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Abstract

In the present work, we introduce theoretical and application novelties at
the intersection between machine learning and econometrics in social and
health sciences. In particular, Part 1 delves into optimizing the data collec-
tion process in a specific statistical model, commonly used in econometrics,
employing an optimization criterion inspired by machine learning, namely,
the generalization error conditioned on the training input data. In the first
Chapter, we analyze and optimize the trade-off between sample size, the pre-
cision of supervision on a variation of the unbalanced fixed effects panel data
model. In the second Chapter we extend the analysis to the Fixed Effects
GLS (FEGLS) case in order to account for the heterogeneity in the data
associated with different units, for which correlated measurement errors cor-
rupt distinct observations related to the same unit. In Part 2, we introduce
applications of innovative econometrics and machine learning techniques. In
the third Chapter we propose a novel methodology to explore the effect of
market size on market innovation in the Pharmaceutical industry. Finally, in
the fourth Chapter, we innovate the literature on the economic complexity
of countries through machine learning. The Dissertation contributes to the
literature on machine learning and applied econometrics mainly by: (i) ex-
tending the current framework to novel scenarios and applications (Chapter
1 - Chapter 2); (ii) developing a novel econometric methodology to assess
long-debated issues in literature (Chapter 3); (iii) constructing a novel index
of economic complexity through machine learning (Chapter 4).
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Introduction

Back in 2001, the Berkeley statistician Leo Breiman noted the presence of two dis-
tinct cultures in the use of statistical models (Breiman, 2001). In particular, he
distinguished between a statistical approach based on a stochastic data generating
process and one adopting algorithmic techniques and making no assumptions about
the data generating process. When Breiman was writing, the two cultures were highly
separated. Nowadays, the latter characterization does not apply, and the statistics
community has largely accepted the Machine Learning (ML) revolution (as noted in
Athey and Imbens, 2019 among others). This revolution has been facilitated by the
exponentially grown ability of machines to solve complex tasks (Sejnowski, 2018). Yet
many works and textbooks mix up econometrics and machine learning (see e.g., H. R.
Varian, 2014a,Hastie, Tibshirani and Friedman, 2009 and Efron and Trevor Hastie,
2016).
Many empirical studies began to implement machine learning algorithms moved by
the rapidly increasing methodological literature on the topic in recent years. More
generally, though slower than in other fields, econometrics is moving away from the
absolute dependence on pre-determined data models. A structural adjustment accom-
panies such a transition on how econometrics is perceived by academics as highlighted
in Athey and Imbens (2019). Specifically, following Chamberlain (2000), if authors
see econometrics as "decision making under uncertainty", their toolbox cannot ignore
the fundamentals of machine learning.
Though relevant in general, machine learning mainly succeeded in "Big Data" con-
texts where a large amount of data per unit are available. Recently, machine learning
techniques have been refined to also deal with the so-called panel-data structures,
which provide information not only on the cross-sectional dimension but also on the
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temporal one (i.e., units observed in time). The latter effort has been a further push
toward the employment of ML techniques in econometrics settings, where panel data
analysis constitutes a significant achievement. As reported in (Athey and Imbens,
2019) "for such setups, ML tools are becoming the standard across disciplines, and
so the economist’s toolkit needs to adapt accordingly while preserving the traditional
strengths of applied econometrics".
The described environment opened the way to the application of ML also in social
and health sciences. Starting from (H. R. Varian, 2014a) many authors in economics
began to apply ML methodologies either to deepen and review research questions
already explored in the past literature (Davis and Heller, 2017, Dubé and Misra,
2017,Thach, Kreinovich, and Trung, 2021, Y. Liu and Xie, 2019) or to raise new ques-
tions (Kleinberg, Lakkaraju, et al., 2018, Plonsky et al., 2017, Dash et al., 2019).
Most machine learning methods can be divided in two main branches with respect
to the task addressed (Mitchell et al., 1997): (i) unsupervised learning and (ii) su-
pervised learning models. In particular, unsupervised learning refers to models that
try to draw inference starting from unlabeled variables Y . Unsupervised learning is
mostly employed for clustering and pattern recognition. On the other hand, super-
vised learning refers to models that draw inference from labeled outcome variables Y
(either discrete or continuous). Supervised learning is, above all, used to make pre-
dictions on outcomes corresponding to examples that were not used in the training
process of the model (this is the case, e.g., of random forests and support vector ma-
chines). Since ML is specifically designed for predictive purposes (Kleinberg, Ludwig,
et al., 2015), it provides proper tools for decision-makers. Furthermore, as correctly
highlighted in (Bargagli Stoffi, 2020), "the non-parametric nature of machine learning
algorithms makes them suited to uncover hidden relationships between the predictors
and the outcome variable that traditional econometric approaches could overlook. In-
deed, the latter models – e.g., ordinary least squares and logistic regression – are built
assuming a set of restrictions on the model’s functional form and on the statistical
distributions of the errors to guarantee statistical properties such as estimator unbi-
asedness and consistency. Machine learning algorithms often relax those assumptions,
and the functional form is dictated by the data at hand (the phrase "data-driven mod-
els," often used to refer to machine learning algorithms, highlights this feature). This
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characteristic makes machine learning algorithms more adaptive and inductive, there-
fore enabling more accurate predictions for future outcome realizations."
The challenge for current researchers is to combine the significant advantages pro-
vided by the two disciplines of ML and econometrics. Yet, as correctly suggested
in (H. R. Varian, 2014a), while ML provides solid algorithms for prediction tasks,
econometrics uses robust statistical methods for prediction, inference, and above all,
causal modeling of economic relationships.
In order to understand the deep penetration of ML – and Artificial Intelligence (AI)
in general– in economics papers, Harding et al. (2018) compared the usage of ML
techniques against standard econometrics methods within works in economics. They
divided the analysis between settings with standard data sets and settings with big
data sets. The authors commented on the overtake of ML techniques over traditional
methods when dealing with big data as follows: "due to the prevalence of connected
digital devices, observational data sets are now available that are much larger and
of higher frequency than traditional surveys: so-called Big Data. This has created
opportunities for economists and policymakers to learn about economic systems and
choices with a higher degree of precision. However, new methods, particularly those
related to machine learning, are needed to take full advantage of Big Data. Further-
more, policymakers should consider a broader range of data as sensitive, researchers
need checks to avoid unintentional bias, and economists should learn general-purpose
coding languages.".
The acquisition of big data, however, might be costly both in terms of time and money
(Sivarajah et al., 2017). For instance, privacy issues on data acquisition make it hard
to collect information (Lyko, Nitzschke, and Ngomo, 2016) properly. Besides, a signif-
icant issue that decision-makers might face is to achieve a suitable trad e-off between
higher level of granularity – which implies a higher cost of collection and storage –
and a lower level of granularity –which may lead to a small variety of queries that can
be answered (Almeida, 2017). In particular, each example might have an acquisition
cost. The latter cost, though often given, might be somehow controlled under certain
circumstances. Yet, keeping the total acquisition cost (i.e., the one associated with
the whole dataset) as fixed, one can intervene on the acquisition cost of each example
and, thus, on their number.
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The first Part of the Dissertation tries to partly solve the latter impediments by
suggesting a way to optimize the trade-off between the precision of supervision and
the number of examples. In line with (H. R. Varian, 2014a), future works on the topic
will adapt the analysis to a causal context. The second Part displays the advantages
of both disciplines of econometrics and ML through their application to social and
health sciences. Before getting into the Dissertation core, let us set the stage on
ML and its applications in econometrics contexts. Section 1 presents a very general
overview of ML and econometrics, introducing the current discussion on how and
when ML algorithms are beneficial to econometrics (and vice versa). Section 2 briefly
reviews the literature on ML and econometrics. In Section 3, we draw the Dissertation
outline and highlight how each Chapter contributes to the related literature.

1 Machine learning for econometrics

In his notorious paper about the novel tools provided by computer science (and in par-
ticular ML) to econometricians, Hal Varian highlighted how statistical and economet-
ric analyses have to manage, nowadays, big datasets. Manipulating a large quantity
of data, however, may raise specific issues: "first, the sheer size of the data involved
may require more powerful data manipulation tools. Second, we may have more po-
tential predictors than appropriate for estimation, so we need to make some variable
selection. Third, large datasets may allow for more flexible relationships than simple
linear models. Machine learning techniques such as decision trees, support vector ma-
chines, neural nets, and deep learning, among others, may allow for more effective
ways to model complex relationships." (H. Varian, 2014).
Data analysis in statistics and econometrics can be divided into four parts according
to H. R. Varian (2014a), which are prediction, summarization, estimation, and hy-
pothesis testing. Machine learning can help with the first one by detecting hidden
patterns in the data. Machine learning learns directly from data, without the restric-
tions (and assumptions) of model-based statistical methods (Breiman, 2001).
As an example, regarding the second issue, the traditional econometric analysis com-
monly performs summarization through linear regression. Usually, however, when it
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comes to nonlinear relationships among data, conventional statistical tools encounter
difficulties. Machine learning, instead, provides user-friendly algorithms quickly cap-
turing nonlinear patterns (e.g., regression trees).
If, on the one hand, econometrics should learn from ML, on the other hand, it is also
important that ML learns from econometrics (H. R. Varian, 2014a). In other words,
authors should not abuse machine learning tools (see, e.g., Boelaert and Ollion, 2018
on the topic) but should rather smartly combine them with econometric techniques.
The main reasons can be summarized as follows:

1. while machine learning is mainly about prediction (Wu et al., 2008), causal infer-
ence is about causality (see, e.g., Semykina and Wooldridge, 2010, Angrist and
Pischke, 2008 among others), which is crucial for decision-makers.

2. there is still very few formed machine learning theory (above all theoretical Sta-
tistical Learning Theory) on how to deal with not Independently Identically
Distributed (IID) data such as panel data and time series. No unified theory on
the topic has been developed.

3. though research is making progress (see ,e.g., Athey, J. Tibshirani, and Wager,
2019), combining machine learning and causality is still an open debate.

As a critical example of reason 3, we mention here the problem of instrumentation.
Instrumentation is a commonly employed method to correct for the endogeneity of
one or more explanatory variables, say X ∈ R. In particular, X is endogenous when
correlated with unobservables, encoded in the error term ε. This condition violates
the usual assumptions of traditional models such as Ordinary Least Squares (OLS)
and requires the use of an instrument, i.e., a variable Z indirectly related to the
outcome Y ∈ R through X and such that Z and ε are not correlated. Double Ma-
chine Learning has recently addressed instrumentation in the field of machine learn-
ing (Chernozhukov et al., 2017). Though capable of incorporating the advantages
of machine learning (e.g., variable selection and dimensionality reduction), the latter
technique does not provide a solid statistical theory for what concerns, for instance,
instrumentation within a fixed-effect panel data model. More up-to-date tools to
deal with endogeneity have been provided within the field of econometrics (W. Lin
and Wooldridge, 2019) and, for this reason, they have been adopted throughout the
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Discussion.
Therefore, it is vital to take advantage of machine learning in econometric contexts
but, at the same time, to be aware of the goals of econometrics. Yet, as highlighted
by Athey, J. Tibshirani, and Wager (2019) in their work about generalized random
forests 2, applying machine learning to causality issues is a matter of moving the goal-
posts. Significantly, the first step to take in order to combine machine learning and
econometrics successfully is to select the model that primarily addresses the research
question one would like to answer. Choosing the correct machine learning model is
crucial since performance, computational scalability (i.e., the ability of the algorithm
to handle more significant amounts of data), and interpretability differ across imple-
mentations. Usually, more complex algorithms require discretionary fine-tuning of
hyper-parameters and are yet not ensured to deliver the best performance (Kotthoff,
2016). Scholars are, thus, required to run several algorithms and pick the best one in
balancing interpretability and performance on the task that is studied.

Generally, in statistical prediction problems we are interested in understanding the
conditional distribution of a variable Y as a function of some other variables, often
referred to as regressors, X = (x1, . . . ,xP ). The X−variables are often called features
or controls in machine learning. As stated in H. R. Varian (2014a), "the focus of
machine learning is to find some function that provides a good prediction of Y as a
function of X". Typically, the authors are given some observed Y and X instances
and want a "good" prediction of Y given new values ofX. A prediction is considered as
"good" if it minimizes some loss function such as the Mean Squared Error (MSE). We
are interested in minimizing the loss "associated with new out-of-sample observations"
(H. R. Varian, 2014a) of the X variable and not the observations used in the fit model.
The optimal functional form minimizing the loss function is often modelled in two
phases (Mullainathan and Spiess, 2017):

• conditional on a given level of complexity, pick the best in-sample loss-minimizing

2A technique that combines causality with random forests.
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function f(.) (Mullainathan and Spiess, 2017):

argmin
N∑
i=1

L(f(xi),yi) over f(.) ∈ F s.t. R(f(.))≤ c,

where ∑N
i=1L(f(xi),yi) is the total in-sample loss to be minimized, f(xi) repre-

sents the predicted (or, adopting an econometric terminology, "fitted") values,
yi are the actual values, F is the class of admissible functions for the machine
learning optimization problem, and R is a complexity functional, bounded to be
lower than a suitably-chosen parameter c ∈ R;

• estimate the optimal level of complexity using empirical tuning through cross-
validation.

Cross-validation is a resampling procedure used to evaluate the performance of ma-
chine learning models on a limited data sample. In k-fold cross-validation (the most
popular), data are shuffled randomly and divided into k groups. Repeatedly, one of
the k groups is chosen as test set (i.e., to perform out-of-sample estimates), while the
remaining k−1 groups are adopted as training set (i.e., to fit the model). The model
is fit on the training set and evaluated on the test set. The model skill is measured by
the average out-of-sample score. Since, by construction, machine learning algorithms
are expected to perform exceptionally well on the training data, cross-validation is
needed to avoid overfitting, i.e., finding a model closely mimicking or exactly repli-
cating a specific set of data, which might, hence, fail to fit additional testing data
or foresee future observations reliably. The root causes of overfitting are detailed in
Ying (2019).
Under the described standard setup, econometricians may exploit the potentiality
offered by machine learning algorithms. These include nonlinear methodologies as,
for instance, classification/regression trees (CART), regression forests, matrix comple-
tion but also methods performing dimensionality reductions (e.g., LASSO and elastic
nets).
Since, however, the flexibility of machine learning often comes at the expense of
the un-verifiability of the underlying model assumptions (Bargagli-Stoffi, Niederre-
iter, and Riccaboni, 2021), econometricians must be careful in the adoption of simple
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off-the-shelf algorithms Bargagli Stoffi (2020) from the ML literature. Indeed, ML
techniques often require an intelligent adaptation to an econometrician’s problem. As
underlined by (Athey and Imbens, 2019), the most important adaptation "is to exploit
the structure of the problems, e.g., the causal nature of many estimands, the endogene-
ity of variables, the configuration of data such as panel data, the nature of discrete
choice among a set of substitutable products, or the presence of credible restrictions
motivated by economic theory" as well as "changing the optimization criteria of ma-
chine learning algorithms to prioritize considerations from causal inference". Further
difficulties rely on the diversities in the terminology adopted in machine learning and
econometrics.
Due to the complications mentioned above, a stream of literature is rapidly form-
ing to instruct economists on manipulating machine learning algorithms and uniform
the statistical theories embedded in the two disciplines of econometrics and machine
learning. The effort of this newly born discipline is to insert in the mechanism of
learning also some a-priori knowledge derived from other preliminary econometrics
studies.
Reviewing the works about the adoption of machine learning in econometrics in detail
goes beyond the scope of this Introduction, which, however, explains the main rea-
sons why the following Dissertation tries to balance the adoption of econometrics and
machine learning techniques and to partly fill the theoretical gaps detailed in Section
2. Tab.1 briefly outlines the major machine learning and econometrics methodologies
employed.

Finally, Tab.2 points out the connections between the Chapters of the current
Dissertation.
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Table 1: Machine Learning and Econometrics techniques adopted in the Dissertation

Method Description Used in
Chapter(s)

Fixed Effect GLS

Fixed Effects Generalised Least Squares (FEGLS) is a linear regression model
with applications in several fields, able to represent unobserved heterogeneity
in the data associated with different units (Wooldridge, 2002),
for which distinct observations related to the same unit are corrupted by
correlated measurement errors.
We can also set-up the conditional variance of the output variable having
the associated unit and input variables, by changing
the cost per supervision of each training example

1,2

Fixed Effect IV

Fixed Effect Instrumental Variable (FEIV) is an innovative regression model that
allows to control for the endogeneity of covariates.
Differently from previous models, FEIV permits controlling for both idiosyncratic
endogeneity and heterogeneity endogeneity.
The technique is composed of two stages. A simple Wald test on the residuals’
coefficient in the second stage allows verifying
the presence of idiosyncratic endogeneity (W. Lin and Wooldridge, 2019).

3

Matrix Completion

Matrix Completion (MC) is a machine learning algorithm trying to fill
in the missing entries of a partially observed matrix.
Specifically, MC tries to minimize the trade-off (weighted sum)
between a data-fitting term related to the known entries of
the matrix and a regularization term, which avoids trivial reconstructions.
A further regularization term avoids trivial binary reconstructions.

4

ROC, AUC, BACC

These are all techniques to measure the performance of classification algorithms in
machine learning. Often, they are relative to a confusion matrix from where
common evaluation metrics, such as true positive rate (TPR), true negative rate
(TNR), and accuracy (ACC), can be easily calculated
(Consoli, Reforgiato Recupero, and Saisana, 2021). ROC is a graph with
TPR and false positive rate on its axes.
AUC is the area under the ROC. BACC is an index adopted when
observed data have unbalanced classifications.

4

2 Literature on machine learning for econometrics

The previous Section highlighted how machine learning provides valuable tools to
econometricians, who should always check the models’ underlying assumptions. Au-
thors, moreover, should carefully select the best fitting machine learning algorithm to
their specific research question, turning to advanced econometrics techniques when-
ever machine learning does not provide a solid statistical theory to its algorithms.
The previous Section’s take-home message is that econometricians should use ma-
chine learning without abusing it and having clear what is the exact question they
would like to answer. As an example of the importance of the research question
in determining whether to employ econometric or machine learning methodologies,
suppose we have data on sales and advertising. Estimating the change in sales associ-
ated with the change in advertising expenditure everything else held constant (ceteris
paribus) would raise a causality question (for which econometrics usually does a bet-
ter job than machine learning). Instead, predicting the change in sales, one would
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Table 2: Connections between the Chapteers presented in the Dissertation

Chapter Connections

Chapters 1,2
The first two Chapters investigates a theoretical framework with methodologies.
Its aim is to provide a theoretical framework where the remaining Chapters insert.
Specifically, the first two Chapters introduce to the intersection between the disciplines
of Machine Learning and Econometrics.

Chapter 3
The third Chapter provides an example of how, recent Econometrics
tools are still powerful to overcome long debated issue in the literature.
The instruments introduced in the first two Chapters are partially adopted to prove the latter statement.

Chapter 4
The last Chapter shows how Machine Learning is able
to add to economic intuition and might provide a valid tool to support Econometrics.
Thus, Chapter 4 validates the theses exposed in the previous Chapters.

expect to observe when advertising expenditure changes (mutatis mutandis) would
raise a prediction question (for which machine learning usually works better).
For the reasons above and because machine learning algorithms represent a relatively
new set of tools, combining machine learning and econometric methodologies to solve
economics problems is still an open-debated topic. For instance, while it is true that
there are many policy applications in which causality is not central, or even necessary
(Kleinberg, Ludwig, et al., 2015), there are many others in which causality is key (see
e.g. Hoover, 2008, Angrist and Pischke, 2008, Baltagi, 2006 among others). For exam-
ple, suppose that we have a great machine learning model of the relationship between
crime and police (H. R. Varian, 2014a). Such a model will not answer questions like
"what happens to crime if we add further police." Indeed, the data generating process
to answer the latter question is different from generating the crime-police relationship.
In other words, the observed data are generated by a "more crime −→ more police"
rule, but we want to investigate what happens to crime when adding more police.
Due to the importance of the topic, a dedicated stream of literature on the applications
of machine learning to econometrics was formed. To provide as much comprehensive
as possible overview of the works on the subject, we will mainly rely on three works:
H. R. Varian (2014a), Mullainathan and Spiess (2017), and Athey and Imbens (2019).
Athey and Imbens (2019) categorize the literature on machine learning and econo-
metrics according to their goals, methods, and settings. The following discussion will
first characterize machine learning and econometrics goals, investigating how such
goals have been reconciled in the literature. The works of Mullainathan and Spiess
(2017) and H. R. Varian (2014a) will then help to understand the concrete tools that
emerged from the mentioned reconciliation. In particular, we will exploit the studies
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of Mullainathan and Spiess (2017) and H. R. Varian (2014a) to review the papers on
the most used machine learning methods in econometrics contexts. A further distinc-
tion of the latter methods will be made according to their settings.
Athey and Imbens (2019) well summarize the goals of econometrics and machine learn-
ing. In particular, econometrics is mainly concerned with the estimation of a target
being a functional of a joint distribution of data (William, 2008). The aim is often
the estimation of a parameter –denoted as β– of a model describing the distribution
of a set of variables in terms of a set of parameters. The focus of econometrics is
on the quality of the estimator, usually quantified with significant sample efficiency.
Typically, the interest also lies in building reliable confidence intervals and reporting
the standard error of the estimates.
In contrast ML focus is on algorithms whose goal is to make prediction (Wu et al.,
2008). The general example in Athey and Imbens (2019), clearly explains the differ-
ent objectives of machine learning and econometrics adopting a common language to
the two disciplines. Suppose that we want to model the conditional distribution of
an outcome variable Yi conditional on a regressor Xi:

Yi|Xi ∼N (α+βTXi,σ
2),

where T indicates the transposition, N (µ,σ2) is the normal distribution with mean µ
and variance σ2 (Hellwig and K. M. Schmidt, 2002). One way to estimate θ = (α,β)
is through least squares:

(α̂ls, β̂ls) = argmin
α,β

N∑
i=1

(Yi−α−βTXi)2.

Most econometricians would adopt this model. In fact, if the data generating process
is correct, the model has the known desirable asymptotic properties (e.g., the estima-
tor is unbiased and efficient). In ML, however the goal is to predict YN+1 for a new
unit N + 1 given XN+1. The general problem is, therefore, minimizing the following
loss

E[YN+1− ŶN+1]2.
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Ŷ represents the prediction obtained with ML.
As stated in (Athey and Imbens, 2019), "the question now is to come up with estima-
tors (α̂, β̂) that have good properties associated with this loss function. This need not
be the least-squares estimator. In fact, when the dimension of the features exceeds two,
we know from decision theory that we can do better in terms of expected squared error
than the least-squares estimator. The latter is not admissible, i.e., other estimators
dominate the least-squares estimator." To dig into the latter mentioned issue, a stream
of literature explores what Mullainathan and Spiess (2017) refer to as "prediction in
the Service of Estimation." Authors working in this field try to review econometrics
with the eyes of machine learning and vice versa. A part of this stream of literature
dedicates to inference tasks having a prediction problem implicit inside them. As
an example, overfitting can be described, from the viewpoint of econometrics, as an
overcapacity of the prediction of X̂ in two stages least squares procedures. In other
words, following this analogy, overfitting happens when X̂ picks up not only the part
of variability explained by the instrument Z but also the noise. Under this light, over-
fitting becomes largely a problem of finite-sample bias, which can be solved through
either regularization or empirical tuning. Regularization has already been introduced
in several works. The papers exploit regularization within the first stage in a high-
dimensional setting, including the LASSO (Belloni, Chernozhukov, and Wang, 2011)
and ridge regression (C. Hansen and Kozbur, 2014). Recent contributions include
nonlinearities in the functional forms (Hartford et al., 2016). Other tasks in causal
inference also hide a prediction problem inside them. For instance –as mentioned
in Mullainathan and Spiess (2017)– B. K. Lee, Lessler, and Stuart (2010) employ
machine learning for constructing propensity scores, Chernozhukov et al. (2017) for
managing high-dimensional controls in estimation of treatment effect and Imai and
Strauss (2011), Athey, J. Tibshirani, and Wager (2019) (among others) for estimating
heterogeneous causal effects. As clearly explained in Mullainathan and Spiess (2017),
on the one hand, "expressing parts of these inference tasks as prediction problems also
makes clear the limitation on their output", on the other hand, one must be careful
in interpreting the results (above all in tree representations) as they may suffer from
instabilities (see the example on the American Housing Survey data in Mullainathan
and Spiess, 2017).
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Following the characterization of Athey and Imbens (2019), another stream of litera-
ture at the intersection between machine learning and econometrics is forming within
settings with scarce information. Specifically, settings were discussed therein, where
one observes information on many units (either as an outcome or as features). In many
cases, however, econometrics data sets are equipped with partial information on the
units one would like to analyze. A famous example of this setting is the so-called
Netflix Problem (Bennett, Lanning, et al., 2007) where the aim was to impute the
tastes of clients that never watched a movie based on the ratings given by similar users
to that movie. To smartly solve such imputation issues, machine learning provides
a novel technique called matrix completion. Matrix completion has recently been
modified to fit panel data frameworks (see e.g. Candès and Recht, 2009, Mazumder,
Trevor Hastie, and R. Tibshirani, 2010a and Athey, Bayati, et al., 2021). Though
very useful in practice, matrix completion techniques have been –at the time being–
only employed either as recommender systems for future purchases of consumers or
for catching clients’ preferences. One of the present work aims is to fill this gap in
applied machine learning by extending matrix completion techniques to other fields
of economics.
Finally, in this Dissertation, novel efforts have been made, in the field of theoretical
machine learning for econometrics, in order to resolve the trade-off between datasets
with high granularity but having higher collection costs and lower levels of granularity
(with lower collection costs but less precise)3. Tab. 2 depicts the most up-to-date
studies in economics, computer science, statistics, and engineering that deal with the
last mentioned issue.
We conclude this review by quoting Mullainathan and Spiess (2017) on the importance
of the figure of the economists in adopting machine learning algorithms. It is critical
to remember that, though a powerful tool, machine learning is not always available
for solving every econometric problem (as we will see in Chapter 3). Following Mul-
lainathan and Spiess (2017) "economists can play a crucial role in solving prediction
policy problems. First, even though the prediction is important, machine learning is
not enough: familiar econometric challenges arise. In deciding whether an algorithm

3In the former case fewer examples are assuming that the total acquisition cost is the same in
both circumstances.
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could improve on the judge, one must resolve a basic counterfactual issue: we only
know the crimes committed by those released. Many predictions problems share the
feature that existing decision rules dictate the available data, and insights from the
causal inference could prove helpful in tackling these problems; for example, Kleinberg
et al. (2017) use pseudo-random assignment to judges of differing leniency in their
application. Second, behavioral issues arise. Even when an algorithm can help, we
must understand the factors that determine the adoption of these tools (Dawes, Faust,
and Meehl 1989; Dietvorst, Simmons, and Massey 2015; Yeomans, Shah, Mullaina-
than, and Kleinberg 2016). What factors determine faith in the algorithm? Would a
simpler algorithm be more believed? How do we encourage judges to use their private
information optimally? These questions combine problems of technology diffusion,
information economics, and behavioral economics".

Table 3: Abbreviations: STAT = statistics; ENG = engineering; ML-EC = machine learning
- econometrics

Author, year Domain Type of analysis
Groves et al. (2004a) STAT optimal survey design

Nguyen et al. (2008a) ENG
optimal design
of measurement
devices

Gnecco, Nutarelli, and Selvi (2020) ML-EC

a priori
optimization
and optimal data collection design
in machine learning:
the case of unbalanced F.E.

C.-H. Chen and L. H. Lee (2011a) STAT
Optimal Computing Budget
Allocation (OCBA);
a posteriori
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3 Outline of the Dissertation

The present Dissertation is made of two parts. In Part 1, we explore the field of theo-
retical machine learning for econometrics by introducing a novel technique to optimize
the trade-off between training set size and precision of supervision in a panel data con-
text. Specifically, we carry out the last effort by extending the interaction between
machine learning and optimization to econometrics. An introductory Chapter will
present the basic model in Gnecco and Nutarelli (2019c) consisting of the optimiza-
tion of the mentioned trade-off in a balanced panel F.E. context. In the first Chapter
we extend the model in Gnecco and Nutarelli (2019c) by analyzing and optimizing
the trade-off between sample size, the precision of supervision (the reciprocal of the
conditional variance of the output) and selection probabilities in an unbalanced fixed
effects context. We assume an upper bound on the expected total supervision cost
and fix the expected number of observed units for each instant (Gnecco, Nutarelli,
and Selvi, 2020). In the second Chapter we propose a further extension of the model
introduced in Gnecco and Nutarelli (2019c). Specifically, we relax the assumption of
independent measurement errors made in the previous model. Furthermore, in the
former work, the trade-off between training set size and precision of supervision was
analyzed only for a fixed number of units, assuming that the number of observations
associated with the same unit is large enough to justify a large-sample approximation
with respect to the number of observations. In Gnecco, Nutarelli, and Selvi (2021)
we provide a large-sample approximation with respect to the number of units and a
large-sample approximation with respect to both the number of units and the number
of observations per unit. Other differences will be detailed throughout the Discussion.
In Part 2, we introduce applications of machine learning and econometrics. Specif-
ically, following Mullainathan and Spiess (2017), in the third Chapter we present a
problem in which we believe that econometrics provides more robust tools than ma-
chine learning. Finally, in the fourth Chapter we show how, according to Athey and
Imbens (2019) and H. R. Varian (2014a), machine learning and economic intuition
can cooperate, leading to interesting new perspectives. Specifically, we applied, for
the first time, Matrix Completion techniques to develop a novel index of economic
complexity.
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The present Dissertation contributes to the literature mainly by (i) extending the cur-
rent framework in the literature of theoretical machine learning to novel applications
and scenarios related to econometrics (Chapter 1 - Chapter 2); (ii) applying novel
econometric and machine learning methodologies to solve open-debated questions in
the literature (Chapter 3 - Chapter 4); (iii) rethinking economic issues using machine
learning tools (Chapter 4); (iv) extending the interaction of machine learning and
optimization also to econometrics (Chapter 1 - Chapter 2).
We introduce below a more profound overview of the mentioned works by specifying
the main research questions (R.Q.s) they tackle.

Part 1: Machine learning for econometrics

Chapter 1: optimal trade-off between the number of examples and preci-
sion of supervision in the F.E. unbalanced panel case

The first Chapter is focused on the unbalanced fixed effects panel data model. This
is a linear regression model representing unobserved heterogeneity in the data by
allowing each two distinct observational unit to have possibly different numbers of
associated observations. We specifically address the case in which the model includes
the additional possibility of controlling the conditional variance of the output given
the input and the selection probabilities of the different units per unit time. This is
achieved by varying the cost associated with the supervision of each training exam-
ple. Assuming an upper bound on the expected total supervision cost and fixing the
expected number of observed units for each time instant, we analyze and optimize
the trade-off between sample size, the precision of supervision (the reciprocal of the
conditional variance of the output) and selection probabilities. This is obtained by
formulating and solving a practical optimization problem. The formulation of such a
problem is based on a large-sample upper bound on the generalization error associated
with the estimates of the parameters of the unbalanced fixed effects panel data model,
conditioned on the training input dataset. We prove that, under appropriate assump-
tions, in some cases, "many but bad" examples provide a smaller large-sample upper
bound on the conditional generalization error than "few but good" ones, whereas in
other cases, the opposite occurs. To summarize, the research question of this Chap-
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ter focuses on the optimal trade-off between sample size, the precision of supervision,
and selection probabilities for a general linear model of the input-output relationship,
which is the unbalanced fixed effects panel data model. Loosely speaking,

RQ1: is having "many but bad" examples always worse –in terms of the
minimization of the generalization error– than having "few but good"
examples in an unbalanced fixed effects context?

Chapter 2: optimal trade-off between the number of examples and preci-
sion of supervision: the case of correlated measurement errors in a F.E.
scenario.

This Chapter and the previous one belong to the strand of literature that combines
machine learning, optimization, and econometrics. The aim is to optimize the data
collection process in a specific statistical model, commonly used in econometrics,
employing an optimization criterion inspired by machine learning, namely, the gener-
alization error conditioned on the training input data. More specifically, the Chapter
is focused on the analysis of the conditional generalization error of the Fixed Effects
Generalized Least Squares (FEGLS) panel data model, i.e., a linear regression model
with applications in several fields, able to represent unobserved heterogeneity in the
data associated with different units, for which correlated measurement errors corrupt
distinct observations related to the same unit. Hence, the research question of this
Chapter is similar to that of the previous one, but considers the case of correlated
measurement errors. In particular,
RQ2: is having "many but bad" examples always worse –in terms of the
minimization of the generalization error– than having "few but good" ex-
amples in a fixed-effects context when the measurement errors are cor-
related? How can we compare the two cases?

This analysis, like the one of the first Chapter, is fascinating in an era where it is
critical to understand which data will provide the significant benefits to organizations
and people in general (Günther et al., 2017).
The framework considered in this Chapter differs from the classical FEGLS model for
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the additional possibility of controlling the conditional variance of the output variable
given the associated unit and input variables by changing the cost per supervision of
each training example. Assuming an upper bound on the total supervision cost, i.e.,
the cost associated with the whole training set, the trade-off between the training set
size and the precision of supervision (i.e., the reciprocal of the conditional variance of
the output variable) is analyzed and optimized. This is achieved by formulating and
solving in closed form suitable optimization problems based on large-sample approxi-
mations of the generalization error associated with the FEGLS estimates of the model
parameters, conditioned on the training input data. The results of the analysis ex-
tend to the FEGLS case and to various large-sample approximations of its conditional
generalization error, the ones obtained in the previous work (Gnecco and Nutarelli,
2019a) for simpler linear regression models. They highlight the importance of how
the precision of supervision scales with respect to the cost per training example in
determining the optimal trade-off between training set size and precision. Numerical
results confirm the validity of the theoretical findings.

The power of econometrics: the relationship between size and innovation

Though recent algorithms in machine learning have been proposed for dealing with
causality (Athey, J. Tibshirani, and Wager, 2019), they still do not offer robust tools
that are key to such kinds of analyses. As mentioned in the Introduction, most
of these tools developed by econometricians are concerned with panel data struc-
tures and endogeneity. This Chapter introduces a well-established problem of reverse
causality (endogeneity) within a panel context in the economic literature. In such a
scenario, econometrics provides advanced models specifically designed to deal with
the presented technical issues (W. Lin and Wooldridge, 2019). In the following, we
will give a general overview of the Chapter.
The responsiveness of investments in research to market rewards is recognized in the
literature on markets for innovation (Jacob, 1966;Acemoglu and Linn, 2004; Dear
et al., 2021). The empirical evidence suggests that a change in market size, like the
one measured by demographical shifts, is associated with an increase in the number
of new available drugs (Acemoglu and Linn, 2004; Dubois et al., 2015). Nonetheless,
there is still an open debate about potential reverse causality (Cerda, 2007). In this
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Chapter, we investigate the effect of market size on innovation as measured by active
clinical trials.

RQ3: How does market size impact on market innovation?

We exploit product recalls, an innovative instrument. We test that the latter is sharp,
strong, and unexpected to market. The work analyses the relationship between US
market size and innovation at the ATC-3 level. The adopted dataset is original and
granular (ATC-4 level). We exploit a novel two-step IV methodology proposed by
W. Lin and Wooldridge (2019). The results reveal a robust and significantly positive
response of the number of active trials to market size.

The combination of machine learning and economic intuition: an applica-
tion of matrix completion to economic complexity

Chapter 4 concludes the Dissertation by showing how economic intuition can boost
machine learning and vice versa. Specifically, in contrast with Chapter 3, we display
here a scenario in which machine learning can help dealing with a traditional eco-
nomic issue, namely economic complexity of countries.
This Chapter combines Matrix Completion (MC) – a class of machine-learning meth-
ods commonly used in the context of recommendation systems – with a recently
developed economic complexity index (GENEPY) by Sciarra, Chiarotti, Ridolfi, et
al. (2020a), to compare the observed and expected economic complexity of countries.
While the former is computed by a direct application of GENEPY to the incidence
matrix associated with the Revealed Comparative Advantage (RCA) matrix, the lat-
ter is based on using MC to reconstruct a discretized version of the RCA matrix,
then applying GENEPY to the resulting surrogate incidence matrix. According to
our knowledge, this is the first time MC is used in combination with an economic
complexity index. As a by-product of the analysis, it is shown that the false positive
rate per country of a binary classifier constructed starting from the average entry-wise
output of MC can be used as a proxy of GENEPY. Finally, a novel Matrix cOmple-
tion iNdex of Economic complexitY (MONEY), based on MC, is introduced, which
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is related to the predictability of the entries of the RCA matrix associated with each
country (the lower the predictability, the higher the complexity), and also considers
the product dimension.
The last research question is, thus,

RQ4: can ML help in developing a novel index of economic complex-

ity?
As evident from this brief overview, the common denominator of the present Dis-

sertation is combining machine learning and econometrics to produce novel evidence.
Future research will be devoted to relating the evidence to real-world scenarios (Part
1) and extending the outcomes of the analyses to novel setups (Part 2).
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Part 1: Machine Learning
for Econometrics
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Chapter 1

Optimal data collection
design in machine learning:
the case of unbalanced Fixed
Effects 1

The content of the present Chapter comes from the following sources: the baseline
model is taken directly from Gnecco, Nutarelli, and Selvi (2020), while the unbalanced
Fixed Effects model refers to Gnecco, Nutarelli, and Selvi (2020).

1 Baseline model

1.1 Introduction

In several applications in economics, engineering, and many other fields, one has
to approximate a function from a finite set of input-output noisy examples. This be-
longs to the typical class of problems studied by supervised machine learning (Vapnik,

1This chapter is partially based on Gnecco, G., Nutarelli, F. & Selvi, D. Optimal trade-off be-
tween sample size, precision of supervision, and selection probabilities for the unbalanced fixed
effects panel data model. Soft Comput 24, 15937–15949 (2020). https://doi.org/10.1007/
s00500-020-05317-5
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1998). In some cases, the noise variance of the output can be reduced to some extent
by the researcher, by increasing the cost of each supervision. For instance, measure-
ment devices with larger precision (hence, larger cost) could be employed. Similarly,
the supervision could be provided by teachers (e.g., doctors) with a higher level of
expertise (hence, higher cost). In all such cases, the investigation of an optimal trade-
off between the sample size and the precision of supervision is needed. In Gnecco
and Nutarelli (2019b), this analysis was conducted employing a modification of the
classical linear regression model, in which one is additionally given the possibility of
controlling the conditional variance of the output given the input, by varying the time
(hence, the cost) dedicated to the supervision of each training example, and fixing
an upper bound on the total available supervision time. Based on a large-sample ap-
proximation of the output of the ordinary least squares regression algorithm, it was
shown therein that the optimal choice of the supervision time per example is highly
dependent on the noise model.
In this preliminary section to Section 2 and Section 3, we draw from Gnecco and
Nutarelli (2019c), which consider a general linear model of the input-output relation-
ship, i.e. the fixed effects panel data model. In this model, observations associated
with different units (individuals) are associated with different constants, which are
able to represent unobserved heterogeneity in the data. Moreover, the same unit is
observed along another dimension, which is typically time. The model is commonly
applied in the analysis of microeconomics and macroeconomics data (Wooldridge,
2010), where each unit may represent, e.g., a firm, or a country. It is also applied
in biostatistics (Frees et al., 2004), psychology, political science, sociology, and life
sciences (Andreß, Golsch, and A. W. Schmidt, 2013). Though the aim of this prelim-
inary section is only to provide a clear background for Section 2 and Section 3, it is
important to provide an overview of the results found in such a simplified scenario.
Indeed, they will be similar to the ones recovered in later sections. Specifically, con-
sistently with the results of the analysis performed in Gnecco and Nutarelli (2019b),
for the classical linear regression model, we show – in Gnecco and Nutarelli (2019c)–
that, also for the fixed effects panel data model, the following holds: when the pre-
cision of the supervision (the reciprocal of the conditional variance of the output)
increases less than proportionally with respect to the supervision cost per example,

23



the minimum (large-sample approximation of the) generalization error (conditioned
on the training input data) is obtained in correspondence of the smallest supervision
cost per example (hence, of the largest number of examples); when the precision in-
creases more than proportionally with respect to the supervision cost per example,
the optimal supervision cost per example is the largest one (which is associated with
the smallest number of examples). In summary, the results of the theoretical analyses
performed in Gnecco and Nutarelli (2019b) and, for a different regression model, in
this section highlight that an increase of the sample size is not always beneficial, if
it is feasible to collect a smaller number of more reliable data. Hence, not only their
number, but also their quality matters. This looks particularly relevant when one has
the possibility of designing the data collection process.

1.2 Background of baseline model

We recall some basic facts about the following (static) fixed effects panel data model
(see, e.g., Wooldridge, 2010, Chapter 10)2:

yn,t := ηn+β′xn,t,n= 1, . . . ,N,t= 1, . . . ,T . (1.1)

Here, the outputs yn,t’s are scalar, whereas the inputs xn,t’s (n= 1, . . . ,N,t= 1, . . . ,T )
are column vectors in Rp, which are modeled as random vectors. The parameters of
the model are the individual constants ηn (n = 1, . . . ,N), one for each unit, and the
column vector β ∈ Rp. Eq. (1.1) represents a balanced panel data model, in which
each unit n is associated with the same number T of outputs, each one at a different
time t.
Noisy measures ỹn,t’s of the outputs yn,t’s are available. They are generated according
to the following additive noise model:

ỹn,t := yn,t+ εn,t , (1.2)

where the εn,t’s are mutually independent and identically distributed random vari-
ables, having mean 0 and the same variance σ2. Moreover, they are independent also

2For simplicity of exposition, here the model is not presented in its most general form (e.g., the
disturbances εn,t’s are simply assumed to be mutually independent).

24



from all the xn,t’s.
The training input-output pairs (xn,t, ỹn,t) (n = 1, . . . ,N,t = 1, . . . ,T ) are used to
estimate the parameters of the model. Assuming the invertibility of the matrix∑N
n=1X

′
nQXn, the fixed effects estimate of β is

β̂FE :=
 N∑
n=1

X ′nQXn

−1 N∑
n=1

X ′nQỹn


=

 N∑
n=1

X ′nQ
′QXn

−1 N∑
n=1

X ′nQ
′Qỹn

 , (1.3)

whereXn ∈RT,p is a matrix whose rows are the transposes of the xn,t’s, ỹn is a column
vector which collects the noisy measures ỹn,t’s,

Q := IT −
1
T

1T1′T (1.4)

(being IT ∈ RT×T the identity matrix, and 1T ∈ RT a column vector whose elements
are all equal to 1) is a symmetric and idempotent matrix (i.e., Q′ =Q=Q2). Hence,
for each unit n,

QXn =



xn,1− 1
T

∑T
t=1xn,t

xn,2− 1
T

∑T
t=1xn,t

· · ·
xn,T − 1

T

∑T
t=1xn,t

 , (1.5)

and

Qyn =



yn,1− 1
T

∑T
t=1 ỹn,t

yn,2− 1
T

∑T
t=1 ỹn,t

· · ·
yn,T − 1

T

∑T
t=1 ỹn,t

 (1.6)

represent, respectively, the matrix of time de-meaned training inputs, and the vector
of time de-meaned corrupted training outputs.

The fixed effects estimates of the ηn’s are

η̂n,FE := 1
T

T∑
t=1

(
ỹn,t− β̂′FExn,t

)
. (1.7)
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The estimates (1.30) and (1.31) are unbiased, i.e.,

E
{
β̂FE−β

}
= 0p (1.8)

(being 0p ∈ Rp a column vector whose elements are all equal to 0), and

E{η̂n,FE−ηn}= 0 . (1.9)

Finally, the covariance matrix of β̂FE, conditioned on the training input data
{xn,t}t=1,...,T

n=1,...,N , is

Var
(
β̂FE|{xn,t}t=1,...,T

n=1,...,N
)

= σ2
 N∑
n=1

X ′nQXn

−1

= σ2
 N∑
n=1

X ′nQ
′QXn

−1

. (1.10)

1.3 Conditional generalization error and its large-sample ap-
proximation in the baseline model

We define the generalization error for the i-th unit (i= 1, . . . ,N), conditioned on the
training input data, as follows:

E
{(
η̂i,FE + β̂′FExtesti −ηi−β′xtesti

)2 ∣∣∣{xn,t}t=1,...,T
n=1,...,N

}
, (1.11)

where xtesti ∈ Rp is independent from the training data. It is the expected mean
squared error of the prediction of the output associated with a test input, conditioned
on the training input data.

For n = 1, . . . ,N , let εn ∈ RT be the column vector whose elements are the εn,t’s,
and let ηn ∈ RT be the column vector whose elements are all equal to ηn. Using

E
{
εnε
′
m

}
= 0 (1.12)

for n 6=m,
E
{
εnε
′
n

}
= σ2IT , (1.13)
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Q′Q=Q , (1.14)

QQ′Q′Q=Q′Q , (1.15)

Qηn =Q′ηn = 0T , (1.16)

and
Q1T =Q′1T = 0T , (1.17)

we can simplify the expression (1.32) of the conditional generalization error as follows,
highlighting its dependence on σ2 and T (see the Appendix for the details):

(1.32) = σ2

T 2 1′TXi

 N∑
n=1

X ′nQ
′QXn

−1

X ′i1T + σ2

T

+E
σ2 (xtesti

)′ N∑
n=1

X ′nQ
′QXn

−1

xtesti

∣∣∣{xn,t}t=1,...,T
n=1,...,N


−2E

σ
2

T
1′TXi

 N∑
n=1

X ′nQ
′QXn

−1

xtesti

∣∣∣{xn,t}t=1,...,T
n=1,...,N

 . (1.18)

Next, we obtain a large-sample approximation of the conditional generalization
error (1.39) with respect to T , for a fixed number of units N . Such an approximation
is useful, e.g., in the application of the model to macroeconomics data3, for which it
is common to investigate the case of a large horizon T .

Under mild conditions4, the following convergences in probability5 hold, which follow
from Chebyschev’s law of large numbers Ruud et al., 2000, Section 13.4.2:

plimT→+∞
1
T

1′TXi = (E{xi,1})′ , (1.19)

3The case of finite T and large N is of more interest for microeconometrics, and will be investi-
gated in future research.

4E.g., if the xn,t’s are independent, identically distributed, and have finite moments up to the
order 4.

5We recall that a sequence of random real matrices MT , T = 1, . . . ,+∞ converges in probability
to the real matrix M if, for every ε > 0, Prob(‖MT −M‖> ε) (where ‖ · ‖ is an arbitrary matrix
norm) tends to 0 as T tends to +∞. In this case, one writes plimT→+∞MT =M .
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and
plimT→+∞

1
T

N∑
n=1

X ′nQ
′QXn =AN , (1.20)

where
AN =A′N :=

N∑
n=1

E
{
(xn,1−E{xn,1})′ (xn,1−E{xn,1})

}
(1.21)

is a symmetric and positive semi-definite matrix. In the following, its positive defi-
niteness (hence, its invertibility) is also assumed6.

When (2.20) and (1.42) hold, the conditional generalization error (1.39) has the
following large-sample approximation with respect to T 7:

(1.39) ' σ2

T
(E{xi,1})′A−1

N E{xi,1}+ σ2

T

+σ
2

T
E
{(
xtesti

)′
A−1
N x

test
i

}
−2σ

2

T
(E{xi,1})′A−1

N E
{
xtesti

}
= σ2

T

1 +E

∥∥∥∥∥A−1

2
N

(
E{xi,1}−xtesti

)∥∥∥∥∥
2

2


 , (1.22)

where ‖ · ‖2 denotes the l2-norm, and A
−1

2
N is the principal square root (i.e., the

symmetric and positive definite square root) of the symmetric and positive definite
matrix A−1

N .
Interestingly, the large-sample approximation (1.46) has the form σ2

T Ki, where

Ki :=
1 +E


∥∥∥∥∥A−1

2
N

(
E{xi,1}−xtesti

)∥∥∥∥∥
2

2


 (1.23)

is a positive constant. This simplifies the analysis of the trade-off between sample
size and precision of supervision performed in Gnecco and Nutarelli (2019c), since
one does not need to compute the exact expression of Ki to find the optimal trade-off.

6The existence of the probability limit (1.42) and the assumed positive definiteness of the matrix
AN guarantee that the invertibility of the matrix

∑N
n=1X

′
nQXn =

∑N
n=1X

′
nQ
′QXn (see Section

2) holds with probability near 1 for large T .
7This is obtained taking also into account that, as a consequence of the Continuous Mapping

Theorem Florescu, 2014, Theorem 7.33, the probability limit of the product of two random variables
equals the product of their probability limits, when the latter two exist.
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Exploring in details the optimization of the trade-off of the set up presented in this
section goes beyond the aims of this introductory section, which just wanted to for-
mally introduce the topics discussed in more details in the next sections. The general
aim of the following sections is to perform a similar analysis in more articulated (but
useful in practice) econometrics context. The generalization error will change accord-
ing to the specific set up. In order to give an intuition of the type of results that the
optimization of generalization errors of the type described in Eq.(1.21) will output, we
briefly summarize the outcomes of the optimization of this simple preliminary prob-
lem. In particular it can be proved that, by modeling in a suitable way the variance
as a function of the supervision cost per example c 8, one can approximately minimize
the conditional generalization error by solving the following optimization problem:

minimizec∈[cmin,cmax]NKikc
1−α , (1.24)

whose optimal solutions c◦ have the following expressions:

1. if 0< α < 1 (“decreasing returns of scale”): c◦ = cmin;

2. if α > 1 (“increasing returns of scale”): c◦ = cmax;

3. if α = 1 (“constant returns of scale”): c◦ = any cost c in the interval [cmin, cmax].

In summary, the results of the analysis show that, in the case of “decreasing returns
of scale”, “many but bad” examples are associated with a smaller generalization error
than “few but good” ones. The opposite occurs for “increasing returns of scale”,
whereas the case of “constant returns of scale” is intermediate. These results are
qualitatively in line with the ones obtained in Gnecco and Nutarelli (2019b) for a
simpler linear regression problem, to which the ordinary least squares algorithm was
applied. This depends on the fact that, in both cases, the conditional generalization
error has the functional form σ2

T Ki (although two different positive constants Ki are
involved in the two different cases).

8Further details will follow in later sections.
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2 Optimal data collection design in machine learn-
ing: the case of unbalanced fixed effects

In this Section, we analyze the optimal trade-off between sample size, precision of
supervision, and selection probabilities for a more general – compared to the baseline
model in Section 1 – linear model of the input-output relationship, which is the un-
balanced fixed effects panel data model. As aforementioned, the (either balanced or
unbalanced) fixed effects model is commonly applied in the econometric analysis of
microeconomic and macroeconomic data (Andreß, Golsch, and A. W. Schmidt, 2013;
Arellano, 2003; Cameron and Trivedi, 2005; Wooldridge, 2010), where each unit may
represent, e.g., a firm, or a country. It is also applied in other fields (see the discus-
sion in Section 1). In Section 1 we introduced the fixed effect panel data context only
formally. Here, we try to provide a brief qualitative description before proceeding
with the main analysis.
In a fixed effects panel data model, observations related to different observational
units (individuals) are associated with possibly different constants, which are able to
represent unobserved heterogeneity in the data. Moreover, the same unit is observed
along another dimension, which is typically time. In the unbalanced case, at each
instant, different units may be not observed with some positive probability (possibly
unit-dependent), resulting in a possibly unbalanced panel.In this framework, the bal-
anced case corresponds to the situation in which the number of observations is the
same for all the units.
The present set up extends significantly the analysis of Section 1 to the unbalanced
fixed effects panel data model, which is more general than the balanced case consid-
ered therein, and leads to an optimization problem that is more complex to investigate.
In fact, in Section 1, all the units are always selected at each instant 9, therefore the
selection probabilities do not appear as optimization variables in the corresponding
model. Moreover, theoretical arguments are reported in much more details in the
current section.
The results that will be presented in this Section concerning the unbalanced fixed
effects panel data model are consistent with those of Section 1 for the balanced case,

9In other words, every unit appears at time t,
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and those of Gnecco and Nutarelli (2019b) and Gnecco and Nutarelli (2019c) con-
cerning simpler linear regression models. Specifically, we show that, also for the
unbalanced fixed effects panel data model, the following holds. When the precision
of the supervision increases less than proportionally with respect to the supervision
cost per example, the minimum (large-sample upper bound on the) generalization
error (conditioned on the training input dataset) is obtained in correspondence of the
smallest supervision cost per example. As a consequence of the problem formulation,
this corresponds to the choice of the largest number of examples. Instead, when the
precision of the supervision increases more than proportionally with respect to the
supervision cost per example, the optimal supervision cost per example is the largest
one. Again, as a consequence of the problem formulation, this corresponds to the
choice of the smallest number of examples. The structure of the optimal selection
probabilities is also investigated, under the constraint of a constant expected number
of observed units for each instant. In summary, the results of the theoretical anal-
yses performed, for different regression models of increasing complexity, in Section
1, Gnecco and Nutarelli (2019c), and in this Section highlight that, in some circum-
stances, collecting a smaller number of more reliable data is preferable than increasing
the size of the sample set. This looks particularly relevant when one is given a certain
flexibility in designing the data collection process.
Up to our knowledge, the analysis and the optimization of the trade-off between sam-
ple size, precision of supervision, and selection probabilities in regression has been
carried out rarely in the machine-learning literature. Thus, the contribution given
to the literature by this Section is mainly to provide novel applications of machine
learning by combining the latter discipline with econometrics. Nevertheless, the ap-
proach applied in this Section resembles the one used in the optimization of sample
survey design, where some of the design parameters are optimized to minimize the
sampling variance (Groves et al., 2004b). Such an approach is also similar to the
one exploited in Nguyen et al. (2008b) for the optimization of the design of measure-
ment devices. In that framework, however, linear regression is marginally involved,
since only arithmetic averages of measurement results are considered therein. The
search for optimal sample designs can be also performed by the Optimal Computing
Budget Allocation (OCBA) method (C.-H. Chen and L. H. Lee, 2011b). Differently
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from that approach, however, our analysis provides the optimal design a priori, i.e.,
before actually collecting the data. The work of this Section can also be related to
recent literature dealing with the joint application of machine learning, optimization,
and econometrics (H. R. Varian, 2014b; Athey and Imbens, 2016; Stoffi and Gnecco,
2018; Stoffi and Gnecco, 2020; Andrew, 2017). For instance, the generalization error
- which is typically investigated by machine learning, and optimized by solving suit-
able optimization problems - is not addressed in the classical analysis of the either
balanced or unbalanced fixed effects panel data model (Wooldridge, 2010, Sections
10 and 17). Finally, an advantage of the approach considered in this Section with re-
spect to other possible ones grounded on Statistical Learning Theory (SLT) (Vapnik,
1998) is that, being based on a large-sample approximation, it provides bounds on
the conditional generalization error that do not need any a-posteriori evaluation of
empirical risks.
The Section is structured as follows. Subsection 2 provides a background on the
unbalanced fixed effects panel data model. Subsection 2 presents the analysis of its
conditional generalization error, and of the large-sample upper bound on the latter
with respect to time. Subsection 2 formulates and solves the optimization problem
modeling the trade-off between sample size, precision of supervision, and selection
probabilities for the unbalanced fixed effects panel data model, using the large-sample
upper bound above. Finally, Subsection 2 discusses some possible applications and
extensions of the theoretical results obtained in the work.

2.1 Background for the unbalanced case

The baseline model is the same as the one of Section 1, except that now the total
time in which a unit is observed is unit dependent.
Specifically, in the (static) unbalanced fixed effects panel data model (see, e.g., Wooldridge,
2010, Sections 10 and 17) each observational unit n = 1, . . . ,N is observed in the
time instants t = 1, . . . ,Tn. As a consequence, with respect to the baseline model,
the inputs xn,t to the model will be again random column vectors in Rp but ob-
served for n= 1, . . . ,N and – here lies the main difference compared to Section 1 – for
t= 1, . . . ,Tn. The same applies to the scalar output yn,t ∈R. The individual constants
ηn (n = 1, . . . ,N) and the column vector β ∈ Rp do not differ from those presented
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in the baseline model since they are time independent. The (noise-free) input-output
relationship is similar to that of Equation (1.1) but differs in that each unit is not
observed for the same amount of time:

yn,t := ηn+β′xn,t, n= 1, . . . ,N, t= 1, . . . ,Tn . (1.25)

Equation (1.25) represents an unbalanced panel data model, which can be applied
in the following two situations:

• distinct units n are associated with possibly different numbers Tn of data collected
at each time instant t= 1, . . . ,Tn over a whole observation period T ≥maxNn=1Tn;

• the observations related to the same unit are associated with a subsequence
{t1, t2, . . . , tTn} of the sequence {1,2, . . . ,T}.

In the next subsections, we focus on the second situation which is also the most likely
in econometrics scenarios. To avoid burdening the notation by introducing an ad-
ditional index, we still indicate, also in this case, by {1,2, . . . ,Tn} the subsequence
{t1, t2, . . . , tTn}. A possible way to get different numbers of observations Tn for dis-
tinct units consists in associating to each unit n a scalar qn ∈ (0,1], which denotes the
(positive) probability that n is observed at any time t. Selections for different units
are supposed to be mutually independent. For simplicity, for each unit, selections at
different times are also assumed to be mutually independent. For a total observation
time T , denoting by E the expectation operator, the expected number of observations
for each unit n is E{Tn}= qnT . The balanced case, which was considered in Section
1, corresponds to the situation qn = 1 for each n.
The general notation of the present Section is very close to that in Section 1, but
is adapted to accommodate the possibly unbalanced nature of the data. Below we
report the modified notation for the unbalanced case. Often the only difference in
the notation compared o Section 1 lies on the fact that T is substituted with Tn.
As usual, {εn,t}n=1,...,N,t=1,...,Tn represents the collection of mutually independent and
identically distributed random variables, having mean 0 and the same variance σ2.
Moreover, let the εn,t be independent also from all the xn,t. As in Section 1, noisy
measurements ỹn,t of the outputs yn,t are available also in the unbalanced case; specif-
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ically, the following additive noise model is considered:

ỹn,t = yn,t+ εn,t, n= 1, . . . ,N, t= 1, . . . ,Tn . (1.26)

The input-output pairs (xn,t, ỹn,t) for n = 1, . . . ,N , t = 1, . . . ,Tn, are used to train
the model, i.e., to estimate its parameters. In the following, for n = 1, . . . ,N , let
Xn ∈ RTn,p denote the matrix whose rows are the transposes of the xn,t; ỹn be the
column vector that collects the noisy measurements ỹn,t; ITn ∈ RTn×Tn denote the
identity matrix; 1Tn ∈ RTn be the column vector whose elements are all equal to 1;
and

Qn := ITn−
1
Tn

1Tn1T ′n (1.27)

be a symmetric and idempotent matrix, i.e., such that Q′n = Qn = Q2
n. Hence

–similarly to Section 1– for each unit n,

QnXn =



xn,1− 1
Tn

∑Tn
t=1xn,t

xn,2− 1
Tn

∑Tn
t=1xn,t

· · ·
xn,Tn− 1

Tn

∑Tn
t=1xn,t

 , (1.28)

and

Qnỹn =



ỹn,1− 1
Tn

∑Tn
t=1 ỹn,t

ỹn,2− 1
Tn

∑Tn
t=1 ỹn,t

· · ·
ỹn,Tn− 1

Tn

∑Tn
t=1 ỹn,t

 (1.29)

represent, respectively, the matrix of time de-meaned training inputs, and the vector
of time de-meaned corrupted training outputs. We remember here that the aim of
time de-meaning is to generate another dataset that does not include the fixed effects,
making it possible to estimate first the vector β, then - going back to the original
dataset - the fixed effects ηn.

Assuming in the following the invertibility of the matrix ∑N
n=1X

′
nQnXn (see the next

Remark 6 for a mild condition ensuring this), the fixed effects estimate of β for the
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unbalanced case is

β̂FE

:=
 N∑
n=1

X ′nQnXn

−1 N∑
n=1

X ′nQnỹn


=

 N∑
n=1

X ′nQ
′
nQnXn

−1 N∑
n=1

X ′nQ
′
nQnỹn

 . (1.30)

The unbalanced Fixed Effects (FE) estimates of the ηn, for n= 1, . . . ,N , are

η̂n,FE := 1
Tn

Tn∑
t=1

(
ỹn,t− β̂′FExn,t

)
. (1.31)

Properties 1.8-1.10 hold also in the unbalanced context.

2.2 Large-sample upper bound on the conditional generaliza-
tion error in the unbalanced framework

This section analyzes the generalization error associated with the FE estimates (1.30)
and (1.31), conditioned on the training input dataset, by providing its large-sample
approximation, and a related large-sample upper bound on it. Then, in the next
section, the resulting expression is optimized, after choosing a suitable model for the
variance σ2 of the measurement noise, and imposing appropriate constraints. Though
the expression of the large-sample approximation error looks similar to those of Sec-
tion 1, the different dimension of its components plays an important role as we will see
later on in the discussion. For the sake of completeness, we report below a complete
description of the expression of the generalization error in the context of unbalanced
fixed effects.

Let xtesti ∈ Rp be a random test vector, which is assumed to have finite mean and
finite covariance matrix, and to be independent from the training data. We express
the generalization error for the i-th unit (i = 1, . . . ,N), conditioned on the training
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input dataset, as follows10:

E
{(
η̂i,FE + β̂′FExtesti −ηi−β′xtesti

)2 ∣∣∣{Xn}Nn=1

}
. (1.32)

The conditional generalization error (1.32) represents the expected mean squared
error of the prediction of the output associated with a test input, conditioned on the
training input dataset.

For n = 1, . . . ,N , let εn ∈ RTn be the column vector whose elements are the εn,t;
ηn ∈ RTn be the column vector whose elements are all equal to ηn; and 0Tn×Tn ∈
RTn×Tn be the matrix whose elements are all equal to 0. Noting that

E
{
εnε
′
m

}
= 0Tn×Tn , for n 6=m, (1.33)

E
{
εnε
′
n

}
= σ2ITn , (1.34)

Q′nQn =Qn , (1.35)

Q′nQnQ
′
nQn =Q′nQn , (1.36)

Qnηn =Q′nηn = 0Tn , (1.37)

and
Qn1Tn =Q′n1Tn = 0Tn , (1.38)

we can express the conditional generalization error (1.32) as follows, highlighting its
dependence on σ2 and Ti (see Appendix 1 for the details):

E
{(
η̂i,FE + β̂′FExtesti −ηi−β′xtesti

)2 ∣∣∣{Xn}Nn=1

}

=σ2

T 2
i

1′TiXi

 N∑
n=1

X ′nQ
′
nQnXn

−1

X ′i1Ti

+ σ2

Ti

10See the next Remark 3 for a justification of the choice of the conditioned generalization error
for the analysis, instead of its unconditional version.
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+E

σ2
(
xtesti

)′ N∑
n=1

X ′nQ
′
nQnXn

−1

xtesti

∣∣∣{Xn}Nn=1


−2E

σ2

Ti
1′TiXi

 N∑
n=1

X ′nQ
′
nQnXn

−1

xtesti

∣∣∣{Xn}Nn=1

 . (1.39)

Next, we obtain a large-sample approximation of the conditional generalization error
(1.39) with respect to T , for a fixed number N of units11.

For n = 1, . . . ,N , let the symmetric and positive semi-definite matrices An ∈ Rp×p

be defined as

An =A′n := E
{
(xn,1−E{xn,1})(xn,1−E{xn,1})′

}
. (1.40)

In the following, the positive definiteness (hence, the invertibility) of each matrix An
is assumed. This is a quite mild condition because it is associated with the fact that,
with probability 1, the random vectors xn,1−E{xn,1} do not belong to a subspace
of Rp with dimension smaller than p (so, they are effectively p-dimensional random
vectors).

Under mild conditions (e.g., if the xn,t are mutually independent, identically dis-
tributed, and have finite moments up to the order 4), the following convergences in
probability12 hold:

plimT→+∞
1
Ti

1′TiXi

= plimT→+∞
1
Ti

Ti∑
t=1
x′i,t

= (E{xi,1})′ , (1.41)

11Such an approximation is useful, e.g., in the application of the model to macroeconomics data,
for which it is common to investigate the case of a large horizon T . The case of finite T and large
N is of more interest for microeconometrics Cameron and Trivedi, 2005, and will be investigated in
future research.

12We recall that a sequence of random real matrices MT of the same dimension, T = 1,2, . . . ,
converges in probability to the real matrixM if, for every ε> 0, Prob(‖MT −M‖> ε) (where ‖·‖ is
an arbitrary matrix norm) tends to 0 as T tends to +∞. In this case, one writes plimT→+∞MT =M .
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and

plimT→+∞
1
T

N∑
n=1

X ′nQ
′
nQnXn

= plimT→+∞
N∑
n=1

Tn
T

1
Tn
X ′nQ

′
nQnXn

= AN , (1.42)

where
AN =A′N :=

N∑
n=1

qnAn (1.43)

which is the weighted summation, with positive weights qn, of the symmetric and
positive definite matrices An, hence it is also a symmetric and positive definite
matrix.

Remark 1. Equations (1.41) and (1.42) follow from the extension of Chebyschev’s
weak law of large numbers (Ruud et al., 2000, Section 13.4.2) to the case of the
summation of a random number of mutually independent random variables (Révész,
1968, Theorem 10.1), combined with other technical results. First, for each n =
1, . . . ,N , convergence in probability of 1

Tn
X ′nQ

′
nQnXn to An is proved element-wise,

by applying Révész (1968, Theorem 10.1). Then, one exploits the fact that, as a
consequence of the Continuous Mapping Theorem (Florescu, 2014, Theorem 7.33),
the probability limit of the product of two random variables (in this case, Tn

T and
each element of 1

Tn
X ′nQ

′
nQnXn) equals the product of their probability limits, when

the latter two exist (which is the case for Tn
T and each element of 1

Tn
X ′nQ

′
nQnXn).

Finally, one applies the fact that, for a random matrix, element-wise convergence in
probability implies convergence in probability of the whole random matrix (Herriges,
2011).

Remark 2. The existence of the probability limit (1.42) and the positive definiteness
of the matrix AN guarantee that the invertibility of the matrix

N∑
n=1

X ′nQnXn =
N∑
n=1

X ′nQ
′
nQnXn (1.44)
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(see Section 2) holds with probability close to 1 for large T . Due to the generalization
of Slutsky’s theorem reported in Greene (2003, Theorem D.14)13, under the stated
assumptions also the sequence of random matrices

 1
T

N∑
n=1

X ′nQ
′
nQnXn

−1

(1.45)

converges in probability to A−1
N . This is needed to obtain the next large-sample ap-

proximation (1.46) of the conditional generalization error.

Remark 3. We point out that the conditional generalization error (1.32) is investi-
gated in this work, instead of its unconditional version because, in general, probability
limits and expectations cannot be inverted in order. This could prevent the applica-
tion of Greene (2003, Theorem D.14) (or of similar results about probability limits)
when performing a similar analysis for the unconditional generalization error.

Let ‖ · ‖2 denote the l2-norm, and A−
1
2

N be the principal square root (i.e., the
symmetric and positive definite square root) of the symmetric and positive definite
matrix A−1

N . When (1.41) and (1.42) hold, from (1.39) and the assumed indepen-
dence of xtesti from all the other random vectors we get the following large-sample
approximation (with respect to T ) for the conditional generalization error (1.32):

E
{(
η̂i,FE + β̂′FExtesti −ηi−β′xtesti

)2 ∣∣∣{Xn}Nn=1

}

' σ2

T
(E{xi,1})′A−1

N E{xi,1}

+ σ2

qiT

+σ
2

T
E
{(
xtesti

)′
A−1
N x

test
i

}

−2σ
2

T
(E{xi,1})′A−1

N E
{
xtesti

}
= σ2

T

 1
qi

+E

∥∥∥∥∥A−1

2
N

(
E{xi,1}−xtesti

)∥∥∥∥∥
2

2


 . (1.46)

13It states that, given a sequence of random real square matrices MT of the same dimension,
T = 1,2, . . . , if plimT→+∞MT =B and B is invertible, then also plimT→+∞M

−1
T =B−1.
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In the following, we denote, for a generic symmetric matrix A ∈ Rs×s, by λmin(A)
and λmax(A), respectively, its minimum and maximum eigenvalue. Starting from the
large-sample approximation (1.46), the following steps can be proved (see Appendix
1 for the details):

σ2

T

(
1
qi

+E
{∥∥∥∥A−1

2
N

(
E{xi,1}−xtesti

)∥∥∥∥2

2

})

≤σ
2

T

(
1
qi

+λmax(A−1
N )E

{∥∥∥(E{xi,1}−xtesti

)∥∥∥2

2

})

=σ
2

T

(
1
qi

+ 1
λmin(AN )E

{∥∥∥(E{xi,1}−xtesti

)∥∥∥2

2

})

≤σ
2

T

(
1
qi

+ 1∑N
n=1 qnλmin(An)

E
{∥∥∥(E{xi,1}−xtesti

)∥∥∥2

2

})
. (1.47)

We refer to the inequality

σ2

T

(
1
qi

+E
{∥∥∥∥A−1

2
N

(
E{xi,1}−xtesti

)∥∥∥∥2

2

})

≤ σ2

T

(
1
qi

+ 1∑N
n=1 qnλmin(An)

E
{∥∥∥(E{xi,1}−xtesti

)∥∥∥2

2

})
(1.48)

as the large-sample upper bound on the conditional generalization error. Interestingly,
its right-hand side is expressed in the separable form σ2

T Ki({qn}Nn=1), where

Ki({qn}Nn=1)

:=
(

1
qi

+ 1∑N
n=1 qnλmin(An)

E
{∥∥∥(E{xi,1}−xtesti

)∥∥∥2

2

})
(1.49)

depends only on the qn. As shown in the next section, this simplifies the analysis of
the trade-off between sample size, precision of supervision, and selection probabilities
performed therein, since one does not need to compute the exact expression of the
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function Ki({qn}Nn=1) to find the optimal trade-off with respect to a suitable subset
of optimization variables.

2.3 Optimal trade-off between sample size, precision of su-
pervision, and selection probabilities

In this section, we are interested in optimizing the large-sample upper bound (1.48) of
the conditional generalization error when the variance σ2 is modeled as a decreasing
function of the supervision cost per example c, and a given upper bound C > 0 is
imposed on the expected total supervision cost ∑N

n=1 qnTc associated with the whole
training set. For large T , this upper bound practically coincides with the total
supervision cost ∑N

n=1Tnc. This follows by an application of Chebyschev’s weak law
of large numbers.

Remark 4. In our previous conference work Gnecco and Nutarelli (2019c), the large-
sample approximation (1.46) was optimized, instead of (1.48). This was motivated by
the fact that all the selection probabilities qn were fixed to 1, implying that both qi and
AN , hence also the term

 1
qi

+E

∥∥∥∥∥A−1

2
N

(
E{xi,1}−xtesti

)∥∥∥∥∥
2

2


 , (1.50)

were constant therein.

In the following analysis of the optimal trade-off, N is kept fixed; furthermore, one
imposes the constraints

qn,min ≤ qn ≤ qn,max, n= 1, . . . ,N , (1.51)

for some given qn,min ∈ (0,1) and qn,max ∈ [qn,min,1], and

N∑
n=1

qn = q̄N , (1.52)

for some given q̄ ∈
[∑N

n=1 qn,min
N ,

∑N
n=1 qn,max

N

]
⊆ (0,1]. In Equation (1.52), ∑N

n=1 qn repre-
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sents the expected number of observed units for each instant, which is fixed. Moreover,
T is chosen as

⌊
C
q̄Nc

⌋
. Finally, the supervision cost per example c is allowed to take

values on the interval [cmin, cmax], where 0 < cmin < cmax, so that the resulting T be-
longs to

{⌊
C

q̄Ncmax

⌋
, . . . ,

⌊
C

q̄Ncmin

⌋}
. In the following, C is supposed to be sufficiently

large, so that the large-sample upper bound (1.48) can be assumed to hold for every
c ∈ [cmin, cmax] and every qn ∈ [qn,min, qn,max] (for n= 1, . . . ,N).

Consistently with Section 1, Gnecco and Nutarelli (2019c), we adopt the following
model for the variance σ2, as a function of the supervision cost per example c:

σ2(c) = kc−α , (1.53)

where k,α > 0. For 0<α< 1, if one doubles the supervision cost per example c, then
the precision 1/σ2(c) (i.e., the reciprocal of the conditional variance of the output)
becomes less than two times its initial value (or equivalently, the variance σ2(c) be-
comes more than one half its initial value). This case is referred to as “decreasing
returns of scale” in the precision of each supervision. Conversely, for α > 1, if one
doubles the supervision cost per example c, then the precision 1/σ2(c) becomes more
than two times its initial value (or equivalently, the variance σ2(c) becomes less than
one half its initial value). This case is referred to as “increasing returns of scale” in
the precision of each supervision. Finally, the case α= 1 is intermediate and refers to
“constant returns of scale”. The broad idea, here, can be to assume a function with a
sigmoidal shape, modeling saturation effects of the precision to the cost (p(c) being p
the precision of supervision and c the related cost). The mentioned function is either
concave or convex according to the range considered. The main factors leading to in-
creasing/constant/decreasing return to scale are technology and know-how. In all the
cases above, the precision of each supervision increases by increasing the supervision
cost per example c.

Summarizing, under the assumptions above, the optimal trade-off between sample
size, precision of supervision, and selection probabilities for the unbalanced fixed
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effects panel data model is modeled by the following optimization problem:

minimize
c∈[cmin,cmax],

qn∈[qn,min,qn,max],
n=1,...,N

Ki({qn}Nn=1)k c−α⌊
C
q̄Nc

⌋

s.t.
N∑
n=1

qn = q̄N . (1.54)

By a similar argument as in the proof of Gnecco and Nutarelli (2019c, Proposition 3.2),
which refers to an analogous function approximation problem, when C is sufficiently
large, the objective function CKi({qn}Nn=1)k c−α⌊

C
q̄Nc

⌋ of the optimization problem (1.54),

rescaled by the multiplicative factor C, can be approximated, with a negligible error
in the maximum norm on [cmin, cmax]×ΠN

n=1[qn,min, qn,max], by q̄NKi({qn}Nn=1)kc1−α.
Figure 2 shows the behavior of the rescaled objective functions

CKi({qn}Nn=1)k c−α⌊
C
q̄Nc

⌋ (1.55)

and
q̄NKi({qn}Nn=1)kc1−α (1.56)

for the three cases 0 < α = 0.5 < 1, α = 1.5 > 1, and α = 1. The values of the other
parameters are k = 0.5, q̄ = 0.5, Ki({qn}Nn=1) = 2 (which can be assumed to hold for a
fixed choice of the set of the qn), N = 10, C = 125, cmin = 0.4, and cmax = 0.8. One can
show by standard calculus that, for C→+∞ and the qn fixed to constant values, the
number of discontinuity points of the rescaled objective function CKi({qn}Nn=1)k c−α⌊

C
q̄Nc

⌋
tends to infinity, whereas the amplitude of its oscillations above the lower envelope
q̄NKi({qn}Nn=1)kc1−α tends to 0 uniformly with respect to c ∈ [cmin, cmax].
The latter result is similar to those obtained in Section 1 for the baseline scenario.
Below, we provide a graphical representation of the rescaled objective functions.
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Figure 1: Plots of the rescaled objective functions CKi({qn}Nn=1)k c−α⌊
C
q̄Nc

⌋ and

q̄NKi({qn}Nn=1)kc1−α for α = 0.5 (a), α = 1.5 (b), and α = 1 (c). The unbalanced panel
data case.
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Concluding, under the approximation above, one can replace the optimization prob-
lem (1.54) with

minimize
c∈[cmin,cmax],

qn∈[qn,min,qn,max],
n=1,...,N

q̄NKi({qn}Nn=1)kc1−α

s.t.
N∑
n=1

qn = q̄N . (1.57)

Such optimization problem appears in a separable form, in which one can optimize
separately the variable c and the variables qn, for n = 1, . . . ,N . In particular, the
optimal solutions c◦ have the following expressions:

a) if 0< α < 1 (“decreasing returns of scale”): c◦ = cmin;

b) if α > 1 (“increasing returns of scale”): c◦ = cmax;

c) if α = 1 (“constant returns of scale”): c◦ = any cost c in the interval [cmin, cmax].

In summary, the results of this part of the analysis show that, in the case of “de-
creasing returns of scale”, “many but bad” examples are associated with a smaller
large-sample upper bound on the conditional generalization error than “few but good”
ones. The opposite occurs for “increasing returns of scale”, whereas the case of “con-
stant returns of scale” is intermediate. These results are qualitatively in line with
the ones obtained in Section 1 for the balanced case and in Gnecco and Nutarelli
(2019b) and Gnecco and Nutarelli (2019c) for simpler linear regression problems, to
which the ordinary/weighted least squares algorithms were applied. This depends on
the fact that, in all these cases, the large-sample approximation of the conditional
generalization error (or its large-sample upper bound) has the functional form σ2

T Ki,
where Ki is either a constant, or depends on optimization variables not related to
both σ and T .
One can observe that, in order to discriminate among the three cases of the analysis
reported above, it is not needed to know the exact values of the constants k and
N , neither the expression of Ki as a function of the qn. Moreover, to discriminate
between the first two cases, it is not necessary to know the exact value of the positive
constant α. Indeed, it suffices to know if α belongs, respectively, to the interval
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(0,1) or the interval (1,+∞). Finally, for this part of the analysis, knowledge of the
probability distributions of the input examples associated with the different units is
limited to the determination of the expressions of the constants λmin(An) involved in
the optimization of the variables qn.

Assuming that the constant terms λmin(An) and E
{∥∥∥(E{xi,1}−xtesti

)∥∥∥2
2

}
are known,

optimal q◦n can be derived as follows. First, note that, for each fixed admissible choice
of qi, the optimization of the other qn can be restated as follows:

maximize
qn∈[qn,min,qn,max],
n=1,...,N,n 6=i

λmin(Ai)qi+
∑

n=1,...,N,n 6=i
λmin(An)qn


s.t.

∑
n=1,...,N,n 6=i

qn = q̄N − qi . (1.58)

More precisely, an admissible choice for qi is one for which qi ∈ [q̂i,min, q̂i,max], where

q̂i,min := max{qi,min, q̄N −
∑

n=1,...,N,n6=i
qn,max} , (1.59)

and
q̂i,max := min{qi,max, q̄N −

∑
n=1,...,N,n6=i

qn,min} . (1.60)

The optimization problem (1.58) is a linear programming one, which can be reduced
to a continuous knapsack problem (Martello and Toth, 1990, Section 2.2.1), after
a rescaling of all its optimization variables and of their respective bounds. It is
well known that, due to its particular structure, such a problem can be solved by
the following greedy algorithm, which is divided into three steps (for simplicity of
exposition, we assume that all the λmin(An) are different from each other):

1. first, the variables qn are re-ordered according to decreasing values of the as-
sociated λmin(An). So, let q̌n := qπ(n) and Ǎn := Aπ(n), where the function
π : {1, . . . ,N} → {1, . . . ,N} is a permutation satisfying λmin(Ǎm) < λmin(Ǎn) for
every m≥ n. Let also ǐ= π(i);

2. starting from q̌n = q̌n,min for every n 6= ǐ, the first variable q̌1 (if ǐ 6= 1) is increased
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until either the constraint ∑n=1,...,N,n6=ǐ q̌n = q̄N− q̌ǐ, or the constraint q̌1 = q̌1,max,
is met; if ǐ= 1, then the procedure is applied to the second variable q̌2;

3. step 2 is repeated for the successive variables (excluding q̌ǐ), stopping the first
time the constraint ∑n=1,...,N,n6=ǐ q̌n = q̄N − q̌ǐ is met (this surely occurs, since qi
is admissible).

The resulting optimal q◦n (for n= 1, . . . ,N with n 6= i) are parametrized by the remain-
ing variable qi. Then, the optimal value of the objective function of the optimization
problem (1.58) is a real-valued function of qi which, in the following, is denoted by
fi(qi). It follows from the procedure above that fi(qi) is a continuous and piece-wise
affine function of qi, with piece-wise constant slopes λmin(Ǎǐ)−λmin(Ǎn(qi)), where
the choice of the index n is a function of qi, and is such λmin(Ǎn(qi)) is a nonincreasing
function of qi. Hence, fi(qi) is concave, and is nondecreasing for qi≤ q̄N−

∑ǐ−1
n=1 q̌n,max,

where q̌n,max := qπ(n),max, and nonincreasing otherwise.
Exploiting the results above, the optimal value of qi for the original optimization
problem (1.57) is obtained by solving the following optimization problem:

minimize
qi∈[q̂i,min,q̂i,max]

 1
qi

+
E
{∥∥∥(E{xi,1}−xtesti

)∥∥∥2
2

}
fi(qi)

 . (1.61)

This is a convex optimization problem, since the function 1
qi

is convex, whereas the
function

E
{∥∥∥(E{xi,1}−xtesti

)∥∥∥2
2

}
fi(qi)

(1.62)

is of the form h(fi), where fi is concave and h is convex and nonincreasing, so h(fi)
is convex Vandenberghe and Boyd (2004, Section 3.2). After solving the optimiza-
tion problem (1.61), the optimal values of the other qn for the original optimization
problem (1.57) are obtained as a consequence of the three steps detailed above.

It follows from the reasoning above that the structure of the optimal solutions q◦n
is as follows. First, there exists a threshold λ̄◦ > 0 such that

i) for any n 6= i with λmin(An)> λ̄◦, q◦n is equal to its maximum admissible value
qn,max;
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ii) for any n 6= i with λmin(An)< λ̄◦, q◦n is equal to its minimum admissible value
qn,min;

iii) for at most one unit n 6= i (for which λmin(An) = λ̄◦, provided that there exists
one value of n for which this condition holds), q◦n belongs to the interior of the
interval [qn,min, qn,max].

Moreover,

iv) if
(
q̄N −∑ǐ−1

n=1 q̌n,max

)
≥ q̂i,max, then

q◦i = q̂i,max , (1.63)

and
λ̄◦ ∈ (0,λmin(Ai)) ; (1.64)

v) if
(
q̄N −∑ǐ−1

n=1 q̌n,max

)
< q̂i,max, then

q◦i ∈
q̄N − ǐ−1∑

n=1
q̌n,max

 , q̂i,max

 , (1.65)

and
λ̄◦ > λmin(Ai) . (1.66)

Finally, it is worth observing that the structure highlighted above for the optimal
solutions q◦n and c◦ ( the latter reported under Equation (1.57)), which is valid for any
fixed value of q̄, can be useful to solve the modification of the optimization problem
(1.57) obtained in case the constraint (1.52) is replaced by

q̄minN ≤
N∑
n=1

qn ≤ q̄maxN , (1.67)

for some given q̄min, q̄max ∈ (0,1], with q̄min < q̄max.
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2.4 Discussion

In this Section we introduced a baseline scenario displaying the form of the gener-
alization error for the baseline case of balanced fixed effects in Section 1. Then, in
Section 2, the optimal trade-off between sample size, precision of supervision, and se-
lection probabilities, has been studied with specific reference to a quite general linear
model of input-output relationship representing unobserved heterogeneity in the data,
namely the unbalanced fixed effects panel data model. First, we have analyzed its
conditional generalization error, then we have minimized a large-sample upper bound
on it with respect to some of its parameters. We have proved that, under suitable
assumptions, “many but bad” examples provide a smaller upper bound on the con-
ditional generalization error than “few but good” ones, whereas in other cases the
opposite occurs. The choice between “many but bad” and “few but good” examples
plays an important role, when better supervision implies higher costs. We also show
that the problem of minimizing the generalization error provides similar results in
Sections 1 and 2.
The next Section will extend the obtained results to the case of correlated errors. The
theoretical results obtained in this Section could be applied to the acquisition design
of unbalanced panel data related to several fields, such as biostatistics, economet-
rics, educational research, engineering, neuroscience, political science, and sociology.
Moreover, the analysis of the large-sample case could be extended to deal with large
N , or with both large N and T . These cases would be of interest for their potential
applications in microeconometrics (Cameron and Trivedi, 2005). Another possible ex-
tension concerns the introduction, in the noise model, of a subset of not controllable
parameters (beyond the controllable one, i.e., the noise variance), which could be esti-
mated from a subset of training data. As a final extension, one could investigate and
optimize the trade-off between sample size and precision of supervision (and possibly,
also selection probabilities) for the random effects panel data model (Greene, 2003,
Section 13). This is also commonly applied in the analysis of economic data, and
differs from the fixed effects panel data model in that its parameters are considered
as random variables. In the present context, however, a possible advantage of the
fixed effects panel data model is that it also allows one to obtain estimates of the in-
dividual constants ηn (see Equation (1.31)), which appear in the expression (1.32) of
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the conditional generalization error. Moreover, the application of the random effects
model to the unbalanced case requires stronger assumptions than the one of the fixed
effects model (Wooldridge, 2010, Section 17).
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Chapter 2

Optimal data collection
design in machine learning:
the case of correlated
measurement errors1

Introduction
In Chapter 1 we investigated the optimal trade-off between training set size and

precision of supervision in the general linear context of the input/output relationship,
namely, the baseline fixed effects panel data model.
In order to increase the applicability of the analysis carried out in the previous Chap-
ter, in this Chapter we extend it thoroughly in the following directions. First, in
Chapter 1 we investigated only the case in which the measurements errors of obser-
vations associated with the same unit are mutually independent. In this paper, we
extend such analysis to the case of dependent measurement errors. Moreover, dif-
ferently from Chapter 1, we confirm the validity of the obtained theoretical results
numerically. Further, in Chapter 1, the optimal trade-off between training set size

1This chapter is partially based on Gnecco, G., Nutarelli, F. & Selvi, D. Optimal data collection
design in machine learning: the case of the fixed effects generalized least squares panel data model.
Mach Learn 110, 1549–1584 (2021). https://doi.org/10.1007/s10994-021-05976-x
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and precision of supervision was analyzed only for a fixed number of units, assuming
that the number of observations associated with the same unit is large enough to
justify a large-sample approximation with respect to the number of observations. In
the last part of this Chapter, we consider additionally the cases of a large-sample
approximation with respect to the number of units, and of a large-sample approxi-
mation with respect to both the number of units and the number of observations per
unit.
It is important to highlight, that the model described in this Chapter does work for
balanced data differently from Chapter 1. In summary, Section 2 of Chapter 1 ex-
tends the baseline model in that it takes unbalanced data while the baseline considers
only balanced data, while Chapter 2 innovates the baseline model in that it considers
the case of correlated measurement errors (while the baseline does not).
In line with the results of the theoretical analyses made in Chapter 1 and Gnecco and
Nutarelli (2019b) and Gnecco and Nutarelli (2019c) for simpler linear regression mod-
els, we show that, also for the more applicable fixed effects generalized least squares
panel data model, the following holds in general: when the precision of each super-
vision (i.e., the reciprocal of the conditional variance of the output variable, given
the associated unit and input variables) increases less than proportionally versus an
increase of the supervision cost per training example, the minimum (large-sample
approximation of the) generalization error (conditioned on the training input data)
is obtained in correspondence of the smallest supervision cost per example (hence, of
the largest number of examples); when that precision increases more than proportion-
ally versus an increase of the supervision cost per example, the optimal supervision
cost per example is the largest one (which corresponds to the smallest number of
examples).
As a further novelty, in the present Chapter, the number of training examples can
be varied either by increasing the number of observations per unit, or the number of
units, or both.
The Chapter is structured as follows. Section 2 provides a background on the fixed
effects generalized least squares panel data model. Section 2 presents the analysis
of its conditional generalization error, and of the large-sample approximation of the
latter with respect to time. Section 2 formulates and solves an optimization problem
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we propose in order to provide an optimal trade-off between training set size and pre-
cision of supervision for the fixed effects generalized least squares panel data model,
using the large-sample approximation above. Section 4 presents some numerical re-
sults, which validate the theoretical ones. Finally, Section 2 discusses some possible
applications and extensions of the theoretical results obtained in the work. Some
technical proofs and remarks about the extension of the analysis made in the paper
to other large-sample settings are reported in the Appendix 2.

Background
In this Section, we recall some basic facts about the following Fixed Effects Gener-

alized Least Squares (FEGLS) panel data model (see, e.g., Wooldridge, 2010, Chapter
10). Specifically, we refer to the baseline model of Eq.(1.1) which we report again
below:

yn,t := ηn+β′xn,t, for n= 1, . . . ,N,t= 1, . . . ,T , (2.1)

As in the baseline model, the outputs yn,t are actually unavailable. We change
here the notation of their noisy measuraments to conform to FEGLS literature. In
particular, ỹn,t are now denoted as zn,t. The additive noise model, therefore, turns
out to be:

zn,t := yn,t+ εn,t , for n= 1, . . . ,N,t= 1, . . . ,T , (2.2)

where, for any n, the εn,t are identically distributed and possibly dependent random
variables, having mean 0, and are further independent from all the xn,t. For any two
units n 6=m and any two time instants t1, t2 ∈ {1, . . . ,T}, εn,t1 and εm,t2 are assumed to
be independent. Hence, only the possibility of temporal dependence for the measure-
ment errors associated with the same unit is considered in the following, in line with
several works in the literature (see, e.g., Bhargava, Franzini, and Narendranathan,
1982 and Wooldridge, 2010, Section 10.5.5).

For each unit n, let Xn ∈RT×p be the matrix whose rows are the transposes of the
xn,t; further, let zn ∈RT be the column vector which collects the noisy measurements
zn,t, and εn ∈ RT the column vector which collects the measurement noises εn,t. The
input/corrupted output pairs (xn,t, zn,t), for n = 1, . . . ,N , t = 1, . . . ,T , are used to
train the FEGLS model, i.e., to estimate its parameters.

The following first-order serial covariance form is assumed (see, e.g., Bhargava,
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Franzini, and Narendranathan, 1982 and Wooldridge, 2010, Section 10.5.5) for the
(unconditional) covariance matrix of the vector of measurement noises associated with
the n-th unit2, where σ > 0 and ρ ∈ (−1,1) hold (here, E denotes the expectation
operator):

Λ := σ2Ψ := Var(εn) = E{εnε′n}=σ2



1 ρ ρ2 · · · ρT−2 ρT−1

ρ 1 ρ ρ2 · · · ρT−2

ρ2 ρ 1 ρ · · · ρT−3

· · · · · · · · · · · · · · · · · ·
ρT−1 ρT−2 · · · ρ2 ρ 1


∈ RT×T ,

(2.3)
which is a symmetric and positive-definite matrix. In other words, the measurement
noise is assumed to be generated by a first-order autoregressive (AR(1)) process
(Ruud et al., 2000, Section 25.2). In the particular case of uncorrelated (ρ = 0) and
independent measurement noises, one obtains the model considered in Chapter 1.

Let the matrix QT ∈ RT×T be defined as

QT := IT −
1
T

1T1′T , (2.4)
where IT ∈RT×T is the identity matrix, and 1T ∈RT a column vector whose elements
are all equal to 1. One can check that QT is a symmetric and idempotent matrix (i.e.,
Q′T =QT =Q2

T ), and its eigenvalues are 0 with multiplicity 1, and 1 with multiplicity
T −1. Hence, for each unit n, one can define, similarly to Chapter 1,

Ẍn :=QTXn =



xn,1− 1
T

∑T
t=1xn,t

xn,2− 1
T

∑T
t=1xn,t

· · ·
xn,T − 1

T

∑T
t=1xn,t

 , (2.5)

z̈n :=QT zn =



zn,1− 1
T

∑T
t=1 zn,t

zn,2− 1
T

∑T
t=1 zn,t

· · ·
zn,T − 1

T

∑T
t=1 zn,t

 , (2.6)

2An important implication of first-order serial covariance in noise terms is the unreliability of
classical test statistics, based on the assumption of uncorrelated noises (see, e.g., Im et al., 1999).
To deal with this issue, the usual approach adopted in the literature consists in explicitly taking
into account the form (2.3) for the covariance matrix of the zero-mean vector of measurement noises
associated with each unit.
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and

ε̈n :=QT εn =



εn,1− 1
T

∑T
t=1 εn,t

εn,2− 1
T

∑T
t=1 εn,t

· · ·
εn,T − 1

T

∑T
t=1 εn,t

 , (2.7)

which represent, respectively, the matrix of time de-meaned training inputs, the vector
of time de-meaned corrupted training outputs, and the vector of time de-meaned
measurements noises. The goal of time de-meaning is to obtain a derived dataset
where the fixed effects are removed, making it possible to estimate first the vector
β, then - turning back to the original dataset - the fixed effects ηn. The covariance
matrix E{ε̈nε̈′n} has the expression

Ω := σ2Φ := Var(ε̈n) = E{ε̈nε̈′n}=QTE{εnε′n}Q′T =QTΛQ′T = σ2QTΨQ′T , (2.8)
which is symmetric and positive semi-definite, and has rank T − 1 < T (Wooldridge,
2010). Although this deficient rank prevents the application of the most usual ap-
proach to Generalized Least Squares (GLS) estimation, based on the inversion of the
covariance matrix Ω (which in this case cannot be inverted), one can still apply GLS
by projecting Eqs. (2.1) and (2.2) onto the orthogonal complement L of the vector
1T by using QT , then solving a standard GLS problem on L (Aitken, 1936). This is
formally obtained by replacing the inverse of the covariance matrix with its Moore-
Penrose pseudoinverse3 (denoted by Ω+), as made in the context of FEGLS estimation
in Kiefer (1980) and Im et al. (1999). More precisely, assuming the invertibility of
the matrix ∑N

n=1 Ẍ
′
nΩ+Ẍn (see Remark 6 for a justification of this assumption), the

3 It is recalled here from Strang (1993) that the Moore-Penrose pseudoinverse M+ of a matrix
M ∈RT×T inverts a special restriction of the linear application represented by the matrix M , whose
domain and codomain are restricted, respectively, to the row space of M and to the column space of
M (which coincide in the case of a symmetric matrix). For a matrix M ∈RT×T with singular value
decomposition M =UΣV ′ (where U,V ∈RT×T are orthogonal matrices, and Σ∈RT×T is a diagonal
matrix whose non-zero entries are the singular values of M), the singular value decomposition of
its Moore-Penrose pseudoinverse is M+ = UΣ+V ′ (where Σ+ ∈ RT×T is a diagonal matrix whose
non-zero entries are the reciprocals of the singular values of M). Finally, in the particular case in
which M is symmetric and positive semi-definite (e.g., when it is a covariance matrix), its singular
values coincide with its positive eigenvalues, U ∈ RT×T is an orthogonal matrix whose columns are
its eigenvectors, V ′ = U−1, and M+ is symmetric and positive semi-definite. The concept of Moore-
Penrose pseudoinversion can be extended to the cases of rectangular matrices and matrices with
complex entries, but such extensions are not needed in this work.
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FEGLS estimate of β is

β̂
FEGLS

=
 N∑
n=1

Ẍ ′nΩ+Ẍn

−1 N∑
n=1

Ẍ ′nΩ+z̈n

 . (2.9)

The estimate β̂
FEGLS

in (2.9) can be interpreted as the GLS estimate of β obtained
by replacing the original input/corrupted output training data with their de-meaned
versions reported above. It is worth observing that the training input/corrupted
output pairs

(
xn,t, zn,t

)
(n= 1, . . . ,N,t= 1, . . . ,T ) are all used to estimate β.

Remark 5. Another commonly used approach to deal with the issue above is to drop
one of the time periods from the analysis, in order to get an invertible covariance
matrix. It can be rigorously proved (see, e.g. Im et al., 1999, Theorem 4.3) that this
second approach is equivalent to the one based on the Moore-Penrose pseudoinverse
(producing exactly the same FEGLS estimate), and that it does not matter which time
period is dropped, as the resulting GLS estimator has always the same form. Therefore,
dropping the last row of QT , one gets the matrix Q̃T ∈ R(T−1)×T , from which one
obtains the matrix ˜̈Xn := Q̃TXn ∈ R(T−1)×p, the column vector ˜̈zn := Q̃T zn ∈ RT−1,
and the column vector ˜̈εn := Q̃T εn ∈ RT−1. Moreover, denoting by X̃n ∈ R(T−1)×p,
z̃n ∈ RT−1, and ε̃n ∈ RT−1 the matrix and the vectors obtained by removing the last
row, respectively, from Xn, zn, and εn, one gets

Ω̃ := E{˜̈εn˜̈ε′n}= Q̃TE{εnε′n}Q̃′T = Q̃TΛQ̃′T , (2.10)
which is, differently from Ω, an invertible matrix, with inverse Ω̃−1 = (Q̃TΛQ̃′T )−1.
The resulting FEGLS estimate is

β̂
alt

FEGLS
=

 N∑
n=1

˜̈X ′nΩ̃−1 ˜̈Xn

−1 N∑
n=1

˜̈X ′nΩ̃−1 ˜̈zn
 . (2.11)

(see, e.g., Wooldridge, 2010). The FEGLS estimate β̂
FEGLS

and the alternative one
β̂
alt

FEGLS
are actually identical (Im et al., 1999, Theorem 4.3). This equivalence is

obtained by expressing such estimates in terms of the original variables before de-
meaning, then exploiting the proof of Im et al. (1999, Theorem 4.3), which shows that
Q′TΩ+QT = Q̃′T Ω̃−1Q̃T (this still holds if an observation different from the last one is
dropped, and Q̃T is redefined accordingly).

The FEGLS estimates of the ηn (also called fixed effects residuals, see Wooldridge
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(2010)) are

η̂n,FEGLS := 1
T

T∑
t=1

(
zn,t− β̂

′
FEGLS

xn,t

)
. (2.12)

They are obtained by subtracting the estimate β̂′
FEGLS

xn,t of β′xn,t from each cor-
rupted output zn,t, then performing an empirical average, limiting to training data
associated with the unit n. The FEGLS estimates reported in Eq. (2.12) are moti-
vated by the fact that the ηn are constants, whereas the εn,t have mean 0.
By taking expectations, it readily follows from their definitions that the estimates
(2.9) and (2.12) are conditionally unbiased with respect to the training input data
{xn,t}t=1,...,T

n=1,...,N , i.e., that

E
{(
β̂
FEGLS

−β
)
|{xn,t}t=1,...,T

n=1,...,N
}

= 0p , (2.13)
where 0p ∈ Rp is a column vector whose elements are all equal to 0, and, for any
i= 1, . . . ,N ,

E
{
(η̂i,FEGLS−ηi) |{xn,t}t=1,...,T

n=1,...,N
}

= 0 . (2.14)

Finally, the covariance matrix of β̂
FEGLS

, conditioned on the training input data,
is

Var
(
β̂
FEGLS

|{xn,t}t=1,...,T
n=1,...,N

)
=

 N∑
n=1

Ẍ ′nΩ+Ẍn

−1

. (2.15)

Conditional generalization error and its large-sample approximation in the case of
correlated errors

The goal of this Section is to analyze the generalization error associated with the
FEGLS estimates (2.9) and (2.12), conditioned on the training input data, by pro-
viding its large-sample approximation. Then, in Section 2, the resulting expression
is optimized, after choosing suitable models for the standard deviation σ of the mea-
surement noise and for the time horizon, which is chosen in such a way it satisfies a
suitable budget constraint.
First, we express the generalization error or expected risk for the i-th unit (i =
1, . . . ,N), conditioned on the training input data, by

Ri
(
{xn,t}t=1,...,T

n=1,...,N
)

:=E
{(
η̂i,FEGLS + β̂

′
FEGLS

xtesti −ηi−β′xtesti

)2 ∣∣∣{xn,t}t=1,...,T
n=1,...,N

}
,

(2.16)
where xtesti ∈ Rp is independent from the training data. It is the expected mean
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squared error of the prediction of the output associated with a test input, conditioned
on the training input data.
As shown in Appendix 2, we can express the conditional generalization error (2.16)
as follows, highlighting its dependence on σ2:

Ri
(
{xn,t}

t=1,...,T
n=1,...,N

)
= σ2

T 2 1′TXi

(
N∑
n=1

Ẍ ′nΦ+Ẍn

)−1

X ′i1T + σ2

T 2 1′TΨ1T

−2σ2

T 2 1′TXi

(
N∑
n=1

Ẍ ′nΦ+Ẍn

)−1

Ẍ ′iΦ+QTΨ1T +σ2E
{(

xtesti

)′( N∑
n=1

Ẍ ′nΦ+Ẍn

)−1

xtesti

∣∣{xn,t}t=1,...,T
n=1,...,N

}

−2σ2

T
1′TXi

(
N∑
n=1

Ẍ ′nΦ+Ẍn

)−1

E
{
xtesti

}
+ 2σ2

T
(QTΨ1T )′Φ+Ẍi

(
N∑
n=1

Ẍ ′nΦ+Ẍn

)−1

E
{
xtesti

}
, (2.17)

where some computations (reported in Appendix 2) show that

1′TΨ1T = T + 2T
(1−ρT

1−ρ −1
)
− 2ρ

1−ρ
(
− (T −1)ρT−1 +ρT−2 +ρT−3 + · · ·+ 1

)
, (2.18)

and

uT := QTΨ1T

=



�1 +ρ+ρ2 +ρ3 +ρ4 + · · · +ρT−1 ��−1−21−ρT
1−ρ + 2 + 2ρ[−(T−1)ρT−1+ρT−2+ρT−3+···+1]

T (1−ρ)

ρ+ �1 +ρ+ρ2 +ρ3 + · · · +ρT−2 ��−1−21−ρT
1−ρ + 2 + 2ρ[−(T−1)ρT−1+ρT−2+ρT−3+···+1]

T (1−ρ)

ρ2 +ρ+ �1 +ρ+ρ2 + · · · +ρT−3 ��−1−21−ρT
1−ρ + 2 + 2ρ[−(T−1)ρT−1+ρT−2+ρT−3+···+1]

T (1−ρ)
· · · · · · · · ·

ρT−3 +ρT−4 + · · ·+ρ+ �1 +ρ +ρ2 ��−1−21−ρT
1−ρ + 2 + 2ρ[−(T−1)ρT−1+ρT−2+ρT−3+···+1]

T (1−ρ)

ρT−2 +ρT−3 + · · ·+ρ2 +ρ+ �1 +ρ ��−1−21−ρT
1−ρ + 2 + 2ρ[−(T−1)ρT−1+ρT−2+ρT−3+···+1]

T (1−ρ)

ρT−1 +ρT−2 + · · ·+ρ3 +ρ2 +ρ +�1 ��−1−21−ρT
1−ρ + 2 + 2ρ[−(T−1)ρT−1+ρT−2+ρT−3+···+1]

T (1−ρ)


. (2.19)

Next, we obtain a large-sample approximation of the conditional generalization error
(2.17) with respect to T , for a fixed number of units N . Such an approximation is
useful, e.g., in the application of the model to macroeconomics data, for which it is
common to investigate the case of a large horizon T .

Under mild conditions (e.g., if for the unit i the xi,t are mutually independent, iden-
tically distributed, and have finite moments up to the order 4), the following conver-
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gences in probability4 hold (their proofs are reported in Appendix 2):

plim
T→+∞

1
T

1′TXi =
(
E
{
xi,1

})′
, (2.20)

plim
T→+∞

1
T
Ẍ ′iΦ+QTΨ1T = 0p . (2.21)

Similarly, if for each fixed unit n the xn,t are mutually independent, identically dis-
tributed5, and have finite moments up to the order 4, and one makes the additional
assumption (whose validity is discussed extensively in Appendix 2) that

lim
T→∞

‖Φ+−QTΨ−1Q′T‖2 = 0 (2.22)
(where, for a symmetric matrixM ∈RT×T , ‖M‖2 = max

t=1,...,T
|λt(M)| denotes its spectral

norm), then also the following convergence in probability holds:

plim
T→+∞

1
T

N∑
n=1

Ẍ ′nΦ+Ẍn = AN , (2.23)

where

AN = A′N := 1 +ρ2

1−ρ2

N∑
n=1

E
{(
xn,1−E

{
xn,1

})(
xn,1−E

{
xn,1

})′} (2.24)

is a symmetric and positive semi-definite matrix. In the following, its positive defi-
niteness (hence, its invertibility) is also assumed.

Remark 6. The existence of the probability limit (2.23) and the assumed positive defi-
niteness of the matrix AN guarantee that the invertibility of the matrix ∑N

n=1 Ẍ
′
nΦ+Ẍn

(see the invertibility assumption before Eq. (2.9)) holds with probability near 1 for
large T .

When (2.20), (2.21), and (2.23) hold, inserting such probability limits in Eq. (2.17),
one gets the following large-sample approximation of the conditional generalization
error (2.17) with respect to T :

(2.17) ' σ2

T

(
E
{
xi,1

})′
A−1
N E

{
xi,1

}
+ σ2

T

1 +ρ

1−ρ

+σ
2

T
E
{(
xtesti

)′
A−1
N xtesti

}
−2σ

2

T

(
E
{
xi,1

})′
A−1
N E

{
xtesti

}
4We recall that a sequence of random real matrices MT , T = 1,2, . . ., converges in probability to

the real matrix M if, for every ε > 0, Prob(‖MT −M‖> ε) (where ‖ ·‖ is an arbitrary matrix norm)
tends to 0 as T tends to +∞. In this case, we write plim

T→+∞
MT =M .

5This does not exclude the possibility for the xn,t and xm,t associated with different units n and
m to be dependent/not identically distributed.
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= σ2

T

1 +ρ

1−ρ +E

∥∥∥∥∥A−1

2
N

(
E
{
xi,1

}
−xtesti

)∥∥∥∥∥
2

2


 , (2.25)

where, for a vector v ∈ Rp, ‖v‖2 denotes its l2 (Euclidean) norm, and A
−1

2
N is the

principal square root (i.e., the symmetric and positive definite square root) of the
symmetric and positive definite matrix A−1

N . Eq. (2.25) is obtained taking into
account that, as a consequence of the Continuous Mapping Theorem (Florescu, 2014,
Theorem 7.33), the probability limit of the product of two random variables equals
the product of their probability limits, when the latter two exist. By doing this, the
third and sixth terms of Eq. (2.17) cancel out due to Eq. (2.21), whereas the second
term is computed using Eq. (2.18).
Interestingly, the large-sample approximation (2.25) has the form σ2

T Ki, where

Ki :=
1 +ρ

1−ρ +E

∥∥∥∥∥A−1

2
N

(
E
{
xi,1

}
−xtesti

)∥∥∥∥∥
2

2


 (2.26)

is a positive constant (possibly, a different constant for each unit i). This simplifies
the analysis of the trade-off between training set size and precision of supervision per-
formed in the next Section, since one does not need to compute the exact expression
of Ki to find the optimal trade-off.

In Appendix 2, an extension of the analysis made above is presented, by considering,
respectively, the case of large N , and the one in which both N and T are large.

Optimal trade-off between training set size and precision of supervision for the fixed
effects generalized least squares panel data model under the large-sample approxima-
tion

In this Section, we are interested in optimizing the large-sample approximation
(2.25) of the conditional generalization error when the variance σ2 is modeled as a
decreasing function of the supervision cost per example c, and there is an upper bound
C on the total supervision cost NTc associated with the whole training set. In the
analysis, N is fixed, and T is chosen as

⌊
C
Nc

⌋
. Moreover, the supervision cost per

example c is allowed to take values on the interval [cmin, cmax], where 0< cmin < cmax,
so that the resulting T belongs to

{⌊
C

Ncmax

⌋
, . . . ,

⌊
C

Ncmin

⌋}
. In the following, C is

supposed to be sufficiently large, so that the large-sample approximation (2.25) can
be assumed to hold for every c ∈ [cmin, cmax].

Consistently with Chapter 1 and Gnecco and Nutarelli (2019b) and Gnecco and
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Nutarelli (2019c), we adopt the following model for the variance σ2, as a function of
the supervision cost per example c:

σ2(c) = kc−α , (2.27)
where k,α > 0. For 0 < α < 1, the precision of each supervision is characterized
by “decreasing returns of scale” with respect to its cost because, if one doubles the
supervision cost per example c, then the precision 1/σ2(c) becomes less than two
times its initial value (or equivalently, the variance σ2(c) becomes more than one half
its initial value). Conversely, for α> 1, there are “increasing returns of scale” because,
if one doubles the supervision cost per example c, then the precision 1/σ2(c) becomes
more than two times its initial value (or equivalently, the variance σ2(c) becomes less
than one half its initial value). The case α= 1 is intermediate and refers to “constant
returns of scale”. In all the cases above, the precision of each supervision increases
by increasing the supervision cost per example c. Finally, it is worth observing that,
according to the model (2.3) for the covariance matrix of the vector of measurement
noises, the correlation coefficient between successive measurement noises does not
depend on c.

Concluding, under the assumptions above, the optimal trade-off between the training
set size and the precision of supervision for the fixed effects generalized least squares
panel data model is modeled by the following optimization problem:

minimize
c∈[cmin,cmax]

Kik
c−α⌊
C
Nc

⌋
−1

. (2.28)

By a similar argument as in the proof of the baseline model in Chapter 1 (see Gnecco
and Nutarelli, 2019c, Proposition 3.2 for more details), when C is sufficiently large, the
objective function CKik

c−α

b CNcc−1 of the optimization problem (2.28), rescaled by the
multiplicative factor C, can be approximated, with a negligible error in the maximum
norm on [cmin, cmax], by NKikc

1−α. In order to illustrate this issue, Figure 2 shows
the behavior of the rescaled objective functions CKik

c−α

b CNcc−1 and NKikc
1−α for the

three cases 0<α= 0.5< 1, α= 1.5> 1, and α= 1 (the values of the other parameters
are k = 0.5, Ki = 2, N = 10, C = 200, cmin = 0.4, and cmax = 0.8). The additional
approximation CNKik

c1−α
C−Nc (which differs negligibly from NKikc

1−α for large C) is
also reported in the figure.

Concluding, under the approximation above, one can replace the optimization prob-
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lem (2.28) with
minimize
c∈[cmin,cmax]

NKikc
1−α , (2.29)

whose optimal solutions c◦ have the following expressions:

i) if 0< α < 1 (“decreasing returns of scale”): c◦ = cmin;

ii) if α > 1 (“increasing returns of scale”): c◦ = cmax;

iii) if α = 1 (“constant returns of scale”): c◦ = any cost c in the interval [cmin, cmax].

In summary, the results of the analysis show that, in the case of “decreasing returns
of scale”, “many but bad” examples are associated with a smaller conditional gener-
alization error than “few but good” ones. The opposite occurs for “increasing returns
of scale”, whereas the case of “constant returns of scale” is intermediate. These re-
sults are qualitatively in line with the ones obtained in Chapter 1 and in Gnecco
and Nutarelli (2019b) and Gnecco and Nutarelli (2019c) for simpler linear regression
problems, to which different regression algorithms were applied (respectively, ordinary
least squares, weighted least squares, and fixed effects ordinary least squares). This
depends on the fact that, in all these cases, the large-sample approximation of the
conditional generalization error has the same functional form σ2

T Ki (although different
positive constants Ki are involved in the various cases).
We remember here, as mentioned in Chapter 1, that, in order to discriminate among
the three cases of the analysis reported above, one does not need to know the ex-
act values of the constants ρ, k, Ki, and N . Moreover, to discriminate between the
first two cases, it is not necessary to know the exact value of the positive constant
α (indeed, it suffices to know if α belongs, respectively, to the interval (0,1) or the
one (1,+∞)). Interestingly, no precise knowledge of the probability distributions of
the input examples (one for each unit) is needed. In particular, different probability
distributions may be associated with different units, without affecting the results of
the analysis. Finally, the same conclusions as above are reached if the objective func-
tion in (2.29) is replaced by the summation of the large-sample approximation of the
conditional generalization error over all the N units. In that case, the constant Ki in
(2.29) is replaced by K := ∑N

i=1Ki.
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Figure 2: Plots of the rescaled objective functions CKik
c−α

b CNcc−1
, CNKikc

1−α, and

CNKik
c1−α

C−Nc , for α = 0.5 (a), α = 1.5 (b), and α = 1 (c). The FEGLS case.

Numerical results
In this Section, the theoretical results obtained in the chapter are tested through

simulations. For each c, the following empirical approximation of the summation of
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the generalization error over all the units, conditioned on the training input data, is
adopted. It is based on N tr training sets and N test

i test examples for each unit i
(i= 1, . . . ,N), hence on a total number N test = ∑N

i=1N
test
i of test examples:

N∑
i=1

E
{(
η̂i,FEGLS + β̂

′
FEGLS

xtesti −ηi−β′xtesti

)2 ∣∣∣{xn,t}t=1,...,T
n=1,...,N

}

' 1
N test

N∑
i=1

N test
i∑
h=1

1
N tr

N tr∑
j=1

(
η̂ji,FEGLS +

(
β̂
j

FEGLS

)′
xtesti,h −ηi−β′xtesti,h

)2
. (2.30)

In Eq. (2.30), (xtesti,h ,y
test
i,h ) is the h-th generated test example for the unit i, and

β̂
j

FEGLS
is the estimate of the vector β obtained using the j-th generated training set.

Similarly, η̂ji,FEGLS is the estimate of the individual constant ηi obtained using the
j-th generated training set. For each choice of c, all the N tr generated training sets
share the same training input data matrices Xn, but differ in the random choice of
the measurement noise. The number of rows in each matrix Xn is increased when c
is reduced from cmax to cmin, by increasing the number of observations T . For a fair
comparison, when doing this, the rows already present in each matrix Xn are kept
fixed. Finally, the same test examples (generated independently from the training
sets) are used to assess the performance of the fixed effects generalized least squares
estimates for different costs per example c.
For the simulations, we choose N = 20 for the number of units, p= 5 for the number
of features, cmin = 2, cmax = 4, N tr = 100 for the number of training sets, N test

i = 50
for the number of test examples per unit (hence the total number of test examples is
N test = 1000). The number of training examples per unit is T = 50 for c= cmin, and
T = 25 for c = cmax. In this way, the (upper bound on the) total supervision cost is
C = 2000 for both cases. Without loss of generality, the constant k in the model (2.27)
of the variance of the supervision cost is assumed to be equal to 1. The components
of the parameter vector β are generated randomly and independently according to a
uniform distribution on [−1,1], obtaining

β = [−0.8562,0.6837,0.2640,−0.0038,−0.0598]′ . (2.31)
Similarly, the fixed effects ηn (for n= 1, . . . ,N) are generated randomly and indepen-
dently according to a uniform distribution on [−1,1], obtaining the vector

η =
[
−0.2330,−0.2779,−0.0434,−0.9707,0.6848,0.0720,−0.2033,−0.6877,0.5967,−0.7895,
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0.6500,0.9717,0.9673,−0.1443,−0.4211,0.3109,0.5189,0.4709,0.4414,−0.8382
]′
∈ RN .(2.32)

For both training and test sets, the input data associated with each unit are generated
as realizations of a multivariate Gaussian distribution with mean 0 and covariance
matrix

Var
(
xn,t

)
= Var

(
xtesti

)
=



1.4016 0.8086 1.2594 0.9866 0.6206
0.8086 0.9988 0.9518 1.2044 0.5003
1.2594 0.9518 1.9087 1.5945 0.7120
0.9866 1.2044 1.5945 1.9089 0.8294
0.6206 0.5003 0.7120 0.8294 0.4776


, (2.33)

which is symmetric and positive definite. This covariance matrix has been generated
by setting Var

(
xn,t

)
= Var

(
xtesti

)
=AxA

′
x, where the elements of Ax ∈Rp×p have been

randomly and independently generated according to a uniform probability density on
the interval [0,1]. The parameter ρ in the covariance matrix (2.3) of the zero-mean
vector of measurement noises (modeled in the simulations by a multivariate Gaussian
distribution) is chosen to be equal to 0.3. As a robustness check, the whole procedure
is repeated 100 times.
The results of the analysis are displayed in Tables 1 (for α= 0.5), 2 (for α= 1.5), and
3 (for α = 1). Each table reports the results obtained in each repetition for c = cmin

and c = cmax. The total simulation time (for a MATLAB 9.4 implementation of the
procedure) is of about 501 sec on a notebook with a 2.30 GHz Intel(R) Core(TM)
i5-4200U CPU and 6 GB of RAM. A statistical analysis of the elements of the tables
leads to the following results:

i) for α = 0.5 (Table 1), the application of a one-sided Wilcoxon matched-pairs
signed-rank test (Barlow, 1993, Section 9.2.3) rejects the null hypothesis that
the difference between the approximated performance index from Eq. (2.30) for
c= cmax and the one for c= cmin has a symmetric distribution around its median
and that median is smaller than or equal to 0 (p-value=1.9780 ·10−18, significance
level set to 0.05);

ii) for α = 1.5 (Table 2), the application of a one-sided Wilcoxon matched-pairs
signed-rank test rejects the null hypothesis that the same difference as above has
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a symmetric distribution around its median and that median is larger than or
equal to 0 (p-value=1.9780 ·10−18, significance level set to 0.05);

iii) for α= 1 (Table 3), the application of a two-sided Wilcoxon matched-pairs signed-
rank test fails to reject the null hypothesis that the same difference as above has
a symmetric distribution around its median and that median is equal to 0 (p-
value=0.4453, significance level set to 0.05).
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Concluding, the following tables show that the simulation results are in perfect
agreement with the theoretical ones, leading to the same conclusions. Interestingly,
this holds even though relatively small values for T have been chosen for the simula-
tions.

(Repetition number) Approximated performance index from Eq. (2.30)

c= cmin

(1) 5.461 ·10−4 (2) 6.127 ·10−4 (3) 5.710 ·10−4 (4) 5.638 ·10−4 (5) 5.792 ·10−4

(6) 5.535 ·10−4 (7) 6.084 ·10−4 (8) 5.756 ·10−4 (9) 5.976 ·10−4 (10) 5.669 ·10−4

(11) 5.496 ·10−4 (12) 5.562 ·10−4 (13) 6.043 ·10−4 (14) 5.762 ·10−4 (15) 6.391 ·10−4

(16) 6.071 ·10−4 (17) 6.007 ·10−4 (18) 5.925 ·10−4 (19) 5.600 ·10−4 (20) 6.244 ·10−4

(21) 5.791 ·10−4 (22) 5.590 ·10−4 (23) 5.230 ·10−4 (24) 5.339 ·10−4 (25) 5.342 ·10−4

(26) 5.713 ·10−4 (27) 5.824 ·10−4 (28) 5.941 ·10−4 (29) 5.727 ·10−4 (30) 5.798 ·10−4

(31) 5.954 ·10−4 (32) 5.819 ·10−4 (33) 5.640 ·10−4 (34) 5.779 ·10−4 (35) 5.824 ·10−4

(36) 5.608 ·10−4 (37) 5.565 ·10−4 (38) 5.527 ·10−4 (39) 5.981 ·10−4 (40) 5.395 ·10−4

(41) 5.944 ·10−4 (42) 6.110 ·10−4 (43) 5.540 ·10−4 (44) 5.490 ·10−4 (45) 5.771 ·10−4

(46) 6.150 ·10−4 (47) 5.492 ·10−4 (48) 5.921 ·10−4 (49) 5.552 ·10−4 (50) 5.810 ·10−4

(51) 5.731 ·10−4 (52) 6.018 ·10−4 (53) 6.140 ·10−4 (54) 5.836 ·10−4 (55) 5.530 ·10−4

(56) 5.866 ·10−4 (57) 5.661 ·10−4 (58) 5.938 ·10−4 (59) 5.795 ·10−4 (60) 5.979 ·10−4

(61) 5.966 ·10−4 (62) 5.882 ·10−4 (63) 5.687 ·10−4 (64) 5.718 ·10−4 (65) 6.014 ·10−4

(66) 5.774 ·10−4 (67) 5.872 ·10−4 (68) 5.566 ·10−4 (69) 5.678 ·10−4 (70) 5.845 ·10−4

(71) 5.531 ·10−4 (72) 5.446 ·10−4 (73) 5.700 ·10−4 (74) 6.055 ·10−4 (75) 5.727 ·10−4

(76) 6.240 ·10−4 (77) 5.616 ·10−4 (78) 5.876 ·10−4 (79) 6.031 ·10−4 (80) 5.869 ·10−4

(81) 6.142 ·10−4 (82) 5.764 ·10−4 (83) 5.530 ·10−4 (84) 5.901 ·10−4 (85) 5.795 ·10−4

(86) 5.794 ·10−4 (87) 5.818 ·10−4 (88) 5.674 ·10−4 (89) 5.512 ·10−4 (90) 5.887 ·10−4

(91) 5.716 ·10−4 (92) 6.050 ·10−4 (93) 5.423 ·10−4 (94) 5.883 ·10−4 (95) 5.705 ·10−4

(96) 5.665 ·10−4 (97) 5.732 ·10−4 (98) 5.462 ·10−4 (99) 5.896 ·10−4 (100) 5.875 ·10−4

c= cmax

(1) 8.347 ·10−4 (2) 8.193 ·10−4 (3) 7.994 ·10−4 (4) 8.132 ·10−4 (5) 8.198 ·10−4

(6) 8.281 ·10−4 (7) 7.627 ·10−4 (8) 7.891 ·10−4 (9) 8.281 ·10−4 (10) 8.268 ·10−4

(11) 8.277 ·10−4 (12) 8.097 ·10−4 (13) 8.396 ·10−4 (14) 8.187 ·10−4 (15) 8.614 ·10−4

(16) 8.461 ·10−4 (17) 8.299 ·10−4 (18) 8.477 ·10−4 (19) 8.171 ·10−4 (20) 8.422 ·10−4

(21) 7.651 ·10−4 (22) 8.068 ·10−4 (23) 7.859 ·10−4 (24) 8.034 ·10−4 (25) 8.479 ·10−4

(26) 7.741 ·10−4 (27) 7.839 ·10−4 (28) 8.243 ·10−4 (29) 7.620 ·10−4 (30) 7.543 ·10−4

(31) 8.296 ·10−4 (32) 8.280 ·10−4 (33) 8.299 ·10−4 (34) 8.115 ·10−4 (35) 8.372 ·10−4

(36) 8.085 ·10−4 (37) 8.362 ·10−4 (38) 8.357 ·10−4 (39) 8.585 ·10−4 (40) 7.864 ·10−4

(41) 8.572 ·10−4 (42) 8.098 ·10−4 (43) 7.839 ·10−4 (44) 7.941 ·10−4 (45) 7.923 ·10−4

(46) 8.157 ·10−4 (47) 8.743 ·10−4 (48) 8.239 ·10−4 (49) 8.181 ·10−4 (50) 8.134 ·10−4

(51) 8.727 ·10−4 (52) 8.600 ·10−4 (53) 7.804 ·10−4 (54) 8.078 ·10−4 (55) 7.901 ·10−4

(56) 7.954 ·10−4 (57) 7.811 ·10−4 (58) 8.182 ·10−4 (59) 8.339 ·10−4 (60) 8.384 ·10−4

(61) 8.143 ·10−4 (62) 8.129 ·10−4 (63) 8.210 ·10−4 (64) 8.319 ·10−4 (65) 8.468 ·10−4

(66) 7.811 ·10−4 (67) 8.211 ·10−4 (68) 7.470 ·10−4 (69) 8.128 ·10−4 (70) 8.399 ·10−4

(71) 8.600 ·10−4 (72) 8.537 ·10−4 (73) 8.524 ·10−4 (74) 8.117 ·10−4 (75) 8.372 ·10−4

(76) 7.895 ·10−4 (77) 8.114 ·10−4 (78) 8.161 ·10−4 (79) 8.537 ·10−4 (80) 8.159 ·10−4

(81) 7.802 ·10−4 (82) 8.178 ·10−4 (83) 7.546 ·10−4 (84) 7.922 ·10−4 (85) 8.380 ·10−4

(86) 8.011 ·10−4 (87) 8.541 ·10−4 (88) 7.823 ·10−4 (89) 8.026 ·10−4 (90) 7.652 ·10−4

(91) 7.600 ·10−4 (92) 7.859 ·10−4 (93) 8.102 ·10−4 (94) 8.599 ·10−4 (95) 8.773 ·10−4

(96) 8.397 ·10−4 (97) 8.105 ·10−4 (98) 7.885 ·10−4 (99) 8.061 ·10−4 (100) 8.208 ·10−4

Table 4: For α= 0.5: values of the approximated performance index from Eq. (2.30) for
the 100 repetitions of the simulation procedure.
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(Repetition number) Approximated performance index from Eq. (2.30)

c= cmin

(1) 2.966 ·10−4 (2) 3.008 ·10−4 (3) 2.901 ·10−4 (4) 2.950 ·10−4 (5) 3.152 ·10−4

(6) 3.021 ·10−4 (7) 2.611 ·10−4 (8) 2.922 ·10−4 (9) 2.814 ·10−4 (10) 3.028 ·10−4

(11) 2.881 ·10−4 (12) 2.937 ·10−4 (13) 3.060 ·10−4 (14) 3.077 ·10−4 (15) 2.853 ·10−4

(16) 3.060 ·10−4 (17) 2.952 ·10−4 (18) 3.100 ·10−4 (19) 2.876 ·10−4 (20) 2.881 ·10−4

(21) 2.888 ·10−4 (22) 3.084 ·10−4 (23) 2.902 ·10−4 (24) 2.902 ·10−4 (25) 2.866 ·10−4

(26) 3.024 ·10−4 (27) 2.866 ·10−4 (28) 3.019 ·10−4 (29) 2.921 ·10−4 (30) 2.817 ·10−4

(31) 2.862 ·10−4 (32) 2.828 ·10−4 (33) 2.891 ·10−4 (34) 2.842 ·10−4 (35) 3.034 ·10−4

(36) 2.991 ·10−4 (37) 2.870 ·10−4 (38) 2.848 ·10−4 (39) 2.837 ·10−4 (40) 2.974 ·10−4

(41) 2.864 ·10−4 (42) 2.724 ·10−4 (43) 2.921 ·10−4 (44) 2.991 ·10−4 (45) 2.861 ·10−4

(46) 2.857 ·10−4 (47) 2.887 ·10−4 (48) 2.958 ·10−4 (49) 2.985 ·10−4 (50) 2.858 ·10−4

(51) 2.923 ·10−4 (52) 2.698 ·10−4 (53) 2.881 ·10−4 (54) 3.008 ·10−4 (55) 3.043 ·10−4

(56) 2.842 ·10−4 (57) 2.781 ·10−4 (58) 2.746 ·10−4 (59) 2.819 ·10−4 (60) 2.848 ·10−4

(61) 2.753 ·10−4 (62) 3.010 ·10−4 (63) 3.004 ·10−4 (64) 2.805 ·10−4 (65) 2.921 ·10−4

(66) 2.919 ·10−4 (67) 2.947 ·10−4 (68) 2.944 ·10−4 (69) 2.960 ·10−4 (70) 2.964 ·10−4

(71) 2.808 ·10−4 (72) 2.940 ·10−4 (73) 2.874 ·10−4 (74) 2.851 ·10−4 (75) 2.796 ·10−4

(76) 3.049 ·10−4 (77) 2.885 ·10−4 (78) 2.849 ·10−4 (79) 2.711 ·10−4 (80) 3.004 ·10−4

(81) 2.872 ·10−4 (82) 2.908 ·10−4 (83) 2.835 ·10−4 (84) 2.779 ·10−4 (85) 2.812 ·10−4

(86) 3.044 ·10−4 (87) 2.736 ·10−4 (88) 2.848 ·10−4 (89) 2.815 ·10−4 (90) 2.931 ·10−4

(91) 2.824 ·10−4 (92) 2.923 ·10−4 (93) 2.897 ·10−4 (94) 2.872 ·10−4 (95) 3.016 ·10−4

(96) 2.714 ·10−4 (97) 2.807 ·10−4 (98) 2.887 ·10−4 (99) 2.838 ·10−4 (100) 2.903 ·10−4

c= cmax

(1) 2.040 ·10−4 (2) 2.029 ·10−4 (3) 2.038 ·10−4 (4) 2.021 ·10−4 (5) 2.012 ·10−4

(6) 2.110 ·10−4 (7) 2.030 ·10−4 (8) 2.063 ·10−4 (9) 2.064 ·10−4 (10) 1.967 ·10−4

(11) 2.159 ·10−4 (12) 2.019 ·10−4 (13) 2.146 ·10−4 (14) 2.027 ·10−4 (15) 2.007 ·10−4

(16) 2.088 ·10−4 (17) 1.979 ·10−4 (18) 1.950 ·10−4 (19) 2.023 ·10−4 (20) 2.055 ·10−4

(21) 1.983 ·10−4 (22) 2.081 ·10−4 (23) 1.954 ·10−4 (24) 2.213 ·10−4 (25) 2.053 ·10−4

(26) 1.971 ·10−4 (27) 2.031 ·10−4 (28) 2.037 ·10−4 (29) 1.976 ·10−4 (30) 2.057 ·10−4

(31) 2.140 ·10−4 (32) 2.043 ·10−4 (33) 2.086 ·10−4 (34) 2.087 ·10−4 (35) 2.006 ·10−4

(36) 2.044 ·10−4 (37) 1.967 ·10−4 (38) 2.063 ·10−4 (39) 1.953 ·10−4 (40) 2.143 ·10−4

(41) 2.108 ·10−4 (42) 2.105 ·10−4 (43) 2.010 ·10−4 (44) 1.970 ·10−4 (45) 2.009 ·10−4

(46) 2.050 ·10−4 (47) 1.948 ·10−4 (48) 1.946 ·10−4 (49) 2.093 ·10−4 (50) 2.043 ·10−4

(51) 2.093 ·10−4 (52) 2.036 ·10−4 (53) 2.183 ·10−4 (54) 2.022 ·10−4 (55) 2.127 ·10−4

(56) 2.028 ·10−4 (57) 2.020 ·10−4 (58) 2.015 ·10−4 (59) 2.028 ·10−4 (60) 1.989 ·10−4

(61) 2.079 ·10−4 (62) 2.199 ·10−4 (63) 2.053 ·10−4 (64) 2.127 ·10−4 (65) 1.990 ·10−4

(66) 2.061 ·10−4 (67) 1.983 ·10−4 (68) 2.156 ·10−4 (69) 2.073 ·10−4 (70) 2.074 ·10−4

(71) 2.100 ·10−4 (72) 2.024 ·10−4 (73) 2.021 ·10−4 (74) 1.989 ·10−4 (75) 1.912 ·10−4

(76) 2.109 ·10−4 (77) 2.043 ·10−4 (78) 2.112 ·10−4 (79) 2.015 ·10−4 (80) 2.096 ·10−4

(81) 1.924 ·10−4 (82) 2.071 ·10−4 (83) 2.197 ·10−4 (84) 2.173 ·10−4 (85) 1.996 ·10−4

(86) 2.125 ·10−4 (87) 1.978 ·10−4 (88) 2.088 ·10−4 (89) 2.011 ·10−4 (90) 1.946 ·10−4

(91) 2.006 ·10−4 (92) 2.156 ·10−4 (93) 2.069 ·10−4 (94) 2.018 ·10−4 (95) 2.015 ·10−4

(96) 1.904 ·10−4 (97) 1.983 ·10−4 (98) 2.132 ·10−4 (99) 1.933 ·10−4 (100) 2.050 ·10−4

Table 5: For α= 1.5: values of the approximated performance index from Eq. (2.30) for
the 100 repetitions of the simulation procedure.
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(Repetition number) Approximated performance index from Eq. (2.30)

c= cmin

(1) 4.251 ·10−4 (2) 4.155 ·10−4 (3) 4.141 ·10−4 (4) 4.162 ·10−4 (5) 4.243 ·10−4

(6) 4.104 ·10−4 (7) 4.018 ·10−4 (8) 4.273 ·10−4 (9) 4.224 ·10−4 (10) 3.956 ·10−4

(11) 3.973 ·10−4 (12) 4.068 ·10−4 (13) 4.238 ·10−4 (14) 4.102 ·10−4 (15) 4.283 ·10−4

(16) 4.567 ·10−4 (17) 4.224 ·10−4 (18) 4.123 ·10−4 (19) 4.362 ·10−4 (20) 3.970 ·10−4

(21) 4.310 ·10−4 (22) 4.298 ·10−4 (23) 4.240 ·10−4 (24) 4.399 ·10−4 (25) 3.957 ·10−4

(26) 4.226 ·10−4 (27) 4.144 ·10−4 (28) 4.060 ·10−4 (29) 4.025 ·10−4 (30) 4.106 ·10−4

(31) 4.057 ·10−4 (32) 4.060 ·10−4 (33) 4.056 ·10−4 (34) 4.183 ·10−4 (35) 4.200 ·10−4

(36) 4.170 ·10−4 (37) 3.990 ·10−4 (38) 3.959 ·10−4 (39) 4.103 ·10−4 (40) 3.995 ·10−4

(41) 3.829 ·10−4 (42) 4.041 ·10−4 (43) 4.009 ·10−4 (44) 3.815 ·10−4 (45) 4.128 ·10−4

(46) 3.976 ·10−4 (47) 4.249 ·10−4 (48) 4.076 ·10−4 (49) 4.253 ·10−4 (50) 4.222 ·10−4

(51) 4.130 ·10−4 (52) 4.011 ·10−4 (53) 3.998 ·10−4 (54) 4.047 ·10−4 (55) 3.960 ·10−4

(56) 4.235 ·10−4 (57) 4.157 ·10−4 (58) 3.909 ·10−4 (59) 4.221 ·10−4 (60) 4.455 ·10−4

(61) 4.051 ·10−4 (62) 4.077 ·10−4 (63) 4.405 ·10−4 (64) 4.106 ·10−4 (65) 4.192 ·10−4

(66) 4.111 ·10−4 (67) 4.183 ·10−4 (68) 4.279 ·10−4 (69) 4.099 ·10−4 (70) 4.367 ·10−4

(71) 4.060 ·10−4 (72) 4.016 ·10−4 (73) 4.279 ·10−4 (74) 4.080 ·10−4 (75) 4.153 ·10−4

(76) 4.172 ·10−4 (77) 4.084 ·10−4 (78) 4.060 ·10−4 (79) 4.187 ·10−4 (80) 3.963 ·10−4

(81) 4.148 ·10−4 (82) 4.097 ·10−4 (83) 4.233 ·10−4 (84) 3.991 ·10−4 (85) 4.167 ·10−4

(86) 4.090 ·10−4 (87) 4.176 ·10−4 (88) 3.991 ·10−4 (89) 4.027 ·10−4 (90) 3.870 ·10−4

(91) 4.060 ·10−4 (92) 4.177 ·10−4 (93) 4.061 ·10−4 (94) 4.133 ·10−4 (95) 4.022 ·10−4

(96) 4.105 ·10−4 (97) 3.803 ·10−4 (98) 4.141 ·10−4 (99) 4.171 ·10−4 (100) 4.176 ·10−4

c= cmax

(1) 3.911 ·10−4 (2) 4.069 ·10−4 (3) 4.036 ·10−4 (4) 4.297 ·10−4 (5) 4.113 ·10−4

(6) 4.192 ·10−4 (7) 4.082 ·10−4 (8) 3.914 ·10−4 (9) 4.029 ·10−4 (10) 4.308 ·10−4

(11) 3.915 ·10−4 (12) 3.739 ·10−4 (13) 4.075 ·10−4 (14) 4.111 ·10−4 (15) 4.265 ·10−4

(16) 4.352 ·10−4 (17) 3.934 ·10−4 (18) 4.044 ·10−4 (19) 4.112 ·10−4 (20) 4.258 ·10−4

(21) 4.306 ·10−4 (22) 4.179 ·10−4 (23) 4.095 ·10−4 (24) 4.189 ·10−4 (25) 4.228 ·10−4

(26) 4.413 ·10−4 (27) 3.976 ·10−4 (28) 4.134 ·10−4 (29) 4.166 ·10−4 (30) 4.121 ·10−4

(31) 3.866 ·10−4 (32) 4.440 ·10−4 (33) 4.050 ·10−4 (34) 4.129 ·10−4 (35) 3.934 ·10−4

(36) 3.944 ·10−4 (37) 4.066 ·10−4 (38) 4.045 ·10−4 (39) 4.115 ·10−4 (40) 3.973 ·10−4

(41) 4.002 ·10−4 (42) 4.248 ·10−4 (43) 4.134 ·10−4 (44) 4.302 ·10−4 (45) 4.222 ·10−4

(46) 4.121 ·10−4 (47) 3.946 ·10−4 (48) 4.139 ·10−4 (49) 4.183 ·10−4 (50) 4.245 ·10−4

(51) 3.962 ·10−4 (52) 4.204 ·10−4 (53) 4.183 ·10−4 (54) 3.930 ·10−4 (55) 4.206 ·10−4

(56) 4.044 ·10−4 (57) 3.754 ·10−4 (58) 4.247 ·10−4 (59) 4.185 ·10−4 (60) 4.007 ·10−4

(61) 4.564 ·10−4 (62) 4.174 ·10−4 (63) 4.094 ·10−4 (64) 3.944 ·10−4 (65) 4.266 ·10−4

(66) 4.352 ·10−4 (67) 4.042 ·10−4 (68) 4.281 ·10−4 (69) 4.168 ·10−4 (70) 3.093 ·10−4

(71) 4.074 ·10−4 (72) 4.007 ·10−4 (73) 4.096 ·10−4 (74) 3.968 ·10−4 (75) 3.932 ·10−4

(76) 4.066 ·10−4 (77) 4.213 ·10−4 (78) 4.040 ·10−4 (79) 4.300 ·10−4 (80) 4.091 ·10−4

(81) 3.901 ·10−4 (82) 4.161 ·10−4 (83) 4.812 ·10−4 (84) 4.039 ·10−4 (85) 3.857 ·10−4

(86) 4.078 ·10−4 (87) 4.267 ·10−4 (88) 4.233 ·10−4 (89) 3.985 ·10−4 (90) 3.902 ·10−4

(91) 4.110 ·10−4 (92) 4.045 ·10−4 (93) 3.997 ·10−4 (94) 4.170 ·10−4 (95) 4.249 ·10−4

(96) 4.005 ·10−4 (97) 3.942 ·10−4 (98) 4.254 ·10−4 (99) 4.215 ·10−4 (100) 4.193 ·10−4

Table 6: For α = 1: values of the approximated performance index from Eq. (2.30) for
the 100 repetitions of the simulation procedure.

Discussion and possible extensions
Up to our knowledge, the analysis and the optimization, made in the present Chap-

ter, of the conditional generalization error in regression as a trade-off between training
set size and precision of supervision, has been carried out only rarely in the literature.
The reader is referred to Chapter 1 for a review of the correlated literature.
For what concerns practical applications, the theoretical results obtained in the anal-
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ysis made in this chapter could be applied to the acquisition design of fixed effects
panel data in both microeconometrics and macroeconometrics (Greene, 2003, Chap-
ter 13). A semi-artificial validation on existing datasets could also be performed by
inserting artificial noise with variance expressed as in Eq. (2.27), possibly with the
inclusion of an additional constant term in that variance, to model the case of the
original dataset before the insertion of the artificial noise. As a possible extension, one
could investigate and optimize the trade-off between training set size and precision of
supervision for the unbalanced FEGLS case (in which different units are associated
with possibly different numbers of observations)6, for the situation in which some
parameters of the noise model have to be estimated either from the data or from a
subset of the data, and for the case of a non-zero correlation of measurement errors
for the observations associated with different units. Such developments could open
the way to the application of the proposed framework to real-world problems, e.g., in
econometrics. Another possible extension concerns the replacement in the investiga-
tion of the fixed effects panel data model with the random effects one (Greene, 2003,
Chapter 13), which is also commonly applied to deal with the analysis of economic
data, and differs from the fixed effects panel data model in that its parameters are
random variables7. In the present analysis, however, a possible advantage of the fixed
effects panel data model is that it also makes it possible to get estimates of the in-
dividual constants ηn (see Eq. (2.12)), which appear in the expression (2.16) of the
conditional generalization error. Finally, another possible extension involves the case
of dynamic panel data models (Cameron and Trivedi, 2005, Chapter 21).

6The unbalanced case in which all the measurement errors are uncorrelated - therefore, the
FEGLS model is replaced in the analysis by the simpler Fixed Effects (FE) model - is the subject
of our recent work Gnecco, Nutarelli, and Selvi (2020).

7If the additional assumptions of the random effects model hold, then both the fixed and the
random effects estimates are consistent, but the latter is more efficient than the former. However,
if they do not hold, then the random effects model provides inconsistent estimates (Greene, 2003,
Chapter 13).
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Part 2: Machine Learning
and Econometrics
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Chapter 3

Innovation and market size:
an econometric application1

As reported in the Introduction of the present Dissertation, there are problems for
which econometrics tools are still more robust and powerful than machine learning
ones.
The present Chapter introduces one of such instances and specifically the estimation
of the effect of market size on innovation in the Pharmaceutical industry.
Exploring the actual relationship between market rewards and innovation has been
widely investigated in innovation economics for a long time (Scherer, 1982, Schmook-
ler, 2013, Klepper and Malerba, 2010). This opened to the possibility of public
demand in stimulating innovation, such as in the case of orphan drugs. Schmookler’s
"demand-pull" hypothesis, implying that innovation is a function of market demand,
has been challenged over the years. Already in the ’90s Kleinknecht and Verspagen
(1990) noticed that the direction of causality between market size and innovation
appears to be far from obvious. In particular, the authors suggested the presence
of a simultaneous relationship between demand and innovation but did not manage
to control for it. More recently, Stoneman (2010) and G. P. Ball, Shah, and Wowak
(2018) developed more rigorous ways to detect such type of endogeneity.
Acemoglu and Linn (2004) developed a strategy to overcome the endogeneity bias at

1This chapter is partially based on "Product recalls, market size and innovation in the pharma-
ceutical industry" with M. Riccaboni
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the market level. Specifically, they exploited changes in the market size for different
drug categories driven by U.S. demographic trends (Acemoglu and Linn, 2004). After
the contribution of Acemoglu and Linn, 2004, the focus moved from ascertaining the
presence of the reverse causality of market size and innovation to detecting the best
instrument for market size. Indeed, the instrument adopted in Acemoglu and Linn,
2004 was later criticized by Cerda (2007) as being itself endogenous. As detailed in
Cerda (2007), while pharmaceutical innovation increases the age of patients, the fact
that the average age increases imply that more patients would need innovative prod-
ucts. This scenario presents, again, the problem of reverse causality. Indeed, while
demographic trends affect market size which have an impact of innovation, the latter
influences, in turn, demographic trends.
To the best of our knowledge, such a gap in the literature is still unfilled.
Besides, authors, pushed by the studies of Acemoglu and Linn (2004), mainly con-
centrate their efforts on the Pharmaceutical industry. The Pharmaceutical, indeed,
constitutes an ideal case study: in such an industry, consumers’ needs are diverse and
almost constant over time, which allows to separate it into independent sub-markets
based on such needs (Bertoni et al., 2010). Furthermore, investments in innovation are
vital for the industry’s existence. Innovation is also relatively more easily measurable,
being one of the major outputs of the Pharmaceutical industry. In the Pharmaceuti-
cal industry, market size is defined based on the Anatomical Therapeutic Chemical
(ATC) Classification System, i.e., a drug classification system classifying "the active
ingredients of drugs according to the organ or system on which they act and their
therapeutic, pharmacological, and chemical properties" (Skrbo, A. et al. (2004)).
The present Chapter captures the relationships among market size and innovation
at the ATC-3 level by instrumenting market size with recalls (see below) of drugs
operated by the Food and Drug Administration (FDA). The Chapter contributes to
the literature in three ways.
First, we adopt an innovative measure of innovation, i.e., the overall number of trials
at the ATC-3 level instead of the cumulative R&D expenditures or New Molecular
Entities (NME). This necessary modification overcomes the limitations of the other
two most adopted measures. R&D expenditures are, indeed, linked both to firms’
long-term profit decisions (Cohen, 2010) and, more critically, to their size. Stone-
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man (2010), among others, suggested that smaller entrants might be more inclined
to invest in R&D expenditures than their bigger veteran competitors. Hence, inno-
vation as cumulative R&D expenditures of the firms composing the market might be
related to market size as measured by the firms’ cumulative sales composing the mar-
ket. More delicate is the topic concerning NME, also adopted in Acemoglu and Linn
(2004). NME are innovative products that contain active moieties, i.e., significant
parts of the molecule. Such molecule parts were not approved by the FDA previously.
They can be innovative products that have never been exploited in clinical practice.
Alternatively, they can also be related to previously approved products. Though a
complete definition, the one of NME does not fully capture, in our opinion, the will
of innovation by firms inside the market. The reason hinges around the stage of drug
approvals at which NME, with respect to the measure of innovation employed in the
present work, are approved by FDA.
Pharmaceutical drug approval is a long process. Firms should first pass a pre-clinical
phase, a stage of research that starts before that clinical trials (testing in humans)
can begin. During the pre-clinical phase, public agencies collect critical data on the
feasibility of the trial, iterative testing, and safety of the tested drug. The clinical
drug development stage, then, consists of three phases. In Phase 1, the company con-
ducts clinical trials on healthy individuals. This process helps determining the drug’s
basic properties and safety profile in humans. According to DiMasi, R. W. Hansen,
and Grabowski, 2003, "typically, the drug remains in this stage for one to two years".
Once the drug is dispensed to volunteers of the targeted population, Phase 2 begins.
The latter consists, basically, on performing the trial on a larger group of individu-
als with respect to the previous Phase. Finally, Phase 3 compares a new drug to a
standard-of-care drug. NME are FDA-approved entities having overcome pre-clinical
trials. The number of trials, adopted in the present Chapter, also considers the pre-
clinical phase. In other words, the latter measure takes also into account potentially
unsuccessful trials, i.e., trials not passed to the clinical phase, which equally charac-
terize an innovative drive of the firm. A second contribution is given by the adoption
of a more refined classification of the relevant market segments, i.e. ATC-3 classes.
The available data on the ATC-3 level of classification well captures the structure of
sub-markets, usually constructed artificially or disregarded by the literature. The lit-
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erature, in fact, mostly uses ATC-2 and ATC-1 level. When ATC-3 level is employed
is mainly for sake of comparison with other broader levels.
Moreover, the ATC-3 level is the level employed by antitrust agencies. The reader is
referred to Section 2 for details.
A further improvement is methodological. The Chapter adopts an IV approach to
deal with the endogeneity problem of market size. The enhancement compared to
past research consists of the instrumentation of market size with recalls to overcome
the endogeneity issue already detailed. The idea is to exploit sharp and unexpected
recalls. The task of characterizing recalls as being sharp and unexpected requires a
general definition of recalls. We believe that recalls are exogenous. The idea is that,
at the market level, firms cannot anticipate a recall being issued to a competitor. In
Section 3 we provide several arguments in favor of the sharpness of recalls not being
necessarily issued in "more risky" ATC markets.
FDA refers to a recall as "the most effective way to protect the public from a defective
or potentially harmful product. A recall is a voluntary action taken by a company to
remove a defective drug product from the market. Drug recalls are conducted either
on a company’s initiative or by FDA request" (FDA U.S. Food Drug, 2019). In a
recall, the FDA’s role is to oversee a company’s strategy, assess the recall’s adequacy,
and classify the recall. According to their severity, the FDA classifies the recalls in
Class I (more severe), Class II, and Class III (least severe). Medicines may be recalled
for several reasons ranging from health hazards to potential contamination, adverse
reaction, mislabeling, and poor manufacturing. Recalls should not be confused with
withdrawals. Unlike the FDA definition, literature often refers to withdrawals as
post-marketing recalls imposed by the FDA on firms due to their high severity and
risk to human health. Therefore, recalls can be expected and voluntarily made by
firms if minor or sharp and unexpected if most severe and forced by the FDA. In
other words, according to the definition often adopted in the literature, withdrawals
are post-marketing recalls and are often operated on after a severe Class I recall. Fol-
lowing Onakpoya, I.J. et al. (2016), though there are discrepancies among counties,
in the 72% recall procedure due to adverse effects ended up in a withdrawal 2. To

2This estimation was manually computed following the list provided in Onakpoya, I.J. et al.
(2016)
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be consistent with our recall data, looking at major recalls, the majority of Class I
recalls containing the word "death" within their root cause resulted in a withdrawal.
By the very definition of drug recalls, we expect a drop in sales consequent to a drug
recall in a market. To clarify the latter mechanism, one can refer to Merck’s popular
recall of VIOXX in 2004. VIOXX was withdrawn from the market due to an increased
risk for serious cardiovascular events. The recall caught unprepared both the market
and the firm. After the announcement of the recall of VIOXX in September 2004,
shares of Merck and its sales dropped. This drop was publicized by mass media (Ter-
ence N., 2004, Bowe C., 2005 among others) and well recognized by academics (see,
e.g. C. H. Tong, L.-I. Tong, and J. E. Tong, 2009 among others).
In the present Chapter we try to assess such sharp and unexpected recalls ("major
recalls" from now on). The definition of major recalls we adopted throughout the
Chapter has been recovered by filtering the causes of Class I recalls. We filtered re-
calls according to the relevance of the cause, its severity in terms of potential danger
against human life, and the FDA’s actions. Specifically, we comprised in the defini-
tion of major recalls, withdraws, Class I recalls containing critical keywords among
their causes such that:"contamination," "death/s," "overdose," "symptoms," "particu-
late matters," and "adverse reaction".
We did not employ Class II recalls since, in our opinion, they constitute a weaker
instrument than major recalls. Nonetheless, in the dedicated Appendix, we included
the analysis using all types of recalls as a robustness check. The main results are
confirmed.

1 Literature Review

The literature has acknowledged the importance of market size in explaining the rate
of innovation for many years. Back in 1942, Schumpeter indicated that larger firms
are more innovative than smaller ones. In the early ’60s, the focus shifted more
broadly on the possible effects of demand on market size (see, e.g., Scherer, 1982). It
was not yet clear whether the reverse causality of demand and innovation played a
relevant role. Scherer (1982), for instance, argued that causality ran primarily from
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sales to innovation. The study of the author, however, has been criticized in several
aspects. The definition of demand was indeed still too broad and was not conclusive
about the unique sign of the relationship between demand and innovation, i.e. reverse
causality (see, e.g., Mowery and Rosenberg, 1979). At the time, the research did not
focus specifically on the pharmaceutical sector nor looked at the aggregate market
level (see, e.g., Pakes and Schankerman, 1984).
Most recently, Kleinknecht and Verspagen (1990) denounced a clear reverse causality
of demand and innovation, thus invalidating the prior studies. Geroski and Walters
(1995) empirically verified such conclusions soon after, finding out how innovations
increase demand by creating their demand.
Besides, it was clear that heterogeneous shifts of demand played a prominent role in
determining technological development (see, e.g., Malerba, 2007). Between 1980 and
1990 and most recently in 2002, several studies showed, for instance, how innovation
reacted elastically to energy prices.
Nowadays, a huge part of the research on the relationship between market size and
innovation regards the pharmaceutical industry, where innovation represents a push-
ing power. Literature mainly takes into account two levels of aggregation: firm-level
and market-level. Past research efforts have been devoted to identifying the impact
of firm size on R&D investments and output. Nevertheless, this question is still an
open debate (see Mellahi and Wilkinson, 2010, Kolluru and Mukhopadhaya, 2017
among others). Specifically, controversial results emerge due to the difficulty in fully
excluding unobservable endogeneity sources varying with time. Such unobservables
might derive from strategic decisions taken within the firms, which, in turn, might be
related to their size. For example, small pharmaceutical firms are likely to take more
risky decisions than big established ones (B. H. Hall and Rosenberg, 2010). Moving
to market aggregation easily avoids the mentioned concerns. Unobservables related to
market size can principally be considered as intrinsic characteristics of markets and,
consequently, fixed in time. Thus, fixed effect techniques allow researchers to control
for unobservable heterogeneity, purging the idiosyncratic endogeneity of market size.
Therefore, the market seemed a more suitable level, and most authors shifted to the
latter level of aggregation.
The literature on the pharmaceutical sector is vast. Part of its variability is due to
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the measures of innovation adopted. Some authors adopted accounting data focusing
on R&D. While R&D is robust under perfect capital markets, it becomes inconclu-
sive with imperfect markets where current investment choices reflect the future ones.
Within market imperfection, current revenues (market size) are a reasonable proxy
for future market size. This, at first, might cause endogeneity problems due to the
correlation of current revenues with unobservables (e.g. risk propensity of the firms’
management). Moreover, since present R&D may be responding both to present and
future sales opportunities, the coefficient of market size might incorporate two effects
that are difficult to separate. Aware of such an issue, the authors included lagged
proxies of the market size (see, e.g., Giaccotto, Santerre, and Vernon, 2005 who es-
timated that a 1% increase in price leads to a 0.58% increase in R&D spending).
Other problems related to R&D measure are reported in B. H. Hall and Rosenberg,
2010. To give an idea, several authors (see e.g. Pammolli, Magazzini, and Riccaboni,
2011, Baumann and Kritikos, 2016 among others) showed how, though pharmaceuti-
cal firms made substantial investments in R&D, the latter did not produce innovation
3.
Other measures of innovation include clinical trials (see Kyle and McGahan, 2012
among others) and changes in Medicare part D. Medicare part D is an optional United
States program to help beneficiaries of the national health insurance Medicare, to pay
for self-administered prescription drugs. The usage of Medicare part-D as innovation
measure might affect both present and future market size (Blume-Kohout and Sood,
2013, Dubois et al., 2015). As suggested in Blume-Kohout and Sood, 2013, "Medi-
care Part D could have affected firms’ R&D expenditures both to its expansion of
expected future markets for products still in pipeline, and also via two supply side
mechanisms." (see Blume-Kohout and Sood, 2013 for further details). Thus, Medi-
care part-D might have stimulated current and, critically, future sales through R&D
expenditures. Scholars found a positive response of innovation to shocks in market
size. Again, the problem remained the possible co-occurrence in innovation’s response
to both current and expected cash flows generated by market size shocks. Within the
estimated coefficient of market size was therefore impossible to distinguish between
current and future effects. In the present chapter we mitigate such an issue by taking

3Thus undermining the validity of R&D investment as a good proxy for innovation.
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all active projects having generated innovation and failed projects in all the clinical
and pre-clinical Phases. Thus, our innovation measure affects only current market
size. The future market size is, indeed, just partially influenced by currently active
(and failed) projects. The latter hypothesis has been tested in the robustness checks
(where the lag of innovation has been inserted as a covariate).
Besides, innovation has been quantified by the number of relevant medical journal ar-
ticles (Lichtenberg, 2006). Further measurements comprise the number of new drugs
launched, including generic drugs (Acemoglu and Linn, 2004, Dubois et al., 2015) in
the form of New Molecular Entities (NME), New Chemical Entities (NCE), or ap-
provals of new medicines by the FDA.
Similarly, many measures of market size have been embraced.
Acemoglu and Linn (2004) gave a first significant contribution on the relation be-
tween market size and innovation in the pharmaceutical industry. Their idea relies
on adopting demographic shifts to instrument market size controlling for observables
or unobservables arising from reverse causality. In particular, Acemoglu and Linn
(2004) exploited variations in the expenditure share of different U.S. age cohorts for
different therapeutic classes from 1970-2000. They discovered that a 1% increase in
the shares of expenditure would lead to a rise of 4% in the number of new medicines,
a far higher elasticity than the average elasticity found in the remaining literature
(Dubois et al., 2015). Cerda (2007) provided further insights on the results found in
Acemoglu and Linn (2004). Employing U.S. demographic data, Cerda (2007) showed
that there are essential feedback effects not considered in Acemoglu and Linn (2004).
New drugs might affect the market size through their impact on the mortality rate.
Indeed, innovative medicines are likely to cure more diseases, raising the population’s
average age and, hence, the number of older people needing such cures. Demand
shifts accordingly, bringing out again the issue of reverse causality.
Recent literature on the topic improves above all on the methodological part (see e.g.
Lichtenberg, 2006, Civan and Maloney, 2009, Dubois et al., 2015, Rake, 2017 and
others). Dubois et al., 2015’s novelty pertains the usage of global pharmaceutical
data at the ATC-1 and 2 levels. Dubois et al., 2015 still employs demographic shifts
as instrument for market size. Civan and Maloney, 2009 found out that "the higher
the prices of existing drugs in a therapeutic category, the larger the number of drugs
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in the development pipeline in that therapeutic category". It is important to notice
that Civan and Maloney, 2009’s work is more focused in estimating the elasticity of
drug development to the market price of drugs. Their results are conducted using
R&D as a measure of innovation and suffer from the endogeneity of prices in the
elasticity equations adopted to reach the results. Finally, Rake, 2017 adopts a unique
database and a Poisson Quasi Maximum Likelihood approach to reach his results.
His contribution is also related to the usage of New Molecular Entities (NME) and
New Drug Approvals (NDA) as measures of innovation.
Authors found, on average, that a 1% increase in the market size measure increases
innovation of 0.4% to 0.7%.
Past papers acted mainly at disease level or, at most, at ATC-1 or ATC-2 levels (see
e.g.Dubois et al., 2015). To the best of our knowledge, no works are focusing on the
more interesting ATC-3 level at which antitrust authorities work. According to us,
there are several advantages of using drug classes rather than disease classes. Firstly,
since firms make directly the request for undergoing a New Clinical Trials (NCTs),
NMEs, or NDAs, devoting too much attention to the demand-side might neglect the
supply-side dynamics, which induce firms to undergo an NDA, NCT or NME. In par-
ticular, aggregate sales of drug classes align to the supply-side dynamics, while sales
based on disease classes (i.e., aggregated sales of products purchased by patients) are
more related to the demand side.
In other words, while firms might follow demand-side stimuli to undergo an NDA (or
an NCT), they, above all, look up at the competitors, i.e., products of other compa-
nies in the same ATC class. The latter applies to commercial trials when the sponsor
is a pharmaceutical industry and not academy/research related. Thus, aggregating
sales into disease classes, forces them to be clustered in a demand-driven group which
is less informative on the supply-side dynamics (i.e. behavior of competitors) leading
the firm to undergo an NME, NDA or NCT. When estimating the effect of market
size grouped into disease-classes (demand-riven) and innovation (supply-driven), one
might incur in an underestimation of the latter effect.
Furthermore, by taking disease classes, one includes in the definition of innovation dif-
ferent chemical and therapeutic typologies of drugs ranging from topical to systemic
drugs, from vaccines to ointment. This lack of distinction might lead to endogeneity
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through several channels, such as people’s expectations. Patients might beware of
some drugs, affecting the probability of having a larger market size for the product’s
typology under question. Other endogeneity sources regard the possibility of a correla-
tion between regressors and the error term (which includes "drug-type"). For instance,
regulations may be product type-specific (e.g., the regulations of the WHO vaccines
do not apply to other drug types). Other possibly problematic controls are knowledge
stocks, which could again depend on the product type. Moreover, knowledge stocks
might increase by developing innovative medicines in classes where only a particular
type of medicine has been developed until that moment. An example is provided
in dermatology, where academics produce papers for adopting topical medicines for
systemic usage due to some systemic medicines’ undesired side effects.
Finally, the length of a clinical trial varies depending on the type of medicine under
study, which may cause lagged effects of market size if disease class is employed.
To the best of our knowledge, among the several innovation measures, no work ex-
ploited INDs and early stages clinical trials (i.e., pre-clinical and Phase I) together
with Phase II and Phase III trials.
The two more recent estimates of the relationship between market size and innova-
tion have been provided in Rake (2017) and Dubois et al. (2015). The latter used
NCE to measure innovation and defined market size as a measure of expected revenue.
The dataset comprised information about sales for 14 different countries. Specifically,
Dubois et al. (2015) measured market size as the total revenue over the entire life
cycle of a branded drug. Dubois et al. (2015) performed a control function approach
and recovered an estimate of the relation between market size and innovation for
each therapeutic class at level 1. The average elasticity of innovation to the market
size in Dubois et al. (2015) was about 23%, which is relatively low than the average
estimates. A possible explanation can be found in Blume-Kohout and Sood (2013),
which states that several of the countries chosen for the analysis regulate prescription
drug prices, and regulations may change rapidly over time. Thus, given the lower
expected profit per consumer and more significant uncertainty about future profits
and prices, firms’ R&D decisions are likely to be less responsive to a unit change in
expected revenues for all these countries combined versus the exact unit change in
the U.S. market.
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Finally, Rake (2017) adopted several measures of innovation from NCE to clinical
trials in Phase II and Phase III. Rake (2017) found no evidence of reverse causality
when adopting NCE. One of his efforts was to account for changes in the industry’s
R&D process, from "random screening" to "guided drug development". (Rake, 2017)
modeled technological opportunities and inserted them as regressors in the analysis,
finding a positive relationship with Phases II and III trials. His results are in line with
Cerda (2007) and Acemoglu and Linn (2004). Tab. 23 in the Appendix provides a
schematic literature review on previous estimates of the relation between innovation
and market size.

2 Data

The sales data employed come from Evaluate dataset. The controls have been ex-
trapolated from Evaluate, from the PHarmaceutical Industry Database (PHID) and
FDA. Specifically, some of the regressors derive from an elaboration of the variables
present in the PHID database.
Sales data for the US pharmaceutical market range from 2004 to 2015. Sales data
were initially available at the product and molecule level and have successively been
aggregated at the ATC-3 level. In the ATC classification system, drugs are classified
at five levels (ATC-1, ATC-2, ATC-3, ATC-4, ATC-5): the higher the level, the more
detailed the classification. Acemoglu, Linn (2004) employed ATC-1 and ATC-2 cate-
gorizations to define market size. In particular, Acemoglu, Linn (2004) constructed
market size as the "the average expenditure share of drugs in (ATC-1 or ATC-2) cat-
egory c in the total income of those in age group a".
The data at our disposal allow us to catch the diverse strata of products inside broader
classes (ATC-1 and ATC-2) in terms of both demand and supply dynamics. Medicines
classified inside an ATC-1 or an ATC-2 level can satisfy patients with completely di-
verse needs since they are designed to cure various diseases. Simultaneously, a firm
investing in the same ATC-2 sector might invest in more ATC-3 sectors. In the case
of ATC-1 or ATC-2 adoption, the missing information about the firms’ investments
in ATC-3 classes may lead to the construction of uninformative innovation and mar-
ket size variables. Such variables might not consider the firms’ specialization in a
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sub-sector rather than in another one belonging to the same ATC-2 or ATC-1 class.
In the Appendix, we have also evaluated other levels of analyses (firm, product, and
ATC-firm aggregations) but opted for the ATC-3 level because of the importance of
the ATC-3 level being employed by antitrust agencies. We avoid adopting the ATC-4
level since, at such a level of granularity, products belonging to a specific ATC-4 class
might not differ substantially from others belonging to another ATC-4 class. This
might lead to between-group dependencies (e.g., innovations in an ATC-4 may also
affect a close ATC-4 class) which could cause inference to be invalid. Further, at the
ATC-4 level, compensations may also intervene between groups, thus invalidating the
strength of the instrumental variable recalls. Such compensations might regard, for
instance the drop in sales due to a recall of a product belonging to an ATC-4 level
with the sales another one belonging to another ATC-4 level. This is due to the high
similarity of ATC-4 classes.
The available data also contain the launch date and ATC code of products. We fo-
cused on worldwide sales of US companies.
Data on NCT for 2004-2015 at product level come from the ClinicalTrials.gov website,
while data on commercial Investigational New Drugs (IND) at product level derive
from a Pharmaceutical Industry Database maintained at IMT Lucca.
Clinical trials are research studies performed on people who aim to evaluate a med-
ical, surgical, or behavioral intervention (NIH, National Institute on Aging, 2020).
An IND in clinical trials means a company working in the pharmaceutical industry
is authorized to start human clinical trials. With an IND, the firm is also allowed to
ship an experimental medicine across state lines before approving a marketing appli-
cation.
Clinical trials comprise trials from Phase I to Phase IV. Fig.3 displays the yearly
number of trials and commercial IND as obtained by the mentioned sources.
It also shows the expected positive trend of sales of the Pharmaceutical industry in
time.
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Figure 3: Overview of sales’ and trials’ trends.

A considerable drop in Trials and IND occurred after 2013, as it is evident from
Fig.3 (a). The reason for such lack is that, in general, clinical trials innovate drugs,
approaches, and interventions. However, approaches and interventions are excluded
from the count of trials to focus strictly on innovation coming from industrial sources.

Recalls data have been manually collected from different sources, among which FDA
website, openFDA, various articles, and web sources (e.g., Onakpoya, Heneghan, and
Aronson, 2016; WHOCC website, PubMed, Siramshetty et al., 2016 and others).
The 7.19% of the firms’ sample (i.e., 697 firms in total) have issued Class II recall.
Among the firms that issued a recall, 51 firms underwent a recall of Class I, 27 of
which issued a single recall of Class I, and just three firms issued more than 9 Class
I recalls.
Besides, the recalls of pure compounders were only partially included 4 and, when
included, were attributed to the unique manufacturer/distributor in the database.
Finally, recalls coming from repackaging firms were not attributed uniquely to the
repackager (e.g., Aidapak) but to the labeler specified in the NDC.
Due to the need of excluding recalls coming from repackagers and compounders, it is
not easy to establish a unique and unambiguous pattern of recalls over the years. The
situation is further complicated wherever different resources employ different method-
ologies to count the recalls. An example of the cited uncertainty in sources is found
when comparing Unger Consulting (2017)5 and Laguna Treatment Hospital (2019).

4Due to the unavailability of data. We verified that the representativeness of recalls is preserved
F., 2021

5 n.d.
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Specifically, Unger Consulting (2017) asserts that the number of recalled products had
remained reasonably constant except for 2010 and 2013, when the number went down
by approximately 35%. The statement contrasts with what was reported in Laguna
Treatment Hospital (2019). According to Laguna Treatment Hospital (2019) "a spike
in the number of drugs recalled occurred in 2013. There were nearly 60 recalls in that
year alone. However, 2017, with 71 recalls, saw nearly the highest number of recalls
since 2009. Only 2011 and 2009 surpassed it at 74, and 75 recalls, respectively".
Tab. 7, provides a list of the primary sources and the average number of recalls across
them. The following is an attempt to overcome the mentioned issues involving the
dissimilarities of data origins.

Year CNN Regulatory Focus K. Hall et al., 2016 FDA Enforcement Reports Laguna Treat. Hospit. AVERAGE
2004 68 68
2005 140 140
2006 384 109 243
2007 391 56 189
2008 426 128 176 244
2009 1742 85 1660 890
2010 135 389 262
2011 236 1279 75 530
2012 381 499 1518 799
2013 1031 1283 848 60 805
2014 640 1344 893 959
2015 1584 1584

Table 7: Sources with reported number of recalls

To overcome the dissimilarities of data origins, we chose the average as the bench-
mark to compare with the collected recalls. Fig.4 illustrates in more detail the com-
parison between the benchmark recalls represented by the average recalls among all
sources and the collected recalls. The recalls of the repackager Aidapak of 2011 are
considered as "outliers" and, for this reason, are not included among the collected
recalls at this stage.
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Figure 4: The number of our recalls against the number of the benchmark recalls (average
of sources). We include the minimum and the maximum number of recalls retrieved by the
different sources. Mint colored points represent the minimum amount of recalls retrieved among
all the sources at our disposal. Red points represent the maximum number of recalls among all
the sources. A single mint point has been put whenever a single source was present for a year
(2004, 2005, 2015).

Fig. 4 underlines a disproportion in terms of the number of recalls starting from
2009, with respect to the benchmark. Such deficiency pertains to the counting method-
ology together with the structure of the database (see above).
Though the global trend is approximately reproduced, 2011, 2013, and 2015 represent
problematic years due to the abundance of compounding an repackager recalls. The
dissimilarity of 2011 concerning the benchmark can be easily explained. Indeed, with
the exclusion of Aidapak’s recalls from the count of the collected recalls, the latter
dropped. Furthermore, 2013 and 2015 have far fewer recalls than expected because
more than 60% of the recalls in 2013 and nearly 75% of the recalls in 2015 were
represented by compounding firms.
The trend of recalls of the benchmark seems to be well reproduced, however, when the
recalls of pure compounders are excluded from both the benchmark number and the
sample of collected recalls. Fig. 5 shows, indeed, an accordance in trends. Aidapak’s
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recalls are here included. Indeed, Aidapak is a repackager and not a compounder.
Besides, we want to show that 2011 does not constitute a problematic year once
Aidapak’s recalls are considered.
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Figure 5: The number of our recalls against the number of the benchmark recalls without
compounding recalls. We included the minimum and the maximum number of recalls retrieved
by the different sources. Mint colored points represent the minimum amount of recalls retrieved
among all the sources at our disposal. Red points represent the maximum number of recalls
among all the sources.The situation i almost unchanged with respect to Fig. 4 until 2011. From
2011 on, the recalls collected in our dataset follow the benchmark if compounders’ recalls are
excluded more precisely.

To conclude, as a check of the exogeneity of recalls, we constructed a box plot
displaying the average number of trials (and their dispersion) in both ATC markets
having undergone a recall and not having undergone a recall by year. The latter
exercise helps in understanding that major recalls do not necessarily intervene in
more innovative markets. Indeed, Fig. 6 displays that the yearly number of trials of
ATC markets undergoing major recalls almost coincides with the average number of
trials in all other markets.
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Figure 6: The box plots show how, on average, recalls do not necessarily happen in more
innovative markets. The average number of trials amounts to 123 for ATC-3 markets
having undergone a recall and 118 for ATC-3 markets not having undergone a recall.
The graph reports a yearly analysis of the average number of trials in recalled and not
recalled ATC-3 groups. The average number of trials is similar in both the ATC-3 markets,
having undergone at least a recall (R) and ATC-3 markets not having undergone any recall
(NR).

3 Methodology

The main theoretical framework is the same adopted in Acemoglu and Linn (2004).
In particular, Acemoglu and Linn (2004) model innovation, the dependent variable of
the present model, as being proportional to market size. The measure of innovation
is the number of clinical trials in all Phases for the ATC-3 category i. The measure of
market size is the sum of products’ sales for the ith market. We added to the analysis
further potential determinants, time effects, and category effects. The theoretical
model returned is the well-known estimation Poisson model:

E[Nit|µi, ζt,Xit,Mit] = exp(β1 · logMit+β2 ·Xit+µi+ζt) ∀i= 1, . . .N,t= . . .T (3.1)
where E is the expectations operator, Mit represents endogenous market size, Xit

captures age (e.g. average age of products in category i weighted for products’ size) ,
diversification and innovation patterns (e.g. scientific production), µi are ATC fixed
effects and ζt time fixed effects. The estimation of (3.1) as written above, however,
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would lead to biased estimates for two reasons: first of all, the non-linearity in (3.1)
makes it impossible to estimate the fixed effects consistently; secondly, market size is
endogenous.
As mentioned in the introduction of the present dissertation, no robust machine learn-
ing method has –at the time being – been developed to solve such statistical difficul-
ties.
Thus, in order to deal with both problems, a novel control function (CF) IV approach,
described in W. Lin and Wooldridge (2019) has been adopted. With respect to past
literature, the present method allows for correcting (i.e., testing and estimating) two
potential sources of endogeneity: the one arising from the correlation of the regressors
with time-constant, unobserved heterogeneity and the one due to the correlation be-
tween covariates and time-varying idiosyncratic errors. Furthermore, it can be easily
extended to non-linear scenarios with fixed effects.
Specifically, denoting as κit the idiosyncratic shock and ci the individual heterogeneity,
the unobserved effects non-linear model allowing for both idiosyncratic endogeneity
and heterogeneity endogeneity might look as follows:

E[Nit|Mit, zit, ci,κit] = ciexp(xitβ1 +κit) (3.2)
where xit = (Mit, zit). zit would typically include a full set of time effects and Mit

is the endogenous variable. The exogenous variables, including the vector zit, might
correlate with the heterogeneity (i.e., no random effects). There is also a set of
excluded exogenous Rit2 serving as an instrument for the potentially endogenous
variable. In the present work, Rit2 is represented by recalls. W. Lin and Wooldridge
(2019) noticed that, without the idiosyncratic endogeneity, an appealing estimator
would be a fixed-effects Poisson estimator, which, viewed as a QMLE, would only
require a strict exogeneity assumption with respect to the idiosyncratic shocks to
ensure consistency. Such an assumption is exploited as a null hypothesis for testing
idiosyncratic endogeneity against the alternative of total dependence of the error
term of the specification of Mit and κit. The alternative is composed of exploiting
the reduced form equation for the endogenous variable

Mit = zitΠ + ci2 +uit2 ∀t= 1, . . .T (3.3)
where because the zit is strictly exogenous, it is tested the correlation between κit

and functions of uit2. W. Lin and Wooldridge (2019) developed a simple procedure
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allowing to test for idiosyncratic endogeneity and produce consistent estimates also
in co-presence of non-linearity, fixed effects and both types of endogeneity. The
algorithm follows the steps below:

i) Estimate the reduced form for the endogenous through fixed effects and obtain
the fixed effects residuals üit2 = M̈it− z̈itΠ̂

ii) Use fixed effects Poisson on the mean function

E
[
Nit|Mit, zit, ci, üit2

]
= ciexp

(
xitβ1 + üit2ρ

)
use robust Wald test of H0 : ρ= 0

Step 2 allows estimating the fixed effects in the presence of non-linearity consistently.
Yet, fixed effects Poisson enables eliminating ATC-level fixed effects performing a
conditional ML consistent estimation. The reader is referred to Cameron and Trivedi
(2013) for further details.
A characteristic of Poisson-FE models is that they require the dependent variable to
be nonzero for at least one time period. The lower the proportion of zeroes in the
dependent variable, the better the model works. The last condition has been fulfilled
by dropping those ATC categories not meeting it, constituting approximately 10% of
the total ATC-3 in the sample.
We estimated several instances common to literature to check for either delayed ef-
fects of trials or the presence of a bias if market size were considered exogenous (or
fixed effects omitted).

Throughout, the problem of endogeneity in market size has been exposed as being
intrinsic to market size. Hence instrumentation of the endogenous Mit is needed.
Market size is instrumented through normalized recalls. The normalization is on the
number of products present in the market i at time t. Calling m the major recalls,
normalized recalls are denoted as follows:

m̃= m

#prod. ·100.
As aforementioned, normalization is necessary to avoid another source of endogene-
ity. Indeed, ATC markets with more products are more likely to recall by definition.
Omitting such control would partly invalidate the estimates. The belief is that mar-
kets undergoing major recalls experiment with a sudden negative shock in sales. The
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relevance of the instrument is tested in Section 4.
The instrument is not directly related to the dependent variable. The central argu-
mentation that might directly connect normalized recalls to trials is that the lack left
by recalls is filled with innovations. Hence, sectors that are more prone to undergo a
recall should also be the most innovative ones. In literature, there seems to be con-
trasting evidence about the topic. Though the argumentation would imply a positive
impact of recalls on innovation, the recent events seem to contradict such findings.
Indeed, albeit an increasing number of recalls from 2004 to 2015 (see, e.g., Fig.4), the
innovation crisis of the pharmaceutical industry is a widely known and recognized
phenomenon in literature (see e.g.Pammolli, Magazzini, and Riccaboni, 2011, Price
and Nicholson, 2014 among others). It might be argued that the contrasting effects
leading to the drop of innovation have overtaken the positive effect of recalls, thus
favoring the decreasing pharmaceutical innovation trend. Therefore, the positive ef-
fect of recalls on innovation could still be present but hidden. Empirical research has
conducted few analyses to explore the relationship between innovation and recalls
or withdrawal in general. Fortunately enough, most severe recalls have considerable
media coverage, which allowed researchers to collect data on market reaction to such
bad events (see, e.g., Pérez-Rodrıguez and Valcarcel, 2012). Authors working on such
a stream of literature conclude that the impact of recalls and withdrawals on market
innovation has a high variability: some recalls have considerable effects while others
have none at all. There seems not to be a systematic way to identify the recalls whose
announcement impacted innovation among major recalls. Market reactions depend
on not controllable criteria, such as the period during which the recall took place and
eventual delays in the FDA’s communication of the recall. Generally, however, the
market does not systematically overreact to such shocks, invalidating any dependence
between recalls and innovation.
To summarize, direct connection sources between innovation and recalls are mainly
due to the fixed and time effects. FDA delays cannot be easily controlled. The FDA
developed precise guidance and protocols for recall communication and announce-
ment for the period considered in the present Chapter. Hence, delays constitute a
minor issue because FDA regulates them. For the sake of completeness, thanks to the
FOIA agreement signed, openFDA, and FDA Enforcement report, it has been pos-
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sible to verify the happening of delays. The mentioned sources allowed us to access
the time gaps between recall initiation, recall classification, and recall termination.
The communication of a recall is part of the initiation process. Above all, in case
of severe recalls, it must be prompt. The average time between the initiation and
the termination for Class I and Class II recalls has been around 23 months. A de-
lay in communication might happen in the first initiation phase. The average time
that the initiation phase took for any Class I and Class II recall was four months
approximately. For our sample of major recalls, the initiation phase’s average time
has been approximately 2 to 3 months, in line with prompt communication criteria.
This evidence enforces the limited impact of delays on the analysis.
Dropping out unobserved heterogeneity and including time dummies in the primary
specification, control for possible direct connections between recalls and innovation.
Thus, the mentioned operations ensure only an indirect effect of recalls through sales.
Further arguments in favor of the indirect effect of recalls on innovation follow.
In particular, the recalls taken into account are severe recalls of marketed products.
The time gap between trial phases and the marketing of a drug usually takes between
8 to 14 years. Such a significant time gap is relevant to guess and understand competi-
tors’ possible reactions to a drug recall in the same sector where a firm is operating.
We believe that a competitor that underwent a recall in the sector in which both firms
operate does not increase or decrease the risk of innovation in the short run. Indeed,
marketed products undergo major recalls long after that they are commercialized.
Besides, the lack of sales left on the market by recalling the drug requires an ex-
tended period to recover fully. Hence, there is no need to invest in clinical trials to
take advantage of such a shortage in the short run. As a further check of the latter
conjecture, we build up a time-to-event analysis in Fig.27 of the Appendix. Fig.27
takes into account all types of recall and clearly shows how a recalled product has a
truncated life compared to drugs having a normal life cycle.
In particular, Fig.27 displays how the survival rate of drugs that did not undergo a
recall is persistently higher than the survival rate of drugs having undergone a recall.
Hence, having undergone a recall decreases the "probability of surviving of a drug".
Under normal conditions, drugs have a probability greater than 0 to survive more
than ten years. However, if a drug underwent a recall, this probability drastically
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reduces to almost 0. Notice that the probability that a recalled drug survives two
years is still consistent. The median survival time is five years.
Thus, after a recall, the drop in sales is likely to remain unfilled for years. Indeed,
had firms found innovative replacements for recalled drug d, which allowed them to
recover the shortages left by the recall of d, there would not be any reason to keep
selling drug d for years. Recalled products, therefore, leave a long-term lack in terms
of sales within the ATC-3 market to which they belong.
A further argument against the coverage of lacks left by recalls through innovative
products is that such shortages might be filled by drugs already present in the market,
whose trials started before, soon after, or at the same time as the trials leading to
the recalled drug. This eventuality is reasonable since, as mentioned, suspended or
terminated studies are excluded from the sample, meaning that remaining clinical
trials sponsored by concurrent firms are likely to arrive on the market with products
belonging to the same therapeutic class. Competition of wholesalers within an ATC
might reveal in early stages once it is evident that a firm will develop an innovative
cure. The development of alternative drugs is encouraged from the early trial phases
when there are still chances to arrive first on the market. Medicines substituting
recalled drugs in the same ATC might be developed soon after the recalled medicine
in a "first to arrive" competition rather than a "fill the gaps of recalls" logic. The
latter may also be because the demand for patented medicines of the type of the
recalled drug was likely more consistent when the trial for the recalled drug started.
In the eventuality that demand propagates at the recalls’ time, either already existing
generics or new ones (trials of generics is indeed less time consuming since they only
need to ensure bio-comparability) might intervene and fill the gap.
It is worth noticing, in any case, that the potential positive relationship of recalls and
innovation exploiting the market lacks passes indirectly through market size. Indeed,
the emergence of new trials within a market after a recall depends on the demand that
the product in question generated. If a recalled product had no underlying demand,
it is reasonable to expect no company to begin a costly trial only to fill the lack left
by the recalled product. Therefore, the response of innovation seems to depend on
the underlying magnitude of the recalled product’s demand, i.e., market size, rather
than on the recall itself.
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Finally, another possible critique undermining the instrument’s validity is that recall
of product i might have provoked the recall of trials concerning similar products. This
domino effect hangs on the causes of the recall. Indeed, if the recall concerns only the
specific product being withdrawn from the market, implications on other companies’
products are unlikely. For instance, it is possible that after the recall of the COX-2
inhibitor, Vioxx, due to cardiovascular side effects, all firms having ongoing trials
on the same target did suspend or withdraw the trials relating to COX-2 inhibitors.
To the best of our knowledge, no effort has been made to explore this possibility in
the drugs market. The only work approaching the critique is G. Ball, Macher, and
Stern (2018). The authors, however, focus on the medical devices industry, which
has different legislation for recalls than the drugs’ market. Indeed, a device’s recall
is a common practice made ordinarily by firms to repair or update a device, which is
usually promptly placed back to the market. The way we managed the circumstance
is threefold. First, we considered only active trials, thus excluding suspended and
withdrawn trials, including those suspended due to other drugs’ recall. In a second
instance, we also removed trials of companies undergoing a recall. Ultimately, as far
as it has been possible to link the reason for the severe recalls 6 we dropped trials
adopting a similar active principle. The latter instance happened in a few cases since
eliminating suspended and withdrawn trials constitutes already a robust control.

6Above all in case of adverse events caused by an active principle adopted in the drug to the
scope of a trial
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4 Results

The results section is divided into two main subsections. Namely, the impact of recalls
on the endogenous market size is first analyzed as measured by total sales of ATC i.
The aim is to provide convincing arguments in favor of the relevance of the adopted
instrument.
Successively, the results of the impact of the instrumented market size on innovation
are presented.

4.1 The impact of recalls on sales

Summary statistics

This Section reports summary statistics for the sample. Tab.8 contains average values
and standard deviations (below) of relevant variables for the full sample and two
separate sub-samples for observations associated or not to recalls. The Table includes
such information at the ATC-3 level and refers to major recalls. Tab.8 embraces all
the relevant controls employed for constructing Tab.13.
Tab. 8 displays the overall, between, and within standard deviation for the main
controls included sales. The statistics are provided for the total sample, the subset
of ATC-3 having undergone at least a recall, and the sub-sample of ATC-3 without
recalls. The panel of sales in Tab. 8 displays how, typically, the recalls are found
in larger markets than the average. For this reason, recalls have been normalized
by the number of products in the ATC market to avoid possible problems of reverse
causality with the market size. The normalized recalls have been denoted as ˜recalls

in the following paragraphs.
Moreover, as expected, more competitive markets are more prone to recalls, as dis-
played by the Herfindahl–Hirschman Index (hhi). There is evidence of differences in
terms of competition between ATC-3 groups. The Appendix provides further insights
into which type of firms and products generally undergo a recall. Specifically, in Ap-
pendix 3 we evidence a general tendency of recalls to be located in big established
firms and to regard relatively older products than the average age.
On the contrary, with respect to firm and product levels, recalls are located in more
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Table 8: Summary statistics at the ATC-3 level for the full sample, the subset of the ATC-3
having undergone a recall in the period considered, and the subset not having undergone a recall.
Database at the ATC-3 level is balanced.

ATC-3
Variable Full Sample Subs. recalls Subs. no recalls Description

Sales (log)
Overall mean 19.405 20.794 19.054

Log of sales at ATC-3 level.Overall Std. Dev. 2.233 1.475 2.256
Between Std. Dev. 2.152 1.441 2.163
Within Std. Dev. .614 .378 .661

Outflow rate (Kt+1
P−1

)
Overall mean .086 .056 .093

It is defined as the number of lost products in
an ATC-3 (Kt+1 in regressions) over the total

number of products in t−1 (P−1 in regressions).
Overall Std. Dev. .257 .064 .285
Between Std. Dev. .109 .036 .120
Within Std. Dev. .233 .053 .259

Avg. age of firms
within ATC

Overall mean 35.907 33.275 36.573
It is the average age of the firms competing
within an ATC-3. The foundation year of

the firms was present in the data.
Overall Std. Dev. 7.631 5.420 7.960
Between Std. Dev. 6.767 4.452 7.093
Within Std. Dev. 3.556 3.160 3.650

Herfindahl–
Hirschman Index

(hhi)

Overall mean .431 .268 .434
The hhi measures the competition within a market.

It can range from 0 to 1.0, moving from a huge number
of very small firms to a single monopolistic producer.

Overall Std. Dev. .260 .159 .262
Between Std. Dev. .236 .166 .240
Within Std. Dev. .110 .020 .115

Share generics
by ATC

Overall mean .746 .725 .752
It represents the percentage of generic products,
among all products sold in an ATC-3 market

Overall Std. Dev. .255 .214 .264
Between Std. Dev. .238 .210 .245
Within Std. Dev. .092 .052 .099

Avg. age prod.
by ATC

Overall mean 13.159 12.043 13.441
It represents the average age of product within
an ATC-3. The age of a product is based on

the foundation year of the firm that produced it.
Overall Std. Dev. 5.333 3.763 5.627
Between Std. Dev. 4.909 3.568 5.164
Within Std. Dev. 2.109 1.304 2.268

Scientific knowledge
within ATC

Overall mean 6.327 6.787 6.211
The number of papers and scientific publications for
an ATC-3 present in PubMed and other sources.

Overall Std. Dev. 1.718 1.623 1.724
Between Std. Dev. 1.705 1.627 1.709
Within Std. Dev. .242 .177 .256

Number of firms
within ATC

Overall mean 21.054 32.802 18.082
Number of firms trading within an ATC-3Overall Std. Dev. 20.954 23.442 19.175

Between Std. Dev. 20.604 23.069 18.876
Within Std. Dev. 4.050 5.367 3.645
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dynamic ATCs, where recalled drugs were pioneering in the past. Fixed effects tech-
nique accounts for time-invariant characteristics of ATCs.
The recalls intervene in firms with a high share of generics (see Appendix 3). This
finding might result from a less stringent policy for generic drugs’ approvals than
branded ones. Growing concern for generic safety is, in fact, a well-known problem
in literature (see, e.g., Gallelli et al., 2013).
Besides, in ATC markets, the outflow rate presents a within variance higher than the
between variance. The latter means no difference between ATC-3 groups concerning
the outflow rate. As opposed to the firm level, this inversion is expected. Indeed,
while strategic policies of product placement might occur in firms, this is not the case
for ATC aggregation, where market laws apply. Thus, on average, even two utterly
different ATC markets would display similar outflow rates following only a demand-
supply logic.
Two other variables seem to be related to recalls at the ATC-3 level, i.e., scientific
knowledge within an ATC and the number of firms trading within an ATC. Specif-
ically, the recalls happen in ATC markets where, on average, trade more firms and
scientific knowledge is more advanced than other markets.
To summarize, the recalls regard relatively old drugs produced in big established
firms. The major recalls occur in relatively dynamic markets whereby, on average,
many younger firms operate, trading relatively young products. A possible reason
the markets having the described characteristics undergo more easily recalls is that
they are precisely the markets monitored by the legislator with special attention.

Analysis of the determinants of drug recalls

This section reports the first-stage results. A Fixed-Effects estimation method is
employed. Tab.9 shows the estimates of the first stage at the ATC-3 level. As detailed
below, a different level ATC-Firm has been added to test for compensations within
ATCs inside firms. For consistency with the best model, the sample was truncated
in 2013 also for the first stage. Outcomes with a not-truncated sample display very
similar results (see Appendix 3). The F-statistic amounts to 14.32.
The standard errors included in the Tables of the present Chapter are all robust and
clustered at the ATC-3 level of aggregation.
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Table 9: First stage results at different levels.
ATC-3 aggregation represents the main specification.

(ATC-Firm Aggregation) (ATC-3 Aggregation)
Log sales Log sales

˜recalls −0.0053 −0.0283∗∗∗
(0.0033) (0.0056)

˜recallst−1 −0.0226∗∗ −0.0267∗∗∗
(0.0083) (0.0070)

Kt+1
P−1

0.1932∗∗
(0.0628)

average age firm 0.1576
(0.0921)

average age firm2 −0.0020
(0.0013)

hhi 1.2405∗∗∗
(0.2590)

share generics in ATC −0.1895
(0.3373)

papers −0.0260
(0.0507)

# firms 0.0077
(0.0071)

Year Dummies Yes Yes
Obs. 48915 1664
Groups 8634 208
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Huber-White robust and clustered (at the ATC-3 level) standard
errors are in parentheses. First-stage results are shown in this Ta-
ble. (1) fits an F.E. model at the ATC-Firm level, i.e., ATC lines
of productions within firms. This level is introduced to check the
possibility of compensations between sales of products belonging
to the same ATC (excluded due to the significance of the coef-
ficient of recalls witnessing a drop after a recall) (2) fits an F.E.
model at the ATC-3 level. ˜recalls represent recalls normalized. At
the ATC level, recalls are respectively normalized for the number
of products within an ATC.
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We found a significant and negative impact of recalls on the logarithm of sales at
the market level. In the Appendix, it is shown that sales of firms undergoing a recall
are unaffected. At the same time, the lines of production of medicines belonging to
the same ATC-3 encounter a drop in sales due to recalls (ATC-Firm Aggregation in
Tab.25 and 9). This evidence excludes the possibility of compensations between sales
of products belonging to the same ATC inside a firm. Therefore, the negative effect
of recalls at the market level is enforced, whose lacks are not filled by the same firms
with other medicines of the same ATC-3.
The second column of Tab.9 represents the first stage of the principle analysis. As il-
lustrated, the effect of recalls at the ATC-3 level is powerful and significant for current
recalls and delayed ones. After having performed a sufficient amount of bootstrap
repetitions, we found that the t-statistic is invariant to whether we use recalls or
lag recalls to obtain it 7. This finding corresponds to a Sargan-Hansen test for over-
identification in our contest, implying the absence of over-identifying restrictions (W.
Lin and Wooldridge, 2019). We believe that the key reason for the strength of the
result relies on the level of aggregation. While firms with high-quality managements
and inclined to risk can promptly make up for severe recalls, the latter take ATC-3
markets unaware. Competitors could not anticipate severe recalls against firms pro-
ducing in the same ATC as theirs, which can be detected only at the market level.
The absence of compensations at the market level has been further tested. In partic-
ular, we analyzed the effect of recalls on aggregated sales once the firms’ sales having
undergone a recall are removed from the sample. The drop in sales seems to disappear
once firms having undergone a recall are excluded (see Fig. 31 in Appendix).
The fall of sales observed at the ATC-3 level becomes evident not only from the esti-
mates in Tab.9 but also from the study of abnormal values in Section 4.1
Finally, it might be argued that since recalled products are the most innovative ones,
no direct substitute is present in the same market. However, our dataset provided
the generic name of products (both recalled and not recalled) and the active principle
of medicines. It has thus been possible to detect an average of 10 products within
the market exploiting the same active principle as the recalled products. Hence, it
has also validated the hypothesis that the lacks left by the recalls might be filled with

7t-stat is obtained after 30000 repetitions and amounts to 2.438
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products already present on the market and that recalled products are not necessarily
the most innovative ones having no substitutes.

Analysis of Abnormal Values

This Section reports estimates of the influence of drugs’ recalls on sales. The effect
of recalls is defined by taking a reference value of the given economic indicator as it
would be observed under “normal” dynamics of economic conditions; this is called
the “potential” value. We hence define the Abnormal Value (AV) of the indicator y
associated with the unit i in time t as the difference between the observed and the
potential value Thirumalai and Sinha, 2011:

AVit = yit−E (yit) , (3.4)
The potential value E(yit) is estimated by running a Fixed-Effects regression on the
following model:

yit = α+βyst+γXit+µi+λt+uit, (3.5)

where yst is the aggregated value of y in year t at the sector level. The control variables
(X) and the year dummies are included as regressors. After obtaining estimates of
AVit for all i and t, referred to as ÂV it, the time dimension is re-scaled. The latter
exercise allows the time variable to be centered on the year when the recall is issued.
The change occurs for all units experiencing a recall in the time frame considered.
Only these observations are kept in the sample. The market-level Abnormal Value
AV t associated to recalls is then computed as the simple average of ÂV it for any
t ∈ {−(T −1), ...,(T −1)}, as follows:

AVt =
Nt∑
i=1

ÂV it, (3.6)

where Nt is the number of units with available data in t among those experiencing
one recall. Confidence intervals for AV t are constructed calculating the variance of
ÂV it as follows:

V ar
(
AV t

)
=
∑Nt
i=1V ar

(
ÂV it

)
N2
t

, (3.7)
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where V ar(ÂV it) is the variance of the forecast error derived from estimation of
Equation 3.5. The focus of the analysis is on the growth rate of sales volumes. The
exercise is replicated for three classifications of recalls (standard recall definition,
major recalls, type of recall) and three levels of analysis: product, firm, and sector
level. The main text reports only the analysis at the ATC-3 level as it is the level
at which the first and second stages are conducted. Abnormal values at the firm and
product level can be found in Appendix.
Note that in the model for the sector level, yst is replaced with ymt in Equation (3.5),
that is the value at the entire market level.
Fig. 5 reports estimates of the effects of recalls on the AV of sales growth.
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Figure 7: Abnormal values at ATC-3 level of aggregation. Years are normalized. Year
0 represents the year of the recall. The four scenarios include the path of sales before
and after the recall year, using four different definitions of recalls: major recalls, Class I
recalls, general recalls, and Class II recalls. As it is evident from the diagrams, sales drop
at recall year for every type of recall. Major recalls presenting a more pronounced drop.
Moreover, using major recalls, the lowest error bound is reached.

Fig.7 exhibits abnormal values for ATC-3 level. Confidence intervals are con-
structed at the 95% level. As it is evident from Fig.7, after the initial drop at the
year of recall, sales soon recover one or two years after year 0 (see major recalls).
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The latter observation classifies the instrument employed in our work as a short-run
effect. This distinguishes the effect of our instrument from the long-run effect that
demographic shocks produce in the work of Acemoglu and Linn (2004).
The analysis of abnormal values confirms what was found in previous paragraphs.
Especially a considerable impact of recalls on sales in the year of the recall. The error
bound is lower for the ATC-3 level with major recalls, thus enforcing the expectation
of a drop in sales at the recall time.

4.2 Relation between innovation and market size

In this section we report the results concerning the relationship between market size,
Mit and innovation, Nit. Since the data at our disposal are already converted into
dollars of 2015 using Consumer Price Index (CPI), market size is measured directly
as the sum of sales over ATC market i at time t. Innovation is measured with the
number of activated trials in ATC i at time t. The time window ranges from 2004
to 2013. The samples’ last two years (2014, 2015) have been cut away since very few
trials have been conducted in such a period. Including 2014 and 2015 may have led to
biases in the procedure, which exploits Poisson estimates. Indeed, the latter method
does not tolerate a value of 0 for the dependent in most observations.
The panel is strongly balanced as required by the procedure. Each year has data for
208 therapeutic classes.
The best model is estimated by Eq.(3.1).
We introduced several regressors. These comprise supply-side determinants, techno-
logical opportunities, and age determinants. We draw some controls directly from the
literature, comprising knowledge stock (see, e.g., Cerda, 2007, Acemoglu and Linn,
2004 among others) as measured by the number of papers referred to ATC category i.
PubMed database has been consulted. Specifically, we collected the number of scien-
tific works for a given ATC-3 in a given year through Mesh Terms. According to NIH,
MeSH terms are official words or phrases selected to represent particular biomedical
concepts. When labeling an article, indexers select terms only from the official MeSH
list, never other spellings or variations. For deciding whether a paper referred or not
to a specific ATC class, it has been first associated a Mesh Term to ATC category
i primarily exploiting the official synthetic description of ATC. If the latter did not
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produce any result or did not match evidence from the literature, a double-check was
made using level 3 indications as Mesh terms.8. NCBI Mesh database allowed us to
customize the searches. Since the number of papers showed an upward trend, the
variable has been detrended through first differentiating its logarithm.
Another critical control drawn from literature is the share of generics. As noted in
Dubois et al. (2015), ease of entry and substantial financial incentives to use generics
will reduce the expected profitability of the innovation. Hence it is vital to detect the
degree of penetration of generic medicines within markets to discourage firms from
undertaking innovation.
Besides, as emphasized both in Acemoglu and Linn (2004), and Dubois et al. (2015),
a further source of declining margins of innovation is represented by the increasing
number of young entrants within an ATC market. Pharmaceutical competition, in
general, might undermine innovation productivity. It is, thus, imperative to measure
and control for competition.
Apart from Acemoglu and Linn (2004), empirical literature does not model explicitly
competition (see Dubois et al., 2015). In the present work, we constructed two mea-
sures to control pharmaceutical competition. The first is the Herfindahl index (hhi
hereafter), which measures firms’ size concerning the market. It is usually employed
as an indicator of competition among firms within an ATC-3 market. The Herfindahl
index’s major benefit compared to other measures such as the concentration ratio is
that it gives larger firms more weight. The index can range from 0 to 1.0, moving from
many tiny firms to a single monopolistic producer. The second measure controlling
competition is the average age of firms within a market. It controls other aspects of
competition compared to hhi. While hhi measures the "degree of monopoly" within
an ATC, it cannot clarify the firms populating the market. However, the average age
of firms mainly catches the presence of small biotechnology firms in the market. Such
firms are known on one side to compete for innovation and on the other to have less
financial resources in contrast with established companies (see, e.g., B. H. Hall and

8For instance, category C6B is described as "PULMONARY ARTERIAL HYPERTENSION
(PAH) PRODUCTS." Due to the name’s length and possible different abbreviations employed in
the Mesh Terms list, Mesh Terms have been searched by looking at different specifications of the
description such as "PAH PRODUCTS," "PULMONARY ARTERIAL HYPERTENSION PROD-
UCTS." If the latter did not produce any result or the results were not in line with the findings in
the literature, then the Mesh indication at level 3, "PAH" was selected
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Rosenberg, 2010 among others). Since margins decline with the number of young
entrants, we expect a negative sign of firms’ average age.
Tab.10 presents the main results of the analysis. It is technically the second stage
of the procedure described in the methodological section. Precisely, calling zit2 the
excluded instruments (recallsit,recallsit−1), the first stage estimation computes the
residuals, üit2, of a linear fixed-effect model whose dependent is market size. The
second stage incorporates the residuals and estimates a fixed effect Poisson model.
Please refer to steps 1. and 2. in the methodological section.
Differently from literature, in the present work, it is not necessary to construct Mit

based on demographic shifts since the innovative instrument, recalls, already purges
market size from endogeneity. In the following, Mit is simply the logarithm of col-
lapsed sales at ATC-3 level, i.e., the product of the number of purchased drugs ex-
pressed in standard units to ensure comparability with their price.
Notice that a critical assumption of the model is that excluded exogenous, Rit ap-
pearing within zit, do not explicitly appear in the equation of Trials. For the more
refined aggregation level at our disposal, ATC-3, it is plausible to assume that the
average elasticity is the same across categories.
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Table 10: Impact of market size on innovation. Col.(1) employs a simple Poisson model
not considering fixed effects. Col.(2) is the main specification (fixed effect Poisson).
Col.(3) and Col.(4) add the lag of the dependent. Col.(5) eliminates all the controls

(1) (2) (3) (4) (5)
Trials Trials Trials log Trials Trials

trialst−1 −0.00741 0.0732∗

(−1.45) (0.0335)
Log sales 0.1378∗∗∗ 0.6362∗∗ 0.802∗∗ 0.1176∗∗∗ 0.8229∗∗

(0.0060) (0.2149) (3.01) (0.0153) (0.3174)
residuals −0.8018∗∗∗ −0.862∗∗ −0.9711∗∗

(0.2157) (−3.21) (0.3177)
Kt+1
P−1

−0.5378∗∗∗ −0.0926 −0.484∗∗∗ −0.0504
(0.0847) (0.0909) (−3.30) (0.0914)

average age firm 0.2890∗∗∗ −0.1332∗∗∗ −0.106∗ 0.0634∗∗

(0.0139) (0.0377) (−2.66) (0.0214)
average age firm2 −0.0038∗∗∗ 0.0021∗∗∗ 0.00178∗∗∗ −0.0008∗∗

(0.0002) (0.0005) (3.31) (0.0003)
hhi 0.2245∗∗∗ −0.3199 −0.145 0.1106

(0.0446) (0.2903) (−0.40) (0.1153)
share generics in ATC −0.5571∗∗∗ −0.3168∗∗ −0.898∗∗∗ −0.2036

(0.0404) (0.1124) (−6.29) (0.1068)
average age product −0.0658∗∗∗ −0.0592∗∗ −0.0928∗∗ −0.0564∗∗∗

(0.0061). (0.0190) (−2.88) (0.0143)
average age product2 0.0010∗∗∗ 0.0011 0.0100 0.0010∗

(0.0002) (0.0010) (1.64) (0.0004)
papers 0.5608∗∗∗ 0.1558∗ 0.101 −0.0443

(0.0728) (0.0750) (1.22) (0.1477)
papers2 −0.6672∗∗∗ −0.0067 −0.0929 −0.0083

(0.1056) (0.0838) (−1.17) (0.0883)
# firms 0.0090∗∗∗ 0.0008 −0.0032 0.0048∗∗

(0.0007) (0.0035) (−0.70) (0.0016)
Year Dummies Yes Yes Yes Yes Yes

Obs. 1664 1664 1664 1664 1872
Groups 208 208 208 208 208
Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Huber-White robust and clustered (at the ATC-3 level) standard
errors are in parentheses. (1) fits a simple Poisson with exogenous
sales. (2) represents the main specification. The dependent variable
is the count of active trials in ATC i at time t. The time interval is
ten years. The technique adopted for the estimation is Wooldridge
[2019]. Please refer to Section. 3. (3) count model with lagged
dependent among regressors following Acemoglu and Linn, 2004 (4)
linear model with lagged dependent among regressors and exogenous
size. Dependent is linearized. Both the presence of non-linearities
and endogeneity are ignored. (5) best model without controls106



Column (1) presents a simple Poisson model with exogenous market size exploring
whether market size’s positive effect is robust in the absence of fixed effects and en-
dogeneity controls. Column (2) is our main specification, i.e., a fixed effect Poisson
controlling for market size’s endogeneity.
The coefficients of interest in Tab.10 are Log sales and residuals. The former repre-
sents the market size, and the latter measuring endogeneity of market size. Specifi-
cally, a significant coefficient of residuals means a correlation between the error term
(see the specification in Tab.10, i.e., second stage regression) and functions of the
error of the model of the market size (first stage). In other words, residuals control
for co-movements of sales and unobservables related to the number of trials. Market
size is hence "purged" from the alleged endogenous part. Endogeneity is tested with
a Wald test on residuals’ coefficient ρ. If ρ is significantly different from zero, endo-
geneity is present. This latter instance occurs in our model as expected (Column (2)).
In particular, fully robust standard errors detect a strong idiosyncratic endogeneity.
The exploitation of Fixed Effects methodologies allows the unobserved heterogeneity
to be correlated with all explanatory variables and the excluded exogenous recalls.
The evidence is that even after allowing the market size to be correlated with the
ATC heterogeneity, market size is not exogenous to idiosyncratic shocks.
The coefficient of market size is positive and significant in line with past works. Ac-
cording to our estimate, a 10% increase in market size leads to an increase of almost
6.3 % of active trials. It turns out that also the magnitude conforms with literature.
Indeed, previous research generally finds elasticities to be approximately 0.5 consis-
tently with our estimates.
Recent literature speculated on the possibility that, though clinical trials might re-
spond elastically to market size, the proportion of them resulting in effective innova-
tion might decline (see e.g.Dubois et al., 2015 among others). Hence authors might
have overestimated the effect of market size on clinical trials since the latter should be
computed only on the trials that effectively brought innovation. This chapter exploits
active trials as a dependent, which partially solves the issue. We believe that active
trials constitute the subset of promising trials in terms of innovative contribution.
The estimated higher effect than the literature that adopts NMEs or NCEs as a de-
pendent is well explained by the substantial costs for developing new pharmaceutical
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entities. Drug development is, in fact, quite expensive, the cost ranging between $800
Million to $2.5 Billion (see, e.g., MedChem (2012) 9). Undertaking clinical trials is,
instead, sensibly cheaper, amounting to an average of $20 Million to $40 Million (see
Martin et al., 2017 as well as John Hopkins Bloomberg Health School, 2018). Thus
it is reasonable to suppose that, ceteris paribus, a 10% increase in market size stim-
ulates more trials than NMEs or NCEs on average. Exceptions are still present (see
Acemoglu and Linn, 2004, Duggan and Scott Morton, 2010, who estimated an higher
elasticity than the one of the present work).
The coefficient of the average age of firms and its square is in line with past obser-
vations (see, e.g., Huergo and Jaumandreu, 2004 and Balasubramanian and J. Lee,
2008 for specific studies on the topic). The effect evidences how the oldest firms tend
to introduce less innovation than entrants in their early years. However, firms above
intermediate ages appear almost as active in process innovations as entering firms
and even more in product innovations (Huergo and Jaumandreu, 2004).
Moreover, innovation decreases with the share of generics within a market. Thus, the
effect theorized in Dubois et al., 2015 of decreasing margins of innovation proportion-
ally to the entrance of generics reveals to be correct (see also Lanjouw, 2005).
In line with Acemoglu and Linn, 2004 and Rake, 2017, technological advancements as
measured by detrended papers are positively related to innovation. It is reasonable
to suppose that more trials emerge in markets where scientific research is prolific.
The discrepancies in the magnitude of the coefficients between the main specification
(Column (2)) and Column (1) of Tab.10 can be explained in several ways. In Col-
umn (1) of Tab.10 correlation over time of units is not controlled. So it is assumed
that units are independent over the cross-sectional dimension and over time dimen-
sion, which is quite a strong constriction in a longitudinal setting. The assumption
means that the same individual (market) observed at two different times, t0 and t1,
is considered independent from herself. In other words, individual (market) i at time
t0 is another individual (market) than individual (market) i at time t1. The main
implication of such presumption is that unobserved time-independent heterogeneities
of individuals do not affect other individuals. However, we know that the same indi-
vidual observed at two different times is considered "two distinct individuals." Thus,

9 n.d.
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in the model of Column (1), it is ultimately assumed that unobserved shocks of an
individual (market) i at time t do not influence individual (market) i at time t+k. In
other words, we are mixing between and within individual effects. Between effects are
obtained once the time component is averaged out from the variables. Between-effect
settings exploit differences between units, which in our case are independent by defi-
nition (we take ATC-3 markets, see previous Sections), not taking into account time
variations. Therefore, the market size variance (time-demeaned) will be higher in a
between-effect setting since it considers the average market size difference between in-
dependent ATC-3 markets. Furthermore, given the opposite time trends of trials and
market size (see Fig. 3) in a between-effect setting, the between effects of market size
on innovation will be deflated. Indeed, the innovation trend decreases from a specific
time on while the market size trend increases. However, since time variations are not
controlled in a between-effect setting, the inverse proportionality of market size and
innovation emerges. Mixing between and within individual effects will, hence, result
in an overall lower coefficient of Column (1) compared to Column (2).
Ultimately, the downwardly biased coefficient of Column (1) suggests that the unob-
served heterogeneity is negatively correlated to trials.
To provide an example, consider the possibility that an ATC experienced a sizeable
positive shock (more trials) in 2010. For some reason, the mentioned shock is not
modeled nor measured. All else being equal, the apparent fixed effect for that ATC
in the period 2004-2013 will appear to be higher. However, from the literature, we
know that the more the products available for treating a particular clinical condition,
the lower the margins on each product (see Bresnahan and Reiss, 1991 among others).
The unobserved positive shock for ATC ith, therefore, would lower the margins of all
competitor products in the same market, pushing down the sales for the same mar-
ket. This negative correlation between the market size regressor and the error term
deflates the estimate for market size. Vice versa, in Column (2), time dependency
is controlled, and deflation is eliminated. Therefore, the coefficient of market size re-
sults is higher than in Column (1). Column (1) does not control the reverse causality
of market size on innovation. Not considering the reverse causality of market size
contributes to upward biasing the market size’s coefficient (see, e.g., Acemoglu and
Linn, 2004). There are, therefore, in Column (1), two contrasting effects: the up-
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ward effect due to the reverse causality endogeneity and the downward bias given by
the unobserved heterogeneity endogeneity. The two effects do not compensate, and
negative heterogeneity bias prevails over reverse causality endogeneity bias.
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Robustness checks Col.(3)-(5) of Tab.10 investigate the robustness of the effect
of market size on innovation. Three additional models are added to the preferred
specification. Precisely, Column (3) reproduces the exercise of Acemoglu and Linn
(2004) to control for possibly varying over time technological flows (see below) by
adding lagged trials among the regressors. Since the estimating equation in Column
(3) is nonlinear, we perform this instrumentation strategy by adding the residuals of
the first stage. Column (4) is the same as Column (3), where the dependent variable
is log linearized, and residuals are ignored. Column (4) ignores both the presence of
non-linearities and endogeneity.
Adding lags of the dependent variable is a valuable exercise. Indeed, following Ace-
moglu and Linn (2004), the primary threat to the identification strategy of innovation
is represented by changes in the flow rate of innovation for every dollar spent for re-
search on a drug (permanent differences in innovation are already dropped through
the ATC fixed effects). Differences in the flow rate of innovation suggest that techno-
logical progress is scientifically more difficult in some lines than others. The parameter
denoting innovation flow is part of the theoretical specification of innovation drawn
from Acemoglu and Linn (2004). Following Acemoglu and Linn (2004), if the flow
rate of innovation varies over time, it is also likely to be serially correlated. Adding
lag of log innovation to the preferred specification is a simple way to check the im-
portance of these concerns. Lagged market size is instrumented with its lags through
a system GMM one-step procedure. The p-value of the Hansen test of overidentifica-
tion of model in Column (4) is 0.175, falling mainly between the tolerance levels of
0.1 and 0.25 indicated in Roodman (2009). The latter control ensures the validity of
the system GMM instruments employed. The Arellano-Bond test is investigated in
Tab.11.
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z-score p-value

Arellano-Bond test for AR(1)
in first differences:

z = -10.47 Pr > z = 0.000

Arellano-Bond test for AR(2)
in first differences:

z = 0.88 Pr > z = 0.377

Arellano-Bond test for AR(3)
in first differences:

z = -1.46 Pr > z = 0.145

Arellano-Bond test for AR(4)
in first differences:

z = 0.33 Pr > z = 0.740

Table 11: Arellano-Bond test for autocorrelation of first differenced residuals of GMM

When the idiosyncratic errors are independently and identically distributed (i.i.d.),
the first-differenced errors are first-order serially correlated. So, as expected, the out-
put above presents strong evidence against the null hypothesis of zero autocorrelation
in the first-differenced errors at order 1. Yet, as suggested in Roodman (2009), "in
the context of an Arellano-Bond GMM regression, which is run on first differences,
AR(1) is to be expected, and therefore the Arellano-Bond AR(1) test result is usually
ignored in that context". The output above presents, moreover, no significant evidence
of serial correlation in the first-differenced errors at orders 2, 3, and 4.
Market size is considered exogenous in Column (4), though fixed effects are controlled.
The model in Column (4) is linear. In order to ensure comparability among models,
trials have been transformed to a logarithmic scale. Column (4) is, in other words, an
essential control since, though controlling for fixed effects, it ignores the presence of
potential non-linearity (misspecification) and endogeneity, proposing the hypothesis
of serial correlation.
Finally, Column (5) presents the model without further control as estimated by the
preferred specification’s control function approach. The idea beyond Column (5) is
to check whether not controlling for regressors compromises the main specification
estimates.

The outcomes of Col.(3)-(5) of Tab.10 confirm the estimates of the main specifica-
tion for what concerns the positive effect of market size on innovation.
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Columns (3)-(5) in Tab.10 all display a positive effect of market size on innovation.
Expressly, Column (3) confirms the results of Acemoglu and Linn (2004) finding no
evidence of serial autocorrelation. In particular, the coefficient of lag trials is nega-
tive and non-significant as in Acemoglu and Linn (2004). Possible explanations are
already in Acemoglu and Linn (2004) and are, therefore, not discussed in the present
work. In Column (4) of Tab.10, the positive coefficient of lagged trials is significant
at the 5% tolerance level. This evidence is almost in line with Acemoglu and Linn
(2004) when no instrumentation is performed. 10 Under this scenario, the lagged
dependent’s coefficient turned out to be positive and not significant also in Acemoglu
and Linn (2004). Market size is strongly and positively related to innovation, with a
coefficient having the lowest magnitude of the specifications analyzed. Indeed, some
of the variability might be caught by lagged dependent. Moreover, possible misspeci-
fication bias might intervene due to the not correction of nonlinearity.
Notice that the effect of the market size in Column (4) of Tab.10 displays similarities
to Col. (1) of the same table, which does not control for endogeneity. Furthermore,
market size is more prominent in the models correcting for endogeneity. Therefore,
in general, the lack of control for temporal dependence may matter very little for
estimation, as it is also consistent with the fact that the autocorrelation coefficient
is very weak. Otherwise, indeed, also the coefficient of size in Columns (1) and (4)
of Tab.10, whose only dissimilarity relies on the control for temporal dependencies
(Col.(4)), would have sensibly differed. Hence, it is reasonable to suppose that the
lower magnitude of the coefficient of size in both Columns (1) of Tab.10 and Column
(4) of Tab.10 is primarily a consequence of considering market size as exogenous. It
is possible to provide further checks by controlling for possible overidentifying condi-
tions of the instrumented lagged dependent variable. To do so, Tab.12 column (1)
reports the two-step robust GMM estimates of Column (3) of Tab.10, which, instead,
performed a system one-step GMM.

10different from Column (1) where residuals of first-stage are included
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Table 12: Coefficients of market size and lag dependent when a two-step GMM is employed.
Col.(2) includes suspended and withdrawn trials in the dependent

(1) (2)
log Trials log Trials

trialst−1 0.0592 0.380∗

(0.0426) (0.189)
Log sales 0.1208∗∗∗ −0.533∗∗

(0.159) (0.179)
Year Dummies Yes Yes

Obs. 1664 1664
Groups 208 208
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Huber-White robust and clustered (at the
ATC-3 level) standard errors are in parenthe-
ses. (1) is the two-step GMM version of Col-
umn (3) Tab.10, which performed a system
one-step GMM. The Table comprises only
the critical coefficients. (2) is equal to (1),
where suspended and withdrawn trials are
included in the dependent. Both equations
are linearized to enable a simple comparison
with Column (3) Tab.10. The same results
apply if the count of trials is employed as a
dependent variable. (see F., 2021)

The coefficient of the market size in Tab.12 is higher compared to the one in Column
(3) of Tab. 10. Furthermore, the lagged dependent variable is not significant in line
with Acemoglu and Linn (2004). The same applies if the count of trials is employed
as a dependent (see Appendix).
The sign of the estimates of market size does not change with respect to the preferred
model.
A final robustness check has been made by including all the trials, i.e., active ones
and suspended and withdrawn. The number of classes employed is the same, though
the number of trials increased by 0.57% on the total. This is performed in Tab.12
column (2). As displayed, our estimation does not confirm the hypothesis in Dubois
et al. (2015) showing a lower coefficient instead both in terms of magnitude and
significance level. The hypothesis is that non-active trials, which are less responsive
to market size, bias the estimates leading them toward randomness. For instance,
firms with all suspended trials are unaffected by price regulations that reduce the
price of treatments by governments. Simultaneously, increases in market size could
be less effective on such companies, which already have sunk costs due to inactive
trials. The presence of endogeneity is confirmed.
Further robustness checks have been performed by changing the market size’s proxy
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to align to Acemoglu and Linn (2004), moving to another database to collect sales
data (Evaluate sales are employed), and employing all the recalls at our disposal
to instrument market size. In particular, Tab.13 shows the outcomes of the analysis
adopting Class II and Class I recalls as an instrument for market size. Tab.14 measures
market size through the number of patients within an ATC-3 in accordance with
Acemoglu and Linn (2004).
Since the number of patients is highly correlated with sales and it is employed as a
natural alternative to sales, we adopted recalls as an instrument for the number of
patients.
Furthermore, the F-test amounts to 12 for the analysis with Evaluate and 4 for the
analysis with the number of patients.
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Table 13: Col.(1) and Col.(2) represent first and second stage results using all the recalls at
our disposal. Data are aggregated at the ATC-3 level.Impact of market size on innovation
using Evaluate database (Col.(3)) and number of patients (Col.(4)) as proxy of market size

(First-stage all recalls) (Second-stage all recalls) (First-stage Evaluate) (Second-stage Evaluate)
Log sales Trials Log sales Trials

˜recalls 0.00199 −0.260∗∗∗

(0.64) (0.0059)
˜recallst−1 −0.0223∗∗∗ −0.0180

(−3.34) (0.0105)
Log sales 0.580∗ 0.710∗∗

(2.02) (0.275)
Residuals −0.739∗ −0.724∗∗∗

(−2.13) (0.275)
Kt+1
P−1

0.191∗ −0.173 −0.147
(3.07) (0.154) (0.276)

average age firm 0.153 −0.129∗ 0.0470 0.224∗∗∗

(1.67) (−2.28) (0.0678) (0.0045)
average age firm2 −0.00195 0.00207∗∗ −0.0004 −0.0814∗∗∗

(−1.53) (2.87) (0.0008) (0.0316)
hhi 1.238∗∗∗ −0.250∗∗∗ 1.721∗∗∗ −0.60

(4.79) (−0.56) (0.419) (0.495)
share generics in ATC −0.178 −0.326∗∗ −0.372 0.00640
. (−0.53) (−2.69) (0.328) (0.157)
average age prod. 0.0539 −0.0559∗ −0.0330 −0.0732∗∗

(0.92) (−2.33) (0.0504) (0.0225)
average age prod.2 −0.0037 0.0008 0.00138 0.0009

(−1.72) (0.63) (0.00206) (0.0009)
papers −0.0267 0.153∗ −0.139 0.265∗∗

(−0.52) (0.0507) (0.0803) (0.0917)
# firms 0.00729 0.00103 −0.0106 0.0224∗∗∗

(1.04) (0.25) (0.0095) (0.0045)
Year Dummies Yes Yes Yes Yes

Obs. 1664 1664 1136 1056
Groups 208 208 142 132
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Huber-White robust and clustered (at the ATC-3 level) standard errors are in parentheses. The Table shows the results
when all the recalls at our disposal are employed. First-stage results are shown Col. (1) while second stage results are
in Col. (2). The level of aggregation is the ATC-3 one and the estimation method is the same as the one adopted in
the main analysis.

Tab. 13 reports the first and second stages of employing Class I and Class II recalls
as an instrument for market size in the first two columns. The remaining columns
are devoted to the results obtained using Evaluate database to collect market sales.
The results of the primary analysis are confirmed in both exercises.
Employing all recalls decreases both the magnitude and the significance of the coeffi-
cients of sales. Moreover, only the lag of recalls is a good instrument at the market
level. These two effects are expected since minor recalls may attenuate the drop in
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sales consequent to a recall. Indeed, within Class II, temporary recalls (e.g., recalls
due to a labeling error) are also comprehended, which may not be unexpected to
the firm (most of them are voluntary). For this reason, they might not be taken
into account by the company’s management. Losses in terms of sales are, therefore,
well-compensated. Furthermore, minor recalls are not publicized and cannot damage
the image of the company or the market in which they happen.
Hence, adding minor recalls overtakes the strong and negative impact of current re-
calls and, consequently, affects the market size estimates in the second stage. Since,
however, Class II recalls often regard minor but persistent issues11, a cumulative effect
intervenes, and lagged recalls remain an excellent instrument.
The outcomes of the primary analysis remain robust when data on sales are collected
from a different database.
Tab.14 reports the second stage results of the analysis with the number of patients
as a measure for market size. First stage results are in the Appendix 3.

11minor recalls often pertain to the manufacturing of the product accessories. Their causes range
from label mix-up, particulate matter, and packaging issues. Though minor recalls do not threaten
the health of patients directly, they are challenging to be corrected in the short-term by firms.
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Table 14: Impact of market size on innovation using number of patients as proxy of market
size

(1)
Trials

Log patients 3.274∗∗∗

(0.648)
residuals −3.291∗∗∗

(0.647)
Kt+1
P−1

1.476∗∗∗

(0.377)
average age firm 0.589∗∗∗

(0.154)
average age firm2 −0.00478∗∗

(0.0016)
hhi 0.145

(0.260)
share generics in ATC −0.648∗∗

(0.244)
average age product −0.278∗∗∗

(0.0514)
average age product2 0.0011∗∗∗

(0.0022)
papers 0.546∗∗∗

(0.147)
papers2 0.193

(0.114)
# firms 0.0895∗∗∗

(0.0144)
Year Dummies Yes

Obs. 1056
Groups 132
Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Huber-White robust and clustered (at the ATC-3 level) standard errors are in paren-
theses. (1) employs MEPS database and matches the ATC-3 present in our database.
Market size is measured through the number of patients within ATC-3.

Adopting the number of patients as a proxy for market size confirms the first and
second stage results compared to the principal specification. The outcomes, however,
turn out to be weaker in terms of significance than our main specification. Recalls
do not seem a vital instrument for the number of patients. On the one hand, a more
significant number of patients within an ATC-3 class might increase the probability
of an adverse event than in a scarcely populated ATC-3 class, increasing the prob-
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ability of a major recall. On the other hand, there is no reason to believe that an
adverse event would happen in a more populated class, referring to commonly em-
ployed medicines (and therefore well tested). Moreover, a recall in a class causes a
decrease in the number of patients adopting pharmaceuticals in the questioned ATC-3
class, thus compensating for the possible positive effect implied by a higher probabil-
ity of adverse events. For what concerns the second stage, Tab.14 enforces the results
found in Acemoglu and Linn (2004) where a coefficient of market size between 3 and
4 was found. The significance of residuals confirms the presence of endogeneity.

5 Discussion

The present Chapter provides an example of how econometrics research provides bet-
ter tools than machine-learning in a complex causal setting with endogeneity and
unbalanced fixed effects within a non-linear parametric model. Though machine
learning provides interesting tools, it is still a novelty in many econometrics setups.
Researchers must avoid its employment a priori. In the following, we sum up the
main results obtained in the Chapter.
Recent research has stressed the importance of market size in determining the inno-
vation rate in the pharmaceutical industry. At the same time, after Cerda (2007)
’s critique, instrumenting with demographical shifts remains a weak, though valid,
strategy. Moreover, recent contributions have stressed the importance of modeling
competition and technological opportunities adequately (see Rake, 2017, Dubois et
al., 2015). For example, many scholars pointed to the importance of advances in
molecular biology and related fields for the industry’s technological opportunities and
innovative capabilities (Rake, 2017). Finally, the literature lacks aggregation analyses
that easily allow drawing policy implications. For this reason, in the present Chapter,
we employed ATC-3, the aggregation level used by Antitrust authorities. To provide
some examples, we mention Provost et al.(2019), Markham, A. (2020), Vaishnav, A.
(2011), Hawk et al.(2000), Cheng J. (2008), and other cases mostly about M&A (e.g.,
Case M.8889 - TEVA / PGT OTC ASSETS of 2018).
The empirical estimates are conducted on a unique database integrated with addi-
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tional sources. The variety of our sources enabled us to collect and adequately clas-
sify data on trials and drug recalls in ATC-3 categories. The methodology employed
is innovative (W. Lin and Wooldridge, 2019) and, differently from past techniques,
permits controlling for both idiosyncratic endogeneity and heterogeneity endogeneity.
The technique composes of two stages. A simple Wald test on the residuals’ coefficient
in the second stage allows verifying the presence of idiosyncratic endogeneity.
An innovative instrument, recalls, has been employed for the first time in literature.
Recalls have been collected consulting various sources comprising FDA Enforcement
reports, openFDA, and a database deriving from FOIA agreements with FDA. Recalls
are representative. Major recalls have been selected to meet the criteria of sharpness,
indirect effect on the dependent variable (innovation), and exogeneity. The first stage
displayed a substantial (in magnitude) and significant negative impact of recalls on
market size, thus validating the instrument. To the best of our knowledge, the effort
constitutes an empirical novelty in the literature that mainly focuses on optimal man-
agement of recalls and provides theoretical argumentation of recalls’ negative impact
at the firm level. Too few papers focused on the impact of drug recalls at the market
level.
Data on clinical trials have been drawn from the Clinicaltrials.gov website from the
pre-clinical phase to Phase IV. They have been integrated with data on INDs from
a privately owned database maintained at IMT School for Advanced Studies. To
overcome issues deriving from the potential more robust response of market size to
trials as a whole rather than on essential trials (i.e., bringing most probably to an in-
novation), only activated trials have been selected. This exercise also provides a valid
answer to the argumentation that the recall of a product might imply the suspension
of drug trials within its same family. Indeed, suspended and withdrawn trials have
been excluded from the analysis. Nonetheless, as a robustness check, estimates are
computed, including the latter in the analysis. The effort confirms the presence of
idiosyncratic endogeneity and the positive sign of the estimates. However, the mag-
nitude and the significance level decrease.
Our preferred estimates align with literature displaying an increase in the innovation
of 6.3% after an increase in market size of 10%. Most recent studies of Dubois et al.
(2015) display a lower coefficient of 0.23%. Authors specify how a comparison with
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other works exploiting different measures of innovation remains a difficult task. They
further explain that their usage of global data rather than U.S. ones for the estima-
tions might have led to less responsiveness.
Our results are robust to several specifications. The coefficient of independent vari-
ables is in line with expectation as well as the scarce effect of lagged trials, already
tested in Acemoglu and Linn (2004). Further checks confirm a positive and signifi-
cant effect of market size on innovation even when fixed effects are not controlled, and
the market size is considered exogenous. This latter verification partially validates
(for what concerns the sign and the significance) the recent findings of Rake (2017)
who did not find evidence of reverse causality. However, the coefficient’s magnitude
decreases sensibly compared to the preferred specification, showing a significant bias.
Estimates remain robust even when no control is inserted in the analysis.
The Chapter provides exciting policy implications for what concerns innovation’s stim-
uli and sheds some light on the impact of recalls at the market level. Governments,
in particular, should be aware wherever applying either tax or price policies in the
pharmaceutical sector. As already mentioned, indeed, innovation constitutes an eco-
nomic phenomenon. Companies innovate mainly to have a financial return. Aware of
the positive relationship between market size and innovation, authorities and policy-
makers should not penalize economic players too much. To guarantee citizens’ future
welfare, they should promote research and invest in new technologies smartly manag-
ing generics’ competition.
Recalls, moreover, have not just an impact at the firm level but also the market level.
Specifically, they provoke adverse market shocks, thus affecting economic stability
and welfare. Authorities should therefore apply more stringent rules to avoid severe
recalls. At the same time, they should consider that an intensification of Class II and
Class III recalls due to the presence of more players might be physiological.
Future research might employ more up-to-date data also to include recalls of com-
pounders and repackaging firms.
Furthermore, in the spirit of the present Dissertation mixing up econometrics and
machine learning in a productive way, possible developments might employ Double
Machine-Learning techniques to recover the price elasticity of demand in the phar-
maceutical industry. Such information could further dig into possible relationships
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among pharmaceuticals. In particular, it might be valuable to investigate the proba-
bility of recalling a drug due to the recall of another drug in the same ATC.
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Chapter 4

How machine learning can
boost economic intuition:
application to economic
complexity 1

In this Chapter we use a machine learning technique to estimate economic complexity
of countries. In contrast with the previous Chapter, the present discussion presents
a traditional economic problem for which machine learning techniques are not only
appropriate but also improve the theoretical debate. In the following we will intro-
duce the problem of economic complexity and detail how machine learning has been
employed to renew the literature.
Since the early 2000’s, building metrics for measuring economic complexity has been a
set goal. Starting from the Economic Complexity Index (ECI) developed by Hidalgo
and Hausmann (2009), it has become clear how most traditional economic growth
theories often shrinked internal socio-economic dynamics of countries through strict
assumptions, restricting the analysis to a small subset of pre-determined factors. Dif-
ferently from traditional growth theories, economic complexity measures are based

1This chapter is partially based on https://assets.researchsquare.com/files/rs-1030693/
v1_covered.pdf?c=1637010954 with M. Riccaboni ang G. Gnecco
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on a data-driven approach, and are generally agnostic about the number and nature
of factors. For instance, the ECI looks to explain the knowledge accumulated by a
country and expressed in all the economic activities present in that country.
Many authors attempted to provide more and more refined measures of economic
complexity. In his recent review, Hidalgo (2021) identifies two main streams of the
literature on economic complexity: the first one involves metrics of so-called relat-
edness, whereas the second one concerns economic complexity metrics which apply
dimensionality reduction techniques based, e.g., on Singular Value Decomposition
(SVD). Metrics of relatedness measure the affinity between an activity and a location,
while methods related to dimensionality reduction search for the best combination of
factors explaining the structure of a given specialization matrix.
According to the principle of relatedness, the probability that a location c (e.g., a
country) enters or exits an economic activity p (e.g., a sector) is influenced by the
presence of related activities in that location. This poses, however, deeper questions
about the role played by similar/nearer/other countries in determining the probability
that the location c enters the economic activity p. Furthermore, while the principle of
relatedness attempts to model the probability of entering an activity p by the location
c, it does not provide hints about whether c will enter p successfully or not. Besides,
the literature provides a strong connection between the concept of production func-
tion – a function connecting economic inputs to outputs – and economic complexity
via the SVD factorization of a suitable specialization matrix R. Indeed, SVD is used
to learn the singular vectors (factors) that best explain the structure of R. The ECI
index is closely related to the leading singular vectors of that specialization matrix
(Hidalgo, 2021), which provide its truncated SVD. These are also the leading eigenvec-
tors of the product of the specialization matrix with its transpose. Normally, authors
select one of the the first two eigenvectors (i.e., the ones associated with the two
largest eigenvalues), because it carries out the maximum amount of information. Re-
cently, Sciarra, Chiarotti, Ridolfi, et al. (2020b) combined information coming from
the first two eigenvectors into a unique index called GENeralised Economic comPlex-
itY (GENEPY). Nevertheless, it should be observed that, by doing this, the other
eigenvectors are neglected and together with them further information which could
potentially better explain economic complexity. It looks reasonable, therefore, to ex-
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plore a suitable way to select carefully also some other most informative eigenvectors
beyond the first two.
The present Chapter deals with the issue above, by exploiting a class of machine-
learning methods called Matrix Completion (MC). The main idea of the present work
is to adopt MC to infer information about the Relative Comparative Advantage (RCA)
or disadvantage of a certain country in a given class of goods or services (products).
Such information is collected, for each year, in a matrix RCA ∈ RC×P , where C is
the number of countries considered, and P is the number of products examined (at a
given aggregation level). In formulas, one has

RCAc,p :=

Dc,p∑P
p′=1Dc,p′∑C
c′=1Dc′,p∑C

c′=1
∑P
p′=1Dc′,p′

, (4.1)

where Dc,p is the return in international dollars of the exports of country c via the
product p. In case one among Dc,p, Dc,p′, Dc′,p, and Dc′,p′ in Eq. (4.1) is not available,
one gets RCAc,p = NaN . In this case, as a pre-processing step, that RCAc,p value
can be replaced by 0.
Throughout the Chapter, MC is applied several times (starting from different train-
ing subsets of suitably discretized RCA values associated with several contries and
products, excluding originally NaN values) to estimate the expected discretized RCA
values of pairs of countries c and products p that have not been used in the training
phase. To fulfill such a task, the adopted MC technique is based on a soft-thresholded
SVD which selects each time – via a suitable regularization technique – the subset of
most informative singular values and corresponding singular vectors. The discretiza-
tion above is used to deal with the different orders of magnitude of the elements of
the RCA matrix. The predictions provided by the several repetitions of MC are then
exploited to construct two suitable surrogate incidence matrices, one of which is used
to construct a novel index of economic complexity – based on MC – and the other one
as input to the GENEPY algorithm Sciarra, Chiarotti, Ridolfi, et al. (2020b). In the
latter case, one can investigate the differences in the output of the GENEPY when it
is applied, respectively, to the original discretized RCA matrix and its MC surrogate.
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1 Summary of the main contributions of the Chap-
ter

The work contributes to the literature on economic complexity in three ways: (i) it
applies for the first time MC to assess the complexity of countries; (ii) it defines a
novel index of economic complexity based on MC; (iii) it builds up a comparison
with a state-of-the-art index of economic complexity (GENEPY), revealing a high
correlation between the output of GENEPY when it is applied to the original inci-
dence matrix and the false positive rate of a binary classifier derived by the repeated
application of MC. The results of our analysis show that MC performs quite well in
estimating the discretized RCA values, in the sense that it allows one to discern well
the case RCA ≥ 1 from the one 0≤ RCA <1. Supported by the latter evidence, we
propose a novel Matrix cOmpletion iNdex of Economic complexitY (MONEY) for
countries, which exploits the accuracy of their RCA predictions derived from the re-
peated applications of MC. Such accuracy is expressed in terms of a suitably weighted
Area Under the Curve (AUC), one for each country examined. The MONEY index
ranks countries according to their predictability, taking into account also the product
dimension. Specifically, the larger the AUC for a specific country and the larger the
average with respect to a subset of the products of that country of the MC perfor-
mance in estimating the discretized RCA values of country-product pairs, the less
complex that country. Using only MC to construct the proposed index helps to solve
the shortcoming of GENEPY discussed above in the introduction, i.e., the fact that,
differently from MC, GENEPY takes into account only the information coming from
two eigenvectors. Moreover, the GENEPY index computed using the MC surrogate
incidence matrix reveals interesting discrepancies in terms of economic complexity
with respect to the original GENEPY, i.e., the one computed starting from the in-
cidence matrix associated with the observed RCA matrix. Finally, by an analysis
performed in different years (see the Supplemental), the study highlights a strong and
significant positive correlation between the false positive rate of the binary classifier
derived from thresholding the average output of MC (the higher the false positive rate,
the more the unexpressed potential of a country in terms of activities that it could
undertake) and the original GENEPY index. The false positive rate per country of
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such a binary classifier is, therefore, deemed to be a suitable proxy of the original
GENEPY index.

2 Proposed application of matrix completion to
the RCA matrix

One of the major contributions of the present Chapter is to employ MC to study
economic complexity. This class of machine-learning methods became well-known in
academia after the so-called Netflix competition in the context of movie recommen-
dation systems (see the Appendix for further details on MC and, e.g., Trevor Hastie,
Mazumder, et al., 2015, Alfakih and Wolkowicz, 2000, and Cai, Candès, and Shen,
2010 for some of its applications) and was employed in this Chapter in order to esti-
mate the expected discretized RCA values of various pairs of countries c and products
p. The specific MC method adopted in the Chapter consists in completing a partially
observed matrix A ∈ RC×P (which is derived from the RCA matrix in our case), by
minimizing a suitable trade-off between the reconstruction error of the known portion
of that matrix and a penalty term, which penalizes a high nuclear norm of the re-
constructed (or completed) matrix. This is formulated via the following optimization
problem (Mazumder, Trevor Hastie, and R. Tibshirani, 2010b):

minimize
Z∈RC×P

1
2

∑
(c,p)∈Ωtr

(Ac,p−Zc,p)2 +λ‖Z‖∗

 , (4.2)

where Ωtr is a training subset of pairs of indices (c,p) corresponding to positions of
known entries of the partially observed matrix A∈RC×P , Z∈RC×P is the completed
matrix (to be optimized), λ≥ 0 is a regularization constant (chosen by a suitable val-
idation method), and ‖Z‖∗ is the nuclear norm of the matrix Z, i.e., the sum of all its
singular values. The reader if referred to the Appendix for further technical details
on the optimization problem (4.2) and on the algorithm we adopted to solve it.
While MC has already found many applications in several fields (e.g., movie recom-
mendation, sensor engineering, economics), to the best of our knowledge, this is the
first time it is employed in the context of economic complexity. More precisely, we
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applied MC to define a novel complexity index. Then, we also combined it with a
state-of-the-art complexity index.
In our application of MC to economic complexity, the MC optimization problem (4.2)
was solved several times by a specific algorithm previously developed for that purpose
(named Soft Impute Mazumder, Trevor Hastie, and R. Tibshirani, 2010b, see the
Appendix), for different choices of the regularization parameter λ and of the subset
Ωtr (detailed later in this section). Then, two MC surrogates M(MC) and M̂(MC) of
the incidence matrix M∈RC×P were generated2. On one hand, M(MC) was exploited
to evaluate the performance of MC by changing a suitable threshold. This allowed
to build up performance measures that, combined with ad-hoc weights, compose the
MONEY index (see Section 3 for details). On the other hand, M̂(MC) was used
as input to the GENEPY algorithm, to construct a counterfactual ̂GENEPY

(MC)
∈

RC×P to be compared with the GENEPY index computed using the original incidence
matrix M.
In the following, we describe our proposed way of applying MC to the reconstruction
of the RCA matrix for the case in which the products were aggregated at the 4-
digits level in the Harmonized System Codes 1992 (HS-1992). Consistently with the
literature (Sciarra, Chiarotti, Laio, et al., 2018), we constructed the matrix A (one
of the inputs to the optimization problem (4.2)) by discretizing the elements of the
RCA matrix associated with a specific year as detailed in the Appendix. For the sake
of brevity, we refer to the MC application to the definition of a measure of complexity
of the countries. To get a measure of complexity of the products, it is enough to
replace in the following the matrix A with its transpose (see also the Supplemental
for some related results).

i) For the matrix A ∈ RC×P (where C = 119 is the number of countries, and P =
1243 is the number of products), the MC optimization problem (4.2) was solved
N = 1000 times by the Soft Impute algorithm, based on various choices for the
training/validation/test sets (and, as already mentioned, for the regularization
parameter λ).

ii) For each such repetition n = 1, . . . ,N , the sets above were constructed as follows.

2The reader is referred to the Appendix for details on how the incidence matrix M is defined,
starting from the RCA matrix.
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First, a (pseudo)random permutation of the rows of A was generated. Then, a
subset Sn of these rows was considered, by including in it the first row in the per-
mutation and the successive s%' 25% rows. In this way, the resulting number of
elements of the set Sn was |Sn|= 30. Next, for each row in Sn, its elements belong-
ing to all the groups except group "0" were obscured independently with probability
pmissing = 0.3. The (indices ot the) remaining entries of the matrix A (excluding
the ones belonging to the group "0") formed the training set (denoted by Ωtrn).
The obscured entries in one of the |Sn| rows (say, row h ∈ {1, . . . , |Sn|}) formed the
test set (denoted by Ωtestn,h), whereas the obscured entries in the remaining |Sn|−1
rows formed the validation set (denoted by Ωvaln,h).

iii) For each repetition n, the generation of the validation and test sets from the set Sn
was made |Sn| times, each time with a different selection of the row h associated
with the test set (and, as a consequence, also of the |Sn|−1 rows associated with
the validation set). Hence, the same training set was associated with |Sn| different
pairs of validation and test sets3. In this way, for each choice of Sn and of the
regularization parameter λ, the MC optimization problem (4.2) was solved once
instead of |Sn| times, thus improving the computational efficiency. Finally, by
construction, each time there was no overlap between the training, validation, and
test sets.

iv) To avoid overfitting, for each choice of the training set Ωtrn, the optimization
problem (4.2) was solved for 30 choices λk for λ, exponentially distributed as λk =
2(k−1)/2 for k = 1, . . . ,30. The resulting completed and post-processed matrix was
indicated as Z(n)

λk
. Then, for each λk and each of the |Sn| selections of the validation

sets associated with the same training set, the Root Mean Square Error (RMSE)
of matrix reconstruction on that validation set was computed as

RMSE
valn,h
λk

:=
√√√√√ 1
|Ωvaln,h|

∑
(c,p)∈Ωvaln,h

(
Ac,p−Z(n)

λk,c,p

)2
, (4.3)

then the choice λk◦(n,h) minimizing RMSE
valn,h
λk

for k = 1, . . . ,30 was found. Fi-
nally, the RMSE of matrix reconstruction on the related test set was computed in

3The number of repetitions N = 1000 and the percentage s% ' 25% were selected in order to
associate each row with the test set a sufficiently large number of times, with high probability. In
particular, with these choices, the average number of times each row was associated with the test
set was about 250.
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correspondence of the so-obtained optimal value λk◦(n,h) as

RMSE
testn,h
λk◦(n,h)

:=
√√√√√ 1
|Ωtestn,h|

∑
(c,p)∈Ωtestn,h

(
Ac,p−Z(n)

λk◦(n,h),c,p

)2
. (4.4)

v) For each choice of n and h, the MC predictions contained in the matrix Z(n)
λk◦(n,h)

were used to build a binary classifier. More precisely, each time an element Ac,p
of the matrix A was in the test set, such element was attributed to the class 0
(corresponding to the case 0 ≤ RCA < 1) when its MC prediction from Z(n)

λk◦(n,h)
was lower than 0, otherwise it was attributed to the class 1 (corresponding to the
case RCA≥ 1). Finally, the average classification of the element Ac,p (with respect
to all the test sets to which that element belonged) was indicated as A(MC)

c,p ∈ [0,1],
whereas its most frequent classification (either 0 or 1) was indicated as Â(MC)

c,p . A
random assignment between 0 and 1 was made to deal with ties. In the (unlikely)
case the element Ac,p appeared in none of the test sets4, both A

(MC)
c,p and Â

(MC)
c,p

were chosen to be equal to 0.
vi) A first MC surrogate M(MC) ∈R119×1243 of the incidence matrix M was defined as

follows:

M
(MC)
c,p

.=


0 , if RCAc,p =NaN ,

A
(MC)
c,p , otherwise .

(4.5)

Similarly, a second MC surrogate M̂(MC) ∈ R119×1243 of the incidence matrix M
was defined as follows:

M̂ (MC)
c,p

.=


0 , if RCAc,p =NaN ,

Â
(MC)
c,p , otherwise .

(4.6)

vii) Finally, M(MC) was combined with several thresholds from 0 to 1 in the first part of
the construction of the proposed MONEY index (see Section 3 for details). Instead,
M̂(MC) was provided as input to the GENEPY algorithm (replacing the original
incidence matrix M). In this way, a counterfactual GENEPY index, indicated as
̂GENEPY

(MC)
, was generated.

In order to assess the prediction capability of the binary classifier associated with
4Due to the choice pmissing = 0.3, each element Ac,p not associated with the group "0" appeared

in the test set on average about 75 times. So, the probability that one such element appeared in
none of the test sets was negligigle.
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MC (see Step 5 above), for each row (country) c of A, we also computed the false
positive rate fprc and the false negative rate fnrc as the average classification error
frequency, respectively, of the true negative/true positive examples in all the test sets
associated with that row (where the "negative class" refers to the class 0 associated
with 0≤RCA< 1, and the "positive class" to the class 1 associated with RCA≥ 1).

3 The proposed Matrix cOmpletion iNdex of Eco-
nomic complexitY (MONEY)

In this section, we introduce our proposed economic complexity index, called Matrix
cOmpletion iNdex of Economic complexitY (MONEY), whose construction is based
on MC.

The MONEY index is built starting from the matrix M(MC) introduced in Section
2. It is based on constructing a binary classifier for each country by combining the
corresponding row of M(MC) with a threshold, then assessing the performance of
the resulting MC classifications at the level of each country. First, for the binary
classifier associated with each country, a Receiver Operating Characteristic (ROC)
curve5 (denoted as ROCc) is constructed, based on a country-dependent threshold.
The corresponding Area Under the Curve (AUC)6 is denoted as AUCc. In more
details, for each country c, the elements of the c-th row of the matrix M(MC) are
compared with a threshold to construct the associated binary classifier. The elements
belonging to the same row of the original incidence matrix M are taken as ground

5We remind the reader that, for a binary classifier, the ROC curve expresses the trade-off between
fall-out (false positive rate) and sensitivity (true positive rate) of that classifier, as a function of its
threshold. It is recalled here that the true positive rate is equal to 1 minus the false negative rate.
In general, ROC curves closer to the top-left corner indicate a better performance. As a baseline
(“Bench.”), a random guessing binary classifier is associated with a ROC curve with points lying
along the diagonal indicated, e.g., in Fig. 8 (for which the true positive rate is equal to the false
positive rate). The closer a ROC curve to the diagonal in the ROC space, the worse the performance
of the associated binary classifier. It is worth reminding the reader that ROC curves do not depend
on class frequencies. This makes them useful for evaluating classifiers predicting rare events as in
the case of very high RCA values.

6We remind the reader that the AUC measures the area of the entire two-dimensional region
underneath the entire ROC curve from (0,0) to (1,1). The AUC is exploited in the literature to
provide an aggregate measure of performance across all possible classification thresholds. Formally,
it represents the probability that a classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative one, assuming that "positive" ranks higher than "negative" (Fawcett,
2006).
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truth. The discrimination threshold is varied from 0 to 1, using a step size equal to
0.01. All the elements of M(MC) are used as dataset, except the ones having the same
indices as the originally NaN values in theRCAmatrix. This allows to form a binary
classifier for each threshold and for each country. The idea now is to exploit the AUCc
of the binary classifiers associated with the countries in order to provide a measure of
complexity of such countries, based on the predictability of the corresponding rows.
Specifically, countries with lower AUCc may be considered as more complex, being
harder for MC to predict their RCA entries. The AUCc alone, however, does not
capture the reasons why MC performed poorly (or, vice versa, adequately). Indeed,
as an example, consider the three following hypothetical scenarios. Assume that MC
perfomed poorly on a country c by attributing RCA≥ 1 to a product p when its true
RCA was smaller than 1, and assigned correctly a RCA smaller than 1 to all the other
countries for the same product p (Scenario 1). Consider now the two following similar
scenarios for which, for the same product p and the same country c, MC perfomed
poorly on the country c by attributing RCA ≥ 1 to the product p when its true
RCA was smaller than 1, and it attributed either correctly (Scenario 2) or incorrectly
(Scenario 3) RCA≥ 1 to all the other countries for the same product. It is reasonable
to suppose that, all other things being equal, the country c to which MC assigned
RCA≥ 1 for the product p in Scenario 1 is more complex than the same country to
which MC assigned RCA≥ 1 for the product p in Scenarios 2 and 3. In fact, while in
Scenario 2, MC could have been driven to predict, for country c, a RCA of p larger
than or equal to 1 by the presence of several RCA entries larger than or equal to 1
for the other countries, this is not the case for Scenario 1. Scenario 3 is more unlikely
to occur, since, as it is shown later in Section 4.1 and in the Supplemental, MC has
typically a quite satisfying prediction capability in its specific application to the RCA
matrix. In this case, it is not possible to conclude that country c is more complex
than the other countries, since MC is wrongly attributing RCA≥ 1 to p, for all such
countries.
The remarks above suggest us that, by adopting the AUCc alone as a complexity
measure, country c would be classified as equally complex in Scenarios 1, 2 and 3
(assuming the AUCc being equal in all these cases). In order to correct for the latter
bias, we propose a refined complexity measure, based on weighting the AUCc for each
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country c. The rationale of the proposed complexity measure is that not only less
predictable countries (according to MC) are more complex, but one should also take
into account the product dimension when comparing the MC predictions obtained
for different countries, controlling for the quality of each prediction. More precisely,
it is proposed to associate a weight wc to each country c, which is constructed in
such a way that the AUCc’s of countries with an higher share of “rare” false positives
are weighted less (since they are less predictable). In more details, the proposed
complexity measure is constructed as follows.
i) First, the MC analysis made for the countries is repeated for the products, still

referring to the same year (2018). This is obtained simply by replacing at the begin-
ning of the analysis the RCA matrix with its transpose. Analogously, the matrices
M̂(MC) and M(MC) are replaced by similarly constructed matrices (M̂>)(MC) and
(M>)(MC). In particular, each element of the latter matrix represents the average
MC prediction for the corresponding product-country pair.

ii) Then, a threshold t is applied to the elements of the matrix (M>)(MC). For each

value of that threshold, one constructs a matrix
(

M>
t

)(MC)
∈ {0,1}P×C , being each

entry of it equal to 1 whenever the corresponding element in the matrix (M>)(MC)

is higher than or equal to t, otherwise being it equal to 0.
iii) At this point, for each product p and each threshold t, one computes the quantity

ftotp,t := fprp,t×
Np

Pp+Np
, (4.7)

being fprp,t the false positive ratio for the classifications associated with that prod-

uct (determined by the comparison between
(

M>
t

)(MC)
and M>, restricted to the

entries associated with that product) and Np
Np+Pp the proportion of entries with true

RCA < 1 with respect to all the entries associated with that product (i.e., 119).
Besides, the average ftotp of ftotp,t with respect to t is computed.

iv) Then, for each country c, the weight wc is defined as follows:

wc :=
∑P
p=1(M̂>)(MC)

p,c ×ftotp∑P
p=1(M̂>)(MC)

p,c

. (4.8)

In other words, for each country c, the weight wc is the average of ftotp with
respect to all the products p for which one predicts RCA≥ 1 through the surrogate
incidence matrix (M̂>)(MC).
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v) Finally, the MONEY index for each country c is computed as:

MONEYc := 1−wc×AUCc . (4.9)

4 Results

4.1 Global performance of matrix completion

In the following, the diagnostic ability of MC is illustrated. Likewise in Section 3,
the matrix M(MC) was combined with a threshold to construct a binary classifier (in
this case, however, differently from Section 3, the threshold did not depend on the
country). The discrimination threshold was varied from 0 to 1, using a step size equal
to 0.01. All the elements of M(MC) were used as dataset, except the ones having the
same indices as the originally NaN values in the RCA matrix. The ground truth
was provided by the corresponding elements of the original incidence matrix M. Fig.
8 shows the resulting ROC curve. Similarly, ROCc curves (see Section MONEY) for
a random sample of countries are displayed in Fig. 9.

Figure 8: Global ROC curve constructed starting from the matrix M(MC), for the year
2018. “Bench.” stands for the line passing through the origin with slope 1.
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Figure 9: ROCc curves constructed starting from the matrix M(MC), for a sample of
countries and for the year 2018. “Bench.” stands for the line passing through the origin
with slope 1.

As it is evident from Figs. 8 and 9, MC performed quite well on average both
globally and for developed countries such as Japan, United States and Germany. Its
performance was poorer (though still above the baseline) for countries that either
provided less information on their trade flows or whose trade flows were extremely
volatile (i.e., they alternated between products with extremely high RCA values and
products with very low RCA values). Specifically, fnrc was higher for the latter
countries. Nonetheless, the average performance of MC over all the countries was
high as depicted by the AUC reported in Fig. 8, which turned out to be about 0.81
for the binary classifier described in Step 5 of Section 2.
As a further check, since the positive and negative labels were unbalanced in the
original dataset (specifically, entries with RCA < 1 represented almost the 70% of
the entire dataset), we also applied the Balanced Accuracy (BACC) index7, which
turned out to be 0.75. Figs. 10(a)-10(b) display the original incidence matrix M as
compared to the MC surrogate incidence matrix M̂(MC) obtained at the HS-4 level
of product aggregation. The two matrices display similar but not identical entries.
On one hand, their similarity confirms the good MC prediction performance at a
global level. On the other hand, their differences could be attributed to the high
complexity of specific country/product pairs being predicted. In other words, there
may be a discrepancy between the actual RCA value of a country/product pair and

7The BACC is a performance metric designed for binary classifiers in the case of unbalanced
datasets. It is calculated as the average of the proportion of correctly classified elements of each
class individually, and ranges from 0 (low balanced accuracy) to 1 (maximum balanced accuracy).
Formally, it is equal to (tpr+ tnr)/2, where t stands for “true”.
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Original incidence matrix M. Surrogate incidence matrix M̂(MC).
Figure 10: Original versus surrogate incidence matrix for the year 2018 at the HS-4
level.

its potential RCA value, predicted by MC on the basis of similar country/product
pairs.

4.2 Results related to the MONEY index

In this section we report the ranking of countries in terms of economic complexity as
expressed by the MONEY index introduced in Section 3. In particular, we represent
the countries according to their MONEY index (Fig.11(a)), then we compare the
obtained ranking with the one expressed by GENEPY (Fig.11(b)). In Fig. 11(a),
countries are colored according to their MONEY values (normalized between 0 and 1),
which are proportional to the shade of blue. In particular, the color map ranges from
the least complex countries c (colored in white) to the most complex ones (colored in
dark blue).
It is worth observing that both the GENEPY and the proposed MONEY index arise
from the attempt to reconstruct (in a different way for each method) a matrix re-
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Countries colored according to
the MONEY index. Countries in

darkest shades of blue are
associated with a lower MONEY,

hence they are considered
more complex. Countries colored

in grey are not considered
in the analysis.

Countries colored according to
the difference between the values

of their MONEY and GENEPY indices.
Countries in darker shades of
blue are associated with a

value of MONEY<GENEPY, vice
versa countries in red.

Figure 11: Values of the MONEY index for the year 2018 at the HS-4 level of aggregation
and their differences with respect to the corresponding values of the GENEPY index for
the same year and the same level of aggregation.

lated to trade flows. In the case of GENEPY, the matrix is a proximity matrix N
derived from the incidence matrix M (see the Appendix for the definition of the
matrix N), and its reconstruction is obtained as a nonlinear least-square estimate
based on the components of the first two (normalized) eigenvectors of that matrix.
Then, a successive evaluation on how the quality of the estimate changes by dropping
specific components of such eigenvectors (the ones associated with a given country)
is made. In our case, the matrix A is obtained as a discretization of the RCA ma-
trix. Then, MC is applied several times to the matrix A to reconstruct a portion of
that matrix which has been obscured, in the attempt to uncover a “latent” similar-
ity between countries, which can be useful for the prediction of whether their RCA
entries are lower than 1, or higher than or equal to 1. Another difference is that the
matrix reconstruction on which GENEPY is based relies only on two eigenvectors of
N, whereas our method, being also based on MC, exploits a typically much larger
number of left-singular/right-singular vectors to build the reconstructed matrix, for
each application of MC. The choice of the number of such pairs is made automatically
by the adopted validation procedure. Moreover, a final evaluation of the quality of
the reconstruction is made, by considering several test sets, on which the AUCc’s
are based. A further quality assessment is provided by Tab. 15, which reports the
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number of G19+58 countries in the top 20, 30 and 40 positions, computed according
to each among the GENEPY, ̂GENEPY

(MC)
and MONEY indices, then divided by

24. It is evident from the table that the largest ratio is obtained in correspondence of
the proposed MONEY index. Additional robustness checks related to the MONEY
index computed in years different than 2018 are reported in the Supplemental.

Table 15: Number of G19+5 countries in the top 20, 30 and 40 positions for the year
2018, computed according to each among the GENEPY, ̂GENEPY

(MC)
and MONEY

indices, then divided by 24.

# of G19+5 countries in the top x positions/24
Index x= 20 x= 30 x= 40

GENEPY 42% 58% 75%
̂GENEPY

(MC)
55% 64% 71%

MONEY 55% 66% 79%

MONEY and GENEPY indices are also produced at the HS-2 level in the Supple-
mental part. To provide a further contribution to the literature on how the granularity
of the products changes the knowledge on countries’ complexity, below we include a
broad investigation on how the MONEY and GENEPY rankings differ between the
two aggregations.
The correlation between MONEY and GENEPY at the HS-4 level is listed below:

Kendall′s τ = 0.802;
Spearrman′s ρ= 0.818.

The correlation between MONEY and GENEPY at the HS-2 level is shown below:

Kendall′s τ = 0.831;
Spearrman′s ρ= 0.845.

As detailed above, the correlation between MONEY and GENEPY is higher at HS-2
level than at HS-4.
We guess that, on one side, at HS-2, matrix completion is facilitated in reconstructing

8In the table we considered countries within G20. However, since G20 countries comprise EU
(except France, Italy and Germany, which are accounted separately), that is an agglomerate of
countries, we considered a group of 5 representative countries for EU, namely: Spain, Switzerland,
Greece, Denmark and Hungary.
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the original matrix. On the other side, the eigenvalue problem of GENEPY is much
simplified (concerning considerably fewer equations than the original HS-4 matrix).
Since both the approaches face a simplified problem, and since the number of eigen-
values taken by Matrix Completion is not reduced proportionally in this exercise, it
might be that the additional information provided by the fewer eigenvalues selected
through Matrix Completion in the HS-2 case is better summarised by the first two
eigenvalues (taken by GENEPY) than in the HS-4 case.

4.3 Differences in the GENEPY indices based on the original
incidence matrix M and on M̂(MC)

Fig. 12(a) represents the GENEPY index computed based on the original incidence
matrix M. The interpretation is the same as in Fig.11(a). It is worth noticing that the
GENEPY value computed based on the incidence matrix M and the ̂GENEPY

(MC)

value based on its surrogate M̂(MC) are quite similar (see Fig. 12(b) for their dif-
ference). Hence, they provide analogous results in terms of the complexity of the
countries, confirming the satisfactory prediction capability of MC for the specific
learning task. Nevertheless, one can also notice that the two complexities differ in
some countries. Such differences may be ascribed to surpluses/deficits of the actual
complexities of such countries (i.e., the ones measured by GENEPY based on the
original incidence matrix M) with respect to the respective predicted complexities
(i.e., the ones measured by ̂GENEPY

(MC)
, which is based on the surrogate incidence

matrix M̂(MC)).
To quantify the correlation between the GENEPY rankings computed based on M
and M̂(MC), respectively, we evaluated their Kendall rank correlation coefficient τk.
The statistical test produced τk ' 0.8 with a p-value near 0, rejecting significantly the
null hypothesis of independence between GENEPY and ̂GENEPY

(MC)
.
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Countries colored according to
the GENEPY index computed starting
from the original incidence matrix M

at the HS-4 level of aggregation.

Difference between the GENEPY
index in (a) and the ̂GENEPY

(MC)

index based on its surrogate M̂(MC).

Figure 12: Original GENEPY values for countries for the year 2018 at the HS-4 level of
aggregation, and their comparison with their ̂GENEPY

(MC)
values. Countries colored in

grey are not considered in the analysis.

It is worth noticing that, with a few exceptions (China, France, Italy, UK and Ger-
many) the more complex the country according to GENEPY, the higher the difference
between GENEPY and ̂GENEPY

(MC)
. Finally, Fig. 13 displays the false positive

rate fprc for each country considered in the analysis, which turned out to produce a
ranking of countries quite similar to the one generated by GENEPY (τk = 0.75).
Notice that the correlation between false positive and GENEPY is 0.9636 at HS-4
level and 0.9496 at the HS-2 level.

Figure 13: False positive rate fprc, reported proportionally to the shade of blue for the
year 2018 and the product aggregation level HS-4.
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5 Discussion

In the present Chapter, we applied Matrix Completion (MC) to investigate in various
ways the economic complexity of countries. First, we assessed a quite high accuracy of
the MC predictions, when MC was applied to reconstruct the Revealed Comparative
Advantage (RCA) matrix, which is at the basis of the construction of several existing
economic complexity indices (see the Appendix). Then, we proposed the Matrix
cOmpletion iNdex of Economic complexitY (MONEY), based on the predictability
of the RCA entries associated with different countries. As an additional contribution,
we combined MC with a recently-developed economic complexity index (GENEPY),
to assess the expected economic complexity of countries. In the Chapter, MC was
exploited to infer the expected discretized RCA of a country c in a certain class of
goods or services p. The MC technique employed is based on a soft-thresholded SVD.
This, combined with the MC validation phase, allows to select automatically a suitable
number of singular vectors to be used to reconstruct the discretized RCA matrix.
In this way, differently from previous economic complexity indices, the information
extracted is not restricted to the first two singular vectors.
The results of our analysis highlighted a generally quite good performance of MC in
discerning country-product pairs with RCA values greater than or equal to the critical
threshold of 1, denoting the competitiveness of c in producing p. The outcomes were
summarized by reporting the global ROC curve and comparing the heat-map of the
true incidence matrix M and the one of its MC surrogate matrix M̂(MC), which was
obtained from various applications of MC. Motivated by the high MC accuracy, we
developed the MONEY index taking into account both the predictive performance
of MC for each country (as measured by its AUCc) and the product dimension. In
other words, when constructing that index, each AUCc was weighted by the average
of the ftotp’s with respect to a subset of products associated with the specific country.
As a further step, we applied the GENEPY algorithm first to the incidence matrix
derived directly from the original RCA matrix, then to the MC surrogate incidence
matrix M̂(MC). This allowed us to directly compare the values of the two GENEPY
indices, thus assessing their potential discrepancies. On average, such discrepancies
were higher for more complex countries according to the original GENEPY index.
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Supplemental

MONEY index for the years 2005 and 2014

The present section provides robustness checks on the MONEY index. In particular,
the whole analysis has been repeated for the years 2005 and 2014. For such years, the
global AUC (see Section 4.1) is respectively 0.76 for 2005 and 0.80 for 2014. For the
same reason as reported in the main text – that is, the fact that the two categories
RCA> 1 and 0≤RCA< 1 are unbalanced – we also computed the BACC. The latter
amounts to 0.74 for 2005 and to 0.75 for 2014.
Figures 14(a)-14(b) display the MONEY index for the years 2005 and 2014.

Values of the MONEY index for
the year 2005 at the HS-4 level of

aggregation.

Values of the MONEY index for
the year 2014 at the HS-4 level of

aggregation.

Figure 14: Original MONEY values for countries for the year 2005 and 2014 at the HS-4
level of aggregation. Countries colored in grey are not considered in the analysis.

The figures display similar results to those obtained in the main analysis. However,
some differences emerge. Specifically, Russia and East Asia appear to be more com-
plex in 2005 and 2014 than in 2018. Such countries were indeed rapidly developing in
those years and their growth rate was higher than the one of EU, which was slowed
down by the 2008 financial crisis. The crisis had an impact also on USA. Its MONEY
index was in fact lower in 2014 as compared to 2005. In the successive years, yet,
EU and USA recovered from the crisis, and their complexity, as measured by the
MONEY index, raised accordingly in 2018.

142



Application of the second part of the analysis to countries for
the year 2018, with products aggregated at the HS-2 level

Fig. 15 reports, for the product aggregation level HS-2, results similar to those ob-
tained in Section 4.3 of the main text for the HS-4 level. For the sake of completeness,
we report also results for the false negative rate. Fig. 16 provides similar results, re-
stricting to the countries for which both the false negative rate and the false positive
are lower than 0.5.

False negative rate fnrc,
reported proportionally to the shade of
blue. Countries colored in grey are not

considered in the analysis.

False positive rate fprc,
reported proportionally to the shade of
blue. Countries colored in grey are not

considered in the analysis.

Figure 15: False negative and false positive rates for countries, obtained by the method
reported in Step 5 of Section 2 for the year 2018 and the HS-2 level of aggregation.

Additionally, Tab. 16 reports, for the product aggregation level HS-2, the Kendall
correlation coefficients τk between the ranking produced using GENEPY against the
ones produced using either fnrc,hs−2 or fprc,hs−2.

GENEPY (τk) GENEPY (p-value)
fnrc,hs−2 0.1230 0.0575
fprc,hs−2 0.6476 0.0000

Table 16: Kendall rank correlation coefficients τk and corresponding p-values for the
2018 ranking of countries based on the HS-2 level of aggregation and produced using
GENEPY against the 2018 rankings produced respectively by fnrc, and fprc.

Similarly, Figs. 17(a)-17(b), which refer to products aggregated at the HS-2 level,
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False negative rate fnrc for
countries c having both average false
negative and false positive rates lower
than 0.5. In the figure, fnrc is reported
proportionally to the shade of blue.
Countries colored in grey are not

considered in the analysis.

False positive rate fprc for
countries c having both average false
negative and false positive rates lower
than 0.5. In the figure, fprc is reported
proportionally to the shade of blue.
Countries colored in grey are not

considered in the analysis.

Figure 16: False negative and false positive rates for a selection of countries, obtained
by the method reported in Step 5 of Section 2 for the year 2018 and the HS-2 level of
aggregation.

show results similar to those obtained at product level HS-4.

Countries colored according to
the GENEPY index computed starting
from the original incidence matrix M.

Countries colored in grey are not
considered in the analysis.

Difference between the GENEPY
indices computed starting from the

original incidence matrix M and on its
surrogate M̂(MC). Countries colored in
grey are not considered in the analysis.

Figure 17: Original GENEPY values for countries for the year 2018 with products
aggregated at the HS-2 level, and their comparison with their ̂GENEPY

(MC)
values.
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Additionally, Figs. 18(a)-18(b) report the original incidence matrix M as compared
to its MC surrogate M̂(MC) obtained at the HS-2 level of product aggregation. Also
in this case, the two matrices display similar but not identical entries. Thus, similar
conclusions to the ones obtained for the HS-4 case apply. However, for the HS-2 case,
the percentage of elements in which the two matrices differ is lower.
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Original incidence matrix M. Surrogate incidence matrix
M̂(MC).

Figure 18: Original versus surrogate incidence matrix for the year 2018 and the HS-2
level of product aggregation.

We report below, some error metrics between M and M̂(MC) in the HS-2 case (see
Fig. 18(a) and 18(b)) and in the HS-4 case (Fig. 10(a) and 10(b)). Specifically, the
error probability taken as the sum of logical symmetric differences of elements of M
and M̂(MC) for both HS-2 and HS-4 levels divided by the matrix size (both M and
M̂(MC) have the same number of elements). In particular,

Perr,HS−2 = 0.21;
Perr,HS−4 = 0.14;

Spearman correlation

ρHS−2 = 0.52;
ρHS−4 = 0.53.

To conclude, Tab. 17 reports the detail of the differences GENEPY− ̂GENEPY
(MC)

for countries, for the year 2018 at the HS-2 level of aggregation. Such differences were
already analysed in Fig.17(b).
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GENEPY- ̂GENEPY
(MC)

Country
-0.39257 Hong Kong
-0.32742 China
-0.11648 Italy
0.012212 Iraq
0.027759 Libyan Arab Jamahiriya
0.029027 Angola
0.045068 Azerbaijan
0.047551 Chad
0.054625 Sudan
0.061237 Guinea
0.063626 Congo
0.064162 Venezuela
0.07725 Ghana
0.080608 Papua New Guinea
0.081877 Mali
0.083468 Benin
0.08376 Congo
0.084289 Sierra Leone
0.089644 Burkina Faso
0.089985 Nigeria
0.090831 Burundi
0.092596 Niger
0.094417 Cameroon
0.096485 Rwanda
0.096501 Yemen
0.097521 United States
0.09755 South Sudan
0.099289 Spain
0.10046 Mozambique
0.10293 Somalia
0.10471 Turkmenistan
0.10538 Kazakhstan
0.10658 Senegal
0.10809 Ivory Coast
0.10911 France
0.11116 Bulgaria
0.11269 Malawi
0.11666 Uganda
0.11966 Romania
0.12069 Saudi Arabia
0.12078 Netherlands
0.12121 Algeria
0.12298 Ecuador
0.12453 Russia
0.12549 Australia
0.12928 Zambia
0.13043 India
0.13344 Nicaragua
0.13778 Bolivia
0.14032 Serbia
0.14037 Togo
0.14076 Iran Islamic Republic of
0.14421 Zimbabwe
0.1452 Belgium
0.14975 Guatemala
0.15105 Egypt
0.1534 South Africa
0.15421 Chile
0.15709 Cuba
0.16116 Argentina

GENEPY- ̂GENEPY
(MC)

Country

0.16381 Afghanistan
0.16641 Haiti
0.16862 Tajikistan
0.16915 Lebanon
0.17253 Austria
0.17402 Finland
0.17561 Honduras
0.17755 Madagascar
0.17791 Ethiopia
0.18072 Viet Nam
0.18157 Kenya
0.19125 Syrian Arab Republic
0.19381 Canada
0.19577 Jordan
0.19605 Costa Rica
0.19724 Peru
0.19725 Lao People’s Democratic Republic
0.19882 United Kingdom
0.19962 Indonesia
0.201 Turkey
0.20222 Hungary
0.20318 Poland
0.20356 Germany
0.20357 Belarus
0.2047 Korea, Democratic People’s Republic of
0.20659 Sri Lanka
0.20667 Paraguay
0.20859 Ukraine
0.21088 Pakistan
0.21494 Uzbekistan
0.21626 Israel
0.21999 Denmark
0.2241 Colombia
0.22585 Tanganyika
0.22832 Bangladesh
0.2353 Singapore
0.23852 Norway
0.23875 Switzerland
0.23978 Dominican Republic
0.242 Republic of the Union of Myanmar
0.24262 El Salvador
0.24271 Nepal
0.25116 Thailand
0.2632 Portugal
0.26521 Sweden
0.26842 Morocco
0.27857 Brazil
0.28289 Philippines
0.28441 Slovakia
0.30354 United Arab Emirates
0.30412 Greece
0.3389 Mexico
0.35332 Tunisia
0.35893 Kyrgyzstan
0.37339 Malaysia
0.38045 Czech Republic
0.39382 Cambodia
0.50948 Japan
0.5384 Korea, Republic of

Table 17: Countries classified according to the deviations GENEPY− ̂GENEPY
(MC)

for the year 2018 at the HS-2 level. Countries colored in blue are countries for
which GENEPY< ̂GENEPY

(MC)
. Countries colored in green are countries for which

GENEPY' ̂GENEPY
(MC)

. Countries colored in red are countries for which GENEPY>
̂GENEPY

(MC)
.
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Results of the analysis for countries, for the years
2005 and 2014 and at the HS-2 level

In the following, results similar to those obtained in the main text are reported
for the years 2005 and 2014. In this case, in order to reduce the computational
effort, the analysis was made at the HS-2 level of product aggregation. Figs. 19-20
report false negative and false positive rates for the two years, whereas Tab.18 reports
Kendall correlation coefficients between the ranking produced using GENEPY against
the rankings produced respectively by fnrc,t and fprc,t, for the years t = 2005 and
t= 2014.

False negative rate fnrc, reported
proportionally to the shade of blue for
the year 2005. Countries colored in grey

are not considered in the analysis.

False positive rate fprc, reported
proportionally to the shade of blue for
the year 2005. Countries colored in grey

are not considered in the analysis.

Figure 19: False negative and false positive rates for countries, obtained by the method
reported in Step 5 of Section 2 for the year 2005, with products aggregated at the HS-2
level.
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False negative rate fnrc, reported
proportionally to the shade of blue for
the year 2014. Countries colored in grey

are not considered in the analysis.

False positive rate fprc, reported
proportionally to the shade of blue for
the year 2014. Countries colored in grey

are not considered in the analysis.

Figure 20: False negative and false positive rates for countries, obtained by the method
reported in Step 5 of Section 2 for the year 2014, with products aggregated at the HS-2
level.

GENEPYt (τk) GENEPYt (p-value)
fnrc,2005 0.2018 0.0020
fprc,2005 0.6212 0.0000
fnrc,2014 0.1936 0.0031
fprc,2014 0.6165 0.0000

Table 18: τk and relative p-values for the rankings produced using GENEPY against the
ranking produced respectively by fnrc,t and fprc,t, for the years t = 2005 and t = 2014,
with products aggregated at the HS-2 level.

148



Application of the analysis to the products at the HS-2 level

The same analysis made in the main text for the countries has been repeated for the
products, still referring to the year 2018. This is obtained simply by replacing at
the beginning of the analysis the RCA matrix with its transpose. Notice that this
analysis, as some of the analyses reported in this Supplemental, was made at the
HS-2 level for computational time reasons. The results obtained at the HS-2 level,
however, correlated at the 95% with the ones obtained at the HS-4 level.
Figs. 21 displays respectively, on the main diagonal of each matrix reported, and for
a subset of product codes,

• the false negative rate fnrp for each product p (Fig.21(a));

• the false positive rate fprp for each product p (Fig.21(b));

• the false negative rate fnrp, for the subset of products p for which both fnrp

and fprp are lower than 0.5 (Fig.21(c));

• the false positive rate fprp, for the subset of products p for which both fnrp abd
fprp are lower than 0.5 (Fig.21(d)).

In all these cases, the products have been ordered increasingly with respect to the
(either false positive or false negative) rate.
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False negative rate fnrp for
the products, reported as a function

of the color shade from blue
(associated with the lowest value) to

red (associated with the highest
value).

False positive rate fprp for
the products, reported as a function

of the color shade from blue
(associated with the lowest value) to
red (associated with the highest value)
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False negative rate fnrp for
the products having both fnrc < 0.5 and
fprc < 0.5. Values of fnrc are reported

as a function of the color shade
from blue (associated with the lowest value)
to red (associated with the highest value).

False positive rate fprp for
the products having both fnrc < 0.5 and
fprc < 0.5. Values of fprc are reported

as a function of the color shade
from blue (associated with the lowest value)
to red (associated with the highest value).

Figure 21: False negative and false positive rates for products, obtained by the method
reported in Step 5 of Section 2 for the year 2018 and the HS-2 level.

The correspondence between product codes and their names is reported in Tab. 19.
The names are reported only for the HS-2 level for a better readability.
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Row index Product name

1 Live animals
2 Meat and edible meat offal
3 Fish and crustaceans, molluscs and other aquatic invertebrates
4 Dairy produce
5 Products of animal origin, not elsewhere specified or included
6 Live trees and other plants
7 Edible vegetables and certain roots and tubers
8 Edible fruit and nuts;
9 Coffee, tea, mate and spices
10 Cereals
11 Products of the milling industry;
12 Oil seeds and oleaginous fruits;
13 Lac; gums, resins and other vegetable saps and extracts
14 Vegetable plaiting materials
15 Animal or vegetable fats and oils and their cleavage products
16 Preparations of meat, of fish or of crustaceans
17 Sugars and sugar confectionery
18 Cocoa and cocoa preparations
19 Preparations of cereals, flour, starch or milk; pastrycooks’ products
20 Preparations of vegetables, fruit, nuts or other parts of plants
21 Miscellaneous edible preparations
22 Beverages, spirits and vinegar
23 Residues and waste from the food industries; prepared animal fodder
24 Tobacco and manufactured tobacco substitutes
25 Salt; sulphur
26 Ores, slag and ash
27 Mineral fuels, mineral oils and products of their distillation; bituminous substances

28
Inorganic chemicals; organic or inorganic compounds of precious metals,
of rare-earth metals, of radioactive elements or of isotopes

29 Organic chemicals
30 Pharmaceutical products
31 Fertilisers
32 Tanning or dyeing extracts
33 Essential oils and resinoids

34
Soap, organic surface-active agents, washing preparations,
lubricating preparations, artificial waxes...

35 Albuminoidal substances
36 Explosives, fireworks
37 Photographic or cinematographic goods
38 Miscellaneous chemical products
39 Plastics and articles thereof
40 Rubber and articles thereof
41 Raw hides and skins
42 Articles of leather; saddlery and harness
43 Furskins and artificial fur
44 Wood and articles of wood
45 Cork and articles of cork
46 Manufactures of straw, of esparto or of other plaiting materials
47 Pulp of wood or of other fibrous cellulosic material
48 Paper and paperboard

Row index Product name

49 Printed books, newspapers, pictures and other products of the printing industry
50 Silk
51 Wool, fine or coarse animal hair
52 Cotton
53 Other vegetable textile fibres
54 Sewing thread of man-made filaments
55 Man-made staple fibres
56 Wadding, felt and nonwovens
57 Carpets and other textile floor coverings
58 Special woven fabrics
59 Impregnated, coated, covered or laminated textile fabrics
60 Knitted or crocheted fabrics
61 Articles of apparel and clothing accessories, knitted or crocheted
62 Articles of apparel and clothing accessories, not knitted or crocheted
63 Other made up textile articles
64 Footwear, gaiters and the like; parts of such articles
65 Headgear and parts thereof
66 Umbrellas, sun umbrellas and similar articles
67 Prepared feathers and down and articles made of feathers or of down
68 Articles of stone, plaster, cement, asbestos, mica or similar materials
69 Ceramic products
70 Glass and glassware
71 Natural or cultured pearls, precious or semi-precious stones, precious metals
72 Iron and steel
73 Articles of iron or steel
74 Copper and articles thereof
75 Nickel and articles thereof
76 Aluminium and articles thereof
78 Lead and articles thereof
79 Zinc and articles thereof
80 Tin and articles thereof
81 Other base metals; cermets; articles thereof
82 Tools, implements, cutlery, spoons and forks, of base metal; parts thereof of base metal
83 Miscellaneous articles of base metal
84 Nuclear reactors, boilers, machinery and mechanical appliances
85 Electrical machinery and equipment and parts thereof
86 Railway or tramway locomotives, rolling-stock and parts thereof
87 Vehicles other than railway or tramway rolling-stock, and parts and accessories thereof
88 Aircraft, spacecraft, and parts thereof
89 Ships, boats and floating structures

90
Optical, photographic, cinematographic, measuring, checking, precision,
medical or surgical instruments and apparatus; parts and accessories thereof

91 Clocks and watches and parts thereof
92 Musical instruments; parts and accessories of such articles
93 Arms and ammunition; parts and accessories thereof
94 Furniture; bedding, mattresses, mattress supports, cushions and similar stuffed furnishings
95 Toys, games and sports requisites; parts and accessories thereof
96 Miscellaneous manufactured articles
97 Works of art, collectors’ pieces, and antiques

Table 19: Product codes and corresponding names at the HS-2 level.

Confusion matrix for products at the HS-4 and HS-2 levels

Fig. 22 reports, for the HS-4 level of product aggregation, the confusion matrix built
from the normalized GENEPY9 values associated with the products for the year 2018,
computed respectively based on the incidence matrix M> and the surrogate incidence
matrix (M̂>)(MC), then discretized in 8 classes according to the percentiles of the
respective GENEPY distributions. The class 1 corresponds to the lowest GENEPY

9Since the GENEPY and ̂GENEPY
(MC)

span different ranges, they have been rescaled to the
same interval [0,1].
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values, whereas the class 8 corresponds to the highest GENEPY values. Notice that
the whole procedure applied to countries was repeated here from scratch starting from
the transpose of the RCA matrix, focusing in this case on the products. Very similar
results (τk ' 0.96) are obtained if instead, one computes the GENEPY for products
using as input the transpose of the surrogate incidence matrix M̂(MC) obtained in
the application of MC to countries, described in the main text. In the figure, the true
classes are the ones computed starting from the GENEPY applied to the incidence
matrix M>, whereas the predicted classes are the ones computed starting from the
GENEPY applied to the surrogate incidence matrix (M̂>)(MC).

Figure 22: Confusion matrix built from the normalized 2018 GENEPY values associated
with the products at the HS-4 level, computed respectively based on the matrices M>

and (M̂>)(MC), then discretized in 8 classes according to the percentiles of the respective
GENEPY distributions.

As evidenced by Fig. 22, the GENEPY indices computed based on M> and (M̂>)(MC)

are quite similar, since the non-zero elements of the confusion matrix are concentrated
above all near its main diagonal (i.e., the number of classification errors is quite small
far from the main diagonal). Some outliers emerged. The deviations regarded mainly
the elements belonging to higher categories. This is somewhat reasonable since they
refer to more complex products, which might be more complex to classify.
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In this case, the Kendall rank correlation coefficient between the GENEPY rankings
computed based on M> and (M̂>)(MC) turned out to be τk ' 0.6, with a p-value
nearly equal to 0. Similarly, we built up a confusion matrix also for the HS-2 case.
This is reported in Fig. 23.
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Figure 23: Confusion matrix built from the normalized 2018 GENEPY values associated
with the products at the HS-2 level, computed respectively based on the matrices M>

and (M̂>)(MC), then discretized in 8 classes according to the percentiles of the respective
GENEPY distributions.

To corroborate the confusion matrix analysis at the product level, we discuss here
if the false positive entries concentrate in the same products’ category at the two
aggregation levels (HS-2 and HS-4). Specifically, we included in Tab. 20 the classifi-
cation of products by false positive rate. For the sake of clarity in the exposition, we
report here only the top 11 products by HS classification:
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fpr, HS-2 fpr, HS-4
Lead and articles thereof Pharmaceutical products
Pearls, precious stones Sugars and sugar confectionery
Fertilisers Iron and steel
Copper and articles thereof Lead and articles thereof

Zinc and articles thereof
Mineral fuels, mineral oils

and products of their distillation;
bituminous substances; mineral waxes

Tobacco and manufactured
tobacco substitutes

Natural or cultured pearls,
precious or semi-precious stones, precious metals

Mineral fuels, mineral oils (and related)
Oil seeds and oleaginous fruits;
miscellaneous grains, seeds and

fruit; industrial or medicinal plants

Other base metals; cermets;
articles thereof

Vehicles other than railway
or tramway rolling-stock,

and parts and accessories thereof
Silk Aluminium and articles thereof
Ores, slag and ash Copper and articles thereof

Table 20: Top 11 products in terms of false positive rate at HS-2 and HS-4 levels of
aggregation

For both HS-2 and HS-4 levels of aggregation, the analysis has been conducted
by confronting the matrix of true values with the predicted ones obtained through
500 simulations (refer to the main text). This is to provide robustness to the results.
Specifically, we recovered 500 predicted matrices (by applying the MC algorithm
iteratively). Out of those 500 matrices, we recover a single predicted matrix by
taking the 500 simulated prediction matrices (and discretizing it w.r.t the RCA being
> 1). Then, the latter was used to construct the confusion matrix and compute the
"by row" (by products) false-positive rate.
As we can see from Tab. 20 the false positives do not concentrate on the same products
at the two aggregation levels, though some similarities emerge. Notice, in particular,
how the HS-4 level seems to uncover the potentiality of different sectors with respect
to HS-2 (e.g., Pharmaceutical and Vehicles). Since the sectors uncovered by the
HS-4 level are associated with traditionally promising exporting sectors, they do not
constitute a surprise. Instead, sectors such as precious minerals, fertilizers, aluminum,
copper, iron, and steel reveal a high demand (overcoming the offer) of traditional
technologies and raw materials in the world. The reasons might be multiple, but,
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for sure, a key motivation is that such raw materials are mostly concentrated in less
developed countries unable to go along with the world’s needs of such goods.

Application of a variation of the analysis to countries, based
on the entry-wise logarithm of the original RCA matrix for
the year 2018, with products aggregated at the HS-4 level

In the following, a variation of our analysis is applied to countries. In this variation,
instead of discretizing the elements of the original RCA matrix, they are replaced
by their natural logarithm10. Then, the rest of the proposed method is unchanged
with respect to Section 2. In the main text, the discretization method has been
preferred, because it generates values more symmetrically distributed around 0. The
main motivations for the logarithm analysis are reported. First, the original data
were continuous, and we did not want to lose the information about their continuity.
Yet, in the main analysis, we categorized the original data. A further reason lies in
the fact that matrix completion might work better when the elements have similar
magnitude. Thus, we reduced the scale by taking the logarithm as a robustness check.

Fig. 24 reports, for this variation of analysis and for the product aggregation level HS-
4, results similar to those obtained in Figs. 15(a) and 15(b) for the original analysis
and for the product aggregation level HS-2.

10No issues arise when taking the natural logarithm, because no 0 or negative entries are present in
that matrix. Moreover, entries originally equal to NaN are never included in the training, validation
or test sets.
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False negative rate fnrc,
reported proportionally to the shade of
blue for the year 2018 and the product
aggregation level HS-4, for the case in

which the entry-wise natural logarithm of
the original RCA matrix is employed by
the proposed method. Countries colored
in grey are not considered in the analysis.

False positive rate fprc,
reported proportionally to the shade of
blue for the year 2018 and the product
aggregation level HS-4, for the case in

which the entry-wise natural logarithm of
the original RCA matrix is employed by
the proposed method. Countries colored
in grey are not considered in the analysis.

Figure 24: False negative and false positive rates for countries, obtained by the method
reported in Step 5 of Section 2 for the year 2014, with products aggregated at the HS-2
level.

Similarly, Tab. 21 finds, for this variation of analysis and for the product aggregation
level HS-4, results similar to those obtained in Tab. 18 for the original analysis and
for the product aggregation level HS-2.

GENEPY (τk) GENEPY (p-value)
fnrc,log,hs−4 -0.2569 0.0000
fprc,log,hs−4 0.5903 0.0000

Table 21: τk and relative p-values for the rankings produced using GENEPY against
the ranking produced respectively by fnrc,t and fprc,t, for the product aggregation level
HS-4, for the case in which the entry-wise natural logarithm of the original RCA matrix
is employed by the original analysis.

Finally, also Fig. 25, which refers to the variation of analysis and to products aggre-
gated at the HS-4 level, shows results similar to those obtained in Fig. 17(b), which
refers to the original analysis and to products aggregated at the HS-2 level.
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Figure 25: Difference between GENEPY and ̂GENEPY
(MC)

for the year 2018, with
products aggregated at the HS-4 level, for the case in which the entry-wise natural loga-
rithm of the original RCA matrix is employed by the proposed method.
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Conclusions

Machine learning techniques have advanced along with more sophisticated econo-
metrics methodologies. Though the early practitioners of the former discipline were
mainly statisticians and computer scientists, scholars (H. R. Varian, 2014a, Athey and
Imbens, 2019) were able to transfer machine learning knowledge to other disciplines.
In particular, machine learning has become more and more prominent in economics.
As reported in Bargagli Stoffi (2020) "The reasons behind the surge in the usage of
machine learning are manifold and are connected to the major technological innova-
tions introduced in the last decades. Advances in data storage, data transfer and data
processing, and the availability of large data sources to be analyzed called for novel,
more powerful, computational tools". However, such innovations come at a cost that
can be either monetary or time spent to collect and manage data.
Machine learning techniques were, in the first instance, adopted for prediction within
social sciences. Their advantage with respect to traditional econometrics methodolo-
gies was the ability of machine learning to uncover unexplored paths in data without
the usual restrictions imposed by econometrics (Breiman, 2001). This does not mean
that theories and assumptions are neglected in the machine learning era (Sejnowski,
2018).
On the contrary, as highlighted in Dominici, Bargagli-Stoffi, and Mealli (2020), ma-
chine learning alone cannot provide insights on the underlying assumptions of causal
models. Nevertheless, a novel stream of machine learning is forming to take care also
of causality issues (see, e.g., Athey, J. Tibshirani, and Wager, 2019, Bargagli-Stoffi,
Niederreiter, and Riccaboni, 2021). However, the mentioned literature is still in an
early stage and cannot deal with complex scenarios as the ones considered in Chapter
3 of the present Dissertation.
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The main aim of this Dissertation is to extend the machine learning and economet-
rics frameworks through an application-oriented perspective. Indeed, the methods
developed provide answers to relevant empirical questions. In the first two Chapters,
we bridge several gaps in the field of applied machine learning to econometrics by pro-
viding a way to optimize the number of examples needed to conduct valid econometrics
analyses in several scenarios. In the last two Chapters, we employ novel methodolo-
gies in machine learning and econometrics in order to provide innovative solutions
to highly debated problems. Specifically, in Chapter 3 we introduce a methodologi-
cal novelty to explore the relationship between market size and innovation, while in
Chapter 4 we adopt MC – which was traditionally used in ML to impute unknown
matrix entries – to build up a novel economic complexity index. Table 22 provides
an overview of the main empirical contributions of the Dissertation.

6 Contributions

In the first Chapter, we introduced a novel machine learning methodology to inves-
tigate the optimal trade-off between the sample size and the precision of supervision
in several econometrics contexts. The problem is fascinating in the era of big data,
where the debate on their sunk costs is still vivid (Davenport and Dyché, 2013). Yet,
big data may be costly not only in terms of money and time (Singh and Reddy, 2015)
but also in terms of complexity (Tole et al., 2013). In particular, the latter compre-
hends difficulties in managing big data as well as in understanding them. Therefore,
having the possibility of analyzing a smaller amount of data being sure to produce
robust statistics could provide advantages in the two latter senses. The aim of Part
1 is to facilitate such theoretical effort through machine learning techniques by pro-
viding robust boundaries on the generalization error made when investigating "many
but bad examples" or "few but good ones."
We considered three common scenarios in both macroeconometrics and microecono-
metrics applications. In all such cases, we assume a panel-data setting, i.e. N units
observed in T time periods. Specifically, we studied a baseline model in which we
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eliminated the individual unobserved fixed effects. These effects are time-independent
but individual-dependent. See, for instance, Burke and Sass (2013) for an example of
how fixed effects can be used to control for individual effects (teachers and peers in
their paper). In the last part of Chapter 1, we moved away from the baseline model
and considered when individuals are not observed for the same amount of time. For-
mally, N units are now observed for a maximum time of T . Each unit is instead
observed for an amount Tn of time. In this scenario, however, the measurements
errors of observations associated with the same unit are mutually independent. In
Chapter 2, we removed this hypothesis and considered the more general case in which
the latter does not hold. Furthermore, we provided large-sample approximations with
respect to the number of units and the number of observations. The results are tested
numerically.
In both Chapters, we obtain similar quantitative results. These show that in the
case of "decreasing returns of scale," "many but bad" examples are associated with
a smaller conditional generalization error than "few but good" ones. The opposite
occurs for "increasing returns of scale," whereas the "constant returns of scale" are
intermediate.

While the first two Chapters fill the gaps left in the theoretical literature of ma-
chine learning and econometrics, the third and the fourth Chapters are more on the
applicative side of the latter stream.
Chapter 3 investigated an example of when econometrics techniques provide more
up-to-date, robust tools for a specific type of causality problem. The open debate
on how and how much market size influences innovation requires techniques able to
control at the same time for idiosyncratic and heterogeneity endogeneity and fixed
effects in a counting data environment. This is, to the best of our knowledge, only
possible with recently developed econometrics tools (W. Lin and Wooldridge, 2019).
In dealing with the issue, we employed a novel instrument, namely recall, to solve for
the reverse causality of market size and innovation. The results confirm the presence
of the latter source of endogeneity and provide a robust point estimate of the rela-
tionship between market size and innovation, which turned out to be significant and
positive. The analysis has been extended to product and firm levels of aggregation in
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the Appendix. Further and novel insights on recalls have been discussed throughout
the Dissertation.
Finally, Chapter 4 concludes with an application of machine learning to traditional
economic issues, namely economic complexity. The topic of economic complexity has
been indeed debated in the literature for long and for a long time (Keeley, 1988,Hi-
dalgo and Hausmann, 2009,Simoes and Hidalgo, 2011 among others). This interest
lies, above all, in the possibility of predicting the economic growth of countries in
the future. As highlighted in the Introduction of the present Dissertation, machine
learning provides, nowadays, novel tools to deal with predictions. In Chapter 4 we,
particularly, exploited Matrix Completion (MC) in order to impute the so called Re-
vealed Comparative Advantage of countries 11. The overall idea to construct a novel
index that innovates with respect to the elder ones, is that the worse the prediction
of MC the more complex the country must be (otherwise MC would not have any
difficulty in imputing the RCA of such a country). Being the first time that MC is
employed to construct a complexity index, we believe that the novelty of MONEY
lies on its capability to catch the complexity of countries by considering, at the same
time, the complexity of the goods that they trade.

7 Outline of possible future research

Due to the scarcity in the literature concerning the first two Chapters, we invite
authors to explore more complicated scenarios than the ones presented in the present
Dissertation. The following list provides possible extensions:

• Application of he proposed methodologies to real world data. It would be very
interesting to check that what computed in theory and simulated with algorithms
is also valid with real world data. The difficulty lies on finding data aligning with
the restrictions imposed throughout thee discussion;

• extension to causal inference 12; (Shalit, Johansson, and Sontag, 2017)
11an index calculating the relative advantage or disadvantage of a certain country in a certain

class of goods or services as evidenced by trade flows
12we remember here hat, in the context discussed in Chapters 1 and 2 the aim was to minimize a

generalization error and hence the problem was mainly a prediction problem
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• exploring the case of Instrumental Variables (IV) when classic OLS assumption
fail and endogeneity intervenes;

• extending the analysis to more complex (i.e. having less and less restrictive
assumptions) econometric models (unbalanced FEGLS, Poisson, Random Effects,
Fixed Effect Poisson and many others)

• substitution of empirical bounds with bounds proved in literature.

As an example of application of the prospective extensions to a causal inference sce-
nario to data analysis, one could jointly optimize the number of persons testing an
upgraded version of a social media platform (e.g., one based on a new graphical in-
terface, or containing new functionalities, such as the integration with other apps
including item recommendations systems based on user’s behavior) and the number
of persons selected as controls, to assess the heterogeneous causal effects on the per-
ceived quality of that upgrade. This optimization would be constrained by a budget
constraint on the total supervision cost, and the possibility to enlarge (respectively,
reduce) the two training set sizes above by reducing (respectively, increasing) the
quality of each supervision – in case this was associated with a better estimate of the
heterogeneous causal effects –, still respecting the given budget constraint.
Chapter 3 regards the application of recent econometric tools to explore the rela-
tionship between market size and innovation. Future research could employ more
up-to-date data in order to also take into account in the analysis repackaging firms.
Moreover, one can also employ double machine learning techniques to compute the
own and cross price elasticties of prices of drugs. The latter information, by forecast-
ing the co-movements of demand and price of medicines could be used as a further con-
trol in the study. However, this is not an easy task since computing cross-elasticities
within a panel-data model may require a huge computational time. Computing cross-
elasticities, moreover, is a simultaneous equation problem which can have no closed
form. Sophisticated and novel tools are, thus, required.
Finally, Chapter 4 could be easily improved by optimizing the actual algorithm used
to perform MC and extend the actual number of iterations. The optimized MC algo-
rithm could be also employed to extend the analysis at the HS-6 level of aggregation
to provide better recommendations to countries. Future research should also apply
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MONEY index in economics context and check its provided ranking.
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Appendix A

Appendix

The Appendices for Chapter 1 and Chapter 2 come from Gnecco, Nutarelli, and Selvi
(2020) and Gnecco, Nutarelli, and Selvi (2021).

1 Appendix for Chapter 1

The following Appendix includes the proofs of formulas in Chapter 1. This Appendix
does not include proofs for the baseline model since it was only for explanatory pur-
poses (see Gnecco and Nutarelli, 2019b for further details).
First, we expand the conditional generalization error (1.32) as follows:

E
{(
η̂i,FE + β̂′FExtesti −ηi−β′xtesti

)2 ∣∣∣{Xn}Nn=1

}
=E

{(
(η̂i,FE−ηi) +

(
β̂FE−β

)′
xtesti

)2 ∣∣∣{Xn}Nn=1

}

=E
{
(η̂i,FE−ηi)2|{Xn}Nn=1

}
+E

{((
β̂FE−β

)′
xtesti

)2 ∣∣∣{Xn}Nn=1

}

+ 2E
{

(η̂i,FE−ηi)
(
β̂FE−β

)′
xtesti

∣∣∣{Xn}Nn=1

}
. (A.1)

Exploiting the conditional unbiasedness of η̂i,FE , and the expressions (2.1) of yn,t,
(??) of ỹn,t, and (2.12) of η̂i,FE (with the index n replaced by the index i), one gets

E
{
(η̂i,FE−ηi)2|{Xn}Nn=1

}
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=E
{ 1

Ti

 Ti∑
t=1

(
ηi+β′xi,t+ εi,t− β̂′FExi,t

)−ηi
2

∣∣∣{Xn}Nn=1

}

=E


 1
Ti

Ti∑
t=1

((
β− β̂FE

)′
xi,t+ εi,t

)2 ∣∣∣{Xn}Nn=1

 . (A.2)

It follows from Equation (A.2) that Equation (A.1) can be re-written as

E


 1
Ti

Ti∑
t=1

((
β− β̂FE

)′
xi,t+ εi,t

)2 ∣∣∣{Xn}Nn=1


+E

{(
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)′ (
β̂FE−β

)(
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+ 2E
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((
β− β̂FE
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xi,t+ εi,t

)
(
β̂FE−β

)′
xtesti

∣∣∣{Xn}Nn=1

 . (A.3)

Using the expression (2.9) of β̂FE, and Equation (A.1), one can simplify the term
β̂FE−β above as follows:

β̂FE−β

=
 N∑
n=1

X ′nQnXn

−1 N∑
n=1

X ′nQnỹn

−β
=
 N∑
n=1

X ′nQnXn

−1 N∑
n=1

X ′nQn (ηn+Xnβ+εn)
−β

=
 N∑
n=1

X ′nQnXn

−1 N∑
n=1

X ′nQnεn

 . (A.4)

Then, Equation (A.3) becomes

E


1′Ti
Ti

−Xi
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X ′nQ
′
nQnXn

−1
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. (A.5)

Expanding the square in the first term in the expression above, and splitting its last
term in two parts, one obtains the following expression for Equation (A.5):
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(A.6)
In order to simplify the various terms contained in Equation (A.6), one observes that,
due to Equations (A.7), (A.8), and (1.36), one gets
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and
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Then, by an application of the two equations just derived above, one obtains the
following equivalent expression for Equation (A.6):

169



σ21′TiXi

T 2
i

 N∑
n=1

X ′nQ
′
nQnXn

−1

X ′i1Ti

+ σ2

Ti

−2
σ21′TiXi

T 2
i

 N∑
n=1

X ′nQ
′
nQnXn

−1

X ′iQ
′
iQi1Ti

+E

σ2
(
xtesti

)′ N∑
n=1

X ′nQ
′
nQnXn

−1

xtesti

∣∣∣{Xn}Nn=1


−2E

σ
21′TiXi

Ti

 N∑
n=1

X ′nQ
′
nQnXn

−1

xtesti

∣∣∣{Xn}Nn=1


+2E

σ
21′TiQ

′
iQiXi

Ti

 N∑
n=1

X ′nQ
′
nQnXn

−1

xtesti

∣∣∣{Xn}Nn=1

 ,

(A.9)

where, in some cases, the conditional expectations of deterministic matrices (and of
random matrices, like Xi, that become known once the set of conditioning matrices
{Xn}Nn=1 has been fixed) have been replaced by the matrices themselves. Finally,
exploiting Equation (1.38), one can get rid of the third and sixth terms in Equation
(A.9), which then becomes

σ21′TiXi
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 , (A.10)
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which is Equation (2.17).

1.1 Proof of Equation (1.47)

The first inequality
σ2

T

 1
qi

+E

∥∥∥∥∥A−1

2
N

(
E{xi,1}−xtesti

)∥∥∥∥∥
2

2




≤σ
2

T

( 1
qi

+λmax(A−1
N )E

{∥∥∥(E{xi,1}−xtesti

)∥∥∥2
2

})
(A.11)

in Equation (1.47) is obtained by exploiting the definition of induced l2-matrix norm,
i.e.,

‖A−
1
2

N ‖2 = sup
x∈Rp,‖x‖2 6=0

‖A−
1
2

N x‖2
‖x‖2

, (A.12)

and the fact that, being A−
1
2

N symmetric, one has

‖A−
1
2

N ‖
2
2 = λ2

max(A−
1
2

N ) = λmax(A−1
N ) . (A.13)

Then, the equality
σ2

T

( 1
qi

+λmax(A−1
N )E

{∥∥∥(E{xi,1}−xtesti

)∥∥∥2
2

})

=σ
2

T

( 1
qi

+ 1
λmin(AN )E

{∥∥∥(E{xi,1}−xtesti

)∥∥∥2
2

})
. (A.14)

follows from the relationship λmin(AN ) = 1
λmax(A−1

N ) .
Finally, the last inequality in Equation (1.47) is obtained by exploiting Weyl’s

inequalities Bhatia, 1997, Theorem III.2.1 for the eigenvalues of the sum of symmetric
matrices, as detailed in the following remark.

Remark 7. Given any pair of symmetric matrices A,B ∈Rs×s, let their eigenvalues
and those of C :=A+B be ordered nondecreasingly (with possible repetitions in case
of multiplicity larger than 1) as

λ1(A)≤ λ2(A)≤ . . .≤ λk(A)≤ . . .≤ λs(A) ,
λ1(B)≤ λ2(B)≤ . . .≤ λk(B)≤ . . .≤ λs(B) ,
λ1(C)≤ λ2(C)≤ . . .≤ λk(C)≤ . . .≤ λs(C) . (A.15)
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Then, Weyl’s inequalities, in their simplest form, state that, for every k = 1, . . . , s,
one has

λk(A) +λ1(B)≤ λk(C)≤ λk(A) +λs(B) . (A.16)

Hence, λmin(C)≥ λmin(A) +λmin(B). Similarly, for any µ1,µ2 ≥ 0, when A and B
are also positive semi-definite (as in the case of the matrices A defined in Equation
(1.40)), one gets

λmin(µ1A+µ2B)≥ µ1λmin(A) +µ2λmin(B) . (A.17)
Finally, Equation (A.17) extends directly to the case of a weighted summation (with
non-negative weights) of symmetric and positive semi-definite matrices, proving the
last inequality in Equation (1.47).

2 Appendix for Chapter 2

Appendix 1: proofs of Eqs. (2.17), (2.18), and (2.19)

To simplify the notation, here and in the next appendices, QT will be often replaced
by the shorthand Q. Also the dependence of Ψ and Φ and other matrices/vectors on
T will be typically omitted in the notation, apart from a few cases (e.g., in part of
Appendix 2).

Proof of Eq. (2.17)

For n = 1, . . . ,N , let η
n
∈ RT be the column vector whose elements are all equal

to ηn. Using the expressions (2.1), (2.2), (2.6), and (2.9) respectively of yn,t, zn,t, z̈n,
and β̂

FEGLS
, and

Qη
n

= 0T , (A.1)

one can write the term β̂
FEGLS

−β as follows:

β̂
FEGLS

−β =
 N∑
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Ẍ ′nΩ+Ẍn

−1 N∑
n=1

Ẍ ′nΩ+z̈n

−β
=

 N∑
n=1

Ẍ ′nΩ+Ẍn

−1 N∑
n=1

Ẍ ′nΩ+Q
(
η
n

+Xnβ+ εn
)−β
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=
 N∑
n=1

Ẍ ′nΩ+Ẍn

−1 N∑
n=1

Ẍ ′nΩ+ε̈n . (A.2)

In the following, to simplify the notation, we set B :=
(∑N

n=1 Ẍ
′
nΩ+Ẍn

)−1 and b :=∑N
n=1 Ẍ

′
nΩ+ε̈n.

Now, we expand the conditional generalization error (2.16) as follows:
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. (A.3)

Exploiting the conditional unbiasedness of η̂i,FEGLS , and the expressions (2.1) of yn,t,
(2.2) of zn,t, and (2.12) of η̂i,FEGLS (with the index n replaced by the index i), one
gets
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t=1

((
β− β̂

FEGLS

)′
xi,t+ εi,t

)2 ∣∣∣{xn,t}t=1,...,T
n=1,...,N

 . (A.4)

Then, taking into account (A.2) and (A.4), one gets

(A.3) = E

( 1
T

1′T (−XiBb+ εi)
)2 ∣∣∣{xn,t}t=1,...,T

n=1,...,N

+E
{(
xtesti

)′
Bb(Bb)′xtesti

∣∣∣{xn,t}t=1,...,T
n=1,...,N

}

+2E
{( 1

T
1′T (−XiBb+ εi)

)
(Bb)′xtesti

∣∣∣{xn,t}t=1,...,T
n=1,...,N

}
. (A.5)

Expanding the square in the first term in the expression above, and splitting its last
term in two parts, one obtains

(A.5) = E
{ 1
T 2 1′TXiBbb

′B′X ′i1T
∣∣∣{xn,t}t=1,...,T

n=1,...,N

}
+E

{ 1
T 2 1′T εiε′i1T

∣∣∣{xn,t}t=1,...,T
n=1,...,N

}

−2E
{ 1
T 2 1′TXiBbε

′
i1T

∣∣∣{xn,t}t=1,...,T
n=1,...,N

}
+E

{(
xtesti

)′
Bbb′B′xtesti

∣∣∣{xn,t}t=1,...,T
n=1,...,N

}

−2E
{ 1
T

1′TXiBbb
′B′xtesti

∣∣∣{xn,t}t=1,...,T
n=1,...,N

}
+ 2E

 1
T

1′T εib′B′xtesti

∣∣∣{xn,t}t=1,...,T
n=1,...,N

}
.

(A.6)
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In order to simplify the expressions above, one exploits the following properties:

E
{
ε̈nε̈
′
m

}
= 0T×T (A.7)

for n 6=m (being 0T×T ∈ RT×T the matrix whose elements are all equal to 0), and

E
{
ε̈nε̈
′
n

}
= Ω = σ2Φ . (A.8)

Then, expanding b and exploiting also the facts that Ω+ΩΩ+ = Ω, B =B′, the matrix
Ω+ is symmetric and deterministic, and all the Ẍn are known once all the xn,t are
given, one gets

E
{
Bbb′B′

∣∣∣{xn,t}t=1,...,T
n=1,...,N

}
= E

B
 N∑
n=1

Ẍ ′nΩ+ε̈n
N∑
m=1

ε̈′mΩ+Ẍm

B′∣∣∣{xn,t}t=1,...,T
n=1,...,N


= B

 N∑
n=1

Ẍ ′nΩ+ΩΩ+Ẍn

B′
= BB−1B

′

= σ2
 N∑
n=1

Ẍ ′nΦ+Ẍn

−1

. (A.9)

Finally, inserting (A.9) in (A.6), expanding the expressions of B and b, and recalling
that E{εiε′i}= σ2Ψ, one obtains Eq. (2.17).

Proof of Eq. (2.18)

The expression 1′TΨ1T in Eq. (2.18) is the summation of all the elements of the
matrix Ψ. Now, the element ρ0 = 1 appears in that summation T times, whereas the
generic element ρt (for t= 1, . . . ,T −1) appears 2(T − t) times. Hence,

1′TΨ1T =
T +

T−1∑
t=1

2(T − t)ρt
 =

T + 2T
T−1∑
t=1

ρt−2
T−1∑
t=1

tρt
 . (A.10)

Then, Eq. (2.18) is obtained from (A.10) by exploiting the following well-known
expressions for the partial sums of the geometric series, and of its derivative:

T−1∑
t=1

ρt = 1−ρT
1−ρ −1 , (A.11)

and
T−1∑
t=1

tρt = ρ
d
(∑T−1

t=1 ρ
t
)

dρ
= ρ

1−ρ(−(T −1)ρT−1 +ρT−2 +ρT−3 + . . .+ 1) , (A.12)

where the right-hand side in Eq. (A.12) has been obtained by simplifying common
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factors in the numerator and the denominator.

Proof of Eq. (2.19)

We compute QΨ1T , as follows:

QΨ1T =
(
IT −

1
T

1T1T ′
)

Ψ1T

= Ψ1T −
1
T

(1′TΨ1T )1T

= Ψ1T −
1 + 2

(1−ρT
1−ρ −1

)
− 2ρ
T (1−ρ)

(
− (T −1)ρT−1 +ρT−2 +ρT−3 + · · ·+ 1

)1T ,

(A.13)
where the expression above of (1′TΨ1T )1T comes from Eq. (2.18). Finally, Eq. (2.19)
is obtained from Eq. (A.13) by expanding the elements of Ψ1T , then simplifying the
resulting expressions.

Appendix 2: proofs of the probability limits in Section 2

In the following, Eqs. (2.20) and (2.21) are derived under the common assumption
that, for the unit i, the xi,t are mutually independent, identically distributed, and
have finite moments up to the order 4. To derive Eq. (2.23), one makes the similar
assumption that, for each fixed unit n, the xn,t are mutually independent, identically
distributed, and have finite moments up to the order 4, together with the additional
assumption lim

T→∞
‖Φ+−QΨ−1Q′‖2 = 0 reported in Eq. (2.22). The validity of this

last assumption is discussed extensively at the end of this appendix. Eqs. (2.20),
(2.21), and (2.23) could be derived under more general conditions, but such possible
extension is out of the scope of the paper.

Proof of Eq. (2.20)

Eq. (2.20) simply replaces the empirical average of the transposes of the xn,t

(which is 1
T 1′TXi) with their common expected value

(
E
{
xi,1

})′, and follows from
Chebyschev’s weak law of large numbers (Ruud et al., 2000, Section 13.4.2).
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Proof of Eq. (2.21)

In order to prove Eq. (2.21), it is convenient to introduce (recalling the definition
of uT provided in Eq. (2.19)) the vector

vT :=Q′Φ+QΨ1T =Q′Φ+uT , (A.14)
since the argument of the probability limit in Eq. (2.21) can be written as follows:

1
T
Ẍ ′iΦ+QΨ1T = 1

T
X ′iQ

′Φ+QΨ1T = 1
T
X ′ivT . (A.15)

In other words, the T elements of each row of X ′i are summed with (different and
deterministic) weights vT,t (the components of vT ), for t= 1, . . . ,T , then their weighted
sum is divided by T . This suggests the application of a suitable form of the law of
large numbers, which holds in this case: specifically, the one provided in Bai, P. E.
Cheng, and Zhang (1997, Theorem 2.1)). In view of the next application of that
theorem, first we investigate the following properties of the various terms involved in
Eqs. (A.14) and (A.15).

i) The Euclidean norm of the vector uT is bounded from above as follows, for Ku> 0
independent from T :

‖uT‖2 ≤Ku

√
T . (A.16)

This follows from the fact that the absolute values of all the components of the
vector uT , whose expression is reported in Eq. (2.19), are bounded from above
by a sufficiently large Ku > 0, which is independent from T .

ii) All the eigenvalues of the matrix Ψ belong to the interval
[

1−ρ2

1+ρ2+2ρ ,
1−ρ2

1+ρ2−2ρ

]
⊂

(0,+∞).

This result follows by observing that Ψ is a symmetric Toeplitz matrix1 (Gray,
2006). Then, by Gray (2006, Lemma 4.1), all the eigenvalues of Ψ belong to

1 We recall that a matrix M ∈ RT×T is a symmetric Toeplitz matrix if it has the form

M =


m0 m1 m2 · · · mT−2 mT−1
m1 m0 m1 m2 · · · mT−2
m2 m1 m0 m1 · · · mT−3
· · · · · · · · · · · · · · · · · ·

mT−1 mT−2 · · · m2 m1 m0

 , (A.17)

where m0,m1, . . . ,mT−1 ∈ R.
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the interval [mf ,Mf ], where mf and Mf are respectively the minimum and the
maximum of the function

f(λ) :=
+∞∑

k=−∞
ρ|k|eιkλ (A.18)

on the interval [0,2π], and ι is the imaginary unit. By inverting the Fourier series
(A.18) as in Gilgen (2006, Eqs. (7.77)-(7.79)), one gets

f(λ) = 1−ρ2

1 +ρ2−2ρcos(λ) , (A.19)

from which one gets mf = 1−ρ2

1+ρ2+2ρ > 0 and Mf = 1−ρ2

1+ρ2−2ρ <+∞ since ρ ∈ (−1,1),
which concludes the proof of item ii).

iii) The matrix Φ has 0 as eigenvalue with multiplicity 1, and associated eigenvector
1T .

This result follows from the characterization of the eigenvalues of a symmetric
matrix M ∈ RT×T as the stationary values of its Rayleigh quotient x′Mx

x′x (with
x ∈ RT and x 6= 0T ) (Parlett, 1998, Chapter 1), the invertibility of the matrix
Ψ, and the fact that Q has eigenvalue 0 with multiplicity 1, and associated
eigenvector 1T 2. Hence, for x 6= 0T , x

′Mx
x′x = 0 if and only x is proportional to 1T .

iv) All the other eigenvalues of Φ belong to the interval
[

1−ρ2

1+ρ2+2ρ ,
1−ρ2

1+ρ2−2ρ

]
⊂ (0,+∞).

This follows again from the characterization of the eigenvalues of a symmetric
matrix as the stationary values of its Rayleigh quotient, and also from Courant-
Fisher’s maxmin theorem (Parlett, 1998, Theorem 10.2.1) and from item ii). In-
deed, by ordering the (real) eigenvalues of Ψ and Φ respectively as λ1(Ψ) ≤
λ2(Ψ) ≤ . . .λT (Ψ) and λ1(Φ) ≤ λ2(Φ) ≤ . . .λT (Φ), and recalling that x′Φx =
x′QΨQ′x= x′Ψx for any x ∈ RT orthogonal to 1T , one gets

λ1(Ψ) = min
x∈RT ,x 6=0T

x′Ψx
x′x

≤ min
x∈RT ,x 6=0T ,x⊥1T

x′Ψx
x′x

= min
x∈RT ,x 6=0T ,x⊥1T

x′Φx
x′x

= λ2(Φ)

(A.20)
from Courant-Fisher’s maxmin theorem, whereas

λT (Ψ) = max
x∈RT ,x 6=0T

x′Ψx
x′x

≥ max
x∈RT ,x 6=0T

x′Φx
x′x

= λT (Φ) (A.21)

is obtained by expressing Q′x by using a basis of orthonormal eigenvectors et
2remember that Φ =QTΨQ′T
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of Ψ, associated with the respective eigenvalues λt(Ψ), t = 1, . . . ,T . Indeed, for
some coefficients αt, t= 1, . . . ,T (depending on x), one has

Q′x=
T∑
t=1

αtet , (A.22)

hence
x′Φx= x′QΨQ′x=

T∑
t=1

λt(Ψ)α2
t , (A.23)

whereas
x′x≥ x′QQ′x=

T∑
t=1

α2
t . (A.24)

Then, one gets
x′Φx
x′x

≤ λT (Ψ) (A.25)

for any x 6= 0T .

v) All the non-zero eigenvalues of the matrix Φ+ belong to the interval
[

1+ρ2−2ρ
1−ρ2 , 1+ρ2+2ρ

1−ρ2

]
⊂

(0,+∞).

This follows from items iii) and iv) and the relation between the singular value
decomposition of a symmetric positive semi-definite matrix and the singular value
decomposition of its Moore-Penrose pseudoinverse, which has been reported in
footnote 3.

vi) The Euclidean norm of the vector vT is bounded from above as follows, for Kv > 0
independent from T :

‖vT‖2 ≤Kv

√
T . (A.26)

This is obtained by combining the definition of vT provided in Eq. (A.14) with
items i) and v), and the fact that the eigenvalue with maximus modulus of Q=Q′

is 1. A possible expression for Kv is Kv = 1+ρ2+2ρ
1−ρ2 Ku.

vii) The following holds:

limsup
T→∞

1√
T
‖vT‖2 ≤Kv <+∞ . (A.27)

This is obtained immediately from item vi).

To conclude the proof of Eq. (2.21), we first consider the case in which, for the
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unit i, all the xi,t have mean 0p. Later, this additional assumption is removed.

viii) Proof of Eq. (2.21) when all the xi,t have mean 0p.

Item vii) and the fact that all the elements of each row of X ′i have 0 mean,
are independent, identically distributed, and their moments up to the order 4
are finite allow one to apply Bai, P. E. Cheng, and Zhang, 1997, Theorem 2.1,
getting the following result, where, for r = 1, . . . ,p, (X ′ivT )r denotes the r-th
component of X ′ivT :

limsup
T→∞

|(X ′ivT )r|
T

3
4 (logT )1

4
= 0 almost surely3 . (A.28)

This, combined with the inequalities

0≤ liminf
T→∞

|(X ′ivT )r|
T

≤ limsup
T→∞

|(X ′ivT )r|
T

≤ limsup
T→∞

|(X ′ivT )r|
T

3
4 (logT )1

4
(A.29)

and the fact that almost sure convergence implies convergence in probability Rao
et al., 1973, shows that, for all r = 1, . . . ,p, one has

plim
T→+∞

1
T

(X ′ivT )r = 0 . (A.30)

To conclude, one gets Eq. (2.21) from Eqs. (A.15) and (A.30), by exploiting
the fact that, for a sequence of random matrices with fixed dimension, element-
wise convergence in probability implies convergence in probability of the whole
sequence Herriges, 2011.

ix) Proof of Eq. (2.21) when all the xi,t have the same mean m ∈ Rp.

We set x̄i,t := xi,t−m, in such a way that the x̄i,t have mean 0p. Similarly, we
set X̄i = Xi− 1Tm′. Since Ẍi = QXi = Q(X̄i + 1Tm′) = QX̄i = ¨̄Xi, one reduces
the analysis to the one made in item viii).

Remark 8. As a variation of item ii), a simpler argument (not based on the the-
ory of Toeplitz matrices) can be used to prove that all the eigenvalues of the ma-
trix Ψ belong to the interval

[
1− 2ρ

1−ρ ,1 + 2ρ
1−ρ

]
. This result follows by seeing the

matrix Ψ as a perturbation of the identity matrix, then applying Gershgorin’s cir-
cle theorem Gershgorin, 1931. Indeed, all the eigenvalues of Ψ (which are non-

3We recall that a sequence of random real variables bT , T = 1,2, . . ., converges almost surely to
b ∈ R if Prob( lim

T→+∞
bT = b) = 1.
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negative since Ψ is symmetric and positive semi-definite) belong to the union of
the T Gershgorin’s circles Ci (i = 1, . . . ,T ) in the complex plane, which have the
same center 1 and respective radii ∑j=1,...,T,j 6=i |Ψij|. The latter radii can be bounded
from above by 2ρ

1−ρ , which follows from a geometric series argument based on Eq.
(A.11). We have preferred to use in the main text the argument based on Toeplitz
matrices, since imposing

[
1− 2ρ

1−ρ ,1 + 2ρ
1−ρ

]
⊂ (0,+∞) requires the additional assump-

tion ρ < 1
3 (instead,

[
1−ρ2

1+ρ2+2ρ ,
1−ρ2

1+ρ2−2ρ

]
⊂ (0,+∞) holds for any ρ ∈ (−1,1)). More-

over, such argument produces an even better estimate (when ∑
j=1,...,T,j 6=i |Ψij| is re-

placed by its upper bound 2ρ
1−ρ), since 1− 2ρ

1−ρ <
1−ρ2

1+ρ2+2ρ and 1+ 2ρ
1−ρ = 1−ρ2

1+ρ2−2ρ , hence[
1−ρ2

1+ρ2+2ρ ,
1−ρ2

1+ρ2−2ρ

]
⊂
[
1− 2ρ

1−ρ ,1 + 2ρ
1−ρ

]
.

Proof of Eq. (2.23)

To make the reading easier, the proof of Eq. (2.23) is divided into several steps.

i) The following holds:
Q′Φ+Q= Φ+ . (A.31)

This is obtained as follows. First, since the matrix Q = Q′ is idempotent, one
gets

Q′Φ+Q= Φ+Q (A.32)

by Maciejewski and Klein, 1985, Appendix. Additionally, since Moore-Penrose
pseudoinversion commutes with transposition (Barata and Hussein, 2012), we
get (

Φ+Q
)′ =Q′

(
Φ+)′ =Q′

(
Φ′
)+ =Q′Φ+ = Φ+ , (A.33)

where the last step follows again by Maciejewski and Klein, 1985, Appendix
and by the symmetry of Φ. Transposing Eq. (A.33) and combining it with the
symmetry of Φ+ and with Eq. (A.32), we get Eq. (A.31).

ii) The following decomposition holds:

Ẍ ′nΦ+Ẍn = X ′nQ
′Φ+QXn =X ′nΦ+Xn =X ′n

[
Φ+−QΨ−1Q′

]
Xn+X ′nQΨ−1Q′Xn .

(A.34)
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This is obtained straightforwardly, by applying item i) to get the second equality.

iii) Under the assumption lim
T→∞

‖Φ+−QΨ−1Q′‖2 = 0 stated in Eq. (2.22), the follow-
ing probability limit holds:

plim
T→+∞

1
T
X ′n

[
Φ+−QΨ−1Q′

]
Xn = 0p×p . (A.35)

This is obtained as follows. Denoting by ε > 0 an upper bound on the spectral
norm of the matrix Φ+−QΨ−1Q′ and by cn,h the h-th column of Xn, the absolute
value of the element in position (h,k) of the matrix X ′n

[
Φ+−QΨ−1Q′

]
Xn can

be bounded from above as follows:

|(X ′n
[
Φ+−QΨ−1Q′

]
Xn)h,k| ≤ ε‖cn,h‖2‖cn,k‖2 ≤

1
2ε(‖cn,h‖

2 +‖cn,k‖22) , (A.36)
where Cauchy-Schwarz inequality has been applied, together with the elemen-
tary inequality |a||b| ≤ a2+b2

2 , for a,b ∈ R. Since by the assumption lim
T→∞

‖Φ+−
QΨ−1Q′‖2 = 0 stated in Eq. (2.22) one can make ε tend to 0 as T tends to +∞,
and both ‖cn,h‖22 and ‖cn,k‖22 are summations of T independent and identically
distributed random variables with finite mean and finite second order moments,
by applying Chebyschev’s weak law of large numbers, one gets

plim
T→+∞

1
T
|(X ′n

[
Φ+−QΨ−1Q′

]
Xn)h,k|= 0 . (A.37)

Finally, one gets Eq. (A.35) from Eq. (A.37), since for a sequence of random
matrices with fixed dimension, element-wise convergence in probability implies
convergence in probability of the whole sequence Herriges, 2011.

iv) The following probability limit holds:

plim
T→+∞

1
T
X ′nQΨ−1Q′Xn = 1 +ρ2

1−ρ2E
{(
xn,1−E

{
xn,1

})(
xn,1−E

{
xn,1

})′}
. (A.38)

This is obtained as follows. Exploiting the symmetry of Q and the following
Cholesky factorization (see, e.g. Ruud et al., 2000, Section 19.2)

Ψ−1 =
(
C−1

Chol
)′
C−1

Chol , (A.39)
where

C−1
Chol = 1√

1−ρ2



√
1−ρ2 0 0 · · · · · · 0
−ρ 1 0 0 · · · 0
0 −ρ 1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 −ρ 1


, (A.40)
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one gets

X ′nQΨ−1Q′Xn =X ′nQ
′Ψ−1QXn = ẍn,1ẍ

′
n,1 +

T∑
t=2

(
1√

1−ρ2 (ẍn,t−ρẍn,t−1)
)(

1√
1−ρ2 (ẍn,t−ρẍn,t−1)

)′
.

(A.41)

Hence, from Eq. (A.41) one gets

plim
T→+∞

1
T

N∑
n=1

X ′nQΨ−1Q′Xn

= plim
T→+∞

1
T

ẍn,1ẍ′n,1 +
T∑
t=2

 1√
1−ρ2

(ẍn,t−ρẍn,t−1)
 1√

1−ρ2
(ẍn,t−ρẍn,t−1)

′ .
(A.42)

Now, we compute the probability limit in the right-hand side of Eq. (A.42) by
considering separately the following various terms.

iv.a) The following holds:
plim
T→+∞

1
T
ẍn,1ẍ

′
n,1 = 0p×p . (A.43)

This is obtained by applying directly Chebyschev’s inequality (Ruud et al.,
2000, Section D.2), since each element of the matrix ẍn,1ẍ′n,1 has finite mean
and finite second order moments.

iv.b) Similarly, since the addition of a finite number of terms like the one reported
in Eq. (A.43) does not change the probability limit, one gets

plim
T→+∞

1
T

T∑
t=2

ẍn,tẍ
′
n,t = plim

T→+∞

1
T

T∑
t=2

ẍn,t−1ẍ
′
n,t−1

= plim
T→+∞

1
T

T∑
t=1

ẍn,tẍ
′
n,t

= plim
T→+∞

1
T
X ′nQ

′QXn

= E
{(
xn,1−E

{
xn,1

})(
xn,1−E

{
xn,1

})′}
,(A.44)

where the last equality is obtained by exploiting the eigendecomposition of
Q′Q (which, combined with the assumptions on the xn,t, shows that each ele-
ment in position (h,k) of the matrixX ′nQ′QXn is the summation of T−1 inde-
pendent random variables with mean

(
E
{(
xn,1−E

{
xn,1

})(
xn,1−E

{
xn,1

})′})
h,k

and the same finite variance), then applying Chebyshev’s weak law of large
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numbers.

iv.c) Moreover,

plim
T→+∞

1
T

T∑
t=2

ẍn,tẍ
′
n,t−1

= plim
T→+∞

1
T

T∑
t=2

xn,t−
∑T
τ=1xn,τ
T

xn,t−1−
∑T
τ=1xn,τ
T

′

= plim
T→+∞

1
T

T∑
t=2

xn,tx′n,t−1−xn,t
∑T
τ=1x

′
n,τ

T
−
∑T
τ=1xn,τ
T

x′n,t−1 +
∑T
τ=1xn,τ

∑T
τ=1x

′
n,τ

T 2


= E

{
xn,1

}
E
{
x′n,1

}
−E

{
xn,1

}
E
{
x′n,1

}
−E

{
xn,1

}
E
{
x′n,1

}
+E

{
xn,1

}
E
{
x′n,1

}
= 0p×p , (A.45)

where the second-last equality comes from the fact that the probability limit
of the product of two factors equals the product of the probability limits of the
two factors, when the latter probability limits exist (this is a consequence of
the Continuous Mapping Theorem Florescu, 2014, Theorem 7.33), and from
the assumptions on the xn,t.

iv.d) Finally, Eq. (A.38) is obtained by combining items iv.a), iv.b), and iv.c),
and taking into account the constant factors in Eq. (A.42).

v) Final part of the proof of Eq. (2.23).

To conclude, one gets Eq. (2.23) by combining Eqs. (A.34), (A.35), and (A.38),
then summing over N .

Discussion of the validity of the assumption lim
T→∞

‖Φ+−QΨ−1Q′‖2 = 0

First, we prove a related result. In the following, for a matrixM ∈RT×T , ‖M‖HS =√
1
T

∑T
i,j=1M

2
i,j denotes its Hilbert-Schmidt norm Gray, 2006, Eq. (2.17), which is a

scaled version of its Frobenius norm ‖M‖F =
√∑T

i,j=1M
2
i,j .

The following holds:
lim
T→∞

‖Φ+−QΨ−1Q′‖HS = 0 . (A.46)

Eq. (A.46) is derived by combining several steps, which are listed next, together
with pointers to some theoretical results available in the literature that are directly
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applied for their proofs, and checks of the assumptions of such results in the context
of our analysis. In the following, for a better clarity of exposition of this part, the
dependence of Ψ and other matrices on T is highlighted by including the subscript T
in the notation.

i) lim
T→∞

‖ΨT −CT‖HS = 0, where CT is a suitable symmetric and positive definite
circulant matrix4 approximation of the symmetric Toeplitz matrix ΨT (applica-
tion of Gray, 2006, Lemma 4.6 to the circulant matrix approximation CT of ΨT

coming from Gray, 2006, Eq. (4.32), where CT is also symmetric and positive
definite due to the symmetry and positive definiteness of the Toeplitz matrix ΨT ;
the application itself of Gray, 2006, Lemma 4.6 is made possible in this case by
the convergence of 1 + 2∑+∞

k=1 |ρ|k).

ii) lim
T→∞

‖ΦT −QTCTQ
′
T‖HS = 0 (definition of ΦT as ΦT = QTΨTQ

′
T and combi-

nation of item i) with Gray, 2006, Lemma 2.3 and the fact that ‖QT‖2 =
max
t=1,...,T

|λt(QT )|= 1).

iii) lim
T→∞

‖Φ+
T − (QTCTQ

′
T )+‖HS = 0 (combination of item ii) with Wedin, 1973, The-

orem 4.1, made possible by the fact that ΦT and QTCTQ
′
T have the same rank

T − 1, and the spectral norm of Φ+
T and the one of (QTCTQ

′
T )+ are uniformly

bounded with respect to T , due respectively to item iv) in the proof of Eq. (2.21)
and to the characterization of the eigenvalues of CT provided in Gray, 2006, Eq.
(4.34), combined with mf = 1−ρ2

1+ρ2+2ρ > 0, see Eq. (A.19)).

iv) lim
T→∞

‖Ψ−1
T −C

−1
T ‖HS = 0 (application of Gray, 2006, Theorem 5.2 (b) to the

function f(λ) reported in Eq. (A.19)).

v) lim
T→∞

‖QTΨ−1
T Q′T −QTC

−1
T Q′T‖HS = 0 (obtained likewise item ii)).

vi) QTC
−1
T Q′T = (QTCTQ

′
T )+ (obtained by exploiting the following facts: since CT

is a symmetric matrix, it has the factorization CT = UTΣTU
′
T for an orthogonal

matrix UT ∈ RT×T and a diagonal matrix ΣT ∈ RT×T containing its eigenvalues,
which are positive; since CT is also a circular matrix, one can choose one column
of UT to be proportional to 1T , since this is an eigenvector of CT Gray, 2006,

4We recall that a symmetric circulant matrix is a symmetric Toeplitz matrix (see footnote 1)
with mt =mT−t, for t= 1, . . . ,T −1 Gray, 2006.
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Theorem 3.1; QT represents the orthogonal projection of RT onto its subspace L
orthogonal to 1T ; as a consequence of the facts above, one can easily check that
QTC

−1
T Q′T satisfies all the defining properties5 Barata and Hussein, 2012 of the

Moore-Penrose pseudoinverse of QTCTQ
′
T , hence QTC

−1
T Q′T = (QTCTQ

′
T )+ by

the uniqueness of the Moore-Penrose pseudoinverse Barata and Hussein, 2012).

vii) Finally, Eq. (A.46) is obtained by combining items iii), v), and vi).

Remark 9. One can easily check (e.g., by a numerical study for selected values of T
and of the parameter ρ in Ψ) that, in general, the stronger result Φ+ =QΨ−1Q′ does
not hold. This depends on the fact that, given two matrices M1,M2 ∈RT×T , typically
(M1M2)+ 6=M+

2 M
+
1 , apart from particular cases Dattorro, 2010, Eq. (E.0.0.0.1).

Eq. (2.22), i.e., lim
T→∞

‖Φ+−QΨ−1Q′‖2 = 0, represents a stronger convergence re-
quirement on Φ+−QΨ−1Q′ with respect to the convergence result provided by Eq.
(A.46), which has been proved above. This depends on the fact that, for any matrix
M ∈ RT×T , one has ‖M‖2 ≥ ‖M‖HS Gray, 2006, Eq. (2.19). The validity of Eq.
(2.22) has been assumed to complete the proof of Eq. (2.23) - specifically, of part of
item iii) therein - since a similar argument based on Eq. (A.46) would be not enough
to complete that proof. Although we are currently unable to provide a formal proof
of Eq. (2.22) - which is why it has been reported here as an assumption - its validity
is strongly supported by the numerical results shown in Figure 26, where the spectral
norm error ‖Φ+−QΨ−1Q′‖2 is reported for several choices of T and ρ (similar results
are obtained for a wider range of values of T and other values of ρ). The difficulty
in getting a proof of Eq. (2.22) depends on the fact that the vector 1T is not an
eigenvector of Ψ (although it is an eigenvector of its circulant matrix approximation).
Hence, there is no guarantee a priori that all the elements of an orthonormal basis of
eigenvectors of Ψ have nonzero orthogonal projections onto 1T (indeed, it can be eas-
ily checked numerically - e.g., by finding a basis of eigenvectors of Ψ for a few choices
of T , then computing such orthogonal projections - that they are typically nonzero)6.

5For example, (QTCTQ′T )(QTC−1
T Q′T )(QTCTQ′T ) = (QTCTQ′T ) is checked by using a com-

mon basis of eigenvectors ei ∈ RT (for i = 1, . . . ,T ) of QT and CT , i.e., by showing that
(QTCTQ′T )(QTC−1

T Q′T )(QTCTQ′T )ei = (QTCTQ′T )ei for each such eigenvector.
6Otherwise, if 1T were an eigenvector of Ψ, one could proceed likewise in item vi) of the proof of

Eq. (A.46).
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This suggests, as a possible way to proceed in the proof, to investigate theoretically if
such orthogonal projections converge uniformly to 0 as T tends to +∞. In any case,
in this appendix we have reported Eq. (A.46) together with its proof, because such
equation is obviously related to Eq. (2.22), and because a proof of the latter could
be obtained by combining Eq. (A.46) with specific properties of the matrix Ψ. It is
also worth mentioning that such proof would be not necessarily based on the use of a
circulant matrix approximation of Ψ, then of Ψ−1 (for which negative results on the
spectral norm approximation error are known, unless a related but restricted notion
of finite-term strong convergence is considered Sun, Jiang, and Baras, 2003, Theorem
1).

Appendix 3: other large-sample approximations of the condi-
tional generalization error, and associated optimization prob-
lems

In the following, we report some notes about how the analysis made in Sections
2 and 2 can be modified if one considers, respectively, the case of large N (whose
application is potentially of interest in microeconometrics), and the one in which
both N and T are large. For simplicity, we limit this extension of the analysis to the
case ρ= 0, for which one obtains the simplified expressions Ψ = IT and Φ =QΨQ′ =
QQ′ = IT − 1

T 1T1′T . Then, one gets Q′Φ+Q = Φ+ = QQ′ =Q′Q by combining Eq.
(A.31) and the relation between the singular value decomposition of a matrix and the
singular value decomposition of its Moore-Penrose pseudoinverse.

First, we consider the case in which N is large. Assuming stationarity and mutual
independence of different observations associated with the same unit, computations
of the elements of the matrix

Ẍ ′nΦ+Ẍn = Ẍ ′nQ
′Φ+QẌn = Ẍ ′nQ

′QẌn = Ẍ ′nẌn (A.47)
show that

E
{
Ẍ ′nẌn

}
= E


T∑
t=1

xn,t−
∑T
τ=1xn,τ
T

xn,t−
∑T
τ=1xn,τ
T

′
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Figure 26: Spectral norm error ‖Φ+−QΨ−1Q′‖2 as a function of T for (a) several
choices of ρ ∈ (−1,1), and (b) other choices of ρ ∈ (−1,1) near either −1 or 1.
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= E


T∑
t=1

(
T −1
T

xn,t−
∑
τ=1 ...,T,τ 6=txn,τ

T

)(
T −1
T

xn,t−
∑
τ=1 ...,T,τ 6=txn,τ

T

)′
= T

((T −1)2

T 2 E
{
x1,tx

′
1,t
}
−2(T −1)2

T 2 E
{
x1,t

}
E
{
x′1,t

}

+(T −1)
T 2 E

{
x1,tx

′
1,t
}

+ (T −1)(T −2)
T 2 E

{
x1,t

}
E
{
x′1,t

})

= T

((T −1)T
T 2 E

{
x1,tx

′
1,t
}
− (T −1)T

T 2 E
{
x1,t

}
E
{
x′1,t

})

= (T −1)E
{(
xn,1−E

{
xn,1

})(
xn,1−E

{
xn,1

})′}
. (A.48)

Under mild technical conditions (e.g., under the additional assumption that mutual
independence extends to all the xn,t, including those associated with different units,
and that all the xn,t are identically distributed7 and have finite moments up to the
order 4), from Eq. (A.48) one gets, applying Chebyshev’s weak law of large numbers
likewise in part of Appendix 2,

plim
N→+∞

1
N(T −1)

N∑
n=1

Ẍ ′nẌn = A, (A.49)

where
A= A′ := E

{(
x1,1−E

{
x1,1

})(
x1,1−E

{
x1,1

})′} (A.50)

is a symmetric and positive semi-definite matrix. Likewise for what concerns AN in
Section 2, the positive definiteness of A is also assumed in the following.

When (A.49) holds and ρ = 0, using also Eqs. (2.18) and (2.19) and the property
Q1T = 0T , one gets the following large-sample approximation with respect to N for
the conditional generalization error (2.17), where the dependence on N has been
highlighted:

(2.17) ' 1
N

σ2

(T −1)T 2 1′TXiA
−1X ′i1T + σ2

T

+ 1
N

σ2

T −1E
{(
xtesti

)′
A−1xtesti

}
− 2
N

σ2

(T −1)T 1′TXiA
−1E

{
xtesti

}

= σ2

T
+ 1
N

σ2

T −1E

∥∥∥∥∥A−1

2

( 1
T

(
1′TXi

)′−xtesti

)∥∥∥∥∥
2

2

 , (A.51)

7This assumption could be relaxed in order to apply in the analysis another suitable form of
the weak law of large numbers, valid for the case of dependent/not identically distributed random
variables.
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where A−1
2 is the principal square root of the symmetric and positive definite matrix

A−1.
Second, we consider the case in which both N and T are large. In this case, (A.49)

is replaced by

plim
N,T→+∞

1
N(T −1)

N∑
n=1

Ẍ ′nẌn = A, (A.52)

for the same matrix A as above.
When (2.20) and (A.52) hold and ρ= 0, the conditional generalization error (2.17)

has the following large-sample approximation with respect to N and T :

(2.17) ' 1
N

σ2

T −1
(
E
{
xi,1

})′
A−1E

{
xi,1

}
+ σ2

T

+ 1
N

σ2

T −1E
{(
xtesti

)′
A−1xtesti

}
− 2
N

σ2

T −1
(
E
{
xi,1

})′
A−1E

{
xtesti

}
= σ2

T
+ σ2

N(T −1)E
{∥∥∥∥A−1

2
(
E
{
xi,1

}
−xtesti

)∥∥∥∥2

2

}
. (A.53)

Starting from the large-sample approximations (A.51) and (A.53) for the condi-
tional generalization error, and adopting the model (2.27) for the variance σ2, two
optimization problems similar to (2.28) can be stated and solved. For simplicity, in
the following we make some approximations in the analysis of their optimal solutions.

In the first problem, one optimizes the corresponding large-sample approximation
of the conditional generalization error with respect to N (or equivalently, with respect
to c, as in (2.28)), whereas T is fixed. More precisely, for C sufficiently large (in such
a way that the large-sample approximation (A.51) can be assumed to hold for every
c ∈ [cmin, cmax]) and under the approximation NTc' C at optimality8, setting

K ′i := E

∥∥∥∥∥A−1

2

( 1
T

(
1′TXi

)′−xtesti

)∥∥∥∥∥
2

2

 , (A.54)

the first optimization problem can be written as

minimize
c∈[cmin,cmax]

kc−α
T

+K ′i
kc−α

C
c

(
1− 1

T

)


= minimize
c∈[cmin,cmax]

1
T

(
kc−α+ T 2K ′ik

C(T −1)c
1−α

)
, (A.55)

8This follows from the fact that the large-sample approximation (A.51) of the conditional gener-
alization error is a decreasing function of N , for each fixed choice of the measurement noise variance
σ2, hence for each choice of c.
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whose optimal solution c◦ has the following expression:

i) if 0< α < 1 (“decreasing returns of scale”) and

(a) c? := C(T−1)α
K ′iT

2(1−α) ∈ [cmin, cmax]: c◦ = c?;

(b) c? < cmin: c◦ = cmin;

(c) c? > cmax: c◦ = cmax;

ii) if α > 1 (“increasing returns of scale”): c◦ = cmax;

iii) if α = 1 (“constant returns of scale”): c◦ = cmax.

The analysis of the second problem (whose optimization variables are c, N , and
T , as the large-sample approximation of the conditional generalizarion error with
respect to both N and T is optimized) is slightly more involved, since it is formulated
in terms of a larger number of optimization variables. Nevertheless, solving such
problem can be reduced to solving, for each c, an optimization subproblem in which
the same objective function is minimized with respect to the pair (N,T ). In this
problem, admissible such pairs have to satisfy the constraint NTc≤ C, and also two
additional lower bounds N ≥ Nmin > 0 and on T ≥ Tmin > 0, under which the large-
sample approximation made in (A.53) can be assumed to hold. More precisely, for C
sufficiently large and under the approximations T −1' T and NTc'C at optimality,
setting

K ′′i := E
{∥∥∥∥A−1

2
(
E
{
xi,1

}
−xtesti

)∥∥∥∥2

2

}
, (A.56)

the second optimization problem can be written as

minimize
c∈[cmin,cmax]

kc−α
T

+K ′′i
kc−α

C
c


s.t. C

Tc
≥Nmin,T ≥ Tmin ,

= minimize
c∈[cmin,cmax]

(
k

T
c−α+ K ′′i k

C
c1−α

)

s.t. C

Tc
≥Nmin,T ≥ Tmin , (A.57)

whose optimal solutions c◦ have the following expressions (the optimal T is T ◦ '
C

Nminc◦
):
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i) if 0< α < 1 (“decreasing returns of scale”): c◦ = cmin;

ii) if α > 1 (“increasing returns of scale”): c◦ = cmax;

iii) if α = 1 (“constant returns of scale”): c◦ = any cost c in the interval [cmin, cmax].

3 Appendix for Chapter 3

3.1 Literature review table

The following table summarizes the literature’s findings on the relationship between
market size and innovation in the pharmaceutical industry. In particular, the focus
is on relevant works coming after Acemoglu and Linn (2004). The reason for such a
choice is that Acemoglu and Linn (2004) represents a milestone in investigating the
relation between market size and innovation in pharmaceuticals. It overcomes issues
emerging in previous studies (such as, and above all, the one of endogeneity) and
is taken as a reference point by authors willing to further dig into such a literature
stream.
Furthermore, the literature review reports the relationship between market size and
innovation in Pharmaceutical Industry only. Indeed, different industries have different
definitions of recalls.
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Table 23: The table reports relevant papers after Acemoglu and Linn, 2004; NME stands
for New Molecular Entities; NDA stands for New Drug Approval.

Paper Data and
sample Unit of observation Measurement of

innovation estimation method report estimate
of size

proxy market
size

Acemoglu and Linn, 2004 US; March CPS, 1965–2000;
March CPS, 1965–2000; FDA; OECD report number of units NME b QML > 0 4 demographic measures

Cerda, 2007 US; FOIA request; RND process1;
U.S statistical abstract2; 1968-1997 15 drug categories 1 NME FE, GLS, IV, Tobit >0 1 demographic measures

Rake, 2017 U.S.; RND; FDA; OECD;
ClinicalTrials.gov3; 1974-2008 disease NDA; NME; Phase II

and Phase III trials QMLE (Poisson, 1995) 0.3444 (NME); 0.3521 (NDA) demographic measures

Dubois et al., 2015 14 countries 5; 1997-2007;IMS, WHO chemical entity;
dummies for ATC-1 and ATC-2 NCE (elasticity) b OLS,2SLS,CF

approach (Wooldr.,2002)
0.23 (average across

ATC classes) deaths and GDP 5

Blume-Kohout and Sood, 2013 US; 1998-2010; Pharmaprojects 6;
MEPS; OECD; NIH 49 therapeutic classes R&D 6 Negative Bin.; Poisson 0.26; 0.41; 0.51 7 demographic shifts 5 c

1RND process of the pharmaceutical sector (gov. funds); > 0 means that the exogenous increase in market size is initially associated with
approximately 0.08 more drugs introduced in the market. These new drugs reduce the mortality rates of individuals aged 65 and older by 0.8 percent.
This decrease in mortality rate leads to increases in market size (more demand), producing an additional increase of drugs equal to 0.096
2(population data for market size)
3 Both Cerda and Rake consulted the 19th edition of the Drug Information Handbook published by Lexi-Comp and the American Pharmaceutical
Association (Lacy et al., 2010). This handbook is comparable to a pharmaceutical dictionary, providing a list of drugs’ active ingredients, the medical
conditions the drug is used for, and further information such as adverse effects. The work takes into account only those medical conditions which
can be found on the FDA-approved label. Hence, unlabeled and investigational uses are not present. For the period 1974 to 2008, FDA approved 599
unique NMEs and 1,665 unique NDAs. These approvals refer to the 208 diseases or medical indications analyzed in this study. However, an NME or
NDA may be used as therapy for several medical indications. In this case, an NME or NDA is counted as innovation for all the medical indications
for which it is approved
4 The estimates suggest that a 1 percent increase in the potential market size for a drug category leads to a 6 percent increase in the total number of
new drugs entering the U. S. market.
5 Data come from IMS (Intercontinental Marketing Services) and include all product sales in 14 countries a (Australia, Brazil, Canada, China,
France, Germany, Italy, Japan, Mexico, Korea, Spain, Turkey, United Kingdom, USA). Dubois et al. have data on the ATC-4 (they report 607
different classes), the main active ingredient of the drug (they report 6216 different active ingredients), the name of the firm producing the drug,
whether it has been licensed, the patent start date, and the format of the drug (the work reports 471 different formats). Products in the same ATC-4
by definition have the same indication and mechanism of action. The authors do not consider OTC drugs. Quantities are given in standard units,
one standard unit corresponding to the smallest typical dose of a product form, as defined by IMS Health.
6 Pharmaprojects trend data "snapshot"; (focus on R&D): focus only on one instance of innovation as explained in B. H. Hall and Rosenberg, 2010.
Authors specify the adoption of clinical trials (from pre-clinical Phase to Phase III) not taken from ClinicalTrials.gov (see below)
7 For a drug class with average Medicare market share (41%, in 2004–2005), Duggan and Scott Morton’s result translates to an 11% increase in
revenues following Medicare Part D. Our Phase I estimates correspond, for a drug class with average Medicare market share, to a 26% increase
for 2004–2005, a 33% increase post-implementation in 2006–2007, and a lagged 51% increase in 2008–2010. These estimates imply an elasticity
of Phase I clinical trials of 2.4 to 4.7 compared to the market size, bracketing Acemoglu and Linn’s estimated elasticity of 3.5 for approved new
molecular entities (NMEs). However, when considering all clinical trials combined—including Phase III trials for supplemental indications the
estimated elasticity of clinical trials with respect to market size is somewhat lower than Acemoglu and Linn’s estimated elasticity of 6 for all new
drug approvals, but certainly still more prominent than the Dubois et al. (2011) estimate of about 0.25. Summary results: "The results indi-
cate that the increase in outpatient prescription drug coverage provided through Medicare Part D has had a significant impact on pharmaceutical R&D "
Critiques:
a Blume-Kohout and Sood, 2013 states that several of the countries chosen regulate prescription drug prices, and regulations may change rapidly
over time. Thus, given the lower expected profit per consumer and greater uncertainty about future profits and prices, firms’ R&D decisions are
likely to be less responsive to a unit change in expected revenues for all these countries combined versus the same unit change in the U.S. market
(Sood et al., 2009).
bBlume-Kohout and Sood, 2013: they measured firms’ innovative activities via clinical trials, whereas Dubois et al. (2011) and Acemoglu and Linn
(2004) evaluate the responsiveness of approved and marketed drugs to changes in market size
c Dubois et al., 2015: the authors recognize to Blume-Kohout and Sood, 2013 the fact of having exploited an innovative measure of Market Share
(policy change in Medicare Part D)
List of controls:
Acemoglu and Linn, 2004 Potential Supply-Side Determinants of Innovation (changes in scientific incentives); Proxies for pre-existing time trends
across sectors; lag dependent var; life-years lost; public funding; pre-existing trends; major category trends; health insurance market size; (see page
1077-1080 for further details on variables)
Cerda, 2007: Gov. expenditure (Medicare and social security); Gov. research efforts (grants on research); year dummies; some demographic
information such as prevalence rates of disease i on males (fraction of males/white/married attending hospital due to i), blacks, whites, and married
individuals as well as the average age of individuals affected by disease i.
Rake, 2017 The empirical analysis draws upon the literature concerning the “demand-pull” versus “technology-push” debate and takes into account
demand- and supply-side factors as the explanatory variables for pharmaceutical innovation. Regressors used comprise knowledge stock (consisting of
the scientific publications (Pubit) related to medical indication i and published in year t (BioPharmInsight database); Regulatory stringency (average
time between the submission of a new drug approval to the FDA and its final approval); pre-sample mean of new pharmaceuticals; mortality rate per
medical indication in 1983 to account for differences in the pre-sample prevalence of medical indication; pre-sample technological opportunities are
constructed as the average annual growth rate of the knowledge stock from 1979 to 1983.
Blume-Kohout and Sood, 2013 prescription drugs; funding grants for each disease class
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3.2 Time to event analysis
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Figure 27: Kaplan-Meyer time to event analysis. The x-axis represents the number of years
until death. Recalled products (recalls =1) are already scaled down at 2 years of survival
time with respect to not recalled products (recalls =0). The median survival time for recalled
medicines is about 4 years, while the one for not-recalled medicines is about 7 years. The survival
function of recalled products persists in its falling below the survival function of not recalled
drugs. This means that recalls affect sales for a long period of time. In other words, within the
market of the recalled product there will be a lack of potential sales left by the recalled products.
Missed sales are hence not a temporary event, demonstrating the length of the lack that should
be covered to fill the gap provoked by the product’s recall.

3.3 Abnormal Values (firm and product levels)
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Figure 28: Effect of recalls on market sales once firms having undergone a major recall are
cancelled out. The absence of any effect (i.e. increases of sales due to recalls of competitors)
at recall time for products other than the ones of the recalled firm witnesses the absence of
compensations both at time 0 or soon after the recall.

193



The following figures represent abnormal values at firm and product level for different
typologies of recall (according to their gravity).
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Figure 29: Abnormal values for product aggregation. Years are normalized. Year 0
represents the year of recall. The three scenarios include the path of sales before and
after the recall year, using three different definitions of recalls: Class I recalls, general
recalls and Class II recalls. As shown in the pictures, sales at product level drop at recall
year.
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Figure 30: Abnormal values at firm aggregation. Years are normalized. Year 0 represents
the year of recall. The four scenarios include the path of sales before and after the recall
year, using four different definitions of recalls: major recalls, Class I recalls, general recalls
and Class II recalls. A part from major recalls, catching firms unaware, the other types of
recalls do not affect firms sales. This might be due to compensation of sales within firms.

The effect of recalls is evident for all aggregations but firm level, where the effect is
not evident (future development).Possible hypotheses are detailed in the main text.

3.4 Firm and product levels

Summary statistics Literature focused in the first instance on the impact of firm
size on innovation. In 1942, Schumpeter indicated that larger firms are more innova-
tive than smaller firms, and since then, firm size has become one of the most often in-
vestigated innovation determinants (Kolluru and Mukhopadhaya, 2017). The debate
mainly concerned the role of downsizing in firms and specifically whether downsizing
could stimulate innovation or not. On the one hand, some innovation economists
believe that the bigger the firms, the more the resources at their disposal,and the
higher the probability of innovating. For such a stream of literature, downsizing with
layoffs and reduction of organizational slacks may leave the firm at a wrong size, thus,
negatively affecting firm performance (Fisher and White, 2000; Hashi and Stojčić,
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2013; Luan, Tien, and Chi, 2013 and others.).
On the other hand, some authors support the hypothesis that smaller firms, above all
entrants, are more encouraged to innovate to compete with bigger established firms.
For this stream, elimination of positions and management layers by downsizing may
create an internal environment favorable to the generation and survival of new in-
novative ideas (Ross, 1974; Baumol, Blinder, and Wolff, 2003). However, existing
empirical approaches may be flawed by the endogeneity of size: size, indeed, can be
related to a firm’s unobservable characteristics that in turn affect innovation (Syme-
onidis, 1996). Firms could yet influence their size and innovation by being active
decision-makers, prone to unobservable variables such as propensity to innovate or
risk. Authors aware of the endogeneity issue tried to employ diverse strategies to
correct it (see among others: Alsharkas, 2014; Stock, Greis, and Fischer, 2002) but
just partially succeeded. Indeed controversial results emerged. At market level (Ace-
moglu and Linn, 2004; Pammolli, Magazzini, and Riccaboni, 2011; Stoneman, 2010;
Dubois et al., 2015 and others) the endogeneity issue, as above described, seems to
be naturally mitigated with respect to firm-level by the exact definition of the market
as a collection of products.
Below are reported the summary statistics at firm and product level. From the results
emerges how recalls are more common in old established firms where, however, the
effect is null due to compensations and endogeneity (F., 2021).
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Table 24: Summary statistics at product and firm level. Databases at product and firm
level are unbalanced.

Prod. Firm
Variable Full Sample Subs. recalls Subs. no recalls Full Sample Subs. recalls Subs. no recalls

Sales (log)
Overall mean 12.868 15.872 12.844 14.509 19.808 14.146

Overall Std. Dev. 3.791 3.674 3.787 4.064 3.278 3.826
Between Std. Dev 3.657 3.367 3.653 4.080 3.565 3.873
Within Std. Dev 1.764 1.957 1.764 1.459 1.080 1.486

Age prod./ firm
Overall mean 11.910 13.588 11.909 17.880 31.022 16.850

Overall Std. Dev. 10.692 11.718 10.687 14.849 15.805 14.024
Between Std. Dev 9.977 10.821 9.974 13.901 16.723 13.110
Within Std. Dev 2.748 3.042 2.746 3.022 3.385 2.998

New mol.
market (%)

Overall mean .085 .079 .0851 . . .
Overall Std. Dev. .279 .271 .279 . . .
Between Std. Dev .213 .109 .213 . . .
Within Std. Dev .256 .262 .256 . . .

Avg. age prod.
by firm/ATC

Overall mean . . . 11.002 11.581 10.921
Overall Std. Dev. . . . 8.974 6.039 9.130
Between Std. Dev . . . 8.602 5.858 8.685
Within Std. Dev . . . 2.985 2.656 3.018

Share generics
by firm/ATC

Overall mean . . . .665 1.534 .623
Overall Std. Dev. . . . 3.366 3.963 3.361
Between Std. Dev . . . 3.407 4.486 3.386
Within Std. Dev . . . 1.668 1.637 1.685

Outflow rate
Overall mean . . . .086 .085 .086

Overall Std. Dev. . . . .226 .148 .231
Between Std. Dev . . . .234 .108 .238
Within Std. Dev . . . .186 .124 .190

-.1
-.0

5
0

.0
5

.1

ab
no

rm
al

va
lu

e
st

du
ni

ts

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Year

Lower C.I. Upper C.I.
AV_t  

Recall Year = 0

Figure 31: Effect of recalls on market sales once firms having undergone a major recall are
cancelled out. The absence of any effect (i.e. increases of sales due to recalls of competitors)
at recall time for products other than the ones of the recalled firm witnesses the absence of
compensations both at time 0 or soon after the recall.

Abnormal Values (firm and product levels) The following figures represent
abnormal values at firm and product level for different typologies of recall (according
to their gravity).
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Figure 32: Abnormal values for product aggregation. Years are normalized. Year 0
represents the year of recall. The three scenarios include the path of sales before and
after the recall year, using three different definitions of recalls: Class I recalls, general
recalls and Class II recalls. As shown in the pictures, sales at product level drop at recall
year.
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Figure 33: Abnormal values at firm aggregation. Years are normalized. Year 0 represents
the year of recall. The four scenarios include the path of sales before and after the recall
year, using four different definitions of recalls: major recalls, Class I recalls, general recalls
and Class II recalls. A part from major recalls, catching firms unaware, the other types of
recalls do not affect firms sales. This might be due to compensation of sales within firms.

The effect of recalls is evident for all aggregations but firm level, where the effect is
not evident (future development).Possible hypotheses are detailed in the main text.
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Table 25: First stage at different levels

(Prod. Aggregation) (Firm Aggregation) (ATC-Firm Aggregation)
Log sales Log sales Log sales

recalls −0.0680
(0.2544)

recallst−1 −1.6269∗∗∗

(0.2783)
˜recalls 0.0042 −0.0053

(0.0033) (0.0033)
˜recallst−1 −0.0008 −0.0267∗∗

(0.0046) (0.0083)
Age firm −0.0098

(0.0123)
Kt+1
P−1

−0.5957∗∗∗

(0.1272)
prods. 0.0214∗∗

(0.0077)
share generics in ATC −0.0304

(0.0235)

Year Dummies Yes Yes Yes

Obs. 94567 5787 48915
Groups 17947 892 8634
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Huber-White robust standard errors are in parentheses. (1) fits a F.E. model with at product level. (2)
fits a F.E. model at firm level. (4) fits a F.E. model at ATC-Firm level, i.e. ATC lines of productions
within firms. ˜recalls represent recalls normalized. Recalls normalized are not employed in the first
column since there is no aggregation at product level of analysis. At firm and ATC level recalls are
respectively normalized for the number of products within a firm and within an ATC.

First stage rob. checks In this section are displayed the significant coefficients
of the first stage employing the number of patients as measure for market size.

Table 26: First stage of the robustness check using the number of patients as measure of
market size

(1)
# patients

˜recalls 0.0519
(0.0333)

˜recallst−1 −0.262∗

(0.149)
Year Dummies Yes

Obs. 1056
Groups 132
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Huber-White robust standard errors are in
parentheses. (1) first stage results when
MEPS database is employed and market size
is measured with the number of patients.
Second stage results are in Tab. 14.200



4 Appendix for Chapter 4

Matrix completion via nuclear norm regularization of the reconstruction
error Given a subset of observed entries of a matrix A∈RC×P , Matrix Completion
(MC) works by finding a suitable low-rank approximation (say, with rank R) of A,
by assuming the following model:

A = CG>+ W , (A.58)
where C ∈ RC×R, G ∈ RP×R, whereas W ∈ RC×P is a matrix of modeling errors.
The rank-R approximating matrix CG> is found by solving a suitable optimization
problem (provided by Eq. (4.2), in the case of the present article). Eq. (A.58) can
be written element-wise as Ac,p = ∑R

r=1Cc,rGp,r +Wc,p. A common interpretation of
this equation is as follows (see, e.g., the application of MC to collaborative filtering
for movie ratings Trevor Hastie, R. Tibshirani, and Wainwright, 2019). The number
Cc,r can be interpreted as the degree of membership of row c of matrix A to some
“latent” cluster r (for a total of R such clusters), and Gp,r as the prediction of an
element in column p of matrix A, conditioned on its row c belonging to cluster r. It
is worth mentioning that such an interpretation holds regardless of the signs of the
elements Cc,r and Gp,r. As an example, in the case of collaborative filtering for movie
ratings, c denotes a specific person, p a specific movie, whereas r may be interpreted
as a specific movie genre.

In this work, MC is formulated via the optimization problem (4.2). The objective
function of this optimization problem is the sum of two terms: the first one refers
to the reconstruction error of the known portion of the matrix, whereas the second
one is a regularization term, which biases the reconstructed matrix to have a small
nuclear norm. The regularization constant λ controls the trade-off between fitting
the known entries of the matrix A and achieving a small nuclear norm. The latter
requirement is often related to getting a low rank of the optimal matrix Z◦, which
follows by geometric arguments similar to the ones typically adopted to justify how
the classical LASSO (Least Absolute Shrinkage and Selection Operator) penalty term
achieves effective feature selection in linear regression R. Tibshirani, 1996.
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The MC optimization problem (4.2) can be also written as

minimize
Z∈RC×P

(1
2‖PΩtr(A)−PΩtr(Z)‖2F +λ‖Z‖∗

)
, (A.59)

where, for a matrix Y ∈RC×P , (PΩtr(Y))c,p := Yc,p if (c,p) ∈Ωtr, otherwise it is equal
to 0. Here, PΩtr(Y) represents the projection of Y onto the set of positions of observed
entries of the matrix A, and ‖Y‖F denotes the Frobenius norm of Y (i.e., the square
root of the summation of squares of all its entries).
The MC optimization problem (A.59) can be solved by applying the following Al-
gorithm 1, named Soft Impute Mazumder, Trevor Hastie, and R. Tibshirani, 2010b
(compared to the original version, here we have included a maximal number of itera-
tions N it, which can be helpful to reduce the computational effort when one has to
run the algorithm multiple times, e.g., for several choices of the training set Ωtr and
of the regularization constant λ, as in the present work):
Algorithm 1: Soft Impute Mazumder, Trevor Hastie, and R. Tibshirani,
2010b
Input: Partially observed matrix PΩtr(A) , regularization constant λ≥ 0,

tolerance ε≥ 0, maximal number of iterations N it

Output: Completed matrix Zλ ∈ RC×P

i) Initialize Z as Zold = 0 ∈ RC×P

ii) Repeat for at most N it iterations:

(a) Set Znew← Sλ
(
PΩtr(A) + P⊥Ωtr(Zold)

)
(b) If ‖Z

new−Zold‖2F
‖Zold‖2F

< ε, exit

(c) Set Zold← Znew

iii) Set Zλ← Znew

In Algorithm 1, for a matrix Y ∈ RC×P , P⊥Ωtr(Y) represents the projection of Y
onto the complement of Ωtr, whereas Sλ(Y) := UΣλV>, being Y = UΣV> (with
Σ = diag[σ1, . . . ,σR]) the singular value decomposition of Y, and Σλ := diag[(σ1−
λ)+, . . . ,(σR−λ)+], with t+ := max(t,0).
It is worth mentioning that a particularly efficient implementation of the operator
Sλ(·) is possible (by means of the MATLAB function svt.mLi and Zhou, 2017), which

202



is based on the determination of only the singular values σi of Y that are higher than
λ, and of their corresponding left-singular vectors ui and right-singular vectors vi.
Indeed, all the other singular values of Y are annihilated in Σλ.
A final remark has to be made about the trade-off between prediction capability and
biasedness of MC. Biasedness in MC depends, among others issues, on the way the
selection of unobserved entries is made Foucart et al., 2017; Ma and G. H. Chen,
2019 (in the specific case of our application of MC to the discretized RCA matrix,
only entries belonging to a suitable subset of rows of the matrix A are obscured).
For some MC algorithms, de-biasing is possible Foucart et al., 2017, and can even
improve prediction capability. Nevertheless, in general biasedness can be beneficial
to prediction capability, due to the well-known trade-off between bias and variance
Tibshirani Hastie and R. Tibshirani, 2009. In the particular case of MC achieved
via the Soft Impute algorithm, biasedness can be ascribed also to the presence of the
regularization constant λ (indeed, for both λ→ 0 and λ→ +∞, the predictions of
the optimal solution to the optimization problem (A.59) tend to 0 for the unobserved
entries), and to the fact that the Soft Impute algorithm is initialized by a matrix with
all entries equal to 0, and terminated at most after a given number of iterations.

Technical details on the construction of the matrix A and on the the application of
the Soft Impute algorithm This subsection details the construction of the matrix A
for our specific problem. As a first step, we removed from the RCA matrix its rows
associated with countries having less than 5 million inhabitants. Then, the remain-
ing entries of the RCA matrix were encoded into 9 groups according to increasing
percentiles in the distribution of RCA values. This pre-processing step was done in
order to make the elements of the resulting matrix A ∈ R119×1243 of the same order
of magnitude. In particular, we defined 4 negative groups ("-4", "-3", "-2", "-1"), rep-
resenting the case 0 ≤ RCA < 1 (with the group "-4" being the one associated with
the lowest values in the RCA distribution) and 4 positive groups ("1", "2", "3", "4"),
representing the case RCA≥ 1 (with the group "4" being the one associated with the
highest values in the RCA distribution)9. Originally NaN RCA values were included

9As already reported in the Appendix, MC is biased towards low absolute values. To take this
into account, we constructed groups that were symmetrically distributed around zero, as the final
goal was to discriminate between RCA values respectively lower than 1, and larger than or equal to
1.
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in the remaining group "0". In our application of MC, the elements in this group
"0" were included neither in the training set, nor in the validation/test set, since no
ground truth was available for them.
For computational efficiency reasons, we combined the original MATLAB implemen-
tation of Soft Impute (Mazumder, Trevor Hastie, and R. Tibshirani, 2010b) with the
MATLAB function svt.m (Li and Zhou, 2017). The tolerance of the algorithm was
chosen as ε= 10−9. Its number of iterations was set to N it = 1500. The regularization
parameter λ was sampled 30 times uniformly on the closed interval [−1,15] in a log-
aritmic scale with base 2. A post-processing step was included in MC, thresholding
to −4 any element (when present) whose MC reconstruction was lower than -4, and
to 4 any element (when present) whose MC reconstruction was higher than 4.

Generalized economic complexity index and related economics complexity
indices The GENeralised Economic comPlexitY (GENEPY) index is a recently-
introduced economic complexity index (Sciarra, Chiarotti, Ridolfi, et al., 2020b),
which can be applied to assess the complexity of both countries and products. It is
based on a multidimensional representation of their complexity, which makes it possi-
ble to combine, in a single index, the different features of some previously-developed
one-dimensional economic complexity indices: the Fitness (F) for countries and Qual-
ity (Q) for products, both computed by the Fitness and Complexity (FC) algorithm
(Tacchella et al., 2012), and the Economic Complexity Index (ECI) for countries and
Product Complexity Index (PCI) for products, both obtained by the earlier Method
of Reflections (MR) (Hidalgo and Hausmann, 2009). Each of the latter methods is
typically able, indeed, to capture only a specific aspect of economic complexity: for in-
stance, when applied to countries, FC is mainly related to the degree of diversification
of the export basket of each country, while MR essentially captures the similarities
in the export baskets of the different countries (Sciarra, Chiarotti, Ridolfi, et al.,
2020b).
The GENEPY index arises from the first two (normalized) eigenvectors (with the
eigenvalues ordered in a weakly decreasing way) of a suitable symmetric proximity
matrix, which is derived from an incidence matrix M ∈ RC×P obtained by thresh-
olding and binarizing the matrix of Revealed Comparative Advantage (RCA) values.
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The two eigenvectors capture, respectively, information obtained by the FC method
and the MR one.
The GENEPY index for countries is obtained in the following way (a similar construc-
tion holds for the GENEPY index for products).

i) First, for a specific year, the matrix RCA ∈ RC×P of RCA values in that year is
determined (see the Introduction for details).

ii) In order to extract topological information from the RCA matrix, an incidence
matrix M ∈ RC×P is generated, whose entries are defined as follows:

Mc,p :=


1 , ifRCAc,p ≥ 1 ,

0 , otherwise .
(A.60)

Then, its weighted version W ∈ RC×P is considered, whose generic element is
defined as Wc,p := Mc,p

kck′p
, where kc :=∑P

p=1Mc,p is the degree of the country c in the
graph represented by the incidence matrix M, and k′p := ∑C

c=1
Mc,p

kc
represents the

degree of the product p corrected by how easily that product is found within the
subnetwork of countries.

iii) The matrix N ∈ RC×C is constructed, whose elements Nc,c∗ are defined as follows:

Nc,c∗ :=


∑P
p=1Wc,pWc∗,p , if c 6= c ,

0, otherwise .
(A.61)

Due to the weighting involved in the construction of the matrix W, the resulting
matrix N is symmetric. Each entry Nc,c∗ of N represents the proximity of the two
corresponding countries c and c∗.

iv) The (normalized) eigenvectors x1,x2 ∈ RC associated with the two largest eigen-
values λ1 ≥ λ2 ≥ 0 of N are determined. Their components are denoted as xc,1 and
xc,2, respectively, for c= 1, . . . ,C.

v) Then, the GENEPY index of country c for the specific year is defined as follows:

GENEPYc :=
 2∑
i=1

λix
2
c,i

2

+ 2
2∑
i=1

λ2
ix

2
c,i . (A.62)

The specific nonlinear transformation from xc,1 and xc,2 to GENEPYc, which is
used in Eq. (A.62), can be justified by rigorous statistical arguments, based on the
use of the two (normalized) eigenvectors x1 and x2 to get a nonlinear least-square
estimate of the matrix N, and on the evaluation of how relevant xc,i and xc,2 are
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to obtain that estimate (Sciarra, Chiarotti, Laio, et al., 2018; Sciarra, Chiarotti,
Ridolfi, et al., 2020b).

It is worth mentioning the qualitative difference between the GENEPY index and the
ones determined by the FC and MR methods, considering again the case in which
they are all applied to countries.
• The GENEPY index is highly related to a linearized version of the F index com-
puted by the FC method(Sciarra, Chiarotti, Ridolfi, et al., 2020b), in which one
searches for the (normalized) eigenvector associated with the largest eigenvalue of
a slightly different matrix NF ∈ RC×C than the matrix N. The specific matrix
NF is written as NF := WW>, where W is the same weighted incidence matrix
considered in the context of the GENEPY index. The difference with respect to
the case of the matrix N defined in Eq. (A.61) is that its diagonal entries are not
set to 0 (in Eq. (A.61), such a choice of the diagonal entries is done in order to
make the resulting N be a proximity matrix).
• The ECI index, computed by MR, is based on searching for the (normalized) eigen-
vector associated with the second-largest eigenvalue of a slightly different matrix
NECI ∈ RC×C than the matrix N considered by GENEPY. The specific matrix
NECI is written as NECI := WECIW>

ECI , where the elements of WECI ∈ RC×P

are defined as WECI,c,p := Mc,p

kckp
, being kp := ∑C

c=1Mc,p the degree of the product
p in the graph represented by the incidence matrix M. The second-largest eigen-
value of NECI is considered, instead of its first-largest one, as one can show that
the (normalized) eigevector associated with the latter is non-informative, for the
specific matrix NECI .

Similar comments hold for the case of the FC and MR methods when they are applied
to products (obtaining, respectively, the Q index and the PCI index).
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