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Abstract

The widespread use of material over the past century has dramatically changed
the world today. The reliability of any machine depends on the multiple com-
plex interactions in the system leading to a failure. Hence, it is necessary to
understand the failure mechanism of the structures with a multi-physics inter-
action. The present thesis explores the role of complex multi-physics in failure to
understand the overall structural performance, including an interface between
different materials.
Specifically, in Chapter-2, a phase field (PF) approximation of fracture for func-
tionally graded materials (FGM) using a diffusive crack approach incorporat-
ing the characteristic length scale as a material parameter is herein proposed. A
rule of mixture is employed to estimate the material properties, according to the
volume fractions of the constituent materials, which have been varied accord-
ing to given grading profiles. Based on the ideas stemming from the study of
size-scale effects, Γ-convergence for the proposed model is proved when the in-
ternal length scale is either constant or a bounded function. Crack propagation
events in conjunction with the differences with respect to their homogeneous
surrogates are discussed through several representative applications, providing
equivalence relationships for size-scale effects and demonstrating the applica-
bility of the current model for structural analysis of FGMs.
Failure processes in Laminated Fiber-Reinforced Composites (LFRCs) entail the
development and progression of different physical mechanisms and, in partic-
ular, the interaction between inter-laminar and intra-laminar cracking. Reliable
modeling of such complex scenarios can be achieved by developing robust nu-
merical predictive tools that allow for the interaction of both failure modes. In
Chapter-3, a novel Multi Phase-Field (MPF) model relying on the Puck theory
of failure for intra-laminar failure at ply level is coupled with a Cohesive Zone
Model (CZM) for inter-laminar cracking. The computational tool is applied to
qualitatively predict delamination migration in long laminated fiber-reinforced
polymers composites comprising 44 cross-ply laminates. The reliability of the
current approach is examined via the correlation with experimental results. Fi-
nally, the present study is complemented with additional representative exam-
ples with the aim of providing further insight into the potential role of different
aspects of the system in the delamination migration, including (i) the variation
of the ply angle in the migration zone, (ii) the load application point, and (iii)
initial crack length.
The analysis of fracture phenomena of thin-walled structures has been a matter
of intensive research in the last decades. These phenomena notably restrict the
applicability of slender structures, especially under the influence of tempera-
ture. The research in Chapter-4 is concerned with the development of a thermo-
dynamically consistent framework for the coupled thermo-mechanical phase-
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field model for thin-walled structures using a fully-integrated finite elements.
This enables the use of three-dimensional constitutive thermo-mechanical mod-
els for the materials. The proposed thermo-mechanical phase-field models are
equipped with the EAS and ANS leading ti locking free element. Moreover, the
same degradation function is used for both displacement field and thermal field.
The coupled equations are numerically solved with ad hoc efficient solution
schemes for nonlinear problems. Several numerical examples with and without
phase-field (straight and curved shells) are provided to show the practicality
and reliability of the proposed modeling framework. Moreover, the model is
extended to incorporate FGM and the corresponding numerical examples are
explored.
Using the framework developed in the Chapter-4, the locking free solid shell
element is extended to include the fatigue effects in Chapter-5. As a natural
consequence of the developed model, SN curve and crack extension curves are
recovered for straight and curved shells.
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Abstracto

El uso generalizado de los materiales durante el siglo pasado ha cambiado
drásticamente el mundo actual. La fiabilidad de cualquier máquina depende
de las múltiples interacciones complejas dentro de ella que pueden conducir a
un fallo de la estructura. Por lo tanto, es necesario comprender el mecanismo
de fallo de las estructuras con una interacción multi-fı́sica. La presente tesis
explora el papel de la multi-fı́sica compleja en la fractura para comprender el
rendimiento estructural general, teniendo en cuenta la consideración de una in-
terfaz entre diferentes materiales.

Especı́ficamente, en el Capı́tulo 2, se propone aquı́ una aproximación de la
técnica de phase-field (PF) en fractura de functionally graded materials (FGM)
usando un enfoque con fractura difusiva que incorpora la longitud de escala
(length scale) como parámetro del material. Se emplea una regla de mezcla para
estimar las propiedades del material, de acuerdo con las fracciones de volumen
de los materiales constituyentes, que han variado de acuerdo con los perfiles
de clasificación dados. Con base en las ideas derivadas del estudio de los efec-
tos size-scale, se prueba la convergencia Γ para el modelo propuesto cuando la
length scale es constante o una función acotada. Los fenómenos de propagación
de grietas junto con las diferencias con respecto a sus sustitutos homogéneos se
analizan a través de varias aplicaciones representativas, proporcionando rela-
ciones de equivalencia para los efectos size-scale y demostrando la aplicabilidad
del modelo actual para el análisis estructural de las FGM.

Los procesos de fractura en los Materiales Compuestos Laminados Reforzados
con Fibra (MCLRF) implican el desarrollo y progresión de diferentes mecan-
ismos fı́sicos y, en particular, la interacción entre la fractura interlaminar e in-
tralaminar. Se puede alcanzar un modelado confiable en escenarios tan comple-
jos mediante el desarrollo de herramientas predictivas numéricas robustas que
permitan la interacción de ambos modos de fractura. En el Capı́tulo 3, un nuevo
modelo de multi phase-field (MPF) que se basa en el criterio de fallo de Puck
para la fractura intralaminar a nivel de capa se combina con la técnica Cohe-
sive Zone Model (CZM) para la fractura interlaminar. La herramienta computa-
cional se aplica para predecir cualitativamente la migración de la delaminación
en compuestos de polı́meros reforzados laminados con fibras largas que com-
prenden 44 laminados de capas cruzadas. La fiabilidad del enfoque actual se ex-
amina a través de la correlación con los resultados experimentales. Finalmente,
el presente estudio se complementa con ejemplos representativos adicionales
con el objetivo de brindar una mayor comprensión en diferentes aspectos del
sistema en la migración de la delaminación, incluida (i) la variación del ángulo
de la capa en la zona de migración, (ii) ) el punto de aplicación de la carga, y (iii)
la longitud inicial de la grieta.
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El análisis de los fenómenos de fractura en estructuras de paredes delgadas ha
sido objeto de una intensa investigación en las últimas décadas. Estos fenómenos
multi-physics restringen notablemente la aplicabilidad en estructuras esbeltas,
especialmente cuando estbajo la influencia de la temperatura. La investigación
en el Capı́tulo 4 se ocupa del desarrollo de un marco termodinámicamente con-
sistente para un modelo de phase-field termomecánico acoplado para probetas
con pequeños espesores utilizando elementos finitos completamente integra-
dos. Esto permite el uso de modelos termomecánicos constitutivos tridimen-
sionales para los materiales. Los modelos de phase-field termomecánicos prop-
uestos están equipados con elementos finitos que incorporan las técnicas EAS y
ANS. Además, se utiliza la misma función de degradación tanto para el campo
de desplazamiento como para el campo térmico. Las ecuaciones acopladas se
resuelven numéricamente con esquemas de solución eficiente ad hoc para prob-
lemas no lineales. Se proporcionan varios ejemplos numéricos con y sin phase-
field (cáscaras rectas y curvas) para mostrar la aplicabilidad y fiabilidad del
modelo propuesto. Además, el modelo se amplı́a para incorporar los FGM y se
exploran los ejemplos numéricos correspondientes.
Usando el marco desarrollado en el Capı́tulo 4, el conocido elemento finito para
placa/lámina, libre del fenómeno de locking, se amplı́a para incluir los efectos
de fatiga en el Capı́tulo 5. Como consecuencia natural del modelo desarrollado,
la curva S-N y las curvas de extensión de grietas se aplican para láminas rectas
y curvas.
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Chapter 1

Introduction

The material of choice of a given era is often a defining point. Historically, the Stone Age,
Bronze Age, Iron Age, and Steel Age are bi-products of these material choices. The recent in-
dustrial relations led by the production and use of steel were a stepping stone to our world.
Thousands of years ago, we learned how to extract metals from their ore and understood
that to its core. For the first time on this planet, we understood how metals work. This led to
increased protection by creating advanced tools. This increased our chances of survival and
transformed us into modern humans. The origin moments as we can postulate. This knowl-
edge had brought in at least two revolutions, and the third one in the making, changing from
caveman to start a civilization (main factor) and industrial revolution.

On the other hand, computation utterly transformed our understanding of nature. The
way modern technologies advanced flabbergasted how computation works. When metals
were seen under the lens of computation, tall buildings, airplanes, rockets that could land on
the moon, spaceships that one day will take us to another planet, machinery, and two world
wars emerged. Today, we live in a world where our demands are served at our fingertips,
new machines every day, and new revolutions every year. As these technologies continue to
advance exponentially, where this means we are heading? An age of composites. All these
technologies were done without a complete understanding of how an engine breaks and the
effects of temperature on the design and materials. However, we have managed to create
this magnificent world with those little things from the little we know. Prof Zdenek Basant,
in his acceptance speech of Timoshenko medal, confessed, ”The mechanics of damage and
quasi-brittle fracture, with all its scaling and interdisciplinary couplings, is a problem of the
same dimension as turbulence, which will not be closed even a century from now,” after 120
years of fracture mechanics. And this thesis is one step towards that solution.

1.1 Rationale and motivation
Fracture mechanics is a subbranch of solid mechanics that deals with the cracks’ initiation,
propagation, and coalescence and provides a suitable qualitative relationship of the involved
physics. Griffith’s [1] theory- an energy approach postulated that the crack occurs as a mi-
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croscopic manifestation of debonding at a microscopic crystalline level. This debonding
process can be accurately represented as the competition between bulk energy (created due
to applied load) and crack energy (due to the creation of new surfaces) at each point.

Even though Griffith’s energy-based criterion provided great insight, Irwin’s [2] well-
known Stress Intensity Factor (SIF) approach proved to be more useful in engineering appli-
cations. Irwin provided the empirical formula, rather a way to link bulk energy release rate
during crack advance (G) and stress intensity factor representing singularity at the crack tip

(KI ,KII ,KIII ) in the infinitesimal setting with the celebrated formula G =
K2

I
2µ

.
In parallel to fracture mechanics, post-Griffith’s era is filled with an avalanche of var-

ious theories such as continuum damage mechanics (CDM) [3], viscous regularization [4],
Cosserat micropolar theory [5], non-local continuum theory [6], gradient enhanced damage
model [7, 8] , gradient damage model [9] to name a few.

Restricting ourselves to the numerical modeling of fracture, fracture in solids can be
classified as (i) discontinuous approach and (ii) continuous approach. The fundamental dif-
ferences between these approaches are that the displacement is allowed to have jumps in
the discontinuous approach. In the continuous approach, the stresses are gradually reduced
with a continuous displacement field everywhere. The Linear Elastic Fracture Mechanics
(LEFM) is primarily based on Griffith [1] and Irwin [2], the Cohesive Zone Model (CZM)
based on Dugdale [10] and Barenblat [11] are examples of discontinuous approaches. Funda-
mentally, the discontinuous approaches are not self-contained. Many theories are proposed
in this context, such as maximum hoop stress criterion [12], Rankine criteria, and minimum
strain energy criteria [13] as an additional ad hoc criteria to address the issue regarding crack
initiation and propagation. Even though CZM-based models can naturally predict crack ini-
tiation, these methods remain unattractive due to their high computation. The advantages
of such CZM based model include nucleating and propagating complex cracks without ad-
ditional criteria. These drawbacks related to the discontinuous approach are restricted to a
small group of problems and persuade other computational methods where crack paths are
determined to solve some multi-physics phenomenon. And hence, the birth of the phase-
field approach to fracture. This thesis addresses some of the issues and solutions of material
modeling based on the phase-field approach and cohesive zone approach using mathemati-
cal modeling techniques for multi-physics problems.

In the forthcoming sections, a brief mathematical overview of Griffth’s energy in the
variational formulation is presented in Section 1.2.1. Later, a numerical approximation to
the modified Griffith’s theory is presented in Section 1.2.2. In Section 1.3, a brief survey
of the phase-field methods to fracture is presented along with the mathematical formalism.
Section 1.4 presents the survey of fatigue failure using the phase-field approach, and finally,
Section 1.5 gives the objective and outline of the thesis.

1.2 Variational formulation

1.2.1 Griffith’s variational formulation
Since Griffith’s theory is postulated as the macroscopic manifestation of microscopic debond-
ing, at the microscopic level, even the most simplistic model demonstrates that the energy
spent in moving two atoms apart while the rest of the atoms stays additive leading to mi-
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croscopic energy proportional to the separation area. In other words, the energy applied
to a material is first used to displace the body, which creates tension at a microscopic level.
After a certain threshold, the atom separates, creating new surfaces on a microscopic level.
The new surface made also creates a discontinuity in the displacement field. Moreover, the
energy required to break the atoms is proportional to energy required in creating new sur-
faces. If the body behaves as elastic, then the energy required to create a new surface is null,
fetching the classical theory of elasticity. Francfort and Marigo [14] proposed the variational
approach to brittle fracture, which seeks displacement and a set of cracks by minimizing the
total energy of the generalized/ modified Griffith’s theory.

Consider crack path Γ̃ assumed to be known priori in the continuum Ω with boundary
∂Ω. The crack path is assumed to depend on the time t and length of the crack l. The
kinematic unknown at any time t is given by u(t, l). The variational equivalence of the
classical Griffith theory can be written as the following, see [15] for more details.

Assuming that the Griffith’s like potential D(l, l̇) of the form

D(l, l̇) =

{︄
D(l̇) if ∇l̃(l), l̇ ≥ 0

+∞ Otherwise
,

with D : Rp → R+ positively 1-homogeneous, convex, and D(0) = 0 for the value of p-uple
l = (l1, l2, . . . , lp) denoted as l̃(l). Then, the Griffith’s like energy E(t,u, l) takes the form

E(t,u, l) =
∫︂
Ω\Γ(t)

Ψ(∇u)dV −F(t,u) +D(l̃(l); l − l̃). (1.1)

Here, Ψ, and F are elastic energy and applied energy respectively, satisfies the following
conditions. See [15] for a complete derivation.

1. Unilateral Stationary Condition (USC):
For all l and u = g(t) on ∂dΩ\Γ(l), the points (l(t),u(t)) is a stationary point of Eq.
(1.1). Meaning that,

d

dϵ
E(t;u(t, ϵ, l))

⃓⃓⃓⃓
⃓
ϵ=0

≥ 0.

2. Irreversibility: Cracks cannot heal. The set l̃(l(t)) · l̇ ≥ 0.

3. Energy Balance: The second law of thermodynamics has to be satisfied [16, 15], whose
particular expression is discussed in the sequel.

It can be shown that (USC) accounts for the first-order optimality conditions for (l(t),u(t))
to be local unilateral minimizer of E(t,u). Consequently, such stationarity conditions are
mathematically unpleasant in the sense of providing the existence of the solution, let alone
uniqueness. The point of departure from the classical Griffiths’ to the more general Griffiths’
is brought forth in the literature [15, 17, 14] as a relaxation to the unilateral stationary con-
dition by means of local or global minimizers. i.e (l(t),u(t)) is a local / global minimizer
(in a suitable topology) for E(t,u, l) among all l ≥ l(t), and all u = g(t) on ∂dΩ\Γ(l). In
the sense of nonlinearity, local minimality conditions are usually preferred owing to the fact
that Lyapunov stability is only restricted to local minimality. In contrast, global minimality
lacks uniqueness. The path constraint on the l(t) can be shown to be replaced by actual crack
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length l(t) along the pre-determined path owing to the global/local minimizers. With Γ(t)
denoting the crack at time t, the unilateral local/global minimality takes the form

(Γ(t),u(t)) is a local/global minimizers for

E(t,u,Γ) =
∫︂
Ω\Γ

Ψ(∇u)dV −F(t,u) + kH1(Γ), (1.2)

for all Γ(t) ⊂ Γ and u = g(t) on ∂dΩ\Γ in some topology.
Inspired by the Mumford-shah potential, the minimization problem in [18] is shown to

be well-posed on a subspace SBV(Ω) (of BV(Ω)) of special functions of bounded variation of
Ω. Ambrosio [19, 20, 15] established the compactness property in SBV(Ω) as follows:

For every subsequence un ∈ SBV(Ω) with un bounded in L∞(Ω),
⃓⃓⃓⃓
un
⃓⃓⃓⃓
L∞(Ω)

≤ C, the

gradient of un is bounded in Lq(Ω;R2), q ≥ 1, i.e
⃓⃓⃓⃓
∇un

⃓⃓⃓⃓
Lq(Ω;R2)

≤ C̄, and for the jump set
J(un) (the set of jump points of the un), the Hausdorff measure of jump set J(un) is bounded
i.e H(S(un)) ≤ C

′
, then the following are true.

There exists a subsequence uk(n)
of un, and there exists a u ∈ SBV(Ω) such that

• The subsequence uk(n)
converges to u strongly in Lp(Ω), for p ≤ ∞. i.e uk(n)

→ u
strongly in Lp(Ω), p ≤ ∞.

• The gradient of the subsequence ∇uk(n)
converges weakly to ∇u in Lq(Ω;R2). i.e

∇uk(n)
→ ∇u Weakly in Lq(Ω;R2).

• The limit of all infimum’s (minimum if the functional is bounded) for the set H(J(uk(n)
))

containing the jump set of subsequence uk(n)
is greater than or equal to H(Ju). i.e

lim inf
n

H(J(uk(n)
)) ≥ H(Ju).

Then, using this compactness result, the existence of the solution to modified Griffith’s
like potential in Eq. (1.2) can be guaranteed, see [17, 21, 15] for detailed proof. With identi-
fying the crack set Γ(t) as a combination of jump set (this removes that Γ has to be known
priori) as a combination of jump set Ju, i.e Γ(t) = Γ0 ∪s<t J(u(τ)), the energy can be written
as

E(t,u,Γ) =
∫︂
Ω

Ψ(∇u)dV −F(t,u) + kH1(Γ),

with the following conditions

1. Γ(0) = Γ0.

2. Unilateral Local/Global Minima: (Γ(t),u(t)) is a local/ global minimizer for E(t,u,Γ),
for all Ω̄\∂sΩ ⊃ Γ ⊃ Γ(t), S(u) ⊃ Γ and u = g(t) on ∂dΩ.

3. Energy Balance:
The particular form of the energy balance takes the form

dE
dt

((t,u,Γ))(t) =

∫︂
Ω

∂Ψ

∂F
(∇u) · ∇ġ(t)dV − Ḟ(t,u)−F(t, g(t)).

4. Irreversibility: Γ(t)̇ ≥ 0.
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1.2.2 Numerical approximation
With the variational setting of Griffith’s at hand, the roots of numerical approximation can
be found in free-discontuinity problem [22, 21] based on an approximation of total energy in
the sense of Γ−Convergence. Meaning that, find a sequence of functionals Fε of some type
that approximates the functional F such that as ε → 0, the functional Fε converges to F in
the sense of Γ−Convergence. Writing this formally, consider a R−vector valued functional
F , and its sequence Fε defined over a metrizable topological space X . Then Fε converges
to F as ε→ 0 if and only of the following two conditions satisfy

1. For any sequence (uε)ε → u, one has

lim inf
ε→0

Fε(uε) ≥ F(u).

2. There exist a sequence (uε)ε → u in X such that

lim sup
ε→0

Fε(uε) ≤ F(u).

In other words, for any functional F , let u be its minimizer. Then if a sequence of ap-
proximated functional Fε has uε minimizers (hopefully). If the sequence of minimizers uε
converge to the minimizer of original functional u, then all the infimum (minimum in case
of bounded) of the sequence Fε(uε) as ε → 0 is less than F(u). If the supremum of one se-
quence Fε(uε) can go beyond or upto the functional F(u), then we say Fε(uε) → F(u). In
other words, all the sequences are less than F(u), but one sequence has some subsequence
which can go upto F(u). Meaning that, the particular subsequence should be the minimizer
of Fε(uε) .

With this at hand, phase-field methods to fracture evolved as a self-sufficient approxi-
mation whose short review is provided in the next Section. Following [23, 22], introduce a
scalar variable d ∈ W 1,2(Ω/∂sΩ) and a small positive parameter l, and ηl = O(l), for any
kinematically admissible u, with d = 0 representing sound material and we can define the
Griffith’s energy as

F(u, d) =

{︄∫︁
Ω
Ψ(∇u)dV +KH1(Su/∂sΩ) if d = 0

+∞ otherwise
. (1.3)

and the approximation sequence can be defined as

Fε(u, d) =
∫︂
Ω

(︁(︁
(1− d)2 + ηε

)︁
Ψ(∇u)

)︁
dV +K

∫︂
Ω/∂sΩ

(︃
d2

4l
+ l|∇d|2

)︃
dV (1.4)

whose proof of Γ−Convergence from Fε → F is now standard. See [17, 15] for more details.

1.3 Phase-Field methods
This section concerns the fundamental of the phase-field approach. At first, a general varia-
tional formulation of the phase-field method along with the consistency conditions are pre-
sented (partially taken from [24]). Later, a brief discussion on the choice of degradation
function, stored elastic energy, geometric crack functions in the literature are presented.
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From this Section, we drop the mathematical intricacy and focus on the different approx-
imations and methods proposed in the literature, some Γ−Converging and others (may or
may not) based on the physics. To make the distinction, Griffith’s potential is called as E ,
whereas the phase-field approximation is refereed as Π.

1.3.1 Mathematical model

Summarizing and reformulating the phase-field approach to fracture, let B ⊂ Rndim (ndim =
1, 2, 3 denotes spatial dimension) be an arbitrary solid body in the ndim Euclidean space
Rndim with the crack set Γ ⊂ Rndim−1. The body is characterized by the kinematic displace-
ment field u(x) and the strain field is defined as a symmetric gradient of the displacement

field ε(x) := ∇su(x) for all x ∈ B, with
(︃
∇s(·) = ∇(·) +∇T (·)

2

)︃
. The external bound-

ary ∂B ⊂ Rndim−1 is split into two disjoint sets, ∂Bu and ∂Bt, with ∂Bu ∩ ∂Bt = ∅ and
∂Bu ∪ ∂Bt = ∂B, such that displacement ū(x) for x ∈ ∂Bu and traction t̄(x) for x ∈ ∂Bt
is applied as shown in the Figure 1. The external work P(u(x)) due to the applied loading
defined above is given by

Ω

Ω

ΩΩ Ω Ω

Ω

Ω

fv fv

a) Sharp crack in the bulk b) Smeared crack

Figure 1: Schematic representation of diffusive cracks.

P(u(x)) :=

∫︂
B
fv · udV +

∫︂
∂Bt

t̄ · udS, (1.5)

where fv : B → Rndim is the distributed body force.
The variational approach to fracture, according to Griffith’s theory can be interpreted as

the competition between the elastic energy Ψ(u) created by the body due to external forces
and the surface energy Ψc(Γ) created by crack creation and propagation. In this context, the
quasi-static displacement field ut(x) = u(x, t) = u, and the crack set Γt at any given discrete
time step t ∈ [0, T ] are given as a minimization problem (see [16] for more details)
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(ut,Γt) = argmin E(u,Γ)S :=

∫︂
B\Γ

Ψ(ε) dV + GCHndim−1(Γ ∩ B\∂Bt), (1.6)

with S := [u = ū on ∂Bu, Γt ⊃ Γt−1] , Hndim−1(Γ) is the Hausdorff (ndim − 1) dimensional
measure of the unknown crack set Γ, GC [J/m2] is the critical energy release rate, and Ψ(ε)
is the elastic energy density that depends on the strain field ε(u).

Since Γ in Eq. (1.6) is unknown a priori, the numerical approximation of the functional
given in the former expression is crafted as a free-discontinuity problem based on the Tor-
torelli’s elliptical regularization [19] of the Mumford-Shah potential used in image segmen-
tation [25], and later adapted to brittle fracture in [14, 16]. In this framework, the crack set
Γ is replaced by (Hndim−1, ndim − 1) rectifiable borel jump set of u, J(u). Then, there exists

a sequence (Γi)
∞
i of C1 hyper-surfaces, covering almost all of J(u). ie H1(Ju/

∞⋃︁
i=1

Γi) = 0,

in a suitable space such as SBD(Ω)/GSBD(Ω), see [17, 26, 27] for more details. Hence, the
surface energy associated with the crack is approximated using a scalar field d ∈ [0, 1] (de-
nominated as crack phase-field variable), and the internal length scale l ∈ R+ governing the
width of the diffusive crack such that, d = 0 for an intact material and d = 1 for completely
damaged material takes the form, see Fig. 1

Ψc(Γ) =

∫︂
Γ

GC dS ≈
∫︂
B

GC
4cw

γ(d; ∇d)dV,

where, γ(d; ∇d) is the crack surface energy density function [28] defined as

γ(d; ∇d) :=
α(d)

l
+ l |∇d|2 . (1.7)

Here, cw :=
∫︁ s
0

√︁
α(s)ds is the normalization parameter, α(d) is a continuous monotonic

function with α(0) = 0 and α(1) = 1, called as geometric crack function which determines
the distribution of the phase field [29, 30, 31]. The term α(d)

l
is local part, and l |∇d|2 is the

non-local part, which incorporates the internal length scale l. Due to the regularization of
the crack Γ by the phase field variable d, the elastic energy now not only depends on the
displacement field u(x), but also on the phase-field variable d as

Ψ(u, d) =

∫︂
B
g(d)Ψ0(ε(u)) dV, (1.8)

where g(d) : [0, 1] → [1, 0] is the energetic degradation function characterized by the deteri-
oration of the initial elastic energy function Ψ0(ε), with g(0) = 1, g(1) = 0, dg

dd
< 0. Hence,

the stored energy functional in Eq. (1.8) describes the transition from the intact state to the
fully damaged state. Thus the regularized energy functional of the solid in Eq. (1.6) takes
the form

Π(u, d) =

∫︂
Ω

[g(d) + ηl] Ψ0(ε) dV +

∫︂
Ω

GC
4cw

[︃
α(d)

l
+ l |∇d|2

]︃
dV − P(u(x)). (1.9)

The details regarding each of the terms involved in the Eq. (1.9) such as g(d), Ψ0(ε)α(d)
are explained in the sequel at length. The Eq. (1.9) approximates the Griffith’s energy in Eq.
(1.6) in the sense of Γ−Convergence under the conditions that the Eq. (1.9) satisfy
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1. Irreversibility: The crack can always grow with time, but cannot close in time. i.e
Γ̇(t) ≥ 0 or Γt ⊆ Γt+1.

2. Unilateral Stationary/Minimality Condition [16]: For the variations (δu, δd) of (u, d)
in appropriate space, the variation of total energy functional (in the sense of Gateaux)
implies

• δΠ = 0 for each (δu, δd) > 0,

• δΠ > 0 for (δu, δd) = 0.

3. Energy Balance: The energy Π has to satisfy the energy balance throughout the time
evolution. i.e ∀t ∈ [0, T ],

Π̇ =

∫︂
∂B

(σ · n) · u̇dA −
∫︂
B
ḟv · udV −

∫︂
∂Bt

t̄v̇ · udA, (1.10)

with stress σ defined as usual rate change of total energy with respect to strains ε. i.e

σ =
∂Ψ

∂ε
.

The solution (u, d) of the total energy functional in Eq. (1.9) along with the conditions as
mentioned above can be solved as

Determine (u, d) such that

(u, d) = Argmin
x
{Π(u, d)} , (1.11)

subjected the conditions mentioned above.
The governing equations under quasi-static loading conditions are determined by taking

first variation of the functional in Eq. (1.9) for the variation (δu, δd) of (u, d) results in

g(d)∇ · ∂Ψ0(ε)

∂ε
+ fv = 0 on B, (1.12a)

with σ · n = t̄ on ∂Bt, (1.12b)[︃
−g′(d)∂Ψ0(ε)

∂g
− GC

[︃
∂γ

∂d
−∇ ·

(︃
∂γ

∂∇d

)︃]︃]︃
= 0 if ḋ > 0 in B, (1.12c)[︃

−g′(d)∂Ψ0(ε)

∂g
− GC

[︃
∂γ

∂d
−∇ ·

(︃
∂γ

∂∇d

)︃]︃]︃
< 0 if ḋ = 0 in B, (1.12d)

along with
∂γ

∂∇d
· nB = 0 on ∂B. (1.12e)

Here,
[︃
−g′(d)∂Ψ0(ε)

∂g

]︃
is called as energetic crack driving force associated with the en-

ergy functional g(d)Ψ0(ε) = Ψ(ε, d). The unilateral stationarity condition along with the
irreversibility of the crack and boundedness of d leads to the first order optimality condition,
or often referred to as Karush-Kuhn-Tucker (KKT) condition

ḋ ≥ 0, (1.13a)

f(Y, d) ≤ 0 and ḋf(Y, d) ≡ 0, (1.13b)
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α(d) cw Citing articles
d 8/3 [9] (AT-1)
d2 2 [16] (AT-2)

1− (1− d)
p
2 - [9]

1− (1− d)2 π [32]
ζd+ (1− ζ)d - [33]
16d2(1− d2) 8/3 [34]

Table 1: Common geometric crack functions in the literature.

with

f(Y, d) =

[︃
−g′(d)∂Ψ0(ε)

∂g
− GC

[︃
∂γ

∂d
−∇ ·

(︃
∂γ

∂∇d

)︃]︃]︃
. (1.14)

Notice that, in the above expression, irreversibility condition Γ̇(t) ≥ 0 is replaced by
ḋ ≥ 0. This can be attributed to the composition of the crack path and it is very easy to see
that ḋ ≥ 0 implies Γ̇ ≥ 0.

1.3.2 Choice of functions
Geometric crack function

The geometric crack density function α(d) considered in Eq. (1.9) only state that α(d) ∈ [0, 1]
with α(0) = 0 and α(1) = 1, then it is possible to find a class of functions that satisfy
this condition. In the related literature different authors suggested different α(d) and the
resulting normalization values cw, some of them are listed in Tab. 1.

When α(d) = d2, the phase-field problem renders linear (within a staggered scheme) and
thus making the computation easier and cheaper. Moreover, d is between [0, 1] is ensured
easily, whereas in the other models of α(d), the boundedness of d ∈ [0, 1] have to be formally
enforced.

Stored energy function

The stored energy function describes the equilibrium state that defines the behavior of a
solid. i.e., d = 0 everywhere, the stored energy function describes the physics of solid. A
modification or rather choice of Ψ0(ε) in Eq. (1.9) presents different models such as brittle,
ductile, plastic, thermo-elastic, thermo-plastic, viscous, etc., some commonly used functions
are mentioned in the sequel.

(a) Isotropic Elastic Body: The stored energy function is defined as

Ψ0(ε) =
1

2
ε : C : ε =

1

2
λtr2(ε) + µε : ε, (1.15)

where C defines the linear elasticity tensor defined as C = 2µI + λ1 ⊗ 1 in terms of Lame
constants λ and µ. Here I is the fourth order identity tensor and 1 is the second order identity
tensor.
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Miehe [35, 28] proposed a tension/compression split of the elastic energy to prevent
cracking under compressed loads such that

Ψ(ε) = g(d)Ψ+
0 (ε) + Ψ−

0 (ε), (1.16)

with degradation function g(d) applied only in the tension Ψ+
0 (ε).

(b) Anisotropic Model:
The elastic energy due to Anisotropy can be defined as [36]

Ψ+
0 (ε) = µεD : εD : Ψ−

0 (ε) =
1

2
Ktr2(ε) (1.17)

where K represents bulk modulus. Here, the total strain ε is decomposed into volumetric
part εv and deviatoric parts εD [36] whose particular expression takes the form

ε = εV + εD; εV =
1

3
tr(ε)1, εD = ε− 1

3
tr(ε)1. (1.18)

The resulting degraded stress due to the strain spilt takes the form

σ = g(d)2µεD +Ktr(ε)1. (1.19)

Another most famous anisitropic split is proposed by Amor in [37] where the elastic
energy takes the form

Ψ+
0 (ε) =

1

2
K⟨tr(ε)⟩2 + µεD : εD; Ψ−

0 (ε) =
1

2
K⟨−tr(ε)⟩2, (1.20)

and the stress becomes

σ = g(d)[K⟨tr(ε)1⟩+ 2µεD]−K⟨−tr(ε)⟩1. (1.21)

where ⟨·⟩ is McAuley brackets defined as ⟨a⟩ := max{a, 0}. The resulting model due to this
particular spilt partially restricts the phase-field d to initiate in compression.

(c) Spectral Split:
Due to polar decomposition theorem, strain tensor can be split written in terms of prin-

ciple strains (eigenvalues) εn and the corresponding eigenvector pn (for n = 1, 2, 3)

ε =

3∑︂
n=1

εnpn ⊗ pn = ε+ + ε−, (1.22)

with positive and negative counterparts taking the form

ε+ =

3∑︂
n=1

⟨εn⟩pn ⊗ pn, ε− =
3∑︂

n=1

−⟨−εn⟩pn ⊗ pn. (1.23)

With this split, the elastic energy takes the form

Ψ±
0 (ε) :=

1

2
λ⟨±tr(ε)⟩2 + µε± : ε±. (1.24)

The resulting stress due to spectral spilt takes the form

σ = g(d)
[︁
λ⟨tr(ε)⟩1 + 2µε+]︁− [︁λ⟨−tr(ε)⟩1 + 2µε−]︁ . (1.25)
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g(d) Citing Article
(1− d)2 [16]

3(1− d)2 − 2(1− d)3 [34]
(3− s)(1− d)2 − (2− s)(1− d)3 [38]

4(1− d)3 − 3(1− d)4 [39]
(1− d)2

(1− d)2 +Q(d)
, Q(d) = a1d+ a1pd

2 [40]

(1− d)p

(1− d)p +Q(d)
, Q(d) = a1d+ a1a2d

2 + a1a2a3d
3 [33]

Table 2: Common degradation function.

The resulting model can completely suppress the initiation of the phase-field under com-
pressive loads.

Energetic degradation function

Energetic degradation function g(d) plays a major role in phase-field methods since it links
the elastic energy and crack phase-field d by degrading the elastic energy. Since d is bounded,
the degradation function g(d) = (1 − d)2 which maps g(d) : [0, 1] → [1, 0] is also bounded
[24]. Naturally, the function g(d) satisfies the following conditions;

1. g(0) = 1 representing the intact state and g(1) = 0 represents completely broken state
of initial elastic energy.

2. g′(d) = dg
dd
< 0, meaning that the function g(d) is a monotonically decreasing.

3. g′(d) = 0, i.e when the material is fully broken, due to (1) and (2), g(d) is forced to
stay complying g′(1) = 0. This condition also guarantees that the localization band
doesn’t grow orthogonally, which is usually observed in the other models such as
gradient enhanced damage models [9].

The common choices regarding the function g(d) in the related literature are listed in Tab.
2

1.4 Fatigue
Fatigue introduced fracture is considered one of the most frequent damages accounting for
up to 90% of all material failures. Its complex nature and inability to predict beforehand
make it extremely dangerous failure modes. In classical material science, fatigue is attributed
to material weakening due to small repeated loading. Micro-cracks develop energetically as
a consequence of sub- or micro-structural changes in the material. These micro-cracks fur-
ther depend on the material’s microstructure, ruled by stochastic process eventually coalesce
and leads to a macro-crack, where size is sufficient enough to overcome the microstructure’s
energy barrier to nucleate, eventually leading to failure.
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Figure 2: Schematic representation of a) SN curve, and b) Paris law.

The early studies regarding fatigue failure are dominated by empirical relations such as
Wöhler curves [41], Paris law [42, 43], Coffin [44], and Manson [45] ideas, based on extensive
experimental data fitting methods. Wöhler noticed the number of cycles (N) required to
failure for an applied stress amplitude of σa is related as

σa = ANβ ,

for some constants A and β that depend on the material. This curve, as in Fig. 2a), is named
as the S-N curve or Wöhler Curve. This approach beholds some important observations,
such as the presence of threshold amplitude below which the material is unlikely to fail. This
also shows that the stress amplitude is directly proportional to the number of cyclesN before
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fracture. Based in the number of cycles to failure N , fatigue can be broadly classified as (i)
Ultra-low/oliocycle fatigue (ULC), (ii) Low cycle fatigue (LC), and (iii) High cycle fatigue
(HC) as in Fig. 2b).

Following Wöhler, Palmgren [46] and Miner [47] introduce the idea of cumulative dam-
age. For a k different stress amplitudes in loading history, the damage contribution indepen-

dent of the order of applied load gives ηi =
1

Nσia
. Later, Paris [42] showed that in a single

cycle with crack length ′a′, the rate of change of crack length
da

dN
is directly proportional to

change in the stress intensity factor ∆K as

da

dN
= C∆Km,

for some constant C and m depend on the material property.
In the sense of a variational approach to fracture, as in the previous section, the phase-

field approach has been extended to include behavior. In this approach, fatigue is seen as a
degradation of the total crack energy by introducing scalar parameters that depend on the
factors such as stress, bulk energy, GC , lc, etc. Boldrini [48] presented thermo-mechanical
phase-field fatigue by introducing an additional scalar parameter. Schreiber [49] proposed
additional energy contribution to the total energy. A more intuitive approach regarding
fatigue is proposed by [50, 51, 52, 53, 54], where stiffness and fracture energy are degraded
as a function of cumulative stored potential. As a natural consequence, these models can
accurately recover Paris-law and S-N curves, making them self-sufficient. Recently, Seles
[52] proposed a cycle jumping technique to capture high cycle fatigue efficiently.

A summary of the proposed models is presented in this section. Recalling the regularized
fracture energy functional of the solid in Eq. (1.9) takes the form

Π(u, d) =

∫︂
Ω

[g(d) + ηl] Ψ0(ε) dV +

∫︂
Ω

GC
4cw

[︃
α(d)

l
+ l |∇d|2

]︃
dV − P(u(x)). (1.26)

To accommodate the fatigue behaviour, the crack energy in Eq. (1.26) is modified with
a fatigue degradation function f(ᾱ(τ)) for a properly defined cumulative history variable
ᾱ(τ) that depends on the pseudo time τ as

Π(u, d) =

∫︂
Ω

[g(d) + ηl] Ψ0(ε) dV +

∫︂
Ω

f(ᾱ(t))
GC
4cw

[︃
α(d)

l
+ l |∇d|2

]︃
dV − P(u(x)). (1.27)

Notice that, in order for the second integral to be meaningful, it is necessary that f(ᾱ(τ)) ∈
L1
loc(B). It is evident from Eq. (1.27) that fatigue degradation affects both local and non-local

terms. This choice makes the support of phase-field not change from its optimal profile.
Moreover, this further can be understood as reducing fracture toughness GC of the material.
Naturally, the fatigue degradation function has the following properties

f(ᾱ = 0) = 1; f(ᾱ→ ∞) = 0; f ∈ [0, 1]; f(ᾱ ≤ αT ) = 1; f ′(ᾱ) ≤ 0 for 0 ≤ f(ᾱ) ≤ 1,

for some threshold αT which triggers the fatigue effects.
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1.4.1 Cumulative history variable
The term ᾱ(t) describes the cumulative history effects due to fatigue. The related literature
for some suitable quantity α, used is as follows.

(i) Mean independent load fatigue is defined as

ᾱ(x, t) =

∫︂ t

0

H(αα̇)|α̇|dτ,

where H(αα̇) is heavy-side function defined as

H(αα̇) =

{︄
1 αα̇ ≥ 0 (loading)
0 otherwise (unloading)

,

(ii) Mean load-dependent fatigue

ᾱ(x, t) =
1

αN

∫︂ t

0

H(αα̇)αα̇dτ,

where αN is a normalization parameter used to achieve dimensional consistency. The stan-
dard choice of fatigue history variables (α) in literature are listed as follows:

(i) α = ε (in 1D) [55], which in multi-dimension takes the form α = ||ε||. Due to strain
singularity in crack tip, this choice is shown to be effective only in 1D, whereas in multi-
dimensional setting leads to meh dependency issues.

(ii) α = Ψ(ε, d), [55, 56] the total degradation strain energy ensures that the model is
not affected by crack tip singularity. However, this choice does not distinguish between
compression and tension, where this can be solved by only considering the active part/
tensile part of the strain energy as α = Ψ+(ε, d).

Notice that, in all the models mentioned above, due to the existence of the Heavy-side
function, the energy accumulation increases only during loading.

1.4.2 Fatigue degradation function
The function f(ᾱ(τ)) describes the degradation of the material property due to repeated
loading. The functions can be mainly categorised into asymptotic degradation (i.e as ᾱ(t) →
∞, f(ᾱ) → 0) and symptomatic degradation (i.e for ᾱ(t) > α∞, f(ᾱ) = 0).

The commonly used asymptotic degradation functions in the literature are

f(ᾱ) =

⎧⎪⎨⎪⎩
1 if ᾱ(t) ≤ αT(︃

2αT
ᾱ(t) + αT

)︃2

if ᾱ(t) ≥ αT

f(ᾱ) =

⎧⎪⎨⎪⎩
1 if ᾱ = 0(︃
1− ᾱ(t)

ᾱ(t) + α∞

)︃2

if ᾱ(t) ∈ [0,∞].

The commonly defined symptomatic functions are
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f(ᾱ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if ᾱ(t) ≤ αT[︃
1− k log

ᾱ(t)

αT

]︃2
if αT ≤ ᾱ(t) ≤ αT 10

1
k

0 if ᾱ(t) ≥ αT 10
1
k

f(ᾱ) =

(︃
ζlog

α∞

ᾱ(t)

)︃2

for ᾱ(t) ∈ [α∞, 10
1
ζ α∞],

for some material parameter α∞. See [52] for more details.

1.5 Objective and outlines
In the view of state-of-the-art computational methods, this work presents a novel contri-
bution to the variational approach to fracture for multi-physics applications in the spirit of
phase-field methods. In particular, the objectives of this thesis are fourfold.

• Developing a robust phase-field model for functionally graded materials when the in-
ternal length scale is constant and proving that such model Γ−Convergence to original
Griffith’s criteria.

• Development of multi-phase field model based on Puck’s failure criteria for anisotropic
fracture of long fiber-reinforced composites. Combined with cohesive zone modeling
methods, apply the model to capture delamination migration in the layered compos-
ites.

• Development of fully integrated non-linear thermo-elastic phase-field fracture method
of thin-walled structures for large displacement. Within this framework is a compre-
hensive analysis of the thermo-elastic behavior and extension of such a model to func-
tionally graded materials.

• Within this framework of thin-walled structures, extend the model to accommodate
fatigue failure such that Paris law and Wöhler curves are the natural consequence of
the developed model.

With these objectives in mind, this thesis is divided into six chapters:

1. Chapter 2 presents the phase-field approximation to fracture for Functionally Graded
Materials (FGM) incorporating the characteristic length scale as a material parameter.
A rule of the mixture is employed to estimate the material properties according to
the volume fractions of the constituent materials. Based on the ideas stemming from
size-scale effects, Γ-convergence for the proposed model is proved. A comprehensive
sensitivity analysis discusses the effects of various model parameters. Moreover, We
first prove that the fracture energy and the elastic energy of FGM are bounded by
their homogeneous constituents, and tools to predict are provided. Finally, the model
is validated against the benchmark example, and the applicability of the proposed
model is studied using numerous examples.

2. Chapter 3 presents the Multi-Phase Cohesive Zone model for laminated composites.
In this study, a novel Multi Phase-Field (MPF) model relying on the Puck theory of
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failure for intra-laminar failure at ply level is coupled with a Cohesive Zone Model
(CZM) for inter-laminar cracking. The model is applied to qualitatively predict de-
lamination migration in long laminated fiber-reinforced polymers composites com-
prising 44 cross-ply laminates. The reliability of the current approach is examined via
the correlation with experimental results. Furthermore, insight into the potential role
of different aspects of the delamination migration, including (i) the variation of the
ply angle in the migration zone, (ii) the load application point, and (iii) initial crack
length, is provided.

3. Biggest among all the chapters, chapter 4 is dedicated to the study of thermo-mechanical
analysis of thin-walled structures. A thermodynamically consistent framework for
coupled thermo-mechanical phase field for thin-walled structure using a fully inte-
grated finite element is developed. The model is equipped with Enhanced Assumed
Strains (EAS) to alleviate Poison and volumetric locking pathologies. This technique is
further combined with the Assumed Natural Strain (ANS) method leading to locking
free elements. Moreover, the same degradation function is used for both displacement
and thermal fields. The numeric of the model is further divided into three parts

(a) Section 4.4 provides examples of the model for thermo-elastic structures. More-
over, the model is combined with a cohesive zone to capture interface effects. In
addition to this, the model is validated against the benchmark examples, and the
applicability of the proposed model is shown using several examples.

(b) Section 4.5 provides the numerical implementation of the thermo-mechanical
model with phase-field. The role of temperature in crack propagation is demon-
strated using several benchmark examples. Examples regarding thin plates and
curved beams are provided to show the model’s capability.

(c) Section 4.6 provides the extension of the proposed model to FGM. Several bench-
mark problems (straight and curved shells) are provided and are compared against
their homogeneous surrogates. Moreover, crack deflection , and temperature
distributions in the FGM are compared. Effects of several material properties
on crack propagation are pinpointed. Finally, numerical modeling of the three-
phase/double FGM, which is becoming popular in recent times, is studied.

4. Chapter 5 concerns about the extension solid shell to include fatigue effects. As a nat-
ural consequence of the proposed model, Paris Law and Wöhler curves are recovered.
Several application examples are shown to demonstrate the predictive capabilities of
the model.

5. Finally, chapter 6 summarizes the main results and draws the conclusion of the thesis.
Furthermore, some lights are shed on the future development in the view of phase-
field methods.
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Chapter 2

Fracture in Functionally Graded
Materials (FGMs):
Γ−convergence and mechanical
insight on the effect of grading

This chapter is organised as follows. In Section 2.2, the main aspects of the modeling frame-
work to simulate crack propagation in FGMs are presented by considering the internal length
scale constant. A rule of mixture is employed to estimate the material properties, accord-
ing to the volume fractions of the constituent materials, which have been varied according
to given grading profiles. Based on the ideas stemming from the study of size-scale ef-
fects, Γ-convergence for the proposed model is proved when the internal length scale is
either constant or a bounded function. Section 2.3 provides the results of Γ-converges by
constructing a sequence of minimisers such that the sequence of functionals converges to
the Griffith’s potential. In section 2.4, the finite element implementation of the proposed
model is discussed using Broyden-Fetcher-Goldfard–shanno (BFGS) algorithm. Section 2.5
presents several representative examples starting with the validation experiment. In the
sequel, mechanical insights for the effect of grading is explored. Firstly, it is proved that the
bulk energy and surface energy of the FGM is bounded between those of its homogeneous
constituents. Later, the issue of crack propagation, the effects of Young modulus, apparent
strength, grading profile, initial crack length and position are addressed. An equivalence
relationship based on size-scale effects is provided along with the examples so that the large
models can be brought down to a smaller size to analyse them effectively and reduce com-
putational efficiency. An application example for a single fiber-reinforced FGM matrix is
explored to further assess the potential of the model for micro-mechanics. The content of
this chapter is mainly taken from [24].
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2.1 Introduction

Mismatch in the material properties of mechanical components generally leads to the oc-
currence of weak interfaces which induce abnormal stress concentrations, and eventually
leading to failure. In order to prevent such phenomena, the concept of Functionally Graded
Materials (FGM), i.e. materials with spatial composition, has been intensively exploited in
the last decades precluding interfacial stress concentration, and hence ameliorate resistance
to failure [57]. Such a technological solution has attracted attention in the engineering com-
munity and industry so far [58]. In the recent past, FGMs have gained a notable popularity
and have been applied in (but not limited to) turbine blades [59], rocket engines [60], artificial
bone implants [61], shell structures [62] and airplanes [57].

Various studies [63, 64] have shown that FGMs are fundamentally different from ho-
mogeneous materials, and hence their corresponding crack propagation behavior can be
especially complex [65]. There are multitude of factors affecting the crack growth of FGMs
including: the ratio of Young’s moduli [66], intrinsic toughness, strength variations [67], ge-
ometry, residual stresses, grading laws, among many other aspects. These factors suggest
that any predictive model for crack events in FGM should incorporate the intrinsic variation
of material properties according to its grading profile.

Cracks oriented perpendicular to the grading profile experiences asymmetric loading at
the crack tip and crack propagation may change its direction leading to mode-mixity, which
in turn alters the stress intensity [68, 69], while grading parallel to cracks leads to straight
propagation [67]. The effective composite properties of FGM generally vary in a continuous
manner within the specimen domain as a combination of its homogeneous constituents [65,
70]. Introduction of the continuous grading alters the stress field, leading to modified stress
intensity factors and mode mixity. Moreover, in this context, several studies revealed that
spatial variation in the toughness and in the yield strain [71, 72, 65] meant that the failure
stress/strain values at any point might depend on the grading. These factors inevitably
restricts the study of cracks in FGM using conventional numerical methods and hence their
general behavior with respect to crack propagation.

Derived from the previous complex response, computational methods such as the finite
element methods (FEM) have been extensively used in the literature for exploring fracture
in FGM and linear elastic fracture mechanics, see [73, 74, 75]. Early investigation of mixed-
mode cracks within the context of FEM can be seen in [76]. Gu et al. [77] used domain inte-
gral technique to simplify the model for calculating crack tip field for FGM. Anlas et al. [78]
estimated stress-intensity factors in FGM using FEM by assigning different homogeneous
properties to each element. Bao et al. [79] studied multiple cracking in FGM coatings. Kim
and paulino [80] developed and implemented general purpose FEM formulation consider-
ing mixed-mode cracks. Discrete numerical methods are widely used in the study of crack
propagation phenomena such as XFEM [81, 82, 83], scaled boundary FE formulation [84], re-
meshing algorithms based on cohesive elements (relying on the cohesive zone model, CZM)
[85, 86], isoparametric graded finite element formulation [87, 88, 89]. Recently, Hrishikesh et
al. [90] explored the possibility to simulate fracture events in FGMs using the phase field (PF)
approach for fracture due to its strong potential (especially for composite structures [91, 92,
93, 94] and heterogeneous media [95, 96, 97, 98, 99, 100, 101, 102]) and partially verified the
results with the experimental evidence. In this direction, recent studies concerned dynamic
crack propagation in FGM using the phase field method [103, 104], and meshfree methods
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[105], showing a tremendous potential, and providing a plausible route for the thorough
treatment of dynamic simulations.

In contrast to previous studies, in this investigation, we propose an extension of the
phase field model for fracture in [90] by considering the internal characteristic length scale
as a intrinsic material parameter. It has been proved in [106] that, when the internal length
scale l of phase-field is constant, it is equivalent to gradient damage model. Whereas, there
is a debate among the phase-field community that, when l is constant, the model cannot be
considered as phase-field model since Γ− Convergence of the model is lost. In this regard,
first, we carefully analyze that for any given bounded characteristic length scale (not limited
to FGM), proving that the total energy Γ-converges to the Griffith’s theory under the size-
scale effects using the mathematical setting as derived in [17]. Also, we gain a further insight
into the general mechanical properties of FGM which can be used to analyze, create or mod-
ify future design of FGMs. Due to the underpinned internal length scale, the difference in
the failure strain at any material point is addressed in line with [90, 65, 69]. With these argu-
ments, we also prove in two dimensional settings, gradient damage model is equivalent to
phase field. These ingredients yield to a novel PF crack method for FGMs which provides a
further potential for the exploration of the different aspects of the characteristic material and
length scale properties onto the overall cracking response of the specimen.

2.2 Variational formulation

2.2.1 Extension to FGM

Keeping in mind the mathematical model presented in Section 1.3, and total energy potential
defined in Eq. (1.9), geometric crack function is chosen in line with AT-2 model [29, 30,
31] as α(d) := d2 with normalization parameter cw :=

∫︁ s
0

√︁
α(s)ds. The choice of α(d)

is motivated [28] by the fact that quadratic function for α(d) ensures the admissible range
d ∈ [0, 1] with an infinite support. As a consequence, the phase field should be solved in the
whole computational domain. However, the high computational time due to finer mesh size
in order to resolve the gradients in the phase field is overcome by creating external localized
band on the crack path.

The elastic energy function defined in Eq. (1.9) is defined as Ψ0(ε) = ε(u)T : C : ε(u),
where C is the constitutive tensor relating stresses and strains. The degradation of the initial
elastic energy is performed using g(d) = (1− d)2 + ηl.

In the context of FGMs, it is evident that the the material properties exhibit a spatial
variation within the specimen domain, and therefore they are functions of the material point
[107, 108], i.e. depending on the location. Consider a FGM with grading profile Vf = Vf (x)
as a function of spatial variable x. Then all the material properties can be expressed as a
function of Vf (x) i.e GC = GC(x, Vf ) = GC(x) and the compliance tensor C = C(x, Vf ) =
C(x). The compliance tensor for the 2D plane strain takes the form:

C(x) =
E(x)

(1 + ν(x))(1− 2ν(x))

⎡⎣ 1− ν(x) ν(x) 0
ν(x) 1− ν(x) 0

0 0 1−2ν(x)
2

⎤⎦ ,
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where E(x) and ν(x) is the position-dependent Young’s modulus and Poisson ratio respec-
tively.

As an example, for ndim = 2, and x =[x, y] within a rectangular plate of width 2w and
height 2b, and grading in the y-direction, the volume fraction Vf of the material A can be
defined as Vf (x) =

(︁
1
2
+ y

h

)︁K , where K represent a material gradient index.
Then, via the invocation of the rule of mixtures, the Young’s modulus at a generic point

x ∈ B as E(x) = EA + (EB − EA)Vf (x), where EA, EB are the Young’s modulus of ma-
terial A and material B, respectively. Similarly, the fracture toughness KIC and the Pois-
son ratio ν are expressed as KIC(x) = KICA + (KICB − KICA)Vf (x) and ν(x) = νA +
(νB − νA)Vf (x) and hence the fracture energy for plane strain condition takes the form

GIC(x) = (1−ν(x)2)K2
IC(x)

E(x)
.

The internal length scale l is largely considered as a material parameter [37]. This length
scale l was experimentally determined in [109] for homogeneous materials, relating its value
to the apparent material strength. Once the material parameter such as Young’s modulus
E , fracture toughness GC are known, then the failure stress σc can be obtained using the
closed-form relation σc =

√︁
GCE/L, where L is the characteristics size of the specimen.

In particular, Tanné and co-authors [110] proposed that, once these material properties are

known, i.e σc, E, GC , then the characteristic length l can be set as l = 27
256

(︂
GIcE
σ2
c

)︂
.

The rationale behind the choice of constant length scale in [90] is due to the intricate
relation between critical stress σc and fracture toughness KIC = σcY

√
πa, where Y is a

geometric factor and ”a” is crack size. Under such conditions, the length scale given by l =
27
256

(︂
K2

IC
σ2
c

)︂
= 27

256
(Y 2πa) is a constant. However, within the context of FGM, this analysis

can be assumed as simplification rendering the condition that the fracture toughness can be
approximated asKIC = σ∞Y

√
πac, where ac is the smallest defect size, which in principle is

an internal defect size depending upon the intrinsic material properties. Moreover, a general
analysis might suggest that failure stress for FGM at different locations might also happen
at different values, yielding that the critical stress σc required for cracking is also a function
of grading. This later condition leads to approximate σc as a function of grading Vf (x), and
possibly the characteristics length scale l would be also a function of the spatial variation, i.e.
function of the material point location x. Thus, the variation of E,GIc, Vf on x suggests that
each material point x ∈ B has different characteristics, see [72] and the references therein.
Accordingly, and without any loss of generality, we assume in the sequel that σc = f(Vf )
[110, 111]

l(x) =
27

256

(︃
GIc(x)E(x)

σ2
c (x)

)︃
. (2.1)

Analyzing the previous expression, it is worth noting that the variation of length scale
l(x) depends on the elastic mismatch. For certain elastic mismatch, the variation of l(x) can
span across one order of magnitudes, as is discussed in the forthcoming sections.

Consequently, the total energy functional of Eq.(1.9) in the context of FGM is given by

Πl(x)(u, d) =

∫︂
B

[︁
(1− d)2 + ηl

]︁
Ψ0(ε) dV +

∫︂
B

GC(x)
2

[︃
d2

l(x)
+ l(x) |∇d|2

]︃
dV

−
∫︂
B
fv · u dV −

∫︂
∂B

t̄ · udS, (2.2)
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with Ψ0(ε) = ε(u)T : C(x) : ε(u)
Note that in order for the second integral in Eq.(2.2) to be mathematically meaningful,

i.e [112, 113] ∫︂
B

GC(x)
2

[︃
d2

l(x)
+ l(x) |∇d|2

]︃
dV ∈ L1(B),

GC(x) and l(x) has to be at least locally integrable functions, i.e GC(x), l(x) ∈ L1
loc(A) in a

compact set A ⊂ B with l(x) ̸= 0 for all x ∈ B. It is easy to see that, if Vf (x) ∈ L1
loc(A), then

by construction GC(x), l(x) ∈ L1
loc(A) for some compact set A.

2.2.2 Governing equation
The solution to Eq. (2.2) can be obtained by solving it as a minimization problem, i.e deter-
mine (u, d) from

(u(x), d(x)) = argmin
x

{Πl(x)(u, d)}. (2.3)

The governing (Euler-Lagrangian) equations under quasi-static conditions are determined
by taking first variation of the functional Πl(x)(u, d) in Eq. (2.2) in terms of Gateaux deriva-
tive for the variation δu and δd of u and d respectively, resulting in

[︁
(1− d)2 +Kl

]︁
∇ · σ(x) + fv = 0 on B, (2.4a)

with σ · n = t̄ on ∂Bt, (2.4b)

GC(x)
[︃

d

l(x)
− l(x)∆d

]︃
− 2(1− d)Ψ (ε,x) = 0 on B, (2.4c)

with ∇d · n = 0 on ∂B, (2.4d)

where n is the outward normal vector on ∂B.Note that on boundary, ∇d ·n = 0 and residual
stiffness Kl = 0 because of compactness property [17, 19].

The unilateral stationary condition [16] of the total energy functional implies that δΠl(x) =
0 for each δd, δu > 0 and δΠl(x) > 0 for δd, δu = 0, along with the irriversibility [16, 114]
and boundedness of d leads to the following first order optimality (KKT) conditions for the
quasi-static evolution.

ḋ ≥ 0, (2.5a)

GC(x)
[︃

d

l(x)
− l(x)∆d

]︃
− 2(1− d)Ψ(ε,x) ≤ 0, (2.5b)

ḋ

{︃
GC(x)

[︃
d

l(x)
− l(x)∆d

]︃
− 2(1− d)Ψ(ε,x)

}︃
= 0, (2.5c)

where ḋ = dd
dt

. The expression GC(x)
[︂

d
l(x)

− l(x)∆d
]︂

indicates the energetic crack resistance
and 2(d− 1)Ψ(ε) is the crack driving force.
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2.3 Γ-Convergence analysis
As mentioned above, due to the bounded nature of l(x), which may also involve non-
linearity due to heuristic differences in the material properties, the Γ-convergence in the
sense of [19, 17, 22] can still be applied under the assumption that the domain B is size-
scaled.

We use the existing results in [17] and prove that the model in Eq. (1.9), under scaling in
two dimension, mimics that of the AT-2 model with a little variation. Note that, it is possible
to apply the more recent advancements as in [115, 26, 116] with small modifications, but we
choose to use [17] because of the mechanical insight that can be derived from the L∞ bounds
on u(x).

In order for this proof to be self-consistent, we provide few important definitions and
results, while further details can be seen in [17] and references therein which are omitted here
for the sake of brevity. The proof is organised as follows, first we redefine the problem in
terms of a scaling function, convert the total energy in terms of scaling which is similar to that
of the classical AT-2 model. Using density and compactness results of the space SBD(B),
we prove that the reduced energy functional satisfies lim-sup inequality by constructing a
recovery sequence and later show that the results of [17] can be directly applied with small
modification to get lim-inf inequality, if l(x) is a bounded function (like in FGM) or even a
constant (like in [117, 118]).

2.3.1 Mathematical setting
Given u ∈ B, where B is open subset of Rndim , one says displacement u : B → Rndim has
bounded deformation (BD), whenever the symmetric part of the distributional derivative

ε(u) =

(︃
Du+DTu

2

)︃
is a bounded radon measure [27]. Moreover ε(u) can be decom-

posed into three parts, one absolutely continuous part with respect to Lebesgue measure dx,
denoted by e(u)dx, jump set carried by the rectifiable (N − 1) dimensional set Ju of points
where the function u has approximate limits u+(x) and u−(x) together with some normal
vector vu and Cantor part εc(u) which vanishes on Borel sets of finite Hndim−1 measure.
Meaning that, the crack set Γ (with respect to Lebesgue measure) is completely represented
by the jump set Ju of u. The space of SBD(B) (special function of bounded deformation) is
defined as

SBD(B) := {u ∈ BD(B); εc(u) = 0} .
Restricting the analysis to 2D case, i.e. B ⊂ R2. Let ū be a position vector ū = [ū, v̄]

defined on B such that for all ū ∈ B, the kinematic displacement field in B be defined as

u(ū) = [u(ū), v(ū)]. Define the scaling function Sϵ :=
(︃
1

2
+

1

2ϵ

)︃
and the continuous map

Su : B → B′ with Su ∈ R2×2 as

Su := Sϵ

[︃
1 0
0 1

]︃
. (2.6)

Define the inverse mapping S−1
u : B′ → B as

S−1
u :=

1

Sϵ

[︃
1 0
0 1

]︃
,
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where ϵ > 0 is a positive constant that goes to zero, and B′ is the scaled domain such that
B′ = SuB ⊂ R2. Let x be a position vector x := [x, y] defined on B′, then for all x ∈ B′, x is
defined in terms of scaling as x = Su (ū)

T . Meaning that

x = [x, y] = Sϵ

[︃
1 0
0 1

]︃ [︃
ū
v̄

]︃
= Sϵ[ū, v̄] = Sϵū.

The corresponding displacement field on B′ is defined as u(x). Assuming that each of
the displacement field is bounded uniformly (by applied displacement) in L∞(B′), for a
fixed large enough applied displacement M ′, we have the following theorem.

Theorem 1. Let B′ be a Lipschitz-regular bounded open set. Let M ′ > 0, ϵ > 0, for a positive
bounded function l(x) ∈ L1

loc(B′), define the functional for (u, d) ∈ L2(B′, R2)× L2(B′),

Πl(x)(u, d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫︁
B′

[︁
(1− d)2 +Kϵ

]︁
Ψ(e(u)) dV +

∫︁
B′

GC(x)
2

[︃
d2

l(x)
+ l(x) |∇d|2

]︃
dV

if (u, d) ∈ H1(B′, R2)×H1(B′), and ∥u∥L∞ ≤M ′

+∞ otherwise,
(2.7)

with Kϵ = o(ϵ) → 0 as ϵ → 0. Then, as ϵ → 0, Πl(x)(u, d) Γ−converges (in L2(B′, R2) ×
L2(B′)) to

Π(u, d) =

{︄∫︁
B Ψ(e(u)) dV + GCH1(Ju) if u ∈ SBD(B), d = 1 and ∥u∥L∞ ≤M ′

+∞ otherwise
. (2.8)

First, consider for all ū ∈ B, for displacement u(ū), it is assumed that u(ū) ∈ SBD(B),
and is bounded by ∥u∥L∞ ≤ M. Then, it is easy to see that for all x ∈ B′, there ex-
ists a constant M ′ depending on the scaling factor Sϵ and M such that the deformation
∥u∥L∞(B′) ≤ M ′. Hence, without loss of generality, we can assume that ∥u∥L∞(B′) ≤ M ′

where M ′ is applied displacement on B′.
Physically, this means that, if body B with the applied displacement M(u) produces

a strain of ε(u), then, depending on the scaling factor Sϵ, the same applied displacement

M(u) creates the strain proportional to
ε(u)

Sϵ
in B′ (assuming uniform deformation). Hence,

the applied displacement that is required to create the same strain ε(u) in B′ depends on the
scaling factor. To be precise M ′ ∝ SϵM.

In [17], the compactness results for u ∈ SBD(B) are shown in [Theorem 5.1, [17]]: If a
sequence (un)n≥1 in SBD(B) is such that supn≥1 Πl(x)(u,Γ) <∞, then up to a subsequence,
there exists u ∈ SBD(B) such that un → u strongly in L2(B,R2), e(un) → e(u) weakly in
L2(B;S2×2) and HN−1(Ju) ≤ lim infn→∞(Jun). Also, [Theorem 2, [17]] provides the density
results for u ∈ SBD(B) ∩ L2(B,R2). Assuming supn≥1 Πl(x)(u,Γ) < ∞, then there exist a
sequence (un) of displacement in SBD(B) ∩ L2(B,R2), and ∥un − u∥L2(B,R2) → 0, such
that Jun is closed in B, contained in a finite union of closed connected pieces of C1 curves,
un ∈ H1(B/Jun ;R

2) and lim supn→∞ Πl(x)(u, J̄un) ≤ Π(u, Ju).
With compactness and density results at hand, the proof of the Theorem 1 is organized

as follows. First we show that Eq. (2.7), by a simple change of variable can be reduced to
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the energy potential function similar to that of the potential used in [17], but with a little
difference. Later, we show the existence of minimizing sequence (uϵ, dϵ) to the reduced
model so as to prove the lim-sup inequality. Later, we show that for the lim-inf inequality,
the reduced model follows the same proof of lim-inf as in [17]. Due to the existence of
minimizing sequence, and lim-sup inequality assuming a suitable coercivity property of the
functional, the proof of the Theorem 1 is immediate.

2.3.2 Model reduction
Consider the energy functional in Eq. (2.7)

Πl(x)(u, d) =

∫︂
B′

[︁
(1− d)2 +Kϵ

]︁
Ψ(e(u)) dV +

∫︂
B′

GC(x)
2

[︃
d2

l(x)
+ l(x) |∇d|2

]︃
dV,

notice that B′ = SuB is the sizing domain which contains Sϵ, the size-scaling factor. The
choice of Sϵ is motivated by the fact that when ϵ = 1, Sϵ = 1 which coincide with the
domain B. As ϵ → 0, B′ expands and gives the same effect as if l → 0 in B, meaning that as
ϵ→ 0, the surface energy asymptotically goes to the H1(Ju) approaching a sharp crack.

Since, dealing with the expanding boundaries is mathematically challenging, by using
simple change of variable, it is possible to move Sϵ inside the integral. For this reason,
consider the scaling as defined before
x = Sϵū implying x = Sϵū and y = Sϵv̄.
From change of variable, we have∫︂

B′

f(x, y)dx =

∫︂
B

f(Sϵū, Sϵv̄) |J| dū,

for the Jacobian,

|J| = ∂(x, y)

∂(ū, v̄)
=

⃓⃓⃓⃓
⃓⃓⃓ ∂x∂ū ∂x

∂v̄
∂y

∂ū

∂y

∂v̄

⃓⃓⃓⃓
⃓⃓⃓ = ∂x

∂ū

∂y

∂v̄
= (Sϵ)

2 .

Now, the gradients can be defined as

∇u(x) =

[︃
∂u

∂x
,
∂u

∂y

]︃
,

∂u

∂x
=
∂u

∂ū

∂ū

∂x
+
∂u

∂v̄

∂v̄

∂x
=
∂u

∂ū

1

Sϵ
,

and
∂u

∂y
=
∂u

∂ū

∂ū

∂y
+
∂u

∂v̄

∂v̄

∂y
=
∂u

∂v̄

1

Sϵ
.

Now, ∇u(x) =
1

Sϵ
∇u(ū) where u(ū) is the displacement at scaled points. Notice that no

assumption of the displacement is made here. Hence, we have ε(u(x)) =

(︃
∇u+∇Tu

2

)︃
=

1

Sϵ
ε(u(ū)).
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As in the case of the linear elasticity Ψ(ε(u)) = ε(u) : C(ū) : ε(u), having a quadratic
form and since C(x) is positive definite matrix, C(ū) is the continuous one to one mapping
from B′ to B without changing the matrix or its positive definiteness. From this, we can

conclude that Ψ(ε(u(x))) =
1

S2
ϵ

Ψ(ε(u(ū))).

Now, the bulk energy becomes:

∫︂
B′

[︁
(1− d)2 +Kϵ

]︁
Ψ(e(u))dx =

∫︂
B

[︁
(1− d)2 +Kϵ

]︁ 1

S2
ϵ

Ψ(ε(u(ū))) |J| dū

=

∫︂
B

[︁
(1− d)2 +Kϵ

]︁
Ψ(ε(u(ū)))dū.

(2.9)

Physically, this means that for a fixed applied displacementM ′, the bulk energy released
by body B and B′ are equal which can also be readily seen numerically in forthcoming anal-
ysis. Now consider the surface energy in Eq. (2.7),∫︂

B′

GC(x)
2

[︃
d2

l(x)
+ l(x) |∇d|2

]︃
dx.

In order to inherit the result of [17], it is required that d∗ = 1 for intact material and
d∗ = 0 for fully broken state. Hence, renaming d, set d∗ = (1− d), we have surface energy as∫︂

B′

GC(x)
2

[︃
(1− d∗)2

l(x)
+ l(x) |∇d∗|2

]︃
dx.

Applying change of variable here would result in

∫︂
B′

GC(x)
2

[︃
(1− d∗)2

l(x)
+ l(x) |∇d∗|2

]︃
dx =

∫︂
B

GC(x)
2

[︃
(1− d∗(Sϵū))

2

l(x)
S2
ϵ + l(x) |∇d∗(Sϵū)|2

]︃
dū.

Without loss of generality, relabeling and renaming the variables leads to

∫︂
B′

GC(x)
2

[︃
(1− d∗)2

l(x)
+ l(x) |∇d∗|2

]︃
dx =

∫︂
B

GC(x)
2

[︃
(1− d∗)2

l(x)
S2
ϵ + l(x) |∇d∗|2

]︃
dx.

(2.10)
Combining bulk energy and surface energy leads to

Πl(x),ϵ(u, d
∗) =

∫︂
B

[︁
d∗2 +Kϵ

]︁
Ψ(ε(u))dx+

∫︂
B

GC(x)
2

[︃
(1− d∗)2

l(x)
S2
ϵ + l(x) |∇d∗|2

]︃
dx,

(2.11)
with ∥u∥L∞ ≤ M ′, d∗ = 0 for fully broken state and d∗ = 1 for intact state and d∗ : B →
[0, 1].
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Now, it becomes clear identify that functional in Eq. (2.7) and Eq. (2.11) are equivalent
to each other. Also, this equivalence has an important consequence as an engineering appli-
cation which is explained in Section 2.5.3. With the results on SBD(B) and L∞ bounds on
u, Theorem 1 is equivalent to showing the Γ−convergence to the following Theorem.

Theorem 2. Let B be a lipschitz-regular bounded open set. Let M ′ > 0, ϵ > 0, for a positive
bounded function l(x) ∈ L1

loc(B), define the functional for (u, d∗) ∈ L2(B, R2)× L2(B),

Πl(x),ϵ(u, d
∗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫︁
B

[︁
d∗2 +Kϵ

]︁
Ψ(ε(u)) dx+

∫︁
B
GC(x)

2

[︃
(1− d∗)2

l(x)
S2
ϵ + l(x) |∇d∗|2

]︃
dx

if (u, d∗) ∈ H1(B, R2)×H1(B) and ∥u∥L∞ ≤M ′

+∞ otherwise,
(2.12)

with Kϵ = o(ϵ) → 0 as ϵ → 0. Then, as ϵ → 0, Πl(x),ϵ(u, d
∗) Γ−converges (in L2(B, R2) ×

L2(B)) to

Π(u, d∗) =

{︄∫︁
B Ψ(e(u))dx+ GCH1(Ju) if u ∈ SBD(B), d∗ = 1 and ∥u∥L∞ ≤M ′

+∞ otherwise
.

(2.13)

Proof. First notice that mechanical energy is the same in both Eq. (2.7) and (2.12) , also recall
that Ju is

(︁
H1, 1

)︁
rectifiable. Because of Theorem 3 of [17], we just need to prove lim-inf

inequality for (u, d∗) with d∗ = 0 and u ∈ SBD(B) with H1(Jū) < ∞, replacing H1(Ju) by
H1(Jū) in the energy (also assuming the closure of Ju, i.e Jū is rectifiable). Define distance
function

d(x) := dist(x, Jū).

The volume of the area bounded by s-level set of d is

l(s) =
⃓⃓{︁
x ∈ R2; d(x) ≤ s

}︁⃓⃓
for all s > 0.

The distance function is 1-lipshitz, i.e |∇d(x)| = 1 a.e. Now the co-area formula for lipshitz
functions is given by

l(s) =

∫︂ s

0

H1({x; d(x) = t})dt,

so that, in particular we have that

l′(s) = H1({x; d(x) = s}).

Now, we can easily see that

lim
s→0

l(s)

s
= lim
s→0

∫︂ s

0

H1({x; d(x) = t})dt = H1(Jū),

26



as s→ 0, d(x) → 0 much faster than s itself and hence
l(s)

s
shrinks to H−measure. i.e

lim
s→0

l(s)

s
= H1(Jū).

The proof of the lim-inf inequality result is mostly now standard [119, 21, 120] and Cham-
bolle el at. [17] proved the result for linear elasticity. Hence, we show that the functional in
Eq. (2.12) reduces to the already proven results and sketch the proof afterwards.

Consider a sequence (uϵ, d
∗
ϵ ) that converges to (u, d∗) such that supϵ≥1 Πl(x),ϵ(uϵ, d

∗
ϵ ) <

∞, then it is easy to show by taking for each ϵ a level set with sϵ ≃ 1/2 such that
supϵ>0 H1

(︁
∂∗
{︁
d∗j > s

}︁)︁
< ∞, then there exists a sub-sequence (uϵj , d

∗
ϵj ) converges to

some (u, d∗) in L2(B) as ϵj → 0(or j → ∞) such that supj≥1 Πl(x),ϵ(uϵj , d
∗
ϵj ) <∞. First note

that, we must have d∗ = 1, and consider the surface energy functional, and apply young’s

inequality in L2(B) with a2 =
(1− d∗)2

l(x)
S2
ϵ , b2 = l(x) |∇d∗|2 and 2ab ≤ a2 + b2, we have

∫︂
B

[︄(︁
1− d∗j

)︁2
l(x)

S2
ϵj + l(x)

⃓⃓
∇d∗j

⃓⃓2]︄ dx ≥
∫︂
B

[︃⃓⃓(︁
1− d∗j

)︁⃓⃓ (︃
1 +

1

ϵj

)︃ ⃓⃓
∇d∗j

⃓⃓]︃
dx,

≥
∫︂
B

[︁⃓⃓(︁
1− d∗j

)︁⃓⃓ ⃓⃓
∇d∗j

⃓⃓]︁
dx

+

∫︂
B

[︃⃓⃓(︁
1− d∗j

)︁⃓⃓ (︃ 1

ϵj

)︃ ⃓⃓
∇d∗j

⃓⃓]︃
dx,

≥
∫︂
B

[︁⃓⃓(︁
1− d∗j

)︁⃓⃓ ⃓⃓
∇d∗j

⃓⃓]︁
dx,

so that, using the co-area formula, we obtain

Πl(x),ϵj (uj , d
∗
j ) ≥

1∫︂
0

ds

⎛⎜⎜⎝ ∫︂
{d∗j>s}

2sΨ(ε(uj)) dx+ (1− s)H1 (︁∂∗ {︁d∗j > s
}︁)︁⎞⎟⎟⎠ .

Here,
(︁
∂∗
{︁
d∗j > s

}︁)︁
is the reduced boundary of the finite perimeter set

{︁
x; d∗j (x) > s

}︁
as in [121, 27, 17]. We can adopt here the results of SBD case with uniform L∞ bound on the
u as in proof of [lemma 5.1 [17]], we have for almost each s ∈ (0, 1), we have that

∫︂
B

2sΨ(ε(u))dx+ 2(1− s)H1 (Ju)

≤ lim inf
ϵ→0

1∫︂
0

ds

⎛⎜⎜⎝ ∫︂
{d∗j>s}

2sΨ(ε(uj)) dx+ (1− s)H1 (︁∂∗ {︁d∗j > s
}︁)︁⎞⎟⎟⎠ .
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Integrating over s and using Fatou’s lemma and pass to the limits, we have the lim-inf in-
equality. i.e

Πl(x)(u, d
∗) ≤ lim inf

ϵ→0
Πl(x),ϵj (uj , d

∗
j ).

Now for the lim-sup inequality, we construct a sequence (uϵ, d
∗
ϵ ) which converge in L2 to

(u, d∗), meaning that there exists a sequence that can go upto the Griffith’s energy potential.
If the constructed sequence of minimizers converges to a minimum, and sequence of func-
tional also converge to the minimum value of the functional, then the limit of the sequence
functions of minimizing sequence also converges upto a subsequence.

Consider the following sequence of minimizers

uϵ(x) =

⎧⎨⎩
d(x)

αϵ
u(x) if 0 ≤ d(x) ≤ αϵ

u(x) Otherwise,
(2.14)

d∗ϵ (x) =

⎧⎪⎨⎪⎩
0 if 0 ≤ d(x) ≤ αϵ

1− ϵ√︁
2l(x)

exp

(︃
−d(x)− αϵ

ϵ2

)︃
if d(x) ≥ αϵ.

(2.15)

Clearly uϵ(x) → u in L2(Ω) as ϵ→ 0 i.e

∫︂
Ω

(uϵ − u)2 dx =

∫︂
0≤d(x)≤αϵ

(︃
d(x)

αϵ
u(x)− u(x)

)︃2

dx+

∫︂
d(x)≥αϵ

(u(x)− u(x))2 dx = 0,

meaning that ∥uϵ − u∥L2(B) = 0.

Similarly, d∗ϵ (x) → 1 as ϵ→ 0 almost everywhere since

d∗ϵ ≤ 1 and
ϵ√︁
2l(x)

exp

(︃
−d(x)− αϵ

ϵ2

)︃
→ 0 as ϵ→ 0.

Hence, we have that ∥d∗ϵ − d∗∥L2(B) = 0.
Now consider the bulk energy∫︂

B

[d∗2 +Kϵ] Ψ(ε(u))dx ≤
∫︂

0≤(x)≤αϵ

[︁
d∗2ϵ +Kϵ

]︁
Ψ(ε(uϵ))dx

+

∫︂
d(x)≥αϵ

[︁
d∗2ϵ +Kϵ

]︁
Ψ(ε(uϵ))dx,

∫︂
B

[d∗2 +Kϵ] Ψ(ε(u))dx ≤
∫︂

0≤(x)≤αϵ

≤
∫︂

0≤d(x)≤αϵ

KϵΨ(ε(uϵ))dx

+

∫︂
d(x)≥αϵ

[1 +Kϵ] Ψ(ε(uϵ))dx.

Note that for d(x) ≤ αϵ,
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∇uϵ(x) =
d(x)

αϵ
∇u(x) +

∇d(x)
αϵ

u(x) ≤ d(x)

αϵ
∇u(x) +

M ′

αϵ
.

Here, we used 1-Lipshitz characteristic of d(x) and L∞ bounds on the u. With this it is
immediate that as ϵ → 0, the volume of the integral between 0 ≤ d(x) ≤ αϵ shrinks to zero
and for d(x) ≥ αϵ,

Ψ(ε(uϵ)) ≤
(︃
d(x)

αϵ
∇u(x)

)︃2

+

(︃
M ′

αϵ

)︃2

+
d(x)

αϵ
|∇u(x)| M

′

αϵ
,

∫︂
B

[︁
d∗2 +Kϵ

]︁
Ψ(ε(u))dx ≤

∫︂
0≤d(x)≤αϵ

Kϵ

(︃
d(x)

αϵ

)︃2

Ψ(ε(uϵ))dx

+

∫︂
0≤d(x)≤αϵ

Kϵ

(︃
M ′

αϵ

)︃2

dx

+

∫︂
0≤d(x)≤αϵ

Kϵ

(︃
d(x)

αϵ

)︃2

M ′√︁Ψ(ε(uϵ))dx

+

∫︂
d(x)≥αϵ

[1 +Kϵ] Ψ(ε(uϵ))dx.

Now as ϵ → 0, αϵ = o(ϵ) → 0 faster than ϵ. Setting Kϵ = o(αϵ) → 0 faster than αϵ . So,
Kϵ

αϵ
→ 0,

d(x)

αϵ
→ 0 and∫︂

0≤d(x)≤αϵ

Kϵ

(︃
M ′

αϵ

)︃2

dx = Kϵ

(︃
M ′

αϵ

)︃2

l(αϵ) → 0.

With this, we can conclude that

lim sup
ϵ→0

∫︂
B

[︁
d∗2 +Kϵ

]︁
Ψ(ε(u))dx ≤

∫︂
B

Ψ(ε(u))dx. (2.16)

Similarly, consider the surface energy term without GC(x).

∫︂
B

[︃
(1− d∗)2

2l(x)
S2
ϵ +

l(x)

2
|∇d∗|2

]︃
dx ≤

∫︂
0≤d(x)≤αϵ

[︃
(1− d∗ϵ )

2

2l(x)
S2
ϵ +

l(x)

2
|∇d∗ϵ |

2

]︃
dx

+

∫︂
d(x)≥αϵ

[︃
(1− d∗ϵ )

2

2l(x)
S2
ϵ +

l(x)

2
|∇d∗ϵ |

2

]︃
dx

For d(x) ≥ αϵ

d∗ϵ = 1− ϵ√︁
2l(x)

exp

(︃
−d(x)− αϵ

ϵ2

)︃
,
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(︃
1 + ϵ

2ϵ

)︃2

|1− d∗ϵ |
2
=

(1 + ϵ)2

2l(x)
exp

(︃
−d(x)− αϵ

ϵ2

)︃
.

Calculating |∇d∗ϵ |2 , with a simple algebraic manipulation results in

l(x) |∇d∗ϵ |2 ≤ 1

2ϵ2
exp

(︃
−d(x)− αϵ

ϵ2

)︃
.

Putting this in the surface energy, we have

∫︂
B

[︃
(1− d∗)2

2l(x)
S2
ϵ +

l(x)

2
|∇d∗|2

]︃
dx ≤

∫︂
0≤d(x)≤αϵ

1

2l(x)
S2
ϵ dx

+

∫︂
d(x)≥αϵ

(1 + ϵ)2

2l(x)
exp

(︃
−d(x)− αϵ

ϵ2

)︃
dx

+

∫︂
d(x)≥αϵ

1

2ϵ2
exp

(︃
−d(x)− αϵ

ϵ2

)︃
dx.

In this inequality, first term and second term goes to zero as ϵ→ 0 is immediate. Consider
the third term

∫︂
d(x)≥αϵ

1

2ϵ2
exp

(︃
−d(x)− αϵ

ϵ2

)︃
dx =

1

2ϵ2

∫︂
d(x)≥αϵ

exp
(︂−s
ϵ2

)︂
exp

(︂αϵ
ϵ2

)︂
H1({d(x) = s})dx,

=
1

2ϵ2

∫︂
d(x)≥αϵ

exp
(︂−s
ϵ2

)︂
exp

(︂αϵ
ϵ2

)︂
l′(s)dx.

by setting
s

ϵ2
:= t, changing the variable and integrating it by parts would result in

∫︂
d(x)≥αϵ

1

2ϵ2
exp

(︃
−d(x)− αϵ

ϵ2

)︃
dx =

l′(αϵ)

2
+
e

(︄αϵ
ϵ2

)︄

2ϵ2

∫︂
d(x)≥αϵ

(︂αϵ
ϵ2

+ t
)︂ l(αϵ + ϵ2t)

2 (αϵ + ϵ2t)
e−tdt.

Taking limit of the function as ϵ→ 0 leads to

lim sup
ϵ→0

∫︂
B

[︃
(1− d∗)2

2l(x)
S2
ϵ +

l(x)

2
|∇d∗|2

]︃
dx ≤ H1(Jū).

Combining both surface energy and bulk energy we have the lim-sup inequality.
i.e

lim sup
ϵ→0

Πl(x),ϵ(uϵ, d
∗
ϵ ) ≤ Π(u, d∗).

and hence the proof of Theorem 2. By equivalence relation as stated, we also have the proof
of Theorem 1.
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2.4 Finite element formulation
In this section, the FE implementation of the multi-field displacement-phase field model
proposed in Eqs. (2.4a) and (2.4c) is presented. In order to construct the numerical solution
of the corresponding initial boundary value problem (IBVP), we consider the weak form
of the former set of equations for the test functions δu and δd of the primary fields u, d
respectively:

∫︂
B

[︁
(1− d)2 +Kl

]︁
σ : ε(δu)dV −

∫︂
B
fvδu dV −

∫︂
∂B

t̄δudS = 0,∫︂
B
GC(x)

[︃
d

l(x)
δd+ l(x)∇d · ∇δd

]︃
dV −

∫︂
B
2(1− d)Ψ (ε,x) δd dV = 0.

Note that, it is often recommended to use unequal interpolation orders for the coupled
multi-field problems in order to avoid stress oscillations and potential numerical interlock-
ing. Notwithstanding, it can be argued from previous investigations [122, 8, 123] that this
strategy is not required in the present study since the stress oscillations and numerical lock-
ing might only arise in a very narrow band of crack propagation and have negligible effects
on the convergence rates and numerical results of the overall problem.

Accordingly, we define dicretization B → Be, u → ue, δu → δue, d → de, δd → δde
such that ue ∈ Uh, ve ∈ Vh, de ∈ Ud, δde ∈ Uδd, and partition of unity holds for the
functional space for approximate functions

Uh(u) =

{︄
u ∈ H1(B)

⃓⃓⃓⃓
⃓∇u ∈ L2(B); u = ud on ∂Bd

}︄
, (2.17a)

Vh(δu) =

{︄
δu ∈ H1(B)

⃓⃓⃓⃓
⃓∇δu ∈ L2(B); δu = 0 on ∂Bd

}︄
, (2.17b)

Ud(d) =

{︄
d ∈ H1(B)

⃓⃓⃓⃓
⃓d(x) ∈ [0, 1], ḋ ≥ 0 ∀x ∈ B

}︄
, (2.17c)

Uδd(δd) =

{︄
δd ∈ H1(B)

⃓⃓⃓⃓
⃓δd ≥ 0 ∀x ∈ B

}︄
. (2.17d)

Upon the above setting, the displacement field ue and the strain field ε(ue) are interpo-
lated in terms of the nodal displacements du as follows

ue(x) ≈ N(x)du ∇ue(x) ≈ B(x)du, (2.18)

where N(x) is the matrix that arranges the shape functions associated with at the element
in computational domain Be , and B(x) identifies its corresponding spatial derivative (also
denominated as compatibility operator).

In a similar manner, complying with an isoparametric formulation, the FE discretization
of phase field d variable and the gradient ∇d in terms of nodal phase field dd renders
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de(x) ≈ N(x)dd ∇de(x) ≈ Bd(x)dd, (2.19)

where the same order of interpolation is chosen for the displacement and the phase field
variables.

Through the insertion of the previous interpolation scheme for the displacement and the
crack-like phase field variable, the discrete versions of the element residual vectors for both
fields are given by

ru =

∫︂
Be

(︁
(1− d)2 +Kl

)︁
BT(x)σ dV −

∫︂
Be

NT(x)fv dV −
∫︂
∂Be

BT(x)t̄dS,

rd :=

∫︂
Be

−2(1− d)NT(x)Ψ (ε,x) dV +

∫︂
Be

GC(x)
l(x)

[︂
NTd+ l(x)2(Bd)T∇d

]︂
dV.

The solution is computed using quasi-newton solver. In line with [124, 125], the stiffness
matrix is updated after each iteration according to Broyden-Fletcher-Goldfarb-Sahnno(BFGS)
algorithm . In such case the initial guess for BFGS to estimate (t+∆t)th time step takes the
form [︃

du
dd

]︃
t+∆t

=

[︃
du
dd

]︃
t

−
[︃

Kuu 0
0 Kdd

]︃−1

t

[︃
ru
rd

]︃
t

. (2.20)

Equivalently, we can express

(z)t+∆t = (z)t −K−1
t (r)t, (2.21)

where

∂Ru

∂du
= Kuu =

∫︂
Be

(︁
(1− d)2 +Kl

)︁
BTC(x)B dV, (2.22)

∂Rd

∂dd
= Kdd =

∫︂
Be

2NTNĤ dV +

∫︂
Be

GC(x)
l(x)

[︂
NTN+ l(x)2(Bd)(Bd)T

]︂
dV. (2.23)

are the elemental tangent stiffness matrix.
The above system of equations incorporates the history variable as in [35], denoted as Ĥ,

in order to ensure irreversibility of the crack defined as

Ĥ = max
τ∈[0,t]

(Ψ(t)). (2.24)

The approximated stiffness matrix K̃ is updated after a set number of iterations in case
of not having an converged solution using

K̃ = K̃t −
(K̃t∆z)(K̃t∆z)T

∆zK̃t∆z
+

∆r∆rT

∆zT∆r
, (2.25)
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where ∆z = zt+∆t− zt, and ∆r = rt+∆t− rt. Therefore, that the approximated stiffness
matrix K̃ satisfies

K̃∆z = ∆r. (2.26)

The system of equations has been implemented in finite element software ABAQUS in
order to take advantage of the in-built BFGS solver. For this purpose, a user defined UEL
is written for the coupled equilibrium equations. Moreover, with regard to the FGM for-
mulation, the corresponding variation of material properties has been implemented at each
material integration point in a continuous manner by fetching the data COORDS(nnode,
mcrd) in abaqus UEL subroutine.

2.5 Virtual testing
In this section, for validation purposes, a comprehensive numerical example of asymmetric
three-point bending of PMMA beam is discussed. A qualitative assessment of crack path is
performed, which is validated against available experimental results in order to show the
predictive capabilities of the proposed model. Subsequently, using the classical benchmark
problem of single-edge notched plate under tensile loading conditions, mechanical insights
based on variation of Young’s modulus ratio, initial crack length and position of the model
are pinpointed, in conjunction with a final discussion on size-scale effects emphasizing the
equivalence relationship. Finally, the current PF method for FGM is applied to study the
failure initiation and propagation at the micro-scale in a single-fiber reinforced FGM matrix
problem.

2.5.1 Properties and grading function
Let A and B are two material compositions of the functionally graded material with the
volume fraction of material A in the y-direction given as

Vf (x) =

(︃
1

2
+
y

h

)︃K
, (2.27)

where K is a grading constant. The volume fraction of material B can be estimated as
VB(x) = 1 − Vf (x). Based on the rule of mixtures, the corresponding Young’s modulus,
fracture toughness, Poisson ratio and apparent strength in terms of volume fractions takes
the form

E(x) = E1 + (E2 − E1)Vf (x), (2.28a)

KIC(x) = K1c,1 + (K1c,2 −K1c,1)Vf (x), (2.28b)

ν(x) = ν1 + (ν2 − ν1)Vf (x), (2.28c)

σc(x) = σc1 + (σc2 − σc1)Vf (x). (2.28d)

Assuming plain strain condition for all the numerical experiments, we have
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y(mm) EA(MPa) ν KIC,A (MPa
√

m)
0 1780 0.41 0.99
60 4000 0.39 1.19

Table 3: Material Properties of PMMA beam

GC(x) =
(1− ν(x)2)KIC(x)

2

E(x)
, l(x) =

27

256

(︃
GC(x)E(x)

σ2
c (x)

)︃
. (2.29)

All the material properties in the subsequent sections take the form as mentioned, unless
specified.

2.5.2 Model validation
In this section, we investigate crack propagation in a graded PMMA beam subjected to three-
point bending with unsymmetrical loading conditions. In this example, we consider the
grading along the y-direction with the boundary condition shown in Fig. 3. All the material
properties are taken as the linear combination of the homogeneous properties in the grading
direction according to the rule of mixtures as in Section 5.1. The material properties of the
PMMA beam are listed in Table 3 in line with [126].

The domain is discretized with 97371 4-node quadrilateral plane stress elements. The
length of each side of element near the process zone is kept less than 0.2 mm in order to
ensure that gradient of the phase-field is resolved properly.

P

15 120 11520

20

x

y

30

* All the dimensions are in mm 

18

30

Figure 3: A crack in a beam subjected to three-point unsymmetrical loading.

Fig. 4a shows the crack propagation path due to asymmetrical loading. Fig. 4b shows
the comparison of the crack trajectories for the graded PMMA beam obtained by the present
model and the experimental (averaged) results as in [126]. The crack propagation path due
to the present model shows an excellent agreement with the experimental results. Moreover,
Fig. 5 shows the comparison of the reaction force v/s displacement curve for the constant
characteristic length scales of l = 1.49, l = 2.51 and the variable length scale l(x). The results
indicates that the small variation in the length scale affects the system behaviour which are
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Figure 4: Crack propagation of PMMA beam under unsymmetrical loading condition.
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Figure 5: Comparison between constant l and l(x) for the reaction forces of asymmet-
rical three-point loading.

reflected in the reaction force vs displacement curve (note that the grading profile chosen in
this application is relatively smooth).
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2.5.3 Insight on grading
In this section, we present several numerical examples which include a classical benchmark
problem, corresponding a single-edge notched plate under monotonic tensile loading con-
ditions up to failure. For each of the examples herein investigated, the effects of Young’s
modulus ratio, size effects, crack length and position effects, grading profiles on the crack
propagation are pinpointed. Also, we provide a general behavior discussion on the response
of FGM specimens using simple mathematical manipulations in order to support the numer-
ical examples.

With the aim of understanding the effects of change of l at every material point, we
invoke the following theorem.

Theorem 3. With the usual notations mentioned before, for every x ∈ Rndim , under the same
domain B and loading conditions, for any given grading function Vf ∈ L1

loc(B),
1. Elastic energy Ψ(u, d) of FGM is comprised (bounded from above and below) between its

homogeneous material composition. i.e

Ψ(u, d)

⃓⃓⃓⃓
Emin

≤ Ψ(u, d) ≤ Ψ(u, d)

⃓⃓⃓⃓
Emax

.

2. Surface energy Ψc(d) created due to fracture is bounded between its homogeneous material
composition if the function f(x) = σ2(x)

E(x)
is monotonic

Ψc(d)

⃓⃓⃓⃓
f(x)min

≤ Ψc(d) ≤ Ψc(d)

⃓⃓⃓⃓
f(x)max

.

Proof. Part-1: Let FGM has its constituents as material A and B. Assume EA > EB , then for
all x ∈ B, Vf (x) ∈ L1

loc(B) is a function such that, by construction

EB = Emin ≤ E(x) ≤ Emax = EA meaning that E(x) ∈ [EB , EA].

Extending this inequality for the compliance tensor C(x) along with the fact that C(x) is
positive definite1 leads to

C

⃓⃓⃓⃓
EB

≤ C(x) ≤ C

⃓⃓⃓⃓
EA

. (2.30)

Consider the elastic energy of the FGM

Ψ(u, d) =

∫︂
B

[︁
(1− d)2 +Kl

]︁ (︂
ε(u)T : C : ε(u)

)︂
dV, (2.31)

then for all x ∈ B, d ∈ [0, 1] implies that
[︁
(1− d)2 +Kl

]︁
≥ 0. Hence, the Eq. (2.31) can be

bounded using Eq. (2.30) as

Ψ(u, d)

⃓⃓⃓⃓
EB

≤ Ψ(u, d) ≤ Ψ(u, d)

⃓⃓⃓⃓
EA

.

1[Note that Youngs modulus E is many orders of magnitude larger than Poisson ratio ν, and hence
the effect of ν is almost zero].

36



Now, if EB > EA, then the above arguments holds true with EA ≤ E(x) ≤ EB and
hence the inequality now takes the form

Ψ(u, d)

⃓⃓⃓⃓
EA

≤ Ψ(u, d) ≤ Ψ(u, d)

⃓⃓⃓⃓
EB

.

In both case, the elastic energy is bounded by its homogeneous constituent materials.
Part-2:- We will only prove for the case EA > EB , since the case EB > EA is a trivial

extension. Consider the surface energy of the FGM

Ψc(d) =

∫︂
B

GC(x)
2l(x)

d2 + GC(x)l(x) |∇d|2 dV,

from Eq. (2.1), we have

GC(x) =
(︁
1− ν(x)2

)︁
K2
IC(x)

E(x)
, l(x) =

27

256

(︃
GC(x)E(x)

σ2
c (x)

)︃
.

Surface energy can be bounded by the following chain of inequalities

∫︂
B

256σ2
min

27EA
d2 +

27
(︁
1− ν(x)2

)︁2
K4
IC(x)

256σ2
minEA

|∇d|2 dV

≤
∫︂
B

256σ2
c (x)

27E(x)
d2 +

27
(︁
1− ν(x)2

)︁2
K4
IC(x)

256σ2
c (x)E(x)

|∇d|2 dV

≤
∫︂
B

256σ2
max

27EB
d2 +

27
(︁
1− ν(x)2

)︁2
K4
IC(x)

256σ2
maxEB

|∇d|2 dV. (2.32)

Case-1: When σmin = σA and σmax = σB
If σmin = σA and σmax = σB meaning that σB ≥ σA, then σ(x) ∈ [σA, σB ], then the

surface energy of FGM is trivially bounded between its homogeneous constituents. i.e

Ψc(d)

⃓⃓⃓⃓
A

≤ Ψc(d) ≤ Ψc(d)

⃓⃓⃓⃓
B

.

Case-2: When σmin = σB and σmax = σA
If σmin = σB , σmax = σA then the bound for surface energy in terms of its homogeneous

constituents exist if
σ2
min

EA
≤ σ2(x)

E(x)
≤ σ2

max

EB
,

is true.
In many materials,E(x) is some orders of magnitude greater than σ2(x), (assuming that

both are in MPa ) otherwise, clearly σ2(x) is dominant. But in some materials,E(x) can be of
same order or less than σ2(x). Under these circumstances, we incorporate an extra condition
such as the function f(x) = σ2(x)

E(x)
is monotone. Thus, if f(x) is monotonic, then clearly the
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extremes of the function lies on the boundaries since f(x) is bounded function. Hence, we
have

σ2

E

⃓⃓⃓⃓
⃓
A

≤ σ2(x)

E(x)
≤ σ2

E

⃓⃓⃓⃓
⃓
B

or
σ2

E

⃓⃓⃓⃓
⃓
B

≤ σ2(x)

E(x)
≤ σ2

E

⃓⃓⃓⃓
⃓
A

,

depending on weather the function is monotonically increasing or decreasing. Hence sub-
stituting this in the surface energy inequality Eq. (2.32), we have that surface energy of FGM
is bounded by its homogeneous constituents if the function f(x) is monotone2 3. Physically,
this also means that the function f(x) is also constituent for the crack driving force and not
just E(x).

Effect of grading on the Young’s modulus

Consider a pre-cracked plate with displacement on one side of the boundary and fix the
other side as shown in the Fig. 6. In this specimen configuration, a denotes the length of
the initial crack, b and w are the height and the width centered at (0, 0). In this section,
we consider values of K1cA = 3.5MPa

√
m, K1cB = 8MPa

√
m, νA = 0.21 and νB = 0.31

as the effects of small perturbation to their values shows to be non-sensitive and have no
significant difference in the overall system behaviour. The model is discretized with 118400
4-node quadrilateral plane stress elements.

In the context of crack propagation, the initial characterization for FGM can be done in
terms of elastic mismatch and further can be made based on the apparent strength. The-
oretically, it is possible to create a functionally graded materials with any combination of
materials and hence it is better to consider an abstract value than that of the exact material
properties so that the extreme effects can be simulated for further research development. To
support this claim, consider Alumina-Zirconia which has Young’s modulus ratio of approx-
imately 1.65, similarly Aluminum-Alumina, Alumina-Silica, Alumina-Epoxy have ratios of
4.78, 10, 100 respectively, see [65] for more details. Hence, in this section, we consider four
ratios of EA

EB
with 2,5,10 and 20 by settingEA = 300 GPa, to demonstrate the effects of elastic

mismatch.
As in Theorem 3, the influence of Young’s modulus cannot be considered in a separate

manner, since the effect of fracture stress plays a major role in the crack propagation and
surface energy release rates of the FGM. For this reason, we consider cases when material A
has strength greater than material B (case-1 in Theorem 3) and when material B has greater
strength than material-A (case-2 in Theorem 3). The reaction curves for the EA

EB
= 2 can be

seen in Fig. 7 with material properties as reported in Table 4 along with their constitutive

2Note: The case that f(x) is not monotone would arise if σ2
min
EA

≃ σ2
max
EB

, in other words if the

ratio
(︂
σmin
σmax

)︂2 (︂Emin
Emax

)︂
≃ 1,then the bounds are very tight and hence the function f(x) losses its

monotonicty since f(x) is quadratic function. Example of such case is given in Fig. 10. Also notice

that if the ratio
(︂
σmin
σmax

)︂2 (︂Emin
Emax

)︂
< 1, then the system behaves like in case-1 and hence bounds are

guaranteed. We give numerical example showing all the cases in the example-1.
3Note: Notice that the constants in the non-local part of the surface energy is very small due to the

product σ2(x)E(x), also the variation of the surface energy would lead to negative constants and hence
have no effect on the bounds.
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Figure 6: Plate with an edge crack under uni-axial tension.

EA(GPa) EB(GPa) σA(MPa) σB(MPa) KIC,A (MPa
√

m) KIC,B(MPa
√

m) νA νB

Case-1 300 150 600 300 3.5 8 0.21 0.31Case-2 300 600

Table 4: Material Properties for EA
EB

= 2

behaviour as in Eq. (4.5) and (2.29) for different values of the grading constant K. Similarly,
for the reaction curves for the ratios EA

EB
= 5 and EA

EB
= 10 are given in Fig. 8.

Analyzing the present results, it is possible to observe that when EA
EB

= 20 is considered,
as in Fig. 9, the results are not different from that outlined in Theorem 3. For any material
property with EA

EB
= 20 (which is usually the case), the difference in length scale parameter

is at least one order magnitude greater than the smallest length scale. In such cases, relying
on the present computational results, we can argue that the variation of the length scale
within the specimen domain cannot be neglected. We have also shown previously that the
failure stress plays a major role in the crack propagation which is inversely proportional to
the length scales, which is also consistent with the previous investigations on the matter, see
[90, 127, 107, 111].

Continuing with the analysis of the present results, we notice that with the material prop-
erties used to obtain the results plotted in Fig. 7, 8 and 9, the crack propagation direction is
towards minimum Young’s modulus. The steepness in the reaction forces representing the
crack nucleation is due to the mismatch in Young’s modulus. As expected, configurations
with the highest mismatch exhibit the steepest gradients. The FGM variation in this case
is linear as the difference in mechanical energy release rate due to the change of grading of
volume fraction is linear, see Eq. (2.30). This implies, depending on the volume fraction,
the crack nucleation in the FGM is a linear combination of its homogeneous constituents.
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Figure 7: Material properties for EA
EB

= 2 (Left) reaction forces for the case-1, (Right)
reaction forces for case-2.
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Figure 8: Reaction curves with σA = 600MPa and σB = 300 MPa for (Left) EA
EB

= 5,
(Right) EA

EB
= 10

Similarly, σ determines the maximum value (cut-off) of the reaction curves, with a trend
consistent with what is expected for homogeneous materials. FGM formed due to variation
of σ in turn on l is quadratic in nature from Eq. (2.1). Meaning that, depending on volume
fraction and σ2

E
ratio, the apparent strength is a quadratic combination of its homogeneous

constituents. In order to understand what happens when the monotonicity of σ2

E
is lost, con-

sider the following example with the Young’s modulus ratio EA
EB

= 1.5, and σA = 300 MPa
and σB = 245 MPa and keeping the rest as in Table-4 can be seen in Fig. 10. Even though all
intrinsic material properties are monotone, the ratio of σ2

E
is not monotonic so far, and hence

the surface energies neither fall under case-1 nor case-2, hence crack propagation and the
reaction forces of these FGMs cannot be predicted using its homogeneous constituents only

40



in an accurate manner. This aspect suggests that the crack path cannot be easily predicted,
requiring either the conduction of a careful experimental campaign (producing such com-
plex samples) or the use of suitable numerical models that enabling capturing such intricate
response.
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Figure 9: (Left) Reaction forces for the case-1, (Right) reaction forces for case-2 with
EA
EB

= 20.
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Figure 10: Material properties along with EA
EB

= 1.5 (Left) material properties, (Right)
corresponding reaction forces.
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Effect of initial crack position and crack length

In this subsection, we explore the effect of the initial crack position and crack length in the
FGM with linear grading, by considering EA

EB
= 2, with EA = 300 GPa and σA = 600MPa

and σB = 300MPa, K1cA = 3.5 MPa
√

m and K1cA = 8 MPa
√

m. The overall behavior
with respect to any other cases (as well as grading profiles) are similar. In this concern, if a
represents the length of crack as in Fig. 6, keeping the w = b = 1 the variation of the crack
length keeping everything else the same results in the reaction curves as shown in Fig. 11
(a). Stemming from these results, it becomes evident that, as the initial crack length decreases
the elastic energy required for the crack to propagate is higher. Hence, we can see that the
steepness in reaction curves due to the elastic energy release rate increases as crack length
decreases. Similarly, the surface energy required for the material to fracture is also higher
with decrease in crack length.

In line with the previous discussion, if a square plate with a = w = b = 1 in Fig. 6 is
taken, but the crack is placed at a distance c in the y-direction from center of the specimen,
then we obtain the results depicted in Fig. 11 (b). Analyzing this graph, we can observe that
the overall mechanical energy is nearly coincident for all the experiments, since the initial
crack length is the same for each of the cases, but the surface energy is slightly different from
each other due to asymmetric loading on the crack tip. As a major conclusion, by changing
position of the initial crack tip in the direction of increasing σ2

E
would decrease the surface

energy.
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Figure 11: Load-displacement curves for (Left) change of crack length (Right) change
of crack position.

Fig. 12 shows the reaction curves for different grading profiles. From this graph, it is
easy to notice that, if the grading direction is along the x-axis (grading-6 as in 12) opposite
to the crack propagation path, the reaction curves shows a gradual drop. Also, grading-1,
grading-2, grading-3, and grading-4 profiles has different material properties at their crack
tip and the corresponding reaction curves shows similar surface energies release rates but
different elastic energy release rate.
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Figure 12: Load-displacement curves for different grading profiles.

Size-scale effects

Figure 13: (Left) angle of crack deflection due to different Young’s modulus ratio (Right)
maximum reaction due to size effects.

In this subsection, we consider the size-scale effects for FGMs with linear grading and
keeping the material properties as in Subsection 2.5.3, while change the dimensions w to
account for a square specimen. If we scale the Fig. 6 including also the crack length, keep-
ing the internal length scale constant, it is easy to see from Eq.(2.2) that the potential energy
increases as the domain is expanded. Also, from the numerical viewpoint, the same con-
clusion holds for the reaction forces, whilst the elastic energy release rate is kept constant
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but the surface energy release becomes higher. Since the maximum reaction force is directly
proportional to the maximum surface energy release rate, it is also interesting to see that the
scaling factor follows a power law as in Fig. 13(b). This constitutes the main idea of the
Γ−convergence proof presented in Section 2.3.

We emphasize on the equivalence relation that, from Eq. (2.7) and Eq. (2.12) it is easy to
see that for every increase in size (of domain) of Eq. (2.7), there exists a ϵ in Eq. (2.12) such
that the bulk and the surface energies are equal due to continuous mapping Su. Meaning
that, it is possible to find a ϵ value in Eq. (2.12) which mimics the size-scale effects of Eq.
(2.7). This idea can have direct applications in engineering design and analysis.

Recalling this idea, let consider a problem of fracture on a large model, which is possible
to reduce to model to a very small convenient size and find the ϵ such that the reduced
model mimics the original one. For example, by setting b = w = 10, ϵ value for Eq. (2.12)
using the following straightforward relation b′ = 1

2
(1 + 1

ϵ
)b, to mimic any value of b′. For

b′ = 25, 50, 100, the value of ϵ = 0.25, 0.110, 0.05263 respectively are equivalent. Meaning
that, it is possible to simulate the behaviour of the model b′ = 25, with ϵ = 0.25 and b = 10
from Eq. (2.12). As one expects, the comparison between numerical experiments done using
Eq. (2.7) and Eq. (2.12) would give same results as in Fig. 13(b). For b ̸= w, ϵ is calculated by
the approximate area of the domain such that b′w′ = ( 1

2
(1 + 1

ϵ
))2bw for some fixed b, w.

Also, it can be seen from the power law that as the scaling approaches infinity in Eq. (2.7)
(or ϵ approaches zero from Eq. (2.12)), the maximum reaction force also approach infinity
asymptotically, hence can be considered as the numerical evidence for Γ−Convergence.

2.5.4 Micromechanical application

L

RFiber

Figure 14: Micromechanics of fiber-reinforced FGM material under transverse tensile
loading conditions: geometry and boundary conditions.

In this subsection, the proposed model is applied to a fiber-reinforced specimen with
a functionally graded material matrix. This application intends to revisiting the cases pre-
sented in [95, 16] for homogeneous matrix. Nevertheless, differing from precedent investiga-
tions of the authors [95], we neglect the potential presence of fibre-matrix decohesion events
(usually modelled via interface-like models) in order to preserve the main focus of the cur-
rent investigation. In addition to the previous considerations, it is worth mentioning that
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the present application inherently incorporates different scale separations due to he homog-
enized FGM properties in the matrix (which implies a FGM microstructure) and the explicit
discretization of the fiber. A more careful analysis scale separation assumptions could be
investigated via the methodology developed in [128].

The baseline single-fiber domain is subjected to transverse loading conditions from micro-
mechanical perspective is considered as in [95] and the reference therein. A squared 2D do-
main complying with a brittle response contains a circular fibre, see Fig. 14. The domain
is meshed with 120000 first order plane-stress elements and 1000 steps are used to run the
computations under displacement control.
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vs L
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ratio for different (left) Young’s modulus ratio (right) fracture
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The system properties consists of circular transverse section of side length vs radius
L
R

= 4. Both, the fiber and the matrix are considered to obey a linear elastic material be-
haviour with a FGM matrix. Without any loss of generality, the baseline properties for the
present numerical investigations recall some standard values previously reported in the re-
lated literature [95]. In this regard, the properties of the fiber is taken to be Ef = 78 GPa and
Poisson’s ratio of νf = 0.22. The FGM properties areEA = 2.8 GPa, νA = 0.33 , GC,A = 0.016
N
mm

. Keeping these properties constant, the material properties such as EB , GC,B are varied
to understand the effects of different grading, and preserving the ratio Ef

EA
= 27.8 through-

out the section in conjunction with varying EA
EB

ratio and GC,A

GC,B
ratio.

The dimensionless parameters d
L

for the applied displacement d is plotted against R
LσA

(R denoting the overall reaction forces at left edge of the system) for different Young’s mod-
ulus ratio EA

EB
with GC,A

GC,B
= 2, see Fig. 15 a). Similarly, the variation of fracture toughness

ratio GC,A

GC,B
, keeping EA

EB
= 2 constant is plotted in Fig. 15b) for the comprehensive visual-

ization of the spatial variability regarding the material properties. Analyzing these results,
it is observed that, as the Young’s modulus ratio increases, the asymmetry in the loading
increases leading to asymmetrical crack propagation. Fig. 16 depicts the crack initiation and
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Figure 16: Crack initiation and crack propagation in single fiber reinforced composite
due to different material conditions.
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Figure 17: Crack propagation in single fiber reinforced composite.

propagation condition for the different ratio of Young’s modulus. As mentioned earlier as in
Theorem-3. The asymmetry is the case of single-fiber transverse loading starts towards the
lowest Young’s modulus side.

For EA
EB

= 2, crack propagation happens from only one side and, in subsequent loading
stages, a secondary crack starts appearing on the other side of the fibre-matrix edge, see
Fig. 16. This behaviour is also reflected in the reaction force curve which displays two
sudden drops, see Fig. 15a. For EA

EB
≥ 5, crack propagation is asymmetrical, see Fig. 16.
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The GC,A

GC,B
ratio plays a significant role in crack propagation, as the GC,A

GC,B
ratio increases,

the reaction force also increases and delays the crack nucleation. Finally, with respect to
the cracking pattern for different EA

EB
values (Fig. 17), we observe a general trend in this

numerical experiment exhibiting a lower kinking angle towards the matrix of the main crack
as EA

EB
decreases.
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Chapter 3

A multi phase-field fracture
model for long fiber reinforced
composites based on the puck
theory of failure

This chapter is mainly taken from [129, 130] and is organised as follows. In Section 3.2, a
novel Multi Phase-Field (MPF) model relying on the Puck theory of failure for intra-laminar
failure at ply level is coupled with a Cohesive Zone Model (CZM) for inter-laminar cracking.
In Section 3.3, the model’s variational formulation, along with the strong form, is outlined
with a special focus on each failure mechanism’s construction particular contribution. In
Section 3.4, current computational method is numerically implemented as a system of non-
linear partially coupled equations using the finite element method via user-defined UMAT
and UEL subroutines in ABAQUS. The computational tool is applied to qualitatively predict
delamination migration in long laminated fiber-reinforced polymers composites comprising
44 cross-ply laminates. The reliability of the current approach is examined via the correla-
tion with experimental results. Finally, in Section 3.5 the present study is complemented
with additional representative examples with the aim of providing further insight into the
potential role of different aspects of the system in the delamination migration, including (i)
the variation of the ply angle in the migration zone, (ii) the load application point, and (iii)
initial crack length.

3.1 Introduction
The widespread use of Laminated Fiber Reinforced Composites (LFRCs) due to their high
strength to weight ratios has paved their way into many practical applications in different
industrial sectors, with remarkable impact in aerospace and aeronautics, and more recently
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in the automotive sector [131, 132], to quote a few of them. In the presence of ever-increasing
demands of new technological advancements, load-bearing capabilities and failure modes
of these materials are not yet fully understood, posing notable restrictions on their use and
leading to the introduction of high safety factors.

Within this context, delamination failure can be conceived as one of the most critical fail-
ure mechanisms in Laminated Fiber Reinforced Composites (LFRCs). Such cracking events
are generally associated with low through-thickness stiffness in layered disposals and can
emerge from manufacturing defects, the occurrence of post-buckling phenomena [133, 134],
among many others. From a modeling standpoint, delamination events in layered com-
posites structures have been analyzed using linear elastic fracture mechanics (LEFM), en-
forcing initiation and growth along the ply interface with the use of strain energy-based
methods to define the corresponding fracture toughness [135, 136]. Delamination can be
found in low-velocity impact [137], skin debonding [138], defects from notches [139, 140],
among many other practical cases. These phenomena have been extensively investigated
based on cohesive-like cracking methods in pre-notched coupon configurations. An ad-hoc
inter-laminar failure model can be inserted into the most critical locations of the specimen
for triggering such cracking events [141, 142, 143, 144]. From a mechanical perspective, de-
lamination can be seen as a result of the coalescence of micro-cracks at the ply interface,
perpendicular to the tensile stress [145, 146, 147].

However, for some specific loading cases and configurations, it has been reported that
mostly due to the sign of the change of shearing stresses, a pre-existing crack along the ply
interface can kink out from such location, propagating into the adjacent ply. Matrix-cracking
induced by delamination can further progress through the ply thickness and then ”propa-
gates out” at another interface as reported in [145, 148, 149], leading to the so-called ”delami-
nation migration” failure mode. Thus, following the terminologies used in [150], the turning
of delamination crack front into one of the adjacent plies is referred to as ”kinking,” whereas,
when a crack propagates across the thickness of plies and propagates out in adjacent inter-
face is called ”migration” [151]. The main causes of such phenomena can be motivated by
the analysis of the stress field around the interface crack tip, see the experimental studies
conducted in [145, 152, 149] for a 0◦/90◦ interface and [146] for a 0◦/θ◦ interface.

In the last decade, the advent of new numerical capabilities and modeling techniques
has promoted the thorough analysis of the potential reasons for the driving mechanisms
that provoke delamination migration failures. Note also that the migration phenomenon
is also observed in the models without the presence of pre-existing cracks [152]. Numerical
methods such a eXtended FEM (XFEM) [153], augmented finite element methods [154], float-
ing node methods [155], cohesive-crack element methods [156] have been widely applied to
study delamination migration. Moreover, delamination migration can be explained using
micro-mechanics as reported by Arteiro and coauthors [157].

Concerning the different modeling methods for triggering intra-laminar failure in LFRCs,
the use of continuum damage mechanics (CDM)-based methods have been of notable im-
portance; see the phenomenological models proposed in [158, 159] and the references given
therein. Notwithstanding, the local versions of CDM models generally suffer from mesh
pathological issues that can be remedied using alternative methodologies. Nonlocal damage
models [160, 6] have been used extensively, which also share as part of phase-field formalism
while providing a detailed description of the damage behavior. On the other hand, theories
such as crack band theory have been extensively used in the literature to mitigate spurious
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mesh sensitivity in the modeling location. Within this context, phase-field methods have
become plausible nonlocal modeling alternatives that prevent most of the main limitations
of alternative modeling tools for fracture in solids as explored in the sequel.

3.2 Multi Phase-Field-Cohesive Zone model (MPF-CZ)
In this section, the computational framework herein proposed for capturing delamination
migration in layered composite structures is outlined. The current method relies on the com-
bination of multiple phase-fields. Each phase-field based on different physically motivated
failure mechanisms such as Puck failure criterion [130] driving the crack propagation in long
fiber reinforced polymer composites along with the cohesive zone model.

Following the standard phase-field formulation, consider an arbitrary body in the gen-
eral ndim Euclidean space, occupying the placement B ∈ Rndim , with its external delimiting
boundary ∂B ∈ Rndim−1, see Fig. 18. For any material point, the position vector is denoted
by x ∈ B. The displacement field is identified by the vector u : B → Rndim , with infinitesi-
mal stain tensor ε := ∇su for ε : B → Rndim×ndim . The displacement boundary conditions
are prescribed as u = u on ∂Bu and traction conditions are given by t = σ · n on ∂Bt such
that, kinematic and static boundary conditions satisfy: ∂Bt ∪ ∂Bu = ∂B and ∂Bt ∩ ∂Bu = 0,
where n is outward normal vector and σ is the Cauchy stress tensor.

Figure 18: Body under consideration: (a) sharp crack representation and (b) Regular-
ized crack topology.

In addition to the previous definitions, let Γ be a crack set incorporating interface cracks
Γi arising from the cohesive interface and cracks in the bulk Γdt from the multi phase-field
such that, Γi ∪ Γdt = Γ and Γi ∩ Γdt = ∅ for each discrete t ∈ [0, T ] with Γt ⊆ Γt+1. The
displacement jumps along the interface as the relative displacement between two homoge-
neous points at the flanks are denoted by g = u+

i − u−
i , representing the difference between

kinematic field along the interface Γ+
i and Γ−

i in line with [161, 162]. On the other hand, Γdt

is defined as the set of discontinuous points x, where u has one sided approximate limits
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u+
d ̸= u−

d with respect to a suitable direction vu normal to Γdt inline with [17, 20].
To account for multiple energies in the system, the total free energy functional describing

the mechanics of body B, is given as the sum total of internal and external energies acting on
the system as follows

Π(u,Γ) = Πint(u,Γ) + Πext(u). (3.1)

The consistent generalization of the isotropic damage formulation for the consideration
of different failure mechanisms can be postulated by the additive decomposition of total in-
ternal energy into multiple contributions, in which each of them is associated with a certain
failure mechanism. In such a postulation, a scalar damage variable di (i = 1, ..., n) is associ-
ated with each one of the n failure mechanisms, such that di = 0 for intact material state and
di = 1 for fully broken state and so that di ∈ [0, 1] for each i = 1, ..., n. Moreover, to account
for non-local damage evolution, the respective gradients ∇xdi are incorporated in the for-
mulation. This additive decomposition postulation for intralaminar failure was successfully
applied in [158] and later extended to incorporate failure criteria such as Puck failure theory
so as to distinguish between the fiber and matrix dominated damage mechanisms in LFRPs
[130, 159]. However, the consideration of dissipative energies stemming from debonding
along the interface Γi, and crack propagation in the bulk Γdt is still a matter of investiga-
tion. The prediction of such crack topology becomes increasingly complex due to branching
and coalescence phenomenons, as well as the interaction with diffusive cracks, which may
induce the debonding process along the existing interface Γi. One possibility to achieve this
is by employing a phase-field model incorporating multiple diffusive crack fields within the
bulk and interface elements relying on cohesive zone methodologies at a prescribed inter-
face inline with [162]. Hence, the total internal energy is now an amalgamation of (i) total
elastic energy constituting from bulk (fiber and inter-fiber) energy, (ii) surface energy (crack
energy) stemming from bulk (fiber and inter-fiber) failure, and (iii) cohesive interface energy
obeying a bi-linear traction-separation law

Πint(u,Γ) = Πint,b(u,Γdi) + Πint,c(Γi), (3.2)

where Πint,b(u,Γ) is the internal energy stemming from the bulk (fiber and inter-fiber) and
Πint,C(Γi) is the dissipative energy associated with cohesive debonding which are addressed
in detail in the sequel. The bulk energy Πint,b(u,Γ) is further decomposed into

Πint,b(u,Γdi) = Πint,FF (u,ΓdFF ) + Πint,IFF (u,ΓdIFF ), (3.3)

where Πint,FF (u,ΓdFF ) and Πint,IFF (u,ΓdIFF ) correspond to the energies associated with
fiber failure and inter-fiber failure, respectively.

With such decomposition at hand, the scheme herein used recalls that the dissipated en-
ergy arising from each of the individual failure mechanisms only affects their corresponding
counterparts in the elasticity tensor, therefore precluding the coupling between fiber inter-
fiber failures and each of these failures with respect to the cohesive debonding. Note that,
due to this preclusion of interaction between the energies, the elastic energy is strongly cou-
pled with the surface energies stemming from fiber, inter-fiber, and cohesive debonding. In
contrast, surface energies among themselves are only weakly coupled.

The effective Helmholtz free energy function Ψ̂ is defined as
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Ψ̂(ε,A) =
1

2
ε : Ce : ε,

where Ce is the undamaged elastic constitutive tensor defined as

Ce := ∂εεΨ̂ = λ1⊗ 1+ 2µT I + α(1⊗A+A⊗ 1) + 2(µL − µT )IA + βA⊗A,

where 1 is the second order identity tensor, IA,ijkl = AimIjmkl + AjmImikl represents the
fourth-order identity matrix, and λ, α, β, µT and µL are to the elastic constants taking the
form

λ = E22 (ν23 + ν31ν13) /D,

α = E22 [ν31 (1 + ν32 − ν13)− ν32] /D,

β = E11 (1− ν32ν23) /D − E22 [1− ν21 (ν12 + 2(1 + ν23))] /D − 4G12,

µL = G12; µT = G23,

withD = 1−ν232−2ν13ν31−2ν32ν13ν31. The material direction is denoted by a and A := a⊗a
is so called structural tensor.

Here, 1-direction corresponds to the fiber orientation, 2-direction is transverse in-plane
orientation with respect to the fiber direction, and 3-direction stands for transverse out-of-
plane orientation.

3.2.1 Bulk energies
In the light of previous developments, the total energy of the fiber can be established as the
sum total of the elastic energy and fracture energy associated with the fiber as

Πint,FF (u,ΓdFF ) ≈ Πint,FF (u, dFF ) =

∫︂
B
(1− dFF )

2Ψ̂FF (ε,A)dV

+

∫︂
B
Gc,FF

[︃
1

2lFF
d2FF +

lFF
2

|∇dFF |2
]︃

dV,
(3.4)

where Ψ̂FF is the elastic contribution associated with the fiber: Ψ̂FF = 1
2
ε : CeFF : ε, with

CeFF =

⎡⎢⎢⎢⎢⎢⎢⎣
Ce11 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and Gc,FF is the fracture energy, and lFF is the material characteristic length associated with
fiber failure in phase-field related to the apparent material strength [163] as

lFF =
27

256

E11Gc,FF
σ2
s,FF

,
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where σs,FF is the apparent material strength associated with fiber failure.
Similarly, the inter-fiber contribution to the total internal energy can be expressed as

Πint,IFF (u,ΓdFF ) ≈ Πint,IFF (u, dIFF ) =

∫︂
B
(1− dIFF )

2Ψ̂IFF (ε,A)dV

+

∫︂
B
Gc,IFF

[︃
1

2lIFF
d2IFF +

lIFF
2

|∇dIFF |2
]︃

dV,

(3.5)

where Ψ̂IFF = 1
2
ε : CeIFF : ε is the elastic contribution associated with the inter-fiber failure,

and

CeIFF =

⎡⎢⎢⎢⎢⎢⎢⎣
0 Ce12 Ce13 0 0 0

Ce21 Ce22 Ce23 0 0 0
Ce31 Ce32 Ce33 0 0 0
0 0 0 Ce44 0 0
0 0 0 0 Ce55 0
0 0 0 0 0 Ce66

⎤⎥⎥⎥⎥⎥⎥⎦ ,
where Gc,IFF and lIFF are the fracture energy and corresponding length scale associated
with inter-fiber failure, respectively. Similarly, the length scale parameter is estimated for
the apparent material strength σs,IFF of inter-fiber failure as

lIFF =
27

256

E22Gc,IFF
σ2
s,IFF

.

Note that with these definitions at hand, the damaged constitutive matrix C renders

C(dFF , dIFF ) = (1− dFF )
2CeFF + (1− dIFF )

2CeIFF , (3.6)

with

C(dFF , dIFF ) =

⎡⎢⎢⎢⎢⎢⎢⎣
P1Ce11 P2Ce12 P2Ce13 0 0 0
P2Ce21 P2Ce22 P2Ce23 0 0 0
P2Ce31 P2Ce32 P2Ce33 0 0 0

0 0 0 P12Ce44 0 0
0 0 0 0 P12Ce55 0
0 0 0 0 0 P2Ce66

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.7)

where P1 = (1 − dFF )
2, P2 = (1 − dIFF )

2, and P12 = min (P1,P2). Notice that P12 is not
differentiable due to the existence of ”min”. Hence, we first take the minima so that, any
minimum of P12 (i.e P1 or P2 ) is differentiable.

3.2.2 Interface energies
The energy stemming from the interface is governed by a bi-linear traction separation law
which constitutes of a linear elastic stage characterized by an initial stiffness of Kn, Kt1 and
Kt2 corresponding to the normal and shear components, respectively, followed by a linear
softening as in Fig. 19. The irreversibility is accounted by introducing a damage variable dc
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depending on the relative kinematic critical normal and tangential openings, gfn and gftj (j=1
for 2D and j=1,2 for 3D), respectively [142, 143].

damage onset

Mode-I

Mode-II

Ic

IIc

mixed mode

traction

c

Figure 19: Schematic representation of the bi-linear cohesive zone model traction-
separation law for mixed mode

The corresponding interface laws governing the normal and tangential tractions σn and
τ tj , respectively, take the form

σn =

⎧⎪⎨⎪⎩
kngn if gn ≤ g0n

(1− dc)kngn if g0n < gn < gfn

0 otherwise
,

τ tj =

⎧⎪⎨⎪⎩
ktjgtj if gtj ≤ g0tj
(1− dc)ktjgtj if g0tj < gtj < gftj
0 otherwise

,

for each j = 1, 2 to account for the tangential traction, whereas gn and gtj are the relative
normal and tangential displacements, respectively. The mixed-mode fracture energy of the
interface reads

GiC = GIC + (GIIC − GIC)
(︃

GII + GIII
GI + GII + GIII

)︃η
,

where GIC , GIIC , and GIIIC represent the corresponding fracture toughness associated with
normal (mode I) and shear (mode II and III), respectively, and computed as the area under
the traction separation curve, η identifies an experimental fitting parameter elucidating the
effects of fracture mode mixities [134]. Finally, GI , GII , and GIII are energy release rate asso-
ciated with mode I , mode II , and III , respectively. Damage is initiated using the quadratic
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interaction function of nominal stress ratios. The damage is evolved using Benzeggagh-
Kenane (BK) failure criterion based on cumulative energy such that mixed fracture tough-
ness GiC reaches the critical energy.

Based on the energy considerations, the evolution of the damage variable dc is estimated
based on the effective displacement of the cohesive element, where dc is evolving linearly
with

dc =
gfm(gmax

m − g0m)

gmax
m (gfm − g0m)

, (3.8)

where g0m is effective displacement at initiation and gfm =
2GiC
T 0
eff

is the effective displacement

at failure. Here, T 0
eff is the effective traction at damage initiation estimated using effective

tractions Teff =
√︁

(σn)2 + (τ t1)
2 + (τ t2)

2, as T 0
eff = min {Teff (dc > 0)}. And gmax

m refers
to the maximum value of effective displacement during loading history estimated using
gmax
m = max[0,T ] gm, where gm :=

√︁
g2n + (gt1)

2 + (gt2)
2. Finally, with this at hand, the

corresponding total energy generated by the cohesive interface takes the form

Πint,c(Γi) ≈ Πint,c(dc) =

∫︂
Γi

Gic(g, dc)dS =

∫︂
Γi

gTT dS, (3.9)

with g = [gn, gt1 ] and T = [σn, τ t1 ].

3.2.3 Fundamentals of Puck failure criterion
Damage evolution in bulk relies on Puck failure theory [164] whose corresponding failure
criterion accounts for the independent assessment of fiber and inter-fiber failure surfaces.
For the fiber failure, with usual notations, that is ∥ (subscript 1), ⊥ (subscript 2 and subscript
3) representing fiber direction, normal to the fiber direction in-plane and, normal to the fiber
direction out-of-plane, respectively, for the ply co-ordinates in a local setting 0−e1−e2−e3

as in Fig. 20.
According to the Puck theory, fiber failure is triggered based on energetic considera-

tions that, the exposure factor (denoted fE,FF+, for tensile only) reaches the value 1, where
fE,FF+ is given by

fE,FF+ =
1

Rt∥

[︃
σ11 −

(︃
ν⊥∥ −

E∥

E∥f
ν⊥∥f

)︃
(σ22 + σ33)P2

]︃
,

where Rt∥ stands for the tensile longitudinal strength in fiber direction. ν⊥∥ and ν⊥∥f iden-
tify the major Poisson’s ratios of the ply and the fibers, respectively, and E∥f is the elastic
modulus of the fibers. FF+ denotes the fiber failure in tension, whereas the compression
is omitted for the sake of brevity but can easily be incorporated as in [130]. The incorpora-
tion of P2 is to scale the influence of the transverse stress components on the longitudinal
stress (lateral contraction) with respect to the state of matrix damage. It is assumed that
the contraction in the longitudinal direction due to transverse stress will vanish in a case
P2 → 1, i.e., matrix rupture parallel to the fibers. In the case of compressive longitudinal
stress, reduced compressive longitudinal fracture resistance of the plies is assumed in the
case of increasing shear stress.
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Mode B
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54°

Figure 20: Puck failure theory: (a) definition of acting stresses on the fracture plane
by θfp angle and (b) the exposure factor fE , where fE,(fr) is the exposure factor at the
failure point.

Puck theory also distinguishes the inter-fiber failure by introducing the so-called action
plane [165, 164], which corresponds to identifying the potential fracture plane derived from
the maximum stress states {σ̄n(Θ), τ̄nt(Θ), τ̄n1(Θ)}, where σ̄n(Θ), τ̄nt(Θ), and τ̄n1(Θ) are
the normal stress component, shear stress component transverse to the fiber, and the shear
stress component plane parallel to the fiber, respectively, each on the action plane. The de-
termination of the fracture plane is usually performed via the assessment of the most critical
stress state in terms of the local components by calculating the value of inter-fiber exposure
factor FE,IFF for all angles Θ within the interval of −90◦ ≤ Θ ≤ +90◦, using an increment
of one degree. The transformation from the local ply setting to the action plane system yields

⎡⎣σn(Θ)
τnt(Θ)
τn1(Θ)

⎤⎦ =

⎡⎣ cos2 Θ sin2 Θ 2 cosΘ sinΘ 0 0
− cosΘ sinΘ cosΘ sinΘ cos2 Θ− sin2 Θ 0 0

0 0 0 sinΘ cosΘ

⎤⎦
⎡⎢⎢⎢⎢⎣
σ22

σ33

σ23

σ13

σ12

⎤⎥⎥⎥⎥⎦ .

In particular, the expression for inter-fiber failure under tensile conditions on the action
plane takes the form
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fE,IFF+(Θ) =

⎡⎢⎣
⌜⃓⃓⎷[︄(︄ 1

RAt⊥
−
pt⊥ψ
RA⊥ψ

)︄
σn(Θ)

]︄2
+

(︃
τnt(Θ)

RA⊥⊥

)︃2

+

(︄
τn1(Θ)

RA∥⊥

)︄2

+
pt⊥ψ
RA⊥ψ

σn(Θ)

⎤⎥⎦
1

ηw
for σn(Θ) ≥ 0,

whereRAt⊥ andRA⊥⊥ are transverse tensile strength and fracture strength respectively, whereas
RA⊥ψ is the transverse tensile strength at any ply angle ψ, with fE,IFF+ representing the ex-
posure factor and the failure is triggered when fE,IFF+ reaches the value 1.

In the previous expression, cos2 ψ and sin2 ψ are

cos2 ψ =
τ2nt

τ2nt + τ2n1
and sin2 ψ =

τ2n1
τ2nt + τ2n1

.

Finally, the definition of the inclination parameters pt⊥ψ and pc⊥ψ for any angle ψ renders

pi⊥ψ
RA⊥ψ

=
pi⊥⊥
RA⊥⊥

cos2 ψ +
pi⊥∥

RA⊥∥
sin2 ψ, i = t, c;

with

RA⊥ψ =

[︄(︃
cosψ

RA⊥⊥

)︃2

+

(︄
sinψ

RA⊥∥

)︄2]︄
.

Due to the modelling assumptions herein made, the proposed model requires the fol-
lowing fracture energy values: (i) Gc,FF fiber fracture energy, (ii) Gc,IFF matrix dominated
fracture energy, and (iii) Gc inter-laminar fracture energy. These properties can be deter-
mined via experimental procedures, see [166, 157, 167, 168] and the references therein.

3.3 Variational formulation

Relying on the considerations given in Section 3.2, the total energy functional of the solid
body B, along with the cracks Γi and Γdi at any arbitrary instance t ∈ [0, T ] takes the form

Π(u,Γ) ≈ Π(u, di, dc) = Πint(u, di, dc) + Πext(u), (3.10)

where the internal and external contribution to the energy functional Π(u, di, dc) read, re-
spectively
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Πint(u, di, dc) =

∫︂
B
(1− dFF )

2Ψ̂FF (ε,A) + (1− dIFF )
2Ψ̂IFF (ε,A)dV

+

∫︂
B
PFFGc,FF

[︃
1

2lFF
d2FF +

lFF
2

|∇dFF |2
]︃

dV

+

∫︂
B
PIFFGc,IFF

[︃
1

2lIFF
d2IFF +

lIFF
2

|∇dIFF |2
]︃

dV

+

∫︂
Γi

gTT dS,

(3.11)

Πext(u) = −
∫︂
B
fvdV −

∫︂
∂Bt

t̄dS, (3.12)

where fv is the deformation-independent volume-specific loads.
In the above expression, Eq. (3.11), PFF and PIFF are the activation flags, which are

activated when the corresponding pucks failure criterion is met. The approximate solution
of the stated problem with MPF-CZ can be obtained as a quadruplet of the solution of the
following minimization problem. Determine

(u∗, d∗FF , d
∗
IFF , g

∗) = argminSΠ(u, di, dc). (3.13)

where, S = {dFḞ , dIFḞ ≥ 0 for all x ∈ B⧹Γi, ḋc ≥ 0 for all x ∈ Γi} enforcing irre-
versibility of the evolution parameters. One may also argue that g∗ should be replaced by
the dc in the minimization problem, however, it is easy to see that the minimum value of g∗

also leads to a minimum value of dc from Eq. (3.8).
The quadruplet set (u∗, d∗FF , d

∗
IFF , g

∗) in Eq. (3.13) is solved by taking a variational
form of the total internal energy functional (Gateaux derivative) assuming enough regular-
ity of the terms involved. In the infinitesimal setting, considering the irriversibility of the
damage variables set S for any admissible test function (δu, δdFF , δ dIFF , δg) in the ap-
propriate space of distribution, a strong form of the field equations can be reduced to the
following

div
[︁
(1− dFF )

2CeFF : ε+ (1− dIFF )C
e
IFF : ε

]︁
+ fv =0 in B⧹Γi,

and σ · n =0 on ∂Bt,
(3.14)

2(1− dFF )PFFHFF (x, t) = Gc,FF δdFF γ(dFF ,∇xdFF ) in B⧹Γi

and ∇xdFF · n = 0 in ∂B,
(3.15)

2(1− dIFF )PIFFHIFF (x, t) = Gc,IFF δdIFF γ(dIFF ,∇xdIFF ) in B⧹Γi

and ∇xdIFF · n = 0 in ∂B,
(3.16)

divg [σn(dc) + τn(dc)] = 0 in Γi, (3.17)

wherein the previous expressions divg[•] represents the divergence operator taken with re-
spect to g. The terms HFF and HIFF are the crack driving forces related to fiber and inter-
fiber failure, respectively. In accordance with the Pucks failure criteria, the crack driving
force of each j = FF, IFF are given by
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Hj(x, t) = ξj

⎡⎢⎣⟨︄ max
τ∈[0,t]

Ψ̂j(x, τ)

Ψ̂j,init
− 1

⟩︄
+

⎤⎥⎦ , (3.18)

where ξj is a dimensionless fitting parameter that characterizes the damage activation and
post peak behaviours from experimental results. Ψ̂j,init is the effective elastic energy for
damage initiation in each of j = FF, IFF .

The unilateral stationary condition of the total internal energy functional implies that
δΠint = 0 for all (δu, δdFF , δ dIFF , δg) > 0 and δΠint > 0 for (δu, δdFF , δ dIFF , δg) = 0
along with the irriversibility and boundedness of dFF , dIFF , dc leads to the first-order opti-
mality (KKT) conditions for the quasi-static evolution [16, 114]. Γ− convergence of the multi
phase-field problem in the absence of the interface can be easily derived following the results
obtained in [24].

It is worth noting that the irreversible character of the phase-fields and cohesive zone
can be reduced to S, this is fulfilled by the history variable embedded by the history variable
Eq. (3.18). The boundedness of the phase-field variables dFF , dIFF ∈ [0, 1] is ensured due
to the choice of degradation function (1 − dj)

2 as in [28]. Also, it is important to note that,
we have assumed ∇xdj = 0 due to the compactness property and δu = 0 on ∂Ωt and
δdj = 0 on ∂Ω, from the variational form which are reflected in the choice of approximate
spaces of test functions as in Section 3.4, see [17, 20].

3.4 Finite element implementation
In this section, details of the finite element implementation of the proposed model are out-
lined. A staggered solution scheme is used to solve the system of coupled Partial Differential
Equations (PDEs) using an alternating minimization scheme [15]. Consider the discritization
of the domain defined as B → Be, Γi → Γei such that the functions ue ∈ Uh, dej ∈ Ud(dj) for
j = FF, IFF are well defined along with the space of approximate functions

Uh(u) =

{︄
u ∈ H1(B)

⃓⃓⃓⃓
⃓∇u ∈ L2(B); u = ud on ∂Bd

}︄
, (3.19)

Ud(dj) =

{︄
dj ∈ H1(B)

⃓⃓⃓⃓
⃓dj(x) ∈ [0, 1], dj̇ ≥ 0 , ∀x ∈ B

}︄
(3.20)

Similarly, the approximate space for the test functions (distributional spaces) for δue ∈
Vh, δde ∈ Uδd(dj) for j = FF, IFF takes the form

Vh(δu) =

{︄
δu ∈ H1(B)

⃓⃓⃓⃓
⃓∇δu ∈ L2(B); δu = 0 on ∂Bd

}︄
, (3.21)

Uδd(δdj) =

{︄
δdj ∈ H1(B)

⃓⃓⃓⃓
⃓δdj ≥ 0 , ∀x ∈ B

}︄
. (3.22)

At each element level, in the isoparametric space settings, the triplet of field variables
{ue, deFF , deIFF } as well as their variations {δue, δdeFF , δdeIFF } are approximated using linear
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first order Lagrangian triplet of shape functions
{︁

Nu
i ,Nd

i ,Nd
i

}︁
at ith node of each element

satisfying partition of unity is defined as

ue =

Nnode∑︂
i=1

Nu
i u

e
i , dej =

Nnode∑︂
i=1

Nd
i d
e
j,i,

δue =

Nnode∑︂
i=1

Nu
i δu

e
i , δdej =

Nnode∑︂
i=1

Nd
i δd

e
j,i, for each j = FF, IFF.

The triplet of spatial derivatives {∇ue,∇deFF ,∇deIFF } are approximated using the gra-
dients of the shape functions

{︁
Bui ,Bd

i ,Bd
i

}︁
at ith node of each element takes the form

εe =

Nnode∑︂
i=1

Bui u
e
i , ∇dej =

Nnode∑︂
i=1

Bd
i d
e
j,i,

δεe =

Nnode∑︂
i=1

Bui δu
e
i , ∇δdej =

Nnode∑︂
i=1

Bd
i δd

e
j,i, for each j = FF, IFF.

Complying with the formulation of interface cohesive element, the displacement jump
vector g is represented in terms of local frames across the interface Γi [162]. Hence, the
jump g and its variation δg is approximated using the kinematic jump-displacement operator
Bg = RNgL as

ge = BgueL, δge = BgδueL,

where L matrix estimates the difference between the displacement of the upper and lower
interface points and R is a rotation matrix that converts integration points from global to the
local frame, and Ng represents the standard cohesive shape function, see [143].

The discrete elemental residual vectors for the quadruplet {ue, deFF , deIFF , ge} can be
reduced to the following system of equations

Ru
e =

∫︂
Be

[︂
(1− dFF )

2(Bu)T σ̄FF + (1− dIFF )
2(Bu)T σ̄IFF

]︂
dV

−
∫︂

Be

(Nu)T fvdV −
∫︂
∂Be

u

(Nu)TudS +Rg
e,

(3.23)

RdFF
e =

∫︂
Be

{︃[︃
Gc,FF
lFF

dFF − 2(1− dFF )PFFHFF (x, t)

]︃
(Nd)T + Gc,FF lFF (Bd)T∇dFF

}︃
dV,

(3.24)

RdIFF
e =

∫︂
Be

[︃
Gc,IFF
lIFF

dIFF − 2(1− dIFF )PIFFHIFF (x, t)

]︃
(Nd)T+∫︂

Be

{︂
Gc,IFF lIFF (Bd)T∇dIFF

}︂
dV.

(3.25)

where
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Rg
e =

∫︂
Γe
i

(RBg)TT (g, dc)dS, (3.26)

is the residual vector associated with the cohesive interface. It is clear that the displacement
field u is strongly coupled with the phase-fields dFF , dIFF and the displacement jump g.
Whereas, the phase-fields are among themselves and with jump g are decoupled which are
evident from Eq. (3.15), (3.16), (3.17) and from the assumption that Γi ∩ Γdt = ∅. Due to the
existence of multiple phase-field and interface, the system of equations describing the frac-
ture is non-linear. Hence, an iterative Newton-Raphson solver is used until the convergence
in the sense of Cauchy sequence [(ut+1

n − utn)] is reached. Here, utn is the tth iteration at nth

step. The corresponding Newton-Raphson iteration to estimate (n + 1) time step takes the
form

⎡⎣ u
dFF
dIFF

⎤⎦
n+1

=

⎡⎣ u
dFF
dIFF

⎤⎦
n

−

⎡⎣ Kuu +Kgg 0 0
0 KdFF dFF 0
0 0 KdIFF dIFF

⎤⎦−1

n+1

⎡⎣ Ru

RdFF

RdIFF

⎤⎦
n

.

(3.27)
where the corresponding element stiffness matrices read

Kuu
e :=

∂Ru
e

∂ue
=

∫︂
Be

(Bu)TCepdBudV, (3.28)

Kgg
e :=

∂Rg
e

∂ue
=

∫︂
Γe
i

(Bg)T ∂gτBgdS,

KdFF dFF
e :=

∂RdFF
e

∂deFF
=

∫︂
Be

[︃
Gc,FF
lFF

+ 2PFFHIFF

]︃
Nd(Nd)T + Gc,FF lFF (Bd)TBddV,

(3.29)

KdIFF dIFF
e :=

∂RdIFF
e

∂deIFF
=

∫︂
Be

[︃
Gc,IFF
lIFF

+ 2PIFFHIFF

]︃
Nd(Nd)T + Gc,IFF lIFF (Bd)TBddV.

(3.30)
In the Eq. (3.28), Cepd represents the material consistent tangent estimated using the

finite difference method as

Cepd =
dσij

dεkl
≈ σij(ε̂

kl)− σij(ε̂)

∆ε
,

with (ε̂kl) = ε +
∆ε

2
(ek ⊗ el + el ⊗ ek) = ε + ∆εkl. Here ek and el are the kth and lth

unit vectors, ∆εkl is the strain perturbation with respect to the components kl and ∆ε is the
scalar perturbation parameter. Moreover, σ is estimated from Eq. (3.7) as σ = C : ε.

The previous non-linear system of equations has been implemented in the finite element
software ABAQUS. For this purpose, a user-defined UMAT to define the material behaviour
is written for the solution of equilibrium equations associated with the displacement field.
Whereas, UEL is utilized to create residual and stiffness matrix for each of the two phase-
fields using the material behaviour from UMAT for solving the fracture-associated problem.
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3.5 Virtual testing

In this section, modeling application to delamination migration is presented. A comprehen-
sive numerical analysis is presented to validate the model against experimental results. In
the sequel, a holistic sensitivity analysis is carried out utilizing the variation of the load-
ing application point, ply angle, and initial pre-crack length to understand their effects on
delamination migration.

3.5.1 Description of the numerical model

Fig. 21 depicts the baseline configuration under investigation herein. The corresponding
numerical model consists of 44 cross-ply IM7/8552 laminates with the layup sequence

[90◦4/0
◦
3/(90

◦/0◦)2s/0
◦
3/CL/90

◦
4/CL/0

◦/0◦/(90◦/0◦)2s/0
◦/0◦/90◦3/0

◦/90◦], where CL refers
to a cohesive layer. Each ply has a thickness of 0.125mm. Compared with the experimental
sequence as in [145], a PTFE (Polytetrafluoroethylene) layer is replaced by a cohesive layer
and in addition, another cohesive layer is added at the interface between the 90◦4 and 0◦

sequence in order to account for delamination migration.

Loading
Clamped

12.7 mm 49 mm 53 mm 12.7 mm

Clamped

Pre-existing delamination
Interface

1

2

CZM

CZM

[0 ]

[0 ]
3

[90 ]
o

o

o

4

5
.5

 m
m

Figure 21: Schematic representation of the delamination migration model.

It is evident from the experimental results reported in [146] that, when shear stresses in
the model change sign, migration/kinking occurs, and the crack propagates to the 90◦4 layers
facilitating the inter-fiber failure.

For each of the numerical simulations conducted in the sequel, a 2D analysis is carried
with an out-of-plane thickness of 8.37mm. Since, in order to resolve the gradient of the phase
field, the mesh size h̄ is restricted to h̄ ≈ l/4. Hence, the domain is discretized by employing
960000 4-node quadrilateral plane stress elements with an average element size of 0.04mm.
Each layer of the cross-ply contains at least four elements across its thickness.

The material properties of IM7/8552 ply are shown in Tab. 5 consistent with the experi-
mental results in [145]. The fracture energy and length scale parameters for the phase-fields
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chosen according to the material fracture properties are shown in Tab. 6. The properties of
the cohesive layer following [156] are listed in Tab. 10.

E11 (GPa) E22 (GPa) G12 (GPa) ν12 ν23
161.0 11.38 5.17 0.03 0.43

Table 5: IM7/8552: Elastic properties.

Gc,FF (N/mm) Gc,IFF (N/mm) lFF (mm) lIFF (mm)
81.5 0.2774 0.237 0.07

Table 6: IM7/8552: intra-laminar fracture properties and phase-field parameters.

Nominal stress Nominal stress Nominal fracture Fracture energy Power (BK law)
(MPa) in shear (MPa) energy (N/mm) in shear (N/mm)
15 15 0.5 0.65 2.17

Table 7: Cohesive layer properties.

3.5.2 Model validation
The global failure response for the specimen under consideration is investigated for the load
case L = a0 = 49mm. The numerical-experimental correlation corresponding to the load-
displacement curve is given in Fig. 22. As shown in this figure, the failure response can rea-
sonably be divided into three main zones: (i) delamination of the cohesive zone, (ii) kinking
followed by migration, and (iii) delamination of the top cohesive zone. Overall, a satisfactory
agreement between the numerical and the experimental data can be observed.

As was previously discussed, based on postulations made in [145, 146] and the corre-
sponding thorough discussion, delamination migration occurs due to a change of sign in the
shear stress components. Negative shearing stresses promote delamination growth at the
0◦/90◦ interface, and positive shearing stresses promote migration/kinking into 90◦ plies.
The kinking happens at multiple sites across the specimen. Due to the diffusive nature of the
bulk cracks, the shearing stress change can easily be noticed by the inter-fiber phase-field
initiation as depicted in Fig. 23. Notice that, due to the negative sign initially, delamination
propagates until a certain point until shearing stresses are positive. Meanwhile, inter-fiber
failure is already initiated, but from the opposite direction, i.e., 90◦/0◦ interface, but is not
nucleated. Whereas, when the shear stresses become positive in the adjacent increments, the
migration starts developing, with a crack front now migrating into the 90◦/0◦ interface.

For a phenomenology of embodiment, in the cohesive layers, once the failure criterion is
met, the cohesive layer starts delaminating. Similarly, when the Puck criterion is violated, the
inter-fiber failure phase-field is activated due to shearing stresses in the model. As long as the
PIFF is active, the inter-fiber failure phase-field crack dIFF grows and migrates into the 90◦
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Figure 22: Numerical-experimental correlation corresponding to the load-displacement
curve for L = a0=49 mm.

body configuration at displacement of 0.96mm body configuration at displacement of 1.225mm 

Figure 23: Phase-field indicating delamination migration

plies until the 90◦/0◦ interface. Simultaneously, the top cohesive layer at the 90◦/0◦ interface
starts to delaminate. When the migration crack front crosses the 90◦/0◦ interface, the crack
front is again propagating due to the negative shear stress leading to the delamination of
the top cohesive layer. Here onward, the residual stresses dominate crack propagation in
the model as in Fig. 22. The discrepancies between the experimental and numerical results
can be attributed to quasi-static load conditions and smooth initiation and propagation of
phase-field approximations. However, a satisfactory agreement between the results can be
observed.
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3.5.3 Sensitivity analysis

This section aims at proving a further understanding with regard to the potential role of
different design parameters that can favor delamination-migration events.

Effect of position of loading application

The first aspect under analysis concerns the variation of load application point along the
specimen. This parameter in the experimental setting might have a strong influence on the
activation of migration phenomena by simply inducing a different local stress field at critical
locations. Moreover, from a global standpoint, this can have notable effects on the load-
displacement curve as the shear stresses acting on the specimen are significantly different
from one another. Keeping a0 = 49 mm, the variation of load L for L = 0.7a0, 0.8a0, 0.9a0,
1.0a0, 1.1a0 are plotted in Fig. 24.

Figure 24: Variation of load across the specimen for a0 = 49mm.

Based on the current results, it can be observed that for a0 > L, all the cases exhibit
delamination prior to migration and show a sudden drop in the load-carrying capacity when
migration starts, see Fig. 25. Whereas, for a0 < L, the shearing stress sign is favorable
for migration at the beginning, and hence there is smooth migration, with delamination
spreading over the whole experiment, see Fig. 25 which is consistent with [146]. It is also to
notice that after delamination migration is finished, the residual stiffness for delamination
converges to a single value for all the load variations.
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displacement=0.7878mm 

 L=0.7a 0
a) b)

displacement=1.9701mm 
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displacement=0.9192mm displacement=1.1535mm 

Figure 25: Inter-fiber crack field (SDV20) from 3 cases at L = 0.7a0, L = 0.9a0, L =
1.1a0.

Effect of the variation of ply angle

The second aspect understudy has an inherent local effect since it focused on investigating
the delamination migration at 0◦/θ◦4 interface. For this purpose, the original stacking se-
quence is replaced by a new layup sequence near the cohesive zones as 0◦3/CL/θ◦4/CL/0◦/0◦.
The fiber orientation, θ◦ of 30◦, 45◦, and 60◦ is studied along with 90◦, and the results are
shown in Fig. 26.

From this graph, it can be seen that the global pre-peak response is almost unaltered by
the variation of the local orientation of the adjacent layers to the 0◦/θ◦4 interface. However,
this aspect has a notable influence on the post-peak response, delaying the delamination
initiation and the subsequent delamination event of the top interface, according to the de-
scription given in Fig. 23, but however, the cracking migration is predicted to occur at almost
the same loading level (along the post-peak evolution).

Effect of the variation of initial crack length

The last effect under consideration corresponds to the initial crack length. Focusing on very
specific cases, we vary initial crack size from a0 = 49 mm to a0 = 55 mm.

The global load-displacement evolution curves for such cases are shown in Fig. 27. Ac-
cording to these data, it can be stated that a simple variation of the initial crack length has
a very remarkable role in the specimen response. Thus, observing the pre-peak evolution,
before any inelastic process commences, the large the initial crack length is set, the higher
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Figure 26: Variation of angle across the specimen for L = a0 = 49mm.

the maximum load is achieved. Moreover, concerning the post-peak evolution, it is observ-
able that while the shorter initial crack-length case evidence similar evolution with respect
to those previously described, i.e., with the occurrence of delamination events and the pos-
terior cracking migration to the adjacent layer, the response of a0 = 55mm (and a0 > 55mm)
exhibited an entirely different evolution with no evidence of cracking migration, see Fig. 27,
and 28 where the matrix-failure maps for both configurations are depicted. These differences
in the response are directly associated with the local stress state’s discrepancies at the crack
tips at the interface and the intermediate layer. This is again in line with previous studies as
in [146, 145].
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Figure 27: Variation of initial crack length across the specimen for L = a0.

 a =52mm 

 a =55mm 

 displacement=1.445mm 

displacement=1.08mm 

a)

b)

0

0

Figure 28: Inter-fiber crack field (SDV20) for initial crack length a0 = 52mm, a0 =
55mm with L = 1.0a0.
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Chapter 4

Nonlinear thermoelastic
phase-field fracture for
thin-walled structures relying
on solid shell concepts

This chapter is mainly taken from [169, 170, 171]. With the aim of achieving reliable predic-
tion of temperature-driven failures in thin-walled structures, this chapter is concerned with
the development of a thermodynamically consistent framework for the coupled thermo-
mechanical phase-field model for thin-walled structures using fully-integrated finite ele-
ments. This enables the use of three-dimensional constitutive thermo-mechanical models
for the materials. The proposed thermo-mechanical phase-field models are equipped with
the Enhanced Assumed Strain (EAS) to alleviate Poison and volumetric locking pathologies.
This technique is further combined with the Assumed Natural Strain (ANS) method lead-
ing to a locking-free thermo-mechanical solid shell phase-field element. Special attention is
also paid to evaluating the corresponding thermodynamic consistency and the variational
formalism leading to the nonlinear coupled equations equipped with the coupled driving
force. Moreover, the same degradation function is used for both displacement and thermal
fields. The coupled equations are numerically solved with ad hoc efficient solution schemes
for nonlinear problems.

The investigation is mainly categorized into three parts

1. Nonlinear thermoelastic analysis of thin walled structures combined with cohesive-
like interfaces [169].

2. Nonlinear thermoelastic phase-field analysis [170].

3. Non-linear thermoelastic phase field analysis: Extension to Functionally Graded ma-
terials [171].
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This chapter is organized as follows. Section 4.1 provides the general introduction of
solid shells, the different models in the literature and throw some light on the thermo-
mechanical formulations and non-linearity. A general mathematical formulation thermo-
dynamically consistent framework to study coupled thermo-mechanical phase-field model
for thin-walled structures using a fully integrated finite element is presented. Section 4.2
presents the fundamental concepts of coupled thermoelastic analysis along with the defi-
nition of the constitutive formulation herewith considered. Section 4.3 presents the varia-
tional formulation of the system as a minimization problem, finite element approximation of
the problem, along with the linearization principles leading to a system of linear equations.
In this regard, the Hu-Washizu principle is adopted for removing the locking pathologies
through EAS and ANS methods. The weak form of the balance equations and the variational
that leads to the corresponding finite element discretization is given in Section 4.3.1. The
computational techniques employed for tackling the different locking pathologies, namely
the EAS and the ANS methods, are covered in Section 4.3.3. Finally, Numerical examples
for each of the analyses, as mentioned earlier is provided as the subclass of the presented
formulation as

1. Section 4.4 provides the example with phase-field zero everywhere. This formulation
is combined with a thermo-mechanical cohesive zone model. Comparison between
the ABAQUS SC8RT element and the current formulation (with d = 0 everywhere) is
made against the second Danilovskaya problem to ensure the validation of the current
model. The response of this element is further examined in the application of a thin bar
subjected to bending, crushing, and lifting and an annular ring subjected to line force
to highlight the locking free capabilities of the thermo-mechanical solid shell (without
interface). Several representative numerical examples are presented to establish the
predictive capability of the current framework.

2. Section 4.5 provides the numerical examples of the formulation in the presence of
phase-field. First, a benchmark test is proposed and passed. Then, problems char-
acterized by temperature-assisted fracture are examined in relation to a technological
phenomenon relevant for silicon solar cells. Finally, examples concerning coupled
mechanical-temperature effects for small and large strain problems are shown for a
series of structural issues with straight and curved shells.

3. Section 4.6 provides the extension of the formulation to accommodate FGM. First, the
model is verified via a standard benchmark test. Using numerous examples of straight
and curved beams, the effect of grading in terms of crack path and load-bearing ca-
pacity is explored thoroughly. Moreover, the thermo-mechanical interactions in the
FGM are compared against the homogeneous materials. The effect of temperature on
the load-bearing capacity of the FGM is pinpointed. The impact of material proper-
ties such as Young’s modulus, thermal conductivity, fracture energy on the FGM per-
formance is explored using three different FGM pairs (metal-metal, ceramic-ceramic,
ceramic-polymer). The model is then modified to accommodate a three-phase/ dou-
ble FGM, and their thermo-elastic behavior is explored.
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4.1 Introduction
Engineering systems such as aircraft (fuselages, wings), automotive chassis, renewable en-
ergy (wind turbines, turbine/compressor blades, photovoltaic laminates [172, 173, 174, 175,
176], electronic systems [177, 178] (chips, laptop panels, screen, and protectors), thermal
barrier coatings [179] are all based on thin-walled structures. Thermal interactions and the
load-bearing capacity of these thin-walled structures are key aspects and thus regulate the
design, analysis, and production of their engineering components. Due to intricate geomet-
rical definitions, the use of analytical methods is rather limited and mostly confined to sim-
plified scenarios. Therefore, numerical methods lead to a more general and versatile range
of analysis.

The related literature regarding the computational procedures for triggering fracture in
shell structures can be classified into 4 different categories:

1. Meshless crack approaches based on the partition of unity methods [180].

2. Discrete crack methods such as XFEM (eXtended FEM) [181, 182, 183, 184], phantom
node models [185], meshless methods [186, 187], among many others, that were ap-
plied to thin walled structures based on classical shell theories such as Kirchhoff-Love
[188, 189, 190, 191] (3 parameters), Reissner-Mindlin (5-parameters) [181, 183] and ge-
ometrically nonlinear continuum shell [192] for their kinematic description.

3. Cohesive zone models [193, 194, 195, 196] implemented via interface elements.

4. Continuum-based methods such as non-local or gradient enhanced damage approaches
[197, 198, 7, 199], which use constitutive equations at the material point level describ-
ing damage in the bulk.

Within this context, it is worth mentioning that methodologies falling into the previous
categories (1.), (2.) and (3.) generally require ad-hoc criteria for their initiation and propa-
gation of the crack, and often it is necessary to know the crack path a priori. This issue can
be circumvented via the exploitation of a new continuum-based technique denominated as
the phase field (PF) approach of fracture due to its inherent incorporation of an evolution
equation for the scalar-valued function for triggering stiffness degradation within the bulk.

Modeling thermo-mechanical effects in thin-walled structures necessitates the develop-
ment of a consistent formulation that accounts for the coupled effects of the thermal and me-
chanical fields, as well as stress transfer and heat conduction across the internal interfaces.
In this context, recent advances in shell modeling aim at incorporating three-dimensional
effects into the corresponding numerical simulation, being possible the use of unmodified
constitutive laws in the corresponding computations without further modifications. To do
so, it has been amply addressed the necessity of developing shell models that embody at
least a linear normal strain distribution along the thickness direction [200]. In the related
literature, two main paths have been followed:

1. Shell formulations which model the reference surface of the body and include the
previous linear distribution using either an enhancing strain method or a quadratic
displacement distribution in thickness direction [201, 202, 203, 204, 205, 206, 207, 208].

2. Shell models relying on the so-called solid shell concept, which make use of the parametriza-
tion of the top and the bottom surfaces of the body [209, 210, 205, 207, 211].
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This idea in (2.) has been extensively developed over the least years due to the complete
avoidance of complex update procedure associated with the rotational tensor. However, up
to now, the extension of shell models for coupled thermo-mechanical applications under
large strains has been received a limited attention, see [202, 212, 213, 214, 215] for alternative
formulations. Furthermore, finite element formulations of shells complying with a low-order
of kinematic interpolation generally suffer from locking pathologies , which should be nu-
merically alleviated. For this purpose, several numerical strategies have been proposed such
as Reduced Integration (RI) schemes, the popular Enhanced Assumed Strain (EAS) [214, 216,
217, 218, 219] and the Assumed Natural Strain (ANS) [220, 221] methods, or combination of
them [222, 223, 224]. Note also that these techniques have been accordingly employed in
coupled the thermo-mechanical applications, see [225] and the references therein given.

Regarding the thermo-mechanical coupling, recently, R. G. Tangella et al [226] proposed
the hybrid phase-field model to predict complex crack paths in quasi-static thermo-elastic
brittle fracture. H. Badnava et al [227] suggested an h-adaptive thermo-mechanical phase-
field model, T.-T. Nguyen et al [93] postulated the chemo-thermo-mechanical coupling for
the phase-field to predict early age shrinkage in cement-based materials, whereas A. Dean at
al [228, 229] proposed invariant-based anisotropic material models for short fiber-reinforced
thermoplastics, to name a few of recent contributions. On the other hand, W. Shu et al [230]
proposed a thermo-mechanical solid shell for reduced integration and with the Enhanced
Assumed Strain (EAS) and Assumed Natural Strain (ANS) methods to avoid hourglass lock-
ing [230], and P.K.Asur Vijaya Kumar et al [231] proposed a thermo-mechanical solid shell
formulation for geometric non-linearity having full integration, incorporating EAS and ANS
methods to alleviate the locking pathologies. However, at present, the application of the PF
approach of fracture to thermo-mechanical analysis of thin-walled structures relying on the
solid shell concept is largely unexplored.

Different Cohesive Zone Models (CZM) were developed for engineering applications,
mainly dealing with the fracture and delamination process. In the literature, there exist
a wide variety of typologies of CZMs in line with the Kyoungsoo Park et al [232] can be
arranged in (i) potential-derived laws and (ii) non-potential-derived laws. The difference
between them lies in the constitutive response. On the one hand, potential-derived laws use
fracture energy potential and whose derivatives with respect to displacement provide the
traction vector, and their second derivative provides the constitutive tensor. On the other
hand, non-potential derived models endow a comparative simplicity, where cohesive trac-
tions are defined through the traction separation laws (constitutive relation between trac-
tions and opening displacement vector), which are widely used. Some widely used exam-
ples of non-potential-based cohesive laws can be broadly categorized as (a) piece-wise linear
cohesive laws, (b) trapezoidal cohesive laws, and (c) exponential cohesive laws are stud-
ied with great attention in the past few years. Tvergaad [233] introduces the notion of the
mixed-mode fracture to separate the tangential and normal directions, Ortiz and Pandolfi
[234] introduced the idea of reference mid surface. Recently, many authors have proposed
the extension of cohesive zone models to thermoelastic material models. See, eg [235, 236,
237, 238] and the reference therein. Balzano and Wagner [239] modified the work of [234] to
cover the compressive behavior in mode one. The effects of large displacements have been
investigated in [240].

This work presents phase-field modeling of fracture fully coupled with thermo-mechanics
for the failure analysis of thin-walled structures using the solid shell concept. In order to
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avoid the complex update of rotational tensor, the shell model presented exploits the solid
shell concept aforementioned which parametrizes the top and bottom surface of the body
[209, 210, 205, 207, 211]. By the virtue of this kinematic description, the solid shell ap-
proach features a discretization identical to that of 8 node brick element [210, 241, 242].
Within this framework, three-dimensional constitutive equations (such as) thermo-elastic
Kirchhoff-Saint-Venant Material Model is considered and extended to accommodate phase-
field degradation. Moreover, the elastic energy and the thermal energy are degraded using
the same phase-field degradation function. The potential locking pathologies arising due
to the intrinsic nature of a shell complying with lower-order kinematic displacement inter-
polation schemes is alleviated by the combination of EAS and ANS methods, in line with
the advanced shell formulations discussed in [225, 222, 223, 224]. Hence, the volumetric
and the Poisson’s thickness locking effects are alleviated by EAS, whereas trapezoidal and
transverse shear locking are alleviated using the ANS method. Furthermore, a fully coupled
scheme between the phase-field and the mixed finite element formulation (particularly EAS)
is accordingly condensed using static condensation of the enhancing strain at the element
level [218] such that the original coupling is fully preserved.

4.2 Coupled thermo-mechanical formulation
The initial boundary value problem (IBVP) for coupled thermo mechanical solid shell with
phase-field damage is characterised by: (i) the deformation field of the solid shell, (ii) the
temperature field, and (iii) the scalar valued phase-field variable. In the sequel, the basic
aspects and definitions are introduced for the sake of clarity.

4.2.1 Primary fields
Let B0 ⊂ Rndim denote a reference configuration of a continuum body in ndim Euclidean
space with its delimiting boundary ∂B0 ⊂ Rndim−1. For every position vector X ∈ B0,
define the vector valued displacement field u(X, t) : B0 × [0, t] → R3, the smooth scalar
valued temperature T (X, t) : B0 × [0, t] → R+, and a smooth scalar valued function of
damage (phase-field) d(X, t) : B0 × [0, t] → [0, 1], for time interval [0, t], here d = 0 refers to
intact material and d = 1 refers to a cracked material.

The fields in the reference configurations are assumed to be a consequence of prescribed:
(i) displacement u = ū on ∂B0,u, (ii) traction t̄ = σ ·n(X, t) on ∂B0,t̄ for the Cauchy stress σ
and outwards normal n, (iii) temperature T0 on ∂B0,T , and (iv) heat flux vector QN on ∂B0,q

such that ∂B0 = ∂B0,u ∪ ∂B0,t̄ ∪ ∂B0,T ∪ ∂B0,q and ∂B0,u ∩ ∂B0,t̄ = ∅, ∂B0,T ∩ ∂B0,q = ∅ as
in Fig. 29.

For generalization purpose, B0 can be subdivided into Bi0(i > 0), such that B0 = ∪iBi0.
Each Bi0 is allowed to have different constitutive relationships that characterize their me-
chanical, fracture and thermal behaviour. The Γint characterises the presence of cohesive
surface such that ∂B0 = ∪i ∂Bi0,u ∪ ∂Bi0,t̄ ∪ ∂Bi0,T ∪ ∂Bi0,q ∪ Γiint, see Fig 29.

Define a single valued continuously differentiable function φ(X, t) ∈ V that maps the
reference material point X ∈ B0 onto the current reference configuration point x ∈ Bt, such
that x = φ(X, t) = X+ u(X, t) for each time instant t throughout the deformation process.

Here V is a space of admissible functions defined as
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Figure 29: Finite deformation of a body: reference and current configurations. De-
formation mapping φ(X, t), that transforms at time t the reference configuration B0

onto the current configuration Bt, and the displacement-derived deformation gradient
Fu := ∂Xφ(X, t).
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V =
{︁
φ : B0 × [0, t] → Rndim |φ ∈W 1,p(B0) and φ = φ̄ on ∂Ru for p ≥ 2

}︁
.

A key kinematic quantity is the deformation gradient (derived from the displacement
field), which is defined as gradient of the non-linear deformation map with respect to refer-
ence setting

Fu := ∂Xφ(X, t) = ∇Xφ(X, t) = 1 +∇u =
∂x

∂X
∈ Rndim×ndim .

This operator represents a linear map between the unit reference line elements dX onto
the current line elements dx = FudX. In the following derivations ∇X[•] and ∇x[•] denote
the Lagrangian and Eulerian gradient operators, respectively. The Jacobian of the transfor-
mation Fu satisfies

Ju := det[Fu] > 0.

where det[·] stands for dominant operator.
The co-variant basis as in Fig. 29 in reference (Gi) and the current configurations (gi) are

defined as

Gi(ξ) :=
∂X(ξ)

∂ξi
; gi(ξ) :=

∂x(ξ)

∂ξi
, i = {1, 2, 3}.

The dual and contravariant base vector satisfy the following standard relations

GiG
j = δji ; gig

j = δji .

Then the metric tensor now takes the form in reference configuration

G = GijG
i ⊗Gj = GijGi ⊗Gj ,

and in the reference configuration

g = gijg
i ⊗ gj = gijgi ⊗ gj .

Here, Gi and gi are contravariant basis in reference and current configuration. With this
at hand, the displacement-derived deformation gradient Fu in the curvilinear setting reads

Fu := gi ⊗Gi.

Furthermore, the displacement-derived left Cu Cauchy-Green deformation tensor takes
the form

Cu := [Fu]Tg[Fu] = gijG
i ⊗Gj ,

whereas the displacement-derived Green-Lagrangian strain tensor takes the form

Eu :=
1

2
[Cu −G] =

1

2
[gij −Gij ]G

i ⊗Gj .

To avoid locking pathologies, the displacement derived Green-Lagrangian strain tensor
is enhanced by the considering incompatible Green-Lagrangian tensor Ẽ. This is achieved

75



by additive decomposition of the total Green-Lagrangian strain tensor which constitutes the
central idea of EAS, in line with [214], as

E := Eu + Ẽ. (4.1)

Consequently, the enhanced right Cauchy-Green tensor C is modified to accommodate
the total Green-Lagrangian strain tensor and it takes the form

C := Cu + C̃ = 2(Eu + Ẽ) +G. (4.2)

In order to compute the enhanced right Cauchy-Green tensor, the displacement-derived
deformation field can be decomposed into the rotation tensor R and the compatible right
stretch tensor Uu as Fu = RUu by applying the polar decomposition theorem. The modified
right stretch tensor U is then estimated via Eq. (4.2) accounting for the enhanced strains, and
it takes the form U := C

1
2 . With this, the modified deformation gradient yields

F := RU,

with J = det[F] being the corresponding modified Jacobian.
The second Piola-Kirchhoff stress tensor S (referred as PK2 in the related literature) in

the reference configuration is estimated using the Cauchy stress tensor as

S = F−1 ·P = JF−1 · σ · F−1 = SijGi ⊗Gj ,

where Sij identifies its contravariant component.
Consider P0 ⊂ B0 from the continuum body B0 in the reference configuration sur-

rounded by the boundary ∂P0, and its spatial counterpart Pt ⊂ Bt, being ∂Bt the boundary
at the current configuration. The Cauchy’s stress theorem postulates the linear dependency
between Cauchy traction vector t and the normal n of ∂Pt through the Cauchy (true) stress
tensor σ as

t = σ · n.

Similarly, the first Piola–Kirchhoff stress tensor P (PK1) is also defined via the Cauchy’s
stress theorem as

T̂ = P ·N, with P = Jσ · F−1.

where T̂ denotes first Piola–Kirchhoff traction vector presented by the force equality T̂dS =
tds, and N refers to the normal of ∂P0 in the reference configuration.

Analogously to the Cauchy’s stress theorem, Stokes heat flux theorem through the sur-
face da on ∂Pt in the current configuration reads

qn = q · n,

where qn and q denote the scalar and vector (Cauchy) heat flux, respectively. The material
heat flux Q relies on the equality q · nds = Q ·NdS, and therefore its definition yields to

Q = JF−1 · q = QiGi,

where Qi identifies its contravariant component.
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4.2.2 Global equations of thermo-elasticity
The constitutive equations are derived such that they comply with the essential balance prin-
ciple (conservation law) and second law of thermodynamics, which in its local material ver-
sion is identified as the Clausius-Duhem inequality. Assuming a local theory, the constitutive
law postulates that the Helmholtz free energy function Ψ depends on the modified Green-
Lagrangian strain tensor E, the temperature T and its spacial gradient ∇XT , phase-field
(excluded here) and a set of internal variables III as

ρ0Ψ = Ψ̂(E, T,∇XT,III), (4.3)

for ρ0 = ρ0(x) being the material density in reference configuration. For the isotropic
Kirchhoff-Saint-Venant material model, the Helmholtz free energy reads

Ψ(E, T ) = 1
2
λ (tr[E])2 + µtr[E2]− 3καtr[E] (T − T0) +cp

[︃
(T − T0)− T log

T

T0

]︃
,(4.4)

where λ and µ are the Lamé constants, κ identifies the bulk modulus, and α is the coefficient
of thermal expansion and T0 is the initial reference temperature.

4.2.3 Extension to FGM
Within the context of functionally graded materials, material properties changes as a varia-
tion of spatial dimension across the domain. Let A and B be two materials compositions of
a functionally graded materials, then the volume fraction of the material A in the domain B0

can be defined as

V fA(x) := V fA(x, ζ, III) : B0 → [0, 1],

where ζ is the grading constant andIII is a set of internal variable that depends on the domain
B0. Then, the volume fraction of the material B can be estimated as a function of material
A. i.e V fB(x) = 1 − V fA(x). Based on the rule of mixtures, the material properties such
as Young’s Modulus E, Poisson’s ratio ν, co-efficient of thermal expansion α, thermal con-
ductivity k0, heat capacity cp and fracture energy GC as a function of volume fraction of one
of the material. i.e GC = GC(V fA) = GC(V fB). Fixing V fA(x) as a prime function, the
material properties takes the form

E(x) = EA + (EB − EA)V fA(x), (4.5a)

ν(x) = νA + (νB − νA)V fA(x), (4.5b)

α(x) = αA + (αB − αA)V fA(x), (4.5c)

k0(x) = k0,A + (k0,B − k0,A)V fA(x), (4.5d)

cp(x) = cp,A + (cp,B − cp,A)V fA(x), (4.5e)

GC(x) = GC,A + (GC,B − GC,A)V fA(x). (4.5f)
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It can be argued that internal length scale l is largely considered as material parameters

[37]. In particular, the length scale l can be estimated using the relation l =
27

256

GCE
σ2
c

for

σc being critical stress as in [24]. Moreover, many authors such as [90] considered l to be
constant. In order to include the vast literature regarding the choice of the length scale l,
here length scale is considered as a function of volume fraction i.e

l(x) = lc,A + (lc,B − lc,A)V fA(x). (4.6)

Since Clausius-Duhem Inequality and the balance equations are defined locally, the Kirchoff-
Saint-Venant in Eq. (4.4) is modified to accommodate FGM as

Ψ0(E, T ;X) = 1
2
λ(X) (tr[E])2 + µ(X)tr[E2]− 3κ(X)α(X)tr[E] (T − T0(X))

+cp(X)
[︂
(T − T0(X))− T log T

T0(X)

]︂
. (4.7)

Here, the material properties λ(X), µ(X), κ(X), α(X), cp(X), and T0(X) exhibit a vari-
ation in the spatial dimension. The material parameters from the surface energy, GC and l
are also written as GC(X) and l(X) Moreover, the Lamé constants, λ(X), µ(X) and the bulk
modulus κ(X) can be estimated as

λ(X) =
E(X)ν(X)

(1 + ν(X))(1− 2ν(X))
; µ(X) =

E(X)

2(1 + ν(X))
; κ(X) =

ν(X)E(X)

3(ν(X)− 2)
,

(4.8)
for each X ∈ B0, whereas E(X) and ν(X) are the spatial variations of Young’s modulus and
Poisson’s ratio.

From here onward, we drop the X dependency on all the material properties. As men-
tioned earlier, the constitutive law follows the energy balance with respect to the reference
configuration as⎧⎪⎨⎪⎩

ρ0 = Jρ : Local mass balance
ρ0φ̈ = DIV [P] + ρ0γ̄ = 0 : Linear Momentum balance
ρ0ė = S : Ė+R−DIV [Q] : Energy balance

(4.9)

Here, ρ0(X) and ρ(X, t) are the density fields in the reference and current configurations,
respectively. Whilst, ρ0γ̄ identifies the prescribed body forces per unit of reference volume, e
stands for the specific internal energy whose temporal rate given by ė, Ė represents the rate
of Green-Lagrange strain tensor, R is the internal heat source measured per unit reference
volume.

The second law of thermodynamics which ensures the consistency of the formulation
takes the form

D = Dloc +Dcond =
[︂
S : Ė− ρ0

(︂
Ψ̇ + Ṫ η

)︂]︂
−
[︃
1

T
Q · ∇XT

]︃
≥ 0, (4.10)

which is referred as Clausius-Duhem inequality, with D representing the dissipated energy,
Dloc the energy due to the local actions and Dcond is the energy due to heat conduction. It is
easy to see that by enforcing
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Dloc ≥ 0, and Dcond ≥ 0, (4.11)

the Clausius-Duhem inequality in Eq. (4.10) is satisfied, leaving Clausius-Planck inequality
Eq. (4.11)1 and the Fourier inequality (4.11)2.

Inserting the free energy function in Eq. (4.3), and Eq. (4.4) into Eq. (4.10) satisfies the
Clausius-Duhem inequality by following the Coleman and Noll procedure [243] with

Dloc = [S − ∂EΨ] : Ė − [η + ∂TΨ] Ṫ − ∂∇XTΨ : ∇XṪ − ∂IIIΨ : IIİ ≥ 0, (4.12)

Accordingly, the constitutive equations corresponding to the second Piola-Kirchhoff tensor,
and entropy reads

S := ∂EΨ = λ (tr[E])1+ 2µE− 3κα (T − T0)1, (4.13)

η := −∂TΨ = 3καtr[E] + cp log
T

T0
, (4.14)

Consequently, the internal dissipation reads

Dloc := −∂IIIΨ : IIİ ≥ 0, (4.15)

accounting for the evolution of inelastic processes such as visco-elastic, plastic effects, among
others. Note that damage variable can be added here to the local action Dloc as ∂dΨ : ḋ, the
irreversibility condition and Karush-Kuhn-Tucker (KKT) conditions can be readily obtained
as a consequence of Eq.(4.15) and Eq.(4.12). In order to preserve the current derivation the
similar format to that corresponding to the original phase-field formulation as in [16] i.e as
a competition between the elastic (thermo-elastic) and the surface energy/crack energy, the
phase-field variable is added at a later stage as in Section 4.3.

Based on the Legendre transformation, the evolution equation for entropy η takes the
form

ρ0η̇T = −∂IIIΨ : IIİ +R− DIV[Q] = Dloc +R− DIV[Q]. (4.16)

The left hand side of Eq.(4.16) can be expressed as:

ρ0ηṪ = cpṪ − ρ0SH, (4.17)

where the heat capacity, cp, and the structural heating SH due to the rate of temperature
reads

cp := −ρ0T∂2
TTΨ; (4.18)

SH := T∂2
TEΨ : Ė + T∂2

TIIIΨ : IIİ = TZ : Ė + TQQQ : IIİ,

where Z is the second order tensor containing the thermal conductivity k in the curvilin-
ear setting associated with the Helmholtz free energy, and QQQ identifies the internal variable
operator. For an adiabatic process, DIV[Q] ≡ 0 and R ≡ 0. Since there is no irreversible
evolution in interval variables (phase-field not included yet), ∂2

TIIIΨ = 0 in above equation
and hereafter.

The constitutive operators in the curvilinear setting reads
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C = ∂EEΨ =
[︁
λGijGkl + µ

(︁
GikGjl +GilGjk

)︁]︁
Gi ⊗ Gj ⊗ Gk ⊗ Gl,

Z = −3κα
[︁
GijGi ⊗ Gj

]︁
, (4.19)

Q = −JF−1·k·F−T·∇XT = −Jk
(︂
Gi ⊗ gi

)︂(︂
gklgk ⊗ gl

)︂(︂
gj ⊗Gj

)︂
∇XT = −JkC−1·∇XT .

(4.20)
Here, the isotropic conductivity is written using the contravariant basis vector as k =

kgijgi ⊗ gi, and C−1 stands for the inverse of the right Cauchy-Green strain tensor. By
assuming a isotropic heat flux in the reference configuration, the formulation for the heat flux
can be further simplified to Q = −k0G∇XT , where k0 identifies the thermal conductivity in
the reference configuration.

4.2.4 Thermo-mechanical CZM
The first interface law under consideration is the cohesive zone model inspired by the work
of Ortiz and Pandolfi [234], and later extended by Balzani and Wager [239] to enhance the
model for Mode-I compression behaviour. The extension of Balzani exponential cohesive
law to thermo-mechanical problems is developed according to the work of Turon et al [244],
Walander et al [245], Willam et al [238], Wenyashu et al [246] and Fleischhauer et al [236,
237]. The cohesive zone model postulates the existence of a free energy density Φ per unit
undeformed area. The thermo-mechanical coupling is achieved by making effective trac-
tion temperature dependent and the interface conductance dependent upon the cohesive
damage variable. For this, define the displacement gaps in a 3-D modelling setting as:
∆ = (∆n,∆t,∆s), where ∆n,∆s,∆t identify normal, shear and tangential displacement
gaps, respectively, and the temperature gap ∆T = (T+ −T−) across the interface. In isother-
mal conditions, the free energy density reads

Φ = Φ(∆, p), (4.21)

where p is a suitable internal variable to describe the current decohesion state. Based on
thermodynamic considerations, the cohesive tractions take the form

σ :=
∂Φ(∆, p)

∂∆
. (4.22)

In applications, where more than one fracture mode is predominant, the adoption of
mixed mode fracture conditions are required. Following [247], the mixed mode conditions
are herein accounted by introducing the effective/equivalent displacement ∆m as

∆m =
√︂

⟨∆2
n⟩+ χ2 (∆2

s +∆2
t ) =

√
∆TC∆ with C =

⎡⎣χ2 0 0
0 χ2 0
0 0 1

⎤⎦ .
Here, ⟨·⟩ =

(| · |+ ·)
2

is Macaulay brackets to avoid fracture events under compression
normal actions, χ is the weighing factor between normal and shear fracture modes.

80



Assuming that the free energy depends upon the effective mechanical displacement ∆m,
under mixed mode conditions, the elastic tractions read

σ =
σ

∆m

[︁
∆2
nnn + χ2 (︁∆2

sns +∆2
tnt
)︁]︁
,

where ni is the unit vector along ith direction. Additionally, effective tractions σm takes the
form

σm =
∂Φ

∂∆m
.

The free energy function proposed in [239] takes the form

Φ = eσc∆c

⎡⎢⎣1− (︃1 + ∆m

∆c

)︃
e

⎛⎝−
∆m

∆c

⎞⎠⎤⎥⎦+
1

2
Kc∆

2
n
⟨−∆2

n⟩
−∆2

n

, (4.23)

where σc and ∆c are the initial effective limit traction and corresponding opening displace-
ment gap. Here Kc identifies the penalty stiffness applied in compression and estimated
as

Kc =
eσc
∆c

.

In the presence of temperature, the critical energy release rate and the effective limit
tractions are temperature dependent [245]. Hence, we herein assume that the peak traction
is affected by temperature as

σ∗
c = σc(∆, T, p) = σc

(︄
1−

∑︁8
i=1 Ti − T0

T0

)︄
. (4.24)

Here,
∑︁8
i=1 Ti represents the average temperature of all the nodes in an element. This

leads to weakening of the interfaces at elevated temperatures by decreasing the total critical
energy release rate of the system. Moreover, the constitutive assumption that the peak cohe-
sive traction dependence on the temperature can be directly related to critical energy release
rates for which the experimental results may be available for some specific materials.

As a consequence of thermodynamic considerations and the choice of the free energy
function, the cohesive traction σ and the effective cohesive tractions σm render

σ =
eσ∗
c

∆c
e

⎛⎝−
∆m

∆c

⎞⎠
C∆+KcIc∆ = D∆ with Ic =

⎡⎢⎣0 0 0
0 0 0

0 0
⟨−∆n⟩
−∆n

.

⎤⎥⎦ , (4.25)

and

σm =
eσ∗
c∆m

∆c
e

⎛⎝−
∆m

∆c

⎞⎠
. (4.26)
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The linearized constitutive tensor for mechanical field is then directly obtained as

C =
∂σ

∂∆
= D +

∂D
∂∆

∆,

which follows that

C =
eσ∗
c

∆c
e

⎛⎝−
∆m

∆c

⎞⎠
+KcIc + Fe σ∗

c

∆2
c∆m

e

⎛⎝−
∆m

∆c

⎞⎠
(C∆)(C∆)T.

Here, the load function F is defined to distinguish between different cases of irreversibil-
ity. Additionally, the fracture toughness GC is defined using the modified B-K criterion as

GC = GIc + (GIIc − GIc)
(︃

GII + GIII
GI + GII + GIII

)︃η
.

Additionally, the effective toughness relating GC and the effective displacement ∆m

takes the form

GC̄ = lim
∆m→∞

{Φ(∆m, p)} = eσ∗
c∆c.

In order to track the extent of damage progression, the damage variable dint for mixed
mode condition can be defined as the ratio between the dissipated energy and the effective
fracture energy

dint =
Φ(∆m, p)

GC̄
=

⎡⎢⎣1− (︃1 + ∆m

∆c

)︃
e

⎛⎝−
∆m

∆c

⎞⎠⎤⎥⎦ . (4.27)

Evidently, damage dint ∈ [0, 1] with dint = 0 indicates no damage, whereas dint = 1
indicates complete decohesion/damage.

The thermal flux across the interface q+ = q ·n+ occurs in the normal direction. Neglect-
ing the effects of plasticity, convection, and radiation, the thermal flux now depends only on
the interface conductance and the temperature jump ∆T = (T+ − T−) across the interface.
As a result, the heat flux across the interface renders

q+̄(hcz) = hcz∆T , (4.28)

where, hcz is the thermal conductance of the interface. As a consequence of the opening gaps,
the interface conductance decreases as the gap increases. Hence, the interface conductance
is reduced with the help of the damage variable dint in line with the arguments of [235, 244].
With this, thermal conductance of the damaged surface takes the form

hcz = (1− dint)hint for ∆n ≥ 0. (4.29)

Here hint is the undamaged interface conductance. This way, the degradation of thermal and
mechanical properties are controlled by a single damage variable. The FE implementation
of the interface is detailed in Section 4.3.2
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4.2.5 Extension of CZM to other models
The second interface model herewith examined recalls the exponential-like formulation given
in [233]. Similarly to the previous section, we define the displacement gaps ∆ = (∆n,∆t,∆s),
where ∆n,∆s,∆t identifies normal, shear and tangential displacement gaps respectively
and the temperature gap ∆T = (T+ − T−). Given the critical displacement δn, and γ, the
ratio of normal to shear displacement, δs = γδn, and δt = γδn, define the non-dimensional,
internal damage-like variable λ̄ ∈ [0, 1] as

λ̄ =

⌜⃓⃓⎷{︄(︃∆n

δn

)︃2

+

(︃
∆s

δs

)︃2

+

(︃
∆t

δt

)︃2
}︄
,

and a function F (λ̄) is chosen as

F (λ̄) =
27

4
σc(1− 2λ̄+ λ̄

2
) for 0 ≤ λ̄ ≤ 1.

Then, for the monotonically increasing λ̄, with λ̄ = 0 indicating no damage, and λ̄ = 1
indicating complete failure, the tractions are expressed as

σ =

(︃
∆n

δn

)︃
F (λ̄); τs = γ

(︃
∆s

δs

)︃
F (λ̄); τt = γ

(︃
∆t

δt

)︃
F (λ̄).

Now, we assume that the effective limit traction σc (without renaming) affected by tem-
perature

σc = σc

(︄
1−

∑︁8
i=1 Ti − T0

T0

)︄
. Here,

∑︁8
i=1 Ti represents the average temperature of all

the nodes in an element. Then as in Section 4.2.4, the interface conductance is reduced to

hcz = (1− λ̄)hint for ∆n ≥ 0.

with usual notations as in Section 4.2.4.

4.3 Variational basis and finite element formulation
Based on the previous considerations, and assuming a scalar isotropic degradation of the
Helmholtz free energy function in Eq.(4.4) due to the evolution of fracture, the variational ba-
sis for the thermo-mechanical phase-field problem is herewith described. Within the frame-
work of Hu-Washizu variational principle, the modified version of the Helmholtz free en-
ergy function incorporating the EAS method and the surface energy created due to fracture
takes the form

Π(u, Ẽ, d, T, dint) =

∫︂
B0

g(d)Ψ(u, Ẽ, T )dΩ−
∫︂
B0

S : Ẽ dΩ+

∫︂
B0

GC
2

[︃
α(d)

l
+ l |∇d|2

]︃
dΩ

+

∫︂
Γint

q̄ · δ∆T d∂Ω+Πext.

(4.30)
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Here, α(d) := d2 is a continuous monotonic function with α(0) = 0 and α(1) = 1,
called the geometric crack function [29, 30, 31, 24]. The term α(d)

l
refers to the local part

of the crack surface and l |∇d|2 is the non local part. Moreover, g(d) := [(1 − d)2 + xk]
refers to the energetic degradation function that is used to deteriorate the initial coupled
thermo-mechanical Helmholtz free energy function with g(d) : [0, 1] → [1, 0] and xk refers to
a residual stiffness.

Recalling the additive decomposition of the strain field in Eq. (4.1), it is important to note
that the orthogonality condition between the interpolation spaces of the stress and enhanced
strain fields can be exploited from the subsequent derivations.

With this at hand, the solution of Eq.(4.30) can be obtained by solving it as a minimization
problem.

Determine (u, Ẽ, d, T, dint) from

(u∗, Ẽ
∗
, d∗, T ∗, d∗int) = argmin

S
Π(u, Ẽ, d, T, dint) (4.31)

with S = {ḋ ≥ 0 for all x ∈ B0|Γint, ḋ ≥ 0 ∀x ∈ Γi}. The set (u, Ẽ, d, T,∆) in Eq. (4.31) is
solved by taking a first variation of the total modified potential functional assuming enough
regularity of the fields involved. Recalling the irriversibility of the damage variables d, for
any admissible test function (δu, δẼ, δd, δT, δ∆) in the appropriate space of distribution (see
below for details), this leads to the following residual of continuous multi-field problem:

Ru(u, Ẽ, d, T, dint, δu) =

∫︂
B0

g(d) [S : δEu] dΩ−
∫︂
B0

ρ0γ̄δu dΩ−
∫︂
∂B0,t

t̂ · δu d∂Ω

+

∫︂
Γint

σ · δ∆ d∂Ω = 0,

Ru =Ru
int −Ru

ext +Ru
coh = 0,

(4.32)

for all δu ∈ Bu with Bu = {δu ∈ H1(B0), δu = 0 on ∂B0,u}. Here, ρ0γ̄ denotes the external
force applied per unit volume. The residual vector associated with the incompatible strain
tensor takes the form

RẼ(u, Ẽ, d, T, dint, δẼ) =

∫︂
B0

g(d)
[︂
S : δẼ

]︂
dΩ = RẼ

int = 0, (4.33)

for all δẼ ∈ BẼ with BẼ = {δẼ ∈ L2(B0)}. The residual associated with the phase-field
variable takes the form

Rd(u, Ẽ, d, T, dint, δd) =

∫︂
B0

GC
[︃
d

l
δd+ l∇d · ∇δd

]︃
dΩ−

∫︂
B0

2(1− d)Ψ(u, Ẽ, T )δd dΩ = 0,

(4.34)

for all δd ∈ Bd with Bd = {δd ∈ H1(Ω)
⃓⃓⃓
δd ≥ 0 ∀ X ∈ B0}. In the absence of other

dissipative mechanisms and heat source (R ≡ 0), the residual for the coupled thermal field
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reads

RT (u, Ẽ, d, T, dint, δT ) =

∫︂
B0

cpṪ δT dΩ−
∫︂
B0

g(d)
[︂
TZ : Ė

]︂
δT dΩ+

∫︂
B0

g(d)DIV[Q]δT dΩ

+

∫︂
Γint

q̄ · δ∆T d∂Ω = 0,

(4.35)

for all δT ∈ BT with BT = {δT ∈ H1(Ω)
⃓⃓⃓
δT = 0 on ∂B0,q}. The third term in Eq.(4.35) can

be reformulated using the divergence theorem as∫︂
B0

DIV[Q]δT dΩ =

∫︂
∂B0,q

QNδT d∂Ω−
∫︂
B0

Q · ∇XδT dΩ,

where QN = Q · N refers to the Neumann boundary condition on ∂B0,q . With this, the
variational form of energy balance equation at the reference configuration takes the form

RT (u, Ẽ, d, T, dint, δT ) =

∫︂
B0

cpṪ δT dΩ−
∫︂
B0

g(d)
[︂
TZ : Ė

]︂
δT dΩ+

∫︂
∂B0,q

QNδT d∂Ω

−
∫︂
B0

g(d)Q · ∇XδT dΩ+

∫︂
Γint

q̄ · δ∆T d∂Ω = 0.

Through the insertion of the Duhamel’s law, Eq.(4.20)1:

RT (u, Ẽ, d, T, dint, δT ) =

∫︂
B0

cpṪ δT dΩ−
∫︂
B0

g(d)
[︂
TZ : Ė

]︂
δT dΩ+

∫︂
∂B0,q

QNδT d∂Ω

+

∫︂
B0

g(d) [∇XδT ]
T · JF−1 · k · F−T∇XT dΩ

+

∫︂
Γint

q̄ · δ∆T d∂Ω = 0.

(4.36)

For isotropic thermal conductivity, Eq.(4.20)2, the temperature residual finally reads

RT (u, Ẽ, d, T, dint, δT ) =

∫︂
B0

cpṪ δT dΩ−
∫︂
B0

g(d)
[︂
TZ : Ė

]︂
δT dΩ+

∫︂
Γint

q̄ · δ∆T d∂Ω

+

∫︂
∂B0,q

QNδT d∂Ω+

∫︂
B0

g(d)Jk [∇XδT ]
T ·C−1 · ∇X[T ] dΩ = 0.

(4.37)

Notice that, the degradation function g(d) is added in Eq. (4.36). Meaning that, the
thermal conductivity k present in Z and Q (fourth term) is degraded. As the phase-field
value reaches d = 1, the thermal conductivity approaches zero acting as a potential barrier
for the heat transfer across the cracked region Γ.
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4.3.1 Finite element formulation
The finite element discretization is introduced on the reference configuration B0 (recalling
a total Lagrangian formulation) with standard arguments of the isoparametric interpola-
tion. The functional space B0 is discretized into ne non-overlapping elements, such that
B0 ≈

⋃︁ne
e=1 B

(e)
0 . Complying with the solid shell approach, for the natural coordinate system

(ξ1, ξ2, ξ3), the position vector at reference and current configuration X and x are expressed
by the points of top and bottom surface Xt(ξ1, ξ2) and bottom surfaces Xb(ξ1, ξ2) of the shell
as in Fig. 29. Accordingly, the position vector in the reference configuration can be expressed
as

X(ξ) =
1

2

(︁
1 + ξ3

)︁
Xt(ξ1, ξ2) +

1

2

(︁
1− ξ3

)︁
Xb(ξ1, ξ2), (4.38)

whereas the position in the current configuration takes the form

x(ξ) =
1

2

(︁
1 + ξ3

)︁
xt(ξ1, ξ2) +

1

2

(︁
1− ξ3

)︁
xb(ξ1, ξ2), (4.39)

with the parametric space defined in natural co-ordinates as A := {ξ = (ξ1, ξ2, ξ3) ∈ R3 | −
1 ≤ ξi ≤ +1; i = 1, 2, 3}, with (ξ1, ξ2) being in plane and ξ3 being thickness direction.

Regarding the phase-field variable embedded in the shell body, the definition of position
vector is adopted in the reference and current configuration, a possible anszat yields to a
linear interpolation between the top (dt) and bottom (db) surfaces of the shell in line with
[207], expressed as

d(ξ) =
1

2

(︁
1 + ξ3

)︁
dt(ξ

1, ξ2) +
1

2

(︁
1− ξ3

)︁
db(ξ

1, ξ2). (4.40)

The discrete reference (Lagrangian) and current (Eulerian) nodal position vectors are
interpolated through standard trilinear shape functions NI (N(ξ) in matrix notation) as

X ≈
nn∑︂
I=1

NI(ξ)XI = N(ξ)˜︁X and x ≈
nn∑︂
I=1

NI(ξ)xI = N(ξ)˜︁x,
with number of nodes nn = 8 whose nodal values are collected into the respective global
vectors ˜︁X and ˜︁x.

The interpolation of the fields (u, Ẽ, d, T ), their respective variations (δu, δẼ, δd, δT ) and
their increments (∆u,∆Ẽ,∆d,∆T ) in compact form reads

u ≈ N(ξ)d; δu ≈ N(ξ)δd; ∆u ≈ N(ξ)∆d,

Ẽ ≈ M(ξ)ς, δẼ ≈ M(ξ)δς, ∆Ẽ ≈ M(ξ)∆ς ,

d ≈ N(ξ)d̃; δd ≈ N(ξ)δd̃; ∆d ≈ N(ξ)∆d̃

T ≈ N̂(ξ)T̂ , δT ≈ N̂(ξ)δT̂ ,∆T ≈ N̂(ξ)∆T̂ .
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Here, the M(ξ) denotes the enhancing interpolation matrix and ς is the vector collecting
the EAS parameters. In particular, within the element space ξ = {ξ1, ξ2, ξ3}, the operator
M(ξ) takes for form

M̃ =

⎡⎢⎢⎢⎢⎢⎢⎣
ξ1 0 0 0 0 0 0
0 ξ1 0 0 0 0 0
0 0 ξ3 ξ1ξ3 ξ2ξ3 0 0
0 0 0 0 0 ξ1 ξ2

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.41)

is the operator with 7 parameter at each element level suitable to alleviate volumetric and
Poison’s thickness locking pathologies. Similarly

M̃ =

⎡⎢⎢⎢⎢⎢⎢⎣
ξ1 0 0 0 ξ1ξ2 0 0 0 0 0 0
0 0 ξ1 ξ2 0 0 ξ1ξ2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 ξ2 0 0 0 ξ1ξ2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 ξ1 ξ2 ξ1ξ2

⎤⎥⎥⎥⎥⎥⎥⎦ (4.42)

is the 11 parameter at each element level. Apart from the volumetric and Poison’s, it can
tackle the moderately distorted meshes.

In the current solid shell formulation, transverse shear and transverse normal strain com-
ponents are modified in order to circumvent transverse shear and trapezoidal locking respec-
tively using ANS interpolation method. The interpolation of the transverse shear strains
E13 and E23 are performed at points ξA = (0,−1, 0), ξB = (1, 0, 0), ξC = (0, 1, 0) and
ξD = (−1, 0, 0) as in Fig. 29. Accordingly, the transverse shear strain components reads{︃

2EANS13

2EANS23

}︃
=

{︃
(1− ξ2)2E13(ξA) + (1 + ξ2)2E13(ξC)
(1 + ξ1)2E23(ξB) + (1− ξ1)2E23(ξD)

}︃
.

Similarly, the interpolation of the transverse normal strain E33 are performed at points ξO =
(−1,−1, 0), ξP = (1,−1, 0), ξS = (1, 1, 0) and ξT = (−1, 1, 0) as in Fig. 29. Based on this,
the transverse normal strain takes the form

EANS33 =
∑︂

m=O,P,S,T

Nm(ξ1, ξ2)E33;

Nm(ξ1, ξ2) =
1

4

(︁
1 + ξ1mξ

1)︁ (︁1 + ξ2mξ
2)︁ ,

with ξ1m, ξ
2
m = ±1.

The interpolation of displacement derived compatible strains are approximated using
displacement strain operator B as

Eu ≈ B(d)d, δEu ≈ B(d)δd, ∆Eu ≈ B(d)∆d.

Similarly, the gradient of phase-field are interpolated using a suitable operator Bd as
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∇xd ≈ Bd(d)d̃, ∇xδd ≈ Bd(d)δd̃, ∇x∆d ≈ Bd(d)∆d̃.

The interpolation of the spatial temperature gradient at current configuration (∇XT ),
and its associated variations can be expressed as

∇XT = G−1∇ξT ≈ G−1∇ξN̂(ξ)T̂ ; ∇XδT ≈ G−1∇ξN̂(ξ)δT̂ ; ∇X∆T ≈ G−1∇ξN̂(ξ)∆T̂ ,
(4.43)

where ∇ξ is the gradient of temperature at each node with respect natural coordinate defines
in the curvilinear setting.

4.3.2 FE implementation of interface
Regarding the internal cohesive interfaces, the contribution of the interface cohesive traction
σ in Eq. (4.32) and heat flux q̄ in Eq. (4.35), the total potential reads

Πint =

∫︂
Γint

T̃ · gT
loc d∂Ω, (4.44)

where the gaps gloc = (δn, δt, δs, δT ) includes both mechanical and thermal gaps, T̃ =
(σ, q̄) = (σ, τt, τs, q̄).

The virtual variation of the Πint according to principle of virtual work takes the form

δΠint =

∫︂
Γint

T̃ · ∂gloc
∂u

T

d∂Ω. (4.45)

At each element, four degrees of freedom for each node are specified for each node as

d̂ = (d, T )T. (4.46)

The mid surface is specified such that the average value of the displacements are speci-
fied on the mid surface plane. Due to the geometrical non-linearity/large displacement, the
updated coordinates of a generic point are given by x = X+d. As in [207, 234], the collective
traction to the middle surface can be determined by the average co-ordinates with respect to
the natural co-ordinates ξ and η. The gap vector in the reference frame, g can be obtained by
pre-multiplying the nodal displacement vector d and a suitable operator L which provides
the difference between the top and bottom interface. Accordingly, the discritized gaps in the
finite element framework reads

g = NLd̂. (4.47)

Here, N is the interpolation operator whose expression reads

N = [N1I4, N2I4, N3I4, N4I4] , (4.48)

where N1 =
1

4
(1 − ξ1)(1 − ξ2), N2 =

1

4
(1 + ξ1)(1 − ξ2), N3 =

1

4
(1 + ξ1)(1 + ξ2) and

N4 =
1

4
(1 − ξ1)(1 + ξ2), whereas I4 is the 4 × 4 identity vector. Moreover, the averaging

operator reads L = [−I16, I16] with I16 identifies as 16× 16 identity matrix.
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The generalized displacement gaps in the local reference frame are computed by multi-
plying the gaps g in reference frame by a rotation operator R, i.e

gloc = R(d̂)g = R(d̂)NLd̂. (4.49)

It is important to observe that the rotation operator depends on the displacement d̂ due
to the large displacements, see [240], for more details. The displacement dependent rotation
operator R(d̂) takes the form

R(d̂) =

⎡⎢⎢⎣
tx sx nx 0
ty sy ny 0
ty sz nz 0
0 0 0 1

⎤⎥⎥⎦ . (4.50)

On this impending event,
∂gloc

∂d̂
in Eq. (4.45) can be estimated as

∂gloc
∂u

≈ ∂gloc

∂d̂
= R(d̂)NL+

∂R(d̂)

∂d̂
NLd̂. (4.51)

Here,
∂R(d̂)

∂d̂
is a third order tensor. Replacing B = NL in the above expression, and

putting in Eq (4.45) leads to

δΠint = δd̂
T
∫︂
Γint

(︃
RB+

∂R

∂d̂
Bd̂

)︃T

T̃ d∂Ω. (4.52)

The solution of the variational equation δΠint = 0 results in fint = 0 with

fint =

∫︂
Γint

(︃
RB+

∂R

∂d̂
Bd̂

)︃T

T̃ d∂Ω. (4.53)

A Newton-Raphson iterative scheme is used to find the corrector δd̃ at each iteration
until the convergence is achieved. At iteration k, the equation reads

Ke,k∆d̂ = −fint, (4.54a)

d̂
k+1

= d̂
k
+∆d̂, (4.54b)

where Kk is the elemental stiffness matrix obtained by the linearization of the residual. i,e

Ke,k =
∂fint

∂d̂
. Following the lines of derivation as in [240], the final stiffness matrix renders

Ke = Ke
mat +Ke

geom, (4.55)

with material contribution Ke
mat takes the form

Ke
mat =

∫︂
Γint

(︂
BTRTCRB

)︂
d∂Ω, (4.56)

and the geometrical contribution Ke
geom to the stiffness matrix is
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Ke
geom =

∫︂
Γint

(︃
2BT ∂R

∂d̂

T

T+ d̂
T
BT ∂R

∂d̂

T

C
∂R

∂d̂
Bd̂

)︃
+

∫︂
Γint

(︃
BTRTC

∂R

∂d̂
Bd̂+ d̂

T
BT ∂R

∂d̂
CRB

)︃]︃
d∂Ω,

(4.57)

Here, C =
∂T̃

∂gloc
is the tangent interface constitutive matrix whose computation is de-

tailed in Section 4.2.4. In case of small displacement, the geometrical contribution yields
∂R

∂d
= 0.

4.3.3 Consistent linearization
Through the insertion of the previously discussed interpolation scheme, the residuals of the
independent fields (u, Ẽ, d, T ) in the discrete form can be expressed as

R̂u

int(d, ς, d̃, T̂ , δd) = δdT

[︃∫︂
B0

g(d)B(d)TS dΩ
]︃
, (4.58)

R̂Ẽ

int(d, ς, d̃, T̂ , δς) = δςT
[︃∫︂

B0

g(d)M(ξ)TS dΩ
]︃
, (4.59)

R̂d
(d, ς, d̃, T̂ , δd) = δdT

[︄∫︂
B0

GC
[︃
1

l
N(ξ)Td+ lBd(ξ)T∇xd

]︃
dΩ

−
∫︂
B0

2(1− d)NT(ξ)Hδd dΩ

]︄
,

(4.60)

R̂T

int(d, ς, d̃T̂ , δT̂ ) = δT̂
T

[︄∫︂
B0

N̂(ξ)TcpṪ dΩ−
∫︂
B0

g(d)N̂(ξ)T
(︂
ZTĖ

)︂
T dΩ+

∫︂
B0

JBT
TF

−1 · k · F−T · ∇XT dΩ

]︄
.

(4.61)

Here,

H = max
τ∈[0,t]

[︂
Ψ(u, Ẽ, T )

]︂
, (4.62)

is the crack driving force (history variable) as defined in [207] to ensure the irreversibility of
the phase-field variable d and BT defines a suitable operator to compute the gradient of the
temperature field.

Due to the existence of non-linearity in the multi-field Eqs.(4.58)- (4.61), an incremen-
tal iterative quasi Newton-Raphson scheme is adopted (details are omitted for the sake of
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brevity). This is achieved by linearization of the residual in Eq.(4.58), (4.59), (4.60), (4.61)
using directional Gateaux derivatives [231, 24, 207].

For this, consider a finite time increment ∆t := t
(k)
n+1−tn > 0, where the fields (u, Ẽ, d, T )

at step tn is assumed to be known. The temporal variation of the fields are expressed as

Ṫ =
T n+1 − T n

∆t
; Ė =

En+1 −En
∆t

; ḋ =
dn+1 − dn

∆t
; ς̇ =

ςn+1 − ςn
∆t

, (4.63)

constituting a backward Euler scheme.
The independent fields (u, Ẽ, d, T ) are computed at current time step tn+1 via consistent

linearization of the residual functions which can be expressed as

L̂[R̂u
] = R̂u

(d, ς, d̃, T̂ , δd) + ∆R̂u
(d, ς, d̃, T̂ , δd,∆d,∆ς,∆d̃,∆T̂ )

= R̂u
+∆dR̂

u
∆d+∆ςR̂

u
∆ς +∆dR̂

u
∆d̃+∆T R̂

u
∆T̂ ,

(4.64)

L̂[R̂Ẽ
] = R̂Ẽ

(d, ς, d̃, T̂ , δς) + ∆R̂Ẽ
(d, ς, d̃, T̂ , δd,∆d,∆ς,∆d̃,∆T̂ )

= R̂Ẽ
+∆dR̂

Ẽ
∆d+∆ςR̂

Ẽ
∆ς +∆dR̂

Ẽ
∆d̃+∆T R̂

Ẽ
∆T̂

(4.65)

L̂[R̂d̃
] = R̂d̃

(d, ς, d̃, T̂ , δς) + ∆R̂d̃
(d, ς, d̃, T̂ , δd,∆d,∆ς,∆d̃,∆T̂ )

= R̂d̃
+∆dR̂

d̃
∆d+∆ςR̂

d̃
∆ς +∆dR̂

d̃
∆d̃+∆T R̂

d̃
∆T̂

(4.66)

L̂[R̂T
] = R̂T

(d, ς, d̃, T̂ , δT̂ ) + ∆R̂T
(d, ς, d̃, T̂ , δd,∆d,∆ς,∆d̃,∆T̂ )

= R̂T
+∆dR̂

T
∆d+∆ςR̂

T
∆ς +∆dR̂

T
∆d̃+∆T R̂

T
∆T̂

(4.67)

where ∆b[a] denotes the tangent matrices calculated as a directional derivative of the resid-
ual form a with respect to the field b. In particular ∆b[a] = kab with { a, b} = {d, ς, d̃, T̂ }.
Following the standard finite element procedure, Eq.(4.64), (4.65), (4.66), (4.67) can be ex-
pressed as a system of linear equations as⎡⎢⎢⎣

Kdd Kdς Kdd̃ KdT

Kςd Kςς Kςd̃ KςT

Kd̃d Kd̃ς Kd̃d̃ Kd̃T

KTd KTς KT d̃ KTT

⎤⎥⎥⎦
⎡⎢⎢⎣
∆d
∆ς
∆d

∆T̂

⎤⎥⎥⎦ =

⎡⎢⎢⎣
R̂u

ext

0
0

R̂T

ext

⎤⎥⎥⎦−

⎡⎢⎢⎢⎣
R̂u

int

R̂ς

int

R̂d̃

int

R̂T

int

⎤⎥⎥⎥⎦ . (4.68)

The different elements of the tangent stiffness matrix takes the form

Kdd =

∫︂
B0

g(d)

(︄
B(d)TCB(d) +

[︃
∂B(d)

∂d

]︃T

S

)︄
dΩ = Kdd,mat +Kdd,geom (4.69a)

Kdς =

∫︂
B0

g(d)M(ξ)TCB(d) dΩ; (4.69b)

Kdd̃ =

∫︂
B0

−2(1− d)B(d)TSN(ξ) dΩ, (4.69c)

KdT =

∫︂
B0

g(d)B(d)TZN̂(ξ) dΩ, (4.69d)
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Kςu =

∫︂
B0

g(d)M(ξ)TCB(d) dΩ; (4.70a)

Kςς =

∫︂
B0

g(d)M(ξ)TCM(ξ) dΩ, (4.70b)

Kςd̃ =

∫︂
B0

−2(1− d)M(ξ)TSN(ξ) dΩ; (4.70c)

KςT =

∫︂
B0

M(ξ)TZN̂(ξ) dΩ (4.70d)

Kd̃d =

∫︂
B0

−2(1− d)N(ξ)TSB(d) dΩ;

(4.71a)

Kd̃ς =

∫︂
B0

−2(1− d)N(ξ)TSM(ξ) dΩ, (4.71b)

Kd̃d̃ =

∫︂
B0

[︃
2
Gc
l
H
]︃
N(ξ)TN(ξ) dΩ+

∫︂
B0

2GclB
d(ξ)TBd(ξ) dΩ, (4.71c)

Kd̃T =

∫︂
B0

−2(1− d)N(ξ)BT (d)N̂(ξ) dΩ, (4.71d)

KTd =

∫︂
B0

g(d)∆d[J ]B
T
TF

−1 · k · F−T · ∇XT dΩ

+

∫︂
B0

g(d)JBT
T

(︂
∆d[F

−1] · k · F−T + F−1 · k ·∆d[F
−T]
)︂
· ∇XT dΩ

−
∫︂
B0

N̂
T T

∆t
ZTB dΩ,

(4.72a)

KTς =−
∫︂
B0

N̂(ξ)T
T

∆t
ZTM(ξ) dΩ; (4.72b)

KTd =

∫︂
B0

2(1− d)N̂(ξ)T(ZTĖ)N(ξ) dΩ+

∫︂
B0

2(1− d)JBT
TF

−1 · k · F−T · ∇XT dΩ,

(4.72c)

KTT =

∫︂
B0

N̂(ξ)T
cp
∆t

N̂(ξ) dΩ−
∫︂
B0

g(d)N̂(ξ)T(ZTĖ)N̂(ξ) dΩ

+

∫︂
B0

g(d)JBT
TF

−1 · k · F−TBT dΩ.
(4.72d)

Here, Kdd,geom refers to the geometric contribution and the Kdd,mat is the material con-
tribution. Also, ∆d[J ] and ∆d[F

−1] and ∆d[F
−T] represents the linearization with respect

to the kinematic field of the Jacobian J of the transformation F, the inverse of the modified
deformation gradient and its transpose, respectively, which lead to additional geometrical
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terms. The overall algorithm of the implementation can be found in our recent article [231]
(without phase-field).

Since inter-element continuity is not required for enhanced strains, as in [207], they can
be condensed out at the element level via a standard condensation process. Thus, the con-
densed version of the stiffness matrix given in Eq.(4.68) reads⎡⎣K∗

dd K∗
dd̃ K∗

dT

K∗
d̃d K∗

d̃d̃ K∗
d̃T

K∗
Td K∗

T d̃ K∗
TT

⎤⎦⎡⎣∆d
∆d

∆T̂

⎤⎦ =

⎡⎢⎣R̃
d

R̃d

R̃T

⎤⎥⎦ (4.73)

where the element stiffness contribution takes the form

K∗
dd = Kdd −KdςK

−1
ςς Kςd; K∗

dd̃ = Kdd̃ −KdςK
−1
ςς Kςd̃,

K∗
dT = KdT −KdςK

−1
ςς kςT ; K∗

d̃d = Kd̃d −Kd̃ςK
−1
ςς kςd̃,

K∗
d̃d̃ = Kd̃d̃ −Kd̃ςK

−1
ςς Kςd̃; K∗

dT = Kd̃T −Kd̃ςK
−1
ςς KςT , (4.74)

K∗
Td = KTd −KTςK

−1
ςς kςd; K∗

T d̃ = KT d̃ −KTςK
−1
ςς Kςd̃,

K∗
TT = KTT −KTςK

−1
ςς KςT ,

along with the residual force vectors

R̃d
= R̂u

ext − R̂u

int +KdςK
−1
ςς R̂

ς

int

R̃d
= −R̂d

int +KdςK
−1
ςς R̂

ς

int (4.75)

R̃T
= R̂T

ext − R̂T

int +KTςK
−1
ςς R̂

ς

int

The resulting system of algebraic equations in Eq. (4.73) can be solved using mono-
lithic/staggered solution scheme using different types of solvers such as nonlinear Newton-
Raphson, quasi-Newton based solvers such as Broyden–Fletcher–Goldfarb–Shanno (BFGS),
coupled displacement solvers, etc.

Regarding the numerical implementation, a staggered scheme is used for the solution
of the coupled problem. The coupled terms with respect to the damage variable d are sup-
pressed owing to the staggered scheme implementation. i.e, Kdς ,KdT ,KTς ,KT d̄,Kd̄T ,Kd̄ςKςT .
Moreover, it was noticed that the standard Newton solver of ABAQUS performs in a sat-
isfactory manner in terms of achieving convergence equilibrium states at each time step
for thermo-mechanical coupled applications. Note also that for the problem without non-
linearity (geometric), BFGS leads to very efficient computations, reducing the number of
equilibrium iteration at each time step. However, in the current computations and when the
geometric non-linearity is involved, BFGS computation times significantly increase for the
achievement of equilibrium solutions at each time step. The comparison between the solvers
in terms of CPU times or iteration is out of scope for this article. In the following numeri-
cal application section, temperature assisted fracture in Section 4.5.2, plate with notch and
many holes in Section 4.5.4, plate with two edge notch in Section 4.6.2, plate with notch Sec-
tion 4.6.5, and 4.6.6 are solved using BFGS scheme, whereas, the other examples are solved
using the standard Newton solver of ABAQUS. The numerical examples in section 4.4 are
performed using the coupled temperature-displacement solver. Note that, the choice of so-
lution scheme mentioned above is just to show that both solvers can be used in the solution
scheme.
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Figure 30: a)Initial and boundary conditions for second Danilovskaya problem. b)
Comparison of temperature between Danowski, current model (Full Integration) and
ABAQUS SC8RT element. c) Comparison of displacement between Danowski, current
model and ABAQUS SC8RT element.

4.4 Virtual testing: thermo-elastic applications
This section presents the numerical simulations to evaluate the 11 parameter non-linear
thermo-mechanical solid shell model with the presence of cohesive-like interfaces to sim-
ulate decohesion events. When d = 0 in all the residual functions in Eqs. (4.32), (4.33), (4.34),
(4.36) vanish leading to Rd = 0. Similarly, the stiffness matrix in the Eq. (4.68) changes as a
consequence, only ∆d, and ∆T in the Eq. (4.73) has to be solved.

First, we verify the current model by taking the second Danoilovskaya problem as in
[248] and compare the temperature and displacement distribution with the original exper-
iment and the in-build ABAQUS SC8RT element. The second application recalls the bench-
mark example as in [249] to assess the implementation of the current solid shell element for
thermo-elastic applications. The response of this element is further examined in the appli-
cation of a thin bar subjected to bending, crushing, and lifting to highlight the capabilities
of the thermo-mechanical solid shell (without interface). Subsequently, we incorporate two
different cohesive zone models, the Tveergard [233], and the exponential one [239] to model
decohesion phenomena, which are first employed for the case of a plate under tensile con-
ditions with the presence of a cohesive layer. Finally, a peeling test is shown to exploit the
principal capabilities of the present formulation fully. Different effects such as temperature,
displacement, material, and cohesive properties on the simulations are discussed.

4.4.1 Model verification
The second Danilovskaya problem is often used for verification of a fully coupled thermo-
mechanical model, see [248, 246] and the references therein. A cuboid with dimensions
as in Fig. 30a) is subjected to a uniform temperature change due to the heat flux q =
h̄(T0−T∞) applied on one surface, with h̄ being heat transfer coefficient. The y-direction and
z-directions are fixed on other surface of the cuboid so that problem essential becomes one
dimensional. The thermal properties are considered according to [248] as: i) ambient temper-
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ature T∞ = 373.15K, ii) the surface initial temperature T0 = 273.15K, iii) Young’s modulus
E = 210GPa, iv) Poisson’s ratio ν = 0.3, v) density ρ = 7850 kg/m3, vi) co-efficient of linear
thermal expansion α = 1.1×10−5/o K, vii) thermal conductivity k0 = 1.03 N/so K, and viii)
mean specific heat capacity cp = 0.896 m2/s2 oK. The cuboid is discritized with 12×4×4 el-
ements. Fig. 30b) and Fig. 30c) shows the comparison of temperature and the displacement
between Danowski (2013) [248], ABAQUS SC8RT element and the proposed model (named as
full integration), leading to a very satisfactory agreement.

4.4.2 Slit annular plate subjected to lifting line force
An annular plate with a slit cut along the radial direction is considered, see Fig. 31a). The
ring is clamped at one side whereas the other side, a distributed force of 0.01 N/mm is
applied. A temperature of 100o C is applied on both the inner and outer radius of the annular
plate. Both the temperature and the line force are applied linearly for a duration of t =
1. The geometric parameters considered in this example are: i) inner radius Ri = 6mm,
ii) outer radius Ro = 10 mm and thickness h = 0.05 mm. The mechanical properties of
the solid shell are assumed homogeneous: Young’s modulus E = 68 GPa, Poisson’s ratio
ν = 0.32, co-efficient of linear thermal expansion α = 22 × 10−6/oC, thermal conductivity
k0 = 0.205 W/mmoC and mean specific heat capacity cp = 0.896 KJ/Kg oC.

These structures usually suffer from transverse shear locking as a consequence of the
large characteristic radius to thickness ratio (> 100). The solid element proposed alleviates
the underpinned issue as seen in Fig. 31. The Fig. 31b) shows the displacement field at time
step t = 0.025 and the temperature distribution can be seen in Fig. 31c). At the end of the
full load application, i.e., t = 1, the large displacement and temperature distribution can be
seen in Fig. 31d). The reaction force at the point A (also for other points along the clamped
edge) increases if material parameters and the mechanical load are kept constant and only
change the temperature boundary condition.

4.4.3 Bending, buckling and pulling of a thin plate
The problem under analysis consists of a square plate of thickness h = 0.2 mm with different
loading conditions. The material properties considered are coincident with those used for
the annular ring. The thin plate under bending usually suffers from shear locking. The
plate dimensions are presented in Fig. 32a), and the same is maintained throughout. A
temperature of 50oC is applied on both ends of the plate, where the plate is fixed in Fig. 32a).
The displacement of 30 mm is applied in the middle line to simulate a large displacement.
The displacement field can be seen in Fig. 32a). Moreover, the crushing type load of 10 mm is
applied on one edge of the square plate, restricting all degrees of freedom movement apart
from the load applied so that the square plate is forced to undergo buckling. The temperature
boundary conditions replicate those corresponding to the previous case. The current results
are presented in Fig. 32b), where a clear central buckling shape is depicted. In an alternative
experiment, a bending load of 5 mm is applied to one end, and fully restraining the opposite
edge. The displacement field at of the bending is registered in Fig. 32c). The reaction forces
for all three examples are plotted in Fig. 32d). The reactions forces are taken at the respective
load application points and restricted only to a displacement magnitude of 10 mm so that
a quantitative analysis can be made. It can be observed that for buckling (crushing), the
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Figure 31: Slit annular ring subjected to line force. a) Geometry and load data. b) Dis-
placement field distribution at the time step t = 0.0025. c) Temperature distribution at
time step t = 0.0025. d) Temperature distribution at time step t = 1. e) Load displace-
ment evolution cures at point A for various temperature boundary conditions.
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Figure 32: a) Pulling the bar from middle. b) Buckling of the bar. c) Bending thickness
of 0.2 mm.

E (GPa) ν α1(10
−6/oC) α2(10

−6/oC) α3(10
−6/oC) k10(W/mmoC) k20( W/mmoC) k30(W/mmoC) cp(KJ/KgoC)

1.2 0.3 28 28 28 0.230 0.230 0.230 0.01

Table 8: Properties of the solid shell.

reactions increase very quickly during the initial loading. Once buckling starts to occur, a
sudden drop in the reaction force is observed. Later, the reactions keep increasing steadily.
In the pulling example, the initial slope of the reaction is the highest and it keeps decreasing
throughout. In case of the bending example, the reaction forces increase steadily.

4.4.4 Plate under tensile loading

This example considers a plate with a cohesive interface as a benchmark example to under-
stand the effects of variation of different model, structural, and temperature parameters. The
structure as in Fig. 33 is subjected to tension at one end, while the opposite end is fixed. An
initial temperature of zero degree Celsius is assumed at time t = 0 and the temperature of
T o1 C and T o2 C is applied on the fixed and loaded ends, respectively. The orientation of the
solid elements and the cohesive layer is shown in Fig. 33. The cohesive zone model param-
eters have been selected so that normal tractions are dominant in the cohesive layer. Hence,
the cohesive layer is oriented towards the direction of the applied force.

As a baseline example, the model as in Fig. 33 with thickness of h = 0.1 mm is consid-
ered. The temperature boundary conditions of T1 = 50oC and T2 = 100oC is applied on the
prescribed ends with reference temperature T0 = 100oC . The displacement load of ū = 0.5
mm are applied to one side as in Fig. 33. The properties of the solid shell and the cohesive
zone model are listed in Tab. 8 and 9, respectively.
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Figure 33: Plate with a cohesive interface.

a) b)

c) d)

Figure 34: Variation of temperature (NT11) for T1 = 50oC and T2 = 100oC for thickness
of 0.1 mm. a) At time t = 0.0016. b) At time t = 0.175. c)At time t = 0.3. d) At time
t = 1.

Cohesive Model σc (MPa) τ1c (MPa) τ2c (Mpa) GIc(N/mm) GIIc (N/mm) GIIIc(N/mm) k0(W/mmoC)
Exponential 1 0.5 0.5 0.2 0.1 0.1 0.230

Table 9: Properties of the cohesive zone model.
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Figure 35: Variation of the reaction forces for different temperature boundary condi-
tions. a) Model-A with T1 = 50oC, T2 = 100oC. b) Model-B with T1 = T2 = 100oC. c)
Model-C with T1 = T2 = 200oC. d) Change of temperature.
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Fig. 34 shows the variation of the temperature at different time t. Here, both displace-
ment and temperature are applied linearly, with increments ū = 0.0005 mm T1 = 0.05oC
and T2 = 0.1oC at each time step of ∆t = 0.001s at each step so that 1000 steps are taken to
reach the time step 1s and applied the load fully. All the experiments in this section follow a
similar procedure, unless otherwise specified. At time (t = 0.016s), it can be seen from Fig.
34a) that the temperature diffuses and the cohesive interface is still are intact and perfectly
conducting. At t = 0.175s, the cohesive zone model starts developing damage. From Eq.
(4.29), the conductance of the interface starts reducing depending on damage, which can be
observed in Fig. 34b). At t = 0.3s, the interface is fully separated, d = 1 and the interface
conductance is hcz = 0, see the final temperature distribution with a sudden jump across the
interface in Fig. 34c) and Fig. 34d). In addition, notice that, due to the exponential decay
of the cohesive traction, the damage variable never reaches 1. In such a case, the thermal
conductance of the interface is never zero but it is extremely small.

Keeping the material parameters as in Tab. 8 and 9, changing only the temperature
boundary conditions and reference temperature T0 = max(T1, T2), the resulting reaction
forces are shown in Fig. 35d). As the cumulative temperature increases, the reaction curves
shift right, preserving the total fracture energy required for the system to break. Notice
that, T0 represents the environment temperature, and hence, it appears that the energy re-
quires to break the interface changes little, which is contradicting, the reason for the shift
can be explained as T0 is kept changing as the cumulative temperature increases. In order to
understand this more clearly, three cases are considered in Figs. 35a) b) c). The model-A con-
siders temperature boundary conditions T1 = 50oC and T2 = 100oC. Similarly model-B and
model-C consider temperature boundary conditions T1 = T2 = 100oC and T1 = T2 = 200oC
respectively. The change of reference temperature in each of the model-A, B, C are presented
in Fig. 35 a), b), c) respectively. In each of the reaction curves, the reference temperature
T0 indicates the temperature at which the interface starts to lose the peak critical traction.
This T0 also can be considered as the reference environmental temperature, meaning that,
if the material is placed at different temperatures (other than room temperature), the mate-
rial properties change. For the part of the solid shell, the reference temperature is directly
given in Kirchhoff-Saint-Venant material model as in Eq. (4.4). For the corresponding cohe-
sive zone, the reference temperature is added to the material model via Eq. (4.24). As the
reference temperature decreases, the reaction curves can be seen shifting downwards, de-
creasing the total fracture energy required for fracture. This trend can be observed in all the
considered models in Fig. 35 a), b), c). In conclusion, any material law that includes the vari-
ation of peak cohesive tractions depending on temperature can accommodate the reference
temperature.

Similarly, keeping all the parameters constant with temperature boundary conditions
T1 = T2 = 100oC and reference temperature T0 = 100oC. i.e., assuming that the peak
cohesive traction does not decrease as the temperature increases until 100oC, keeping the

ratio
σc
τc

=
GIc
GIIc

= 2, the reaction curves for the variation of σc and GIc are plotted in Fig.

36 a). As the σc, the fracture energy also increases. As the GIc increases, the cumulative
fracture energy also increases. The main feature of the solid shell formulation is that these
can be applied for both thin and thick models. This has been illustrated in Fig. 36b), where,
reaction curves for change of thickness are plotted.

The properties for the exponential-like interface model [234] for initial temperatures of
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Figure 37: a) Comparison between TV model and exponential model, and comparison
between staggered scheme and monolithic scheme and ABAQUS SC8RT. b) Temperature
distribution for T1 = 500C, T2 = 1000C at displacement ū = 0.1mm.

T1 = T2 = 50oC are listed in Tab. 9. The corresponding properties for the the polynomial-
like cohesive model [233] and keeping the maximum traction constants leads to σc = 1
(MPa), maximum normal displacement δn = 0.1 mm, and γ = 0.5. The reactions are shown
in Fig. 37. Even though the paper presents a fully monolithic scheme while describing the
finite element implementation, a solution via a staggered scheme could also be used to solve
the model. The reactions for the differences between fully monolithic and staggered scheme
implementation (details omitted for brevity reasons) can be seen in Fig 37a). No observ-
able differences have been noticed in this example that stems from the choice of solution
scheme. Although, the exponential model tends to be asymptotic towards zero, where dam-
age is tending to unity. In terms of temperature field, this means the thermal conductance is
asymptotically going to zero. In contrast, the the polynomial-like cohesive model tends to a
more abrupt decay after the thermal conductance is zero during the decohesion.

On the contrary, the ABAQUS SC8RT element combined with the ABAQUS built-in cohe-
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Figure 38: a) Model-A with thickness of t = 0.1 mm. b) Model-B with cohesive layer
thickness of 0.2 mm.

sive zone element COH3D8 (with no thermal effect) is used to perform the same experiment
with properties as in Tab. 10. The corresponding results show that the reaction curves fea-
tures a similar evolution with respect to that of the polynomial-like cohesive model [233]
and exponential-like interface model [234] without temperature. Moreover, Fig. 37b) shows
the distribution of shell temperature at the displacement of 0.1mm before the failure. It is
observed that the two shells connected by the interface behave like two different shells with-
out any thermal interaction/heat transfer, which leads to a nonphysical solution. Change of
temperature boundary conditions T1 and T2 is observed to have no impact on the reaction
curves in this case. This pinpoints the importance of considering the thermal effect in the
decohesion evolution, which is not incorporated in most of the available FE packages.

Nominal stress Nominal stress Nominal fracture Fracture energy Power (BK law)
(MPa) in shear (MPa) energy (N/mm) in shear (N/mm)

1 0.5 0.1 0.05 2.15

Table 10: Cohesive layer properties.

4.4.5 Peeling application
This example concerns the performance of the new element for the large displacement and
interplay between geometric and material nonlinearity. In the exponential model proposed,
damage is not initiated by compression. These models work very well for models where
compression is not desirable. It is observed that, Tvergaard Cohesive Zone model has a faster
convergence rate during the strong nonlinear problem in the presence of mechanical and
geometrical nonlinearities. Hence, for this reason, we adopt, for this example, the extension
of the Tvergaard model to include temperature coupling in Sec. 4.2.5 using the same idea as
in Sec. 4.2.4. It is noticed that both models give similar results, whereas the Tvergaard model
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Figure 39: a) Displacement of model-A at time τ = 1 for load ū = 1 mm. b) Tem-
perature field for displacement of ū = 0.07mm. c) Temperature field for ū = 1.0 mm.
d) Force v/s displacement curves of model-A for the variation of σc and maximum al-
lowed gaps δn.
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Cohesive Model σc (MPa) δn mm γ k0( W/mm oC)
Tvergaard 1 0.1 0.2 0.230

Table 11: Properties of the cohesive zone model for peeling model-A.

Cohesive Model σc (MPa) δn mm γ k0( W/mm oC)
Tvergaard 20 0.8 0.1 0.230

Table 12: Properties of the cohesive zone model for peeling model-B.

converges faster in this case.

We consider two different models for peeling motivated from the peeling of adhesive
tapes as in [250] where the thin layer combined with a thin adhesive is peeled upon the
substrate. Hereafter, this example is called model-A. The details of the model and the mesh
orientation required for meshing are in Fig. 39a).

Model-B is motivated by the classic example of peeling the bonded thin plate. See, Fig.
39b) for the orientation of the top surface. More importantly, model-A has only one layer of
cohesive layer along with the width, whereas model-B is allowed to have a multiple layer
cohesive element along the width.

Model-A with the properties as in Tab. 8 for solid shell and Tab. 11 for the cohesive
interface is considered with thickness t = 0.1 mm and temperature boundary condition
of 150oC is applied on the load side, and the 100oC is applied on the bottom. Fig. 39a)
illustrates the displacement field, including the non-linear effects. As in the exponential
model, the Tvergaard model exhibits identical properties as that of the exponential model
in terms of the temperature field at the interface. Fig. 39b) and Fig. 39c) illustrates the
interplay of the temperature field (NT11) of the solid shell and the interface at displacement
of ū = 0.07 mm and ū = 1 mm. It is observed that, as the interface starts peeling off, the heat
conduction across the interface almost vanishes, and heat conduction takes place only in the
undamaged interface portion ahead of the interface crack tip. Variation of the temperature
boundary conditions for this model closely resembles that of the previous example, hence,
omitted here for brevity. As an example keeping T0 = 150oC, the reactions for the variation
of σc and normal gaps δn are presented in Fig. 39d).

The general properties of model-B are assumed as shown in Tab. 8 and Tab. 12. A
total displacement of ū = 30mm is applied along with the boundary condition of 100oC
on one side (invisible side in the Fig. 39) and 100oC on the other side. The displacement
field and the temperature field are shown in Fig. 40a) and Fig. 40b). Fig. 40c) shows the
variation of temperature field for temperature boundary 150− 100oC. Model-B also exhibits
similar properties as in model-A. As an example, the reaction curves for the variation of
σc is presented in Fig. 40d). Note that after the applied displacement of ū = 5 mm, the
behavior of the reactions are similar and repetitive. Hence, reaction forces until the applied
displacement of ū = 10 mm is presented to have comprehensibility of the reaction forces.
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Figure 40: a) Displacement field for model-B along with mesh details. b) Distribution of
temperature field for model-B with BC 100−100oC after displacement of ū = 30 mm. c)
Distribution of temperature field for model-B with BC 150 − 100oC after displacement
of ū = 30 mm. d) Force v/s displacement curves for variation of σc.

Material E (MPa) ν α(10−6/oK) k0(W/mmoK) cp(kJ/kgoK) GC (MPa
√

mm) l (mm)
Silicon 1.69× 105 0.16 1.1 0.114 0.715 0.014394 0.05

Alumina 2.1× 105 0.31 10.1 5.05 0.4 0.32 0.2
Zirconia 3.8× 105 0.26 7.7 25 0.880 0.06634 0.2

Alluminium 8.84× 104 0.32 22.0 0.205 0.896 0.545 0.06

Table 13: Properties of the simulated materials.

4.5 Thermo-mechanics with phase-field
In this section, the capabilities of the proposed phase-field model for thermo-mechanical
solid shell formulation are assessed according to several representative examples. First,
a benchmark test is proposed and passed. Then, problems characterized by temperature-
assisted fracture are examined in relation to a technological phenomenon relevant for Sil-
icon solar cells. Finally, examples concerning coupled mechanical-temperature effects, for
small and large strain problems are shown for a series of structural problems with plates and
curved shells. In order to show examples spanning the wide range of material behaviour (es-
pecially temperature effects), three different materials are considered in Tab. 13. There, E is
the Young’s Modulus, ν is the Poisson’s ratio, α is the co-efficient of thermal expansion, k0
is the thermal conductivity, cp is heat capacity, GC is the fracture energy, and l is the length
scale of the phase field model.

4.5.1 Model validation
This example concerned with the application of the proposed model to a double-edged
notched specimen. Fig. 41 shows the sketch of the model with an initial notch length a = 0.1
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Figure 41: Verification example: geometry and force reaction-displacement evolution
curve.
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Figure 42: Double-edged notch specimen with (a) reactions for variation of tempera-
tures, (b) reactions for variation of thickness.
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mm, axial length L = 1 mm, width w = 0.5 mm and thickness h = 0.01 mm in line with
the numerical experiment of [251] and has been studied by [252] by considering the alumina
whose material properties are given in Tab. 13 Here, we used the length scale l = 0.0075 mm
in line with the experiments in [251]. The model was discretized with 812 elements such that
element size of 2l was kept along the crack path.

The displacement load of ∆ = 0.01 mm was applied in 1000 steps on the top surface,
and the bottom surface was fully restrained as in Fig 41. The EAS and ANS are included in
the whole domain but were turned off locally when the damage variable reaches d = 0.5 due
to unstable crack propagation in the system.

Note that, due to the scarcity of thermo-mechanical crack propagation experiments, the
comparison has been made based on standard examples proposed in [251]. In line with the
numerical example reported in [251], where the temperature dependency was neglected, the
temperature of the whole model was kept at T = 0oC, which means that no external bound-
ary temperature was inflicted upon the model. It can be argued that the local temperature
T0 is different from zero. Still, it is noticed that, numerically, the difference arises due to
the difference between the initial temperature and the externally applied temperature rather
than the absolute values. Hence, the all local temperatures are kept at T0 for comparison.

The load-displacement curve for the evolution of the simulation shows a satisfactory
agreement with the experimental results as in Fig. 41. The numerical experiments conducted
in [251] consider the plane strain condition whose thickness is 1 mm. To match that, the
reactions forced are multiplied by a factor of 100 since the thickness considered here is h =
0.01 mm.

The evolution of the phase-field variable d at displacement just before and after the dam-
age is shown in Fig. 41. This example is complemented by adding the thermal effect. For
doing that, we select a temperature gradient within the domain, see the corresponding load-
displacement evolution curves corresponding in Fig. 42(a). It can be readily seen that as the
temperature increases, the maximum load-bearing capacity of the model decreases. Keep-
ing the temperature boundary conditions (T = 250 − 250C) and the material properties
constants, the thickness variation in the plate is considered. It is noticed that, as the thick-
ness increases, the load-bearing capacity of the specimen increases, as shown in Fig. 42(b).
It can be seen from Fig. 42(b) that there exists a direct linear mapping between the different
variations of thickness. Meaning that, if load-displacement (say F1(t)) curve for thickness
h1 is known, then for any thickness h2, the load-displacement curve can be obtained from

h1 as F2(t) = F1(t)
h2

h1
.

4.5.2 Application to photo-voltaic panels
In this example, the proposed model is used to investigate the effects of cracking in silicon
used for solar cells. Experimental results [253] and the numerical investigation [254] show
that silicon defects may induce hot spots in solar cells. This phenomenon may enhance
cracking, degrade the photovoltaic performance of the device, and eventually lead to safety
issues.

Following [176, 254], it is discussed that during the manufacturing of a solar cell module,
crack-free cells made of mono/poly-crystalline silicon are laminated inside a stack formed of
an encapsulating polymer and a cover glass at a temperature around T0 = 150oC. Later, the
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(a) (b)

Figure 43: (a) Solar panel with bus bar. (b) Thermal images from thermal camera show-
ing the local temperature rises (hot spots) in silica cells in case of cracks, adopted from
[253].
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Figure 44: (a) Model under consideration. (b) Load-displacement curve for different
solar cell thickness.
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Figure 45: Temperature assisted fracture. (left) Figure on left represents phase-field
and temperature distribution during initiation of fracture at step 118. (right) Fig on
right represents phase-field and temperature distribution after the fracture at step 251.

module is cooled down to the ambient temperature with a final state with residual compres-
sive stresses. Fig. 43(a) represents the solar cell with the glass laminate. A local temperature
increase in thermal images, see Fig. 43(b) (adapted from [253]). The thermo-elastic displace-
ment caused by these conditions Fig. 43(a) in the solar cells can induce fracture.

As an model example, a mono-crystalline silicon solar cell without any pre-existing crack
is considered with properties as in Tab 13. The model is discretized with 16512 equidistant
elements. The cell boundary ∂Ω is subdivided into ∂Ω1 and ∂Ω2, restrained as in Fig. 44(a).
A temperature excursion ∆T1 = −30oC is herein considered along ∂Ω1 to depict a tempera-
ture raise as compared to the other portion of the boundary, ∂Ω2, where we set ∆T2 = −20oC
as for normal operative conditions. The temperatures are applied over 1000 steps linearly.
The reference temperature is in both cases the stress-free lamination temperature T0.

The above non-linear heat conduction problem is solved using the proposed model,
to simulate temperature-assisted fracture induced by the thermo-mechanical displacement
field. The evolution of the phase-field variable along with the temperature distribution in-
side the cell is shown in Fig. 45(right). When the crack is fully propagated, it acts as a
thermal barrier for heat transfer across the solar cell and the temperature becomes uniform
in the two separated regions of the material. The load-displacement curve for the evolution
of the damage is shown in Fig. 44(b) for different thicknesses of the solar cell. Analogous
to the verification example, as the thickness increases, the load-bearing capacity increases.
Moreover, it can be noticed that there exists a direct linear mapping of the load-displacement
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Figure 46: (a) plate with notch along with applied boundary conditions, (b) plate with
the hole with the applied boundary conditions.

curves with the thickness as in the verification example.

4.5.3 Notched cylinder under tensile loading
In this example, a cylindrical shell is considered. In particular, two cases are considered (a)
a cylindrical shell with an initial notch and (b) a cylindrical shell with a hole for sheets of
alumina with material properties as detailed in Tab 13.

For the cylindrical shells with a notch, the geometrical description of the model considers
a radius of the cylinder R = 2 mm, length L = 10 mm, thickness h = 0.01 mm with notch in
the centre whose arc length is w = 1.5 mm such that the notch spans θ = 21.5o each side as
shown in Fig. 46a). The model is discretized with 24339 elements with maximum element
size is at least 2l.

One axial end of the cylinder is fixed, whereas a monotonic prescribed axial displacement
is applied on the opposite end. Temperatures of T1 = 25oC and T2 = 50oC are applied on
loaded end and on the fixed ends, respectively as in Fig. 46a). The ambient temperature
is kept at T0 = 0oC. Fig. 47(a) shows the evolution of the phase-field (d) and temperature
corresponding to the displacement ∆ = 0.016 mm. It can be observed that the temperature
is linearly distributed along the cylinder length, until it breaks in two parts due to fracture,
which again leads to heat flux insulation across the corresponding generated crack surface.

Along with the base model, Fig. 48(a) shows the variation of load-displacement curves
for various temperature boundary conditions. It can be seen from Fig. 48(a) that as the
temperature increases, the load-carrying capacity of the model decreases.

For the case of the cylinder including the central hole, the geometrical description of
the model follows the radius of R = 2 mm, length L = 20 mm with thickness h = 0.01
mm with hole in the centre with radius r = 0.15 mm as shown in Fig. 46b) The model
is discretized with 12491 elements with maximum element size is at least 2l. For similar
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(a) (b)

Figure 47: (a) Phase-field and temperature distribution for a cylindrical shell with a
notch before crack at displacement load of ∆ = 2.9 × 10−3mm, (b) phase-field and
temperature distribution after crack propagation at displacement load of ∆ = 3.2 ×
10−3mm.
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Figure 48: Force vs displacement curve for (a) cylinder with notch, and (b) cylinder
with hole.

(a) (b)

Figure 49: (a) Phase-field and temperature distribution for a cylindrical shell with a hole
before crack at displacement load of ∆ = 1.4 × 10−2mm, (b) phase-field and tempera-
ture distribution after crack propagation at displacement load of ∆ = 1.5× 10−2mm.
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Figure 50: Phase-field and temperature distribution for plate with notch and hole along
with reactions.

boundary conditions as before, but with T1 = T2 = 25oC (base model), the phase-field and
the temperature distribution before (∆ = 0.016 mm) and after the fracture (∆ = 0.016 mm)
are shown in Fig. 49(a) and Fig. 49(b) respectively. Along with the base model, the load-
displacement curve for the variation of different boundary conditions T1 = T2 are shown in
Fig. 48(b). As in the case with cylinder with notch, as the temperature increases, the load
carrying capacities of the cylinder decreases.

4.5.4 Plate with notch and multiple holes

In this example, a plate with multiple holes and an eccentric notch is considered to show
stable crack propagation. A zirconia plate (with properties as in Tab. 13) of length L = 120
mm, width w = 60 mm and thickness h = 1 mm is considered as shown in Fig. 50(a). The
bottom surface is fully restrained, whereas the displacement boundary of ∆ = 0.1mm is
applied on the top surface as shown in Fig. 50(a). The temperature of 30oC is applied on the
top and bottom surfaces, whereas a temperature of 25oC is applied on both sides of the plate.
The evolution of the temperature and the phase-field along with the reactions are presented
in Fig. 50(b). The phase-field evolution during the initiation, propagation (snapback), and
the complete damage is shown in 50(b). The temperature distribution at the end of time step
(t = 1, ∆ = 0.1mm) is shown in 50(b). It can be seen that, due to the existence of centre
hole, the crack starts from the notch, and propagate only until centre hole. The temperature
starts to diffuse inwards whereas at the path of crack, temperature is higher. Later, as the
load increases, the crack travel further leading to complete failure. Temperature distribution
reflects the applied temperature and the crack propagation.
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Material E (MPa) ν α(10−6/oK) k0(W/mmoK) cp(kJ/kgoK) GC (MPa
√

mm) l (mm)
Copper 120× 103 0.34 16.5 150 0.372 11.968 0.1

Titanium 116× 103 0.34 8.90 17 0.72 5.9973 0.1267
Zirconia 210× 103 0.31 10.1 5.05 0.4 0.32 0.06
Alumina 380× 103 0.26 7.7 25 0.880 0.06634 0.08

Silicon carbide 410× 103 0.35 4 120 0.750 0.045643 0.003
Polymer Glass 85× 103 0.21 5.1 1.35 0.805 0.007197 0.008

Table 14: Properties of the simulated materials.

4.6 Virtual testing: Application to FGM
With regards to the formulation mentioned in Section 4.2.3, in this section, the predictive
capability of the proposed thermo-mechanical solid shell formulation with phase-field for
functionally graded materials is assessed using several representative examples. First, a
benchmark test is proposed. Then, the numerical aspects concerning the grading are dis-
cussed by introducing a volume fraction that can describe the change of material properties.
The examples of a plate with two notches and a plate with many holes are examined to study
the deflection of cracks due to material properties grading and temperature effects. Later, a
thin cylindrical shell is analyzed to show the applicability of the proposed model to complex
structures. The classic benchmark examples concerning a plate with a notch is considered
to study the effects of Young’s modulus on crack propagation and temperature distribution
using metal-metal, ceramic-polymer, and ceramic-ceramic FGM specimens. A three-phase
FGM is finally considered to pinpoint the influence grading on the material behavior.

The details on the function V fA and the discussion on grading are provided for each
example for more clarity. In order to show examples spanning the wide range of material
behavior, six material parameters are considered spanning metals, ceramic, and polymers,
namely: copper (metal), titanium (metal), alumina (ceramic), zirconia (ceramic), silicon car-
bide (ceramic) and polymer glass (polymer) whose material properties are given in Tab. 14.

4.6.1 Verification example
This example concerns the verification of the proposed model. Due to the scarce experiment
concerning thermo-mechanical FGMs, and especially for FGMs, current numerical results
are been compared against the 2D solution reported in [90]. Equal temperature is applied
everywhere throughout the analysis in order to eliminate the thermal effects. Fig. 51a) shows
the sketch of the model under consideration with grading in y−direction such that alumina
(material-A) occupies the top surface, and zirconia (material-B) occupies the bottom surface.
The material properties of alumina and zirconia are shown in Tab. 14. The volume fraction
function is defined as

V fA =
(︂y
1

)︂ζ
for 0 ≤ y ≤ L. (4.76)

The force vs. displacement curve for homogeneous material (material-A) and the FGM
with ζ = 1, and ζ = 3 with l = 0.006 are compared against the experiments in [90] as in Fig.
51b). A satisfactory agreement between the two formulations can be observed. The small
discrepancy in the results might stem from the fact that numerical simulations in [90] were
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Figure 51: (a) Geometric description of the model, (b) force vs. displacement plots
comparison with Hrishikesh et al [90].

performed in plane strain conditions, whereas the developed model in this article considers
three-dimensional constitutive law.

4.6.2 Plate with two edge notches
This example concerns the application of the proposed model to functionally graded double
edged asymmetrical notched specimen comprising alumina (Al2O3) and zirconia (ZrO2)
with grading in y−direction, with alumina on the top and zirconia on the bottom. Fig. 52
shows the sketch of the model under consideration with L = 2 mm, a = 0.3 mm, w = 1 mm,
L̃ = 0.9 mm, and thickness h = 0.028 mm. The model is discritized with 4896 elements.
The bottom of the specimen is fully restrained whereas the displacement of ∆ = 0.005 mm
is applied on the top edge. The properties of alumina and zirconia are reported in Tab. 14.
With alumina being considered as material-A, the volume fraction function is defined as

V fA =
(︂y
2

)︂ζ
for 0 ≤ y ≤ L. (4.77)

The evolution force vs. displacement curves of the homogeneous materials and of the
FGM with ζ = 1 (linear) are shown in Fig. 52. In these examples, a temperature of T1 =
T2 = 25oC is applied on the left and right edges, respectively. Due to the thermo-elastic
mismatch, the maximum load-bearing capacity and the thermal distributions are different
in FGM compared to its homogeneous constituents.

Since the thermal conductivity of the alumina is five times larger than zirconia, the tem-
perature distribution in FGM is unequal, and high temperatures are largely concentrated
towards the top surface (alumina). The difference in temperature distributions between the
homogeneous material (alumina) and the FGM are shown in Fig. 54 along with the crack
propagation at different time instances. Notice that from Eq. (5.22), the degradation func-
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Figure 52: (left) Geometric description of the model, (right) force vs. displacement plots
with ζ = 1 in Eq. (4.77) and its homogeneous components.
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Figure 53: Force vs displacement curve for (left) variation of grading function ζ and
(right) variation of temperature boundary conditions for double notched plate.
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Figure 54: Double edge notched plate: phase-field and temperature distribution during
initiation of fracture, and at failure.
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tion g(d) is applied on the Z andQQQmatrix which contains the thermal conductivity k. As the
d approaches 1, k tends to 0. In the region of crack propagation, k is almost zero and acts as
a thermal barrier which can be observed in Fig. 54. Moreover, Fig. 53(Right) shows the force
vs. displacement curve for the variation of temperature boundary condition with ζ = 1. It
can be noticed that, as the temperature increases, the load-bearing capacity decreases.

Referring to the other material properties’ mismatch, the Young’s modulus E and the
fracture energy GC , and subsequently the characteristic length scale l, they play a vital role
in determining the load-bearing capacity. It can be observed from Fig. 52 that, as expected,
the initial slope depends on Young’s modulus, whereas the peak response (load-bearing ca-
pacity) depends on the GC and l (that are related to the apparent strength). Due to the fact
that the alumina has the highest value of E and the lowest value of GC among the two ma-
terials herein considered, the slope of alumina is higher, and the maximum load-bearing
capacity is lower than zirconia. Since the properties of FGM are a linear/nonlinear combina-
tion of its homogeneous materials, the crack deflection of the FGM is different compared to
the homogeneous materials as shown in Fig. 54 and qualitatively in line with the numerical-
experimental correlation performed in [90]. Moreover, Fig. 53 (left panel) shows the evolu-
tion of force vs. displacement curve for the variation of grading parameter ζ with the same
temperature boundary condition as before. Naturally, as ζ goes to infinity, the load-bearing
capacity approaches the corresponding one to the zirconia.

For the pure elastic analysis (without temperature imposed), the maximum load-bearing
capacity of the FGM is always bounded between its homogeneous constituents as in Section
2 for more details. When the temperature effects are considered, this is partially true. For the
same boundary temperatures, the maximum load-bearing capacity of the FGM is bounded
between its homogeneous constitutes, whose mathematical proof is a simple extension of
Theorem- 3 in Section 2. In contrast, the peak load cannot be predicted accurately based on
the energy bounds when different boundary temperatures are applied between FGM and its
homogeneous materials.

4.6.3 Plate with multiple holes
In this example, the proposed model investigates crack deflection in FGMs. For this, a square
plate of length L = 2.5 mm and thickness h = 0.056 mm is considered. The square plate
contains 12 holes of radius r = 0.125 mm randomly placed across the plate. The model
is discritized with 11209 elements. Similar to the previous example, the plate consists of
FGM made up of alumina-zirconia graded in y−direction. In this example, a constant length
scale l = 0.06 mm is considered for both homogeneous and FGM. See also [90]. The bottom
surface made of zirconia (material-B) is restrained, and a vertical displacement is applied on
the top surface made of alumina (material-A). The temperature of 25oC is applied on both
lateral sides. The volume fraction is defined as

V fA =
(︂ y

2.5

)︂ζ
0 ≤ y ≤ L; =⇒ V fB = (1− V fA). (4.78)

Fig. 55 shows the evolution of force vs. displacement curve for the FGM with ζ = 1
and is compared to its homogeneous constituents. Owing to the lower fracture of alumina,
it can be seen that the crack initiation and propagation in FGM occur near the top surface
compared to the central crack in the homogeneous surrogate.
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Figure 55: Plate with holes: force vs. displacement curves and the differences in crack
propagation between FGM and homogeneous case.

The temperature distribution is very similar to the previous example where the tempera-
ture is concentrated towards the top surface. Recalling the reduction of thermal conductance
due to crack propagation, the thermal insulation of the crack path can be observed in Fig. 56.

4.6.4 Cylinder with grading
In this example, a curved cylinder of radiusR = 2 mm and length L = 20 mm with a central
hole of radius r = 0.15 mm is made of FGM (alumina-zirconia) is considered. The model
is discritized with 12491 elements. One axial end of the cylinder is restrained, whereas an
axial displacement is prescribed on the opposite end. The initial temperature of T = 25oC
is applied on both axial ends. The grading is done along its axial length (z−direction) such
that the function V f takes the form

V fA =

(︃
|z − 10|

10

)︃ζ
, 0 ≤ y ≤ Ł. (4.79)

Meaning that, alumina occupies both the axial ends (i.e z = 0, and z = 20) and zirconia
occupies the centre (z = 10). The grading profiles for different ζ, and the change of material
properties due to the function V fA is shown in Fig. 57 (left panel). The force vs. displace-
ment curves for the FGM, along with its homogeneous constituents, are shown in Fig. 58
(left panel). On the other hand, Fig. 57 (right panel) shows the variation of force vs displace-
ment curve for different grading parameter ζ. It is evident that as ζ → ∞, the load-bearing
capacity of the FGM approaches alumina (material-A) since the volume fraction of alumina
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Figure 56: Plate with holes: temperature distribution in FGM as compared with that of
the homogeneous model, before and after failure.

Figure 57: Cylinder with hole: properties of the materials and force vs displacement
curve for change of grading function ζ.
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Figure 58: Cylinder with hole: force vs displacement curve FGM (ζ = 1) and the homo-
geneous surrogates and variation of temperature boundary conditions.

(Log Scale)

0

0.5

(Log Scale)

0

0.5

0

1

0

1

FGM

Homogenous

Before Fracture After Fracture

Figure 59: Cylinder with hole: phase-field and temperature distribution in FGM com-
pared with homogeneous model before and after fracture.
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is dense in the region of crack propagation.
Figure. 59 shows the comparison between crack paths for FGM and the homogeneous

material (zirconia) and shows that the crack is deflected approximately 8o towards the load
end. The variation of the temperature boundary conditions shows that as the temperature
increases, the load-bearing capacity of the specimen decreases as in Fig. 58 (right panel).

Note that total energy can be fairly split into elastic, thermal, and crack energy con-
stituents. Numerical experiments show that elastic energy is driven mainly by Young’s
Modulus, whereas a combination of k and α primarily drives thermal energy. In contrast,
crack energy is largely driven by GC and l in line with [24]. When the length scale of FGM
is considered constant as in plate with double notch example, the crack energy is driven by
GC . The crack propagation is usually towards the lowest GC side (for example, alumina in
the previous example). In the presence of stress concentrators such as a notch, hole, etc., the
crack initiation and propagation also depends on the material properties at the stress con-
centration zones (crack tip). Since the variational formulation is considered as a competition
between the thermo-elastic energy and the crack energy, the following conclusions can be
readily drawn.

1. As the grading parameters increase, i.e (ζ ≥ 1) or decrease (ζ ≤ 1), the FGM tends to
behave like its homogeneous constituents.

2. As the temperature increases, the maximum load bearing capacity decreases.

3. The slope of the force vs. displacement curve depends strongly on the Young’s mod-
ulus E.

4. The maximum load bearing capacity depends largely on GC , and it is directly propor-
tional to l (or to the apparent tensile strength σc).

5. Since the thermal conductance is degraded as a function of d, and the maximum load
bearing capacity is a function of applied temperature and g(d).

4.6.5 Plate with notch
This example concerns with the effect of grading and their subsequent temperature effects
by considering three different FGM pairs. As an example, (i) Copper-Titanium (Cu-Ti), (ii)
Alumina-Zirconia (A-Z), and (iii) Silicon Carbide- Polymer Glass (SiC-G), representing (i)
metal-metal, (ii) ceramic-ceramic, and (iii) ceramic polymer pairs respectively are consid-
ered. In each of the example, the model is discritized with 4476 elements.

The properties of materials mentioned above are given in Tab. 14, whereas the ratio of
Young’s modulus, fracture energy, thermal conductivity, and length scale are given in Tab.
15. Here, material-A has the highest Young’s modulus among the FGM pairs. i.e EA =
max(EA, EB), i.e copper, alumina and SiC is their respective FGM pairs.

Note that the ratio of chosen pairs represents vastly different mechanical and thermal
properties, each of them is discussed in the sequel. A plate of length L = 10 mm and width
w = 10 mm with initial notch of 3 mm at the centre are considered with the displacement
boundary conditions applied as in Fig. 60a) to simulate stable crack propagation. A temper-
ature T = 25oC is applied on both sides for the numerical simulations in this example. The
grading is done along the y−direction such that grading happens from the bottom (material-
B) to top (material-A), whose function is defined as
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Figure 60: a) Model under consideration, force vs displacement curve with variation
of ζ in b) copper-titanium FGM pair, c) alumina-zirconia FGM pair, d) silicon carbide-
epoxy glass FGM pair.

FGM pair
EA

EB

Gc,A

Gc,B

k0,A
ko,B

lc,A
lc,B

Copper-Titanium (Cu-Ti) 1.03 2 8.82 0.754
Alumina-Zirconia (A-Z) 1.8 0.207 4.95 1.33

Silicon Carbide- Polymer Glasss (SiC-G) 4.8 6.34 88.88 0.375

Table 15: Ratio of the simulated materials.
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Figure 61: Phase-field and temperature distributions comparison between FGM and
homogeneous material during (t1) initiation, (t2) crack propagation until 1/2 of plate
(t3) crack propagation until 3/4 of plate (t4) after complete failure.
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V fA =
(︂ y
10

)︂ζ
0 ≤ y ≤ L. (4.80)

For the copper-titanium FGM pair with copper as material-A, Young’s modulus ratio
EA
EB

is approximately 1. The force vs. displacement curve for the FGM with different grading

parameters ζ along with its homogeneous constituents are presented in Fig. 60(b). It is clear
that the slope of all the curves is similar due to the similarity in the Young’s moduli. Then,
the peak load-bearing capacity of the model is driven by the GC and l. In fact, using the

expression, l =
27

256

GCE
σ2
c

, GC and l can be directly related with σc. Note that both copper

and titanium are highly conductive metals with a thermal conductance ratio
k0,A
ko,B

= 8.82,

meaning that the temperature distribution is highly concentrated towards the Copper end.

For the alumina-zirconia pair, the Young’s modulus ratio
EA
EB

is approximately 2, whereas

k0,A
ko,B

= 4.95, Fig. 60(c) shows the force vs displacement curve for different grading param-

eters ζ. Moreover, Fig. 61 presents the crack propagation and temperature distribution of
the homogeneous material (zirconia as an example) and FGM (with ζ = 1) during four
stages, namely (i) crack initiation, (ii) crack propagating approximately half the plate, (iii)
crack propagating approximately 3

4

th of the plate, and finally (iv) fully cracked model. The
temperature distribution at each of these stages is shown in Fig. 61 to comprehend the dif-
ferences. As the crack propagates, the temperature around the crack increases, leaving a
trail around the crack tips. Meanwhile, thermal conductance in the crack region approaches
0, hence creating thermal insulation around the region. Temperature distribution in all the
FGM’s are similar owing to the conductivity ratio always higher than 1 in all the pairs. See
Fig. 61 for more details.

For the Silicon carbide and polymer glass FGM, the Young’s Modulus ratio
EA
EB

is ap-

proximately 5, whereas the
k0,A
ko,B

= 88.88, notice that, due to very high
GC,A
GC,B

ratio, the FGM

with ζ ≥ 1 gave a nonphysical boundary cracks, hence only ζ ≤ 1 is considered for the
analysis. Fig. 60(d) shows the force vs. displacement curve for the FGM Sic-G along with
its homogeneous constituents. From Fig. 60(a), (b), and (c), it is apparent that as Young’s
modulus ratio increases, the peak load-bearing capacity of the FGM changes drastically as a
linear/nonlinear combination of their homogeneous constitutes.

4.6.6 Double FGM (three-phase FGM)
Double FGM is a three-phase functionally graded material where the material is graded with
three different materials. This can also be considered as two functionally graded materials
combined together at a point, see, [255] for more details. In order to accommodate such a
model, the material parameters in Eq. (4.2.3) and (4.5) have to be modified accordingly.

Consider three materials, Mat-A, Mat-B and Mat-C. The volume fraction of each material
at any position x ∈ B0 can be written as V fA, V fB and V fC such that V fA+V fB+V fC = 1
for each x ∈ B0. Introduce two grading parameters ζ1 and ζ2 that controls the behaviours of

125



ZrO2

Y

Combination-1

Combination-1

Combination-2

Combination-2

ZrOAl O 2
2 3

SiC

Vf

Y
Vf

Al O2 3

SiC

SiC

ZrO2

Al O2 3

Figure 62: Force vs displacement curve for double FGM.

the grading in the materials. Then the volume fraction function for the FGM at any position
vector can be defined as

V f =

{︄
V f1(x) 0 ≤ x ≤ (L1, w1, h1)

V f2(x) (L1, w1, h1) ≤ x ≤ (L2, w2, h2),
(4.81)

for some length (L1, L2) ≤ L, width (w1, w2) ≤ w, and thickness (h1, h2) ≤ h. The material
properties now can be written as a function of V f . As an example, we consider the square
plate with an initial notch as in Sec. 4.6.5 with the same dimensions and boundary condi-
tions. Alumina, zirconia, and silicon carbide are considered for the double FGM, where two
combinations of grading of each of these materials to form a double FGM are considered in
the y−direction are shown in Fig. 62.

The volume fraction functions can be defined as

V f =

⎧⎪⎨⎪⎩
(︂y
5

)︂ζ1
0 ≤ y ≤ 5(︂

−y
5
+ 2
)︂ζ2

5 ≤ y ≤ 10.
(4.82)

The material properties now takes the form

Ξ =

⎧⎪⎨⎪⎩
ΞA + (ΞB − ΞA)

(︂y
5

)︂ζ1
0 ≤ y ≤ 5

ΞC + (ΞB − ΞC)
(︂
−y
5
+ 2
)︂ζ2

5 ≤ y ≤ 10,

for each Ξ = {E, ν, α, k0,GC , l}. Two combinations of the material properties are considered
to explore the thermo-elastic behaviours of the double FGM’s. In combination-1, zirconia is
considered to exist everywhere across the model (coined as primary material). Meaning that,
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Figure 63: Temperature distribution between in combination-1 and combination-2 on
different time instances for ζ = 1− 2 both.
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combination-1 can be considered as a two pairs of FGM of alumina-zirconia, zirconia-silicon
carbide combined together with zirconia in both pairs. Similarly, combination-2, consists of
silicon carbide-alumina, alumina-zirconia with alumina as a primary material. The choice of
the materials is motivated by the fact that the E and k0 ranges in the order of magnitude 1,
whereas GC ranges in the order of magnitude 2. The material properties of combination-1
can be written as

Ξ =

⎧⎪⎨⎪⎩
ΞAlumina + (Ξzirconia − ΞAlumina)

(︂y
5

)︂ζ1
0 ≤ y ≤ 5

ΞSiC + (Ξzirconia − ΞSiC)
(︂
−y
5
+ 2
)︂ζ2

5 ≤ y ≤ 10,

whereas the material properties of combination-2 takes the form

Ξ =

⎧⎪⎨⎪⎩
ΞSiC + (ΞAlumina − ΞSiC)

(︂y
5

)︂ζ1
0 ≤ y ≤ 5

ΞAlumina + (ΞAlumina − Ξzirconia)
(︂
−y
5
+ 2
)︂ζ2

5 ≤ y ≤ 10.

Fig. 62 presents the pictorial representation of the combination-1 and combination-2 for
ζ1, ζ2 = 1. For the different variations of the grading function ζ1 and ζ2 and the two com-
binations, the force vs. displacement curves can be seen in Fig. 62. It can be noticed that
since the combination-1 is dominant with zirconia, the peak load response accumulates be-
tween the zirconia and the SiC. For combination-2, since alumina is dominant, the peak load
responses are accumulated between alumina and zirconia. The temperature distribution for
the combination-1 and combination-2 during the (i) crack initiation, (ii) crack propagating
approximately half the plate, (iii) crack propagating approximately 3/4 of the plate, and fi-
nally (iv) fully cracked model is presented in Fig. 63. It is noticed that combination-2 has a
faster rate of heat transfer compared to combination-1 owing to the thermal conductivity of
alumina. And the temperature distributions are inclined towards the SiC in both combina-
tions.
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Chapter 5

Phase-field model for fatigue
induced fracture: application to
thin walled structures

This chapter mainly concerns with developing thermodynamically consistent framework
for phase-field fatigue damage model for thin walled structures using solid shell approach.
This chapter is organised as follows. In Section 5.1, the energy based approach is used to
derive the variational formulation eventually leading to the governing equations. In Section
5.2, a finite element implementation of the variational structures is discussed. Section 5.3 is
complimented with representative examples to show the predictive capability of the model.

5.1 Variational formulation

Recalling the phase-field derivation put-forth in Section 1.3.1 and the choice the functions
in Section 1.3.2. Taking into consideration the solid shell formulation using multi-field-Hu-
Washizu variational principle and for some fatigue degradation function f(ᾱ) function, Eq.
(4.30) is modified as

Π(u, Ẽ, d) =

∫︂
B0

g(d)Ψ0(u, Ẽ)dΩ−
∫︂
B0

S : Ẽ dΩ+
∫︂
B0

f(ᾱ(t))
GC
4cw

[︃
α(d)

l
+ l |∇d|2

]︃
dΩ+Πext.

(5.1)
where Ψ0(u, Ẽ) is the intact elastic energy density function which involves incompatible
strains, and ᾱ(t) is a suitable function that defines a suitable cumulative history variable to
be defined.

The thermodynamic consistency of the total energy functional can be ensured by consid-
ering rate dissipation density potential
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Ḋ = [S − ∂EΠ] : Ė − ∂dΠ : ḋ ≥ 0. (5.2)

Expanding the Second term ∂dΠ : ḋ leads to

∂dΠ : ḋ =
dg

dd
Ψ0(u, Ẽ) : ḋ+ f(ᾱ(t))

GC
4cw

[︃
dα(d)

dd

ḋ

l
+ 2l∇d · ∇ḋ

]︃
.

Integrating by parts the second term leads to

−∂dΠ : ḋ =
dg

dd
Ψ0(u, Ẽ) : ḋ− GC

4cw
l

[︃(︃
∆d− dα

dd

1

2l2

)︃
f(ᾱ) +∇f(ᾱ) · ∇d

]︃
ḋ.

In order for Eq. (5.2) to to hold,
dg

dd
Ψ0(u, Ẽ) ≥ 0, ḋ ≥ 0, fd(d,∆d, f(ᾱ)) ≥ 0 leading to

fd(d,∆d, f(ᾱ)) =
GC
4cw

l

[︃(︃
∆d− dα

dd

1

2l2

)︃
f(ᾱ) +∇f(ᾱ) · ∇d

]︃
≥ 0,

dg

dd
Ψ0(u, Ẽ) ≥ 0; ḋ ≥ 0; fd(d,∆d, f(ᾱ))ḋ = 0; f(ᾱ) · ∇d · n ≥ 0. (5.3)

Notice that, due to choice of g(d),
dg

dd
Ψ0(u) naturally holds, and the first order stability

conditions or KKT conditions are refereed as

ḋ ≥ 0; fd(d,∆d, f(ᾱ)) ≥ 0; fd(d,∆d, f(ᾱ))ḋ = 0 (5.4)

Notice from Eq. (5.1) that fatigue degradation function f(ᾱ) should be locally integrable,
and from Eq. (5.4) to be true, 0 ≤ f(ᾱ) ≤ 1. Since f(ᾱ) degrades the crack energy (to be
specific fracture toughness GC ), f(ᾱ) should be also monotonically decreasing function. i.e
f ′(ᾱ) ≤ 0 for f(ᾱ) ∈ [0, 1].

Keeping the choice of functions such as geometric crack function, and energy degra-
dation function as in Chapter 4.3, we define the stored energy function Ψ0(E), cumulative
history variable ᾱ(t), and fatigue degradation function f(ᾱ) are defined as follows:

Stored energy function

The stored energy function describes the equilibrium state that defines the behaviour of a
solid in the unbroken state (i.e d = 0). In this section, we consider isotropic elastic body
whose stored energy is defined as

Ψ0(E) =
1

2
E : C : E =

1

2
λtr2(E) + µE : E. (5.5)

Here, C defines the linear elasticity tensor whose particular expression in the curvilinear
co-ordinates takes the form

C = ∂EEΨ =
[︁
λGijGkl + µ

(︁
GikGjl +GilGjk

)︁]︁
Gi ⊗ Gj ⊗ Gk ⊗ Gl, (5.6)

where λ and µ denotes the Lame’s constant.
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Cumulative history variable

The term ᾱ(t) in Eq. (5.1) describes the cumulative history effects due to fatigue. We adopt
the function described by Carrara et al [50] where

1. ᾱ(t) is independent of the mean load defined as

ᾱ(x, t) =

∫︂ t

0

H(αα̇)|α̇|dτ. (5.7)

2. For a normalization parameter αN , mean load dependent cumulative history variable
can be defined as

ᾱ(x, t) =
1

αN

∫︂ t

0

H(αα̇)αα̇dτ, (5.8)

for α = Ψ(E, d) is the total degraded strain energy which ensures that the model is
not affected by crack tip singularity. Here H(αα̇) is heavy-side function defined as

H(αα̇) =

{︄
1 αα̇ ≥ 0 (Loading)
0 Otherwise (Unloading)

. (5.9)

Fatigue degradation function

The function f(ᾱ) describes the degradation of the material property due to repeated load-
ing. Based on the functions described in Section 1.4, the following fatigue degradation func-
tions are considered:

The generalized asymptotic degradation function is defined as

f(ᾱ) =

⎧⎨⎩1 if ᾱ(t) ≤ αT(︃
2αT

ᾱ(t) + αT

)︃a
if ᾱ(t) ≥ αT

, (5.10)

for some threshold αT before which the fatigue degradation is not triggered. In all the nu-

merical experiments section, the threshold of αT =
GC
12l

is considered as defined in [54, 50].
The symptomatic degradation function is defined as

f(ᾱ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if ᾱ(t) ≤ αT[︃
1− k log

ᾱ(t)

αT

]︃2
if αT ≤ ᾱ(t) ≤ αT 10

1
k

0 if ᾱ(t) ≥ αT 10
1
k

. (5.11)

Here, a and k are the material constant that can be used to control the fatigue degrada-
tion.
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5.2 Finite element implementation

For any admissible test functions δu ∈ Bu, δẼ ∈ BẼ , δd ∈ Bd, with functional space defined
as

Bu = {δu ∈ H1(B0), δu = 0 on ∂B0,u}, (5.12a)

BẼ = {δẼ ∈ L2(B0)}, (5.12b)

Bd = {δd ∈ H1(Ω)
⃓⃓⃓
δd ≥ 0 ∀ X ∈ B0}. (5.12c)

The set (u, Ẽ, d) is obtained by taking first variation of Eq. (5.1) leads to following multi-
physics problems

Ru(u, Ẽ, d, δu) =

∫︂
B0

g(d) [S : δEu] dΩ−Ru
ext = 0 (5.13a)

RẼ(u, Ẽ, d, δẼ) =

∫︂
B0

[︂
S : δẼ

]︂
dΩ = RẼ

int = 0, (5.13b)

Rd(u, Ẽ, d, δd) =

∫︂
B0

f(ᾱ(t))GC
[︃
d

l
δd+ l∇d · ∇δd

]︃
dΩ−

∫︂
B0

2(1− d)Ψ(u, Ẽ)δd dΩ = 0.

(5.13c)

The functional space B0 is discretized into ne non-overlapping elements such that parti-
tion of unity holds. i.e B0 ≈

⋃︁ne
e=1 B

(e)
0 for ne.

The position vectors in reference and current configuration are interpolated using stan-
dard tri-linear shape function N(ξ) in natural co-ordinates ξ = {ξ1, ξ2, ξ3} as

X ≈
8∑︂
I=1

NI(ξ)XI = N(ξ)˜︁X and x ≈
8∑︂
I=1

NI(ξ)xI = N(ξ)˜︁x,
for global vectors ˜︁X and ˜︁x in reference and current configuration respectively. Similarly, the
unknown fields (u, Ẽ, d) and their variations (δu, δẼ, δd) are interpolated as

u ≈ N(ξ)d; Ẽ ≈ M(ξ)ς; d ≈ N(ξ)d̃; δu ≈ N(ξ)δd; δẼ ≈ M(ξ)δς; δd ≈ N(ξ)δd̃.

Here, M(ξ) is so called enhancing interpolation matrix in the natural co-ordinates takes
the form

M̃ =

⎡⎢⎢⎢⎢⎢⎢⎣
ξ1 0 0 0 0 0 0
0 ξ1 0 0 0 0 0
0 0 ξ3 ξ1ξ3 ξ2ξ3 0 0
0 0 0 0 0 ξ1 ξ2

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.14)
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The ς denotes the collection of EAS parameters. The transverse shear strains (E13, E23

and transverse normal strain (E33) are modified in line with ANS interpolation method to
avoid transverse and trapezoidal locking. The interpolation of transverse shear are per-
formed as in Fig 29 using points (A, B,C,D) as{︃

EANS13

EANS23

}︃
=

{︃
(1− ξ2)E13(ξA) + (1 + ξ2)E13(ξC)
(1 + ξ1)E23(ξB) + (1− ξ1)E23(ξD)

}︃
, (5.15)

and transverse normal strains using (O,P,S,T) as

EANS33 =
∑︂

m=E,F,G,H

1

4

(︁
1 + ξ1mξ

1)︁ (︁1 + ξ2mξ
2)︁E33; with ξ1m, ξ

2
m = ±1. (5.16)

The gradient quantities such as displacement derived Green-Lagrangian strain Eu, ∇xd
and their variations are interpolated as

Eu ≈ B(d)d; δEu ≈ B(d)δd; ∇xd ≈ Bd(d)d̃, ∇xδd ≈ Bd(d)δd̃,

for the standard gradient operator B(d) and Bd(d).
For each pseudo increment ∆t := t

(k)
n+1− tn > 0, and assuming that (u, Ẽ, d)tn is known,

the cumulative fatigue history reads

ᾱt+1 = ᾱt +

∫︂ tn+1

tn

α̇̄dτ = ᾱt +∆ᾱ, (5.17)

where ∆ᾱ is approximated as

∆ᾱ = |αn+1 − αn|H
(︂αn+1 − αn

∆t

)︂
. (5.18)

Moreover, following the standard finite element procedure, the residual equations in Eq.
(5.13) are written as system of linear equations⎡⎣Kdd Kdς Kdd̃

Kςd Kςς Kςd̃

Kd̃d Kd̃ς Kd̃d̃

⎤⎦⎡⎣∆d
∆ς
∆d

⎤⎦ =

⎡⎣R̂u

ext

0
0

⎤⎦−

⎡⎢⎣R̂
u

int

R̂ς

int

R̂d̃

int

⎤⎥⎦ . (5.19)

The components of stiffness matrix reads

Kdd =

∫︂
B0

g(d)

(︄
B(d)TCB(d) +

[︃
∂B(d)

∂d

]︃T

S

)︄
dΩ = Kdd,mat +Kdd,geom

Kdς =

∫︂
B0

g(d)M(ξ)TCB(d) dΩ; Kdd̃ =

∫︂
B0

−2(1− d)B(d)TSN(ξ) dΩ,

(5.20)

Kςu =

∫︂
B0

g(d)M(ξ)TCB(d) dΩ; Kςς =

∫︂
B0

g(d)M(ξ)TCM(ξ) dΩ,

Kςd̃ =

∫︂
B0

−2(1− d)M(ξ)TSN(ξ) dΩ;
(5.21)
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Kd̃d =

∫︂
B0

−2(1− d)N(ξ)TSB(d) dΩ; Kd̃ς =

∫︂
B0

−2(1− d)N(ξ)TSM(ξ) dΩ,

Kd̃d̃ =

∫︂
B0

[︃
2f(ᾱ(t))

GC
l
H
]︃
N(ξ)TN(ξ) dΩ+

∫︂
B0

2f(ᾱ(t))GC lBd(ξ)TBd(ξ) dΩ,
(5.22)

with crack driving force H takes the form

H = max
τ∈[0,t]

[︂
Ψ(u, Ẽ)

]︂
. (5.23)

Due to inter-element continuity of the enhanced strains, the above system of linear equa-
tion can be condensed via standard static condensation process as[︃

K∗
dd K∗

dd̃

K∗
d̃d K∗

d̃d̃

]︃ [︃
∆d
∆d

]︃
=

[︄
R̂˜ d

R̂˜ d

]︄
, (5.24)

where K∗
ij = Kij−KiςK

−1
ςς Kςj and R̂˜ j = Rj

ext−Rj
int+KiςK

−1
ςς Rε

int for each i, j = {d, d}.
The resulting system of linear algebraic equations in Eq. (5.24) is solved using the newton

solver as detailed in Section 4.3.3.

5.3 Virtual testing
In this section, the predictive capabilities of the proposed fatigue model based on phase field
model is assessed using several representative examples. The fatigue effects in the plate with
notch under cyclic loads are examined for low cycle and moderately high cycle fatigue. Later,
an example with half cylinder is considered to explore the capabilities of the shell structures.

5.3.1 Plate with notch
This example concerns with the application of the proposed model to plate with a notch
specimen. Fig 64 a) shows the sketch of the model with an initial notch length of 0.5 mm,
length of L = 1 mm, width of w = 1 mm and thickness h = 0.05 mm. This examples
have been studies by considering Young’s modulus E = 210 (GPa), Poisson’s ratio ν = 0.3,
fracture energy GC = 2.7 (MPa

√
mm) and the length scale l = 0.024 mm is considered

(unless specified).
A cyclic load of N number of cycles consisting of maximum amplitude P = 0.002mm

and minimum of 0 is applied on the top surface, whereas the bottom surface is fixed. Similar
to the previous examples in Chapter 4, EAS and ANS are included in the whole domain but
are turned off locally when the phase field d > 0.5. Here, fatigue degradation function in
Eq. (5.10) with a = 2 and the cumulative history variable independent of the mean load,
is considered. In line with the example in [50], the Fig. 65a) represents the crack extension
vs. number of cycles for the variation of maximum amplitude. Notice that, as the maximum
amplitude decreases, the number of cycles taken to failure increases. Also, as the maximum
amplitude decreases, the number of cycles taken to start the nucleation also increases which
is well reflected in Fig. 65a). For Pmon being the amplitude required for full damage of the
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Figure 64: (a) Geometry and, (b) modified SN curve

Figure 65: Crack extension vs. number of cycles (N ) (a) for variation of maximum load
amplitude P and, (b) for variation of characteristic length scale l.
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Figure 66: (a) Degraded Energy vs. N and, (b) phase-field vs. N at points (A,B,C,D).

specimen in monotonic condition, the Fig. 64 b) shows the modified SN curve where the
ratio of maximum load P and Pmon is plotted against the number of cycles in the log-log

scale. It can be clearly seen that as the
P

Pmon
ratio decreases, the number of cycles increases.

Generally, after N = 107, the specimen is considered to have infinite life. In other words,

in the sense of numerical approximations, there exists a threshold of
P

Pmon
such that the

specimen will have an infinite life. Based on the Fig. 64 b), it is clear that for each load
variation, a small difference in the load amplitude can have large change in the number
of cycle (as an exponential functions) making the SN curve dense as the number of cycle
increases.

Upon considering the variation of characteristics length scale l and keeping the maxi-
mum load amplitude P = 0.0024 constant, the crack extension vs. number of cycles are
shown in Fig. 65b). Complying with the idea of Γ−convergence, as the length scale de-
creases, the number of cycles required for failure increases. Moreover, it can be observed
from Fig. 65b) that variation of N for a linear variation of l is exponential in nature.

Fig. 66 shows the degraded energy and the phase-field values vs. number of cycles for
l = 0.0024 mm and P = 0.002 mm at four different instances (A,B,C,D) which are equidis-
tant from each other with distance approximately (0.125, 0.25, 0.375, 0.5) from the notch tip.
It can be seen from the energy degradation in Fig 66a) as the crack propagates, the bulk en-
ergy keeps decreasing until the fracture. Moreover, Fig 66b) shows the increase of phase-field
at points (A,B,C,D) whose crack initiation, propagation and failure happens at different time
instances. The crack propagation until the points (A, B, C, D) are shown in Fig. 67 showing
a stable crack propagation.

For the fatigue degradation function as in Eq. (5.11), and cumulative history variable
mean load independent, Fig. 68 shows the crack extension vs. number of cycles for variation
of the k. It is observed that, for the k < 0.26, the crack propagation is stable resembling the
Model-1, whereas for k > 0.26, the crack nucleation is stable whereas the crack propagation
becomes unstable as in Fig. 68. This can be attributed to the fact that, the threshold of the
fatigue function degradation is dependent on k in Eq. (5.11) making f(ᾱ) = 0 (symtotic).
Moreover, as the k → 0, number of cycles required for failure increases (N → ∞).
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Figure 67: Phase-field crack propagation upto points (A, B, C, D).

Figure 68: (a) Crack Extension in Model-2
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Figure 69: (a) SN Curve and, (b) Crack extension vs. number of cycles for cylindrical
shells.

5.3.2 Curved shells
In this example, a curved half cylindrical shell with a hole is considered. For geometrical
description of the model considers a radius of cylinder R = 2 mm, length L = 10mm ,
thickness h = 0.01 mm with an hole in the centre with radius r = 0.15mm. One axial end
of the cylinder is fixed whereas the other axial end is loaded with N number of cycles of
amplitude (P, 0) is applied. The material properties with Young’s modulus E = 210 (GPa),
Poisons ratio ν = 0.3, fracture energy GC = 2.7 (MPa

√
mm) and the length scale l = 0.2 mm

is considered.
For the fatigue degradation function in Eq. (5.10), the crack extension vs. number of

cycles for different load maximum load amplitude P is shown in Fig. 69 b), whereas the
modified SN curve is shown in Fig. 69 a). With the usual notation, as the P decreases, the
number of cycles N required for fracture increases. Also, It can also be seen that modified
SN curve is dense at the number of number of cycles increases. Similar trends as Plate with
notch are observed for the curved shells. For P = 2.4 × 10−3 mm and l = 0.2 mm, Fig.
70 shows the phase-field crack at cycles N = 5000, 5500, 6000, 7500 showing stable crack
propagation.
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Figure 70: (a) Phase-field crack propagation for cylindrical shell.
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Chapter 6

Conclusion and future
developments

6.1 Conclusions
The research work conducted in this thesis deals with development of variational and cohe-
sive methods for multi-physics problems in static and fatigue applications.

6.1.1 Conclusions on FGMs

With regard to the multi-physics developments, in Chapter 2 the phase field approxima-
tion of fracture in FGMs has been proposed by considering the internal length scale of the
phase field as a characteristic property of the material. The proof of Γ-Convergence has been
provided when the characteristics internal length scale l is constant or is a bounded function.
It can be seen from the power law that as the scaling function approaches infinity in Eq. (2.7)
(or ϵ approaches zero from Eq. (2.12)), the maximum reaction force also approach infinity
asymptotically, hence can be considered as the numerical evidence for Γ−Convergence.

As an engineering application, it is possible to exploit the theoretical results upon size-
scale effects to design experiments on scaled down specimens which do reproduce the be-
haviour of the real (full-scale) ones, by varying material properties. Moreover, it is shown
that σ

2

E
, and position of the initial crack tip affects the crack propagation and not only E(x).

6.1.2 Conclusions on multi-failure modelling of fracture in long
fibre reinforced composites

In Chapter 3, a consistent multi-phase field-cohesive zone model relying on phenomeno-
logical failure criterion has been proposed for matrix-dominated cracking in the presence of
interfaces. Fiber failure, inter-fiber failure, and interface debonding mechanisms are accom-
modated into this model by considering a multi-phase field, each characterized by their fail-
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ure phenomena with corresponding fracture energy and internal length scale, in conjunction
to a cohesive zone model for the simulation of delamination events.

The computational framework has been carefully derived via multi-field variational for-
mulation with multiple dissipative mechanisms within the spirit of phase-field and cohesive
zone models such that thermodynamics consistency is preserved. The model has been ap-
plied to the study of delamination migration in composite materials to illustrate the capabil-
ities of the model. The variation of the design parameters, such as the load application point,
the angle between the plies, and the initial crack length, have been presented to assess the
model response’s sensitivity to such design parameters.

6.1.3 Conclusions on thermo-mechanical fracture in thin-walled
structures

In Chapter 4, a consistent derivation of the thermo-mechanical locking free and fully in-
tegrated solid shell model for large displacement has been proposed. Locking effects have
been remedied using the combination of 7 or 11 EAS parameters and the ANS method. The
interface element, along its the thermo-mechanical extension, has been presented. Fully cou-
pled thermo-mechanical extension for both the solid shell and the cohesive interface have
been accounted for, as a major novelty with respect to the state-of-the-art literature. The
details of the finite element implementation of the solid shell have been addressed. The
thermo-mechanical coupling proposed can be easily modified to any of the existing cohesive
which are distinct from the previous literature. The thermal conductivity degradation and
the elastic energy degradation are done using the same function g(d).

In Section 4.4, numerical examples concerning slit annular rings with line forces showed
the absence of locking. The large displacement arising from the solid shell has been ad-
dressed in specific examples with pulling, buckling, and bending of the bar, offering the
alleviation of locking pathologies.

The interplay between the thermal and mechanical field and the effects of the interface on
the solid shell have been discussed in reference to a plate with an internal cohesive interface.
Through the peeling model, large displacements arising from the cohesive interface have
been simulated, as well as coupling with heat conduction. This problem can be extremely
relevant to simulate peeling tests performed inside climate chambers, to assess the behaviour
of structural adhesives under different temperature conditions, which is noteworthy.

In Section 4.5, with phase field, the numerical predicting capabilities of the model are
explored with three different materials having extremely different thermal and mechanical
properties, namely: (a) silicon, (b) alumina, and (c) zircona.

A double-edged notch of allumina is provided to demonstrate the predictive capabil-
ities of the model in comparison with the previous phase-field approaches. Furthermore,
the model has been shown to predict temperature-assisted fractures and it has been shown
that the presence of phase field cracks induces insulated barriers to heat flux. Correspond-
ingly, the examples have shown that temperature distributions may lead to fracture and,
conversely, cracks may affect the temperature distribution.

It can be emphasized that the developed model is particularly promising in addressing
a wide range of industrial problems in automotive (body, chassis), aerospace (wings, tur-
bines blades, rudder ), renewable energy (photovoltaics, electronic chips, screen protectors,
etc.) and thermal barrier coatings involving thick/thin plates (straight and curved) where
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temperature effects are significant.
In Section 4.6, an asymmetrical double-edge notched plate or with many holes have

been analyzed to investigate the crack deflection in such complex FGM with all thermo-
mechanical and fracture mechanics material properties function of space. The cylindrical
shell example showed that the method can be effectively simulate crack deflection in FGM
curved shells stemming from the material definition. The thermo-mechanical interaction
and the difference between the elastic and temperature distribution between the FGM and
homogeneous materials have been highlighted.

The plate with notch example is provided to show the thermo-elastic behavior, and the
effect of the ratio of material properties such as Young’s modulus, fracture energy, and ther-
mal conductivity is explored using three different FGM pairs of (i) copper-titanium, (ii)
alumina-zirconia, (iii) ailicon carbide- polymer glass.

Furthermore, based on the representative examples, the model has been shown to predict
that the temperature distributions affect crack growth patterns and, conversely, cracks do
affect heat transfer since they create thermally insulated zones in the material. A double
FGM example has been provided to further show the possibility of combining two different
FGM materials, which might be significant for material science.

Based on the FGMs, it can be emphasized that the proposed model is promising in ad-
dressing a wide range of industrial applications dealing with thermo-elastic applications
involving thin/thick (straight or curved) plates such as heat ex-changers, cutting tools, tur-
bine blades, biomedical implants, heat-resisting elements in space crafts, sports equipment,
etc., where FGMs are extensively used.

6.1.4 Conclusions on phase field model for fatigue crack in thin-
walled structures

In Chapter 5, a consistent derivation of locking free phase field fatigue has been pro-
posed. The interplay between the fatigue effects on the fracture initiation and propagation
have been explored thoroughly. The SN curves and the crack extension curves are natu-
rally recovered as a consequence of the proposed model. Using representative examples, the
predictive capability of the model is explored.

Finally, it can be emphasized that the proposed fatigue model is promising in addressing
issues of industrial importance especially involving fatigue of thin sheets such as car chassis,
turbine blades, solar panels, electronic chips etc.,

6.2 Conclusiones
El trabajo de investigación realizado en esta tesis trata sobre el desarrollo de métodos varia-
cionales y cohesivos para problemas multifı́sicos en aplicaciones estáticas y de fatiga.

6.2.1 Conclusiones sobre las FGMs

Con respecto a los desarrollos multifı́sicos, en el Capı́tulo 2 se ha propuesto la aprox-
imación del campo de fase de la fractura en FGM considerando la escala de longitud in-
terna del campo de fase como una propiedad caracterı́stica del material. La prueba de Γ-
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Convergencia se proporciona cuando la escala de longitud interna de las caracterı́sticas l
es constante o es una función acotada. Se puede ver a partir de la ley de potencia que
a medida que la función de escala se acerca al infinito en la ecuación. (2.7) (o ϵ se ac-
erca a cero a partir de la ecuación (2.12)), la fuerza de reacción máxima también se acerca
al infinito asintóticamente, por lo que puede considerarse como la evidencia numérica de
Γ−Convergencia. Como una aplicación de ingenierı́a, es posible explotar los resultados
teóricos sobre los efectos de escala de tamaño para diseñar experimentos en especı́menes
reducidos que reproduzcan el comportamiento de los reales (escala completa), variando las
propiedades del material. Además, se muestra que σ2

E
, y la posición de la punta de la grieta

inicial afecta la propagación de la grieta y no solo E(x).

6.2.2 Conclusiones sobre el modelado de fallas múltiples de frac-
tura en materiales compuestos reforzados con fibras largas

En el Capı́tulo 3, se ha propuesto un modelo consistente de zona cohesiva de campo mul-
tifásico que se basa en el criterio de falla fenomenológica para el agrietamiento dominado por
la matriz en presencia de interfases. Los mecanismos de falla de fibra, falla entre fibras y de-
sprendimiento de interfaz se acomodan en este modelo al considerar un campo multifásico,
cada uno caracterizado por sus fenómenos de falla con la energı́a de fractura correspondiente
y la escala de longitud interna, junto con un modelo de zona cohesiva para la simulación. de
eventos de delaminación. El marco computacional se ha derivado cuidadosamente a través
de una formulación variacional de múltiples campos con múltiples mecanismos disipativos
dentro del espı́ritu de los modelos de fase-campo y zona cohesiva de modo que se preserva
la consistencia termodinámica. El modelo se ha aplicado al estudio de la migración de la de-
laminación en materiales compuestos para ilustrar las capacidades del modelo. La variación
de los parámetros de diseño, como el punto de aplicación de la carga, el ángulo entre las
capas y la longitud inicial de la fisura, se han presentado para evaluar la sensibilidad de la
respuesta del modelo a dichos parámetros de diseño.

6.2.3 Conclusiones sobre fractura termomecánica en estructuras
de paredes delgadas

En el Capı́tulo 4, se ha propuesto una derivación consistente del modelo de capa sólida
totalmente integrado y libre de bloqueo termomecánico para grandes desplazamientos. Los
efectos de bloqueo se han solucionado utilizando la combinación de 7 u 11 parámetros EAS
y el método ANS. Se ha presentado el elemento interfaz, junto con su extensión termo-
mecánica. Se ha tenido en cuenta la extensión termomecánica completamente acoplada tanto
para la capa sólida como para la interfaz cohesiva, como una gran novedad con respecto a
la literatura de vanguardia. Se han abordado los detalles de la implementación de elemen-
tos finitos de la capa sólida. El acoplamiento termomecánico propuesto se puede modificar
fácilmente a cualquiera de los cohesivos existentes que son distintos de la literatura ante-
rior. La degradación de la conductividad térmica y la degradación de la energı́a elástica se
realizan utilizando la misma función g(d).

En la Sección 4.4, los ejemplos numéricos relacionados con anillos anulares ranurados
con fuerzas lineales mostraron la ausencia de bloqueo. El gran desplazamiento que surge de
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la cubierta sólida se ha abordado en ejemplos especı́ficos tirando, pandeando y doblando la
barra, lo que ofrece el alivio de las patologı́as de bloqueo.

La interacción entre el campo térmico y mecánico y los efectos de la interfaz en la capa
sólida se han discutido en referencia a una placa con una interfaz cohesiva interna. Mediante
el modelo de pelado se han simulado grandes desplazamientos derivados de la interfase co-
hesiva, ası́ como el acoplamiento con la conducción de calor. Este problema puede ser suma-
mente relevante para simular ensayos de pelado realizados dentro de cámaras climáticas,
para evaluar el comportamiento de adhesivos estructurales bajo diferentes condiciones de
temperatura, lo cual es digno de mención.

En la Sección 4.5, con campo de fase, se exploran las capacidades de predicción numérica
del modelo con tres materiales diferentes que tienen propiedades térmicas y mecánicas ex-
tremadamente diferentes, a saber: (a) silicio, (b) alúmina y (c) circona.

Se proporciona una muesca de alúmina de doble filo para demostrar las capacidades pre-
dictivas del modelo en comparación con los enfoques de campo de fase anteriores. Además,
se ha demostrado que el modelo predice fracturas asistidas por temperatura y se ha de-
mostrado que la presencia de grietas de campo de fase induce barreras aisladas al flujo de
calor. En consecuencia, los ejemplos han demostrado que las distribuciones de temperatura
pueden conducir a la fractura y, por el contrario, las grietas pueden afectar la distribución de
temperatura.

Se puede enfatizar que el modelo desarrollado es particularmente prometedor para abor-
dar una amplia gama de problemas industriales en automoción (carrocerı́a, chasis), aeroes-
pacial (alas, palas de turbinas, timón), energı́as renovables (fotovoltaica, chips electrónicos,
protectores de pantalla, etc.). ) y recubrimientos de barrera térmica que involucran placas
gruesas/delgadas (rectas y curvas) donde los efectos de la temperatura son significativos.

En la Sección 4.6, se analizó una placa asimétrica con muescas de doble filo o con mu-
chos orificios para investigar la deflexión de grietas en un FGM tan complejo con todas las
propiedades del material termomecánicas y mecánicas de fractura en función del espacio.
El ejemplo de capa cilı́ndrica mostró que el método puede simular de manera efectiva la
deflexión de grietas en capas curvas FGM derivadas de la definición del material. Se ha
destacado la interacción termomecánica y la diferencia entre la distribución elástica y de
temperatura entre la FGM y los materiales homogéneos. Se proporciona el ejemplo de la
placa con muesca para mostrar el comportamiento termoelástico, y se explora el efecto de la
proporción de las propiedades del material, como el módulo de Young, la energı́a de frac-
tura y la conductividad térmica, utilizando tres pares FGM diferentes de (i) cobre-titanio, (ii)
alúmina-zirconia, (iii) vidrio de polı́mero de carburo de silicio.

Además, según los ejemplos representativos, se ha demostrado que el modelo predice
que las distribuciones de temperatura afectan los patrones de crecimiento de grietas y, por
el contrario, las grietas sı́ afectan la transferencia de calor, ya que crean zonas térmicamente
aisladas en el material. Se ha proporcionado un ejemplo de doble FGM para mostrar aún más
la posibilidad de combinar dos materiales de FGM diferentes, lo que podrı́a ser significativo
para la ciencia de los materiales.

Con base en los FGM, se puede enfatizar que el modelo propuesto es prometedor para
abordar una amplia gama de aplicaciones industriales relacionadas con aplicaciones ter-
moelásticas que involucran placas delgadas/gruesas (rectas o curvas) como intercambiadores
de calor, herramientas de corte, turbinas. cuchillas, implantes biomédicos, elementos re-
sistentes al calor en naves espaciales, equipos deportivos, etc., donde las MGF se utilizan
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ampliamente.

6.2.4 Conclusiones sobre el modelo de campo de fase para grietas
por fatiga en estructuras de paredes delgadas

En el Capı́tulo 5, se ha propuesto una derivación consistente de la fatiga de campo de
fase libre de bloqueo. La interacción entre los efectos de la fatiga en el inicio y la propa-
gación de la fractura se ha explorado a fondo. Las curvas SN y las curvas de extensión de
fisura se recuperan naturalmente como consecuencia del modelo propuesto. Usando ejemp-
los representativos, se explora la capacidad predictiva del modelo.

Finalmente, se puede enfatizar que el modelo de fatiga propuesto es prometedor para
abordar problemas de importancia industrial, especialmente relacionados con la fatiga de
láminas delgadas como chasis de automóviles, álabes de turbinas, paneles solares, chips
electrónicos, etc.

6.3 Future developments
Along this line of research, several research areas can be potentially identified. In order for a
comprehensive outlook, the future developments can be broadly divided into four categories
(i) Fundamental issues, (ii) mathematical issues, (iii) multi-physics issues, and (iv) industrial
relevance.

(i). Fundamental issues
The major drawback of the phase-field approximation to fracture is its inability to predict

crack nucleation in the absence of pre-existing notch or crack. In this regard, some authors
have suggested stress-based criteria, where predicting crack propagation is at stake. Re-
cently these approaches have been presented in the sense of Phase-field. (1) Modification
to the energy functional to accommodate nucleation either by adding the strength of the
material or via the introduction of the strength through characteristic length scale [110]. (2)
Implicitly account for defects at a microscopic level, so that the macroscopic manifestation
defines the strength of material by modification of the crack driving force via ad hoc criteria
[256].

Both partially solve the issue of crack nucleation. In the case of (1), since length scale l is
considered to be constant, the Γ−convergence of the approximation function is not guaran-
teed. Note that, in this research, it has been proved that when l is constant, the approximation
Γ−Convergence but only in two dimensions. Moreover, the technique used is very typical
of two dimensions; hence it cannot be considered the general proof. In the case of (2), the
variational structure of the phase-field formulation is lost. Even though the nucleation prob-
lem holds, the model cannot be based on either Griffith’s theory or a proper modification of
it.

In this regard, a theory that can combine the Dugdale/Barenblat theory of cohesive zone
models and phase-field approximation to fracture can be valuable and possibly solve this
issue in the current state of the art. Such a theory would nucleate the crack, coalescence, and
propagate the crack. This poses two significant challenges (a) since phase-field approxima-
tion is based on the variational structures, the Dugdale/Barenblat theory needs to be also
variational, (b) There are infinitely many possibilities of making the cohesive zone model
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consistent with phase-field since the problem reduces to finding a projection of hyper-surface
onto a surface leading to the curse of dimensionality. It would be interesting to work towards
unifying different models without loss of generality and sense of Γ−Convergence.

(ii). Mathematical aspects

Regarding Γ−Convergence, the space GSBD has shown promising results in the recent decade.
Density results for GSBDp(Ω) for Ω ∈ Rn is available now whose applications can be ex-
tended to plasticity-based models, tension/compression split, fatigue effects models. More-
over, it would be interesting to investigate the convergence for models based on solid shells
and multiple phase fields formulations.

Concerning the discretization schemes, finite element (FE)-based methods approximated
the functional space inducing an error. Moreover, the phase-field functional approximates
Griffith’s energy leading to multiplication of error. Research in this direction towards find-
ing priori and posteriori error estimation for the coupled phase-field functional in the sense
of FEM would be worth to be developed. The reason for not much research towards this
area seems to be stemming from the fact that phase-field methods are neither fully ellipti-
cal (static) functionals nor fully parabolic (dynamic), but quasi-static. Moreover, a signifi-
cant improvement in the simulation accuracy can be achieved by using the error estimate
to compute the solution. Consequently, the total error between the approximated FEM and
Griffith’s energy can be reduced.

Powerful methods such as (ENO) Essentially Non-Oscillatory, spectral or pseudo-spectral
methods, multigrid methods, infinite element methods could be interesting to see and access
the performance of these methods with the existing ones.

Only a few solvers such as BFGS, newton, and quasi-newton solvers have been used to
solve the linear equations arising from the phase field. Research towards using solvers such
as GMRES, CR (conjugate residual), CG (conjugate gradient), GCR (Generalized Conjugate
Residual), Newton-Krylov, Krylov subspace solvers could be interesting. In this regard, ma-
chine learning techniques such as physics-informed neural networks already showed great
potential in solving partial differential equations. Adopting those methods and combining
them with different solvers for the solution of phase-field, especially for the multi-physics
problems, can be extremely useful to reduce the computational time.

(iii). Multi-Physics applications

Since the content of this thesis is devoted to developing multi-physics models, the reason-
able step towards future can be summarised as follows. Based on the solid shell approach,
it can be noticed that long reinforced composites are usually thin-walled structures. The
development of a solid shell-based approach for composites could be exciting. The multi-
physics related to composited such as thermo-mechanical interactions fatigue effects would
be highly beneficial for industrial applications. Moreover, fatigue-based phase-field models
are still in their infancy but have great potential to tackle industrial applications. The major
drawback in the phase-field fatigue is its inability to predict nucleation and unstable crack
propagation before and after Paris law, respectively. Research towards this direction could
be interesting. Combining these models with cycle skipping methods and introducing multi-
physics interaction could eventually lead to robust industrial designs. Specifically, fretting
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fatigue, hydrogen embrittlement, chemical deposition effects, moisture effects, porosity ef-
fects, etc., on the design and their interaction would provide a complete physics of the design
issues.

(iv). Industrial Relevance

With moving parts in every engineering system, the interactions and exchange of energies
between the moving parts cause the material to change (wear and tear) and sometimes de-
velop a fracture. In this regard, contact problems are of most industrial relevance. Boundary
element methods have shown to be most helpful and very well approximates the experimen-
tal results. Due to the micro-mechanics approach, these simulations’ computational cost is
high restricting it to small problems. The research concerning fracture development due to
contact provides a tool for better design of moving parts. Such models can be developed by
combining phase-field methods with BEM methods for different contact geometry. An exten-
sion to multi-physics problems involving heat transfer, friction wear, and micro-mechanics
could render useful.

Non-destructive testing methods can determine defects in the material structures. This
data can then be introduced into a phase-field method for realistic crack nucleation and prop-
agation using stochastic-based phase-field models to accurately predict the crack and pre-
vent the already existing crack from propagating. Fluid-structure interactions using phase-
field method to access the possibility as a failure mechanism using phase-field methods
could be helpful in applications such as turbine/compressor blades, engines, channels, high-
pressure pipes, and high-pressure chambers, etc.,

Regarding direct applications of the industrial relevance, the already existing models can
be used to study meta-materials, degradation of solar cells due to multi-physics, solid-state
batteries via combining CZM and phase-field approaches, wings/components of aircraft
using solid shell approach to name a few.

Furthermore, an engineering design is complete only if the design is neither over-optimized,
leading to failure, nor under optimized leading underperformance. In this regard, topology
optimization methods can be combined with the multi-physics phase-field approach to en-
hance the design for optimal performance.
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(2004), pp. 929–954. ISSN: 0021-7824. DOI: https://doi.org/10.1016/
j.matpur.2004.02.004. URL: http://www.sciencedirect.com/
science/article/pii/S0021782404000285.

[18] David Mumford and Jayant Shah. “Optimal approximations by piecewise
smooth functions and associated variational problems”. In: Communications
on Pure and Applied Mathematics 42.5 (1989), pp. 577–685. DOI: https://
doi.org/10.1002/cpa.3160420503.

149

https://doi.org/10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
https://doi.org/10.1177/1056789510386852
https://doi.org/https://doi.org/10.1016/0022-5096(60)90013-2
https://doi.org/https://doi.org/10.1016/S0065-2156(08)70121-2
https://doi.org/https://doi.org/10.1016/S0065-2156(08)70121-2
https://doi.org/10.1115/1.3656897
https://doi.org/https://doi.org/10.1016/0013-7944(73)90072-6
https://doi.org/https://doi.org/10.1016/0013-7944(73)90072-6
https://doi.org/https://doi.org/10.1016/S0022-5096(98)00034-9
https://doi.org/https://doi.org/10.1016/S0022-5096(98)00034-9
https://doi.org/10.1007/s10659-007-9107-3
https://doi.org/https://doi.org/10.1016/S0022-5096(99)00028-9
https://doi.org/https://doi.org/10.1016/S0022-5096(99)00028-9
https://doi.org/https://doi.org/10.1016/j.matpur.2004.02.004
https://doi.org/https://doi.org/10.1016/j.matpur.2004.02.004
http://www.sciencedirect.com/science/article/pii/S0021782404000285
http://www.sciencedirect.com/science/article/pii/S0021782404000285
https://doi.org/https://doi.org/10.1002/cpa.3160420503
https://doi.org/https://doi.org/10.1002/cpa.3160420503


[19] Luigi Ambrosio and Andrea Braides. Energies in SBV and variational models
in fracture mechanics. 1997.

[20] Luigi Ambrosio and Andrea Braides. Energies in SBV and variational models
in fracture mechanics. 1997.

[21] Luigi Ambrosio and Vincenzo Maria Tortorelli. “ON THE APPROXIMA-
TION OF FREE DISCONTINUITY PROBLEMS”. In: 1992.

[22] Andrea Braides. “Gamma-convergence for beginners”. In: of Oxford Lecture
Series in Mathematics and its Applications. University Press, 2002.

[23] Luigi Ambrosio and Vincenzo Maria Tortorelli. “Approximation of func-
tional depending on jumps by elliptic functional via t-convergence”. In: Com-
munications on Pure and Applied Mathematics 43.8 (1990), pp. 999–1036. DOI:
https://doi.org/10.1002/cpa.3160430805.

[24] P.K. Asur Vijaya Kumar et al. “Phase field modeling of fracture in Func-
tionally Graded Materials: Gamma-convergence and mechanical insight on
the effect of grading”. In: Thin-Walled Structures 159 (2021), p. 107234. ISSN:
0263-8231. DOI: https://doi.org/10.1016/j.tws.2020.107234.

[25] M. Negri and M. Paolini. “Numerical minimization¶of the Mumford–Shah
functional”. In: CALCOLO 38.2 (June 2001), pp. 67–84. ISSN: 1126-5434. DOI:
10.1007/s100920170004.

[26] Crismale Chambolle A. “A Density Result in GSBDp with Applications to
the Approximation of Brittle Fracture Energies.” In: Arch Rational Mech Anal
232, (Aug. 2019), pp. 1329–1378. DOI: https://doi.org/10.1007/
s00205-018-01344-7.

[27] Luigi Ambrosio, Alessandra Coscia, and Gianni Dal Maso. “Fine Properties
of Functions with Bounded Deformation”. In: Arch. Rational Mech. Anal. 139
(1997), pp. 201–238.

[28] Christian Miehe, Martina Hofacker, and Fabian Welschinger. “A phase field
model for rate-independent crack propagation: Robust algorithmic imple-
mentation based on operator splits”. In: Computer Methods in Applied Me-
chanics and Engineering 199.45 (2010), pp. 2765–2778. ISSN: 0045-7825. DOI:
https://doi.org/10.1016/j.cma.2010.04.011.
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eralised phase field model for fatigue crack growth in elastic–plastic solids
with an efficient monolithic solver”. In: Computer Methods in Applied Me-
chanics and Engineering 388 (2022), p. 114286. ISSN: 0045-7825. DOI: https:
//doi.org/10.1016/j.cma.2021.114286.

[55] Roberto Alessi, Stefano Vidoli, and Laura De Lorenzis. “A phenomenologi-
cal approach to fatigue with a variational phase-field model: The one-dimensional
case”. In: Engineering Fracture Mechanics 190 (2018), pp. 53–73. ISSN: 0013-
7944. DOI: https://doi.org/10.1016/j.engfracmech.2017.11.
036.

[56] A Jaubert and J -J. Marigo. “Justification of Paris-type Fatigue Laws from Co-
hesive Forces Model via a Variational Approach”. In: Continuum Mechanics
and Thermodynamics 18.1 (2006), pp. 23–45. ISSN: 1432-0959. DOI: 10.1007/
s00161-006-0023-8. URL: https://doi.org/10.1007/s00161-
006-0023-8.

[57] Niino.M, Hirai.T, and Watanabe.R. “The functionally gradient materials”.
In: Jap Soc Compos Mat 13: 257-64. (1987).
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[93] Thanh-Tung Nguyen, Danièle Waldmann, and Tinh Quoc Bui. “Computa-
tional chemo-thermo-mechanical coupling phase-field model for complex
fracture induced by early-age shrinkage and hydration heat in cement-based
materials”. In: Computer Methods in Applied Mechanics and Engineering 348
(2019), pp. 1–28. ISSN: 0045-7825. DOI: https://doi.org/10.1016/j.
cma.2019.01.012.

[94] Peng Zhang et al. “Modelling distinct failure mechanisms in composite ma-
terials by a combined phase field method”. In: Composite Structures 232 (2020),
p. 111551. ISSN: 0263-8223. DOI: https : / / doi . org / 10 . 1016 / j .
compstruct.2019.111551.

[95] T. Guillén-Hernández et al. “A micromechanical analysis of inter-fiber fail-
ure in long reinforced composites based on the phase field approach of frac-
ture combined with the cohesive zone model”. In: International Journal of
Fracture (2019). ISSN: 1573-2673. DOI: 10.1007/s10704-019-00384-8.
URL: https://doi.org/10.1007/s10704-019-00384-8.

[96] A. Quintanas-Corominas et al. “A phase field approach to simulate intralam-
inar and translaminar fracture in long fiber composite materials”. In: Com-
posite Structures (2019). ISSN: 0263-8223. DOI: 10.1016/j.compstruct.
2019.02.007.

[97] J. Reinoso et al. “Strength prediction of notched thin ply laminates using fi-
nite fracture mechanics and the phase field approach”. In: Composites Science
and Technology 150 (2017), pp. 205–216.

[98] V. Carollo, J. Reinoso, and M. Paggi. “A 3D finite strain model for intralayer
and interlayer crack simulation coupling the phase field approach and co-
hesive zone model”. In: Composite Structures 182 (2017), pp. 636–651. ISSN:
0263-8223.

157

https://doi.org/https://doi.org/10.1016/j.compositesb.2019.04.003
https://doi.org/https://doi.org/10.1016/j.compositesb.2019.04.003
https://doi.org/https://doi.org/10.1016/j.compstruct.2020.112263
https://doi.org/https://doi.org/10.1016/j.compstruct.2020.112263
https://doi.org/https://doi.org/10.1016/j.jcp.2019.02.022
https://doi.org/https://doi.org/10.1016/j.jcp.2019.02.022
https://doi.org/https://doi.org/10.1016/j.cma.2019.01.012
https://doi.org/https://doi.org/10.1016/j.cma.2019.01.012
https://doi.org/https://doi.org/10.1016/j.compstruct.2019.111551
https://doi.org/https://doi.org/10.1016/j.compstruct.2019.111551
https://doi.org/10.1007/s10704-019-00384-8
https://doi.org/10.1007/s10704-019-00384-8
https://doi.org/10.1016/j.compstruct.2019.02.007
https://doi.org/10.1016/j.compstruct.2019.02.007
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