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Abstract

Models are primary artifacts in software system development.
In particular, performance models allow us to evaluate and
reason about extra-functional properties, such as the aver-
age response time and throughput, for which meeting ade-
quate quality levels is increasingly important. Indeed, per-
formance quality is considered as essential as correctness in
many practical development scenarios. Markov processes are
valuable models for the qualitative analysis of performance.
In this thesis, we will present statistical methods that learn
Markov models directly from the running software system
traces. We will focus on two classes of processes: with and
without memory. In the first scenario, we aim to learn funda-
mental performance metrics, i.e., service demands and rout-
ing probabilities, using queuing networks (QN). For processes
with memory, instead, we will exploit variable length Markov
chains (VLMC) to capture data dependencies throughout the
traces of system executions. The conducted numerical eval-
uations, the presented in-depth study of the literature, and
the performed appropriate comparisons with similar tools al-
low us to demonstrate how the approaches presented in this
work constitute a significant step forward concerning state of
the art.

xiii



Chapter 1

Introduction

The quantitative evaluation of computer systems, using performance met-
rics such as throughput and response time, provides a means to analyze
software quality. Those indeed, are important extra-functional properties
that, as much as the functional ones, influence the way the user perceives
the system, the degree of satisfaction, and the willingness to pay for it. As
a consequence, predicting performance has become essential during all
phases of computer systems realization, from design to implementation
and testing.

Performance impacts business in a massive way and is considered
one of the most pressing concerns, as claimed in a survey among IT ad-
ministrators [128]. Google Search is now ranking faster mobile pages
higher [101], and US retailer Walmart, for example, reported incremental
revenues by up to 1% for every 100 milliseconds of page load improve-
ment in their website [44]. Furthermore, several cloud operators that pro-
vide solutions as infrastructure-as-a-service (IaaS), platform-as-a-service
(Paas), or software-as-a-service (Saas) [141], focus their business on the
ability to provide excellent performance at reasonable costs; they stipu-
late service level agreements with the users by specifying certain quality-
of-service (QoS) requirements regarding availability and performance
metrics (e.g., average response times, throughput, and maximum response
time), whose violations lead them to economic penalties [5]. These and
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several other examples could justify the recent trend according to which
“in many practical deployment scenarios, particularly mobile, perfor-
mance is the new correctness” [62].

Accurately and quantitatively predicting the performance of a com-
puter system hinges on the availability of a powerful and highly-predictive
model with well-calibrated parameters, which is able to reproduce the
system’s dynamics correctly. Performance metrics, e.g., the number of
procedure calls [37] and average runtimes [14], are models easier to ob-
tain and lower-informative. To obtain the average response time, for ex-
ample, it is sufficient to average process runtimes in the log file; yet, the
information level and predictive power are low and those metrics give no
clues about why the program execution shows that performance. Gener-
ally, these quantities are extracted by profilers, whose lack of predictive
power prevents the complete understanding of the underlying process
and its dynamics (see also [139]).

Markov chains (MC) are a powerful model to describe computer sys-
tems’ dynamics with stochastic processes [22, 122] and are at the basis
of well-known approaches to formal verification based on probabilistic
model checking [82]. They allow quantitative analysis of many extra-
functional properties [85,104,126], including performance [21,123]. When
the system is modeled with a Markov chain, we can visualize its state in
any future time instant, in many different scenarios, and thus perform
what-if analysis of the performance by varying the configuration param-
eters. Unfortunately, Markov models are difficult to obtain because they
depend upon considerable craftsmanship in both the problem domain
and in the required analytical techniques, hindering their adoption in
practice [70, 137].

To overcome this issue, we intend to extract Markov models automati-
cally, from traces of the system executions. In this way, the developer can
use the tool we provide to analyze the performance without necessarily
knowing how the process that statistically describes the system matches
with the resulting Markov model.

Concurrent systems with all mutually independent functional blocks,
as it should happen in software with a microservices paradigm [43] or
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hardware with numerous interconnected components that perform dif-
ferent independent functions, e.g., CPU, hard disk, RAM, IO devices,
can be modeled with a first-order Markov chain and are usually rep-
resented in the literature using well-known quantitative performance
models known as queuing networks (QN) [124]. In a queuing network,
numerous users that access shared resources are routed, queued when
they find that the requested resource is busy, and complete the service
when the resource is idle. The parameters that uniquely characterize the
distributions of the service times of each node of the network, in case
they are exponential, are the service demands [68]. Thus, they are the
key quantities to estimate, together with routing probabilities when the
topology is unknown, which define statistically the route of a job in the
system.

There is constant research for efficient techniques that can provide
continuously up-to-date service demands estimators in a non-intrusive
manner; this is due to the increasing usage in software engineering of
quantitative models to perform self-adaptation at runtime, i.e. change
the behavior of the system depending on the variations of the surround-
ing environment, to continuously meet the performance quality-of-service
requirements [4, 33, 66, 68, 72, 73, 84].

We thus provide an estimator of the service demands of a queuing
network that can answer such a call [68], addressing two main chal-
lenges, which, to the best of our knowledge, have not been fully an-
swered in the literature yet. First of all, we relaxed the steady-state
assumption that has been essential in previous approaches to exploit
many well-known relationships and/or analytical results for QNs (see,
e.g., [22]), as the Utilization Law [121], which allows determining service
demands from the knowledge of the steady-state throughput and uti-
lization at a station [27]. We provide an approach that works well even
during the transient-state. This is crucial in self-adapting control, where
the system parameters can change quickly and continuously, possibly
preventing the system from reaching the steady-state.

Secondly, since the learning could be coupled to the self-adaptation,
it could be performed during system runtime; thus, it should be non-
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intrusive in the instrumentation and not interfere in any way with its
performance. Therefore, it is not possible, for example, to perform ac-
tive probing, inserting extra traffic into the system to evaluate the re-
sponse with load-tests at different utilization levels (e.g., [7]). Our tech-
nique [68, 71], instead, should be placed among those that make use of
queue-length information only [132, 133], which can be usually accessed
externally (i.e., from the operating system) without the need for direct
instrumentation of the application.

The key intuition was to consider the mean-field approximation [25]
of the QN as a dynamical model of the system under consideration,
which holds both during transient and steady-state. This approximation
describes, with a compact set of ordinary differential equations (ODEs),
an accurate estimation of the evolution of the queue lengths when the
population of the system and the number of servers (i.e., the scaling fac-
tor) is sufficiently high [81]. The mean-field ODEs exploit the idea of con-
sidering the average behavior of the population instead of tracking the
behavior of any single job individually, allowing us to avoid the well-
known state space explosion problem that would occur in the case of an
exact representation based on the forward equations of the continuous-
time Markov chain (CTMC, see, e.g., [22]).

The discretization in time of the set of ODE equations resulting from
the mean-field approximation represents the constraints of the optimiza-
tion problem we constructed, with the initial condition given by the start-
ing queue lengths at each station [68, 71]. The decision variables are
the service demands and the objective is to minimize the difference be-
tween measured queue lengths and those predicted by the mean-field
ODE model.

Furthermore, focusing on the two key aspects of being not-intrusive
and fast in producing service demands estimations, we will strengthen
our approach with a topology estimator, trying to recover not only ser-
vice demands but also the entire network with routing probabilities [71].

In [50] routing probabilities and service demands are obtained by en-
coding such nonlinear equations represented by the mean-field ODEs
with a recurrent neural network. Here we show how the same problem
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can be mastered by linear optimization, thus considerably reducing the
computational cost of the estimation [71]. In this dissertation, we will
provide evidence of the effectiveness and the accuracy of our method
with numerical evaluations and comparisons with the previous state-of-
the-art solutions.

In the case of software systems in the form of source codes, if we
hypothesize to represent each instruction as a state, to track program
locations, and to abstract from variable values, the program could be
interpreted statistically by assigning a probability distribution to the in-
put [35,119], according to the well-know formalism of probabilistic seman-
tics of programs, see [52, 89]; this notion, however, has not yet been used
to synthesize probabilistic models for the whole program without focus-
ing only on the quantification of the probability to satisfy specific path
formulas [35, 46, 70].

Unfortunately, rarely the programs’ source codes could be represented
with a first-order Markov chain. In programs, indeed, the memoryless
assumption often does not hold because of data and control dependen-
cies between instructions and functional blocks. The code could be mem-
oryless only if non-nested program locations were all uncorrelated, and
hence if, in every sequence of non-nested conditions, the variables repre-
senting the conditions’ evaluations were all mutually independent. This
fact does not hold, in general, for real programs.

When the next-outcome probabilities do not depend only on the cur-
rent state but on a certain finite number (i.e. the order k) of previous
states, the process is with memory and it can be represented with a k-
order Markov model. These models have the drawback of requiring
a huge amount of memory, which grows exponentially with the order
k, hindering their adoption for software modeling, where the data and
control dependencies among variables could be plentiful and the order
consequently very high.

The mitigation we propose consists of considering only a set of states
for the current program history, i.e., the context, that is relevant in order
to compute the next-state probability distribution. Thus, for any possible
history, the order h ≤ k will be a variable number up to the maximum

5



order k of all the possible previous histories. This compact representa-
tion is called variable-length Markov chain (VLMC) and is still correct
and with no information losses, improving considerably the amount of
memory required when the process shows variable length, i.e., when h

has high variability.
Furthermore, our objective is to minimize the amount of memory

required, by exploiting approximations based on the trade-off between
precision and the amount of history to incorporate in the retained con-
texts, and to develop an algorithm ad hoc for the learning that exploits
the typical properties of a program [70], as the sparsity of the transi-
tion matrix, and the knowledge of the static control-flow graph (CFG),
which could be effortlessly obtained using a static code analysis tool
such as JavaParser [65]. This static information knowledge allows us to
obtain a considerable improvement on memory allocations and execu-
tion time needed with respect to the general purpose VLMC learning al-
gorithms [47, 90], whose massive cost prevents their usage even for pro-
grams of small complexity.

In section 5.2.3, through a numerical evaluation with several bench-
marks, we provide evidence of how the prototype implementation of
our solution, i.e., ProgramToVLMC [70], outperforms the previous solu-
tions when applied to software systems in both memory consumption
and time needed for the learning process, making it possible to learn
VLMC from the source code of many benchmarks, where it was previ-
ously practically infeasible.

Thesis Organization: Chapter 2 presents the literature review of this
dissertation about profilers and techniques for the extraction of perfor-
mance models from both memoryless and memoryfull processes, and the
reason why the proposed techniques outperform the state-of-the-art so-
lutions; Chapter 3 explains the basics about Markov chains, variable or-
der Markov chains and queuing network, whose knowledge is essen-
tial to fully understand the dissertation’s results; Chapter 4 provides
our findings in terms of memoryless processes performance predictions,
by exploiting queuing networks and optimization techniques; Chapter 5
shows our findings about memoryfull processes modeling, with VLMC.
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Chapter 2

Related Work

In this chapter, the literature review of this dissertation will be presented
based on our previous analysis in [69].

Models are separated artifacts from the system, and they can be ex-
tracted manually by the architect/engineer. Still, an automatic mech-
anism to extract these quantitative models from the system will miti-
gate the problem of the necessity of considerable craftsmanship in the
knowledge of both the problem domain and mathematical performance
model theories underlying, which is generally difficult, and recognized
as the main obstacle to model-based performance analysis in software
engineering [137].

2.1 Overview

When dealing with software systems, model-driven development tech-
nique could automatize model extraction from software artifacts such
as behavioral UML diagrams (e.g., [129, 130, 138]), or domain-specific
languages (e.g., [16]), annotated with quantitative information; a com-
prehensive summary of these techniques can be found in the Balsamo
et al. review [11, 79]. Unfortunately, model-driven techniques could
not always be applicable, for example in a continuously changing de-
velopment process, where source-code is modified more rapidly than
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the artifacts belonging to the requirement specifications, which will be
at a certain point only a representation of an old version of the soft-
ware [51]. In fast-pacing development, the only viable solution could be
learning directly performance models from code, i.e., code-driven tech-
niques. In [69], we reviewed several code-driven techniques for gener-
ating performance models, consisting of 24 research papers published in
the period 1982-2019, and we detected the dimensions that mostly char-
acterize their differences: the learning techniques, the exploration tech-
niques, the type of the output model or performance metrics, and the
scalability level. Code-driven learning techniques could exploit static [108,
111, 135] and/or dynamic [58, 140] analysis to extract the model. In the
former case, the code is read and analyzed offline, while in the latter case
the instrumented program is executed numerous times producing traces
that describe its behavior; by analyzing them, the necessary information
to build the performance model is gathered.

2.1.1 Exploration techniques

The considered approaches rely on different techniques that can be used
both for exploring the program’s paths in the static analysis and to gen-
erate the workload input sequences that guide the dynamic analysis:
runtime monitoring [10], i.e., analyzing program’s traces produced dur-
ing the runtime on the real developed application, load testing [57], i.e.,
stressing the software by evaluating the program at runtime with in-
creasing workloads, random sampling, i.e., testing the program under a
randomly distributed input [119], and symbolic execution [9, 53, 76], i.e.,
exhaustively exploring the execution tree using symbolic values for in-
put instead of concrete ones. Each of the listed techniques has its strengths
and weaknesses that limit its use, which we will describe exhaustively.

Runtime monitoring is simple to use and provides a reliable analysis
of the typical behavior of the system; unfortunately, it does not provide
the characterization of performance in particular scenarios such as con-
gestion or low-level utilization, and it may be not easy to instrument the
system correctly [20]. In this type of technique, indeed, there is partic-
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ular attention not to interfere with the software operation through the
instrumentation, not to be intrusive, and not to ingest extra traffic into
the system by doing active probing [67].

Load testing, instead, could account for the worst-case scenario, which
is an interesting evaluation in performance engineering, yet, it cannot
account for the typical scenario. Random sampling is the easiest to imple-
ment, it might be the only viable option when the program is too com-
plex, or some source-code portions are unknown [36], however, with-
out any heuristic, it could be extremely unlikely to observe interesting
but rare system behaviors [29]. Probabilistic symbolic execution could be
exhaustive in analyzing all the program’s paths; unfortunately, the com-
plexity of the symbolic execution grows too fast with the program’s num-
ber of paths. This issue limits the application of the symbolic execution
to some notable behavior such as average-, worst-, and best-case scenar-
ios [35].

2.1.2 Output models

The resulting performance models differ in various aspects: from appli-
cability and easiness of use to information content and predictive power.
Enriched call graphs and control-flow graphs are compact data structures
to store paths or edges probabilities [10]. The totality of the program’s
paths cannot be always represented when the program under considera-
tion is too large or too complex since the number of paths is exponential,
and thus the techniques that produce call graphs or enriched control-
flow graphs limit the exploration of the software to the hottest paths, i.e.,
those that are highly frequent and/or those that have the greatest impact
on the performance. These kinds of models are medium/high informa-
tive, depending on the number of program paths that represent and how
precisely they measure the frequency of every path.

Both performance metrics and the number of procedure calls [37] and
average runtimes [14] are low-level informative models since they do not
explain the reason behind the resulting values of these metrics. Similarly
to bottleneck detection models, which provide insight on the worst-case ex-
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ecutions of the program, that could be in terms of hot paths detection [31],
or input workloads that trigger performance bottlenecks [1].

Although target event probabilities [89, 113] are typically used for bug
finding and they do not represent a direct measure of performance, they
can give insight on performance by providing probabilities of costly func-
tions or inefficient blocks of code. Cost-function models provide a closed-
form expression that describes how some performance metrics of choice
vary according to the input size and thus they are considered medium-
level informative. The function could represent the average behavior [140]
as well as the asymptotic one [57]; thus, these techniques do not distin-
guish among a set of functionally and asymptotically equivalent algo-
rithms. Finally, Markov processes [21] are a powerful high-predictive
and high-informative model to analyze performance [108] of computer
and communication systems. Furthermore, if the system is memoryless
we can represent it with a compact (first-order) Markov chain (see first-
order Markov models in Section 3.1). Unfortunately, programs are rarely
memoryless since transition probabilities among instructions depend on
the previous history (see higher order models in Section 3.4.1).

2.2 Learning low-level informative models

This section will present the related works that extract low-level infor-
mative models, such as performance metrics and call graphs.

Sarkar et al. [114] developed a framework to derive mean and vari-
ance values of the runtime of the program’s procedures, by counter-
based executions of the application, and afterward these values are stored
in an enriched control-flow graph. This approach provides learning that
is context-insensitive: measurements are taken and then multiplied with
path frequencies, independently of the call site. This introduces some
approximation since measurements of runtimes could depend on pro-
cess history and context, intended as the values of all the variables.

Magpie [13, 14] is a tool for end-to-end online performance analysis
from traces collected at the user endpoint, that construct a probabilistic
model of the requests and the system’ behaviors. The instrumentation
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is conducted through black-box instruments such as kernel-level tracing
for Windows [115] or WinPcap packet capture library [109]. The results
are clustered by performance and/or requests’ features, and these clus-
ters provide a means to detect anomalous requests and system malfunc-
tions.

JinsightEx [118] measures performance metrics, e.g. runtimes and
memory usage, of a Java program, and organizes them through execu-
tion slices, i.e., portions of the program execution that are user-defined
with dynamic or static criteria. These slides provide a view for the de-
veloper to analyze and inspect performance, and they can be grouped in
workloads to facilitate the analysis of larger portions/procedures.

Gprof [58] produces a call-graph enriched with procedure’s runtimes,
by post-processing samples of program counter periodically measured
through runtime monitoring in a single real execution of the program.

PerfXRL [1] uses reinforcement learning [75] to guide the dynamic
analysis of a program in execution with changing workloads, in order to
find input values that trigger performance bottlenecks; starting from an
input set that could possibly be extremely large.

Ammons et al. [2] address the bottleneck detection problem, i.e., iden-
tify the worst-case execution, by comparing their cost metric in a sum-
marized model obtained through heuristics from a given profile of the
program execution (e.g., call-tree). They develop two algorithms: one
that finds expensive paths and the other that computes how the cost of a
path differs among similar executions.

The approaches in [89,113] produce target events probabilities of prob-
abilistic programs, i.e. both those whose variables assume uncertain val-
ues during execution, and non-deterministic program, e.g., multithreaded
or distributed applications, respectively. The former solution solves non-
determinism by sampling the value of the variables from probability
distributions assigned to them, while the latter generates a tree using
bounded symbolic execution and implement over it a scheduler, based
on either an exact algorithm using Markov decision processes [105], or
an approximated solution using Monte Carlo sampling, that is iteratively
improved with reinforcement learning. Sankaranarayanan et al. [113]
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introduce a heuristic on the model counting phase of the probabilistic
symbolic execution, namely volume bound computation, and exploit this
technique in conjunction with Monte Carlo sampling, random simula-
tion, and statistical tests to provide bounds on the probability a certain
event happens. They claim, moreover, that only an adequate subset of
the execution paths are needed to compute those bounds.

Filieri et al. [45] developed an algorithm for computing target events
probabilities, that is based on Monte Carlo sampling to improve the Bayesian
estimates. Furthermore, they introduce the informed sampling technique
on the symbolic tree to firstly explore paths with high statistical signifi-
cance, and afterward improve convergency of the symbolic execution.

Borges et al. [24] deal with the automatic learning of a target event
probability in a program with a given continuous probability distribu-
tion over the floating-point domain of the input profile. They evaluated
three different strategies based on gradient descent optimization [100],
and they implement heuristics for the learning phase to improve the scal-
ability of the probabilistic symbolic execution in their solution. The idea
under the improvement is to rank the edge condition constraints of the
symbolic tree according to their impact on the convergence of the statis-
tical learning and the model counting.

2.3 Learning high-level informative models

This section will describe works learning medium and high informative
models and noteworthy approaches for this dissertation.

Buse et al. [31] developed a methodology for hot paths identification,
which relies on the idea that the most likely hot paths are those that have
the smallest impact (i.e., many different variables’ values modifications)
on the program’s state, intended as the set of all variables values in the
stock and global ones. Any machine learning algorithm could then be
trained over the set obtained through the static paths enumeration, to
identify input features characterizing hot paths (Weka [64] is used here).
Since this approach relies on machine learning, it suffers from overfit-
ting and it also has the limitation of considering only intra-procedural
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paths within one single class, ignoring procedure calls that cross the class
boundaries. Thus, it may reveal unuseful in case the program behavior
is not fully captured by one single class.

Speedoo [37] is an approach that provides optimization suggestions
to the developer by identifying the program’s portions and groups of
methods that mostly affect performance (i.e., hot paths), and by search-
ing for performance antipatterns, e.g., cyclic invocation, expensive recur-
sion, which represent improvement opportunities. The hot methods are
ranked according to several factors: the architectural importance defined
by the Design Rule Hierarchy algorithm (DRH), by Cai et al. and Wong
et al. [32, 136], and it is related to the size of the sub-calls tree, dynamic
execution metrics such as CPU time and memory allocations and static
complexity metrics, e.g., the number of loops in the procedure.

Zaparanuks et al. [140] provide an approximation of a descriptive
cost function for the program performance in terms of several cost met-
rics, such as algorithmic steps, number and size of read/write operations
on data structures, number of object allocations. A set of representative
program traces are given as input, while the tool infers the input size
and type, e.g., recursive data structures, and arrays, by computing the
number of elements and their memory occupation. The two main limi-
tations concern the fact that only a descriptive model is returned and not
a proper quantitative evaluation, and also that the approach is unable to
infer input sizes of different elements than a data structure, for example,
primitive types.

Wang et al. [131] derive performance metrics in applications devel-
oped on the cloud. The approach tests the cloud infrastructure using
micro-benchmarks and resulting in performance distributions of each
cloud resource, e.g., memory and CPU; while the application is analyzed
stand-alone, separately from the infrastructure with a given input of a
typical workload, producing the resource usage profile. Moreover, with
the given input the approach analyzes the application deployed in the
cloud producing the baseline performance metrics, and finally by merging
the resource usage, the cloud infrastructure’s metrics, and the baseline
profile results in the final performance model of the application.
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Trend-prof [57] computes the program’s empirical complexity as a func-
tion of the workload size and user-specified features, e.g., the sizes of in-
put files. The evaluation is done using load testing, by executing the pro-
gram many times with variable input sizes, and finally, the measured ex-
ecution times of the program’s blocks are fitted against linear or power-
law functions.

Another approach that extracts an asymptotic cost function is the one
of Coppa et al. [38], which aims to find asymptotic inefficiencies from
program traces. They rely on the read memory size (RMS) metric, count-
ing the number of accessed memory cells to relate the collected cost value
to the input size. The supporting tool exploits Valgrind [99] for the in-
strumentation, and by measuring the minimum and the maximum costs
of executing routines and by using curve fitting and curve bounding
techniques, they estimate the function that best describes the asymptotic
behavior of the procedure.

Ball et al. [10] compute path frequencies and performance metrics,
starting from the principle that since control-flow edge transactions’ prob-
abilities are dependent on each other, to obtain a path probability it is
not sufficient to multiply the probabilities of all the edges of that path.
The limitation of path profiling is that the number of paths is exponen-
tial with respect to the program size. To mitigate the issue they estimate
only intra-procedural dynamic paths -those executing during the (non-
intrusive) runtime monitoring- of an acyclic version of the program.

Whole Program Paths (WPP) [83] relies on the previous work [10]
for instrumentation and path discovery, and by developing a novel com-
pression algorithm that finds regularities, i.e., repeated code portions, it
transforms the traces to the directed acyclic graph storing the dynamic
control-flow. This resulting graph is also able to find hot subpaths.

Geldenhuys et al. [53] exploit probabilistic symbolic execution by ex-
tending Java Symbolic PathFinder [103] and trying to retrieve a high-
informative model with probabilities of reaching any program location
of a sequence of operations on a data structure, as insertions and dele-
tions from a BinomialHeap, TreeMap, and Binary tree. Because of the
expensiveness and scarce scalability of the probabilistic symbolic execu-
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tion, the approach is limited to sequences of 5 operations, and it explicitly
expresses the impossibility of analyzing with their techniques sequences
of 14 or more operations. For this reason, we still consider their resulting
model medium/low-informative.

Interesting approaches are those that extract the probability density
function of the performance metric of interest, which is a compact, high-
informative model since it both encapsulates path probabilities and the
cost metric.

PT4Cloud [63] learns the probability density function of the execu-
tion cost of applications on the Cloud. They test the application with
some pre-selected benchmarks and pre-specified workloads and they
stop their non-parametric statistical approach when the two resulting
distributions are statistically equivalent.

PerfPlotter [35] exploits probabilistic symbolic execution with Java Sym-
bolic PathFinder [103] to determine paths with either high or low proba-
bilities that also have the property of terminating under a certain thresh-
old number of steps, under a usage-profile given as input. The resulting
paths are executed, and the effective runtime is measured, combined,
and weighted with path probabilities to compute the probabilistic den-
sity function. The limitation of this work is intrinsic in the choice of prob-
abilistic symbolic execution, whose scalability is a concerning issue. Perf-
Plotter is indeed able to model only a subset of the program’s executions:
the average-, best- and worst-cases.

Another relevant approach is the Ramalingam et al. [108], which is
the only approach producing a high-informative, high-predictive model
as a Markov chain. The input of the algorithm is the program control-
flow graph, already annotated with edges probabilities, which will be-
come transition probabilities of the (first-order) MC; then, a path proba-
bility is simply computed by multiplying the probabilities of the edges
of that path, by assuming all edges probabilities mutually independent.
This assumption does not hold true, in general, for real programs, and
transition probabilities among edges depend on the values of the vari-
ables due to data and control dependencies, i.e., the previous history.

Also noteworthy are the techniques that extract context-sensitive per-
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formance models, considering the impact on the performance of the pro-
gram’s state, intended as the entire set of all variable values or the pro-
gram’s history.

Luckow et al. [88] propose a technique to determine the worst-case
complexity function with guided symbolic execution, run firstly to small
inputs and iteratively increasing its size. During iterations, only paths
that account for the worst-case are selected, and historic information is
considered to select the next branch to symbolically execute. Afterward,
the program is dynamically explored in worst-case paths, and the mea-
sured metrics of interest (e.g., execution time and memory usage) are
merged with probabilities and fitted against the asymptotic complexity
function.

Brünink et al. [28] provide a methodology to dynamically analyze a
program during runtime producing performance assertions. An inter-
mediate runtime model is constructed, in the form of a graph that de-
scribes the hot functions of the program’s expected behavior, enriched
with path probabilities computed either in context-sensitive or context-
insensitive settings. Context information is evaluated for paths belong-
ing to different clusters of estimated performance metrics.

Explicitly considering context information will provide a more accu-
rate performance model and an interesting and peculiar deeper view of
the program’s behavior, by knowing the amount of memory among pro-
gram locations and/or procedures and how this memory is distributed.
This perspective is valuable also in parallelizing the program, placing
separately independent blocks of code. This literature on code-driven
performance learning hints at a future direction on context-sensitive pro-
filing methodologies with high-predictive and high-informative mod-
eling, such as, for example, (higher-order) Markov chains. Exploiting
variable-length Markov chains (VLMC) could be convenient and vision-
ary. Indeed VLMCs have the advantage of maximal accuracy, even ex-
actness in some circumstances, with minimal memory occupation. These
models, mostly used for DNA sequencing [42, 90] and pattern recogni-
tion [23, 49], were recently used in software modeling to perform intru-
sion detection [94,95], but never been used for quantitative performance
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modeling.

2.4 Learning memoryless models

Unlike the previous sections, here we will be confronted with memory-
less performance models, of which we can find references in the related
work section of the publications of Incerto et al. [68, 71].

When the process is memoryless it can be modeled with a first-order
Markov chain and, in the case of multitenancy, with a queuing network
(QN). Thus, it is more correct to compare with profilers that, assuming
the independence among states, estimate service demands and/or tran-
sition probabilities. Indeed, profilers as PerfPlotter [35], Gprof [58] and
the others cited above, have the advantage of not making assumptions
on the distribution of the service rates, while we are assuming them to be
exponentially distributed, yet the models that they generate lack descrip-
tive and predicting power, while the QN with well-estimated parameters
can predict all future time instants queue lengths at each station.

We aim at finding an estimator that runs at runtime, minimizing the
amount of instrumentation needed, and allowing the learning of param-
eters also during the transient regime. Most related work on service de-
mands estimation relies on a corollary of the well-known Little’s Law
unfortunately working only in the stationary regime, i.e., the Utilization
Law [121], using different statistical inference approaches such as linear
regression [102], non-linear optimization [96], clustering regression [40],
independent component analysis [120], pattern matching [41] and Gibbs
sampling [125, 132] based on measured steady-state values of utilization
and/or throughput. The Utilization Law relates utilization and through-
put means with the average service demands, requiring quantities that
may be difficult to measure. It is not always possible, indeed, to measure
the utilization value of a station, especially in a cloud environment, such
as Platform-as-a-Service (PaaS), in which the developer does not have
complete control over the underlying architecture.

Furthermore, many approaches require active probing, i.e., measuring
the values of interest at different utilization levels, stressing with load
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testing, and injecting extra traffic into the running system, aimed to in-
spect the system from the inside. For example, the technique presented
by Liu et al. in [87] is related to our service demand estimator [68] be-
cause it is based on a quadratic programming optimization. They mea-
sure every station’s utilization under different load configurations and
estimate demands by relying on a steady-state closed equation for the
QN. Active probing will necessarily be intrusive, hindering system us-
age during runtime, and will induce extra traffic that may interfere with
the one generated by the actual users, making it difficult to reconstruct
the original metric, i.e., the one generated by the regular traffic only, from
the measurement (see [8]).

Instead, the works of Awad et al. and Wang et al [7, 132, 133] are
non-intrusive in the system instrumentation, since the former measures
only end-to-end response time and throughput of the transactions, while
the latter two, similarly to our approaches [68,71] monitor queue lengths
only. The former estimates service demands by means of a fitting prob-
lem with nonlinear optimization and has the limitation of requiring ac-
tive probing, with load testing at different utilization levels, and many
observations of the system in the steady-state regime. Thus even if these
are end-to-end measurements only, they may interfere with the system.
Furthermore, the work of Menasce et al. can obtain only a feasible assig-
nation of the service demands, indistinguishable up to permutations in
series of queuing stations.

The authors of [132] develop an estimator based on Gibbs sampling
with a computational cost already high for networks of small/moderate
size, inapplicable for a real system at runtime. In [133] it is presented a
closed-form expression to evaluate all the network’s stations service de-
mands for a multiclass application and a load-independent scenario. The
load-dependent case is treated approximately by appropriate scaling of
the computed service demands of the load-independent case. A detailed
comparison against these techniques, presented in [68], will be exhibited
in Section 4.3.4.

Moreover, with the paper [71], which extends the one presented in
the previous work [68], we do not settle only for finding service rates
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but we estimate also the entire network topology, i.e., the connections
among stations with the corresponding routing probabilities. In this re-
gard, the work by Garbi et al. [50] focuses on the same problem from
another perspective: instead of using the ODEs to solve a linear opti-
mization problem, they train with real traces a recurrent neural network
that learns the values of rates and routing probabilities. We numerically
evaluate the accuracy of our approach compared to the one of Garbi et
al. [50] in Section 4.4.2.
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Chapter 3

Background

3.1 Markov Chains

A stochastic process X(t) = {X(t) | t ≥ 0} is a family of random
variables X(t), each indexed by a value of t ∈ T belonging to the in-
dex set T , and each random variable X(t) assuming values in a sample
space Ω. The index t is often considered as the time in which the pro-
cess evolves, referring to a discete-time stochastic process if the index set
is discrete, having the same cardinality of the set of natural numbers N,
i.e., T = {0, 1, 2, ...}, instead we refer to a continuous-time process when
the index set T is continue, with the same cardinality of the real num-
bers set. A stochastic process X(t) is a chain when the sample space Ω is
discrete and thus X(t) assumes values that can be represented using nat-
ural numbers {1, 2, 3, 4, ...}. An example of chain is the stochastic process
quantifying the number of users waiting for a service at a server facility.

A Markov process is a stochastic process satisfying the memoryless
property, which asserts that the next-state probability distribution does
not depend on the previous history but only on the current state of the
process itself. In the next subsections, we will formally define the memo-
ryless property of discrete-time Markov chains (DTMC) and continuous-
time Markov chains (CTMC). For an in-depth complete discussion on
MCs, see, e.g., [123].
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3.1.1 Discrete-time Markov chains

A discrete-time MC is a stochastic process {Xn : n ∈ N}, where the ran-
dom variables Xn take values in a discrete set S, ranged over by variables
xi. Its conditional probability distribution satisfies the memoryless prop-
erty, which, in the case of discrete-time MC can be formally defined as
follows:

Pr(Xn+1=xn+1 | Xn=xn, Xn−1=xn−1, . . . , X0=x0)

= Pr(Xn+1=xn+1 | Xn=xn) ∀ n ∈ N. (3.1)

That is, the probability of being in state xn+1 at time n+ 1 only depends
on the state at the previous time step n and not on the whole history
xnxn−1 . . . x0 (from most to least recent). Whenever convenient, for sim-
plifying notation we shall omit to explicitly write the random variables
and denote the history as a string of states; for instance, (3.1) will be more
concisely written as Pr(xn+1 | xnxn−1 · · ·x0) = Pr(xn+1 | xn).

Here, we will work with time-homogeneous MCs, where the condi-
tional probabilities do not depend on n; together with the memoryless
property, this allows us to represent the MC with only the set of states S,
and the |S| × |S| conditional probabilities:

pi,j = Pr(j | i), ∀n ∈ N, i, j ∈ S.

representing the probability of the transition from state i to state j in one
step. The matrix resulting from placing the |S| probabilities pi,j , each in
the row i and column j is called transition probability matrix.

3.1.2 Continuous-time Markov chains

The difference between discrete and continuous Markov chains is that
in the latter case the index t ranges in a continuous index-set, meaning
that transitions could occur in any possible time instant. The continuous-
time Markov chain {X(t) : t ≥ 0} satisfies the memoryless property, i.e.
the following relation holds:
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Pr(X(t+ s)=xt+s | X(t)=xt, X(t− h)=xt−h, . . . , X(0)=x0)

= Pr(X(t+ s)=xt+s | X(t)=xt).

∀ t, s, h ≥ 0 ∀ xt+s, xt, xt−h, x0 ∈ S

Notice that this equation does not imply only that transition probabilities
are independent of the previous history, but also that the time instants
at which transition occur are independent of the amount of time already
elapsed in the current state of the Markov chain, i.e., the sojourn time. This
property is typical of exponential distributions; indeed it can be proved
that the amount of time before a transition occur follows an exponential
probability distribution, which is also the only continuous distribution
having the memoryless property, i.e., Pr (T > s+ t | T > s) = Pr(T > t).,
where T is the random variable representing the sojourn time.

When the MC is homogeneous the probability of seeing a transition
from the current state X(t) = xt to the next state X(s) = xs, for any pos-
sible real s ≥ t, only depends on the difference between t and s, namely,
τ = s− t. The notation of transition probabilities quantifying the proba-
bility of the transition from the current state i ∈ S to the next state j ∈ S,
after a time interval of τ , can be simplified as follows:

pi,j(τ) = Pr(X(t+ τ) = j | X(t) = i), ∀ t ≥ 0.

Transition rates

In the case of continuous-time MC, we use the notion of transition rates
instead of transition probabilities to simplify the notation by removing
the dependency of the probability from the transition time. Let us con-
sider the probability of the MC to transit from the state i to the state j in
the interval [t,∆t), i.e., pi,j(t, t +∆t), which is neglectable for small val-
ues of ∆t, while tending to 1 if ∆t grows to infinity, and let us consider
an observation window little enough that the probability of observing
more than one transition for the MC can be considered equal to zero.
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Moreover, we deal with homogeneous MC, by assuming pi,j(t, t+∆t) =

pi,j(∆t) constant ∀ t ≥ 0. Transition rates are defined as follows:

qi,j = lim
∆t→+0

{︃
pi,j(∆t)

∆t

}︃
∀ i ̸= j

Thus, the probabilities:

pi,j(∆t) = qi,j∆t+ o(∆t) ∀ i ̸= j

As previous formulas suggest, transitions rate could be seen as how fast
transitions occur, which is independent of the time interval ∆t. Finally,
to determine the value qii, we rely on the property according to which
probabilities sum up to 1 (see the details in [123]), finding that qii =

−
∑︁

i ̸=j qi,j . The matrix whose elements are qi,j is called generator or tran-
sition rates matrix Q, and the sum over the rows is equal to 0.

If we put together the concept of transition rates with the sojourn
time, when the former can be related to the velocity of the transitions,
we can easily infer that the rate of the exponential distribution of the
sojourn time is µi = −qii.

The Chapman-Kolmogorov Equations

The Chapman-Kolmogorov equations for a homogeneous continuous-
time Markov chain can be explained with the following:

pi,j(t+∆t) =
∑︂
all k

pik(t)pkj(∆t) ∀ t,∆t ≥ 0 ∀ i, j ∈ S. (3.2)

which implies that the probability of reaching the state j, from the cur-
rent state i, in a period of time of length t + ∆t, is equal to the sum of
probabilities of going from i to any intermediate state k in a period t and
from k to j in δt. This can be rewritten, equivalently, as:

pi,j(t+∆t) =
∑︂
all k

pik(∆t)pkj(t) ∀ t,∆t ≥ 0 ∀ i, j ∈ S. (3.3)

If we compute the derivative of the quantity pi,j(t) in these two formu-
las (3.2 and 3.3), we find respectively the forward 3.4 and backward 3.5
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Chapman-Kolmogorov equations:

dpi,j(t)

dt
=

∑︂
all k

pik(t)qkj ∀ t,∆t ≥ 0 ∀ i, j ∈ S. (3.4)

dpi,j(t)

dt
=

∑︂
all k

qikpkj(t) ∀ t,∆t ≥ 0 ∀ i, j ∈ S. (3.5)

Notice that, the Chapman-Kolmogorov equations are also defined for
DTMCs. Yet, we decided not to include them in this recall chapter be-
cause we do not exploit them in the dissertation.

3.2 Queuing Networks

Queues in computers systems arise whenever there are many users, also
called clients or jobs, competing for a service in a shared resource, which
most of the times is a service station, called also node. It is worth pointing
out that even if we refer only to computer systems, the queuing theory
could be applied to every practical socio-economic scenario.

Figure 1 represents a multi-server facility with jobs arriving at the
station requiring a certain workload, i.e., service demand, to the server. If
the arriving job finds a server idle it immediately starts to be served for
an amount of time necessary to satisfy its service demand, otherwise, it
is placed in the waiting queue until its turn comes, i.e., at least one server
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becomes idle and there are no preceding jobs in the queue, according to
the scheduling policy of the queue itself, e.g., first-in, first-out (FIFO),
also known as first come, first served (FCFS). When a job completes its
service demand, it then departures from the station.

Since interarrival times and service demands are random variables
and server capacity as well as server multiplicity are costly resources,
queues arise; and the system engineer is in charge of optimizing the
trade-off between costs and performance, typically measured with met-
rics such as maximum and average queuing time a user perceives, station
throughput, and so on. A service station is completely determined once
it is specified:

• The probability distribution of the users’ interarrival time, i.e., the
time between two consecutive arrivals at the station. Since we as-
sume interarrivals times are exponentially distributed (i.e., we are
placing in a CTMC scenario), the only parameter to know is the
arrival rate λ, i.e., how many jobs arrive on average in a time unit.

• The probability distribution of the service demands, i.e. the time
needed for a job to depart once it has started service at the server.
We also assume service demands to be exponentially distributed,
thus the only parameter needed is the service rate µ.

• The scheduling policy, i.e., which is the policy according to which
a job is chosen among the others in the queue to start service. In
this dissertation, we will always consider only the first-come-first-
served queue, FCFS, also called FIFO.

• The server multiplicity, or concurrency levels, is the parallelization
level and characterize how many jobs can be executing at the same
time, often referred to as the number of the cores of a processor.

A queuing network (QN) is a network of many nodes, each of them being
a station like the one in Figure 1 providing different kinds of service, e.g.,
in a computer system, IO devices, disks, RAM memory, CPU. The jobs
circulate in the network going from one station to another according to
the routing matrix, i.e., the matrix whose element at row i and column j,
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Figure 2: Load balancer QN example

pi,j , provides the probability that a job, finishing service at the station i,
goes to the station j.

We limit our study to closed queueing networks, where a fixed pop-
ulation circulates in the system, and there are no new arrivals neither
departures of jobs. Furthermore, we often model the think time of the
customer between one session request and the next one with a reference
station M1, that is considered as an infinite server, i.e., with a server mul-
tiplicity greater or equal to the population size N .

A closed queueing network is completely characterized with the fol-
lowing key quantities:

• The population size N , i.e., the fixed number of jobs circulating in
the network

• The network size M , i.e., the number of stations in the network

• The server multiplicity vector, i.e., (s1, s2, . . . , sM ), where each si is
the concurrency level of Mi, also called station i, with 1 ≤ i ≤M .

• The vector of the stations service rates (µ1, µ2 . . . µM ), each µi being
the service rate of the station i, with 1 ≤ i ≤M .

• The routing probability matrix P = (pi,j)1≤i,j≤M
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• x(0) = (x1(0), . . . , xM (0)) is the initial condition, i.e., the number of
jobs assigned to each station at time 0.

Figure 2 reports an illustrative example of a closed QN representing a
load balancer system with three stations: the load balancer station M1

and the two distributed replicas M2, M3, providing the same kind of
service to arriving jobs. Jobs are distributed among the replicas accord-
ing to the routing probabilities p1,2 and p1,3; after service completion,
they return back to M1. The load balancer is a means to equally dis-
tribute requests between the two replicas, with the aim of maintaining
both the queues and the utilization of the two stations balanced. It is a
well-known technique in performance engineering to build scalable dis-
tributed systems [127].

Finally, it is worth clarifying that while service demand in closed net-
works is defined with the total service time of a job in a station, and thus
it can be seen as the product of the expected visit ratio and the expected
service time at the node (see Section 6.10 in [61]), in the dissertation we
refer at the service demand µi of the station i as the mean service time of
a single visit. This could be seen as a service demand of a virtual network
with the expected visit ratio equal to one for all stations.

3.3 Mean-field Approximation

In queuing network theory, the mean-field, or fluid approximation, either
called fluid limit, approximates the dynamics of the discrete process rep-
resented by the CTMC modeling the queue lengths of a queuing net-
work, with those of a deterministic real-valued process, thorough a sys-
tem of ordinary differential equations (ODEs) [25].

The underlying idea, giving the name to the approximation itself, is
to think about the users waiting at the queues no more as individual
identities, but as a fluid flowing between the stations of the network, thus
forgetting about tracing the individual behavior of any single user, which
would have been infeasible even for small populations, and consider the
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average behavior, according to the following equation:

ẋi(t) = −µi min{xi(t), si}+
M∑︂
j=1

pj,iµj min{xj(t), sj}, ∀ t ≥ 0. (3.6)

with i varying between 1 and M representing the index of the station,
xi(t) represents the random variable representing the number of jobs
queuing in the station i, and the dot notation used to denote time deriva-
tive.

The explanation of this equation is intuitive: the first term on the left
side represents the average decrease in the queue length of the station i

due to the number of jobs that are finishing work, i.e., the server capacity
(rate) µ multiplied by the number of jobs on service, i.e., min{xi(t), si}.
Indeed if the station is actually idle it happens that si > xi(t) and there
are xi(t) jobs executing, otherwise, there are si jobs executing, i.e., the
parallelism level; instead the second term on the left side represent the
increment due to jobs arriving from the other stations after service com-
pletion, i.e., the sum of the number of jobs that are actually completing
service at any station 1 ≤ j ≤ M , i.e., µj min{xj(t), sj}, multiplied with
the probability of going from the station j to i.

For example, The following system of ODEs represents the mean-
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Figure 3: Comparison between the simulated queue lengths (solid lines) of
the CTMC simulations of the QN of Figure 2, with those obtained by the
solution of the ODEs (dashed lines) with parameters as in (3.7) [71].
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field approximation of the load-balancer queuing network in Figure 2:

ẋ1(t) = −µ1 min{x1(t), s1}+ µ2 min{x2(t), s2}+µ3 min{x3(t), s3}
ẋ2(t) = −µ2 min{x2(t), s2}+ p1,2µ1 min{x1(t), s1}
ẋ3(t) = −µ3 min{x3(t), s3}+ p1,3µ1 min{x1(t), s1}

∀ t ≥ 0.

The estimation of the average queue lengths tends to the exact value
as the system size K, intended as the populations of jobs and server mul-
tiplicities, grows to infinity, according to Kurtz’s theorem [81], being in-
stead rough for small values of K. A numerical evaluation of the accu-
racy of the ODEs numerical solutions varying the values of the system’s
size K, against the real measured values of 2000 statistically independent
simulations of the evolution of a network similar to the load balancer
represented in Figure 2, but with connections also between the stations
M2 and M3, has been conducted and it is presented in Figure 3 [71]. The
network is configured with the following parameters with the aim of
showing the most influential approximation error:

µ =
(︁
21.91, 57.20, 10.49

)︁
s = k

(︁
33, 24, 44

)︁
x0 = k

(︁
82, 96, 95

)︁
P =

⎛⎝0.38, 0.50, 0.12
0.33, 0.36, 0.31
0.15, 0.73, 0.12

⎞⎠ (3.7)

with scaling factor K ∈ {1, 10, 20, 50}.
The source of approximation derives from considering the average

of the minimum between two random variables as the minimum value
of the averages. Indeed, the average value of the queue length varies
according to the following equation:

E[Xi(t)]̇ = −µiE[min{Xi(t), si}] +
M∑︂
j=1

pj,iµjE[min{Xj(t), sj}] ∀ t ≥ 0.

(3.8)
Yet, it is not consistent that E[min{Xi(t), si}] = min{E[Xi(t)], si}.
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3.4 Variable length Markov chains

This section will present the basics of processes with memory, i.e., higher-
order Markov chains and variable length Markov chains (VLMC), and
extends the background analysis in [70]. VLMC is a compact but exact
representation of processes showing memory that varies according to the
observed context.

3.4.1 Higher-order Markov chains

While MCs that we just defined, also called first-order MCs, follow the
memoryless property 3.1, and they only depend on the current state,
higher-order MCs encode stochastic processes which depend on the his-
torical past their current state [107], up for a maximum number of previ-
ous states k. We denote a k-order MC model, a process with a memory
of at most k. That is, there exists an integer k > 0 such that the discrete
stochastic process {Xn : n ∈ N} satisfies the property:

Pr(xn+1 | xnxn−1 · · ·x0) = Pr(xn+1 | xnxn−1 · · ·xn−k+1), (3.9)

for all steps n ≥ k and for all states. Notice that this equation is analo-
gous to the memoryless property and that since k is a finite fixed value,
for any k > 1, it is possible to consider the stochastic process {Yn : n ∈ N}
with Yn = (Xn, Xn+1, . . . , Xn+k−1) over the state space Sk, which is a
first-order MC because every state encodes all the memory information
necessary for its evolution, and thus, Yn satisfies the memoryless prop-
erty. The drawback of this solution is that the number of states needed to
represent the model grows exponentially with the order of the Markov
chain (i.e., the memory length) [30]. This massive use of memory makes
them generally impractical to analyze.

3.4.2 VLMC and Context function

A process showing a variable length memory satisfies “h-memoryless”
Equation 3.9 for finite value 1 ≤ h ≤ k varying between 1 and the max-
order memory length, depending on the specific history that has been
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observed, that is

Pr(xn+1 | xnxn−1 · · ·x0) = Pr(xn+1 | xnxn−1 · · ·xn−h+1), ∀ n ∈ N, n ≥ h.

(3.10)
The context function, denoted by C, is the key concept to understand

the memory evolution of a variable length Markov chain, containing the
information about which part of the previous history is relevant to de-
termine the conditional probability distribution for the next state. For
any complete process history of all past visited states, xnxn−1 · · ·x0, the
function C(xnxn−1 · · ·x0) returns its context, that is the longest prefix
xn · · ·xn−k+1 such that Pr(xi | xnxn−1 · · ·x0) = Pr(xi | xn · · ·xn−h+1)

for all states xi, and 1 ≤ h ≤ k.
To better illustrate the concept of the context function, let us consider

a stochastic process with state space L = {l0, l1}, and assume that the
conditional probability distribution for the next state depends only on
the current state lj if j = 0, but on the previous history if j = 1, according
to the following context function:

C(xnxn−1 · · ·x0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l0 if xn = l0,

l1l1 if xn = l1 ∧ xn−1 = l1,

l1l0l0 if xn = l1 ∧ xn−1 = l0 ∧ xn−2 = l0,

l1l0l1 if xn = l1 ∧ xn−1 = l0 ∧ xn−2 = l1.

(3.11)

The context tree is a compact representation of the context function,
where each context, i.e., the codomain of C, is encoded as a path ordered
from the most to the least recently observed state when traversed from
the root to the leaves [110]. In this representation, first-level nodes repre-
sent 1-length knowledge; thus, a context tree with first-level nodes only
is a first-order MC. On the contrary, a complete k-height context tree im-
plies a k-order full MC. Figure 4a shows the context tree of the simple
example just described.

A VLMC is completely encoded by turning the context tree into a
probabilistic suffix tree (PST) [110], which associates each context tree node
with a probability distribution: the next symbol distribution, representing
the conditional distribution for the next state given the context of the
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P(li|l1)

(a)
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l1

(b)
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l0l0

l1l0

l0l1

l1l1
	l1l0l0

	l1l0l1

(c)

Figure 4: (a) Context tree enriched with examples of next-symbol probabil-
ity distributions (in blue). (b) Minimal Markov hull, obtained from (a); the
red elements in (b) are the states that need to be added to (a) in order to rep-
resent the process with a first-order MC (see Section 3.4.3). (c) First-order
MC of the example with context in Eq. (3.11). For simplicity, the probability
distributions for the next state are omitted.

node itself. Suppose, for instance, that we wish to find Pr(li | l1l0) in
the tree of Figure 4a: this is encoded in the probability distribution of the
second-level node l0 that is a direct child of the first-level node l1.Notice
that we used the symbology l0, l1, l2 . . . in order to suggest that the states
we consider are program locations of a software system; this notation
will be further explained and used in all this dissertation.

3.4.3 Minimal Markov Hull

In this subsection, we discuss how to move from a PST representation
of a VLMC to a first-order chain, using the algorithm that was first pro-
posed by Ron et al. [110] and then described by Magarick [92]. With the
help of an example, we show that a PST is not necessarily memoryless in
general. Suppose that our traces are generated according to the context
function of Eq. (3.11). In state l0, the context is determined by the left-
most leaf of the tree. If the next state is again l0, then the context stays
unchanged because C(l0, l0) = l0 (i.e., we forget the first occurrence of
l0). However, if the next state is l1, then the previously forgotten state
l0 needs to be taken into consideration because C(l1l0l0) = l1l0l0. This
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violates the memoryless property, a problem that would be solved by
adding the extra contexts l0l0 and l0l1 to the tree, to keep track of which
states were executed. The next-state probability distribution of the added
nodes is obtained simply by copying that of their father’s. In the illus-
trative example (see Figures 4a, 4b), the contexts l0l0, l0l1 are included
in the tree, by adding l0 and l1 as l0’s offspring. In [92] it is proved that,
in general, we can create a memoryless tree by adding all suffixes of all
contexts in the context tree that have not been already considered. The
number of leaves in the resulting context tree is no more than O(|τ |2)
where |τ | is the length of the deepest path from the root to a leaf of the
original context tree.

The tree obtained by this “Markovianization” is called minimal Markov
hull, and although the worst-case memory is still exponential, it often
has considerably fewer states in practice than the complete tree, which
encodes the full k-order Markov chain. Figure 4b shows the minimal
Markov hull of the illustrative example, and it is composed of 9 nodes,
rather than the 14 of the complete tree. Figure 4c shows the first-order
MC of the illustrative example.
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Chapter 4

Memoryless Process
Modeling

In this chapter, basing on the publications in [68, 71], we will present the
formulation of the service demands/queuing networks estimators in the
forms of non-linear, quadratic, and linear programming problems.

Our research evolved from only searching service demands values in
QNs with routing probabilities known a priori [68], using a naive quadratic
formulation, to searching the entire unknown topology [71], i.e. both
routing probabilities and service demands, with a more elaborate linear
programming formulation. All the experiments about mixed-integer op-
timization presented in this chapter are conducted by using the Python
interface of the CPLEX optimization tool1. The dataset of queue length
traces is collected by simulating the corresponding continuous-time Markov
chain, using Gillespie exact algorithm [55]. The learning processes have
been conducted on a laptop equipped with a 2.8 GHz Intel i7 quad-core
processor and 16GB RAM.

1https://www.ibm.com/products/ilog-cplex-optimization-studio
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4.1 Discrete-time QN model

We build our estimators basing on a discretization of the ODEs 3.6 in time
using the well-known Euler numerical integration method, according to
which ẋi(t) ≈ (xi(t + ∆t) − xi(t))/∆t with a certain fixed little enought
time step ∆. Denoting with xi(k) the approximation of the k-th value of
the variable x, the ODEs 3.6, representing the estimation of the average
queue lengths dynamics, will become the following system of difference
equations:

xi(k + 1) = xi(k)−∆tµi min{xi(k), si}+∆t

M∑︂
j=1

pj,iµj min{xj(k), sj}

(4.1)
with k ≥ 0 and 1 ≤ i ≤M and with initial conditions xi(0) = xi(0).

4.2 Non-linear estimators

The discretization of the ODEs representing the approximate evolution
of the QN’s queue lengths could be used to constrain an optimization
problem with the objective of minimizing the error between the mea-
sured values of queue lengths, i.e., x̃i(k), and those predicted by the ODE
model, i.e., xi(k), over the observation window H . The problem is ini-
tialized with the measured values of the queue lengths at the initial time
step x̃(0).

minimize
M∑︂
i=1

H−1∑︂
k=0

e(xi(k)− x̃i(k))

subject to:

Eq. (4.1), for 0 ≤ k ≤ H − 1, 1 ≤ i ≤M,

xi(0) = x̃i(0), 1 ≤ i ≤M.

The error e is a positive definite function of the difference between
the measured and the predicted value; examples used in the proposed
solution are the absolute error and the square error. The advantage of
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the square error is that, since it is differentiable, many heuristic solving
algorithms could be used, yet it has the disadvantage of tending to prior-
itize only the big error values, minimizing the error only based on them
while neglecting over small error values. This issue makes the square
error particularly unsuitable for the entire topology prediction when the
problem is less constrained, and small prediction errors must be taken
into account to obtain an accurate estimation.

The non-linearity is due to the presence of the minimum function in
the Equation (4.1) and, in the case of topology estimation, also to the
presence of the bilinear factors pj,iµjfor 1 ≤ j ≤M , since both the prob-
abilities and the service demands are decision variables that have to be
determined by the optimization problem. In the following sections, esti-
mators of both service demands and topologies are described and from
time to time the mechanisms to avoid non-linearities and lead back to
quadratic and linear formulations are presented.

4.3 Service demand estimator

In the first scenario, we seek at estimating the value of the service de-
mands of the stations, which will become the decision variables of the
problem, together with the predicted values of the queue lengths, while
given both queue lengths measurements and routing probabilities.

minimize
x,µ

M∑︂
i=1

H−1∑︂
k=0

(xi(k)− x̃i(k))
2

subject to:

Eq. (4.1), for 0 ≤ k ≤ H − 1, 1 ≤ i ≤M,

xi(0) = x̃i(0), 1 ≤ i ≤M.

Here, we have used the square error function, minimizing the square of
the difference between the predicted, i.e., xi(k), and the measured queue
lengths, i.e., x̃i(k), for each station i, 1 ≤ i ≤M .
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4.3.1 Quadratic programming formulation

Regarding service demands estimation, the non-linearity caused by the
minimum function in the Equation (4.1) is solved with an appropriate
variable change, resulting in a quadratic programming formulation. The
auxiliary variable Ti(k) is set as follows:

Ti(k) := ∆tµi min{xi(k), si}, k ≥ 0, 1 ≤ i ≤M,

Ti(k) essentially represent the instantaneous discretized throughput of
the station i. Thus, the quadratic programming problem is the following:

minimize
x,T

M∑︂
i=1

H−1∑︂
k=0

(xi(k)− x̃i(k))
2

subject to:

xi(k + 1) = xi(k)− Ti(k) +

M∑︂
j=1

pj,iTj(k), for 0 ≤ k ≤ H − 1,

1 ≤ i ≤M,

xi(0) = x̃i(0), 1 ≤ i ≤M.

(4.2)

The problem above finds the optimal values of predicted queue lengths
and instant throughput for each station and time-instant, x∗

i (k) and T ∗
i (k),

with 0 ≤ k ≤ H − 1 and 1 ≤ i ≤ M , the corrisponding values of the ser-
vice rates can then be computed as follows:

µ∗
i :=

∑︁H−1
k=0 T ∗

i (k)∑︁H−1
k=0 min {x∗

i (k), si}
, 1 ≤ i ≤M. (4.3)

The average service demand of the station i is then the mean value of the
corresponding exponential distribution, i.e., 1/µ∗

i .
Since predicted values of queue lengths are used in the equation of

the next-step predicted ones and incorporated in Ti(k), the error of the
mean-field approximation propagates among future estimations of queue
length, altering the resulting optimal value of the service demand.
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4.3.2 Moving horizon estimation

We aim to apply the service demands evaluation during system execu-
tion, possibly together with a self-adaptation control strategy, according
to the new paradigm of the evaluation at runtime already presented in
Chapter (2). Thus, in this case, we assume to have only measurements of
previous time instants. The moving horizon estimation strategy is based
on a window of a fixed size of previous measurements. Thus, when start-
ing to inspect the system, H time instants are needed to collect observa-
tions. The moving horizon estimation is based on iteratively repeating
the following steps:

1. setting the QP formulation with the observed values of queue lenghts
x̃i(k) at any station for all the previous H time instants, i.e., 0 ≤
k ≤ H − 1, the given (fixed) values of the routing probabilities pi,j

among all stations 1 ≤ i ≤M, 1 ≤ j ≤M , and the given (fixed) val-
ues of the server multiplicity si at each station i, with 1 ≤ i ≤M .

2. solve the optimization problem (4.2) finding the optimal values of
the queue lengths x∗

i (k) and instant throughput T ∗
i (k) for every H

time instants of the window, 0 ≤ k ≤ H − 1 and every stations
1 ≤ i ≤ M , and computing the corresponding estimation of the
service demand 1/µ∗

i (see Equation 4.3)

3. shifting the observation window by discarding the oldest values of
the queue lengths samples at each stations, i.e., x̃i(k), and including
the newly measured ones.

4. return to step 1.

By applying this technique, one could promptly detect changes in the
value of the service demands (possibly due to malfunctions, upgrades,
components’ deteriorations, etc,...), regardless of the assumption of the
system being in the steady-state regime. This set up is similar to the
model predictive control (MPC) approach developed in the Emilio et al.
work in [73]. In this case, the purpose of the optimization problem is
to find out the unknown values of the service demands, while in [73]
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was to find the optimal configuration of the network topology in terms
of either routing probabilities (e.g., load balancer case study) or service
demands (e.g., elastic cloud case study) to obtain the desired threshold
of some desirable properties (e.g., high throughput or short/little queue
lengths).

4.3.3 Application to the load balancer case study

In this section, we will provide an example of our moving horizon mod-
eling technique with a load balancer case study, showing the accuracy
of the mean-field ODE estimator of the QN’s dynamics [68]. The service
demand value of station 1 is known and fixed to 1.0 and the ones of the
stations 2-3 must be estimated. We model station 1 as a delay by setting
its multiplicity s0 ≥ N . In order to simulate and validate the estimation,
the network is parametrized with the values (randomly chosen) in the
Table 1.

Table 1: Model parameters for the load balancer case study example

N µ1 µ2 µ3 s0 s1, s2 p1,2, p1,3 p2,1, p3,1

5500 1.0 68.97 73.80 ∞ 20 0.5 1.0

Figure 5 depicts the queue length traces of the three stations, obtained
from a simulation of a continuous-time Markov chain underlying the QN
with parameters in Table 1. The traces are generated assuming exponen-
tial distributions at each station, in a period of 20 time units, sampled ev-
ery ∆t = 0.01; thus, obtaining a total of 2000 time steps. The plot evinces
that the numerical solutions of the ODE model (dotted lines) represent
an accurate estimation of the QN ground truth simulation values (solid
lines).

With the chosen values of the parameters, the system does not reach
the steady-state regime within the entire time course of 20 seconds. We
applied iteratively the just described moving horizon estimation, with a
window H = 100, solving 1901 optimization problems (4.2), and obtain-
ing accurate estimations of the service demands of stations 2 and 3 with
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Figure 5: Simulation and mean-field solution for the queue lengths of the
load-balancer running example [68].

average percentage errors across all iterations of 1.4%, and 2.6%, respec-
tively, in a neglectable computing time on an ordinary laptop, i.e. 0.01
seconds.

4.3.4 Numerical evaluation

In this entire subsection, we refer to the numerical evaluation we con-
ducted in [68], about the effectiveness and scalability of our moving hori-
zon estimation (MHE) approach with traces from stochastic simulations
of networks of different sizes and topologies with randomly generated
parameters. Concerning accuracy and computational time, we strengthen
our validation by comparing MHE with a previous recent approach that
estimates service demands from queue lengths measurements only, namely,
the Queue Length Maximum Likelihood Estimation (QMLE), in [133].
The scalability analysis is conducted on networks of increasing sizes and
random topologies. The replication package of the experiments is avail-
able at https://goo.gl/zNdr5f.
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Figure 6: Queuing network topology used in the comparison experiments
against QMLE.

Comparison with QMLE

The first variant of the QMLE algorithm presented in [133] uses nonlin-
ear optimization on an almost exact closed-form expression of the QN
evolution that is based on the BCMP theorem [15]; the second proposed
technique relies on an approximated formula using the Bard-Schweitzer
mean value analysis (BS-AMVA) [12, 116]. We compare our MHE solu-
tion with the latter variant of QMLE. Indeed, the exact solution is not
suitable for online estimation because of its computational complexity,
requiring execution times of the order of 104 seconds, even for small tan-
dem networks. For a fair comparison, we decided to consider a tandem
network with three stations, like the one in Figure 6, with a delay station
M1 and two stations with unknown values of the service rates µi, which
must be found by the estimators.

The accuracy of the MHE strongly depends on the precision of the
mean-field formula, which is more accurate as the system’s size grows,
i.e., the scaling factor K multiplying both the initial job population x(0)

and the vector of server multiplicities (see Background chapter, Section 3.3).
The precision of QMLE depends on the accuracy of the BS-AMVA and
the scaling factor they use to treat the load-dependent scenario (i.e., multi-
server). The precision of the BS-ATVA approximation tends to increase
with the network’s population [12]. The scaling for the load-dependent
case essentially consists of multiplying the value obtained by the load-
independent closed-form expression with the factor approximating the
minimum between the number of servers and the average queue length
at the station. This introduces an error especially at low-utilization regimes
when queue lengths are often less than the number of servers.
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We take into account and consider in our analysis all those sources of
approximation error by generating synthetic experiments varying both
the system size, i.e. k = 1, 2, 5, 10, 20, 50, and the utilization level of the
bottleneck station M2, varying in U2 ∈ {0.1, 0.3, 0.4, 0.6, 0.8}.2 Service de-
mand values are fixed arbitrarily with µ1 = 1.0, µ2 = 27.0, and µ3 = 48.0.
The initial condition x(0) was also fixed in each experiment to achieve
the desired values of steady-state utilizations of the stations. We repro-
duced the experimental environment of the work [133], requiring 105

steady-state queue length samples, while for MHE we consider 100 non-
overlapping intervals of length H∆t, using a different value of the win-
dow H for each experiment in order to obtain a fixed number of observed
events, approximately 1500, maintaining a discretization step suitable to
ensure an accurate enough ODE numerical solution, i.e., ∆t = 0.1.

x(0) = (3, 0, 0) x(0) = (9, 0, 0) x(0) = (12, 0, 0) x(0) = (19, 0, 0) x(0) = (26, 0, 0)
H = 2347, U2 ≈ 0.10 H = 688, U2 ≈ 0.30 H = 521, U2 ≈ 0.40 H = 353, U2 ≈ 0.60 H = 262, U2 ≈ 0.80

K QMLE MHE QMLE MHE QMLE MHE QMLE MHE QMLE MHE

1 0.52 9.25 ± 1.03 1.37 9.63 ± 1.06 2.07 7.90 ± 1.01 3.40 6.58 ± 0.81 5.15 4.89 ± 0.69
2 448.30 4.13 ± 0.62 126.54 3.93 ± 0.58 67.18 4.20 ± 0.63 5.46 3.90 ± 0.56 2.33 3.59 ± 0.54
5 184.02 2.26 ± 0.33 60.41 3.02 ± 0.43 42.09 2.76 ± 0.38 8.78 2.07 ± 0.33 1.65 2.06 ± 0.34

10 92.29 1.65 ± 0.27 30.53 1.99 ± 0.31 23.18 1.82 ± 0.31 9.50 2.09 ± 0.30 3.89 1.50 ± 0.24
20 45.18 1.37 ± 0.21 15.01 1.13 ± 0.19 11.32 1.36 ± 0.18 6.41 1.36 ± 0.19 5.81 1.17 ± 0.18
50 18.67 0.74 ± 0.10 6.08 0.81 ± 0.14 4.57 0.78 ± 0.11 2.72 0.81 ± 0.12 5.17 0.73 ± 0.10

Table 2: Comparison between QMLE and MHE service demand estimators.

Table 2 reports the results of the comparison for each of the five ex-
periments, with the corresponding utilization values of the stations U2

and U3 and the initial condition x(0) = (x1(0), x2(0), x3(0)), to be multi-
plied by the corresponding scaling factor K. For each experiment, each
station, and each value of the scaling factor K, we measured and report
the accuracy of both QMLE and MHE, by computing the mean absolute
percentage error between the estimated and the true value of the service
demand. The values reported for the MHE are the 95% confidence inter-
vals over the 100 independent samples of the moving horizon estimation
technique.

The considerations arising from these results are the following:
2detailed results reporting statistics about station M3 can be found in the replication

package of this thesis
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i) In the single-server, load-independent case, i.e., K = 1 QMLE tends
to outperform MHE, especially at low-utilization regimes, becoming
comparable for high utilizations, i.e., U2 = 0.6 and U2 = 0.8. Indeed
when K = 1, we are far away from the deterministic regime approx-
imation (see Background Chapter, Section 3.3). QMLE instead does
not suffer from the multi-server scaling factor approximation of the
BS-AMVA equation. Still, the worse solution provided by the MHE,
i.e., a range of confidence of lenght ca. 21% around the estimated
value of the service demands, is an acceptable performance for small
queuing networks. This approximated value of 21% is obtained con-
sidering that in the worse case, the MHE estimate, say µest, is in the
range [µest−9.63−1.06, µest+9.63+1.06] with a probability of 95%.

ii) In the multi-server scenario K > 1, i.e., load-dependent, MHE con-
siderably outperforms QMLE, especially at a low-utilization regime,
when the correction of the BS-AMVA single-server to the multi-server
using the scaling factor tends to be worse. For high utilization, in-
deed, the queues are mostly full and the servers are almost always
busy; that is the reason why the approximation from dynamics of the
multi-server, each serving µi requests per second, with one server
serving si ·µ1 requests per second, where si is the multiplicity of the
station i, is neglectable.

iii) As expected, larger values of K lead to more accurate estimates for
the MHE method. The results show that this also holds for QMLE.

Scalability analysis

Here, we further analyze the scalability of the proposed approach by pre-
senting the effectiveness and accuracy of our MHE method with queuing
networks of increasing sizes and various topologies. For each network’s
size, intended as the number of its stations M = 5, 10, 15, 20, we gener-
ated 20 QNs with random parameters. The routing matrix was gener-
ated as a random stochastic matrix, ensuring a closed QN workload, the
servers’ multiplicities were picked uniformly in {20, . . . , 50}, while the
service rates were drawn from the interval [10, 50]. For each such QN,
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Errors Runtimes (s)

M min avg 95-th max min avg 95-th max

5 1.60 2.53 4.12 4.50 0.03 0.03 0.03 0.04
10 1.63 2.46 3.28 3.56 0.08 0.08 0.09 0.09
15 1.59 2.63 3.48 4.56 0.18 0.18 0.19 0.19
20 1.62 2.52 3.19 3.82 0.34 0.38 0.48 0.52

Table 3: Scalability analysis of MHE service demand estimator.

the initial number of jobs was chosen to obtain a steady-state utilization
of the bottleneck station of about 0.8, using the approximate formulas
presented in [78]; we computed the average service demand estimate
across all stations and with 100 non-overlapping observation windows
from a sample path, with H=200.

Table 3 shows, for each value of M , the minimum, average, the 95-th
quantile, and the maximum error across the 20 random QNs. The MHE
method reveals to be accurate for any considered number of stations M

without considerable differences in precision. The execution time, in-
stead, grows almost linearly with the increasing number of stations in
the network.

Notice that, even for very large systems (i.e., M = 20), the average
time needed for obtaining a new estimation by solving one QP optimiza-
tion does not exceed the fraction of a second in the worst case (i.e., 0.52s),
making the method particularly suitable for online parameter estimation.

4.4 Queuing network estimator

In this section, based on [71], we will provide a topology estimator in
terms of a non-linear programming problem and we present its numer-
ical evaluation. Decision variables are routing probabilities as well as
service demands and predicted values of the queue lengths, known pa-
rameters are the server multiplicities and the measurements of the queue
lengths.

45



minimize
x,µ,P

M∑︂
i=1

H−1∑︂
k=0

| xi(k)− x̃i(k) |

subject to:

Eq. (4.1), for 0 ≤ k ≤ H − 1, 1 ≤ i ≤M,

xi(0) = x̃i(0), 1 ≤ i ≤M.

(4.4)

In this case, we use the absolute error function, searching for the
optimal vector of service rates µ and routing probability matrix P that
minimize the absolute value of the differences between the predicted,
i.e., xi(k), and the measured queue lengths, i.e., x̃i(k). These absolute
errors are summered up for each station i, 1 ≤ i ≤ M , and over the
discrete-time instants of the observation window H ; the sum is then min-
imized. The optimization problem is initialized with given measured
queue lengths at the initial time instant, i.e., x̃(0).

4.4.1 Linear programming formulation

The non-linear QN optimization problem just presented could be ex-
tremely difficult to solve, hindering its usage in practice. It was already
presented in the work of Incerto et al. [73] that the runtime of finding
the solution of a globally optimal non-linear program similar to the one
in (4.4) could be considerable respect to finding the solution to the corre-
sponding mixed-integer formulation. The non-linearity in Equation (4.1),
is due to the presence of both the minimum functions and the bilinear
terms pj,iµj , with 1 ≤ j ≤M .

Here, we will provide an exact linear programming formulation of
the problem (4.4), considering that both the queue length measurements
and server multiplicity values are known for each station at any time
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instant of the observation window.

minimize
µi, gi,j , Ei,k, Êi,k

M∑︂
i=1

H−1∑︂
k=0

Êi,k (4.5)

subject to:

Ei,k = −µiγi(k) +

M∑︂
j=1

gj,iγj(k)−∆x̃(k), (4.6)

µi =

M∑︂
j=1

gi,j , gi,j ≥ 0, (4.7)

Êi,k ≥ Ei,k, Êi,k ≥ −Ei,k, (4.8)

1 ≤ i, j ≤M, 0 ≤ k ≤ H − 1,

sostituing ∆x̃(k) = x̃i(k+1)−x̃i(k)
∆t , that is just an abbreviation for a com-

pact rewriting of the equation, and γi(k) = E[min{si, x̃i(k)}], that ex-
ploits the measurements available in order to remove the non linearity
due to the minimum function. The trick of γi(k) is to consider the ob-
served value of the queue length instead of the predicted one, removing
the decision variable as an argument of the minimum and allowing γi(k)

to be computed and considered as an LP parameter.

Another key aspect of this formulation, making the optimization faster
and more accurate, is no more integrating Equation (4.1) across the en-
tire observation window but constructing the entire trajectory of the QN
evolution by considering the sum of the prediction errors of a single step
Ei,k (see 4.6).

The last, most interesting, linearization solution is the variable change
substituing the bilinear term gj,i = pj,iµj with a new variable, constrained
such that the sum over all stations 1 ≤ j ≤ M of gj,i is µi, since P is a
stochastic matrix (see 4.7). After the optimization, the estimated rout-
ing probabilities can be computed as p∗i,j = g∗i,j/µ

∗
i ,with 1 ≤ i, j ≤ M

where g∗i,j , µ
∗
i are the optimal gi,j and µi,, respectively. Finally, (4.8) are

the standard linear programming constraints for the minimization of the
absolute value of a decision variable [26].
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4.4.2 Numerical evaluation

For the numerical evaluation of our topology estimator, we generated
random QNs of increasing size and complexity M ∈ {5, 10, 15, 20} using
the stochastic simulation framework Stochkit [112]. For each case, we
generated 10 different queuing networks by drawing the entries of the
routing probability matrix from a uniform distribution, service rates in
the interval [1.0,100.0], concurrency levels of the Mi station, with i > 1,
in the interval [1,64]. The station M1 is instead the reference station, rep-
resenting a think time of the user between one operation and the next
one; its concurrency level must be greater or equal to the total popula-
tion N , i.e., is the same as considering the reference station as an infinite
server.

We generate the training set of each QN starting from 100 different
initial population vectors, by choosing the initial number of jobs at each
station randomly in [0,100], resulting in a total number of jobs circulating
in the QN uniformly distributed between 50 and 100M . Thus, for each
of these initial conditions, we simulated the network 2000 times and col-
lected the average queue length trajectories.

Furthermore, while the time horizon T of the simulations must be
chosen big enough to be able to completely capture the dynamics of the
system reaching the steady-state regime, and not too big to have simula-
tion data too much large to be collected, the discretization step interval,
i.e. ∆t must be chosen small enough in order to avoid to loose relevant
events among two observations [6]. We set T = 2s and ∆t = 0.01, col-
lecting H = 200 points.

To this aim, we conduct two distinct what-if analyses, by first learn-
ing the QNs of the learning dataset presented above, then changing the
initial vector, the size of the population, and the concurrency levels of
the stations. We simulate both the learned model and the original one
(i.e., ground-truth) with these changed parameters, and finally, we evalu-
ate the difference between their dynamics, exploiting the following error
function:
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err i =
maxHh=1 |x̃i(h)− xi(h)|

2N
· 100. (4.9)

This equation represents the absolute value of the maximum relative
error of the station i among all the observation windows, with respect to
the total number of jobs circulating the network (notice that since we are
dealing with closed QNs N is to be considered constant). We refer the
reader to [50] for a further detailed discussion on (4.9).
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Figure 7: Prediction error of the topology estimator of the what-if analysis
with unseen population vectors
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What-if analysis over client population

Here, we tested the learned QN with 200 new vectors of the initial popu-
lation, different from those used for the learning phase. The initial num-
ber of jobs of each station was chosen between 0 and 200, with the total
population N uniformly distributed between 50 and 200M , discarding
initial conditions used for learning. The comparison is then executed
among the averages of the queue length dynamics of all these 2000 inde-
pendent stochastic simulations of the QN learned by our approach with
those produced by the ground-truth QN.

The first and the third rows of the Figure 7 report the scatter plots
of the prediction errors for each considered QN and for each network
size M . Prediction errors are mostly below 2% and even in worst cases,
they are still below 10%, proving the high predictive accuracy of the pro-
posed solution. Moreover, there is no significant difference between the
interpolation region, where there are similar population vectors of those
used for learning, and the extrapolation region, i.e., outside the range
of initial conditions used for learning, remarking the high flexibility of
our model to be simulated with unseen scenarios and predict the corre-
sponding system’s evolution.

The second and the fourth rows, instead, show the entire queue length
evolutions of both the ground-truth model (dashed lines) and the QN
predicted by the linear programming optimization (solid lines). The
queue length dynamics plotted for each network size are those causing
the maximum prediction errors in the what-if analysis, among all the
different initial population vectors, i.e., 7.46% when M = 5, 3.65% when
M = 10, 9.26% and 6.22%, when M = 15 and M = 20, respectively.

Finally, the box-plot in Figure 8a reports the summary statistics, in
terms of the prediction errors, of the four scatter plots of Figure 7 and
shows that there is no significant difference in terms of accuracy among
the four different considered network’s sizes; the average error decreases,
possibly due to the fact that the optimization error becomes more con-
strained allowing for more precise estimation.
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Figure 8: (a) Summary statistics on the prediction error for the experiments
of Fig. 7, and (b) for the experiments of Fig. 9. In each box-plot, the line in-
side the box represents the median error, the upper and lower side of the box
represent the first and the third quartiles of the observed error distribution,
while the upper and lower limit of the dashed line represent the extreme
points not to be considered outliers. The red dots depict the outliers.

What-if analysis over concurrency level

In this what-if analysis, we tested the prediction power over modifica-
tion of the stations’ concurrency levels. For each generated QN and for
each station, except the reference M1, we reassigned a new value of con-
currency level, picked at random uniformly in [1, 64]. Then we compare
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the resulting queue length dynamics resulting from the simulation of the
LP-learned QN, with those resulting from the ground-truth model, both
with these new values of the stations’ concurrency levels. In this case, we
consider as initial conditions the same ones of the what-if analysis over
client population just presented. This basically means that this second
what-if analysis is conducted on top of the other one, possibly combin-
ing the sources of errors of both.

The first and the third rows of the Figure 9 report the scatter plots
of the prediction errors for each considered QN, and for each network
size M . Even in this case, prediction errors are considerably low, mostly
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Figure 9: Prediction error of the topology estimator of the what-if analysis
with different server multiplicities
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Figure 10: a) Summary statistics on the computation time needed for learn-
ing all the 40 QN models (i.e., 10 for each model size) used for the experi-
mentation in Figures 7 and 9.

below 4% and always below 10%. In the second and fourth rows of the
Figure 9, instead, are reported the comparisons in single evolutions of
the queue lengths for each network size-the ones with worst prediction
errors, i.e., 10.49%, 5.18%, 7.89%, 8.53, for M = 5, M = 10, M = 15,
M = 20, respectively.

Although in this case there is a slightly bigger deviation between the
LP-learned queue-length and the ground-truth evolutions, the dynamics
are well predicted since the LP-learned curves well follow the ground-
truth ones. This small increase in the errors can be justified by both the
fact that here the variations in the conditions are twofold, i.e., both the
initial vector of the population and in server multiplicities; and by the
fact that changing the number of servers, which was constant in all the
traces used for learning, is a greater structural change than the previous
one on the population.

The box-plot in Figure 8b reports the summary prediction errors of
the four scatter-plots of the Figure 9. Also in this case, there is no signifi-
cant difference in terms of accuracy among the four different considered
network sizes, and the average error decreases.

Figure 10 presents the summary statistics of the solution time of the
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40 optimization problems of this experimentation, grouped by the size
of the corresponding QN. Thanks to the linear formulation, the average
solution time grows almost linearly with the size of the learned model.
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Figure 11: Comparison between the predictions errors of the RNN-learned
models and the LP-learned, in the what-if over populations.

Comparison with state-of-the-art

In this section, we conduct a comparison with the recursive neural net-
work (RNN) estimator recently presented by Garbi et al. [50]. We specif-
ically refer to the RNN approach [50] since is the unique topology es-
timator of the literature, i.e., that estimates both the service demands
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and routing probabilities, based only on the knowledge of queue length
measurements and server multiplicities. To be as fair as possible, we
decided to repeat exactly the same experiments conducted by the RNN
method, using their replication package, with 100 randomly generated
initial conditions, T = 10s and ∆t = 0.01. Yet, each QN is simulated
again to obtain the traces and the necessary values to punctually com-
pute each E[min{si, x̃i(k)}] that cannot be derived from the already av-
eraged queue data in the replication package.
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Figure 12: Comparison between the predictions errors of the RNN-leaned
models and the LP-learned, in the what-if over concurrency levels

Figure 11 and Figure 12 present the resulting prediction errors of both
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the approaches in the what-if analyses over initial population vectors
and concurrency levels, respectively, with network size M = 5 (a), and
M = 10 (b). The results show that the LP-based approach (blue points)
outperforms the RNN-based one (red points) for all the evaluated sce-
narios, reporting consistently smaller prediction errors.

This is also confirmed by the summary statistics of Figure 13. These
results strengthen the effectiveness and generality of the proposed ap-
proach that has proved able to produce more accurate QNs models, with
a higher prediction power, despite having been learned in a less con-
strained setting. Indeed, in [50], the main diagonal of the routing proba-
bilities matrix is assumed to be known, while in our tests we do not need
this assumption.

(a) RNN-Learned vs LP-Learned accuracy in the same exact what-if over population (See
Fig. 11)
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(b) RNN-Learned vs LP-Learned accuracy in the same exact what-if over concurrency lev-
els (See Fig. 12)

Figure 13: Summary statistics on the prediction error for the experiments of
Fig. 11 and Fig. 12 with learning methods RNN and LP, respectively.
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Chapter 5

Memoryfull Process
Modeling

This chapter is based on the pubblication of Incerto et Al. [70].

Here, we present the modeling process of those software systems
showing variable-length memory, as programs source code executions
in particular. These processes are learned from traces of their execution,
captured from the runtime of an instrumented version of the source-
code with inputs sampled by given probability distributions, resulting
in a variable-length Markov chain (VLMC). The solution we propose, i.e.,
ProgramToVLMC [70], is a domain-specific adaptation of popular general-
purpose algorithms that exploits static knowledge of the program’s con-
trol flow graph to optimize the runtime and the memory allocation of the
learning procedure. We demonstrate the validity of the proposed tech-
niques with a numerical evaluation on several benchmarks.

5.1 Learning the VLMC of a program

In this section, it is presented how to learn a VLMC model from sample
traces of program execution, using our specialized and optimized algo-
rithm ProgramToVLMC.
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public void syntheticP(){
l0 Random r=new Random();
l1 int[] b=new int[3];
l2 if(r.nextInt(100)< 20)
l3 b[0]=1;

else
l4 b[0]=0;
l5 if(r.nextInt(100)< 80)
l6 b[1]=1;

else
l7 b[1]=0;
l8 if((b[0]==0 && r.nextInt(100)<40)||

(b[0]==1 && r.nextInt(100)<90))
l9 b[2]=1;

else
l10 b[2]=0;
l11 }

(a)

l0

l1

l2
l3 l4

l5

l6 l7
l8

l9 l10
l11
(b)

Figure 14: A simple synthetic program (a) with its control flow (b)

5.1.1 Input programs definition

The input of the learning algorithm must be a bounded program, i.e.
a finite program whose termination is guaranteed and thus whose loops
iterations can be bounded up to a certain number, written in an impera-
tive programming language. Moreover, we assume the program has un-
dergone standard transformation techniques, such as loops unwinding
and function inlining, resulting in an equivalent loop-free [59] version
made up of only basic statements, sequential compositions, and condi-
tional statements [48]. We also consider as input for the learning process
the program’s full control-flow graph1 (CFG) G = (L,E), where L is the
set of program locations and E the set of transitions.

Figure 14a presents a synthetic simple program that will be used
through this section as an illustrative example to help the reader under-
stand the entire learning algorithm, and Figure 14b shows its control-

1The graph whose nodes are all the program’s instructions and the edges are control
flow transitions among them [54].
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flow graph. The program consists of a simple Java method with three
conditional branches in sequence, whose evaluations are stored in the b
array. Capturing the stochastic behavior of this program could be chal-
lenging due to main difficulties:

• the program is not memoryless, in the sense that b[2] depends on
the evaluation of b[0], which is statements behind;

• the memory has variable length, i.e., b[0] and b[1] are memory-
less conditions while b[2] is not.

Thus, it is clear that the behavior of this program cannot be fully cap-
tured by a first-order Markov chain, since the next-symbol probability
of the third condition l8 depends on the previous history, and it would
be equal to 0.4 if the first condition l2 was evaluated true and l3 occurs
while would be 0.9 if l2 was evaluated false and l4 occurs.

5.1.2 VLMC of a program

The VLMC of a program P with n PLs, as the output of the learning
algorithm, can be formally defined as the tuple (C,P) where:

• C :
⋃︁n

i=1 L
i →

⋃︁k
i=1 L

i is the context function, which associates a
context of length at most k (the maximal order of the VLMC) with
each sequence of PLs (which have length at most n).

• P : Im{C} → RL is the next-symbol probability distribution, as-
sociating each context with a conditional probability distribution
over all the possible next PLs.

5.1.3 The algorithm: ProgramToVLMC

Overview

Algorithm 1 describes the overall process of learning VLMC of a pro-
gram from sample traces of its execution, collected from independent
runs of an instrumented version of the program; each trace represent-
ing the effectively executed path of the full control flow graph G. Inputs
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Algorithm 1: Fit a VLMC for program P

1 ProgramToVLMC (Traces, G, nmin, α)
inputs : The set of traces; the control-flow of P ; the minimal

occurrences of a context; the pruning factor
output: A VLMC for P

2 Global sa← buildSuffixArray(Traces)
3 PST← ∅
4 foreach PL li ∈ G do
5 LocationPST← growPST(li)
6 prune(LocationPST)
7 PST.addChild(LocationPST)
8 end
9 return PST

of the algorithm are also two configuration parameters, which influence
both the accuracy and the memory allocation, in terms of the order of the
resulting VLMC: the minimal number of occurrences nmin of a context
in the traces in order to be considered for the generation of the PST, and
the pruning factor α. These are detailed later.

In line 2, the algorithm builds the suffix array [86] of the traces, which
will be used in the next stages to compute the number of occurrences of
each considered context, and thus the probability distributions. Then
in line 5, for each PL li, the algorithm constructs the complete sub-PST
rooted at li, namely the location PST (See the function growPST 2 ex-
plained in the next section). This location PST contains all the prefixes of
the CFG paths ending in li, thus representing all the possible memory
dependencies for that PL.

The pruning phase in line 6 will reduce the complete location PST,
by retaining only its statistically significant nodes (see the pruning phase
explained in Section 9). Afterward, this tree is added to the final PST
output of the whole learning algorithm (line 7).

To this end, building the VLMC by exploiting the structural infor-
mation of G has one practical advantage: it allows pruning each loca-
tion PST earlier than general-purpose algorithms, thus reducing the peak
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Algorithm 2: Recursively create the location PST of PL sc by
backwardly enlarging the considered context

1 growPST (scsc−1 . . . s0)
inputs : The input context scsc−1 . . . s0
output: The candidate location PST of the PL sc

2 pstNode← new Node(s0)
3 pstNode← Pr(si|scsc−1 . . . s0), ∀si|sc → si ∈ E
4 foreach PL sj |sj → s0 ∈ E do
5 if (isObserved(scsc−1 . . . s0 ∪ sj , nmin)) then
6 pstNode.addChild(growPST(scsc−1. . .s0∪ sj))
7 end
8 end
9 return pstNode

memory requirement. The other approaches of Maechler et al. and Ga-
baldinho et al. [47,91] explore all contexts, producing the entire complete
PST and then prune only at the end. See Section 5.2 for a numerical eval-
uation of this aspect.

Growing the PST

Here, we will describe the core-function of the PST construction, namely
growPST, see Algorithm 2. Denoting a general context with scsc−1 . . . s0,
where sc is the most recent and s0 the least recent PLs, the algorithm cre-
ates the location PST for s0 by recursively visiting each possible previous
ancestors in G, i.e., each PL si for which it exists a path from si to s0; and
computes the path’s corresponding next-symbol probability distribution.

We describe the basic and the recursive step separately, to better il-
lustrate the growPST function 2, and we apply all the algorithmic steps
to our illustrative example, generating the Location PST of the node l5 of
the CFG in Figure 14b.

The base step represents the first call to the function growPST, made
by the Algorithm 1 at line 5, where the current sub-tree “in construction”
is initialized. In our example, we have as initial argument the context
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l5, and at line 2 of this base step is allocated the node corresponding to
s0 = l5, as the root of the Location PST of l5. In line 3 the next-symbol
probability distribution of the actual context, i.e. l5 is computed, namely
Pr(si | l5) ∀si s.t. l5 → si ∈ E, and associated with the just allocated
node.

The recursive step starts at line 4 and it is called for every predecessor
of the actual context, enlarging the contest itself with these ancestor PLs.
In our example, for the first recursion call these ancestor Pls would be
l3 and l4, and thus the arguments l5l3 and l5l4. Moreover, in line 5, we
limit the exploration to only the contexts observed at least nmin times
in the traces, according to the algorithm’s configurations. Once all the
recursions are closed, the function growPST returns in line 9 the Location
PST related to the initial calling context, i.e., l5, to the Algorithm 2.

Let us illustrate the recursive step in more detail by assuming that it
operates on the context scsc−1 . . . s0 = l5l4. As a first step, on line 2, the
node corresponding to l4 is created. In line 3, the next-symbol probability
distribution Pr(si | l5l4) is calculated and stored in the node of the loca-
tion PST just created. Once again, in line 4, the recursion starts for all the
PLs directly connected to sc = l4 and whose context has been observed
at least nmin times in the collected traces: in this case, we process l2 only
(see the CFG of Figure 14b). This implements the backward visit of the
prefix of G ending in l5 since, at each recursion, the considered context is
enlarged and older dependencies are examined. The recursion ends with
the initial node of the CFG, i.e., l0, because it has no incoming arcs. Thus,
the control returns to the previous recursion which adds the location PST
rooted in l4 as its direct child (line 6).

Learning the next-symbol distribution

The next-symbol probability distribution is computed in line 3 of the
Algorithm 2 with the classical frequence approach: given the context
scsc−1 . . . s0, the probability of visiting the location si, i.e., Pr(si | scsc−1 . . . s0),
can be estimated with the number of sequences containing siscsc−1 . . . s0

divided by the total number of sequences containing scsc−1 . . . s0.
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It is worth notice that even in this step we can benefit from the struc-
tural information about the program by limiting the computation of the
next-symbol distribution only on the outgoing labels from sc (of size at
most 2), instead of the entire state space L, as it should have been done
in the case of general-purpose learning [92].

Pruning the tree

During the pruning phase, the complete Location PST is reduced to elim-
inate contexts that do not bring a statistically significant contribution to
the memory [30]. This is done by comparing the next-symbol probabil-
ity distributions of each leaf nodes of the PST with the one of its father,
pruning the leaf when the two distributions are considered statistically
equivalent, i.e., when their Kullback-Leibler (KL) divergence [80] is less than
the user-specified cutoff X 2

|L|−1;1−α/2, where α is the pruning parameter
of Algorithm 1.

Small α values produce smaller PSTs, less memory occupation, and
coarser approximations, while high α values lead to more accurate repro-
ductions of the program behavior, with a greater memory occupation.
This pruning process goes on with the tree leaves until all of them will
be already evaluated; notice that an internal node might become an un-
evaluated leaf if all its children are pruned. The pseudo-code describing
this algorithmic step is not reported since there are no substantial modi-
fications with respect to the state-of-the-art pruning algorithms [92].

ProgramToVLMC example

In order to see how this algorithm works in practice, Figure 15 depicts
the PST learned for the Program 14a with CFG of Figure 14b. In partic-
ular, below each node is reported the next-symbol probability distribu-
tion of its corresponding context. Although for the sake of readability
in Figure 14b the values are truncated to the first decimal digit, during
the learning process they have been considered as 64-bit floating-point
numbers. For collecting the input traces, the program ran 105 indepen-
dent times. The red-crossed nodes identify the elements of that location
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l0 l1 l2 l8 l9 l10 l11
[0.2,	l3]
[0.8,	l4]

[1,	l5] [1,	l5] [0.8,	l6]
[0.2,	l7]

[1,	l2][1,	l1] [1,	l8] [1,	l8][0.5,	l9]
[0.5,	l10]

[1,	l11] [1,	l11]

[0.5,	l9]
[0.5,	l10]

[0.5,	l9]
[0.5,	l10]

[0.5,	l9]
[0.5,	l10]

[0.5,	l9]
[0.5,	l10]

[0.9,	l9]
[0.1,	l10]

[0.4,	l9]
[0.6,	l10]

[0.9,	l9]
[0.1,	l10]

[0.4,	l9]
[0.6,	l10]

[1,	l11]

l5 l5

l3

l4 l5 l6 l7l3

l4l3 l4

l6 l7

l1

l0

[0.2,	l3]
[0.8,	l4]

[0.2,	l3]
[0.8,	l4]

Figure 15: Learned PST for the Program 14a. The red crossed nodes identify
pruned nodes in the location PST of l2.

PST that are eliminated during the pruning phase in the location PST
of l2. In particular, in this example, starting from the leaf l0 the next-
symbol probability distribution of the context l2l1l0 (shown as a label of
that node) is compared with that of its father context l2l1. Since they
are equal, the corresponding Kullback-Leibler divergence is zero and l0

is removed from the tree. Then, the same process is recursively iterated
by comparing the probability distribution of the context l2l1 with that of
the context l2, which similarly causes the removal of l1 from this location
PST.

The resulting PST, as expected from Subsection 5.1.1, indicates that
the program exhibits variable-length memory; e.g., PL l2, corresponding
to the first branching condition, has a memoryless distribution towards
its reachable locations, l3 and l4, with numerical values that are consis-
tent with the one induced by the program. Conversely, l8, corresponding
to the condition of the last branch b[2], has a next-symbol distribution of
memory of length 3, since it depends on the evaluation of b[0]. Indeed, by
traversing the PST we see, for example, that P(l9 | l6l5l3) = 0.8997 ≈ 0.9

and P(l9 | l6l5l4) = 0.3997 ≈ 0.4.
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5.1.4 Computational complexity of ProgramToVLMC

To study the complexity of ProgramToVLMC, we take α = 1.0 and nmin =

1, since this leads to the largest possible PST. In addition, we focus only
on Algorithm 2 because it is the computational bottleneck. For this analy-
sis, we let r and n denote the number of sequences and maximal length of
a path of the CGF, respectively (i.e., we have at most n PLs). The creation
of the suffix array takes O(rn) time [77]. The complexity of Algorithm 2
is O(n2) for each path of length n, since it resembles the basic algorithm
for the suffix tree construction [60]. In addition, considering that in the
worst case the algorithm generates a new path for each simulation run,
we have a worst-case cost of O(rn2) for the creation of the whole context
tree. For each node, the cost for computing the next-symbol probability
distribution is O(log(rn) + n) for counting through the suffix array [86].
Hence, Algorithm 2 takes O(rn2(log(rn) + n)) time. The pruning phase
does not worsen the computational complexity because it only involves a
backward visit of the PST, paying a constant price for each node (i.e., the
comparison of the corresponding next-symbol probability distributions
involve at most 2 outgoing PLs). Therefore, overall, ProgramToVLMC
takes O(rn2(log (rn) + n)) time.

The state-of-the-art approaches in [30] and [110] take time O(rn log(rn))

and O((rn)2n), respectively.2 Thus, we have:

O(Alg. [30]) < O(ProgramToVLMC) ≤ O(Alg. [110]) (5.1)

The leftmost inequality is implied by the relationship

rn log(rn) < rn2 log(rn) < rn2(log(rn) + n).

The rightmost inequality derives from O(rn2(log(rn)+n)) < O(rn2(rn+

rn)) = O((rn)2n). The experimental evaluation conducted in Section 5.2
numerically supports this asymptotic relationship. Moreover, it shows
that although ProgramToVLMC does not improve the theoretical com-
plexity of the learning process, thanks to the heuristics defined in this

2For the latter, the complexity bound is not explicitly stated in the original paper but can
be derived from [17].
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section, we are able to extract VLMCs generated by benchmark programs
that would not be analyzable through the currently available state-of-
the-art implementations.

5.2 Numerical evaluation

In this section, we numerically evaluate the accuracy of ProgramToVLMC
on the 9 considered benchmark programs. We conduct a sensitivity anal-
ysis with respect to the configuration hyper-parameters, and we compare
ProgramToVLMC with the state-of-the-art general-purpose VLMC learn-
ing techniques. All the presented experiments are conducted with a pro-
totype Java implementation of both the ProgramToVLMC algorithm and
the benchmarks, on a Linux machine with 48 cores and 60GB of memory.
The benchmarks are the following:

• Double Loop [35]: It is composed of two loops executed in se-
quence, each iterating a number of times random between 0 and
30. This is considered as our base case because it can be formally
proven as memoryless and hence with this benchmark we can eval-
uate the ability of our approach to producing a VLMC of proper
order.

• Nested Loop [35]: It is composed by two nested loops. For each
loop, the number of iterations is random between 0 and 20.

• Bubble Sort, Insertion Sort and Quick Sort [39]: For these, the
input is an array of size 9 with random 32-bit integer values.

• Binary Search [39]: It implements the binary search looking for
a random generated 32-bit integer y in an array of 100 elements
uniformly distributed in the 32-bit integer set. The value of y is
chosen such that the probability of finding it in the array is 20%.

• Square root Newton [117]: It computes the square root value of
a random variable between 0 and 100000 in the double-precision
floating-point set, using Newton’s method.
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• Euclid Algorithm [117]: It computes the greatest common divisor,
using Euclid’s algorithm, of two variables, uniformly distributed
between 0 and 200.

• Miller-Rabin [97]: It implements the Miller-Rabin primality test.
Given a uniformly distributed integer variable x between 0 and
1000 it checks if x is prime or not. Unlike the other programs, it
is a randomized algorithm, i.e., it employs probabilistic statements
as part of its logic.

We generated the learning traces of each benchmark using uniform
distributions of the inputs. However, it is also allowed to use any other
probability distributions within the approach. Furthermore, the models
learned with our approach are compared with the ground-truth, i.e., the
empirical behavior of the program exercised many independent times
with input values drawn from a uniform distribution, using as a measure
of performance the density function of the number of visited program
locations until reaching the program termination.

To obtain statistically robust estimates, while executing independent
samples from each benchmark and obtaining independent batches, we
stop to collect traces when the KL divergence of two successive distribu-
tions was less than a threshold (i.e, 10−5). The KL test is meaningful since
it is commonly employed to quantify the information loss when one dis-
tribution is used in place of another [18]. We remark that a divergence
tending to zero indicates high fidelity of the approximating distribution.

5.2.1 Accuracy evaluation

In this subsection, we evaluate the accuracy of ProgramToVLMC with
configuration parameters α = 1 and nmin = 1, comparing the simula-
tion of the learned PST, i.e., V , with the ground-truth distributions,i.e.,
E, of the number of steps to the termination. The number of runs of both
the simulations of E and V is the same and it is determined at least to sta-
tistically well capture the program’s dynamics, as explained previously.

In the Figure 16 numerical evaluation of the accuracy of the proposed
approach is reported. The results show that with a sufficient number of
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samples, i.e., traces generated by the adequate number of runs, Program-
ToVLMCfollows the ground-truth evolutions with extremely high accu-
racy, resulting in overlapping functions of the number of steps to ter-
mination in all the considered cases, and KL divergence values always
below 10−4.
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(a) Double Loop [35], DKL(E ∥ V ) = 3.63 × 10−5, VLMC order 31, number of
runs 106
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(b) Nested Loop [35], DKL(E ∥ V ) = 7.58 × 10−4, VLMC order 22, number of
runs 6× 105
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(c) Bubble sort [39], DKL(E ∥ V ) = 6.45 × 10−5, VLMC order 84, number of
runs 106

5 10 15 20 25 30 35 40 45
Steps

0

0.02

0.04

0.06

0.08

0.1

P
r

Ground-truth Program (E)
VLMC Learned (V)

(d) Insertion Sort [39], DKL(E ∥ V ) = 1.01 × 10−4, VLMC order 48, number of
runs 5× 105
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(e) Quick Sort [39], DKL(E ∥ V ) = 5.35×10−5, VLMC order 81, number of runs
8× 105
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(f) Binary Search [39], DKL(E ∥ V ) = 8.76 × 10−4, VLMC order 17, number of
runs 2× 105
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(g) Square root using Newton’s method [117], DKL(E ∥ V ) = 1.21 × 10−5,
VLMC order 1, number of runs 5× 105
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(h) Euclid’s Algorithm [117], DKL(E ∥ V ) = 5.95×10−5, VLMC order 1, number
of runs 2× 105
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(i) Miller-Rabin primality test [97], DKL(E ∥ V ) = 1.30× 10−4, VLMC order 46,
number of runs 105

Figure 16: Comparison between the empirical (ground-truth) and simulated
(VLMC-learned) probability distributions of the number of steps until ter-
mination for the benchmark programs.

Yet, it is worth notice that ProgramToVLMC learns a VLMC of order 31
for the Double Loop program, which was instead supposed to be mem-
oryless by construction. This discrepancy is due to the choice of α = 1,
which prevent pruning nodes that are almost statistically equivalent to
their ancestors, but whose next-symbol probability distributions slightly
differ each other for a quantity that should be neglectable. Indeed, the
choice of α = 1 makes the comparison highly sensitive to the noise gener-
ated by empirically estimating such distributions by repeating indepen-
dent runs, and leads to an over-sized model. By using an infinitesimally
less stringent value of α (i.e., α = 0.999999), we would have obtained a
memoryless VLMC with DKL(E ∥ V ) = 7.72× 10−5.

5.2.2 Sensitivity evaluation

Here it is presented the sensitivity evaluation of ProgramToVLMC with
respect to its hyper-parameter α and nmin. Differently from the previ-
ous analysis, to evaluate the accuracy we rely on the notion of the log-
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Table 4: Sensitivity analysis with respect of pruning factor α and the param-
eter nmin. For each benchmark we used the same runs of the corresponding
ground-truth models (see Figure 16).

Double Loop Nested Loop Bubble Sort Insertion Sort Quick Sort

nmin α Order L #Nodes Order L #Nodes Order L #Nodes Order L #Nodes Order L #Nodes

1 1.0 31 77.37 1427 22 407.50 9200 84 717.21 1823996 48 220.59 1116394 81 464.25 1459552

1 0.9 1 77.37 62 22 408.55 8481 16 726.48 4736 1 221.91 53 40 479.49 20877
1 0.8 1 77.37 62 22 408.75 8456 16 726.53 4722 1 221.91 53 40 479.98 20515
1 0.7 1 77.37 62 22 408.88 8438 16 726.62 4704 1 221.91 53 40 480.40 20130

10 1.0 31 77.37 1427 22 407.50 9200 84 721.01 1305398 46 221.05 816131 80 466.00 930804
100 1.0 31 77.37 1427 22 407.50 9200 75 725.26 271741 38 221.68 139598 57 477.02 202583
1000 1.0 31 77.37 1427 22 407.50 9200 61 740.32 41580 29 221.87 21987 39 524.94 32388

likelihood function L of a VLMC, as defined in [91]. This metric is in-
deed commonly employed for measuring the goodness of fit of statistical
models to a dataset [98]: lower the value of L greater the accuracy. Fur-
thermore, the log-likelihood metric allows the comparison also between
distributions that have different supports, which is required instead for
KL divergence. A metric with the possibility of having different supports
was needed because the choice of hyper-parameters can have a signifi-
cant impact on the shape and the support of the learned model.

Table 4 reports the sensitivity analysis with respect to the pruning
factor α and to nmin; each model was learned using the same number
of runs of the corresponding ground-truth distribution (see Figure 16).
Columns Order and #Nodes represent the order and the total number of
nodes, respectively, of the learned VLMC (before Markovianization, see
Section 3.4.3). In the first row of the table, we find the reference values
of the order, the number of nodes, and log-likelihood when we learn the
vlmc as faithfully as possible, with α = 1.0 and nmin = 1.

As expected, decreasing values of α tend to considerably smaller size
of the learned models, but to larger prediction errors, i.e., higher log-
likelihoods. We observe the same trend but with a worse compression by
increasing nmin. Furthermore, when the process is particularly complex
and has a higher variance, e.g., Bubble Sort and Quick Sort, the wors-
ening in the accuracy appears to be significantly greater by decreasing
nmin then decreasing α. There are yet cases where smaller α does not
impact on precision but causes significant compression of the learned
model,e.g., Double Loop and Insertion Sort. For Double Loop, the re-
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sults confirm that values of α less than 1.0 yield a memoryless model,
and with inputs uniformly distributed also the Insertion Sort is memo-
ryless. The same fact does not hold for higher nmin values that cannot
detect memoryless behaviors. The other examples show variable mem-
ory length.

5.2.3 Comparison with state-of-the-art

In this subsection, we evaluate the scalability, in terms of runtime and
memory allocation, of our code-specialized algorithm, against general-purpose
VLMC learning algorithms originally introduced in [30] and [110], by
comparing our prototype with the implementations available in [91] and [47],
respectively.

We limit this analysis only to the two benchmarks Double Loop and
Nested Loop, due to technical limitations of the available implementa-
tions leading to the impossibility of executing them with other more
complex programs in a reasonable runtime or in feasible memory re-
quirements, e.g., using [91] requires more than 60 GB of RAM for learn-
ing the VLMC of Quick Sort on an array of size 3. Other limitations
concern also the maximum number of allowed symbols (i.e., the PLs in
our case). Double Loop and Nested Loop, instead, were the only suit-
able benchmarks for a meaningful assessment of scalability with respect
to increasing program sizes.

Furthermore, these programs are representative cases because they
are opposite in memory requirements and thus in the resulting order of
the learned VLMCs. While the Double Loop is memoryless the Nested
Loop presents high-impact, long memory effects. For the sake of fair-
ness, the learning was conducted using the same value for the two hyper-
parameters (i.e., α = 1.00, nmin = 1) and with the same number of statis-
tically independent runs (see Figure 16). We verified by manual inspec-
tion that all algorithms provide the same precision, equivalent VLMCs;
up to small numerical differences, which are traceable back to the use of
different statistical tests in the pruning phase.

Table 5 reports the results of our comparison about the execution time
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Table 5: Comparison of runtimes (column T) and peak memory usage (col-
umn M) of ProgramToVLMC and the algorithms [30] and [110] by means of
their implementations in [91] and [47], respectively.

Double Loop Nested Loop

ProgramToVLMC [91] [47] ProgramToVLMC [91] [47]

#I T (s) M (GB) T (s) M (GB) T (s) M (GB) #I T (s) M (GB) T (s) M (GB) T (s) M (GB)

10 5 0.62 46 8.97 168 0.87 4 5 0.49 1 0.27 229 0.92
15 8 0.70 92 16.00 454 1.15 5 7 0.60 100 12.98 626 1.16
20 12 0.87 152 21.90 1024 1.43 6 9 0.84 161 19.56 1499 1.49
30 24 1.68 373 40.06 3530 1.90 8 16 0.93 617 45.49 7392 2.19

and peak memory occupation of the algorithms for learning VLMCs of
the two benchmarks with increasing complexity, represented by the col-
umn #I , i.e., the number of the loop iterations. Thanks to the fact that
we efficiently exploit structural information about the program, and con-
sider only the next-symbol probabilities between PLs that are connected
by transitions in the CFG, we considerably outperform both approaches
in the considered metrics. For example, ProgramToVLMC shows con-
siderably less memory consumption respect the approach of Maechler et
al. [91]. Indeed, they [91] do not limit the maximal order of the learned
VLMC and for each context in the collected traces, they analyze all the
preceding symbols to discover statistical dependencies; with a poten-
tially huge number of spurious paths being explored, including those
across two consecutive statistically independent runs. Moreover, the
pruning phase in [91] is invoked only after the complete creation of the
PST. Instead, Algorithm 1, ProgramToVLMC prunes each location PST,
leading to earlier memory release.

We observe that instead [47] consumes much less memory than [91].
They indeed avoid considering conditional probabilities among two con-
secutive independent runs, by asking for the specification of the maximal
order of the resulting VLMC as an input parameter. We still outperform
their approach in terms of execution times, although the worst-case com-
putational complexities are similar (cf. Section 5.1.4). This can be ex-
plained by the fact that without considering the CFG information, they
ignore the sparse nature of the transition matrix of a program, where

82



each state (i.e., PL) has at most two possible transitions, assuming in-
stead that the state space is fully connected and computing for each node
of the PST the frequencies of next-symbol with respect of all existent PLs.
As a final remark, we remember that also albeit [91] works on a fully con-
nected model, its computation time does not explode with the dimension
of the input because of its lower computational complexity.

5.2.4 Tuning the granularity level

In this subsection, we will present the preliminary experiments that we
perform in order to improve the scalability of the proposed approach
to learn models of increasing size, e.g., Bubble Sort with more than 9
elements. The key idea is to consider a different degree of granularity
rather than the single instruction, still considering the number of steps to
completion as performance metric. We focus on Bubble Sort and Quick
Sort because they are the most complex problems among the benchmarks
considered in the previous analyses.

Listing 5.1 shows an example of the Xtend [19] generator we use for
unrolling of Bubble Sort, with the inner loop grouped to be considered
as a whole. The state representing the group takes values in the natural
numbers, in this example between 0 and 40, representing the sum of PLs
executed within the group.

It is worth noticing that this compression implies information loss: by
grouping several conditions inside a block and considering only the sum
of PLs executed, we are losing the information concerning all probabil-
ities of specific paths inside the block, obtaining an aggregate measure.
Yet, it allows the developer to apply the methodology even to larger pro-
grams.

Table 6 shows the scalability improvement obtained with aggregate
measures, where BSort represents the original unaggregated bubble sort
while BSort Group the one considering the inner loop as a group with the
aggregated number of steps; the fit time represents the time necessary
to build the VLMC in milliseconds, and #Nodes the number of nodes
of the resulting pruned VLMC. With fitting times below 105 seconds, we
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def static bubbleSortGroup(){
’’’
/*@Block:{name:=bubbleSortGroup3;param:=(int [] arr);return:=int

[];}*/
int n = arr.length;
int temp = 0;

/*@Loop:{unroll:=20;}*/
for(int i=0; i < n; i++){/*@Edge:{cost:=1;}*/
/*@Group:{min:=0;max:=40;}*/{

/*@Loop:{unroll:=20;}*/
for(int j=1; j < (n-i); j++){/*@Edge:{cost:=1;}*/

if(arr[j-1] > arr[j]){/*@Edge:{cost:=1;}*/
//swap elements
temp = arr[j-1];
arr[j-1] = arr[j];
arr[j] = temp;

}
}

}
}
return arr;
’’’

}

Listing 5.1: Example of the Xtend generator we use for the Bubble Sort
Group experiment

were able to model the BSort until input size of 10 elements, while the
BSort Group until 19. We used for this comparison 8 · 105 runs.

The results of the metric the number of steps to completion remain
accurate, as we can notice from the comparison between the probability
density functions of BSort and BSort Group with input array of size 10, in
Figure 17a and from the mean and the variance in Table 17b. We validate
the accuracy of the BSort Group even in the largest experiment with an
input array size of 19; in this case comparing the BSort Group with the
empirical distribution, i.e., ground-truth. Figure 18a shows the compar-
ison between the two probability distribution functions, while Table 18b
the mean and variance values.

For the Quick Sort experiment, we detect two different granularity
levels, the unaggregated QSort, the one aggregating the first of the two
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Table 6: Scalability analysis of the Bubble Sort with respect to two different
granularity levels: the unaggregated Bsort and the aggregated BSort Group;
the ‘x’ values represent experiments not performed due to time and memory
limits.

Fit time (ms) #Nodes

#El BSort BSort Group BSort BSort Group

7 4.5 · 104 4.7 · 102 2.5 · 104 5.9 · 102
8 5.8 · 105 1.2 · 103 2.1 · 105 1.9 · 103
9 4.1 · 106 4.1 · 103 1.8 · 106 6.3 · 103
10 2.7 · 107 1.3 · 104 1.1 · 107 2.1 · 104
. . . . . . . . . . . . . . .
15 x 9.1 · 105 x 1.5 · 106
16 x 1.8 · 106 x 2.5 · 106
17 x 3.9 · 106 x 3.7 · 106
18 x 5.2 · 106 x 5.1 · 106
19 x 6.5 · 106 x 6.6 · 106

loops in sequence, denoted by QSort Group, and the one considering both
the loops as two aggregated values for the number of steps, denoted by
QSort 2Groups.

Table 7 shows the scalability improvement obtained with aggregate
measures. With fitting times below 108 we were able to model the QSort
until input size of 10 elements, while the QSort Group and the QSort
2Groups until 19. We used for this comparison 8 · 105 runs. Although
we can observe a great compression between the QSort and both the oth-
ers, there is not a great difference in size between QSort Group and the
QSort 2Groups.

In the accuracy evaluation of the Quick Sort with input arrays of dif-
ferent sizes, in Figure 19 and 20 we can observe that the three experi-
ments, i.e. QSort, Qsort Group and QSort 2Groups, show comparable pre-
cision. The most compressed QSort 2Groups PDF, for input arrays of 19
elements, faithfully follows the empirical curve of observed behavior for
the number of steps to completion metric.
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Figure 17: Comparison between BSort and BSort Group with input size 10:
(a) PDFs comparison, (b) mean values and variance comparison with also
the empirical distribution (ground-truth).
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Figure 18: Comparison between the empirical and BSort Group with input
size 19: (a) PDFs comparison, (b) mean values and variance comparison.
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Table 7: Scalability analysis of the Quick Sort with respect of three different
granularity levels; the ‘x’ values represent experiments not performed due
to time and memory limits.

Fit time (ms) #Nodes

#El QSort QSort Group QSort 2 Groups QSort QSort Group QSort 2 Groups

7 5.8 · 104 1.7 · 103 5.8 · 102 2.5 · 104 1.3 · 103 1.1 · 103
8 2.1 · 106 3.2 · 104 1.9 · 103 1.8 · 105 4.1 · 103 3.6 · 103
9 5.4 · 106 1.2 · 104 7.0 · 103 1.5 · 106 2.3 · 105 1.2 · 104
10 1.6 · 107 6.6 · 104 2.7 · 104 7.8 · 106 7.7 · 105 3.9 · 104
. . . . . . . . . . . . . . . . . . . . .
13 x 1.3 · 106 7.8 · 105 x 8.8 · 105 7.8 · 105
14 x 2.6 · 106 1.7 · 106 x 1.8 · 106 1.6 · 106
15 x 7.4 · 106 2.6 · 106 x 3.3 · 106 2.8 · 106
16 x 1.1 · 107 4.3 · 106 x 5.1 · 106 4.3 · 106
17 x 1.7 · 107 6.9 · 106 x 7.1 · 106 6.0 · 106
18 x 3.1 · 107 1.1 · 107 x 9.2 · 106 7.6 · 106
19 x 3.8 · 107 1.4 · 107 x 1.1 · 107 9.3 · 106
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Figure 19: Comparison between QSort, QSort Group and QSort 2Groups
PDFs with input array size of 9: (a) PDFs comparison, (b) mean values and
variance comparison between the empirical (ground-truth), QSort, QSort
Group and QSort 2Groups.
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Figure 20: Comparison between the empirical and QSort 2Groups PDFs with
input array size of 19: (a) PDFs comparison, (b) mean values and variance
comparison.
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Chapter 6

Conclusion

In this dissertation, we addressed the problem of software system mod-
eling for both memoryless and memoryfull processes. In the former sce-
nario, the key idea was to interpret the stochastic process of a network
of many stations providing different services, i.e., a queuing network, as
a deterministic system of ordinary differential equations. Thanks to the
mean-field approximation we are able to analyze systems in both tran-
sient and stationary regimes [68, 71], differently from most of previous
approaches [40, 41, 96, 102, 120, 121, 125, 132], which rely on an equation
that holds only with measured steady-state values of utilization and/or
throughput.

Another strength of our approach is being non-intrusive in the sys-
tem instrumentation, requiring only queue-length measurements, easily
available at the operative system layer, instead of many others requir-
ing active probing, i.e., stressing with load testing and/or injecting ex-
tra traffic into the running system, causing performance degradation of
the system under inspection [87]. With a numerical evaluation, we pro-
vide the evidence of the effectiveness of our service demands estimator
with networks of increasing sizes, see Section 4.3.4, and comparing in
Section 4.3.4 with the Queue Length Maximum Likelihood Estimation
(QMLE) in [133]; most similar to our in considering only queue-length
observations.
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Moreover, we provide a method to discover the entire topology of the
system, comprising of routing probability matrix of connection among
stations, with a fast linear programming formulation. We performed
various what-if analyses varying system configurations after the model
learning, always obtaining accurate predictions, see Section 4.4.2. In this
case, we compared with the only approach we knew that could model
the system’s topology, i.e., Garbi et al. [50]. In Section 4.4.2 there is the
numerical evaluation that demonstrates how we outperform [50] and
provide more accurate estimates.

For memoryfull process modeling, we employ variable-length Markov
chains (VLMC), which are a compact representation of the processes show-
ing variable length memory, and it is still correct and without informa-
tion losses. VLMC allows us to exploit an approximation based on the
trade-off between precision and the amount of history to incorporate
in the retained contexts, cutting down memory requirements and being
able to learn a real program as a Markov model for the first time in liter-
ature [70].

We numerically evaluate our approach’s ability to generate a model
that accurately reproduces the program’s dynamics in the considered
performance metric, i.e., the number of steps to completion; see Sec-
tion 5.2.1. And we demonstrate the effectiveness and time and memory
efficiency of ourselves, comparing with general-purpose learning VLMC
learning algorithms, i.e., [47, 90], whose massive cost prevents their us-
age even for programs of small/medium sizes; see Section 5.2.3. Further-
more, in Section 5.2.4 we presented a preliminary study of the scalability
of the approaches by considering different granularity levels and mea-
suring the time needed for VLMC learning and the number of states of
the resulting model, which is a measure of the memory consumption.

Limitations and future work. The limitation of service demands and
topology estimators is to consider only single-classes queuing networks
with exponentially distributed service times. We aim at extending the
approaches also to more complex models as multi-classes and layered
QNs; and to consider also non-exponential distributions of the stations,
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e.g., by fitting service demands against phase time distributions [68].
This requires addressing the nontrivial problem of variance estimator.
Yet, it could be particularly feasible when the routing probability matrix
is known by considering queue-length measurements instead of predic-
tions in the ODEs over the entire observation window.

Unfortunately, statistical convergence requires a large number of pro-
gram runs [70]. As mitigation, it would be possible to parallelize the
analysis by running independent samples on separate cores. However,
this would require developing an algorithm to merge the several VLMCs
learned by the workers, which is not straightforward. Further improve-
ments, which we leave for future work, are the integration with symbolic
execution (cf. [76]) and rare event sampling techniques [29]. The main
idea could be to use symbolic execution to generate the path conditions
enabling the exploration of the least likely regions of the program and
then use such conditions as constraints to guide the dynamic evaluation
toward these regions. Other more sophisticated techniques that could be
exploited are importance sampling [56, 74] and concolic testing [93, 134].

We demonstrate how our method can improve the performance of
existing approaches even without improving the theoretical complex-
ity [70]. Although the performance gain is significant both in mem-
ory consumption and computing times, extracting VLMCs from com-
plex programs could still be prohibitive given the intrinsic difficulty of
programs. The number of the program’s contexts, indeed, grows expo-
nentially with the number of branches [70]. For tackling this issue, we
plan to further improve the computational complexity of the algorithm
following the approach presented in [3]. We would develop a linear time
and space algorithm, i.e., O(rn), with an empirical complexity close to
the simulation time. Parallelization could also help to reduce the com-
putational time needed, by learning independently the location PSTs (see
Section 9), similarly to [106].

Finally, we could envisage integrating the creation of the VLMC with
static program analysis, like model counting [34] or probabilistic sym-
bolic execution [52].
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[46] Filieri, A., Păsăreanu, C.S., Visser, W.: Reliability analysis in sym-
bolic Pathfinder. In: Proc. Int’l Conf. Software Engineering (ICSE).
pp. 622–631 (2013)

[47] Gabadinho, A., Ritschard, G.: Analyzing state sequences with
probabilistic suffix trees: The pst r package. Journal of statistical
software 72(3), 1–39 (2016)

[48] Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling loops in
bounded model checking of c programs via k-induction. Interna-
tional Journal on Software Tools for Technology Transfer 19(1), 97–
114 (2017)

[49] Galata, A., Johnson, N., Hogg, D.: Learning variable-length
markov models of behavior. Computer Vision and Image Under-
standing 81(3), 398–413 (2001)

[50] Garbi, G., Incerto, E., Tribastone, M.: Learning queuing networks
by recurrent neural networks. In: Proceedings of the ACM/SPEC
International Conference on Performance Engineering. pp. 56–66
(2020)

[51] Garcia, J., Krka, I., Mattmann, C., Medvidovic, N.: Obtaining
ground-truth software architectures. In: Proc. Int’l Conf. Software
Engineering (ICSE). pp. 901–910 (2013)

[52] Geldenhuys, J., Dwyer, M.B., Visser, W.: Probabilistic symbolic ex-
ecution. In: ISSTA. pp. 166–176 (2012)

99



[53] Geldenhuys, J., Dwyer, M.B., Visser, W.: Probabilistic symbolic ex-
ecution. In: Proceedings of the 2012 International Symposium on
Software Testing and Analysis. pp. 166–176 (2012)
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