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Abstract

Analyzing real-world networks ultimately amounts at com-
paring their empirical properties with the outcome of a proper,
statistical model. The far most common, and most useful, ap-
proach to de�ne benchmarks rests upon the so-called canoni-
cal formalismof statistical mechanics which has led to the de�-
nition of the broad class of models known as Exponential Ran-
dom Graphs(ERGs). Generally speaking, employing a model
of this family boils down at maximizing a likelihood func-
tion that embodies the available information about a certain
system, hence constituting the desired benchmark. Although
powerful, the aforementioned models cannot be solved ana-
lytically, whence the need to rest upon numerical recipes for
their optimization. Generally speaking, this is a hard task,
since real-world networks can be enormous in size (for ex-
ample, consisting of billions of nodes and links), hence re-
quiring models with `many' parameters (say, of the same or-
der of magnitude of the number of nodes). This evidence
calls for optimization algorithms which are both fast and scal-
able: the collection of works constituting the present thesis
represents an attempt to �ll this gap. Chapter 1 provides a
quick introduction to the topic. Chapter 2 deals speci�cally
with ERGs: after reviewing the basic concepts constituting
the pillars upon which such a framework is based, we will
discuss several instances of it and three different numerical
techniques for their optimization. Chapter 3, instead, focuses
on the detection of mesoscale structures and, in particular, on
the formalism based upon surprise: as the latter allows any
partition of nodes to be assigned a p-value, detecting a spe-
ci�c, mesoscale structural organization can be understood as

xxi



the problem of �nding the corresponding, most signi�cant
partition - i.e. an optimization problem whose score function
is, precisely, surprise. Finally, chapter 4 deals with the appli-
cation of a couple of ERGs and of the surprise-based formal-
ism to cryptocurrencies (speci�cally, Bitcoin).
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Chapter 1

Introduction

The �rst two decades of the 21st century have been characterized by
a prominent rise of availability of digital data: within such a context,
claims like `Data is the new oil' [1, 2], `Data are the most valuable re-
source' [3] et similia have become a sort of mantra - by itself, however,
quite useless. In fact, (big) data (just) contribute to clarify the empirical
picture concerning a (big) system, in turn calling for (big) models able to
interpret/explain it.

Within such a context, network theory has emerged as a successful
framework to address problems of scienti�c and societal relevance [4] as
the spreading of infectious diseases [5, 6, 7], the dynamics of opinions [8],
the propagation of losses during �nancial crises (the so-called `cascading
failures') [9, 10, 11], the reaction of a system against a targeted attack [12,
13].

The aforementioned examples let two methodological needs emerge
quite naturally [14]: 1) a �rst one, that can be described as the detection
of the topological properties of a given network structure that can be
deemed as statistically-signi�cant - typically, the higher-order properties
(as the assortativity and the clustering coef�cient) that local features of
the nodes (e.g. the degree) cannot explain; 2) a second one, that can be
described as the inference of the relevant details of a networked con�gu-
ration in case only partial information about it is available.
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Both goals can be achieved by constructing a framework for de�ning
benchmarks, i.e. synthetic con�gurations retaining only some of the prop-
erties of the original system - the so-called constraints- but, otherwise,
being maximally random. To tackle the aforementioned problems, two
different kinds of approaches have been proposed so far, i.e. the micro-
canonicaland the canonicalones. Microcanonical approaches [15, 16, 17,
18, 19, 20, 21] enforce the constraints in a `hard' fashion, by (numerically)
generating many randomized variants of the empirical con�guration on
each of which the constrained properties are identical to the empirical
ones. On the other hand, canonical approaches [22, 23, 24, 25, 26] enforce
constraints in a `soft' fashion, by creating a set of con�gurations over
which the constrained properties are identical to the empirical ones only
on average. Softening the requirement of matching the constraints has a
clear advantage: it allows the mathematical expression for the probabil-
ity of observing a generic con�guration, P(G), to be obtained analyti-
cally, as a function of the enforced constraints.

The oldest, random network model is the one de�ned by Erd �os and
Rényi, also known as Random Graph Model (RGM). Introduced in 1959
[27] and closely related to Gilbert's model [28], the Random Graph Model,
denoted asG(N; L ), represents a suitable benchmark to analyze networks
with N nodes and L edges. While, in its original formulation, the RGM
is microcanonical - i.e. all networks with N nodes and L edges are as-
signed the same probability - Gilbert's model is, instead, canonical and
is entirely de�ned by the probability of observing an edge, p, which is
the same for each pair of nodes. One of the (undesirable) consequences
of Gilbert's model is that of predicting degrees which are normally dis-
tributed around the expected value hki = p(N � 1) as the total number
of nodes, N , becomes large enough. In fact, this result represents the
major drawback of the RGM preventing it from reproducing one of the
main features characterizing real-world graphs, i.e. the appearance of
scale-free1 degree distributions.

1Mathematically speaking, scale-free degree distributions are power-laws whose expo-
nent lies between 2 and 3: since them-th moment is �nite if m < 
 � 1, the second moment
diverges if 2 < 
 < 3, i.e. precisely for the range of values characterizing many real-world
networks.
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The RGM can control only for the number of edges in the network
but not for local properties such as the number of connections any node
establishes with other nodes. From an historical point of view, a step
forward in this direction was made by Holland and Leinhardt, whose
model [29] extends the Erd �os-Rényi one, by constraining the in-degrees,
the out-degrees and the number of reciprocal links (in fact, it depends on
2N +1 parameters and, as the RGM, is characterized by conditionally in-
dependent edges): models of the kind are known as Exponential Random
Graphs(ERGs), as Frank and Strauss named them2 [30].

Although we have mentioned just few examples, the ones we have
cited are suf�cient to highlight a general trend in statistical modeling:
the more information is considered, the more parameters are required to
encapsulate it. In general, these parameters cannot be computed analyt-
ically, whence the need to rest upon numerical methods. In a scenario
like this one, de�ning a proper null model for a network with thousands
of nodes can become computationally expensive - and things get even
worse when larger graphs are considered: the evidence that the most
interesting real-world networks (i.e. Facebook, Twitter and Bitcoin) are
all characterized by hundred of thousands/millions of nodes leads to
the conclusion that recipes for the numerical resolution of the aforemen-
tioned models that are both fast and scalable are needed. The second
chapter of the thesis is devoted to illustrate our contribution to �ll this
gap, by introducing iterative methods for the resolution of ERGs 3.

Besides, we will deal with one of the most common applications of
null models, i.e. the detection of statistically-signi�cant mesoscale struc-
tures such as modular (i.e. communities) and bimodular (i.e. core-periphery
and bipartite) ones. To this aim, many algorithms have been developed,
using methods and tools borrowed from different disciplines [32] [33]
[34] [35] [36] [37] [38]; despite this, a comprehensive, theoretically-sound
framework for detecting all kindsof mesoscale structures is still missing

2For a detailed discussion about ERGs, the interested reader is redirected to the second
chapter of the present thesis.

3A Python library to solve ERGs for undirected, directed, binary and weighted,
monopartite networks and for undirected, binary, bipartite networks has been released
together with the paper [31].
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[39, 40]. The third chapter of the thesis is devoted to illustrate our contri-
bution to �ll this gap, by generalizing the surprisefunction [41, 33, 38] to
handle all the aforementioned cases4.

Lastly, the fourth chapter is devoted to the application of the methods
described in chapters 2 and 3 to the Bitcoin Lightning Network (BLN).
The choice of considering such a particular system has been driven by
two considerations: 1) the BLN is characterized by a growing number of
users, hence can be employed to test the scalability of the algorithms for
solving ERGs introduced in chapter 2; 2) the BLN is weighted, hence can
be employed to test all versions of surprise (in particular, the weighted
ones introduced in chapter 3) to, e.g. individuate the presence of a core-
periphery structure, check if the presence of weights impacts on the latter
and how, etc.

4A Python library to implement all variants of surprise discussed in the present thesis
has been released together with the paper [42].
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Chapter 2

Fast and scalable likelihood
maximization for ERGs
with local constraints

This chapter is devoted to present the results of the paper [31], published on
Scienti�c Reports and dealing with the de�nition of iterative, fast and scalable
methods to solve ERGs with local constraints. After recalling the theoretical
foundations of such a framework (i.e. entropy and likelihood maximization), we
approach the problem from a purely numerical perspective and consider three
algorithms for the estimation of the parameters that de�ne locally-constrained
ERGs, in both a binary and a weighted fashion. Finally, we compare and discuss
the performances of these algorithms on different real-world networks.

2.1 Introduction

As we were mentioning in the introductory chapter, the problem of gen-
erating benchmarks for networks constrained to reproduce speci�c prop-
erties but, otherwise, maximally random, can be tackled by adopting two
different approaches: either a microcanonicalor a canonicalone.

The microcanonical approach assigns the same probability to all con-
�gurations on which the constrained properties are preserved exactly
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and zero probability to all the other, possible con�gurations (i.e. the
ones that do not satisfy such constraints): in other words, the admissible,
equiprobable con�gurations are those on which constraints are satis�ed
in a `hard' fashion.

The canonical approach, instead, relaxes the aforementioned restric-
tion and prescribes to preserve the network properties of interest on aver-
age: this implies that every, possible con�guration - even those on which
the constrained properties differ from their empirical counterparts - is
characterized by a probability of being observed, P(G), that is different
from zero [4, 22].

The Exponential Random Graphs formalism [43], whose popularity
has steadily risen over the years, allows one to implement the canonical
approach to study networks. It dates back to Gibbs' (re)formulation of
statistical mechanics and is based upon the variational principle named
maximum entropy, stating that the probability distribution that is maxi-
mally non-committal with respect to the missing information is the one
maximizing Shannon entropy[44]. This allows self-consistent inference to
be made by assuming maximal ignorance about the unknown degrees of
freedom of the system.

2.2 The Maximum Entropy Principle

De�ning the null model to be employed as a benchmark boils down to
�nding the solution, P(G), of the following maximization problem

arg max
P

S[P] (2.1a)

s.t.
X

G

P(G)Ci (G) = hCi i ; i = 0 : : : M (2.1b)

where Shannon entropy reads

S[P] = �
X

G

P(G) ln P(G) (2.2)
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and ~C(G) is the vector of constraints representing the information de�n-
ing the benchmark itself (notice that C0 = hC0i = 1 sums up the normal-
ization condition). Finding the solution of the problem 2.1 is equivalent
at maximizing the Lagrangian function

L (P; ~� ) � S[P] +
MX

i =0

� i

"

�
X

G

P(G)Ci (G) + hCi i

#

(2.3)

with respect to P(G). As a result, one obtains

P(G j~� ) =
e�H (G ;~� )

Z (~� )
(2.4)

with H(G; ~� ) = ~� � ~C(G) =
P M

i =1 � i Ci (G) representing the Hamilto-
nian, i.e. the function summing up the proper, imposed constraints and
Z (~� ) =

P
G P(G) =

P
G e�H (G ;~� ) representing the partition function, en-

suring that P(G) is properly normalized. The role played by constraints
is crucial and strongly dependent on the particular use-case: when the
analysis aims at assessing the signi�cance of speci�c quantities, the con-
straints represent the information that we are �ltering out; on the other
hand, if our objective is that of reconstructing the (inaccessible) details of
a given con�guration, the constraints represent the only, available infor-
mation.

2.3 The Maximum Likelihood Principle

The formalism above is perfectly general; however, it can be instantiated
to study an empirical network con�guration, say G � . In this case, the
Lagrange multipliers `acting' as unknown parameters in eq. (2.4) can be
numerically estimated by maximizing the log-likelihood function (asso-
ciated with) P(G j~� ) [22, 45]. The latter is de�ned as

L (~� ) � ln P(G � j~� ) = �H (G � ; ~� ) � ln Z (~� ) (2.5)
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and must be maximized with respect to the vector ~� . Whenever the prob-
ability distribution is exponential (as the one deriving from Shannon en-
tropy maximization), the likelihood maximization problem

arg max
~�

L (~� ) (2.6)

is characterized by �rst-order, necessary conditions for optimality read-
ing

@L (~� )
@�i

= � Ci (G � ) �
@ln Z (~� )

@�i

= � Ci (G � ) +
X

G

Ci (G)P(G)

= � Ci (G � ) + hCi i = 0 ; i = 1 : : : M (2.7)

and leading to the system of equations

r L (~� ) =
@L (~� )

@~�
= ~0 =) ~C(G � ) = h~Ci (2.8)

to be solved. These conditions, however, are suf�cient to characterize a
maximum only if L (~� ) is concave. This is indeed the case, as we prove
by noticing that

H ij =
@2L (~� )
@�i @�j

= �
@2 ln Z (~� )

@�i @�j
=

@hCj i
@�i

= � Cov[Ci ; Cj ]; i; j = 1 : : : M

(2.9)
i.e. that the Hessian matrix, H , of our likelihood function is `minus' the
covariance matrix of the constraints, hence negative semide�nite by def-
inition 1 [43]. A graphical representation of how the two principles work
is shown in �g. 1.

1The third passage is an example of the well-known �uctuation-response relation.

8



Figure 1: Graphical visualization of how the MEP and the MLP work: while
the MEP allows the functional form of a probability distribution to be deter-
mined analytically, the MLP provides the recipe to numerically determine
the parameters de�ning it.

2.4 Combining the MEP and the MLP

The Maximum Entropy Principle (MEP) and the Maximum Likelihood
Principle (MLP) encode two different prescriptions aiming, respectively,
at determining the functional form of a probability distribution and its
numerical value.

In optimization theory, the problem 2.1 is known as primal problem:
upon noticing that Shannon entropy is concave, while the imposed con-
straints are linear in P(G), one concludes that the primal problem is con-
vex (it is easy to see this, by rewriting it as a minimization problem for
� S[P]).

As convexity implies strong duality, we can, equivalently, consider an
alternative version of the problem to optimize, know as dual problem. In
order to de�ne it, let us consider the Lagrangian function

L (P; ~� ) � S[P] +
MX

i =1

� i

"

�
X

G

P(G)Ci (G) + Ci (G � )

#

(2.10)

where, now, the generic expectation of the i -th constraint, hCi i , has been
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replaced by the corresponding empirical value, Ci (G � ). As the dual
function is given by

P(G � j~� ) � arg max
P

L (P; ~� ); (2.11)

the dual problem reads

arg max
~�

arg min
P

�L (P(~� ); ~� ) (2.12)

which is a convex problem by construction; this is readily seen by substi-
tuting eq. (2.4) into eq. (2.10), an operation that leads to the expression

�L (P(~� ); ~� ) = � ~� � ~C(G � ) � ln Z (~� ) = L (~� ); (2.13)

i.e. the likelihood function introduced in eq. (2.5). In other words, eq.
(2.12) combines the MEP and the MLP into a unique optimization step
whose score function becomes the Lagrangian function de�ned in eq.
(2.10).

2.5 Optimization algorithms for non-linear prob-
lems

In general, the optimization problem de�ned in eq. (2.12) cannot be
solved analytically, whence the need to resort to numerical methods 2.
The problem

arg max
~�

L (~� ) (2.14)

2For an exhaustive review on numerical methods for optimization we refer the inter-
ested reader to [46, 47]: in the following, we present only the concepts that are of some
relevance for us.
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is a Non-linear Programming Problem (NLP) that can be solved numeri-
cally by adopting a Sequential Quadratic Programming (SQP) approach.
Starting from an initial guess ~� (0) , SQP iteratively updates the vector of
Lagrange multipliers

~� (n +1)
i = ~� (n )

i + � � ~� (n )
i ; i = 1 : : : M (2.15)

according to the rule

� ~� (n )
i = arg max

� ~� i

2

4r ~� i
L (~� )� ~� i +

X

j;k

1
2

� ~� j H (n )
jk � ~� k

3

5 ; 8 i (2.16)

which leads to the set of equations

r i L (~� ) +
X

j

H (n )
ij � ~� = 0 ; i = 1 : : : M (2.17)

that can be compactly rewritten as

� ~� (n ) = � H (n ) � 1
r L (~� ); (2.18)

the stepsize � 2 (0; 1] is selected to ensure thatL (~� (n +1) ) > L (~� (n ) ) via
a back-tracking, line-search procedure: starting from � = 1 , if the Armijo
condition

L (~� (n ) + � � ~� (n ) ) < L (~� (n ) ) + 
� r L (~� )> � ~�; (2.19)

is violated, we set �  �� - where 
 2 (0; 0:5] and � 2 (0; 1) are the
parameters of the algorithm.

The term H (n ) , instead, can be selected according to a variety of meth-
ods: in the present contribution we focus on the following three ones.

2.5.1 Newton's method

One speaks of Newton's method in case H (n ) is chosen to be
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H (n ) = r 2L (~� (n ) ) + � H (n ) (2.20)

where r 2L (~� ) is the Hessian matrix of the likelihood function and the
term � H (n ) is typically selected as small as possible in order to avoid
slowing convergence - however, still ensuring that H (n ) is negative de�-
nite (i.e. r 2L (~� (n ) ) + � H (n ) � 0). This choice of H (n ) is also referred to
as `exact Hessian'.

2.5.2 Quasi-Newton methods

Any Hessian approximation which is negative de�nite (i.e. satisfying
H (n ) � 0) yields an ascent direction and guarantees convergence. Al-
though one may choose to consider the simplest prescription H (n ) = � I ,
which yields the `steepest ascent' algorithm, here we have opted for the
following recipe

H (n )
ii = r 2

ii L (~� (n ) ) + � H (n )
ii < 0; 8 i (2.21)

and

H (n )
ij = 0 ; 8 i 6= j (2.22)

i.e. the purely diagonal version of Newton's method.

2.5.3 Fixed-point iteration on modi�ed KKT conditions

In addition to the (classes of) algorithms described above, we will also
consider an iterative recipe which is constructed as a �xed-point iteration
on a modi�ed version of the Karush–Kuhn–Tucker (KKT) conditions, i.e.

F(~� ) = ~0 (2.23)

or, analogously,
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~� = G(~� ); (2.24)

the iterate can, then, be made explicit by rewriting the latter as

~� (n ) = G(~� (n � 1) ): (2.25)

The condition above, yielding a non-standard SQP method (in fact,
H (n ) is typically not symmetric, for our models) will be made explicit,
for each network model, in the corresponding subsection.

Since the Hessian approximation H (n ) is negative de�nite, the direc-
tion � ~� is an ascending one: as such, it is guaranteed to yield an im-
provement of the objective function for a step size � that is suf�ciently
small; the back-tracking line-search guarantees the �nding of a step size
� that yields such an improvement, while making suf�cient progresses
towards the solution. As discussed in [46], Newton's method has local,
quadratic convergence, while the quasi-Newton method and the �xed-
point iteration algorithm have local, linear convergence.

2.6 Applications

Let us now apply the algorithms described in the previous section to a
number of speci�c cases of interest. The constraints de�ning each model
are illustrated in �g. 2.

2.6.1 Binary undirected graphs with given degree sequence
(UBCM)

Let us start by considering binary, undirected networks (BUNs). The
simplest, non-trivial set of constraints is represented by the degrees of
nodes: the degree of nodei , i.e. ki (A ) =

P N
j (6= i )=1 aij , counts the number

of its neighbours and coincides with the total number of 1s along the i -th
row (or, equivalently, along the i -th column) of the adjacency matrix A �

13



Figure 2: Graphical visualization of the constraints de�ning (some of) the
ERGs considered in this chapter. Notice that while the enhanced models
(i.e. UECM and DECM) constrain binary and weighted quantities in a joint
fashion, the conditional models (i.e. the CReM ones) allow for a `separate'
speci�cation of them.

f aij gN
i;j =1 . The benchmark de�ned by this set of constraints is known as

Undirected Binary Con�guration Model(UBCM) and its Hamiltonian reads

H UBCM (A ; ~� ) =
NX

i =1

� i ki (A ); (2.26)
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entropy maximization [4, 22] leads to the factorized graph probability

PUBCM (A j~� ) =
NY

i =1

NY

j =1
( j<i )

pa ij
ij (1 � pij )1� a ij (2.27)

where pij = pUBCM
ij � e� � i � � j

1+ e� � i � � j
. In this case, the canonical ensemble of

BUNs is the set of networks with the same number of nodes, N , of the
observed graph and a number of (undirected) links varying from zero to
the maximum value

� N
2

�
.

The argument of the problem 2.14 for the speci�c network A � be-
comes

L UBCM (~� ) = �
NX

i =1

� i ki (A � ) �
NX

i =1

NX

j =1
( j<i )

ln
�
1 + e� � i � � j

�
(2.28)

whose �rst-order, optimality conditions read

r � i L UBCM = � ki (A � ) +
NX

j =1
( j 6= i )

e� � i � � j

1 + e� � i � � j

= � ki (A � ) +
NX

j =1
( j 6= i )

pUBCM
ij

= � ki (A � ) + hki i = 0 ; i = 1 : : : N: (2.29)

Resolution of the UBCM

Newton's and the quasi-Newton method can be easily implemented via
the recipe de�ned in eq. (2.18) (see Appendix A.1 for the de�nition of the
UBCM Hessian).

The explicit de�nition of the �xed-point recipe, instead, requires a
preliminary observation, i.e. that the system of equations embodying
the UBCM �rst-order, optimality conditions can be re-written as follows
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e� � i =
ki (A � )

P N
j =1

( j 6= i )

�
e� � j

1+ e� � i � � j

� ; i = 1 : : : N (2.30)

i.e. as a set of consistency equations. The observation that the terme� � i

appears on both sides of the equation corresponding to the i -th constraint
suggests an iterative recipe to solve such a system, i.e.

� (n )
i = � ln

2

6
6
6
4

ki (A � )
P N

j =1
( j 6= i )

�
e

� �
( n � 1)
j

1+ e
� �

( n � 1)
i � �

( n � 1)
j

�

3

7
7
7
5

; i = 1 : : : N (2.31)

originally proposed in [48] and further re�ned in [49]. The identi�cation

pUBCM
ij � e

� �
( 1 )
i � �

( 1 )
j

1+ e
� �

( 1 )
i � �

( 1 )
j

, 8 i < j allows the probability coef�cients de�n-

ing the UBCM to be numerically determined.

As any other iterative recipe, the one proposed above needs to be ini-
tialized as well. To this aim, we have tested three different sets of initial
values: the �rst one is de�ned by the position � (0)

i = � ln
h

k i (A � )p
2L

i
, 8 i -

usually, a good approximation of the solution of the system of equations
in (2.29), in the `sparse case' (i.e. wheneverpUBCM

ij ' e� � i � � j [50]); the sec-

ond one is a variant of the position above, reading � (0)
i = � ln

h
k i (A � )p

N

i
,

8 i ; the third one, instead, prescribes to randomly draw the value of each
parameter from a uniform distribution with support on the unit interval,
i.e. � (0)

i � U(0; 1), 8 i .

Reducing the dimensionality of the problem

The problem de�ning the UBCM can be further simpli�ed by noticing
that nodes with the same degree, say k, can be assigned the same value
of the multiplier � [45] - a result resting upon the observation that any
value ki (A � ) must match the sum of monotonic, increasing functions.
This translates into the possibility of rewriting L UBCM (~� ) in a `reduced'
fashion, as
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L reduced
UBCM (~� ) = �

X

k

f (k)� k k(A � )

�
X

k

X

k 0

(k 0� k )

f (k)[f (k0) � � kk 0] ln
�
1 + e� � k � � k 0

�
(2.32)

where the sums run over the distinct values of the degrees and f (k)
counts the number of nodes whose degree is k. Rewriting the problem
with respect to the set f � k gk leads one to recover simpli�ed versions of
the three algorithms considered here: Newton's and the quasi-Newton
methods can, now, be solved via a `reduced' version of eq. (2.18) - since
both the dimension of the gradient and the order of the Hessian matrix of
the likelihood function are, now, less than N - while the iterative recipe
de�ned in (2.30) can be rewritten in terms of the `non-degenerate' de-
grees, as

� (n )
k = � ln

2

6
6
4

k(A � )
P

k 0[f (k0) � � kk 0]
�

e
� �

( n � 1)
k 0

1+ e
� �

( n � 1)
k � �

( n � 1)
k 0

�

3

7
7
5 ; 8 k (2.33)

where, at the denominator, the self-contribution (i.e. the probability that
a node links to itself) has been explicitly excluded.

Performance testing

The accuracy of each algorithm in reproducing the constraints de�ning
the UBCM has been quanti�ed via the maximum absolute errormetrics,
de�ned, in a perfectly general fashion, as maxi fj C �

i � h Ci ijg N
i =1 (where

C �
i is the empirical value of the i -th constraint, Ci ). Naturally, in the

UBCM case,Ci = ki , 8 i and the aforementioned error score becomes

MADE = max
i

fj k�
i � h ki ijg N

i =1 (2.34)

(the acronym standing for Maximum Absolute Degree Error). Equiva-
lently, it is the in�nite norm of the difference between the vector of the

17



empirical values of the constraints and that of their expected values.

For each algorithm, we have also considered three different stopping
criteria: the �rst one puts a condition on the Euclidean norm of the gra-
dient of the likelihood function, i.e.

jjr L (~� )jj2 =

vu
u
t

NX

i =1

�
r i L (~� )

� 2
� 10� 8; (2.35)

the second one puts a condition on the Euclidean norm of the vector
of differences between the values of the parameters at subsequent itera-
tions, i.e.

jj � ~� jj2 =

vu
u
t

NX

i =1

(� � i )
2 � 10� 8; (2.36)

the third one concerns the maximum number of iterations: after 1.000
steps, any of the three algorithms stops.

Results

The performance of the three algorithms, considered in the present pa-
per, to solve the reduced version of eqs. (2.29), has been tested on a bunch
of real-world networks. The latter span a wide variety of systems, in-
cluding natural, �nancial and technological ones. In particular, we have
considered the synaptic network of the worm C. Elegans[51], the network
of the largest US airports [52], the protein-protein interaction network of
the bacterium H. Pylori [53], Internet at the level of Autonomous Sys-
tems [54] and eight, daily snapshots of the so-called Bitcoin Lightning
Network [55] (chosen throughout its entire history).

The results about the performance of our three algorithms are re-
ported in Table 1. Overall, all recipes perform very satisfactorily, being
accurate, fast and scalable; moreover, all algorithms stop either because
the condition on the norm of the likelihood is satis�ed or because the
condition on the norm of the vector of parameters is satis�ed.
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For what concerns accuracy, the largest maximum error per method
spans an interval (across all con�gurations) that amounts at 10� 10 .
MADE reduced

Newton . 10� 6, 10� 6 � MADE reduced
Quasi-Newton � 10� 5 and 10� 8 .

MADE reduced
�xed-point . 10� 6. By looking at each speci�c network, it is evident

that the two most accurate methods are systematically Newton's and the
�xed-point ones.

For what concerns speed, the amount of time (measured in seconds)
required by each method to achieve convergence spans an interval (across
all con�gurations) that is 0:005 � T reduced

Newton � 0:01, 0:014 � T reduced
Quasi-Newton �

0:15 and 0:002 � T reduced
�xed-point � 0:015. The fastest method is the �xed-

point one, although Newton's method approximately requires the same
amount of time, when compared to it on each speci�c con�guration. Dif-
ferences in the speed of convergence of any method, caused by the choice
of a particular set of initial conditions, are indeed observable: the pre-

scription reading � (0)
i = � ln

h
k i (A � )p

N

i
, 8 i outperforms the other ones.

Let us now comment on the scalability of our algorithms. What we
learn from our exercise is that scalability is not related to the network
size in a simple way: the factors (seemingly) playing a major role are the
ones affecting the reducibility of the original system of equations, i.e. the
ones `deciding' the number of different equations that actually need to
be solved. While reducibility can be easily quanti�ed a posteriori, e.g. by
calculating the coef�cient of reduction, cr , de�ned as the ratio between the
number of equations that survive to reduction and the number of equa-
tions de�ning the original problem (hence, the smaller the better), pro-
viding an exhaustive list of the aforementioned factors a priori is much
more dif�cult.

In the case of the UBCM, cr is de�ned as the number of different de-
grees divided by the total number of nodes; one may, thus, argue that
reducibility is affected by the heterogeneity of the degree distribution;
upon considering that the latter can be quanti�ed by computing the coef-
�cient of variation (de�ned as cv = s=m, where s and m are, respectively,
the standard deviation and the mean of the degree distribution of the
network at hand), one may derive a simple rule of thumb: a larger coef-
�cient of variation (pointing out a larger heterogeneity of the degree dis-
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Algorithm 1 Sampling the UBCM ensemble

1: for m = 1 : : : jE j do
2: A = 0;
3: for i = 1 : : : N do
4: for j = 1 : : : N and j < i do
5: if RandomUniform [0; 1] � pUBCM

ij then
6: aij = aji = 1;
7: else
8: aij = aji = 0;
9: end if

10: end for
11: end for
12: Ensemble[m] = A ;
13: end for

tribution) leads to a larger coef�cient of reduction and a larger amount
of time for convergence will be required. Notice that even if the degree
distribution is narrow, outliers (e.g. hubs) may still play a role, forcing
the corresponding parameters to assume either very large or very small
values - hence, slowing down the entire convergence process.

In this sense, scalability is the result of a (non-trivial) interplay be-
tween size and reducibility. Let us take a look at Table 1: Internet is
the most reducible network of our basket, although being the largest in
size, while the neural network of C. Elegansis one of the least reducible
networks of our basket, although being the second smallest one; as a
consequence, the actual number of equations de�ning the UBCM on C.
Elegansis ' 30while the actual number of equations de�ning the UBCM
on Internet is ' 100- whence the larger amount of time to solve the latter.
Remarkably, the time required by our recipes to ensure that the largest
system of equations converges to the solution ranges from thousandths
to tenths of seconds.

Sampling the UBCM

As a last comment, we would like to stress that, unlike several popular
approximations as the Chung-Lu one [50], the generic coef�cient pUBCM

ij
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always represents a proper probability, in turn implying that eq. (2.27)
also provides us with a recipe to sample the canonical ensemble of BUNs,
under the UBCM. Notice that the factorization of the graph probabil-
ity PUBCM (A j~� ) greatly simpli�es the entire procedure, allowing a single
graph to be sampled by implementing the Bernoulli trial

aij =

(
0 1� pUBCM

ij

1 pUBCM
ij

(2.37)

for each (undirected) pair of nodes, in either a sequential or a parallel
fashion. The sampling process, whose computational complexity amounts
at O(N 2), can be repeated to generate as many con�gurations as desired.
The pseudo-code for explicitly sampling the UBCM ensemble is summed
up by Algorithm 1.

We explicitly acknowledge the existence of the algorithm proposed
in [56] for sampling binary, undirected networks in the sparse case, i.e.
whenever the Chung-Lu model is applicable. This amounts at requiring
that pCL

ij = k i k j

2L < 1, 8 i < j , a condition whose validity is seldom ver-
i�ed. In fact, it does not hold in several cases of interest: an example
of paramount importance is provided by sparse networks whose degree
distribution is scale-free. In such cases,kmax � N

1

 � 1 : hence, the hubs es-

tablish a connection with probability pCL
ij � N

2

 � 1

N � N
1


 � 1
that becomes larger

than 1 when 2 < 
 � 3 and diverges for 
 ! 2, thus leading to a strong
violation of the requirement above.

2.6.2 Weighted undirected graphs with given strengths and
degrees (UECM)

Let us now focus on null models for weighted networks, de�ned by con-
straining both binary and weighted quantities 3; the simplest model of
the kind is the one constraining the degrees and the strengths in an undi-

3Purely weighted models such as the Undirectedand the Directed Weighted Con�guration
Modelhave not been considered since, as it has been proven elsewhere [57], they perform
quite poorly when employed to reconstruct networks.
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rected fashion. While ki (A ) =
P N

j (6= i )=1 aij counts the number of neigh-

bors of node i , si (W ) =
P N

j (6= i )=1 wij de�nes the weighted equivalent
of the degree of node i , i.e. its strength - for consistency, the binary ad-
jacency matrix can be de�ned via the Heaviside step function, �[ :], i.e.
as A � �[ W ] a position indicating that aij = 1 if wij > 0, 8 i < j and
zero otherwise. This particular model is known as Undirected Enhanced
Con�guration Model(UECM) [58, 57, 59] and its Hamiltonian reads

H UECM (W ; ~�; ~� ) =
NX

i =1

[� i ki (A ) + � i si (W )]; (2.38)

it induces a probability distribution which is halfway between a Bernoulli
and a geometric one [58], i.e.

QUECM (W j~�; ~� ) =
NY

i =1

NY

j =1
( j<i )

qij (wij ) (2.39)

with

qij (w) =

(
1 � pUECM

ij ; w = 0
pUECM

ij (e� � i � � j )w� 1(1 � e� � i � � j ); w > 0
(2.40)

for any two nodes i and j such that i < j and

pUECM
ij =

e� � i � � j � � i � � j

1 � e� � i � � j + e� � i � � j � � i � � j
; 8 i < j: (2.41)

Notice that the functional form above is obtained upon requiring that
the weights only assume (non-negative) integer values (i.e. wij 2 [0; + 1 ),
8 i < j ). The canonical ensemble is now constituted by the weighted
con�gurations with N nodes and a number of (undirected) links ranging
between zero and the maximum value

� N
2

�
.

The argument of the problem 2.14 for the speci�c network W � now
becomes
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L UECM (~�; ~� ) = �
NX

i =1

[� i ki (A � ) + � i si (W � )]

�
NX

i =1

NX

j =1
( j<i )

ln
�
1 + e� � i � � j

�
e� � i � � j

1 � e� � i � � j

��
(2.42)

whose �rst-order, optimality conditions read

r � i L UECM = � ki (A � ) +
NX

j =1
( j 6= i )

pUECM
ij = � ki (A � ) + hki i = 0

r � i L UECM = � si (W � ) +
NX

j =1
( j 6= i )

pUECM
ij

1 � e� � i � � j
= � si (W � ) + hsi i = 0

(2.43)

with i = 1 : : : N .

Resolution of the UECM

Newton's and the quasi-Newton methods can be easily implemented via
the recipe de�ned in eq. (2.18) (see Appendix A.1 for the de�nition of the
UECM Hessian).

As for the purely binary models, the �xed-point recipe for solving the
UECM �rst-order, optimality conditions transforms the following set of
consistency equations
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� i = � ln

2

6
6
4

ki (A � )
P N

j =1
( j 6= i )

�
e� � j � � i � � j

1� e� � i � � j + e� � i � � j � � i � � j

�

3

7
7
5 ; i = 1 : : : N

� i = � ln

2

6
6
4

si (W � )
P N

j =1
( j 6= i )

�
e� � i � � j � � j

(1 � e� � i � � j )(1 � e� � i � � j + e� � i � � j � � i � � j )

�

3

7
7
5 ; i = 1 : : : N

(2.44)

into the usual iterative fashion, by considering the parameters at the left
hand side and at the right hand side, respectively at the n-th and at the
(n � 1)-th iteration. It is important to remark that a reduced version of
the iterative recipe above can indeed be written, by assigning the same
pair of values (�; � ) to the nodes with the same pair of values (k; s): how-
ever, the larger heterogeneity of the strengths causes this event to happen
more rarely than for purely binary models such as the UBCM.

As for the purely binary cases, three different sets of initial condi-
tions have been considered, whose de�nition follows from the simplest
conceivable generalization of the purely binary cases. In particular, the

�rst set of values reads � (0)
i = � ln

h
k i (A � )p

2L

i
, i = 1 : : : N and � (0)

i =

� ln
h

si (W � )p
2W

i
, i = 1 : : : N ; the second set is a variant of the �rst, read-

ing � (0)
i = � ln

h
k i (A � )p

N

i
, i = 1 : : : N and � (0)

i = � ln
h

si (W � )p
N

i
, i = 1 : : : N ;

the third recipe, instead, prescribes to randomly draw the value of each
parameter from the uniform distribution de�ned on the unit interval, i.e.
� (0)

i � U(0; 1), 8 i and � (0)
i � U(0; 1), 8 i .

Performance testing

The accuracy of each algorithm in reproducing the constraints de�n-
ing the UECM has been, now, quanti�ed via the maximum relative error

metrics, de�ned, in a perfectly general fashion, as maxi

n
jC �

i �h C i ij
C i

oN

i =1
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(where C �
i is the empirical value of the i -th constraint, Ci ). In the UECM

case, we can de�ne two variants of the aforementioned error, i.e.

MRDE = max
i

�
jk�

i � h ki ij
ki

� N

i =1
(2.45)

MRSE= max
i

�
js�

i � h si ij
si

� N

i =1
(2.46)

(the acronyms standing for Maximum Relative Degree Error and Maxi-
mum Relative Strength Error). The reason driving this choice lies in the
evidence that, in absolute terms, strengths are affected by a larger nu-
merical error than degrees: this, however, doesn't necessarily mean that
a given algorithm performs poorly, as the magnitude of an error must be
always compared with the numerical value of the quantity it refers to -
whence the choice of considering relative scores.

The three different `stop criteria' we have considered for each algo-
rithm match the ones adopted for analysing the binary cases, consisting
in a condition on the Euclidean norm of the gradient of the likelihood
function, i.e. jjr L (~� )jj2 � 10� 8, and in a condition on the Euclidean
norm of the vector of differences between the values of the parameters
at subsequent iterations, i.e. jj � ~� jj2 � 10� 8; the third condition concerns
the maximum number of iterations: after 10.000 steps, any of the three
algorithms stops.

Results

The performance of the three algorithms to solve the system of equa-
tions de�ning the UECM has been tested on a bunch of real-world net-
works: in particular, we have considered the WTW during the decade
1990-20004 [60].

The results are reported in Table 2. Overall, two out of three algo-
rithms (i.e. Newton's and the quasi-Newton methods) perform very sat-

4Since the weights de�ning the con�gurations of the WTW are real numbers, we have
rounded them to the nearest integer value, before running the UECM.
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isfactorily, being accurate, fast and scalable; the third one (i.e. the �xed-
point recipe), instead, performs very poorly. Moreover, while Newton's
method stops because the condition on the norm of the likelihood is sat-
is�ed, both the quasi-Newton and the �xed-point algorithms are always
found to satisfy the limit condition on the number of steps (i.e. they run
for 10.000 steps and, then, stop).

For what concerns accuracy, the largest maximum error made by New-
ton's method (across all con�gurations) amounts at 10� 10 . MRDENewton .
10� 5 and MRSENewton & 10� 10; on the other hand, the largest maxi-
mum error made by the quasi-Newton method (across all con�gurations)
amounts at 10� 5 . MRDEQuasi-Newton . 10� 1 and 10� 5 � MRSEQuasi-Newton �
10� 4. For what concerns speed, Newton's method employs tenths of
secondsto achieve convergence on each con�guration while the quasi-
Newton one always requires tens of seconds(speci�cally, almost thirty
seconds for each considered con�guration). The results above indicate
that the fastest and most accurate method is systematically Newton's
one, a result suggesting that the information encoded into the Hessian
matrix cannot be ignored without consequences on the quality of the
solution. The �xed-point algorithm, instead, stops after seconds but is
affected by errors whose order of magnitude systematically amounts at
MRDE �xed-point ' 102 and 1 . MRSE�xed-point . 102.

We also explicitly notice that the MADE basically coincides with the
MRDE for all considered con�gurations, meaning that the largest error
made by the algorithms considered here to solve the UECM affects the
nodes with the lowest degree (i.e. equal to one). On the other hand,
strengths are affected by a larger absolute error (i.e. the MASE, de�ned
as MASE = max i fj s�

i � h si ijg N
i =1 ) than the degrees: if we calculate the

MRSE, however, we realize that the largest errors affect very large strengths
- hence being perfectly acceptable. For example, let us consider the WTW
in 1993: the MASE affecting the quasi-Newton method amounts at 0.1
but, as the MRSE reveals, it affects a strength of the order of103.

Lastly, differences in the speed of convergence of the two methods
discussed in this section, caused by the choice of a particular set of initial
conditions, are observable: the `uniform' prescription outperforms the

27



N
ew

ton
Q

uasi-N
ew

ton
N

L
c

M
R

D
E

M
A

S
E

M
R

S
E

Tim
e

(s)
M

R
D

E
M

A
S

E
M

R
S

E
Tim

e
(s)

W
T

W
90

169
7991

'
0:3

'
2:6

�10
�

10
'

5
�10

�
6

'
2

�10
�

10
'

0:4
'

7:8
�10

�
4

'
2

�10
�

1
'

3
�10

�
4

'
25

W
T

W
91

184
8712

'
0:3

'
2:1

�10
�

10
'

1
�10

�
10

'
1:2

�10
�

10
'

0:5
'

9:2
�10

�
5

'
7

�10
�

2
'

6:6
�10

�
5

'
28

W
T

W
92

185
8928

'
0:3

'
1:2

�10
�

10
'

7
�10

�
7

'
1:3

�10
�

10
'

0:5
'

7
�10

�
2

'
2

�10
�

4
'

1:3
�10

�
4

'
28

W
T

W
93

187
9220

'
0:3

'
3:4

�10
�

6
'

2
�10

�
10

'
2:2

�10
�

10
'

0:5
'

1:4
�10

�
4

'
1

�10
�

1
'

7:6
�10

�
5

'
28

W
T

W
94

187
9437

'
0:3

'
1:8

�10
�

10
'

2
�10

�
10

'
1:8

�10
�

10
'

0:7
'

7
�10

�
5

'
2

�10
�

1
'

1:5
�10

�
4

'
28

W
T

W
95

187
9578

'
0:3

'
2:8

�10
�

10
'

3
�10

�
6

'
2:9

�10
�

10
'

0:6
'

2:5
�10

�
4

'
3

�10
�

1
'

6:7
�10

�
5

'
28

W
T

W
96

187
10002

'
0:3

'
1:4

�10
�

5
'

1
�10

�
10

'
1:1

�10
�

10
'

0:7
'

1:7
�10

�
5

'
2

�10
�

1
'

3
�10

�
5

'
28

W
T

W
97

187
10251

'
0:3

'
1:1

�10
�

5
'

4
�10

�
10

'
6:7

�10
�

10
'

0:7
'

4:4
�10

�
5

'
8

�10
�

2
'

1:6
�10

�
4

'
28

W
T

W
98

187
10254

'
0:3

'
1

�10
�

5
'

3
�10

�
10

'
4

�10
�

10
'

0:6
'

1:7
�10

�
4

'
8

�10
�

2
'

5:3
�10

�
5

'
28

W
T

W
99

187
10252

'
0:3

'
4:7

�10
�

10
'

1
�10

�
10

'
8

�10
�

10
'

0:7
'

1:6
�10

�
4

'
7

�10
�

2
'

6:2
�10

�
5

'
28

W
T

W
00

187
10252

'
0:3

'
5

�10
�

10
'

2
�10

�
10

'
2:4

�10
�

10
'

0:7
'

1:5
�10

�
4

'
9

�10
�

2
'

5:4
�10

�
5

'
29

Table
2:

P
erform

ance
ofN

ew
ton's

and
the

quasi-N
ew

ton
m

ethod
to

solve
the

reduced
system

ofequations
de�ning

the
U

E
C

M
,on

a
setofreal-w

orld
W

U
N

s
(ofw

hich
basic

statistics
as

the
totalnum

ber
ofnodes,

N
,the

totalnum
ber

of
links,

L
,

and
the

connectance,c
=

2
L=N

(N
�

1),
are

provided).
W

hile
N

ew
ton's

m
ethod

stops
because

the
condition

jjr
L

( ~�)jj2
�

10
�

8
is

satis�ed,the
quasi-N

ew
ton

one
alw

ays
reaches

the
lim

itof10000
steps.

T
he

results
on

accuracy
and

speed
clearly

indicate
thatN

ew
ton's

m
ethod

outperform
s

the
quasi-N

ew
ton

one.
O

nly
the

results
corresponding

to
the

bestchoice
ofinitialconditions

are
reported.T

he
results

ofthe
�xed-pointrecipe

are
notshow

n.

28



Algorithm 2 Sampling the UECM ensemble

1: for m = 1 : : : jE j do
2: W = 0;
3: for i = 1 : : : N do
4: for j = 1 : : : N and j < i do
5: if RandomUniform [0; 1] � pUECM

ij then
6: wij = wji = RandomGeometric[e� � i � � j ];
7: else
8: wij = wji = 0;
9: end if

10: end for
11: end for
12: Ensemble[m] = W ;
13: end for

other ones.

Sampling the UECM

Finally, let us comment on the algorithm to sample the UECM ensemble
and that can be compactly achieved by implementing a two-step pro-
cedure. Let us look back at the formal expression for the pair-speci�c
probability distribution characterizing the UECM: it induces coef�cients
reading

8
>>>>>>><

>>>>>>>:

1 � pUECM
ij ; w = 0

pUECM
ij (1 � e� � i � � j ); w = 1

pUECM
ij (e� � i � � j )(1 � e� � i � � j ); w = 2

pUECM
ij (e� � i � � j )2(1 � e� � i � � j ); w = 3

...

(2.47)

in turn suggesting that, for a speci�c pair of vertices i; j (with i < j ),
the appearance of the �rst link is ruled by a Bernoulli distribution with
probability pUECM

ij while the remaining (w � 1) ones can be drawn from
a geometric distribution whose parameter reads e� � i � � j ; in other words,
the weight (w � 1) is drawn conditionallyon the presence of a connection
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between the two considered nodes. The computational complexity of
the sampling process is, again, O(N 2). The pseudo-code for explicitly
sampling the UECM ensemble is summed up by Algorithm 2.

2.6.3 Weighted directed graphs with given strengths and
degrees (DECM)

Let us now extend the `mixed' model introduced in the previous sec-
tion to the case of directed networks. Constraints are, now, represented
by four sequences of values, i.e. f kout

i gN
i =1 , f k in

i gN
i =1 , f sout

i gN
i =1 , f sin

i gN
i =1

where the generic out-degree and in-degree are, respectively, de�ned as
kout

i (A ) =
P N

j (6= i )=1 aij and k in
i (A ) =

P N
j (6= i )=1 aji and analogously for

the generic out-strength and in-strength, reading sout
i (W ) =

P N
j (6= i )=1 wij

and sin
i (W ) =

P N
j (6= i )=1 wji . Consistency requires that A � �[ W ] as for

the UECM case. This model is known as Directed Enhanced Con�guration
Model(DECM) and its Hamiltonian reads

H DECM (W ; ~�; ~�;~
; ~� ) =
NX

i =1

[� i kout
i (A ) + � i k in

i (A ) + 
 i sout
i (W ) + � i sin

i (W )]

(2.48)

in turn, inducing the directed counterpart of the UECM distribution, i.e.

QDECM (W j~�; ~�;~
; ~� ) =
NY

i =1

NY

j =1
( j 6= i )

qij (wij ) (2.49)

with

qij (w) =

(
1 � pDECM

ij w = 0
pDECM

ij (e� 
 i � � j )w� 1(1 � e� 
 i � � j ) w > 0
(2.50)

for any two nodes i and j such that i 6= j and

pDECM
ij =

e� � i � � j � 
 i � � j

1 � e� 
 i � � j + e� � i � � j � 
 i � � j
; 8 i 6= j: (2.51)
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As for the undirected case, weights are required to assume only (non-
negative) integer values (i.e. wij 2 [0; + 1 ), 8i 6= j ). Hence, the canonical
ensemble is constituted by the weighted con�gurations with N nodes
and a number of (directed) links ranging between zero and the maximum
value N (N � 1).

The argument of the problem (2.14) for the speci�c network W � be-
comes

L DECM (~�; ~�;~
; ~� ) = �
NX

i =1

[� i kout
i (A � ) + � i k in

i (A � )

+ 
 i sout
i (W � ) + � i sin

i (W � )]

�
NX

i =1

NX

j =1
( j 6= i )

ln zij (2.52)

where zij =
h
1 + e� � i � � j

�
e� 
 i � � j

1� e� 
 i � � j

�i
, 8 i 6= j and whose �rst-order,

optimality conditions read

r � i L DECM = � kout
i (A � ) +

NX

j =1
( j 6= i )

pDECM
ij = � kout

i (A � ) + hkout
i i = 0

r � i L DECM = � k in
i (A � ) +

NX

j =1
( j 6= i )

pDECM
ji = � k in

i (A � ) + hk in
i i = 0

r 
 i L DECM = � sout
i (W � ) +

NX

j =1
( j 6= i )

pDECM
ij

1 � e� 
 i � � j
= � sout

i (W � ) + hsout
i i = 0

r � i L DECM = � sin
i (W � ) +

NX

j =1
( j 6= i )

pDECM
ji

1 � e� 
 j � � i
= � sin

i (W � ) + hsin
i i = 0

(2.53)

with i = 1 : : : N .
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Resolution of the DECM

Newton's and the quasi-Newton methods can be easily implemented via
the recipe de�ned in eq. (2.18) (see Appendix A.1 for the de�nition of the
DECM Hessian).

As for the UECM, the �xed-point recipe for solving the DECM �rst-
order, optimality conditions transforms the following set of consistency
equations

� i = � ln

2

6
6
4

kout
i (A � )

P N
j =1

( j 6= i )

�
e� � j � 
 i � � j

1� e� 
 i � � j + e� � i � � j � 
 i � � j

�

3

7
7
5 ; i = 1 : : : N

� i = � ln

2

6
6
4

k in
i (A � )

P N
j =1

( j 6= i )

�
e� � j � 
 j � � i

1� e� 
 j � � i + e� � j � � i � 
 j � � i

�

3

7
7
5 ; i = 1 : : : N


 i = � ln

2

6
6
4

sout
i (W � )

P N
j =1

( j 6= i )

�
e� � i � � j � � j

(1 � e� 
 i � � j )(1 � e� 
 i � � j + e� � i � � j � 
 i � � j )

�

3

7
7
5 ; i = 1 : : : N

� i = � ln

2

6
6
4

sin
i (W � )

P N
j =1

( j 6= i )

�
e� � j � � i � 
 j

(1 � e� 
 j � � i )(1 � e� 
 j � � i + e� � j � � i � 
 j � � i

�

3

7
7
5 ; i = 1 : : : N

(2.54)

into the usual iterative fashion, by considering the parameters at the left
hand side and at the right hand side, respectively at the n-th and at the
(n � 1)-th iteration. The reduced version of such a recipe would assign
the same set of values(�; �; 
; � ) to the nodes for which the quantities
(kout ; k in ; sout ; sin ) have the same value: however, the larger heterogene-
ity of the strengths causes the DECM to be much less reducible than the
UBCM model (previously discussed in the present chapter).

The three different sets of initial conditions that have been consid-
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ered generalize the UECM ones: in particular, the �rst set of values reads

� (0)
i = � ln

h
k out

i (A � )p
L

i
, i = 1 : : : N , � (0)

i = � ln
h

k in
i (A � )p

L

i
, i = 1 : : : N ,


 (0)
i = � ln

h
sout

i (W � )p
W

i
, i = 1 : : : N and � (0)

i = � ln
h

sin
i (W � )p

W

i
, i = 1 : : : N ;

the second set of initial conditions can be obtained by simply replacing
L with N ; the third recipe, as usual, prescribes to randomly draw the
value of each parameter from the uniform distribution de�ned on the
unit interval.

Performance testing

The accuracy of each algorithm in reproducing the constraints de�ning
the DECM has been quanti�ed via the maximum relative errormetrics,
now reading

MRDE = max
i

�
jk�

i � h ki ij
ki

;
jh�

i � h hi ij
hi

� N

i =1
(2.55)

MRSE= max
i

�
js�

i � h si ij
si

;
jt �

i � h t i ij
t i

� N

i =1
(2.56)

(the acronyms standing for for Maximum Relative Degree Error and Max-
imum Relative Strength Error) where we have de�ned kout � k, k in � h,
sout � s and sin � t in order to simplify the formalism.

The three different `stop criteria' we have adopted are the same ones
we have considered for both the binary and the undirected, `mixed' model,
i.e. the condition on the Euclidean norm of the gradient of the likelihood
function, i.e. jjr L (~� )jj2 � 10� 8), the condition on the Euclidean norm of
the vector of differences between the values of the parameters at subse-
quent iterations (i.e. jj � ~� jj2 � 10� 8) and the condition on the maximum
number of iterations (i.e. after 10000 steps, any of the three algorithms
stops).
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Results

The performance of the three algorithms to solve the system of equations
de�ning the DECM has been tested on a bunch of real-world networks:
in particular, we have considered the Electronic Italian Interbank Market
(e-MID) during the decade 2000-20105 [61]. Before commenting on the
results of our numerical exercises, let us, �rst, describe how the latter
ones have been carried out.

The results about the performance of our three algorithms are re-
ported in Table 3. Overall, Newton's method performs very satisfacto-
rily, being accurate, fast and scalable; the quasi-Newton method is ac-
curate as well although (in some cases, much) slower. The �xed-point
recipe, instead, performs very poorly, as for the undirected case. More-
over, while Newton's method stops because the condition on the norm
of the likelihood is satis�ed, both the quasi-Newton and the �xed-point
algorithms are always found to satisfy the limit condition on the number
of steps (i.e. they run for 10000 steps and, then, stop).

For what concerns accuracy, the largest maximum error made by New-
ton's method (across all con�gurations) amounts at 10� 14 . MRDENewton .
10� 7 and 10� 12 . MRSENewton . 10� 5; on the other hand, the largest
maximum error made by the quasi-Newton method (across all con�g-
urations) amounts at 10� 8 . MRDEQuasi-Newton . 10� 7 and 10� 4 .
MRSEQuasi-Newton . 10� 3. For what concerns speed, Newton's method
employs tens of seconds to achieve convergence on each con�guration;
the time required by the quasi-Newton method is of the same order of
magnitude, although it is systematically larger than the time required by
Newton's one. Overall, these results indicate that the fastest and most
accurate method is Newton's one. As in the undirected case, the �xed-
point algorithm, instead, stops after seconds but is affected by errors
whose order of magnitude systematically amounts at 10 . MRDE �xed-point .
102 and 1 . MRSE�xed-point . 102.

As for the UECM, the MADE basically coincides with the MRDE, for
all considered con�gurations, while strengths are affected by a larger ab-

5Since e-MID weights are real numbers, we have rounded them to the nearest integer
value, before running the DECM.
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solute error than the degrees: still, upon calculating the MRSE, we realize
that the largest errors affect very large strengths - hence being perfectly
acceptable.

Lastly, differences in the speed of convergence of the two methods
discussed in this section, caused by the choice of a particular set of initial
conditions, are observable: the `uniform' prescription outperforms the
other ones.

Sampling the DECM

Finally, let us comment on the algorithm to sample the DECM ensemble:
as for the UECM, it can be compactly achieved by implementing the di-
rected counterpart of the two-step procedure described above. Given a
speci�c pair of vertices i; j (with i 6= j ), the �rst link can be drawn by
sampling a Bernoulli distribution with probability pDECM

ij while the re-
maining (w � 1) ones can be drawn from a geometric distribution whose
parameter reads e� 
 i � � j . The computational complexity of the sampling
process is, again,O(N 2) and the pseudo-code for explicitly sampling the
DECM ensemble is summed up by Algorithm 3.

2.6.4 Two-step models for undirected and directed net-
works

The need of considering network models de�ned in a two-step fashion
arises from a number of considerations. First, recipes like the UECM and
the DECM are, generally speaking, dif�cult to solve; as we have already
observed, only Newton's method performs in a satisfactory way, both
for what concerns accuracy and speed: hence, easier-to-solve recipes are
welcome. Second, the amount of information concerning binary and
weighted quantities is often asymmetric: as it has been pointed out in
[62], information concerning a given network structure ranges from the
knowledge of just a single, aggregated piece of information (e.g. the link
density) to that of entire subgraphs.

Indeed, models exist that take as input any binary, either probabilis-
tic or deterministic, network model - i.e. any P(A ) - while placing link
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Algorithm 3 Sampling the DECM ensemble

1: for m = 1 : : : jE j do
2: W = 0;
3: for i = 1 : : : N do
4: for j = 1 : : : N and j 6= i do
5: if RandomUniform [0; 1] � pDECM

i� then
6: wij = RandomGeometric[e� 
 i � � j ];
7: else
8: wij = 0;
9: end if

10: end for
11: end for
12: Ensemble[m] = W ;
13: end for

weights optimally, conditionallyon the input con�gurations [26, 62]. For
the sake of illustration, let us focus on undirected networks and consider
the conditional reconstruction method (hereby, CReM) induced by the
Hamiltonian

H CReM(W ; ~� ) =
NX

i =1

� i si (A ); (2.57)

it leads to a conditional probability distribution reading

Q(W jA ) =
NY

i =1

NY

j =1
( j<i )

qij (wij jaij ) (2.58)

where, for consistency, qij (wij = 0 jaij = 0) = 1 and qij (wij = 0 jaij =
1) = 0 . The meaning of these relationships is the following: given any
two nodes i and j , the absence of a link, i.e. aij = 0 , admits the only
possibility wij = 0 ; on the other hand, the presence of a link, i.e. aij = 1 ,
rules out the possibility that a null weight among the same vertices is
observed.

In general, the functional form of qij (wij jaij = 1) depends on the
domain of the weights. In all cases considered in [26, 62], weights are

37



assumed to be continuous; since the continuous distribution that maxi-
mizes Shannon entropy, while constrained to reproduce �rst-order mo-
ments, is the exponential one, the following functional form

qij (wij jaij = 1) =

(
(� i + � j )e� ( � i + � j )w w > 0
0 w � 0

(2.59)

(for any undirected pair of nodes) remains naturally induced. As shown
in [62], the problem 2.14 has to be slightly generalized; still, its argument
for the speci�c network W � becomes

GCReM = �
NX

i =1

� i si (W � ) +
NX

i =1

NX

j =1
( j<i )

f ij log [� i + � j ] (2.60)

where the quantity f ij =
P

A P(A )aij represents the expected value
of aij over the ensemble of (binary) con�gurations de�ning the binary
model taken as input (i.e. the marginal probability that an edge exists
between nodes i and j ). It follows that the CReM �rst-order, optimality
conditions read

r � i L CReM = � si (W � ) +
NX

j =1
( j 6= i )

f ij

� i + � j
= � si (W � ) + hsi i = 0 (2.61)

with i = 1 : : : N .

Resolution of the CReM

Newton's and the quasi-Newton method can still be implemented via
the recipe de�ned in eq. (2.18) (see Appendix A.1 for the de�nition of
the CReM Hessian).

As for the UECM and the DECM, the �xed-point recipe for solving
the system of equations embodying the CReM transforms the set of con-
sistency equations
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� i =

2

6
6
4

si (W � )
P N

j =1
( j 6= i )

�
f ij

1+ � j =� i

�

3

7
7
5

� 1

; i = 1 : : : N (2.62)

into an iterative recipe of the usual form, i.e. by considering the pa-
rameters at the left hand side and at the right hand side, respectively
at the n-th and at the (n � 1)-th iteration. Although a reduced recipe
can, in principle, be de�ned, an analogous observation to the one con-
cerning the UECM and the DECM holds: the mathematical nature of
the strengths (now, real numbers) increases their heterogeneity, in turn
causing the CReM algorithm to be reducible even less than the `mixed'
models de�ned by discrete weights.

The initialization of the iterative recipe for solving the CReM has been
implemented in the usual threefold way. The �rst set of initial values

reads � (0)
i = � ln

h
si (W � )p

2W

i
, i = 1 : : : N ; the second one is a variant of the

position above, reading � (0)
i = � ln

h
si (W � )p

N

i
; the third one, instead, pre-

scribes to randomly draw the value of each parameter from the uniform
distribution de�ned on the unit interval, i.e. � (0)

i � U(0; 1), 8 i .

When considering directed networks, instead, the conditional proba-
bility distribution de�ning the CReM reads

qij (wij jaij = 1) =

(
(� i + � j )e� ( � i + � j )w w > 0
0 w � 0

(2.63)

for any two nodes i and j such that i 6= j ; the set of equations (2.62) can
be generalized as follows
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6
6
4

sout
i (W � )

P N
j =1

( j 6= i )

�
f ij

1+ � j =� i

�

3

7
7
5

� 1

; i = 1 : : : N

� i =

2

6
6
4

sin
i (W � )

P N
j =1

( j 6= i )

�
f ji

1+ � j =� i

�

3

7
7
5

� 1

; i = 1 : : : N

(2.64)

and analogously for the sets of values initializing them.

Rescaling the CReM algorithm

Although the equations de�ning the CReM algorithm cannot be effec-
tively reduced, they can be opportunely rescaled. To this aim, let us con-
sider directed con�gurations and the system

NX

j =1
j (6= i )

f ij

� i (� ) + � j (� )
=

sout
i (W � )

�
; i = 1 : : : N (2.65)

NX

j =1
j (6= i )

f ji

� j (� ) + � i (� )
=

sin
i (W � )

�
; i = 1 : : : N (2.66)

where the suf�cient statistics has been divided by an opportunely de-
�ned factor (in this case, � ) and the symbols � i (� ), � j (� ), � i (� ) and � j (� )
stress that the solution we are searching for is a function of the parameter
� itself. In fact, a solution of the system above reads

� �
i (� ) = � � � �

i ; i = 1 : : : N (2.67)

� �
i (� ) = � � � �

i ; i = 1 : : : N (2.68)
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as it can be proven upon substituting it back and noticing that f � �
i gN

i =1

and f � �
i gN

i =1 are solutions of the same system of equations with � = 1 . As
our likelihood maximization problem admits a unique, global maximum,
the prescription above allows us to easily identify it. Rescaling will be
tested in order to �nd out if our algorithms are enhanced by it under any
respect (e.g. accuracy or speed).

Performance testing

Before commenting on the performance of the three algorithms in solv-
ing the system of equations de�ning the CReM, let us stress once more
that the formulas presented so far are perfectly general, working for any
binary recipe one may want to employ. In what follows, we will test the
CReM by posing f ij � pUBCM

ij and f ij � pDBCM
ij .

As for the discrete `mixed' models, the accuracy of each algorithm in
reproducing the constraints de�ning the CReM has been quanti�ed via
the Maximum Relative Degree Error and the Maximum Relative Strength
Error metrics, whose de�nition is provided by eqs. (2.45), (2.46) and
(2.55), (2.56) for the undirected and the directed case, respectively. Anal-
ogously, the three `stop criteria' for each algorithm are the same ones
that we have adopted for the other models (and consist in a condition
on the Euclidean norm of the gradient of the likelihood function, i.e.
jjr L (~� )jj2 � 10� 8, a condition on the Euclidean norm of the vector
of differences between the values of the parameters at subsequent iter-
ations, i.e. jj � ~� jj2 � 10� 8, and a condition on the maximum number of
iterations, i.e. 10.000 steps).

Results

To test the effectiveness of our algorithms in solving the CReM on undi-
rected networks we have considered the synaptic network of the worm
C. Elegans[51] and the eight daily snapshots of the Bitcoin Lightning Net-
work [55]; the directed version of the CReM has, instead, been solved on
the Electronic Italian Interbank Market (e-MID) during the decade 2000-
2010 [61]. Before commenting on the results of our numerical exercises,
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let us, �rst, describe how the latter ones have been carried out.

The results about the performance of our three algorithms are re-
ported in Table 4 and in Table 5. Let us start by commenting the re-
sults reported in Table 4 and concerning undirected networks. Generally
speaking, Newton's method is the most accurate one (its largest max-
imum errors span intervals, across all con�gurations, that amount at
10� 11 . MRDENewton . 10� 8 and 10� 5 . MRSENewton . 10� 4) although
it scales very badly with the size of the network on which it is tested
(the amount of time, measured in seconds, required by it to achieve con-
vergence spans an interval, across all con�gurations, that amounts at
0:08 � T reduced

Newton � 1:188).

The quasi-Newton method, on the other hand, is very accurate on the
degrees (as already observed in the UBCM case) but not so accurate in
reproducing the weighted constraints (its largest maximum errors span
intervals, across all con�gurations, that amount at MRDE Quasi-Newton '
10� 7 and 10� 6 . MRSEQuasi-Newton . 6). Moreover, it scales even worse
than Newton's method with the size of the network on which it is tested
(the amount of time, measured in seconds, required by it to achieve con-
vergence spans an interval, across all con�gurations, that amounts at
5 � TQuasi-Newton � 15:888).

The performance of the �xed-point recipe is, somehow, intermedi-
ate between that of Newton's and that of the quasi-Newton method.
For what concerns accuracy, it is more accurate in reproducing the bi-
nary constraints than in reproducing the weighted ones (its largest max-
imum errors span intervals, across all con�gurations, that amount at
MRDE �xed-point ' 10� 9 and 10� 8 . MRSE�xed-point . 10� 1) although it
outperforms Newton's method, sometimes. For what concerns scalabil-
ity, the �xed-point method is the less sensitive one to the growing size
of the considered con�gurations: hence, it is also the fastest one (the
amount of time, measured in seconds, required by it to achieve con-
vergence spans an interval, across all con�gurations, that amounts at
0:01 � T�xed-point � 550).

Moreover, while Newton's and the �xed-point method stop because
the condition on the norm of the likelihood is satis�ed, the quasi-Newton
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method is often found to satisfy the limit condition on the number of
steps (i.e. it runs for 10000 steps and, then, stops).

Interestingly, the fact that the CReM cannot be reduced (at least not to
a comparable extent with the one characterizing purely binary models)
reveals a dependence on the network size of Newton's and of the quasi-
Newton algorithms. The reason may lie in the evidence that both New-
ton's and the quasi-Newton method require (some proxy of) the Hessian
matrix of the system of equations de�ning the CReM to update the value
of the parameters: as already observed, the order of the latter - which is
O(N 2) for Newton's method and O(N ) for the quasi-Newton one - can
make its calculation (very) time demanding.

Let us now move to comment on the performance of our algorithms
when applied to solve the directed version of the CReM (see Table 5).
Overall, all methods perform much better than in the undirected case,
stopping because the condition on the norm of the likelihood is satis�ed.

In fact, all of them are very accurate in reproducing the purely binary
constraints, their largest maximum errors spanning intervals, across all
con�gurations, that amount at 10� 12 . MRDENewton . 10� 6, 10� 14 .
MRDEQuasi-Newton . 10� 6 and 10� 15 . MRDE �xed-point . 10� 8; for what
concerns the weighted constraints, instead, the two most accurate meth-
ods are Newton's and the quasi-Newton one, their largest maximum er-
rors spanning intervals, across all con�gurations, that amount at 10� 13 .
MRSENewton . 10� 7 and 10� 6 . MRSEQuasi-Newton . 10� 3 (the �xed-
point method performs worse than them, since 10� 3 . MRSE�xed-point .
10� 1).

For what concerns speed, the amount of time, measured in seconds,
required by Newton's, the quasi-Newton and the �xed-point algorithms
to achieve convergence spans an interval, across all con�gurations, that
amounts at 0:6 � T reduced

Newton � 1, 0:5 � T reduced
Quasi-Newton � 1:2 and 0:05 �

T reduced
�xed-point � 0:2, respectively: hence, all methods are also very fast - the

�xed-point one being systematically the fastest.

As already stressed above, the fact that the e-MID number of nodes
remains approximately constant throughout the considered time interval
masks the strong dependence of the performance of Newton's and the
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quasi-Newton method on the network size.
Lastly, while rescaling the system of equations de�ning the CReM im-

proves neither the accuracy nor the speed of any of the three algorithms
considered here, differences in their speed of convergence, caused by the
choice of a particular set of initial conditions, are observable: the `uni-
form' prescription outperforms the other ones (for both the undirected
and the directed version of the CReM).

Sampling the CReM

As usual, let us comment on the algorithm to sample the CReM ensem-
ble - for the sake of simplicity, in the undirected case. As for the UECM,
this can be compactly achieved by implementing a two-step procedure,
the only difference lying in the functional form of the distribution from
which weights are sampled. Given a speci�c pair of vertices i; j (with
i < j ), the �rst link can be drawn from a Bernoulli distribution with
probability pUBCM

ij while the remaining (w � 1) ones can be drawn from
an exponential distribution whose parameter reads � i + � j . The com-
putational complexity of the sampling process is, again, O(N 2) and the
pseudo-code for explicitly sampling the CReM ensemble is summed up
by Algorithm 4.

2.7 Discussion

The exercises carried out so far have highlighted a number of (stylized)
facts concerning the performance of the three algorithms tested: in what
follows, we will brie�y sum them up.

Newton's method

Overall, Newton's method is very accurate - often, the most accurate one
- in reproducing both the binary and the weighted constraints; moreover,
it represent the only viable alternative when the most complicated mod-
els are considered (i.e. the UECM and the DECM, respectively de�ned
by a system of 2N and 4N coupled, non-linear equations). However,
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Algorithm 4 Sampling the CReM ensemble

1: for m = 1 : : : jE j do
2: W = 0;
3: for i = 1 : : : N do
4: for j = 1 : : : N and j < i do
5: if RandomUniform [0; 1] � pUBCM

i� then
6: wij = wji = RandomExponential [� i + � j ];
7: else
8: wij = wji = 0;
9: end if

10: end for
11: end for
12: Ensemble[m] = W ;
13: end for

the time required to run Newton's method on a given model seems to
be quite dependent on the network size, especially whenever the cor-
responding system of equations cannot be reduced - see the case of the
undirected CReM, run on the Bitcoin Lightning Network. Since one of
the reasons affecting the bad scaling of Newton's method with the net-
work size is the evaluation of the Hessian matrix de�ning a given model,
this algorithm has to be preferred for largely reducible networks.

Quasi-Newton method

For all the networks considered here, the quasi-Newton method we have
implemented is nothing else than the diagonal version of the traditional
Newton's method. Even if this choice greatly reduces the number of en-
tries of the Hessian matrix which are needed (i.e. just N elements for the
undirected version of the CReM, 2N elements for the UECM and the di-
rected version of the CReM and 4N elements for the DECM) dimension-
ality may still represent an issue to achieve fast convergence. Moreover,
since the diagonal approximation of the Hessian matrix is not necessar-
ily always a good one, the quasi-Newton method may require more time
than Newton's one to achieve the same level of accuracy in reproducing
the constraints. However, when such an approximation is a good one,
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the `regime' in which the quasi-Newton method outperforms the com-
petitors seems to be the one of small, non-reducible networks (e.g. see
the results concerning the DBCM run on the WTW) - althogh, in cases
like these, Newton's method may still be a strong competitor.

Fixed-point method

From a purely theoretical point of view, the �xed-point recipe is the
fastest one, since the time required to evaluate the generic n-th step is
(only) due to the evaluation of the model-speci�c map at the (n � 1)-th
iteration. Strictly speaking, however, this holds true for a single step:
if the number of steps required for convergence is large, in fact, the to-
tal amount of time required by the �xed-point method can be large as
well. Overall, however, this algorithm has to be preferred for large, non-
reducible networks: this is the case of the (undirected version of the)
CReM, run on the 8-th snapshot of the Bitcoin Lightning Network (i.e.
day 17-07-19) and requiring a bit more than one minute to achieve an
accuracy of MRDE�xed-point & 10� 10 and of MRSE�xed-point ' 10� 1; natu-
rally, the method is not as accurate as Newton's one, for which MRDE Newton &
10� 12 and MRSENewton ' 10� 6 but is much faster as Newton's algorithm
requires ' 1:188seconds to converge.

Alternative techniques to improve accuracy and speed have been tested
as well, as the one of coupling two of the algorithms considered above.
In particular, we have tried to solve the (undirected version of the) CReM
by running the �xed-point algorithm and using the solution of the latter
as input for the quasi-Newton method. The results are reported in Table
6: as they clearly show, the coupled algorithm is indeed more accurate
that the single methods composing it and much faster than the quasi-
Newton one (for some snapshots, more accurate and even faster than
Newton's method).

Techniques like these are, in general, useful to individuate better ini-
tial conditions than the completely random ones: a �rst run of the fastest
method may be, in fact, useful to direct the most accurate algorithm to-
wards the (best) solution. This is indeed the case, upon considering that
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Fixed-point + Quasi-Newton
MRDE MADE MRSE Time (s)

BLN 24-01-18 ' 2 � 10� 9 ' 1:1 � 10� 7 ' 1 � 10� 5 ' 0:1
BLN 25-02-18 ' 1:3 � 10� 9 ' 1:5 � 10� 6 ' 1 � 10� 5 ' 1:6
BLN 30-03-18 ' 1 � 10� 9 ' 1:3 � 10� 7 ' 7:8 � 10� 7 ' 2:2
BLN 13-07-18 ' 7:5 � 10� 10 ' 4:2 � 10� 4 ' 5:3 � 10� 5 ' 200
BLN 19-12-18 ' 7:5 � 10� 10 ' 1:7 � 10� 8 ' 1:1 � 10� 9 ' 7
BLN 30-01-19 ' 6:2 � 10� 10 ' 1:8 � 10� 5 ' 4:1 � 10� 6 ' 614
BLN 01-03-19 ' 5:7 � 10� 10 ' 5:4 � 10� 6 ' 9:1 � 10� 6 ' 961
BLN 17-07-19 ' 4:9 � 10� 10 ' 1:3 � 10� 3 ' 3:5 � 10� 3 ' 3350

Table 6: Performance of the algorithm coupling �xed-point and quasi-
Newton to solve the system of equations de�ning the (undirected version
of the) CReM, on a set of real-world WUNs. The algorithm stops because
the condition jjr L (~� )jj 2 � 10� 8 is satis�ed. As the results reveal, it is
more accurate that the single methods composing it and much faster than
the quasi-Newton one - for some snapshots, more accurate and even faster
than Newton's method. Only the results corresponding to the best choice of
initial conditions are reported.

the quasi-Newton method, now, stops because the condition jjr L (~� )jj2 �
10� 8 is satis�ed - and not for having reached the limit of 10.000 steps.

We would like to end the discussion about the results presented in
this contribution by explicitly mentioning a circumstance that is frequently
met when studying economic and �nancial networks. When considering
systems like these, the information about the number of neighbours of
each node is typically not accessible: as a consequence, the models con-
straining both binary and weighted information cannot be employed as
they have presented in this contribution.

Alternatives exist and rest upon the existence of some kind of rela-
tionship between binary and weighted constraints. In the case of undi-
rected networks, such a relationship is usually written as

e� � i =
p

zsi ; 8 i (2.69)

and establishes that the Lagrange multipliers controlling for the degrees
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are linearly proportional to the strengths. If this is the case (or a valid
reason exists for this to be the case), the expression for the probability
that any two nodes are connected becomes

pdcGM
ij =

zsi sj

1 + zsi sj
; 8 i < j (2.70)

the acronym standing for degree-corrected Gravity Model[63]. The (only)
unknown parameter z must be numerically estimated by employing some
kind of topological information; this is usually represented by (a proxy
of) the network link density, used to instantiate the (only) likelihood con-
dition

L(A � ) = hL i =
NX

i =1

NX

j =1
( j<i )

zsi sj

1 + zsi sj
; (2.71)

once the equation above has been solved, the set of coef�cientsf pdcGM
ij gN

i;j =1

can be either employed 1) to, �rst, estimate the degrees and, then, solve
the UECM [64] or 2) within the CReM framework, via the identi�cation
f ij � pdcGM

ij , to estimate the parameters controlling for the weighted con-
straints.

2.8 The `NEMTROPY' package

As an additional result, we have released a comprehensive package, coded
in Python, that implements the three aforementioned algorithms on all
the ERGs considered in the present work (see also �g. 3). Its name is
`NEMTROPY' (an acronym standing for `Network Entropy Maximiza-
tion: a Toolbox Running On Python') and is available at [65].

With `NEMTROPY', we aim at overcoming the limitations of cur-
rently available packages designed to optimize the likelihood function
of the ERGs de�ned by local constraints 6.

6An early attempt is represented by the MAX&SAM module [66]: however, the chosen
coding language (MATLAB) and its poor computational performances prevented network
scientists to extensively use it.
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Figure 3: System diagram illustrating the models discussed in [31] and im-
plemented in the `NEMTROPY' package: it represents a sort of guide to
individuate the best model for analysing the system at hand. Our pack-
age handles both monopartite and bipartite networks; while the latter ones
have been considered only in their binary, undirected fashion, the former
ones can be modeled either in a binary or a weighted fashion, allowing for
both undirected and directed links.

The reasons behind the choice of writing `NEMTROPY' in Python
are many: 1) the possibility of leveraging on the programming exper-
tise of scholars: in fact, some of the most used libraries for the analysis
of complex networks are written in this language (e.g. graph-tools ,
igraph , networkx ); 2) the possibility of using numba, a library translat-
ing Python functions into optimized machine code, hence guaranteeing
performances (in terms of accuracy and scalability) comparable to those
achievable by employing C or Fortran.

The `NEMTROPY' module can be easily installed from the Python
Package Index (PyPi) by tapping

pip install nemtropy
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in your terminal 7. In what follows, we will brie�y introduce the basic
types of the `NEMTROPY' library and provide examples of codes illus-
trating how to solve ERGs and sample a random network from them.

2.8.1 Graph instances

The `NEMTROPY' library deals with ERGs de�ned for a plethora of net-
work types; indeed, different kinds of graph instances are accessible
to the user, such as monopartite (undirected and directed) and bipar-
tite (undirected). Moreover, monopartite graphs can be either binary or
weighted.

Similarly to other Python modules for network analysis, a graph in-
stance in `NEMTROPY' can be initialized either using a graph edgelist or
a graph adjacency matrix. Furthermore, when dealing with network re-
construction, the user can initialize a graph instance by using the degree
sequence, the strength sequence or both.

As an example, the code to initialize the Zachary Karate Club in `NEMTROPY',
via its adjacency matrix, as an undirected graph instance reads as follows

import networkx as nx
from NEMtropy import UndirectedGraph
G = nx.karate_club_graph()
adj = nx.to_numpy_array(G)
g = UndirectedGraph(adjacency=adj_kar)

(notice that the networkx module is only used to retrieve the Zachary
Karate Club adjacency matrix).

Let us now consider the case when only partial information about a
graph is available, i.e. the degree sequence of an undirected network (say
g). In this case, the �rst step is the initialization of an UndirectedGraph
instance using the degree sequence:

7For more details about the supported Python versions and how to deal with potential
compatibility errors, the reader is redirected to the Readme �le that can be found on the
Github page of the package. The choice of making our code available on Github was driven
by the idea that anyone can collaborate to improve `NEMTROPY' by adding new functions
or �xing bugs.
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from NEMtropy import UndirectedGraph
g = UndirectedGraph(degree_sequence=degree)

the second step, instead, is the resolution of the UBCM but we will dis-
cuss this in detail in the next paragraph.

The `NEMTROPY' graph classes have also built-in functions return-
ing some of the basic properties of a graph, such as

• dseq that returns the degree sequence of the graph;

• strength sequence that returns the strength sequence of the graph;

• n nodes that returns the number of nodes;

• n edges that returns the number of edges.

Analogously, monopartite, directed and bipartite graph classes are
characterized by their own built-in functions 8.

2.8.2 Binary graphs

Lets now discuss how the `NEMTROPY' module can be used to solve
ERGs for monopartite, binary graphs. In the undirected case, this can
achieved by employing the following snippet of code

g = UndirectedGraph(adjacency=adj)
g.solve_tool(model="cm_exp",

method="newton",
initial_guess="random")

indicating that Newton's method is used to solve the UBCM by specify-
ing a random initialization. For a directed graph, instead, the previous
code becomes

g = DirectedGraph(adjacency=adj)
g.solve_tool(model="dcm_exp",

method="newton",
initial_guess="random")

8For more details, the reader is redirected to the Readme �le that can be found on the
Github page of the package.
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where, again, we use Newton's method to solve the DBCM.

In general, the solve tool function accepts the following arguments 9:

• model : it speci�es the ERG to be used;

• method : it speci�es the optimization method to be used;

• initial guess : it speci�es the initial guess for the optimization
process;

• max steps : it speci�es the maximum number of steps for the op-
timization process;

• full return : if `true', it returns more detailed information about
the optimization.

2.8.3 Weighted graphs

Weighted ERGs can be either `enhanced' or `two-steps': since the argu-
ments of solve tool depend on the chosen model, we are going to de-
scribe them separately.

Enhanced methods

Enhanced ERGs preserve both the degree and the strength sequences and
accept only integer weights. Given an undirected, weighted graph g, the
following snippet of code solves the UECM

g = DirectedGraph(adjacency=adj_wei)
g.solve_tool(model="ecm_exp",

method="newton",
initial_guess="random")

analogously, the DECM can be solved by running the following code

9For the sake of simplicity, we are considering only part of the available arguments for
solve tool . For more details, the reader is redirected to the Readme �le that can be found
on the Github page of the package.
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g = DirectedGraph(adjacency=adj_wei)
g.solve_tool(model="decm_exp",

method="newton",
initial_guess="random")

Two-step methods

As the name suggests, two-step models handle the binary and the weighted
optimization steps in different moments. For example, a user can com-
bine a deterministic, binary con�guration with a weighted model and
solve such a two-step model by running the following snippet of code

g = UndirectedGraph(strength_sequence=s_seq)
g.solve_tool(model="crema",

method="newton",
initial_guess="random",
adjacency=adj_bin)

(where a graph instance is initialized using the strength sequence and
the crema model is solved by employing a deterministic adjacency ma-
trix for the binary part). Additionally to the parameters accepted by en-
hanced models, two-step models accept the following ones:

• adjacency : it can be a deterministic adjacency matrix or the prob-
ability matrix of a binary model (e.g. 'cm exp'). If an adjacency
matrix is provided, its entries must be either zero or one;

• method adjacency : if the adjacency argument is a model, then
it speci�es the optimization method to be used;

• initial guess adjacency : if the adjacency argument is a
model, then it speci�es the initial guess to be used.

Two-step models can handle both integer and continuous weights.

2.8.4 Graph sampling

Once the solve tool function has been used to compute the parame-
ters determining the chosen ERG model, one or more con�gurations can
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be sampled by the ensemble induced by it using the ensemble sampler
function

g.ensemble_sampler(n=1, cpu_n=2, output_dir="sample/")

where n speci�es the number of sampled graphs, output dir speci�es
the path to the directory where graphs are saved and cpu n speci�es the
number of CPUs used to compute these graphs.

56



Chapter 3

Detecting mesoscale
structures by surprise

This chapter is devoted to present the results of the paper [42], accepted for publi-
cation on Communications Physics and dealing with our work about the gener-
alization of the surprise-based formalism. Such an effort has led to the de�nition
of a uni�ed framework capable of detecting (modular and `bimodular') mesoscale
structures on networks (be they undirected, directed, binary, weighted) by as-
signing them a p-value. Speci�cally, we have considered six variants of the
surprise: from a technical point of view, this amounts at employing six variants
of the hypergeometric distribution. To illustrate the performance of our meth-
ods, we, �rst, test them on a variety of well-established, synthetic benchmarks
and, then, run them on several real-world networks, including social, economic,
�nancial and ecological ones.

3.1 Introduction

The importance of identifying the signature of some kind of mesoscopic
organization in complex networks - be it due to the presence of com-
munities or bipartite, core-periphery, bow-tie structures - can be hardly
overestimated [67, 68], the best example of complex systems whose be-
havior is deeply affected by their mesoscopic structural organization be-
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ing provided by �nancial networks [69, 70, 71, 72]. So far, much attention
has been devoted to the detection of binary mesoscale structures, i.e. com-
munities and, to a far less extent, core-periphery structures: the efforts to
solve these problems have led to a number of approaches that are brie�y
sketched below (for a detailed review of them, see [73, 74]).

3.1.1 Three classes of methods

A universally accepted de�nition of community does not exist. As a
matter of fact, the interpretation that we give to communities usually
depends on the domain of application and on the particular study case.
From an historical perspective, community detection has been initially
approached by attempting a de�nition of `communities' based on the
concepts ofclustering coef�cient, cliquesand k-core- used to quantify the in-
ternal cohesion of a group of nodes. Core-periphery structures, instead,
have been de�ned in a purely top-down fashion, by imagining a fully
connected subgraph (i.e. the core) surrounded by (peripherical) vertices
exclusively linked to the �rst ones [69].

As stressed in [71], the deterministic character of these de�nitions
makes their tout court application to real-world systems extremely dif-
�cult. This is the reason why the intuitive requirements that `the number
of internal edges is larger than the number of external edges' and that
`the core portion of a network is densely connected, while its periphery
is loosely connected' [74] are, now, interpreted in a purely probabilistic
way: a community has, thus, become a subgraph whose vertices have a
larger probability to be interconnected than to be connected to any other
vertex in the graph - and analogously for the core-periphery structure.
In other words, the top-down approach de�ning a golden standard and
looking for (deviations from) it has left the place to a bottom-up approach
where structures are supposed to emerge as the result of non-trivial (i.e.
non-casual) interactions between the nodes.

This change of perspective leads to a number of problems. The �rst
one concerns the de�nition of models stating how edges are formed and
has been solved by adopting the rich formalism de�ning the Exponen-
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tial Random Graphs framework [43]; the second, and most important,
one concerns the de�nition of a (statistically-sound) procedure for select-
ing the best model among the ones providing competing descriptions of
the data. This has led to the identi�cation of three broad classes of algo-
rithms: according to our intuition, all of them implement some kind of
statistical inference, the major difference lying in the way the correspond-
ing test of hypothesis is implemented; from a practical point of view,
instead, all these methods are designed for optimization, the functional
form of the speci�c score function determining the class to which a given
algorithm belongs 1.

The �rst class of methods

The most representative algorithms among those belonging to the �rst
class are the ones based onmodularity [75] whose de�nition reads

Q =
1

2L

X

i 6= j

(aij � pij )� ci ;c j (3.1)

where L is the number of edges, aij is the generic entry of the adjacency
matrix, pij represents the probability of observing and edge between
nodes i and j according to the chosen null-model and ci is a label in-
dicating the membership of node i . The traditional form of Q employs
the sparse version of the Undirected Binary Con�guration Model as a
null model, i.e.

pij =
ki kj

2L
; i < j (3.2)

where ki and kj indicate the degrees of nodesi and j . By substituting pij

into eq. (3.1) the most popular version of modularity is recovered, i.e.

Q =
1

2L

X

i 6= j

�
aij �

ki kj

2L

�
� ci ;c j ; (3.3)

1Such a score function, indicating the `quality' of a grouping of nodes, has to be opti-
mized over the space of all possible partitions. Since the number of the latter ones, quan-
ti�ed by the N -th Bell number, is prohibitively large, one usually implements heuristic
techniques.
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different choices of the null-model lead to different versions of modular-
ity (e.g. to account for bipartite structures [76], signed edges [77], corre-
lations [78]).

Relying on the assumption that the presence of a modular organi-
zation is destroyed upon randomizing a network structure, modularity
`measures' how different an empirical graph is from its randomized ver-
sion - a comparison that is supposed to reveal the presence of patterns
characterizing the underlying network. While Q indeed embodies a com-
parison between the (empirical) adjacency matrix A and the matrix of
probability coef�cients P de�ning the benchmark, it does not provide
any indication of the statistical signi�cance of the recovered partition,
the reason being that it is not designed as a proper statistical test (i.e.
does not implement any proper test of hypothesis).

The algorithms prescribing to maximize a plain likelihood function
belong to this �rst group as well. The rationale upon which these al-
gorithms are based is that of �tting a generative network model on the
data [79, 80, 81, 82, 83, 84]. The most popular example is provided by the
Stochastic Block Model (SBM): given (the adjacency matrix of) a network,
A , and a partition, g, of its nodes into c communities, the likelihood that
such a con�guration is produced by the SBM reads

L SBM(A jg) =
X

r;s

ers ln
�

ers

nr ns

�
(3.4)

where ers is the number of edges between groups r and s and nr (ns) is
the number of nodes within group r (s).

Such a version of the SBM, however, does not account for the hetero-
geneity of the degrees, hence performing poorly in describing the com-
munity structure of many real-world networks. In order to overcome this
limitation, Newman and Karrer introduced the degree-corrected Stochas-
tic Block Model (dc-SBM) [82], `producing' a likelihood

L dc-SBM(A jg) =
X

r;s

ers ln
�

ers

er es

�
(3.5)
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of describing the aforementioned con�guration, with er (es) being the
sum of the degrees of the nodes belonging to group r (s).

It is crucial to remark that eqs. (3.4) and (3.5) explicitly depend on
the number of clusters c, an evidence implying that, in order to employ
either the SBM or the dc-SBM, the number of modules partitioning the
network must be known a priori: in fact, a straight maximization of the
equations (3.4) and (3.5) over the entire set of possible partitions would
output the trivial one where each vertex is a cluster on its own [82] - an
issue known as over�tting .

The second class of methods

The aforementioned, major limitation is overcome by the algorithms be-
longing to the second class. They implement tests of hypothesis either �a
la Fisheror �a la Neyman-Pearson, i.e. either de�ning a single benchmark
(the null hypothesis of the �rst scenario) or two, alternative ones (the null
and the alternative hypothesis of the second scenario): from a practical
point of view, such a result is achieved by identifying the aforementioned
benchmarks with proper probability distributions and the best partition
of nodes with the one minimizing the corresponding p-value.

Surprise-based algorithms belong to this second group: as it has been
shown in [38] - for a particular case; such a result will be generalized in
what follows - optimizing (asymptotic) surprise amounts at carrying out
a (sort of) Likelihood Ratio Test aimed at choosing between two alterna-
tive models.

The third class of methods

Hypothesis testing can be further re�ned by allowing for more than two
hypotheses to be tested at a time: results of the kind are particularly use-
ful for model selection and, in fact, have produced a plethora of criteria
(e.g. the Akaike Information Criterion, the Bayesian Information Cri-
terion and the Minimum Description Length) for singling out the best
statistical model out of a basket of competing ones. Generally speaking,
optimization, here, seeks for the maximum of a `corrected' likelihood
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function embodying the trade-off between accuracy and parsimony of a
description. An example of the algorithms belonging to this third class
is represented by Infomap [36] searching for the number of clusters best
compressing the data [85] - which is known to be a growing function of
the number of blocks [86]. Other examples are represented by the recipes
employing the SBM within a Bayesian framework (see [87] and the refer-
ences therein).

3.2 Mesoscale structures detection via exact tests

With the work presented in this chapter, we pose ourselves within the
second research line and adopt a bottom-up approach that prescribes to
compare any empirical network structure with the outcome of a properly-
de�ned benchmark model.

To this aim, we devise a uni�ed framework for mesoscale structures
detection based upon the score function called surprise2, i.e. a p-value
that can be assigned to any given partition of nodes, on both undirected
and directed networks: while for binary community detection this is
achieved by employing the binomial hypergeometric distribution[41, 37],
with `bimodular' structures like the bipartite and the core-periphery ones,
one needs to consider its multinomial variant [38]. Here, however, we
aim at making a step further, by extending the entire framework to the
weighted case. As a result, we present a general, statistically-grounded
approach to the problem of detecting mesoscale structures on networks
via a uni�ed, suprise-based framework 3.

2Our function is named surprisesince it generalizes the function proposed in [41] for
community detection. However, in our case it indicates a proper probability and not its
logarithm, as in [41]. The same holds true for its asymptotic expression.

3The use of the hypergeometric distribution to carry out tests of hypothesis on networks
is not novel: examples are provided by the papers [88] (where the authors introduce a
method to provide a statistically-validated, monopartite projection of a bipartite network
- the considered null hypothesis encoding the heterogeneity of the system), [89] (where
the authors employ the same validation procedure to detect cores of communities within
each set of nodes of a bipartite system) and [90] (where the authors extend the framework
proposed in the aforementioned references to carry out a statistical validation of motifs
observed in hypergraphs). For a review on the use of the hypergeometric distribution for
network analyses see [91] and the references therein.
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Surprise has recently received a lot of attention: the advantages of
employing such a score function have been extensively discussed in [41,
38, 37, 92, 93, 94, 95] where researchers have tested and compared its
performance from a purely numerical perspective. However, a charac-
terization of the statistical properties of surprise is still missing: for this
reason, we will, �rst, make an effort to `translate' the problem of detect-
ing a given mesoscale network structure into a proper exact signi�cance
test4 and, then, show how the rich - yet, still underexplored - surprise-
based formalism can properly answer such a question.

The basic equation underlying exact tests reads

Pr(x � x � ) =
X

x � x �

f (x) (3.6)

and returns the probability of observing an outcome of the random vari-
able X which is `more extreme' than the realized one, i.e. x � . In the
setting above, f represents the distribution encoding the null hypothesis
and Pr(x � x � ) - commonly known with the name of p-value- answers
the question is the realized valueX = x � compatible with the (null) hypothesis
that X is distributed according tof ?

The p-value constitutes the basic quantity for carrying out any signi�-
cance test: hence, in what follows we will tackle the problem of detecting
the signature of a statistically-signi�cant, mesoscale network organization
by individuating a speci�c test - i.e. a suitable functional form for f .

3.3 Detection of binary mesoscale structures

3.3.1 Modular structures detection

Within the surprise-based framework, the detection of binary, modular
structures (a task usually referred to as `binary community detection') is
carried out via the identi�cation

4To the best of our knowledge, the only other attempt of the kind - speci�cally, to detect
communities - is the one in [96].
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f (l � ) � H(l � jV; V� ; L ) =
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l �

�
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L � l �

�

� V
L

� (3.7)

i.e. by calculating the p-value

S �
X

l � � l �
�

f (l � ) (3.8)

of a binomial hypergeometric distributionwhose parameters read as above.
In this formalism, the � subscript will be meant to indicate quantities
that are internal to communities while the � subscript will be meant to
indicate quantities that are externalto communities. More precisely, the
binomial coef�cient

� V�
l �

�
enumerates the number of ways l � links can be

redistributed within communities, i.e. over the available V� node pairs,
while the binomial coef�cient

� V�
l �

�
enumerates the number of ways the

remaining l � = L � l � links can be redistributed betweencommunities,
i.e. over the remaining V� = V � V� node pairs. Notice that, although l �
is `naturally' bounded by the value V� , it cannot exceed L - whence the
usual requirement l � 2 [l �

� ; minf L; V� g].

From a merely statistical point of view, surprise `considers' a network
as a population of V node pairs, L of which have been drawn; out of the
L extracted ones, l � node pairs have the desired feature of being `inter-
nal' to communities, since they connect some of the node pairs belonging
to the set V� . Hence, for a given partition of nodes into communities, S
quanti�es the probability of observing at least l �

� `successes' (i.e. intra-
cluster edges) out of L draws: the lower this probability, the `more sur-
prising' the observation of the corresponding partition, hence the `better'
the partition itself.

Asymptotic results

We can gain more insight into the surprise-based formalism above upon
deriving an asymptotic expression for S [97]. To this aim, let us consider
that it can be simpli�ed upon Stirling-approximating the binomial coef-
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�cients that appear within it. By exploiting the recipe n! '
p

2�n
�

n
e

� n
,

S can be rewritten as

S '
X

l � � l �
�

A(l � )

"
Ber(V; L; p)

Q
i = � ;� Ber(Vi ; l i ; pi )

#

(3.9)

where the expression

Ber(x; y; z) = zy (1 � z)x � y (3.10)

de�nes a Bernoulli probability mass function, the parameters appearing
in eq. (3.9) readp = L

V and pi = l i
Vi

and the coef�cient in front of the sum
is

A(l � ) =

s
� 2

2�
Q

i = � ;� � 2
i

(3.11)

with � 2 = V p(1� p) and � 2
i = Vi pi (1� pi ). Equation (3.9) makes it explicit

that employing S for binary community detection ultimately amounts
at comparing the description of a networked con�guration provided by
the Random Graph Model (RGM), and encoded into the expression

Ber(V; L; p) = pL (1 � p)V � L (3.12)

with the description of the same con�guration provided by the Stochastic
Block Model (SBM) [82], and encoded into the expression

Y

i = � ;�

Ber(Vi ; l i ; pi ) = pl �
� (1 � p� )V� � l � � pl �

� (1 � p� )V� � l � (3.13)

where p� = l �
V�

and p� = l �
V�

. Naturally, the SBM takes as input the two
sets indexed by � and � and distinguish the connections found `within the
clusters' - contributing to the probability of the whole con�guration with
the term Ber(V� ; l � ; p� ) = pl �

� (1 � p� )V� � l � - from the ones found `between
the clusters' - contributing to the probability of the whole con�guration
with the term Ber (V� ; l � ; p� ) = pl �

� (1 � p� )V� � l � .
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Notice also that the asymptotic expression of the surprise guarantees
that the parameters of the null models de�ning it are tuned according
to the maximum-of-the-likelihood principle. To see this explicitly, let us
consider Ber(x; y; z) whose log-likelihood reads

L = y ln z + ( x � y) ln(1 � z); (3.14)

upon maximizing it with respect to z, one �nds z = y
x .

The way S works, i.e. by comparing two different null models, is
reminiscent of more traditional likelihood ratio tests, where a null hy-
pothesis H0 (in our case, a given partition is compatible with the RGM)
is tested against an alternative hypothesis H1 (in our case, the given par-
tition is compatible with the SBM): as the asymptotic expression of the
surprise clari�es, minimizing it amounts at �nding the partition least
likely to occour under the RGM than under the SBM.

3.3.2 Bimodular structures detection

The surprise-based framework can be easily extended to detect what can
be called `bimodular structures', a term that will be used to compactly
indicate core-periphery [98, 99, 100] and bipartite structures [101, 102].
The reason for adopting such a terminology lies in the evidence that both
kinds of structures are de�ned by bimodular partitions, i.e. partitions of
nodes into two different groups.

As shown elsewhere [38], the issue of detecting binary, `bimodular'
structures can be addressed by considering amultivariate(or multinomial)
hypergeometric distribution, i.e. by identifying

f (l � ; l � ) � MH (l � ; l � jV; V� ; V� ; L )

=

Q
i = � ;� ;>

� Vi
l i

�

� V
L

� =

� V�
l �

�� V�
l �

�� V>
l >

�

� V
L

� =

� V�
l �

�� V�
l �

�� V � (V� + V� )
L � ( l � + l � )

�

� V
L

�

(3.15)

where V> � V � (V� + V� ) indicates the number of node pairs between the
modules � and � and l> � L � (l � + l � ) indicates the number of links that
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must be assigned therein. While the binomial coef�cient
� V�

l �

�
enumer-

ates the number of ways l � links can redistributed within the �rst module
(e.g. the core portion) and the binomial coef�cient

� V�
l �

�
enumerates the

number of ways l � links can redistributed within the second module (e.g.
the periphery portion), the third binomial coef�cient

� V � (V� + V� )
L � ( l � + l � )

�
enu-

merates the number of ways the remaining L � (l � + l � ) links can be
redistributed betweenthe �rst and the second module, i.e. over the re-
maining V � (V� + V� ) node pairs. This choice induces the de�nition of
the binary bimodular surprise

S � �
X

l � � l �
�

X

l � � l �
�

f (l � ; l � ); (3.16)

analogously to the univariate case, l � and l � are `naturally' bounded by
the values V� and V� - notice, however, that the sum l � + l � cannot exceed
L (although it may not reach such a value, e.g. in caseV� + V� < L ).

Asymptotic results

Analogously to the univariate case, the asymptotic expression for S �

can be derived upon Stirling-approximating the binomial coef�cients ap-
pearing within it. This time, the recipe n! '

p
2�n

�
n
e

� n
leads to

S � '
X

l � � l �
�

X

l � � l �
�

B (l � ; l � )

"
Ber(V; L; p)

Q
i = � ;� ;> Ber(Vi ; l i ; pi )

#

(3.17)

where, as before, Ber(x; y; z) = zy (1 � z)x � y de�nes a Bernoulli proba-
bility mass function and the parameters read p = L

V and pi = l i
Vi

; the
numerical coef�cient appearing in front of the whole expression, now,
reads

B (l � ; l � ) =
1

2�

s
� 2

Q
i = � ;� ;> � 2

i
(3.18)

with � 2 = V p(1 � p) and � 2
i = Vi pi (1 � pi ). The quantity S � compares

the description of a networked con�guration provided by the RGM, and
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encoded into the expression Ber(V; L; p) = pL (1 � p)V � L , with the de-
scription of the same con�guration provided by the SBM (now, de�ned
by three - instead of two - different blocks), `represented' by the denom-
inator of the expression de�ned in eq. (3.17), i.e.

Y

i = � ;� ;>

Ber(Vi ; l i ; pi ) = pl �
� (1� p� )V� � l � �pl �

� (1� p� )V� � l � �pl >
> (1� p> )V> � l > :

(3.19)

3.4 Detection of weighted mesoscale structures

3.4.1 Modular structures detection

Within the surprise-based framework, the problem of detecting binary
communities has been rephrased as an aleatory experiment whose ran-
dom variable is the number of links within communities. Interestingly
enough, such an experiment can be easily mapped into a counting prob-
lem, allowing us to interpret S as indicating the number of con�gura-
tions whose number of `internal' links (i.e. within communities) is larger
than the observed one.

When dealing with weighted networks, we would like to proceed
along similar guidelines and consider the total, `internal' weight as our
new random variable, to be redistributed across the available node pairs.
Adopting this approach has three major consequences: 1) weights must
be considered as composed by an integer number of binary links, 2) each
node pair must be allowed to be occupied by more than one link and 3)
the total weight must be allowed to vary even beyond the network size
(when handling real-world networks, the case W � V is often encoun-
tered).

In this case, the proper setting to de�ne an aleatory experiment satis-
fying the requests above is provided by the so-called stars and barsmodel,
a combinatorial technique that has been introduced to handle the count-
ing of con�gurations with multiple occupancies. Basically, the problem
of counting in how many ways w� particles (our links) can be redis-
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tributed among V� boxes (our node pairs), while allowing more than one
particle to occupy each box, can be tackled by allowing boththe particles
andthe bars `delimiting' the boxes to be permuted [103]. Since V� boxes
are delimited by V� � 1 bars, a term like

� V� + w � � 1
w �

�
is needed.

In order to better grasp the meaning of such a term, let us make a sim-
ple example. Let us imagine to observe a network with three nodes and
two links, carrying a weight of 1 and 2, respectively. Now, were we in-
terested in a purely binary analysis, we may ask ourselves in how many
ways we could place the two links among the N (N � 1)

2 = 3(3 � 1)
2 = 3

available pairs: the answer is provided by the `binary' binomial coef�-
cient

� V�
l �

�
=

� 3
2

�
= 3 . The implicit assumption we make is that the three

links must not occupy the same node pairs - otherwise the total number
of connections wouldn't be preserved.

This perspective changes from the purely weighted point of view.
Since we are now interested in preserving just the total weight of our net-
work, irrespectively of the number of connections it is placed upon, the
number of admissible con�gurations amounts precisely at

� V� + w � � 1
w �

�
=

� 2+3
3

�
= 10. Such a number is larger than before since, now, weights are

`disaggregated' into binary links and multiple occupations of the latter
ones are allowed - see also �g. 4.

The considerations above lead us to generalize the community detec-
tion problem to the weighted case by identifying

f (w� ) � NH (w� jV + W; W; V� )

=

Q
i = � ;�

� Vi + w i � 1
w i

�

� V + W � 1
W

� =

� V� + w � � 1
w �

�� V� + w � � 1
w �

�

� V + W � 1
W

�

=

� V� + w � � 1
w �

�� (V � V� )+( W � w � ) � 1
W � w �

�

� V + W � 1
W

� (3.20)

i.e. by replacing the binomial hypergeometric distribution considered in
the purely binary case with a negative hypergeometric distribution, a choice
inducing the de�nition of the weighted surprise

69



Figure 4: Graphical comparison of the three different ways of counting the
admissible con�gurations when dealing with the purely binary, the purely
weighted and the enhanced surprise. Let us imagine to observe a network
with three nodes and two links, carrying a weight of 1 and 2, respectively.
Were we interested in a purely binary analysis, we may ask ourselves in how
many ways we could place the two links among the 3 available pairs: the an-
swer is provided by the `binary' binomial coef�cient

� V �
l �

�
=

� 3
2

�
= 3 . Were

we interested in a purely weighted analysis, we may ask ourselves in how
many ways we could place the two links among the 3 available pairs while
preserving the total weight of our network, irrespectively of the number of
connections it is placed upon; the number of admissible con�gurations be-
comes

� V � + w � � 1
w �

�
=

� 2+3
3

�
= 10 . Such a number is larger than before since,

now, weights are `disaggregated' into binary links and multiple occupations
of the latter ones are allowed.
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W �
X

w � � w �
�

f (w� ) (3.21)

where the binomial coef�cient
� V� + w � � 1

w �

�
=

� V� + w � � 1
V� � 1

�
enumerates the

number of ways w� links can be redistributed within communities, i.e.
over the available V� node pairs, and the binomial coef�cient

� V� + w � � 1
w �

�
=

� V� + w � � 1
V� � 1

�
enumerates the number of ways the remaining w� = W � w�

links can be redistributed betweencommunities, i.e. over the remaining
V� = V � V� node pairs. Differently from the binary case, the sum ranges
up to the maximum empirical weight of the network, i.e. w� 2 [w�

� ; W ].

Asymptotic results

The asymptotic expression for W can be deduced by following the same
reasoning that has allowed us to derive the asymptotic expression for S .
Stirling-approximating the binomial coef�cients entering into the de�ni-
tion of W leads to the writing

W '
X

w � � w �
�

C(w� )

"
Geo(V; W; q)

Q
i = � ;� Geo(Vi ; wi ; qi )

#

(3.22)

where the expression

Geo(x; y; z) = zy (1 � z)x (3.23)

de�nes a geometricprobability mass function and the parameters appear-
ing in eq. (3.22) read q = W

V + W � 1 and qi = w i
Vi + w i � 1 . In the weighted

case, the Bernoulli probability mass function appearing in the asymp-
totic expression of S is replaced by a geometric probability mass func-
tion: this implies that (asymptotically) the comparison is, now, carried
out between the description of a networked con�guration provided by
the Weighted Random Graph Model (WRGM), and encoded into the ex-
pression

Geo(V; W; q) = qW (1 � q)V (3.24)
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with the description of the same con�guration provided by the Weighted
Stochastic Block Model (WSBM) and encoded into the expression

Y

i = � ;�

Geo(Vi ; wi ; qi ) = qw �
� (1 � q� )V� � qw �

� (1 � q� )V� (3.25)

where q� = w �
V� + w �

and q� = w �
V� + w �

. As for the binary case, the asymptotic
expression of the weighted surprise clari�es that minimizing it amounts
at �nding the partition least likely to occour under the WRGM than un-
der the WSBM.

As in the binary case, the parameters characterizing the geometric
probability mass functions de�ning the asymptotic weighted surprise
can be estimated via the maximum-of-the-likelihood principle; accord-
ing to it, the log-likelihood of the expression Geo (x; y; z) reads

L = y ln z + x ln(1 � z) (3.26)

and maximizing it with respect to z leads to the result z = y
x + y : hence,

one can poseq ' W
V + W and qi ' w i

Vi + w i
.

The numerical coef�cient appearing in front of the whole expression,
instead, reads

C(w� ) =

s
�

2�
Q

i = � ;� � i
(3.27)

with � ' V qand � i ' Vi qi .

3.4.2 Bimodular structures detection

Let us now introduce the third generalization of the suprise-based for-
malism: following the same line of reasoning that led us to approach
the detection of binary `bimodular' structures by considering the multi-
nomial analogue of the distribution introduced for binary community
detection, we focus on the multinomial (or multivariate) negative hypergeo-
metric distribution, i.e.
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f (w� ; w� ) � MNH (w� ; w� jV + W; W; V� ; V� )

=

Q
i = � ;� ;>

� Vi + w i � 1
w i

�

� V + W � 1
W

� =

� V� + w � � 1
w �

�� V� + w � � 1
w �

�� V> + w> � 1
w>

�

� V + W � 1
W

�

=

� V� + w � � 1
w �

�� V� + w � � 1
w �

�� V � (V� + V� )+ W � (w � + w � ) � 1
W � (w � + w � )

�

� V + W � 1
W

� ; (3.28)

while the binomial coef�cient
� V� + w � � 1

w �

�
enumerates the number of ways

w� links can redistributed within the �rst module (e.g. the core portion),
the binomial coef�cient

� V� + w � � 1
w �

�
enumerates the number of ways w�

links can be redistributed within the second module (e.g. the periphery
portion) and the binomial coef�cient

� V � (V� + V� )+ W � (w � + w � ) � 1
W � (w � + w � )

�
enumer-

ates the number of ways the remaining w> � W � (w� + w� ) links can
be redistributed betweenthe �rst and the second module, i.e. over the
remaining V> � V � (V� + V� ) node pairs. Such a position induces the
de�nition of the weighted bimodular surprise

W� �
X

w � � w �
�

X

w � � w �
�

f (w� ; w� ); (3.29)

as for the (weighted) community detection, weights are understood as
integer numbers - equivalently, as composed by an integer number of
binary links. For what concerns the limits of the summations, w� and
w� are `naturally' bounded by W ; notice, however, that the sum w� + w�

itself cannot exceed such a value.

Asymptotic results

Let us now derive the asymptotic expression for W� . As usual, let us
Stirling-approximate the binomial coef�cients entering into the de�ni-
tion of W� ; such a simpli�cation leads us to the expression

W� '
X

w � � w �
�

X

w � � w �
�

D(w� ; w� )

"
Geo(V; W; q)

Q
i = � ;� ;> Geo(Vi ; wi ; qi )

#

(3.30)
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where, as before, Geo(x; y; z) = zy (1 � z)x de�nes a geometric probabil-
ity mass function and the parameters read q = W

V + W � 1 and qi = w i
Vi + w i � 1

but can be approximated as q ' W
V + W and qi ' w i

Vi + w i
, according to

the maximum-of-the-likelihood principle; the numerical coef�cient mul-
tiplying the whole expression reads

D(w� ; w� ) =
1

2�

s
�

Q
i = � ;� ;> � i

(3.31)

with � ' V qand � i ' Vi qi . The analysis of W� in the asymptotic regime
reveals that it compares the description of a networked con�guration
provided by the WRGM, and encoded into the expression Geo (V; W; q) =
qW (1 � q)V , with the description of the same con�guration provided by
the WSBM (now, de�ned by three - instead of two - different blocks),
`represented' by the denominator of the expression de�ned in eq. (3.30),
i.e.

Y

i = � ;� ;>

Geo(Vi ; wi ; qi ) = qw �
� (1� q� )V� �qw �

� (1� q� )V� �qw>
> (1� q> )V> : (3.32)

3.5 Enhanced detection of mesoscale structures

3.5.1 Modular structures detection

The recipe to detect communities on weighted networks can be further
re�ned to account for the information encoded into the total number of
links, beside the one provided by the total weight. Generally speaking,
this can be realized by `combining' two of the distributions introduced
above. To this aim, let us proceed in a two-step fashion: �rst, let us recall
that the number of ways L links can be placed among V node pairs,
in such a way that l � connections are `internal' to the clusters while the
remaining L � l � ones are, instead, `external' is precisely

H(l � jV; V� ; L ) =

� V�
l �

�� V � V�
L � l �

�

� V
L

� ; (3.33)

74



now, for each of the binary con�gurations listed above, W � L links
remain to be assigned: while w� � l � of them must be placed within
the clusters, on top of the l � available `internal' links, the remaining
(W � L) � (w� � l � ) ones must be placed between the clusters, on top
of the L � l � available, inter-cluster connections. Hence, the `conditional'
negative hypergeometric distribution reading

NH (w� jW; W � L; l � ) =

� l � +( w � � l � ) � 1
w � � l �

�� (L � l � )+( W � L ) � (w � � l � ) � 1
(W � L ) � (w � � l � )

�

� L +( W � L ) � 1
W � L

� (3.34)

remains naturally de�ned; now, `combining' the two distributions above,
simplifying and re-arranging, the generic term of the enhanced hypergeo-
metric distributioncan be rewritten as

EH(l � ; w� jV; V� ; L; W ) = H(l � jV; V� ; L ) � NH (w� jW; W � L; l � )

=

� V�
l �

�� V�
l �

�

� V
L

� �

� w � � 1
w � � l �

�� w � � 1
w � � l �

�

� W � 1
W � L

� (3.35)

with a clear meaning of the symbols. An analytical characterization of
it is provided into Appendix B.3: for the moment, let us simply notice
that the de�nition provided above works for the values 0 < l � < L . By
posing f (l � ; w� ) � EH(l � ; w� jV; V� ; L; W ), our novel distribution induces
the de�nition of the enhanced surprise, i.e.

E �
X

l � � l �
�

X

w � � w �
�

f (l � ; w� ); (3.36)

although l � and w� � l � are `naturally' bounded by V� and W � L , respec-
tively, the former one cannot exceed L .

In order to better understand how the enhanced surprise works, let
us consider again the aforementioned example: given a network with
three nodes and two links, carrying a weight of 1 and 2, respectively, we
observe

� V�
l �

�
=

� 3
2

�
= 3 (purely binary) con�gurations with exactly the

same number of links and
� V� + w � � 1

w �

�
=

� 2+3
3

�
= 10 (purely weighted)
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con�gurations with exactly the same total weight. If we, now, constrain
both the total number of links and the total weight of the network, the
number of admissible con�gurations becomes

� V�
l �

�� w � � 1
w � � l �

�
=

� 3
2

�� 3� 1
3� 2

�
=

3�2 = 6, as it can be easily veri�ed upon explicitly listing them. Naturally,
the con�gurations `admissible' by the enhanced surprise are a subset of
the con�gurations `admissible' by the weighted surprise, i.e. precisely
the ones with the desired number of links (see also �g. 4).

Asymptotic results

Analogously to the other functionals, the asymptotic expression of E can
be derived by Stirling-approximating the binomial coef�cients entering
into its de�nition as well:

E '
X

l � � l �
�

X

w � � w �
�

E(l � ; w� )

"
BF(V; L; W; p; r )

Q
i = � ;� BF(Vi ; l i ; wi ; pi ; r i )

#

; (3.37)

in the formula above, the expression

BF(x; y; u; z; t ) = zy (1 � z)x � y � tu� y (1 � t)y = Ber(x; y; z) � Geo(y; u � y; t)
(3.38)

de�nes a Bose-Fermiprobability mass function [58]. While a Bernoulli
probability mass function characterizes the asymptotic behavior of the
purely binary surprise and a geometric probability mass function charac-
terizes the asymptotic behavior of the purely weighted surprise, the en-
hanced surprise is asymptotically characterized by a distribution whose
functional form is halfway between the two previous ones: while its
Bernoulli-like portion controls for the `presence' of the links, its `condi-
tional' geometric-like portion controls for the magnitude of the `remain-
ing' weights. To stress its `mixed' character, such a distribution has been
named `Bose-Fermi': remarkably, it can be retrieved within the Exponen-
tial Random Graphs framework as a consequence of Shannon entropy
maximization, constrained to simultaneously reproduce both the total
number of links and the total weight of a network [58, 104].
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The parameters appearing in eq. (3.37) readp = L
V , pi = l i

Vi
and

r = W � L
W � 1 , r i = w i � l i

w i � 1 ; while the �rst class of parameters can be tuned ac-
cording to the maximum-of-the-likelihood principle, the ones belonging
to the second class can be approximated according to the same recipe.
To see this explicitly, let us consider BF(x; y; u; z; t ), whose log-likelihood
reads

L = y ln z + ( x � y) ln(1 � z) + ( u � y) ln t + y ln(1 � t); (3.39)

upon maximizing it with respect to z, one �nds z = y
x ; upon maximizing

it with respect to t one �nds t = u� y
u - hence, one can poser ' W � L

W ,
r i ' w i � l i

w i
.

The numerical coef�cient multiplying the whole expression is de�ned
as

E(l � ; w� ) =
1

2�

s
� 2�

Q
i = � ;� � 2

i � i
(3.40)

where � 2 = V p(1 � p), � 2
i = Vi pi (1 � pi ), � ' Lr and � i ' l i r i .

Similarly to the other cases, the asymptotic expression of the enhanced
suprise compares the description of a networked con�guration provided
by the Enhanced Random Graph Model (ERGM), and encoded into the
expression BF(V; L; W; p; r ) = pL (1 � p)V � L � r W � L (1 � r )L , with the
description of the same con�guration provided by its block-wise coun-
terpart, i.e. the Enhanced Stochastic Block Model (ESBM), encoded into
the expression

Q
i = � ;� BF(Vi ; l i ; wi ; pi ; r i ).

3.5.2 Bimodular structures detection

The last generalization of surprise concerns its use for the detection of
`bimodular' structures within the enhanced framework. This amounts at
considering the following `multinomial variant' of the enhanced hyper-
geometric distribution
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MEH (l � ; l � ; w� ; w� jV; V� ; V� ; L; W ) =

=

� V�
l �

�� V�
l �

�� V>
l >

�

� V
L

� �

� w � � 1
w � � l �

�� w � � 1
w � � l �

�� w> � 1
w> � l >

�

� W � 1
W � L

� (3.41)

where V> � V � (V� + V� ) indicates the number of node pairs between
the modules � and � and l> � L � (l � + l � ) indicates the number of
links that must be assigned therein. Analogously, w> = W � (w� +
w� ). An analytical characterization of it is provided in Appendix B.3:
for the moment, let us simply notice that the de�nition provided above
works for the values 0 < l � ; l � < L . The position f (l � ; l � ; w� ; w� ) �
MEH (l � ; l � ; w� ; w� jV; V� ; V� ; L; W ) induces the de�nition of the enhanced
bimodular surprise

E� =
X

l � � l �
�

X

l � � l �
�

X

w � � w �
�

X

w � � w �
�

f (l � ; l � ; w� ; w� ): (3.42)

Notice that l � and l � are `naturally' bounded by V� and V� : still, their
sum cannot exceedL ; analogously, w� � l � and w� � l � are `naturally'
bounded by W � L : still, their sum itself cannot exceed W � L .

As for its binomial counterpart, the expression of the MEH can be
rearranged in a term-by-term fashion, in such a way that the module-
speci�c binomial coef�cients can be grouped together. Upon doing so, it
becomes clearer that the MEH counts the number of ways w� � l � links
can be placed on top of the l � binary links characterizing the connectance
of the � module, times the number of ways w� � l � links can be placed on
top of the l � binary links characterizing the connectance of the � module,
times the number of ways the remaining W � (w� + w� ) � (L � (l � + l � ))
links can be placed on top of the L � (l � + l � ) binary links characterizing
the connectance of the third module.

Asymptotic results

The enhanced bimodular surprise admits an asymptotic expression as
well, i.e.
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E� '
X

l � � l �
�

X

l � � l �
�

X

w � � w �
�

X

w � � w �
�

F (l � ; l � ; w� ; w� )

"
BF(V; L; W; p; r )

Q
i = � ;� ;> BF(Vi ; l i ; wi ; pi ; r i )

#

(3.43)
that can be recovered by Stirling-approximating the binomial coef�cients
entering into the de�nition of E� . While the expression `BF' denotes a
Bose-Fermi probability mass function [58], the parameters appearing in
eq. (3.43) readp = L

V , pi = l i
Vi

and r = W � L
W � 1 , r i = w i � l i

w i � 1 ; as for E,
the maximum-of-the-likelihood principle determines (approximates) the
�rst (second) class of parameters.

The numerical coef�cient multiplying the whole expression is de�ned
as

F (l � ; l � ; w� ; w� ) =
1

(2� )2

s
� 2�

Q
i = � ;� ;> � 2

i � i
(3.44)

where � 2 = V p(1 � p), � 2
i = Vi pi (1 � pi ), � ' Lr and � i ' l i r i . As

observed for the other functionals, the asymptotic expression of the en-
hanced bimodular suprise compares the description of a networked con-
�guration provided by the ERGM, and encoded into the expression
BF(V; L; W; p; r ) = pL (1 � p)V � L � r W � L (1 � r )L , with the description of
the same con�guration provided by its block-wise counterpart, i.e. the
ESBM (now, de�ned by three - instead of two - different blocks), `repre-
sented' by the denominator of the expression de�ned in eq. (3.43), i.e.
Q

i = � ;� ;> BF(Vi ; l i ; wi ; pi ; r i ).

Table 7 gathers all the variants of the surprise-based formalism, il-
lustrating both the full and the asymptotic expression for each of them.
To sum up, detecting a weighted mesoscale structure implies consid-
ering the negativeversion of the probability mass function working in
the corresponding binary case (e.g. moving from the hypergeometric to
the negative hypergeometric one); detecting a `bimodular' structure, in-
stead, implies considering the multinomial version of the probability mass
function working in the corresponding binary case (e.g. moving from the
binomial hypergeometric to the multinomial one).
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3.6 Results

The previous sections have been devoted to the description of the surprise-
based formalism for detecting a number of mesoscale structures; let us,
now, test it on a bunch of synthetic and real-world con�gurations.

3.6.1 A consistency check: is surprise a proper p-value?

Let us start by checking the consistency of our surprise-based formalism.
Since we have rephrased the problem of detecting any mesoscale struc-
ture into an exact signi�cance test, the limitations of our formalism are
the same ones affecting the tests of the kind. More precisely, any signi�-
cance test is characterized by a parameter known astype I error rateand
usually denoted with � : it quanti�es the percentage of times the consid-
ered test provides a false positive. In other words, any statistical test is
known to `fail'; in our case, this amounts at recognizing that a signi�cant
mesoscale structure can be detected,in case there is none, a percentage�
of the times: this number can be kept `small' by adjusting the threshold
of the p-value of the corresponding test - e.g. by deeming its response as
signi�cant in case it is less than 0:05.

Remarkably, the aforementioned behavior can be explicitly tested for
each of the cases considered above. Whenever exercises like these are
carried out, it is of utmost importance to be as clear as possible about
the null hypothesis tested: here, we aim at testing whether a given par-
tition is signi�cant or not when the null hypothesis is true. For the sake
of illustration, let us consider the problem of detecting communities on
binary networks: as we learnt from the asymptotic expression of S , it
compares the description of a network provided by the RGM with that
of the same network provided by the SBM, thus suggesting the RGM as
the model playing the role of H0. Hence, let us generate many networks
from the RGM and, for each of them, let us impose a partition - the same
for each sampled con�guration, over which our SBM is tuned; �nally, let
us calculate S on each of them.

The results of such an experiment are shown in �g. 5: over 10.000
networks sampled from the RGM, whose only parameter has been set to
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Figure 5: Consistency check of our surprise-based formalism in the simplest
case of community detection on binary networks. Any exact statistical test
is characterized by a parameter, usually denoted with � and known as the
type I error rate, that quanti�es the percentage of times the test provides
a false positive: it can be kept `low' by adjusting the threshold of the p-
value of the corresponding test, e.g. by deeming its response as signi�cant
in case it is less than0:05. Over 10.000 networks sampled by the RGM with
p = 0 :2, a given planted partition - from left to right: two, three and four
clusters with different dimensions - is indeed recovered as signi�cant 5% of
the times. Notably, since the three upper panels show the CDFs of the em-
pirical values of S , they also provide an information about the distribution
of the latter, which is uniform over the unit interval.

p = 0 :2, the (given) planted partition - i.e. two, three and four clusters
with different dimensions - is, indeed, recovered as signi�cant 5% of the
times; notice that such a result holds true irrespectively of the details of
the partition imposed on the sampled con�gurations.

We have also repeated such an experiment for the problem of detect-
ing communities on weighted networks: as �g. 6 shows, the same re-
sults are recovered, i.e. over 10.000 networks sampled from the WRGM,
whose only parameter has been set toq = 0 :2, a (given) planted partition
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Figure 6: Consistency check of our surprise-based formalism in the case
of community detection on weighted networks. As in the binary case, the
percentage of type I error rate can be kept `low' by adjusting the threshold
of the p-value of the corresponding test, e.g. by deeming its response as
signi�cant in case it is less than 0:05. Over 10.000 networks sampled by the
WRGM with q = 0 :2, a given planted partition - from left to right: two,
three and four clusters with different dimensions - is indeed recovered as
signi�cant 5% of the times. Notably, since the three upper panels show the
CDFs of the empirical values of W, they also provide an information about
the distribution of the latter, which is uniform over the unit interval.

of two, three and four clusters with different dimensions is recognized as
signi�cant 5% of the times; again, such a result holds true irrespectively
of the details of the partition imposed on our sampled con�gurations.

Our experiments tell us something deeper about the behavior of S
and W: since each upper panel in �gs. 6 and 7 shows the cumulative dis-
tribution function (CDF) of the empirical values of S and W, we learn
that the latter ones are distributed uniformly over the unit interval, i.e.
S � U[0; 1] and W � U[0; 1] - an evidence further con�rming that sur-
prise indeed behaves like the p-value of an exact signi�cance test.
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Checking the behavior of the multivariate versions of our hyperge-
ometric distributions is, instead, much more dif�cult, the reason lying
in the evidence that the null hypothesis is, now, a multivariate one and
few results about the behavior of multivariate p-values are known. Still,
we can say something about the behavior of the marginal p-values; for the
sake of illustration, let us consider the ones induced by S � and W� , i.e.

S ( � )
� =

X

l � � l �
�

X

l �

f (l � ; l � ) =
X

l � � l �
�

f (l � ); (3.45)

S ( � )
� =

X

l � � l �
�

X

l �

f (l � ; l � ) =
X

l � � l �
�

f (l � ) (3.46)

and

W ( � )
� =

X

w � � w �
�

X

w �

f (w� ; w� ) =
X

w � � w �
�

f (w� ); (3.47)

W ( � )
� =

X

w � � w �
�

X

w �

f (w� ; w� ) =
X

w � � w �
�

f (w� ) (3.48)

respectively. As evident from the formulas above, marginal distribu-
tions of multivariate, hypergeometric distributions are hypergeometric
themselves: hence, the behavior of our marginal p-values is expected
to match the one observed in the univariate cases, leading to recover
S ( � )

� � U[0; 1], S ( � )
� � U[0; 1], W ( � )

� � U[0; 1] and W ( � )
� � U[0; 1]. Analo-

gously for the enhanced surprise.

Our �ndings can be also described from a different perspective, i.e.
by answering the question what is the expected value of the surprise on a
network sampled from the RGM ensemble?To answer this question let us
focus on the simplest case of detecting communities on binary networks
and consider that, irrespectively from the partition that is planted on the
sampled con�guration, the expected number of links will be hL i = pV
while the expected number of `internal' links will be hl �

� i = pV� , where p
is the parameter de�ning the RGM; hence, the surprise becomes
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S =
X

l � �h l �
� i

� V�
l �

�� V � V�
hL i� l �

�

� V
hL i

� =
X

l � � pV�

� V�
l �

�� V � V�
pV � l �

�

� V
pV

� (3.49)

(to be fully consistent we should have rounded both the value of hL i and
that of hl �

� i to the nearest integer but our conclusions are still valid). In
order to evaluate the expression above, let us consider that the expected
value of the hypergeometric distribution de�ning the surprise reads

hl � i = hL i
V�

V
= pV� (3.50)

the validity of the �rst passage resting upon the evidence that the net-
work is generated via the RGM. Hence, the surprise becomes a sum over
the values l � � h l � i , i.e. those that are more extreme than the average.
Since the hypergeometric distribution is peaked around its average, the
result above suggests that a sum over values that are larger than the av-
erage encodes half of the probability mass, i.e. ' 1

2 : as a consequence,
the expected value of surprise, on a network generated via the RGM,
amounts at ' 1

2 , irrespectively from the partition that is planted on the
sampled con�guration - its �uctuations being compatible with those of a
uniform distribution whose support coincides with the unit interval.

3.6.2 Comparing surprise with the binary modularity

For the sake of comparison, let us consider the modularity function for
the problem of community detection on binary, undirected networks.
Since the asymptotic binary suprise compares the description of a net-
work con�guration provided by the RGM with the description of the
same con�guration provided by the SBM, hereby we will consider the
de�nition of modularity whose benchmark model is provided by the
RGM. Formally, this is achieved by substituting pij = L

V = 2L
N (N � 1) ,

8 i < j in eq. (3.1):
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Q =
1

2L

X

i 6= j

aij � ci ;c j �
1

2L

X

i 6= j

p� ci ;c j (3.51)

=
1

2L

X

c

[2l �
c � pNc(Nc � 1)] (3.52)

=
1

2L

X

c

�
2l �

c � 2L
Nc(Nc � 1)
N (N � 1)

�
(3.53)

=
�

l �
�

L
�

V�

V

�
(3.54)

where Nc and l �
c indicate the size of community c and the number of

links within it, respectively - naturally, l �
� =

P
c l �

c and V� =
P

c Nc(Nc �
1). This calculation clari�es that a positive value of Q implies that the
`internal' probability of connection p� is larger than the one `predicted'
by the RGM, i.e.

Q � 0 =) p� =
l �
�

V�
�

L
V

= p (3.55)

while a null modularity value implies that p� matches the only parame-
ter de�ning the RGM. The result above can be also restated as follows: a
null modularity value points out that the mesoscale structure of the con-
�guration at hand has not been generatedby a SBM (or, equivalently, does
not needa SBM to be explained). Notice, however, that the modularity
provides no indication about the statistical signi�cance of the recovered
partition.

3.6.3 Comparing surprise with the weighted modularity

A similar conclusion can be reached upon considering the modularity
function for community detection on weighted, undirected networks,
de�ned as

Q =
1

2W

X

i 6= j

(wij � h wij i )� ci ;c j (3.56)
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where we have employed the Weighted Random Graph Model (WRGM)
as a benchmark, according to which hwij i WRGM = W

V = 2W
N (N � 1) , 8 i < j

[105]. From the de�nition of weighted modularity provided above, it
follows that

Q =
1

2W

X

i 6= j

wij � ci ;c j �
1

2W

X

i 6= j

hwij i WRGM � ci ;c j (3.57)

=
1

2W

X

c

[2w�
c � h wij i WRGM Nc(Nc � 1)] (3.58)

=
1

2W

X

c

�
2w�

c � 2W
Nc(Nc � 1)
N (N � 1)

�
(3.59)

=
�

w�
�

W
�

V�

V

�
(3.60)

where Nc and w�
c indicate the number of nodes of community c and the

weight of links within community c, respectively - naturally, w�
� =

P
c w�

c .
As in the binary case, the calculation above clari�es that a positive value
of Q implies that the expected weight of any `internal' link is larger than
the one predicted by the WRGM, i.e.

Q � 0 =) h wij i WSBM =
w�

�

V�
�

W
V

= hwij i WRGM ; (3.61)

a null modularity value, on the other hand, implies that hwij i WSBM coin-
cides with the expectation coming from the WRGM. Analogously to the
binary case, the result above can be also restated as follows: a null mod-
ularity value points out that the mesoscale structure of the con�guration
at hand has not been generatedby a WSBM (or, equivalently, does not need
a WSBM to be explained). Again, however, the modularity provides no
indication about the statistical signi�cance of the recovered partition.

3.6.4 Comparing mesoscale structures detection methods

The previous subsections have been devoted to check the consistency of
our surprise-based formalism and reveal the `statistical �aws' of other
approaches. Let us now consider two popular algorithms for mesoscale
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structures detection, i.e. modularity maximization (now, Q has been con-
sidered in its `full' de�nition, i.e. haij i = pij = k i k j

2L , 8 i < j for binary,
undirected con�gurations) and Infomap [36], and carry out more sys-
tematical comparisons between the former ones and the surprise. Upon
doing so, we are able to compare one algorithm per class, i.e. modularity
for the �rst class, surprise for the second class and Infomap for the third
class.

Evaluating the quality of a given partition

To this aim, we have focused on different kinds of benchmarks, i.e. classes
of synthetic networks with well-de�ned planted partitions, the aim be-
ing that of inspecting the goodness of a given algorithm in recovering
the imposed partition. As an indicator of the goodness of the partition
retrieved by each algorithm, we have followed [89] and employed three
different indices.

The �rst one is the normalized mutual information(NMI), de�ned as

I (X; Y ) =
2I (X; Y )

H (X ) + H (Y )
(3.62)

where partitions X and Y are compared,H (X ) = �
P

x f x ln f x and f x =
n x
n is the fraction of nodes assigned to the cluster labeled with x; analo-

gously, for the partition Y . The term I (X; Y ) =
P

x

P
y f xy ln

�
f xy

f x f y

�
is

the `proper' mutual information and f xy = n xy

n is the fraction of nodes
assigned to cluster x in partition X andto cluster y in partition Y . Natu-
rally, I (X; Y ) equals 1 if the partitions are identical and 0 if the partitions
are independent.

The second index we have considered is theadjusted Rand index(ARI),
de�ned as

ARI =
TP + TN � h TP + TN i

TP + FP + TN + FN � h TP + TN i
(3.63)

and representing a sort of accuracy5 `corrected' by a term that quanti�es

5The number of true positives (TP) is the number of pairs of nodes being in the same
community both in the considered and in the reference partition; the number of false pos-
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Figure 7: Performance of modularity, surprise and Infomap in correctly
identifying the partitions induced by seven, different, `homogeneous' rings
of cliques. For each con�guration, twenty cliques have been considered;
the size of the latter ones is left to vary as follows: K 3 , K 4 , K 5 , K 8 , K 10 ,
K 15 , K 20 . While surprise always recovers the planted partition, modular-
ity misses the partitions with K 3 and K 4 and Infomap misses the partition
with K 3 - a result that may be a consequence of the resolution limit which
is known to affect the last two algorithms.

the agreement between the reference partition and a random partition -
the term `random' referring to the Permutation Model; equivalently, the
closer the ARI to 0, the more `random' the provided partition.

The third index we have considered is the adjusted Wallace index(AWI),
de�ned as

AWI =
TP � h TPi

TP + FP � h TPi
(3.64)

and representing a sort of `corrected' positive predicted value. Again,
the closer the AWI to 0, the more `random' the provided partition.

Testing algorithms on synthetic, modular benchmarks

First, let us inspect the performance of modularity, surprise and Infomap
to detect cliques arranged in a ring. Speci�cally, we have considered 7,

itives (FP) is the number of pairs of nodes being in the same community in the considered
partition but in different communities in the reference partition; the number of true neg-
atives (TN) is the number of pairs of nodes being in the same community neither in the
considered nor in the reference partition; the number of false negatives (FN) is the number
of pairs of nodes being in the same community in the reference partition but not in the
considered partition (see [89] for more details).
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Figure 8: Comparison between the `ring of binary cliques' and the `ring of
weighted cliques' cases. The result according to which surprise minimiza-
tion is able to discriminate the cliques linked in a ring-like fashion changes
once the weights come into play: in fact, as the weight of the links connect-
ing any two cliques is risen, the algorithm reveals as `communities' pairs of
tightly-connected cliques.

different ring-like con�gurations, each one linking 20 binary cliques (i.e.
K 3, K 4, K 5, K 8, K 10, K 15, K 20). As �g. 7 reveals, surprise always recov-
ers the planted partition; on the other hand, modularity maximization
leads to miss the partitions with K 3 and K 4 and Infomap misses the par-
tition with K 3, a result that may be a consequence of the resolution limit,
affecting both the aforementioned algorithms.

Let us now ask us if the presence of weights affects the detection of
mesoscale structures. Generally speaking, the answer is yes, as the com-
parison between the `ring of binary cliques' and the `ring of weighted
cliques' cases, depicted in �g. 8, shows. In particular, the result ac-
cording to which surprise minimization is able to discriminate the inter-
linked cliques changes once the weight of the links connecting any two
cliques is risen: in fact, this leads the algorithm to reveal as `communi-
ties' two tightly-connected pairs of cliques, now. We explicitly notice that
the results shown in �g. 8 also depend on the relative magnitude of the
weights of the intra-cliques and of the inter-cliques links: however, as
long as the inter-cliques weight is up to two orders of magnitude larger
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than the intra-cliques one, it holds true.

In order to expand the set of comparisons, we have focused on two
different kinds of well-established benchmarks, i.e. the Lancichinetti-
Fortunato-Radicchi (LFR) [106] one and the Aldecoa's `relaxed-caveman'
(RC) one [32]. Figure 9 shows two examples of the benchmarks used in
the present paper to compare modularity, surprise and Infomap: LFR, on
the left, and RC, on the right.

The LFR benchmark is a special case of the planted-partition model,
in which groups have different sizes and nodes have different degrees
- hence constituting a re�nement of the GN benchmark, where groups
have equal size and nodes have the same expected degree [106]. When
binary, undirected con�gurations are considered, the degrees of nodes
are distributed according to a power-law with exponent � 1 while the
sizes of communities are distributed according to a power-law with ex-
ponent � 2. Once the sizes of communities have been drawn each node
`receives' its own degree, sayki : the percentage of these links connecting
node i with other internal nodes is, then, chosen to be (1 � � t )ki , with
� t playing the role of mixing parameter that controls for the sharpness
of the planted partition. For binary, directed con�gurations, � t refers
to in-degrees, which are distributed according to a power-law while the
out-degrees are kept constant for all nodes; the other input parameters,
instead, are the same used for undirected con�gurations.

Results on speci�c implementations of the LFR benchmark are shown
in �g. 10. Four curves are shown for both binary and weighted net-
works: in the binary case, we consider networks of different size (blue
and red: 1.000 nodes; green and black: 5.000 nodes) and with different
planted communities (`S' stands for `small': communities have between
10 and 50 nodes; `B' stands for `big': communities have between 20 and
100 nodes); in the weighted case, instead, all networks have the same
size (5.000 nodes) but differ for the value of the binary mixing parameter
(blue and red: ut = 0 :5; green and black: ut = 0 :8) and for the kind of
planted communities (`S' stands for `small': communities have between
10 and 50 nodes; `B' stands for `big': communities have between 20 and
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Figure 9: Examples of the benchmarks used in the present paper to compare
modularity, surprise and Infomap: Lancichinetti-Fortunato-Radicchi bench-
mark (LFR, left panel), constituted by 1.000 nodes arranged in `big' commu-
nities and with mixing coef�cient � t = 0 :1; Aldecoa's `relaxed-caveman'
benchmark (RC, right panel), constituted by 16 communities whose size
is distributed according to a power-law and with `degradation' coef�cient
p = 0 :1.

100 nodes).

When focusing on binary, undirected networks, we have considered
� 1 = � 2 and � 2 = � 1 (the average degree is 20 and the maximum degree
is 50). When binary, directed con�gurations are considered, � t refers
to in-degrees, which are distributed according to a power-law while the
out-degrees are kept constant for all nodes; the other input parameters,
instead, are the same used for undirected con�gurations.

When weighted, undirected con�gurations are considered, an addi-
tional mixing parameters is needed, i.e. � w , accounting for the percent-
age of a node strength to be distributed on the links that connect it to
the nodes outside its own community; the exponent of the strength dis-
tribution has been set to 1.5 for all realizations considered here. When
weighted, directed con�gurations are considered, � w refers to in-strengths.

Infomap is, generally speaking, a strong performer; as evident upon
looking at the �rst row, however, its performance decreases abruptly as
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the mixing parameter exceeds a threshold value that depends on the par-
ticular setting of the LFR benchmark. Modularity, instead, seems to be
more robust (i.e. its performance `degrades' less rapidly as � t increases)
although the resolution limit manifests itself when con�gurations with
small communities are considered. Overall, the performance of surprise
seems to constitute a good compromise between the robustness of mod-
ularity and the steadily high accuracy of Infomap. We would also like
to stress that surprise competes with modularity although it employes
much less information than the latter: in fact, while the benchmark em-
ployed by modularity coincides with the (sparse version of the) Con-
�guration Model - hence, encodes the information on the entire degree
sequence - surprise compares the RGM with the SBM, hence employing
the information on the link density, both in a global and in a block-wise
fashion.

Surprise becomes the best performer when binary, directed con�gu-
rations are considered - see the second row of �g. 10: while the perfor-
mance of modularity starts decreasing as soon as the value of � t is risen
and NMI Infomap ' 0 when � t crosses the value of0:6, the performance
of surprise `degrades' much more slowly - in fact, for some instances of
the LFR benchmark, it achieves a large value of NMI even for values
� t � 0:8.

Let us now comment on the performance of our algorithms when
weighted con�gurations are considered (to be noticed that we have kept
one of the two parameters �xed and studied the dependence of NMI and
ARI on the other: speci�cally, we have frozen the topological mixing pa-
rameter and studied the dependence of the results on � w , thus inspect-
ing the performance of our algorithms as the weights are redistributed
on a �xed topology): the results are, again, shown in �g. 10. Infomap
is, again, a strong performer although its performance keeps decreas-
ing abruptly as � w exceeds a threshold value depending on the particu-
lar setting of the LFR benchmark; modularity, instead, performs worse
than in the binary case although it is still more robust than Infomap. Al-
though `degrading' less sharply than Infomap, the performance of the
purely weighted surprise seems to be the worst, here; on the other hand,
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Figure 10: Comparison of three different algorithms for community detec-
tion on the LFR benchmark, i.e. modularity maximization (left column),
Infomap (central column) and surprise minimization (right column): the
chosen con�gurations are binary undirected networks (�rst row), binary di-
rected networks (second row), weighted undirected networks (third row)
and weighted directed networks (fourth row). The trend of the NMI, plotted
as a function of the mixing parameters, reveals Infomap to be a strong per-
former even if its performance decreases abruptly as the mixing parameters
exceed a threshold value that depends on the particular setting of the bench-
mark; the performance of modularity, instead, `degrades' less rapidly. The
performance of surprise seems to constitute a good compromise between
the robustness of modularity and the steadily high accuracy of Infomap.

the enhanced surprise outperforms the competing algorithms for inter-
mediate values of the topological mixing parameter, irrespectively from
the size of the communities: in fact, NMI surprise = 1 even for � w = 0 :8.
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Similar considerations hold true when weighted, directed con�gurations
are considered (with the only difference that, now, modularity steadily
performs worse than the other algorithms, except for the largest values
of the mixing parameter). As for the binary cases, surprise competes
with modularity although it employes much less information than the
latter: in fact, while the benchmark employed by modularity now co-
incides with the (sparse version of the) Weighted Con�guration Model -
hence, encodes the information on the entire strength sequence - surprise
compares the WRGM with the WSBM, hence employing the information
on the magnitude of the total weight, both in a global and in a block-wise
fashion.

Let us now consider the RC benchmark. It consists of 512 nodes,
grouped in 16 communities arranged in a ring-like fashion and whose
sizes obey a power-law whose exponent has been set to 1.8; the small-
est community is composed by 3 nodes. Such a con�guration is pro-
gressively `degraded' according to the following mechanism: �rst, a per-
centagep of links is randomly selected and removed; afterwards, a per-
centagep of links is randomly selected and rewired. In other words, a
single `degradation' parameter p drives the evolution of the initial ring-
of-cliques towards a progressively less-de�ned, clustered con�guration.

Results on speci�c implementations of the RC benchmark are shown
in �g. 11: surprise outperforms both competing algorithms across the
entire domain of the `degradation' parameter p. More speci�cally, while
modularity `degrades' slowly as the value of p is risen, Infomap `de-
grades' abruptly as p � 0:4. Hence, for small values of such a parameter,
Infomap outperforms modularity; on the other hand, for large values of
p, modularity outperforms Infomap (although both NMI modularity and
ARImodularity achieve a value which is around 0:6, i.e. already far from
the maximum). Interestingly, for small values of p, the performance of
Infomap and that of surprise overlap, both achieving NMI and ARI val-
ues which are very close to 1: as p crosses the value of 0:4, however,
the two trends become increasingly different with Infomap being out-
performed by modularity which is, in turn, outperformed by surprise.
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Figure 11: Comparison of three different algorithms for community detec-
tion on the RC benchmark, i.e. modularity maximization, Infomap and sur-
prise minimization. The chosen con�gurations are binary, undirected (�rst
row) and directed (second row) networks, consisting of 512 nodes, grouped
in 16 communities arranged in a ring-like fashion and whose sizes obey a
power-law whose exponent has been set to 1.8; the smallest community is
composed by 3 nodes. This initial con�guration is progressively `degraded'
according to the following mechanism: �rst, a percentage p of links is ran-
domly selected and removed; afterwards, a percentage p of links is ran-
domly selected and rewired. The trend of the NMI, plotted as a function
of the (single) `degradation' parameter p, driving the evolution of the ini-
tial ring-of-cliques towards a progressively less-de�ned, clustered con�gu-
ration, reveals surprise to outperform both modularity and Infomap. From
a more general perspective, these results con�rm what has been already
observed elsewhere, i.e. that the best-performing algorithms on the LFR
benchmarks often perform poorly on the RC benchmarks and vice versa.

From a more general perspective, these results con�rm what has been al-
ready observed elsewhere [41], i.e. that the best-performing algorithms
on the LFR benchmarks often perform poorly on the RC benchmarks and
vice versa.
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Figure 12: Benchmark for testing surprise on the recovery of core-periphery
structures: we progressively `degrade' an initial con�guration, de�ned by
1) a completely connected core, 2) an empty periphery, 3) an intermediate
part whose link density amounts at pcp = 0 :5. Such a con�guration is `de-
graded' by progressively �lling the periphery and emptying the core. This
is achieved by 1) considering all peripherical node pairs and link them with
probability q; 2) considering all core node pairs and keep them linked with
probability 1 � q: varying q in the interval [0; pcp ] allows us to span a range
of con�gurations starting with the Borgatti-Everett one and ending with an
Erdös-Rényi one.

Testing algorithms on synthetic, bimodular benchmarks

Let us now inspect the performance of surprise in recovering binary, `bi-
modular' structures. To this aim, we have de�ned a novel benchmark
(see �g. 12) mimicking the philosophy of the RC one, i.e. progressively
`degrading' an initial, well-de�ned con�guration:

• let us consider Nc core nodes andNp periphery nodes. The core is
completely connected (i.e. the link density of the Nc � Nc block is
1) and the periphery is empty (i.e. the link density of the Np � Np

block is 0). So far, our benchmark is reminiscent of a core-periphery
structure �a la Borgatti-Everett(left panel of �g. 12);

• let us now focus on the topology of the Nc � Np bipartite network
embodying the connections between the core and the periphery: in
particular, let us consider each entry of such an adjacency matrix
and pose acp = 1 with probability pcp. Upon doing so, such a sub-
graph will have a link density amounting precisely at pcp (central
panel of �g. 12);
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Figure 13: Performance of surprise on the recovery of core-periphery struc-
tures. The considered benchmark is mimicking the philosophy of the RC
one: `degrading' an initial, well-de�ned, core-periphery con�guration (left
column: a binary, undirected one; right column: a binary, directed one). As
expected, the performance of the algorithm worsens as the `degradation'
parameter becomes closer topcp = 0 :5; however, both the NMI and the ARI
indices steadily remain very close to 1.

• let us now `degrade' such an initial con�guration, by progressively
�lling the periphery and emptying the core. This can be achieved
by 1) considering all peripherical node pairs and link them with
probability qp; 2) considering all core node pairs and keep them
linked with probability 1 � qc (or, equivalently, disconnect them
with probability qc). Upon doing so, we end up with a core whose
link density is precisely 1 � qc and with a periphery whose link
density is precisely qp. Now, varying qp in the interval [0; pcp] and qc

in the interval [0; 1� pcp] allows us to span a range of con�gurations
starting with the Borgatti-Everett one and ending with an Erd ös-
Rényi one (right panel of �g. 12).

Speci�cally, here we have considered Nc = 100, Np = 300 and pcp =
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Figure 14: The presence of weights affects the detection of `bimodular',
mesoscale structures as well. In fact, rising the weight of any two links con-
necting the core with the periphery of a toy network allows the two nodes
originally part of the periphery to be detected as belonging to the core; anal-
ogously, if a bipartite topology is modi�ed by adding weights between some
of the nodes belonging to the same layer, a core-periphery structure will be
detected as signi�cant.

0:5 - a choice allowing us to carry out the aforementioned exercise by
tuning just one parameter instead of two (i.e. qp = qc � q). The re-
sult of our exercise is shown in �g. 13: as expected, the performance of
the surprise worsens as the `degradation' parameter becomes closer to
pcp = 0 :5; however, both the NMI and the ARI indices steadily remain
very close to 1 - a result indicating that surprise optimization not only
scores high under the true positives metrics - by `keeping together' the
nodes originally in the same communities - but also under the other, pos-
sible metrics.

Let us now ask us if the presence of weights affects the detection of
mesoscale structures. Generally speaking, the answer is, again, yes. Let
us consider a toy core-periphery network: rising the weight of any two
links connecting the core with the periphery allows the two nodes origi-
nally part of the periphery to be detected as belonging to the core (see the
�rst and the second panel of �g. 14). Analogously, if a bipartite topology
is modi�ed by adding weights between some of the nodes belonging to
the same layer, W� will detect a core-periphery structure as signi�cant,
the core nodes being the ones linked by the `heaviest' connections (see
the third and the fourth panel of �g. 14).
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Figure 15: Application of our framework for the detection of binary and
weighted communities (respectively, on the left and on the right) on the net-
work of co-occurrences of `Star Wars' characters [107]. Overall, link weights
re�ne the picture provided by just considering the presence of links: in the
binary case, in fact, surprise detects two major clusters, induced by the char-
acters of Episodes I-III and by the characters of Episodes IV-IX; once weights
are taken into account, these clusters merge and give origin to the cluster of
heroes of Episodes IV-IX.

3.6.5 Testing surprise on real-world networks

Let us now apply our formalism to the detection of mesoscale structures
in real-world networks. When coming to study such systems, particu-
larly insightful examples are provided by social networks. To this aim, let
us consider the one induced by the co-occurrences of characters within
the `Star Wars' saga (i.e. the three trilogies). As shown in �g. 15 we
have both considered the binary and the weighted version of it. For
what concerns the binary version of such a network, the optimization
of S reveals the presence of two major clusters: remarkably, they are in-
duced by the characters of Episodes I-III (e.g. Yoda, Qui-Gon, Obi-Wan,
Anakin, Padme, the Emperor, Count Dooku, etc.) and by the characters
of Episodes IV-IX (e.g. C-3PO, Leia, Han, Lando, Poe, Finn); a third clus-
ter, instead, concerns the villains of Episodes VII-IX (i.e. Snoke, Kylo Ren,
Phasma, Hux). Interestingly, Rey, BB-8, Maz-Kanata and other characters
living on Jakku are clustered together. Quite remarkably, the interactions
between the characters of Episodes IV-VI and those of Episodes VII-IX
causes the former ones and the latter ones to be recovered within the
same cluster. This picture is further re�ned once weights are taken into
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