
IMT School for Advanced Studies, Lucca
Lucca, Italy

Machine learning methods for control, identification, and
estimation

PhD Program in Systems Science

Track in Computer Science and Systems Engineering

XXXIV Cycle

By

Daniele Masti

2021

mailto:daniele.masti@imtlucca.it

The dissertation of Daniele Masti is approved.

PhD Program Coordinator: Prof. Rocco De Nicola, IMT School for
Advanced Studies Lucca

Advisor: Prof. Alberto Bemporad, IMT School for Advanced Studies
Lucca

The dissertation of Daniele Masti has been reviewed by:

Dr. Dario Piga, Dalle Molle Institute for Artificial Intelligence

Dr. Jan Drgona, Pacific Northwest National Laboratory

IMT School for Advanced Studies Lucca
2021

To my family

Contents

List of Figures xi

List of Tables xiii

Acknowledgements xv

Vita and Publications xvi

Abstract xx

1 Introduction 1
1.1 Thesis outline . 2

2 Learning nonlinear state-space models using autoencoders 7
2.1 Introduction . 7

2.1.1 Machine-learning methods for the identification of
state-space models 8

2.1.2 Contribution . 9
2.2 Nonlinear identification problem 10
2.3 State selection via autoencoders 12

2.3.1 Partial predictive autoencoders 12
2.4 Model learning . 13

2.4.1 Multiple-step ahead fitting procedure 15
2.4.2 Network topology 17
2.4.3 Feature selection and model reduction 17

2.5 Nonlinear state estimation and control 18

vii

2.5.1 Filtering and state reconstruction 18
2.5.2 Nonlinear model predictive control 19

2.6 Experimental Results . 20
2.6.1 Synthetic benchmark problems 20
2.6.2 Experimental and simulation benchmarks 21
2.6.3 Hyperparameter selection and implementation de-

tails . 21
2.6.4 Fit results . 23
2.6.5 Feature selection and model reduction 23
2.6.6 LTV-MPC based on learned model 24
2.6.7 Computational aspects 26

2.7 Conclusions . 27

3 A machine-learning approach to synthesize virtual sensors for
parameter-varying systems 31
3.1 Introduction . 31

3.1.1 Contribution . 33
3.2 Multiple Model Adaptive Estimation 34
3.3 Data-driven determination of linear models 35

3.3.1 Learning the local models 36
3.3.2 Design of the observer bank 38
3.3.3 A model-free hypothesis testing algorithm 39
3.3.4 Hyper-parameters and tuning procedures 42

3.4 Numerical results . 43
3.4.1 Learning setup . 43
3.4.2 A synthetic benchmark system 44
3.4.3 Dependence on the number N of samples 46
3.4.4 Robustness toward measurement noise 46
3.4.5 Dependence on the prediction function 47
3.4.6 Dependence on the observer dynamics 48
3.4.7 Dependence on the number Nθ of local models . . . 49
3.4.8 Dependence on the dynamics of ρk 50
3.4.9 A mode observer for switching linear systems . . . 50
3.4.10 Nonlinear state estimation 53
3.4.11 Complexity of the prediction functions 55

viii

3.5 Conclusions . 55

4 Learning affine predictors for MPC of nonlinear systems via ar-
tificial neural networks 60
4.1 Introduction . 60
4.2 Problem formulation . 63
4.3 Training affine predictors via ANNs 65
4.4 Switching affine RT and RF predictors 66
4.5 Simulation results . 69

4.5.1 Benchmark problem setup 69
4.5.2 Fitting performance 70
4.5.3 Performance comparison between ANN, RT, and RF 70
4.5.4 Evaluating MPC closed-loop performance 71

4.6 Complexity reduction . 72
4.6.1 Memory occupancy vs. quality of fit tradeoff 74

4.7 Conclusions . 75

5 Direct data-driven design of neural reference governors 76
5.1 Introduction . 76
5.2 Setting and goals . 78
5.3 Data-driven design of reference governors 80

5.3.1 The design of the reference governor 83
5.3.2 ANNs for controller parameterization 85

5.4 Simulation case studies . 88
5.5 Conclusions . 91

6 NAW-NET: neural anti-windup control for saturated nonlinear
systems 93
6.1 Introduction . 93
6.2 Setting and Goal . 96

6.2.1 Direct data-driven control design 96
6.3 NAW-NET: training . 98

6.3.1 Training the anti-windup block 99
6.3.2 NAW-NET parameterization 101
6.3.3 Improving NAW-NET performance via Truncated

Back Propagation Through Time 102

ix

6.3.4 Data augmentation 105
6.4 Simulation results . 106
6.5 Conclusions . 108

7 Conclusion 110
7.1 Summary of contributions 110
7.2 Open questions and future research directions 111

x

List of Figures

1 Schematic representation of the computational graph of
the proposed nonlinear model structure 14

2 Number of active neurons in e, f , d. 25
3 Tracking performance of LTV-MPC (Algorithm 1) applied

to control system ΣT2 (quantities are in normalized units). 26

4 Virtual sensor architecture: bank of linear observers, fea-
ture extraction map eFEθ , and prediction function gθ. 40

5 Example of reconstruction of ρk by the virtual sensor
based on Nθ = 5 local models, using deadbeat observers
and a RFR predictor. The figure reports the actual value of
ρk (orange line) and its estimate ρ̂k (blue line). 56

6 Mode reconstruction for switching linear systems (3.17):
actual value of the mode ρk (orange line) and its estimate
ρ̂k (blue line) provided by a RFR-based virtual sensor with
a bank of 5 deadbeat observers. 57

7 Mode reconstruction for switching linear systems (3.17):
actual value of the mode ρk (orange line) and its estimate
ρ̂k (blue line) provided by a RFC-based virtual sensor and
5 deadbeat observers. 58

8 Estimation of the SoC of the battery: true value ρk (orange
line), value ρ̂k estimated by the virtual sensor (blue line),
values ρ̂k estimated by EKF for different settings of Q and
R (green, red, violet, and brown lines). 59

xi

9 ANN structure for predictions affine in the input. 67
10 Output prediction at k + 1 71
11 Output prediction at k + 10 72
12 Normalized root mean square error (NRMSE) over the

prediction horizon . 72
13 Illustrative example of the performance of the LTV MPC

for system (4.13) using ANN-based affine models via dy-
namic parametrization. x axis is for time steps, y is for the
magnitude of the signals. All signals are in normalized units 73

14 Illustrative scheme of the employed ANN structure,
adapted from [19]. © 2020 IEEE 85

15 Closed-loop performance (Σtank). © 2020 IEEE 90
16 Closed-loop performance (ΣHW). © 2020 IEEE 90

17 The proposed direct data-driven anti-windup control
scheme. © 2020 IEEE . 98

18 The Virtual Reference rationale of [151] used within our set-
ting. The thick line denotes the real plant on which the
experiment has been performed, while the dashed lines il-
lustrate the “virtual” remainder of the loop. © 2020 IEEE . 100

19 The selected controller structure. © 2020 IEEE 101
20 Reference (blue) vs desired (dashed red) and attained

(black) closed-loop response. Desired and achieved
closed-loop response when tracking the set point in (6.15).
The reference signal and the desired output are almost al-
ways overlapped. © 2020 IEEE 103

21 Control input (black) and linear operating region of the
actuator (yellow area). © 2020 IEEE 104

xii

List of Tables

1 Hyper-parameters of the proposed learning method 28

2 Performance results (FIT) on synthetic benchmarks for
different combinations of topologies and training proce-
dures: A = FF topology, B = quasi-LPV topology; 1 = train-
ing based on one-step ahead loss (F = 1), F = training
based on multi-step ahead loss (F = 4). 28

3 Performance results (FIT) on experimental and simula-
tion benchmarks for different combinations of topologies
and training procedures: A = FF topology, B = quasi-
LPV topology; 1 = training based on one-step ahead loss
(F = 1), F = training based on multi-step ahead loss (F = 4). 30

4 Performance (FIT) of the reduced-order models in learn-
ing ΣT2. FF-5 = feedforward topology with nx = na =

nb = 5. FF-3/5 = feedforward topology with nx = 3,
na = nb = 5. FF-2/5 = feedforward topology with
nx = 2, na = nb = 5. FF-6 = feedforward topology with
nx = 6, na = nb = 10 (reported for comparison) 30

5 Accuracy of the virtual sensor using datasets of different
size K. 46

6 Average FIT (3.13a) (standard deviation) for the three pro-
posed learning architectures different sensor noise intensity. 47

xiii

7 Average FIT (3.13a) (standard deviation) for the three pro-
posed learning architectures for different numbers K of
samples in the training dataset. 48

8 Average prediction performance with respect to observer
settings. 49

9 Prediction performance of the virtual sensor with respect
to the number Nθ of LTI models. 50

10 Average accuracy of the virtual sensor employing various
kind of prediction functions when both training and test-
ing data are generated by using (3.16). 51

11 Average accuracy of the virtual sensor for different predic-
tion functions with training data generated from (3.14d)
and testing data from (3.16). 51

12 Accuracy of the virtual sensor employing different predic-
tors for the switching linear system in (3.18). 52

13 F1-score [124] obtained by the RFC-based virtual sensor
(RFC) and by the RFR-based virtual sensor + minimum-
distance classifier (RFR) on the 4-mode switching linear
system (3.18) over 10 runs. 53

14 Accuracy of the affine ANN predictors for the bench-
mark (4.13) . 71

15 Illustrative example of the number of nonzero (NZ)
weights and prediction fit obtained for different choices
of λ. 74

16 Performance indexes obtained with different controllers.©
2020 IEEE . 106

17 Indexes obtained when using less informative training
data.© 2020 IEEE . 106

xiv

Acknowledgements

I want to thank my advisor, Prof. Alberto Bemporad. With-
out his precious insights, patience, and guidance, neither this
thesis nor my MS thesis would have become a reality. It has
been a privilege and an honor for me to be able to work with
him. I want to thank Prof. Mario Zanon. While we often
clashed, his counseling helped me profoundly in my journey.
I am also thankful to Dr. Emilio Incerto, Dr. Yuriy Zacchia
Lun, Dr. Valentina Breschi, and Laura Ferrarotti. Our time
together has been precious, and your advice has always been
welcome. I am deeply grateful to all the people of IMT who
made me feel at home even in the darkest moments.

Finally, I would like to thank my family and all my friends.
Without their encouragement, nothing of this would have
happened.

xv

Vita

October 25, 1993 Born, Siena, Italy

2012-2015 BSc in “Ingeneria informatica e
dell’Informazione”
Final mark: 110/110 cum laude
Università degli Studi di Siena,
Italy

2016-2018 MSc in “Ingeneria elettrica
e dell’Automazione”
Final mark: 110/110 cum laude
Università degli Studi di Firenze,
Italy

2018-2021 PhD Program in Computer Science
and Systems Engineering
IMT School for Advanced Studies
Lucca, Italy

xvi

Publications

1. B. Allotta, L. Pugi, M. Montagni, A. Corrieri, D. Masti and L. Vanni, “De-
velopment of an innovative and sustainable sail-drone,” 2017 IEEE Inter-
national Conference on Environment and Electrical Engineering and 2017
IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS
Europe), 2017, pp. 1-6.

2. D. Masti and A. Bemporad, “Learning nonlinear state-space models using
deep autoencoders,” in Proceedings of 2018 57th Conference on Decision
and Control (CDC), Miami Beach, FL, USA, 2018, pp. 3862–3867.

3. D. Masti and A. Bemporad, “Learning binary warm starts for multipara-
metric mixed-integer quadratic programming,” in Proceedings of 2019 Eu-
ropean Control Conference, Naples, Italy, 2019, pp. 1494–1499.

4. D. Masti, D. Bernardini and A. Bemporad, “Learning virtual sensors for
estimating the scheduling signal of parameter-varying systems,” 2019 27th
Mediterranean Conference on Control and Automation (MED), 2019, pp.
232-237

5. D. Masti, F. Smarra, A. D’Innocenzo, and A. Bemporad, “Learning affine
predictors for MPC of nonlinear systems via artificial neural networks,” in
Proceedings of the 21st IFAC World Congress, 2020.

6. D. Masti, T. Pippia, A. Bemporad, and B. De Schutter, “Learning approxi-
mate semi-explicit hybrid MPC with an application to microgrids,” in Pro-
ceedings of the 21st IFAC World Congress, 2020.

7. D. Masti, V. Breschi, S. Formentin, and A. Bemporad, “Direct data-driven
design of neural reference governors,” in Proceedings of 2020 59th IEEE
Conference on Decision and Control (CDC), Jeju Island, Republic of Korea,
2020, pp. 4955–4960.

8. V. Breschi, D. Masti, S. Formentin, and A. Bemporad, “NAW-NET: Neural
anti-windup control for saturated nonlinear systems,” in Proceedings of
2020 59th IEEE Conference on Decision and Control (CDC), Jeju Island,
Republic of Korea, 2020, pp. 3335–3340.

9. D. Masti and A. Bemporad, “Learning nonlinear state–space models using
autoencoders,” Automatica, vol. 129, p. 109666, 2021.

10. D. Masti, D. Bernardini, and A. Bemporad, “A machine-learning approach
to synthesize virtual sensors for parameter-varying systems,” European
Journal of Control, vol. 61, pp. 40-49, 2021.

xvii

11. D. Masti, M. Zanon and A. Bemporad, “Tuning LQR controllers: a
sensitivity-based approach,” in IEEE Control Systems Letters, vol. 6, pp.
932-937, 2022.

xviii

Presentations

1. D. Masti and A. Bemporad, “Learning nonlinear state-space models using
deep autoencoders,” in Proceedings of 2018 57th Conference on Decision
and Control (CDC), Miami Beach, FL, USA, 2018, pp. 3862–3867

2. D. Masti and A. Bemporad, “Learning binary warm starts for multipara-
metric mixed-integer quadratic programming,” in Proceedings of 2019 Eu-
ropean Control Conference, Naples, Italy, 2019, pp. 1494–1499.

3. D. Masti, V. Breschi, S. Formentin, and A. Bemporad, “Direct data-driven
design of neural reference governors,” in Proceedings of 2020 59th IEEE
Conference on Decision and Control (CDC), Jeju Island, Republic of Korea,
2020, pp. 4955–4960

xix

Abstract

Over the last decades, the landscape of control theory and
system identification has changed significantly in response
to the new challenges arising from the industry. This is not
surprising: classical model-based techniques are not suitable
to handle real-world applications for which it is often too
expensive to derive even an approximate model using first
principles. Data-driven approaches represent a solution to
such an issue. Thanks to the ever-increasing availability of a
large quantity of data, they have quickly become central top-
ics within the control theory community.

This thesis collects some results regarding using machine
learning approaches to answer some open questions in con-
trol theory by formulating novel techniques and lessening
some undesirable aspects of existing methods. We first
present a system identification approach based on deep
learning to learn state-space models for nonlinear systems.
We then propose a data-driven virtual sensor synthesis ap-
proach, inspired by the Multiple Model Adaptive Estimation
framework, for reconstructing normally unmeasurable quan-
tities such as scheduling parameters in parameter-varying
systems. Three data-driven control approaches, two of which
are based on the well-known Virtual Reference Feedback
Tuning framework, are finally presented to synthesize con-
strained controllers for unknown nonlinear dynamical sys-
tems from the data without identifying first a model of the
plant. Tuning guidelines for the proposed methods are also
provided.

xx

Chapter 1

Introduction

Over the last decades, the landscape of control theory and system identi-
fication has changed significantly in response to the new challenges aris-
ing from the industry. This is not surprising: classical model-based ap-
proaches are not suitable to handle real-world scenarios for which it is
often simply too expensive—if at all possible— to derive even an approx-
imate model of the plant we want to control. This has become especially
evident in the recent years, in which such kind of applications has be-
come more and more common. Data-driven approaches represent a nat-
ural solution to such an issue. Indeed, thanks also to the ever-increasing
availability of a large quantity of experimental and simulated data, they
have quickly become one of the central topics within the control theory
community both in academia and in the industry.

While such ever-growing enthusiasm has sparked renewed attention
also in traditionally “data-centric” subfields of control theory [1], [2],
it is undeniable that much interest nowadays revolves around meth-
ods that heavily draw from other data-oriented fields such as machine
learning [3] and global/black-box optimization. Examples of such phe-
nomena are, to give an example, the numerous system identification
and adaptive control techniques based on neural networks (see, for in-
stance, [4], [5]), which development has also been enabled by the large
availability of software tools developed by the machine learning com-

1

munity [6]–[8], or the many recent contributions relying on black-box
optimization to tune controllers [9]. Another example of such contami-
nation is the abundance of works using reinforcement learning [10], [11],
which has quickly become a central approach for designing new control
laws for possibly unknown plants also within the control community.

Most contributions, however, often describe completely novel classes
of models and controllers. This is problematic because it does not al-
low one to reuse existing literature to assess the properties of the con-
trolled/identified system (one above all: internal stability). For this rea-
son, a strong interest in both proving the properties of such new ap-
proaches, but also into improving the weakest points of traditional tech-
niques in a way that does not compromise their already proven desir-
able characteristics has grown within the community. An example in
this sense is the use of Reinforcement Learning based on Model predic-
tive control [12] (which elegantly solves the ever-challenging problem
to tune such a controller while maintaining strong stability guarantees),
and the works that lighten the computational burden associated with
(hybrid) predictive controllers [13]–[15].

1.1 Thesis outline

This thesis collects some results on using machine learning techniques
to answer some open questions in control, identification, and estimation
both by formulating totally novel ideas and by lessening some unde-
sirable properties of some existing techniques. In more details, we will
present a neural-network-based system identification approach, a data-
driven technique to design virtual sensors for partially measurable sys-
tems, and three connected contributions in the area of data-driven con-
trol.

The outline of the chapters, which are meant to be as self-contained
as possible, is the following:

• Chapter 2 proposes a methodology for identifying nonlinear state-
space models from input/output data using machine-learning

2

techniques based on autoencoders and neural networks. The
framework simultaneously identifies the nonlinear output and
state-update maps of the model. After formulating the approach
and providing guidelines for tuning the related hyper-parameters
(including the model order), we show its capability in fitting non-
linear models on different nonlinear system identification bench-
marks. Performance is assessed in terms of open-loop prediction
on test data and by controlling the system via an especially crafted
nonlinear model predictive control (MPC) scheme based on the
identified nonlinear state-space model.

The content of this Chapter and this abstract are reprinted from:

D. Masti and A. Bemporad, “Learning nonlinear state–space
models using autoencoders,” Automatica, vol. 129, p. 109 666,

2021

• Chapter 3 proposes a model-free approach to synthesize virtual
sensors to estimate dynamical quantities that are unmeasurable at
runtime but are available for design purposes on test benches. Af-
ter collecting a dataset of measurements of such quantities, togeth-
er with other variables that are also available during online oper-
ations, the virtual sensor is obtained using machine learning tech-
niques by training a predictor whose inputs are the measured vari-
ables and the features extracted by a bank of linear observers fed
with the same measures. The approach is applicable to infer the
value of quantities such as physical states and other time-varying
parameters that affect the dynamics of the system. The proposed
virtual sensor architecture - whose structure can be related to the
Multiple Model Adaptive Estimation framework - is conceived to
keep computational and memory requirements as low as possible.
The effectiveness of the approach is shown in different numerical
examples, involving the estimation of the scheduling parameter of
a nonlinear parameter-varying system, the reconstruction of the
mode of a switching linear system, and the estimation of the state
of charge (SoC) of a lithium-ion battery.

3

The content of this Chapter and this abstract are reprinted from:

D. Masti, D. Bernardini, and A. Bemporad, “A machine-learning
approach to synthesize virtual sensors for parameter-varying

systems,” European Journal of Control, vol. 61, pp. 40–49, 2021

A preliminary version of the same content can be also found in [18].

• In Chapter 4 , we exploit the fact that MPC controller for non-
linear systems can often be designed using linear time-varying
(LTV) MPC formulations in which, at each sampling step, a
quadratic programming (QP) problem based on linear predictions
is constructed and solved at runtime. To reduce the associated com-
putation burden, we explore and compare two methodologies for
learning the entire output prediction over the MPC horizon as a
nonlinear function of the current state but affine with respect to the
sequence of future control moves to be optimized. Such a learn-
ing process is based on input/output data collected from the pro-
cess to be controlled. The approach is assessed in a simulation ex-
ample and compared to other similar techniques proposed in the
literature, showing that it provides accurate predictions of the fu-
ture evolution of the process and good closed-loop performance of
the resulting MPC controller. Guidelines for tuning the proposed
method to achieve a desirable memory occupancy/quality of fit
trade-off are also given.

The material presented in this Chapter and this abstract are
reprinted from:

D. Masti, F. Smarra, A. D’Innocenzo, and A. Bemporad, “Learning
affine predictors for MPC of nonlinear systems via artificial neural
networks,” in Proceedings of the 21st IFAC World Congress, 2020.

• Chapter 5 further develops this idea and proposes a direct data-
driven approach to synthesize model reference controllers for con-
strained nonlinear dynamical systems. To this aim, we employ a hi-

4

erarchical structure composed of a receding-horizon reference gov-
ernor and a data-driven low-level controller. Unlike most existing
approaches, we design the two blocks exploiting the fact that the
inner controller will never be used alone. The performance of the
proposed method is assessed using two simulation examples in-
volving the control of two highly nonlinear benchmark systems.

The content of the Chapter and this abstract are from:

© 2020 IEEE. Reprinted, with permission, from D. Masti, V.
Breschi, S. Formentin and A. Bemporad, "Direct data-driven

design of neural reference governors," Proceedings of 2020 59th
IEEE Conference on Decision and Control (CDC), 2020, pp.

4955-4960

• One major issue in industrial control applications is how to handle
input constraints due to the physical limitations of the actuators us-
ing as little computational power as possible. We develop an idea
to answer this question in Chapter 6, where we show an off-line
strategy to learn a neural anti-windup control scheme (NAW-NET)
from a set of open-loop data collected from an unknown nonlin-
ear process. Such a scheme includes a feedback controller and an
anti-windup compensator and it is trained to reproduce the desired
closed-loop behavior while simultaneously accounting for actua-
tor limits. We illustrate its effectiveness in a simulation example
involving the control of a Hammerstein-Wiener process with satu-
rated inputs.

The content of this Chapter and this abstract are from:

© 2020 IEEE. Reprinted, with permission, from V. Breschi, D.
Masti, S. Formentin and A. Bemporad, "NAW-NET: neural

anti-windup control for saturated nonlinear systems," Proceedings
of 2020 59th IEEE Conference on Decision and Control (CDC),

2020, pp. 3335-3340

5

Concluding remarks on the presented approaches and open problems
which will be the base for future research are finally collected in Chap-
ter 7.

Not included in this thesis but co-authored by the author while
within the PhD program, there are also the paper following papers: [13],
[22]–[24].

6

Chapter 2

Learning nonlinear
state-space models using
autoencoders

2.1 Introduction

Nonlinear system identification has gained increasing popularity in re-
cent years [25], [26], also due to massive advances in machine-learning
methods for nonlinear function regression. Such methods have been
employed with high success for extending classical linear techniques to
nonlinear systems, such as for the estimation of neural autoregressive
models with exogenous inputs (NARX) [25] and of reproducing kernel
Hilbert space (RKHS) models [26], as well as for piecewise-affine regres-
sion [27], and for developing novel approaches based on long short-term
memory (LSTM) neural networks [28].

Most of the aforementioned techniques, however, identify nonlinear
models in input/output form, without an explicit definition of a (mini-
mal) Markovian state. On the other hand, state-space models are the ba-
sis for most modern control design techniques, such as nonlinear con-
trol, model predictive control (MPC), as well as for noise filtering and
smoothing, such as extended Kalman filtering (EKF).

7

2.1.1 Machine-learning methods for the identification of
state-space models

The idea of applying machine-learning approaches to identify state-
space representations of a dynamical system from input/output data has
been widely explored in the literature. For example, we mention here
the classical dynamic mode decomposition (DMD) and refer the reader
to the review in [29]. Learning a state-space model typically requires
a nonlinear transformation of a vector of past input/output samples to
a state vector. One drawback of many machine-learning methods per-
forming such a dimensionality reduction is that the resulting state-space
model (a.k.a. “latent representation”) may result in non-regular and stiff
mappings, therefore creating issues when the model is used to design
a controller and/or an observer, for instance when the linearization of
the model is used. Although expections exist [30], most of the proposed
solutions address this issue by relying on variations of two families of
approaches [31]: (i) imposing a “regular geometry” on the learned latent
space; (ii) envision learning schemes in which the capability of the la-
tent representation to predict future output values is directly taken into
account during the learning phase.

Among the first family, many works are inspired by the well known
variational autoencoders [32]. Here, the latent representation is learned
so that the distribution of the resulting states is a prescribed one, usually
a Gaussian one. Different types of VAE have been widely used both for
system identification [33]–[37] and in reinforcement learning [38], [39].

The contributions related to the second family of approaches are often
extensions of the DMD idea. We mention here papers based on the Koop-
man formalism [40]–[42] and the contributions [43], [44], which use au-
toencoders in conjunction with the Koopman operator for learning rep-
resentations of autonomous systems. Closely related to the DMD idea
is also the so-called “SINDy” framework [45]. In these frameworks, the
original input/output signals are lifted to a possibly higher-dimensional
space, in which the dynamic evolution of the system can be modeled in
linear time-invariant (LTI) form or, more rarely, in bilinear form. A char-

8

acteristic of the approach is that the resulting state-space dimension can
be larger than that of the original vector of past input/output samples.

Some techniques combine methods from both families. For instance,
in [46], [47] recurrent neural networks are trained to predict the evolution
of the state-update maps that govern a time-varying time series, while
in [48] a variational recurrent neural network architecture is envisioned.

2.1.2 Contribution

We propose a methodology that uses artificial neural networks (ANNs),
and in particular autoencoders (AEs) [49], to learn a nonlinear model in
state-space from a given input/output dataset. The main idea is the fol-
lowing: we train an AE that reproduces a collection of output signals
from a collection of input and output signals and take the central layer
of the AE as the state vector. Such a dimensionality reduction problem is
solved jointly with problem of learning the nonlinear state-update func-
tion (parameterized by a deep neural network) that maps the values of
such a state into its next values.

Contrarily to the contributions [40], [44], [50], we do not require the
dynamics to be linear in the learned latent space. On the other hand,
to ease the design of controllers and state observers, we also consider a
quasi linear parameter-varying (LPV) formulation of the model, in which
each of the coefficients of the state-update matrices is the output of an
ANN.

In contrast with the works [33]–[35], [48], we do not rely on varia-
tional inference arguments, as we do not impose specific structures on
the learned latent space. Our approach brings two advantages: (i) it
avoids making an assumption about the distribution to impose; (ii) as
we will show in Section 2.4.3, it enables the use of classical shrinkage op-
erators to tune some of the hyper-parameters of the method, that would
be instead hard to adopt within the variational framework.

To improve both the accuracy of the resulting models and the nu-
merical stability of the approach, we also use a fitting criterion based on
multi-step predictions. The main hyper-parameter of the approach is the

9

order of the state-space model, that must be chosen (as typically in sys-
tem identification methods) to obtain a tradeoff between model accuracy
in reproducing test data and model complexity. We provide a heuris-
tic approach based on group sparsification methods to help tuning the
number of states to include in the nonlinear model and the number of
past input and outputs the autoencoder consumes.

Preliminary ideas and results related to the contents of this chapter
were presented in [51], where we proposed AEs to extract a compressed
representation of I/O data to be used as state representation for a classi-
cal one-step-ahead Prediction Error Method (PEM) approach.

The method we present is also related to the approaches presented
in some very recent contributions [52]–[54], which also develop ideas
related to the preliminary work presented in [51].

This Chapter is organized as follows. In Section 2.2 we formulate the
nonlinear identification problem we want to solve and present a solu-
tion method based on autoencoders in Section 2.3. After detailing the
learning algorithm in Section 2.4 and discussing the use of the identified
model for state estimation and control in Section 2.5, we report results in
Section 2.6 based on several nonlinear benchmark problems. Finally, we
draw conclusions in Section 2.7.

2.2 Nonlinear identification problem

We are given a training dataset of input/output samples Z = {u0, y0, . . . ,

uN , yN} collected from a dynamical system, where uk ∈ Rnu is the vector
of exogenous inputs and yk ∈ Rny the vector of measured outputs. Our
goal is to identify a dynamical model of the system in the following state-
space form {︃

xk+1 = f(xk, uk)
ŷk = g(xk)

(2.1)

with x ∈ Rnx , that, starting from an appropriate condition xk0 and ex-
cited by the same inputs uk0 , . . . , uN−1, produces a output signal ŷk that
is as close as possible to the one yk recorded on the system. Although we
assume that the collected input and output signals may be affected by

10

measurement noise, we do not make any particular assumption about
the properties of such noise.

Given a number of past outputs na ≥ 1, of past inputs nb ≥ 1, and a
desired state dimension nx ≥ 1, the problem can be recast to the problem
of finding a triplet of maps e, f, g, e : RnI → Rnx , nI ≜ nany + nbnu, f :

Rnx × Rnu → Rnx , g : Rnx → Rny that solves the following optimization
problem:

min
e,f,g

L(e, f, g, Z) (2.2a)

where

L(e, f, g, Z) =

N∑︂
k=k0

L(ŷk, yk)

s.t. xk+1 = f(xk, uk)
ŷk = g(xk), k = k0, . . . , N
xk0 = e(Ik0−1)

(2.2b)

In (2.2), L : Rny ×Rny → [0,+∞) is a suitable loss function that penalizes
the discrepancy between the predicted and the measured output, and Ik

is the following information vector

Ik = [y′k . . . y′k−na+1 u
′
k . . . u′

k−nb+1]
′ (2.3)

where k0 ≜ max{na, nb}. In (2.2), e is the dimensionality-reduction map-
ping from the vector Ik of past inputs and outputs to the state vector xk,
whose role will be further explained in the next sections.

In general problem (2.2) has infinitely many solutions. For example,
if the data were generated by a linear system of order n, for any dimen-
sion nx ≥ n all the infinitely many (possibly non-minimal) state-space
realizations leading to the same transfer function would be equally opti-
mal. The problem of recognizing the smallest state-dimension nx that
provides an acceptable mismatch between the predictions ŷk and the
measured outputs yk is of main interest and has been widely explored
in the literature [55], [56]. A similar problem of data compression is also
widely studied in the machine learning literature in the context of fea-
ture extraction [57]. There, the goal is to reduce the dimension of the in-
put space by identifying a nonlinear function that projects the original

11

(large) input space into a (smaller dimensional) feature space, without
losing significant information content.

In the following, we solve problem (2.2) by parameterizing the maps
e, f, g as ANNs, due to their universal approximation properties [58] and
efficient numerical packages available for training them.

2.3 State selection via autoencoders

The idea behind an autoencoder is to train an ANN to reproduce the
identity mapping from a certain information vector Ik ∈ RnI to Ik itself,
under the topological constraint that one of its hidden layers contains
nx < nI neurons. Such a constraint forces the network to learn a descrip-
tion of Ik that lives in the lower-dimensional space Rnx without losing in-
formation. The smaller the fitting error between Ik and the reconstructed
Ik, the less information is lost when passing through the network across
the hidden “bottleneck” layer. As a result, when excited by an input
value Ik, the corresponding value xk ∈ Rnx , taken by the neurons of the
bottleneck layer represents the desired lower-dimensional vector concen-
trating the information contained in Ik. This approach has been shown
to be successful in a large variety of applications. For completely linear
networks, it has been shown in [59] that it has a strong relation with the
standard principal component analysis (PCA) technique.

2.3.1 Partial predictive autoencoders

Given the dataset Z of input/output samples, applying a standard au-
toencoder to compress the information vector Ik defined by (2.3) into a
reduced-order vector xk ∈ Rnx would not be optimal to learn a state
representation for two reasons: (i) it would treat the samples Ik as in-
dependent, missing the fact that consecutive samples Ik share common
(time-shifted) components, and therefore fail in capturing the capabil-
ity of predicting the next output yk+1, and (ii) it would be redundant,
as we are not really interested in reproducing the input signals uk−i+1,
i = 1, . . . , nb, that are components of Ik. Therefore, we introduce here

12

a partial predictive autoencoder (PPE) that maps Ik−1 (i.e., the information
available up to time k − 1) into the following vector of outputs

Ok = [y′k . . . y′k−m]′ (2.4)

with 0 ≤ m ≤ na. By fitting an ANN with a hidden layer of size nx, nx ≤
nany+nbnu, that tries to predict Ok given Ik−1, we obtain an intermediate
compressed representation xk ∈ Rnx . Such a vector xk can be treated as
a model state, as it captures the information required to predict yk from
Ik−1, and even filter yk−1 (if m ≥ 1) and smooth past outputs (if m > 1).

We note here that we could make xk depend on yk too, but we do not
consider such a case in this work.

The PPE amounts to the cascade of two different ANNs: (i) an encod-
ing function e : RnI → Rnx representing the transformation from Ik−1

(past inputs and outputs) to xk (state vector), (ii) a decoding mapping
d : Rnx → Rmny from xk to Ok, whose first ny components constitute the
desired output function g : Rnx → Rny .

2.4 Model learning

Having defined a structure to map Ik−1 into xk, we also need a struc-
ture to fit a function f : Rnx × Rnu → Rnx mapping xk and uk into
the next state xk+1. A first approach would be to fit the PPE described
above to get functions e and d, compute the set of states xk = e(Ik−1),
k = max(na, nb) + 1, . . . , N , and then fit a model f mapping (xk, uk) to
xk+1. We propose instead a better method that learns e, d, and f simul-
taneously. We define a multi-objective learning problem whose solution
is a set of sub-networks implementing the state-update and output func-
tions of the desired state space model. The corresponding structure is
schematically depicted in Figure 1, in which we use two PPEs that share
exactly the same weights (to be determined), one fed by Ik−1 and the
other by Ik. The goal is to reproduce, respectively, Ok and Ok+1. In this
way, the generated state xk in the first AE and xk+1 in the second AE will
be coherent. A third ANN must be trained to map uk and xk into the
shifted state xk+1, therefore getting the state-update mapping f .

13

d d

e e

f

IkIk-1 uk

Ok+1Ok

xk xk+1x?
k+1

Figure 1: Schematic representation of the computational graph of the pro-
posed nonlinear model structure

The overall training problem described above is formulated as the
following optimization problem

min
e,f,d

N−1∑︂
k=k0

α
(︂
L1(Ôk, Ok) + L1(Ôk+1, Ok+1)

)︂
+βL2(x

⋆
k+1, xk+1) + γL3(Ok+1, O

⋆
k+1)

s.t. xk = e(Ik−1), k = k0, . . . , N
x⋆
k+1 = f(xk, uk), k = k0, . . . , N − 1

Ôk = d(xk), k = k0, . . . , N
O⋆

k = d(x⋆
k), k = k0 + 1, . . . , N

(2.5)

where Li are loss functions, α, β, γ ≥ 0 are scalar weights, Ok is defined
by (2.4), and Ik by (2.3), and d : Rnx → R(m+1)ny is the decoder part of
the PPE. Note that the output function g in (2.1)–(2.2) is retrieved from d

by taking the components corresponding to yk.

14

In (2.5), the loss function L1 extends the original loss L in (2.2b), for
instance L1(Ôk, Ok) =

∑︁k
j=k−m L(ŷj , yj). The loss L2 can be seen as a re-

laxation of the state update equation xk+1 = f(xk, uk) in (2.2b). The loss
L3 attempts avoiding that the error introduced by the bridge function f

gets amplified by the nonlinear decoder d and results in a large devia-
tion, on between the predicted outputs O⋆

k+1 and the measured outputs
Ok+1. While clearly (2.5) may not solve the original problem (2.2) exactly,
it attempts to provide a good sub-optimal solution to it.

Minimizing L3 and L2 in (2.5) is the objective with the most priority,
as it captures the one-step ahead properties of the model. The “vertical”
objective related to L1 is instead only ancillary and serves to guide the
process of learning the correct bridge/decoder pair. This suggests that a
good approach for better solving the posed learning problem (2.2) is to
start the training procedure with small values of β, γ and a high value of
α, and then use the solution as the initial guess of another instance of (2.5)
with a smaller value of α, possibly reiterating the procedure multiple
times for decreasing values of α.

In the rest of the Chapter we will consider that L1−3 are LMAE loss
functions [60]1.

Besides deciding the topology and activation functions of the ANNs em-
ployed in the two identical PPEs, and the learning algorithms employed
in optimizing their weights and bias terms given the available training
dataset, several tuning hyper-parameters are involved in the proposed
nonlinear system identification method described above. These are sum-
marized in Table 1.

2.4.1 Multiple-step ahead fitting procedure

Penalizing the one-step ahead prediction errors in (2.5) does not guaran-
tee that the identified model will provide good open-loop predictions.
An approach to solve this issue would be to resort to a backpropaga-
tion through time (BPTT) learning scheme [61], in which the initial es-

1For a given dataset {Qk}
NQ

k=1, Qk ∈ RnQ , and its estimate {Q̂k}
NQ

k=1,
LMAE(Qk, Q̂k) =

1
NQnQ

∥Qk − Q̂k∥1.

15

timated condition x0 is propagated through each step k of the whole
dataset. The main issue of BPTT is that it involves optimizing cost func-
tions that are both computationally expensive to evaluate and to differ-
entiate, and are highly nonlinear, which makes the learning problem dif-
ficult to solve [62], [63]. A good compromise is to resort on the so-called
truncated BPTT [64], [65], where the propagation of the estimate x̂k is
carried only for a limited number of steps F ≪ N . In our identification
scheme, the idea of truncated BPTT translates into the following multi-
step ahead modification of (2.5):

min
e,f,d

N−F∑︂
k=k0

⎛⎝ F∑︂
f=0

αL1(Ôk+f , Ok+f)

+

F∑︂
f=1

f−1∑︂
r=0

βL2(x̂
k+r
k+f , xk+f) + γL3(Ok+f , Ô

k+r

k+f)

⎞⎠
s.t. x̂k+r

k+f̄+1
= f(x̂k+r

k+f̄
, uk+f̄),

f̄ = r + 1, . . . , F

x̂k+r
k+r+1 = f(xk+r, uk+r)
xk+r = e(Ik+r−1)

Ôk = d(xk)

Ô
k+r

k+f = d(x̂k+r
k+f)

(2.6)

where in (2.6) we consider the multi-step ahead predictions x̂k+r
k+f of the

state vector at step k + f based on iterating the model in open-loop for
f − r steps from the initial state xk+r = e(Ik+r−1). Note that, compared
to a standard truncated BPTT, here we also evaluate explicitly the quality
of the predictions generated from any step to any other step within the
interval [k, k+F], i.e., from any xk+r to any xk+f , f > r. At first sight the
use of the index r may seem redundant (for example the index k1 + k2 is
covered by k = k1, r = k2 and by k = k1+k2, r = 0). However, introduc-
ing such a redundancy is useful when stochastic gradient descent (SGD)
is adopted to solve (2.6), as most commonly used in deep learning [66].
In fact, in SGD a set of random, possibly non-consecutive, values of the
index k are selected at each optimization step to form the mini-batch.
Hence, the time-windows between k and k + F may not overlap in the
mini-batch.

16

Note that the proposed truncated BPTT approach includes the one-
step ahead approach for F = 1.

2.4.2 Network topology

In principle, each sub-network e, f , and d could be designed with differ-
ent topologies and activation functions, thus allowing the user to incor-
porate possible prior knowledge of the process to identify. In this Chap-
ter we restrict our analysis to two alternative architectures: (i) a fully
connected feed-forward (FF) topology for all the sub-networks e, f , and
d; (ii) a quasi-LPV parameterization of the maps f and d while maintain-
ing a general FF topology for the encoder e. The latter option allow us to
learn models in the following quasi-LPV form{︃

xk+1 = A(xk, uk)[x
′
k 1]′ +B(xk, uk)uk

yk = C(xk)[x
′
k 1]′

(2.7)

whose usefulness will be detailed in Section 2.5.2. Each coefficient of
A,B and C in (2.7) is in turn defined as the output of a FF network.

2.4.3 Feature selection and model reduction

The most important hyper-parameters of our approach for achieving a
good fit are na, nb and nx. As it is common in most identification tech-
niques, tuning such parameters often requires physical insight and/or
extensive trial and error. Here we propose a simple heuristics to facili-
tate the selection process.

It is known that the inclusion of ℓ1-penalties in an optimization prob-
lem (a.k.a. the shrinkage operator) induces sparse solutions [67]. Consider
the general FF topology (i). An approach to attempt reducing the num-
ber nx of states of the model is to introduce the following variation of the
so-called group LASSO operator [68]

Lnx
(ω) = χ1

nx∑︂
i=1

i2∥ω[i]∥1 (2.8)

where χ1 > 0, χ1 ∈ R, ω is the vector of weights of the initial layer of the
maps f and d, and ω[i] is the subvector of ω corresponding to the state

17

component xk,i. After solving (2.5) with the additional penalty (2.8), all
xk,i such that ω[i] is negligible are considered as redundant, and nx is
decreased accordingly. A similar argument can be used in case the quasi-
LPV topology (2.7) is used, by inspecting whether A,B,C depend on xk,i

and whether the i−th column of A and C is negligible.
Regarding the encoder e, we penalize more the weights in the first

layer of e associated with the components of Ik = [y′k . . . y′k−na+1 u′
k

. . . u′
k−nb+1]

′ corresponding to less recent input/output values. To this
end, let θ be the vector of weights corresponding to the first layer of e,
and let θ[ℓ] the subvector of θ corresponding to weights associated with
either uk−ℓ or yk−ℓ, ℓ = 0, . . . , T , T = max{na, nb} − 1. Consider the
following group LASSO penalty function

Le(θ) =

T∑︂
ℓ=0

χ2(ℓ+ 1)2∥θ[ℓ]∥1 (2.9)

where χ2 > 0, χ2 ∈ R, is a new hyper-parameter to choose. A possible
way of choosing χ2 is to solve (2.5) with the additional penalty (2.9) for
different values of χ2 and choose the value that best trades off between
quality of fit and small values of na, nb. Then, after fixing the best values
of na, nb found, problem (2.5) is solved again without adding (2.9).

As we will describe in Section 2.6, we will also include small ℓ2-
regularization terms in the objective function to minimize.

2.5 Nonlinear state estimation and control

2.5.1 Filtering and state reconstruction

The encoding part e of the PPE network provides xk as a static function
of the past na outputs and nb inputs, collected in vector Ik−1. To avoid
storing Ik−1 and to filter noise out, we consider here standard recursive
filtering and state-reconstruction technique to recover xk iteratively from
input and output measurements.

A standard approach to estimate xk is to use model-based state-esti-
mation techniques such as extended Kalman filters (EKF). However, this

18

would require additional tuning effort and would restrict the choice of
the activation functions used in f, g to be differentiable for linearization.

An alternative method is to extend the overall learning objective (2.5)
to also train a “neural observer”. Similar to the bridge function f intro-
duced to forward the state xk and new input uk to the next state x∗

k+1,
we can introduce a similar structure to build, together with e, d, f , an ad-
ditional map s : Rnx × Rnu × Rny → Rnx from the current state estimate
x̂k, input uk, and new measured output yk to the updated state estimate
x̂k+1. This can be achieved by adding

β4L4(x̂k+1, xk+1) + γ5L5(Ô
⋆

k+1, Ok+1) (2.10a)

in the loss function in (2.5), where

x̂k+1 = s(xk, uk, yk)

Ô
⋆

k = d(x̂k), k = 0, . . . , N − 1
(2.10b)

L4, L5 are appropriate loss functions, and β4, γ5 ≥ 0.
A clear benefit of the approach in (2.10) is that no separate tuning pro-

cess is required after training the process model f , g, in that the observer
s is trained directly on the data set. On the other hand, having coupled
the fit of the model with the synthesis of the observer leaves no freedom
to re-tune the observer without fitting again both of them. For a detailed
comparison between the two approaches we refer the interested reader
to [51].

2.5.2 Nonlinear model predictive control

Having identified a model in the state-space form (2.1) or (2.7), we can
employ any state-feedback controller synthesis technique to control the
system generating the data. Among such techniques, model predictive
control (MPC) is probably the most flexible [69], [70] for dealing with
multivariable systems under constraints on process variables. To deal
with nonlinear systems, one of the most commonly used MPC scheme
is the so-called linear time-varying (LTV) formulation (a.k.a. real-time
iteration scheme [71]), which is based on linearizing the model around
the previous optimal solution [72].

19

As for EKF, this method requires the activation functions used in f, g

to be differentiable, and the computation of the Jacobian matrices of the
model along the prediction horizon. This can be mitigated by using the
quasi-LPV affine form (2.7) by directly computing the matrices A,B,C

for the nominal values of xk, uk along the prediction horizon and neglect-
ing their sensititivies with respect to xk, uk. This scheme is summarized
in Algorithm 1.

2.6 Experimental Results

2.6.1 Synthetic benchmark problems

We first apply the proposed nonlinear state-space identification ap-
proach to the following synthetic benchmark problems: the Hammer-
stein-Wiener system

ΣHW =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xk+1 =

[︁
0.7555 0.25
−0.1991 0

]︁
xk +

[︁−0.5
0

]︁
vk

vk =

{︃ √
uk if u > 0
uk otherwise

wk = [0.6993 −0.4427]xk

yk = wk + 5 sin(wk)

(2.11)

and the discrete-time nonlinear system

ΣT =

⎧⎨⎩
xk+1,1 = xk,1 − k1

√
xk,1 + k2vk

xk+1,2 = xk,2 + k3
√
xk,1 − k4

√
xk,2

yk = xk,2

(2.12)

that describes a tank system with possible overflows neglected [73]. In
(2.12) we set k1 = 0.5, k2 = 0.4, k3 = 0.2, k4 = 0.3 and consider two cases:
one where we directly control vk (i.e: vk = uk) that will be referred to as
ΣT1, and one where vk = sign(uk)u

2
k that will be referred to as ΣT2.

For both ΣT1 and ΣT2 we collect a training dataset consisting of
20,000 training samples generated by exciting the system with a sequence
of step signals of length 5 steps with random amplitudes drawn from
the Gaussian distribution N (1, 1). For ΣHW we consider a training set
of 10,000 samples generated using the same methodology but with am-
plitudes of the input signals distributed in N (0, 1) and length equal to 7

20

steps. As test cases, for all these systems, we consider the open simula-
tion accuracy of the learned model when excited by 1,000 test input sam-
ples consisting of random-amplitude step signals with the same charac-
teristics as the one used for training, in comparison with the noise-free
response produced by the real process when subject to the same input
sequence.

All the signals are scaled by subtracting the empirical mean and di-
viding by the standard deviation computed on the training set. Once
normalized, a zero-mean Gaussian white-noise with standard deviation
σ = 0.02 is added on both the training and test signals to mimic mea-
surement noise.

2.6.2 Experimental and simulation benchmarks

We further test the capabilities of the proposed approach on three pub-
licly available dataset. The first taken from an experimental magneto-
rheological fluid damper system [74], [75], the second one from a sim-
ulated physically-accurate continuous-time two-tank system [76], the
third one from the well known “Silverbox” system [77]. The systems
generating the three dataset will be refereed to as ΣRH , ΣTank, and ΣS ,
respectively.

The first two datasets contain 3,499 and 3,000 samples, respectively.
In both cases, the first 2,000 samples of the set are used for training/
validation purposes while the remaining samples for testing. The Silver-
box dataset is extracted as in [5]. Again the signals in the dataset are
normalized but no additional noise is superimposed.

In all cases, since during the training of the neural networks we em-
ploy an early-stopping criterion based on validation data, 5% of the train-
ing dataset is reserved for validation.

2.6.3 Hyperparameter selection and implementation de-
tails

For both the FF network topology (2.1) and the affine quasi-LPV one (2.7),
described in Section 2.4.2 as type (i) and type (ii), respectively, the hid-

21

den part of all the involved networks consist of 3 layers of 30 neurons
each with ReLU [78], [79] activation functions, followed by a final linear
output layer.

The network has been implemented in Keras [80] using Tensorflow
[6] as back-end, and trained via the AMSgrad algorithm [81]. The train-
ing procedure is carried out in two stages: first the ANNs are trained
with α = 10, β = 0.3, γ = 0 until convergence, and then trained again
(using as a starting point the weights obtained in the previous phase) us-
ing α = 0, β = 10, γ = 1. Unless otherwise noted, ℓ2-regularization terms
with penalty λ = 0.0001 are added on all but bias terms coefficients of the
nonlinear and, for the type (i) topology only, linear neurons to smooth
the fitting process out. Moreover, the same ℓ2-penalty is added on the fi-
nal linear layer of the neural network modeling the last column of matrix
A(xk, uk) in case the quasi-LPV topology (2.7) is used. Under the same
topology, we also zero the coefficients of the last column of matrix C(xk).

The above two-step procedure is used to ease the learning process.
As the focus of the first step is mostly on the L1 objective, the learning
of e and d is emphasized (α = 10), with a small contribution (β = 0.3) of
L2 maintained to avoid that the resulting state vector cannot be properly
updated over time. Once a good estimate of the decoder/encoder pair
has been determined in the first stage, the second stage takes this as the
initial guess to completely focus (α = 0) on enforcing that the model
propagates correctly over time (β = 10, γ = 1).

Note that in our experiments we have not made any attempt to opti-
mize the selected values of α, β, γ. When best identification performance
is sought, global optimization algorithms based on surrogate functions
[9], [82] could be used for optimal tuning of α, β, γ, and possibly other
hyper-parameters.

Performance results are measured in terms of the best fit ratio (FIT)

FIT = max

{︃
0, 1− ∥y − ŷ∥2

∥y − ȳ∥2

}︃
(2.13)

where ȳ is the average of the output signal y over all the samples, and
ŷ = {ŷk} is the estimated response, where ŷk is the open-loop prediction

22

extracted from Ôk+1 = d(x̂k+1) with

x̂k+1 = f(x̂k, uk), k = k0, . . . , N − 1
x̂k0 = e(Ik0−1)

(2.14)

We set m = 1 in all tests as we are only interested in predicting the next
output yk+1 and filter the current yk. As we plan to never exceed the
value 15 for na, nb, all simulations start from k0 =15 in order to have
enough samples to form Ik0−1. Unless otherwise noted, we report the
best and average FIT and its standard deviation obtained on 10 different
runs with different random seeds.

2.6.4 Fit results

We evaluate the FIT open-loop simulation performance (2.13) when the
fitting process is either based one-step ahead criterion (F = 1) or trun-
cated BPTT (F = 4), for both the quasi-LPV and FF topologies. In all
cases we set nx = 6, na = nb = 10.

Results are reported in Table 2 for the synthetic benchmarks and in
Table 3 for the experimental/simulation benchmarks. The results high-
light that the quasi-LPV parameterization (2.7) well reproduces the be-
havior of the system in all the proposed benchmarks, and slightly out-
performs the FF architecture. This is especially evident for ΣT2. The
results also confirm the beneficial effect of truncated BPTT.

For comparison, for the three non-synthetic benchmark problems
we train a nonlinear ARX models of the same order, equipped with a
dense feedforward ANN regressor with 3 layers of 30 ReLU neurons
each, trained using the System Identification Toolbox for MATLAB [83].
We consistently achieve roughly the following FITs: 0.94 (ΣTank), 0.55
(ΣRH), and 0.94 (ΣS).

2.6.5 Feature selection and model reduction

We test the model-selection technique presented in Section 2.4.3 to re-
duce na, nb and nx. Starting with nx = 6 and na = nb = 10, we at-
tempt reducing na, nb by imposing the group LASSO penalty (2.9) with

23

χ2 = 0.0003, while maintaining the ℓ2-regularization penalty λ = 0.0001

on the remaining regularized coefficients. Similarly, starting with the
same values of nx, na, nb, we impose the group LASSO penalty (2.8) to
attempt reducing nx with χ1 = 0.0003. Numerical tests are performed
on ΣT2, with training carried out using truncated BPTT with F = 4.

The number of coefficients whose absolute value is larger than 0.001

(which we selected as the threshold used to consider the coefficient as
negligible) is reported in Figure 2. In particular, Figure 2a clearly shows
that only 3 state components are commonly used, so that nx can be re-
duced to nx = 3. Similarly, from Figure 2b we can note that only yk,

. . . , yk−2 and uk, . . . , uk−4 contribute significantly to the encoder func-
tion e, so that we can decide to limit Ik to them. This suggests setting
na = nb to either 3, 4, or 5.

This is confirmed by the results reported in Table 4, which shows the
fit performance occurring when the models are trained with nx = 2, na =

nb = 5, with nx = 3, na = nb = 5, and with nx = na = nb = 5, without
including ℓ1-penalties for sparsification. The difference in performance
between using nx = 3, na = nb = 5, and both using nx = na = nb = 5

and the original values nx = 6, na = nb = 10, in the original feedforward
topology is negligible. Very good performance are also obtained by nx =

2, na = nb = 5, confirming the marginal relevance of introducing a third
state shown in Figure 2a.

2.6.6 LTV-MPC based on learned model

We evaluate the performance of the MPC controller presented in Sec-
tion 2.5.2 in controlling ΣT2. The MPC controller is based on the quasi-
LPV model obtained by training from the same dataset with nx = 6 and
na = nb = 10, and by setting np = 5, Wy = 1, Wu = 0.001, W∆u = 0.01,
under the box constraints |uk| ≤ 0.8.

Figure 3 shows the obtained closed-loop performance when tracking
a shifted sine-sweep reference signal. To close the MPC loop, in this ex-
ample we used the encoder function to estimate the state xk from past
input/output samples contained in Ik−1, although other observers (like

24

1 2 3 4 5 6
state component

0

10
bridge

decoder

(a) Average number of non-negligible neurons in f and d as a function of the state compo-
nent xk,i, i = 1, . . . , nx

0 1 2 3 4 5 6 7 8 9
time-step delay

0

20 {yk}
{uk}

(b) Average number of non-negligible neurons in function e acting on Ik , with respect
to the time-step delay i of either the input sample uk−i or the output sample yk−i, i =
0, . . . , na − 1 = nb − 1, the neuron is acting on.

Figure 2: Number of active neurons in e, f , d.

25

0 50 100 150 200 250 300 350 400

−1.0

−0.5

0.0

0.5

1.0

1.5
Closed loop simulaton

uk

yk

rk

Figure 3: Tracking performance of LTV-MPC (Algorithm 1) applied to con-
trol system ΣT2 (quantities are in normalized units).

a time-varying Kalman filter based on the same quasi-LPV model) could
be used as well.

2.6.7 Computational aspects

The overall CPU time to simulate the closed-loop LTV-MPC system, run-
ning the decoder, and computing the control action via the general pur-
pose L-BFGS-B solver [84] over 400 sampling steps is ≈ 5 seconds on a
laptop equipped with an Intel Core i5 6200u CPU and 16 GB of RAM.
Note that we did not make any attempt towards efficiency of implemen-
tation, for example a more efficient solver like the one proposed in [85]
could be used to compute the MPC action.

Regarding the CPU time spent for training the models, the proposed
procedure is carried out on average in ≈ 10 minutes on the aforemen-
tioned machine for dataset consisting of 20,000 samples. Interestingly,

26

the computation effort is not very sensitive to the particular choice of nx,
na, and nb.

Models with nx = 6, na = nb = 10 require ≈ 10,000 single precision
coefficients. Clearly, the number of model coefficients heavily depends
on the chosen topology, so that it can be drastically reduced if mem-
ory footprint and/or throughput are of concern. Moreover, we mention
that one could apply recent results on model reduction for ANNs, see,
e.g., [86] and references therein. In general, one must find the best trade-
off between the number of optimized model coefficients and the obtained
closed-loop tracking performance when training a nonlinear state-space
model for control purposes.

2.7 Conclusions

We have proposed a viable approach to learn nonlinear state-space mod-
els from input/output data for model-based control systems design. The
method can be applied either to identify a nonlinear model from exper-
imental data, or from a high-fidelity simulator, or to reduce the order
of an existing nonlinear model. Indeed, the approach allows the direct
control of the number of states, which in turn dictates the complexity of
model-based nonlinear estimators and MPC controllers.

27

Parameter Symbol Meaning
past I/O win-
dow width

na, nb size of the information vector Ik
employed to construct the state
xk+1

autoencoding
window

m time length of the output vector
Ok

state dimension nx number of neurons in the “bot-
tleneck” layer of the PPE

multistep pre-
diction horizon

F length of the prediction horizon
used in truncated BPTT

relative weights α, β, γ relative weights scalarizing the
multi-objective fitting criterion
in (2.5)

Table 1: Hyper-parameters of the proposed learning method

System A/1 B/1 A/F B/F

ΣHW

average 0.983 0.989 0.989 0.991
standard deviation 0.002 0.001 0.001 0.001
best 0.986 0.991 0.990 0.992

ΣT2

average 0.873 0.913 0.943 0.961
standard deviation 0.024 0.019 0.013 0.015
best 0.903 0.938 0.963 0.977

ΣT1

average 0.944 0.969 0.973 0.980
standard deviation 0.020 0.003 0.003 0.004
best 0.960 0.976 0.977 0.985

Table 2: Performance results (FIT) on synthetic benchmarks for different
combinations of topologies and training procedures: A = FF topology, B =
quasi-LPV topology; 1 = training based on one-step ahead loss (F = 1), F =
training based on multi-step ahead loss (F = 4).

28

Algorithm 1 LTV-MPC algorithm based on model (2.7)

Input: Prediction horizon np, control horizon nm, weight matrices Wy ∈
Rny×ny , Wu ∈ Rnu×nu , W∆u ∈ Rnu×nu ; output and input reference sig-
nals rt ∈ Rny , ur

t ∈ Rnu , t = 0, 1, . . .; current state estimate xt; set x̄t = xt.

1. compute the sequence of predicted states {x̄t+1, . . . , x̄t+np} given
the current guess of the input sequence {ut̄ · · · ūt+np−1}, with
ūt+k = ūt+nm−1 for all k ≥ nm − 1;

2. compute
Ak = A(x̄t+k, ūt+k), Bk = B(x̄t+k, ūt+k)

Ck = C(x̄t+k)

3. solve the quadratic programming problem

arg min
ut,...,ut+nm

np−1∑︂
k=0

∥Wy(yt+k+1 − rt+k+1)∥22
+∥Wu(ut+k − ur

t+k)∥22 + ∥W∆u∆ut+k∥22

s.t. xj+1 = Ak[x
′
j 1]

′ +Bkuj

yj+1 = Ck+1[x
′
j+1 1]

′

∆uj = uj − uj−1, j = t+ k, k = 0, . . . , np − 1
linear constraints on ∆ut+k, ut+k, xt+k, yt+k

∆ut+k = 0, nm ≤ k < np

to get the optimal sequence u⋆
t , . . . , u

⋆
t+nm−1;

4. set the current input ut = u⋆
t ;

5. update the nominal input sequence ūt+k = u⋆
t+k, 1 ≤ k ≤ nm − 1,

ūt+k = u⋆
t+nm−1, nm ≤ k ≤ np − 1.

Output: Command input ut, updated nominal input sequence
{ūt+1, . . . , ūt+np}.

29

System A/1 B/1 A/F B/F

ΣRH

average 0.815 0.815 0.818 0.882
standard deviation 0.040 0.044 0.015 0.025
best 0.859 0.870 0.839 0.908

ΣTank

average 0.896 0.904 0.916 0.915
standard deviation 0.008 0.020 0.007 0.009
best 0.911 0.923 0.932 0.927

ΣS

average 0.905 0.951 0.966 0.986
standard deviation 0.015 0.013 0.004 0.003
best 0.931 0.963 0.974 0.991

Table 3: Performance results (FIT) on experimental and simulation bench-
marks for different combinations of topologies and training procedures: A =
FF topology, B = quasi-LPV topology; 1 = training based on one-step ahead
loss (F = 1), F = training based on multi-step ahead loss (F = 4).

System FF-2/5 FF-3/5 FF-5 FF-6

ΣT2

average 0.905 0.903 0.925 0.943
std. deviation 0.059 0.061 0.026 0.013
best 0.948 0.952 0.964 0.963

Table 4: Performance (FIT) of the reduced-order models in learning ΣT2.
FF-5 = feedforward topology with nx = na = nb = 5. FF-3/5 = feedforward
topology with nx = 3, na = nb = 5. FF-2/5 = feedforward topology with
nx = 2, na = nb = 5. FF-6 = feedforward topology with nx = 6, na = nb =
10 (reported for comparison)

30

Chapter 3

A machine-learning
approach to synthesize
virtual sensors for
parameter-varying systems

3.1 Introduction

Most real-world processes exhibit complex nonlinear dynamics that are
difficult to model, not only because of the interactions between input
and output variables, but also because of the presence of time-varying
signals that change the way the involved quantities interact over time.
A typical instance is the case of systems subject to wear of components,
in which the dynamics slowly drift from a nominal behavior to an aged
one, or systems affected by slowly-varying unknown disturbances, such
as unmeasured changes of ambient conditions. These systems can be
well described using a parameter-varying model [87] that depends on a
vector ρk ∈ RS of parameters, that in turn evolves over time:

ΣP ≜

⎧⎨⎩ xk+1 = f(xk, uk, ρk)
ρk+1 = h(ρk, k, uk)

yk = g(xk, ρk)
(3.1)

31

where xk ∈ Rnx is the state vector, yk ∈ Rny is the output vector, uk ∈
Rnu is the input vector, f : Rnx × Rnu × RS → Rnx , g : Rnx × RS →
Rny and h : RS × Rnu × R → RS . In the following we assume that the
mappings in (3.1) are unknown.

Special cases of (3.1) widely studied in the literature are linear param-
eter-varying (LPV) systems [88], in which f , g are linear functions of xk,
uk, and switched affine systems [89], in which ρk only assumes a value
within a finite set.

Inferring the value of ρk in real time from input/output data can be
useful for several reasons. In predictive maintenance and anomaly/fault
detection [90]–[92], detecting a drift in the value of ρk from its nominal
value or range of values can be used first to detect a fault and then to
isolate its nature. In gain-scheduling control [93], [94], ρk can be used
instead to decide the control law to apply at each given time instant.

Due to the importance of estimating ρk, various solutions have been
proposed in the literature to estimate it during system operations. If the
model in (3.1) were known, even if only approximately, nonlinear and
robust state estimators could be successfully applied [95]. On the other
hand, if the mechanism regulating the interaction between ρk and the
measurable quantities (usually uk and yk) is not known, but a dataset
of historical data is available, the classical indirect approach would be
to identify an overall model of ΣP using a system identification tech-
nique [96] and then build a model-based observer to estimate ρk. The
drawbacks of such an indirect approach are that it can be a very time-
consuming task and that the resulting model-based observer can be com-
plex to implement. This issue is especially cumbersome if one is ulti-
mately interested in just getting an observer and have no other planned
use for the model itself.

Virtual sensors [97], [98] provide an alternative approach to solve such
a problem: the idea is to build an end-to-end estimator for ρk by directly
learning from data the mapping from measured inputs and outputs to
ρk itself. The approach is interesting because it does not require identi-
fying a full model of the system from data, nor it requires simplifying an
existing model (such as a high-fidelity simulation model) that would be

32

otherwise too complex for model-based observer design. Similar estima-
tion problems have been tackled in the context of novelty detection [99]
and of time-series clustering [100], [101].

3.1.1 Contribution

The goal of this Chapter is to show an approach to synthesize virtual
sensors that can estimate ρk when its measurements are not available by
using data acquired when such a quantity is directly measurable. Such
a scenario often arises in serial production, in which the cost of compo-
nents must be severely reduced. The purpose of the proposed approach
is to enable replacing physical sensors with lines of code.

The method developed here is loosely related to Multiple Model
Adaptive Estimation [102] (MMAE) and consists of three main steps:

1. Learn a finite set of simple linear time-invariant (LTI) models from
data that roughly covers the behavior of the system for the entire
range of values of ρk of interest;

2. Design a set of standard linear observers based on such models;

3. Use machine-learning methods to train a lightweight predictor that
maps the estimates obtained by the observers and raw input and
output signals into an estimate ρ̂k of ρk.

To do so, we extends the preliminary results presented in [22] in several
ways: it formulates the problem for nonlinear systems; it explores the
performance of the approach for mode-discrimination of switching sys-
tems and it provides a thorough performance analysis of various light--
weight machine-learning techniques that can be used to parameterize the
virtual sensor architecture. In doing so, it also provides an entirely off-
line alternative strategy for identifying the local linear models required
to synthesize the bank of observers based on an interpretation of well-
known decision tree regressors as a supervised clustering scheme.

The intuition behind our approach is that, in many cases of practical
interest, the dynamics of ρk are slower than the other dynamics of the

33

system. This fact suggests that a linear model identified on a dataset in
which ρk is close to a certain value ρ̄ will well approximate ΣP for all ρk ≈
ρ̄. Following this idea, we envision a scheme in which Nθ values ρ̄i, i =
1, . . . , Nθ are automatically selected and, for each value ρ̄i, a linear model
is identified and, finally, a corresponding linear observer synthesized.
A machine-learning algorithm is then used to train a predictor that is
fed with the performance indicators constructed from such observers,
together with raw input and output data, to produce an estimate ρ̂k of ρk
at each given time k.

The rest of the Chapter is organized as follows: in Section 3.2 we recall
the MMAE framework and introduce the necessary steps to bridge such
a model-based technique to a data-driven framework. In Section 3.3, we
detail the overall virtual sensor architecture and the internal structure of
its components. Section 3.4 is devoted to studying the quality of estima-
tions and the numerical complexity of the synthesized virtual sensor on
some selected nonlinear and piecewise affine (PWA) benchmark prob-
lems, including the problem of estimating the state of charge of a battery,
to establish both the estimation performance of the approach and the in-
fluence of its hyper-parameters. Finally, some conclusions are drawn in
Section 3.5.

3.2 Multiple Model Adaptive Estimation

Following the formulation in [103], [104], this section recalls the main
concept of the MMAE approach. Consider the dynamical system

Σ ≜

{︃
xk+1 = f(θk, xk, uk)

yk = h(θk, xk, uk)
(3.2)

in which θk ∈ Rnθ is a generic parameter vector. The overall idea of
MMAE is to use a bank of Nθ state estimators1 — each one associated to
a specific value θi ∈ Θ ≜ {θ1, . . . , θNθ

} — together with a hypothesis test-
ing algorithm to infer information about (3.2), e.g.: to build an estimate
x̂k of xk. In this scheme, the intended purpose of the latter component is

1Usually Kalman filters (KF) are employed, but exceptions exist [102] .

34

to infer, from the behavior of each observer, which one among the differ-
ent models (“hypotheses”) is closest to the underlying process, and use
such information to construct an estimate x̂ of the state of Σ. For linear
time-invariant (LTI) representations, a classical approach to do so is to
formulate the hypothesis tester as an appropriate statistical test, exploit-
ing the fact that the residual signal produced by a properly matched KF
is a zero-mean white-noise signal.

MMAE is a model-based technique in that it requires a model of the
process, a set Θ of parameter vectors, and a proper characterization of the
noise signals supposed to act on the system. Among those requirements,
determining Θ is especially crucial to get reliable results as, at each time,
at least one value θj ∈ Θ must describe the dynamics of the underlying
system accurately enough. In many practical situations, it is not easy to
find a good tradeoff between keeping Nθ large enough to cover the entire
range of the dynamics and, at the same time, small enough to limit the
computational burden manageable and avoid the tendency of MMAE
to work poorly if too many models are considered [105]. Another diffi-
culty associated with MMAE schemes is the reliance on first principles
to synthesize the hypothesis tester. Moreover, many approaches require
sophisticated statistical arguments, which can hardly be tailored to user-
specific needs.

3.3 Data-driven determination of linear models

The first step to derive the proposed data-driven virtual-sensor is to
reconcile the MMAE framework with the parameter-varying model de-
scription in (3.1). Assume for the moment that f and g in (3.1) are
known and differentiable. Then, in the neighborhood of an arbitrary tu-
ple (ρ̄, x̄, ū) it is possible to approximate (3.1) by

xk+1 − x̄ ≈ f(x̄, ū, ρ̄)− x̄+∇xf(x̄, ū, ρ̄)(xk − x̄)+
+∇uf(x̄, ū, ρ̄)(uk − ū)

yk ≈ g(x̄, ρ̄) +∇xg(x̄, ū, ρ̄)(xk − x̄)
(3.3)

In (3.3) the contributions of the Jacobians with respect to ρ is neglected
due to the fact that, as mentioned earlier, ρk is assumed to move slowly

35

enough to remain close to ρ̄ within a certain time interval, meaning the
neglected Jacobians would be multiplied by ρk− ρ̄ ≈ 0. Hence, from (3.3)
we can derive the following affine parameter-varying (APV) approxima-
tion of (3.1)

xk+1 ≈ A(ρk)xk +B(ρk)uk + d(ρk)
yk ≈ C(ρk)xk + e(ρk)

(3.4)

in which the contribution of the constant terms x̄, ū is contained in the
bias terms d(ρk), e(ρk). In conclusion, if ΣP were known, a MMAE
scheme could be used to compute the likelihood that the process is oper-
ating around a tuple (x̄, ū, ρi), where ρi ∈ Θρ ≜ {ρ1, . . . , ρNθ

} is used in
place of the parameter vector θk in (3.2).

3.3.1 Learning the local models

As model (3.1) is not available, we need to identify the set of linear
(affine) models in (3.4) from data. Assuming that direct measurements of
the state xk of the physical system are not available, we restrict affine au-
toregressive models with exogenous inputs (ARX) of a fixed order, each
of them uniquely identified by a parameter vector γ ∈ Rnγ .

Learning an APV approximation of ΣP amounts to train a func-
tional approximator MLPV : RS → Rnγ to predict the correct vector
γi corresponding to any given ρ̄i. Given a dataset DN ≜ {uk, yk, ρk},
k = 1, . . . , N , of samples acquired via an experiment on the real process,
such a training problem is solved by the following optimization problem

min
MLPV

N∑︂
k=k1

LMLPV
(ŷk, yk)

subject to ŷk = [−yk−M , . . . ,−yk−1, uk−M , . . . , uk−1 1]γk
γk = MLPV (ρk)
k = k1, . . . , N

(3.5)
where k1 ≜ M + 1, and LMLPV

is an appropriate loss figure. Note that,
as commonly expected when synthesizing virtual sensors, we assume
that measurements of ρk are available for training, although they will

36

not be directly measurable during the operation of the virtual sensor.
Moreover, note that problem MLPV is solved offline, so the computation
requirements of the regression techniques used to solve (3.5) are not of
concern.

Compared to adopting a recursive system identification technique to
learn a local linear model of the process at each time k, and then associate
each γk to its ρk (e.g., by using Kalman filtering techniques [1], [22]),
the approach in (3.5) does not require tuning the recursive identification
algorithm and takes into account the value of ρk at each k. This prevents
that similar values of ρ are associated with very different values of γ,
assuming that the resulting function MLPV is smooth enough.

An end-to-end approach to select the representative models

By directly solving (3.5), a set Γ ≜ {γi}i=M+1,...,N of local models is
obtained. Using Θ = Γρ in an MMAE-like scheme would result in
an excessively complex scheme. To address this issue, a smaller set
of models could be extracted by running a clustering algorithm on the
dataset Γ, and the set Θρ of representative models selected as the set
of the centroids of the found clusters.A better idea comes from observ-
ing that some regression techniques, such as decision-tree regressor [3]
(DTRs), naturally produce piece-wise constant predictions, which sug-
gests the following alternative method: (i) train a DTR to learn an pre-
dictor M̂LPV : RS → Rnγ × RS (in an autoencoder-like fashion [49],
[106]), possibly imposing a limit on its maximum depth; (ii) set Θ as the
leaves γ̄j of the grown tree M̂LPV .

Compared to using a clustering technique like K-means [107], [108],
the use of DTRs does not require selecting a fixed number of clusters a
priori and also actively takes into account the relation between ρ and γ.
In fact, with the proposed DTR-based approach, the regression tree will
not grow in regions where ρ is not informative enough about γ, therefore
aggregating a possibly large set of values of γ with the same representa-
tive leaf-value γ̄j . This latter aspect is enabling for our ultimate goal of
exploiting the resulting set of models to build a bank of linear observers.

Once the set Θρ = {γ̄j}Nθ
j=1 of local ARX models has been selected,

37

each of them is converted into a corresponding minimal state-space rep-
resentation in observer canonical form [109]

Σj :=

{︃
ξjk+1 = Ajξ

j
k +Bjuk + dj

yk = Cjξ
j
k + ej

j = 1, . . . , Nθ (3.6)

As all the vectors γ̄j have the same dimension nγ , we assume that all
states ξj have the same dimension v. The models Σj in (3.6) are used to
design a corresponding linear observer, as described next.

3.3.2 Design of the observer bank

For each model Σj , we want to design an observer providing an estimate

ξ̂
j

k of the state ξjk of Σj . Let ijk ∈ Rv be the information vector generated by

the observer at time k, which includes ξ̂
j

k and possibly other quantities,
such as the covariance of the output and state estimation error in the case
of time-varying Kalman filters are used. As the goal is to use ijk, together
with uk, yk, to estimate ρk, it is important to correctly tune the observers
associated with the Nθ models in Θ to ensure that each ijk is meaningful.
For example, a slower observer may be more robust against measure-
ment noise, but its “inertia” in reacting to changes may compromise the
capabilities of the resulting virtual sensor.

The computational burden introduced by the observers also needs to
be considered. As it will be necessary to run the full bank of Nθ observers
in parallel in real-time, a viable option is to use the standard Luenberger
observer [110]{︄

ξ̂
j

k+1 = Aj ξ̂
j

k + dj +Bjuk − Lj(ŷ
j
k − yk)

ŷjk = Cj ξ̂
j

k + ej
(3.7)

where Lj is the observer gain, and set ijk = ξ̂
j

k. Since minimal state-space
realizations are used to define Σj , each pair (Aj , Cj) is fully observable,
and the eigenvalues of Aj−LjCj can arbitrarily be placed inside the unit
circle. Note also that any technique for choosing Lj can be employed
here, such as stationary Kalman filtering.

38

3.3.3 A model-free hypothesis testing algorithm

After the Nθ observers have been synthesized, we now build a hypoth-
esis testing scheme based on them using a discriminative approach [111].
To this end, the initial dataset D is processed to generate the information
vectors ijk, k ∈ [1, N]. Let Daug ≜ {i1k, . . . , iNθ

k , uk, yk, ρk}, k = 1, . . . , N ,
denote the resulting augmented dataset that will be used to train a pre-
dictor fθ : Rv × . . .× Rv × Rnu × Rny → RS such that

ρ̂k = fθ(i
1
k, . . . , i

1
k−ℓ, . . . , i

Nθ

k , . . . , iNθ

k−ℓ, uk, yk) (3.8)

is a good estimate of ρk, where ℓ ≥ 0 is a window size to be calibrated.
Consider the minimization of a loss function L : RS × RS → R that pe-
nalizes the distance between the measured value ρk and its reconstructed
value ρ̂k, namely a solution of

min
θ

N∑︂
k=ℓ+1

L(ρk, fθ(i
1
k, . . . , i

Nθ

k−ℓ, uk, yk)) (3.9)

Solving the optimization problem (3.9) directly, however, may be ex-
cessively complex, as no additional knowledge about the relation be-
tween ρk and {i1k, . . . , iNθ

k−ℓ, uk, yk} is taken into account. In order to
model such a relation, one can rewrite fθ as the concatenation of two
maps gθ and eFEθ such that

ρ̂k = gθ(Ik)
Ik = eFEθ (i1k, i

1
k−ℓ, . . . , i

Nθ

k , . . . , iNθ

k−ℓ, uk, yk)
(3.10)

where Ik is a feature vector constructed by a given feature extraction (FE)
map eFEθ : Rv × . . . × Rv × Rnu × Rny → RnI from i1k, i1k−ℓ, . . ., i

Nθ

k , . . .,
iNθ

k−ℓ, uk, and yk, and gθ : RnI → RS is the prediction function to learn
from the dataset Daug.

We propose the following two alternatives for the FE map, namely

eFEθ (Ik) = {ê1k, ê1k−ℓ, . . . , ê
Nθ

k , . . . , êNθ

k−ℓ, uk, yk} (3.11a)

where êjm ≜ (ŷjm− ym) and, to further reduce the number of features, the
more aggressive and higher compression FE map

eFEθ (Ik) = {ν1k , . . . , νNθ

k , uk, yk} (3.11b)

39

Figure 4: Virtual sensor architecture: bank of linear observers, feature ex-
traction map eFE

θ , and prediction function gθ .

where

νik =

⌜⃓⃓⎷ 1

ℓ+ 1

k∑︂
r=k−ℓ

m(r − k)(ŷir − yr)′(ŷ
i
r − yr)

and m : Z → R is an appropriate weighting function.
The rationale for the maps in (3.11) is that one of the most com-

mon features used in hypothesis testing algorithms is the estimate of
the covariance of the residuals produced by each observer. Thus, this
approach can be thus considered a generalization of the window-based
hypothesis-testing algorithms explored in the literature, such as in [104],
[112]. The FE map (3.11b) brings this idea one step further so that eFEθ (Ik)
has only nI = (Nθ +1)ny +nu components. This means that the input to
gθ, and therefore the predictor itself, can get very compact.

Note that both the window-size ℓ and the weighting function m are
hyper-parameters of the proposed approach. In particular, the value of
ℓ must be chosen carefully: if it is too small the time window of past
output prediction errors may not be long enough for a slow observer.
On the other hand, if ℓ is too large the virtual sensor may become exces-

40

sively slow in detecting changes of ρk. The weighting function m acts
in a similar fashion and can be used to further tune the behavior of the
predictor.

Note also that our choices for eFEθ in (3.11) are not the only possible
ones, nor necessarily the optimal ones. For example, by setting eFEθ (Ik) =
Ik, and therefore fθ = gθ, one recovers the general case in (3.9). Finally,
note that our analysis has been restricted to a pre-assigned function eFEθ ,
although this could also be learned from data. To this end, we refer the
interested reader to [51], [57], [113] and the references therein.

Choice of learning techniques

As highlighted in [13], in order to target an embedded implementation,
it is necessary to envision a learning architecture for gθ that has a limited
memory footprint and requires a small and well predictable through-
put. To do so, instead of developing an application-specific functional
approximation scheme, we resort to well-understood machine-learning
techniques. In particular, three possible options are explored in this
Chapter, all well suited for our purposes and which require a number of
floating-point operations (flops) for their evaluation which is indepen-
dent of the number of samples used in the training phase, in contrast for
example to K-nearest neighbor regression [3].

Remark: Such choices are not the only possible ones and other ap-
proaches may be better suitable for specific needs. For example, if one is
interested in getting an uncertainty measure coupled to the predictions,
the use of regression techniques based on Gaussian processes [114] could
be more suitable.

Compact artificial neural networks

Artificial neural networks (ANN) are a widely used machine-learning
technique that has already shown its effectiveness in other MMAE-based
schemes [115]. An option to make ANN very lightweight is to resort on
very compact feed-forward topologies comprised of a small number of
layers and a computationally cheap activation function in their hidden

41

neurons [116], such as the Rectified Linear Unit (ReLU) [79]

fReLU(x) = max{0, x} (3.12)

As we want to predict real-valued quantities, we consider a linear acti-
vation function for the output layer of the network.

Decision-tree and random-forest regression

DTRs of limited depth are in general extremely cheap to evaluate yet
offer a good approximation power [23]. Other advantages of DTRs are
that they can also work effectively with non-normalized data, they can
be well interpreted [117], and the contribution provided by each input
feature is easily recognizable. The main disadvantage of DTRs is in-
stead that they can suffer from high variance. For this reason, in this
work, we also explore the use of random-forest regressors (RFRs) [118],
which try to solve the issue by bagging together multiple trees at the
cost of both a more problematic interpretation and higher computational
requirements.

3.3.4 Hyper-parameters and tuning procedures

The overall architecture of the proposed virtual sensor is shown in Fig-
ure 4. Its main hyper-parameters are:

1. the number Nθ of local models to learn from experimental data,
related to the number of leaves of the DTR (see Section 3.3.1);

2. the order M of the local models (see Section 3.3.1);

3. the window size ℓ of the predictor, which sets the number of past
and current input features provided to the predictor at each time to
produce the estimate ρ̂k (see Section 3.3.3).

From a practical point of view, tuning M is relatively easy, as one can
use as the optimal cost reached by solving (3.5) an indirect performance
indicator to properly trade-off between the quality of fit and storage con-
straints. Feature selection approaches such as the one presented in [119]

42

can also be used. The window size ℓ of the predictor is also easily tun-
able by using any feature selection method compatible with the chosen
regression technique. A more interesting problem is choosing the cor-
rect number of local models Nθ, especially if one considers that MMAE-
like schemes often do not perform well if too many models are consid-
ered [120]. Finally, we mention that the proposed method also requires
defining the feature extraction map and the predictor structure.

As with most black-box approaches, and considering the very mild
assumption we made on on the system ΣP that generates the data, the
robustness of the virtual sensor with respect to noise and other sources of
uncertainty can only be assessed a posteriori. For this reason, Section 3.4.2
below reports a thorough experimental analysis to assess such robust-
ness properties.

3.4 Numerical results

In this section, we explore the performance of the proposed virtual sen-
sor approach on a series of benchmark problems. All tests were per-
formed on a PC equipped with an Intel Core i7 4770k CPU and 16 GB of
RAM. The models introduced in this section were used only to generate
the training datasets and to test the virtual sensor and are totally unknown
to the learning method. We report such models to facilitate reproducing
the numerical results reported in this section.

3.4.1 Learning setup

All the ANNs involved in learning the virtual sensors were developed
in Python using the Keras framework [80] and are composed of 3 layers
(2 ReLU layers with an equal number of neurons and an linear output
layer), with overall 60 hidden neurons. The ANNs are trained using the
AMSgrad optimization algorithm [81]. During training, 5% of the train-
ing set is reserved to evaluate the stopping criteria.

Both DTR and RFR are trained using scikit-learn [121] and, in
both cases, the max depth of the trees is capped to 15. RFRs consist of

43

10 base classifiers. The DTR used to extract the set of local models, as
shown in Section 3.3.1, is instead constrained to have a maximum num-
ber of leaves equal to the number Nθ of linear models considered in each
test. The loss function LMLPV

used is the well known mean absolute er-
ror [60]. In all other cases, the standard mean-squared error (MSE) [122]
is considered.

The performance of the overall virtual sensor is assessed on the test-
ing dataset in terms of the fit ratio (FIT) already used in the previous
Chapter, and normalized root mean-square error (NRMSE)

FIT = max

{︃
0, 1− ∥ρT − ρ̂T ∥2

∥ρ̄− ρT ∥2

}︃
(3.13a)

NRMSE = max

{︃
0, 1− ∥ρT − ρ̂T ∥2√

T |max(ρT)−min(ρT)|

}︃
(3.13b)

computed component-wise, where ρ̄ is the mean value of the test se-
quence ρT = {ρi}Ti=1 of the true values and ρ̂T is its estimate.

For each examined test case, we report the mean value and standard
deviation of the two figures in (3.13) over ten different runs, each one
involving different realizations of all the excitation signals uk, pk, and
measurement noise.

3.4.2 A synthetic benchmark system

We first explore the performance of the proposed approach and ana-
lyze the effect of its hyper-parameters on a synthetic multi-input single-
output benchmark problem. Consider the nonlinear time-varying sys-
tem

ΣS =

⎧⎨⎩ xk+1 = Hxk + α
2 atan(xk) + log(ρk + 1)Fuk

ρk+1 = h(ρk, uk, k)
yk = −(1 + eρk)

[︁
0 0 0 0 1

]︁
xk

(3.14a)

where x ∈ R5, atan is the arc-tangent element-wise operator, α, ρk ∈ R,
matrices H and F are defined as

44

H =

⎡⎢⎢⎢⎢⎣
0.0 0.1 0.0 0.0 0.0
0.0 0.0 −1.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 1.0

−0.00909 0.0329 0.29013 −1.05376 1.69967

⎤⎥⎥⎥⎥⎦

F =

⎡⎢⎢⎢⎢⎣
−0.71985 −0.1985
0.57661 0.917661
1.68733 −0.68733
−2.14341 2.94341

1. 1.

⎤⎥⎥⎥⎥⎦

(3.14b)

and function h is defined by

h(ρk, uk, k) =

{︃
pk if pk ∈ [−0.95, 0.95]
pk

2 otherwise (3.14c)

pk = 0.999ρk + 0.03ωk, ωk ∼ N (0, 1) (3.14d)

mimicking the phenomenon of a slow parameter drift. Unless otherwise
stated, in the following we consider α = 1.

Training datasets of various sizes (up to 25, 000 samples) and a
dataset of 5, 000 testing samples are generated by exciting the benchmark
system (3.14) with a zero-mean white Gaussian noise input uk with unit
standard deviation. All signals are then normalized using the empiri-
cal average and standard deviation computed on the training set and
superimposed with a zero-mean white Gaussian noise with a standard
deviation of 0.03 to simulate measurement noise.

We consider local ARX linear models involving past M = 5 inputs
and outputs and solve Problem (3.5) via a fully connected feed-forward
ANN. In the feature extraction process, we set the window ℓ = 6 on
which the feature extraction process operates. In all tests we also assume
m(i) ≡ 1, ∀i ∈ Z. Unless otherwise noted, we consider deadbeat Lu-
enberger observers, i.e., we place the observer poles in z = 0 using the
Scipy package [84].

45

No. of acquired samples N 5000 15000 25000
FE map (3.11b)

average FIT (3.13a) 0.711 0.783 0.796
standard deviation 0.062 0.028 0.023
average NRMSE (3.13b) 0.937 0.954 0.956
standard deviation 0.014 0.004 0.002

FE map (3.11a)
average FIT (3.13a) 0.695 0.773 0.794
standard deviation 0.072 0.030 0.028
average NRMSE (3.13b) 0.934 0.952 0.956
standard deviation 0.016 0.003 0.002

Table 5: Accuracy of the virtual sensor using datasets of different size K.

3.4.3 Dependence on the number N of samples

We analyze the performance obtained by the synthesized virtual sensor
with respect to the number N of samples acquired for training during
the experimental phase. Assessing the scalability of the approach with
respect to the size of the dataset is extremely interesting because most
machine learning techniques, and in particular neural networks, often
require a large number of samples to be effectively trained.

Table 5 shows the results obtained by training the sensor with var-
ious dataset sizes when Nθ = 5 observers and an ANN predictor are
used both using the proposed high-compression FE map (3.11b) and us-
ing the map in (3.11a). It is apparent that good results can already be
obtained with 15,000 samples. With smaller datasets, fit performance in-
stead remarkably degrades, especially when using the less aggressive FE
map (3.11a).

3.4.4 Robustness toward measurement noise

We analyze next the performance of the proposed approach in the pres-
ence of various levels of measurement noise. In particular, we test the
capabilities of the virtual sensor with Nθ = 5 deadbeat observers when
trained and tested using data obtained from 3.14a and corrupted with

46

a zero-mean additive Gaussian noise with different values of standard
deviation σN . As in the other tests, noise is applied to the signal after
normalization. The training dataset contains 25, 000 samples.

The results, reported in Table 6, show a very similar trend for all three
functional approximation techniques and, in particular, a very steep drop
in performance when moving from σN = 0.03 to σN = 0.06. This fact
suggests that a good signal-to-noise ratio is necessary to achieve good
performance with the proposed approach. This finding is not surprising,
as our method is entirely data-driven, it has more difficulties in filtering
noise out compared to model-based methods.

Performance of ANN, RFR, and DTR is similar to what observed in
the previous tests.

Predictor Standard deviation σN of additive noise
0.01 0.03 0.06

DTR 0.752 (0.026) 0.736 (0.031) 0.698 (0.036)
RFR 0.804 (0.021) 0.787 (0.023) 0.755 (0.029)
ANN 0.815 (0.018) 0.796 (0.023) 0.764 (0.032)

Table 6: Average FIT (3.13a) (standard deviation) for the three proposed
learning architectures different sensor noise intensity.

3.4.5 Dependence on the prediction function

We analyze the difference in performance between the three proposed
learning models for function gθ when using Nθ = 5 linear models. The
corresponding results are reported in Table 7, where it is apparent that
as soon as enough samples are available, both RFRs and ANNs essen-
tially perform the same, especially when using the more aggressive FE
map (3.11b). For smaller training datasets, the ANN-based predictor per-
forms slightly better, especially in terms of variance. Regression trees
show worst performance but they are still able to produce acceptable es-
timates.

Regarding the results obtained using the FE map (3.11a), ANNs are
remarkably more effective than the other two methods. In particular,

47

while RFRs still show acceptable performance, DTRs fail almost com-
pletely.

Predictor FE map Number N of acquired samples
5000 15000 25000

DTR
(3.11b)

0.593 (0.161) 0.713 (0.041) 0.736 (0.031)
RFR 0.663 (0.145) 0.766 (0.033) 0.787 (0.023)
ANN 0.711 (0.062) 0.783 (0.028) 0.796 (0.023)
DTR

(3.11a)
0.376 (0.158) 0.568 (0.061) 0.615 (0.042)

RFR 0.568 (0.168) 0.715 (0.046) 0.740 (0.024)
ANN 0.695 (0.072) 0.773 (0.030) 0.794 (0.028)

Table 7: Average FIT (3.13a) (standard deviation) for the three proposed
learning architectures for different numbers K of samples in the training
dataset.

3.4.6 Dependence on the observer dynamics

The dynamics of state-estimation errors heavily depend on the location
of the observer poles set by the Luenberger observer (3.7), such as due
to the chosen covariance matrices in the case stationary KFs are used
for observer design. In this section, we analyze the sensitivity of the
performance achieved by the virtual sensor with respect to the chosen
settings of the observer.

Using Nθ = 5 models again, the Luenberger observers were tuned
to have their poles all in the same location z ∈ C inside the unit disk
and vary such a location in different tests. In addition, we also consider
stationary Kalman filters designed assuming the following model{︃

ξjk+1 = Ajξk +Bjuk + dj + wk

yjk = Cjξk + ej + vk
(3.15)

where wk ∼ N (0, I) and vk ∼ N (0, λI) are uncorrelated white noise
signals of appropriate dimensions and λ ≥ 0.

The resulting virtual sensing performance figures are reported in Ta-
ble 8 for a training dataset of N = 25, 000 samples and RFR-based pre-
diction. While performance is satisfactory in all cases, fast observer poles

48

allow better performance when pole placement is used. Nevertheless, in
all but the deadbeat case, KFs provide better performance regardless of
the chosen covariance term λ.

Pole placement
Observer settings z = 0.0 z = 0.4 z = 0.8
average FIT (3.13a) 0.787 0.708 0.467
standard deviation 0.023 0.030 0.053
average NRMSE (3.13b) 0.954 0.937 0.886
standard deviation 0.002 0.003 0.005

Kalman filter
Observer settings λ = 1 λ = 10 λ = 0.1
average FIT (3.13a) 0.785 0.777 0.787
standard deviation 0.021 0.022 0.024
average NRMSE (3.13b) 0.954 0.952 0.954
standard deviation 0.002 0.002 0.002

Table 8: Average prediction performance with respect to observer settings.

3.4.7 Dependence on the number Nθ of local models

To explore how sensitive the virtual sensor is with respect to the number
Nθ of local LTI model/observer pairs employed, we consider the perfor-
mance obtained using Nθ = 2, 3, 4, 5, 7 local models on the 25,000 sample
dataset. The results obtained using RFR based virtual sensors are re-
ported in Table 9 and show that performance quickly degrades if too few
local models are employed. At the same time, one can also note that a
large number of models is not necessarily more effective. This finding
suggests that the proposed virtual sensor can be easily tuned by increas-
ing the number of models until the accuracy reaches a plateau.

Figure 5 shows the estimates of ρk obtained by the virtual sensor for
Nθ = 5, using deadbeat observers and a RFR predictor, for a given real-
ization of (3.14d).

49

Nθ 2 3 5 7
average FIT (3.13a) 0.684 0.781 0.787 0.793
standard deviation 0.033 0.023 0.023 0.024
average NRMSE (3.13b) 0.932 0.953 0.954 0.956
standard deviation 0.005 0.001 0.002 0.001

Table 9: Prediction performance of the virtual sensor with respect to the
number Nθ of LTI models.

3.4.8 Dependence on the dynamics of ρk

Let us consider a different model than (3.14c)–(3.14d) to generate the
value of pk that defines the signal ρk, namely the deterministic model

pk = cos

(︃
1

β
k

)︃
(3.16)

with β = 200. In this way, it is possible to test the effectiveness of our ap-
proach in a purely parameter-varying setting and its robustness against
discrepancies between the way training data and testing data are gener-
ated.

The results reported in Tables 10 and 11 are obtained by using Nθ = 5

models and 25,000 samples using all the three different prediction func-
tions and deadbeat observers. While (3.16) is used to generate both train-
ing and testing data to produce the results shown in Table 10, Table 11
shows the case in which the training dataset is generated by (3.14c)–
(3.14d) while the testing dataset by (3.16). It is apparent that the proposed
approach is able to work effectively also in the investigated parameter-
varying context in all cases and able to cope with sudden changes of ρk.

3.4.9 A mode observer for switching linear systems

An interesting class of systems which can be described by (3.1) are linear
switching systems [123], a class of linear parameter varying systems in
which ρk can only assume a finite number s of values ρ1, . . ., ρs. In this
case, model (3.1) becomes the following discrete-time switching linear

50

Predictor DTR RFR ANN
average FIT (3.13a) 0.842 0.876 0.873
standard deviation 0.005 0.004 0.003
average NRMSE (3.13b) 0.953 0.963 0.962
standard deviation 0.001 0.001 0.001

Table 10: Average accuracy of the virtual sensor employing various kind of
prediction functions when both training and testing data are generated by
using (3.16).

system

Σ ≜

{︃
xk+1 = Aρk

xk +Bρk
uk

yk = Cρk
xk

(3.17)

For switching systems, the problem of estimating ρk from input/output
measurements is also known as the mode-reconstruction problem. In or-
der to test our virtual sensor approach for mode reconstruction, we let
the system generating the data be a switching linear system with s = 4

modes obtained by the scheduling signal

ρk+1 =
1

2

⌊︃
4k

N

⌋︃
(3.18)

where N is the number of samples collected in the experiment and ⌊·⌋ is
the downward rounding operator. For this test, the measurements about
the mode acquired during the experiment are noise-free. As we are fo-
cusing on linear switching systems, we set α = 0.

As in Section 3.4.7, we test the performance of the RFR-based virtual
sensor trained on 25,000 samples to reconstruct the value of ρk when

Predictor DTR RFR ANN
average FIT (3.13a) 0.753 0.801 0.844
standard deviation 0.066 0.046 0.009
average NRMSE (3.13b) 0.924 0.939 0.952
standard deviation 0.020 0.014 0.003

Table 11: Average accuracy of the virtual sensor for different predic-
tion functions with training data generated from (3.14d) and testing data
from (3.16).

51

equipped with a different number Nθ of local models. The corresponding
results are reported in Table 12 and show that the performance of the
sensor again quickly saturates once the number of local models matches
the actual number of switching modes.

Nθ 2 3 4 5
average FIT (3.13a) 0.800 0.938 0.951 0.950
standard deviation 0.030 0.014 0.007 0.009
average NRMSE (3.13b) 0.925 0.977 0.982 0.981
standard deviation 0.011 0.005 0.003 0.003

Table 12: Accuracy of the virtual sensor employing different predictors for
the switching linear system in (3.18).

The time evolution of the actual mode and the mode reconstructed
by the virtual sensor is shown in Figure 6.

Performance obtained using a classifier in place of a regressor

The special case of mode reconstruction for switching systems can be also
cast as a multi-category classification problem. Table 13 reports the F1-
score [124] obtained by applying a virtual sensor based on a Random For-
est Classifier (RFC) and 5 deadbeat observers to discern the current mode
of the system. We consider only the case of samples correctly labeled,
with the RFC subject to the same depth limitation of the non-categorical
hypothesis tester. Table 13 also reports the classification accuracy of the
non-categorical virtual sensor when coupled with a minimum-distance
classifier (i.e., at each time k the classifier will predict the mode i associ-
ated with the value ρi that is closest to ρ̂k). The results refer to a virtual
sensor equipped with RFR and 5 deadbeat observers. It is interesting to
note that the classifier architecture is also very effective with respect to
the FIT metric (3.13a), achieving an average score of 0.946 with with a
standard deviation of 0.011.

The time evolution of the actual mode and the mode reconstructed
by the classifier-based virtual sensor is shown in Figure 7.

52

F1-score / mode # 1 2 3 4
RFC 0.997 0.995 0.996 0.998

standard deviation 0.001 0.002 0.001 0.001
RFR 0.997 0.995 0.996 0.998

standard deviation 0.001 0.001 0.001 0.002

Table 13: F1-score [124] obtained by the RFC-based virtual sensor (RFC) and
by the RFR-based virtual sensor + minimum-distance classifier (RFR) on the
4-mode switching linear system (3.18) over 10 runs.

3.4.10 Nonlinear state estimation

This sections compares the proposed approach with standard model-
based nonlinear state-estimation techniques on the problem of estimat-
ing the state of charge (SoC) of a lithium-ion battery, using the model
proposed in [125].

In [125], the battery is modeled as the following nonlinear third-order
dynamical system

ΣBattery =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) =
−i(t)
Cc

ẋ2(t) =
−x2(t)

Rts(x1(t))Cts(x1(t))
+

i(t)

Cts(x1(t))

ẋ3(t) =
−x3(t)

Rtl(x1(t))Ctl(x1(t))
+

i(t)

Ctl(x1(t))
y(t) = E0(x1(t))− x2(t)− x3(t)− i(t)Rs(x1(t))

(3.19)

where x1(t) is the SoC (pure number ∈ [0, 1] representing the fraction
of the battery rated capacity that is available [126]), y(t) [V] the voltage
at the terminal of the battery, i(t) [A] the current flowing through the
battery,

E0(x1) = −a1e
−a2x1 + a3 + a4x1 − a5x

2
1 + a6x

3
1

Rts(x1) = a7e
−a8x1 + a9

Rtl(x1) = a10e
−a11x1 + a12

Cts(x1) = −a13e
−a14x1 + a15

Ctl(x1) = −a16e
−a17x1 + a18

Rs(x1) = a19e
−a20x1 + a21

and the values of the coefficients aij correspond to the estimated values

53

reported in Tables 1, 2, 3 of [125].

We analyze the capability of the proposed synthesis method of virtual
sensors to reconstruct the value ρ = x1 in comparison to a standard ex-
tended Kalman filter (EKF) [127] based on model (3.19) and assuming the
process noise vector wk ∈ R3 entering the state equation, wk ∼ N (0, Q),
and measurement noise vk ⊥ wk ∼ N (0, R) on the output y for various
realization of R ∈ R3×3, Q ∈ R. Model (3.19) is integrated by using an
explicit Runge-Kutta 4 scheme.

The simulated system is sampled at the frequency fs =
1
5 Hz, starting

from a fully charged state x(0) = [1, 0, 0]′ and excited with a variable-
step current signal i(t) with constant amplitude

i(t) =
1

5
max

{︃
0, cos

(︃
k

100

)︃
+ cos

(︃
k

37

)︃}︃
+ uk (3.20)

during the sampling step k, with uk drawn from the uniform distribution
U(0, 0.4).

As the battery will eventually fully discharge, every time the SoC falls
below the value 0.05 the whole state is reset to the initial condition x(0).
The signals y(t) and i(t), once normalized, are processed as described in
Section 3.4.1.

For this benchmark, an RFR-based virtual sensor with Nθ = 5 local
linear models is selected. The corresponding KFs are also designed as
described in Section 3.4.6 with λ = 0.1, and FE map (3.11b). Training is
performed over 25,000 samples.

The results obtained by the virtual sensor and EKFs designed with
different values of the covariance matrices Q,R of process and measure-
ment noise, respectively, are reported in Figure 8. While EKF is, in gen-
eral, more effective in tracking and denoising the true value of the SoC,
it performs poorly in terms of bandwidth compared to the proposed vir-
tual sensor, whose performance in terms of filtering noise out remains
anyway acceptable. While both techniques are successful in estimating
the SoC of the battery, we remark a main difference between them: EKF
requires a nonlinear model of the battery, the virtual sensor does not.

54

3.4.11 Complexity of the prediction functions

The ANNs used in our tests require approximately between 1,000 and
3,000 weights to be fully parameterized. While this number is fixed
by the network topology and depends on the number of inputs to the
network, regularization techniques such as ℓ1-norm sparsifiers could be
used here to reduce the number of nonzero weights (see for instance [66]
and the reference therein), so to further reduce memory footprint.

Regarding the tree-based approaches, practical storage requirements
are strongly influenced by the specific implementation and, in general,
less predictable in advance due to their non-parametric nature. In any
case, evaluating the prediction functions on the entire test set on the ref-
erence machine only requires a few tens of milliseconds, which makes
the approach amenable for implementation in most modern embedded
platforms.

The training procedure for all the proposed architectures is similarly
affordable: on the reference machine, the whole training process is car-
ried out in a few tens of seconds for a training set of 25,000 samples with
negligible RAM occupancy.

3.5 Conclusions

In this chapter we proposed a data-driven virtual sensor synthesis ap-
proach, inspired by the MMAE framework, for reconstructing normally
unmeasurable quantities such as scheduling parameters in parameter-
varying systems, hidden modes in switching systems, and states of non-
linear systems.

The key idea is to use past input and output data (obtained when
such quantities were directly measurable) to synthesize a bank of linear
observers and use them as a base for feature-extraction maps that greatly
simplify the learning process of the hypothesis testing algorithm that es-
timates said parameters. Thanks to its low memory and CPU require-
ments, the overall architecture is particularly suitable for embedded and
fast-sampling applications.

55

0 1000 2000 3000 4000 5000

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

nmodes5PP:Trueplace:0.0predictor:1

predicted

true

Figure 5: Example of reconstruction of ρk by the virtual sensor based on
Nθ = 5 local models, using deadbeat observers and a RFR predictor. The
figure reports the actual value of ρk (orange line) and its estimate ρ̂k (blue
line).

56

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

nmodes5PP:Trueplace:0.0predictor:1

predicted

true

Figure 6: Mode reconstruction for switching linear systems (3.17): actual
value of the mode ρk (orange line) and its estimate ρ̂k (blue line) provided
by a RFR-based virtual sensor with a bank of 5 deadbeat observers.

57

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

classifier nmodes5PP:Trueplace:0.0predictor:1

predicted

true

Figure 7: Mode reconstruction for switching linear systems (3.17): actual
value of the mode ρk (orange line) and its estimate ρ̂k (blue line) provided
by a RFC-based virtual sensor and 5 deadbeat observers.

58

Figure 8: Estimation of the SoC of the battery: true value ρk (orange line),
value ρ̂k estimated by the virtual sensor (blue line), values ρ̂k estimated by
EKF for different settings of Q and R (green, red, violet, and brown lines).

59

Chapter 4

Learning affine predictors
for MPC of nonlinear
systems via artificial neural
networks

4.1 Introduction

Designing a control law directly from experimental data has always been
a topic of central interest in the control systems community. The classical
approach is to first identify a model of the open-loop process via system
identification [1] from experimental data, validate it, and then proceed
with the design of a model-based controller. The main advantage of this
approach is that the identification and control design phases are decou-
pled. However, unnecessary burden due to excessively accurate system
identification procedures might occur. In fact, many control design tech-
niques do not need a very accurate model of the target process to syn-
thesize the control law: for instance when designing a Model Predictive
Controller (MPC) [128] there is no need of having a model that predicts
accurately the evolution of the output beyond the prediction horizon. In
other words, getting the best possible accuracy of the model in fitting

60

the available input/output data is often not required for good closed-
loop performance. In addition, an accurate fit often comes at the price of
an excessive model complexity, that in turn makes model-based control
laws more complicate (or even impossible) to synthesize.

The separation between system identification and model-based con-
trol design is also clear from the fact that, while in recent years many
state-of-the-art system identification techniques focus on learning input-
output models (see [26], [28], [129]), most of the existing modern con-
trol and filtering techniques are based on state-space models. Many au-
thors have tried to bridge this gap, such as the technique presented in
Chapter 2, with the goal of synthesizing state-feedback controllers such
as nonlinear MPC controllers.

Recently, model-free data-driven techniques were proposed to com-
pletely bypass the phase of first identifying an open-loop model of the
process, such as using direct controller synthesis methods [130], ma-
chine learning [131]–[133], policy-search [11], and reinforcement learning
[12]. While very attractive in practice, the main drawbacks of model-free
methods are the need for large amounts of data to synthesize optimal
control laws and the different way one tunes the controller compared to
model-based control approaches.

For these reasons, we explore a different way of approaching data-
driven control design, tailoring the system identification procedure to
the particular use one wants to make of the resulting model for control
design. In particular, to handle nonlinear control problems within the
linear time-varying (LTV) MPC framework, such as the real-time itera-
tion scheme [71], we explore how to fit the entire output prediction for
LTV-MPC over a horizon of T steps as a nonlinear function of the current
state (or, equivalently, past input/output pairs) and as an affine function
of future control moves. In this way, the MPC problem can be solved via
quadratic programming (QP) in spite of the nonlinearity of the system.

This approach has been explored in various forms by many authors
but, as a whole, the literature on the topic is both scarse and scattered.
In [134], [135], the authors proposed to learn fixed-horizon affine models
via regression trees (RT) and random forests (RF) for nonlinear systems;

61

in [136] an approach based on set-membership (SM) identification was
devised to learn robust predictor for linear systems. The authors in [137]
addressed instead the problem of building an adaptive control scheme
in which fixed-horizon predictors based on Radial-Basis-Function (RBF)
Artificial Neural Networks (ANNs) were learned online. Another com-
parable approach is the one shown in [133], where the authors used an
ANN to identify the dynamics of the system and setup an associated
MPC problem. However, the resulting ANN model is nonlinear, so the
MPC problem requires a more complex nonlinear solution method, while
our approach requires only a quadratic programming solver, or even ad-
mits a simple analytic solution in the absence of constraints.

In particular, we investigate if ANN-based solutions can be compet-
itive with traditional machine learning approaches to learn fixed short-
term horizon predictors for receding horizon control applications. To
this end, we perform an in-depth comparison between the RT/RF-based
approaches presented in [138], [139] and modern reinterpretation of the
idea presented in [137]. In particular, with respect to this latter work, we
focus on replacing the original non-parametric single-layer RBF-ANN ar-
chitecture with a specifically tailored state-of-the-art deep-learning tech-
nique and introduce a completely offline learning procedure in place of
the original online learning scheme.

The rest of the chapter is organized as it follows. After formulating
the problem in Section 4.2, in Section 4.3 we present a specifically deep-
learning based parametrization to learn a fixed-horizon affine model of
a non-linear process. In Section 4.4 we provide a background on the
methodology in [135], that will be used in Section 4.5 to compare the
proposed approach via numerical simulations. Section 4.6 will provide
guidelines for tuning the proposed approach in practical problems, with
attention to reducing its computational requirements.

62

4.2 Problem formulation

Assume that we have collected data from a process described by the fol-
lowing (usually unknown) nonlinear discrete-time dynamical model

Σ =

{︃
xk+1 = fΣ(xk, uk)

yk = hΣ(xk)
(4.1)

where k ∈ Z is the sampling step, xk ∈ Rnx the state of the system,
yk ∈ Rny the output vector, uk ∈ Rnu the input vector, and fΣ : Rnu ×
Rnx → Rnx , hΣ : Rnx → Rny . In case there is no clear definition of what
the state vector xk should be, due for example to physical insights, we
assume that

xk =
[︂
y′k · · · y′k−δy u′

k−1 · · · u′
k−δu

]︂′
(4.2)

for some model-order integers δy, δu ≥ 0.
With the goal of synthesizing an MPC controller with prediction hori-

zon T ∈ Z, we want to learn a mapping from xk and uk, uk+1, . . . , uk+j−1

to yk+j , where j = 1, . . . , T is the prediction step, from a dataset D =

{(yk, uk, xk)}N−1
k=0 collected from Σ, or simply D = {(yk, uk)}N−1

k=0 in case
xk just collects past inputs and outputs as in (4.2).

In order to avoid the recursive modeling approach commonly used
in the literature (see for instance [133]), we focus ourselves on creat-
ing T predictors that depend only on the available state measurements/
estimations and on the inputs to be optimized. More precisely, we want
to identify maps hj : Rnx × Rjnu → Rny , j = 1, . . . , T , each one taking
xk and uk, . . . , uk+j−1 as inputs, such that

yk+j = hj(xk, uk, . . . , uk+j−1), ∀ j = 1, . . . , T. (4.3)

We can rewrite (4.3) in the more compact form

YT =

⎡⎢⎣ yk+1

...
yk+T

⎤⎥⎦ = HT (xk, UT−1), (4.4)

where HT : Rnx × RTnu → RTny has a block-triangular structure due
to (4.3) and UT−1 = [u′

k . . . u′
k+T−1]

′.

63

Consider now the following MPC problem at each step k

min
UT−1

(YT −RT)
′WQ(YT −RT)+

(UT−1 − UR
T−1)

′WR(UT−1 − UR
T−1) + δU ′ WS δU

s.t. :
YT = HT (xk, UT−1)
Ymin ≤ YT ≤ Ymax

Umin ≤ UT−1 ≤ Umax

δUmin ≤ δUT−1 ≤ δUmax

(4.5)

where WQ, WR, WS are weight matrices of appropriate dimensions,
RT ∈ RTny is the reference signal to track, UR

T ∈ RTnu is a correspond-
ing input reference (possibly UR

T = 0), δU = [u′
k − u′

k−1, . . . , u
′
k+T−1 −

u′
k+T−2]

′, and Ymin, Ymax, Umin, Umax, δUmin, δUmax are vectors of lower
and upper bounds.

Problem (4.5) can be recast as a QP problem if we fit T ANN-based
affine predictors of the following form

YT = FT (xk, ŪT−1) +GT (xk, ŪT−1)UT−1 (4.6)

where ŪT−1 is a nominal input sequence, FT : Rnx × RTnu → RTny and
GT : Rnx × RTnu → RTny × RTnu .

The affine predictor (4.6) can be interpreted also as the first-order Tay-
lor approximation of the non-linear mapping in (4.4). In fact, assuming
that HT is at least of class C1, we get

HT (xk, UT−1) ≈HT (xk, ŪT−1)

+

T−1∑︂
j=0

∂HT

∂uk+j
(xk, ŪT−1)(uk+j − ūk+j).

A simplified form of (4.6), obtained by fixing ŪT−1 a priori (for example,
equal to a steady-state nominal input, or zero), is the following predictor

YT = FT (xk) +GT (xk)(UT−1 − ŪT−1) (4.7)

with FT : Rnx → RTny and GT : Rnx → RTny × RTnu .

64

4.3 Training affine predictors via ANNs

Given that the underlying system (4.1) generating the output signals yt+k

is Markovian, the components fj , gj of FT , GT are not completely in-
dependent functions between different prediction steps. Therefore, to
regularize the training procedure we impose the following recursive and
causal structure

yk+j = fj(xk) + gj(xk)

[︃
Uj−1 − Ū j−1

yk+j−1

]︃
(4.8)

for j = 2, . . . , T . This is especially useful if we use ANN techniques
[66] or deep kernel machines [140], that naturally benefit from stacking
nonlinear layers/components.

Note that the affine nature of the predictor is maintained in (4.8), as
the composition of affine functions remains affine. To simplify the nota-
tion, in the rest of the Chapter we will consider ŪT−1 ≡ 0.

The problem of learning the maps fj and gj in (4.8) can be posed as
the following optimization problem

arg min
{fj ,gj}T

i=1

N−T−1∑︂
k=max{δy,δu}

L(Ôk, Ok)

s.t.:

ŷk+j = fj(xk) + gj(xk) [U
′
j−1, ŷ

′
k+j−1]

′

ŷk+1 = f1(xk) + g1(xk)U0

Ok = [yk+1 · · · yk+T]
′

Ôk =
[︁
ŷk+1 · · · ŷk+T

]︁′
j = 2, . . . , T,

(4.9)

where the constraints in (4.9) impose the causal structure arising
from (4.8) and Uj−1 = [u′

k, . . . , u
′
k+j−1]

′. The loss function L : RTny ×
RTny → R can be any loss function and can be chosen based on the phys-
ical meaning of the predicted output, for example using a cosine distance
for an angular quantity or a cross entropy for a categorical output signal.

The optimization problem (4.9) has two conflicting objectives, due
to trading off between short-term prediction accuracy and the ability to

65

carry useful information from prediction k + j to prediction k + i, for
i > j. Note that learning the maps fi, gi, for i = 1, . . . , T can be either
carried out sequentially (one time step j at time) or in one shot. In this
Chapter we focus on the latter method.

The unconventional structure (4.8) restricts the pool of function ap-
proximators that can be employed to parameterize fj and gj . We exploit
the nature of ANNs of being direct acyclic computational graphs to build
into the topology of the network itself the constraints structure of (4.9). In
this way, we reduce the learning procedure to a regression problem while
retaining the capability of easily accessing the outputs of fi, gi as interme-
diate results of the single sub-components of the network. A schematic
of the considered network is reported in Figure 9.

Choosing ANNs is also convenient for their flexibility to be trained
with a wide class of loss functions (which allows one to easily add, for
instance, regularizers or additional objectives) and to their theoretical
property of being universal approximators [58], as well as to the large
availability of well-maintained and mature frameworks for their train-
ing [6], [7].

ANN structure. The topology of the ANN used here closely follows
the structure highlighted in (4.8). In particular, all the components fi

are grouped in a single stand-alone network, while each component gi
is instead a separate entity. In this work, we restrict our analysis to a
densely connected feed-forward topology for each subnetwork, but in
principle this is not mandatory. Each sub-network is thus composed by
a series of nonlinear hidden layers and a final linear output layer with
appropriate output shape. As we analyze output signals in RTny , we
rely on the well known mean absolute error (MAE) [60] figure as the loss
function L.

4.4 Switching affine RT and RF predictors

In this section we briefly recall the approach proposed in [138], recently
experimentally validated in [141], to create a switching affine modeling
framework based on regression trees (RTs) and random forests (RFs), that

66

Figure 9: ANN structure for predictions affine in the input.

can be used in the MPC formulation (4.5). For simplifying reading, we
limit the discussion to scalar outputs (ny = 1), although the approach
can be easily extended for ny > 1 as illustrated in [138].

We partition the original dataset D in 2 disjoint sets: Dc = {uk}Nk=1,
of data associated with input variables, and Dnc = {xk}Nk=1 related to
the remaining variables. As done in Section 4.3, the idea is to create T

different predictors to predict yk+j , and to derive a modeling framework
in order to setup an MPC problem that leads to a QP.

We create T regression trees Tj , j = 1, . . . , T, by applying the CART
algorithm to the dataset Dnc (see [138], [142] for more details). In par-
ticular, for each tree Tj , the CART algorithm partitions the set Dnc into
subsets Dnc,i,j , i = 1, . . . , |Tj |, j = 1, . . . , T , where |Tj | is the number of
regions of the partition associated with Tj (i.e., the number of leaves of
Tj). Then, using the control data in Dc, we associate to each leaf i of each
tree Tj , corresponding to the partition Dnc,i,j , the following affine model

xk+j = Aijxk +

j−1∑︂
α=0

Bij ,αuk+α + fij , ∀ij , ∀j, (4.10)

67

where matrices A′
ij

, B′
ij ,α

and f ′
ij

are in turn structured as

Aij =

⎡⎢⎢⎢⎢⎢⎣
a1 a2 · · · aδy+1+δu

1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ fij =

⎡⎢⎢⎢⎢⎢⎣
f
0
0
...
0

⎤⎥⎥⎥⎥⎥⎦

Bij ,α =

⎡⎢⎣ b1,α 0 · · · 0
...

...
...

bnu,α 0 · · · 0

⎤⎥⎦
′

.

(4.11)

The coefficients of matrices Aij , Bij ,α and fij are obtained by fitting the
set of samples

{(xk+j , uk, . . . , uk+j−1) : xk ∈ Dnc,i,j} (4.12)

via least squares as defined in Problem 2 of [138]. In particular, in order
to consider the same information as in (4.8), we will constrain the pa-
rameters related to the input auto-regressive terms to be zero, i.e. aδy+2,

. . . , aδy+1+δu = 0.
The approach discussed above for RTs can be easily extended to the

case of RFs [143]. The idea behind RFs is to extend the RT concept
by growing multiple trees, considering different random subsets of the
dataset to train each tree. The prediction is given by averaging the re-
sponse of all the trees in the forest. At the price of an increased computa-
tional burden, the pros of this approach are the reduction of the overall
variance of the prediction error and the mitigation of overfitting.

In our context, we create T RFs Fj , j = 1, . . . , T , with |Fj | the number
of trees of forest Fj . We can derive a model as in (4.10) by solving the
least squares problem introduced above for each leaf Dij ,τ of each tree
Tτ , τ = 1, . . . , |Fj |, of each forest Fj . In this way, we obtain a vector of
parameters for the matrices in (4.11) associated to each leaf Dij ,τ . The
final model as in (4.10) can be obtained for each forest Fj by averaging
the coefficients of all the matrices associated with Dij ,τ .

It can be shown that for both RT and RF models (4.10) is a switch-
ing affine representation of (4.1), where the switching signal follows the

68

partitioning imposed by the tree structures, and each leaf represents an
operating mode (see [138] for details).

4.5 Simulation results

4.5.1 Benchmark problem setup

Let the system generating the data be the, as in the previous Chapters,
following discrete-time approximation of the well-known nonlinear two-
tank system [73] ⎧⎨⎩

x1,k+1 = x1,k − k1
√
x1,k + k2uk

x2,k+1 = x2,k + k3
√
x1,k − k4

√
x2,k

yk = x2,k

(4.13)

with k1 = 0.5, k2 = 0.4, k3 = 0.2, and k4 = 0.3 and where xi,k represents
the i-th component of xk ∈ R2

+. On this system we analyze the perfor-
mance of the affine model over an horizon of T = 10. To do so, we col-
lect a training dataset D of N = 10, 000 samples by exciting (4.13) with a
sequence of step signals of length 7 steps, each of random amplitude ex-
tracted from the univariate Gaussian distribution Gu ∽ N (µu, σ

2
u), with

µu = σu = 2. The testing dataset is generated similarly and consist of
1, 000 samples. Both dataset have been normalized using the empirical
mean and standard deviation computed on the training set. White zero-
mean Gaussian noise with σw = 0.02 is superimposed on input/output
signals.

Since we employ an early-stopping strategy as termination criterion
for the training process of the ANN, 5% of the training dataset is used
as a validation set to check the stopping criterion. Each computational
node of the ANN is composed of two rectified linear units (ReLU) [79]
layers with 20 neurons each, followed by a final linear output layer.

As state xk we choose past input/output values as in (4.2) with
δy = δu = 6. The predictors are written in Python using Keras [80] with
Tensorflow as back-end, using AMSgrad [81] for optimizing the weights.
The total training procedure was carried out in around a minute on a

69

Intel Core i5-6200U CPU machine with 16GB of RAM and required a
negligible amount of memory.

4.5.2 Fitting performance

We first investigate the accuracy of the affine predictors as in (4.8) on the
test set for the prediction horizon T = 10. Fitting performance over the
horizon is computed in terms of FIT and NRMSE figures also used in the
previous Chapters, defined as follows:

eFIT = max

{︃
0, 1− ∥ŷ − y∥2

∥y − ȳ∥2

}︃
(4.14)

eNRMSE = max

{︃
0, 1− ∥ŷ − y∥2√ST (max(y)−min(y))

}︃
(4.15)

where ŷ is the vector stacking the estimates of the true values vector y, ȳ
is the mean of y, and ST is the number of elements in y.

The results, reported in Table 14, show a very good prediction capa-
bility, that clearly decreases over the horizon as expected. This behav-
ior can be also linked to the specific affine form of the predictors that is
not able to correctly reproduce the nonlinear effect of past inputs on fu-
ture outputs. This is not a severe limitation, due to the receding-horizon
mechanism of MPC.

4.5.3 Performance comparison between ANN, RT, and RF

In this section we provide a comparison with the methodology intro-
duced in [138] that we recalled in Section 4.4. Using data generated
through the benchmark example (4.13), we built a model as in (4.8) as
shown in Sections 4.3 and 4.5.1, and model (4.10), considering both RT
and RF approaches. Validation results on the test set of 900 samples are
shown in Figure 10 and Figure 11, where we compare the predicted tra-
jectories over the horizon at k + 1 and k + 10.

Figure 12 reports eNRMSE over the horizon for the three approaches.
It is apparent that on the considered benchmark problem ANN and RF
performance are overall quite close, and both outperform RT.

70

Prediction step eFIT eNRMSE

1 0.957 0.99
2 0.957 0.99
3 0.95 0.989
4 0.948 0.988
5 0.94 0.986
6 0.928 0.983
7 0.914 0.98
8 0.9 0.977
9 0.88 0.972
10 0.858 0.967

Table 14: Accuracy of the affine ANN predictors for the benchmark (4.13)

4.5.4 Evaluating MPC closed-loop performance

We explore now the effect of using the learned affine predictors in a LTV-
MPC control law in closed loop with (4.13). The LTV-MPC controller
solves the QP problem (4.5) at each step, with HT affine in the inputs as
defined in (4.7). We set WQ = 1, WR = WS = 0.01, UR

T−1 = 0 and impose
the constraint −1.5 ≤ uk+j ≤ 1.5, ∀j = 0, . . . , T − 1 with T = 5. Quanti-
ties are in normalized units. The resulting performance of the controller
in tracking a unit step superimposed to a sine sweep signal is reported
in Figure 13. Despite predictions are only approximate, the controller
provides satisfactory closed-loop performance. Regarding computation

0 100 200 300 400 500 600 700 800 900

k

-4

-2

0

2

4

Ground truth Neural Network Reg. Tree Rand. Forest

Figure 10: Output prediction at k + 1

71

0 100 200 300 400 500 600 700 800 900

k

-4

-2

0

2

4

Ground truth Neural Network Reg. Tree Rand. Forest

Figure 11: Output prediction at k + 10

1 2 3 4 5 6 7 8 9 10

Horizon

94

96

98

100

(1
-N

R
M

S
E

)*
1

0
0

 [
%

]

Neural Network Reg. Tree Rand. Forest

Figure 12: Normalized root mean square error (NRMSE) over the prediction
horizon

time, the evaluation of the affine predictors GT and FT and solving the
QP problem (carried out by the general purpose solver based on [144])
required ≤ 0.05 seconds on the same reference machine. Since the con-
structed LTV-MPC problem maps into a box-constrained least-squares
problem, the efficient solution method proposed in [85] could be used
here for example to speed up computations even further.

4.6 Complexity reduction

In the example presented in the Section 4.5.2, the ANN has ≈ 9, 000 pa-
rameters. Evaluating the network over the whole test set on the same
machine used for training takes less than a second in total for the whole
prediction horizon. For comparison, we fitted a nonlinear autoregres-
sive model with exogenous inputs (NLARX) with comparable prediction

72

0 50 100 150 200 250 300 350

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

controlled system

reference to track

control action

Figure 13: Illustrative example of the performance of the LTV MPC for sys-
tem (4.13) using ANN-based affine models via dynamic parametrization. x
axis is for time steps, y is for the magnitude of the signals. All signals are in
normalized units

performance, composed by two hidden layers NNs (each one composed
of 20 neurons), by using MATLAB System Identification Toolbox [145],
[146]. Such NLARX model requires less than 1

10 of the coefficients of the
affine ANN predictor. This is not surprising, as we fit an entire hori-
zon of predictions rather than a recursive model, and because neither in
the design of the ANNs nor in the training process we took any action
aimed at reducing the number of network parameters. Although storage
requirement is already quite small in our approach, we discus next how
to reduce memory occupancy of the ANN predictors, and therefore of
the resulting MPC setup.

73

4.6.1 Memory occupancy vs. quality of fit tradeoff

It is well known in the literature that the addition of L1-penalties (a.k.a.
the shrinkage operator) in an learning problem induces sparse solutions
[67]. When the optimization problem arises from fitting a model, L1-
penalties also reduces possible overfitting issues.

Accordingly, to reduce the memory occupancy of the resulting ANNs,
we modify the cost function in problem (4.9) as follows:

arg min
{fj ,gj}T

k=1

N−T−1∑︂
k=max{δy,δu}

L(Ôk, Ok) + λL1(Θ) (4.16)

where Θ is the overall set of non-bias weights θf1 , θ
g
1 , . . . , θ

f
T , θ

g
T char-

acterizing the ANNs associated with the predictors fj and gj , j = 1, . . . ,

T , respectively, and

L1(Θ) =

T∑︂
j=1

∥θfj ∥1 + ∥θgj ∥1 (4.17)

The scalar hyper-parameter λ ≥ 0, decides the tradeoff between quality
of fit and number of nonzero weights. Table 15 reports a realization of
quality of fit, computed over all T = 10 steps, and of number of coeffi-
cients with absolute value ≥ 10−3 for different choices of λ. In this test
all the remaining coefficients not satisfying such condition were manu-
ally set to zero after the training process for all but the λ = 0 case.

λ eFIT NZ weights
0.01 0.853 325

0.005 0.864 350
0.001 0.901 560
0.0005 0.911 902

0 0.917 9001

Table 15: Illustrative example of the number of nonzero (NZ) weights and
prediction fit obtained for different choices of λ.

74

4.7 Conclusions

We developed an approach for learning an affine parameterization of
output predictions from data via artificial neural networks, conceived
for efficiently formulating and solving LTV-MPC problems for nonlinear
systems. We showed in numerical simulations that good performance,
both in terms of capturing the dynamics of a nonlinear process and of
closed-loop behavior, is achieved, with light computational load. We
also showed that memory occupancy of the solution can be traded off
with prediction accuracy by simply introducing L1-penalties during the
training phase.

Experimental tests on embedded platforms on real application use
cases will be performed in future work.

75

Chapter 5

Direct data-driven design of
neural reference governors

5.1 Introduction

Designing effective controllers without knowing the physics of the plant
has always been a topic of interest in the control system community. The
indirect approach usually employed in this case is to first identify an
open-loop model of the underlying system via system identification pro-
cedures like the one presented in Chapter 2, validate the learned model,
and then proceed with the design and the tuning of a model-based con-
troller. While this strategy is convenient, as it effectively introduces a de-
coupling layer between modeling and control design, it can also cause an
undue burden on the system identification step, since many control tech-
niques do not actually require a fully-featured model to synthesize an
appropriate control law. Although exceptions exist (as we discussed in
Chapter 4 or in [135], [136], [147] in the context of predictive controllers),
this means that there exists a large misalignment between the target of
most identification techniques, which aim for the best open-loop simula-
tion accuracy, and the actual requirements of control design.

This discrepancy has stimulated research into direct data-driven con-
trol techniques [148], [149], that rely on input-output data to directly syn-

76

thesize and tune a control law, without first identifying an open-loop
model and/or predictor of the behavior of the plant. Within this set-
ting, approaches exist that rely either on the real-time acquisition of data
(like in Reinforcement Learning [12]), or exploiting in batch mode a pre-
viously collected dataset [150]. Among the latter class of approaches,
we recall the Virtual Reference Feedback Tuning (VRFT) method, which has
been applied successfully to control linear and nonlinear dynamical sys-
tems [151]–[153]. Within the VRFT framework, the design of the control
law is recast into an identification problem, where the aim is to repro-
duce the collected input sequence via a virtual tracking error specially
crafted so that the attained closed-loop behavior matches the response
of a user-provided reference model. Nonetheless, off-the-shelf architec-
tures of this kind do not allow taking signal constraints into account.
For this reason, several extensions have thus been proposed to overcome
this limitation. For instance, in [154] a Q-learning approach is used to
enhance a baseline VRFT controller; in [155] a method to deal with con-
straints on the sensitivity function is proposed in the context of H∞ con-
trol. Nonetheless, to obtain the desired results, all such methods are no
longer one-shot learning procedures as the VRFT approach, and they can
deal only with specific kinds of constraints. A more general approach is
presented in [130], where a reference governor [156] is used on top of a
standard VRFT-based controller to ensure constraints satisfaction and to
boost closed-loop performance. This approach is still a one-shot data-
acquisition procedure, but it also seeks to synthesize an internal control
capable of working by itself, which is a possibly non-trivial and likely
non-needed task if the controller will be always used with the governor.

In this work, we focus on overcoming the latter limitation while
still envisioning a data-driven receding-horizon control solution that can
guarantee constraints satisfaction, based on the idea of [130]. To do so,
we resort to ideas taken from control-oriented system identification and
learn short-term fixed-horizon models inspired to the one presented in
Chapter 4 to obtain a simplified linear time-varying representation of the
implicit controller.

The rest of the Chapter is organized as follows. In Section 5.2 we for-

77

mally state the problem of learning both the external receding-horizon
reference governor and the inner controller. Section 5.3 is devoted to the
presentation of the proposed controller design approach. Numerical re-
sults are reported in Section 5.4 and some concluding remarks are drawn
in Section 5.5.

5.2 Setting and goals

Consider the following discrete-time dynamical system

ΣP =

{︃
xk+1 = fΣ(xk, uk)

yk = hΣ(xk)
(5.1)

with uk ∈ RNU , yk ∈ RNY , and fΣ, hΣ being two unknown nonlinear
functions.

Suppose that a set ZN = {(u1, y1), . . . , (uN , yN)} comprising N in-
put/output pairs acquired from ΣP is available.

Our first aim is to exploit the available dataset ZN to learn a con-
troller Cθ, a-priori parameterized by a vector θ of parameters, so that the
reference-to-output behavior of the resulting closed-loop system corre-
sponds to the input-output behavior of a given reference model M. We
describe the latter by a the possibly nonlinear mapping fM

yMk+1 = fM(yMk , . . . , yMk−M , rk, rk−M) (5.2)

with yMk ∈ RNY and rk ∈ RNY . Our second and concurrent goal is to
design an outer loop with a model predictive reference governor, so to
boost performance and handle signal constraints [156].

Recalling the VRFT framework, let us define as virtual reference the
sequence {r⋆k}, r⋆k ∈ RNY , that would reproduce {yk} if fed to M, namely
the minimizer of the optimization problem

{r⋆k} = arg min
{rk}

N∑︂
k=M+2

LR(yMk , yk)

subject to Equation (5.2)

(5.3)

78

where LR : RNY × RNY → R is an appropriate loss function. We stress
that many approaches have been devised to solve problem (5.3), and that
explicit exact recursive expressions for {r⋆k} have been found for various
classes of reference models M, see e.g., [152].

Once {r⋆k} has been computed, one way to synthesize the controller
Cθ that achieves closed-loop performance closest to the one of M is to
look for the controller that best fits {uk} when fed by the virtual tracking
error e⋆k ≜ r⋆k − yk:

min
Cθ∈H

N−1∑︂
k=M+2

LC(ûk, uk)

subject to ûk+1 = Cθ(uk, . . . , uk−M , e⋆k+1, . . . , e
⋆
k−M)

(5.4)

where LC : RNU × RNU → R is again an appropriate loss function. The
above model-free VRFT technique was first introduced in [151] in the lin-
ear time-invariant setting, and then successfully employed to design con-
troller for various classes of nonlinear systems (see e.g., [152]).

Albeit appealing due to its simple nature, solving a one-step-ahead
prediction-error minimization problem like the one in (5.4) can be prob-
lematic. Indeed, we cannot guarantee that the resulting control law may
be suited to be repeatedly iterated over time, although accurate over a
short horizon. Various approaches have been designed to overcome this
issue: in [130], for instance, instrumental variables are used. Still, they
usually result in a tangible increase of the computational complexity of
the overall learning scheme [157]. While this is unavoidable if the aim is
to synthesize a stand-alone controller Cθ, we will show here that this is
not the case if our goal is to use Cθ within a reference governor scheme.

Indeed, as described in [130], a reference governor for an already ex-
isting VRFT controller consists of solving at each sampling step k the

79

following optimization problem:

min
Rk

LRG(Yk, Uk, Rk, Ȳ)

s.t. Yk = FM(x̄k, Rk)

⎧⎨⎩ Fixed horizon
closed loop
reference dynamics

Uk = C(x̄k, Ek)

{︃
Fixed horizon VRFT
controller dynamics

Rk = [rk, . . . , rk+T]
′ ∈ R

Uk = [uk, . . . , uk+T]
′ ∈ U

Yk = [yk+1, . . . , yk+T]
′ ∈ Y

Ek = [rk − yk, . . . , rk+T − yk+T]
′

(5.5)

where Ȳ ∈ RNY T is the reference to be tracked, T is the chosen prediction
horizon, LRG is a suitable loss function, and x̄k is a feedback informa-
tion vector, which encompasses the internal states of both the controller
and the underlying system. By looking at the optimization problem in
(5.5), it is clear that the performance of the governor is linked to the pre-
diction capabilities of FM and the capability of C to make the internal
loop behave as closely as possible to FM itself within the chosen prediction
horizon.

This means that if we do not want to use the internal controller alone,
we can directly learn the mapping C from x̄k and Rk to Uk, rather than
solving (5.4).

In other words, there is no need to seek a standalone viable internal con-
troller, but only a “surrogate” able to predict its short-term behavior.

Remark 1 Without loss of generality, LRG may also depend on Yk and Uk to
further shape the overall characteristics of the closed loop.

5.3 Data-driven design of reference governors

Based on the above intuition, we consider the problem of fitting a fixed
horizon predictor of the real VRFT controller C introduced in (5.5). At
time k and over the horizon T , the value of the signals ûk+n, n = 0, . . . , T ,
are only a function of the virtual tracking error e⋆k, . . . , e

⋆
k+n and the initial

80

state xk, i.e., there exists a set of maps fn so that

ûk+n = fn(xk, e
⋆
k, . . . , e

⋆
k+n) for n = 0, . . . , T (5.6)

for each T ∈ Z. Without loss of generality, we can set

xk = [uk−1, . . . , uk−M , e⋆k−1, . . . , e
⋆
k−M+1]

and define, similarly to what shown in Chapter 4, the map HT : RNx ×
NY (T + 1) → RNU (T+1) compactly as

ÛT ≜

⎡⎢⎣ ûk

...
ûk+T

⎤⎥⎦ = HT (xk, E
T
k) (5.7)

where ET
k ≜ [e⋆k, . . . , e

⋆
k+T]

′.
Compared to learning a recursive law Cθ as in (5.4), retrieving HT

in (5.7) from data is more convenient as (i) it completely circumvents
the problem of using a fitting procedure able to minimize the simulation
error of Cθ, and (ii) it allows us to resort to standard prediction error ap-
proaches. However, this kind of map is still quite problematic for the
additional design of a reference governor, due to its nonlinear behavior
with respect to the decision variable Ek. A first solution to overcome this
issue would be to resort to nonlinear optimal control schemes, but this
would be computationally expensive as it would require the evaluation
of the Jacobian of the involved map at least once for each step k.

Nonetheless, in a large number of applications the expressiveness of
nonlinear schemes like the one in (5.7) may as well be not necessary, es-
pecially when one aims at obtaining accurate controllers for short-term
predictions only.

To exploit this fact, we fit a map in which the predicted control ac-
tion is nonlinearly dependent only on the information vector xk (that
comes from feedback), and possibly on some reference trajectory Ē

T
k =

[ēk, . . . , ēk+T]
′ (which will likewise not be a decision variable), whereas

it is linearly dependent on the control variables ∆ET
k ≜ ET

k − Ē
T
k . This

is equivalent to fit a partial first-order Taylor approximation of the map
in (5.7).

81

Indeed, by assuming HT to be at least C1 in the neighborhood of a
given trajectory, it holds that

HT (xk, ek, . . . , ek+T) ≈ HT (x̄k, ēk, . . . , ēk+T)+

∂HT

∂xk
(x̄k, ēk, . . . , ēk+T)∆xk+

T∑︂
j=0

∂HT

∂ek+j
(x̄k, ēk, . . . , ēk+T)∆ek+j .

(5.8)

Since identifying ∂HT

∂xk
∆xk is not necessary as xk is not a decision variable

for the governor, our goal becomes to design a controller by fitting a
predictor of the form

ÛT = GT (xk, Ē
T
k) + FT (xk, Ē

T
k)∆ET

k . (5.9)

The above architecture requires introducing the quantity Ēk. A possi-
ble approach to bypass this requirement is to exploit the fact that holding
an explicit relationship to a time-dependent reference trajectory can still
be more expressive then necessary in short-term predictions [137]. In
this light, one can remove the dependence on Ēk from (5.9) by assuming
Ēk = 0, so as to obtain a controller parameterized as a predictor of the
form:

ÛT = GT (xk) + FT (xk)E
T
k , (5.10)

which is effectively equivalent to the one presented in Chapter 4.
While the affine form in (5.10) is quite convenient also from a com-

putational point of view, it severely limits the expressiveness of the pre-
dictor as a whole, which is particularly concerning as this architecture
cannot be used to represent any nonlinear input characteristic that is de-
pendent on the input itself.

To overcome this issue, we drop the dependency from ĒT only in
GT , while maintaining it in FT . This allows us to choose the real input
sequence ET

k as reference trajectory and to set ĒT
k = ET

k , following the
rationale of classical linearization-based control, according to which the
most accurate linearization point is the one corresponding to the then-
applied input trajectory. Once the resulting controller is deployed, the

82

quantity Ēk is instead chosen as the shifted optimal sequence computed
at the previous time step. This finally results in trying to learn a controller
of the form

ÛT = GT (xk) + FT (xk, E
T
k)E

T
k (5.11)

which is still an approximation of a first-order Taylor expansion of HT ,
but it does not require the design of Ēk. At the same time, this structure is
sensibly more expressive than the one in (5.10) as it can better represents
systems with non-affine input characteristics. We point out that, com-
pared to a standard sensitivity-based approach, evaluating FT (xk, E

T
k)

comes at no additional cost, making the computational requirements of
the resulting controller comparable to a classical Linear Time Varying
(LTV) solution.

5.3.1 The design of the reference governor

Under the assumption that a data-driven controller designed to match
the reference model M is feasible for ΣP , then in closed loop it holds
that yMk+1 ≈ yk+1. This also means that ek+i ≈ eMk+i = rk+i − yMk+i. This
approximation can be exploited to design the external reference gover-
nor.

Suppose that a fixed term predictor (5.11) has been trained to repro-
duce uk and that the reference model fM can be expanded into the same
predictive form considered previously, namely

Ŷ
M

=

⎡⎢⎣ yMk+1
...

yMk+T+1

⎤⎥⎦ = GM(xM
k) + FM

T (xM
k , R̄

T
k)R

T
k (5.12)

with

RT
k = [rk, . . . , rk+T]

′,

xM
k = [rk−1, . . . , rk−M+1, y

M
k , . . . , yMk−M+1]

for some choice of R̄T
k . Then, the data-driven reference governor can be

83

parameterized at each control step by solving

min
RT

k

LRG(Ŷ
M
, UT , R

T
k , Ȳ)

subject to Ŷ
M

= GM(xM
k) + FM

T (xM
k , R̄

T
k)R

T
k

UT = GT (xk) + FT (xk, Ē
T
k)E

T
k

ET
k = [rk − yk, rk+1 − yMk+1, . . . ,

rk+T − yMk+T]
′

Ē
T
k = [r̄k − yk, r̄k+1 − ȳMk+1, . . . ,

r̄k+T − ȳMk+T]
′

UT ∈ X , Ŷ
M ∈ Y.

(5.13)

where Ȳ
M

= GM(xM
k) + FM

T (xM
k , R̄

T
k)R̄

T
k is the output of the reference

model computed for R̄T
k . Note that, compared to the initial design prob-

lem in Equation (5.5), we have now separated x̄k into two distinct quan-
tities, namely the information coming from feedback xk and xM

k , which
depend on the reference model that approximately represents the inner
closed-loop. We further highlight that while the fixed horizon predictor

for UT algebraically depends on rk, the predictions Ŷ
M

are obtained by
using a strictly proper law. Indeed, we cannot expect the closed-loop
system to be “delay-free” and, at the same time, we want to exploit the
most recent feedback information to compute the current control action.
This also ensures that the controller is not subject to mismatches, at least
on the first step of the prediction horizon.

Remark 2 If X ,Y are polytopes and LRG is either linear or quadratic, Prob-
lem (5.13) can be then reliably solved within real-time constraints [158], [159].

Offset rejection

The presented architecture does not include an integral action and it is
naturally prone to experience offset when tracking constant references.
From a practical point of view, this offset can be seen as a constant dis-
turbance q ∈ RNy that affects the output of the system. A way to over-
come this issue would then be to recursively estimate the magnitude of
such a disturbance and compensate the reference model accordingly. In-
deed, for a classical single-output case, a recursive estimator for q can be

84

Figure 14: Illustrative scheme of the employed ANN structure, adapted
from [19]. © 2020 IEEE

designed as
q̂k = q̂k−1 − α(ŷMk − yk), (5.14)

where ŷMk is the predicted evolution of the closed-loop system at time
k−1, yk is the feedback information at time k and α ∈ R. The estimate q̂k
can then be integrated in a reference governor scheme, which will now
aim to solve

min
RT

k

LRG(Ŷ
M
, UT , R

T
k , Ȳ)

subject to Ŷ
M

= GM(xM
k) + FM

T (xM
k , R̄

T
k)R

T
k + q̂k1

as in Equation (5.13)

(5.15)

where 1 ∈ RT = [1, . . . , 1]′. Similar correction will likewise be applied to
Ȳ

M. ■

5.3.2 ANNs for controller parameterization

As already noted in Chapter 4, directly fitting a set of discrete maps like
the ones in Equations (5.6) can be quite an inefficient process, since no
information from the predictions of the earlier terms along the horizon

85

is necessarily re-used to predict the later ones. At best, this would make
the training procedure more difficult to carry out. More likely, it will
require the use of more powerful regression techniques to achieve the
desired fitting performance, especially if we use approximators like Ar-
tificial Neural Networks (ANNs), that naturally benefit from the stacking
of nonlinear layers/components.

A possible way to leverage the knowledge obtained from the approx-
imators employed in shorter-term predictions is to use their outputs ûk

as additional input for the regressor involved in the prediction of uk+n,
n = 1, . . . , T . In particular, when training the controller within our struc-
ture, we obtain

ûk+n = fn(xk) + gn(xk, Ē
n
k)

[︃
En

k

ûk+n−1

]︃
= f̃n(xk) + g̃n(xk, Ē

n
k)E

n
k

(5.16)

for some choice of Ēn
k . This process can be repeated all over the horizon

and might also include, when applicable, additional terms other than the
one immediately preceding the n-th term. We stress that the number of
past linear terms is a hyper-parameter of the approach, that can be tuned to
trade-off between the accuracy of the predictor and the sparsity pattern
of the resulting constraint structure.

The problem of learning in parallel a set of maps like (5.11) can be then
recast into solving the following optimization problem:

min
f0, . . . , fT

g0, . . . , gT

N−T−1∑︂
k=M+1

Ltrain(Ôk, Ok)

s.t.

(5.17)

86

Ôk =

⎡⎢⎣ ûk

...
ûk+T

⎤⎥⎦Ok =

⎡⎢⎣ uk

...
uk+T

⎤⎥⎦
ûk = f0(xk) + g0(xk, ēk)e

⋆
k

ûk+i = fi(xk)+

gi

⎛⎜⎜⎜⎝xk,

⎡⎢⎢⎢⎣
ēk
...

ēk+i

ûk+i−1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

⎡⎢⎢⎢⎣
e⋆k
...

e⋆k+i

ûk+i−1

⎤⎥⎥⎥⎦
for i = 1, . . . , T

where Ltrain : R((T+1)×NU) × R((T+1)×NU) → R is a suitable loss func-
tion. Without loss of generality, we select Ltrain as the Mean Absolute
Error (MAE) [60]. Speaking about the loss figure Ltrain, in principle,
there are no limitations on its nature. While in practice a user might
want to restrict its choices to figures that are compatible with classical
derivative-based optimization frameworks, this allows fine-tuning the
learning process to the physical meaning of the analyzed quantities, i.e.:
using a cosine distance for an angular quantity.

The peculiar structure of the considered training problem restricts the
pool of the functional approximators that can be used to represent the
maps fi and gi. Instead of developing application-specific solutions, here
we exploit the nature of ANNs as directed acyclic computational graphs
to build the structure of the constraints in (5.17) into the topology of the
network itself. Choosing neural networks is also convenient due their
flexibility to be trained with any differentiable loss function, their theo-
retical universal approximation power [58], and the availability of well
maintained frameworks [160] that can aid the design. This approach also
allows us to reduce the whole learning procedure to a standard regres-
sion problem, while retaining the capability to easily access the outputs
of fi, gi as intermediate results of the single sub-components of the net-
work, whose overall scheme is reported in Figure 14.

We stress that the topology of the involved ANNs closely follows
the structure highlighted in (5.16). In particular, all the components fi

are grouped in a single discrete sub-network, while each gi is a stan-

87

dalone object. For simplicity, we restrict our analysis to a densely con-
nected feed-forward topology for each subnetwork, meaning that each
sub-ANN is comprised by a stack of nonlinear hidden layers connected
to a final linear output layer with appropriate output shape.

Remark 3 Although one might use the proposed fixed horizon predictor as a
stand-alone controller by applying at each step the first component of ÛT , we
remark that no precautions are taken to make the resulting controller reliable for
such a use case.

5.4 Simulation case studies

In this section, we present the preliminary results obtained by employ-
ing the proposed technique on a variation of two nonlinear benchmarks
already used in the previous Chapters, i.e., the discrete-time approxima-
tion of the well-known nonlinear two-tanks system

Σtank =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1,k+1 = x1,k − k1
√
x1,k + k2vk

x2,k+1 = x2,k + k3
√
x1,k − k4

√
x2,k

vk =

⎧⎨⎩ 1.5 if uk ≥ 1.0
−0.5 if uk ≤ −1.0

uk + 0.5 otherwise
yk = x2,k

(5.18)

where xi,t denotes the i-th component of xt ∈ R2 and k1 = 0.5, k2 = 0.4,
k3 = 0.2, k4 = 0.3, and the following Hammerstein-Wiener model

ΣHW =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 =

[︃
0.7555 0.25
−0.1991 0

]︃
xk+[︃

−0.5
0

]︃
vk

vk =

⎧⎨⎩
1 if uk ≥ 1.0
−1 if uk ≤ −1.0

sign(uk)
√︁
|uk| otherwise

wk = [0.6993 − 0.4427]xk

yk = wk + 5 sin(wk)

(5.19)

Note that both models exhibit a saturation-like nonlinearity on the input.

88

As reference model M for Σtank we considered the following Linear
Time-Invariant (LTI) model

Mtank(z) =
0.4z−2

1− 0.6z−1

where z−1 is the delay operator. For ΣHW we instead use the reference
model

MHW(z) =
0.65z−1

1− 0.35z−1
.

We stress that both the reference models are linear so that in closing the
loop we aim at compensating the plant nonlinearity, while fully exploit-
ing its operating regime. We remark that the reference model is a hyper-
parameter of the VRFT framework and its optimal choice is linked to the
nature of the target process. We refer the interested reader to [147], [161]
for further reading on the topic.

For both these benchmark systems, we collected a training dataset
ZN of 20,000 samples, generated by exciting the system with a sequence
of variable-amplitude step signals of period 7 steps, with amplitudes
drawn from a Gaussian distribution with zero mean and standard de-
viation σ = 1 and then clipped to be within the interval [−1, 1]. After the
experiment, the output signal was empirically normalized using the em-
pirical mean and standard deviation computed from the dataset, before
being used for training. After the normalization, all the signals were su-
perimposed with a Gaussian white noise drawn from a distribution with
zero mean and standard deviation σw = 0.02.

With these data, we trained a fixed-horizon predictor with T = 6,
in which every sub-network is composed of 4 Rectified Linear Units
(ReLU) [79] hidden layers with 20 neurons followed by a final linear out-
put layer. The state size was set to M = 7. The implementation was
carried out using Keras [80]. A Lasso [67] penalization was also added to
all neurons to regularize the resulting models.

The reference governor was tuned by setting

LRG = ∥Ŷ M − Ȳ ∥22
and by imposing a constraint on the input, namely that |uk| ≤ 1, ∀k.

89

0 50 100 150 200 250 300 350 400

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

VPC-TWOTANKS—NL-INPUT:False

yNRG
k

ȳk

uk

Figure 15: Closed-loop performance (Σtank). © 2020 IEEE

0 50 100 150 200 250 300 350 400

−1.0

−0.5

0.0

0.5

1.0

1.5

VPC-HAMMERSTEIN—NL-INPUT:True

yNRG
k

ȳk

uk

Figure 16: Closed-loop performance (ΣHW). © 2020 IEEE

90

The reference trajectory at time k is set by shifting the optimal se-
quence computed at the previous step k − 1. We also assumed that a
preview of the future references was available and further embedded in
our structure, together with the recursive disturbance compensator in
(5.14), with gain α set to 0.1.

In Figure 15 we report the closed-loop performance obtained on Σtank

by the proposed approach when tracking a square wave superimposed
with a sine-sweep reference signal. The proposed approach, while not
being that effective during the initial steps of the transient, is able to
properly track also high-frequency reference signals.

Similar considerations can be drawn for the closed-loop performance
associated to the system ΣHW shown in Figure 16. In there the proposed
approach achieves satisfactory performance, showing good capabilities
to deal with the strong nonlinearity of the input characteristic of the sys-
tem when uk crosses 0. In both Figures 15 and 16 we also appreciate how
the disturbance observer does not cause any windup issue, that would
severely affect closed-loop performance.

Remark 4 (Computational insights) As a whole, the employed predictor has
≈ 104 parameters. The training procedure was carried out in a few minutes
using an Intel Core i5-6200U CPU laptop with 16GB of RAM. The controller,
which relied on a general-purpose solver [84], required around 10−2 seconds to
compute the control action at each time step. Considering the general-purpose
nature of the employed libraries, computational requirements can probably be
significantly reduced by using more specialized solvers, such as the one in [162],
and more performance-oriented deep learning frameworks. ■

5.5 Conclusions

We presented a variation of the approach presented in [130] to directly
synthesize nonlinear constrained controllers within the model-reference
framework. In designing the proposed neural reference governor, we ex-
ploit results from control-oriented system identification already explored
in Chapter 4 to directly learn short-term fixed horizon ANN-based pre-
dictors of the virtual internal control law from data. The resulting scheme

91

has shown good performance on two nonlinear benchmarks, ensuring
good closed-loop reference tracking performance, and suggesting that it
can be competitive with more traditional control design scheme.

These results, albeit preliminary, jointly with the modest computa-
tional resources required by the approach, suggest its possible use in
embedded fast-sampling applications, which will be the focus of future
works together with an in detail comparison with control-aware system-
identification and constrained data-driven control schemes.

92

Chapter 6

NAW-NET: neural
anti-windup control for
saturated nonlinear systems

6.1 Introduction

Due to the increasing complexity of control systems and thanks to the
ever-growing availability of large sets of data, control strategies are more
and more commonly designed with the aid of data-driven approaches,
which provide invaluable help to either compute/update a model of the
plant to be controlled or to directly tune the parameters of the controller.
Indeed, this is not a novel trend: several System Identification (SI) tech-
niques have been proposed over the years to learn approximate laws
that describe the behavior of otherwise unknown processes [1]. How-
ever, as we have discussed in the previous Chapters, these classical ap-
proaches are agnostic regarding the intended applications of the learnt
models and thus usually aim only to obtain the best open-loop simula-
tion accuracy. This is, however, often an overreach as many control tech-
niques can attain satisfactory performance even with a crude approxi-
mation of the real plant dynamics. Moreover, the quest for models mini-
mizing the simulation error usually results in large-dimensional models,

93

which in turn may require the use of model-reduction techniques to be
made compatible with control synthesis procedures and with resource-
constrained hardware platforms. Last but not least, as we have seen in
Chapter 2, identification techniques can require quite some expertise to
be used, thus making them out of reach for many control practitioners.

As an alternative to such a classical two-stage design paradigm,
where a model of the plant is first identified, and then a model-based
controller is designed, direct data-driven control strategies have been pro-
posed. In this case, data collected from the plant are directly used to
synthesize a controller without the involvement of an explicit model of
the system. These methods range from data-driven optimal control ap-
proaches such as Reinforcement Learning (RL) [10], [11], [163], [164] to
schemes exploiting the model reference paradigm, such as the Virtual Ref-
erence Feedback Tuning (VRFT) approach [151], [165]. As we have already
shown in Chapter 5, the latter approaches have the advantage of being
one-shot techniques, in that they do not require additional data to refine/
tune the control law. However, they also provide little to no flexibility to
ease the integration of constraint handling methods. Since, in practice,
the authority of actuators is always limited, the use of these techniques
in industrial applications has been thus restricted to those limited cases
in which such an issue is not problematic.

Traditionally, input saturations are managed either by using predic-
tive control strategies [69] or by pairing a controller with an anti-windup
compensator, which aims at preserving performance when the system op-
erates within actuator bounds and trying to guarantee the asymptotic
recovery of unconstrained behavior after saturation occurs [166]–[168].
These approaches not only require the knowledge of the saturation lim-
its, but they generally rely on additional insights on the plant. However,
the level of accuracy needed to attain satisfactory performance might not
be attainable when the model for the plant is retrieved from data. As an
alternative to classical model-based strategies, some attempts have been
recently made to incorporate constraint-handling methods within the
data-driven control framework. For example, in [130] a reference gover-
nor is used on top of a direct data-driven controller for Linear Parameter

94

Varying (LPV) systems [152] to impose constraint satisfaction. Another
comparable procedure, which also suffers from the need for two succes-
sive design phases, is the one reported in Chapter 5. Nevertheless, both
approaches still require the solution of an optimization problem in real-
time for each control step.

Inspired by anti-windup architectures, we propose a one-shot learning
scheme to design a Neural NETwork for Anti-Windup control (NAW-NET)
directly from data. The proposed approach seeks to allow one to retrieve
both a controller and an anti-windup compensator for an unknown plant
from a set of input/output data that can handle actuator constraints ef-
fectively. Inspired by the principle behind the VRFT approach, the syn-
thesis procedure is fully carried out off-line.

In order to account for the innate nonlinear nature of constrained con-
trol strategy and, possibly, of the plant to be controlled, we parameter-
ize the controller and the saturation compensator through two different
Artificial Neural Networks (ANNs), due to their flexibility and excellent
function approximation properties [169]. The modular nature of the cho-
sen controller parameterization further allows us to easily convert the
proposed 2 Degree-Of-Freedom (DOF) control architecture into a simpler
1 DOF structure, where the anti-windup action is embedded within the
control input.

Remark 5 For simplicity, in this Chapter, we focus only on the more tradition-
ally structured 2-DOF architecture, but please note that there are no a-priori
(dis)advantages of using this structure rather than a 1-DOF one. ■

The rest of the Chapter is organized as follows. Section 6.2 formally
states the control problem of interest. Section 6.3 is devoted to the for-
mulation of the NAW-NET learning task. The proposed structure and
the proposed anti-windup compensator are described in Section 6.3.2.
A strategy to handle non-informative data is proposed in Section 6.3.4.
Simulation results are shown in Section 6.4, while conclusions and pos-
sible directions for future work are discussed in Section 6.5.

95

6.2 Setting and Goal

Let Σ be a discrete-time nonlinear Single-Input Single-Output (SISO) plant,
whose dynamics is

Σ :

{︄
xk+1 = f(xk, uk),

yok = h(xk),
(6.1)

where uk ∈ R, xk ∈ Rnx and yok ∈ R are the commanded input, the state
and the noiseless output of the plant at the instant k ∈ N, respectively,
and f : Rnx ×R → Rnx , h : Rnx → R are unknown maps in the input and
the state of Σ. Suppose that the system is Bounded-Input Bounded-Output
(BIBO) stable so that an open-loop experiment on a the system can be
carried out without the need to resort on a baseline controller. Suppose
also that the actuator has limited range, i.e., that the actual input received
by the plant is ũk ≜ gsat(uk), where

gsat(uk) ≜

⎧⎪⎨⎪⎩
u if uk < u,

vk if uk ∈ [u, ū],

ū if uk > ū,

(6.2)

with u, ū ∈ R being the known limits of the actuator. Accordingly, the
dynamics (6.1) can be recast as

Σ :

{︄
xk+1 = f̃(xk, uk),

yok = h(xk).
(6.3)

where f̃(x, u) = f(x, ũ). Since no prior knowledge is available on Σ,
other than the actuator bounds, and output sensors are noisy, we assume
that open-loop experiments are carried out by providing a proper se-
quence of inputs uk to the plant and record

yk = yok + vk

for k = 1, . . . , N , where vk ∈ R is measurement noise.

6.2.1 Direct data-driven control design

Given the open-loop data collection ZN = {uk, yk}Nk=1, our aim is to de-
sign a nonlinear feedback controller Cθ belonging to a pre-defined class

96

Cθ so that: (i) some desired reference-to-output tracking performance is
attained, if allowed by the control authority limitations; (ii) a safe be-
havior of the controlled system is possibly promoted even if the actuator
saturates.

Throughout the rest of the Chapter, we focus on the following input-
output parametrization Cθ of the controller, described as

Cθ : νk+1 = Cθ(νk, . . . , νk−Q, ek+1, . . . , ek−Q), (6.4)

where ek = rk − yk is the tracking error attained at time k and Q > 0 is
the order of the controller, which is fixed a priori by the designer.

In this chapter we focus on controller able to deal with saturation like
the one in Equation 6.2. To do so, we enchant the control architecture
with an anti-windup block [166] Hφ ∈ Hφ that embeds the known satura-
tion, defined as

Hφ : ak+1=Hφ(νk+1, νk, . . . , νk−H , ek+1, . . . , ek−H), (6.5)

whose output is subtracted to the one generated by the controller Cθ, so
that the overall control architecture can be represented as in Figure 17.

Remark 6 To guarantee a clear distinction between Cθ and Hφ, one can
slightly modify the structure of the compensator as follows:

H̃φ : ak+1=Hφ(νk+1, νk, . . . , νk−H),

so that the anti-windup action depends only on the collection of corrected and
past outputs of Cθ. This leads to a structure more similar to the one adopted in
standard anti-windup schemes [166]. On the other hand, it reduces the gener-
ality in the structure of the compensator. ■

Here we explore various approaches to parameterize Cθ and Hφ us-
ing Artificial Neural Networks (ANNs). Without loss of generality we
further assume that they share the same order H = Q. We stress
that the knowledge of the saturation is embedded within the chosen
parametrization of Cθ and Hφ, as explained in Section 6.3.2.

97

Cθ

Hφ

Σ
rk + ek νk +

ak

-
uk ũk yk

-

Figure 17: The proposed direct data-driven anti-windup control scheme. ©
2020 IEEE

6.3 NAW-NET: training

To avoid modeling the plant Σ, we rely only on the open-loop dataset
ZN and exploit the rationale of the Virtual Reference approach, originally
described in [151]. Therefore, we construct a virtual closed-loop using the
open-loop data collection, such that the reference-to-output relationship
is exactly M, as shown in Figure 18.

Similarly to the approach presented in Chapter 5, we start from the
available input and output measurements, and we compute what would
have been the virtual reference r̃k and the virtual error signal ẽk = r̃k−yk

of such a fictitious closed-loop, by noticing that the former corresponds
to the signal that would produce the measured output yk when feeding
the reference model M, i.e.,

yk+1 = fM(yk, . . . , yk−M , r̃k, . . . , r̃k−M).

The computation of r̃k requires the inversion of M, which can be explic-
itly obtained for relatively simple classes of reference models, such as
linear transfer functions with asymptotically stable zeros [130]. In case
of more complex reference models M, more generally the fictitious ref-
erence can be obtained by solving the fitting problem

min
{r̃k}

1

N−M

N∑︂
k=M+2

ℓM (ŷMk , yk)

s.t. ŷMk+1=fM(yk, . . . , yk−M , r̃k, . . . , r̃k−M),

(6.6)

where ℓM : R× R → R is a properly defined loss function.

98

Once the fictitious reference sequence {r̃k} is computed, the latter
can be used to design the desired blocks (see equations (6.4) and (6.5),
respectively), by trying to match the measured input sequence {uk}Nk=1

with the predicted input from the controller Cθ.

6.3.1 Training the anti-windup block

While the controller Cθ is asked to track as closely the recorded command
signal, in our scheme the burden of ensuring that the actual control signal
will not cause issues falls on Hφ. As these two components are intimately
linked, a practical option is to train both of them at the same time. For-
mally, this means solving the following learning problem

min
Cθ∈Cθ
Hφ∈Hφ

J (ν̂k(θ), uk, âk(φ)),

s.t. ν̂k+1(θ)=Cθ(uk, . . . , uk−Q, ẽk+1, . . . , ẽk−Q),

âk+1(φ)=Hφ(ν̂k+1, uk, . . . , uk−Q, ẽk+1, . . . , ẽk−Q),

(6.7)

where

J (ν̂(θ), u, â(φ)) =

1

N−Q

N−1∑︂
k=Q+2

ℓC(ν̂k(θ), uk)+γℓS(ν̂k(θ)−âk(φ)),
(6.8)

and γ > 0 is a hyper-parameter to be tuned that trades off between fitting
the input samples and violate saturation limits. Note that the order of
the controller Q dictates the number of samples that are discarded in the
learning phase.

We adopt the Mean Absolute Error (MAE) loss figure [60] to weight
the fitting error on the input (other losses could be used too), while the
error due to unfeasible control actions is accounted for by defining ℓS as
follows:

ℓS(ûk(θ, φ)) = ∥ûk(θ, φ)− gsat(ûk(θ, φ))∥1,
with ûk(θ, φ) = ν̂k(θ)− âk(φ).

Remark 7 As mentioned in the introduction, The learning problem in (6.7),
along with the proposed anti-windup control scheme, can be readily adapted

99

Cθ

Hφ

Σ

M−1

r̃k + ẽk νk +

ak

-

uk ũk

-
yk

Figure 18: The Virtual Reference rationale of [151] used within our setting.
The thick line denotes the real plant on which the experiment has been per-
formed, while the dashed lines illustrate the “virtual” remainder of the loop.
© 2020 IEEE

to a 1-DOF architecture, by setting âk = 0, ∀k, so that the learning problem
becomes

min
Cθ∈Cθ

1

N−Q

N−1∑︂
k=Q+2

ℓC(ν̂k(θ), uk)+γℓS(ν̂k(θ))

s.t. ν̂k+1(θ)=Cθ(uk, . . . , uk−Q, ẽk+1, . . . , ẽk−Q).

Although not explicitly exploiting an anti-windup block, this optimization prob-
lem still allows one to train a controller that accounts for saturation limits,
thanks to the structure of Cθ (see Section 6.3.2).

Remark 8 Since the solution of problem (6.7) allows us to concurrently train
the controller and the anti-windup block, a possible strategy for the selection of
γ is described next. By solving problem (6.7) multiple times iteratively, one can
initially choose γ low to promote better fitting performance. The value of γ can
then be gradually increased so to enforce satisfaction of the actuator bounds.

Remark 9 Alternatively to the cost in (6.8), one can also minimize the follow-
ing objective:

J (û(θ, φ), ũ)=
1

N−Q

N−1∑︂
k=Q+2

ℓC(ûk(θ, φ), ũk)+γℓS(ûk(θ, φ)),

with ûk(θ, φ) = ν̂k(θ) − âk(φ). In this case, Cθ and Hφ are designed so that
the input to Σ corresponds to the saturated control actions {ũk}Nk=1. We stress
that ℓS has still to be included in the cost if one wants the compensator to act
only when the control action νk exceeds the saturation bounds, as in standard
anti-windup schemes.

100

µC

NN θ

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

uk

...
uk−Q

ek+1

...
ek−Q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
IC
k νk+1

Figure 19: The selected controller structure. © 2020 IEEE

6.3.2 NAW-NET parameterization

It is clear that the chosen parameterizations for the maps Cθ ∈ Cθ and
Hφ ∈ Hφ are crucial to achieve good control performance, namely to at-
tain the desired closed-loop behavior M while capitalizing on the whole
operating range of the actuators. Among possible alternatives for both
the controller and the anti-windup block parameterizations, we use Ar-
tificial Neural Networks (ANNs) [66] for their well-known effectiveness
as maps approximators and the availability of well-maintained tools for
easily training them.

Specifically, the controller is parameterized as the input/output law

νk+1 = NN θ(IC
k)′IC

k , (6.9)

where IC
k ∈ RnI is the feature vector fed to the parametric part of the

controller, namely the ANN NN θ : RNI → R, whose internal struc-
ture is schematically represented in Figure 19. The feature vector IC

k is
extracted via a map µC : R2Q+1 → RnI on the measured inputs and
tracking errors, namely

IC
k = µC(uk, . . . , uk−Q, ẽk+1, . . . , ẽk−Q), (6.10)

through which we embed in our controller any available prior knowl-
edge on Σ. Since in our setting the only prior information on the plant
resides in the known saturation function gsat in (6.2), we select µC as

µC(uk, . . . , uk−Q, ẽk+1, . . . , ẽk−Q) =

=
[︁
uk, · · ·, uk−Q, gsat(uk), · · ·, gsat(uk−Q), ek+1, · · ·, ek−Q

]︁
,

(6.11)

so to also include the projections gsat(uk−j) on the admissible input range
of past control samples uk−j as additional regressive terms, j = 0, . . . , Q.

101

We remark that, in principle, µC can be learned from data along with
NN θ. However, this may require a much larger amount of training data
and would result in a more complex architecture, eventually making the
approach too demanding for simple embedded applications. From a
practical stand point, Cθ is implemented through a feed-forward neu-
ral network fed by IC

k . Nonetheless, the network is used to predict a set
of intermediate coefficients that produce the control action once they are
multiplied by IC

k .
The chosen structure of Cθ allows us to trade-off between the ex-

pressiveness of the parameterization and the ease of inspection of the
learned controller. Moreover, if a linear time invariant (LTI) parameteriza-
tion is sufficient, it is fairly simple to downgrade the neural controller to
an LTI one, by exploiting parameter shrinkage strategies on the non-bias
weights of the network in the training phase [67]. Indeed, if after training
the non-bias weights all result zero, this implies that the network itself
can be replaced by its (constant) output. In such a case, the control law
as whole falls back into a more well understood “LTI controller + anti-
windup” architecture, which may be helpful to pursue further analysis
on the obtained closed-loop.

Differently from the controller, for the anti-windup block we resort to
a standard input-output feed-forward structure, with the ANN parame-
terizing Hφ directly mapping its input into the corrective action ak. This
choice is due to the fact that the anti-windup block is nonlinear, thus
making more complex architectures like the one chosen for Cθ quite use-
ful, at the price of a more complex optimization problem to be solved
during the training phase. For the compensator to share similar charac-
teristics to standard anti-windup blocks, we do still exploit a preliminary
feature extraction map µH = µC .

6.3.3 Improving NAW-NET performance via Truncated
Back Propagation Through Time

Despite its appealing simple structure, a design problem based on one-
step-ahead predictions like the one defined in (6.7) might result in a

102

0 100 200 300 400 500

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 20: Reference (blue) vs desired (dashed red) and attained (black)
closed-loop response. Desired and achieved closed-loop response when
tracking the set point in (6.15). The reference signal and the desired out-
put are almost always overlapped. © 2020 IEEE

data-driven control scheme that, albeit good over short horizons, may
not be suited to be repeatedly iterated over time. A possible approach
to overcome this limitation is to exploit Back Propagation Through Time
in the learning scheme, which has already been used for direct control
applications in [61], [169]. This approach allows one to evaluate the
controller+anti-windup block simulation accuracy, by concatenating pre-
dictions at two successive sampling steps. However, it concurrently in-
volves the optimization of loss functions that are computationally expen-
sive to evaluate and hard to minimize [63].

To avoid over-complicating the learning scheme, while retaining
some of the desirable features of a BPTT architecture, we resort like in
Chapter 2 on the truncated BPTT approach [64].Accordingly, predictions
are propagated for a limited number of steps F ≪ N , with F being a
strictly positive additional tuning parameter of the approach. Let then

103

0 100 200 300 400 500
-2

-1

0

1

2

Figure 21: Control input (black) and linear operating region of the actuator
(yellow area). © 2020 IEEE

υk+h be defined as

υk+h =

{︄
uk+h if h ≤ 0,

ν̂k+h otherwise,
(6.12a)

and

J̃ (ν̂(θ), u, â(φ)) =

1

N−Q

N−F−1∑︂
k=Q

F∑︂
j=1

ℓC(ν̂k+j(θ), uk+j)+γℓS(ν̂k+j(θ)−âk+j(φ)).

(6.12b)
The design problem in (6.7) is thus recast as:

min
Cθ∈Cθ
Hφ∈Hφ

J̃ (ν̂(θ), u, â(φ))

s.t. ν̂k+j(θ)=Cθ(υk+j , . . . , υk−Q+j , ẽk+j , . . . , ẽk−Q+j),

âk+j(φ)=Hφ(ν̂k+j , υk+j−1, . . . , υk−Q+j ,

ẽk+j , . . . , ẽk−Q+j),

j = 1, . . . , F.

(6.12c)

It is clear that the quality of the control scheme obtained via the solution
of the optimization problem in (6.12c) heavily depends on the choice of

104

the length of the prediction horizon F . We stress that F should be chosen
so as to compromise of the available computing capabilities, the simula-
tion accuracy of the learned controller, and the ability of the optimization
solver to reach a good quality solution of (6.12).

6.3.4 Data augmentation

Envisioning a training scheme for the antiwindup Hφ block is a trickier
process. The first difficulty arises from the experiment design phase. In-
deed, in most common situations, we cannot expect that the dataset will
encompass many situations in which the actuators saturate as this would
cause safety/reliability concerns for both the actuator and the system it-
self, meaning that one cannot arbitrarily select the inputs that excite the
plant.

While this condition might be good for a prospective identification of
Σ in (6.3) since it would reduce the overall non-linearity between input
and output data, having a training set that only consists of input/output
sequences that already belong to the feasible region, there is little hope
that the constraint enforcement module Hφ obtained by solving (6.12c)
will have satisfactory performances. However, If one can assume that
during the experiment the actuators were used (at least) close to their
limit, an effective and rather general strategy to handle this problem is
to augment the original dataset with fictitious samples that would violate
the saturation bounds. The generation of these data is quite a delicate
task, which could also deteriorate the quality of the original dataset with
samples that the actual plant could never generate. To bypass these limi-
tations, we rely on the following heuristic by accounting for the fact that
the saturation bounds act on the input only: we augment the learning
procedure, by superimposing a suitably defined white noise sequence
on the inputs vk of the two involved blocks when evaluating the anti-
windup action. In such a case, a possible choice for such a disturbance is
an additive noise with Gaussian distribution, so that the each input vk of
the involved ANNs is substituted by

ρ(vk) = vk + w, w ∼ N (0, σ2), (6.13)

105

Table 16: Performance indexes obtained with different controllers.© 2020
IEEE

RMSEM OB%

Unbounded actuator (ideal
case) 0.154 N/A

Controller without
anti-windup action (γ = 0) 0.110 4.8

Controller + anti-windup
compensator (2-DOF, γ = 6) 0.098 2.0

Table 17: Indexes obtained when using less informative training data.©
2020 IEEE

wk = 0, ∀k in (6.13) σ2 = 0.4 in (6.13)
RMSEM 0.092 0.097
OB% [%] 1.4 0.4

and where the variance σ2 ∈ R is a new parameter to be tuned. We
stress that the quality of the results obtained by exploiting this approach
strongly depends on the characteristics of the chosen noise sequence.

6.4 Simulation results

To show the effectiveness of the proposed data-driven scheme, we con-
sider the problem of controlling the following two-dimensional Ham-
merstein-Wiener plant:

ΣHW :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xk+1=

[︄
0.755 0.250

−0.199 0

]︄
xk+

[︄
−0.5

0

]︄
sign(ũk)

√︁
|ũk|,

zk =
[︂
0.699 −0.443

]︂
xk,

yok = zk + 5 sin (zk),

where ũk is generated according to (6.2), with u = −1 and ū = 1. In order
to attain the closed-loop behavior described by the reference model

M : yMk+1 = −0.1yMk + 0.3yMk−1 + 0.8rk−1,

106

we learn a controller and an anti-windup compensator of order Q = 4

by using a set ZN of N = 10, 000 samples. These are generated by ex-
citing the system with a sequence uk obtained by superimposing a nor-
mally distributed white noise sequence with a periodic step signal with
variable amplitude and period equal to 7. The output is corrupted by
a white noise sequence {vk}Nk=1 with zero-mean Gaussian distribution
and variance equal to 0.2, and the resulting signal is normalized using
the empirical mean and standard deviation computed on the available
data before starting the learning procedure. All the involved ANNs are
chosen as compact networks featuring 4 nonlinear hidden layers of 15
neurons each and a final output layer of proper dimensions. We resort to
the well-known Rectified Linear Unit (ReLU) maps [79] as the activation
function of the neurons. The implementation of all the networks is car-
ried out in Keras [80] with F = 5. In the learning phase, we initially set
γ = 0 in (6.12c). Once this optimization procedure converges, we retrain
both Cθ and Hφ by imposing γ = 6 and using the weights resulting from
the previous phase as initial guesses for the new instance of the learning
scheme. All the computations were carried out using a laptop equipped
with a 2.8-GHz Intel Core i7 with 16 GB of RAM.

Figures 20 and 21 show the response of the designed scheme when
we consider a reference sequence {rk}Ñk=1 of length Ñ = 500, where rk is
the piecewise-constant signal

rk =

{︄
−1, if 100(i−1)+1 ≤ k ≤ 100 · i,
1, otherwise,

(6.15)

for i = 1, 3, 5, . . ., and the output is corrupted by a noise with the same
distribution of that acting on the training set. It is clear that the output
obtained in closed-loop tracks the desired response and that the control
input feeding the plant rarely exceeds the saturation bounds. Since our
aim is to track the set point as similarly as possible to the reference model
M, while devising control inputs that exceeds as little as possible the
saturation limits, we quantitatively assess the performance of the scheme
by introducing the following indexes:

107

RMSEM =

⌜⃓⃓⎷ 1

Ñ

Ñ∑︂
k=1

(yk − yMk)2, (6.16a)

OB% =
#{k ∈ [1, Ñ] : uk /∈ [u, ū]}

Ñ
· 100%, (6.16b)

with RMSEM and OB%
1 respectively indicating how well the desired

closed-loop behavior is tracked and how many times the actuator
bounds are exceeded. The obtained results are reported in Table 16, along
with the ones retrieved by considering the ideal case of unbounded ac-
tuators and a scheme designed by neglecting input saturation, i.e., by
setting γ = 0 in (6.12b) and not introducing the saturated inputs as re-
gressive terms. It is clear that the achieved performances are compara-
ble when considering the tracking capabilities of the different configu-
rations, with the proposed 2-DOF architecture allowing us to reduce the
number of times the actuator bounds are exceeded and slightly improve
tracking performance.

We finally test the proposed approach in the presence of less informa-
tive data, by assuming that only saturated inputs are available to learn
the controller with anti-windup. In this case, we compare the perfor-
mance attained when the proposed 2-DOF architecture is designed with
and without the additional data augmentation presented in Section 6.3.4.
The obtained quality indexes are reported in Table 17, showing that the
exploited strategy still allows us to obtain comparable closed-loop per-
formance in terms of tracking, while resulting in a control input that ex-
ceeds the saturation bounds even less than the one obtained by learning
the controller+anti-windup block with unsaturated inputs.

6.5 Conclusions

We presented a data-driven design method of neural controllers with
anti-windup, by relying on a model-reference architecture approach. The

1Given a set A, #A indicates its cardinality.

108

proposed learning strategy only requires the knowledge of the actuator
limits, and does not involve the identification of a full open-loop model
of the plant to be controlled. As shown by the promising initial numer-
ical results, the approach allows us to attain satisfactory performance in
terms of reference tracking, in spite of bounded actuators. Future re-
search will be devoted to study data-driven strategies for the selection
of proper reference models, the development of systematic strategies to
tune the relevant hyperparameters of the data augmentation strategy,
and to assess the performance of the approach in more challenging sce-
narios.

109

Chapter 7

Conclusion

7.1 Summary of contributions

The objective of this thesis was to collect some results regarding the ap-
plication of machine learning techniques to control theory, both with the
objective of synthesizing novel techniques and of lessening taxing prop-
erties of already well-tested methods.

We first presented a system identification approach based on deep
artificial neural networks that can learn state-space models of nonlinear
systems. The approach is especially inviting for “control-oriented” appli-
cations due to its ability to produce models that can be immediately used
in a Linear Time-Varying MPC scheme without computing sensitivities.
A heuristic approach to tune the learning technique is also provided.

We then proposed a data-driven virtual sensor synthesis approach,
inspired by the MMAE framework for reconstructing normally unmea-
surable quantities such as scheduling parameters in parameter-varying
systems, hidden modes in switching systems, and states of nonlinear
systems. The main idea of this work was to verify if the classical model-
based MMAE framework could be adapted to a data-driven setting. Fur-
thermore, great attention has been devoted to making the approach as
computationally affordable as possible in order to improve its compati-
bility with embedded and fast-sampling applications.

110

In the remaining Chapters, we focused on data-driven control ap-
plications. In Chapter 4 we presented an approach to learn a neural-
networks-based short-term predictor of the behavior of nonlinear dy-
namical systems, which allows applying a standard model predictive
control scheme to the identified plant without neither the need to learn a
recursive Markovian model nor to compute sensitivities. In particular, a
selling point of this approach is that it allows one to employ a standard
LTV structure for the MPC controller, which can be very cheap from a
computational point of view. Comparison with a state-of-the-art com-
peting technique has shown the competitiveness of the approach.

Such an idea was further developed in Chapter 5, where the approach
was employed to provide constraints handling capability to the well-
known VRFT framework. Compared to the solution presented in Chap-
ter 4, the short-term predictor employed in this Chapter also provides an
improved capability to handle systems with non-affine input character-
istics.

Finally, in Chapter 6, we proposed an alternative approach to syn-
thesize VRFT controllers for constrained systems called “NAW-NET”.
Compared to the solution in Chapter 5, NAW-NET does not require to
perform online any optimization, greatly simplifying its implementation
on resource-constrained environments. The price to pay was to restrict
its capability to a particular kind of constraint, namely actuator satura-
tions, which are anyhow the most common kind of constraints found in
real-world applications.

7.2 Open questions and future research direc-
tions

All the proposed ideas present a margin of improvement. Regarding
the AE-based approach presented in Chapter 2, the most promising av-
enue is to explore its weaknesses and strengths compared to both Varia-
tional and Koopman-based approaches. This may allow assessing better
its limitations and also provide more insightful guidelines to balance the
performance and complexity of the resulting models. Another possible

111

extension is to assess the performance of the proposed approach when
dealing with more complex kinds of sensor data, such as the ones pre-
sented in [29], [53]. A final avenue would be to investigate the stability
and performance properties of the proposed LTV MPC scheme.

A natural extension to the virtual sensor proposed in Chapter 3 is
to explore its capability in real-life prognostic and predictive mainte-
nance applications. Moreover, considering its already limited memory
and CPU footprint, its implementation in an embedded-friendly soft-
ware package would also enable its deployment into a real world exper-
imental setup. Another possibility would be to adapt the virtual sensor
to closed-loop applications. For example, a possible idea would be to
envision a scheme where the virtual sensor selects the correct controller
from a set in a gain-scheduling-like scheme [93].

For the data-driven control techniques, the most compelling ques-
tions regard the overall stability of the proposed schemes and how to
tune their relevant hyper-parameters. An attractive approach to the lat-
ter problem may be the use of global optimization methods, which have
already found application in many learning and optimization contribu-
tion for exactly such purpose (see, for instance, [9]). Another possible
research direction concerning such resource-aware techniques is, like for
the virtual sensor, to develop the approaches into a library meant to be
compatible with embedded platforms. This would allow one to ver-
ify the limits of their applicability in resource constrained environments
and, if necessary, to address them.

112

Bibliography

[1] L. Lennart, “System identification: Theory for the user,” PTR
Prentice Hall, Upper Saddle River, NJ, pp. 1–14, 1999.

[2] K. J. Åström and B. Wittenmark, Adaptive control. Courier Corpo-
ration, 2013.

[3] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statisti-
cal learning: Data Mining, Inference, and Prediction. Springer-Verlag,
New York, 2009.

[4] C. Andersson, A. H. Ribeiro, K. Tiels, N. Wahlström, and T. B.
Schön, “Deep convolutional networks in system identification,”
in 2019 IEEE 58th Conference on Decision and Control, IEEE, 2019,
pp. 3670–3676.

[5] L. Ljung, C. Andersson, K. Tiels, and T. B. Schon, “Deep learning
and system identification,” in Proceedings of the 21st IFAC World
Congress, 2020.

[6] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, et al., “TensorFlow: Large-scale ma-
chine learning on heterogeneous systems,” arXiv preprint arXiv:
1603.04467, 2015, Software available from
http://www.tensorflow.org.

[7] F. Seide and A. Agarwal, “CNTK: Microsoft’s open-source deep-
learning toolkit,” in Proceedings of the 22Nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, San
Francisco, California, USA: ACM, 2016, pp. 2135–2135.

[8] A. Paszke, S. Gross, S. Chintala, et al., Automatic differentiation in
PyTorch, 2017.

113

http://www.tensorflow.org

[9] A. Bemporad, “Global optimization via inverse distance weight-
ing and radial basis functions,” Computational Optimization and
Applications, vol. 77, pp. 571–595, 2020, Code available at http:
//cse.lab.imtlucca.it/~bemporad/glis.

[10] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. MIT Press, Cambridge, MA, 1998.

[11] L. Ferrarotti and A. Bemporad, “Synthesis of optimal feedback
controllers from data via stochastic gradient descent,” in 2019 18th
European Control Conference (ECC), 2019, pp. 2486–2491.

[12] S. Gros and M. Zanon, “Data-driven economic NMPC using re-
inforcement learning,” IEEE Transactions on Automatic Control,
vol. 65, no. 2, pp. 636–648, 2020.

[13] D. Masti and A. Bemporad, “Learning binary warm starts
for multiparametric mixed-integer quadratic programming,” in
Proceedings of European Control Conference, Naples, Italy, 2019,
pp. 1494–1499.

[14] A. Cauligi, P. Culbertson, B. Stellato, D. Bertsimas, M. Schwa-
ger, and M. Pavone, “Learning mixed-integer convex optimiza-
tion strategies for robot planning and control,” in Proceedings of
2020 59th IEEE Conference on Decision and Control (CDC), Jeju Is-
land, Republic of Korea, 2020, pp. 1698–1705.

[15] M. Klaučo, M. Kalúz, and M. Kvasnica, “Machine learning-based
warm starting of active set methods in embedded model pre-
dictive control,” Engineering Applications of Artificial Intelligence,
vol. 77, pp. 1–8, 2019.

[16] D. Masti and A. Bemporad, “Learning nonlinear state–space
models using autoencoders,” Automatica, vol. 129, p. 109 666,
2021.

[17] D. Masti, D. Bernardini, and A. Bemporad, “A machine-learning
approach to synthesize virtual sensors for parameter-varying sys-
tems,” European Journal of Control, vol. 61, pp. 40–49, 2021, ISSN:
0947-3580.

[18] ——, “A machine-learning approach to synthesize virtual sensors
for parameter-varying systems,” arXiv preprint arXiv:2103.12324,
2021.

114

http://cse.lab.imtlucca.it/~bemporad/glis
http://cse.lab.imtlucca.it/~bemporad/glis

[19] D. Masti, F. Smarra, A. D’Innocenzo, and A. Bemporad, “Learn-
ing affine predictors for MPC of nonlinear systems via artificial
neural networks,” in Proceedings of the 21st IFAC World Congress,
2020.

[20] D. Masti, V. Breschi, S. Formentin, and A. Bemporad, “Direct data-
driven design of neural reference governors,” in Proceedings of
2020 59th IEEE Conference on Decision and Control (CDC), Jeju Is-
land, Republic of Korea, 2020, pp. 4955–4960.

[21] V. Breschi, D. Masti, S. Formentin, and A. Bemporad, “NAW-NET:
Neural anti-windup control for saturated nonlinear systems,” in
Proceedings of 2020 59th IEEE Conference on Decision and Control
(CDC), Jeju Island, Republic of Korea, 2020, pp. 3335–3340.

[22] D. Masti, D. Bernardini, and A. Bemporad, “Learning virtual sen-
sors for estimating the scheduling signal of parameter-varying
systems,” in 27th Mediterranean Conference on Control and Automa-
tion (MED), Akko, Israel: IEEE, 2019, pp. 232–237.

[23] D. Masti, T. Pippia, A. Bemporad, and B. De Schutter, “Learning
approximate semi-explicit hybrid MPC with an application to mi-
crogrids,” in Proceedings of the 21st IFAC World Congress, 2020.

[24] D. Masti, M. Zanon, and A. Bemporad, “Tuning LQR controllers:
A sensitivity-based approach,” IEEE Control Systems Letters, vol. 6,
pp. 932–937, 2022. DOI: 10.1109/LCSYS.2021.3087556.

[25] J. Schoukens and L. Ljung, “Nonlinear system identification: A
user-oriented road map,” IEEE Control Systems Magazine, vol. 39,
no. 6, pp. 28–99, 2019.

[26] G. Pillonetto, F. Dinuzzo, T. Chen, G. D. Nicolao, and L. Ljung,
“Kernel methods in system identification, machine learning and
function estimation: A survey,” Automatica, vol. 50, no. 3, pp. 657–
682, 2014, ISSN: 0005-1098.

[27] V. Breschi, D. Piga, and A. Bemporad, “Piecewise affine regres-
sion via recursive multiple least squares and multicategory dis-
crimination,” Automatica, vol. 73, pp. 155–162, Nov. 2016.

[28] Y. Wang, “A new concept using LSTM neural networks for dy-
namic system identification,” in 2017 American Control Conference,
IEEE, 2017, pp. 5324–5329.

115

https://doi.org/10.1109/LCSYS.2021.3087556

[29] Q. Lu and V. M. Zavala, “Image-based model predictive control
via dynamic mode decomposition,” arXiv preprint
arXiv: 2006.06727, 2020.

[30] T. Simpson, N. Dervilis, and E. Chatzi, “On the use of nonlin-
ear normal modes for nonlinear reduced order modelling,” arXiv
preprint arXiv:2007.00466, 2020.

[31] C. Wehmeyer and F. Noé, “Time-lagged autoencoders: Deep
learning of slow collective variables for molecular kinetics,” The
Journal of chemical physics, vol. 148, no. 24, p. 241 703, 2018.

[32] D. P. Kingma and M. Welling, An Introduction to Variational Au-
toencoders. Now Foundations and Trends, 2019.

[33] M. Karl, M. Soelch, J. Bayer, and P. Van der Smagt, “Deep varia-
tional bayes filters: Unsupervised learning of state space models
from raw data,” arXiv preprint arXiv:1605.06432, 2016.

[34] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Em-
bed to control: A locally linear latent dynamics model for control
from raw images,” in Advances in neural information processing sys-
tems, 2015, pp. 2746–2754.

[35] R. G. Krishnan, U. Shalit, and D. Sontag, “Deep Kalman filters,”
arXiv preprint arXiv:1511.05121, 2015.

[36] D. Gedon, N. Wahlström, T. B. Schön, and L. Ljung, “Deep state
space models for nonlinear system identification,” arXiv preprint
arXiv:2003.14162, 2020.

[37] R. K. Kandukuri, J. Achterhold, M. Möller, and J. Stückler, “Learn-
ing to identify physical parameters from video using differen-
tiable physics,” arXiv preprint arXiv: 2009.08292, 2020.

[38] M. Okada and T. Taniguchi, “Dreaming: Model-based reinforce-
ment learning by latent imagination without reconstruction,”
arXiv preprint arXiv: 2007.14535, 2020.

[39] H. van Hoof, N. Chen, M. Karl, P. van der Smagt, and J. Peters,
“Stable reinforcement learning with autoencoders for tactile and
visual data,” in 2016 IEEE/RSJ international conference on intelligent
robots and systems (IROS), 2016, pp. 3928–3934.

116

[40] Q. Li, F. Dietrich, E. M. Bollt, and I. G. Kevrekidis, “Extended
dynamic mode decomposition with dictionary learning: A data-
driven adaptive spectral decomposition of the Koopman opera-
tor,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 27,
no. 10, p. 103 111, 2017.

[41] Y. Xiao, X. Zhang, X. Xu, X. Liu, and J. Liu, “A deep learning
framework based on Koopman operator for data-driven model-
ing of vehicle dynamics,” arXiv preprint arXiv:2007.02219, 2020.

[42] Z. Ping, Z. Yin, X. Li, Y. Liu, and T. Yang, “Deep Koopman model
predictive control for enhancing transient stability in grids,” In-
ternational Journal of Robust and Nonlinear Control, 2020.

[43] N. Takeishi, Y. Kawahara, and T. Yairi, “Learning Koopman in-
variant subspaces for dynamic mode decomposition,” in Advances
in Neural Information Processing Systems, 2017, pp. 1130–1140.

[44] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for uni-
versal linear embeddings of nonlinear dynamics,” Nature commu-
nications, vol. 9, no. 1, pp. 1–10, 2018.

[45] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton, “Data-
driven discovery of coordinates and governing equations,” Pro-
ceedings of the National Academy of Sciences, vol. 116, no. 45,
pp. 22 445–22 451, 2019.

[46] S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang,
and T. Januschowski, “Deep state space models for time series
forecasting,” in Advances in neural information processing systems,
2018, pp. 7785–7794.

[47] M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther, “A disen-
tangled recognition and nonlinear dynamics model for unsuper-
vised learning,” in Advances in Neural Information Processing Sys-
tems, 2017, pp. 3601–3610.

[48] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y.
Bengio, “A recurrent latent variable model for sequential data,”
in Advances in neural information processing systems, 2015, pp. 2980–
2988.

[49] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimension-
ality of data with neural networks,” Science, vol. 313, no. 5786,
pp. 504–507, Jul. 2006.

117

[50] S. E. Otto and C. W. Rowley, “Linearly recurrent autoencoder net-
works for learning dynamics,” SIAM Journal on Applied Dynamical
Systems, vol. 18, no. 1, pp. 558–593, 2019.

[51] D. Masti and A. Bemporad, “Learning nonlinear state-space mod-
els using deep autoencoders,” in Proceedings of 2018 57th Confer-
ence on Decision and Control (CDC), Miami Beach, FL, USA, 2018,
pp. 3862–3867.

[52] G. Beintema, R. Toth, and M. Schoukens, “Nonlinear state-space
identification using deep encoder networks,” arXiv preprint arXiv:
2012.07697, 2020.

[53] G. I. Beintema, R. Toth, and M. Schoukens, “Non-linear state-
space model identification from video data using deep encoders,”
arXiv preprint arXiv: 2012.07721, 2020.

[54] J. Drgona, A. R. Tuor, V. Chandan, and D. L. Vrabie, “Physics-
constrained deep learning of multi-zone building thermal dy-
namics,” arXiv preprint arXiv: 2011.05987, 2020.

[55] R. L. Williams and D. A. Lawrence, “Minimal realizations,” in
Linear State-Space Control Systems. John Wiley Sons, Inc., 2007,
pp. 185–197, ISBN: 9780470117873.

[56] Y. Baram, “Minimal order representation, estimation and feed-
back of continuous-time stochastic linear systems,” in Mathemati-
cal Theory of Networks and Systems, Springer, 1984, pp. 24–41.

[57] I. Guyon and A. Elisseeff, “An introduction to feature extraction,”
in Feature extraction, Springer, 2006, pp. 1–25.

[58] A. R. Barron, “Universal approximation bounds for superposi-
tions of a sigmoidal function,” IEEE Transactions on Information
Theory, vol. 39, no. 3, pp. 930–945, 1993.

[59] P. Baldi and K. Hornik, “Neural networks and principal compo-
nent analysis: Learning from examples without local minima,”
Neural networks, vol. 2, no. 1, pp. 53–58, 1989.

[60] “Mean absolute error,” in Encyclopedia of Machine Learning, C.
Sammut and G. I. Webb, Eds., Springer US, 2010, pp. 652–652,
ISBN: 978-0-387-30164-8.

[61] P. J. Werbos et al., “Backpropagation through time: What it does
and how to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–
1560, 1990.

118

[62] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[63] M. Forgione and D. Piga, “Model structures and fitting criteria
for system identification with neural networks,” in Proceedings of
2020 IEEE 14th International Conference on Application of Information
and Communication Technologies (AICT), 2020, pp. 1–6.

[64] G. V. Puskorius and L. A. Feldkamp, “Truncated backpropagation
through time and Kalman filter training for neurocontrol,” in Pro-
ceedings of 1994 IEEE International Conference on Neural Networks
(ICNN’94), IEEE, vol. 4, 1994, pp. 2488–2493.

[65] M. Forgione and D. Piga, “Continuous-time system identification
with neural networks: Model structures and fitting criteria,” Eu-
ropean Journal of Control, 2021, ISSN: 0947-3580.

[66] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016.

[67] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
J. of the Royal Statistical Society. Series B (Methodological), vol. 58,
no. 1, pp. 267–288, 1996.

[68] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini, “
Group sparse regularization for deep neural networks,” Neuro-
computing, vol. 241, pp. 81–89, 2017.

[69] A. Bemporad, “Model-based predictive control design: New
trends and tools,” in 2006 IEEE Conference on Decision and Control
and European Control Conference, San Diego, CA, 2006, pp. 6678–
6683.

[70] D. Q. Mayne, “Model predictive control: Recent developments
and future promise,” Automatica, vol. 50, no. 12, pp. 2967–2986,
2014.

[71] M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration
scheme for nonlinear optimization in optimal feedback control,”
SIAM Journal on control and optimization, vol. 43, no. 5, pp. 1714–
1736, 2005.

[72] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl,
“From linear to nonlinear MPC: Bridging the gap via the real-time
iteration,” International Journal of Control, vol. 93, no. 1, pp. 62–80,
2020.

119

[73] M. Schoukens and J. P. Noël, “Three benchmarks address-
ing open challenges in nonlinear system identification,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 446–451, 2017.

[74] J. Wang, A. Sano, T. Chen, and B. Huang, “Identification of Ham-
merstein systems without explicit parameterisation of non - lin-
earity,” International Journal of Control, vol. 82, no. 5, pp. 937–952,
2009.

[75] The MathWorks, Inc., Nonlinear modeling of a magneto-rheological
fluid damper, https://mathworks.com/help/ident/ug/
nonlinear - modeling - of - a - magneto - rheological -
fluid-damper.html, 2020.

[76] ——, Two tank system: C MEX-file modeling of time-continuous siso
system, https://it.mathworks.com/help/ident/ug/
two-tank-system-c-mex-file-modeling-of-time-
continuous-siso-system.html, 2020.

[77] T. Wigren and J. Schoukens, “Three free data sets for develop-
ment and benchmarking in nonlinear system identification,” in
2013 European control conference (ECC), IEEE, 2013, pp. 2933–2938.

[78] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas,
and S. H. Seung, “Digital selection and analogue amplification co-
exist in a cortex-inspired silicon circuit,” Nature, vol. 405, no. 6789,
p. 947, 2000.

[79] V. Nair and G. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th international con-
ference on machine learning (ICML-10), 2010, pp. 807–814.

[80] F. Chollet et al., Keras, https://keras.io, 2015.

[81] S. K. Sashank J. Reddi Satyen Kale, “On the convergence of Adam
and beyond,” Internation Conference on Learning Representations,
2018.

[82] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian op-
timization of machine learning algorithms,” in Advances in Neu-
ral Information Processing Systems 25, F. Pereira, C. J. C. Burges, L.
Bottou, and K. Q. Weinberger, Eds., Curran Associates, Inc., 2012,
pp. 2951–2959.

[83] The MathWorks, Inc., System identification toolbox, Natick, Mas-
sachusetts, United State, 2019.

120

https://mathworks.com/help/ident/ug/nonlinear-modeling-of-a-magneto-rheological-fluid-damper.html
https://mathworks.com/help/ident/ug/nonlinear-modeling-of-a-magneto-rheological-fluid-damper.html
https://mathworks.com/help/ident/ug/nonlinear-modeling-of-a-magneto-rheological-fluid-damper.html
https://it.mathworks.com/help/ident/ug/two-tank-system-c-mex-file-modeling-of-time-continuous-siso-system.html
https://it.mathworks.com/help/ident/ug/two-tank-system-c-mex-file-modeling-of-time-continuous-siso-system.html
https://it.mathworks.com/help/ident/ug/two-tank-system-c-mex-file-modeling-of-time-continuous-siso-system.html
https://keras.io

[84] T. E. Oliphant, “Python for scientific computing,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 10–20, 2007.

[85] N. Saraf and A. Bemporad, “A bounded-variable least-squares
solver based on stable QR updates,” IEEE Transactions on Auto-
matic Control, vol. 65, no. 3, pp. 1242–1247, 2020.

[86] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and
huffman coding,” arXiv preprint arXiv:1510.00149, 2015.

[87] F.-R. López-Estrada, D. Rotondo, and G. Valencia-Palomo, “A re-
view of convex approaches for control, observation and safety of
linear parameter varying and Takagi-Sugeno systems,” Processes,
vol. 7, no. 11, p. 814, 2019.

[88] R. Tóth, Modeling and Identification of Linear Parameter-Varying Sys-
tems. Springer, Berlin, Heidelberg, 2010, ISBN: 9783642138119.

[89] F. D. Torrisi and A. Bemporad, “HYSDEL — A tool for generating
computational hybrid models,” IEEE Trans. Contr. Systems Tech-
nology, vol. 12, no. 2, pp. 235–249, Mar. 2004.

[90] D. Rotondo, V. Puig, J. Acevedo Valle, and F. Nejjari, “FTC of LPV
systems using a bank of virtual sensors: Application to wind tur-
bines,” in Proceedings of Conference on Control and Fault-Tolerant
Systems, 2013, pp. 492–497.

[91] M. Witczak, Fault diagnosis and fault-tolerant control strategies for
non-linear systems. Springer, 2014, vol. 266.

[92] J. Guzman, F.-R. López-Estrada, V. Estrada-Manzo, and G. Valen-
cia-Palomo, “Actuator fault estimation based on a proportional-
integral observer with nonquadratic Lyapunov functions,” Inter-
national Journal of Systems Science, pp. 1–14, 2021.

[93] H. Khalil, Nonlinear Systems. Prentice Hall, 2002.

[94] M. Misin and V. Puig, “LPV MPC control of an autonomous aerial
vehicle,” in 2020 28th Mediterranean Conference on Control and Au-
tomation (MED), IEEE, 2020, pp. 109–114.

[95] M.-H. Do, D. Koenig, and D. Theilliol, “H∞ observer design for
singular nonlinear parameter-varying system,” in Proceedings of
2020 59th IEEE Conference on Decision and Control (CDC), Jeju Is-
land, Republic of Korea, 2020, pp. 3927–3932.

121

[96] K. J. Keesman, System identification: an introduction. Springer-
Verlag London, 2011.

[97] M. Milanese, C. Novara, K. Hsu, and K. Poolla, “The filter design
from data (FD2) problem: Nonlinear set membership approach,”
Automatica, vol. 45, no. 10, pp. 2350–2357, 2009.

[98] T. Poggi, M. Rubagotti, A. Bemporad, and M. Storace, “High-
speed piecewise affine virtual sensors,” IEEE Transactions on In-
dustrial Electronics, vol. 59, no. 2, pp. 1228–1237, 2012.

[99] E. Marchi, F. Vesperini, F. Eyben, S. Squartini, and B. Schuller,
“A novel approach for automatic acoustic novelty detection us-
ing a denoising autoencoder with bidirectional LSTM neural net-
works,” in 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), IEEE, 2015, pp. 1996–2000.

[100] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah, “Time-series
clustering–A decade review,” Information Systems, vol. 53, pp. 16–
38, 2015.

[101] M. D. Morse and J. M. Patel, “An efficient and accurate method for
evaluating time series similarity,” in Proceedings of the 2007 ACM
SIGMOD international conference on Management of data, ACM,
2007, pp. 569–580.

[102] A. Akca and M. Ö. Efe, “Multiple model Kalman and particle
filters and applications: A survey,” IFAC-PapersOnLine, vol. 52,
no. 3, pp. 73–78, 2019.

[103] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with applica-
tions to tracking and navigation: theory algorithms and software. John
Wiley & Sons, 2004.

[104] B. N. Alsuwaidan, J. L. Crassidis, and Y. Cheng, “Generalized
multiple-model adaptive estimation using an autocorrelation ap-
proach,” IEEE Transactions on Aerospace and Electronic systems,
vol. 47, no. 3, pp. 2138–2152, 2011.

[105] X.-R. Li and Y. Bar-Shalom, “Multiple-model estimation with
variable structure,” IEEE Transactions on Automatic control, vol. 41,
no. 4, pp. 478–493, 1996.

[106] J. Feng and Z.-H. Zhou, “Autoencoder by forest,” in Proceedings of
the AAAI conference on artificial intelligence, 2018.

[107] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions
on Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

122

[108] A. Bemporad, V. Breschi, D. Piga, and S. P. Boyd, “Fitting jump
models,” Automatica, vol. 96, pp. 11–21, 2018.

[109] P. Mellodge, A Practical Approach to Dynamical Systems for Engi-
neers. Woodhead Publishing, 2015.

[110] S. M. Shinners, Modern Control System Theory and Design, 2nd.
New York, NY, USA: John Wiley & Sons, Inc., 1998.

[111] “Generative and discriminative learning,” in Encyclopedia of Ma-
chine Learning, C. Sammut and G. I. Webb, Eds. Springer US, 2010,
pp. 454–455.

[112] P. D. Hanlon and P. S. Maybeck, “Multiple-model adaptive es-
timation using a residual correlation Kalman filter bank,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 36, no. 2,
pp. 393–406, 2000.

[113] Y. Gao, L. Zhu, H.-D. Zhu, Y. Gan, and L. Shang, “Extract features
using stacked denoised autoencoder,” in Intelligent Computing in
Bioinformatics, Springer International Publishing, 2014, pp. 10–14,
ISBN: 978-3-319-09330-7.

[114] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Summer school on machine learning, Springer, 2003, pp. 63–71.

[115] T. L. Vincent, C. Galarza, and P. P. Khargonekar, “Adaptive esti-
mation using multiple models and neural networks,” IFAC Pro-
ceedings Volumes, vol. 31, no. 29, pp. 149–154, 1998.

[116] B. Karg and S. Lucia, “Efficient representation and approximation
of model predictive control laws via deep learning,” IEEE Trans-
actions on Cybernetics, vol. 50, no. 9, pp. 3866–3878, 2020.

[117] R. L. Marchese Robinson, A. Palczewska, J. Palczewski, and N. Ki-
dley, “Comparison of the predictive performance and interpreta-
bility of random forest and linear models on benchmark data
sets,” Journal of Chemical Information and Modeling, vol. 57, no. 8,
pp. 1773–1792, 2017.

[118] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1,
pp. 5–32, 2001.

[119] V. Breschi and M. Mejari, “Shrinkage strategies for structure selec-
tion and identification of piecewise affine models,” in Proceedings
of 2020 59th IEEE Conference on Decision and Control (CDC), Jeju
Island, Republic of Korea, 2020, pp. 1626–1631.

123

[120] X. R. Li, X. Zwi, and Y. Zwang, “Multiple-model estimation with
variable structure. iii. model-group switching algorithm,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 35, no. 1,
pp. 225–241, 1999.

[121] L. Buitinck, G. Louppe, M. Blondel, et al., “API design for machine
learning software: Experiences from the scikit-learn project,” in
ECML PKDD Workshop: Languages for Data Mining and Machine
Learning, 2013, pp. 108–122.

[122] “Mean squared error,” in Encyclopedia of Machine Learning, C. Sam-
mut and G. I. Webb, Eds. Boston, MA: Springer US, 2010, pp. 653–
653, ISBN: 978-0-387-30164-8.

[123] D. Liberzon, Switching in systems and control. Springer Science &
Business Media, 2003.

[124] Y. Sasaki et al., “The truth of the F-measure,” Teach Tutor mater,
vol. 1, no. 5, pp. 1–5, 2007.

[125] D. Ali, S. Mukhopadhyay, H. Rehman, and A. Khurram, “UAS
based Li-ion battery model parameters estimation,” Control Engi-
neering Practice, vol. 66, pp. 126–145, 2017.

[126] H. Abdi, B. Mohammadi-ivatloo, S. Javadi, A. R. Khodaei,
and E. Dehnavi, “Energy storage systems,” in Distributed Gen-
eration Systems, G. Gharehpetian and S. M. Mousavi Agah,
Eds., Butterworth-Heinemann, 2017, pp. 333–368, ISBN: 978-0-12-
804208-3.

[127] B. Anderson and J. Moore, Optimal Filtering. Englewood Cliffs, NJ:
Prentice-Hall, 1979.

[128] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Lin-
ear and Hybrid Systems. Cambridge University Press, 2017.

[129] J. Kocijan, A. Girard, B. Banko, and R. Murray-Smith, “Dynamic
systems identification with gaussian processes,” Mathematical and
Computer Modelling of Dynamical Systems, vol. 11, no. 4, pp. 411–
424, 2005.

[130] D. Piga, S. Formentin, and A. Bemporad, “Direct data-driven con-
trol of constrained systems,” IEEE Transactions on Control Systems
Technology, vol. 26, no. 4, pp. 1422–1429, 2017.

124

[131] A. Jain, F. Smarra, and R. Mangharam, “Data predictive control
using regression trees and ensemble learning,” in Proceedings of
the 56th Annual Conference on Decision and Control, IEEE, 2017,
pp. 4446–4451.

[132] A. Jain, F. Smarra, M. Behl, and R. Mangharam, “Data-driven
model predictive control with regression trees-An application
to building energy management,” ACM Transactions on Cyber-
Physical Systems, vol. 2, no. 1, p. 4, 2018.

[133] A. Afram, F. Janabi-Sharifi, A. S. Fung, and K. Raahemifar, “Artifi-
cial neural network (ANN) based model predictive control (MPC)
and optimization of HVAC systems: A state of the art review and
case study of a residential HVAC system,” Energy and Buildings,
vol. 141, pp. 96–113, 2017.

[134] M. Behl, F. Smarra, and R. Mangharam, “Dr-advisor: A data-
driven demand response recommender system,” Applied Energy,
vol. 170, pp. 30–46, 2016.

[135] F. Smarra, A. Jain, T. de Rubeis, D. Ambrosini, A. D’Innocenzo,
and R. Mangharam, “Data-driven model predictive control using
random forests for building energy optimization and climate con-
trol,” Applied Energy, vol. 226, 2018.

[136] E. Terzi, L. Fagiano, M. Farina, and R. Scattolini, “Learning-based
predictive control for linear systems: A unitary approach,” Auto-
matica, vol. 108, p. 108 473, 2019.

[137] G. Liu and V. Kadirkamanathan, “Predictive control for non-
linear systems using neural networks,” International Journal of
Control, vol. 71, no. 6, pp. 1119–1132, 1998.

[138] F. Smarra, A. Jain, R. Mangharam, and A. D’Innocenzo, “Data-
driven switched affine modeling for model predictive control,”
in IFAC Conference on Analysis and Design of Hybrid Systems
(ADHS’18), IFAC, 2018, pp. 199–204.

[139] F. Smarra, G. D. Di Girolamo, V. De Iuliis, A. Jain, R. Mangharam,
and A. D’Innocenzo, “Data-driven switching modeling for mpc
using regression trees and random forests,” Nonlinear Analysis:
Hybrid Systems, vol. 36, 2020.

[140] J. A. Suykens, “Deep restricted kernel machines using conjugate
feature duality,” Neural computation, vol. 29, no. 8, pp. 2123–2163,
2017.

125

[141] F. Bünning, B. Huber, P. Heer, A. Aboudonia, and J. Lygeros, “Ex-
perimental demonstration of data predictive control for energy
optimization and thermal comfort in buildings,” Energy and Build-
ings, vol. 211, p. 109 792, 2020.

[142] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classifica-
tion and regression trees. CRC press, 1984.

[143] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1,
pp. 5–32, 2001.

[144] D. Kraft, “A software package for sequential quadratic program-
ming,” Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt
fur Luft- und Raumfahrt, 1988.

[145] L. Ljung, System Identification Toolbox for MATLAB – User’s Guide.
The Mathworks, Inc., 2001.

[146] M. H. Beale, M. T. Hagan, and H. B. Demuth, Deep Learning Tool-
box – User’s Guide. The Mathworks, Inc., 2018.

[147] D. Piga, M. Forgione, S. Formentin, and A. Bemporad, “Perfor-
mance-oriented model learning for data-driven MPC design,”
IEEE control systems letters, vol. 3, no. 3, pp. 577–582, 2019.

[148] Z.-S. Hou and Z. Wang, “From model-based control to data-
driven control: Survey, classification and perspective,” Informa-
tion Sciences, vol. 235, pp. 3–35, 2013.

[149] S. Formentin, K. Van Heusden, and A. Karimi, “A comparison
of model-based and data-driven controller tuning,” International
Journal of Adaptive Control and Signal Processing, vol. 28, no. 10,
pp. 882–897, 2014.

[150] S. Formentin, S. Savaresi, and L. Del Re, “Non-iterative direct
data-driven controller tuning for multivariable systems: Theory
and application,” IET control theory & applications, vol. 6, no. 9,
pp. 1250–1257, 2012.

[151] M. Campi, A. Lecchini, and S. Savaresi, “Virtual reference feed-
back tuning: A direct method for the design of feedback con-
trollers,” Automatica, vol. 38, no. 8, pp. 1337–1346, 2002.

[152] S. Formentin, D. Piga, R. Tóth, and S. M. Savaresi, “Direct learn-
ing of LPV controllers from data,” Automatica, vol. 65, pp. 98–110,
2016.

126

[153] V. Breschi and S. Formentin, “Direct data-driven design of switch-
ing controllers,” International Journal of Robust and Nonlinear Con-
trol, 2019.

[154] M. Radac, R. Precup, and R. Roman, “Data-driven model ref-
erence control of MIMO vertical tank systems with model-free
VRFT and Q-learning,” ISA transactions, vol. 73, pp. 227–238, 2018.

[155] A. Sadeghzadeh and H. Momeni, “Virtual closed loop identifica-
tion: A new method for low-order H∞ controller design,” IFAC
Proceedings Volumes, vol. 42, no. 10, pp. 314–319, 2009.

[156] A. Bemporad, “Reference governor for constrained nonlinear
systems,” IEEE Transactions on Automatic Control, vol. 43, no. 3,
pp. 415–419, 1998.

[157] M. Farina and L. Piroddi, “Simulation error minimization identi-
fication based on multi-stage prediction,” International Journal of
Adaptive Control and Signal Processing, vol. 25, no. 5, pp. 389–406,
2011.

[158] G. Cimini and A. Bemporad, “Exact complexity certification of
active-set methods for quadratic programming,” IEEE Transac-
tions on Automatic Control, vol. 62, no. 12, pp. 6094–6109, 2017.

[159] P. Patrinos and A. Bemporad, “An accelerated dual gradient-pro-
jection algorithm for embedded linear model predictive control,”
IEEE Transactions on Automatic Control, vol. 59, no. 1, pp. 18–33,
2013.

[160] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic differentiation in machine learning: A survey,” The
Journal of Machine Learning Research, vol. 18, no. 1, pp. 5595–5637,
2017.

[161] V. Breschi and S. Formentin, “Virtual reference feedback tun-
ing with data-driven reference model selection,” in Proceedings of
the 2nd Conference on Learning for Dynamics and Control, vol. 120,
PMLR, 2020, pp. 37–45.

[162] A. Bemporad, “A numerically stable solver for positive semidef-
inite quadratic programs based on nonnegative least squares,”
IEEE Transactions on Automatic Control, vol. 63, no. 2, pp. 525–531,
2017.

[163] B. Recht, A Tour of Reinforcement Learning: The View from Continu-
ous Control, 2018. eprint: arXiv:1806.09460.

127

arXiv:1806.09460

[164] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis,
“Optimal and autonomous control using Reinforcement Learn-
ing: A survey,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 29, no. 6, pp. 2042–2062, 2018.

[165] S. Formentin, M. C. Campi, A. Carè, and S. M. Savaresi, “De-
terministic continuous-time virtual reference feedback tuning
(VRFT) with application to PID design,” Systems & Control Letters,
vol. 127, pp. 25–34, 2019.

[166] L. Zaccarian and A. Teel, Modern Anti-windup Synthesis: Control
Augmentation for Actuator Saturation. Princeton University Press,
2011.

[167] S. Formentin, F. Dabbene, R. Tempo, L. Zaccarian, and S. M.
Savaresi, “Robust linear static anti-windup with probabilistic cer-
tificates,” IEEE Transactions on Automatic Control, vol. 62, no. 4,
pp. 1575–1589, 2016.

[168] F. Todeschini, S. Formentin, G. Panzani, M. Corno, S. M. Savaresi,
and L. Zaccarian, “Nonlinear pressure control for bbw systems
via dead-zone and antiwindup compensation,” IEEE Transactions
on Control Systems Technology, vol. 24, no. 4, pp. 1419–1431, 2015.

[169] P. Yan, D. Liu, D. Wang, and H. Ma, “Data-driven controller de-
sign for general MIMO nonlinear systems via virtual reference
feedback tuning and neural networks,” Neurocomputing, vol. 171,
pp. 815–825, 2016.

Unless otherwise expressly stated, all original material of what-
ever nature created by Daniele Masti and included in this thesis,
is licensed under a Creative Commons Attribution Noncommercial
Share Alike 3.0 Italy License.

Check on Creative Commons site:

https://creativecommons.org/licenses/by-nc-
sa/3.0/it/legalcode/

https://creativecommons.org/licenses/by-nc-sa/3.0/it/deed.en

Ask the author about other uses.

https://creativecommons.org/licenses/by-nc-sa/3.0/it/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/legalcode/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/legalcode/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/deed.en
mailto:daniele.masti@imtlucca.it

	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract
	1 Introduction
	1.1 Thesis outline

	2 Learning nonlinear state-space models using autoencoders
	2.1 Introduction
	2.1.1 Machine-learning methods for the identification of state-space models
	2.1.2 Contribution

	2.2 Nonlinear identification problem
	2.3 State selection via autoencoders
	2.3.1 Partial predictive autoencoders

	2.4 Model learning
	2.4.1 Multiple-step ahead fitting procedure
	2.4.2 Network topology
	2.4.3 Feature selection and model reduction

	2.5 Nonlinear state estimation and control
	2.5.1 Filtering and state reconstruction
	2.5.2 Nonlinear model predictive control

	2.6 Experimental Results
	2.6.1 Synthetic benchmark problems
	2.6.2 Experimental and simulation benchmarks
	2.6.3 Hyperparameter selection and implementation details
	2.6.4 Fit results
	2.6.5 Feature selection and model reduction
	2.6.6 LTV-MPC based on learned model
	2.6.7 Computational aspects

	2.7 Conclusions

	3 A machine-learning approach to synthesize virtual sensors for parameter-varying systems
	3.1 Introduction
	3.1.1 Contribution

	3.2 Multiple Model Adaptive Estimation
	3.3 Data-driven determination of linear models
	3.3.1 Learning the local models
	3.3.2 Design of the observer bank
	3.3.3 A model-free hypothesis testing algorithm
	3.3.4 Hyper-parameters and tuning procedures

	3.4 Numerical results
	3.4.1 Learning setup
	3.4.2 A synthetic benchmark system
	3.4.3 Dependence on the number N of samples
	3.4.4 Robustness toward measurement noise
	3.4.5 Dependence on the prediction function
	3.4.6 Dependence on the observer dynamics
	3.4.7 Dependence on the number Nθ of local models
	3.4.8 Dependence on the dynamics of ρk
	3.4.9 A mode observer for switching linear systems
	3.4.10 Nonlinear state estimation
	3.4.11 Complexity of the prediction functions

	3.5 Conclusions

	4 Learning affine predictors for MPC of nonlinear systems via artificial neural networks
	4.1 Introduction
	4.2 Problem formulation
	4.3 Training affine predictors via ANNs
	4.4 Switching affine RT and RF predictors
	4.5 Simulation results
	4.5.1 Benchmark problem setup
	4.5.2 Fitting performance
	4.5.3 Performance comparison between ANN, RT, and RF
	4.5.4 Evaluating MPC closed-loop performance

	4.6 Complexity reduction
	4.6.1 Memory occupancy vs. quality of fit tradeoff

	4.7 Conclusions

	5 Direct data-driven design of neural reference governors
	5.1 Introduction
	5.2 Setting and goals
	5.3 Data-driven design of reference governors
	5.3.1 The design of the reference governor
	5.3.2 ANNs for controller parameterization

	5.4 Simulation case studies
	5.5 Conclusions

	6 NAW-NET: neural anti-windup control for saturated nonlinear systems
	6.1 Introduction
	6.2 Setting and Goal
	6.2.1 Direct data-driven control design

	6.3 NAW-NET: training
	6.3.1 Training the anti-windup block
	6.3.2 NAW-NET parameterization
	6.3.3 Improving NAW-NET performance via Truncated Back Propagation Through Time
	6.3.4 Data augmentation

	6.4 Simulation results
	6.5 Conclusions

	7 Conclusion
	7.1 Summary of contributions
	7.2 Open questions and future research directions

