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Abstract

Many real-world phenomena are characterized by complex
structures. Modeling and detecting these architectures is of
paramount importance to understand the dynamics of the
considered systems and to consciously intervene on them.
The COVID-19 pandemic is, in this sense, a telling exam-
ple. One common feature of these complex structures is the
heterogeneity of the node connectivity of the underlying net-
work. This heterogeneity is one of the main culprits of the
ongoing pandemic.

In this thesis, we introduce a method capable of uncovering
complex networks’ heterogeneous structures when finite-size
effects hide the latter. Larger heterogeneity in the network
structure leads to a smaller epidemic threshold. It is not a co-
incidence that policymakers worldwide are trying to reduce
this heterogeneity (employing lockdowns and other less re-
strictive measurements) to stop the spread of the virus. We
show that a macro-quarantine followed by a micro-quarantine
can help in this direction. For this scope, we introduce an al-
gorithm that is able to track super-spreaders. Notably, the
same algorithm can be used to define an optimized strategy
for vaccinations. Similarly to a virus, information continu-
ously spreads on social networks. By combining Machine
Learning and network theory techniques, we develop an al-
gorithm able to discover what “social users” think about a
particular topic—a sort of social listener, an AI alternative to
traditional polls.

xvii



Chapter 1

Introduction

In the last three decades, we have witnessed a profound change in our
world. The difference was so drastic that our ancestors would not recog-
nize it as their planet. The main actors that drove this change are tech-
nological progress and its availability for the public. Let us consider
one of the prominent inventions of the last century: the mobile phone. In
1984, the first-ever genuinely portable mobile phone hits the shelves, the
Motorola DynaTAC 8000X (Despite the Federal Communications Com-
mission’s approval, on the 21st of September 1983). The mobile weighs
793 grams and could memorize up to 30 phone numbers. The phone took
10 hours to charge for a maximum of 60 minutes of calls. Its price was
around four thousand dollars (about ten thousand dollars of today [1]).
Although the technological change was there, the mobile phone was still
a business tool because of its high price. When the mobile phone became
more affordable, it led to a revolution in the way we communicate [2].

The mobile phone was the forerunner of a dynamic world. Quickly,
the possibility to reach someone without stopping your activity became
a need. At a certain point, the necessity of the mobile phone requested
for a more performant battery. Then, to a lighter mobile phone. Later,
to a mobile phone with a color display. Thanks to the Internet, mobile
phones started to play a central role in daily life rapidly. A phone-call
turned into a video-call. Finally, everyone could reach everyone, no mat-

1



ter where she or he was. All one needs is a phone number or a profile
name (in the modern social networks). As a result, the words became
hyper-connected. Mobile phones are just an example of the progress’
speediness we are witnessing. We are filling up the words with tech-
nology and devices meant to make our life easier. Services designed to
help people to carry out daily activities in new ways. We redesigned our
world. In such a way that, every day, countless connections may take
place. Physical as it is the flow of people and goods from one country to
another one; virtual as the information traveling on the Internet on the
world wide web and the services on it; financial with respect to the ar-
chitecture of our financial systems with all the loans and credit amongst
banks and firms [3].

Of course, “There is no such thing as a free lunch.” Complexity is the
quantity, whose increase gives a direction to evolution [4]. Complexity is
the price that we are paying for evolution. It arises whenever the number
of ”actors” in the system becomes very large. When the law capable
of explaining the behavior of the single ingredient, it fails in explaining
their aggregations’ behavior, confirming that “more is different” [5].

Although it is the first time that complexity “walks freely in our world,”
it was always with us, working, silently and efficiently, in the back-end.
In 1872, to describe gas’s behavior, composed of millions and millions
of particles (N=1025), Ludwig Boltzmann introduced the equation that
carries his name. Gas, something present in our everyday life, is a mani-
festation of complexity. Statistical physicists, which deal with many ele-
ments, were the ones who first realized it.

At this point, a question arises: Why just now? Why did complexity
not continue to work in the back-end? The answer is simple: Data. Com-
plexity can walk in our world only through roads made of data. And the
more data we accumulate, the more are the roads through which com-
plexity can walk. According to a report, [6] the total amount of data in
the world reached 2.8 zettabytes (ZB) in 2012 or 2.8 trillion gigabytes.
The volumes of data were expected to reach 40 ZB by 2020, i.e., 4 × 1022

bytes. 90% of the world’s data was generated over the last two years
alone, at a rate of 2.5 quintillions (1018) bytes of data a day [7, 8].
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This enormous amount of data leads to a possibility, such as studying
new phenomena and a problem, i.e., the need for new methodologies ca-
pable of dealing with systems with many variables. Graph theory, a field
in mathematics that gained popularity in the 19th and 20th centuries, al-
lows handling all these variables in a structure called “complex network”
[9]. A graph (or network) is defined by a collection of nodes. A node can
be anything: A person, an organization, a computer, a biological cell,
and so forth. Two nodes may be linked, for example, because two peo-
ple know each other, two organizations exchange goods, two computers
have a cable connecting the two of them, or because two neurons are con-
nected by means of synapses for passing signals. The process of model-
ing a phenomenon through its underlying network (whose complexity
is proportional to the complexity of the original phenomenon) involves
a reduction of information. It is the researcher’s duty, distinguishing be-
tween necessary and unnecessary information, reducing the problem to
its skeleton.

In 1999 A. L. Barabási and R. Albert published a paper titled “Emer-
gence of Scaling in Random Networks” [10]. The authors showed that
many large networks’ common property is that the vertex connectivities
follow a scale-free power-law distribution, that is the probability to find
a node with degree k (where the degree is the number of connections of
the node) in the network can be written as:

p(k) ∝ k−λ

They also argued that this is a consequence of two mechanisms: growth
and preferential attachment. A new node entering the network prefers
to establish a connection with a well-connected node. A model based
on these two ingredients reproduces the observed stationary scale-free
distributions, indicating that the development of large networks is gov-
erned by robust self-organizing phenomena that go beyond the particu-
lars of the individual systems.

At the time of this work, we knew that many systems in nature have
power-law distributions of some essential quantities. Phase-transitions,
for example, have power-law distributions in the scaling parameters (the

3



critical exponents) that are independent of the details of the experiment.
The presence of few exponents able to describe different systems justifies
the epithet “universal exponents.” However, phase transitions happen at
only one point (in one dimension of the parameters-space). Thus the sys-
tem needs a way to turn itself to the transition, and SOC (self-organized
criticality) [11] proposes models where this arguably happens and ex-
tends it to an explanation of reality.

The similarity between physical systems at the criticality and systems
like the Internet was a sort of insight towards a universal theory that is
able to explain everything. This is why the search of ubiquitous emergent
properties occurring in several different systems and transcending the
specific system details is a recurrent theme in both statistical physics and
complexity science [12]. With the opportunity of new discoveries, many
physicists approached to phenomena different from the ones they were
used to.

However, the success of this seminar work is associated to another
import aspect. Together with Watts and Strogatz’s work on small-world
networks [13], it helped connecting scientists of different backgrounds
into a new interdisciplinary field [14]. As a matter of fact, the perspec-
tive of a new, non-contaminated field led to general excitement, and
avalanches of researchers approached this new discipline. Thanks to that
general excitement, today we can speak about Network Science.

Since then, the applications of networks theory to real-world phe-
nomena have been growing drastically. Today, networks play a vital role
in the development of predictive models of physical, biological, and so-
cial collective phenomena [15, 16, 17]. Network’s complex features of-
ten find their signature in statistical distributions, which are generally
heavy-tailed, skewed, and varying over several orders of magnitude [18].
According to the finding of [10], a quite remarkable feature of many real
networks is that they are approximately scale-free for sufficiently large
value of k [19]. The value of the exponent λ, as well as deviations from
power-law scaling, provides invaluable information on the mechanisms
underlying the formation of the network, such as small degree satura-
tion, variations in the local fitness to compete for links, and high degree
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cut-offs owing to the finite size of the network [20]. Indeed real networks
are not infinitely large, and the largest degree of any network cannot be
larger than the number of nodes. The presence and type of such a “uni-
versal” law give insights into the driving processes or on the characteris-
tic properties of the observed system. In particular, the power-law shape
of the degree distribution, which is the hallmark of scale-free networks,
leads to important emergent attributes such as self-similarity in the net-
work topology, robustness to random failures, and fragility to targeted
attacks. Notably, scale invariance extends far beyond the degree distri-
bution, affecting many other quantities as weighted degree, betweenness
[21] and degree-degree distance [22].

Questions concerning how a virus spreads among society are cru-
cial today due to the current COVID-19 pandemic. The description of a
spreading problem relies on the definition and characterization of a large
number of individuals and their interactions in spatially extended sys-
tems. The degree of heterogeneity characterizing the topology of human
interaction networks, as well as the mobility network, is one of the main
culprits of the ongoing situation [23, 24]. Despite social heterogeneity
and the existence of “super-spreaders” have long been known in the epi-
demics literature [25], a network approach added a missing piece to the
existing literature. The topology of the network enters the very definition
of the epidemic threshold [26, 23, 24]. In particular, larger heterogeneity
levels lead to smaller epidemic thresholds (an epidemic threshold that
goes to zero in the limit of infinite network). In other words, few well-
connected people carrying the virus can turn a local event into a global
problem.

Although this phenomenon may look different from the spreading of
information in social networks, their mathematical description relies on
very similar models. Appropriately modified information, “fake news”
[27], allow a well-connected social-user to contaminate many other peo-
ple’s way of thinking. The dynamics and influence of fake news on Twit-
ter can be so decisive to flip the results of presidential elections [28]. No-
tably, top spreaders can also be automated programs, also called bot [29],
that amplify their influence by operating in a team [30].
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If properly used, the heterogeneous structure of social networks can
lead to real-time event detection. For example, Twitter data can be crucial
in identifying earthquakes felt by humans and can trigger an alert typi-
cally in under two minutes. The 2014 earthquake in Napa was detected
by the U.S. Geological Survey (USGS) in 29 seconds using Twitter data
[31]. Therefore, it becomes of primary importance, understating what
kind of information it is in the system in order to reduce false positives.
While someone wants to know about an earthquake in her/his neighbor-
hood as soon as possible, they may be less interested in the last cosmetic
news sponsored by Kim Kardashian.

In these cases, Machine Learning techniques [32], in particular, natu-
ral language processes allow (prior to its training on some specific datasets)
to label unstructured data, such as text (and not only). Latent Dirichlet
allocation (LDA, just to mention one) is one of the most powerful data
mining techniques for topic modeling [33]. Information can also be fil-
tered by sentiment, to understand whether people are positively or neg-
atively concerned about a topic [34]. Discussing all the machine learning
applications (if this can really be done) is beyond this work’s aim.

In this thesis, we retrace three important keystones of network sci-
ence. Each of them can be contextualized in a different time period: the
past (Chapter 2); the present (Chapter 3); and the future (Chapter 4).

The past. In the second chapter, we focus on the scale-free behavior of
real-world networks. The presence or absence of a scale free-structure in
real-world networks is a matter of recurrent debate in the scientific com-
munity [35]. Real-world networks are not infinitely large, and their finite
dimension can hide the underlying scale-free structure in the degree dis-
tribution. Finite-size scaling [36, 37, 38, 39, 40, 41, 42], firstly developed
in the field of critical phenomena and renormalization group, is a valu-
able tool for analyzing deviations from pure power-law behavior due to
finite-size effects. We show that despite the essential differences between
networks and critical phenomena, finite-size scaling provides a power-
ful framework for analyzing the scale-free nature of empirical networks
[20].

The present. In the third chapter, we apply state-of-the-art network
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analysis to an undergoing problem: the spread of COVID-19 caused
by the recently discovered SARS-CoV-2 virus. We implemented a com-
prehensive contact tracing network analysis to find the optimal quar-
antine protocol to dismantle the chain of transmission of coronavirus
with minimal disruptions to society [43, 18, 44, 45]. We track billions
of anonymized GPS human mobility data points from a compilation of
hundreds of mobile apps deployed in Latin America [46] to monitor the
evolution of the contact network of disease transmission before and after
the confinements [18, 44, 16]. As a consequence of the lockdowns, peo-
ple’s mobility across the region decreases by ∼53%, which results in a
drastic disintegration of the transmission network by ∼90%. However,
this disintegration did not halt the spreading of the disease. Our analysis
indicates that superspreading k-core structures persist in the transmis-
sion network to prolong the pandemic [47, 48, 49, 50]. Once the k-cores
are identified, the optimal strategy to break the chain of transmission is
to quarantine a minimal number of “weak links” [51] with high between-
ness centrality [52, 53] connecting the large k-cores.

The future. In the fourth chapter, we combine network-analyses tech-
niques with machine-learning to define an algorithm that is able to dis-
cover trends in society, for instance, what people think about economics,
education, climate change, or in this case, political elections [54]. The
starting point is the failure of traditional polls in predicting presidential
election outcomes across the world. To understand the reasons behind
these failures, we analyze the raw data of a trusted pollster that failed
to predict, along with the rest of the pollsters, the surprising 2019 pres-
idential election in Argentina, which has led to a major market collapse
in the country. Analysis of the raw and re-weighted data from longitudi-
nal surveys performed before and after the elections reveals clear biases
(beyond well-known low-response rates) related to misrepresentation of
the population and, most importantly, to social-desirability biases, i.e.,
the tendency of respondents to hide their intention to vote for controver-
sial candidates. We then propose a longitudinal opinion tracking method
based on big-data analytics from social media, machine learning, and
network theory that overcomes the limits of traditional polls. The model
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achieves accurate results in 2019 Argentinian elections.
We conclude with a discussion on the results’ importance, future de-

velopments and general thoughts about the future of network science.
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Chapter 2

Self-similarity and scaling
of complex networks

This Chapter is based on the work “ True scale-free networks hidden by
finite size effects” by Serafino et al. [20].

2.1 Introduction

In the last decade the existence of such power laws in complex networks
(but also in other areas [55], e.g., power law in language [56]) has been
questioned [57]. A reason of the shift in such conclusion is in the avail-
ability of larger (and new) datasets, and especially in improved statistical
methods. Recently, Broido and Clauset [35] fitted a power law model to
the degree distribution of a variety of empirical networks and suggested
that scale-free networks are rare. Voitalov et al. [58] rebutted that scale-
free networks are not as rare if deviations from pure power law behavior
are permitted in the small degree regime. The different conclusions may
depend on very fine but critical assumptions at the basis of the statisti-
cal test for the power law hypothesis. Moreover, a crucial point that is
typically ignored but represents the condition for the proper use of max-
imum likelihood methods is the independence of the empirical observa-
tions [59]. In this work we tackle the problem of detecting power laws
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in networks from a different perspective, based on the the machinery of
finite size scaling.

𝑁

𝑆𝑖𝑧𝑒

𝑁/10 𝑁/100

Figure 1: An illustrative example of the concept of how the underlying true
scale invariance in a network may be clouded by a scale imposed by the
sample size. If the degree distribution P (k) of the network is scale free,
then small subsamples of the network will have the same distribution (i.e.,
the degree structure of the network will not be altered apart from devia-
tions at high values of k where the cutoff because of sample size operates).
Specifically, the P (k) vs. k log–log plots show the largest sample (Left);
a reduced sample (Center), where for comparison the largest distribution
is shown via gray dots; and the smallest subsample, where the two previ-
ous distributions are shown for comparative purposes (gray dots; Right).
Any Anderson–Darling-like test of the sample being drawn from a scale-
free distribution would fail. The network in this example is a snapshot of
the structure of the internet at the level of autonomous systems [60].

Statistical physics of critical phenomena teaches us that a system at
criticality exhibits power law singularities of physical quantities such as,
for example, the compressibility, the specific heat, the density difference
between the liquid and vapor, as well as the latent heat. Water at its crit-
ical point exhibits fluctuations at all scales between the molecular length
scale and the size of the container, which could be macroscopically large.
Moreover, one finds thoroughly mixed droplets of water and bubbles of
gas. Indeed, any large part of the system looks like the whole – the sys-
tem is self-similar. The length scale of these droplets and bubbles extends
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from the molecular scale up to the correlation length, which is a mea-
sure of the size of the largest droplet or bubble. The divergence of the
correlation length in the vicinity of a phase transition at the thermody-
namic limit thus suggests that properties near the critical point can be ac-
curately described within an effective theory involving only long-range
collective fluctuations of the system. However, both in experiments and
in numerical simulations, the infinite size limit cannot be reached and
thus one observe deviations from the predicted thermodynamics limit
behavior. The finite size scaling (FSS) ansatz has been developed pre-
cisely to infer the singular behavior (i.e., the exponents determining the
universality classes) of the physical properties of a system in the thermo-
dynamic limit, having only information on the system properties at finite
sizes.

FSS has yet a more general validity and does not require the existence
of a phase transition or an evolution process. Indeed, even though it was
initially used to study finite systems near the critical point of the corre-
sponding infinite system, FSS can be actually applied to describe struc-
tures that are self-similar when observed in a certain range of scales. As
an example, we consider a Cantor set where we stop the procedure to
divide intervals in three parts and removing the middle one at a scale
s0 = 3−m. This corresponds to a fractal structure on scales between s0

and 1, and to a non-fractal structure on scale smaller than s0. If we mea-
sure the total length, L(s), of the set with a stick of length s = 3−n we find
L(s) = s1−DF (s/s0) where F (x) = 1 when x > 1 whereas F (x) = x1−D

when x < 1 and D = log3 2 is the Hausdorff–Besicovitch (or fractal) di-
mension of the Cantor set. Another illustration of FSS analysis is given
by the truncated geometrical series S(x,N) =

∑N−1
0 xn. When x is close

to 1 it is easy to see that S(x,N) = t−1F (tN), where t = 1 − x and
F (z) = 1−e−z . As a matter of fact, the FSS approach has been used to test
scale invariance (and self similarity) also for non-critical systems such as
(just to mention some very famous examples) polymers in confined ge-
ometries [61] and interfaces [62, 63]. In view of the above, FSS can also be
implemented on well-established models of scale-free networks (like e.g.
the Barabási-Albert model [10] or the Bak-Tang-Wiesenfeld toy model
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of self-organized criticality [64]) where the scale-free behavior is not an
emergent property at a critical point. Whether or not the same hypothe-
ses holds for real world network does not undermine the possibility of
applying FSS to them.

Employing the FSS machinery to test whether empirical networks
display scale-free behavior in their degree distribution is not straight-
forward though. Unlike for physical systems, representations of a net-
work at different scales are typically not available. Thus, in order to test
whether a network shows a power law distribution of its degree k, we
have constructed smaller size subsamples, effective representations of
the underlying population, drawn in an unbiased manner. We then use
the characteristics of the large original network as well as the derived
sub-networks to test the scale-free hypothesis. Figure 1 shows an illustra-
tion of this procedure for a snapshot of the structure of the Internet at the
level of autonomous systems [60]. Section 2.2 provides a brief summary
of finite size scaling applied to network topology. Section 2.3 present
an independent method of determining whether networks are scale-free
based on analyses of the size dependence of the ratio of moments of the
degree distributions. Section 2.4 provides information on the sampling
scheme used to build sub-networks and on the region selected for the
scaling analysis.

In the Results section we test the scale-free hypothesis, (the power
law behavior in the degree distributions) on around two hundred large
empirical networks (those considered in [35] and [58]). Remarkably, we
find that such a venerable hypothesis cannot be rejected for many (but
not all) networks. Moreover the two scaling exponents for such networks
satisfy an additional scaling relationship, which derives from the shape
of the degree cross-over in scale-free networks. We benchmark our re-
sults against the quality measure of the well-known scale-free graph in-
troduced by Barabási and Albert [10]. Further we show that finite size
scaling allows discerning pure power laws from log-normal and Weibull
distributions. In conclusion, our results support the claim that scale in-
variance is indeed a feature of many real networks, with finite size effects
accounting for quantifiable deviations. We conclude the chapter with a
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discussion of the results.

2.2 Finite Size Scaling of networks

A scale-free network is postulated to have a degree distribution p(k) ∝
k−λ beyond some lower degree cut-off kmin. For an infinitely sized net-
work, since kmin ≥ 1, the exponent λ > 1 in order for p(k) to be nor-
malizable. In what follows, we will consider the cumulative distribution
P (k) =

∫∞
k
p(q) dq ∝ k−γ where γ = λ− 1 > 0.

Networks are of course not infinitely large. In a network comprising
N nodes, k can be at most equal to N − 1. This is the intrinsic limit on
k given by the network size. Thus it is plausible that, below some kc
(cross-over value), the degree distribution follows a power law behav-
ior as would be expected for an infinite network but falls more rapidly
beyond kc. The finite size scaling hypothesis states that

P (k,N) = k−γf(kNd) (2.1)

where d < 0. The remarkable simplifying feature of the scaling hypothe-
sis is that P is not an arbitrary function of the two variables k and N but
rather k and N combine in a non-trivial manner to create a composite
variable. The behavior of the system is fully defined by the two expo-
nents, γ and d, and the scaling function f . The exponent d < 0 so that,
for an infinite size network (N →∞), the argument of f approaches zero.
A pure power law decay of P (k,N) with k for very large N requires that
f(x) → constant as x → 0. The additional normalization condition is
f(x) → 0 sufficiently fast when x → 1. The finite size effects are quan-
tified by the behavior of the function f as its argument increases, e.g.,
when k & kc. For a network with a finite number of nodes, the degree
distribution does not follow a pure power law but is modified by the
function f (see also [65] for a discussion of finiteness in the context of
growing network models).

A powerful way of assessing whether a network is scale invariant
is to confirm the validity of the scaling hypothesis and determine the
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two exponents and the scaling function f by using the collapse plot tech-
nique. One may recast Eq. (2.1) as

P (k,N)kγ = f(kNd). (2.2)

Then the path forward is simple. For networks belonging to the same
class but with different N , one optimally selects two fitting parameters γ
and d by seeking to collapse plots of P (k,N)kγ versus kNd for different
N on top of each other [66]. The fidelity of the collapse plot provides a
measure of self-similarity and scale-free behavior, the optimal parame-
ters are the desired exponents, and the collapsed curve is a plot of the
scaling function.

We start out with a single representation of an empirical network with
N nodes. For purposes of the scaling collapse plot, we seek additional
representative networks of smaller sizes. In order to accomplish this,
we obtained the mean degree distributions of multiple sub-networks of
sizes N

4 , N2 and 3N
4 , which were then collapsed on to each other and the

original network to create a master curve. The quality S of the collapse
plot is then measured as the mean square distance of the data from the
master curve in units of standard errors. S is thus like a reduced χ2 test,
and should be around one if the data really collapse to a single curve and
much larger otherwise [67].

Note that as a measure of the size of a network (or sub-network), one
may use the number of nodes N or alternatively the number of links E.
The scaling function in this case reads as follows:

P (k,E)kγ = fE(kEdE ), (2.3)

where the exponent γ is the same as before and the exponent dE < 0

ought to be equal to the previously introduced exponent d for networks
satisfying the finite size scaling hypothesis (see next section).

2.2.1 Quality of collapse

We now describe the procedure for deriving the master curve of the scal-
ing function from the cumulative degree distributions of the various sub-
networks, following the steps described in [67, 68]. The key premise is
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that when these distributions are properly rescaled they can be fitted by
a single (master) curve. The quality of the collapse plot is then measured
as the distance of the data from the master curve, and the collapse is good
if all the rescaled distributions overlap onto each other.

In practice for each (sub-)network size n ∈ {N4 , N2 , 3N
4 , N} we have

the set {j} of ordered points for the cumulative degree distribution in
the form {(kj , P (kj , n))}j . After applying the scaling laws we have:{

xnj = kj n
d

ynj = P (kj , n) kγj

so that xnj is the rescaled jth degree in the distribution of the n-sized
sub-network, and ynj is the rescaled value of such distribution relative
to the jth degree. We also assign an error on the latter quantity as dynj =

dP (kj , n) kγj , where dP (kj , n) is the Poisson error on the count P (kj , n)

— see Appendix A.

The master curve Y is the function best fitting all these points. We
define the quality of the collapse as

S =
1

3|M |
∑

(n,j)∈M

(ynj − Ynj)2

dy2
nj + dY 2

nj

, (2.4)

where Ynj and dYnj are the estimated position and standard error of the
master curve at xnj , while M is the set of terms of the sum (roughly, the
set of points for which the curves for the various n overlap).

For each xnj , in order to define Ynj and dYnj we first need to select
a set of points mnj as follows. In each of the other sets n′ 6= n, we se-
lect (and put in mnj) the two points j′ and j′ + 1 that best approximate
xnj from below and above, i.e., the two points such that xn′j′ ≤ xnj ≤
xn′(j′+1). If this procedure fails to select two points for each n′ 6= n, then
Ynj and dYnj are undefined at xnj which thus does not contribute to S
(this happens if set n is alone in this region of x and is the master curve
by itself). Otherwise, we compute Ynj and dYnj using a linear fit through
the selected points in (n′, l) ∈ mnj , so that Ynj is the value of that straight
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line at xnj and dYnj is the associated standard error:

Ynj =
WxxWy −WxWxy

η
+ xnj

WWxy −WxWy

η
(2.5)

dY 2
nj =

1

η
(Wxx − 2xnjWx + x2

njW ) (2.6)

where wn′l = 1/dy2
n′l for the fit weights and

W =
∑

(n′l)∈mn′j

wn′l

Wx =
∑

(n′l)∈mn′j

wn′lxn′l

Wy =
∑

(n′l)∈mn′j

wn′lyn′l

Wxx =
∑

(n′l)∈mn′j

wn′lx
2
n′l

Wxy =
∑

(n′l)∈mn′j

wn′lxn′lyn′l

η = WWxx −W 2
x

(2.7)

for the fit parameters.
The quality of the collapse S measures the mean square distance of

the sets to the master curve in units of standard errors, analogously to
a χ2 test [67]. The number of degrees of freedom can be estimated by
noting that each of the |M | points of the sum of S has in turn 3 intrinsic
degrees of freedom: |m| points as described above (6 in our case) minus
2 from computing mean and variance of Y , minus 1. Hence by using
3|M | as normalization factor, S should be around one if the data really
collapse to a single curve and much larger otherwise.

We optimize the quality S of the collapse by varying the scaling ex-
ponents γ in the interval Γ − 0.5 ≤ γ ≤ Γ + 0.5 and d in the interval
d − 0.1 ≤ γ ≤ d + 0.1. The errors associated with γ and d are estimated
with a S + 1 analysis: ∆γ is such that S(γ + ∆γ) = S(γ) + 1 and ∆d is
such that S(d+ ∆d) = S(d) + 1.
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2.3 Ratio of moments test

A simple alternative and independent test of the scale-free hypothesis
is to study the size dependence of the ratio between the i−th and the
(i− 1)−th moments of k, for various i. The i−th moment 〈ki〉 is defined
to be

〈ki〉 =

∫ ∞
kmin

ki−1k−γf(kNd) dk ∝ N−d(i−γ) (2.8)

provided i > γ. Instead if i ≤ γ, 〈ki〉 converges to a constant value for
N →∞. Therefore when i− 1 > γ,

〈ki〉
/
〈ki−1〉 ∝ N−d, (2.9)

independently of i. Thus, for a scale-free network, a log-log plot of the
ratio of consecutive moments versus N is a straight line with slope −d.
Likewise

〈ki〉 =

∫ ∞
kmin

ki−1k−γfE(kEdE ) dk ∝ E−dE(i−γ) (2.10)

when i > γ, otherwise 〈ki〉 goes to a constant for E → ∞. Therefore
when i− 1 > γ,

〈ki〉
/
〈ki−1〉 ∝ E−dE . (2.11)

The exponents d and dE are not independent for scale-free networks. On
the one hand, Eqs. (2.8) and (2.10) imply E ∝ Nd/dE . On the other, in
general 〈k〉 ∝ E/N ∝ Nd/dE−1. Due to the above equations 〈k〉 is con-
stant for scale-free networks with γ > 1, implying that d = dE . Thus the
difference between d and dE values (that we statistically assess through
theirZ−score) provides an independent quality measure of the scale-free
attributes of a network.

2.4 Sub-sampling and scaling region

In order to generate a sub-network of a given size n < N , we pick n

nodes at random among the N nodes of the original network, removing
all the other nodes and the links originating from them. It is well known
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that the sub-sampling procedure modifies the shape of the degree distri-
bution of the network. In particular, sub-networks of scale-free networks
are not scale-free because of deviations at low k values [69] (this happens
independently of the sampling scheme adopted [70]). The problem of the
left tail of the distribution however applies more generally, because devi-
ations from the scale-free behavior at low degrees are rather common in
empirical and network models. Therefore we perform the scaling anal-
ysis described above only for k ≥ kmin, where the lower bound of the
scaling region kmin is chosen such that the empirical distribution of the
original network and its best power law fit (with exponent Γ, computed
with the maximum-likelihood method of Clauset, Shalizi and Newman
[57], see Appendix A) are as similar as possible above kmin [71]. In the
Appendix A we show that this allows us to get rid of any deviations
induced by the sub-sampling scheme. However, when the empirical dis-
tribution of the network deviates substantially from a power law over its
entire domain, then the estimated kmin can become very large and may
even diverge. In these cases the number of nodes n∗ of the (sub-)network
with k ≥ kmin becomes very small or vanishing, yielding an unstable or
undefined collapse. We thus use n∗ ≥ lnN as a condition on as the min-
imum number of nodes in each (sub-)network for the feasibility of the
scaling analysis.

2.5 Results

To sum up, two independent statistical tests of the scale-free attributes
of a network explained in subsections A and B are the quality of the col-
lapse S (i.e., the reduced χ2 between data and master curve) and the
compatibility of d and dE (measured through their Z−score). Figure 2
outlines the flow of the analysis. In line with Broido & Clauset [35] and
Voitalov et al. [58], we use these tests to define a classification for the
degree distribution of empirical networks:

• SSF (strong scale-free) if S ≤ 1 and ZddE ≤ 1,

• WSF (weak scale-free) if S ≤ 3 and ZddE ≤ 3,
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• NSF (non scale-free) otherwise or when n∗ < lnN for the original
network or any of its sub-networks.

Note the nestedness of the classification, for which a SSF network is also
WSF.

Model or empirical
network

Finite size scaling Moment ratio test

𝜸, 𝒅, 𝒏∗ → 𝑺 𝒅, 𝒅𝑬 → 𝐙𝐝𝐝𝐄

Classification
(SSF,WSF,NSS)

Test A Test B

Figure 2: Schematic flow of the analysis. For a given network we inde-
pendently perform two tests: the finite size scaling and the moment ratio
test. The respective statistical outputs (the quality of the collapse S and the
Z-score between d and dE) are combined to obtain a classification of the
networks as SSF,WSF or NSF.
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Barabási-Albert model

(c)

dE = − 0.358
γ = 1.895
S = 0.66

d = − 0.358
γ = 1.895
S = 0.67

(a)

(b)

(d)

(e)

Figure 3: Scaling analysis on a numerical realization of the Barabási-Albert
model. The network has N = 104 nodes and the minimum node degree is
kmin = 14. The best power law fit on this network yields Γ = 1.89 ± 0.02.
Note this value is smaller than Γ = 2 because of deviations from the pure
power law at small ks: indeed, the theoretical P (k) in the Barabási-Albert
model goes as [k(k+1)(k+2)]−1 [72]). Panels (a), (b), (c) show results of the
scaling analysis using the number of nodes as for Eqs. (2.2) and (2.9). Inset
(a) reports the dependence of various moment ratios on N ; fitting these
slopes yields d = −0.358± 0.035. The main panel (a) shows the collapse of
the cumulative degree distributions when scaled with N . The best collapse
is obtained with γ = 1.89 ± 0.06 and yields S = 0.67. Panel (c) shows
how the quality of the collapse reported in (a) varies on moving away from
the optimal value of γ. Panels (d), (e) further show results of the scaling
analysis using the number of links as for Eqs. (2.3) and (2.11). In this case,
the moment ratio test of inset (d) returns dE = −0.351±0.031 while the best
collapse of the cumulative degree distributions reported in the main panel
(e) is obtained with γ = 1.89± 0.05 and yields S = 0.66.

2.5.1 Power law and Poisson distribution

We start analyzing the reference cases of Barabási-Albert [10] and Erdős-
Rényi [73] models whose behavior is known. In the former case p(k) ∼
k−3, whereas, in the latter case p(k) ∼ Poissonk̄(k). Figure 3 shows that
for a realization of the Barabási-Albert graph the degree distributions of
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Figure 4: Empirical distribution of the quality of collapse S obtained from
finite size scaling analysis on 1000 realizations of the Barabási-Albert graph
(same parameters of Figure 3). The distribution is well fitted by a log-
normal with µ = −0.70± 0.1 and σ = 0.414± 0.009.

the (sub-)networks result in a collapse of very high quality. The power
law exponent γ yielding the best collapse is consistent with the value Γ

obtained by maximum-likelihood fitting the degree distribution of the
mother network with a power law [57]. Additionally, the moments ratio
are indeed parallel lines, with compatible slopes d and dE . A more robust
statistics is obtained by analysing 1000 realizations of the Barabási-Albert
model (Figure 4). Within this sample, 98% of the networks are classified
as SSF while 2% as WSF. The estimated scaling exponents are all consis-
tent with each others among the different realizations.

For the Erdős-Rényi model the estimated kmin for the degree distri-
bution is so large that it is not possible to have (sub-)networks with num-
ber of nodes n∗ ≥ lnN (in principle, for this network, the kmin estimated
from the KS test should be larger than the largest degree of the network).
As such, the Erdős-Rényi graph is classified as NSF. We obtained the
same outcome in an ensemble of 1000 realization of this network model.

2.5.2 Alternative fat tail distributions

While the power law is the only distribution featuring scale invariance,
there are other distributions characterized by a fat right tail that can re-
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semble a power law in finite systems. Hence determining which of these
distribution better fits empirical network data is often a nontrivial task.
In particular the classical approach based on p-values computed from
a Kolmogorov-Smirnov test (see Appendix A) is able to rule out some
competing hypothesis but not to confirm one [57]. Moreover, the hy-
pothesis testing approach may fail when applied to regularly varying
distributions [58]. It is therefore meaningful to put our finite size scaling
approach to the test of alternative fat tail distributions. Here we consider
the representative cases of the log-normal and Weibull distributions. The
log-normal distribution p(ln k) = Normal(µ, σ) is characterized by pa-
rameters µ and σ, respectively the mean and standard deviation of the
variable’s natural logarithm. For large values of σ this distribution is
highly skewed and features a fat tail for large k values. The Weibull
distribution p(k) = (h/lh)kh−1 exp

[
−(k/l))h

]
is characterized by param-

eters h (shape) and l (scale). The fat tail in this case appears for h → 0.
We use the Viger-Latapy algorithm [74] to generate networks with these
degree distributions.

Figure 5 shows the scaling analysis for a realization of a network with
log-normal p(k) and for another realization with Weibull p(k). In both
cases we observe that the quality of the collapse is poor and that the mo-
ment ratios are not parallel lines. Therefore both networks are classified
as NSF. Moreover, S as a function of γ does not show any minimum in
the region around Γ (the minimum does exist, but is located elsewhere).
This means that the exponent estimated by finite size scaling γ and that
obtained from maximum likelihood power law fitting Γ are substantially
different: the outcome of the scaling analysis is not consistent in this case.
However, the result depends much on the choices of parameters char-
acterizing the distribution. Indeed Figure 6 shows that the percentage
of networks classified NSF decreases by increasing σ in the log-normal
case, as well as by decreasing h in the Weibull case – up to a point where
the variance of the distributions becomes so large that the scaling anal-
ysis can hardly distinguish these distributions from power laws at finite
N . For these cases, the value of γ that minimizes S is indeed compatible
with Γ.
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Lognormal graph  

! = −0.229, " = 2.407, # = 5.047

Weibull graph  

! = −0.230, " = 1.933, # = 4.324 

(a1)

(b1)

(a2)

(b2)

(c1) (c2)

Figure 5: Scaling analysis (with N ) on a numerical realization of a log-
normal graph with (σ, µ) = (0.8, 1.8) (panels a1, b1, c1) and of a Weibull
graph with (h, l) = (0.6, 1.8) (panels a2, b2, c2). In both cases the network
has N = 104 nodes. Log-normal graph: the best power law fit is obtained
with Γ = 2.90 ± 0.12, the moment ratio tests yield d = −0.209 ± 0.033 and
dE = −0.208± 0.033, and the best collapse is obtained with γ = 2.40± 0.37
and yields S = 5.047. Weibull graph: the best power law fit is obtained
with Γ = 3.43 ± 0.08, the moment ratio tests yield d = −0.230 ± 0.037 and
dE = −0.219±0.036, and the best collapse is obtained with γ = 1.933±1.055
and yields S = 3.271.

2.5.3 Real world networks

At last we move to real network data. We consider a large set of em-
pirical networks taken from the Index of Complex Networks (ICON) as
well as from the Koblenz Network Collection (KONECT). These are the
datasets used by Broido & Clauset [35] and Voitalov et al. [58]. See the
Appendix A for a discussion on how we built the dataset. Overall, we
have networks belonging to ten different categories: biological (PPI), so-
cial (i.e., friendship and communication), affiliation, authorship (includ-
ing co-authorship), citation, text (i.e., lexical), annotation (i.e., feature,
folksonomy, rating), hyperlink, computer, infrastructure. Figure 7 shows
results of the finite size scaling analysis for selected network instances,
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Lognormal Weibull

(a1) (a2)

(b1) (c1) (b2) (c2)

Figure 6: Outcome of the scaling analysis (with N ) on log-normal and
Weibull networks as a function of the parameters of the degree distribu-
tions, respectively (µ, σ) and (l, h). Panels (a1) and (a2) show the percent-
age of networks classified as strong, weak and non scale-free for varying σ
at fixed µ = 1, and for varying h at fixed l = 3.5, respectively. This statistics
is computed over ensembles of 2000 networks for each choice of parameters
σ and h. Panels (b1) and (b2) show representative instances of the distri-
bution in the range of parameters analyzed, whereas, panels (c1) and (c2)
displays the corresponding value of the variance of the distribution. Note
that we do not report results for varying µ at fixed σ nor for varying l at
fixed h, because we observe almost no dependency of the classification on
these parameters.

whereas, Figure 8 and Table 1 summarize results of the scaling analysis
for all the networks considered. The main outcomes of the analysis are
the following.

• Figure 8(a): the scaling exponents d and dE obtained from the mo-
ment ratio test are compatible in most of the cases.

• Figure 8(b): the value of γ computed from finite size scaling is often
in good agreement with Γ obtained from the maximum likelihood
power law fit of the degree distribution [57].

• Figure 8(c): the exponents γ and d of the scaling function are not
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Human protein interaction  
! = −0.429, " = 1.331, # = 0.50

Word adjacencies (English)  
! = −0.468, " = 1.193, # = 0.57

(b1) (b2)

(a1) (a2)

(c1) (c2)(d1) (d2)

Internet (autonomous system)  
! = −0.500, " = 1.047, # = 0.57 

Coauthorship (computer science)  
! = −0.278, " = 2.595, # = 2.37 

(b3)

(a3)

(c3) (d3)

(a4)

(b4)

(c4) (d4)

Figure 7: Scaling analysis (with N ) on four real network instances. Top left
panels (1): the 2005 version of the proteome-scale map for Human binary
protein-protein interactions (N = 1706, E = 3155) [75]. Top right panels
(2): the word adjacency graph extracted from the English text “The Origin
of Species” by C. Darwin (N = 7724,E = 46281) [76]. Bottom left panels (3):
(symmetrized) snapshot of the Internet structure at the level of Autonomous
Systems in 2007 (N = 26475, E = 53381) [77]. Bottom right panels (4):
the collaboration graph of authors of scientific papers from DBLP computer
science bibliography (N = 1314050, E = 10724828) [78]. Panels (a), (b),
(c) are analogous to those reported in Figures 3 and 5, whereas, panels (d)
visually show the classical plots of p(k) in double logarithmic scale together
with the plot of the estimated slope γ using FSS analysis.

25



(a) (c)

(b)

Figure 8: Visual summary of results from the finite size scaling analysis,
in which each network dataset is represented as a point in a specific plane.
Panel (a) shows the relation between d and dE resulting from the moment
ratio test, with the solid black line representing the identity. The other two
panels refer to the scaling analysis with N . Panel (b) shows the relation
between γ computed from finite size scaling and Γ from the maximum like-
lihood power law fit of the degree distribution (see Appendix A). The solid
line again represents the identity. Panel (c) shows the relation between the
exponents γ and d of the scaling function, with the solid black line repre-
senting the curve d = −(γ + 1)−1 (the text has details).

independent but satisfy a universal relation d ' −(γ + 1)−1, which
derives from the nature of the degree cross-over in scale-free net-
works – namely the maximum degree for which the power law be-
havior holds. According to Eq. (2.1), this is the value kc for which
the scaling function f(x) → 0 (graphically speaking, when the
master curve P (k)kγ falls down), corresponding to x & 1 whence
kc ∼ N−d. The analysis presented in Figure 8(c) suggests that kc ∼
N1/(γ+1), and in agreement with theoretical results we find that
also the maximum degree of the network kmax scales in the same
way (see Appendix A). However this scaling behavior is somehow
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different from the kc ∼ N1/γ as predicted by hand-waving argu-
ment [79, 80, 81], likely due to inner correlations in the networks
which modify the value of the cross-over [80].

• No particular relation between quality of collapse S and estimated
exponent γ is found, nor any clusterization of networks amenable
to categories within the plane defined by these two variables (see
Appendix A). However this result is obtained when the different
network categories are well balanced in the dataset, because net-
works that are very similar tend instead to cluster together. This is
for instance the case of protein interaction networks belonging to
different species. In order to remove this artificial clustering effect,
we have not considered in our dataset these (and other) cases of
very similar networks nor repetitions of the same network (see Ap-
pendix A). This is the main reason why our dataset is apparently
smaller than that used by Broido & Clauset [35].

• Overall, as shown in Table 1, the 185 networks of our dataset are
classified as strong scale-free (SSF) in the 27% of cases, weak scale-
free (WSF) for the 23% and non-scale-free (NSF) for 50%. This clas-
sification however does vary substantially among the different net-
work categories. On the one hand, biological networks are very
often classified at least as WSF. The same happens for computer
and hyperlink networks, with outliers respectively given by the
Gnutella peer-to-peer file sharing network (that has the same char-
acter of a social networks [82]) and by some hyperlink networks re-
stricted to specific domains. Citation and text networks are few in
our analysis, but are often scale-free. On the other hand, infrastruc-
ture networks (i.e., road and flights network) are rarely scale-free
(with the notable exception of Air traffic control systems), possibly
because of the heavy cost of establishing a connection. Between
these two extremes, there are the social and other kinds of networks
(see for instance the well-known discussion of the Facebook case
presented in [83, 84], and that of other information sharing social
network presented in [85]).
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Type Number SSF(%) WSF(%) NSF(%)
Affiliation 8 63 12 25
Annotation 38 21 24 55
Authorship 15 27 20 53
Biological 30 40 30 30
Citation 5 40 0 60
Computer 13 39 38 23
Hyperlink 14 22 21 57
Social 39 13 18 69
Text 11 55 27 18
Infrastructure 12 0 17 83
Total 185 27 23 50

Table 1: Classification of empirical networks (split into categories). For each
category we report the total number of networks and the percentage of SSF,
WSF and NSF instances. For detailed results on each network analyzed, see
the Supplementary Dataset Table.

2.6 Discussion

Since the onset of network science, scale invariance of complex networks
has been regarded as a universal feature present in real data [86, 87, 88,
89, 90, 57] as well as reproduced in models [10, 91, 92, 72, 93, 94]. Thus
the recent claim by Broido & Clauset [35] that scale-free networks are rare
created a stir, strengthening previous claims along the same direction
[95, 57, 55]. Voitalov et al. [58] replied to these arguments fitting data to
generalized power laws, that is, regularly varying distributions p(k) =

l(k)k−λ (where l(k) is a function that varies slowly at infinity and thus
does not affect the power law tail). By allowing deviations from the pure
power law distribution at low k, they argued that scale-free networks
are definitely not rare. Gerlach & Altmann [59] very recently touched on
this issue, showing that correlations present in the data can lead to false
rejections of statistical laws when using standard maximum-likelihood
recipes (in the case of networks, this can be important in the presence of
degree-degree correlations).

In this work we go beyond statistical arguments and apply power-
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ful tools from the study of critical phenomena in physics to analyze a
wide range of model and empirical networks. Here we have showed
that many of these networks spontaneously, without fine-tuning, satisfy
the finite size scaling hypothesis, which, in turn, supports the claim that
complex networks are inherently scale-free. While a direct comparison
with the results previously discussed would be interesting, the final re-
sults would not be meaningful, given the differences in the underlying
hypotheses of the different models. We have shown how different hy-
potheses can lead to distinct results. The hypothesis underlying our ap-
proach, which came from results previously obtained in the field of sta-
tistical mechanics and critical phenomena, goes beyond the applications
they were initially designed for and does not require the existence of a
critical point. Together with previous work, our methodology fits in the
bag of tools that a researcher can use in order to assess the scale free
character of a network.

Our scaling analysis is based on the extraction of small representa-
tions of the networks using a random node selection scheme. Of course,
an intrinsic limitation of any rescaling method applied to network data
is the impossibility to consider system sizes spanning orders of magni-
tude. As a further general remark, finding a robust method to rescale
(or coarse grain [96, 97]) a network is still an open issue in the literature
since networks are not embedded in any Euclidean space. Commonly
used approaches lack generality since they are based on the choice of
the embedding geometric space [98] or on the average path length [99].
In order to avoid ad hoc assumptions, we decided to follow the simplest
(although not necessarily the most accurate) scheme. As shown in the
Appendix A, by averaging over many extraction of the sub-network we
are able to preserve the degree distribution of the original network, that
is what we are interested in. Finally note our claims regards the self-
similarity of the degree distribution, but we restrain ourselves in making
general conclusions about the overall self-similarity of networks – this
would involve the study of other quantities such as clustering, average
path length and so on [100].
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Chapter 3

Superspreading k-cores

This Chapter is based on the work [45], currently under submission.

3.1 Introduction

In the absence of vaccine or treatment for COVID-19, state-sponsored
lockdowns have been implemented worldwide to halt the spread of the
ongoing pandemic creating large social and economic disruptions [101,
102, 103]. In addition, some countries have also implemented digital
contact tracing protocols to track the contacts of infected people and re-
inforce quarantines by targeting those at high risk of becoming infected
[104, 105, 106, 107, 108, 109, 110, 111, 112, 113]. Here we develop, cali-
brate, and deploy a contact tracing algorithm to track the chain of disease
transmission across society. We then search for intelligent quarantine
protocols to halt the epidemic spreading with minimal social disruptions
[18, 43, 44, 114, 115, 116].

Our study uses two complementary datasets. The first includes data
from “Grandata-United Nations Development Programme partnership
to combat COVID-19 with data” [46]. It is composed of anonymized
global positioning system (GPS) data from a compilation of hundreds
of mobile applications (apps) across Latin America that allow to track
the trajectories of people (users). The data identify each mobile phone
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device with a unique encrypted mobile ID and specifies its latitude and
longitude location through time, encoded by geohash with 12 digits pre-
cision. Typically, this dataset generates ∼ 450 million data points of GPS
location per day across Latin America in particular in the state of Ceará,
Brazil (see Appendix B.1).

The second dataset is an anonymized list of confirmed COVID-19 pa-
tients obtained from the Health Department authorities from both states.
It includes the geohash of the address, the SARS-COV-19 test detection
date and first day of symptoms of COVID-19 (see Appendix B.1). This
information is crucial to determine the time period when the patient was
contagious.

We cross-match the geolocation of the patients with the GPS dataset
obtaining the encrypted mobile ID of the patients. We then trace the ge-
olocalized trajectories of COVID-19 patients during a period -14/+7 days
from the onset of symptoms to look for contacts of the infected person to
define the transmission network using the model described below (see
Appendix B.1).

When it comes to GPS data, the definition of contact is not clear. Two
persons with the same GPS coordinate may never have met if the time
constraints are not satisfied, i.e., if they were in such a position at differ-
ent hours of the day. In section 3.2 we introduce a probabilistic definition
of a contact. Let us notice that in this work we only focus between in-
fected/potentially infected persons and healthy persons. With this defi-
nition of contact in mind we build a contact network and we monitor its
structural properties over time (section 3.3). We present the main results
in section 3.4. We conclude the chapter with a discussion of the results
(3.5). Moreover, we propose a practical application of our algorithm.

3.2 Contact model

The COVID-19 spreading model is represented by a Susceptible-Exposed-
Infectious-Recovered (SEIR) process [18], Figure 9a. Infectiousness starts
2 days before and lasts up to 5 days after the onset of symptoms [117].
In this work, we add two days to each of these limits to conservatively

31



capture most transmissions. Thus, in principle, to trace those people po-
tentially infected by COVID-19 patients, we track contacts 4 days before
and 7 days after the reported date of first symptoms, Figure 9a. In addi-
tion, we extend the tracing period back in time to also consider exposures
that could come from asymptomatic cases. Exposures start the incuba-
tion period of the infected person which can occur up to 12.5 days before
onset of symptoms (5.2 days on average, 95% percentile 12.5 days [118,
119], Figure 9a). To conservatively trace exposure events, we add ∼2
days to this incubation period and obtain the widely used 14 days pe-
riod. Hence, to trace transmission and exposure cases, we perform con-
tact tracing over -14/+7 days from onset of symptoms, (Figure 9a. We
note that the peak of infectiousness as well as 44% (95% confidence in-
terval, 25-69%) of infected cases occur during the pre-symptomatic stage
[117]. Thus, performing contact tracing is essential to stop the spreading
disease.

3.2.1 A probabilistic interpretation

The GPS geolocation of the trajectories of both infected and susceptible
people is used to trace several layers of contacts in the transmission net-
work using the following model. A contact at time stamp n is initiated
with an infected user (source) at time t0, as it is shown in Figure 9b. At
t0 we draw a contact area as a circle centered in the source position with
a radius r. We then gather all the GPS datapoints from susceptible users
(targets) that enter the contact area from t0 to t0 + T , where T is the total
exposure time. We follow the trajectories of source and target within the
time-space area and compute the probability of infection at time stamp n
as pi[n] = pd[n] · pt[n]. The first component of the probability of infection
is the space component [44]:

pd[n] = 1− d[n]

2r
(3.1)

with d[n] = |〈s〉−〈t〉|, where 〈x〉 in {s, t} refers to the average position
of source/target inside the time-space area. That is, it is the distance
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Figure 9: (a) Infectiousness profile of COVID-19. The COVID-19 pandemic
is represented with a SEIR model. From exposure (E) the virus is incubated
in average for 5.2 days (12.5 days 95th percentile), starting the symptoms 2
days after infectiousness (I) and lasting the disease up to 17 days to recover
(R). We use a window -14/+7 days from the first symptoms to detect infec-
tious and exposure. (b) Contact area used in the contact tracing model. The
grey person is at the first datapoint of the source at t0. We collect all data-
points for every user in a T=30 min forward window (t1, t2, t3, ..., t0 + T )
within an 8 m circle from the initial position. For each target (green and red)
we compute the average position and the time spent inside the contact area
(red part of the trajectory line). (c) Partial transmission tree of outbreak of
confirmed SARS-CoV-2 infection identified by contact tracing during cali-
bration in the month of March 2020. Links goes from the source of infection
to the target. The colors represent the day of first symptoms for each node
and size is the out-degree.
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between the source and target average positions of the data points within
the contact area.

The second component (the time component) is proportional to the
overlapped amount of time that source and target spent within the con-
tact area:

pt[n] =
τ(∆ts,∆tt)[n]

T
, (3.2)

and

τ(∆ts,∆tt)[n] =

{
0, if max(ttf , t

s
f ) > min(ttl , t

s
l )

max(ttf , t
s
f )−min(ttl , t

s
l ), otherwise.

(3.3)
Each user needs at least two data points within the contact area to

define its ∆tx with x in {s, t}, i.e. the amount of time source/target spent
in the time-space area. If this condition is not met, τ(∆ts,∆tt)[n] = 0.

According to the previous definitions, when the average distance be-
tween source and target is zero, then pd[n] = 1, and when the average
distance is 2r, then pd[n] = 0. On the other hand, when the exposure
time ≥ T , then pt[n] = 1, and decreases to pt[n] = 0 as the exposure
time decreases. The probability pd[n] quantifies the contact probability
for two users in the same area defined by r. A contact requires non only
a space overlapping but also a time overlap, pt[n], which quantifies the
probability that two users met based on the time commonly spent in the
same area. We then combine these two probabilities for each timestamp
n into their product:

pi[n] = pd[n] · pt[n] (3.4)

Contacts with low probability of infection pi[n], but repeated through-
out time, can also infect the target. To incorporate this effect in the model,
we define the probability of infection for a series of repeated contacts
Pi[n] as a recursive formula from time 1 to n with Pi[0] = 0:

Pi[n] = pi[n](1− Pi[n− 1]) + Pi[n− 1]. (3.5)

34



The iteration of contacts between source and target, Pi[n], generates
higher probability of infection than a single contact pi[n]. This means
that there is a difference between a short single contact between two
people and short repeated contacts between the same people. The lat-
ter scenario should have a larger probability than the former to become
infected. While the distribution of pi[n] is homogeneous without a clear
threshold for an infectious contact, Pi[n] presents a very polarized dis-
tribution where the values are accumulated in the extremes: Pi = 0 or
Pi = 1 (see Figure 10a). Thus, Pi[n] is better indicator than pi[n] to sepa-
rate infectious from non-infectious contacts. A contact is then considered
infectious when this probability exceeds a certain threshold, Pi[n] > pc.

The hyperparameters of the contact model (T, r, pc) are obtained by
calibrating the model using only the contacts between infected people
to reproduce the basic reproduction number R0 = 2.78 in Ceará in the
month of March, 2020 (see Appendix B.2). We obtain T = 30 min, r =
8 m and pc = 0.9. Thus, a contact is defined with probability one when
exposure is at least 30 minutes within a distance� 8m. This calibration
procedure provides the partial transmission tree of the outbreak from
patient zero to the end of the calibration period shown in Figure 9c.

3.3 Transmission network model

Above we gave a probabilistic definition of a contact, i.e the probability
that two persons (x and y) had a single contact its proportional to p1[n]. In
what follow we always focus on contacts between and infected persons
and an healthy person, with the outcome being the chain transmission
network with a tree-like structure. However, Eq. (3.5) is more general
and can be applied in other studies that go beyond disease transmission.
We first trace the trajectories of confirmed COVID-19 patients to search
for contacts -14/+7 days from the onset of symptoms (see Appendix B.1).
The interactions between patients and the healthy persons in the dataset
identify the first layer l = 1 of contacts. Once in contact with a confirmed
COVID-19 patients, the healthy person its likely (∼ Pi[n]) to be infected
too. And therefore she/he can also spread the virus, defining in such a
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Figure 10: (a) Probability distribution of pi[n] = pd[n] · pt[n] (orange) and
the recursive form Pi[n] defined in Eq. (3.5) (blue). The Pi[n] are polarized
to 0 and 1 becoming the best thresholded metric to use to consider a contact
as infectious. (b) Average value 〈Pi[n]〉T as a function of the time window
T of the spatio-temporal contact area. Pi[n] has a peak at T = 30 min; it
decreases for T > 30 min and increase for T < 30 min as a function of T .
The decreasing behaviour is what is expected, thus, 30 min is the minimum
bound for the correct value of T .

way a second layer of contacts. In general it is possibles to define an ar-
bitrary number of layers, by considering the contacts between the people
belonging to the layer l− 1 and all the other people which do not belong
to any layer. The zero layer l = 0 consists of the contacts between the con-
firmed COVID-19 patients in the state of in Ceará. From the first contact
layer, we add four layers of contacts to constitute the contact network
of transmission that is used to monitor the progression of the pandemic.
The time-varying network is aggregated to a snapshot defined over a
time window of a week [18]. We find that other aggregation windows
give similar results as presented. We analyze the spatio-temporal prop-
erties of such contact network (see Appendix B.3 for more details). The
government of the State of Ceará imposed a mass quarantine on March
19, 2020 which led to a decrease in people’s mobility by 56.5% as shown
in Figure 11a. During the lockdown, only the displacements of essen-
tial workers were allowed. A large decrease in mobility is also observed
across all Latin America, see [46].
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Figure 11: (a) Evolution for different metrics in Ceará, Brazil, previous to
the mass quarantine (grey area), right after the imposed quarantine (yel-
low area) and later. The plot shows the root mean square displacement
(MSD) normalized by the maximum value over the total period (blue),
the cumulative number of cases (green) and the size of the GCC normal-
ized by the maximum value over the total period (black). The uncertainty
corresponds to the standard error (SE). The mobility data is showcased
in the Grandata-United Nations Development Programme map shown in
https://covid.grandata.com. The initial rise in GCC is due to the
lack of data before March 1. (b) The plot shows the 0.5-kcore size (red),
the 0.5-kshell size (cyan) all normalized by their respective maximum value
pre-lockdown. While the size of the 0.5-kshell is reduced drastically during
the lockdown, the 0.5-kcore was not reduced as much and keeps increas-
ing, contributing to sustain the pandemic. The 0.5-kcore seems to follow the
trend in the MSD, which we plot again to show this trend.
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3.3.1 Giant connected component (GCC)

To understand the effect of the lockdown on the contact network, we
think by analogy with a “bond percolation” process [120, 18, 44]. The
percolation problem studies the dismantling of networks under removal
of nodes or links (bond percolation), as well as associated problems of
disease transmission [18, 44], robustness and resilience of networks [114,
115]. The global disruption in network connectivity is monitored by
studying the normalized size of the giant connected component (GCC).
The GCC is the largest connected subgraph of a graph, i.e., in the GCC
there is always a pathway to reach a node from any other node. Formally,
the network dismantling occurs at a critical percolation transition thresh-
old qc of the fraction of removed nodes q. The GCC occupies a fraction
larger than zero for q < qc and vanishes otherwise. The vanishing of
GCC at qc marks the percolation transition between two phases, namely,
a connected phase and a disconnected one.

One can remove nodes or links at random [120, 18] or by following
optimized strategies to break the GCC with the minimal number of re-
movals. We study different strategies to destroy the GCC with minimal
removals based on removing nodes in the network by ranking them ac-
cording to different centralities. All strategies are adaptive, meaning that
the ranking is recalculated after every removal. We use:

• Degree strategy: We rank the nodes by their degree (number of
contacts) from top (hubs) to low degree [114, 115] and then remove
nodes starting from the hubs adaptively. We note that the process
of removal of nodes from the network is a numerical trick com-
monly utilized to find the minimal number of hubs to dismantle the
GCC. It is known in the literature that by removing the hubs adap-
tively, one is able to find a set of hubs that dismantle the network
faster than by removing the hubs without adapting the network,
see [114, 50, 116] for details. This is a purely algorithmic proce-
dure to find the best set and the effect on the size of the GCC is the
same as if one removes the nodes adaptively or at once. Thus, dur-
ing the implementation of a quarantine in a real setting, the hubs
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obtained from the algorithm should be quarantine at once as soon
as the hubs can be contacted by the contact tracer app (see Section
3.5).

• K-core strategy: We rank the nodes by their occupancy in the k-
shells of the network. The highest rank corresponds to the inner
k-shell, that is the maximal k-core at kmax

core . Since each k-shell is
formed by many nodes, we then rank the nodes inside a given k-
shell by their degree. We then remove each k-shell in turn, always
recalculating the ranking after every removal [50].

• Collective Influence (CI) strategy: we calculate the CI of each node
according to Ref. [116] with ` = 3 and remove the nodes with CI
adaptive.

• Betweenness Centrality (BC) strategy: We rank the nodes by their
BC and remove them one by one from highest to lowest, adaptively
[52, 53, 121] The betweenness centrality of a node is proportional
to the number of shortest paths that pass through the node [52, 53,
121]. It is calculated by considering all the pair of nodes in the
network and calculating the shortest path between each pair. This
methods was found in previous simulations to be a good predic-
tor of a node’s epidemic influence in a contact network [122]. For
larger datasets used in this study, approximate fast algorithms can
be used to calculated BC. See Ref. [123].

• We also use other strategies, like eigenvector-based centralities and
combinations of other centralities to characterize the node impor-
tance [124].

We note that removing the nodes in an adaptive strategy is just a nu-
merical trick to find a better set of spreaders. But the effect on the net-
work is the same whether we remove the identified top spreaders one
by one or all at once. Thus, in the implementation in a real quarantine,
there is no need to contact the spreaders to quarantine one by one, but
they should be notified all together that they should quarantine. Fur-
thermore, after notification, we do not remove them from the analysis,
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but we keep tracking them in case that they could infect new people in
future networks (see Section 3.5).

We test the most efficient strategy to dismantle the transmission net-
work. We plot the normalized size of the GCC, G(q), that is, the number
of nodes in the GCC after removal of a fraction of q nodes divided by
the size of the GCC at q = 0. As nodes are removed from the network,
we search for the strategy that provides the minimal removal with the
maximal damage to the GCC. The best strategy over all the networks
studied across all of the above ranking is the high BC strategy. The ef-
fect of a lockdown is to reduce the number of connections among people
and therefore it acts as a percolation process. We monitor the GCC of the
transmission network before and after the lockdown. We find a drastic
percolation transition [120, 18, 18] within 6 days of the implementation
of the lockdown on March 19, when the GCC is almost fully dismantled
decreasing by 89.6% of its pre-lockdown size (Figure 11a). Despite the
disintegration of the GCC, the cumulative number of cases kept grow-
ing albeit at a lower rate (Figure 11a). We find that the mass quarantine
was able to reduce the basic reproduction number from R0 = 2.78 before
lockdown to an effective reproduction number ofRe = 1.2 after the lock-
down (Figure 11a). Despite this disruption in the network connectivity,
Re has not decreased below one, as it would have been needed to curb
the spread of the disease.

The drastic reduction in the GCC is visually apparent in the contact
networks in Figure 12. Before lockdown on March 19 (Figure 12a), the
network is a strongly-connected unstructured “hairball”. Eight days into
the lockdown on March 27 (Figure 12b), the network has been untangled
into a set of strongly-connected modules integrated by tenuous paths of
contacts. This structure is even more pronounced a few weeks later on
April 28 (Figure 12c).

3.3.2 Superspreading k-core structures

The highly connected modules found in Figure 12b and 12c are k-core
structures [47, 48, 49, 50] of higher complexity than the GCC (which is a
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Figure 12: Disease transmission networks in the state of Ceará over time be-
fore and after the lockdown on March 19, 2020. (a) Transmission network on
March 19 (pre-lockdown). A hairball highly-connected network is observed.
The disconnected components of the 7-core (kmax

core = 12 in this network) are
colored. These components are well connected into the hairball network as
expected since mobility and connectivity is high. (b) The pre-quarantine
hairball in (a) has been untangled and the k-cores have emerged 8 days into
the lockdown on March 27. Here, we color the nodes according to layers of
the transmission network starting at COVID-19 patient (black nodes). Size
of nodes is according degree. (c) Network on April 28 including the com-
ponents of the 5-core in different colors (kmax

core = 7 for this network). Visible
is the high betweenness centrality node representing the weak-link of this
k-core. (d) We plot the location of the contacts in the map of Fortaleza con-
stituting the components of the 5-core of the April 28 in (c). The size of
the circles in the map corresponds to the number of contacts inside each
location. The colors correspond to the clusters of the 5-core in (c). The 5-
core sustaining transmission is composed of clusters of contacts localized in
hospitals, large warehouses and business buildings. Hospital 3, one of the
largest in Fortaleza, constitutes the maximal kmax

core = 7 of the pandemic.

1-core), that are known to sustain an outbreak even when the GCC has
been disintegrated [18, 50].

The k-core of a graph is the maximal subgraph made of nodes with
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degree k or more [47, 48, 49, 50]. A k-shell of a graph is composed by all
the nodes that belong to the k-core but not to the (k+1)-core. See Figures
13 and 14 for definitions in a network with 3-shells, i.e., with a maximal
3-core (kmax

core = 3), and Figure 15 for an example in a real network.

a b

c d
3

2 shell

shell

kcore = 3max

Figure 13: (a) A sample network with 3 shells. The k-shell index ks is not
necessarily associated with other centralities. Here, the hub of the network
in black with k = 7 is in the 1-shell, ks = 1. The two top node in between-
ness centrality, highlighted in red, belong to the 2-shell and the 3 shell, re-
spectively. The 1-core is equivalent to the GCC. (b) The nodes with ks = 1
form the 1-shell, (c) the nodes with ks = 2 form the 2-shell, and (d) the
nodes with ks = 3 form the 3-shell which is also the 3-core.

The k-shell decomposition assigns each node to a k-shell in the net-
work. The k-cores are nested structures and k-shells are disjointed; e.g.,
the 2-core contains the 3-core and so on, and the 2-core is formed by the
3-core plus the 2-shell. By definition, the GCC is the largest 1-core. The
maximal k-core is the inner subgraph of the network and it is indexed by
kmax

core index. The low k-shell are the peripheric shells.
In practice, the k-core of a network is obtained by iteratively remov-

ing all nodes with degree smaller than k. One starts the removal process
by removing all nodes of degree one, Figure 14. After the first removal,
nodes that initially had degree larger than one may end up with degree
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Figure 14: (a) We start the k-shell decomposition with a network configura-
tion where every node has at least degree k = 1. This set of nodes forms a
1-core. (b) Then, every node with k = 1 is iteratively removed to obtain the
2-core. As one can see, the removal of these nodes changes the degree dis-
tribution. Thus, nodes are removed until all remaining nodes are left with
k ≥ 2. (c) Following the k-shell decomposition nodes are removed until we
obtain the 3-core. The 3-core can be made of multiple disconnected clusters.

equal to one. Then, one repeats the process until no remaining node in
the network has degree equal to one, or equivalently, every node in the
network has degree at least equal to 2. This set of nodes with k = 2, or
higher, is the 2-core. The other k-cores are obtained in analogous manner.

It is important to note that a k-core can be composed of disconnected
clusters or components. For instance, the example 3-core in Figure 14c
contains 3 components. These three components are disconnected in
the 3-core, but they are integrated in the network by nodes belonging
to the 2-shell as shown in Figure 14a. This is an important property of
the k-cores found in the transmission networks during the lockdowns.
For instance, the network of Ceará from March 27 plotted in Figure 12b
has a rich k-core structure shown in Figure 15 where, for instance, the
6-core is composed of 5 disconnected components. This is an impor-
tant property for an strategy based on betweenness centrality. Typically,
we find that these components are joined together by nodes in lower k-
shells, which are identified by their high betweenness centrality. Then,
the k-cores components can be relatively easily dismantled by a few re-
movals outside the k-cores. The maximal k-cores are composed of nodes
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Figure 15: Example of k-core and k-shell structure in the network plotted in
Figure 12b obtained during the lockdown. Here the colors are set by the k-
shell occupancy of each node. Each k-core is composed by the k-shell plus
the (k+1)-core. The k-cores are nested structures. For instance, the 5-core
in (e) is composed by the 5-shell (yellow nodes) and the 6-core, which, in
turn, is composed by the 6-shell (in red) and the 7-core (in purple). Since
the 7-core is the maximal k-core, kmax

core = 7 for this network, then the 7-core
is also the 7-shell. In this network the 0.5-kcore is the 4-kcore and the 0.5-
kshell is composed by the 1-shell plus the 2-shell and the 3-shell. We notice
how a given k-core can be composed of many disconnected components.
For instance, the 6-core is composed by 5 disconnected components. This
is important, since each component of a given k-core can be localized in
different areas, like different hospitals, in the map, see for instance, Figure
12c and 12d. It is also visually apparent that to destroy this network, a
direct ’attack’ to the high k-cores is not optimal. Instead, removing the high
BC nodes that populate the lower k-shells is the best strategy. We plot each
k-core in turn: (a) 1-core, (b) 2-core, (c) 3-core, (d) 4-core, (e) 5-core, (f) 6-core
and (g) 7-core.

with high degree that connect with other nodes of high degree, which in
turn also connect with others of high degree, and so forth. This implies
that the k-cores do not have dangling ends made of nodes with degree
smaller than k. That is, the k-cores are close, in a sense. The k-shell de-
composition then cleans the network of those low degree dangling ends
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in a systematic way and reveals the core of the network, which is the
most important part for spreading [125]. Notice that a hub can be in the
maximal k-core or in an outer k-shell according to how the hub is con-
nected. For instance, the red hub in Figure 14a is in the 3-core because
it is also connected to other hubs with 3 or more connections. However,
the orange hub is in the 1-shell in Figure 14a because it is connected with
nodes with low degree.

Monitoring the k-cores of the networks as a function of time we find
that before the lockdown the maximal k-core index is in average around
kmax

core ≈ 12 and then drops to half of this value with a maximal 6-core
in average during the lockdown (kmax

core ≈ 6). Figure 16 shows this drop
in the maximum k-core index from kmax

core ≈ 12 to kmax
core ≈ 6, in average.

Since kmax
core changes with time, to study the occupancies of the k-cores

and k-shells across the quarantine transition, we define the ε−kcore as
the k-core with k such that k = dε kmax

core e. The complement of the ε-kcore
is the ε-kshell defined as the union of the remaining k-shells with k such
that k = 1, 2, ..., dε kmax

core e − 1. Thus, the union of the ε-kcore and the ε-
kshell constitute all the network. In the paper we consider ε = 0.5 that
divides the k-shells in two.
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Figure 16: Evolution of maximum k-core index kmax
core versus time previous

to the quarantine (grey area), right after the quarantine (yellow area) and
later. We see how the maximum k-core index drops drastically after the
mass quarantine.
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The high k-cores are known from network science studies to be the
reservoir of disease transmission persistence [18, 50]. On the contrary,
low peripheral k-shells do not contribute as much to the spread as the
high inner k-cores.

Figure 11b shows that despite the disappearance of the GCC, there
is a significant maximal k-core that was not dismantled by the mass
quarantine. The figure shows that the outer k-shells of the transmis-
sion network (i.e., the 0.5-kshell defined as the union of the k-shells with
k = 1, 2, ..., d1/2 kmax

core e− 1, see Appendix B) are disintegrated in the lock-
down, decreasing by 91% with respect to their pre-quarantine size, in
tandem with the GCC. However, the inner k-core (i.e., the 0.5-kcore de-
fined as the k-core with k = d1/2 kmax

core e, see Appendix B) persists in the
lockdown. The figure shows that the decrease of the 0.5-kcore is only
50% compared to the 91% decrease of the 0.5-kshell; the former even in-
creases slightly at the end of April, following the same trend in mobility
(see Figure 11b). This process is visually corroborated in the evolution
of the networks seen from Figure 12a to 12c where we observe the dis-
appearance of the peripheral k-shells and the persistence of the maximal
k-core. Indeed, the unessential contacts in the peripheral k-shells may
have been first pruned during social distancing.

Using numerical simulations, we corroborate that the infection can
persist in these high k-cores of the network while virus persistence in
outer k-shells is less important [18, 50]. We use a SIR model on the
transmission network (Figure 17a and Figure 18a) showing that the max-
imal k-cores of the network sustain the spreading of the disease more
efficiently than the outer k-shells. Thus, the maximal k-core compo-
nents of the contact network are plausible drivers of disease transmis-
sion. Apart from this structural explanation (i.e., k-core), epidemiologi-
cal factors may also play a role in the persistence of the disease, such as
a transition of the disease to vulnerable communities with high demo-
graphic density, or with large inhabitants per household where isolation
is poorly fulfilled.

When we plot the geolocation of the contacts forming the maximal k-
core in the map of Ceará, we find that these contacts take place in highly
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transited areas of the capital Fortaleza, such as hospitals, business build-
ings, warehouses as well as large condominiums, see Figure 12d. These
contacts generate superspreading k-core events that generalize the con-
ventional notion of superspreaders, which refer mainly to individuals
with large number of transmission contacts [126, 127, 128]. However,
connections are not everything [114, 115]. K-core superspreaders not
only generate a large number of transmission contacts, but their contacts
are also highly connected people, and so forth.

3.4 Results

The existence of k-cores in the transmission network suggests that a more
structured quarantine could be deployed to either isolate or destroy those
cores that help maintain the spread of the virus. We perform an optimal
percolation analysis [114, 115, 116] to find the minimal number of people
necessary to quarantine that will dismantle the transmission network.
We follow different strategies to find the optimal breakdown of the net-
work by ranking the nodes based on (1) the number of contacts (hub-
removal) [114, 115, 18], (2) the largest k-shells and then by the degree
inside the k-shells [18, 50], (3) the collective influence algorithm for opti-
mal percolation [116], and (4) betweenness centrality [52, 53, 121, 122].

Figure 17b shows the normalized size of the GCC versus the frac-
tion of removal nodes following different strategies, as well as a random
null model of removal in a typical network under lockdown in April 28
(March 19 pre-lockdown results are plotted in SI Figure 18b). While the
disease can persist in the k-cores (Figure 17a), quarantining people di-
rectly inside the maximal k-core is not an optimal strategy. The reason is
that k-cores are populated by hyper-connected hubs that require many
removals to break the GCC [122] (around 7%, see Figure 17b). For the
same reason, removing directly the hubs is not the optimal strategy ei-
ther, since the hubs are within the maximal k-core and not outside. A col-
lective influence strategy [116] improves over hub-removal since it takes
into account how hubs are spatially distributed, yet, it is far from op-
timal. Clearly, Figure 17b shows that the best strategy is to quarantine
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Figure 17: (a) Average size of infected population, M [50], in an outbreak
average over all starting nodes in a k-shell as a function of the probability
of infection β for a SIR model on the network in Figure 12c during the lock-
down. The black is the average value over all the network. The average
divides the k-shell contribution to the spreading of the virus in two groups:
above and below the average. The 0.5-kcores have maximal spreading and
the 0.5-kshell have minimal spreading. Error bars correspond to a confi-
dence interval of 95%. (b) Optimal percolation analysis performed over the
network in Figure 12c during the lockdown in following different attack
strategies and their effect on the size of the largest connected component
G(q) versus the removal node fraction, q. Nodes are removed (in order of
increasing efficiency): randomly (blue); by the highest k-shell followed by
high degree inside the k-shell [50]; by highest degree (orange); by collective
influence (red) [116]; and by the highest value of betweenness centrality
(green) [52, 53]. After each removal we re-compute all metrics. The most
optimal strategy among those studied is removing the nodes by the highest
value of betweenness centrality. (c)-(d) Effect of removing three high be-
tweenness centrality nodes shown in Figure 17b in the network of Figure
12c. (c) We show the 2-core component of the network after the removal
of 12 high betweenness centrality nodes. The red node is the one with the
highest betweenness centrality value (next node to remove, 13th) and the
blue node is the 14th removal. Different k-cores and k-shell are in different
colors. (d) Network k-cores are disintegrated after the removal of the high
BC nodes.
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a b

Figure 18: (a) Amount of infected population (M =
∑ Mi

N
see [50]) when

the spreading starts in a given node in a k-shell as a function of the probabil-
ity of infection β for a SIR model on the same network on March 19 in Fig.
12a. in pre-quarantine Ceará. The black is the average value over all the
starting nodes in the network. The average divides the shell contribution
to the spreading of the virus in two groups above and below the average.
The 0.5-kcore composed of the 6-core (kmax

core = 12 in this network) which
contains nodes from the 6-shell to the 12-shell, has maximal spreading. the
0.5-kshell which is composed by the remaining shell from 1-shell to 5-shell
has minimal spreading, below the average. (b) Optimal percolation analy-
sis performed over the network in Fig. 12a before the quarantine on March
19 in Ceará with different attack strategies and their effect on the size of the
largest connected component G(q) versus the removal node fraction, q. De-
pending on the strategy nodes are removed: randomly (blue), by the highest
value of betweenness centrality (green) [52, 53], degree (orange), collective
influence (red) [116], and by the highest k-shell followed by high degree
inside the k-shell [50]. After each removal we re-compute all the metrics.
The best strategy among those studied is removing the nodes directly by
the highest value of betweenness centrality.

people by their betweenness centrality. By removing just the top 1.6-2%
of the high betweenness centrality people, the GCC is disintegrated. This
is consistent with the particular structure of the transmission networks
seen in Figure 12b, c and Figure 17.

The betweenness centrality of a node is proportional to the number
of shortest paths in the network going through that node. Thus, given
the particular structure of the networks in Figures 12b, c, and Figure
17c, the high betweenness centrality nodes are the bottlenecks of the net-
work, i.e., loosely-connected bridges between the largely-connected k-
cores components. These connectors are the celebrated ’weak links’, fun-
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damental concept in sociology proposed by Granovetter [51], according
to which, strong ties (i.e., contacts in the k-cores) clump together form-
ing clusters. A strategically located weak tie between these densely ’knit
clumps’, then becomes the crucial bridge that transmits the disease (or
information [51]) between k-cores.

These weak links are people traveling among the different k-cores
components allowing the disease to escape the cores into the rest of so-
ciety. These bridges are displayed in the network of Figure 17c as yel-
low, blue and red nodes. The removal of these high betweenness central-
ity people disconnects the k-core components of the network entirely, as
shown in Figure 17d, halting the disease transmission from one core to
the other [129, 122].

An important finding is that quarantining the large superspreading
k-cores is neither optimal (as shown in Figure 17b, green curve) nor prac-
tical, since they are mainly comprised by chiefly essential workers who
need to remain operational (Figure 12d). Thus, the best strategy, in con-
junction with the mass quarantine, is then to disconnect these k-cores
from the rest of the social network (Figures 17c and 17d), rather than
quarantining the people inside the k-cores. This can be performed by
quarantining the high betweenness centrality weak-links that simultane-
ously preserve the operational k-cores. However, individuals belong-
ing to the maximal k-cores should be tested at a higher frequency to
promptly detect their infectiousness before the symptoms start, to help
control the spreading inside the k-cores.

3.5 Discussion

Isolating the k-core structures by quarantining the high betweenness cen-
trality weak links proves to be the most effective way to dismantle the
GCC of the disease while keeping essential k-cores working. While de-
stroying the strong links and cores is a less manageable task to execute
and control, isolating the weak links between cores is a more feasible task
that will assure the dismantling of the GCC. In other words, if one core is
infected, the disease will be controlled within that core and not extended
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to the rest of society.
The algorithms we propose, which should help policy makers in fight-

ing the current pandemic, are implemented following the guidelines of
the WHO for developing contact tracing programs using traditional or
digital technologies. In [130] the World Health Organization, specifically
recommends a daily monitoring of infected people, daily tracing of their
contacts and daily application of quarantines based on the identified con-
tacts.

Thus, our protocol could be implemented by local authorities by the
use of a mobile app, which would (i) first identify the infected people
day by day, (ii) then build the contact network back in time starting from
those infections, (iii) compute if a user is a potential spreader, and (iv) if
so, notify the user to quarantine, after which the user keeps being moni-
tored.

The intervention strategy can be implemented as follows:

1. Monitor daily the number of infected people in the database. Ev-
ery day the database is updated with the new cases including the
information on the patient’s first date of symptoms.

2. Starting from the day of first symptoms of each patient, monitor
back in time and in future days the number of contacts using digi-
tal contact tracing. From the identified first layer of contacts, obtain
the chain of transmission by constructing the possible contact net-
work up to a given number of layers. This is the transmission net-
work at day t. This network takes into account possible pathways
of the spreading.

3. After identifying all members of the transmission network, notify
them of possible exposures. Additionally, perform network tech-
niques to identify the people to dismantle the GCC and further in-
form them to quarantine, isolate, test or vaccinate. Optimization is
applied numerically at this stage, by following the analysis in Fig-
ure 17 over different dismantling strategies. Send a message via
mobile app to isolate to everyone in the transmission chain, in par-
ticular to those in the first layer of contact. Send also a message
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via mobile app to the obtained list of top spreaders to further sug-
gest to quarantine. The quarantined people should not be removed
from the analysis in the subsequent networks at time t+ 1 since the
quarantined person could still create new contacts in the future,
if the quarantine is not followed strictly. The quarantined people
are not removed from the analysis and their trajectories are being
monitored in future times to detect future contacts.

4. At day t+ 1 repeat the same procedure from Point 1-3. Add to the
database the new number of reported cases at day t + 1 and build
the new contact network explained in Point 2.

5. Repeat the above procedure daily for maximum effectivity.

The core of our algorithm is the capability to detect possible infected
persons. As such, it can helps the governments around the world in or-
der to curb the spread of coronavirus [104, 105, 106, 107, 108, 109, 110,
111]. Such identification can guide to targeted vaccinations/quarantine
and it is of primary importance in the second phase of reopening economies
across the world and, in particular, in developing countries where re-
sources are scarce. In the Appendix B we addresses issues of sampling
bias and coverage of the data relevant for implementation. Overall, our
network-based optimized protocol is reproducible in any setting and
could become an efficient solution to halt the critical progress of the
COVID-19 pandemic worldwide drawing upon effective quarantines with
minimal disruptions.
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Chapter 4

The social listener: an AI
alternative to traditional
polls

The results presented in this Chapter are based on the work [54],
currently under submission.

4.1 Introduction

Traditional polling methods [131] using random digit dial phone inter-
views, opt-in samples of online surveys, and interactive voice response
are failing to predict election outcomes across the world [132, 133]. The
failure of traditional surveys has also been widely discussed in the press
[134] and on specialized literature. For instance, the victory of Donald
Trump in the US 2016 presidential election came as a shock to many, as
none of the pollsters and political journalists, including those in Trump’s
campaign, could predict this victory [135].

One of the reasons of this failure is that the percentage of response
to traditionally conducted surveys has decreased and it is becoming in-
creasingly difficult to get people’s opinion [136, 137]. Response rates
in telephone polls with live interviewers continue to decline, as it has
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reached 6% lower limit recently [137]. Response rates could be even
lower for other methodologies, like internet polling or interactive voice
response. There is increasing evidence [136, 137] that the nonresponse
bias might be the reason that polls are not producing accurately matched
election results. However, this is not the only problem of traditional
methods of polling. Live interviews are affected by social desirability bi-
ases [138], i.e. the tendency of research subjects to give socially desirable
responses instead of choosing responses that are reflective of their true
feelings. Moreover, polls are not able to detect sudden change of opin-
ion due to some particular events or circumstances, since the process of
opinions collection is time consuming. All these peculiarities together
make impossible for traditional polls to correctly predict the results of
the elections.

Monitoring social networks represents an alternative for capturing
people’s opinions since it overcomes the low-response rate problem and
it is less susceptible to social desirability biases [138]. Indeed, social me-
dia users continuously express their political preferences in online dis-
cussion without being exposed to direct questions. One of the most stud-
ied social networks is the microblogging platform Twitter [139, 140, 141,
28]. Twitter’s based work generally consist of three main steps: data col-
lection, data processing and data analysis. The collection of the tweets
is often based on a public API of Twitter. It is a common practice to col-
lect tweets by filtering according to specific queries, as for example the
name of the candidates in the case of elections. Data processing includes
all those techniques which aim to guarantee the credibility of the Twit-
ter dataset. This is, for example, bots detection and spam removal [28].
Data analysis, the core of all these studies, can be simplified in three main
approaches: volume analysis, sentiment analysis and network analysis.

Scholars used the number of mentions for a party of a candidate in
order to forecast the result of the 2009 German parliament election [142].
While their technique has attracted many criticisms [143], their work was
of inspiration to many other researchers. Gaurav et al. [144] proposed a
model, based on the number of times the name of a candidate is men-
tioned in tweets prior to elections, to predict the winner of three presi-
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dential elections held in Latin America (Venezuela, Paraguay, Ecuador)
from February to April, 2013. Based on volumetric analyses are also the
works of Lui et al. [145] and Bermingham [146]. Ceron et al. [147] per-
formed a sentiment analysis study on the tweets to check the popularity
of political candidates in the Italian parliamentary election of 2011 and
in the French presidential election of 2012. Caldarelli et al. [148] used the
derivative of the volume to forecast the results of Italian elections. Singh
et al. [149] employed sentiment analysis to predict victory of Trump in
the election of 2016. The same author proposed a method [150] based on
sentiment analyses and machine learning on historical data to predict the
number of seats that contesting parties were likely to win in the Punjab
election of 2017. Other works [151, 152] used social networks analyses
in order to identify the position of a party in the online community by
measuring its centrality. The most supported parties are in general those
with an higher centrality.

Despite the large amount of literature, the debate about whether Twit-
ter can be used to infer political opinions is still open. Online social
networks are continuously filled by false, erroneous data through trolls,
bots and misinformation campaigns to a level that distinguish between
what is genuine and what is not is in general difficult. By virtue of this,
the great challenge of algorithms and AI is to discover and interpret real
data from ‘junk data’ that could lead to accurate predictions of electoral
or opinion trends. Beside, it should be noted that the opinions of Twitter
users may not be representative of the entire population [153, 139].

In this work we first investigate in section 4.2 why the traditional
polls fail to predict the results of the primary presidential election in Ar-
gentina on August 2019. This is possible thanks to the exclusive access to
the raw data of the polling conducted by one of the most reliable pollsters
in Argentina, Elypsis. We find that a poor demographic representation
combined with the inconsistency of opinion’ respondents before and af-
ter the elections are the main reason why polls fail. To overcame these
problems, we propose an AI model to predict electors trend of opinions
in social media in section 4.3. By using machine learning we uncover
political and electoral trends without directly asking people what they
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think, but trying to predict and interpret the enormous amount of data
they produce in online social media [141, 28, 154, 155]. Big data analysis
overcomes the low response rate problem. By re-weighting the Twitter
populations to the Census data, we match the distribution of the pop-
ulation’ statistics (age, gender) and the statistics of the real population
(given by the Census Bureau) [153]. The real time data processing which
underlies our AI algorithm allows us to detect sudden change of opin-
ions, and therefore different loyalty classes towards each candidate. We
will show that a cumulative analysis performed on the loyalties classes
considerably improves the results of [141], based on instantaneous pre-
dictions. Instantaneous predictions, as well as pollsters predictions, are
subject to high fluctuations which undermine the reliability of the pre-
diction itself. We validate the algorithm on the general election in Ar-
gentina. Our results (section 4.4) show that AI can capture the public
opinion more precisely and more efficiently than traditional polls. We
summarize the result in the discussion, section 4.5.

4.2 Why are pollsters failing to predict elections?

The events leading up to the recent primary election in Argentina are
a telling example of the failure of the polling industry [156, 157, 158].
On the primary election day on August 11, 2019 (called PASO in Span-
ish: Primarias, Abiertas, Simultáneas y Obligatorias; in English: Open,
Simultaneous, and Obligatory Primaries), none of the pollsters in the
country predicted the wide 16% margin of presidential candidate Alberto
Fernández (AF) over the president Mauricio Macri (MM). Primaries in
Argentina are obligatory, happening for all political parties at the same
time, and the two main parties presented only one candidate each, thus
transforming the primaries into a de-facto presidential contest.

Figure 19 shows the comparison between the official results (in red),
our prediction (in blue, Model 3 explained below) and the polling av-
erage, computed as the average of the top five most trusted pollsters in
Argentina [157, 158], i.e. Real Time Data, Management & Fit, Opinaia,
Giacobbe and Elypsis (in green). Macri was clearly defeated by Fernan-
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dez by +16%, a result captured by our predictions. While the average
pollster predicted Fernandez with a slight advantage in the primary, the
estimated percentage of each candidates were, in general, really close
reaching in some occasion a difference of just one percentage point [159].
Elypsis in particular predicted that Macri would win for one percent-
age point [160]. This virtual tie predicted by the pollsters was largely
considered to be a win for the incumbent candidate Macri since he was
supposed to gain all the votes left by the third party options in the sub-
sequent presidential election and eventually win the election in a runoff.
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Figure 19: Comparison between polling average (green), official results
(red) and our prediction (blue) for both the Primary (on the left: 2019-08-
11) and the General election (on the right: 2017-10-27).

It is worth to stress at this point that Macri (right-leaning candidate)
made of the internationalization of the market one of the main points
of his campaign (favoring foreign investors and pro-business) while the
left-leaning candidate Fernándezwas was supporting a national market.
As a result of the predictions supported by all Argentinian pollsters giv-
ing Macri as the winner, the bond market rose excessively in the days
preceding the primary election. The subsequent defeat of Macri by 16
percentage points at the primaries leads to a historic collapse of the MER-
VAL index by 40%, the bond market collapsed and some banks lost 1
billion dollars in the bet overnight [161, 162].

The failure of traditional polls is not associated with the impossibil-
ity of giving the exact right percentage for the candidates, but rather
with the impossibility of predicting the enormous gap between them.
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The Argentina primaries elections are not the only example of pollsters’
failure. Unpredictable results seems to be associated whenever one of
the candidates is a controversial figure in the political scenario. In Ar-
gentina, the eventual vice-presidential candidate accompanying Alberto
Fernández was previous Argentinian president Cristina Fernández de
Kirchner (CFK), who had faced corruption allegations and judicial pro-
cesses and many Argentinians and the traditional media viewed as a
controversial and divisive figure in Argentina politics and who is usu-
ally vilified by the traditional media. Notorious examples are Trump
in the American presidential election of 2016 or Bolsonaro in the Brazil-
ian general election of 2018. In the case of the Argentina primaries,
the pollster failure led to economic disruption of the country at a na-
tional/international level [161].

Below we analyze the raw data of one of the most reliable polls, Elyp-
sis (trusted specially by the president Macri and international investors
[161, 162, 158, 159]) which as all the pollsters failed to predict the large
gap between the two candidates for the primaries elections.
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Figure 20: (a) Elypsis demographics before PASO. (b) Elypsis polling re-
sults before PASO separated by age and gender (Macri=red, Fernández=
blue, Others=grey). Results are highly biases to older than 50 as compared
with Census distribution. (c) Argentina Census Bureau 2010 demographic
distribution by age and gender.
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Figure 21: (a) Elypsis demographics after PASO. (b) Elypsis polling results
after PASO separated by age and gender (Macri=red, Fernández= blue, Oth-
ers=grey).

Figure 20a shows the age-gender distribution of the respondents to
the survey conducted by Elypsis immediately before the PASO elections.
Elypsis employs a combination of IVR of landline numbers complemented
with online opt-in samples from Facebook. The vast majority of these on-
line panels in Argentina, as well as in US, are made up of volunteers who
were recruited online and who received some form of compensation for
completing surveys, such as small amounts of money or frequent flyer
miles. Figure 20b shows the number of respondents for Fernández (light
blue), Macri (red) and Third Party (grey) grouped by age and gender.
The Elypsis sample is peaked around the 50 years old group. This is
strikingly different from the national population statistics obtained from
the Argentinian Census Bureau shown in Figure 20c.

Elypsis data does not have significant coverage among people younger
than 30, even though it has been conducted in Facebook. It shows a heav-
ier tail on the right for older groups, while the national population (Cen-
sus Bureau) has a less pronounced peak around the group of 30 years old
and an heavier tail on the left for younger groups. The largest sampled
group surveyed by Elypsis are females between 51 and 65 years old who
are overwhelming in favor of Macri. In fact, in all groups above 30 years
old, Macri is the clear favorite in the Elypsis poll. On the contrary, Twit-
ter represents better the younger generations. It is important to consider
again that the vote is obligatory in Argentina and it is permitted above
16 years, and the turnout of the youngest is quite substantial, thus, any
pollster that does not capture their preferences is, in practice, doomed to
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fail.

To deal with the mis-representation problem, pollsters adjust their
raw results to population benchmarks distributions given by the Census
Bureaus [136, 131] by weighting the raw data (sample-balancing or rak-
ing [163, 164]). The poll sample is weighted so it matches the population
on a set of relevant demographic or political variables, for instance, age,
gender, location and other socio-economic variables, like education level
or income. Studies of the effectiveness of various weighting schemes
suggest they reduce some (30 to 60%) of the error introduced by the bi-
ased sample, see [131]. However, when the raw data distribution is dras-
tically under/over sampled as the Elypsis case, a small error in the most
representative groups would propagate to produce inaccurate result.

As discussed above, the mis-representation is not the only problem
which traditional pollsters methods face. Next, we analyze the longi-
tudinal data taken on the same 1,900 respondents by Elypsis before and
after the elections to investigate the social-desirability bias. We start with
Figure 21a showing the Elypsis respondent distributions after PASO (no-
tice that these respondents are different from the previous ones, and this
is the reason why the age distribution change respect to the previous fig-
ure). By comparing Figure 20a before PASO with Figure 21a after PASO
we first notice a change in the voters distributions. Younger groups are
better represented after the election when compared to Figure 20a, al-
though the data are still highly biased towards older generations. This
implies that younger groups were, at least, more prone to answer the
polls after the election than before.

Surprisingly, the female group with ages between 30 and 50 years
voted for Fernández as indicated after the PASO polls, while before the
PASO they responded mainly in favor of Macri. The male group of the
same age shows a similar behavior, even if less pronounced. Let us no-
tice that, according to Figure 20b, the groups of females/males between
30 and 50 years old are the most represented in the Census data and
therefore may have an higher impact on the final result. These results
can only be explained by admitting that voters did not say the true.

This is further corroborated by this unique longitudinal panel, as seen
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in Table 2, revealing that people lied and hid their true voting intentions
to the pollsters before the elections.

Who will you vote? Who did you vote? Was Pre PASO vote true?
AF-CFK MM-MP Other Yes No

AF-CFK 91% 2% 8% 91% 9%
MM-MP 6% 83% 11% 83% 17%
Lavagna 19% 9% 72% 56% 44%
Del Cano 25% 0% 75% 54% 46%
Espert 19% 14% 67% 53% 47%
Gomez Centurion 10% 8% 83% 69% 31%
Blank or Null 23% 4% 73% 47% 53%
Unknown or Others 53% 11% 36%

Table 2: Vote disclosure analysis: “Who are you going to vote in the PASO”
with “Who did you vote in the PASO” - using the same sampling and post-
stratification methodology than in the Pre-PASO survey [165].

More specifically, when comparing “Who are you going to vote in
the PASO” with “Who did you vote in the PASO” - using the same sam-
pling and postratification methodology than in the Pre-PASO survey - it
is found that about 18% of the people did not disclose their true vote,
and the hidden vote was not unbiased.

• 91% of those who said “I will vote for Fernandez” did so, but only
83% in the case of Macri, who lost 6% to AF.

• “Secondary candidates” voters were much more volatile. Only 56%
of those who said that they were going to vote for (third candidate)
Lavagna disclosed their true vote, and 54%, 53% and 69% in the
case of the candidates Del Caño, Espert and Gomez Centurion re-
spectively.

• Alberto Fernández got almost 19% of the votes of those who chose
a secondary candidate in the PASO Poll, and Mauricio Macri only
9%.

• Alberto Fernández received 46% of the votes of those who answered
“Blank, Null or Unknow” before the PASO.
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But, who hid - or not disclosed - their real vote? We find no significant
difference between men and women or between education levels but we
see a clear pattern in age demographics. 33% of those between 16 and 30
years changed their vote vs. their Pre PASO answer and only 13%, 10%
and 14% on those between 31 and 50, 51 and 65 and more than 65, see
Table 3.

Revealed Not Revealed
Man 83% 17%
Woman 81% 19%
Between 16 and 30 67% 33%
Between 31 and 50 87% 13%
Between 51 and 65 90% 10%
More than 65 89% 11%
Full Secondary 81% 19%
Incomplete Secondary 81% 19%
Full or incomplete Univ. 86% 14%
Total 82% 18%

Table 3: Hidden vote by demographics [165].

What did those who did not disclose their vote think about the candi-
dates? Where they “closeted Kirchnerist” (party of AF and CFK) or did
they bridge the gap between Macri-Fernández?

“Regular” images of Cristina Fernández, Macri and Alberto Fernández
were much lower among those that did reveal their vote than among
those who did not, see Table 4. Those who hid their votes look more
nonpolarized, with a “Regular” image - No positive nor negative - of
21% on average, vs 6% / 10% of those who revealed the vote. CFK’s neg-
ative image is higher than MM (48% vs 39%) in “non-revealed” and the
opposite hold in the revealed (43% vs 50%). 35% of the ”non-revealed”
did not have (or hid) their opinion of Alberto Fernandez vs. 8% in the
revealed.

This combined information shed light on PASO results and Polls con-
sensus miss. In the PASO, AF was able to catch votes from all the can-
didates, and seduce voters from within the gap, ”moderate” voters who
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had a negative image of CFK and MM. He succeeded in standing him-
self as the ”third candidate” bridging the gap, something that was not
being fully captured by the polls, or that was decided at the last minute.
This feature is most striking in young people, who may both have more
”volatile” opinions and less prone to reveal them on traditional polls.
This hidden-vote factor can explain by itself as much as 10% difference
between ”ex-ante” forecast and real results. Thus, standard polls meth-
ods failure may not have been related only to a bias in the sampling but,
in the extraction of ”True” information from surveyed people.

Image % of the total Revealed Not Revealed
Positve Negative Regular NS/NC Positve Negative Regular NS/NC

CFK 45% 43% 6% 5% 20% 48% 22% 11%
MM 36% 50% 10% 4% 26% 39% 21% 14%
AF 45% 39% 7% 8% 15% 28% 28% 35%

Table 4: CFK, AF, and MM Image as % of the total [165].

Understanding why people lie is not the topic of this work even if,
according to the literature the reasons could be many and related to
desirability-bias. On one hand, participants may typically rush through
the surveys to obtain their rewards and don’t respond thoughtfully [136].
On the other hand, social-desirability bias [138, 166], i.e. the tendency of
survey respondents to answer questions in a manner that will be viewed
favorably by others [166, 136] is another reason for people to hide their
preference for controversial candidates like CFK, which leads to biased
results.

We showed that low response rate, mis-representation and the so-
cial desirability bias/lies (which in the case of Elypsis biased more the
younger representative) undermined the predictions on the Argentinian
primary elections. Below we search for a suitable replacement using
sampling methods for the modern era of big-data science. In this sce-
nario, a good candidate to substitute traditional polls are social media
(Twitter in our study) which solve in one shot both the law response rate
(million of people express their political preferences in the microblog-
ging platform) and the social desirability biases. This is because social
media users do not answer to any question, but freely express their ideas
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in a social medium platform. However, one may argue that Twitter is
generally bias towards young people thus providing a biased sample.
Thus, a proper re-weighting of the data is needed, although the effects
of re-weighting are expected to be less pronounced than in the polls of
Elypsis. We introduce an AI model that builds up on previous work in
[141] combining machine learning, network theory and big-data analytic
techniques, that is able to overcome the problems presented so far and
that correctly predicted the outcome of the 2019 Argentina primary and
general elections.

4.3 Networks & Machine learning: AI based ap-
proach

The algorithm we propose improves upon previous work from [141] and
consists of four phases (see Figure 22): data collection, text and user pro-
cessing, tweets classification with machine learning and opinion model-
ing. While the first two phases are of standard practice in the literature,
tweets classification by means of ML models only recently took place
[141, 28], given the impossibility to classify by hand millions and millions
of data. Opinion modeling, the core of our election prediction model, is
an attempt to instantly capture people’s opinion through time by means
of a social network. To improve upon [141], we consider the cumula-
tive opinion of people and define five prediction models based on differ-
ent assumptions on the loyalty classes of users to candidates, homophily
measures and re-weighting scenarios of the raw data. Below we explain
each phase, highlighting the steps that make our full-fledge AI predictor
a good candidate substitute for the traditional pollster methods.

4.3.1 Data collection

By means of the Twitter public APIs, we collected tweets from March 1,
2019 until October 27, 2019, filtered according to the following queries
(corresponding to the candidates’ name and handlers of the 2019 Ar-
gentina primary election): Alberto AND Fernandez, alferdez, CFK, CFKAr-
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Figure 22: The flow of election prediction algorithm.

gentina, Kirchner, mauriciomacri, Macri, Pichetto, MiguelPichetto, Lavagna.
Only tweets in Spanish were selected. Figure 23a shows the daily vol-
ume of tweets collected (brown line) while Figure 23b shows the daily
number of users (green line). In blue we report the daily number of
tweets/users which are classified, i.e. they posted at least one classified
tweet. Users are classified with machine learning as supporters of Macri
(Figure 23d, red line) if the majority of their daily tweets are classified in
favor of Macri (Figure 23c, red line) or as supporters of Fernández in the
other way around (blue line in Figure 23d and c). Hereafter we use FF
to indicates the Fernández-Fernández formula and with MP we refers to
the Macri-Pichetto formula (the outgoing president/vice-president can-
didate).

The activity of tweets/users shows a peak on August 11, 2020, i.e.
the day of the primary election. In the period from March to October, we
collected a daily average of 282,811 tweets posted by a daily average of
84,062 unique users. We daily classified 75% of these tweets and∼ 76% of
the users ( see Table B1 and Table C1 in the Appendix C ). In total, by the
end of October we collected around 110 million tweets broadcasted by
6.3 million users. This large amount of tweets collected has no precedent
and is relevant in the light of considering that Argentina is one of the
most tweeting per capita countries in the world.

4.3.2 User and text processing.

As a standard practice, raw data need to be elaborated before to be used.
Here after we explain this step.

Bots detection. The identification of software that automatically injects
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Figure 23: (a) Daily volume of collected (brown line) and classified (green
line) tweets. (b) Daily volume of collected (brown line) and classified (green
line) users. (c) Daily tweets supporting the FF/MP formula. (d) Daily users
supporting the FF/MP formula.

information in the Twitter’ system, is of fundamental importance to dis-
cern between “ fake” and “ genuine” users [167], the latter representing
the real voters. According to [141] a good strategy is to extract the name
of the Twitter client used to post each tweet from their source field and
kept only tweets originating from an official Twitter client [28]. Figure
24a and b show the daily number of tweets posted by bots and the daily
volume of bots, respectively. Figure 24c and d show the daily volume
of classified tweets/bots. The daily average of bots between March and
October is 732 with an overall daily activity (in average) of 2,243 tweets.
The daily classified tweets are 1,617 while the daily classified bots are
560 bots. As for “genuine” users, a bot is classified if it share at least 1
classified tweet. In the entire dataset we found around 20,000 bots which
posted 538,350 tweets. Let us notice that even though we classified the
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Figure 24: Bots analysis:(a) Daily volume of collected (brown line) and clas-
sified (green line) tweets. (b) Daily volume of collected (brown line) and
classified (green line) users. (c) Daily tweets supporting the FF/MP for-
mula. (d) Daily users supporting the FF/MP formula.

bots, they are not used for the final prediction since they do not corre-
sponds to real voters.

Text standardization. Stop words removal and word tokenization are
of common practice in Data mining and Natural language processing
(NLP) techniques [168, 169]. For example, we keep the URLs as to-
kens since they usually point to resources determining the opinion of
the tweet, through replacing all URLs by the token “ URL ”.

4.3.3 Tweets classification.

To build the training set we analyze the hashtags in Twitter. Users con-
tinuously labels their tweet with hashtags, which are acronyms able to
directly transmit the user feeling/opinion toward a topic. We hand la-
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beled the top hashtags used in the dataset (see Table C3 in the Appendix
C). They are classified either as pro M(acri), F(ernández) or T(hird party)
candidate, depending on who they support (with Third party we refer to
the supporters of Lavagna, Espert and other secondary candidates).

Hashtag co-occurrence network. In order to check the quality of the clas-
sification of the classified hashtags we build the hashtag co-occurrence
network H(V,E) and statistically validate its edges [170, 141]. In the co-
occurrence network the set of vertices v ∈ V represents hashtags, and an
edge eij is drawn between vi and vj if they appear together in a tweet. We
test the statistical significance of each edge eij by computing the proba-
bility pij (p-value of the null hypothesis) to observe the corresponding
number of co-occurrences by chance only knowing the number of occur-
rences ci and cj of the vertices vi and vj , and the total number of tweets
N . Figure 25 shows the validated network. We only keep those edges
with a p-value p < 10−7. The blue community contains the hashtags
in favor of Fernández, the red community those in favor of Macri and
the green one (a very small group) are those in favor of the Third can-
didate. A look at the typologies of hashtags reveals the first differences
in the supporters. Those in favor of Cristina Kirchner are much more
passionate than the follower of Macri. For example, Kirchner’s type of
hashtags are #FuerzaCristina, #Nestorvuelva, #Nestorpudo or they are
very negative to Macri as #NuncamasMacri. On the other hand, Macri’s
group is smaller and less passionate with hashtags like #Cambiemos or
#MM2019 (see Figure 26), while support for the third candidate has not
taken traction and its electoral base on Twitter is very small.
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Figure 25: Hashtag co-occurrence network from March to August 2019. In
blue the hashtags in favor of Alberto Fernández and Cristina Fernández de
Kirchner, in red the hashtags in favor of Macri and in green those in favor
of the Third party.
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(a) (b)
Figure 26: Hashtag clouds. The dimension of the words is proportional to
their frequency in the dataset.(a)The blue hashtags are the most frequently
used in the tweets in favor of Fernández. (b) The red hashtags are those in
favor of Macri.

In principle, counting the users and tweets according to the hashtags
they use would predict the victory of Fernández over Macri. However
this conclusion would be based only on ∼ 10,000 users (those expressing
their opinion through hashtags). In order to get the opinion of all the
users we train a machine learning model that classifies each tweet as AF,
MM or Third party. (In what follows we also refer to the formulas FF for
Fernández-Fernández and MP for Macri-Pichetto, the final formulas in
the presidential contest). We use the previous set of hashtags expressing
opinion to build a set of labeled tweets, which are used in turn to train a
machine learning classifier. We use all the tweets (before August) which
contain at least one of the classified hashtags to train the model. In the
case of more than one hashtag for a tweet, we consider it only if all the
hashtags are in favor of the same candidate. The use of hashtags that
explicitly express an opinion in a tweet represents a “cost” in terms of
self-exposition by Twitter users [171] and therefore allows one to select
tweets that clearly state support or opposition to the candidates [141].
The training set consists of 228,133 tweets, i.e. the 0.33% of the total
amount of collected tweets and the ∼90% of the hand-classified tweets
(253,482 tweets). In order to find the best classifier we used five different
classification models, the logistic regression (LR) with L2 regularization,
the support vector machine model (SVM), the Naive Bayes method (NB),
the Random Forest (RF) and the Decision Tree (DT). All these models are
validated on the remaining 10% of the classified tweets (25,349). Table 5
shows the results for the models. The logistic regression performs better
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than the other models with an average group accuracy equals to 83%.
Also recall and F1-score are equal to 83%. Support Vector Machine is the
second classified, with an average accuracy of 81%. It follows the Naive
Bayes with and average accuracy of 79.5%, the Random Forest and the
Decision Tree.

Model Precision (FF) Recall (FF) F1 (FF) Precision (MP) Recall (MP) F1 (MP)
LR 0.83 0.83 0.83 0.83 0.83 0.83
SVM 0.81 0.81 0.81 0.81 0.80 0.81
NB 0.79 0.80 0.80 0.80 0.79 0.80
RF 0.74 0.80 0.77 0.79 0.72 0.75
DT 0.76 0.76 0.76 0.76 0.76 0.76

Table 5: Performance of the classification models: Logistic Regression
(LR),Supporting Vector Machine (SVM), Naive Bayes (NB), Random Forest
(RF) an Decision Tree (DT).

We recall that the logistic regression assigns to each tweet a probabil-
ity p of belonging to a class. In our case such probability goes to one if
the tweet supports Macri while it goes zero if it supports Fernández. As
it is shown in Figure 27 the distribution of p contains two peaks, one on
the left and one on the right, divided by a plateau. This is an encourag-
ing result, since it proofs the efficacy of the model to discern between the
two classes. We classify a tweet in favor of Macri if p ≥ 0.66, in favor of
Fernández if p ≤ 0.33. Tweets with a value of p in the plateau are instead
unclassified, meaning that the tweet does not contain sufficient informa-
tion to be classified in either camp. According to this rule, in average
we classify 211,229 genuine tweets and 1,617 “fake” tweets per day (see
Table B1 and Table C1 in the Appendix C).

4.3.4 Opinion modeling

We can infer users’ opinion from the majority of the tweets they post.
Let nt,F be the number of tweets posted by a given user at time t in
favor of Fernández and let nt,M be those supporting Macri. We define
an instantaneous opinion over a window of length w and a cumula-
tive average opinion as follow. In the first case, a user is classified as
a supporter of Fernández (at a given day t = d) if

∑d
t=d−w+1 nt,F >
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Figure 27: Probability distribution of p = probability of voting for Macri (p =
0 corresponds to Fernández) obtained by the Logistic Regression model.

∑d
t=d−w+1 nt,M , i.e if the majority of the tweets posted in the last w days

were in favor of Fernández. The user is classified as a supporter of Macri
if
∑d
t=d−w+1 nt,F <

∑d
t=d−w+1 nt,M . If none of the previous conditions

is met, i.e. if
∑d
t=d−w+1 nt,F =

∑d
t=d−w+1 nt,M then the user is classified

as undecided. Let us notice that when w goes to one we have the ‘most’
instantaneous prediction, that is the prediction based on what people
think in the last day. This instantaneous prediction model was used in
Ref. [141] to match the results of the AI model to the aggregate of polls
from the New York Times in the 2016 US election with excellent results.
However, this predictor did not match the results of the electoral college,
which required stratification by states. Thus, we further develop the AI
model of [141] to add other predictors beyond the instantaneous mea-
sures. Traditional polls’ data collection is an instantaneous prediction
with a value of w that can go from few days up to few weeks, which is
the time of collection of the poll data and this corresponds roughly to our
instantaneous measurement above. However, the fact that we are able to
track the same user over long period of time in Twitter allows us to ex-
tend the window of observation as far as we want to then define a new
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measure that we call the cumulative opinion. The cumulative opinion in
our model is defined by extending w to the initial date of collection for
every time d of observation, i.e., w = d, thus considering the opinion of
a user based on all the tweets he/she posted from time t = 0 upto the
observation time d. That is, our prediction is longitudinal as we are able
to follow the opinion of the same user over the entire period of observa-
tion of several months. In terms of traditional poll methods, a cumula-
tive opinion would be obtained in a panel collecting for each respondent
in the sample and for each day starting from t = 0 her/his preference
toward a candidate. This possibility, which would require an unimag-
inable amount of effort and time for traditional poll methods, it is quite
straightforward when it come to social media and big-data analyses.

We start by investigating the instantaneous response of the users in a
fixed window of time. Figure 28a shows the Twitter supporters dynamics
over time obtained with a window average, w = 14 days. Users are clas-
sified as MP (in red), FF (in blue) or Others (in green). Figure 28b shows
the supporters dynamic (thick lines) compared with Elypsis prediction
(thin dashed lines) without considering the undecided users in the nor-
malization. In the same plots we also report the official results for both
primaries and general elections. The comparison between the two pic-
tures stands out as a approximate correlation between the Elypsis and
the AI results for each candidate. However, in the comparison among
candidates predictions may sometimes differs, as for example, right be-
fore the beginning of August, Elypsis gave as favorite MP while the AI
instantaneous prediction was in favor of FF. Overall, as for the pollsters
results, window average analyses are representative of the instantaneous
sentiment of the people. As we see from the figures, instantaneous opin-
ions are affected by considerable fluctuations [141] which make the pre-
diction not reliable. In Figure C1 in the Appendix C we compare the
average window opinion with other pollsters (Real Time Data, Manage-
ment & Fit, Opinaia, Giacobbe and Elypsis). An interpolation (thin lines)
shows similar trends as the AI-model window average, stressing that
the conclusions made so far are more general then the simple compari-
son with Elypsis. In fact in [141] we have shown that the instantaneous
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predictions of the AI model follows quite closely the aggregation of polls
obtained from the New York Times, ‘The Upshot’, yet, it does not repro-
duce the results of the electoral college which requires a segmentation by
states where proper prediction of rural and non-rural areas becomes the
key and considering the cumulative opinion, not the instantaneous one,
opinion of each users is crucial to correctly predict the elections.

Thus, we next study the opinion of each user by considering the cu-
mulative number of tweets over the entire period of observation to de-
fine classify the voter’s intention (MODEL 0). This cumulative approach
takes into consideration the all the tweets together for each user since the
first time they enter in the dataset and based the voter intention on all of
them. This cumulative approach can only be done with Twitter and not
with traditional polls, except for short times and particular cases as done
by Elypsis before and after PASO.

Figure 29 shows the cumulative opinion from March 1 until a few
days before the general elections. We can see that this approach captures
the huge gap between the candidates, both for the primary election and
the general election (vertical lines from the left to the right). While a low
precision is of secondary importance when the difference between the
opponents is high, it plays a central role when they have a close share of
supporters. As an extreme example, in an almost perfect balanced situa-
tion the change of mind of just few people may flip the final outcome. If
on the one hand a cumulative approach do reduce the fluctuations in the
signal, it is also less sensitive to sudden change of opinion. A person can
support a candidate until few days before the elections, for then change
her/his mind because of some particular facts. This and other possi-
bilities can be taken into account only by a model based on cumulative
analyses, but able to capture the degree of loyalty of people towards the
candidates over time. Differently from the traditional surveys, the real
time data processing that underlies our AI algorithm gives the possibil-
ity to take into consideration this scenario. To understand how different
re-weighting scenarios affect the results, below we introduce different
loyalty classes of users towards the candidates and then we define sev-
eral models matching the criteria previously discussed. These loyalty
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Figure 28: (a) Instantaneous prediction of the AI model obtained in a mov-
ing window of w=14 days. Vertical lines are ( from the left to the right ) the
day of the primaries and general elections respectively. The circles repre-
sents the official results for the primaries while the stars those for the gen-
eral elections. (b) Previous results compared with polls from Elypsis. Thick
lines represent AI prediction while dashed line represent the Elypsis predic-
tions.
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classes can be only defined when we consider the cumulative opinion in
a longitudinal study and cannot be investigated by traditional polls.
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Figure 29: Simple cumulative predictions obtained without defining the
loyalty classes (MODEL 0).

Loyalty classes. We define 5 classes of loyalty for users. Here we con-
sider the MP supporters, but the definitions below similarly applied to
the other candidates.

• Ultra Loyal (UL): users who always tweet only for the same can-
didate, namely

∑T
t=T0

(
nM,t

nM,t+nF,t+nT,t
) = 1. where with nx,t we

indicate the number of tweets that a given user post in favor of x,
with x ∈ {Macri, Fernández, Third party}.

Differently from the ultra loyal, which continuously post in favor of
a candidate, the other classes take into consideration a possible change
of opinion of a user. In order to detect sudden twist of opinions we focus
on the classifications of the last k tweets posted by the users. We define:

• Loyal MP→MP: a user which is MP since the majority of tweet are
for MP, but she/he also supported MP in the last k tweets. Mathe-
matically speaking

∑N
n=N−k nM,n >

∑N
n=N−k nF,n +nT,n. N is the

total number of tweets posted by the user.
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• Loyal MP → FF: users that are MP by the total cumulative count
but they have tweeted for FF in the recent k tweets. In formula:∑N
n=N−k nF,n >

∑N
n=N−k nM,n + nT,n

• Loyal MP→ TP: users supporting the third party in the last k tweets,
i.e.
∑N
n=N−k nT,n >

∑N
n=N−k nM,n + nF,n.

• Loyal MP→ Undecided: all other individuals classified as MP but
not included above.

Let us remind that unclassified refers to all those users who do not
have any classified tweet. Figure 30 shows the cumulative prediction for
each class, with T0= March 1, 2019 and k = 10. The Ultra Loyal class for
Fernández (FF) represents ∼ 33% of the populations while only ∼ 20%
of the populations is Ultra Loyal towards Macri (MP). Loyal MP→MP
and loyal FF→FF represents between the 8% and the 13% of the entire
Twitter population. The percentage of the undecided is around 8% and
the third party percentage. The other classes are close to 1 or 2%. In the
next section we use these classes in order to define a better predictor.
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Figure 30: Cumulative users’ opinion for each loyalty class over time.

AI Models. The loyalty classes introduced so far are one of the main
differences with the other Twitter based studies: we use the machine
learning classifier (logistic regression here) to define the loyalty of a user
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and not to make predictions. We do that by grouping supporters as fol-
lows:

• Fernández supporters: all those users which are ultra loyal FF, loyal
FF→FF, loyal FF→MP, loyal FF→ Undecided.

• Macri supporters: all those users which are ultra loyal MP, loyal
MP→MP, loyal MP→FF, loyal MP→Undecided.

In each group we put those users we are almost sure who they sup-
port because of their activity over time. However, as we saw in the pre-
vious section, undecided may play a central role in a scenario where few
percentage points can flip the final result. Furthermore, understanding
unclassified users (i.e. those users which do no not have any classified
tweet) will also improve the final statistic. In order to take into account all
the reasonable scenario we define three different models (starting from
the classification in Fernández and Macri of above) and validate them
against the final results of the election. Table 6 resumes the details of
each model.

MODEL 1: Third party: Undecided→MP, Undecided→FF, Unclassi-
fied and Undecided→Undecided.

MODEL 2: Instead of simply grouping the undecided in a third party,
we use network homophily to infer their political orientation. A user
is classified as MP(Undecided) if the majority of her/his neighbors (in
the indirected retweet network) support Macri. The same definitions ap-
plied for the other cases. In this model, FF(Undecided) are considered
supporters of Fernández and MP(Undecided) supporters of Macri. Un-
decided(Undecided) and Unclassified belong to the third party.

MODEL 3: We collect the users’ profiles, including the head portrait
and the location information. Firstly users outsides Argentina are re-
moved. using the face analyzing tool face++ [172], we obtain more than
400 thousand users’ age and gender, see the population distribution of
Twitter users from Figure C2. Following references [163, 164], we ad-
just the results of Model 2 by re-weighting the Twitter population to the
Census data (see Appendix C).
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Model Supporters (Users)
MODEL 1
FF Ultra loyal MP, loyal MP→MP, loyal MP→FF and loyal MP→Undecided
MP Ultra loyal FF, loyal FF→FF, loyal FF→MP, loyal FF→ Undecided
Third party Undecided→MP, Undecided→FF, Undecided→Undecided, Unclassified
MODEL 2
FF Ultra loyal FF, loyal FF→FF + loyal FF→MP + loyal FF→Undecided, FF(undecided)
MP Ultra loyal FF, loyal FF→FF, loyal FF→MP, loyal FF→ Undecided, MP(undecided)
Third party Undecided(undecided), Unclassified
MODEL 3
FF FF as MODEL 2 + reweighting
MP MP as MODEL 2 + reweighting
Third party Third party as MODEL 2 + reweighting

Table 6: The definition of three models according opinion modeling.
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Figure 31: Cumulative MODEL 3 prediction of the AI model and compari-
son with primary on August 11, 2019 and general election results on October
27, 2019. Model 3 is the best fit to the real data.

4.4 Results

AI-based forecast: The Argentinian case. The models introduced so far
allow us to define the daily supporters of each candidate according to
their retweet activity. Indeed supporters are defined not simply accord-
ing to the classification of the majority of their retweet, but on the basis
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of the loyalty classes they belong. Similarly to the simple tweets classifi-
cation, we can define for each model an instantaneous (window average)
and a cumulative (average) opinion.

Figure 28 shows that an instantaneous indicator provides an approx-
imate fitting to the results of polls. We have already used this indicator,
in our previous study of the 2016 US presidential election, to precisely
fit the New York Times Aggregator of Polls at The Upshot’ [141, 173].
This aggregator unifies a thousands polls and weight them with propri-
etary information to produce a weighted average of all the most trustable
pollster in USA. While this analysis is interesting and give the opportu-
nity to predict instantaneous changes in electoral opinion, this indicator
does not provide the electorate opinion as a whole and it is not the most
important predictor of the election outcome. It is not the greatest infor-
mation that can be extracted from social networks, either, and indeed, it
failed to predict the US 2016 election and the present Argentina 2019. The
estimator that predictor better the election is provided when we consider
the cumulative number of users from the beginning of measurements,
and not just the behavior of the users in a small window of observation.

For this reason here we directly focus on the cumulative prediction
for the models introduced in the previous section. Table 7 reports the
prediction of each model right before the day of the general election day:
October 27, 2019. The official results saw the victory of Fernández with
48.24%. Macri scored 40.28% and the Third Party with 19.48%. The aver-
age predictions obtained by averaging the results of the five models are
consistent (inside the standard error) with the official outcome. Indeed,
we obtain (49.3 ± 2.1)% for FF, (36.8 ± 2.9)% for MP and (13.9 ± 4.8)%
for the Third Party. This in an outstanding result which highlights the
importance of considering loyalty classes for Political elections. In or-
der to establish the best among the five models we compute the mean
absolute error between each model’ prediction and the final results. Let
Y = {yc}with c ∈ {FF,MP, TP} be the prediction of one model and let
X = {xc} with c ∈ {FF,MP, TP} be the official results. We define the
MAEi (mean absolute error) for model i as

∑
i∈c(|xi−yi|)

3 .

Table 7 shows the MAE for each model. MODEL 3, based on the ho-
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MODEL FF (%) MP (%) Third party (%) MAE (%)
MODEL 1 45.9 32.5 21.6 6.71
MODEL 2 49.1 34.0 16.8 4.21
MODEL 3 48.9 39.6 11.5 0.53

Table 7: Models’ prediction results for the general election on October 27.

mophily detection for the undecided is the best predictor with a mean
absolute error of 0.53. This model predicted 48.9% for FF (an overesti-
mation of 0.66 points if compared to the official result), 39.6% for MP (an
underestimation of 0.68 points) and 11.6% for the Third Party. As a mat-
ter of fact, the AI model introduced so far is capable of predicting the
Argentinian general elections, by giving a percentage of electors for each
candidate close to the official one and outperforming traditional polls
methods. See Figure 19b.

Maybe the most important result is the performance of our algorithm
before the PASO, where all the pollsters failed too predict the + 16%
points difference between the two candidates (by strongly underestimat-
ing their gap). MODEL 3 predicts a difference of almost 18% points in
favor of FF, close to the official result.

While the PASO results appears of secondary importance, they play
a central role in the Argentina political campaign and they are the most
difficult to guess because it’s the first time the citizens officially expressed
their opinion on the election. Figure 19 shows how traditional pollsters
modified their prediction after the primary elections, somehow fitting
them with the PASO results. How they modified their predictions is still
not clear and some of the pollsters (Elypsis for example) did not release
any prediction after the PASO.

A study of the hashtags and queries of the followers of the FF for-
mula indicates that the vast majority of the people focused more on the
poor economic situation in which the country was instead of the judicial
cases of corruption that affect the FF candidates. Most of the hashtags
reflect sentiment of hunger, chaos, crisis and despair. On the other hand,
the expression of the followers of Macri-Pichetto is reflected in hashtags

81



to give strength to the president but they do not reflect a feeling for the
economic and political situation, but more a moral support, perhaps of
resignation. The followers of Macri do not express too much their con-
cerns about judicial cases of corruption either.

Finally, let us notice that the cumulative average depends on the ini-
tial time T0. This value determines the initial fluctuations of the cumu-
lative average, which generally stabilize into a value that it is difficult to
change unless a big swing in opinion of the electorate. To investigate this
effect, we have recalculated the cumulative average by changing the ori-
gin of measurement T0 in Figure C3 in the Appendix C. As we see from
this figure, the predictions for the general elections cluster around the
same value. We use this fluctuations to compute the error associate to
our final predictions. We define the error as the standard deviation over
the results of different realizations with t < T0. Regarding MODEL 3, the
estimated average error is 0.53%. This result strengths the goodness of
our prediction, consistent, inside the error bars, with the final results.

4.5 Discussion

One of the fundamental tools of artificial intelligence in social networks
is that it captures changes in people’s opinions without any interven-
tion and for an extended time. Then AI can capture the sentiment of the
millions of users who constantly express themselves on the internet and
change or maintain their positions. AI can also filter this information
from manipulators and bots and can reduce it to its essence, by over-
coming the problems traditional pollsters face: low response rate, social
desirability biases and the mis-representation of the population.

The results of our analyses show that AI applied to big-data can be
used to successfully understand people’ opinions over time. The pos-
sibility of following the opinion of the same people through time, and
therefore the chance of defining loyalty classes is a fundamental step in
order to make good predictions. AI allows both to get the percentage of
supporters toward a candidate and reveals what is behind these num-
bers, giving an idea of people sentiments. This is of particular impor-
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tance when one of the candidates is a controversial politician and can
generate different feelings leading to strong polarization and biased re-
sponses to pollsters, which are not trusted anymore by the great majority
of people.

We expect that in the future traditional surveys may be incremen-
tally replaced by these new non-intrusive methods. AI is a thermometer
that provides the key to predicting not only the elections but the great
trends that develop at the local and global levels. We have shown how
AI allows to synthesize the opinion of millions of people including those
silent majorities of hidden voters who would not be heard otherwise. We
must not ignore that people are tired of answering surveys. AI can then
deduce, predict, interpret and understand what people want to express.
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Chapter 5

Conclusion

In the first part of this work, we focused on one of Network Science’s
main findings. The scale-free power-law behavior of the vertex connec-
tivity in many real-world networks. We argued that such behavior could
be clouded by a sample limited in size. By employing finite-size scaling
(FSS), we showed that we can not reject the scale-invariant hypothesis
for many inherent structures of empirical networks. Similarly to the case
of critical phenomena in statistical physics, we found a universal rela-
tion between the power-law exponent λ and the critical exponent d. Un-
like statistical physics, where the power-law behavior results from crit-
ical phenomena, this may not be the case of scale-free networks. Criti-
cal phenomena assumes the presence of a parameter (in one dimension)
that close to a critical value determines a jump from a predictable state
(at equilibrium) to an unpredictable one, where the system is outside the
equilibrium. The discussion of whether many empirical networks are at
some critical point and how they would reach at that point is beyond the
scope of this thesis. The effect of the critical exponent d on other proper-
ties of networks, such as the betweenness centrality or the cluster coeffi-
cient, is still unexplored. It may be possible to retrieve, again in analogy
with the case of statistical physics, some scaling equations and a set of
critical exponents. Together with the scaling equations these exponents
would completely identify the system.
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In the second part of the work, we focused on contact networks. We
gave a probabilistic definition of contact. We implemented this definition
to retrieve the chain of transmission of the COVID-19 in the metropolis of
Fortaleza. The main finding is that the k-core structure works as a reser-
voir of the virus. Few people (the so-called super-spreaders) connect the
reservoirs. Removing (quarantining) these spreaders would isolate the
k-core structures and, therefore, the spread of the virus. We argued that
this might be one reason why implemented strict quarantines around
the world were not enough to bring the R0 value below one. A micro-
quarantine (quarantining the super-spreaders) should follow the general
macro-quarantine. Our algorithm, which combines big data with ad-
vanced analyses taken from network theory, provides a possible strategy
for the micro-quarantine to follow. We believe that the applicability is
broader and not limited to quarantine strategies. For example, nowadays
the main topic is vaccination. According to our results, super-spreaders
are those who should be vaccinated first. This is indeed not far from
common sense. For instance, according to our findings, doctors are those
who should be vaccinated first. On the other hand, other targets are less
trivial to define. Our algorithm would also help to identify other targets
which should be prioritized.

Another line of research to follow would be to focus on the topolog-
ical properties of the contact networks. Understanding the role of the
critical exponents γ and d for different cities’ contact networks can lead
to fascinating results. For instance, the populations of cities could substi-
tute the parameterN in the scaling function. Can the shape of the master-
curve originating from different cities tell us something more than what
we already know? Are contact networks of different cities self-similar?
How demographic characteristics reflect on the structure of contact net-
works?

We conclude the thesis by considering another type of spreading,
i.e., spreading of information on social networks. In particular, we use
Twitter to infer the final results of the Argentinian political election of
2019. After investigating, we found that social desirability bias and low
response rate are the main reasons for the failure of traditional polls
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predicting the election results. These problems can be overcome using
the enormous amount of data produced in social networks. Social me-
dia users freely express their opinion about a candidate or more gen-
eral about a topic. By combining network theory and machine learning
techniques, we build an algorithm that predicts the primary/general Ar-
gentinian election with high accuracy. The applicability of the proposed
strategy is more general and can be applied to topics different from pol-
itics such as what people think about climate change or about a certain
product.

In conclusion, we saw how technological developments led to new
challenges, and these new challenges asked for new methodologies, tools,
and theories. In the era of ”big data,” we found in network science a
good ally. Applications of network science revealed a remarkable char-
acteristic from social phenomena to economic ones. The features under-
lying many real-world phenomena are not entirely different from those
characterizing physical phenomena such as phase transitions. As often
happens in science, tools developed in the latter case can be adapted to
the former ones, giving equal (or even better) performances. Obviously,
this extends to all the disciplines. The fact that the common thread of
many phenomena lies in their complexity is astonishing.

The amount of data we produce every day is giving us the possibility
to understand this complexity better. All the studies we carry out are
meant to understand ourselves (for example our brain or thoughts) and
whatever surrounds us. Everything with the aim of making complexity
less complex and our world more predictable.
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Appendix A

Sampling bias, degree
correlations and structure
of the dataset

Here we report the steps to test the finite size scaling hypothesis of Eq.
(2.2) together with the moments ratio test of Eq. (2.9). Note that in order
to test Eqs. (2.3) and (2.11), one uses the number of edgesE (e) associated
with each (sub-)network of size N (n), and replaces d with dE .

A.1 Finite Size Scaling analysis

Given an undirected network of size N , our analysis is based on the fol-
lowing steps.

1. We compute the degree distribution p(k,N) and use the method of
Clauset, Shalizi and Newman Clauset, Shalizi, and Newman [57]
and Alstott, Bullmore, and Plenz [71] to estimate the best fitting
power law parameters Γ + 1 and kmin.

2. We generate an ensemble of 100 sub-networks for each size n ∈
{N4 , N2 , 3N

4 }. Each sub-sample is obtained by picking n nodes at
random from the original network and by deleting all the other
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nodes and the links incident to them. We then compute the mean
degree distribution p(k, n) over each sub-network ensemble.

3. Both for the original network and for each sub-network, we check
whether the (average) number of nodes n∗ with k ≥ kmin is larger
than lnN . If this condition is not met, we classify the network as
non scale-free and the analysis ends. Otherwise, we proceed by
removing the region below kmin in both p(k,N) and each p(k, n),
and renormalize them afterwards. As explained in the main text,
this allows us to get rid of deviations at low degrees, including
those induced by the sub-sampling (see also the Supplementary
Information).

4. Using the moment ratio test, we determine d (and its associated er-
ror) as follows. We compute a given moment ratio 〈ki〉/〈ki−1〉 on
each (sub-)network of size n, and use least-squares to fit ln 〈ki〉/〈ki−1〉
versus lnn. We then average the resulting fit slope over different
choices of the moments (indexed by i) to obtain−d. Note that since
this test is computationally less expensive than the collapse analy-
sis (see below), we use more than four sub-network sizes. In par-
ticular we use 20 equally spaced values of n ∈ [N4 , N ], for each of
which we compute the moments ratio (and associated error used
as fit weight) over an ensemble of 100 n-sized sub-network built as
described above.

5. For each (sub-)network size n ∈ {N4 , N2 , 3N
4 , N} we obtain the cu-

mulative degree distribution P (k, n). We then determine the expo-
nents γ and d (and their associated errors) that maximizes the qual-
ity of the collapse plot (see below). Notably, the scaling exponent d
obtained from the collapse is always compatible with that obtained
from the moment ratio test. Hence in order to decrease the compu-
tational cost of the method, one can in principle vary only γ while
keeping d fixed at the value obtained from the moment ratios fit.
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A.2 Dataset

We extract a collection of real network data from the Index of Complex
Networks (ICON) at https://icon.colorado.edu/ as well as the
Koblenz Network Collection (KONECT) at http://konect.uni-kob
lenz.de/. The full list of networks we consider together with detailed
results of the finite size scaling analysis are reported in the Supplemen-
tary Dataset Table. To define the dataset we select networks (removing
duplicates appearing in both ICON and KONECT) according to the fol-
lowing criteria.

First, to allow for a reliable scaling analysis, we only use networks
with N > 1000 and E > 1000 (for computational reasons, we did not
consider networks with more than 50 million links). We then include
undirected networks, as well as the undirected version of both directed
and bipartite networks. Similarly, we consider binary networks as well
as the binarized version of weighted and multi-edge networks. We how-
ever ignore networks that are marked as incomplete in the database. Im-
portantly, among database entries that possibly represent the same real-
world network we select only one (or at most a few) entry, and consis-
tently we do the same for temporal networks (when there is only one
snapshot, we ignore the time stamp of links).

In practice, in KONECT we select only the Wikipedia-related net-
works in English language. For ICON the implications are more pro-
found. We ignore interactomes of the same species extracted from dif-
ferent experiments, the (almost 100) fungal growth networks, the (more
than 100) Norwegian boards of directors graphs, the (more than 100)
CAIDA snapshots denoting autonomous system relationships on the In-
ternet, networks of software function for Callgraphs and digital circuits
ITC99 and ISCAS89. We consider only one instance of Gnutella peer-to-
peer file sharing network, as well as a few instances of the (more than 50)
within-college Facebook social networks and of the (about 50) US States
road networks. Among the (more than 100) KEGG metabolic networks,
we select 17 species trying to balance the different taxonomies.

Thus, in our analysis, we do employ the same data source used by
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Broido & Clauset Broido and Clauset [35], but we avoid over-represented
network instances. As explained in the main text, this procedure re-
moves the clustering of similar networks shown in Figure 7, and leads
to less biased conclusions on the scale-free nature of networks belonging
to different categories.

A.3 Degree cross-over kc versus maximum de-
gree kmax

The maximum degree in a network is defined as the value of k for which
the probability to finding a node with equal or higher degree is 1/N . For
a power law degree distribution,∫ ∞

kmax

k−λ dk ∼ 1

N
(A.1)

from which it follows that kmax ∼ N1/(λ−1) Dorogovtsev, Mendes, and
Samukhin [72]. The degree cross-over is instead the value of the degree
for which the distribution has a crossover from a pure power law be-
havior to a faster decay (due to finite size effects). This is what defines
kc in the FSS ansatz. Using the same steps of Eq. (A.1) for p(k,N) =

k−λf(k/kc) we get∫ ∞
kmax

k−λf(k/kc)dk = k1−λ
c

∫ ∞
kmax

kc

x−λf(x) dx

= k1−λ
c F (kmax/kc) ∼

1

N
(A.2)

and again we find kc ∼ N1/(λ−1). Hence despite the values of kmax and
kc are different, both of them have the same scaling behavior with N .
However in the main paper we showed that kc ∼ N1/λ, at stake with Eq.
(A.2). Moreover, Figure A1 shows that kmax also scales with 1/λ in our
empirical data. Therefore kmax and kc show the same dependence on N ,
but with an exponent different from the expected one. We believe this is
due to the correlations inside the networks which alter the dependence
on N Boguñá, Pastor-Satorras, and Vespignani [80].
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Figure A1: Empirical relation of kmax versus N1/λ = N1/(Γ+1) for the real
networks in our dataset. Here Γ is the exponent estimated via maximum-
likelihood fitting Clauset, Shalizi, and Newman [57]. The red line represents
the identity and serves as a guide for the eye.

Another argument in favor of the same scaling of kc and kmax is as
follows. By definition, kc is the value of k for which the argument of the
scaling function becomes constant, whence kc ∼ N−d. Concerning kmax,
since the cumulate of the distribution of maxima is

P>max(k,N) = Nk−γf(kNd) (A.3)

for not too small k, we have that the characteristic maximum, defined as
k∗max ≡ 〈ki〉max/〈ki−1〉max, where i > γ + 1 and 〈·〉max is the average
with the distribution − d

dkP
>
max(k,N), behaves as k∗max ∼ N−d for large

N .

A.4 Finite-size scaling and system size

In order to apply finite-size scaling to network data we start from an em-
pirical network ofN nodes and then build smaller sub-networks through
a sampling scheme (see below for more details). Given the values of
N typical of empirical networks, the down-scaling of the system is per-
formed linearly, whence the sub-networks of sizes N

4 , N2 and 3N
4 consid-

ered in this study. However, when considering artificial network data we
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are free to down-scale the system even by orders of magnitude. This is
shown in Figure A2 in the case of a Barabási-Albert model withN = 105.
Notably, parameters estimated on this systems are perfectly in line with
those estimated with the linear sub-sampling scheme (see Chapter 2 and
Figure A5).

! = −0.335, " = 1.93, # = 0.806 !$  = −0.330, " = 1.91, # = 0.813

(a)

(b)

(c)

(d)

Figure A2: Scaling analysis on a numerical realization of the Barabási-
Albert model with N = 105 and kmin = 14. Panels (a), (b): the scaling
analysis with N yields d = −0.335 ± 0.024, γ = 1.93 ± 0.03 and S = 0.81.
Panels (c), (d): the scaling analysis with E yields dE = −0.330 ± 0.024,
γ = 1.91± 0.03 and S = 0.81.

A.5 Node sampling method

The down-scaling of a network, namely how to derive a representative
sample of the original network, is still an open problem nowadays. There
are two main approaches in the literature to deal with this issue: sam-
pling Leskovec and Faloutsos [174], Stumpf, Wiuf, and May [69], and
Lee, Kim, and Jeong [70] and renormalization Garcı́a-Pérez, Boguñá, and
Serrano [98], Song, Havlin, and Makse [99], Gfeller and De Los Rios [175],
and Serrano, Krioukov, and Boguñá [176]. Despite their simplicity, sam-
pling procedures do not necessary preserve the properties of the origi-
nal network. On the contrary, renormalization (i.e., coarse grain) proce-
dures are based on the conservation of these properties during the down-
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scaling; however these methods lack of generality by requiring ad hoc
assumptions. In this paper we decide to use the most general, although
not necessary the most accurate, scheme: random node sampling. Here
we provide a detailed discussion on the degree properties of our sampled
networks. To build a sub-network instance, a set of n nodes (with n ≤ N )
are selected uniformly at random. The sampled network is the network
induced by these nodes and by all the links among them. See Figure A3
for an sample illustration. Figure A4 reports the degree distributions of
the (sub-)network in the case of a Barabási-Albert model with N = 104

and various densities (〈k〉 = 1, 5, 14 for the first, second and third col-
umn respectively). As in the main paper, we chose n ∈ {N4 , N2 , 3N

4 , N}
as possible size of the sub-network. However, different sizes of the net-
work may be chosen. Indeed, as we show in Figure A2, results do not
change by changing the sub-networks dimension. In the first row of the
figure (panels a − c) we report the cumulative degree distributions for
a single instance of a sub-sampled network. In agreement with Stumpf,
Wiuf, and May [69], for nodes with low connectivity and for n � N the
random node sampling does not preserve the shape of the power law
degree distribution. However these deviations are reduced by increas-
ing the average degree of the network (i.e., by moving from the left to
the right panel). In the second row of the figure (panels d − f ) we re-
port the cumulative degree distributions obtained by averaging over 100
instances of the sub-sampling. As expected, fluctuations in the degree
are drastically reduced. Notably, in the region between kmin and kmax

where the scaling assumption holds, the original degree distribution is
preserved. This is particularly evident when 〈k〉 > 1. However, because
the down-scaling changes the mean degree of the networks, these curves
do not collapse on top of each other as one would expect. This issue also
affects renormalization procedures Serrano, Krioukov, and Boguñá [176]
and Garcı́a-Pérez, Boguñá, and Serrano [98], because one should com-
pare rescaled quantities. To do that there are two options. The first is to
work with rescaled degrees k/〈k〉 instead of actual degrees Serrano, Kri-
oukov, and Boguñá [176]. As shown in the third row of the figure (panels
g − i), by doing this all the distributions follow a single master curve for
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k ≥ kmin. The other possibility is to adjust the average degree without
modifying the statistical properties of the network Garcı́a-Pérez, Boguñá,
and Serrano [98], for instance by taking the part of the distribution be-
yond kmin (estimated by maximum-likelihood power law fitting on the
whole network Clauset, Shalizi, and Newman [57] and Alstott, Bullmore,
and Plenz [71]) and renormalizing it such that

∑kmax

k=kmin
P (k) = 1. By do-

ing this, as shown in the fourth row of the figure (panels j− l), the distri-
butions for different n still collapse on the top of each other (without the
need to rescale by the mean degree), apart for the region near kmax where
finite size effects step in. Notably, the mean degree does not change as
an effect of the cut of the distribution below kmin. Indeed, let us denote
by n∗ the number of nodes with k ≥ kmin, and by e∗ the number of links
connecting these n∗ nodes among themselves (l links) plus the number
of links connecting these n∗ nodes with the other nodes in the network
with k < kmin (s stubs). For scale-free network with λ > 2, the mean
degree is finite and since 〈k〉 = 2E/N ∼ constant we have E ∼ N . We
measured n∗ versus e∗ for 20 equally spaced values of n. A fitting of
ln e∗ vs lnn∗ yields a slope equal to 1.02±0.10, in agreement with the ex-
pected value of one obtained when the mean degree is preserved during
the down-scaling of the network.

In conclusion, as long as the considered network has an average de-
gree much bigger than one (as in our case, see the left panel of Figure A5,
the sub-sampling procedure preserves pretty well the degree distribution
of the mother network. However, we remark that our random sampling
procedure cannot substitute more rigorous renormalization methodolo-
gies, since it does not allow us to have a unique representation of the
reduced network. Finally let us notice that the reason why we use the
cut procedure is because we are interested in computing the quality of
the collapse only in the region where the scaling hypotheses holds, i.e.,
when k ≥ kmin.
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Figure A3: Illustration of the sub-sampling scheme. The original network
is reported on the left. In the middle we report the sub-network induced
by 5 random selected nodes, with removed links/nodes represented with
dashed lines. On the right an example of the counting procedure after the
cut at kmin. If kmin = 2, then N∗ = Nk≥kmin = 2 (filled circles) and
E∗ = l + s = 1 + 3 = 4, with l number of links (solid lines) and s number
of stubs (dashed line).

A.6 Choice of the average degree

In the main paper we study the benchmark Barabási-Albert model with
m ≡ 〈k〉 = 14. We choose this value in accordance with the mean of
the 〈k〉 in the empirical network of our dataset (see panel a of Figure
A5). Other choices of m are however possible. Panels b and c of Figure
A5 show the scaling analysis with N and E, respectively, for a Barabási-
Albert model with m = 5. The power law exponent estimated by means
of the KS test is Γ = 1.847 ± 0.039. In the first case the quality of the
collapse is S = 0.26. γ = 1.807 ± 0.108 while d = −0.378 ± 0.133. In the
second case we have S = 0.25, γ = 1.807±0.113 and dE = −0.361±0.119.
The network is classified as strongly scale-free. Note that the quality of
the collapse S does not depend on the average degree of the network
(both values m = 5 and m = 14 give a close result for S). Moreover,
the value of the estimated exponent γ is different from 2 in both cases.
This is not a consequence of using a large m, because γ = 2 holds in the
asymptotic limit N → ∞ while the number of nodes in our networks is
always finite.
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( j) (l)

Figure A4: Analysis on three different realizations of a Barabási-Albert
model with N = 104 and 〈k〉 = 1, 5, 14, from the left to the right. On
the top the degree distributions extracted using single sub-sample. In the
second row the results for multiple sampling for each value of p. The third
row reports the same results of the second row, but with rescaled degree
sequences. On the bottom the result with multiple sampling for each value
of p after the cut and the normalization.

A.7 Clustering in the γ-S plane

Panel a of Figure A6 shows the scatter plot of γ versus S, with each point
representing an empirical network. As mentioned in the main text, we
observe no clusterization of networks amenable to categories. This hap-
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(a)
(b1)

(b2)

(c1)

(c2)

Figure A5: (a): Mean degree 〈k〉 as a function of the number of nodes N .
Each point corresponds to an empirical network in our dataset, while the
red line is the value 〈k〉 = 14 we use in the benchmark Barabási-Albert
model. The other two panels (b, c): report the scaling analysis with N and
E in the case of a Barabási-Albert network with m ≡ 〈k〉 = 5.

pens however because we built the dataset balancing the various net-
work categories. Networks that are very similar may instead cluster to-
gether, as shown in panel b of the same figure where we report all the 109
KEGG protein interaction networks that can be found on ICON.

(a) (b)

Figure A6: Relation between the power law exponent γ and the quality of
the collapse S resulting from the finite size scaling analysis with N . Each
point represents an empirical network. Panel a reports results for the whole
dataset at our disposal (all the networks for which S is defined), whereas,
panel b focuses only on metabolic networks of various species from KEGG
[177] – which are mostly not included in panel a.

A.8 Binning errors

As explained in the main paper, in order compute the quality of the col-
lapse S we need to assign an error σ(k) to each binned value of p(k) in
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each (sub-)network. When degrees are independent and not correlated,
then the counts in each bin k should closely follow a Poisson distribu-
tion. In this case a good estimate for the error in each bin is simply the
square root of the counts: if p(k) = nk/n is the fraction of nodes with
degree k in a set of n nodes, then the error is σ(k) =

√
nk/n. However

in real networks degrees are typically correlated, therefore this approach
could lead to uncontrolled biases. An alternative way that accounts for
correlations is to compute the errors by means of a bootstrapping ap-
proach. Given a degree sequence of length n we uniformly at random
extract ñ ≤ n values (extractions with replacement). By repeating this
procedure an arbitrary number of times and by computing the standard
deviation of the counts in each bin among all the realizations we obtain
an unbiased estimation of the error.

Panel a of Figure A7 shows the scatter plot of the errors obtained us-
ing the two described approaches, in the case of a numerical realizations
of the Barabási-Albert model with m = 14 and N = 104. In particu-
lar we consider the sub-network of size 3N/4, whose degree distribution
is obtained by averaging over multiple (100) sub-samples. Hence for the
bootstrap case we have a degree sequence of total length n = 100×3N/4,
from which we generate 104 bootstrapped sequences of length ñ. We use
ñ = n (remember that we allow for multiple extractions of the same en-
try). The two errors are very similar (linear fitting returns a slope close
to one). Hence the two approaches are almost equivalent – for compu-
tational reasons we used the Poissonian approach. Panel b of the figure
further shows that the higher difference between the two errors is ob-
tained especially for high values of k. At last in panel c we show that
the average ratio of the Poissonian and bootstrapped errors is inversely
proportional to ñ, but stays in the range [1, 2] until very low values of
ñ ∼ n/10.
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(a) (b) (c)

Figure A7: (a) Scatter plot of σB (the error computed with the bootstrap
procedure) versus σ (the Poissonian error obtained as the square root of the
counts), in the case of a Barabási-Albert model with m = 14 and N = 104.
We use ñ = n. The linear fit (shown as a red line) has a slope equal to
0.966 ± 0.001. (b) Ratio σ/σB as a function of the binned degree k for ñ =
n. (c) Mean ratio σ/σB as a function of the length ñ of the bootstrapped
sequence.
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Appendix B

Sampling bias, robustness
and incompleteness of the
dataset

This section addresses concerns regarding the extent to which the present
results would hold under implementation in terms of robustness to data
quality and coverage, sampling bias on demographics such as coverage
of location, socio-economic status, age and gender and privacy. Some of
these issues are discussed elsewhere [178, 122].

B.1 Datasets

The GPS dataset from “Grandata-United Nations Development Program
me partnership to combat COVID-19 with data” [46] provides the geolo-
cation data of users of a compilation of hundreds of mobile apps across
Latin America. Each datapoint registers the geohash location of a mo-
bile ID with a 12 digits precision (cm resolution, although we use meter
resolution due to noise in the determination of the exact GPS location).
The mobile ID is MD5 hashed data associated with a hash of the MADID
(Mobile Advertising ID).

See [46]: The full GPS dataset covers 10 countries across Latin Amer-
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Month 2020 Unique users Daily users GPS Datapoints
March 111168 43231 153282989
April 145148 49913 161304623
May 158405 63489 221381875
Total 257606 52211 535969487

Table B1: GPS datasets of Ceará from [46]

ica: Argentina, Brazil, Chile, Colombia, Ecuador, Guatemala, Mexico,
Paraguay, Peru and Uruguay. Average number of users in the dataset
per day: Uruguay: tens of thousands of unique users per day. Argentina:
hundreds of thousands of unique users per day. Mexico: Millions of
unique users per day. Brazil: tens of millions of unique users per day.
Over the month of March, lockdowns have been imposed on each coun-
try. Pre-quarantine dates in Latin America range: March: 1st through
19th, 2020. Quarantine in Latin America dates range: March 20th till
today, as of June 9.

We measure the average root mean square displacement (MSD) of the
users in each country per day. Averaging over all the countries in Latin
America we measure a -53.4% reduction in the MSD from a reference
date before lockdown on March 6, 2020 to May 1, 2020, see [46].

In the state of Ceará, we find a reduction in mobility from MSD =

988m pre-quarantine to MSD = 430m, giving a reduction of 56.5%. The
GCC of transmission contacts defined over one week window in the state
of Ceará is reduced from a size of 9402 users pre-lockdown to an average
size of 983 users per week during the lockdown, giving a reduction of
the GCC to -10.4% from its original pre-quarantine size.

Patient’s dataset is provided by the Department of Epidemiological
Surveillance of the Fortaleza Health Secretariat in the city of Fortaleza,
Ceará, Brazil. The research was approved by IRB at CCNY and UFC.
Patient data was used with the approval and consent from the Epidemio-
logical Surveillance Department, Fortaleza Health Secretariat at the Prefei
tura de Fortaleza, Ceará, Brazil.

We cross the information from the Health Department dataset with
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the GPS dataset detecting the mobile ID’s that are related to any con-
firmed case from the Health Department data using their geolocalized
address. We set the night time period from 10 PM to 5 AM as a time
window with high probability of being at the location. Afterwards, we
identify the mobile ID of the user that spent more than 15% of the total
time in the location in those time-spatial areas during March-May 2020.
We assign that mobile ID to the patient.

In the Fortaleza dataset there were 8323 cumulative cases from March
1 to May 7, 2020, out of which 5814 contain geolocation and date of first
symptoms, and 1440 cases were matched to the GPS dataset. Lockdown
started on March 19, 2020. On the month of March, 465 cases are matched
which are used to calibrate the model. The number of nodes in the trans-
mission tree of Figure 9c is 90, the number of connections in the tree is
60, and the number of secondary infections in the tree is 52. Our results
can be applied to other areas as well. In preliminary studies we find that
they are reproducible in other studied regions such as the state of Puebla,
México.

B.2 Model calibration

In order to calibrate the contact model, we look for the combination of
parameters r, T and pc that better match the basic reproduction num-
ber R0 = 2.78 obtained by fitting the cumulative number of cases with
an SEIR model. The calibration period runs over the month of March,
2020 in the state of Ceará. In March 2020, there were 1392 infected cases
reported localized in the city of Fortaleza. Out of these cases, we cross-
checked 465 infected users in the GPS dataset. We then trace the contacts
among this 465 infected users over the infectiousness period of -4d/+7d
from date of first symptoms.

We run the calibration over a set of hyperparameters to search for
the best set that most closely replicate the basic reproduction number
R0 = 2.78. The closest fit is obtained for: T= 30 min, r =8 m, and
pc = 0.9. Using these hyperparameters, we find that 90 unique infected
users participated in contact events with other infected users. That is,
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90 users have either a non-zero in-degree or out-degree or both. The re-
maining 375 users had neither in- nor out-degree detected in the GPS
database. The 90 users are plotted in the transmission tree in Figure 9c.
The tree contains 60 contact events, of which only 52 unique are unique
contacts. This result leads to an average out-degree for the set of located
infected users of 〈kout〉 = 52/465 = 0.112. Despite the low value of 〈kout〉,
we notice that our result is based on a subsample (111168 users) of the en-
tire population of Fortaleza (2643247 citizens). Therefore 〈kout〉 ∝ CxR0,
with C = 111168/2643247 ∼ 23.77. This is indeed consistent with our
finding.

The distribution of probabilities Pi[n] shown in Figure 10a appears to
be extremely polarized leaving the pc with a wide range of optimal val-
ues for an appropriate fitting. We use pc = 0.9 which fits our results and
at the same time is large enough to filter irrelevant noisy contacts (the re-
sults do not depend largely on pc). As shown in Figure 10b, T = 30 min
is also the value at which the average of the contact probability 〈Pi[n]〉T
starts to decrease with T . Therefore, T = 30 min is the smallest value
of a well-behaved T , since we expect that the contact probability should
decrease with T . Eight meters is also consistent with typical precision of
geolocation given by noise level.

Sparseness of the dataset Due to the sparseness of the GPS data, we
do not have access to all the contact between the infected people. To
account for the smaller coverage of the GPS data in the calculation of
R0, we first obtain an effective R′0 = 0.112 valid for the smaller GPS
dataset. This number obtained for the GPS dataset should be rescaled by
the population ratio between the real population and the GPS sample,
which is a factor of 23.77 and provides R0 = 2.66, which is consistent
with the values directly measured from the data.

It is important to note that this rescaling is only used to estimate the
epidemiological parameterR0 and does not in principle affect the further
modeling of the contact networks, except for the fact that we use this
estimated value R′0 to estimate the hyperparameters of the model (T, r).
This means that, using other GPS datasets with different coverage, a new
set of parameters needs to be determined to fine tune the model to the
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particular coverage of the GPS dataset used. Therefore, in a less sparser
dataset in an actual application with larger number of mobile app users,
the parameters of the model (T, r, pc) should be calibrated accordingly.

We note that in our rescaling, we do not rescale the network, nor the
in- or out-degree distributions, but just use the smaller GPS sample to
obtain the hyperparameters of the model.

B.3 Network reconstruction

The infected people have been informed to quarantine since they are in-
fected, tested and with symptoms and have been informed by the medi-
cal authorities to isolate. Furthermore, since our data have been acquired
under the most strict mass quarantine imposed by the authorities, every-
one in the city of Fortaleza has been already informed to quarantine, in-
cluding the contacts of the infected people. Indeed, the GCC is reduced
to 10% and the mobility to 40%. Despite all these isolation efforts the
pandemic persists. Our comprehensive contact tracing algorithm identi-
fies further k-core superspreader events which kept the spreading.

The crucial feature of COVID-19 is that the peak of infectiousness oc-
curs before the onset of symptoms, as shown in Figure 9a [117]. Thus,
after a person reports symptoms or tests positive, contact tracing goes
back in time to capture past contacts in the past GCC.

For instance, by capturing the contacts today and in the past, since
there is a delay of up to 12 days of incubation and between 3 to 10 days
to infectiousness (latency, see Figure 9a), then we are effectively stopping
the transmission chain “in the future”. This situation is further clarified
in Figure B1. The infected person produces an exposure at first contact
today or in the past, labeled as “Potential Target 1st layer” in the fig-
ure. This first layer contact then enters into the infectious period any-
where between 3 to 10 days later, and produces a second layer contact
as shown in the figure, thus “propagating” the contact network to the
future. These contacts “in the future of today” are considered in the net-
work only when we move forward in time the window of observation.
That is, they are considered when the “future contacts” are already in the
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past of the observation time.
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Time
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Inbound Contact outbound Contact

Infectious Period (unconfirmed)

Figure B1: Contact layers of pre-symptomatic and asymptomatic captured
by the model. Our treatment of asymptomatic cases is to increase the ex-
posure period to -14 days to accounting for possible two-chains of infection
as shown in the figure. Contacts between -2 days to -14 days from the day
of first symptoms are more likely to be an exposure from an asymptomatic
infected person. Contact from -2 days to +7 days from first symptoms are
considered to be transmissions contacts from the patient.

When the infected person reports the symptoms, even if she/he en-
ters into strict isolation, he/she already infected most of her/his contacts.
The same happens for the contacts of the contacts and so on. The situa-
tion is worst due to the asymptomatic cases (which are captured by our
model). People who get sick in the future have been infected in the past
and one needs to reconstruct the network of contacts using these infor-
mation of past contacts which then propagates into the future as time
moves on.

The optimality in our approach is obtained by comparing the differ-
ent strategies to dismantle the GCC. While other more optimal interven-
tions could be devised by taking into account the fact that intervening on
nodes active initially is better than intervening on nodes more active at
a much later point, strategies following the contacts and applying inter-
ventions as the contacts are created may be difficult to implement in real
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time. Therefore, our approach is not the optimal quarantine, but rep-
resents an optimized strategy to dismantle the GCC as compared with
the rest of the network centralities studied. In fact, applying interven-
tions one by one, may lead to even more efficient quarantines than those
found here.

B.4 Sampling bias

Uniformity of data coverage of the dataset across socio-economical classes,
age groups, and geographical regions may affect our results due to the
relatively low coverage of the GPS data. This problem is important given
that the sample of the population is relatively small compared to the un-
derlying population: 111168 users out of the total population in the city
of Fortaleza of 2643247 at 4% of the population and the biases could be
substantial. Further, this problem is important for COVID-19 which itself
has non-uniform incidence across these factors. Thus, we have investi-
gated the sampling bias of our GPS population https://en.wikiped

ia.org/wiki/Sampling bias.
We investigate the most likely bias, i.e. geographical coverage, socio-

economic status (wealthier over-represented) and age and gender of users
(younger over-represented) since one would expect the majority of symp-
tomatic cases are in the lower end of the socio-economic spectrum, and
older age groups. We quantify these biases in the GPS dataset from apps
by assigning each mobile app user to a geolocalized residential area de-
fined as the place where the user spends most of the time at night be-
tween the hours of 10 PM and 5 AM in the period of study. Using these
data we study the distribution of geographical localization of the app
users. We consider the 120 neighborhoods (quarter or ’bairro’ in Por-
tuguese) defined by the administrative boundaries in Fortaleza. Since
the neighborhoods are extensive, the geolocalization of the users is non-
identifiable. The population of each neighbourhood is provided by the
Instituto Brasileiro de Geografia e Estatistica (IBGE or Census Bureau).
By using the geolocation of each GPS user we calculate the fraction of
app users in each neighborhood and then compare with the real fraction
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of the population of each neighborhood obtained from IBGE. The dis-
tribution of the populations obtained from GPS data and the real pop-
ulation distribution from IBGE are shown in Figure B2. We perform a
two-sample Kolmogorov-Smirnov (KS) test and find p-value =0.388, KS
distance = 0.117, indicating that we cannot reject the hypothesis that the
GPS data and the real data come from the same distribution. Therefore,
we conclude that the GPS data has an acceptable geographical coverage
of the real population indicating no sampling bias in geolocation under
a statistical test.
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Figure B2: (a) Probability density function and (b) Cumulative distribution
function of the fraction of the population per neighborhood in Fortaleza to
the total population. We show the real distributions and the distributions
from the apps GPS data. Both distributions pass a two-sample KS test in-
dicating that we cannot reject the hypothesis that they come from the same
distribution under the test.

Furthermore each neighborhood has a distinct Human Development
Index (0 ≤HDI≤ 1) provided as well by IBGE. By using this metric of
socio-economic status, we study the possibility of socio-economic bias in
the population sample. We now cluster the neighborhoods by their HDI
and plot the PDF and CDF of the population of neighborhoods (mea-
sured as the fraction to the total population) with a given HDI obtained
from the GPS data sample and from the real population from IBGE. Re-
sults are shown in Figure B3. We performed a two-sample Kolmogorov-
Smirnov test and find that the sample distribution of HDI obtained from
the GPS data and the real population distribution of HDI socio-economic
status pass the KS test, p-value = 0.699, KS distance = 0.250. Thus, we

107



cannot reject the hypothesis that the GPS and real data come from the
same distribution indicating lack of sampling bias
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Figure B3: (a) Probability density function and (b) Cumulative distribution
function of the fraction of the population per neighborhood with a given
HDI in Fortaleza to the total population. We show the real distributions and
the distributions from the apps GPS data. Two-sample KS test indicates that
we cannot reject the hypothesis that the real and GPS sample come from the
same distribution under the test, indicating lack of sampling bias under this
test.

The two final tests of sampling bias are done on the age distribution
and the gender distribution. We do not have direct access to the age and
gender of the GPS users. However, an indirect test of sampling bias can
be used using the patient data. We compare the distribution of age and
gender in the full patient dataset with the distribution of age and gender
of those patients that are localized in the GPS dataset. The hypothesis is
that if the GPS dataset is biased by age or gender (for instance, if the app
users over-represent younger people) then the distribution of localized
patients in the GPS dataset should reflect this bias respect to the distribu-
tion of age and gender of the whole patient population. Figure B4 shows
the respective PDF and CDF. We find that we cannot reject the hypothesis
that the CDF of age from GPS data and the patient data come from the
same distribution with p-value = 0.785 and KS distance = 0.039, indicat-
ing good coverage of age distribution (Figures B4a, b). The distributions
of gender shown in Figures B5a, b indicate also the lack of bias in the
gender distributions.

We conclude that the GPS sample does not have significant bias under
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Figure B4: (a) PDF and (b) CDF of age distribution in the GPS geolocalized
data compared with the real patient data. We cannot reject the hypothe-
sis that both samples come from the same distribution under KS statistical
testing.
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Figure B5: (a) PDF and (b) CDF of gender distribution in the GPS geolocal-
ized data compared with the real patient data suggesting lack of bias.

statistical testing in the considered demographic variables. The analyses
above show that the distributions of location, economic status, age and
gender are similar under two-sample KS test to the distributions of the
real data. That is, we cannot reject the hypothesis that the real data and
the GPS data comes from the same distribution. Thus, our results suggest
that a collection of apps with GPS geolocalization provides a statistically
significant sample to study the behaviour of the real population.

Regarding the use of global quantities, such as the betweeness cen-
trality, it may not seen practical, in principle, due to the necessity to
obtain the global network. However, according to the Covid Tracing
Tracker from MIT Technology Review at https://bit.ly/2Y1NMet,
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which tracks the contact tracing apps around the world, 35% of government-
backed contact tracing apps are based on the same GPS technology used
in our study and are able to provide the network of contacts needed for
our algorithm to work. These GSP-based apps capture the necessary in-
formation on the global contact network needed to perform the present
analysis, and our algorithm can be directly applied to them.

B.5 Robustness checks

Correlation between a unique mobile ID and a unique person. To test
this correlation we investigated whether the geolocalized patients in the
GPS datasets have (1) visited any hospital (near 200 m) or (2) have visited
any pharmacy on the date of test results. We find that out of the 1,440
patients identified in the GPS dataset 1224 (85%) have been identified
with the second test.

Persistence of centrality. It is of interest to discuss the persistence
of centrality to see how stable is that set of central people. For instance,
are the same people in the maximal k-core for all time or are we using a
static network metric over the aggregated network? We have calculated
the persistence of people in the different k-cores and find that they persist
in the networks as a function of time. Results are shown in Figure B6.

Uncertainty in the first day of symptoms. The day of first symp-
toms is the date reported retrospectively by the patient of appearance of
symptoms at the first consultation at a healthcare facility, thus, there is
some uncertainty in its determination related to the patient’s report of
this date. This uncertainty could affect the results of the contact tracing.
For proper functioning of the algorithms, data should be fed into the al-
gorithm of contact tracing in real time, while for most of the cases the
first date of symptoms is reported retroactively. In a mobile app imple-
mentation of contact tracing, the user should be given the capability to
report the symptoms in real time as soon as they develop, via the app,
thus diminishing uncertainties in the proper definition of the window of
observation to detect contacts.

To verify the reliability of the protocol, we conduct a numerical study
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Figure B6: Persistence of people in the k-cores in the temporal networks.
We plot the percentage of people in the cores from network to network. The
persistance is calculated by the overlap of people in the k-shells from a time
of observation to the next (three days later in this particular example).

with the random removal of infected nodes to mimic false positives on
diagnosis. Figure B7 shows the relative error in the determination of the
minimal number of people to quarantine as a function of false positives
in the report of infected people. A false positive is an individual who
reported to have symptoms but was not infected with COVID-19.

Temporal sampling The distribution of temporal sampling of GPS
ping datapoints per user in our GPS dataset displays four peaks: around
zero, at 5 minutes, 10 minutes and 20 minutes, see Figure B8. This is con-
sistent with other apps using, e.g., the Google-Apple framework. Typ-
ically, this is a trade-off between accuracy and battery life. In our data,
pinning distributions are uniform across day and night. We have investi-
gated the robustness of our contact tracer to different ping intervals. The
effect is particularly important since betweenness centrality and k-core
are both macroscopic properties, meaning a small change in the network
can create large changes everywhere in the network.

Figure 10b shows that the a minimal time interval that captures the
correct behaviour in the probability to find a contact is around 30 min-

111



0 5 10 15 20 25 30 35 40 45 50

% False positive rate

0

20

40

60

|q c
(F

al
se

p
os

it
iv

e)
−
qR

ea
l

c
|/q

R
ea
l

c
∗1

00

Robusteness to False Postive

Figure B7: Normalized efficacy of BC centrality as a function of false posi-
tives in the report of infected people. A false positive is an individual who
reported to have symptoms but was not infected with COVID-19. We plot
the relative error in the determination of the minimal number of people to
quarantine versus the false positive rate. The measure starts to deviate from
linear behaviour beyond the error bars around 20% false positive rate.
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Figure B8: Distribution of the time interval between GPS pings during all
day and separated by day and night.

utes. This is seen in Figure S10b where the correct decreasing behaviour
of < Pi[n] >T with T appears after T > 30 minutes. Notice that this
probability is supposed to decrease with increasing T . Considering T=30
minutes as a minimal time interval to find a contact, we would need at
least two pings inside 30 minutes to properly define an interval of con-
tacts. Therefore, we do not recommend to use longer ping intervals than
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15 minutes, in order to have enough statistics to capture contact points.

Temporal features. Bias in the temporal features of the model. The
periods of infectiousness and exposure are relaxed conservatively as ex-
plained in the text. We studied the robustness under the definition of
these periods. We have relaxed the window forward in order to be sym-
metric with the relaxation of time before and after the symptoms by us-
ing 8 days after symptoms and find that the results do not change. This is
expected since patients are expected to be either at home in quarantine or
in hospital, in average, 5.5 days (95% CI 4.6 - 6.6 d) after first symptoms,
according to [119]. Indeed, we find that the displacements of patients are
highly reduced after the days of first symptoms. Thus, we expect that
the majority of contacts are established before symptoms, highlighting
the necessity of contact tracing back in time.

Unmatched cases. There are uncertainties in the number of cases
matched between datasets due to the fact that only a fraction of patient
cases can be matched to the GPS dataset. The unmatched cases cannot
be matched at random to complete the data since these would ignore
the correlations between the disease and behaviour. Thus, we do not
consider the unmatched cases in the contact network. This unmatching
is due to the incomplete coverage of the GPS dataset respect to the real
population. However, we have checked in Section B.4 that the sampling
coverage of the dataset is consistent with the real population which then
minimizes the chances of small sampling bias. The spreading rate in our
dataset is 0.112 as described in B.2. This value corresponds toRcal

0 = 2.66

consistent with the real R0 value in the whole population.

Time-evolving weak ties. Weak ties in temporal networks have been
investigated in [179]. In our case these weak ties are evolving with time
as well. While we apply our definitions of centrality metrics to static net-
works defined over a week, we employ a moving window that calculates
a new network every three days, thus extending the static definition of
weak ties to temporal data.

Infected cases. We have based our modeling on the evolving num-
ber of new cases, which is not as robust estimate as the number of death
cases. The main indicator in contact tracing is the date of first symp-
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toms. In the absence of this datapoint, the day of hospitalization can be
also used to estimate the date of first symptoms from the hospitalization
data using the ensemble average of the time interval from first symptoms
to hospitalization across the rest of the patients. While death is a more
accurate metric than these two metrics, an estimate of the day of first
symptoms is more difficult to obtained from the date of death, which
anyways, occurs to only a fraction of the patients.

Contact tracing methods. In a contact tracing app based on GPS tech-
nology, a centralized server is needed where one entity has access to the
GPS data. The algorithms discussed here are also feasible in contact trac-
ing platforms using Bluetooth technology, as long as the detected neigh-
bors are shared at a given point by a central server. This is because, the
optimal tracing strategy requires the contacts of the contacts to build the
network. On the other hand, the geolocalization of the red zone of con-
tacts in a geographical map with precise locations requires the use of GPS
data and cannot be performed with Bluetooth-based technology.

K-core infection. We mention an important point about the definition
of the k-cores. Given a network, the same k-core can be composed of sev-
eral disconnected components. This is what we see from Figures 17c and
d, or for instance, the example 3-core in Figure 14c contains several dis-
connected components. Our analyses (displayed in Figures refsir-attackc
and d) show that these disconnected components are connected by weak
links, which if removed, may isolate the spreading of the virus inside
one of the disconnected components of a k-core, containing the spread-
ing of the pandemic to inside the disconnected component of the k-core.
In other words, if a part of the k-core is infected, the disease will be con-
trolled within a small group of that k-core and not extended to the rest of
the network, if the affected component of the k-core is isolated from the
rest by the removal of the weak link.

Model of infection. In our model, a transmission probability is calcu-
lated for a contact, which is then taken to be infectious if the probability
is above a threshold. To avoid overestimating the importance of strong
contacts we then define the recursive probability Eq. (3.5), Pi[n], where
one strong contact between two highly connected groups is not more im-
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portant than many weak contacts. This regularization is highly efficient
in converting the simple hit probability pi[n] which is observed to be not
a good separator of a contact versus a non-contact since its distribution
is not bimodal (orange curve) as observed in Figure 10a, into a bimodal
distribution for Pi[n] as observed in the figure (blue curve). Thus, Pi[n],
which takes into account the importance of many small contacts sepa-
rates well the contacts, and does not need of a precise threshold to be
implemented. In fact, any threshold in the range 0.1 < pc < 0.9 gives
similar results in the contact model since most of the cases are concen-
trated in the extreme cases Pi[n] ≈ 1 and Pi[n] � 1 or zero. Thus, while
the thresholding of pi[n] has a danger of throwing out many weak links,
the use of Pi[n] regularize this function in the proper way such that the
effect of choosing a threshold is minimized. That is, since the distribu-
tion of P (Pi[n]) (Figure 10a) is highly bimodal concentrating near zero
and one, then we were able to separate well a contact Pi[n] ≈ 1 from a
non-contact Pi[n] = 0, and the need for a threshold to distinguish be-
tween these two extremes disappears, since the probability is nearly zero
between these two extreme values as shown in the figure.

Dynamics of weak links. In principle, the networks are calculated
continuously in time, and therefore the weak links are identified as they
form and break k-cores. If by removing an individual, somebody else
replaces that role, then a new network should identify this new indi-
vidual added as a new weak link. However, this process may become
somehow impractical due to the continuous removal of those weak links.
This problem can be treated by determining the roles or occupations of
the weak links and then search for a way to remove this risk by targeting
those roles or occupations. This can be achieved by the analysis shown
in, for instance, Figures 12c and d, by geolocalizing the weak links and k-
core in the map to discover the occupations/roles or places visited by the
weak links and develop a targeted approach accordingly. For instance,
Figure 12d shows where these occupations and roles contributing to the
transmission chain are occurring. Targeting these occupations and places
to remove the risk is an efficient way to break the chain of transmission.

Uncertainties in infected population. We match the infected indi-
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vidual by a rule that uses the geolocation of the individual at the address
of the patient. This method may cause some uncertainty in the results as
some fraction of the infected individuals could be in principle replaced
by non-infected individuals. To study this problem, we test that the iden-
tified mobile ID has also visited the hospital and or a pharmacy on the
date of test results. Using this second test, we corroborated the matching
between patients and mobile users.

Global measures and scalability. A drawback for the use of a global
measure like betweeness centrality is the poor scalability of the measure
for large system sizes. However, there are linear approximations of these
algorithms that can be used to approximate the metrics for large systems
[123]. For larger datasets approximate fast algorithms can be used to cal-
culated BC [123]. Furthermore, once the network is obtained, the chain of
transmission can be destroyed by other measures other than BC, which
scales linearly with system size and are quite fast to calculate like the de-
gree or CI, although not as optimal as through the weak links as shown
by our results.

Asymptomatic cases. Detecting asymptomatic cases is one of the
biggest challenge of the COVID-19 pandemic. We have included the exis-
tence of contacts with asymptomatic in our model. Our method allows,
in principle, the determination of possible contacts with asymptomatic
infectious people. As explained in Figure 9a and further explained in
Figure B1, we extend the exposure period to -14 days from the day of
first symptoms. At the same time, the infectious period starts -2 days
from symptoms according to [117]. Therefore the contacts identified be-
tween -2 days and -14 days (labeled as E’ in Figure 9a and also as the
inbound contacts in Figure B1) correspond to inbound exposures from
asymptomatic carriers. Thus, our model treats asymptomatic cases by
considering this exposure period and accounts for possible two-chains of
infection as shown in Figure B1. Since the exposure period with asymp-
tomatic (-14 to -2 days) is longer than the period of infectiousness (-2 to
+5 days), we obtain a larger number of asymptomatic exposures than
infectious transmission contacts per patient.

Detecting asymptomatic is the key to stop this pandemic. Asymp-
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tomatic detected at exposure E’ should be immediately tested, even though
they have not presented symptoms. Beyond our modeling, we are not
aware of other contact methods that have attempted to detect asymp-
tomatic contacts (beyond large-scale widespread testing). Our contact
tracing algorithms might be able to detect those asymptomatic transmis-
sions which are critical to stop the pandemic.

Quantification of uncertainty in data. Quantification of uncertainty
in data plotted in the figures is done via the calculation of the standard
error (SD). For the SIR models, the errors are computed as the SE for a
given value of the k-core. We notice that some plots are single instances,
like for instance the giant connected component, and do not have SE.

B.6 Privacy considerations

Ethics and privacy consideration of data sharing and using large datasets in
biomedical research.

The patient datasets were collected by the Epidemiological Surveil-
lance Department, Fortaleza Health Secretariat (CEVEPI) at the Prefeitura
de Fortaleza, Ceará, Brazil by the team of Dr. Antonio S. Lima Neto. The
present project follows the recommendations of the Wellcome Trust 2016
“Statement on data sharing in public health emergencies”, that states: “In the
context of a public health emergency of international concern, there is an imper-
ative on all parties to make any information available that might have value in
combating the crisis” and the statement of the WHO: “data are the basis for
all sound public health actions”. The Epidemiological Surveillance Depart-
ment have provided the anonymized data on COVID-19 patients in the
City of Fortaleza including the SARS-COV-2 test detection date and first
day of symptoms of COVID-19 geocoded cases. Prior to be analyzed,
the dataset was completely de-identified at CEVEPI. The data did not in-
clude any element that allow us to make a full profile of the patient, such
as, the name of the patient, neither the residential address. Addition-
ally, there were no codes associated with the variables that may allow
individuals to be identified.

The policy statement for the use of the data states that the information
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was collected and anonymized by CEVEPI and analyzed by the team at
CCNY and UFC, and then deleted completely from the servers of the
team at both CCNY and UFC. At the time of submission, the provided
datasets have already been deleted from the servers at CCNY and UFC.
The data were made available to the team over a period from March 1,
2020 to June 7, 2020 for the purpose of helping the government contain
the pandemic. The protocol of contact tracing developed in this study
was done within the framework of the public functions of the govern-
ment aimed at protecting and guaranteeing the public health of the citi-
zens.

The team has signed confidentially agreements stating that the mem-
ber of the team are responsible for the custody of the data received and
that we guarantee the privacy, the confidentiality, anonymization and
used of the obtained information of the patients and any third party. The
confidentially agreement also states that the team will receive the data
only for the purpose of the current investigation and that all data will be
erased from the servers at CCNY and UFC at the end of the project in July
2020. All data has been already deleted from the servers at CCNY and
UFC and remains under the control of Department of Epidemiological
Surveillance, Fortaleza Health Secretariat.

Given the extraordinary nature of this health emergency, it is critical
for governments and agencies to share these data with scientists to ex-
ecute critical studies under the understanding that by using the contact
tracing algorithms developed in this study, we could help avoid more
casualties during the pandemic. The patient dataset from the Health De-
partment authorities in Fortaleza has the required ethics approval from
the IRB at CCNY and UFC. Consent to use these data was given by the
Mayor of Fortaleza and the Prefeitura of the City of Fortaleza. The origi-
nal dataset is kept under the care of the Health Secretariat of Fortaleza.
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Appendix C

Daily statistics, hashtags
and rescaling procedure

Here we investigate the daily statistics for the data collection, as well as
the individuation of bots in the dataset. We also give more details about
the rescaling procedure, introduced in Chapter 4, and the effect of T0 on
the final predictions.

C.1 Tweets and Users classification

Tables C1 and C2 show the statistics of the collection, in terms of tweets
and users, respectively. We can distinguish two columns: Bots and Users.
In the case of tweets, bots refers to the number of tweets posted by a bot,
while users refer to the tweets posted by a genuine account. Table C3
reports the top 20 hashtags between March and July, 2019. FF indicates
the hashtags is in favor of the Fernández-Fernández formula while MP
refers to the supporters of the Macri-Pichetto formula. Figure C1 shows
the average predictions of the top 5 trusted polls, i.e., Real Time Data,
Management & Fit, Opinaia, Giacobbe and Elypsis (thin lines) and the
the AI-model window average (tick lines).
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Tweets Bots Users
Total 538359 67336507
Daily 2243 280568
Daily classified 1617 211229
Daily classified MP 619 114653
Daily classified FF 998 96576

Table C1: Tweets statistics. We report the Total number of tweets collected.
The average daily number of tweets classified (Daily classified) and the av-
erage daily classified tweets for each candidate.

Tweets Bots Users
Total 17953 2252551
Daily 732 83330
Daily classified 560 63808
Daily classified MP 198 31497
Daily classified FF 362 32310

Table C2: Users statistics. We report the Total number of users collected.
The average daily number of users classified (Daily classified) and the aver-
age daily classified users for each candidate.
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Figure C1: Instantaneous prediction compared with trusted polls. Thick
lines represent AI predictions and dashed lines represent the average
trusted polls.
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# Hashtag Camp Count
1 sisepuede MP 216757
2 macri MP 102172
3 albertopresidente FF 65644
4 axelgobernador FF 60920
5 juntosporelcambio MP 52617
6 yovotomm MP 49557
7 ladamosvuelta MP 47546
8 cfk FF 38718
9 cambiemos MP 38538
10 sevan FF 32110
11 habraconsecuencias FF 28406
12 24a MP 23819
13 macrihacetecrgo FF 21364
14 novuelvenmas MP 21054
15 cronicaanunciada FF 20293
16 frentedetodos FF 18115
17 albertoycristina FF 17482
18 sinceramente FF 15403
19 juntossomosimparables MP 14405
20 sevanenprimeravuelta FF 14091

Table C3: The top 20 hashtags from March and July in 2019. The camp
field represents the classification: MP stays for Macri and FF for Fernández
(from the name of the running mate Cristina Fernández de Kirchner. Count
indicates the number of time a given hashtag appears in the dataset.
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C.2 Rescaling Method

Of common practice in the traditional pollster methods, this method al-
lows to rescale the Twitter population, Figure reffig:twitter-population to
the Census data in Figure 20c. Let N(c, g, a), with c ∈ {M,F, T} be the
number of voters supporting one of the candidate, with age a (a = [16,
30], [31, 50], [51, 65] or [66,∞]). and gender g (g = female or male). The
percentage of voters p supporting a given candidate c is

pc =
∑ N(c, g, a)

N(g, a)
∗ NCensus(g, a)

NCensus
(C.1)

with N(g, a) total number of user if the dataset with a gender g and age
a, NCensus(g, a) total number of citizens with a gender g and age a and
NCensus total number of citizens in the Census data. pc is always between
1 and 0 and can be directly compared with the pollster prediction.

Figure C2: Distribution of Twitter populations by age and gender during
2019 Argentina election.

C.3 Effect of the initial time on the final result

As discussed in the main text, different values for T0 can lead to different
results. If so, the problem of finding a good substitute to traditional polls
would not be solved, but perhaps moved to another problem such as find
the best value for T0, defined as the value that approximate the official
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results of the elections. To investigate this effect, we have recalculated the
cumulative average by changing the origin of measurement T0 in Figure
C3. Predictions for the general elections cluster around the same value.
We use the fluctuations at a given time t to compute the error associate
to the prediction at the same time. We define the error as the standard
deviation over the results of different realizations with t < T0. Regarding
MODEL 3, the estimated average error is 0.53%.
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Figure C3: Cumulative prediction for different initial times t0 (March 3,
April 4, etc.). While we consider different t0, the predictions at the day of
the election clusters well around the results of the PASO.
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[67] Jérôme Houdayer and Alexander K Hartmann. “Low-temperature
behavior of two-dimensional Gaussian Ising spin glasses”. In: Phys-
ical Review B 70.1 (2004), p. 014418. DOI: 10.1103/PhysRevB.7
0.014418.

[68] Oliver Melchert. autoScale.py–A program for automatic finite-size scal-
ing analyses: A user’s guide. https://arxiv.org/abs/0910.5
403. 2009.

[69] Michael P. H. Stumpf, Carsten Wiuf, and Robert M. May. “Subnets
of scale-free networks are not scale-free: Sampling properties of
networks”. In: Proceedings of the National Academy of Sciences 102.12
(2005), pp. 4221–4224. DOI: 10.1073/pnas.0501179102.

[70] Sang Hoon Lee, Pan-Jun Kim, and Hawoong Jeong. “Statistical
properties of sampled networks”. In: Physical Review E 73 (1 2006),
p. 016102. DOI: 10.1103/PhysRevE.73.016102.

[71] Jeff Alstott, Ed Bullmore, and Dietmar Plenz. “powerlaw: A Python
Package for Analysis of Heavy-Tailed Distributions”. In: PLoS ONE
9.1 (2014), e85777. DOI: 10.1371/journal.pone.0085777.

129

https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1088/0305-4470/35/45/302
https://doi.org/10.1088/0305-4470/35/45/302
https://doi.org/10.1088/0305-4470/34/33/302
https://doi.org/10.1088/0305-4470/34/33/302
https://doi.org/10.1103/PhysRevB.70.014418
https://doi.org/10.1103/PhysRevB.70.014418
https://arxiv.org/abs/0910.5403
https://arxiv.org/abs/0910.5403
https://doi.org/10.1073/pnas.0501179102
https://doi.org/10.1103/PhysRevE.73.016102
https://doi.org/10.1371/journal.pone.0085777


[72] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. “Struc-
ture of growing networks with preferential linking”. In: Physical
Review Letters 85.21 (2000), pp. 4633–4636. DOI: 10.1103/Phys
RevLett.85.4633.
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