
IMT Institute for Advanced Studies, Lucca

Lucca, Italy

A Framework to Support Consistent Design and
Evolution of Adaptive Systems

PhD Program in CSE

XXIV Cycle

By

Marco Mori

2012

http://www.imtlucca.it
mailto:marco.mori@imtlucca.it

The dissertation of Marco Mori is approved.

Program Coordinator: Prof. Rocco De Nicola, IMT Institute for Ad-
vanced Studies, Lucca

Supervisor: Prof. Paola Inverardi, University of L’Aquila

Individual Evaluation Committee :

Prof. Rocco De Nicola, IMT Institute for Advanced Studies, Lucca

Prof. Antonia Bertolino, Consiglio Nazionale delle Ricerche, Pisa

The dissertation of Marco Mori has been reviewed by:

Prof. Anthony Cleve, University of Namur, Belgium

Prof. Klaus Pohl, Lero, Limerick, Ireland - University of Duisburg-Essen,
Germany

IMT Institute for Advanced Studies, Lucca

2012

http://www.imtlucca.it

Contents

List of Figures viii

List of Tables x

Acknowledgments xi

Vita and Publications xii

Abstract xv

1 Introduction 1
1.1 Problem statement . 2
1.2 Research questions . 4
1.3 Contributions . 6
1.4 Structure . 7

2 Background 9
2.1 Adaptive Systems . 9
2.2 Context-aware systems . 11
2.3 Context Models . 11

2.3.1 Context models approaches 12
2.3.2 Context modeling evaluation 13

2.4 Phases for building adaptive system 14
2.4.1 Requirement engineering for adaptive systems . . . 14
2.4.2 Design for adaptive system 16
2.4.3 High level design . 17

v

2.4.4 Low level design . 20
2.4.5 Context-aware middleware 22

2.5 Assurance . 25
2.6 Framework for adaptive systems 27
2.7 Support to foreseen evolutions 29

3 Approach 32
3.1 Taxonomy of the evolution 32
3.2 Software Product Line Engineering perspective 33
3.3 Case Studies . 34

3.3.1 eHealth application 34
3.3.2 Mandelbrot fractal 36

3.4 Context model . 36
3.5 Requirements taxonomy . 38

3.5.1 Context requirements 39
3.6 Adaptive application . 39

3.6.1 Feature . 40
3.6.2 System variant . 42
3.6.3 Examples . 43
3.6.4 Feature diagram . 44

3.7 Formalization of evolution and execution 45
3.7.1 Semantic rules . 47

3.8 Evolution consistency . 49
3.8.1 Requirements for requirements at run-time 50
3.8.2 Context analysis . 51
3.8.3 Model checking context-independent requirement . 55

4 Software Process for Adaptive Systems 60
4.1 Software Process . 60

4.1.1 Example: mandelbrot fractal 63
4.2 System Evolution . 66

4.2.1 Foreseen Evolution 66
4.2.2 Unforeseen Evolution 69

vi

5 Static decision-making reconfiguration 74
5.1 Motivating scenario . 75
5.2 Basic model . 76

5.2.1 Operative context model 77
5.2.2 Variants . 77
5.2.3 User Context Model 78
5.2.4 Transition cost . 79

5.3 Rankings of the variants . 80
5.4 Case Study . 82
5.5 Experiment . 86

6 Evolution framework 90
6.1 MAPE cyle . 90
6.2 Framework interface architecture 92
6.3 Framework instance . 92

6.3.1 Description . 93
6.3.2 Framework primitives 95

6.4 Mandelbrot fractal application 96
6.4.1 Application without framework 97
6.4.2 Application with framework 99
6.4.3 Evaluation . 103

7 Conclusion 105

A Variants examples 108

References 112

vii

List of Figures

1 Event-Control-Action pattern structure 17
2 Context Source and Managers Hierarchy pattern structure 18
3 Action pattern structure . 19
4 Unifying middleware archietecture 24

5 System Evolutions . 33
6 E-Health architecture . 35
7 Context model (a) eHealth application (b) Mandelbrot frac-

tal application . 38
8 Syntax of context requirements 39
9 Feature fgraphOx = (RgraphOx, IgraphOx, CgraphOx) 41
10 Feature fgenPro = (RgenPro, IgenPro, CgenPro) 42
11 Example: class diagram (G1) 44
12 Feature diagram . 46
13 System state-based model 47
14 New feature: graphical visualization (eHealth) 54
15 New feature: textual visualization (eHealth) 55
16 Example: graphical oxygenation 56
17 Example: graphical respiratory rate 57
18 Visualization interaction . 58

19 Software process . 61
20 Application features . 64
21 Probabilistic evolution automata 67

viii

22 Example: new feature . 71
23 Refined feature diagram . 72

24 User Preferences Example 75
25 Conceptual Model . 76
26 Probabilistic automaton excerpt 79
27 User Context Automata . 84
28 Normalized average user benefit (a) and normalized av-

erage reconfiguration cost (b) with h = 1.0, h = 0.5 and
h = 0.2 depending on utility objectives weights α. 87

29 Pareto-optimal and sub-optimal configurations 88

30 MAPE cycle . 91
31 Evolution framework architecture 93

ix

List of Tables

1 System variants . 65
2 Feature consistency table . 66
3 Variant consistency table . 66
4 Refined variant consistency table 72

5 System variants . 83
6 Distance evaluation . 84
7 Evaluation of the variants 86

x

Acknowledgements

Firstly I would like to thank my supervisor Prof. Paola Inver-
ardi for having introduced me to the research world. I have
been very fortunate to have a supervisor who constantly sup-
ports my research activity and provides me essential feed-
backs for my daily work. I am very grateful to her for her
pragmatic support to my research. I would also like to thank
Prof. Marco Autili for having giving me valuable contribu-
tions to my research. I thank my supervisor and the Uni-
versity of L’Aquila for having economically supported my
participation to conferences, workshops and summer schools
which are essential for the research work.

I would like to thank everyone that helped in my PhD activ-
ities and everyone that supported me during this very inten-
sive three years. I thank my family and my friends for giving
me the encouragement. Finally, I sincerely thank Lucia who
has given me the strength to face any problems.

xi

Vita

September 25, 1984 Born in Chiaravalle, Ancona, Italy

2006 Bachelor of Science (B.Sc.) Degree in Computer
Science
Final mark: 110/110 with honors
University of Camerino, Macerata, Italy

2008 Master of Science (M.S.) Degree in Computer Sci-
ence
Final mark: 110/110 with honors
University of Camerino, Macerata, Italy

2008-2009 (1-year) Scholarship under the supervision of
Prof. Flavio Corradini, Prof. Emanuela Merelli
and Dr. Alessandro Olivi
LULab Research Group, University of Camerino,
Macerata, Italy - “Gruppo Loccioni”, Angeli di
Rosora, Italy

2010-2011 (6-month) Visiting Phd student at the “Dis-
tributed Systems Group, Information Systems
Institute” at Vienna University of Technology in
Austria under the supervision of Prof. Schahram
Dustdar, Dr. Fei Li and Dr. Christoph Dorn

xii

Publications

1. Paola Inverardi and Marco Mori, “Feature oriented evolutions for context-
aware adaptive systems”, in Proceedings of the Joint ERCIM Workshop on
Software Evolution (EVOL) and International Workshop on Principles of
Software Evolution (IWPSE), pages 93-97, 2010.

2. Marco Mori, “A software lifecycle process for context-aware adaptive sys-
tems”, in Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, pages 412–
415, 2011.

3. Paola Inverardi and Marco Mori, “Model checking requirements at run-
time in adaptive systems”, in Proceedings of the 8th Workshop on Assur-
ances for Self-Adaptive Systems (ASAS), pages 5–9, 2011.

4. Paola Inverardi and Marco Mori, “Requirements models at run-time to
support consistent system evolutions”, in Proceedings of the 2nd Interna-
tional Workshop on Requirements@Run.Time (RE@RunTime), pages 1–8,
2011.

5. Marco Mori, Fei Li, Christoph Dorn, Paola Inverardi, and Schahram Dust-
dar. “Leveraging state-based user preferences in context-aware reconfigu-
rations for self-adaptive systems”, in Proceedings of the 9th International
Conference on Software Engineering and Formal Methods (SEFM), pages
286–301, 2011.

6. P. Inverardi, M. Mori. “A Software Lifecycle Process to Support Consis-
tent Evolutions”, 2nd book on Software Engineering for Self-Adaptive Sys-
tems, 2012.

xiii

Presentations

1. M. Mori, “Engineering Context-Aware Adaptive Systems” Poster Presen-
tation at University of Oulu, Finland, 2010.

2. Paola Inverardi, M.Mori, “Feature oriented evolutions for context-aware
adaptive systems” Seminar at University of L’Aquila, Italy, 2010.

3. M. Mori, “Engineering Context-Aware Adaptive Systems” Seminar at Vi-
enna University of Technology (TU), Distributed Systems Group - Informa-
tion Systems Institute, Vienna, Austria, 2011.

xiv

Abstract

Nowadays software systems in the ubiquitous environment
have to consider variability as their main characteristic. The
ever-changing environment affects these systems and their
ability of satisfying functional and non-functional requirements.
It is challenging to create and to support the variability of
such applications taking into account different variability di-
mensions. Traditional software processes are not suited for
adaptive applications since they consider a fixed definition
of context and a clear division between design-time and run-
time activities. Attempts to manage variability are only fo-
cused at specific phases of the process while it is missing a
comprehensive process to face variability at all phases thus
supporting the complete creation and the evolution of adap-
tive applications.

The thesis aims to give a possible solution to these problems
by defining a new software lifecycle process for building and
evolving adaptive applications in a consistent manner. A sys-
tem is represented following a feature engineering perspec-
tive which considers together requirements and code artifacts.
We have identified which are the inconsistencies for evolv-
ing a system and we have discovered that in order to keep
the correctness of the evolution it is necessary to consider
system models ranging from the model space to the solu-
tion space. The proposed process encompasses two differ-
ent kinds of evolution: design-time and run-time evolutions.
Design-time evolutions are planned before running the sys-
tem by means of a set of variants whose behavior consis-
tently fit a set of predefined contexts. These alternatives are

xv

checked for inconsistencies at design time whereas reconfig-
uration decisions are taken at run-time based on the current
context. Results shows that it is promising to consider predic-
tive information for selecting the best reconfiguration espe-
cially in the presence of multiple competing objectives. Run-
time evolutions are enacted by enhancing the system with
new requirements that may be introduced by the user as a
consequence of unpredicted context situations. In this case
the consistency check for a new alternative behavior is per-
formed directly at run-time.

The proposed process is supported by an evolution frame-
work. The framework is defined in terms of a generic def-
inition and one possible instantiation. The generic interface
architecture describes the interfaces that should be provided
to support the software process for adaptive systems. A pos-
sible instantiation with current technologies shows the feasi-
bility of supporting the process.

xvi

Chapter 1

Introduction

As ubiquitous computing systems are becoming increasingly popular,
software engineers have to deal with different variability dimensions
such as the heterogeneity of the underlying communications, executing
environment and changing user needs. In addition even the system may
be modeled as a source of changes taking into account the possible soft-
ware failures (AdLMW09). In this scenario adaptive systems are able to
modify their structure and / or behavior as a consequence of different
variability dimensions (ST09):

Self-adaptive systems aim to adjust various artifacts or attributes in response
to changes in the self and in the context of a software system. By self, we mean
the whole body of the software, mostly implemented in several layers, while the
context encompasses everything in the operating environment that affects the
systems properties and its behavior.

Software engineers support this system’s variability by defining the
set of possible software alternatives at design time. Consequently, the
system takes autonomously the actual reconfiguration decisions at run-
time. Context drives adaptivity since it determines which reconfigura-
tions are admissible and it helps to select the best reconfiguration pos-
sible. As a consequence it is necessary to explicitly model the context
as proposed in the literature of context-aware systems (BDR07; KPTV09;
HSK09).

1

Context is not completely known at design time thus making the pro-
cess of designing and developing ubiquitous applications continuing at
execution time (CdLG+09; GIM08; IT08). At design time software en-
gineers can only define software alternatives having in mind a partial
representation of the context in which the system is going to operate. In
addition resource-constraint devices limit the number of deployable al-
ternatives. Thus the set of software alternatives provided at design time
may have to be augmented in order to face new unforeseen environmen-
tal conditions. Whenever new context information becomes available at
run-time, the user may specify new requirements that are unknown to
the designer. As a consequence of a new requirement, the system should
automatically adapt/evolve itself in order to satisfy the new user’s ex-
pectations.

However, reconfigurations have to be completed maintaining the sys-
tem in a consistent state in order to avoid incorrect system behaviors. To
this end we propose a notion of high-assurance that is suited for adaptive
systems:

high-assurance provides evidence that the system satisfies continuously its
functional or non-functional requirements thus maintaining the user’s expecta-
tions despite predictable and unpredictable context variations.

Context plays a key role in the process of providing high-assurance
for adaptive systems. An effective high-assurance methodology should
provide guarantees with respect to predictable and unpredictable con-
text variations. Such a methodology should be performed at design time
to deal with predictable context variations and it should be performed
at run-time to support unpredictable context variations. At design time
it should be possible to check the assurance for a predefined set of soft-
ware alternatives whereas at run-time it should be possible to check un-
predicted software alternatives that satisfy unexpected user needs.

1.1 Problem statement

The thesis focuses on the problem of creating adaptive applications and
supporting their variability. In order to prevent the incorrect behaviors

2

that may be caused by system variability, it is necessary to define a no-
tion of consistency. By considering system models at different granu-
larity levels it is possible to capture a wide spectrum of inconsistency
notions. We consider system models ranging from the problem space
level to the solution space level, thus we take into account three differ-
ent phases namely requirements, design and implementation. At each
phase, context has to be explicitly modeled in order to account for vari-
ability. In the literature there exist different attempts to manage variabil-
ity at requirements, design and implementation level. These approaches
provide practical techniques to develop adaptive systems and to support
the activities of the specific phases. The main problem is the lack of a uni-
fied support which integrates all the phases together thus supporting a
complete lifecycle for adaptive applications.

A consensus is emerging in the SE community that adaptive appli-
cations demand for a different software engineering process where the
traditional distinction in phases and their characterization as static activ-
ities versus dynamic ones is disappearing (GIM08; IT08). A challenging
research problem is to define a software lifecycle process to enable soft-
ware engineers to design adaptive applications resilient to context and
user needs variations. This process should support consistent system
evolutions, thus maintaining the system goal satisfaction in the face of
new environmental conditions. To this end, evolutions should be both
functional and non-functional and they should be achieved exploiting
traceability links among system models at the different software engi-
neering phases. Requirements, design and implementation artifacts have
to be preserved at run-time along with a unified context model that sup-
ports their evolution. Models should be exploited by an integrated sup-
port in order to automate, as much as possible, the process of develop-
ing and evolving adaptive applications. This would enable the software
engineers to reuse a set of ”good practices” and tools for building and
maintaining such applications (Ost87).

3

1.2 Research questions

The thesis concentrates in defining a new system model which represents
adaptive applications at different levels and in defining a new method-
ology which entails the steps required to create such applications from
requirement artifacts to the corresponding code artifacts.

The objective of this thesis is to define a software lifecycle process for
adaptive systems. Through this process it should be possible to check
the correctness for the set of possible software variants. It should be also
possible to check the correctness for new variants that are dynamically
created at run-time as a consequence of unpredicted context variations.
The final goal of the thesis it to promote a set of good practices and to
devise a practical support for developing and evolving adaptive appli-
cations.

Within the overall objective of the thesis we have identified five dif-
ferent research questions:

• RQ1: How to manage context-dependent system variability? Which
abstractions for the system can better handle variability and how
could they support an automatic decision-making procedure?

• RQ2: How to classify context-dependent evolutions?

• RQ3: How to represent requirements models and their evolutions
at run-time?

Evolutions of requirements should be performed consistently. At
run-time a user may introduce a new requirement in the system,
thus it should be possible to check the already implemented re-
quirements along with the new one. As a consequence it is nec-
essary to keep a representation of requirements at run-time and to
enable their evolution.

• RQ4: How should the software lifecycle process deal with the un-
certainty coming from the environment?

Following the approach presented in (SBW+10) there are different
levels of uncertainty:

4

– level one: it is possible to estimate possible outcomes about
the future; there are variables with unknown values but there
is almost no uncertainty about the change.

– level two: there are exhaustive and mutually exclusive future
scenarios that can be listed.

– level three: there is a set of possible future scenarios, but they
are not exhaustive.

– level four: it is very difficult to identify future scenarios.

In the literature of context-aware systems the firsts two levels of
uncertainty have been addressed. Almost everything can be antic-
ipated thus it is sufficient for a software engineer to define a set of
predefined software alternatives. At run-time the system automat-
ically adopts the behavior that better fits a certain context.

In order to manage the two last levels of uncertainty it should be
possible to enhance the behavior of the system at run-time. For ex-
ample it should be possible to revise the space of the possible alter-
native behaviors to deal with new unforeseen contexts and system
alternatives.

• RQ5: How to perform reconfigurations taking into account com-
peting objectives?

Evolutions should provide the maximum user benefit possible while
they should be performed minimizing time and cost factors. There
exist reconfiguration processes which consider only few of the fol-
lowing factors: user preferences, cost, context variability and pre-
dictive information. In order to achieve better performance for the
reconfiguration process it seems to be valuable to consider all these
factors together in one formal framework.

5

1.3 Contributions

The thesis provides the following contributions:

• a system model able to manage variability ranging from the prob-
lem space (requirements) to the solution space (code). This model
is based on an explicit model of context which drives the evolution.

• two different notions of evolution: foreseen evolutions deal with
context variations that can be anticipated while unforeseen evolu-
tions deal with context variations that cannot be predicted at design
time.

• two notions of consistent evolution that can be applied to foreseen
and unforeseen evolutions. These notions exploit our system nota-
tion and they consider different abstractions of the system (require-
ments and code).

• a general lifecycle process for context-aware adaptive systems which
supports consistent evolutions. This process support the creation
of the adaptive application from the requirements definition to the
code implementation.

• a mechanism to reconfigure the system in order to augment it con-
sistently with new behaviors arising from new requirements at run-
time.

• a mechanism to select and execute the most suitable reconfigura-
tion in a given context. We have implemented a decision-making
mechanism as a multi-objective optimization problem which con-
siders current preferences, probable future preferences and a generic
reconfiguration cost component.

• a framework that supports a general lifecycle process for adaptive
systems in terms of a generic interface architecture and one of its
possible implementations with current practice technologies.

6

1.4 Structure

The thesis is divided in the following chapters:

• Chapter 2 introduces the definitions of adaptive system and con-
text. The Chapter surveys the state of the art for the approaches
and the frameworks that manage variability at requirement, de-
sign and implementation phases. It also introduces the problem of
providing assurance for adaptive systems.

• Chapter 3 describes how we model the system and its variability
following the feature engineering perspective. We describe two
different kinds of evolution and we formalize them through some
basic semantic rules. We show how it is possible to check the cor-
rectness of the system at design time and at run-time based on
two different mechanisms: a context analysis process and a model-
checking process. We give a detailed description of two adaptive
applications starting from two different case studies.

• Chapter 4 defines the software lifecycle amenable for adaptive sys-
tems. In this chapter we explain each single phase of the process
by applying it to one of the case studies introduced in Chapter 3.
We show how the process supports the two different types of evo-
lution.

• Chapter 5 describes a mechanism for selecting the best possible
reconfiguration decision by considering current and future con-
texts. In this chapter we introduce an ad-hoc case study to illustrate
the mechanism and we present a formalization of a multi-objective
optimization problem. Differently from most of the approaches
found in the literature, our generic decision-making process con-
siders multiple factors together. This makes our process config-
urable for many environments thus enabling the software engineer
to tune his interest on specific objectives.

• Chapter 6 describes our implementation to support the software
lifecycle process. This chapter gives a description of the interfaces

7

architecture which defines a generic framework. Based on the generic
framework we show one of its possible instantiations with current
practice technologies.

8

Chapter 2

Background

2.1 Adaptive Systems

Adaptive software systems are a class of software systems that can mod-
ify their behavior at runtime due to changes to the requirements, to the
environment in which the system is deployed or to the system itself.

The approach presented in (AdLMW09) defines a possible classifica-
tion for the key modeling dimensions of self-adaptive systems. The au-
thors propose a classification of the modeling dimensions for such sys-
tems based on four different groups, namely systems goals, causes of
adaptation, mechanisms to achieve adaptation, effects of adaptation and
causes of adaptation.

The system goal is associated with the lifetime of the systems or with
the scenarios associated to the system. The goal can be associated to
the adaptability aspects of the application, middleware or infrastructure.
Among the different dimensions characterizing this group, the flexibility
dimension can range over three different values: rigid, constrained and
unconstrained. The evolution dimension identifies whether the goal of
the system can change during the lifetime of the system. Thus evolutions
may be static if the goal does not evolve while they could be dynamic if
the goal can change at run-time. The duration dimension defines the per-
sistency of the goal; indeed while some goals can be relaxed and they can

9

be valid only for a limited period of time, other goals should always be
achieved. Finally the multiplicity and dependency dimensions express re-
spectively the number of goals to achieve and the relations among them.
Relations among goals may be independent or dependent based on the
fact that they may or may not affect each other. If goals are dependent,
they may be complementary or conflicting. In this last case a trade-off
analysis is needed in order to weigh among competing objectives.

The second group is related to the changes that are the causes of the
adaptation. Changes can be be classified based on the place where they
occur, type, frequency and whether they can be anticipated or not. The
source dimension identifies if the change occurs in the external environ-
ment or internally to the system. The type dimension refers to functional,
non-functional and technological upgrade. Frequency describes how of-
ten changes occur, they can be either rare or frequent. In case of frequent
changes the responsiveness of the adaptation could be jeopardized. Fi-
nally changes can be predicted or not, thus there exist different degrees
of anticipation which range from foreseen to unforeseen.

Within the group related to the mechanisms of adaptation, the type
dimension captures whether the adaptation is related to the parameters
of the systems or to its structure. The autonomy dimension defines the
degree of outside intervention during adaptation namely autonomous
or assisted. A mechanism of adaptation could either be centralized if
it is performed by a centralized component or decentralized if it is per-
formed by decentralized components. The adaptation mechanism can
also involve the whole system or one of its parts. Depending on the ap-
plication domain, this mechanism can last for a short, a medium or a
long time period. The timeliness dimension describes whether the time
period for performing adaptation can be guaranteed or not thus ranging
from guaranteed to best effort. Finally, the triggering dimension defines
which is the change that triggers the adaptation, either event-based or
timely-based.

The last group is related to the effect of the adaptation. The criticality
dimension establishes which is the impact of the adaptation in case of
failure. Within this group, the predictability dimension captures the pos-

10

sibility to have a deterministic or non-deterministic behavior as result of
the adaptation. The overhead dimension is useful to define the impact of
the adaptation with respect to the quality of the system. Finally, the re-
silience dimension establishes the persistence of the adaptation ranging
from resilient to vulnerable.

2.2 Context-aware systems

Context-aware systems have the ability of managing context information
as first-class information. Many definitions of context are found in the lit-
erature. Among them the definition of context given in (Dey01) is widely
accepted in the community of context-aware systems:

Context is any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including location, time,
activities, and the preferences of each entity.

Once given a definition of context we refer to context-awareness as
the ability of using context information that is the ability of extracting
and interpreting context information and adapting system’s functional-
ity to the current context of use (BC04b).

2.3 Context Models

Many models to reason about the context have been already presented
to be exploited from the requirement, design and implementation lay-
ers. Since the access to context information should be automated, con-
text models have to represent context information in a machine-readable
form. In the literature are found different approaches for modeling the
context; many of them lack generality and they are tailored to a specific
application domain.

11

2.3.1 Context models approaches

Strang and Popien (SLP04) have surveyed the main context modeling
approaches adopted to manage context information:

• The most simple data structure for modeling contextual informa-
tion is the key-value model approach. Key-value pairs are easy to
manage and they enable the retrieval of context information as en-
vironment variables. The problem with key-value models is the
lack of capabilities for structuring complex context data.

• A more complex context modeling approach is the markup scheme
model. The main feature of this model is its hierarchical structure
consisting of markup tags with attributes and content. Markup
tags are recursively defined by means of other markup tags. These
approaches to model context information are based on XML (Ex-
tensible Markup Language) and RDF (Resource Description Frame-
work) languages. XML is the most well known markup language
whereas RDF is a framework which enables the definition of re-
sources in the form of subject-predicate-object expressions.

• Graphical context models are very intuitive models with a low level
of formality. They can either be extension of UML (Unified Mod-
eling Language) such as the ContextUML approach presented by
Sheng et al. (SB05), or they can be extension of other graphical
modeling languages.

• Object-oriented context models are mainly designed to exploit the
main characteristics of the object-oriented approach such as encap-
sulation, reusability and inheritance. The contextual information is
embedded as the state of an object whereas interfaces are provided
to access the information and to modify the internal state.

• Logic based context models have a greater level of formality with
respect to the previous models. Context is usually defined through
facts, expressions and rules that can be processed either to keep a

12

consistent set of context information, or to infer new context infor-
mation. For instance, let us suppose to have two different rules:
the first declares that the number of persons in a certain room is
four, whereas the second asserts that the application running inside
the room is Powerpoint. Starting from this information, processing
activities can create a new rule asserting that inside the involved
room the current social activity is a presentation activity.

• Ontology context models are promising to represent a description
of context concepts and their relations. They have the highest ex-
pressivity and they allow the most complex reasoning processes
(CFJ04).

2.3.2 Context modeling evaluation

Ubiquitous applications demand for context modeling approaches with
specific characteristics. Strang and Popien (SLP04) have compared the
main context modeling approaches based on a set of requirements for
ubiquitous environments. They consider the following features: dis-
tributed composition, partial validation, richness and quality of informa-
tion, incompleteness and ambiguity, level of formality and applicability
to existing environments.

The first requirement they consider is the distributed composition of
context information; since the ubiquitous paradigm belongs to the dis-
tributed computing field, there is a lack for a common entity being re-
sponsible to manage context information. In order to have a common
reasoning over the context data, the system should allow the composi-
tion and administration of context models. The second requirement is
the partial validation of context information. It consists of validating
contextual information at instance level against a context model, such as
via simple type checking or more complex full data content validation.
This should be achieved even if there is no single place or point in time in
which a common context information instance is kept by a single node.
A further requirement refers to the quality of information that should en-
able the system to exploit context values gathered from different kinds of

13

sensors; context models should be able to express quality and richness of
context information that may change over time. Yet another requirement
for a context modeling approach is the ability to deal with the incom-
pleteness and ambiguity of context information. This requirement arises
from the fact that it is difficult to characterize the entities in the ubiqui-
tous environment; thus it is necessary to provide mechanisms to merge
incomplete information in order to have a certain consistency of context
information at instance level. Finally, formality of a context model ap-
proach is necessary to enable automatic reasoning whereas applicability
to existing environments should guarantee that these approaches are ap-
plicable with existing infrastructures such as web services.

Based on all the above requirements, the conclusion of the authors is
that the ontology based models is the approach which is better suited for
ubiquitous environments. Moreover, the ontology based approach has
some intrinsic characteristics such as simplicity, flexibility, extensibility,
genericity and expressiveness (KMK+03) which make it preferable for
ubiquitous applications.

2.4 Phases for building adaptive system

In order to build an adaptive application we have considered the follow-
ing set of phases: requirement, high level design, low-level design (i.e.
implementation) and middleware (run-time support). In the literature
can be found different approaches to define system models at different
phases all exploiting a context definition to drive adaptivity.

2.4.1 Requirement engineering for adaptive systems

Adaptive systems have a set of high level goals that should be met re-
gardless the conditions of the environment (CdLG+09). Information be-
longing to the environment is not always complete thus the requirement
engineering phase has to face the uncertainty belonging to the context.
This leads to continuously changing requirements in response to the con-
text variations. Therefore, it is not feasible to predict the set of the possi-

14

ble adaptations.

When we talk about context we mean something that can be moni-
tored from the environment in the same way presented by Finkelstein
and Savigni’s work (AS01). They have studied the key problems associ-
ated with requirement engineering in the area of context-aware services.
They propose a conceptual model to explain the relations among main
concepts concerning the requirement phase. In their approach the envi-
ronment is out of control of the system and it provides the surrounding
in which a machine is supposed to operate. Monitoring the environment
leads to extract the context, that is the elements that influence the system
behavior at a certain point in time during the execution. The require-
ments are the way to achieve a goal within a certain context; whenever
the change of the environment leads to a context change, the require-
ment could be no longer valid. In such a case a new requirement, if it
exists, should be found in order to maintain the validity of the high level
system objectives (goals). Finkelstein and Savigni’s work (AS01) is just
a first step toward the direction of requirement engineering for adap-
tive systems. It is not actually explained how to manage the runtime
variations of context and requirements and how to define the software
requirements.

In the literature different approaches address the problem of defin-
ing requirements and how to exploit them to support adaptivity. Hong
et. al (HCS05) introduce a methodology for the elicitation of context-
aware requirements and their matching with the possible variations of
the system. Based on the presented meta-model the right adaptations for
the system are selected during the execution phase according to the con-
text and to the user preferences. This approach allows the definition of
the adaptation but it does not explain how to structure the requirements
and how to deal with them. Context Oriented Domain Analysis (CODA
(DVC+07)) is an approach to analyze and to structure software require-
ments for context-aware adaptive systems. The CODA authors point out
that traditional models for requirement engineering are not useful within
the domain of context-aware adaptive services, because classical mod-
els do not incorporate the context dimension. In CODA, requirements

15

can be defined in terms of context unaware behavior and then refined
by means of context-dependent adaptations at certain variation points.
The main problem is that they do not take into account a well-defined
context model that can be exploited to elicit the context-aware require-
ments. Moreover CODA lacks a computation level supporting the ex-
ecution phase; just a decision table mechanism is proposed to support
the adaptation. Choi (Cho07) introduces a requirement analysis process
based on a definition of context and a definition of context-aware service.
The author proposes some extensions of UML notations which exploit
the proposed definitions. The problem in this approach is the lack of
mapping the requirements from the development to the execution phase
of the software lifecycle.

Different approaches (DVC+07; Cho07) deal with the requirement
elicitation problem for context-aware adaptive systems. They define re-
quirement artifacts by means of first-class context entities but they do
not support a formal specification phase. Other approaches (WSB+09;
SSLRM11) propose a formal representation of context-aware requirements
by including a notion of uncertainty. Most of the approaches found in the
literature only consider requirements specifications at design time while
they do not propose a run-time support for eliciting and specifying re-
quirements and for augmenting the system with new requirements.

We believe that in order to support the evolution of requirements it is
necessary to perform a consistency checking process which validates the
requirements specifications enhanced at run-time. To this end, managing
requirement entities at run-time is essential for adaptive systems.

2.4.2 Design for adaptive system

The most classical software systems deal with context-aware adaptations
using the context information in the same way they deal with any other
kind of input data. Therefore simple ”if-then” rules are employed and
according to the actual value of the context variables, different actions
can be executed. Even if this approach is easy to program, it lacks code
maintainability, code extensibility and code re-usability. In this section

16

we will investigate the main issues arising from high level and low level
design for adaptive systems.

2.4.3 High level design

From the high level design point of view, architectural patterns describe
particular recurring design problems and show concepts for their solu-
tions. Costa et al. (CPvS05) have presented three main architectural pat-
terns for context-aware service platforms: Event-Control-Action pattern,
Context Source and Managers Hierarchy pattern, and the Action pattern.

The Event-Control-Action pattern decouples the context sensing ac-
tivity from the reaction management. Through condition rules it is pos-
sible to manage the adaptation policies defined over the different behav-
ioral descriptions. The class diagram for the Event-Control-Action pat-
tern is depicted in Figure 1. The Context Processor unit shown in the

Figure 1: Event-Control-Action pattern structure

Figure is dependent from the context model; its goal is to query the con-
text model and to contact the Control unit to notify the occurred context
changes. The Control unit contains the alternative behavioral descrip-
tions of the application upon which the adaptation rules are defined. The

17

Action Performer is activated based on these rules in order to trigger ac-
tions (for instance if the system is a service platform this means to invoke
a service). The main benefits for this pattern is the distribution of sens-
ing, controlling and performing activities that leads to a distribution of
responsibility among different business parties. Moreover, this architec-
tural design leads to extensibility and flexibility due to the possibility to
add/delete Event or Action components.

The Context Source and Managers Hierarchy pattern provides a hier-
archical structure for context processing components (Figure 2). The out-
come of a context processing unit becomes the input for a higher level
unit in the hierarchy. Each Context Manager inherits the features from
the source in order to gather context information from various Context
Source or other Context Manager. This pattern enables the distribution of

Figure 2: Context Source and Managers Hierarchy pattern structure

sensing, aggregating, inferring and predicting activities. Context infor-
mation can be easily filtered along the path hierarchy in order to delete
non-relevant information and to reduce their overhead.

The Action pattern enables the action triggering and it decouples the

18

action purpose from the actual action implementation. As shown in Fig-
ure 3 the Action pattern supports an abstract action definition along with
its implementation and it provides means to coordinate the composition
of actions. This is useful in order to manage at run-time the selection
among different implementations of actions.

Figure 3: Action pattern structure

A more basic work dealing with high level design issues is presented
by Winograd (Win01). The author presents the main architectural style
to support the middleware layer. The three main coordination models
are widget based model, blackboard model and network service model.
The former is based upon an interface mechanism to directly access the
context data. The blackboard approach follows the publish and subscribe
pattern (CMM09) and is implemented via tuple spaces (CLZ98). The net-
work service approach exploits discovery techniques to find context in-
formation using a client server approach.

19

2.4.4 Low level design

From the low level design point of view, suitable programming models
are essential to manage the complexity and the effort for implementing
adaptive applications. Most of applications do not make any use of pro-
gramming toolkit or infrastructure dealing with related context-aware
aspects. Nowadays, developers directly hard-wire the logic of adapta-
tion to the context within the source code.

At implementation level Hirschfeld et al. (HCN08) propose a new
programming technique called Context-Oriented Programming (COP) in
order to adapt the behavior of software entities to the current execution
context. They surveyed different mechanisms to treat the context explic-
itly and to achieve the consequent adaptation for the implementation
artifacts at run-time.

The Chameleon framework (ABI10) provides a context-aware pro-
gramming model to develop adaptable Java applications. The adapta-
tion behaviors are implemented through different extensions to the Java
programming model, that are adaptable methods and adaptable classes.
The decisions among the different adaptations are taken during the de-
ployment phase based on the actual context. The model characteriz-
ing the context enables to express the current status of the available re-
sources. The Chameleon framework lacks a complex context model that
enables reasoning upon the resource relations and hierarchy that can be
exploited to make the context programming easier.

Two programming models based on more complex context models
have been presented by Henricksen and Indulska (HI06). Their work is
mainly based on the situation and preference abstractions. The former
is a way to define conditions on the context in term of ”fact abstraction”
that represents an high level view of the context. The latter enables to
manage the user preferences in order to set the user context-aware re-
quirements. To each user preference is associated a rate used during the
evaluation of the preferences to decide the more suitable adaptation in a
certain context. The first programming model shown in (HI06) is a clas-
sical event-driven programming style called ”triggering”. Whenever a

20

situation changing occurs an event is triggered with some lifetime condi-
tion. The second model presented within the same work is the ”branch-
ing” model: it offers a novel and flexible means to insert context and
preference decision points into the application logic flow. Through the
branching model a set of preferences are evaluated at run-time to select
which program branch to visit to better fulfill the user requirement in a
certain context situation. A bunch of APIs are provided to the program-
mer in order to dynamically choose the right adaptation based on the
context evaluation and user preferences.

The context-oriented programming model proposed in (KR03) is de-
veloped implementing an extension of Python. The context dependent
behaviors are kept in a stub repository separated from the running code.
The source code contains “open terms” that are the gaps to be filled at
run-time. The procedure of “context filling” enables the selection of the
appropriate stub from the repository in order to fill the gap of the source
code. The filling procedure depends on the goal to achieve and on the
context. A set of adaptation stubs are defined in order to reach the goal
for any possible arising context. This approach requires an a priori global
vision of the context. Moreover, it lacks suitable models to represent the
context situations and the goals to achieve within the context. Context
is modeled by simple XML tags checked during the adaptation phase.
Context modeling is provided without the possibility to define relations
upon the context elements.

Context information could be required in different parts of the soft-
ware and its handling could be seen as a concern that spans across sev-
eral software units. Aspect Oriented Programming (AOP) is a program-
ming paradigm that handles cross-cutting concerns. It is implemented
extending Java and C++ languages. It introduces jointpoints and point-
cuts. The formers are the points inside the program where aspects can
produce additional behaviors, whereas pointcuts define expressions to
detect jointpoints and code fragments to be applied on jointpoints. As-
pects enable the application of the same code fragments at different points.
Tanter et al. (TGDB06) propose context-aware aspects in order to use the
context to drive the use of aspects. The aspects are invoked based on

21

the actual context information which is modeled as first class entities.
Dynamic AOP extends the original notion of AOP by allowing weaving
at load or run time. Dynamic AOP has been shown to be a very suit-
able mechanism for run-time adaptation of applications and services. In
(VBAM09) the authors propose a system offering dynamic AOP in Java
based on AspectJ. The approach proposes a system offering dynamic
AOP in Java based on AspectJ. It supports a wide range of standard
AspectJ constructs for dynamic cross-cutting, is portable, provides com-
plete method coverage and is compatible with standard JVMs.

Mixin is a programming style where units of functionality are created
in a class and then mixed in with other classes. Two models which ex-
ploit mixin style are the language Scala and the Fractal component model
1. Mixins can be used to construct new classes by combining function-
alities defined in other classes thus supporting run-time code variations.
Nevertheless mixins approaches require programmers to explicitly and
a priori specify what are the classes to be combined.

2.4.5 Context-aware middleware

The activity on context-aware computing has began during the second
half of 1980s. Nowadays, many researchers have made efforts to design
and implement network, user infrastructure and middleware to provide
context-aware services to the users. A very in depth analysis at each of
these levels was done and a lot of resulting applications have already
been presented in different domains. The main architectural style guid-
ing the diffusion of context-aware system is the middleware approach.
Many such approaches have been presented and related in order to get a
common vision and architecture.

Henricksen et al. (HIMB05) provide an overview of the state of the
art for context-aware middleware. They compare five different middle-
wares in terms of requirements for traditional distributed systems such
as scalability and tolerance to components failure. Moreover, they con-
sider the issues related to context-aware applications development such

1http://www.scala-lang.org/, http://fractal.ow2.org/

22

as privacy preferences. They restrict themselves to looking at general
systems which spans multiple layers of a proposed layered architecture.
It consists of application components at the top layer, decision support
tools, context repositories, context processing components, and context
sensors and actuators at the bottom layer.

Kjær (Kjæ07) proposes a taxonomy for categorizing some relevant
properties expressing the capabilities arising from the analyzed context-
aware middlewares. Among them the first concept shown is the environ-
ment; some middlewares assume that devices can communicate without
relying on external services whereas some other middlewares rely on a
service providing infrastructure. Another important capability is the re-
flection mechanism, that is usually available through meta-data in order
to reason about application, middleware and context information. Reifi-
cation and absorption processes allow to keep updated the change in the
metadata with the described related entity. Another important issue for
middleware is the composition among entities in order to adapt to differ-
ent contexts. For this reason even adaptation should be considered from
the middleware point of view with three different categories:

• transparent: middleware reacts to changes without the application
being aware of it

• profile: middleware adapts in order to satisfy the application re-
quested profile

• rules: middleware reacts based on the rules explicitly defined by
the user or application.

The authors also explain Quality capability that could refer either to
the classical Quality of Service provided by the middleware (QoS) or to
the Quality of Context information (QoC). The latter could be expressed
in terms of parameters expressing the quality of the context elements
with respect to the application. The QoC is an important issue because
with an open-world scenario, context providers and context consumers
should reach a kind of agreement over the quality of the information pro-
vided (BKS03). Finally the taxonomy of capabilities provided in (Kjæ07)

23

could be useful either to select a middleware or to start the development
of a new one.

An example of transparent middleware adaptation is depicted by
Cheung et al. (CCYC06) based on a previous work proposed by Cao et
al. (CXC+05). Here a fuzzy based service adaptation model is presented.
The policy of each service is selected based on a fitness function that
assesses the proximity between each best context for each policy with re-
spect to the actual context situation. The adaptation is therefore driven
by the context and each user preference is considered.

Figure 4: Unifying middleware archietecture

Baldauf, Dustdar, and Rosenberg (BDR07) proposed another approach
to compare different context-aware middlewares. They defined a com-
mon architecture that can be considered suitable for each of the middle-
ware analyzed through their paper (see Figure 4). The lower layer shown
in the figure is composed of three kinds of sensors: physical, virtual and
logical sensors. The physical sensors are hardware sources of data like
microphones, thermometers, biosensors whereas the virtual ones gather
context data from applications or services like emails, travel booking sys-
tem, electronic calendar. Logical sensors can combine data coming from
physical and virtual sensors in order to solve higher level tasks. The up-
per layers use the raw data derived from the sensors in order to expose
interfaces. Those methods are exploited for aggregation and composition

24

purposes to get context data at higher level. For instance an application
could not be interested to know the exact position of a person but could
find useful to know the name of the room. Moreover, if a certain number
of people is situated at the room where a presentation is running, then
other context information can be inferred. At this level all the sensing
conflicts should be solved using time stamp and resolution information
and even QoC reasoning could be exploited to reach this goal. The appli-
cation level contains the reaction logic that can be implemented exploit-
ing the structured context information gathered from the lower levels.
The communication mechanism to get this data is the synchronous call-
back design pattern; indeed, an asynchronous communication would be
difficult to maintain because of the rapid change of the context informa-
tion.

2.5 Assurance

Techniques for high-assurance have to provide evidence that the system
satisfies either functional or non-functional properties during operation.
To this end, verification and validation techniques rely on descriptions
of software models and properties. For traditional (non-adaptive) soft-
ware systems it is enough either to verify or to validate the system at
design time since system’s goal and underlying requirements are fixed.
For adaptive systems there could be a variation of the system’s goal or
requirements at run-time since there exist unpredictable contexts that
cannot be anticipated at design time. Therefore, it is necessary to sup-
port a notion of assurance which considers system models ranging from
the problem to the solution space. There exist inconsistencies that can be
discovered by considering requirements artifacts whereas other inconsis-
tencies can be discovered only by considering code artifacts. To this end
it is necessary to maintain the code casually connected to requirements
models.

Novel verification and validation techniques have to be defined to
provide high-assurance for adaptive systems. One of the key challenges
for these new techniques is the existence of algorithms that do not require

25

high space/time complexity since they have to be performed at run-time.
In the literature different approaches that provide design time assur-

ances are found. Alférez et al. (AMK+09) propose a methodology to
discover misbehaving requirements by exploiting system models at dif-
ferent abstraction levels. Here interactions are discovered only at the re-
quirements level without considering the implemented system. Classen
et al. (CHSL11) offer a model checking algorithm for validating the space
of the system alternatives at design time. The algorithm only verifies
properties on an abstract model neglecting the actual system implemen-
tation. The approaches (AMK+09; CHSL11) only consider design time
assurance activities on high level system abstractions. Adaptive sys-
tems should evolve while maintaining an high-assurance property at
run-time. Cheng et al. (CdLG+09) define the characteristics for a generic
framework which aim to support high-assurance for adaptive systems.
They claim that design time activities should be supplemented by agile
run-time assurance activities that should be performed upon the iden-
tification of evolving requirements. Nevertheless, they provide only a
theoretical framework which describes a set of guidelines and best prac-
tices that should be adopted. Filieri et al. (FGT11) describe a practical
technique to perform run-time model checking on probabilistic system
model. The authors show how to provide high-assurance at run-time
on evolving models. Nevertheless, they do not take into account actual
system code in their definition of assurance.

In the literature there is a lack of practical solutions to support as-
surance checks at run-time by considering both abstract system models
and code artifacts. Models can play a key role for developing adaptive
applications since they are able to support the consistent evolution re-
quired by context variations. Different models are required to achieve a
consistent evolution:

• a model for representing the system and its variability;

• models to represent the context surrounding the system;

• requirement engineering models;

26

• models representing executable artifacts.

All mentioned models should be exploited and managed at run-time
when the development of the system is still required (BBF09; SBW+10).

2.6 Framework for adaptive systems

Several frameworks address the problem of achieving system evolution
at different granularity levels. They exploits models at different granu-
larity such as context-aware requirements models, context-aware archi-
tectural models and context-aware implementation models.

The Rainbow framework (GCH+04) enables architecture-based self-
adaptation for software systems. It proposes adaptation rules to spec-
ify how to reconfigure system components whenever certain situations
arise. System components are reconfigured based on decision taken at
design time whereas un-anticipated adaptations can not be achieved.
The framework supports non-functional reconfigurations while it does
not consider the consistency checking of the evolution. The context is not
explicitly modeled but only simple variables are considered in the frame-
work. The PLASTIC approach (ABI09) applies reconfiguration strategies
at implementation level by exploiting an explicit definition of context.
The approach supports non-functional reconfigurations to statically de-
fined Java artifacts driven by context variations. The framework only
deals with foreseen evolution while run-time evolution is not allowed.

A common aspect for the above mentioned frameworks (GCH+04;
ABI09) is that whatever is the grain of reconfiguration, they do not sup-
port evolutions arising at run-time. They only consider evolution strate-
gies that are statically analyzed at design time; thus making the system
unable to achieve reconfigurations required by un-anticipated user need
variations arising at run-time.

Qureshi and Perini (QP10) have defined a framework for requirement
engineering to distinguish activities at design time from activities at run-
time. They have provided a mechanism to evolve the requirement spec-
ification at run-time driven by the user thus supporting a notion of run-

27

time evolution. Nevertheless the proposed method does not consider a
definition of consistency. The Javeleon framework (GJ09) as well as the
JavAdaptor framework (PGS+11) aim to support the run-time evolution
by means of transparent dynamic updates of running Java applications.
Developers can simply modify their applications at run-time and they
can trigger an on-line update without stopping the running application.
Javeleon and JavAdaptor do not support a definition of context for the
evolution but the developers is directly in charge of injecting new be-
haviors in the application at run-time. In addition they do not provide a
process for checking the consistency of the evolutions.

Kramer and Magee (KM07) have presented a three-layered concep-
tual model to support run-time and architectural reconfigurations of self-
managing systems. They consider a Component layer, a Change man-
agement layer and a Goal management layer. The Goal layer identifies
the plan to execute while the Change layer executes the required action
and interacts with the Component layer to add/remove/reconnect com-
ponents. Through the Goal Management layer, requirements are man-
aged at run-time by generating new plans to perform whenever the de-
ployed ones are not suitable for the current context situation. This fea-
ture supports reconfigurations required by new requirements arising at
run-time. Even if the framework provides functional, non-functional and
run-time evolutions there is no definition of context and a definition of
consistency check for the composition of components is still missing.

The approaches presented so far do not provide a process to asses the
consistency of foreseen and unforeseen evolutions. Ali et al. (ADG10)
have proposed a goal-based framework to enact the evolution among
system variants at requirement level. This approach provides a context
analysis phase to discard variants which are inconsistent based on the
context predicates. This phase checks the consistency for alternative be-
haviors based on a context-dependent goal model. The problem in this
approach is that it can not support run-time evolutions to the goal model.

To the best of our knowledge the frameworks presented in the lit-
erature only apply reconfigurations at specific granularity levels, either
at requirements models, or at architectural models or at implementation

28

models. Most of the frameworks are not based on an explicit context
model to support system evolution in all phases of the software lifecycle
process. Only a few of them supports the evolution which is required
at run-time whereas there is almost no support to check the consistency
of the evolution. In order to provide high-assurance for context-aware
adaptive applications it is necessary to support a definition of consis-
tency as proposed by Zowghi and Gervasi (ZG02). They suggest that
an effective support to consistency is based on system models at the dif-
ferent granularity levels, ranging from the problem space models to the
solution space models. We claim that adaptive applications are not de-
veloped and evolved following a software process which considers all
these models together thus making difficult to effectively support the
consistency of the evolution.

2.7 Support to foreseen evolutions

Supporting system evolutions in face of unforeseen context variation is
the most difficult problem which will be discussed in this thesis. Nev-
ertheless it is still very interesting to solve the problem of achieving re-
silient reconfigurations in presence of foreseen context variations. Recon-
figurations should meet quality requirements according to user prefer-
ences and they should be performed at a reasonable cost and in a timely
manner. Adaptive systems need automatic (as much as possible) recon-
figurations taking into account the execution environment and the user
preferences. The first determines the admissibility for the reconfigura-
tion whereas the second determines the goodness for the reconfiguration.
These pieces of information are not fixed since they are strictly context-
dependent thus making difficult to achieve reconfigurations that are re-
silient to these changes. These changes are not predictable, thus it is not
in general possible to determine how the context may affect the varia-
tions to user preferences and to the availability of resources. To this end
predictive approaches can be adopted in order to explicitly consider this
uncertainty thus making possible to achieve reconfigurations decisions
with incomplete information.

29

In the literature there are a number of decision-making mechanisms
exploiting user preference and context information to support the adap-
tation. Sykes et al. (SHMK10) evaluate the utility of each system compo-
nent primarily by the user preferences upon each non functional prop-
erty. Then the overall utility degree for each system variant is obtained
as the average of each component utility. The authors define the space
of adaptation strategies without considering the environment condition
explicitly. The PLASTIC approach (ABI09) considers how to exploit user
preferences in performing service based adaptation. The approach per-
forms a non-functional selection among the system variants that can be
deployed in the current execution environment based on the required
resources. The approach proposes a resource model to support the def-
inition of eligible system variants. However no predictive information
is included to drive their adaptation process. In the field of service dis-
covery, Li et al. (LRT+10) exploit a user preference model to support the
service recommendation to the user. At run-time, services are checked
with respect to their precondition and then they are ranked based on the
user preferences upon their possible outcomes. The approach considers
only a simple context model without considering future changes. Dorn
and Dustdar (DD10a) observe the behavior of multiple users to adapt
the available software capabilities (i.e. features) to the preferences of the
whole group. Their approach, however, does not take into account con-
text constraints, neither do they apply predictive knowledge on potential
future context changes.

All the mentioned approaches neither consider predictive informa-
tion about the context resources nor about the user preferences. Adapta-
tions are performed only by exploiting information on the current con-
text.

Cheng et al. (CPGS09) extend the Rainbow evolution framework
(GCH+04) in order to exploit the predictive availability of context re-
sources to enable the adaptations. However they lack the notion of user
preferences. Poladian et al. (PGS+07; PSGS04) face the problem of select-
ing a sequence of system variants for a predefined sequence of fixed time
slots, each of which is characterized by a prediction of resource availabil-

30

ities. The sequence which best fits the fixed user preferences at each time
slot is selected. Also a factor of cost is introduced in order to give an
increased utility to components which are already running.

To the best of our knowledge there are no approaches that support
system adaptation by considering run-time user preference changes, con-
text changes and cost factors coherently in one formal framework. We
claim that considering all these factors together promotes better perfor-
mance of the evolution process.

31

Chapter 3

Approach

3.1 Taxonomy of the evolution

We have identified two different types of evolutions each one addressing
a different dimension of context variability. On the one hand, designers
deal with foreseeable context variations by providing the required sys-
tem evolutions at design time. They statically define the logic of evolu-
tion to the foreseeable context by means of different system variants that
have to be deployed and un-deployed at run-time in order to keep satis-
fied a fixed set of system requirements. The selection among the system
variants is driven by the context requirements and the non-functional
properties that characterize each variant. On the other hand, the con-
text may change unpredictably thus causing the change of user needs
that can be expressed as a variation to the requirement set to satisfy. The
user may specify a new requirement as a consequence of the unforeseen
context variation. Therefore the evolution logic should be revisited at
run-time by possibly updating the space of system variants provided by
the designer at design time.

We refer to the first case as foreseen evolution because the evolution
logic can be defined statically and the foreseeable contexts can be com-
pletely characterized at design time. The second case is called unforeseen
evolution as the evolution logic and the context is not known at design

32

time and the user takes part to the evolution feedback loop.

Figure 5: System Evolutions

Figure 5 shows how the context affects both system evolutions. In
the foreseen evolution the system evolves to keep satisfied a fixed set
of requirements by switching among different alternative behaviors pro-
vided at design time for different known contexts. In the unforeseen
evolution the system evolves by switching to a new alternative behav-
ior that includes a new functionality necessary to satisfy the emerging
requirement. In our approach we only consider how to augment the
system with new requirements at run-time whereas we do not take into
account the deletion of requirements already implemented. Indeed, we
believe that augmenting functionalities at run-time is the main challenge
in supporting evolutions suitable for unforeseen contexts.

3.2 Software Product Line Engineering perspec-
tive

We represent the system following the Software Product Line Engineer-
ing (SPLE) perspective since it breaks the system complexity in feature
components thus reducing the impact that any change may have on the
system (KK98a). SPLE perspective provides a uniform abstraction to all
the development approaches that consider a system made out of a com-
bination of basic software entities, like for example the Component Off

33

The Shelf (COTS) approach or the service-oriented one. In addition the
SPLE perspective already provides models to manage the system and to
support consistent evolutions. Our intention is to take advantage of the
methodologies proposed in SPLE to support consistent evolutions for
context-aware adaptive systems.

In SPLE the basic unit of behavior is the so called feature that is the
smallest part of a service that can be perceived by the user. The sys-
tem variability is expressed through the space of the system variants.
Each variant is obtained by putting together two or more features and
it shows the feature interaction phenomenon if its features run correctly in
isolation but they give rise to undesired behavior when jointly executed
(KK98b; AMK+09; BC04a; PCBD10). We will build our notion of consis-
tent evolution on the feature interaction phenomenon.

The work (CHS+08a) has already shown common research questions
between SPLE and adaptive system and the necessity to dynamically
manage features at run-time. Most recently, Dynamic Software Product
lines (DSPL) have been presented as a new direction in SPL engineering
field to deal with software capable of adapting to changing user needs
and evolving context environment at different binding time (HHP+08;
PBD09; PBCD11). However in the DSPL field dealing with evolutions
arising at runtime is still an open issue.

3.3 Case Studies

In this section we propose two motivating scenarios in order to give some
examples of our approach. We have developed two different adaptive
systems. The first is an eHealth application to support the doctors’ activ-
ities while the second is an application to visualize a Mandelbrot fractal.

3.3.1 eHealth application

Our application for the medical domain supports doctor’s activity in
showing the vital parameter of the patients. A remote monitoring sys-
tem, situated at the patient’s home, gathers oxygenation rate and heart

34

rate data through two different probes. Probes sense patient’s informa-
tion and transmit them to the hospital through a home gateway. A server
collects these information and make them available. Finally, doctors us-
ing their mobile or desktop devices visualize elaborated graphics or nu-
merical data for oxygenation and heart rate parameters. Figure 6 de-
scribes the basic elements for the e-Health system.

Figure 6: E-Health architecture

We focus our attention on the adaptive application that performs the
visualization. The screen visualization should follow different alterna-
tives each one suited for a certain context since it could require differ-
ent hardware resources. For instance a first variant may visualize only
one parameter as text and graph, a second variant may visualize both
parameters as text, while a third variant may visualize graphically non
real-time data memorized in the doctor’s device. In addition, in order to
view real-time data it is necessary to run the application through a device
connected to the network. Whenever this is not possible the most recent
memorized graph is shown to the doctor. We model this mobile appli-
cation through subsets of features that are combined in order to have
alternative variants.

While the system is running, it could be the case that a new unfore-
seen sensor for monitoring the respiratory rate is added to the remote
monitoring system by the patient. Hence, the doctor may require a new

35

monitoring activity to visualize the new patient data. In order to pre-
vent the application from non-consistent behavior we should provide an
automatic process to augment the system with the new feature. This pro-
cess should support the unforeseen evolution that is required at run-time
as a consequence of a new requirement identified by the user.

3.3.2 Mandelbrot fractal

This application elaborates a Mandelbrot fractal (Man82) that better fits
the characteristics of the mobile device (CPU, memory, number of dis-
play colors,...). The application requirements consist in visualizing a
fractal image to the user through the device screen. The higher level of
context resources is available, the more beautiful will be the fractal im-
age shown to the user. The Fractal context-aware adaptive system will
be modeled through a set of features that represent the basic alternative
behaviors to color, build and view the fractal image.

At run-time features may need to be activated or deactivated based
on the context-resource availability changes. In addition because of en-
vironment unpredictability, the user may want to introduce new unfore-
seen behaviors as the system operates in an unforeseen context. For ex-
ample whenever the software device characteristics makes the visualiza-
tion of the Fractal image format impossible because the format in un-
known, the user may guide the introduction of a new software plug-in
to decode that specific format.

3.4 Context model

Our context model entails context entities as key-value pairs and it is
defined using two perspectives: the context model structure and the context
model space. The context model structure expresses context entites in term
of types and categories. We adopt the taxonomy where each element
belongs either to the system, the user or to the physical environment. In
addition we consider the entity types enumerate, boolean and natural as
in (ABIM08; ABI12). The context model space expresses the variability for

36

the assignments of the context entities. Each context entities is identified
through a tag ContextId and it can assume one among its admissible
values contained in dom(ContextId). The context model space for the
context entities ContextId1, ..., ContextIdIdn is defined as the Cartesian
product:

S =
⊗

dom(ContextIdi) s.t. i = 1, ..., n (3.1)

Each valid assignment of entities −→c ∈ S will be considered as a different
context state.

The software engineer defines the context at design time whereas an
automatic process may update it at run-time. The model extension is
caused either by new unforeseen resources that appear in the environ-
ment or by new requirements that may refer to new context entities.

Example (eHealth application)

For the eHealth application we have identified a set of user context en-
tities, a set of physical context entities and a set of system context enti-
ties. heartRateProbe and oxygenationProbe are the user context entities
which represent the two sensors to sense the medical information from
the body of the patient. They are boolean entities which expresses if it
is possible to retrieve the heart rate and oxygenation data. The system
context entity mem expresses the level of free memory available for the
adaptive application whereas cRate identifies the CPU speed offered by
the device. The entities conn and netB are physical context entities which
define if a connection is available and the corresponding available band-
width. Figure 7(a) depicts the context model for the eHealth application.

Example (Mandelbrot fractal application)

The context entities for the fractal application belong to the system and
to the physical environment. The conn physical context entity expresses
the availability of an Internet connection. The system context entity sc

identifies the number of colors for the device whereas mem and cRate

express the available memory and CPU speed respectively (Figure 7(b)).

37

(a)

(b)

Figure 7: Context model (a) eHealth application (b) Mandelbrot fractal ap-
plication

3.5 Requirements taxonomy

Our evolution framework is based on a requirements model that has
to be manageable at run-time. For our requirements specifications we
adopt the notion of requirements inspired by the taxonomy proposed by
Glinz in (Gli07). The definition of requirements is based on the concept
of concern that is a matter of interest in a system. Each kind of require-
ment is defined based on the correspondent kind of concern to which it
pertains. Functional requirements pertain to functional concerns, perfor-
mance requirements pertain to performance concerns and specific qual-
ity requirements pertain to quality concerns. In the same taxonomy, con-
straints are defined as requirements that restrict the solution space for
meeting functional, performance and specific quality requirements. In
our approach we consider as crucial the subset of constraint require-
ments which are expressed in terms of context entities. We will name

38

these requirements with the term context requirements. They will be gen-
erated either by analyzing the resources required by the implementation
or by extracting the context entities from functional, quality or perfor-
mance requirements. For the first option, the implementation may be
analyzed by means of different methodologies such as workbench anal-
ysis or by static analysis like proposed in various approaches, in partic-
ular (ABI09; ABI12). This approach is a possible solution to evaluate the
consumption of resources caused by the code. For the second option,
quality, functional and performance requirements have to be analyzed to
extract the portion that refers to the context entities. These entities have
become first class entities within requirements specifications as devised
by different approaches to the elicitation of context-aware requirements,
e.g. (DVC+07; Cho07).

3.5.1 Context requirements

We define context requirements as predicates defined over the context
entities which belong to the context model. These entities are beyond
the system’s control but they may influence the system execution. In the
following we depict the grammar that we use to express context require-
ments starting from the context entities:

<C> : : =<ContextEntity><rel−op><value> |<C><log−op><C>
<rel−op>::=≥ | ≤ | < | > | =
<log−op>::= AND|OR
<value>::=<natural>

Figure 8: Syntax of context requirements

Each expression generated by the grammar may be related to a single
feature or to a system variant.

3.6 Adaptive application

We define a context-aware adaptive application in terms of sets of fea-
tures each one implemented with a component and / or a service. Then

39

we combine features in order to obtain different variants which express
the variability of the application.

3.6.1 Feature

We define a feature as composed by a context-independent requirement,
a context-dependent requirement, and an implementation part. A fea-
ture is a triple fi = (Ri, Ci, Ii) where each element is defined as follows:

• Ri is a conjunction of functional, performance and specific quality
requirements (context-independent)

• Ci is a context-dependent constraint requirement

• Ii is the feature implementation.

The definition above is inspired by (CHS08b) which has been in turn
inspired by the Problem Frame approach defined in (Jac00). Differently
from these approaches we refer to C as the context requirement instead
of the domain assumption. The system model we propose links require-
ments entities to the implementation artifacts; as a consequence evolu-
tions of requirements may be easily mapped to the correspondent code
artifacts.

Example (eHealth application)

In the e-Health application we define the feature to view the graphical
oxygenation rate in terms of three components (Figure 9).

RgraphOx entails two parts. The first part is a simple textual represen-
tation. The second part is defined in terms of context entities and oper-
ations in IgraphOx, it enables the traceability from RgraphOx to IgraphOx

and from RgraphOx to CgraphOx.
The context requirement CgraphOx is derived from the feature im-

plementation IgraphOx and from the requirement RgraphOx. On the one
hand, we may use the CHAMELEON framework (ABI12) to evaluate the
consumption of memory and clock rate caused by IgraphOx. On the other
hand by looking at the requirement RgraphOx we extract the portion that

40

RgraphOx : I f Oxygenation data are a v a i l a b l e Receive Oxygenation ra te and
View i t on the g raph i ca l widget
I f ” oxygenationProbe ” then (Each 10 t imes ” getOximetryData ” f o l l o w s a
” displayGraph ”)

IgraphOx :
public class GraphOximetryViewer {

XYDataset ox imetryDataset = new XYSer iesCol lec t ion () ;
. . .
public void viewGraphicalOximetry (Graph g){

. . .
for (i n t i = 0 ; i <10; i ++){
XYDataItem dataOx = Oximet ryRet r iev ing . getOximetryData () ;
dataVectOx . add (dataOx) ;
}
g . displayGraph (dataVectOx) ;
} . . . }

CgraphOx : mem ≥ 50 Kb ∧ cRate ≥ 1000 Khz ∧ oxygenationProbe = true

Figure 9: Feature fgraphOx = (RgraphOx, IgraphOx, CgraphOx)

refers to each context entity. Since RgraphOx refers to the context entity
”oxygenationProbe”, we insert it into the context requirements. Only if
this variable is true, then oxygenation data are retrievable from the re-
mote monitoring system.

Example (Mandelbrot fractal application)

Figure 10 shows a feature for the fractal application. This feature eval-
uates the fractal pixels and it shows them a pixel row at a time. For
this feature we only describe the textual representation for the require-
ment component. This requirement entails a functional and a quality
requirement; the functional requirement can be expressed as ”Compute
and visualize each fractal pixel”, whereas the quality requirement can be
expressed as ”The image is visualized a pixel row at a time” which in
terms of implementation can consist in assigning the value Progressive
to the quality property DisplayModel. Finally, the context requirement
CgenPro only refers to the required amount of memory caused by IgenPro,
which is the Java class implementing the feature.

41

RgenPro : Compute each f r a c t a l p i x e l and show i t a p i x e l row at a t ime

IgenPro :
public class MandelCanvas extends Canvas{ . . .

public void genera teProgress iveFrac ta l (){
i n t column ArrayCanvas [] = new i n t [he igh t] ;
for (i n t x = 0; x < width ; x++){

for (i n t y = 0; y < he igh t ; y++){
F r a c t a l P i x e l p ixe l ArrayCanvas = drawFrac ta lP i xe l (x , y) ;
}
o f f se tX = x ;
image = Image . createRGBImage (column ArrayCanvas ,1 , height , fa lse) ;
r e p a i n t () ;
} } . . . }

CgenPro : mem ≥ 200

Figure 10: Feature fgenPro = (RgenPro, IgenPro, CgenPro)

3.6.2 System variant

A system variant represents a possible alternative behavior in terms of
a set of functionalities that it can provide to the user. Software engi-
neers have to assemble together one or more features in order to obtain
a system variant. Starting from a set of feature F we define a system vari-
ant as the triple GF = (RF , CF , IF). At this level of description we do
not explain how to combine features. We just suppose to have an ab-
stract union operator among features which is defined in terms of union
operators for context-independent requirements, context-dependent re-
quirements and implementation components. In concrete instantiations
of the framework these operators will take a precise form. Given two
features f1 =<R1, I1, C1,> and f2 =<R2, I2, C2> their union is defined
as: f1 ∪f f2 =< R1 ∪R R2, I1 ∪I I2, C1 ∪C C2 >. The software engineer
combines the features at design time in order to obtain a set of alterna-
tive requirement specifications. At run-time the set of alternatives may
be augmented considering an un-anticipated features that arise from a
new user need.

In the following we show a possible example on how to create the
context requirements and implementation components for a system vari-
ant starting from its features.

42

The union operator ∪C merges context requirements depending on
the nature of resources. For example if we have two requirements de-
manding bandwidth for 20 kbps each one, their union will express a
demand of bandwidth for 40 kbps. The approach presented in (ABI12;
ABIM08) proposes a technique to create our context requirements.

For the implementation portion I the software engineer combines the
code artifacts in order to have a single access point to the whole variant.
Each variant is composed by a Java class for each single feature plus a
Java class which is the entry point for the variant. This class entails the
method execute to trigger the execution of the variant.

3.6.3 Examples

Listing A.1 represents a possible system variantGEHealth for the eHealth
application. This variant performs the visualization for the oxygenation
rate through a graphic and a textual widget. As for a feature a vari-
ant is represented as a triple (R, I, C) where requirements R and con-
text requirements C correspond to a Java implementation I . The con-
text requirement expresses the combined request of resources as they ap-
pear in each feature. The implementation component contains a Java
class for each feature and an additional class which represents the en-
try point for the variant. The class OximetryRetrieving retrieves the
oxygenation data from the remote monitoring system. The two classes
GraphOximetryV iewer and TextOximetryV iewer exploit the retrieved
information and perform the visualization trough a graphic and a tex-
tual widget. Finally class V ariantEHealth implements the logic for the
whole variant.

Let us consider the fractal application and one of its possible variants
GFractal = {fgenPro, fcolB} implemented by the class diagram in Figure
11. In this example, each feature is implemented as a single Java class.
The class MandelCanvas, which implements fgenPro, provides the in-
terface generateProgressiveFractal that generates and draws the fractal
image progressively a row at a time exploiting the operation
drawFractalP ixel. The class Colouring, which implements fcolB , pro-

43

vides the interface pixelColourAsBands and the operation
initColourAsBands in order to color the image with different bands of
colors. The only class which does not correspond to any of the features
is V ariantFractal which is the external interface to access the whole ap-
plication variant. Listing A.2 shows the variant GFractal in terms of its
main components.

Figure 11: Example: class diagram (G1)

3.6.4 Feature diagram

Evolving the system means switching from a combination of features
to another combination of features. In order to support the evolution
process, it is necessary to model the possible combinations of features
each of which corresponds to a different system variant. The variability
model that we have chosen is inspired by the feature model which has
been first introduced in the Feature-Oriented Domain Analysis method
(KCH+90). Since then, feature modeling has been widely adopted by
the SPL engineering community and a number of extensions have been
proposed (SHTB07). In our approach we consider a possible abstract
syntax for the feature model defined starting from nodes (features) and
arcs between nodes:

• The root node of the model is the label which stands for the system.

• Each node expresses a feature which can be either optional or manda-
tory.

• Each edge between two nodes expresses a decomposition relation
(consist-of) between the parent node and the child node. It enables
the possibility to add behavior to the parent feature. We consider
two decomposition relations: AND decomposition and XOR de-
composition.

44

• ”Requires” constraint is a directed relation between two features.
If one feature is present in the variant the second has to be present
as well.

• ”Mutex” constraint enables the mutual exclusion between two fea-
tures; therefore they cannot be in the system variant simultane-
ously.

Starting from the feature model (abstract syntax), the feature diagram
(concrete syntax) is commonly expressed as a tree structure. We adopt
a subset of the syntax presented in (CE00). In this diagram, features are
represented in a tree-like format. Dark circles represent mandatory fea-
tures, while white circles represent optional features. An inverted arc
among multiple arcs expresses a XOR decomposition meaning that ex-
actly one feature can be selected. Multiple arcs that start from a parent
node express an AND decomposition.

Starting from the feature diagram, the set of possible system variants
is obtained by combining the features in subsets compliant to the dia-
gram. The diagram shown in Figure 12 concerns our adaptive Mandel-
brot fractal and contains 8 features which give rise to 10 system variants.
Each of them contains only one feature to generate the image and only
one feature to color it. An admissible variant contains the features to
download a predefined image from a remote server.

3.7 Formalization of evolution and execution

We propose a set of semantic rules in order to model how the evolution
and execution steps can be performed by the adaptive application. At
a certain point the application provides a set of features, i.e., a variant
Gi = (RGi

, CGi
, IGi

). Figure 13 depicts how the system IGi
may change

its state by performing either an execution or a evolution step. The ex-
ecution step is represented with a vertical arrow whereas the evolution
is represented with an horizontal arrow. In case of an evolution step
the system is reconfigured by changing the set of features that are pro-
vided to the user; the application switches from one variant to another.

45

Figure 12: Feature diagram

We have identified two evolutions: in case of the foreseen evolution the
application adopts a variant that has been statically checked whereas in
case of an unforeseen evolution the application adopts a new unforeseen
variant that has to be checked at run-time. Finally, in case of an exe-
cution step the system performs internal actions while maintaining the
same configuration of features.

In order to take into account both standard and evolving behaviors
we consider the state of the system to be composed by an internal and
external component. The first is completely managed by the implemen-
tation, whereas the second is driven by the foreseen and unforeseen con-
text variations. The state is defined as σ = (σs, σc, σe) where:

• σs is the portion of the internal state managed by I which is not
affecting any of the evolution scenarios.

• σc is the portion of the external state which addresses the foreseen
evolution. It represents the current state for the context variables.

• σe is the portion of the external state which addresses the unfore-
seen evolution. It may contain either a new requirement arising

46

Figure 13: System state-based model

from the user <RNew,+> or a requirement to delete <RDel,−>.

We assume the existence of a monitor that is able to check the external
portion of the state. Therefore, we simply define a function monitor that
returns a pair <Boolean, State> where the first element assumes value
true only if the monitor can attest the variation of the state. The second
element expresses the changed state.

We also assume the existence of the procedure BestRanked which
evaluates the best variant that should be adopted by the application.

3.7.1 Semantic rules

Whenever an evolution is not required (either by the context or by the
user) the system may perform an execution step changing the internal
portion of the state (σs). A step performed following this rule consists
of executing a code instruction which affects some local variables. In the
following is depicted the rule describing an execution step:

monitor(σc) =<false, null> monitor(σe) =<false, null>

〈 IGi
, < σs, σc, σe > 〉 →execT 〈 I ′Gi

, < σ′s, σc, σe > 〉

In order to define how the system switches among variants we define
two different rules: one for the foreseen evolution and one for the un-

47

foreseen evolution. In the following we depict the rule for the foreseen
evolution:

monitor(σc) =<true, σc′>
Space = {Gr|r = 1, ..., n} BestRanked(σ′c, Space, Prefs) = Gj

〈 IGi , < σs, σc, σe > 〉 →execf 〈 IGj , < σs, σ
′
c, σe > 〉

If the current assignment of context variables changes (σ′c), we eval-
uate which is the best eligible variant through the function BestRanked.
This function takes as input the space of possible variants, the current
context values and the context-based user preferences. If this function
returns a variant (Gj) different from the current one, the application
switches from IGi to IGj . Following this rule, the system can only switch
between alternatives which have been provided by the designer at de-
sign time.

We propose the unforeseen evolution in order to augment the appli-
cation with new variant at run-time. The rule describing this evolution is
enacted by the variation to the requirements set to satisfy. The user may
specify a new requirement <Rnew,+> in the external portion of state σe.
Thus it is necessary to check if a new variant has to be added to the appli-
cation. In the following we show the rule for the unforeseen evolution:

monitor(σe) =< true, σ′e > < RNew,+ >∈ σ′e
Gr = (RGr

, CGr
, IGr

), r = 1, .., n IGr
0 RNew ∪R RGi

Search(RNew) = f Gj = Gi ∪f f Check(Gj) = true

〈 IGi
, < σs, σc, σe > 〉 →execunf

〈 IGj
, < σs, σc,∅ > 〉

Once the monitor has attested the variation to the requirements set
to satisfy, the unforeseen evolution has to check if the variation to the
requirements can be satisfied with the variants that have been provided
at design time. Thus it is necessary to check if there exist at least a variant
in the space of the known variants whose implementation IGr satisfies
the requirements of the current variant RGi

plus the new requirement
RNew. Only if this is not the case, we proceed by evolving the application

48

with a new variant. We query the search engine to retrieve the feature
that implements the new requirement. We choose the first feature that
does not give rise to the feature interaction phenomenon with the current
variant Gi (see Section 3.8). Finally, the system evolves from the current
variant towards the new one Gj = Gi ∪f f .

If there exist already a variant that implements the new requirement
RNew and the initial requirements RGi

, then the application has to adopt
this variant. We do not show the rule to perform this evolution since it
is similar to the rule of the foreseen evolution except for the fact that it is
triggered by a new requirement.

3.8 Evolution consistency

We adopt the absence of feature interaction as the notion of consistent
evolution for a system variant. A certain variant is consistent if its fea-
tures can be jointly executed without showing interactions. In our ap-
proach we take into consideration interactions that are not explicitly ob-
servable by the feature diagram, i.e. implicit feature interactions (PCBD10).
Given a certain variant GF = (RF , CF , IF) we formalize our notion of
consistency following the approaches in (CHS08b; Jac00) as:

IF , CF ` RF (3.2)

In our approach this formula entails three different checks:

(i) (CF)[
−→c /−→x]: this formula checks the joint context requirement (pred-

icate) CF assigning the current context values −→c to the formal pa-
rameters −→x , if the predicate is true the evolution can occur in the
”adequate” context state;

(ii) RF is Satisfiable: this formula checks if the joint context-independent
requirement can be satisfied;

(iii) IF ` RF : this formula validates the joint implementation with re-
spect to the joint requirements either by model checking or by a
testing process.

49

These formulas are automatically verified at design time to support
the foreseen evolutions and at run-time in order to support the unfore-
seen evolutions. At design time we check each variant to discover pos-
sible inconsistency. At run-time we check if it is possible to augment the
current variant with an emerging feature which implements the emerg-
ing requirement.

Our goal is to prevent the system from behaving incorrectly. Each
of the three problems addresses different aspects and it has different
sources of errors. In addition, each of them differs in the needed algo-
rithms and the required computation effort to perform the checks. These
are relevant aspects since we are considering to perform the checks also
at run-time.

Since adaptive systems for ubiquitous computing are mainly charac-
terized by the serendipitously of the environment we believe that check-
ing context requirement (problem(i)) plays a key role. Such systems are
sensitive to the environment thus we should check first if a set of features
can be executed together at a certain context state. This allows us to dis-
card the variants that are already inconsistent in a certain context thus
avoiding to check problem (ii) and (iii). Since problem (i) is only a nec-
essary but not sufficient condition for the consistency, we should check
if there exist other inconsistencies that may prevent the system from be-
having incorrectly. Problem (ii) has been already treated in the literature
of requirement engineering (not at run-time) in order to discover con-
flicts among canonical requirements. Finally problem (iii) captures the
inconsistencies that emerges just at the implementation level.

3.8.1 Requirements for requirements at run-time

In this section we identify which are the characteristics that a require-
ment language should have in order to manage and to check the require-
ments specifications we propose.

In our approach requirements have to be managed at run-time. The
set of system’s functionalities is not always provided once and for all at
design time; while the system is running, users may require new func-

50

tionalities that should be included into the system through an on-line
process. Hence, it should be possible to add or delete requirements R
while the system is running. New functionalities, added at run-time,
may provoke inconsistencies of different nature. We have discussed in
Section 3.8 the three different problems that we consider to avoid in-
consistent evolutions at run-time. To address these problems, the re-
quirement portion R should be expressed in a language that supports
the satisfiability checking. It should be possible to validate requirements
R with respect to implementation I . Furthermore, the context require-
ments C should be expressed as predicates in quantitative terms in order
to quantitatively limit the assignments of context entities.

To address all the above issues we propose a generic meta-layer to
manage the requirements entities at run-time. This meta-layer is also in-
dependent by the adopted requirement and implementation languages.
It defines which are the operations that have to be provided by any re-
quirement language for our approach:

• Add / Delete a requirement R;

• Check requirement satisfiability for R;

• Validate R with respect to the correspondent implementation I ;

• Check a quantitative requirement C in a context state;

The main challenge is to make available these operations on require-
ments specification at run-time. The most of the approaches found in the
literature implements these operations only as design-time activities.

3.8.2 Context analysis

In this section we describe how we address the problem of checking con-
text requirements (problem (i) in Section 3.8). First we give a simple illus-
tration for checking context requirements belonging to a certain variant,
then we explain how the context analysis can support a possible unfore-
seen evolution.

51

For the first example we take into account the fractal application.
We assume that the variant Gfractal = {fgetRem, fsockConn, ftiffV iewer}
is currently deployed at the user device. Each feature has a different con-
text requirements, i.e.:

(i) CtiffV iewer ::= cRate ≥ 300 ∧mem ≥ 35
(ii) CgetRem ::= mem ≥ 100
(iii) CsockConn ::= conn = 1

We assume that Gfractal has to be checked at the context state −→c =

(100, 300, 4096, 1). This state provides 100 Kb of memory, a CPU clock
rate of 300 Mhz, a screen device with 4096 colors and an Internet con-
nection. Although the predicates for each context requirement are true
separately with the value in −→c , the predicate that belongs to the whole
variant is not true in the same context state because of the limited avail-
ability of free memory. Indeed, if we combine the request of memory
coming from the context requirement (i) and (ii) we obtain a total re-
quest for 135Kb of memory that cannot be satisfied at the context state
−→c . Therefore it is not possible to execute the features fgetRem, fsockConn

and ftiffV iewer together at −→c .

Example scenario

In this section we shown a possible scenario that exploits a context anal-
ysis phase in order to prevent incorrect evolutions for the eHealth appli-
cation. Let us suppose that the variant G = {ftextHeart, fgetHeartData,

fgraphHeart} is currently deployed at the doctor device. The context re-
quirement for this system alternative is:

CG = cRate ≥ 1100 ∧ mem ≥ 70 ∧ conn = 1 ∧
b ≥ 20 ∧ heartRateProbe = true

The current context state is:

ccurr = (cRate(3000Khz),mem(100Kb), conn(1),

b(100Kbps), heartRateProbe(true))

52

At a certain point in time a new sensor to monitor the respiratory
rate is added to the remote monitoring system as a new UPnP device
(respRateProbe). When this happens the doctor is notified about the
new gathered data. As a consequence the doctor requires to visualize the
patient respiratory rate. This is expressed as a new requirement that has
to be considered into the system:

RviewRespRate : Receive and view the respiratory rate data (3.3)

A search phase takes place in order to discover which feature may imple-
ment RviewRespRate. The searching phase responds with a two features
that satisfy the following condition:

RNew → RviewRespRate (3.4)

Two different features are proposed each one implementing a different
visualization modality:

• RgraphRespRate : if ”respRateProbe” then (Each 10 times ”getRespR-
Data” follows a ”displayGraph”)

• RtextRespRate : if ”respRateProbe” then (”getRespRData” follows a ”dis-
playText”)

Let us suppose that the doctor chooses the first alternative since he wants
to see the respiratory trend as a graph. The application should be aug-
mented with the feature shown in Figure 14.

The feature to visualize the graphical respiratory rate requires also
another feature to get the data from the monitoring system (fgetRRate).
Therefore we will consider the new context requirement that results from
the union of the two features defined as:

CNew = CgraphRespRate ∪C CgetRRate = cRate ≥ 1000 ∧
mem ≥ 50 ∧ conn = 1 ∧ b ≥ 20 ∧ respRateProbe = true

The new context requirement has to be valid in the current system con-
text ccurr by itself and when it is jointly considered with the context con-

53

RgraphRespRate : i f ” respRateProbe ” then (Each 10 t imes
” getRespRData ” f o l l o w s a ” displayGraph ”)

IgraphRespRate :
public class GraphRespRateViewer {

XYDataset respRateDataset = new XYSer iesCol lec t ion () ;
. . .
public void viewGraphicalRespRate (Graph g){

. . .
for (i n t i = 0 ; i <10; i ++){
XYDataItem dataRespR = RespRateRetr ieving . getRespRData () ;
dataVectRespR . add (dataRespR) ;
}
g . displayGraph (dataVectRespR) ;
}
. . .
}

CgraphRespRate : mem ≥ 50 ∧ cRate ≥ 1000 ∧ respRateProbe = true

Figure 14: New feature: graphical visualization (eHealth)

straints belonging to the current variant G:

CG ∪C CNew = mem ≥ 120 ∧ cRate ≥ 2100 ∧ conn = 1 ∧
b ≥ 40 ∧ respRateProbe = true ∧ heartRateProbe = true

The above formula is not valid at the current context state ccurr since it
does not provide enough memory. Using his feature will lead to a new
variant that is inconsistent in the current context. Hence, we consider the
second feature ftextRespRate to visualize a textual representation and we
check the consistency in a similar way. Figure 15 shows the feature for
the textual visualization.

Also ftextRespRate requires another feature fgetRRate to retrieve the
data from the server. The joint context requirement obtained combining
these two features is:

CNew2
= CtextRespRate ∪C CgetRRate = cRate ≥ 100 ∧

mem ≥ 20 ∧ conn = 1 ∧ b ≥ 20 ∧ respRateProbe = true

In order to evaluate the consistency of the evolution, we check the new
context requirement CNew2

together with the context requirement be-

54

RtextRespRate : i f ” respRateProbe ” then (” getRespRData ”
f o l l o w s a ” d i sp layTex t ”)

ItextRespRate :
public class TextRespRateViewer {

. . .
public void viewTextualRespRate (Text myTextViewer) {

XYDataItem dataRespr = RespRateRetr ieving . getRespRData () ;
myTextViewer . d i sp layTex t (dataRespR . getYValue ()) ;
}
. . .
}

CtextRespRate : mem ≥ 20 ∧ cRate ≥ 100 ∧ respRateProbe = true

Figure 15: New feature: textual visualization (eHealth)

longing to G:

CG3
∪C CNew2

= cRate ≥ 1200 ∧ mem ≥ 90 ∧ conn = 1 ∧
b ≥ 40 ∧ respRateProbe = true ∧ heartRateProbe = true

Since the joint constraint above is valid in ccurr we consider this second
evolution to be consistent. Hence, the textual respiratory rate can be vi-
sualize by the doctor. As a consequence of the evolution, the context mo-
del is augmented with a new context entity respRateProbe; in addition a
new system variant {ftextHeart, fgraphHeart, fgetHeartData, ftextRespRate,

fgetRRate} is added to the set of admissible variant as represented by the
feature diagram. The context requirement for the new variant will be:
CG ∪C CNew2

.

3.8.3 Model checking context-independent requirement

In this section we describe the technique we have adopted for check-
ing context-independent requirements on code artifacts (problem (iii) in
Section 3.8). We utilize an on-line verification technique which model-
checks Java code through the Java Path Finder (JPF) tool (HP00). We
adopt Linear Time Temporal Logic (LTL)(Pnu77) to specify the require-
ments of each feature.

We assume that the features are already instrumented with a proce-

55

dure that checks the satisfaction for their requirementsR. This procedure
is invoked inside the feature implementation in order to generate excep-
tions only if the result of the check is negative. We then use JPF to prove
the property satisfaction, i.e. if the exception is not thrown in any of the
execution paths. Indeed, JPF is able to discover if there exists at least an
execution path which leads to an unhandled exception.

RgraphOxygen = [](GraphOxV iewer.viewGraphOx(Graph)→
(<> GraphOxV iewer.outcome))

IgraphOxygen :
public class GraphOxViewer{

. . .
public void viewGraphOx (Graph g) throws Except ion{

for (i n t i = 0 ; i <10; i ++){
XYDataItem dataOx = OximetryRetr . getOximetryData () ;
dataVectOx . add (dataOx) ;
}
g . displayGraph (dataVectOx) ;
outcome = Checker . Check (g . currData , dataVectOx) ;
i f (! outcome){ throw p r o p e r t y V i o l a t i o n ;}
}
. . .
}

Figure 16: Example: graphical oxygenation

Figure 16 illustrates a feature to visualize a graphical trend for real-
time data coming from a remote system. In this example RgraphOxygen is
the functional requirement for the feature implemented by IgraphOxygen;
whenever the method viewGraphOx is invoked, the variable outcome has
to become true in a certain number of execution steps. In order to verify
if RgraphOxygen is true, we run the JPF core tool1. It checks if at least a
path of execution generates an un-handled exception. This happens only
if the function Check can not attest that the graphical widget contains
exactly the data currently written.

In our example, we assume that a certain variant G is executed on
the doctor’s device in order to display the data of oxygenation rate gath-
ered by the remote monitoring system. Whenever an unforeseen context
variation occurs, the user may request a new feature in the same man-

1http://babelfish.arc.nasa.gov/hg/jpf/jpf-core

56

ner as presented for the scenario of Section 3.8.2. As for the previous
scenario, the patient links a new probe to the remote monitoring system
and the probe gets accepted to the system as a new UPnP device. The
doctor gets a notification of such unforeseen context variation, and con-
sequently specifies a new requirement (Eq. (3.3)). We suppose that there
exists an available repository of feature code modules that responds with
a set of features that satisfy the condition at Eq. (3.4). In the following
we present the LTL requirement for the two retrieved features.

• []GraphRespRV iewer.viewGraphRespR(Graph)→
<> GraphRespRV iewer.outcome

• []GraphRespRV iewer.viewTextRespRate(Text)→
<> TextRespRV iewer.outcome

The first feature is able to view a graphical representation for the res-
piratory rate, whereas the second can only show a textual value for the
same vital parameter. The user selects the first feature (Figure 17) since
he prefers a graphical visualization.

RgraphRespRate =
= [](GraphRespRV iewer.viewGraphRespR(Graph)→
(<> GraphRespRV iewer.outcome))

IgraphRespRate :
public class GraphRespRViewer {
boolean outcome= fa lse ;
private s t a t i c Except ion p r o p e r t y V i o l a t i o n ;
. . .
public void viewGraphRespR (Graph g) throws Except ion{

. . .
for (i n t i = 0 ; i <10; i ++){
XYDataItem dataRespR = RespRRetr . getRespRData () ;
dataVectRespR . add (dataRespR) ;
}
g . displayGraph (dataVectRespR) ;
outcome = Checker . Check (g . currData , dataVectRespR) ;
i f (! outcome){ throw p r o p e r t y V i o l a t i o n ;}
}
. . .
}

Figure 17: Example: graphical respiratory rate

57

Figure 18: Visualization interaction

This feature is consistent by itself since its implementation
IgraphRespRate satisfies the requirement RgraphRespRate. In order to estab-
lish if it is possible to augment the system with such functionality, it is
necessary to check if the augmented implementation IG∪I IgraphRespRate

satisfies the augmented requirements specificationRG∪RRgraphRespRate.
If the model checking result is negative, the evolution is prohibited. On
the contrary, if the model checking result is positive, the evolution can
take place since the current functionalities are also preserved. Listing
A.3 shows the augmented requirements specification along with the aug-
mented Java implementation for our example. By running the verifica-
tion of RGNew with Java Path Finder we discover that the requirements
are not satisfied by the implementation IGNew. The graphical visualiza-
tion for the oxygenation parameter interacts with the graphical visual-
ization for the respiratory rate. This problem arises because the methods
viewGraphOx and viewGraphRespR access the shared common widget
to plot the corresponding curve. Both methods assume that the graph is
cleaned before they start their visualization. Hence, if we run only one
feature at a time we can correctly show the curve for the data. Indeed, the
requirements belonging to the two features are both verified by their Java
implementations only if we consider them separately. On the contrary,
if we want to execute both features together, the result is an interfering
visualization (Figure 18) that we can discover through the verification
process before switching to the new variant (Listing A.3). Indeed, the re-

58

quirementRGNew is false because after the visualization for the oxygena-
tion rate, the method invocation Check within viewGraphRespR discov-
ers that the graph does not contains the respiratory rate data exactly. The
graph also contains the data of the oxygenation rate parameter. This gen-
erate the un-handled exception detected by JPF.

At this point the assurance process further proceeds by checking a
bound number of retrieved features depending on the user (e.g. doctor)
needs which are application dependent.

59

Chapter 4

Software Process for
Adaptive Systems

The process we describe in this chapter is amenable for developing and
evolving adaptive systems. We assume to have a set of basic behavioral
elements as input to our process. These elements are implementation
artifacts and requirements artifacts. We will explain the mechanisms to
create the application and to enact its evolution from requirement to im-
plementation level. We will assume that the evolution may be performed
in a state in which it is allowed (e.g. quiescent state or weaker notions
(KM90; VEBD07)).

4.1 Software Process

We have defined a software lifecycle process which follows the structure
described in (AdRI+11). Our software process implements four differ-
ent activities, namely Explore, Integrate, Validate and Evolve as shown
in Figure 19. The exploration phase exploits a feature library containing
the code implementation and the correspondent requirements descrip-
tions. The integration phase takes these features as input and produces
the space of the system variants as a feature diagram. Each variant is
checked through a validation phase which performs the context analysis

60

Figure 19: Software process

and model checking presented in sections 3.8.2 and 3.8.3, respectively.
Finally, the evolution phase reconfigures the system by switching from
the current variant to the new one.

The problem we face is the complexity for the software engineer to
specify which are the context conditions under which each system vari-
ant is admissible. Given n features it could be required to set the context
conditions for 2n variants in the worst case. Our methodology makes
the generation of the system variants automatic by exploiting the mod-
els provided in the SPLE as described in Section 3.2.

At the exploration phase the software engineer defines the set of fea-
tures of interest. Starting from a standard software component it is possi-
ble to define a feature (f = (R, I, C)) by considering the requirements of
the component and its code. The feature code I will be exactly the same
as the code of the component. R will contain the requirements of the
component that are not context-dependent. In general the requirements
of the component will always contain requirements about the execution
context, thus they will be added to C. Further context requirements, for
example concerning resources consumption can be obtain through suit-
able static code analysis. For example in our environment we use the
Chameleon framework (ABI09; ABI10) in order to extract the consump-
tion of resources caused by the code I (e.g. memory and CPU clock rate).
At the end of the exploration phase we have a set of features defined in

61

terms of their basics elements, i.e. A = {f1, ..., fn}.
At integration phase the software engineer combines the features through

the feature diagram definition. Architectural constraints may be defined
here at the integration phase. Starting from the feature diagram an auto-
matic process generates all the system variants:

G = {G1, G2, ..., Gm} s.t. m ≤ 2|A| (4.1)

We assume that the requirements belonging to each variant imply the
system requirements. We further assume that each variant satisfies its
requirements: IGi

` RGi
∀i = 1, ..,m. An automatic process generates

the context model structure and the context model space S considering
the context entities exploited by the context requirements belonging to
the created variants.

At validation phase we create the data structure to support the evolu-
tion. This phase takes place by means of two main steps. The first step
consists in labeling each context state −→c in S with all the features that
are consistent in −→c (context analysis and model checking in Section 3.8).
The feature consistency table is built inserting value 1 each time a feature
is consistent in the corresponding context state. The second step consists
in building the variant consistency table by labeling each context state −→c
in S with all the system variants that are consistent in that state. Finally,
we aggregate the context states that make the same set of variants con-
sistent. Nevertheless, we do not address the scalability problems arising
from the number of context states and variants within the mentioned
tables. Different approaches (BHRE07) have been presented to reason
about the variants belonging to the feature diagram. Moreover the ex-
ponential growth of context states could be mitigated by clustering the
states (DD10b).

The evolution phase reconfigures the system whenever either a fore-
seen or an unforeseen evolution is required. In the first case we query the
variant consistency table to retrieve the space of the admissible variants.
Among them we select the most suitable one based on the data struc-
tures provided at the validation phase. In the second case we have to
re-iterate the first three phases of our software process in order to evolve

62

the system. We query a remote feature library to retrieve the feature im-
plementing the new requirement and we integrate the new feature with
the current variant. Finally, we have to validate the new unforeseen vari-
ant before we can add it to the variant consistency table. The evolution
processes are further discussed in Section 4.2.

4.1.1 Example: mandelbrot fractal

In this section we show how we design and develop the adaptive ap-
plication to visualize a Mandelbrot fractal. To this end, the software en-
gineer defines the set of features A in terms of requirements and code
implementations:

A = {fgenShot, fgenPro, fgenImm, fcolB , fcolNB , fcolS , fremGet, fsockConn}

The set A contains the features to generate and color the fractal pixels
and the features to download a standard fractal image from a remote
server. The generation may be performed by visualizing a pixel at a time
(fgenImm), a pixel row at a time (fgenPro) or the whole fractal image at
the end of the drawing process (fgenShot). The pixel colors are defined
following three different schemas: fcolB colors pixels as bands exploit-
ing a limited number of tones; fcolNB colors pixels as bands exploiting a
wide spectrum of tones while fcolS follows a smooth schema to color pix-
els exploiting a wide spectrum of tones. Finally, fsockConn connects the
device to the Internet whereas fremGet retrieves and views a standard
fractal image from a remote server.

Figure 20 shows an excerpt of the features entailed in A. It is pos-
sible to define the context requirement of each feature by exploiting the
Chameleon framework in order to obtain the consumption of resources,
e.g. CPU and memory. Further, context requirements can be defined by
extracting the requirement on the number of screen colors derived from
the requirement of the component.

In order to design the fractal application the software engineer com-
bines the features and produces the feature diagram as shown in Figure
12. The logic operators in the feature diagram guide the automatic gen-
eration of 10 system variants as shown in Table 1. The first nine variants

63

fgenPro = (RgenPro, IgenPro,CgenPro)
RgenPro : Compute each f r a c t a l p i x e l and show i t a p i x e l row at a t ime
IgenPro :
public class MandelCanvas extends Canvas{ . . .

public void genera teProgress iveFrac ta l (){
i n t column ArrayCanvas [] = new i n t [he igh t] ;
for (i n t x = 0; x < width ; x++){

for (i n t y = 0; y < he igh t ; y++){
F r a c t a l P i x e l p ixe l ArrayCanvas = drawFrac ta lP i xe l (x , y) ;
}
o f f se tX = x ;
image = Image . createRGBImage (column ArrayCanvas ,1 , height , fa lse) ;
r e p a i n t () ;
} } . . . }

CgenPro : mem ≥ 200

fcolS = (RcolS, IcolS,CcolS)
RcolS : Pain t the f r a c t a l p i x e l s as smoothly n ice co lored bands
IcolS :
public class Colour ing { . . .

private i n t pixe lColorSmooth ly (boolean i n te rno , i n t i t e r a z i o n i ,
double d i s t){

i f (i n t e r n o) return 0;
i t e r a z i o n i = i t e r a z i o n i + 2 ;
double mu I te ra t i onsD is tance = i t e r a z i o n i−
(F loat11 . log (Float11 . log (d i s t))) / log2 ;
i n t tmp= DBL ToRGB(mu I te ra t i onsD is tance) ;
return tmp ;
}
private void i n i tCo lo rsSmooth l y () {

log2 = Float11 . log (2 . 0) ;
} . . .}

CcolS : cRate ≥ 500 ∧ sc ≥ 4096

fremGet = (RremGet, IremGet,CremGet)
RremGet :Ret r ieve and view the f r a c t a l image from the server
IremGet :
public class RemoteViewer extends Canvas { . . .

public void viewRemoteFractal (){
th is . image = g e t F r a c t a l (s ta r tT ime ∗1000 ,maxExecutionTime) ;
r e p a i n t () ;
} . . . }

CremGet : mem ≥ 100

Figure 20: Application features

are obtained combining the three different building mechanisms with
three different coloring schemas. The last one simply gets an already de-
fined fractal image from a remote server. Each variant is characterized by
the context requirement and by the offered qualities. The DisplayModel

quality represents the modality of showing the fractal while ColorModel

64

quality expresses the coloring modalities.

Table 1: System variants

System Variant Context Requirement Offered Quality

G1 = {fgenShot, fcolB}
mem ≥ 300 ∧ cRate ≥ 100 DisplayModel = Shot

ColorModel = BandOfColors

G2 = {fgenShot, fcolNB}
mem ≥ 300 ∧ cRate ≥ 300∧ DisplayModel = Shot
sc ≥ 4096 ColorModel = NiceBandOfColors

G3 = {fgenShot, fcolS}
mem ≥ 300 ∧ cRate ≥ 500∧ DisplayModel = Shot
sc ≥ 4096 ColorModel = SmoothyBandOfColors

G4 = {fgenPro, fcolB}
mem ≥ 200 ∧ cRate ≥ 100 DisplayModel = Progressive

ColorModel = BandOfColors

G5 = {fgenPro, fcolNB}
mem ≥ 200 ∧ cRate ≥ 300∧ DisplayModel = Progressive
sc ≥ 4096 ColorModel = NiceBandOfColors

G6 = {fgenPro, fcolS}
mem ≥ 200 ∧ cRate ≥ 500∧ DisplayModel = Progressive
sc ≥ 4096 ColorModel = SmoothyBandOfColors

G7 = {fgenImm, fcolB}
mem ≥ 120 ∧ cRate ≥ 100 DisplayModel = Immediate

ColorModel = BandOfColors

G8 = {fgenImm, fcolNB}
mem ≥ 120 ∧ cRate ≥ 300∧ DisplayModel = Immediate
sc ≥ 4096 ColorModel = NiceBandOfColors

G9 = {fgenImm, fcolS}
mem ≥ 120 ∧ cRate ≥ 500∧ DisplayModel = Immediate
sc ≥ 4096 ColorModel = SmoothyBandOfColors

G10 = {fremGet, fsockConn}
mem ≥ 100 ∧ conn = 1 DisplayModel = Shot

ColorModel = BandOfColors

After creating the variant, the integration phase generates the context
model which contains the relevant resources for the fractal application as
shown in Figure 7(a). It creates the context model space as S = mem ×
cRate× sc× conn.

As far as the validation of the fractal application is concerned we only
show the consistency based on context analysis. The validation phase
creates the feature consistency table (Table 2) by checking the consistency
for each feature at each context state in S. It evaluates the validity for
the context requirements (predicates) of each feature by assigning all the
possible context values. The table assigns value 1 if it is possible to de-
ploy a feature in a certain context state and 0 otherwise. After defining
the feature consistency table the context analysis phase creates the vari-
ant consistency table (Table 3) by considering the features included in
each variant. This table contains value 1 only if all the features in a cer-
tain variant are jointly consistent at a certain context state. The process
checks the validity of the joint predicate as shown in Section 3.8.2.

65

Table 2: Feature consistency table

C(mem, cRate, sc, conn)/fj fgenShot fgenPro fgenImm fcolB fcolNB fcolS fremGet fsockConn

C0 = (100, 200, 256, 0) 0 0 0 1 0 0 1 0
...
C33 = (150, 400, 4096, 1) 0 0 1 1 1 0 1 1
...
C43 = (350, 200, 4096, 1) 1 1 1 1 0 0 1 1
...
C47 = (350, 600, 4096, 1) 1 1 1 1 1 1 1 1

Table 3: Variant consistency table

C(mem, cRate, sc, conn)/Gk G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C0 = (100, 200, 256, 0) 0 0 0 0 0 0 0 0 0 0
...
C33 = (150, 400, 4096, 1) 0 0 0 0 0 0 1 1 0 1
...
C43 = (350, 200, 4096, 1) 1 0 0 1 0 0 1 0 0 1
...
C47 = (350, 600, 4096, 1) 1 1 1 1 1 1 1 1 1 1

4.2 System Evolution

Our development process supports the system evolution required by the
context variations. In the following we show that while in the foreseen
evolution, system and context models are queried to support the recon-
figurations; in the case of unforeseen evolution the same models may
have to be refined as a consequence of incoming user needs.

4.2.1 Foreseen Evolution

In the foreseen evolution we consider only variants that have already
been proven consistent. A monitoring process notifies the context vari-
ations that invalidate the context requirement belonging to the running
variants. Whenever such a new assignment of resources is discovered,
the framework queries the variant consistency table to get the possibly
new admissible variants. In order to perform the static decision-making
process among consistent variants we take into consideration context
and user preferences.

Since we want to make our mechanism resilient to future contexts we

66

take into consideration which is the probable future evolution for each
context state. We consider the predictions for the user centric information
(user task, user mobility) and the predictions for the evolution laws of
resources obtained as explained in (PGS+07). Exploiting such informa-
tion we build a probabilistic automaton according to the approaches in
(MM07; BCM10). Each different state corresponds to a different context
and each arc expresses the probability to move from a context to another
(e.g. Figure 21). In the next section we show a possible decision-making

Figure 21: Probabilistic evolution automata

process which considers fixed user preferences and probable context evo-
lutions.

Example: Mandelbrot fractal

Starting from the set of admissible variants we evaluate a fitness value in
order to discover which of them is the most suitable with respect to fu-
ture context variations and the fixed user preferences. Starting from the
automaton in Figure 21 we evaluate the steady-state probability vector
−→p = [0.2794 0.2794 0.2647 0.1765] which expresses how often the con-
text belongs to a certain state. Then we evaluate the context fitness vector
by multiplying the vector −→p with the matrix m representing the variant
consistency table:

f = p ·m (4.2)

This vector assigns a fitness value at each variant that depends on the
number of states in which the system variant is admissible and on the
relevance for the states as evaluated by the steady-state probability vec-
tor. This ranking mechanism considers only how often the context be-

67

longs to a certain state whereas it ignores which is the current state and
its future transitions thus leading to globally optimum solutions. Parallel
to f we also evaluate a user fitness vector t expressing how each variant
is suitable with respect to the user preferences. We express preferences
as weights over the quality attributes which characterizes the variants.
Each weight wq (from 0 to 1) indicates the interest for the user towards a
certain quality q. We use a predefined utility function uq(Gi) to assign a
value from 0 to 1 at each quality dimension q provided by each Gi. The
software engineer defines the utility functions and the weights for each
quality since they are strictly application dependent. The user fitness vec-
tor is evaluated as:

t(Gi) =
∑

q∈Qualities

wq × uq(Gi) (4.3)

Our decision-making process will consider together the user fitness t(Gi)

and context fitness f(Gi) to evaluate the overall fitness of each system
variant Gi.

Let us consider the scenario as depicted in Table 3 and let us sup-
pose that the variant G4 = {fgenPro, fcolB} is running at the context
state C43 = (350, 200, 4096, 1) whereas the user preferences assign higher
weight to the DisplayModel quality. In this simple example we assume
the user preferences to be fixed. The system is producing a fractal im-
age drawing a row at a time and coloring pixels as bands of colors.
Let us now suppose that because of a new application started on the
mobile device, the current memory availability changes and the moni-
toring detects a context variation. By looking at the new context state
C33 = (150, 400, 4096, 1) in Table 3 we obtain the set of admissible (con-
sistent) variants. Among them we select the one with the highest over-
all fitness. Therefore the current fractal application is stopped and it is
evolved towards the variant G7 = {fgenImm, fcolB}which represents the
best trade-off between user and context fitness.

The weak point of this methodology is that it only considers fixed
user preferences which are defined once and for all. By contrast user
preferences are not fixed but they may change over the execution since

68

the user could be involved in changing context. For instance, the user
could either be involved in new tasks or run the application in different
locations. As a consequence we should include the possible preferences
variations within the automaton. In Chapter 5 we will present a more
detailed mechanism to perform reconfigurations based on a probabilis-
tic model which considers changing user preferences. We will present
this mechanism along with a problem formalization and experimental
results.

4.2.2 Unforeseen Evolution

Let us assume that during the execution phase the set of requirements
the system needs to satisfy evolves because of changing user needs. For
example the user has to deal with a new context situation that has not
been foreseen by the software engineer at design time. Since a new be-
havior may have to be injected into the system it is necessary to modify
at run-time the context-based decision table presented in the earlier sec-
tions. In addition also the models related to the system variability and
context may have to be refined at run-time. Two different cases can arise:
either a new requirement has to be added to the current variant or an
already existing requirement has to be deleted from the current variant.
We suppose that the requirement to add or to delete does not imply other
requirements causing side effect phenomena to be managed. Thus, in or-
der to evolve the application with a new requirement we augment the
current selected variant with a new feature implementing the new re-
quirement. This leads to a new variant that has not been anticipated at
design time. Adding new requirements is more problematic than delet-
ing requirements, thus we only discuss the first. Further, adding new
behaviors seems to be appropriate for facing unforeseen situations.

In our approach we only evolve the current selected variant whereas
we do not consider how to augment the whole space of variants with
the new requirement. We neither discuss how the addition of a new re-
quirement to a variant may affect the qualities attributes offered from the
variant.

69

The user may press a specific button within the application inter-
face in order to communicate to the framework the variation of his/her
needs. Then the user may specify the new requirement RNew, for exam-
ple in natural language. The unforeseen evolution phase has to upgrade
the running variant with a new feature implementing the requirement
RNew. We assume to have a search engine that given a requirement is
able to return the set of features implementing it (exploration phase).
Among them, we select the first feature fNew = (RNew, INew, CNew) that
is consistent with the current running system variant GF = (RF , IF , CF)

at the current context. The integration phase creates the new variant
GF ∪f fNew and the validation phase checks the consistency of the vari-
ant at the current context state. The variant is added to consistency table
and since new resources may be required by the new feature it could be
necessary to augment the context. Also the feature diagram is kept up-
dated by adding the incoming feature. We recall that in our approach,
the integration of a new feature to the feature diagram only leads to a
new variant. We do not consider how to perform the integration of the
new feature with all the possible variants since we only evolve the cur-
rent variant.

Example: Mandelbrot fractal

Let us suppose that at the context state C33 = (150, 400, 4096, 1), the fore-
seen evolution select a new variant G10 = {fremGet, fsockConn}which vi-
sualizes a precomputed fractal image after it has been downloaded from
a remote server. The retrieved image complies to the TIFF image format.
Because of unforeseen characteristics of the mobile device, the user can-
not visualize the retrieved image. The device cannot decode TIFF images
and therefore the fractal application has to be upgraded. To this end, the
user interacts with the framework to add a new requirement in the appli-
cation. After accessing the upgrading wizard, the user specifies the new
requirement in natural language:

RNew = The system shall visualize TIFF format images (4.4)

70

This requirement has not been foreseen at design time but arises only
at run-time when the unforeseen device characteristics (context) make
the fractal visualization impossible. Thus after the evolution process we
have to re-iterate the exploration, integration and validation phases at
run-time in order to evolve the application with the feature (i.e. the soft-
ware codec) to view TIFF format images. This will lead to a new variant
with same features of the current variant plus the new feature.

The exploration phase queries the search engine in order to retrieve a
feature which implements the new requirement, e.g. see Figure 22.

ItiffV iewer :
public class Viewer{ . . .

public RenderOp t i f f V i e w e r (Object stream){
ParameterBlock params = new ParameterBlock () ;
params . add (stream) ;
TIFFDecodeParam decodeParam = new TIFFDecodeParam () ;
RenderedOp image = JAI . c reate (” t i f f ” , params) ;
return image ;
} . . .}
CtiffV iewer : cRate ≥ 300 ∧mem ≥ 35

Figure 22: Example: new feature

The integration phase augments the feature diagram with the new
feature as shown in Figure 23. An optional feature ftiffV iewer is added to
the diagram thus leading to a new variant GNew = {fremGet, ftiffV iewer,

fsockConn}.
For the validation phase we consider how the new context require-

ment affects the context requirements provided at design time. The new
context requirement CtiffV iewer, that we consider for consistency, refers
to the resources cRate and mem which have been already foreseen at de-
sign time; thus a context model extension is not required. To establish if
the new variant GNew = G10 ∪f ftiffV iewer is consistent we evaluate the
new context requirement jointly with the context requirement for G10,
i.e.

CNew = cRate ≥ 300 ∧mem ≥ 135 ∧ conn = 1

This predicate is true at the context state C33 since this state provides

71

Figure 23: Refined feature diagram

enough memory, cpu speed and an Internet connection. Only if the new
predicate is false it is necessary to restart the evolution process by the ex-
ploration phase in order to consider other features. Finally, if the variant
is consistent (the new predicate is true with the current context values),
the validation phase adds the new variant GNew to the consistency table
as shown in Table 4 by checking the consistency property also for the
other context states.

Table 4: Refined variant consistency table

C(mem, cRate, sc, conn)/Gk G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 GNew

C0 = (100, 200, 256, 0) 0 0 0 0 0 0 0 0 0 0 0
...
C33 = (150, 400, 4096, 1) 0 0 0 0 0 0 1 1 0 1 1
...
C43 = (350, 200, 4096, 1) 1 0 0 1 0 0 1 0 0 1 0
...
C47 = (350, 600, 4096, 1) 1 1 1 1 1 1 1 1 1 1 1

Even if it is not shown in the example, a new feature may also require
new unforeseen context entities in its context requirements. Thus, it may
be necessary to refine also the context model in order to consider the val-
ues for the new resources. As a consequence it would be also necessary

72

to augment the consistency table with the new context states arising from
the augmented context model space.

73

Chapter 5

Static decision-making
reconfiguration

Beyond changes that affect the validity for context requirements there
exist changes that affect user preferences. Reconfigurations should meet
the desired quality requirements according to changing user preferences
while they should be performed at reasonable costs. In this scenario,
considering predictive information allows us to anticipate upcoming re-
configuration needs. When determining the most suitable variant, the
challenge lies in finding a suitable trade-off between two objective func-
tions: maximize the user benefit while minimizing reconfiguration cost.
User benefit determines how good is a certain variant for the user ac-
cording the quality offered by the variant and the user preferences over
these qualities. Costs is defined as a function of the distance between the
current and the target variant.

Pure user benefit decision mechanisms come with high costs due to
frequent reconfigurations. In contrast, pure cost-driven adaptations ne-
glect user preferences and always choose the current variant. They only
change the current variant when it is absolutely necessary thus leaving
the user unsatisfied. Our solution is to define the selection among differ-
ent alternative variants as a multi-criteria optimization problem where
the aggregative objective function combines user benefit and cost.

74

Figure 24: User Preferences Example

5.1 Motivating scenario

An e-Health application supports doctors’ activities by providing the
most relevant services to visualize per-patient case history. Patient in-
formation is available at three levels of granularity: (i) a complete case
history that includes textual reports and medical images, (ii) a compact
version with only the recent history of reports and images, and (iii) only
a textual case history. In addition images are displayed either as black
and white images, in low color (256 colors), or as fully colored images
(4096 colors).

Doctors need to receive aggregated per-patient information to sup-
port their activities at different locations. These activities include patient
consulting, check-up, and medical procedures such as operations. More-
over they may be involved in emergency situations. These activities are
performed at different locations such as common visiting rooms, surgery
rooms, patient home or outside the hospital when an emergency arises.
The doctor is able to visualize per-patient information through an acces-
sible device inside or outside the hospital. Devices differ in their hard-
ware resources such as bandwidth availability (netB), number of screen
colors (sc), CPU speed (cRate) and available memory (mem). Hardware
has an impact on the available services: e.g., low bandwidth and 8 bit
colors restrict the responsiveness to retrieve the patient’s medical history
and available image quality.

Activity and location influence the doctor’s preference for displaying

75

Figure 25: Conceptual Model

the case history and image quality, see Figure 24. The doctor might pre-
fer a responsive system in case of an emergency activity. In another case,
immediate retrieval of per-patient information is not as important as a
detailed history for consulting activities. Upon context changes, the e-
Health application needs reconfiguration based on the underlying hard-
ware resources and the doctor’s (context-dependent) preferences.

5.2 Basic model

System reconfigurations aims at satisfying two objectives: maximizing
user benefit and minimizing cost which arises due to the reconfigura-
tion. Figure 25 visualizes the basic elements to enact the static decision-
making reconfiguration.

As introduced in Chapter 3 system variants can be expressed in terms
of context requirements (i.e. deployment constraints) and offered qualities.
We consider a set of deployment constraints in order to assess the admis-
sibility of the variant. These constraints are evaluated against the current
underlying context (resources) to establish whether the environment can
support the execution of that particular variant. We also map a system
variant to non-functional properties to represent its quality. This quality
becomes a utility of the variant (i.e., user benefit) when matched with
user preferences.

In order to consider how the context affects the evaluation of the sys-

76

tem variants we propose two types of context models: the (operative)
context model as defined in Section 3.4 and the user context model. On
the one hand deployment constraints are conditions on the operative context
model. On the other hand, user preferences, which are defined as weights
over qualities, are not static but depend on user information such as user
location and user activity. Thus here we also define a user context mo-
del which maps particular user preferences to specific user information.
We exploit the operative context model to evaluate the set of admissible
variants while we exploit the user context model to consider current and
probable future user preferences (CT11).

For each user, we assume the availability of historical transitions be-
tween the various context states. We also assume the time required for
system adaptation upon a state transition to be negligible compared to
the frequency of user context changes. Finally, we will exploit a generic
cost model in which the cost of deploying a feature is independent from
the running variant.

5.2.1 Operative context model

The operative context model is defined in terms of a context model space
and a context model structure as proposed in Section 3.4. Further we
extend original context model definition with the definition of operative
context scope which is a subset of the operative context space (Eq. 3.1):
os ∈ 2S , e.g. os = (netB(100 − 200Kbps),mem(10 − 50MB), sc(10 −
20colors), cRate(100− 150Mhz)). A context scope entails a set of context
states.

5.2.2 Variants

Each variant c is defined in terms of a context requirement and the fitness
values for the non-functional properties.

An operative context scope osc contains the set of states which make
the context requirement (predicate) for the variant c true. Then, we eval-
uate if a variant c is admissible in a context scope os with the function
fc which is equal to 1 only if os ⊆ osc and 0 otherwise. In our problem

77

we also exploit the function Eligible(r) to evaluate which variants are
admissible with the context values in r.

Non functional properties represent the qualities offered to the user.
These variables NFP = nfp1, nfp2, ..., nfps are normalized in the real
range [0,1]. The vector fvc contains the fitness values for the variant c.

5.2.3 User Context Model

User context entities characterize the user’s situation. As they are beyond
the control of the application, they play a key role in the adaptation pro-
cess. As mentioned in Section 5.1, the user’s preferences change when
switching from one user context state to another. Note that our approach
is independent from the actual user context entities and how they change
as long as there is a mapping of the various observable user context states
to user preferences.

We define a mapping between the user context state UC — as defined
by a set of user context entities — and the associated user preferences.
User preferences express the importance (i.e., weight) of the various non-
functional properties in a given context state. Higher weights express
higher importance applied in the mapping functions w : NFP → [0, 1].
Furthermore, we introduce a probabilistic automaton to represent the
changing user preferences as induced by the underlying transitions be-
tween context states.

This automaton is defined as A = (UC,P,E) where:

• UC = {UC0, ..., UCt} is the set of states expressing the space of
the user preferences. Each state is represented as a different com-
bination of weights upon the non-functional parameters: UCj =

[w1(nfp1)...ws(nfps)] j = 1, .., t;
at each state the weights are defined as:

∑s
i=1 wi(nfpi) = 1

• P is the set of transition probabilities

• E : UC × P → UC is the probabilistic transition function

This probabilistic state-based model shows how the preferences re-
flect the changes of user context entities. Historical data collected during

78

Figure 26: Probabilistic automaton excerpt

system execution allows us to determine the actual transition probabil-
ities between user context states. We continuously sample user context
data at fixed intervals of time so that the probability to have two or more
preference changes (i.e., context changes) within one interval is negligi-
bly low. This process, however, is beyond the scope of the thesis. Nev-
ertheless techniques like (KSS06) show the possibility to get preferences
from user context, whereas methodologies like (MKUM09) define how to
build a probabilistic model and maintain it updated with current system
execution.

We expect that the various user context states come with changes in
the operative context space. For example, bandwidth will not be the
same in every location. Consequently, we consider also if a particular
system variant is admissible in the observed user context state, inde-
pendent from user preferences. We define a mapping function to asso-
ciate each state in UC with an operative context scope within the set OS
(UCR : UC → OS). This models the correspondence between the user
preferences and the observed system context entities. Figure 26 provides
an excerpt of a probabilistic automaton, detailing the mapping of user
preferences and operative context scopes to a user context state.

5.2.4 Transition cost

An important factor to consider during the reconfiguration process is
the penalty of switching from the source variant to the target variant.
Since in our approach system variants are made by features, we char-
acterize this penalty based on the distance between the two variants as
Disty,z = [NToDeploy NToUnDeploy] expressing the number of fea-

79

tures to deploy and un-deploy switching from y to z. The vectorFCost =
[CDeployingf CUnDeployingf] contains the same cost of deploying and
un-deploying a feature. Based on the two vectors we define the transition
cost of switching from y to z as:

TC(y, z) = (Disty,z · FCostT)/MaxCost (5.1)

This cost is normalized to the maximum theoretical cost, which de-
pends on the maximum number of features to deploy and un-deploy:

MaxCost = [MaxToDeploy MaxToUnDeploy] · FCostT (5.2)

This simplified cost model is sufficient for our purpose since we do
not address the problem of executing the actual system reconfiguration
at the implementation level.

5.3 Rankings of the variants

Two events trigger the optimization problem and subsequent reconfigu-
ration. Either the user moves into a new user context state characterized
by a changing preference or the operative context cannot support the ex-
ecution of the current system variant anymore. The best variant to select
depends on the achievable user benefit and the associated costs for re-
configuring the system. A strategy that maximizes the user benefit after
each transition possibly requires many system reconfigurations. On the
other hand choosing a fixed variant which is always eligible throughout
all states may result in possibly sub-optimal user benefit or may not exist
at all. As a consequence we have to consider a trade-off analysis between
two potentially conflicting criteria, i.e. user benefit and reconfiguration
costs. In the following we formalize the user benefit, the reconfiguration
cost, and describe their combination in a single utility function.

As shown in Eq.5.3 the component Bcurr evaluates how well a cer-
tain variant c fits the current user context state. The user benefit at each
state is the product of the corresponding user preferences vector with the
quality attribute fvc offered by the variant.

Bcurr = UCcurr · fvTc (5.3)

80

A system variant that gives optimal user benefit for a certain state
may be sub-optimal if we consider the probable future states. Therefore
we introduce an equation component that evaluates the expected user
benefit in the future as given by the probabilistic context transitions. The
cost component BF shown in Eq.5.4 computes the future benefit of a
variant. We limit the calculation of future benefit to a single hop in the
transition graph. Considering additional states (i.e., multiple hops) is
expected to yield little additional benefit as each of the reachable states
will have very small probability and thus hardly any impact.

BF =

#OutLink(UCcurr)∑
j=1

p(UCcurr, UCj) ·
[
UCj · fvTc

]
· fc(osj) (5.4)

BF aggregates the user benefit for each subsequent user context state
weighted according to the respective transition probability. A variant
yields user benefit only if it is eligible in the corresponding operative
context scope (fc(osj) = 1). Ultimately, the overall user benefit equation
is obtained by combining the current and future user benefits as follows:

BAgg = h ·Bcurr + (1− h) ·BF (5.5)

The horizon h regulates the importance of the current user benefit
compared to the future user benefit. The horizon close to 1 expresses a
preference for the current state, whereas for h close to 0 we deem the
future more relevant. Thus for environments where the user is expected
to rapidly switch between states, the horizon configuration parameter
should be closer to 0 as he/she will leave the current state soon.

The reconfiguration cost TC represents the cost of switching from
the current variant to the variant c (Eq. 5.1). The problem of selecting
the best variant in a operative context state r, given a predefined user
context model, is formalized as a max optimization problem combining
the expressions defined in Eq. 5.3, 5.4, 5.1:

max
c∈Eligible(r)

α · [h ·Bcurr + (1− h) ·BF]− (1− α) · TC(ccurr, c) (5.6)

81

The parameter α regulates the trade-off between user benefit and re-
configuration cost. Setting α closer to 1 makes the optimization more
likely to meet the user benefit in spite of a high cost of reconfigura-
tion. When setting this parameter closer to 0, we reduce the reconfig-
uration cost by selecting general purpose system variants that may be
sub-optimal on the user benefit. The parameter h enables to tune the in-
terest between the current user preferences and the probable future user
preferences as explained above.

By introducing the variables α and h we make our optimization pro-
cess customizable to various environments. The horizon h enables tun-
ing to self-transitions in the context automata. After the creation of the
automata, if the resulting self-transitions are very high but still we are in-
terested in optimizing future preferences we need to decrease the value
of h. On the other hand if we end up with low self-transitions but we
want to better match current preferences we have to increase the value
of h. In addition, by setting h = 1 we enable comparison to existing
approaches that are future-unaware.

5.4 Case Study

Applying the feature engineering perspective the e-Health scenario yields
the following alternative features to view the per-patient case history:
S = {fviewAllIm, fviewLastIm, fviewAllRep, fviewLastRep, fviewSum, fpaintBW ,

fpaintCol, fpaintFCol}.
Table 5 lists the 7 variants built from these proposed features. Vari-

ant c1 provides only a textual representation of the patient’s case his-
tory (summary). The next three variants display only the very recent
case entries (lastHistory) by means of textual reports and medical im-
ages which may be colored following the three different modes (BW ,
Fullycolored, Colored). The last three variants display the complete case
history (completeHistory) with a different coloring modality. The fea-
tures combination in each variant determines the responsiveness level
(ranging from Low to High). In the following we describe how the re-
configuration process takes place whenever the user switches context.

82

Table 5: System variants

Variant Deployment Constraint Non-Functional Properties

c1 = {fviewSum}
netB(5kbps) ∧mem(0, 1MB) displayModel = summary

responsiveness = high

c2 = {fviewLastIm, fviewLastRep, fpaintBW }
netB(20kbps) ∧mem(2, 5MB)∧ displayModel = lastHistory
cRate(40Mhz) responsiveness = mediumHigh

c3 = {fviewLastIm, fviewLastRep, fpaintCol}
netB(20kbps) ∧mem(2, 5MB)∧ displayModel = lastHistory
cRate(50Mhz) responsiveness = mediumHigh

c4 = {fviewLastIm, fviewLastRep, fpaintFCol}
netB(200kbps) ∧mem(40MB)∧ displayModel = lastHistory
cRate(10Mhz) ∧ sc(4096colors) responsiveness = mediumLow

c5 = {fviewAllIm, fviewAllRep, fpaintBW }
netB(40kbps) ∧mem(10MB)∧ displayModel = completeHistory
cRate(40Mhz) responsiveness = medium

c6 = {fviewAllIm, fviewAllRep, fpaintCol}
netB(40kbps) ∧mem(10MB)∧ displayModel = completeHistory
cRate(50Mhz) ∧ sc(256colors) responsiveness = medium

c7 = {fviewAllIm, fviewAllRep, fpaintFCol}
netB(800kbps) ∧mem(160MB)∧ displayModel = completeHistory
cRate(100Mhz) ∧ sc(4096colors) responsiveness = low

We potentially observe a change of the user preferences when the doc-
tor moves to a different location or engages in a different task. If this is
the case, we then have to evaluate which variant maximizes Eq. 5.6. We
select the best variant starting from the following inputs: the set of eligi-
ble variants in the current operative context, the user context automata
and the reconfiguration costs. In this case study, we obtain a user con-
text automaton with the transitions probabilities shown in Figure 27 by
analyzing historical user data detailing the movements and the doctor’s
working timetable. Each state is characterized by different weights for
each quality attribute (UC0 = [0.3 0.7], UC1 = [0.6 0.4], UC2 = [0.7 0.3],
UC3 = [0.5 0.5], UC4 = [0.45 0.55], UC5 = [0.9 0.1]). The first compo-
nent of each vector indicates how important the displayModel property
is, while the second expresses the weight for responsiveness. In addition
each user context state is associated to a different operative context scope
OS0, .., OS5.

Suppose the doctor changes from an emergency activity to a check-
up activity within the hospital visiting room. As a consequence the user
context switches from UC0 to UC3 and the reconfiguration process com-
mences. Note that the user is free to switch between context states which
exhibit no corresponding transition in the automaton. Let us suppose
that the running variant is c2 and the operative context state is rcurr =

(netB(50Kbps), cRate(100Mhz),mem(20MB), sc(256colors)). We check
the deployment constraints for the variants in Table 5 against the state

83

Figure 27: User Context Automata

rcurr. Thus we compute the set of eligible variants as Eligible(rcurr) =

{c1, c2, c3, c5, c6}. Each variant provides two non-functional properties
NFP = {displayModel, responsiveness}. The first assumes one value
among summary, lastHistory and completeHistory whereas the second
assumes one value among low, mediumLow, mediumHigh, medium and
high. Starting from the qualities offered by each variant we evaluate the
parallel fitness vectors by means of a possible normalization:

c1 : [summary high] ⇒ fvc1 = [0.1 0.8]
c2 : [lastHistory mediumHigh] ⇒ fvc2 = [0.5 0.65]
c3 : [lastHistory mediumHigh] ⇒ fvc3 = [0.5 0.65]
c5 : [completeHistory medium] ⇒ fvc5 = [0.9 0.5]
c6 : [completeHistory medium] ⇒ fvc6 = [0.9 0.5]

Table 6: Distance evaluation

Dist./Conf. c1 c2 c3 c5 c6
ToDeploy 1 0 1 2 3
ToUnDeploy 3 0 1 2 3

For purpose of demonstrating, we assume the cost of deploying and
un-deploying any feature is FCost = [2 1]. The distance between each
admissible variant and the current one (c2 = {fviewLastIm,
fviewLastRep,fpaintBW }) in terms of features to deploy and un-deploy is
given in Table 6. The normalized costs of switching from the current
variant to each possible target one are: TC(c2, c1) = 0.556, TC(c2, c2) =

84

0, TC(c2, c3) = 0.333, TC(c2, c5) = 0.667, TC(c2, c6) = 1. The maximum
theoretical cost we use for the normalization is evaluated as MaxCost =

[3 3] · [2 1]T = 9 (Eq. 5.2). We solve the optimization problem at Eq.5.6
considering the new user context state UC3, the set of eligible variants at
the operative state rcurr, and the costs. For demonstrating our approach
we set α to 0.9 to express that the user benefit is more important than
costs. We also set the variable h to 0.3 to consider future user preferences
more relevant than the current preferences.

Our proposed methodology enables selecting the variant which fits
better the current preferences while considering the future user prefer-
ences. Future preferences are determined by the probable future task
and location in which the doctor will be involved. In addition also the
costs of switching variant are taken into account.

At the current user context state (UC3, the one where the user just ar-
rived), the doctor is performing a check-up activity at the visiting room
where the responsiveness and displayModel properties are equally ranked
(Figure 24). By looking at the automata in Figure 27 we reason that with
very high probability the doctor will thereafter switch to another state
(UC1). This probable subsequent state comes with different weights for
responsiveness and displayModel (UC1). As a consequence we antici-
pate this future transition by selecting a system variant which provides
already better display modality now, even if it does not strictly meet the
current user preferences. Nevertheless, in this example the top ranked
variant maximizes also the current preferences.

Table 7 presents the overall utility value for the eligible variants ob-
tained by combining the user benefit component (Eq.5.5) and the cost
(Eq. 5.1). User benefit components do not need normalization since they
are evaluated exploiting normalized user preferences and normalized
quality vector. In this illustrative example the best variant is c6 since
it corresponds to the best trade-off between user benefit and costs with
given h and α.

85

Table 7: Evaluation of the variants

Variant Bcurr BF Cost Overall utility
c1 = {fviewSum} 0.45 0.38 0.556 0,305
c2 = {fviewLastIm, fviewLastRep, fpaintBW } 0.575 0.56 0 0,508
c3 = {fviewLastIm, fviewLastRep, fpaintCol} 0.575 0.56 0.333 0,475
c5 = {fviewAllIm, fviewAllRep, fpaintBW } 0.7 0,74 0.667 0,589
c6 = {fviewAllIm, fviewAllRep, fpaintCol} 0.7 0,74 1 0,555

5.5 Experiment

Besides a case study, we validate our approach by simulating context
changes and the resulting reconfigurations for various parameter set-
tings. The results demonstrate that a predictive approach considerably
improves the reconfiguration process. The simulation process takes the
user context automata, costs, and a set of system variants as input. Dur-
ing the simulation we measure two metrics: the achieved user benefit
and the incurred reconfiguration costs.

We run the same experiment with different values for the parameters
α and h to analyze the effect on the two metrics. For each experiment we
construct a set of 200 paths of 100 hops generated according to the prob-
abilities of a fixed user context automata (Sec. 5.4). We then generate
a fixed number of alternative system variants. For each variant we de-
fine randomly the eligible context states and the values of non functional
properties. Each experiment consists of iterating through the context au-
tomaton according to the 200 predefined paths. At each state, we select
the variant that maximizes Eq. 5.6. For each chosen variant, we log the
current user benefit and reconfiguration cost. Finally, we evaluate the
averages of the two metrics over all paths within a single experiment
configuration. Then we repeat the experiment with the same paths se-
quences but varying α and h values. We then compare the results for
different combinations of α and h. Setting the horizon h to 1 we simu-
late a future unaware reconfiguration strategy. There was no difference
in the resulting cost and benefit trends for cost vectors FCost = [2 1] and
FCost = [10 1]; thus we report only the results for the former.

Figure 28(a) and 28(b) show the normalized user benefit and recon-
figuration across 33 experiment configurations. Figure 28(b) compares

86

(a) (b)

Figure 28: Normalized average user benefit (a) and normalized average re-
configuration cost (b) with h = 1.0, h = 0.5 and h = 0.2 depending on
utility objectives weights α.

reconfiguration cost with three different values of h. Here we observe
higher reconfiguration cost if we consider only the current user context
state (h = 1). On the other hand variants are likely to change less fre-
quently whenever we consider future user preferences. This holds if we
consider current and future preferences equally (h = 0.5) as well as if
we give more relevance to the future state (h = 0.2). We can conclude
that looking into the future lowers the cost. As shown in the Figure we
can reduce the reconfiguration cost by regulating h independent from α.
Since α represents the weight for the aggregated user benefit (Eq. 5.5), it
increases the significance of user benefit over the cost when it is close to
1.

Although we can reduce the reconfiguration cost by exploiting future
user preferences, we potentially lower user benefit at the same time. A
system variant that optimizes both current and future preferences does
not necessarily maximize current user benefit. Figure 28(a) presents the
difference of user benefit considering the static and predictive approach
with value of h. We get the best average user benefit if we consider only
the current user context state (h = 1) while we get lower values if we
consider the future user preferences (h = 0.2 and h = 0.5).

Figure 28(a) and 28(b) suggest that if we consider the current and fu-
ture user preferences the relative decrease in user benefit is smaller than
the reduction of reconfiguration cost. As shown in the figures there is

87

Figure 29: Pareto-optimal and sub-optimal configurations

potential user benefit without raising the cost. In addition, Figure 28(a)
and 28(b) also suggest that within the user benefit component the param-
eter h regulates the benefit and cost objectives. In fact setting h closer to
1 increases the cost of reconfiguration in order to increment the benefit,
whereas by setting h closer to 0 we partially alleviate the cost of recon-
figuration by accepting lower user benefit configurations. The difference
between α and h is that the horizon has a lower impact on the objectives
compared to α.

Finally, we analyze the set of Pareto optimal configurations for h =

[0; 0.1; 0.2; . . . 1] and α = [0; 0.1; 0.2; . . . 1] for a total of 121 compared con-
figurations. Pareto optimal points are roughly evenly distributed across
h thus making it possible to select desirable values according to the spe-
cific application. We have discovered which range of α could be ex-
ploited to get most of the optimal points. In Figure 29, the Pareto optimal
configurations are displayed following three different series; red squares
stand for points in the range of α = [0.5; 0.7], crosses for optimal points
for α = [0; 0.5] and triangles for α = [0.7; 1]. Sub-optimal configurations
are given in blue circles. As the configuration values are averaged over
multiple transitions (as outlined above) also sub-optimal configurations
close to the Pareto-optimal ones might me candidates. As shown in the

88

figure we have noted that around 50% of optimal configurations lie in
the range of α = [0.5; 0.7]. We can thus conclude that too low α val-
ues put too much weight on costs and therefore waste a lot of potential
to improve user benefit. Hence, our approach is able to realize consid-
erable user benefit even in very cost-constrained environments. Pareto
optimal configurations as shown in the figure help to decide how to set
α while leaving to the designers the choice of h for specific ubiquitous
applications.

The results demonstrate that predictive approaches (h < 1) allow the
reduction of reconfiguration cost while providing an acceptable level
of benefit to the user. We can conclude that our predictive approach
is as good as non predictive approaches (h = 1) whenever we want
to maximize the user benefit without focusing too much on cost. For
cost-sensitive environments, a non-predictive approach fails to produce
Pareto optimal points. Indeed, Pareto optimal points with h = 1 have
high α values (α = [0.7; 1]).

89

Chapter 6

Evolution framework

In this chapter we describe an evolution framework which supports the
software lifecycle process for adaptive systems. This framework sup-
ports software designers and software developers in the activities of de-
sign, development and evolution of such systems. Since our focus is on
the evolution mechanisms we describe how our framework implements
the MAPE (Monitoring, Analyze, Plan, Execute) (BSG+09) cycle in order
to enact the evolution. Consecutively, we discuss two representations
of our framework: a generic definition of its interfaces and a possible
instantiation based on current practice technologies.

6.1 MAPE cyle

Our framework implements a MAPE cycle in order to supervise, exe-
cute and evolve an adaptive application. The monitoring phase activity
collects information from the environment and from the user in order to
establish if an evolution is required or not. On the one hand, foreseen
context variations and user preferences variations may both enact fore-
seen evolutions. The firsts affect the admissibility for the system variants,
whereas the seconds influence the fitness of the system variants. On the
other hand, unforeseen context variations may force the user to intro-
duce a new requirement into the running variant. The Analyze phase

90

determines if the variant to adopt is consistent or not. In case of fore-
seen evolution we consider a pre-built data structure which records the
consistency for each variant at each different context state. In case of
unforeseen evolutions the analysis is performed at run-time by checking
the consistency for the un-anticipated variant. This variant will contain
the same set of features as the current variant plus a new feature that im-
plements the new requirement specified by the user. After the Analyze
phase the framework proceeds by planning the evolution. For the fore-
seen evolution, it performs a ranking procedure which establishes the
most suitable variant based on context and user preferences. For the un-
foreseen evolution the framework simply puts forward the new variant
which has been proven consistent at the Analyze step.

Finally the execution phase proceeds by switching from the current
to the selected target variant. In case of an foreseen evolution the adap-
tive application invokes the entry point method for the target variant.
In case of unforeseen evolution, the adaptive application incorporates a
new code artifact and puts the new variant in execution by invoking its
entry point method.

Figure 30: MAPE cycle

91

6.2 Framework interface architecture

In this Section we show a generic definition of our framework in terms
of a set of interfaces and their relations. The objective of the interface
architecture is to define the basis for creating instances of the generic
framework. A concrete framework that supports the development and
the evolution of adaptive applications should implement the interface ar-
chitecture depicted in Figure 31. This architecture defines the operations
whose implementations enact the MAPE cycle. Through the interfaces of
the generic framework it is also possible to support the complete lifecycle
process for adaptive applications.

The application, system variant and feature blocks represent the ba-
sic components. They enable the definition of the application along with
its variability. The context manager component is able to monitor the
resources and to manage their definitions and values by accessing to
the context model component. It performs the monitoring phase and
it triggers the required evolution phases. The decision-making compo-
nent maintains the context-based tables and the probabilistic automaton
in order to support the decision-making mechanisms; it also supports the
consistency checking phase and the ranking process for the variants. A
component for each kind of evolution is provided in the framework. As
shown by the arrows, while the foreseen evolution accesses the decision-
making component to select the most suitable variant, the unforeseen
evolution interacts with the user who specifies variation to the require-
ments. Finally the execution component enacts the system reconfigura-
tion for both evolutions.

6.3 Framework instance

In this section we describe a possible instantiation of the generic architec-
ture with current practice technologies. We represent requirement R as
Linear Time Temporal Logic expressions (Pnu77), whereas we represent
the context requirements as predicates. We evaluate the context states in
which a system variant is admissible by formalizing and solving a Con-

92

Figure 31: Evolution framework architecture

straint Satisfaction Problem (CSP) (MS98) by using the Java API available
with the JaCoP tool1. We implement features in Java and we exploits the
Java Path Finder tool in order to model check code artifacts with respect
to their corresponding requirements R.

Our framework instance is implemented as a set of classes which ma-
terialize the interface architecture in Figure 31. Based on these classes we
expose a set of web services which provide means to support the system
variability in Section 6.3.2.

6.3.1 Description

First of all, a pool of classes supports the definition of the application
along with its variants and features. The class implementing the in-
terface Feature contains a definition for a context-independent require-
ment, a context-dependent requirement and a code artifact. The class im-
plementing the SystemV ariant interface supports the instantiation of a

1http://jacop.osolpro.com/

93

system variant starting from the set of its features. This class creates and
maintains the components of the system R, I and C including the qual-
ity attributed that should be specified by the software engineer. Starting
from the basic elements of each feature this class creates a context re-
quirement as a union of clauses where each clause can express which
is either the maximum, or the minimum or the exact value for a certain
context entity. The class implementing the interfaceApplicationmanages
the instance for the whole adaptive application.

The class implementing the ContextManager interface maintains the
set of possible context states. It contains the entities of the context model
and their admissible assignments. The context entities are extracted by
the context requirements entailed in each feature and consequently in
each variant.

The class implementing the interface DecisionMakingSupport is in
charge of defining the space of the possible context states and in main-
taining the data structures to support the variability. It exposes the method
CreateStateSpace to create the set of possible context states starting from
the set of context entities and their assignments. The method evaluates
the Cartesian product among the assignments for the context variables
and it stores the set of states within the ContextManager component.
The method contextSynthesis creates the table to support the evolu-
tion process. This method is in charge of checking the consistency for
each variant. It exploits the space of context states maintained in the
ContextManager component and the instances of the adaptive appli-
cation (features and variants instances). For each context requirement
belonging to each variant, the method solves a constraint satisfaction
problem to evaluate the set of context states that make the context re-
quirement (predicate) true. Consequently we can easily obtain the list of
admissible variants for each context state.

The class implementing the interface ForeseenEvolution accesses the
DecisionMakingSupport component in order to evaluate which is the
best variant to deploy among the ones that have been already proved
consistent. The class implementing the interface UnforeseenEvolution
is able to build the new variant that implements a new requirement and

94

to check its consistency without stopping the current execution.

6.3.2 Framework primitives

Starting from the classes of our framework instance we define a pool
of primitives to instrument the framework and to support the evolution
processes:

• InitializeFramework

• ForeseenEvolution

• UnforeseenEvolution

The developer can invoke these primitives within the application in
order to provide it with adaptability. We describe how he can exploit
these primitives for designing and developing an adaptive application.

The developer creates an adaptive application by defining a set of
classes each representing a different feature. We assume that the devel-
oper is able to create the requirements and the context requirements be-
longing to each feature, thus she instantiates the feature objects by setting
the triples (R, I, C). After defining each feature, the developer defines a
class for each possible variant. Each class exposes a method Execute

which implements a different behavior by exploiting a different subset
of feature classes. The variant also exposes the method initV ariant to
record the set of features objects exploited by the variant. Finally, the set
of system variants is given as input to the initialization of the framework.

The service initializeFramework performs the operations that in-
strument the framework for supporting system variability. It takes as
input the system variants of the adaptive application. For each vari-
ant, the service reads the set of its features (R, I, C) and it generates the
requirements R and the context requirements C for the variant. Once
the instances for the variants are create, the service calls the methods
createStateSpace and contextSynthesis in order to generate the data
structures that define the admissibility for each system variant at each
possible context state.

95

In our instance of the framework the developer defines the adaptive
application as a feedback loop which retrieves the current context and
select the best variant. At each step of the loop the primitives for the
evolution help to select the variant: either a new or an already known
variant.

The foreseenEvolution service provides a mechanism to retrieve a
unique id for the best variant taking as input the current context val-
ues. It performs the selection of the variant based on the mechanism
described in Chapter 5. To this end all the required input has to be
provided to the framework at initialization phase (i.e. cost model and
context-dependent user preferences).

The unforeseenEvolution service searches for the code that imple-
ments a new requirement. It builds a new variant implementing the new
requirement and it checks the consistency for the new variant. Finally,
the service returns the definition for the new variant to the application.
The adaptive application needs mechanisms to compile the new variant
and to execute it. In section 6.4 we depict a possible mechanism to exe-
cute the new unforeseen variant.

6.4 Mandelbrot fractal application

In this section we show how to develop the adaptive fractal application
by means of two different modalities: the first without the support of our
framework, the second with the support of the framework. The goal of
this section is to evaluate which is the benefit for the developer of either
using or not using the primitives of the framework.

Since our intention is to assume that a monitor for the context already
exists, we simulate a monitor by means of a set of context states with
their time of validity as input to our adaptive applications. Applications
will enact the possible required reconfigurations as a consequence of the
context variations.

The developer has to create the set of software alternatives imple-
mented each one as a different class (variant). Each variant exploits a
different set of features which are implemented as Java classes. For the

96

application developed with the support of the framework, the developer
has to instantiate the feature objects with their requirement R and con-
text requirement C. Further he has to record in each variant the features
objects exploited by the variant. For the application created without the
support of the framework, the developer manages directly the variabil-
ity without specifying requirements and context requirements for each
feature.

In both cases the application is implemented as a MIDlet2 Java appli-
cation for mobile devices.

6.4.1 Application without framework

In this section we represent a simple approach for developing an adap-
tive application that visualizes the Mandelbrot fractal. This mobile ap-
plication visualizes the most appropriate fractal based on the current
context values. Listing 6.1 shows the main class MandelFractalMIDlet

along with its entry point method startApp which is executed as soon as
the mobile application is started. This procedure instantiates the set of
predefined variants each one performing the visualization of the fractal
following a different modality for building and coloring the image; e.g.
Listing 6.3 shows a possible variant which visualizes the fractal image
at the end of the drawing process and it colors the pixels with a limited
number of tones. After instantiating the variants the procedure startApp
iterates through a loop in order to read the current context values and
to perform the consequent adaptation. It reads from the predefined se-
quence of context states which is the current assignment for the context
resources and their validity time. Based on these values, the procedure
checks through a series of ”if-then” controls which variant has to be se-
lected. Our procedure selects a variant by calling its method Execute.
After that the validity time for the current context state expires, the pro-
cedure continues by looking at the next context values and by perform-
ing the next adaptation.

2http://www.oracle.com/technetwork/java/javame/javamobile/overview/
getstarted/index.html

97

Listing 6.1: Mandelbrot fractal application (without framework)

public class MandelFracta lMIDlet extends MIDlet {
C o n t e x t E n t i t i e s c ;
States s t a t i = new States () ;

protected void s tar tApp (){
i n t a = 0 ;
i n t cyc les ;
cyc les = s t a t i . getNumStates () ;
Var ian t1 var1 = new Var ian t1 () ;
Var ian t2 var2 = new Var ian t2 () ;
Var ian t3 var3= new Var ian t3 () ;
Var ian t4 var4 = new Var ian t4 () ;
Var ian t5 var5 = new Var ian t5 () ;
Var ian t6 var6 = new Var ian t6 () ;
Var ian t7 var7 = new Var ian t7 () ;
Var ian t8 var8 = new Var ian t8 () ;
Var ian t9 var9 = new Var ian t9 () ;
Var iant10 var10 = new Var iant10 () ;
while (a<cyc les){

c = s t a t i . ge tSta te () ;
i f ((c . getMemory()>=120)&&(c . getTcRate ()>=500)&&(c . getNcolors ()>=4096)){
var9 . Execute (th is) ;
}else i f ((c . getMemory()>=120)&&(c . getTcRate()>=300)&&

(c . getNcolors ()>=4096)){
var8 . Execute (th is) ;
}else i f ((c . getMemory()>=120)&&(c . getTcRate ()>=100)){

var7 . Execute (th is) ;
}else i f ((c . getMemory()>=200)&&(c . getTcRate()>=500)&&

(c . getNcolors ()>=4096)){
var6 . Execute (th is) ;
}else i f ((c . getMemory()>=200)&&(c . getTcRate()>=300)&&

(c . getNcolors ()>=4096)){
var5 . Execute (th is) ;
}else i f ((c . getMemory()>=200)&&(c . getTcRate ()>=100)){

var4 . Execute (th is) ;
}else i f ((c . getMemory()>=300)&&(c . getTcRate()>=500)&&

(c . getNcolors ()>=4096)){
var3 . Execute (th is) ;
}else i f ((c . getMemory()>=300)&&(c . getTcRate()>=300)&&

(c . getNcolors ()>=4096)){
var2 . Execute (th is) ;
}else i f ((c . getMemory()>=300)&&(c . getTcRate ()>=100)){

var1 . Execute (th is) ;
}else i f ((c . getMemory()>=100)&&(c . getNetwork ()==1)){

var10 . Execute (th is) ;
}else{

var1 . Execute (th is) ;
}
t ry{Thread . currentThread () . s leep (c . g e t L i f e ()) ; }
catch (Except ion i e){}
a++;
}

}

98

6.4.2 Application with framework

The framework is accessible through three web services:
inizializeFramework initializes the framework to manage the variabil-
ity for a certain application, foreseenEvolution and unforeseenEvolution
perform the foreseen and unforeseen evolution.

Listing 6.2 shows how our framework can support the variability of
the fractal application. The main class for the adaptive application in-
stantiates each variant and performs the call to the web service which
initializes the framework. The initialization service takes as input the
system variants containing the feature objects. Starting from the infor-
mation of each feature, the service produces the context requirements
and the context-independent requirements for the whole set of variants.
Based on these requirements the service generates the data structures to
establish which context state can support the execution of each variant.

After initializing the framework, the application iterates through the
set of context states and it performs the consequent adaptations. At each
cycle of the loop we establish if it is necessary to perform either a fore-
seen evolution or an unforeseen evolution. Within each context state we
have coded an integer variable in order to notify if an unforeseen evo-
lution is required or not (either 1 or 0), i.e. the application has to be
augmented with a new requirement. In our framework we assume that
a new requirement can be identified if it exists, thus we do not take into
consideration how to solve the problem of eliciting a new requirement at
run-time.

If an unforeseen evolution is not required, the procedure calls the ser-
vice foreseenEvolution to obtain the most suitable variant to select in the
current context state. This service accesses the data structures in order to
know which variants are eligible with the current context values and it
returns as result the most suitable variant. Consequently the applica-
tion selects the variant by calling the method Execute. Differently from
the application without the framework, this application does not have
to check each single context values; the framework maintains the data
structure to perform this check and the information to solve the static

99

decision-making problem.

For the unforeseen evolution case we have statically defined a vari-
ant called V ariantNew that provides only the definition for the method
Execute. At run-time we can augment the behavior of the application
by modifying the implementation of this variant. Whenever an unfore-
seen evolution is required, the application performs a set of operations
to augment its behavior with a new variant. First we call the service
unforeseenEvolution which searches for a new feature which imple-
ments the new requirement. If there is no variant that can satisfy the
augmented set of requirements, the service creates a new variant that
contains the same set of features of the current variant plus a new feature
implementing the new requirement. The service checks if the new set of
features (new variant) is free from interactions by evaluating context-
dependent requirements in the current context and by model checking
canonical requirements on code. Once the service has found such a new
feature, it gives as result a new implementation for the class V ariantNew
and the class implementing the new feature. This new variant has to
be compiled and it has to be added on-line to the running application.
Thus our procedure calls the method ReplaceV ariantUnforeseen to re-
places the code for the empty variant V ariantNew; the new definition
of the variant implements the method Execute which is empty in the
first version of the class. After replacing the Java code, the procedure
calls the method CompileJavaF ile in order to launch the commands
to compile the Java code for the new variant and for the new feature.
Once the compiling operation is completed our procedure forces the JVM
(Java Virtual Machine) to reload the new compiled classes. The method
ReloadRunTimeSupport triggers the reloading phase by exploiting the
Javeleon tool3. Finally the procedure enacts the execution for the new
replaced variant.

After the selection of a variant the application interrupts its execution
for the given amount of time which corresponds to the time of validity
of the current context state.

3http://javeleon.org/

100

Listing 6.2: Mandelbrot fractal application (with framework)
public class S e l f A p p l i c a t i o n extends MIDlet implements SelfApp{

private long processingTime = 0;
C o n t e x t E n t i t i e s c ;
States s t a t i = new States () ;
private Serv ice Por tType Stub serv i ce ;
public s t a t i c S e l f A p p l i c a t i o n ins tance ;
. . .
protected void s tar tApp (){

i n t a = 0;
i n t cyc les = 0;
i n t chooseVariant =0;
Vector v a r i a n t s I n p u t = new Vector () ;
se rv i ce = new Serv ice Por tType Stub () ;
se rv i ce . se tP rope r t y (Serv ice Por tType Stub . SESSION MAINTAIN PROPERTY,
new Boolean (true)) ;
cyc les = s t a t i . getNumStates () ;
t ry {

Var ian t1 var1 = new Var ian t1 () ;
Var ian t2 var2 = new Var ian t2 () ;
Var ian t3 var3= new Var ian t3 () ;
Var ian t4 var4 = new Var ian t4 () ;
Var ian t5 var5 = new Var ian t5 () ;
Var ian t6 var6 = new Var ian t6 () ;
Var ian t7 var7 = new Var ian t7 () ;
Var ian t8 var8 = new Var ian t8 () ;
Var ian t9 var9 = new Var ian t9 () ;
Var iant10 var10 = new Var iant10 () ;
Var iantUnforeseen varNEW = new VariantUnforeseen () ;
v a r i a n t s I n p u t . addElement (var1) ;
. . .
v a r i a n t s I n p u t . addElement (var10) ;
se rv i ce . i n i t i a l i z e F r a m e w o r k (v a r i a n t s I n p u t)) ;
while (a<cyc les){

c = s t a t i . ge tSta te () ;
i f (c . getUnforeseen ()==0){
chooseVariant = se rv i ce . fo reseenEvo lu t ion (

c . getMemory () , c . getTcRate () , c . getNcolors () , c . getNetwork ()) ;
i f (chooseVariant ==1){
var1 . Execute (th is) ;
}else i f (chooseVariant ==2){

var2 . Execute (th is) ;
}else i f (chooseVariant ==3){

var3 . Execute (th is) ;
}else i f (chooseVariant ==4){

var4 . Execute (th is) ;
}else i f (chooseVariant ==5){

var5 . Execute (th is) ;
}else i f (chooseVariant ==6){

var6 . Execute (th is) ;
}else i f (chooseVariant ==7){

var7 . Execute (th is) ;
}else i f (chooseVariant ==8){

var8 . Execute (th is) ;
}else i f (chooseVariant ==9){

var9 . Execute (th is) ;
}else i f (chooseVariant ==10){

var10 . Execute (th is) ;
}

101

}else{
Resul t newCode = serv i ce . unforeseenEvolu t ion (”NewReq”) ;
ReplaceVariantUnforeseen (newCode) ;
Compi leJavaFi les (newCode) ;
ReloadRunTimeSupport () ;
varNEW . Execute (th is) ;
}
Thread . currentThread () . s leep (c . g e t L i f e ()) ;
a++;
}
}catch (Except ion e) {

System . out . p r i n t l n (” E r ro r ” + e . getMessage ()) ;
}
. . .
}

Listing 6.3: Variant definition
public class Var ian t1 implements VariantType{

A r r a y L i s t fea tu res ;
MandelCanvasType mandelType=nul l ;
private long processingTime =0;
S t r i n g maxExecutionTime = ” 300000 ” ;
D isp lay cu r ren tD i sp lay ;

public void Execute (Object c a l l e r){
processingTime = System . c u r r e n t T i m e M i l l i s () ;
mandelType = (MandelCanvasType) new MandelCanvasAsShot (

new ColouringAsBands ()) ;

mandelType . setMaxExecutionTime (Long . parseLong (maxExecutionTime)) ;
mandelType . setStar tT ime (processingTime) ;

cu r ren tD i sp lay = ((Disp lay) Disp lay . ge tD isp lay ((S e l f A p p l i c a t i o n) c a l l e r)) ;
cu r ren tD i sp lay . se tCur ren t ((D isp layab le) mandelType) ;
mandelType . genera teFrac ta l () ;

}
public i n i t V a r i a n t (A r r a y L i s t i n i t F e a t u r e s){

f ea tu res = i n i t F e a t u r e s ;
}

. . .
}
public class MandelCanvasAsShot extends Canvas implements MandelCanvasType{

. . .
public void genera teFrac ta l () {

. . .
}
. . .

}
public class ColouringAsBands implements ColouringType {

. . .
public i n t p i x e l C o l o r (boolean inner , i n t i t e r a t i o n , double d i s t) {

. . .
}
. . .

}

102

6.4.3 Evaluation

In both application the developer defines the set of software alternative
(variants) each one exploiting a set of classes (features). The first ap-
plication does not exploit information about context requirements and
context-independent requirements of each feature in defining the logic of
adaptation. The developer establishes directly which variant to execute
based on the context values. In the second application, the developer
creates the feature objects entailing the information about the require-
ments specifications. Based on these information, the framework eval-
uates which variant to adopt at each context state. Thus, the developer
does not directly implement the logic to select the best variant but he
simply query the web service that is in charge of finding the most appro-
priate variant. The developer may also establish a ranking for the variant
thus to solve conflicts in case of the presence of multiple eligible variants.
To this end, in Chapter 5 we have shown how to consider dynamic user
preferences to solve the decision-making problem.

The application supported by the framework is also able to perform
reconfigurations that are not statically provided at run-time. Indeed, we
have shown a possible mechanism on how to add a variant at run-time
while preserving the consistency of the application. The definition of the
variant is statically defined at design time whereas its implementation
is completed at run-time with the support of the framework. We could
have adopted the same mechanism for applying new variant at run-time
even for the application that does not exploit the framework. Neverthe-
less, in this case the software engineer would have had to implement the
procedure to check the consistency by hand.

We have shown that it is possible to design and develop an adap-
tive application with the support of the framework. The developer can
exploit our support for creating the application and for checking its con-
sistency while performing foreseen and unforeseen evolutions.

By adopting our framework, the developer can create the logic of evo-
lution in a easier manner than without the framework. This logic is based
on the context values that make a software alternative admissible or not.

103

Considering a set of n features, the developer without the framework
may possibly have to define the context conditions for 2n potential vari-
ants. For high-configurable systems with a big number of features, set-
ting these conditions could be unfeasible by hand. The framework only
asks the developer to set the conditions for the features, whereas it cre-
ates the requirements of the variants.

Starting from the same set of context states we have ran the two ver-
sions of the adaptive application. By observing the reconfigurations of
the system with and without the framework we claim that the cost of
adopting the framework is negligible.

104

Chapter 7

Conclusion

In this chapter we point out the main contributions of the thesis. We give
the answers for the research question identified in Chapter 1.

• RQ1: How to manage context-dependent system variability? Which
abstractions for the system can better handle variability and how
could they support an automatic decision-making procedure?

The thesis proposes a system notation based on the SPL engineer-
ing perspective. Our notation breaks the system complexity in
single units of behavior (features) and it allows the definition of
system variants which represent software alternatives suited for
different contexts. We define the application as a set of variants
each one characterized by a set of context-independent require-
ments, context-dependent requirements and implementation arti-
facts. Our approach defines the context based on key-value pairs
that can assume integer values over finite domains. Through spe-
cific data structures that we call decision tables it is possible to map
each variant to the contexts in which the variant can be adopted. At
run-time our framework retrieves the current context values and it
checks which system variants can be selected based on their con-
text requirements. Among them the framework selects the system
variant which optimizes cost and user benefit taking into account

105

current and future information on context values and user prefer-
ences. To this end, the framework implements a decision-making
process by exploiting a probabilistic model which describes proba-
ble future context variations.

• RQ2: How to classify context-dependent evolutions?

We propose two different kinds of evolution namely foreseen and
unforeseen evolution. In the literature most of approaches facing
the evolution of adaptive systems only provide support for the
foreseen evolution. It is challenging to provide solutions for achiev-
ing unforeseen evolutions since these evolutions aim to face the
unpredictability of modern ubiquitous software systems. The case
studies presented in the thesis show that it is valuable to provide
the system with the capability of enhancing the behavior at run-
time.

• RQ3: How to represent requirements models and their evolutions
at run-time?

Requirements specification entails two different portions. The first
portion contains information that are independent from the con-
text whereas the second portion contains information related to the
context entities. On the one hand context-dependent requirement
are represented as predicates over context entities. At design time
they are checked in order to evaluate the scope of validity for al-
ternative system variants whereas at run-time they are checked to
assess the validity for an enhanced variant augmented with new re-
quirements. On the other hand context-independent requirements
are checked on the code artifact to discover inconsistencies at code
level. At design time they are checked by means of a model check-
ing procedure in order to assess which variants have a code im-
plementation that does not satisfy its context-independent require-
ment. At run-time the framework performs the model-checking
procedure for enhanced context-independent requirements with re-
spect to enhanced code artifacts.

106

• RQ4: How the software lifecycle process should deal with the un-
certainty coming from the environment?

The thesis proposes a software lifecycle process for adaptive sys-
tems which faces foreseen and unforeseen context variations. The
process supports the creation of adaptive applications along with
its variability. It supports the creation of basic features, their com-
position in variants and the analysis of the variants. We have built
a framework that implements portion of the process and supports
the developer in creating adaptive applications. At design time the
framework analyses a set of designed variants while at run-time
it checks a new variant which implements a new unforeseen re-
quirement. This variation of requirements is caused by unforeseen
context variations that cannot be predicted at design time. The user
is involved in the process of enhancing system behavior since she
identifies new requirements for unpredicted contexts. The unfore-
seen evolution allows the software engineers to deal with future
scenarios that are not identified at design time.

• RQ5: How to perform reconfigurations taking into account com-
peting objectives?

A generic framework which supports variability should be able to
perform optimized reconfigurations which take into account mul-
tiple sources of information together. To this end we propose a
process for selecting the most suitable reconfiguration by consider-
ing current and probable future context information. Results show
that anticipating upcoming reconfiguration needs and considering
multiple factors all together promote better performances for the
reconfiguration process.

107

Appendix A

Variants examples

Listing A.1: Example: variant eHealth application
REHealth : RgraphOx ∪R RtextOx ∪R RgetOxData

IEHealth :
public class Var iantEHeal th{

s t a t i c Graph myGraphViewer ;
s t a t i c Text myTextViewer ;
public s t a t i c void execute (){
myGraphViewer = new Graph () ;
myTextViewer = new Text () ;
GraphOximetryViewer graphOx = new GraphOximetryViewer () ;
TextOximetryViewer textOx = new TextOximetryViewer () ;
graphOx . v iewGraphicalOximetry (myGraphViewer) ;
textOx . v iewTextualOximetry (myTextViewer) ;
}
. . .
}

public class GraphOximetryViewer{
XYDataset ox imetryDataset = new XYSer iesCol lec t ion () ;
. . .
public void viewGraphicalOximetry (Graph g){

. . .
for (i n t i = 0 ; i <10; i ++){
XYDataItem dataOx = Oximet ryRet r iev ing . getOximetryData () ;
dataVectOx . add (dataOx) ;
}
g . displayGraph (dataVectOx) ;
}
. . .
}

public class TextOximetryViewer {
. . .
public void viewTextualOximetry (Text myTextViewer) {

108

XYDataItem dataOx = Oximet ryRet r iev ing . getOximetryData () ;
myTextViewer . d i sp layTex t (dataOx . getYValue ()) ;
}
. . .
}

public class Oximet ryRet r iev ing{
. . .
public s t a t i c XYDataItem getOximetryData (){

t ry {
socket = (StreamConnection) Connector . open (connectionURL ,
Connector .READ WRITE) ;
}catch (Except ion ex){

System . out . p r i n t l n (” Er r . Open . Conn . To ” : +connectionURL) ;
System . out . p r i n t l n (ex) ;
}

. . .
\∗ Get Oxygenation Data oxData∗\
. . .
DataOxymetryMeM . add (OxData) ;
return oxData ;
}
. . .
}

CEHealth : mem ≥ 70 ∧ cRate ≥ 1100 ∧
oxygenationProbe = true ∧ conn = 1 ∧ b ≥ 20

Listing A.2: Example: variant Mandelbrot fractal application
RFractal : RgenPro ∪R RcolB

IFractal

public class V a r i a n t F r a c t a l extends MIDlet {
MandelCanvas mandelCanvas ;
. . .
public AppFracta l (){
mandelCanvas = new MandelCanvas () ;
}
protected void execute (){

cu r ren tD i sp lay = Disp lay . ge tD isp lay (th is) ;
cu r ren tD i sp lay . se tCur ren t (mandelCanvas) ;
mandelCanvas . genera teProgress iveFrac ta l () ;
e x i t A c t i o n () ;
}
. . .
}

public class MandelCanvas extends Canvas {
. . .
public void genera teProgress iveFrac ta l (){

i n t column ArrayCanvas [] = new i n t [he igh t] ;
for (i n t x = 0; x < width ; x++){

for (i n t y = 0; y < he igh t ; y++){
F r a c t a l P i x e l p ixe l ArrayCanvas = drawFrac ta lP i xe l (x , y) ;
column ArrayCanvas [y] = p i x e l C o l o r (p ixe l ArrayCanvas . i s I n s i d e F r a c t a l () ,
p ixe l ArrayCanvas . g e t I t e r a t i o n s () , p ixe l ArrayCanvas . getDis tance ()) ;
}

109

o f f se tX = x ;
image = Image . createRGBImage (column ArrayCanvas , 1 , height , fa lse) ;
r e p a i n t () ;
}}

. . .
}

public class Colour ing{
. . .
private i n t pixelColourAsBands (boolean i n te rno , i n t i t e r a z i o n i ,
double d i s t){

i n t tmp= (i n t e r n o ? 0 : co lo rs [i t e r a z i o n i % paletteNumColors]) ;
return tmp ;
}
private void in i tColourAsBands (){

i n t [] t m p C o l o r s I t e r a t i o n s L i m i t e d P a l e t t e = {−256, −16711681,−65281,−256,
−4194304, −16728064, −16777024, −8323073, −32513, −128};
co lo rs = t m p C o l o r s I t e r a t i o n s L i m i t e d P a l e t t e ;
paletteNumColors = co lo rs . leng th ;
}
. . .
}

CFractal : mem ≥ 200 ∧ cRate ≥ 100

Listing A.3: Example: system variant
RGNew = RgraphOxygen ∪R RgraphRespRate ∪R ... =
[]((GraphOxV iewer.viewGraphOx(Graph)→ (<> GraphOxV iewer.outcome))∧
(GraphRespRV iewer.viewGraphRespR(Graph)→ (<> GraphRespRV iewer.outcome)))
∪R...

IGNew = IgraphOxygen ∪I IgraphRespRate ∪I ... =
public class VariantGNew{

s t a t i c Graph myGraphViewer ;
public s t a t i c void Execute () throws Except ion{
myGraphViewer = new Graph () ;
GraphOxViewer graphOx =new GraphOxViewer () ;
GraphRespRViewer graphRr = new GraphRespRViewer () ;
graphOx . viewGraphOx (myGraphViewer) ;
graphRr . viewGraphRespR (myGraphViewer) ;
}
. . .
}

public class GraphOxViewer{
boolean outcome= fa lse ;
private s t a t i c Except ion p r o p e r t y V i o l a t i o n ;
. . .
public void viewGraphOx (Graph g) throws Except ion{

. . .
for (i n t i = 0 ; i <10; i ++){
XYDataItem dataOx = OximetryRetr . getOximetryData () ;
dataVectOx . add (dataOx) ;
}
g . displayGraph (dataVectOx) ;
outcome = Checker . Check (g . currData , dataVectOx) ;
i f (! outcome){ throw p r o p e r t y V i o l a t i o n ;}

110

}
. . .
}

public class GraphRespRViewer {
boolean outcome= fa lse ;
private s t a t i c Except ion p r o p e r t y V i o l a t i o n ;
. . .
public void viewGraphRespR (Graph g) throws Except ion{

. . .
for (i n t i = 0 ; i <10; i ++){
XYDataItem dataRespR = RespRRetr . getRespRData () ;
dataVectRespR . add (dataRespR) ;
}
g . displayGraph (dataVectRespR) ;
outcome = Checker . Check (g . currData , dataVectRespR) ;
i f (! outcome){ throw p r o p e r t y V i o l a t i o n ;}
}
. . .
}

111

References

[ABI09] Marco Autili, Paolo Di Benedetto, and Paola Inverardi. Context-
aware adaptive services: The plastic approach. In FASE, pages 124–
139, 2009. 27, 30, 39, 61

[ABI10] Marco Autili, Paolo Di Benedetto, and Paola Inverardi. A program-
ming model for adaptable java applications. In PPPJ, pages 119–
128, 2010. 20, 61

[ABI12] Marco Autili, Paolo Di Benedetto, and Paola Inverardi. Hybrid ap-
proach for resource-based comparison of adaptable java applica-
tions. In Journal of Science of Computer Programming (SCP) - Special
issue of BElgian-NEtherlands software eVOLution seminar (BENEVOL)
on Software Evolution, Adaptability and Maintenance, 2012. 36, 39, 40,
43

[ABIM08] Marco Autili, Paolo Di Benedetto, Paola Inverardi, and Fabio
Mancinelli. A resource-oriented static analysis approach to adapt-
able java applications. In COMPSAC, pages 1329–1334, 2008. 36,
43

[ADG10] Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A goal-based
framework for contextual requirements modeling and analysis. Re-
quir. Eng., 15(4):439–458, 2010. 28

[AdLMW09] Jesper Andersson, Rogério de Lemos, Sam Malek, and Danny
Weyns. Modeling dimensions of self-adaptive software systems.
In SEAMS, pages 27–47, 2009. 1, 9

[AdRI+11] M. Autili, D. di Ruscio, P. Inverardi, P. Pelliccione, M. Tivoli, and
V. Cortellessa. EAGLE: Engineering softwAre in the ubiquitous
Globe by Leveraging uncErtainty. new ideas track esec, 2011. 60

[AMK+09] Mauricio Alférez, Ana Moreira, Uirá Kulesza, João Araújo, Ricardo
Mateus, and Vasco Amaral. Detecting feature interactions in spl

112

requirements analysis models. In FOSD, pages 117–123, 2009. 26,
34

[AS01] Anthony Finkelstein Andrea and Andrea Savigni. A frame-
work for requirements engineering for context-aware services. In
STRAW 01, pages 200–1, 2001. 15

[BBF09] Gordon S. Blair, Nelly Bencomo, and Robert B. France. Models@
run.time. IEEE Computer, 42(10):22–27, 2009. 27

[BC04a] Jesus Bisbal and Betty H. C. Cheng. Resource-based approach to
feature interaction in adaptive software. In WOSS, pages 23–27,
2004. 34

[BC04b] H.E. Byun and K. Cheverst. Utilizing context history to provide
dynamic adaptations. Applied Artificial Intelligence, 18(6), 2004. 11

[BCM10] Luca Berardinelli, Vittorio Cortellessa, and Antinisca Di Marco.
Performance modeling and analysis of context-aware mobile soft-
ware systems. In FASE, pages 353–367, 2010. 67

[BDR07] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A
survey on context-aware systems. IJAHUC, 2(4):263–277, 2007. 1,
24

[BHRE07] Gunnar Brataas, Svein O. Hallsteinsen, Romain Rouvoy, and Frank
Eliassen. Scalability of decision models for dynamic product lines.
In SPLC (2), pages 23–32, 2007. 62

[BKS03] T. Buchholz, A. Küpper, and M. Schiffers. Quality of context: What
it is and why we need it. In Proceedings of the Workshop of the HP
OpenView University Association, 2003. 23

[BSG+09] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Hol-
ger Giese, Holger M. Kienle, Marin Litoiu, Hausi A. Müller, Mauro
Pezzè, and Mary Shaw. Engineering self-adaptive systems through
feedback loops. In Software Engineering for Self-Adaptive Systems,
pages 48–70, 2009. 90

[CCYC06] Ronnie Cheung, Jiannong Cao, Gang Yao, and Alvin T. S. Chan.
A fuzzy-based service adaptation middleware for context-aware
computing. In EUC, pages 580–590, 2006. 24

[CdLG+09] Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inver-
ardi, and Jeff Magee, editors. Software Engineering for Self-Adaptive
Systems, volume 5525 of LNCS, 2009. 2, 14, 26

113

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative program-
ming: Methods, Tools and Applications. Addison-Wesley, 2000. 45

[CFJ04] H. Chen, T. Finin, and A. Joshi. An ontology for context-aware
pervasive computing environments. The Knowledge Engineering Re-
view, 18(03):197–207, 2004. 13

[Cho07] Jongmyung Choi. Context-driven requirements analysis. In ICCSA
(3), pages 739–748, 2007. 16, 39

[CHS+08a] A. Classen, A. Hubaux, F. Sanen, E. Truyen, J. Vallejos, P. Costanza,
W. De Meuter, P. Heymans, and W. Joosen. Modelling variability
in self-adaptive systems: Towards a research agenda. In Proc. of
McGPLE at GPCE08, pages 19–26, 2008. 34

[CHS08b] Andreas Classen, Patrick Heymans, and Pierre-Yves Schobbens.
What’s in a feature: A requirements engineering perspective. In
FASE, pages 16–30, 2008. 40, 49

[CHSL11] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and
Axel Legay. Symbolic model checking of software product lines.
In ICSE, pages 321–330, 2011. 26

[CLZ98] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. Reactive
tuple spaces for mobile agent coordination. In Mobile Agents, pages
237–248, 1998. 19

[CMM09] Gianpaolo Cugola, Alessandro Margara, and Matteo Migliavacca.
Context-aware publish-subscribe: Model, implementation, and
evaluation. In ISCC, pages 875–881, 2009. 19

[CPGS09] Shang-Wen Cheng, Vahe Poladian, David Garlan, and Bradley R.
Schmerl. Improving architecture-based self-adaptation through re-
source prediction. In SEAMS, pages 71–88, 2009. 30

[CPvS05] Patricia Dockhorn Costa, Luı́s Ferreira Pires, and Marten van Sin-
deren. Architectural patterns for context-aware services platforms.
In IWUC, pages 3–18, 2005. 17

[CT11] Paolo Ciaccia and Riccardo Torlone. Modeling the propagation of
user preferences. In ER, pages 304–317, 2011. 77

[CXC+05] Jiannong Cao, Na Xing, Alvin T. S. Chan, Yulin Feng, and Beihong
Jin. Service adaptation using fuzzy theory in context-aware mobile
computing middleware. In RTCSA, pages 496–501, 2005. 24

114

[DD10a] Christoph Dorn and Schahram Dustdar. Interaction-driven self-
adaptation of service ensembles. In CAiSE, pages 393–408, 2010.
30

[DD10b] Christoph Dorn and Schahram Dustdar. Weighted fuzzy cluster-
ing for capability-driven service aggregation. In SOCA, pages 1–8,
2010. 62

[Dey01] Anind K. Dey. Understanding and using context. Personal and Ubiq-
uitous Computing, 5(1):4–7, 2001. 11

[DVC+07] Brecht Desmet, Jorge Vallejos, Pascal Costanza, Wolfgang De
Meuter, and Theo D’Hondt. Context-oriented domain analysis. In
CONTEXT, pages 178–191, 2007. 15, 16, 39

[FGT11] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. Run-
time efficient probabilistic model checking. In ICSE, pages 341–350,
2011. 26

[GCH+04] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley R.
Schmerl, and Peter Steenkiste. Rainbow: Architecture-based self-
adaptation with reusable infrastructure. IEEE Computer, 37(10):46–
54, 2004. 27, 30

[GIM08] Carlo Ghezzi, Paola Inverardi, and Carlo Montangero. Dynami-
cally evolvable dependable software: From oxymoron to reality. In
Concurrency, Graphs and Models, pages 330–353, 2008. 2, 3

[GJ09] Allan Raundahl Gregersen and Bo Nørregaard Jørgensen. Dy-
namic update of java applications - balancing change flexibility
vs programming transparency. Journal of Software Maintenance,
21(2):81–112, 2009. 28

[Gli07] Martin Glinz. On non-functional requirements. In RE, pages 21–26,
2007. 38

[HCN08] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz.
Context-oriented programming. Journal of Object Technology,
7(3):125–151, 2008. 20

[HCS05] Dan Hong, Dickson K. W. Chiu, and Vincent Y. Shen. Require-
ments elicitation for the design of context-aware applications in a
ubiquitous environment. In ICEC, pages 590–596, 2005. 15

[HHP+08] S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid, and T. Sintefict.
Dynamic software product lines. IEEE Computer, 41(4):93–95, 2008.
34

115

[HI06] Karen Henricksen and Jadwiga Indulska. Developing context-
aware pervasive computing applications: Models and approach.
Pervasive and Mobile Computing, 2(1):37–64, 2006. 20

[HIMB05] Karen Henricksen, Jadwiga Indulska, Ted McFadden, and Sasitha-
ran Balasubramaniam. Middleware for distributed context-aware
systems. In OTM Conferences (1), pages 846–863, 2005. 22

[HP00] Klaus Havelund and Thomas Pressburger. Model checking java
programs using java pathfinder. STTT, 2(4):366–381, 2000. 55

[HSK09] Jongyi Hong, Euiho Suh, and Sung-Jin Kim. Context-aware sys-
tems: A literature review and classification. Expert Syst. Appl.,
36(4):8509–8522, 2009. 1

[IT08] Paola Inverardi and Massimo Tivoli. The future of software: Adap-
tation and dependability. In ISSSE, pp 1–31, 2008. 2, 3

[Jac00] M. Jackson. Problem Frames: Analyzing and structuring software de-
velopment problems. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 2000. 40, 49

[KCH+90] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study. Tech-
nical report CMU/SEI-90-TR-21 SEI Carnegie Mellon University, 1990.
44

[Kjæ07] Kristian Ellebæk Kjær. A survey of context-aware middleware.
In Proceedings of the 25th conference on IASTED International Multi-
Conference: Software Engineering, pages 148–155, 2007. 23

[KK98a] Dirk O. Keck and Paul J. Kühn. The feature and service interac-
tion problem in telecommunications systems. a survey. IEEE TSE,
24(10):779–796, 1998. 33

[KK98b] Dirk O. Keck and Paul J. Kühn. The feature and service interac-
tion problem in telecommunications systems. a survey. IEEE TSE,
24(10):779–796, 1998. 34

[KM90] Jeff Kramer and Jeff Magee. The evolving philosophers prob-
lem: Dynamic change management. IEEE Trans. Software Eng.,
16(11):1293–1306, 1990. 60

[KM07] Jeff Kramer and Jeff Magee. Self-managed systems: an architec-
tural challenge. In FOSE, pages 259–268, Washington, DC, USA,
2007. 28

116

[KMK+03] P. Korpipää, J. Mantyjarvi, J. Kela, H. Keranen, and E.J. Malm.
Managing context information in mobile devices. IEEE pervasive
computing, 2(3):42–51, 2003. 14

[KPTV09] Georgia M. Kapitsaki, George N. Prezerakos, Nikolaos D. Tselikas,
and Iakovos S. Venieris. Context-aware service engineering: A sur-
vey. JSS, 82(8), 2009. 1

[KR03] Roger Keays and Andry Rakotonirainy. Context-oriented 3. In
MobiDE, pages 9–16, 2003. 21

[KSS06] Andreas Krause, Asim Smailagic, and Daniel P. Siewiorek.
Context-aware mobile computing: Learning context-dependent
personal preferences from a wearable sensor array. IEEE Trans.
Mob. Comput., 5(2):113–127, 2006. 79

[LRT+10] F. Li, K. Rasch, H.L. Truong, R. Ayani, and S. Dustdar. Proactive
service discovery in pervasive environments. In ICPS, pages 126–
133, 2010. 30

[Man82] B.B. Mandelbrot. The fractal geometry of nature. Freeman, 1982. 36

[MKUM09] Paulo Henrique M. Maia, Jeff Kramer, Sebastián Uchitel, and Na-
bor C. Mendonça. Towards accurate probabilistic models using
state refinement. In ESEC/FSE, pages 281–284, 2009. 79

[MM07] Antinisca Di Marco and Cecilia Mascolo. Performance analysis and
prediction of physically mobile systems. In WOSP, pages 129–132,
2007. 67

[MS98] K. Marriott and P.J. Stuckey. Programming with Constraints: An in-
troduction. MIT Press, 1998. 93

[Ost87] L. Osterweil. Software processes are software too. In ICSE, pages
2–13, Los Alamitos, CA, USA, 1987. 3

[PBCD11] Carlos Parra, Xavier Blanc, Anthony Cleve, and Laurence Duchien.
Unifying design and runtime software adaptation using aspect
models. Sci. Comput. Program., 76:1247–1260, 2011. 34

[PBD09] Carlos Andres Parra, Xavier Blanc, and Laurence Duchien. Context
awareness for dynamic service-oriented product lines. In SPLC,
pages 131–140, 2009. 34

[PCBD10] Carlos Parra, Anthony Cleve, Xavier Blanc, and Laurence Duchien.
Feature-based composition of software architectures. In Proceed-
ings of the 4th European conference on Software Architecture, ECSA’10,
pages 230–245, 2010. 34, 49

117

[PGS+07] Vahe Poladian, David Garlan, Mary Shaw, M. Satyanarayanan,
Bradley Schmerl, and Joao Sousa. Leveraging resource prediction
for anticipatory dynamic configuration. In SASO, pages 214–223,
Washington, DC, USA, 2007. 30, 67

[PGS+11] Mario Pukall, Alexander Grebhahn, Reimar Schröter, Christian
Kästner, Walter Cazzola, and Sebastian Götz. Javadaptor: unre-
stricted dynamic software updates for java. In ICSE, pages 989–
991, 2011. 28

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages
46–57, 1977. 55, 92

[PSGS04] Vahe Poladian, João Pedro Sousa, David Garlan, and Mary Shaw.
Dynamic configuration of resource-aware services. In ICSE, pages
604–613, 2004. 30

[QP10] N.A. Qureshi and A. Perini. Requirements Engineering for Adap-
tive Service Based Applications. In RE, pages 108–111, 2010. 27

[SB05] Q.Z. Sheng and B. Benatallah. ContextUML: A UML-Based Mod-
eling Language for Model-Driven Development of Context-Aware
Web Services Development. In International Conference on Mobile
Business, page 212, 2005. 12

[SBW+10] Peter Sawyer, Nelly Bencomo, Jon Whittle, Emmanuel Letier, and
Anthony Finkelstein. Requirements-aware systems: A research
agenda for re for self-adaptive systems. In RE, pages 95–103, 2010.
4, 27

[SHMK10] Daniel Sykes, William Heaven, Jeff Magee, and Jeff Kramer. Ex-
ploiting non-functional preferences in architectural adaptation for
self-managed systems. In SAC, pages 431–438, 2010. 30

[SHTB07] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Tri-
gaux, and Yves Bontemps. Generic semantics of feature diagrams.
Computer Networks, 51(2):456–479, 2007. 44

[SLP04] T. Strang and C. Linnhoff-Popien. A context modeling survey.
In Advanced Context Modelling Reasoning and Management as part of
UbiComp, pages 1–8, 2004. 12, 13

[SSLRM11] Vı́tor E. Silva Souza, Alexei Lapouchnian, William N. Robinson,
and John Mylopoulos. Awareness requirements for adaptive sys-
tems. In SEAMS, pages 60–69, 2011. 16

118

[ST09] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software:
Landscape and research challenges. TAAS, 4(2), 2009. 1

[TGDB06] Éric Tanter, Kris Gybels, Marcus Denker, and Alexandre Bergel.
Context-aware aspects. In Software Composition, pages 227–242,
2006. 21

[VBAM09] Alex Villazón, Walter Binder, Danilo Ansaloni, and Philippe Moret.
Advanced runtime adaptation for java. In GPCE, pages 85–94,
2009. 22

[VEBD07] Yves Vandewoude, Peter Ebraert, Yolande Berbers, and Theo
D’Hondt. Tranquility: A low disruptive alternative to quiescence
for ensuring safe dynamic updates. IEEE Trans. Software Eng.,
33(12):856–868, 2007. 60

[Win01] T. Winograd. Architectures for context. Human-Computer Interac-
tion, 16(2):401–419, 2001. 19

[WSB+09] Jon Whittle, Peter Sawyer, Nelly Bencomo, Betty H. C. Cheng, and
Jean-Michel Bruel. Relax: Incorporating uncertainty into the spec-
ification of self-adaptive systems. In RE, pages 79–88, 2009. 16

[ZG02] Didar Zowghi and Vincenzo Gervasi. The three cs of requirements:
Consistency, completeness, and correctness. In REFSQ, 2002. 29

119

	List of Figures
	List of Tables
	Acknowledgments
	Vita and Publications
	Abstract
	1 Introduction
	1.1 Problem statement
	1.2 Research questions
	1.3 Contributions
	1.4 Structure

	2 Background
	2.1 Adaptive Systems
	2.2 Context-aware systems
	2.3 Context Models
	2.3.1 Context models approaches
	2.3.2 Context modeling evaluation

	2.4 Phases for building adaptive system
	2.4.1 Requirement engineering for adaptive systems
	2.4.2 Design for adaptive system
	2.4.3 High level design
	2.4.4 Low level design
	2.4.5 Context-aware middleware

	2.5 Assurance
	2.6 Framework for adaptive systems
	2.7 Support to foreseen evolutions

	3 Approach
	3.1 Taxonomy of the evolution
	3.2 Software Product Line Engineering perspective
	3.3 Case Studies
	3.3.1 eHealth application
	3.3.2 Mandelbrot fractal

	3.4 Context model
	3.5 Requirements taxonomy
	3.5.1 Context requirements

	3.6 Adaptive application
	3.6.1 Feature
	3.6.2 System variant
	3.6.3 Examples
	3.6.4 Feature diagram

	3.7 Formalization of evolution and execution
	3.7.1 Semantic rules

	3.8 Evolution consistency
	3.8.1 Requirements for requirements at run-time
	3.8.2 Context analysis
	3.8.3 Model checking context-independent requirement

	4 Software Process for Adaptive Systems
	4.1 Software Process
	4.1.1 Example: mandelbrot fractal

	4.2 System Evolution
	4.2.1 Foreseen Evolution
	4.2.2 Unforeseen Evolution

	5 Static decision-making reconfiguration
	5.1 Motivating scenario
	5.2 Basic model
	5.2.1 Operative context model
	5.2.2 Variants
	5.2.3 User Context Model
	5.2.4 Transition cost

	5.3 Rankings of the variants
	5.4 Case Study
	5.5 Experiment

	6 Evolution framework
	6.1 MAPE cyle
	6.2 Framework interface architecture
	6.3 Framework instance
	6.3.1 Description
	6.3.2 Framework primitives

	6.4 Mandelbrot fractal application
	6.4.1 Application without framework
	6.4.2 Application with framework
	6.4.3 Evaluation

	7 Conclusion
	A Variants examples
	References

