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Abstract

This dissertation presents new algorithms for learning optimal feed-
back controllers directly from experimental data, considering the
plant to be controlled as a black-box source of streaming input
and output data. The presented methods fall in the Reinforcement
Learning “actor-only” family of algorithms, employing a represen-
tation (policy parameterization) of the controller as a function of
the feedback values and of a set of parameters to be tuned. The
optimization of a policy parameterization corresponds to the search
of the set of parameters associated with the best value of a chosen
performance index. Such a search is carried on via numerical opti-
mization techniques, such as the Stochastic Gradient Descent algo-
rithm and related techniques. The proposed methods are based on a
combination of the data-driven policy search framework with some
elements of the model-based scenario, in order to mitigate some of
the drawbacks presented by the purely data-driven approach, while
retaining a low modeling effort, as compared to the typical identifi-
cation and model-based control design scenario.

In particular, we initially introduce an algorithm for the search of
smooth control policies, considering both the online scenario (when
new data are collected from the plant during the iterative policy syn-
thesis, while the plant is also under closed-loop control) and the of-
fline one (i.e. from open-loop data that were previously collected
from the plant). The proposed method is then extended to learn
non-smooth control policies, in particular hybrid control laws, op-
timizing both the local controllers and the switching law directly
from data. The described methods are then extended in order to be
employed in a collaborative learning setup, considering multi-agent
systems characterized by heavy similarities, exploiting a cloud-aided
scenario to enhance the learning process by sharing information.
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Chapter 1

Introduction

This thesis addresses the problem of learning feedback controllers while con-
sidering the plant to be controlled as a black-box source of inputs and outputs.
New iterative gradient-based methods are presented in the following chapters,
considering both the online and offline settings, and relying on a combination
of the data-driven policy search framework with the use of simple local mod-
els. This chapter introduces the main concepts on which this dissertation is
built, namely model-based and data-driven control, Reinforcement Learning-
based control and Stochastic Gradient Descent methods. Subsequently, the con-
tributions and the outline of this dissertation are described in more detail.

1.1 Model-based and data-driven control synthesis

In modern control theory, the term “model-based control” indicates the set of
control design techniques that are grounded on the explicit knowledge of a model
of the object to be controlled, e.g. a state-space model or transfer function. Given
that a model of the system is rarely known in advance, model-based methods are
characterized by two sequential steps, as shown in Figure 1: a modeling phase
and a control synthesis phase (Ogata, 2010). The modeling phase is dedicated
to obtaining a model approximation of the underlying system to be controlled,
typically derived from first principles, or by system identification techniques
(Ogata, 2010), (Ljung, 1999). Once a model describing the system behavior is
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Figure 1: Model-based controller synthesis process.

available, the control synthesis phase exploits it to design a control law, using
any of the classical techniques in literature.

The model-based approach has been largely and successfuly applied on many
benchmark examples and classic control applications. However, relying on a
model presents as well some critical points. For instance, deriving a model of
the unknown dynamics that is both simple and reliable for control design is of-
ten hard and time-consuming (Formentin, van Heusden, and Karimi, 2014). On
a side, a controller synthesized based on a model approximating the underlying
plant is not necessarily optimal when connected to the plant itself. Unmodeled
dynamics, unavoidable when the model structure associated with the real plant
is not completely known, limit the performance of the controller in closed-loop.
On the other side, a complex high-order model might require an excessively
complex controller design that can be unwieldy in practice (Hou and Wang,
2013). Such situation, thus, usually requires additional effort in finding a re-
duced order linear model that is a good approximation of the original one at
some operating point of interest (Anderson and Liu, 1989).

In order to avoid modeling an accurate high-order model to target high per-
formance for a control system design, and then having to perform a controller
order reduction or model simplification, two broad approaches are considered
in literature: identification for control (I4C) and direct data-driven control syn-
thesis. I4C pertains methods that minimize a control-related data-fitting cost, in
order to tune the model identification towards the control objective for which
the model is to be used (Gevers, 1993). Since the identification phase pre-
ceeds the synthesis of the controller whose performance should ideally drive
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the model optimization, this leads to the use of iterative steps of controller up-
dates and model updates obtained by closed-loop identification (Forssell and
Ljung, 1999). The ideas behind identification for control have been recently
exploited for data-driven learning, employing Bayesian optimization (Bansal et
al., 2017), (Makrygiorgos et al., 2022), model adaptation for Model Predictive
Control (MPC) (Piga, Forgione, et al., 2019), and in combination with neural ar-
chitectures, in order to synthesize a control law stabilizing an unknown nonlinear
dynamical system at an equilibrium point (Saha, Egerstedt, and Mukhopadhyay,
2021). I4C does not necessarily find the full model of the plant at hand, but
instead can provide a fixed complexity model, optimized with respect to the
closed-loop performance of an associated fixed complexity controller designed
based on it. In (Hjalmarsson, Gevers, and De Bruyne, 1996) is shown that a full
model closed-loop identification with a specific controller in the loop provides
an estimated controller that achieves the best possible performance when tested
on the actual system. If instead a low-order model and controller are synthesised,
the controller does not necessarily converge to a local minimum of the design
objective (Hjalmarsson, Gunnarsson, and Gevers, 1995). The identification of
a low-order model is characterized by a bias and a variance component in the
prediction error, associated with the simplified model inability of representing
the true system and the noise and finiteness of the data, respectively. In order to
reduced both the components, I4C methods require to design a control oriented
identification experiment in order to obtain both a model and an uncertainty set;
then, to design a new controller that achieves closed-loop stability and meets the
required performance for all the scenarios in the chosen uncertainty set (Hjal-
marsson, 2005). In (De Callafon and Van Den Hof, 1997), for instance, an un-
certainty set is estimated from closed-loop experimental data, in terms of model
perturbations in the dual Youla parametrization. It might be difficult, though,
to model an appropriate uncertainty set, particularly in a control-oriented sense
(Gevers, 2005).

In the I4C scheme the model is used specifically as a tool for the control
performance objective minimization. Alternatively one can directly optimize
the control goal with respect to parameters describing the controller, as done
by direct data-driven techniques. Such methods base the design of controllers
on knowledge extracted from a stream of input/output data from the controlled
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system, as shown in Figure 2, without using explicit or implicit information of
the underlying dynamical system or of a mathematical model of such dynamics
(Hou, Gao, and Lewis, 2017). Direct data-driven methods might differ on the
learning paradigm: some techniques only use a batch of process data, meaning
that learning is performed offline, while other methods learn while performing
online experiments, executing sequential decision making steps.

The direct data-driven (also called “model-free”) control design paradigm
includes many techniques and the literature on the subjects is extensive. Some
of the important methods in the field of direct data-driven control are, for in-
stance iterative feedback tuning (IFT), correlation-based tuning, Virtual Refer-
ence Feedback Tuning (VRFT), and data-driven predictive control (DDPC). IFT
(Hjalmarsson, Gevers, Gunnarsson, et al., 1998) runs a sequence of experiments
on the plant in closed-loop with the last updated controller, and employs the col-
lected data to estimate the gradient of the controller performance, that is then
used to update the controllers parameters. As it will be introduced in Section 1.4
and detailed in Chapter 2, the policy search method proposed in this disserta-
tion iteratively optimize the controller parameters via gradient-based iterations,
as done by IFT. Differently by IFT, though, the proposed iterative approach is
designed to include the case in which the controller learning is performed online
while the plant is being controlled, avoiding to set up a sequence of closed-loop
data-collection experiments. Moreover, while IFT requires two of such closed-
loop experiments (the so called normal and gradient experiments) for each gra-
dient estimation, the approach described in this thesis, by relying on information
collected from data and encoded in simple local models for the gradient approx-
imation, reduces the amount of expensive and possibly risky interactions with
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the real plant. A similar approach is iterative correlation-based tuning (Karimi,
Mišković, and Bonvin, 2004), that considers a user-defined desired closed-loop
behavior and is based on minimizing the correlation between the reference signal
and the desired and the achieved closed-loop output error. Such signals being
uncorrelated implies that the closed-loop output error is mainly composed by
the noise component (uncorrelated with the reference signal) and hence that the
achieved closed-loop system captures the dynamics of the desired one. The so-
lution of correlation equations involving chosen instrumental variables leads to
parameter computation, carried out through iterative numerical steps. In order
to avoid repeated experiment and synthesise the controller offline from data, a
non-iterative data-driven correlation-based approach is propsed for LTI systems
in (Karimi, Heusden, and Bonvin, 2007), convexifying the cost function asso-
ciated with the model reference control problem optimization and solving the
correlation equations in a non iterative data-driven fashion. Such method ne-
cessites though of a previously collected stream of input/output data, obtained
by injecting a persistently exciting input signal. This characteristic, as well as
the use of a user-defined desired model of the closed-loop behavior is shared as
well by VRFT (Campi, Lecchini, and Savaresi, 2002). VRFT expresses a set of
reference signals as a function of the designed feedback controller parameters
by imposing that, if given in feedback to the controller together with the mea-
surements collected in open-loop, such references would result in the designed
controller generating the inputs present in the dataset. The parameters are op-
timized by minimizing the distance between the ouput obtained by feeding the
parameterized references to the closed-loop model to be attained, and the col-
lected plant output. Finally, the DDPC paradigm considers a receding horizon
MPC scheme in which the model employed for prediction is substituted by the
use of information extracted from data collected directly from the plant. For in-
stance, according to the DeePC algorithm introduced in (Coulson, Lygeros, and
Dörfler, 2019) the system trajectory is predicted using a finite number of open-
loop data samples generated by a persistently exciting input signal. Such data is
organized in Hankel matrices that, thanks to behavioral systems theory results,
are proved to be a model for the generation of future trajectories of the plant.
The method is initially built for controllable LTI systems, and then it is applied
as well to control discrete nonlinear noisy systems, combined with regulariza-
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tions in order to handle both the noise on data and the unaccounted nonlinearity
of the original dynamics. Another example of DDPC is proposed in (Salvador
Ortiz et al., 2018), where the model of the MPC scheme is substituted with a lin-
ear combination of past system trajectories in which the weights are optimized
with respect to both the control performance and the variance of the estimation
error.

Data driven techniques are nowadays applied in many classic control fields
such as optimal control (Pang, Bian, and Jiang, 2019), (Goncalves da Silva et
al., 2019), PID tuning (Fliess and Join, 2013) and nonlinear control (Novara
et al., 2016), just to mention few examples. Among such contributions, (Fliess
and Join, 2013) presents a technique for the data-driven tuning of intelligent
proportional-integral-derivative (PID) controllers. This method is of particular
interest with respect to the approach described in this thesis because they both
rely on local models for the tuning of the controller parameters, abandoning the
idea of estimating any good or global model of the plant to be controlled. (Fliess
and Join, 2013) is based on a specific design for both the feedback control pol-
icy and the local model. In particular the control parameterization includes two
groups of parameters: on one side the classic PID gains KP , KI , KD associ-
ated with the tracking error, its integral and its derivative. On the other side two
parameters α and F , shared as well with the parameterized “ultra-local” model
y(ν) = αu + F (where y(ν) is the ν-th order derivative of the output dynam-
ics) considered in place of the unknown dynamics of the plant. The control
parameterization is designed in a way that when combined with such model, the
gains KP , KI , KD are decoupled by the model parameters α and F . A linear
differential equation involving the tracking error and its integral and derivative
is obtained, exclusively parameterized in KP , KI , KD. Such parameters can
then be tuned offline in order to stabilize the equation, and hance obtain asymp-
totic convergence of the tracking error to 0. The model parameters are tuned in
a different way: α is an a-priori fixed value, chosen based on the practictioner
knowledge of the plant at hand. F instead is modeled as piecewise-constant, and
it is constantly updated online by integrating algebraic formulae involving the
inputs and outputs trajectories over short time lapses. Finally, the policy param-
eterization depends as well from a reference trajectory representing a modeled
desired behavior, to be chosen again by the practictioner depending on the set
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point to be tracked and on knowledge on the plant to be controlled. Differently
from what was just described, the approach proposed in this thesis does not rely
on any specific policy parameterization function and, although exploiting local
linear models to keep the modeling effort to the minimum, can be effortlessly
generalized in order to consider local models of any other shape. The tuning of
the controller parameters is carried out by mini-batch stochastic gradient descent
steps, without requiring expert knowledge on the considered plant. Moreover,
the proposed method does not require a user-defined model of the output trajec-
tory that, as indicated as well in (Fliess and Join, 2013), might be a sensitive
tuning decision, particularly when the plant dynamics are fully unknown.

The mentioned literature shows a collection of promising methods for the
model-free synthesis of controllers, demonstrating the interest of the commu-
nity in developing this kind of techniques. At the same time, the absence of
a model makes it hard to provide guarantees regarding characteristics of the
methods such as stability, robustness and constraints satisfaction. Attempts are
made in literature, in order to overcome such issues. Among the others: a data-
driven approach to the model reference problem is proposed in (van Heusden,
Karimi, and Bonvin, 2011). The method synthesizes linear fixed-order con-
trollers and ensures closed-loop stability in the limit of infinite data, by adding
a set of convex constraints to a non-iterative correlation-based scheme. In (Piga,
Formentin, and Bemporad, 2018), a hierarchical control architecture that can
handle constraints is synthesized directly from data, composed by an inner lin-
ear parameter-varying controller, matching a desired closed-loop model, and an
outer MPC module, handling the constraints. The idea of enhancing learning
systems with an additional MPC component in order to achieve safety is thor-
oughly surveyed in (Hewing et al., 2020). The survey considers as well the ap-
plication of learning techniques to MPC controllers, dividing the contributions
into model learning and controllers tuning categories. In (De Persis and Tesi,
2020) a parameterization of linear feedback systems is derived, that enables to
reduce the stabilization problem to an equivalent data-dependent linear matrix
inequality, without identification of the underlying system. However, the prob-
lems of stability, robustness and constraints satisfaction in data-driven scenarios
continue to remain active subjects of research.
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1.2 Reinforcement Learning and feedback control

Reinforcement Learning is a field of Machine Learning inspired by natural learn-
ing mechanisms, where animals adjust their actions based on reward and pun-
ishment stimuli received from the environment (Sutton and Barto, 1998). The
classic Reinforcement Learning setup is composed by an actor (or agent) that
interacts with the surrounding environment. The objective of Reinforcement
Learning algorithms is to train the actor, in order for it to autonomously learn
the best behavior to attain in the environment, given specific problem-dependent
goals. Such objective is formulated as an optimization problem that the actor
solves, based on stimuli received from the environment in response to its ac-
tions. It has been observed that Reinforcement Learning strategies in order to
learn properly need to balance between decisions that are optimal with respect
to the data observed up to the current time (exploitative decisions) and decisions
that test new (possibly risky) options, in order to discover rewarding states and
trajectories (explorative decisions) (Bertsekas and Tsitsiklis, 1996).

From the previous definitions, it is clear that there is a tight relationship
between Reinforcement Learning and the concept of data-driven optimal de-
cision making, that is obviously central in control problems where the system
to be controlled is “black box”. In (Powell, 2019) it is remarked how Rein-
forcement Learning and Stochastic Optimal Control are two research commu-
nities addressing decision problems, both evolved starting from a theoretical
background based on Hamilton-Jacobi-Bellman equations. The view of Rein-
forcement Learning from the feedback control perspective is included as well in
(Lewis, Vrabie, and Vamvoudakis, 2012), (Kiumarsi et al., 2018), where the au-
thors observe that Reinforcement Learning-based feedback control design com-
bines features of adaptive control (regarding the control of unknown systems
using data measured in real time along the system trajectories) and Optimal
Control (for what concerns the formulation of the learning as an optimization
problem). Many contributions can be found in literature applying and adapting
the most successful Reinforcement Learning schemes to the control design and
Optimal Control problems, as for instance(Bradtke, Ydstie, and Barto, 1994),
(Vamvoudakis and Lewis, 2009), (Mukherjee, Bai, and Chakrabortty, 2018),
(Lillicrap et al., 2019) just to mention few important examples.
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In the Reinforcement Learning framework, the key concepts of action (the
control input) and cost-to-go are mathematically encoded as policy function and
value function, respectively1. Reinforcement Learning methods are divided into
three main groups, based on how they treat the policy and value functions: actor-
only methods, critic-only methods, and actor-critic methods (Konda and Tsit-
siklis, 2003), (Grondman, 2015). Critic-only methods rely on value function
learning in order to approximate the solution of the Bellman equation (a pro-
cedure also indicated as Approximate Dynamic Programming, cf. Chapter 6 of
(Bertsekas, 2005)), and then use it to derive actions. Actor-only methods avoid
giving an overall estimate of the value function, as they work with a parameter-
ized family of policies and search the optimal policy directly in the parameter
space; for this reason they are also called policy search methods. Actor-critic
methods, finally, combine both the previous classes, performing Approximate
Dynamic Programming to estimate a value function, and then employing it to
optimize the parameters of a policy function.

Critic-only methods learn an approximated value function which is then used
to compute an associated decision policy. Such policy is often designed to select
actions in a greedy fashion with respect to the estimated value function. The
critic-only methods that follow the value iteration scheme at first iteratively ap-
proximate the optimal value function and then extract the optimal policy from
it. The ones in accordance with the policy iteration scheme, instead, alternate
updating the value function of the currently employed policy with updates of the
policy based on the last value function obtained. Given that such scheme pro-
vides iterative updates of the the decision policy, it might seem to belong to the
actor-critic set of methods, but this is not the case: for a method to be actor-critic
(or actor-only) the decision policy constituting the actor module needs to be
modeled directly as a parametric function, not indirectly via a value assessment.
Instead in critic-only methods the decision policy is not a representation that can
be directly manipulated, but is a consequence of the estimated value function.
Following from this, the exploitation of the approximated value function for the

1Following the control literature notation, in this dissertation we consider the stimuli received by
the agents to be costs instead of the rewards usually employed in Reinforcement Learning. Accord-
ingly, the value function here is intended as a cumulative cost along a trajectory and the considered
optimization problems will be formulated as problems of minimization of an expected cost, instead
of maximizing a gain. The two points of views are equivalent, considering costs as negative rewards.
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action selection entails an additional optimization procedure in every state en-
countered, that is both difficult due to the common phenomenon of insufficient
smoothness in the approximated value function, and computationally inefficient
if the action space is large or continuous, as it often happens in control appli-
cations. To employ critic-only methods in case of continuous actions space the
most common approach is hence to discretize the action space. The discretiza-
tion of the action space can reduce the computational cost by transforming such
optimization into a search procedure on a look-up table, but indeed it forces the
choice of possibly sub-optimal actions (Alibekov, Kubalı́k, and Babuška, 2018).

The use of a parameterized control policy, exploited both by actor-only and
actor-critic methods, gives one the advantage of effectively dealing with a con-
tinuous set of actions and high dimensional, including continuous, state spaces.
Moreover, a policy parameterization can easily incorporate domain knowledge
or can be chosen such that it is meaningful for the task at hand, often leading to
fewer parameters to be learned, with respect to traditional value function-based
approaches (Peters and Schaal, 2008). Finally, while small changes in the value
function might lead to abrupt changes in the derived greedy control policy in
the critic-only scenario, a slow update of policy parameters (often guided by a
learning rate) can provide smoother changes in the control policy, resulting in
less risky online operations (Desienroth, Neumann, and Peters, 2011).

Reinforcement Learning methods, being based on value functions and policy
functions, represent an advantageous framework, permitting to implicitly incor-
porate the dynamics identification into the learning method, as underlined by
(Hafner and Riedmiller, 2011), that observes as well how the learning design,
including the handling of the data sampling, can hence be concentrated on the
regions that are important to the control application. However, as recollected
in (Recht, 2018), modeling is still built into the assumptions of Reinforcement
Learning methods, even in a model-free setup, for what concerns methods doted
of a critic module: estimating value functions is based on assumptions on their
structure, and hence requires modeling effort. Actor-critic methods optimize the
actor parameters with respect to the approximation of the value function carried
on by the critic module. This has as a consequence the propagation of eventual
error from the critic to the actor (given by underrepresentative model structure
or by poorly estimated parameters) (Desienroth, Neumann, and Peters, 2011).
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Following such considerations, in order to learn controllers while reducing the
modeling effort, we focus on policy search methods.

1.2.1 Policy search methods

The basic idea of policy search methods is based on the concept of episodic cost

R(τ) =

L−1∑︂
t=0

rt(st, ut) + rL(sL),

evaluating the cost of an episode τ = (s0, u0, s1, . . . , uL−1, sL)
2 , composed

by a sequence of input and states generated by the plant to be controlled, and
on the policy parameterization πθ. The function πθ can be deterministic, i.e.
a function πθ : S −→ A that, given a state st in the state space S , generates
an input action ut = πθ(st) ∈ A. In alternative, stochastic control policies
πθ : S × A −→ [0, 1] are widely considered, parameterizing the probability
πθ(ut|st) that the action ut is chosen when in state st. Using such concepts one
can formulate the problem of finding θ⋆ such that

θ⋆ = argmin
τ

Eτ∼Tθ
[R(τ)], (1.1)

where the dependence of the goal function on θ is given by the distribution of
a random variable Tθ representing the trajectories τ induced by the policy πθ.
Considering a stochastic policy πθ(ut|st), the law of distribution of Tθ is

pπθ
(τ) = P(s0)

L−1∏︂
t=0

P(st+1|st, ut)πθ(ut|st),

where P(st+1|st, ut) is the transition probability of the system-environment dy-
namics. In case of a deterministic policy πθ(st), instead, we have

pπθ
(τ) = P(s0)

L−1∏︂
t=0

P(st+1|st, πθ(st)).

2In this summary we consider the finite horizon scenario, that is common: many methods often
perform episodic policy updates. When an infinite horizon is considered, the employed notation
holds, with the addition of a discounting factor γ ∈ (0, 1] in the trajectory cost.
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Many model-free policy search methods tackle problem (1.1) by iterativly opti-
mizing the policy parameters following the direction of steepest descent of the
expected cost, indicated by the gradient of the goal function, motivated by the
successful application of gradient methods in optimization. Moreover, gradient
methods often allow the derivation of convergence guarantees as for instance
in (Fazel et al., 2018), where conditions on the principal gradient updates are
given to guarantee convergence to a globally optimal solution, in the case of
linearized control problems, considering both sample and computational com-
plexity. Starting from an initial guess θ0, gradient-based methods compute at
every iteration an updated set of parameters θi+1 as

θi+1 = θi − αi∇θEτ∼Tθ
[R(τ)],

in which the gradient ∇θEτ∼Tθ
[R(τ)] is approximated using data collected

from controller-plant-environment interactions.
A simple method to approximate the required gradients from data is based

on the Least Square-Based Finite Difference (LSFD) scheme (Chang, Hang,
and Zhao, 2006). Starting from an initial guess θ0, at every iteration i the
method applys a set of perturbations δj to the parameter vector θi. Employ-
ing the policies induced by the perturbed parameters to generate trajectory from
the plant we obtain ∆Rj = R(τ(θi + δj)) − R(τ(θi)). An approximation of
the gradient of R with respect to θ is then obtained by using a first order Taylor-
expansion of R(τ(θ)) and solving for the gradient in a least-squares sense, i.e.,
∇θR(τ(θ) = (δ′ δ)−1 δ′ ∆R, where δ is the matrix of the perturbations δj and
∆R is a vector containing the ∆Rj . This method is quite expensive in terms of
number of interactions with the real-life plant, requiring at every iteration i the
execution of a set of policies corresponding to the perturbed parameters θi + δj .

A definitely less expensive method is REINFORCE (Williams, 1992), that in
order to disentangle the approximation of ∇θJ(θ) = ∇θEτ∼Tθ

[R(τ)] from the
use of the transition probabilities P(st+1|st, ut) requires to employ stochastic
control policies. Thanks to stochastic policies, it is indeed possible to apply the
so-called “log-likelihood trick”, and the gradient of the cost function J(τ) can
be rewritten as

∇θJ(θ) = Eτ∼Tθ

[︂
R(τ)

(︂ L−1∑︂
t=0

∇θ log πθ(ut|st)
)︂]︂
.
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The algorithm can then update the policy in episodic fashion, by collecting at
iteration i a full trajectory τ (i) = (s

(i)
0 , u

(i)
0 , . . . , s

(i)
L−1, u

(i)
L−1) directly from the

plant, computing the cost R(τ (i)) and then proceeding to update the parameters
as

θi+1 = θi − αiR(τ
(i))

(︂ L−1∑︂
t=0

∇θ log πθ(u
(i)
t |s(i)t )

)︂
, (1.2)

without employing the unknown transition probabilities of the system. It is im-
portant to underline that the use of deterministic policies does not allow to em-
ploy the “log-likelihood trick” and hence to eliminate the dependency of the
optimization direction from the system dynamics. For this reason, the stochas-
ticity of the policy parameterization is a fundamental requisite to employ such
methods.

It has been observed that the proposed gradient-based updates experience
very high variance (Peters and Schaal, 2008), (Desienroth, Neumann, and Peters,
2011), (Grondman, 2015), (Recht, 2018). This variance arises from a combina-
tion of employing stochastic policies (in order to avoid the use of a model), and
inherent properties of the approach. As can be seen from the Bellman’s equa-
tion, though, the optimal policy for Problem (1.1) (the greedy policy associated
with the optimal value function) is always deterministic (Recht, 2018), making
the choice of a different class of functions counterintuitive.

From optimization theory we know that the convergence speed of stochas-
tic gradient methods will be negatively affected by the variance of the gradient
(Bottou, Curtis, and Nocedal, 2018). For this reason efforts can be found in lit-
erature to reduce the variance in the gradient estimates, via the introduction of
baselines, tuned for this goal (Greensmith, P. Bartlett, and Baxter, 2002), (Hof-
mann et al., 2016), or via modifications in the algorithm, like in the case of
G(PO)MDP (Baxter and P. L. Bartlett, 2001) and the policy gradient theorem
algorithm (Sutton, McAllester, et al., 1999), that exploit the intuiton that future
actions do not depend on past rewards to distribute the step rewards rt(st, ut)
in (1.2) among the gradients terms, with the rationale that longer trajectories in-
crease the gradient variance.

Methods that rely on some form of model for the optimization of the policy
are less affected by the mentioned effects. In literature policy search applications
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based on a model rely mostly on Locally Weighted Bayesian Regression (Atke-
son, Moore, and Schaal, 1997) and Gaussian Process Regression (Rasmussen,
2003), as for instance (Bagnell and Schneider, 2001), (Ko et al., 2007). The
employed models are adaptive global models of the system dynamics, updated
online via episodic interaction with the real system. Although they are not ob-
tained through a preliminary modeling or identification phase, but rather adapted
online, they suffer of all the issues related to modeling effort, modeling error and
robustness discussed in Section 1.1 (Desienroth, Neumann, and Peters, 2011).

In this dissertation policy search methods for the synthesis of determin-
istic control policies from data are proposed, applicable both offline and on-
line, avoiding the episodic paradigm of learning in favor of a “learning-while-
controlling effort”. The fundamental idea behind this work (explained in more
detail in Section 1.4 and Chapter 2) is to design a data-driven approach for es-
timating the gradient based on local linear approximations of the system dy-
namics, updated online and not trained to provide information on the overall
(possibly nonlinear) dynamics of the plant. Due to their lack of generalization
capabilities such local models are valid and employed only in specific neighbor-
hoods of the visited space, with the sole scope of providing a tool for gradient
approximation. By combining the gradient-based framework with some ele-
ments of the model-based scenario, the idea is to leverage between the discussed
drawbacks of the data-driven and model-based classes of methods. In partic-
ular on one side we succeed in mantaining the modeling effort extremely low,
employing linear objects for the optimization of controllers on nonlinear plants,
and avoiding a preliminar identification phase. On the other side the method is
capable of learning (and applying online) policies that are deterministic, reduc-
ing both the variance affecting the gradients and the risk of randomic operations
online on the plant.

1.3 Stochastic Gradient Descent methods

This section provides a short recap of the numerical optimization methods em-
ployed in the dissertation, in particular of the mini-batch gradient-based methods
that solve stochastic optimization problems.
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Considering a functionF (z, ξ), mini-batch gradient methods attempt at com-
puting

z∗ = argmin
z

Eξ∼Ξ [F (z, ξ)] (1.3)

where the expectation in the goal function is considered with respect to the ran-
dom variable Ξ.

In particular, in this dissertation we focus on the mini-batch Stochastic Gra-
dient Descent (SGD) algorithm (Robbins and Monoro, 1951) and some of its
faster variants, i.e., RMSProp (Tieleman and Hinton, 2012), Adam (Kingma
and Ba, 2015) and AMSGrad (Reddi, Kale, and S. Kumar, 2019). Such methods
are studied and compared in literature (Ruder, 2017), (Bottou, Curtis, and No-
cedal, 2018). The cited literature provides proofs of convengerce (at least to a
local minimum) for the aforementioned methods, under opportune assumptions
on the smoothness of F , and provided that the sequence of learning rates {αt}t
is suitably chosen. In practice, though, such methods are widely applied, even
outside such hypothesis, especially in Machine Learning.

Mini-batch SGD is the most classic of the mini-batch methods; the SGD
algorithm starts from an initial guess z0 as a solution of Problem (1.3) and iter-
atively updates it, by implementing at every step t an update rule of the form

zt = zt−1 − αt Dt(GF (zt−1)), (1.4)

where the optimization direction Dt(GF (zt−1)) is the averaged gradient in z
over the mini-batch { ξ(t)i }Nb

i=1 sampled at instant t according to Ξ, that is,
Dt(GF (z)) = GF (z), with

GF (z) =
1

Nb

Nb∑︂
i=1

∇zF (z, ξ
(t)
i ).

RMSProp is developed from mini-batch SGD by adding adaptive learning rates
for each of the parameters components. This permits to achieve more flexibility
in the updating of the different components, considering that the components
of the gradient might differ in magnitude, and hence require to be updated at a
different rate. Hence, the learning rates and optimization direction at instant t
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are obtained as

αt =
α√
vt + ϵ

, Dt(GF (zt−1)) = GF (zt−1).

In the previous equation the learning rates are automatically computed by di-
viding a constant α by the squared root of the weighted sum vt of the squared
mini-batch gradients, i.e.,

vt = β vt−1 + (1− β)GF (zt−1)
2
,

and the squared root and the power are meant as componentwise operations. The
weight β is chosen in [0, 1], acting as forgetting factor. A small positive constant
ϵ is added in the denominator, to avoid dividing by zero. This setup eliminates
the need to manually tune the learning rate, that is usually a difficult task in the
algorithm design.

If the function F is complex, the gradients will change dramatically in dif-
ferent, but possibly close, areas of the space. Hence, updating the variable zt
according to such gradients would result in almost random updates, making the
optimization process slower. On the other side, if a value of zt is reached such
that the corresponding surface of the function F is flat, the associated gradients
reduce, making it difficult for the algorithm to move away and find the optimal
value. In order to avoid such phenomena some methods introduce the concept of
momentum. The momentum, in practice, is a smoothed optimization direction
obtained as a weighted average of the past gradient values. In the classic mo-
mentum definition, the weight on the past gradient values is an additional hyper-
parameter, to be chosen in [0, 1] in the tuning phase. Adam, instead, combines
the adaptive learning rates introduced in RMSProp with the use of an adaptive
estimation of the momentum, computed as an exponentially decaying average
of past gradients, employed as optimization direction, i.e.,

mt = β1mt−1 + (1− β1)GF (zt−1),

vt = β2 vt−1 + (1− β2)GF (zt−1)
2
,

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

,

αt =
α√
v̂t + ϵ

, Dt(GF (zt−1)) = m̂t.
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Finally, AMSGrad is a slightly modified version of Adam that endowes the al-
gorithm with a long-term memory of past gradients, solving some issues given
by the essentially fixed sized window of past gradients employed by Adam. The
associated learning rate and optimization direction are

αt =
α√
vt + ϵ

, Dt(GF (zt−1)) = m̂t,

where the learning rate αt is defined based on vt = max(vt−1, v̂t).

1.4 Structure of the dissertation

This dissertation presents new algorithms for learning optimal feedback con-
trollers directly from experimental data, considering the plant to be controlled
as a black-box source of inputs and outputs. The proposed methods fall under
the Reinforcement Learning-based feedback control design umbrella, belonging
to the policy search family of algorithms. In this work deterministic policy pa-
rameterizations are employed, representing the feedback controllers as a func-
tion of the values in feedback, and of a set of parameters to be learned. The
optimization of a policy parameterization corresponds to the search of the set of
parameters associated with the best value of a chosen performance index. For
all the proposed algorithms, both offline and online settings are considered. In
the first case the learning process occurs on a dataset previously collected from
the plant; in the second case instead, the control law that is being optimized it-
eratively is directly applied to the plant to perform the desired task and collect
the successive data sample. Additionally, although a state observer on the plant
can be employed as a source of feedback data, the dissertation focuses on an
ARX-formulation, building a measured state composed by a set of past input
and (possibly noisy) output measurements, collected from sensors on the plant
itself, and hence not requiring any effort in observing the actual state of the plant.

Following the discussion presented in Section 1.1, the methods are designed
not to require an initial identification of a model of the process dynamics, with
the idea of lowering the effort intrinsic to the modeling challenge. In this sense
the proposed control design approach is not model-based. Nonetheless, it is not
completely model-free, relying on simple local linear models estimated online
from the input/output data stream and valid in specific neighborhoods of the
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states visited by the system. The purpose of such local linear models is not to
provide information on the overall dynamics of the plant, that could be possibly
nonlinear, but rather merely to approximate the gradient of the performance in-
dex. The gradient will be employed to drive the optimization of the control law,
according to numerical optimization techniques, such as the mini-batch Stochas-
tic Gradient Descent techniques introduced in Section 1.3.

On one side, the effort required to compute the local linear models is indeed
lower than the one necessary to obtain a simple but reliable model of an unknown
system, based on first principles or on system identification techniques. On the
other side, collecting the states visited by the system and the associated local
linear models, and using them in mini-batch in order to compute the gradient-
based parameter updates results to be a sufficiently accurate data-driven gradient
approximation, capable of synthesizing good control policies. Moreover, the use
of a deterministic control policy, together with the sampling and averaging of a
mini-batch of collected local models at every step can have a positive effect over
the variance of the approximated gradients.

The next chapters are organized as follows:

• In Chapter 2, after the required problem formulation, the basic elements
characterizing the Optimal Policy Search (OPS) approach are introduced,
in particular the designed data-driven approach to stochastic optimization.
The online and offline OPS algorithms for the synthesis of smooth feed-
back controllers are detailed. The content of this chapter is mainly based
on (Ferrarotti and Bemporad, 2019), (Ferrarotti and Bemporad, 2020a).

• Chapter 3 is dedicated to the application of the OPS method to the track-
ing of a-priori unknown reference signals. The tracking problem is formu-
lated as a policy search problem, then numerical examples are included,
demonstrating the performance of the proposed approach in handling such
problem for both linear and nonlinear plants, synthesizing linear feedback
controllers and nonlinear ones (i.e., neural networks). The content of this
chapter is mainly based on (Ferrarotti and Bemporad, 2019), (Ferrarotti
and Bemporad, 2020a).
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• In Chapter 4 the OPS method is extended to the OSPS method for the
synthesis of non-smooth (hybrid) controllers directly from data, handling
the learning of both the set of local controllers and the switching law.
Given that the policy parameterization is not smooth, additional care is
given to avoid the computation of the gradients necessary for the OPS
steps in areas of the parameters space where the performance index is
not continuous and hence not differentiable. Numerical examples of the
application of OSPS to hybrid or nonlinear systems for the synthesis of
tracking policies are included. The content of this chapter is mainly based
on (Ferrarotti and Bemporad, 2020b).

• Chapter 5 incorporates the Optimal Policy Search approach in a collabo-
rative multi-agent framework for the learning of optimal feedback control
laws, considering multi-agent systems characterized by structural similar-
ities, exploiting a cloud-aided scenario. Two collaborative learning strate-
gies are designed, based on consensus and on evaluation of levels of trust
among the agents respectively. The resulting enhancement of learning
performance with respect to the single agent scenario are shown, by ap-
plying the extended approach to the output-tracking problem. The content
of this chapter is mainly based on (Breschi, Ferrarotti, and Bemporad,
2020), (Ferrarotti, Breschi, and Bemporad, 2021).

Concluding remarks and notes on possible future research are included in Chap-
ter 6.
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1.5 List of symbols

This section contains a list of the main mathematical symbols employed in this
dissertation:

Rn set of the vectors with n real elements

P(Rn) set of subsets of Rn

[x]i i-th element of x ∈ Rn

{xℓ}
∞

ℓ=0
infinite sequence of elements xℓ

Rn×m set of the real-valued matrices with n rows and m columns

Mi,j element on the i-th row, j-th column of M ∈ Rn×m

0n×m n×m matrix of zeroes

1n×m n×m matrix of ones

In n× n identity matrix, (In)i,i = 1, (In)i,j = 0 otherwise

M ′ ∈ Rm×n transpose of M ∈ Rn×m

M−1 inverse of M ∈ Rn×n, MM−1 = In =M−1M

M ⪰ 0 semi-definite positive matrix

M ≻ 0 definite positive matrix

|x| absolute value of x ∈ R

||x|| generical norm of x ∈ Rn

||x||2 Euclidean norm of x ∈ Rn,
||x||2=

√
x′ x

||x||M weighted norm of x ∈ Rn,
||x||M=

√
x′M x, with M ∈ Rn×n

[a, b] set of x ∈ R such that a ≤ x ≤ b
[a, b) set of x ∈ R such that a ≤ x < b

(a, b] set of x ∈ R such that a < x ≤ b
(a, b) set of x ∈ R such that a < x < b

f : D → C function with domain D, taking value in C
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F(D, C) set of all the functions with domain D, taking value in C

f
⃓⃓⃓
E
: E → f(E) restriction of f : D → C to E ⊂ D

∂f(x)/∂[x]i partial derivative of f with respect to [x]i

∇xf(x) vector of ∂f(x)/∂[x]i for each element [x]i of x ∈ Rn

C1(Rn) set of differentiable functions over Rn,
with continuous derivatives over Rn

id : D → D identity function, id(x) = x

w ∼W w sampled from the random variable W

Ew[f(x,w)] expected value of f(x,w) with respect to w ∼W
N (µ, σ2) Gaussian distribution with mean µ and variance σ2

U(A) uniform distribution over set A

Å interior of set A

A closure of set A

∂A boundary of set A

P(M) set of permutations of M elements

SM,L set of L-length sequences of M objects
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Chapter 2

Learning smooth feedback
controllers from data

This chapter introduces the basic elements composing the Optimal Policy Search
approach for the synthesis of feedback controllers. After describing the problem
formulation and the approximations necessary to make the problem tractable in
practice, the techniques used to deal with the unknown plant dynamics and the
algorithms for the online and offline learning will be described in detail.

2.1 The Optimal Policy Search problem

Let P be a strictly causal discrete-time plant, with dynamics{︃
xt+1 = f(xt, ut, w

f
t ),

yt = g(xt, w
g
t ),

(2.1)

in terms of input ut ∈ Rnu , output yt ∈ Rny , exogenous non measurable distur-
bances wf

t ∈ Rnf
w , wg

t ∈ Rng
w and inner state xt ∈ Rnx , as shown in Figure 3.

Our aim is to design a feedback controller generating command inputs u0,
u1, u2, . . . capable of driving the plant P to perform a given task, without an
explicit knowledge of model (f, g) in (2.1). The classic control goals of output
regulation and reference tracking can be considered as possible tasks, as well as
more general objectives, generally exemplified by economic costs.
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Figure 3: Diagram of the considered strictly causal plant P .

Figure 4: Diagram of plant P under “black box plant” hypothesis.

To formulate this problem, a set (st, pt) ∈ Rns × Rnp of decision variables
is considered, collecting the signals composing the feedback for the controller.
The vector st is designed to contain all the Markovian signals relevant to the task
to be performed by the plant, while pt is a vector of non-Markovian exogenous
signals, such as measured disturbances, time-varying parameters, and reference
signals to track. In particular, st contains a set of elements xt composed by the
available information useful to currently describe the plant P to be controlled.
Eventually, st can also include a set of other variables zt that are significant for
the decision process, representing relevant interactions of P with the environ-
ment, like the integral of tracking errors with respect of a reference signal in
case of output tracking task, i.e., st = [xt , zt ]

′. Note that when the inner state
xt of plant P introduced in (2.1) is observable it may be used to describe the
state of P , hence xt can be set to xt, i.e., xt = xt. In the remaining part of this
dissertation, though, we will assume not to observe the state xt. The control de-
sign can be based on an input/output model representation, following the ARX
paradigm. A finite collection of the most recent samples of the input and output
of the plant is used to build xt, as

xt = [ y′t . . . y
′
t−no+1 u

′
t−1 . . . u

′
t−ni

]′ ∈ Rnx , (2.2)

where we consider nx = nyno + nuni.
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Figure 5: Diagram of the decision variables dynamics h.

Additionally, the model of the plant is assumed to be a “black box”: P is
used exclusively as generator of input and output (ut, yt+1), to be measured
thanks to (possibly noisy) sensors, as shown in Figure 4, where the vector dt
represents additive noise over the measured output of the system. The dynamics
(f, g) in (2.1) are considered to be unknown in the control design phase. Based
on this assumption, the temporal evolution of the decision variable st

st+1 = h(st, pt, ut, dt), (2.3)

represented in Figure 5, is supposed to be unknown as well, depending on (f, g),
and therefore not used for control design purpouses.

Fixed a set of decision variables (st, pt), the problem representation requires
to design a differentiable function ρ : Rns+np+nu → R called the stage-cost
function. The value ρ(st, pt, ut) represents the cost of applying an action ut to
P while in (st, pt), thus evaluating the performance of ut in steering plant P to
accomplish an assigned task.

In general, a task is going to require more than one action to be accom-
plished: we define a trajectory as the sequence of states, controls, exogenous
signals and disturbances ( sℓ, uℓ, pℓ, dℓ ) encountered while accomplishing a
task. Notice that, fixed a (finite or infinite) sequence of control input {uℓ}ℓ, the
associated trajectory depends only on the initial state s0, and on the sequences
{pℓ}ℓ, {dℓ}ℓ of exogenous signals and disturbances. In case of infinite horizon
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Figure 6: Diagram of dynamics h in closed-loop with the policy π.

tasks, the trajectory cost is the sum of the associated stage-costs

J∞( {uℓ }
∞

ℓ=0
, w ) =

∞∑︂
ℓ=0

ρ(sℓ, pℓ, uℓ), (2.4)

such that sℓ+1 = h(sℓ, pℓ, uℓ, dℓ), ℓ = 0, 1, . . .

where we name w = ( s0, { pℓ, dℓ }
∞

ℓ=0
) the vector collecting the initial state

s0, and the values p0, d0, p1, d1, . . . of exogenous signals and disturbances.
Considering an episodic task, instead, that is a finite horizon task with horizon
of length T , the trajectory cost is defined as

JT ( {uℓ }
T

ℓ=0
, w ) =

T−1∑︂
ℓ=0

ρ(sℓ, pℓ, uℓ) + ρT (sT , pT
), (2.5)

such that sℓ+1 = h(sℓ, pℓ, uℓ, dℓ), ℓ = 0, 1, . . . , T - 1

where w = ( s0, {pℓ}
T

ℓ=0
, {dℓ}

T−1

ℓ=0
) collects the initial state s0 and a finite se-

quence of exogenous signals and disturbances. As shown in (2.5), such cost
might include a term ρT (sT , pT

), weighting the distance of the final state of the
trajectory from a specific goal state for the episodic task.
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The feedback controller to be designed is represented as a deterministic pol-
icy function π : Rns+np → Rnu that associates to each st and pt an action
ut = π(st, pt), automatizing the decision making process, as represented in
Figure 6. As discussed in Section 1.2, data-driven policy search methods often
require to synthesize stochastic policies, i.e., π : Rns+np × Rnu → [ 0, 1 ], such
that

∫︁
Rnu π(st, u) du = 1 for each st ∈ Rns+np . In the control field, though,

it is quite natural to prefer a deterministic controller over a stochastic one, given
the uncertainty a stochastic law may inject into the closed-loop behavior. More-
over, as can be seen from the Bellman’s equation, it always exists an optimal pol-
icy that is deterministic: such policy is the one that acts greedily with respect to
the optimal value function V∗, i.e., π(st, pt) = argminu ρ(st, pt, u)+V∗(st+1),
where st+1 depends on u by means of (2.3). In the following we will hence
consider deterministic controllers.

We are interested in finding the controller π minimizing the trajectories cost,
prioritizing trajectories based on their realization probability. This is expressed
by considering the expectation of the trajectory cost with respect to the trajecto-
ries realization probability, that is

EW [J ](π) = Ew[J∞( {π(sℓ, pℓ)}
∞
ℓ=0, w )], (2.6)

such that sℓ+1 = h(sℓ, pℓ, π(sℓ, pℓ), dℓ), ℓ = 0, 1, . . .

w ∼W,

where J∞ is defined in (2.4), and

EW [J ](π) = Ew[JT ( {π(sℓ, pℓ)}
∞
ℓ=0, w )], (2.7)

such that sℓ+1 = h(sℓ, pℓ, π(sℓ, pℓ), dℓ), ℓ = 0, . . . , T - 1

w ∼W,

with JT defined in (2.5). In both cases the trajectories realization probability
corresponds to the realization probability of the random vector W , containing
S0 (assuming the value of a possible initial state of the trajectory), and a collec-
tion of Pℓ, Dℓ representing the random values of the signals pℓ, dℓ at step ℓ. The
collection of Pℓ, Dℓ in W can have infinite or finite cardinality, depending on
the infinite or finite horizon setup we are in, respectively.
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Based on (2.6) - (2.7), the optimal feedback controller corresponds to

π∗ = arg min
π∈F(Rns+np ,Rnu )

EW [J ](π), (2.8)

where F(Rns+np ,Rnu) is the set of functions of ns + np real variables tak-
ing values in Rnu . Equation (2.8) represents a general abstract Optimal Policy
Search (OPS) problem.

Aiming at approximating the solution of problem (2.8), we consider a Model
Predictive Control (MPC)-like iterative optimization routine, that at every instant
t of the control procedure solves

π∗
t = arg min

π
E
[︂ L−1∑︂

ℓ=0

ρ(sℓ, pℓ, uℓ) + ρL(sL , pL
)
]︂
,

such that uℓ = π(sℓ, pℓ), ℓ = 0, 1, . . . , L - 1,

sℓ+1 = h(sℓ, pℓ, uℓ, dℓ), ℓ = 0, 1, . . . , L - 1,

s0 = st

dℓ ∼ Dℓ, ℓ = 0, 1, . . . , L - 1,

pℓ ∼ Pℓ, ℓ = 0, 1, . . . , L.

where st is the state at instant t and a finite horizon L ≤ T < ∞ is employed,
eventually together with a terminal cost ρL. At every iteration t the MPC scheme
impose to solve such problem, act on the plant using ut = π∗

t (st, pt), and collect
the next state st+1.

Through this MPC scheme a sequence {πt}t of feedback laws is computed.
Each optimization problem is characterized by the initial condition s0 = st and
the sliding window optimization finds a specific optimal policy π∗

t for each st
reached by the plant.

As formulated in the OPS problem (2.8), though, we are interested on a
static time-invariant feedback controller, and hence on a policy capable to per-
form optimally on average from every possible reachable state. With this in
mind, we formulate a time-invariant problem where the expected value is taken
with respect to the random trajectories of Pℓ and Dℓ and the random vector SP

representing all the states reachable by plant P .
In this scenario SP is used as generator of initial states for the trajectory,

substituting the sliding-window mechanism of the MPC-like control strategy, as

27



shown in the following formulation:

π∗ = arg min
π

E
[︂ L−1∑︂

ℓ=0

ρ(sℓ, pℓ, uℓ) + ρL(sL , pL
)
]︂
, (2.9)

such that uℓ = π(sℓ, pℓ), ℓ = 0, 1, . . . , L - 1,

sℓ+1 = h(sℓ, pℓ, uℓ, dℓ), ℓ = 0, 1, . . . , L - 1,

s0 ∼ SP

dℓ ∼ Dℓ, ℓ = 0, 1, . . . , L - 1,

pℓ ∼ Pℓ, ℓ = 0, 1, . . . , L.

As for the MPC formulation, the shortening of the horizon is necessary in order
to make the problem tractable. The terminal cost ρL can be designed to approx-
imate the original infinite horizon cost.

Again for tractability, we restrict the generic set F(Rns+np ,Rnu) in Prob-
lem (2.8) to a subset of feedback controllers, by choosing a policy parameter-
ization. A policy parameterization is an analytic form that expresses a rela-
tionship between ut and the decision variables (st, pt), in function of a vector
H ∈ Rnh of parameters. We consider policy functions that are differentiable
and whose derivatives are continuous with respect to the parameters H , i.e., for
each (st, pt) ∈ Rns+np the policy πH(st, pt) ∈ C1(Rnh). Denoting a pol-
icy parameterization by πH(st, pt), the optimization problem (2.8) is therefore
transformed into

H∗ = arg min
H

E
[︂ L−1∑︂

ℓ=0

ρ(sℓ, pℓ, uℓ) + ρL(sL , pL
)
]︂
, (2.10)

such that uℓ = πH(sℓ, pℓ), ℓ = 0, 1, . . . , L - 1,

sℓ+1 = h(sℓ, pℓ, uℓ, dℓ), ℓ = 0, 1, . . . , L - 1,

s0 ∼ SP

dℓ ∼ Dℓ, ℓ = 0, 1, . . . , L - 1,

pℓ ∼ Pℓ, ℓ = 0, 1, . . . , L.

By parameterizing the policy, we simplify Problem (2.9), passing from the op-
timization over a generical space of functions F(Rns+np ,Rnu) to optimizing
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a vector of parameters H ∈ Rnh . Moreover, eventual knowledge on efficient
feedback controllers that is gathered from the established control theory and ap-
plications can be incorporated in the structure of the controller, specifying the
relationship between the input generated by the controller and the feedback col-
lected from the plant and the environment.

We underline that problem (2.10) is not necessarily convex with respect to
the parameters H . Even if the stage cost ρ are designed to be convex in sℓ, uℓ,
and the policy πH is convex in H , the composition of such costs and policy with
the unknown dynamics h that generate the sequence {sℓ}ℓ could still result in
a non-convex optimization problem. Even in the simple case of a linear system
and a linear policy parameterization, i.e., st+1 = Ast + B ut + E pl + Ddt
and ut = Hs st + Hp pt, if we considering the elements of {sℓ}ℓ in function of
the parameters H = (Hs, Hp), we have that

sℓ+1 = (A + BHs)
ℓ s0 +

ℓ−1∑︂
j=0

(A + BHs)
j−ℓ−1 (E + BHp) pj +Ddt.

The convexity of such function in H is not always matched, depending on the
matrices (A, B, E).

Observing the goal function of Problem (2.10), it corresponds to the ex-
pected cost of applying the parameterized policy πH to the plant P for L steps,
following the dynamics h introduced in (2.3). As anticipated in Chapter 1 and
previously in this section, we work under the assumption not to know the nomi-
nal model of the plant. The dynamics described by (f, g) in (2.1) and hence by
h in (2.3) will not be used for the control policy synthesis. Section 2.2.2.2 de-
scribes the techniques employed to approximate the solution of Problem (2.10)
while considering the system (2.3) as a “black-box”, and deriving a serie of lo-
cal linear models from data, without requiring the identification of the overall
dynamics of the system.

2.2 Data-driven approach to the OPS problem

In order to tackle problem (2.10) in a setup that does not provide knowledge on
the dynamics of the plant P to be controlled, we design a data-driven approach
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that, combined with first order stochastic optimization techniques, carries out
the optimization procedure. As introduced in Section 1.3, first order stochastic
optimization methods are iterative optimization methods that, once applied to a
stochastic problem, update at every iteration the current parameters value by tak-
ing a step of length α on a specific direction v, i.e., performingHt = Ht−1−α v.
To individuate the optimal direction v, such methods require the computation of
a set of gradients of the goal function. Particularly, applying such methods to
problem (2.10) means, at iteration t, to compute the gradient∇HJL(Ht−1, w

t
i )

for each element wt
i in a mini-batch {wt

i}Nb
i=1 obtained by sampling from WP

containing the random variables defined in (2.10), i.e.,

WP = (SP , {Pℓ}
L

ℓ=0
, {Dℓ}

L−1

ℓ=0
). (2.11)

However, the shortened-horizon cost JL(·, w) depends on (2.3), and so does its
gradient. Since in our setup the dynamics (2.3) are unknown, we design a data-
driven approximation procedure, to obtain at every step t a set of approximated
gradients {∇H ĴL(Ht−1, w

t
i )}

Nb
i=1, to be used in place of ∇HJL(Ht−1, w

t
i )

throughout the optimization. In order to make up for the lack of knowledge on h,
we employ local linear models, approximating the behavior of st only in specific
neighborhoods of the state-space. In the following, the gradient approximation
at iteration t is described, after presenting the way data are used to substitute
knowledge of the dynamics of P and the sampling procedure employed to obtain
the mini-batch {wt

i}Nb
i=1.

2.2.1 Data stream management and local linear models

To approximate the gradients, we rely on the information collected from plant
P . Such information is organized in a couple (X,Θ), composed by a dataset X
called states history of P, and a set Θ. The states history X contains a sequence
of states, obtained from input and output data collected from the plant P . We
assume to be capable of collecting a sequence

{ (u0, y1), (u1, y2), (u2, y3), (u3, y4), . . . }

of couples (ui, yi+1) representing interactions with the stricty causal plant P
such that ui is given as input to P and yi+1 is the measured (and possibly noisy)
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one step ahead output associated to it. Then, we can use them to build the
vectors described by (2.2), composed by no output and ni input. Such states
get collected in X , i.e.,

X =
{︂
x0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yno

...
y1

uno−1

...
uno−ni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yno+1

...
y2
uno

...
uno−ni+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yno+2

...
y3

uno+1

...
uno−ni+2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, . . .

}︂
.

We set no − ni ≥ 0 to ensure that the earliest input uno−ni
employed belongs

to the considered stream. The set Θ instead is a collection of matrices Θi, one
per each state xi in X . The matrix Θi is a local linear model representing an
approximation of the local behavior of plant P in a neighborhood of xi. The
idea is to collect simple local linear models and use them to approximate the
required gradients, in order to avoid identifying first a full model of (2.3) from
data. It is worthy to notice that none of the Θi contained in Θ can be considered
as a global model of system (2.3): their function is to be linear approximators of
the possibly nonlinear plant P , when restricted to the closely surrounding area
of the corresponding states xi contained in X . For this reason their validity is in
general merely local. In the specific case in which the underlying plant is linear
and ni and no are chosen to match the order of the system, however, the local
models will tend to the nominal model of the plant.

To collect said local linear models, the process is modeled as a linear time-
varying system with noise such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

Θi = Θi−1 + ξi

yi+1 = Θi

[︄
xi

ui

]︄
+ di

Θ0 = Θ

(2.12)

where ξi is a Gaussian white noise with covariance Qk, di is a Gaussian white
noise with covariance matrix Rk.

Starting from an initial guess Θ ∈ Rny×(nx+nu), each triplet (ui, xi, yi+1)

collected from P is used to perform a Kalman filtering (KF) to update Θi. Then
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xi and the associated local model Θi are stored in X and Θ, respectively. This
procedure can be performed using a finite stream of data, previously collected
from P , or it can be performed step by step online, while the input ui are fed
to the plant and the outputs are measured. Depending on this, the information
at disposal for the controller optimization at iteration t changes, and so does the
couple (X,Θ), as furtherly specified in Section 2.3.

2.2.2 Data-driven stochastic optimization

In Section 2.2.1 we saw how the information obtained by interacting with the
“black box” plant P is treated and stored. The final part of this section, instead,
describes the iterative procedure to apply the stochastic gradient based methods
to Problem (2.10) in the presented scenario, by computing the approximation
of the necessary mini-batch gradients. In the context of Problem (2.10) all the
methods introduced in Section 1.3 iteratively improve the optimization variable
Ht, by applying at every step t an update formulated as

Ht = Ht−1 − αt Dt(GJL
(Ht−1)), (2.13)

where

GJL
(Ht−1) =

1

Nb

Nb∑︂
i=1

∇HJL(Ht−1, w
t
i).

To this end, at itration t of the optimization procedure, the following steps are
performed:

• sampling of a mini-batch {wt
i}Nb

i=1 from the random vector WP (2.11);

• computation of the data driven approximation ĜJL
(Ht−1) of the mini-

batch gradient GJL
(Ht−1);

• update of the controller parametersHt according to the first order stochas-
tic optimization method of choice (see Section 1.3), using the learning rate
αt and the approximated optimization direction Dt(ĜJL

(Ht−1)) associ-
ated with the method.

The last step corresponds to the computation of Equation (2.13), while the first
and second steps are expained in the following subsections.
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Figure 7: Sampling of initial states from the state history of plant P .

2.2.2.1 Sampling procedure

As previously introduced, every step t of iterative optimization requires a mini-
batch {wt

i}Nb
i=1 to be sampled from the random vector WP (2.11). According to

the structure of WP , a generical element w of the mini-batch is composed by a
reachable state, a sequence of exogenous signals, and one of disturbances, such
that w = (si0, {pjℓ}Lℓ=0, {dkℓ }L−1ℓ=0).

As per the inital definitions of this chapter, the state si0 is composed by a
vector xi0 representing a reachable state of the plant P , and possibly by addi-
tional Markovian states that one wants to include in the control policy, denoted
by vector zi0. The probabilistic distributionPx of the reachable states xi0 over the
whole state-space set is unknonw and expensive to estimate. To avoid this time-
consuming and resource-consuming task, we rely on the following intuition: if
the data in X are collected performing sufficiently explorative tasks, sampling
from X would permit an accurate approximation of the unknonwn probability
distribution Px of the reachable states of P . To obtain the values si0, hence, we
sample a set of N0 states from the history X and add a small random noise vn
from a given set V to explore the neighborhood of the trajectory collected in
X . A simple representation of this procedure is proposed in Figure 7, where
the state history X contains just five states x0, . . . , x5. The states (x1, x2, x4),
indicated with a red dot, represent an example of possible random sampling of
N0 = 3 states. The bel curve on top of each sampled state represents the small
Gaussian white noise vn that is applied to said states to explore the close neigh-
borhood of the trajectory in X . Combining the sampled perturbed states with
Nz realizations zm0 of the chosen additional states, sampled from a probability
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distribution Pz , we form a set of Ns = N0Nz initial states

si0 = sn,m0 =

[︃
xn0 + vn
zm0

]︃
, (2.14)

for n = 1, . . . , N0 and m = 1, . . . , Nz .

A number Np of exogenous signals sequences is then sampled: each se-
quence is composed by L + 1 values pjℓ , randomly generated according to a
probability distribution Pp. Analogously, Nd disturbance trajectories of length
L are built by randomly generating instances dkℓ using a chosen probabilty dis-
tribution Pd. The sampled states, exogenous signals, and disturbances are com-
bined to form Nb = NsNpNd elements of the form

w = wi,j,k = ( si0, {pjℓ}Lℓ=0, {dkℓ }L−1

ℓ=0 ),

for i = 1, . . . , Ns, j = 1, . . . , Np, k = 1, . . . , Nd.

The choice of the probability distributions Pz , Pp and Pd employed in the
previously described sampling procedure is treated as a tuning decision. The
design of such distributions might depend on the empyrical knowledge that one
has on the plant and on the considered variables. In case no additional knowl-
edge is available, it is anyways always possible to sample additional states, ex-
ogenous signals and disturbances uniformly over the set of the possible values
they can assume by definition. This practice can still lead to controllers with
good performances as demonstrated in all the numerical examples throughout
this dissertation. In particular, each element of the sequence {pjℓ}Lℓ=0 of exoge-
nous signals can be sampled uniformly from a user defined interval [pmin, pmax],
while the disturbances can be considered as Gaussian white noise with variance
σ2
d estimated from the known precision charachterizing the sensors employed

for the signal measurement. It would be immediate, however, to incorporate
any information possibly available on the probability distribution in the chosen
formulation, for example in case one can estimate them empirically. That can
potentially reduce the numbers Ns, Np, Nd of considered samples, and so the
resulting computation time to construct and solve the stochastic optimization
problem (cf. (Bemporad, Gabbriellini, et al., 2010)).

34



2.2.2.2 Data-driven gradients approximation

After sampling the mini-batch {wt
i}Nb

i=1, the values {∇HJL(Ht−1, w
t
i )}Nb

i=1 of
the associated gradients of JL( · , wt

i ) evaluated in the last updated set of pa-
rameters Ht−1 are approximated. As already anticipated, we intend to use the
local models collected in Θ to tackle the gradient approximation and overcome
the fact that ∇HJL(Ht−1, w

t
i) depends on the unknown dynamics (2.3). We

observe that JL( · , wt
i) is a function of the parameters H that evaluates how πH

affects the cost of controlling P in the conditions dictated by wt
i for L steps.

The sample wt
i contains, together with exogenous signals and disturbances, a

reachable state s0 considered as initial state for the trajectory considered by JL.
To approximate the gradient of JL( · , wt

i) we use then a local linear model fitted
around s0, approximating the dynamics (2.3) in a neighborhood of s0.

Given a sample w = (si0 = [xn0 + vn, z
m
0 ]′, {pjℓ}Lℓ=0, {dkℓ }L−1ℓ=0), the local

linear model Θn associated with the initial state xn0 in si0 is retrieved from the
set of local linear models Θ. Such model is then used to simulate the dynamics
of P in the computation of the gradient ∇H ĴL(Ht−1, w). One can obviously
rely on the analytic computation of the gradient (possibly benefitting from auto-
matic differentiation tools to easen the procedure). Alternatively, it is possible to
employ finite differences, substituting the gradient with a vector having as i−th
element

ĴL(Ht−1 + ϵ ei, w)− ĴL(Ht−1, w).

ϵ
(2.15)

In both cases, as anticipated in the beginning of Section 2.2, we consider

ĴL(Ht−1, w) =
L−1∑︂
ℓ=0

ρ(ŝℓ, p
j
ℓ , πHt−1

(ŝℓ, p
j
ℓ)) + ρL(ŝL , p

j
L
), (2.16)

and the sequence of approximated states {ŝℓ}Lℓ=0 is obtained by applying ûℓ =

πHt−1
(ŝℓ, p

j
ℓ) to Θn, collecting

ŷℓ+1 = Θn

[︃
x̂ℓ
ûℓ

]︃
+ dkℓ

and using it to build ŝℓ+1, given that ŝ0 = si0.
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The vector ŝℓ+1 is composed by the plant state x̂ℓ+1 and the additional
Markovian state ẑℓ+1. Given equation (2.2), it is easy to build x̂ℓ+1 from x̂ℓ
by adding ûℓ and ŷℓ+1 as most recent input and output and removing the oldest
ones.

For the approximation of the dynamics of the additional states z, instead, we
have different scenarios:

• if zℓ+1 is an exogenous signal that can be derived from xℓ, zℓand pjℓ
through some known differentiable dynamics

zℓ+1 = fz(xℓ, zℓ, p
j
ℓ), (2.17)

then we can just use the predicted value ŷℓ, obtained by using Θn, to de-
rive x̂ℓ (2.2) and hence the approximated dynamics ẑℓ+1 = fz(x̂ℓ, ẑℓ, p

j
ℓ),

given ẑ0 specified in the sample w currently considered;

• if instead zℓ has non differentiable dynamics, or if zℓ measurable, but
having completely unknown dynamics, we can enrich the ARX state (2.2)
by adding the measurements of the additional states, i.e.,

xt = [ y′t, z
′
t, . . . y

′
t−no+1, z

′
t−no+1, u

′
t−1 . . . u

′
t−ni

]′. (2.18)

In this case we will consider st = xt and the local linear model will be
updated according to⎧⎪⎨⎪⎩

Θi = Θi−1 + ξi,[︄
yi+1

zi+1

]︄
= Θi

[︄
xi

ui

]︄
+ di.

(2.19)

A simple representation of the data-driven gradient approximation procedure is
given in Figure 8, where the trajectory cost approximation is represented in a
simplified setup characterized by just to two samples w1 and w2 of the mini-
batch, sharing the same initial state si0 = [xn0 + vn, z

m
0 ]′ and different ex-

ogenous and disturbances signals, namely w1 = (si0, {pj1ℓ }Lℓ=0 {dk1

ℓ }L−1
ℓ=0 ) and

w2 = (si0, {pj2ℓ }Lℓ=0 {dk2

ℓ }L−1
ℓ=0 ). The red dots represent the simulated states ŝℓ,

obtained using the local linear model Θn, as indicated by the underlying formu-
las. The cost function ĴL(Ht−1, w1) is obtained by summing the stage costs
ρ(ŝℓ, ûℓ, p

j1
ℓ ) along the trajectory generated by Θn (or by Θn and fz) while re-

ceiving ûℓ = πHt−1
(ŝℓ, p

j1
ℓ ) in input. Analogously for ĴL(Ht−1, w2).
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OR

Figure 8: Use of the local linear model to compute the trajectories associated with
the cost ĴL(Ht−1, w) approximating JL(Ht−1, w).

2.3 Learning smooth control policies via OPS

The previous part of this chapter introduced the general framework character-
izing the Optimal Policy Search approach for the synthesis of feedback con-
trollers of black-box plants. In this section we use such approach to build an
algorithm for the synthesis of smooth feedback controllers. To represent smooth
controllers, as specified before, we consider policy parameterizations such that
for each (st, pt) ∈ Rns+np the policy πH(st, pt) ∈ C1(Rnh). For the applica-
tion of the Optimal Policy Search algorithm, two settings are considered: offline
setting and online setting. In the offline setting, the policy πH is synthesized
from open-loop data that were previously collected from the plant. In the online
setting, instead, new data are collected from the plant during the iterative pol-
icy synthesis, while the plant is also being controlled, and employed in further
stochastic optimization iterations. Sections 2.3.1 and 2.3.2 contain the details on
the algorithm to be applied offline and online, respectively.
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2.3.1 Offline setting

As previously mentioned, in the offline setting the synthesis of smooth con-
trollers is performed with no direct interaction with the plant, but based on
a dataset composed by input-output couples (ut, yt+1) collected in open-loop
from the plant at a previous stage. Hence, disposing of a finite sequence of N
couples

{ (u0, y1), (u1, y2), . . . (uN−1, yN )}
we proceed, analogously with what introduced in Section 2.2.1, by building a
finite states history of cardinality N − (n0 − 1),

X =
{︂
x0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yno

...
y1

uno−1

...
uno−ni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yno+1

...
y2
uno

...
uno−ni+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, . . . xN−n0

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yN
...

yN−n0

uN−1

...
uN−ni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
}︂
,

with N >> n0 ≥ ni.

Based on the information carried by the states history X , three steps of pol-
icy optimization procedure are applied in sequence for a number Nlearn of iter-
ations, as represented in Algorithm 1.

At every iteration t, firstly, we collect a mini-batch {wt
i}Nb

i=0 by sampling
Nb elements according to the sampling procedure described in Section 2.2.2.1.
Then, for each element in the mini-batch, the data-driven gradient approximation
presented in Section 2.2.2.2 is employed to compute the gradients∇H ĴL(Ht−1, w

t
i),

approximating the direction of descent for the cost function of Problem (2.10),
i.e.,

ĜJL
(Ht−1) = GĴL

(Ht−1) =
1

Nb

Nb∑︂
i=1

∇H ĴL(Ht−1, wi). (2.20)

As a third and last step, at every iteration t the vector ĜJL
(Ht−1) is employed

to update the parameters Ht, according to the rule (2.13).
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Algorithm 1 OPS with data-driven gradients - Offline

Input: Initial guess H−1, number Nlearn of learning steps, state history
X = {x0, .., xN−no} of P and associated local linear models Θ =
{Θ0, ..,ΘN−no

}.
Output: Policy parameters HOPS.

1: for t = 0, . . . , Nlearn − 1 do
2: for h = 1, 2, ..., Nb do
3: Sample wt

h = ( si0, {pjℓ}Lℓ=0, {dkℓ }L−1
ℓ=0 );

4: Retrieve model coefficients Θi associated with si0;
5: Compute∇H ĴL(Ht−1, w

t
h);

6: end for

7: Mini-batch gradient:
ĜJL

(Ht−1)← 1
Nb

∑︁Nb

h=1∇H ĴL(Ht−1, w
t
h);

8: Policy update:
Ht ← Ht−1 − αtDt(ĜJL

(Ht−1));
9: end for

10: HOPS ← HNlearn−1;
11: end.

2.3.2 Online setting

In the online setting, the Optimal Policy Search procedure has to take care of
both the plant control and the policy optimization, without having at disposal a
set of previously collected input-output couples from the plant. The control of
the plant requires to provide, at every time instant t, an input ut to the plant, in
order to perform an on-going task.

As summarized in Algorithm 2, the algorithm in the online setup differs from
the offline one for the data collection and storage online steps. At every iteration
t, the optimization steps are performed after a sequence of operations in which
the current controller πHt−1

interacts with the plant, starting from an initial state
x0 = [y′0 . . . y

′
−no+1u

′
−1 . . . u

′
−ni

]′ composed by ni input and no output. The
set of exogenous signals pt is first measured. Then, the state xt described in
equation (2.2) is build and saved in the state history.

Following from this, the states history of P evolves in time: at an instant t it
corresponds to the set of all the states visited by the plant from the beginning of
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the experience up to the current time, i.e.,

X(t) =
{︂
x0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0
...

y−n0+1

u−1

...
u−ni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
...

y−n0+2

u0
...

u−ni+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, . . . , xt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt
...

yt−n0+1

ut−1

...
ut−ni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
}︂
.

Algorithm 2 OPS with data-driven gradients - Online

Input: Initial guess H−1, number Nlearn of learning steps. Initial state x0, and
local linear model Θ−1, X(−1) = ∅, Θ(−1) = ∅.

Output: Policy parameters HOPS.

1: for t = 0, . . . , Nlearn − 1 do
2: Measure signal pt;
3: Build xt as in (2.2) and store it, i.e., X(t)← X(t− 1) ∪ {xt};
4: Compute/measure the additional states zt; (see Eq. (2.17)-(2.18))
5: Build st from xt and zt;
6: Apply ut = πHt−1

(st, pt) to the plant and collect yt+1;
7: Update Θt based on (xt, ut, yt+1);
8: Θ(t)← Θ(t− 1) ∪ {Θt};
9: for h = 1, 2, ..., Nb do

10: Sample wt
h = ( si0, {pjℓ}Lℓ=0, {dkℓ }L−1

ℓ=0 );
11: Retrieve model coefficients Θi associated with si0;
12: Compute∇H ĴL(Ht−1, w

t
h);

13: end for
14: Mini-batch gradient:

ĜJL
(Ht−1)← 1

Nb

∑︁Nb

h=1∇H ĴL(Ht−1, w
t
h);

15: Policy update:
Ht ← Ht−1 − αtDt(ĜJL

(Ht−1));
16: end for
17: HOPS ← HNlearn−1;
18: end.
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After storing xt in X(t), the action ut = πHt−1(st, pt) generated by the
parameterized policy with the current set of parameters is computed and applied
to plant P . The associated output yt+1 is collected and used, together with xt
and ut to obtain an updated value of the local linear model Θt, as described in
Section 2.2.1. The matrix Θt is then stored in the local linear models set Θ(t),
that is time-varying as well as X(t). Before performing the optimization steps
of sampling, gradient approximation and policy update (that are analogous to
the steps described for the offline setup) the values st, ut and yt+1 are used to
update st+1.

2.3.2.1 Online synthesis of linear feedback controllers

In this subsection we instantiate the method described in Section 2.3.2 for the
online synthesis of feedback controllers expressing a linear relation between pa-
rameters and feedback states. Specifically, we consider two cases: linear pa-
rameterization of the input ut and linear parameterization of the input increment
∆ut = ut − ut−1 . In the first case, the selected parameterization is

πK(st, pt) = K

[︃
st
pt

]︃
= Ksst +Kppt. (2.21)

while in the second, given that ut = ut−1 +∆ut, we have

πK(st, pt) = ut−1 +K

[︃
st
pt

]︃
= ut−1 +Ksst +Kppt. (2.22)

Considering that in the online setup the OPS algorithm is applied directly
on plant P during the learning phase, it is important to avoid destabilizing the
system. In general, to establish with certainty if a controller will destabilize a
plant, it is necessary to rely on information about the dynamics of the plant it-
self. In case of linear feedback controller synthesis, precautions can be taken
while remaining faithful to the “black-box” hypothesis over the plant dynamics.
In particular, a heuristic can be applied at every iteration, to gain local stability.
Such heuristic, at every instant t, builds an approximation of the non-minimal
state space realization xt dynamics, from the last updated local linear model Θt.
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The approximated dynamics of xt are extended to describe the local evolu-
tion of the whole state st. Hence, at every iteration t, a system of the form

sj+1 = Atsj +Btuj + Etpj +Dtdj . (2.23)

is considered. The procedure to build the matrices (At, Bt, Et, Dt) is described
in detail in Appendix A. The heuristic employs such matrices in the following
way: after one step of policy optimization, the updated policy Kt is projected
onto the space of policies stabilizing (At, Bt), so into the vector that is closest
to Ks

t and is also asymptotically stabilizing (At, Bt). This can be formulated as
the solution of the optimization problem

min
K

∥K −Ks
t ∥22

s.t. | Spec(At +BtK) |⊂ [0, 1)
(2.24)

where Spec(At + BtK) denotes the set of eigenvalues of the closed-loop dy-
namics matrix At + BtK. Solving problem (2.24) is equivalent to solve the
following semidefinite program

min
Y,Q,W

∥Y −Ks
tQ∥22

s.t.

⎡⎣Q Q M ′

Q W 0
M 0 Q

⎤⎦ ⪰ 0,

with M = AtQ+BtY,

W ≻ 0, Q ≻ 0,

(2.25)

as proved for instance in Bernardini and Bemporad, 2012. The feedback gain
K⊛

s,t = Y ⋆(Q⋆)−1 obtained from the solution Y ⋆, Q⋆,W ⋆ of (2.25) is then
computed. The input ut = K⊛

s,tst +Kp
t pt is finally applied to the plant.

Up to this point this section described how to apply the local stabilization
heuristic combined with the linear policy (2.21). Analogous steps can be per-
formed using (2.22): in this case we will consider the approximated dynamics

sj+1 = A∆u
t sj +B∆u

t ∆uj + Etpj +Dtdj ,

built as shown in Appendix A. Considering ∆ut = Ks
t st +Kp

t pt, at iteration t
the policy Kt is projected onto the space of policies stabilizing (A∆u

t , B∆u
t ), by

solving a semidefinite problem analogous to (2.25), but built using the matrices
(A∆u

t , B∆u
t ).
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Chapter 3

Output tracking via Optimal
Policy Search

In Chapter 2 both the general problem formulation and the online and offline
Optimal Policy Search algorithms for the synthesis of smooth policies were pre-
sented. In this chapter, instead, we focus on the application of such methods to
the output-tracking problem. The beginning of the chapter is dedicated to for-
mulate the tracking problem as an Optimal Policy Search problem. The rest of
the chapter provides examples of the performance of the proposed approach in
handling such problem for both linear and nonlinear plants, synthesizing linear
and nonlinear feedback controllers.

3.1 OPS for output tracking

To formulate a specific problem in the Optimal Policy Search framework, care
has to be taken in the choice of the stage cost ρ, the terminal cost ρL, the state
st, and the exogenous signals pt. The design of such characteristics has to be
based on the task to be performed and on the available information.

Hence, to learn a policy that makes the output yt of the plant P track a
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reference signal rt ∈ [rmin, rmax], we consider

st =

[︃
xt
qt

]︃
, pt = rt, (3.1)

where the state st is composed by xt as in (2.2) and by the tracking error inte-
gral formula qt as additional Markovian state with known dynamics, i.e. zt = qt
such that qt+1 = qt + (yt − rt).

To achieve the output-tracking task we consider the following stage cost and
terminal cost

ρ(st, rt, ut) = ∥yt − rt∥2Qy
+∥∆ut∥2R+∥qt∥2Qq

, (3.2a)

ρL(sL, rL) = ∥yL − rL∥2QL
y
+∥qL∥2QL

q
, (3.2b)

where yt is a component of xt, and therefore of st, and the input increment
∆ut = ut − ut−1 is obtained from ut and st (we assume the number of input
ni contained in xt to be greater or equal to 1, so ut−1 is always included in xt,
and hence in st). In the stage cost, R = R′ ≻ 0 penalizes the control effort,
while the matrices Qy = Q′

y ⪰ 0 and Qq = Q′
q ⪰ 0 weight the tracking error

and the integral action respectively. Analogous role is covered by QL
y and QL

q

in the terminal cost. A penalty on ut of the form ∥ut − urt∥2Qu
might be easily

introduced as well in (3.2); however, for proper reference tracking the input
set-point urt should be consistent with rt, therefore requiring a preview of the
reference or some knowledge on P , that we do not want to assume available.

We assume that within the L steps of the shortened horizon the reference
signal remains constant, i.e., rℓ = r, where r is generated by an opportune
random variable R having as set of possible outcomes the interval [rmin, rmax].
Considering that we are optimizing the expected trajectory cost with respect to
all the possible values assumed by R, starting from every possible initial value
s0 ∼ SP , the solution of the optimization problem will still be a parameterized
contoller capable of tracking all the (possibly non constant) signals assuming
values in [rmin, rmax].

According to the mentioned choices, the OPS Problem (2.10) can be instan-
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tiaded for the synthesis of output-tracking controllers as

H∗ = arg min
H

E
[︂ L−1∑︂

ℓ=0

(︂
∥yℓ − r∥2Qy

+ ∥∆uℓ∥2R + ∥qℓ∥2Qq

)︂
+

+ ∥yL − r∥2QL
y
+ ∥qL∥2QL

q

]︂
, (3.3)

such that uℓ = πH(sℓ, r), ℓ = 0, 1, . . . , L - 1,

sℓ+1 = h(sℓ, r, uℓ, dℓ), ℓ = 0, 1, . . . , L - 1,

dℓ ∼ Dℓ, ℓ = 0, 1, . . . , L - 1,

s0 ∼ SP , r ∼ R.

3.1.1 Online exploration for the learning of tracking policies

In the context of synthesizing an output-tracking controller online using Optimal
Policy Search algorithm, the policy πHt

is optimized while the plant is stirred to
track an a-priori unknonw reference {ri}Nlearn

i=0 . Designing the reference signal
to be used as online task during the learning phase corresponds to choosing an
exploratory strategy for the collection of samples in the states history.

As detailed in Chapter 2, Section 2.3.2, the online optimization of Ht re-
quires the approximation of the gradients of the cost over a mini-batch of trajec-
tories. Such trajectories are generated applying the current policy πHt

starting
from initial states s0 = [x0 , z0 ]

′. At instant t, x0 is sampled from the current
states history X(t).

While learning control policies for output-tracking online the states history
X(t) at instant t is populated by the states xi for i = 0, 1, . . . , i visited by the
plant while following the first t instances of the online tracking task. Hence, to
learn a policy capable of tracking in a certain set of conditions it is important
to choose an online tracking task that conducts the plant to visit the states that
characterize the realization of such conditions. On the other hand, such choice
has to be made taking into account risk aversion criteria as well, considering that
references that are hard to track, although providing plenty of exploration, could
be dangerous to track online, expecially at an early stage, when the performance
of πHt

is still far from optimal.
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3.1.2 Online output-tracking: assisted control

As described in the previous paragraphs, the online implementation of the Opti-
mal Policy Search algorithm for output tracking enforces the exploration of the
state-space through the reference design. In order for the space exploration not
to lead to unsafe scenarios, particularly in the initial phase of the learning, our
approach can benefit from combining the use of a behavioral policy πb, together
with πHt

, when it comes to steer the plant output while learning. In general,
delegating the control of the plant to a behavioral policy can be safer, if πb is de-
signed taking into account some safety guarantees or based on previous knowl-
edge, and not for pure exploration purposes. It is still important though to apply
the policy πHt

to collect data while learning, in order to populate the state and
model history with states and models often encountered using the current con-
troller parameters, in order to optimize the policyHt using relevant optimization
directions.

The contribution of the behavioral policy at every iteration t can be expressed
through a procedure of input selection, summarized in Algorithm 3, that substi-
tutes the computation of the current input ut = πHt(st, pt) in the classic online
learning algorithm (see Step 6 of Algorithm 2). The mentioned input selection
procedure is composed by three phases: off-policy learning, online learning with
assisted control, and on-policy learning. The behavioral policy πb is used in the
off-policy learning phase, for t ∈ [ 0, T1 − 1 ], to generate the input to the plant,
to track the reference rt, and to collect input/output data for the ongoing opti-
mization of Ht. After T1 steps, online learning with assisted control of the plant
is performed, for t ∈ [T1, T2 ]: every M ≥ 1 steps, the input ut = πHt(st, rt) is
generated from the current policy πHt

. Then, the result of applying this ut to the
plant is predicted using the last updated local model Θt. If the predicted output
is sufficiently close to the desired set-point value rt, we assign the control of the
plant for the next M iterations to πHt

while it is being optimized. Otherwise
the task is performed by the behavioral policy πb for M steps. After M steps
the test is repeated, in order to assign the control of the plant to πb or πHt

for
other M steps, and so on, till t is smaller than T2. After T2 steps, learning is
performed completely in on-policy setting, with the policy πHt

being employed
at every successive iteration.
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Algorithm 3 Online learning of output-tracking controller: input selection with
assisted control (parameters M , T1, T2, ϵ, behavioral policy πb)

Input: Policy πHt
, state st, reference rt, local model Θt, on-policy(t− 1).

Output: Input ut, on-policy(t).

1: on-policy(t) = False;

2: if t > T2 then
3: on-policy(t) = True;
4: else
5: if t ≥ T1 then
6: if rem(t,M) = 0 then
7: uH ← πHt

(st, rt);
8: ypred = Θt [

xt
uH

];
9: if ∥ypred − rt∥∞≤ ϵ then

10: on-policy(t) = True;
11: end if
12: else
13: on-policy(t) = on-policy(t− 1);

14: end if
15: end if
16: end if

17: if on-policy(t) then
18: ut ← πHt(st, rt);
19: else
20: ut ← πb(st, rt);
21: end if

The choice of parameters T1 and T2 such that 0 ≤ T1 ≤ T2 ≤ Nlearn is part
of the learning phase design. By choosing T1 = 0, T1 = T2, or T2 = Nlearn it is
possible to eliminate respectively the initial off-policy phase, the online learning
with assisted control phase, or the final on-policy phase. The behavioral policy
πb is not necessarily modeled following the parameterization πHt

: any controller
can be used as behavioral policy.
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3.2 Example 1 - LTI system - linear policy param-
eterization

Let the system generating the data be the (unknown) single-input single-output
(SISO) linear time invariant (LTI) system (ny = nu = 1)

xt+1 =

⎡⎣−0.669 0.378 0.233
−0.288 −0.147 −0.638
−0.337 −0.589 0.043

⎤⎦xt +
⎡⎣−0.2950.325

0.026

⎤⎦ut, (3.4)

yt =
[︁
−1.140 0.320 −0.571

]︁
xt

that in ARX form corresponds to

yt+1 = − 0.7738 yt + 0.1245 yt−1 + 0.3699 yt−2 +

+ 0.4257 ut + 0.0159 ut−1 + 0.0282 ut−2

The state st defined, according to (3.1), as

st =

[︃
xt
qt

]︃
=

⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣
yt
yt−1

yt−2

ut−1

ut−2

⎤⎥⎥⎥⎥⎦
qt

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ Rnx+ny ,

evolves with respect to the input increment ∆ut according to

st+1 = Asst +Bs∆ut + Esrt, (3.5)

where

As =

⎡⎢⎢⎢⎢⎢⎢⎣
−0.7738 0.1245 0.3699 0.4416 0.0282 0

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
1 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ , Bs =

⎡⎢⎢⎢⎢⎢⎢⎣
0.4257

0
0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Es =
[︁
0 0 0 0 0 −1

]︁′
.
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We design the cost function in (3.2) by choosing horizonL = 10 and weights
Qy = QL

y = 1, R = 0.1, and Qq = QL
q = 1 and we apply the Optimal

Policy Search algorithm in the offline and online setting, employing a linear
parameterization of the input increment, according to (2.22). By choosing no =

3, ni = 2, our parameterization is

∆ut = K1 yt + K2 yt−1 + K3 yt−2 + K4 ut−1 + K5 ut−2 + K6 qt + K7 rt.

Considering the chosen parametrization, our problem coincides with the Linear
Quadratic Regulation (LQR) problem applied to (3.5), having optimal solution

K ′
∗ =

[︁
0.1160, −0.2196, −0.6526, −0.8978, −0.0498, −1.1411, 3.3370

]︁
.

The aim of this example is to show that, when applied to solve an LQR prob-
lem, the Optimal Policy Search method, if tuned with the appropriate system
orders converges to the known optimal solution, both in offline and online set-
ting, in noiseless or noisy scenarios. Regarding the online setting, it will also
be shown that the method is capable, while learning, of effectively performing
otput tracking of a-priori unknonwn reference signals.

3.2.1 Offline setting

We start by analysing the convergence of the method in the offline case. At first,
a dataset of Ndata = 30000 input-output couples is collected in open-loop from
(3.4) by giving in input to the system a random sequence of piecewise constant
inputs (represented in the lower plot of Figure 9) and measuring the associated
output, with an additive Gaussian white noise with variance σ2

y . The data are
employed to build the states historyX as described in Section 2.2.1. The associ-
ated local linear models are fitted and stored in Θ, by initializing the parameters
as Θ0 = 01×6 and P0 = (1e+5) · I6, and recursively updating them by Kalman
Filtering, with covariance matrices Qk = (1e − 5) · I6 and Rk. The Optimal
Policy Search offline algorithm is applied: the learning procedure is executed
for Nlearn = 30000 iterations, starting from an initial policy K0. Regarding
the sampling procedure, N0 = 1 state, Nr = 1 reference, Nq = 1 integral
action values and Nd disturbance are sampled at each learning iteration. The
references and the integral action values composing the initial states for the cost
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Figure 9: Example 1, offline learning, open-loop noiseless dataset.

simulations are both sampled uniformly in [−10, 10]. The disturbances, instead,
are sampled according to a Gaussian white random variable, characterized by
variance σ2

d. The small perturbation noise applied to the state sampled from X

is chosen as vn ∼ 0.1 · N (0, 1). To update the controller parameters, AMSGrad
is employed, with parameters α, β1 = 0.9, β2 = 0.999. The following two
subsections contain the tuning details that differ between the noiseless case and
the noisy one (namely, the values of parameters σ2

y , Nd, σd, Rk and the learnig
rate α), together with the results obtained in the two cases.

Noiseless case
In the noiseless case we assume to be capable of measuring the exact output
of (3.4), i.e., we set σ2

y = 0. The upper plot of Figure 9 shows the stream of
noiseless output associated to the chosen piecewise constant input signal. We
apply the offline OPS method, starting from K0 = 0.0001 · 17×1, employing
the aforementioned parameters, together with the ones contained in Table 1.
Figure 10 shows the results in terms of convergence to the optimal policy K∗.
We can observe that after 2500 iterations the distance between the synthesized
parameters Kt and K∗ is much smaller than 0.1.
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Figure 10: Example 1, offline learning in noiseless conditions, convergence of the
linear policy parameters to the optimal value K∗.

Nd σd Rk α
1 0 1e− 5 0.1

Table 1: Example 1, offline learning, noiseless case, parameters

Noisy case
The process of learning from a noisy dataset is then studied, by considering data
generated by the same input stream represented in Figure 9 and adding Gaussian
white noise to the associated output, i.e., generated sampling from N (0, σ2

y).
The noise on data is introduced to model the precision level of the sensors that,
in a real setup, are used to measure the output of the plant. Noise realizations
over data are per se not measurable, but it is reasonable to assume the knowledge
of the range of precision of the physical sensors mounted over a plant, often
provided by the sensors’ producer, to establish the expected performances in
terms of precision of their product. It is hence possible to use σy for the tuning
of some of the parameters of the Optimal Policy Search method, specifically the
covariance matrix Rk and the random variable used to sample the disturbance
trajectories {dkℓ }L−1

ℓ=0 .
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Nd σd Rk α
50 σy σ2

y 0.001

Table 2: Example 1, offline learning, noisy case (noise variance σ2
y), parameters

Following this rationale the method is tested, starting from K0 = 0.0001 ·
17×1 and considering different values σy = 0.1, 0.2, 0.3 for the standard de-
viation of the noise. The parameters included in the generical offline case de-
scription are employed again in this scenario, together with the values shown
in Table 2. Figure 11 shows the convergence of the method. As a comparison,
the parameters evolution in the noiseless case is also included in Figure 11, in-
dicated as σy = 0.0. From the top plot in Figure 11 we see that in each noisy
scenario the policies converge to the optimal policy. The bottom plot focuses on
the last 1000 steps of learning, showing that, although the convergence rate is
extremely similar for all the scenarios, the noise slightly improves the conver-
gence, probably because it increases the state-space exploration in the data.
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Figure 11: Example 1, offline learning in different noise conditions, convergence
of linear policy parameters to the optimal value K∗.
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Figure 12: Example 1, offline learning with different initial guesses K0, conver-
gence of linear policy parameters to the optimal value K∗.

Finally, Figure 12 shows the convergence to K∗ when starting the learning
process from different initial policies K0, increasingly distant from K∗. The
noise standard deviation σy is set to 0.1 and the parameters in Table 2 are tuned
accordingly. The remaining parameters are tuned analogously to the previous
cases. It is useful to remember that, even if the stage costs ρ introduced in (3.2)
are convex, the deriving cost function JL expressed in (2.9) might not be convex
with respect to the policy parameters, making the convergence to the global
optimum hard to achieve. In this sense, Figure 12 shows that the policy updates
associated with the proposed search method push the policy parameters closer
to the optimal ones when the initial guess is chosen in a neighborhood of K∗.

3.2.2 Online setting

The Optimal Policy Search online algorithm is executed for Nlearn = 30000

iterations, starting from an initial policy K0 = 0.0001 · 17×1. At each itera-
tion t the current measured state xt described in (2.2) is sampled as initial state
(N0 = 1), together with Nq = 1 initial integral action values, Nr = 1 reference
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trajectories and Nd disturbances. The references and the integral action values
are both sampled uniformly in [−10, 10]. The disturbances, instead, are sam-
pled according to a Gaussian white random variable, characterized by variance
σ2
d. The sampled state is perturbed with vn ∼ 0.1 · N (0, 1). For the update

of the controller parameters, Adam is employed, with parameters α = 0.001,
β1 = β2 = 0.9. The parameters’ optimization is carried on while an online
tracking task is performed, starting from the plant being in an initial state x0 such
that x0 = [yss, . . . , yss, uss . . . , uss]

′,where (uss, yss) is a steady-state input-
output couple. Considering as initial guess Θ0 = 01×6 and P0 = (1e + 5) · I6,
the local models are recursively computed by Kalman Filtering, with noise co-
variance matricesQk = (1e−8)·I6 andRk. The heuristic for stability described
in Section 2.3.2.1 is implemented in this case.
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Figure 13: Example 1, online learning in noiseless conditions, convergence of the
linear policy parameters to the optimal value K∗.

Nd σd Rk

1 0 1e− 8

Table 3: Example 1, online learning, noiseless case, parameters
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Figure 14: Example 1, online learning in noiseless conditions, online output track-
ing of an a-priori unknown exploratory reference signal.

The following two subsections contain the tuning details that differ between
the noiseless case and the noisy one (that is, the values of parameters σ2

y , Nd,
σd, Rk, uss, yss), together with the results obtained in the two cases.

Noiseless case
As done in offline, in the online noiseless case we assume to be capable of mea-
suring the exact output of (3.4), i.e., we set σ2

y = 0. We apply the online OPS
method, with parameters values coherent with what presented in the online case
introduction, together with the ones contained in Table 3. The parameters Kt

quickly converge to the optimal policy K∗, as it is shown in Figure 13. While
learning, the plant, starting from an initial state x0 = 06×1 (i.e., yss = uss = 0)
performs online a tracking task: the output yt generated by the policy πKt

fol-
lows the exploratory reference trajectory rt, as represented in Figure 14.

Nd σd Rk

100 σy σ2
y

Table 4: Example 1, online learning, noisy case (noise variance σ2
y), parameters

55



0 10000 20000 30000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

||K
t
−
K
∗||

2
σy=0.0 σy=0.1 σy=0.2 σy=0.3

Iteration t

Figure 15: Example 1, online learning with noisy output (σy = 0.0, 0.1, 0.2, 0.3),
convergence of the linear policy parameters to the optimal value K∗.
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Figure 16: Example 1, online learning with noisy output (σy = 0.0, 0.1, 0.2,
0.3 from top to bottom), online output tracking of an a-priori unknown exploratory
reference signal.
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Noisy case
The online learning procedure is replcated as well in case of noisy output mea-
surements, generated by corrupting yt with samples fromN (0, σ2

y). The param-
eters values are kept equal to the one presented in the online case introduction,
together with the ones indicate in Table 4.

We analyse the behavior of the algorithm considering increasing values of
the noise standard deviation σy , namely 0.1, 0.2, 0.3. Figure 15 shows the results
in terms of convergence ofKt toK∗ in the three scenarios. As a comparison, the
noiseless case is also included, indicated as σy = 0.0. It can be noticed that the
learned parameters converge to the optimal ones in all the four cases, although
the evolution of the parameters in the noisy cases is affected by noise, resulting
in ”wavy” behavior.

The behavior of the controllers, performing online a tracking task while
learning, presents few differences, mainly in the initial stages of the learning,
as shown in Figure 16.
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Figure 17: Example 1, online learning from different initial conditions, conver-
gence of the linear policy parameters to the optimal value K∗.
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Figure 18: Example 1, online learning from different initial conditions, online out-
put tracking of an a-priori unknown exploratory reference signal.
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Figure 19: Example 1, online learning from different initial conditions, initial 800
steps: online output tracking of an a-priori unknown exploratory reference signal.
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In Figure 17-18-19 convergence and tracking results are achieved from steady-
state values obtained by sampling 8 different uss ∼ U([−100, 100]) and con-
sidering the associated steady-state output yss. Such values are used to build
x0(j) = [yss, . . . , yss, uss, . . . , uss]

′ as in (2.2) for j = 1, 2, . . . 8. In this set
of tests, noisy output are considered, with σy = 0.1, and the learning is carryed
on for Nlearn = 10000 steps. Even in this case the tuning is analogous to what
presented in the online case introduction and with the parameters in Table 4.

From the figures we can observe that the influence of the initial conditions
both on the learning and on the tracking performances is visible in the initial
phase of the learning process, where the initial condition dictates the area of
exploration for the algorithm, while it fades away further on.

3.3 Example 2 - LTI system - reduced feedback

The previous example served to show that if the local linear models are analo-
gous in structure to the system dynamics (i.e., when the system is LTI and the
numbers ni and no of past input and output are chosen accordingly) and if the
policy parameterization is chosen to have the same structure of the (known) op-
timal solution, the Optimal Policy Search method converges to it, both online
and offline, handling noiseless or noisy data. The aim of the example presented
in this section, instead, is to demonstrate the performance of the Optimal Policy
Search method when synthesizing controllers without employing any knowl-
edge of the structure of a system. In the first part of this section we show that
Optimal Policy Search, although exploiting less informative and noisy feedback
state, reaches near-to-optimal performance when applied to an LQR problem,
by comparison with the known associated optimal policy. To evaluate the on-
line tracking performance while learning it is shown that the closed-loop OPS
behavior after an initial learning phase is very simlar to the one achieved by the
DeePC method (Coulson, Lygeros, and Dörfler, 2019) in an unconstrained set-
ting. The second part of this section, instead, presents a comparison between the
performance achieved by Optimal Policy Search and VRFT (Campi, Lecchini,
and Savaresi, 2002) in synthesising a controller from the same set of noisy mea-
sured data and exploiting the same policy parameterization.
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For all the mentioned comparisons a SISO LTI system xt+1 = Axt + B ut,
yt = C xt is considered, such that

A =

⎡⎢⎢⎢⎢⎢⎢⎣
0.311 −0.010 −0.075 −0.011 0.012 0.113
−0.006 0.373 0.130 −0.218 −0.076 −0.133
−0.079 0.137 0.200 −0.133 −0.037 −0.085
0.008 −0.219 −0.139 0.317 0.132 0.139
0.012 −0.083 −0.032 0.127 0.428 0.168
0.111 −0.120 −0.093 0.149 0.167 0.302

⎤⎥⎥⎥⎥⎥⎥⎦ ,

B =
[︁
−0.027 −0.122 0.098 0.310 0.550 0.177

]︁′
,

C =
[︁
−1.491 0 −1.061 2.350 0 0.748

]︁
.

In ARX form such system corresponds to

yt+1 = 1.9312 yt − 1.3395 yt−1 + 0.4335 yt−2 + (3.6)

− 0.0692 yt−3 + 0.0053 yt−4 − 0.0001 yt−5 +

0.7964 ut − 0.8400 ut−1 + 0.3184 ut−2 +

− 0.0524 ut−3 + 0.0038 ut−4 − 9e− 5 ut−5.

To synthesize an output-tracking control using OPS we design the cost function
in (3.3), choosing weightsQy = QL

y = 1,R = 0.1, andQq = QL
q = 1 and hori-

zon L = 10. As per the previous hypothesis we consider the system dynamics to
be unknown, and we ignore as well the structure of the system, i.e., the proper in-
put and output orders. We consider, instead, a feedback vector for the OPS con-
troller composed by one past input and one past measured output, i.e., no = 1,
ni = 1. In this way the OPS algorithm does not employ any knowledge of the
order of the system, relying on a reduced state sRt = [xRt qt]

′ = [yt ut−1 qt]
′

and pt = rt. The parameterized controller πK(sRt , rt) is represented in closed-
loop with the plant (3.6) in Figure 20. The training of such controller, according
to the OPS approach, will involve as usual the use of local linear models of the
form yt+1 = Θt

[︂
xR
t
ut

]︂
+ dt, hence, not sharing the structure of the nominal

model of the plant.
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;
Figure 20: Example 2, closed-loop scheme for the OPS controller KOPS.

3.3.1 Comparison with LQR and DeePC controllers

We choose to parameterize the input increment ∆ut = ut − ut−1 according to
the linear expression in (2.22) and hence we consider

ut = πK( sRt , rt ) = ut−1 +Ks

⎡⎣ yt
ut−1

qt

⎤⎦+Krrt.

In order to compute an optimal baseline controller to compare with the OPS
controller, we consider the full feedback state

xFt = [ yt yt−1 . . . yt−5 ut−1 . . . ut−5]
′. (3.7)

The evolution of the state sFt = [xFt , qt]
′, with respect to the input increment

∆ut can be described by an LTI system, built from (3.6), analogously to how
(3.5) was built. It is possible to employ such system dynamics (equivalent to the
nominal model of the system) together with classic Control Theory methods (the
Riccati backward iterations for instance) to compute the optimal linear feedback
controller KOPT for the infinte horizon tracking of constant references, i. e.,

ut = ut−1 +KOPT

⎡⎣xFtqt
rt

⎤⎦ . (3.8)
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Figure 21: Example 2, closed-loop scheme for the baseline controller KOPT.

Such controller will be used as baseline in our comparisons, considering the
closed-loop scheme represented in Figure 21. It is important to underline that
the baseline controller KOPT is computed exploiting the exact dynamics of the
system, while the OPS algorithm works under the ”black-box” hypothesis, not
knowing the real dynamics, and under-representing them with local linear mod-
els based on the reduced state xRt . Moreover, the baseline policy KOPT ∈ R13

acts on the filtered state (obtained from the nominal model dynamics), while the
OPS-derived policy KOPS ∈ R4 employs inputs and outputs collected from the
plant and, hence, possibly noisy. Additionally, as already mentioned, the OPS
controller will rely on a reduced feedback vector of just 4 components, while
the chosen baseline benefits of a more informative feedback from the plant, built
with the knowledge of the appropriate order of the system.

Performance index In order to asses the similarity between the behavior of
the policy KOPS and the optimal one KOPT, the following performance index
is introduced

∆(KOPS) =
|cost(KOPS)− cost(KOPT)|

cost(KOPT)
, (3.9)
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where

cost(K) =

∑︁Ntask

i=1 cost(K, taski)

Ntask
. (3.10)

In the previous equation cost(K, taski) is the cost of performing the i-th task of
a batch ofNtask tracking tasks. The i-th task, characterized by a reference signal
{ ril }Nst

l=0 and a steady-state initial condition (ui−1, y
i
0), is performed through a

policy πK .
In the noiseless scenario we can consider

cost(K, taski) = JNst(K, s
i
0, { ril }Nst

l=0, { 0 }Nst−1
l=0 ), (3.11)

while in the presence of noise over the output measurements, the performance of
πK is evaluated by means of the average cost with respect to Nnoise realizations
of disturbance trajectory { dkl }Nst−1

l=0 , i.e.,

cost(K, taski) =

∑︁Nnoise

k=1 JNst
(K, si0, { ril }Nst

l=0, { dkl }Nst−1
l=0 )

Nnoise
. (3.12)

In both (3.11) and (3.12) JNst is defined as in (2.5), employing the stage cost
(3.2), and (ui−1, y

i
0) are used to build the i-th initial state si0.

As previously specified the disturbance signal will affect the control inputs
generated by KOPS, because it acts on a measured feedback state, while the in-
puts generated byKOPT, acting on a filtered state, are unaffected by disturbance
(see Figure 20-21). Moreover, we assume (exclusively for the performance eval-
uation of the two controllers) to have access to the original outputs yt, not cor-
rupted by noise, and to the associated integral qt+1 = qt + (yt − rt). Hence the
disturbance signals will affect solely the generation of the OPS inputs and not
the computation of the stage costs composing the performance index per se.

3.3.1.1 Offline setting

A set of Ndata = 30000 input-output couples is collected from the plant, by giv-
ing in input to the system a random sequence of piecewise constant input and
collecting the associated output. After building the states history X and the as-
sociated local linear models history Θ (with Θ0 = 01×3, P0 = (1e + 5) · I3,
Qk = I3 and Rk = 0.01), the offline learning procedure is carried on for
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Nlearn = 10000 iterations, starting from the initial guess K0 = 0.0001 ·14×1. At
each iteration the sampling procedure described in Chapter 2, Section 2.2.2.1 is
employed, consideringN0 = 10 initial states, Nr = 1 references, Nq = 10 inte-
gral action values and Nd disturbances. The initial states are sampled uniformly
from the states history, with a small perturbation vn ∼ 0.1 · N (0, 1). Refer-
ences and integral actions are sampled uniformly in [−100, 100] and [−10, 10],
respectively. The disturbances, instead, are sampled according to N (0, σ2

d).
For the update of the controller parameters, AMSGrad is employed, with

parameters α = 0.1, β1 = 0.5, β2 = 0.9999. The following is divided in
two subsections, containing the values of parameters σ2

y , Nd, σd and the results
of the comparison between KOPS and KOPT in the noiseless and noisy case
respectively.

Noiseless case
In this case we consider the noise variance σ2

y to be equal to zero and we assume
that there is no disturbance dt affecting the local linear models (Nd = 1, σd =

0). Figure 22 shows the noiseless dataset employed for the offline noiseless
learning. Figure 23 shows the evolution of the policy parameters Kt during the
learning phase, till their convergence to a policy that we indicate as KOPS.
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Figure 22: Example 2, offline learning, open-loop noiseless dataset.
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Figure 23: Example 2, offline learning in noiseless conditions, evolution of the
linear policy parameters.

The controllers KOPT and KOPS are then applied and compared on two
test batches, each of them composed by Ntask = 100 random tracking tasks
of length Nst = 60, one characterized by constant reference signals, and the
other by piecewise constant references, both combined with randomly gener-
ated initial steady-state conditions (u−1, y0). Figure 24 shows examples of the
two controllers’ performance over two of the random tasks in the test batches,
demonstrating the close similarity of their behavior in terms of yt, ut and qt.
This similarity is quite uniform over the two test batches of constant and piece-
wise constant tracking tasks, as expressed by the performance index (3.9) in
Table 5, and by the cost of the two controllers in Table 6. In particular KOPT

slightly outperforms KOPS over the constant references tracking, where it is ac-
tually known to be the optimal controller. The performance of the two policies
are very similar also in tracking piecewise signals, with a slightly better result
obtained by KOPS.

constant rt piecewise constant rt
∆(KOPS) 6e− 5 6e− 5

Table 5: Example 2, offline learning, noiseless case, performance index (3.9).
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constant rt piecewise constant rt
KOPT 13060.9 22053.2
KOPS 13061.7 22051.8

Table 6: Example 2, offline learning, noiseless case, averaged cost over the de-
scribed test batches.
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Figure 24: Example 2, offline noiseless case, tracking of a constant reference (top
3 plots), and of a piecewise constant reference (bottom 3 plots)
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Figure 25: Example 2, offline learning in noisy conditions, evolution of the linear
policy parameters.

Noisy case
To work in a noisy scenario, white gaussian noise with standard deviation σy =

0.1 is then added to the stream of output collected in open-loop shown in Fig-
ure 22, and the offline learning is performed over this new dataset. The employed
parameters related to the sampling of the disturbance trajectories are the follow-
ing: Nd = 10 and σd = 0.1. Figure 25 shows the convergence of the parameters
to the final policy KOPS during the learning iterations.

The obtained policy is tested againstKOPT in performing two random batches
of tracking tasks (constant and piecewise constant references, both batches with
randomly generated initial steady-state conditions (u−1, y0)), each of them con-
taining Ntask = 100 tasks of length Nst = 60. For each task the test is repeated
considering Nnoise = 200 different realizations for the disturbance trajectory.

Table 7 includes the performance index (3.9) and the averaged cost obtained
by learning and testing the policy in noisy conditions. Even in this case, from the
results shown in the two tables and from the examples of tracking in Figure 26
we can see that the two controllers performance are very similar even in the
presence of noise affecting the output.
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constant rt piecewise constant rt
∆(KOPS) 2e− 3 8e− 5
KOPT 9001.1 25335.4
KOPS 9021.3 25337.6

Table 7: Example 2, offline learning, noisy case, performance index (3.9) and av-
eraged cost over the described test batches.
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Figure 26: Example 2, offline noisy case, tracking of a constant reference (top 3
plots), and of a piecewise constant reference (bottom 3 plots)
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3.3.1.2 Online setting

The OPS online learning procedure is executed for Nlearn = 20000 iterations,
from an initial policy K0 = 0.0001 · 14×1, and starting from x0 = [ 0 , 0 , 0 , 0 ]

′.
At each iteration t the current measured state xRt is sampled (N0 = 1), together
with Nq = 50 initial integral action values and Nr = 10 reference trajectories,
sampled uniformly in [−100, 100] and [10, 10], respectively. The sampled state
is perturbed with vn ∼ 0.1 · N (0, 1). A set of Nd disturbance trajectories are
sampled from N (0, σ2

d). Starting from Θ0 = 01×3 and P0 = (1e + 5) · I3, the
local models are computed and stored online, recursively updating it by Kalman
Filtering (with Qk = I3 and Rk = 1). The controller parameters are updated
using Adam, with α = 0.1, β1 = 0.5, β2 = 0.9999. The heuristic for stability
described in Section 2.3.2.1 is implemented. The noiseless and noisy online
cases are tuned differently only regarding the parameters Nd and σd associated
with the sampling of the disturbances. The specific values for such parameters
in each of the cases will follow in the appropriate subsection, together with the
comparison between KOPS and KOPT.
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Figure 27: Example 2, online learning in noiseless conditions, evolution of the
linear policy parameters.
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Figure 28: Example 2, online learning in noiseless condition, online output tracking
of an a-priori unknown exploratory reference signal.

Noiseless case
As in the noiseless offline case, we initially assume that there is no noise af-
fecting the output measurement (σ2

y = 0) and that there is no disturbance dt
affecting the local linear models (Nd = 1, σd = 0).

The parameters Kt quickly converge to a vector indicated as KOPS, as it is
shown in Figure 27. While learning, the algorithm performs online a tracking
task using the parameterized policy, as represented in Figure 28.

constant rt piecewise constant rt
∆(KOPS) 6e− 5 6e− 5
KOPT 10008.9 18547.9
KOPS 10009.5 18549.2

Table 8: Example 2, online learning, noiseless case, performance index (3.9) and
averaged cost over the described test batches.
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In order to be compared, KOPT and KOPS are applied on two test batches,
each of them composed by Ntask = 100 randomly generated tracking tasks
of length Nst = 60, one characterized by constant reference signals, and the
other by piecewise constant references, both combined with randomly generated
initial steady-state conditions (u−1, y0). The results in terms of performance
index and cost are shown in Table 8, and the similarity in the behavior of the two
controllers can be seen also in the two examples in Figure 29.
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Figure 29: Example 2, online noiseless case, tracking of a constant reference (top
3 plots), and of a piecewise constant reference (bottom 3 plots)
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Noisy case
In this subsection are included the results obtained in noisy conditions, so when
white gaussian noise with standard deviation σy = 0.1 is added to the measured
stream of output. In this case we choose the parameters related to the disturbance
sampling as Nd = 10 and σd = 0.1.
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Figure 30: Example 2, online noisy case, tracking of a constant reference (top 3
plots), and of a piecewise constant reference (bottom 3 plots)
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The obtained policy is tested againstKOPT in performing two random batches
of tracking tasks composed by constant and piecewise constant references re-
spectively, both batches with randomly generated initial steady-state conditions
(u−1, y0). Each of the batch contains Ntask = 100 tracking tasks of length
Nst = 60. For each task the test is repeated considering Nnoise = 200 dif-
ferent realization for the disturbance trajectory. Even in the online noisy case
it is possible to observe the similarity in the behavior of the two controllers in
performing both constant and piecewise constant tracking tasks. This aspect is
underlined by the indices in Table 9, showing the proximity in the cost attained
by the two controllers. Additionally the tracking examples in Figure 30 show
once more how not only the output tracking is similar, but also the input and the
integrals generated by the two controllers are close.

In summary, it is possible to observe that in both noiseless and noisy scenar-
ios, offline and online, the controllers obtained by Optimal Policy Search per-
form similarly to the LQR controller obtained using the Riccati iterations. This
result is achieved even though Optimal Policy Search does not employ knowl-
edge of the underlying dynamical system, exploits a reduced feedback state xRt
instead of the full state xFt over which KOPT acts, and works over measured
input and output streams, while KOPT utilizes the real model of the plant to
filter out the noise from the feedback state. This consideration is based on the
performance achieved by both the controllers when tested in the aforementioned
scenarios over two batches of tracking tasks, composed by constant and piece-
wise constant references, respectively . The result obtained over the constant
references batch is particularly important, given that the Riccati-derived LQR
controller considered as competitor is known from theory to be the optimal con-
troller for the tracking of such signals.

constant rt piecewise constant rt
∆(KOPS) 8e− 3 5e− 4
KOPT 10403.6 23490.1
KOPS 10496.5 23477.0

Table 9: Example 2, online learning, noisy case, performance index (3.9) and aver-
aged cost over the described test batches.
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Figure 31: Example 2, online learning in noisy condition, online output tracking of
an a-priori unknown exploratory reference signal.

We now analyze the quality of the online tracking performance achieved by
Optimal Policy Search while learning from noisy data, shown in Figure 31. In
order to do so we compare it with the performance obtained over the same ref-
erence signal by a data-driven controller synthesized using the DeePC method
(Coulson, Lygeros, and Dörfler, 2019).

As already introduced in Section 1.1 DeePC employs the receding-horizon
MPC paradigm, substituting a more complicated model of the plant dynamics
with the fitting of a linear combination of previously collected trajectories, gen-
erated by an exciting input stream.

DeePC inherits from the MPC frameworks many advantageous characteris-
tics. For instance, it permits to easily incorporate input and output constraints,
while additional work still need to be done in order to extend Optimal Policy
Search and include constraint satisfaction. DeePC generates at every instant a
locally optimal action, by optimizing a performance index over a chosen hori-
zon, with initial condition based on the current state of the plant. Moreover
applications demonstrate that the method is quite data efficient, relying on rela-
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tively small amounts of previously collected input and output samples. Instead,
OPS relies on a policy parameterization, its goal being to globally optimize the
policy parameters in order to handle all the possible scenarios. As a consequence
of this DeePC is expected to provide better performance, at the expense of solv-
ing a Quadratic Programming (QP) problem at every iteration.

The performance of OPS could be limited by the choice of a sub-optimal pol-
icy parameterization or by the global nature of the policy parameters. However,
after convergence, only a simple function evaluation is necessary to compute the
control inputs in OPS.

Another difference of the two methods is that, although small, a previously
collected dataset is required in order to build the Hankel matrices constituting
the data-driven behavioral model exploited by DeePC. OPS instead might re-
quire a longer training session, but it is possible to conjugate training and plant
control, as shown in this section, or to use off-policy learning (eventually com-
bining it with on-policy phases, as discussed in Section 3.1.2), in order to learn
in safety conditions.

Following the notation in (Coulson, Lygeros, and Dörfler, 2019) we design
a DeePC controller in the following way: a dataset composed by the first Nd =

50 couples {(udt , ydt+1)}Nd−1
t=0 of inputs and noisy outputs generated by OPS

during the online learning in Figure 31 is used to build the Hankel matrices
HT+N (ud), HT+N (yd) that will substitute a designed mathematical model for
the predictive control scheme. It has to be underlined that, although the full set
of Nlearn = 20000 inputs and outpus constituting the trajectory in Figure 31
could be used to build such matrix, this would have been resulted in large QP
problems to be solved at each iteration, and hence in a considerable increase of
the required computational time. Moreover, the first samples collected by OPS
while learning tend to be quite explorative, being generated by almost untrained
policy parameters. Each column of HT+N (ud) contains a trajectory of T + N

sequential input values, divided into T “past” input and N “future” inputs. The
same structure is replicated in HT+N (yd) with the associated output values.

Based on the Fundamental Lemma (Markovsky and Rapisarda, 2008), DeePC
uses the Hankel matrices to predict each new input-output trajectory as a linear
combination of the previous ones, collected in the Haenkel matrices. In particu-
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lar, in order to predict the future N input and output uf , yf of a trajectory τ that
is already composed by T input and output up, yp, the method fits a parameter
vector g such that ⎡⎢⎢⎣

Up

Yp
Uf

Yf

⎤⎥⎥⎦ g =

⎡⎢⎢⎣
up
yp
uf
yf

⎤⎥⎥⎦ , (3.13)

where Up consists of the first T block rows of HT+N (u), and Uf of the last N
ones (analogously for Yp, Yf and HT+N (y)).

At every iteration, DeePC optimizes the quadratic cost function of the track-
ing problem (2.5) with stage costs (3.2), with respect to the future N inputs and
outputs uf , yf , and the parameters g, considering as initial conditions the last T
measured inputs and noisy outputs up, yp and the current reference signal rt to
be tracked, that will be considered as constant over the future horizon N (as it
is done in the OPS tracking problem formulation (3.3)). In order to have a fair
comparison with OPS and optimize the same cost the behavioral model (3.13)
enforced as constraint in the predictive scheme is augmented with the known
dynamics of the integral action qt+1 = qt + yt − rt. The same weights Qy ,
Qq , R, QL

y and QL
q considered for the OPS optimization are employed here as

well. The first of the predicted future output, contained in uf , is then applied
to the plant. The same predictive horizon employed for OPS is considered, i.e.
N = L = 10. Regarding the length of the past trajectories, given that the OPS
method relies on local linear models based on the reduced state xRt = [yt, ut−1],
we consider as past values one previous input and output couple, i.e. T = 1.

Given that the Fundamental Lemma does not hold for nonlinear systems or
noisy systems, in such cases DeePC relies on regularization terms ||g||1 and
||Ypg − yp||1 to be added to the tracking cost over the fixed horizon, weighted
by tuning parameters λ1 and λ2. We tune such parameters as λ1 = λ2 = 300.

The DeePC control routine is runned considering the a-priori unknown piece-
wise constant reference signal rt in Figure 31. The measured output employed
by DeePC are altered with additive noise, considering the same noise trajectory
realization used as well during the OPS learning phase.
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As expected DeePC, relying on the built Hankel matrix and on the local op-
timization, is capable of successfully tracking the given reference signal, achiev-
ing a lower global cost over the Nlearn = 20000 steps horizon, if compared with
the one obtained by OPS while learning the parameters.

In Figure 32-33 the DeePC and OPS behaviors are compared, considering
the last 1000 steps of online learning and tracking. The figures show the track-
ing performance achieved by both methods, and the associated input streams. It
is noticeable observing both the plots that towards the end of the learning Opti-
mal Policy Search converges to a policy attaining a closed-loop behavior that is
quite similar to the one of DeePC.

The mentioned figures can help in qualitatively assessing the similarity of
the two behaviors. The same evaluation can be derived quantitatively from the
tracking costs achieved by the two methods in the last 1000 steps of the tracking
task, presented in Table 11. We can observe that indeed the two online costs
are quite close in value, as it can be expected given the shown similarity in the
close-loop performance.

In conclusion, we can observe that despite not computing an optimal local
choice at every instant, the OPS controller after a training phase is capable of
reaching online performance that is close to the ones of DeePC. The similarity
in behavior of OPS and DeePC encourages the learning of OPS controllers on-
policy or off-policy, followed by the application of the obtained controller with
the optimized parameters, a choice that is computationally cheaper than solving
a QP problem at every instant of time.

tracking cost
OPS online 839015.20

DeePC 842841.45

Table 10: Example 2, OPS vs DeePC online tracking cost comparison - last 1000
steps.
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Figure 32: Example 2, noisy case, online comparison OPS vs DeePC, output track-
ing of an a-priori unknown exploratory reference signal, last 1000 steps.
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Figure 33: Example 2, noisy case, online output tracking of an a-priori unknown
exploratory reference signal, last 1000 steps, comparison OPS vs DeePC, series of
inputs fed to the plant online.

78



3.3.2 Comparison with VRFT controllers

As introduced in Section 1.1, VRFT (Campi, Lecchini, and Savaresi, 2002) is
a data-driven method, synthesizing the parameters of a controller based on a
stream of input/output data previously collected in open-loop, and on a user-
defined reference model of the closed-loop behavior to be attained. The most
important difference between VRFT and Optimal Policy Search is hence that
the first one requires a reference model, while the second can be applied di-
rectly, exploiting only the collected data, or even in an online setup, controlling
the plant and collecting the data while optimizing the policy parameterization.
On the other hand, while Optimal Policy Search is an iterative gradient-based
method, VRFT is non-iterative and solves a linear least-squares problem, hence
it does not have local minimum and does not experience initialization problems.
Both methods rely on the quality of the collected data, in terms of information
carried on the unknown plant dynamics. VRFT, in particular is known to directly
search for the optimal solution relative to the information contained in the given
batch of data, hence resulting on poorly performing controllers in case of lack
of excitation in the data (Campi and Savaresi, 2006). Although the importance
on explorative data for the synthesis of an OPS-derived controller is intuitive,
the details on the effect of low informative data on the presented method are still
under investigation.
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Figure 34: Example 2, OPS vs VRFT comparison, open-loop dataset.
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The idea behind this example is to demonstrate that the OPS method is ca-
pable of exploiting the information carried by a small dataset in a more efficient
way with respect to VRFT, resulting in a better performing controller. In order
to fairly compare OPS and VRFT we consider the offline version of the OPS
method and we design the controllers for both the methods using the same pa-
rameterization. In particular, we model the input ut as

ut = πK( sRt =
[︂ yt
ut−1
qt

]︂
, rt ) = Ke(rt − yt) +Kqqt.

The same small set ofNdata = 500 input-output couples represented in Figure 34
is employed by both OPS and VRFT. White noise with standard deviation σy =

0.1 is added to the output yt contained in such dataset.
As anticipated, to design the VRFT competitor we have to choose a refer-

ence model for the desired closed-loop behavior. In this section we consider
two different VRFT-derived controllers, associated with two different reference
models. The first reference model, indicated as M∗, is based on full knowledge
of the true dynamics (3.6) of the plant, making the associated VRFT controller
parametersK∗

VRFT not completely data-driven. The second one, denoted asMd,
is instead built from the available stream of data, without employing knowledge
on the system dynamics or on its order.
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Figure 35: Example 2, OPS vs VRFT comparison, example of tracking behavior
of M∗, and of K∗

VRFT in closed-loop with the plant.
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Figure 36: Example 2, OPS vs VRFT comparison, example of tracking behavior
of Md, and of Kd

VRFT in closed-loop with the plant.

Hence the VRFT controller parameters Kd
VRFT derived from it are prop-

erly data-driven. To obtain M∗ we consider the true dynamics of the full state
sFt = [xFt , qt]

′ with xFt defined in (3.7), in closed-loop with the optimal linear
feedback controllerKOPT (3.8) for the infinte horizon tracking of constant refer-
ences. Such controller is obtained by solving the LQR problem associated with
the weights Qy = 1, R = 0.1, and Qq = 1 employed as well for the OPS opti-
mization. In order to obtain Md, instead, we use the dataset in Figure 34 to fit a
linear model Θd mapping the ouputs yt+1 and the regressors xRt = [ yt, ut−1 ].
The model Θd has the same reduced order and the same regressors of the local
linear models exploited by OPS. We use Θd, augmenting it in order to approx-
imate the dynamics of the reduced state sRt = [xRt , qt]

′. Even in this case we
consider as reference model Md the approximated dynamics of sRt in closed-
loop with the reduced order optimal linear feedback controller KR

OPT for the
infinte horizon tracking of constant references associated with the same weights
optimized by OPS. Both the VRFT controllers are synthesised using the MAT-
LAB VRFT ToolBox (Carè et al., 2019). An example of the tracking behavior
of K∗

VRFT and Kd
VRFT, together with the associated reference model M∗ and

Md can be found in Figure 35 - 36. Based on Figure 36 we can observe that,
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Figure 37: Example 2, OPS vs VRFT comparison, evolution of the linear OPS
policy parameters.

although the dataset in Figure 34 is small and generated by a modestly exciting
piecewise constant input, it is informative enough to permit the identification
of a model Θd and then derive a controller KR

OPT such that their behavior in
closed-loop Md is similar to the optimal closed-loop M∗ shown in Figure 35.

The OPS synthesis is performed as follows: after building the states his-
tory X and the associated local linear models history Θ (with Θ0 = 01×3,
P0 = (1e + 5) · I3, Qk = I3 and Rk = 0.01), the offline learning proce-
dure is carried on for Nlearn = 60000 iterations, starting from the initial guess
K0 = 0.0001·12×1. At each iteration the sampling procedure described in Chap-
ter 2, Section 2.2.2.1 is employed, considering N0 = 1 initial states, Nr = 1

references, Nq = 1 integral action values and Nd = 10 disturbances. The initial
states are sampled uniformly from the states history, with a small perturbation
vn ∼ 0.1 · N (0, 1). References and integral actions are sampled uniformly in
[−100, 100] and [−10, 10], respectively. The disturbances, instead, are sam-
pled according to N (0, σ2

d), with σ2
d = 0.01. For the update of the controller

parameters, AMSGrad is employed, with parameters α = 0.001, β1 = 0.99,
β2 = 0.9999. Figure 37 shows the evolution of the policy parameters learned by
the OPS method. The obtained controller is indicated as KOPS.
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To run the comparison we use K∗
VRFT, Kd

VRFT and KOPS in closed-loop
with the original plant, performing a serie of tracking tasks, and we consider as
performance index the cost defined in (3.10) - (3.12). Such cost is the averaged
tracking cost with horizonNst over a batch ofNtask tracking tasks, each of them
averaged as well with respect toNnoise disturbance signal realizations. In partic-
ular, in order to compareK∗

VRFT,Kd
VRFT andKOPS we consider three different

task batches, each of them characterized by Ntask = 100, Nnoise = 100, and
Nst = 200. The tracking tasks constituting each batch are randomly generated:
the first one is characterized by constant reference signals, the second by piece-
wise constant references, and the third by piecewise sinusoidal references. Each
referenced signal constituting a task is paired with randomly generated initial
steady-state conditions (u−1, y0).

Examples of the three controllers’ tracking performance are shown in Fig-
ure 38 - 39 - 40. The mentioned performance index associated with the three
described test batches (constant references, piecewise constant references and
piecewise sinusoidal references) is included in Table 11. We can see that KOPS

outperforms both the VRFT-derived controllers in each category.
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Figure 38: Example 2, OPS vs VRFT comparison, example of tracking of a-priori
unknonw constant reference.
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Figure 39: Example 2, OPS vs VRFT comparison, example of tracking of a-priori
unknonw piecewise constant reference.
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Figure 40: Example 2, OPS vs VRFT comparison, example of tracking of a-priori
unknonw piecewise sinusoidal reference.
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constant rt piecewise constant rt piecewise sinusoidal rt
KOPS 134748.9 241430.5 1423.6
K∗

VRFT 246446.0 525981.4 2650.0
Kd

VRFT 342042.4 699744.3 3661.6

Table 11: Example 2, OPS vs VRFT comparison, averaged cost over the described
test batches.

The three controllers share the same stucture, the same feedback vector, and
are synthesised from the same set of open-loop inputs and outputs, demonstrat-
ing that the advantage achieved by the OPS method is derived by its capability
of exploiting the information in the data in a more efficient way.

3.4 Example 3 - Continuous Stirred Tank Reactor

In the previous examples the OPS method was employed over LTI systems. First,
we demonstrated the method convergence to the optimal policy, in case the pol-
icy and local linear model parameterizations are chosen equal to the nominal
ones. Then, we showed that, even with policy and local linear models struc-
tured differently from the optimal controller and the nominal model (relying on
a reduced state representation), the method achieves tracking performance that
is close to the optimal one. In this example, instead, our aim is to illustrate the
capabilities of the OPS method in synthesizing online and offline controllers, to
perform output tracking over a nonlinear system with unknown dynamics.

Table 12: CSTR parameters

symbol description value
F volumetric flowrate 1 m3/hr
V volume 1 m3

ρCp volumetric heat capacity A-B 500 kcal/(m3 C)
H reaction heat 5960 kcal/kgmol
E activation energy 11843 kcal/kgmol
R Bolzmann constant 1.98589 kcal/(kgmol K)
k0 CSTR coefficient 9703 ∗ 3600 1/hr
uA overal heat transfer coefficient 150 kcal/(m3 C hr)
T f feed temperature 298.15 K
Cf

A feed concentration 10 kg mol/m3
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Figure 41: Continuously Stirred Tank Reactor (CSTR).

To this end we consider the Continuous Stirred Tank Reactor (CSTR) prob-
lem (cf. Seborg, Edgar, and Mellichamp, 2004). The plant, represented in Fig-
ure 41, is characterized by the following dynamics

∂CA

∂t
=
F

V
(Cf

A − CA)− k0e−
E
RT CA (3.14a)

∂T

∂t
=
F

V
(T f − T ) + uA

ρCpV
(Tc − T ) +

H

ρCp
k0e

− E
RT CA, (3.14b)

and by the parameters in Table 12. We denote as CA and T the concentration
of reactant A and the temperature inside the tank, respectively. The signal Tc
is the temperature of the cooling jacket. In the following, we will consider as
underlying plant for the learning experiments the numerical system obtained by
discretizing the signals with sampling time Ts = 6 s.

The control objective is to optimally make the concentration of reactant A
track a desired set point taking values in the interval [2, 9], by manipulating the
temperature of the cooling jacket. We consider the scaled signals

yCt =
C̄

t
A − cm

cM − cm
=
Ct

A − cm
cM − cm

+
dt

cM − cm
, ut =

T t
c − um

uM − um
, (3.15)
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as input/output data, where [cm, cM ] = [5, 10], [um, uM ] = [300, 360]. The
quantities C̄t

A = Ct
A + dt represent the noisy measurements of Ct

A, considering
an unmeasurable Gaussian white noise dt with standard deviation σy = 0.1.

The stage-cost (3.2) is used, with horizon L = 10. The weights Qy = QL
y =

1, R = 0.1 are chosen, indicating that our goal is to steer yCt into tracking rt =
(r̄t−cm)/(cM−cm). The weightQq = QL

q = 0.0001 over the integral action is
used as a regularization term, secundary with respect to the main tracking goal.

In this example we consider two additional states: one is the integral qt,
having known dynamics qt+1 = qt + (yCt − rt). The second one is the scaled
temperature inside the tank

yTt =
T̄ t − tm
tM − tm

with [tm, tM ] = [350, 400] and T̄ t representing the noisy measurements of Tt,
subject to unmeasurable white Gaussian noise with standard deviation σy =

0.1. Differently from the integral action qt, the dynamics of Tt are unknown,
hence past realizations of Tt are included in the state xt and modeled by local
linear models, as described in (2.18). To build the feedback vector no = 3 past
measurements of yCt and yTT and ni = 1 past input ut are employed, i.e.,

xt = [ yCt , y
T
t , y

C
t−1, y

T
t−1, y

C
t−2, y

T
t−2, ut−1 ]

′.

Adding coefficients of the integral qt and of the reference rt, the feedback vector
provided to the contollers is composed by 9 elements.

Performance index In both the online and offline settings, the tracking per-
formance of the synthesized policies is evaluated by means of the trajectory cost
(2.5), with stage costs

ρ(st, rt, ut) = ∥yt − rt∥2Qy
+∥∆ut∥2R, ρL(sL, rL) = ∥yL − rL∥2QL

y
.

To test the capabilities of the OPS method, the policy trained using such al-
gorithm are employed over a batch of tracking tasks. Each task is an a priori
unknonw set point signal to be tracked. The average tracking performance over
such tasks batch is taken as performance index.
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In the following, hence, after synthesizing a policy using the OPS method,
a tasks batch is built, composed by Ntasks reference signals of length NL as-
suming values in [rmin, rmax]. Such tracking tasks are executed by the plant,
controlled by the OPS-synthesized policy, starting from steady-state conditions
Css

A = 8.5695, T ss = 311.2669, T ss
C = 298.15. Each batch is composed by:

• a subset Rconst containing Nconst constant signals 2, 2.5, 3, 3.5, . . . , 9;

• a subset R1
pwc containing N1

pwc random piecewise constant signals, each
of them with initial value r0 sampled according to U([ i, i + 0.5 ]) for
i = 2, 2.5, . . . , 8.5. The following values rt are sampled from U([ 2, 9 ]);

• a subsetR2
pwc containingN2

pwc of random piecewise constant signals, with
initial value r0 = 8 close to the initial steady state conditions, while fol-
lowing values rt sampled from U([ 2, 9 ]).

Table 13 contains the parameters characterising such tasks batches.

Ntasks Nconst N1
pwc N2

pwc rmin rmax NL

49 15 14 20 2 9 10000

Table 13: Example 3, tasks batch characteristics.

3.4.1 Tuning details

This section includes the tuning choices common to all the scenarios that are go-
ing to be presented in the following (namely, synthesis of linear policy offline,
synthesis of linear policy online, synthesis of nonlinear policy offline, and syn-
thesis of nonlinear policy online). The choices that differ from one to the other
case will be included in the separate sections dedicated to the specific scenarios.

In particular, in all the four mentioned scenarios the mini-batches described
in Section 2.2.2.1 are composed by N0 = 50 states xt as in (2.2), sampled from
the states history X , and by Nr = 7 reference values. Each of the 7 reference
values is sampled in a different sub-interval of the chosen space of tasks [2, 9].
Specifically each of them is sampled according to one of the uniform random
variables U([ i, i + 1 ]) for i = 2, 3, . . . , 8. The small perturbation applied to
the states sampled from the states history is chosen as vn ∼ 0.01 · N (0, 1).
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The disturbance trajectories are sampled as Gaussian white noise having stan-
dard deviation σd = 0.1/(cM − cm). The local linear models Θt are fitted by
initializing the parameters as Θ0 = 02×8 and P0 = (1e + 5) · I8, and recur-
sively updating it by Kalman Filtering, with covariance matrices Qk = I8 and
Rk = 0.01/(cM − cm).

3.4.2 CSTR - linear policy parameterization

Initially, to match the control goal we synthesize controllers, parametrized using
a linear policy parameterization of the control increment ∆ut = ut − ut−1 =

(T t
c − T t−1

c )/(uM − um), as in (2.22), i.e.,

πK(st, rt) = ut−1 +K

[︃
st
rt

]︃
= ut−1 +Ksst +Krrt.

The synthesis process in this case consists hence in learning a total of 9 lin-
ear coefficients. Both in online and offline setting we start the learning from a
generical initial guess K0 = 0.0001 · 19×1.
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Figure 42: Example 3, offline learning, evolution of the linear policy parameters.
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3.4.2.1 Offline setting

To perform the offline learning of the control policy,Ndata = 30000 input-output
couples are collected in open-loop from the plant, excited with a random piece-
wise constant input sequence taking values in [240, 360]. The collected data are
shifted according to (3.15) and stored in the states history X . The associated
local linear models are then fitted and stored in the set Θ.

The Optimal Policy Search offline algorithm is executed forNlearn = 10000

iterations. The sampled mini-batch is built combining states, reference values
and Nd = 10 disturbance trajectories (all sampled according to Section 3.4.1),
with Nq = 5 initial integral action values, sampled uniformly in [−3, 3]. For
the update of the controller parameters, AMSGrad is employed, with parameters
α = 1, β1 = 0.9, β2 = 0.999. The evolution of the 9 policy parameters till
convergence is shown in Figure 42. As usual, we indicate as KOPS the final
set of parameters obtained. Examples of the behavior obtained by KOPS in
performing a batch of tracking tasks built according to Table 13 are shown in
Figure 43 - 44.
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Figure 43: Example 3, offline case, example of tracking of an a priori unknonwn
constant reference using KOPS.
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Figure 44: Example 3, offline case, example of tracking of an a priori unknonwn
piecewise constant reference using KOPS.

To better analyze the performance achieved by KOPS, we compare it with
the behavior of a competitor, synthesized from the same dataset employed for the
offline OPS procedure. To this end, Linear Regression is employed on the data
used to build the state history for OPS, to fit a linear model approximating the
dynamics of yCt and yTt . Such model is then augmented to obtain the dynamics
of st = [xt, qt ]

′, as it was done in (3.5). The approximated dynamics of st
are additionally augmented by adding rt+1 = rt, coherently with the fact that
KOPS is optimized over mini-batches of constant references, as formulated in
(3.3). Finally, the backwards Riccati iterations are employed over an horizon of
300 steps, and the associated linear controller, denoted as K∗, is considered as
competitor. Although K∗ is not the best controller possible for the CSTR plant,
it is the one that grants a fair comparison with KOPS, from several points of
view. Both controllers do not employ the real dynamics of the plant, but rely
only on the information stored in the same set of data. Moreover, both feedback
controllers express a linear relationship and explot the same feedback. Finally,
both controllers are static.

Table 14 shows the results of the comparison, expressing the number of fail-
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KOPS K∗
average cost 13.1 54.9

failure occurrence 0 6

Table 14: Example 3, offline case, comparison between KOPS and K∗.

ures encountered by the controllers over the 49 tests and the average cost of the
two controllers, considering only the tests over which both controllers do not
experience failure (43 over 49 tests). One important observation arising from
the results is that, while KOPS is capable of tracking set points taking values
in the whole interval [2, 9], K∗ encounters failure on specific tasks: perform-
ing the tests we could notice that the failures of K∗ occurred when dealing with
set points taking values in [2, 4]. This is probably caused by the linear model
fitted from data and used to synthesize K∗, describing better the dynamics in
[4, 9], probably linearizable, and not being capable of representing the inherent
nonlinearity of the system. On the other hand, the local models employed in
the Optimal Policy Search offline synthesis, although linear, seem capable of
handling the optimization of nonlinear unknonwn dynamics by being used in
combination. Moreover, the average cost in Table 14 shows that, even for track-
ing tasks with values in [4, 9] and hence that can possibly be handled by both
controllers, KOPS performs better than K∗.

3.4.2.2 Online setting

The online learning is executed for Nlearn = 50000 iterations, starting from
steady-state conditions Css

A = 8.5695, T ss = 311.2669, T ss
C = 298.15. At

each iteration t a mini-batch is sampled, using Nd = 1 disturbance trajectory
(sampled as described in Section 3.4.1), N0 = 50 states (the last collected state
xt and 49 states uniformly chosen from the whole history) and Nq = 20 initial
integral action values (the last value qt, obtained from the online tracking perfor-
mance and 19 values sampled using a Gaussian distribuion centered in qt, with
variance 1). For the update of the controller parameters, Adam is employed,
with parameters α = 0.01, β1 = 0.8, β2 = 0.999. The heuristic for stability
described in Section 2.3.2.1 is implemented in this case.
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Figure 45: Example 3, online learning, online output tracking of an a-priori un-
known exploratory reference signal.

Figure 45 shows the tracking performance achieved by OPS during the learn-
ing, while optimizing the policy parameters. The learned policy KOPS is then
tested over a batch of tracking tasks built according to Table 13. Examples of
the behavior of KOPT while tracking a constant and piecewise constant refer-
ence are shown in Figure 46 - 47, respectively. The data collected during the
learning phase are employed to compute a competitor K∗, following the same
procedure applied in the offline case. The competitor is employed over the same
tasks batch used to test KOPS. The average costs achieved by both policies over
the tasks batch are included in Table 15.

From such costs and from the number of failures encountered by the com-
petitor policy, it is clear that the data collected during the learning phase do not
permit the fitting of a global linear model capable of summarizing the nonlinear
dynamics of the plant at a sufficient level. On the other hand KOPS, learned
by exploiting the same data, is capable of tracking all the considered tasks and
achieving a cost of the same order of the one obtained in the offline case.
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Figure 46: Example 3, online case, example of tracking of an a-priori unknonwn
constant reference using KOPS.
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Figure 47: Example 3 online case, example of tracking of an a-priori unknonwn
piecewise constant reference using KOPS.
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KOPS K∗
average cost 28.8 1205.0

failure occurrence 0 33

Table 15: Example 3, online case, comparison between KOPS and K∗.

3.4.3 CSTR - nonlinear policy parameterization

In the last part of this chapter the OPS method is employed to optimize a nonlin-
ear policy parameterization, showing the performance of the method in handling
the synthesis of nonlinear controllers. To do so, we substitute the linear pa-
rameterization of the input increment ∆ut employed up to now with a neural
network. Neural networks are a powerful nonlinear model, composed by a se-
quence of layers of so called “neurons”, each of them providing a composition
of linear functions, associated with a matrix of weightsW (and eventually a bias
vector b), and a nonlinear activation function σ. Hence, each layer i performs
the application of a nonlinear function fi(x) = σ(Wi x+ bi). A neural network
with N layers is structured so that, taken an input value x0, the layers functions
fi are applied in cascade, and the output of the neural network is the composi-
tion y = fN−1(fN−2(. . . f0(x0))).

Figure 48: Example 3, nonlinear parameterization, neural architecture.
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Figure 49: Example 3, nonlinear parameterization, activation function.

The neural parameterization designed to meet our control goal is ut = ut−1+

NN (st, pt), where NN (st, pt) is a 3-layered neural network,

NN (st, pt) =W2 · σ1(W1 · σ0(W0 · [ stpt ])), (3.16)

taking in input the decision variables (st, rt) ∈ R9 and restituting the input in-
crement ∆ut ∈ R, as represented in Figure 48. Aside the input and output
layers, of dimensions fixed by the characteristics of the problem, the first and
the second inner layers contain N1 = 15 and N2 = 10 nodes, respectively.

As activation functions for the inner layers we consider both σ0 and σ1 equal
to the swish function

σ(x) = x · sigmoid(x) =
x

1 + e−x
, (3.17)

a smooth function represented in Figure 49, similar to the most commonly used
(but non differentiable) ReLu activation function.

We design the network not to include the bias terms in each layer, hence the
set of parameters to be optimized is composed by the weights matrices W0 ∈
R15×9, W1 ∈ R10×15, and W2 ∈ R1×10, i.e., H = {W0, W1, W2}.

In both offline and online cases, we start the learning from random initial
weights W 0

i ∼ 0.0001 · N (0, 1) for i = 0, 1, 2.
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3.4.3.1 Offline setting

The offline learning of the neural control policy is performed over the same
dataset employed for the offline synthesis of the linear policy parameterization,
in Section 3.4.2.

The Optimal Policy Search algorithm is executed for Nlearn = 10000 iter-
ations. The sampling procedure is performed according to Section 3.4.1, and
considering Nq = 1 initial integral action values and Nd = 1 disturbance tra-
jectories. The integral action values are sampled uniformly in [−10, 10]. For
the update of the controller parameters, AMSGrad is employed, with parameters
α = 0.001, β1 = 0.9, β2 = 0.99. Figure 50 shows the evolution of the neural
network weights, each subplot corresponding to the evolution of the Frobenious
norm of one of the three neural network layers, i.e., for W ∈ Rn×m, the value

||W ||F=
√︃

n

Σ
i=1

m

Σ
j=1

w2
i,j .

Examples of the behavior obtained by the resulting neural policy NNOPS

in performing a batch of tracking tasks built according to Table 13 are shown in
Figure 51 - 52.
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Figure 50: Example 3, offline learning, neural parameterization, evolution of the
Frobenious norm of the neural policy parameters.
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Figure 51: Example 3, offline case, example of tracking of an a priori unknonwn
constant reference using NNOPS.
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Figure 52: Example 3, offline case, example of tracking of an a priori unknonwn
piecewise constant reference using NNOPS.
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references NNOPS KOPS

whole tasks batch 30.3 38.6
Rconst 12.0 13.5
R1

pwc 45.1 57.5
R2

pwc 33.6 44.2

Table 16: Example 3, offline case, neural parameterization, averaged tracking cost.

Table 16 includes the average tracking cost achieved by NNOPS over such
batch of tasks, with details on the average tracking cost achieved over constant
references Rconst, piece-wise constant references with different initial value
R1

pwc, and piece-wise constant references with initial value close to the initial
state of the plant R2

pwc. As a reference, the average tracking cost achieved
over the same batch by the linear policy KOPS synthesized offline in Section
3.4.2 is included. We can observe that the neural network performance, in gen-
eral, achieves lower costs than the linear controller, as expected. The difference
among the costs is small over the tracking of constant references, while it be-
comes more significant considering more difficult piecewise constant tasks.

3.4.3.2 Online setting

The online learning is executed for Nlearn = 50000 iterations, starting from
steady-state conditions Css

A = 8.5695, T ss = 311.2669, T ss
C = 298.15. During

the learning, the input selection procedure described in Algorithm 3 is employed,
with parameters T1 = 5000, T2 = 20000M = 100 and ϵ = 0.05. We employ
as behavioral policy πb for the input selection procedure the linear feedback con-
troller KOPS synthesized offline in Section 3.4.2.

At each iteration t a mini-batch is sampled, usingNd = 1 disturbance trajec-
tory (sampled as described in Section 3.4.1), N0 = 50 states (the last collected
state xt and 49 states uniformly chosen from the whole history) and Nq = 5 ini-
tial integral action values (sampled uniformly in [−20, 20 ]). For the update of
the controller parameters, RMSProp is employed, with parameters αt = 0.0001

for t < 20000, αt = αt−1 · (9/10) for t > 20000, t%5000 = 0 , αt = αt−1

otherwise, β = 0.9999.
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Figure 53: Example 3, online learning, neural parameterization, evolution of the
Frobenious norm of the neural policy parameters.

The evolution of the neural network weights W0, W1, W2 is shown in Fig-
ure 53 in terms of Frobenious norm of the sequence of matrices generated by the
algorithm updates.

Figure 54, instead, shows the tracking performance achieved by OPS dur-
ing the learning, starting from steady-state conditions Css

A = 8.5695, T ss =

311.2669, T ss
C = 298.15, in the top plot. The bottom one instead, represents

which of the two controllers at disposal (πHt = NN t
OPS and πb = KOPS) are

employed by the input selection procedure to generate the input to be fed to the
plant.

cost total off-policy assisted phase on-policy
NNOPS in learning 116.5 5.8 52.8 57.9

KOPS 124.7 5.8 51.3 67.6

Table 17: Example 3, online learning, neural parameterization, tracking cost.
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Iteration t

Figure 54: Example 3, online learning, online output tracking of an a-priori un-
known exploratory reference signal.

Table 17 presents the online tracking cost achieved by the OPS algorithm
together with the assisted control procedure while learning the neural policy
NNOPS. As a comparison, the same table includes the cost obtained by track-
ing the same exploratory reference employing directly the already trained linear
controller KOPS.

To better analyze the obtained results the table includes the detail of the cost
achieved in the three phases dictated by the assisted control procedure, that is,
the cost associated with the off-policy learning phase (iterations t ∈ [ 0, T1−1 ]),
the cost of the assisted control phase (iterations t ∈ [T1, T2 ]), and the cost of
the pure on-policy learning phase (from t = T2 + 1 on). We can see that the
input selection procedure applied during the assisted phase has a similar (slightly
higher) cost than simply using πb, but that it finally pays off in the sense of
learning, permitting to refine the initial policy and obtain a better performance
in the long run.
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Chapter 4

Learning hybrid controllers
from data

This chapter extends the Optimal Policy Search algorithm for the synthesis of
hybrid feedback controllers under “black box” hypothesis. As previously done
in Chapter 2 for smooth controllers, we introduce the problem formulation and
the online and offline algorithms for the hybrid case, detailing how the con-
trollers, the modes and the switching law that characterize a hybrid control law
are learned from data. The chapter includes a section of examples, in which
such algorithms are applied to learn hybrid controllers for the output-tracking
problem.

4.1 The Optimal Switching Policy Search problem

To formulate the Optimal Switching Policy Search problem we consider a plant
P as defined in (2.1) and we rely on the structure described in Chapter 2, Sec-
tion 2.1, working with the system as presented in (2.3), i.e., in form st+1 =

h(st, pt, ut, dt). The “black box” assumption that makes the dynamics (f, g)

and h of the plant unknown at design phase is mantained.
Our aim is to design an algorithm for the synthesis of a hybrid feedback con-

troller from data. A hybrid feedback controller is a control law that is composed
by a set of controllers, a set of modes, and a switching law. The switching law
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selects, based on the current feedback, one of the modes of the control law, and
hence which of the controllers has to be employed to generate the next input ut to
be fed to the plant. A hybrid controller hence allows to diversify the input com-
putation process in different areas of the feedback space. Each of the controllers
composing the hybrid law can be specialized, in order to generate the best input
for the plant in specific conditions, dictated both by the environment and by the
local dynamics of the plant. Not being constrained by a uniform mechanism
of input computation, a hybrid controller is hence capable of achieving overall
better performance, when the behavior of the plant and its interaction with the
environment are varying. Our goal is to synthesize such controllers from data,
without any knowledge of the plant dynamics. We also avoid to identify the
dynamics, which can be costly and time consuming in case of nonlinear/non-
smooth plant behavior. To do so we require to design a method capable not only
of optimizing the controllers characterizing the hybrid law, but also to learn the
regions of application of such controllers directly from a stream of measured
data, with the rationale of optimizing the overall control performance.

As will be discussed in more detail in the following sections, a hybrid con-
troller is not everywhere differentiable over the feedback space, and involves
discrete variables, that characterize the switching law. It is hence not possible to
directly apply the Optimal Policy Search approach introduced in Chapter 2 for
its synthesis. In this chapter we will extend such approach, by designing an al-
ternative data-driven optimization procedure for the discrete components of the
control law, and resolving eventual issues of non-differentiability.

A hybrid controller with M modes is representable as a switching policy
function, i.e.,

π(st, pt) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π1(st, pt), if (st, pt) ∈ R1,

π2(st, pt), if (st, pt) ∈ R2,
...

...
πM (st, pt), if (st, pt) ∈ RM ,

(4.1)

where (π1, . . . , πM ) ∈ F(Rns+np ,Rnu)M is the set of M controllers char-
acterizing the control law and (R1, . . . , RM ) ∈ PM is the associated set of
regions of Rns+np where each policy πm should be applied.
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As in Chapter 2, we denote as F(Rns+np ,Rnu) the set of functions of ns +
np real variables taking values in Rnu . The set PM instead indicates the set of
all the M disjoint subsets of Rns+np such that their union corresponds to the
domain Rns+np of the controller, i.e.,

PM =
{︂
(R1, . . . , RM) ⊆ P(Rns+np)M |R1 ∪ . . . ∪RM = Rns+np ,

Ri ∩Rj = ∅,
∀ i, j ∈ {1, . . . ,M}, i ̸= j

}︂
.

According to (4.1) the switching law associates the use of the m-th controller
πm with (st, pt) belonging to the m-th region Rm and hence with the m-th
mode. According to this representation, a hybrid controller π is then univocally
determined by the set {πm, Rm}

M

m=1 of its sub-controllers and regions.

Combining the cost functions (2.6) - (2.7) with the switching policy function
definition, we formulate the abstract Optimal Switching Policy Search (OSPS)
problem

min EW [J ]({πm, Rm}
M

m=1),

such that {πm}
M

m=1 ∈ F(Rns+np ,Rnu)M , (4.2)

{Rm}
M

m=1 ∈ PM

In the same spirit of what was done in Chapter 2, to make problem 4.2 tractable,
we parameterize the controller {πm, Rm}

M

m=1. We consider the parameters
H = (K, c), where K = {K1, . . . ,KM} is a set of vectors associated to the M
local controllers and c shapes the associated regions. Hence, a switching policy
parameterization can be written as

πc
K(st, pt) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
πK1(st, pt), if (st, pt) ∈ R1(c),

πK2(st, pt), if (st, pt) ∈ R2(c),
...

...
πKM

(st, pt), if (st, pt) ∈ RM (c).

(4.3)

In (4.3), each subdomain Rm(c) is a function Rm : Rnc → P(Rns+np), map-
ping the values of the parameters c into a subset of Rns+np .
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We consider parameterizations such that eachRm(c) is connected in Rns+np .
The parameterized regions {Rm(c) }Mm=1 have to be designed to belong to PM .
Regarding the M local subcontrollers parameterization, instead, we consider
parametric subfunctions πKm that are differentiable, with continuous partial
derivatives, with respect to the parameters Km ∈ Rnkm everywhere in the
interior R̊m(c) of Rm(c), i.e., for each m ∈ {1, . . . , M } πKm

(st, pt) ∈
C1(Rnkm ) for each (st, pt) ∈ R̊m(c). The value M is here considered as
an hyperparameter, chosen at design phase as well as the functional structures
πKm

(s, p) and Rm(c), and not as a parameter to be learned. Following the con-
struction presented in Section 2.1 to pass from problem 2.8 to 2.10, problem 4.2
can be approximated as

K∗, c∗ = arg min
K, c

E
[︂ L−1∑︂

ℓ=0

ρ(sℓ, pℓ, uℓ) + ρL(sL , pL
)
]︂
, (4.4)

such that uℓ = πc
K(sℓ, pℓ), ℓ = 0, 1, . . . , L - 1,

sℓ+1 = h(sℓ, pℓ, uℓ, dℓ), ℓ = 0, 1, . . . , L - 1,

s0 ∼ SP

dℓ ∼ Dℓ, ℓ = 0, 1, . . . , L - 1,

pℓ ∼ Pℓ, ℓ = 0, 1, . . . , L.

We indicate this problem as the Optimal Parameterized Switching Policy Search
(OPSPS) problem.

Literature on data-driven hybrid control synthesis
Before describing the proposed approach to the OPSPS problem a few literature
references on data-driven hybrid control synthesis are mentioned, with particular
attention to wether the considered methods provide a data-driven estimation of
the switching law or if it requires previous knowledge on the system dynamics.

For instance, in the case of switched linear multiple-input multiple-output
(MIMO) systems, the method introduced in (Dai and Sznaier, 2018) synthesizes
a robust switching controller from experimental data, without explicitly identi-
fying a model of the open-loop process. Nonetheless, the method requires the
knowledge of the model structure, and therefore of the switching law.
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In robotics literature, contributions can be found related to the synthesis of
switching controllers exploiting experience gathered from process/environment
interactions, in the way that is typical of Reinforcement Learning. These meth-
ods are mainly related to motion tasks. For instance, in (Grudic, V. R. Kumar,
and Ungar, 2003) the control synthesis starts from an existing controller and
uses policy gradient techniques to synthesize a switching controller online with
improved performance, while (Nagayoshi, Murao, and Tamaki, 2010) uses two
control laws, one based on Q-learning and the other on actor-critic, to mimic
gross and fine motor skills respectively. However, in both (Grudic, V. R. Kumar,
and Ungar, 2003) and (Nagayoshi, Murao, and Tamaki, 2010) the switching
law is fixed and known a priori. In (Breschi and Formentin, 2020), instead,
a data-driven method is proposed, based on VRFT. Such method estimates a
piecewise-affine controller together with the switching law. The method is com-
pletely model-free, requiring the tuning at design phase of the reference model
for the desired closed-loop behavior, as it is typical for VRFT techniques.

4.2 Extending the OPS method to learn non-smooth
controllers

This section describes a new approach to learn both the set of controllers and the
modes directly from a stream of inputs and outputs collected from the plant, in
an offline or online setting, in the same setup already described in Chapter 2.

Note that it is not possible to directly employ the gradient-based strategy in-
troduced in Chapter 2, Section 2.2 to problem 4.4. Preliminarly, let us analyze
this aspect. To this end, let us define a function to represent the switching law
associated to parameters c. We define the function σc : Rns+np → {1, . . . ,M}
that assigns to each state and exogenous signal the corresponding region index,
i.e., σc(s, p) = j if (s, p) ∈ Rj(c). Using σc it is possible to rewrite the policy
parameterization (4.3) as πc

K(st, pt) = πKσc(st, pt)
(st, pt). From this expres-

sion we can observe how the parameterization is a composition of functions of
the parameters K1, . . . , KM assuming continuous values (the subcontrollers
πKm ) with the switching law σc, parameterized using c and taking discrete val-
ues. Is it then impossible to directly apply the gradient-based numerical opti-
mization methods to learn K and c.
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4.2.1 Optimization strategy

In order to extend the Optimal Policy Search method a coordinate descent strat-
egy is designed, based on the idea of alternating the optimization of the local
controllers with respect to the current switching law and the optimization of the
switching law, given the last updated local controllers. In terms of search in the
parameters space, this translates into an iterative procedure such that, starting
from an initial guess K0, c0, at every iteration t = 1, . . . , Nlearn we attempt to
solve, in sequence

Kt = arg min
K

E
[︂ L−1∑︂

ℓ=0

ρ(sℓ, pℓ, uℓ) + ρL(sL , pL
)
]︂
, (4.5a)

such that uℓ = πct−1

K (sℓ, pℓ), ℓ = 0, 1, . . . , L - 1,

sℓ+1 = h(sℓ, pℓ, uℓ, dℓ), ℓ = 0, 1, . . . , L - 1,

s0 ∼ SP , dℓ ∼ Dℓ, ℓ = 0, 1, . . . , L - 1,

pℓ ∼ Pℓ, ℓ = 0, 1, . . . , L.

ct = arg min
c

E
[︂ L−1∑︂

ℓ=0

ρ(sℓ, pℓ, uℓ) + ρL(sL , pL
)
]︂
, (4.5b)

such that uℓ = πc
Kt(sℓ, pℓ), ℓ = 0, 1, . . . , L - 1,

sℓ+1 = h(sℓ, pℓ, uℓ, dℓ), ℓ = 0, 1, . . . , L - 1,

s0 ∼ SP , dℓ ∼ Dℓ, ℓ = 0, 1, . . . , L - 1,

pℓ ∼ Pℓ, ℓ = 0, 1, . . . , L.

Note that the alteration of the coordinate descent steps in (4.5) can indifferently
start with the optimization of the sub-controllers, or with the regions update.
The next sections of this chapter are dedicated to describe the Optimal Switch-
ing Policy Search method, that implements a data-driven unsupervised learning
approach to deal with the optimization of the discrete valued switching law,
and an extension of the Optimal Policy Search method to deal with the sub-
controller’s optimization, following the introduced coordinate descent strategy.
The remaining part of this section instead shows why the Optimal Policy Search
method cannot directly be applied to tackle problem (4.5a), requiring instead to
be adapted.
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4.2.1.1 Multi-modal policy cost: differentiability

In this section we discuss the possible issues arising in the application of the
OPS method to problem (4.5a). In particular, we analyse the differentiability
with respect toK of the approximated cost function exploited for the data-driven
gradient approximation by the OPS approach, when combined with a switching
policy parameterization.

As already explained, the mentioned approximated cost is obtained substi-
tuting the unknown nominal dynamics of the plant with local linear models in
specific neighborhoods of states, sampled from the states history. Hence, for a
fixed sample w = ( s0, {pℓ}

L

ℓ=0
, {dℓ}

L−1

ℓ=0
), and local model Θ0 associated to

the initial state s0, we study the differentiability of

Jc
w(K) = ĴL(K, c, w) =

L−1∑︂
ℓ=0

ρ(sℓ, pℓ, π
c
K(sℓ, pℓ)) + ρL(sL , pL

), (4.6)

with respect to K = {K1, . . . ,KM }, given fixed parameters c.

In the case of a single mode controller (M = 1), πc
K is characterized by

K = {K1 } and R1(c) = {Rns+np }, by definition of PM . Given that πK1

is assumed to be differentiable (and hence continuous) in K1 for each (st, pt)

in R̊1(c) = Rns+np , the policy parameterization πc
K corresponds to the smooth

policy parameterization πH considered in Chapter 2, and problem 4.4 coincides
exactly with problem 2.10. The function composition of πc

K = πK1
with the

cost function of problem 2.10 is then everywhere differentiable with respect to
H = K1 and the OPS method can be employed.

When the desired controller has more than one mode (M > 1), instead, the
goal function in (4.6) is possibly not continuous (and hence not differentiable)
with respect to K. Indeed, Jw

c (K) is the composition of:

• the cost Jw
L ({sℓ}Lℓ=1, {uℓ}L−1

ℓ=0 ) =
∑︁L−1

ℓ=0 ρ(sℓ, pℓ, uℓ)+ρL(sL , pL
), such

that {pℓ}Lℓ=0 and s0 = s0 are specified in w. This function is continuous
and differentiable with respect to the variables {sℓ}Lℓ=1 and {uℓ}L−1

ℓ=0 , by
design of ρ and ρL.
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• The functions swℓ : (Rnu)ℓ −→ SRℓ(w) ⊆ Rns such that

swℓ ({uj}ℓ−1
j=0) = Aℓ

0 s0 +
ℓ−1∑︂
j=0

Aℓ−1−j
0 (B0uj + E0pj +D0dj) (4.7)

for ℓ = 1, . . . , L. The codomain SRℓ(w) of swℓ is the set of states
reachable by (A0, B0, D0, E0) in ℓ steps, based on the sample w =

( s0, {pℓ}
L

ℓ=0
, {dℓ}

L−1

ℓ=0
). The construction of (A0, B0, E0, D0) from the

local model Θ0 associated with s0 is described in Appendix A. For each
ℓ = 1, . . . , L, swℓ is continuos and differentiable with respect to {uj}ℓ−1

j=0.

• The policy function uℓ = πc
K(s, p). Based on the hypotesis on the policy

function (4.3), we can grant continuity and differentiability only if (s, p)
belongs to the interior of Rm(c) for some m, i.e., (s, p) ∈ ⋃︁M

m=1 R̊m(c).

We recursively define the function swℓ (·, c) : Rn1 × . . .× RnM −→ SRℓ(w) as
the composition of (4.7) and πc

K(s, p), i.e.,

swℓ (K, c) = swℓ ( {uj}ℓ−1
j=0 ) with uj = πc

K(swj ( {πc
K( . . . , pk) }

j−1

k=0
), pj).

for each ℓ = 1, . . . , L. Such composition is granted to be continuous and dif-
ferentiable in K only if at every step of the composition πc

k(s, pj) is applied on
swj ∈

⋃︁M
m=1 R̊m(c) for each j. Following from this, function (4.6) is granted

to be continuous and differentiable in the subset of parameters K such that at
every step ℓ of the considered trajectory of lenght L, the state-exogenous signal
couple (swℓ (K, c), pℓ) lays in the interior of Rm(c) for some m.

Fixed c and w, hence, the set of parameters K such that (4.6) is granted to
be continuous and differentiable is

Swc =
{︂
K ∈ Rn1 × . . .× RnM

⃓⃓⃓
∀ ℓ ∈ {1, . . . , L} (4.8)

∃ m ∈ {1, . . . , M} (swℓ (K, c), pℓ) ∈ R̊m(c)
}︂
.

The composition of Jw
L , swℓ and πc

K , restricted to Swc guarantees to apply πc
K

only on couples (swℓ (K, c), pℓ) such that πc
K(swℓ (K, c), pℓ) is differentiable.
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Figure 55: Voronoi partition R1(c), R2(c), R3(c) of R2, generated by a set of
centroids c = {c1, c2, c3}, associated to the local policies πK1 , πK2 , πK3 .

The eventual lack of differentiability outside Swc would make the naı̈ve use
of gradient methods ineffective, possibly requiring to compute the gradients of
the cost functions in places where they are not even defined. The Optimal Policy
Search approach presented in Chapter 2, dealing with smooth policies and hence
smooth costs, is not strightforwardly applicable to tackle problem (4.5a), thus
needing to be adapted.

4.3 The OSPS method

The Optimal Policy Search method is extended here to learn switching poli-
cies with polyhedral switching laws, that is switching controllers such that the
considered sub-controllers are associated with polyhedral areas of application.
We choose the following polyhedral parameterization for R1(c), . . . , RM (c) ∈
P(Rns+np) in (4.3): such regions are designed to be polyhedra obtained from
the Voronoi partition of Rns+np associated withM centroids c = {c1, . . . , cM},
using an opportune distance or semi-distance d over Rns+np , i.e.

Rj(c) = {x | (d(x, cj) = d(x, ch) and j < h) or

d(x, cj) < d(x, ch) ∀h ̸= j, h = 1, ..,M } (4.9)

as represented in Figure 55. The parameters of said switching law are then the
centroids of the Voronoi partition.
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This parameterization respects the assumptions introduced in Section 4.1 on
the controllers mode: the regions Rj(c) in (4.9) are two-by-two disjoint, they
are a partition of Rns+np , henceforth their union is equal to Rns+np , and they
are connected. The policy parameterization (4.3) combined with (4.9) is well
defined as a function over Rns+np .

In this context, the parameterized switching law σc introduced in Section
4.2.1.1 to assign to each couple (s, p) the associated local controller can be de-
fined as

σc(s, p) = min
{︂

arg min
i∈{1,...,M}

d(
[︂ s
p

]︂
, ci)

}︂
. (4.10)

The extended approach, that we denote as the Optimal Switching Policy
Search (OSPS) method, is again based on input-output data and can be applied
either offline or online, by following the steps in Algorithm 4 and Algorithm 5,
respectively.

Both the algorithms at every iteration t call in sequence two sub-algorithms,
one for the optimization of the local controllers (addressing problem 4.5a), and
one for the update of the centroids (according to problem 4.5b). Such sub-
algorithms are presented in Section 4.3.1 (detailing an adapted version of the
OPS method taking into account of the discussed differentiability issues) and in
Section 4.3.2, respectively.

Algorithm 4 OSPS - Offline setting

Input: Initial guess H−1 = {K−1, c−1}, number Nlearn of learning steps.
State history X = {x0, .., xN−no} of P and associated local linear mod-
els Θ = {Θ0, ..,ΘN−no}.

Output: Policy parameters HOSPS.

1: for t = 0, . . . , Nlearn − 1 do
2: Kt ← controllers update (ct−1, Kt−1, X , Θ); (cf. Algorithm 6)
3: ct ← centroids update (ct−1, Kt, X , Θ); (cf. Algorithm 8)

4: end for
5: HOSPS ← HNlearn−1 = {KNlearn−1, cNlearn−1};
6: end.
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Algorithm 5 OSPS - Online setting

Input: Initial guess H−1 = {K−1, c−1}, number Nlearn of learning steps. Ini-
tial state x0 and input u0. Initial guess for the local linear model Θ−1.
X(0) = {x0}, Θ(−1) = ∅.

Output: Policy parameters HOSPS.

1: for t = 0, . . . , Nlearn − 1 do
2: Apply ut to the plant and collect yt+1 from the plant;
3: Update Θt based on (xt, ut, yt+1);
4: Θ(t)← Θ(t− 1) ∪ {Θt};
5: Kt ← controllers update (ct−1, Kt−1, X(t), Θ(t)); (cf. Algorithm 6)
6: ct ← centroids update (ct−1, Kt, X(t), Θ(t)); (cf. Algorithm 8)

7: Measure signal pt+1;
8: Build xt+1 as in (2.2) and store it, i.e., X(t+ 1)← X(t) ∪ {xt+1};
9: Measure/compute the additional states zt+1; (see Eq. (2.17)-(2.18))

10: Build st+1 from xt+1 and zt+1;

11: ut+1 ← πct

Kt(st+1, pt+1);
12: end for
13: HOSPS ← HNlearn−1 = {KNlearn−1, cNlearn−1};
14: end.

4.3.1 Local controllers update

To update the local controllers parameters K = {K1, . . . , KM} at time t, the
steps presented in Algorithm 6 are performed, implementing the sampling phase,
the gradient approximation and the update procedure.

Steps 1 − 5 are dedicated to sampling a minibatch {wh}Nb

h=1, as described
in Section 2.2.2.1. In this phase, each wh is assigned to one of the regions
{Rm(ct−1) | m = 1, . . . ,M}, based on the distance of (sh0 , r

h
0 ) from the cen-

troids, as defined in (4.9). In this way, we obtainM non overlapping sub-batches
Rt

m such that |Rt
1|+ · · ·+ |Rt

M |= Nb. For each m ∈ {1, . . . ,M} the samples
in the sub-batch Rt

m are used to compute the gradients of the approximated cost
function ĴL with respect to the vector of parameters Km in order to update it.
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Algorithm 6 Local controllers update at iteration t

Input: Parameters values Kt−1, ct−1. States and models history X(t), Θ(t).
Output: Updated parameters Kt of the local controllers.

1: for h = 1, 2, ..., Nb do
2: sample wh = (sh0 , {phl }Ll=0, {dhl }L−1

l=0 ) as described in Section 2.2.2.1;

3: compute jh ← min
(︂

arg min
j
d([sh0 , p

h
0 ]

′, ct−1
j )

)︂
;

4: add wh to Rt
jh ;

5: end for

6: select a random permutation ξ ∈ P(M);
7: K(0) ← Kt−1;
8: for m = 1, 2, ...,M do
9: n← 0;

10: G ← 0;
11: for j = 1, 2, ..., |Rt

ξ(m)| do

12: if K(m−1) ∈ Swj

ct−1 then

13: compute G ← G +∇Kξ(m)
ĴL(K

(m−1), ct−1, wj);
14: n ← n + 1;
15: end if
16: end for
17: if n > 0 then
18: ĜJL

(K(m-1)
ξ(m) )← G/n;

19: K(m)

ξ(m) ← K(m−1)

ξ(m) − αt Dt(ĜJL
(K(m-1)

ξ(m) ));

20: else
21: K(m)

ξ(m) ← K(m−1)

ξ(m) ;
22: end if
23: end for
24: Kt ← K(M);
25: end.
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The gradients computation and the parameters update are not performed in
parallel, but sequentially, the order being established by a permutation ξ, ran-
domly selected at every iteration from the set P(M) of all the possible permuta-
tions of M elements (at line 6 of Algorithm 6). The local linear models are used
to compute the data-driven gradient approximations ∇Kξ(m)

ĴL, as described
in Section 2.2.2.2. Steps 9 − 16 are dedicated to compute the approximated
gradient of ĴL with respect to Kξ(m). In particular, at Step 11, the algorithm
performs a sub-batch reduction over Rt

ξ(m), selecting for the computation of the
gradients only the sampleswj ∈ Rt

ξ(m) such thatK(m−1) ∈ Swj

ct−1 : such counter-
measure, as discussed in Section 4.2.1.1, corresponds to discarding the samples
such that the gradient with respect of Kξ(m) of ĴL( · , ct−1, wk) is not defined
in the current value K(m−1). This is done by computing ĴL(K

(m−1), ct−1, wj)

and keeping track along the associated trajectory of wether any of the couples
{swj

ℓ (K(m−1), ct−1)}Lℓ=1 belongs to some boundary ∂Rm(c) (i.e. if any of such
element is equidistant between two different centroids in ct−1).

It is possible that no gradient with respect to a certain Kξ(m) is computed,
if for instance the sub-batch Rt

ξ(m) is empty (in case the originally sampled
mini-batch does not contain elements belonging to the ξ(m)-th region) or if no
element in Rt

ξ(m) belongs to Swj

ct−1 : in that case the associated controller Kξ(m)

will not be updated at the current iteration t. Otherwise, the computed gradients
are employed to perform the parameter updates, as expressed by Steps 17 − 22.

The next part of this subsection taylors the described sub-batch reduction
to the specific case of gradient approximation employing finite differences of
precision ϵ: the measures to obtain a well defined gradient approximation are
described, considering the possible lack of continuity of (4.6) outside Swj

ct−1 .

4.3.1.1 Gradient approximation via finite differences

Probably the simplest way of approximating∇Kξ(m)
Jct−1

wj
(K(m−1)), is via finite

differences with fixed precision ϵ. To this end, we define for each m = 1 . . . ,M

and i = 1, . . . , nξ(m)

Kξ(m)

i (ϵ) = (K(m−1)

1 , . . . ,K(m−1)

ξ(m) + ϵ ei, . . . ,K
(m−1)

M )
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as the set of parameter vectors obtained from K(m−1), varying of a quantity ϵ
the i-th element of the ξ(m)-th vector. For each i = 1, . . . , nξ(m) the finite
differences approximation of the i-th gradient element is[︂
∇Kξ(m)

Jct−1

wj
(K(m−1))

]︂
i
≈
Jct−1

wj
(Kξ(m)

i (ϵ))− Jct−1

wj
(K(m−1))

ϵ
(4.11)

where, as anticipated, we consider the samples wj ∈ Rt
ξ(m) such thatK(m−1) ∈

Swj

ct−1 , to ensure differentiability.

Such approximation, though, could be ill defined for a fixed precision ϵ,
even if K(m−1) ∈ Swj

ct−1 . We analyse this aspect for a generic fixed sample w =

( s0, {pℓ}
L

ℓ=0
, {dℓ}

L−1

ℓ=0
), local model Θ0 associated to s0, and set of centroids c.

In order to do so, we define

Σw
c (K) =

(︂
σc(s

w
1 , pℓ ), . . . , σc(s

w
L , pℓ)

)︂
(4.12)

such that swℓ defined in (4.7) for ℓ = 1, . . . , L,

uℓ = πc
K(swℓ , pℓ) for ℓ = 0, . . . , L− 1.

as the sequence of the indices of the regions R1(c), . . . , RM (c) visited by plant
P following a trajectory of length L induced by the policy πc

K . We indicate as
SM,L = {χ1, . . . , χn} the set of all the possible sequences of indices {1, . . . ,M}
of length L, having finite cardinality n = ML. We will indicate as χj(ℓ) the
ℓ-th element of the j-th sequence χj . The sequence Σw

c (K) defined in (4.12) is
an element of SM,L.

Using the switching law σc we can rewrite (4.6) as

Jw
c (K) =

L−1∑︂
ℓ=0

ρ( sℓ, pℓ, πKσc(sℓ,pℓ)
(sℓ, pℓ) ) + ρL( sL, pL ).

Based on this equation and on the definition of Σw
c (K), we have that

Jw
c (K) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L−1∑︁
ℓ=0

ρ(sℓ, pℓ, πKχ1(ℓ)
(sℓ, pℓ)) + ρL(sL, pL), if K ∈ Rw,c

1 ,

...
...

...
...

L−1∑︁
ℓ=0

ρ(sℓ, pℓ, πKχn(ℓ)
(sℓ, pℓ)) + ρL(sL, pL), if K ∈ Rw,c

n ,

(4.13)
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where for each j ∈ {1, . . . , n} the region Rw,c
j contains the parameters K such

that πc
K visits the regions {Rm(c)}m following the sequence χj ∈ SM,L, i.e.,

Rw,c
j = {K ∈ Rn1 × . . .× RnM |Σw

c (K) = χj}. (4.14)

A set Rw,c
j is possibly empty for some j, in case no set of parameters K is

characterized by a sequence χj of regions for the given w and c.
We consider the following result, proved in Appendix B:

Theorem 1. Given a couple (c, w), the set Swc defined in (4.8) is such that

Swc =
n⋃︂

j=1

R̊
w,c

j

where Rw,c
j is defined in (4.14).

Theorem 1 characterizes for a fixed couple (c, w) the set Swc of the param-
eters K such that Jw

c (K) = ĴL(K, c, w) is differentiable, and hence continu-
ous. It underlines how such function is continuous on the interior of the regions
{Rc,w

j }nj=1 defined in (4.14), while the boundaries of such regions can corre-
spond to points of discontinuity and hence non differentiability.

Following from Theorem 1, Jw
c (K) as it is written in Eq. (4.13) is a piece-

wise differentiable (piecewise continuous) function. Hence if K ∈ Swc then

Jw
c (K) is differentiable in K, and it exists a j ∈ {1, . . . n} such that K ∈ R̊w,c

j .
The gradient of Jw

c in K can be approximated successfully using finite differ-
ences with fixed precision ϵ only if for each i = 1, . . . , nki , the parameters
Kξ(m)

i (ϵ) still belong to the same region Rw,c
j of K. In case this is not true, the

incremental ratio expressed by (4.11), considering the difference between two
values Jct−1

wj
(Kξ(m)

i (ϵ)) and Jct−1

wj
(K(m−1)), can be separated by a discontinuity

in the function, not resulting hence close in value to its limit for ϵ that tends to
0, that is to the desired partial derivative [∇Kξ(m)

Jct−1

wj
(K(m−1))]i.

To handle such occurrence, we taylor the sub-batch reduction procedure
in case of finite differences approximation, substituting Steps 9 − 18 of Al-
gorithm 6 with Algorithm 7. At iteration t, following Algorithm 7, for each

m = 1, . . . , M we discard the wj ∈ Rt
ξ(m) such that K(m-1) ∈ R̊wj ,c

t−1

k and
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Kξ(m)

i (ϵ) /∈ R
wj ,c

t−1

k for some i. This simply means to discard wj ∈ Rt
ξ(m)

such that K(m-1) is associated with a certain sequence χk ∈ SM,L of visited
regions, that is not the same for the Kξ(m)

i (ϵ), i.e., Σwj

ct−1(K
(m-1)) = χk and

Σ
wj

ct−1(K
ξ(m)

i (ϵ)) ̸= χk for at least one i ∈ {1, . . . , nξ(m)}.

Algorithm 7 OSPS - Gradient approximation (finite differences) with batch
Rt

ξ(m) reduction

Input: Last updated centroids ct−1, value of the local controller K(m−1) after
iteration m− 1, finite differences precision ϵ

Output: Approximated gradient ĜJL
(K(m-1)

ξ(m) )

1: n← 0, G ← 0;
2: for j = 1, 2, ..., |Rt

ξ(m)| do

3: compute Jct−1

wj
(K(m−1)) and the associated χk ← Σ

wj

ct−1(K
(m−1));

4: if K(m−1) ∈ Swj

ct−1 then
5: i← 1, excluded← False, g ← 0;
6: while (not excluded) and (i ≤ nξ(m)) do

7: compute Jct−1

wj
(Kξ(m)

i (ϵ)) and the associated Σ
wj

ct−1(K
ξ(m)

i (ϵ)));

8: if Σwj

ct−1(K
ξ(m)

i (ϵ))) ̸= χk then
9: excluded← True;

10: else
11: [ g ]i ← ( Jct−1

wj
(Kξ(m)

i (ϵ)) − Jct−1

wj
(K(m−1)) )/ϵ;

12: end if
13: end while
14: if not excluded then
15: n ← n + 1;
16: G ← G + g;
17: end if
18: end if
19: end for
20: if n > 0 then
21: ĜJL

(K(m-1)
ξ(m) )← G/n;

22: end if
23: end.
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A different choice could have been to iteratively reduce ϵ, searching for a

precision value ϵ̄ < ϵ such that Kξ(m)

i (ϵ̄) ∈ Rwj ,c
t−1

j . Such value necessarily

exists, being K in the inner part of Rwj ,c
t−1

j . This procedure, though, is com-
putationally heavy, and can lead to numerical problems due to computations of
finite differences. For this reason, we choose to use only the gradients related to
those samples wj such that K(m−1) and Kξ(m)

i (ϵ) belong to the same region for
i = 1, . . . , nξ(m), for a given fixed ϵ.

4.3.2 Switching law update

This section presents an unsupervised learning approach to update the parame-
ters ct−1 characterizing problem (4.5b). Following the considered parameteriza-
tion, such parameters represent the centroids of the polyhedral regions compos-
ing the Voronoi partition of the space Rns+np of the decision variables (s, p).
The parameterized centroids are employed to define the switching law (4.10) of
the parametric hybrid control law.

The centroids are periodically updated every nK steps, as shown in Algo-
rithm 8. First, we obtain a mini-batch {wk}Nb

k=1 by performing the sampling
procedure (see Section 2.2.2.1). Then, we divide the sampled elements wk into
M subsets {Wm}Mm=1. The assignment of wk = ( sk0 , {pkℓ }Lℓ=0, {dkℓ }L−1

ℓ=0 ) to one
of the subsets requires computing for m = 1, . . . ,M

F (m, wk,K
t, ct−1) = (4.15)

= ρ( sk0 , p
k
0 , πKt

m
(sk0 , p

k
0) ) + ĴL−1(K

t, ct−1, wm
∗ ).

with wm
∗ = ( sm1 , {pkℓ }Lℓ=1, {dkℓ }L−1

ℓ=1 ). Each term F (m, wk, K
t, ct−1) is com-

posed by the stage-cost associated with using the m-th policy πKt
m

while being
in state (sk0 , p

k
0), plus the approximated cost-to-go associated with the resid-

ual trajectory. The expression is approximated using the local linear model fit-
ted in the neighborhood of sk0 , instead of the unknown system dynamics (2.3).
The initial state sm1 of the cost-to-go is the approximated result of the appli-
cation of πKt

m
(sk0 , p

k
0), while the following ones are obtained employing the

sub-controllers in Kt according to the last updated switching law ct−1.
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After calculating (4.15) for all m = 1, . . . ,M , we assign wk to the m∗-th
subset Wm∗ , with m∗ being the smallest index associated with the most “con-
venient” subcontroller πKt

m∗ to be applied in wk. In this context we consider
as more “convenient” the less expensive controller to be applied at the first step,
evaluated in terms of the approximated cost F , i.e.,

m∗ = min(argmin
m

F (m, wk, K
t, ct−1)).

After the above procedure is executed, we calculate c(1) = {c(1)1 , .., c(1)M }, with
c(1)m barycenter of { (s(k)0 , p

(k)
0 ) |wn ∈Wm} for each m.

Algorithm 8 Centroids update at iteration t

Input: Parameters Kt, ct−1, X(t), Θ(t).
Output: Parameters ct.

1: if rem(t, nK) = 0 then
2: c(0) = ct−1

3: for i = 1, 2, ..., nc do
4: Cm = 0 m = 1, . . . ,M ;
5: N̄

m
i = 0 m = 1, . . . ,M ;

6: for k = 1, 2, ..., Nb do
7: sample wk = (sk0 , {pkl , dkl }L−1

l=0 ) as described in Section 2.2.2.1;
8: mk = min(argmin

m
F (m,wk,K

t, c(i−1));

9: N̄
mk

i = N̄
mk

i + 1;

10: Cmk = Cmk +
[︂
sk0
pk
0

]︂
;

11: end for
12: for m = 1, 2, ...,M do
13: c

(i)
m = Cm/N̄

m
i ;

14: end for
15: end for
16: ct = (1− αt) c

t−1 + αt c
(nc);

17: else
18: ct = ct−1;
19: end if
20: end.
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The above process is iterated nc times: at every iteration i the most updated
version of the mini-batch barycenters c(i−1) is employed in (4.15) to evaluate
the cost-to-go. In this way, we generate a sequence c(0) = ct−1, c(1), . . . , c(nc)

that refines the barycenters of the regions on the sampled mini-batch. Finally we
update the barycenters estimation as

ct = (1− αt) c
t−1 + αt c

(nc),

with αt ∈ [ 0, 1 ]M . One possible choice for αt is to consider

N t
m = N t−1

m + N̄
m
nc
,

αm
t =

N̄
m
nc

N t
m

,

where N t
m and N̄m

k are the cardinalities of the set of states averaged to estimate
ctm from the beginning up to time t and in the current sampled mini-batch at
iteration k of the described procedure, respectively.

4.4 Examples of OSPS for output-tracking

In the following we use the Optimal Switching Policy Search method to synthe-
size controllers for the tracking of a priori unknonw output reference signals. To
do so we employ the definitions of states and exogenous signals (3.1) designed
for the output tracking problem in Section 3.1, with the sole difference of a delay
in the integral action dynamics, that will be defined as qt+1 = qt + (yt+1 − rt).
The same delay is added as well in the considered stage costs at instant t, i.e.,

ρ(st+1, rt, ut) = ∥yt+1 − rt∥2Qy
+∥ut∥2R+∥qt+1∥2Qq

. (4.16)

Considering that we work on strictly causal plants, the effect of the input ut,
decided at instant t as a reaction with respect to the feedback st, rt, is perceived
at output level on yt+1 and qt+1. Hence, the stage costs (4.16) represent the cost
of the decision ut made at instant t, weighted by a matrix R = R

′ ≻ 0 and
the cost of the direct effects of such decision in comparison with the requested
task (the reference rt that was indicated as signal to be tracked by the feedback
vector), weighted by Qy = Q

′
y ⪰ 0, Qq = Q

′
q ⪰ 0. No terminal cost is

considered, i.e., QL
y = QL

q = 0.
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The results of the OSPS method on two numerical examples are shown. In
Section 4.4.1 we consider a piecewise LTI plant, while Section 4.4.2 analyzes
a nonlinear example. In both cases we test the method in an offline and online
setting. Together with the performance of the OSPS method, alternating nK =

10 steps of gain update with a step containing nc = 10 iterations of centroid
optimization, we present as a comparison the behavior of the method in case
we just optimize the gains, maintaining the centroids unaltered (nc = 0, nK =

Nlearn+1). Both cases (fixed and optimized centroids) are compared to learning
a single controller, synthesized using the OPS method described in Section 2.3
(corresponding to setting M = 1), either on the same dataset, if in the offline
setting, or while performing the same online learning task.

Performance index
In both the online and offline settings, the tracking performance of the synthe-
sized policies is evaluated considering as performance index the trajectory cost
(2.5), considering as stage costs ρ(st+1, rt, ut) = ∥yt+1 − rt∥2Qy

+∥ut∥2R or
ρ(st+1, rt, ∆ut) = ∥yt+1 − rt∥2Qy

+∥∆ut∥2R, depending on the control vari-
able of choice.

4.4.1 Example 1 - piecewise LTI system

Let the plant P in (2.3) be the (unknown) SISO piecewise LTI system

xt+1 = 0.8Aαt
xt + [ 01 ] ut, yt = [ 0 1 ] xt (4.17)

with

Aα(t) =

[︃
cosαt − sinαt

sinαt cosαt

]︃
, and αt =

{︄
π
3 ifxt1 > 0

−π
3 otherwise

as in (Bemporad and Morari, 1999, Example 4.1).

We assume that there is no disturbance affecting the output measurements of
P , and we measure only the one dimensional output yt, consisting in the second
component xt2 of xt, while we do not measure xt1 .

The chosen feedback state st is built employing no = 2 past output ni = 1

past input, and the integral formula qt, i.e. st ∈ R4.
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We consider as control variable the action increment ∆ut = ut − ut−1 and
the employed stage cost (4.16) is

ρ(st+1, rt, ∆ut) = ∥yt+1 − rt∥2Qy
+∥∆ut∥2R+∥qt+1∥2Qq

,

with stage-cost weights Qy = 1, R = Qq = 0.01. The optimization horizon is
set to L = 10.

We design the sub-controllers characterizing the hybrid parameterization to
be linear, i.e., ∆ut = Km [ strt ], with σc(st, rt) = m, where Km ∈ R5 for
m = 1, . . . ,M . For the centroids optimization, it is noticeable that in this plant
the switching law is based on the first state xt1 , a piece of information that we
assume not to know.

We consider regions in Rns+np = R5 defined using the semidistance d(x, y) =
∥x1−y1∥2. Based on the given definition of st, this means that we base the con-
troller switching law on the output yt = xt2 of the plant P .

Tuning details
The sampling parameters are chosen as follows: reference signals are sampled
uniformly in the interval [ rmin, rmax ] = [−10, 10 ] while the integral action
values are generated by a Gaussian white random variable, having standard de-
viation σq = 10. The initial states are sampled uniformly from the states history
and perturbed by a Gaussian white signal, having standard deviation σv = 0.01.
The local linear models (2.12) are designed neglecting the dependence from
the disturbances dt (i.e., nd = 1, σd = 0), by Kalman Filtering with matrices
Qk = 10 · I4, Rk = 0.01, initialized as Θ0 = 01×4 and P0 = (1e+ 5) · I4.

We synthesize a switching controller for reference tracking having M = 2

modes. The sub-controllers parameters are initialized withK0
1 andK0

2 randomly
generated from a normally distributed vector with mean zero and standard de-
viation 0.001. The initial centroids c0 are sampled uniformly in [ rmin, rmax ].
We update the gains using the AMSGrad algorithm (Reddi, Kale, and S. Kumar,
2019), with α = 0.1, β1 = 0.5, and β2 = 0.6.
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Figure 56: Example 1, offline learning, convergence of the switching policy pa-
rameters: Kt

1, c
t
1 (blue and green lines) and Kt

2, c
t
2 (red and black lines).

4.4.1.1 Offline setting

In case of offline learning, the learning procedure is executed for Nlearn = 7000

iterations over a dataset of cardinality Ndata = 5000 collected in open-loop from
the plant. At every iteration ns = 50 states are used, together with nr = 10

references and nq = 5 integral action values, to form the mini-batches necessary
for the sub-controllers optimization. The mini-batch necessary for the centroids
optimization is sampled analogously. Figure 56 shows the evolution of the policy
parameters {Kt

1, c
t
1} during the learning phase, till convergence to a policy that

we indicate as {Koff
OPS, c

off
OPS}.

Table 18: Example 1, offline learning, tracking cost.

centroids task A task B
M = 1 11679.5 3065.0
M = 2 fixed 179.5 80.4
M = 2 optimized 155.8 71.9
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The behavior of {Koff
OPS, c

off
OPS} while performing two different tracking

tasks (indicated as task A and task B) is shown in Figure 57. The cost of both
tasks is compared in Table 18 with the ones achieved by a mono-modal control
law, and by a bi-modal controller synthesized with fixed centroids at [−4, 0.5 ].
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mode 1
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Iteration t

Figure 57: Example 1, offline case, tracking of a priori unknown reference signals:
task A and associated modes (upper two plots); task B and associated modes (lower
two plots).
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Table 19: Example 1, offline learning, averaged cost over 1000 tracking tasks.

M = 1 M = 2 M = 2
centroids // fixed optimized

averaged cost 2365.4 91.4 80.8

It is observable that this policy is more competitive on the two tasks at hand
than the mono-modal controller, and than the bi-modal controller with fixed cen-
troids. To investigate the capabilities of the learned policy more in detail, we
tested it, together with the competitors, over a batch of 1000 randomly gener-
ated piecewise constant reference signals. The averaged tracking cost obtained
from this test mirrors the results obtained over tasks A and B, as seen in Table 19.

4.4.1.2 Online setting

In the online case the learning procedure is executed while performing a track-
ing task for Nlearn = 3000 steps, based on the piecewise constant exploration
reference shown in Figure 58. At every iteration ns = 20 states, nr = 2 refer-

0 1000 2000 3000

−10

−5

0

5

10

15
rt

yt

Iteration t

Figure 58: Example 1, online learning, online output tracking of an a-priori un-
known exploratory reference signal.

125



ences and nq = 5 integral actions are sampled and used to build the mini-batches
used for the parameters optimization. Such mini-batches are then augmented by
adding an element [xt, qt, rt ] containing the current state, integral action and
reference. Figure 59 shows the tracking performance of the synthesized policy
{Kon

OPS, c
on
OPS } on the tasks A and B analyzed in the offline case.
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rt

yt

0 1000 2000 3000

mode 1

mode 2

Iteration t
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0

5 rt

yt

0 1000 2000 3000

mode 1

mode 2

Iteration t

Figure 59: Example 1, online case, tracking of a priori unknown references and
associated modes: task A (upper two plots); task B (lower two plots).
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Table 20: Example 1, online case, tracking cost.

centroids online validation
task A task B

M = 1 4694.5 321.9 271.8
M = 2 fixed 3924.5 280.5 230.4
M = 2 optimized 3046.4 193.1 169.7

The costs over task A and B can be found in Table 20, together with the on-
line tracking cost, associated with the performance achieved in Figure 58, while
learning. Comparing Table 18 and Table 20, we observe that all the switching
controllers synthesized offline perform better on tasks A and B than their online
counterparts. This could be attributed in part to the higher number of offline
learning steps, but mostly to the higher amount of information stored in the of-
fline dataset, compared to the data collected during the online learning. This
explaination is supported by the fact that the single-mode controller obtained
offline is the most expensive of all, with a cost that is two orders of magnitude
higher than the other controllers trained on the same dataset, even though it was
synthesized with the same number of learning steps. Such large difference is
not observed instead in the online setting. This reinforces the idea that the in-
creased amount of information provided by the offline data helps the switching
controllers to specialize, while disturbing a single-mode controller.

The averaged cost obtained applying {Kon
OPS, c

on
OPS } over 1000 randomly

generated piecewise constant tracking tasks, included in Table 21, confirms
again the considerations on the performance of the three controllers.

M = 1 M = 2 M = 2
centroids // fixed optimized

averaged cost 228.1 196.0 138.5

Table 21: Example 1, online case, averaged cost over 1000 tracking tasks.
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Figure 60: Inverted pendulum.

4.4.2 Example 2 - Inverted pendulum

To test our approach on a simple nonlinear system, we consider the inverted pen-
dulum depicted in Figure 60, consisting of a mass m̄ = 1 kg rotating by an angle
θ at a fixed distance ℓ = 0.5 m from the central joint, subject to earth gravity
g = 9.81 m/s2 and experiencing a viscous friction governed by the viscosity co-
efficient β = 0.5 Nms. The physical model of the inverted pendulum dynamics,
when subject to the action of the torque u, is the nonlinear ordinary differential
equation (ODE)

ℓ2 m̄θ̈ = m̄ g ℓ sin θ − βθ̇ + u.

We simulate the inverted pendulum using the ODE solver ode45 from MAT-
LAB ODE Toolbox with sampling time Ts = 0.05 seconds. The control goal
consists into steering the angular position θt of the mass m̄ at instant t, following
an a priori unknonwn set point rt.

Assuming not to know the dynamics of the system, we consider as output the
angular position θt, available through measurements subject to Gaussian white
noise with standard deviation 0.01. Moreover, we consider two additional states:
one is the integral qt, having known dynamics qt+1 = qt+(θt+1− rt). The sec-
ond one is the angular velocity θṫ with unknown dynamics, but measurable and
subject to white Gaussian noise with standard deviation 0.01. Past realizations
of θṫ are included in the state xt and modeled by local models, as described in
(2.18). Using no = 1 past masurement of θt, θṫ, and ut together with qt, we
build the state representation st ∈ R4. Considering the stage-costs (4.16), the
associated weights are chosen as Qy = 1, R = Qq = 0.01 and the cost horizon
is set to L = 10.
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The torque is parameterized with a switching policy: the sub-controllers are
designed as affine policy parameterizations, i.e.,

ut = Km

[︂
st
rt
1

]︂
= Ks

m st + Kr
m rt + Kbias

m if σc(st, rt) = m,

where Km ∈ R6 for m = 1, . . . ,M .

Tuning details The local models are designed to be affine in this case, i.e.,

yt+1 = Θt

⎡⎣ xtut
1

⎤⎦+ dt = Θx
t xt + Θu

t ut + Θbias
t + dt.

At every iteration Θt is updated by Kalman Filtering. Θ0 = 01×4 and P0 =

(1e+5) ·I4 are chosen as initial guesses for the kalman Filter. The sampling pa-
rameters are chosen as follows: Nr = 5 reference signals are sampled uniformly
in the interval [−π, π ] while Nq = 2 integral action values are generated by a
Gaussian white random variable, having standard deviation σq = 10. A set of
N0 initial states are sampled from the states history and perturbed by a Gaussian
white signal, having standard deviation σv = 0.1. N0 is chosen as N0 = 50 in
the offline case, andN0 = 20 in the online one. The dependence from the distur-
bances dt is neglected in the sampling of the mini-batches for the parameters op-
timization (i.e., nd = 1, σd = 0). The sub-controllers parameters are initialized
with vectors K0

m whose elements are uniformly sampled from [−0.01, 0.01 ].
We update the gains using the AMSGrad algorithm (Reddi, Kale, and S. Kumar,
2019), with α = 0.1, β2 = 0.6 and β1 = 0.8 in the offline case, while β1 = 0.5

in the online one.

4.4.2.1 Offline setting

We start the analysis of the OSPS method in the offline setting by synthesizing
a switching policy with M = 3 control modes. We perform Nlearn = 7000

iterations of the proposed method, using a dataset of cardinality Ndata = 5900,
collected in open-loop from the plant.

Local affine models are fitted tuning the Kalman Filter with covariance ma-
trices Qk = 10 · I4, Rk = 0.01. The centroids optimization is realized with
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centroids fixed optimized
M = 1 1097.62 //
M = 2 988.18 966.80
M = 3 1003.88 978.22

Table 22: Example 2, offline case, tracking cost.

respect to the semidistance

d(x, y) = ∥
[︂
cos(x1)
sin(x1)

]︂
−
[︂
cos(y1)
sin(y1)

]︂
∥
2
,

i.e., we define the switching law as a function of the angular position θt. The
centroids are initialized as c0 = [ (−π + 0.1), 0, (π − 0.1) ]. The same values
are used as constant centroids in the fixed-regions case. The tracking costs on
a piecewise constant tracking task assuming values in [−π, π ] is presented in
Table 22.

Both the switching controllers with M = 3 modes outperform the single
controller; in particular, the policy {Koff

(3), c
off
(3) }, obtained by the procedure with

centroids optimization, results to be the best of the three, showing the importance
of learning the partition. The optimized centroids coff

(3) = [ 0.648, 0.267, 0.647 ]

obtained through the learning procedure indicate that the algorithm, even if pro-
grammed to divide the domain isM = 3 regions, is generating two large regions
R1(c) and R2(c), while the remaining region R3(c) results to be comparatively
small. These results might suggest that the optimal choice for the parameter M
is 2, and is individuating the boundary between the two regions approximatively
at 0.457. This result is coherent with the physics of the problem, considering
that the plant has two equilibrium points. Following these results we synthesize
the controller with M = 2 modes, using the same dataset and the same number
of iterations Nlearn. The centroids are initialized as c0 = [ 0, π ] and again the
same values are used as centroids in the fixed-centroid case. As anticipated and
visible in Table 22, the cost of the bi-modal policy {Koff

(2), c
off
(2) } decreases. In

particular, the best cost is achieved in the case of optimized centroids, where the
final centroids are coff

(2) = [−0.201, 1.157 ].
It can be noticed that the boundary between the two regions generated by the

centroids coff
(2) is 0.478, and hence close to the one suggested by the M = 3 case.
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Figure 61: Example 2, offline case, tracking of a priori unknown reference signal
(top plot) and associated controller’s modes (bottom plot).

M = 1 M = 2 M = 2
centroids // fixed optimized

averaged cost 1016.8 961.8 932.7

Table 23: Example 2, offline case, averaged cost over 1000 tracking tasks.

Figure 61 shows the tracking behavior of the synthesized controller with
M = 2 modes and optimized centroids. The costs of the bi-modal and single-
modal controllers over a batch of 1000 piecewise constant reference signals tak-
ing values in [−π, π ], included in Table 23, are in line with what observed.

4.4.2.2 Online setting

We synthesize online a switching controller with M = 2 modes while perform-
ing the tracking task online shown in Figure 62, for Nlearn = 10000 steps. In
this case we test the OSPS algorithm, assigning the decision variables (st, rt)

to either of the two modes according to (4.10), considering as semi-distance for
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Figure 62: Example 2, online learning, online output tracking of an a-priori un-
known exploratory reference signal.

the clusters assignment d([ s1r1 ] , [
s2
r2 ]) = ∥f([ s1r1 ])− f([ s2r2 ])∥2, with

f([ sr ]) = [ cos(θ), sin(θ), θ̇, u, q, cos(r), sin(r) ]′

for each s = [ θ, θ̇, u, q ]′ ∈ R4.

The values c01 = [ 0, 0, 0, 0, 0 ]′ and c02 = [π, 0, 0, 0, π ]′ are used as cen-
troids initial guess for the synthesis of controller with optimized centroids, while
they are kept as centroids throughout the learning of the switching controller
with fixed centroids. Local affine models are fitted tuning the Kalman Filter
with covariance matrices Qk = I4, Rk = 1. At every iteration t the mini-batch
sampled according to the described tuning parameters is augmented by adding
an element [xt, qt, rt ]′ containing the current state, integral action and refer-
ence. Table 24 contains the costs achieved online while learning the controllers,
and after the learning, while tracking the same same reference employed as a
test in the offline case. Figure 63 shows the tracking behavior of the synthesized
M = 2 modes controller with optimized centroids on said tracking test. From
Table 24, the switching controllers are preferable than the single mode one.

In particular, learning online the controller with optimized centroids is a little
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Figure 63: Example 2, online case, tracking of a priori unknown reference signal
(top plot) and associated controller’s modes (bottom plot).

centroids online validation
M = 1 4066.9 1082.9
M = 2 fixed 3644.1 1010.4
M = 2 optimized 3830.3 944.2

Table 24: Example 2, online case, tracking cost.

more expensive than what is required for the one with fixed centroids, but it
pays off in the successive tracking performance. This can be observed as well
from the averaged cost obtained applying the controllers over 1000 randomly
generated piecewise constant tracking tasks, as demonstarted in Table 25.

M = 1 M = 2 M = 2
centroids // fixed optimized

averaged cost 1019.2 973.1 920.8

Table 25: Example 2, online case, averaged cost over 1000 tracking tasks.
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Chapter 5

Collaborative cloud-aided
learning of optimal
controllers

This chapter incorporates the Optimal Policy Search algorithm in a collaborative
multi-agent framework for the learning of optimal feedback control laws, con-
sidering multi-agent systems characterized by structural similarities, exploiting
a cloud-aided scenario. At first, the multi-agent scenario is described and the
collaborative problem is formulated. Two collaborative learning strategies are
then designed, and the resulting enhancement of learning performance with re-
spect to the single agent scenario is shown, by applying the approaches to the
output-tracking problem.

5.1 Multi-agent cloud-aided setup

In this chapter we consider a multi-agent scenario, characterized by a set of
systems that share similar nominal dynamics. This is quite common, particularly
for industrial systems, such as automobiles, aerial vehicles, industrial robots, or
chemical process units, that are deployed in mass production. These plants (here
indicated as agents) are often clones of each other, designed, constructed, and
calibrated by the manufacturer in the same way.
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Mass produced devices are likely designed to be employed on specific sets
of tasks, involving the same functionalities, and hence sharing similar general
objectives, while possibly operating within different environments. Thinking of
mass produced learning agents, this translates directly to them being designed
to learn a shared set of capabilities. Nonetheless, the individual learning of such
capabilities is usually sought while each agent is employed in performing a local
task, often different from the one of other agents. An example of this is embod-
ied by a set of autonomous vehicles: each vehicle should acquire the capability
of handling many different kinds of road and many traffic configurations. Each
agent per se, once undergoing a training phase for instance, is likely to be indeed
employed in a different environment, on a specific driving task (i.e. on a circuit
with many curves, or on a straight road, and so on).

It is known that the design of policies for a single plant usually requires
rather long and expensive experimental campaigns to obtain informative data.
Thanks to recent advances in cloud computing, though, designers are allowed to
overcome this limitation by leveraging on the increasing connectivity between
devices, to gather more information when searching for control policies for sys-
tems that share similar dynamics. Not only it is now technically and economi-
cally feasible to collect and store information gathered from different plants, for
example in a large volume production setting, but mass-produced systems are
nowadays often connected to the cloud. For instance modern vehicles maintain
a constant V2C (Vehicle to Cloud) bi-directional connection with decent data
bandwidth for different monitoring, maintenance, and updating services.

The exploitation of such connectivity can be greatly beneficial for agents
with similar dynamics when asked to self-adapt their control laws. In this con-
text, the advances in cloud computing allow designers to gather more informa-
tion that can be exploited to improve exploration, ultimately leading to better
individual policies. In fact, each plant may explore different regions of the state
and action spaces than others, so that the union of such explorations can pro-
vide a wide coverage of the operating space. Thus, sharing information during
closed-loop operation can dramatically help each system to adapt its control laws
so to attain its own goals, in particular when optimal performance is sought.

The connection with the cloud has other advantages. For example, in case of
agents having limited embedded computing capabilities but access to resources
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on the cloud, we can even assume that each agent locally performs simple op-
erations only. Together with exploiting the agents connectivity to improve their
learning capabilities, we are also interested in granting that the agents retain
their states, actions, and rewards, that could be sensitive for privacy reasons.
This will be achieved by allowing them to share surrogate of their experiences
instead, properly chosen to carry on information able to enhance the learning
procedure.

Literature on cooperative policy search methods
Before introducing the proposed collaborative learning approaches, few con-
tributions on cooperative policy search are mentioned in the following para-
graph, with particular focus on underling the differences in the considered setup.
Sharing-based principles have already been exploited for policy search purposes.
In literature it is possible to find contributions that consider scenarios where all
agents are cooperating in the same environment towards the achievement of the
same goal, as for instance in (Dimakopoulou, I., and Van Roy, 2018), or to steer
all local policies to the same value, under the assumption that they lie in the
same space, as in (Nair et al., 2015), (Khan et al., 2018). Differently from (Di-
makopoulou, I., and Van Roy, 2018), in the collaborative approach presented in
this chapter the agents are not required to share the same goal and to operate
within the same environment. Moreover, unlike (Khan et al., 2018), the collab-
orative approaches proposed in this chapter do not require the agents to share
their private states, but surrogate of their experiences only, as already pointed
out while presenting the considered multi-agent cloud-aided setup.

5.2 Consensus-based collaborative learning

Consider N dynamical agents, and let snt ∈ Rns be a Markovian signal speci-
fying the behavior of the n-th system. Assume that the latter evolves over time
according to

snt+1 = h(snt , p
n
t , u

n
t , d

n
t ), (5.1)

where, as in (2.3), the signal pnt ∈ Rnp in (5.1) is a vector of measurable exoge-
nous signals, and dnt ∈ Rnd is a vector of unmeasured disturbances.
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As previously specified, we consider the dynamics h to be unknown, but in
this case we assume it to be common to all agents. To represent the shared set
of capabilities to be learned by each agent, we consider a stage-cost function
ρn for the n-th agent, such that ρn : Rns × Rnp × Rnu → R. The functions
ρn are assumed to be somehow similar, in the sense that, although they could
assign more or less penalty to specific behaviors, each ρn should be in line with
the common set of capabilities to be learned by all the agents. In general, one
agent could be requested to “specialize” more over tasks of a specific nature, but
as mentioned, we consider group of agents with similar purpose and learning
goals. Said stage cost is employed to define the local costs Jn

∞ associated with
an agent n, according to (2.4) (or Jn

T as in (2.5), in case of episodic tasks).
Following from that, we proceed by considering, for each agent, the expected
trajectory cost EW [Jn](π) introduced in (2.6) - (2.7) as goal function.

In this setup we aim at finding N optimal deterministic control policies
πn : Rns × Rnp → Rnu , so that the input fed to the n-th system at time t
is given by unt = πn(s

n
t , p

n
t ). In case of agents separately learning such policy,

the n-th learning problem could be formulated as an optimization problem and
tackled following the Optimal Policy Search method, as previously shown. By
doing so, though, all the notions of similarity expressed in the previous section
are disregarded and each agent would exploit exclusively its own experience,
gathered from the direct interaction with the environment induced by its local
task. Our current aim is instead to design a collaborative learning strategy ca-
pable of exploiting the similarity of the agents, the similarity of their goals, and
their capability of exchanging information, in order to improve their learning
process. In order to incorporate such elements, we formulate a generic multi-
agent collaborative learning problem, i.e.,

{π∗
n}Nn=1, π

∗ = arg min
{πn}n,
π

N∑︂
n=1

EW [Jn](πn),

such that ϕ(πn) = π, n = 1, . . . , N,

(5.2)

where the (known) function ϕ describes the relation between the local policies
{πn}Nn=1 and a global control law π : Rns × Rnp → Rnu . Such global law
embeds the characteristics that should be shared by all the local policies, with the
rationale that plants sharing the same dynamics and having similar optimization
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goals should share similar optimal policies as well. In case of ρn = ρ for each
n, given that the goal of each agent is exactly the same, the optimal policies π∗

n

should coincide, hence we consider ϕ = id.
To simplify the search domain, we parameterize problem (5.2), substituting

each agent’s policy πn with a parameterized one πn
Hn

with parameters Hn ∈
Rnhn . To represent the similarity among optimal policies we design

πn
Hn

(st, pt) = πKn
(st, pt) + ψn

Jn
(st, pt), (5.3)

with Kn ∈ Rnk and Jn ∈ Rnhn−nk . In this case, the local controllers employ
by design a partially common structure π•, together with a local component, em-
bodied for agent n by ψn

• . The idea behind this is that, on one hand, πKn would
be dedicated to the goals shared by all agents, encoding the similarity among
local controllers. On the other hand ψn

Jn
would specialize on the local goals

specific to agent n. The global policy π, representing the similarities existing
among local optimal controllers, is as well parameterized employing the shared
structure π•, and we indicate its parameterization as πK ∈ Rnk . One can note
that the use of Dirac functions in the definition of πKn

and ψn
Jn

can separate the
decision variables domain Rns+np , if necessary, making it so that the πKn and
ψn
Jn

are alternatively used to generate the inputs ut fed to the n-th agent. Oth-
erwise the two policies can be used in combination to generate control inputs at
every instant.

Following the construction presented in Section 2.1 to build the approxi-
mated problem (2.10) from problem (2.8), we approximate problem (5.2) as

{H∗
n}Nn=1,K

∗ = arg min
{Hn}n,
K

N∑︂
n=1

E
[︂ L−1∑︂

ℓ=0

ρn(s
n
ℓ , p

n
ℓ , u

n
ℓ ) + ρnL(s

n
L, p

n
L)
]︂
, (5.4)

such that unℓ = πn
Hn

(snℓ , p
n
ℓ ), ℓ = 0, 1, . . . , L− 1, (5.5)

snℓ+1 = h(snℓ , p
n
ℓ , u

n
ℓ , d

n
ℓ ), ℓ = 0, 1, . . . , L− 1, (5.6)

dnℓ ∼ Dn
ℓ , ℓ = 0, 1, . . . , L− 1, (5.7)

pnℓ ∼ Pn
ℓ , ℓ = 0, 1, . . . , L, (5.8)

sn0 ∼ Sn
P , (5.9)

Kn −K = 0, n = 1, . . . , N, (5.10)
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where we can see that the relation between πn and π introduced in the constraint
of problem (5.2) is encoded in (5.10). In particular, the function ϕ describing
the relation between the local policies and the global one is the projection of Hn

on the parameters characterizing the shared part πKn of the policy structure, i.e.
ϕ(Hn) = Kn. Problem (5.4) formulates the collaborative learning problem as a
consensus problem: the agents are called to learn their policy parameters Hn =

(Kn, Jn) and to combine their understandings to agree on part of them and,
specifically, on the part dedicated to the global goals of the group, represented
by the vector Kt

n.

5.3 Consensus-based collaborative OPS

To approach problem (5.4) we design an iterative collaborative policy search
scheme, that combines updates of the local policies Hn via the Optimal Pol-
icy Search approach, and the computation of the global gain through the local
information shared by the agents, exploiting the Alternating Direction Method
of Multipliers (ADMM) (Boyd et al., 2011). We consider the augmented La-
grangian associated to (5.4), defined as

L({Hn}Nn=1, λn, K) =
N∑︂

n=1

Ln(Hn, λn, K), (5.11)

Ln(Hn, λn, K) = EW [Jn
L ](Hn) + λ′n(Kn −K) +

β

2
∥Kn −K∥22, (5.12)

with β > 0 being a tuning parameter and Kn = ϕ(Ht
n). In (5.12) EW [Jn

L ]

and λn are the goal function of agent n and the Lagrange multiplier associated
with the constraint Kn − K = 0, respectively. By running a new instance of
ADMM at each iteration t, the local policies, the global policy, and the Lagrange
multipliers are computed iterating the following steps:

Ht
n(i+ 1) = argmin

Hn

Ln(Hn, λ
t
n(i), K

t(i)) = (5.13a)

= argmin
Hn

EW [Jn
L ](Hn) + (λtn(i))

′ (Kn − Kt(i))+

+
β

2
∥Kn − Kt(i) ∥22, n = 1, . . . , N
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Kt(i+ 1) =
1

N

N∑︂
n=1

[︃
Kt

n(i+ 1) +
1

β
λtn(i)

]︃
, (5.13b)

λtn(i+ 1) = λtn(i) + β (Kt
n(i+ 1) − Kt(i+ 1)), (5.13c)

n = 1, . . . , N

where i ∈ N is a counter of the ADMM iterations, and the valuesHt
n(0),K

t(0),
and λtn(0) are initialized with the values computed at iteration t − 1. The steps
in (5.13) are carried out until a predefined stopping criterion is satisfied.

According to (5.13b), the global estimate is the average of the local polices
and Lagrange multipliers, thus relying on information collected from all agents.
The local information is aggregated into Kt, that is then used for the optimiza-
tion of the local controllers at the next iteration. By doing so, each local con-
troller can access a surrogate of the experience of the other controllers only,
without being privy to their states, actions, exogenous signals or current poli-
cies, that can hence be kept private. The privacy requirements stated in Section
5.1 are then satisfied, thanks to the introduction of the global law πKt .

Agent 1
(H1, K, λ1)

· · · Agent N
(HN , K, λN )
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λ1 · · · λN
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K
+

1
,K
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K
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λ
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,K
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λ
+ N
,K

+

Figure 64: Transmission scheme over an ADMM iteration.
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By looking at the steps in (5.13), it is also clear that at each ADMM itera-
tion the global policy can be updated on a central processing unit, provided the
updated local estimates {Ht

n(i + 1)}Nn=1, while the local policies and the local
Lagrange multipliers can be updated by using parallel dedicated resources on
the cloud, as represented in Figure 64 (where the step and iteration indices t and
i are substituted by a simpler notation for clarity).

The iterations to be carried out at a given time instant t are summarized in
Algorithms 9 - 10. In particular, steps 1-14 of Algorithm 9 are computed by the
resources on the cloud dedicated to the separate agents: after updating the states
and models histories, the n-th local policy Hn is updated by solving (5.13a).

Algorithm 9 Consensus-based collaborative OPS - Cloud actions at step t

Input: Last measurements {ynt+1, x
n
t , u

n
t }Nn=1 for each agent.

States/models histories {X(n)(t− 1), Θ(n)(t− 1)}Nn=1.
Previous values {Ht−1

n }Nn=1, Kt−1, {λt−1
n }Nn=1.

Output: Updated parameters {Ht
n}Nn=1, Kt, {λtn}Nn=1.

1: for n = 1, . . . , N do
2: X(n)(t) = X(n)(t− 1) ∪ {xnt };
3: update Θt

n based on (ynt+1, x
n
t , u

n
t );

4: Θ(n)(t) = Θ(n)(t− 1) ∪ {Θt
n};

5: set Ht
n(0) = Ht−1

n , Kt(0) = Kt−1, λtn(0) = λt−1
n ;

6: end for
7: while (i = 0 ; i < imax or not(termination-cryterion) ; i++) do
8: for n = 1, . . . , N do
9: set H0

n = Ht
n(i)

10: for m = 1, . . . , M do
11: OPS/OSPS iteration applied to pb. (5.13a)→ Hm

n ;
12: end for
13: Ht

n(i+ 1) = HM
n ;

14: end for
15: compute Kt(i+ 1) as in (5.13b);
16: for n = 1, . . . , N do
17: compute λtn(i+ 1) as in (5.13c);
18: end for
19: evaluate termination-cryterion;
20: end while
21: Ht

n = Ht
n(last), K(t) = Kt(last) and λn(t) = λtn(last)
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Algorithm 10 Consensus-based collaborative OPS - online actions agent n at
step t

Input: State and action (snt , u
n
t ).

Output: State and action (snt+1, u
n
t+1).

1: apply unt to the n-th agent and collect ynt+1;
2: measure or compute znt+1 (see Eq. (2.17)-(2.18));
3: transmit (ynt+1, x

n
t , u

n
t ) and eventually znt+1 to the cloud;

4: retrieve Ht
n from the cloud (see Algorithm (9));

5: measure pnt+1;
6: build xnt+1 as in (2.2) and snt+1 = [xnt+1, z

n
t+1];

7: compute unt+1 = πHt
n
(snt+1, p

n
t+1);

The problem is tackled via M iterations of the OPS method described in Al-
gorithm 1, performing hence sampling, gradient approximation and parameters
update as described in Chapter 2 if the policy parameterization in (5.3) is smooth.
Alternatively the local controllers update described for the OSPS method in Al-
gorithm 6 can be employed if the policy is non-smooth with respect to Hn. Step
15 of Algorithm 9 represents the computation of the global law by the central
unit, and steps 16-18 represent the parallel update of the Lagrange multipliers.

The combination of Algorithms 9 and 10 compose the online ADMM-based
OPS method. The described algorithm can be performed offline as well, avoid-
ing to perform the steps in Algorithm 10 related to the real-time interaction of
the single agents with the environment, instead relying on a previously collected
stream of input-output data to carry on the optimization in the cloud, iterating
the steps in Algorithm 9.

The online setup, involving a real-time implementation, is described assum-
ing synchronous back and forth communications between the agents and the
central processing unit, which might be unfeasible, especially for fast sampling
systems. In such cases, then, lags in the communication among the separate
units might be experienced.

Since in the considered setting we search for the optimal time-invariant pol-
icy parameters, after some initial steps we expect the lags in communication not
to substantially deteriorate the performance of the method.
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5.4 Collaborative learning of output-tracking con-
trollers

We now analyze the advantages given by the proposed multi-agent strategy for
the collaborative learning of controllers, considering as a control goal the track-
ing of a-priori unknonw output reference signals. To do so, we employ for each
of the N plants the definitions of states snt and exogenous signals rnt in (3.1) de-
signed for the output tracking problem in Section 3.1, as well as the associated
stage costs ρn, ρnL in (3.2).

We select equal stage cost functions among the agents (i.e., ρn = ρ for each
n), considering the goal of each agent to coincide exactly with the global goal
of the whole group, that is learning a static controller capable of tracking every
possible a-priori unknown reference signal taking values in a known interval
[ rmin, rmax]. Following from this, all the policy parameters are included on the
consensus process (i.e., ϕ = id), and we parameterize the local policies and the
global one employing the same functional structure, disregarding the local part
of the controller ψn

Jn
.

We choose a linear policy parameterization

unt = πn
Hn

(snt , r
n
t ) = unt−1 + πKn(s

n
t , p

n
t ) =

= unt−1 +Kn

[︃
snt
rnt

]︃
= unt−1 +Ks

ns
n
t +Kr

nr
n
t .

πK(st, rt) = ut−1 +K

[︃
st
rt

]︃
= ut−1 +Ksst +Krrt.

In this setup, the policy parameterization is thus smooth, so that the OPS method
will be employed for the local parameters update.

Performance index To evaluate the advantage in learning given by applying
the ADMM-based collaborative OPS method, we test it on problems having a
known optimal linear controller, characterized by parameters KOPT. In this
setting, we want to quantitatively assess how the convergence of the local and
global controllers Kt

n, Kt to KOPT improves thanks to the proposed tecnique.
Hence, given a generical series of evolving parameters {Kt}t, we define the
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index

Tϵ({Kt}t) .= min{t ∈ [1, Nlearn] | ∥Kt −KOPT∥2< ϵ}, (5.14)

representing the first iteration such that Kt is in the ϵ-neighborhood of KOPT.
The quality of the convergence of {Kt}t to KOPT once the ϵ-neighborhood has
been reached is evaluated, considering the following index:

Dϵ({Kt}t) .=
1

Nlearn−Tϵ({Kt}t)+1

Nlearn∑︂
t=Tϵ({Kt}t)

∥Kt −KOPT∥2, (5.15)

representing the distance from KOPT mantained by Kt, after Tϵ({Kt}t).

The indices (5.14) and (5.15) can be computed considering the serie {Kt} of
evolving parameters associated with the global law or the N series of local laws
parameters {Kt

n}. In the latter case, the performance over the group of agents
can be summarized by considering the averaged indices

Tϵ
.
=

1

N

N∑︂
n=1

Tϵ({Kt
n}t), (5.16)

Dϵ
.
=

1

N

N∑︂
n=1

Dϵ({Kt
n}t). (5.17)

We assess the benefits of exploiting shared experiences by comparing the results
obtained by a group of N agents that learn through the consensus-based collab-
orative OPS to the ones obtained for the same N agents individually learning
through the non-collaborative baseline OPS approach.

To assess the improvement achieved by collaboration in an online setting, the
costs of online tracking are also considered, looking at the sum of the individual
stage costs, averaged with respect to the N agents.

5.5 Example: consensus-based collaborative learn-
ing

We consider N = 4 data-generating systems described by the (unknown) SISO
LTI model in Example 1 of Chapter 2, equation (3.4), employing the same states
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definition snt , with ny = 3 measured output and nu = 2 measured input, i.e.,

snt =

[︃
xnt
qnt

]︃
=

⎡⎢⎢⎢⎣
⎡⎢⎣

yn
t

yn
t−1

yn
t−2

un
t−1

un
t−2

⎤⎥⎦
qnt

⎤⎥⎥⎥⎦ , qnt+1 = qnt + ( ynt − rnt ).

The employed stage costs and terminal costs are tuned with the same weights for
all agents, and the considered trajectory foresees over the same horizon L = 10.
All the considerations related to the tracking problem expressed in Section 3.2
hold also for the considered multi-agent scenario, in particular the value of the
known optimal linear feedback K∗ to be retrieved.

In the following, we are going to study the effect of Algorithm 9-10 on the
convergence of the local policies {Kt

n}n and Kt to K∗ over a learning process
of length Nlearn = 500 steps within an ideal setting, with no latencies in com-
munications. The agents’ policies are initialized with K0

n = 17×1, the initial
global law is set as K0 = 07×1, and the initial Lagrange multipliers are chosen
as λ0n = 1e− 3 · 17×1. The online learning phase is conducted starting from an
initial steady state x0 = 06×1 (i.e., yss = uss = 0). Each agent learns while
performing online a different local task, consisting in an a-priori unknown piece-
wise constant exploratory reference signal, randomly sampled and taking values
in [−100, 100 ].

At instant t, we perform 5 ADMM iterations, with β = 1. The ADMM steps
include the update of the local policies Kt

n, performed by approximating the
solution of problem 5.13a with M = 1 iteration of the Optimal Policy Search
method. Each OPS iteration m employs the current measured state xt described
in (2.2) as sample of the initial state (N0 = 1), together with Nq = 1 initial
integral action values, Nr = 1 reference trajectories and Nd disturbances. The
references and the integral action values are sampled uniformly in [−100, 100]
and [−10, 10] respectively. The disturbances, instead, are sampled according to
a Gaussian white random variable, characterized by variance σ2

d. The sampled
state is perturbed with vn ∼ 0.1 · N (0, 1). For the update of the controller
parameters, AMSGrad (Reddi, Kale, and S. Kumar, 2019) is employed, with
parameters α = 0.1, β1 = 0.9, β2 = 0.999.
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Considering as initial guess Θ0 = 01×6 and P0 = (1e + 5) · I6, the local
models are recursively computed by Kalman Filtering, with noise covariance
matrices Qk = 0.01 · I6 and Rk = 0.01. Having chosen a linear parameteri-
zation, at every iteration we combine the described algorithm with the heuristic
for stability described in Section 2.3.2.1. The following two subsections con-
tain the tuning details that differ between the noiseless case and the noisy one
(that is, the values Nd, σd), together with the results obtained in the two cases.
The same parameters are employed for the individual learning of the 4 agents
through the (non-collaborative) OPS approach, that is used as baseline case, to
show the achieved enhancement of the learning.

5.5.1 Noiseless case

In the noiseless case, we can measure the exact output of (3.4), i.e., we set σ2
y =

0. We consider no disturbance dt affecting the local linear models (Nd = 1,
σd = 0). From Figure 65 it is observable that the agents that learn in collabora-
tion converge faster to the optimal policy than the ones that individually optimize
their policy parameters.

2.5

5.0 ||Kt
1 −K∗||2 ||Kt

1 −K∗||2 - collaborative

0

5 ||Kt
2 −K∗||2 ||Kt

2 −K∗||2 - collaborative

2.5

5.0 ||Kt
3 −K∗||2 ||Kt

3 −K∗||2 - collaborative

0 100 200 300 400 500

2.5

5.0 ||Kt
4 −K∗||2 ||Kt

4 −K∗||2 - collaborative

Iteration t

Figure 65: Consensus-based collaborative learning in noiseless conditions, N = 4
agents, convergence of the local parameters {Kt

1}t, {Kt
2}t, {Kt

3}t, {Kt
4}t to the

optimal value K∗.
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learning average online cost T2 D2

individual 1.43 · 1e+ 6 164.5 1.65
collaborative 5.77 · 1e+ 5 25.25 0.96

Table 26: Consensus-based collaborative learning in noiseless conditions, N = 4
agents, performance indices

This evaluation is confirmed by the results in Table 26, where the indices
(5.17) with ϵ = 2 are included, together with the online tracking cost achieved
on average by the agents in collaboration, while tracking different online tasks
as shown in Figure 66. All such indicators are compared with the same ones,
associated with the agents learning individually. In particular, T2 inidicates that
on average the four agents, when collaborating, reach the 2-distance neighbor-
hood of K∗ more than a hundred steps before than when the learning is sepa-
rate. Moreover, the average distance D2 mantained by the collaborative agents
is smaller, indicating that, after reaching the 2-distance neighborhood of K∗ the
first time, the agents tend not to leave it, but to proceed towards K∗. The aver-
age tracking cost in collaboration is reduced of one order of magnitude, showing
how the increased convergence speed positively affects the performance.
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t yt2 yt2 - collaborative

−250
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Iteration t

Figure 66: Consensus-based collaborative learning in noiseless conditions, N = 4
agents, online output tracking of an a-priori unknown exploratory reference signal.
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Figure 67: Consensus-based collaborative learning in noisy conditions, N = 4
agents, convergence of {Kt

1}t, {Kt
2}t, {Kt

3}t, {Kt
4}t to the optimal value K∗.

5.5.2 Noisy case

Now, we consider a noisy output of (3.4), i.e., we set σy = 0.1. At every itera-
tion, hence, we sample Nd = 10 disturbance trajectories, from a white Gaussian
random variable with variance σ2

d = 0.01. Regarding the learning of the single
agents, the same considerations expressed in the noiseless case are valid when
performing the same test in the noisy case, as shown by the convergence of the
local laws {Kt

1}t, {Kt
2}t, {Kt

3}t, {Kt
4}t in Figure 67, and by the online track-

ing performed by the four agents in Figure 68. A quantitative evaluation is given
by the performance indices (5.17) and average online tracking costs in Table 27.

learning average online cost T2 D2

individual 1.85 · 1e+ 6 168.7 1.76
collaborative 5.64 · 1e+ 5 24.5 1.01

Table 27: Consensus-based collaborative learning in noisy conditions, N = 4
agents, performance indices
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Figure 68: Consensus-based collaborative learning in noisy conditions, N = 4
agents, online output tracking of an a-priori unknown exploratory reference signal.

We consider now a different setup, in order to underline the advantages of
the consensus-based multi-agent collaborative strategy on the quality of both the
synthesized global law, and the local law of a specific agent, that we will indicate
as Agent 1, while increasing the number of agents collaborating.

Each agent performs a different online tracking task while learning. The
tasks are designed so that different agents are employed on different parts of the
space of reference signals. In order to do so, we repeat the learning experiment
in the described conditions and employing the described tuning, while consider-
ing a varying number of agent N = 1, 2, 10. Agent 1 is present in all the three
learning tests (N = 1, 2, 10). In each test, it is associated with the same track-
ing task T1 and when N = 1 it performs the non-collaborative Optimal Policy
Search method. In the second test (i.e., when N = 2) Agent 1 and Agent 2
learn in collaboration, while performing two different tasks. Agent 1 performs
the same task T1 as in the previous test, while Agent 2 performs a different task
T2. Finally, the third test involves N = 10 agents collaborating. Each of them
performing a different task. Among them, Agent 1 and 2 perform task T1 and
T2, respectively, as in the previous tests.
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Figure 69: Consensus-based collaborative learning in noisy conditions, N =
1, 2, 10 agents, convergence of the global parameters {Kt}t to K∗.

Figure 69 shows the effect of increasing the number of collaborators on
the associated global law Kt. Given that the non-collaborative Optimal Pol-
icy Search method does not provide any global law and that only one agent is
involved, in case of N = 1, we consider for the comparison the only available
law Kt = Kt

1.

From Figure 69 it is visible that both the global laws obtained in collab-
orative mode contain more information with respect to the optimal policy K∗
than the policy Kt

1, individually synthesized by Agent 1 in the same conditions.
Hence, Agent 1 (as well as all the other agents) could benefit from exploiting
such information, in order to achieve faster convergence. Moreover, in case of
10 agents collaborating, the convergence of Kt is additionally improved with
respect to only 2 agents sharing information, in the sense that, although the dis-
tance between K∗ and the collaborative global policies for N = 2, 10 reached
after Nlearn = 500 steps is similar, as shown by Figure 69, the global poli-
cies synthesized by 10 agents in collaboration reaches the 2-distance neighbor-
hood centered in K∗ significantly faster than the global policies synthesized by
2 agents, and it proceeds towards convergence while being closer to K∗.
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learning N T2(K
t) D2(K

t)
individual 1 113 1.57

collaborative 2 62 1.21
collaborative 10 35 1.10

Table 28: Consensus-based collaborative learning in noisy conditions, varying
number of agents, performance indices related to the global law convergence.

Hence, sharing such global law with the agents, drives them earlier and bet-
ter towards K∗. This is quantitatively observable as well from the performance
indices (5.14) - (5.15) associated with Kt, included in Table 28.

The effect of the sharing such information on Agent 1 is underlined by Fig-
ure 70 - 71 and Table 29. Such figures and performance indices show how both
the convergence and performance of Agent 1 are improved by the exploitation
of a better global law.
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Figure 70: Consensus-based collaborative learning in noisy conditions, N =
1, 2, 10 agents, convergence of the local parameters {Kt

1}t of Agent 1 to the opti-
mal value K∗.
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Figure 71: Consensus-based collaborative learning in noisy conditions, N =
1, 2, 10 agents, online output tracking of an a-priori unknown exploratory refer-
ence signal r1t by Agent 1.

learning N T2(K
t
1) D2(K

t
1) tracking cost Agent 1

individual 1 113 1.57 3.58 · 1e+ 6
collaborative 2 33 1.32 7.97 · 1e+ 5
collaborative 10 15 1.06 7.19 · 1e+ 5

Table 29: Consensus-based collaborative learning in noisy conditions, varying
number of agents, performance indices related to the local law Kt

1 convergence
and to Agent 1 online performance.

Analogous results are achieved by repeating the three learning experiments
(N = 1, 2, 10), but assigning to each agent a different initial guess K0

n and a
different initial steady-state condition xnss. For each n = 1, . . . , N , the initial
guess K0

n is obtained by uniformly sampling its component in the hypercube
[−0.1, 0.1]7, while the initial condition xnss = [ynss, . . . , y

n
ss, u

n
ss, . . . , u

n
ss]

′ is
built as in (2.2), by sampling each different unss ∼ U([−100, 100]) and consid-
ering the associated steady-state output ynss. Regarding the global law conver-
gence, the improvement is shown by Figure 72 and Table 30, while observations
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Figure 72: Consensus-based collaborative learning in noisy conditions, N =
1, 2, 10 agents, different initial conditions and initial guesses {xn

ss,K
0
n}Nn=1, con-

vergence of the global parameters {Kt}t to K∗.

learning N T2(K
t) D2(K

t)
individual 1 > 500 −

collaborative 2 104 1.83
collaborative 10 57 1.34

Table 30: Consensus-based collaborative learning in noisy conditions, varying
number of agents, different initial conditions and initial guesses {xn

ss,K
0
n}Nn=1,

performance indices related to the global law convergence.

on the convergence and online behavior ofKt
1 can be derived from Figure 73-74

and Table 31. Once more, the collaborative approach strongly benefits from the
joint information. The different agents are trained following different reference
signal, from different initial states, starting from different initial guesses. Hence,
each agent’s contribution consists in information gathered from different explo-
ration paths. Separately, the agents do not have access to enough information in
order to speed up the search for the optimal parameters.
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Figure 73: Consensus-based collaborative learning in noisy conditions, N =
1, 2, 10 agents, different initial conditions and initial guesses {xn

ss,K
0
n}Nn=1, con-

vergence of the local parameters {Kt
1}t of Agent 1 to the optimal value K∗.
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Figure 74: Consensus-based collaborative learning in noisy conditions, N =
1, 2, 10 agents, different initial conditions and initial guesses {xn

ss,K
0
n}Nn=1, on-

line output tracking of an a-priori unknown exploratory reference signal r1t by
Agent 1.
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learning N T3.2(K
t
1) D3.2(K

t
1) tracking cost Agent 1

individual 1 > 500 − 7.83 · 1e+ 7
collaborative 2 411 3.16 2.16 · 1e+ 7
collaborative 10 318 3.09 1.98 · 1e+ 7

Table 31: Consensus-based collaborative learning in noisy conditions, varying
number of agents, different initial conditions and initial guesses {xn

ss,K
0
n}Nn=1,

performance indices related to the local law Kt
1 convergence and to Agent 1 online

performance.

5.6 Trust-based collaborative learning

The formulation proposed in the previous sections allows us to explicitly ex-
ploit the analogies between the processes and their connection to the cloud, in
order to optimize the control policies directly from data. Considering the same
setup, we now present a second method to achieve the same result, based on a
different definition of global policy. Instead of considering as global policy the
one obtained through consensus among the local ones, here we rely on a set of
weights, based on local performances or other factors of interest, in order to in-
dividuate how “trustworthy” are the local policies and improve the quality of the
shared information. This second method, indicated as trust-based collaborative
Optimal Policy Search, embeds again the OPS approach within a scheme based
on ADMM (Boyd et al., 2011), to allow the agents to share only the surrogate
policy, while retaining their states, actions, and rewards. Differently from the
consensus-based collaborative Optimal Policy Search, though, the trust-based
method does not impose hard constraints on the policy of each agent. Rather, it
softly steers the agents according to the following formulation, i.e.,

min
{πn}n

N∑︂
n=1

(︂
EW [Jn](πn) +

γn
2
∥ϕ(πn)−

N∑︂
m=1

wmϕ(πm)∥22
)︂
. (5.18)

As in (5.2), the (known) function ϕ selects the characteristics that should be
shared by all the local policies, considering the correspondences among them,
again with the rationale that plants sharing the same dynamics and having simi-
lar optimization goals should share similar optimal policies as well.
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Problem 5.18 represents a collaborative learning problem among N agents,
where for agent n the cost EW [Jn](πn) of the local policy πn is augmented by
an additional term, weighted by a tunable parameter γn > 0. Such term can be
interpreted as a softened version of a constraint, steering each local law πn to
the weighted average over the policies of the N agents. It is worth remarking
that γn can be equal for all systems, i.e. γn = γ for each n.

The weights {wn}Nn=1 are customizable by the user, and chosen to be ap-
proximate indicators of the “level of trust” on the policy of each agent. In gen-
eral we consider sets of weights such that wn ≥ 0,

∑︁N
n=1 wn = 1. Given that

the policies are updated in time, and possibly at each time step, time-varying
weights {wt

n}Nn=1 can be chosen, to account for up-to-date information on the
local policy and the parameters γn can vary in time as well, (i.e., we can con-
sider γtn at iteration t).

The proposed formulation, like the one introduced in (5.2), allows us to ex-
plicitly account for the similarities between the N agents in the computation of
the local policies, while enabling one to explicitly account for the performance
of each agent through the weights {wn}Nn=1, so as to steer the fleet of systems
towards the behavior of the better ones.

By considering the policy parameterization in (5.3) and once again the con-
struction in Section 2.1, we approximate problem (5.18) as

min
{Hn}n

N∑︂
n=1

E
[︂ L−1∑︂

ℓ=0

ρn(s
n
ℓ , p

n
ℓ , u

n
ℓ ) + ρnL(s

n
L, p

n
L)

]︂
+
γn
2
∥Kn −

N∑︂
m=1

wmKm∥22,

such that unℓ = πn
Hn

(snℓ , p
n
ℓ ), ℓ = 0, 1, . . . , L− 1,

snℓ+1 = h(snℓ , p
n
ℓ , u

n
ℓ , d

n
ℓ ), ℓ = 0, 1, . . . , L− 1,

dnℓ ∼ Dn
ℓ , ℓ = 0, 1, . . . , L− 1, (5.19)

pnℓ ∼ Pn
ℓ , ℓ = 0, 1, . . . , L,

sn0 ∼ Sn
P , n = 1, . . . , N,

where, as previously done, we indicate ϕ(Hn) = Kn for each n = 1, . . . , N .
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5.7 Trust-based collaborative OPS

In order to tackle problem (5.19) in practice, we propose an ADMM-based
scheme to learn the local policies, that allows us to fully exploit the compu-
tational power of the cloud and the resources available either on board of the
single agents or individually allocated on the cloud for each system, bypassing
the lack of separability of the problem cost over the agents.

To this end, problem (5.19) is reformulated as

min
{Hn,Zn}n

N∑︂
n=1

E
[︂ L−1∑︂

ℓ=0

ρn(s
n
ℓ , p

n
ℓ , u

n
ℓ ) + ρnL(s

n
L, p

n
L)

]︂
+
γn
2
∥Kn −

N∑︂
m=1

Zm∥22,

such that unℓ = πn
Hn

(snℓ , p
n
ℓ ), ℓ = 0, 1, . . . , L− 1,

snℓ+1 = h(snℓ , p
n
ℓ , u

n
ℓ , d

n
ℓ ), ℓ = 0, 1, . . . , L− 1,

Zn = wnKn, n = 1, . . . , N,

dnℓ ∼ Dn
ℓ , ℓ = 0, 1, . . . , L− 1, (5.20)

pnℓ ∼ Pn
ℓ , ℓ = 0, 1, . . . , L,

sn0 ∼ Sn
P , n = 1, . . . , N,

where the auxiliary variables {Zn}Nn=1 are introduced to decouple the original
problem. The associated Lagrangian in scaled form is given by:

L({Hn, Zn, υn}Nn=1) =
N∑︂

n=1

Ln(Hn, {Zm}m, υn), (5.21)

where Ln indicates the equation

Ln(Hn, {Zm}m, υn) = EW [Jn
L ](Hn) + (5.22)

+
γn
2
∥Kn−

N∑︂
m=1

Zm∥22 +
β

2
∥wnKn − Zn + υn∥22.

In the Lagrangian, β > 0 is a tunable penalty parameter, ϕ(Hn) = Kn for each
n, and {υn}Nn=1 are the normalized Lagrange multipliers associated with (5.20).
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Accordingly, the ADMM steps needed to solve the considered policy search
problem at time step t are:

Ht
n(i+ 1) = argmin

Hn

Ln(Hn, {Zt
m(i)}m, υtn(i)) = (5.23a)

= argmin
Hn

EW [Jn
L ](Hn) +

γn
2
∥Kn−

N∑︂
m=1

Zt
m(i)∥22 +

+
β

2
∥wnKn − Zt

n(i) + υtn(i)∥22, n = 1, . . . , N

{Zt
m(i+ 1)}N

m=1
= arg min

{Zm}N

m=1

N∑︂
n=1

[︂γn
2
∥Kt

n(i+ 1)−
N∑︂

m=1

Zm∥22 + (5.23b)

+
β

2
∥wnK

t
n(i+ 1)− Zn + υtn(i)∥22,

]︂

υtn(i+ 1) = υtn(i) +
(︁
wnK

t
n(i+ 1)− Zt

n(i+ 1)
)︁
, n = 1, .., N, (5.23c)

where i ∈ N denotes the ADMM iteration.

As it can be seen by looking at (5.23a), the local parameters can be computed
separately. Instead, the auxiliary variables in (5.23b) have all to be retrieved at
once. In order to handle this, let us then focus on the second ADMM step.
Problem (5.23b) can be recast as:

min
{Zm}N

m=1

Z̄

N∑︂
n=1

[︂γn
2
∥Kt

n(i+ 1)− Z̄∥22 + (5.24)

+
β

2
∥wnK

t
n(i+ 1)− Zn + υtn(i)∥22

]︂
,

such that Z̄ =
N∑︂

m=1

Zm.

As in (Boyd et al., 2011), by fixing Z̄ it can be easily proven that the local
auxiliary variables are equal to Zn = wnK

t
n(i+ 1) + υtn(i), for n = 1, . . . , N .
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This further implies that

Z̄ =

N∑︂
n=1

Zn = K̄
t
w(i+ 1) +Nῡt(i) (5.25)

where we indicate

K̄
t
w(i+ 1)

.
=

N∑︂
n=1

wnK
t
n(i+ 1),

ῡt(i)
.
=

1

N

N∑︂
n=1

υtn(i).

(5.26)

By exploiting (5.25) - (5.26) , the constrained problem in (5.24) is equivalent
to the following unconstrained one on the variable Z̄:

min
Z̄

N∑︂
n=1

γn
2
∥Kt

n(i + 1)− Z̄∥22 +

+
β

2
∥ 1
N

(︂
K̄

t
w(i+ 1)− Z̄

)︂
+ ῡt(i)∥22.

(5.27)

We can thus reduce the number of auxiliary variables, directly searching for Z̄
instead. By shifting towards the optimization of Z̄, once Z̄t

(i+1) has been com-
puted via (5.27), we also need to change the update of the Lagrange multipliers,
using the equalities in (5.26), as

υtn(i+ 1) = ῡt(i) +
1

N

(︂
K̄

t
w(i+ 1)− Z̄t

(i+ 1)
)︂

for each n = 1, . . . , N . From such update is observable that υtn(i + 1) are in-
variant with respect to n, coinciding with the average ῡt(i+1) defined in (5.26).

159



The original ADMM-based scheme (5.23) reduces to

Ht
n(i+ 1) = argmin

Hn

EW [Jn
L ](Hn) +

γn
2
∥Kn − Z̄t

(i)∥22+ (5.28a)

+
β

2
∥wn(Kn −Kt

n(i)) +
1

N
(Z̄

t
(i)− K̄t

w(i)) + ῡt(i)∥22,
n = 1, .., N

K̄
t
w(i+ 1) =

N∑︂
n=1

wnK
t
n(i+ 1) (5.28b)

Z̄
t
(i+ 1) = argmin

Z̄

N∑︂
n=1

γn
2
∥Kt

n(i+ 1)− Z̄∥22+ (5.28c)

+
β

2
∥ 1
N

(︂
K̄

t
w(i+ 1)− Z̄

)︂
+ ῡt(i)∥22,

ῡt(i+ 1) = ῡt(i) +
1

N

(︂
Z̄

t
(i+ 1)− K̄t

w(i+ 1)
)︂
. (5.28d)

The problem in (5.28c) can be explicitly solved, with the closed-form expression
for Z̄ given by:

Z̄
t
(i+ 1) =

N
[︂(︂∑︁N

n=1 γnK
t
n(i+ 1)

)︂
+ β

N K̄w(i+ 1) + βῡt(i)
]︂

N(
N

Σ
n=1

γn) + β

. (5.29)

The ADMM steps are carried on till a user-defined stopping criterion is met, i.e.,
when ∥ Z̄t

(i+ 1)− K̄t
w(i+ 1) ∥22 is smaller than a set treshold, or the number

of steps exceeds the maximum number of iterations permitted. As it can be no-
ticed, the parameters of the local policies can be computed separately according
to (5.28a). This operation can be either performed on board of each agent, if
the computational power locally available is sufficient, or on resources allocated
for each agent on the cloud. Then, the agents share with a central unit their pa-
rameters and local weights to update the auxiliary variable as in (5.28c) and the
weighted average (5.28b). Such values are used to update the Lagrange multi-
pliers (5.28d). The updated variables are then broadcast back to the agents, as
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ῡ +
, K̄

+
w , Z̄ +

ῡ
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Figure 75: Transmission scheme over an ADMM iteration.

summarized in Figure 75 (where t and i are omitted for simplicity). The Algo-
rithm flow follows the phases of the consensus-based collaborative OPS method,
described in Section 5.3 by Algorithms 9-10: in this case, though, Algorithm 9
is substituted by Algorithm 11, containing the steps to be performed in the cloud
associated with the trust-based collaborative OPS method.

5.8 Example: trust-based collaborative learning

The described trust-based collaborative Optimal Policy Search approach is now
applied on the LTI example described in Section 5.5, considering the noisy case
characterized by noisy output of (3.4), i.e., σy = 0.1. We tune the trust-based
OPS by setting β = 1 and γn = γ = 1/N , and we employ the same parameters
described in Section 5.5. We define time-varying weights wt

n in order to assess
the level of trust on each agent, based on the different local performance of each
agent with respect to its tracking task and on the distance of each local policy
from the global parameters Z̄t.
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Algorithm 11 Trust-based collaborative OPS - Cloud actions at step t

Input: Last measurements {ynt+1, x
n
t , u

n
t }Nn=1 for each agent.

States and models histories {X(n)(t− 1), Θ(n)(t− 1)}Nn=1.
Previous values {Ht−1

n }Nn=1, Z̄t−1, ῡt−1.
Output: Updated parameters {Ht

n}Nn=1, Z̄t, ῡt.

1: for n = 1, . . . , N do
2: X(n)(t) = X(n)(t− 1) ∪ {xnt };
3: update Θt

n based on (ynt+1, x
n
t , u

n
t );

4: compute wt
n;

5: Θ(n)(t) = Θ(n)(t− 1) ∪ {Θt
n};

6: set Ht
n(0) = Ht−1

n , Kt(0) = Kt−1, λtn(0) = λt−1
n ;

7: end for
8: while (i = 0 ; i < imax or not(termination-cryterion) ; i++) do
9: for n = 1, . . . , N do

10: set H0
n = Ht

n(i)
11: for m = 1, . . . , M do
12: OPS/OSPS iteration applied to pb. (5.28a)→ Hm

n ;
13: end for
14: Ht

n(i+ 1) = HM
n ;

15: end for
16: compute K̄t

w(i+ 1) =
∑︁N

n=1 wnK
t
n(i+ 1)

17: compute Z̄t
(i+ 1) as in (5.29);

18: compute ῡt(i+ 1) as in (5.28d);
19: evaluate termination-cryterion;
20: end while
21: Ht

n = Ht
n(last), Z̄

t
= Z̄

t
(last) and ῡt = ῡt(last)

We encode such definition of trust as

wt
n = 0.5 · wp

n(t) + 0.5 · wd
n(t), (5.30)

that is, the weightswt
n defined in (5.30) are the average of the following weights:

wp
n(t) = P t

n/ΣnP
t
m, such that P t

n = 1− ptn
Σmptm

, (5.31)

wd
n(t) = Dt

n/ΣnD
t
m, such that Dt

n = 1− dtn
Σmdtm

. (5.32)
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In particular the weights wp
n(t) in (5.31) are based on the index ptn, evaluating

the performance of agent n with respect to the others as

ptn =
ctn

Σmctm
/

ttn
Σmttm

,

where ctnis the sum of the last nw = 10 stage costs, and on ttn, defined as

ttn =∥ rn(t− nw + 1)− yn(t− nw + 1) ∥22 +

t∑︂
j=t−nw+2

∥ rn(j)− rn(j − 1) ∥22 .

The indices ctn and ttn describe the quality of the local performance of the n-th
agent and the complexity of the n-th local task, respectively, over a time win-
dow of nw steps. On the other hand, the weights wd

n(t) in (5.32) are based on
the distance dtn =∥ Kt

n − Z̄
t ∥22.

The definition (5.30) expresses mathematically the intuition that the higher
the trust on agent n is, the lower is the cost of its performance, and that we should
consider each performance in relation to the difficulty to the assigned task. The
weights (5.30) are easy to interpret, and can be compactly rewritten as

wt
n =

1

2(N − 1)

(︃
2− ptn

Σmptm
− dtn

Σmdtm

)︃
. (5.33)

In the current setup ptn, ttn and dtn are computed locally and transmitted to the
central unit where {wt

n}n is finally obtained, avoiding the agents to share their
performance index. As additional precaution, we assign weight zero to agents
whose local policy is unstable over the last nw steps and to the agents that are
“outliers” with respect to the majority, i.e., agents such that dtn ≥ 0.5

∑︁
m dtm or

ptn ≥ 0.5
∑︁

m ptm. Such agents are also disregarded in the normalization of ctn,
ttn, and dtn.

To test the capabilities of the approach, we trainN = 4 agents while making
them perform 4 different online tracking tasks: Agent 1 is trained while tracking
r1t taking values in [−100, −50 ], Agent 2 is trained while tracking r2t taking
values in [−50, 0 ], Agent 3 is trained while tracking r3t taking values in [ 0, 50 ],
and Agent 4 is trained while tracking r4t taking values in [ 50, 100 ].
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Figure 76: Trust-based collaborative OPS in noisy conditions, convergence of the
global parameters Z̄

t to the optimal value K∗. Comparison with the convergence
of the consensus-based collaborative OPS global parameters Kt and the average of
the local parameters obtained by learning individually through OPS.

learning T2 D2

individual 177 1.78
collaborative consensus 44 1.41
collaborative trust 24 1.10

Table 32: Trust-based collaborative OPS in noisy conditions, N = 4 agents, per-
formance indices related to the global laws.

We compare the local policies, global policies and performances obtained
via the proposed sharing strategy with the ones resulting from the application
of OPS for the individual learning and the ones obtained by applying the multi-
agent consensus method introduced in Section 5.3.

Figure 76 shows that the global law Z̄
t obtained in the trust-based case re-

sults to be more informative than the consensus-based one, indicated asKt. This
is mirrored as well by the performance indices in Table 32.
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Figure 77: Trust-based collaborative OPS in noisy conditions, N = 4 agents,
convergence of the local parameters Kt

n to the optimal value K∗. Comparison with
the consensus-based collaborative local parameters convergence and the average of
the local parameters obtained by learning individually through OPS.

Observing both Figure 76-77, we can infer the beneficial effect of incorpo-
rating the concept of trustworthy agents on the quality of the global laws, and
of the use of a better global law on the convergence of the local ones. Indeed,
considering the convergence of Agent 3 in Figure 77, we can observe that both
the individual OPS method and the consensus-based collaborative OPS seem to
get trapped into a local minimum, differently from the other agents.

Knowing that the consensus-based global lawKt is obtained by constraining
all the different agents to “agree” on a shared consensus policy, it is as well clear
that Agent 3 contributes to Kt by slowing down its convergence to the optimal
value, and hence interfering with the quality of information exploited by the
group of agents. Instead, the trust-based method drives the local parameters
of Agent 3 towards the global optimum, by exploiting the global knowledge
collected in Z̄t. As a chain effect, the local parameters Kt

3 avoid to divert the
convergence of Z̄t, making it so that the whole group of agents exploits a better
global law than the one available in the consensus-based scenario.
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learning T2(K
t
3) D2(K

t
3) tracking cost Agent 3

individual > 500 − 1.12 · 1e+ 7
collaborative consensus > 500 − 1.45 · 1e+ 9
collaborative trust 35 1.28 7.19 · 1e+ 4

Table 33: Trust-based collaborative learning in noisy conditions, N = 4 agents,
performance indices associated with Agent 3.

The performance indices T2(K
t
3) and D2(K

t
3) associated with Agent 3 are

included in Table 33 and mirror the previous observations about the convergence
of the local policy Kt

3. The same Table contains as well the online tracking
cost achieved by Agent 3 while learning, showing how relevant it is in terms of
performance to enhance the convergence and avoiding local minima.

Figures 78 - 79 - 80 - 81 show the improvement in the online tracking of the
four agents, when trained using the trust-based collaborative OPS, in compar-
ison with the performance obtained by the consensus-based collaborative OPS
and the one obtained by learning individually through OPS. We can observe
that exploiting Z̄t is really more advantageous than exploiting Kt from the per-
formance point of view and for all the agents (not exclusively for Agent 3), as
confirmed as well by the average costs in Table 34.

In summary, the trust-based Optimal Policy Search method seems to ulteri-
orly improve the convergence speed in the described multi-agent scenario, and to
be better suited than the consensus-based scheme in handling the collaborative
learning of tracking policies in case complex non-convex optimization functions
are considered.

learning average tracking cost
individual 3.74 · 1e+ 6

collaborative consensus 3.63 · 1e+ 8
collaborative trust 2.23 · 1e+ 5

Table 34: Trust-based collaborative learning in noisy conditions, N = 4 agents,
average online tracking cost.
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Figure 78: Trust-based collaborative OPS in noisy conditions, N = 4 agents,
online output tracking of an a-priori unknown exploratory reference signal r1t by
Agent 1.
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Figure 79: Trust-based collaborative OPS in noisy conditions, N = 4 agents,
online output tracking of an a-priori unknown exploratory reference signal r2t by
Agent 2.
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Figure 80: Trust-based collaborative OPS in noisy conditions, N = 4 agents,
online output tracking of an a-priori unknown exploratory reference signal r3t by
Agent 3.
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Figure 81: Trust-based collaborative OPS in noisy conditions, N = 4 agents,
online output tracking of an a-priori unknown exploratory reference signal r4t by
Agent 4.
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Chapter 6

Conclusions

This thesis addressed the problem of learning feedback controllers from experi-
mental data, considering the plant to be controlled as a black-box source of input
and output streams. New policy search methods for the learning of deterministic
control policies using Stochastic Gradient Descent were presented, applicable
both offline and online. The proposed methods are based on a combination of
the data-driven policy search framework with some elements of the model-based
scenario. The introduction of a cheap model-based scheme was motivated by the
desire to mitigate some of the drawbacks presented by the purely data-driven ap-
proach. On one side the method requires a low modeling effort, as compared to
the typical identification and model-based control design scenario. On the other
side, it reduces risky explorative operations on the plant and mitigates the vari-
ance on the gradient approximations, that are characteristic of pure data-driven
policy search methods, due to the use of stochastic policies and random sampling
of trajectories.

In Chapter 2 a data-driven gradient approximation approach based on states
and local linear models history was introduced. Based on this approach, a pol-
icy search algorithm for the learning of smooth feedback controllers (indicated
as OPS method) was detailed, both in the offline and online scenario. In the
online scenario, a local stabilization heuristic was proposed for linear feedback
controller synthesis, while remaining faithful to the “black-box” hypothesis over
the plant dynamics.
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In Chapter 3 the results of the application of the OPS method to learn poli-
cies for the tracking of a-priori unknown time-varying setpoints were included.
An assisted control strategy for the online learning of tracking policies was in-
troduced in order to leverage between exploration and safety. The OPS method
is tested both online and offline on four different scenarios:

1. on an LTI system, learning a linear feedback controller, with local linear
models tuned with the real system orders (noiseless and noisy case).

2. On an LTI system, learning linear feedback controllers, with local linear
models tuned with reduced system orders (noiseless and noisy case).

3. On a nonlinear system, learning a linear feedback controller (noisy case).

4. On a nonlinear system, learning a nonlinear feedback controller (noisy
case).

When the system generating the data is linear and the local linear models be-
long to the class of the real plant (scenario 1) the results obtained demonstrate
how the OPS method converges to the known optimal linear feedback law. The
tests were performed considering noise at different intensities, different initial
conditions for the plant and starting the learning process from different initial
guesses for the policy parameters. If the system dynamics does not belong to the
same class of the local linear models (scenarios 2 - 3 - 4) the OPS method was
shown to be capable of synthesizing good controllers, by converging to policies
capable of successfully tracking a-priori unknown references. In particular, two
different linear parameterizations of the feedback controller were considered in
scenario 2, both exploiting a reduced feedback state. The first one was shown
to achieve tracking performance very close to the one of the known optimal
controller both when trained offline and online. The second parameterization
was synthesized offline in order to be fairly compared with two VRFT-derived
controllers (Campi, Lecchini, and Savaresi, 2002), using as reference model the
optimal behavior (based on the true dynamics of the system) and a data-driven
derived behavior, respectively. The OPS method was shown to outperform both
the VRFT controllers, although synthesized from the same dataset, demonstrat-
ing a more efficient use of poorly informative data. Regarding the online setting,
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in every scenario it was shown that the method is capable of effectively per-
forming output tracking of a-priori unknown reference signals while learning.
In particular, the first controller synthesized online in scenario 2 was shown to
achieve an online tracking behavior comparable to the one obtained by DeePC
(Coulson, Lygeros, and Dörfler, 2019) in an unconstrained setting on the same
task, after an initial phase of online learning.

In Chapter 4 the OSPS algorithm for the learning of non-smooth (hybrid)
controllers with a user-defined number of modes was described. The presented
approach learns both the set of control laws and a polyhedral switching law, in
an online or offline setup. Given that the policy parameterization is not smooth,
additional care was taken to avoid the computation of the gradients necessary for
the local controllers update in areas of the parameters space where the perfor-
mance index is not continuous and hence not differentiable. Numerical examples
demonstrate that the approach performs well when applied to control processes
characterized by hybrid or nonlinear dynamics, outperforming control laws that
are single-mode (no switching) or multi-mode but with the switching law de-
fined a priori.

Finally, in Chapter 5 two collaborative learning algorithms (consensus-based
and trust-based) were described, incorporating the proposed OPS method with
knowledge-sharing strategies in a cloud-aided setup, in order to improve the
learning capabilities of a multi-agent system with structural similarities. In both
the approaches, the agents are allowed to share surrogate of their experiences,
while privately retaining their states, actions, and rewards, that could be sensitive
for privacy reasons. To verify the benefits of sharing information on the learning
performance, the two methods were tested on the LQR problem. Both methods
improve the convergence rate of the different agents to the known optimal policy
in comparison with the individual learning via OPS. In particular, the trust-based
approach was shown to be faster in convergence than the consensus-based one.
Moreover, the trust-based method appeared to be more resilient against the loss
of convergence that might result from the randomness of sampling, the differ-
ences in initial guesses and the non-convexity of the cost function with respect
to the policy parameters.
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6.1 Future directions

This work was focused on the design of the proposed algorithms and on the
analysis of their performance in different scenarios. Future research will aim at

• providing the proposed approach with a theoretical background and ad-
ditional analytic insight on its properties. In particular, we will aim at
obtaining theoretical conditions on the gradient error, in order to guar-
antee convergence to a (possibly not globally) optimal policy, seeking to
link the precision of the local models with the convergence rate of the
method. Additionally, future investigations will include a statistical anal-
ysis on the approximated gradients variance: in the current work the re-
duction in variance is evidenced by the good rate of convergence achieved
in the numerical examples, but a formal study, in relation with the increase
of the stochasticity and complexity in the plant dynamics, is indeed neces-
sary to understand the limitations of the approach. For the same reasons,
an analysis of the classes of systems on which the method can be suc-
cessfully applied will be important. In order to establish the efficacy of
the method, we will as well compare it with other data-driven and model-
based approaches. In particular the performance of the approach will be
compared with the policy search methods based on a Locally Weighted
Bayesian Regression model (Atkeson, Moore, and Schaal, 1997), consid-
ered as the closest model-based methods with respect to the one proposed
in this thesis.

• Additional effort will be spent in improving the local models, while re-
maining in the linear paradigm in order to keep the modeling effort low. In
particular, a first idea to be tested is to enrich the linear models with linear
multi-step forward estimations, to be employed in the gradient computa-
tions at different stages of the cumulative cost. Another idea is to improve
the precision of the local model by employing the one-step ahead Kalman
Filter innovation error measured over the stream of data considered dur-
ing the learning. The error could be used to give a local estimate of the
variance of the disturbances to be sampled in the mini-batch creation, so
that they can be employed as an alias for the model error.
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• The stochastic gradient based optimization procedure will be enhanced
through the use of second order approximations, like the ones provided by
the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algo-
rithm and its stochastic variants, as for instance (Moritz, Nishihara, and
Jordan, 2016), investigating both the classic second order approximation
method used in L-BFGS and a stochastic approximation based on the local
linear models.

• The method will be tailored to solve constrained problems by considering
the use of specific policy parameterizations. An interesting approach is to
learn through OPS an MPC policy parameterization, which is inherently
designed to enforce constraints satisfaction (cf. (Gros and Zanon, 2021)).
Moreover, recently developed methods employing safety-enforcing con-
trol barrier functions (i.e., (Cheng et al., 2019)) can constitute a useful
starting point for the design of a safe-learning architecture, while remain-
ing faithful to the local model approach.

• The OSPS method for the synthesis of hybrid controllers will be extended
in order to be capable of synthesizing switching policies characterized by
non-polyhedral areas of application. The idea that I am currently devel-
oping is based on the substitution of the Voronoi diagrams, used in the
previous works as switching law parameterization, with the Hyperbolic
Voronoi Diagrams.

• Finally, additional research on the multi-agent collaborative learning sce-
nario is currently being conducted. On one side we are testing the benefits
of the sharing approach in more challenging scenarios, as for instance
by considering nonlinear dynamics or by employing nonlinear and not
completely shared policies. On the other side, we are extending the pro-
posed schemes in order to permit the agents to share information as well
on their personal environment representation. Moreover, the handling of
asynchronous communication schemes between the agents and the central
units will be tackled.
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Appendix A

Building non minimal
state-space dynamics from
the ARX model

This section is dedicated to describe how the approximation of the non-minimal
state space dynamics is built from the ARX model

yt+1 = Θt

[︃
xt
ut

]︃
+ dt

introduced in (2.12). First, Θt is splitted into (Θx
t ,Θ

u
t ) ∈ Rny×nx × Rny×nu

such that
yt+1 = Θx

t xt +Θu
t ut + dt.

This permits us to obtain an approximation of the dynamics of state (2.2), i.e.,

xt = [ y′t . . . y
′
t−no+1 u

′
t−1 . . . u

′
t−ni

]′ ∈ Rnx ,

as xt+1 = Ax xt +Bx ut +Dx dt where

Ax =

⎡⎢⎢⎣
Θx

t

Ay

0nu×nx

Au

⎤⎥⎥⎦ ∈ Rnx×nx , Bx =

⎡⎢⎢⎢⎣
Θu

t

0
...
0

⎤⎥⎥⎥⎦ ∈ Rnx , Dx =

⎡⎢⎢⎢⎣
Iny

0
...
0

⎤⎥⎥⎥⎦ ∈ Rnx×ny .

(A.1)
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The matrices

Ay =

⎡⎣Inyno−ny
0(nyno−ny)×ny

0(nyno−ny)×nuni

⎤⎦ ∈ R(nyno−ny)×nx

and

Au =

⎡⎣0(nuni−nu)×nyno
Inuni−nu

0(nuni−nu)×nu

⎤⎦ ∈ R(nuni−nu)×nx

in (A.1) take care of selecting the lastly occured ni − 1 input and no − 1 output
from vector xt, removing the oldest output and input, respectively.

We previously defined the state st as a vector composed by the state xt and
a set of additional states zt. In case the dynamics of zt are given by z+ =

fz(x, z, p, ), where fz is known and differentiable, as considerd in (2.17), then
they can be linearized around the current values (xt, zt, pt), obtaining

z+ ≈Mz
x · x+Mz

z · z +Mz
p · p,

with opportune Mx, Mz and Mp.
The following system is considered

s+ = Ats+Btu+ Etp+Dtd, (A.2)

where

At =

[︃
Ax 0
Mz

x Mz
z

]︃
, Bt =

[︃
Bx

0

]︃
, E =

[︃
0
Mz

p

]︃
, D =

[︃
Dx

0

]︃
.
In case instead the dynamics of zt are unkonown and zt is measured, then the
state xt itself contains zt, as shown in (2.18), and the local linear model Θt is
updated according to (2.19): then, it is possible to build matrices that are analo-
gous to the ones in (A.1), and are also containing the approximated dynamics of
zt. In this case At = Ax, Bt = Bx , Et = 0 , Dt = I .
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The matrix construction described in this section can be similarly reproduced to
build a system such as

s+ = Ats+Bt∆u+ Etp+Dtd, (A.3)

by using the equality ut = ut−1 + ∆ut to split Θt into (Θx
t ,Θ

∆u
t ) such that

yt+1 = Θx
t xt + Θ∆u

t ∆ut + dt. The matrix construction (A.1) - (A.2) is then
followed.
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Appendix B

Proof of Theorem 1

In Chapter 4 we consider controllers represented by a hybrid policy parameteri-
zation πc

k with poligonal switching laws, expressed by (4.3)-(4.9), and we show
that, for a fixed sample w = ( s0, {pℓ}

L

ℓ=0
, {dℓ}

L−1

ℓ=0
), and local model Θ0, and a

fixed set of centroids c, the approximated cost function in closed-loop with such
parameterized controller (4.6), i.e.,

Jw
c (K) = ĴL(K, c, w) =

L−1∑︂
ℓ=0

ρ(sℓ, pℓ, π
c
K(sℓ, pℓ)) + ρL(sL , pL

),

is granted to be differentiable (and hence continuous) over

Swc =
{︂
K ∈ Rn1 × . . .× RnM

⃓⃓⃓
∀ ℓ ∈ {1, . . . , L}

∃ m ∈ {1, . . . , M} (swℓ (K, c), pℓ) ∈ R̊m(c)
}︂
.

Considering that (swℓ (K, c), pℓ) ∈ Rm(c) is equivalent to

swℓ (K, c) ∈ Sℓ
m(c, w)

.
= {s ∈ SRℓ(w) | (s, pℓ) ∈ Rm(c)},

the set Swc can be rewritten as

Swc =
{︂
K ∈ Rn1 × . . .× RnM

⃓⃓⃓
∀ ℓ ∈ {1, . . . , L} (B.1)

∃ m ∈ {1, . . . , M} swℓ (K, c) ∈ S̊
ℓ

m(c, w)
}︂
.
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We observe that, for each ℓ, the regions {Sℓ
m(c, w)}m are disjoint: if s ∈

Sℓ
m(c, w)∩Sℓ

n(c, w), then (s, pℓ) ∈ R̊m(c)∩ R̊n(c), but the regions {Rm(c)}m
are assumed to be disjoint.

Initially, we prove two lemmas that will be useful for the derivation of the proof
of Theorem 1. The first lemma that we are going to prove shows that the regions
{Rc,w

j }nj=1 are a partition of the parameters space.

Lemma 2. The family of sets {Rw,c
j }nj=1 defined as

Rw,c
j = {K ∈ Rn1 × . . .× RnM |Σw

c (K) = χj}

with

Σw
c (K) =

(︂
σc(s

w
1 , pℓ ), . . . , σc(s

w
L , pℓ)

)︂
∈ SM,L

such that swℓ defined in (4.7) for ℓ = 1, . . . , L,

uℓ = πc
K(swℓ , pℓ) for ℓ = 0, . . . , L− 1,

is a partition of the parameters space Rn1 × . . .× RnM .

Proof. To prove this result we start by observing that the sets Rw,c
j are two-by-

two disjoint, given the univocal definition of the sequence Σw
c (K) associated to

K. No set of parameters K can simultaneously be associated to two distinct
sequences χi ∈ SM,L and χj ∈ SM,L such that χi ̸= χj for the visit of regions
{Rm(c)}m, given the couple (c, w).
To complete the proof we need to verify that the union of the sets {Rw,c

j }nj=1

coincides with the whole space Rn1 × . . .× RnM . In order to do so we consider
a generic K ∈ Rn1 × . . .× RnM . K induces a trajectory of states swℓ (K, c) for
ℓ = 1, . . . , L: each of them is obtained by applying uk = πc

K(swk (K, c), pk) for
k = 0, . . . , ℓ − 1, in composition with (4.7). The regions Rm(c) are designed
to belong to PM defined in (4.1), so R1(c) ∪ . . . ∪ RM (c) = Rns+np . Each
couple ( swℓ (K, c), pℓ ) hence belongs to one of said regions, that we indicate as
Rm(ℓ)(c). Based on this construction, it is possible to build a sequence χ such
that χ(ℓ) = m(ℓ) for ℓ = 1, . . . , L. Such χ belongs by construction to the set
SM,L = {χ1, . . . , χn}, hence corresponding to χ = χi for some i ∈ {1, . . . , n}.
We proved in this way that K ∈ Rw,c

i , and hence that Rn1 × . . . × RnM ⊂
∪nj=1R

w,c
j , proving that the union of Rw,c

j corresponds to Rn1 × . . . × RnM .
This proves that {Rw,c

j }nj=1 is a partition of Rn1 × . . .× RnM .
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The second lemma that we are going to prove employs the partition {Rc,w
j }nj=1

to reformulate the set Swc as a disjoint union of the subsets

Sj =
{︂
K ∈ Rw,c

j | ∀ ℓ ∈ {1, . . . , L} swℓ (K, c) ∈ S̊
ℓ

χj(ℓ)(c, w)
}︂
. (B.2)

Lemma 3. The set Swc defined in (B.1) corresponds to

Swc =
n⋃︂

j=1

Sj

with Sj defined in (B.2).

Proof. The partition {Rw,c
j }nj=1 is used to build the following disjoint union,

Swc =
n⋃︂

j=1

Swc ∩Rw,c
j .

Based on (B.1) and (4.14),

Swc ∩Rw,c
j =

= {K ∈ Rw,c
j | ∀ ℓ ∈ {1, .., L} ∃m ∈ {1, ..,M} swℓ (K, c) ∈ S̊

ℓ

m(c, w)} =

= {K ∈ Rw,c
j | ∀ ℓ ∈ {1, .., L} swℓ (K, c) ∈ S̊

ℓ

χj(ℓ)(c, w)} =
= Sj ,

where the second equality holds because on one side K ∈ Rw,c
j implies that

for each ℓ = 1, . . . , L the states swℓ (K, c) ∈ Sℓ
χj(ℓ)

(c, w). On the other side,

if it exists an m = 1, . . . ,M such that swℓ (K, c) ∈ S̊
ℓ

m(c, w) then m = χj(ℓ)
because for each ℓ the regions {Sℓ

m(c, w)}m are disjoint. This concludes the
proof of the lemma.

The previous lemma is employed to prove Theorem 1, that characterizes the
subsets of the parameters space such that the cost function is differentiable for a
given couple (c, w).

Theorem 1. Given a couple (c, w), the set Swc defined in (B.1) is such that

Swc =
n⋃︂

j=1

R̊
w,c

j

with Rw,c
j = {K ∈ Rn1 × . . .× RnM |Σw

c (K) = χj}.
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Proof. Lemma 3 ensures that Swc =
⋃︁n

j=1 Sj , where

Sj =
{︂
K ∈ Rw,c

j | ∀ ℓ ∈ {1, . . . , L} swℓ (K, c) ∈ S̊
ℓ

χj(ℓ)(c, w)
}︂
.

In order to prove the enunciated result we start by showing that Sj ⊆ R̊
w,c

j .

ConsiderK ∈ Sj . By definition this implies that for all ℓ ∈ {1, . . . , L} it exists

an ϵℓ > 0 such that Bℓ = B(swℓ (K, c), ϵℓ) ⊆ S̊
ℓ

χj(ℓ)(c, w).

For each ℓ = 1, . . . , L the restriction of swℓ (K, c) to Sj (indicated as swℓ
⃓⃓⃓
Sj

(K, c))

is such that the image swℓ
⃓⃓⃓
Sj

(Sj) = S̊
ℓ

χj(ℓ)(c, w) by definition of Sj , and it is

continuous because πc
k is continuous over Swc and hence over Sj . We define then

C =
L⋂︂

ℓ=1

(swℓ

⃓⃓⃓
Sj

)−1(Bℓ) ⊆ Sj .

The set C is an open set in Sj , being the intersection of the countersets of the
open balls Bℓ with respect to continuous functions. It contains K by construc-
tion, i.e., K ⊆ C ⊆ Sj . Hence K ∈ R̊w,c

j .

In the previous part of the proof we showed that Sj ⊆ R̊
w,c

j ⊆ Rw,c
j . Now we

take a generic K ∈ Rw,c
j such that K /∈ Sj , and we show that K necessarily be-

longs to ∂Rw,c
j , hence proving that Sj = R̊

w,c

j . From K /∈ Sj we known that it

exists an ℓ ∈ {1, . . . , L} such that swℓ (K, c) /∈ S̊
ℓ

χj(ℓ)(c, w). K ∈ R
w,c
j implies,

though, that swℓ (K, c) ∈ Sℓ
χj(ℓ)

(c, w). Hence, it exists an ℓ ∈ {1, . . . , L} such

that swℓ (K, c) ∈ ∂Sℓ
χj(ℓ)

(c, w). We define ℓ as the minimum ℓ ∈ {1, . . . , L} that
verifies this condition, i.e.,

swℓ (K, c) ∈ S̊
ℓ

χj(ℓ)(c, w) ∀ℓ ∈ {1, . . . , ℓ− 1},
sw
ℓ
(K, c) ∈ ∂Sℓ

χj(ℓ)
(c, w).

From this follows that ∀ ϵ > 0 it exists

yℓ(ϵ) ∈ B(sw
ℓ
(K, c), ϵ) ∩ [Sℓ

χj(ℓ)
(c, w)]c = B(sw

ℓ
(K, c), ϵ) ∩ Sℓ

mϵ
(c, w),

for mϵ ̸= χj(ℓ), considering that {Rm(c)}m is a partition of Rns+np and hence
{Sℓ

m(c, w)}m is a partition of SRℓ(w). Considering that for each ϵ > 0 it
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exists yℓ(ϵ) ∈ Sℓ
mϵ

(c, w) with mϵ ̸= χj(ℓ) means that yℓ(ϵ) ∈ SRℓ(w), this is
equivalent to

∀ ϵ > 0 ∃ Kϵ ∈ (Rc,w
j )c such that yℓ(ϵ) = sw

ℓ
(Kϵ, c).

Choosing ϵn = 1
n , the series { yℓ(ϵn) }n by construction converges to sw

ℓ
(K, c)

for n→∞. Considering the set Sℓ−1 =
⋃︁n

k=1 Sℓ−1
k with

Sℓ−1
k =

{︂
K ∈ Rw,c

k | ∀ ℓ ∈ {1, .., ℓ− 1} swℓ (K, c) ∈ S̊
ℓ

χk(ℓ)
(c, w)

}︂
we notice that K ∈ Sℓ−1

j ⊆ Sℓ−1. The function sw
ℓ

⃓⃓⃓
Sℓ−1

: Sℓ−1 −→ SRℓ(w),

sw
ℓ
(K, c) = Aℓ

0 s0 +
ℓ−1∑︂
ℓ=0

Aℓ−1−ℓ
0 (B0 π

c
K(swℓ (K, c), pℓ) + E0 pℓ +Ddℓ),

is continuous, being the composition of (4.7) and of the policy πc
K applied on

swℓ (K, c) ∈
⋃︁n

k=1 S̊
ℓ

χk(ℓ)
(c, w) for ℓ ∈ {1, . . . , ℓ − 1}, and hence where it is

continuous.

For the continuity of sw
ℓ

⃓⃓⃓
Sℓ−1

, Kϵ should tend to K ∈ Rc,w
j but for each ϵ

Kϵ /∈ Rc,w
j , proving that K belongs to the boundary ∂Rc,w

j .
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Hjalmarsson, Håkan, Svante Gunnarsson, and Michel Gevers (1995).
“Optimality and sub-optimality of iterative identification and control design
schemes”.
In: Proceedings of 1995 American Control Conference - ACC’95. Vol. 4,
2559–2563 vol.4. DOI: 10.1109/ACC.1995.532309.

Hofmann, Thomas et al. (2016).
Variance Reduced Stochastic Gradient Descent with Neighbors.
arXiv: 1506.03662.

Hou, Zhong-Sheng, Huijun Gao, and Frank L. Lewis (2017).
“Data-Driven Control and Learning Systems”.
In: IEEE Transactions on Industrial Electronics 64.5, pp. 4070–4075.
DOI: 10.1109/TIE.2017.2653767.

Hou, Zhong-Sheng and Zhuo Wang (2013). “From Model-Based Control to
Data-Driven Control: Survey, Classification and Perspective”.
In: Information Sciences 235, pp. 3–35.
URL: https://doi.org/10.1016/j.ins.2012.07.014.

Karimi, Alireza, Klaske Heusden, and Dominique Bonvin (Jan. 2007).
“Noniterative Data-driven Controller Tuning Using the Correlation
Approach”. In: 2007 European Control Conference, ECC 2007.

187

https://doi.org/10.1146/annurev-control-090419-075625
https://doi.org/10.1146/annurev-control-090419-075625
https://doi.org/10.1146/annurev-control-090419-075625
https://doi.org/https://doi.org/10.1016/j.automatica.2004.11.021
https://www.sciencedirect.com/science/article/pii/S0005109804003346
https://www.sciencedirect.com/science/article/pii/S0005109804003346
https://doi.org/https://doi.org/10.1016/S0005-1098(96)00116-1
https://doi.org/10.1109/37.710876
https://doi.org/10.1109/ACC.1995.532309
https://arxiv.org/abs/1506.03662
https://doi.org/10.1109/TIE.2017.2653767
https://doi.org/10.1016/j.ins.2012.07.014
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