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Abstract

The gut microbiota contains hundreds of types of microbes
and dysbiosis can lead to inflammatory bowel diseases (IBD),
which comprise Crohn’s disease (CD) and ulcerative colitis
(UC). Due to the complex nature of the IBD, it is interest-
ing to understand the differences between a control (NI) and
an IBD gut microbiome by using new tools offered by net-
work science. In particular, when metagenomic data are con-
sidered, it is possible to build networks according to the co-
variance, the co-occurrence and multiple layers of networks
(multilayer networks). In addition to the construction of the
networks, an analysis of the differential expressed pathways
is carried out, several centrality measures are calculated, and
community detection is performed to explore the topological
differences between the diagnosis networks. The analysis of
the correlation network topology highlights that, in IBD net-
works, the pathway involving coenzyme A of the unclassified
species becomes central. Furthermore, the modularity in the
IBD networks is higher. In both the correlation network and
the co-occurrence network, the modules belonging to B. ova-
tus and B. caccae are positioned differently in each diagnosis.
Furthermore, the difference between the NI and the UC diag-
nosis networks lies in a change in the wiring that preserves
the centralities. Moreover, the fundamental role of two of the
Roseburia species in the NI is evidenced. A further step will
consist of identifying the minimum number of pathways on
which it would be ideal to intervene to drive the system back
to a healthy state by the precision medicine way of operating.

xxiii



Chapter 1

Introduction

If you don’t like bacteria,
you are on the wrong
planet.

Brand (2010)

Microbes are ubiquitous. From radioactive waste to the human gas-
trointestinal tract, they can be found nearly everywhere. In and on the
human body, they have evolved to co-exist with their host and it is esti-
mated that the amount of microbes hosted by the human body is of the
same order of magnitude as the number of human cells (Sender, Fuchs,
and Milo, 2016). In particular, the 1014 commensal microbes living in the
intestinal tract form the human gut microbiota, which has evolved to live
in symbiosis with its host (Thursby and Juge, 2017). It is widely accepted
that this symbiosis begins from birth and the microbial communities sta-
bilize with age until the formation of an adult microbiota (Tanaka and
Nakayama, 2017). Its genetic content (called the microbiome) charac-
terizes each individual, rising also concerns about identity and privacy
issues, specifically when the study and the manipulation of the micro-
biota are considered (Yonghui Ma et al., 2018). Since the 1840s, when
the concept of gut microbiota first appeared, the topic has been studied
for two centuries (Farré-Maduell and Casals-Pascual, 2019), and, at the
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moment, it is known that the gut microbiota has a fundamental role in
shaping the gut barriers (Natividad and Verdu, 2013), training the host
immune system and regulating the metabolism (Sommer and Bäckhed,
2013). When the compositional and metabolic equilibrium of the com-
mensal microbes living in the gut is disrupted, different types of dis-
eases arise such as metabolic disorders or central nervous system dis-
orders (Belizário and Faintuch, 2018). Historically, traditional medicine
attempted to re-establish this equilibrium through remedies intervening
on the digestive system, like fasting, diets, assumption of spring waters
or laxatives. A quite recent procedure introduced to tackle the C. diffi-
cile infection is the faecal microbiota transplantation (FMT) (Borody and
Khoruts, 2012) which consists in repopulating the intestinal tract of an ill
subject with the microbiota of a healthy donor.

Inflammatory bowel diseases (IBDs), which comprise Crohn’s disease
(CD) and ulcerative colitis (UC), are an important class of diseases that
arises from dysbiosis and are being treated with FMT. Typical symptoms
of this class of diseases are chronic diarrhoea, abdominal pain, rectal
bleeding, weight loss and fatigue (Singh et al., 2011). Although CD and
UC are both characterized by the inflammation of the intestinal tract,
there are several differences between the two diagnoses that span from
the environmental factors that cause them, e.g. smoking or diet, to the
clinical and endoscopic findings in the two diagnoses (Ananthakrish-
nan, Xavier, and Daniel K Podolsky, 2017). Overall, IBDs are becom-
ing widespread in modern society because of the change in lifestyle, so-
cioeconomic developments and environmental causes (Manichanh et al.,
2012a). Until now, it is known that IBD is an exaggerated immune re-
sponse to the gut microbiota of genetically predisposed subjects under
the influence of the external environment. This complex interplay be-
tween genetics, the microbiota, the immune system and the environment
makes it particularly hard to understand this class of diseases. Kirsner
(1988) offered a complete historical review of the IBD until the 1980s, by
quoting Hippocrates who described diarrhoea as a symptom of an infec-
tious (or non-infectious) disease to a description of hypothetical patho-
genesis of IBD, which the microbiota was not considered, though. A
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more recent projection predicted the evolution of the disease between
2015 and 2025 and updated the possible origins of IBD including the
action of antibiotics on the gut microbiota in Western society (Kaplan,
2015). Xavier and D K Podolsky (2007) summarized the findings of the
origins of the IBD, mentioning the complexity of the disease. Another
historical review focuses on the genetics of the IBD (Lees and Satsangi,
2009) identified NOD2 as the first CD susceptible gene and then de-
scribed the evolution of the IBD genetics with the coming of the modern
genome-wide association study. One of the first most comprehensive
work describing the interaction of all the aforementioned factors can be
found in Y.-Z. Zhang and Y.-Y. Li (2014). Whereas, the systems biology
approach to the study of IBD was presented by Fiocchi and Iliopoulos
(2021), which proposed the creation of an IBD interactome, a complex
system connecting all the potential agents interacting among them that
derived from the combination of different omics (De Souza, Fiocchi, and
Iliopoulos, 2017).

Our work starts from here and attempts to provide tools and meth-
ods from network science useful to build and to study the IBD interac-
tome with a systems biology approach by commencing from the metage-
nomic data of the gut microbiome. This approach is typical of network
medicine, a novel discipline that mixes network science with systems bi-
ology to tackle the challenges offered by the progress of personalized
medicine (Barabási, Gulbahce, and Loscalzo, 2011), which opposes to
the current effective yet drastic procedures like the aforementioned FMT.
Network science is the discipline used to analyse complex systems and
could be suited to understand a complex disease like IBD in which a com-
plex system like the gut microbiota plays a fundamental role. Complex-
ity in the intestinal microbial communities arises at different scales; from
the macroscopic point of view, we have the ecological interactions (Faust
et al., 2018; Bucci et al., 2016) that describe the relationships among the
species in the gut microbiota; among these, we have three main different
types of interactions (Coyte and Rakoff-Nahoum, 2019); positive interac-
tions (cooperation, commensalism, cross-feeding), negative interactions
(competition, ammensalism), and asymmetric interactions (exploitation,
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predation, parasitism). Going towards a more microscopic scale, we can
find the gene networks, often represented by gene co-expression net-
works (Vernocchi et al., 2020) and metabolic networks built by connect-
ing the substances, known as metabolites, reacting in the same metabolic
processes (Bauer and Thiele, 2018). When the interaction between bacte-
rial proteins is considered, we are dealing with metaproteomics, which
is a novel tool in the analysis of IBD; nonetheless, the data used is still
scarce (Segal et al., 2019).

The application of network science for the study of the complexity of
the gut microbiome is recent and one of the first research was in the case
of C. difficile infection (Stein et al., 2013). The microbiome in this work
was represented as a boolean network derived from binarized temporal
data of the abundance of specific bacteria species in the gut. Although
the study was able to capture the dynamics of the bacterial species, e.g.
negative, positive or neutral interaction, it did not take into account the
genetic expression of the microbiome (metagenome), which could ex-
plain better the complex interplay between the bacterial species. Our
study, by contrast, gives a static screenshot of the microbial interactions
through metagenomics. A more recent study (L. Chen et al., 2020) anal-
ysed the co-abundance network built with SparCC (Friedman and Alm,
2012), the need of this tool is due to the necessity of sparsifying the net-
work that would have too many correlated nodes because of normaliza-
tion and a p-value threshold too high (Weiss et al., 2016). Based on a
topological property of the biological networks, the work by Vernocchi
et al. (2020) portrays a weighted gene co-expression network analysis by
building a network from metagenomic data and removing the weaker
edges based on the assumption that the final network would be scale-
free. In our work, we used thresholding methods that rely on the net-
work topology such as the percolation threshold or the p-value for the
projected edges, similarly to the later research. These methods should
overcome the aforementioned problems.

In the next chapters, we will go through a review of the main concepts
useful to understand the biology of the gut microbiota, then we will in-
troduce the basics of network science describing the methods used in our
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research after we will present the main results from our work and finally
we will contextualize them in the light of the past works.
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Chapter 2

The Gut Microbiota

In this chapter, we will briefly go through the microbiological fundamen-
tals useful to shortly understand the results derived from the network
analysis of the gut microbiota. We will learn the technical language used
to describe the microbial world and explain the main bacterial species in
the gut microbiota. After that, we will look at the main concepts behind
metagenomics, what 16S rRNA gene sequencing is, and how it helped
identify the bacterial species more quickly. Furthermore, we will deal
with the foundations of the metabolic pathways present in the gut micro-
biota and analyse the primary metabolites involved in these processes.

The microbiota is the community of the microorganisms, such as bac-
teria, archaea, fungi, algae, and other eukaryotic organisms living in an
environment. It differentiates from the microbiome as the latter includes
the complete spectrum of the molecules produced by the microorgan-
isms, such as their building blocks, the metabolites and other substances
exchanged among the microbes (Berg et al., 2020). In the present work,
we will focus on the bacteria that are single-celled microorganisms, also
called prokaryote. The modern classification of the bacteria was possible
thanks to the discovery of the 16S ribosomal RNA (16S rRNA), which is
a specific section of the prokaryotic ribosome. A ribosome is a macro-
molecular machine whose function is to build proteins, and it is found
inside all the living cells. Minimal changes during the evolutionary pro-
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cesses characterise the 16S rRNA. Hence it is the most suitable to classify
a bacterium.

The taxonomic classification of the bacteria is made by using the fol-
lowing levels (or ranks) in descending order: domain, phylum, class, or-
der, family, genus, and species. The domain represents the highest hier-
archical rank, and it could be Bacteria, Archaea, and Eucarya. Whereas,
according to Yarza et al. (2014), two strains of bacteria are classified in
the same phylum if they share 75% of the 16S rRNA. For the remaining
ranks, we have 78.5% for class, 82.0% for order, 86.5% for family, and
94.5% for the genus. The definition of ’species’ was given by Rosselló-
Mora and Amann (2001) that defined it as a group of organisms that
share a number of characteristics and can be differentiated through spe-
cific phenotypes.

Firmicutes and Bacteroidetes are the most common phyla, and they
represent 90% of the bacteria in the gut microbiota. They have oppo-
site Gram staining, the former are Gram-positive, whereas the latter are
Gram-negative. Gram staining is a way to classify bacteria by the com-
position of the outer membrane; a pigment (crystal violet) is used to stain
the bacterial membrane; if the cell wall retains the pigment and becomes
pink or red, it is possible to deduce that they are Gram-positive, on the
contrary, they are Gram-negative. There are also a class of bacteria that
cannot be classified either way, and they are called gram-neutral.

In the following paragraphs, we will describe the main bacterial species
that compose the gut microbiota. It is possible to recognise three main
human enterotypes (Arumugam et al., 2011) (enterotypes are a way of
classifying a living organism based on the composition of the gut micro-
biota), and they are Bacteroides (enterotype 1), Prevotella (enterotype 2),
and Ruminococcus (enterotype 3). Bacteroides is a genus of bacteria char-
acterised by being clinically pathogenic when outside the gut (Wexler,
2007). In the gut, they evolved to be symbiotic with the host. In fact, they
help to digest complex polysaccharides (Salyers, Valentine, and Hwa,
1993) into nutrition and vitamins beneficial to both the host and the other
members of the gut microbiota. They are Gram-negative obligate anaer-
obic bacteria, which means that they do not need oxygen to grow.
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Figure 1: Examples of taxonomic classification of the 90% composition of
the bacteria of the gut microbiota. Adapted from Rinninella et al. (2019)
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Prevotella, similarly to Bacteroides, is a genus of Gram-negative bacte-
ria; differently from the latter, Prevotella is prevalent in rural, preagricul-
tural, isolated or vegetarian populations that consume a plant-rich diet,
whereas the Bacteroides genus is more spread in Westernised populations
(Precup and Vodnar, 2019). The presence of Prevotella is at the expense of
Bacteroides and is also associated with chronic inflammatory status in the
gut (Ley, 2016). Nevertheless, the two genera shared a common ancestor.

Ruminococcus is a genus of Gram-positive and obligate anaerobic gut
bacteria. They were first isolated in ruminants, and they are known to
digest cellulose. One of the most cited papers describes the transfer of
molecular hydrogen produced through glucose fermentation by R. albus.

The metagenome is the genome, i.e. the ensemble of the genes of un-
cultivated microorganisms in an ecosystem that could be from aquatic to
terrestrial, but also the human skin or the human gut (Lindgreen, Adair,
and Gardner, 2016). A metagenomic analysis requires six fundamental
steps (Ladoukakis, Kolisis, and Chatziioannou, 2014), which are:

1. quality control;

2. assembly;

3. gene detection;

4. gene annotation;

5. taxonomic analysis;

6. comparative analysis.

Each step produces a different output that is processed by the data man-
agement side. Initially, the process starts from data called reads that are
small nucleotide (or base) sequences, which are amplified portions of the
same DNA molecules cut into smaller pieces in the process of shotgun
sequencing. The generated text files containing the reads (e.g. CGGCCT)
are called FASTA or FASTQ. Each read of the text files produced by the
initial raw sequencing data is used in the quality control step. Depend-
ing on the settings applied, each read is divided into smaller sequences of
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different lengths. This procedure is prone to bias; therefore, a score that
estimates the quality of each sequenced base (Phred) is calculated. In the
database used Trim are the number of reads that remain after trimming
the bases with Phred > 20. The dataset is then filtered by comparing it
with a database of human genome sequences (hg38). The sequences ob-
tained can be considered high quality reads, and they are ready for the
assembly step. From the assembly step, it is possible either to proceed di-
rectly with the taxonomic analysis or to go through gene prediction and
annotation, which are useful to define their functions.

The main metabolic pathways found in the microbiota are:

• 1CMET2-PWY: N10-formyl-tetrahydrofolate biosynthesis: tetrahy-
drofolate is also known as vitamin B9, folate coenzymes are in-
volved in the acceptance and donation of carbon-based molecules
fundamental for the nucleotide synthesis, cellular methylation re-
actions, and amino acid involving pathways (West, Caudill, and
Bailey, 2020). 10-formyl-tetrahydrofolates are used for tetrahydro-
folate, purine and formate production (Nagy et al., 1995).

• ANAGLYCOLYSIS-PWY: glycolysis III (from glucose): it is one
of the most important pathways for the central metabolism, and
it is fundamental for cellular growth. The main difference from
glycolysis I is that glucose is phosphorylated inside the cell by the
specific enzyme glucokinase.

• ARO-PWY: chorismate biosynthesis I: chorismate is a relevant in-
termediate that leads to the production of some fundamental metabo-
lites, among which vitamins E and K (Bentley and Haslam, 1990).

• COA-PWY-1: coenzyme A biosynthesis II (mammalian) and COA-
PWY: coenzyme A biosynthesis I: coenzyme A is a fundamen-
tal enzyme needed in different processes for all the organisms. It
is fundamental for the production of fatty acids (Leonardi et al.,
2005).

• GLYCOGENSYNTH-PWY: glycogen biosynthesis I (from ADP-
D-Glucose): glycogen is an extremely ramified glucose polymer
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that is used as a form of energy storage. Glycogen particles are
soluble in water.

• DTDPRHAMSYN-PWY: dTDP-L-rhamnose biosynthesis I: one
of the metabolites in the pathways for dTDP-L-rhamnose biosyn-
thesis is needed by many pathogenic bacteria, in particular the Strep-
tococci (Beek et al., 2019).

• GLCMANNANAUT-PWY: superpathway of N-acetylglucosamine,
N-acetylmannosamine and N-acetylneuraminate degradation: N-
acetylglucosamine, N-acetylmannosamine and N-acetylneuraminate
are also called amino sugars, and they are used to build the wall
of the cells in E. coli. Moreover, these metabolites can be used as
sources of carbon and nitrogen (Plumbridge and Vimr, 1999).

• PWY-5097: L-lysine biosynthesis VI: lysine is a key metabolite
used to build proteins in humans and animals, (Wu, 2009) and de-
pletion of this fundamental building block was found to be detri-
mental to the absorption of the nutrients. Therefore, it was found
that different lysine levels influenced the metagenome on piglet
models (Yin et al., 2017).

• PWY-5659: GDP-mannose biosynthesis: free mannose does not
have the same role in all the organisms. In some cases, it can be
useful to treat illnesses, and in other cases, like honeybees, it can
kill the organism (Sharma, Ichikawa, and Freeze, 2014). Neverthe-
less, the metabolite produced in this pathway is fundamental for
the process of glycoprotein formation.

• PWY-6121: 5-aminoimidazole ribonucleotide biosynthesis I: 5-
aminoimidazole ribonucleotide is an intermediate metabolite fun-
damental for the production of purine nucleotides and thiamine.
The pathway was studied in several bacteria.

• PWY-6123: inosine-5’-phosphate biosynthesis I: also known as
inosinic acid, this metabolite is fundamental in the formation of
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purines, which are used to synthesise nucleic acid constantly (Y.
Zhang, Morar, and Ealick, 2008).

• PWY-7111: pyruvate fermentation to isobutanol (engineered): pyru-
vate can be used as a substrate for growth by many bacteria (Wag-
ner et al., 2005). In this case the final product of the fermentation is
isobutanol, such as in Atsumi et al. (2010).

• PWY-7219: adenosine ribonucleotides de novo biosynthesis: adeno-
sine ribonucleotides (AMP) is one of the products of the conversion
of IMP.

• VALSYN-PWY: L-valine biosynthesis: L-valine is an amino acid
used for synthesising other proteins; hence it has the property of
inducing muscle growth and tissue repair.
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Chapter 3

Methods

3.1 General information

3.1.1 Recruitment

The IBDMDB (IBDMDB - Home | IBDMDB n.d.) is one of the first com-
prehensive studies of the gut ecosystem’s multiple molecular proper-
ties involved in the IBD dynamics. Some of the microbiome measure-
ments offered by the study are metagenomics, metatranscriptomics and
metabolomics. The data is related to 132 subjects approached in five
medical centres: Cincinnati Children’s Hospital, Emory University Hos-
pital, Massachusetts General Hospital, Massachusetts General Hospital
for Children, and Cedars-Sinai Medical Centre. The patients recruited for
the study initially arrived at the hospitals either for routine age-related
colorectal cancer screening, presence of other gastrointestinal symptoms,
or suspected IBD. The latter could be a consequence of positive imag-
ing, symptoms of chronic diarrhoea or rectal bleeding. A preliminary
colonoscopy was performed to determine study strata if there were no
conditions for exclusion right after enrolment. Based on initial analyses,
the subjects not diagnosed with IBD were labelled as ‘NI’ controls. This
group of subjects included the patients who arrived for routine screen-
ing and those with more benign or non-specific symptoms (Lloyd-Price
et al., 2019).
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3.1.2 Database

The IBDMDB website contains the raw and the final results of the pro-
cessed information, the complete pipeline for producing the final results
is:

1. Quality and error checking for completeness, producing raw files

2. Anadama pipeline, producing products

In particular, if we consider the pipeline for producing the metagenomic
data, the samples for the quality control process go through the Knead-
Data (KneadData – The Huttenhower Lab n.d.) and the Anadama pipelines.
The former is a tool useful to exclude the reads, which are fragments of
DNA related to the host or other contaminants from the metagenomic se-
quencing data. This separation step is made completely in silico. Whereas
the latter, the Anadama pipeline, performs and produces documents from
an automated scientific workflow, where a workflow is simply a succes-
sion of tasks, such as quantifying operational taxonomic units (OTU).
The OTUs are classifications of groups of bacteria closely related to each
other by sequence similarity. On the IBDMDB website, there are two
versions of data Version 2.0 and Version 3.0. Version 3.0 has
been uploaded with the new version of bioBakery (McIver et al., 2018).
In the thesis, we use the products file related to the functional profiles
Version 2.0. Moreover, we exploit the HMP2 Metadata file, contain-
ing the sample IDs, the subject IDs and the properties associated with
each sample. See the Code 1. The External ID is the unique ID of
the sample, Participant ID is the subject from where the sample has
been taken, diagnosis is either ulcerative colitis (UC), Crohn’s disease
(CD) or control group (non-IBD), week_num points out the week num-
ber, when the sample has been taken and data_type is the type of sam-
ple (metagenomics, 16S, etc.).

1 import pandas as pd
2 # sample ID list contained in the metagenomic database
3 sample_id_list = list(pathabundances_mgx_red.columns[1:])
4 ID_diagnosis_db = pd.read_csv("./data/ibd/hmp2_metadata.csv",

usecols=["External ID", "Participant ID","diagnosis", "
week_num","data_type"])
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5 ID_diagnosis_db_red = ID_diagnosis_db[ID_diagnosis_db[’External ID
’].isin(list(sample_id_list))]

6 result = ID_diagnosis_db_red.sort_values([’week_num’, ’Participant
ID’])

7 result_metagenomics = result[result[’data_type’]==’metagenomics’]
8 diagnosis_list = result_metagenomics[result_metagenomics[’

diagnosis’]==’CD’]
9 cd_mgx_week0 = diagnosis_list[diagnosis_list[’week_num’] == 0.0]

10 cd_df = cd_mgx_week0.drop_duplicates("Participant ID")
11 cd_list = list(cd_df[’External ID’])
12 columns_cd = ["# Pathway"]
13 columns_cd.extend(cd_list)

Listing 1: Extracting and combining the useful data from HMP2 Metadata
with HMP2 Metagenomics database

In the Code 1, we extracted helpful information to avoid importing
the whole database, and we selected only the samples from the first week
(week 0). Moreover, the samples different from metagenomic ones were
excluded. Finally, we dropped the samples from the same participant
in week 0 and obtained a list of samples ID present in both the metage-
nomic database and the HMP2 Metadata. The metagenomic database
contains the gene descriptors as row indexes; specifically, the descriptor
is composed of the pathway, genus and species (e.g. "ARO-PWY: cho-
rismate biosynthesis I |g__Alistipes.s__Alistipes_finegoldii"). The algo-
rithm HUMAnN2 (Franzosa et al., 2018) has been used to generate the
database. The algorithm can be divided into three phases; firstly, the
metagenomic sample is quickly analysed to seek known species in the
gut microbiome. The functional annotation of the identified pangenomes
(i.e. the genome of a larger group of species) of the microbiome is con-
catenated to form a gene database of the sample. Secondly, using this
database, the whole sample is aligned, meaning that statistics regarding
the species and the genes are made, and unmapped reads are collected.
Thirdly, the gene abundances are calculated, and they are combined with
the metabolic network to determine the pathways in the microbial com-
munity.
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3.2 Single-layer analysis of IBD

Networks are ubiquitous, and there exist several types of them, e.g. tech-
nological, financial, biological and so on. In particular, biological net-
works comprise a wide range of biological system scales, from the food
web to the genome. Furthermore, the architecture of networks can be
complicated and enriched by properties by modifying a single-layer net-
work, such as by partitioning the nodes into several sets that have a spe-
cific relationship (multi-partite graphs) or by adding several layers that
communicate among them (multilayer graphs). These modifications al-
low considering structures that are invisible to the single-layer network.

Figure 2: Representation of a single layer undirected network and its adja-
cency matrix.

Networks generally simplify complex systems into structures made
of nodes V and edges E ⊆ V × V , called graphs G = (E, V ) (Caldarelli,
2007; Barabási, 2016). The nodes are entities depicted as circles represent-
ing elements in the actual complex systems, whereas the edges depicted
as lines connecting the pairs of circles describe the relationships between
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the nodes (see Figure 2). If the edges are associated with a positive real
number w ∈ R+ that shows the importance of the connection, the graph
is called weighted, whilst if the weights are binary w ∈ {0, 1} then the
graph is defined as unweighted. To summarize and facilitate the calcu-
lations on a graph, one can use the adjacency matrix, which is a matrix
where the rows and columns indexes (respectively, i and j) are the nodes,
and the entries are the weights connecting the corresponding nodes; in
the case of undirected graphs that are the kind of graphs used in the
thesis, adjacency matrices are symmetric. Now, it is possible to define
several measures and important features that will be useful later; in par-
ticular, the degree is the total number of links that a node has, and it is
expressed as ki, where i is the node. By using the adjacency matrix A, we
obtain:

ki =

N∑︂
j=1

Aij , (3.1)

where N is the total number of nodes in the network. The average de-
gree:

⟨k⟩ = 1

N

N∑︂
i=1

ki =
2L

N
(3.2)

where L = 1
2

N∑︁
i=1

ki is the total number of links in the network. The clus-

tering coefficient:

Ci =
2Li

ki (ki − 1)
(3.3)

measures how much the neighbours in a network are connected to each
other. The degree sequence is the non-increasing sequence of the degree
of the nodes of the graph. Whilst, the degree distribution describes the
probability that a node has to have a certain degree. They both contain a
piece of similar information, and they characterise a network. The degree
sequence is:

d = (k1, k2, . . . , kn) (3.4)

whilst, the degree distribution is:(︂
pk =

nk

n

)︂
k≥0

(3.5)
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where n is the number of nodes. For example, in Figure 2 the degree
sequence is {2, 2, 2, 2, 4, 4} and the degree distribution is {p0 = 0, p1 =

0, p2 = 4
6 , p3 = 0, p4 = 2

6}.

3.2.1 Gene Co-expression Network

According to Choobdar et al. (2019), the single-layer networks and the
associated tools for the identification of the disease modules are only
slightly less efficient than the multilayer counterparts for detecting the
functional modules in a complex system. Therefore, for the sake of sim-
plicity, we start to analyse the IBD from the single-layer perspective. The
complexity of the relationships between the microbial genes in the gut
microbiome led us to choose the gene co-expression network (GCN) as
the tool to investigate the microbial complex system. In other words, we
used co-expression networks as the mathematical tools to describe how
much two genes are related to each other across the samples analysed.
Nevertheless, we have to keep into account that the connection between
two genes in the GCN does not always mean direct physical interaction
between them (Buchanan et al., 2010). We started our construction of the
GCN from the data downloaded from the IBDMDB, which is composed
of the gene descriptors in the row indexes and the sample IDs in the col-
umn headers (see Table 1). GCNs are built from the following steps:

Table 1: Representation of the database containing the gene expression data
with example values.

SMPL1 SMPL2 SMPL3

PWY1 0.0435726 0.0377424 0.0118981
PWY2 0.0170328 0.0144735 0.0134886
PWY3 0.0145872 0.0177172 0.0121692
PWY4 0.0545121 0.0018744 0.0175601
PWY5 0.0881223 0.0111788 0.0163441

1. pairwise gene similarity score;

2. thresholding.
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Normalisation methods, co-expression correlation (such as whether Pear-
son’s or Spearman’s correlation measure should be used) and signifi-
cance and relevance are still debated (Tieri et al., 2019). In our project,
we chose Pearson correlation similarly to the paper by MacMahon and
Garlaschelli (2013). To reduce the number of genes present in the re-
sulting network, we built the co-expression matrices for three different
presence thresholds (namely, between 25% and 50%, between 50% and
75%, and more than 75%).

1 import pandas as pd
2 import numpy as np
3

4 def presence(data):
5 data_aux = data.set_index(’# Pathway’)
6 data_temp = data_aux.copy()
7 # if path abundance is >0, genes marked as present
8 data_aux[data_aux > 0] = 1
9 # calculate relative presence in the respect of tot n. obs

10 row_sum = data_aux.apply(np.sum, axis =1)
11 temp = row_sum/len(data_aux.columns)
12 # filter the genes with presence between 0.25 and 0.50
13 result = data_temp[(temp > 0.25) & (temp < 0.50)]
14 result = result.reset_index()
15 return result

Listing 2: Python example to reduce the size of the database

We now introduce some helpful notations. Let us consider a complex
system with M genetic pathways and S samples for each pathway. The
single sample series

Xi ≡ {xi(SMPL1);xi(SMPL2); . . . ;xi(SMPLS)} (3.6)

represents the activity of the ith pathway of the system over S samples.
We do not care about the order of the samples because to apply the Pear-
son correlation measure, it is sufficient that all the series follow the same
order. xi is the normalised pathway abundance for each sample, and
SMPLs is the sth sample. Then, we compute the correlation matrix C,
which measures the mutual dependencies over N sample series with a
value between −1 and 1. The generic element of the correlation matrix C

is:

Cij ≡ Corr[Xi, Xj ] ≡
Cov[Xi, Xj ]√︁

V ar[Xi] · V ar[Xj ]
(3.7)
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where
Cov[Xi, Xj ] ≡ XiXj −Xi ·Xj (3.8)

is the covariance of Xi and Xj and

V ar[Xi] ≡ σi
2 ≡ X2

i −Xi
2
= Cov[Xi, Xi] (3.9)

is the variance of Xi. In the above equations, the bar denotes an average
across the samples, i.e.,

Xi ≡ S−1
S∑︂

s=1

xi(s) (3.10)

X2
i ≡ S−1

S∑︂
s=1

x2
i (s) (3.11)

XiXj ≡ S−1
S∑︂

s=1

xi(s)xj(s) (3.12)

Obviously, the diagonal elements of the correlation matrix are Cii = 1.
Even if we assume that the sample series are linearly independent, real
biological systems violate this assumption. Nevertheless, we consider
the assumption valid in the same way as it has been done for financial
systems and other complex systems (MacMahon and Garlaschelli, 2013).

To transform a correlation matrix into the GCN, we used a threshold-
ing method inspired by a brain network technique that was used to cut
the least important edges and keep the significant relationships among
the nodes; hence, we calculated the absolute value of the correlations,
making the signs irrelevant. This method consists of increasing a cut-
off threshold until the network connectivity breaks apart; because of this
property, this cut-off threshold is also known as the percolation thresh-
old. This method has been considered one of the most effective methods
to maximise the information quantity kept by the network (Nicolini et al.,
2020). In the thesis, we started from a cut-off threshold of t = 0, and we
used a bisection method to get to the percolation threshold. In the bisec-
tion method, we flattened the absolute values in the weighted adjacency
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matrix into a sorted array, we chose the median value and used it as the
new cut-off threshold, we calculated the connectivity of the graph built
from the adjacency matrix having this cut-off threshold, finally, if we ob-
tained a connected graph with the median value as a cut-off threshold,
we used as the sorted array the upper half array, on the contrary, we used
the lower half. The procedure was iterative until convergence which cor-
responded to an array with zero length or with the same head and same
tail.

1 def get_rho_threshold2(rho_matrix):
2 rho_db = rho_matrix
3 rho_np = rho_db.to_numpy()
4 np.fill_diagonal(rho_np,0)
5

6 a = rho_np[rho_np!=0].flatten()
7 a_sorted=np.sort(a)
8

9 N=len(a_sorted)
10 L=N
11 new_a = a_sorted[:L]
12 th = 0
13 # convergence condition
14 while(new_a.size>1 and new_a[0]!=new_a[-1]):
15 a_med = np.median(abs(new_a))
16 th = a_med
17 adj = np.array(abs(rho_np)>th*np.ones((rho_np.shape)),

dtype=int)
18 G=nx.from_numpy_matrix(adj)
19 # iterative step
20 L = len(new_a)
21 # case of even number of elements in array
22 if L%2==0:
23 L=int(L/2)
24 if nx.is_connected(G):
25 new_a = new_a[L:]
26 else:
27 new_a = new_a[:L]
28 # case of odd number of elements in array
29 else:
30 L=int((L-1)/2)
31 if nx.is_connected(G):
32 new_a = new_a[L:]
33 else:
34 new_a = new_a[:L]
35 return th

Listing 3: Code to find the percolation threshold.
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3.2.2 Differential networking

In the thesis, we considered the metagenomic data of the IBDMDB to
find the differential genes and structures that underlie the GCN of CD,
UC, and non-IBD controls. The GCN was generated from a total of 1,638
metagenomic samples. We divided the samples according to the diag-
noses and kept only the samples taken in week number 0. We wanted
to find the pathway abundances that were differential between the dis-
eased and the control profiles. Therefore, for each pathway, we com-
pared the abundances of the IBD profiles with those of the non-IBD pro-
files through permutation tests. We used 3000 as the number of Monte
Carlo resampling, and we set the p-value threshold of significance to
0.05. We enriched the number of differentially expressed (DE) pathway
pools by feeding the previously found DE pathways (as seeds) and the
respective co-expression networks to the DIAMOnD algorithm (Ghias-
sian, Menche, and Barabási, 2015). Despite Paci et al. (2017) proposed
a novel tool (SWIM), in our work, we decided to use the DIAMOnD al-
gorithm over the SWIM algorithm mainly for two reasons. Firstly, DI-
AMOnD was more straightforward since it required one computational
step less than SWIM (the community detection step). This allowed us to
obtain satisfactory preprocessing without inducing data clustering in the
sample. Secondly, since DIAMOnD was written in Python, while SWIM
was in MATLAB code, DIAMOnD allowed us to optimally integrate re-
sults in the subsequent analysis pipeline, composed of Python functions.
For additional information, see Table 2.

In our work, these nodes were found by the permutation tests; more-
over, by combining the permutation tests with the DIAMOnD algorithm,
we did not need the community detection step included by the SWIM al-
gorithm. The DIAMOnD algorithm is based on the intuition that the
connectivity significance, calculated as

p− value(k, ks) =

k∑︂
ki=ks

p(k, ki) (3.13)
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Table 2: Comparison of DIAMOnD and SWIM algorithms.

Method/Tool Brief Description Availability References

DIAMOnD

It starts from a set of
seed nodes to find dis-
ease module through
’connectivity signifi-
cance’ instead of local
connection density.

Python

Ghiassian,
Menche, and
Barabási
(2015)

SWIM

It integrates topologi-
cal information of the
network with gene ex-
pression data to identify
a small pool of genes
associated with drastic
changes in cell pheno-
type.

MATLAB Paci et al.
(2017)

where

p(k, ks) =

(︁
s0
ks

)︁(︁
N−s0
k−ks

)︁(︁
N
k

)︁ (3.14)

is strongly distinctive for disease genes that we already know. Hence
the algorithm tries to search for those disease genes that are not known
yet in order to identify the disease module. DIAMOnD has an iterative
procedure that comprises four steps:

1. Calculation of the connectivity significance for all the genes con-
nected in the GCN to any of the s0 seed genes.

2. Classification of the genes according to the p-values (listed from the
lowest p-value to the highest p-value).

3. The gene at the top of the list is added to the set of the seed nodes.
The number of the nodes increases from s0 → s1 = s0 + 1

4. it is possible to repeat steps 1-3 by using as seed set the extended
set s1. By repeating the procedure, the algorithm will increase the
disease module one gene at a time.
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We chose to obtain 50 ranked results from the algorithm for each dis-
ease. The intersection between the two results from the algorithm was
found to obtain a list of common genes between CD and UC. The fol-
lowing network measurements were calculated and compared across the
three diagnoses for the genes found by the algorithm: degree centrality,
betweenness centrality, and eigenvector centrality. We performed a one-
way ANOVA test for each measurement, and if the p-value was less than
0.05, we proceeded with a post-hoc t-tests with p-value adjusted with
Holm (1979) to identify which measurements identify differential genes.

3.2.3 Centrality measures in single-layer networks

a) b)

c)

Figure 3: Visualisation of the three centrality measures on the same net-
work: a) degree centrality, b) betweenness centrality, and c) eigenvector
centrality.

There are many different centrality measures in network science; these
measures describe the importance of a node in the network. The central-
ity measures used in the thesis are degree centrality, betweenness cen-
trality, and eigenvector centrality (see Figure 3). The simplest one, degree
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centrality, is calculated simply as the degree of the node,

CD(i) = ki, (3.15)

the more connected the node is, the more important it is. The between-
ness centrality was introduced by Freeman (1977), and it considers more
important the nodes that behave as bridges in the network. It can be
calculated as:

CB(i) =
∑︂

s ̸=t ̸=i∈V

σst(i)

σst
(3.16)

where σst is the number of shortest paths connecting s and t, whilst σst(i)

is the number of shortest paths connecting s and t and going through i

(Brandes, 2001). The eigenvector centrality estimates the influence of a
vertex in a network, and it is measured by considering with a higher
score those vertexes that are connected with vertexes with already high
scores. The relative centrality measure in an unweighted and undirected
graph can be defined as:

xi =
1

λ

∑︂
t∈V

Aitxt, (3.17)

where λ is a constant (eigenvalue). All the centrality measures were cal-
culated on the binarized adjacency matrices.

3.2.4 Community detection in single-layer networks

In the study of network science, both natural complex networks and ar-
tificial complex networks display a modular behaviour, i.e. groups of
nodes are more densely connected within the members of the group than
with the rest of the network. This phenomenon can also be described by
a function called modularity (Newman, 2006), which can be used as a
parameter for one of the several ways to perform community detection
in complex networks. In our work, we used the Louvain method (Blon-
del et al., 2008) because it is suited to large complex networks. Louvain
method is based on an optimisation problem that can be solved in a time
O(n · log2n) where n is the number of nodes in the network (Lancichinetti
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and Fortunato, 2009). The method is based on the aforementioned mod-
ularity optimisation. ’Modularity’ is defined as (Newman, 2004),

Q =
1

2m

∑︂
i,j

[︃
Aij −

kikj
2m

]︃
δ(ci, cj). (3.18)

The algorithm is based on two phases that repeat iteratively. In the first
phase, each node is repeatedly moved individually between the commu-
nities to maximise modularity. The first phase stops when no further
individual move can improve the modularity. In the second phase, each
community formed in the first phase is considered a node of a weighted
graph, where the weights of the edges are given by the sum of the edges
connecting the nodes in the communities. The algorithm has a high effi-
ciency partly because the gain modularity ∆Q, due to moving a node i

into a community C, can be steadily calculated as:

∆Q =

[︄∑︁
in +ki,in
2m

−
(︃∑︁

tot +ki
2m

)︃2
]︄
−

[︄∑︁
in

2m
−
(︃∑︁

tot

2m

)︃2

−
(︃

ki
2m

)︃2
]︄
,

(3.19)
where

∑︁
in is the sum of the weights of the edges inside C,

∑︁
tot is the

sum of the weights of the edges going from the outside to the nodes in-
side C, ki is the sum of the weights of the edges going to node i, and
ki,in is the sum of the weights of the edges going from i to the nodes in
C and, finally, m is the sum of the weights of all the edges in the graph.
One of the limitations of community detection based on the modularity
is the resolution limit (Fortunato and Barthelemy, 2007). This limitation
to modularity may be present when ls ≈

√
2L, where ls is the number of

internal links in a module S and L is the total number of links in the net-
work and it can be overcome through several methods, one of the most
promising is Surprise maximization (Aldecoa and Marín, 2013). To com-
pare the communities obtained in networks composed of the same nodes
but different edges, we used the Normalized Mutual Information (NMI).
NMI is a value comprised of 0, if the two clusterings are completely un-
correlated and 1, if the two clusterings are correlated. To evaluate the sig-
nificance of the estimated value, we performed a permutation test with
N = 5000 repetitions and calculated the p-value for each NMI.
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3.3 Bipartite network analysis of IBD

Figure 4: Representation of a bipartite graph.

Bipartite networks are graphs G = (U, V,E) where the nodes can be
divided into two disjoint sets, U and V , and every edge in E links an
element in U to an element in V (see Figure 4). In the thesis, we des-
ignated with U the set of nodes representing the genes and with V the
set of nodes representing the samples. We can find in E all the edges
connecting the gene u to the sample v if the gene was over-expressed in
the corresponding sample. We evaluated the over-expression of a gene
through the binarisation of the data that led to the construction of a bi-
adjacency matrix B of size |U | × |V | that described the bipartite network
G = (U, V,E) with the entries (0, 1), where Bij = 1 if the gene vi is
over-expressed in the sample uj , and Bij = 0 if it is not over-expressed.
Biadjacency matrices are rectangular matrices where on one side, there
are the nodes in U , and on the other side the nodes in V .
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3.3.1 Binarisation

The binarization process is useful to highlight the edges in E that are
over-expressed. By using the revealed comparative advantage (RCA)
(Balassa, 1965), We highlighted the over-expressed genes for specific sam-
ples:

RCAij =
Eij/

∑︁
j′∈V Eij′∑︁

i′∈U Ei′j/
∑︁

i′∈U,j′∈V Ei′j′
(3.20)

where E is the expression of the gene i in the sample j. When RCAij > 1,
the quantity of gene i in sample j can be considered over-expressed and
the entry bij = 1, in the other case RCAij ≤ 1, then bij = 0.

3.3.2 Randomisation of bipartite networks

To generate a null model useful to calculate the statistically important
properties of a real bipartite network, we randomised the bipartite net-
works by using the package BiCM (Bruno, 2020). In particular, the pack-
age is based on the works by Squartini and Garlaschelli (2011), Saracco,
Di Clemente, et al. (2015), and Saracco, Straka, et al. (2017). In the afore-
mentioned works, the Shannon entropy defined as

S = −
∑︂
M∈G

P (M) lnP (M) (3.21)

is maximised, where G is an ensemble of binary, undirected, bipartite
networks, and

−→
C (M) is a given set of constraints. The result is:

P
(︂
M|

−→
θ
)︂
=

e
−H

(︂
M,

−→
θ
)︂

Z
(︂−→
θ
)︂ (3.22)

Where H
(︂
M,

−→
θ
)︂

=
−→
θ ·

−→
C (M) is the hamiltonian and Z

(︂−→
θ
)︂

=∑︁
M∈G e

−H
(︂
M,

−→
θ
)︂

is the normalization. In the case of the bipartite exten-
sion of the configuration model (BiCM), the hamiltonian becomes:

H
(︂
M,

−→
θ
)︂
= −→α ·

−→
d (M) +

−→
β −→u (M) (3.23)
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because we have two layers of nodes and we constrained the degree se-
quences

−→
d (M) and −→u (M).

−→
d (M) is the degree sequence of the genes

and −→u (M) is the degree sequence of the samples.

3.3.3 Properties of bipartite networks

Figure 5: Some of the properties of a bipartite network. On the left, motifs
and, on the right, monopartite projections.

Motifs

If, on the one hand, the usual triangular motifs that can be found in a
standard single-layer network cannot be defined in bipartite networks
because there are two separate partitions of nodes, and there cannot
be edges between nodes in the same partition; on the other hand, in
bipartite networks, we can find the simple V-motifs and Λ-motifs, or
the higher-order correlations X-motifs, M-motifs and W-motifs. For V-
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motifs, the number of V-motifs in the bipartite network is:

NV (M) =

g∑︂
g=1

(︃
ug

2

)︃
, (3.24)

where g is the generic gene or pathway; for Λ-motifs, the number of Λ-
motifs in the bipartite network is:

NΛ(M) =

s∑︂
s=1

(︃
ds
2

)︃
, (3.25)

where s is the generic sample; for X-motifs, the number of X-motifs in
the bipartite network is:

NX(M) =
∑︂
s<s′

(︃
Sss′

2

)︃
=
∑︂
g<g′

(︃
Ggg′

2

)︃
, (3.26)

where,
S = M ·MT,G = MT ·M. (3.27)

The entries Sss′ and Ggg′ count respectively the number of genes over-
expressed by both samples s and s′ and the number of samples over-
expressing both genes g and g′. For M-motifs, the number of M-motifs in
the bipartite network is:

NM (M) =
∑︂
s<s′

(︃
Sss′

3

)︃
, (3.28)

for M-motifs, the number of M-motifs in the bipartite network is:

NW (M) =
∑︂
g<g′

(︃
Ggg′

3

)︃
. (3.29)

Projections

One way to compress the information contained in a bipartite network
is to project the bipartite network onto one of the two layers (gene/path-
way layer or sample layer). We carried out the projection by connect-
ing in the same layer the nodes that were linked by a common node in

30



the other layer. The projection leads to a loss of information itself, so to
avoid further loss of information, we weighted the edges by the number
of common nodes neighbouring the nodes in the same layer (Neal, 2014).
The algorithm to perform the projection is:

1. select the partition on which the projection will be made

2. take two nodes of the selected partition, n and n′, and calculate
their similarity

3. by evaluating the corresponding p-value compute the statistical
significance of the calculated similarity with respect to a properly-
defined null model;

4. if, and only if, the p-value associated with the link n and n′ is sta-
tistically significant, connect the selected nodes.

The similarity in the second step of the algorithm is evaluated by:

Vnn′ =

Nc∑︂
c=1

mncmn′c =

Nc∑︂
c=1

V c
nn′ , (3.30)

where V c
nn′ ≡ mncmn′c and it is clear from the definition that V c

nn′ = 1

if, and only if, both n and n′ are common neighbours of c. The third
step of the algorithm passes through the calculation of the p-value of the
Poisson–Binomial distribution, i.e. the probability of observing a number
of V-motifs greater than, or equal to, the observed one (which will be
indicated as V ∗

nn′ :

p− value(V ∗
nn′) =

∑︂
Vnn′≥V ∗

nn′

fPB(Vnn′) = 1−
∑︂

Vnn′≤V ∗
nn′

fPB(Vnn′). (3.31)

Finally, in the last step of the algorithm, in order to understand which p-
values were significant, a false-discovery rate or FDR has been adopted
to take into account the fact that we were testing multiple hypotheses
(Benjamini and Hochberg, 1995).
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Figure 6: Representation of a multilayer network.

3.4 Multi-layer network analysis of IBD

Multilayer networks are graphs composed of several layers in order to
represent complex systems that have many levels, or that need different
types of edges connecting the same nodes (see Figure 6). Layers can be
elementary layers or composite layers, according to the number of as-
pects that contribute to the layer. There exists a number d of aspects,
and the Cartesian combination of the elementary layers L1 × . . . × Ld

generates the set of composite layers (or simply layers). A multilayer
network can be defined with the quadruplet M = (VM , EM , V,L), where
VM ⊆ V ×L1 × . . .×Ld is the subset of nodes that exist in the multilayer
network, EM = VM × VM is the subset of edges connecting the combi-
nations of nodes and the elementary layers and the sequence L = {La}da
of sets of elementary layers (Kivelä et al., 2014; Boccaletti et al., 2014).
Whilst single layer networks are represented by simple adjacency ma-
trices and bipartite networks by biadjacency matrices, and multilayer
networks can be represented by supra-adjacency matrices. The supra-
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adjacency matrix (see Figure 7) compared to the simple adjacency ma-
trix, contains information about both the edges connecting the nodes in
the same layer (intralayer edges) and those connecting the nodes in dif-
ferent layers (interlayer edges) (Cozzo et al., 2016). The supra-adjacency
matrix is defined as:

A =
⨁︂
k

A(k) +Km

⨁︂
In, (3.32)

where
⨁︁

k A
(k) is the direct sum of the intralayer adjacency matrices

A(k), k is the layer and Km is an interlayer adjacency matrix of n nodes,
and In is an identity matrix of n × n (Toro, Mojica-Nava, and Rakoto-
Ravalontsalama, 2019). An alternative to the supra-adjacency represen-
tation is the tensorial formalism that is useful to represent a multiplex
network even if we do not have information about the block structure,
which is the number of nodes that forms each layer of the multiplex
(Bianconi, 2018). A tensor T is defined as the tensor product space:

T : V ⊗ V̂ ⊗ V⋆ ⊗ V̂
⋆

(3.33)

with

T =
∑︂

i,j=1,...N

∑︂
α,β=1,...M

T jβ
iα ej ⊗ êβ ⊗ θi ⊗ θ̂

α
(3.34)

where T jβ
iα corresponds to the supra-adjacency matrix A.

3.4.1 Multiplex networks

There exist several kinds of multilayer networks, but in the thesis, we
focus on multiplex networks only. The main characteristic of multiplex
networks is that the connections between layers are made by linking the
replicas only, and some of the structural measures of multiplex networks
are summarised in Battiston, Nicosia, and Latora (2014). The layers of the
multiplex network considered in the thesis are α ∈ {CD,UC,non-IBD}.
There are different ways to study a multiplex network; one way is by
analysing the aggregate overlapping adjacency matrix, and another way
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Figure 7: Example of a supra-adjacency matrix of a multilayer network with
three layers and three nodes on each layer. The red blocks on the diagonal
describe the intralayer edges, whereas the off-diagonal blocks describe the
interlayer edges. If the network is undirected, the matrix is symmetric.
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is by analysing the aggregate mean adjacency matrix. We define the for-
mer as the adjacency matrix formed by the edge overlap between nodes
i and j:

oij =
∑︂
α

a
[α]
ij , (3.35)

where a
[α]
ij is the edge connecting the nodes i and j in layer α. The over-

lapping degree of nodes i can be defined as:

oi =
∑︂
j

oij =
∑︂
α

k
[α]
i . (3.36)

To analyse the correlations between degree sequences in the different lay-
ers and in the overlapping aggregate network, we calculate the Kendall
rank correlation coefficient τk. The coefficient can assume values in the
interval of [−1, 1], where τk = 1, if the two compared sequences are cor-
related, τk = −1, if they are anti-correlated, and τk = 0, if they are not
correlated. We now introduce two measures that help to understand the
distribution of information across the layers in the multiplex network,
namely the entropy:

Hi = −
M∑︂
α=1

k
[α]
i

oi
ln

(︄
k
[α]
i

oi

)︄
, (3.37)

and the participation coefficient:

Pi =
M

M − 1

⎡⎣1− M∑︂
α=1

(︄
k
[α]
i

oi

)︄2
⎤⎦ . (3.38)

The entropy is maximum when the information, i.e. the links, is uni-
formly distributed among the layers; similarly, the participation coeffi-
cient Pi ∈ [0, 1] describes whether all the links of node i are contained
in one layer (Pi = 0) or are equally distributed across the layers of the
multiplex network (Pi = 1).

The procedure to organise the data into a multiplex network con-
sisted of dividing the whole database, which contained all the samples,
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into three smaller databases containing the samples labelled with one di-
agnosis each. The data in the databases was then transformed into GCNs
as in the Subsection 3.2.1, and the genes contained in the GCNs (one for
each diagnosis) were intersected to be sure that all the networks had the
same nodes. Finally, to export a network file readable by the external
software Muxviz (De Domenico, Porter, and Arenas, 2015), we created
an edgelist file (network.edge), a layer file (network_layers.txt)
and a layout file (network_layout.txt). In the first file, there is the
description of all the connections among the nodes in the same layers
(intra-layer connections) and among the nodes of different layers (inter-
layer connections), the format of one edge in the list is ’start_nodeID’+’
’+’start_layerID’+’ ’+’end_nodeID’+’ ’+’end_layerID’+’ ’+’weight’. In the
second file, a unique ID is associated to each node, whereas in the third
file, a unique ID is associated to each layer; these IDs were used in the
edgelist file. A config file, which was used to show the directory posi-
tions of the files describing the network, was then uploaded to Muxviz
and centrality measures and community detection were calculated. As it
has been said at the beginning of the section, it is possible to investigate
the mean aggregate form of the layers. In this case, we identified five
layers for each diagnosis, corresponding to five metagenomic analyses
every two weeks for ten weeks. We reduced the number of samples by
keeping the samples of the set of participants that appeared in all the five
analyses to make it possible for a correlation analysis similar to Subsec-
tion 3.2.1. Once we had obtained five correlation matrices, we performed
the Fisher’s z transformation of the correlation coefficients in order to
make the sampling distribution of the coefficients approximately normal
and to make the datasets comparable (Anderson, 1962). To perform the
Fisher’s z transformation, one can simply calculate:

z = arctanh(r), (3.39)

where r is the correlation coefficient. After applying the Fisher’s z trans-
formation of all the correlation coefficients in the matrices, we calculated
the mean of the values in the correlation matrices, and then we took the
module of the mean values. Then, we calculated once again the perco-
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lation threshold of the weighted aggregate network with the same script
in Code 3. Finally, we binarised the aggregate network and produced a
file compatible with the open-source software Gephi (Bastian, Heymann,
and Jacomy, 2009) for visualisation.

3.4.2 Centrality measures in multiplex networks

Centrality measures in multiplex networks are useful to highlight those
nodes that are important across all the diagnoses. Nodes that have a low
centrality in the entire multiplex but a high centrality in the single-layer
network could correspond to a differential expression. We will now ex-
tend to the multiplex case the definitions of the same centrality measures
listed in the single-layer case, namely degree centrality, betweenness cen-
trality, and eigenvector centrality. The calculation of the degree central-
ity in multiplex networks corresponds to the extension of the concept
of degree performed in Equation 3.36. Regarding betweenness central-
ity, one can calculate it by using a random walker or by using the con-
cept of shortest paths (De Domenico, Solé-Ribalta, Omodei, et al., 2013).
To be consistent with the monoplex definition of betweenness centrality,
we will extend the shortest path based centrality measure to the mul-
tiplex case only. The sequence of nodes ℓ[oσ→dγ] ∈ P[oσ→dγ] is a path
joining a node origin o in layer σ and a node destination d in layer γ. A
cost c(ℓ[oσ→dγ]) can be associated to every path ℓ[oσ→dγ] and it takes into
account the weights of the links and other parameters of interest. The
shortest path is defined as:

ℓ∗[oσ→dγ] = argmin
ℓ′
[oσ→dγ]

∈P[oσ→dγ]

c(ℓ′[oσ→dγ]), (3.40)

that can be extended to every pair of origin and destination nodes:

ℓ∗[o→d] = argmin
σ,γ∈{CD,UC,nonIBD}

c(ℓ∗[oσ→dγ]). (3.41)

Finally, the betweenness centrality of a node j is proportional to the num-
ber of shortest paths between the pair of origin and destination nodes
that contain the node j. The generalisation to the multiplex case of the
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eigenvector centrality is carried out by using the supra-adjacency and
supra-Laplacian matrices, the procedure described by De Domenico, Solé-
Ribalta, Cozzo, et al. (2013) and De Domenico, Solé-Ribalta, Omodei, et
al. (2015). By using the tensorial formalism, we can find the eigenvector
centrality by solving the equation:

T iα
jβΘiα = λ1Θiβ , (3.42)

where T iα
jβ is the multilayer adjacency tensor, λ1 is the largest eigenvalue

and Θiα is the corresponding eigentensor containing the eigenvector cen-
trality of each node.

3.4.3 Community detection in multiplex networks

The concept of community detection in the multiplex network is sim-
ilar to the community detection in the single-layer analysis; neverthe-
less, we have to keep in consideration the addition of the interlayer links
that connect the nodes of different layers. In the thesis, we use Louvain
and Infomap to find the modules of the genes characterising a diagnosis.
Louvain is a community detection method based on modularity maximi-
sation as we have described in Subsection 3.2.4. The modularity function
is modified to keep into account the interlayer connection and the reso-
lution parameters ω and γ (Mucha et al., 2010):

QM =
1

µ

∑︂
i,j,α,β

{︂(︂
Aiα,jβ − γ[α]p

[α]
ij

)︂
δα,β + ωAiα,jβδij

}︂
δ
(︂
g
[α]
i , g

[β]
j

)︂
,

(3.43)
where Aiα,jβ is the supra-adjacency matrix, µ =

∑︁
i,j,α Aiα,jα+ω

∑︁
i,α,β Aiα,iβ

and δ(x, y) is the Kronecker delta.

pij [α] =
k
[α]
i k

[α]
j

⟨k[α]⟩N
(3.44)

is the probability that two nodes i and j are connected by an edge in layer
α.

Infomap is based on the modular flow of a random walker in a multi-
plex network (De Domenico, Lancichinetti, et al., 2015). One of the prop-
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erties of the Infomap algorithm is the ability to find overlapping com-
munities, i.e. communities that share some of the nodes (Bianconi, 2018).
When the interlayer weights are not known, the Infomap algorithm is
based on the relaxed transition probability:

Pαβ
ij (r) = (1− r)δαβ

W β
ij

sβi
+ r

W β
ij

Si
, (3.45)

where r is the relax rate used to represent the movements from one layer
to the other and Si =

∑︁
β s

β
i is the sum of the intralayer weights of node

i not dependent on the layer.
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Chapter 4

Results

4.1 Single-layer correlation network analysis re-
sults

We divided the gut metagenomic data into three groups; namely, a group
containing prevalent bacterial pathways (over 75% of presence across
the samples), a group containing common bacterial pathways (50% to
75%), and a group containing uncommon bacterial pathways (25% to
50%). Correlations between pathways meant co-variances of the path-
way expressions. For each group and for each diagnosis, we performed
a differential analysis comparing the pathways expression level across
the samples between IBD (UC and CD) samples and NI samples. In the
next paragraphs, the pathways are called with their node numbers for
the sake of brevity and clarity. It is possible to consult the table mapping
these correspondences in Appendix A.

4.1.1 Prevalent pathway correlation network

The prevalent bacterial pathways were 153 after filtering with a pres-
ence of over 75% samples. The number of edges in the NI correlation
network was 3356 (thNI = 0.453), in CD correlation network was 2905

(thCD = 0.357), and in UC correlation network was 3160 (thUC = 0.364).
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a) b)

c)

Figure 8: Correlation networks of prevalent metagenomic pathways in (a)
NI subjects, (b) CD subjects, (c) UC subjects. Nodes are proportional to the
betweenness centralities.
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The results showed that the NI metagenome was more connected to
prevalent pathways and the percolation threshold was higher compared
to the percolation thresholds in CD and UC correlation networks, trans-
lating into more strongly correlated nodes in the NI correlation network.
From the community detection algorithm, we obtained that the lowest
modularity (0.538) can be found in the NI correlation network, meaning
that it was not possible to completely separate some of the modules, and
there would be interconnections between them, CD and UC correlation
networks resulted in the modularity of 0.583 and 0.622, respectively.

As we can see in Figure 8, the pathways in the NI correlation net-
work were divided into three large modules. One module was isolated;
by contrast, the other two modules were communicating strictly through
several nodes. The isolated module was composed of Bacteroides vulga-
tus and Bacteroides uniformis pathways; this meant that in control sub-
jects, the two species co-variated and were interdependent through spe-
cific pathways (on the frontiers of the species modules, it was possible
to find nodes 794, 658, 292, 477 on the B. uniformis side and nodes 261,
855, 1027, 1068 on the B. vulgatus side). The light purple module, on the
other hand, contained Faecalibacterium prausnitzii, whereas the remaining
large module contained the B. ovatus pathways, E. rectale pathways, and
the unclassified species pathways. The nodes with the highest between-
ness centrality among the unclassified pathways in the two connected
modules were connected through:

1. node 821 (PWY-6527: stachyose degradation);

2. node 177 (GLYCOGENSYNTH-PWY: glycogen biosynthesis I (from
ADP-D-Glucose));

3. node 1225 (PWY66-422: D-galactose degradation V (Leloir path-
way));

4. node 751 (PWY-6317: galactose degradation I (Leloir pathway)).

Whereas the nodes with the highest betweenness centrality among the F.
prausnitzii pathway module that was connected to the unclassified path-
way module were:
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1. node 466 (PWY-5659: GDP-mannose biosynthesis);

2. node 724 (PWY-6277: superpathway of 5-aminoimidazole ribonu-
cleotide biosynthesis);

3. node 579 (PWY-6121: 5-aminoimidazole ribonucleotide biosynthe-
sis I);

4. node 610 (PWY-6122: 5-aminoimidazole ribonucleotide biosynthe-
sis II).

To notice that pathway of node 466 correlated with only 4 E. rectale path-
ways.

In the CD correlation network, there were fewer connections and the
network was divided into 6 modules. Each module corresponded to the
species groups of pathways. The smallest module was composed of E.
rectale pathways. The largest (light purple) module comprising F. praus-
nitzii was connected to the unclassified (green) module by means of node
105, similarly to the UC correlation network. Moreover, an additional
bridge connecting node was node 1261, which was linked to nodes 821

and 204, to mention two high betweenness centrality nodes among the
unclassified pathways. High betweenness centrality nodes 137 and 462

connected unclassified species module with B. ovatus module, node 632,
in turn, was connected to node 988 linking B. ovatus module to the B.
uniformis module. Finally, similarly to the NI correlation network, B. vul-
gatus and B. uniformis were connected though (nodes 370, 1042, and 1074

on the former side and nodes 1205 and 5 on the latter side).
The pathways in the UC correlation network were divided into 5

modules. The smallest module (coral red) was composed of E. rectale
pathways scattered around the network. The dark green nodes mixed
to the turquoise nodes were B. ovatus pathways mixed with B. uniformis
pathways, respectively. The green module comprised unclassified species
pathways, whereas, the light purple module comprised F. prausnitzii path-
ways. The green and the light purple module were strictly connected
similarly to the NI correlation network. The pathways connecting them
were the node 105, which was linked to several nodes of both modules
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and node 579, which was linked to nodes 1093 and 1284. Even E. rec-
tale behaved as a bridge between the two aforementioned large modules
through a few connections. Furthermore, there was one node of F. praus-
nitzii module that was deeply correlated with all the B. vulgatus path-
ways: node 133. Finally, two nodes with high betweenness centrality
were node 901 in the light purple module and node 873 in the mixed
dark green and turquoise module. Differently from the NI correlation
network, B. uniformis did not correlate B. vulgatus, whereas it correlated
with B. ovatus.

After calculating the NMI of the community detection, it resulted that
the partitions of the CD and UC correlation networks overlapped with
an NMI of 0.955 (p-value = 0.173). The partitions of the CD and NI cor-
relation networks overlapped with an NMI of 0.823 (0.916). Finally, the
partitions of the UC and NI correlation networks overlapped with an
NMI of 0.762 (0.427). The NMI are summed up in Table 3.

Table 3: NMI and p-value for community detection in correlation networks
with presence over 75%.

CD UC NI
CD 1 0.955 (0.173) 0.823 (0.916)
UC 0.955 (0.173) 1 0.762 (0.427)
NI 0.823 (0.916) 0.762 (0.427) 1

Using permutation tests, we discovered 31 pathways differentially
expressed between CD and NI groups (p-value < 0.05), 29 of these path-
ways belong to the unclassified species module in the CD correlation
network, whereas the remaining two pathways belonged to the B. ovatus
module of the CD correlation network. One of the two pathways (node
462) was connected to the unclassified species module through node 137.
According to the permutation tests, there were no significant differen-
tially expressed pathways between NI and UC groups in this range of
pathways.

Using the 31 pathways as seed nodes for the DIAMOnD algorithm,
we expanded the set of differential pathways with 50 nodes (see Figure
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Figure 9: Correlation network of the prevalent pathways in the CD
metagenome, the red nodes depict the DE pathways between CD and NI
subjects, and the light red nodes are the first 50 nodes found through the DI-
AMOnD algorithm by using the DE nodes as seed nodes. The green nodes
are not differential nor in the DIAMOnD found group.
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9). We obtained in the order of significance 22 additional unclassified
species pathways, 5 E. rectale pathways, and the remaining pathways
were in the B. ovatus module and B. uninformis module.

Analysing the centralities of the differential pathways in the CD cor-
relation network and in the NI correlation network, we noticed that the
eigenvector centrality of the differential pathways in the latter group was
smaller compared to the same measure of the former group with one-
way ANOVA p-value = 4.068 × 10−23. The additional pathways found
by the DIAMOnD algorithm can be divided into three groups, a group
of pathways for which the eigenvector centrality was higher in the NI
correlation network as for the seed differential expressed pathways, a
group in which the measures were slightly higher in the NI correlation
network, and a group where the centrality measures of the same nodes
were higher in the CD correlation network. These three groups corre-
sponded, namely to the pathways belonging to the unclassified species,
the pathways belonging to the E. rectale module and B. ovatus module,
and finally, the pathways belonging to F. prausnitzii module, as is pos-
sible to observe in Figure 10. The overall p-value that demonstrated the
significance of the finding was 6.388×10−7 We did not find significant re-
lationships between the betweenness centralities of the two groups either
for the differentially expressed pathways or the additional DIAMOnD
pathways. By contrast, there was a significant difference in the degree
centrality of both the differentially expressed pathways in the CD corre-
lation network compared to the same measurement in the NI correlation
network (p-value = 4.416×10−4) and the additional DIAMOnD pathways
(p-value = 3.931× 10−3), see Figure 11.

4.1.2 Common pathway correlation network

As it is possible to observe in Figure 12, after filtering, the common bac-
terial pathways were 227 in each of the correlation networks. The num-
ber of edges among the common bacterial pathways in NI correlation
network was 3410 (thNI = 0.429), in CD correlation network was 2586

(thCD = 0.371), and in UC correlation network was 5156 (thUC = 0.447).
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a) b)

c) d)

Figure 10: Different centralities measures with p-value < 0.05 for prevalent
pathways comparing nodes in the CD correlation network and NI corre-
lation network. Figure (a) compares the eigenvector centralities of the DE
nodes calculated in the CD correlation network (red) with the eigenvector
centralities of the same nodes in the NI correlation network (green). Fig-
ure (b) compares the eigenvector centralities calculated for the nodes pre-
viously found through the DIAMOnD algorithm in the CD correlation net-
work (red) with the eigenvector centralities calculated for the same nodes
in the NI correlation network (green). Figure (c) and Figure (d) are the box
plot showing the variability of the eigenvector centralities in Figure (a) and
Figure (b), respectively.
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a) b)

c) d)

Figure 11: Different centralities measures with p-value < 0.05 for prevalent
pathways comparing nodes in CD correlation network and NI correlation
network. Figure (a) compares the degree centralities of the DE nodes cal-
culated in the CD correlation network (red) with the degree centralities of
the same nodes in the NI correlation network (green). Figure (b) compares
the degree centralities calculated for the nodes previously found through
the DIAMOnD algorithm in the CD correlation network (red) with the de-
gree centralities calculated for the same nodes in the NI correlation network
(green). Figure (c) and Figure (d) are the box plot showing the variability of
the degree centralities in Figure (a) and Figure (b), respectively.

48



c)

b)a)

Figure 12: Correlation networks of common metagenomic pathways in (a)
NI subjects, (b) CD subjects, (c) UC subjects. Nodes are proportional to the
betweenness centralities.
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Figure 13: Correlation network of the common pathways in the CD
metagenome, the red nodes depict the DE pathways between CD and NI
subjects, the light red nodes are the first 50 nodes found through the DIA-
MOnD algorithm by using the DE nodes as seed nodes. The green nodes
are not differential nor in the DIAMOnD found group.
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From an overview of the networks, we could observe that the correlation
network of UC subjects was more connected than the correlation net-
work of NI or CD subjects. We performed the community detection of
the networks representation of the different diagnoses.

The modularity obtained for the NI correlation network was 0.636, in
which there were 8 modules. The largest community (pink) was entirely
composed of pathways of unclassified species, and the second largest
community we obtained comprised both the green and the orange nodes,
namely, the B. ovatus and E. rectale pathways, which were densely con-
nected between them. The third-largest module was the one contain-
ing the turquoise nodes, i.e. B. caccae, and the R. torques pathways. The
fourth-largest module was the one containing A. putredinis, B. xylanisol-
vens and other species pathways. Finally, there was a module composed
of B. thetaiotamicron and E. eligens. Node 398 had a high betweenness cen-
trality and connected the fourth largest module with several pathways
of the third-largest module. Two nodes (1212, 316) were at the intersec-
tion of pathways belonging to three different modules; the unclassified
species, B. caccae module and the second-largest module. Node 829 had
a high betweenness centrality because it was in the middle of the largest
module and several edges were connecting it to nodes of other modules
such as nodes 1315 and 939.

The modularities of the CD correlation network (0.748) and the NI
correlation network were comparable with the striking difference that
the module containing B. ovatus and E. rectale pathways in the NI correla-
tion network was split into two distinct and separated modules in the CD
correlation network; by re-arranging the connections, there were only 7

modules. E. rectale module in the CD correlation network was connected
with the rest of the network only through the node 381, whereas in the
NI correlation network, E. rectale module was deeply connected with B.
ovatus. On the other hand, B. xylanisolvens, which in the NI correlation
network was connected to the largest module composed of unclassified
species pathways, were strongly interconnected with B. ovatus, and they
formed a module connected with B. caccae through the high betweenness
centrality node 531. In the NI correlation network, the same node had a
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similar role, by connecting the two Bacteroides modules plus the E. rectale,
which could be found in the same module as the B. ovatus. The largest
module was again composed of unclassified species pathways and some
additional pathways from other species such as E. eligens. Another rel-
evant pathway could be found in node 77 in the B. vulgatus which was
connected to the node 1088 of the unclassified species module, whereas
in the NI correlation network the same species module was much better
connected by means of three high centrality nodes belonging to the E.
eligens (939, 1315, 1147).

Comparing the community detection of UC and NI correlation net-
works, we noticed that there were only 6 large modules in the UC cor-
relation network, and it resulted in the modularity of 0.403. The largest
module was formed by nodes of four species groups. Surrounding this
module, there was a half-moon shaped module composed of 5 smaller
modules. The second-largest module comprised unclassified species and
several other species pathways. Node 246 had high betweenness cen-
trality as it was connected to node 234, the central node in the largest
ball-shaped module. Again, E. rectale pathways were separated from
the other modules except for the unclassified species module. The rel-
atively high betweenness centrality nodes connecting the two modules
were nodes 404 and 515 from the E. rectale side and 918 and 953 from the
unclassified species side.

After calculating the NMI of the community detection, it resulted that
the partitions of the CD and UC correlation networks overlapped with
an NMI of 0.373 (p-value = 0.339). The partitions of the CD and NI cor-
relation networks overlapped with an NMI of 0.528 (0.764). Finally, the
partitions of the UC and NI correlation networks overlapped with an
NMI of 0.290 (0.427). The NMI are summed up in Table 4.

Using a permutation test with a significance threshold of 0.05, we
found 28 differentially expressed common bacterial pathways between
the CD group and NI group of pathways. Among these pathways, there
were 19 pathways for unclassified species, 8 pathways for R. intestinalis,
and one pathway for B. ovatus. Considering the differentially expressed
pathways between the UC group and the NI group of pathways, we ob-
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Table 4: NMI and p-value for community detection in networks with 50%
to 75% presence.

CD UC NI
CD 1 0.373 (0.339) 0.528 (0.764)
UC 0.373 (0.339) 1 0.290 (0.427)
NI 0.528 (0.764) 0.290 (0.427) 1

tained 22 for common bacterial pathways, 9 of these pathways belong-
ing to A. putredinis species, 7 belonging to B. xylanisolvens species, and 6

for unclassified species. By expanding the set of differentially expressed
pathways between CD and NI diagnoses through the DIAMOnD algo-
rithm, we kept the first 20 significant pathways, among which there were
18 pathways of unclassified species, one pathway of E. coli (node 1194)
and one pathway of F. prausnitzii (node 1249). By proceeding in the same
way with the differentially expressed pathways between UC and NI, we
expanded the set of pathways with 50 pathways, among which 9 were
unclassified species pathways, 4 were R. torques pathways, 3 were E. eli-
gens pathways.

Analysing the centrality measures of the CD differential pathways
and the additional CD pathways computed with the DIAMOnD algo-
rithm, we noticed that there were no significant differences between the
eigenvector centralities of CD differential pathways in the CD correlation
network and in the NI correlation network. Similarly, the CD pathways
from the DIAMOnD algorithm did not show relevant differences in the
eigenvector centralities in the considered networks. By contrast, the be-
tweenness centralities of differentially expressed pathways were higher
in the CD correlation network in the respect of the ones in the NI corre-
lation network (p-value=0.0142). The betweenness centrality of the addi-
tional CD pathways found with the DIAMOnD algorithm did not show
any significant difference in betweenness centrality. Finally, by consider-
ing the degree of centrality, we noticed that the differentially expressed
CD pathways did not exhibit differential degree centrality, whereas the
CD pathways from the DIAMOnD algorithm displayed a significantly
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lower degree of centrality in the CD correlation network in the respect of
the NI correlation network (p-value=0.00380), see Figure 14.

a) b)

c) d)

Figure 14: Different centralities measures with p-value < 0.05 for common
pathways comparing nodes in CD correlation network and NI correlation
network. Figure (a) shows the betweenness centralities of the DE nodes
calculated in the CD correlation network (red) compared to the between-
ness centralities of the same nodes in the NI correlation network (green).
Figure (b) compares the degree centralities calculated for the nodes previ-
ously found through the DIAMOnD algorithm in the CD correlation net-
work (red) with the degree centralities calculated for the same nodes in the
NI correlation network (green). Figure (c) and Figure (d) are the box plot
showing the variability of the centrality measure in Figure (a) and Figure
(b), respectively.

This time, analysing the centrality measures of the UC differential
pathways and the additional UC pathways by the DIAMOnD algorithm
(see Figure 13), it was evident that the UC differential pathways exhib-
ited a higher eigenvector centrality in the UC correlation network (p-
value=0.00456). Also, the DIAMOnD nodes found had significant higher
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Figure 15: Correlation network of the common pathways in the UC
metagenome, the yellow nodes depict the DE pathways between UC and
NI subjects, and the light yellow nodes are the first 50 nodes found through
the DIAMOnD algorithm by using the DE nodes as seed nodes. The green
nodes are not differential nor in the DIAMOnD found group.
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eigenvector centralities compared to the same nodes in the NI correlation
(p-value=0.0241). By contrast, the betweenness centralities of both the
differential pathways and the DIAMOnD algorithm were not statistically
differential between the NI correlation network and the UC correlation
network. On the other hand, these pathways showed a higher degree
of centrality in the UC correlation network (p-value = 0.0145), see Figure
16. On the other hand, the DIAMOnD added pathways did not exhibit
significantly differential degree centralities compared to the same nodes
in the NI correlation network.

4.1.3 Uncommon pathway correlation network

As it is possible to observe in Figure 17, the relatively uncommon path-
ways were 910 in total. There were 49203 edges in NI correlation network
(thNI = 0.474), 42617 edges in CD correlation network (thCD = 0.446),
44523 edges in UC correlation network (thUC = 0.465). The number of
edges was comparable in the three networks. We could observe nine
modules in the NI correlation network (modularity 0.623, nine modules
in the CD correlation network (modularity 0.644), and six modules in
the UC correlation network (modularity 0.695). In every network, it was
possible to identify an approximately isolated ball-shaped module con-
taining E. coli pathways. It was interesting to highlight the position of B.
fragilis pathways in respect of E. coli pathways in the different diagnoses.
In the NI correlation network, B. fragilis pathways were connected to the
E. coli module through V. parvula pathways; by contrast, in the UC corre-
lation network, B. fragilis pathways were incorporated and surrounded
by the same module containing E. coli pathways, whereas in the CD cor-
relation network the bacterial pathways of the two species were com-
pletely separated. In the NI correlation network, the module containing
E. coli also included bacterial pathways of other species, notably E. sir-
aeum and R. gnavus pathways that behaved as bridge nodes between E.
coli containing module and the rest of the network. In the CD correlation
network, this role was assumed by R. intestinalis and V. parvula, whereas,
in the UC correlation network, we did not observe any pathways be-
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a) b)

c) d)

Figure 16: Different centralities measures with p-value < 0.05 for common
pathways comparing nodes in UC correlation network and NI correlation
network. Figure (a) shows the eigenvector centralities of the DE nodes cal-
culated in the UC correlation network (yellow) compared to the eigenvector
centralities of the same nodes in the NI correlation network (green). Fig-
ure (b) compares the degree centralities calculated for the nodes previously
found through the DIAMOnD algorithm in the UC correlation network (yel-
low) with the degree centralities calculated for the same nodes in the NI cor-
relation network (green). Figure (c) and Figure (d) are the box plot showing
the variability of the centrality measures in Figure (a) and Figure (b), respec-
tively.
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a) b)

c)

Figure 17: Correlation networks of uncommon metagenomic pathways in
(a) NI subjects, (b) CD subjects, (c) UC subjects. Nodes are proportional to
the betweenness centralities.
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having as bridge nodes. An additional important module that was also
the largest was the one mainly composed of R. torques, A. hadrus, L. bac-
terium 5 1 63FAA, plus other minor species. The pathways belonging
to the last two mentioned species were strictly intertwined, forming the
second-largest ball-shaped group of nodes. The same ball-shaped group
of nodes was present in the CD correlation network; by contrast, in the
UC correlation network, in the UC correlation network, the two species
were in the same module, and the nodes were not mixed in the ball, but
they laid separately.

Considering the betweenness centrality of the nodes, we could ob-
serve that in the NI correlation network, the ball-shaped group of nodes
comprising E. coli was connected with the rest of the network through
two nodes; node 969 stood in between the E. coli pathways and the E.
siraeum pathways, whereas node 263 connected the module to R. torques
pathways. In the CD correlation network, node 156 had a high between-
ness centrality because it linked the pathways in the E. coli group to
several minor species pathways in the rest of the network. In the UC
correlation network, in ascending order of betweenness centrality, there
were node 178, node 622, and node 131. These nodes were included
in the same module containing the E. coli pathways. The first and the
third nodes were connected to node 571 and several other C. boltaea path-
ways. By contrast, the second node was connected to node 1096, which
in turn was connected to R. intestinalis pathways. Considering the NMI,
the NMI estimated was maximum for the overlap of the CD and NI cor-
relation network partitions (0.508 with p-value=0.398) and minimum for
the overlap of the UC and CD correlation network partitions (0.399 with
p-value=0.919). The NMI calculated for the overlap of the UC and NI
correlation network partitions was close to the largest NMI (0.483 with
p-value=0.402).

Using a permutation test with a significance threshold of 0.05, we
discovered 52 differential pathways between CD and NI groups, see Fig-
ure 18. Among these 52 pathways, 31 were R. intestinalis pathways,
8 were unclassified species pathways, 4 B. intestinihominis pathways, 4
D. longicatena pathways, and 5 C. aerofaciens pathways. On the other
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Figure 18: Correlation network of the uncommon pathways in the CD
metagenome, the yellow nodes depict the DE pathways between CD and
NI subjects, and the light yellow nodes are the first 50 nodes found through
the DIAMOnD algorithm by using the DE nodes as seed nodes. The green
nodes are the nodes that are neither differential nor DIAMOnD generated.
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Figure 19: Correlation network of the uncommon pathways in the UC
metagenome, the yellow nodes depict the DE pathways between UC and
NI subjects, and the light yellow nodes are the first 50 nodes found through
the DIAMOnD algorithm by using the DE nodes as seed nodes. The green
nodes are the nodes that are neither differential nor DIAMOnD generated.
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Table 5: NMI and p-value for community detection in networks with pres-
ence between 25% and 50%.

CD UC NI
CD 1 0.399 (0.919) 0.508 (0.398)
UC 0.399 (0.919) 1 0.483 (0.402)
NI 0.508 (0.398) 0.483 (0.402) 1

hand, we found 71 differential pathways between UC and NI groups
(see Figure 19), among which 30 were B. xylanisolvens pathways, 13 were
A. shahii pathways, 14 were O. splanchnicus, and 5 R. gnavus pathways.
By expanding the set of differential pathways with the DIAMOnD algo-
rithm, we obtained 50 additional pathways for the CD differential path-
ways and 50 for the UC differential pathways. Among the CD path-
ways from the DIAMOnD algorithm, there were 26 E. coli pathways,
12 C. bolteae pathways, and 7 V. parvula pathways. By contrast, among
the UC pathways from the DIAMOnD algorithm, we found 23 R. obeum
pathways and 14 pathways of the Bacteroides genus. Analysing the cen-
trality measures of the differential pathways and the additional path-
ways from the DIAMOnD algorithm, we noticed that the CD differen-
tial nodes exhibited a higher eigenvector centrality in the CD correlation
network in respect of the same nodes in the NI correlation network (p-
value = 4.43 × 10−11), in fact, in NI correlation network the differential
pathways had close to zero eigenvector centrality measures. Moreover,
the betweenness centrality and the degree centrality calculated for the
CD differentially expressed pathways were higher in the CD correlation
network in respect of the NI correlation network (respectively, p-value
= 0.00562 and p-value =0.00152), see Figure 20. We did not notice any
significant difference in the centralities of the DIAMOnD enriched path-
ways between the CD correlation network and the NI correlation net-
work. Considering the UC differential nodes, we obtained that some
of them showed a slightly significant higher degree centrality in the NI
correlation network compared to the UC correlation network (p-value =
0.036). Considering the additional DIAMOnD pathways for the UC case,
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we obtained a slightly significant higher betweenness centrality of these
pathways in the NI correlation network compared to the UC correlation
network (p-value = 0.031), see Figure 21.

a) b)

c) d)

Figure 20: Different centralities measures with p-value < 0.05 for uncom-
mon pathways comparing nodes in CD correlation network and NI correla-
tion network. Figure (a) shows the eigenvector centralities of the DE nodes
calculated in the CD correlation network (red) compared to the eigenvector
centralities of the same nodes in the NI correlation network (green). Figure
(b) compares the betweenness centralities calculated for the nodes previ-
ously found through the DIAMOnD algorithm in the CD correlation net-
work (red) with the betweenness centralities calculated for the same nodes
in the NI correlation network (green). Figure (c) and Figure (d) are the box
plot showing the variability of the centrality measure in Figure (a) and Fig-
ure (b), respectively.
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a) b)

c) d)

Figure 21: Different centralities measures with p-value < 0.05 for uncom-
mon pathways comparing nodes in UC correlation network and NI correla-
tion network. Figure (a) shows the degree centralities of the DE nodes cal-
culated in the UC correlation network (yellow) compared to the degree cen-
tralities of the same nodes in the NI correlation network (green). Figure (b)
compares the betweenness centralities calculated for the nodes previously
found through the DIAMOnD algorithm in the UC correlation network (yel-
low) with the betweenness centralities calculated for the same nodes in the
NI correlation network (green). Figure (c) and Figure (d) are the box plot
showing the variability of the centrality measure in Figure (a) and Figure
(b), respectively.
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4.2 Bipartite network analysis results

Bipartite networks are useful when we have two sets of nodes, e.g. path-
ways on one side and samples on the other one. By computing the sim-
ilarity of the pairs of samples, it is possible to project the bipartite net-
work onto the sample set of nodes creating a single layer network. In
our case, we obtain four networks containing the samples joined by an
edge if the metagenomic profiles were similar and after being validated
by a null model. We tried to project the bipartite networks by using the
whole metagenome database, the pathways expressed in over 75% of the
samples (prevalent pathways), the pathways expressed in 50% to 75% of
the samples (common pathways), and the pathways expressed in 25% to
50% of the samples (uncommon pathways), similarly to the single-layer
case.

4.2.1 Projection on prevalent pathways

We have projected the bipartite network onto the nodes of the bacterial
pathways, and we validate the projection through a null model (α = 0.05

and fwer = none). Again, we divided the pathways according to their
presence along with the samples. We considered the case of 75% of the
presence across the samples for NI subjects. We found 1715 edges for 153
nodes, and the community detection resulted in 6 large communities;
namely, the unclassified species community, the F. prausnitzii commu-
nity, the E. rectale community, the B. uniformis community, the B. ovatus
community and B. vulgatus community. All the communities identified
were isolated; the node 105 was connected to the unclassified module
through the nodes 842, 362, and 1284. Also, nodes 419 and 277 were sep-
arated from the rest of the unclassified module. Considering F. prausnitzii
module, nodes 1195, 740, and 466 were disconnected from the rest of the
module.

In the CD case, there were 153 nodes and 1615 edges; the community
detection algorithm identified 6 different modules, one for each bacterial
species identified in the previous cases. All the communities were iso-
lated without nodes connecting them. Differently from the NI case, node
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c)

b)

Figure 22: Projected network representation of prevalent metagenomic
pathways in (a) NI subjects, (b) CD subjects, (c) UC subjects. Networks
are obtained through a bipartite projection, and the exclusion of an edge be-
tween two nodes is made through a comparison with a null model. Nodes
are proportional to the betweenness centralities.
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105 does not result connected to the rest of the unclassified module. Simi-
larly to the NI case, also node 419 was not isolated, whereas node 277 was
well connected to the rest of the unclassified module. When F. prausnitzii
was considered, we obtained that node 1195 was connected to nodes 748
and 1222, that both were well connected to the F. prausnitzii pathways.
Also, node 740, differently from the NI projected network, is connected
to two nodes of the bacterium module, namely 610 and 724, which were
both pathways involving 5-aminoimidazole ribonucleotide. On the other
hand, node 466 was connected to node 538, and to nodes 748 and 1222,
where the former was involved in the biosynthesis of urate and the latter
were involved in the degradation of galactose.

In the UC case, we could find 153 nodes and 669 edges. Differently
from the previous cases, the community detection algorithm could not
isolate modules corresponding to the 6 species of the prevalent pathway
group. The F. prausnitzii module was split into two modules held to-
gether by the nodes 158 and 517. Similarly to the CD projected network,
node 105 was isolated from the rest of the unclassified module, whereas
node 419 was connected to the rest of the module by means of nodes 62,
204, 428, and 67. Differently from the NI projected network and similarly
to the CD projected network, in the UC projected network, the node 277

was well connected to the rest of the unclassified module. When the F.
prausnitzii module was considered, nodes 1195, 740 and 466 were isolated
from the rest of the module in the same fashion as the NI case. Further-
more, the UC projected network, by displaying fewer connections, had
more isolated pathways compared to the NI and the CD case. For in-
stance, nodes 128 and 1097 detached from the B. ovatus module, node
1008 detached from the E. rectale module, and several more fragments of
the module.

4.2.2 Projection on common pathways

In the NI network projection of common pathways, it was possible to ob-
serve 227 nodes and 952 edges. The largest modules were those collect-
ing B. caccae pathways, B. ovatus pathways, B. thetaiotaomicron pathways
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Figure 23: Projected network representation of common metagenomic path-
ways in (a) NI subjects, (b) CD subjects, (c) UC subjects. Networks are ob-
tained through a bipartite projection, and the exclusion of an edge between
two nodes is made through a comparison with a null model. Nodes are
proportional to the betweenness centralities.
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and E. rectale pathways. Although the unclassified community counts
the largest number of pathways, the module was fragmented into sev-
eral pieces. The second-largest group of pathways belongs to B. ovatus,
which was split into two main modules, where the largest looked well-
connected with the exception of node 870 connected to node 394 and
node 1203 connected to node 1100, whereas the smallest was composed
of nodes 755, 291, 768, and 793. Nodes 531, 1212, and 377 were com-
pletely isolated from the rest of the pathways. The pathways of B. cac-
cae module, B. thetaiotaomicron module, A. putredinis module, R. intesti-
nalis module and E. rectale module were well-connected to the remaining
nodes of the same species without any isolated pathway for any species.
The only particularity was node 1123, which had only 3 connections to
the rest of the B. caccae module. Also, B. xylanisolvens had a large and
well-connected module and a module composed of nodes 925 and 1303.

In the CD correlation network, we had 227 nodes and 1169 edges.
Similarly to the NI case, the unclassified community was the one count-
ing the most numerous pathways, although it was also the most frag-
mented community; nevertheless, it was more connected compared to
the NI case. The other largest and most well-connected modules were
the B. caccae module, B. thetaiotaomicron module, B. rectale module, the
B. xylanisolvens module, the A. putredinis module and the R. intestinalis
module. In the B. ovatus community, the second-largest community in
the group, we had one large module of well-connected nodes with the
exception of two nodes (node 651 connected to node 1120 and node 2

connected to node 394). It was possible to notice the differential connec-
tion of node 394 in the NI case and in the CD case. The isolated nodes
were 1212 and 377. Node 531, which in the NI case was isolated, in the
CD case, was well-connected to the rest of the B. ovatus module. Another
striking difference appeared in the wiring of B. xylanisolvens; specifically,
nodes 925 and 1303 were connected to the rest of the species module by
means of node 1246.

Finally, in the UC network projection, it was possible to observe 227

nodes and 736 edges. Also, in this case, although the unclassified group
of pathways was the largest, it was also even more fragmented than in
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the previous two cases. The largest modules were B. caccae module, B.
thetaiotaomicron module, E. rectale module, A. putredinis module, and R.
intestinalis module. B. ovatus module was missing many edges compared
to the CD and NI projected networks; therefore, it was even possible to
notice a pathway with a betweenness centrality higher than the other
nodes in the same module (node 20). Nodes 651 and 1120 were separated
from the rest and connections between them. Nodes 1212, 377, and 531

were isolated from the other pathways, similarly to the NI case. Differ-
ently from the previous cases, also nodes 2 and 220 were not connected
to the rest of the nodes. The second-largest module composed of B. ova-
tus pathways was formed by 5 pathways, which were nodes 1238, 623,
1100, 12, and 1203. The listed nodes in the NI projected network were
well-connected to the rest of the B. ovatus main module. The B. xylanisol-
vens pathways were separated into different modules, which presented
few edges. Similarly to the CD case, nodes 925 and 1303 were connected
to the largest module, this time by means of node 98 that was connected
via a chain of pathways to node 1246.

4.2.3 Projection on uncommon pathways

In the NI network projection, we obtained a network with 953 nodes
and 15394 edges. As it is possible to notice in Figure 24a, there were
several modules that emerged from the network. The most evident was
the E. coli module which was one of the modules that composed the E. coli
group in the uncommon pathways. This bigger module was connected
to F. plautii via 5 nodes on the E. coli side and via 5 nodes on the F. plautii
side. On the E. coli side:

1. node 146 (FUCCAT-PWY: fucose degradation);

2. node 896 (PWY-6737: starch degradation V);

3. node 838 (PWY-6609: adenine and adenosine salvage III);

4. node 877 (PWY-6703: preQ0 biosynthesis);

5. node 963 (PWY-7199: pyrimidine deoxyribonucleosides salvage).
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Figure 24: Projected network representation of uncommon metagenomic
pathways in (a) NI subjects, (b) CD subjects, (c) UC subjects. Networks
are obtained through a bipartite projection, and the exclusion of an edge
between two nodes is made through a comparison with a null model (α <
0.05). Node sizes are proportional to the betweenness centrality.
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On the F. plautii side:

1. node 442 (PWY-5188: tetrapyrrole biosynthesis I (from glutamate));

2. node 611 (PWY-6122: 5-aminoimidazole ribonucleotide biosynthe-
sis II);

3. node 725 (PWY-6277: superpathway of 5-aminoimidazole ribonu-
cleotide biosynthesis);

4. node 299 (PEPTIDOGLYCANSYN-PWY: peptidoglycan biosynthe-
sis (meso-diaminopimelate containing));

5. node 580 (PWY-6121: 5-aminoimidazole ribonucleotide biosynthe-
sis I).

Curiously there was also a C. bolteae pathway well-connected to the E.
coli main module (node 1143). The remaining part of the E. coli group
was represented by fatty acid metabolism pathways (node 140) or path-
ways involving mannose biosynthesis, which were connected to other
species’ pathways. Apart from these nodes scattered around the net-
work, the species group had two main ball-shaped modules, thanks to
the well-connected nature of the nodes inside the module. Another in-
teresting community was the module formed by the nodes of two dif-
ferent species, Lachnospiraceae bacterium 5 1 63FAA and A. hadrus. The
edges connecting the nodes of the two species were so dense that the
two groups formed a unique module.

In the CD network projection, there were 953 nodes and 24298 edges.
One of the immediately visible properties of the projected network was
the isolated module composed of E. coli pathways. Compared to the NI
case, there were no connections to the other species nodes. R. torques
module was connected to A. hadrus module, which in turn was connected
to L. bacterium 5 1 63FAA module. 5 nodes of the A. hadrus community
were connected to most of the nodes of the other two species exhibiting
high betweenness centrality; they were:

1. node 1298 (VALSYN-PWY: L-valine biosynthesis);
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2. node 429 (PWY-5104: L-isoleucine biosynthesis IV);

3. node 461 (PWY-5659: GDP-mannose biosynthesis);

4. node 847 (PWY-6700: queuosine biosynthesis);

5. node 565 (PWY-6121: 5-aminoimidazole ribonucleotide biosynthe-
sis I).

Similarly to the NI case, node 155 was connected only to pathways of
other species. Another difference with the NI projected network was the
edges of R. intestinalis, which in this case were connected to B. instestini-
hominis, whereas, in the NI case, they were connected to nodes 671 and
41.

The UC network projection had 953 and only 5432 edges. The first
striking property of this network was that there were much fewer edges
compared to the previous two cases. It was not possible to say much
about the module of E. coli. On the other hand, it was possible to ob-
serve that L. bacterium 5 1 63FAA and A. hadrus were completely sepa-
rated. Furthermore, the L. bacterium 5 1 63FAA module was connected
to the R. hominis module through several nodes. Related to the R. torques
group, we had one main module similar to the other cases, two isolated
nodes (node 1047 as the NI case and node 569) and two nodes connected
between them (nodes 711 and 597), but separated from the rest of the
pathways.

4.3 Multilayer analysis results

The overlap network was built considering the overlap of the three cor-
relation networks in the previous results. We observed that the degree
sequence of the overlapping network was highly correlated with all the
three diagnosis layers, whereas the degree sequence in the aggregated
network was correlated only with the degree sequence in the NI correla-
tion network (0.807), whilst it had a low Kendall correlation with the de-
gree sequences in the CD and UC correlation networks. Unsurprisingly,
the degree sequence in the NI correlation network was uncorrelated to
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Figure 25: Colorbar plots for prevalent pathways comparing the degree of
the different layers. In Figure (a), the first colorbar plot represented the
weighted degree of the nodes in the overlap networks compared to the de-
gree of the same nodes in the different layers. In Figure (b), the second col-
orbar plot represented the degree of the nodes of the aggregated networks
compared to the degree of the same nodes in the different layers. In Figure
(c), the heatmap shows the Kendall correlation of the degree sequences in
the various networks (on the x-axis from left to right: overlap, aggregated,
CD, UC, NI). 74



CD and UC correlation networks, which, in turn, were well correlated
between them (0.782999), see Figure 25.

Figure 26: Comparison of the betweenness centrality distributions of the
three layers (top to bottom: NI, CD, UC) for prevalent pathways.

For prevalent pathways, as it was possible to observe in Figure 26, the
three distributions were quite different from each other. The CD distri-
bution has the highest number of nodes having zero or close to zero be-
tweenness centrality (about 60%), whereas the UC distribution had the
fewest nodes with zero or close to zero betweenness centrality. It was
possible to recognise a tail in the NI and CD distributions, wherein the
former was more pronounced whilst the latter was flatter. In CD dis-
tribution, there were also several high centrality nodes, which were not
present in the NI distribution. On the other hand, in the UC distribution,
it seemed that the probabilities of each betweenness centrality were more
irregular, with 30% of low centrality nodes (the second peak in the his-
togram) and about 10% of medium centrality nodes. These results show
that, on average, nodes in networks representing microbiome of disease
states have higher betweenness centralities (NI= 0.00309, CD=0.00518,
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UC= 0.00503). Nevertheless, the CD distribution has values at the ex-
tremes, whereas the UC distribution has more medium centrality nodes.

a) b)

c) d)

Figure 27: Plots related to the betweenness centrality for prevalent path-
ways. In Figure (a) we analysed the centrality of the nodes across the three
layers. In Figure (b), we explore in a more detailed way the betweenness
centralities of the nodes in the different diagnoses. In Figures (c) and (d),
we analysed the correlation of the multilayer centralities and single layer
centralities.

Considering Figure 27, most of the nodes did not exhibit any relevant
betweenness centrality in all the three networks. On the contrary, about
20% of the nodes were central in the three layers at the same time. The
nodes that were central in only one layer but not in the other two were
slightly above the 25%. The central nodes corresponding to a disease
state were approximately the 45% of the nodes. In particular, we could
observe that a few nodes that were central in the NI layer and the CD
layer were not central in the UC layer. On the other hand, nodes that
were central in both the NI layer and the UC layer were not central in
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the CD layer. A great number of nodes were very central only in the
CD layer, whereas we did not find nodes that were exclusively central in
the UC layer. We obtained that the centralities in the multilayer network
were highly correlated with the centralities in the aggregated network
(ρ = 0.87); the multilayer network also has a high correlation with the
NI layer (ρ = 0.86). On the contrary, the centralities of the NI layer were
poorly correlated with both the CD layer and the UC layer, as expected.

NI CD UC

𝝎 = 𝟎

𝝎 = 𝟎.1

𝝎 = 𝟏

Figure 28: Analysis of the community detection in the multiplex network
composed of NI, CD, and UC layers for a range of different resolution pa-
rameters γ = [0, 1] on the x-axis and three different coupling parameters
ω = (0, 0.1, 1) in the case of prevalent pathways.

For the coupling parameter ω = 0, we found that there were up to 20

modules, whereas in the community detection with ω = 0.1 there were
up to 8 modules and ω = 1 up to 6 modules. In particular, we noticed
that for the low levels of resolution parameter (γ = 0) and for ω = 0 there
were two modules in all the layers, but for ω > 0 and γ = 0, there was
only one module. The community detection with ω = 1 was the same for
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all the layers, see Figure 28.

a)

b)

Figure 29: Comparison of the community detection with Infomap in the
soft partitioning case (a) and in the hard partitioning case (b), for prevalent
pathways.

In the multiplex network, we observed 6 modules in the soft parti-
tioning case, whereas in the hard partitioning case, there were 4 modules
only. The community detection in the aggregate networks was the same
in both the hard partitioning case and the soft partitioning case. Focusing
on the soft partitioning case, we noticed that only some of the nodes in
layer 1 (NI) belonged to more than one module simultaneously (Figure
29).

For common pathways, in Figure 30, we could notice a very high
correlation between the aggregated network degree sequence and the
UC correlation network degree sequence (0.85). Similarly, there was a
high correlation between the overlap network degree sequence and the
UC correlation network degree sequence (0.78). By contrast, CD and NI
correlation network degree sequences were poorly correlated between
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Figure 30: Colorbar plots for common pathways comparing the degree of
the different layers. In Figure (a), the first colorbar plot represented the
weighted degree of the nodes in the overlap networks compared to the de-
gree of the same nodes in the different layers. In Figure (b), the second col-
orbar plot represented the degree of the nodes of the aggregated networks
compared to the degree of the same nodes in the different layers. In Figure
(c), the heatmap shows the Kendall correlation of the degree sequences in
the various networks (on the x-axis from left to right: overlap, aggregated,
CD, UC, NI). 79



them and with all the other networks.

Figure 31: Comparison of the betweenness centrality distributions of the
three layers (top to bottom: NI, CD, UC) for common pathways.

As can be seen in Figure 31. CD and UC profiles were quite similar,
with approximately half of the nodes with 0.0 betweenness centrality. On
the other hand, the NI correlation network had more than 0.0 between-
ness centrality nodes but also several high centrality nodes at the expense
of low-medium centrality nodes.

About 25% of the nodes in the common bacterial pathway multiplex
network were central in all three layers at the same time, whereas ap-
proximately the 28% of nodes were peripheral in all three layers. The
nodes with differential betweenness centrality (for example central in
one layer and not in the other two, or central in two layers and not in
the remaining one) were around the 45%; as it was highlighted in the
Figure 32, except from the nodes central in all the three layers, those cen-
tral in NI were central also in UC only, whereas those central in CD were
not central either in NI or UC. It seemed that the centralities of some of
the nodes in the CD network shifted to other nodes of the network. We
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c) d)

Figure 32: Plots related to the betweenness centrality for common path-
ways. In Figure (a) we analysed the centrality of the nodes across the three
layers. In Figure (b), we explore in a more detailed way the betweenness
centralities of the nodes in the different diagnoses. In Figures (c) and (d),
we analyzed the correlation of the multilayer centralities and single layer
centralities.
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noticed that there was a poor correlation of the centralities among the
nodes of the single layers. On the other hand, the centralities of nodes in
the UC layers were strongly correlated to the multiplex centralities (0.74)
and the aggregated centralities (0.8).

NI CD UC

𝝎 = 𝟎

𝝎 = 𝟎.1

𝝎 = 𝟏

Figure 33: Analysis of the community detection in the multiplex network
composed of NI, CD, and UC layers for a range of different resolution pa-
rameters γ = [0, 1] on the x-axis and three different coupling parameters
ω = (0, 0.1, 1) in the case of common pathways.

In Figure 33, we could find that for an ω = 0, the NI multiplex net-
work could be divided into fewer communities compared to the nodes in
the CD and the UC layers. By increasing the resolution, it seemed that for
all the ω’s, the nodes in the UC layer remained in the same community
as in the previous resolutions, i.e. less variability. On the other hand, NI
and CD were similar.

In Figure 34, we compared the Infomap community detection in the
soft partitioning case with the hard partitioning case for common bacte-
rial pathways. We noticed that there were 9 modules in the soft parti-
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Figure 34: Comparison of the community detection with Infomap in the
soft partitioning case (a) and in the hard partitioning case (b), for common
pathways.
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tioning case, whereas there were 6 modules in the hard partitioning case.
The aggregated networks had the same Infomap community detection,
as we used the same multiplex in both cases.

For uncommon pathways, as it is possible to see in Figure 35, the
degree sequence in the NI correlation network was well-correlated with
the degree sequences of the overlap and the aggregated network. By
contrast, there was a low correlation between the degree sequences of
the CD and UC correlation networks with the degree sequence of the
NI correlation network. Surprisingly, there was a low correlation also
between the degree sequences of the CD and UC correlation network,
meaning that all the three layers had different degree structures. The
highest correlation can be found between the degree sequences of the
overlap network and the aggregated network.

The betweenness centrality distributions in the figures above showed
that half of the nodes in the NI and CD correlation networks had a cen-
trality of 0.0, whereas only about 40% had a zero betweenness centrality
in the UC correlation networks. Furthermore, the centralities in the NI
and CD correlation networks had distributions with heavier tails com-
pared to the centrality distribution in the UC correlation network, see
Figure 36.

As it is possible to see in Figure 37, comparing the centralities in the
three layers at the same time, we noticed that around 30% of the nodes
were peripheral in the three networks at the same time. Moreover, about
22% of the nodes were central in the whole multiplex. Again, about the
40% of the nodes were partially central in the multiplex, with a great por-
tion of the nodes either central only in the CD layer or central in the NI
and the UC layer. In the figures above, we observed that the correlations
among the centralities of the nodes in the different single layers of the
multiplex were very low (< 0.25). Centralities in the NI layer had a low
correlation also with the aggregated network.

By observing Figure 38, we noticed that for ω = 0 the community
in the NI layer were fewer than the communities in the CD and the UC
layers. By contrast, for ω = 0.1 the number of the communities was
comparable through all the resolution parameters and, finally, for ω = 1
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Figure 35: Colorbar plots for uncommon pathways comparing the degree
of the different layers. In Figure (a), the first colorbar plot represented the
weighted degree of the nodes in the overlap networks compared to the de-
gree of the same nodes in the different layers. In Figure (b), the second col-
orbar plot represented the degree of the nodes of the aggregated networks
compared to the degree of the same nodes in the different layers. In Figure
(c), the heatmap shows the Kendall correlation of the degree sequences in
the various networks (on the x-axis from left to right: overlap, aggregated,
CD, UC, NI). 85



Figure 36: Comparison of the betweenness centrality distributions of the
three layers (top to bottom: NI, CD, UC) for uncommon pathways.

the number of communities was much less for the nodes in the NI layer
than the nodes in the other layers.

In Figure 39, we could observe 22 modules in the soft partitioning
case and 9 modules in the hard partitioning case. In both cases, there
were two regions in which the consecutive nodes belonged to the same
community (around node 100 and around node 375).
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Figure 37: Plots related to the betweenness centrality for uncommon path-
ways. In Figure (a) we analysed the centrality of the nodes across the three
layers. In Figure (b), we explore in a more detailed way the betweenness
centralities of the nodes in the different diagnoses. In Figures (c) and (d),
we analyzed the correlation of the multilayer centralities and single layer
centralities.
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Figure 38: Analysis of the community detection in the multiplex network
composed of NI, CD, and UC layers for a range of different resolution pa-
rameters γ = [0, 1] on the x-axis and three different coupling parameters
ω = (0, 0.1, 1) in the case of uncommon pathways.
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Figure 39: Comparison of the community detection with Infomap in the soft
partitioning case (a) and in the hard partitioning case (b), for uncommon
pathways.

89



Chapter 5

Discussion

5.1 Correlation networks

Considering the prevalent pathways resulted in the NI pathways being
better connected (more correlated) to the other pathways than the same
pathways in the IBD (CD and UC) correlation networks. That meant
that there was a broader interaction between the nodes in the NI correla-
tion network, where the modularity was lower, i.e., there were fewer but
larger modules detected. In the literature, the reduction of F. prausnitzii
has been associated with IBD; (Cao, Shen, and Ran, 2014), nevertheless,
in our results, we recognised that instead of a decrease in the quantity of
F. prausnitzii pathways expressed, there was a change in the wiring in the
metagenomic network. In particular, what changed from the NI correla-
tion network and the IBD correlation networks were the bridge pathways
connecting the module of unclassified pathways and the module con-
taining the F. prausnitzii pathways. For instance, in the NI correlation net-
work, the bridge pathway was node 821, whereas, in the IBD networks,
the bridge pathways between the two modules were node 105. The corre-
lation between these bridge nodes and the nodes in the aforementioned
modules meant that both modules relied on the pathway to function cor-
rectly. On the one hand, the central substance was the tetrasaccharide
stachyose which in the pathway is degraded into UDP-alpha-D-glucose
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and has been recognised as a potential probiotic against enterotoxigenic
E. coli (Xi et al., 2020); on the other hand, there was the coenzyme A,
which has a fundamental role in the metabolism and, in particular, it is
important in the oxidation of fatty acids. Several studies linked the al-
teration of fatty acid production to the IBDs, hence, this change in the
centrality of the pathway related to this substance could be investigated
further to explain the origins of IBDs (Xi et al., 2020). The fact that the
modules of Bacteroides in IBD networks corresponded to its species whilst
in NI network are gathered in one module could demonstrate that in IBD
the different Bacteroides species proliferates the gut independently. This
could confirm the meta-analysis by Zhou and Zhi (2016), who showed
that lower levels of Bacteroides were associated with IBDs. Other path-
ways; differentially wired between NI and IBD networks are those in-
volving the bacterial metabolite 5-aminoimidazole ribonucleotide (nodes
579, 610, 724), these nodes were behaving as bridges in the NI correlation
network, by contrast, in the IBD correlation networks, they were substi-
tuted by a unique bridge node (node 105). Similar results were found in
Yongshun Ma et al. (2021), where the same pathways were recognised
as the differential between NI and IBD. The low NMI between NI and
UC community detections was very significant. By using permutation
tests, we highlighted several differential pathways, in particular, node
462 connected with node 137 was differential between NI and CD. The
two main substances involved in these pathways are strictly linked to
each other and rhamnose produced by R. gnavus, in particular, has been
recognized as an inflammatory polysaccharide (Henke et al., 2019). The
fact that there were not any differentially expressed pathways between
NI and UC could mean that the main differences between the two diag-
noses lay in the wiring scheme of the pathways rather than their expres-
sion levels. After feeding the DE pathways to the DIAMOnD algorithm,
we obtained that also B. ovatus consistently with the literature was con-
sidered a disease module, in fact, it was linked to the antibody response
that generated an IBD (Saitoh et al., 2002). Moreover, the DIAMOnD
algorithm linked E. rectale to CD diagnosis as well, but the role of this
species had not been explored in deep either in the current study or in
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the past literature.

In the single-layer analysis and considering the common pathways,
we have that in the literature, less diversified bowel microbiota has been
linked to the IBDs (Tannock, 2010); this was supported by the change
in the relationship between the B. caccae module and the B. ovatus mod-
ule between NI and CD networks. In the NI network, B. caccae mod-
ule is connected to B. ovatus through nodes 1212 and 316, whereas, in
the CD network, the only bridge is node 531. Another striking differ-
ence is the positioning of the nodes belonging to Ruminococcus torques.
In the NI network, they are part of the module containing B. caccae; by
contrast, in the CD network they are connected to the rest of the net-
work through R. inulinivorans nodes. The aforementioned bacteria are
known as butyrate-producing bacteria species, and they are known to
be reduced in CD patients (Nishida et al., 2018; Takahashi et al., 2016).
Node 77, in the CD correlation network, had a higher betweenness cen-
trality; on the other hand, in the UC correlation network, the same ex-
hibited a behaviour similar to the node 77 in the NI correlation network.
This result went in contrast with the results in Y. Zhu et al. (2020), which
found COA-PWY-1 differential in UC. The discussion of the results from
the UC single-layer network is harder because the percolation thresh-
old was very low due to two links with a very low correlation weight,
as a consequence, the network resulted very connected and less modu-
lar in the respect of the previous two cases. In the UC correlation net-
work, the node 829 is very central and several nodes in the three mod-
ules are correlated to it. Guanosine has been observed to have protective
effects against substance-induced colitis in murine models (Zizzo et al.,
2019) and a reduction of this metabolite certainly has a repercussion on
the other bacterial pathways. Ruminoccocus obeum became central in the
UC correlation network behaving as a bridge between two modules, in
particular, nodes 928 and 1306. These two pathways are strictly inter-
twined to each other as L-valine is a substance involved in both path-
ways. Flavonifractor plautii is the bacteria species that in the UC corre-
lation network linked the E. rectale module to the Bacteroides module, F.
plautii plays a central role in the UC network and its central role is sup-
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ported by a study which claimed that F. plautii together with other three
species were increased in the mucosa of UC subjects, hence can be con-
sidered as a possible pathogen (W. Li et al., 2021). The three most central
F. plautii pathways were nodes 1012, 944, and 1320, it is possible to recog-
nize again the same two pathways PWY-7111 and VALSYN-PWY, which
were central for R. obeum. The NMI calculated showed that there is a
discreet overlap between NI and CD community detection, but the mea-
sure was not significant as it was not influenced by the change of the net-
works through the permutations of the subjects in the two diagnoses. On
the other hand, the low NMI between NI and UC was quite significant.
By considering the differential expression of the bacterial pathways be-
tween CD and NI, several R. intestinalis pathways resulted in differential
pathways in accordance with (Vich Vila et al., 2018), in which the bacteria
species resulted to be decreased. By contrast, Alistipes putredinis and Bac-
teroides xylanisolvens pathways were differential between UC and NI; a
study observed that the former species is depleted in UC paediatric sub-
jects (Meij et al., 2018), whereas there are no current studies linking the
variation of the latter species to UC. By using the DIAMOnD algorithm
to expand the number of differentially expressed pathways between NI
and CD, there were mainly pathways of the unclassified species, whereas
when NI and UC were considered, the algorithm showed the pathways
belonging to Ruminococcus torques. This bacteria species resulted in be-
ing wired differently in the CD correlation network; by contrast in the UC
network it is differentially expressed; this can lead to thinking that in one
case, there could be a differential networking, whereas in the other case,
there could be a differential expression of the pathways instead. From
an analysis of the degree centralities, it was noticed that differential CD
pathways and the additional DIAMOnD pathways had a lower degree
centrality; this could mean that more isolated bacterial pathways have a
different genetic expression in respect of the correspondent pathways in
the other networks. A possible intervention to re-establish a healthy gut
microbiome could be to examine the covariance between the differential
pathway and the other pathways in the control subjects and re-establish
local connectivity similar to the one in the NI network. Also, the differ-
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ential UC pathways exhibited a different degree centrality, in particular,
the degree centrality was higher in the UC correlation network in the re-
spect of the same pathways in the NI network. This was mainly due to
the greater link density of the UC network; the higher connectivity in the
medium range of the bacterial pathways could be a sign of UC.

In the range of uncommon bacterial species, we can observe the E.
coli module; in the literature, this bacterial species has a recognised role
in developing IBD (Rhodes, 2007; Schirmer et al., 2019). It was possible
to observe the different interplay between E. coli, V. parvula and B. fragilis
across the different diagnoses. The increase of E. coli and B. fragilis in IBD
was observed in a previous study (Keighley et al., 1978), but our results
provide a piece of additional information about the differential wiring
scheme of the aforementioned species. In particular, it seemed that V.
parvula pathways mediated the connection of E. coli with the other mod-
ule in the correlation network. In particular, in the NI correlation net-
work, V. parvula pathways were in the same module of B. fragilis path-
ways which were connected to the rest of the correlation network. In the
CD correlation network, V. parvula pathways were included in the E. coli
module just to remark how close the two bacterial species were, but if, on
one hand the relationship between E. coli and B. fragilis has been already
studied, the effect of V. parvula on E. coli has to be investigated yet in the
literature. In the UC correlation network, V. parvula formed an almost
completely isolated module far from the E. coli; this result could differen-
tiate the connectome of the UC microbiome from the connectome of the
CD microbiome. The isolation of the E. coli module in the UC correlation
network could represent further the peculiar features of the particular
form of IBD. This isolation meant that there were no correlations with
the other pathways, and the pattern of metagenomic expression across
the samples is correlated only inside the same bacterial species. In the NI
network, E. siraeum and R. gnavus pathways were the two main bridge
pathways between E. coli and the rest of the network; it could be possi-
ble to hypothesise that re-establishing a connection between E. coli mod-
ule with the aforementioned bacterial species could lead back to healthy
gut microbiota. In the CD correlation network, R. intestinalis pathways
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had the role of bridge pathways, and, in fact, by using the permutation
tests between NI and CD samples, we obtained that the most differential
pathways were R. intestinalis pathways. In the literature, this bacterial
species, which has anti-inflammatory properties on the intestinal walls,
was depleted in IBD subjects; nevertheless, the complete mechanisms
underlying its protective action against IBD are still unknown (C. Zhu
et al., 2018; Hoffmann et al., 2016). Extending the set of differentially
expressed pathways, we obtained several E. coli pathways confirm that
in CD, differential expression and differential wiring of the E. coli. With
the permutation tests of NI and UC samples across all the pathways in
this range, we found that mainly B. xylanisolvens pathways were differen-
tial. The bacteria; species is linked to R. intestinalis because of its capacity
to degrade dietary fibres commonly assumed by humans; nonetheless,
the two species are not in competition as they attach to different forms of
substrates (Mirande et al., 2010); also the differential pathways belonging
to O. splanchnicus showed that this bacterial species behaved differently
between NI subjects and UC subjects, in fact, although it is pathogenetic
in domestic animals, it resulted to be useful in the ecology of the human
gut microbiota (Gomez-Arango et al., 2016), specifically the bacteria pro-
duce short-chain fatty acid, such as butyrate, which has a protective role
against the IBD (J. Chen and Vitetta, 2020). By analysing the pathways
from the DIAMOnD algorithm, there were several R. obeum pathways
which is in accordance with a study that showed high percentage of this
species in UC subjects (Lepage et al., 2011). The NMI calculation did
not highlight any significant overlap between the three diagnoses, as the
p-value were quite high.

By analysing the eigenvector centralities of the CD differential path-
ways, we noticed that these pathways were generally much central in the
CD correlation network compared to the NI correlation network. Eigen-
vector centrality is the importance of a node calculated as the combina-
tion of the eigenvector centrality scores of the neighbouring nodes. In
the same way, also betweenness centrality and degree centrality scores
were high for the differential pathways in the CD correlation network
compared to the NI network; this could mean that the pathways that
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contributed to the CD diagnosis were connected to neighbouring path-
ways and behaved like bridges more than the correspondent pathways
in the NI correlation network, where these pathways were more periph-
eral and less connected. The differentially expressed UC pathways did
not show any strong differential networking that led to a relevant change
in the centrality scores.

5.2 Projected networks

By building the projected networks from the bipartite networks and keep-
ing the most significant edges, we obtained three networks of prevalent
pathways with comparable modularity; this is a consequence of how we
built the projected networks; in fact, the pathways that are joined by an
edge are those appearing importantly expressed in the same samples,
multiple times, more than it would happen in a random bipartite net-
work. There is an important difference between the single-layer correla-
tion network and the bipartite network as in the correlation network; we
consider relevant in the network also the strong anti-correlations. In the
projected bipartite network, it was natural that pathways of the same
bacterial species were collected in the same community because they
were linked to each other. Nevertheless, it was interesting that some
modules were internally more connected than others; therefore, path-
ways centralities changed from one network to the other. This bipartite
method was very effective for highlighting the bacterial modules present
across the different samples; it seemed that all the diagnosis networks
had the same number of modules for the projected bipartite networks.
On the other hand, the betweenness centralities of the different pathways
changed from disease network to disease network, because the density
of the network was different in each case.

From a general point of view, for the prevalent pathways, the NI pro-
jected network was more densely connected than the CD and UC pro-
jected networks; by contrast, the UC projected network was the least
densely connected. In this case, a less connected projected network cor-
responded to a less diversified microbiota in the subjects with UC and
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a similar result was observed by Nemoto et al. (2012). The modular-
ity and the community detection reflect the status of the microbiota in
this range of pathways; the closer is the number of modules to the num-
ber of species, the better is the community detection because each group
of nodes (and pathways) is functional to one species unless multiple
species co-exist. In this case, the community detection applied to the pro-
jected networks seemed to perform well. The measurement of between-
ness centrality showed that the centrality measures involving nodes 1222
and 748 in F. prausnitzii were higher in the CD projected network com-
pared to the betweenness centralities of the same pathways in the NI
projected network. This could mean that the aforementioned pathways
are often highly expressed along with the neighbouring pathways in the
CD subjects, and by a consequence, several metabolic pathways of the
species relied on the galactose degradation I and D-galactose degrada-
tion V. Similarly, Jiang et al. (2021) observed that carbohydrate degra-
dation metabolic pathways were depleted for bacterial species beneficial
to the gut. In the NI projected network, the most central nodes in the
F. prausnitzii module were nodes 724 and 610. It is important to notice
the fundamental role of the substance 5-aminoimidazole ribonucleotide,
which also appeared in the single-layer analysis, and, in the past studies,
it was found differential between healthy control subjects, IBD subjects
and colon-rectal cancer subjects (Yongshun Ma et al., 2021). In the UC
projected network, nodes 158 and 517 had a high betweenness central-
ity; these two nodes are so central because they held together with the
two groups of the F. prausnitzii. In the UC case, many pathways are de-
pendent on these two nodes, and the literature agrees that the metabolite
produced in the former pathway could have a potential medical effect.
Moreover, also node 67 exhibited a high betweenness centrality measure
that could be related to a change in the digestion of sugars observed in
patients with irritable bowel disease syndrome (Mack et al., 2020).

In the UC bipartite network of the common bacterial pathways, the
density of the connections was again lower compared to the densities
of the NI and the CD projected networks; this could be translated into
less co-expression of the bacterial pathways in the same samples, hence,
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less interaction among bacterial species and pathways as in the previous
case. The change in the relationship between B. caccae module and the
B. ovatus module was already observed in the single-layer analysis of the
correlation networks. Nevertheless, the change was even clearer in the
bipartite analysis, where it was possible to observe that in the NI and UC
projected networks, B. caccae module communicated with the B. ovatus
module, whereas in the CD projected networks, it was linked to A. pu-
tredinis module through 789, which was joint to ketodeoxyoctonate and
co-enzyme A biosynthesis pathways in B. caccae module. The aforemen-
tioned substances are fundamental for the functioning of a bacterium; the
former is used to form the outer membrane, whereas the latter is needed
as a co-factor in many enzymatic processes. Another important differ-
ence that was not shown in the single-layer analysis was the fact that
the E. eligens module, which was connected to the unclassified species
module in the NI projected network through node 829, whilst in the CD
and UC projected networks, the same bacterial module resulted isolated
from the rest of the network. This setting could be typical of healthy gut
microbiota; in fact, E. eligens is a butyrate-producing bacteria (Mukherjee
et al., 2020) and its metabolic processes like nodes 1315 and 939 could be
facilitated by node 829.

In the uncommon bacterial range of pathways, we could observe that
the difference in the edge densities was even more evident in the respect
of other bacterial ranges; in fact, the UC projected network counted half
the edges compared to the NI projected network and one-third of the
edges of the CD projected network. As in the first case, this could be ex-
plained by the reduced diversity of the gut microbiota of the UC subjects
(Nemoto et al., 2012). In the case of the CD projected network, we had
a greater complexity in the bacterial interactions for this range of path-
ways; in this range there were no pathways of Firmicutes species, which
had a lower diversity in a previous study (Manichanh et al., 2012b). In
the uncommon bacterial pathways of the NI projected network, the E.
coli module was connected to the C. boltae, which, in turn, was linked to
B. longum module. B. longum is a bacterial species that can have anti-
inflammatory properties in the human gut (Singh et al., 2011). By con-
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trast, in the CD projected network, E. coli was connected to the rest of
the network through two Dorea longicatena pathways, which were nodes
680 and 81 and were connected to node 697. On the other hand, in the
UC projected network, two E. coli nodes were connected to six C. comes
nodes, showing the existence of an interaction between the two species
in the UC diagnosis.

5.3 Multilayer networks

For the prevalent pathways, the multilayer analysis of the metagenomic
data of the microbiome of the NI subjects and the subjects with IBD gave
a wider view of the difference between the IBD correlation networks and
the NI correlation network. From the point of view of the degree cen-
trality, we obtained that there were remarked differences between the
degree of the nodes in the IBD correlation networks and the NI correla-
tion network, these differences were highlighted by the Kendall correla-
tion coefficient, which showed the high correlation between the degree
sequence in the CD and the UC correlation network. It could be possi-
ble to deduce that the IBD correlation networks for prevalent bacterial
pathways had specific degree sequences that were different from the NI
network. In particular, it seemed that there were several nodes in the
IBD correlation networks with medium degree centrality measures in the
overlapping network that exhibited lower degree centralities in the IBD
correlation networks compared to the NI correlation network. The low
correlation of the overlap degree sequence and the aggregated degree se-
quence highlighted the fact that the nodes in the different layers had sim-
ilar neighbouring and compressing the layers in an overlapping way, we
obtained a much higher (weighted) degree centrality in the nodes. Fur-
thermore, the comparison of the betweenness centrality showed a shift
in the centralities of the nodes in the CD diagnosis, whereas the central-
ities in the UC diagnosis were similar to the ones in the NI diagnosis.
This result could be interpreted as that the correlation network in UC
diagnosis preserved the roles of core and periphery of the nodes in the
NI network, hence, the pathogenesis of the disease could not be identi-
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fied in a shift of the importance of the nodes, whereas the CD condition
could be linked to the differential betweenness centrality. The multilayer
betweenness centrality did not show any relevant result as it resulted cor-
related to the betweenness centralities of each other network at the same
level. The community detection for each inter-coupling parameter had
many similarities in the three layers. This could be explained by the fact
that communities corresponded to the species group of pathways. For
higher resolution parameters γ we obtained more diversified community
detection, which highlighted the internal structure of the communities.

The analysis of the common bacterial pathways highlighted that for
this range of pathways, the UC network exhibited nodes with higher de-
gree centralities compared to the CD and NI correlation networks. This
result showed that this range of nodes in the UC correlation network was
clearly connected to more neighbours compared to the same nodes in the
other layers. Also, for this range of bacterial pathways, the betweenness
centrality of the nodes in the UC and NI correlation networks were sim-
ilar; hence, they had the same core and the same periphery. It could be
possible to explain this result by saying that the UC diagnosis could be
based on a change in the wiring of the network and a change in the num-
ber of neighbours, whereas the CD diagnosis could be based on a shift
of importance of the pathways. Considering the community detection
in the multiplex, we know that the inter-coupling parameter ω was hard
to set Didier, Brun, and Baudot (2015). Therefore we used three differ-
ent parameters; for lower inter-coupling parameters, we obtained more
communities, whereas, for ω = 1, we obtained a less diversified com-
munity detection, with more similarity among the layers. Furthermore,
we could observe that UC was already composed of smaller modules;
since varying the resolution parameter, the change in the communities
was minor compared to the other two layers.

The results of the uncommon bacterial pathways led to the under-
standing that the degree sequences of the UC correlation network were
different from the degree sequences of the NI and CD correlation net-
works. The same nodes of the UC correlation matrix had a lower degree
compared to the nodes in the other two networks. This result was in
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line with the finding that the UC correlation network was less densely
connected. Also, the betweenness centralities were differential, in fact,
it was generally higher for the nodes in the NI and CD correlation net-
works. This could be translated into the fact that in these two networks
the structure was developed around a few important nodes, on which the
rest of the pathways relied. About the community detection, we found
out that the algorithm did not differentiate much varying inter-layer cou-
pling parameters or layers. Only for ω = 1, we found half the number of
modules in the NI layer.

On the other hand, in the Infomap community detection, we could
observe that in the soft partitioning Infomap algorithm some nodes were
shared among multiple communities. The most important nodes were
those in which the module was the same in the IBD layers (second and
third) and different in the NI layer.
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Chapter 6

Conclusion

We analyzed and built the correlation network, the projected bipartite
network and the multiplex network of the gut microbiotas of three types
of samples, namely in CD subjects, UC subjects, and NI subjects. We ob-
tained that the correlation networks and the projected bipartite networks
offered the richest information, the former gave information about the
co-variation of the pathways, whereas the latter gave information about
the co-expression of the pathways. These two types of networks could
highlight the important role of Bacteroides and of F. prausnitzii, in partic-
ular the connection of co-enzyme A with the IBD diagnosis. The mul-
tilayer network was built using as layers only the correlation networks
of the different diagnoses. We could have built a multilayer by over-
lapping the correlation network and the projected bipartite network for
each group of pathways. One of the drawbacks of our method was to
subdivide the metagenomic dataset into several sections instead of us-
ing it as a whole. In fact, there could be a connection between pathways
belonging to different sections. Moreover, it was possible to subdivide
the data differently, e.g. by dividing the samples based on the severity of
the disease or the location of the biopsy, but this different way of divid-
ing them would reduce the number of samples in each group influencing
the robustness of the statistics.
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6.1 Future directions

This work can represent the starting point for several future projects, the
main question is whether it is possible to create a digital twin of the gut
microbiome and to get there we should go through several steps:

• we should understand the direction of the use of resources between
bacterial pathways, i.e. the directions of the reactions;

• we should analyse the complexity of the gut microbiome by build-
ing the corresponding multilayer network;

• we should study the dynamics of the metabolic networks com-
posed of the metabolic pathways found in the metagenomic or metabolomics
and the dynamics of the multilayer network;

• we should investigate the control (the action of steering the system
from a dysbiosis state to a healthy state) of the biological system
represented by the metabolic network through prebiotics, probi-
otics, and antibiotics.
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Appendix A

Nodes Map

Table 6: Nodes map of the nodes being cited in the research project.

Node Pathway

2 1CMET2-PWY: N10-formyl-tetrahydrofolate
biosynthesis|g__Bacteroides.s__Bacteroides_ovatus

5 1CMET2-PWY: N10-formyl-tetrahydrofolate
biosynthesis|g__Bacteroides.s__Bacteroides_uniformis

12 ANAGLYCOLYSIS-PWY: glycolysis III (from
glucose)|g__Bacteroides.s__Bacteroides_ovatus

20 ARGININE-SYN4-PWY: L-ornithine de novo
biosynthesis|g__Bacteroides.s__Bacteroides_ovatus

41 ARO-PWY: chorismate biosynthesis
I|g__Roseburia.s__Roseburia_inulinivorans

62 BRANCHED-CHAIN-AA-SYN-PWY: superpathway of
branched amino acid biosynthesis|unclassified

67 CALVIN-PWY: Calvin-Benson-Bassham
cycle|unclassified

77 COA-PWY-1: coenzyme A biosynthesis II
(mammalian)|g__Bacteroides.s__Bacteroides_vulgatus

91 COA-PWY-1: coenzyme A biosynthesis II
(mammalian)|g__Parabacteroides.s__Parabacteroides_merdae

( To be continued)
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Node Pathway

98 COA-PWY: coenzyme A biosynthesis
I|g__Bacteroides.s__Bacteroides_xylanisolvens

105 COA-PWY: coenzyme A biosynthesis
I|unclassified

128 DTDPRHAMSYN-PWY: dTDP-L-rhamnose biosynthesis
I|g__Bacteroides.s__Bacteroides_ovatus

131 DTDPRHAMSYN-PWY: dTDP-L-rhamnose biosynthesis
I|g__Escherichia.s__Escherichia_coli

133 DTDPRHAMSYN-PWY: dTDP-L-rhamnose biosynthesis
I|g__Faecalibacterium.s__Faecalibacterium_prausnitzii

137 DTDPRHAMSYN-PWY: dTDP-L-rhamnose biosynthesis
I|unclassified

146 FUCCAT-PWY: fucose degradation|g__Escherichia.s__Escherichia_coli
155 GLCMANNANAUT-PWY: superpathway of

N-acetylglucosamine, N-acetylmannosamine and
N-acetylneuraminate degradation|g__Blautia.s__Ruminococcus_torques

156 GLCMANNANAUT-PWY: superpathway of
N-acetylglucosamine, N-acetylmannosamine and
N-acetylneuraminate degradation|g__Dorea.s__Dorea_longicatena

158 GLCMANNANAUT-PWY: superpathway of
N-acetylglucosamine, N-acetylmannosamine and
N-acetylneuraminate degradation|g__Faecalibacterium.s__Faecalibacterium_prausnitzii

177 GLYCOGENSYNTH-PWY: glycogen biosynthesis I
(from ADP-D-Glucose)|unclassified

178 GLYCOL-GLYOXDEG-PWY: superpathway of glycol
metabolism and degradation|g__Escherichia.s__Escherichia_coli

204 ILEUSYN-PWY: L-isoleucine biosynthesis I (from
threonine)|unclassified

220 NONMEVIPP-PWY: methylerythritol phosphate
pathway I|g__Bacteroides.s__Bacteroides_ovatus

234 NONOXIPENT-PWY: pentose phosphate pathway
(non-oxidative branch)|g__Bacteroides.s__Bacteroides_xylanisolvens

236 NONOXIPENT-PWY: pentose phosphate pathway
(non-oxidative branch)|g__Blautia.s__Ruminococcus_torques

246 P161-PWY: acetylene degradation|unclassified

( To be continued)
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Node Pathway

253 PANTO-PWY: phosphopantothenate biosynthesis
I|g__Anaerostipes.s__Anaerostipes_hadrus

261 PANTO-PWY: phosphopantothenate biosynthesis
I|g__Bacteroides.s__Bacteroides_vulgatus

277 PANTO-PWY: phosphopantothenate biosynthesis
I|unclassified

291 PEPTIDOGLYCANSYN-PWY: peptidoglycan
biosynthesis I (meso-diaminopimelate
containing)|g__Bacteroides.s__Bacteroides_ovatus

292 PEPTIDOGLYCANSYN-PWY: peptidoglycan
biosynthesis I (meso-diaminopimelate
containing)|g__Bacteroides.s__Bacteroides_uniformis

299 PEPTIDOGLYCANSYN-PWY: peptidoglycan
biosynthesis I (meso-diaminopimelate
containing)|g__Flavonifractor.s__Flavonifractor_plautii

316 PWY-1042: glycolysis IV (plant
cytosol)|g__Bacteroides.s__Bacteroides_ovatus

362 PWY-3001: superpathway of L-isoleucine
biosynthesis I|unclassified

370 PWY-3841: folate transformations
II|g__Bacteroides.s__Bacteroides_vulgatus

377 PWY-4242: pantothenate and coenzyme A
biosynthesis III|g__Bacteroides.s__Bacteroides_ovatus

381 PWY-4242: pantothenate and coenzyme A
biosynthesis III|unclassified

394 PWY-5097: L-lysine biosynthesis
VI|g__Bacteroides.s__Bacteroides_ovatus

398 PWY-5097: L-lysine biosynthesis
VI|g__Bacteroides.s__Bacteroides_vulgatus

404 PWY-5097: L-lysine biosynthesis
VI|g__Eubacterium.s__Eubacterium_rectale

419 PWY-5100: pyruvate fermentation to acetate
and lactate II|unclassified

428 PWY-5103: L-isoleucine biosynthesis
III|unclassified

( To be continued)
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Node Pathway

429 PWY-5104: L-isoleucine biosynthesis
IV|g__Anaerostipes.s__Anaerostipes_hadrus

442 PWY-5188: tetrapyrrole biosynthesis I (from
glutamate)|g__Flavonifractor.s__Flavonifractor_plautii

461 PWY-5659: GDP-mannose biosynthesis|g__Anaerostipes.s__Anaerostipes_hadrus
462 PWY-5659: GDP-mannose biosynthesis|g__Bacteroides.s__Bacteroides_ovatus
464 PWY-5659: GDP-mannose biosynthesis|g__Escherichia.s__Escherichia_coli
466 PWY-5659: GDP-mannose biosynthesis|g__Faecalibacterium.s__Faecalibacterium_prausnitzii
477 PWY-5667: CDP-diacylglycerol biosynthesis

I|g__Bacteroides.s__Bacteroides_uniformis
515 PWY-5686: UMP biosynthesis|g__Eubacterium.s__Eubacterium_rectale
517 PWY-5686: UMP biosynthesis|g__Faecalibacterium.s__Faecalibacterium_prausnitzii
531 PWY-5695: urate biosynthesis/inosine

5’-phosphate degradation|g__Bacteroides.s__Bacteroides_ovatus
565 PWY-6121: 5-aminoimidazole

ribonucleotide biosynthesis
I|g__Anaerostipes.s__Anaerostipes_hadrus

569 PWY-6121: 5-aminoimidazole
ribonucleotide biosynthesis
I|g__Blautia.s__Ruminococcus_torques

571 PWY-6121: 5-aminoimidazole
ribonucleotide biosynthesis
I|g__Clostridium.s__Clostridium_bolteae

579 PWY-6121: 5-aminoimidazole
ribonucleotide biosynthesis
I|g__Faecalibacterium.s__Faecalibacterium_prausnitzii

580 PWY-6121: 5-aminoimidazole
ribonucleotide biosynthesis
I|g__Flavonifractor.s__Flavonifractor_plautii

597 PWY-6122: 5-aminoimidazole
ribonucleotide biosynthesis
II|g__Blautia.s__Ruminococcus_torques

610 PWY-6122: 5-aminoimidazole
ribonucleotide biosynthesis
II|g__Faecalibacterium.s__Faecalibacterium_prausnitzii

( To be continued)
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Node Pathway

611 PWY-6122: 5-aminoimidazole
ribonucleotide biosynthesis
II|g__Flavonifractor.s__Flavonifractor_plautii

622 PWY-6123: inosine-5’-phosphate biosynthesis
I|g__Bacteroides.s__Bacteroides_fragilis

623 PWY-6123: inosine-5’-phosphate biosynthesis
I|g__Bacteroides.s__Bacteroides_ovatus

632 PWY-6124: inosine-5’-phosphate biosynthesis
II|g__Bacteroides.s__Bacteroides_ovatus

651 PWY-6147: 6-hydroxymethyl-dihydropterin
diphosphate biosynthesis I|g__Bacteroides.s__Bacteroides_ovatus

658 PWY-6151: S-adenosyl-L-methionine cycle
I|g__Bacteroides.s__Bacteroides_uniformis

671 PWY-6151: S-adenosyl-L-methionine cycle
I|g__Roseburia.s__Roseburia_inulinivorans

680 PWY-6163: chorismate biosynthesis from
3-dehydroquinate|g__Dorea.s__Dorea_longicatena

711 PWY-6277: superpathway of
5-aminoimidazole ribonucleotide
biosynthesis|g__Blautia.s__Ruminococcus_torques

724 PWY-6277: superpathway of
5-aminoimidazole ribonucleotide
biosynthesis|g__Faecalibacterium.s__Faecalibacterium_prausnitzii

725 PWY-6277: superpathway of
5-aminoimidazole ribonucleotide
biosynthesis|g__Flavonifractor.s__Flavonifractor_plautii

740 PWY-6305: putrescine biosynthesis
IV|g__Faecalibacterium.s__Faecalibacterium_prausnitzii

748 PWY-6317: galactose degradation I (Leloir
pathway)|g__Faecalibacterium.s__Faecalibacterium_prausnitzii

751 PWY-6317: galactose degradation I (Leloir
pathway)|unclassified

755 PWY-6385: peptidoglycan biosynthesis III
(mycobacteria)|g__Bacteroides.s__Bacteroides_ovatus

768 PWY-6386: UDP-N-acetylmuramoyl-pentapeptide
biosynthesis II (lysine-containing)|g__Bacteroides.s__Bacteroides_ovatus

( To be continued)
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Node Pathway

793 PWY-6387: UDP-N-acetylmuramoyl-pentapeptide
biosynthesis I (meso-diaminopimelate
containing)|g__Bacteroides.s__Bacteroides_ovatus

794 PWY-6387: UDP-N-acetylmuramoyl-pentapeptide
biosynthesis I (meso-diaminopimelate
containing)|g__Bacteroides.s__Bacteroides_uniformis

821 PWY-6527: stachyose degradation|unclassified
829 PWY-6608: guanosine nucleotides degradation

III|unclassified
838 PWY-6609: adenine and adenosine salvage

III|g__Escherichia.s__Escherichia_coli
842 PWY-6609: adenine and adenosine salvage

III|unclassified
847 PWY-6700: queuosine biosynthesis|g__Anaerostipes.s__Anaerostipes_hadrus
855 PWY-6700: queuosine biosynthesis|g__Bacteroides.s__Bacteroides_vulgatus
870 PWY-6703: preQ0 biosynthesis|g__Bacteroides.s__Bacteroides_ovatus
873 PWY-6703: preQ0 biosynthesis|g__Bacteroides.s__Bacteroides_uniformis
877 PWY-6703: preQ0 biosynthesis|g__Escherichia.s__Escherichia_coli
896 PWY-6737: starch degradation

V|g__Escherichia.s__Escherichia_coli
897 PWY-6737: starch degradation

V|g__Eubacterium.s__Eubacterium_hallii
901 PWY-6737: starch degradation

V|g__Faecalibacterium.s__Faecalibacterium_prausnitzii
918 PWY-6936: seleno-amino acid

biosynthesis|unclassified
925 PWY-7111: pyruvate fermentation to isobutanol

(engineered)|g__Bacteroides.s__Bacteroides_xylanisolvens
928 PWY-7111: pyruvate fermentation to isobutanol

(engineered)|g__Blautia.s__Ruminococcus_obeum
939 PWY-7111: pyruvate fermentation to isobutanol

(engineered)|g__Eubacterium.s__Eubacterium_eligens
944 PWY-7111: pyruvate fermentation to isobutanol

(engineered)|g__Flavonifractor.s__Flavonifractor_plautii
953 PWY-7184: pyrimidine deoxyribonucleotides de

novo biosynthesis I|unclassified

( To be continued)
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Node Pathway

963 PWY-7199: pyrimidine deoxyribonucleosides
salvage|g__Escherichia.s__Escherichia_coli

969 PWY-7208: superpathway of pyrimidine
nucleobases salvage|g__Eubacterium.s__Eubacterium_siraeum

988 PWY-7219: adenosine ribonucleotides de novo
biosynthesis|g__Bacteroides.s__Bacteroides_uniformis

1008 PWY-7219: adenosine ribonucleotides de novo
biosynthesis|g__Eubacterium.s__Eubacterium_rectale

1012 PWY-7219: adenosine ribonucleotides de novo
biosynthesis|g__Flavonifractor.s__Flavonifractor_plautii

1027 PWY-7220: adenosine deoxyribonucleotides de
novo biosynthesis II|g__Bacteroides.s__Bacteroides_vulgatus

1042 PWY-7221: guanosine ribonucleotides de novo
biosynthesis|g__Bacteroides.s__Bacteroides_vulgatus

1047 PWY-7221: guanosine ribonucleotides de novo
biosynthesis|g__Blautia.s__Ruminococcus_torques

1068 PWY-7222: guanosine deoxyribonucleotides de
novo biosynthesis II|g__Bacteroides.s__Bacteroides_vulgatus

1074 PWY-7228: superpathway of guanosine
nucleotides de novo biosynthesis
I|g__Bacteroides.s__Bacteroides_vulgatus

1088 PWY-7237: myo-, chiro- and scillo-inositol
degradation|unclassified

1093 PWY-724: superpathway of L-lysine,
L-threonine and L-methionine biosynthesis
II|unclassified

1096 PWY-7282: 4-amino-2-methyl-5-phosphomethylpyrimidine
biosynthesis (yeast)|g__Bacteroides.s__Bacteroides_fragilis

1097 PWY-7282: 4-amino-2-methyl-5-phosphomethylpyrimidine
biosynthesis (yeast)|g__Bacteroides.s__Bacteroides_ovatus

1100 PWY-7323: superpathway of
GDP-mannose-derived O-antigen building blocks
biosynthesis|g__Bacteroides.s__Bacteroides_ovatus

1120 PWY-7539: 6-hydroxymethyl-dihydropterin
diphosphate biosynthesis III
(Chlamydia)|g__Bacteroides.s__Bacteroides_ovatus

( To be continued)
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Node Pathway

1123 PWY-7663: gondoate biosynthesis
(anaerobic)|g__Bacteroides.s__Bacteroides_caccae

1147 PWY0-1296: purine ribonucleosides
degradation|g__Eubacterium.s__Eubacterium_eligens

1155 PWY0-1297: superpathway of
purine deoxyribonucleosides
degradation|g__Blautia.s__Ruminococcus_torques

1194 PWY0-1586: peptidoglycan maturation
(meso-diaminopimelate containing)|g__Escherichia.s__Escherichia_coli

1195 PWY0-1586: peptidoglycan maturation
(meso-diaminopimelate containing)|g__Faecalibacterium.s__Faecalibacterium_prausnitzii

1203 PWY0-845: superpathway of pyridoxal
5’-phosphate biosynthesis and
salvage|g__Bacteroides.s__Bacteroides_ovatus

1205 PWY0-845: superpathway of pyridoxal
5’-phosphate biosynthesis and
salvage|g__Bacteroides.s__Bacteroides_uniformis

1212 PWY66-400: glycolysis VI (metazoan)|g__Bacteroides.s__Bacteroides_ovatus
1222 PWY66-422: D-galactose degradation V (Leloir

pathway)|g__Faecalibacterium.s__Faecalibacterium_prausnitzii
1225 PWY66-422: D-galactose degradation V (Leloir

pathway)|unclassified
1238 PYRIDOXSYN-PWY: pyridoxal 5’-phosphate

biosynthesis I|g__Bacteroides.s__Bacteroides_ovatus
1246 RHAMCAT-PWY: L-rhamnose degradation

I|g__Bacteroides.s__Bacteroides_xylanisolvens
1249 RHAMCAT-PWY: L-rhamnose degradation

I|g__Faecalibacterium.s__Faecalibacterium_prausnitzii
1253 SALVADEHYPOX-PWY: adenosine nucleotides

degradation II|g__Blautia.s__Ruminococcus_torques
1261 SER-GLYSYN-PWY: superpathway of

L-serine and glycine biosynthesis
I|g__Faecalibacterium.s__Faecalibacterium_prausnitzii

1284 THRESYN-PWY: superpathway of L-threonine
biosynthesis|unclassified

1298 VALSYN-PWY: L-valine biosynthesis|g__Anaerostipes.s__Anaerostipes_hadrus

( To be continued)
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Node Pathway

1303 VALSYN-PWY: L-valine biosynthesis|g__Bacteroides.s__Bacteroides_xylanisolvens
1306 VALSYN-PWY: L-valine biosynthesis|g__Blautia.s__Ruminococcus_obeum
1315 VALSYN-PWY: L-valine biosynthesis|g__Eubacterium.s__Eubacterium_eligens
1320 VALSYN-PWY: L-valine biosynthesis|g__Flavonifractor.s__Flavonifractor_plautii
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