details in the legends please see references in
Fig. 17(a) in [14].

Figure 53: Ashby bi-logarithmic diagram comparing the numerically predicted ul-
timate compressive stress 𝜎max,𝑐 vs. volume fraction 𝜌* of the tested TPMS, with
experimental data from metallic TPMS [14]. For details in the legends please see ref-
erences in Fig. 17(b) in [14].
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Figure 54: Comparison between the predicted Young’s modulus 𝐸* of TPMS foams
and those of the open cell Aluminium alloy foams, vs. the volume fraction 𝜌*. Ex-
perimental data of Aluminium foams are taken from [15]. For details in the legends
please see references in Fig. 6 in [15]

Figure 55: Comparison between the predicted compressive strength 𝜎max,𝑐 of TPMS
foams and those of the open cell Aluminium alloy foams, vs. the volume fraction 𝜌*.
Experimental data of Aluminium foams are taken from [15]. For details in the legends
please see references in Fig. 3 in [15].
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Chapter 4

Conclusion and future
developments

4.1 Conclusions
The present thesis has successfully dealt with the development of two mathemat-
ical frameworks in order to computationally exploit and characterize physical and
mechanical responses of periodic materials. The conclusions, highlights and future
prospective stated in the present section have been mainly taken from [16, 17].

4.1.1 Conclusions on Variational-Asymptotic Homogenization
of Lord-Shulman thermoelastic theory in laminated ma-
terials

In what regards to the variational homogenization procedure applied to the Lord-
Shulman thermoelasticity phenomenon, Chapter 2 has successfully formulated an
asymptotic homogenization approach for describing composites that have a periodic
microstructure in presence of the generalized thermoelasticity theory with a sin-
gle periodic spatially dependent relaxation time [94], by which the results reached
on layered periodic material could be therefore validated by comparing them with
the ones obtained by solving the micromechanical problem in accordance to the
Floquet-Bloch theory. The layered material provides suitable conditions to analyti-
cally control and manage both the micromechanical solution and the solution of the
problem at the macro-scale. Meaning that, the method emerges as a significant tool
to synthetically but also accurately characterize the behaviour of a periodic material
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governed by the field equations of the unconventional Lord-Shulman thermoelastic-
ity.

The mathematical procedure throughout developed begins by giving rise to the
down-scaling relations, allowing such technique to express the micro-fields namely,
displacement and temperature, in terms of the macroscopic fields and their deriva-
tives, through the 𝒬-periodic perturbation functions. The cell problems i.e, a cas-
cade of inhomogeneous recursive differential problems defined on the unit cell 𝒬 and
having zero mean values over this unit cell, gave the availability to seek for those
perturbation functions.

Still, the cell problems were derived substituting series expansions for both of
the micro-fields in powers of the microstructural characteristic size 𝜖 into the mi-
cro governing equations and rearranging the outcomes as asymptotic expansions
in terms of 𝜖 exponents. Inserting the down-scaling relations into the microscopic
thermoelastic field equations has led to the average field equations of infinite order,
which are asymptotically equivalent to the initial governing equations of the hetero-
geneous continuum, in which the formal solutions might be derived by plugging an
asymptotic infinite series of the macro fields in powers of the microstructural size 𝜖.
Particularly, by a perturbative technique the solution of the average field equations
of infinite order over the complex frequency-space domain are derived, followed by
truncating the asymptotic expansion to the zeroth order, it is obtained the field
equations at the macro-scale formally identical to those obtained through the vari-
ational procedure, also truncated to the zeroth order. Consequently, the higher the
order of the truncated asymptotic expansions of the macro fields the better the es-
timation for solutions of the heterogeneous problem. It is important to note that,
the overall thermal conductivity tensor depends on the complex frequency and the
relaxation time of the phases, and in the scenario where the relaxation time is zero
everywhere, the problem turns into the conventional thermoelasticity.

The reliability of such analysis has been evaluated through a benchmark test be-
tween the presented first order homogenized model and the heterogeneous continuum
over an illustrative example of a bi-dimensional two-phase periodic layered material
endowed with an orthotropy axis parallel to the layering direction, by comparing
the wave propagation from their dispersion spectrum. The eigenproblem provides
an imaginary implicit function and a real implicit function of the complex frequency
and wave vector, where the intersection between them defines the frequency spec-
trum. The choice of considering a layered material as a key test case is endorsed by
literature where can be found a vast number of engineering problems and techno-
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logical applications. In what regards the investigation of the dispersion properties
of the heterogeneous thermoelastic medium, the Floquet-Bloch theory has been an-
alytically developed by means of the transfer matrix theory. Such path has led to
a sixth order differential eigenproblem problem in terms of the Floquet multipliers,
solved over the periodic cell subjected to Floquet-Bloch periodic boundary condi-
tions, which throughout the comparative analysis were considered the uncoupled
and coupled scenarios. In both eigenproblems, which give the dispersion relations of
the layered material, the Floquet-Bloch approach characterizing the heterogeneous
material, and the first order homogenized approximation, the thermal waves from
the uncoupled problem as well as the compressional-thermal waves from the cou-
pled problem, and the shear waves were compared against their respectives. Over
the comparisons carried out in this work, it has been achieved a very good agree-
ment between the dispersion curves computed from the two different methods i.e.,
thermal, compressional-thermal and shear waves along and normal direction to the
layering. The lack of the relaxation time was also evaluated by the wave propaga-
tion comparing it with waves originated by assuming a few different values for the
relaxation time. In essence, such strong connection observed between the methods
confirms that the multi-field homogenization technique of the first order herein de-
veloped has been shown itself to be a quite good tool to estimate the macroscopic
elastic and thermal overall properties of the equivalent heterogeneous body having
periodic microstructure under thermoelastic phenomena with effective accuracy.

The outcome dispersion functions associated to the thermal-elastic waves from
the homogenized model are fully derived in terms of the physico-mechanical proper-
ties of the periodic layered material at the micro-scale were analytically determined
in closed form, so they can be compared with those of the heterogeneous thermoe-
lastic material obtained from the solutions of the Floquet–Bloch theory by applying
the transfer matrix method, leading to the solution of an eigenproblem in terms of
the Floquet multiplier [241–243].

4.1.2 Conclusion on Phase Field modelling to Triply Periodic
Minimal Surfaces

In Chapter 3, it was conducted an original exploitation of the phase field approach to
simulate complex crack patterns in five types of TPMS open cells under compression,
which the length scale parameter that regulates the sharpness of the crack has been
considered as a characteristic feature of the material. The phase field approximation
of fracture was derived from the weak form by a robust implementation based on
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the spectral decomposition of the strain energy tensor. The TPMS unit cell lattices
of Schwarz Primitive, Schoen Gyroid, Schoen-I-WP, Schwarz Diamond and Neovius
were mathematically generated and virtually tested in a compressive regime. By
choosing an aluminium alloy as base material of the open foams, an extensive mesh
sensitivity evaluation was carried out for an increasing spatial discretization refine-
ment via stress-strain responses. Consequently, crack sites, nucleation, propagation,
branching and deformation behaviour of TPMS unit cells were computationally pre-
dicted and characterized.

Since a minimal surface is mainly characterized by its mean curvature, which is
zero everywhere, and the Gaussian curvature, which is always non-positive, similar
TPMS differing for the value of the volumetric content possess the same Gaussian
curvature, which entails that the dependency on the volume fraction is the key
aspect to be investigated. In this context, from the numerical campaign, the rela-
tionship between the role of the volume fraction against the mechanical responses
have been carefully analysed. For this purpose, detailed comparative analyses were
finally proposed within the Ashby diagrams relating the apparent Young’s modulus
in compression and the apparent maximum compressive stress to the volume fraction
of the five TPMS unit cells. The comparisons have been displayed in standard and
bi-logarithmic Ashby diagrams.

In addition to the analysis of the five TPMS open foams against themselves,
throughout the investigation, cracking phase field pattern have been assessed and
contrasted with the recent literature in AM experiments. By so, the numerical
predictions showed good agreement concerning sites for crack nucleation and prop-
agation in the Primitive and Gyroid open cells. Furthermore, it is well known that
the deformation of the studied TPMS lattices is dependent on the topology, mate-
rial and unit cell size. The outcomes of the present research work also exhibited
deformation behaviour driven by their specific topology, and demonstrated volume
fraction independency, which is in good accordance with previous literature. Ad-
ditionally, through Ashby plots, a comparison with other type of cell aluminium
alloy open foams with data taken from the literature was accomplished. It must
be highlighted that predictions for TPMS unit cells showed the highest compressive
properties as compared to standard aluminium alloys open foams. The predicted
mechanical responses as functions of the volume fraction were contrasted as well
with experimental results of other metallic based TPMS sheet networks existing in
literature. The derived outcomes showed good agreement by lying over the hatched
regions from the AM experimental data available in literature.
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4.2 Future developments

From the standpoint of the homogenization technique herein proposed, it is an effi-
cient and rigorous tool for the study of the static and dynamic behaviour of periodic
medium in the presence of thermal-mechanical phenomena in the scenario where the
separation of the scales is fully satisfied. In the case which non-local effects come
into play, the homogenized first order models are not adequate. Meaning that, either
higher-order approximations of the average infinite-order equation must be carried
out, or higher-order non-local homogenization techniques must be derived, truncat-
ing the power-like functional to a desired higher order, thus identifying a non-local
continuum of higher orders.

In what concerns to future research directions, the present asymptotic variational
homogenization technique can be efficiently applied to other complex topologies,
which may have great interest in technological applications for instance, thermoe-
lastic wave propagation within TPMS could be a promising research field. On this
behalf, the numerical solutions of the differential cell problems and the evaluation
of the global constitutive tensors are required, which the latter a new finite ele-
ment formulation in the field of unconventional thermoelasticity would be needed.
Succinctly, the application of the novel described method to other geometries will
require a wide analysis regarding the effect of numerical discretization that must be
deeply developed and described in detail. Another topic that could be relevant for
future works is a rigorous and complete justification of the formal asymptotics, hav-
ing a more theoretical framework aimed at the study of the error that the solution
of the average equation of infinite order attached with a perturbative approach and
truncated at a defined order with respect to the current solution of the micro-scale
problem and therefore aimed to demonstrate that the formal asymptotics proposed
is close to the exact solution of the problem.

With respect to the phase field method hereby developed and achieved results,
they provide together a cutting-edge tool to evaluate and estimate brittle fracture
on TPMS structures, which can hasten applications of these structures in a variety
of fields. For instance, it can be a useful tool on identifying weakest regions where
fracture might occur in TPMS, with the aim of improving these critical sites before
production by additive manufacturing techniques. Moreover, the present phase field
model can diminish the uncertainty between crack occurrence caused by defects
generated from the manufacturing processes, from crack nucleation driven by the
TPMS topology. Notwithstanding, the phase field method derived can be utilized
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to estimate and characterize fracture patterns as well as evaluate the load-bearing
capacity in different 3D complex structures, under compression regimes, such as
osseointegration and applications in bone tissue engineering.

In future works, an investigation of fracture in clusters of TPMS open foams,
to assess emergent behaviours resulting from multiple unit cell interactions. Giving
the complexity of the TPMS geometries, in order to reduce the computational time
and ensure crack estimations in the vicinity of the crack, the developed phase field
model can also be adapted and improved by utilizing a dual-mesh adaptive refine-
ment method. In addition, the present phase field approach can be exploited to
study the effect of the base material used to manufacture these structures, through
virtual testing. As such, preliminary simulations showed differences regarding crack
nucleation, propagation and branching in the Gyroid unit cell structure made out of
a titanium alloy (which is commonly used in load-bearing bone replacement testing
procedures), from the present characterized aluminium Gyroid, which may indicate
that the material used can also play an important role on TPMS reliability. Par-
ticularly, through experimental tests in recent literature, it has been observed that
post-yield mechanical properties, for instance plastic deformation and plateau stress
response, are dictated by the base material of the TPMS unit cells, in spite of this
fact, the presented phase field model can be further derived to exploit and validate
these findings.
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Appendices

The Appendices are mainly dedicated in developing the necessary tools to derive
the benchmark analysis pursuit in Sec. 2.7. Based on the Floquet-Bloch theory, the
dispersion relations of the periodic heterogeneous thermoelastic layered media are
obtained via the transfer matrix decomposition. In particular, Appendix A focuses
on showing the equivalence between the governing field equations at the micro-scale
and the power-like functional through its Euler-Lagrange first variation. The content
of the this Appendix is taken from the Supplementary Material of [16].

A Euler-Lagrange equation via power-like functional
at micro-scale

Regarding the obtained governing field equations at the macro-scale, namely (2.72a)
and (2.72b), and the overall constitutive tensors (2.71a) to (2.71d) in Sec. 2.5, the
procedure only holds true in case that the variational approach at the micro-scale
also holds. Having said that, this Appendix will provide an equivalence between
the governing field equations at the micro-scale (2.11𝑎), (2.11𝑏) and the power-like
functional (2.59) through the first variation of it, a similar procedure may be seen
also in [244].

If the functional Λ̂ in Eq. (2.59) attains a local minimum at (𝑢̂, 𝜃), 𝛿 is an
arbitrary functions that has at least one derivative and vanishes at the boundary of
L, and then defining here 𝜂 as any number close to 0, yields
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𝛿Λ̂𝑚(𝑢̂, 𝛿𝑢̂, 𝜃, 𝛿𝜃) = 𝑑

𝑑𝜂

[︂∫︁
L

𝑠

(︂
1
2𝜌

𝑚𝑠2(𝑢̂ + 𝜂𝛿𝑢̂) · (𝑢̂ + 𝜂𝛿𝑢̂) +

+ 1
2∇(𝑢̂ + 𝜂𝛿𝑢̂) : (C𝑚∇(𝑢̂ + 𝜂𝛿𝑢̂)) +

− 1
2∇(𝑢̂ + 𝜂𝛿𝑢̂) : (𝛼𝑚(𝜃 + 𝜂𝛿𝜃)) − (𝑢̂ + 𝜂𝛿𝑢̂) · 𝑏̂

)︂
𝑑x +

−
∫︁
L

(︂
1
2∇(𝜃 + 𝜂𝛿𝜃) ·

(︁
K𝑚∇(𝜃 + 𝜂𝛿𝜃)

)︁
+

+ 1
2𝑠(𝜃 + 𝜂𝛿𝜃) (𝛼𝑚 : ∇(𝑢̂ + 𝜂𝛿𝑢̂)) +

+ 1
2𝑠(𝜃 + 𝜂𝛿𝜃)(𝑝𝑚(𝜃 + 𝜂𝛿𝜃)) − (𝜃 + 𝜂𝛿𝜃)𝑟

)︂
𝑑x
]︂⃒⃒⃒⃒

𝜂=0
,

(1)

where it must be highlighted that 𝜂 as defined in this Appendix does not stand for
thickness.

Reckon that the divergence theorem, the symmetry of the tensors C𝑚, K𝑚, 𝛼𝑚

and evaluating the Eq. (1) on 𝜂 = 0, the first variation of the power-like functional
lying on the Laplace transform space at the micro-scale takes the form

𝛿Λ̂𝑚 =
∫︁
L

[︁
𝑠
(︁
𝜌𝑚𝑠2𝑢̂ − ∇ · (C𝑚∇𝑢̂) + ∇ · (𝛼𝑚𝜃) − 𝑏̂

)︁
𝛿𝑢̂
]︁
𝑑x +

+
∫︁
L

[︁(︁
∇ ·
(︁

K𝑚∇𝜃
)︁

− 𝑠 (𝛼𝑚∇𝑢̂) − 𝑠𝑝𝑚𝜃 + 𝑟
)︁
𝛿𝜃
]︁
𝑑x ,

(2)

and since 𝛿Λ̂𝑚(𝑢̂, 𝛿𝑢̂, 𝜃, 𝛿𝜃) = 0, the Euler-Lagrange equations corresponding to the
power-like functional at the micro-scale are

𝜌𝑚𝑠2𝑢̂ − ∇ · (C𝑚∇𝑢̂) + ∇ · (𝛼𝑚𝜃) − 𝑏̂ = 0, (3a)

∇ ·
(︁

K𝑚∇𝜃
)︁

− 𝑠 (𝛼𝑚∇𝑢̂) − 𝑠𝑝𝑚𝜃 + 𝑟 = 0, (3b)

hence the variational approach at the micro-scale gives exactly the field equations
defined over the Laplace transform space seen in Eqs. (2.11𝑎) and (2.11𝑏). By
consequence, the thermoelasticity governing field equations (2.15a) and (2.15b) over
the time space 𝑡 emerge once again after applying the inverse Laplace transform.
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B Thermoelastic wave propagation modelling: Wave
propagation in heterogeneous periodic material

On one hand, Sec. 2.6 studied the wave propagation an homogenized continuum,
taking advantage of the thermoelastic field equations on the complex frequency space
𝑠 at the macro-scale, provided by the asymptotic homogenization process seen pre-
viously in the present work. Now, on the other hand, this Appendix is focused
on investigate the heterogeneous material to determine the frequency spectrum via
Floquet-Bloch theory [241–243], from the thermoelastic field equations at the micro-
scale over Laplace transformed space.

To this aim, firstly we recall the thermoelastic field equations (3a) and (3b),
without the source terms 𝑏̂ and 𝑟, i.e.,

∇ · (C𝑚∇𝑢̂) − ∇ · (𝛼𝑚𝜃) = 𝜌𝑚𝑠2𝑢̂, (4a)

∇ ·
(︁

K𝑚∇𝜃
)︁

− 𝑠 (𝛼𝑚∇𝑢̂) = 𝑠𝑝𝑚𝜃. (4b)

Secondly, from Floquet-Bloch theory, the decompositions for the thermoelastic medium
are given by

𝑢̂ (x, 𝑠) = 𝑈̂
𝐵(x, 𝑠)ei(𝑘·x), (5a)

𝜃 (x, 𝑠) = Θ̂𝐵(x, 𝑠)ei(𝑘·x), (5b)

where 𝑈̂
𝐵(x, 𝑠) and Θ̂𝐵(x, 𝑠) are 𝒜-periodic Bloch amplitudes of the displacement

field and temperature field, on the Laplace transformed space, respectively. Eqs.
(5a) and (5b) satisfy the Floquet-Bloch periodicity boundary conditions, in which
they arose by the 𝒬-periodicity of the medium. Let 𝑘 ∈ C3 be the wave vector, the
Floquet-Bloch boundary conditions read

𝑢̂(x + 𝑣𝑝, 𝑠) = ei(𝑘·𝑣𝑝)𝑢̂ (x, 𝑠) , (6a)
𝜃(x + 𝑣𝑝, 𝑠) = ei(𝑘·𝑣𝑝)𝜃 (x, 𝑠) , (6b)

where 𝑣𝑝 is the periodicity vector (𝑝 = 1, 2, 3).
Finally, coupling the Floquet-Bloch decompositions above into the field equations

(4a) and (4b), and making some simplifications, the tensorial form yields
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∇𝐵 · (C𝑚∇𝐵𝑈̂
𝐵) − ∇𝐵 · (𝛼𝑚Θ̂𝐵) − 𝜌𝑚𝑠2𝑈̂

𝐵 = 0, (7a)

∇𝐵 ·
(︁

K𝑚∇𝐵Θ̂𝐵
)︁

− 𝑠
(︁

𝛼𝑚∇𝐵𝑈̂
𝐵
)︁

− 𝑠𝑝𝑚Θ̂𝐵 = 0, (7b)

where the differential operator ∇𝐵 was defined as

∇𝑢̂ =
(︁

∇𝑈̂
𝐵 + i𝑘 ⊗ 𝑈̂

𝐵
)︁

ei(𝑘·x) = ∇𝐵
(︁

𝑈̂
𝐵
)︁

ei(𝑘·x), (8a)

∇𝜃 =
(︁

∇Θ̂𝐵 + i𝑘 ⊗ Θ̂𝐵
)︁

ei(𝑘·x) = ∇𝐵
(︁

Θ̂𝐵
)︁

ei(𝑘·x). (8b)

Particularly, we may also represent the field equations in terms of the components

(︁
𝐶𝑚

𝑖𝑗ℎ𝑘𝑈̂
𝐵
ℎ,𝑘

)︁
,𝑗

+ i𝑘𝑗

[︁(︁
𝐶𝑚

𝑖𝑗ℎ𝑘 + 𝐶𝑚
𝑖𝑘ℎ𝑗

)︁
𝑈̂𝐵

ℎ,𝑘 + 𝐶𝑚
𝑖𝑘ℎ𝑗,𝑘𝑈̂

𝐵
ℎ − 𝛼𝑚

𝑖𝑗 Θ̂𝐵
]︁

+

−
(︁
𝑘𝑘𝑘𝑗𝐶

𝑚
𝑖𝑗ℎ𝑘 + 𝜌𝑚𝑠2𝛿𝑖ℎ

)︁
𝑈̂𝐵

ℎ −
(︁
𝛼𝑚

𝑖𝑗 Θ̂𝐵
)︁

,𝑗
= 0,

(9a)

(︁
𝐾𝑚

𝑖𝑗 Θ̂𝐵
,𝑗

)︁
,𝑖

+ i𝑘𝑗

[︁(︁
𝐾𝑚

𝑖𝑗 +𝐾𝑚
𝑗𝑖

)︁
Θ̂𝐵

,𝑖 +𝐾𝑚
𝑖𝑗,𝑖Θ̂𝐵 − 𝑠𝛼𝑚

𝑖𝑗 𝑈̂
𝐵
𝑖

]︁
+

−
(︁
𝑘𝑖𝑘𝑗𝐾

𝑚
𝑖𝑗 + 𝑠𝑝𝑚

)︁
Θ̂𝐵 − 𝑠𝛼𝑚

𝑖𝑗 𝑈̂
𝐵
𝑖,𝑗 = 0,

(9b)

although the derivative (·),𝑗 was once defined as the microscopic derivative, for
convenience here it represents the partial derivative in 𝑥𝑗 , i.e. 𝜕/𝜕𝑥𝑗 = (·),𝑗

Recalling the spatial damping method in the Sec. 2.6, let the conditions of
an homogeneous wave be plugged into the field equations (9a) and (9b), so given
a direction 𝑛 of the wave vector 𝑘 = 𝜅𝑛 one obtains an eigenvector-eigenvalue
problem where 𝜅 is the eigenvalue and the 𝒬-periodic Bloch amplitudes 𝑈̂

𝐵
, Θ̂𝐵 are

the eigenfunctions associated to it, while the angular frequency 𝜔 might be a fixed
parameter. Consequently to the study of harmonic waves over a layered media in
the next Sec. C, it arrives to the frequency spectrum 𝜅𝜔 (2.79).

Similarly through the time damping path seen in Sec. 2.6 together with the
results from the Sec. C, it is possible to find an eigenproblem, where once resolved
in this scenario it allows to determine the eigenvalues corresponding to the dispersion
surfaces 𝑠(𝑘), that is writing the complex angular frequency 𝑠 as functions of the
wave vector 𝑘 and also the eigenfunctions corresponding to the wave polarization,
with the Bloch amplitudes being its components [245].
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C Frequency-band structure for periodic heteroge-
neous thermoelastic layered material

In the present Appendix, it is outlined the procedure followed to obtain the frequency
spectrum corresponding to the spatial damping over a periodic heterogeneous ther-
moelastic orthotropic layered material, which has led us to evaluate the benchmark
test detailed in Sec. 2.7.2, where the corresponding method drives into the dispersion
relation (2.78). Specifically, this procedure is based on the transfer matrix method
[246].

Initially, let us consider a body made of a given number 𝑛 of overlapped layers
bonded at their interfaces and stacked normal to the axis 𝑒2 of the plane (𝑒1, 𝑒2)
(𝜉 = 𝜉1𝑒1 + 𝜉2𝑒2). By assumption, the line boundary of each layer must be parallel
to the 𝑒1 vector which is chosen to coincide whit the exact half of the layered
plate. We also assign for each layer the number 𝑗 (with 𝑗 = 1, 2, . . . , 𝑛) a local
coordinate s(𝑗)

𝑖 such that its origin is located in the barycentre of the layer with
s(𝑗)

2 normal to it. Thus layer 𝑗 occupies the region −𝑑(𝑗)/2 ≤ s(𝑗)
3 ≤ 𝑑(𝑗)/2, where

𝑑(𝑗) is its thickness, and hence 𝑑, the sum of the thickness of all individual layers
𝑑2 = 𝑑(1) + · · · + 𝑑(𝑗) + · · · + 𝑑(𝑛) must be equal to the total height of the layered
body, where the body occupies the region −𝑑2/2 ≤ 𝜉2 ≤ 𝑑2/2.

Let us assume the same hypothesis taken in the Sec. 2.7.1 for the heterogeneous
thermoelastic problem, this means an orthotropic bi-phase layered material with
the orthotropy axes perpendicular to the layering direction 𝑒2 and the wave vector
as 𝑘 = (𝑘1, 𝑘2)𝑇 = (0, 𝑘2)𝑇 , which make the field equations (9a) and (9b) only
dependent on the variable 𝜉2, therefore for each layer 𝑗 we have a set of following
governing equations

𝐶(𝑗)
1212𝑈̂

𝐵
1,22 + i2𝑘2𝐶

(𝑗)
1212𝑈̂

𝐵
1,2 −

(︁
𝑘2

2𝐶
(𝑗)
1212 + 𝜌𝑚𝑠2

)︁
𝑈̂𝐵

1 = 0, (10a)

𝐶(𝑗)
2222𝑈̂

𝐵
2,22 + i2𝑘2

(︁
𝐶(𝑗)

2222𝑈̂
𝐵
2,2 − 𝛼(𝑗)

22 Θ̂𝐵
)︁

−
(︁
𝑘2

2𝐶
(𝑗)
2222 + 𝜌(𝑗)𝑠2

)︁
𝑈̂𝐵

2 − 𝛼(𝑗)
22 Θ̂𝐵

,2 = 0,
(10b)

𝐾(𝑗)
22 Θ̂𝐵

,22 + i2𝑘2

(︁
𝐾(𝑗)

22 Θ̂𝐵
,2 − 𝑠𝛼(𝑗)

22 𝑈̂
𝐵
2

)︁
−
(︁
𝑘2

2𝐾
(𝑗)
22 + 𝑠𝑝(𝑗)

)︁
Θ̂𝐵 − 𝑠𝛼(𝑗)

22 𝑈̂
𝐵
2,2 = 0.

(10c)

In order to arrive at the transfer matrix, the solutions in the Floquet-Bloch
form (5a) and (5b) of the specialized governing equations (10a), (10b) and (10c) for
each layer 𝑗 are obtained and are evaluated for both the upper (+) and lower (−)
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boundary surfaces of layer 𝑗. Among them, from the constitutive relations (2.1a) and
(2.1b) transformed in the Floquet-Bloch form as well, the components 𝜎̂𝐵

12, 𝜎̂
𝐵
22 and

𝑞𝐵
2 are derived, which are also evaluated for the upper (+) and lower (−) boundary

surfaces of layer 𝑗. Proceeding with some algebraic manipulations over them, the
transformed components specialized for the upper (+) boundary of layer 𝑗 can be
written in terms of the same components but specialized for the lower (−) boundary
of layer 𝑗.

In the following, by applying the above procedure to a single layer, one obtains

[𝑃 ]+𝑗 = [𝐴]𝑗 [𝑃 ]−𝑗 , 𝑗 = 1, 2, . . . , 𝑛, (11)

where the vector [𝑃 ]±𝑗 =
(︂[︁
𝑈̂𝐵

1 , 𝑈̂
𝐵
2 , Θ̂𝐵 , 𝜎̂𝐵

12, 𝜎̂
𝐵
22, 𝑞

𝐵
2

]︁±

𝑗

)︂𝑇

(𝑇 here is for transpose)

defines the column vectors of the displacement 𝑈̂
𝐵
, temperature Θ̂

𝐵
, stress 𝜎̂𝐵 and

heat flux 𝑞𝐵 , specialized to the upper (+) and lower (−) boundary surfaces of layer
𝑗, and the matrix [𝐴]𝑗 constitutes the local transfer matrix for layer 𝑗.

Finding the Eq. (11) to each layer, followed by the individual matrix multipli-
cation [𝐴] = [𝐴]𝑛 . . . [𝐴]2[𝐴]1 and reminding the continuity of the thermoelastic
solutions and constitutive tensors at the layer interfaces namely, [𝑃 ]−𝑗+1 = [𝑃 ]+𝑗 , one
relates the solutions and tensors at the upper boundary, to those at its lower bound-
ary, this results in [𝑃 ]+ = [𝐴][𝑃 ]−, where [𝑃 ]− and [𝑃 ]+ are now the displacement,
temperature and tensor column vectors specialized to the upper and lower faces of
the total plate, respectively and [𝐴] is the global transfer matrix of the total cell.
Finally, imposing the Floquet-Bloch periodic boundary conditions namely, Eqs. (6a)
and (6b), one gives [𝑃 ]+ = ei(𝑘·x)[𝑃 ]−, and therefore one arises the linear problem

ei(𝑘·x)[𝑃 ]− = [𝐴][𝑃 ]−. (12)

At this point, even though both the local and global transfer matrices show
themselves with several properties, which are discussed and listed in [246], we only
exploit them computationally herein. Such properties classify the transfer matrix
as being a symplectic matrix, and the characteristic polynomial attached to its
respective eigenproblem i.e. ([𝐴] − ei(𝑘·x)[𝐼])[𝑃 ]− = ([𝐴] − 𝜆[𝐼])[𝑃 ]− = [0], is a
palindromic polynomial [247].

The palindromic polynomial P(𝜆) = det ([𝐴] − 𝜆[𝐼]) = 0 to our bi-layered ma-
terial problem given by the field equations (10a), (10b) and (10c), wrote in terms of
the invariants 𝐼𝑘 of [𝐴] as
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P(𝜆) = 𝐼6 + 𝐼5𝜆+ 𝐼4𝜆
2 + 𝐼3𝜆

3 + 𝐼2𝜆
4 + 𝐼1𝜆

5 + 𝐼0𝜆
6, (13)

it has the following symmetric relations

𝐼0 = 𝐼6 = 1, 𝐼1 = 𝐼5, 𝐼2 = 𝐼4. (14)

In addition, once recognized that e𝑖(𝑘·x) is an eigenvalue of the transfer matrix [𝐴],
via the transformation z = 𝜆 + 1/𝜆 its palindromic polynomial (13) can still be
formally rephrased as

P(z) = z3 + 𝐼1z
2 + (𝐼2 − 3)z + (𝐼3 − 2𝐼1). (15)

Last but not least, it is possible to invoke the transfer matrix structure and
rewrite the invariants 𝐼1, 𝐼2, and 𝐼3 in terms of the trace of [𝐴] as established in
[248], so

𝐼1 = −tr([𝐴]), (16a)

𝐼2 = −1
2tr([𝐴]2) + 1

2(tr([𝐴]))2, (16b)

𝐼3 = −1
3tr([𝐴]3) + 1

2tr([𝐴]2)tr([𝐴]) − 1
6(tr([𝐴]))3. (16c)

Still at the same assumptions made in the beginning of this Appendix, it is
also feasible factorize the polynomial (13) into two minor factors, namely one of
a second degree polynomial associated to the Eq. (10a) and another of a fourth
degree polynomial associated to the Eqs. (10b) and (10c). Each sub-polynomial
will also be a palindromic polynomial and therefore governed by invariants of its
sub-matrices. Furthermore, choosing the right changing of variables, after a similar
process as made before, one will have factorized the third degree polynomial (15)
into two sub-polynomials a linear one and a quadratic one.

D Invariants of the dispersive wave propagation
in the periodic heterogeneous thermoelastic lay-
ered material

Throughout this Appendix it is presented the invariants that characterize the wave
propagation along the heterogeneous material. So, for the uncoupled hypothesis
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of the thermoelastic problem taken in Sec. 2.7.2 for the comparative analysis and
among the latter theories written in the Secs. B and C, the invariants may be
obtained with the following analytical expressions

𝐼1
1 (𝑠) = −

√
𝐴1212𝐵1212 + 2𝐴1212

4𝐴1212

⎛⎜⎝e
−𝑠

(︂
2∑︀

𝑟=1

𝜛
(𝑟)
1212

)︂
+ e

𝑠

(︂
2∑︀

𝑟=1

𝜛
(𝑟)
1212

)︂⎞⎟⎠+

+
√
𝐴1212𝐵1212 − 2𝐴1212

4𝐴1212

⎛⎜⎝e
−𝑠

(︂
2∑︀

𝑟=1

(−1)𝑟𝜛
(𝑟)
1212

)︂
+ e

𝑠

(︂
2∑︀

𝑟=1

(−1)𝑟𝜛
(𝑟)
1212

)︂⎞⎟⎠ ,

(17)

where 𝐴1212 = 𝐶(2)
1212𝜌(2)𝐶(1)

1212𝜌(1) , 𝐵1212 = 𝐶(1)
1212𝜌(1) + 𝐶(2)

1212𝜌(2) ,

𝜛(𝑗)
1212 = s𝑗

√︁
𝐶(𝑗)

1212𝜌(𝑗)/𝐶(𝑗)
1212 with 𝑗 = 1, 2.

Analogously, for the compressional wave the associate dispersion relation provides
the wave number 𝑘2 as an explicit function of the complex frequency 𝑠,

𝐼2
1 (𝑠) = −

√
𝐴2222𝐵2222 + 2𝐴2222

4𝐴2222

⎛⎜⎝e
−𝑠

(︂
2∑︀

𝑟=1

𝜛
(𝑟)
1212

)︂
+ e

𝑠

(︂
2∑︀

𝑟=1

𝜛
(𝑟)
1212

)︂⎞⎟⎠+

+
√
𝐴2222𝐵2222 − 2𝐴2222

4𝐴2222

⎛⎜⎝e
−𝑠

(︂
2∑︀

𝑟=1

(−1)𝑟𝜛
(𝑟)
1212

)︂
+ e

𝑠

(︂
2∑︀

𝑟=1

(−1)𝑟𝜛
(𝑟)
1212

)︂⎞⎟⎠ ,

(18)

where 𝐴2222 = 𝐶(2)
2222𝜌(2)𝐶(1)

2222𝜌(1) , 𝐵2222 = 𝐶(1)
2222𝜌(1) + 𝐶(2)

2222𝜌(2) ,

𝜛(𝑗)
2222 = s𝑗

√︁
𝐶(𝑗)

2222𝜌(𝑗)/𝐶(𝑗)
2222 with 𝑗 = 1, 2.

Lastly, for the thermal wave propagation follows that
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𝐼3
1 (𝑠) = −

⎛⎜⎜⎝ |𝑠|
2∑︀

𝑟=1
(𝑠𝜏 (𝑟) + 1)𝜇(𝑟)

22

4𝑠
√︂(︁∏︀2

𝑟=1 (𝑠𝜏 (𝑟) + 1)𝜇(𝑟)
22

)︁ + 1
2

⎞⎟⎟⎠
⎛⎜⎝e

−
2∑︀

𝑟=1
(𝑠𝜏(𝑟) +1)𝜙

(𝑟)
22

+ e

2∑︀
𝑟=1

(𝑠𝜏(𝑟) +1)𝜙
(𝑟)
22

⎞⎟⎠+

+

⎛⎜⎜⎝ |𝑠|
2∑︀

𝑟=1
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