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Abstract

Cryptocurrencies are widely known and used principally as a means
of investment and payment by more and more users outside the re-
stricted circle of technologists and computer scientists. However,
like fiat money, they can also be used as a means for illegal activi-
ties, exploiting their pseudo-anonymity and easiness/speed in mov-
ing capitals. This thesis aims to provide a suite of tools and mod-
els to better analyze and understand several aspect of the Bitcoin
blockchain.

In particular, we developed a visual tool that highlights transac-
tion islands, i.e., the sub-graphs disconnected from the super-graph,
which represents the whole blockchain. We also show the distribu-
tions of Bitcoin transactions types and define new classes of non-
standard transactions. We analyze the addresses reuse in Bitcoin,
showing that it corresponds to malicious activities in the Bitcoin
ecosystem. Then we investigate whether solids or weak forms of
arbitrage strategies are possible by trading across different Bitcoin
Exchanges. We found that Bitcoin price/exchange rate is influenced
by future and past events. Finally, we present a Stochastic Model
to quantitative analyze different consensus protocols. In particular,
the probabilistic analysis of the Bitcoin model highlights how forks
happen and how they depend on specific parameters of the protocol.
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Chapter 1

Introduction

The white-paper on Bitcoin appeared in November 2008 [Nak08a], written by
a computer programmer using the pseudonym “Satoshi Nakamoto”. His inven-
tion is an open-source, peer-to-peer digital currency. Money transactions do not
require a third-party intermediary, so without traditional financial institutions
involved: the Bitcoin network is entirely decentralised. A complete transaction
record of every bitcoin and every Bitcoin user’s encrypted identity is maintained
on a public ledger, called the blockchain. For this reason, Bitcoin transactions
are thought to be pseudonymous, not wholly anonymous.

The actors in the Bitcoin network are the users who own a wallet associated
with a couple (or more) of private/public cryptographic keys. Users employ
these keys to sign the transactions they generate to transfer their value to other
users; transactions are broadcast to the Bitcoin peer-to-peer network. Notice
that this example is just the simplest to understand the form of ownership proof
available in Bitcoin. The miners update the blockchain, a public distributed data
structure that implements the database of every transaction ever executed.

Transactions represent the mechanism that allows a user to pass value to
another user. A user can prepare a new transaction referring to the ones through
which he/she received value, called the (multiple) inputs of this new transaction.
The output of a transaction describes the destination of bitcoins instead. There
can be multiple outputs, allowing an owner to make multiple payments at once;
one output often represents the change w.r.t. a previous transaction. Notice that
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bitcoin in reality are not transferred, but is transferred the right to spend such
value.

Miners keep the blockchain consistent, complete, and unalterable: they re-
peatedly verify and collect newly broadcast transactions into a new group of
transactions, called a block. To validate a block, a miner needs to compute a
random nonce that becomes part of a block and makes it have a hash that starts
with a given amount of zeroes (i.e., the proof-of-work). This proof is easy to
verify but extremely time-consuming to generate.

Criminals often find ways to exploit legitimate technologies for nefarious
uses. Bitcoin is not different: due to its pseudo-anonymity and untraceability, it
is currently used for criminal activities such as extortion attack ransom, money
laundering, and selling illegal goods or services. Bitcoin has been the de-facto
currency of the Dark Web, the “hidden” Internet accessible only by Tor1, since
the pioneering marketplace Silk Road, also known as the “eBay of drugs”, came
up in 2011. After its shutdown, new darknet markets proliferated: these digital
markets primarily are black markets, selling or brokering transactions involv-
ing drugs, cyber-arms, weapons, counterfeit currency, stolen credit card details,
forged documents, unlicensed pharmaceuticals, steroids, other illicit goods, as
well as fully-legal products.

Laundering money using Bitcoin is attractive2 because of its low fees, in-
stantaneous transactions, and virtual anonymity. For instance, bitcoins collected
from illegal activities, e.g., proceeds of previously-mentioned markets, can be
mixed with “clean” value by using mixing services (also called tumblers). These
services3 are third parties used to break the connection between a Bitcoin ad-
dress sending coins, and the address(es) they are sent to. Basically, the destina-
tion address of every mixed transaction receives the same amount of value from
possibly many different addresses.

Another illicit use of the blockchain is Ransomware [Kha+15a]. It is a soft-
ware that performs a cryptoviral extortion attack that encrypts data until a ran-
som is paid to a given Bitcoin address. Thus, ransomware leads to a denial-of-
access attack that prevents users from accessing files on the infected computer.

1Tor project: https://www.torproject.org.
2The Guardian: http://tinyurl.com/hmp2ll7.
3E.g., Bitmixer: https://bitmixer.io.
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Some sadly-famous names of such software are Cryptolocker, Cryptowall, Tes-
laCrypt, and Locky. For what concerns Cryptolocker, it affected 500,000 users
until 2014, and an analysis indicates that only 1.3% of all the users hit by the
malware paid the ransom of 400$.4 A more recent and very effective piece of
ransomware, which started to spread on May 12th 2017, is WannaCry.

Our answer at all these problems is BlockChainVis5 [BMS18a; BPS18; BS17]
Suite, a suite of tools dedicated to the visual analysis of flows of Bitcoin transac-
tions. BlockChainVis aims to help analyze such scenarios in depth. In this thesis
we present some of its tools:

• The visualizer tool highlights transaction islands, i.e., the sub-graphs dis-
connected from the super-graph, which represents the whole blockchain.
It is also possible to apply different filters on, e.g., the interval of dates,
blocks, transaction values, or the number of addresses used in transac-
tions, using visual analytics techniques. Such views highlight specific
nodes (e.g., roots and leaves of flows or miners) and exclude useless and
confusing information: e.g., transactions representing changes can be hid-
den.

• Transaction Information is focused on providing additional information
about Bitcoin transactions. The most common kind of transaction is in
the form “Bob pays Alice”, and it is based on the Pay to-Public Key
Hash(P2PKH) [AW18] script, which is resolved by sending the public key
and a digital signature created by the corresponding private key. P2PKH
transactions are just one among many standard classes: a transaction is
standard if it passes Bitcoin Core’s IsStandard() and IsStandardTx() tests.
However, the creation of ad-hoc scripts to lock (and unlock) transactions
allows for also generating non-standard transactions, which can be nev-
ertheless broadcast and mined as well. This module explores the Bitcoin
blockchain to analyze and classify standard and non-standard transactions,
understanding how much the standard behaviour is respected. We also
highlight how Bitcoin addresses are reused in transactions (implicitly or
explicitly), despite recommendations and best practices strongly advise to

4http://www.bbc.com/news/technology-28661463.
5http://blockchainvis.dmi.unipg.it/.
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avoid this. We analyze the blockchain to find and count highly reused Bit-
coin addresses, starting from the birth of the protocol in 2009. We also
include hidden addresses: these are not the explicit addresses of a trans-
action, but they are somehow contained in it (this also helps to find the
same owner addresses, called wallet). The other way to find wallets is
using some heuristics. For example, the Multi-Input Heuristic [RH11a]
considers only transactions with more than one input. All the inputs of
this transaction are deemed to belong to the same owner.

• TradeBitcoin checks the possibility of real-time gain from arbitrage in the
Bitcoin Market. In this thesis, we use it to: investigate whether a strong
or weak form of arbitrage strategies are indeed possible by trading across
different Bitcoin Exchanges; and give validation to a bubble behaviour in
exchange rates between Bitcoin and traditional currencies, proving also
that the bubble effect is due to confidence in Bitcoin future values.

• Consensus Analyzer will be a module to analyze different consensus pro-
tocols. Until now, we analyze the Bitcoin one by: extending PRISM,
a probabilistic model checker, with a ledger datatype, modelling the be-
haviour of blockchain’s key participants (the miners) and describing the
whole protocol as a parallel composition of processes. The probabilistic
analysis of the model highlights how forks happen and how they depend
on some parameters of the protocol, such as the difficulty of the crypto-
puzzle and the network communication delays.

The thesis is organized as follow. In Chapter 2 we introduce some back-
ground: some basic information related to Bitcoin, Distributed Consensus pro-
tocols and the PRISM Language.

In Chapter 3 we describe a suite of different software tools whose aim is to
facilitate the analysis of bitcoin flows and let the forensic scientist extract and
visualize useful insights on target (pools of) addresses. We name the whole suite
BlockChainVis, inheriting from the visualization module [BS17].

Chapter 4 presents the Transaction Information module, which shows the
distributions of Bitcoin transactions types and defines new classes of non-standard
transactions. Moreover, go through P2SH transactions to classify their scripts.
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Finally, we show that most miners and users behave respecting the standard way,
i.e. using standard transactions.

In Chapter 5 we analyze the addresses reuse in Bitcoin and, using the module
of Chapter 4, we define a new type of address (hidden address). This type links
nested addresses to legacy ones; this is helpful also for find addresses wallets.
We also show that such misuse in reusing the address often corresponds to ma-
licious activities in the Bitcoin ecosystem. These results push towards a single
mandatory usage, which mitigates dangerous consequences.

In Chapter 6 we investigate whether a solid or weak form of arbitrage strate-
gies are indeed possible by trading across different Bitcoin Exchanges. Our theo-
retical and practical investigation gives that arbitrage is indeed possible. We also
show that Bitcoin price/exchange rate is influenced by future and past events, but
that the bubble behaviour is strictly connected to trust in the future of the Bit-
coin system. These results were possible thanks to the module TradeBitcoin of
BlockChainVis Suite.

Chapter 7 presents a Stochastic Model to quantitative analyze different con-
sensus protocols. In particular, the probabilistic analysis of the Bitcoin model
highlights how forks happen and how they depend on specific parameters of the
protocol, such as the difficulty of the cryptopuzzle and the network communica-
tion delays. Our results confirm that considering transactions in blocks at a depth
larger than five as permanent is reasonable because most miners have consistent
blockchains up to that depth with a probability of almost 1.

Chapter 8 discuss our results with the ones in the literature.
Chapter 9 wraps up the thesis with final conclusions and adds possible des-

tinations for future research.

The Origin of the Chapters

Many chapters of this thesis are based on already published papers, jointly
with my supervisors Stefano Bistarelli and Rocco De Nicola, and Alessandra
Cretarola, Gianna Figà-Talamanca, Francesco Faloci, Letterio Galletta, Cosimo
Laneve, Francesco Lucarini, Marco Patacca, Francesco Santini e Adele Veschetti.
In particular:

• The architecture and the technologies of BlockchainVis Suite described in
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Chapter 3 have been already presented in [BMS18a; BPS18; BS17].

• Chapter 4, that describes non standard transaction and P2SH, is presented
in [BMS18b; BMS19].

• The study on reused addresses in blockchain and the definition of the hid-
den addresses in Chapter 5 is based on the ideas developed in [Bis+21]

• Chapter 6 describes possibilities of arbitrage in Bitcoin market and devel-
ops the ideas presented in [Bis+18; Bis+19c]

• Chapter 7 is based on the ideas of a Stochastic Model to analyze consensus
protocols developed in [Bis+]
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Chapter 2

Background

In this chapter, we are going to describe the Bitcoin features needed for our re-
search, its consensus protocol and provide an introduction to the PRISM frame-
work that will be used for simulations and the analyses.

2.1 Bitcoin

The white-paper on Bitcoin (B, is the commonly used currency-symbol) ap-
peared in November 2008 [Nak08a], under the pseudonym authorship of “Satoshi
Nakamoto”. His invention is an open-source, peer-to-peer digital currency. Money
transactions do not require a third-party intermediary, so no traditional financial-
institution is involved. The identity of Satoshi Nakamoto is still a mystery.

The payer and payee directly interact (peer-to-peer), but without using their
real identities, and no personal information is transferred from one to the other.
However, unlike a fully anonymous transaction, there is a transaction record-
maintained on a public ledger, called the blockchain. For this reason, Bitcoin
transactions are thought to be pseudonymous, not anonymous: Bitcoin addresses
are pseudonyms of real individuals (one can have several pseudonyms).

The only way to create new bitcoins is through the mining process: miners
are the nodes that verify the transactions and add them to the blockchain. The
bitcoins created each time a miner discovers a new block represents a reward for
its job.
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The actors in the Bitcoin network are the users who own a wallet associated
with a (or more) couple of private/public cryptographic keys. In Bitcoin, a pri-
vate key is usually a 256 bit random number, and by using the Elliptic Curve
Digital Signature Algorithm (ECDSA) [JMV01], a 512 bit public key can be ob-
tained from it. Afterwards, from the public key it is possible to obtain a Bitcoin
address, e.g., applying an hashing function on it. Users use these keys to sign the
transactions they generate in order to transfer their value to other users; transac-
tions are then broadcast to the Bitcoin peer-to-peer network. The miners update
the blockchain, containing every transaction ever executed.

2.1.1 Transactions

Transactions are the basic bricks of the Bitcoin network: they represent the
mechanism that allows a user to send value to another user, e.g., from a buyer to a
seller. A bitcoin owner can prepare a new transaction referring to the ones he/she
received value in the past. These links are called the (multiple) inputs of this new
transaction. A transaction input must store the proof that the value belongs to
who received them in a previous transaction. In fact, a Bitcoin wallet stores a
collection of public/private key-pairs of a user (and not directly bitcoins). The
output of a transaction describes the destination of bitcoins instead. There can
be multiple outputs, allowing an owner to make multiple payments at once; one
output often represents the change w.r.t. a previous transaction. So the owner-
ship of the coins is expressed and verified through links to previous transactions.
For example, to send 3 B to Bob, Alice needs to refer to other transactions she
has previously received, whose amount is at least 3 B. Moreover, to lock the
coin (output), a script called scriptPubKey is used, while to prove the ownership
of a coin (input), a script called scriptSig is used instead. In the following, we
will refer to them as “locking script” and “unlocking script”. Finally, a user
broadcasts her transaction to the Bitcoin network.

The structure of a transaction is presented in Figure1: txid contains the trans-
action hash; hex contains all the transaction data hexadecimal encoded; size and
vsize are the transaction dimension in byte; version contain the transaction ver-
sion; blockhash has the hash of the block that contains the transaction; locktime
and time have the transaction time information; coinbase is the info of the coin-
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Figure 1: Transaction fields.

base transaction (it is empty if the transaction is not a coinbase). Vin contains
all the transaction inputs: txid prev and vout are the link to the hash of the spent
transaction and his output position; txid is the hash of the transaction; asm and
hex contain the script to spent the transaction (unlocking script). Vout has all
the transaction outputs: asm and hex contain the script to lock the transaction
(locking script); n is the output number; value is the bitcoin value in the trans-
action; reqsigs is the number of signature required to unlock the output; type is
the output type.

UTXO and Memory Pool A UTXO is an Unspent Transaction Output that
can be spent as an input in a new transaction. To assemble the candidate block,
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a Bitcoin miner selects transactions from the memory pool (mempool for short):
a pool of memorized transactions collected by a miner. The data that is stored
in the mempool consists of unconfirmed transactions (that are not inserted in
blockchain) which still needs to be processed and inserted in a block by the
Bitcoin Network, following a priority scale (depending from the “age” of the
transaction, from the value and from other parameters). Today’s miners choose
which transactions to mine mostly considering the fee-rate, thus prioritizing the
transactions with highest fees per kilobyte of transaction size. Any transaction
left in the mempool, after the block is filled, will remain in the pool for inclusion
in the next block. As transactions remain in the mempool, they increase the
“age” parameter. Eventually, also a transaction without fees might reach a high
enough priority to be included in the block for free [Ant17].

2.1.2 Addresses

A Bitcoin address (that is an identifier of 26-35 alphanumeric characters) rep-
resents a payment destination in Bitcoin. It strictly derives from the hash of
a generated public key (pubkey in the following) [Ant17]. Addresses can be
generated without cost by any user of the network. For example, using Bitcoin
Core2, every user can just click ”New Address” and will receive an address. It is
also possible to get a Bitcoin address using an account at an exchanger Website,
or using an online wallet service. Like e-mail addresses or phone number, you
can send them to a person by sending bitcoins to her address. However, people
should have different Bitcoin addresses and, to preserve privacy and security, a
unique address should be used for each transaction. They can begin with value
1 (classified as Legacy), 3 (classified as Nested SegWit, or simply Nested) or bc1
(classified as Native SegWit)3 In Figure 2 we can see how to generate an address:

• Legacy: It strictly derives from the base584 symbols hash of a generated
(by the private key) pubkey.

1Source: https://en.bitcoin.it/wiki/Address.
2https://bitcoin.org/it/.
3https://tinyurl.com/legacy-segwit.
4It is a group of binary-to-text encoding schemes that represent binary data without non-

alphanumeric characters (as ) and ambiguous letters (0 – zero and O – capital o)
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Figure 2: Bitcoin’s address generations1.
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• Nested: Generated from the base58 symbols hash of a generic Bitcoin
script (see 2.1.4).

• Native SegWit: Similarly at the Legacy, but using bench325 symbols in-
stead of base58 symbols.

Since they strictly derive from a Bitcoin script, Nested addresses can be
thought of as the equivalent of writing a check to two parties - “pay to the order
of somebody AND somebody else” - where both parties must endorse the check
to receive funds. The actual requirement (number of private keys needed, their
corresponding public keys, etc.) that must be satisfied to spend the funds is de-
cided in advance by the user who creates the script. Once an address is created,
such a requirement cannot be changed without generating a new address (so a
new script). We can consider these addresses as a pool of legacy addresses. In
Chapter 5 we will provide more details.

2.1.3 Blockchain

The modern notion of the Blockchain was introduced by Satoshi Nakamoto
in 2008 to serve as the public transaction ledger of the Bitcoin. In particular,
Nakamoto improved the method used by Hash-cash [Bac+02] by proposing to
timestamp and signing blocks without resorting to a third trusted party [Nar+16].
The invention of the Blockchain for Bitcoin made it the first digital currency to
solve the double-spending problem without a trusted authority or central server.
The words block and chain were used separately in Satoshi Nakamoto’s white
paper [Nak08a], but then became famous as a single word: Blockchain.

In the details, miners keep the Blockchain consistent, complete, and unalter-
able: they repeatedly verify and collect newly broadcast transactions into a new
group of transactions, called a block. Mining is used to introduce bitcoins into
the system, due to a reward (now 6.25B6) created and assigned to the winning
miner. This serves the purpose of disseminating new coins in a decentralised
manner, as well as motivating people to provide security for the system.

5A checksummed base32 format. For more information, see https://en.bitcoin.it/
wiki/Bech32.

6This reward is halving every four years. Originally in 2009 was 50B
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The first step accomplished by a miner, after collecting transactions, is to
perform a verification on them. This implies to check a set of rules, e.g., if trans-
actions format is syntactically correct w.r.t the protocol, or to reject them if the
sum of input values is less than sum of output values. Valid transactions (all
checks are passed) are added to a block. A block consists of a header and a list
of transactions (the block body). Each block contains information that chains it
to the previous block in the blockchain, that is the hash of the previous block.
Thanks to this field, a block (and consequently the blockchain) is computation-
ally impractical to be modified, since every block after it would also have to be
regenerated. The remaining field of the header, i.e., the nonce, is obtained from
the computation of the proof-of-work by miners.

Figure 3: Block fields.

Figure3 shows the structure of a block: hash contains the block hash; con-
firmations is the number of block confirmations; size and strippedsize are the
block dimension in byte, the second one excludes the transaction txinwitness
field; weight contains block weight; version and versionhex contain respectively
the block version and the hexadecimal of the block version; merkleroot store the
block root node; time and mediantime have the block time information; nonce
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contains the block nonce; difficulty is the difficulty to create the block; previ-
ousblockhash and previousblockhash have that hash of the previous and the next
block. Tx contains all the transaction in the block and nTx is their number.

2.1.4 Scripting Language

The Bitcoin transactions language Script is a Forth-like [RCM93] stack-based
execution language. Script requires minimal processing and it is intentionally
not Turing-complete (no loops) to lighten and secure the verification process of
transactions. An interpreter executes a script by processing each item from left
to right in the script. Script is a stack-based language: data is pushed onto the
stack, instead the operations can push or pop one or more parameters onto/from
the execution stack, operate on them, and possibly push their result back in the
stack to be used by successive operations.

For example, the operator OP ADD pops two items from the stack, add them,
and finally push the resulting sum onto the stack [Ant14]. There are also con-
ditional operators as OP EQUAL: it pops two items from the stack and pushes
TRUE (represented by number 1) if operands are equal, or FALSE (represented
by 0) if they are not equal. In Bitcoin, transaction scripts usually contain a final
conditional operator, so that they can produce the result TRUE, which points to a
valid transaction.

Most locking scripts refer to a public key address: they require the proof of
ownership of the address in order to spend value. However, this is not manda-
tory [And+14]: any combination of locking and unlocking scripts that result in a
final TRUE value is valid. Figure 4 shows the step-by-step validation procedure
of the locking and unlocking script. We have this locking script: “2 OP ADD 8
OP EQUAL”, which can be satisfied by the unlocking script: “6”’. The validation
software combines the locking and unlocking scripts and produces the follow-
ing script: “6 2 OP ADD 8 OP EQUAL”. This script is interpreted left-to-right
as: first 6 is pushed onto an empty stack, then 2, and then the operation OP ADD

is performed between the two last operands in the stack, which are also popped
from it. The result, i.e. 8, is pushed onto the stack, and then the 8 in the script is
pushed as well. Finally, OP EQUAL is performed, thus removing the two 8 and
pushing TRUE as result.
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Figure 4: Bitcoin script validation.

Opcodes Opcodes are the operators of the scripting language. In Table 1 we
describe some operators that we will refer to in the next chapters.

2.1.5 Standard Transactions in Blockchain

In the first few years of Bitcoin history, developers introduced some limitations
in the scripts that could be processed by the reference client. In fact, trans-
actions can be accepted by the network if their locking and unlocking scripts
match a small set of believed-to-be-safe templates. This is the isStandard()
and isStandardTx() test, and transactions passing it are called standard transac-
tions.7 More accurately, the isStandard() function gives TRUE if all the outputs
(locking script) use only standard transaction forms. On the other hand, the is-
StandardTx() function gives TRUE if all the inputs (unlocking script) use only
standard transaction forms according to the output that they are spending. The
main reason behind defining and checking standard transactions is to prevent
someone from attacking Bitcoin by broadcasting harmful transactions. There
are seven standard types of transactions [BMS19].

7Valid transactions are reported in the reference source code of Bitcoin Core: https://
github.com/bitcoin/bitcoin.
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Figure 5: P2PKH script validation.
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Table 1: Opcodes description.

Opcodes Description
OP HASH160 It hashes twice the top stack element: first with SHA-

256 and then with RIPEMD-160.
OP CHECKSIG The entire transaction outputs, inputs, and script are

hashed. The signature used by OP CHECKSIG must
be a valid signature for this hash and public key. If it is,
1 is returned, 0 otherwise.

OP MIN It returns the smaller of the two top elements into the
stack.

OP DROP It removes the top stack element.
OP DEPTH It puts the number of stack elements onto the stack.
OP 2DUP It duplicates the two elements on top of the stack.
OP IF It executes the statements only if the top stack value is

not False. The top stack value is removed.
OP ELSE It executes its statements if the preceding OP IF or

OP ELSE was not executed.
OP ENDIF It ends an if/else block. All blocks must end, or the

transaction is invalid. An OP ENDIF without an OP IF
before is also invalid.

Pay to Public Key Hash (P2PKH): The transaction Pay to public key hash is the
most used in the network. This is because it is the default transaction in a Bitcoin
client. These transactions contain a locking script that encumbers the output with
a public key hash: “OP DUP OP HASH160 <PUBLIC KEY A HASH> OP EQUAL

OP CHECKSIG”. Figure 5 shows an example of P2PKH script validation. A
P2PKH output can be unlocked (spent) by a public key and a digital signature
created with the corresponding private key: “<SIGNATURE A> <PUBLIC KEY

A>”.
Data output (OP RETURN): The Data output transactions are used to store data
not related to Bitcoin payments. Their form is “OP RETURN <DATA>”. Since
any output with OP RETURN is provably un-spendable. Thus, the output can be
immediately pruned from the UTXO8 set even if it has not been spent. These
transactions can be used to save different kinds of information on the blockchain,

8Unspent Transaction Output, i.e. the transactions that can be spent as an input in a new transac-
tion.
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Figure 6: P2PK script validation.

which is in this way used as an immutable distributed ledger by applications, as
e-voting ones [Bis+17; Bis+19b]. Such transactions are unlockable. Many mem-
bers of the Bitcoin community believe that use of OP RETURN is irresponsible
in part because Bitcoin was intended to provide a record for financial transac-
tions, not a record for arbitrary data9. Additionally, it is trivially obvious that
the demand for external, massively-replicated data store is essentially infinite.
Despite this, OP RETURN has the advantage of not creating bogus UTXO en-
tries, compared to some other ways of storing data in the blockchain. This helps
miners to be faster in calculating the priority transactions function.
Pay to Public Key (P2PK): The Pay to Public Key scheme is simpler than
P2PKH; it was used in coinbase transactions, i.e. the one with the miners are
paid for their job. P2PK, as the name suggests, has in its locking script di-
rectly the pubkey, instead of its hash: “<PUBLIC KEY A> OP CHECKSIG”.
Figure 6 shows the P2PK script validation process. To unlock this transac-
tion, only the corresponding signature of pubkey in the locking script is needed:
“<SIGNATURE A>”.
Multi-signature: Multi-signature scripts set a condition where N public keys
are recorded in the script, and at least M of those signatures must be used to

9https://en.bitcoin.it/wiki/OP_RETURN.
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Figure 7: Multi-signature script validation.
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unlock a transaction. This is also known as an M-of-N scheme, where N is the
total number of keys and M is the lower threshold of signatures required for a
validation. The maximum M for the current Bitcoin Core implementation10 is
15. The general form of a locking script setting an M-of-N multi-signature con-
dition is: “M <PUBLIC KEY 1> <PUBLIC KEY 2> ... <PUBLIC KEY N> N

OP CHECKMULTISIG”. In Figure 7 the validation steps of this script is visually
represented. The locking script can be satisfied with an unlocking script con-
taining: “OP 0 <SIGNATURE 1> <SIGNATURE 2> ... <SIGNATURE M>”).
Notice that the prefix OP 0 is required because of a bug in the original imple-
mentation of CHECKMULTISIG: due to this bug, one more argument on the stack
is required. CHECKMULTISIG simply considers it as a placeholder.

Figure 8: P2SH script validation.

Pay to Script Hash (P2SH): A Pay to Script Hash transaction contains the hash
of a script of a different transaction (called redeem script) in its locking script.
For example, we can hash a 2-of-5 multi-signature transaction. Instead of “pay
to this 5-key multi-signature script”, the P2SH equivalent transaction is “pay to
a script with this hash”. Hence, the script only stores a 20-byte hash instead of
five pubkeys (around 180 byte using the compressed form). Figure 8 shows an
example of locking script: “OP HASH160 <2-OF-5 MULTI-SIGNATURE SCRIPT

HASH> OP EQUAL”, with the unlocking script as: “<SIG1> <SIG2> <2-OF-
5 MULTI-SIGNATURE SCRIPT>”. This particular transaction is recognisable by
the nested address, which is generated from the redeem script. This means that

100.21.1
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by knowing the redeem script, a user could extract from it a set of different
legacy addresses, which is linked to the real address. For example, if inside
the redeem script we have a 2-of-5 multi-signature, we can associate all the
5 addresses of this multi-signature transaction to the address generated by the
redeem script. See Figure 8 for an example of P2SH script validation.

Figure 9: The position of new signatures in witness transactions.

Pay to Witness Public Key Hash (P2WPKH) and Pay to Witness Script
Hash (P2WSH): With the introduction of the Segregated Witness11 (SegWit) in
Bitcoin, the default transaction P2PKH can be also obtained in a different way.
The main differences of the Segregated Witness are the locking script shorter and
the signature that are moved outside the unlocking script, see Figure 9. In fact,
in place of the longer script in P2PKH, the script in P2WPKH is shortened to:
“OP 0 <PUBLIC KEY A HASH>” A P2WPKH output can be unlocked (spent),
as the P2PKH, by a public key and a digital signature created by the correspond-
ing private key: “<SIGNATURE S> <PUBLIC KEY A>”. The difference is that
these components are no longer in the unlocking script, but in the witness field
instead.
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Figure 10: Scenario of the Byzantine Generals Problem where the lieutenant 2 is a
traitor.

2.2 Distribuited Consensus (The Byzantine Gener-
als Problem)

The distributed consensus can be described as an instance of The Byzantine
Generals Problem [LSP82]. This problem involves a commander and a group of
lieutenants which are distributed around a small town. They need to cooperate
in order to attack the town at the exact same time. The commander sends an oral
message between all the lieutenants, however there might exist some traitors to
them, and if there is at least a traitor, the attack will fail. The attack will be
successful if more than 2/3 of generals are loyal. By this fact, it comes that with
three generals, and with only one traitor, the problem can not be solved. In fact,
in Figure 10 the Commander gives orders to both the Lieutenants to attack but
Lieutenant 2 is a traitor because he tells lieutenant 1 that the commander ordered
him to retreat. Now Lieutenant 1 receives two different orders. Let’s assume that
Lieutenant 1 follows the commander’s order because of strict hierarchy. 1/3 of
the army is weaker by force as Lieutenant 2 is a traitor and this creates a lot of
problems and confusions and eventually the army will fail. However not only
the lieutenants can be traitors, even the commander can be a traitor, as showed
by Figure 11. In this second scenario, the attack fails because the first lieutenant
obeys to the ”retreat order” proposed by the second lieutenant, who in this case

11https://bitcoincore.org/en/2016/01/26/segwit-benefits/.
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Figure 11: Scenario of the Byzantine Generals Problem where the commander is a
traitor.

is not a traitor. It is proved that in this situation, with the use of oral messages,
no solution with less than 2/3 of loyal generals can overcome against the rest of
traitors.

To sum up, the problem consists of trying to agree on some actions by ex-
changing information over an unreliable and potentially compromised network.
All participating nodes have to agree upon every message that is transmitted
between the nodes. This agreement is called as distributed consensus on a dis-
tributed system.

Therefore, distributed systems can be divided in two classes:

1. Those systems which are Byzantine Fault Tolerant.

2. Those systems which are Not Byzantine Fault Tolerant.

Systems belonging to the first class have the ability to ensure that consesus is
always reached by all the participants of the network, whereas the others be-
longing to the second class can not always guarantee the achievement of a dis-
tributed consensus. This is an important problem for distributed systems such
as the blockchain, because, in this particular system a failure to reach a con-
sensus implies the non-publication of a new block, that means no valid trans-
actions between users. Therefore it is crucial for the blockchain to be tolerant
to failures regarding the distributed consensus. In fact, a blockchain is resistant
to modification of the data, by design. Currently, the main application of the
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blockchain is the implementation of a distributed ledger that can securely store
transactions without any trusted third party. In this case, a blockchain is typ-
ically managed by a peer-to-peer network collectively adhering to a protocol.
This protocol regulates how the peers of the network communicates and how
they update the blockchain by adding new blocks. Once the data are recorded in
a block, they cannot be altered retroactively without alteration of all subsequent
blocks, which requires consensus of the network majority. Although blockchain
records are not unalterable, blockchains may be considered secure by design and
exemplify a distributed computing system with high Byzantine fault tolerance.
Decentralized consensus has therefore been claimed using blockchain12.

2.2.1 Proof of work (PoW)

Proof of work is the consensus algorithm used and proposed for the Bitcoin
blockchain [Nak08a]. It is a permissionless consensus process meaning that ev-
eryone can join the network and start mining, i.e. to validate transaction. The
strategy of this algorithm consists of doing some work in order to validate a new
block and add it to the blockchain system. This work is done by all nodes in the
network that want to ”mine” a block. In the Bitcoin system, the work that has
to be done consists of solving a mathematical problem using the header of the
block of transactions and a special number which is called ”nonce” whose size
is 32-bit (4-byte) long. The header, combined with the ”nonce”, is then hashed
with the sha256 algorithm in order to produce a digital fingerprint uniquely as-
sociated with that specific header and so to the block. Hence, the main goal
of each miner is to find this nonce in a way that the digital fingerprint produced
at the end is composed at the beginning by some zeros. If a nonce does not
produce the desired result, then it is replaced with another nonce, and the hash
is recalculated until the desired result is reached. The number of zeros required
at the beginning of the fingerprint is determined by a special target. A higher
target means a lower difficulty while lower target means that it is more difficult
to find a hash below that target. The average work required is exponential in
the number of zeros required and can be verified by executing a single hash.
When the target is reached by a node, this ”winning” node needs to prove that

12https://en.wikipedia.org/wiki/Blockchain
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Figure 12: Proof of work’s protocol.
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Figure 13: A Fork in Blockchain.

the work is correct, and to do so, he transmits his block and his nonce to all the
other nodes on the network. When this happens, all these other nodes check the
correctness of the work and reach a consensus. After reaching a distributed con-
sensus on the proposed solution, the block is published on the blockchain. After
all these steps, they start working again on a new block of transactions. In Fig-
ure 12 [Xia+19] the pseudo-code of PoW protocol. The target presented here,
and so the difficulty of the work can be changed by the Bitcoin protocol in order
to keep the block generation time at 10 minutes. If the network is finding blocks
faster than every 10 minutes, the difficulty increases (the target decreases). If
block discovery is slower than expected, the difficulty decreases (the target in-
creases). This kind of process is also required to prove that the node that wants
to publish a new block is not likely to attack the network, because, it has to
perform all the steps described before. In this process, there are also incentives
reserved for those who can solve the problem, including a reward in bitcoin13

plus the fees, an amount of cryptovalue that user can add to the transactions in
order to speed up the validations. By convention, any block with more than six
confirmations is considered irrevocable, because it would require an immense
amount of computation to invalidate and recalculate six blocks [AW18]. Nodes
always consider the longest chain to be the authentic one and will keep working
on extending it, however, because of the way this whole process was thought, it

1312.5 in October 2019
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can happen that two nodes reach the consensus at the same time. This situation
results in a fork of the blockchain, meaning that the main branch is split into
two branches, as can be seen in Figure 13. This happens because the blocks
are found almost simultaneously by miners on opposite sides of a previous fork,
but, the chance of that happening is very low. Even if this will happen, a node
that has received different versions of a new block will continue working on the
first one received, but saving also the other branch in case it becomes longer.
Nodes that were working on a shorter branch will switch to the longer one and
the tie connecting the shorter branch will be broken. Such condition ensures two
important facts:

• A consensus will always be found by the majority of the nodes.

• Proof of work is byzantine fault tolerant.

There are four main drawbacks with this consensus algorithm:

1. It is not considered to be ”energy saving”.

2. Miners have to do a lot of work in order to publish the block, and all this
work is done only to find a special number compatible with the target. For
this reason, many consider it a waste of resources because of the unuse-
ful performed work. To address this issues there have been created some
cryptocurrencies which use POW but in a more efficient way. One of
these cryptovalues is Primecoin [Kin13], where instead of searching sim-
ple numbers, miners have to search for long chains of prime-numbers such
as Cunnigham chains14. The efficient part is that the prime-numbers that
are found by the miners, are then used for mathematical research, and they
are easily verifiable by all nodes because the protocol specifies that they
do not have to be too large. Primecoin adjusts its difficulty slightly every
block and blocks come at a rate of one per minute. This was done to in-
crease the speed of the proof-of-work because six confirmations may take
fifty minutes in Bitcoin, but they take only six minutes in Primecoin15.

3. The proof-of-work is subjected to a vulnerability called ”51% attack” and
it involves the presence of a group of miners owning the 51% of the total

14https://primes.utm.edu/glossary/page.php?sort=CunninghamChain.
15https://tinyurl.com/Primecoin-pow.
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hashing power [Wat+16]. By owning this amount of resources, the group
would be able to prevent the confirmation of new blocks from the other
miners and they also would be able to double-spend coins by storing them
in a private blockchain. This is made possible because by having the 51%
of the total hash power, the private blockchain would be certainly longer
than the original one, and so, after a future publication of it, the proto-
col would certainly choose it. It is very difficult to realize this type of
attack because of the large amount of power required, however it would
be possible doing that if all the mining-pool groups would form a unified
group.

4. It is not ASIC-resistant. ASICs are integrated circuits that are created to
serve a specific use case, performing a particular computing task. In the
world of cryptocurrencies, ASIC devices are designed to participate in the
process of mining Bitcoin (or other cryptocurrencies). An ASIC-resistant
cryptocurrency has its protocol and mining algorithm configured in such
a way that using ASIC machines to mine the coin is either impossible or
brings no significant benefit when compared to traditional GPU mining.
In some cases, using ASICs on ASIC-resistant cryptocurrencies may be
even worse than using the more conventional hardware. Since mining
involves multiple attempts of finding a solution for a sort of mathematical
problem, the job of an ASIC is to perform as many attempts as possible
(i.e., as many hashing functions per second as possible). This means that
using ASICs to mine Bitcoin or other Proof of Work cryptocurrencies is
much better than using a general-purpose piece of hardware, such as a
GPU card.

The Bitcoin Protocol

Bitcoin is a peer-to-peer asynchronous network whose nodes host a ledger record-
ing economic transactions that are grouped into blocks. The ledgers are trees of
blocks with a pointer (handle) to a leaf block at maximal depth; the blockchain is
the sequence of blocks from the handle to the root block, (genesis block). Blocks
are created by special nodes of the network – the miners – and contain a num-
ber of information, including transactions and a pointer to the current handle of
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miner’s ledger.

Once a block has been mined, the miner (i) adds the block to its own ledger
(therefore the depth of the ledger increases and the handle is updated); and (ii)
broadcasts it to all the connected nodes of the network. Every node receiving the
new block updates its local copy of the ledger by inserting the block in the right
position and, if necessary, it also updates its own handle. If the block cannot
be connected to the ledger (because, due to network delays, a previous block
has not been delivered) then it is added to the local set of the miner and will be
inserted afterwards (orphan blocks).

Because of asynchrony, it may happen that two nodes mine and broadcast
a block almost concurrently, yielding different ledgers with different handles
(and, therefore, with different blockchains). This phenomenon, called fork, is
at the core of the inconsistencies of Bitcoin and, to overcome this problem, the
protocol uses a probabilistic algorithm. In particular, Bitcoin has a technique to
regulate the mining of blocks, called Proof of Work (PoW). According to PoW,
miners can add a block only if they solve a computational problem. Technically,
the problem consists of finding a number (a nonce) that, when concatenated with
the block header and hashed together with the (header of the) block, produces
a solution that starts with a certain number of binary zeros and is lower than a
predefined condition, which is called a target. The only way to find such a nonce
is through an exhaustive search. So the difficulty of the problem is proportional
to the size of the nonce search space and to the number of zeros required by the
target. The time needed to mine a new block depends on the difficulty of the
PoW and the hashing power of the miners. Clearly, the faster miners are, that
is the more of computational power they own, the higher is the probability of
conflicts and, thus, the more likely is the inconsistency between miners. For this
reason, Bitcoin PoW difficulty is determined by a moving average targeting a
certain number of blocks per hour. If they are generated too fast, the difficulty
increases, as shown by Nakamoto [Nak08b]. The current protocol modulates
PoW in order to have 6 blocks per hour on average.

To further reduce the probability of inconsistencies, Bitcoin also uses the
so-called eventual consistency (also known as n-consistency [PSS17]). This is a
weak version of consistency, according to which the protocol considers consis-
tent those ledgers with the corresponding blockchains equal up to the last few
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blocks. In particular, Bitcoin considers both transactions and miner’s rewards in
blocks at depth greater than 5 as permanent [AW18].

module C
x : [0..2] init 0;

[] x=0 -> 2 : (x′ = 1);
[] x=1 -> 3 : (x′ = 2);
[] x=1 -> 5 : (x′ = 0);
[] x=2 -> 2 : (x′ = 1);

endmodule

label "full" = x = 2;
label "empty" = x = 0;

Figure 14: An example of a PRISM module

2.3 The PRISM Language

PRISM [KNP02] is a probabilistic model checker that inputs a formal descrip-
tion of a system and computes the likelihood of the occurrence of certain events.
The formal description of systems in PRISM is given by means of a process alge-
bra that allows one to specify interacting modules. A module contains a number
of local variables whose values at any given time constitute its state. Module’s
behaviour is described by a set of commands whose basic form is described in
equation 2.1.

[a]g−> rho : update; (2.1)

In this command, the guard g is a predicate over all the variables in the model
(including those belonging to other modules). The update update describes a
transition that the module can make if the guard is true, and it is specified by
assigning the new values of the variables in the module, possibly as an expres-
sion formed from other variables or constants. PRISM uses the prime notation
to specify updates, e.g. x′ = x+1 means that, in the next state, x takes the
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value stored in it plus one. The expressions rho are used to assign probabilistic
information to the transitions – in the following they are called rates because we
will consider a stochastic semantics. The name a is an action: when it is present
in command of different modules then the corresponding commands must be ex-
ecuted at the same time, i.e. they synchronize, and the overall rate is the product
of the corresponding rates. Finally, a module may also contain labels that are a
way of identifying sets of states that are of particular interest.

A PRISM system consists of modules and global variables; its global state
is determined by the local state of all modules, together with the values of the
global variables. We refer to Kwiatkowska et al. [KNP11] for a full account of
the formalism. Figure 14 reports a PRISM module defining a two-items queue.
The variable x encodes the state, which has three possible values: 0 (the queue
is empty), 1 (the queue has one element) and 2 (the queue is full, i.e. it has two
elements). For example, from the state x=1 the system can evolve either in x=2
with rate 3 and in x=1 with rate 5.

x=0

empty

x=1 x=2

full
2 3

5 2

Figure 15: Transition system of module C

We observe that the above module C may be also described by a transition
system where states are those of the system and transitions are labelled by rates
(see Figure 15). PRISM supports different kinds of probabilistic formalism.
In Chapter 7 we focus on Continuous Time Markov Chains (CTMC) models,
which are transition systems (as the one above) whose semantics is defined by
rates. In particular, if the rate of a transition from a state s to s′ is r then the
probability of moving from s to s′ within t ≥ 0 time units is 1− e−r·t , that is
rates are used as parameters of an exponential distribution. Note that, higher is
the rate, higher is the probability to leave s in a given time. This is the exact
abstraction used by Nakamoto [Nak08b] to analyze the Bitcoin protocol, where
the parameter r depends on the miner hashing power and the difficulty level

31



of the crytopuzzle, and the abstraction discussed by Decker and Wattenhofer
in [DW13] where an exponential distribution approximates the probability of
delivering blocks across the Bitcoin network within t time units. When a CTMC
state has several exiting transitions, e.g. the above state x=1, then the probability
of choosing one transition depends on the rates of the corresponding transitions
– this is known as race condition. For example, if r1, · · · , rn are the rates of
transitions exiting from a state s (and entering on pairwise different states), then
the probability of taking a transition with rate ri is ri/R, where R= r1+ · · ·+rn.
In this setting, the probability of moving from s in t time units is 1−e−R·t . Since,
in Markov chains, the events are independent from the previous events in the
history (the Markov property), the probability of reaching a state in a given time
t is a function of the product of the probabilities in the intermediate states (this
function is not simple because one has to consider all the possible partitions of t
and all the possible paths to reach the state from the initial step).

In the PRISM framework, properties of CTMC models are expressed in Con-
tinuous Stochastic Logic (CSL) [Azi+96; Bai+00; Bai+03], which is an exten-
sion of temporal logic with a probabilistic operator. In particular, in chapter 7
we will analyze formulas of the form P=?[F<=t property] that return the
probability that the property is true in a state of the model within t time
units (starting from the initial state). For example, if we want to express the
probability that the two-items queue is “full” within t time units, we will write
P=?[F<=5 "full"]. To compute this probability, PRISM performs Statis-
tical Model Checking. That is, since models may bear infinite sets of paths (in
general and in this case, in particular), PRISM does not perform an exhaustive
exploration of the state-space. Rather, it imposes a maximum path length to
avoid the need to generate excessively long paths and returns the probability of
the formula in the finite model. The core idea of the approach is to conduct some
simulations of the system, monitor them, and then decide whether the system
satisfies the property or not with some degree of confidence. All the simulations
in this thesis have been driven with a Confidence Interval (CI) method for Statis-
tical Model Checking that gives an approximate value for a P=? property based
on a confidence level and the number of samples generated. For instance, if we
compute the probability that the two-items queue is ”full” within 5 time units in
PRISM with the CI method, we obtain that P=0.957.
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Chapter 3

BlockchainVis Suite

In this chapter we describe the BlockChainVis1 Suite: a suite of tools mainly
dedicated to the visual analysis of flows of Bitcoin transactions, but also to other
connected activities.

Following the popularity of Bitcoin [Ant14; Nak08a], also other cryptocur-
rencies have experienced a massive increase in acceptance/use (e.g., Ethereum [But+13],
Litecoin2, Ripple3, Monero4). Hundreds of new cryptocurrencies (coins and to-
kens) have been offered to the market, currently reaching slightly less than two
thousand proposals. Cryptocurrencies are no longer relegated (only) to darknet
markets5 or technology enthusiasts. Still, they are nowadays a matter of discus-
sion and investment products known by a large part of the population who has
access to ICT. However, due to the pseudo-anonymity offered to users, Bitcoin
payments have also become an attractive and frequently used means for collect-
ing money from illegal activities perpetrated by criminals. For instance, Bitcoin
payments are requested by most of the last ransomware, as WannaCry [BPS18]
and Petya6. Other activities are represented by demanding payments for illegal
services/goods, as software exploits or Ransomware-as-a-Service (RaaS) target-

1http://blockchainvis.dmi.unipg.it/.
2https://litecoin.org/it/.
3https://ripple.com/.
4https://www.getmonero.org/.
5Commercial Websites that are only reachable through overlay networks implemented by com-

munication anonymisation projects as Tor or I2P.
6https://tinyurl.com/petyaRamson.
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ing a desired victim. A new frontier could be the use of cryptocurrencies as tax
heavens.

BlockChainVis aim to help analyse all such scenarios in deep. At a first step,
the tool highlights transaction islands, i.e., the sub-graphs disconnected from
the super-graph, which represents the whole blockchain. Then it is possible to
apply further filters on, e.g., the interval of dates, blocks, transaction values, or
number of addresses used in transactions, using Visual Analytics (VA) [WT04]
techniques. Such views highlight specific nodes (e.g., roots and leaves of flows,
or miners) and exclude useless and confusing information: e.g., transactions
representing changes can be hidden.

BlockChainVis is dedicated to the visual analysis of flows of bitcoin trans-
actions. Since the blockchain is an example of Big Data, a straightforward vi-
sualisation in its entirety is not very significant. Hence, we have exploited some
techniques from VA to filter out undesired information, with the purpose to ob-
tain a forensic-tool to efficiently and visually analyse the blockchain and help
investigations.

In this chapter, we also show how BlockChainVis [BS17] (Section 3.3) vi-
sualises all the Bitcoin transactions that have as output one of the addresses
ascribed to the ransomware WannaCry. Thanks to their visualisation, we can
immediately understand the structure of WannaCry transactions and draw in-
teresting properties, besides retrieving the whole amount of money transferred
to them. The chapter is organised as follows: Section 3.1 shows the whole ar-
chitecture of BlockChainVis, a suite of different software tools whose aim is to
facilitate the analysis of bitcoin flows and let the forensic scientist extract and
visualise useful insights on target (pools of) addresses. In Section 3.2 provides
details on the VA techniques used to visualise only needed information. Sec-
tion 3.3 shows three case-study from the real-world. Section 3.4 presents the
addresses scraper. Finally, conclusions and future work (Section 3.5).

3.1 Architecture

BlockchainVis Suite [BS17; BPS18; BMS18a] is a suite of different software
tools, whose aim is to facilitate the analysis of bitcoin flows, and let the foren-
sic scientist extract and visualise useful insights on target (pools of) addresses
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Figure 16: BlockchainVis Suite architecture.

and transactions. The BlockChainVis architecture is designed to accommodate a
modular and expandable framework with the purpose to build complex applica-
tions for the forensic analysis of the Bitcoin blockchain. Figure 16 summarises
the suite. We have three modules (Bitcore node, addresses scraper and TradeBit-
coin) that retrieve different data from the web and store them in some DB. Then
the last two modules use this data to analyse and visualize the information. The
module TradeBitcoin, which analyse arbitrage possibility in the Bitcoin market,
will be presented in chapter 6. Instead, the module Transaction information that
studies bitcoin transaction type and scripts is described in chapter 4. Finally,
consensus analyser is a module to evaluate the properties of consensus proto-
cols. It is described in chapter 7. More details on the used technologies are in
Appendix A.1.

In Figure 17 we focus on the Visualizer work flow. The Bitcore node gets the
blockchain data from the network and inserts them into the database parsed for
the visualization. In particular, BlockChainVis is a client-server Web application
(see Figure 18). It consists of a back-end (server-side) and a front-end (client-
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side). After some initial attempts, we discarded the idea to use a block-explorer7

because of their current limitations (traffic volumes and omission of some infor-
mation). Therefore, we opted for Bitcore as “full node”8 Bitcoin client. The raw
blockchain can be queried by using Insight API [Red11], and the result is pre-
sented to the user as a JavaScript Object Notation (JSON9) file, which is a simple
text-document where the basic structure is a set of name-value pairs and an or-
dered list of values. For example, the Bitcore API call getrawtransaction having
a hash as parameter, allows for receiving all the information about a transaction;
for instance, its block number, all the inputs and the outputs, the number blocks
following in the blockchain (i.e., confirmations).

The tool downloads the entire blockchain in the back-end as a first step. The
second step consists in extracting the desired information from the blockchain
to populate the database. The DB makes the retrieves of information from
blockchain easier and faster. A DB also allows us to create our queries to search
for specific information. As database we use PostgreSQL (see Appendix A.2 for
more information on the DB structure). The PHP script that populates the DB
is getBlock.php, which takes as input a range of blocks. Starting from the first
block, by calling the API offered by BitCore, the script extracts all the informa-
tion related to it (the result of the invocation is a JSON file) and encodes it in
a PHP object to better handle it. Then, the Coinbase (the first transaction in a
block, which generates new bitcoins as a reward) and all the other transactions
are added to the database. At the end of the scan, the script generates a report

7Websites that allows for reviewing information about the blockchain by using dedicated Web
services.

8Full nodes download every block in the blockchain, currently more than 200Gb of raw data.
9http://www.json.org.
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message and switches to the next block.
PHP and Python scripts are also used to operate on the PostgreSQL database

to serve requests from the client application: the extracted information is then
translated to JSON. In addition, we store these JSONs in the MongoDB database
to use them as cache and do not recreate every time the same one and speed up
the process. More information and details on the control panel to create and
manage this JSONs are in Appendix A.3.

3.2 Visualizer

Big Data analytics examines large amounts of data to uncover hidden patterns,
correlations and other insights. The blockchain can be considered as Big Data:
by the end of February 2022, the blockchain contains over than 1 billion trans-
actions, for more than 200Gb.
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Being VA task-oriented [WT04], we have identified nine main tasks: i) find
miners; ii) find transaction sources and understand how they are connected; iii)
find the main addressees of transactions; iv) find the “richest” and “poorest”
addresses; v) find the addresses with a break-even budget; vi) find bitcoin flows
from an arbitrary address; vii) find bitcoin flows from a set of different addresses;
viii) filter the blockchain on intervals of time or block identifiers; ix) filter the
blockchain on specific transaction amounts of bitcoins, or on their number of
involved addresses.

To reach such tasks, in the initial window it is possible to select among three
different kinds of visualisation: Single Transaction, Address Transactions, and
Archipelago. The first view allows for manually inserting the hash of one de-
sired transaction, and then the tool shows the input addresses (in the following
mentioned simply as “inputs”) and the output addresses (in the following, “out-
puts”) as a graph as in Figure 23(a). The second option is the dual of the former:
it is possible to type in an address and the tool shows all the transactions that
have such address as output, and all the inputs of these transactions. Hence, the
first two options offer a more targeted view: the user already has some initial
information.

Figure 19: (a) The whole Bitcoin archipelago, and (b) by keeping only islands with
2-10 miners (min-max).

The Archipelago view is the third and most challenging one: it displays all
the islands of the archipelago of Bitcoin transactions. An island is a connected
component of a graph, where each couple of nodes is connected through a path,
and each of the nodes is not connected to any other vertex of the super-graph.
Using the DB described in Appendix A.2, a bipartite graph of addresses and
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Figure 20: Duration of Bitcoin transaction island.

transactions is created using the transaction’s inputs as edges. In this graph
(archipelago), we found 38,838 distinct connected components (island). Fig-
ure 20 shows islands’ distribution over times and their number of transactions.
Every line represents a transaction connected component. Its length makes us
understand the duration along time. The darkest colour represents a greater
number of transactions. We can see that almost the totality of transactions is
contained in only one island. It is also distributed along with all the blockchain
history. The second island has just 391 transactions, but in a short period (from
March 2010 to July 2010). Instead, more than 38,800 islands contain just one
transaction. Notice that the yellow points between January and October 2009
are due to the coinbase created by “Satoshi Nakamoto” and never spent.

In Figure 19(a) we show such archipelago for the block interval 1-111,111,
which is made by 1,700 islands.10 As it can be seen from Figure 19(a), the
number of islands is too large to be useful. For this reason we have created four

10For the sake of testing, at the moment only the first two years of transactions are available to the
public, until 2011-02-28.
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slide-bars, each one operating on a different data-filter:

• A block-interval filter, by date or by height position (from-to) in the blockchain.
Only the transactions in such blocks are visualised in the archipelago.

• A filter on the number of transactions: only the islands with the specified
minimum and maximum number of transactions are shown.

• A value-based filter: it specifies the minimum and maximum amount of
bitcoins considering all the transactions of a single island (i.e., their sum).

• A filter on the number of miners: it specifies the minimum and maximum
number of miners in each visualised island.

Figure 21: Time based visualisation.

In Figure 19(b) we lighten the visualisation w.r.t. Figure 19(a) by only show-
ing islands with 2-10 miners. We obtain 354 islands (20% of the total): most of
the islands only have one miner. We can visualise the Archipelago along time, as
shown in Figure 21. In particular, instead of seeing the islands as nodes, we see
them as time bars. The left position is the data of the oldest transaction on the
island. On the contrary, the right one is the data of the most recent transaction
of the island. This visualization is similar to the one in Figure 20.
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Figure 22: Summary of island statistics panel.

Figure 23: An example (a) of an island as visualised by BlockChainVis. Larger
nodes are addresses, and smaller ones are transactions. The darker larger node has
a higher (incoming) budget. In (b) we filter (a) by keeping only transactions in the
first half of the block interval considered in (a).

By clicking on any island of the archipelago, a summary of its statistics pops-
up (Figure 22). It is possible to enter into an island and visualise all its transac-
tions. However, it is also possible to pre-filter the transactions before visualising
them. The visualisation employs an oriented graph: a node can represent either
a transaction or an address, and each transaction may have 1-n outgoing edges
and 1-n incoming edges (see Section 2.1). The graph is bipartite: transactions
can only be connected to addresses, and vice-versa. An example directly taken
from BlockChainVis, is provided in Figure 23(a). Larger nodes are addresses:
they are lighter if their budget is balanced (bitcoin inputs equal to outputs). The
colour of address nodes gets darker as their budget moves from balance: the sink
of all the transactions in Figure 23(a) receives 750B as input, without any output.
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Figure 24: The three slide-bars of the filter panel.

Smaller nodes represent transactions, and their colour is darker if the amount of
transferred bitcoins is larger.

As for the archipelago view, even the visualisation of a single island can con-
tain too much information to be useful: three slide-bars can filter out undesired
information (Figure 24):

• A block-interval filter by height position in the blockchain. Only transac-
tions in such a block interval are visualised.

• A value-based filter: expressed as a min/max interval, it hides all the trans-
action whose value is outside this range.

• A balance-based filter: expressed as a min/max interval, it hides all the
addresses whose balance (sum of the inputs minus sum of the outputs) is
outside this range.
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Figure 25: An example of filter application on (a) the initial graph: (b) by highlight-
ing miners, (c) hiding coinbase transactions (rewarding the miners), (d) highlighting
leaves, (e) applying a transaction-value interval, (f) showing only roots, (g) visual-
ising paths (most of the two-colour nodes are the same roots in (f), the others are
the leafs), (h) combines b and f together (darker nodes highlight the same miners in
(b)), (i) focuses on a given transaction.
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As an example, in Figure 23 we show (a) an island and (b) the same island
with only the transactions in the first half of the block interval considered for (a).
Besides the previous main filters for islands, BlockChainVis has some secondary
filters to i) show only the roots of an island, ii) only the leaves, iii) hide the
transactions with a fee, iv) collapse binary transactions, and v) collapse changes:
with iv) we hide the nodes that represent the transactions with only one input
and only one output, while with v) we hide the transactions that return a change
to the same address. The effect of some of the implemented filters is shown in
Figure 25.

Moreover, by clicking on an island in the archipelago view, a tooltip (or in-
fotip) appears to show numerical information related to the selected island. The
tooltip reports the number of transactions, the total amount of bitcoins trans-
ferred in all the considered transactions, the number of miners, the time interval
between the first and the last transaction. A tooltip is also available for addresses
and transactions. For a transaction the tooltip reports the hash, the timestamp,
the transferred value, the fee for the miner, the number of inputs and outputs.
For an address node, the information consists of its hash, its name (if any), the
amount received and sent from this address, its balance, and the number of in-
puts and outputs. Moreover, by clicking on a transaction or an address, all the
incoming and outgoing edges are automatically coloured in respectively blue
and red, in order to understand the extent of their in/out-degree.

Finally, there is the possibility to select an address (or a group of them),
and then to show all the paths departing from it and reaching the leafs of an
island, immediately highlighting the bitcoin flows from these addresses. It is
also possible to restrict only to paths with a desired number of hops (e.g., 2);
this is accomplished by typing in the number of hops and then pushing the button
Show Paths. The graph is visited through a Breadth-first search (BFS).

We want to stress that all the views presented in this subsection are in real-
time, i.e. there is no delay in using them and their filter. This is possible since
we pre-calculate all the information necessary to draw the graphs. Following
the idea in [BBT18] we create a connected components DB (see Appendix A.2
for more details). This DB allows us to calculate the blockchain archipelago
in a brief amount of time (around two days). This efficiency in the archipelago
computation is due to a small data storage, i.e. we store only a compressed
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version of the transactions ID and his output and addresses, according [BBT18].
We use the lower 63 bits of the transaction ID as a vertex ID for a transaction
instead of 254 bits of the traditional transaction ID. Having this graph is very
helpful in creating the views for the module. In fact, using this DB is very
simple to get the flow (addresses transaction path) of a specific address we want
to analyze in the visualizer module. We need around six hours to create a view
with 100 counting both transactions and addresses, more than one day if we have
1000 among transactions and addresses.

Figure 26: Visualizer drop-down menu.

3.3 Case Study

This section shows two real use from the blockchain. It is possible to find this
view using the menu of the visualizer in Figure26. The first one shows how to fil-
ter transactions that connect two addresses, the second how to track Wannacry’s
flow.

3.3.1 Studying a pattern

In the first case, we select a pattern, which is interesting to be studied due to
its huge amount of transactions. In particular, we show how easily we have
managed to spot a set of 15,964 transactions that correspond to only two flows
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exchanging bitcoins between two addresses.

Figure 27: From the full visualisation of an island (top-left), to the only two ad-
dresses involved in all the transactions (bottom-right). First, all changes and binary
transactions are collasped to discover a single leaf. Then, all the root-to-leaf paths
are extracted.

In Figure 27 we start by considering all the information contained in an is-
land (top-left); this image directly reports a screenshot of BlockChainVis. In-
deed this screenshot is not very informative since it shows 15,964 transactions,
with a total value of 1,266B. However, by applying different filters, the situa-
tion becomes much clearer: the top-right screenshot is obtained from the first
one by both collapsing binary transactions and changes (see Section 3.2), and by
highlighting the miners (only one in this island), the roots, the leaves, and the ad-
dresses with a null balance. By doing this, we immediately see that the number
of visualised transactions drops, and that the island contains only one leaf node.
The next step consists in visualising only the paths that end to this leaf address:
we select this node and we click on Show Paths. The result is represented in
the bottom-left screenshot in Figure 27; since we have outputs and changes still
collapsed, each path is aggregated as a single transaction. If we filter out also
such transactions we obtain the last screenshot in Figure 27 (bottom-right). It is
now very easy to see that all the involved transactions exchange money between
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only two nodes.

3.3.2 CryptoTorLocker2015

CryptoTorLocker2015 is a ransomware that, once installed, will scan the sys-
tem and lock all data files and shortcuts. What is specific about CryptoTor-
Locker2015 is not intelligibly by design. In fact, it generates a messy message
that said: “Your important files strong encryption RSA-2048 produces on this
computer:Photos,Videos,documents,usb disks etc.Here is a complete list of en-
crypted files,and you can personally verify this.CryptoTorLocker2015! which
is allow to decrypt and return control to all your encrypted files.To get the
key to decrypt files you have to pay 0.5 Bitcoin 100$ USD/EUR. Just after
payment specify the Bitcoin Address.Our robot will check the Bitcoin ID and
when the transaction will be completed, you’ll receive activation,Purchasing
Bitcoins,Here our Recommendations 1. Localbitcoins.com This is fantastic ser-
vice,Coinbase.com Exchange,CoinJar =Based in Australia,We Wait In Our Wal-
let Your Transaction WE GIVE YOU DETAILS! Contact ME if you need help
My Email = information@jupimail.com AFTER YOU MAKE PAYMENT BIT-
COIN YOUR COMPUTER AUTOMATIC DECRYPT PROCEDURE START!
YOU MUST PAY Send 0.5 BTC To Bitcoin Address:
1KpP1YGGxPHKTLgET82JBngcsBuifp3noW”.

It also displays a wallpaper unskillfully put together along with payment ad-
dress and XOR encryption. Nathan Scott, a malware analyst from Florida, has
discovered that it is possible to bypass the password to decrypt the files11. Our
research visualises the money flows associated with the CryptoTorLocker2015
Bitcoin address, i.e. where to send the ransom in Figure 28). CryptoTorLocker2015
money flow. The first thing we notice is that the address received just one trans-
action of 0.5B, the price of the ransom. In particular, using a path filter (Fig-
ure 29), we can see that the other five input transactions are less than 0.3B.
Two of them are also output transactions, where the CryptoTorLocker2015 ad-
dress is used as change. Digging into these two transactions, we can see that
one sent value to another address; the other, instead, received value from an-
other address. The two addresses involved in these two transactions belong

11https://sensorstechforum.com/remove-cryptotorlocker2015-and-restore-the-encrypted-files/
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Figure 28: CryptoTorLocker2015 address (in purple) income.

Figure 29: CryptoTorLocker2015 address after (in purple) path filter.
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to SatoshiDice12.SatoshiDICE is a ”blockchain-based betting game” operating
since 2012. In 2014, off chain session-based bets were also made available.
Unlike traditional online gaming software, wagers with SatoshiDice can be sent
without access to the website or running any client software. To play, a Bitcoin
transaction is made to one of the static addresses operated by the service, each
having differing payouts. The service determines if the wager wins or loses,
sends a transaction in response with the payout to a winning bet, or returns a
tiny fraction of the house’s gain to a losing bet. As a result, the game spams
the p2p network and blockchain with useless data. SatoshiDice forces players to
pay a transaction fee on each result so the spam will flood the p2p relay network
and the blockchain successfully13. On the left side of Figure 28 we can see all
the traffic of SatoshiDice connected with CryptoTorLocker2015. In particular,
we saw that the owner of CryptoTorLocker2015 spent all the ransom (more than
5B) gambling on SatoshiDice. So he/she did not keep the money.

3.3.3 WannaCry

WannaCry (also known as WannaCrypt, WanaCrypt0r 2.0, Wanna Decryptor)
is a ransomware computer worm that targets the Microsoft Windows operating
systems family. It was initially identified on Friday, May 12th 2017, and it
has infected over 200,000 machines in over 150 countries14. On the same day,
a security researcher observed traffic from a copy of WannaCry he was test-
ing led to an unregistered domain, halting the spread of the virus. He ended
the virus by registering emphiuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com,
a “kill switch” to control it15.

WannaCry wants a $300 bitcoin ransom at the time of infection, which rises
to 600 dollars after three days. Data will be permanently unrecoverable after
seven days without payment. This ransomware encrypts practically every essen-
tial file type that a user might have on her computer, including png,.zip,.jpg,.docx,
and.rtf. WannaCry takes advantage of a flaw in Microsoft’s implementation of
the Server Message Block (SMB) protocol to get control of the target and infect

12https://satoshidice.com.
13https://en.bitcoinwiki.org/wiki/Satoshi_Dice.
14https://blog.kaspersky.com/wannacry-ransomware/16518/.
15http://tinyurl.com/k7ea9y2.
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Figure 30: Wannacry address 13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94 in-
come.

it (as well as encrypt the data of the victim).
Our research visualises the money flows associated with the top three known

WannCry Bitcoin addresses by incoming budget, where a victim is needed to
send the ransom.16 We show these flows in Figure 33, where we filter out all the
blocks outside of the range 465960-466949, or all transactions mined between
2017-05-12 00:21:05 and 2017-05-18 09:42:34. Furthermore, we filter out all
transaction inputs to focus solely on ultimate value destinations. The transac-
tions that concern such three addresses (at the centre of each image) are high-
lighted in Figure 30, Figure 31, and Figure 32, i.e., all transactions for which
one of the outputs is one of these three addresses. All three incriminated ad-
dresses are highlighted in the same image in Figure 33(bigger nodes). Smaller
dark nodes represent transactions in such images, which were collected using
BlockChainVis (see Section 3.1). All larger and lighter nodes represent the in-
volved addresses of such transactions.

During the first week, 17.247 + 16.037 + 11.518 = 44.802Bwere sent to

16Addresses: https://github.com/GregorSpagnolo/WannaCrypt.
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Figure 31: Wannacry address 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw in-
come.

Figure 32: Wannacry address 115p7UMMngoj1pMvkpHijcRdfJNXj6LrLn in-
come.
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Figure 33: Highlighting the three addresses in Figure 30.
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these three addresses. Because of the extreme volatility of Bitcoin in 2017, we
do not provide amounts in dollars or euros. The total number of inputs that all
three are concerned with is 110+96+82 = 288.

We find some significant features in the flows given in Figure 33. First, the
majority of the transactions have only one output to one of the three incrimi-
nated addresses (no payer splits the ransom among them), where they transfer
a number of bitcoins that is very close to 300$ or 600$ at the time (i.e., pre-
cisely what WannaCry requested): between 0.15Band 0.18B(respectively, 0.3B-
0.36B). Only one of the 288 transactions (for the address in Figure 31) paid a
more considerable ransom: 1.99B, which corresponds to 11 infected machines,
according to the analysis.

Instead, looking at the entire history up until two weeks after the diffusion
(May 26th), we can see that i no transaction is dated before May 12th, and ii
there is still no outbound transaction at the moment (also visible in Figure 33
for the first week): the ransom funds are still unspent. Furthermore, the num-
ber of input transactions grows from 288 to 333 in the second week, with only
new 45 transactions, and the total balance of the three nodes increases from
44.802Bto 50.14B: 89% of the ransoms has been collected during the first
week. Considering these 333 transactions, 177 transfer [0.1,0.2)B, while 41
move [0.3,0.4)B as ransom. The second group is concentrated in the last three
days of the study period, implying that victims who paid after three days paid
twice the ransom, exactly as WannaCry instructed (unless those few cases where
they paid for two infected machines). Furthermore, 85 of these 333 transactions
are less than 0.01B(∼ 2$ at the time). As a result, we estimate that no more
than 333− 85 = 248 victims paid the required ransom in the first two weeks,
focusing on the three addresses identified. We hypothesise that a large number
of low-value transactions will accumulate payment mistakes or first tries, hidden
messages (see below), or simply the desire to be included in such a list.

Some transactions in Figure 33 have a significant number of outputs, visu-
ally comparable to “flowers with many petals”; for example, in Figure 33, there
are 12 of such many-output transactions, the largest of which has 246 outputs.
Most of these outputs receive fewer bitcoins for all of the 12 “flowers,” while
few addresses receive more than the ransom. If we investigate the largest of
them, it moves a total amount of 147.83B, but 144 addresses (out of 246) re-
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ceive less than 0.1B. Six of these receivers are owned byPoloniex.com17, a cryp-
tocurrency exchange and lending service provider situated in the United States.
Some other addresses refer to different betting, investing, or wallet services, e.g.
Cubits.com18.

A second characteristic is the presence of three addresses (pointed by arrows
in Figure 33) that are a common output of two/three different transactions used
to pay a ransom. One of them belongs to Poloniex.com. The second address is
linked only to the two transactions used to pay two ransoms, and has a low un-
spent budget (0.45B). The third address has been involved in 1,073 transactions
and received more than 169B (with a current null balance): the last transaction
is towards an online gambling platform.

A third feature observable in Figure 33 is a set of 9 transactions (grouped
by an ellipse) that moved some bitcoin to all the three WannaCry addresses.
However, such sums are less than 1$ and do not correlate to the amount owed
for a ransom. Seven of these transactions (out of 9) include a fourth output
(one additionally has a fifth); these addresses are inside a rectangle in Figure 33.
These are messages sent to WannaCry addresses in order to gain high awareness.
Although only five have a single input address, all 5 addresses begin with the
string “1DoDiK”. Another transaction has four input addresses, each containing
a portion of an insult, such as “You are a ****.” A transaction has two inputs
whose sub-strings advertise a different crypto-currency: “Use ****”.

Finally, the number of victims still paying the ransom drastically reduced af-
ter May 16th: e.g., only two transactions have an incriminated address as output
on May 25th.

3.4 Bitcoin Addresses Scraper

The Bitcoin addresses scraper19 crawls the Web for Bitcoin addressees to be
associated with real users, or to Web URL. The aim is to fully de-anonymise
addresses where possible. Figure 34 shows the Scraper workflow. The tool gets
addresses info from the network and inserts them into the Bitcoin database. The

17https://poloniex.com.
18https://cubits.com.
19http://scraping.dmi.unipg.it/ci.
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Internet Bitcoin
DB

Bitcoin addresses 
scraper

Figure 34: Addresses Scraper architecture flow.

Figure 35: Addresses Scraper DB structure.

DB structure is based on seven tables (Figure35):

• Table Addresses has two columns: id is the incremental number of the
rows (it is in all tables), address, instead contains the address name.

• Table Information has all the address info related to different forums. Here
the column name represents the address information connected to the spe-
cific websites. id Address is the link to the id in table addresses.

• Table Pages contains the info of scraped web pages: Path has the path
of the saved web pages; Title and Content are the website title and his
content; id Website is the link to the table website.
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• Table Websites contains Host that is the URL of the sites.

• Table Presences has a row for all addresses found on websites: id Address
is the link to the id in table addresses, id Page is the link to the table Pages,
LastSeen has the timestamp of the scraping date.

• Table Archives has the info of the saved pages: id Page is the link to the
table Pages; Date has the timestamp of the save date; Filename is the
saved file name.

We use a set of scrapers [SMZ14a] that crawl specific data form Web sites
connected to the Bitcoin world:

• user-names on Bitcoin Talk20 forum and Bitcoin-OTC21 marketplace;

• physical coins created by Casascius (https://www.casascius.com) along
with their Bitcoin value and status (opened, untouched);

• known scammers, by automatically identifying users that have significant
negative feedback on the Bitcoin-OTC and Bitcoin Talk trust system.

• name tags on blockchain.info22, e.g., “Wannacry ransomware 1”.

The tool helps users build lists of gambling addresses, online wallet ad-
dresses, mining pool addresses, and addresses which were subject to seizure
by law enforcement authorities. All these addresses are entered in the database
and they are used to de-anonymise further addresses.

This module allows us to search Bitcoin addresses from the web, using the
power of the Bitcoin scraper module. It is possible inserting a URL in the web
panel. Then the module will search for all addresses in the chosen URL and all
the links present on the web page.

Figure 36 shows the integration between the Scraper and the Visualazier.
Clicking the button info in the visualizer is possible see the information of the
scraped addresses.

20https://bitcointalk.org/.
21https://bitcoin-otc.com/.
22https://blockchain.info/tags.
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Figure 36: Visualizer info generated by addresses scraper.

3.5 Conclusions

In this chapter, we have presented BlockChainVis, a suite of tools for flows
of bitcoins. The main goal is to, given a specific task, filter out not interesting
information, in order to better analyse: the Bitcoin blockchain, cluster addresses,
identify mixing services, visualise information about transactions, and allow for
using scripting languages.

We want to stress that all the views presented in this subsection are in real-
time, i.e. there is no delay in using them and their filter. This is possible since
we pre-calculate all the information necessary to draw the graphs. Following
the idea in [BBT18] we create a connected components DB (see Appendix A.2
for more details). This DB allows us to calculate the blockchain archipelago
in a brief amount of time (around two days). This efficiency in the archipelago
computation is due to a small data storage, i.e. we store only a compressed
version of the transactions ID and his output and addresses, according [BBT18].
We use the lower 63 bits of the transaction ID as a vertex ID for a transaction
instead of 254 bits of the traditional transaction ID. Having this graph is very
helpful in creating the views for the module. In fact, using this DB is very
simple to get the flow (addresses transaction path) of a specific address we want
to analyze in the visualizer module. We need around six hours to create a view
with 100 counting both transactions and addresses, more than one day if we have
1000 among transactions and addresses.
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Chapter 4

Non-standard Transactions

In this chapter we investigate standard and non-standard transactions in the Bit-
coin blockchain. Transactions are standard if they pass the controls implemented
in the reference Bitcoin-node software, i.e., Bitcoin Core1. Our interest is mainly
focused on non-standard ones, of which we provide a classification in nine dif-
ferent types, extending some previous analysis for Bitcoin2 [BMS18b] and in a
manner similar to what done for Ethereum [Bis+19a].

The main motivation behind this chapter is to provide an updated and com-
prehensive snapshot of standard and non-standard transactions from Bitcoin ori-
gins until today. In particular, the goal is to understand what and how partial
compliance to the Bitcoin protocol or flaws has been exploited so far, acciden-
tally or not. Hence, we can evaluate the errors and misuses accepted by some of
the miners in the network. The main result is that only the 0,02% of transactions
is non-standard (2009 - November 2018). In addition, the study presented in this
chapter addresses further general questions. For example, there is no particular
miner pool that validates only some specific classes of non-standard transac-
tions: all pools that deviate from the standard behavior accept these classes. We
also saw that only 2,615 bitcoins (out of more then 17 million in circulation)
were definitely “burned” (i.e. made no longer spendable) due to non-standard
transactions.

1https://bitcoin.org/.
2https://tinyurl.com/bytestxsurvey.
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The chapter is organized as follows: Section 4.1 shows the non-standard
transactions that we found in the blockchain, and related statistics; Section 4.2
shows the statistics of standard and non-standard Bitcoin transactions nested
in P2SH transactions, focusing on non-standard ones reported in the literature;
Section 4.3 classifies OP RETURN transactions by their byte size, and it also
presents related statistics. Finally, Section 4.6 draws the final conclusions and
proposes ideas about future work.

4.1 An Analysis of Bitcoin transactions

In this section we describe standard and non-standard transactions in the Bitcoin
blockchain, by reporting statistics on their number and frequency with the pur-
pose to have a clear view on their “popularity” and acceptance. To accomplish
such an analysis we take advantage of a Bitcoin Core node, which we used to
fill a PostgreSQL Database3 in which we have stored all the blockchain blocks
up to number 550,000: until November the 14th 2018. Such a tool is part of the
BlockchainVis Suite [BMS18a].

4.1.1 Standard Transactions

Considering the first 550 000 blocks in the blockchain, there are 356 588 805
transactions that generate a total of 968 098 854 outputs, of which 910 274 680
have been spent (94,03%). These include 967 874 499 standard transaction out-
puts (99,98% of the total number of outputs). Hence, non-standard transaction
outputs are only the 0,02% of the total.

In Figure 37 we show the distribution of standard transactions. As intro-
duced before, the most common class is represented by P2PKH transactions,
since they are the default ones in the Bitcoin client. The P2SH scheme is the
second mostly frequently used class of transactions, with almost 150 million
outputs. Interestingly, the number of P2SH and OP RETURN transactions has
considerably increased if compared to the data from early 2018 [BMS18b]. In
Figure 37 we see that the most used M-of-N multi-signature class corresponds
to the scheme 1-3, with 58% of all the multi-signature transactions. The second

3PostGreSQL: https://www.postgresql.org.
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Figure 37: Distribution (number of occurrences in blockchain) of standard transac-
tions (left) and distribution of Multi-signature transactions (right).

most used scheme is 1-2, with 41%. We found also: 38 repetitions of 3-3, 3
repetitions of 0-1, only one 1 transaction in the form 3-5, 1 in 1-9, and, finally, 1
in the 9-9 form.

Figure 38: Evolution over time of the output type used in coinbase transactions.

Figure 37 shows the distribution over time of the output type used in coin-
base transactions. P2PK was the most used until July 2012, then they started use
the P2PKH (see Figure 38). Since 2017 the most used output in a coinbase trans-
action is the OP RETURN, which is a provably unspendable (see Section 2.1.5).
This coinbase transactions have some P2PKH outputs in order to pay the min-
ers and some OP RETURN outputs, which do not carry bitcoin (the value of
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the outputs is 0 B). These OP RETURN outputs are related to Segregated Wit-
ness4 (SegWit) implemented soft fork: They are linked to the Merkle root of the
witness tree. The SegWit needs an extended blockheader, but the blockheader
cannot be extended without a hardfork, so segwit blocks commit to this witness
tree by including the root in an OP RETURN in the coinbase transaction5.

4.1.2 Non-standard Transactions in blockchain

Transactions are validated through isStandard() and isStandardTx() func-
tions in the Bitcoin Core reference implementation. In case they do not pass
such tests, they are simply discarded. However, some transactions that deviate
from the standard enforced by Bitcoin Core can be mined as well: these trans-
actions can be issued in the blockchain thanks to miners that relax these checks
enforced by such control functions, as for example Eligius6. Non-standard trans-
actions use more complex script forms, represent challenges, or just result from
bugs. Their singularity comes from non-standard inputs or outputs.

Correctly validating non-standard transactions can make the creation of fu-
ture transactions harder for two different reasons:

1. Some scripts might cause harm to the network.

2. Some scripts might make future upgrades harder.

Concerning the first reason, the non-standard transaction check was first im-
plemented by Nakamoto before P2SH existed, so it could not be so easily cir-
cumvented. This gave developers time to better analyze the script language and
fix problems with the remaining opcodes: e.g., in some cases7 it was possible
to create a transaction that took five hours to be verified. However, even if the
scripting language is perfectly safe, each script has to be stored by every full
node until it is spent as part of the UTXO database. Since a locking script is lim-
ited to 10,000 bytes, this means that an attacker can add up to 10 KBytes to the
UTXO set for every output he creates, potentially quickly adding enough data to
degrade performance enough that the rate of stale blocks (orphan blocks) mined

4https://en.bitcoin.it/wiki/Segregated_Witness.
5https://tinyurl.com/RETURNcoinbase
6https://btc.com/stats/pool/Eligius.
7https://tinyurl.com/5hours2verify.
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increases, which would reduce miner profits and encourage them to centralize
further to recover that lost revenue.

Concerning the second reason, there are some opcodes the network does
not want people to use. These are opcodes that might be redefined in the future,
e.g. the OP NOPX opcodes that have been used for soft forks in the past8. Lately,
Bitcoin Core 0.16.1 quit the use of OP CODESEPARATOR in non-segwit in prepa-
ration for another potential soft fork that will reduce some lingering problems
with expensive verification. In those cases, standard transactions forbid both
the scriptPubKey and the redeemScript (P2SH) versions (and, when applicable,
the segwit P2WSH version), thus the easy circumvention is not possible in that
case.9

One of the reasons to include non-standard transaction in the blockchain
could be that miners have a long-term investment in the health of the Bitcoin
Network. If Bitcoin collapses, then their expensive ASICs are worthless. Miners
particularly need bitcoins to remain valuable over the long term because their
hardware produces bitcoins over time. If nobody includes transactions in blocks,
then bitcoins would be useless and therefore worthless. That would impact on
miners long-term investment. If this ever became a problem, transactions would
just wind up with higher fees to encourage miners to include them. Right now,
enough miners include a transaction with a very small fee and there is no reason
in paying more10.

We searched in the blockchain for these particular transactions and we ob-
tained nine patterns of non-standard transactions. We now describe them by
also highlighting the interval of years in which they were confirmed in the
blockchain.
Pay to Public Key Hash 0 [2011]: It corresponds to a distortion of P2PKH,
with the difference that instead of the hash of a pubkey, there is a 0 value.
The locking script is in the form “OP DUP OP HASH160 0 OP EQUALVERIFY

OP CHECKSIG”. These transactions are unspendable because, as P2PKH ones,
in order to verify them a miner needs i) the pubkey corresponding to the hash in
the locking script, and ii) the private key to generate the corresponding signature.

8OP NOP1 became OP CHECKLOCKTIMEVERIFY and OP NOP2 became
OP CHECKSEQUENCEVERIFY

9https://tinyurl.com/non-standard.
10https://tinyurl.com/minerNS.
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However, we know that HASH160 returns a 20 byte long hash: therefore, no key
passed to the hash function can return 0.11 A Bitcointalk thread12 indicates that
this deviation was mainly performed by MtGox. The outputs represent a value
of 2609.36304319 BTC, around 8,000$ at that time (around 20 million dollars
nowadays).

P2PKH NOP [2011, 2014]: This transaction is identical to P2PKH with the
only difference that a NOP (an operation that does nothing) is in the locking
script: “OP DUP OP HASH160 <HASHPUBKEY> OP EQUALVERIFY OP CHECK-
SIG OP NOP”. This transaction was probably used to test the OP NOP operator.
It can be unlocked by a script identical to that of P2PKH.13

OnlyHash [2011-2014]: The OnlyHash transactions are the most numerous
non-standard class in the blockchain. These transactions contain a hash in the
locking script, which is usually the hash of a file for using the blockchain as
a ledger to register documents. Therefore, the security and resilience of the
blockchain system can be used by applications such as digital-note services,
stock exchange certificates, and smart contracts. The blocking script corre-
sponds to “<HASH-OF-SOMETHING>”. These transactions were used before
the introduction of the OP RETURN, which can be used for the same purpose.14

P2Pool Bug [2012]: These transactions are due to a bug15 in the P2Pool16

mining tool between February 2nd, 2012 and April 1st, 2012. Instead of a
plain P2PKH locking script, the following script was added: “OP IFDUP OP IF

OP 2SWAP OP VERIFY OP 2OVER OP DEPTH”. This script does not make any
sense and it is not even valid as the OP IF is not closed by a corresponding
OP ENDIF, hence it is consequently unlockable.17

OP CHECKLOCKTIMEVEIRFY OP DROP (CLTV) [2012]: In this case the
locking script is in the form: “<DATA>OP CHECKLOCKTIMEVEIRFY OP DROP”.

11An example is in the first output of the transaction in https://blockchain.info/it/
tx-index/1793329/1.

12https://bitcointalk.org/index.php?topic=50206.0.
13An example is in output 2 in https://blockchain.info/it/tx-index/629343/

2. The unlocking script is in the input 2 in https://blockchain.info/it/tx-index/
781227.

14For instance output 0 in https://blockchain.info/it/tx-index/2557393/0.
15https://bitcointalk.org/index.php?topic=140097.5;imode.
16http://p2pool.in/.
17See output 1 of https://blockchain.info/it/tx$-$index/2915138/1.
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The OP CHECKLOCKTIMEVEIRFY operator makes the transaction invalid if the
element at the top of the stack is greater than the nLockTime18 field of a trans-
action. In practice, using OP CHECKLOCKTIMEVEIRFY it is possible to make
funds provably un-spendable until a certain point in the future, i.e. it is a way
to freeze funds up to certain future day.19 Therefore, by checking the <DATA>

element against the rules above, we can verify the transaction by using an un-
locking script that inserts TRUE into the stack.20

OP MIN OP EQUAL [2012]: These transactions are related to a script as
“OP MIN 3 OP EQUAL”, which simply needs two numbers corresponding to the
equation x ≤ y∧ x = 3 to be verified. Hence, to unlock it is possible to prepare
an unlocking script as “3 4”. We can see this transaction as a proof of how an
equation can be used to generate a Bitcoin transaction. This means that anyone
can easily unlock such a transaction without any private key.21

Pay to Hash (P2H) [2012-2015]: These transactions are a simplification of
plain P2SH ones; we have a blocking script identical to P2SH, with the dif-
ference that the internal hash does not refer to a redeem script, but it is the
hash of an hexadecimal string: “OP HASH160 <HASH160OFSOMETHING>

OP EQUALVERIFY”. There are two variants, where only the type of hashing
operator changes: one corresponds to HASH256, while the other one to SHA256.
The two blocking scripts are “OP HASH256 <HASH256OFSOMETHING> OP E-
QUAL” and “OP SHA256<SHA256OFSOMETHING> OP EQUAL”. We can con-
sider these transactions as “contest” in the network to find the correct value of
the hash in the transactions.

A P2H cannot be considered a Hash Time-locked Contract (HTLC). A HTLC
is essentially a type of payment in which two people agree to a financial arrange-
ment where one party will pay the other party a certain amount of cryptocur-
rency. However, the receiving party only has a certain amount of time to accept
the payment, otherwise value is returned to the sender. Instead a P2H transaction
is different from a HTLC because it generates a payment that can be accepted

18https://en.bitcoin.it/wiki/NLockTime.
19https://tinyurl.com/freezefunds.
20See output 1 in https://blockchain.info/it/tx-index/3000496/1, and input

1 in https://blockchain.info/it/tx-index/3000536.
21See output 1 https://blockchain.info/it/tx-index/3118220/1, and the veri-

fication in input 1 in https://blockchain.info/it/tx-index/3126754/0 .
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by the receiver without any time-constraint.

These outputs can only be spent by providing data that once hashed (called
hashlock) by a cryptographic function is equal to a given hash.22

The verification step is simple: the hexadecimal string of the hash in the
blocking script is enough to spend the transaction.23

UnLocked (UL) [2015]: This transaction has an empty locking script: it can
be unlocked by simply having TRUE as unlocking script. Almost all of these
transactions carry an amount of 0 BTC, i.e., they are valueless transactions.
Such transactions can be used as a way to donate funds to miners in addition
to transaction fees: any miner who mines such a transaction can also include24

an additional one after sending funds to an address they control.25

OP RETURN ERROR [2016-2017]: These transactions are identical to OP

RETURN, with the difference that there is an error in the script code. The code
asks to push onto the stack a number of opcode higher than what is really in the
code itself. For example an OP RETURN script could ask to insert in the stack
the next 40 bytes in the code, but if there are only 28 bytes, the execution fails.
This transaction is apparently due to a programming error. The locking script is:
“OP RETURN ERROR” (an error is returned).26

OP 2 OP 3 ERROR [2017-2018]: These transactions are similar to OP RETURN

ERROR, but they have no OP RETURN in the script code. As the OP RETURN ER-
ROR, their code asks to push onto the stack a number of bytes higher than what
is really in the code itself. Probably these transactions, like the OP RETURN ER-
ROR, are related to an implementation error. This is the locking script: “OP 2
OP 3 ERROR” (an error is returned).27

22https://tinyurl.com/NSoutput.
23An example is in the output 0 in https://blockchain.info/it/tx-index/

12864193/0, and how it is verified in the input 0 of the transaction in https://blockchain.
info/it/tx-index/12874719.

24https://en.bitcoin.it/wiki/Script#Anyone-Can-Spend_Outputs.
25An example is in output 0 in https://blockchain.info/it/tx-index/

56730867/0.
26An example of it is in output 1 in https://blockchain.info/it/tx-index/

134023577/1.
27An example is represented in output 2 in https://tinyurl.com/txopreturn.
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Statistics for non-standard transactions

Non-standard transactions are 224 355 (0,02%), even if the majority of them, i.e.,
219 174, are unlocked transactions with a 0 BTC value (all of them in year 2015).
This means that they are transactions without blocking scripts, and they do not
carry any value: in practice they are “fake” transactions. Thus, if we do not
consider such transactions, “real” non-standard ones are only 5 181: 0,000 5%
of the total number in the blockchain.

Figure 39: Distribution of non-standard transactions (left) and distribution of their
miners (right).

In Figure 39 we show the distribution of non-standard transactions. Without
considering unlocked ones, OP 2 OP 3 ERROR is the most common class, with
more than three thousand transactions. The second class is the OnlyHash, with
almost one thousand outputs, while the remaining ones have few outputs. In
Figure 39 we show the percentage of non-standard transactions associated with
each miner. In order to identify the miner of a transaction we looked for the
block of this transaction. Then we took the coinbase transaction of the block, in
this particular transaction there is a field called just coinbase where the miners
put their id. We classified the miners according to these tags.28

In Figure 40 we associate the percentage of non-standard transactions: we
found that year 2018 has more than 3,200 occurrences of this kind of transac-
tions, all of type OP 2 OP 3 ERROR. Overall, these non-standard transactions
contain almost 2,615 bitcoins that are no longer spendable.

28https://tinyurl.com/labelpools.
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Figure 40: Distribution of non-standard transactions over time (left) and percentage
distribution of non-standard transactions type over time (right).

4.2 An analysis of Pay to Script Hash

As we introduced before, the P2SH transactions contain the hash of a script
(called redeem script) in their locking script.
In the blockchain there are 149 410 668 P2SH transactions of which 140 620 401
are spent (94,12%). Hence, we decided to analyse the content of the redeem
script inside the unlocking script of the spent P2SH transactions. In the follow-
ing of this section we show the results we obtained.

4.2.1 Standard Transactions in P2SH

Figure 41: Distribution of standard (left) and CLVT transactions inside P2SH
(right).

Like in the blockchain analysis, also inside P2SH transactions the majority of
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the transactions is standard. In fact there are 140 509 279 standard transactions,
which are 99,92% of the total. In Figure 41 we show the distribution of standard
transactions inside P2SH ones. The most frequent class of transactions is not
the P2PKH (only 447), as in Section 4.1, but it is the multi-signature one, with
more than 90 million occurrences (65,7%). The second one is the P2WKH with
almost 35 million transactions (24,6%).

4.2.2 Non-standard Transactions in P2SH

In the redeem scripts of P2SH, we found 111 122 non standard transactions
(0,08% of the total); this amount is four times more than what we obtained when
we “simply” analyzed the blockchain (0,02%). We found several new classes of
non-standard transactions, which are different from previous ones.

OP CHECKLOCKTIMEVERIFY OP DROP (CLVT)

We found five different types of transactions that take advantage of the CLVT
operator, that, as we have already seen in Section 2.1.5, makes transaction prov-
ably unspendable until a certain date. Essentially, it allows users to create a
Bitcoin transaction of which the outputs are spendable only at some point in
the future. CLTV is necessary for properly functional payment channels (e.g.
lightning network). These channels are effectively a series of “off-chain” trans-
actions, that benefit from all the security of typical on-chain transactions, and
with some added benefits.29

One of them is equal to a group of transactions already present in the blockchain:
“<DATA> OP CHECKLOCKTIMEVERIFY OP DROP”.

The second is a P2PK locked with the CLVT operator, and this is the locking
script: “<DATA> OP CHECKLOCKTIMEVERIFY OP DROP <PUBLIC KEY A>

OP CHECKSIG”. This script means it is not possible to use the signature (related
to the public key) to spend this transaction before the date in the script.

The third one is a P2PKH locked with a CLVT operator, this is the script:
“<DATA> OP CHECKLOCKTIMEVERIFY OP DROP OP DUP OP HASH160 < PUB-
LIC KEY A HASH> OP EQUAL OP CHECKSIG”. Then we have the class “<DATA>

29https://tinyurl.com/CLTVboost.
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OP CHECKLOCKTIMEVERIFY OP DROP 1 OP ADD 2 OP EQUAL”, which sim-
ply needs the number corresponding to the equation x+1 = 2∧ x = 1: it conse-
quently waits until the date has expired.

The last one is a P2PKH variant that also needs a further hash to be un-
locked; the locking script is “<DATA> OP CHECKLOCKTIMEVERIFY OP DROP

OP SHA256 <SHA256OFSOMETHING> OP DUP OP HASH160 <PUBLIC KEY

A HASH> OP EQUAL OP CHECKSIG”. As we can see in Figure 41, the most fre-
quently type adopted in transaction is the P2PK one, with almost 1 500 outputs.

OP DROP

This transaction allows for storing some data in blockchain without making
the transaction unspendable. In fact, all these transaction start with <DATA>

OP DROP where <DATA> is what we want to put in blockchain and OP DROP
is the operator that removes the data from the stack in order to make the execu-
tion same as of a standard transaction.

We found four different types of transactions that use OP DROP. The first
type does not need anything to be unlocked, that is the script is: “<DATA>

OP DROP 1”. Then there is the 2−2 multi-signature type “<DATA> OP DROP 2
<PUBLIC KEY A><PUBLIC KEY B> 2 OP CHECKMULTISIG”, which needs the
two signatures to be unlocked, like the normal 2− 2 multi-signature. The third
one is a P2PKH with OP DROP, identified by the “<DATA> OP DROP OP DUP

OP HASH160 <PUBLIC KEY A HASH> OP EQUAL OP CHECKSIG”. Also this
one needs only the signature, as for P2PKH transactions. The last one is an
OP DROP with a P2PK: “<DATA>OP DROP <PUBLIC KEY A> OP CHECKSIG”.
It can be unlocked as a classical P2PK transaction.

In Figure 42 we can see that the most used type is the 2−2 multi-signature
one, with almost 25 000 occurrences. We can say that these transactions are just
standard outputs in disguise, using the OP DROP operator to add data that is
discarded during verification.30

30https://tinyurl.com/NStxoutput.

69

https://tinyurl.com/NStxoutput


Figure 42: Distribution of OP DROP (left) and OP HASH160
OP EQUALVERIFY transactions inside P2SH (right).

OP HASH160 OP EQUALVERIFY

We found four different types of transactions that start with OP HASH160
OP EQUALVERIFY. The first one has this locking script: “OP HASH160
<HASH160OFSOMETHING>OP EQUAL 1” or “OP HASH160 <HASH160OFSO

METHING> OP EQUAL 0 1”. They could be transactions made to have a P2SH
that can be unlocked by revealing only the redeem script, in fact these scripts do
not need anything to be unlocked because at the end they push 1 in the stack;
hence, the transaction is always verified.

The second is a P2PK that starts with a series of OP HASH160 OP EQUAL-
VERIFY, with the locking script:
“(OP HASH160 <HASH160OFSOMETHING>OP EQUALVERIFY)*N <PUBLIC

KEY A> OP CHECKSIG”31. To unlock the script, it is needed to know all the
strings of the hashes and the private key corresponding to the public key in the
script. We can consider this transaction like a challenge to a specific person (the
owner of the private key corresponding to the public key in the script): when he
found all the strings of the hashes in the script, he can take the value.

There is also a variant with this script: “(OP HASH160 <HASH160OFSO-
METHING>OP EQUALVERIFY)*N <PUBLIC KEY A> OP CHECKSIGVERIFY <

DATA> OP DROP OP DEPTH 0 OP EQUAL”, that can be unlocked like the pre-
vious one because the new part checks that there is no element in the stack and
it is possible only if all the given strings and the signature are correct. Similar

31In this script, N is a integer number greater than 0 and it represents the number of times that a
particular part of code is repeated.
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to the previous one, this transaction is a challenge to a specific person, which
can take the value only if he knows all the the strings of the hashes in the script,
but in addition there is the <DATA> OP DROP sequence, as we saw in Section
4.2.2, allows for storing some data in blockchain without making the transaction
unspendable.

The last one is only with OP HASH160 OP EQUALVERIFY, whose inden-
tifying script is “(OP HASH160 <HASH160OFSOMETHING> OP EQUALVERI-
FY)*N OP HASH160 <HASH160OFSOMETHING>OP EQUAL”. To unlock it we
need to know all the hashing strings. Also this transaction could be a challenge:
the first user who finds all the strings of the hashes, can take the value.

In Figure 42 we show the distribution of OP HASH160 OP EQUALVERIFY
transactions. The one with OP DEPTH is the most common class, with more
than 6 500 transactions extracted from the blockchain.

OP IF

These transactions are characterised by the presence of the OP IF. In fact this op-
erator, as in C or JAVA, generates different execution branches, and the receiver
can chose the one he prefers.

We found seven different classes of transactions that start with OP IF, each
of them characterized by the following scripts:

1. “OP IF

OP SIZE 32 OP EQUALVERIFY OP SHA256 <SHA256OFSOMETHING>

OP EQUALVERIFY OP DUP

OP HASH160 <PUBLIC KEY A HASH>

OP ELSE

<DATA>OP CHECKLOCKTIMEVEIRFY OP DROP OP DUP OP HASH160
<PUBLIC KEY B HASH>

OP ENDIF

OP EQUAL OP CHECKSIG”.
This transaction can be unlocked in two ways: the first with a 32-byte
string obtained from the SHA256 hash and the signature of A; the second
one, after the date in the script, only with the signature of B. We can see
this transaction like a challenge between A and B (the owner of the private
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keys corresponding to the public keys A and B in the script): if A finds the
32-byte string before the date in the script can take the value, otherwise B
will take the bitcoins.

2. There is also another type equal to the last one but without the size check:
“OP IF

OP SHA256 <SHA256OFSOMETHING>OP EQUALVERIFY OP DUP

OP HASH160 <PUBLIC KEY A HASH>

OP ELSE

<DATA>OP CHECKLOCKTIMEVEIRFY OP DROP OP DUP OP HASH160
<PUBLIC KEY B HASH>

OP ENDIF

OP EQUAL OP CHECKSIG”.
This transaction presents the same challenge as in the previous one, but
the string’s length is not fixed, so A has to find the string before the date
in the script or B will take the value.

3. We found also a version with the branch reversed and using Hash160 in-
stead of SHA256:
“OP IF

<DATA> OP CHECKLOCKTIMEVEIRFY OP DROP <PUBLIC KEY A> OP

CHECKSIG

OP ELSE

OP HASH160 <HASH160OFSOMETHING>OP EQUALVERIFY <PUBLIC

KEY B> OP CHECKSIG

OP ENDIF”.
This is identical to the second one but with the branch inverted, i.e. now
B has to find the strings or A will take the value.

4. One more variant, which needs 15 original strings, is this:
“OP IF

(OP RIPEMD160 <RIPEMD160OFSOMETHING>OP EQUALVERIFY)*15
<PUBLIC KEY A> OP CHECKSIG

OP ELSE

<DATA>OP CHECKLOCKTIMEVEIRFY OP DROP <PUBLIC KEY B> OP

CHECKSIG
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OP ENDIF.”
Also this transaction can be considered like a challenge very similar to the
second one, but A has to find 15 strings of the hashes before the date in
the script, otherwise B will take the value.

5. A class that can be spent immediately with two signatures or, after the
date inside the script, with one signature only:
“OP IF

<PUBLIC KEY A> OP CHECKSIGVERIFY

OP ELSE

<DATA>OP CHECKLOCKTIMEVERIFY OP DROP

OP ENDIF

<PUBLIC KEY B> OP CHECKSIG”.
This could be consider a transaction between two people (A and B) who
do not trust each other, in fact if everything is well and good and A does
not disappear, they can take the bitcoins, otherwise after the date in the
script B can take the bitcoins.

6. A class with 2-2 multi-signatures and CLVT:
“OP IF

2 <PUBLIC KEY A> <PUBLIC KEY B> 2 OP CHECKMULTISIG

OP ELSE

<DATA>OP CHECKLOCKTIMEVEIRFY OP DROP <PUBLIC KEY A> OP

CHECKSIG

OP ENDIF”.
This transaction can be considered exactly like the previous one, in fact the
sequence 2 <PUBLIC KEY A><PUBLIC KEY B> 2 OP CHECKMULTISIG

is identical to <PUBLIC KEY A> OP CHECKSIGVERIFY <PUBLIC KEY

B> OP CHECKSIG.

7. The last class is represented by transactions that do not need anything to
be unlocked: at the end the script pushes 1 in the stack. For example, the
script is
“OP IF

<DATA> 15 <PUBLIC KEY A> OP CHECKMULTISIG

OP ENDIF
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1.”
They could be transactions prepared to have a P2SH that can be unlocked
by revealing only the redeem script, in order to make easier the unlock.

Figure 43: Distribution of OP IF(left) and non-standard transactions inside P2SH
(right).

As we can see in Figure 43, the most used transaction is the OP IF 1, with
more than 70 000 results.

OP RIGHT

This type of transaction has a script that contains only “OP RIGHT”. This op-
erator32 takes a string and a position and it pushes only the characters on the
right w.r.t. that position in the string. To unlock this script, it is is enough to
assemble an unlocking script with a number and a string in a way that the result
of the OP RIGHT is different from 0. Like the OP HASH 1 or the OP IF 1 in
the previous sections this transaction could be used to make a P2SH that can be
unlocked by revealing only the redeem script.

OP 2DUP Multi-signature

These transactions are similar to the multi-signature transactions, but with some
noticeable differences: “OP 2DUP OP EQUAL OP NOT OP VERIFY 2 <PUBLIC

KEY A> OP DUP 2 OP CHECKMULTISIG”. To unlock this script, two signa-
tures from the same private key are needed. The reason is that the first operator
OP 2DUP duplicates the two signatures, and then OP EQUAL checks if they are

32https://en.bitcoin.it/wiki/Script.
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the same; however, they are different, and then it pushes 0 in the stack. Now,
OP NOT changes 0 in 1 and OP VERIFY removes 1 from the stack. At the end,
the presented scheme corresponds to a plain multi-signature.

This transaction is very dangerous for the receiver, in fact it requires two
signature from the same private key. This exposes the private key to the risk
of being recovered from the public key, i.e. the risk that anyone can have this
private key33.

P2PK OP DROP OP DEPTH

This transaction looks like a P2PK but at the end of the script it checks whether
the stack is empty, this is the script: “<PUBLIC KEY A> OP CHECKSIGVERIFY

<DATA> OP DROP OP OP DEPTH 0 OP EQUAL”. So to unlock this script, only
the signature generated by the private key of A is needed. Like the OP DROP

(see Section 4.2.2), this transaction allows for storing some data in blockchain
without making the transaction unspendable.

In Figure 43 we show the distribution of non-standard transactions inside
P2SH transactions. The most used is the OP IF class, with almost 80 000 out-
puts. The second one, with almost 25 000 occurrences, is the OP DROP trans-
action.

4.3 An analysis of OP RETURN

We analyze the nulldata transaction outputs, also called OP RETURN, and in
this way we update with new data the work by [BP17]. As introduced be-
fore, this transaction cannot be spent, and it is used only to store data in the
blockchain, exploiting its immutability. In this case, our goal is to study the use
of OP RETURN over the year.

4.3.1 Data Dimension

The data dimension inside the OP RETURN transaction is different also be-
cause the standard dimension changed during years. In fact, in the Bitcoin Core

33https://allprivatekeys.com/random-vulnerability.php.
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0.9.034 the limit was only 40 bytes. Then from the 0.10.035 release on February
16th 2015, Bitcoin nodes could choose whether to accept or not OP RETURN
transactions, and to set a maximum dimension. The 0.11.036 release on July
12th 2015 extended the data limit to 80 bytes. Finally, the 0.12.037 release on
February 23th 2015 set the maximum to 83 bytes (80 byte default, plus three
bytes overhead).

Figure 44: Distribution of OP RETURN transactions divided by size.

In Figure 44 we show the distribution of OP RETURN data size. The most
used size is 20 bytes with more than 4 million occurrences, the second one is
80 bytes with almost 1 million outputs, and the third is the 40 bytes with more
than 500 thousands occurrences. There are also other transactions with only one
occurrence, which we do not show in Figure 44, exactly with size 95, 114, 134,
190, 449 and 983 bytes. There are also 296 518 output with data size 0, i.e.
empty, of which 222 348 were made in September 2015 by compromised ad-
dresses38. These transactions were definitely used as stress tests for the Bitcoin
Network [[Baq+16]].

In Figure 45 we show the distribution of OP RETURN transactions over
time. It seems clear that every year the OP RETURN occurrences double, and
this proves that their use is increasing at a high rate.

34https://bitcoin.org/en/release/v0.9.0.
35https://bitcoin.org/en/release/v0.10.0.
36https://bitcoin.org/en/release/v0.11.0.
37https://bitcoin.org/en/release/v0.12.0.
38https://allprivatekeys.com/random-vulnerability.php.
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Figure 45: Distribution of OP RETURN transactions over time (left) and Distribu-
tion of miners in “non-standard” OP RETURN transactions (right).

“Non-standard” OP RETURN

We analyzed transactions according to the aforementioned Bitcoin Core update,
with the purpose to find those that did not respect size rules, thus we can call that
“non-standard”. We found 797 results, of which 784 were registered before the
release of Bitcoin Core 0.9.0 (on average they have a size of 38 bytes) and 13
registered during the 0.9.0 release, but with more than 40 bytes (on average they
have a size of 61 bytes). In Figure 45 we show the distribution of miners that
accepted transactions with “non-standard” OP RETURN transactions. P2Pool
is the miner pool that mined the largest number of them.

The last analysis that we did is the amount of Bitcoin “lost” in these trans-
actions. We see that only 57 038 (0.68% of all OP RETURN transactions) spent
bitcoins with a total amount of 3.71572552 BTC. The maximum spent for a
transaction is 0.018454 BTC, the minimum is 1 Satoshi (10−8 BTC).

4.4 Transaction Information Tool

Transaction information module39 is focused on providing additional informa-
tion about transactions. First, it classifies transactions into standard and non-
standard types, according to the Bitcore function isStandard()40. Then, it shows
the distributions of standard and non-standard transactions in the blockchain
(Figure 46), i.e. all the information that we studied in this chapter. This mod-

39http://btctransaction.dmi.unipg.it/.
40https://github.com/bitcoin/bitcoin.
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Figure 46: Chart visualization on transaction information module.
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Figure 47: Bitcoin script compiler on Transaction information module.

ule also allows for interacting with a Bitcoin scripting compiler, see Figure 47.
The Bitcoin transaction language Script is a Forth-like [RCM93] stack-based
execution language. Script requires minimal processing and it is intentionally
not Turing-complete (no loops) to lighten and secure the verification process of
transactions. An interpreter executes a script by processing each item from left
to right in the script. Data is pushed onto the stack, as well as operations, which
can push or pop one or more parameters on/from the execution stack, operate on
them and possibly push their result onto the stack.

4.5 Related work

Several analysis can be found in the literature.
In 2014 Ken Shirriff’s blog41 studied some methods for inserting arbitrary

data into Bitcoin blockchain and also what kind of data can be (or is already)
stored.

A few months later QuantaBytes42 surveyed Bitcoin transactions in blockchain
and found three classes of non-standard transaction.

In 2018 [SVS18] improved the study on inserting arbitrary data into Bit-
coin’s blockchain.

Then [Mat+18b] describes the problem of inserting harmful content into a
blockchain; in particular they propose conceptual countermeasures to heuristi-
cally reject transactions holding unintended content with high probability. They
find that mandatory minimum fees and mitigation of transaction manipulability

41https://tinyurl.com/asciibw.
42https://tinyurl.com/txType.
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significantly raise the bar for inserting malicious content into a blockchain.
In he same period, [Mat+18a] the authors provide a systematic analysis of the

benefits and threats of arbitrary blockchain content. They show that certain ille-
gal content can render the mere possession of a blockchain illegal. Their analysis
reveals more than 1600 files on the blockchain, e.g. links to child pornography.
This analysis highlights the importance for future blockchain to be designed to
address the possibility of unintended data insertion and protect users.

In 2019 [BP17] empirical study the usage of OP RETURN over the years and
they identify several protocols based on OP RETURN, which they classify by the
application domain and their space consumption.

4.6 Conclusions

We reported statistics concerning standard (seven classes) and non-standard (nine
classes) transactions in the Bitcoin blockchain, by considering up to block num-
ber 550 000, i.e. until November 14th 2018. The most populated class of trans-
actions is P2PKH. The second most used class is P2SH. This study showed the
adherence of the Bitcoin protocol to the intended purposes, by quantifying past
and present deviations. As a result we have obtained that only 0,02% of transac-
tions outputs corresponds to non-standard ones: this implies that most of miners
and users behave in a standard way. We noticed that only the 0,015% of all the
circulating bitcoins was burned by non-standard transactions. We saw that the
most used transaction inside P2SH transactions is the multi-signature one. We
also show that the most used size in bytes of an OP RETURN transaction is 20
bytes.

We remark that, since the massive amount of data, these results took a sig-
nificant amount of time to be realized, also with a powerful machine like the
one described in Appendix A.1. First of all, our first implementation needed
three months to include the first 550 000 blocks in the DB. Then we inserted
the records as a TSV43 file. In this way, we can insert thousands of records in
one query. The process speeds up to less than one week. Then querying the
DB to get the class distribution took one day. After we got all the non-standard
transactions, we classified them for around two weeks. We could not use a fully

43tab separated values
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automatic tool because we did not know them structure. Now it will be easier
since we know some classes. Finally, we spent around one week getting all the
redeem scripts of the P2SH and translating them from hexadecimal to Script.
Also in this case, we spent almost a month classifying them since we did not
know their pattern.
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Chapter 5

Study on reused Addresses

In this chapter we study the reuse of the same Bitcoin address in different trans-
actions. We investigate the reuse of legacy addresses (legacy ones are the orig-
inal Bitcoin addresses), whose addresses start with 1, and the repetition of ad-
dresses in Nested SegWit (P2SH) transactions, whose addresses start with a 3
instead. In addition, we “open” P2SH transactions and we count the repetitions
of legacy addresses included in their script. In this way we have a comprehensive
view on address reusing.

The motivations behind this chapter are multi-faced. The reuse of Bitcoin
addresses is a practice that refers to the use of the same address for multiple
transactions. It is often an unintended practice adopted by users, abusing the
privacy and security of transaction participants as well as future holders of its
value. The most private and secure procedure is instead represented by using a
new address each time a user needs to receive value. After the received coins
have been spent, the address should never be used again. Reusing the same ad-
dress multiple times increases the amount of information that relates an address
to the identify of its wallet owner. Using a new address each time is feasible,
since, as a remainder, the total number of possible Bitcoin addresses is 2160.
The practice of reusing the same addresses is also susceptible to well-known at-
tacks undermining the security of coins and exposing them to theft. For instance,
timing side-channel attacks [YB14; FWC16], or possible weak randomness in
ECDSA [Wan+20; Bro05; BH19].
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For this reason, first we investigate the reuse of Bitcoin addresses, also in-
cluding hidden addresses, i.e. addresses that are not an explicit output of a trans-
action, but they are still contained in it (e.g., in the script of a Pay to Script Hash
transaction). As a second and final step, we de-anonymise as more addresses as
possible in the first 100 positions of the most-frequently reused legacy-address
ranking: as a result we obtain addresses linked to scams or ransomware. We
consequently derive that such a metric can be considered in the automatic com-
putation of a trust-score to be associated with Bitcoin addresses. This value
can be taken into account before interacting with these users, e.g., sending to or
receiving coins from them.

The chapter is structured as follows: Section 5.1 presents the results obtained
by querying and then looking into the transactions that contain reused Bitcoin
addresses. Section 5.2 presents the distribution of the different classes of trans-
actions in the blockchain; we curb to transactions that may contain hidden ad-
dresses. Then, we present the results of reused hidden Bitcoin addresses. More-
over, we also show how we can visualize such hidden information in Blockchain-
Vis. In Sec 5.3 we identify the top 100 reused addresses and we relate them to
well-known malware and exchange services: this section proves that the moti-
vations we highlighted find application in the real world of Bitcoin and Cyber-
security. Finally, in Section 5.4 we wrap up the chapter with conclusive thoughts
and ideas about possible future work.

5.1 Analysis of reused Bitcoin addresses

People should have different Bitcoin addresses and, to preserve privacy and se-
curity, a unique address should be used for each transaction. The reason is that
several vulnerability issues may affect the protocol: for example, ECDSA weak
randomness [Wan+20] leads to private key leakage and even fund theft. In fact,
due to this weakness, knowing more than one digital signature could be enough
to calculate the private key needed to spend bitcoins. Besides security, also mo-
tivations behind privacy are important: the more an address is used, the more
information about is owner could be discover. A further problem of reusing ad-
dresses is confusion. For example, a merchant tells his clients to send value to
a single address. Customer A sends him bitcoins. Since Bitcoin transactions are
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public on the blockchain, another malicious customer B could see the transac-
tion made by A and send to the merchant an email saying that he/she paid. At
this point the merchant is not capable of knowing who really sent coins to his
address. This means that each customer need to have a different address where
to send her payment. To solve these problems, most Bitcoin software and web-
sites generate a new address each time a payment request is generated. However,
in the Bitcoin blockchain, if we consider all the blocks up to the 550 000th one
(end of 2018), there are 442 742 034 distinct addresses. They are used in total
951 320 268 times, so on the average they are used 2,15 times each. Since the
Bitcoin protocol advises against using more than once the same key (so the same
address), we decided to analyse how many addresses are used more than once
and for what reason. First of all, we found out that in the blockchain there are
42 172 956 reused addresses, of which only 6 751 674 are legacy ones.

Figure 48: The fist 100 most reused addresses.

In Figure 48 we present the distribution of the first 100 most reused ad-
dresses. The most reused is a legacy one and it’s used almost 1 990 000 times.
The second one is reused more than 1 600 000 The first reused nested address
has more than 1 million repetitions.

In Table 2 we present a comparison between [Bar14] and our work. The
table shows that the number of addresses and uses noticeably increases, while
the mean value is lower. This could mean that users are more adherent to the
protocol than in 2014.
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5.2 Hidden addresses

Figure 49: Distribution of transactions in the blockchain.

In the Bitcoin blockchain we now have around 1 billion transaction out-
puts. In Figure 49 we see how the most used transaction is the default one in
the Bitcoin client: the Pay to PublicKey Hash type (P2PK)1. The P2SH is the
second mostly frequently used class of transactions, with almost 150 million
outputs [BMS19].

As we introduced before, the P2SH transactions contain the hash of a script
(called redeem script) in their locking script, which in turn may contain different
classes of Bitcoin transactions. In the blockchain there are 149 410 668 P2SH

1About transaction classes in the legend of Figure 49 and Figure 50, please refer to chapter 4

Barcelo [Bar14] Our result
(January 2014) (December 2018)

Number of addresses 12,963,199 442,742,034
Number of uses 41,244,997 951,320,268
Mean 3.18 2.15
Number of max uses 1,238,931 1,899,538
Addresses used once 10,476,899 400,569,078

Table 2: Statistics about address reuse.
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Figure 50: Distribution of transactions inside P2SH ones.

transactions, of which 140 620 401 are spent (94,12%).

Hence, we decided to analyse the content of the redeem script inside the un-
locking script of the spent P2SH transactions. As we can see in Figure 50, inside
P2SH transactions the majority of the transactions is standard. In fact there are
140 509 279 standard transactions, which are 99,92% of the total. The most fre-
quent class of transactions is the multi-signature one, with more than 90 million
occurrences (65,7%). Like plain transactions in the blockchain, also the ones in-
side the P2SHs have addresses related to them. In particular we can “translate”
a nested address in one or more (in case of multi-signature transactions) legacy
ones.

If we look inside this class of transactions, we obtain more than 90 million
nested addresses, out of which only 32 176 523 are distinct. By extracting the
content of the redeem script of these transactions, we obtain 89 143 036 legacy
addresses, that we can consider as hidden and related to nested addresses. Then,
we check if some of these hidden addresses were used also in clear and we found
56 702 matches. Thus, these addresses are used both inside and outside P2SH
transactions.
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5.2.1 Analysis of Bitcoin hidden reused addresses

To better analyse the reuse distribution, we decide to convert all the nested ad-
dresses to the related legacy ones. Hence, from now on all these nested addresses
are considered as legacy ones in the analysis; we will refer to them as hidden.

Figure 51: The first 100 most reused addresses considering also hidden ones.

In Figure 51 we present the distribution of the first 100 most reused ad-
dresses. The most reused one is a hidden address, and it is used more than
2 100 000 times; the second one in the list is a legacy one, and it is reused almost
1 990 000 times. The first reused nested addresses, which we cannot convert to
hidden, has 540 090 repetitions.

Figure 52: The distribution of address repetitions in time.

In Figure 52 we show the distribution of address repetitions in time.

There are three peaks: the first is July 2015, the second one is in May 2017,
and the third one, which is the highest, occurs December 2017, the period when
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Figure 53: Type address distribution on July 2015.

Figure 54: Type address distribution on May 2017.

the bitcoin value reached the highest price ever2. Considering the peak of July
2015 in Figure 53, we can see that more than 90% is generated from legacy
addresses. There are only 7 815 nested ones. During May 2017 instead, as
represented in Figure 54, we can see a large number of hidden addresses. Still
the nested ones are less the 9 000. Finally, in December 2017 we still have
a majority of legacy addresses, but we have a huge increase of nested ones:
they are more than 4 000 000. In general we can conclude that the majority of
repetitions are due to legacy addresses.

2https://tinyurl.com/bitcoinrecord2000
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Figure 55: Type address distribution on December 2017.

Figure 56: Standard representation of P2SHs in BlochainVis.

5.2.2 Visualisation of Hidden Addresses

Our Visualizer can visualize also the transactions inside the P2SH. In Figure 56
we can see the standard visualization of a P2SH: pink nodes represent trans-
actions, while orange nodes represent addresses. As shown in Figure 57, the
tool now allows to click on nested addresses and thus check the actual inside
transactions and their hidden addresses.

For example in Figure 58 we show a multi-signature transaction inside a
P2SH and his hidden addresses. The edges obtained in the node explosion allow
us to see which are the spent addresses.

5.3 De-anonymisation of reused addresses

In this section we try to analyse the set of reused Bitcoin wallet addresses based
on their classes: respectively legacy and nested addresses. The set of reused ad-
dresses was ordered and divided into two distinct subsets where the same analy-
sis was executed on each.
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Figure 57: Control panel for a nested address (circled in red the button to show the
inside transaction).

Figure 58: A new representation in BlochainVis of a 2-3 multi-signature transaction
inside a P2SH transaction.

A first analysis is based on a public data sets [PHD18][Hua+18] of corre-
lation between Bitcoin wallet addresses and plausible owner. The data set was
built for, that is a study on ransomware and their related economic income. In
this data set the main addresses are registered from the most recent fraud, mal-
ware and ransomware until 2017: based on this data set, most of the recurring
addresses have been identified with respect to the ranking of most frequent rep-
etitions. Secondly, the set of ordered addresses was subjected to a further anal-
ysis through a data set previously built for some of our studies [BMS18a]. In
this data set, some of the wallets are identified as malicious or harmful activi-
ties for the blockchain network, but there are also wallets of activities related to
malware. As last step, a long work was executed to analyse and identify pub-
licly declared addresses trying to discover the remaining correlations catalogued
as “no Reference”. Most of the addresses are extrapolated through other stud-
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ies [HCS17][Kha+15b], forums or platforms of expert users3,4, also by analysts
of the Bitcoin Network5. In addition, the main exchange sites were scanned6,
trying to identify the wallet of one of them.

After the first phase of association between addresses and plausible refer-
ences, we select the one hundred higher reused addresses. In these sets the
total amounts are computed, then the relative distributions are analysed with re-
spect to the global amount of addresses, as it is shown in Table 3. In this table,
the distribution of the first 100 reused legacy addresses is shown (addresses are
grouped by the owner). The entry marked as “No reference” means that it was
not possible to attribute either a holder or a source to the address.

In Figure 60 we provide a graph of the time distribution of the most relevant
100 legacy reused addresses in the blockchain; the reported values refer to Ta-
ble 3, with values grouped by type of address holder. Ransomware, exchanges
and “No Reference“ type. Around 75% of the reused addresses have been de-
anonymized, for a total of about 21 668 886 repetitions out of 29 286 669 total
repetitions of the list of 100 most reused. In Figure 61 we show the time distri-
bution of legacy addresses reused more than 500 times, colored by class. The
result show that the most receptions are due to CryptoLocker activity.

A similar procedure was used on a nested addresses list. The study in
[PHD18] presents a recurring address in abnormal transactions study 7, which
is specified as a “scam wallet” address. However, it was not possible to de-
anonymize most of the nested addresses list.

In Figure 59 we show a graph on the analysis of the list of the top 100
reused nested addresses. Even according to the very few results found during
the address association phase, the presence of repetitions (about 1 021 574) of
the wallet containing the malicious address is relevant.

3https://tinyurl.com/Stoopwasting an analysis of the exploit bug of Gemini
4https://tinyurl.com/extortscam an analysis of types of legal transactions related

to sites prohibited to minors
5https://whitesunset.github.io/wannacrypt_balance/ in-depth study on the

distribution of three wallets of the WannaCry ransomware
6https://tinyurl.com/whoControlBC a research on wallets related to a known ex-

change code bug
7https://bit.ly/2Fj5vbY appeared on a forum that investigates the malicious address,

type-3, which is referred to as “scam wallet”
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Figure 59: Distribution of the top 100 nested reused addresses.

5.3.1 Evaluation of de-anonymisation

Based on the data collected during the de-anonymisation and analysis phases,
two considerations arise: a substantial percentage of the reused addresses be-
longs to exchanges, both for reasons of errors and bugs known on the transaction
scripts associated with them, and for the obvious capability of the exchanges
to be the hub for many transactions; a much larger and unexpected percent-
age refers to malicious addresses. In this first analysis we studied and tried
to de-anonymise the first 100 addresses with higher repetitions. Yet from this
first sample the amount of transactions related to malicious intents is evident:
the first 4 reused addresses refer to the family of CryptoLocker ransomware.
Furthermore, these alone characterise a large share of the address repetitions -
around 5 810 459. By assuming a complete de-anonymisation, we suppose the
percentage of 59% of reused addresses can only increase. A different and in-
depth study should be carried out on nested type guidelines; study that could be
improved by explicating the addresses and working on the list of addresses thus
identified.

With the discovery of these addresses, it is possible to start mapping the
critical points highlighted in Section 5.2.1 and Figure 52, when most of repeti-
tions occur. In these periods we identify that: in July 2015 there were numerous
transactions related to “cryptolockers”, as it was discovered and declared in the

92



following months; in December 2017, the period related to the peak value of
the exchange of bitcoins, the majority of reused addresses is related to some
exchanges identified in our study.

Wallet Reference #Reuse
CryptoTorLocker2015 12398905
Others 7617783
SatoshiDICE Hot Wallet 4967566
Gemini (exchange) 792458
POLONIEX (exchange) 752445
Omni Layer (exchange) 670397
Huobi (exchange) 572297
Bittrex (exchange) 567945
Binance (exchange) 303486
FoxBit Hot Wallet (exchange) 280103
Coinimal.com (exchange) 196266
Bitcointoyou Hot Wallet (exchange) 167018

Table 3: Distribution of the 100 most-frequently reused legacy-addresses in
blockchain transactions.

5.3.2 Mixing services addresses

When a Bitcoin users pay for some service or good, he/she will of course need
to provide her name and address to the seller for billing or delivery purposes. It
means that a third party8 can trace her transactions and associate her address with
her name. To avoid this, mixing services (also called tumblers) [SP06] provide
the ability to interrupt a direct money-flow from one user to another by using
addresses that do not belong to the original owner. Mixing services are used to
mix one’s funds with other people’s money, intending to confuse the trail back
to the original source. In traditional financial systems, the equivalent would be
moving funds through banks located in countries with strict bank-secrecy laws,
such as the Cayman Islands.9

8e.g. police authority.
9https://en.bitcoin.it/wiki/Mixing_service.
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Figure 60: Distribution of the top 100 legacy reused addresses.

Figure 61: Time distribution of legacy addresses reused more than 500 times, each
class differently coloured.
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Service Fees Return Time Min import Max import
Helix Light 2.5% max 24 h 0.01 BTC 43 BTC
BTC Blender 1-3% max 99 h 0.01 BTC None
Coin Cloud 1.25% max 1 h 0.01 BTC None
CoinMixer 1-3% + 0.0006 BTC max 5 h 0.01 BTC None
BitClock 2% + 0.0008 BTC max 5 h 0.02 BTC 10 BTC

Table 4: Characteristics of some mixing services.

Mixing services transactions All transactions
Made with mixing services Obtained from the blockchain
Time range:
25 September 2017, 22 October 2017

Time range:
25 September 2017, 22 October 2017

Label with the name of the service No label
973 7 852 074

Table 5: Dataset characteristics.

The goal of this subsection is to find mixing services in the Bitcoin Network.
In particular, to extract related behavioural patterns in terms of payments and
understand how a mixing service works. In practice, this allows for tracking a
desired bitcoin flow also through a mixing service.

To experimentally find such patterns, we executed some real bitcoin-payments
by using different mixing services: the final goals is to identify those addresses
that belong to tumblers. In Table 4 we can see some features of the mixing ser-
vices we used. We extracted two datasets to proceed with the investigation: one
with all the transactions sending and receiving value from tumblers addresses,
while the other one with all the other transactions performed in the same time
interval. The characteristics of these two datasets are shown in Table 5.

Finally, we studied the behaviour of these addresses with Machine Learn-
ing, and in particular by using hierarchical clustering techniques considering
the following nine features: input addresses, output addresses, balance, average
balance, transaction ID, time of creation, number of inputs, number of outputs.

Unfortunately, in this way we were not able to spot a different behaviour
between the two datasets. Then, in a second experiment we focused on a Data-
mining analysis instead; in the tumblers dataset we noticed that 4.9% of Coin-
Mixer transactions generates 89.7% of the edges, and 14 transactions generated
more than 1 000 output addresses. These transactions show the following fea-
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TX 1 TX 2 TX 3 TX 4 TX 5 TX 6 TX 7
TX 1 100% 98.16% 97.31% 96.05% 94.54% 93.28% 92.58%

Table 6: Similarity of address sets (first seven days).

TX 8 TX 9 TX 10 TX 11 TX 12 TX 13 TX 14
TX 1 91.78% 90.91% 90.2% 89.55% 88.99% 88.28% 87.55%

Table 7: Similarity of address sets (second seven days).

tures: i) number of input addresses equal to 2, ii) number of output addresses
in the range [2530,2534], iii) they were collected one a day, for 14 consecutive
days.

We decided to compare the sets of output addresses and we noticed that
the similarity between the two datasets decreased day by day (see Table 6 and
Table 7). This feature allowed us to conclude that the output addresses are grad-
ually renewed over time with new addresses that work in the same way as those
deleted. These results identify a behavioural pattern of the CoinMixer service,
generated by a specific internal algorithm. Hence, through an analysis of trans-
actions, and in particular of their output addresses, it is possible to also recover
all similar past and future transactions.

To conclude, a further source of addresses reuse is clearly due to tumblers.

5.3.3 Mining pool addresses

A different source of reuse consists in mining pools. Some of them, such as
Eligius,10 have no registration process, and Bitcoin addresses are just used as
usernames. This means that every node of the pool is always paid to the same
address. For this reason, we decided to investigate in coinbase transactions how
many addresses are reused (hence, in transactions strictly related to miners).

Table 8 shows some stats about addresses reused by these particular mining
pools. We see that the pool that reuses addresses more frequently is Eligius. On
the opposite side we have BitMinter (now definitely closed), which always pays
to the same single address; because of this it is also the pool with the highest
average per transaction. The most privacy-oriented pool is SlushPool, which

10https://en.bitcoin.it/wiki/Eligius.
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Eligius Huobi SlushPool BitMinter HHTT BTC Guild Bitparking
#addresses 39366 3 4818 1 139 22 14
#reused addresses 34441 3 16 1 108 21 14
% of reuse 87.49 100 0.33 100 77.70 95.45 100
max #reuse 10334 268 14560 6451 592 26204 425
mean 21.19 98.00 5.61 6451.00 21.52 1497.05 84.14

Table 8: Statistics about reused addresses in mining pools that use addresses to
identify users.

F2Pool BTC.com Poolin 58COIN&1THash AntPool
#addresses 153 11 1 2 70
#reused addresses 3 11 1 2 70
% of reuse 1.96 100 100 100 100
max #reuse 34892 8065 194 352 6881
mean 229.14 1251.55 194.00 321.00 563.17

Table 9: Statistics about reused addresses in the top 5 mining-pools (top consider-
ing the amount of mined blocks).

shows only 0,33% of reuse. BTC Guild instead reused a single address more
than the others, over 26 000 times.

Finally, we also checked repeated addresses in the 5 most successful mining
pools, i.e. those that mined a larger number of blocks in the considered period.
In Table 9 we can see the results. The pool that seems more coherent w.r.t.
the Bitcoin protocol is F2Pool, which has a low percentage of reuse. AntPool
has the highest percentage of reuse instead: it only uses 70 addresses for all its
payments. In general, we can say that all the considered mining pools do not
behave very well in terms of address reuse: their average is almost 100 greater
than the Bitcoin Network’s mean.

To sum up, we can say that also the behaviour of mining pools is a cause
behind reused addresses in blockchain, even if in a small percentage of compared
to cryptolocker and exchanges.

5.4 Conclusions

In this chapter we studied Bitcoin addresses that are most frequently reused in
transactions. Our analysis is important to evaluate how much the privacy of ad-
dresses is at risk, and also how much the security of coins is exposed to attacks.
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We investigated the repetitions of legacy and nested addresses; we have also
considered and define hidden addresses, i.e. legacy addresses hidden in P2SH
transactions, in order to have a more comprehensive view. We saw that most
of top 100 reused legacy-addresses can be linked to ransomware payments and
scams. Such a metric can be also adopted as a addresses trust indicator.

Notice that we need a lot of computational power and time to realise our
analysis because of the massive quantity of data. First, querying our DB to get
the occurrences of all the addresses took around two days. Then starting from the
redeem scripts used in the previous chapter, we extracted all the public keys and
translated them into hidden addresses. This took around one day. At this point,
we spent twelve hours of computation to see if some of the hidden addresses
were already in the blockchain. Finally, we took two days to recreate the new
addresses distribution considering the hidden addresses.
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Chapter 6

Arbitrage and Bubbles in the
Bitcoin market

The key innovation in Bitcoin is its decentralized nature [Böh+15]. The system
enables an independent currency, not subject to the control of central authority
and without inflation. Recent literature claims Bitcoin as a volatile stock rather
than a currency, [Yer15]. An important issue about Bitcoin prices is that it is
traded on different web-exchanges for different prices. Hence it does not obey
the usual law of unique price. On the web there are also some sites that com-
pare in real time the price of Bitcoin in different exchange as well as the price
history in order to decide what are the best exchanges for buying and for selling
Bitcoins at a fixed point in time. The most important sites are Bitcoin Analytics,
CoinDesk, Cryptohopper and AvaTrade1.

Some studies try to understand the reasons for special activities in the mar-
ket. In particular, several papers evidenced a bubble behaviour in exchange rates
between Bitcoin (BTC henceforth) and traditional currencies (Euro or Dollars
usually)[Gar+14; Kri15].

Traditional econometrics models within the class of AutoRegressive Inte-
grated Moving Average (ARIMA) are backward looking since the only time-
dependence admitted regards the past [BJ90] and are usually referred to as causal

1Available at: http://bitcoin-analytics.com/, https://www.coindesk.
com/price/, https://www.cryptohopper.com/, https://www.avatrade.com.
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models. Recently, models known as Mixed causal-noncausal AutoRegressive
(MAR) have been introduced in order to extend time dependence to the future
[Bre+91; GJ16; LS08] thus reflecting a backward-forward looking behaviour.

In this chapter, we investigate whether strong or weak form of arbitrage
strategies are indeed possible by trading across different Bitcoin Exchanges.
The aim of this chapter is to explore the conjecture that the bubble effect is
due to confidence in Bitcoin future values so that its price/exchange rate is in-
fluenced both by past events and by views about future ones. In Section 6.1 we
describe the dynamics of Bitcoin price by applying the well-known Black and
Scholes model (see [BS73]) in a multi-variate fashion; under this assumption
a strong arbitrage opportunity exists in the market even if the strategy is per-
formed with discrete time revision of the portfolio. This theoretical arbitrage
might be much outperformed in practice; in Section 6.2 we present an example
of arbitrage strategy which take also advantage of the bid-ask spread mismatch
in market Exchanges. The rest of the chapter is structured as follows: Section
6.3 is devoted to the economic explanation of our conjecture about the relation
of the speculative bubble in BTC/USD exchange rates with the monetary policy
of the Bitcoin system; then, in Section 6.4 the theory behind the Mixed Causal–
Noncausal autoregressive models is briefly described. Section 6.5 describes the
dataset and Section 6.6 summarizes the results of the estimation of the MAR
model on the observed data. Section 6.7 gives conclusions and final remarks.

6.1 Modeling the Bitcoin price dynamics and arbi-
trage opportunities

6.1.1 Data description

Bitcoin is traded in multiple online trading platforms (Exchanges), where dif-
ferent exchange rates are applied against the same fiat currency. Even ignoring
market frictions such as the bid/ask spread, by considering the mid-price as the
unique price, still there are multiple prices for Bitcoin available from different
Exchanges. We consider daily prices from 01/01/2015 to 31/12/2017 available
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on the Exchanges website for Bitstamp, Gdax, Kraken, CEX.IO and BitKonan2

and the corresponding value of the BlockChainInfo Index3. In Figure 62 we
plot the above Bitcoin prices and Index in US Dollar (USD) over the whole time
series and two selected sub-periods to better appreciate the different exchange
rates. As we can notice from Figure 62, the behavior of Bitcoin price in the dif-

Figure 62: The Bitcoin price in USD according to 5 different Exchanges and the
Index value (top) and two sub-samples with only two exchange rates (bottom).

ferent Exchanges is pretty the same. Indeed, the correlation between time series
of Bitcoin prices obtained in the five considered Exchanges is approximately
perfect, since it is close to 1.
In this chapter, we assume that there are I Exchanges trading Bitcoin in the
same fiat currency (i.e. USD) and denote by S(i)t the price of one Bitcoin quoted
in Exchange i at time t. In order to take into account the almost perfect cor-
relation between the different Exchanges, we consider a a common risk-source
for all platforms. More precisely, we assume that the price dynamics of Bit-
coin is described, in every Exchange, by the well-known Black and Scholes
model [BS73], where

dS(i)t = µiS
(i)
t dt +σiS

(i)
t dWt , S(i)0 = s(i)0 > 0. (6.1)

2Available at: https://www.bitstamp.net/, https://www.gdax.com/, https:
//www.kraken.com/, https://cex.io/, https://bitkonan.com/.

3http://www.blockchain.info/.
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Here, for every i = 1,2, . . . , I, µi, σi > 0, represent model parameters, W =

{Wt , t ∈ [0,T ]}, is a standard Brownian motion modeling the fluctuation of the
Bitcoin market and T > 0 denotes a fixed finite time horizon. Note that the
process µiS

(i)
t is the so-called drift coefficient, which represents the “average ap-

preciation” of the process S(i) at time t, while σiS
(i)
t is the diffusion coefficient,

measuring the intensity of the source of randomness given by W .
Note that, the Bitcoin price processes S(1), . . . ,S(I) are perfectly correlated

since they have the same “driving” Brownian motion W ; in addition, different
Exchanges are characterized by (possibly) different parameters values in the dy-
namics.

In Figure 63 we plot two possible paths for two months of daily prices sim-
ulated according to model in (6.1) with parameters µ1 = µ2 = 1.5 and σ1 =

0.75,σ2 = 0.9. The picture exhibits a similar pattern to the one observed in
Figure 62.

Figure 63: An example with two simulated paths for two months of daily prices:
parameters are set to µ1 = µ2 = 1.5 and σ1 = 0.75 (solid), σ2 = 0.9 (dashed) re-
spectively.

6.1.2 Arbitrage opportunities

To show that arbitrage is theoretically possible, we focus on two different Ex-
changes and denote the corresponding Bitcoin prices as S(1) and S(2). In our
framework, we have S(i)t with i = 1,2.
Let us denote by r the constant risk-free rate. The risk premia for the the Bitcoins
quoted in Exchanges i = 1,2 is defined as RiskPremiumi = µi− r.

102



The risk premium can be seen as the return in excess of the risk-free rate of
return an investment in Bitcoin is expected to yield. Then, the corresponding
Sharpe ratios, that is, the average returns earned in excess of the risk-free rate
per unit of volatility or total risk, are given by

SharpeRatioi =
RiskPremiumi

σi
=

µi− r
σi

, i = 1,2. (6.2)

Note that two assets that are perfectly correlated as S(1) and S(2), must have the
same Sharpe ratio. Otherwise, it is possible to exploit an arbitrage opportunity,
i.e. a trading strategy with zero initial outlay and a non-negative future payoff
(so it does not expose to any risk) that is positive with positive probability.
This means that a sufficient condition to realize this investment strategy is

SharpeRatio1 > SharpeRatio2. (6.3)

Indeed, let us consider the self-financing portfolio (α1,α2,β ), where, for any

t ∈ [0,T ], we buy the amount α1
t = C

(
S(1)t σ1

)−1
of Bitcoin with price S(1) on

Exchange 1, we short-sell the quantity α2
t =C

(
S(2)t σ2

)−1
of Bitcoin with price

S(2) on Exchange 2 and we invest/borrow the risk-free bond in the amount of the

cost difference C
(

1
σ1
− 1

σ2

)
, where C is an arbitrary positive constant.

If Vt denotes the corresponding portfolio value at time t, then (α1,α2,β ) is a
strategy with null initial value, since

V0 =−α
1
0 S(1)0 +α

2
0 S(2)0 +β0 =C

(
− 1

σ1
+

1
σ2

+
1

σ1
− 1

σ2

)
= 0. (6.4)

Moreover, the return of the above strategy is

dVt = α
1
t dS(1)t +α

2
t dS(2)t − rβtertdt (6.5)

=
C

S(1)t σ1

dS(1)t −
C

S(2)t σ2

dS(2)t − rC
(

1
σ1
− 1

σ2

)
dt (6.6)

=C
(

µ1− r
σ1

− µ2− r
σ2

)
dt =C (SharpeRatio1−SharpeRatio2)dt > 0,

(6.7)
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Table 10: Parameters fit of Black and Scholes model.

Bitstamp Gdax Kraken Cex.IO BitKonan

µi 1.5313 1.6363 1.5317 1.5404 1.6770
σi 0.7323 0.8947 0.7451 0.7065 0.9139

SharpeRatioi 2.0911 1.8289 2.0557 2.1803 1.8350

and therefore it gives rise to an arbitrage opportunity since it produces a certain
profit that is strictly greater than 0. The total gain of the strategy in the time
interval [0,s], for s > 0, is given by C

(
µ1−r

σ1
− µ2−r

σ2

)
s. Here, C represents a

scale factor which may leverage the total gain. Note that the above arbitrage
opportunity is due to perfect correlation of the two dynamics. This is not the
case in traditional financial markets; though some common risk factors may be
identified to describe the systematic fraction of the variance of each asset, the
idiosyncratic part of the variance is non negligible.

Example. Assume that parameters are set to µ1 = µ2 = 1.5, σ1 = 0.75, σ2 =

0.9 and r = 5% and that at time t = 0 we have S(1)0 = 1000,S(2)0 = 1005 and
C = 1000 USD. Then, the arbitrage strategy consists in buying α1

0 = 1.3086
Bitcoins in Exchange 1, selling α2

0 = 1.1056 in Exchange 2 and an investment
of 222.22 USD in the money market account. The initial cost of the invest-
ment is exactly V0 by construction, while at time t = 1

365 (one day) the profit is
1000
365 (SharpeRatio1−SharpeRatio2) = 0.88 USD. This is an arbitrage. Invest-

ments quotes should be revised in continuous time to keep the profit riskless.

6.1.3 Experiments

In what follows we consider the time interval from 01/01/2015 to 31/12/2017 as
a training time for the model and we estimate the above model on daily Bitcoin
prices available on Gdax, Bitstamp, Kraken, CEX.IO and BitKonan.
In Table 10 we report parameter values estimated on the above Exchanges. For
the sake of simplicity, we have set r = 0 in the Sharpe ratios row.

First, we observe that parameter estimates are different across Exchanges,
meaning that arbitrage opportunities arise; Gdax and CEX.IO Exchanges exhibit
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the most diverging Sharpe ratios.
The theoretical trading strategy considered in Section 6.1.2 is tested over the

next 90 days by computing the overall daily profit of the investment applied to
Gdax and CEX.IO; it is worth noticing that the strategy is performed by applying
daily revisions of the investment rather than in continuous time as suggested in
the theoretical model. Nevertheless it is still very profitable.

Figure 64: Total profit dynamics in USD from January, 1, 2018 to March 30, 2018
(90 days), investing on Gdax and CEX.IO Exchanges with an initial investment
C = 1$.

As an example, we plot in Figure 64 the total theoretical profit obtained
by investing according to the above strategy on Gdax and CEX.IO Exchanges
which exhibit the largest difference in the Sharpe Ratio values. The Overall
Gain is computed from January, 1 to march, 30, 2018 for C = 100. Clearly, by
choosing a higher scale C the total gain increases proportionally.

6.2 Arbitrage opportunities in practice

To understand if there are arbitrage opportunities in practice we decided to make
an application. Our application (TradeBitcoin), part of the suite BlockChainVis
used for Bitcoin analysis and visualization. This module4 is based on finding the
price options on the Bitcoin exchange and writing possible arbitrage operations
on a database to see if it is possible to correctly perform an arbitrage on the Bit-
coin market. It provides various calls: to check the possibility of real-time gain

4http://tradebitcoin.dmi.unipg.it/.
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Figure 65: TradeBitcoin DB schema

from arbitrage between exchanges, automatic execution function every x hours
(results are stored in a SQL DB); to download historical price data from bitcoin-
charts.com and insert them in SQL DB; statistical calculation of the places where
have been most often the lowest buy price (BID) and the highest sell price (ASK)
(saved in SQL DB). In Figure 65 the db structure: the table utenti contains the
informations for login; table conf store the information to manage the arbitrage
algorithm: maxtr is the max amount to spend for a single transaction, maxtr is
the max amount to spend in a day and minper is the time to wait between two
check; tradebit and Trade contain all the info of the arbitrate opportunities find
by TradeBitcoin. To perform this, we choose the principal Bitcoin Exchanges
that allow the use of web API to get Bitcoin prices in real time. In our applica-
tion we used: Bitstamp, Kraken, CoinBase, ANX, Bitbay, Bitfinex, BitKonan,
HitBTC and TheRock. In Figure 66 we can see a table, from our application,
that shows in real time the price of all considered exchanges. Instead in Figure
67 a chart, from our application, that shows the number of times the BID has
been greater and the ASK lower on a exchange in the last year.

6.2.1 How it works

Starting with an initial endowment of 1000 USD, we build an investment strategy
that:

• Obtains with a fixed time frequency, bid and ask prices by the aforesaid
exchanges.
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Figure 66: Exchange prices table.

• Checks and compares BID and ASK values in different exchanges, also
controlling for the amounts offered and exchange’s fees.

• has a frequency of 6 hours.

• spends maximum of 100 USD per transaction.

• spends maximum of 100 USD per day.

• makes transactions only with a minimum gain of 2%

• simulates the arbitrage position and the corresponding gain added to our
portfolio value.

6.2.2 Results

The evolution of the portfolio value (Figure 68) leads to a total outcome of about
3500 USD in October 2017 that is a 250% return in less than two years with no
risk! By relaxing some of our constraints we could obtain a still better perfor-
mance. Of course, there are practical issues in order to make this arbitrage a real
strategy; instead for many exchanges, it is not possible to do real-time payments
from a selected bank account so we need to store a certain amount of USD in
all the exchanges we are wishing to invest on. Further the Bitcoin trading is not
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Figure 67: Number of times that BID has been greater and ASK lower.

instantaneous, but need many minutes to be completed. Now, it is also possible
to make immediate money transfers5 with an average cost of to 2 USD, so if we
subtract these costs to our profit we still have 2000 USD.

6.3 The speculative bubble in BTC/USD rates

By simply watching the trajectory of the BTC/USD exchange rate time series
it is easy to notice how often its pattern surges and bursts rapidly mimicking
the one of speculative bubbles. The definition of speculative bubble, considered
in this chapter, is the one proposed by Blanchard [Bla79] in the framework of
rational expectations models where it is assumed that the economic variable of

5https://www.europeanpaymentscouncil.eu/what-we-do/
sepa-instant-credit-transfer.
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Figure 68: Gain (in USD) over time.

interest, say xt , has two components: the first one depicts the fundamental path
of xt , while the second represents the bubble effect. In this context a bubble
results from the departure of xt from it’s fundamental path. In Figure 69 one of
the major bubbles occurred in 2013 for the BTC/USD rate is recorded.

Bitcoins are produced through a “mining” process which involves computers
(nodes from now on) solving complex mathematical problems (cryptography)
to keep the system secure; when the node find a solution to the problem it is
rewarded with an amount of Bitcoins which is referred to as “Block reward”.
The protocol running Bitcoin is programmed to halve every 4 years the “Block
reward” by suitably increasing the difficulty of the mathematical problems to be
solved. Hence, the volume of new coins will decay to zero with time and the
long-term monetary supply will be fixed.

This chapter aims at investigating whether the peculiar “deflationary” mech-
anism running the system’s monetary issuance is the main responsible of the
formation, and the subsequent crash, of speculative bubbles (against the USD
and other currencies). Indeed economic agents, before undertaking any action
within the system, already include the system’s monetary issuance in their pref-
erences/expectations, i.e. they already know that monetary issuance will never
diverge from their expectations inasmuch the system has a unalterable monetary
policy programmed to ever decrease the monetary issue over time. Therefore as
the system grows (think of it as the Gross Domestic Product of a national econ-
omy) the demand of Bitcoins will increase, boosting upwards its price against
other traditional currencies, given the ex-ante fixed monetary supply.
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Figure 69: Bitcoin/USD observed time series

The reason why this issuance mechanism is hereby defined “deflationary” is
that as long as the general belief that the system as a whole will keep growing
stands, the price against other currencies will inevitably increase, increasing the
inter-temporal opportunity cost of spending any given amount of BTC. As a
matter of fact since the agents know that the price will increase then they are
encouraged to withhold any transaction in BTC and increase their savings in
BTC. A very interesting effect of such mechanism is that any steep fall in the
price may boost the awareness of BTC as a system, potentially increasing it’s
diffusion among the general public, thus incrementing the aforementioned self–
sustaining dynamic [Kri15].

It must be noticed that if the system had a flexible monetary policy, where
changes are not known ex-ante, then the economic agents within and without
the system wouldn’t be able to include it in their preferences, thus neutralizing
the aforementioned self–sustaining mechanism, even if the Bitcoin system is
flourishing. After the explanation given above it must be clear now the reason
why it is expected and tested below in this study that the speculative bubble in
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BTC/USD rates is a forward–looking phenomena.

6.4 Mixed causal-noncausal autoregressive models

For a long time, as mentioned by Gouriéroux & Hencic [HG15], speculative
bubbles were considered as nonstationary phenomena and treated similarly to
the explosive, stochastic trends due to unit roots. Gouriéroux & Zakoian [GZ13]
propose a different approach and assume that the bubbles are rather short-lived
explosive patterns caused by extreme valued shocks in a noncausal, stationary
process. In particular they assume a noncausal AR(1) (Auto Regressive) model,
strictly forward looking, with Cauchy distributed errors.

A useful feature of such models is that shocks are non-fundamental, com-
bining this trait with the extended time dependance (to the future) allows these
models to perfectly fit the peculiar pattern of the aforementioned (definition of)
speculative bubble.

6.4.1 Introduction to noncausality

Let yt be the observed time series onto which estimate the traditional autoregres-
sive model:

a(L)yt = εt
(1−a1 L−·· ·−ap L−p)yt = εt

(6.8)

with L being the backshift operator, i.e., Lyt = yt−1 gives lags and L−1 yt = yt+1

produces leads and a the autoregressive parameters. It is known [LS08] that
if s out of p of the polynomial’s (a(L)) zeros are inside the unit circle, then
the model is non stationary causing the impossibility to estimate the traditional
autoregressive model. εt represent the usual error term of the model.

In Lanne & Saikkonen [LS08] it is shown that when p = r+ s, with r being
the zeros outside the unit circle, one can factor the polynomial a(z) as6:

a(z) = ϕ
∗(z)φ(z) (6.9)

where φ(z) is the usual causal polynomial of the autoregressive parameters and
ϕ∗(z) has its zeros inside the unit circle.

6In order to maintain the same notation as in Lanne & Saikkonen [LS08] the polynomial a(L)
will be referred to as a(z) for the following proof.
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The polynomial ϕ∗(z) can be expressed as:

ϕ∗(z) = 1−ϕ∗1 z−·· ·−ϕ∗s zs

=−ϕ∗s zs
(

1+
ϕ∗s−1
ϕ∗s

z−1 + · · ·+ ϕ∗1
ϕ∗s

z1−s− 1
ϕ∗s

z−s
)

=−ϕ∗s zs ϕ(z−1)

(6.10)

where ϕ(z−1) = 1−ϕ1 z−·· ·−ϕs zs in view of the fact that ϕ∗s− j/ϕ∗s =−ϕ j for
j = 1, . . . ,s and 1/ϕ∗s = ϕs.

Because the zeros of ϕ∗(z) lie inside the unit circle those of ϕ(z) lie outside
of the unit circle. Thus, (6.8) can be written as:

φ(L) [−ϕ
∗
s Ls

ϕ(L−1)] = εt

given the decomposition shown in (6.10). Also, the latter expression can be
rearranged as:

φ(L)ϕ(L−1)yt = εt (6.11)

where εt =−(1/ϕ∗s )L−sεt =−(1/ϕ∗s )εt+s. It is important to notice that Et [εt ] 6=
εt since this variable is not determined by any informations available at time
point t (see above).

6.4.2 Mixed Causal-Noncausal Autoregressive Model

The univariate mixed causal-noncausal autoregressive model, denoted MAR(r,s),
shown with equation 6.11 is usually written as:

(1−φ1 L−·· ·−φr Lr)(1−ϕ1 L−1−·· ·−ϕs L−s)yt = εt (6.12)

When ϕ1 = · · ·= ϕs = 0, the process yt represent a purely causal autoregressive
process denoted AR(r,0):

(1−φ1 L−·· ·−φr Lr)yt = εt (6.13)

where yt is regressed on past values, giving the process yt a backward looking
autoregressive dynamic.

The process yt is purely noncausal when φ1 = · · · = φr = 0, hence defined
as:

(1−ϕ1 L−1−·· ·−ϕs L−s)yt = εt . (6.14)
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usually referred to as forward looking AR(0,s) process, being the exact coun-
terpart of the model specification given in (6.13), since it’s regressed on future
values rather than past ones.

Models containing both lags and leads of the dependent variable are called
mixed causal–noncausal models.

Assuming that the roots of the causal and noncausal polynomial are outside
the unit circle, that is:

φ(z) = 0 per |z|> 1 e ϕ(z) = 0 per |z|> 1 (6.15)

than these conditions imply that the series yt admits a two-sided Moving Average
(MA) representation:

yt =
∞

∑
j=−∞

ψ j εt− j (6.16)

such that ϕ j = 0 for all j < 0 implies a purely causal process t and a purely
noncausal model when ϕ j = 0 for all j > 0 [LS11]. More in detail, the ψ j’s are
the coefficients of an infinite order polynomial in positive and negative powers
of the Lag operator and such that Ξ(z) = ∑

∞
j=−∞ ψ j z j = [Ψ(z−1)]−1 [Φ(z)]−1.

Error terms εt are assumed iid non-Gaussian with E(|εt |δ )< ∞ ∀ δ ∈ (0,1)
[GZ13]. Following Gouriéroux & Jasiak [GJ16] the unobserved causal and non-
causal components of the process yt are defined as follows:

ut ≡ φ(L)yt ↔ ϕ(L−1)ut = εt , (6.17)

vt ≡ ϕ(L−1)yt ↔ φ(L)vt = εt (6.18)

The specification of these values will prove useful for the following part regard-
ing the estimation of mixed causal-noncausal processes.

The non-Gaussianity assumption for the error term ensures the identifiability
of the causal and the noncausal part. Most papers by Lanne & Saikkonen et al.
use Student’s tν distributions, with ν ≥ 2 while Gouriéroux et al. rely on the
Cauchy or a mixture of Cauchy and Normal distributions. As shown by Hecq
et al. [HLT16] it emerges that the Cauchy has too strong fat tails features and
many series would have a degree of freedom between 1.5 and 2.57.

7Notice that when ν < 2 then the Student’s t expected value is undefined.
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Figure 70: TradeBitcoin data price download panel
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6.5 The Data

The sample consists in 151 observation of the BTC/USD price spanning from
February 20 to July 20 2013. The dynamic of the data is shown in Figure69,
where it is possible to notice the speculative bubble behaviour of the BTC/USD
path, boosting and bursting rapidly around the month of April. In fact, in the
April 2013 there was a famous bubble, commonly called simply the April bub-
ble, that was a rally, all-time high and subsequent crash of the bitcoin exchange
rate. The bubble resulted in a momentary all-time high of $266 USD per bitcoin
on Mt. Gox8 on 10th April 2013. Then Mt. Gox suspended trading on 11th
April 2013 until 12th April 2013 2 am UTC for a “market cooldown”. The value
of a single bitcoin fell to a low of $55.59 after the resumption of trading before
stabilizing above $1009 (a price decline of 61%).

The data is obtained from TradeBitcoin. It also collects all this data price
from 17 different exchanges and it allows to download that data with a detection
time of 1 day or 1 hour or 15 minutes (Figure 70).

6.5.1 Price decomposition

As a first issue it is important to disentangle the fundamental component from
the bubble component of the BTC/USD prices. The fundamental value of the
Bitcoin is still under debate. While in [Dwy15] it is argued that this fundamen-
tal value is zero, in [Gar+14] it is linked to the reputation of the Bitcoin system
measured by internet queries, moreover it is suggested (still in [Gar+14]) that
the production cost of Bitcoin, due to the mining process, should be consid-
ered as the lower limit of the fundamental value of Bitcoin. Since this study
assumes that Bitcoin has a fundamental value indeed, the price will be firstly
decomposed following the approach in [HG15], where the fundamental path of
the BTC/USD rate is assumed to be a nonlinear deterministic trend modelled as
a 3rd degree polynomial in time and the bubble part is obtained by subtraction
from the observed prices, as it is done still in [HG15]. The other decomposition
that will be undertaken builds upon the suggestion made in [Gar+14], by setting

8https://en.bitcoin.it/wiki/Mt._Gox.
9https://bitcoincharts.com/charts/mtgoxUSD#

rg5zczsg2013-04-10zeg2013-04-12ztgSzm1g10zm2g25zl.
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apart the production cost of Bitcoin and the bubble component using the cost of
production model shown in [Hay17].

Nonlinear deterministic trend

As mentioned above the BTC/USD rate is defined as follows:

ratet = trendt + yt , (6.19)

with ratet being the observed prices, trendt the fundamental component and yt

the bubble component and the estimated trend is given by:

trendt = 0.000073 t3−0.0316 t2 +3.6590 t−3.2951.

The corresponding time-series are plotted in Figure 71.

Production cost as the lower limit of the fundamental value

The Bitcoin production cost model shown in [Hay17] assumes the perspective
of a generic miner that is deciding whether to mine or not for Bitcoin. The miner
will decide to join the mining process in case of positive profit expectations and
to abandon it on the contrary case. The variables considered to be influencing the
mining process and hence the production cost in [Hay17] are: the block reward
β , the hashing power (computational power) of the mining hardware equipment
ρ , the difficulty set by the network δ , the cost per kilowatt-hour10 $kW/h and
the average energy efficiency W GH/s of the mining hardware deployed.

As shown in [Hay17] the expected number of cryptocurrency coins to be
mined per day on average given the difficulty and block reward (number of coins
issued per successful mining attempt) per unit of hashing power is given by:

BTC/day =
β ρ sechr

δ 232 hrday

sechr= 3600 being the seconds in 1 hour and hrday= 24 being the hours in a day.
The cost of mining can be expressed as:

Eday = (ρ/1000)($kW/h W GH/s hrday)

10In this study we consider the same average cost for electricity that is considered in [Hay17],
although it must be noticed that it changes depending on the geographical location of the miner and
therefore on the national electricity supplier.
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with $ kW/h being the electricity cost and W GH/s the average energy effi-
ciency. Bitcoin production cost estimates over the considered time span (Feb.-
Jul. 2013) are shown in Figure 72, where it is assumed an average energy ef-
ficiency of W GH/s = 500 as suggested by Garcia et al. [Gar+14], a computa-
tional power11 of GH/s = 1000, an average global electricity cost of $kW/h =

0.115. In 2013 the block reward set by the network was β = 25 BTC, the values
of the ever changing difficulty over the considered time-period can be found in
the public database https://blockchain.info.

Assuming the lower limit of the fundamental value, given by the aforemen-
tioned definition of production cost, as the actual fundamental value, therefore
the BTC/USD rate is defined similarly as in 6.19:

ratet = costt + yct , (6.20)

with ratet being the observed prices, yct the bubble component and where the
fundamental component in this case is given by the aforementioned production
cost costt . Assuming that the production cost is correctly estimated, it must
be noticed that the bubble component could be considered as the added market
value.

The corresponding time series are plotted in Figure 72

6.6 Estimated models

The following part of the study undertakes a mixed causal/non-causal analysis
by estimating MAR models on the BTC/USD price and on the bubble compo-
nent according to the two different definitions of the fundamental part. As al-
ready discussed in the introduction it is expected that the forward looking depen-
dence is stronger in the isolated bubble component than in the observed price.
The model specifications in what follows are chosen by applying information
criteria which are useful tools to select the number of lags (and leads) to be in-
cluded in the model. The information criteria hereby considered are the Akaike

11It must be noticed that in this example varying the computational power does not change the
cost, i.e., the cost of 1 BTC in USD is only affected by the difficulty, the electricity cost and the
average energy efficiency of the mining hardware, increasing the scale of production in this case
doesn’t lead to economies of scale.
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Figure 71: Bitcoin/USD price decomposition
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Figure 72: Bitcoin/USD price vs. production cost

118



information criterion (AIC), the Bayesian information criterion (BIC) and the
Hannan-Quinn information criterion (HQ) (for a general review see the book by
Hamilton [Ham94]). Once the number of lags/leads have been detected, models
are estimated by maximizing the approximated log-likelihood function based on
the Student’s t density function for the error term; a detailed description of the
procedure may be found in Hecq et al. [HLT16]. The related Matlab routines
used in this work are kindly provided by the authors of the above quoted paper.

Table 11: AR(1) model’s estimated parameters

AR(1) Model

ϕ1 Std. Dev.

0.8066 0.0234

t distribution

λ ν

4.3928 2.5013

Table 12: BDS test results, purely noncausal model AR(1).

m w p− value m w p− value

2 5,978547545 1,13E-09 9 13,3666165 0
3 6,525463574 3,39E-11 10 14,65204326 0
4 7,420797806 5,82E-14 11 15,91260972 0
5 8,615265114 0 12 17,42915916 0
6 9,743131337 0 13 19,3469674 0
7 10,83386529 0 14 21,49415105 0
8 12,07560832 0 15 24,05813227 0

6.6.1 Noncausal analysis of the bubble component

Firstly is considered a strictly noncausal AR(1) (forward looking):

yt = ϕ1 yt+1 + εt .

where εt are iid Student’s t distributed errors, with location 0 and scale parame-
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Figure 73: Noncausal AR(1) model residuals

ter λ , εt ∼ (0,λ ). Estimated parameters are reported in Table 11. The residuals
of the models are shown in Fig 73. In order to test the model’s goodness of
fit, the results of the BDS test (Brock, William, Davis Dechert & Scheinkman,
1987) [Kan99], used to test whether the residual are truly a sequence of iid Stu-
dent’s t random variables, are reported in Table 12. The test fails to accept the
null hypothesis of iid distributed residuals, this implies that the present model
must be discarded.

Table 13: Information Criteria

p BIC AIC HQ p BIC AIC HQ

0 6,0119 5,9565 5,9649 5 4,8862 4,5537 4,6042
1 4,7057 4,5949 4,6117 6 4,914 4,526 4,585
2 4,6823 4,5161 4,5413 7 4,9494 4,506 4,5734
3 4,7513 4,5296 4,5633 8 4,987 4,4882 4,5639
4 4,818 4,5409 4,583
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Table 14: MAR(1,1) estimated parameters.

Parameter Estimate Confidence bounds

φ1 0.5255 0.4585 0.5925
ϕ1 0.6503 0.5897 0.7110

Figure 74: Mixed causal-noncausal MAR(1,1) residuals

Table 15: BDS test results for the MAR(1,1) model residuals on yt .

m w p− value m w p− value

2 1,703389269 0,0442 9 6,924875969 2,18E-12
3 2,249277819 0,0122 10 7,294838916 1,50E-13
4 3,342684301 4,15E-04 11 7,639695322 1,09E-14
5 4,384330303 5,82E-06 12 8,143710723 2,22E-16
6 5,191782337 1,04E-07 13 8,892820344 0
7 5,887119414 1,96E-09 14 9,500629834 0
8 6,412692984 7,15E-11 15 10,18321732 0
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Mixed causal-noncausal AR model

The following specification of the model is derived by the suggestions of the
information criteria, these are very useful tools to determine the time dependen-
cies to be included in the model, i.e. they are used to determine the order of the
autoregressive polynomial p (see equation 6.8). The information criteria hereby
considered are the Akaike information criteria AIC, the Bayesian information
criteria and the Hannan-Quinn information criterion HQ [HLT16], Hecq et al.
[HLT16] show that simulation results would favour the use of BIC. As reported
in Table 13 the information criteria suggest setting p = 2.

When p = 2 the estimated Mixed causal-noncausal model is a MAR(1,1):

(1−φ1 L)(1−ϕ1 L−1)yt = εt .

Table 14 shows the estimated parameters of the model. Figure 74 shows the
sequence of the MAR(1,1) model’s estimated residuals ε̂t .

As shown in Table 15, the BDS test for independence fails to accept the null
hypothesis of iid distributed residuals for most of the tested embedded dimen-
sions, thus suggesting to discard the model just now estimated.

Table 16: Information Criteria, MAR model on ratet

p BIC AIC HQ p BIC AIC HQ

0 7,0358 6,9803 6,9888 5 4,9587 4,6262 4,6767
1 4,7483 4,6374 4,6543 6 5,0137 4,6257 4,6847
2 4,7546 4,5883 4,6136 7 5,0781 4,6348 4,7021
3 4,8215 4,5998 4,6335 8 5,0705 4,5716 4,6474
4 4,8906 4,6135 4,6556

6.6.2 Noncausal analysis of the observed price BTC/USD

Since the interpretation of the aforementioned estimated parameters can be rather
misleading and therefore hard to be extended to the market reality, given the ar-
bitrary choice for the fundamental component, it is of great interest to estimate
the MAR model directly on the BTC/USD time series (ratet ).

122



Table 17: MAR(0,1) estimated autoregressive parameters on ratet

Parameter Estimate Confidence bounds

φ1 0.9809 0.9740 0.9878

Table 18: Estimated parameters of the Student’s t error distribution with MAR(0,1)
model on ratet

λ ν

3.3073 1.4863

Table 19: BDS test results for the MAR(0,1) model residuals

m w H0 m w H0

2 6,45069 1 9 16,22165 1
3 8,26635 1 10 18,05194 1
4 9,30074 1 11 20,14559 1
5 10,38450 1 12 22,50443 1
6 11,66036 1 13 25,59976 1
7 13,03694 1 14 29,31705 1
8 14,59404 1 15 33,57504 1

Table 20: MAR(1,1) estimated autoregressive parameters on ratet

Parameter Estimate Confidence bounds

φ1 0.9747 0.9650 0.9844
ϕ1 0.2781 0.2077 0.3485
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Table 21: Estimated parameters of the Student’s t error distribution with MAR(0,1)
model on ratet

λ ν

3.3901 1.6043

Table 22: BDS test results for the MAR(1,0) model residuals on ratet .

m w p− value m w p− value

2 6,450686379 5,57E-11 9 16,22165279 0
3 8,266350334 1,11E-16 10 18,05194201 0
4 9,300742867 0 11 20,14558908 0
5 10,38450476 0 12 22,50443038 0
6 11,66035838 0 13 25,5997597 0
7 13,03694212 0 14 29,31704918 0
8 14,59403959 0 15 33,57504129 0

The aforementioned information criteria, in application to the BTC/USD
time series, suggest to set the order of the autoregressive polynomial to p = 1
(see Eq. 6.8) or p = 2 depending on the selected criterion (see Table 16).

Estimated MAR model, case p = 1

When p = 1 the estimated model that best fits the observed time series ratet is a
purely causal AR(1,0). Table 17 and Table 18 display the estimated parameters
of the autoregressive polynomial and of the error distribution, respectively.

Since the distribution’s degrees of freedom ν = 1.4863 < 2, then the esti-
mated sequence of error terms ε̂t cannot be likened to the case εt ∼ iid tν (0,λ ),
given the fact that when ν < 2 the expected value of the distribution is not de-
fined. Anyhow the BDS test (Table 22) for independence does not accept the null
hypothesis of iid distributed residuals, thus suggesting once again to discard the
estimated model.
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Table 23: BDS test results for the MAR(1,1) model residuals on ratet .

m w p− value m w p− value

2 5,121150647 1,52E-07 9 15,28926444 0
3 7,537452115 2,40E-14 10 16,97636905 0
4 8,912767967 0 11 18,98947641 0
5 10,07953357 0 12 21,39229563 0
6 11,15351875 0 13 24,08437913 0
7 12,36324983 0 14 27,23839452 0
8 13,78408522 0 15 30,78448895 0

MAR model, p=2

When p = 2 the estimated model is a Mixed causal-noncausal MAR; estimates
of the model are displayed in Table 20 and 21. Once again the estimated t distri-
bution’s degrees of freedom is ν = 1.6043 < 2, therefore the estimated sequence
of error terms cannot be likened to the case εt ∼ iid tν (0,λ ), suggesting to dis-
card the model once again. In any case, the BDS test(Table 22) for independence
does not accept the null hypothesis of iid distributed residuals, thus suggesting
once again to discard the estimated model.

6.6.3 Residual analysis

To sum up, MAR models are estimated directly on the BTC/USD time series
(ratet ) and then on the bubble part (yt , yct ); the aforementioned information
criteria suggest to set the order of the autoregressive polynomial to p = 1 or
p = 2 depending on the selected criterion, both for the BTC/USD rate and for
the bubble terms. In the former case, p = 1, a strictly causal backward looking
AR(1) is the preliminary reference specification for both the full rate ratet and
the bubble component yct whereas a strictly non-causal forward looking AR(1)
is the preliminary reference for the bubble component yt . For the latter case,
p = 2, a MAR(1,1) model is found to be fitting all the time series ratet , yt and
yct .

The estimation results are reported in Table 24.
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Table 24: MAR(r,s) estimated parameters on ratet , yt & yct

Time Series MAR(r,s) Parameter Est. Conf. bounds Parameter Est. Conf. bounds

ratet
MAR(1,0) φ1 0.9809 0.9740 0.9878 ϕ1 - - -
MAR(1,1) φ1 0.9747 0.9650 0.9844 ϕ1 0.2781 0.2077 0.3485

yt
MAR(0,1) - - - - ϕ1 0.8066 0.8028 0.8103
MAR(1,1) φ1 0.5255 0.4585 0.5925 ϕ1 0.6503 0.5897 0.7110

yct
MAR(1,0) φ1 0.9803 0.9702 0.9904 ϕ1 - - -
MAR(1,1) φ1 0.3424 0.2604 0.4245 ϕ1 0.9396 0.9216 0.9576

It is evident from the results in Table 24 that there is a very strong backward
looking dependence in one lagged value, for the BTC/USD rate and for the bub-
ble component yct ; conversely, for the isolated bubble term yt , there is a very
strong forward looking dependence in one led value.

The estimation of a Mixed causal/non-causal MAR(1,1) gives further in-
sights on the backward and forward dependence; outcomes are summed up in
Table 24 respectively for the full rate ratet , the bubble term yt and the bubble
term yct .

Particularly interesting is the difference in the parameter φ1 and ϕ1 when es-
timating the MAR(1,1) model separately on the bubble component yt and on the
original time series ratet . As shown in Table 24 the non-causal parameters (for-
ward looking) ϕ are stronger in the bubble component yt than in the observed
price ratet , whereas the causal parameter φ is much stronger in the observed
price ratet than in the bubble component yt . This is consistent with the con-
jecture made in the introduction, that the speculative bubble is rather a forward
looking phenomena than a past one, since the forward looking estimated param-
eters on the bubble part are stronger than the ones on the observed BTC/USD
price ratet . This evidence is strengthen by the MAR(1,1) estimated parameters
on the bubble part yct , indeed it can be noticed that the value of the forward
looking and backward looking components almost trade places when estimat-
ing the model on the full price time series ratet and the bubble component yct

respectively.
As mentioned in Section 6.4.2, if the model is correctly specified then the

model residuals εt should be a sequence of Independent Identically Distributed
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Table 25: BDS test results for the MAR(1,0) model residuals on yct .

m w p− value m w p− value
2 5,528256527 1,62E-08 9 12,29309902 0
3 7,009012288 1,20E-12 10 13,36389728 0
4 7,773551059 3,77E-15 11 15,15913039 0
5 8,506760111 0 12 17,1200305 0
6 9,287013257 0 13 19,26464437 0
7 10,17111148 0 14 21,78528929 0
8 11,24555355 0 15 24,56128819 0

Table 26: BDS test results for the MAR(1,1) model residuals on yct .

m w p− value m w p− value
2 4,236007075 1,14E-05 9 10,32346963 0
3 5,315716933 5,31E-08 10 11,13612446 0
4 6,272423899 1,78E-10 11 12,51271091 0
5 7,320422719 1,24E-13 12 14,01078341 0
6 8,132958153 2,22E-16 13 15,68841368 0
7 8,838578863 0 14 17,59084596 0
8 9,612705164 0 15 19,49717776 0

Student’s t observations. In this study the IID hypothesis is tested through the
BDS test for independence. This test is based on the correlation dimension, with
m embedded dimension, since it can be shown [Kan99] that the test statistic w
is asymptotically normally distributed ∼ N (0,1), it is quite feasible to obtain
p−values. The Tables 25 and 26 reporting the outcome of performing such test
on the residuals εt of the yct estimated models. As shown in Table 15 it can
be noticed that the only model for which the null hypothesis of IID residuals
cannot be rejected is the MAR(1,1) model on yt , and only for m = 1 or m = 2,
depending on the selected confidence bound width.
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6.7 Conclusions

In this chapter, we prove both via a theoretical model and via an empirical strat-
egy that arbitrage opportunities are indeed possible by trading on different Ex-
changes. This study also undertook a Mixed causal-noncausal analysis of the
BTC/USD exchange rates time series, over the period February-July 2013, to
test whether the bubble effect disentangled on observed data may be explained
by a forward looking behaviour of the economic agents. The conjecture under-
lying this study is that the forward looking parameters should be stronger in the
bubble part than in the observed price. Indeed this turns out to be the case, when
estimating the model on the observed data, however the residuals analysis, con-
ducted by performing the BDS test for independence, suggests not to consider
this models valid but for one case.
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Chapter 7

Stochastic Modelling and
Analysis of the Bitcoin
Protocol

The implementation of a distributed ledger has to solve a well-known critical
issue: the inconsistency of updates that are performed by different nodes. This
problem, which has been demonstrated unsolvable in 1985 [FLP85], is overcome
in the Bitcoin protocol by using a probabilistic approach where the probabilities
depend on the rate of the addition of new blocks – called mining – and on the
delays of broadcasts. Additionally, to further reduce the probabilities of incon-
sistencies in the copies of the ledger, Bitcoin guarantees the so-called eventual
consistency whereby the various replicas may be temporarily inconsistent in at
most the last m blocks. In particular, Bitcoin users generally consider as “con-
firmed” (and therefore “can be paid”) every block that is at a depth greater than
m (m = 5 in the current protocol [Gra20]).

It turns out that the Bitcoin protocol is complex and many researchers are ac-
tively involved in studying its properties and its criticalities. Clearly, understand-
ing the details of the protocol is of paramount importance because overlooking
some of them might introduce vulnerabilities and pave the way to attacks. For
example, inconsistencies of the ledger replicas, called forks, occurring when
there are two or more blocks at the same height of the ledger, may be used
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for rewriting the transaction histories and for letting the blockchain evolve to a
wrong state. A typical example of wrong state is a state where a transaction is
paid twice – called double spending attack.

In this Chapter, we analyze the probabilistic behaviour of the Bitcoin pro-
tocol by using formal methods. In particular, following the approach of Pass et
al. [PSS17] and of Gramoli [Gra20], we use an abstract model that defines the
network of nodes as the parallel composition of processes – the miners – and
the time needed to mine a block and to broadcast a message as an exponential
distribution with a rate parameter associated to process actions. As done by Bi-
ais et al. [Bia+19], by Eyal and Sirer [ES14] and by Zamyatin et al. [Zam+18],
we use Continuous Time Markov Chains (CTMCs) for providing a probabilistic
model of our processes. To examine the probability of reaching a state of fork
in different settings, we analyse our model with a probabilistic model checker.
In our model, we consider every detail of the real implementation of the Bitcoin
protocol that influences the probability of reaching a state of fork. The details of
the protocol that do not impact on our analysis are ignored. The overall aim of
our analysis is to study the resilience of the protocol by varying some parameters
such as network topology, the presence of nodes that leave and join the network
dynamically.

The formal definition of the abstract model of Bitcoin is described using
PRISM [KNP02], a process calculus with a probabilistic and stochastic seman-
tics. This framework has been chosen because it includes an automatic model
checker that enable us to perform our analyses. Actually, in order to deal with
the complex data types used by Bitcoin, namely ledger, block and set,
and with the operations upon them, we extend PRISM and introduce the richer
variant PRISM+ that enables us to naturally model these concepts. Implement-
ing PRISM+ has required a significant programming effort in order to make the
foregoing data types native. With PRISM+, we can analyze several models of
the Bitcoin protocol and measure the impact on probabilities obtained by tuning,
up or down, the rates of mining and that of the delays of broadcasts.

As an initial step, we assess the coherence of our model by verifying that
the probabilities of mining a new block within a given amount of time and the
probability of having a fork are both in full agreement with the values avail-
able from the literature [DW13]. In particular, we confirm that the probability
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of a fork strictly depends on the broadcast delay and on the difficulty of the
cryptopuzzle, i.e. the difficulty of the computational problem that miners must
solve to be enabled to add a new block to the ledger. We also corroborate the
statement [Gra20] that waiting for at least 6 confirmations before considering
a transaction as permanent in the ledger is reasonable, because at that time the
majority of miners has a consistent blockchain with probability 10−12.

After validating our model, we study the trade-off between the security guar-
antees and the difficulty of the cryptopuzzle. More precisely, we analyze the
variability of the probability of reaching fork states when the speed of the min-
ing process increases, that is when the difficulty of the cryptopuzzle decreases.
We observe that the speed of mining can be boosted by decreasing slightly the
difficulty level at the cost of an almost irrelevant increase of the probability of
forking. Obviously, the easier is the cryptopuzzle, the faster the entire system
mines a block. We also show that a good balance between speed and safety can
be obtained with an average mining rate equals to 1/500. In fact, with this rate,
the process of mining a block is faster than in Bitcoin (1/600 [DW13; Bia+19]),
but the probability of reaching a state of fork is not much higher.

We also study a network with churning nodes, i.e. nodes that can leave and
rejoin the network. In particular, we analyze how the presence of this kind of
nodes affects the probability of mining new blocks and, consequently, the prob-
ability of forks. Our analyses show that this probability is lower when there are
churning nodes in the network. The same considerations stays valid for forks.
This is due to the fact that, in our network model, each node is connected to
every other node, thus the presence of churning nodes does not lead to message
losses.

Finally, we consider several network topologies (daisy topology, round topol-
ogy, tree topology and fully connected topology) and analyze them in order to
estimate how the connections between nodes can affect the likelihood of a fork.
Our simulations show that the probability of inconsistency increases when new
blocks, instead of being forwarded to all the nodes of the network directly, are
transmitted only to a subset of them. Thus, the smaller is the subset of the re-
ceiving nodes per miner, the higher is the probability of having a fork. The
different topologies have instead no impact on the mining process because the
rate of communications (of blocks) is much higher than the mining rate.
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We conclude by remarking that our PRISM primitives (ledger, block
and set) are generic, namely they are not tied to a particular protocol and can
be used for modelling and analysing other blockchain protocols, such as proof
of stake and its variants.

The rest of the Chapter is structured as follows. Section 7.1 presents PRISM+,
our extension of PRISM with the new data types, ledger, block and set.
Our model of Bitcoin is presented in Section 7.2. Section 7.3 contains our sim-
ulations and compares the results we obtain when considering different type of
networks. Section 7.4 draws some conclusions and discusses possible future
work.

7.1 The Extended PRISM Language

To have a faithful abstraction of the Bitcoin protocol we extend the PRISM lan-
guage with three dynamic data types: block, ledger and list. We call the
extended language PRISM+ and, in this section, we overview its main features.
Our extension has been implemented in a prototype that the reader can find on-
line at this url1 together with all the data of our simulations, and the instructions
for the installation and the use of tool.2

7.1.1 Blocks

As discussed in Section 2, a Bitcoin block records information items such as the
transactions, the nonce, a timestamp, the Merkle root and a pointer to its parent.
In our model, we ignore the hash value, because we consider all blocks and all
transactions valid. In particular, our blocks are either genesis or terms of the
form (mn;p), where mn, called name, is such that m is a miner’s name and n is a
unique numeric label. The term p, called father, is the name of another block to
which (mn;p) points. For instance, (m30;m47) denotes a block named m30, which
is the first block created by the miner m3, and whose father is the block named
m47, which is the seventh block created by the miner m4. The block genesis,
called genesis block is the root of every ledger.

1https://github.com/adeleveschetti/bitcoin-analysis.
2A docker image with our prototype is also available at https://hub.docker.com/

repository/docker/meivan/bitprism
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We introduce the following operation for creating blocks:

• createBlock(m, n, L), which returns a block (mn,p), where p is
the handle of the ledger L (see below).

7.1.2 Ledgers

The ledger data type, noted L, L′, · · · , is a pair 〈T;p〉 where T is a tree of
blocks and p is the name of a leaf block at maximal height, called the handle of
L. If there are several leaf blocks at maximal depth, the pointer is set to the first
received leaf at maximal depth, precisely following the description of protocol
presented by Nakamoto [Nak08b]. The height of a block b is the length of path
the connects b to the genesis block. The root of T is the genesis block. Given
a ledger L, the corresponding blockchain is the sequence of blocks which starts
from the handle and reaches the genesis. When a miner with a ledger 〈T;p〉
receives a block b, it adds b to T. Note that this is not always possible because
the father of b may be not in T; in this last case b is added to the local set of the
miner and is inserted into the blockchain afterwords. In case the depth of b in
T is higher than the one of the block pointed by p, the miner updates p to point
to b. When a miner mines a new block, the corresponding father is set to p and
p is updated accordingly. We define the following operations for the new data
types:

• addBlockLedger(L,b): the first argument is a ledger L= 〈T;p〉 and
the second is a block b. The operation adds b to T if the father of b is in
T. When b is at higher depth than the handle p, then the handle is updated
with the name of b;

• canbeInserted(L,b): checks if the block b can be inserted in the
ledger L. Thus, if the father of b is already in tree of blocks of L, the
function returns true, false otherwise.

In Figure 75, we depict the ledger

L=〈{genesis,(Miner01;genesis),(Miner11;Miner01),(Miner
0
2;genesis)};Miner11〉

that has two blocks created by Miner1 and one created by Miner2. The handle,
which is represented by a green arrow, is the block whose name is Miner11. The
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Figure 75: An example of Ledger.

blockchain of L is the sequence of blocks

(Miner11;Miner01) · (Miner01;genesis0) · (genesis0;genesis0).

We notice that the block created by Miner2 is a valid stale block.
A basic notion of ledgers is that of fork: Let L1 = 〈T1;p1〉, . . ., Ln = 〈Tn;pn〉

be a set of ledgers and let m be the maximal height of the handles p1, · · · , pn. Let
also Li1 , . . ., Lik be the ledgers in the above set with the handle at height m. The
set L1, . . ., Ln has a fork of length m−h, where h is the length of the maximal
common suffix of the blockchains of Li1 , . . ., Lik .

For example, the two ledgers in Figure 76 have a fork of length 1. Our

Figure 76: Two ledgers in a state of fork of length 1.

simulator will compute the probability that a fork of a certain length happens.
To this aim, we have implemented the operation

• calculateFork(〈T1;p1〉,. . .,〈Tn;pn〉): it takes in input a set of ledgers
and return the length of the fork; it return 0 if there is no fork.
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The function calculateFork compares the handles of the ledgers given as
input and keeps the blockchains with different handles at maximal height. Then
calculateFork uses an auxiliary function that recursively iterates over the
resulting blockchains without the leading block: the length of the resulting fork
is obtained by summing 1 to the length obtained from the previous recursive
invocation.

7.1.3 Sets

The set data type is implemented as a list of blocks without duplication. In our
Bitcoin model, this data type is used to maintain, for each miner, the collection of
blocks to be added to the blockchain. The data type has the following operations:

• the extraction operation extractBlockSet(S) which returns a block
randomly extracted from the set S;

• addBlock(S,b) which takes in input a set S and a block b; it returns
S∪b. When b ∈ S, addBlockSet(S,b) = S;

• removeBlock(S,b) which returns the set S\b;
• isEmpty(S) which returns true if the set S is empty, false other-

wise.

7.2 The Bitcoin Model

In our model, a Bitcoin system is the result of the parallel composition of n Miner
processes, n Hasher processes and a process called Network. Hasher processes
model miners’ attempts to solve the cryptopuzzle, while the Network process
model the broadcast communication among miners. At the beginning, we shall
assume that miners are connected through a network guaranteeing broadcast.
Later on, we shall consider other topologies (see Section 7.2.3); the actual archi-
tecture is illustrated in Figure 77. The abstraction also uses an auxiliary process,
called Global, that computes the length of forks, see Section 7.3.

As already said, in order to abstract out the solution of the cryptopuzzle and
the emission of new blocks, we use rates. It turns out that every process can be
modelled as a CTMC because
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Figure 77: The Bitcoin model architecture.

1. the time spent by a miner mi to mine a block can be described by an
exponential distribution 1− e−λmi t , where the parameter λmi depends on
the miner hashing power and the difficulty level of the crytopuzzle (see
Nakamoto [Nak08b]);

2. the communication delay across the Bitcoin Network can be also approx-
imated by an exponential distribution [DW13].

7.2.1 General Model

For the sake of clarity, we present a simplified version of the PRISM+ code
implementing our processes. The actual abstraction, the analyzed properties
with tests and the instructions for the use of the library are available on the
online repository.
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1 module Hasher_i
2 Hasher_i_STATE : 0;
3
4 [win_i] (Hasher_i_STATE=0) -> mR : Hasher_i_STATE’=0 ;
5 [lose_i] (Hasher_i_STATE=0) -> lR : Hasher_i_STATE’=0 ;
6 endmodule
7
8 module Miner_i
9 Miner_i_STATE : [Mine,Winner,Lost,Add,Move] init Mine;

10 b_i : block (Miner_i0;genesis0);
11 L_i : ledger 〈{ genesis };genesis 〉;
12 c_i : [0..100] init 0;
13 setMiner_i : set [];
14
15 [win_i] (Miner_i_STATE=Mine) ->
16 hR_i : (b_i’=createBlock(Miner_i,c_i,L_i))&(c_i’=

c_i+1)&(Miner_i_STATE’=Winner);
17 [lose_i] (Miner_i_STATE=Mine) -> hR_i : (Miner_i_STATE’=Lost);
18
19 [addBlock_i] (Miner_i_STATE=Winner) ->
20 1 :(L_i’=addBlockLedger(L_i,b_i))&(Miner_i_STATE

’=Mine);
21
22 [] (Miner_i_STATE=Lost) & !isEmpty(set_i) ->
23 1 : (b_i’=extractBlock(set_i))&(Miner_i_STATE’=

Move);
24 [] (Miner_i_STATE=Lost) & isEmpty(set_i) -> 1 : (Miner_i_STATE

’=Mine);
25 [] (Miner_i_STATE=Lost) & !isEmpty(setMiner_i) ->
26 1 : (b_i’=extractBlock(setMiner_i))&(

Miner_i_STATE’=Add);
27 [] (Miner_i_STATE=Lost)& isEmpty(setMiner_i) -> 1 : (

Miner_i_STATE’=Mine);
28
29 [removeBlock_i] (Miner_i_STATE=Move) ->
30 1 : (setMiner_i’ = addBlock(setMiner_i, b_i))&(

Miner_i_STATE’=Mine);
31
32 [] (Miner_i_STATE=Add)&(canbeInserted(L_i,b_i)) ->
33 1 : (L_i’=addBlockLedger(L_i,b_i)&(setMiner_i’=

removeBlock(setMiner_i,b_i))
34 &(Miner_i_STATE’=Mine);
35 [] (Miner_i_STATE=Add)&(!canbeInserted(L_i,b_i)) -> 1 : (

Miner_i_STATE’=Mine);
36 endmodule

Listing 7.1: Simplified model of the Hasher and a miner.

A Hasher process is defined in Listing 7.1 (lines 1 to 6). It represents the
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PoW algorithm performed by miners: those miners who want to solve the cryp-
topuzzle synchronize with the Hasher which “answers” telling them if they suc-
ceeded or not. The Hasher consists of two transitions: the first one with action
[win i] and rate mR is triggered when the synchronizing miner finds a so-
lution for the PoW (mR is taken such that 0 < mR < 1); the second one with
action [lose i] and rate lR (lR = 1−mR) is triggered when the synchro-
nizing miner does not find a solution to PoW. In both cases the Hasher process
makes a silent action.

A Miner, described in Listing 7.1 lines 8 to 36, has a ledger, called L i, a set
containing the blocks to be added to the ledger, called setMiner i, a block
b i and a integer c i. The variable b i is used to store the block the Miner
creates and to store the newly extracted block from the set. The integer c i is
a counter whose value ranges between 0 and 100 (initially is zero) and which
keeps track of the number of blocks created by the Miner, so that we can assign
unique names to blocks.

It has five states and behaves as follows:

• the initial state is Mine. From this state, the miner may win the criptop-
uzzle and transit into the Winner state or lose and transit into the Lost
state.

• in the Winner state, the miner may create (e.g. mine) a new block: in
our setting, mining a block amounts to synchronizing with the Hasher on
the action win (which means “winning the PoW”). This synchronization
has a rate hR i, with 0 < hR i < 1, that indicates nodes’ computational
power. When a block is created by a miner, it is added to the local ledger
and it is forwarded to all the other miners of the network, by synchronizing
with the Network process.

• in Lost state, the miner may receive a block from the network or may try
to add blocks stored in his local set to L i.

• the states Add and Move are used to add a block into setMiner i and
into L i, respectively.

The Network process is defined in Listing 7.2. It contains a set of blocks set i

for each Miner i that represents the messages to be delivered to the miner.
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The set N i, in the case of the broadcast topology, is equal to {0, · · · , i− 1, i+
1, · · · ,n− 1}, e.g. the indexes of the miners to whom a block must be sent
(line 9). Also, the Network process contains a transition for each Miner to model
sending and receiving messages.

1 module Network
2 n : numberOfMiners
3
4 for i from 0 to n-1:
5 set_i : set [];
6 N_i : set [];
7
8 for i from 0 to n-1:
9 [addBlock_i] -> rb : foreach k in N_i { set_k’=addBlock(

set_k,b_i); };
10
11 for i from 0 to n-1:
12 [removeBlock_i] -> 1 : set_i’ = removeBlock(set_i,b_i);

13 endmodule

Listing 7.2: Simplified model of the Network.

More precisely, the Network synchronizes with the Miner who won the PoW (in
the winner state) using the addBlock i action. As an effect of this synchro-
nization, Network updates the sets of blocks of the miners contained in the set
N i. 3

Below we describe in detail how our processes abstract the Bitcoin protocol.
As the reader can observe from the code in Listing 7.1, Miner’s state is initially
set to Mine. In this state it can synchronize with Hasher i using either the
win i or lose i actions. As already said, this synchronization abstracts the
cryptopuzzle solution. Note that the time needed for the creation of a new block
at miner i is a random number sampled from an exponential distribution with rate
P proportional to the ratio of the difficulty of the PoW problem and the hashing
power of the miner. Therefore, the chosen action, win i or lose i, depends
on the difficulty of the problem (represented by the hasher values mR and lR)
and on the hashing power of the miner (represented by hR i).

Since the rate of a synchronization is equal to the product of the rates of the
two actions, the rate of mining a new block is mR×hR i, which corresponds

3Actually, the set N i is not present in the PRISM+ model. The actions are replicated for all the
Miners without the for loop.
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to the parameter λmi introduced in the previous section. Whereas the rate of
loosing the competition is lR×hR i. If the miner wins, it changes its status in
Winner (lines 15 and 16), updates its ledger and sends the new block to the
Network (action addBlock i at lines 19 and 20) in order to forward it to the
other miners (i.e. updating other miners’ sets with the new block). If the miner
loses, its status becomes Lost (line 17) and it checks for new blocks in the Net-
work process with a certain rate rb, which simulates the latency of the network
and corresponds to the product between the rate 1 (for the action of the Miner)
and the rate rb of the Network action (lines 22 and 23 and line 9 of Listing 7.2).
If there are new blocks, the miner chooses randomly one of them (with the oper-
ation extractBlock()). This random choice simulates the delay due to the
topology of the network. In our model, the rate rb and the random selection of
blocks from the sets simulates the communication delay of messages in the Bit-
coin Network. Then, the state of the Miner becomes Move and the Miner adds
to its local set setMiner i the block b i (lines 29 and 30). Moreover, the
Miner synchronizes with the process Network with action removeBlock i.
The Network removes the block b i from the set of the Miner set i. Then the
state of the Miner becomes Mine. Otherwise, the Miner can try to take a block
from its local set (lines 25-26). A block is randomly extracted from the local
set setMiner i. If the block taken from the local set can actually be added
in the ledger (which means that the function canbeInserted(L i,b i) re-
turns True), the Miner adds the block to its ledger and removes it from the local
set (lines 32-34). Finally, its status is set to Mine and the process starts again.
Otherwise, the block is not removed from the local set and the process starts
again (line 35). If both the local set and the set stored in the Network process
are empty, the Miner does nothing and its status returns Mine (lines 24 and 27).
The time spent in performing these actions is simulated by the rate 1. This rate
is much higher than the other rates (which are numbers in the [0,1] interval) be-
cause it corresponds to local management operations of the Miner. Therefore,
the probability that a Miner tries to add a received block in its ledger is higher
than the probability of receiving or mining a new block. It is worth noticing that
a block is added in the correct position of the ledger, even if it is a stale block.
In our model stale blocks are represented as valid blocks which are not part of
the blockchain. In contrast, an orphan block is modeled as a block received by a
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miner, but that does not have its entire ancestry (yet) in the local ledger and thus
cannot be added. So an orphan block is not added to the ledger and is left in the
local set setMiner i.

7.2.2 Churn Nodes

Nodes that may leave the Bitcoin Network and rejoin after some time are called
churn nodes. As described by Motlagh et al.[MMM; MMM20b], while a node
is away from the network, other active nodes continue processing transactions,
mining and adding blocks to their respective blockchains. When a node rejoins
the network, its ledger is out of date and needs to be updated before the node can
take part in network activities. Therefore, the first action to be taken after rejoin-
ing is to download all blocks that were added to the set of the Network during
its sleep. When the blocks have been downloaded, the miner can start adding
them to the ledger. In the model of Listing 7.1, this is performed by transiting to
the state Mine. In order to model churn miners, we define a controller process
that awakes and shuts down miners following a given policy explained below.
The uncertainty is modelled by rates and the controller consists of a sequence of
states that alternate awake and sleep synchronizations with the correspond-
ing miner. Listing 7.3 shows a controller Controller i for a miner Miner i

with with 11 states.

1 module Controller_i
2 Controller_i_STATE : [s0,s1,. . . , s10] init s0;
3
4 [sleep_i] (Controller_i_STATE = s0) -> r_i0 : Controller_i_STATE

’ = s1 ;
5 [awake_i] (Controller_i_STATE = s1) -> r_i1 : Controller_i_STATE

’ = s2 ;
6 ...12
7 [sleep_i] (Controller_i_STATE = s8) -> r_i8 : Controller_i_STATE

’ = s9 ;
8 [awake_i] (Controller_i_STATE = s9) -> r_i9 : Controller_i_STATE

’ = s10 ;
9 endmodule

Listing 7.3: Model of a controller with 11 states.

Note that the controller is a finite state system that, when the number of states
are even, will leave the corresponding miner active forever; when the number
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is odd, it will leave the miner inactive forever. It is easy to define alternative
controller with cyclic behaviours.

1 module Miner_i
2 Miner_i_STATE : [Mine,Winner,Lost,Add,Move,Update,

MoveUpdate,Sleep] init Mine;

3 b_i : block (Miner_i0;genesis);
4 L_i : ledger 〈{ genesis };genesis 〉;
5 c_i : [0..100] init 0;
6 setMiner_i : set [];
7
8 [sleep_i] (Miner_i_STATE = Mine) -> 1 : (

Miner_i_STATE’ = Sleep);
9 ...

10 [addBlock_i] (Miner_i_STATE=Update) & !isEmpty(
set_i) ->

11 1 : (b_i’=extractBlock(set_i))&(
Miner_i_STATE’=MoveUpdate);

12
13 [removeBlock_i] (Miner_i_STATE=MoveUpdate) ->
14 1 : (setMiner_i’=addBlockSet(

setMiner_i, b_i))&(Miner_i_STATE
’=Update);

15
16 [] (Miner_i_STATE=Update) & isEmpty(set_i) -> 1 :

Miner_i_STATE’= Mine ;
17
18 [awake_i] (Miner_i_STATE = Sleep) -> 1 : (

Miner_i_STATE’ = Update);
19 endmodule

Listing 7.4: Simplified model of a dynamic miner.

The churn miner of Listing 7.4 extends the one of Listing 7.1 with three
additional states: Sleep, MoveUpdate, and Update.

As before, the initial state of this Miner is Mine where, in addition, it may
synchronize with the controller (action sleep i) and, after a certain amount
of time, modeled by the exponential parameter r i0, the Miner state becomes
Sleep (line 8). In this state, the miner may synchronize with the controller
again (action awake i) and its state becomes Update (line 10). In the Update
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state, the Miner synchronizes with the Network process and extracts all the
blocks from the corresponding set in Network by moving them into its lo-
cal set setMiner i (lines 13-14). When set i becomes empty (line 16) the
Miner state is set to Mine and the Miner can start the standard behaviour, which
is the one defined in Section 7.2.1 in Listing 7.1 (lines 15-35).

In our simulations we consider three controllers: one with four states (so
sleep-awake-sleep synchronizations, the first sleep has a very high rate, there-
fore the corresponding miner goes asleep immediately), the second with two
states (one sleep synchronization only: when the miner shuts down, it will be
down forever) and the third one with five states (sleep-awake-sleep-awake syn-
chronizations). Additional experiments with larger number of churn miners and
with cyclic behaviour are left to future work.

1 module Network
2 n : numberOfMiners
3
4 for i from 0 to n-1:
5 set_i : set [];
6 N_i : set [];
7
8 for i from 0 to n-1:
9 [addBlock_i] -> rb : foreach k in N_i { set_k’=addBlock(

set_k,b_i); };
10
11 for i from 0 to n-1:
12 [removeBlock_i] -> 1 : set_i’ = removeBlock(set_i,b_i)
13 & foreach k in N_i { set_k’=

addBlock(set_k,b_i); };

14 endmodule

Listing 7.5: Simplified model of the Network.

7.2.3 Network Topologies

We modeled several kinds of network topologies and analyzed how they affect
the likelihood of a fork. Network topology refers to how nodes are connected
with each other and transmit new blocks. We study three network topologies:
the ring topology, the tree topology and the daisy chain. The three topologies
have been modeled by changing only the Network process; Hasher and Miner
are those defined in Section 7.2.1.
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Listing 7.5 shows the modified code for the Network process. As the reader
can observe, the code is the same as of the one presented in the Section 7.2.1,
except for the line 13. In particular, we modified the set N i containing, for each
node, the set of nodes to whom the new blocks have to be forwarded. When a
Miner extracts a block received by the Network, the block is forwarded to the
nodes contained in the set N i. This set is defined according to the topology as
follows:

• Daisy chain (Figure 78): N i contains the previous node and the next one
(except for the terminal nodes where N i are singletons). For instance, for
miner Miner i, assuming i 6= 0,n, N i = { Miner i-1, Miner i+1

}, while N 0 = { Miner 1) } and N n = { Miner n-1 }.
• Ring (Figure 79): the set N i contains the previous and the next node

for each miner. Thus, for every miner N i = { Miner ((i-1)%n),

Miner ((i+1)%n)} .
• Tree topology (Figure 80): every N i contains the parent node and the

children node, except for the root of the tree and the leaves. Roots have
only children nodes; leaves have only the parent.
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Figure 78: Daisy chain topology.
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Figure 79: Ring topology.

The above topologies have been selected because they are the simplest to realize
in practice. The goal is to compare the resilience to forks of these topologies
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Figure 80: Tree topology.

with respect to the broadcast topology, (where every miner forwards the block
to all the other miners). Henceforth, one can choose the best topology according
to the preferred trade-off between risks of forks and connection costs.

7.3 Stochastic analysis

In this section, we report the results of the simulations of our model, the con-
fidence level is set to 99% and the samples to be generated are 100000. In the
caption of the figures we always show the t time units (bound time) considered
for each property. We used PRISM+, presented in Section 7.1, to analyze the
behavior of Bitcoin in different settings. The first analysis validates our model
with respect to the real Bitcoin Network; the second one studies the trade-off be-
tween the security and the efficiency/scalability of the network, i.e. we study the
interdependence between the probability of reaching a fork of length k and the
difficulty of a cryptopuzzle. The last two analyses study the time needed to mine
a new block and the probability of reaching a fork of length k for a network with
churn miners and in networks using different kind of topologies, respectively.

We always assume that all miners work honestly, for example, they never try
to mine new blocks and attach them in internal nodes of the ledger, as would
occur in a double spending attack or in a block withholding attack [ES14]. All
the simulations have been carried out on a Virtual Machine with 8 VCPU and 64
GB RAM.

Following Section 2.3, we define the properties of interest in the stochastic
temporal logic CTL. For example, the formula

P=?[F<=T "winner"]

defines the probability that some miner mines a new block within the first T time
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units. Thus, when checking the above property, PRISM must check whether
F<=T "winner" is true for each path. This is the formula we use to assess
the coherence of our model with respect to Bitcoin – see Section 7.3.1. Another
example is the formula that checks the occurrence of forks in ledgers. To for-
malize this formula we introduced in our model a suitable module to compute
forks, called Global, whose code is reported in Listing 7.6.

1 module Global
2 difference : [0..100] init 0;
3
4 for i from 0 to n:
5 [] (Miner_i_STATE = Add) -> 1 : (difference’ =

calculateFork(L_1, . . ., L_n));
6 endmodule

Listing 7.6: The Global process.

The process Global computes the difference between the ledgers of the system
every time a ledger is modified, e.g. when the Miner i changes its state to Add,
using the PRISM+ operation calculateFork (see Section 7.1). The value
returned by calculateFork is stored in the state variable difference.
Therefore, the probability of reaching a state of fork of length k within the first
T time units is defined as:

P=?[F<=T difference = k]

The complete definition of the considered properties can be accessed in the
on-line repository.

7.3.1 Coherence of the abstract model

To assess the coherence of our model with respect to Bitcoin, we take some
well-known values of the protocol and we compare them with the result of our
simulations.

We begin by studying mining rates. According to the hashrate distribution
of Bitcoin mining pools on May 2020, the probability that a block is mined in
Bitcoin within 600 seconds is about 63% (or 1− e−1). In 30 minutes (1800
seconds) a block has about 95% chance of being found and in 3000 seconds

4Source: https://www.blockchain.com
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Figure 81: Hashrate distribution of Bitcoin mining pools on May 20204.

the probability that someone has found the block is close to 1 5. If we model
a system with 16 miners whose hashing power (the rate) corresponds to the
hashing power distribution of (the main) Bitcoin pools as illustrated in Figure 81,
we obtain a probability of mining a new block which varies over time as shown
in Figure 82.

Figure 82: Probability of mining a block.

The figure displays the probability that someone in the system has mined a
new block. From out plot it is easy to see that the probability of mining a new
block in our system has an exponential behaviour as expected from the literature.
In particular, the reader may verify that the probability that a block is mined in
3000 seconds is almost 1. Similarly, the results at 600 and 1800 seconds are in
line with those of the real execution of the protocol.

5https://en.bitcoin.it/wiki/Confirmation
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In another analysis, we study the probability of reaching a state with a fork
of length 1 by varying the communication delay. The expected output is that
the higher is the rate for the communications, the smaller is the time for the
transitions to occur.

Figure 83: Probability of reaching a fork of length 1 by varying the broadcast delay;
the bound time T is set to 600 seconds.

In fact, this is what Figure 83 highlights. In particular, when the communi-
cation rate is rb = 0.08, we obtain results in line with Bitcoin, as presented by
Decker and Wattenhofer [DW13].

As a last analysis for validating our modelling, we study the probability of
having forks of increasing length when the broadcast rate is fixed to rb = 0.08.
Our choice derives from the observation that the average communication delay
in the Bitcoin Network is 12.6 seconds [DW13] and that can be approximated by
an exponential distribution with mean λ . Thus, taking λ equal to 12.6, we have
that rb = 1/12.6 = 0.08. The results of our simulations are in Figure 84. The
reader can observe that the probability to have a fork of length 5 is of the order
of 10−8, whereas it is approximately zero when the length of the fork reaches
6. This is a key result because blocks at depth 6 are considered as permanent in
Bitcoin and therefore payed.

7.3.2 Variation of Cryptopuzzle Difficulty

We start our study of the resilience of the Bitcoin protocol to relevant changes
of the rates. We begin by analyzing the probability of having a fork while vary-
ing the difficulty of the cryptopuzzle (in Bitcoin this difficulty is adjusted with
respect to the computational power of the miners, in order to have a new block
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Figure 84: Probability of a fork of length k; the bound time T is set to k*600
seconds.

on average every 10 minutes). Figure 85 highlights the relationship between the
probabilities of mining a block within a specific amount of time with two two
different average mining rates, denoted with D in the figure.

Figure 85: Probability of mining a block within 600 seconds.

The comparison is between a system with Bitcoin average mining rate (1/600)
and a system where a new block is produced every 12 seconds (1/12). Of course,
the probability that a miner finds a new block in the second system is much
higher than Bitcoin. In particular, after 100 seconds the probability that a miner
mines a new block is 1 when the average mining rate is 1/12; on the contrary,
with the Bitcoin rate, the probability is less than 0.2.

Figure 86 shows the relationship between the length of the forks and theav-
erage mining rates. In this case, the probability of reaching a fork of length 6
with average mining rate 1/12 is greater than 0, whereas it becomes zero with
the average mining rates of Bitcoin.
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Figure 86: Probability of forks; the bound time T is set to 600 seconds.

Finally, we study how the time required to mine a block varies when we
consider different cryptopuzzle difficulties. Since the difficulty of the cryptop-
uzzle is inversely proportional to the rate of the mining process, one might be
interested in studying the trade-off between speed and security

Figure 87: Probability of mining a block within 3000 seconds.

The results of the simulations in Figure 87 confirm that the easier the cryp-
topuzzle is, the faster the entire system mines a new block. This also follows by
the fact that by design the time required for mining a new block is 232D

H where D
is the cryptopuzzle difficulty and H is the hash rate. Figure 88 displays how the
probability of reaching a fork of length 1 varies depending on different average
mining rates. Our results show that a good balance between speed and safety can
be obtained with a mining rate equal to 1/500 per second. Indeed, with this rate,
the process of mining a block is faster than in Bitcoin (1/600), but the probability
of reaching a state of fork is not much higher. Even if this is a theoretical result,
it shows that a better trade-off between the rate of the mining process and the
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Figure 88: Probability of a fork of length 1 with different difficulty level of the
cryptopuzzle; the bound time T is set to 600 seconds.

security of the network can be obtained and can be measured. Of course, chang-
ing this trade-off may impact the behaviour of Bitcoin in different aspects. Since
mining is a energy consuming task, one may expect that speeding up the process
may lead to some energy savings in practice. Although this seems reasonable in
theory, actually, it also depends on the behaviour and strategies of miners, e.g.,
they may decided to invest more in mining since it is now “easier” to mine new
Bitcoins. It is not easy to predict with certainty how this change impacts miners’
strategies. We leave studying this problem as a future work. A related aspect
concerns understanding how the value of Bitcoins in the market varies, when
the cryptopuzzle difficulty changes. Actually, a recent paper by Fantazzini and
Kolodin [FK20] seems to suggest that the hashrate is not useful in predicting the
Bitcoin price on its own. However, we believe that the change could affect the
fees miners receives for their work, so impacting their strategies. Also, studying
this problem is left as a future work.

7.3.3 Churn Nodes

In this subsection, we focus on the simulations of a system using the broadcast
topology (see the Network process in Listing 7.2) but with three churn nodes.
As anticipated in Section 7.2.2, our model consists of 13 “static” miners and
three churn miners. The first miner goes asleep as soon as the process starts and
then awakes after a while. The other two miners, at the beginning, participate at
the mining process, but shut down after a given amount of time. The difference
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between the two is the fact that one of them, when it shuts down, does it forever,
whereas the other awakes again after a while. A churn miner impacts on the
Bitcoin protocol because, when a node leaves or joins the network, the overall
hashing power changes [MMM20a; MMM20b; MMM].

Figure 89: Probability of mining a block within 3000 seconds.

This remark is confirmed by Figure 89, which compare the time needed to
mine a new block with the presence of churn nodes to the time needed in the
Bitcoin system with only static nodes. Since in the dynamic system, there are
less nodes trying to solve the cryptopuzzle, the probability that someone win is
lower. Also the probability of reaching a state of fork is lower as reported in
Figure 90. This is due to the fact that there are fewer miners and, in this setting,
each miner is connected to every other, thus the presence of churning nodes does
not lead to message losses.

Finally, we study the latency of a churn miner when it rejoins the network
because it has to download all the blocks that were mined during its absence. In
particular, we assume that the mean node sleep rate ranges from 2 to 10 hours, as
suggested by Motlagh at el. [MMM; MMM20b]. Our experiments highlight that
the synchronization process requires little time, as the reader can observe from
Figure 91 which shows the probability that a node (with different sleep rates)
synchronizes the missing blocks within a minute after rejoining the network.

Clearly, the longer the nodes is down the lower the probability that it quickly
synchronizes because the number of blocks mined during its sleeping period
increases.

152



Figure 90: Probability of a fork of length k, the bound time T is set to k ∗ 600
seconds.

Figure 91: Probability that the node can synchronize in a minute with mean sleep
time ranging from 2 to 10 hours.

7.3.4 Different Topologies

After having described the models of different kinds of topologies in Section 7.2.3,
we show the results of our simulations. The rates rb presented in Section 7.2.3
are set to 1 in the simulations of daisy chain, tree and ring topologies, In fact, in
this settings, we do not model the latency of the network by means of a rate, but
we use the set of connected nodes. In particular, we choose to set rb exactly to
1 so that it can be considered as an instantaneous action (the other actions have
lower rates).

In Figure 92 we show that the probability of mining a block is not affected by
changing the network topology. This outcome is trivial because we are chang-
ing how the nodes receives and sends the new blocks. This has very high rate
with respect to the mining process, which remains unchanged. It turns out that
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Figure 92: Probability of mining a block within 3000 seconds.

the main difference between topologies is the probability of reaching a fork of
length k. As the reader would expect, when a new block is mined, if it is not for-

Figure 93: Probability of a fork of length k, the bound time T is set to k ∗ 600
seconds.

warded to all the other nodes but only to a subset of the total, the probability of
inconsistency increases. In Figure 93 we compare the four kinds of topologies:
broadcast, daisy chain, ring and tree topologies. Our result is that the smaller
is the subset of the receiving nodes per miner, the higher is the probability of a
fork.
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7.4 Conclusions

In Chapter 7 we analyzed the consensus protocol of Bitcoin by using an ex-
tension of the probabilistic model checker PRISM. In particular, we extended
PRISM with a library implementing the notion of block of transactions and
ledger natively adding the new data types ledger, block and setand we
named it PRISM+ Then, We have modeled the Bitcoin system as a parallel
composition of processes and analyzed its behavior. Indeed, in our model each
blockchain is selected as the sequence of blocks starting from the pointer to a leaf
at maximal depth with root the genesis block. We performed some probabilistic
analyses covering different features of the protocol. The first analysis showed
that our model simulates accurately the probability of mining a new block within
a given amount of time and the probability of reaching a state of fork respect with
the real Bitcoin system. The second analysis was concerned with the trade-off
between security and the difficulty of the cryptopuzzle. It has been observed that
a slight decrease of the difficulty level of the cryptopuzzle leads to a significant
increase of the speed of mining at the cost of an almost irrelevant increase of
the probability of a fork. We also pointed out that when a node leaves the net-
work frequently, there is an immediate consequence on how the hashing power
is distributed in the network. Finally, we simulated the Bitcoin protocol taking
into account different kinds of network topologies. The results of our simula-
tions clearly pointed out that the less the nodes are connected, the higher is the
probability of reaching a state of fork.
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Chapter 8

Related Works

The results presented in the thesis can be roughly partitioned into two classes: 1)
the empirical analysis of data in the Bitcoin blockchain and the development of
visualisation tools to enable the forensics analysis of suspect value flows; 2) the
theoretical analysis of arbitrage, a crucial economic mechanism of the Bitcoin
ecosystem, and the probability of forks in the Bitcoin protocol. In this chapter,
we discuss our results by contextualising them with the ones in the literature.

Analysis of the Bitcoin blockchain and visualisation tools

First, we discuss the literature on the empirical analysis of the Bitcoin blockchain
and the development of visualisation tools for forensics analysis. In particular,
we face three Bitcoin arguments: visualisation tools, transaction surveys and ad-
dresses reuse. Since the blockchain is open, in combination with the networked
structure of transactions, in the literature we can find several tools for visualising
the Bitcoin Network.
In [SMZ14b] the authors present BitIodine; BitIodine labels users (semi) au-
tomatically with information on their identity and actions, which is scraped
from openly-available information sources; for instance, individuals that a have
significant negative feedback on the BitcoinTalk1 trust system. An interesting
deployment of small-scale visualisation to directly analyse transactions is pre-
sented in [Bat+15]. The chapter presents a tool, i.e., BitCoinView, which per-

1BitcoinTalk: https://bitcointalk.org.
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forms a bottom-up visual analysis of the influence of selected source-transactions
on subsequent flows in the transaction graph. Some other approaches that permit
the visualisation of part of the graph are described in [Mei+13; RH11b; RS13]).
Blocksci [Kal+17] is an applications of blockchain analysis, that allow to get
information from transactions graph, but can’t visualize it. In [SAA18] the au-
thors present visualisation mechanisms for taint propagation in Bitcoin that dis-
play how cyber criminals launder money. Differently from us their visualisation
is static and does not have filter. However, the work that is more related to our
approach is [McG+16]. In [McG+16] the authors present a systemic top-down
visualisation of Bitcoin transaction activity to explore dynamically generated
patterns of algorithmic behaviour. Differently, in our work we explicitly make
use of Visual Analytics with the purpose to adopt different filter and views that
allow a user to visually capture only the information of interest.

In addition to research works, on the Internet it is possible to find a plethora
of Bitcoin data analysis tools. Bitnodes2 shows the distribution of Bitcoin nodes
across the globe, using a Bitcoin crawler implemented in Python. The live-
map of Wizbit3 displays both the transactions and the latest discovered Bitcoin
blocks. Interaqt shows the live transaction-graph: the size of the nodes repre-
sents the transaction volume; every node also carries a link to its information,
taken from Bitcoin.info4. Skry5 is conceived for performing in-depth investi-
gations across the blockchain. The interface can be used to analyse the rela-
tionships and to explore the transaction graph, which is enriched with addresses
(possibly clustered) and other entities. Coin Viz6 is a financial visualizer for Bit-
coin transactions. It contains a tool, based on a force-directed approach, that
shows in real-time the transactions entering the blockchain. For each of them,
the sender and recipient addresses are shown. However, it is not possible to
visualise all the information as we instead do in our tool. A tool with similar
features is Bitcoin-tx-graph-visualizer7. Blockseer8 also allows for labelling and
clustering addresses by using publicly available or self-created labels. Chainaly-

2https://bitnodes.21.co.
3https://blocks.wizb.it.
4Bitcoin.info: http://bitcoin.info.
5https://skry.tech.
6http://tinyurl.com/jyb3dx4.
7http://tinyurl.com/hpj36wd.
8https://www.blockseer.com.
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sis9 is a commercial Bitcoin forensic suites, that allows to detect and investigate
cryptocurrency laundering and frauds. Other tools, like Blockchain.info10 and
blockr.io11 allow a user to navigate the graph of transactions and present several
charts on financial data (some of the information about Bitcoin markets used
in this chapter has been taken from Blockchain.info). All such tools are more
oriented to showing statistical, geographical, or aggregated information, rather
than offering means to focus on specific islands and to show only information
filtered according to the user’s needs.

Analyzing and understanding the Bitcoin blockchain is as complicated (due
to the amount of data) as interesting. Several empirical analysis of Bitcoin data
can be found in the literature. In 2014 Ken Shirriff’s blog12 studied some meth-
ods for inserting arbitrary data into Bitcoin blockchain and also what kind of
data can be (or is already) stored. A few months later QuantaBytes13 surveyed
Bitcoin transactions in blockchain and found three classes of non-standard trans-
action. Our study update their survey, discovering also other seven classes of
non-standard transaction. In 2018 [SVS18] improved the study on inserting ar-
bitrary data into Bitcoin’s blockchain. Then [Mat+18b] describes the problem
of inserting harmful content into a blockchain; in particular they propose con-
ceptual countermeasures to heuristically reject transactions holding unintended
content with high probability. They find that mandatory minimum fees and mit-
igation of transaction manipulability significantly raise the bar for inserting ma-
licious content into a blockchain. In the same period, [Mat+18a] the authors
provide a systematic analysis of the benefits and threats of arbitrary blockchain
content. They show that certain illegal content can render the mere posses-
sion of a blockchain illegal. Their analysis reveals more than 1600 files on
the blockchain, e.g. links to child pornography. This analysis highlights the
importance for future blockchain to be designed to address the possibility of un-
intended data insertion and protect users. Our study shows that Bitcoin is going
in this direction. In fact, we saw that only 0,02% (224 355 out of 968 098 854)
of transaction outputs corresponds to non-standard ones: this shows that most

9https://www.chainalysis.com/
10https://www.blockchain.com/explorer
11https://www.crunchbase.com/organization/blockr-io.
12https://tinyurl.com/asciibw.
13https://tinyurl.com/txType.
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miners and users behave in a standard way. In 2019 [BP17] empirical study the
usage of OP RETURN over the years and they identify several protocols based on
OP RETURN, which they classify by the application domain and their space con-
sumption. We extend their work providing an updated OP RETURN classifica-
tion by their space consumption. We also found that in blockchain there are just
797 “non-standard” OP RETURN. Finally, We saw that only 57 038 (0.68% of
all OP RETURN transactions) lock bitcoins with a total amount of 3.71572552
BTC.

The first to study Bitcoin addresses reuse was the work in [Bar14], by focus-
ing on privacy issues. That work also shows a graph of the first 100 most reused
addresses, but differently from us, it does not consider hidden addresses and the
source of such repetitions. A discussion about security and privacy issues of Bit-
coin is already presented in [Con+17]. The authors describe the major attacks on
the Bitcoin system and issues, as the address reuse, but without further investiga-
tion. Then in 2018 Gaihre, Luo and Liu [GLL18] present a study to understand
if Bitcoin users care about anonymity. To do that, they consider three anonymity
metrics of an address: reuse frequencies, zero balance, attempts to hide its inten-
tion. However, also in this case, the authors did not consider hidden addresses
and did not try to de-anonymise reused addresses.

Also related to this work, but from a different perspective, in [NJ20] the
authors how to keep safe an identity through a digital wallet by using Self-
Sovereign Identity (SSI). Also some blockchain frameworks, as Alastra [IM20],
were developed to implement SSI and could suffer from anonymity problems.

Finally, [WOD18] examines how cyber-criminal can launder money by using
services that are offered on the Dark Web (by using tumblers, for example).
Like our work, the authors use these services and saw that: some are excellent,
professional and well-reviewed at competitive cost; others, instead, turned out
to be scams. They discuss what these findings mean to law enforcement, and
how bitcoin laundering chains could be disrupted. This work do not focuses on
understanding how the mixing services work and how easy identify them in the
network.
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Theoretical analysis of arbitrage and Bitcoin protocol

According to our work and results, we can divide the discussion into two ar-
guments: theoretical arbitrage analysis in Bitcoin and Bitcoin protocol models.
Considering the theoretical analysis on Bitcoin arbitrage, our approach is com-
plementary to other studies such as [PV15; Bar17] where the authors study trian-
gular arbitrage with Bitcoin, i.e. buying bitcoin in US dollar and selling them in
Renminbi. The paper by Gouriéroux & Hencic [HG15] represents a valid anchor
to refer to, at least in this area of study, as it undertakes a non-causal analysis
of the BTC/USD rates in order to predict its future evolution. The present study
shares with [HG15] both the same decomposition of the BTC/USD price in a
bubble and in a fundamental part, and the observed time series; though, here
the main objective is to investigate whether confidence in future values of the
BTC/USD rate (i.e. the forward looking part) is the one responsible of the bub-
ble effect, while in [HG15] the focus was on forecasting future rates. If this
is the case, a significant change in the estimated parameters should be detected
when the MAR model is estimated separately in the observed time series and
in the bubble component. In particular the forward looking parameters should
be stronger in the bubble part than in the observed price. The conjecture un-
derlying this study is that the forward looking parameters should be stronger in
the bubble part than in the observed price. Indeed this turns out to be the case,
when estimating the model on the observed data, however the residuals analysis,
conducted by performing the BDS test for independence, suggests not to con-
sider this models valid but for one case (partially). Since the results of this test
are asymptotical (for n→ ∞) and given the low entity of the residuals a more
extensive residual analysis could be performed in order to assess the capability
of the chosen model to describe the dynamics of BTC/USD rate and/or the iso-
lated bubble term (yt , yct ). Several techniques are available such as the classical
Ljung-Box-Q test on residuals autocorrelation (see [Ham94]). Although the fo-
cus of this study is not to come across the true Data Generating Process for the
Bitcoin, a deeper investigation of this issue is beyond the scope of the present
study and will be tackled in future research.

The blockchain protocol was introduced by Haber and Stornetta [HS90] and
only in the last few years, because of Bitcoin, the problem of analyzing the

160



consistency of the ledgers has attracted the interest of several researchers. The
discussion of the mainstream blockchain consensus algorithms and the way the
classic Byzantine consensus can be revisited for the blockchain context is pre-
sented in a paper by Gramoli [Gra20], where the consensus algorithm at the heart
of Bitcoin and Ethereum is described and the behaviour of each process involved
in the system is illustrated through pseudo-code. Garay et al. [GKL15] prove the
correctness of the protocol when the network communications are synchronous
and focusing on persistence and liveness. The extension of this analysis to dy-
namic asynchronous networks with bounded delays can be found in a paper by
Pass et al. [PSS17]. There, the authors also provide an abstract model of the
Bitcoin protocol that ignores all irrelevant implementation details. The abstract
model enables them to formally study the behaviour of the protocol and to de-
tect where there is room for improvement. Pı̂rlea and Sergey [PS18], instead,
propose a formalization of blockchain consensus with a proof of its consistency
mechanised in an proof assistant. They present an operational model that pro-
vides an executable semantics of the system and prove a form of eventual consis-
tency focusing on the notion of global system safety. Similarly to these papers,
we propose an abstract model of Bitcoin where we ignore all the implementa-
tion details which do not affect the properties of interest. The main difference
between these contributions and our work is that we formalize the blockchain
protocol as a stochastic system (with exponential distribution of duration) and
prove its properties by simulating the model through the PRISM model checker.

There are few works in the literature that have followed a research line sim-
ilar to ours, i.e. studying the properties of the Bitcoin protocol using a proba-
bilistic model checker. DiGiacomo-Castillo et al. [DiG+20] and Chaudhary et
al. [Cha+15] use UPPAAL [Ben+96; Dav+15]. The formers study the secu-
rity of the proof of work consensus when the network has an adversary miner
that leverages the selfish mining strategy introduced by Garay et al. [GKL15].
In particular, their experiments show the effectiveness of selfish mining against
various deployment parameters. Chaudhary et al. [Cha+15] analyze the proba-
bility of success of a double spending attack in the Bitcoin protocol. They show
that double spending can be achieved if the parties in the Bitcoin protocol behave
maliciously. In these two works, the main goal is to verify the resilience of Bit-
coin by analyzing the probability of a successful attack. Differently, in our work,
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we do not consider malicious miners in the network, but study the properties of
the protocol under different circumstances. Another difference is that the fore-
going works do not model churning nodes and only consider the case in which
a block is broadcasted to all the other nodes in the system. Bastiaan [Bas15]
uses PRISM to analyze the so-called 51%-attacks (a pool can attack the network
as soon as it reaches a substantial percentage of hash power) in an extension
of the Bitcoin protocol (the two phase proof of work). The author proves that
the extension of Bitcoin is good at preventing the 51%-attacks. As in our work,
each miner is modeled as a module in the PRISM language; however the work
focuses on the actual cryptographic problem and does not implement blocks and
the blockchain data structures. In particular, in our case, every cryptographic
detail that do not affect our analyses is overlooked.

Some recent papers propose stochastic models to analyze specific parts of
blockchain systems. Biais et al. [Bia+19] focus on miners and propose a game-
theoretic approach to analyze the strategies miners can adopt and the kind of
equilibrium these strategies can lead to in blockchain dynamics. A similar ap-
proach is adopted by Zhang et al. [ZZP20] which propose a formal mathematical
framework, to model the core concepts in blockchain-enabled economies. They
illustrate the dynamics of the blockchain economies simulating and testing two
different block reward strategies. The main difference with respect to our work
is that their analyses focus on economic aspects. In fact, their main goal is to un-
derstand what the economic forces at the root of forks are; our analysis instead
focuses on the security and the integrity aspects of the system. Moreover, Piriou
and Dumas [PD18] propose a basic stochastic model for the blockchain protocol
to capture the block creation and broadcasting process. They model blocks as
abstract objects with just the necessary information to analyze the ledger evolu-
tion. They also propose a framework to ease the tuning of the model and exploit
Monte Carlo simulations to obtain probabilistic results on consistency of the
ledgers. In contrast with our purpose, their main goal is to check the ability to
detect and prevent double-spending attacks of blockchain protocols.
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Chapter 9

Conclusion and Future
Works

In this thesis we presented a suite of tools to analyze and visualize the Bitcoin
blockchain. We have been involved in several research topics; in the following
points we summarize the main results.

The suite of tool (Chapter 3)

We presented BlockChainVis, a suite of tools for tracking flows of bitcoins. The
main goal is to, given a specific task, filter out not interesting information, in
order to better analyse: the Bitcoin blockchain, cluster addresses, identify mix-
ing services, visualise information about transactions, and studying addresses.
In simple terms, we showed several integrated tools that simplify the life of the
forensic scientist, by automating some of the tasks performed to keep track of
value flows and their sources/destinations.

We plan to enhance the tool by adding some logic to automatically find the
solution to specific problems: so far, it is up to the user to apply the right filters to
let needed information emerge. For instance, we would like to manually select
an island, and then ask to the tool if it contains a mixing service: the result will
be a probability value. Moreover, we would like to make BlockChainVis more
time-sensitive, in order to shown events: for instance, when value is rapidly
moved from one address to another. We are currently extending BlockChainVis
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to encompass explicit features that are oriented to digital forensics. For instance,
we will try to identify mixing services (also called tumblers), which can be used
to mix value of a ransomware address with other users’ value, intending to con-
fuse the trail back to the original source and thus launder money [Kha+15a].
Moreover, we will also characterise other unexpected flows of value, for in-
stance immediately reporting newly created addresses whose incoming balance
has rapidly increased: this could help to quickly find addresses linked to ran-
somware effects. In general, keeping track of anomalous bitcoin flows can help
to detect money laundering activities. In particular if such flows connect an
address that is a payment endpoint for a darknet market: these digital markets
primarily are black markets, selling or brokering transactions involving drugs,
cyber-arms, weapons, counterfeit currency, stolen credit card details, forged
documents, unlicensed pharmaceuticals, steroids, other illicit goods, as well as
fully-legal products. In this case, we plan to crawl the Dark Web to collect such
addresses and tag them as “sensitive” in BlockChainVis.

We will extend the graphical interface to display one of the most interesting
information of Bitcore, the current broadcast transactions (called the memory
pool). Some examples of what we want to do are in already-existing tools as
bitcoind-status1, MyPHP Bitcoin Node Status2, Satoshi.info3. We plan to build a
new module that show informations about miners, e.g., the relationship between
miner and hashrate.

We plan also to extend the power of BlockchainVis by making it able to anal-
yse not only Bitcoin, but also other cryptocurrencies, as Ethereum for example.

Transaction Information (Chapter 4)

We provided a report on the statistics concerning standard (seven classes) and
non-standard (nine classes) transactions in the Bitcoin blockchain, by consider-
ing up to block number 550 000, i.e. until November 14th 2018. The most popu-
lated class of transactions is P2PKH; the reason is that they represent the default
transaction in Bitcoin clients. The second most used class is P2SH, which had a

1https://github.com/craigwatson/bitcoind-status.
2https://www.reddit.com/r/Bitcoin/comments/2zexq0/my_php_

bitcoin_node_status_page/.
3https://statoshi.info/.
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massive growth of over 40% transactions from [BMS18b].
The presented study can help to understand the compliance of the Bitcoin

protocol to the intended purposes, by quantifying past and present deviations.
As a result we have obtained that only 0.02% (224 355 out of 968 098 854) of
transactions outputs corresponds to non-standard ones: this shows that most of
miners and users behave in a standard way. We noticed that only the 0.015%
(2 615 out of more than 17 million) of all the circulating bitcoins was burned by
non-standard transactions. We saw that the most used transaction inside P2SH
transactions is the multi-signature one. We also show that the most used size in
bytes of an OP RETURN transaction is 20 bytes.

We plan to study the distribution of non-standard classes along time, and
to relate them with amounts of involved bitcoins (also for standard classes). We
will also analyze OnlyHash transactions, the aim is to see if they could be treated
as “colored coin” transactions. We plan to use analysis and visualization tools to
relate transaction types and topologies together. We also plan to create a module
to validate Bitcoin scripts. In [KB18] authors proposed a symbolic verification
theory for open SCRIPT, a verifier toolkit, and illustrate examples of use on
Bitcoin transactions, including a formalisation of (a fragment of) the language
and a novel symbolic approach to SCRIPT verification. Our idea aims to extend
this toolkit to verifier also non-standard transaction (particularly with the 2 3
error transactions) and the new standard transaction designed in the last Bitcoin
protocol released. Finally, we would like to extend the tool to accept miniscript,
a high-level language compiles to script. This might be a boost in terms of the
impact/usability of the tool.

Reused Addresses (Chapter 5)

We have analysed Bitcoin addresses that are most frequently reused in transac-
tions. The analysis is a screenshot of the current situation of the blockchain.
Such an analysis is important to evaluate how much the privacy of addresses is
at risk, and also how much the security of coins is exposed to attacks. We inves-
tigated the repetitions of legacy (starting with 1) and hidden addresses (starting
with 3, i.e., Nested SegWit transactions); we have also considered legacy ad-
dresses hidden in P2SH transactions in order to have a more comprehensive
view. What we found is that most of top 100 reused legacy-addresses can be
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linked to ransomware payments and scams. Such a metric can be then adopted
as a trust indicator for an address.

We plan to check into and translate new Native SegWit addresses (addresses
start with bc1) into legacy addresses, and integrate such a mapping to the overall
analyses on reused usage. Moreover, we would like to analyse Native SegWit ad-
dresses and non standard transactions [BMS19]. In addition, our aim is to extend
the de-anonymization of reused legacy and nested addresses beyond the top 100,
trying to give an identity to as more addresses as possible. Finally, we would
also like to design a trust-evaluation module to assess the privacy and security
of Bitcoin address, and integrate it with the BlockChainVis suite [BMS18a].

Arbitrage and Bubbles (Chapter 6)

Bitcoin volatility is high, hence it has been claimed as a speculative financial
asset rather than a currency. In addition, arbitrage opportunities are indeed
possible by trading on different Exchanges, as we prove both via a theoretical
model and via an empirical strategy. This study undertook also a Mixed causal-
noncausal analysis of the BTC/USD exchange rates time series, over the period
February-July 2013, to test whether the bubble effect disentangled on observed
data may be explained by a forward looking behaviour of the economic agents.
In the introduction it was noticed that given the system’s monetary issuance,
the exchange rate of one Bitcoin with respect to a traditional currency should
be influenced by agents’s future expectations and that classical ARIMA mod-
els, backward looking by definition, are not suitable to describe the dynamics
of the Bitcoin price given the fact that the only time dependence admitted by
these model regards the past. Mixed backward forward looking MAR models
are hence considered both for the BTC/USD exchange rate and for the isolated
bubbles.

In the future we plan to evaluate the possibility of proposing cross-evaluation
techniques, and propose complementary validation with regression metrics such
as RMSE, MAE, RMSD and others. We plan to research to possible theoretical
arbitrages by considering the model introduced in [CFP17] as a starting point
for a multi-exchange approach.
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Stochastic Modelling (Chapter 7)

In this Chapter we analyzed the consensus protocol of Bitcoin by using an ex-
tension of the probabilistic model checker PRISM. In particular, we extended
PRISM with a library implementing the notion of block of transactions and
ledger natively adding the new data types ledger, block and set, and the
operations over them. Using this extension, named PRISM+, we defined an
abstract model of the Bitcoin protocol where miners’ behaviour is described
as processes and the whole protocol as the parallel composition of miners. Our
model is a faithful abstraction of the Bitcoin PoW protocol. Indeed, in our model
each blockchain is selected as the sequence of blocks starting from the pointer
to a leaf at maximal depth with root the genesis block. If there are several leaf
blocks at maximal depth, the pointer is set to the first received leaf at maximal
depth.

After defining the model, we performed some probabilistic analyses cover-
ing different features of the protocol. The first analysis was instrumental to as-
sess the coherence of our model by verifying that the probability of mining a new
block within a given amount of time and that of reaching a fork correspond to
those of the real Bitcoin system and coincide with the values available in the lit-
erature. The second analysis was concerned with the trade-off between security
and the difficulty of the cryptopuzzle. It has been observed that a slight decrease
of the difficulty level of the cryptopuzzle leads to a significant increase of the
speed of mining at the cost of an almost irrelevant increase of the probability of a
fork. Those results are consistent with the ones of Laneve and Veschetti [LV20],
which formally demonstrate the probability of a fork in Bitcoin.

We also modelled and analysed networks with churn nodes, which provide a
more realistic account of the behaviour of this complex platform. In particular,
we pointed out that churn nodes have a strong impact on the way the mining
intervals vary with time: indeed, when a node leaves the network frequently,
there is an immediate consequence on how the hashing power is distributed in the
network. Finally, we simulated the Bitcoin protocol taking into account different
kinds of network topologies. The driving question was checking whether the
considered alternative topologies have a resistance to forks equal to or greater
than the original one of Bitcoin. The results of our simulations clearly pointed
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out that the less the nodes are connected, the higher is the probability of reaching
a state of fork. Moreover, our result made evident that dynamic participation of
nodes affects the process of data propagation in the network. Namely, when a
node disconnects, all of its connections are deactivated and network connectivity
is reduced and this leads to an increase of the mean number of hops required for
a block of transaction to propagate across the network.

The security of blockchains has received much attentions in the last few
years and various types of attacks were investigated. In future research, we
plan to study these security issues by considering both peer-to-peer network
based attacks and mining-based attacks. The first type of attacks, e.g. Eclipse
attack [Hei+15] and Sybil attack [Dou02], can be modeled by changing the be-
havior of the Network process, whereas the second one, e.g. 51% attack, can be
analyzed by introducing malicious Miner processes. In this context, we could
extend the analysis of Section 7.3. We also plan to extend our PRISM model
to faithfully simulate other consensus protocols, as Ethereum one. The current
Ethereum’s consensus algorithm is based on a PoW that is different from Bit-
coin: Ethereum adopts a chain selection rule to include blocks in the main branch
that the Bitcoin consensus algorithm would have excluded [Woo14]. The anal-
ysis of other types of consensus protocols used in blockchains is also an inter-
esting future work. One of these protocols is the Proof of Stake [BGM16] that
would require revisions of the Hasher process, as well as the introduction of a
new module that record stakes.

Final remarks

We believe that this thesis can raise awareness that strong anonymity is not a
Bitcoin key feature by design. We accomplish that by showing that it is possi-
ble to associate addresses with identities using external identifying information.
With appropriate techniques, we can also observe the activity of known users in
detail. In particular, we show how it easy track the money flow of ransomware
(i.e. WannaCry). We also notice that the Bitcoin community (users and min-
ers) behaves strictly to the intended purposes of the Bitcoin protocol regarding
the use of standard transactions. In fact, just 0.02% of the transaction outputs
are non-standard, involving less than 0.02% of the total Bitcoin capital. On the
contrary, the same community do not follow the protocol advice regarding the
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address reused. On average, every user uses more than two times his address. It
shows how often the privacy of addresses is at risk and how much the security
of coins is exposed to attacks.

As we have seen in the last years, Bitcoin volatility is high. However, thanks
to it, we see that arbitrage opportunities are possible by trading on different Bit-
coin Exchanges. In particular, the higher the volatility more the gain. Finally,
we raise the fact that it is possible to speed up the bitcoin protocol without in-
creasing the probability of a fork. It could be possible to have a block every eight
minutes with almost the same probability of having forks. That can increase the
throughput of bitcoin to 250 transactions per minute (50 more than the actual
one).
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Appendix A

Appendix Title

A.1 Technologies

The back-end of BlockChainVis is implemented on a machine with 128Gbyte
of RAM, 2 processors Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz 8 core (for
a total of 32 threads). In particular, the implementation consists of different
Docker virtual machines running: Bitcore, PostgreSQL, MongoDB and all soft-
ware dedicated to visualization. Figure 94 shows all our docker and their in-
teractions (blue lines). All the web interfaces are manage by a Nginx Proxy1

and have also a dedicated PHP server. Control panel and Transaction Info have
installed also python. All the DB, a part Bitcoin DB, are a MariaDB docker. In
particular, the control panel docker contains all the scripts that manage the pop-
ulation of the Bitcoin DB from the Bitcore docker and the MongoDB population
from the Bitcoin DB. It also contains the web interface to run this insertion. The
visualizer docker contains the web interface to visualize the Bitcoin transactions
graphs stored in MongoDB. Instead, the Transaction information docker takes
the transactions info directly from the Bitcoin DB and analyses them. It also con-
tains a web interface to show the results. Tradebitcoin put all his data, retrieved
from the exchange, in his docker DB. It contains its web interface to show arbi-
trage opportunities in real-time or in the past. It also allows downloading a CSV
file with the historical bitcoin price in a different exchange. The Bitcoin scraper

1https://www.nginx.com/.
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Figure 94: Docker network.

docker get addresses info from the web and store it in his DB. This DB can also
be accessed from the control panel to add the addresses info to the visualization
info stored in MongoDB. The Scraper container also has the web interface to
run the addresses scraping and check the info of a chosen address.

The main technologies used for the back-end are PostgreSQL2, PHP, Python,
and Bitcore3, while the ones for the front-end are HTML5, CSS3, Javascript, and
D3.js4 (see Figure 18).

A.2 The Database of Transactions

As database to store Bitcoin Blockchain information we use PostgreSQL5 database.
Postgres is an Object-Relational Database Management System (ORDBMS)
emphasising extensibility and standards compliance. As a database server, its
primary functions are to store data securely and return it in response to other

2https://www.postgresql.org/.
3https://bitcore.io/.
4https://github.com/aaronpowell/db.js/.
5https://www.postgresql.org/.
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software applications’ requests. Initially, we had all blockchain in an OrientDB6

database. OrientDB is a widely used and open source NoSQL multi-model
database. Unlike relational databases, a graph database does not utilise foreign
keys or “join” operations. Instead, all relationships are natively stored as vertices
of a graph. This results in deep traversal capabilities, increased flexibility and
enhanced agility. However, from our tests, this database was quite demanding
in terms of RAM usage, which was insufficient to calculate all the islands of
transactions present in the blockchain, i.e., the strongly connected components.

Figure 95 shows the Bitcoin DB structure that contains all the Bitcoin blockchain
raw data. The six tables to represent all the stored information are:

• block table has all the block information: hash contains the block hash;
confirmations is the number of block confirmations; strippedsize and size
are the block dimension in byte; weight contains block weight7; version
and versionhex contain respectively the block version and the hexadeci-
mal of the block version; merkleroot store the block root node; time and
mediantime have the block time information; nonce contains the block
nonce; difficulty is the difficulty to create the block; previousblockhash
and previousblockhash have that hash of the previous and the next block.

• The tx input table contains all the information connected to transaction
inputs: txid prev and vout store the information of the hash of the spent
transaction and his output position; txid is the hash of the transaction; asm
and hex contain the script to spent the transaction; vin is the imput number.

• The transaction table contains all the information present in a Bitcoin
transaction except inputs and outputs information that are stored in differ-
ent tables: txid contains the transaction hash; hex is the hexadecimal of
the transaction; size and vsize are the transaction dimension in byte; ver-
sion contain the transaction version; blockhash store the hash of the block
that contains the transaction; locktime and time have the transaction time
information; coinbase is the info of the coinbase transaction (it is empty
if the transaction is not a coinbase).

6http://orientdb.org/.
7A measurement to compare the size of different transactions to each other in proportion to the

block size limit.
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Figure 95: Bitcoin DB schema

• The Address table stores the address (addresses) and the transaction output
where it appears (txid and n).

• The tx output table contains all the information connected to transaction
outputs: txid is the hash of the transaction; asm and hex contain the script
to lock the transaction; n is the output number; value is the bitcoin value in
the transaction; reqsigs store the number of signature required to unlock
the output; type is the output type.

• The tx witness table saves all the segregated witness information of all
transactions: txid and vout contain the output information; txinwitness is
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the data store in the witness field.

We also have a Bitcoin connected components DB created following the idea
from [BBT18] (in Figure 96 the schema), which contain the all blockchain trans-
action graph. We modify their code in order to use it in a Postgres DB. The
transaction graph is a bipartite graph with two types of vertices: transactions
and outputs. This DB is necessary to calculate the blockchain archipelago (i.e.
all the connected components inside the blockchain) in a brief amount of time
(less than two days). Having this graph is very helpful in creating the JSON
for the visualizer module. In fact, using this DB is very simple to get the flow
(addresses transaction path) of a specific address that we want to analyse in the
visualizer module. This efficiency in the archipelago computation is due to a
small data storage, i.e. we store only compressed version of the transactions ID
and his output and addresses [BBT18]. We use the lower 63 bits of the trans-
action ID as a vertex ID for a transaction. We hash a string representation of
an outpoint (< txid >|< index >) with SHA-2568 and use the lower 63 bits
of the result as a vertex ID, setting bit 63 to distinguish outpoint vertex IDs
from transaction vertex IDs. This makes outpoint vertex IDs negative since the
database works with signed integers. Also Bitcoin addresses are represented
in the database as an address vertex ID computed by hashing their base-58 en-
coded string representation with SHA-256, taking the lower 63 bits of the result
and setting bit 63. Since the database works with signed integers, this results in
a negative number. Transactions are represented in two database tables: btcin
contains a row for each transaction input (vin contains the compressed hash of
the previous transaction and vtx is the compressed hash of the transaction), bt-
cout contains a row for every transaction output: vtx is the compressed hash of
the transaction; vout is the compressed hash of the output; each output has an
amount of Bitcoins associated with it (column btc); Column nsigs contains the
number of signatures required to spend this output. If nsigs ≥ 1, the table bt-
coutaddr contains a row for each Bitcoin address that can be used to spend the
output, linking these addresses to the outpoint vertex ID (vout). Outputs with
nonstandard pubkey scripts are recorded with nsigs = 0. For each such output

8The SHA-256 algorithm is one flavor of SHA-2 (Secure Hash Algorithm 2), which was cre-
ated by the National Security Agency in 2001 as a successor to SHA-1. SHA-256 is a patented
cryptographic hash function that outputs a value that is 256 bits long.
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Figure 96: Bitcoin connected components DB schema

there is a row in table btcoutasm with the disassembled pubkey script (asm); this
is intended for manual inspection. Table btcaddr maps vertex IDs (vaddr) to
the string representation (addr). btcmap maps transaction vertex IDs (vtx) to the
height of the block and index within that block where the corresponding trans-
action is stored.A bipartite graph of addresses and transactions is created using
the transaction’s inputs as edges. In this graph (archipelago), we found 38,838
distinct connected components (island).

A.3 Web Interface

The design-pattern we have adopted to manage the user-interface is the classical
Model-view-controller (MVC) [KP+88]. Such an architecture divides an appli-
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Figure 97: Blockchainvis web interface.

Figure 98: Bitcore control panel.

cation into three interconnected parts, with the purpose to separate the internal
representation of information from the ways it is presented to a user. The Model
manages the data, logic, and rules of the application. The Figure97 show the
hub interface of Blockchaivis Suite that allows navigating between all his tool.

We have a control panel9 that allow us to switch on/of the bitcore node (Fig-
ure 98). We can also see, in real-time, the number of blocks stored in the node.
This is because Bitcore does not provide a web user interface. Then we devel-
oped a control panel10 (Figure 99) to manage the population of the DB from the

9http://bcviscp.dmi.unipg.it/nodo.html.
10http://bcviscp.dmi.unipg.it/.
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Figure 99: DB population control panel.

bitcore node11. This interface allows us to populate DB until the chosen block
height. At every moment, it is also possible to check the insertion status (show-
ing the last inserted block height) and terminate it (It will stop after the insertion
of all the data related to the last block inserted). The last panel allow us to cre-
ate a JSON for the visualization. Inserting a bitcoin address or a transaction in
the panel will create its flow. This is possible thanks to the function makeJson-
View() that gets the Bitcoin DB’s information. The structure of the MongoDB,
that stores this JSON, is simple. We have one table (called Visualization) that
has two columns: ID that contains the If to identify the JSON and json that store
the visualization JSON.

11the panel are actually two, one for the bitcoin DB and the other for the graph one, but are
identical
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