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Abstract

In a competitive economy, technological innovation is a core
element of economic growth and development, and its accu-
mulation in a rapidly changing technological environment is
key to adaptation. This thesis investigates how cities, particu-
larly global cities can develop new technological capabilities
to enter new technological fields and become competitive in
new technological areas. First, a new geo-referenced patent
database is developed to overcome some limitations of the ex-
isting international patent repository to make an international
comparison of cities feasible. The new database provides
broad coverage of cities in developed and emerging economies
and allows us to tackle the following research questions: (i)
how the co-patenting network of domestic and international
linkages of cities has changed over time? (ii) which cities are
more technologically complex? Can we predict the future
evolution of cities’ technological complexity? (iii) What is
the effect of inter-city linkages and technological relatedness
on the likelihood of cities to enter new technological areas?
(iv) which cities are the most central in coordinating complex
international teams of inventors on a global scale?

To geo-locate patents, an address retrieval algorithm has been
applied to resolve the problem of missing addresses, exploit-
ing the availability of address in patent family and similarity
of inventors based on attributes such as working for the same
applicant. A harmonized definition for functional urban ar-
eas is used to assign patents to cities on a global scale. The
database provides a significant improvement from the raw
PATSTAT dataset with an estimated confidence level of 84-88%.
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We analyze both unweighted (extensive) and patent-weighted
(intensive) linkages between cities to address the first research
question. The preliminary findings show an increase of in-
ternational ties both intensively and extensively and the re-
liance of cities in developing economies on international ties
to global cities. To address the second research question, we
apply the generalized economic complexity (GENEPY) algo-
rithm to measure the economic complexity of cities based on
patent production in these cities. We use machine learning
models (Random Forest, XGBoost, SVM, Neural network) to
forecast the future technological complexities of cities. We
show that the machine learning models (especially Random
Forests) have higher predictive power than the benchmark
model (time-independent conditional probabilities) as they
account for higher-order and non-linear interdependencies
between technologies.

To address the third question, we applied a stratified semi-
parametric Cox proportional hazard model to examine the
likelihood of cities entering new technologies. We show that
inter-city linkages and technological relatedness significantly
increase the likelihood of entry into new technological areas.
Inter-city linkages are more critical for non-global cities than
for global cities to enter new technological areas, whereas link-
ages to inventors located in cities with a large pool of inventors
positively moderate the effect of inter-city linkages on entry.
For the last research question, we use hypergraphs structure
and propose a measure based on 3-hyperedges (three cities in
multiple countries) in the collaboration networks constructed
from scientific publications and patents to identify the most
competitive global cities in the international network of in-
ventors. To this end, we construct a null model using the
hypergeometric ensembles of random graphs and find that
five US cities play a leading role in transnational networks of

xxxi



researchers. San Francisco stands out as the most global city,
but Shanghai is rapidly emerging as a global player.
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Introduction
1 Global cities are unique geographical entities, as they are often char-
acterized with attractive features that make them hubs of multinational
companies (MNCs) (Friedmann, 1986; Sassen, 2001; Taylor, 2001). These
features include having a global reach of advanced producer service firms,
and manufacturing firms, that play significant roles in global value chains.
These firms serve as conduits for moving goods and services to domestic
and international markets (Goerzen, Asmussen, and Nielsen, 2013; Belder-
bos, Du, and Goerzen, 2017). Other characteristics of these cities that make
them an important location for R&D activities are the research reputation
of their academic institutions, the concentration of highly-skilled workers
in these cities, and their quality institutions that protect the intellectual
property rights of firms (Glaeser and Gottlieb, 2009; Belderbos, Du, and
Goerzen, 2017).

The competitiveness of (global) cities is driven more by their international
connectedness to the globe, and in particular to other global cities, than
by their locally restricted characteristics (Taylor, 2001). This notion of con-
nectivity has been studied by economic geographers from both functional
and demographic points of view. From a functional perspective, cities
connectivities are spokes created by firms or collaborations between indi-
viduals with shared interests. The connectivity formed by firms is called
“organizational pipelines” and they are consistent with the goals and objec-
tives of the firms. On the other hand, connectivities created by individuals
can be less focused in comparison with firm connectivities (Lorenzen and
Mudambi, 2013). “Organizational pipelines” crossing country borders are
often facilitated by MNCs, while individual-to-individual connectedness
can be facilitated by relationships between ethnic diasporas within a coun-
try, or cross-border relationships formed between diasporas and people
residing in their home country (Saxenian and Hsu, 2001; Belderbos, Du,

1This Introductory section is partly based on R. Belderbos, F. Benoit, S. Edet, G.H. Lee, and
M. Riccaboni (2021). “Global cities’ cross-border innovation networks” - chapter contribution
in the book Cross-Border Innovation in a Changing World. Players, Places, and Policies,
edited by D. Castellani, A. Perri, V. Scalera, A. Zanfei. Oxford University Press.
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and Goerzen, 2017).

The importance of global cities in innovation networks has received mini-
mal emphasis in the literature on global cities, as most works have focused
on the interlockedness of global cities which are driven by the activities
of service firms, and also the network structure created by infrastructures
(such as rail, road and air transportation, and internet backbones). Ana-
lyzing the role of global cities in innovation and knowledge networks is
increasingly important as the prosperity of these cities in a competitive
economy is hinged on knowledge accumulation and connectivities to
innovative locations that can be leveraged. It has been said that a city
should leverage both external information flows and exchanges, as well as
domestic knowledge (Belderbos, Du, and Goerzen, 2017; Asheim and Co-
enen, 2006; Bathelt, Malmberg, and Maskell, 2004). The ability to combine
both intense circulations of domestic information and solid cross-border
links to knowledge located in other cities and regions are characteristics
of dynamic cities (Castells, 2002).

Linkages across city borders have been seen to be associated with cities’
technological success (Maggioni, Nosvelli, and Uberti, 2007; Belderbos,
Du, and Goerzen, 2017; Miguélez and Moreno, 2012) as they serve as
conduits for diverse information, and possibly, the knowledge that may
not be readily available locally (Boschma and Frenken, 2011; Malmberg
and Maskell, 2002). These cross-border linkages are more important when
they are connected to clusters involved in cutting-edge technological
research (Bathelt, Malmberg, and Maskell, 2004). Typically, such linkages
are brought about when entities in cities are involved in scientific co-
authorship, R&D production through co-inventorship, and partnership
frameworks that allow for the exchange of best practices between cities
(Matthiessen, Schwarz, and Find, 2010; Belderbos, Du, and Goerzen,
2017). While, there has been recent analysis done on providing insights
on cities global positions and growth dynamics of linkages by applying
different centrality measures, clustering techniques, and kinetic models
to publication and patent data, these analyses often fail to account for
higher-order effects that have been observed by Neuhäuser, Mellor, and
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Lambiotte, 2020 to be important given the increasing formation of teams
located in more than two cities (Wagner, Park, and Leydesdorff, 2015).
The Thesis contribution to the literature of global cities is twofold. First,
a new dataset is prepared in Chapter 1 to overcome some limitations
of the existing international patent repository to make an international
comparison of global cities feasible. The broad coverage of the dataset
allows us to undertake the study of innovation activities in cities not just
in developed economies, but also in emerging economies. Second, based
on the new dataset we introduce in Chapter 1, we tackle a set of relevant
research questions about the location of patent production in global cities
(see Table 1).

Chapter Topic Methodology Research Question

Introduction

Chapter 1 Georeferencing Patent Data Database development How to develop granular patent
for Urban Studies and analysis data and delineate cities

to allow for international comparisons?

How have cities’ domestic and international
linkages evolved?

Chapter 2 Economic complexity and Forecasting Machine learning How to measure economic
competitiveness of Global cities capabilities of cities

using Machine learning approach and forecasting competitiveness
of cities in different technologies?

Chapter 3 Exploratory Innovation in Cities: Econometrics What is the effect of
Inter-city ties and Technological collaborative ties and

relatedness technological relatedness on cities’
entry into new technologies?

Chapter 4 Global Cities in International Complex System analysis What cities are likely
Networks of Innovators to emerge in higher-

order international collaboration?

Conclusion

Table 1: Dissertation outline

In Chapter 1, first, we address the issue of availability of fine-grained com-
prehensive patent database by building on the work of De Rassenfosse
et al., 2013; De Rassenfosse, Kozak, and Seliger, 2019,Morrison, Riccaboni,
and Pammolli, 2017a, and PatentView, 2018. Also, we address the funda-
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mental issue of allocating patent and publication data to cities in such a
way that cities boundaries are harmonized for international comparisons.
The motivation for constructing a patent data with geographic coordinate
information that allows patents to be allocated to cities, stems from the
increasing interest by policymakers in understanding location decisions
of firms (Castellani and Lavoratori, 2019), hence the construction of this
database allows the identification of cities that play the role of innovation
hubs and serve as attraction points for global talents. Moreover, since
innovative activities are typically accounted for by pockets of cities within
a country (De Rassenfosse, Kozak, and Seliger, 2019), this database further
allows for a more focused analysis of the innovative activities taking place
in these cities - such analysis could examine the nature of collaborations
between universities and firms in patent production, the role of mobility
of star inventors in innovation outcomes of these cities (Valero and Van
Reenen, 2019; Verginer and Riccaboni, 2021). Finally, the research question
on delineating cities such that they are internationally comparable is very
important, since a cross-country analysis should account for the fact that
cities and regions are defined differently across countries - sometimes
this definition of cities reflect administrative or legal boundaries that do
not represent the economic and functional extent of these cities, as such
can bias analysis of cities across countries (Dijkstra, Poelman, and Veneri,
2019).

To address the question of “how to delineate cities such that they are
internationally comparable?”, we rely on the methodology introduced by
the OECD to demarcate cities based on their economic reach, in a way
that is uniform across countries. This approach corrects for the differences
in legal and administrative boundaries adopted in different countries
(OECD, 2012; Dijkstra, Poelman, and Veneri, 2019). The resulting demar-
cation referred to as a “functional urban area” can be different from the
actual administrative boundaries. The harmonized definition of “func-
tional urban areas” uses both population density data and travel flow
information between cities to identify “urban cores” and peripheral local
units that are economically integrated with the urban core (OECD, 2012;
Dijkstra, Poelman, and Veneri, 2019). This methodology allows identifi-
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cation of the right knowledge clusters (Alcácer and Zhao, 2016) and is a
major advantage of research on cities in comparison with prior studies
focusing on institutional and legal boundaries of regions. Based on this
patent database properly allocated to cities, we draw on a list of 168 global
cities as characterized in Beaverstock, Smith, and Taylor, 1999, and show
changes in the formation of domestic and international linkages to global
and non-global cities.

In Chapter 2, we demonstrate the use of the patent database in measuring
the economic complexity of cities and forecasting the competitiveness
of cities based on machine learning algorithms. Questions around the
economic competitiveness of cities have been a long-standing one in
the economic literature, and most analyses are geared towards unrav-
eling explanatory variables for how countries, cities, and firms acquire
and increase capabilities in different products, technologies, and scien-
tific domains, such that their production output exceeds their fair share
(Sassen, 2001; Rigby, 2015; Balland et al., 2017). However, tracking or
measuring these capabilities and strategic choices made by cities can be
problematic as these are generally intangible (Straccamore and Zaccaria,
2021). The usefulness of the economic complexity literature is geared at
addressing the issue of uncovering these capabilities by analyzing the
productive, technological, or scientific output of cities from a network per-
spective, with the aim to measure or forecast rather than explaining why
a city like Taiwan has capability in Semiconductor (Tacchella et al., 2012;
Straccamore and Zaccaria, 2021). The richness of economic complexity ap-
plication is seen prominently in the economic geography and innovation
literature. In this literature, economic complexity is often discussed with
reference to infrastructure, product export, technological and scientific
capabilities that allows a country or region to identify what products
or technological areas it can readily upgrade into given its current capa-
bilities (Hidalgo, 2021; Mewes and Broekel, 2020). Although precisely
measuring complexity is challenging, there have been scientific efforts
towards inferring the complexity of countries using trade, publication,
and patent data. The two major methodologies for measuring economic
complexity are the “Method of reflection” approach (Hidalgo et al., 2007)
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and “Fitness and complexity” methodology (Tacchella et al., 2012) which
consist of “non-linear coupled maps whose fixed points define new met-
rics for the fitness of the countries and complexity of products”. We
applied a recent methodology called “Generalized economic complexity
index” (i.e., GENEPY) proposed by Sciarra et al., 2020 that reconciles
both methodologies by applying linear-algebra tools within a bipartite
network framework. Beyond measuring the economic complexity of
cities and technology classes (i.e., intellectual patent classes (IPC)), we
measure the fitness of cities in different technology fields. This measure
captures the level of within technology field diversification and balance
of more sophisticated technology competitiveness relative to other cities.
Furthermore, since the GENEPY index captures the current capabilities of
cities, we propose using machine learning models to forecast the future
competitiveness of cities in different technologies i.e., their capability to
produce patents in a given technology beyond its fair share. We show
that these machine learning models provide a better forecast of future
competitiveness of cities in different technologies when compared to the
network approach that combines time-independent conditional probabili-
ties with the current competitive structure of cities (Zaccaria et al., 2018).
Furthermore, we try to predict extreme situations where cities leapfrog
into competitive landscape in a technology (i.e., RTA exceeding 1 in 2014)
from having extremely low technological advantage (i.e., RTA < 0.25) in
the technology throughout the previous years (between 2000-2009). We
refer to this task as the “activation task”. By using the forecasted competi-
tiveness in 2014, we reconstruct the future economic complexity index for
cities in 2014.

In Chapter 3, we draw on extant literature on entry into new technology
domains by examining the impact of collaboration structure and techno-
logical relatedness on the likelihood that a city enters a new technology
domain. The entry process analyzed in Chapter 3 is distinctly different
from the activation task discussed in Chapter 2 since you can enter a
technology domain without necessarily becoming competitive. An entry
process is observed if a city produced at least a patent in a technology
domain, while activation is moving from an RTA less than 0.25 between
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2000-2009 to an RTA exceeding 1 in 2014. The motivation for analyzing
the drivers of cities’ capabilities to enter new technology is inspired by
existing efforts focused on unfolding the drivers of economic agents being
able to acquire economically relevant technology and apply it effectively
in ways that foster economic growth which over time and in different
geographic areas has been lumpy and discontinuous (Rigby, 2015). The
observed lumpiness of economic growth in different geographic areas has
not only been attributed to reliance on localized natural resources and in-
ability to attract capital investments but also as a result of the stickiness of
tacit knowledge across geographies (Maskell and Malmberg, 1999; Rigby,
2015). While economic agents can choose to look inwardly to accumu-
late technology and leverage accumulated technological capabilities in a
combinatorial way to develop new ideas, they may be faced with limited
resources, cost and time to accumulate experience, and perhaps for some
economic agents, they may have a small subset of the existing technology
base that makes recombination difficult. In light of the relevance of new
technology to the economic growth of a city, we examine drivers that are
both internal i.e., looking into the accumulated technology within the city
and their proximity to technologies not yet acquired by the city, and exter-
nal i.e., looking into the collaborative ties of the city to economic agents
outside the city. We posit that the likelihood that a city explores or enters a
new technology domain is facilitated by the inter-city collaborative ties to
external inventors who have previously invented in the new domain, and
this effect is positively moderated by the size (number of inventors) of the
partner city. Also, we hypothesize that the relatedness of the technology
base of the city with the new domain positively affects the likelihood of
entry, and this effect should be positively moderated by the focal city size
(number of inventors). Based on the analysis of exploratory activities of
1220 cities (located in six continents) in 646 technological 4 digit-IPCs be-
tween the period 2005-2014, we find significant support for all hypotheses
except for the moderating role of focal city size on technology relatedness.
Finally, we provide evidence that entering a new domain collaboratively
increases the technological performance of the city in the new domain.

Finally, in Chapter 4, motivated by Wagner, Park, and Leydesdorff, 2015’s
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observation of remarkable growth in international collaborative research
and an increase in the formation of teams involving multiple cities, we
examine positions of global cities in transnational networks of researchers
(i.e., scientists and inventors) by assessing the likelihood of scientists
and inventors from different cities to take part in international teams.
Traditional network methodologies are not suited to analyze the rise
of large international teams of inventors in scientific and technological
productions. Hence, in Chapter 4 we introduce a new methodology based
on recent developments in the analysis of hypergraphs. Which cities
are playing a pivotal role as hubs in complex teams of inventors? To
answer this question, we propose a measure based on 3-hyperedges in
the collaboration networks constructed from scientific publications and
patents. This measure is used to identify the most competitive global cities
in the international network of researchers. To this end, we construct a
null model using the hypergeometric ensembles (Casiraghi et al., 2017;
Casiraghi and Nanumyan, 2018) of random graphs and find that five US
cities play a leading role in transnational networks of researchers. Among
them, San Francisco stands out as the most globalized city.
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Chapter 1

Georeferencing Patent Data
for Urban Studies

1Technological progress and innovation are important factors for the eco-
nomic growth of urban areas and there are different ways of measuring
technological innovation e.g. financial market valuation of R&D invest-
ments, scientific publications, or patents. 2The production of patents
indicates technological advancement made by individuals (referred to as
inventors on the patent) working in public and private research organi-
zations (referred to as applicants on the patent). The analysis of patent
data is crucial for evaluating knowledge spillover as reflected in citation
patterns (Jaffe, Trajtenberg, and Henderson, 1993; Maurseth and Verspa-
gen, 2002), mobility of inventors (Miguelez, 2019), entry and performance
in new technology domain (Leten, Belderbos, and Looy, 2016; Rigby,
2015) and knowledge production and diffusion. Patent analysis is useful
for policymakers as they provide a data-driven, detailed understanding
of innovation processes within and across regional and organizational
boundaries.

Over the years, different patent databases have been used as a proxy for

1This is a joint work with R. Belderbos, F. Benoit, G.H. Lee, and M. Riccaboni
2There are individual inventors that are applicants as well, since not all inventors work

for an organization.
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studying innovation, this is because patent documents represent jurisdic-
tional right on the ownership of intellectual property, and applicants who
are willing to protect the ownership of their innovation are predisposed to
going through the process of obtaining a patent, hence a patent database
represents a portfolio of patent activities taking place in a jurisdiction,
which include patents application from inventors home and abroad. There
are different patent databases from which patent indicators can be con-
structed. The “United States Patent and Trademark Office” (USPTO) has
been widely exploited for studies of inventive activity. However, patent
indicators computed using USPTO data are subject to a strong geographic
bias in favor of North-American inventors. Similar bias applies to patent
indicators constructed from applications made at the European Patent
Office (EPO) as several studies have shown that statistics on patent filings
are biased in favor of European countries and there exists a significant dif-
ference in the transfer of national priority patent applications (i.e., initial
patent application) to the EPO across European countries (De Rassenfosse
et al., 2013).

To address the issue of geographic bias, the “Organisation for Economic
Cooperation and Development” (OECD) proposed considering patent
indicators based on triadic patent families. Triadic patent families are
considered to have an international market perspective as they are filed
in the three major patent offices, i.e., USPTO, EPO, and Japanese Patent
Office (JPO). However, they are biased in favor of highly valued inven-
tions that are often owned by large multinational corporations (MNCs). A
more comprehensive database that provides adequate patent coverage for
developed and developing economies and also patents filed by different
types of applicants is the Patent Statistical (PATSTAT) database. PATSTAT
is the largest database and contains patent activity information from over
90 patent offices in the world, and can be used in constructing patent
indicators that are less susceptible to geographic and high-value patents
bias. Nevertheless, the PATSTAT database being a compilation of other
databases from different patent offices inherits data quality problems that
arise in these patent offices which can limit its usage for analytical work.
One drawback of using PATSTAT is the issue of ambiguous inventor
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and applicant name due to a wide range of alternate spellings or mis-
spellings on patent documents, either during multiple patent applications
by inventors or during applications across multiple offices. Different dis-
ambiguation approaches have been introduced in the literature to address
this problem (Morrison, Riccaboni, and Pammolli, 2017b; Kim, Khabsa,
and Giles, 2016; Ventura, Nugent, and Fuchs, 2015; Pezzoni, Lissoni, and
Tarasconi, 2014; Balsmeier et al., 2015). Another well-known problem
is the lack of fine-grained location information of inventors and appli-
cants on patents. Some works that have addressed the issue of providing
geographic coordinate information include Morrison, Riccaboni, and Pam-
molli, 2017b, De Rassenfosse, Kozak, and Seliger, 2019, and PatentView,
2018.

A patent database with address information at a more detailed level can
be useful in many ways: first, it can provide a high level of granularity
which can foster the study of the growth or decay of knowledge spillovers
at local levels such as cities and regions (Helmers, 2019). Also, a geo-
reference database can provide insight into the distribution of complex
patent activities (high impact multidisciplinary patents involving large
teams and more R&D spending) and the emergence of cities in complex
technological areas since innovation is increasingly concentrated in few
large cities (Balland et al., 2020); a georeference information of inventors
on a patent can help track productivity growth to identify star and emerg-
ing inventors (Hoisl, 2007), understand networking strategies of inventors
and impact on productivity (Breschi, Lissoni, and Malerba, 2003), and
mobility of inventors between private and public sectors (Crespi and
Nesta, 2006). Finally, the worldwide coverage of this database makes it
useful for studying innovation outcomes in developed and developing
economies, as most research outcomes in previous years have largely
focused on patent activities in developed economies. Other important
use of this database includes the identification of innovation hubs (Castel-
lani and Lavoratori, 2019) and improving disambiguation algorithms
(De Rassenfosse, Kozak, and Seliger, 2019).

Beyond the precision required in defining the location of inventors and
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applicants, there is a need to properly define the boundaries of the spatial
units (i.e., cities, regions, and countries.) where the coordinates are located.
The task of delineating spatial units can be challenging over time due to
the dynamic tendencies of urban structures (Orellana and Fuentes, 2019).
Most research work (e.g., De Rassenfosse, Kozak, and Seliger, 2019) in
developing geographic information for inventors and applicants allocate
geocoded data to regions and cities without taking into consideration the
different administrative boundary definitions of cities and regions that
are being considered by countries. Typically, boundary definitions across
countries are different since they are driven by differences in administra-
tive units. Hence, analysis done comparing the outcome of cities located
in different countries will be biased (OECD, 2012; Dijkstra, Poelman, and
Veneri, 2019).

Therefore, to make sound international comparisons of cities requires
delineating cities in economic terms. The aspects to consider in the de-
lineation process is related to the concept that policymakers adopt in
understanding the evolution of cities and their economic performance.
The first consideration provides a uniform threshold for the density of
cities in a way that is consistent with both the city’s population size and
land area. For cities located in more dispersed countries, the threshold for
density is larger. On the other hand, the second consideration captures
the economic extent of the city by allowing for the inclusion of surround-
ing cities that are of lower density but economically integrated with the
city. These lower-density areas are typically referred to as hinterlands,
peripheral cities, or commuting zones. The core city together with the
integrated surrounding cities is called a “functional urban area” (FUA)
(OECD, 2012; Dijkstra, Poelman, and Veneri, 2019). By definition, an
FUA “consists of a densely inhabited city and less densely populated
commuting zones whose labor market is highly integrated with the city”
(OECD, 2012; Dijkstra, Poelman, and Veneri, 2019). The methodology
for defining FUA was jointly developed by the “European Union” (EU)
and OECD to provide a consistent demarcation of cities across OECD
countries (OECD, 2012; Dijkstra, Poelman, and Veneri, 2019). The identi-
fication of commuting zones is based on linkages between urban areas
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measured based on commuting levels i.e., the number of people traveling
daily between residential areas and their place of work.

In this chapter, we will develop a database of geographic coordinate infor-
mation regionalized to functional urban areas for inventors and applicants
on 12.3 million patent documents filed between 2000-2015. We will rely
primarily on patents available in the patent statistical (PATSTAT) database
and also on other sources of patent database (e.g., Morrison, Riccaboni,
and Pammolli, 2017b, PatentView, 2018, De Rassenfosse, Kozak, and
Seliger, 2019) which we will subsequently refer to as MRP, PV and RF
databases, respectively. The RF database is introduced at a later stage of
the data generating process to consolidate our final database since the RF
database does not have an identifier for inventors and applicants which
are important in the address and coordinate matching stage. Furthermore,
the geocoded data will be assigned to the available functional urban areas
in OECD, 2012 which are urban areas in OECD countries. For selected
cities in non-OECD countries which we identify as important global cities
based on the work done by Beaverstock, Smith, and Taylor, 1999, we will
delineate these cities using the same spatial delineation process of OECD,
2012 by identifying commuting zones of cities based on (i) patent density
of cities close to the focal city (ii) thresholds of the weight of linkages be-
tween cities, where we replace the definition of linkages from commuting
levels between urban areas to the average traveling time between urban
areas.

The rest of chapter 1 is organized as follows: Section 1.1 describes each
step in the data generating process and the validation of the algorithm.
Section 1.2 provides statistics on the quality of the final dataset. Section
1.3 provides background literature on domestic and international linkages
and the analysis of trends in domestic linkages, international linkages to
global and non-global cities. Section 1.4 provides concluding remarks on
this chapter.
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1.1 Data generating process

This section provides information on the data generating process which
involves merging, parsing, address and coordinate matching, geocoding,
algorithm validation, regionalization tasks undertaken to assign coordi-
nate to inventors and applicants on a patent document.

Figure 1 provides an overview of the data generating process. First, we
start with the collection of the primary data i.e., the Patent Statistical
(PATSTAT) database version 2018, and the secondary or external patent
databases which includes: (i) OECD regional patent (REGPAT) database
version 2019 which contains patents that have been linked to regions
using the addresses of applicants and inventors, (ii) MRP database that
has patents with coordinate information based on disambiguation effort
done on inventor and applicant names, (iii) PV database 2018 version,
and (iv) the Institute for Intellectual Property (IIP) database that contains
patent based on JPO standardized data (Akira Goto, 2007).

Figure 1: Flow chart of data generating process: Squares represent pre-
processing and algorithms, while canisters represent databases. The final
outputs of this process are regionalized locations of inventors and applicants
of patents.

These data are validated, cleaned, and formatted, then all databases
are merged based on primary identifiers (these are key columns in the
database) identified across databases. For example, the primary identifier
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in PATSTAT and OECD REGPAT is the patent application and person
identifiers - implying both datasets can be merged based on these column-
s/identifiers. The merged database (i.e., PATSTAT, OECD REGPAT, IIP,
MRP, and PV) does have rows corresponding to applicants and inventors
for a given database. Therefore we split the merged database into two, one
corresponding to only inventor information and the other corresponding
to only applicants information. The address/coordinate imputation and
batch geocoding algorithms are applied separately to both inventor and
applicants databases. For some patents in which the address imputation
algorithm could not allocate an address to inventors or applicants, the
inventor and applicant databases are consolidated with the RF database.
The coordinates in this consolidated database are further mapped to
functional urban areas (FUAs) based on shapefiles from OECD, 2012, and
shapefiles constructed for cities in non-OECD countries. The final datasets
after this data generating process are inventor and applicant databases
with 76.6% and 72.4% coordinate coverage respectively. The algorithms
used in the data generating process undergo multiple validations to deter-
mine how much confidence should be attributed to the address retrieval
and geocoding efforts applied to arrive at the final inventor and applicant
datasets, since the address retrieval effort can be affected by name ambi-
guity issues, and the geocoding may provide less precise coordinates. The
confidence level of the geocoding process is estimated between 84-88%
(based on validation 1 and 2), while the precision of the address retrieval
from patent filings in the database is estimated to be 91-93% (based on
validation 3).

1.1.1 Patent statistical (PATSTAT) database

The PATSTAT database comprises patents from about 90 patent offices, but
most of the patents in this database do not have address information (the
country information of inventors and applicants are often available) for
inventors and applicants. Specifically, not more than 30% of patents have
address information for at least an inventor. Also, when addresses are
available, these addresses can either have city information or not. Most of
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the addresses available are in major patent offices e.g., EPO, USPTO, and
WIPO. Also, major offices like the Chinese Patent Office (SIPO), Japanese
Patent Office (JPO) do have a very low address coverage in PATSTAT. We
sought to recover these missing addresses of inventors and applicants by
first leveraging on the quality address information in the major patent
office.

To do this, we consider the raw tables extracted from the PATSTAT
database which are: (i) TLS201_ APPLN table, containing the key biblio-
graphical data elements relevant to identifying patent applications. This
table has 96,661,363 rows. (ii) TLS207_PERS_APPLN table, which links
inventors and applicants to the patent applications in TLS201_APPLN
table. (iii) TLS206_PERSON table containing the key information on in-
ventors and applicants (e.g., the applicant’s or inventor’s name, address,
country of residence). This table has 57,682,355 rows. The data is obtained
by filtering TLS201_APPLN table based on application year between
2000-2015 (i.e., we selected only patents that were filed between 2000
and 2015). Furthermore, we selected a subset of patents with application
kinds: A, F, and W which represent Utility patent, Design patent, and
PCT applications respectively. These types of applications represent over
80% of the patents filed in that period. Next, we merged this sub dataset
to TLS207_PERS_APPLN table using the primary key in both datasets
which is the APPLN_ID (i.e. the application identifier). The resulting
dataset identifies inventors and applicants involved in the sub dataset.
Finally, to get the attribute of the inventors and applicants, the resulting
dataset is merged with the TLS206_PERSON table using the PERSON_ID
(i.e., person identifier which is the primary key in both datasets).

This final dataset extracted from PATSTAT database is split into (i) Inven-
tor dataset: this is done by querying INVT_SEQ_NR > 0 (INVT_SEQ_NR
is the inventor’s sequence number assigned to the inventor name during
patent application) and APPLT_SEQ_NR = 0 (APPLT_SEQ_NR is the
applicant’s sequence number assigned to the applicant during patent
application). Also, we included inventors that are considered appli-
cants by querying INVT_SEQ_NR > 0 and APPLT_SEQ_NR > 0. (ii)
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Applicant dataset: this is done by querying INVT_SEQ_NR = 0 and AP-
PLT_SEQ_NR > 0. Finally, we excluded patents for which they were
neither INVT_SEQ_NR nor APPLT_SEQ_NR. The number of patents in
the inventor and applicant dataset are 16,688,197 and 14,886,555 respec-
tively, of which 25.8% and 29.1% of the patents have address information
for at least one inventor and applicant respectively. The difference in
the number of patents in the inventor and applicant databases is due to
the inclusion of patents in which persons are identified as both inventor
and applicants (i.e., INVT_SEQ_NR > 0 and APPLT_SEQ_NR > 0) in the
inventor database.

1.1.2 External database

The dataset generated from PATSTAT is limited for the following reasons:
(i) the address information of inventors and applicants is low and biased
in favor of major patent offices (specifically USPTO and EPO) that tend
to capture mostly patenting activities of inventors and applicants located
in the country where the patent office is located and also inventors and
applicants from surrounding countries. Considering the raw PATSTAT
database, we have that 95.6% of patents with address information for
inventors were filed in USPTO (55.5%) and EPO (40.1%) only. Similarly,
95.5% of patents with address information for applicants were filed in
USPTO (63%) and EPO (32.5%) respectively. For each of the patent offices,
the distribution of the patents among the top 10 countries accounts for
over 90% of the address in the inventor and applicant database respec-
tively. We have that in both USPTO and EPO, inventors from the United
States, Japan, and Germany had the most patents with address informa-
tion. Specifically, of the patents with address information filed in USPTO
(EPO), 44.38% (25.29%) had inventors from the United States, and 45.02%
(25.92%) had applicants from the United States. (ii) there are significant
variations in the quality of addresses, as some addresses only have the
country information and others do have complete address information
(i.e., country, city, street name, and number). To improve the address
quality in the dataset generated from PATSTAT, we curated secondary
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or external datasets from the following external patent databases: OECD
REGPAT, PV, and MRP.

OECD REGPAT database

The OECD REGPAT database contains patent data that capture patent ac-
tivities in over 2000 regions in OECD countries. These data provide gran-
ular address information for firms (applicants) and persons (inventors)
filing their patents in the European Patent Organization (EPO), alongside
other information such as citations received by patents, and technical
field the patents belong to. This information provided at the regional
level can be linked to other regional databases such as labor statistics to
provide insight into the connection between innovation and employment.
Also, the OECD REGPAT database provides information on PCT patents
regionalized for most EU 28, BRICS, and OECD countries (Maraut et al.,
2008).

In our data generating process, we used the OECD REGPAT database
version 2019, to improve the address information for applications made
in EPO and also for “Patent Cooperation Treaty” (PCT) applications. To
merge the EPO applications in our generated dataset to that available in
REGPAT, we used the combination of “application identifier” and “person
identifier” which are the primary key in both datasets. When there is a
missing address for an inventor or applicant on a patent document in the
generated dataset, but this is available on the same document in REGPAT,
we input the address available in REGPAT. When both datasets have
address information for an inventor or applicant on a patent document,
we use the address from REGPAT as the prevailing address since REGPAT
has been subjected to more cleaning effort. The string comparison and
merging of the databases are done after unwanted characters are removed
from the address strings. Furthermore, to merge PCT applications in the
generated dataset with information from REGPAT we used the combina-
tion of “application identifier” and “person name” since there is no “person
identifier” for PCT applications in REGPAT. This implies that we needed
to make sure that the “person name” in both datasets are exactly matched,
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hence we clean the “person name” in both datasets before merging. After
merging we compare the string of addresses in both datasets in the same
way we did for the EPO applications.

Morrison, Riccaboni and Pammolli (MRP) database

The MRP database addresses the problem of ambiguity of inventor and
applicant (firms or universities) names in the patent database. This prob-
lem limits the extraction of proper information of patenting activities of an
inventor or applicant. Since some patent databases may reflect different
spellings of an inventor or applicant name in cases of multiple applications
filed in different patent offices, to resolve this issue Morrison, Riccaboni,
and Pammolli, 2017b proposed an algorithm that uses “high-resolution
geolocation” information to match alternative spellings of an inventor
or applicant to a unique inventor or applicant identifier. This algorithm
was applied to EPO, USPTO, and PCT patents. The significant benefit
of integrating this database in our data generating process is the high-
quality inventor and applicants disambiguation and the high-resolution
coordinate information available in the database.

MRP Patent id PATSTAT equivalent
US0nnnnnnn nnnnnnn
USREnnnnnn REnnnnnn
USRE0nnnnn REnnnnn
USH000nnnn Hnnnn
USD0nnnnnn Dnnnnnn
USPPnnnnnn PPnnnnnn
USPP0nnnnnn PPnnnnnn

Table 2: Modification of MRP patent identifiers.

The MRP database leverage the work done by Li et al., 2014 which covers
patents granted by the USPTO between 1975-2010, as well as EPO and
PCT patents filed between 1977-2011 and are in the OECD REGPAT (2014
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version) database. We merge the MRP database to our generated dataset
through the “patent identifier” and “person name”. For PCT applications,
the “patent identifier” in the MRP database is the “pct number”, while for
EPO and USPTO, the “patent identifier” is the “publication number”. For
EPO and PCT applications the “patent identifier” is consistent with the
generated dataset from PATSTAT, while for the USPTO this is slightly
different as it contains a “US” prefix and strings of “0”. Therefore, the
USPTO “patent identifiers” in the MRP database are modified to match the
generated dataset from PATSTAT as seen in Table 2.

After ensuring consistency of the primary keys in both datasets for the
different types of applications, we merge the MRP dataset with the gen-
erated PATSTAT dataset to extract the coordinate information from the
MRP dataset. This provides an extra layer of information (i.e., coordinate
information for inventor’s and applicant’s addresses).

PatentView (PV) database

Although the USPTO patents in PATSTAT do have the most address cov-
erage, however, we need the corresponding geographic coordinate for
these addresses. In other to get these coordinates we merge our database
with the PatentView database. The data in PatentView, 2018 is based on
patent data from the USPTO which includes published patent applica-
tions from 2001 till date, and granted patents from 1976 till date. The
database treats the issue of inventor and applicant name ambiguities and
properly geocodes addresses on patents by leveraging “location-based
disambiguation” (PatentView, 2018). We use the database to improve the
geographic coordinate information for USPTO patents in our generated
PATSTAT dataset.

Since the patent identifier in PatentView, 2018 is consistent with what
is in the generated PATSTAT dataset, we merged both datasets using a
combination of “application id” and “person name”. The “person name” is
used after performing some cleaning process to account for the different
ways the names are written in both datasets. Merging with PV database
provides geographic coordinate information for inventors and applicants
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on patents filed in USPTO. This database serves as the second source
for getting geographic coordinate information (the first being the MRP
database).

Institute for Intellectual Property (IIP) database

The JPO is one of the major patent offices, however, it has low address
information in PATSTAT. The IIP database is used to improve the low-
quality address information for inventors and applicants located in Japan
who file patents in JPO, such address information is not available in PAT-
STAT which implies there is no information to geocode or regionalize. The
IIP database is an extraction from the “Seiri Hyojunka data” disseminated
by the “National Center for Industrial Property Information and Training”
(NCIPI) - an independent institute connected to JPO. JPO records arising
from investigations and post-grant infringement settlements are included
in the "Seiri Hyojunka data," as well as published information for indi-
vidual patents. The data is structured in order of application processes
(Akira Goto, 2007). This data can be accessed through the IIP platform.
Since the IPC code information is only available from 1964, the IIP only
provides patent applications filed after 1964 (Akira Goto, 2007).

We were granted access to download the Japanese patent records through
the IIP database site: https://www.iip.or.jp/e/patentdb/data/menu.html
where we extracted the inventor and applicants database having 12,381,285
and 13,581,692 patent records respectively. The addresses are in Japanese,
in which case we used a Japanese geocoding server: serverhttp://newspat.
csis.u-tokyo.ac.jp/geocode-cgi/geocode.cgi?action=startto which was only
successful at geocoding addresses located in Japan. Merging this dataset
with the generated PATSTAT dataset is done in two steps. First, we mod-
ified the “application number” in the generated PATSTAT dataset to be
consistent with the “ida” which is the patent identifier in the IIP database.
To do this, we prepend the “application year” and sequence of zeros to the
application number to obtain a 10 digit identifier that is the same as the
“ida” in the IIP database. Secondly, since the “name” in the IIP database is
in Japanese, merging using a combination of “modified application number”
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and “person name” will be impossible. Therefore, within the patents, we
identify persons whose residential country is Japan and have the same
“seq_nr” as in the IIP database.

Linking person names across databases

Inventor and applicant name disambiguation is a predominant issue in
PATSTAT (Morrison, Riccaboni, and Pammolli, 2017a) given the fact that
the same inventor or applicant can have their names written differently
(e.g., abbreviation of names, and reordering of names.) when filing dif-
ferent patents - hence in a given database this can lead to not being able
to properly identify patents that belong to an inventor. However, linking
patents across databases can be less prone to this as the patents here rely
on each other or come from the same source. For example, the United
States patent office information in PATSTAT, as well as the PatentView
database is sourced from USPTO, and the OECD REGPAT and PATSTAT
databases use the same source as they are both managed by the EPO. The
linking of person names on a patent in PATSTAT with the same patent in
other databases such as PatentView, OECD Regpat, and MRP, is as follows
(i) person names are cleaned by removing non-alphabetical characters
and any leading or trailing spaces between names and then converting
all strings to upper case. Also for some names that do have titles e.g.,
German patent offices do have some person names with academic titles
such as Prof., ING, and Dr., these academic prefixes are removed. (ii) then
a string similarity measure between the full names in both datasets is
done using a threshold of 0.8. If the similarity score exceeds this threshold,
the available information is linked to the patent in PATSTAT. (iii) There
are some cases where the ordering of the full name differs (e.g., Pierre
Balland Algo in PATSTAT, but Balland Algo Pierre in PatentView) - the
full name is split based on space, and the similarity measure is applied to
every permutation of both full names, if the threshold of 0.8 is attained
for any permutation then we link the information to PATSTAT.
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1.1.3 Algorithms for imputation and geocoding

Following the integration of the generated dataset in PATSTAT with the
external databases, we were able to improve the address coverage on
patents in the applicant database and inventor database to 35.8% (6.7 %
increase) and 34.6% (8.6% increase) respectively. Not all addresses in the
database do have a corresponding geographic coordinate. For example, in
the applicant database, we were able to allocate coordinates to only 70.6%
of addresses, hence we have to geocode about 214,100 unique addresses
using the Google geocoding platform.

The next stages in the data generating pipeline are the imputation of
missing address/geographic coordinate and the geocoding of addresses
to geographic coordinate. These steps in the data generating pipeline are
done iteratively until there is no significant improvement in how much
coordinate can be allocated to missing coordinates in the database. How-
ever, before outlining the underlying algorithms for the above stages, we
create an address-coordinate function mapping all addresses available
to geographic coordinates available in the dataset, this is to ensure we
know what addresses in the dataset are yet to be geocoded. The function
first performs a text cleaning on the address string and an exact matching
of a similar address is done to map geographic coordinates. There are
possibilities that some group of addresses is not the same (based on string
comparison) as an address that already has geographic coordinate but
in principle, they are the same e.g. “Breitenseerstrasse, Vienna Austria”
and “Breitenseer strasse, Vienna Austria.” In such a situation, we used
Libpostal library in Python which is a fast multilingual international
address parser trained on Openstreet map data and currently supports
normalization in 60 languages and can parse addresses in more than 100
countries. The address parser in the package is used in comparing each
component of the addresses, if the city/admin1 and country components
are the same and the string similarity between the street name component
exceeds 90% both addresses are deemed to be similar and the differences
can be attributed to systematic errors when the address was recorded
in the database. This function is applied to each split of the integrated

23



generated PATSTAT dataset (i.e., inventor and applicant dataset). Next,
we apply the coordinate-address function across the split by identifying
addresses that have geographic coordinates in one split (inventor/appli-
cant) but the same addresses or group of similar addresses in the other
split (applicant/inventor) do not have geographic coordinate.

Imputation algorithm

The algorithm implemented for adding missing address and coordinate
information follows the heuristics proposed by De Rassenfosse et al., 2013
and De Rassenfosse, Kozak, and Seliger, 2019 for recovering missing infor-
mation for priority patents. The algorithm proposed by De Rassenfosse
et al., 2013; De Rassenfosse, Kozak, and Seliger, 2019 assigns addresses to
priority patents (i.e., initial or earlier application) by examining among
other things the patent family (i.e., applications which cover the same or
similar invention). Typically, these patent families are either classified as
(i) the simple family also called the DOCDB family - in the simple family,
all applications of this family lay claim to the same priority patent, and
the technical contents of the applications are identical. (ii) the extended
family also called INPADOC family, the applications are linked to the
same priority application, but their content may differ. The De Rassen-
fosse, Kozak, and Seliger, 2019 algorithm explores the simple family or
DOCDB in assigning missing addresses. For any given patent office in
any given year, they select all priority patents, then for any of the selected
priority patents with missing inventor or applicant address information,
the address information is recovered from the following possible sources:

• Source 1: They used the address of the inventor and applicant from
the earliest subsequent filing referring to the priority application as
the sole priority.

• Source 2: If there is no address information for the inventor or
applicant in the earliest subsequent filing, other subsequent filings
in the order they were filed are examined.

• Source 3: If there is no address of the inventor in any of the subse-
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quent filings, the address of the applicant in the priority patent is
used as the address of the inventor, and vice-versa.

• Source 4: If source 3 fails, the same process in source 3 is repeated
but on the earliest subsequent filings.

• Source 5: If source 4 fails, the same process in source 3 is repeated
but on other subsequent filings that refer to the priority patent as
the sole patent.

This heuristic for data recovery was implemented for recovering country
information for priority patents, and when all the sources of recovery
listed above fail, the De Rassenfosse, Kozak, and Seliger, 2019 algorithm
uses the country name where the priority patent was filed as the address
information on the priority patent. In our implementation, we extend the
algorithm to recover addresses or coordinates for inventors and applicants
on both priority and non-priority patents. We exclude the final stage of
having to allocate country information of priority patents to inventors or
applicants as the location of an inventor on a patent may not necessarily
be the same as the location of the patent office. Our implementation goes
thus, first we select all patents within a family patent (i.e., DOCDB family)
and for each patent application in a family, we recover the missing address
of the inventors and applicants on that patent by doing the following 3:

• Source 1: we use the inventor’s or applicant’s address (coordinate)
in the document if available.

• Source 2: if address (coordinate) is not available, we use inventor’s
or applicant’s address (coordinate) information from other patents
(priority or non-priority) that belong to the same family. However,
we prioritize patents that were filed in the following offices USPTO,
EPO, and WIPO.

• Source 3: if source 2 fails, we use the inventor’s or applicant’s
address (coordinate) from other patents (priority or non-priority)

3Note: all sources are applied to the inventor dataset, while only sources 1-3 are applied
to the applicant dataset.
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that belong to the same family prioritizing patents that were filed in
other offices.

• Source 4: if source 3 fails, to recover addresses for inventors on
the patent we use the applicant’s address (coordinate) from the
document. We assume that the inventor should reside close to the
location of the applicant. This assumption though reasonable is
a bit problematic when patents are filed by MNCs headquarters,
but inventors on the patents are from the subsidiaries of the MNCs
which is a different location from the headquarter.

• Source 5: if source 4 fails, we use the applicant’s address (coordinate)
information from other patents (priority or non-priority) belonging
to the same patent family. However, we prioritize patents that were
made in the following offices USPTO, EPO, and WIPO.

• Source 6: if source 5 fails, we use the applicant’s address (coordinate)
from other patents (priority or non-priority) belonging to the same
family prioritizing patents from offices other than USPTO, EPO, and
WIPO.

Finally, in situations where there are variations in inventor or applicant
names within the patent family, we computed a string similarity metric
using a cutoff of 70% (there is no significant improvement in the address
retrieval process using a higher cutoff). Also, in the address retrieval
process for inventors, we considered the overall database and looked at
cases where we have the same inventor (person name) in the database
with some cases of missing address and coordinate information. For such
cases, if the names share the following attributes: at least 70% inven-
tor name similarity, same applicant country, and same applicant name,
then these names are considered to be a unique person, and the address
and coordinate imputation algorithm is applied to resolve the missing
information. This probabilistic heuristic used to augment the algorithm
improved the address coverage by 4.3%.
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Batch geocoding algorithm

To geocode the addresses, we used the Google geocoding platform (see
https://developers.google.com/maps/documentation/geocoding/
overview) which geolocates addresses in different languages. We also
use the Japanese geocoding platform to geocode the address from the IIP
database (see: https://geocode.csis.u-tokyo.ac.jp/geocode-cgi/geocode.
cgi?action=start). To some extent, these platforms can deal with common
issues like spelling errors and irregular formatting. We wrote a python
script that queries the database by providing addresses in batches using an
API that parses the address and saves the geographic coordinate. There
are different levels of accuracy of the resulting geographic coordinate.
These levels can either be “Rooftop”, “Range interpolated”, “Geometric
center”, or “Approximate”. If the resulting coordinate is classified as
“Rooftop” this means that the coordinate provides exact location informa-
tion including street information. A “Range interpolated” classification
means that the address lies in an intersection of roads. A “Geometric
center” classification suggests the coordinate lies in a region. While an
“Approximate” level is the least classification suggesting the coordinate
outcome is not exact (Google Geocoding API).

1.1.4 Consolidating our database with RF database

The next stage of the data generating process before delineating coor-
dinates into functional urban areas (FUAs) is the consolidation of our
database with the RF database. This is done by replacing patents in the
final dataset without coordinate information with same patents with co-
ordinate information in the RF dataset. The replacement is done due to
the absence of a person identifier in the RF dataset that could have been
leveraged for a proper merging. Also, the absence of a person identifier
implies we can not apply the address imputation algorithm after merging
with RF dataset. The inclusion of the RF database significantly improves
the percentage of patents with at least an inventor with geocoded informa-
tion from 55% to 76.6% and 60% to 72.4% for both inventor and applicant
databases respectively, with major patent offices like the Japan, Chinese,
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Germany and South Korea having the most significant improvement. This
is expected as the RF database source for external datasets from China,
Korea, Japan, and Germany patent offices in their data work.

Figure 2: RF database improves the address coverage in our database (inven-
tor and applicant) significantly for Japan, China, South Korea, and Germany
patent offices.

Figure 2 shows the improvement for the top 10 patent offices with the
most number of patents, we have that the RF database improved the
address coverage of inventors for Japan, China, Germany, and South
Korea by 41.9%, 27.3%, 22.87%, and 32.4% respectively, and the address
coverage of applicants for Japan, China, Germany, and South Korea by
69.4%, 29.44%, 28.45%, and 52.4% respectively. On the other hand, the
inventor database improves upon what is available in the RF inventor
database by providing more geocoded patents in some selected offices.
For example, in USPTO, EPO, WIPO, China, and JPO, we have that about
1442786, 797591, 641817, 540563, and 381843 geocoded information was
available in the inventor database but these patents were not available in
the RF inventor database.

In summary, the data generating pipeline which involve (i) linking PAT-
STAT to external databases (i.e., PatentView, MRP, IIP and OECD REGPAT)
improves the address coverage for the inventor and applicant database to
35.8% and 34.6% respectively, representing an increase of 6.7% and 8.6%
respectively from the raw PATSTAT. (ii) imputation of missing address
using sources 1-6 improves the address coverage to 55% and 60% for
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inventor and applicant database respectively (iii) consolidating the RF
database improves the address coverage to approximately 76% and 72%
for the inventor and applicant databases respectively.

1.1.5 Functional urban area demarcation

Many countries base their definitions of cities on the population size and
density of a local administrative unit (Dijkstra, Poelman, and Veneri, 2019).
There are two problems with this definition. The first is that some cities in
large local units may have low density, while some small cities in small
local units may have high density. The second problem is the polycentric
nature of some cities - as they are dispersed across numerous local units
(Dijkstra, Poelman, and Veneri, 2019). Therefore, in this subsection, we
will use the shapefiles based on the EU-OECD methodology and modify
the methodology to construct functional urban area shapefiles for cities in
non-OECD countries. This notion of FUAs is better adapted to capture
agglomeration economies than administrative units, as they capture the
economic extent of cities (Dijkstra, Poelman, and Veneri, 2019; OECD,
2012).

The EU and the OECD collaborated to develop a framework for defining
functional urban areas (FUAs) consistently across countries. FUAs are
created in a series of steps. First, a population grid allows "urban centers"
to be defined regardless of administrative or statistical boundaries. An
urban center is a grid-based concept that consists of a cluster of contiguous
cells with a high density and a population of more than 50,000 people.

EU-OECD methodology

The EU and OECD developed a framework for defining FUA. The four
steps for constructing an FUA are outlined as follows. First, regardless
of the administrative boundaries, an “urban center” is identified through
clusters of contiguous cells of population grids (of 1500 residents per
square kilometer). The cluster for an “urban center” should have a popu-
lation size exceeding 50,000 people, these “urban centers” could spread
over multiple local units. Secondly, a city is defined to be made up of
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one or more local units with more than 50% of its residents located in the
urban center (OECD, 2012; Dijkstra, Poelman, and Veneri, 2019). This city
is referred to as the core city in this “urban center”. Thirdly, the periph-
eral cities or commuting zones are identified based on “travel-to-work”
information used to determine if the commuting zone is “economically
integrated” with the core city. A commuting zone is “economically inte-
grated” with the core city if 15% of its residents commute to the core city.
Finally, a functional urban area is constructed by combining the core city
and the commuting zones identified (OECD, 2012; Dijkstra, Poelman, and
Veneri, 2019).

Figure 3: Urban center, city, commuting zone, and functional urban area of
Graz, Austria as illustrated in Dijkstra, Poelman, and Veneri, 2019.

Defining an urban center, city, and commuting zone:

The population grids used in constructing urban centers are publicly avail-
able (e.g., GHS-POP and CIESIN GPW v4). There are different thresholds
for the contiguous cells used in identifying urban centers. For cities in
the EU, United States, Chile, and Canada, clusters of contiguous grid
cells should have a population size exceeding 50,000, while for cities in
Japan, Korea, and Mexico, these clusters should have a population size
exceeding 100,000 residents (Dijkstra, Poelman, and Veneri, 2019; OECD,
2012).

Since an urban center can span multiple local units, defining core cities
in the urban center depends on what local units have the most residents
located in the urban center. The threshold for a local unit to be considered
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a city is that it has 50% of its residents in the urban center. If the urban
center consists of only a local unit, then the local unit is considered the
core city. If the urban center is embedded in multiple local units meeting
the threshold, then these local units are integrated if either of them is seen
as a commuting zone of the other, else they are treated as separate core
cities (Dijkstra and Poelman, 2012; Dijkstra, Poelman, and Veneri, 2019;
OECD, 2012).

(a) 1154 FUAs in OECD

(b) 73 FUAs in non-OECD

Figure 4: Distribution of FUAs in OECD and non-OECD countries.
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A commuting zone is used for either resolving the case of polycentric
core cities as described above or determining if surrounding local units
should be integrated into core cities. This is inferred by examining travel-
to-work information between cities. A surrounding local unit is deemed
a commuting zone if more than 15% of its population commute to work
in the core city. In the case where the flows are to multiple cities, the
surrounding local unit is integrated with the core city it has the most
commuting flow with (Dijkstra and Poelman, 2012; Dijkstra, Poelman,
and Veneri, 2019; OECD, 2012).

Finally, an FUA is the combination of cities identified and the commuting
zones linked to these cities. Although this approach helps in addressing
the modifiable unit problem by considering the economic extent of cities.
However, the size of an FUA can go below or exceed the size of an urban
center, and can cross state boundaries (Dijkstra, Poelman, and Veneri,
2019). This EU-OECD FUA methodology described provides shapefiles
of 1154 FUAs located in OECD countries. As shown in Figure 4, the 1154
FUAs are distributed across 37 OECD countries, and the country with the
most number of FUAs is the United States with 211 FUAs.

Extension of the EU-OECD methodology

Applying the EU-OECD methodology requires the following data sources:
residential population data, digital boundaries of the local unit, and travel-
to-work flow information which are not available in most non-OECD
countries. Therefore we adapt the EU-OECD methodology for 73 cities in
non-OECD countries selected from the alpha-beta list of cities based on
the Globalization and world cities (GAWC) project (Beaverstock, Smith,
and Taylor, 1999). These cities can be found in China, India, and Brazil.
From Figure 4, the country with the most number of cities delineated
to FUAs is China, having 19 cities on the list. The extension of the EU-
OECD methodology is based on patent density identified in these cities,
and commuting zones are identified based on average travel-to-work
time from the city, which is estimated using the Open Street Map (OSM)
application.
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Defining commuting zones:

First, we select 78 cities in non-OECD countries from the alpha-beta list of
cities in GAWC. Cities categorized as alpha are seen to link “major cities
and regions to the global economy”, and cities categorized as beta are seen
to link “moderate economic cities and regions to the global economy”. To
identify commuting zones surrounding these cities, we identify urban
centers in the city using the Open Street Map (OSM) application (the
application provides a freely adaptable map of the world based on local
knowledge, GPS data, and air/satellite photography)

Commuting zones are places around the urban center that a resident in
the urban center is willing to commute to for work purposes. The average
commuting time estimated does not take into account traffic jams. This
time can be determined for each city using the OSM application, and the
time varies between cities. Next, isochrones are constructed based on the
average traveling time. These isochrones are considered FUAs as they
include both the urban centers and commuting zones, which can extend
beyond the city. The average traveling time used ranges between 30-60
minutes.

The OSM application only allows the calculation of standard vehicles:
bicycles, cars, and trucks. We used cars in the OSM tool based on the
assumption that most people use cars to go to work and these are generally
faster than bicycles. However, public transport in form of trains is usually
faster compared to cars. Therefore, we used either Google maps, ISO4APP
or Mapnificient to check whether one could reach farther in cases where
public transport is used. In the majority of cases, the isochrones were
either equal or smaller compared to the isochrones of cars measured by
the OSM application. In the rare case when they were not, we slightly
extended the isochrones using the Quantum Geographic Information
Systems (QGIS) software. In cases where we have overlapping isochrones
of FUAs within a country, we reduce the shapefile of the non-capital
city to eliminate the overlap. Finally, to validate the demarcation of
the shapefiles, we check if the delineation matched with the hotspots of
innovation. To do this, we project the geographic coordinates from the
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patent database onto the shapefile and showed a heat map that captures
patent intensity in hot spots. If there are spots located outside the city
center that is not captured, we expand the isochrones to include such
hotspots. In all cases, the isochrones never exceeded the average driving
time of 60 minutes. These isochrones are stored as FUA shapefiles.

Case study (Sao Paulo):

Let us consider the construction of the Sao Paulo isochrone as a case study.
Figure 5 depicts two images, the first is a shapefile of Brazil with green
dots representing coordinates of inventors located in Brazil. We see a
concentration of the green dots on the Southeast side of the country. By
zooming in on that area we can distinguish 5 clusters (Bel Horizonte,
Rio De Janeiro, Sao Paulo, Porto Alegre, and the area surrounding Flo-
rianopolis), of which 3 clusters i.e., Rio De Janeiro, Sao Paulo, and the
Florianopolis region have a very high density.

Figure 5: Sao Paulo’s isochrone: The green dots are inventor locations. The
purple patch capture inventors located 30 minutes from the urban center,
while the orange patch capture inventors located 60 minutes away from the
urban center.

Based on the country data from 2012-2014, the majority of the population
(around 50%) travel only 30 minutes to work, while 30% travel between
30 minutes to an hour to work. Only 20% of the population travel longer
than 60 minutes to work. We could not find any official documents on

34



which transportation method was dominantly used, but several reports
indicate that Brazil struggles with poor infrastructure, causing people to
go by bus or by car as metro or train lines are very limited. However, in
more recent years, Brazil has been investing more in developing efficient
public transport.

Further investigation into the public transportation reach of Sao Paulo
using Mapnificient shows that the driving time approach does cover all of
the public transportation routes that can be covered in the same time-span.
Given this information, we established isochrones based on 30 minutes
drive and a 60 minutes drive. As seen in Figure 5, the majority of the
patents are captured within the 30-minute isochrones (i.e., the purple
region). However, only including the 30-minute range leaves out a couple
of dense areas such as Santos and Jundiai which are captured in the 60-
minute isochrones. The 60-minute isochrones capture almost everything
in the neighborhood of Sao Paulo. Although, some clusters can still be
found in the neighborhood (Campinas and Sao Jose dos Campos), these
are located too far away to be considered part of Sao Paulo.

1.1.6 Algorithm validation

The validity of the data generating pipeline depends partly on the validity
of the geographic coordinate information in the external databases that
were integrated. Another possible source of invalid geographic coordinate
information can be intrinsic to the data generating pipeline, specifically at
the coordinate or address imputation and geocoding stages. Therefore,
we choose to validate the data generating pipeline by doing the following:

Validation 1:

The first validation randomly confirms if the algorithm imputing the
missing address is performing the task correctly and if we recover a sim-
ilar geocode should we choose to independently geocode the available
address. To do this, we estimate the level of discrepancy between the geo-
graphic coordinate that was assigned based on the imputation algorithm
and the geographic coordinate gotten from independently geocoding
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available addresses. This process is done on 5 samples of randomly se-
lected 1,000 addresses without replacement. The discrepancy computes
the average distance (km) between both coordinates. These 1000 ad-
dresses randomly selected for observation are complete (for example,
“48 Pirrama Rd, Pyrmont, NSW, Australia”) and are fed into the Google
geocoding platform using the batch geocoding python script (check Ap-
pendix A.0.4). Given the latitude and longitude from the imputation
algorithm as (θ1, λ1) and the Google platform as (θ2, λ2). The great circle
distance (in km) between the two points is computed as follows:

d = 2r arcsin

(︄⌜⃓⃓⎷sin2

(︄
θ2 − θ1

2

)︄
+ cos(θ1) cos(θ2) sin

2

(︄
λ2 − λ1

2

)︄)︄
(1.1)

where r is the radius of the earth (in km). The discrepancy is the per-
centage of the great circle distances computed that lie within a given
threshold e.g. 5km, 10km. Table 3 shows the discrepancy at different
threshold levels for each of the samples. For example, in Sample 5 we
have that for 71.7% of the address in the sample the great circle distance
between the coordinates gotten through the imputation algorithm and
that gotten through the Google geocoding platform is less or equal to 5km,
and for 94.6% of the address in the sample, the great circle distance is less
or equal to 50km. Following the results in Table 3, we adopt a threshold
of 10km as a reasonable great circle distance to validate the algorithm.
Based on this threshold, the algorithm is on average 84.14% valid.

≤ 5km ≤ 10km ≤ 20km ≤ 30km ≤ 40km ≤ 50km

Sample 1 69.5 84.1 91.8 92.8 93.4 93.6
Sample 2 71.7 86.4 94.4 94.8 95.1 95.2
Sample 3 68.3 82.7 92.2 93.1 93.9 94.5
Sample 4 69.4 82.9 91.4 92.9 94 94.2
Sample 5 71.7 84.6 92.1 93.5 94.1 94.6

Table 3: Validation of imputation algorithm: this computes the percentage
of the great circle distances at different thresholds for each sample.

Although, the choice of 10km is a conservative choice for the discrepancy,
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as typically, the size of FUAs exceed 10km. For example, the FUA with
the least size is required to have a density of at least 1500 per km2 and
a population exceeding 50,000, implying that the size of the FUA will
typically exceed 30km2. Hence, using this threshold, we have a low
geocoding discrepancy less than 10%.

Validation 2:

We estimate the discrepancy between the coordinates assigned based
on the imputation algorithm and the coordinates in the De Rassenfosse,
Kozak, and Seliger, 2019 (RF) database. Although computing the discrep-
ancy at the level of inventors and applicants is not feasible because the RF
database does not have identifiers for inventors and applicants.

Patent office Number of patents Patent office Number of patents

0 Switzerland 93 Luxembourg 94
1 Spain 84 Ireland 90
2 Germany 85 Poland 93
3 Mexico 85 Czech Republic 95
4 United Kingdom 90 WIPO 84
5 Norway 93 Hungary 89
6 Canada 73 Romania 92
7 China 94 South Africa 91
8 Australia 82 Finland 91
9 New Zealand 82 Denmark 92
10 Sweden 89 Chile 91
11 South Korea 91 Greece 86
12 Japan 93 India 82
13 United States 85 Latvia 94
14 EPO 94 Bulgaria 92
15 Austria 90 Turkey 68
16 France 92 Slovenia 95
17 Italy 94 Croatia 91
18 Netherlands 99 Slovakia 97
19 Russia 71 Lithuania 93
20 Portugal 87 Estonia 97
21 Brazil 68 Israel 84

Table 4: Validation of imputation algorithm: the number of patents in the
final dataset whose coordinates are at most 10km away from coordinates of
the same patent in RF database.

Therefore, for selected patent offices we randomly select 100 patents that
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are both in the final dataset and the RF dataset. Using the established
threshold of 10km in Validation 1, we check if the coordinates on the
patents from the final dataset are at most 10km away from coordinates on
the same patent in the RF database.

Table 4 shows the result for each patent office. For example, of the 100
patents selected from the Switzerland patent office in the final dataset,
coordinates on 93 of those patents were at most 10km away from the
same patents in the RF database. We have the least discrepancy for
the Netherland patent office i.e. 99/100 and the most discrepancy for
the Brazil and Turkey patent office i.e. 68/100 for both. On average,
88/100 patents do have coordinate information that is less than 10km
away from the same patents in the RF database. Therefore the validity of
the imputation algorithm based on this is 88%.

Validation 3:

Next, we validate the address retrieval process that requires obtaining
address information from subsequent or priority patent filings within
a patent family. This process can be impacted by ambiguity in names
as the similarity of strings and co-applicants conditions used may miss
out on some addresses or attribute the wrong address to an inventor or
applicant. To evaluate the accuracy of this process, we consider the Brazil
patent office - which is the patent office with the least accuracy based on
Validation 2. We randomly select 100 patent families containing patents
(priority and non-priority patent) filed in the Brazil patent office. We
require that for any of the 100 patent families, patents filed in the Brazil
office do have missing inventor and applicant address, but at least one
patent of the same family does have address information for inventor and
applicant.

The idea is to manually perform the address retrieval for both inventors
and applicants using the same process of looking into available addresses
in other patents within the patent family, and then use this as a benchmark
to determine the accuracy of the address retrieval process implemented.
The randomly selected 100 patent families do have 289 unique inventors
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and 98 applicants. To determine the accuracy of the address retrieval from
patents within the same patent family, we measure the precision and recall.
For any of the Brazil office patents P in the selected 100 patent families, let
P (i) represent the set of geolocated inventors and PB(i) represent the set
of geolocated inventors from the manual address allocation done. Then
the true positive (TP (P )) is the number of inventors having the same
address as the benchmark, the false positive (FP (P )) is the sum of all
inventors having different addresses from the benchmark, and the false
negative (FN(P )) is the sum of inventors still having missing address but
the benchmark does have address information. Therefore an estimate for
the precision and recall of the address retrieval process is given as:

Precision =

∑︁
P TP (P )∑︁

P (TP (P ) + FP (P ))

Recall =

∑︁
P TP (P )∑︁

P (TP (P ) + FN(P ))

(1.2)

Inventor dataset Applicant dataset
1) Number of patents 100 100
2) Number of inventors 289 98
or applicants
3) Precision 0.93 0.91
4) Recall 0.98 0.99
5) Address retrieval 10 patents -
from applicant ≈ 41 inventors
Table 5: Benchmarking of address retrieval process for patents in Brazil office

In Table 5 we find a higher recall and precision of the address retrieval pro-
cess for both the inventor and applicant datasets. For the inventor dataset,
the true positive, false positive, and false negative were 246, 18, and 4
inventors respectively; while for the applicant dataset, the true positive,
false positive, and false negative are 87, 9, and 0 applicants respectively.
The precision being lower than the recall suggests that the address re-
trieval process results in fewer false negatives than false positives. An
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example of a false negative encountered is with the inventor name “VAN
LIR Astrid Lutsiya Khelena Mariya Villemina”, the same inventor on a
patent belonging to the same family had the name written as “ASTRID
LUCIA HELENA MARIA WILLEMINA VAN LIER.” The similarity mea-
sures between strings was not robust enough to identify both inventors as
the same, hence the address for “VAN LIR Astid Lutsiya Khelena Mariya
Villemina” could not be filled. An example of a false positive is “Schlum-
berger Surenco” being geolocated to The Hague, Netherlands when this
firm should have been geolocated to Bogota, Colombia, this arises due to
similarity with “Schlumberger”.

1.2 Results on data quality

Table 6 describes the variables in each of the final datasets (i.e., inventor
and applicant).

Inventor dataset Applicant dataset
Variable Variable Description

1 appln_auth appln_auth The competent authority (i.e., patent office) responsible for processing patent application
2 appln_filing_year appln_filing_year Year of the application filing date.
3 appln_id appln_id unique identifier for patent application.
4 coordinate coordinate The combination of latitude and longitude which define the geographic

location of inventors and applicants.
5 docdb_family_id docdb_family_id Docdb family identifier means that the applications share

the same priorities.
6 earliest_filing_year - Year of the earliest filing date.
7 fua_ctry fua_ctry Country of the functional urban area
8 fua_name fua_name This is the urban location of the inventor or applicant. FUA consists of a

“densely inhabited city and a less densely populated commuting
zone whose labor market is highly integrated with the city” (Dijkstra, Poelman, and Veneri, 2019).

9 latitude lat The geographic coordinate that specifies the North-South position
of the inventor or applicant.

10 longitude lon The geographic coordinate that specifies the East-West position
of the inventor or applicant.

11 person_address person_address Correspondence address of the inventor or applicant.
12 person_name person_name Name of the inventor or applicant.
13 person_ctry person_ctry Country part of the correspondence address of the inventor or applicant.
14 error error error is either 1 or 0. It is 1 if the person country is not the same as fua country,

and 0 otherwise. In this case, always use the person country and ignore the
coordinate and FUA information.

Table 6: Variables in the final datasets: Description of variables in the
inventor and applicant datasets.

In the applicant dataset, there is the functional urban area country which
is based on the data generating process, and the person country which
is directly gotten from the PATSTAT database. Therefore, there can be a
possible discrepancy between the person country and functional urban
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area country which we estimate to be the case for 2.68% patents in the in-
ventor database and 3.50% in the applicant database. Specifically, of these
2.68% patents with different country information in the inventor dataset,
we have that 16.6% patents had inventors from Japan been given differ-
ent country information (mostly United States (83.6%), Canada (8.7%),
and South Korea (2.9%)). Also, 15.5%, 11%, 8.6%, 8.1%, 7.9% of these
patents with discrepant country information were inventors in United
States, China, Germany, United Kingdom, and Canada mostly mistaken
to be located in China, United States, United States, United States, United
States respectively. Most of these errors arise from sources 4-6 in the
imputation algorithm where inventors are allocated address information
of the applicant (the case specifically 1.6%). This discrepancy for global
cities is approximately 2.01%. The patent offices accounting for the most
discrepancy in the inventor dataset are the USPTO, Korea patent office,
WIPO, Taiwan patent office, and EPO respectively. Similarly, for the ap-
plicant database, of the 3.5% patents with the discrepancy, most of these
discrepancies are observed for applicants located in the United States
(28.6%), Germany (15.9%), Japan (13.4%), France (8.7%), United Kingdom
(5.5%), are often mistakenly assigned to South Korea. This mistake is
mostly seen in patents offices such as WIPO, USPTO, EPO, Canada, and
Germany patent offices. For cases where these errors are observed in
both the inventor and applicant database, the column error is set to 1
to flag this discrepancy, hence when doing a country-level analysis we
recommend sticking to the person country information in the original
PATSTAT dataset, rather than the FUA country information.

This kind of discrepancy only shows that the data generating process is
not 100% valid as we estimate the validity of the data generating process
to be between 84-88% (considering 10km radius) based on the validations
performed in the algorithmic validation section. For FUAs which are
usually larger than administrative city boundaries, we can go beyond the
10km radius, in which case the validity of the algorithm is about 92.38%,
93.42%, 94.10%, and 94.42% for radius 20km, 30km, 40km, and 50km
respectively.
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(a)

(b)

Figure 6: (a) compares the number of geocoded patents in the final inventor
dataset with the De Rasenfosse inventor dataset (b) shows the fraction of
geocoded patents with specific numbers of inventors location geocoded.

Figure 6 and 7 demonstrate the quality of geocoding coverage in the
final dataset that emerges from the data generating process, by showing
that the final dataset does have a significant geocoding coverage when
compared to the De Rassenfosse, Kozak, and Seliger, 2019 (RF) dataset,
and that there is a significant improvement when compared to the raw
PATSTAT dataset. Figure 6a shows the number of priority patents (i.e.,
first filings) with geocoded information for at least an inventor on the
patent. In the period 2000 to 2014, the RF database has 10.3 million priority
patents with geocoded information for at least an inventor on the patent,
while in our final database we have 12.1 million priority patents with
geocoded information for at least an inventor on the patent.
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Figure 7: Significant improvement from the raw PATSTAT dataset: Panel
A shows the yearly percentage of patents with at least a coordinate or ad-
dress information for both the final inventor dataset and the raw inventor
dataset from PATSTAT (after including addresses and coordinate from OECD
database). Panel B shows the heat map for countries based on the fraction of
patents with at least coordinate information. This is computed at the level of
the country using all patents filed between 2000-2014.

As depicted in Figure 6a we achieved significant coverage for every year.
The decrease in the last year stems from our data gathering process in-
corporating data truncated in 2015. In general, we have approximately 2
million more geocoded patents than what is available in the RF database
for the same period. This could partly be attributed to the fact that our
geocoded inventor database includes patents in which the inventors are
also applicants. This set of patents may or may not be accounted for in
RF database. Figure 6b shows the fraction of geocoded patents with the
specific number of inventors geocoded. For example, we have that in the
year 2000, 56% of the geocoded patents had coordinate information for
only one inventor on the patent while 3% of the geocoded patents had
coordinate information for more than ten inventors on the patent.

Panel A in Figure 7 compares the percentage of patents with at least one
inventor geocoded in the inventor dataset with the percentage of patents
with address information for at least one inventor in the raw inventor
dataset from PATSTAT. We find a significant yearly improvement in avail-
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able information for all years, and for the applicant dataset, we have an
overall coverage of 72%. Panel B shows an overall improvement in the
final inventor dataset across countries with strong coverage in countries
like the United States, Japan, China, India, France, Germany, Belgium,
Denmark all having a coverage exceeding 90%. There is significantly
low coverage for countries like Moldova, Tajikstan, Russia, Ukraine, Kyr-
gyzstan, Georgia, and Kazakhstan all have a coverage lower than 20%.
Nevertheless, this is an improvement from what was in the raw PATSTAT
dataset. For example, Russia in the raw dataset had address information
for less than 3% of its patent, but in the current database, we have a
coverage of 12.1%.
Finally, not all geocoded patents have their coordinates assigned to the
1227 functional urban areas. For those assigned to the 1227 FUAs, we
observe that these FUAs account for 59.9% of patents in the applicant
database, and 58.1% of the patents in the inventor database. Cities with
the most number of patents include Tokyo, Seoul, Higashiosaka, Toyota,
San Francisco, and New York, while cities with the least number of patents
include Poza Rica de Hidalgo, Navojoa, and Acuna having just a single
patent.

1.3 Application of the database: analyzing do-
mestic and international linkages

The role of cities as knowledge hubs has been central to research in the
economic and geography literature for more than a century. This is be-
cause the knowledge generation and flows between cities contribute to the
sustainable economic growth of countries, and ultimately the economic
globalization of these cities. Economic globalization has been based on
the extent of provision of services and flow of capital to an international
market, however considering the importance of innovation in cities makes
room for characterizing economic globalization as “concrete economic
complexes” specific to some cities, and hence the need for interdepen-
dence of both core and peripheral cities (Sassen, 2001). In this section,
we examine the trends in domestic and international interdependence
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between cities based on patent collaboration network. In this network, the
nodes are cities, while the links or edges between cities are formed when
inventors in different cities collaborate to produce a patent. A domestic
linkage is formed when the link is to a city that is located in the same
country, an international global city linkage is formed when the link is to
a city in another country and the city is considered a global city, and an
international non-global city linkage is formed when the link is to a city
in a different country and the city is not considered a global city.

We define core cities or global cities using the characterization and classifi-
cation of cities in Beaverstock, Smith, and Taylor, 1999. These global cities
are the 168 alpha-beta classified cities that are linked to the world econ-
omy and are responsible for linking moderate economies to the world
economy. Because global cities are becoming more important as com-
mand centers and headquarters for functional activities, the diversity of
these specialized activities and the attractiveness of high-skilled labor
are becoming increasingly important in the valuation of today’s leading
sectors of capital. Therefore, global cities are seen to be significant hubs
for today’s most important economic sectors (Lorenzen, Mudambi, and
Schotter, 2020). Also, non-global cities or peripheral cities do have a
crucial role in the overall economic configuration of a country, as their
specialization in low skilled knowledge or business areas sustains the
local supply chain of the country (Lorenzen, Mudambi, and Schotter, 2020;
Soja, 2014; Henderson and Castells, 1987).

The economic dimension of the linkages between global and non-global
cities can be through trade relationships between agricultural producers
and suppliers, and more recently due to the rise of the knowledge econ-
omy, knowledge collaboration such as research collaborations between
institutions, firms, and inventors. These economic connections can create
value chain relationships that promote flexibility and efficiency, foster
spillovers that induce exploratory activities and refine the exploitative
innovation process (Boschma and Iammarino, 2009; Breschi and Lenzi,
2016).

The development of non-global cities is often hinged on domestic link-
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ages to global cities, as the formation of this kind of connection requires
low resources when compared to the formation of international linkages
either to global or non-global cities (Lorenzen, Mudambi, and Schotter,
2020). The functional system of cities reflects a form of inter-dependence
between global and non-global cities which can be useful for the devel-
opment of a country due to differences in specializations of these cities.
For example, a non-global city like Williston, North Dakota has helped
catapult the United States to the top of the world’s list of oil producers
due to the shale revolution and the city being a production site of shale
oil. Although global cities e.g. New York might be responsible for the
business specialization of the Oil & Gas sector, Williston remains the
industrial production site. Hence, the inter-dependence of these cities
has improved not just the economic outcome of the United States in this
sector, but also the capital flow in these cities.

From the perspective of local R&D collaborations between cities located in
the same country, such collaborations could be facilitated by universities
or firms. and these are important for the distribution of economic oppor-
tunities. The distribution of economic opportunities is made available as
global cities evolve into more specialized technological areas that are glob-
ally competitive, which results in the need for non-global cities to fill-in
knowledge areas useful to the domestic economy. The existence of domes-
tic linkages implies that plugging into these economic opportunities will
not be very difficult for non-global cities, as they can leverage domestic
linkages for learning and producing domestically relevant technologies.

Although most inter-city linkages are within the border of countries,
there has been significant growth in the formation of international link-
ages. This is driven largely by the mobility of both skilled and unskilled
workers, and the reinforcing advocacy of firms for free mobility to take
advantage of skills outside the location of firms and to create a geographi-
cally disaggregated value chain that allows them to undertake activities
at the most efficient global location (Masey, 1984; Lorenzen, Mudambi,
and Schotter, 2020). Such international linkages often time facilitated by
multinational corporations lead to the creation of spatial configuration
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connecting global cities in advanced economies to non-global cities in
emerging economies in the most cost-efficient way. This formation of
linkages is motivated by lower spatial transaction costs and the existence
of technological clusters with certain specializations. Such clusters are
the result of locally diverse skill bases in the city and company capabil-
ities being reinforced in a path-dependent manner. Following a city’s
acquisition of the needed capabilities in a sector, successive corporate
investments can reinforce these accumulated capabilities over time. (Han-
nigan, Cano-Kollmann, and Mudambi, 2015; Lorenzen, Mudambi, and
Schotter, 2020).

1.3.1 Measurement of weighted and unweighted linkages

Formally, let G = (V,E) denote network structure composed of V (G) =

{1, ..., N} representing a set of N nodes (i.e., cities), that are connected by
linkages E(G) = {(i, j) : i, j ∈ V (G)}. These linkages exist if inventors
from cities i and j are co-inventors on a patent. The network structure
G = (V,E) can be represented by the weighted adjacency matrix A ∈
RN×N as follows:

Aij =

{︄
wij if(i, j) ∈ E(G)

0 otherwise
(1.3)

where wij is the number of patents involving inventors from cities i and j.
The unweighted linkages are simply the number of linkages a city has to
other cities - it is a measure of the extensive innovative ties it has with the
world, and it is given as:

Unweighted linkage of city i =
∑︂
wij ̸=0

1 (1.4)

On the other hand, weighted linkages can be a measure of the usefulness
of innovative ties taking place collaboratively if this is measured using
the number of forward citations received. Here, we focus on the intensity
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of the linkages observed between cities - it captures the average number
of patents a city has with other cities, and it is given as:

Patent− weighted linkage of city i =
1

Ui

∑︂
j∈V (G)

wij (1.5)

where Ui is the number of linkages of city i - unweighted linkage of city i.

1.3.2 Results

In this section, we provide results at levels of cities, countries, and conti-
nents, on the evolution of domestic linkages (weighted and unweighted),
international linkages (weighted and unweighted) to global and non-
global cities, and the evolution of the share of both domestic and interna-
tional linkages (global and non-global). The share of a linkage (domestic
or international) in a given city is the number of such linkages divided by
the total linkages the city has.

Trends in domestic linkages

Figure 8 illustrates the average number of domestic linkages and average
number of patent-weighted domestic linkages. First, we observe a decline
in the average number of unweighted linkages, nevertheless, we see an
increase in unweighted domestic linkages prior to 2007 and a steady de-
cline in unweighted linkages after 2007. We observe different episodes
of decline and rise in the average weighted domestic linkages, but be-
tween 2000 and 2014, we see a 17.3% increase in the average number of
patent-weighted linkages.
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Figure 8: Domestic linkages: The green solid line represents the yearly trend
of the average number of patent-weighted linkages between cities in the same
country, while the red solid line is the yearly trend of the average number of
links between cities in the same country. Note: intra-city connections are not
counted.

Table 7 indicates the top 50 cities in terms of average weighted domestic
linkages between the period 2010-2014. We observe that cities in Asia
e.g., Seoul, Tokyo, and Seo are more represented at the top of the ranking.
Also, we observe relatively strong changes in the ranking. For example,
Beijing and Shenzen moved 185 and 163 upward in the period 2010-2014
from their ranking in the period 2000-2004 and had 966.5% and 1170.9%
increase in average weighted domestic linkages, while in the same period,
Mito and New Haven moved 20 and 22 downward and had a 2.06% and
16.18% decrease in average weighted domestic linkages respectively. Also,
we have that San Francisco, New York, and Portland were the only top
cities that maintained a stable position in their ranking. They ranked
4th, 5th, and 38th position respectively and had a 191.8%, 37.2%, and
52.2% increase in average weighted domestic linkages respectively. At the
level of the country, we see that the top countries with the most average
weighted domestic linkages are South Korea and Taiwan with a 175% and
242% increase in linkages between the period 2000-2004 and 2010-2014.
While South Korea retained its number one position across all periods,
we see a decline in the United States position by one point and a rise in
the position of China by 15 points.

At the level of the continent, we see a stable ranking across all periods
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with Asia consistently taking the lead followed by North America, Europe,
Oceania, Africa, and South America in that order.

Cities Domestic linkages Ranking Domestic linkages Ranking Domestic linkages Ranking Domestic linkages Change in ranking
(2010-2014) (2010-2014) (2005-2009) (2005-2009) (2000-2004) (2000-2004) (% change)

0 Seoul 55896.8 1 35153.2 1 21283.2 2 162.63 1
1 Tokyo 26964.8 2 29585.2 2 28029.8 1 -3.79 -1
2 Seo 26093.0 3 16038.0 4 8941.8 6 191.80 3
3 San Francisco (Greater) 20449.2 4 16900.4 3 14902.6 4 37.21 0
4 New York (Greater) 14353.0 5 14836.0 6 13808.2 5 3.94 0
5 Higashiosaka 12924.2 6 15671.2 5 15366.2 3 -15.89 -3
6 Gimhae 12511.2 7 6840.0 12 4626.2 14 170.44 7
7 Dalseong 10378.6 8 6088.2 15 3672.6 19 182.59 11
8 Boston 9344.4 9 8889.0 8 8528.6 7 9.56 -2
9 Toyota 8914.4 10 9585.2 7 8209.6 8 8.58 -2
10 Los Angeles (Greater) 8037.0 11 7869.4 9 7666.6 9 4.83 -2
11 Nam 7727.8 12 4052.6 21 2819.2 26 174.11 14
12 Gwangsan 6955.6 13 3951.0 23 2454.2 34 183.41 21
13 Philadelphia (Greater) 6646.8 14 7258.4 11 7292.2 10 -8.85 -4
14 Chicago 6352.6 15 6309.8 13 5338.4 11 18.99 -4
15 San Diego 6204.2 16 5768.2 16 4671.4 13 32.81 -3
16 Stuttgart 5719.0 17 7333.4 10 4358.8 15 31.20 -2
17 Sebuk 5717.8 18 3433.2 31 2006.0 41 185.03 23
18 Seattle 5533.0 19 5069.2 17 3217.8 22 71.94 3
19 Taipei 5154.2 20 3230.6 35 1415.2 63 264.20 43
20 Heungdeok 5109.2 21 2759.4 43 1791.6 46 185.17 25
21 Shenzen 5106.4 22 2101.8 48 401.8 185 1170.88 163
22 Seongsan 5017.4 23 3166.0 37 1829.6 44 174.23 21
23 Munich 4688.0 24 6152.4 14 3843.0 17 21.98 -7
24 Washington (Greater) 4675.8 25 4726.4 19 4769.6 12 -1.96 -13
25 Detroit (Greater) 4474.2 26 4406.8 20 3856.8 16 16.00 -10
26 Deokjin 4048.2 27 2077.6 50 1455.6 62 178.11 35
27 Houston 4040.8 28 3383.2 32 2702.0 30 49.54 2
28 Gumi 3860.0 29 3218.2 36 2099.8 39 83.82 10
29 Frankfurt am Main 3732.4 30 4784.2 18 3812.6 18 -2.10 -12
30 Shanghai 3721.8 31 1553.2 65 441.2 169 743.56 138
31 Paris 3610.2 32 3711.4 24 3070.0 24 17.59 -8
32 Dallas 3532.6 33 3291.2 33 3047.0 25 15.93 -8
33 Suncheon 3511.4 34 2162.4 47 1198.8 74 192.90 40
34 Austin 3475.4 35 3666.4 26 2614.6 32 32.92 -3
35 Beijing 3355.4 36 850.0 125 314.6 221 966.56 185
36 Mannheim-Ludwigshafen 3332.0 37 3967.6 22 3085.0 23 8.00 -14
37 Portland 3306.4 38 2643.2 44 2171.8 38 52.24 0
38 Ruhr 3293.2 39 3556.8 27 2715.4 29 21.27 -10
39 Minneapolis 3266.6 40 3457.2 29 3238.6 21 0.86 -19
40 Dusseldorf 3226.8 41 3523.2 28 2771.2 27 16.44 -14
41 New Haven 3053.4 42 3439.6 30 3643.0 20 -16.18 -22
42 Wake 2946.0 43 3103.8 39 1973.2 42 49.30 -1
43 Atlanta 2777.8 44 2882.6 41 2322.6 36 19.59 -8
44 Cologne 2772.0 45 3143.2 38 2666.4 31 3.96 -14
45 Heidelberg 2704.0 46 3271.6 34 2555.0 33 5.83 -13
46 Taichung 2697.4 47 1703.2 61 880.2 99 206.45 52
47 Mito 2674.0 48 3669.4 25 2730.4 28 -2.06 -20
48 Nuremberg 2499.2 49 2916.2 40 1571.4 57 59.04 8
49 Washtenaw 2492.4 50 2187.8 46 1644.4 55 51.56 5

Table 7: Ranking of cities based on domestic linkages. The domestic linkage
reported is the average weighted domestic linkage in the given period.

Trends in international linkages

Figure 9 illustrates the average number of international linkages and aver-
age patent-weighted international linkages to global and non-global cities.
The average number of international linkages to non-global cities exceeds
the average number of international linkages to global cities. However,
the average weighted international linkage to global cities exceeds the av-
erage weighted international linkages to non-global cities. Specifically, the
average number of weighted international linkages to global cities have
increased by 73.5% in comparison to the average number of weighted
international linkages to non-global cities which has only increased by
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18.9%. After the decline in 2008 (corresponding to the same period as the
financial crisis), the average weighted international linkages to global and
non-global cities have increased by 49.3% and 30.9% respectively.

Figure 9: International linkages: The left y-axis is the average number of
links, while the right y-axis is the patent-weighted linkages. The solid lines
are trends of international linkages to global cities, while the dotted lines are
trends of international linkages to non-global cities.

Comparing the international connectedness pre and post-2008, average
weighted international linkages to global cities increased from 35.4%
to 49.3% (representing +13.9 percentage point) and average weighted
international linkages to non-global cities increased from 4.5% to 18.9%
(representing +18.4 percentage point).
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Cities Intl. global city linkages Ranking Intl. global city linkages Ranking Intl. global city linkages Ranking Intl. global city linkages Change in ranking
(2010-2014) (2010-2014) (2005-2009) (2005-2009) (2000-2004) (2000-2004) (% change)

0 San Francisco (Greater) 4268.0 1 2806.4 1 1853.2 2 130.30 1
1 Taipei 3179.0 2 1859.8 3 650.0 15 389.07 13
2 New York (Greater) 2717.0 3 2124.8 2 1819.8 3 49.30 0
3 Shanghai 2664.2 4 1355.6 6 429.4 25 520.44 21
4 Shenzen 2281.8 5 1700.8 4 360.0 28 533.83 23
5 Tokyo 2173.0 6 1699.6 5 2000.8 1 8.60 -5
6 Sedgwick 1696.0 7 857.6 14 1804.2 4 -5.99 -3
7 Bangalore 1639.6 8 761.6 18 266.4 45 515.46 37
8 Boston 1504.6 9 1008.8 11 879.2 8 71.13 -1
9 TelAviv 1404.0 10 779.0 16 518.8 18 170.62 8
10 Seoul 1315.0 11 1183.6 8 479.0 21 174.53 10
11 Worcester 1232.0 12 1274.0 7 1116.2 5 10.37 -7
12 London 1219.6 13 1087.0 9 1015.4 6 20.11 -7
13 Los Angeles (Greater) 1216.6 14 934.2 13 846.4 10 43.73 -4
14 Beijing 1172.6 15 615.0 23 272.8 44 329.83 29
15 Paris 1066.4 16 1061.6 10 801.0 12 33.13 -4
16 Philadelphia (Greater) 1065.2 17 815.4 15 730.8 13 45.75 -4
17 Toronto 1045.8 18 946.4 12 833.2 11 25.51 -7
18 San Diego 992.0 19 777.2 17 505.0 20 96.43 1
19 Chicago 906.4 20 710.2 20 466.6 22 94.25 2
20 Seattle 821.0 21 616.4 22 354.2 29 131.78 8
21 Toyota 746.2 22 409.2 34 892.6 7 -16.40 -15
22 Eindhoven 739.2 23 514.0 28 643.4 16 14.88 -7
23 Munich 728.6 24 710.2 19 557.6 17 30.66 -7
24 Brussels 728.0 25 651.4 21 434.2 23 67.66 -2
25 Houston 712.6 26 540.2 27 353.4 30 101.64 4
26 Washington (Greater) 662.8 27 557.8 26 513.0 19 29.20 -8
27 Portland 661.2 28 362.6 42 295.0 38 124.13 10
28 Singapore 611.8 29 361.8 43 301.8 37 102.71 8
29 Cambridge 598.4 30 593.0 25 686.6 14 -12.84 -16
30 Dallas 569.8 31 425.6 33 321.8 34 77.06 3
31 Montreal 567.8 32 601.0 24 425.4 26 33.47 -6
32 Zurich 564.2 33 452.4 30 294.2 39 91.77 6
33 Higashiosaka 562.6 34 469.6 29 863.8 9 -34.86 -25
34 Stockholm 538.8 35 374.2 39 221.6 57 143.14 22
35 Tulsa 507.0 36 271.2 58 376.4 27 34.69 -9
36 Ottawa 465.4 37 368.6 40 256.2 46 81.65 9
37 Detroit (Greater) 441.2 38 406.6 35 433.4 24 1.79 -14
38 Minneapolis 426.6 39 337.8 44 254.0 47 67.95 8
39 Austin 424.6 40 399.8 36 237.8 51 78.55 11
40 Stuttgart 421.2 41 451.4 31 304.8 36 38.18 -5
41 Vancouver 414.4 42 305.6 50 274.8 43 50.80 1
42 Frankfurt am Main 390.4 43 364.6 41 330.6 32 18.08 -11
43 Kitchener 390.0 44 331.0 46 176.6 66 120.83 22
44 Dusseldorf 373.4 45 299.4 51 246.8 49 51.29 4
45 Basel 368.0 46 450.0 32 286.8 41 28.31 -5
46 Mannheim-Ludwigshafen 366.0 47 379.6 37 235.0 53 55.74 6
47 Albany 338.8 48 273.4 57 139.0 84 143.74 36
48 Greater Sydney 332.6 49 314.2 48 331.0 31 0.48 -18
49 Helsinki 331.6 50 283.8 54 214.6 58 54.52 8

Table 8: Ranking of cities based on international global city linkages. The
international global city linkage reported is the average international global
city linkage in the given period.

Table 8 indicates the top 50 cities in terms of average weighted interna-
tional global city linkages in the period 2010-2014. We observe that the
top cities in the rankings are San Francisco, Taipei, New York, Shang-
hai, and Shenzhen. Also, we observe less fluctuation in the ranking in
comparison to the weighted domestic linkage ranking. We have that
Bangalore, Albany, and Beijing moved upward the most by 37, 36, and 29
points to the 8th, 48th and 15th position respectively and increased their
weighted international global city linkages by 515.5%, 143.7%, and 329.8%
respectively. However, cities like Higashiosaka, Sydney and Toyota expe-
rienced the most decline in ranking, with 25, 18 and 15 point change in
ranking respectively. Although, Higashiosaka and Toyota had a decrease
in average weighted international global city linkages by 34.8% and 16.4%
respectively, we see that Sydney had a 0.48% increase in average weighted
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international global city linkages.

At the level of the country, we see that the top countries with the most
average weighted international global city linkages are Taiwan and Israel
with a 352.3% and 170.6% increase in linkages between the period 2000-
2004 and 2010-2014. While Singapore retained its third position across all
periods, we see a strong decline in Japan’s position by 12 points and a
rise in the position of Malaysia by 12 points. At the level of the continent,
we see that Asia has displaced North America from the top position by
increasing its average linkages to international global cities by 119.4%.

Table 9 indicates the top 50 cities in terms of average weighted interna-
tional non-global city linkages in the period 2010-2014. We have that
the top cities are Tokyo, Boston, New York, London, and San Francisco.
Bangalore, Beijing, and Shenzen moved up the ranking the most with a
426.8%, 278.8%, and 185.2% increase in average weighted international
non-global city linkage. While Cambridge, Vancouver, and Sedgwick
decline the most with a decrease of 39%, 22.5%, and 22.9% in average
weighted international non-global city linkage. At the level of the country,
we see that the top countries with the most average weighted interna-
tional linkages to non-global cities are Israel, Singapore, and Taiwan
with a stable ranking. These countries have increased their linkage by
155.5%, 81.3%, and 121.3% respectively between the period 2000-2004 and
2010-2014. We see a stronger rise in position by Luxembourg, China, and
Malaysia, and a decline in position by Russia, Japan, and the United States.
At the level of the continent, we have that Asia leads with an average
of 67.4 weighted international linkages to non-global cities, followed by
North America, Oceania, Europe, Africa, and South America with average
weighted linkages of 63.3, 29.3, 28.5, 11.7, and 7.6 respectively.
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Cities Intl. non-global city linkages Ranking Intl. non-global city linkages Ranking Intl. non-global city linkages Ranking Intl. non-global city linkages Change in ranking
(2010-2014) (2010-2014) (2005-2009) (2005-2009) (2000-2004) (2000-2004) (% change)

0 Tokyo 2484.0 1 1607.4 1 2585.6 1 -3.92 0
1 Boston 1530.4 2 1317.4 3 1519.0 4 0.75 2
2 New York (Greater) 1477.2 3 1119.8 4 1783.4 2 -17.16 -1
3 London 1412.6 4 1572.4 2 1585.2 3 -10.88 -1
4 San Francisco (Greater) 1353.8 5 1101.8 5 1053.2 5 28.54 0
5 Shanghai 1149.2 6 562.8 9 225.0 36 410.75 30
6 Toronto 835.0 7 500.6 13 981.6 6 -14.93 -1
7 Brussels 664.0 8 690.2 6 452.8 11 46.64 3
8 Paris 591.4 9 603.6 7 582.2 9 1.58 0
9 Bangalore 581.6 10 287.8 28 110.4 77 426.81 67
10 Los Angeles (Greater) 570.2 11 513.8 11 582.6 8 -2.12 -3
11 Philadelphia (Greater) 542.0 12 512.2 12 621.4 7 -12.77 -5
12 Seoul 536.2 13 560.4 10 509.4 10 5.26 -3
13 TelAviv 509.6 14 282.2 30 199.4 41 155.56 27
14 Chicago 495.0 15 445.2 15 341.8 18 44.82 3
15 San Diego 430.4 16 305.4 25 304.0 25 41.57 9
16 Houston 424.0 17 388.6 19 336.2 20 26.11 3
17 Munich 394.8 18 465.4 14 323.4 24 22.07 6
18 Eindhoven 385.6 19 400.2 17 342.0 17 12.74 -2
19 Washington (Greater) 363.2 20 359.0 21 450.2 12 -19.32 -8
20 Detroit (Greater) 361.0 21 404.8 16 328.2 22 9.99 1
21 Minneapolis 357.8 22 298.8 26 338.0 19 5.85 -3
22 Zurich 352.4 23 364.4 20 259.8 30 35.64 7
23 Beijing 341.0 24 170.4 54 90.0 84 278.88 60
24 Basel 338.8 25 572.0 8 392.2 13 -13.61 -12
25 Taipei 335.8 26 205.2 39 168.0 48 99.88 22
26 Worcester 335.4 27 391.0 18 293.2 27 14.39 0
27 Frankfurt am Main 329.6 28 320.0 23 255.2 33 29.15 5
28 Dallas 321.8 29 194.2 41 298.4 26 7.84 -3
29 Seattle 320.8 30 281.0 31 245.6 34 30.61 4
30 Mannheim-Ludwigshafen 294.4 31 286.2 29 210.4 39 39.92 8
31 Vancouver 287.8 32 249.2 32 371.8 14 -22.59 -18
32 Hamburg 277.2 33 222.2 35 138.4 61 100.28 28
33 Stuttgart 264.4 34 337.6 22 212.8 38 24.24 4
34 Higashiosaka 261.0 35 213.8 37 331.0 21 -21.14 -14
35 Singapore 258.2 36 171.4 52 142.4 59 81.32 23
36 Barcelona 256.2 37 173.4 48 229.0 35 11.87 -2
37 Sedgwick 251.6 38 105.8 85 326.4 23 -22.91 -15
38 Shenzen 243.0 39 172.6 50 85.2 89 185.21 50
39 Cincinnati 242.6 40 187.6 45 255.6 32 -5.08 -8
40 Tulsa 242.4 41 117.8 80 274.2 28 -11.59 -13
41 Portland 222.8 42 137.2 69 123.6 68 80.25 26
42 Aachen 220.6 43 292.0 27 195.2 42 13.01 -1
43 Copenhagen 216.0 44 192.6 43 183.0 46 18.03 2
44 Stockholm 215.0 45 223.6 34 150.6 55 42.76 10
45 Cambridge 211.8 46 223.6 33 347.4 16 -39.03 -30
46 Dusseldorf 209.8 47 173.0 49 154.8 52 35.52 5
47 Wake 206.8 48 151.0 62 99.8 79 107.21 31
48 Vienna 194.4 49 319.0 24 188.0 44 3.40 -5
49 Atlanta 192.8 50 187.0 46 128.4 66 50.15 16

Table 9: Ranking of cities based on international non-global city linkages.
The international non-global city linkage reported is the average international
non-global city linkage in the given period.

Changes in the share of domestic and international linkages

Finally, Table 10 examines the share of domestic linkage, international
global city linkage, and international non-global city linkage. The share
of domestic or international global city or international non-global city
linkages in a city is the number of the city’s domestic or international
global city or international non-global city linkages divided by the city’s
total linkages respectively. We have that in period 2010-2014, North
America on average had the highest share of domestic linkages with
59.3% of its total linkages being domestic, which is 4.7% short of the share
it had in the period 2000-2004. While Europe and South America moved
up the ranking by increasing their share of domestic linkages by 0.21%
and 22.68% respectively, Asia and Oceania moved down the rank by
decreasing their share of domestic linkages by 6.1% and 6.5% respectively.
Africa’s share of domestic linkage decreased by 28.7%.
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Continents domestic linkages Ranking domestic linkages Ranking domestic linkages Ranking domestic linkages Change in ranking
(2010-2014) (2010-2014) (2005-2009) (2005-2009) (2000-2004) (2000-2004) (% change)

0 North America 0.59 1 0.61 1 0.62 1 -4.70 0
1 Europe 0.51 2 0.51 3 0.50 3 0.20 1
2 Asia 0.49 3 0.52 2 0.52 2 -6.05 -1
3 South America 0.39 4 0.32 4 0.32 5 22.67 1
4 Oceania 0.30 5 0.31 5 0.32 4 -6.49 -1
5 Africa 0.16 6 0.18 6 0.23 6 -28.65 0

(a) Share of domestic linkage

Continents Intl. global city linkages Ranking Intl. global city linkages Ranking Intl. global city linkages Ranking Intl. global city linkages Change in ranking
(2010-2014) (2010-2014) (2005-2009) (2005-2009) (2000-2004) (2000-2004) (% change)

0 Africa 0.51 1 0.45 1 0.40 2 28.65 1
1 Oceania 0.42 2 0.35 3 0.37 3 13.48 1
2 South America 0.35 3 0.38 2 0.41 1 -13.04 -2
3 Asia 0.29 4 0.27 4 0.27 4 5.77 0
4 Europe 0.26 5 0.25 5 0.25 5 4.31 0
5 North America 0.21 6 0.18 6 0.17 6 18.20 0

(b) Share of international global city linkages

Continents Intl. non-global city linkages Ranking Intl. non-global city linkages Ranking Intl. non-global city linkages Ranking Intl. non-global city linkages Change in ranking
(2010-2014) (2010-2014) (2005-2009) (2005-2009) (2000-2004) (2000-2004) (% change)

0 Africa 0.31 1 0.36 1 0.36 1 -13.31 0
1 Oceania 0.27 2 0.33 2 0.30 2 -9.74 0
2 South America 0.24 3 0.28 3 0.26 3 -7.29 0
3 Europe 0.22 4 0.23 4 0.23 4 -5.08 0
4 Asia 0.21 5 0.20 5 0.19 5 7.81 0
5 North America 0.19 6 0.19 6 0.19 6 -1.68 0

(c) Share of international non-global city linkages

Table 10: The average share of unweighted domestic and international link-
ages for continents.

Also, we find that Africa and Oceania increased their connectivity with
international global cities by 28.7% and 13.5% respectively, while South
America decreased its connectivity with international global cities by
13.04%. Asia cities on average do have a higher share of their linkages
to international global cities compared to North America (29.5% versus
21.2%). Also, we see a stable ranking in terms of share of linkages to
international non-global cities, with African cities at the top having an
average 31.7% of its linkages with international non-global cities, while
North America has the least average share of 19.5%. In general, examining
the weighted and unweighted linkages, we see that developed economies
e.g., cities in Africa rely more on international linkages for innovation
process, specifically, they have increasingly looked at forming ties with
international global cities. While Asia has pursued the formation of ties
with global and non-global cities (4.3% and 7.8% increase respectively),
North American cities have mostly pursued the formation of ties with
international global cities (18.2% increase).
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1.4 Discussion

In this chapter we describe each step of the data generating process
leading to the final inventor and applicant datasets that will be used in
Chapters 2-4 of the thesis. To effectively use this dataset, the data can
be stored in a relational database, which can be merged with tables in
PATSTAT using the application identifier column and can also be merged
with other regional databases. The data work is geared at improving the
quality of address information specifically in PATSTAT, this is because
PATSTAT is the major database often used in analyzing patenting activi-
ties, its attractiveness stems from it being the largest patent database with
patents that are filed in over 90 different patent offices in developed and
developing economies. This implies that issues of data quality from the
different patent offices are transferred to the PATSTAT database, some
of these issues include ambiguities in inventors and applicant names
(Morrison, Riccaboni, and Pammolli, 2017a), missing addresses, country
and IPC information in patents (De Rassenfosse, Kozak, and Seliger, 2019;
De Rassenfosse and Seliger, 2021). Previous efforts addressing this issue
of missing address in PATSTAT rely on improving address coverage of
priority patents by leveraging patent information available in the national
patent offices and exploring the availability of addresses in subsequent
filings (De Rassenfosse et al., 2013; De Rassenfosse, Kozak, and Seliger,
2019). The address retrieved in this case is simply assigned to patents with
no linkage between the inventors or applicant and the retrieved address.
While this is useful in studying innovation outcomes and spillovers at the
level of cities, regions, and countries, it limits our ability to track emerging
and star inventors at the sub-regional level. Although recent work by
De Rassenfosse and Seliger, 2021 addressing the issue of missing country
information allow such analysis at the level of countries, the database
introduced in this Chapter provides this even at the sub-regional level.
More importantly, the major contribution of the database to the literature
is that the retrieved addresses are geolocated to functional urban areas,
which is a harmonized definition of an urban area that captures the eco-
nomic reach of urban areas. This is a major departure from previous work
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in which addresses are geolocated to cities based on administrative or
political boundary definitions of countries. Such non-harmonized defi-
nitions can impact analyses of innovative outcomes of cities in different
countries.

The dataset provided can potentially be used in studying the productivity
of inventors in different urban areas, mobility of inventors across sectors
(private-public) within an urban area and how that impact productivity
of these sectors, the concentration of star of emerging inventors in an
urban area. This dataset is not full proof, as seen in the validation process
that the validity of the data generating process is about 84%, and there
are discrepancies in the country information for inventors and applicants
in 2.68% and 3.5% of the geocoded patents respectively. Some of the
limitations of the data generating process is the fact that sources 4-6
assigns address to inventors using address information of the applicant,
relying on the assumption that inventors locate in the same geographic
areas as applicants. This is not necessarily the case when the headquarter
of a company file for patents on behalf of their subsidiaries where the
inventors are located. The imputation of missing address based on sources
4-6 will impact the preliminary analysis on evolution of linkages done in
Chapter 1 and the analysis done in Chapters 2-4 as more patents will be
allocated to cities that are hubs for headquarters. In the dataset we have
included an indicator called “sources_4_6” that identifies observations
whose coordinates potentially come from sources 4-6 of the imputation
algorithm. These observations are coded 1 if the inventor name is not
the same as the applicant name (and the applicant is located in multiple
FUAs) but the coordinates are the same, and 0 otherwise. We observe
that at most 11% of the DOCDB patents have at least an inventor whose
coordinate potentially comes from sources 4-6. Another limitation is
the issue of ambiguities in inventor and applicant names which will
impact the address retrieval from subsequent filings and not the linking
of PATSTAT to the external patent database (since the external patents
used here share similar sources as PATSTAT). We have applied similarity
measure for string comparison using high-thresholds which at best can
capture simple mistakes in the spelling of names, and we have also used
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the harmonized names (HAN) in this process when this is available.
However, future work can focus on best disambiguation methodologies
relying on machine learning techniques (Li, Wei, and Wang, 2015; Cuxac
and Bonvallot, 2013) that can improve the quality of the address retrieval
methodology. In using this dataset, researchers should note that while
some inventors do have coordinate information, we were only able to
assign coordinates to 1227 functional urban areas, implying that some
coordinates are yet to be assigned to a functional urban area. Further
work can be done in creating FUA shapefiles for more urban areas using
the steps outlined in this paper and then mapping the yet-to-be-assigned
coordinates to these shapefiles.

To demonstrate the use of this database we provide a preliminary anal-
ysis of the evolution of three different kinds of linkages (i.e., domestic
linkage, international linkage to global cities, and international linkages
non-global cities) at the level of FUAs, country, and continent. The anal-
ysis contributes to discussions in the global city literature where the
inter-dependence of cities is well documented (Lorenzen, Mudambi, and
Schotter, 2020). It’s been observed that non-global cities often hinge on
domestic linkages to global cities to foster growth as such linkages re-
quire low resources. Crossing borders to create collaborative ties are often
observed in large cities that serve as innovation hubs for multinationals
responsible for the creation of cross-border ties (Lorenzen, Mudambi, and
Schotter, 2020). The creation of cross-border ties be aware of skills and
opportunities abroad, and allow firms to attract capacities to large cities
(Verginer and Riccaboni, 2020) that can function in highly-skilled tasks,
allowing for low-skilled tasks being moved to non-global cities. In the
analysis, we define global cities to be cities classified as alpha-beta cities
in Beaverstock, Smith, and Taylor, 1999. Our findings suggest a decline
in the number of domestic linkages (weighted and unweighted), and
an overall increase in the two types of international linkages (weighted
and unweighted). Generally, we see a decline in the share of domestic
linkages for all continents except Europe and South America. We observe
that cities in developing economies (i.e., Africa, Oceania) rely on inter-
national linkages (especially linkage to global cities) to innovate. Also,
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we find that cities in Asia pursue the formation of international linkages
with both global and non-global cities, while cities in North America
pursue the formation of international linkages mostly with global cities.
The preliminary analysis done here confirms that there is an increased
focus on the formation of international ties both extensively and inten-
sively, as opposed to the formation of domestic linkages. Although we do
not provide any evidence of the consequences of this trend on social or
developmental outcomes in urban areas. However, increase domestic dis-
connectedness and focus on spawning international ties has been seen to
energize populist backlash against activities of multinational corporations
(Lorenzen, Mudambi, and Schotter, 2020), and such backlash can hurt the
productivity of urban areas. As Lorenzen, Mudambi, and Schotter, 2020
argue in their work, global orchestration of resources can contribute to do-
mestic disconnectedness which can lead to a populist backlash. To diffuse
the resulting backlash, cities or multinational corporations can engage in
creating an entrepreneurial eco-system where intra-city linkages between
start-ups and multinationals can be formed (e.g., the case of Bangalore
(Bala Subrahmanya, 2017)) or inter-city linkages within the boundary of
countries can be formed.
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Chapter 2

Economic complexity and
Forecasting
competitiveness of Global
cities using Machine
learning approach

1 Since Porter published the “Competitive Advantage of Nations”, there
has been an increasing interest in what it means for cities to be competitive,
given that, unlike firms and individuals, cities do not act. Nevertheless,
given the increased intercity competition around the world, an extensive
body of works shows that cities can be important for cross-fertilization
of ideas. Concepts such as the ability of cities to learn (Asheim, 1996),
presence of industrial district, and innovative milieus (Camagni, 1991;
Becattini, 2017), shows the importance of externalities in maintaining
competitiveness that extends the boundaries of firms but operates within
the boundaries of territories (Boschma, 2004). Following the Ricardian
comparative advantage, typically a city is seen to be competitive if a city is

1This is a joint work between S. Edet and M. Riccaboni.
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producing more than its fair share in a given sector, industry, technology,
or scientific domain. Unraveling the linkage between the competitiveness
of cities and resource allocation and capabilities (Zhang and Liu, 2020)
would be crucial to understanding why some cities are more competitive,
productive, or resilient than others. Economic analysis attempting to
uncover this intangible element (i.e., capabilities) pursue an economic
framework that provides explanations for the heterogeneity of capabili-
ties and competitiveness, and prescriptions for what economic pathways
cities should adopt (Straccamore and Zaccaria, 2021). On the contrary,
the economic complexity and machine learning literature provide useful
insight on how to measure and predict the future capabilities of cities or
the capabilities required to become competitive in specific sector, scientific
or technology domain by leveraging the spatial pattern of production, sci-
entific or patenting activities (Tacchella et al., 2021; Hidalgo, 2021; Balland
and Rigby, 2022). The core principle of the methodology in the economic
complexity literature is that complex cities accumulate know-how that
leads to the diversification of patenting activities and increase the capabili-
ties of inventors in the city to innovate in complex technology domain that
is ubiquitous (Balland and Rigby, 2022). Generally, technologies differ
in the knowledge and tools required to produce them, hence, since most
complex technologies are highly leveraged, diverse cities endowed with
economic agents with different know-hows can produce them.

Given the progress made in the development of machine learning models
and endogenous growth theories, the economic complexity model was
introduced (Hidalgo, 2021), and unlike traditional approaches, economic
complexity combines economic input and output without aggregating
output as GDP does, nor does it make an assumption on the nature of
input such as capital and labor (Hidalgo, 2021; Balland and Rigby, 2022).
The method relies on the fine-grained representation of economic activi-
ties and learns how they combinatorially explain the economic activities
taking place in a location. This is done based on dimensionality reduc-
tion techniques applied to activities such as exporting activities, patenting
activities, and scientific activities observed in different locations. This tech-
nique of dimensionality reduction relies on matrix factorization which
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is a common theme in machine learning (Hidalgo, 2021; Balland and
Rigby, 2022). It provides a succinct way to summarize the geography of
economic activities of different locations and can be used as predictor for
economic development potential of locations. The economic complexity
methodology estimates the combined presence of the factors necessary
for economic growth without assumptions about what these factors are
or their nature (Hidalgo, 2021).

The economic complexity methodology has grown in application due to
growing interest in industrial policy and the need for regional strategies
for technological upgrading (Hidalgo, 2021; Rodrik, 2019). The methodol-
ogy provides a quantitative perspective for designing focused industrial
policies - this quantitative measure is seen to be integrated into industrial
policies such as China’s special economic zone (Zheng et al., 2016; Kahn
et al., 2018), Europe’s smart specialization strategy (Balland et al., 2018),
Mexico’s Smart Diversification strategy, and similar policies. The method-
ology has also been applied to the study of the economic structure of
countries e.g., United Kingdom (Mealy and Coyle, 2019), Italy (Basile, Ci-
cerone, and Iapadre, 2019), Australia (Reynolds et al., 2018), United States
(Fritz and Manduca, 2019). Also, economic complexity has been used
to study the consequences of certain outcomes such as output volatility
(Güneri and Yalta, 2020), greenhouse gas emission (Neagu and Teodoru,
2019), and gender inequality (Ben Saâd and Assoumou-Ella, 2019). Other
works have also examined factors such as taxation (Lapatinas, Kyriakou,
and Garas, 2019), and intellectual property right (Sweet and Eterovic
Maggio, 2015) impacting the growth of complexity of countries.

While the economic complexity index provides insight into the current
capabilities of a location, and the required capability for economic activity,
it does not forecast future capabilities. Some literature such as Zaccaria
et al., 2018 and Pugliese et al., 2019 provide a framework that relies on
the structure of relatedness between activities to estimate the density of a
country’s capability around economic activity. Recently, Tacchella et al.,
2021 pointed out a shortcoming of these methodologies which rely on
relatedness structure between activities. They observed that “location-
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activities bipartite networks do have a strong nested structure” (Tacchella
et al., 2021) which could immediately lead to communities in which case
the relatedness signal is of second-order and not adequate to capture
higher-order non-linear relationships. To address this shortcoming, a
machine learning approach adapted for learning non-linearity can be
useful.

Appropriately forecasting the competitiveness and future capabilities of
cities (i.e., economic complexity index) using better predictive models
can improve the specificity of strategic innovation policies of cities. The
contribution of this chapter is to (i) provide insight on current capabilities
of cities using state of the art economic complexity methodology intro-
duced by Sciarra et al., 2020 (ii) provide a better predictive model for
the future competitiveness of cities in all technologies, and specifically
in technologies where cities have remained consistently non-competitive
(iii) provide a forecast of future capabilities (i.e., generalized economic
complexity index) using the predicted competitiveness structure of cities.

This chapter is organized as follows. Section 2.1 provides an overview
of the literature on the concept of economic complexity and forecasting
the competitiveness of cities. Section 2.2 describes the data. Section
2.3 introduces the generalized economic complexity model, the machine
learning models (i.e., Random Forest, eXtreme Gradient boosting, Support
Vector Machine, Neural network model), the Time-delayed co-occurrence
model (which is the benchmark model for forecast), and the evaluation
metrics. Section 2.4 describes the results, and Section 2.5 provides a
concluding remark.

2.1 Literature Overview

This section gives an overview of existing literature on the concept and
measurement of economic complexity and forecasting competitiveness of
cities.
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2.1.1 Concept of Economic Complexity

In the economic and geography literature, economic complexity is often
discussed with reference to infrastructure, product export, technological
and scientific capabilities that allow a city, region, or country to identify
its current capabilities, and the capabilities required to upgrade into new
technologies and sectors, to increase its growth rate (Mewes and Broekel,
2020; Hidalgo, 2021). Although precisely measuring complexity is chal-
lenging, there have been scientific efforts towards inferring the complexity
of countries using trade, publication, and patent data. This methodology
assumes that countries with positive comparative advantage in diverse
products, or technologies that are spatially scarce do have higher capa-
bilities (Hausmann, Hwang, and Rodrik, 2007; Hausmann et al., 2014).

The notion of economic complexity is often described using the game of
Scrabble (Hausmann et al., 2014). In this analogy, players are countries,
cities or regions. Words are like products, patents, or publications, and
letters are like capabilities (e.g., HS6 products, IPCs classes), or modules
of embedded knowledge. Each player is assumed to have several copies
of letters which can be used in different ways to produce words. The
economic complexity approach is aimed at uncovering the level of capa-
bilities (i.e., how many letters) a player has by examining (i) how many
words the player can form (ii) the kind of players that can form such
words as well. In this sense, players with more letters can form more
words, hence placing them at the forefront of how diverse their capabili-
ties are. This measure of diversity is the first indicator of the capabilities
of the player (Hausmann et al., 2014). Although, this measure in itself
is a crude estimate of the complexity of the player if the composition of
the words is not examined. In examining, the creation of words, longer
words will be less common, since they can only be created by players with
the prerequisite letters. Therefore words that require fewer letters will
be more ubiquitous and vice-versa. An improved measure of complexity
of the player is given by its diversity, the ubiquity of the words it makes,
and the diversity of other countries that make these words (Hausmann
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et al., 2014).

The analogy above forms the basis of the commonly used methodologies
for measuring economic complexity, namely, “Method of reflection” (MR)
and the “Fitness and complexity” (FC) algorithm. These methods are both
conceptually and mathematically different. The FC and MR schemes are
both nested equations connecting the complexity of words with the com-
plexity of players. However, the key difference between both methods
is that while the MR scheme argues the existence of a linear relationship
between the complexity of words formed and the complexity of players,
the FC scheme puts forward a non-linear relationship between both quan-
tities. Particularly, the FC method emphasizes the fact that the complexity
of words is downgraded when it is created by less competitive players, an
effect that can best be captured with a non-linear relationship (Tacchella
et al., 2012; Sciarra et al., 2020). Both methodologies have contributed
to the interdisciplinary study of economics and complex systems. How-
ever, they have been shown to produce significantly diverging outcomes
(Sciarra et al., 2020).

While the FC methodology is seen as an improvement of the MR method-
ology, it is still plagued by several technical and conceptual issues which
have been identified through simulated networks of scale-free model of
preferential attachment, as well as networks constructed from real-world
datasets of trade and patent activities (Morrison et al., 2017). It has been
observed that results from the FC scheme can change when there are
small changes to the network, and the algorithm often overestimates the
capabilities required for niche outputs having a small number of players
(Morrison, Riccaboni, and Pammolli, 2017b). The instability in the results
applies to weighted and unweighted networks (Pugliese, Zaccaria, and
Pietronero, 2016). However, the more granular the level of estimation,
the less severe the estimation of the fitness of players, as fitter players are
likely to engage in producing or patenting in niche products or technolo-
gies (Morrison et al., 2017).

By recasting the MR and FC methodologies into a multidimensional frame-
work, Sciarra et al., 2020 reconcile the MR and FC approaches, allowing

65



to recover and integrate the merits of both methods. The resulting mea-
sure is referred to as the Generalized Economic Complexity (GENEPY)
index. The idea of GENEPY is based on allowing an interpretation of
the eigenvectors of the proximity matrix of players as the multidimen-
sional eigenvector centrality of the players in the network. In which
case the eigenvectors can be combined into a unique metric where they
are obtained using a least-square estimation (Sciarra et al., 2020). The
information from the GENEPY index is best understood considering the
meaning of its components (i.e., the first and second eigenvectors). The
first eigenvector represents the eigencentrality of the players based on
the proximity matrix of players due to the similarity of letters they have.
While the second eigenvector cluster players according to the similarities
of letters they have (Sciarra et al., 2020). Hence, GENEPY identifies the set
of capabilities a player possesses and has in common with other players.
In other words, complex players are found in the vicinity of other complex
players, while less complex players are in the periphery. GENEPY has
been applied to trade data to characterize the set of capabilities countries
need to export in different products (Sciarra et al., 2020).

2.1.2 Forecasting competitiveness of cities

While economic complexity captures the current capabilities of cities, it is
interesting to forecast the competitiveness of a city in a given technology
in years to come. Typically, the competitiveness of a city in a given tech-
nology is captured in a binary matrix (i.e., city-technology matrix) based
on the revealed technological advantage of the city in the technological
area. This quantitative metric based on the work of Ricard’s comparative
advantage indicates that the overall capability of a city should be related
to other cities to determine if the city is producing more or less than
its “fair share.” The quantity evaluates the cities number of patents in
a technology relative to the total market share. The measure is stable to
small fluctuations, and significant changes only occur when the relative
share varies appreciably. In most literature, if the revealed technological
advantage RTAij ∈ [0,∞) of the city i in a technology j is greater than
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1, the city is considered to be competitively patenting in the technology.
This is the case when the relative patenting of the city is greater than
the whole market share in that technology. This means that the signal
of the capabilities of the city exceeds the baseline level and it is deemed
significant enough to consider the city competitive. The binary matrix rep-
resentation of the revealed technology advantage matrix makes it easier
to study the time evolution of the competitiveness matrix, and represent
the forecasting task as a link prediction or classification problem that can
be addressed using machine learning approaches.

There are different approaches in network science that tries to address the
forecasting problem based on the underlying assumption of correlation of
technologies. These correlations between technologies can be estimated
following e.g., the product space approach (Hidalgo and Hausmann, 2009)
or taxonomy network approach (Zaccaria et al., 2014). The idea is that the
correlation between the ecosystem of technologies provides information
on what technology serves as a gateway to patent in other technologies.
Combining the correlation matrix of technologies alongside the current
competitive structure of cities can be used to estimate the density of cities’
competitive structure around different technological areas. The lower
the density of a city’s capabilities around a technology, the less likely
the city will upgrade to or activate the technology. This implies that
the technologies the city is currently competitive in are distant from the
given technological area. We can evaluate the accuracy of the estimated
densities against what we observe to be the competitive structure using
different binary score measures. The criticism of this method to forecast
competitiveness is that the correlation structure of technologies does not
account for the high-order structure of correlations between technologies.
For example, patenting an electric car might require capacity in electronics
and mechanics, which implies the existence of a correlation between three
IPCs (jointly). Evaluating this structure with pairwise correlations means
that the signal would be the sum of correlations of electric car - electronics
and electric car - mechanics. Hence, the correlation of either pair could lead
to acknowledging the presence of a signal that in reality does not exist.
Specifically, as observed in the paper “Relatedness in the era of machine
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learning” by Tacchella et al., 2021 - “the binary RCA matrix does have
very strong nested structure as opposed to a block-diagonal structure
that would immediately lead to a definition of sector-communities, in
these networks, the relatedness signal is of second order with respect
to the drive towards diversification that generates the nested structure.”
This implies that describing the competitiveness development path of
a city as the sum of binary relationships is an oversimplification, and
existing methodologies can be improved upon considering higher-order
interactions through more complex machine learning models that learn
successfully through boosting, in which the models are learned in order,
such that each new model is trained to minimize the residuals of the
preceding ones, and through data augmentation by averaging the learning
outcome on randomized samples (Tacchella et al., 2021). These machine
learning models are algorithms of statistical inference and they are used
to address tasks classified as either supervised or unsupervised. A task is
considered supervised if we have a labeled output yi ∈ Y corresponding
to an input xi ∈ X, the labeled output is the ground truth against which
the ability of the model to learn is evaluated. On the other hand, an
unsupervised task is done when there is no labeled output - an example
of such task could be clustering of observations based on similarity of
features.

Specifically, for our task which involves forecasting the competitiveness
of cities in technology, we are faced with a supervised task where we will
be predicting binary attribute yi ∈ {0, 1} of the competitiveness matrix
Mt+5

ij in 5 years based on the attributes RTAt
ij - revealed technology

advantage at time t. A 5-years forecast horizon is chosen, since most
investment needed to significantly impact the competitiveness structure
of cities are usually long-term. As seen in Figure 10b, P (0 −→ 1) and
P (1 −→ 1) shows slight changes in competitiveness structure in 5-years,
this eliminates the need to make a forecast for a lower number of years,
and given the time coverage of the geolocated patent database in Chapter
1, a reasonable period to forecast would be 5 years, as a forecast beyond
5-years would reduce the sample size for training. The inventor dataset
used is pre-processed such that the models applied will not be able to
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exploit the auto-correlation of the competitive structure for prediction.
The choice of inventor dataset as opposed to applicant is to focus on
human capital in patent production as some firms can choose to take
advantage of opportunities in emerging markets by seeking for intellec-
tual coverage through their subsidiaries located in the emerging market,
while the knowledge is created in their headquarters or abroad. The ma-
chine learning models applied include Random Forest, XGBoost, Support
Vector Machine and Artificial neural network. The performance of these
models is benchmarked with the performance from the time-dependent
network forecasting model proposed by Zaccaria et al., 2014 that exploits
auto-correlation of the competitive structure of patenting activities of
cities. We provide the performance of the models in (i) predicting the
full competitiveness matrix (i.e., Mt+5

ij matrix) (ii) predicting submatrix
of Mt+5

ij corresponding to a city activating a technology condition on the
fact that cities’ revealed technological advantage in the technology has
consistently fallen below 0.25. The performance of the model is evaluated
using metrics that account for the imbalance in the target variable, as it is
often the case that yi = 0 constitutes the majority class label. Finally, since
the binarized revealed technological advantage is the basis for comput-
ing the generalized economic complexity index, the forecast of the full
Mt+5

ij matrix from the best performing machine learning model is used to
compute the future generalized economic complexity index of cities.

2.2 Data

The source of data for computing the generalized economic complexity
index and predicting future competitiveness and capabilities in different
technological areas is the patent dataset developed in Chapter 1 which is
based on the Patent Statistical (PATSTAT) database - the most extensive
database that captures patent activities from over 90 patent offices located
in different countries. The geocoding effort done in Chapter 1 provides
a patent database with improved address information granular enough
to capture patenting activities in urban areas, and an urban delineation
process based on OECD, 2012’s delineation methodology that addresses
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the issue of differences in national boundaries, by providing a harmonized
definition of cities. The analysis is done on 150 global cities selected from

Continents Number of Time period Number of Average employment Average net
cities patents (thousand) migration

(thousand) (thousand)
Africa 6 2000-2004 1.62 1431.78 2.52

2005-2009 1.76 1632.11 30.78
2010-2014 2.82 1759.73 38.15

Asia 45 2000-2004 1320.61 3145.15 97.21
2005-2009 1400.51 3722.14 125.21
2010-2014 1362.48 4358.46 64.87

Europe 48 2000-2004 230.21 1210.84 10.46
2005-2009 268.17 1284.38 11.72
2010-2014 269.01 1310.01 8.36

North America 34 2000-2004 476.99 2069.75 1.83
2005-2009 504.49 2136.25 2.49
2010-2014 531.18 2171.25 4.52

Oceania 7 2000-2004 11.53 956.70 11.96
2005-2009 11.77 1083.13 22.92
2010-2014 12.58 1186.06 24.11

South America 10 2000-2004 2.13 3121.41 2.86
2005-2009 3.23 3561.11 5.70
2010-2014 5.12 4011.93 11.82

Table 11: Descriptive of dataset

Beaverstock, Smith, and Taylor, 1999’s Globalization and World Cities
(GaWC) research project. These cities are either alpha cities (i.e., they
link major economic cities into the world economy) or beta cities (i.e.,
they connect moderate economic cities to the global economy). These
cities are located in Africa (6), Asia (45), Europe (48), North America
(34), Oceania (7), and South America (10). Also, the analysis is done
at the level of 637 4-digit “international patent classification” (IPC) - a
system for classifying patents produced by inventors located in these
cities, according to the areas of technology the invention pertains to. We
identify 6,242,439 patents filed by inventors in these cities across these 637
technological areas between 2000-2014. The analysis done in this chapter
(and subsequent chapters) selects patents at the level of the DOCDB patent
families (i.e., we do not distinguish between priority or non-priority
patent) thereby avoiding inflation of the actual patent size of a city. For
each year we construct the revealed technological advantage (RTAij) of a
city i in an IPC j which gives a measure of the share of patenting activity
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of a city in an IPC when compared to the global average patenting done
in the given IPC. The RTA matrix is used in constructing the incidence
matrix Mij which is 1 if RTAij exceeds 1, else 0. The machine learning
algorithm explores the RTA structure computed between 2000-2009 to
predict the incidence matrix in 2014, while the generalized economic
complexity index is computed based on the predicted incidence matrix
M.

2.3 Methodology

This section describes the Generalized economic complexity (GENEPY)
index used in measuring the level of capabilities of cities and the capa-
bilities required in a technology. Next, we describe the machine learning
models and the benchmark network science model used in forecasting
the competitiveness of cities in the different technology domain. Also, we
provide a description of the evaluation metrics used in determining what
models perform best in the forecasting exercise.

2.3.1 Generalized economic complexity model

To describe the GENEPY algorithm, first, we construct the binarize re-
vealed technology advantage M of an undirected bipartite network be-
tween 150 cities and 637 4-digit IPCs. To do this we compute the revealed
technology advantage (RTAtij) of city i with respect to IPC j in a given
year t . To account for partial ownership of patents attributed to a city for
an IPC, we will adopt the fractional count of patents (at the patent family
level) i.e., given a patent P instantiated with IPCs {j1, j2, ..., jn} and done
by inventors from cities {i1, i2, ..., im}. The fractional count of patents to
any given city ik is

∑︁
P 1/m, the fractional count of patents to any given

IPC jk is
∑︁
P 1/n, and the fractional count of patents produced by city ik

in a given IPC jk is Nij =
∑︁
P

1
mn , where P is the total patents. Then, the
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revealed technology advantage of city i in an IPC j is computed as:

2RTAij =

Ni,j∑︁
iNi,j∑︁
j Ni,j∑︁

j

∑︁
iNi,j

(2.1)

If the RTAij exceeds 1, it implies that city i positively specializes in
technology j), hence the entry in the binary matrix Mij = 1, otherwise
Mij = 0 . From the matrix M, the complexity of cities and technologies
can be described by a system of coupled equations:

Xi = f(Y1, Y2, ..., Yj ,Mij) ; Yj = g(X1, X2, ..., Xi,Mij) (2.2)

where f and g are linear functions used in recastingXi and Yj as a solution
of an eigenvalue problem given below (Sciarra et al., 2020):

Xi =
1

λ

∑︂
i∗

Nii∗Xi∗ ; Yj =
1

λ

∑︂
j∗

Gjj∗Yj∗ (2.3)

where N = WWT and G = WTW are proximity matrices for cities i and
technologies j respectively. From a complex network perspective, Xi and
Yj represents the eigen-centrality in the bipartite network of cities and
technologies respectively. For example, the values inXi are derived based
on the idea that connections to more central cities should matter more than
the same number of connections to less central cities. The associated λ

represents how much information or variance exists in the corresponding
eigenvector. Recovering either MR or FC depends on how the weighted
incidence matrix W in N and G is defined. To recover the FC method,
Wij =Mij/kik

′
j , while to recover the MR method, Wij =

Mij√
kikj

, where ki

is the degree of the city, kj is the degree of technology, and k′j is the degree
of technology divided by the degree of the city. In our implementation,
the weighted incidence matrix is defined consistently with the FC method.

2We consider only patents with IPCs. Hence the computation of the revealed technology
advantage assumes that the distribution of patents with missing IPCs across cities is random
(“missing-at-random” condition). Check Song and Guo, 2021 on how to denoise RTAij .
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The eigenvalues λk and related eigenvectors of the matrices N and G are
solutions to the eigenproblems in Equation 2.3. In most cases, the eigen-
vector with the biggest eigenvalue holds the most information and is thus
considered the solution to the eigenproblems. However, the GENEPY in-
dex combines the first and second eigenvalues and eigenvectors of N and
G to give a measure of complexity for cities and technology respectively
as:

GENEPYi =
(︁ 2∑︂
k=1

λkX
2
i,k

)︁2
+ 2

2∑︂
k=1

λ2kX
2
i,k

GENEPYj =
(︁ 2∑︂
k=1

λkY
2
j,k

)︁2
+ 2

2∑︂
k=1

λ2kY
2
j,k

(2.4)

GENEPYi and GENEPYj in Equation 2.4 represent the generalized eco-
nomic complexity of cities and technologies respectively. For example,
GENEPYi can best be understood based on the interpretation of Xi,1

(first eigenvector) and Xi,2 (second eigenvector) being combined. The
first eigenvector represents the eigencentrality measure, while the sec-
ond eigenvector represents the clustering of cities based on similarity in
patenting structure. The combination of the two eigenvectors to arrive
at GENEPYi can be interpreted as identifying capabilities the city has
and are similar to other cities. Hence cities with high GENEPY are seen
in the cluster of central cities, while cities with low GENEPY are seen in
the peripheral of the network. Economic complexity measure such as
GENEPY is scale-free as they do not correlate with size of cities or coun-
tries. For example, the correlation of GENEPY and city size in our dataset
is approximately 0.20. From an economic perspective, the economic com-
plexity measure is interesting as it has been shown to correlate strongly
with per-capita GDP in both country and regional analysis (Mealy and
Coyle, 2019).

The GENEPY algorithm presented above assesses the current capabilities
of cities and technologies based on a single measure - economic com-
plexity of patenting activities. It does not consider the time evolution of
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competitiveness in technological areas. For example, it might be useful to
know if a city being competitive in patenting in radar would in 5 years
time patent in radio broadcasting apparatus. To do this we character-
ize forecasting the competitiveness of cities in technological areas as a
classification problem, and propose using machine learning models.

2.3.2 Models for forecasting competitiveness of cities

In this section, we present the model-free machine learning approach and
the network-based benchmark model for forecasting the competitiveness
of cities. First, we present the implementation strategy used in all the
machine learning models.

3Based on the patent data, we derive theRTAtij for each year t ∈ [2000, 2009]

following Equation 2.1 - which represents the revealed technological ad-
vantage of 150 cities in 637 4-digit IPCs. This implies that the machine
learning model learns the 637 features to arrive at a probability score
of whether a city will be competitive in 2014. The competitiveness tar-
get variable is the binarized RTAij measure in 2014 given as Mij = 1 if
RTAij > 1 else 0. The choice of 1 as a threshold is consistent with the
literature (Tacchella et al., 2021). In this sense, a city with a unit entry in
M is competitively patenting in the given technology, and a zero entry
implies otherwise.

The choice of forecasting competitiveness in 5 years as opposed to shorter
number of years or longer forecasting horizon can be explained partly
by the observation in Figure 10b, we see that transition probabilities in
5 years are more or less flat (with exception of P (0 → 1) and P (1 → 1)).
The conditional probabilities suggest that only when we consider a longer
forecast time horizon can we then observe changes in cities being more

3The complexity and competitiveness forecasts will not significantly change, since the
RTAij and Mij used is highly correlated with the RTAij and Mij constructed from (a)
same data without observations that have country discrepancies or (b) same data without
observations having both country discrepancies and coordinate allocation done via sources 4-
6. Specifically, the correlation of RTAij with that computed in (a) and (b) are approximately
0.94. The fraction of non-matching binaries between Mij and that computed in (a) and (b)
are 0.052 and 0.059 respectively.
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likely to remain competitive or become competitive in technologies. This
eliminates the choice of a smaller time horizon like 2 or 3 years. 5 years is
the best compromise given the period of the geocoded data we have (i.e.,
2000-2014), if we choose a 10-year horizon for the forecast, we will halve
the sample size for training the model which will impact the capability of
the ML models to arrive at meaningful inference.

(a) Implementation strategy

(b) Transition probabilities

Figure 10: (a) The structure of the training and test dataset is such that for
each IPC jn (n = 1, ..., 637) and each disjoint partition k = 10, the training
set consists of 135 cities, and the test set consists of 15 cities in partition k.
The number of models trained for each classification algorithm is 6370. (b)
The low stability in the transition probabilities P (0 −→ 1) implies that the
activation task is more difficult

The prediction exercise is in two ways: (i) the unconditional prediction of
M in 2014 (ii) the conditional prediction of M which we refer to as the ac-
tivation task requires predicting Mij = 1 in 2014 for samples with revealed
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technological RTAij < 0.25 consistently for period t ∈ [2000, 2009]. This
task is a difficult task, as it can be seen from Figure 10b, the probability
that cities transition to becoming competitive in a technology they never
where is less than 0.5.

The strategy employed for implementing the machine learning models
hinges on the models being able to learn not just the patenting structure of
cities (since the model could exploit the high autocorrelation P (0 −→ 0)

and P (1 −→ 1)), but more importantly, the model should rather exploit
the relatedness between technologies in predicting competitiveness of
cities. To achieve this, the cities used in the testing phase are different
from cities used in the training phase of the model. Secondly, since each
IPC requires a different set of capabilities, for each of the classification
models considered, we choose to train different models for each IPC.

From Figure 10a, the training set is built using patenting activities in
period t ∈ [2000, 2008] - the procedure for training the classification al-
gorithms is the same for all models. The algorithms are to learn the
structural relationship between the RTAtij values (i.e., features) of city i
and IPC j, with the corresponding element in the competitiveness matrix
M t+5
ij (i.e., target). Since we are training different models for each IPC,

the target variable M t+5
ij will always change, but the features will be the

same. More importantly, since we do not want the model to exploit the
auto-correlation present in the revealed technology matrix, but should
rather use the similarities in technologies inferred, hence at the test phase,
we partition the N = 150 cities to k = 10 disjoint sets of cities. For each
partition k, we build the model on a training set involving N − k cities
and predict on a test set RTA2009

ij consisting of cities in k partition. This
implies that for each classification algorithm, we are training 6370 models -
i.e., 637 for each IPCs and 10 for each partition. The result of the prediction
is put together to reconstruct the complete competitiveness matrix. The
performance of the model is evaluated by comparing the prediction with
competitiveness matrix M in 2014 using the evaluation metrics described
in Section 2.3.3. Each of the machine learning models is described below:
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Random Forest model

The Random Forest (RF) model is an ensemble approach that uses boot-
strapping and aggregation to train many decision trees simultaneously.
Bootstrapping refers to the training of many independent decision trees in
parallel on different subsets of the training dataset with varying subsets
of accessible characteristics. Bootstrapping is done to lower the RF clas-
sifier’s total variance. The RF classifier then aggregates individual tree
decisions for the final decision. Thus, are usually good at generalizing to
unseen data and are less prone to issues of overfitting (Misra, Li, and He,
2019).

Figure 11: How the Random forest model is used to compute the probability
of being competitive (i.e., yi = 1) in an IPC, given the revealed technological
advantage features

As depicted in Figure 11, the Random forest (RF) model consist of training
multiple decision trees using features xi ∈ RTAt

ij in the dataset. Each
decision tree randomly selects observations (xi, yi) ∈ (RTAt

ij,M
t+5
ij ) and

the goal is to find a rule that identifies the best subsets of features xi
relevant to each class yi. The selection of random observations allows for
training multiple uncorrelated models, enhancing the aggregate predic-
tive power of the Random forest. The rule derived during the training
phase is applied to the features of each city in the test set to predict class
yi. The prediction of the Random forest is based on the majority vote from
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all the decision trees trained.; and the probability of a predicted class is
the number of votes for the class divided by the number of decision trees.
Since we are interested in class yi = 1, if the predicted class from the RF
model is yi = 0 with P (yi = 0), we have that P (yi = 1) = 1− P (yi = 0).

For each of the decision trees, starting from the root node of the decision
tree, the graph splits into binary nodes by finding the subset xj ⊂ xi

that minimize the Gini function I(xj|xi). The Gini function is given
as: 1−

∑︁N
n=1 P

2
n calculates the probability that a specific feature will be

incorrectly associated with a class when selected randomly, where Pn
denotes the probability that a feature is associated with a single class. If
all the features in xj are associated with a class, then the Gini coefficient
is 0 and xj is said to be pure, if they are not then the Gini coefficient is 1.
This minimization process to achieve the best split is continuously done
at every node until no further split can be done or if the stop condition is
reached (e.g., if the decision tree reaches its specified depth set apriori).
Upon reaching the stop condition, the leftover features from the input
feature are associated with the predicted attribute.

Each of the decision trees that makes up the ensemble in the Random
Forest model is trained following this process, and the prediction is based
on the average class probabilities estimated by each decision tree. The
parameters to be tuned to achieve an optimal performance include the
number of trees, the maximum depth of each tree, criteria for evaluating
the quality of each split in each node. In our implementation, we used
the default parameters in the Random Forest classifier algorithm in the
sklearn library available in python.

eXtreme Gradient Boosting model

The eXtreme Gradient Boosting (XGBoost) model is an algorithm intro-
duced by Chen and Guestrin, 2016 to increase speed and address the
issue of over-fitting by introducing a regularization parameter. Unlike
the Random forest model which trains several decision trees in parallel,
the XGBoost is based on a sequential learning process by sequentially
combining regression trees which are considered weak learners. These
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regression trees unlike decision trees assign continuous scores wi to each
i− th leaf (i.e., the last node). For each input in the training set, a decision
rule in the tree is applied to classify the input into specific leaves. When
this is done for all input, the sum of the scores in all the leaves is taken,
and this represents the final prediction of the tree. Formally, this tree
ensemble model is trained in an additive manner as follows, suppose ŷti
be the prediction of the i− th instance at the t− th iteration, we will need
to greedily add a regression tree ft to minimize the regularized objective
function:

Lt =
n∑︂
i=1

l(yi, ŷ
t−1
i + ft(xi)) + Ω(ft) (2.5)

The optimal values for each leaf and the overall score of the tree are then
computed using gradient descent. The score is also known as the “impu-
rity of a tree’s predictions”. The loss function in Equation 2.5 contains a
regularization term Ω ≥ 0 whose objective is to reduce the complexity of
the regression tree function ft. Besides the regularized objective function
described above, there are two other methods applied to prevent over-
fitting. The first technique is the feature column sub-sampling similar
to what is used in the Random Forest model, and the other is the intro-
duction of shrinkage (Friedman, 2002) - which involve scaling the newly
added weight at each step of the boosting process (Chen and Guestrin,
2016). The advantage of XGBoost is its speed compared to other boosting
algorithms like Adaboost, and other characteristics like shrinkage, regu-
larization, and feature subsampling allow it to generalize better. However,
in comparison to the Random forest model it has more hyper-parameters
(e.g., regularization rate, shrinkage, maximum depth of trees, and number
of estimators) that need to be tuned to achieve better performance. In our
implementation, we used the default parameters of the XGBoost package
in python.

Support Vector Machines model

The Support Vector Machines (SVM) algorithmic paradigm introduced
in Boser, Guyon, and Vapnik, 1992 and Cortes and Vapnik, 1995 can
be used to learn predictors in high dimensional feature spaces similar
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to our application setting. The algorithm does this by searching for a
hyperplane with the largest margin separating the training set (xi, yi) ∈
(RTAtij ,M

t+5
ij ). Let S = (x1, y1), ..., (xn, yn) be training set such that

xi ∈ Rd and yi ∈ {0, 1}, we say that the training set is linearly separable
if there exists a hyperplane (w, b), such that yi(< w, xi > +b) > 0 for all
i ∈ N. For any given training set there are many hyperplanes (w, b) that
satisfies the condition i.e., many hyperplanes are able to correctly separate
the training samples into positive and negative predictions. However, the
choice of an optimal hyperplane is hinged on the notion of margin - the
margin of a hyperplane is the minimum distance between points in the
training set and the hyperplane. If the margin of the hyperplane is large
then such hyperplane will be robust to perturbations in the training set -
this implies that such a hyperplane will be less prone to error. There are
two SVM learning rules - the Hard SVM and the Soft SVM used to infer
the optimal hyperplane. Intuitively, the Hard SVM examines the vector
space w separating the training set, and identifies the vector w with the
least norm and also satisfying the condition | < w, xi > +b| ≥ 1 for all i.
Formally, it is simply solving the optimization problem:

(w0, b0) = argmin(w,b)||w||2 ∋ yi(< w, xi > +b) ≥ 1 (2.6)

The complexity in identifying w is directly proportional to the number
of features in the training set. While the Hard SVM approach assumes
linear separability of the training set, the Soft SVM relaxes this strong
assumption. The optimization problem is then adjusted by introducing
a non-negative parameter ψi that measures how much the constraint
yi(< w, xi > +b) ≥ 1 is being violated. The optimization problem for the
soft SVM is formalized as follow:

min(w,b,ψ)

(︄
λ||w||2 + 1

n

n∑︂
i=1

ψi

)︄
(2.7)

such that yi(< w, xi > +b) ≥ 1− ψi ∀i and ψi ≥ 0. (2.8)

The Soft SVM jointly minimizes w, ψ. The trade-off between the two
parameters is captured in λ. Most problems in principle are non-linearly
separable i.e., they fall under the Soft SVM paradigm. This is the default
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implementation available in most SVM packages. In our implementation,
we used the default SVM implementation in sklearn, however, we specify
the probability to be True, in order to obtain both the prediction of class
labels and probability estimates of predicted classes.

Neural network model

In our implementation, we used a simple feed-forward neural network
model in which there are no loops (i.e., no self connections) in the network.
A feed-forward neural network is described by a directed network, G =

(V,E), where V is a set of nodes also known as neurons, and E is a set of
edges between neurons across layers, the weight of the edges are defined
as w : E −→ R. The input into a neuron is the weighted sum of all other
neurons connected to it, and the activation of the neuron which is a signal
of information in the neuron is characterized by an activation function
σ define as σ : R −→ R, which could assume different functional forms
depending on the task.

In our implementation we built a neural network with 3 hidden lay-
ers (each layer has 32 neurons), and the activation function used in the
hidden layers is ReLu, while we chose a sigmoid activation function in
the output layer in other to have as an output the prediction proba-
bilities - these probabilities are the probability of the neural network
model classifying an observation as positive (i.e., Mt+5

ij = 1). Once the
neural network model is built, the goal is to learn the optimal embed-
ding fV,E,θ : Rinput −→ Routput from a class of possible embeddings
F = {fV,E,θ} by adjusting hyper-parameters θ - example of such parame-
ters include learning rate, number of epochs (which specifies the number
of times the learning algorithm will go through the entire training set),
and batch size (the number of samples of the training set to go through
before updating the model parameters). A typical learning algorithm that
is used for training the feed-forward neural network is the “stochastic gra-
dient descent” (SGD) which is an iterative algorithm for minimizing the
loss of a predictive model. To update the weight w at each iteration what
is being used is the back-propagation algorithm. The hyper-parameters
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and settings of the neural network model used in our implementation
include: batch size= 5, epoch size = 10, dropout = 0.1, l1_reg = 0.001,
optimizer=rmsprop, loss=binary_cross_entropy.

Benchmark model: Time-delayed co-occurrence model

To benchmark the performance of the machine learning models, we use
a network model that combines the time-delayed correlation between
technological areas, and the current competitiveness of cities to estimate
a score on what the competitiveness of the city would be in a given
technological area in the future. To measure this time-delayed correlation,
we will use the idea proposed in Pugliese et al., 2019 in constructing the
enabling or progression network between technologies by computing the
conditional probability between technologies. To do this, we first compute
the time-delayed co-occurrence between technology j and j′ given as

Cj,j′(t, t+∆t) =
∑︂
i

Mi,j′(t+∆t)Mi,j(t) (2.9)

Cj,j′(t, t+∆t) counts the number of cities that patented in j at time t and
also patented in j′ at time t+∆t. The higher the value the stronger the
signal that j is a prerequisite to j′. However, if a city is very diversified
the information coming from the city is less, similarly if a technology is
ubiquitous. Therefore the co-occurrence matrix is normalized with respect
to the diversity of cities and ubiquity of technology (Pugliese et al., 2019;
Zaccaria et al., 2018) given as :

di =
∑︂
j

Mi,j(t) ; uj =
∑︂
i

Mi,j(t) (2.10)

The expression for the normalized co-occurrence matrix which is inter-
preted as the conditional probability of being competitive in technology
j′ given the city is competitive in j ∆t (we choose ∆t = 5) years ago is
given as:

Pj,j′(t, t+∆t) =
1

uj

∑︂
i

Mi,j′(t+∆t)Mi,j(t)

di(t+∆t)
(2.11)
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To arrive at a time-independent conditional probability, we can remove
the noise in the technological network by averaging over the years so that
any spurious connections Pj,j′(t, t+∆t) will not affect the estimation of
the density.

Pjj′(∆t) =
1

N

2009∑︂
t=2000

Pj,j′(t, t+∆t) (2.12)

To discriminate the real inter-dependencies between technologies from
random occurrences that can be driven by the ubiquity of technologies
or diversity of cities, we estimate an ensemble of 100 P̂ j,j′ computed
from random realizations of the binary matrix such that the diversity and
ubiquity is kept fixed. The estimation is done using the hypergeometric
ensemble model (Casiraghi et al., 2017). The entries in Pj,j′ are kept if
they are significantly (at an alpha level of 0.05) above the distribution
from the ensembles. Combining the discriminated time-independent con-
ditional probabilities with the competitive structure M2009

ij , we compute
the density of the cities capabilities around technological areas j′ in 2014
by doing the following:

dij′(∆t) =
∑︂
j

M2009
ij Pjj′(∆t) (2.13)

The density can be characterized as a score that captures the strength
of connections between the cities’ current competitive technologies with
technologies in the future. The density is between 0 and 1, a stronger
score will imply that there are many current technologies connected to
future technologies. If the density of a city in a given technology is 0 it
implies the city is not currently competitive in any technology that can
allow the city to move into the given technology in the future.

2.3.3 Evaluation metrics

Choosing the right evaluation metrics for a machine learning model is
as important as building the model itself, as a wrong metric could either
make a good model seem to perform poorly or a bad model perform
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excellently. The choice of an evaluation metric depends on the specific
problem considered. We will first motivate the choice of metrics and
then describe the practical meaning of each of the performance indicators
chosen to compare the ML algorithms with the benchmark. For the
benchmark model, the output (i.e., the density of cities

Figure 12: Imbalance class labels: The fraction of zero elements in the
competitiveness matrix show that the class labels are imbalanced.

capabilities in a technology) is a continuous variable we need to define
a threshold above which the density is associated with a prediction of 1,
below which is associated with a prediction of 0. To do this, we choose the
threshold that maximizes the F1-score. Similarly, for the ML algorithms,
we output the probability of a city being classified as competitive in a
technology, which is then binarized such that the F1-score is maximized.

Figure 12 shows the density of the competitiveness matrixM as a function
of time, we have that on average the occurrence of zeros is about 77.8%,
and 77.6% specifically for the year 2014, implying that we have an imbal-
ance in the class labels. This observation does have consequences in the
choice of performance metrics. For example, we can not use metrics like
the ROC-AUC to evaluate the classifiers as this metric does have a strong
bias when there is a class imbalance in the labels. With this understand-
ing, we will be using the following metrics suitable for addressing class
imbalances - F1-score, PR-AUC score, and Mathews correlation coefficient.
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These metrics are described below:

F1-score

F1 score penalizes extreme values by combining both recall and precision
using harmonic mean rather than arithmetic mean (Sasaki, 2007). The pre-
cision of the model simply captures what fraction of the actual positives
(i.e., entries with value 1 - where the cities competitively patent in IPCs)
after ∆t years were correctly predicted. If the precision score is high it
implies the model had a low number of false positives. On the other hand,
recall is the ratio between true positives and the sum of true positives
and false negatives. It captures how well the positive class was predicted
and is synonymous with the sensitivity of the prediction. Combining
both precision and recall provides a single score that captures how well
the positive class is predicted and the sensitivity of the prediction. The
F1-score takes values between 0 and 1, and the higher the F1 score the
better the model.

Precision Recall curve (PR-AUC)

The PR-AUC curve is an alternative to the ROC-AUC curve when dealing
with imbalanced data. The ROC-AUC curve is simply the area under the
curve computed from a plot of the false positive rate (x-axis) against the
true positive rate (y-axis). The problem using this is that for imbalance
data, the area under the curve might not reflect the true performance
of the classifier, since the false positive rate will always be seen to have
small values (which is good) not because this is the case, but because we
have a large number of negative values - hence making the ROC-AUC
not appropriate. By replacing the false positive rate with precision, and
computing the area under the curve, we obtain PR-AUC score. A larger
PR-AUC curve signals a better model performance.

Matthews correlation coefficient (MCC)

The MCC is a good measure for evaluating the quality of a binary classifi-
cation model especially when there is a class imbalance, as it accounts for
the model’s precision and ability to recall. It is essentially a correlation
coefficient that takes values between -1 and 1. A coefficient of 1 implies
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a perfect prediction, 0 implies that the model is no better than a random
prediction, and -1 implies a prediction completely different from the ob-
servation. The MCC is computed from the confusion matrix as follows
(Boughorbel and El-Anbari, 2017):

MCC =
TP × TN − FP × FN√︁

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.14)

Other scores such as accuracy score, ROC-AUC score, precision and recall
are also reported.

2.4 Results

First, we will present the result of the economic complexity of cities, and
then the result for the machine learning models used in forecasting the
competitiveness of cities in 5 years. In Figure 13 we show the changes in
the complexity ranking of cities between the period 2000-2004 and 2010-
2014. In computing the economic complexity index of cities, we aggregate
the patenting activities using a window of 5 years to eliminate fluctuations
in patenting activities that might emerge as a result of our data generating
process. In the period 2000-2004, the top 10 most complex cities include
Los Angeles (Greater), Tokyo, Paris, Stuttgart, Boston, New York (Greater),
Chicago, Beijing, Munich, and Washington (Greater), while in period 2010-
2014, the top 10 most complex cities include: Taipei, Shenzhen, Tokyo,
Shanghai, San Diego, Paris, Seoul, Munich, Beijing, and Minneapolis.
Between these periods, we see a drastic change in complexity ranking,
with cities in Asia moving up the rank while cities in North America
and Europe moving down the rank. The top movers include cities like
Bangalore, Istanbul, and New Delhi, and cities that declined the most
include Lyon, Geneva, Montreal, and Los Angeles (Greater). Specifically,
we have that 33, 19, 8 cities moved up the ranking from Asia, Europe, and
North America respectively.
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Figure 13: Changes in the complexity ranking of cities: The green dot
represents cities that moved up the ranking between 2000-2004 and 2010-2014,
the red dot represents cities that moved down the ranking between 2000-2004
and 2010-2014, and the black dot represents cities whose complexity ranking
remains unchanged.

Figure 14: Technology complexity: The evolution of technology complexity
ranking between the 2000-2014 shows some level of stability over time.

Figure 14 shows the time evolution of the complexity of technology fields.
On the right, we have the technology fields to be ranked based on their
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complexity in 2014. We observe that technology fields such as Telecommu-
nications, Computer technology, Digital communications do have high
complexity values, while technology fields such as Furniture, games, Food
chemistry, and Other consumer goods do have low complexity values.

Complexity rankings in each year are connected by lines and the color of
the lines is based on the ranking in the year 2014. What we find is that
the time evolution of the ranking is stable which reflects the validity of
theoretical assumptions around stability in capabilities needed to upgrade
into technological field. While some fluctuations are expected, however a
complete overturning of the rankings would have meant that capabilities
needed to be competitive in a technology field vary over time – which
would be at odds with the general idea of capabilities (Zaccaria et al.,
2018).

Figure 15: Technology space in 2014: The figure on the top left shows the
embedding for the 634 IPCs. While the top right and bottom figures identify
the IPCs in this technology space where Seoul, Milan, and Quito are compet-
itively producing patents. More complex cities produce patents in central
IPCs, and central IPCs are more complex.
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Figure 15 provides a visualization of the technology space in 2014. This
embedding is constructed based on the Mcp matrix for 2014 using the
t-distributed stochastic neighbor embedding (t-SNE) - a non-linear dimen-
sionality reduction technique used for embedding high dimensional data
in low dimensional space. IPCs that have similar cities competitive in
them are assigned high probabilities and are more clustered together in
the technology space, while dissimilar IPCs are assigned lower probabili-
ties.

From the top left image in Figure 15, we see that central IPCs are more
complex, while IPCs in the peripheral are less complex. Comparing Seoul
which is more complex than Milan, and Quito, we observe that complex
cities like Seoul tend to patent competitively in IPCs that are central
and complex in the technology space. On the other hand, Milan patent
competitively in less central IPCs, and Quito patent in peripheral IPCs.

2.4.1 Results of forecasting competitiveness of cities

Table 12 present the evaluation metrics of each machine learning model
and the benchmark model for the prediction task on the full matrix. First,
we observe that all machine learning models were able to learn the inter-
dependence better than the benchmark model for this task irrespective
of what evaluation metrics being used. Considering the target variable
in the dataset is imbalanced, as there is a larger proportion of zeros than
ones, we focus on interpreting the performance of the model based on
F1 score. The machine learning model with the least performance i.e.,
Neural network has an F1 score that is 11.9% better than the benchmark
model, while the machine learning model with the best performance i.e.,
the Random forest model has the best F1 score (0.56) indicating that it
does a better job than all other models in minimizing both false positives
and false negatives. Specifically, it has an F1 score that is 33.3% better than
the benchmark model. The Random forest model did not only show to be
better at learning but also has a lower computational time in comparison
with other machine learning algorithms. The performance of the Random
forest model can be attributed to its capability to combine relatedness
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and anti-relatedness signals to provide better predictions (Tacchella et al.,
2021), as this can be useful given the possibility that the presence of a
technology in a city’s technology base can negatively impact the likelihood
of patenting in certain target technologies. Also, in Table 12 the systematic
gap between the recall and precision scores for all the models suggests
that the models do a better job at minimizing false negatives. Specifically,
the benchmark model does a better job at minimizing false negatives in
comparison with other machine learning models, but is not as good as the
machine learning models in minimizing false positives. The expectation
is that precision of the model should be better with less complex cities
since these cities are not diversified and predicting an upgrade will be
less likely, while the recall capability of the model should be better the
more complex the city becomes partly due to diversification of the city.
Considering this expectation alongside the cohort of global cities which
are on average diversified in 141 IPCs, the recall capability will be greater
than the precision.

Benchmark Random Forest XGBoost SVM Neural network
model model model model model

Best F1 score 0.42 0.56 0.54 0.51 0.47
PR-AUC score 0.34 0.58 0.56 0.53 0.38
Mathew’s coefficient 0.20 0.40 0.39 0.33 0.26
Accuracy score 0.57 0.81 0.79 0.69 0.65
ROC-AUC score 0.62 0.73 0.71 0.69 0.65
Precision score 0.30 0.47 0.47 0.40 0.36
Recall score 0.72 0.69 0.63 0.70 0.67

Table 12: Predictive performance of algorithms on the full Mij matrix

Comparing the evaluation metrics in Table 12 and Figure 17, we observe
that the evaluation metrics for the full matrix task are higher than that of
the activation task suggests that predicting the unconditional presence
of new technology in a city is a relatively simple task, as this is driven by
the stability in the transition probabilities seen in Figure 10b.

Figure 16 shows how well we predict the presence of new technologies in
cities viz-a-viz their economic complexity in the given year - we present
the relationship between the economic complexity of cities as at the year
the prediction was done i.e., 2009, and the F1-score of the Random Forest
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model for each city. We observe a positive relationship, suggesting that
the more economically complex the city is the better the Random Forest
model was able to make better predictions for the full matrix task. The
Pearson correlation between the GENEPY index of cities and the F1-score
is 0.67.

Figure 16: Generalize economic complexity vs Prediction performance:
On the x-axis is the Generalized economic complexity index of cities com-
puted between period 2005-2009, and on the y-axis is the F1-score that cap-
tures the performance of the Random Forest model in forecasting the com-
petitiveness (full matrix) in 2014 for each city. The correlation between the
GENEPY index and the F1-score of cities is 0.67.

Next, we examine the prediction on becoming competitive in new tech-
nologies condition on the fact that the RTA level of the city in the technol-
ogy has consistently been below 0.25 (i.e., activation task). Based on our
observation in Figure 10b the probability that a city will remain competi-
tive in a technology is approximately 0.53, while the probability that a city
will remain non-competitive in a technology is approximately 0.86. The
strong auto-correlation implies that we can safely predict the presence of 0
and 1 by exploiting the competitive structure in previous years. However,

91



being competitive in a new technology is a rare event, specifically, the
probability of this event to occur after 5 years is about 0.45. This implies
that predicting the competitiveness of a new technology that the city
was previously not competitive in is a hard task. Such a task is more
economically useful and has practical policy implications as it depends
on the presence of suitable but unrevealed capabilities in the city that can
be determined by looking at the other technologies the city is patenting
competitively.

Figure 17: Only the Random Forest model performs better than the bench-
mark model on the activation task. We evaluate how well the algorithms
can predict there will be an activation of new technology (i.e. M2014

ij = 1)
condition on the fact that RTAij < 0.25 between 2000-2008.

From Figure 17, we observe that the performance of the models on the
activation task is lower compared to the full matrix task. Specifically, Ran-
dom forest, XGBoost, SVM, Neural network and benchmark model had a
a reduction in F1 score by 76.5%, 78.7%, 80.7%, 83.2%, 70% respectively.
Also, we observe that only the Random Forest model is better than the
benchmark model considering both the F1 and PR-AUC scores. The per-
formance of the Random forest model is 4.5% better than the benchmark
model. To put the performance metrics in context, the model is as good
or better than what has been observed in the literature applying similar
methodologies to firms and countries. For example, Straccamore and Zac-
caria, 2021 used patent data to forecast what the next technology of a firm
would be using a similar implementation strategy, they found that the
Random Forest model achieved better predictive power with the best F1
score less than 0.12. This score is slightly lower than our Random Forest
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model with a best F1 score of 0.135. Also in comparison with Tacchella
et al., 2021 work on forecasting countries competitively exporting in new
product class observe that the XGBoost model outperforms other models
with a best F1 score of about 0.139, slightly outperforming the Random
Forest model presented.

Figure 18: Random Forest prediction quality for Seoul, Milan and Quito

Figure 18 shows the prediction quality for the case of Seoul, Milan and
Quito. We observe better precision for low complex cities, these less
complex cities do not diversify a lot, hence the ML model is less likely to
predict upgrade into new technologies, since typically the pre-requisite
technologies are missing in the city. This implies that there will be fewer
false positives for less complex cities. In the case of Quito, the ML model
had false positives for IPCs CO7H and C22B representing Sugar deriva-
tives and Production or refining of metals respectively. The recall measure
which captures how well the actual positives are predicted is seen to have
a better result for Milan than for Seoul this is because the more complex
you become the more diversified you are, hence the ML model will be
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more prone to recording false negatives. Milan had actual positives in 239
IPCs and the model recorded false negatives in 33 IPCs, while Seoul had
actual positives in 276 IPCs, and the model recorded false negatives in 96
IPCs (i.e. approximately 300% of false negatives in the case of Milan).

(a) A61K-Preparation for medical and
dental purposes

(b) H01L-Semiconductor devices

(c) Atlanta upgrade to A61K and HO1L

Figure 19: (a-b) Feature importance for A61K and H01L based on Random
Forest model. These are the top 10 IPCs useful to predict upgrade into A61K
and H01L IPCs. (c) Competitive upgrade of the city of Atlanta to A61K
and HO1L in 2014. Starting from the big red IPCs in 2009, Atlanta in 2014
patented competitively in A61K IPC but did not in H01L.

Furthermore, we used SHAP (SHapley Additive exPlanations) a game-
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theoretic approach to identify what capabilities are useful across cities in
becoming competitive in an IPC. Figure 19 shows an example of the top
capabilities useful to transition competitively into “A61K - Preparation
for medical and dental purposes” and “H01L - Semiconductor devices.”
The top capability needed are “A01N - Preservation of bodies of humans
or animals or plants” and “G11B- Information storage based on relative
movement” respectively. We also see that capabilities in A61K can be
more useful for transitioning to H01L competitively in comparison to the
importance of capabilities in H01L for transitioning into A61K.

Figure 19 shows the case study for the city of Atlanta which as of 2009,
was neither competitive in “A61K” nor “H01L”. However, the RF model
predicted that Atlanta would competitively patent in “A61K” (big green
dot) but not in “H01L” (big yellow dot) in 2014 which is consistent with
what we observed. The red and grey dots represent the IPCs in which
Atlanta was competitively (RTAij > 1) and not competitively (RTAij <
1) patenting in as at year 2009. The enlarged red and grey dots are those
specifically needed for an upgrade into “A61K” and “H01L”. From the
figure we see that Atlanta was competitive in most of the features impor-
tant for predicting competitiveness in “A61K” but was not competitive in
the features important for predicting competitiveness in “H01L.”

2.4.2 Reconstructing future generalized economic complex-
ity of cities

Finally, based on the predicted competitiveness structure ˆ︂M2014
ij from

the Random Forest model (best performing classification algorithm),
we construct the generalized economic complexity index for 2014 i.e.,

ˆ︂GENEPY
2014

ij , and compare this with the actual generalized economic
complexity index GENEPY 2014

ij . The Kendall rank correlation coefficient
which measures the ordinal association between the two quantities shows
a high correlation (τ = 0.67) between the actual GENEPY index and the
GENEPY index computed based on the predicted competitive matrix.
Also, the p − value < 0.05 indicates a significant correlation between
both quantities. This result is indicative of the predictive capabilities of
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Figure 20: Differences between actual GENEPY and GENEPY based on
predicted Mij in 2014: Cities on the x-axis are sorted from the most complex
to least complex based on the actual GENEPY index in 2014

the Random Forest model useful in both forecasting the competitiveness
structure of cities in new technologies and also the future capabilities of
cities as measured by the generalized economic complexity index. Figure
20 shows the difference between the actual GENEPY index and GENEPY
index based on the predicted Mij . On the X-axis is the city rank - cities
are ranked from the most complex to least complex based on the actual
GENEPY index. We see that the more complex a city is the higher the
difference between the actual and predicted GENEPY index. Also, we
see that for most of the least complex cities, the actual GENEPY index
exceeds the predicted GENEPY index.

2.5 Discussion

We demonstrate the use of the geocoded patent database in examining the
economic complexity of cities and technologies, and to forecast the com-
petitiveness of cities in new technologies using machine learning models
and network models. Our findings suggest that over time Asia cities have
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become more economically complex with top movers being cities such
as Bangalore and Istanbul. We also identify that there is stability in the
complexity of technologies, which suggests that capabilities needed to be
competitive in technologies do not vary over time. Also, in examining the
complexity of the two most prominent cities in North America and Asia
- San Francisco and Shanghai, across different technologies, we observe
that Shanghai appears to be a global leader in more technological areas
when compared to San Francisco (see Figure 32 in Appendix B.0.1).

Finally, we forecast the competitiveness of cities in new IPCs by consider-
ing different machine learning models - Random Forest, XGBosst, SVM,
and Neural net, alongside a discriminated time-independent model (the
benchmark model). We find that for the full matrix prediction task, all
machine learning models were better than the benchmark model, while
for the more difficult task - activation task, only the Random forest model
was better than the benchmark model. Specifically, the Random forest
model had an F1 score 4.5% higher than the benchmark. Given that there
was no hyper-parameter tuning done to select optimal parameters for the
machine learning models, and that the machine learning model is built
such that it is not allowed to exploit auto-correlation like the benchmark
model, and yet had better performance for both the full matrix task (all
machine learning models), and activation matrix task (only Random forest
model), it goes to show that machine learning approaches can be better at
extracting information relevant to determining technologies that will be
activated in a given city in the future. The major contribution of this work
involves the use of machine learning models to predict competitiveness.
These ML models provide a way to uncover relationships between tech-
nologies that are beyond linear and pairwise. This is an improvement in
the way notions such as technological relatedness have been measured in
previous works (e.g., (Pugliese et al., 2019; Engelsman and Raan, 1992)).
The technological relatedness uncovered by the machine learning mod-
els can be combined with the understanding of the current competitive
landscape of a city to forecast future competitiveness. Similar machine
learning approach has been applied to forecast trade competitiveness of
countries (Tacchella et al., 2021) and firm entry into new technology IPCs
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(Straccamore and Zaccaria, 2021). Considering that predicting future com-
petitveness condition on having low RTA can be a more difficult task than
predicting future entry, our model still slightly outperforms Straccamore
and Zaccaria, 2021. Generally, we find that in our work and other litera-
ture (Tacchella et al., 2021; Straccamore and Zaccaria, 2021) the predictive
performance is low especially when prediction is done condition on very
low RTAs (in our case RTA < 0.25) - this is largely because such jump
in competitiveness are rare events. Future work can improve upon the
quality of the models by consolidating patent or trade features with other
policy, economic and industrial indicators.

Being able to predict what technological areas a city or region will most
likely become competitive in the future can better help the region align
itself with other regions that can facilitate the realization of this goal. For
example, such regions can put in place policy instruments that incentivize
firms and other economic agents to engage in projects consistent with
being competitive in the identified technological areas. Also, they can
identify the technological pieces missing in their technological portfolio
which are pre-requisite for competitively upgrading into another tech-
nology (Balland and Rigby, 2022). Finally, the predicted competitiveness
structure in the full matrix task is used to reconstruct the future general-
ized economic complexity index. The result shows that we can reasonably
reconstruct the future generalized economic complexity index of cities,
but this is more challenging for economically complex cities. The chal-
lenge is that this measure depends on being able to correctly predict the
competitiveness structure (i.e., Mij), which can be difficult for economi-
cally complex cities that are dynamic and do have changing competitive
landscape.
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Chapter 3

Exploratory Innovation in
Cities: Inter-city ties and
Technological relatedness

In a competitive economy, technological innovation is a core element
of economic growth and development, and the accumulation of it in a
rapidly changing technological environment is key to adaptation. Such
accumulation of technological capabilities leads to distinctions in the spe-
cialization and diversification patterns observed in countries, regions,
and cities, hence the emergence of different capabilities. This disparity
in competencies has an impact on the roles that different regions play in
the global value chain (Balland et al., 2019). To capture a greater share
of the value-added in the global value chain, regions develop strategies
that enhance their ability to introduce novel ideas or recombine already
existing ideas to foster new technological trajectories. This search for
new technological trajectories constitutes what is known as “exploration”
which according to March, 1991 is defined as an innovation process char-
acterized by “search, variation, risk-taking, experimentation, flexibility,
and discovery”. Exploratory innovation specifically captures the pursuit
of new technology, as opposed to exploitative innovation, which is char-
acterized by the development of existing technology stock. The pursuit
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of new knowledge has been seen to lead to the accumulation of diverse
knowledge, hence increasing the diversification of a region, and also the
scope of utilizing a technology (Levinthal and March, 1993; Lavie, Stettner,
and Tushman, 2010).

For economic geographers, there has been increasing interest as to un-
derstanding the diversification and evolution of the technology base of
regions over time and the environmental characteristics facilitating the
upgrade to more fruitful technological areas. This diversification process
results in regions accumulating specialized technology(ies) that may be
located in the “technology space”. The technology space is seen to provide
insights into the interaction of technology pieces and the association of
regions with specific technology, which reflects communities of similar
innovation processes (Maskell and Malmberg, 1999; Lawson and Lorenz,
1999; Gertler, 2003). The main feature of this technology space for differ-
ent regions is that they are irreversible and are path-dependent (Rigby,
2015). While some regions “lock-in” to technologies with declining value,
others are better able to explore new technological areas thereby diver-
sifying their technology base and increasing their capacity to innovate
through more related technological structures or connections to external
knowledge (Bathelt, Malmberg, and Maskell, 2004; Agrawal, Kapur, and
McHale, 2008; Rigby, 2015; Breschi and Lenzi, 2016). Although the argu-
ment of related technological architectures and social linkages to external
knowledge are reasonably well-accepted there is little empirical evidence
at the level of cities that jointly examine the impact of these mechanisms
(i.e., social linkages and technological relatedness) on the likelihood of
exploring new technologies.

Recent empirical work that examines the relationship between technolog-
ical relatedness and exploration of new technology illustrates a positive
correlation between them and shows a long-run relationship between
the size of countries and the diversification of knowledge (Cantwell and
Vertova, 2004; Hausmann, Hwang, and Rodrik, 2007). Detailed analysis of
this by Hidalgo et al., 2007 and Hidalgo and Hausmann, 2009 using trade
data, measured relatedness based on patterns of co-exporting of products
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depicted in the “product space.” Their findings suggest that specializa-
tion in one product hinders diversification into related items and that the
likelihood of a country starting to export a product rises in proportion to
the number of related products the country already exports. Furthermore,
in studying the exploratory activities of Korea and Chile, Hidalgo et al.,
2007 simulated different thresholds of relatedness needed to explore new
products, in which case Korea was shown to be more effective in exporting
new products at higher thresholds. This simulated analysis confirms the
theoretical notion of the effect of degree of relatedness on the likelihood of
exploration (Lavie, Stettner, and Tushman, 2010). At the regional level, the
notion of relatedness has been extended to explain industrial branching
and technological cohesion (Essletzbichler, 2015), path dependence in the
evolution of Sweden’s and China’s industrial landscape (Neffke, Hen-
ning, and Boschma, 2011; Wu et al., 2019), and the diversification of US
cities to technology class where they have related technological expertise
(Boschma and Frenken, 2011; Boschma, Minondo, and Navarro, 2013). In
examining how industrial regions evolve in the long-term, these studies
highlight that the likelihood that a new industry will enter a region has a
direct relationship with its relatedness with other industries in that region.
However, only a few of these studies examined have accounted for char-
acteristics of cities such as their specialization, or density, that may impact
branching (Rigby, 2015). Beyond the study of industrial branching into
regions, several studies have examined the significant role of knowledge
variety and relatedness on productivity growth across European regions
(Balland et al., 2019; Balland and Boschma, 2021; Colombelli, Krafft, and
Quatraro, 2014). In analyzing entry made by European regions, Balland
et al., 2019 show that in increasing the relatedness density of a region
by 10%, the likelihood of entry increases by 23-26%, and an increase in
relatedness by 10 points results in technological growth from 2-4.64%.
This shows that technical expansion is constrained by relatedness, neces-
sitating the importance for regions to enhance their capabilities in new
technological areas by leveraging already existing capabilities.

Although, entry into new technology domains is not only conditioned
by relatedness, as there is also an effect of inter-city ties since cities and
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regions are not necessarily independent spatial units. The exploration of
new technology by agents in cities are influenced by exploratory activities
and technology structures in other cities, as there is an increasingly strong
social linkage between economic actors (inventors, firms, and universities)
across cities through co-inventions (Breschi and Lenzi, 2016; Agrawal,
Kapur, and McHale, 2008; Singh, 2005). When there are fewer intermedi-
ates between economic participants in a collaboration network, there is a
rapid flow of less distorted information between participants, as opposed
to when participants are connected by longer chains of relationships in
the network (Breschi and Lenzi, 2016). Therefore, new technology gener-
ated outside the city can rapidly flow to economic actors within the city
through existing social ties with economic actors outside the city who
have pre-requisite understanding of the new technology. The existence
of such ties can effectively improve the inventive productivity of cities
(Breschi and Lenzi, 2016).

Despite the extensive empirical work, we still have a limited understand-
ing of how cities explore or enter new technological domains. Quan-
titative studies examining patterns of technological exploration at the
level of cities are few (except Boschma, Balland, and Kogler, 2015) and
are oftentimes restricted to the study of European or U.S. cities. There-
fore, in this chapter we focus on technological entry done by 1220 cities
(these cities are defined as functional urban areas i.e. they encompass the
full extent of the city’s labor market) in 646 4-digits International Patent
Classifications (IPCs). These cities are located in Europe (56.4%), North
America (25.8%), Asia (10.9%), South America (4.6%), Oceania (1.6%),
and Africa (0.6%). The analysis of these numbers of cities provides ro-
bust and comprehensive evidence on the general pattern of entry that is
not necessarily specific to developed economies. Specifically, we ask if
inter-city ties and relatedness condition technological entry. This chap-
ter contributes to the geography of innovation literature by providing
insights into the enablers of technological entry done at the level of cities.
The contributions include (i) analysis of technological entry considering a
more heterogeneous collection of cities. This is possible due to the effort
in developing a novel geo-referenced PATSTAT database in Chapter 1
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that provides more granular information of inventor activities in cities
(ii) the joint analysis of technological relatedness and inter-city ties as
a determinant of the likelihood that a city will enter a new technology
domain (iii) and the moderating role of partner city size and focal city size
on the effect of inter-city ties and technological relatedness respectively.
Furthermore, we provide a supplementary analysis showing that entering
a new technology collaboratively increases the performance of the city in
the new technology.

3.1 Theory and Hypotheses

In this section, we give an overview of the literature on relatedness and
the literature on inter-city collaboration. We proceed by suggesting two
primary propositions: (i) there is a positive relationship between the ties of
city to external inventors (who have engaged in new technology) and the
likelihood that the city will enter the new technology (ii) there is a positive
relationship between the relatedness of a city’s technological base to a
new technology domain and the likelihood that the city will enter the new
technological domain. Furthermore, we propose a positive moderation of
the size (i.e. number of inventors located in the city) of the partner city
on the effect of inter-city ties on entry and a positive moderation of the
size of the city (which we call focal city size - the number of inventors
in the city) on the effect of technological relatedness on entry into new
technology domain.

The focus of this work in analyzing the effect of inter-city ties and techno-
logical relatedness on exploratory activities of economic agents in urban
areas as opposed to exploitative activities is based on the fact that explo-
ration require some level of flexibility and choices geared towards long
term innovation of technological piece that can later be exploited. These
different modes of technological entry (i.e., exploitative and exploratory)
are usually not at odds with each other as they are often combined such
that one reinforces the other (Lavie, Stettner, and Tushman, 2010). Al-
though the organizational literature has shown how exploratory activities
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of firms lead to long term performance and exploitative activities lead
to short term performance, the balance of both activities can enhance
the performance outcome in the short-long term depending on the mode
of balancing (Lavie, Stettner, and Tushman, 2010). The preference for
activities that enhance long-term performance can be useful to hedge lock-
in-effect economic agents may experience by choosing to refine existing
technologies.

3.1.1 Inter-city ties in co-invention network.

The ease with which cities explore new technology in different fields
do have implications for innovation and growth (Grossman and Help-
man, 1991). Many existing theories of diversification into new technology
emphasize external effects and the resulting agglomeration economies
(Krugman, 1991; Saxenian, 1994; Porter, 1998). The dense web of social
relationships in cities, as Glaeser and Gottlieb, 2009 points out, creates ag-
glomeration economies, which can lead to significant variance in innova-
tive events throughout time and space. For example, co-locating creative
individuals in the same area is attributed with encouraging interactions
in which “tacit knowledge” crucial to imaginative creativity is conveyed
and exchanged (Breschi and Lenzi, 2016). This web of connections fos-
ters the flow of localized knowledge and ideas between inventors and
firms, thereby boosting the innovative output of all local actors (Breschi
and Lenzi, 2016; Jaffe, Trajtenberg, and Henderson, 1993). Recent work
identifies the different structure of local network that enhances access to
new technology to include spatial proximity, and clique density (Breschi
and Lenzi, 2016). The argument for social proximity is that inventors
are more ready to share information with persons living in close prox-
imity based on trust, and because they believe there is a higher chance
of reciprocation (Agrawal, Kapur, and McHale, 2008; Breschi and Lenzi,
2016). On the other hand, when inventors are part of a tight-knit group, in
which there is an extensive collaboration among inventors, this facilitates
the faster spread of information in the network, allows for multiple path-
ways for the verification of the usefulness of new knowledge (Schilling
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and Phelps, 2007), and the monitoring of opportunistic behaviors among
actors (Breschi and Lenzi, 2016).

However, the reliance of cities on the local structure of their network to
develop new ideas may lead to loss of position in global urban ranking
(Burt, 2004; Neal, 2011). Also, since economic actors in the same cities
tend to converge towards a homogeneous pool of the same knowledge,
this will decrease the search space of economic actors in cities to develop
new varieties and increase the tendency of cities to get locked into spe-
cific path of technological process. External relationships to inventors
in other locations can therefore bring significant information that may
not be available within the focal city, hence broadening the scope of the
focal city’s search space (Breschi and Lenzi, 2016). These external rela-
tionships can provide exposure to specialized skills and human capital,
new information on market opportunities, and access to a larger stock of
technological solutions (Breschi and Lenzi, 2016; Kerr, 2010; Owen-Smith
and Powell, 2004). Furthermore, these direct external ties of cities imply
there is an existing collaboration between economic actors in the city and
the direct external inventors, as such there is an established professional
relationship between them that ensures mutual trust, familiarity with
working relationship, the existence of learning structure, and guaranteed
reciprocity. More importantly, these external inventors have been engaged
in inventive processes in the new technology domain, hence are reposito-
ries of knowledge in the domain. They understand the scope and use of
the new technology and can inform the inventors in the focal city on how
best to appropriate this new technology in a way that reduces search and
experimentation cost, and can eventually lead to economic actors in the
focal city successfully innovating in the new technology.

Hypothesis 1a: The ties of a city to external inventors engaged in a new
technology domain is positively associated with the likelihood that a city will

explore the new technology domain.

Nevertheless, these external inventors do not exist independent of the
innovative capabilities and other inventors in the city it is located in, as
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recent literature has shown that knowledge spillovers between inventors
and firms in a city can be facilitated by the cross-fertilization of ideas
being made possible by the city. The city plays a social and economic role
in attracting best talent and creating social space for cross-fertilization
of ideas that leads to knowledge spillovers between inventors located in
the city, subsequently, the increased capability of the inventor to innovate
leads to more innovative production and economic growth of the city.
This self-reinforcing relationship between the inventor and city can be
useful especially when the city has a large pool of inventors located in the
city (i.e., large “inventive size”). The external inventor of a focal city being
embedded in a city with large pool of inventors do have a second-order
effect on the focal city’s ability to explore new technology in two ways: (i)
it can refine the quality of technological information the city receives from
its ties by virtue of a more active social interaction or “local buzz” taking
place in the partner city. This local buzz can allow for quick validation of
technological flows (ii) increased opportunity to access a global pipeline
of heterogeneous inventors around the world, in which the formation of
links could provide information of new technologies.

Hypothesis 1b: The association between inter-city ties and the likelihood that a
city enters a new technology domain is positively moderated by the size of the

partner cities.

3.1.2 Principle of relatedness

Existing views pose that technology growth is path-dependent, and as
such, there is a need for inventors, firms, cities, or countries to exam-
ine the cost and benefit of entering into new technologies taking into
account their existing capabilities (Boschma, Balland, and Kogler, 2015;
Essletzbichler, 2015; Petralia, Balland, and Morrison, 2017). In the view
of Frenken, Van Oort, and Verburg, 2007, the extent to which technology
found in different regions are related is more important than the overall
stock of technology, suggesting the need for a path-dependent innovation
process for economic growth and development. The relatedness concept
relies on the premise that technology has a structure based on similarities
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and variations in how different forms of technology might be applied
(Petralia, Balland, and Morrison, 2017). Based on this concept, proximate
technology in what is called the “technology space” do share similar sets
of cognitive capabilities. These proximate technologies are close substi-
tutes, and the shared capabilities imply that a region competent in one
should be competent in the other (Breschi, Lissoni, and Malerba, 2003;
Balland et al., 2018). The exploration of proximate technologies by cities is
viewed as a “higher-order reflection” of the dynamics at the micro-level,
where inventors and firms located in these cities expand the scope of their
activities around competencies endowed in the cities (Balland et al., 2017;
Balland et al., 2018). Therefore entry into a technology is not random but
rather consistent with cities’ technology profiles. These economic actors in
regions compete through exploration of new technology to increase their
technology stock for further recombination. To do this requires a search
cost that increases around the cognitive distance between the technology
to be explored and current expertise (Atkinson and Stiglitz, 1969). Petralia,
Balland, and Morrison, 2017 identified two main channels through which
the proximity of existing expertise to new technology affects economic
actors’ possibilities for technology exploration: “economies of scope” and
“absorptive capacity”.

With respect to the “economies of scope”, related knowledge do share
common scientific principles, and as such having one of the technology
in the technological stock increases the possibility of exploring the other.
This is simply because the cost of capability acquisition is eliminated or re-
duced given the scientific experience in innovating in the other technology
(Breschi, Lissoni, and Malerba, 2003; Penrose and Penrose, 2009; Petralia,
Balland, and Morrison, 2017). “Absorptive capacity”, on the other hand,
relates to how past technology helps economic actors to perceive the im-
portance of new knowledge, the challenges that can be envisaged while
undertaking innovation in the new technology, how best to assimilate
it and combine it with existing technology piece, and how to utilize it
for commercial purposes (Cohen and Levinthal, 1990; Petralia, Balland,
and Morrison, 2017). It is the case, that a higher “absorptive capacity”
increases the ability to arrive at an informed decision on entry into new
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technology (Petralia, Balland, and Morrison, 2017).

Hypothesis 2a: The relatedness between a new technology domain and city’s
existing technology stock is positively associated with the likelihood that the city

enters into the new technology domain.

The endowment of technological pieces in a city is not only the outcome
of economic actor’s learning process and accumulation of capabilities, it
is also determined by larger systems like norms and institutions in cities
that support them (Niosi et al., 1993; Edquist and Lundvall, 1993; Patel
and Pavitt, 1994; Metcalfe, 1995). Not only do the potential and costs of
investigating new technologies depend on the inventive environment, but
so do how economic players perceive opportunities and estimate costs
(Petralia, Balland, and Morrison, 2017). Many studies have shown differ-
ences in the quality of capabilities endowment in countries and regions
do influence diversification activities of economic actors (Furman, Porter,
and Stern, 2002). The scope and quality of capabilities in a geographic
domain affect the economic actor’s abilities to quantify the benefit and
cost of new technological pieces and appropriate economics of scale. Also,
the lack of indigenous capabilities will put upward pressure on the cost
of exploration, since economic actors will be forced to invest in technolog-
ical accumulations which might delay the acquisition of new technology.
Therefore access to a pool of technological actors strengthens the eco-
nomic actor’s capacity to produce and provide more technological space
that can be explored thereby avoiding “lock-in traps” (Levitt and March,
1988; Levinthal and March, 1993). Furthermore, the ability of economic
actors in a city to adequately interpret technological flow coming into
the city is hinged on the inventive size of the city, this is because the co-
location of creative individuals within the city will allow for formal and
informal interaction on the scope of the new technology. This network of
relationships allows for localized technological flows between inventors
within the city and ensures rapid diffusion of ideas within the city (Jaffe,
Trajtenberg, and Henderson, 1993).

Hypothesis 2b: The association between a city’s technological relatedness and the
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likelihood that the city enters into a new technology domain is positively
moderated by the size of the city.

3.2 Data and Sample

Based on the dataset developed in Chapter 1, we examine the techno-
logical activities of 1220 cities located in Europe, North America, Asia,
Oceania, Africa, and South America between the period 2005-2014. This
list of cities includes both global and non-global cities in developed and
developing countries, and they account for over 50% of the patent activi-
ties observed between 2005-2014. The list of cities is partly drawn from the
OECD, 2012 list of functional urban areas (FUA) which define a FUA to
“consist of densely inhabited city and of a surrounding area (commuting
zone) whose labor market is highly integrated with the city”. Also, of the
1220 cities, 78 cities in non-OECD countries were drawn from the GaWC
research project (Beaverstock, Smith, and Taylor, 1999). These cities are
either alpha cities or beta cities (see Chapters 1 and 2 for definition). These
78 cities are regionalized similarly as the functional urban areas selected
from OECD, 2012. On average each country does have approximately
16 cities. The United States has the highest number of cities on the list
with 211 cities. At the level of continents, 56.4% of the cities are in Europe,
25.8% in North America, 10.9% in Asia, 4.6% in South America, 1.6% in
Oceania, and 0.6% in Africa. Table 13 shows the number of 4-digit IPC
in each of the 34 technology fields. These technology fields classification
is the same as that used by EPO and WIPO for their statistics. Each of
the 646 4-digit IPCs considered in this study belongs to one technology
field. From Table 13 we have that Textile and paper machines do have
fifty 4-digit IPCs, representing the technology field with the most number
of 4-digit IPCs. While Semi-conductors do have only one 4-digit IPC (i.e.,
HO1L).

We used the georeferenced patent data developed in Chapter 1 to con-
struct all the variables in this analysis. The georeferenced patent data
draw from multiple patent sources which are available publicly and doc-
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Technology fields Number of Technology fields Number of
4-digit IPCs 4-digit IPCs

0 Audio-visual technology 6 Macromolecular chemistry, polymers 7
1 Basic communication processes 10 Materials, metallurgy 16
2 Basic materials chemistry 33 Measurement 25
3 Biotechnology 8 Mechanical elements 21
4 Chemical engineering 23 Medical technology 12
5 Civil engineering 31 Micro-structural and nano-technology 4
6 Computer technology 12 Optics 10
7 Control 13 Organic fine chemistry 8
8 Digital communication 2 Other consumer goods 49
9 Electrical machinery, apparatus, energy 30 Other special machines 39
10 Engines, pumps, turbines 35 Pharmaceuticals 2
11 Environmental technology 9 Semiconductors 1
12 Food chemistry 19 Surface technology, coating 12
13 Furniture, games 17 Telecommunications 10
14 Handling 13 Textile and paper machines 50
15 IT methods for management 1 Thermal processes and apparatus 30
16 Machine tools 43 Transport 45

Table 13: 4-digit IPC aggregation into technology fields.

ument information on the content of inventions done by persons or firms.
Some shortcomings have been identified in using patent databases of
this kind for analysis: (a) patented propensities vary across cities and
technology fields, (b) patent databases often do not capture all inventions
happening in a location, as not all inventions are patented, (c) there are
differences in the economic and technical values of inventions (Griliches,
1990). The first concern implies there is a need to control for city and
technology field specific effects, and the other concern on technology and
economic value only concerns the supplementary analysis done on post-
entry performance. Another disadvantage specific to our georeferenced
database is the differences in the quality of georeference work done across
countries where cities are located, and this data quality needs to be con-
trolled for. Despite these limitations, the use of patent indicators are an
approximation for technological indicators in cities, and has been used in
different empirical work on regional innovation (Rigby, 2015; Breschi and
Lenzi, 2016; Vlčková, Kaspříková, and Vlčková, 2018; Balland et al., 2020;
Balland and Boschma, 2021) and some of these patent indicators correlate
with important economic growth indicators of cities like employment rate,
and GDP (Mewes and Broekel, 2020). In our case, patent applications
provide a good measure of technological search done by inventors in
cities, and these can also be seen as an indication that inventors in the city
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are pursuing capacity development in a specific technological area. This
effort can either lead to a successfully granted application or otherwise.

3.3 Measures and Method

The dependent variable “entry” into technology class is measured using
the geo-referenced patent statistical database developed in Chapter 1.
Patents in the database are originally classified in at least one of the 64,000
eight-digit technology classes based on the IPC system. These 64,000
IPCs represent a particular technical function (Leten, Belderbos, and Looy,
2016), and can be aggregated into 646 4-digit IPC classes. The aggregated
IPCs into 4-digit is what is being used in this study. Also, we considered
1220 cities given the available number of cities in the georeferenced patent
statistical database developed in Chapter 1. At the beginning of the
study i.e., 2005, cities do have a heterogeneous number of IPCs available
to explore (see Figure 21a). Table 14 provides an overview of the top
100 cities with the highest percentage of exploration done given their
exploratory space.

From Table 14 we have that cities in Asia predominantly explored more
IPCs in the period considered. For example, Shenzen explored 71.27% of
the IPCs available in its exploratory space. In Europe, we have that Berlin
explored the most number of IPCs, exploring 59.06% of the IPCs available
in its exploratory space as at the beginning of the period examined (i.e.,
2005). The observation is that there is a significant variation in how many
IPCs are available to be explored by cities. As of 2005, a city like San
Francisco only had 54 IPCs to be explored, while Beijing had 77 IPCs to be
explored. We also observe more variation in exploratory space between
cities in the United States (149.2) compared to cities in China (107.1).
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Cities Country New IPCs Explored IPCs Relatedness External ties

0 Shenzen China 181 0.7127 0.0108 0.0969
1 Hangzhou China 223 0.6951 0.0105 0
2 Shanghai China 85 0.6824 0.0131 0.1034
3 Chongqing China 313 0.6805 0.0091 0
4 Dalian China 287 0.6655 0.0089 0
5 Jinan China 343 0.6647 0.0085 0
6 Xian China 260 0.6615 0.0085 0
7 Guangzhou China 120 0.6583 0.0132 0
8 Seo South Korea 100 0.65 0.0191 0.0769
9 Dalseong South Korea 135 0.6444 0.0125 0.0345
10 Deokjin South Korea 236 0.6441 0.0104 0
11 Sebuk South Korea 260 0.6385 0.0097 0.0361
12 Heungdeok South Korea 257 0.6381 0.0092 0.0244
13 Seoul South Korea 30 0.6333 0.0212 0
14 Chengdu China 232 0.6207 0.0091 0
15 Fuzhou China 407 0.6192 0.0078 0
16 Gimhae South Korea 105 0.6095 0.0148 0
17 Gwangsan South Korea 184 0.6087 0.0115 0.0268
18 Seongsan South Korea 230 0.6087 0.0116 0.0071
19 Suncheon South Korea 313 0.6006 0.009 0.016
20 Gumi South Korea 275 0.6 0.0099 0.0121
21 Wuhan China 251 0.5976 0.0092 0
22 Taipei Taiwan 109 0.5963 0.0146 0.0615
23 Nam South Korea 172 0.593 0.0128 0.0196
24 Berlin Germany 127 0.5906 0.0138 0
25 Dresden Germany 211 0.5877 0.0107 0.0081
26 Bangalore India 372 0.586 0.008 0.0367
27 Beijing China 77 0.5714 0.0123 0.0455
28 Tokyo Japan 21 0.5714 0.0182 0
29 Shenyang China 226 0.5708 0.0096 0
30 Gyeongsan South Korea 417 0.5659 0.0078 0.0042
31 Vancouver Canada 172 0.564 0.0114 0
32 Zurich Switzerland 158 0.557 0.0125 0.0114
33 Hefei China 419 0.5561 0.0073 0
34 Vienna Austria 207 0.5556 0.0112 0
35 Hanover Germany 236 0.5551 0.0098 0
36 Munich Germany 74 0.5541 0.0171 0.0488
37 Stuttgart Germany 87 0.5517 0.014 0.125
38 Jinju South Korea 322 0.5466 0.0091 0.0227
39 Leipzig Germany 341 0.5455 0.0079 0.0161
40 Pune India 507 0.5365 0.0068 0.0037
41 Cuyahoga United States 140 0.5357 0.0113 0.0133
42 Wake United States 183 0.5355 0.0099 0.0102
43 Dusseldorf Germany 146 0.5342 0.0123 0
44 Charlotte United States 190 0.5316 0.0111 0
45 Minneapolis United States 79 0.5316 0.0152 0.0238
46 Changsha China 322 0.5311 0.0082 0.0117
47 Zhengzhou China 373 0.5308 0.0079 0
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Cities Country New IPCs Explored IPCs Relatedness External ties

48 Istanbul Turkey 463 0.5292 0.0073 0
49 Xiamen China 386 0.5259 0.008 0
50 Detroit (Greater) United States 97 0.5258 0.0138 0
51 Frankfurt am Main Germany 111 0.5225 0.0145 0
52 Los Angeles (Greater) United States 48 0.5208 0.0186 0.08
53 Taichung Taiwan 169 0.5207 0.0104 0
54 Warsaw Poland 412 0.517 0.008 0
55 Karlsruhe Germany 189 0.5132 0.0117 0
56 Gangneung South Korea 435 0.5126 0.0072 0.0045
57 Miami (Greater) United States 125 0.512 0.0121 0
58 Cologne Germany 155 0.5097 0.0116 0.0127
59 Ingolstadt Germany 294 0.5068 0.009 0
60 Hamburg Germany 119 0.5042 0.0128 0
61 Qingdao China 365 0.5041 0.0083 0.0054
62 New Delhi India 478 0.5021 0.0067 0.0042
63 Atlanta United States 102 0.5 0.0169 0
64 Dallas United States 90 0.5 0.016 0.2222
65 Ruhr Germany 112 0.5 0.0123 0
66 Iksan South Korea 349 0.4986 0.0085 0.0057
67 Grenoble France 227 0.4978 0.0098 0.0177
68 Helsinki Finland 165 0.497 0.0105 0.0244
69 Chuncheon South Korea 379 0.496 0.0079 0
70 Cincinnati United States 123 0.4959 0.0128 0.0492
71 Constance Germany 303 0.495 0.008 0
72 New Haven United States 120 0.4917 0.0149 0.0593
73 Columbus United States 171 0.4912 0.011 0
74 Wonju South Korea 387 0.491 0.0082 0.0105
75 Houston United States 108 0.4907 0.0126 0.0189
76 TelAviv Israel 147 0.4898 0.0111 0.0139
77 Seattle United States 96 0.4896 0.0159 0.0851
78 Chennai India 510 0.4882 0.0073 0
79 Nuremberg Germany 138 0.4855 0.0126 0
80 Edmonton Canada 327 0.4832 0.0097 0
81 Madrid Spain 292 0.4829 0.0082 0
82 Heidelberg Germany 164 0.4817 0.0106 0.0253
83 Jeju South Korea 432 0.4815 0.0078 0
84 Tulsa United States 133 0.4812 0.0119 0.0156
85 Washington (Greater) United States 79 0.481 0.0206 0.0526
86 Greater Sydney Australia 192 0.4792 0.0102 0.0217
87 Sao Paulo Brazil 350 0.4771 0.0082 0.006
88 Greenville United States 250 0.476 0.0086 0.0336
89 Aachen Germany 225 0.4756 0.0092 0.0093
90 Portland United States 143 0.4755 0.0121 0.0147
91 Hartford United States 162 0.4753 0.0118 0
92 Mannheim-Ludwigshafen Germany 148 0.473 0.0109 0.0429
93 Calgary Canada 282 0.4716 0.0086 0
94 Basel Switzerland 293 0.471 0.0083 0.0072
95 San Diego United States 102 0.4706 0.012 0.0833
96 Toronto Canada 85 0.4706 0.0149 0.1
97 Phoenix United States 137 0.4672 0.0116 0.0625
98 Boulder United States 213 0.4648 0.009 0
99 San Francisco (Greater) United States 54 0.463 0.0185 0.4

Table 14: Top 100 cities: These are the top cities that explored most of the
available IPCs new to them. The number of explored IPCs are presented as a
percentage of the IPCs available for exploration at the beginning of the study
period i.e. 2015.
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3.3.1 Exploring new technology domain

(a)

(b)

Figure 21: (a) Exploratory space vs Cities rank: This shows the number of
IPCs new to the city in 2005 and 2014. The cities are ranked (from left to
right) based on the number of inventors located in the city in 2005. We see
that highly ranked cities do have lower exploratory space, and exploratory
space for cities in 2014 is smaller than what was available in 2005. (b) Kaplan
Meier plot: The y-axis is the probability of cities not entering a technology
domain after time t.

For each of the 1220 cities, we examine entries made to IPCs that are new
to the city between the period 2005-2014. An IPC is said to be new to the
city in year t, if no economic actor in the city has produced a patent in that
IPC during the last 5 years. The choice of 5 years window as a yardstick
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for “newness” of IPC to the city is consistent with the literature (Leten,
Belderbos, and Looy, 2016; Ahuja and Morris Lampert, 2001; Belderbos
et al., 2010). The assumption is that economic actors not being active in an
IPC leads to a depreciating knowledge base of the city in that IPC. Figure
21a shows the distribution of the number of IPCs new to the city as of
2005 and 2014 as a function of the rank of cities based on inventor sizes.
Generally, we observe that cities with a large number of inventors do have
few IPCs to explore.

The dataset used in the analysis of the likelihood of entering a technology
consists of all city-IPC combinations that are new to the 1220 cities. Before
the study period, the cities had patents in 177 IPCs on average based on
the patents produced between 2000-2004. This implies that cities had
469 IPCs on average available for exploration, resulting in a dataset with
571,916 observations between the period 2005-2014 representing new to
the city IPCs which will be potentially explored by the city. From Figure
21b, we observe that exploration was done in 18.02% of the observations
i.e. 103,049. This exploration was done by 1217 cities in all the 646 IPCs.
On average each of these 1217 cities explored 85 IPCs. Also, we observe
that a city is less likely to enter a new technology domain the closer we
get to the end of the period considered in the analysis. The cohort of cities
entering a new technology is steady across time. For any given year, entry
is observed for approximately 2% of the dataset. The cumulative density
of entry observed in the data suggests that most entry was done in the
second year.

The dependent variable “entry” takes the value 1 if a city starts to explore
a new technology domain by filing for a patent instantiated by the IPC
corresponding to the technology domain, and 0 if the city is yet to explore
or patent in the new technology domain. When exploration is done by a
city in a given IPC, such IPC is no longer considered for exploration in the
city - in essence, we do not consider cases of re-entry in subsequent years.
The identification of time of entry might be impacted by censoring. For
example, it might be the case that entry for some city-IPC combinations
were not observed due to the limited study period, and the possibility
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of entry after the study period is unknown. The latter which is referred
to as right censoring is taken into account in the empirical model. If we
consider the year 2004 as the first year at risk, we have that on average
successful exploration into IPCs took cities approximately 4 years and
10 months. For cities in Asia, North America, Europe, Oceania, South
America, and Africa the average time spent by cities in exploring an IPC
are 4 years and 6 months, 4 years and 8 months, 4 years and 10 months,
4 years and 10 months, 5 years and 7 months, 5 years and 4 months
respectively.

3.3.2 Measure of technological relatedness

Scherer, 1982’s method for constructing inter-industry technology re-
latedness has been the most influential way of capturing technological
relatedness. In this methodology, a link exists between two industries, if a
significant portion of the R&D carried out in one industry is employed
in the other industry (Breschi, Lissoni, and Malerba, 2003; Scherer, 1982).
Another approach in the relatedness literature is that proposed by Jaffe,
1989 that captures the relatedness in the technological structure of firms
using the cosine index to measure the correlation of firm’s technological
structure in different industries (Breschi, Lissoni, and Malerba, 2003).

In this study, we are interested in measuring the relatedness of the technol-
ogy base of cities with new technology available to the city for exploration.
Particularly, we identify that not all technology pieces in a city’s technol-
ogy base are important as some of them will be distant from the new
technology in the technology space. Therefore we look at the relatedness
measure of technology pieces in the cities technology base that are directly
connected to the new technology in the technology space. We start by
first computing a relatedness measure for each pair of IPCs in a given
year. We adopted the Engelsman and Raan, 1991 approach for measuring
relatedness as the number of co-occurrence of pair of IPCs on all patents
in that given year. The premise for this is that two IPCs co-occurring
on a patent document is a signal of similarity in scientific principles and
there is a possibility of spillovers between the IPCs (Breschi, Lissoni, and
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Malerba, 2003).

Formally, let M be the universe of patents at a given year t. Let Fim = 1

if patent document m ∈M contains the 4-digit IPC code i = 1, 2, ..., 646,
and Fim = 0 otherwise. The number of patents with IPC i in year t is
given by Nit =

∑︁
m Fim, while the number of patents classified in both

IPCs i and j in year t is Cijt =
∑︁
m FimFjm. Therefore, we have a co-

occurrence square matrix C(t) for year t with size 646× 646. This matrix
is used to derive a relatedness measure for cities technology base (cities’
IPCs stock) to new technology (new IPCs), in such a way that the measure
does not depend on the size of patents in the IPCs, otherwise we will be
overestimating the linkages for technology piece or IPCs with larger sizes.
The relatedness measure for a city’s technology base I(t) to a technology
k new to the city at any given year t is given as:

Rikt =
1

|I(t)|
∑︂
i∈I(t)

Cikt√
NitNkt

(3.1)

Equation 3.1 is known as the cosine similarity measure. The equation
shows the relatedness of IPCs after adjusting for the number of patents
produced in an IPC in a given year (i.e., size effect). The measure intends
capturing the degree of similarity between a city’s existing technology
stock with the new technology. This measure is lagged one-year when
introduced into the empirical model.

Other propositions for capturing technological relatedness include the
work done by Leten, Belderbos, and Looy, 2016. They computed related-
ness between technology pieces by considering citation patterns between
technologies. A pair of technology domains is deemed related if the cita-
tion pattern between patents in the two domains is more than random.
These citations across domains are indicative of common heuristics (Leten,
Belderbos, and Looy, 2016). Also, recent efforts in constructing relatedness
of products in the trade literature propose measures of relatedness relying
on the use of machine learning models to build relatedness matrix that is
beyond an indicator of shared knowledge but more importantly a matrix
that is predictive of what product is feasible to a country considering an
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out-of-sample prediction task (Tacchella et al., 2021). As demonstrated in
Chapter 2, such machine learning based embedding techniques obtained
by considering higher-order interactions through complex but less inter-
pretable models are shown to provide better results in terms of predicting
feasible product space of countries.

Figure 22 shows the technological communities of IPCs identified based
on the technological relatedness matrix in 2014. The nodes are IPCs and
the edges are a measure of relatedness between IPCs, reflecting the com-
mon heuristics and scientific capabilities between IPCs. The technology
relatedness matrix is almost fully complete, hence we prune the matrix
for better visualization by discarding edges with weight less than the 65th
percentile of the distribution of the weight of edges.

Figure 22: Relatedness of IPCs in 2014. First, we identify communities of
IPCs based on the relatedness matrix. The black nodes represent IPCs the
city has no comparative advantage in, while the red nodes represent IPCs
where the city does have a comparative advantage, and the yellow nodes are
the IPCs the city explored.

The Louvain community detection algorithm (implemented in Gephi)
is applied to the matrix to identify communities of IPCs. We observe
that there are five communities optimally identified by the community
detection algorithm. These communities are: (i) scientific fields (SCI)
which include predominantly IPCs in “Basic materials chemistry”, “Food
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chemistry”, “Macromolecular, chemistry, polymers”, and “Organic fine
chemistry” (ii) engineering fields (ENG) which predominantly include
IPCs in “Chemical engineering”, “Civil engineering”, “Control”, “Electri-
cal machinery,apparatus, energy”, “Engines, pumps, turbines”, “Machine
tools”, “Materials, metallurgy”, “Mechanical elements”, “Semiconduc-
tors”, “Surface technology, coating”, “Thermal processes and apparatus”,
“Measurement”, and “Other special machines” (iii) technological fields
(TECH) which predominantly include IPCs in “Audio-visual technol-
ogy”, “Basic communication processes”, “Computer technology”, “Digital
communication”, “Environmental technology”, “IT methods for manage-
ment”, “Micro-structural and nano-technology”, and “Telecommunica-
tions” (iv) medical fields (MED) which predominantly include IPCs in
“Medical technology”, “Biotechnology”, “Optics”, and “Pharmaceuticals”
(v) other fields (OTHERS) which predominantly include IPCs in “Furni-
ture, games”, “Handling”, “Other consumer goods”, “Textile and paper
machines”, and “Transport”. The inter-community linkages between com-
munities shown in the figure are only limited to linkages that maximally
spans the graph (i.e., only strong links). The results show that engineering
fields do have the most number of IPCs in its communities, while the
medical field do have the least number of IPCs. Figure 22 compares the
technological structure of two cities with different number of inventors -
Vancouver and Rio de Janeiro. In 2014, the number of inventors located in
Vancouver and Rio de Janeiro is 1997 and 385 respectively. In examining
the technological structure we observe that Vancouver does have a com-
parative advantage in more IPCs than Rio de Janeiro and has entered into
578 IPCs compared to 305 IPCs done by Rio de Janeiro. Due to the smaller
exploratory space left for Vancouver, we see that in 2014, only 7 IPCs were
explored compared to 18 IPCs explored by Rio de Janeiro. Most of Rio
de Janeiro’s new IPCs explored in 2014 were from the engineering field
(ENG).
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3.3.3 Measure of inter-city ties

Generally, cities are inter-connected, and economic actors rely on other
actors to create value and access information. The information flow in
this collaborative network could entail technical possibilities yet to be
explored in certain locations (Rigby, 2015). The greater the interaction
of economic actors of the city with economic actors in other cities, the
more likely it is that the new technology located in other cities will be
added to the city’s technology base. The implication of this is that not all
external economic actors are useful for entering the new technology, as
some external economic actors might only have experience inventing in
technology piece that already exists in the city’s technology base, hence
such ties to the city are redundant.

The measure of external ties in this study is specific to external inventors
that have previously produced a patent in the technology new to the city.
Formally, let vijt be the number of external inventors (that have produced
a patent in IPC j = 1, ..., n new to city i) located in other cities but having
ties to inventors in city i in a given year t. For each of the ties to the
external inventors, the weight of each tie wijt is the number of patents
inventors in the city produced with the external inventor up to t− 1, and
w̄ijt is the average weight across all ties. Therefore at any given year t, a
city i do have a profile of external ties for technology piece new to the city,
which is given as vector Mit = (w̄i1t, ..., w̄int). Hence, external tie of city i
relevant for IPC j new to the city at any given year t is w̄ijt. This measure
is lagged one-year when introduced into the empirical model. According
to Hypothesis 1a, we expect that inter-city ties will positively affect the
likelihood that the city enters a new technology domain.
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Figure 23: Distribution of relatedness and inter-city ties: The Y-axis is the
normalized average value of relatedness and inter-city ties for observations
where entry was made specifically in IPCs belonging to the technology field.
We use a min-max normalization.

Figure 23 shows predominantly the importance of inter-city ties for ex-
ploration, we see that this is importantly the case for Basic Materials
chemistry and less so for Pharmaceuticals, and Semiconductors. For these
technology fields, for a city to enter into IPCs belonging to them they
need to have developed technological stock that is related to them, this is
moreso the case for Pharmaceuticals.

There are other characterizations of technological flows from neighboring
cities. For example, Rigby, 2015 in his work assumed that the likelihood
that a city enters a new technology is affected by its proximity to other
cities, and if these other cities are competitively producing the new tech-
nology. To quantify this, they compute a co-invention matrix between
cities and multiplied this by a bi-adjacency matrix that captures the tech-
nological advantage of cities in a given technological area. Entries in the
bi-adjacency matrix are 1 if the revealed technological advantage of the
city in the technology domain is at least 1, otherwise, they are 0. Hence
the product matrix only captures flows of information from partner cities
with competence in the technology. Another measure of inter-city ties
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examines external social proximity between inventors living within and
outside the focal city (Breschi and Lenzi, 2016). This is computed as the
sum of the reciprocal of the geodesic distance between every inventor
in the focal city and inventors elsewhere normalized by the number of
inventors in the focal city. The measure being 0 implies that the focal city
has no connection to other cities.

Measure of focal and partner city sizes.

An appropriate measure of city sizes would be the population size of the
city. However, we could not obtain this information for more than half
of the cities across the period in the study. Therefore, we focus on the
productive population size of the city, which in our case is the number
of inventors in the city in a given year. This measure has been shown
to behave similarly to the population size. For example, the study by
Bettencourt, Lobo, and Strumsky, 2007, showed similar findings when
examining the effect of the number of inventors in the city and the pop-
ulation size of the city on patenting activities in the city. Both measures
showed a superlinear effect on patenting activities in cities. Therefore a
focal city size is simply the number of inventors located in the city, while
a partner city size is the average number of inventors in the partner cities
of the focal city. We expect that the focal city size and partner city size
should positively moderate the effect of relatedness and inter-city ties on
the likelihood of entry respectively.

3.3.4 Control variables

In the empirical model, we included some control variables to capture the
importance of agglomeration activities on exploratory activities of cities.
Firstly, the inventor density in each of the cities accounts for the city scale
effect (Bettencourt, Lobo, and Strumsky, 2007; Lobo and Strumsky, 2008).
This is computed as the ratio between the total number of inventors in a
given city at a given year and the city land area in square kilometers. This
variable is lagged one year and the log of the variable is inserted in the
empirical model. To control for the effect of multinational corporations
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(MNCs) in enabling the formation of inter-city ties, we compute the share
of foreign patents in a city. Although, an appropriate measure of accounting
for MNCs effect would be to identify the share of relevant ties that resulted
from the same firms located in different cities, to do this would require
a well-disambiguated applicant name in the dataset, which is a current
limitation of the patent database we are using.

In addition, we compute the cognitive distance between the cities core
technological area from the new technology (this is called the distance
from core IPC). Since cities that are cognitively close to a new technology
area will explore the new technology. To do this, for any given year, we
identify the IPC a city has the most number of patents in (which we refer
to as the core IPC of the city), then we compute the shortest network
distance between the core IPC and the technology domain new to the
city in the technology space (i.e., co-occurrence network of IPCs). The
shortest distance is simply the least number of IPCs between them in
the technology space. Also, we include a control for the depreciating
number of IPCs left for the city to enter by counting the number of existing
IPCs the city has in its technology base at every given year. We also
include the IPC growth rate to control for the attraction of some IPCs
at some point in time. The IPC growth rate is computed as the annual
growth rate of patents produced in the given IPC. We included a measure
of economic complexity of cities, which is shown to be associated with
diversification behaviors of firms, regions, and countries. We use the
“method of reflection” proposed by Hidalgo and Hausmann, 2009 to
measure the economic complexity of cities.

Furthermore, we include a measure of knowledge diversity to capture if
the city is a technologically diverse city, by computing the Blau index of
diversity. First, we compute the share of patent of each IPCs in the city
based on the city’s patent stock in the last five years. Next, we took the
sum of the squares of the reciprocal of each IPC patent share resulting in
the Herfindahl Index, then we took the reciprocal of the Herfindahl index
to obtain the Blau index. We also included controls for city size, which
we define as the number of inventors that produced a patent in the city
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in that year. Also, we control for the quality of the geo-referenced patent
statistical database i.e., the data quality of the country the city is located
in. The data quality in a country in a given year is the ratio between the
number of patents in the country that have geo-referenced information
for at least one inventor and the total number of patents in the country.

Finally, the empirical specifications include city, technology, and year
fixed effects. In the empirical specification, we stratified the Cox PH
estimation at the level of cities. This is done to control for any city-specific
effect and it is equivalent to running a Cox proportional hazard with
shared frailty model. Although, the latter explicitly test the hypothesis
that there is a city-specific effect.

3.3.5 Empirical model.

The empirical model used is the Semi-parametric Cox proportional hazard
(PH) model (stratified at the level of cities) - this is because the dependent
variable is time-dependent entry process. The Cox PH model is generally
used in survival analysis studies for modeling outcome variables that
are time-dependent. This time is termed failure/event/survival time,
or in our case entry or exploratory time. The analysis of time to event
appears in many applied fields, such as medicine and public health (time
to death), finance (time to loan default), and engineering (time to fail-
ure of an electronic component). In survival analysis, there are three
requirements needed for the proper definition of the outcome variable:
(i) a well specified time of origin (ii) scale for measuring time (iii) a clear
definition of an event. Generally, we take the first year of risk to be the
year 2004, and we assume that the exploration done by cities in an IPC is
a one time event as re-entry into the same IPC is not allowed, and as such
the statistical problem can not be characterized as a recurrent event (i.e.,
ordered multivariate exploratory time problem).

An important feature of survival analysis models is that it is characterized
by a process called censoring. This is when we have information about the
survival time of the city but the exact time is unknown. This sometimes
arises from the city not exploring an IPC before the end of the study or the
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city or IPC not being observed after some period, either due to the absence
of patenting activities. There are two major types of censoring: (i) right
censoring: this arises when cities enter the study at different times, the real
entry time could be greater than the observed time of entry. Therefore the
city’s entry time becomes incomplete, as the city might enter the IPC at
a time we do not know which is beyond the end of the observed period
(i.e., 2014), resulting in a right censored data. This type of censoring is
accounted for by the empirical model (ii) left censoring: this arises when
the true time of entry for the city is before the period of observation.
Although, this is difficult to deal with given that we have a georeferenced
database that starts from the year 2000, in which case certain cities may
have explored certain IPCs before the year 2000. For this reason, the
analysis was done for the period 2005-2014, in other to give an interval of
5 years i.e., 2000-2004, to observe entries made by cities into IPCs. IPCs
that were not explored by the city within the period 2000-2004 constitute
a pool of IPCs to be explored between 2005-2014. The literature suggests
this is a reasonable number of years to determine exploratory activities
(Leten, Belderbos, and Looy, 2016).

Semi-parametric Cox proportional hazard model.

1 We used the Semi-parametric Cox proportional hazard (PH) model Cox,
1972 as opposed to other survival models because when the PH model is
used to estimate the hazard function h(t), it does not require apriori an
assumption of how h(t) is distributed. Also, the model fits the baseline
hazard h0 from the data. An important attribute of the model that we
expect to find is that the baseline hazard should decline over time. This
attribute reflects the stability in cities’ choice of entry over time (Leten,
Belderbos, and Looy, 2016).

Formally, to define the hazard of entry, let Xij be a vector of explanatory
variables (i.e., relatedness and inter-city ties), and Yij be a vector of control
variables that may affect the distribution of the time a city enters an IPC.

1Although an alternative continuous model is the cloglog, since the cloglog model with
period-specific intercepts is equivalent to grouped-duration of Cox PH model (Hess and
Persson, 2010). However, given the scale of the dataset, we had initial value problem issues.
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The hazard of entry h(t) in the Cox PH regression model (Cox, 1972) is
given as:

h(t|X,Y) = h0(t) exp(βX+ γY) (3.2)

An important observation in the model relevant for the proportional
hazard assumption is that the baseline hazard h0 is a function of time
and does not involve either explanatory or control variables, while the
exponentiated expression involves X and Y but not time. X and Y have
multiplicative effects. The model is assuming that the hazard for any city
i entering an IPC j is a fixed proportion of the hazard for any other city î
entering the IPC j i.e.,

hij(t|Xij,Yij)

hîj(t|Xîj,Yîj)
= exp

[︁
(βXij − βXîj) + (γYij − γYîj)

]︁
(3.3)

The interpretation of the coefficients βk of variable Xk is the log hazard
ratio. Therefore, the exp(βk) is the hazard ratio associated with a change
in variable Xk ∈ X. Furthermore since P (t ≤ T < t + δt|T ≥ t,Xk) ≈
h(t|Xk)∆t, we have that:

exp(βk) ≈
P (t ≤ T < t+ δt|T ≥ t,Xk + 1)

P (t ≤ T < t+ δt|T ≥ t,Xk)
, for all t ≥ 0.

This implies that exp(βk) can be loosely interpreted as the conditional
probabilities of city exploring an IPC in the near future given the city
survives at time t. Finally, exp(βk) − 1 is interpreted as the percentage
change in hazard, when Xk increases by one unit, after adjusting for other
variables.

Although, the Cox PH model has been used extensively in the analysis
of time-dependence dynamics in trade and innovation (Leten, Belderbos,
and Looy, 2016; Besedeš, 2008; Nitsch, 2009). However, not account-
ing for unobserved heterogeneity in the econometric specification can
result in “spurious negative duration dependence of the estimated haz-
ard function”, and a bias parameter (Hess and Persson, 2010). Although
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augmenting the Cox PH model by specifying a frailty term seems to take
care of this issue, but this is often computationally time consuming when
applied to big dataset like ours. In light of this, our analysis accounts for
the unobserved heterogeneity of cities by stratifying the Semi-parametric
Cox PH model at the level of cities. This is a similar methodological ap-
proach employed by Besedeš, 2008 and has the advantage of controlling
for unobserved heterogeneity by “allowing for group-specific variation in
the baseline hazard” (Hess and Persson, 2010).

3.4 Results

Table 15 shows the descriptive statistics and correlations for the depen-
dent and explanatory variables in the empirical model. Inter-city ties and
technological relatedness show a positive relationship with entry. The
table shows a higher positive correlation between technological related-
ness and entry when compared to the correlation between inter-city ties
and entry. Also, other control variables do have a significant positive
relationship with entry, except for the variables distance from core IPC
and share of foreign patent. The negative correlation between distance
from core IPC and entry suggests that the closer the city’s core technology
area is to the new technology domain the more likely the city will enter
the new domain. The negative correlation between share of foreign patent
and entry suggests that cities are less likely to enter a new IPC if a large
share of their patent is foreign. The statistics in the table provide some
prima facie evidence that the likelihood of a city to enter new technology
domain increases with an increase in ties to external inventors who have
previously invented in the new domain, and also with an increase in
the city’s technology relatedness with the new technology domain. The
highest correlation in the table is 0.368 - which is found between focal
city size and inventor density and shows a strong significant positive
relationship, implying that cities with large pool of inventors have more
geographically dispersed inventors.
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Table 15: Descriptives and correlations of variables in the analysis of entry.

Tables 16 and 17 present the results of the Cox proportional hazard model
without stratification and with stratification respectively. The model
without stratification is used as a benchmark, and what we observe in
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comparison with the stratified model is that (i) the stratified model has
a better explanatory power when we examine the pseudo-likelihood of
both models (ii) the moderating role of focal city size on the effect of
relatedness on entry is significant in the non-stratified model, while in the
stratified model this is not the case.

Model 1 Model 2 Model 3 Model 4 Model 5
Inter-city ties 1.006 1.009∗ 1.006∗ 1.009∗∗

(0.00305) (0.00343) (0.00304) (0.00342)
Technological relatedness 1.053∗∗∗ 1.053∗∗∗ 1.053∗∗∗ 1.053∗∗∗

(0.0106) (0.0106) (0.0106) (0.0106)
Inter-city ties × Partner city size 1.009∗ 1.009∗

(0.00374) (0.00377)
Technological relatedness × Focal city size 1.005∗ 1.005∗

(0.00226) (0.00227)

Distance from core IPC 1.078∗∗∗ 1.077∗∗∗ 1.077∗∗∗ 1.077∗∗∗ 1.077∗∗∗

(0.0154) (0.0154) (0.0154) (0.0153) (0.0153)
Knowledge diversity 1.062∗∗∗ 1.063∗∗∗ 1.063∗∗∗ 1.062∗∗∗ 1.062∗∗∗

(0.0110) (0.0110) (0.0110) (0.0110) (0.0110)
Existing IPCs 1.659∗∗∗ 1.650∗∗∗ 1.650∗∗∗ 1.657∗∗∗ 1.657∗∗∗

(0.0312) (0.0309) (0.0309) (0.0317) (0.0317)
IPC growth rate 1.134∗∗∗ 1.129∗∗∗ 1.129∗∗∗ 1.129∗∗∗ 1.129∗∗∗

(0.00515) (0.00549) (0.00549) (0.00551) (0.00551)
City complexity 1.042∗ 1.045∗ 1.044∗ 1.045∗ 1.045∗

(0.0206) (0.0205) (0.0205) (0.0205) (0.0205)
Inventor density 1.003 1.002 1.002 1.003 1.003

(0.00362) (0.00350) (0.00350) (0.00347) (0.00347)
Share of foreign patent 1.003 1.004 1.004 1.004 1.004

(0.0287) (0.0285) (0.0285) (0.0285) (0.0285)
Focal city size 1.028∗∗∗ 1.026∗∗∗ 1.026∗∗∗ 1.017∗ 1.018∗∗

(0.00451) (0.00461) (0.00455) (0.00679) (0.00675)
Partner city size 1.022 1.022 1.022 1.022 1.022

(0.0255) (0.0252) (0.0252) (0.0252) (0.0252)
Data quality 1.117∗∗ 1.118∗∗ 1.118∗∗ 1.118∗∗ 1.118∗∗

Data quality (0.0420) (0.0418) (0.0418) (0.0418) (0.0418)

City FE No No No No No
Technology FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Number of observations 521 339 521 339 521 339 521 339 521 339
Log pseudolikelihood -1 094 239.2 -1 094 014.7 -1 094 013.1 -1 094 006.1 -1 094 004.7
Wald chi2 1.66e+09∗∗∗ 1.78e+09∗∗∗ 1.78e+09∗∗∗ 1.78e+09∗∗∗ 1.78e+09∗∗∗

Notes: (i) Coefficients are exponentiated (ii) Standard errors are in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 16: Results of semi-parametric Cox PH model without stratification.

The coefficients displayed in both Tables 16 and 17 do not have any causal
interpretation. These coefficients are exponentiated which means we
can interpret them as hazard ratios, and the regressors in the model are
mean-centered, which means the reported coefficient is due to a standard
deviation change observed in the independent variable. If the coefficient
is larger (smaller) than 1, it implies an increase by one standard deviation
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of the value of the independent variable results in an increase (decrease) in
the likelihood that a city will explore a new technology domain. Model 1
includes all control variables. Model 2 in addition to the control variables
includes inter-city ties and technology relatedness. Model 3 in addition to
the variables in Model 2 includes the interaction term between inter-city
ties and the size of the focal city’s partners. In addition to the variables in
Model 2, Model 4 includes an interaction term between relatedness and
focal city size. Finally, Model 5 includes all control variables, inter-city
ties, relatedness, and both interaction terms. The models reported in Table
17 are highly significant.

Model 1 Model 2 Model 3 Model 4 Model 5
Inter-city ties 1.004∗ 1.008∗∗∗ 1.004∗ 1.008∗∗∗

(0.00208) (0.00217) (0.00208) (0.00217)
Technological relatedness 1.074∗∗ 1.074∗∗ 1.074∗∗ 1.074∗∗

(0.0257) (0.0258) (0.0269) (0.0269)
Inter city ties × Partner city size 1.012∗∗∗ 1.012∗∗∗

(0.00317) (0.00317)
Technological relatedness × Focal city size 0.998 0.998

(0.00348) (0.00347)
Distance from core IPC 1.139∗∗∗ 1.137∗∗∗ 1.137∗∗∗ 1.137∗∗∗ 1.137∗∗∗

(0.00572) (0.00567) (0.00568) (0.00567) (0.00567)
Knowledge diversity 1.064∗∗∗ 1.068∗∗∗ 1.069∗∗∗ 1.068∗∗∗ 1.069∗∗∗

(0.0184) (0.0186) (0.0186) (0.0186) (0.0186)
Existing IPCs 1.788∗∗∗ 1.747∗∗∗ 1.747∗∗∗ 1.745∗∗∗ 1.745∗∗∗

(0.103) (0.102) (0.102) (0.102) (0.102)
IPC growth rate 1.137∗∗∗ 1.130∗∗∗ 1.130∗∗∗ 1.130∗∗∗ 1.130∗∗∗

(0.00497) (0.00594) (0.00594) (0.00588) (0.00588)
City complexity 0.993 0.993 0.993 0.993 0.993

(0.00729) (0.00730) (0.00730) (0.00731) (0.00731)
Inventor density 1.019 1.017 1.017 1.017 1.016

(0.0178) (0.0174) (0.0174) (0.0173) (0.0172)
Share of foreign patent 0.983 0.982 0.982 0.982 0.982

(0.0135) (0.0137) (0.0137) (0.0137) (0.0137)
Focal city size 1.036 1.037 1.037 1.040 1.040

(0.0245) (0.0247) (0.0246) (0.0237) (0.0237)
Partner city size 0.945∗∗∗ 0.947∗∗∗ 0.947∗∗∗ 0.947∗∗∗ 0.947∗∗∗

(0.0148) (0.0149) (0.0149) (0.0149) (0.0149)
Data quality 1.000 1.001 1.001 1.001 1.001

(0.0184) (0.0185) (0.0185) (0.0185) (0.0185)

City FE Yes Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Number of observations 521 339 521 339 521 339 521 339 521 339
Log pseudolikelihood -396 209.92 -396 035.8 -396 033.38 -396 035.27 -396 032.83
Wald chi2 60 277.77∗∗∗ 61 120.64∗∗∗ 61 107.52∗∗∗ 61 126.95∗∗∗ 61 112.55∗∗∗

Notes: (i) Coefficients are exponentiated (ii) Standard errors are in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 17: Results of stratified semi-parametric Cox PH model.

From Model 2-5 in Table 17, the ties a city have to external inventors
who have previously invented in a technology domain is positive and
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significantly associated with the likelihood that the city will enter the new
technology domain. The estimated hazard ratios indicate that a standard
deviation increase in inter-city ties would increase the likelihood of entry
by 0.4%-0.8%. Also, the relatedness of a city’s technology stock with a
new technology domain is positive and significantly associated with the
likelihood of entering a new technology domain. Specifically, a standard
deviation increase in relatedness would increase the likelihood that a city
will enter a new technology domain by 7.4%. Both results confirm the
prediction in hypotheses 1a and 2a respectively. Also, we observe that
the association between inter-city ties and the likelihood of entry is ap-
proximately ten times smaller than the association between technological
relatedness and the likelihood of technological entry. This can be due
to the direct and indirect linkage between both variables and entry pro-
cess. For example, the link between technological relatedness and entry
is more direct - hence we can say that the shared heuristics between the
new technology and the cities’ capabilities imply that economic agents
in the city will require little resources to patent in the new technology.
On the other hand, the link between inter-city ties and entry is not direct
as not all linkages (even to large partner city) are important for entry if
the knowledge flow from these linkages are not complementary to the
capabilities in the city. Hence, the correlation of inter-city linkages with
the likelihood of entry may be downsized by the existence of linkages
with knowledge flow not complementary to the capabilities in the focal
city.

From Model 3 and 5 in Table 17, the hazard ratio of the interaction term
between inter-city ties and the size of partner cities is significant and
greater than 1 (i.e., 1.012), which implies that the effect of inter-city ties
on the likelihood of entering a new technology domain is positively
moderated by the size of partner cities. Specifically, the average marginal
effect of inter-city ties for a city with average size of partner cities (i.e.,
approximately 545 inventors) is 0.0024, which is positive and significant.
Although from the profile plot in Figure 24, we observe that the positive
moderation is significantly large for cities with very large partner size i.e.,
focal cities’ partners should have at least 55,880 inventors (equivalently a
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standardized value of 10.56). For cities linked to partners with small size
(less than 425 inventors), the effect on relative hazard is negative but not
significant. This result generally confirms the prediction in hypothesis
1b. Furthermore, from Model 4-5 in Table 17, the interaction term of focal
city size and technological relatedness shows a non-significant hazard
ratio less than one (i.e., 0.998). This implies that the number of inventors
in the city negatively moderates the effect of technological relatedness
on the likelihood of entry. Hence we do not find evidence in support of
hypothesis 2b.

Figure 24: The average marginal effect of inter-city ties: The partner size
on the X-axis is mean-centered. The horizontal red line is at 0 which deter-
mines if the moderator (Partner size) is positive or otherwise. The grey area
indicates the significant region. The positive moderation is more pronounced
when partner size exceeds 10.56 but it is not significant. However, for partner
size between 0 and 8, the positive moderation is small and significant (check
Table 49 in Appendix C for the actual relative hazard).

From Model 1-5 in Table 17, hazard ratios for the control variables show
that cities whose core technological domain is proximal to new technology
domains are more likely to explore the new domain. Also, cities with
diverse knowledge from previous patent activities and with large technol-
ogy stock are likely to enter a new technology domain. Furthermore, the
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measure of attraction of IPCs based on patent growth rate in IPCs shows
that cities are likely to enter an attractive new technology domain. Finally,
the quality of the geocoding effort in building the dataset for this analysis
does not significantly impact the results.

Supplementary analysis

To ascertain the robustness of our findings, first, we checked if the result
obtained is sensitive to a flexible definition of “newness of technology to
the city”, by reducing the window during which the technology should
not exist in the city to three years instead of five years. Thus, the number
of city-IPC combinations increases to 707,323, and the number of observed
entries is 186,647 (i.e., 26.3%). The empirical result did not alter materially
as seen in Table 37 in Appendix C.0.3. Next, we changed the measure
of inter-city ties from being the average weight of ties to inventors in
other cities who have previously invented in the new technology to a
measure of inter-city ties proposed by Rigby, 2015 - which is the average
weight of ties to cities having a positive revealed technological advantage
in the new technological area. To do this, we construct an inter-city matrix
Cijt of size 1220 × 1220 with entries being the number of co-invented
patents between city i and city j in year t. Next, we construct a city-
IPC capability matrix Qjkt of size 1220 × 646 with entries being 1 if the
revealed advantage of city j in IPC k in year t is greater than 1, otherwise 0.
Therefore, the resulting product matrix Mikt = CijtQjkt of size 1220×646

captures technology flow from cities in proximity to the focal city. The
empirical results shown in Table 38 in the Appendix is consistent with
results discussed so far, we have that Hypothesis 1a, 1b and 2a are accepted,
and we do not find significant evidence in support of Hypothesis 2b. The
robustness check shows a stronger effect for the new measure of inter-city
ties used, which suggests that having inter-city ties with cities having
a positive advantage in a technological area is stronger as compared to
ties with external inventors who have previously invented in the new
technological field.
Furthermore, considering that cities are heterogeneous, we include a
supplementary analysis examining the effect of inter-city ties and tech-
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nological relatedness separately for cities in Europe, Asia, and North
America, global and non-global cities. For European cities, we have that
both inter-city ties and technological relatedness is positive and signifi-
cantly associated with city entering a new technology domain. Specifically,
inter-city ties and technological relatedness increase the likelihood of entry
by 0.16% and 5.5% respectively. This is also the case for cities in Asia. In
Asia, inter-city ties and technological relatedness increase the likelihood
of entry by 2.8% and 21.9% respectively. For cities in North America, only
technological relatedness do have a positive and significant effect on entry
- technological relatedness increases the likelihood of entry by 15.2%. A
similar result is seen in global cities - technological relatedness increases
the likelihood of entry by 16%. While for non-global cities, inter-city
ties increase the likelihood of entry by 8%, and technological relatedness
increases the likelihood of entry by 6.5%.

Finally, we examine the likelihood that a city whose core technological
area is ICT will enter technological areas relevant to Pharmaceuticals, and
vice-versa. ICT technologies comprise of IPCs in Digital Communications,
telecommunications, Computer technology, and IT methods of manage-
ment. Given that the size of the dataset for this analysis is reasonably
small it can accommodate using Semi Parametric Cox PH model with
shared frailty. The shared frailty term in the model control for city-specific
effect. We find that, generally, inter-city ties and technological related-
ness increase and decrease the likelihood of entering a new technology in
Pharmaceuticals respectively, and the effect of technological relatedness
is positively moderated if a city’s core technological area is ICT. For entry
into ICT, generally, we find that both inter-city ties and technological
relatedness increase the likelihood of entry, and both effects are positively
moderated if the city’s core technological area is Pharmaceuticals.

3.5 Discussion

Developing competence in new technological areas is important for long-
term viability of cities and also for the integration of cities in the global
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inter-city network. The faster development of these competencies requires
the formulation of policies that allow not just the cross-fertilization of
ideas between economic actors within the city but also cross-boundary
collaboration efforts with economic actors who have previously invented
in technologies new to the city. Also, there is a need to pursue policies
geared towards a path-dependent innovation process, that allows eco-
nomic actors to build on existing local expertise within the city in such a
way that it becomes easy for them to access proximal innovative technolo-
gies. This policy process involves considerable resources, hence there is
need for a proper evaluation of the cost-benefit analysis of proposed mech-
anisms that will be adopted for increased likelihood of diversification into
new technological areas by the city.

The literature on regional innovation and economic development suggest
the usefulness of social proximity within and without the city in increasing
the probability of knowledge flow into cities (Balland and Boschma, 2021;
Breschi and Lenzi, 2016; Rigby, 2015; Breschi and Lissoni, 2001; Agrawal,
Kapur, and McHale, 2008; Singh, 2005). There has been literature that
show that regions build on existing capabilities to develop new ideas
(Balland and Boschma, 2021; Boschma, Balland, and Kogler, 2015) and
inter-regional linkage can be a source of information that can be useful for
cities to explore new ideas, hence preventing them from a lock-in effect
(Miguélez and Moreno, 2012; Boschma and Iammarino, 2009). Recent
works have further looked into the usefulness of developing inter-regional
linkages with complementary capabilities (Balland and Boschma, 2021).
What we have done differently is to provide a joint analysis of both exist-
ing capabilities and inter-city linkages at a geographical level lower than
regions, and specifically looking at entry process rather than specializa-
tion. The contributions to the literature are in three folds: (i) we present a
joint analysis of the effect of inter-city ties and technological relatedness
on the likelihood of entry. While the former reflects the outward search
of the city for capacity to enter new domains, the latter reflects building
on inward capacities to enter nearby technology domain. (ii) extending
the analysis to wider coverage of cities across different continents (i.e.,
North America, Europe, Asia, South America, Oceania and Africa), which
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is an improvement on previous research work restricted to developed
countries, EU and OECD countries (iii) examining the role of the inventive
size of partner cities in moderating the network effect of inter-city ties
on the likelihood of entry, and the moderating role of focal city size on
the effect of technological relatedness on the likelihood of entry. This
analysis of cities in emerging and developed economies is important for
development studies, as observations highlight the usefulness of linkages
to cities in Asia and non-global cities in general, which means for cities
to move up the developmental ladder they need to learn the know-how
from other places through collaborations.

Our findings suggest that both inter-city ties and technological relatedness
increase the likelihood that a city will enter a new technology domain,
and the effect of inter-city networks is enhanced when a city’s ties are
located in partner cities with a larger pool of inventors (i.e., large partner
city size). On the other hand, we do not find any evidence suggesting that
the effect of technological relatedness is positively moderated by focal
city size. The main result in this paper re-visits the argument of local-
ized technological flows identified in Jaffe, Trajtenberg, and Henderson,
1993 - which predominantly put forward the stickiness of knowledge.
While it might be true that technological flows between economic ac-
tors are better facilitated when they are located within the same regions,
however, the prevalence of technological development has enhanced col-
laboration across borders, and this is even more reflected in the rise of
cross-border collaborative effort in major scientific and technological ex-
periments. More importantly, inter-city ties are not just useful for getting
to know and learn about new technologies, but they can also serve as a
gateway to global pipeline especially when such ties exist with cities with
more inventors. The existence of a large pool of inventors enhances the
quality of direct ties the focal city has and the focal city can experience a
second-order effect on the likelihood of access to information. Access to
global pipelines and know-how to refine information can be very useful
especially for small cities that do not have the internal capacity to verify
the authenticity of information or how well to integrate new information
with their existing know-how. This can be seen when we compare the
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result of entry analysis for global cities in Table 46 with that of non-global
cities in Table 47 and also in Table 48 when we interact inter-city ties with
global city status. The observation of a positive moderation of partner city
size on the effect of inter-city network being more evident in non-global
cities is not surprising as non-global cities are not attraction points for
global scientific and technological talent in comparison to global cities
(Verginer and Riccaboni, 2021), and as such might not have the internal
capacity to a assess the cost and benefit of new technology, hence they
need ties that are embedded in locations with rich network of inventors.

Our findings on the positive effect of technological relatedness on like-
lihood of entry using a broad range of cities further confirms previous
research on technological relatedness and diversification done for OECD
regions, EU regions and cities in the United States (Vlčková, Kaspříková,
and Vlčková, 2018; Rigby, 2015). It shows that irrespective of the con-
tinents, cities’ decision to upgrade into new technologies is consistent
with their technological profile (check Table 43-45). This is also the case
whether or not a city is global (check Table 46-47). While cities in some
regions leverage relatedness to transition rapidly into new domains (e.g.,
21.8% increase in the likelihood of entry for cities in Asia), transition
process for other cities is much slower (e.g., 5.5% increase in likelihood
for cities in Europe). We see that cities follow a well defined technological
pathway for development, by leveraging on proximate technologies that
share similar scientific heuristics. This means that entry into new tech-
nology depends on current practices in the city. This choice for proximal
technology as highlighted by Breschi, Lissoni, and Malerba, 2003 could be
a result of unintended spillovers or intentional process of local learning
and preference for certain technologies due to its scope or complementari-
ties with the city’s core expertise. We observed that even the most global
cities characterized by diversified patenting activities are more “coherent”
in terms of leveraging technological relatedness for entry. This might
be because as inventors in global cities expand their patenting activities,
they gradually increase their technological coherence by systematically
patenting in technology class consistent with what they began with, thus
filling most technological gaps between classes.
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There are certain limitations identified in this empirical work. The first
is the definition of city size (i.e., focal city size and partner city size).
Although, we have pointed out that the notion of city size is meant to cap-
ture the cities’ inventive capabilities, in which case it might be appropriate
to focus on the inventive population size and not the population size of
the city. Further research can be done by specifically looking at the moder-
ating role using population size as a measure of city size. We are agnostic
as to what measure is adopted for city size as both population size and
inventor size of cities have been shown to have a similar effect on patent-
ing activities in cities (Bettencourt, Lobo, and Strumsky, 2007). However,
the measure of city sizes using the number of inventors will potentially
be impacted by ambiguities in inventor names, as inventor names tend
to be misspelled, or ordered differently. Also, it remains unclear what
kind of phenomenon is been captured by the inter-city ties. It is worth
investigating if the significant positive association of inter-city ties with
cities entering new technology domain reflects knowledge-spillover or
knowledge acquisition. In the case of knowledge spillover, the city enters
a new IPC but the applicant is not located in the city, such technological
entry are usually facilitated by multinational firms. On the other hand,
for technology acquisition, the city enters the new IPC and the applicant
is located in the city. To distinguish these types of inter-city ties in future
research work, the inventor and applicant database can be combined.
Also, the analysis of the effect of inter-city linkages on likelihood of entry
is biased against cities that have a larger share of external ties to inventors
in non-FUA. To address this is to extend the analysis to both FUAs and
non-FUAs.

Also, it is still unclear what notion of relatedness best captures the struc-
ture of technological proximity, more research effort can be geared to-
wards properly capturing technological relatedness in such a way that we
can adequately measure the density of cities capabilities around new tech-
nologies, that are more predictive on out-of-sample data, as the process
of entry is a forward-looking event. Finally, we introduced the notion of
technological core of cities as a control variable in our analysis (which we
identify as an IPC the city has the most patent in) when indeed the city’s
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technological core could be a collection of IPCs. Hence more work can
be done using the k-core analysis in identifying city’s technological core
and periphery, and also in identifying if the positive effect of relatedness
is driven by technological core or peripheral IPCs in the city, and what
possible combination of IPCs are most productive for a city to efficiently
enter new technology.

The need for a systematic methodology for identifying linkages that are
relevant to city implies that further work can be done on examining how
exactly inter-city linkages facilitate entry. We have shown that for non-
global cities to invent in new technological fields they need ties more than
it is the case for global cities. Does it matter if these ties are complemen-
tary to the existing capabilities of non-global cities? if it is the case that
complementarity matters, is the effect different across the world. Another
dimension that can be looked into is how similar cultural norms alongside
complementarities refine linkages (Balland and Boschma, 2021). Finally,
further study can examine how weak institutions negatively moderate
the effect of knowledge flows. The dataset constructed in Chapter 1 used
in this chapter can be very useful for such analysis, especially in devel-
oping economies. Since even if a city has the required capabilities and
inter-city linkages needed to upgrade to a new technology domain, weak
institutions may still hinder exploratory innovation activities. Another
potential area of research is to use the machine learning methodology
developed in Chapter 2 to build a measure of the proximity of technolog-
ical capabilities of cities in new technologies. Since this model unravel
relationships between technologies non-linearly unlike existing measures
(e.g., Engelsman and Raan, 1991) in the regional economics literature. Al-
though Chapter 2 predicts specialization, the method can also be adapted
for entry - hence the class probability for a city entering a technology
domain can be used as a measure of technological relatedness of the city’s
existing capabilities with the new technology.

In conclusion, we show in this study that the likelihood to explore new
technology by cities is governed by structural characteristics of the cities.
These structural characteristics: inter-city ties and technological related-
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ness combine to explain the heterogeneous patterns of entry into new
technology. The study confirms that both inter-city ties and technological
relatedness are strong determinants for the likelihood of entering new
technology domains. While these structural properties are important, the
partner size - measured as the average number of inventors located in the
focal cities’ partner cities plays a positive role in moderating the effect
of inter-city ties on the likelihood of exploration. These results suggest
that policies such as the EU smart specialization, Canada’s super cluster
initiative, and similar initiatives. that foster collaborations and leverage
place-based capacities to identify strategies that increase technological
diversification and growth should be encouraged.
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Chapter 4

Global Cities in
International Networks of
Innovators

1 Since 1990, international collaborative research has witnessed a remark-
able growth (Adams et al., 2005). Wagner, Park, and Leydesdorff, 2015
showed that 25% of papers published in the Web of Science in 2011 were
co-authored, which is an increase from the 10% observed in 1990. Several
countries and cities now participate in global collaboration, many more
than two decades ago (Bornmann, Wagner, and Leydesdorff, 2015; Adams,
2012; Verginer and Riccaboni, 2021; Wagner, Whetsell, and Leydesdorff,
2017). The growth in international collaboration partly results from the
rise in team research and “big science”. Nevertheless, “big science” does
not completely explain such growth (Wagner, Whetsell, and Leydesdorff,
2017), as there exist several “small science” projects executed by interna-
tional teams whose members have aligned interests and can collaborate
despite geographic distance. (Jones, Wuchty, and Uzzi, 2008; Wagner,
Whetsell, and Leydesdorff, 2017).

1This Chapter is partially based on S. Edet, P. Panzarasa, M. Riccaboni, Global
Cities in International Networks of Innovators, Advances in Complex Systems, doi:
10.1142/S0219525921400026
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Although long-distance collaboration can be costly for authors and in-
ventors in terms of coordination, scientists increasingly co-author papers,
and multi-authored papers attract more citations than single-authored
ones (Wagner, Whetsell, and Leydesdorff, 2017; Jones, 2021). As observed
by Barjak and Robinson, 2008, international partnership brings added
benefits that exceed transaction and coordination costs, as reflected in
the higher-than-expected citations received by international publications
in most scientific fields (Persson, Glänzel, and Danell, 2008; He, 2008).
Today the negative effect of distance on scientific collaboration has be-
come weaker since digitalization and globalization facilitate long-distance
collaboration compared to the past (Sonnenwald, 2007). Specifically, re-
cent contributions have shown an increase in long-distance collaboration
and a decrease in the proximity of collaborative ties over time (Frenken
et al., 2009; Choi, 2012; Morescalchi et al., 2015). Hence, geographical con-
straints on collaboration have become less important (Hoekman, Frenken,
and Tijssen, 2010; Chessa et al., 2013; Cerina et al., 2014). Moreover, the
rise of global cities as hubs in the network of researchers facilitates the
circulation of ideas and promotes international collaborations (Verginer
and Riccaboni, 2020; Verginer and Riccaboni, 2021).

An important driver of international collaboration is the increased mobil-
ity of researchers (Jonkers and Cruz-Castro, 2013; Verginer and Riccaboni,
2021), as academic visits help them create new connections that can be
activated in future innovation activities. The increasing complexity of
scientific and technical problems also implies larger teams and more
co-authors per publication (Wagner, Whetsell, and Leydesdorff, 2017;
Jones, 2021). The mobility of scientists alongside other mechanisms (e.g.,
high-quality research institutions, the presence of multinational corpora-
tions, the quality of the entrepreneurial ecosystem) also contribute to the
scientific and technological success of a city (Catini et al., 2015).

International networks of researchers are characterized by pipelines for
global reach, as global cities serve as catalysts of prolific researchers with
international connections, which in turn can boost their competitiveness
in the innovation network (Verginer and Riccaboni, 2021; Scholl, Garas,
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and Schweitzer, 2018). For this reason, it is not sufficient to have disjoint
international collaboration structures for cities to qualify as global players.
Global cities should be integrated into international complex teams of
inventors with scientists located in different countries. This is important
to understand better how to absorb knowledge from distant places and
to take part in international knowledge production. An important rea-
son why the networks of researchers should not be studied as a set of
dyadic collaborations is that a dyadic approach oversimplifies the nature
of collaborations that take place in teams when the production of patents
and publications emerges from multiple interactions between researchers
located in different places. Recent literature on the analysis of networks
has begun to analyze networks based on the notion of multi-body interac-
tions using hypergraphs or simplicial complexes (Neuhäuser, Mellor, and
Lambiotte, 2020). In this chapter, we analyze the international network of
researchers by focusing on the hypergraph of publications and patents
team production. In particular, we focus on international collaborations
involving at least three cities to identify global players in the multiplex
innovation network (i.e., patent and publication networks).

Recent innovation studies from a network-based perspective have ana-
lyzed multiplex networks constructed from patents and publications. For
example, Angelou et al., 2020a have examined the evolution of temporal
multiplex innovation networks consisting of collaboration layers - EU
framework program (FP) and patent. The dynamical processes behind
the growth in collaboration for both layers were described using kinetic
models. The analysis was carried out using the notion of multilinks that
captures the differences and similarities between the links connecting the
same nodes in both layers. The analysis shows that patents drive the cre-
ation of common multilinks at an early stage, but this process is reversed
at a later stage. Further work by the same authors has concentrated on
patterns of formation of triangles in these multiplex networks (i.e., with
European FP and patent layers). These patterns have been uncovered by
comparing the formation of triangles in the observed multiplex network
with what emerges from the randomized network. Findings suggest that
triangular FP collaborations are more frequent than random ones, while
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the reverse is true for patents (Angelou et al., 2020b). Other studies from
a multiplex network perspective have examined the evolution of urban
innovation networks in China based on publications and patents (Li, Wei,
and Wang, 2015). Their findings suggest that both networks are charac-
terized by a preferential attachment growth mechanism, disassortative
traits, and a hierarchical diffusion process.

In this chapter, we contribute to the literature on global cities and the
analysis of international networks by specifically analyzing hypergraphs
involving international collaboration of researchers located in three cities
(i.e., hyperedges of size 3). We propose a new measure that relies on the
hypergeometric ensemble model (Casiraghi et al., 2017; Casiraghi and
Nanumyan, 2018) to identify cities that are global players in both the
publication and patent hypergraphs. To do this, we used PubMed and
the geo-referenced patent statistical data set we developed in Chapter 1,
which allows for the analysis of the network of researchers between cities
located in different countries. Cities are defined as functional urban areas
consisting of densely inhabited areas and surrounding peripheral areas
whose labor markets are highly integrated with the city. The definition of
a city has been harmonized based on OECD, 2012 approach to defining
functional urban areas, in order to allow for international comparisons.
The analysis involves 153 global cities drawn from the Global and World
Cities (GaWC) research project (Beaverstock, Smith, and Taylor, 1999),
and these cities are in Asia (47), America (44), Europe (48), and other
regions (14).

The rest of the chapter is organized as follows: Section 4.1 provides
a literature review on global cities and international collaboration net-
works; Section 4.2 describes the methodology used to analyze the network
of researchers as a hypergraph. We introduce a measure of the global
reach of cities (i.e., the probability that a city will be a third player in an
international collaboration), and we generate a null model using the hy-
pergeometric ensemble (Casiraghi et al., 2017; Casiraghi and Nanumyan,
2018) which allows us to determine if the measure of global reach is sta-
tistically significant. Section 4.3 describes the geo-referenced patent data
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and scientific publication data used in constructing a hypergraph of size
3, consisting of international research teams. Section 4.4 illustrates the
results of the analysis, and Section 4.5 provides a final discussion of the
findings.

4.1 Global cities and International collaboration
networks

In this section, we provide an overview of the literature on global cities
and the literature on international collaboration network.

4.1.1 Global cities network

The publication of Sassen, 1991’s “The Global City” brought to attention
the notion of global flows facilitated by critical services that take place
across subsidiaries of multinational corporations located in different cities.
These global flows in which global cities are a conduit made the cities
more alluring to advanced producer service firms specializing in offering
professional and financial services (Sassen, 1991). The creation of offices
by advanced producer firms in different global cities led to the formation
of interconnected service complexes between cities, which according to
Sassen, 1991 is the basis for the creation of the world city network (Derud-
der and Witlox, 2008). The differences in technological specialization
across regions, technological advancement, and ease of mobility of highly
skilled labor, have increased the dispersion of production networks of
firms especially multinational enterprises across the globe. However, this
economic globalization has seen only a few cities being endowed with a
disproportional share of economic activities, foreign investment, scientific
and technological production (Sassen, 2001; Storper and Scott, 2009). For
this reason, there has been an increased interest in examining economic
globalization specifically at sub-national levels such as regions, clusters,
and cities - particularly large cities, as they are seen as hubs for innovation
and an attraction point for skilled workers (Friedmann, 1986; Sassen, 1991;
Verginer and Riccaboni, 2021).
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The literature on cities considers either a demographic or functional ap-
proach to measuring cities (Chakravarty et al., 2021). The consequences
of enormous population concentrations in mega-cities are examined in
the demographic approach. The functional approach, however, concen-
trates on the distinctive attributes of cities commonly referred to as being
“global” (Sassen, 1991; Friedmann, 1986; Cohen, 2018; Chakravarty et
al., 2021). There are two commonly used methods in the functional ap-
proach to measure the “globalness” of cities. These methodologies include
the “corporate organization methodology” which focuses on the inter-
locking activities of firms across global cities, and the “infrastructure
methodology” which relies on how global cities are connected based on
infrastructures such as telecommunications, air transportation, and rail-
way transportation (Derudder and Taylor, 2005; Otiso et al., 2011; Cheng
and LeGates, 2018).

The “corporate organization” methodology

The “corporate organization” methodology is hinged on the observation
that firms that are involved in international strategic activities are respon-
sible for the formation of the world city network. This methodology was
first developed in the GAWC project and hinges on the premise that ser-
vice firms with global presence are responsible for the linkages between
cities through intra-firm activities taking place. This approach constructs
inter-city matrices based on the location strategies of firms. The location
strategy of a firm is formalized by a “service value” vij , which captures
the relevance of a city i in the international service network of a firm j

(Taylor, 2001). Therefore, for any two cities a and b, the inter-city flow
between them due to the activities of a firm j is given as wab,j = vajvbj . In
this sense, if either of the cities is very important in the international ser-
vice network of the firm, it is expected that there will be more knowledge
flows from the city to any other city (Chakravarty et al., 2021). Hence, the
total flow to a city a is the aggregate flow coming from firm activities in
other cities, and this is given as: wa =

∑︁
j

∑︁
b wab,j . Based on this spec-

ification and correlation analysis, Beaverstock, Smith, and Taylor, 1999
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measured the global connectivity of 315 cities based on location strategies
of 100 firms, and concluded that cities such as London and New York are
“exceptions” and not necessarily “exemplars” amongst world cities. This
specification has been extended in other research work such as Derudder
and Taylor, 2005 and Taylor et al., 2007.

Beyond service firms, other works such as Alderson and Beckfield, 2004
and Rozenblat and Pumain, 2005 rely on multinational companies to
be responsible for the formation of inter-city linkages. Their approach
deviates from the GAWC approach in two ways (i) it does not focus
only on producer service firms (ii) it derives inter-city flows based on
ownership structure in MNCs. The inter-city linkages are constructed by
“a directed interaction between the city where the headquarters are located
and the city where the subsidiary is owned” (Derudder and Witlox, 2008).
The position of cities is inferred from this ownership network aggregated
to the level of the city. The problem with the corporate organization
techniques for assessing global city relevance is that they do not include
data on actual inter-city flows (Derudder and Witlox, 2008).

The infrastructure methodology

The infrastructure methodology for measuring global cities is motivated
by the observation that infrastructure networks determine the economic
potential of urban areas (Derudder and Witlox, 2008). This implies that
most global cities are seen to have important infrastructures such as air-
ports, railway connections, and a strong fiber backbone network. These
telecommunication and transportation infrastructures fundamentally en-
able pipeline of connectivity of major cities, such connectivity between
cities in the world can be spatially represented, and different spatial anal-
ysis can be done to determine the importance of cities. Similarly, like the
corporate organizational approach, there are streams of literature that
specifically analyze telecommunication (i.e., the internet backbone) dis-
tinctly from physical transportation infrastructures such as airlines and
railways (Derudder and Witlox, 2008).

Early studies on the infrastructure approach examine the “network of
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networks” (i.e., the telecommunication network between locations) to
analyze the world city network (Malecki, 2002; Rutherford, Gillespie, and
Richardson, 2004). In the work of Malecki, 2002, he identified that inter-
net backbones are located in major cities, and as such the formation of
inter-city network based on fiber connectivity between cities can uncover
the hierarchy of urban areas in the world. However, Malecki, 2002 also
acknowledges that the analysis of the formation of transnational world
city network from fiber connectivity can be misleading since the posi-
tion of certain urban areas can be over-estimated due to their strategic
role as points of interconnection between regions (Derudder and Witlox,
2008). Beyond telecommunication network, more studies have increas-
ingly built inter-city network based on airline, rail, and sea flow, with the
airline being used mostly (Derudder and Witlox, 2008). The advantage
of airline data is that, unlike studies using the “corporate organizational”
methodology, the measurement of flows between cities in this analysis are
quantitatively observed and not inferred. While this is a key advantage of
the airline data, however, the use of this kind of data is majorly plagued
by the lack of source or destination information (Derudder and Witlox,
2008). Another drawback is that we are less likely to observe direct flight
connections between cities at the top and below the hierarchy of urbaniza-
tion, hence restricting more detailed geographical analysis of all cities in
the world (Derudder and Witlox, 2008). An example of empirical research
that applies airline data is the work by Derudder, Witlox, and Taylor, 2013
which contrasted the “connectivity profiles” of U.S. cities, to determine
the relevance of a city’s connections within and outside the U.S.

The corporate organization and infrastructure approaches of characteriz-
ing global cities have been applied extensively in classifying cities based
on how they are economically integrated with the global economy. For
example, the GaWC project published in Beaverstock, Smith, and Taylor,
1999 provides an empirically validated hierarchy of global cities in the
world, which is widely adopted by researchers working on global cities.
However, there have been some criticisms of the inadequacies of this
approach. For example, Boschken, 2008 identifies the need to integrate
more inclusive dimensions of what it means to be global, and Bassens,
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Derudder, and Witlox, 2011 pointed out the western and capitalist bias
in the global city list. In response, recent research (e.g., Belderbos, Du,
and Goerzen, 2017 and Parnreiter, 2019) now explore other definitions
of global cities integrating dimensions such as livability, innovation, and
the ease of doing business. Some of the lists resulting from these city
definitions include Global Power City Index, and MasterCard’s Global
Power List.

The scientific and technological collaboration networks of cities

Scientific and technological collaboration networks have been extensively
studied predominantly in the network science domain. Typically, they
represent interactions between entities (e.g., persons, cities, regions, coun-
tries), where such interactions are formed through co-authorship (scien-
tific collaboration) or co-inventorship (technological or R&D collabora-
tion). The analysis of such networks provides insight into the relevance of
entities in the network, and patterns in the formation. There are different
reasons for collaboration in either academic research or patenting. Collab-
oration can leverage the different skill-sets of authors and inventors, and
can drive inter-disciplinary research output. Typically, R&D are charac-
terized by high investment (expensive laboratory equipment), high risk
and uncertainty (changing markets), and long payback period (Laperche
and (Ed.), 2013; Li, Wei, and Wang, 2015), collaboration can be useful in
minimizing these risks. Also, collaboration is useful for access to new
knowledge and prevents lock-in-effect (Li, Wei, and Wang, 2015).

Early studies on scientific collaboration network (e.g., Newman et al.,
2004) examined the formation of co-authorship network. In this network,
two scientists are connected if they jointly write a paper. Newman et al.,
2004 constructed networks of such connections by drawing from the “Los
Alamos e-print Archive (Physics)”, “MEDLINE (biomedical research)”,
and “NCSTRL (Computer science)” databases. They observe a “small
world” effect in the collaboration network, which implies that any scientist
can reach any other scientists in the network by a few intermediate collab-
orators (Newman et al., 2004). This work has been extended to examine
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the structure of scientific collaboration by studying non-local statistics
such as network distance between scientists, and centrality measures in
these networks.

Beyond single-layer network, there have been studies focusing on ana-
lyzing multi-layer network to uncover how dynamics in one network
affect the other. For example, Li, Wei, and Wang, 2015 examined the
topological and spatial features of urban innovation networks in China
and showed evidence of hierarchical diffusion and contagious diffusion in
both the scientific and technological networks. Also, Angelou et al., 2020a
described the growth in multi-layer network (i.e., European Framework
program and Patent) using a kinetic-model of three differential equations
and six parameters describing the system dynamics. They found that all
multi-links exhibit similar growth patterns over-time and patents were
seen as driving forces for the creation of common multi-links early on in
time (Li, Wei, and Wang, 2015).

4.1.2 Multi-body collaboration in traditional network and
hypergraph

In addition to multi-layer network analysis, there has been an effort at
analyzing multi-body interactions, with more focus on triadic collabora-
tions involving the formation of closed or open triangles in the network.
Triangles are simply composed of three nodes in the network that are
connected. They have been studied both in multi-layer networks and sin-
gle layer network settings. For example, Lambiotte et al., 2008 identified
inherent geographic communities and studied their network cohesion,
by examining triangles constructed from a mobile phone communication
network. Angelou et al., 2020a studied the formation patterns of triangles
(closed triangles) in research and innovation collaboration networks, tak-
ing place between urban areas in Europe, by comparing the z-scores and
clustering coefficient of the empirical and shuffled network data.

The core criticism of analyzing multi-body interactions from traditional
networks built based on dyadic interactions is the fact that multi-body
representations are then seen as combinations of dyadic interactions,
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which can represent a false signal of such multi-body interaction taking
place (Neuhäuser, Mellor, and Lambiotte, 2020). For example, consider
triangles in a traditional network describing three cities (three nodes)
connected (pairwise) with each other in the network. These connections
are not necessarily formed because the three nodes were seen in a scien-
tific paper or patent. It could be the case that the triangle identified in
the traditional network resulted from the combination of three pairwise
interactions (i.e., from three patents or publications) of the nodes. Such
triangle is not a genuine multi-body interaction. Indeed, recent literature
has identified this and proposed the use of simplicial complexes (Carletti,
Fanelli, and Nicoletti, 2020) and hypergraphs (Neuhäuser, Mellor, and
Lambiotte, 2020; Arruda, Petri, and Moreno, 2020; Arruda, Tizzani, and
Moreno, 2021) for modeling multi-body interactions. An hypergraph
simply consists of nodes (e.g., cities, countries, individuals, or firms), and
hyperedges (a paper or patent) connecting nodes. An hyperedge is of size
N, if it involves only N nodes (e.g., a hyperedge of size 3 will refer to only
papers and patents having three nodes).

The differences between traditional network and hypergraphs for analyz-
ing multi-body interactions can be seen in Figure 25a and 25b where we
show the different outcomes when a community detection analysis on
patent network is done using the different methodologies. In Figure 25a
the network is built in the traditional sense i.e., cities are nodes, and there
is a dyadic connection between cities if inventors in both cities are co-
inventing, and the weight of the connection is the number of co-invented
patents. The clustering analysis is done using the Louvain method for
community detection (Blondel et al., 2008).
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(a) Patent traditional network

(b) Patent hypergraph

Figure 25: Differences in community detection analysis of traditional
patent network and patent hypergraph. More communities are identified
in hypergraph compared to a traditional network, and community structure
in the traditional network is national or regional, while community structure
in hypergraph is internationally dispersed.

The key finding from the figure is that community structure is regional
and national. This result is consistent with what has been shown in the
literature (Chessa et al., 2013). While in Figure 25b the network is built
using hypergraph representation, the cities are nodes, the connections
are hyperedges (the analysis is done on hyperedges of all sizes), and
the clustering is done using the algorithm proposed in Carletti, Fanelli,
and Nicoletti, 2020. The community structure in this case is more inter-
nationally dispersed. This approach of properly capturing multi-body
interactions shows a community structure different from the traditional
approach.
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4.2 Measures and Method

So far, in the analysis of social networks, the focus has been primarily
on dyadic relationships even when the original interaction structure is
more complex, such as in team production. Typically, most network
representations lack information about complex interaction structures
involving more than two nodes. This is problematic considering the rise
of big science and the increase in the size of teams in scientific production
and patenting. The use of pairwise interaction to analyze such complex
networks of collaborations becomes inadequate since the information
about team assembly and the structural mechanism that gives rise to
innovation is lost. For instance, most publications and patents are outputs
of groups and teams rather than of pairwise interactions between actors.
The notion of multi-body interactions abounds across different scientific
fields (e.g., social networks, functional brain networks, protein interaction
networks, ecological networks) (Neuhäuser, Mellor, and Lambiotte, 2020;
Lord et al., 2016; Estrada and Ross, 2018; Grilli et al., 2017). The analysis
of complex interaction structures is better modeled using higher-order
systems, which are generalized versions of networks.

In this chapter, we analyze the network of researchers as a hypergraph,
which is one of the most common approaches for analyzing higher-order
systems of interactions2. Hypergraphs encode interactions as hyperedges,
which can be described as a set of nodes. For instance, a team of four
scientists can be represented as a set of four nodes. This representation
is flexible and powerful as it allows a specific encoding of all possible
n-hyperedges. When n=2 (i.e., hyperedges are of size 2), the hypergraph
reduces to a standard network or a 2-body system model. There are
several advantages to using hypergraphs: (i) they can handle very large
hyperedges efficiently, and (ii) they capture the heterogeneous distribution
of the size of hyperedges (Carletti et al., 2020; Neuhäuser, Mellor, and
Lambiotte, 2020). In addition, we can use a matrix representation to store
information embedded in higher-order structures, thus avoiding a tensor

2Another common approach is the use of simplicial complexes to characterize the shape
of the data in terms of the presence of holes between points (Carletti et al., 2020)
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representation (Carletti et al., 2020). Recent applications of hypergraphs
in the analysis of higher-order systems include studying the dynamics of
social contagion (Arruda, Petri, and Moreno, 2020), modeling of random
walks (Carletti et al., 2020), phase transition and stability of dynamical
processes (Arruda, Tizzani, and Moreno, 2021), and nonlinear consensus
dynamics (Neuhäuser, Mellor, and Lambiotte, 2020). For simplicity, our
focus here is on a three-body dynamical system. In other words, we are
interested in a system of interactions on a hypergraph consisting of 3-
hyperedges. Unlike edges in the traditional network, the object hyperedge
in a hypergraph can be seen as a patent or publication, and the size of
the hyperedge is the same as the number of cities on the publication
or patent, respectively. For example, a patent (publication) with three
cities is represented as a 3-hyperedge, and the weight of a 3-hyperedge in
the hypergraph is the number of patents (publications) jointly produced
by researchers in those three cities. The object 3-hyperedge is distinctly
different from triangles in a traditional network. Triangles in a traditional
network can be described as three cities (three nodes) connected (pairwise)
with each other in the network. Moreover, these connections are not
necessarily brought about by researchers working together on a patent
or publication in those three cities. It could be the case that the triangle
identified in the traditional network results from the combination of three
pairwise interactions (i.e., from three patents or publications) of cities.
In this sense, triangles made by disjoint pairwise collaborations cannot
be characterized as a genuine multi-body interaction involving three
researchers. Indeed an ideal object for describing a multi-body interaction
of size three is the 3-hyperedge which explicitly identifies patents or
publications involving researchers from three cities. A motivation for
focusing on 3-hyperedges in the analysis of international collaborations in
patents and publications is because hyperedges of size 3 already represent
a large number of multi-body interactions satisfying the condition of being
international. For example, in the patent dataset they represent 84.83%
and in the publication dataset, they represent 65.25% of international
multi-body interactions. Considering the computational time of building
null model used in identifying significant global cities in the empirical
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hypergraphs, the choice of restricting the analysis to 3-hyperedges is
reasonable. Moreover, this allows us to compare the hypergraph analysis
with the usual triadic closure analysis.

Formally, for two-body interactions, the traditional edge-based networks
denoted by G = (V,E), is composed of V (G) = {1, ..., N} representing a
set of N nodes (i.e., cities), that are connected by a set of edges E(G) =
{(i, j) : i, j ∈ V (G)}. These edges exist if researchers from cities i and j are
co-authors or co-inventors on a publication or patent, respectively. The
network structure can be represented by the adjacency matrix A ∈ RN×N

as follows:

Aij =

{︄
wij if (i, j) ∈ E(G)
0 otherwise

(4.1)

where wij is the number of patents or publications involving authors from
cities i and j. For an undirected network, A is a symmetric matrix.

For three-body interactions, we encode the interaction using a hypergraph
H which consists of a set V (G) = {1, ..., N} of N nodes (i.e., cities) con-
nected by a set of 3-hyperedges (i.e. triplet of cities) T (G) = {(i, j, k) :

i, j, k ∈ V (G)}. Hence, we represent the structure of the hypergraph by
the adjacency tensor A ∈ RN×N×N :

Aijk =

{︄
wijk if (i, j, k) ∈ T (G)
0 otherwise

(4.2)

where wijk is the number of observed patents or publications involving
inventors or authors from the three cities i, j and k. Figure 26 shows the
types of hypergraph we analyze. The adjacency tensor is required to be
symmetric and the graph should not include self-loops. This prevents the
misclassification of edge combinations involving self-loops as triangles
(Neuhäuser, Mellor, and Lambiotte, 2020).

Furthermore, each city i ∈ G is endowed with a dynamical variable
pijk = p(i|jk) ∈ [0, 1] describing the probability that city i is involved in a
patent or publication in which cities j and k are also involved. This can
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be represented as a probability tensor P ∈ RN×N×N with entries

Pijk = P (i|jk) =

{︄
wijk

wjk
if (i, j, k) ∈ T (G)

0 otherwise
(4.3)

where wjk is the number of patents or publications involving cities j and
k and wijk

wjk
is the fraction of patents or publications with cities j and k to

which city i belong.

Given the hypergraph as described above, we are interested in knowing
which of the observed fractions in the tensor Pijk is statistically significant
(at the significance level of 0.01) compared to what would be expected
by chance. To this end, we compared the observed fractions with those
computed from the ensemble networks (100 realizations) generated based
on the hypergeometric ensemble model.

Figure 26: The global network of researchers as a hypergraph: the big
circles are countries, and the small circles are cities that are nodes in the hy-
pergraph. The hypergraph considered is composed of triplet collaborations,
i.e., triplets a,b,c. Considering any red city in triplet a as the focal city, we
have that the focal city is a third party in international collaboration. This
is not the case if the green city is the focal city. In triplet b, any node in the
triplet can be seen as a third party in international collaboration. Triplet c
is discarded in the analysis as it refers to purely domestic collaborations.
The objective of the analysis is to determine the global reach of cities. For
example, the orthographic map shows the significant probabilities (yellow
and green lines are probabilities less than and greater than 0.5, respectively)
of San Francisco being a third party in different international teams (triplets
of cities) of patent inventors.
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4.2.1 Hypergeometric ensemble model

We use the hypergeometric ensemble model proposed by Casiraghi et
al., 2017; Casiraghi and Nanumyan, 2018 as a benchmark (null) model.
The model is constructed based on the Molloy-Reed configuration model
(Molloy et al., 2011), which requires randomly shuffling the topology
of the network G while preserving the expected degrees of nodes in G
(Casiraghi et al., 2017; Casiraghi and Nanumyan, 2018). In the standard
configuration framework, each multi-edge is generated sequentially by
sampling uniformly at random a node with an available “out-link” and a
node with an available “in-link” until all links are exhausted (Casiraghi
et al., 2017; Casiraghi and Nanumyan, 2018). The sampling or rewiring
of these links is done uniformly to obtain a random realization of the
null model. The drawback of the Molloy-Reed configuration model is
that it is computationally expensive, not analytically tractable (Casiraghi
et al., 2017; Casiraghi and Nanumyan, 2018), and does not allow the bias
of the sampling process. By contrast, in the hypergeometric framework,
the sampling of nodes can be biased based on the built-in propensity
of nodes connecting with each other. Also, the hypergeometric frame-
work follows a different sampling process. Rather than the sampling of
nodes, the framework samples m multi-edges from a maximum combina-
tion of M multi-edges while preserving the sequence of expected nodes’
degrees (Casiraghi et al., 2017; Casiraghi and Nanumyan, 2018). The
hypergeometric ensembles can be formally defined as follows.

For each pair of nodes i and j, the degrees of i and j are k̄(i) and k̄(j)

respectively, hence the maximum combinations of multi-edges between
nodes i and j are ψij = k̄(i)k̄(j). In matrix form, the maximum possible
combinations of multi-edges between pairs of nodes is given by Ψ :=

(ψij)i,j∈V (G). Specifically, for an undirected graph G, we have that the
total number of link combinations between vertices i and j is defined as
follows:

{︄
2ψij if i ̸= j

ψii if i = j
(4.4)
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Let G be a network with n nodes and m multi-edges. Let k ∈ Nn represent
the degree sequence of G and Â the random model induced by G. If the
probability distribution underlying Â depends on k and m, and multi-
edges have the same probability to be present, then Â has a multivariate
hypergeometric distribution (MHD) defined as:

Pr(Â) =
(︃
M

m

)︃−1 ∏︂
i<j∈V

(︃
2ψij

Âij

)︃ ∏︂
k∈V

(︃
ψkk
Âkk

2

)︃
(4.5)

For each pair of nodes i and j, the probability that Â there are exactly Âij
edges connecting i and j can be computed as the marginal distributions
of the MHD in Equation 4.6:

Pr(Âij) =

⎧⎨⎩
(︁
M
m

)︁−1(︁2ψij

Âij

)︁(︁M−2ψij

m−Âij

)︁
if i ̸= j(︁

M
m

)︁−1(︁ψij

Âij
2

)︁(︁M−ψij

m−
Âij
2

)︁
if i = j

(4.6)

A statistical ensemble Γ := {Â} is then defined as simply a set of sampled

random models. Each of the random models Â =

(︃
Âij

)︃
i,j∈V

with entries

such thatm =
∑︁
ij Âij results from samplingm edges from a possible total

of M =
∑︁
ij ψij edges (Casiraghi et al., 2017; Casiraghi and Nanumyan,

2018).

In our analysis, the ensemble model described is applied to each matrix in
the tensor, and the sampling of edges is purely combinatorial. A possible
extension is to bias the sampling process by incorporating the spatial
distance between the triplet cities. However, this is not important for our
application as we are considering global cities that are deemed to have
extensive economic reach, and we are focused on international collab-
oration. While distance can be a significant constraint on collaboration
at the national level, however, beyond the national level, the increasing
coordination cost of collaboration seems to become less important for
global cities when collaborators can benefit from access to complementary
knowledge, resources, or facilities (Scholl, Garas, and Schweitzer, 2018;
Hennemann, Rybski, and Liefner, 2012).
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4.3 Data

The primary sources of data for the analysis of publication and patent
hypergraphs are PubMed and PATSTAT, respectively. PubMed is an open-
access repository maintained by the U.S. National Library of Medicine.
Pubmed covers more than 30 million publications, and disambiguated
information on the location of authors is available (Li et al., 2014; Catini et
al., 2015; Verginer and Riccaboni, 2021). The Patent Statistical (PATSTAT)
database is the most extensive database that captures patent activities
from over 90 patent offices located in different countries. The indicators
constructed from this database have been used as proxies for technologi-
cal activities in cities, regions, countries, and firms. However, less than
30% of the patents in the database do have address information for at
least an inventor reported on a patent, and when addresses are available,
sometimes they are not granular enough to capture technological activi-
ties in cities (Morrison, Riccaboni, and Pammolli, 2017a). Therefore, for
the analysis of the patent network, we rely on a patent database that we
developed in Chapter 1 specifically to address the problem related to the
quality of address information (Belderbos et al., 2021). The hypergraph
analysis is based on co-authorship and co-inventorship activities between
2005 and 2014 divided into two periods of 5 years: 2005-2009 and 2010-
2014. The hypergraphs are constructed from patents and publications
involving at least three cities (see Fig. 26). We have 21 293 (4 148) pub-
lications involving authors located in at least three cities in the period
2010-2014 (2005-2009), whereas we have 40 253 (32 971) patents involving
inventors located in at least three cities in the period 2010-2014 (2005-2009).
We opted to concentrate on 3-hyperedges because increasing multi-body
interaction beyond size three would filter out most patents or publications
from the analysis since there must be at least four global cities involved
in producing a single paper or patent. In particular, in our data set and
for the period 2010-2014, setting the size of hyperedges larger than three
would exclude 84.83% and 65.25% of patents and publications, respec-
tively. The distribution of hyperedges of different size constructed from
patents in period 2010-2014 (2005-2009) are as follow: hyperedges of sizes
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3, 4, 5 and above comprise of 84.8% (73.8%), 11.8% (20.3%), 2.6% (4.5%)
and 0.8% (1.4%) of the total number of n-hyperedges (n ≥ 3). While for
hyperedges constructed from publications, we have 65.25% (62.5%), 22.6%
(19.8%), 8.7% (8.1%), 3.5% (9.6%) respectively.

The nodes in the hypergraphs are cities, and the hyperedges are collab-
orations between cities. The weight of the hyperedges is the number
of publications or patents involving the cities. We analyze the triangles
(3-hyperedges) that emerge from the construction of this network by mea-
suring the probability that a focal city will be the third party in a dyadic
collaboration. In doing this, we selected 153 global cities drawn from the
GaWC research project (Beaverstock, Smith, and Taylor, 1999). These cities
are either alpha cities or beta cities (Beaverstock, Smith, and Taylor, 1999).
As described in Chapter 1, in order to avoid the impact of differences in
administrative boundary methodologies across countries on our analysis,
we regionalized these cities into functional urban areas (FUAs) based on
OECD, 2012 delineating methodology. According to the OECD definition:
“An FUA consists of a densely inhabited city and of the surrounding area
(commuting zone) whose labor market is highly integrated with the city”
(OECD, 2012; Dijkstra, Poelman, and Veneri, 2019). The OECD approach
for defining FUA uses population density to define urban cores and travel-
to-work flow information to define periphery cities that are economically
integrated with the urban core. For FUAs not in OECD countries, we
approximate the travel-to-work flow used in identifying periphery cities
with the patent density of the areas surrounding the focal city. In this
study, there are 153 FUAs, located in Asia (47), America (44), Europe (48),
and other regions (14).

Table 18 shows that the share of publications and patents with more than
two inventors has increased. Furthermore, a growing share of collabora-
tions involves inventors located in more than two cities.
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R&D output Time period Share of output Share of output
with more than with more than two inventors

two inventors (%) in multiple cities (%)
Patents 2005-2009 40.67 31.68

2010-2014 48.79 40.46
Publications 2005-2009 11.06 5.08

2010-2014 25.67 13.65

Table 18: The rising frequency of teams: the increasing share of scientific
publications and patents with more than two authors.

4.4 Results

In this section, we analyze the position of global cities in the international
networks of researchers. First, we analyze international collaborations
involving at least three cities in different countries (international network),
then we restrict the analysis to collaborations with researchers located
in at least three cities in different continents (intercontinental network).
Second, since in 3-hyperedges a city can be involved in an international
collaboration with another city in the same country, we specifically ex-
amine international collaborations and intercontinental collaborations in
which a given city joins other cities from different countries or continents,
respectively. That is, we focus on hyperedges with cities (i, j, k), in which
city i does not belong to the same country or continent as the ones of
cities j and k (note that cities j and k could belong to the same or different
countries and/or continents). Third, we examine each of the three main
continental blocs (Asia, Europe, America) to which both cities j and k

belong and identify which city i from outside the continental blocs has the
highest probability of joining the collaboration. Furthermore, we examine
the temporal changes between the periods 2005-2009 and 2010-2014 in the
ranking of cities joining intercontinental collaborations (i.e., Asia-Europe,
Europe-America, and America-Asia). Finally, we show the matrix repre-
sentation of the collaborations of San Francisco, London, and Shenyang,
and compare the global reach of San Francisco and London specifically
for the patent hypergraph.
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International Intercontinental

Top cities with high Top cities with significantly Top cities with high Top cities with significantly
probabilities high probabilities probabilities high probabilities

1 San Francisco (Greater) (0.0073) San Francisco (Greater) (0.0038) San Francisco (Greater) (0.0076) San Francisco (Greater) (0.0037)
2 New York (Greater) (0.0047) New York (Greater) (0.0025) New York (Greater) (0.0047) New York (Greater) (0.0024)
3 Houston (0.004) Paris (0.0017) Houston (0.0036) Shanghai (0.0017)
4 Paris (0.0034) Houston (0.0016) Paris (0.0025) Houston (0.0014)
5 Shanghai (0.0025) Shanghai (0.0016) Los Angeles (Greater) (0.0025) Paris (0.0013)
6 Los Angeles (Greater) (0.0024) Tokyo (0.001) Shanghai (0.0024) Tokyo (0.0011)
7 Chicago (0.0021) Munich (0.0009) Boston (0.0023) Chicago (0.0011)
8 Boston (0.0021) Taipei (0.0009) Chicago (0.0021) Boston (0.001)
9 Tokyo (0.002) Chicago (0.0009) Tokyo (0.0018) Taipei (0.0008)
10 Taipei (0.0017) Frankfurt am Main (0.0008) Philadelphia (Greater) (0.0017) London (0.0007)
11 Washington (Greater) (0.0016) Washington (Greater) (0.0008) San Diego (0.0014) Washington (Greater) (0.0007)
12 San Diego (0.0016) Los Angeles (Greater) (0.0007) Dallas (0.0013) Lyon (0.0007)
13 London (0.0015) Boston (0.0007) Taipei (0.0013) Los Angeles (Greater) (0.0007)
14 Philadelphia (Greater) (0.0015) London (0.0007) Washington (Greater) (0.0013) Philadelphia (Greater) (0.0007)
15 Munich (0.0015) Seattle (0.0006) London (0.0013) Vancouver (0.0007)
16 Shenzen (0.0014) Berlin (0.0006) Montreal (0.0012) Bangalore (0.0007)
17 Toronto (0.0014) Toronto (0.0006) Toronto (0.0012) Munich (0.0006)
18 Dallas (0.0013) Philadelphia (Greater) (0.0006) Lyon (0.0012) Frankfurt am Main (0.0006)
19 Beijing (0.0012) Vancouver (0.0006) Beijing (0.0012) Seattle (0.0006)
20 Montreal (0.0012) Brussels (0.0006) Austin (0.0011) Shenzen (0.0006)

(a) Patent hypergraph

International Intercontinental

Top cities with high Top cities with significantly Top cities with high Top cities with significantly
probabilities high probabilities probabilities high probabilities

1 Paris (0.0017) Beijing (0.0015) Paris (0.0017) Washington (Greater) (0.0014)
2 Beijing (0.0017) Paris (0.0012) Beijing (0.0016) Beijing (0.0013)
3 London (0.0015) Washington (Greater) (0.0012) Washington (Greater) (0.0014) Paris (0.0012)
4 Washington (Greater) (0.0014) London (0.0011) London (0.0014) London (0.0012)
5 New York (Greater) (0.0013) New York (Greater) (0.001) Los Angeles (Greater) (0.001) Los Angeles (Greater) (0.0007)
6 San Francisco (Greater) (0.001) Tokyo (0.0008) New York (Greater) (0.001) Houston (0.0007)
7 Houston (0.0009) Houston (0.0007) San Francisco (Greater) (0.001) Tokyo (0.0007)
8 San Diego (0.0009) Los Angeles (Greater) (0.0006) Houston (0.0008) New York (Greater) (0.0007)
9 Tokyo (0.0008) Guangzhou (0.0006) Copenhagen (0.0008) Shanghai (0.0006)
10 Berlin (0.0008) Shanghai (0.0006) Tokyo (0.0007) San Francisco (Greater) (0.0006)
11 Los Angeles (Greater) (0.0007) San Diego (0.0006) Berlin (0.0007) Riyadh (0.0005)
12 Copenhagen (0.0007) San Francisco (Greater) (0.0006) Shanghai (0.0007) Guangzhou (0.0005)
13 Rio de Janeiro (0.0006) Berlin (0.0005) Riyadh (0.0006) Copenhagen (0.0005)
14 Shanghai (0.0006) Copenhagen (0.0005) Greater Adelaide (0.0006) San Diego (0.0005)
15 Guangzhou (0.0006) Hanoi (0.0004) San Diego (0.0006) Greater Adelaide (0.0004)
16 Greater Adelaide (0.0005) Rio de Janeiro (0.0004) Rio de Janeiro (0.0005) Philadelphia (Greater) (0.0004)
17 Zurich (0.0005) Zurich (0.0004) Zurich (0.0005) Berlin (0.0004)
18 Sacramento (0.0005) Mannheim-Ludwigshafen (0.0004) Sacramento (0.0005) Zurich (0.0004)
19 Riyadh (0.0005) Riyadh (0.0004) Guangzhou (0.0005) Mannheim-Ludwigshafen (0.0004)
20 Mannheim-Ludwigshafen (0.0004) Hangzhou (0.0003) Hangzhou (0.0004) Rio de Janeiro (0.0004)

(b) Publication hypergraph

Table 19: Top twenty cities with high probabilities and significantly high
probabilities to be third parties in international and intercontinental collab-
orations. In this analysis, one of the partnering cities can be in the same
country as the focal city (case a in Fig. 26). The numbers in brackets represent
the fractions of international or intercontinental collaborations in which the
cities have high probabilities or significantly high probabilities of being third
parties. Cities that are present in all the rankings are in bold.

Table 19 shows the top twenty cities with the highest probability of being
present in 3-hyperedges (as defined in Equation 4.3). Table 19(a) shows
the results for the patent network, whereas Table 19(b) reports similar
results for publications. We compare the probabilities to be present in
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international and intercontinental collaborations with those based on the
hypergeometric null model. The threshold for high probability is a value
greater than or equal to 0.75 i.e., P (i|jk) ≥ 0.75, and the probability is said
to be significant if it is estimated higher than the probabilities from the null
model at a significance level of 0.01. The number in bracket represents
the fraction of 3-hyperedges in which the city has a high probability or
significantly high probability. Table 19(a) shows that San Francisco ranks
at the top of the list both in terms of high probabilities and significantly
high probabilities of being a third party in an international collaboration,
in 0.73% and 0.38% of cases, respectively. San Francisco also tops the list
for intercontinental collaborations considering both high probabilities and
significantly high probabilities. Table 19(b) shows that Paris tops the list
of cities with a high probability to be a third party in international collabo-
ration. However, Beijing tops the list when we consider significantly high
probabilities to become a third party in an international collaboration.

Similarly, Paris tops the list of cities with a high probability of being
in an intercontinental collaboration, whereas Washington tops the list
of cities with a significantly high probability of joining intercontinental
collaborations. Only nine cities are present in all the rankings: five US
cities (San Francisco, New York, Washington, Los Angeles, and Houston),
two Asian cities (Tokyo and Shanghai), and two European cities (London
and Paris). Beijing scores very high in the publication network, but it is
not a significant top player in the intercontinental patenting network.

In the analysis summarized in Table 19, we considered all international
and intercontinental collaborations (both types a and b of Fig. 26 are
included). Now we limit the analysis to the cases where both partnering
cities (i.e., cities j and k) are from outside the focal city’s (i.e., city i’s) coun-
try or continent (case b in Fig. 26 only). Table 20 shows the top-ranking
global cities by the probability of taking part in international teams when
co-inventors are located abroad or on different continents. Table 20(a)
shows that, for the patent network, San Francisco is still the city with
the highest probability to take part in international and intercontinen-
tal collaborations. Table 20(b) shows that, for the publication network,
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London tops the list of cities with the highest probability to take part in
international collaborations.

International (outside focal city’s country) Intercontinental (outside focal city’s continent)

Top cities with high Top cities with significantly Top cities with high Top cities with significantly
probabilities high probabilities probabilities high probabilities

1 San Francisco (Greater) (0.0068) San Francisco (Greater) (0.0038) San Francisco (Greater) (0.0065) San Francisco (Greater) (0.0037)
2 New York (Greater) (0.0042) New York (Greater) (0.0021) New York (Greater) (0.004) New York (Greater) (0.0023)
3 Houston (0.0033) Chicago (0.0011) Chicago (0.0026) Chicago (0.0017)
4 Los Angeles (Greater) (0.0021) Paris (0.001) Los Angeles (Greater) (0.0023) Los Angeles (Greater) (0.0011)
5 Paris (0.002) Munich (0.0009) Houston (0.0023) Tokyo (0.0009)
6 Boston (0.0018) Houston (0.0009) Boston (0.0017) Philadelphia (Greater) (0.0009)
7 Chicago (0.0018) Washington (Greater) (0.0008) Minneapolis (0.0014) Washington (Greater) (0.0009)
8 Toronto (0.0014) Los Angeles (Greater) (0.0008) Dallas (0.0014) Seattle (0.0006)
9 London (0.0013) London (0.0007) Philadelphia (Greater) (0.0014) Paris (0.0006)
10 Munich (0.0012) Bangalore (0.0007) San Diego (0.0011) Houston (0.0006)
11 Dallas (0.0012) Tokyo (0.0006) Shanghai (0.0009) Boston (0.0006)
12 Shanghai (0.0011) Malmo (0.0006) Washington (Greater) (0.0009) Shanghai (0.0006)
13 Washington (Greater) (0.0011) Brussels (0.0006) Paris (0.0009) Bangalore (0.0006)
14 Brussels (0.0011) Shanghai (0.0006) Austin (0.0009) Minneapolis (0.0006)
15 Philadelphia (Greater) (0.0011) Boston (0.0005) Bangalore (0.0009) Dallas (0.0006)
16 Tokyo (0.0011) Taipei (0.0005) Tokyo (0.0009) Greater Melbourne (0.0003)
17 San Diego (0.0011) Seattle (0.0005) Seattle (0.0006) Pittsburgh (0.0003)
18 Bangalore (0.0009) Philadelphia (Greater) (0.0005) London (0.0006) Albany (0.0003)
19 Minneapolis (0.0008) Toronto (0.0005) Detroit (Greater) (0.0006) Taipei (0.0003)
20 Copenhagen (0.0008) Vancouver (0.0005) Phoenix (0.0006) Bucharest (0.0003)

(a) Patent hypergraph

International (outside focal city’s country bloc) Intercontinental (outside focal city’s continent bloc)

Top cities with high Top cities with significantly Top cities with high Top cities with significantly
probabilities high probabilities probabilities high probabilities

1 London (0.0015) London (0.0012) London (0.0012) Los Angeles (Greater) (0.0009)
2 Paris (0.0011) San Francisco (Greater) (0.0008) San Francisco (Greater) (0.0009) Houston (0.0009)
3 San Francisco (Greater) (0.0009) New York (Greater) (0.0008) Copenhagen (0.0009) London (0.0009)
4 New York (Greater) (0.0009) Paris (0.0007) Houston (0.0009) New York (Greater) (0.0006)
5 Copenhagen (0.0007) Copenhagen (0.0005) Los Angeles (Greater) (0.0009) Washington (Greater) (0.0006)
6 Washington (Greater) (0.0007) Tokyo (0.0005) Washington (Greater) (0.0006) San Francisco (Greater) (0.0006)
7 Riyadh (0.0005) Washington (Greater) (0.0005) Prague (0.0006) Prague (0.0003)
8 San Diego (0.0005) Riyadh (0.0004) Paris (0.0006) New Delhi (0.0003)
9 Tokyo (0.0005) Los Angeles (Greater) (0.0004) New York (Greater) (0.0006) Copenhagen (0.0003)
10 Houston (0.0005) Houston (0.0004) San Diego (0.0003) Riyadh (0.0003)
11 Greater Sydney (0.0004) Greater Sydney (0.0003) Oslo (0.0003) Sacramento (0.0003)
12 Los Angeles (Greater) (0.0004) Hanoi (0.0003) Riyadh (0.0003) Karlsruhe (0.0003)
13 Rio de Janeiro (0.0004) Sacramento (0.0003) New Delhi (0.0003) San Antonio (0.0003)
14 Berlin (0.0004) San Antonio (0.0003) Chongqing (0.0003) Chongqing (0.0003)
15 Sacramento (0.0003) San Diego (0.0003) Karlsruhe (0.0003) Philadelphia (Greater) (0.0003)
16 Athens (0.0003) Philadelphia (Greater) (0.0003) Sacramento (0.0003) San Diego (0.0003)
17 Bologna (0.0003) Zurich (0.0003) Berlin (0.0003) Albany (0.0003)
18 Pittsburgh (0.0003) Rio de Janeiro (0.0003) San Antonio (0.0003) Greater Adelaide (0.0001)
19 Hanoi (0.0003) Taipei (0.0002) Albany (0.0003) Greater Sydney (0.0001)
20 San Antonio (0.0003) TelAviv (0.0002) Philadelphia (Greater) (0.0003) Munich (0.0)

(b) Publication hypergraph

Table 20: The ranking of top twenty cities with the highest probabilities
to be third parties in international and intercontinental collaborations with
other cities from different countries and continents, respectively. The numbers in
brackets represent the fractions of such collaborations in which the cities have
high probabilities or significantly high probabilities of being third parties.
Cities in bold are present in all rankings.

However, when we consider the significantly high probabilities of inter-
continental collaborations, Los Angeles tops the list. More interestingly,
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only five cities are present in all rankings, and they are all US cities:
San Francisco, New York, Washington, Los Angeles, and Houston. This
finding further confirms the central role of the US innovation system.

Next, we analyze the probability that a focal city (i.e., city i) will take part
in 3-hyperedges where cities j and k belong to the same continental bloc,
but different from the bloc of city i. Indeed a city playing a significant role
outside its continental bloc signals global reach and the ability to absorb
distant knowledge effectively.

Asia Europe America

[1] San Francisco (Greater) (0.0044) [1] Paris (0.0067) [1] Houston (0.0066)
[2] Shanghai (0.0038) [2] Mannheim (0.0033) [2] New York (Greater) (0.0041)
[3] Taipei (0.0038) [3] Stockholm (0.0024) [3] Washington (Greater) (0.0025)
[4] Tokyo (0.0033) [6] San Francisco (Greater) (0.0024) [7] Amsterdam (0.0017)
[5] Houston (0.0022) [12] Los Angeles (Greater) (0.0014) [8] Beijing (0.0017)
[6] New York (Greater) (0.0022) [13] New York (Greater) (0.0014) [11] Brussels (0.0017)

(a) Patent hypergraph, three main continental blocs

Asia Europe America

[1] Beijing (0.0027) [1] New York (Greater) (0.0014) [1] New York (Greater) (0.0025)
[2] Guangzhou (0.0016) [2] Berlin (0.0014) [2] Houston (0.0025)
[3] Tokyo (0.0016) [3] San Diego (0.0010) [3] Washington (Greater) (0.0017)
[4] Paris (0.0011) [4] Greater Sydney (0.0011) [9] Zurich (0.0008)
[7] Washington (Greater) (0.0005) [5] London (0.0010) [12] Bologna (0.0008)
[8] San Francisco (Greater) (0.0005) [6] Paris (0.0010) [13] London (0.0008)

(b) Publication hypergraph, three main continental blocs

Table 21: Top cities with significantly high probabilities of being third par-
ties in the main continental blocs (Asia, Europe, and America). Domestic
collaborations are not considered. The American bloc includes North and
South America. Rankings are in square brackets, while the fraction of dyadic
international collaborations in the bloc the city enters with a high probability
is reported in parentheses. Cities in the top three positions from different
continents are highlighted in bold.

For each continental bloc (i.e., Asia, Europe, and America), Table 21 lists
the top three cities in the ranking located in the continental bloc and the
top three cities from outside the continental bloc. Table 21(a) shows that,
for the patent hypergraph, San Francisco dominates all cities in the Asia
bloc, including Asian cities. San Francisco is the top non-European city
in the European bloc and ranks higher than many other European cities
(except for Paris, Mannheim, and Stockholm). Finally, in the American
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bloc, Amsterdam is the topmost non-American city. Table 21(b) shows
that for the publication hypergraph, local cities dominate the Asian and
American blocs. However, in the European bloc, New York City plays a
significant role in being a third party in collaborations taking place within
the European bloc. In particular, New York City shares this prominent
role with Berlin (i.e., in 0.14% of 3-hyperedges of this kind), but fairs better
than London. In summary, we find that American cities (specifically San
Francisco and New York) play a pivotal role in Asian teams of patent
co-inventorships and European scientific collaborations, respectively.

4.4.1 Temporal changes in the ranking of cities emerging
in intercontinental collaborations

Figure 27a and 27b show the changes in the ranking of cities between
the periods 2005-2009 and 2010-2014 for the patent and publication hy-
pergraphs, respectively. The ranking of cities is based on the fraction of
3-hyperedges where cities have a high probability (i.e., P (i|jk) ≥ 0.75)
of being third parties for the period 2010-2014. Findings show three
sub-panels (Asia-America, Asia-Europe, and Europe-America) of more
disaggregated intercontinental collaborations for both patent and publica-
tion hypergraphs. For example, the ranking of city i in an Asia-Europe
collaboration is based on the fraction of 3-hyperedges (specifically cases
where city j and city k are in Asia or Europe and P (i|jk) ≥ 0.75) in which
city i appears. Cities in green moved up or maintained their ranking,
while cities colored in red experienced a decline in ranking between the
periods 2005-2009 and 2010-2014, and cities colored in grey only satisfied
the condition of high probabilities for the period 2010-2014.
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(a) Patent hypergraph

(b) Publication hypergraph

Figure 27: Changes between the periods 2005-2009 and 2010-2014 in the
ranking of top cities with high probabilities (i.e., P (i|jk) ≥ 0.75) of being
third parties in intercontinental collaborations (Asia-America, Asia-Europe,
and Europe-America). The green cities and red cities moved up and down
the ranking respectively, while the grey cities were not in the ranking for
2005-2009 (i.e., their probability was less than 0.75 for all 3-hyperedges they
appeared in). For each sub-panel, the cities are ordered based on their
ranking for the sub-panel in 2010-2014. Note: America comprises of cities in
North and South America.

For the patent hypergraph, Figure 27a suggests that only 49, 59, and
66 cities had high probabilities of being in Asia-America, Asia-Europe,
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Europe-America collaborations, respectively. Figure 27a shows that San
Francisco has remained the city with high probabilities in most hyper-
edges consisting of Asia-America collaborations. For Asia-Europe collab-
orations, San Francisco and Shanghai moved from 2nd and 17th position
to 1st and 2nd, respectively. Paris retained its second place for Europe-
America collaborations, while San Francisco moved from 3rd place to 1st.
The observed significant leap of Shanghai in both Asia-America and Asia-
Europe hyperedges, is an indication of the city being a contender for San
Francisco’s top position in the future. The cities in grey are new entrants
whose probabilities to emerge as third parties in the relevant collaboration
(e.g., Asia-America, Asia-Europe, and Europe-America) are less than 0.75

in the period 2005-2009, but larger than 0.75 in the period 2010-2014. For
Asia-America, Asia-Europe, and Europe-America collaborations, we have
more new entrants from America, Europe, and America, respectively.

Generally, top cities in the US are well positioned to be third parties in
technological partnerships across any dimension of intercontinental col-
laborations. In the ranking of cities for Asia-America collaborations, US
cities moved up the rank on average by approximately 4 points, with
Boston making the most significant leap from 49th position in 2005-2009
to 5th position in 2010-2014. Although top Chinese cities such as Beijing
and Shenzen moved up the rank, Chinese cities declined by 2 points on
average. Also, we observe that European cities are not third parties with
high probabilities of being in Asia-America collaborations. In ranking
cities with high probabilities to be third parties in Asia-Europe collab-
orations, we find more European cities than Asian cities. However, on
average, European cities declined by 3 points, while Chinese cities moved
up on average by 1 point, and cities in the US moved up on average by
9 points. Similarly, for Europe-America collaborations, cities in Asia are
less likely to act as third players. We have more European cities than
American cities in the list, and European cities moved up the rank on
average by 1.34 points, while US cities moved up the rank on average by
0.9 points.

For the publication hypergraph, Figure 27b shows that only 34, 31, and
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23 cities had high probabilities to be in Asia-America, Asia-Europe, and
Europe-America collaborations, respectively. Figure 27b shows the changes
in the ranking of cities between the periods 2005-2009 and 2010-2014. This
is based on the fraction of 3-hyperedges where cities have a high proba-
bility (i.e., P (i|jk) ≥ 0.75) of being third parties in either Asia-America,
Asia-Europe, and Europe-America collaborations. With a high probability
of joining the highest fraction of Asia-America scientific collaborations
as a third party, Washington (Greater) moved from the third position in
2005-2009 to the top position in 2010-2014. The leading cities in Asia-
Europe and Europe-America scientific publications are London and Paris,
respectively. Generally, on average, cities in Asia moved up the ranking
for Asia-America collaborations, while more new cities from America ap-
peared in the ranking. Similarly, for Asia-Europe collaborations, cities in
America moved up the ranking while more new cities from Asia entered
the ranking in 2010-2014; and for Europe-America collaborations, cities
in Europe moved up the ranking while more new cities from America
entered the ranking in 2010-2014.

4.4.2 The case of San Francisco, London, and Shenyang

Figure 28 shows the projection of the adjacency tensor of patent and
publication hypergraphs for selected cities: London, San Francisco, and
Shenyang. Having fixed the focal city of reference (e.g., London), the
matrix shows the significant probabilities (i.e., cases where P (i|jk) in the
observed network exceeds that computed from the network ensembles
generated using the hypergeometric model) of observing the fixed city
as the third party in the different 3-hyperedges. Cities are grouped in
continental blocs for the sake of readability, e.g., the AM bloc consists of
cities in North and South America, the EU consists of cities in Europe,
and so on. The figure is organized into blocks (e.g., the bottom left block
AM-AM refers to the case of observing the fixed city in America-America
international collaborations), and in each block, it shows the fraction of
3-hyperedges where the fixed city has significant probabilities.
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(a) Patent hypergraph

(b) Publication hypergraph

Figure 28: The adjacency tensors: Each matrix represents the projection for
three cities (London, San Francisco, and Shenyang) in the patent hypergraph
(subplot a) and the publication hypergraph (subplot b). Cities are grouped in
continental blocs, while the matrix is divided into collaboration blocks. The
green line depicts the position of the focal city in the matrix; each dot refers
to the actual probability of collaboration of the focal city with a given pair of
global cities (in rows and columns) when this probability is higher than the
hypergeometric benchmark, and the number in each block is the fraction of
3-hyperedges in that block where the focal city’s actual probabilities exceed
the hypergeometric benchmark.

As suggested by the fraction in each block of the patent and publication
hypergraphs, London is a top city in the publication hypergraph, San
Francisco is a top city in the patent hypergraph, and Shenyang is not
a top city in either hypergraph. When comparing the probability to be
a third party in global city collaborations (see Figure 28) San Francisco
stands out as the city with the highest probabilities and the largest fraction
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of 3-hyperedge collaborations. It consistently dominates London across
every block considered. In the publication hypergraph in Figure 28, we
notice that London is better at being significantly present in collaborations
where one city is from Europe (i.e., Europe-Asia and Europe-Europe
blocks), whereas San Francisco is better at being significantly present
when a city in America is involved (i.e., America-Asia, America-America,
and America-Europe blocks). Shenyang is significantly present in Asian
collaborations, but London and San Francisco always dominate it. For
both the publication and patent hypergraphs, we see sparser matrices
for less prominent global cities, such as Shenyang, compared to San
Francisco and London. Furthermore, we observe sparser matrices in the
patent hypergraph than in the publication hypergraph for all three cities
(London, San Francisco, and Shenyang). Indeed, this pattern does not
only apply to the three cities but is also observed in 78% of the global
cities in our data set.

Figure 29: The global reach of San Francisco and London in the patent
network: The yellow and green lines represent significant probabilities less
and greater than 0.5, respectively.

To sum up, we find that US cities play a pivotal role in international
networks of inventors. Among them, San Francisco is the leading city
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in international collaborations. Figure 29 represents the orthographic
projection of the significant probabilities of San Francisco and London
to take part in 3-hyperedges for the patent hypergraph. We find that
San Francisco has a greater global reach than London. Specifically, San
Francisco is significantly present in 536 international collaborations, 44 of
which have a probability exceeding 0.5. Most of the significant probabili-
ties exceeding 0.5 refer to cities in America and Europe, while the lowest
probabilities are of cities located in Asia. On the other hand, London has
a significant global reach in 357 international collaborations, of which
only 4 have probability exceeding 0.5: Helsinki-Seoul, Atlanta- Istanbul,
Amsterdam-Luxembourg, and Columbus-Madrid.

4.4.3 Comparison of probabilities based on traditional net-
work and hypergraph approach

Following the traditional network approach, we built a network where
cities are nodes, and linkages are formed when there is collaboration
between researchers located in these cities. Using the traditional network
approach implies we relaxed the condition that there should be at least
three cities on a patent or publication to at least two cities. By doing this
we increased the number of patents and publications in the period 2010-
2014 from 40 253 and 21 293 to 182 946 and 231 479 respectively. From
these patents and publications, we identified 99 745 and 169 478 triangles
respectively. In a similar approach as in the hypergraph, we compute
P (i|jk) which is the probability that a city i is involved in a patent or
publication in which cities j and k are also involved. Similarly, we used
the hypergeometric model described in Section 4.2.1 to determine if these
probabilities are significant (i.e., overestimated than what is obtained in
the ensemble of randomized networks).

Based on the traditional network approach, first, we find that for both
patent and publication networks, none of the cities had a probability
P (i|jk) exceeding 0.75 (i.e., high probability to be in a triangle). This can
be attributed to the fact that the traditional network approach overesti-
mates the number of genuine triangles (or genuine multi-body interac-
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tions) making the fractional share very small. Since we cannot compare
the result from the traditional network with what is reported in the hy-
pergraph (in Table 2 and 3), we choose to analyze both international and
intercontinental collaborations by comparing the average probabilities for
each city that are computed based on both hypergraph and traditional
network approaches.

(a) Patent

(b) Publication

Figure 30: Comparison of average probabilities computed in the traditional
network and hypergraph. The cities on the horizontal axis are ordered
(decreasingly) based on the fractional share of 3-hyperedges they emerge in.

Figure 30a and 30b show the average probability (in cases where the
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probability from the null model is underestimated) of a city to emerge
in international or intercontinental collaborations using both the tradi-
tional network and hypergraph approaches. The cities on the horizontal
axis are ordered (decreasingly from left to right) based on the fractional
share of 3-hyperedges they emerge in. For both approaches applied to
patent and publication we observe that for either international or inter-
continental collaborations, cities with more innovative reach do this with
higher probabilities, and this is more evident for publication than it is for
patent. Generally, we observe that for both publication and patent, the
average probability in most cities is higher in hypergraph compared to
the traditional network. Specifically, for analysis of international collabo-
rations, 134 (for publication) and 148 (patent) cities do have an average
probability (significant) being underestimated in the traditional network
approach, while for inter-continental collaborations, it is the case for 132
(for publication) and 148 cities (for patent). This implies that the tra-
ditional network approach used in identifying multi-body interactions
underestimates these kinds of collaborations.

Patent Publication
Mean Probability (International) 0.4934 (3.66e-17) 0.1447 (0.0828)
Std. Probability (International) 0.2829 (9.19e-6) 0.1316 (0.1440)
Mean Probability (Intercontinental) 0.4802 (3.05e-16) 0.1645 (0.0325)
Std. Probability (Intercontinental) 0.2632 (4.91e-5) 0.1184 (0.2374)

Table 22: Kolmogorov-Smirnov test: Comparing the distribution of mean
probability and standard deviation computed in both traditional network
and hypergraph. The number in the bracket is the p-value. Generally,
the distribution is not identical for the case of patents, and for the mean
probabilities of intercontinental collaborations in publication.

Table 22 shows the Kolmogorov-Smirnov (KS) test comparing the distribu-
tion of the probability mean and standard deviation computed using both
approaches. The KS test shows that at an alpha level of 0.05, for patent,
the distribution of the average probability in the traditional network is not
identical as in the hypergraph, this result is the same for both international
and intercontinental analysis. Similarly, for publication, the distribution
of the average probabilities is not identical in both hypergraph and the
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traditional network for intercontinental analysis, but identical for the
analysis of international collaboration.

4.5 Discussion

Global cities are important hubs of innovation and cultural and economic
activities: they are composed of most of the world’s population, and serve
as an engine of creativity (Verginer and Riccaboni, 2021). For this reason,
their ability to plug into international networks of researchers secures
them access to distant knowledge that can be absorbed and diffused to
other cities within the country.

In light of this, this work has analyzed the international network of re-
searchers based on publications and patents. Traditionally, the analysis of
the international network of researchers has been conducted at the level
of specific countries; when the focus is on regions and cities, the analysis
is restricted to regions and cities within a given country or continent
(Sachini, Sioumalas-Christodoulou, and Chrysomallidis, 2021; Angelou
et al., 2020b). Also, recent work has concentrated primarily on dyadic in-
teractions (Sachini, Sioumalas-Christodoulou, and Chrysomallidis, 2021;
Wagner, Whetsell, and Leydesdorff, 2017), with few exceptions such as
Li, Wei, and Wang, 2015 and Angelou et al., 2020b. Our study contributes
to this literature by examining the international network of researchers
for both patents and publications from a hypergraph perspective. To this
end, we constructed a measure from 3-hyperedges in the hypergraph and
used a configuration model to build null models in order to identify the
cities that act as global players. Recent work that has focused on patent
and publication networks from a similar perspective has carried out the
analysis of triangles on networks in the traditional sense. For example,
Angelou et al., 2020b examined the multiplex network of patents and
European “Framework Programmes” (FPs) with the aim of uncovering
temporal variations in the formation patterns of triangles. This tradi-
tional approach does not properly capture multi-body interactions, as a
triangle in a network could emerge from a combination of pairwise inter-
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actions, and therefore lead to an over-estimation of the actual three-body
interactions observed in the network system.

In this study, we observe that the share of patents with more than two in-
ventors and the share of patents with more than two inventors in multiple
cities have increased by approximately 8% and 9%, respectively, between
the periods 2005-2009 and 2010-2014. Similarly, for publications, the in-
crease has been 14% and 8%, respectively. Second, we found a sparser but
strong significant matrix of collaborations in the patent network than in
the publication network, which reflects the fact that complex collabora-
tions in patents require more effort than publications and do not take place
as often as scientific publications because they typically involve greater
coordination costs. Third, we found that San Francisco is a significant
third-party global player in complex collaborations in the patent network,
irrespective of whether such collaboration occurs within or outside the US.
This observation is not surprising as San Francisco is home to the Silicon
Valley where there are headquarters of major patenting companies with
global reach. We also see that San Francisco maintains the top position
even when we restrict the analysis to inter-continental collaborations. An
interesting observation is that San Francisco plays a top role within the
Asian bloc and also serves as a pivotal non-European player within the
European bloc.

Generally, we have a proliferation of cities in the US (compared to Europe
and Asia) as top third parties in intercontinental collaborations. This is
likely due to the abundance of multinational companies and top research
centers in the US. Also, the rise of China, often observed in the patent
network, cannot be detected when we consider a complex collaboration
system, as only a handful of top cities such as Shenzen and Beijing moved
up the ranking over time. Similarly, in the publication network of re-
searchers, we found London to be the most global third player. However,
the role of London becomes weaker when we consider intercontinental
collaborations and collaborations within the Asian bloc.

A limitation of the analysis is that we focus on global cities, and as such
we exclude 3-hyperedges from publications and patents formed between

176



global and non-global cities, hence the bias in our result will be greater for
cities with more distributed innovation capabilities in non-global cities.
Also, notice that the results of our analysis of the patent and publication
hypergraphs should be interpreted with caution as both hypergraphs
represent multi-body interactions in different fields. While patents in
PATSTAT are filed across different technological fields, publications in
PubMed consist of papers published mainly in the life sciences. The
implication of the difference in technology fields covered in patents and
publications multi-body analysis is that the cities that emerge to be im-
portant in the patent multi-body analysis can be said to be embedded in
higher-order structures with variety of technological flows allowing for
such cities to have more piece in the technology space that can be used
for combinatorial innovative purpose. On the other hand, we cannot say
the same for cities emerging in the publication multi-body analysis, since
the scientific space is limited, the piece for combinatorial purpose may
be limited as well. Another limitation of the analysis pertains to the null
model used in determining if the likelihoods estimated in the empirical
network are underestimated or not. The null model is built based on
randomization of the network adjusting for city size, other propensities
for a network formation such as cultural norms, language similarity, and
distance between innovators can be used to bias the randomization of
edge formation in the network. Adequately representing the effect of
distance in the randomization process can be tricky especially for cross-
border analysis, as geographical borders have been shown to significantly
hinder geographic span of networks. For example, linkages in the US has
been shown to have faster exponential decay, while linkages in the US
decay as power of distance (Cerina et al., 2014), this observation may be
as a result of a more homogeneous innovation system in the US. Future
research work can explore the best functional representation for the distri-
bution of distance (power law or exponential) that can be used to bias the
randomization done in the null model. This is important as this can shed
more light on whether the different national innovation systems in Eu-
rope becoming more integrated have impacted its ability to source ideas
globally ( i.e., beyond the EU). As we currently observe in the analysis for
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both patent and publication, European cities were less likely to emerge as
core cities in hyperedges involving other continents - the challenge might
be that the EU is still far away from having an homogeneous innovation
system that allow it to strongly source knowledge from the world. Poli-
cies such as the European Research Area (ERA) around the creation of
borderless market can be strengthened to achieve this.

In conclusion, by examining a hypergraph structure consisting of hyper-
edges of size three, our findings contribute to a better understanding of
how to properly identify the cities that can be characterized as global play-
ers in various types of international and intercontinental collaborations
with other cities. Our results on identifying cities with significant global
reach in the system of international multi-body interactions for patents
and publications have important policy implications as they can help
governments and policy-makers to better design effective policies that
can spur innovation in cities. Future direction of this research can examine
identification of cities that are “rising stars”, the clustering of cities in
networks of researchers of n-hyperedges (n ≥ 3), and can also investigate
the role of exogenous shocks (e.g., economic crisis) on the clustering of
cities and emergence of cities as global hubs in complex collaborations.
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Conclusion
Historically, cities have contributed significantly to cross-border economic
transactions. In the past, cities such as Venice and Genoa, and those
located in the Baltic and Arab regions facilitated global trade through
their ports, and this remains the case, as huge containers still transport
goods across cities in different continents (WEF, 2014). These activities
of cities in facilitating trade revolutionized Europe and Asia, as many
European cities prior to the industrial revolution were seen as major
commercial centers of the world (WEF, 2014). In this new century, the
difference in economic development has been attributed primarily to
differences in technological development between cities and regions.

Technological progress and innovation have increasingly become im-
portant for economic growth of cities, and similar to the intensity of
commercialization that happened in cities centuries ago, cities are at the
forefront of scientific and technological innovation as they institute more
productive and targeted policies. Policies put together by policymakers at
the city and regional levels have become more flexible and effective, as the
proximity of policymakers to residents in the city, and the sizeable number
of residents located in the city has allowed for better policy experimenta-
tion and adaptation (WEF, 2014). Therefore, to build on the successes of
innovation policies in cities, being able to quantitatively and qualitatively
evaluate the effect of policy instruments on innovation outcomes might
be very useful. A granular geolocated patent data can lend itself useful
for quantitative evaluations.

Previous research (such as (Balland and Boschma, 2021; Boschma, Balland,
and Kogler, 2015)) have relied on the use of patent data, however, some
of the available patent database either lack granularity or do have limited
coverage and are prone to national bias, or allocate patent to cities based
on national boundary definitions which imply that differences in national
boundaries across countries will impair sound international comparisons
of technological output of cities. Recent effort such as (De Rassenfosse,
Kozak, and Seliger, 2019; De Rassenfosse and Seliger, 2021) in address-
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ing the issue of imputing missing addresses do a good job at allocating
addresses to patents but not necessarily identifying which inventor or
applicant on the patent this address is associated with. Moreso, these
works regionalize the given address to geographical areas with boundary
conditions that are administratively defined, and as such the regions do
not necessarily represent the economic extent of the geographical areas.
In Chapter 1 of the thesis, we contribute to existing work that addresses
allocating missing address to inventors and applicants on patent, as well
as employing an harmonized way of delineating cities to functional ur-
ban areas that represent the economic reach of cities. The importance of
this is uniformity in the definition of geographical boundaries enhances
international comparison of innovation outcomes of geographical areas.
When compared to the raw PATSTSTA dataset, the final dataset for both
inventors and applicants shows a significant improvement in the avail-
ability of georeference addresses. This new dataset can be applied to
research that examines networking strategies of inventors or applicants
and the impact on productivity, distinguishing between emerging and
star firms patenting in new areas such as AI and blockchain technologies.
In Chapter 1 we demonstrate the potential use of this data by providing
a preliminary analysis on the evolution of domestic linkages and inter-
national linkages. Much of the literature in international business have
been concerned about the consequences of international connectedness
and domestic disconnectedness (Lorenzen, Mudambi, and Schotter, 2020).
Since domestic disconnectedness does have the potential of energizing
populist backlash against multinational firms (Lorenzen, Mudambi, and
Schotter, 2020). In our analysis of the evolution of domestic linkages and
international linkages to both global and non-global cities, we observe
that there has been a decline in unweighted (representing the extensive-
ness of innovative ties) domestic linkages following the financial crisis,
but a steady increase in international unweighted and patent-weighted
(representing the intensiveness of innovative ties) linkages to both global
and non-global cities. Specifically, developing economies e.g., cities in
Africa rely more on international linkages for innovation process, as they
pursue formation of ties with global cities mostly in North America and
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Asia. While cities in developed economies in Asia pursue the formation
of ties with both international global and non-global cities, and North
America cities pursue the formation of ties only with international global
cities. The limitation of this preliminary analysis is the fact that we can
only observe linkages between approximately 1200 cities in the database,
hence the analysis and subsequent analysis in other chapters are biased in
favor of cities more likely to form ties with the cities we have. Secondly,
the quality of the database is impacted by ambiguities in names of inven-
tors and applicants which is a major issue in patent database. Since the
retrieval of missing addresses for inventors and applicants rely on looking
into similar names in subsequent filings within the database, the similarity
measure can only address minor cases of ambiguities. Therefore, future
work on improving the quality of this database can focus on improving
disambiguation algorithms (such as Morrison, Riccaboni, and Pammolli,
2017a, Li, Wei, and Wang, 2015, and Cuxac and Bonvallot, 2013) which
would enhance the missing address retrieval process.

In Chapter 2 we investigate how to forecast the economic complexity and
competitiveness of global cities using machine learning models. The liter-
ature on economic complexity has proposed that economic development
involves accumulating diversified capabilities rather than increasing spe-
cialization in few technological areas. The principle is that most complex
technologies that are needed by most people are highly leveraged and
require various expertise. Cities with diversified capabilities do have the
pre-requisite know-how to produce them (Balland and Rigby, 2022). The
growth of these technological capabilities at the city-level hinges on the
different specialization of economic agents, such that the society knows
better because of differences in capabilities of its economic agents (Balland
and Rigby, 2022). This notion of economic capabilities of cities is distilled
in the economic complexity index capturing the productive capabilities
of cities. While there are various strands of the economic complexity
metrics (e.g., “Economic Complexity Index” (ECI) (Hidalgo et al., 2007),
“Fitness and Complexity” (FC) (Tacchella et al., 2012) and their variations)
that has been applied to measure capabilities of countries, we extend this
application to the measurement of capabilities in cities by using recent
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economic complexity methodology called the generalized economic com-
plexity (GENEPY) index (Sciarra et al., 2020) which is a novel approach
that reconciles both the ECI and FC using a multidimensional framework,
that leverages the strengths of both methods. This way of measuring
capabilities of cities adds to the toolbox of economics, as it approaches
the problem using dimensionality reduction techniques that preserves
information than aggregations typically used in economics (Balland and
Rigby, 2022). Also, the economic complexity approach provides a new
way of studying technology differently from a consequential perspective
in which technology is seen as a shift parameter in measures of total
factor of productivity (Balland and Rigby, 2022). By providing the notion
of technology space, we can capture information of exact technologies
needed to upgrade to any given technology - this can be useful in better
understanding development outcomes of cities. Measuring capabilities is
not a forward looking process, as economic complexity does not tell us
what happens in the future in terms of whether the city becomes competi-
tive (i.e., specialize) in a given technological area. The creation of strong
institutions, industrial districts are some areas in which cities allow for a
creative space that can be useful to firms and individuals, which in turn
can enhance the competitiveness of these cities. Following the Ricardian
comparative advantage, a competitive city should be patenting more than
its fair share in a given technological area. To forecast the possibility of
this happening in the future, we can rely on the historical information of
the comparative advantage of cities to uncover the relationship between
technologies. Combining this with an understanding of the technological
portfolio in the city can help us know what technology the city would
specialize in the future. The network science literature provides ways
to think about the relationships between technologies, which are mostly
from a linear perspective such as co-occurrence and taxonomies (Pugliese
et al., 2019; Engelsman and Raan, 1991) which are problematic as tech-
nological associations can be higher-order (not pairwise) and non-linear.
Methodologically, in line with recent works Tacchella et al., 2021 (fore-
casting competitiveness of countries using trade data) and (Straccamore
and Zaccaria, 2021) (forecasting technological entry of firms using patent
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data), we contribute to the discussion on forecasting the competitiveness
structure of cities in technological areas by showing a better predictive ma-
chine learning model when compared to the time-delayed co-occurrence
model proposed in Pugliese et al., 2019, and does not leverage the auto-
correlation structure in the revealed technological advantage matrix. The
performance of the machine learning model is better than results from
similar work (e.g., Straccamore and Zaccaria, 2021) using patent data.
Finally, we show that using the predicted competitiveness technological
structure of cities, we can provide a prediction of the future capabilities
of cities (generalized economic complexity index). We observed that the
predicted GENEPY vary significantly from the actual GENEPY for more
complex cities, and less so for least complex cities, suggesting gradual
incremental changes in capabilities at early developmental stages.

This analysis is important for planning technological pathways of cities
as it is well known that urbanization growth is interwoven with the eco-
nomic capabilities and technological competitiveness. As cities evolve
and become more urbanized, the process of urbanization increases eco-
nomics of scale of production activities within the city, boosts productivity,
and increases competition. The advantage of an increase in urbanization
alongside the right bureaucratic environment and infrastructural invest-
ment can foster economic growth and innovation. Therefore, being able
to effectively forecast the underlying capabilities of cities being distilled
in an economic complexity index can be useful knowledge for cities in
different ways. First, such knowledge can serve as benchmark in strategic
innovation plans and can help policymakers calibrate how much impact
the city can have on other developmental indicators such as reduction
in greenhouse gas emission, gender inequality, and institutional quality
given the presence of favorable policy space facilitating recommenda-
tions consistent with predicted economic capabilities. The forecasting
exercise follows a data-driven strategy and machine learning models that
are black-box, and do not incorporate how the policy space (e.g., such
as a regional policy on strengthening institutions supporting innovation)
and interventions impact economic capabilities. While we show that
our model does have better predictive power and can reconstruct future
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economic capabilities, the model predictive power specifically for the sec-
ond task (i.e., forecasting competitiveness in cities that have RTA < 0.25

between 2000-2008) can be improved upon by consolidating the features
constructed from the patent database with other policy, economic and
industrial features. Further research can be done to address these issues
and specifically provide index of economic capabilities of cities that is di-
rectly predicted and not one based on the predicted revealed technological
advantage of cities in different technological areas.

In Chapter 3 we investigate how cities enter new technological areas. We
rely on previous work on entry (Rigby, 2015) and diversification (Balland
and Boschma, 2021) into new technology domains, by examining the
effect of inter-city ties on entry into new technology - since exploratory
activities of cities can be affected by technological structures in other cities,
and the formation of ties with players in other cities can lead to diffusion
of information that can serve as pre-requisite for new technological areas
(Balland and Boschma, 2021; Rigby, 2015). We find evidence that this is
indeed the case - that increased inter-city ties increase the likelihood that
a city will enter a new technological domain, and this effect is enhanced
when the ties are located in partner cities with large pool of inventors.
Also, following the theory on relatedness, we examine the effect of re-
latedness of a city’s existing technological stock with new technology.
This is because similar capabilities needed to explore a new technological
area will mean that the city can easily assimilate the new technology in a
more useful way, rather than spending time and resources in gathering
capabilities needed for the new technology. We find that the theory of
relatedness holds, as cities are more likely to enter a new technological
domain if the domain is related to their existing capabilities. What we
observe is that the effect of technological relatedness generally outweighs
the effect of inter-city ties on entry process. This can be because not all
linkages matter and the inclusion of linkages with knowledge flows not
complementary with the existing capabilities in a city might downgrade
the effect of these ties on entry process. Since we have seen in the work of
Balland and Boschma, 2021 that complementarity of capabilties is very
useful in positively moderating the effect of regional linkages on techno-
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logical diversification. The limitation of the analysis done in Chapter 3 is
that the focus on formation of linkages does not identify if these linkages
are a result of technological acquisition i.e. when a city enters a new
technology during collaboration, the applicant that owns the patent is
located in the city, or knowledge spillover i.e., the applicant that owns the
patent is located in the partner city. Future research work can examine
the impact of inter city ties and technological relatedness on these distinct
kinds of entry. Also, the analysis does not take into account the role of
institutions in entry process, as strong institutions should facilitate tech-
nological entry. In measuring technological relatedness, the measurement
can be improved upon given the work done in Chapter 2. Although
Chapter 2 is being framed to predict competitiveness, the same analysis
can be done to predict entry, in which the probability score for entry can
be a good proxy for the proximity of technological capabilities of cities
to new technologies. Although doing this would require more historical
data for the model to meaningfully predict entry in early periods. While
both analyses in Chapters 2 and 3 confirm that relatedness can facilitate
competitiveness and entry into new technologies, the analysis done in
Chapter 3 still does not identify if technologies in the core or periphery of
the cities’ technological structure are driving the entry process. Finally,
since the definition for the newness of a technology in a city is city-specific
and not global (i.e., not new to the world), future research can examine
the entry process into technologies that are new to all cities (i.e., new to
the world). Other limitations are the inherent problems in the data work
which we already discussed in Chapter 1.

The findings in Chapter 3 can be useful to how we think of implementing
the different innovation policies such as EU smart specialization, Chile
Innova, Canada’ super cluster initiative and similar initiatives. For ex-
ample, to achieve a more integrated innovation system in the EU, cities
can leverage capabilities in other cities that do not exist in their city. To
achieve this may require some policy instruments by the EU, policies
such as publicly funding projects requiring collaborations between cities
competent in a given technological area and those that are not, this will
provide learning opportunities that can further allow innovation in areas
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new to a city or ensure that projects consistent with the technological
capabilities of cities are preferentially funded when collaborations are
not being pursued (Balland and Boschma, 2021; Bednarz and Broekel,
2019; Barzotto and Tomlinson, 2019). Also, this can be implemented by
incorporating the global city status of a city, since non-global cities are
observed to rely more on ties to other cities that are competent in the new
technology. Hence the former criteria for funding can be appropriate to
this class of non-global cities, and the latter to the class of global cities.
Such implementation can help diffuse any perceived bias in how projects
are being funded by the different innovation institutions.

The analysis in Chapters 2 and 3 rely on building the network based on
dyadic relationships between cities (in the case of inter-city network) or
between IPCs (in the case of technological network). In Chapter 4 we in-
vestigated the likelihood of cities to emerge significantly in transnational
triadic scientific and R&D collaborations based on network structures that
capture higher-order interactions (i.e., beyond dyadic relationship). The
motivation is that the increase in international team formation on scientific
publication and technological patent suggests the need for a mathematical
structure that properly encodes higher-order interactions. Hence, our
methodological contribution involves the use of hypergraph structure
to provide a measure for the likelihood that a city emerges in transna-
tional triadic collaboration in these multiplex networks (i.e., publication
and patents), and identifying cases in which this is done significantly
by building a null model based on hypergeometric ensemble of random
graphs. The result of this analysis is that US cities play a pivotal role
in international networks of higher-order structure, irrespective of the
dimensions of collaborations we examined - this is the case for both the
patent and publication network. Specifically, these 5 US cities (San Fran-
cisco, New York, Washington, Houston, Los Angeles) consistently emerge
prominently in higher-order international collaborations across all dimen-
sions we examine, with San Francisco being more prominent. While the
methodology applied may appear complex, we demonstrate that similar
analysis of triadic structure in traditional network do not yield the same
result as that done on hypergraph suggesting that the hypergraph struc-
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ture encodes higher-order structure differently from traditional network,
hence are more appropriate for such analysis. The analysis of higher
collaboration structure between cities is increasingly important as cities
increasingly rely on plugging into international networks of innovators
to access distant knowledge. Therefore identifying cities that are central
hubs in the system of multi-body interactions can be useful to know what
cities to foster collaborations with when sourcing for capabilities to enter
a new technology or become competitive in a technology. Future research
can examine if the results of this analysis differ across technological fields
and for hyperedges of higher orders beyond the triadic case. Also, exam-
ining the clustering of cities in the hypergraph for hyperedges of all sizes
can provide insight as to if a city belongs to similar technological cluster
with cities that are likely to emerge in higher-order collaborative structure.
Further research can also address the drawback in the null model as it
only account for cities’ size (i.e., number of patents or publications), and
does not account for other propensities such as geographic distance, and
similarity in language and culture that can bias collaboration.

The thesis examines entry process and competitiveness of cities in differ-
ent technological areas, which are important activities for resilient and
dynamic cities. The development of a new database in the thesis provides
an avenue to address the question not just from the perspective of global
cities concentrated in developed economies, but also for non-global cities
in emerging economies. In response to the observation of Balland and
Boschma, 2021 on the limited focus on the role of inter-regional linkages
in smart specialization policies, the thesis examines the role of inter-city
linkages on likelihood of the city entering new technologies, the thesis
provides evidence of the importance of linkages, especially for non-global
cities and cities in emerging economies in Asia for entry process (findings
from Chapter 3). Pursuing collaboration is the most viable strategy for
less developed cities for both entry and competitiveness - this can be seen
in the findings of Chapter 2 in which predicting competitiveness based on
technological relatedness can be difficult for less developed cities. For less
developed cities to catch-up, they must focus on policies that incentivize
collaboration with developed economies. The thesis also highlights the
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emergence of rising stars like Shanghai with economic reach similar to San
Francisco in the multiplex innovation network. Also, the thesis highlights
the importance of a path-dependent technological strategy to be relevant
not just for entering a technology but also for becoming competitive in
the technological area. The process of entering more technological areas
brings about varieties of knowledge that are useful to the economical com-
plexity of the city, as economic complexity of cities relies on technological
diversity - especially in complex technologies. Being economically com-
plex can be very important in predicting income levels and determining if
the city will experience rapid growth in the future (Hidalgo, 2021), hence
it is a useful measure of economic development.
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Appendix A

Supplementary material for
Chapter 1

A.0.1 Statistics for inventor dataset

Inventor country Geocoding ratio Number of patents Inventor country Geocoding ratio Number of patents

0 Afghanistan 1.00 22 Libya 0.91 22
1 Albania 0.96 93 Liechtenstein 0.87 1576
2 Algeria 0.88 285 Lithuania 0.45 1381
3 American Samoa 0.57 7 Luxembourg 0.91 3665
4 Andorra 0.82 88 Macao 0.63 193
5 Angola 0.83 24 Madagascar 0.85 39
6 Anguilla 0.63 19 Malawi 0.89 9
7 Antarctica 0.50 2 Malaysia 0.66 12329
8 Antigua and Barbuda 0.92 36 Maldives 1.00 2
9 Argentina 0.43 5950 Mali 0.97 36
10 Armenia 0.66 343 Malta 0.86 320
11 Aruba 0.83 12 Marshall Islands 1.00 13
12 Australia 0.89 51595 Mauritania 0.96 123
13 Austria 0.89 50810 Mauritius 0.82 108
14 Azerbaijan 0.24 478 Mexico 0.54 13567
15 Bahamas 0.86 357 Micronesia, Federated States of 1.00 4
16 Bahrain 0.92 61 Moldova 0.03 3143
17 Bangladesh 0.81 575 Monaco 0.82 647
18 Barbados 0.78 232 Mongolia 0.34 116
19 Belarus 0.22 3240 Montenegro 0.53 47
20 Belgium 0.92 45780 Montserrat 1.00 3
21 Belize 0.74 55 Morocco 0.80 692
22 Benin 0.50 22 Mozambique 0.60 5
23 Bermuda 0.78 282 Myanmar 0.59 123
24 Bhutan 0.71 7 Nauru 1.00 3
25 Bolivia 0.79 69 Nepal 0.74 259
26 Bonaire, Sint Eustatius and Saba 1.00 2 Netherlands 0.89 108309
27 Bosnia and Herzegovina 0.84 205 New Caledonia 0.97 34
28 Botswana 0.77 13 New Zealand 0.88 9746
29 Bouvet Island 1.00 1 Nicaragua 0.83 35
30 Brazil 0.83 22916 Niger 0.89 84
31 British Indian Ocean Territory 1.00 3 Nigeria 0.90 276
32 Brunei Darussalam 0.72 69 Niue 1.00 3
33 Bulgaria 0.61 2960 Norfolk Island 0.50 2
34 Burkina Faso 0.77 31 North Korea 0.85 483
35 Burundi 0.35 20 North Macedonia 0.84 126
36 Cabo Verde 1.00 5 Northern Mariana Islands 1.00 6
37 Cambodia 0.63 67 Norway 0.83 19846
38 Cameroon 0.85 134 Oman 0.84 89
39 Canada 0.91 161281 Pakistan 0.83 957
40 Cayman Islands 0.70 314 Palau 1.00 2
41 Central African Republic 0.88 17 Palestine, State of 0.90 11
42 Chad 0.80 5 Panama 0.76 321
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Inventor country Geocoding ratio Number of patents Inventor country Geocoding ratio Number of patents

43 Chile 0.77 2665 Papua New Guinea 0.83 6
44 China 0.95 1492568 Paraguay 0.76 34
45 Cocos (Keeling) Islands 1.00 1 Peru 0.51 535
46 Colombia 0.49 2164 Philippines 0.85 2454
47 Comoros 0.80 5 Pitcairn 1.00 5
48 Congo 0.88 51 Poland 0.52 41432
49 Congo, The Democratic Republic of the 0.78 9 Portugal 0.73 5007
50 Cook Islands 1.00 2 Puerto Rico 0.93 138
51 Costa Rica 0.73 585 Qatar 0.90 295
52 Croatia 0.71 1446 Romania 0.50 9134
53 Cuba 0.48 723 Russia 0.12 230335
54 Curaçao 0.60 5 Rwanda 0.81 16
55 Cyprus 0.86 602 Réunion 0.83 29
56 Czech Republic 0.55 12893 Saint Barthélemy 1.00 1
57 Côte d’Ivoire 0.74 42 Saint Helena, Ascension and Tristan da Cunha 0.80 15
58 Denmark 0.92 33389 Saint Kitts and Nevis 0.83 64
59 Djibouti 0.80 25 Saint Lucia 0.75 8
60 Dominica 0.82 22 Saint Pierre and Miquelon 0.50 2
61 Dominican Republic 0.61 166 Saint Vincent and the Grenadines 0.67 6
62 Ecuador 0.64 718 Samoa 0.35 37
63 Egypt 0.88 1484 San Marino 0.48 128
64 El Salvador 0.76 96 Sao Tome and Principe 0.83 6
65 Equatorial Guinea 1.00 4 Saudi Arabia 0.93 3708
66 Eritrea 0.90 30 Senegal 0.75 48
67 Estonia 0.86 1277 Serbia 0.54 1286
68 Eswatini 0.89 81 Seychelles 0.82 57
69 Ethiopia 0.82 212 Sierra Leone 0.88 95
70 Falkland Islands (Malvinas) 1.00 3 Singapore 0.83 23583
71 Faroe Islands 0.89 29 Sint Maarten (Dutch part) 1.00 1
72 Fiji 0.89 18 Slovakia 0.54 3184
73 Finland 0.96 53089 Slovenia 0.59 4858
74 France 0.94 273586 Solomon Islands 0.67 6
75 French Guiana 0.75 8 Somalia 0.92 12
76 French Polynesia 1.00 9 South Africa 0.84 8047
77 French Southern Territories 1.00 3 South Georgia and the South Sandwich Islands 0.00 1
78 Gabon 0.92 60 South Korea 0.91 1551549
79 Gambia 0.82 11 Spain 0.77 55109
80 Georgia 0.15 1702 Sri Lanka 0.87 561
81 Germany 0.94 849314 Sudan 0.80 67
82 Ghana 0.94 134 Suriname 0.67 12
83 Gibraltar 0.94 96 Sweden 0.94 74266
84 Greece 0.79 5273 Switzerland 0.90 94033
85 Greenland 1.00 10 Syrian Arab Republic 0.61 111
86 Grenada 0.78 14 Taiwan 0.66 381021
87 Guadeloupe 0.90 11 Tajikistan 0.05 168
88 Guam 0.80 5 Tanzania, United Republic of 0.91 56
89 Guatemala 0.54 172 Thailand 0.83 3156
90 Guernsey 0.71 7 Togo 0.84 13
91 Guinea 0.82 11 Tokelau 0.94 34
92 Guyana 0.95 62 Tonga 0.82 11
93 Haiti 0.85 26 Trinidad and Tobago 0.94 188
94 Holy See (Vatican City State) 0.88 27 Tunisia 0.38 1640
95 Honduras 0.40 99 Turkey 0.65 13871
96 Hong Kong 0.86 15353 Turkmenistan 0.28 18
97 Hungary 0.70 9375 Turks and Caicos Islands 0.88 41
98 Iceland 0.89 1304 Tuvalu 0.91 32
99 India 0.95 85458 Uganda 0.86 44
100 Indonesia 0.73 1764 Ukraine 0.09 27316
101 Iran 0.91 1723 United Arab Emirates 0.89 1220
102 Iraq 0.76 85 United Kingdom 0.89 235692
103 Ireland 0.87 17041 United States 0.95 2377521
104 Isle of Man 0.95 74 United States Minor Outlying Islands 1.00 5
105 Israel 0.91 60935 Uruguay 0.53 604
106 Italy 0.93 113098 Uzbekistan 0.29 267
107 Jamaica 0.92 190 Vanuatu 0.54 11
108 Japan 0.97 2577186 Venezuela, Bolivarian Republic of 0.85 779
109 Jersey 0.98 125 Viet Nam 0.61 1154
110 Jordan 0.80 632 Vietnam 1.00 12
111 Kazakhstan 0.17 977 Virgin Islands, British 0.53 824
112 Kenya 0.87 405 Virgin Islands, U.S. 0.90 10
113 Kiribati 1.00 3 Wallis and Futuna 0.80 5
114 Kuwait 0.97 540 Western Sahara 1.00 1
115 Kyrgyzstan 0.14 110 Yemen 0.60 28
116 Lao People’s Democratic Republic 0.92 50 Yugoslavia 0.68 489
117 Latvia 0.44 2129 Zambia 0.95 20
118 Lebanon 0.87 658 Zimbabwe 0.86 85
119 Lesotho 1.00 3 Åland 1.00 3
120 Liberia 0.87 15 Åland Islands 1.00 1

Table 23: Patent count and geocoding ratio for inventor’s country.
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A.0.2 Statistics for patent office

Patent office Geocoding ratio Number of patents Patent office Geocoding ratio Number of patents

0 Armenia 0.00 3 Japan 0.93 4736176
1 Asia Pacific 0.89 6673 Kyrgyzstan 0.00 3
2 Argentina 0.73 37632 South Korea 0.89 2182840
3 Austria 0.66 10891 Kazakhstan 0.10 30
4 Australia 0.82 605733 Lithuania 0.32 1721
5 Bosnia and Herzegovina 0.00 1 Luxembourg 0.65 1253
6 Belgium 0.61 3792 Latvia 0.27 2555
7 Bulgaria 0.59 5850 Morocco 0.77 11982
8 Brazil 0.73 329346 Monaco 0.20 140
9 Belarus 0.07 14 Moldova 0.08 4449
10 Canada 0.93 593069 Montenegro 0.97 1837
11 Switzerland 0.56 16856 Macao 1.00 1
12 Chile 0.73 14257 Malta 0.40 25
13 China 0.58 5450054 Mexico 0.84 202049
14 Colombia 0.83 15837 Malaysia 0.82 33712
15 Costa Rica 0.84 7781 Nicaragua 0.88 197
16 Cuba 0.75 2158 Netherlands 0.61 34190
17 Cyprus 0.51 406 Norway 0.87 59652
18 Czech Republic 0.61 20858 New Zealand 0.89 54869
19 Germany 0.92 929881 Africa Intellectual Patent Organization 0.81 1735
20 Denmark 0.78 5964 Panama 0.91 1826
21 Dominican Republic 0.76 3392 Peru 0.92 16370
22 Algeria 0.82 486 Philippines 0.94 6105
23 Eurasian Patent Organization 0.85 25112 Poland 0.55 66176
24 Ecuador 0.79 7584 Portugal 0.41 3350
25 Estonia 0.95 2238 Romania 0.25 10404
26 Egypt 0.76 4423 Serbia 0.79 6727
27 None 0.00 1 Russia 0.28 435065
28 European Patent Organization 0.98 1932285 Saudi Arabia 0.79 1985
29 Spain 0.50 37016 Sweden 0.67 34387
30 Finland 0.98 28382 Singapore 0.88 68354
31 France 0.89 238418 Slovenia 0.59 7484
32 United Kingdom 0.77 177788 Slovakia 0.67 6996
33 Gulf Cooperation Council 0.84 281 San Marino 0.21 608
34 Georgia 0.47 2933 El Salvador 0.93 1149
35 Greece 0.17 7120 Thailand 1.00 4
36 Guatemala 0.75 3810 Tajikistan 0.01 218
37 Hong Kong 0.82 82264 Tunisia 0.74 6952
38 Honduras 0.73 1225 Turkey 0.25 9341
39 Croatia 0.64 6642 Taiwan 0.72 650384
40 Hungary 0.77 23680 Ukraine 0.32 43890
41 Indonesia 0.78 1041 United States 0.95 4690940
42 Ireland 0.54 5039 Uruguay 0.79 10744
43 Israel 0.50 7234 Uzbekistan 0.33 6
44 India 0.95 27391 Vietnam 1.00 42
45 Iceland 0.90 3084 World Intellectual Patent Organization 0.86 2376495
46 Italy 0.50 133076 Yugoslavia 0.64 3898
47 Jordan 0.70 799 South Africa 0.83 90168

Table 24: Patent count and geocoding ratio for each patent office in the
inventor dataset.
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A.0.3 Statistics for Applicant dataset

Applicant country Geocoding ratio Number of patents Applicant country Geocoding ratio Number of patents

0 Japan 0.99 4134549.0 Paraguay 0.30 30.0
1 United States 0.96 2088362.0 Lao People’s Democratic Republic 1.00 30.0
2 China 0.97 1633457.0 Afghanistan 0.86 28.0
3 South Korea 0.85 1401675.0 Kyrgyzstan 0.25 28.0
4 Germany 0.88 798078.0 Antigua and Barbuda 0.89 28.0
5 Taiwan 0.50 353885.0 Guernsey 0.93 27.0
6 France 0.89 277307.0 Uzbekistan 0.52 27.0
7 United Kingdom 0.91 161745.0 Aruba 0.69 26.0
8 Russia 0.10 155603.0 Albania 0.88 26.0
9 Netherlands 0.91 119769.0 Vanuatu 0.96 25.0
10 Switzerland 0.90 118989.0 Montserrat 1.00 25.0
11 Canada 0.84 109215.0 Gabon 0.92 24.0
12 Italy 0.86 97557.0 Botswana 0.68 22.0
13 Sweden 0.87 83738.0 Dominica 0.91 22.0
14 Brazil 0.23 60568.0 Cabo Verde 0.81 21.0
15 Finland 0.96 53588.0 Nigeria 0.95 21.0
16 Austria 0.77 41916.0 Madagascar 0.65 20.0
17 Spain 0.69 41432.0 NY 1.00 20.0
18 Israel 0.91 37094.0 Cameroon 0.53 19.0
19 Australia 0.94 36124.0 Papua New Guinea 0.89 19.0
20 Poland 0.29 35976.0 SU 0.63 19.0
21 Belgium 0.84 32170.0 Senegal 0.58 19.0
22 Denmark 0.92 28464.0 Faroe Islands 1.00 19.0
23 India 0.96 26275.0 Trinidad and Tobago 0.89 18.0
24 Singapore 0.91 23351.0 Mali 0.71 17.0
25 Ukraine 0.02 21105.0 Bangladesh 1.00 17.0
26 Hong Kong 0.66 19931.0 Réunion 0.76 17.0
27 Norway 0.80 15976.0 Montenegro 0.29 17.0
28 Ireland 0.93 15103.0 Bolivia 0.75 16.0
29 Turkey 0.58 10189.0 New Caledonia 1.00 16.0
30 Cayman Islands 0.81 10129.0 IB 1.00 15.0
31 Virgin Islands, British 0.80 9527.0 Nicaragua 0.93 15.0
32 Luxembourg 0.90 9052.0 Liberia 1.00 14.0
33 Czech Republic 0.37 8998.0 Holy See (Vatican City State) 0.86 14.0
34 Mexico 0.37 8494.0 SW 1.00 13.0
35 Hungary 0.35 8138.0 Zimbabwe 0.77 13.0
36 Argentina 0.09 8062.0 TX 1.00 12.0
37 South Africa 0.84 7472.0 Eritrea 1.00 12.0
38 New Zealand 0.94 6836.0 Tuvalu 0.92 12.0
39 Romania 0.23 6430.0 Sudan 0.83 12.0
40 Bermuda 0.93 5983.0 Central African Republic 0.92 12.0
41 Malaysia 0.55 5608.0 Syrian Arab Republic 0.33 12.0
42 Liechtenstein 0.88 4872.0 Tanzania 1.00 11.0
43 Barbados 0.96 4489.0 French Polynesia 0.45 11.0
44 Slovenia 0.54 3901.0 American Samoa 0.36 11.0
45 Portugal 0.63 3677.0 FL 1.00 11.0
46 Saudi Arabia 0.96 3562.0 Djibouti 1.00 10.0
47 Greece 0.66 2515.0 Macedonia 0.50 10.0
48 Moldova 0.01 2476.0 Tokelau 1.00 10.0
49 Chile 0.62 2186.0 Burundi 0.50 10.0
50 Morocco 0.12 2036.0 Myanmar 1.00 10.0
51 Bulgaria 0.48 1931.0 Grenada 0.89 9.0
52 Slovakia 0.37 1811.0 Congo 0.62 8.0
53 Latvia 0.40 1608.0 NJ 1.00 8.0
54 Cyprus 0.82 1556.0 Congo D.R.C 1.00 8.0
55 Belarus 0.06 1552.0 Guam 0.88 8.0
56 DD 0.93 1449.0 Yemen 1.00 8.0
57 Colombia 0.40 1439.0 Ghana 0.88 8.0
58 AN 0.86 1397.0 Sao Tome and Principe 0.75 8.0
59 Tunisia 0.96 1257.0 Saint Lucia 1.00 8.0
60 Iceland 0.92 1095.0 Palau 1.00 7.0
61 Malta 0.91 955.0 Benin 0.29 7.0
62 Thailand 0.80 944.0 Comoros 0.83 6.0
63 Lithuania 0.39 943.0 Guadeloupe 0.83 6.0
64 Panama 0.68 856.0 Guinea 0.83 6.0
65 Philippines 0.84 843.0 British Indian Ocean Territory 1.00 6.0
66 Estonia 0.88 788.0 Kiribati 1.00 6.0
67 Bahamas 0.86 777.0 Zambia 0.83 6.0
68 Croatia 0.69 770.0 OH 1.00 6.0
69 United Arab Emirates 0.89 714.0 Nepal 1.00 5.0
70 Cuba 0.43 638.0 CT 1.00 5.0
71 Serbia 0.11 591.0 Rwanda 0.80 5.0
72 Mauritius 0.88 554.0 Fiji 1.00 5.0
73 Uruguay 0.28 533.0 Ethiopia 0.80 5.0
74 Ecuador 0.64 507.0 OA 0.60 5.0
75 Monaco 0.72 473.0 Suriname 0.75 4.0
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Applicant country Geocoding ratio Number of patents Applicant country Geocoding ratio Number of patents

76 Seychelles 0.68 446.0 Tonga 0.75 4.0
77 Puerto Rico 0.88 425.0 Uganda 0.75 4.0
78 Kazakhstan 0.26 408.0 Equatorial Guinea 0.50 4.0
79 Egypt 0.56 405.0 WA 1.00 4.0
80 Costa Rica 0.55 374.0 Somalia 0.75 4.0
81 Samoa 0.48 367.0 Solomon Islands 0.75 4.0
82 Gibraltar 0.85 347.0 Libya 0.50 4.0
83 San Marino 0.49 341.0 Iraq 0.25 4.0
84 Indonesia 0.76 332.0 Saint Helena, Ascension and Tristan da Cunha 1.00 4.0
85 North Korea 0.86 320.0 Mauritania 0.25 4.0
86 Peru 0.26 299.0 Cambodia 1.00 4.0
87 UK 1.00 290.0 Saint Barthélemy 1.00 3.0
88 Venezuela 0.83 261.0 Cocos (Keeling) Islands 1.00 3.0
89 Jordan 0.74 249.0 Angola 1.00 3.0
90 Iran 0.90 237.0 Chad 0.67 3.0
91 Brunei Darussalam 0.67 222.0 Haiti 0.33 3.0
92 Georgia 0.37 196.0 Turkmenistan 0.33 3.0
93 Isle of Man 0.96 194.0 Burkina Faso 0.67 3.0
94 Macao 0.55 179.0 MI 1.00 3.0
95 Azerbaijan 0.25 171.0 EA 0.50 2.0
96 Belize 0.67 165.0 Maldives 1.00 2.0
97 Qatar 0.93 165.0 GC 1.00 2.0
98 YU 0.24 159.0 Bhutan 1.00 2.0
99 Dominican Republic 0.49 152.0 TU 1.00 2.0
100 Saint Kitts and Nevis 0.89 150.0 BC 1.00 2.0
101 Kuwait 0.91 130.0 UT 1.00 2.0
102 UN 1.00 124.0 Northern Mariana Islands 1.00 1.0
103 Virgin Islands, U.S. 0.85 124.0 Wallis and Futuna 1.00 1.0
104 Jersey 0.97 115.0 OX 1.00 1.0
105 Vietnam 0.76 112.0 XN 1.00 1.0
106 Cook Islands 0.94 104.0 YS 1.00 1.0
107 Kenya 0.91 101.0 EM 1.00 1.0
108 Honduras 0.09 96.0 PD 1.00 1.0
109 Sri Lanka 0.91 89.0 PO 1.00 1.0
110 Lebanon 0.65 86.0 DC 1.00 1.0
111 Tajikistan 0.00 86.0 F1 1.00 1.0
112 EP 0.91 82.0 Mozambique 1.00 1.0
113 AP 0.75 76.0 Palestine 1.00 1.0
114 Andorra 0.72 76.0 NM 1.00 1.0
115 Niger 0.94 69.0 FX 1.00 1.0
116 Pakistan 0.90 68.0 Guinea-Bissau 0.00 1.0
117 Saint Vincent and the Grenadines 0.89 63.0 Malawi 0.00 1.0
118 Algeria 0.30 63.0 JR 1.00 1.0
119 Turks and Caicos Islands 0.83 60.0 BU 0.00 1.0
120 Curaçao 0.95 58.0 Nauru 1.00 1.0
121 CS 0.72 53.0 HI 1.00 1.0
122 Anguilla 0.75 51.0 Heard Island and McDonald Islands 1.00 1.0
123 Bouvet Island 0.98 50.0 Greenland 0.00 1.0
124 Mongolia 0.59 49.0 Christmas Island 1.00 1.0
125 Swaziland 0.96 47.0 TA 1.00 1.0
126 Armenia 0.59 44.0 Gambia 1.00 1.0
127 Côte d’Ivoire 0.71 38.0 Falkland Islands (Malvinas) 1.00 1.0
128 Marshall Islands 0.82 38.0 SF 1.00 1.0
129 Sierra Leone 0.84 37.0 LL 1.00 1.0
130 El Salvador 0.34 35.0 LX 1.00 1.0
131 Oman 0.91 35.0 Lesotho 1.00 1.0
132 Bosnia and Herzegovina 0.75 32.0 French Guiana 1.00 1.0
133 Bahrain 0.81 31.0 BX 1.00 1.0
134 Guatemala 0.68 31.0 Pitcairn 1.00 1.0
135 Jamaica 0.97 31.0 NB 1.00 1.0

Table 25: Patent count and geocoding ratio for Applicants’ country.

Year 2000 2001 2002 2003 2004

Geocoding ratio 85.8 83.2 84.5 82.9 85.8

Year 2005 2006 2007 2008 2009

Geocoding ratio 87.3 88.1 87.3 86.9 86.9

Year 2010 2011 2012 2013 2014

Geocoding ratio 88.6 89.3 80.9 56.4 48.3

Table 26: The yearly geocoding ratio of applicant dataset.
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A.0.4 Python codes

1

2 ###This script is applied to the dataset repetitively.
3

4 def collect_coordinate(data):
5 ’’’data: subset of the data with coordinate’’’
6

7 data[’person_name’] = data[’person_name’].astype(str)
8

9 mapp = defaultdict(dict)
10

11 for row in tqdm(data.itertuples()):
12 mapp[row[1+data.columns.get_loc(’docdb_family_id’)]][row

[1+data.columns.get_loc(’person_name’)]][row[1+data.columns.
get_loc(’appln_auth’)]] = row[1+data.columns.get_loc(’
coordinate’)]

13

14 return mapp
15

16

17 def deterministic_imputation(mapp,x):
18 ’’’data: subset of the data without coordinate’’’
19

20 try:
21 for i in [’US’,’EP’,’WO’]:
22 if i in mapp[x[’docdb_family_id’]][x[’person_name’]]:
23 return mapp[x[’docdb_family_id’]][x[’person_name’

]][i]
24 continue
25 else:
26 otheroffice = random.sample(list(mapp[x[’

docdb_family_id’]][x[’person_name’]]))
27 return mapp[x[’docdb_family_id’]][x[’person_name’

]][otheroffice]
28 except:
29 pass
30

31

32 def probabilistic_imputation(mapp,x):
33 ’’’data: subset of the data without coordinate
34 This adjust for slight differences in string.
35 ’’’
36

37 try:
38 match_name = difflib.get_close_matches(x[’person_name’],

list(mapp[x[’docdb_family_id’]].keys()),n=1,cutoff=0.7) ###
this line can also be adjusted for different ordering of names

39 if len(match_name) == 1: ###if you are adjusting for
order of names this should change to match_name[0]==x[’
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person_name’]
40 for i in [’US’,’EP’,’WO’]:
41 if i in mapp[x[’docdb_family_id’]][x[’person_name’]]:
42 return mapp[x[’docdb_family_id’]][x[’person_name’

]][i]
43 continue
44 else:
45 otheroffice = random.sample(list(mapp[x[’

docdb_family_id’]][x[’person_name’]]))
46 return mapp[x[’docdb_family_id’]][x[’person_name’

]][otheroffice]
47 except:
48 pass

Listing A.1: Python script for coordinate and address imputation

Country Domestic linkages Ranking Domestic linkages Ranking Domestic linkages Ranking Domestic linkages Change in ranking
(2010-2014) (2010-2014) (2005-2009) (2005-2009) (2000-2004) (2000-2004) (% change)

0 South Korea 7487.20 1 4469.64 1 2722.38 1 175.02 0
1 Taiwan 3925.80 2 2466.90 2 1147.70 3 242.05 1
2 Japan 1258.51 3 1415.26 3 1395.15 2 -9.79 -1
3 Israel 1202.20 4 741.00 6 519.00 6 131.63 2
4 United States 884.31 5 854.78 5 786.09 4 12.49 -1
5 China 788.60 6 273.07 8 86.70 21 809.52 15
6 Germany 772.19 7 962.78 4 650.28 5 18.74 -2
7 India 543.85 8 235.37 14 87.54 20 521.24 12
8 Singapore 518.40 9 330.00 7 307.40 7 68.64 -2
9 Canada 286.45 10 272.87 9 216.13 9 32.53 -1
10 Switzerland 273.58 11 264.66 10 194.94 11 40.34 0
11 Sweden 272.51 12 248.53 13 191.16 12 42.55 0
12 Belgium 264.94 13 258.92 11 203.61 10 30.11 -3
13 Finland 233.57 14 258.20 12 247.42 8 -5.60 -6
14 Netherlands 195.07 15 221.71 15 182.85 13 6.68 -2
15 Denmark 182.60 16 167.15 17 137.95 15 32.36 -1
16 Austria 170.40 17 187.90 16 123.80 18 37.64 1
17 Hong Kong 163.40 18 125.20 20 158.80 14 2.89 -4
18 France 160.83 19 163.69 18 127.80 17 25.84 -2
19 Ireland 131.48 20 95.60 21 90.44 19 45.37 -1

Table 27: Ranking of countries based on domestic linkages. The domestic
linkage reported is the average weighted domestic linkage in the given
period.

Continent Domestic linkages Ranking Domestic linkages Ranking Domestic linkages Ranking Domestic linkages Change in ranking
(2010-2014) (2010-2014) (2005-2009) (2005-2009) (2000-2004) (2000-2004) (% change)

0 Asia 1980.03 1 1465.68 1 1145.01 1 72.92 0
1 North America 710.91 2 691.07 2 649.25 2 9.49 0
2 Europe 205.56 3 242.40 3 187.80 3 9.46 0
3 Oceania 84.98 4 83.15 4 78.54 4 8.20 0
4 Africa 27.41 5 19.52 5 16.57 5 65.37 0
5 South America 17.71 6 14.06 6 9.31 6 90.25 0

Table 28: Ranking of continent based on domestic linkages. The domestic
linkage reported is the average weighted domestic linkage in the given
period.
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Country Intl. global city linkages Ranking Intl. global city linkages Ranking Intl. global city linkages Ranking Intl. global city linkages Change in ranking
(2010-2014) (2010-2014) (2005-2009) (2005-2009) (2000-2004) (2000-2004) (% change)

0 Taiwan 1727.00 1 1024.20 1 381.80 2 352.33 1
1 Israel 1404.00 2 779.00 2 518.80 1 170.62 -1
2 Singapore 611.80 3 361.80 3 301.80 3 102.71 0
3 India 393.37 4 182.51 5 74.17 12 430.35 8
4 China 368.12 5 215.42 4 77.56 10 374.58 5
5 Hong Kong 200.80 6 141.20 7 183.60 4 9.36 -2
6 Switzerland 156.84 7 141.30 6 99.42 5 57.75 -2
7 Canada 138.99 8 125.80 8 96.40 6 44.18 -2
8 United States 136.21 9 103.07 12 90.05 7 51.26 -2
9 Belgium 119.87 10 109.27 9 83.78 9 43.07 -1
10 Malaysia 111.30 11 71.10 18 41.40 23 168.84 12
11 New Zealand 108.60 12 54.20 22 41.40 22 162.31 10
12 Denmark 107.65 13 97.20 13 74.35 11 44.78 -2
13 Thailand 100.80 14 44.40 26 38.60 24 161.13 10
14 Austria 99.43 15 106.16 10 68.23 14 45.72 -1
15 Sweden 96.01 16 73.56 16 54.33 18 76.71 2
16 South Korea 87.49 17 74.82 14 36.61 26 138.93 9
17 Ireland 84.20 18 65.64 19 69.32 13 21.46 -5
18 Finland 79.05 19 72.14 17 53.65 19 47.33 0
19 Japan 74.16 20 54.33 21 86.39 8 -14.15 -12

Table 29: Ranking of countries based on international global city linkages.
The international global city linkage reported is the average international
global city linkage in the given period.

Continent Intl. global city linkages Ranking Intl. global city linkages Ranking Intl. global city linkages Ranking Intl. global city linkages Change in ranking
(2010-2014) (2010-2014) (2005-2009) (2005-2009) (2000-2004) (2000-2004) (% change)

0 Asia 168.92 1 105.32 1 76.98 2 119.42 1
1 North America 119.07 2 92.72 2 81.70 1 45.73 -1
2 Oceania 57.88 3 50.15 3 44.85 3 29.05 0
3 Europe 42.26 4 40.96 4 35.65 4 18.54 0
4 Africa 24.67 5 18.23 5 10.93 5 125.57 0
5 South America 13.25 6 11.85 6 7.25 6 82.69 0

Table 30: Ranking of continents based on international global city linkages.
The international global city linkage reported is the average international
global city linkage in the given period.

Countries Intl. non-global city linkages Ranking Intl. non-global city linkages Ranking Intl. non-global city linkages Ranking Intl. non-global city linkages Change in ranking
(2010-2014) (2010-2014) (2005-2009) (2005-2009) (2000-2004) (2000-2004) (% change)

0 Israel 509.60 1 282.20 1 199.40 1 155.56 0
1 Singapore 258.20 2 171.40 2 142.40 2 81.32 0
2 Taiwan 242.30 3 165.70 3 109.50 3 121.27 0
3 India 154.45 4 68.40 7 30.08 21 413.39 17
4 Luxembourg 113.60 5 68.20 8 56.60 10 100.70 5
5 Switzerland 111.58 6 133.58 4 93.82 4 18.92 -2
6 Belgium 108.20 7 110.29 6 83.25 5 29.96 -2
7 China 105.58 8 56.62 12 31.88 20 231.14 12
8 Austria 90.40 9 115.83 5 57.46 9 57.30 0
9 Canada 77.25 10 62.64 10 82.65 6 -6.53 -4
10 Denmark 76.00 11 67.05 9 55.55 11 36.81 0
11 United States 71.92 12 61.77 11 69.08 7 4.11 -5
12 Japan 58.10 13 38.88 18 68.91 8 -15.69 -5
13 Ireland 51.28 14 34.40 22 33.64 19 52.43 5
14 Malaysia 50.30 15 22.80 28 13.50 31 272.59 16
15 Germany 50.20 16 56.50 13 38.92 15 29.00 -1
16 New Zealand 47.50 17 33.40 23 29.10 22 63.23 5
17 Sweden 46.96 18 44.21 15 36.36 16 29.14 -2
18 Netherlands 42.71 19 41.45 16 33.91 18 25.96 -1
19 Russia 41.40 20 50.80 14 39.20 13 5.61 -7

Table 31: Ranking of countries based on international non-global city link-
ages. The international non-global city linkage reported is the average inter-
national non-global city linkage in the given period.
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Continents Intl. non-global city linkages Ranking Intl. non-global city linkages Ranking Intl. non-global city linkages Ranking Intl. non-global city linkages Change in ranking
(2010-2014) (2010-2014) (2005-2009) (2005-2009) (2000-2004) (2000-2004) (% change)

0 Asia 67.36 1 42.90 2 49.88 2 35.04 1
1 North America 63.31 2 54.42 1 63.55 1 -0.36 -1
2 Oceania 29.92 3 29.97 4 27.16 3 10.16 0
3 Europe 28.55 4 30.47 3 26.31 4 8.53 0
4 Africa 11.76 5 9.44 5 7.51 5 56.54 0
5 South America 7.59 6 6.93 6 5.06 6 49.87 0

Table 32: Ranking of continents based on international non-global city link-
ages. The international non-global city linkage reported is the average inter-
national non-global city linkage in the given period.

Figure 31: The number of cities in Africa, Asia, Europe, North America,
Oceania, and South America is 8, 133, 684, 307, 20, 48 respectively.
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Appendix B

Supplementary material for
Chapter 2

B.0.1 Generalized economic complexity index of cities in
specific technologies

The generalized economic complexity index for cities reported in Figure 14
is based on the patenting activities across all technological areas. However,
cities can have different levels of complexity in different technological
field. To determine the GENEPY index of cities in different technological
fields we apply the GENEPY algorithm to the competitiveness matrix at
the level of 4-digit IPCs to obtain GENEPYi - the GENEPY index for
cities, and GENEPYj - the GENEPY index for each of the 4-digit IPCs.
Let k be the 4-digit IPCs belonging to a technology field K - for example
23 of the 637 IPCs belong to the technological field Chemical engineering,
then we have that the generalized economic complexity index of cities in
a technological field K will be given as:

GENEPYiK =
∑︂
k∈K

GENEPYkMik (B.1)

Computing the complexity of cities in different technological field this
way as opposed to applying the algorithm to subset of the competitiveness
matrix corresponding to a technological field allows us to make use of
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rich information in the dataset. For example, following the approach of
applying the algorithm to a sub-matrix, trying to estimate the complexity
of cities in Pharmaceuticals will result in applying the algorithm to a sub-
matrix of size 150 × 2, since there are only two 4-digit IPCs (i.e., A61K and
A61P) in Pharmaceuticals. Such submatrix do have limited information
and the solution of the eigenvalue problem would be less meaningful.

Figure 32: Cities’ complexity in different technologies: San Francisco and
Shanghai differ in their technology field capabilities as seen in their normal-
ized technological complexity rank in 2014. This measure ranges from 0 (i.e.,
the lowest performer in the technology field) to 1 (i.e., global leader in the
technology field). This is computed by summing the complexities of IPCs
(within the technology field) that the city patent in competitively.

Figure 32 shows a spiderplot comparing the complexity of San Francisco
and Shanghai in the 34 technological fields. The complexity of cities in
each technological field are normalized such that the values range be-
tween 0 and 1, where 1 captures what city is the global leader in that
technology field and 0 captures what city is the least performer in the
technological field. Generally, both Shanghai are global leaders in some
technological fields e.g., Shanghai is a global leader in Basic materials
chemistry and Digital communication, while San Francisco is a global
leader in Audio Visual technology, Computer technology, and IT methods
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for management. We also find that Shanghai is ahead of San Francisco in
more technological fields (24) than San Francisco is ahead of Shanghai (8),
these technological fields include Basic materials chemistry, Biotechnol-
ogy, Chemical engineering, Electrical machinery, Environmental technol-
ogy, and Pharmaceuticals. We provide the top 5 global leaders in each
technological field in Table 33.

Audio-visual technology Basic communication processes Basic materials chemistry Biotechnology Chemical engineering

1 Taipei San Diego Shanghai Lyon Seoul
2 Malmo Phoenix Philadelphia (Greater) TelAviv Copenhagen
3 San Francisco (Greater) Munich New York (Greater) Philadelphia (Greater) Mannheim-Ludwigshafen
4 Taichung Bangalore Houston Paris Milan
5 Nuremberg Taipei Mannheim-Ludwigshafen Sacramento Dusseldorf

Civil engineering Computer technology Control Digital communication Electrical machinery, apparatus, energy

1 Seoul Beijing Seattle Hong Kong Milwaukee
2 Amsterdam San Francisco (Greater) Seoul London Guangzhou
3 Los Angeles (Greater) Bangalore Madrid Shanghai Seoul
4 Milan San Diego London Seattle Stuttgart
5 Milwaukee Stuttgart Munich San Juan Nuremberg

Engines, pumps, turbines Environmental technology Food chemistry Furniture, games Handling

1 Nuremberg Seoul Seoul Los Angeles (Greater) Amsterdam
2 Paris Helsinki Amsterdam New York (Greater) Hamburg
3 Toronto Barcelona Copenhagen London Taichung
4 Munich Oslo Minneapolis Miami (Greater) Milwaukee
5 Dusseldorf Hamburg Philadelphia (Greater) Atlanta Salt Lake

IT methods for management Machine tools Macromolecular chemistry, polymers Materials, metallurgy Measurement

1 Phoenix Seoul Philadelphia (Greater) Brussels Vancouver
2 Chennai Zurich Lyon Frankfurt am Main Seoul
3 San Francisco (Greater) Stuttgart Houston Shenyang Zurich
4 Greater Melbourne Dresden Atlanta Tokyo Toulouse
5 San Antonio Taichung Basel Dusseldorf Helsinki

Mechanical elements Medical technology Micro-structural and nano-technology Optics Organic fine chemistry

1 Stuttgart Salt Lake Phoenix Tokyo Philadelphia (Greater)
2 Toronto Pittsburgh Dresden Minneapolis Basel
3 Karlsruhe Los Angeles (Greater) Grenoble Munich Budapest
4 Chicago Minneapolis Singapore Seoul Washington (Greater)
5 Detroit (Greater) Greater Sydney Montreal Taipei Boston

Other consumer goods Other special machines Pharmaceuticals Semiconductors Surface technology, coating

1 Seoul Chicago Zurich Seoul Dusseldorf
2 New York (Greater) Seoul Kuala Lumpur Tokyo Tokyo
3 London Washington (Greater) Geneva Phoenix Frankfurt am Main
4 Los Angeles (Greater) Atlanta Greater Adelaide Dresden Nuremberg
5 Atlanta Minneapolis Greater Brisbane Fukuoka Santiago

Telecommunications Textile and paper machines Thermal processes and apparatus Transport

1 Ottawa Seoul Stuttgart Paris
2 San Diego Munich Seoul Seoul
3 Edinburgh Minneapolis Dusseldorf Munich
4 Washington (Greater) Chicago Karlsruhe Berlin
5 San Francisco (Greater) Istanbul Vienna Toronto

Table 33: Top global leaders in each technological field

B.0.2 Relationship between GENEPY index of cities and
cities’ F1-score of Random Forest model used in fore-
casting the activation of new technologies

The F1 score captures how well the Random Forest model forecast com-
petitiveness in completely new products specifically for IPCs where cities
have constantly been less competitive between 2000-2008 - i.e., the cities
constantly had an RCA less than 0.25 in the IPC. We find that unlike the
forecast done on the full matrix, we have a lower F1 score, and there is no
systematic relationship between how well we can make a forecast and the
current economic complexity of the city.
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Figure 33: Generalize economic complexity vs Prediction performance (ac-
tivation of new technologies) On the x-axis is the Generalized economic
complexity index of cities computed between period 2005-2009, and on the
y-axis is the F1-score that captures the performance of the Random Forest
model in forecasting the competitiveness (activation matrix) in 2014 for each
city. The correlation between the GENEPY index and the F1-score of cities is
0.06.

B.0.3 Python code for Generalized economic complexity

1 def genepy_complexity(M):
2

3 kc = M.sum(axis=1)
4 RW = M / kc[:,None]
5 RW[np.isnan(RW)] = 0
6 kp_1 = RW.sum(axis=0)
7 den = np.matmul(kc[:,None],kp_1[None,:])
8

9 W=M/den
10 W[np.isnan(W)]=0
11

12 genepy = defaultdict(dict)
13

14 for i in [’country’,’product’]:
15 if i==’country’:
16 P = np.matmul(W,W.transpose())
17 else:

202



18 P = np.matmul(W.transpose(),W)
19

20 np.fill_diagonal(P,0)
21 eigvals, eigvecs = np.linalg.eig(P)
22 idx = eigvals.argsort()[::-1]
23 eigvals = eigvals[idx]
24 eigvecs = eigvecs[:,idx]
25

26 a = ((eigvals[:2]*eigvecs[:,:2]**2).sum(axis=1))**2
27 b = 2*(((eigvals[:2]**2)*(eigvecs[:,:2]**2)).sum(axis=1))
28

29 genepy[i] = a+b
30 return genepy[’country’], genepy[’product’]

Listing B.1: GENEPY for computing cities’ technological capabilities

B.0.4 Python codes for machine learning task

1 def chunks(lst, n):
2 """Yield successive n-sized chunks from lst."""
3 for i in range(0, len(lst), n):
4 yield lst[i:i + n]
5

6

7 def ML_models(X,y,X_test_sc,test,modeltype):
8 if modeltype == ’RF’:
9 model = RandomForestClassifier()

10 model.fit(X, y)
11 test[’predict’] = model.predict(X_test_sc)
12 test[’predict_prob’] = [i[int(j)] for i,j in zip(model.

predict_proba(X_test_sc).tolist(),test[’predict’].tolist())]
13

14 return test
15

16 elif modeltype == ’XGB’:
17 model = xgb.XGBClassifier( eval_metric=’logloss’)
18 model.fit(X,y)
19

20 test[’predict’] = model.predict(X_test_sc)
21 test[’predict_prob’] = [i[int(j)] for i,j in zip(model.

predict_proba(X_test_sc).tolist(),test[’predict’].tolist())]
22

23 return test
24

25 elif modeltype == ’SVM’:
26 #model = make_pipeline(StandardScaler(), SVC(gamma=’auto’)

)
27 model = SVC()
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28 model.fit(X,y)
29

30 test[’predict’] = model.predict(X_test_sc)
31

32 p = np.array(model.decision_function(X_test_sc))
33 prob = np.exp(p)/np.sum(np.exp(p),axis=1, keepdims=True)
34

35 test[’predict_prob’] = prob
36

37 return test
38

39 elif modeltype == ’NN’:
40 n_inputs = X.shape[1]
41 n_epochs =10
42 n_batch = 5
43 model = NN(n_inputs, n_units=32, dropout=0.1, l1_reg

=0.001, activation=’relu’, L=3)
44 model.fit(X,y,epochs=n_epochs, batch_size=n_batch, verbose

=1)
45

46 test[’predict’] = model.predict_classes(X_test_sc)
47 test[’predict_prob’] = model.predict_proba(X_test_sc)
48

49 return test
50

51

52 def run_models(features,target,modeltype):
53 ’’
54 This script run each model specified
55 Arg:
56 features - csv file of RCAs.
57 target - csv file of future competitiveness (binary).
58 modeltype - a machine learning algorithm e.g. ’RF’, ’XGB’, ’

SVM’, ’NN’
59 ’’
60 targetdict = target.set_index([’city’,’year’,’ipc’])[’mcp’]
61 citieschunk = list(chunks(list(features.city.unique()), 15))
62 result = []
63 for prod in tqdm(target.ipc.unique()):
64 testpredict = []
65 for chunk in citieschunk:
66 test = features[features[’city’].isin(chunk)]
67 test[’target’] = test[[’city’,’year’]].apply(lambda x:

targetvar(x,prod,targetdict),axis=1)
68 train = features[features[’city’].isin(list(set(list(

features.city.unique()))-set(chunk)))]
69 train[’target’] = train[[’city’,’year’]].apply(lambda

x: targetvar(x,prod,targetdict),axis=1)
70

71 X = train[list(train.columns)[1:-2]]
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72 y = train[’target’]
73 Xtest = test[list(test.columns)[1:-2]]
74

75 scaler = StandardScaler().fit(X)
76 X_train_sc = scaler.transform(X)
77 X_test_sc = scaler.transform(Xtest)
78

79 res = ML_models(X_train_sc,y,X_test_sc,test,modeltype)
80 res[’ipc’] = prod
81 #testpredict.append(res[[’city’,’ipc’,’year’,’target

’,’predict’]])
82 testpredict.append(res[[’city’,’ipc’,’year’,’target’,’

predict’,’predict_prob’]])
83

84 result.append(pd.concat(testpredict,axis=0))
85

86 return pd.concat(result,axis=0)

Listing B.2: Machine learning algorithm for forecasting competitiveness
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Appendix C

Supplementary material for
Chapter 3

Table 34 is a reference table showing the mapping between 34 technology
fields and 4-digit IPC classification. These technology fields allow for the
easy grouping of applications based on technology. The same technology
fields are used by European Patent Office (EPO) and World Intellectual
Patent Office (WIPO) for their statistics.

Technology fields 4-digit International Patent Classification system (IPCs)

0 Food chemistry C12H, A23F, A23J, A23D, C13F, C12F, C12G, A01H, A21D, A23B, A23C,
A23G, A23K, A23L, C12C, C12G, C12J, C13B, C13D, C13K.

1 Other special machines A01J, F41F, A01G, B99Z, B28D, A01C, C12L, A21B, B29K, F41C, F42B,
A23N, A23P, B29C, C08J, A01B, B29D, C03B, B29B, A01D, F41H, A22B,
A01F, F41J, B28C, A22C, A21C, B29L, B28B, F41A, F41B, B33Y, A01M,
F41G, F42D, A01L, A01K, B02B, F42C.

2 Other consumer goods A41D, B42C, A42B, A24D, G10G, A44C, D07B, B68C, B68B, A45D, A44B,
G10H, A45F, F25D, A45C, B68F, A43B, D06F, B42B, A24B, G10D, D06N,
G10C, B42D, A41B, D04D, B43M, G10F, B44D, B43L, A42C, A24F, A46B,
B43K, B42F, B44C, A24C, B44F, A45B, A99Z, G10K, B44B, A41C, A43C,
B68G, A62B, A41G, A41F, G10B.

3 Medical technology A61N, A61D, H05G, A61J, A61B, G16H, A61M, A61H, A61C, A61L, A61G,
A61F.

4 Furniture, games A63J, A63D, A47K, A47B, A47C, A63C, A47G, A47F, A47D, A63G, A63B,
A47L, A63H, A63F, A47H, A47J, A63K.
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Technology fields 4-digit International Patent Classification system (IPCs)

5 Machine tools B21B, B23C, B21H, B21L, B27N, B24B, B23B, A62D, B21C, B21D, B21F,
B21G, B21J, B21K, B23D, B23F, B23G, B23H, B23K, B23P, B23Q, B24C,
B24D, B25B, B25C, B25D, B25F, B25G, B25H, B26B, B26D, B26F, B27B,
B27C, B27D, B27F, B27G, B27H, B27J, B27K.

6 Transport B62L, B60F, B60H, B61J, B60K, B61C, B62H, B60B, B60C, B60D, B60G,
B60J, B60L, B60M, B60N, B60P, B60Q, B60R, B60S, B60T, B60V,B60W,
B61B, B61D, B61F, B61G, B61H, B61K, B61L, B62B, B62C, B62D, B62K,
B62M, B63B, B63C, B63G, B63H, B63J, B64B, B64C, B64D, B64F, B64G.

7 Micro-structural and nano-technology B82Y, B81B, B81C, B82B.
8 Textile and paper machines B41M, D04C, D21F, B31C, D21D, D21H, D04B, A41H, A43D, A46D, B31B,

B31D, B31F, B41B, B41C, B41D,B41F, B41G, B41J, B41K, B41L, B41N, C14B,
D01B, D01C, D01D, D01F, D01G, D01H, D02G, D02H, D02J, D03C, D03D,
D03J, D04G, D04H, D05B, D05C, D06G, D06H, D06J, D06M, D06P, D06Q,
D21B, D21C, D21G, D21J, D99Z.

9 Civil engineering E01F, E05G, E06C, E04B, E01C, E21B, E02C, E01B, E01D, E01H, E02B,
E02D, E02F, E03B, E03C, E03D, E03F, E04C, E04D, E04F, E04G, E04H,
E05B, E05C, E05D, E05F, E06B, E21C, E21D, E21F, E99Z.

10 Thermal processes and apparatus F24D, F24B, F22G, F22D, F28D, F24V, F24F, F22B, F23B, F23C, F23D,
F23H, F23K, F23L, F23M, F23N, F23Q, F24C, F24H, F24J, F24S, F24T,
F25B, F25C, F27B, F27D, F28B, F28C, F28F, F28G.

11 Measurement G01L, G01M, G01P, G01N, G01G, G04F, G01C, G01B, G01D, G01F,
G01H, G01J, G01K, G01Q, G01R, G01S, G01V, G01W, G04B, G04C,
G04D, G04G, G04R, G12B, G99Z.

12 Electrical machinery, apparatus, energy H01H, H05B, F21S, H01M, H99Z, F21K, H01F, F21H, F21L, F21V, F21W,
F21Y, H01B, H01C, H01G, H01J, H01K, H01R, H01T, H02B, H02G, H02H,
H02J, H02K, H02M, H02N, H02P, H02S, H05C, H05F.

13 Chemical engineering H05H, B08B, D06B, B03C, B01J, B06B, B03D, B01B, B01D, B01F, B01L,
B02C, B03B, B04B, B04C, B05B, B07B, B07C, C14C, D06C, D06L, F25J,
F26B.

14 Macromolecular chemistry, polymers C08G, C08L, C08B, C08F, C08K, C08C, C08H.
15 Basic materials chemistry C05C, C06D, C05F, C11D, C06B, C10H, A01N, A01P, C05B, C05D, C05G,

C06C, C06F, C09B, C09C, C09D, C09F, C09G, C09H, C09J, C09K, C10B,
C10C, C10F, C10G, C10J, C10K, C10L, C10M, C10N, C11B, C11C, C99Z.

16 Control G09B, G05F, G07F, G07G, G09D, G08B, G08G, G05B, G05D, G07B, G07C,
G07D, G09C.

17 Audio-visual technology H05K, H04R, G09G, G11B, H04S, G09F.
18 Engines, pumps, turbines F02D, F04F, G21H, G21F, F02F, F02P, F03H, F01B, F01C, F01D, F01K, F01L,

F01M, F01P, F02B, F02C, F02G, F02K, F02M, F02N, F03B, F03C, F03D, F03G,
F04B, F04C, F04D, F23R, F99Z, G21B, G21C, G21D, G21G, G21J, G21K.

19 Mechanical elements F16L, F15D, F16S, F17B, F16P, G05G, F16J, F15B, F15C, F16B, F16C, F16D,
F16F, F16G, F16H, F16K, F16M, F16N, F16T, F17C, F17D.

20 Optics G03G, G03D, H01S, G03B, G02F, G02B, G03C, G02C, G03F, G03H.
21 Handling B67D, B65C, B66F, B65G, B65B, B25J, B65D, B65H, B66B, B66C, B66D, B67B,

B67C.
22 Organic fine chemistry C07F, C40B, C07B, C07H, A61Q, C07D, C07J, C07C.
23 Biotechnology C12Q, C12P, C07K, C12R, C12S, C07G, C12N, C12M.
24 Environmental technology B65F, F23G, B09B, C02F, F23J, B09C, A62C, F01N, G01T.
25 Computer technology G06N, G06D, G06E, G06C, G06F, G06G, G06J, G06K, G06M, G06T, G10L, G11C.
26 Surface technology, coating C25C, C25B, C30B, C23C, C23G, B05C, C23F, B05D, B32B, C23D, C25D, C25F.
27 Materials, metallurgy C22C, C22B, B22F, B22D, B22C, C21C, C01F, C01B, C01C, C01D, C01G, C03C,

C04B, C21B, C21D, C22F.
28 Basic communication processes H03D, H03M, H03K, H03J, H03C, H03F, H03B, H03G, H03H, H03L.
29 Telecommunications H04M, H04N, H04Q, H04K, G08C, H04H, H01Q, H01P, H04B, H04J.
30 Digital communication H04W, H04L.
31 Semiconductors H01L.
32 Pharmaceuticals A61P, A61K.
33 IT methods for management G06Q.

Table 34: Categorization of 4 digit IPCs in each technology field.
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C.0.1 Descriptive for technology entry in period 2005-2014

Mean Std. Min 25% 50% 75% Max.

Inter-city ties 0.01 0.11 0.00 0.00 0.00 0.00 9.00
Technological relatedness 0.01 0.01 0.00 0.00 0.01 0.01 0.76
Distance from core IPC 1.50 0.50 0.00 1.00 1.50 2.00 3.00
Knowledge diversity 19.99 12.05 0.00 11.28 18.18 26.36 205.92
Existing IPCs 260.12 142.21 0.00 148.00 255.00 365.00 636.00
IPC growth rate 0.01 0.22 -0.83 -0.09 -0.01 0.08 10.00
City complexity 0.08 0.72 -8.84 -0.35 0.09 0.51 8.72
City’s inventor density 0.28 0.64 0.00 0.03 0.10 0.28 18.59
City’s share of foreign patent 0.35 0.21 0.00 0.19 0.31 0.48 1.00
City size 489.45 1777.86 0.00 52.00 157.00 427.00 117279.00
Partner size 3198.99 2386.76 0.00 1986.91 2685.13 3756.03 73823.94
Data quality 0.86 0.15 0.07 0.84 0.90 0.95 1.00

Table 35: Summary of variables for observations where entry was made
between 2005-2014.

C.0.2 Descriptive for cases of no technology entry in pe-
riod 2005-2014

Mean Std. Min 25% 50% 75% Max

Inter-city ties 0.00 0.07 0.00 0.00 0.00 0.00 12.33
Technological relatedness 0.01 0.01 0.00 0.00 0.01 0.01 0.39
Distance from core IPC 1.74 0.58 0.00 1.50 2.00 2.00 4.00
Knowledge diversity 16.29 13.64 0.00 5.98 13.17 23.23 89.84
Existing IPCs 167.69 151.66 0.00 28.00 129.00 278.00 636.00
IPC growth rate -0.04 0.68 -0.95 -0.23 -0.11 0.00 10.00
City complexity -0.06 1.05 -5.75 -0.49 0.09 0.57 4.92
City’s inventor density 0.14 0.46 0.00 0.00 0.03 0.11 18.59
City’s share of foreign patent 0.39 0.28 0.00 0.17 0.35 0.56 1.00
City size 175.23 960.06 0.00 5.00 28.00 114.00 91135.00
Partner size 3692.04 5445.03 0.00 1627.40 2684.69 4227.68 69414.33
Data quality 0.80 0.20 0.14 0.62 0.87 0.97 1.00

Table 36: Summary of variables for observations where there was no entry
between 2005-2014.
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C.0.3 Result of stratified semi-parametric cox PH model
changing the threshold for new technology

Model 1 Model 2 Model 3 Model 4 Model 5
Inter-city ties 1.008∗ 1.008∗ 1.008∗ 1.008∗

(0.00360) (0.00422) (0.00362) (0.00423)
Technological relatedness 1.077∗∗ 1.077∗∗ 1.078∗ 1.078∗

(0.0281) (0.0281) (0.0317) (0.0317)
Inter-city ties × Partner city size 1.014∗∗ 1.014∗∗

(0.0119) (0.0120)
Technological relatedness × Focal city size 0.993 0.993

(0.00557) (0.00557)
Distance from core IPC 1.161∗∗∗ 1.157∗∗∗ 1.157∗∗∗ 1.158∗∗∗ 1.158∗∗∗

(0.00517) (0.00530) (0.00530) (0.00530) (0.00530)
Knowledge diversity 1.023∗∗ 1.023∗∗ 1.023∗∗ 1.023∗∗ 1.023∗∗

(0.0129) (0.0129) (0.0129) (0.0129) (0.0129)
Existing IPCs 0.951∗∗ 0.937∗∗∗ 0.937∗∗∗ 0.938∗∗∗ 0.938∗∗∗

(0.0147) (0.0153) (0.0153) (0.0155) (0.0155)
IPC growth rate 1.126∗∗∗ 1.123∗∗∗ 1.123∗∗∗ 1.123∗∗∗ 1.123∗∗∗

(0.0104) (0.0105) (0.0105) (0.0103) (0.0103)
City complexity 1.000 1.000 1.000 1.000 1.000

(0.00647) (0.00649) (0.00648) (0.00651) (0.00651)
Inventor density 0.961 0.961 0.961 0.961 0.961

(0.0234) (0.0233) (0.0233) (0.0233) (0.0233)
Share of foreign patent 0.977 0.976 0.976 0.976 0.976

(0.0123) (0.0125) (0.0125) (0.0126) (0.0126)
Focal city size 1.069∗ 1.066∗ 1.066∗ 1.079∗ 1.079∗

(0.0475) (0.0455) (0.0455) (0.0427) (0.0427)
Partner city size 0.949∗∗∗ 0.951∗∗∗ 0.951∗∗∗ 0.951∗∗∗ 0.951∗∗∗

(0.0142) (0.0143) (0.0143) (0.0143) (0.0143)
Data quality 1.045 1.046 1.046 1.045 1.045

(0.0193) (0.0193) (0.0193) (0.0193) (0.0193)

City FE Yes Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Number of observations 707 323 707 323 707 323 707 323 707 323
Log pseudolikelihood -391 691.75 -391 513.1 -391 513.1 -391 509.06 -391 509.06
Wald chi2 51 873.62∗∗∗ 52 796.06∗∗∗ 52 924.43∗∗∗ 53 123.44∗∗∗ 53 230.96∗∗∗

Notes: (i) Coefficients are exponentiated (ii) Standard errors are in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 37: Supplementary analysis. Results of stratified semi-parametric
Cox PH when the threshold for an IPC to be considered new to the city is
changed from 5 to 3 years.
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C.0.4 Result of stratified semi-parametric cox PH model
changing the measurement of inter-city ties

Model 1 Model 2 Model 3 Model 4 Model 5
Inter-city ties 1.011∗ 1.019∗∗∗ 1.011∗ 1.019∗∗∗

(0.00464) (0.00393) (0.00467) (0.00389)
Technological relatedness 1.074∗∗ 1.074∗∗ 1.074∗∗ 1.074∗∗

(0.0259) (0.0258) (0.0268) (0.0269)
Inter-city ties × Partner city size 1.044∗∗∗ 1.045∗∗∗

(0.00921) (0.00921)
Technological relatedness × Focal city size 0.999 0.998

(0.00344) (0.00349)
Distance from core IPC 1.139∗∗∗ 1.137∗∗∗ 1.136∗∗∗ 1.137∗∗∗ 1.137∗∗∗

(0.00572) (0.00567) (0.00568) (0.00567) (0.00567)
Knowledge diversity 1.064∗∗∗ 1.070∗∗∗ 1.070∗∗∗ 1.070∗∗∗ 1.070∗∗∗

(0.0184) (0.0186) (0.0187) (0.0186) (0.0187)
Existing IPCs 1.788∗∗∗ 1.740∗∗∗ 1.716∗∗∗ 1.739∗∗∗ 1.713∗∗∗

(0.103) (0.101) (0.100) (0.102) (0.100)
IPC growth rate 1.137∗∗∗ 1.130∗∗∗ 1.130∗∗∗ 1.130∗∗∗ 1.130∗∗∗

(0.00497) (0.00597) (0.00595) (0.00590) (0.00589)
City complexity 0.993 0.993 0.993 0.993 0.993

(0.00729) (0.00731) (0.00724) (0.00732) (0.00726)
Inventor density 1.019 1.016 1.013 1.016 1.012

(0.0178) (0.0168) (0.0160) (0.0167) (0.0158)
Share of foreign patent 0.983 0.982 0.982 0.982 0.982

(0.0135) (0.0137) (0.0137) (0.0137) (0.0137)
Focal city size 1.036 1.030 1.035 1.032 1.038

(0.0245) (0.0252) (0.0235) (0.0239) (0.0225)
Partner city size 0.945∗∗∗ 0.947∗∗∗ 0.953∗∗ 0.947∗∗∗ 0.953∗∗

(0.0148) (0.0149) (0.0150) (0.0149) (0.0150)
Data quality 1.000 1.002 1.006 1.002 1.006

(0.0184) (0.0185) (0.0185) (0.0185) (0.0185)

City FE Yes Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Number of observations 521 339 521 339 521 339 521 339 521 339
Log pseudolikelihood -396 209.92 -396 027.31 -396 010.43 -396 027.1 -396 009.9
Wald chi2 60 277.77∗∗∗ 61 095.30∗∗∗ 61 050.34∗∗∗ 61 102.59∗∗∗ 61 062.64∗∗∗

Notes: (i) Coefficients are exponentiated (ii) Standard errors are in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 38: Supplementary analysis. Results of stratified semi-parametric
Cox PH model when the measurement of inter-city ties is changed.
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C.0.5 Hazard ratios for technological fields based on strat-
ified semi-parametric Cox PH model

Model 1 Model 2 Model 3 Model 4 Model 5
Basic communication processes 0.801∗∗∗ 0.804∗∗∗ 0.804∗∗∗ 0.804∗∗∗ 0.804∗∗∗

(0.0317) (0.0318) (0.0318) (0.0318) (0.0318)
Basic materials chemistry 1.739∗∗∗ 1.678∗∗∗ 1.678∗∗∗ 1.679∗∗∗ 1.679∗∗∗

(0.0541) (0.0560) (0.0560) (0.0559) (0.0559)
Biotechnology 0.302∗∗∗ 0.264∗∗∗ 0.264∗∗∗ 0.264∗∗∗ 0.264∗∗∗

(0.0144) (0.0172) (0.0172) (0.0177) (0.0177)
Chemical engineering 2.277∗∗∗ 2.282∗∗∗ 2.282∗∗∗ 2.281∗∗∗ 2.282∗∗∗

(0.0711) (0.0715) (0.0715) (0.0715) (0.0715)
Civil engineering 2.247∗∗∗ 2.266∗∗∗ 2.266∗∗∗ 2.266∗∗∗ 2.266∗∗∗

(0.0710) (0.0720) (0.0720) (0.0720) (0.0720)
Computer technology 1.155∗∗∗ 1.149∗∗∗ 1.149∗∗∗ 1.148∗∗∗ 1.148∗∗∗

(0.0466) (0.0469) (0.0469) (0.0469) (0.0469)
Control 0.914∗ 0.916∗ 0.916∗ 0.916∗ 0.916∗

(0.0346) (0.0348) (0.0348) (0.0348) (0.0348)
Digital communication 0.488∗∗∗ 0.466∗∗∗ 0.466∗∗∗ 0.466∗∗∗ 0.466∗∗∗

(0.0205) (0.0213) (0.0213) (0.0214) (0.0214)
Electrical machinery, apparatus, energy 1.545∗∗∗ 1.559∗∗∗ 1.559∗∗∗ 1.559∗∗∗ 1.559∗∗∗

(0.0452) (0.0460) (0.0460) (0.0460) (0.0460)
Engines, pumps, turbines 1.373∗∗∗ 1.379∗∗∗ 1.379∗∗∗ 1.379∗∗∗ 1.379∗∗∗

(0.0438) (0.0441) (0.0441) (0.0441) (0.0441)
Environmental technology 2.013∗∗∗ 1.992∗∗∗ 1.991∗∗∗ 1.992∗∗∗ 1.991∗∗∗

(0.0692) (0.0692) (0.0692) (0.0692) (0.0692)
Food chemistry 2.015∗∗∗ 1.918∗∗∗ 1.918∗∗∗ 1.918∗∗∗ 1.918∗∗∗

(0.0683) (0.0731) (0.0732) (0.0735) (0.0735)
Furniture, games 1.251∗∗∗ 1.282∗∗∗ 1.282∗∗∗ 1.282∗∗∗ 1.282∗∗∗

(0.0412) (0.0436) (0.0436) (0.0437) (0.0437)
Handling 1.359∗∗∗ 1.382∗∗∗ 1.382∗∗∗ 1.382∗∗∗ 1.382∗∗∗

(0.0565) (0.0581) (0.0581) (0.0581) (0.0581)
IT methods for management 0.415∗∗∗ 0.414∗∗∗ 0.414∗∗∗ 0.414∗∗∗ 0.414∗∗∗

(0.0191) (0.0192) (0.0192) (0.0192) (0.0192)
Machine tools 3.181∗∗∗ 3.187∗∗∗ 3.187∗∗∗ 3.187∗∗∗ 3.187∗∗∗

(0.0970) (0.0974) (0.0974) (0.0974) (0.0974)
Molecular chemistry, polymers 1.341∗∗∗ 1.279∗∗∗ 1.279∗∗∗ 1.279∗∗∗ 1.279∗∗∗

(0.0444) (0.0470) (0.0470) (0.0475) (0.0475)
Materials, metallurgy 1.518∗∗∗ 1.507∗∗∗ 1.507∗∗∗ 1.507∗∗∗ 1.507∗∗∗

(0.0483) (0.0481) (0.0481) (0.0481) (0.0481)
Measurement 0.901∗∗ 0.906∗∗ 0.906∗∗ 0.906∗∗ 0.906∗∗

(0.0323) (0.0328) (0.0328) (0.0328) (0.0328)
Mechanical elements 1.399∗∗∗ 1.419∗∗∗ 1.419∗∗∗ 1.419∗∗∗ 1.419∗∗∗

(0.0543) (0.0559) (0.0559) (0.0559) (0.0559)
Medical technology 1.088∗ 1.098∗∗ 1.098∗∗ 1.098∗∗ 1.098∗∗

(0.0379) (0.0385) (0.0385) (0.0385) (0.0385)
Micro-structural and nano-technology 3.378∗∗∗ 3.377∗∗∗ 3.378∗∗∗ 3.377∗∗∗ 3.377∗∗∗

(0.127) (0.127) (0.127) (0.127) (0.127)
Optics 0.891∗∗∗ 0.888∗∗∗ 0.888∗∗∗ 0.888∗∗∗ 0.888∗∗∗

(0.0305) (0.0306) (0.0306) (0.0306) (0.0306)
Organic fine chemistry 0.476∗∗∗ 0.427∗∗∗ 0.427∗∗∗ 0.427∗∗∗ 0.427∗∗∗

(0.0213) (0.0238) (0.0238) (0.0243) (0.0243)
Other consumer goods 1.651∗∗∗ 1.660∗∗∗ 1.660∗∗∗ 1.660∗∗∗ 1.660∗∗∗

(0.0510) (0.0515) (0.0515) (0.0515) (0.0515)
Other special machines 1.589∗∗∗ 1.594∗∗∗ 1.594∗∗∗ 1.594∗∗∗ 1.594∗∗∗

(0.0527) (0.0530) (0.0530) (0.0530) (0.0530)
Pharmaceuticals 0.0872∗∗∗ 0.0610∗∗∗ 0.0610∗∗∗ 0.0607∗∗∗ 0.0607∗∗∗

(0.00678) (0.00564) (0.00564) (0.00558) (0.00557)
Semiconductors 1.046 1.031 1.031 1.030 1.030

(0.0458) (0.0456) (0.0456) (0.0456) (0.0456)
Surface technology, coating 1.571∗∗∗ 1.573∗∗∗ 1.573∗∗∗ 1.573∗∗∗ 1.573∗∗∗

(0.0507) (0.0509) (0.0509) (0.0509) (0.0509)
Telecommunications 0.460∗∗∗ 0.453∗∗∗ 0.453∗∗∗ 0.453∗∗∗ 0.453∗∗∗

(0.0160) (0.0159) (0.0159) (0.0160) (0.0160)
Textile and paper machines 1.528∗∗∗ 1.513∗∗∗ 1.513∗∗∗ 1.513∗∗∗ 1.513∗∗∗

(0.0488) (0.0486) (0.0486) (0.0486) (0.0486)
Thermal process and apparatus 3.189∗∗∗ 3.180∗∗∗ 3.179∗∗∗ 3.180∗∗∗ 3.179∗∗∗

(0.101) (0.101) (0.101) (0.101) (0.101)
Transport 1.385∗∗∗ 1.394∗∗∗ 1.393∗∗∗ 1.393∗∗∗ 1.393∗∗∗

(0.0428) (0.0432) (0.0431) (0.0431) (0.0431)
Notes: (i) Coefficients are exponentiated (ii) Standard errors are in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 39: Hazard ratios for technological fields based on stratified semi-
parametric Cox PH model.
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C.0.6 Result for ICT vs Pharmaceuticals

This section includes a supplementary analysis in which we examined
the hazard of entering an IPC belonging to an ICT field by cities whose
core IPCs are in the Pharmaceutical field, and vice-versa. ICT knowledge
areas are collection of IPCs in the fields: Digital communication, Telecom-
munications, Computer technology, and IT methods for management.
The model used is the Semi-Parametric Cox model with shared frailty to
control for city-specific effect.

Model 1 examines entry into Pharmaceutical fields. The model includes
a bivariate explanatory variable called ICT that takes the value 1 if the
focal city’s core knowledge area is ICT and 0 otherwise. Also it includes
an interaction term between ICT and inter-city ties, and an interaction
term between ICT and technological relatedness. Model 1 only contains
subset of observations (i.e., 604 observations) with potential entry in IPCs
belonging to Pharmaceuticals. Model 2 examines entry into ICT fields.
The model includes a bivariate explanatory variable called Pharmaceuticals
that takes the value 1 if the focal city’s core knowledge area is in the Phar-
maceuticals and 0 otherwise, also, we include an interaction term between
Pharmaceutical and inter-city ties, and another interaction term between
Pharmaceuticals and technological relatedness. Model 2 contains subset
of observations (i.e., 18,630 observations) with potential entries in IPCs
belonging to ICT field (i.e., digital communication, telecommunication,
computer technology, and IT method of management).

From Model 1 we do find that inter-city ties and technological relatedness
increase and decrease the likelihood of entering a new technology in the
Pharmaceutical field respectively. We do not find any evidence that having
core expertise in ICT increases the likelihood of entering a Pharmaceutical
field. However, the effect of technological relatedness on the likelihood
of entering a new technology is positively moderated for focal cities
whose core expertise is in ICT. Specifically, the average marginal effect of
technological relatedness on the likelihood of entering a Pharmaceutical
IPC is 1.22.
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From Model 2, we find that inter-city ties and technological relatedness
both increase the likelihood that a city will enter a new technology in the
ICT field. However, we do not find any significant evidence that a focal
city with core expertise in Pharmaceuticals will increase the likelihood
of exploring an IPC in ICT. However, we find that the effect of inter-city
ties and technological relatedness on the likelihood of entry is positively
moderated when the city’s core IPC is in the Pharmaceuticals. The average
marginal effect of inter-city ties and technological relatedness on entry is
2.4 and 3.11 respectively.

Model 1 Model 2
Inter-city ties 1.517∗∗ (0.194) 1.223∗∗ (0.0222)
Technological relatedness 0.670∗∗∗ (0.0792) 1.144∗∗∗ (0.0176)

ICT 0.833 (0.371)
Inter-city ties × ICT 1.929 (0.751)
Technological relatedness × ICT 1.460∗ (0.253)

Pharmaceuticals 0.968 (0.0997)
Inter-city ties × Pharmaceuticals 1.403∗∗ (0.2024)
Technological relatedness × Pharmaceuticals 1.231∗∗ (0.113)
City-specific effect (θ) 3.206∗∗∗ (0.5562) 1.157∗∗∗ (0 .0611)

City FE Yes Yes
Year FE Yes Yes
Technology FE Yes Yes
Number of observation 604 18630
Log likelihood -1720.114 -33677.998
Wald chi2 28.66∗∗∗ 227.22∗∗∗

Exponentiated coefficients; Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 40: Supplementary analysis: Coefficients in Model 1 are the hazard
ratio of ICT core cities exploring Pharmaceutical knowledge areas, while
coefficients in Model 2 are the hazard ratio of Pharmaceuticals core cities
exploring ICT knowledge areas. Control variables are not included in the
model to allow for convergence of the partial likelihood estimation of the
coefficients.
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C.0.7 Descriptive of variables for post-entry performance
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Table 41: Descriptives and correlations of variables in the post-entry perfor-
mance analysis.
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C.0.8 Results for post-entry performance

Model 1 Model 2
Collaborative entry 1.727∗∗∗

(0.0360)

Distance from core IPC 0.879∗∗∗ 0.882∗∗∗

(0.00835) (0.00839)
Knowledge diversity 0.964 0.931

(0.0626) (0.0583)
Existing IPCs 0.997 0.977

(0.209) (0.197)
IPC growth rate 1.099∗∗∗ 1.101∗∗∗

(0.0139) (0.0132)
City complexity 1.006 1.003

(0.0107) (0.0103)
Inventor density 0.949 0.944

(0.0552) (0.0612)
Share of foreign patent 1.087∗∗ 1.081∗∗

(0.0298) (0.0290)
City size 1.004 1.026

(0.102) (0.135)
Data quality 1.022 1.015

(0.0413) (0.0400)
Constant 2.268∗∗∗ 2.195∗∗∗

(0.0287) (0.0276)
Over-dispersion parameter (α) 2.268 2.194

(0.0287) (0.0275)

City FE Yes Yes
Technology FE Yes Yes
Year FE Yes Yes
Log pseudolikelihood -139224.16 -127639.7
Number of observations 102 457 102 457
Reported coefficients are incidence rate ratio and standard errors are in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 42: Post entry technological performance: The role of collaboration
on the performance of cities in the new knowledge after exploration.
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We examined the post-entry technological performance of the city if
it enters the new technology domain collaboratively. Some research
have linked R&D collaboration to regional innovation performance (e.g.,
Lecocq and Van Looy, 2009), in which the signal of technological perfor-
mance is either the development of new technologies or the enhancement
of existing technologies or processes. Some of these studies found evi-
dence that exploratory collaboration that focuses on basic research and
development leads to an integrated product development path (Lecocq
and Van Looy, 2009). These studies show that economic actors in a city
can have different goals when engaging in collaborative effort. For exam-
ple, an economic actor that is forming ties at the point of entering a new
technology domain does this to discover potential of new opportunities
and to learn, while when collaboration is done in already existing tech-
nology areas, this may be geared towards allowing the economic actor
make the most of existing capabilities. These different objectives would
imply that different ties would specifically be useful for one objective as
opposed to the other. For example, a collaborative effort with a research
institution could be more important when the goal of an economic actor
is to learn at the point of entering a new technology domain. Generally,
collaboration comes with a coordination cost between economic actors,
and this cost can significantly increase with an increase in distance (e.g.,
international collaborations) between economic actors, hence economic
actors tend to collaborate when the opportunities and potential perfor-
mance in the new technology exceeds the coordination cost. However,
international collaborations bring added benefit reflected in the higher
than expected citations received by international publications and often
time are characteristics of “big science” with larger impact.

In analyzing the impact of collaboration at the point of entering a new
technology domain we rely on patent indicators. There are different
measures of technological performance that can be used some of which
include patent count per cities subsequent upon entering the new technol-
ogy, which captures the amount of technological activity (Lecocq and Van
Looy, 2009) or the “citation-weighted number of patent applications in a
city over a fixed period of years subsequent upon entry” (Leten, Belderbos,
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and Looy, 2016). We adopted the latter in measuring the technological
performance of cities upon entering a new technology. We calculated
the number of citations a patent received over a fixed four-year window.
Then for all the patents a city produced three years after entering the new
technology, we take the average citation. This is done in consistence with
other studies on technological performance. To measure “collaborative
entry”, we simply identify if the patent invented by an economic actor in
a city at the point of entering the new technology was done jointly with
economic actors located in another city. The explanatory variable takes
the value 1 if the patent was done jointly and 0 otherwise. We identify
that of the 103,049 entries observed, only 47.7% were done through col-
laborations between inventors in different cities. We also have that on
average cities received 2.46 citations upon entering an IPC, and the most
number of citations received was 583 in an IPC belonging to the field of
Electrical machinery, apparatus, energy.

To estimate the effect of “collaborative entry” on post-entry technological
performance we used a count model because the dependent variable is a
count variable, and unlike other regression models, the model accounts
for the non-negativity and discreteness of the dependent variable. Specif-
ically, we applied the Negative Binomial regression model with fixed
effect, which accounts for over-dispersion in the dependent variable (as
the standard deviation of technological performance is 7.98 which ex-
ceeds the mean 2.46). Correlations in error terms arising from unobserved
heterogeneity in cities are accounted for by clustering standard errors at
the level of cities. Table 42 shows the empirical results for technological
performance. The coefficients in the table are incidence rate ratio. Hence,
the coefficients are interpreted as the proportional change in the perfor-
mance of a city in a new technology when the city’s patent in the new
technology at the point of entry was done in collaboration with other
cities, as opposed to patenting non-collaboratively. If the coefficient is
greater than 1 we have a positive impact, if it is less than 1 we have a
negative impact. Model 1 has only the control variables, while in Model
2, in addition to the control variables in Model 1, we have the bi-variate
variable of interest i.e. “collaborative entry.” From Model 2 in Table 42
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we see a significant positive effect of collaborative entry on technological
performance. Specifically, collaborating at the point of entering a new
technology domain as opposed to not collaborating at the point of entry
increase the city’s performance in the new technology domain by 72.7%.
From Model 1 in Table 42 we see that entering a new technology domain
that is far away from the city’s core IPC decreases the performance of
the city in the technological area. Also, cities experience increased per-
formance entering more attractive IPCs. Finally, we capture the effect of
multinational corporations by examining the share of the city’s foreign
patents, we have that a standard deviation increase in the share of foreign
patent results in an 8.1% increase in the city’s performance upon entering
a new technology domain.
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C.0.9 Results of stratified semi-parametric Cox PH for a
sample of cities in Europe only

Model 1 Model 2 Model 3 Model 4 Model 5
Inter-city ties 1.005∗ 1.016∗∗∗ 1.006∗ 1.016∗∗∗

(0.00254) (0.00237) (0.00255) (0.00237)
Technological relatedness 1.055∗∗ 1.055∗∗ 1.055∗∗∗ 1.055∗∗∗

(0.0187) (0.0187) (0.0169) (0.0170)
Inter-city ties × Partner city size 1.032∗∗∗ 1.032∗∗∗

(0.00473) (0.00464)
Technological relatedness × Focal city size 1.008∗ 1.008∗

(0.00358) (0.00358)
Distance from core IPC 1.130∗∗∗ 1.129∗∗∗ 1.128∗∗∗ 1.128∗∗∗ 1.128∗∗∗

(0.00749) (0.00746) (0.00746) (0.00746) (0.00745)
Knowledge diversity 1.080∗∗∗ 1.082∗∗∗ 1.082∗∗∗ 1.082∗∗∗ 1.082∗∗∗

(0.0228) (0.0231) (0.0231) (0.0231) (0.0231)
Existing IPCs 1.749∗∗∗ 1.698∗∗∗ 1.697∗∗∗ 1.707∗∗∗ 1.707∗∗∗

(0.139) (0.136) (0.136) (0.136) (0.136)
IPC growth rate 1.124∗∗∗ 1.119∗∗∗ 1.119∗∗∗ 1.118∗∗∗ 1.118∗∗∗

(0.00683) (0.00744) (0.00745) (0.00747) (0.00748)
City complexity 0.985 0.986 0.986 0.986 0.986

(0.0108) (0.0108) (0.0108) (0.0108) (0.0108)
Inventor density 1.010 1.009 1.010 1.010 1.010

(0.0201) (0.0199) (0.0200) (0.0200) (0.0201)
Share of foreign patent 1.018 1.019 1.019 1.018 1.018

(0.0183) (0.0184) (0.0184) (0.0184) (0.0184)
Focal city size 1.092∗ 1.097∗∗ 1.096∗∗ 1.095∗∗ 1.094∗

(0.0387) (0.0390) (0.0390) (0.0384) (0.0384)
Partner city size 0.944∗∗ 0.945∗∗ 0.946∗ 0.945∗∗ 0.946∗∗

(0.0203) (0.0204) (0.0205) (0.0204) (0.0204)
Data quality 1.019 1.026 1.026 1.026 1.026

(0.0244) (0.0245) (0.0245) (0.0245) (0.0245)

City FE Yes Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Number of observations 329 468 329 468 329 468 329 468 329 468
Log pseudolikelihood -227 829.24 -227 751.01 -227 745.66 -227 741.79 -227 736.5
Wald chi2 39 706.45∗∗∗ 40 268.84∗∗∗ 40 285.24∗∗∗ 40 433.91∗∗∗ 40 453.72∗∗∗

Notes: (i) Coefficients are exponentiated (ii) Standard errors are in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 43: Supplementary analysis. Results of stratified semi-parametric
Cox PH for a sample of cities in Europe only.
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C.0.10 Results of stratified semi-parametric Cox PH for a
sample of cities in North America only

Model 1 Model 2 Model 3 Model 4 Model 5
Inter-city ties 0.994 0.976 0.993 0.977

(0.00511) (0.0157) (0.00508) (0.0157)
Technological relatedness 1.143∗∗∗ 1.143∗∗∗ 1.152∗∗∗ 1.152∗∗∗

(0.0124) (0.0124) (0.0132) (0.0132)
Inter-city ties × Partner city size 0.969 0.970

(0.0213) (0.0212)
Technological relatedness × Focal city size 0.991 0.991

(0.00399) (0.00401)
Distance from core IPC 1.133∗∗∗ 1.128∗∗∗ 1.128∗∗∗ 1.128∗∗∗ 1.128∗∗∗

(0.0110) (0.0108) (0.0108) (0.0108) (0.0108)
Knowledge diversity 1.078∗ 1.086∗ 1.086∗ 1.086∗ 1.086∗

(0.0399) (0.0406) (0.0406) (0.0406) (0.0406)
Existing IPCs 1.619∗∗∗ 1.599∗∗ 1.603∗∗ 1.572∗∗ 1.577∗∗

(0.234) (0.233) (0.234) (0.230) (0.230)
IPC growth rate 1.158∗∗∗ 1.144∗∗∗ 1.144∗∗∗ 1.144∗∗∗ 1.145∗∗∗

(0.00899) (0.0112) (0.0111) (0.0110) (0.0110)
City complexity 1.013 1.018 1.019 1.016 1.017

(0.0120) (0.0120) (0.0120) (0.0120) (0.0119)
Inventor density 1.107∗ 1.110∗ 1.111∗ 1.109∗ 1.109∗

(0.0512) (0.0524) (0.0524) (0.0523) (0.0523)
Share of foreign patent 1.014 1.012 1.012 1.012 1.012

(0.0304) (0.0293) (0.0293) (0.0292) (0.0293)
Focal city size 1.036 1.038 1.039 1.057 1.057

(0.0596) (0.0626) (0.0626) (0.0650) (0.0651)
Partner city size 0.954∗ 0.955∗ 0.954∗ 0.955∗ 0.954∗

(0.0200) (0.0198) (0.0198) (0.0198) (0.0198)
Data quality 1.125 1.061 1.061 1.058 1.058

(0.127) (0.116) (0.116) (0.115) (0.115)

City FE Yes Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Number of observations 116 920 116 920 116 920 116 920 116 920
Log pseudolikelihood -95 274.886 -95 198.904 -95 197.976 -95 196.097 -95 195.221
Wald chi2 20 526.21∗∗∗ 21 352.32∗∗∗ 21 474.57∗∗∗ 21 494.26∗∗∗ 21 616.36∗∗∗

Notes: (i) Coefficients are exponentiated (ii) Standard errors are in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 44: Supplementary analysis. Results of stratified semi-parametric
Cox PH for a sample of cities in North America only.

220



C.0.11 Results of stratified semi-parametric Cox PH for a
sample of cities in Asia only

Model 1 Model 2 Model 3 Model 4 Model 5
Inter-city ties 1.020∗∗ 1.027∗∗ 1.020∗∗ 1.028∗∗

(0.00746) (0.00938) (0.00752) (0.00941)
Technological relatedness 1.201∗∗∗ 1.201∗∗∗ 1.220∗∗∗ 1.219∗∗∗

(0.0258) (0.0258) (0.0270) (0.0270)
Inter-city ties × Partner city size 1.017 1.016

(0.0107) (0.0107)
Technological relatedness × Focal city size 0.969∗∗∗ 0.969∗∗∗

(0.00887) (0.00884)
Distance from core IPC 1.193∗∗∗ 1.181∗∗∗ 1.182∗∗∗ 1.181∗∗∗ 1.181∗∗∗

(0.0128) (0.0128) (0.0128) (0.0128) (0.0128)
Knowledge diversity 0.987 1.000 1.000 1.003 1.003

(0.0485) (0.0495) (0.0496) (0.0497) (0.0497)
Existing IPCs 2.038∗∗∗ 2.075∗∗∗ 2.074∗∗∗ 2.068∗∗∗ 2.067∗∗∗

(0.202) (0.211) (0.210) (0.211) (0.211)
IPC growth rate 1.153∗∗∗ 1.140∗∗∗ 1.140∗∗∗ 1.139∗∗∗ 1.139∗∗∗

(0.0144) (0.0153) (0.0153) (0.0154) (0.0154)
City complexity 0.972 0.964 0.964 0.964 0.964

(0.0173) (0.0182) (0.0182) (0.0186) (0.0186)
Inventor density 1.065 1.046 1.047 1.026 1.027

(0.0361) (0.0354) (0.0354) (0.0419) (0.0418)
Share of foreign patent 0.882∗∗∗ 0.874∗∗∗ 0.874∗∗∗ 0.872∗∗∗ 0.872∗∗∗

(0.0299) (0.0301) (0.0301) (0.0302) (0.0302)
Focal city size 0.991 0.981 0.982 1.063 1.064

(0.0520) (0.0488) (0.0492) (0.0542) (0.0543)
Partner city size 0.949 0.954 0.954 0.953 0.954

(0.0346) (0.0359) (0.0361) (0.0362) (0.0363)
Data quality 1.007 0.998 0.998 0.998 0.998

(0.0286) (0.0288) (0.0288) (0.0289) (0.0289)

City FE Yes Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Number of observations 42 347 42 347 42 347 42 347 42 347
Log pseudolikelihood -56 084.435 -56 010.613 -56 010.387 -55 998.242 -55 998.022
Wald chi2 10 674.44∗∗∗ 11 736.90∗∗∗ 12 326.55∗∗∗ 12 480.83∗∗∗ 13 007.81∗∗∗

Notes: (i) Coefficients are exponentiated (ii) Standard errors are in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 45: Supplementary analysis. Results of stratified semi-parametric
Cox PH for a sample of cities in Asia only.
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C.0.12 Results of stratified semi-parametric Cox PH for
Global cities

Model 1 Model 2 Model 3 Model 4 Model 5
Inter-city ties 1.002 1.008 1.001 1.008

(0.00519) (0.0102) (0.00524) (0.0102)
Technological relatedness 1.141∗∗∗ 1.141∗∗∗ 1.160∗∗∗ 1.160∗∗∗

(0.0174) (0.0174) (0.0181) (0.0181)
Inter-city ties × Partner city size 1.009 1.010

(0.0127) (0.0125)
Technological relatedness × Focal city size 0.973∗∗ 0.973∗∗∗

(0.00803) (0.00802)
Distance from core IPC 1.142∗∗∗ 1.135∗∗∗ 1.135∗∗∗ 1.134∗∗∗ 1.135∗∗∗

(0.0117) (0.0115) (0.0115) (0.0115) (0.0115)
Knowledge diversity 0.929 0.936 0.936 0.939 0.939

(0.0393) (0.0406) (0.0406) (0.0409) (0.0409)
Existing IPCs 1.611∗∗∗ 1.664∗∗∗ 1.664∗∗∗ 1.645∗∗∗ 1.645∗∗∗

(0.151) (0.162) (0.162) (0.160) (0.160)
IPC growth rate 1.132∗∗∗ 1.120∗∗∗ 1.120∗∗∗ 1.121∗∗∗ 1.120∗∗∗

(0.0120) (0.0142) (0.0142) (0.0141) (0.0141)
City complexity 1.009 1.009 1.009 1.007 1.007

(0.0135) (0.0139) (0.0140) (0.0141) (0.0141)
Inventor density 1.036 1.032 1.031 1.016 1.015

(0.0444) (0.0440) (0.0443) (0.0442) (0.0445)
Share of foreign patent 0.954 0.950∗ 0.950∗ 0.950∗ 0.950∗

(0.0243) (0.0245) (0.0245) (0.0245) (0.0245)
Focal city size 0.982 0.981 0.982 1.047 1.048

(0.0516) (0.0508) (0.0510) (0.0565) (0.0567)
Partner city size 0.951∗∗ 0.950∗∗ 0.950∗∗ 0.950∗∗ 0.950∗

(0.0184) (0.0188) (0.0188) (0.0189) (0.0189)
Data quality 1.002 0.988 0.988 0.986 0.986

(0.0323) (0.0317) (0.0317) (0.0316) (0.0316)

City FE Yes Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Number of observations 54 731 54 731 54 731 54 731 54 731
Notes: (i) Coefficients are exponentiated (ii) Standard errors are in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 46: Supplementary analysis. Results of stratified semi-parametric
Cox PH for a sample of 168 global cities. These global cities are alpha and
beta cities identified in the Globalization and World Cities (GaWC) project.
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C.0.13 Results of stratified semi-parametric Cox PH for
non-global cities

Model 1 Model 2 Model 3 Model 4 Model 5
Inter-city ties 1.005∗ 1.008∗∗ 1.005∗ 1.008∗∗

(0.00258) (0.00243) (0.00259) (0.00244)
Technological relatedness 1.066∗∗ 1.066∗∗ 1.065∗∗ 1.065∗∗

(0.0227) (0.0227) (0.0209) (0.0209)
Inter-city ties × Partner city size 1.011∗∗∗ 1.011∗∗∗

(0.00300) (0.00300)
Technological relatedness × Focal city size 1.007 1.007

(0.00375) (0.00375)
Distance from core IPC 1.139∗∗∗ 1.138∗∗∗ 1.138∗∗∗ 1.137∗∗∗ 1.137∗∗∗

(0.00641) (0.00636) (0.00636) (0.00637) (0.00637)
Knowledge diversity 1.083∗∗∗ 1.087∗∗∗ 1.088∗∗∗ 1.088∗∗∗ 1.089∗∗∗

(0.0197) (0.0199) (0.0200) (0.0200) (0.0200)
Existing IPCs 1.830∗∗∗ 1.777∗∗∗ 1.777∗∗∗ 1.788∗∗∗ 1.788∗∗∗

(0.120) (0.118) (0.118) (0.119) (0.119)
IPC growth rate 1.137∗∗∗ 1.131∗∗∗ 1.131∗∗∗ 1.130∗∗∗ 1.130∗∗∗

(0.00536) (0.00611) (0.00611) (0.00610) (0.00610)
City complexity 0.985 0.986 0.986 0.986 0.986

(0.00896) (0.00894) (0.00894) (0.00893) (0.00893)
Inventor density 0.998 0.996 0.996 0.994 0.994

(0.0131) (0.0128) (0.0128) (0.0126) (0.0126)
Share of foreign patent 1.001 1.001 1.001 1.001 1.001

(0.0154) (0.0155) (0.0155) (0.0155) (0.0155)
Focal city size 1.111∗∗∗ 1.114∗∗∗ 1.113∗∗∗ 1.110∗∗∗ 1.110∗∗∗

(0.0269) (0.0264) (0.0264) (0.0258) (0.0259)
Partner city size 0.944∗∗∗ 0.946∗∗ 0.946∗∗ 0.946∗∗ 0.946∗∗

(0.0164) (0.0164) (0.0164) (0.0164) (0.0164)
Data quality 1.014 1.019 1.019 1.019 1.019

(0.0236) (0.0237) (0.0237) (0.0237) (0.0237)

City FE Yes Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Number of observations 466 608 466 608 466 608 466 608 466 608
Notes: (i) Coefficients are exponentiated (ii) Standard errors are in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 47: Supplementary analysis. Results of stratified semi-parametric
Cox PH for a sample of non-global cities.
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C.0.14 Results of stratified semi-parametric Cox PH using
global city status as a moderator of inter-city ties

The non-global city variable takes the value 1 if the city is classified as
being non-global and 0 if it is classified as being global.

Model 1 Model 2 Model 3 Model 4 Model 5
Inter-city ties 1.005∗ 1.001 1.004∗ 1.001

(0.00209) (0.00271) (0.00210) (0.00272)
Technological relatedness 1.074∗∗ 1.074∗∗ 1.074∗∗ 1.074∗∗

(0.0253) (0.0253) (0.0264) (0.0264)
Inter-city ties × Non global city status 1.005 1.006∗

(0.00398) (0.00398)
Technological relatedness × Focal city size 1.007 1.007

(0.00375) (0.00375)
Distance from core IPC 1.139∗∗∗ 1.136∗∗∗ 1.137∗∗∗ 1.137∗∗∗ 1.137∗∗∗

(0.00572) (0.00570) (0.00570) (0.00570) (0.00570)
Knowledge diversity 1.064∗∗∗ 1.064∗∗∗ 1.064∗∗∗ 1.064∗∗∗ 1.064∗∗∗

(0.0184) (0.0186) (0.0186) (0.0186) (0.0186)
Existing IPCs 1.788∗∗∗ 1.736∗∗∗ 1.735∗∗∗ 1.734∗∗∗ 1.733∗∗∗

(0.103) (0.101) (0.101) (0.102) (0.101)
IPC growth rate 1.137∗∗∗ 1.130∗∗∗ 1.130∗∗∗ 1.130∗∗∗ 1.130∗∗∗

(0.00497) (0.00593) (0.00593) (0.00587) (0.00587)
City complexity 0.993 0.994 0.994 0.994 0.994

(0.00729) (0.00726) (0.00727) (0.00727) (0.00728)
Inventor density 1.019 1.012 1.013 1.012 1.012

(0.0178) (0.0162) (0.0162) (0.0161) (0.0160)
Share of foreign patent 1.001 1.001 1.001 1.001 1.001

(0.0135) (0.0137) (0.0137) (0.0137) (0.0137)
Focal city size 1.036 1.037 1.038 1.040 1.041

(0.0245) (0.0238) (0.0240) (0.0229) (0.0229)
Non-global city 0.944∗ 0.946∗ 0.946∗ 0.946∗ 0.946∗

(0.0164) (0.0164) (0.0164) (0.0164) (0.0164)
Data quality 1.000 1.008 1.008 1.008 1.008

(0.0184) (0.0184) (0.0184) (0.0184) (0.0184)

City FE Yes Yes Yes Yes Yes
Technology FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Number of observations 521 339 521 339 521 339 521 339 521 339
Notes: (i) Coefficients are exponentiated (ii) Standard errors are in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 48: Supplementary analysis. Results of stratified semi-parametric
Cox PH using global city status as moderator of inter-city ties.
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Partner size Relative hazard P > |z|

-1 -0.0014 0.127
0 0.0024 0.000
1 0.0058 0.000
2 0.0088 0.000
3 0.0116 0.000
4 0.0142 0.000
5 0.0173 0.000
6 0.0239 0.001
7 0.0514 0.001
8 0.2069 0.003
9 1.1675 0.645
10 7.2500 0.780
11 46.0784 0.856
12 294.3229 0.868
13 1879.51 0.878
14 11978.2 0.886

Table 49: Average marginal effect of inter-city ties: Relative hazard estimated
at different points of the mean-centered partner size.
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