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3. S. Simić, A. Bemporad, O. Inverso, M. Tribastone. Tight Error Analysis in
Fixed-Point Arithmetic. J. of Formal Aspects of Computing, vol. 34-1, 2022
(accepted for publication).

xii



Presentations

1. "Tight Error Analysis in Fixed-Point Arithmetic". iFM conference, Nov
2020, online.

2. "Analysis of Discontinuity Errors Under Fixed-Point Arithmetic". SEFM
conference, Dec 2021, online.

3. "Bit-precise Verification of Numerical Properties in Fixed-point Programs".
OxCAV seminar, Jan 2022, University of Oxford.

xiii



Abstract

Numerical software is prone to inaccuracies due to the fi-
nite representation of numbers. These inaccuracies propa-
gate, possibly non-linearly, throughout the statements of a
program, making it hard to predict the accumulated errors.
Moreover, in programs that contain control structures, nu-
merical errors can affect the control flow. As a result of these
inaccuracies, reachability, and thus safety, may be altered
with respect to the intended infinite-precision computation.

This thesis considers programs that use fixed-point arith-
metic to compute over non-integer quantities in finite pre-
cision. We first define a semantics of fixed-point operations
in terms of operations over bit-vectors. The proposed seman-
tics generalizes current attempts to a standardization of fixed-
point arithmetic. We then consider the problem of bit-precise
numerical accuracy certification of fixed-point programs with
control structures and arithmetic over variables of arbitrary,
mixed precision and possibly non-deterministic value.

By applying a set of parametrized transformation rules based
on computable expressions for the errors incurred by sin-
gle program statements, we reduce the problem of assess-
ing whether a fixed-point program can exceed a given er-
ror bound to a reachability problem in a bit-vector pro-
gram. We present an experimental evaluation of the certifi-
cation technique, implemented in a prototype analyzer in a
bounded model checking-based verification workflow. Our
experiments on a set of fixed-point arithmetic routines com-
monly used in the industry show that the proposed technique
can successfully certify numerical errors and can do so bit-
precisely, making it the only such verification technique.

xiv



Chapter 1

Introduction

When software components are deeply intertwined with physical ones,
as is the case in cyber-physical systems, being able to certify the correctness
of computations is of great importance. Indeed, in cyber-physical sys-
tems embedded computers and networks monitor and control the physi-
cal processes with sensors and actuators, where physical processes affect
the computations and vice versa [LS16]. Applications of such systems
can be found in a number of areas ranging from military and aero-space
contexts, to industrial settings, to everyday personal wearable devices.

In the automotive industry embedded computers can be found in
numerous components such as engines, breaks and airbags, while au-
tonomous driving is becoming a more and more tangible reality in the
recent years. Embedded software can be used to control processes in a
chemical plant and to guide production and distribution of energy on
smart grid infrastructures. Medical devices and monitors, both for pro-
fessional and personal use, rely on software to provide aid in diagnos-
ing and treating patients. Many of our household and personal appli-
ances that provide entertainment and leisure are built around embed-
ded computers. It is evident from these examples that the ability of the
computational components to alter the physical state of the system’s sur-
roundings as it operates is what makes it crucial to certify their correct-
ness. Indeed, unnoticed design errors may lead to unexpected behavior
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which can have costly or even fatal repercussions in the worst of cases.
The Therac-25 radiation therapy machine contained a software design
error that resulted in the death of 6 patients in 1986/87 due to massive
overdoses of radiation [LT93], while the Ariane 5 rocket take-off failure
caused a loss of an estimated $370 million in 1996 due to a computation
error [Lio].

Modern embedded devices are based on microprocessors, such as
digital signal processors (DSPs), microcontrollers, application-specific
integrated circuits (ASICs) or field-programmable gate arrays (FPGAs)
and are usually dedicated to a specific task. As opposed to general pur-
pose processors, they are designed to be very efficient in their designated
tasks and spend little energy, all the while being implemented on cheaper
architecture [Naj14]. Nonetheless, they often perform computationally
intensive tasks such as signal and image processing. Indeed, numer-
ical procedures are the core components of many computational tasks
that define the operation of embedded systems. Matrix factorization and
inversion, convolutions, fast Fourier transforms and finding zeros of a
function are typical building blocks of a great number of routines em-
ployed in DSPs and embedded controllers.

Designing a reliable and affordable embedded system means find-
ing the right balance between production cost, efficiency and accuracy of
computation. While a narrower data-path can decrease the size of a chip
and its energy consumption, therefore decreasing the cost of architecture,
this is inevitably at the expense of computational accuracy. On the other
hand, increasing precision by choosing a more precise data-type usually
also means increasing run times. While longer computations may be a
simple matter of performance in general-purpose software, in CPSs run
times may be crucial for the correctness of the system [LS16].

Computing in finite precision

As software embedded in CPSs usually complements a physical process,
described by real continuous mathematics, it necessarily needs to be able
to work with non-integer quantities. The representation of numbers in
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a computer, however, is limited by the finiteness of its precision, mean-
ing that numerical computation can not be expected to be exact. Real
numbers are approximated using a floating or fixed-point representation,
which can only express a subset of the rational numbers. Programmers
therefore need to choose the representation most appropriate for the ap-
plication at hand, in terms of accuracy, speed, energy consumption and
cost.

The floating-point number representation, standardized in [19885]
and [19887] is adopted by most CPUs and software implementations
nowadays. It is desirable in applications in which it is necessary to rep-
resent numbers having a large difference in magnitude, it is easy to pro-
gram with - since all the arithmetic details are clear and provided by the
environment and hardware - and in general it offers greater computa-
tional power and accuracy with respect to fixed-point representation. On
the other hand, fixed-point arithmetic [Yat09] approximates non-integer
arithmetic with low energy consumption and simple circuitry as it maps
relatively straightforwardly into integer arithmetic. It does, therefore,
not need dedicated hardware, which is indeed rarely available in mi-
crocontrollers or DSPs. It provides a constant resolution over the entire
representation range and allows to tune the precision for more or less
computational accuracy, which can be traded off for speed when desired.

Fixed-point implementations of numerical algorithms are an active
area of research and are a popular alternative to floating-point imple-
mentations in embedded systems. For example, the machine learn-
ing community has recently rekindled its interest in fixed-point arith-
metic [CTPS19, GAGN15, LTA16, GHL20], owing to the fact that pop-
ular machine learning models and algorithms can be implemented us-
ing even very few bits while still maintaining good accuracy. In fact,
it has been shown that fixed-point implementations of artificial neural
networks and convolutional neural networks, when carefully tuned, can
achieve better accuracy and efficiency than their floating-point counter-
parts [MAN06, LTA16].

3



Programming in fixed-point arithmetic, however, does require con-
siderable expertise for choosing the appropriate format for the vari-
ables, for appropriately aligning the operands, and for the separate
bookkeeping of the radix point, which is not explicitly represented.
Despite being a valid alternative to floating-point arithmetic, fixed-
point does not yet follow any specific standard and thus its support
is limited to vendor-specific solutions. There are several software im-
plementations of fixed-point arithmetic in different programming lan-
guages [Spi, Kme, Aim]. Moreover, Ada offers native support for fixed-
point data types [TDB+13], while GNU C implements a ISO/IEC pro-
posal [ISO08] for language extension of C to support fixed-point arith-
metic.

Challenges in certifying fixed-point implementations

In non-integer arithmetics, the finite nature of operations can lead to
undesirable conditions, such as rounding errors, overflow and numer-
ical cancelation. The inaccuracy incurred by a single statement comput-
ing an arithmetic expression may then propagate, possibly non-linearly,
throughout the following statements of the program. Indeed, the result
of one arithmetic operation may later appear as an operand of another
operation. Moreover, when the program contains control structures, an
erroneous evaluation of the boolean value of the test condition - due to
numerical inaccuracies on the involved variables - may result in a wrong
branching choice.

Tracking these inaccuracies is very complicated when the depen-
dency between variables becomes particularly intricate. Indeed, this is
the case in many numerically-intensive applications, such as control soft-
ware loops, simulators, neural networks, digital signal processing ap-
plications and common arithmetic routines used in embedded systems.
The analysis of the quality of a program is particularly important - and
challenging - when its variables are subject to non-determinism or uncer-
tainty, as is often the case for numerical routines arising from the men-
tioned domains.
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Although fixed-point arithmetic is not as popular as floating-point
arithmetic in mainstream applications, the systems employing the for-
mer are often safety-critical. Indeed, for applications such as medical
devices, vehicles, airborne systems or robots, it is essential to ensure cor-
rectness with formal guarantees. We therefore turn to formal methods to
tackle the problem of soundly estimating the numerical errors in fixed-
point computations. In particular, we will leverage bounded model-
checking, an automatic software verification technique that allows bit-
precise reasoning.

Formal verification of numerical errors in fixed-point implementa-
tions of numerical routines has been addressed in the past [DKMS13,
DK14, ATD05, DM10, GP11, MNR14], but its support in the existing veri-
fication pipelines is well behind that of floating-point data types. Indeed,
only very recently has this gap been recognized and there is now a for-
malization of an SMT theory of fixed-point arithmetic [BHL+20], whose
goal is to encourage the development of new decision procedures and
their comparison, and sharing of benchmarks. In general, existing error
estimation techniques for finite-precision arithmetic computations rely
on over-approximate abstractions of the variable values and on abstrac-
tions of the control flow of the program, leading to efficient but often
pessimistic bounds on numerical errors.

Proposed approach

In this thesis we present a pipeline for bit-precise error analysis in fixed-
point arithmetic based on program transformation and a bounded model
checking verification approach. Rather than implementing our error se-
mantics as a static analysis, we devise a set of rewrite rules to transform
the relevant fragments of the initial program into sequences of operations
in integer arithmetics over vectors of bits, with appropriate assertions to
check a given bound on the error. The intuition behind the proposed
approach is relatively straightforward. It is based on recomputing the
result of each arithmetic operation in the program in a higher precision,
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so as to compute the incurred error as the difference between the original
result and the higher-precision one.

Overall, given a fixed-point program and a user-defined bound on
the maximum allowed error for a set of program variables of interest,
we apply a parametrized set of re-write rules to generate a bit-vector
program, which is equivalent to the original one, as far as the origi-
nal program variables are concerned, but that also contains extra state-
ments to compute the errors and assertions to check their values against
the error bound. We can then perform assertion-based verification on
the generated program to formally guarantee that the original program
does not violate the error bound. The translated program can be anal-
ysed by any program analyser that supports integer arithmetic over vari-
ables of mixed precision, from bit-precise symbolic model checkers to
abstraction-based machinery. The non-fixed-point part of the program is
unchanged, which allows standard analysis of any interesting properties
on the original program, e.g., safety or liveness checks.

We have implemented our numerical error certification technique
in a prototype tool by seamlessly integrating it into a mature bounded
model-checking pipeline. The novelty of our approach consists in two
factors. First, we reason about numerical errors in a bit-precise way, al-
lowing for exact error analysis and using over-approximations only for
operations which may produce periodic results, i.e., division. Second,
we use bounded model checking which allows to generate counterexam-
ples witnessing why an assertion has failed, giving the programmer an
insight on which operations are responsible for propagating numerical
errors.

Outline and contributions

Chapter 2 gives the background notions needed for the comprehension
of the rest of the thesis. In particular, it introduces integer and fixed-point
number representation and illustrates the necessary concepts on formal
verification. In chapter 3 we define our fixed-point arithmetic model in
terms of operations over bit-vectors. In particular, we propose a custom
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semantics for the operations for which a standard interpretation does
not exist. This chapter is based on [SBITar]. In Chapter 4 we present
computable mathematical expressions for numerical errors due to the
single arithmetic computations and present the program transformation
that is at the core of our verification pipeline. This chapter is concerned
with straight-line code and is based on [SBIT20]. Next, in Chapter 5 we
extend the error propagation and re-writing ideas used for the single op-
erations to control structures. This work is based on [SIT21]. Chapter 6
illustrates our prototype tool and the overall pipeline for error estima-
tion, and validates our approach on a number of case studies. In Chapter
7 we give an overview of the relevant literature and Chapter 8 concludes
by summarizing and indicating possible future research paths.

The ideas presented in this thesis have been published in

• S. Simić, A. Bemporad, O. Inverso, M. Tribastone. Tight Error Anal-
ysis in Fixed-Point Arithmetic. In Proc. of the 16th International Con-
ference on Integrated Formal Methods (iFM 2020), pp 318-336.

• S. Simić, O. Inverso, M. Tribastone. Analysis of Discontinuity Er-
rors Under Fixed-Point Arithmetic. In Proc. of the 19th International
Conference on Software Engineering and Formal Methods (SEFM 2021),
pp 443-460.

• S. Simić, A. Bemporad, O. Inverso, M. Tribastone. Tight Error Anal-
ysis in Fixed-Point Arithmetic. J. of Formal Aspects of Computing, vol.
34-1, 2022 (accepted for publication).
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Chapter 2

Background

This chapter gives the basic notions needed for the comprehension of the
rest of the thesis. Section 2.1 introduces the representation of numbers in
finite precision and the notion of numerical accuracy. In particular, it pro-
vides all the necessary details regarding fixed-point formats. Section 2.2
presents the basics of system (and, in particular, software) modeling and
property specification. It then introduces the verification problem from a
model-checking perspective and discusses approaches for efficient pro-
gram verification.

2.1 Fixed-point arithmetic

We start by introducing the basic notions of integer representation on a
computer in Sect. 2.1.1. In Sect. 2.1.2 we then describe the representa-
tion of fractional values using fixed-point formats and in Sect. 2.1.3 we
introduce the sources of numerical inaccuracy.

2.1.1 Representing integers

An n-bit binary word x = ⟨xn−1 . . . x0⟩ is a sequence of n bits or digits,
each having the value 0 or 1. The number of possible numerical combi-
nations that we can represent with this word length is 2n. A sequence of
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bits, per se, has no meaning unless we choose an interpretation for it, the
most natural one consisting in associating to every position i = 0, . . . n−1

the weight 2i and thus mapping the set of n-bit binary words onto the
subset of natural numbers [0, 2n − 1] ⊂ N. Hence we associate a binary
word x to the unsigned integer X given by:

X =

n−1∑︂
i=0

xi · 2i. (2.1)

The ALU stores numbers in registers of finite length n, which means
that any value X that would need more than n bits to be correctly repre-
sented is stored by only considering the n right-most bits. This is equiv-
alent to storing the rest of the division of X by 2n and reflects the cyclic
group structure of Z/2n, i.e., integers modulo 2n.

Example 2.1.1. Using 4 digits and a positional representation we can
correctly represent the integers in [0, 15]. If we were to encode the
value 17 in a binary word, we would need 5 digits, the encoding being
100012. Fitting this word in the available bits gives us 00012, which is
interpreted as the value 1, and 17 = 1 mod 16. To detect values that
cannot be stored in the given number of bits the computer usually
issues an overflow flag.

This first interpretation of binary words is useful for representing un-
signed integers. Representing negative values can be done in a num-
ber of ways, examples being sign and magnitude, one’s complement,
two’s complement and biased representations [Par99]. A natural way
to extend the unsigned integer representation to signed values is to al-
locate the left-most bit xn−1, also referred to as the most significant bit
(MSB), to represent the sign of the value and use the rest to express the
magnitude. With this representation scheme, known as sign and magni-
tude, an n-bit word x would then be mapped to an integer in the range
[−2n−1 + 1, 2n−1 − 1] as follows:

X = −2−xn−1 ·
n−2∑︂
i=0

xi · 2i. (2.2)
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00...00⏟⏞⏞⏟
0 . . .

01...11⏟ ⏞⏞ ⏟
2n−1 − 1⏞ ⏟⏟ ⏞

[0, 2n−1 − 1]

10...00⏟⏞⏞⏟
2n−1 . . .

11...11⏟ ⏞⏞ ⏟
2n − 1⏞ ⏟⏟ ⏞

[−2n−1,−1]

Figure 1: Two’s complement representation of numbers.

Notice from Eq. 2.2 that the value 0 can be encoded using two dif-
ferent binary representations, namely 10 . . . 02 and 00 . . . 02. The first en-
coding represents −0, while the second represents to +0. This double
representation of zero, together with the fact that the operations of addi-
tion and subtraction require two different circuits, are the reason sign and
magnitude representation is not the preferred choice in most architech-
tures [Kor93, Vla12]. Indeed, the number representation scheme on a
computer should be chosen not only based on the ease of reading the
notation, but also and more importantly based on the complexity of al-
gorithms and circuitry used to compute with numbers [Par99]. A survey
on number representation for computer arithmetic is outside the scope of
this thesis and we refer the reader to [Kor93, Vla12, Par99]. We will focus
on the customary two’s complement representation scheme introduced
below from now on.

2.1.1.1 Two’s complement representation

Most modern computing devices use the two’s complement representation
to compute with signed values, as it is very efficient. In this represen-
tation scheme, given n bits, a non-negative number X ∈ [0, 2n−1 − 1] is
represented as in the unsigned integer scheme, while a negative number
−Y ∈ [−2n−1,−1] is represented using the same bit pattern that would
be used in the unsigned integer scheme to encode the value 2n − Y . The
operation of subtracting a value from 2n is referred to as the two’s com-
plement operation.

Figure 1 illustrates how the set [0, 2n − 1] of 2n unsigned integers,
through their binary encodings, can represent the set [−2n−1, 2n−1 − 1]
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of signed values using the two’s complement representation. By consid-
ering the underlying unsigned integer of a binary word of length n, i.e.,
the non-negative integer it naturally maps to, we can order the n-bit bi-
nary words by magnitude. Then, in two’s complement representation,
the lower half of this set can be associated to integers in [0, 2n−1 − 1] and
the upper half to integers in [−2n−1,−1]. The asymmetry between the
magnitudes of the most positive and of the most negative number repre-
sentable using n bits, i.e., 2n−1 − 1 and −2n−1 is due to the fact that the
two’s complement representation of the value 0 is unique.

Table 1 shows how some of the binary words expressible using 4 bits
can be interpreted in unsigned integer, sign and magnitude and two’s
complement notation. As illustrated here, the same binary encoding can
have very different meanings, depending on the interpretation that is
chosen.

Binary en-
coding

Unsigned
integer

Sign and
magnitude

Two’s com-
plement

0000 0 0 0
0001 1 1 1
0110 6 6 6
0111 7 7 7
1000 8 −0 −8
1001 9 −1 −7
1110 14 −6 −2
1111 15 −7 −1

Table 1: 4-bit binary words interpreted using unsigned integers, sign and
magnitude and two’s complement representation.

Consider now an n-bit binary word y = ⟨yn−1 . . . y0⟩. For a given bit
yi, let yi be the complement of yi, i.e., yi = 1−yi, and let y = ⟨yn−1 . . . y0⟩.
Adding y and y produces the n-bit binary word 1 . . . 112. If we add the
n-bit word 0 . . . 012 to 1 . . . 112, we would ideally obtain the (n + 1)-bit
word 10 . . . 02, which, in an unsigned sense, represents the value 2n. This
value, when stored in the n available bits, gives the word 0 . . . 002, repre-
senting 010. In other words, Y +Y +110 = 2n ≡ 0 ( mod 2n). Rearranging
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the terms, we get 2n − Y = Y + 110. Using this identity, we have that
the result of 2n − Y introduced earlier can be obtained by inverting all
bits in the binary representation of Y and adding one to the result. It
follows that, with the two’s complement representation, subtraction is
completely avoided as this operation requires the same circuitry as addi-
tion. Indeed, subtracting one value from another is equivalent to adding
the first and the two’s complement of the second.

Given a binary word x = ⟨xn−1 . . . x0⟩, we can use the following ex-
pression to interpret it as an integer value X :

X = −xn−1 · 2n−1 +

n−2∑︂
i=0

xi · 2i. (2.3)

The consistency of this interpretation with the two’s complement rep-
resentation is proved in [Kor93]. It is clear from Eq. 2.3 that, as in the
sign and magnitude notation (see Eq. 2.2), the MSB xn−1 carries the in-
formation on the sign of the integer, which can only be positive if xn−1

is positive and negative if xn−1 is negative. Thus, it is often called the
sign bit. As opposed to the sign and magnitude notation, however, it also
contributes to encoding the magnitude of the underlying integer. Sum-
marizing, an n-bit binary word interpreted as a two’s complement signed
integer can be used to represent values in the range

[−2n−1, 2n−1 − 1] ∩ Z. (2.4)

Example 2.1.2. The integer 7 encoded using 4 bits is 01112. To invert
its sign we invert all the bits, which produces 10002, and we add one,
obtaining 10012. Indeed, this bit-pattern evaluates to −7 according to
Eq. 2.3. We can also encode −7 by encoding the value 24 − 7 = 9
using the unsigned representation, again producing 10012. The two’s
complement operation works on negative values, too. For example, to
invert the sign of the value −3, we first encode −3 as 24 − 3 = 13 =
11012, then invert the bits 00102 and add one, obtaining 00112, which
encodes 3. We could have also inverted the sign of −3 by encoding
24−(−3) = 19 ≡ 3. Indeed, this would produce the 5-bit word 100112,
which would be stored in the 4 available bits as 00112.
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The value −8 using 4 bits is encoded with the unsigned bit-pattern
of 24 − 8, i.e., as 10002. If we wanted to invert its sign to obtain the
value 8, we would need to perform 01112 + 00012 = 10002, which has
the bit-pattern of the unsigned integer 8, but is interpreted again as
−8 in two’s complement. The incorrect result is due to the fact that
the operations are performed using only 4 bits, while the resulting
value, 8 does not belong to the representation range (see Eq. 2.4) since
it would need 5 bits to be correctly represented in two’s complement
notation.

In general, when performing the addition of two values representable
with n bits, both of which are positive or negative, the computed result
may be incorrect if the mathematical result is outside of the representa-
tion range. The incorrect result can be easily noticed because it has the
opposite sign with respect to the operands. In practice, overflow is de-
tected as a difference between the carry-in and the carry-out values of the
MSB [Par99, EL04]. Overflow and numerical errors will be introduced in
Sect. 2.1.3.

2.1.2 Representing fractional values

Fixed-point arithmetic [Yat09, EL04, Vla12, Kor93, Par99] is a finite-
precision approximation for computations over the rational numbers. It
is based on standard integer arithmetic in that it relies on integer repre-
sentation and computing architecture, while implicitly applying a scaling
factor to the values. In Sect. 2.1.1 we introduced schemes for represent-
ing integer values using binary words, which were essentially based on
assigning a weight equal to a non-negative power of two to each binary
digit based on its position in the binary word. To simplify the reading
and make the interpretation consistent with the conventional positional
number systems [Vla12], we indexed the digits of an n-bit sequence x
from 0 to n− 1, starting from the right-most bit.

To extend the ideas above to fractional values, we consider the subset
of rational numbers {X

2q | X ∈ Z, q ∈ N} ⊂ {X
Y | X,Y ∈ Z} = Q, i.e.,

the set of values representable using powers of 2 [Yat09]. Given an n-bit
word x and an integer representation scheme, the value X represented
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by x can be scaled by a factor of 2−q , producing the value X ′ = X
2q , by

applying the scaling factor to the interpretation of x. Assuming two’s
complement interpretation is used, the obtained value can be expressed
as

X ′ =

−xn−1 · 2n−1 +
n−2∑︁
i=0

xi · 2i

2q

= −xn−1 · 2n−1−q +

n−2∑︂
i=0

xi · 2i−q

(2.5)

thus relying on the same bit pattern of n bits as the integer value X ,
while keeping in mind that the weight associated to each digit xi is now
decreased by q. By considering the last expression in Eq. 2.5, we notice
that the right-most q digits of x are associated to negative powers of 2,
while the left-most n− q digits are associated to non-negative powers of
2.

2.1.2.1 Fixed-point formats

It is natural then to rename the indices of the digits composing x to reflect
this fact. In particular, we will use a notation that assigns an index to each
bit of a bit-sequence equal to the power of 2 that is associated to it. Given
p = n − q − 1, and assuming signed two’s complement interpretation
is used from now on, we adopt the following notation for fixed-point
numbers:

x(p.q) = ⟨xp xp−1 . . . x0.x−1 . . . x−q⟩ (2.6)

The overall storage size of the fixed-point number x(p.q) is n = p+1+q

and the format or precision of such a number is indicated using the Q-
notation [Yat09] as (p.q). This emphasizes the fact that the left-most bit
xp is the sign bit, hence p indicates the number of non-sign bits in the
integral part, although the overall size of the integral part is p+ 1.

The radix point between the fractional and the integral parts is not
part of the representation in the register, but is in a fixed-position and
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is understood from the context. The fact that the radix point, i.e., the
scaling factor, is implicit and not part of the representation is one of the
reasons why programming in fixed-point arithmetic requires particular
attention. Indeed, as a consequence of the implicit scaling factor, ev-
ery arithmetical detail, including operand alignments and overflow pre-
vention must be statically handled by the programmer and the scaling
factor has to be applied only when interpreting the result of a compu-
tation [Naj14]. All the intermediate computations and representations,
including the output value of a program variable, are in fact performed
in integer arithmetic and it is the programmer that has to interpret the
output by applying the scaling factor appropriately.

Example 2.1.3. Consider the 6-bit word x = 101101. The integer en-
coded by this bit-vector, assuming two’s complement interpretation,
is −19 (it follows from Eq. 2.3). If we now consider the format (2.3) we
have x(2.3) = 101.101, which is interpreted as −2.375, i.e., −19 ∗ 2−3.
Considering a different format, say (3.1), we have x(4.1) = 1011.01,
which is interpreted as −4.75, i.e., −19 ∗ 2−2.

If the scaling factor 2−q is such that 0 < q < n, the corresponding
fixed-point format (n − q.q) has both a positive integral and a positive
fractional length, namely n−q for the integral part and q for the fractional
part. However, given an n-bit binary word, we are in principle free to
apply a scaling factor 2−q to it both for q < 0 and for q ≥ n (q = 0 does
not produce a scaling). In the first case this results in a format with a
negative length for the fractional part, while the second case produces a
non-positive integral length.

Example 2.1.4. In the previous example, the bit-vector x = 101101,
encoding −19, scaled by a factor of 22 (with q = −2 < 0), produces
the value −76 and a binary word in the format (7.−2). If we applied
a scaling factor of 2−7 (with q = 7 > n = 6) instead , this would
produce the value −0.1484375 and a binary word in the format (−2.7).
In both cases, it may seem as these values are not representable using
the available 6 bits. In particular, the format (7.−2) suggests that 8 bits
are needed to represent the integral part, while in the second case the

15



format (−2.7) suggests a 7-bit fractional part.

The previous example illustrated what might look like an inconsis-
tent case of negative integral or fractional parts. Indeed, the binary nota-
tion of Eq. 2.6 can only work properly in the case of a scaling factor 2−q

with 0 < q < n, since the radix point cannot be visualized otherwise.
However, the impossibility of graphically representing the radix point in
the cases q < 0 and q ≥ n does not constitute a problem, since the format
(n− q.q) is always well defined. The radix representation, in fact, is only
implicit and there is no actual need to represent it graphically.

2.1.2.2 Characteristics of a format

The overall storage size of a fixed-point number x(p.q) is equal to n =

p+1+q. However, by applying the implicit scaling factor, we may use the
available n bits to encode values that are outside of the usual represen-
tation range of the two’s complement integer encoding, [−2n−1, 2n−1 −
1]∩Z. This range contains 2n distinct representable values, separated by
a step of 1, i.e., all integers that belong to this range. Considering now a
scaling factor of 2−q applied to integers encoded by n bits, it follows that
the representation range of a fixed-point number encoded by x(p.q), where
p = n− q − 1, is

[−2n−1−q, 2n−1−q − 2−q] ∩ 2−qZ = [−2p, 2p − 2−q] ∩ 2−qZ. (2.7)

Notice now from Eq. 2.7 that there is no restriction on the value of q as
it neither depends on n nor needs to necessarily be positive. Therefore,
formats with a negative integral or fractional length are acceptable. The
resolution of the format is the magnitude of the smallest representable
value, 2−q , which is at the same time the gap between two consecutive
representable values.

Example 2.1.5. Continuing the previous example, the representation
range for a number in the format (7.−2) is [−27, 27 − 22] ∩ 22Z, i.e.,
integer multiples of 4 in the range [−128, 124]. For example, the binary
word 0110102 viewed as a fixed-point number in the format (7.−2) is
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interpreted as 10410. To view this bit-vector according to the notation
Eq. 2.6, we may think of it as

x(7.−2) = ⟨011010__.⟩ (2.8)

The notation with blank spaces instead of missing bits helps us vi-
sualize the resolution of the format (7.−2). The two right-most missing
bits, associated to weights 20 and 21 are the reason the magnitude of
the smallest representable value in this format is 22.

The representation range for a number in the format (−2.7) is
[−2−2, 2−2 − 2−7] ∩ 2−7Z, i.e., integer multiples of 2−7 in the range
[−0.25, 0.2421875]. The binary word 0110102 viewed as a fixed-point
number in the format (−2.7) is interpreted as 0.20312510. In the nota-
tion of Eq. 2.6, the fixed-point number could be visualized as

x(−2.7) = ⟨_._011010⟩ (2.9)

The two left-most missing bits corresponding to weights 20 and
2−1 are the reason the value of largest magnitude representable in this
format is −0.25.

In addition to the representation range and resolution, we can asso-
ciate two more indicators to a fixed-point format. The dynamic range in-
dicates the ratio of the maximum absolute value representable and the
minimum positive value representable. For a fixed-point number in the
format (p.q), the dynamic range is 2p

2−q = 2p+q . The accuracy of a fixed-
point format is the magnitude of the maximum difference between a real
value and its representation in the given format. Since the step between
two consecutive representable values , i.e., the resolution, for a format
(p.q) is 2−q , its accuracy is 2−q

2 = 2−q−1.
In the rest of this thesis we will indicate with FP the set of fixed-point

representable numbers. In particular, a value k ∈ R is in FP if ∃p, q ∈ Z
such that k can be correctly represented in the format (p.q).

2.1.2.3 Fixed and floating point arithmetic

In floating-point arithmetic, standardized in [19885], the format of a
number is specified by 4 values: the radix (or base) β ≥ 2, a precision p
indicating the number of significant digits, and two extremal exponents
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emin, emax, s.t. emin = 1 − emax. A finite floating-point number x in
such a format is a number for which there exists at least one represen-
tation in the form x = (−1)s · m · βe, with s being the sign bit, m the
significand and emin ≤ e ≤ emax. The overall size of x is then the sum
of one bit for the sign and of the number of bits used to express the sig-
nificand and the exponent. The two standard formats for floating point
numbers are the 32-bit single precision format, (1, 8, 23), and the 64-bit
double precision format, (1, 11, 52). Floating-point arithmetic requires
dedicated hardware - a floating-point unit (FPU), which is not available
on all architectures.

In order to have a unique representation, one can normalize the fi-
nite non-zero floating-point numbers by choosing the representation for
which the exponent is minimum. The floating-point standard requires
normalized representations of numbers. When e = emin, the correspond-
ing number is said to be a subnormal (or denormal) number. Subnormal
numbers have been a controversial part of the IEEE floating-point stan-
dard, being the most difficult type of numbers to implement in floating-
point units [Gol91, Sev98, SST05]. As a consequence, they are often im-
plemented in software rather than in hardware, which may result in long
execution times. While it is possible to define floating-point systems
without subnormal numbers, the availability of these numbers allows
for what Kahan calls gradual underflow: the loss of precision is slow
instead of being abrupt [MBdD+18].

In contrast to fixed-point numbers, floating-point numbers do not
have a radix point in a fixed position, since the exponent may vary in
a range of values. As a consequence, the step between two consecutive
representable fixed-point numbers is not constant throughout the repre-
sentation range [Vla12, Naj14]. As introduced earlier for fixed-point for-
mats (see 2.1.2.2), the dynamic representation range measures the ratio
between the magnitudes of the largest and smallest representable val-
ues. By using the floating-point format it is possible to represent values
having a larger difference in magnitude, with respect to a fixed-point for-
mat of the same overall size. Indeed, the dynamic range of floating-point
numbers is greater than that of their fixed-point counterpart. However,
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the larger step-size between two consecutive values as the magnitude of
the encoded number increases means that the accuracy decreases. The
choice between fixed and floating-point arithmetic depends highly on
the compromise between the need to represent values of very different
magnitude and the need to accurately represent these values regardless
of their magnitude.

2.1.3 Numerical accuracy

When the exact result of a finite-precision operation would need a greater
format than that of the variable to which it is assigned, an incorrect value
may be stored instead. In this section we illustrate numerical inaccu-
racies due to insufficient integral or fractional bits. We then give an
overview of overapproximation-based techniques to soundly estimate
the values of numerical variables.

2.1.3.1 Overflow

Section 2.1.1 already introduced the concept of overflow, which occurs
when the value to be stored is outside of the representation range of the
variable. In this case the value is stored incorrectly in the destination
variable, by either storing the wrapped value of the operand (if modu-
lar arithmetic is used) or by storing the maximum representable value
(if saturation arithmetic is used). In particular, if the destination variable
has a format of (p.q), in modular arithmetic a value k /∈ [−2p, 2p − 2q] is
stored in it by storing only the right-most n = p + q + 1 bits of its repre-
sentation. In this case a possible effect of overflow is a difference in the
signs of the operand and the resulting variable. In saturation arithmetic
the value that is stored in place of k is either the maximum positive or
maximum negative representable value in the format of the destination
variable.

Fig. 2 shows an example of overflow. Let us assume modular arith-
metic is used. Here, variable z(3.2) in line 4 is not large enough to store
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the correct result of adding the values of variables x(3.2) and y(3.2). In-
deed, the correct result (8.010), in decimal notation, would require a vari-
able with 5 integer bits, i.e., a format of (4.2) to store the correct value.
Instead, as z(3.2) only has 4 integral bits and a representation range of
[−23, 23 − 2−2] = [−8, 7.75], the value that ends up being stored in it
is interpreted as the negative number −8.0 corresponding to the bit-
sequence 1000.00. This is indeed the wrapped value of the correct re-
sult 01000.00. In particular, the underlying integer of the correct result is
16, while the underlying integer of the stored result is −16, and indeed
−16 = 16 mod 26, where 6 is the overall length of z.

1 fixedpoint x(3.2), y(3.2), z(3.2);
2 x(3.2) = 7.510; // x = 0111.10
3 y(3.2) = 0.510; // y = 0000.10
4 z(3.2) = x(3.2) + y(3.2); // z = 1000.00

Figure 2: Example of overflow in a fixed-point program.

A real-world example of the consequences of an overflow is the
Ariane-5 501 flight take-off explosion [Lio]. Due to a data conversion
from a 64-bit floating-point to a 16-bit signed integer, the overflow re-
sulting from a number too big to be stored in 16 bits led to the auto-
destruction of the expensive rocket.

2.1.3.2 Quantization error

When a value k is stored in the format (p.q), but its fractional part re-
quires more than q bits to be correctly stored, a numerical error called
quantization error occurs, with the effect of rounding the value of k. There
are a number of ways to reduce the fractional length of a value and pro-
duce an approximation. Rounding towards zero, rounding down (or
towards −∞), rounding up (or towards +∞), or rounding to nearest
are the most common modes standardized and implemented in libraries
available for floating-point arithmetic. Rounding modes for fixed-point
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formats do not have any universal definitions and are instead user-
defined.

An example of quantization error is shown in Fig. 3. Let us assume
the rounding mode is rounding down, which is implemented as simple
truncation in two’s complement representation. In this example, the vari-
able z(3.2) in line 4 does not have enough fractional bits to correctly store
the result of multiplying the values of variables x(3.2) and y(3.2). The cor-
rect result, 0.12510, would require 3 fractional bits of precision, therefore
a format (3.3). Hence, having to store the result in z(3.2) forces the least
significant bit to be truncated and the obtained result is 0.010. Here, the
magnitude of the error is 0.125 = 0.125 − 0, i.e., the difference between
the ideal result and the quantized one.

1 fixedpoint x(3.2), y(3.2), z(3.2);
2 x(3.2) = 0.510; // x = 0000.10
3 y(3.2) = 0.2510 ; // y = 0000.01
4 z(3.2) = x(3.2) ∗ y(3.2); // z = 0000.00

Figure 3: Example of quantization error in a fixed-point program.

While the quantization error of a single operation may be a tiny quan-
tity, it can have surprisingly big repercussions on the overall result of a
program. For instance, due to a quantization error of 0.000000095 on a
variable in the software of a U.S. defense system during the Gulf War in
199, 28 soldiers were killed by an Iraqi missile [Var]. The tiny quantiza-
tion error resulted in a miscomputation of the distance of the missile by
256 meters, with the end result being that the defense system did not fire.

2.1.3.3 Bounding numerical values

Range analysis is the process of determining the range of values that
every variable in the program can hold. It allows to determine the
width of the integral part of a variable. If by performing range analy-
sis the value of a variable is found to be in the interval [a, b], then the
number of integral bits that are necessary to hold its value is given by
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⌈log2(max(|a|, |b|))⌉ + α, where α is 1 if mod (log2(b), 1) ̸= 0 and is 2

if mod (log2(b), 1) = 0 [LGC+06]. A simple technique to perform range
analysis is by format propagation, as described in [Yat09]. For example,
with this technique, one can soundly determine that the result of a mul-
tiplication of two fixed-point variables with p integral bits requires 2p

integral bits to avoid overflow.

Range analysis can be performed by using interval arithmetic
(IA) [Moo66], a method for bounding numerical values of variables.
In interval arithmetic, a quantity x is associated to a closed interval
x̂ = [xmin, xmax] s.t. xmin ≤ x ≤ xmax. Operations are carried out on
intervals and each computed interval is guaranteed to contain the corre-
sponding ideal quantity x. For example, if x̂ = [2, 4] and ŷ = [−3, 2], then
x+ y ∈ [2− 3, 4+2] = [−1, 6]. While interval arithmetic computes sound
ranges for computed values, it does not take into account the correlations
between variables. Continuing the example, given that x̂ = [2, 4], then
−x̂ = [−4,−2] and the interval enclosure for x−x is computed as [−2, 2].
Interval arithmetic is very efficient, however, it may produce pessimistic
over-approximations.

A more sophisticated model of self-validated computation is affine
arithmetic (AA) [dFS04]. In AA, a quantity x is represented by an affine
form x̂ = x0 + x1 · ϵ1 + . . . xm · ϵm, where x0 is the central value, the
ϵi are noise symbols whose values are in [−1, 1] and the xi are known
quantities. The noise terms xi·ϵi represent the deviations from the central
value with maximum magnitude xi. For example, if x̂ = 3 + 1 · ϵ1, i.e.,
x̂ = [2, 4] as in the example above, then in affine arithmetic it holds that
x̂− x̂ = 3+ 1 · ϵ1− (3 + 1 · ϵ1) = 0, providing thus a more sensible result
than IA.

Interval-based techniques such as IA and AA can also be used for
the sound estimation of the magnitude of numerical errors. Indeed, the
error of a finite-precision computation can be expressed as the difference
between the ideal mathematical result x̃ and the actually computed result
x. Then, to soundly bound the error, one may compute upper and lower
bounds for the expression |x − x̃|. Several existing techniques leverage
this idea and rely on interval-based computations to bound the rounding
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errors in numerical programs [DGP+09, DK17]. They assume worst-case
rounding errors for each operation and add these values as new noise
terms to the computed result, expressed as an affine form.

2.2 Program safety

In this section we present the basic notions of system (and, in particu-
lar, program) modelling and property specification. We then introduce
model checking, a technique for automatic formal verification.

2.2.1 Modeling systems and specifying properties

The first step in verifying the correctness of any system is finding a way
to formally model both the system and the properties that it should hold.
To capture the evolution of a system we use the concepts of states and
transitions. We will introduce transition systems and, specifically, Kripke
structures which are a common choice for modeling system behavior.
Related models that are based on discrete state changes are also called
automata, state machines, state diagrams or labeled transition systems.
Next, we will introduce linear temporal logic, used to specify the prop-
erties of the system as it evolves over time.

2.2.1.1 Kripke structures

Definition 2.2.1. A transition system is a triple T = (S, S0, R), where S is
a set of states, S0 ⊆ S is a set of initial states, andR ⊆ S×S is a transition
relation.

In order to make observations about the system states, we use a set
of state labels, which we refer to as atomic propositions, AP . Atomic
propositions intuitively express simple known facts about the states of
the system under consideration. An example may be that v ≤ 10 for a
given system variable v.

Definition 2.2.2. A Kripke structure is a five-tuple M = (S, S0, R,AP,L),
where S, S0 and R are as before, AP is the set of atomic propositions and
L : S → 2AP is a state labeling funciton.
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For example, if the proposition a ≡ v ≤ 10 holds in a system state s,
then a ∈ L(s). Kripke structures are often visualized as directed graphs,
where vertices represent the states and edges represent the transitions.
The dynamic behavior of a system represented by a Kripke structure cor-
responds to a path on the graph. A finite or infinite path from a state s0
is a sequence π = s0, s1, s2, . . . such that (si, si+1) ∈ R ∀i.

In software systems, it is natural to think of states as snapshots of the
values of program variables at a certain instant of time. An action, intu-
itively corresponding to an execution of a program statement, changes
the state of the system and represents a transition. As programs may be
expressed in a variety of programming languages, the unifying formal-
ism that is used to reason about them is the language of first-order logic.
We will show how to translate a program text into a first-order logic for-
mula and how to derive a Kripke structure form a first-order formula.

2.2.1.2 Modeling programs with first-order logic

First-order (or predicate) logic [CHVe18] extends propositional logic in
that it allows variables to be interpreted over non-boolean domains and
allows the use of functions and predicate symbols. Program variables
can be thought of as first-order variables to be interpreted over mathe-
matical structures that correspond to programming language data-types.
For instance, an integer variable of a program can be interpreted over bit-
vectors of length 32. Let V = {v1, . . . , vn} be the set of program variables
and let Dv be the domain of v. A valuation for the variables is a function
that associates with every variable a value in its domain. Therefore, we
can think of a state as a mapping s : V →

⋃︁
v∈V Dv . Given a first-order

formula φ whose variables are in V , we can associate to it a set of states,
i.e., variable valuations, in which the formula is true. We will write s |= φ

to indicate that s is in the set represented by φ. In particular, the set of
initial states S0 can be defined by a first-order formula S0.

We can also use first-order formulas to represent transitions in the
form of ordered pairs of states. Given the set of system variables V , let
V ′ be the set of primed variables. We can think of V as the current state
variables and V ′ as the set of next state variables. A valuation of the
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variables in V × V ′ can be identified with an ordered pair of states, i.e.,
with a transition. As above, we can then use a formula to identify sets of
transitions, i.e., the transition relation R. Given a first-order formula R
with variables in V × V ′, we say that s, s′ |= R if (s, s′) is in the relation
represented by R.

Since a proposition a ∈ AP , i.e., a fact about a system state, can be
described by a first-order formula over variables in V , we can extend the
above ideas to the set AP as well. Given an atomic proposition a ∈ AP ,
we write s |= a to indicate that a state s is such that a ∈ L(s). Given
two first-order formulas, S0 and R, representing the set of initial states
and the transition relation, we can derive the Kripke structure associated
with the system as follows. The set of states S is the set of all valuations
for V . The set of initial states S0 is the set of valuations s for V such that
s |= S0. Given two states s and s′, (s, s′) ∈ R if and only if s, s′ |= R.
The labeling function L : S → 2AP is defined so that L(s) is the set of all
atomic propositions a ∈ AP such that s |= a.

Modeling programs A program can be modelled as a Kripke structure
by translating it into a first-order formula R that represents its transition
relation, and then following the approach above to derive a Kripke struc-
ture from the formula. The translation of programs into formulas that
we show here follows the approach described in [CGK+18] and [MP92].
Given a program P , we introduce a labeling function that associates to
each program statement a unique label, called a program location, to in-
dicate its entry point. We can obtain the labeled program PL associated
to a program P by applying the labeling function to the single program
statements. For example, if P is an assignment, i.e., P = v := expr,
then PL = P . If P is a sequential composition of two statements,
i.e., P = P1;P2, then PL = PL

1 ; ℓ1;P
L
2 , where ℓ1 is a new label. If

P = if b then P1 else P2, then PL = if b then ℓ1;P
L
1 else ℓ2;P

L2 ,
where ℓ1, ℓ2 are new labels.

Let P be a labeled statement with entry and exit point labeled with
m and m′ respectively. Consider the set of program variables V and
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the primed variables V ′. Consider an extra variable pc, called the pro-
gram counter, and consider pc′, both of which range over the set of pro-
gram locations and the latter indicates the next program location. Since
each transition, corresponding to an execution of a program statement,
changes only a subset of variables, we consider same(Y ) =

⋀︁
y∈Y (y

′ =

y). We can now define a translation procedure C that translates a la-
beled program P into a first-order formula R representing its transition
relation. The procedure is defined recursively with one rule for each
type of statement. C has three parameters: the entry label m, the la-
beled statement P and the exit label m′. C(m,P,m′) describes the set
of transitions in P as a disjunction of all the transitions in the set. For
example, if P = v := expr, then C(m,P,m′) ≡ (pc = m) ∧ pc′ =

m′ ∧ v = expr ∧ same(V \ {v}). If P = P1; ℓ;P2, then C(m,P,m′) ≡
C(m,P1, ℓ) ∨ C(ℓ, P2,m

′). If P = if b then ℓ1;P1 else ℓ2;P2, then
C(m,P,m′) ≡ (pc = m∧ pc′ = ℓ1 ∧ b = true∧ same(V ))∨ (pc = m∧ pc′ =
ℓ2 ∧ b = false ∧ same(V )) ∨ C(ℓ1, P1,m

′) ∨ C(ℓ2, P2,m
′).

The above translation procedure produces a formula R describing the
transition relation of the program. Given a condition on the initial values
of the variables, cond(V ), if we now give the formula for the initial states
as S0(V, pc) ≡ cond(V ) ∧ pc = pc0 (where pc0 is the entry label of the
program), then we have all the ingredients to derive a Kripke structure
to represent our program.

2.2.1.3 Specifications in linear temporal logic

Given a Kripke structure, we can ask questions about its paths, such as:
is an undesirable state ever reachable? Temporal logic [Pnu77], a branch
of modal logic, is a formalism used to describe the dynamic behavior of
systems modelled as Kripke structures and extends propositional logic
by modalities that allow to reason about the infinite behavior of a system,
such as "eventually" and "always". In particular, here we introduce linear-
time temporal logic (LTL) [BK08, CGK+18, CHVe18].

In addition to boolean connectives, LTL formulas contain a path
quantifier A (all) and temporal operators X (next), F (eventually), G (al-
ways), U (until), R (release). In particular, Aφ means all paths from a
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given sate satisfy a property φ. The temporal operators describe prop-
erties that hold along a given path. If φ,ψ are formulas describing state
properties, Xφ means that φ holds in the next state, Fφ means that φ
holds at some state in the future, Gφ means that φ holds in all states in
the future. φUψ means that ψ holds at some state in the future and φ

holds at all states until ψ holds. φRψ means that ψ holds along the path
up to and including the first state where φ holds.

Definition 2.2.3. An LTL formula is of the form Aφ, where φ is an LTL
path formula and LTL path formulas are defined as follows:

• if a ∈ AP , then a is an LTL path formula,

• if φ is an LTL path formula, then ¬φ, Xφ, Fφ and Gφ are LTL path
formulas,

• if φ,ψ are LTL path formulas, then φ ∧ ψ, φ ∨ ψ, φUψ and φRψ are
LTL path formulas.

An important distinction in LTL formulas is between safety and live-
ness. Informally, safety properties are of the type "nothing bad ever hap-
pens", while liveness properties express that "something good will even-
tually happen". In this thesis we focus on safety properties, discussed
in [MP95, MP92, CHVe18, CGK+18].

One prevalent form of safety property is of the form AGφ, also called
an invariant. It states that for all paths the property φ holds in every state
of the path. Another typical type of safety property is that of reachability.
A state s of a structure M is said to be reachable if it appears in some
path of M .

2.2.2 Model checking

Given a system, represented as a Kripke structure M , and a property,
represented as an LTL formula ψ, we are interested in formally proving
that the system satisfies the given property. This is indeed the definition
of the model-checking problem, i.e., deciding whether M |= ψ, i.e., whether
ψ holds over all paths in M . The term "model checking" was first coined
in [CE81]. Here, the term "model" was not intended as a synonym for
an abstraction of the system under investigation. Rather, the meaning is
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that of the vocabulary of mathematical logic: the structure M "models"
the formula ψ.

A decision procedure that checks whether M |= ψ is called a model
checker. It outputs "safe" if M models ψ and "unsafe" if it doesn’t. In the
second case, it also provides a counterexample that witnesses the violation
of ψ by M . Note that a decision procedure [KS16] is a procedure that
is both sound and complete. Soundness means that for every problem,
if the procedure returns "safe" then the system is safe. Completeness
means that the procedure always terminates and that it returns "safe" if
the system is safe.

In the context of model-checking programs, recall that paths in M ,
i.e., sequences of states, represent sequences of variable valuations.
These are referred to as execution traces. Recall also that the program
counter is a system variable. Thus, a counterexample in the "unsafe"
case is a sequence of program locations and program variable valuations,
telling us in what order the program statements were executed and how
the variable values changed, starting from the initial statement and an
initial value for the variables.

Counterexample generation is a feature that distinguishes model
checking from other approaches to verification, such as theorem prov-
ing or abstract interpretation. Counterexamples demonstrate the viola-
tion of a specification, providing valuable insight to the programmer for
debugging. For a certain class of properties, counterexamples are finite
execution traces and are therefore easier to find than in the general case.

Counterexamples provide a natural way to distinguish between
safety and liveness properties. Safety properties are those properties that
can be disproved by finite counterexamples, that is, finite paths. This
makes them generally easier to check than liveness properties, whose
counterexamples correspond to infinite paths. For example, a counterex-
ample for an invariant (a safety property) AGφ is a finite path, corre-
sponding to a program trace, that starts in an initial state and ends in a
violation of φ, i.e., in a state s where s ̸|= φ.

In Sect. 2.2.1.3 we introduced reachability, a type of safety property.
Given M and some initial state s0, reachability analysis computes the
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set of all reachable states of M starting form s0. We can use reachabil-
ity analysis to check safety properties. For example, to check whether
M |= AGφ, one can compute the set of reachable states of M and then
check that no reachable state violates the property φ. Indeed, checking
any safety property in a temporal logic can be reduced to a reachability
problem [JM09] and this is indeed the way safety properties are checked
in practice.

In particular, we can formulate the safety analysis problem of a pro-
gram P as a check for the reachability of a particular program location ℓϵ,
called an error location. The program is said to be safe with respect to the
location ℓϵ if ℓϵ is not reachable, i.e., if no reachable state satisfies pc = ℓϵ.
A counterexample, called an error trace in this case, is an execution trace
ending in the error location ℓϵ. An equivalent and common way to ex-
press safety properties for programs is by using assertions. This consists
in adding a predicate over the program variables, i.e., the assertion, at
a program location, with the intent that for every execution that reaches
the location, the program state satisfies the predicate. Assertion state-
ments take a Boolean expression b as argument. If b evaluates to false
when the statement is executed (i.e., the program violates the assertion),
then the control flow of the program is diverted to an error location. If b
evaluates to true, the assertion statement has no effect.

Example 2.2.1. Figure 4 shows a simple program with a reachable as-
sertion failure. Indeed, due to overflow on y, the result stored in y
may be less than x. A counterexample witnessing the failure of the as-
sertion is a program execution in which x is initialized with the value
231 − 1.

1 int x, y;
2 y = x + 1;
3 assert(y > x);

Figure 4: Example of a reachable assertion failure.
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2.2.2.1 Decidability and complexity

Turing’s halting problem [Tur36] tells us that computer-aided verifica-
tion is in general undecidable, implying that there is no decision proce-
dure that can solve any instance of the model checking problem. For
programs written in Turing-complete languages, i.e., expressive lan-
guages that allow constructs such as unbounded loops, recursion and
unbounded memory allocation, the resulting system may be infinite-
state, leading to undecidability, as proven by Rice [Ric53]. A possible
strategy to overcome undecidability is to avoid infinite-state systems al-
together. In the context of programs this means restricting ourselves to
less expressive programming languages. This is indeed what is done in
the industry and we further discuss this in Sect. 2.2.3.

If we restrict our attention to finite-state systems, the model-checking
problem becomes decidable [Pnu77]. However, complexity theory tells
us that even for finite-state systems, many verification questions require
a prohibitive effort. The model checking problem for linear temporal
logic was shown to be PSPACE-complete [SC85]. This result was then
refined and it was shown that, while the complexity appears exponential
in the length of the formula, it is linear in the size of the state graph,
making LTL model checking acceptable for short formulas [LP85]. The
state space of a program, i.e., the number of program states, is equal to
|ℓ| ·

∏︁
v∈V |Dv|. This number grows exponentially with the number of

program variables, which is known as the state space explosion problem.

In practice, verification tools find a way around undecidability or
state space explosion by assuring soundness while compromising on
completeness, using two orthogonal approaches. Recall here that we are
interested in safety properties. The first approach is to explore only a part
of the reachable state space of the program, hoping to find a computation
that violates the property. In this case, the tool is tuned towards falsifi-
cation: if a violation is found in the explored part of the program, then
the entire program does not satisfy the property either. If no violation is
found up to the considered part of the state space, we cannot conclude
that the entire program satisfies the property. We discuss this approach
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in Sect. 2.2.2.3. The second approach is to explore an over-approximation
of program computations. In this case, the tool is tuned towards verifi-
cation: if the property is satisfied in the over-approximation of the pro-
gram, then the original program does satisfy the property. However, if
a violation is found, no conclusion can be made about the original pro-
gram, as the violation may concern a trace not corresponding to an actual
program execution. This is discussed in Sect. 2.2.2.4

2.2.2.2 Symbolic model checking

An algorithm for model checking necessarily needs to represent and ma-
nipulate the Kripke structure that models the system under examination.
Based on the way states are represented, model checking can be divided
into two types. In enumerative (or explicit-state) model checking, the
structure is represented explicitly as a graph where the edges are rep-
resented via matrices or adjacency lists, and states are represented indi-
vidually. While this technique captures the essence of model checking
as the exhaustive algorithmic exploration of states and transitions using
various graph search techniques, its use in practice is quite limited due
to state space explosion.

A second approach are symbolic model checking algorithms, which
manipulate sets of states by using constraints and perform state space
exploration through symbolic transformations of these representations.
Symbolic representations of sets of states result in more compact repre-
sentations of the system and can also be used for infinite sets of states.
This idea was proposed in [McM93] and the first model checking algo-
rithm based on symbolic representation was based on ordered binary
decision diagrams. Nowadays, symbolic model checking is mostly per-
formed using methods based on propositional satisfiability (SAT) or sat-
isfiability modulo theories (SMT) solving (see [CHVe18]).
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2.2.2.3 Bounded model checking

Exploiting the improvements in performance and scalability of SAT
solvers, a symbolic model checking technique called bounded model check-
ing (BMC) was introduced in [BCCZ99]. In this approach, given a struc-
ture M and a property ψ, we check whether an unwinding of M for a
given depth k satisfies the formula ψ. In this formulation, ψ is satisfi-
able iff it can be refuted by M by means of a counterexample of length
k. Bounded model checkers unwind the structure and the specification
to the bound k and encode them as a formula which is then passed to a
solver.

In the specific case of bounded model checking of programs, the
verification problem is whether a given assertion fails in k steps. In
Sect. 2.2.1.2 we showed how to model a program using first-order for-
mulas, as an intermediate representation needed to derive the Kripke
structure that describes the program. Hence, we already introduced the
concept of analyzing programs, which are dynamic (they execute instruc-
tions one at a time, reuse variables, allocate memory), using decision
procedures for first-order theories, which are static (they can only check
whether there exists a simultaneous assignment to the variables that sat-
isfies a given logical formula).

In practice, BMC tools apply a different translation of the program
into a formula for practical reasons. Given a program and a bound k,
the first step is to expand functions and unwind all loop constructs and
recursive function calls k times. In practice, the bound k indicates the
number of loop iterations, rather that the actual number of single state-
ments. Given an unwound program containing an assertion to express
a safety property, translate the verification problem into a satisfiability
problem of a formula as follows. The translation procedure relies on an
intermediate representation of the program, called static single assignment
(SSA) form. We use the example program in Fig. 5 taken from [CKL04]
where variables are bit-vectors.

The initial program shown on the left is rewritten by splitting the
variables into versions indicated by subscripts. Every time a variable
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x=x+y;
if (x!=1)

x=2;
else

x++;
assert(x<=3);

x1=x0+y0;
if (x1!=1)

x2=2;
else

x3=x1+1 ;
x4=(x1!=1)?x2:x3;

assert(x4 <= 3);

C := x1=x0+y0 ∧
x2=2 ∧
x3=x1+1 ∧
x4=(x1!=1)?x2:x3;

P := x4≤3)

Figure 5: Transformation of a program into a first-order formula via SSA
form.

is read, it is renamed by adding the current subscript to its name. Ev-
ery time a variable is assigned, the subscript is incremented by one. An
additional copy for the variable affected by the branching statement is
introduced and is assigned conditionally to values computed by the two
branches. The variable in the predicate appearing in the assertion is in-
dexed with the last subscript for that variable. The obtained program, in
the middle, is translated into two formulas, on the right. The first for-
mula C, is obtained as a conjunction of the statements of the program,
in which assignments are regarded as equalities. The second formula P ,
expressing the property to check, is the predicate appearing in the asser-
tion. In order to check the property, we consider the formula C ∧ ¬P ,
translate it into a propositional formula and check its satisfiability. Since
BMC tools generally rely on decision procedures that expect a formula in
conjunctive normal form (CNF) in input, the obtained propositional for-
mula is converted to CNF and passed to a solver. If the formula is found
to be satisfiable, we have found a violation of the assertion.

BMC tools rely on two types of solvers to prove the satisfiability of a
formula. Tools such as CBMC [CKL04] generate constraints in proposi-
tional logic and use SAT-solvers, such as MiniSat [ES03], as a beck-end.
The scalability of such approaches depends both on the scalability of the
underlying SAT-solvers as well as on the heuristics which manipulate
the formula and keep the size of the constraints small. The reduction
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to propositional satisfiability precisely captures the semantics of fixed-
width datatypes and is useful for finding subtle bugs arising from low-
level finite-precision implementations of numerical algorithms.

The second type of tools, such as ESBMC [GMM+18] generates con-
straints in an appropriate first order theory and uses decision pro-
cedures for such theories, implemented in satisfiability modulo theo-
ries solvers (SMT-solvers), such as Boolector [NPB14], CVC4 [BCD+11],
MathSAT [CGSS13], Yices [Dut14], Z3 [dMB08]. The approach is simi-
lar to SAT-based bounded model checking, but the system is interpreted
in a more powerful logic than propositional logic. The first-order lan-
guage allows natural and straightforward formulations of the system
under analysis and provides more compact formulations than proposi-
tional encodings. Greater expressive power, however, comes at the cost
of complexity or even decidability.

Examples of theories often used for software model checking pur-
poses are the theory of bit-vectors and the theory of linear integer arith-
metic. Decision procedures for the former usually fall back on SAT-
solving, by considering the single bits of variables. Decision procedures
for linear integer arithmetic include the branch-and-bound method
(based on the simplex algorithm), Fourier-Motzkin variable elimination
and the Omega-test [KS16]. One may be interested in verifying proper-
ties over several data-types, i.e., over a combination of theories. A gen-
eral mechanism for combining decision procedures for different theories
is given by the Nelson-Oppen method [NO79].

As introduced in Sect. 2.2.2.1, bounded model checking is an under-
approximation approach: if no counterexample of length k is found, one
cannot conclude that the program is safe, unless the bound k is large
enough to cover the entire state space of the program. One may be able to
show that the analysis with a given bound k is complete by introducing
unwinding assertions. These assertions are placed after every unwound
loop to check that the loop does not iterate more than k times. If all of
these assertions are satisfied then the analysis is complete and k is called
a completeness threshold for the program [CKOS04]. If one or more un-
winding assertions are violated, the algorithm starts over with a higher
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value of k. Thus, the algorithm may never terminate.
A complete BMC-based technique to prove safety is k-

induction [SSS00]. The algorithm relies on incrementally unwinding
the program P . At the k-th iteration, a BMC check is performed on
the unwound program Pk; if no counterexample is found, an inductive
step is checked. The check tries to prove safety of Pk+1 assuming that
P0, . . . , Pk are safe. If a proof for the inductive step is found, then the
procedure terminates and the program is safe; otherwise the value of k
is increased and the procedure is repeated.

2.2.2.4 Abstraction-based approaches

Another way of tackling the state space explosion problem is to reduce
the information about the system under examination, trading off preci-
sion of the analysis for efficiency. In abstract model checking, the original
(concrete) model of the system is over-approximated with an abstract
model, by defining a mapping of the concrete states to abstract states
and extending this mapping to transitions. The resulting structure has a
reduced state space, making it generally easier to analyze than the full
model. Over-approximating abstractions are conservative, meaning that
whenever an LTL property holds on the abstract model, then it holds on
the concrete model as well.

A behavior of the concrete model always has a representative in the
abstract model. Hence, if a property holds in the latter, it does in the con-
crete model as well and the analysis is conclusive. The abstract model,
however, may include additional behaviors that have no concrete coun-
terparts. Therefore, if a property fails in the abstract system, we cannot
deduce anything about the concrete one. This is because the counterex-
ample for the property in the over-approximated abstract model may not
correspond to a concrete counterexample.

Verification of a system by iteratively constructing abstractions of
increasing precision is called counterexample-guided abstraction refinement
(CEGAR) [CGJ+03]. The CEGAR algorithms starts by verifying an ab-
stract model of the input program. If the verification finds no violation of
the considered property, then the algorithm terminates and the program
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is sound. Otherwise, it checks the counterexample against the concrete
program: if it is genuine then the property is violated and the procedure
terminates. If the counterexample is spurious, then the algorithm uses it
to refine the abstraction.

The topic of constructing abstract semantics of computer programs
with the goal of statically analyzing them is addressed by the theory
of abstract interpretation [CC77]. Abstractions can be made about pro-
gram variables and operations, or about the control-flow. Possible ab-
stract domains over which arithmetic on numerical variables may be in-
terpreted are interval arithmetic [Moo66], affine arithmetic [SDF97], oc-
tagons [Min06] and polyhedra [CH78]. Using these domains to overes-
timate values of program variables and propagating these expressions
throughout a program produces sound enclosures for the computed
quantities.

2.2.3 Coding standards

General purpose programming languages, which are prevalent in the
software industry, are not amenable to formal verification, due to Tur-
ing completeness. For Turing-complete languages, there is no decision
procedure to check whether an arbitrary program satisfies a given non-
trivial property (also see Section 2.2.2.1). Therefore, restricting the al-
lowed language constructs and even giving up Turing-completeness can
make automatic verification feasible in practice [Pik16].

As software is increasingly pervasive in mission and safety-critical
systems, various processes that regulate its development have been put
in place to reduce the risk of faults or unexpected behavior in the fi-
nal product. Documents that specify these processes include the DO-
178C [RTC11] guidelines for safety-critical software in airborne systems
and the IEC-61508 [Int10] standard with its industry-specific variants,
such as ISO-26262 [Int18] for the automotive industry, IEC-61513 [Int11]
for the safety of power plants, IEC-62304 [Int06] for medical devices
and IEC-62279 [Int15] for railway applications. A common concern of
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safety certification processes is to mandate verifiability by means of au-
tomated verification tools. In particular, to ensure verifiability the stan-
dards above require software integrated into safety-related systems to be
restricted to decidable fragments of programming languages.

Several coding standards for the C programming language in safety-
related systems feature such restrictions and thus conform to the verifia-
bility requirement of the above mentioned standards. MISRA-C [MIR04],
originally intended for the automotive industry and now widely used as
the de-facto standard for embedded software, forbids recursion and dy-
namic heap memory allocation. The NASA Jet Propulsion Lab [JPL09]
coding standard for avionics, builds on MISRA-C and on [Hol06] by
adding further restrictions, such as requiring a statically determinable
upper bound on the number of iterations of loops. Indeed, unbounded
loops and unbounded recursion with memory allocation are the reason
for undecidability of the verification problem. Even without dynamic
memory allocation, unbounded loops are generally an obstacle for ver-
ifiability. In real-time control systems, finite bounds on the number of
loop iterations must be statically determinable to satisfy execution times.
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Chapter 3

Input programs

This chapter introduces the characteristics of programs in fixed-point
arithmetic that we aim to analyze. Sec. 3.1 gives the syntax of the al-
lowed input programs and Sec. 3.2 describes the meaning of fixed-point
operations in terms of operations over custom-sized bit-vectors. The se-
mantics we present here extends the proposed fixed-point standard for
the C programming language [ISO08]. In particular we allow arbitrary,
mixed precisions for program variables, a feature that is essential to our
verification approach illustrated in Chapters 4 and 5.

3.1 Syntax of fixed-point programs

Let x(p.q) ∈ FP be a fixed-point variable of arbitrary format (p.q), c ∈
FP a constant, k an integer constant, and ∗ a symbolic value. Let ⋄ ∈
{+,−,×, /} be the four arithmetic operations and ◦ ∈ { i , i} right and
left bit-shifts over fixed-point variables where we consider 4 different
types of shifts, with i ∈ {vs, ps1, ps2, ps3}. For the input program we
adopt a C-like syntax extended with an extra datatype fixedpoint for
fixed-point variables. The syntax rules are shown in Fig. 6.

Assignment (=) of one variable to another can be across the same or
different formats. In the latter case it acts as an implicit format conver-
sion. This may be performed to either extend the fractional or integral
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stmt ::= fixedpoint var | expr | assert(condition) | assume(condition) |
if (var ≤ 0) stmt else stmt | stmt; stmt
expr ::= var = v | var = v ⋄ v | var = v ◦ k

v ::= c | var | ∗
var ::= x(p.q)

Figure 6: Syntax of fixed-point programs.

part of the operand (or both), keeping its value unchanged, or it may
be performed to reduce the size of the operand, in which case a loss of
information may be incurred (see Sect. 3.2.2 where this is described in de-
tail). For assignment to a constant or a symbolic value, we assume that
value to be in the same precision as the target variable. For binary oper-
ations, if one of the two operands is a constant we assume the same pre-
cision of the other operand. Without loss of generality, we assume that
the operations do not occur in nested expressions (e.g. x = z× y+ w),
and that + and − are always performed on operands of the same pre-
cision. Nested or mixed-precision operations can be accommodated via
intermediate assignments to temporary variables to hold the result of the
sub-expressions or adjust the precisions of the operands, respectively.

Besides fixed-point specific features, the input program can, in prin-
ciple, contain any standard C-like constructs. For simplicity, however,
we assume that all function calls have been inlined, and main is the only
function defined. Note that, to ensure verifiability of software, coding
standards and guidelines require loops to have a statically determinable
upper bound on the number of iterations, as introduced in 2.2.3. More-
over, as we are targeting numerical routines, we do not consider infinite
loops. We therefore assume that the program has already been fully un-
folded, hence we avoid explicitly including a construct for loops in our
syntax.

Finally, we include the following verification-oriented primitives.
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Symbolic initialization of a variable, x(p.q) = ∗, non-deterministically as-
signs to x any value representable in the format (p.q). This allows ver-
ification over the whole range of possible input values for a variable.
Similarly, assumptions on variables, such as assume(x(p.q) ≤ 0.5), restrict
the range of possible values on non-deterministic variables. Assertions,
such as assert(x(p.q) ̸= 0) are used to express safety properties over the
variables of the program, as introduced in 2.2.2 and 2.2.2.3.

3.2 Semantics of fixed-point operations

Here we introduce the basic arithmetic operations over fixed-point vari-
ables. In Sections 3.2.1 to 3.2.6 we propose a semantics for fixed-point
programs in the syntax of Fig. 6 by defining the single arithmetic and
bit-wise operations in terms of operations over custom-sized integers.
Arithmetic operations on fixed-point numbers are carried out much like
on regular integers [Yat09]. However, while some operations, such as
addition and subtraction,can be implemented straightforwardly in inte-
ger arithmetic, others, such as division, require a slightly more involved
encoding in terms of integer operations. Indeed, for these operations we
leverage range analysis to deduce the necessary formats to correctly store
the results, and we make sure that operands are always correctly aligned
in all operations.

The semantics we present here extends the proposed fixed-point stan-
dard for the C programming language for signed fixed-point types. In-
deed, the current proposal [ISO08] only considers 6 formats, while we
allow variables of arbitrary format. While we focus on signed arithmetic
only, it is possible to extend the considerations presented in the rest of
this chapter to unsigned arithmetic.

From now on, we indicate with x(n) a bit-vector of size n and we
use the custom datatype bitvector[n] to indicate such an integer. The
semantics of operations over custom-sized bit-vectors is the natural ex-
tension of operations over the usual int types. In the following we will
use the typewriter font (x) for program variables when they appear in
extracts of programs, such as in the listings in this section and in the text
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illustrating them, and we will use the usual mathematical font (x) when
referring to a program variable x in mathematical expressions.

3.2.1 Declarations and assignments

A fixed-point variable x(p.q) may be assigned to another variable, to a
constant value or to a symbolic value. First we focus on assignments
across variables and values in matching formats. Given two fixed-point
variables x(p.q) and y(p.q), we can assign the value of y(p.q) to x(p.q) ex-
actly as we would assign one bit-vector to another. Similarly, assigning
a constant value c or a symbolic value ∗ to a variable z(p.q), assuming
that these values are also represented in the format (p.q), coincides with
simple bit-vector assignment.

1 // fixedpoint x(p.q), y(p.q), w(p.q), z(p.q);
2 // x(p.q) = y(p.q);
3 // w(p.q) = c;
4 // z(p.q) = *;
5 bitvector [p+q+1] x, y, w, z;
6 x = y;
7 w = c;
8 z = *;

Figure 7: Semantics of fixed-point assignments for variables and values in
matching formats.

Figure 7 shows the implementation of an assignment over fixed-point
variables in terms of operations over bit-vectors for the three considered
cases. The declaration of the 4 fixed-point variables x, y, w an z at line
1 is translated into the corresponding declaration of bit-vector variables
at line 5 whose overall length matches that of the corresponding fixed-
point variable. Line 6 corresponds to the assignment regarding two vari-
ables in the same format at line 2, x(p.q) = y(p.q). Similarly, lines 7 and 8

correspond to variable assignments to a constant and a symbolic value,
corresponding to the statements w(p.q) = c and z(p.q) = ∗ at lines 3 and 4,
respectively.
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Notice that in the integer implementation of the above fixed-point
assignment statements only depends on the overall length of the fixed-
point variables involved. The interpretation of the fixed-point format of
the result is left to the programmer. Indeed, given the non-explicit nature
of the radix point, i.e. of the scaling factor to apply to the integer under-
lying the bit-sequence encoded by a fixed-point variable x(p.q), the value
encoded in the corresponding bit-vector variable needs to be interpreted
by the programmer.

3.2.2 Precision casts

Our program syntax allows mixed fixed-point formats, to allow the pro-
grammer to customize the lengths of the integral and fractional parts of
variables, based on the specificities of the application at hand. In such a
setting, it is often convenient or even necessary to convert a variable to a
different format, due to computational or architectural constraints.

The binary fixed-point number encoded by a variable x(p.q) =

⟨xp . . . x0.x−1 . . . x−q⟩ of overall length n = p + 1 + q can be represented
with a greater number of bits m > n by sign-extension on the left or by
zero-padding on the right. In particular, in the first case, the sign bit xp is
copied into the m− n new left-most bits in the new representation:

x(m−n.q) = ⟨xp . . . xp⏞ ⏟⏟ ⏞
m − n bits

xp . . . x0⏞ ⏟⏟ ⏞
p + 1 bits

. x−1 . . . x−q⏞ ⏟⏟ ⏞
q bits

⟩ (3.1)

In the case of extending the format of a variable on the right, m − n

zeros are added, producing:

x(p.q+m−n) = ⟨xp . . . x0⏞ ⏟⏟ ⏞
p + 1 bits

. x−1 . . . x−q⏞ ⏟⏟ ⏞
q bits

0 . . . 0⏞ ⏟⏟ ⏞
m − n bits

⟩ (3.2)

It is easy to prove the values encoded by the extended fixed-point
formats are equal to the original values [Par99]. We will shortly see how
sign-extension and zero-padding play a role in format conversion and in
bit-shifts.
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3.2.2.1 Changing the integral length

Given a variable y in the format (p.q), we may need to promote it to a
longer format, in particular to one with an integer part longer by k > 0,
i.e. (p + k.q). This can be implemented as a single integer instruction in
which the initial bit-vector variable y is cast into a bit-vector in the de-
sired size and the result is stored in the destination variable x. In partic-
ular, the operand is stored into a longer variable by sign-extension, thus
preserving its value. Figure 8 shows how the statement x(p+k.q) = y(p.q)

is implemented as a simple type cast, followed by an assignment be-
tween variables of the same size, performed in a single statement at line
6.

1 // fixedpoint y(p.q);
2 // fixedpoint x(p+k.q);
3 // x(p+k.q) = y(p.q);
4 bitvector [p+q+1] y;
5 bitvector [p+k+q+1] x;
6 x = (bitvector [p+k+q+1]) y;

Figure 8: Semantics of fixed-point integral precision extension.

Reducing a variable y in the format (p.q) to a format with a shorter
integral part (p − k.q), with k > 0 and can be accomplished by a simple
integer assignment of y to a variable x of a shorter type. Indeed, just like
a cast into a longer type extends the variable on the left, an assignment to
a shorter type reduces the variable on the left. Notice that reducing the
integral size of a variable may lead to overflow, as the shorter variable
may not be able to contain the information stored in the k left-most bits
of the original variable. Figure 9 shows the implementation of an integral
precision reduction statement x(p−k.q) = y(p.q), where a single statement
at line 6 is needed to perform a size cast followed by an assignment.
Notice that reducing the integral size of a variable may lead to overflow,
as the shorter variable may not be able to store the k left-most bits of the
operand. The magnitude of k may exceed the length of the integral part
of the operand, in which case it produces a negative integral format. The
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only restriction on k is that it does not exceed the overall length of the
operand, as that would produce a variable of negative overall length.

1 // fixedpoint y(p.q);
2 // fixedpoint x(p−k.q);
3 // x(p−k.q) = y(p.q);
4 bitvector [p+q+1] y;
5 bitvector [p-k+q+1] x;
6 x = (bitvector [p-k+q+1]) y;

Figure 9: Semantics of fixed-point integral precision reduction.

3.2.2.2 Changing the fractional length

Given a variable y in the format (p.q), we may need to promote it to one
with a longer fractional part, (p.q + k), with k > 0. Recall that casting a
variable into a longer one extends it on the left, while our goal is to extend
it on the right. Nonetheless, the first step in extending the fractional
part of the original variable is to cast it into one of length equal to the
desired final length. This is then followed by a left integer bit-shift by k
positions, shifting in k zeros on the right and shifting out k redundant
sign bits on the left. The resulting variable is interpreted in the format
(p.q + k), which keeps the encoded value equal to that of the original
variable. Figure 10 shows the implementation of a fractional precision
extension statement x(p.q+k) = y(p.q). The two operations of casting and
shifting are performed in a single statement, at line 6.

1 // fixedpoint y(p.q);
2 // fixedpoint x(p.q+k);
3 // x(p.q+k) = y(p.q);
4 bitvector [p+q+1] y;
5 bitvector [p+q+k+1] x;
6 x = (bitvector [p+q+k+1]) y k;

Figure 10: Semantics of fixed-point fractional precision extension.
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To reduce the fractional part of a variable y in format (p.q) to a format
(p.q − k) with k > 0, the right-most k bits of y need to be dropped. To
achieve a fractional length reduction using integer operations, we first
use a right bit-shift by k positions. This produces a variable of the same
length of the operand, where the left-most k bits are sign bits. This is then
stored in a shorter variable which gets rid of the redundant integral bits.
The result is a variable in interpreted in the format (p.q − k). Figure 11
shows the implementation of a fractional precision reduction statement
x(p.q−k) = y(p.q) in which an integer right shift is coupled with an assign-
ment to a shorter bit-vector, at line 6. Recall that reducing the fractional
size of a variable may lead to quantization errors, as the right-most k bits
that are lost in the process may not be equal to zero. The magnitude of k
may exceed the length of the fractional part of the operand, but needs to
be bound by its overall length.

1 // fixedpoint y(p.q);
2 // fixedpoint x(p.q−k);
3 // x(p.q−k) = y(p.q);
4 bitvector [p+q+1] y;
5 bitvector [p+q-k+1] x;
6 x = y k;

Figure 11: Semantics of fixed-point fractional precision reduction.

3.2.3 Bit-shifts

To extend the idea of integer bit-shifting to the case of fixed-point vari-
ables, we need to choose a semantics for these two operations. The imple-
mentation we choose, along with the implicit scaling factor we associate
to the result of a shift, will determine the meaning of a shift operation.
In particular, while we may rely on integer shifts to move the bits in the
bit-sequence representing the fixed-point variable, there is no one way to
interpret what happens to the radix point.

In practice, it is possible to perform bit-shifts on fixed-point variables
for two reasons. The first is to simply shift out unwanted bits on the
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left or on the right, keeping the position of the radix point unchanged
with respect to the original bits, not altering the weight of the single bits.
The second reason to perform a bit-shift may be to multiply or divide by
powers of 2 without actually performing these costly operations. This is
achieved by moving the bit-sequence w.r.t. the radix point, thus chang-
ing the weight of the bits. To achieve these two goals we can consider two
different semantics of arithmetic shift operations. To implement them in
integer arithmetic, we use integer shifts and specifically physical shifts.
The term physical here indicates that the bit-sequence is actually moved,
as opposed to virtual shifts that do not perform any physical operation.

Getting rid of bits

Given a fixed-point variable y(p.q), we may want to shift out k extremal
bits from one part of the representation, making room for the same num-
ber of bits on the other side, keeping the overall length unchanged. This
can be implemented with an integer shift by k > 0 positions, combined
with a re-interpretation of the format, which will now be (p+k.q−k) for
a right shift and (p − k.q + k) for a left shift. The new formats maintain
the weight associated to each original bit in the operand, since the radix
point is also "moved" in the same direction as the bit-pattern. We indicate
this interpretation of the shift with the symbols ps1 and ps1.

Example 3.2.1. Given a signed variable y(3.4), a right shift of magnitude
2 can be used as a way to shorten the fractional part, while extending
the integer part by 2 bits. This operation "shifts" the radix point as
well by 2 positions to the right, producing a variable x of length 8 and
a format of (5.2).

y(3.4) = ⟨y3 y2 y1 y0 . y−1 y−2 y−3 y−4⟩ ps1 2

x(5.2) = ⟨y3 y3 y3 y2 y1 y0 . y−1 y−2⟩
(3.3)

Figure 12 shows how the statement x(p+k.q−k) = y(p.q) ps1 k is im-
plemented in integer arithmetic. The operation at line 4, an integer shift,
only accounts for the shifting of the bit-pattern, while the specific format
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to associate to the result is interpreted by the user. The implementation
of the left shift is analogous.

1 // fixedpoint x(p+k.q−k), y(p.q);
2 // x(p+k.q−k) = y(p.q) ps1 k;
3 bitvector [p+q+1] x, y;
4 x = y k;

Figure 12: Semantics of fixed-point physical right shift, first case.

Rescaling of the underlying integer

A physical shift on a fixed-point variable y(p.q) may be performed with
the goal of moving the bit-pattern to the left or right by k positions with
respect to the radix point, thus changing the weight associated to each
bit. If the overall length of the variable is kept unchanged, this entails
a loss of k bits on one side and shifts in the same number of bits on the
other side. The effect is that of a rescaling of the underlying integer, so
this type of bit-shift can be used as an alternative to multiplication of
division by a power of 2, up to overflow and quantization. We can im-
plement this with an integer shift by k positions and interpret the result
in the same format of the operand, i.e. (p.q).

Example 3.2.2. Given a variable y(3.4), a right shift of magnitude 2 can
be used to rescale the value by a factor of 22, up to a loss of 2 least sig-
nificant bits. This operation keeps the radix point in the same position,
producing a variable x of the same length and a format of (3.4).

y(3.4) = ⟨x3 x2 x1 x0 . x−1 x−2 x−3 x−4⟩ ps2 2

x(3.4) = ⟨x3 x3 x3 x2 . x1 x0 x−1 x−2⟩
(3.4)

Figure 13 shows the implementation for the statement x(p.q) =

y(p.q) ps2 k. Notice, at lines 3 and 4, that it coincides exactly with im-
plementation of Fig. 12 and the only difference lies in the interpretation
of the format of the resulting variable. The left shift implementation is
symmetric.
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1 // fixedpoint x(p.q), y(p.q);
2 // x(p.q) = y(p.q) ps2 k;
3 bitvector [p+q+1] x, y;
4 x = y k;

Figure 13: Semantics of fixed-point physical right shift, second case.

Rescaling without overflow

Since the two bit-shifts defined above have the scope of rescaling a vari-
able, thus being substitutes for division and multiplication by powers of
2, their expected results should ideally be equal to performing division
or multiplication, up to numerical errors. While in the case of the right
shift ps2 this is indeed true, in the case of the left shift ps2 the result
may overflow and may be very different from the intended one. We thus
propose an additional semantics for bit-shifts performed with the scope
of rescaling a variable, whose implementation in integer arithmetic is
shown in Figure 14. We indicate these operations with the symbols ps3

and ps3.

1 // fixedpoint x1(p.q), x2(p+k.q), y(p.q);
2 // x1(p.q) = y(p.q) ps3 k;
3 // x2(p+k.q) = y(p.q) ps3 k;
4 bitvector[p+q+1] x1, y; bitvector[p+k+q+1] x2;
5 x1 = y k;
6 x2 = (bitvector[p+k+q+1]) y k;

Figure 14: Semantics of fixed-point right and left shifts, third case.

In particular, we implement the statement x1(p.q) = y(p.q) ps3 k di-
rectly with an integer right shift on the corresponding bit-vector vari-
ables (at line 5 of Fig. 14), interpreting the resulting variable implicitly
in the same format of the operand. ps3 then corresponds to ps2. In the
case of a left shift statement x2(p+k.q) = y(p.q) ps3 k we first cast the bit-
vector corresponding to the operand into one longer by k positions and
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then perform an integer left shift and store the result (line 6). The for-
mat to interpret the result is then (p + k.q). This longer variable avoids
overflow.

Virtual shifts

In the semantics of bit-shifts introduced above, regardless of the inter-
pretation of the radix point position, the bit-patterns of the operands are
physically moved, as these operations are implemented by integer shifts.
It is possible, however, to implement a re-scaling of the variable, i.e. a
multiplication or division by a power of 2 by using virtual shifts. The
name suggests that these operations do not involve a proper shift and,
indeed, they concern only the interpretation of the format of the vari-
able, without actually performing an operation on it.

Given a fixed-point variable y(p.q), the value it encodes is its under-
lying integer value Y multiplied by a scaling factor of 2−q . Multiplying
its value by a power of 2, 2k with k ∈ Z, means considering the value
Y · 2−q · 2k = Y · 2−q+k. This value can therefore be encoded using the
exact same bit pattern and length of y, but a different format. Consider
k > 0. In particular, since the overall length remains the same and the
fractional part now requires q − k bits, the integer part will be assigned
the extra k bits, producing a (p + k.q − k) format. If k is positive, this
corresponds to a multiplication by a positive power of two and moves
the radix point by k positions to the right with respect to the bit-pattern.
We can indicate this operation with the symbol vs. If k is negative, the
effect is that of a division by a positive power of two and the radix point
is moved by k positions to the left. The operator we will use for this will
be indicated with vs.

Example 3.2.3. Given a variable y(3.4), a right virtual shift of magni-
tude 2 can be used to rescale the value by a factor of 22. This operation
keeps the bit-pattern of the operand y while re-interpreting the posi-
tion of the radix point, i.e. moving it to the right by 2 positions. The
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produced variable x has the same length and a format of (5.2).

y(3.4) = ⟨x3 x2 x1 x0 . x−1 x−2 x−3 x−4⟩ vs 2

x(5.2) = ⟨x3 x2 x1 x0 x−1 x−2 . x−3 x−4⟩
(3.5)

Figure 15 shows the implementation of a right virtual shift statement
x(p+k.q−k) = y(p.q) vs k in integer arithmetic. The only integer operation
needed to implement this rescaling is an assignment, at line 4, between
two variables of the same size, coupled with a re-interpretation of the
fixed-point format of the destination variable. A virtual shift is therefore
cost free in terms of computations and in terms of information-loss, as it
does not get rid off any bits. In that regard, it is preferable to ps2 and

ps3, when the intended result is a re-scaling of the underlying integer.

1 // fixedpoint x(p+k.q−k), y(p.q);
2 // x(p+k.q−k) = y(p.q) vs k;
3 bitvector [p+q+1] x, y;
4 x = y;

Figure 15: Semantics of fixed-point virtual right shift.

3.2.4 Addition and subtraction

Given two fixed-point numbers in the same format, y(p.q) and z(p.q), the
result of an addition or subtraction of the two operands takes one extra
bit in the integer part to hold the result,

x(p+1.q) = y(p.q) ± z(p.q). (3.6)

The extra bit in the integral part is necessary to avoid overflow. In-
deed, given that the representation range of the operands is [−2p, 2p −
2−q], summing the values of greatest magnitude produces −2p+1 in the
negative case and 2p+1 − 2−q+1 in the positive case. It follows then that
storing these values requires the format (p + 1.q). If the formats of the
operands differ, then format conversion of one or both operands needs

50



to be carried out first to obtain the same format. This can be achieved
with the format conversion operations illustrated earlier (see Sect. 3.2.2).

1 // fixedpoint y(p.q), z(p.q);
2 // fixedpoint z(p+1.q);
3 // z(p+1.q) = y(p.q) + z(p.q);
4 bitvector [p+q+1] y, z;
5 bitvector [p+q+2] x;
6 x = (bitvector [p+q+2]) y + (bitvector [p+q+2]) y;

Figure 16: Semantics of fixed-point addition.

Figure 16 shows the implementation of fixed-point addition
x(p+1.q) = y(p.q)+z(p.q) using integer arithmetic. At line 6, the two previ-
ously declared bit-vector variables y and z, of size p+ q + 1, are first cast
into variables longer by 1 bit and then added and stored in the resulting
variable x. In fact, ensuring an appropriate storage size for the result is
not enough to avoid overflow. The integer + operator assigns the result
of the operation to a variable of the same size as the operands, which is
why we first need to cast the operands into a longer variable (by sign
extension) and then perform the addition. The result is interpreted in the
format (p+ 1.q). Subtraction is analogous.

3.2.5 Multiplication

The multiplication of two fixed-point numbers y(p′.q′) and z(p′′.q′′) is also
performed as in integer arithmetics. In this case the two operands are
not required to be in the same format, nor to have the the same overall
length. Indeed, integer multiplication can be performed on two operands
of different types, and the format of the product variable requires a word
length equal to the sum of the word lengths of the operands to be able to
store the result. Hence, the product of y and z will need an overall length
of p′+ q′+p′′+ q′′+2. To deduce the specific fixed-point formats, i.e. the
lengths of the integral and fractional parts, observe that:

• Multiplying the values of smallest magnitude representable in the
formats of y and z, namely 2−q′ and 2−q′′ , produces the value
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2−(q′+q′′), meaning that the variable that stores the product requires
q′ + q′′ fractional bits.

• Multiplying the values of greatest magnitude representable in the
formats of y and z, i.e. −2p

′
and −2p

′′
, produces the positive value

2p+p′′
, meaning that the variable that stores the product requires

p′ + p′′ + 2 integral bits (see Eq. 2.7), including the sign bit.

Thus, the format of the product of two variables y(p′.q′) and z(p′′.q′′) is
(p′ + p′′ + 1.q′ + q′′):

x(p′+p′′+1.q′+q′′) = y(p′.q′) × z(p′′.q′′). (3.7)

Figure 17 shows how we may implement fixed-point multiplication
x(p′+p′′+1.q′+q′′) = y(p′.q′) × z(p′′.q′′) using integer multiplication. As in
addition and subtraction, avoiding overflow requires both the adequate
format for the resulting variable and for the operands before computing
the product. At line 7 the operands are first cast into bit-vectors of the
same size as the final product and then multiplication is performed. The
result is implicitly interpreted in the format (p′ + p′′ + 1.q′ + q′).

1 // fixedpoint y(p′.q′), z(p′′.q′′);
2 // fixedpoint x(p′+p′′+1.q′+q′′);
3 // x(p′+p′′+1.q′+q′′) = y(p′.q′) * z(p′′.q′);
4 bitvector [p′+q′+1] y;
5 bitvector [p′′+q′′+1] z;
6 bitvector [p′+p′′+q′+q′′+2] x;
7 x = (bitvector [p′+p′′+q′+q′′+2]) y * (bitvector [p′+p′′+q′+q′′+2]) z;

Figure 17: Semantics of fixed-point multiplication.

3.2.6 Division

Similarly to a multiplication, a fixed-point division may be performed on
operands of different formats, y(p′.q′) and z(p′′.q′′). The format needed to
store the result is deduced according to Eq. 2.7 as follows:
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• Dividing the value of smallest magnitude representable by y, i.e.
2−q′ , by the value of greatest magnitude representable by z, i.e.
−2p

′′
, produces the value −2−(q′+p′′), requiring q′ + p′′ fractional

bits.

• Dividing the value of greatest magnitude representable by y, i.e.
−2p

′
, by the value of smallest magnitude representable by z, i.e.

±2−q′′ , produces the value ±2p
′+q′′ , requiring q′ + p′′ + 2 integral

bits, sign bit included

Notice that not all quotients of fixed-point values are representable
in a fixed-point format, regardless of the number of bits used. When
an algebraic (exact) division of two fractional values produces a peri-
odic value, this cannot be stored in any finite word-length. This means
that the set FP of fixed-point numbers is not closed under division. In
this case, the mathematical result is truncated to fit into a finite-length
format. Thus, the quotient of two variables y(p′.q′) and z(p′′.q′′), when
representable, has the format (p′ + q′′ + 1.q′ + p′′):

x(p′+q′′+1.q′+p′′) = y(p′.q′)/z(p′′.q′′). (3.8)

To implement fixed-point division with integer operations, an appro-
priate extension of the dividend needs to be performed first. To under-
stand why this is we first need to take into account how integer divi-
sion works. Consider two bit-vectors y and z. An integer division y/z

in C, our reference programming language, produces the integer part of
the algebraic quotient, meaning it discards the fractional part of the re-
sult [ISO18]. Thus, applying integer division directly is not suitable for
correctly computing a quotient with a fractional part.

Example 3.2.4. Consider the two fixed-point variables y(2.1) = 001.01 =
1.010 and z(2.1) = 010.01 = 2.010. When dividing y(2.1) by z(2.1) we
expect to get the value 0.510. However, if we simply implement this
fixed-point division with an integer division, by dividing the integers
encoded by the bit-sequences of y and z, i.e. 00102 = 210 and 01002 =
410, we get

⌊︁
2
4

⌋︁
= 010 = 00002. Even applying an appropriate scaling
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for the quotient still gives the value 0.

If we indicate with Y and Z the values of y(p′.q′) and z(p′′.q′′) in-
terpreted as integers, then Y · 2−q′ and Z · 2−q′′ are the appropriately
scaled values that correspond to the interpretation of y(p′.q′) and z(p′′.q′′)

as fixed-point variables. The algebraic result of the division of y(p′.q′) by
z(p′′.q′′) can be expressed as:

y(p′.q′)

z(p′′.q′′)
=
Y · 2−q′

Z · 2−q′′
=
Y

Z
· 2−q′+q′′ (3.9)

Performing Y/Z on a computer does not produce the mathemati-
cal result, which may contain a fractional part, but produces an inte-
ger result by truncating any fractional part of the real quotient. Ob-
serve that, as integers, the range of values for Y and Z are, respectively,
[−2p

′+q′ , 2p
′+q′ − 1] and [−2p

′′+q′′ , 2p
′′+q′′ − 1]. Hence, the algebraic quo-

tient of smallest magnitude is 2−(p′′+q′′). We then consider the following
rewriting of Eq. 3.9:

y(p′.q′)

z(p′′.q′′)
=
Y

Z
·2−q′+q′′ =

Y · 2p′′+q′′

Z
·2−q′+q′′ ·2−p′′−q′′ =

Y · 2p′′+q′′

Z
·2−q′−p′′

(3.10)
Since the mathematical quotient Y/Z may be as small as 1

2p′′+q′ , mul-
tiplying it by a factor of 2p

′′+q′ produces a value that is bound to be inte-
ger. Thus, dividing the integers Y · 2p′′+q′ by Z gives an integer quotient

and we can now perform integer division trunc(Y ·2p
′′+q′′

Z ) instead of al-

gebraic division Y ·2p
′′+q′′

Z and obtain the same value. To express this we
can rewrite 3.10 as

y(p′.q′)

z(p′′.q′′)
=
Y · 2p′′+q′′

Z
· 2−q′−p′′

= trunc(
Y · 2p′′+q′′

Z
) · 2−q′−p′′

(3.11)

Fixed-point division of y(p′.q′) by z(p′′.q′′) can therefore be imple-
mented on a computer using integer arithmetic as shown in Figure 18
for the statement x(p+q′+1.q+p′) = y(p.q)/z(p′.q′). At line 4 an auxiliary
variable t is declared, and at line 5 it is assigned to the result of casting y
into a longer bit-vector and performing a left shift on it. The integer value
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stored in t is then equal to the integer value of y multiplied by 2p
′+q′ . At

line 6 the operands, t and z are cast into bit-vectors of the same size as
the result, following a similar reasoning to the one in the case of multi-
plication, to avoid overflow. Finally, integer division is performed and
the result is stored in x and interpreted in the format (p+ q′ + 1.q + p′).

1 // fixedpoint y(p.q), z(p′.q′), x(p+q′+1.q+p′);
2 // x(p+q′+1.q+p′) = y(p.q)/z(p′.q′);
3 bitvector [p+q+1] y; bitvector [p′+q′+1] z;
4 bitvector [p+q′+q+p′+2] x; bitvector [p+q+1+p′+q′] t;
5 t = (bitvector [p+q+1+p′+q′]) y p′+q′;
6 x = (bitvector [p+q′+q+p′+2]) t/(bitvector [p+q′+q+p′+2]) z;

Figure 18: Semantics of fixed-point division.

3.2.7 Paired and compound operations

Above, we gave the semantics of arithmetic and bit-wise operations as-
suming that their results are stored in variables of adequate or expected
format. In particular, for ⋄ ∈ {+,−,×, /}, we considered the cases in
which the results would be properly stored, when representable, with-
out incurring errors. For the shift operations, we considered four possi-
ble semantics with specific formats for the resulting variables. For format
conversions, we only considered statements that change either the frac-
tional or integral part of a variable, but not both.

Our program syntax, however, does not impose restrictions on the
formats used to store results of operations. Consider the following valid
program statement: x(p.q) = y(p′.q′), with p ̸= p′ ∧ q ̸= q′. We can think
of it as a pair of statements: x′(p.q′) = y(p′.q′) and x(p.q) = x′(p.q′), with
an auxiliary program variable x′. To implement x(p.q) = y(p′.q′) in integer
arithmetic, we would implement the two separate operations of integral
and fractional conversion, as defined in 3.2.2.

Similarly, the result of any of the arithmetic or bit-wise operations
may be stored in a format different from those considered earlier. For
example, a statement x(p.q) = y(p′.q′) + z(p′.q′) with p ̸= p′ + 1 ∨ q ̸= q′
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can be thought of as the pair of statements x′(p′+1.q′) = y(p′.q′) + z(p′.q′)

and x(p.q) = x′(p′+1.q′). This last statement, if p ̸= p′ + 1 ∧ q ̸= q′ is itself a
paired statement, as above.

A similar reasoning applies to compound operations or functions.
For example, the square root [MR19, Tur95] of a fixed-point argument
can be defined as a portion of code by using the operations defined in
this chapter. Similarly, trigonometric functions [Con89] of a fixed-point
argument can be defined as sequences of the operations presented ear-
lier, while relying on look-up tables. As there is no standard definition
of such operations for fixed-point arithmetic, and they may be imple-
mented in a number of ways, we do not give the semantics in terms of
integer operations of any compound fixed-point functions. Once the user
defines a custom operation or function, the single statements of the code
defining it can be implemented according to the semantics provided ear-
lier.
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Chapter 4

Error propagation in
straight-line code

In the previous chapter we illustrated the semantics of arithmetic ex-
pressions over fixed-point variables. For the four arithmetic operations
we deduced the formats that are necessary to store the results correctly
(when representable), i.e. without loss of information. In the case of
bit-shifts, we proposed a number of alternative interpretations and dis-
cussed the possible information loss incurred by a shifting out of non-
zero bits. Similarly, we pointed out that the value of a variable may not
be preserved when converting to a shorter format. The concept of nu-
merical accuracy was also introduced in Sect 2.1.3.

Consider now an operation between two fixed-point operands whose
values differ from their ideal ones. This may be the case if the two
operands represent quantized readings of a sensor or if they are them-
selves inaccurate results of previous operations (due to using inadequate
formats). When numerical errors accumulate, propagating an error en-
tailed by one computation to the next, the overall behavior of the pro-
gram can deviate from its intended one. We would like to turn to for-
mal verification to answer the following question about numerically-
intensive programs: can the numerical error of a program variable in
a certain program location exceed a given error bound?
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Notice that this question resembles the typical formulation of safety
properties about system states, described in Sect. 2.2.2. Recall that the
system states correspond to valuations of program variables. For exam-
ple, given a fixed-point program and a variable v(3.4), we would like to
answer a question such as: "does the error on v(3.4) exceed 2−8 after a
statement that updates its value is executed?". Answering this question
in terms of a safety check on the fixed-point program would require the
error associated to v(3.4) to be a program variable and would require hav-
ing a computable expression for it. This would allow us to analyze its
valuations along the execution of the program.

With this goal in mind we have devised a program rewriting process
that takes an input fixed-point program and transforms it into one that
maintains the behavior of the original program, while introducing new
variables and statements to express the errors entailed by single com-
putations in the original program. The transformation also introduces
assertions in program locations of interest to check whether the values of
error variables exceed a given user-defined bound. Recall that assertion-
based verification is a typical formulation for safety checks. Through
this program transformation we are therefore able to reduce the numeri-
cal accuracy certification of a fixed-point program to a safety verification
problem.

This chapter focuses on the propagation of quantization errors (as in-
troduced in Sect. 2.1.3) in programs not involving control structures, also
called straight-line code. In Section 4.1 we derive the mathematical expres-
sions for the errors produced by single arithmetic and bit-wise opera-
tions in a fixed-point program and in Sect. 4.2 we discuss the computabil-
ity of the derived expressions. Sect. 4.3 presents a set of parametrized
program transformation rules based on the error expressions of Sect. 4.1.
The program transformation will be used to reduce the problem of check-
ing whether the error on a variable in the original fixed-point program
may exceed a given error bound to a reachability problem on the trans-
formed program, expressed as an assertion check.

Given a program variable x ∈ FP, at any point in a program its value
may be the result of a reading of the sensors, of a computation on other
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variables, or of a number of previous computations. Due to the finiteness
of number representation, xmay be prone to numerical errors, i.e. it may
differ from the ideal value that it would hold if all the computations were
computed in infinite precision. Let us denote with x and ˜︁x the error on x
and the ideal mathematical value of x, respectively. Then, we can express
the error on x as the difference between its mathematical value and its
current computed value:

x = ˜︁x− x (4.1)

While the program variable x is of fixed-point type, its associated
error and its mathematical value may not always be representable in a
fixed-point format. Indeed, in general they should be considered real
variables. We will show shortly that, in fact, there exist fixed-point for-
mats that allow a correct representation of ˜︁x and x, i.e. that ˜︁x, x ∈ FP,
except in the case of the error incurred by a division. For the case of divi-
sion, we will show that it is always possible to find a format that allows
to represent an over-approximation of these two values.

4.1 Deriving the errors of single operations

In this section we will derive the expressions for the errors of fixed-point
variables due to the single operations introduced in Chapter 3. The error
incurred by each operation will be a (real-valued) function of the values
of the operands and of the values of their errors. Here, we leverage the
ideas proposed in [MNR14], but adapted to our semantics.

4.1.1 Assignments and format conversions

Given a variable x(p.q) and a value v which may be a constant k or a
symbolic value ∗, in the same precision as x, the operation of storing the
given value in x entails no error, as no quantization is needed in this
case. Hence for a program statement x(p.q) = v, whose implementation
is shown in Fig. 7:

x = ˜︁x− x = v − v = 0 (4.2)
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Given a variable y(p.q), in the same format as x, assigning x to y does
not produce any additional error, but it does propagate the error already
carried by the operand y. Format conversions to a greater format do not
produce any errors, as they maintain the values of the operands. Thus,
they simply propagate the errors of the operands to the resulting vari-
ables. In particular, given a variable y(p′.q), assigning it to x(p.q) with
p′ < p sign-extends y, maintaining its value. Assigning y(p.q′) to a vari-
able x(p.q) with q < q′ zero-pads the operand, again maintaining its orig-
inal value. Hence, for all three above cases of variable assignment state-
ments x(p.q) = y(p′.q′), for p = p′ ∧ q = q′ (Fig. 7) or p > p′ ∧ q = q′ (Fig. 8)
or p = p′ ∧ q > q (Fig. 10), it follows that

x = ˜︁x− x = ˜︁y − y = y (4.3)

Reducing the format of a variable, i.e. assigning it to a shorter vari-
able may produce a quantization error or an overflow. In particular, as-
signing y(p.q′) to x(p.q) with q < q′ cuts off the last q′ − q bits. If these are
not all zero, then this operation produces a truncation error, as the value
saved in x differs from that of y. The overall error due to a fractional
precision reduction statement x(p.q) = y(p.q′) for q < q′ (Fig. 11) is then
derived as

x = ˜︁x− x = ˜︁y − x

= y + y − x = (y − x) + y
(4.4)

i.e. it is the sum of two error components: the previous error on the
operand and the newly introduced truncation error. In the case of an
integer precision conversion of y(p′.q) into x(p.q), for p < p′, which cuts
off the left-most p′ − p bits, the result may be an overflowed value of
the operand. This situation is not regarded as a numerical error, rather
as an undesired behavior. A numerical error produces an approximated
value of the intended result, while an overflow may change the sign of
the result, thus producing a value that has little to do with the intended
one. Assuming no overflow occurs, the error produced by an integer
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precision reduction statement x(p.q) = y(p′.q) for p < p′ (Fig. 9) is then
equal to that of the operand, which can be derived as

x = ˜︁x− x = ˜︁y − x

= y + y − y = y
(4.5)

4.1.2 Bit-shifts

Section 3.2.3 introduced the various types of bit-shifts that may be ap-
plied to fixed-point values. Depending on the specific interpretation that
is used, a shift may produce different magnitudes of numerical error.
First, let’s consider virtual shifts, which are not regarded as proper op-
erations, as they merely change the position of the radix point, virtually
(see Fig. 15). Given a variable y(p.q), a virtual right shift by k > 0 posi-
tions produces a scaling of y by a factor of 2k. This operation produces
no additional numerical error, but has the effect of rescaling the error of
the operand. For a virtual shift statement x(p+k.q−k) = y(p.q) vs k we can
derive the error as follows

x = ˜︁x− x

= ˜︁y × 2k − y × 2k

= (y + y)× 2k − y × 2k

= y × 2k

(4.6)

The left virtual shift produces a scaling of y by a factor of 2−k and
consequently the error of y is also scaled by 2−k.

Physical shifts, as introduced earlier, physically shift the bit-pattern
to the right or left, shifting out extremal bits. This may produce a nu-
merical error in the case of right shifts, specifically a truncation error, or
overflow in the case of left shifts. Our proposed semantics contains three
alternative interpretations for the format of the result of a shift. Depend-
ing on this choice, the error incurred by these operations will be scaled
accordingly.
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In particular, consider a right shift of a variable y(p.q) by k ∈ Z+,
performed to get rid of redundant fractional bits, making space for ad-
ditional integer bits (see Fig. 12). Let us first notice that the mathe-
matical computation of this operation would maintain the value of the
operand, since this operation would be carried out in infinite preci-
sion without truncating any bits. The error produced by this opera-
tion alone is therefore caused only by truncation and the overall error
is a sum of this component and the previous error of the operand. Let
x(p+k.q−k) = y(p.q) ps1 k be such a program statement. The expression
for the error is derived as follows:

x̄ = x̃− x = ỹ − x

= (y + ȳ)− x

= (y − x) + ȳ.

(4.7)

In the first interpretation of a physical left shift by k ∈ Z+, the pur-
pose is to get rid of the left-most bits while shifting in additional frac-
tional bits. As in the previous case, overflow may occur, producing an
undesired result. Assuming it does not, the error entailed by such a
left shift statement x(p−k.q+k) = y(p.q) ps1k is merely the error of the
operand, which we derive as

x̄ = x̃− x = ỹ − y

= (y + ȳ)− y = ȳ
(4.8)

To compute the error due to a right shift by a positive integer k, per-
formed with the goal of rescaling the variable, we observe that if this
operation is performed in finite precision, the result, x(p.q), is equal to
a rescaling of the operand by a factor of 2−k combined with a frac-
tional precision reduction of the right-most k bits. The ideal result, com-
puted in infinite precision, would not cause any truncation and would
produce only a scaling of the operand. Hence, the error produced by
this operation is a sum of two components, a rescaling of the error of
the operand and a truncation error. For the two equivalent statements
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x(p.q) = y(p.q) ps2 k and x(p.q) = y(p.q) ps3 k (see Fig. 13 and 14, respec-
tively) the overall error is derived as:

x̄ = x̃− x

= ỹ × 2−k − x

= (y + ȳ)× 2−k − x

= (y × 2−k − x) + ȳ × 2−k.

(4.9)

In the interpretation of the left shift ps2, the result is a rescaling of the
operand coupled with an integer precision reduction. The interpretation
of ps3, shown in Fig. 14, on the other hand only rescales the operand
without losing information in the integral part of the variable. While the
first operation may produce overflow, supposing it does not, the error
incurred by both left shifts is equal to the rescaling of the error of the
operand. In particular, assuming overflow does not occur for ps2, the
error produced by the two left shift statements x(p.q) = y(p.q) ps2 k and
x(p+k.q) = y(p.q) ps3 k is a rescaling of the error of the operand:

x̄ = x̃− x

= ỹ × 2k − x

= (y + ȳ)× 2k − y × 2k

= ȳ × 2k.

(4.10)

4.1.3 Basic arithmetic operations

Consider an operation ⋄∈{+,−} between two fixed-point variables y(p.q)
and z(p.q) in the same format. As introduced in 3.2.4, the format needed
to correctly store the result of this operation is (p+1.q). As fixed-point ad-
dition/subtraction is entirely based on the respective integer operation
(see Fig. 16), and assuring a sufficient precision for the resulting variable,
no error is incurred by this operation itself and the total error depends
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only on the errors of the operands. Let x(p+1.q) = y(p.q) ⋄ z(p.q) be a pro-
gram statement. The value of the error of x can be expressed as:

x = ˜︁x− x

= (˜︁y ⋄ ˜︁z)− (y ⋄ z)
= (˜︁y − y) ⋄ (˜︁z − z)

= y ⋄ z.

(4.11)

The equation above shows that the error of a sum/difference, when
an appropriate format for the result is used, depends only on the errors
of the two operands.

Consider now the product of two fixed-point variables, y(p′.q′) and
z(p′′.q′′), not necessarily in the same format. The format needed to cor-
rectly store the product of this operation is (p′+p′′+1.q′+q′′), as derived
in 3.2.5. Let x(p.q) = y(p′.q′) × z(p′′.q′′) be a program statement whose im-
plementation is shown in Fig. 17, with p = p′ + p′′ + 1 and q = q′ + q′′.
We derive the expression for the error of multiplication:

x = ˜︁x− x

= (˜︁y × ˜︁z)− x

= [(y + y)× (z + z)]−x

= y × z + y × z+ y × z+(y × z − x)

= y × z + y × z+ y × z.

(4.12)

It follows from Eq. 4.12 that the error produced by a multiplication
depends on both the values of the operands and of their errors.

Consider a quotient of two fixed-point variables, y(p′.q′) and z(p′′.q′′).
The format needed to store the quotient correctly, when representable,
is (p′ + q′′ + 1.p′′ + q′), as shown in 3.2.6. Division on fixed-point vari-
ables (see again 3.2.6) is implemented in integer arithmetic in two phases,
namely a format extension and a division, as shown in Fig. 18. The effect
of the first phase is interpreted as an extension of the fractional part of
the dividend y by the overall length of the divisor z, which produces a
variable t in a format equal to (p′.q′+p′′+q′′). As this operation does not
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change the value of the variable, simply zero-padding it, it follows that
t = y.

As opposed to the previous arithmetic operations, which produce er-
rors only due to inexact operands, a division may introduce an additional
error. Since a quotient of two fixed-point values may not be a fixed-point
value, as it may be periodic, the result may need to be quantized to be
fit into the designated fixed-point format. To distinguish between the
exact division operator, which produces an exact quotient, and the finite-
precision one, we will use the symbols ÷ and / respectively. The over-
all error entailed by a division statement x(p.q) = y(p′.q′)/z(p′′.q′′), where
p = p′ + q′′ + 1 and q = p′′ + q′, is derived as follows:

x = ˜︁x− x

= ˜︁y ÷ ˜︁z − y/z

= (y + y)÷ (z + z)− y/z

(4.13)

Notice that, if we add and subtract the term y ÷ z in line 2 of the
equation above, the overall error due to a finite-precision division can
be clearly viewed as the sum of two error components. The difference
ỹ ÷ z̃ − y ÷ z represents the error due to an exact division carried out
between inexact operands instead of between exact ones. The difference
y ÷ z − y/z represents the error due to an inexact operator being used
instead of an exact one, between the computed values of the operands.

4.1.4 Compound operations

As introduced in 3.2.7, more complex operations may be implemented
as sequential compositions of the statements considered earlier in this
chapter. Examples of such compound operations are: a simultaneous
fractional and integral precision reduction, a sum of two values whose
result is stored in a shorter format than necessary, or the computation of
the cosine of an angle. As a consequence, the errors entailed by such op-
erations can be computed by expanding them into statements considered
in 4.1 and computing and propagating the errors entailed by the single
statements.
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For example, consider the statement x(p′+p′′+1.q′) = y(p′.q′) × z(p′′.q′′).
Here, the result is stored in a variable x whose format (p′ + p′′ + 1.q′ +

q′′) is not adequate for the product. To derive the overall error for
this operation, we consider the pair of statements x′(p′+p′′+1.q′+q′′) =

y(p′.q′)×z(p′′.q′′) (which correctly stores the result of a multiplication) and
x(p′+p′′+1.q′) = x′(p′+p′′+1.q′+q′′) (which corresponds to a fractional preci-
sion reduction). We derive the error on the result x as a consequence of a
fractional precision reduction as follows, according to Eq. 4.4:

x = (x′ − x) + x′ (4.14)

where the value of x′ is derived by Eq. 4.12

x′ = y × z + y × z+ y × z. (4.15)

Hence, the overall error on x is given by the following expression:

x = (x′ − x) + y × z + y × z+ y × z. (4.16)

It follows from Eq. 4.16 that the overall error entailed by a product
stored in a variable with an inadequate fractional part is the sum of a
truncation error and the error entailed by the multiplication being per-
formed correctly, although on possibly incorrect operands.

Next, in Section 4.2, we will show how to represent the operators in
the above expressions for errors in a fixed-point format, showing that
they are computable on a computer. Then, in Section 4.3 we will present
a program transformation that allows to compute and propagate errors
throughout an entire program.

4.2 Computability of numerical errors

In Section 4.1 we derived the mathematical expressions for the errors
entailed by single operations. The expressions were functions of the
computed values of the operands and of their errors (as consequences
of previous operations). While some of the variables appearing in the
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error expressions correspond to program variables, and therefore vari-
ables in FP, others are real variables, not necessarily representable in a
fixed-point format. Equations 4.11 - 4.10 contain additions, subtractions,
multiplications and divisions over variables of mixed type, fixed-point
and real.

We therefore need to show that the real variables we use in the er-
ror expressions are either representable on a computer, and deduce the
format that is needed to store their values without producing second-
order errors, or we need to show that it is always possible to compute an
over-approximation that is representable in a fixed-point format. To do
this, it suffices to show that, by construction, the error associated to any
program variable x, at any point in the program, is a fixed-point vari-
able. The first of the following two propositions shows that it is possible
to represent the errors incurred by any statement in a program in the
suntax of Fig 6 except for division. The second proposition considers a
program in the full syntax of Fig. 6 and shows that there always exists
a representable sound over-approximation of the errors incurred by any
program statement.

Proposition 4.1. Given a program P in a subset of the syntax structures in
Fig. 6, where stmt :== expr and ⋄ ∈ {+,−,×}, the error x associated to any
program variable x at any point in the program is representable in a fixed-point
format.

Proof. We prove this claim by structural induction. If x has just been de-
clared as a fixedpoint type, then it has no error yet. If x is the result of an
assignment to a constant or symbolic value, its error is the representable
value 0, by Eq. 4.2.

Suppose y is a fixed-point variable, whose associated error y is itself a
fixed-point variable, i.e. y ∈ FP. When x is assigned to y, whether it is in
the same format as x, in a larger either integer or fractional format, or in
a smaller integer format excluding overflow, by Eq. 4.3 and 4.5 the error
of x is equal to the error of y. Therefore it is a fixed-point representable
value. If x is assigned to y whose fractional precision is shorter, by Eq. 4.4
the error of x is obtained by performing a difference and a sum between
three fixed-point variables, hence it is itself representable.

Let x be the result of a virtual or physical right or left shift (assum-
ing overflow does not occur) performed on a variable y, suppose x has
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the expected format w.r.t the considered interpretation of the shift, and
suppose y ∈ FP. From Eq. 4.6 to 4.10 it follows that x can be computed
as a combination of sums and differences between fixed-point variables,
and products of variables by constants. The error of x is therefore repre-
sentable in a fixed-point format in all of these cases. A similar reasoning
applies to the case of a variable x being assigned the result of a sum/d-
ifference or product of two fixed-point variables y and z, for which we
assume that y and z are in FP and that x has the adequate format to store
the result. Indeed, by Eq. 4.11 and 4.12 x is the result of a sum/difference
or a combination of products and sums between fixed-point variables
and is, therefore, itself a fixed-point variable.

Finally, let x be the result of either a right or left shift, a sum/differ-
ence or a product, and assume now that the format of x is lower either in
its integral or fractional part, or both, than considered earlier for each of
these operations. Then the considered statement may be rewritten in two
steps. The first is an assignment of the result of the considered operation
to a new variable x′, in the adequate format for that operation. The sec-
ond step is a reassignment of x′ to x, resulting in a format conversion. As
both of these operations produce representable errors, the overall error,
being the sum of two representable components, is representable.

Moreover, since the claim is valid for single statements, it follows that
it is valid for an entire program, a list of statements. Indeed, for a pro-
gram composed of two statements, either both affect the same variable,
which means its value, as well as its error, is overwritten, or they affect
different variables, in which case the error of the latter may be computed
with the error of the former as an operand. Given that this produces
representable errors, it follows by induction that a program with any
number of statements also produces computable errors.

While Proposition 4.1 shows that, for the considered subset of the
syntax, it is possible to represent errors on program variables on a com-
puter, actually computing these values correctly requires an adequate
choice of fixed-point formats. Indeed, if an insufficient format is chosen
to store these values, a second order error may be incurred due to the
impossibility to store the error values in an error-free manner. Moreover,
when the expression for an error variable x contains nested fixed-point
operations (for example, see Eq. 4.12), we need to perform the operations
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one at a time and store the intermediate results in auxiliary fixed-point
variables of sufficient format. In cases in which a format conversion is
needed before performing an operation, such as in the case of adding
two operands in different formats, this also needs to be performed sep-
arately. Since for every operation the necessary format for the resulting
variable is defined in Section 3.2 , the format for storing the error variable
x can be deduced easily.

In Proposition 4.1 we showed that the error of a variable in a program
whose statements are sums/differences, products, assignments, format
conversions and bit-shifts is computable as a fixed-point variable exactly.
If we now consider division statements, we notice from Eq. 4.13 that com-
puting the error of a quotient would require the use of the real operator
÷, which may produce results that are not representable. Hence, exactly
computing the error x is not always possible on a computer.

Consider the last expression for x from Equation 4.13, shown again
in Eq. 4.17. It contains the term (y + y) ÷ (z + z). On a computer, we
can only compute the quotient of (y + y) and (z + z) by using the finite-
precision operator / which corresponds to ÷ when the quotient is rep-
resentable and produces a quantized quotient when the mathematical
one is periodic. Let err ∈ R denote the difference between the two re-
sults, i.e. (y + y) ÷ (z + z) = (y + y)/(z + z) + err. In particular, err
corresponds to the quantization error of a periodic mathematical quo-
tient, or to the value 0, if the mathematical quotient is representable on a
computer. Our goal is to modify Eq. 4.13 into a computable fixed-point
expression, by providing a computable over-approximation for the quo-
tient in its last expression. Suppose now that err′ ∈ FP is a fixed-point
value s.t err ≤ err′. Then we have that the total error x̄ due to a division
statement x(p.q) = y(p′.q′)/z(p′′.q′′) with p = p′ + q′′ + 1 and q = q′ + p′′

can be over-approximated by a fixed-point computable expression:

x = (y + y)÷ (z + z)− y/z

= (y + y)/(z + z) + err − y/z

≤ (y + y)/(z + z) + err′ − x

(4.17)
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Using the ideas above, we now show that the errors associated to any
variable in a program in the straight-line fragment of syntax 6, includ-
ing divisions, may be computed either exactly or over-approximated by
fixed-point values.

Proposition 4.2. Given a program P in a subset of the syntax structures in
Fig. 6, where stmt :== expr, the error x̄ associated to any program variable
x at any point in the program is either representable in a fixed-point format or
there exists a fixed-point representable value that over-approximates it.

Proof. It is sufficient to prove this claim for a statement x(p.q) =
y(p′.q′)/z(p′′.q′′), with p = p′ + q′′ + 1 and q = q′ + p′′. Supposing the
errors of y and z are representable values. To compute the quotient
(y + y)/(z + z) in the last expression of Eq. 4.17, we observe that both
the dividend and the divisor need to be computed first, by bringing the
addends to the same format and then performing the sums. Let t1 and
t2 be the variables that correctly store the values of the dividend and the
divisor, respectively. Assume w.l.o.g that their formats are (ei.ef ), i.e.
that this format is sufficient to store both of their values (t1 and t2 can be
stored in this format by format conversion).

Fixed-point division of t1 by t2, as implemented according to Fig. 18,
produces a variable t3 with a format equal to (ei +1+ ef +1.ef + ei +1).
To check whether the quotient t3 corresponds to the mathematical one,
we multiply t3 by t2 and check whether this value is again equal to t1.
If this is the case then (y + y)/(z + z) is equal to (y + y) ÷ (z + z) and
err = err′ = 0 in Eq. 4.17. Therefore, the expression for the error x of the
program statement is computable, as it is the result of a difference of two
computable values, i.e. (ȳ + y)/(z̄ + z)− x.

If t3× t2 ̸= t1, then this means that the mathematical value of t3 is pe-
riodic and cannot be stored in the assigned fixed-point format. Since the
quantized part of the real quotient is smaller than the least representable
value in the format of the fixed-point quotient, i.e. 2−(ef+ei+1), then we
can bound the real value err of the quantization error by a fixed-point
variable err′ equal to 2−(ef+ei+1), a representable value. We can conclude
that, in the case of a non representable quotient, the non-representable er-
ror component err can be bounded by a representable value err′, allow-
ing a fixed-point over-approximation of the total error on the quotient.
In particular in the expression (y + y)/(z + z) + 2−(ef+ei+1) − x for the
overapproximation of x, all the subexpressions are computable.
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4.3 Program transformation

Now that we have derived computable expressions for errors entailed by
single arithmetic operations, we illustrate a program transformation that
will allow us to assess the magnitude of numerical errors for any variable
of interest in a program. Given a fixed-point program PFP in the syntax
of Proposition 4.2, let x be a program variable and let x denote its error
variable.

4.3.1 Transformation parameters

Given the finiteness of the list of statements of PFP and the finiteness of
the variable sizes, it follows that there exists a format (emax

i .emax
f ) that

is sufficient to correctly store all values of error variables x associated to
program variables x. While the values of emax

i and emax
f can be com-

puted by range analysis, we will instead consider them as parameters,
ei and ef , of our program transformation, making it possible to choose
custom values. While the format (emax

i .emax
f ) guarantees that no over or

under-flow is caused in the computation of errors, this format may be un-
necessarily large. Choosing a custom-sized format for the errors allows
the use of smaller variables. Recall that reducing the size of a variable
by even a single bit reduces the size of the propositional formula that is
obtained from the program in the verification problem in half. We issue
a warning when the chosen format (ei.ef ) does not suffice.

An additional parameter of the program transformation will be the
user-defined error-bound, against which we will check the magnitudes
of the computed errors for any variable of interest. Let b ∈ FP+ be such
a bound on the absolute value of the error x(ei.ef ) of a program variable
x. Our goal is to check whether the condition |x| < b holds at any given
point in the program. This may be only after the computation of the
output value of x, or for any intermediate value of x in the program.

Let us denote the transformation function with J·Kbei,ef , where ei, ef ,
and b are parameters that represent the integer and fractional precision of
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error variables and the error bound on program variables. Given a fixed-
point input program PFP we will transform it into a modified fixed-
point program P ′

FP , with additional statements and auxiliary variables
for computing and propagating the errors. Moreover, the transformation
function will introduce assertions to check the numerical accuracy.

4.3.2 Transformation features

The modified program P ′
FP will contain all the original program state-

ments of PFP and will compute the same values for all original program
variables, as the newly introduced statements will not concern these vari-
ables. Thus, all predicates over the variables of PFP will hold in P ′

FP as
well. Therefore, if PFP already contains any assertions over its variables,
the validity of these assertions in P ′

FP will remain unchanged.
In addition, P ′

FP will contain new variables and additional state-
ments to compute the errors due to the original program operations. For
all newly introduced computations, we will assign an adequate format
to the resulting variables to correctly store all intermediate values. To
convert these computed values to the chosen format for error variables,
(ei.ef ), without loss of information, we will add assertions to check that
over- and under-flow do not occur in this process. This will allow a cor-
rect computation of error variables x without introducing second-order
errors. If an assertion of this type fails, the values ei and ef may be in-
cremented and the program re-encoded. This process may be repeated
until no such assertion failures are reached. As a first choice of the val-
ues of ei and ef we can perform light-weight static analysis on PFP and
choose values such that ei ≥ p, ef ≥ q, where p and q are the integer
and fractional precisions of any variable in the original program and
ei ≥ p+k where k is the magnitude appearing in any right shift statement
x(p+k.q) = y(p.q) ps3 k.

For each operation of interest in the input program, an assertion may
be introduced to check whether the absolute value of the error resulting
after that operation does not exceed the chosen error bound. For oper-
ations in the original program that may produce overflow, an assertion
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may be introduced to check that, too. Thus, the modified program, P ′
FP ,

will contain a reachable assertion failure if and only if either either of the
following is true:

• an assertion already present in the original program does not hold,

• (ei, ef ) is not a sufficient format for an accurate error analysis,

• an error variable associated to a program variable in PFP exceeds
the given error bound b,

• an overflow has occurred on a program variable of PFP .

The program transformation we propose allows us to reason about
two types of properties. First, if the input program contains assertions
about input program variables, the transformation maintains them and
we are therefore able to reason about the usual safety conditions already
annotated in the original program. The second type of properties we can
analyze are those regarding the numerical quality of the input program.
By introducing appropriate statements and assertions about quantiza-
tion errors and overflows generated by the computations, our program
transformation provides a program that is ready to be analyzed. The
analysis will either output "safe" and provide us with a formal certificate
about the precision of the fixed-point implementation, or it will fail and
provide us with a counterexample stating which variables exceed the er-
ror bound or produce overflowed values, for which input values and in
which point in the original program.

4.3.3 Definition of J·Kbei,ef
Here we describe the effect of the transformation function J·Kbei,ef on an
input program PFP by defining it on the single program statements. We
will denote with x′ a temporary variable that does not belong to the ini-
tial program, but is introduced during the encoding. The purpose of such
variables is to store the correct result of an operation without overflow
or numerical error, thus they will always be given sufficient precision. A
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variable x will be introduced to represent the error that arises from the
computation of x. All other variables introduced by the translation will
be denoted by letters of the alphabet not appearing in PFP .

PAIRED STATEMENTS

Jx(p.q) = y(p′.q′) vs k;K
[p ̸= p′ + k ∨ q ̸= q′ − k]

k > 0, vs is symmetric

−→
Jfixedpoint x′(p′+k.q′−k);K
Jx′(p′+k.q′−k) = y(p′.q′) vs k;K
Jx(p.q) = x′(p′+k.q′−k);K

Jx(p.q) = y(p′.q′) ps1 k;K
[p ̸= p′ + k ∨ q ̸= q′ − k]

k > 0, ps1 is symmetric

−→
Jfixedpoint x′(p′+k.q′−k);K
Jx′(p′+k.q′−k) = y(p′.q′) ps1 k;K
Jx(p.q) = x′(p′+k.q′−k);K

Jx(p.q) = y(p′.q′) ps2 k;K
[p ̸= p′ ∨ q ̸= q′]

k > 0, ps3 is same, ps2 is symmetric

−→
Jfixedpoint x′(p′.q′);K
Jx′(p′.q′) = y(p′.q′) ps2 k;K
Jx(p.q) = x′(p′.q′);K

Jx(p.q) = y(p′.q′) ps3 k;K
[p ̸= p′ + k ∨ q ̸= q′]

k > 0

−→
Jfixedpoint x′(p′+k.q′);K
Jx′(p′+k.q′) = y(p′.q′) ps3 k;K
Jx(p.q) = x′(p′+k.q′);K

Jx(p.q) = y(p′.q′) ± z(p′.q′);K
[p ̸= p′ + 1 ∨ q ̸= q′]

−→
Jfixedpoint x′(p′+1.q′);K
Jx′(p+1.q) = y(p′.q′) ± z(p′.q′);K
Jx(p.q) = x′(p′+1.q′);K

Jx(p.q) = y(p′.q′)×z(p′′.q′′);K
[p ̸= p′ + p′′ + 1 ∨ q ̸= q′ + q′′]

−→
Jfixedpoint x′(p′+p′′+1.q′+q′′);K
Jx′(p′+p′′+1.q′+q′′) = y(p′.q′)×z(p′′.q′′);K
Jx(p.q) = x′(p′+p′′+1.q′+q′′);K

Jx(p.q) = y(p′.q′)/z(p′′.q′′);K
[p ̸= p′ + q′′ + 1 ∨ q ̸= p′′ + q′]

−→
Jfixedpoint x′(p′+q′′+1.p′′+q′);K
Jx′(p′+q′′+1.p′′+q′) = y(p′.q′)/z(p′′.q′′);K
Jx(p.q) = x′(p′+q′′+1.p′′+q′);K

Jx(p.q) = y(p′.q′);K
[p ̸= p′ ∧ q ̸= q′]

−→
Jfixedpoint x′(p.q′);K
Jx′(p.q′) = y(p′.q′);K
Jx(p.q) = x′(p.q′);K

Figure 19: Transformation function J·K: paired statements.
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Figures 19-23 display the translation rules for the function J·Kbei,ef , for
which we omit the parameters for simplicity. The left-hand sides of the
figures will indicate the considered statements of the input program and
the right-hand sides will contain the generated statements of the trans-
formed program. The notes in square brackets are used to separate rules
into cases.

First, in Fig. 19 we consider statements whose execution can be split
into two phases. In particular, this concerns bit-shifts and the 4 arith-
metic operations in the case that the resulting variable does not have the
expected format for the considered operation, according to the consider-
ations of Sect. 3.2.3 - 3.2.6, and precision casts involving both the integral
and the fractional part. As illustrated in Sect. 3.2.7, such statements may
be considered as paired statements.

In the first transformation rule of Fig. 19 we consider a right virtual
shift by k positions of a variable y(p′.q′) resulting in a variable x(p.q),
where p ̸= p′ + k or q′ ̸= q′ − k with k > 0 (negative values of k cor-
respond to a left virtual shift). This statement is transformed into a set of
three statements: a declaration of a new variable x′(p′+k.q′−k), the assign-
ment of the shift to this new variable that now has an adequate format,
and a reassignment of the intermediate result to the original resulting
variable x(p.q). The generated statements are themselves enclosed in J·K,
meaning they further need to be transformed by other transformation
rules to allow the computation of errors incurred by those single opera-
tions. A symmetric rule applies to left virtual shifts by k > 0 positions.

Similarly, for rules 2-7 in Fig. 19, we declare an auxiliary variable in
the expected format for the considered operation, we introduce an addi-
tional statement assigning the result of the considered operation to this
new variable and finally we introduce a statement to convert the new
variable to the original resulting variable. The last rule concerns a preci-
sion cast involving both parts of the operand. We translate it by declaring
a new variable x′(p.q′) and dividing the integral and fractional conver-
sions into two separate statements: first an integral conversion of y(p′.q′)

is performed and stored in x′(p.q′), then a fractional conversion is per-
formed on x′(p.q′) and stored in x(p.q). All 8 rules of Fig. 19 trigger other
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transformation rules, namely the ones defined in Figures 20- 22.
Figure 20 defines the effect of J·K on declaration and assignment state-

ments, including those between variables either of a different fractional
or integral length. When declaring a fixed-point variable z in the original
program, by rule DECLARATION in Fig. 20, in the translated program this
will be accompanied by a declaration of an extra variable z representing
the error in the computation of z. In particular, this new variable will
have a format equal to (ei.ef ), according to the parameters ei and ef .

The group of rules ASSIGNMENT defines the transformation of an as-
signment to a constant, a non-deterministic value, or another variable in
the same precision. All three rules introduce one extra statement to com-
pute the error x, along with the original program assignment. In the first
two cases, the error variable x will have value zero, as no error is gener-
ated by such an assignment (see Eq. 4.2). In the third case, the error of
the operand is propagated to the error of the resulting variable (Eq 4.3).

The INTEGRAL PRECISION CAST rules handle assignments between
variables with different integral precisions. The assignment of a variable
to one with greater integral precision is transformed into that same op-
eration, coupled with an assignment of the error of the operand to the
error variable of the result (see Eq. 4.3). In case of an assignment to a
lower integral precision, overflow may occur and we may want to check
if it does. The transformation then introduces an additional statement
consisting in an assertion to check that the values of the operand and the
resulting variable are equal. The error of the new variable is computed
as the error of the old variable, as this assignment entails no additional
error (Eq. 4.5), once the assertion is checked.

The FRACTIONAL PRECISION CAST rules encode statements for frac-
tional length conversion. The first rule handles the case of assignment of
a variable y(p.q′) to x(p.q) with q > q′. This translates to the same assign-
ment statement and an assignment of the error on the resulting variable
to the error of the operand, as derived in Eq. 4.3.

The conversion of a variable y(p.q′) to one with a lower fractional pre-
cision x(p.q) with q < q′ is translated into a number of statements, of
which one is, as before, the original statement and the rest are needed to
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DECLARATION

Jfixedpoint z(p.q);K −→ fixedpoint z(p.q), z(ei.ef );

ASSIGNMENT

Jx(p.q) = c;K −→ x(p.q) = c;
x(ei.ef ) = 0;

Jx(p.q) = ∗;K −→ x(p.q) = ∗;
x(ei.ef ) = 0;

Jx(p.q) = y(p.q);K −→
x(p.q) = y(p.q);
x(ei.ef ) = y(ei.ef );

INTEGRAL PRECISION CAST

Jx(p.q) = y(p′.q);K
[p > p′]

−→
x(p.q) = y(p′.q);
x(ei.ef ) = y(ei.ef );

Jx(p.q) = y(p′.q);K
[p < p′]

−→
x(p.q) = y(p′.q);
assert(y(p′.q) = x(p.q));
x(ei.ef ) = y(ei.ef );

FRACTIONAL PRECISION CAST

Jx(p.q) = y(p.q′)K
[q > q′]

−→
x(p.q) = y(p.q);
x(ei.ef ) = y(ei.ef );

Jx(p.q) = y(p.q′);K
[q < q′]

−→

fixedpoint y′(p.q′), y(ei.ef ), s(ei.ef );
x(p.q) = y(p.q′);
y′(p.q′) = x(p.q);
y(p.q′) = y(p.q′) − y′(p.q′);
x(ei.ef ) = y(ei.ef ) ⊕ y(p.q);
s(ei.ef ) = abs(x̄(ei.ef ));
assert(s(ei.ef )< b);

Figure 20: Transformation function J·K: transformation of declarations, as-
signments and precision casts.

compute the error entailed by this operation. To do this, we first declare 3
new variables. We then assign the value of x to a variable y′ in the same,
longer, format as y and we subtract y′ form y. The operation of assigning
x to y′ is needed to be able to perform subtraction between y and y′, as
this operation needs the operands to be aligned. The result is stored in
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y, and its format does not need an extra bit in the integral part since this
particular difference cannot cause overflow. The value of y represents the
first error component in Eq. 4.4. The overall error x is computed as the
sum of y and the error of the operand, y. The operator we use here, ⊕ is
expanded in Figure 23 and described later. Essentially, it first aligns the
operands, computes the sum of the correctly aligned operands, stores the
result in the format (ei.ef ), and checks for overflow. We then compute
the absolute value of x using the operator abs (defined in Fig. 23), which
stores the result in the format (ei.ef ) making sure overflow doesn’t occur.
Finally the assertion introduced by this rule checks whether the error on
the absolute value of x at this point exceeds the bound b.

Notice that this translation rule features an error bound check that
the previous rules did not. Indeed, there was no need to check whether
the errors resulting from the previous statements exceeded the chosen
bound, as they were either zero or equal to previously computed errors
of the operands. The difference in this rule, however, is that is introduces
an additional error.

Fig. 21 shows the translation rules for the four arithmetic opera-
tions, in which the resulting variables have the formats needed to cor-
rectly store the results of the considered operations. Recall that, for
statements in the original program for which this is not the case, first
the rules from Fig. 19 are applied, which in turn trigger the rules in
Fig. 21. For example, for a statement x(p.q′) = y(p′.q′) + z(p′.q′) where
p ̸= p′ + 1, first we would apply the respective rule for precision adjust-
ment, i.e. the fifth rule in Fig. reffig:range. This would in turn trigger the
rules for the declaration of x′(p′+1.q′), the rule for the addition statement
x′(p′+1.q′) = y(p′.q′) + z(p′.q′), and the rule for the integral precision cast
for the statement x(p.q′) = x′(p′+1.q′)

In particular, the rule ADDITION/SUBTRACTION in Fig. 21 considers
the statement x(p.q) = y(p′.q′) ± z(p′.q′), where p = p′ + 1 and q = q′.
The translation introduces a declaration of a new variable s and a state-
ment to compute the error of x as the sum/difference of the errors of the
operands, as derived in Eq. 4.11. As before, ⊕ (respectively ⊖) is used
instead of + (respectively −) to compute this result error-free. Finally, as
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ADDITION/SUBTRACTION

Jx(p.q) = y(p′.q′)±z(p′.q′);K
[p = p′ + 1 ∧ q = q′]

−→

fixedpoint s(ei.ef );
x(p.q) = y(p′.q′)±z(p′.q′);
x(ei.ef ) = y(ei.ef )

± z(ei.ef );
s(ei.ef ) = abs(x̄(ei.ef ));
assert(s(ei.ef ))< b)

MULTIPLICATION

Jx(p.q) = y(p′.q′)×z(p′′.q′′);K
[p = p′ + p′′ + 1 ∧ q = q′ + q′′]

−→

fixedpoint s(ei.ef );
x(p.q) = y(p′.q′)×z(p′′.q′′);
x(ei.ef ) = (y(ei.ef ) ⊗ z(ei.ef ))⊕

(z(ei.ef ) ⊗ y(p′.q′))⊕
(y(ei.ef ) ⊗ z(p′′.q′′));

s(ei.ef ) = abs(x̄(ei.ef ));
assert(s(ei.ef ))< b)

DIVISION

Jx(p.q) = y(p′.q′)/z(p′′.q′′);K
[p = p′ + q′′ + 1 ∧ q = p′′ + q′]

−→

assert(z(p′′.q′′) ̸= 0);

fixedpoint s(ei.ef );
x(p.q) = y(p′.q′)/z(p′′.q′′);
x(ei.ef ) = (y(ei.ef ) ⊕ y(p′.q′))⊘

(z(ei.ef ) ⊕ z(p′′.q′′))⊖ x(p.q);

s(ei.ef ) = abs(x̄(ei.ef ));
assert(s(ei.ef ))< b)

Figure 21: Transformation function J·K: transformation of +, -, × and / op-
erations.

for fractional precision conversion, a statement is introduced to compute
the absolute value of x and we check if the obtained value exceeds the
error bound.

Similarly, in rule MULTIPLICATION, the translation of
x(p′+p′′+1.q′+q′′) = y(p′.q′) × z(p′′.q′′) introduces a new statement for
the computation of the error of x, whose expression is derived in
Eq. 4.12. As before, we use operators ⊕ and ⊗ instead of the usual
ones, which compute the operations correctly, checking for over and
under-flow so as not to produce second order errors. Finally, we check
the error bound as before.
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A statement x(p′+q′′+1.q′+q′′) = y(p′.q′)/z(p′′.q′′) is translated by rule
DIVISION as follows. The original statement is replicated and the overall
error x is computed as derived in Eq. 4.13. The function ⊘, expanded
in Fig. 23, computes the quotient of the two error components and ac-
counts for the possible quantization error, while also checking for over
and under-flow. Again, we check the error bound condition.

Fig. 22 defines the transformation rules applied to virtual and
physical shifts. In rule VIRTUAL SHIFTS we consider the statement
x(p′+k.q′−k) = y(p′.q′) vs k for k > 0. This statement is translated by
introducing a statement to compute the error due to this type of shift, as
derived in Eq. 4.6; it is a multiplication of the error of the operand by a
factor of 2k, by operator ⊗. We then check the error bound condition, as
before. The left virtual shift vs is simply a right shift with a negative
value for k, hence we only define the transformation rule for the right
shift.

The group of rules PHYSICAL SHIFTS illustrates the transformations
for the 3 considered semantics of physical shifts. For a right shift per-
formed to shift out unwanted bits, i.e. x(p′+k.q′−k) = y(p′.q′) ps1 k,
with k > 0, the error is computed as derived in Eq. 4.7, using the func-
tions ⊕ and ⊖. The obtained error value is checked against the error
bound. In the case of a right shift performed to re-scale the operand, i.e.
x(p′.q′) = y(p′.q′) ps2 k (and equivalently x(p′.q′) = y(p′.q′) ps3 k), with
k > 0, the error is computed as in Eq. 4.9, using the functions ⊕,⊖ and ⊗
and the computed value is checked against the error bound.

The last three rules of Fig. 22 define the transformation for left phys-
ical shifts. In the first case, when a left shift x(p′−k.q′+k) = y(p′.q′) ps1 k,
with k > 0 is performed to shift out k integral bits, this is transformed
into the same statement, followed by an overflow check on the computed
result as follows. The value of the result, stored in x, is right-shifted by
a magnitude of k back into the format of y, with the ps1 operator, which
does not produce any numerical error as the right-most k bits are nec-
essarily zero. This allows us to compare the values stored in y and x,
by comparing the two variables y and x′, and to assess if overflow has
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occurred. Finally, if overflow is ruled out, the error due to this opera-
tion is simply the error of the operand, as shown in Eq. 4.8. This value
does not require to be checked against the error bound, as it is equal to a
previously computed value.
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VIRTUAL SHIFTS

Jx(p.q) = y(p′.q′) vs k;K
[p = p′ + k, q = q′ − k]

k > 0, vs is symmetric

−→

fixedpoint s(ei.ef );
x(p′+k.q′−k) = y′(p′.q′) vs k;
x(ei.ef ) = y(ei.ef ) ⊗ 2k;
s(ei.ef ) = abs(x̄(ei.ef ));
assert(s(ei.ef )< b)

PHYSICAL SHIFTS

Jx(p.q) = y(p′.q′) ps1 k;K
[p = p′ + k, q = q′ − k]

k > 0

−→

fixedpoint s(ei.ef );
x(p′+k.q′−k) = y(p′.q′) ps1 k;
x(ei.ef ) = (y(ei.ef ) ⊕ y(p′.q′))⊖ x(p′+k.q′−k);
s(ei.ef ) = abs(x̄(ei.ef ));
assert(s(ei.ef )< b)

Jx(p.q) = y(p′.q′) ps2 k;K
[p = p′, q = q′]

k > 0, ps3 is same

−→

fixedpoint s(ei.ef );
x(p′.q′) = y(p′.q′) ps2 k;
x(ei.ef ) = (y(ei.ef ) ⊕ y(p′.q′))⊗ 2−k ⊖ x(p′.q′);
s(ei.ef ) = abs(x̄(ei.ef ));
assert(s(ei.ef )< b)

Jx(p.q) = y(p′.q′) ps1 k;K
[p = p′ − k, q = q′ + k]

k > 0

−→

fixedpoint x′(p′.q′);
x(p′−k.q′+k) = y(p′.q′) ps1 k;
x′(p′.q′) = x(p′−k.q′+k) ps1 k;
assert(x′(p′.q′) = y(p′.q′));
x(ei.ef ) = y(ei.ef );

Jx(p.q) = y(p′.q′) ps2 k;K
[p = p′, q = q′]

k > 0

−→

fixedpoint x′(p′.q′), s(ei.ef );
x(p′.q′) = y(p′.q′) ps2 k;
x′(p′.q′) = x(p′.q′) ps2 k;
assert(x′(p′.q′) = y(p′.q′));
x(ei.ef ) = y(ei.ef ) ⊗ 2k;
s(ei.ef ) = abs(x̄(ei.ef ));
assert(s(ei.ef )< b)

Jx(p.q) = y(p′.q′) ps3 k;K
[p = p′ + k, q = q′]

k > 0

−→

fixedpoint s(ei.ef );
x(p′+k.q′) = y(p′.q′) ps3 k;
x(ei.ef ) = y(ei.ef ) ⊗ 2k;
s(ei.ef ) = abs(x̄(ei.ef ));
assert(s(ei.ef )< b)

Figure 22: Transformation function J·K: transformation of virtual and phys-
ical shift operations.
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A left shift x(p′.q′) = y(p′.q′) ps2 k, with k > 0 performed with
the goal of rescaling the operand, is transformed into the same state-
ment and an overflow check is performed as in the case of ps1. Finally,
the error x is computed as in Eq. 4.10, with the function ⊗, and it is
checked against the error bound. In the last rule of Fig. 22 the statement
x(p′+k.q′) = y(p′.q′) ps3 k is transformed similarly to the rule for ps2, but
without having to check for overflow.

The error variables introduced by the transformation function are
themselves fixed-point variables, but their manipulation is more in-
volved. If we were to treat error variables as we do original program
variables, by keeping track of the errors arising from their computation,
we would incur a recursive definition and have to compute errors of
higher degree. Hence, we use special operators when computing with
error variables, namely abs,⊕, ⊖, ⊗ and ⊘ already introduced earlier.
These operators are defined in Fig. 23.

The absolute value of a variable y(ei.ef ) is computed by first storing
the absolute value in a variable with an appropriate format to avoid over-
flow, meaning one with an extra bit in the integral part. This is then trans-
formed into the desired format for error variables, (ei.ef ), by a function
c, defined at the end of the figure. This function also checks whether
overflow may occur in this process.

We define the operators ⊕ and ⊖ only for the special case in which
the left operand is in the format of error variables, (ei.ef ) and the right
operand is in any format, as this is how they appear in the statements in-
troduced by the transformation function. ± first aligns the two operands,
by transforming the right operand into the format of the left one. This is
accomplished with the function c, whose definition is expanded in the
last rule of the figure. The modified right operand is then added to/-
subtracted from the left operand, producing a variable longer by one bit,
which again has to be transformed into the desired format by function c.

Similarly, the operator ⊗ first computes the exact product of the
operands, without the need to align them, and then converts it to the
desired format, using function c. As for ± we define ⊗ only for the spe-
cial case of a left operand in the format (ei.ef ).
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Jx(ei.ef ) =

abs(y(ei.ef )); K
−→

fixedpoint y′(ei+1.ef );
y′(ei+1.ef ) = abs(y(ei.ef ));
x(ei.ef ) = c(y′(ei+1.ef ));

Jx(ei.ef ) =

l(ei.ef ) ± r(m.n); K
−→

fixedpoint r′(ei.ef ), u(ei+1.ef );
r′(ei.ef ) = c(r(m.n));
u(ei+1.ef ) = l(ei.ef ) ± r′(ei.ef );
x(ei.ef ) = c(u(ei+1.ef ));

Jx(ei.ef ) =

l(ei.ef ) ⊗ r(ni.nf ); K
−→

fixedpoint p(ei+ni+1.ef+nf );
p(ei+ni+1.ef+nf ) = l(ei.ef ) × r(ni.nf );
x(ei.ef ) = c(p(ei+ni+1.ef+nf ));

Jx(ei.ef ) =

l(ei.ef ) ⊘ r(ei.ef )K;
(e = ei + ef )

−→

fixedpoint q(e+1.e), q
′
(e+2.e);

fixedpoint t(ei+e+2.ef+e), t
′
(ei+e+2.ef+e);

fixedpoint v(1.0), u(e+1.e);
q(e+1.e) = l(ei.ef )/r(ei.ef );
t(ei+e+2.ef+e) = q(e+1.e) × r(ei.ef );
t′(ei+e+2.ef+e) = l(ei.ef );
v(1.0) = 1− (t(ei+e+2.ef+e) = t′(ei+e+2.ef+e));
u(e+1.e) = v(1.0) ∗ 2−ef ;
q′(e+2.e) = q(e+1.e) + u(e+1.e);
x(ei.ef ) = c(q′(e+2.e));

Jx(ei.ef ) =

c(y(mi.mf )); K
[mf ≤ ef ]

−→

fixedpoint x′(mi.ef );
x′(mi.ef ) = y(mi.mf );
x(ei.ef ) = x′(mi.ef );
assert(x(ei.ef ) = x′(mi.ef ));

Jx(ei.ef ) =

c(y(mi.mf )); K
[mf > ef ]

−→

fixedpoint x′(mi.ef );
x′(mi.ef ) = y(mi.mf );
assert(x′(mi.ef ) = y(mi.mf ));
x(ei.ef ) = x′(ei.mf );
assert(x(ei.ef ) = x′(mi.ef ));

Figure 23: Transformation function J·K: expansions for abs,⊕, ⊖, ⊗ and ⊘
and c.
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Since the operator ⊘ is only used on operands both in the format
(ei.ef ), we only define it in this special case. Notice that the operation ⊘
in Fig. 23 is applied only in the definition of rule DIVISION in Fig. 21. The
operands l and r of this operation therefore correspond to the dividend
and divisor of the first term in the final expression of Eq. 4.17. The opera-
tion ⊘ first computes the finite-precision quotient of these two operands
and stores it in q. This variable is given an adequate format to correctly
store the result in case of representable quotients. The quantization error,
in case this result is periodic, is computed as follows.

We first check whether the mathematical quotient is representable.
To do this, we multiply the obtained quotient q by the divisor r, store
the result in t, which is given a sufficient precision. We then store the
dividend l in a longer variable t′, of the same format of t, to be able to
compare the two variables. If t and t′ coincide, we have that the quo-
tient q is exact. We introduce a variable v whose value will be 0 if the
computed quotient q is exact, and 1 if it is quantized with respect to its
mathematical value. Here, we use the boolean value of the predicate
(t(ei+e+2.ef+e) = t′(ei+e+2.ef+e)).

The value of v is then multiplied by 2−ef to produce the variable u.
u will contain a single 1 digit in the right-most position, i.e. it will be
equal to 2−ef , if the quotient q is not representable and it will be equal
to 0 otherwise. The variable u represents the value of err′ in Eq. 4.17.
Finally, we add the quotient of l and r (stored in q) and the quantization
error u, conveniently stored in the adequate format. The obtained value
in then stored in a variable q′ in the necessary format. This result is then
transformed into the format (ei.ef ) through function c.

The transformation rule DIVISION over-approximates the quantiza-
tion error in case of periodic quotients with the value 2−ef . Recall from
Proposition 4.2 that err′ = 2−ei−ef−1 instead. While 2−ei−ef−1 is the best
over-approximation we can represent on a computer, it is a value cer-
tainly not representable in the chosen format for error variables (ei.ef ).
Our transformation function is parametric w.r.t the values ei and ef and
an encoding with inadequately chosen parameters results in an assertion

85



failure, indicating that ef or ei need to be incremented. If we were to in-
troduce a term equal to 2−ei−ef−1 every time a quotient is computed, our
iterative search for adequate values for ei and ef would not converge to a
finite value. To make the transformation function computable, we over-
approximate err′ with the value 2−ef .

The last function defined in Figure 23, i.e. c, converts a variable in any
precision to one in the chosen precision for error components. We divide
its definition into two cases. In the first case we consider operands whose
fractional part does not exceed ef . First, the fractional part is converted
to the desired length ef , which does not produce any errors so there is
no need to check whether the two values are equal. Then, an integral
precision conversion converts the intermediate result, x′ to the format
(ei.ef ). Now an assertion is needed to check that this does not produce
overflow. In the second case we consider operands with a fractional part
greater than ef . In this case, after the fractional precision cast we need
to check if this has produced a quantization error. As in the previous
case, an integral precision conversion is then performed and checked for
overflow.

The transformation function J·K, when applied to an entire program
PFP , is applied modularly. Every statement of the original program is
encoded into a set of fixed-point program statements that either do not
need to be further transformed, or that need to be further transformed
by J·K. This is iterated until no more transformations are necessary and
the obtained program contains only statements not enclosed by J·K.

The order in which the transformation rules are applied is well de-
fined. In particular, first we need to apply the rules for paired statements,
i.e. those illustrated in Fig. 19. The program generated in this phase con-
tains only statements concerning declarations, assignments, precision
conversions regarding either the integral or fractional part, arithmetic
operations and bit-shifts where the resulting variables have the expected
formats. It therefore triggers the rules of Fig. 20- 22. Finally, the last
step is to expand the definitions of the operators that are used over error
variables, illustrated in Fig. 23.

The generated program, P ′
FP contains all the original statements of
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PFP , as these are left unchanged by the transformation, and additional
statements that are introduced to correctly compute all numerical errors.
The assertions introduced by the encoding are of three types. The first
are predicates over the newly introduced error variables that state that
they should not exceed the error bound. The second are overflow checks
to make sure that overflow does not occur in the original program when
storing a value in a shorter variable. The third are assertions to check
whether no loss of information is incurred during the manipulation of
error components.
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Chapter 5

Error propagation in control
structures

Let x(p.q) be a fixed-point variable that appears in the condition (or test)
of a control structure, for example if (x(p.q) ≤ 0) stmt′ else stmt′′.
Based on the value of x, the computation may enter either the "then" or
the "else" branch, executing stmt′ or stmt′′, respectively. If the value of x
is affected by a numerical error, the test "x ≤ 0?" may produce a wrong
answer. As a consequence of an error on x, the program may enter the
wrong branch and thus execute a set of statements different from the
intended ones.

Besides errors due to single arithmetic operations, in programs with
control structures an additional error may be entailed by choosing the
wrong branch altogether. In such cases the total error on a program vari-
able will be due to not only the finite nature of operations leading to its
computation, but also due to the incorrect set of operations. In this chap-
ter we derive the mathematical expressions for these so called disconti-
nuity errors [DK17] and present a program transformation that allows to
compute them.

A concrete example of a program containing a discontinuity error is
shown in Fig. 24. The first 4 lines of this listing coincide with the example
in Fig. 3 from Sect. 2.1.3. There, we considered a run of this program in

88



1 fixedpoint x(3.2), y(3.2), z(3.2), w(3.2);
2 x(3.2) = 0.5; // 0000.10
3 y(3.2) = * ; // assume 0.2510, 0000.01
4 z(3.2) = x(3.2) ∗ y(3.2); //0000.00
5 if z(3.2) <= 0 then { // z will have an error of 0.12510
6 w(3.2) = z(3.2) // entering this branch due to error on z
7 } else {
8 w(3.2) = z(3.2) * 4 // should have entered this branch instead
9 }

Figure 24: A fixed-point program with a discontinuity error.

which y(3.2) = 0.25, which produces an error on z(3.2) equal to 0.125.
Now, the value of z is used in the test of an if-then-else statement at line
5. Due to it being affected by an error, its value is 0 instead of 0.125, and
the program takes the "then" branch instead of the "else" branch.

It therefore assigns w the value of z, instead of assigning it the value
of z ∗ 4. We may be tempted to say that the statement w(3.2) = z(3.2) at
line 6 simply propagates the error of z to w, meaning w now has an error
equal to 0.125. However, the value that should be stored in w at the end
of this program, had all the (correctly chosen) computations been carried
out correctly, is 0.125∗4 = 0.5 due to the assignment at line 8, instead of 0.
Hence, the total error on w is not only due to the incorrect operand in the
assignment at line 6, but is due also to an incorrect assignment altogether.
The total error is then actually 0.5, i.e. although w is assigned the value
of z, its error is not simply equal to the error of z but is amplified due to
the incorrect branching choice.

5.1 Deriving the discontinuity error

From now on we omit the format of variables when not necessary for
comprehension. Given a program variable x, recall that the error asso-
ciated to it can be expressed as the difference between its ideal infinite-
precision value and its computed value, x = ˜︁x − x. When the mathe-
matical value ˜︁x is computable, i.e. expressible in a fixed-point format,
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the error x can also be computed correctly. In the previous chapter we
showed that this is the case for all variables of a program in the syntax of
Proposition. 4.1.

Let us focus now on an extension of the mentioned syntax, allowing
if-then-else statements. Our goal is to extend the ideas of Chapter 4 to
derive expressions for the computation of errors entailed by program
statements involving this type of control structure. Consider now the
following program statement:

if (x ≤ 0){
stmt′;

} else {
stmt′′;

}

(5.1)

Let v be a variable whose value is updated by either stmt′ or stmt′′.
The error in computing v can be expressed, in general, as the differ-
ence between its mathematical value and its computed value. Recall that
the mathematical value would be the result if all operations leading to
the computation of v were computed correctly, in infinite precision, on
error-free operands. In particular, correctly computing v implies com-
puting the correct set of operations. Indeed, in the statement in Eq. 5.1,
a wrong branching choice could lead the program to execute stmt′ in-
stead of stmt′′ or vice versa with the effect of assigning the value of an
incorrectly chosen expression to v. Given an "if-then-else" statement, we
need to define the set of program variables that may be affected by such
a wrong branching choice.

5.1.1 Affected variables

Given a fixed-point program PFP , let V be the set of program vari-
ables and let S = {stmt} be the set of program statements, where
stmt is the syntax of Prop. 4.1 extended with if-then-else (ITE) state-
ments. In particular, the syntax we consider allows declarations, assign-
ments, including those to different formats, bit-shifts ◦ ∈ { i, i} with
i ∈ {vs, ps1, ps2, ps3}, and operations ⋄ ∈ {+,−,×}.
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Consider the function W : S → V defined recursively as follows:

W (fixedpoint v) = ∅
W (v = v′) = {v}

W (v = v′ ⋄ v′′) = {v′}
W (v = v′ ◦ k) = {v}

W (if x ≤ 0 stmt′ else stmt′′) = W (stmt′) ∪W (stmt′′)}
W (stmt′; stmt′) = W (stmt′) ∪W (stmt′′)}

(5.2)

W (stmt) returns the set of variables whose values are affected by the
execution of stmt. Let S′ ⊂ S denote the subset of "if-then-else" state-
ments. Given stmt ∈ S′, i.e. stmt := if (cond) stmt′ else stmt′′, we
define the three functions T,E, I : S′ → V as follows, using the previ-
ously defined function W :

T (stmt) = W (stmt) \W (stmt′′)
E(stmt) = W (stmt) \W (stmt′)
I(stmt) = W (stmt′) ∩W (stmt′′)

(5.3)

In particular, T (stmt) computes the set of variables modified only
by the "then" branch of the ITE statement, i.e. by stmt′. Similarly,
E(stmt) computes the set of variables modified only by the "else" branch,
namely by stmt′′. I(stmt) computes the set of variables modified by both
branches.

Example 5.1.1. Consider the code in Fig. 25. It consists of a single if-
then-else statement stmt := if (x≤ 0) stmt′ else stmt′′. In partic-
ular, the "then" branch is defined by stmt′ := stmt′1; stmt

′
2, where

stmt′1 := (x = expr1) and stmt′2 := (z = expr2). In the "else" branch
stmt′′ := stmt′′1; stmt

′′
2; stmt

′′
3, where stmt′′1 := (y = expr3),

stmt′′2 := (z = expr4) and stmt′′3 := (w = expr5). The functions
W , T , E and I applied to this example return the following sets of
variables:

W (stmt′) =W (stmt′1; stmt
′
2)

=W (stmt′1) ∪W (stmt′2)

=W (x = expr1) ∪ (z = expr2)

= {x} ∪ {z}
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1 (...) // Variables x, y, z, w declared previously
2 if (x <= 0) { // Current value of x computed previously
3 x = expr1;
4 z = expr2;
5 } else {
6 y = expr3
7 z = expr4;
8 w = expr5;
9 }

Figure 25: Example: if-then-else statement.

W (stmt′′) =W (stmt′′1; stmt
′′
2; stmt

′′
3)

=W (stmt′1) ∪W (stmt′2) ∪W (stmt′3)

=W (y = expr3) ∪ (z = expr4) ∪ (w = expr5)

= {y} ∪ {z} ∪ {w}

W (stmt) =W (if (x≤ 0) stmt′ else stmt′′) =

=W (stmt′) ∪W (stmt′′) =

= [{x} ∪ {z}] ∪ [{y} ∪ {z} ∪ {w}]
= {x, y, z, w}

T (stmt) = {x, y, z, w} \ {y, z, w} = {x}
E(stmt) = {x, y, z, w} \ {x, z} = {y, }
I(stmt) = {x, z} ∩ {z, w} = {z}

5.1.2 Error expression

Consider a program variable v ∈ W (stmt), where stmt is the control
structure of Eq. 5.1 and consider the case in which the chosen branch
may differ from the correct one due to a numerical error in the variable
of the guard. Let v indicate the value of the variable prior to entering the
statement stmt. We will indicate with vf the updated value of v com-
puted by the branch chosen by the finite-precision computation.

Let vc indicate the value with which v would have been updated in
the correct branch in finite precision. Let ˜︁vc then indicate the correct
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mathematical value of computing the both the correct branch and in in-
finite precision. We want to compute the error on the value of v entailed
by the ITE statement as vf = ˜︁vc − vf . Using the fact that vc = ˜︁vc − vc, we
can derive the expression for the total error on v as follows:

vf = ˜︁vc − vf

= ( ˜︁vc − vc) + (vc − vf )

= vc + (vc − vf ).

(5.4)

This last expression shows that the error on v incurred by the ITE
statement is the sum of two components. The first term, vc, represents
the numerical error incurred by the finite-precision computation of v in
the correct branch, i.e. the difference between the infinite-precision and
finite-precision computations of the correct sequence of operations. The
second term, (vc − v), is the difference between the value that would be
computed in finite-precision in the correct branch and the value that is
actually computed in finite-precision in the chosen branch.

5.2 Computability of discontinuity errors

To compute v according to Eq. 5.4 we need to compute the term vc and, in
particular, we first need to show that this value is representable in a fixed-
point format. This is a straightforward consequence of Proposition 4.1.

Proposition 5.1. Given a program P in a subset of the syntax structures
in Fig. 6, where stmt :== expr | if (var ≤ 0) stmt else stmt with ⋄ ∈
{+,−,×}, the error v associated to any program variable v at any point in the
program is representable in a fixed-point format.

Proof. It is sufficient to prove the claim for the single statements of the
syntax, as the generalization to an entire program is then straightfor-
ward. We start by noticing that if stmt is an expression expr and if v
is the variable affected by that statement, then by Proposition 4.1 the er-
ror v is a computable value.

Let stmt = if (x ≤ 0) stmt′ else stmt′′ and consider v ∈W (stmt),
a variable affected by it. Assume that both stmt′ and stmt′′ are either in
the syntax of Proposition 4.1, meaning they produce representable errors,
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or they contain if-then-else statements that produce representable errors.
Assume also that the error of x is computable. Assume, w.l.o.g. that
stmt′ is executed and that this coincides with the correct control flow,
i.e. that ˜︁x ≤ 0. This last condition is verifiable since ˜︁x = x + x is a
computable value. In this case, vf = vc and from Eq. 5.4 it follows that
vf = vc = vstmt′ , which is computable by assumption.

Similarly, if stmt′ is executed but does not coincide with the correct
branch, i.e. x ≤ 0 and ˜︁x > 0, then vc = vstmt′′ and vf = vstmt′ . The
error expression is then vf = vstmt′′ + (vstmt′′ − vstmt′). As all the terms
in this expression are computable, by assumption, it follows that vf is
computable in this case, too.

Given that every expression in the considered syntax produces rep-
resentable errors when the errors of its operands are representable, and
given that ’if-then-else" statements produce representable errors when
the statements in their branches do, we can conclude that, by construc-
tion, any statement in the considered syntax produces representable er-
rors, including nested "if-then-else" statements. Finally, the claim is nat-
urally valid for branches composed of multiple statements.

Let x ≤ 0 be the guard of an if-then-else statement stmt as in Eq. 5.1.
Let ˜︁x be the mathematical value of x, which is representable in fixed-
point in the considered syntax. To compute the incurred error for an af-
fected variable by the expression in Eq. 5.4, we need to be able to correctly
compute the terms vc, vc and v, which we know now to be representable.
To this end we need to double the two original branches by considering
four possible cases:

1. x ≤ 0 ∧ ˜︁x ≤ 0. The finite-precision and infinite-precision control-
flows agree, entering the "then" branch. The error incurred by stmt

is due only to the errors produced by the operations in the body
of the "then" branch and only concerns variables v ∈ W (stmt′);
Indeed, in this case vf = vc = vthen and thus the expression in
Eq. 5.4 becomes

vf = vthen. (5.5)
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2. x > 0 ∧ ˜︁x > 0. Both control-flows choose the "else" branch, and
the error incurred by stmt is due only to the errors produced by
the operations in the body of the "else" branch, concerning only
variables v ∈W (stmt′′). The expression for the error is now:

vf = velse. (5.6)

3. x ≤ 0 ∧ ˜︁x > 0. The "then" branch is executed instead of the "else"
branch, producing a discontinuity error, affecting variables in both
branches, i.e. variables v ∈ W (stmt). In particular, this wrong
branching choice may affect a variable in 3 different ways:

a) If v ∈ I(stmt) (defined in Eq. 5.3), then it is modified in the
incorrectly chosen "then" branch and it would have also been
modified in the correct "else" branch, possibly by a different
sequence of operations. In this case the computed value in the
incorrectly chosen branch has to be compared to the mathe-
matical value v would hold if the other branch were chosen.
In this case vf = vthen while vc = velse and the error expres-
sion is:

vf = velse + velse − vthen = ˜︃velse − vthen. (5.7)

b) If v ∈ T (stmt), then it is modified in the incorrectly chosen
"then" branch, but wouldn’t have been in the correct "else"
branch. The computed value in the chosen branch has to be
compared against its mathematical value if it were not mod-
ified at all with respect to its previous value. Recall that we
indicate with v the value of this variable before it is modified
by the if-then-else statement. Then vc = v and vf = vthen and
the error expression is:

vf = v + v − vthen = ˜︁v − vthen. (5.8)

c) If v ∈ E(stmt), then it is not modified in the incorrectly chosen
"then" branch, but would have been modified in the correct
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"else" branch. This means that its current value, computed
prior to the if-then-else statement, has to be compared to the
mathematical value v would hold if the correct branch were
chosen. Here vc = velse and vf = v and we have that:

vf = velse + velse − v = ˜︃velse − v. (5.9)

4. x > 0 ∧ x̃ ≤ 0. The "else" branch is executed instead of the "then"
branch, producing a discontinuity error, affecting all variables v ∈
W (stmt). The three cases are symmetric to the three cases above:

a) If v ∈ I(stmt), then v is modified by the "else" branch but
should have been modified by the "then" branch.vf = velse

while vc = vthen and the error expression is:

vf = vthen + vthen − velse = ˜︁vthen − velse. (5.10)

b) If v ∈ E(stmt), then v is modified by the "else" branch but
should not have been modified at all. vf = velse and vc = v,
and the error expression is:

vf = v + v − velse = ˜︁v − velse. (5.11)

c) If v ∈ T (stmt), then v is not modified but should have been
modified by the "then" branch. vf = v and vc = vthen and the
error expression is:

vf = vthen + (vthen − v) = ˜︁vthen − v. (5.12)

Example 5.2.1. Consider again the example in Fig. 25 where I(stmt) =
{z}, T (stmt) = {x} and E(stmt) = {y, w}. Consider the case in which
the computed value of x is greater than 0, while its correct value is not,
corresponding to case 4 above. The program enters the "else" branch,
executing the three statements that modify the values of y, z, and w.

Case 4.a) applies to z, with zf = zexpr2 + (zexpr2 − zexpr4).
Case 4.b) applies to y and w, yf = y + (y − yexpr3) and wf = w +

(w − wexpr5).
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Case 4.c) applies to x, with xf = xexpr1 + (xexpr1 − x).

5.3 Transformation of if-then-else statements

Let PFP be a fixed-point program in the subset of syntax structures of
Prop. 5.1. This section presents an extension of the definition of the
transformation function J·Kbei,ef from Sect. 4.3.3 to if-then-else statements.
In particular, we define the encoding of a statement stmt := if (x ≤
0) stmt′ else stmt′′. We consider only tests in the form x ≤ 0, as other
conditions expressing comparison between two values can be brought to
this form. As before, we indicate with (ei.ef ) the format that is chosen
for error variables and b is the user defined bound on the magnitude of
errors.

The transformation function applied to an if-then-else statement pro-
duces a modified conditional statement with four different cases corre-
sponding to the ones derived in Sect. 5.2.The obtained control structure
has the same behavior of the original one, for original program variables.
Additionally it introduces the statements needed for the computation of
the discontinuity error in the four possible cases. Again, we will denote
with x′ a temporary variable that does not belong to the initial program,
but is introduced during the encoding. The purpose of such variables is
to store the result of an operation without overflow or numerical error,
thus they will always be given sufficient precision. All other variables in-
troduced by the transformation will be given intuitive names to compare
the encoding to the error expressions of Sect. 5.2.

Figure 26 defines the effect of our transformation function J·K applied
to an if-then-else statement stmt as above. The transformation generates
5 blocks of statements, separated by spaces in the figure for illustrative
purpose. In the first block we compute the mathematical value of x, i.e. ˜︁x.
We then use ˜︁x in the next 4 blocks of statements to compare its sign to that
of x. The following four blocks correspond to the four cases described in
the previous section.
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J if (x(xi.xf ) ≤ 0) {
stmt′;

}; else {
stmt′′; } K

−→

fixedpoint ˜︁x(ei.ef );˜︁x(ei.ef ) = x(ei.ef ) ⊕ x(xi.xf );

if x(xi.xf ) ≤ 0 ∧ ˜︁x(ei.ef ) ≤ 0

Jstmt′; K

else if x(xi.xf ) > 0 ∧ ˜︁x(ei.ef ) > 0

Jprog′′; K

else if x(xi.xf ) ≤ 0 ∧ ˜︁x(ei.ef ) > 0

fixedpoint vthen(vi.vf ) ∀v ∈ W (stmt′);

vthen(vi.vf ) = v(vi.vf ) ∀v ∈ W (stmt′);

stmt′[vthen/v, ∀v ∈ W (stmt′)];
ignore assertions for error bound check :
Jfixedpoint velse(vi.vf ) ∀v ∈ W (stmt′′); K
Jvelse(vi.vf ) = v(vi.vf ) ∀v ∈ W (stmt′′); K
Jstmt′′[velse/v, ∀v ∈ W (stmt′′)]; K
consider assertions for error bound check :

fixedpoint ˜︂velse(ei.ef ) ∀v ∈ W (stmt′′);
˜︂velse(ei.ef ) = velse(ei.ef ) ⊕ velse(vi.vf )

∀v ∈ W (stmt′′);
fixedpoint ˜︁v(ei.ef ) ∀v ∈ T (stmt) \ {x};˜︁v(ei.ef ) = v(ei.ef ) ⊕ v(vi.vf ) ∀v ∈ T (stmt) \ {x};
v(ei.ef ) = ˜︂velse(ei.ef ) ⊖ vthen(vi.vf )

∀v ∈ I(stmt);
v(ei.ef ) = ˜︁v(ei.ef ) ⊖ vthen(vi.vf ) ∀v ∈ T (stmt);

v(ei.ef ) = ˜︂velse(ei.ef ) ⊖ v(vi.vf ) ∀v ∈ E(stmt);

v(vi.vf ) = vthen(vi.vf ) ∀v ∈ W (stmt′);

fixedpoint vabs(vi.vf ) ∀v ∈ W (stmt);

vabs(vi.vf ) = abs(v(vi.vf ));

assert(vabs(vi.vf )< b) ∀v ∈ W (stmt);

else if x(xi.xf ) > 0 ∧ ˜︁x(ei.ef ) ≤ 0

(· · · ) symmetric to previous case;

Figure 26: Transformation function J·K: transformation of the if-then-else
statement.
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Case 1: Block 2 corresponds to the case in which both x and ˜︁x are ≤ 0,
i.e. when both the inexact and the exact computation would enter the
"then" branch in the original if-then-else statement. This corresponds to
case 1 of Sect. 5.2. The affected variables are those in W (stmt′) and their
discontinuity error is computed according to Eq. 5.5. In particular, we
have that vf = vthen. Therefore, the error is due only to the error incurred
by stmt′ itself, meaning we can apply the transformation function J·K to
the body of the "then" branch. This produces all the original statements
of stmt′ and additional statements to compute the error entailed by this
branch.

Case 2: Block 3 is analogous and corresponds to case 2 of Sect. 5.2: if the
signs of both x and ˜︁x are positive, the transformation function is applied
to stmt′′, which generates all the original statements of the "else" block
and additional statements to compute the error simply as the error of the
"else" block according to Eq. 5.6.

Case 3: Block 4 considers the situation in which x ≤ 0 but ˜︁x > 0. In par-
ticular, it translates the effect of the program choosing the "then" branch
when the ideal computation would choose the "else" branch, correspond-
ing to case 3 of Sect. 5.2.

Consider the function W (·) defined in Sec. 5.1.1. First, for all the
variables that are affected by the "then" branch, i.e. ∀v ∈ W (stmt′),
we introduce a set of three statements per variable. The effect of these
statements is to store the values computed by the "then" branch in
new variables vthen, without altering the current values of v, since
we will need them later to compute the error on v. In particular,
stmt′[vthen/v,∀v ∈ W(stmt′)] computes the "then" branch where all oc-
currences of v are substituted with vthen, so as not to alter the values of
v.

Next, for all the variables that would be affected by the "else" block,
i.e. ∀v ∈ W (stmt′′), we introduce a set of three statements per vari-
able, whose effect is to simulate the computation of the "else" branch.
To do so, we apply the transformation function to these statements,
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which produces the original statements of the "else" branch, together
with the statements needed to compute the error that this branch would
incur, had it been computed in finite precision. Again, we consider
stmt′′[velse/v,∀v ∈ W(stmt′)] which computes the "else" branch where
all occurences of v are substituted with velse.

We use the transformation function here as a means to compute the
errors velse. We are not interested in checking whether they exceed the
error bound b in this phase, because they are simply operands of the
discontinuity error, which will be computed at a later time. This last set
of statements is therefore enclosed between the comments in italic, which
indicate that the assertions usually generated by J·K are not to be taken
into account. This feature is implemented in our tool and is automatic.

The next two statements ∀v ∈W (stmt′′) have the effect of computing
the mathematical value of velse, which will be used later to compute the
discontinuity error. In particular, ˜︃velse is the sum (by operator ⊕, which
avoids incurring second-order errors) of the computed value velse and its
error velse. Both of these values are already available from the previous
set of statements.

After this, for every variable v affected only by the "then" branch, i.e.,
in T (stmt), we introduce two new statements to compute the mathemat-
ical value that v should have held prior to entering stmt. This value is
now stored in ṽ. These operations are not needed for x, in case it belongs
to T (stmt), since we have already computed x̃ in the first block.

Now we have all the ingredients to compute the possible discontinu-
ity error in the three subcases of case 3 in Section 5.2. ∀v ∈ I(stmt), we
compute v as the difference of ˜︃velse and vthen, corresponding to case 3.a)
and Eq. 5.7. ∀v ∈ T (stmt) we compute v as the difference of ˜︁v and vthen,
as derived in case 3.b) and Eq. 5.8. ∀v ∈ E(stmt), v is computed as the
difference of ˜︃velse and v, corresponding to case 3.c) and Eq. 5.9.

Now, for all variables affected by the "then" branch, we assign their
updated values, currently stored in vthen, to v, as we no longer need the
previous value of v. Finally, we declare a new variable vabs for all vari-
ables affected by the if-then-else statement to store the absolute values of
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these variables. Finally, we check if their discontinuity errors exceed the
given error bound.

Case 4: This case is symmetric to case 3 and considers the situation
where x > 0 and x̃ ≤ 0, corresponding to case 4 of Sect. 5.2.

We illustrated in Chapter 4 how the transformation function J·Kbei,ef ,
when applied to an entire program PFP without control structures, is
applied modularly. Now that we have expanded the considered syntax
for PFP with ITE statements, we simply add an additional step to the
program transformation process. As before, every statement of the origi-
nal program is encoded into a set of fixed-point program statements that
either do not need to be further encoded, or that need to be further trans-
formed by J·K. This is iterated until no more transformations are neces-
sary and the obtained program contains only statements not enclosed by
the double square brackets.

First, if-then-else statements are transofrmed. In case of nested con-
trol structures, this is repeated until the innermost ITE statement is trnas-
formed. The obtained encoding then triggers the rules of Chapter 4 in the
usual order. The generated program, P ′

FP contains all the original state-
ments of PFP , and additional statements needed to correctly compute
all numerical errors. This includes quantization errors due to arithmetic
statements as well as discontinuity errors.

A note on the allowed syntax structures for PFP is in order. As stated
at the beginning of this chapter, we consider programs with control struc-
tures that do not contain divisions. Recall from the considerations of
Sect. 4.2, namely Eq. 4.17 and Prop. 4.2, that the numerical error incurred
by division may not be representable in any fixed-point format. For such
errors, we are able to provide expressions for the tightest possible er-
ror over-approximation representable in the chosen format for error vari-
ables, (ei.ef ).

However, to be able to compute a discontinuity error on a variable af-
fected by an ITE statement, we need to know whether the finite-precision
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computation chooses the same branch as the infinite-precision computa-
tion would. To do this, we need the exact, mathematical value of the vari-
able in the test of the ITE statement. If the program contains divisions in
the computations preceding the ITE statement, we may not know exact
value of the error on the test variable and its mathematical value, but
only an approximation of it. Hence, we do not consider programs con-
taining both divisions and control structures. While this is somewhat
restrictive, in practice division is avoided whenever possible in safety-
critical code. We will discuss a possible way to overcome this restriction
in Chapter 8.
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Chapter 6

Implementation and
Experiments

This chapter presents our overall numerical accuracy verification ap-
proach based on the program transformation function defined in Chap-
ters 4 and 5. In Sect. 6.1 we show how the verification approach has been
implemented in our prototype tool, and in Sections 6.2- 6.4 we validate
it on a set of benchmarks commonly used in the industry.

6.1 Tool description

Given a fixed-point program PFP with non-deterministic inputs and
given an error bound b, our goal is to formally answer the question: is
there a run of this program for which the error on a set of variables of in-
terest may exceed the bound b? We encode this question as an assertion-
based verification problem, whose overall workflow is shown in Fig. 27.

We consider the user-defined bound b on the maximum allowed ab-
solute values of errors to be a parameter of the transformation function.
Moreover, as introduced earlier, we consider the format used for error
variables, (ei.ef ) to also be a parameter of the transformation function.
By modularly applying the program transformation rules presented in
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CSeq CSeq

Figure 27: Analysis flow for programs over fixed-point arithmetic.

the previous two chapters, the fixed-point input program PFP is trans-
formed into a modified fixed-point program P ′

FP containing the safety
specifications of interest in the form of assertions over program vari-
ables. We have implemented our program transformation process in
CSeq [FIP13].

The fixed-point program P ′
FP is then transformed into an equivalent

program over bit-vectors of mixed sizes P ′′
BV , according to the semantics

presented in Sect. 3.2. Again, we use CSeq for this transformation. P ′′
BV

can then be analyzed by any assertion-based verification tool. The tool
produces a propositional formula which is solved by a SAT-solver. We
use the CBMC 5.4 [CKL04] model-checker with the MiniSAT 2.2.1 [ES03]
solver in our toolchain.

Our verification approach is therefore seamlessly integrated into
an existing mature bounded model-checking-based verification work-
flow. For all the experiments we used a dedicated machine equipped
with 128GB of physical memory and a dual Xeon E5-2687W 8-core
CPU clocked at 3.10GHz with hyper-threading disabled, running 64-bit
GNU/Linux with kernel 4.9.95.

If the analysis gives an "UNSAT" answer, there is no run of the pro-
gram for which the errors exceed the given bound. This corresponds to
the program being safe w.r.t the specification. If the answer is "SAT",
a counter-example will also be provided, corresponding to a program
trace witnessing a run of the program for which the errors exceed the
given bound.
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6.1.1 Current limitations of the prototype

For implementation purposes we have made some simplifications w.r.t
the allowed syntax for input programs. In particular, we currently do
not support nested if-then-else statements. This is w.l.o.g. as nested
statements may be inlined upfront before applying our transformation
function.

We allow only positive integral and fractional lengths for program
variables, arguing that negative fractional or integral lengths are not
commonly used in the applications we target. We allow only positive
magnitudes for shifts and this is w.l.o.g, as negative magnitudes of shifts
simply correspond to a shift in the other direction.

We have only implemented the transformation for shifts with the se-
mantics of ps3 and ps3. We point out that the other three semantics
for shifts can be obtained as combinations of ps3 and ps3 and precision
casts.

Finally, we consider only error bounds equal to powers of 2. Though
it is possible to consider assertions of the form assert(s(ei.ef )< b) for
any value of b, the restriction that b = 2−h for some integer value of h,
results in a simpler propositional formula.

Indeed, consider a bound equal to 2−h and consider a variable s(ei.ef )
in which we have stored the absolute value of the error of a variable of
interest. Notice that the value 2−h may be stored in a fixed-point format
with h fractional bits, where the right-most bit is 1 and all others are 0.
If ef , the number of fractional bits we use for error variables, is greater
than h, then we have that s(ei.ef ) < 2−h if s(ei.ef ) contains only 0 bits in
all positions to the left of the h+ 1-th fractional bit.

Therefore, if we are interested in checking whether s(ei.ef ) < 2−h, we
can simply check whether all the ei integral bits and the first h fractional
bits starting from the radix point are all zero. A simple way to check this
is to shift out the rightmost ef−h bits of s and check whether the obtained
bit-sequence is composed only of zero bits. We obtain the following as-
sertion: assert(s(ei.ef) ps3 eb), where eb = ef − h. This formulation is
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equivalent to s(ei.ef ) < 2−h, but it is an easier check to perform as it only
compares a variable to a sequence of all zeros.

Example 6.1.1. Let ei = 3, ef = 8 and b = 2−3 = 0000.001, i.e., h = 3.
Consider s(3.8) = 0000.01001011. We have that eb = 8 − 3 = 5. To
check whether s(3.8) < 2−3 = 0000.001, we shift out the right-most 5
bits of s, obtaining the value 0000.01001011 in the format (e.8). This
bit-sequence is not composed of all zeros, and we conclude that s is
therefore not less than 2−3.

6.1.2 Analysis options

Given a fixed-point program PFP , to analyze its numerical accuracy we
use three parameters for the transformation function implemented in
our prototype tool, as illustrated throughout Chapters 4 and 5 and Sec-
tion 6.1. The parameters are the precisions used for error variable manip-
ulation, ei and ef , and the error bound b. As illustrated in Sect. 6.1.1, the
error bound check amounts to a shift by eb positions, where eb = ef − h

and h is s.t. b = 2−h. In our prototype tool we actually consider the value
of eb to be a parameter of the transformation.

We allow the user to choose whether to include the overflow checks
which are generated by default by the transformation function. If over-
flow checks are not needed, they may be disabled. Similarly, error prop-
agation and checking may be disabled altogether, for example if the user
only wishes to check for overflow in the original program and not for
numerical errors. In this case the transformation function does not intro-
duce any of the statements needed to propagate and check the numerical
errors.

If error propagation is activated, the user may choose to enable or dis-
able the discontinuity error propagation and checks. For programs con-
taining control structures this option is interesting as it allows to compare
the magnitude of errors when discontinuity errors are taken into account
and when they are not.

The command-line options for our tool therefore allow the user to
choose:
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• the parameters ei, ef , eb,

• whether to include overflow checks,

• whether to include error propagation,

• if error propagation is enabled, whether to include error-bound
checks,

• if error propagation is enabled, whether to consider discontinuity
errors.

Finally, we allow the following annotations in the input program. For
non-deterministic input variables, we can set the value of an initial error
with an option directly in the code of the program. This is useful when
working with programs in which some of the inputs may be subject to
quantization errors, such as readings from a sensor.

If we are interested only in certain portions of the input program, we
can enclose those portions using flags that tell the tool where to prop-
agate and where to check the errors. This is useful if the user is only
interested in checking the errors on certain variables of interest, since
applying the transformation function by default would propagate and
check for errors for all variables in every program location.

6.2 Error estimation in straight-line code

We first evaluate our numerical error certification approach on a straight-
line program. We consider an industrial case study of a real-time itera-
tive quadratic programming (QP) solver for embedded model-predictive
control applications. The solver is based on the Alternating Direction
Method of Multipliers (ADMM) [BPC+11], and we assume it is imple-
mented in fixed-point arithmetics for running the controller at either a
high sampling frequency or on very simple electronic control modules.

Certification of QP solvers is of great importance in industrial control
applications, if one needs to guarantee that a control action of accurate
enough quality is computed within the imposed real-time constraint. To
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the best of our knowledge, exact certification methods do not exist for the
numerical quality of ADMM, which is a method gaining increasing pop-
ularity within the control, machine learning, and financial engineering
communities [45]. Our experiments show that it is possible to success-
fully compute tight error bounds for different configurations of the case
study using a standard machine and bit-precise bounded model check-
ing.

We consider the case where some of the coefficients of the problem
are non-deterministic, to reflect the fact that they may vary at run time, to
model changes of estimates produced from measurements and of the set-
point signals to track. In particular, we considered 8 non-deterministic
inputs for the program.

We studied 16 different configurations of this program by setting dif-
ferent formats for the program variables and for the number of iterations
of the ADMM algorithm. In particular, we set the formats to (7.8), (7.12),
(7.16), and (7.20) for all the program variables except for the 8 non-
deterministic variables representing the uncertain parameters, which we
restricted to a format of (3.4). The considered precisions are all accept-
able for the considered application. In particular, using 8 integral bits for
the program variables ensures that overflow never occurs. Thus, each
program configuration has 28·8 = 264 ≈ 1.85 · 1019 different possible
assignments (8 bits per 8 variables). For each such configuration we con-
sidered i ∈ {1, . . . , 4} iterations of the ADMM algorithm. For i iterations
the number of arithmetic operations amounted to 38 + i ∗ 111, of which
10 + i ∗ 61 sums/subtractions and 15 + i ∗ 42 multiplications.

Instead of choosing a single error bound for the error on the output
variables of the program (3 variables per configuration), for each config-
uration we considered different error bounds, starting from a pessimistic
error bound of 20 and going down in steps of 2−2. If a check succeeded,
producing an UNSAT result for an error-bound equal to 2−h, we con-
cluded that there is no run of that particular program configuration for
which the error exceeds the chosen bound. We then repeated the analysis
with an error-bound of 2−h−2. We stopped as soon as an UNSAT result
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Figure 28: Maximum absolute error enclosures

was followed by a SAT result, or when even the last possible check, cor-
reponding to 2−h with ef − h = 0 (see Sect. 6.1.2) produced an UNSAT
result. In the first case, we have successfully found upper and lower
bounds on the maximum absolute value of the errors; in the second case,
we have that the error is exactly zero.

Given a program configuration, consisting in a precision for the pro-
gram variables and a number of iterations of the algorithm, we therefore
performed an error-bound check by choosing values for the three pro-
gram transformation parameters: ei, ef and eb. If a check failed due to
an under or over-flow in the manipulation of error variables, i.e., due to
ei or ef being insufficient (see Sect. 4.3.2), we repeated the analysis for
this same program configuration but with greater values of these param-
eters. Notice that increasing ef results in increasing eb, as a consequence
of the relation eb = ef − h.

For example, for the configuration of the program with precision (7.8)

for the program variables and 1 iteration of the ADMM algorithm, we
found that choosing a format (ei.ef ) = (15.16) led to over and underflow
in the computation of errors. We re-applied the transformation function
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with parameters ei = 31 and ef = 32 and this allowed a correct com-
putation of errors. In particular, checking whether the absolute error on
the final value of the 3 output variables of interest can exceed 2−6 gave a
PASS answer, meaning that no valuation of the non-deterministic input
variables can lead to an execution of the program in which the errors ex-
ceed 2−6. In this case, the initial program was therefore encoded with the
parameter eb = 32 − 6 = 26, i.e. J·K2631,32. Checking whether the absolute
values of errors on the output variables can exceed 2−8, however, gave
a FAIL, coupled with a counterexample indicating the sequence of vari-
able valuations that led to the assertion failure of the error-bound check.
We concluded that the maximum absolute error for this configuration is
therefore a value between 2−8 and 2−6.

The experimental results are summarised in Figure 28, where we re-
port the maximum lower and upper absolute error bounds obtained with
our approach. We have illustrated the result for 1 iteration of ADMM and
precision (7.8). For all the other precisions, in one iteration, the analysis
always succeeds, so the error is exactly zero. For 2 iterations of ADMM,
the results show that increasing the fractional precision of program vari-
ables results in a lower maximum error. Indeed, while the format (7.8)
guarantees a maximum error in the interval [2−6, 2−4], the format (7.12)
produces a lower maximum error, in [2−10, 2−8], and so on for the other
formats. In general, the results have confirmed the intuitive expectation
that lowering the precision of the program variables and incrementing
the number of iterations increases the accumulated error on output vari-
ables.

Larger intervals than 2−2 are reported when the check of a specific
error bound reached a timeout. For example, for the configuration (7.16)

and 4 iterations, we verified that the error does not exceed 2−8, but the
verification failed for the error bound of 2−14. In this case the analysis of
an error bound of 2−12 and 2−10 was taking too long, so for this configu-
ration we report a maximum error in [2−14, 2−8].

Our encoding introduces non-negligible overhead to the original pro-
gram in terms of extra variables and statements, which in turn results
in propositional expressions of 170k to 1M variables and 170k to 1.5M
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clauses being generated by the model checker. Whenever the configu-
ration results in a satisfiable formula, i.e., a fail, the analysis takes up to
about half an hour. Unsatisfiable instances take even a few days. A large
performance gap between satisfiable and unsatisfiable instances should
not be surprising for SAT-based decision procedures, as the solver needs
to perform a more exhaustive exploration to determine unsatisfiability.

It is interesting to compare our measurements with those from [IT20],
where in a quite similar experimental setup much smaller analysis run-
times are reported for propositional expressions of considerably larger
sizes (up to 20M variables and to 100M clauses) but obtained from a com-
pletely different category of (general purpose) programs. This seems to
suggest that on numerically-intensive software (such as our industrial
case study, and control software in general) the particularly intricate de-
pendency relationships among variables can contribute to make the anal-
ysis significantly more demanding.

6.3 Error estimation in control-flow

To evaluate our numerical error analysis technique on programs with
control structures, we considered a set of 4 routines of common use in
the industry. In particular, we considered: cav10 [GGP10], loosely based
on non-linear interpolation methods, cosine [GGP10], a third order
polynomial interpolation of the cosine function, jet−engine [DK17],
a piece-wise polynomial approximation of a jet-engine controller, and
neural−net, a fixed-point implementation of a feed-forward neural net-
work with 13 input neuron, 1 neuron in a hidden layer, and 1 output
neuron.

For each routine, we considered 5 different configurations, i.e., 5 dif-
ferent custom precisions for the program variables. We considered the
input variables to be non-deterministic in a given input range suitable
for the considered case study. Moreover, we considered the input vari-
ables to be subject to initial errors. These two assumptions reflect the fact
that the inputs of the numerical routines may vary at run time, represent-
ing (possibly noisy) sensor readings or output values of other numerical
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1 assume(x >= 0);
2 assume(x <= 10);
3 t = x^2;
4 y = t - x;
5 w = -y
6 if (w <= 0) {
7 y = x * 0.1;}
8 else {
9 y = t + 2;}

Figure 29: cav10 benchmark.

routines, and that their values may be prone to errors. We set the formats
for the non-deterministic variables to a unique suitable custom precision
for each routine, according to their allowed range of values.

We evaluated the numerical accuracy of the four routines in their var-
ious configurations by checking multiple error bounds on output vari-
ables. We did so in function of the initial errors on input variables, i.e.,
by considering different values for the initial errors. As in Sect. 6.2, we
considered various error bounds, starting from a pessimistic bound and
going down, this time in steps of 2−1. We stopped the iteration as soon
as a PASS for an error bound 2−h was followed by a FAIL for an error
bound 2−h−1, meaning we have found that the maximum absolute error
on output variables is in the interval [2−h−1, 2−h].

Figures 30- 36 show the experimental results for the four considered
benchmarks. We do not report the intervals [2−h−1, 2−h] for every pro-
gram configuration, but only its upper bound 2−h. This is for presenta-
tion purposes, as the figures also include another element. In particular,
apart from the maximum absolute errors certified with our control-flow
sensitive approach (colored bars), we also include the maximum abso-
lute errors obtained by using only the control flow-insensitive part of
the verification flow (striped bars). The latter are always less or equal to
the former, as is expected. Indeed, not taking into account discontinuity
errors makes the analysis unsound.

The cav10 benchmark is illustrated in Fig. 29, where we omit all
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Figure 30: cav10 benchmark: maximum absolute errors.

variable declarations and formats and only show the operations and as-
sumptions on the non-deterministic input. We adapted the original code,
found in [GGP10], to our syntax by separating all nested arithmetic oper-
ations into separate statements. The routine consists of three arithmetic
operations followed by an if-then-else statement, with one operation per
branch, for a total of 5 arithmetic statements. For this benchmark we
considered formats (7.8), (7.12), (7.16), (7.20), (7.24) for program vari-
ables and (7.8) for the non-deterministic variable x. In this benchmark
we have 1 16-bit non-deterministic variable whose values are assumed
to be in [0, 10]. Here, the output variable for which we check the error is
y.

Fig. 30 shows how, with the discontinuity-sensitive approach, the up-
per bounds on the absolute error for the output variable are equal for all
five program configurations, regardless of the initial error. However, not
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1 assume(x >= 0);
2 assume(x <= 180);
3 w = - x;
4 if(w <= -135) {
5 t1 = 0.0065 * x;
6 y = 0.1716 - t1;}
7 assume(x < 135);
8 if(w <= -90) {
9 u1 = x * x;
10 u2 = x * u1;
11 u3 = 0.0000 * u2;
12 v1 = 0.0001 * u1;
13 v2 = 0.0063 * x;
14 v3 = 1.2832 - v2;
15 v4 = v3 - v1;
16 y = v4 + u3;}
17 assume(x < 90);
18 if(w <= -45) {
19 u1 = x * x;
20 u2 = x * u1;
21 u3 = 0.0000 * u2;
22 u4 = 0.0002 * u1;
23 u5 = u4 + u3;
24 y = 1 - u5;}
25 assume(x < 45);
26 if(w <= 0) {
27 t1 = 0.0065 * x;
28 y = 1 - t1;}

Figure 31: cosine benchmark.

taking into account the discontinuity error yields strictly lower output er-
rors and a clear pattern emerges showing that incrementing the initial er-
ror while lowering the precision for program variables produces greater
output errors. This indicates that the simple quantization errors due to
the arithmetic operations account only for errors of a much smaller mag-
nitude than the discontinuity error itself.

The cosine benchmark is illustrated in Fig. 31, where again we
only show the operations and assumptions on the non-deterministic in-
put. The code in the figure is obtained from the original code found
in [GGP10], by adapting it to our syntax. The original code consists in
a nested if-then-else statement, which we flattened into four separate
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statements. Moreover, we separated each statement in the original code
consisting of nested arithmetic operations into separate statements. The
obtained routine now has 2 to 8 operations for each resulting conditional
statement, and a total of 19 operations. For this benchmark we set the
formats to (23.24), (23.28), (23.32), (23.36), (23.40) and (11.8) for the non-
deterministic input x. We therefore have 1 20-bit non-deterministic vari-
able whose values is assumed to be in [0, 180].Here we are interested in
checking the error on the output variable y.

The jet−engine benchmark is shown in Fig. 32. The code in the
figure is obtained from the original code found in [DK17], by adapting it
to our syntax, as with the previous case studies. It contains 27 operations:
a subtraction followed by an if-then-else statement with 13 operations
per branch. We set the formats to (7.8), (7.12), (7.16), (7.20), (7.24) and
(7.4) for the input variables and (7.4) for the two non-deterministic input
variables, x and y. We therefore have 2 12-bit non-deterministic variables
whose values are assumed to be in [−5, 5]. The output variable we are
interested in here is z5.

Both the cosine and the jet−engine benchmark present the same
pattern for numerical errors, as shown in Fig. 33 and Fig. 34: by incre-
menting the initial error and decreasing the precision of variables, the
output error steadily grows. An exception can be observed for cosine,
in which the output error oscillates; for the format (23.36), the output
error for an initial error of 2−8 is smaller than the output error for an
initial error of 2−12. For both case studies, the control-flow sensitive er-
ror bounds coincide with the control-flow insensitive ones. This may
be interpreted as an indicator of continuity of the piece-wise polynomial
approximations for the cosine function and for the jet-engine controller.
Continuity here is meant in the usual sense: small perturbations of the
input correspond to small perturbations of the output. Indeed, the ab-
sence of an additional error due to branching itself indicates that these
polynomial approximations are fairly continuous.

The neural−net benchmark is shown in Fig. 35. The code in the
figure shows part of the statements. We omit a set of 21 assumptions
on the input variables, and a set of 20 arithmetic operations, as they are
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1 assume(x >= -5);
2 assume(x <= 5);
3 assume(y >= -5);
4 assume(y <= 5);
5 w = y - x;
6 if(w < 0) {
7 x1 = 0.0937 * x;
8 xx = x * x;
9 xx1 = 0.0898 * xx;
10 z1 = xx1 + x1;
11 y1 = 0.0000 * y;
12 z2 = z1 + y1;
13 xy = x * y;
14 xy1 = 0.0390 * xy;
15 z3 = z2 - xy1;
16 yy = y * y;
17 yy1 = 0.0000 * yy;
18 z4 = z3 - yy1;
19 z5 = -0.3671 + z4;}
20 else {
21 x1 = 0.0781 * x;
22 xx = x * x;
23 xx1 = 0.1601 * xx;
24 z1 = x1 + x1;
25 y1 = 0.0039 * y;
26 z2 = z1 + y1;
27 xy = x * y;
28 xy1 = -0.0078 * xy;
29 z3 = z2 + xy1;
30 yy = y * y;
31 yy1 = 0.0000 * yy;
32 z4 = z3 + yy1;
33 z5 = -0.3046 - z4;}

Figure 32: jet− engine benchmark.

similar to the ones shown in the lisitng. The case study contains 28 op-
erations and a conditional statement with an assignment in one branch.
We set the formats to (11.12), (11.16), (11.20), (11.24), (11.28) for all the
program variables except for the 13 non-deterministic input variables
input0, . . . , input12, for which we set the format to (3.12). We therefore
have 13 16-bit non-deterministic variables whose values are assumed to
be in [−1, 1].The output variable we are interested in here is output.
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Figure 33: cosine benchmark: maximum absolute errors.
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Figure 34: jet− engine benchmark: maximum absolute errors.
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1 assume(input0 <= 1);
2 assume(input0 >= -1);
3 (...)
4 assume(input12 <= 1);
5 assume(input12 >= -1);
6 hout = 14.2146;
7 tmp1 = 13.7715 * input0;
8 hout = hout + tmp1;
9 tmp1 = 0.1262 * input1;
10 hout = hout + tmp1;
11 (...)
12 tmp1 = 13.4062 * input12;
13 hout = hout + tmp1;
14 if (hout <= 0) {
15 hout = 0;}
16 output = 15.3408;
17 tmp2 = 0.2063 * hout;
18 output = output + tmp2;

Figure 35: neural− net benchmark.
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Figure 36: neural− net benchmark: maximum absolute errors.
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Fig. 36 shows how both the discontinuity-sensitive and insensitive
errors grow as the variable precision decreases and the initial errors in-
crease, and the former is always strictly greater than the latter. This pat-
tern indicates that this numerical routine presents a clear discontinuity.

We performed the analyses on a standard consumer laptop, as de-
scribed in Sect. 6.1. The analysis of a single program configuration gen-
erally took only a couple of seconds and up to a minute for satisfiable
instances. In these cases, the control flow-sensitive and insensitive anal-
yses were comparable in terms of time. Unsatisfiable instances gen-
erally took under a minute and up to a maximum of 28 minutes for
the discontinuity-sensitive approach in the cosine case, which consti-
tutes the largest case study in terms of state-space (220 possible assign-
ments). For unsatisfiable instances, the time gap between the control
flow-sensitive and insensitive approach was more noticeable. This is
not surprising, as the discontinuity-sensitive approach introduces extra
overhead in terms of number of new variables and statements, and also
in terms of the complexity of the control structure.

These four numerical routines are representative benchmarks for the
evaluation of numerical error estimation techniques arising from embed-
ded systems, in terms of considered operations and in terms of size. It
would be interesting, however, to assess our technique on routines hav-
ing a larger number of branching statements and a larger number of
arithmetic operations overall. Our technique works well on the con-
sidered benchmarks, but it is clear that it is resource-intensive, being a
bit-precise method. How the running times grow with the size of the
program under examination is yet to be established.

6.4 Comparing bit and word-level analyses

We conducted further experiments to preliminarily assess the poten-
tial impact of word-level reasoning with respect to a structure-unaware
procedure such as that used in the previous part of our experimental
evaluation. To that end, we replaced the SAT-based CBMC bounded
model checker with a custom version of the SMT-based ESBMC model
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checker [GMM+18] that supports bit-vectors. This required no changes
to our encoding and only minor amendments to instrument the bit-
vector program for the specific back end.

We considered a single configuration of our case-study from Sec-
tion 6.2 consisting in a single format (7.8) for program variables and 1
iteration of ADMM, and an error bound for which we know a failure
is reported by CBMC in a few seconds. We then varied the number of
iterations of the algorithm up to 60 (keeping the same format for vari-
ables and the same error bound), knowing that if the chosen error bound
is exceeded already after one iteration, it will be after a greater num-
ber of iterations even more so. Thus, we considered a set of 60 verifica-
tion problems known to be satisfiable. We varied the SMT solver among
those supported by ESBMC (Z3 4.8 [dMB08], Yices 2.6 [Dut14], Boolector
3.2 [NPB14], MathSAT 5.6 [CGSS13], and CVC 4 [BCD+11]), measuring
the execution time of the decision procedure and the memory usage. We
set a timeout of 3600s for each run.

Table 2 summarizes our measurements. We report the runtimes for
up to 30 iterations, as the measurements for the two solvers that do
not timeout stabilise after 30 iterations. Among all the considered SMT
solvers for ESBMC, Yices turns out to be the only one with similar per-
formance to MiniSat in combination with CBMC’s propositional encod-
ing. In recent SMT-COMP editions, Yices scored consistently well in the
QF_AUFBV category, which is of particular relevance for our analysis,
and our measurements do confirm this. Perhaps a bit surprisingly, for
the remaining SMT solvers this evaluation did not end up equally well,
which calls for more in-depth evaluations on the efficacy of word-level
procedures on similar classes of programs as the one considered in this
thesis.

As we have already conjectured in the first part of the experiments,
one of the issues here might be in the particularly intricate dependency
relationship among the variables of the program. Such dependency
might limit the beneficial effects of reasoning in terms of groups of bits al-
lowed by word-level decision procedures, because often a finer-grained,
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Table 2: SAT-based vs SMT-based back end runtime comparison (s).

No. of
iterations

SAT SMT
MiniSat Yices CVC Boolector Z3 MathSat

1 0.5 0.1 4.0 2.5 1.1 33
2 3.7 2.6 24.2 172.3 92.9 -
3 6.1 26.7 69.3 2191.5 849.9 -
4 6.7 52.2 140.8 - - -
5 13.9 38.0 242.0 - -
6 12.5 42.2 374.0 - -
7 17.3 80.1 549.8 - -
8 13.7 52.6 654.3 - -
9 17.4 121.0 1019.9 - -
10 19.8 81.7 3338.5 - -
11 31.4 51.3 - - -
12 22.6 103.0 - - -
13 26.0 55.5 - - -
14 27.6 70.2 - - -
15 51.7 158.0 - - -
20 32.3 170.0 - - -
25 39.8 273.0 - - -
30 56.9 152.0 - - -

bit-by-bit reasoning might be required (intuitively, because the interme-
diate computations and alignment operations introduced by our encod-
ing inject subtle dependency relationships among subsets of bits of bit-
vectors, while other bits are completely discarded by the truncation op-
erations introduced).

We report a graphical comparison between MiniSat and Yices respec-
tively on the encodings produced by CBMC and ESBMC in Figures 37
and 38. Both memory usage and runtimes are comparable. As already
shown in the table, runtimes are consistently in favour of MiniSat, which
also tends to increase its runtimes in a more smooth and predictable way;
memory usage is slightly better for Yices. Both measurements seem to
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Figure 37: SAT-based vs. SMT-based decision procedure runtimes.

stabilise from 30 iterations on, indicating that when adding further iter-
ations both solvers are sufficiently able to work out a satisfiable assign-
ment for the input formula without any extra effort.
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Figure 38: SAT-based vs. SMT-based memory usage.
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Chapter 7

Related Work

Reasearch on the numerical quality analysis of finite-precision compu-
tations has attracted the attention of both the formal methods and the
embedded systems communities. Here we give an overview of the exist-
ing literature related to the work presented in this thesis.

In particular, we divide the overview into four parts. First we focus
on existing work that addresses the problem of numerical error estima-
tion as a verification question. In the second part we illustrate the exist-
ing approaches to finite-precision program synthesis that are based on
sound numerical error estimation. The third part gives an overview of
recent techniques that use bit-precise bounded model checking for the
analysis of finite-precision programs. Finally, we list a number of works
arising from the embedded systems community that address domain-
specific notions of correctness of fixed-point implementations while tak-
ing into account quantization errors.

Numerical error estimation in finite-precision computations. Verifi-
cation of numerical error bounds in programs that use fixed-point data
types has not received much attention. In [GP11] the authors define sev-
eral abstract semantics, based on intervals or on parametrized zonotopic
domains, for the static analysis of finite-precision computations, both
fixed and floating-point. The defined domains allow to evaluate both
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the rounding error, and the sensitivity to inputs of the program. How-
ever, the presented technique assumes that the finite precision control
flow agrees with the ideal one. An extension of this work to soundly
handle discontinuity errors is presented in [GP13], but is only tailored
for floating-point arithmetic. Both of these techniques have been imple-
mented in the abstract-interpretation based static analyzer for C and Ada
programs, Fluctuat [DGP+09]. Our technique differs from the mentioned
ones in that is does not rely on over-approximations except when strictly
necessary, i.e., for division operations.

[ATD05] gives a formalization of fixed-point arithmetic and its round-
ing modes in higher-order logic, where an error analysis is performed
to check the correctness of quantized code with respect to an accu-
racy requirement. The formalization and proof are performed us-
ing the HOL theorem prover [SN08], making this technique interac-
tive. The Gappa [DM10] tool, used in the Frama-C verifier for C pro-
grams [CKK+12], works with interval abstractions of fixed and floating-
point numbers. It generates a proof from source code with specifications
that can be checked by the Coq [HKPM02] or HOL light [Har09] interac-
tive theorem provers. The mentioned theorem proving techniques differ
from ours as they are interactive, while our goal is automatic analysis.

Numerical error estimation for floating-point programs has received
more attention. [TFMM18] proposes an abstract-interpretation frame-
work for the sound roundoff analysis of floating-point programs and
can handle unbounded loops and recursion by abstracting the control-
flow of the program. This over-approximation based approach soundly
handles discontinuity errors and has been implemented in the PRE-
CiSA [MTDM17] tool, which is automatic and generates lemmas for the
PVS proof assistant [ORS92]. In the context of deductive program ver-
ification, [AM10] provides a first-order axiomatization of floating-point
operations, including the associated rounding errors, which allows to
reduce verification to checking logical formulas by SMT solvers or inter-
active proof assistants.

An analysis of errors in straight-line floating-point programs based
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on symbolic Taylor expansions and global optimization has been im-
plemented in the FPTaylor tool [SBB+19], which emits certificates in
the form of HOL light proofs. Optimization techniques based on semi-
definite programming with a floating-point error model based on affine
expressions is proposed in [MCD17] and implemented in the Real2Float
tool, that generates certificates for the Coq theorem prover.

Roundoff error estimation approaches have also been proposed for
fixed and floating-point programs in a probabilistic setting. In [FRC03]
an error estimation approach for fixed-point effects in DSP designs based
on interval and affine arithmetic is complemented with the use of prob-
abilistic bounds. [LPD19] and [CDRS21] are concerned with the sound
estimation of roundoff errors in straight-line programs with probabilistic
inputs and use a static analysis based on probabilistic affine arithmetic.

Our technique is based on bounded model checking and as such
it is an automatic verification approach. It reasons over bit-precise
expressions and, with the exception of numerical errors introduced
by the quantization of periodic quotients, it does not rely on over-
approximations, making it the most precise possible error estimation
technique currently available. Indeed, the above techniques all rely on
systematic over-approximations of variable values and of their errors.

Finite-precision program synthesis. Great part of the existing work on
sound numerical error estimation has been carried out in the context of
program synthesis. In particular, several techniques exist for the gener-
ation of fixed-point code that meets a given numerical accuracy require-
ment. Fixed-point code synthesis for the basic blocks of matrix inversion
is proposed in [MNR14] and relies on an error model based on inter-
val arithmetic. In [DKMS13] a code optimization technique based on
abstract interpretation is used to synthesize fixed-point code for arith-
metic expressions which minimizes the error w.r.t. the idealized real
arithmetic. Later work [DK14] by the same authors presents a program
compilation scheme, able to produce fixed and floating-point code from
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a specification over the reals. The technique generates verification con-
ditions over the reals combines exact SMT solving with approximate in-
terval and affine arithmetic for the error bounds. This work also soundly
handles control structures. It has been implemented in the automated
source-to-scource compiler Rosa [DK17] for the Scala programming lan-
guage. The authors of [TMFM20] present a technique to generate a finite-
precision C program in which the control flow never diverges from its
real-valued one. This approach combines the PRECiSA floating-point
static analyzer, the Frama-C software verification suite, and the PVS in-
teractive theorem prover and only considers floating-point arithmetic.
In contrast to the above mentioned works, we are interested in verifying
fixed-point programs, instead of synthesizing them from a given specifi-
cation.

Bounded model checking. BMC has been used for the analysis of sev-
eral interesting properties of finite-precision implementations of numer-
ical programs. In the context of embedded controllers, [IBT18] proposes
a bounded model checking approach to synthesize spoofing attacks on
the signals of a fixed-point controller implementation and encodes the
verification query into a boolean satistifiability probem. [dBICF14] is
concerned with the correctness of digital controllers, and employs an ap-
proach based on SMT-solving to check a number of properties including
stability, overflow and limit cycles. In [ABC+20] an automated synthesis
of safe and stable digital controllers is proposed and relies on SMT solv-
ing and interval arithmetic to account for the quantization errors due to
fixed-point arithmetic. [IGSG10] is concerned with the stability analy-
sis of floating-point programs and combines abstract interpretation and
bounded model checking based on SMT. These methods, however, do
not quantify numerical errors. Indeed, to the best of our knowledge, the
capacity of BMC to reason at bit level has not yet been used to assess the
numerical accuracy of finite-precision code.

Correctness of fixed-point programs. While not directly concerned
with the estimation of errors in fixed-point programs, several works
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have been proposed on domain-specific notions of correctness of fixed-
point implementations for embedded applications. In [LGC+06] the
authors propose a static bit-width optimization approach to optimize
fixed-point feedforward designs while guaranteeing accuracy of compu-
tations. Similarly, low bit-width mixed-precision implementations of ro-
bust controllers are addressed in [SSD+19] in an iterative static analysis-
based approach. Robustness of digital controllers has also been studied
in [MMST10], which presents a method for designing robust and stable
digital controllers by analytically analyzing the mathematical model and
deriving bounds on implementation errors that guarantee stability. In a
testing framework, [MSW10] and [MS09] use symbolic execution to esti-
mate the effects of perturbation on inputs in finite-precision implementa-
tions of control software. In the context of supervised learning, [GHL20]
tackles the problem of quantized neural network robustness, and in par-
ticular analyzes the effects of quantization on mis-classification and fair-
ness of neural classifiers. The synthesis of optimal stable fixed-point dig-
ital controllers has been addressed in [MSZ12] by combining static analy-
sis to estimate errors and stochastic local search over the space of possible
controllers.

The above approaches rely on a mathematical model of the system or
program under examination. They can therefore use analytical notions
of stability or robustness, coupled with fixed-point error approximation
models to assess whether the finite-precision implementation meets the
desired property. Our approach does not require any specific structure or
template for the program under examination, i.e., we consider programs
of any structure, without having a mathematical characterization of the
function they compute. We therefore do not rely on analytical notions
of correctness and our error estimation technique is based solely on the
arithmetic operations in the considered program.
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Chapter 8

Conclusion

This thesis presents a bit-precise verification flow to formally check
whether the errors on a considered program ever exceed a given bound.
The verification approach focusses on fixed-point programs with non-
linear arithmetic and variables of mixed-precision and possibly non-
deterministic value, in the presence of control structures. The key ele-
ment of the proposed approach is a program rewriting technique that
transforms a given fixed-point program into a modified one which pre-
serves the control flow, but also accounts for the propagation of errors
due to operations carried out in finite precision. In particular, the trans-
formation allows to compute discontinuity errors, incurred by wrong
branching choices. The proposed technique is implemented in a mod-
ular way and seamlessly integrated into an existing bounded model
checking-based verification workflow, allowing for general safety checks
to be performed on the input program.

The technique presented here is tailored for fixed-point programs.
This choice is based on two observations. The first is that fixed-point
arithmetic is scarcely represented in the existing verification pipelines,
while the second is that it is a valid (and, actually, preferred) alterna-
tive to floating-point arithmetic in embedded applications. The pre-
sented approach is novel, in that it is currently the only one to certify
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errors of finite-precision implementations of numerical routines in a bit-
precise manner. In particular, all error expressions are exact and intro-
duce no over-approximations, with the exception of periodic quotients.
To the best of our knowledge, all existing approaches for error estimation
in finite-precision computations rely on systematic over-approximations
of variable values by employing interval-based approximations, and in
some cases rely on abstractions of the control flow as well.

As a result of the introduction of additional variables and statements,
the program transformation presented here inevitably generates over-
head in terms of program size. While results on our industrial case study
indicate that the proposed verification workflow does not scale well, ap-
plying our technique to benchmarks of standard size found in related
literature indicates that our approach presents reasonable performance,
especially for a bit-precise technique. SAT-based verification techniques
are indeed known to be resource intensive. However, the recent ad-
vances in solvers and their potential for parallelization [IT20] make them
a powerful tool for complex software verification problems.

Parallelization of our technique is a possible research direction for the
future. In particular, it would be interesting to find ways to decompose
the propositional formula generated by our encoding into simpler sub-
formulas such that satisfiability of any of the sub-formulas indicates an
unsafe behavior and unsatisfiability of all the sub-formulas proves a safe
behavior. This may be done in two possible ways. The first is to partition
the set of program behaviors using predicates over the non-deterministic
input variable values. The second is to reason at bit-level and partition
the possible execution traces by instantiating the values of single bits of
input variables. This translates to setting values of propositional vari-
ables in the generated SAT formula and, in particular, the goal is to find
propositional variables which noticeably simplify the formula when they
are assigned values.

Another possible way to simplify the verification problem could be
to leverage variable dependency. However, in numerical programs with
non-linear operations and control structures, the dependency between
variables is highly intricate. It would be interesting therefore to devise
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automatic techniques to compute the set of non-deterministic input vari-
ables that contribute to the computation of the truth value of a predicate
in an assertion generated by our encoding. More specifically if a portion
of the bit-sequence of any of the input variables is found not to contribute
to any of the assertions, these bits can simply be set to zero, thus simpli-
fying the generated formula.

Numerical programs often present an iterative structure, with por-
tions of code repeating themselves, taking as input values that have been
computed by the previous iteration. It would be interesting to leverage
patterns in the code to optimize our error estimation technique, which
currently does not take code structure into account. To this end, it may
be useful to study how the geometry of the space of inputs is transformed
by the operations in the considered portion of the program.

Our technique currently only handles programs with either division
or control structures. Handling division operations inevitably leads to
the introduction of over-approximations, when the considered mathe-
matical quantities are periodic. On the other hand, to be able to distin-
guish between the correct mathematical and the possibly incorrect finite-
precision branching choice, we require an exact expression for the error
on the test condition variable. A possible way to extend our technique
to handle branching with division is the following. For every variable x
affected by an imprecise division operation, an upper and lower bound
on its error would need to be computed, i.e., x ∈ [xl, xu]. If that variable
were to appear in the test of an if-then-else statement, such as x ≤ 0,
knowing if a wrong branching choice occurs would require knowing
whether ˜︁x ≤ 0. However, now ˜︁x would be given by an interval, as it
would only be possible to estimate it, from x and x. Hence, it would
be possible to say that ˜︁x ≤ 0 if the entire interval containing ˜︁x is non-
positive. In the case that the interval contains 0, we would need to con-
sider the worst case over-approximation of the discontinuity error. A
simpler solution in that case would be to issue a flag.

The bit-vector program generated by our encoding on its own pro-
vides a bit-precise representation of the propagated numerical error, but
the program itself can be analysed by any verification tool that supports
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bit-vectors of mixed, arbitrary sizes. In particular, we have tested it on
different bounded model checkers, coupled with different SAT solvers,
as well as SMT-solvers for the theory of bit-vectors for a word-level ap-
proach. While the bit-precise BMC approach is well suited for analysing
the sources of numerical errors, abstraction-based tools can efficiently
provide guarantees on larger error bounds by using over-approximation.
It would be interesting therefore to couple our program rewriting tech-
nique with an abstract interpreter and to test different domains.

To conclude, the work presented in this thesis is aimed at numerical
routines implemented in fixed-point arithmetic and thus lends itself well
to the analysis of embedded systems. In particular, such systems are
often safety critical as they interact with the physical world. Providing a
bit-precise verification flow is therefore an important step forward in the
context of embedded systems verification.
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