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Abstract

The topic of the thesis is the analysis of the most popular
cryptocurrency from a network perspective. Specifically, it
focuses on a bunch of network representations of the Bitcoin
digital transactions that are studied at different scales (mi-
cro, meso and macro) by employing tools from physics, statis-
tics and economics. The thesis is divided into five chapters.
Chapter 1 introduces the broad field of cryptocurrencies. Chap-
ters 2 and 3 are dedicated to the understanding of the net-
work properties of the Bitcoin cryptocurrency from both a
static and a dynamical perspective and to the investigation of
the relationships between the latter ones and purely financial
quantities like the BTC price. Chapter 4 is dedicated to the
study of the Bitcoin Lightning Network, a recently-developed
protocol to speed up the blockhain-based payment system
Bitcoin rests upon. Chapter 5 illustrates the substantial modi-
fications that have been required by state-of-the-art algorithms
to solve null models for networks on very large networks - as
the ones characterizing Bitcoin throughout its entire history.
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Chapter 1

Prologue

Nanos gigantium humeris
insidentes.

Anonymous

Todo lo que empieza como comedia
acaba como ejercicio criptográfico.

Roberto Bolaño

In the fall of 2018 a friend of mine - who is going to remain anony-
mous, not just pseudo-anonymous! - told me to invest into cryptocur-
rencies. At the time, I was aware of the Internet new shiny toy but, either
for lack of money or for lack of will, I had not invested before.

Anyway, this time was different: for the first time in my life I had a
disposable income and was eager to lose it. As it was foreseeable1, we
invested and we lost but we learnt something, i.e. that there is a lot to
learn. The crypto-world was the far-west (it is still kind of) and, in some
sense - someone, here, would say the truest sense - we were explorers.
In fact, what is a researcher if not an explorer? Well, if this metaphore is
true, the present thesis is our travel log.

1Eventually we won: most of the interesting things happen in the short run but the
significant ones tend to play the long game.
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In the following hundred pages, we will mainly discuss the nature
of Bitcoin Transaction Networks (hereby, BTNs), i.e. the networks of
transactions in bitcoins. A transaction is a bilateral relation of money
exchange between two alphanumeric addresses (representing the start-
ing and the ending point of the money flow) and represents the basic
element recorded on the blockchain.

Bitcoin Transaction Networks pose a set of non-trivial challenges:

• they are awfully large;

• there are many of them - surely, as many as you want;

• the information they convey is noisy.

BTNs are large. As Bitcoin has gained popularity, the number of daily
transactions has increased as well; as a consequence, these networks
have reached a size of (the order of) millions of nodes. While being very
sparse, they still represent a computational challenge for most of the al-
gorithms constituting the (actual) toolbox for network analysis. This was
the first challenge we faced: as a consequence, an entire chapter of the
thesis is dedicated to the development of alternative algorithms, specifi-
cally designed to work on huge, sparse networks.

BTNs are a lot. Bitcoin Transaction Networks are built from trans-
actions, as we said: this introduces time as a fundamental factor as re-
searchers must choose the right time-frame to collect and aggregate trans-
actions. While there are some natural choices, the optimal one is still
debated; in general, it depends on the actual phenomenon researchers
want to study. A consequence of the presence of time is that, depending
on how refined the chosen temporal partition is, the number of Bitcoin
Transaction Networks to study increases. Naturally, there is a trade-off
between the time-frame of aggregation, the size of the networks and the
total number of networks to study: still, the computational effort remains
large.

2



BTNs are noisy. Last but not least, Bitcoin Transaction Networks con-
vey noisy information. Ideally, we know that each transaction in bitcoins
happens between two users, be they business firms or private individ-
uals. Yet, what we can observe on the blockchain2 is not a collection
of users exchanging money: what we actually observe is money being
passed. Imagine you were able to obtain a picture of physical exchange
of money - literally, coins and banknotes - in Italy, across one day but the
only thing you can appreciate in the picture, about the people exchang-
ing money, is their hands. Millions of hands exchanging money. At a first
sight this is how our public record appears: lots of transactions, with lit-
tle information on the actual actors behind the transactions themselves.
Luckily, the mental experiment above is not a good representation of re-
ality because we have some methods to infer the identity of Bitcoin users
- and we are going to describe them.

Why did we chose to study Bitcoin Transaction Networks, then? Well,
not so many people have studied them before and we thought we could
add something to the field. On a more philosophical level, we started by
asking ourselves whether there was a relationship between endogenous
and exogenous factors in the Bitcoin ecosystem; in other words, if there
were a relationship between the network properties of bitcoin transac-
tions and the bitcoin dollar price: could we describe the price evolution by
just observing the network evolution? We got interested in the peculiari-
ties of crypto-markets and tried to test whether these same ideas were
reflected in the topological structure of the underlying networks.

The result of the questions we asked and the answers we found, of the
methods we used and the ones we developed is the content of the present
thesis. We will start presenting some of the basic concepts needed to un-
derstand the ecosystem of cryptocurrencies, together with some math-
ematical formalization that will come handy later on. Then, a detailed
analysis of the transactions data for Bitcoin will follow, at the micro-,
meso- and macro-scopic level, in order to detect the peculiarities of the
Bitcoin Transaction Networks and of their evolution across time. Last,

2The blockchain is a public record of transactions.
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we’ll dive into some theoretical methodologies, refining and proving
some novel techniques to reconstruct large networks from partial infor-
mation. While the last chapter refers, more generally, to the theory of
statistical mechanics of networks, the methodologies presented there are
applied to Bitcoin Transaction Networks, thus motivating its presence in
this thesis.

4



Chapter 2

A quick intro to
cryptocurrencies

This chapter provides a broad overview of the topic of cryptocurrencies: the his-
tory of the idea of constructing a fully-decentralized tool for economic payments
is briefly reviewed and the main features of the Bitcoin ecosystem are described.
Moreover, we explain how the so-called Bitcoin Transaction Networks have been
defined from the data downloaded from the blockchain.

2.1 In principle was Satoshi Nakamoto

It all started with a white paper1, appeared online in October 2008. The
unknown Internet persona Satoshi Nakamoto published a sort of report
(see Nakamoto (2019)) where the limitations of the online payment sys-
tems, at the time, were outlined and a technical solution to overcome
them was proposed.

At the time Satoshi Nakamoto was writing, the dominant paradigm
for online payments required the presence of a third party. Third parties
ensure the trustworthiness of the two unknown partners involved in a
transaction: on the one hand, they collect and secure (ideally) private

1A white paper is commonly considered part of the so-called grey literature, i.e. materials
produced outside the traditional academic channels.
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information on the partners themselves; on the other, they play the role
of referees in disputes. As it can be easily imagined, the role of third
parties is often played by financial institutions.

Nakamoto, however, shows how the presence of third parties puts a
series of undesired constraints on online payments:

• third parties require fees to operate, thus adding economic burden
on each transaction;

• third parties make disputes possible, hence making online pay-
ments reversible, while the underlying services often are not;

• information disclosure required by the trust-based model may lead
to a security breach in partners’ privacy as data storage exposes
itself to hacking.

The new digital currency Satoshi Nakamoto proposes, i.e. bitcoin,
‘would be the electronic equivalent of cash’ (see Nakamoto (2019)), hence
reproducing its three main features:

• cash is free from third-party fees: I don’t have to spend additional
money only to execute a transaction, while mainstream forms of
electronic payments requires a price (i.e. the user fee) to validate
the transaction. The fee is often (but not exclusively) on the mer-
chant side;

• cash is non-reversible: when I pay the groceries with cash, the trans-
action is de facto non-reversible; once I have paid, there is no mech-
anism embodied in my money which can fly it back to me, had I a
claim on the quality of the food I have just bought2;

• cash is anonymous.

2Naturally, I can always recourse to law to solve disputes but police does not oversees
each economic transaction I execute.

6



2.2 Bitcoin and before

The idea of electronic payments arose with the birth of Internet: already
in the 1980s, Chaun proposed some guidelines for a ‘blind signature
technology’ based on cryptographic tools (see Chaum (1983)). By read-
ing Chaun’s manuscript we realize how the issues of privacy, security
and control were already intertwined in the mind of theorists. In the
following years, many alternative digital currencies were proposed, e.g.
universal electronic cash (see Okamoto et al. (1991)), untraceable off-line
cash (see Brands (1993)), fair blind signatures (see Stadler et al. (1995)),
etc.

Some of the ideas influencing later developers were already present
during the embryonic stage: for example, B-money (see Dai (1998)) for
the first time proposed to solve a computationally intense puzzle for min-
ing. All proposed solutions, however, ultimately failed either to provide
a working technology for decentralised transactions or simply to gain
public attention: as a consequence, the only standard for online pay-
ments emerged from the Nineties was the centralised one, based upon
the presence of third-parties (e.g. Paypal and other bank-related ser-
vices).

The Bitcoin ecosystem was announced by Satoshi Nakamoto in 2008
and deployed in 20093. What is Bitcoin? This obscure term rose to world-
wide recognition in recent years, making its way trough enthusiastic
blogs and scientific papers to reach the front pages of newspapers all
over the world. Several definitions have been proposed, e.g. ‘a chain
of digital signatures’ (see Lischke et al. (2016) and Singh et al. (2021)),
‘a distributed, public ledger that contains the history of every bitcoin
transaction’ (see Dwivedi et al. (2019) and Singh et al. (2021)), ‘a digital
ledger in which transactions made in bitcoin or another cryptocurrency

3After the success of Bitcoin, many alternative electronic coins have been created in the
last years - informally named altcoins: the website www.coinmarketcao.com has esti-
mated that there are more than 7.000 cryptocurrencies at the time of the writing, i.e. 2020;
while many of these are just Bitcoin clones, some genuinely innovative ideas providing
different solutions from the Bitcoin one are, however, present: examples are provided by
Ethereum, Litecoin, Monero, etc.
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are recorded chronologically and publicly’ (see Singh et al. (2021)) or ‘a
decentralized database containing sequential, cryptographically linked
blocks of digitally signed asset transactions, governed by a consensus
model’ (see Singh et al. (2021) and Sultan et al. (2018)). As it can be read
in Antonopoulos (2014): ‘Bitcoin is a collection of concepts and technolo-
gies that form the basis of a digital money ecosystem’.

To fully understand the last sentence, let us think about the old, good,
reliable physical money: is cash just the paper it is printed on? Money is,
first of all, an idea based on trust - about its value and the issuing insti-
tution - and only afterwards it is also a physical ‘infrastructure’ (i.e. the
paper it is printed on). So once again, what is Bitcoin? Bitcoin is a digital
currency whose units are called bitcoins4: the latter ones are used to store
and exchange values (between the participants of the Bitcoin network).

2.3 The blockchain technology

Let us now list the keywords referring to the Bitcoin environment and
describe in detail the related concepts.

Transactions. Transactions are the foundation stones of the Bitcoin ecosys-
tem. They are nothing else than a collection of inputs, i.e. debts towards
a Bitcoin account, and a collection of outputs, i.e. credits towards another
Bitcoin account. Usually, the total sum of the outputs is a bit less than
the total sum of the inputs: the difference is the transaction fee, a sort of
‘reward’ collected by the miner who is going to add the transaction to the
block that will become part of the ledger5. Looking at figure 1, we ob-
serve that inputs and outputs are referred to as to alphanumeric strings:
these are ‘signatures’, often called addresses, that certify the ownership of
the bitcoins contained in the inputs. From a theoretical point of view, a
transaction is a data structure containing the following information:

4Throughout this work, the word bitcoin will be employed to indicate the currency, the
word BTC will be employed as an abbreviation of the latter one and the word Bitcoin will
be employed to indicate the entire system.

5Transaction fees are conceptually different from the third-party fees Nakamoto wanted
to get rid of: they prevent denial-of-service attacks and incentivize miners.
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Figure 1: The way a transaction appears to an online blockchain explorer.
The transaction is already registered on the blockchain (you can spot this
from the 97 confirmations recorded). Figure from Antonopoulos (2014).

• version: it specifies the rules followed by any transaction - in fact,
the Bitcoin version may change over time;

• input counter: it specifies the number of inputs;

• inputs: one or more input data structures. They point to unspent
transaction outputs and to the unlocking scripts (the keys) to spend
them;

• output counter: it specifies the number of outputs;

• outputs: one or more output data structures. They contain the amount
of bitcoins received and the locking script to claim them;

• locktime: a Unix time-stamp, also known as block-height. It specifies
the time the transaction should be added to the blockchain6.

6The way locktime works is similar to the way post-dated payments work.
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Keys. Users have cryptographic keys that allow them to 1) claim the
ownership of their bitcoins and 2) spend them. As emerged from the de-
scription of transactions, inputs are the outputs of previous transactions:
the way a new input actually claims bitcoins from an unspent output
(inter-locking the two transactions) is via the keys owned by the user.
Whenever a user wants to issue a payment, he needs to write down
a transaction on the blockchain; to do so, he must prove that he owns
the money he wants to spend. Claiming ownership on unspent bitcoins
means providing the script which unlocks the counterpart locking script
(i.e. that of the unspent transactions the user is claiming). The unlocking
script takes the user’s cryptographic and returns back the solution to the
locking script.

As the unlocking script is able to satisfy the locking script only trough
a specific key, we say that the key provides the user ownership of the
unspent output value. As bitcoins move from address to address - and,
therefore, from user to user - the sequence of inputs and outputs creates
a chain of ‘ownerships’: this example should clarify that the concept of
‘ownership’ in Bitcoin coincides with the concept of ‘control’ of the keys
of unspent outputs on the public ledger7.

The wallet. Each user collects all his keys via a software called wallet.
To be noticed that, in our research, we will identify a Bitcoin user with
the wallet he controls, i.e. with the set of blockchain inputs he is able to
move. The first task of the wallet software is that of constructing well-
defined transactions: once a transaction is constructed, it needs to be
verified and stored. The second task of the wallet software is that of
broadcasting it on the Bitcoin peer-to-peer network: within seconds, all
nodes are notified about the transaction. Afterwards, the transaction is
verified and recorded on the blockchain, a process known with the name
of mining.

7In real life, if I have 50 $, the ownership of this money is certified by the physical
possession of the bill. In the Bitcoin ecosystem, instead, I posses 50 bitcoins if I ‘posses’ the
corresponding cryptographic key.
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The mining mechanism. From the pool of unverified transactions a
bunch of transactions is pulled together into a block. In order to prove
a block, users called miners must solve a computationally-intense prob-
lem which is dynamically adjusted to require, on average, 10 minutes to
be solved, regardless of the numbers of miners and their computational
power. This process is called proof-of-work (see Nakamoto (2019)): once
the problem has been solved, the miner is awarded with bitcoins which
become part of the currency pool.

Quoting Antonopoulos (2014): ‘A good way to describe mining is
like a giant competitive game of Sudoku that resets every time some-
one finds a solution and whose difficulty automatically adjusts so that it
takes approximately 10 minutes to find a solution. Imagine a giant Su-
doku puzzle, several thousand rows and columns in size. If I show you a
completed puzzle you can verify it quite quickly. If it is empty, however,
it takes a lot of work to be solved! The difficulty of the Sudoku can be
adjusted by changing its size (more or fewer rows and columns), but it
can still be verified quite easily even if it is very large. The puzzle used in
Bitcoin is based on a cryptographic hash and exhibits similar characteris-
tics: it is asymmetrically hard to solve, but easy to verify and its difficulty
can be adjusted’.

Verifying the validity of a block of transactions is computationally
trivial - as much as it would be for a computer script to verify the validity
of a completed Sudoku puzzle. Once a miner has solved the problem, he
broadcasts the solution to the Bitcoin network: verified blocks are the
ones on whose reality users reached a consensus. Once the blocks are
verified, they are chained in chronological order: this ensures that older
blocks become ‘safer’ with time since the are proved both in a directed
and in an undirected fashion (i.e. via the proof of the subsequent blocks).

Beside solving the verification problem of transactions in a fully de-
centralized fashion, the mining mechanism also solves the coin-issuance
one. In fact, once a block becomes part of the blockchain, it also con-
tains a new transaction that transfers newly minted bitcoins to the miner
who proved the block8. Hence, miners are incentivized by the so-called

8As of 2020, it amounts at 12.5 bitcoins.
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Figure 2: Pictorial representation of the Bitcoin ecosystem. Figure from
Antonopoulos (2014).

transaction fees.

The blockchain. Any new block of verified transactions is written on
the blockchain: the new block is received by all the nodes of the network
and becomes part of the official, publicly available, transaction ledger. All
transactions among users are stored there.

The Bitcoin protocol. It is the backbone of the peer-to-peer network em-
ployed by Bitcoin users to communicate among them over the Internet.
Each Bitcoin user, i.e. anyone who runs a stack of the Bitcoin protocol on
his computer, stores a copy of the blockchain (i.e. a copy of all verified
transactions) locally.
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2.4 From pseudo-anonymity to users

What do we mean by pseudo-anonymity in Bitcoin? As we mentioned be-
fore, users execute payments trough addresses. More specifically, an ad-
dress is the double ash of a public key derived from an ECSDA key pair
(see Antonopoulos (2014)). Since creating addresses comes at no cost,
the rule of thumb is that of creating a new address for each operation.
Thus, when we speak of pseudo-anonymity, we mean that each address
is an alias of a user - without revealing any information about the person
or the other addresses he/she may control. This is the only anonymity
protection hard-coded in Bitcoin9.

Although Bitcoin anonymity is far from being unbreakable, when
it was implemented it was the best alternative to the mainstream elec-
tronic payments, thus creating a viable option for those subjects inter-
ested in moving money on the Internet without revealing their identity.
Driven by the needs of law-enforcement agencies, digital-economics re-
searchers and industrial espionage, the activity in the field of Bitcoin de-
anonymization has grown over the years. Last but not least, knowing the
limits of the anonymity provided by the system is also of interest for the
Bitcoin users themselves.

As researchers, our interest in the Bitcoin de-anonymization field lies
in the possibility to retrieve, within a certain degree of precision, the ac-
tual users behind the overwhelming amount of addresses we actually see
on the blockchain. Naturally, we are not interested to identify individ-
uals in real life but spotting the economic subjects of transactions may
transform an interesting - yet very noisy - data set as the blockchain into
an economically meaningful snapshot of the Bitcoin landscape.

To this aim, several heuristics can be employed - a ‘heuristic’ being a
set of rules that take advantage of the Bitcoin protocol to identify owners
of different addresses (see Androulaki et al. (2013), Tasca et al. (2018),
Harrigan et al. (2016), and Ron et al. (2013)). A brief description of the
two most common ones follows.

9Other methods to protect identity have been invented through the years, e.g. the Bit-
coin mixers.
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Figure 3: From left to right: the blockchain as a sequence of clustered trans-
actions; two transactions stored in the blockchain; our first network repre-
sentation, i.e. the Bitcoin Address Network; our second network representa-
tion, i.e. the Bitcoin User Network. The figure also shows how the heuristics
work: coloured boxes/nodes represent ownership of the same user.

Multi-input heuristics. This heuristic is generally believed to be the safest
one for clustering addresses and is based on the assumption that, if
two (or more) addresses are part of the input of the same transac-
tion, they are controlled by the same user. The key idea behind this
heuristics is that, in order to produce a transaction, the private keys
of all addresses must be accessible to the creator of the transaction.

Change-address identification heuristics. Transaction outputs must be
fully spent upon re-utilisation. Hence, the transaction creator usu-
ally controls also one of the output addresses. Specifically, if an
output address appears for the first time and the amount trans-
ferred to it is lower than all the inputs, then it is likely to belong to
the input user.

2.5 An overview of the Bitcoin price evolution

Bitcoin price has undergone an interesting evolution, with periods of in-
tense growth followed by sudden and large decreases. In the literature,
these periods are known as bubbles, a term that indicates an unsustain-
able price growth (e.g. of a good) since not justified by its underlying
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Bubble Start End Days Growth Mean ret.
1 25-05-2012 18-08-2012 84 3.1 0.013
2 03-01-2013 11-04-2013 98 20.4 0.031
3 07-10-2013 23-11-2013 47 6.8 0.042
4 08-06-2015 18-12-2017 924 103 0.005
5 31-03-2017 18-12-2017 155 21 0.02

Table 1: Time intervals of the four main bubbles occurring between May
2012 and December 2017 (see Wheatley, Spencer et al. (2018)). Bubble 5
overlaps with the last six months of Bubble 4.

value. As it can be easily imagined, the literature on Bitcoin financial
bubbles is strictly related to the study of the Bitcoin fundamental value:
we refer the interested reader to Bergstra et al. (2014), Yermack (2015),
Van Alstyne (2014), Bouoiyour et al. (2015), and Fantazzini et al. (2017)
for the discussion about the Bitcoin value and to Garcia et al. (2014) and
Wu, Ke et al. (2018) for the discussion about price modeling.

In the present thesis we will discuss the bubble detection method pro-
posed in Wheatley, Spencer et al. (2018). The authors of the paper com-
bine two different approaches:

• Metcalfe law, stating that the value of a network is proportional to
the square of its number of nodes (see Metcalfe (2013));

• Log-Periodic Power-Law Singularity Model (LPPLSM) that identifies
two empirical features of bubbles: faster-than-exponential growth
and accelerating log-periodic volatility fluctuations (see Sornette et
al. (2014)).

By combining the Metcalfe law to proxy the Bitcoin fundamental value
and the LPPLSM as a technical measure to diagnose financial bubbles,
the authors are able to indicate periods of impending bubbles and sub-
sequent crashes. More detailedly, they identify four main bubbles, re-
ported in table 1. Interestingly enough, the authors also identify trigger-
ing moments of bursting/crashing price for the dates reported in table
1:
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• 19 June 2011: Mt. Gox is hacked, causing the Bitcoin price to fall of
88% over the next three months;

• 28 August 2012: Ponzi fraud of hundreds of thousands of bitcoins
under the name ‘Bitcoins Savings and Trust’ (charges filed by the
Securities and Exchange Commission);

• 10 April 2013: the major Bitcoin exchange Mt. Gox breaks under
high trading volume. The price falls more than 50% over the next
two days;

• 05 December 2013: the People’s Bank of China bans financial insti-
tutions from using Bitcoin. Bitcoin market cap drops of 50% over
the next two weeks;

• 07 February 2014: operational issues at major exchanges due to dis-
tributed denial-of-service attacks - two weeks later Mt. Gox closes;

• 28 December 2017: reports that South Korean regulators threatened
to shut down cryptocurrency exchanges.

2.6 An overview of networks

Let us now briefly recall what a network is. A network (or graph) is a set
or node (or vertices) connected by links (or edges). When links represent
relationships between node whose specification does not need a direc-
tion, the underlying network is said to be undirected; otherwise, when
one needs to assign a direction to the links, we speak of directed networks.
It is also possible to assign a weight to the links: in this case, one speaks of
weighted networks. In this thesis, we will consider neither self-loops (i.e.
edges connecting a node with itself) nor multiple edges (nodes connected
by more than one edge) and focus on binary10, undirected and directed
representations only.

10The information carried by weights is of great interest but would have increased the
complexity of the whole data analysis procedure too much.
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While the abstract notion of network is a purely mathematical con-
cept, there are many ways of representing a graph. The commonest
one is based on the definition of the adjacency matrix: given the graph
G = (V,E) (i.e. the pair of node set and link set), the corresponding adja-
cency matrix A is an N ×N square matrix, with |V | = N whose generic
entry aij can be defined as follows. Let us now consider two generic
nodes, i and j: if a link between11 i and j exists, then aij = 1; otherwise,
aij = 0. Undirected networks are represented by symmetric adjacency
matrices; directed networks, in general, are not.

2.7 The Bitcoin Transaction Networks

Bitcoin data were collected from the Bitcoin public ledger, from 5th Jan-
uary 2009 to 25th June 2018. More specifically, our data consist of 304.111.529
addresses among which a total number of 283.028.575 transactions take
place. Our heuristics allowed us to identify 16.749.939 users, among
which 224.620.265 transactions were found to take place. In terms of
traded volume, the transactions between users and addresses amount at
3.114.359.679 and 4.432.597.496 bitcoins respectively.

The apparent inconsistency between users’ and addresses’ volumes
of exchanged bitcoins has an easy explanation. Transactions among ad-
dresses controlled by the same users do not add up to the total volume
of bitcoins exchanged when addresses are clustered in users: they just
disappear because they correspond to the activity of someone moving
money from one of his bank accounts to the others. On the contrary,
when we focus on the address representation these ‘fake’ transactions
add up to the volume - thus, explaining the larger volume observed in
this second case.

Let us now describe how we obtained our sequence of Bitcoin Trans-
action Networks. First, we have fixed a time-span12 ∆t. Then, we have

11In this example, we consider an undirected network. In case it were directed, the link
would be from i to j.

12See later for a discussion about the temporal intervals employed for this analysis.
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split the whole history of Bitcoin in intervals of length ∆t. For each inter-
val, we have defined a BAN, i.e. a Bitcoin Address Network (in symbols,
ABAN

(t) ) and a BUN, i.e. a Bitcoin User Network (in symbols, ABUN
(t) ).

The first representation has been obtained quite straightforwardly:
each transaction registered on the blockchain, during interval t, has been
treated as a link between the nodes (i.e. the addresses) involved in the
transaction itself: hence, the value of the corresponding entry of the ad-
jacency matrix ABAN

(t) has been set to 1. Naturally, the link direction is
induced by the ‘status’ of the nodes (either input or output) in the trans-
action.

Given the whole set of addresses, we have applied a combination of
the two aforementioned heuristics to cluster them into users. Starting
from the network of addresses, where any two of them are connected if
participating to the same transaction, we have, first, applied the multi-
input heuristics and clustered any two addresses together if both were
found to participate to a given transaction as inputs. This led us to a net-
work of ‘intermediate’ users. Afterwards, we have employed the second
heuristics and ‘assigned’ the change address of each transaction to the
input user (i.e. to the set of addresses appearing as inputs and clustered
together into the same ‘intermediate’ user).

Then, for each interval t, we defined a BUN, i.e. a Bitcoin User Net-
work (in symbols, ABUN

(t) ) starting, once again, from the transactions reg-
istered on the blockchain, during interval t: now, the role of nodes is
played by the users that took part in the transactions themselves - the
latter ones, acting as links.

Generally speaking, the BANs and the BUNs are directed, binary
graphs that satisfy these properties:

• BANs: neither the identity of nodes, nor their number is constant
across the entire Bitcoin history (i.e. node 1 on snapshot i may not
coincide with node 1 at later times);

• BUNs: as for the BANs, neither the identity of nodes, nor their
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number is constant across the entire Bitcoin history;

• while addresses have a one-use policy, users entities supposedly
appear more than once across the entire Bitcoin history;

• the number of users is, by construction, strictly less than the num-
ber of addresses, in turn implying that BUNs are computationally
easier to handle;

• BUNs are supposed to provide a picture of the Bitcoin history less
affected by noise, since clusters of addresses proxy the behaviour
of actual users better than plain addresses.

We would also like to stress that, while considering only the address-
based representation may be misleading, given the potentially large num-
ber of different addresses controlled by the same users, relying only on
the user-based one requires a very accurate clustering procedure, as pointed
out in Di Francesco Maesa et al. (2019), Fergal et al. (2013), and Harrigan
et al. (2016); for these reasons, whereas possible, we have opted to carry
out a comparative analysis of the two.

Let us now comment on the choice of the time-span ∆t employed in
the present analysis. Here, ∆t is both a day-lasting and a week-lasting in-
terval. The time interval is measured on the blockchain at the block level:
since each block has a timestamp to record the exact time it was mined,
we are able to aggregate transactions at the desired level of (temporal)
detail by playing with it.

2.8 The Bitcoin Lightning Network

Bitcoin is affected by the so-called scalability problem. In other words, only
a limited number of transactions per second can be served by the Bitcoin
network: in December 2020 the rate of processed transactions amounted
at ≃ 2.000 every 10 minutes13 - a ridiculous number when compared

13https://www.blockchain.com/charts/n-transactions-per-block
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to the performance of traditional, centralized online payment networks,
that are able to verify thousands of transactions per second. The increase
of Bitcoin popularity made the scalability problem only more evident.

Proposed in 2015 (see Poon et al. (2016)), the Bitcoin Lightning Net-
work (BLN) is a ‘Layer 2’ protocol that can operate on top of blockchain-
based cryptocurrencies by creating bilateral channels for off-chain pay-
ments which are, then, settled on the blockchain, once the channels are
closed. As both the transaction fees and the blockchain confirmation are
no longer required, the network is spared from avoidable burden.

The BLN is constructed in a fashion that is similar to the way the
BAN is defined: it is an undirected, weighted graph whose nodes are the
addresses exchanging bitcoins on the ‘Layer 2’. Formally, for each time
step t, the BLN is represented by a weighted adjacency matrix WBLN

(t) ∈
RN(t)×N(t)

where N (t) is the number of nodes at step t. The generic entry
w

(t)
ij represents the total amount of bitcoins exchanged between nodes i

and j during the time interval t. The binary adjacency matrix ABLN
(t) , in-

stead, is defined as the binary projection of WBLN
(t) , constructed following

the rule a(t)ij = 1
[w

(t)
ij >0]

.

As for the BANs and the BUNs, the choice of the time partition de-
fines the collections of networks under analysis. Three different rep-
resentations of the BLN were considered in the present work, i.e. the
daily one, the weekly one and the daily-block one: while a daily/weekly
snapshot includes all channels that were found to be active during that
day/week, a daily-block snapshot consists of all channels that were found
to be active at the time the first block of the day was released (hence, the
transactions considered for the daily-block representation are a subset of
the ones constituting the daily representation). The BLN was considered
across a period of 18 months, i.e. from 14th January 2018 to 13th July
2019, at the end of which the network consisted of 8.216 users, 122.517
active channels and 2.732,5 transacted bitcoins (Lin et al. (2020)).

The extent of the analysis whose results constitute the present thesis
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is unprecedented under several respects: to the best of our knowledge,
in fact, published contributions typically focus on 1) a (much) shorter
time span and 2) a single Bitcoin representation, i.e. either the address-
based one (see Kondor et al. (2014) and Popuri et al. (2016)) or the user-
based one (see Androulaki et al. (2013), Di Francesco Maesa et al. (2016a),
Di Francesco Maesa et al. (2016b), Di Francesco Maesa et al. (2018a),
Di Francesco Maesa et al. (2017), Di Francesco Maesa et al. (2018b), Di
Francesco Maesa et al. (2019), Javarone et al. (2018), Lischke et al. (2016),
Meiklejohn et al. (2013), Ober et al. (2013), Reid et al. (2013), and Ron et
al. (2013)).
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Chapter 3

Bitcoin at the microscale

The content of this chapter overlaps with the one of the papers authored by Bovet
et al. (2019) and Vallarano et al. (2020). It focuses on the description of the
local structure of our Bitcoin Transaction Networks (from both a static and a
dynamical perspective) and investigates the presence of relationships between
the latter ones and purely financial indicators as the BTC price.

3.1 Bitcoin Transaction Networks: an overview

During the nine years under analysis, Bitcoin adoption rose worldwide.
This is clearly reflected in the evolution of the total number of nodes N
(be they addresses or users) and links L, as showed in figure 4: both
steadily increase over time, irrespectively from the specific representa-
tion considered (i.e. BANday, BANweek, BUNday, BUNweek).

On the other hand, the link density (or connectivity)

d =
L

N(N − 1)
=

∑︁N
i=1

∑︁N
j(̸=i)=1 aij

N(N − 1)
(3.1)

decreases: this implies that the total number of links does not increase
proportionally to the square of the number of nodes, as per equation
(3.1); equivalently, we can say that the (average) number of transactions
per user, i.e. k = L

N , does not increase proportionally to N , i.e. Bit-
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Figure 4: Evolution of basic statistics for the four Bitcoin network represen-
tations considered here (BANs and BUNs on a weekly and a daily basis):
(A) number of nodes N , (B) number of links L and (C) link density d (no-
tice that the link density is computed for networks with at least 500 nodes).
The fourth panel (D) shows the evolution of the Bitcoin price in USD (since
when trading bitcoins for USD has started happening on a more regular
basis). Figure from Bovet et al. (2019).

coin users engage in a ‘finite’1 number of transactions; other real-world
economic and financial networks are, instead, observed for which the
average degree scales with the size of the network, the most prominent
example being the World Trade Web, whose connectivity reads cWTW ≃
0.5 throughout its entire history. Equivalently, one can say that the to-
tal number of links grows linearly with the total number of nodes, i.e.
L = O(N) (see Aspembitova et al. (2019)) - hence, d = O(N−1).

1Actually, quite low as we will see later.
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For the sake of comparison, we have also plotted the evolution of
the Bitcoin price in US dollars (USD, bottom panel in figure 4): while
the price reached its peak in December 2018, the history of the Bitcoin
pricing is a troubled one, with many ups and downs.

3.2 Bitcoin Transaction Networks: degree dis-
tributions

The Bitcoin Transaction Networks we consider here are binary, directed
networks. The simplest, yet non-trivial, quantity to monitor is the num-
ber of neighbors of nodes, i.e. their degree, here indicating the number of
transactions a node, be it an address or a user, takes part in - for Bitcoin
payments, moving value across wallets, purchasing goods, receiving ser-
vices, etc. As directed networks are considered, two different notions of
degree remain naturally defined, i.e.

Out-degree of node i: the number of outgoing links from node i; in our
case, it counts the number of transactions the node i (either a user
or an address) participates in, by sending bitcoins. It is defined as

kouti =

N∑︂
i=1

aij

(where aij indicates the entry of a generic adjacency matrix A);

In-degree of node i: the number of incoming links towards node i; in
our case, it counts the number of transaction node i (either a user
or an address) participates in by receiving bitcoins. It is defined as

kini =

N∑︂
i=1

aji

(where aij indicates the entry of a generic adjacency matrix A).
Putting together the in- and the out-degrees for all nodes, we con-

struct the so-called degree sequences, defined as kin = (kin1 . . . kinN ) and
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Figure 5: Two weekly snapshots of the BUNs in-degree, out-degree and to-
tal degree distributions: the latter ones are heavy-, right-tailed, an evidence
suggesting that many nodes with (very) small degree coexist with few large
hubs with thousands of incoming and outgoing connections. Figure from
Bovet et al. (2019).

kout = (kout1 . . . koutN ); one can also define the total degree sequence, as
ktot = (ktot1 . . . ktotN ) = (kin1 + kout1 . . . kinN + koutN ). The (empirical) degree
distributions induced by the three degree sequences above are shown in
figure 5: as we see, these distributions are heavy-, right-tailed, suggest-
ing that many nodes with (very) small degree coexist with few large hubs
with thousands of incoming and outgoing connections - in fact, snap-
shots appear where the degree of the largest hub is one order of mag-
nitude larger than the degree of the second most connected node in the
network.

A visual inspection of the degree distributions suggests them to be
power-laws. In order to test this hypothesis, we split our time interval in
two and employ a double Kolmogorov-Smirnoff test (see Restocchi et al.
(2019) and Bauke (2007)), at a significance level of 5%, on each subset.
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The date we choose to split our data coincides with 2014-02-24, i.e. the
date of the closure of the Mt. Gox exchange market. Interestingly, we
find that the hypothesis that the out-degrees are distributed according to
a power-law cannot be rejected in 54% of the snapshots, before 2014-02-
24; this percentage drops to 26% after that date. For what concerns the
in-degrees, the percentage of times that the p-value is larger than 0.05 is
45%, before 2014-02-24 and 60%, after it; for the total degrees, instead,
these percentages evolve from 54% to 70%. In conclusion, the failure of
Mt. Gox definitely seems to have had an impact on the functional form
of the degree distributions.

Although we cannot conclude tout court that our degree distributions
are power-laws, their heavy-tailedness still suggests that a mechanism
similar-in-spirit to the preferential attachment may be shaping our Bit-
coin Transaction Networks. This seems to be confirmed by the analysis
carried out in Aspembitova et al. (2019) but with an important caveat:
a preferential attachment -like mechanism able to ‘distinguish’ between
classes of nodes (in particular, speculators from exchanges) seems to be
in place; in any case, the percentage of new users joining Bitcoin to es-
tablish a connection with already very-connected nodes (i.e. hubs such
as trading places for cryptocurrencies, digital banks converting bitcoins,
etc.) can be imagined as not employing bitcoins as a currency but only
as an asset of value.

For directed networks, a simple relation holds between the in-degrees,
the out-degrees and the total number of links L, i.e.

L =

N∑︂
i=1

N∑︂
j( ̸=i)=1

aij =

N∑︂
i=1

kouti =

N∑︂
i=1

kini (3.2)

as it can easily proven by just swapping the two sums. From equation
(3.2) it follows that L is directly proportional to the first moment of both
the in- and out-degree distributions. In fact, it is readily seen that k =
L
N = µ[kout] = µ[kin]. This allows us to rewrite the link density as
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d =
µ[kout]

N − 1
=
µ[kin]

N − 1
; (3.3)

equation (3.3) provides us a further insight on the results of section 3.1:
the increasing sparsity of the Bitcoin Transaction Networks shown in fig-
ure 4 may be explained by an increase in the number of nodes N po-
tentially accompanied by a decrease of the first moment of the directed
degree distributions. To gain further insight into such a behavior let
us take a closer look at the evolution of the first moment of the lat-
ter ones: as shown in figure 6, panel a), the first moment of the BUNs
in- and out-degree distributions, at both the daily and the weekly time
scale, is practically constant over the whole period under analysis, i.e.
µ[kout] ≃ µ[kin] ≃ O(1); this means that the density decrease is ‘just’ a
consequence of the increase of the number of nodes. For what concerns
the BANs, a similar conclusion holds, the only difference being that, now,
the first moment of both distributions remains finite.

A change in the behavior of the first moment of our BANs in- and out-
degree distributions is, however, clearly detectable after 2014: its trend
show large variations, bounded in the interval 0 < µ[kout] ≃ µ[kin] ≲ 10,
that persist until the end of the period under analysis. This evidence
seems to suggest that a structural change similar to the one observed for
the BUNs has taken place for the BANs as well.

Let us now focus on the higher moments of our degree distributions.
While the n-th central moment of a random variable x is defined as

µn = E [(x− µ)n] , (3.4)

with µ1 = 0 (since E[x] = µ), µ2 being the variance and σ =
√
µ2 being

the standard deviation, its standardized version reads

µ̃n = E
[︃(︃

x− µ

σ

)︃n]︃
(3.5)

with µ̃3 being the skewness and µ̃4 being the kurtosis. Studying the evolu-
tion of the moments of the degree distributions helps to better clarify the
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Figure 6: Evolution of the moments of the degree distributions of our BUNs
and BANs: a) the average µ; b), c) standard deviation σ; d), e) skewness γ
- moments of the in-degrees are shown in panels a), b), c) while moments
of the out-degrees are shown in panels a), c), e). While the average degree
of the BUNs is practically constant throughout the entire period considered,
its trend for the BANs is characterised by peaks and oscillations. Differ-
ent trends also characterise the evolution of the standard deviation of the
in- and the out-degrees: the latter are more heterogeneous than the former
ones, especially in the triennium 2014-2016. The behavior of the skewness is,
instead, more similar across different representations/time scales. Adapted
figure from Bovet et al. (2019).

evolution of the underlying network structure, e.g. by understanding if
nodes tend to establish more or less interconnections over time (via the
inspection of the first moment), the extent to which the behavior of nodes
deviates from the average one (via the inspection of the second moment)
and in which direction (via the inspection of the third moment), etc.

Let us now comment on the higher moments evolution (i.e. pan-
els b), e) in figure 6). In-degrees seem to be more homogeneous than
out-degrees, especially when considering BUNs: in fact, while the distri-
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butions of the out-degrees are characterized by alternating windows of
‘low’ and ‘high’ heterogeneity, in-degrees have a steadily smaller stan-
dard deviation. For what concerns the BANs, the situation is different:
three well-defined peaks, separated by long windows of smaller values,
characterize the standard deviation of the in-degrees; on the other hand,
the out-degrees standard deviation varies in a smoother fashion. Inter-
estingly, the standard deviation of the BUNs in-degree distributions is
always dominated by the standard deviation of the BANs in-degree dis-
tributions while this is no longer true when considering out-degrees.

The behavior of the in-degrees skewness is, again, different from that
of the out-degrees skewness: while the first one increases over time (with
larger peaks characterizing the BANs), this is no longer true for the sec-
ond one, for which we observe a first ‘bump’ between 2014 and 2016 and
a second one around 2018. The increasing asymmetry of the in-degree
distribution may suggest the emergence of large(r) hubs in the Bitcoin
ecosystem.

3.3 Network properties versus the Bitcoin price

Let us now analyse the relationship between the evolution of a bunch
a network properties and that of the Bitcoin price. First, let us plot the
evolution of the total number of nodes and of the link density versus the
Bitcoin price (in USD); additionally, let us colour each dot according to
the Ratio between current Price and its Moving Average (RPMA) of the
Bitcoin price at the time. Given that pt is the closing price in period t (day
or week), the RPMA at time t is defined as

RPMAt = 100 log10

(︄
pt

1
τ

∑︁t−1
s=t−1−τ ps

)︄
(3.6)

and quantifies the price dynamics: for the weekly Bitcoin Transaction
Networks the RPMA has been computed on the previous τ = 4 weeks,
while for the daily Bitcoin Transaction Networks it was computed on the
previous τ = 7 days. As shown in figure 7, a clear trend appears, indicat-
ing that the price and the network size N (the link density d) are, overall,
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Figure 7: Correlation between the Bitcoin price (in USD) and the basic statis-
tics, i.e. the number of nodes and the link density, for the BUNs at the
weekly time scale. Additionally, each dot representing an observation is
coloured according to the value of the Ratio between the current Price and
its Moving Average (RPMA) indicator. The vertical, dashed line coincides
with the bankruptcy of Mt. Gox in February 2014. Figure from Vallarano
et al. (2020).

positively (negatively) correlated throughout the entire Bitcoin history.
The only exception is represented by the trend inversion starting after
the Mt. Gox failure and consequence of the prolonged price decrease ob-
served during the triennium 2014-2016, during which the network size
has increased of (almost) one order of magnitude (see also figure 10).

Let us now plot the evolution of the first three (normalized) moments
of the out-degree distribution (standard deviation, skeweness and kurto-
sis) versus the number of nodes of the corresponding snapshot, whereas
each dot is coloured as explained above and the dashed line indicates
02-24-0214, i.e. the date when Mt. Gox bankrupted. As figure 8 shows,
there is a clear proportionality between the time and the size of the Bit-
coin Transaction Networks: while the relationship between the moments
and the size looks almost linear before 2014, it is less easy to identify a
clear trend, afterwards. While true for both the BANs and the BUNs,
this is more evident for the latter than for the former ones - incidentally
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Figure 8: Correlation between the moments of the out-degree distributions,
the number of nodes and the RPMA indicator. While the scatter plots depict
the relationship between the moments of the out-degree distributions and
the number of nodes, each dot is coloured according to the value of the
RPMA at that time. The vertical, dashed line coincides with the bankruptcy
of Mt. Gox in February 2014. Figure from Bovet et al. (2019).

highlighting the importance of the heuristic-based, data-cleaning step.
Overall, the standard deviation shows the most interesting evolution:

on the one hand, negative RPMA values correlate with large values of the
standard deviation; on the other, when the RPMA is positive an overall
linear trend between the standard deviation and the network size is ob-
served, both before and after 2014. Two diversions from the linear trend
are observed in correspondence of the dates for which N ≃ 5 × 104 and
N ≃ 3×105 and signalling a price decreasing - in fact, the RPMA is nega-
tive, here - in two different periods: a first one, started in 2011 and lasted
until 2012 and a second one, started in 2014 and lasted until 2016. Then,
during the biennium 2016-2017, both the price and the number of nodes
are again characterized by an increasing trend; the standard deviation,
instead, is smaller and, overall, linearly related to the number of nodes.
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Such an evolution is less evident when considering the higher moments
of both the in- and the out-degree distributions.

A possible explanation of the phenomenon may be provided by the
following mechanism. The Bitcoin ecosystem is highly speculative, hence
characterised by rapidly growing and bursting financial bubbles: in this
scenario, a negative RPMA roughly identifies the price drawdown fol-
lowing the peak of a price bubble. We hypothesize that a price racing
to the top may induce users to adopt a similar behavior, in turn induc-
ing similar connectivity patterns and less disperse degree distributions.
On the other hand, during a regime of price decrease, individual choices
are influenced by the behavior of the majority to a lesser extent: hence,
more heterogeneous connectivity patterns, characterized by broader de-
gree distributions, are more likely to be observed. We refer to this phe-
nomenon as to a network indicator of herding behavior: during times of
rising bubbles, users tend to hoard money by adopting similar connec-
tion patterns - just like an herd of sheep imitating each other behav-
ior2; during price drawdowns, instead, the herd is dispersed by financial
losses, thus letting the individual behavior emerge.

As the analysis of causality via the Granger method will confirm, this
is indeed the case.

3.4 From correlation to Granger-causation

Here, we examine if and, in case, to which extent, the variables we de-
scribed in the previous section actually ‘affect’ each other over time: to
this aim, we implement a Granger test (see Granger (1969)) to detect the
presence of causal relationships among them - a methodology borrowed
from econometric (see Gradojevic (2014) and Hong et al. (2009)). Granger
causality tests are performed in two different fashions: in mean and in tail.
The differences are going to be explained in the following sub-sections.

2Naturally, users do not actually observe each other; however, there are outer incentives
to behave similarly.
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3.4.1 Granger causality in mean

The simplest Granger test is a bivariate, causality test in mean. The test
verifies whether a linear model including information about a variable
X has a residual sum of squares (hereby, RSS) which is significantly dif-
ferent from the RSS of a model not including the information about X .
In formulas, let us consider two stochastic processes Xt and Yt: the two
models - with and without X - are defined as

Yt =

τ∑︂
k=1

αkYt−k + ϵYt (3.7)

and

Yt =

τ∑︂
k=1

αkYt−k +

τ∑︂
k=1

βkXt−k + ϵXY
t (3.8)

where τ is the maximum lag considered and {ϵt} is a series of i.i.d. stan-
dardised Gaussian random variables. An F-test, then, checks if the vari-
ances of ϵXY and ϵX are significantly different: if they are, the null hy-
pothesis of no-causality can be rejected.

3.4.2 Multivariate Granger causality in mean

The multivariate Granger test aims at filtering out the effects of indirect
causality as well as bringing to light causal relations that are hidden in
the multivariate structure of the data. To understand how it is defined, let
us consider a collection of N time series whose length is t {Xi(t)}i=1...N ,
compactly represented via the tensor A ∈ RN×t; they define the follow-
ing VAR model

At =

τ∑︂
k=1

BkAt−k + c+Ξt (3.9)

where Bk ∈ RN×N is a matrix of coefficients, c is a vector of constants
and {Ξt} is a vector of multivariate standardised Gaussian random vari-
ables, at step t. In this framework, we say that the j-th time series Xj is
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Granger caused by the i-th time series Xi if at least one time snapshot k
exists in correspondence of which Bk(j, i) is significantly different from
0. For this analysis we have considered τ = 4 for the weekly networks
and τ = 7 for the daily ones, i.e. a month-lasting and a week-lasting time
window, respectively.

The results of the multivariate Granger test are showed in figure 9.
The selected network variables are the following: the number of nodes
N , the number of links L, the standard deviation σ, the skewness γ and
the kurtosis κ of in- and out-degrees. The financial variable we consid-
ered, instead, is the log-return of the Bitcoin price in USD, i.e.

rt = log10

(︃
pt
pt−1

)︃
. (3.10)

Importantly, all considered network representations (i.e. BANs and
BUNs at both the daily and weekly time scale) have been split in two
different sub-samples over which the test has been performed, i.e. before
and after 2014 to account for the Mt. Gox failure.

For what concerns the period 2010-2013, all higher moments of the
out-degree distribution provide information about future price move-
ments - although each one for a different representation and at a differ-
ent time scale: more precisely, the standard deviation of out-degrees has
a ‘negative’ effect on price, meaning that an increasingly heterogeneous
distribution of the number of payments causes a price drop (and vice
versa). On the reverted side, the price influences all moments of the total
degree distribution, across different representations and time scales, as
well as the number of nodes and the number of links.

Of particular interest is the relationship between the price log-return
and the number of nodes. In fact, the presence of a positive feedback
loop, at the weekly time scale, can be observed, pointing out that a price
increase causes the number of nodes to increase as well and vice versa.
At the daily time scale, instead, while a price increase causes an increase
of the number of nodes, an increase of the number of nodes causes a
price decrease. Hence, as a byproduct, our analysis reveals the presence
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Figure 9: Analysis of the conditional Granger causality structure in the data.
Top and bottom panels illustrate the causal relations for the periods 2010-
2013 and 2014-2017, respectively. The left, centre and right columns respec-
tively show the effects of the network properties on price, the effects of price
on the network properties and the restricted analysis to the tail values, re-
spectively. While all the higher moments of the out-degree distribution pro-
vide information on future price movements, price plays a major role in
anticipating the moments of the distribution of total degrees, for all repre-
sentations at all time scales. Figure from Bovet et al. (2019).

of both a slow and a fast dynamics, implying that the Bitcoin ecosystem
behaves differently at different time scales.

A second loop involves the kurtosis of out-degrees: on both sub-
samples, an increase of the out-degree kurtosis implies an increase of the
price return; upon considering that an increase of the price return pos-
itively affects the number of nodes, the positive feedback loop involv-
ing the price return, the number of nodes and the out-degree kurtosis is
‘closed’3.

By comparing the market structure in the period 2010-2013 with the
market structure in the period 2014-2017, we observed that the causality
structure is remarkably consistent for the BUNs at the weekly time scale

3Consistently, we know from figure 8 that the number of nodes and the out-degree kur-
tosis are positively correlated.
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but changes significantly at the daily time scale. More specifically, no
causality relationships are detectable, for the daily BUNs, in the period
2014-2017: this result can be interpreted as a signature of increased mar-
ket efficiency that, in turn, leads to price unpredictability; conversely,
structural quantities computed for the BANs still provide information
about price movements at the daily time scale.

3.4.3 Granger causality in tail

Beside testing causality in mean, one can also test causality in tail, with the
aim of studying the causality of extremal events, i.e. the ones belonging
to either the 10% (left tail) or the 90% (right tail) empirical conditional
quantile (see Hong et al. (2009) and Bovet et al. (2019)).

As figure 9 shows, the effects ‘in tail’, mainly observed during the
period 2010-2013, happen at the daily time scale and lead to identify the
cause of extreme price movements in the left tail, i.e. what can antic-
ipate a sudden crash in the market: more specifically, as the standard
deviation of out-degrees increases, the Bitcoin price decreases, i.e. as the
out-degree distribution becomes more heterogeneous (at the daily time
scale), a sudden price drop is likely to follow.

The analysis of extremal events also reveal the following relation-
ships: 1) an (extreme) increase of the price return causes an (extreme)
increase of the kurtosis of the out-degrees (at both the daily and the
weekly time scales) and 2) an (extreme) increase of the kurtosis causes an
(extreme) decrease of the price (at the daily time scale). Once combined
with the result concerning the feedback loop between the price and the
kurtosis, revealed by the analysis of the Granger causality in mean, the
second relationship seems to suggest that the loop between the price and
the kurtosis may reach a critical limit in correspondence of which a sud-
den price fall is observed, thus triggering the appearance of a financial
crisis.
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3.5 Temporal z-scores

To gain further insight into the relationship between the heterogeneity
of the out-degree distributions and the Bitcoin price, let us compute the
temporal z-score of the standard deviation of the out-degrees. The tem-
poral z-score of a quantity X is defined as

zt[X] =
X −mt[X]

st[X]
(3.11)

where mt[X] and st[X] stand for the sample average and the sample
standard deviation ofX over the sub-series of data between (the present)
time t and a fixed number of steps τ before: in the present analysis,
X ≡ σt[k

out] and the rolling window is of one year. The interpretation of
the z-score requires the assumption that σt[kout] is normally distributed:
if this is the case, values of the z-score within ±1, ±2 and ±3 occur with
a probability amounting at ≃ 68%, ≃ 95% and ≃ 99% respectively; more-
over, largely positive/negative values of zt indicate outlier empirical ob-
servations, suggesting an ongoing structural change.

Figure 10 shows the temporal z-score of the out-degrees standard
deviation for the BUNs, at the weekly time scale - as usual, points are
coloured according to the RPMA values. During the period 2010-2013, as
the RPMA rises, larger-than-expected values of the z-score are observed,
thus implying that values of the out-degrees standard deviation, larger
than the arithmetic mean computed over the preceding year, can be ob-
served4; on the other hand, the trend of the z-score reverts in correspon-
dence of price drawdowns.

During the period 2015-2016, instead, shifts are observed that are not
clearly correlated with price movements: in fact, from 2014 to 2016 a
unique price drawdown, de-synced from the temporal z-score, can be
observed; this, in turn, suggests that the system is undergoing some kind

4Notice that a large value of zt doesn’t necessarily imply a large absolute value of the
variable under analysis: it only indicates that the value of the variable under analysis is
increasing with respect to the points constituting the sample over which the temporal av-
erage is computed.
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Figure 10: Evolution of the z-score of the out-degrees standard deviation
and of the number of nodes for the BUNs, at the weekly time scale. Dur-
ing the period 2010-2013, the z-score of the out-degrees standard deviation
grows ‘together’ with price; drawdowns, instead, appear as periods during
which the σ[kout] decreases. Moreover, our results reveal peaks between
2015 and 2016, evidencing ongoing structural changes missed by purely fi-
nancial indicators as the RPMA. Interestingly, since 2017, a price surge is
(again) matched by an increase of the temporal z-score of the out-degrees
standard deviation. Figure from Bovet et al. (2019).

of structural change, not noticeable by just looking at the price.

Finally, a long period of price growth has started since 2017: even if
the values of the temporal z-score remain within the ‘non-significance’
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interval [−1,+1], we notice positive outliers that point out the presence
of snapshots in correspondence of which the out-degrees standard devi-
ation is largely significant.

Figure 10 also shows the evolution of the total number of nodes in
a different, yet useful, fashion with respect to figure 7. It confirms our
previous comments on the presence of time intervals during which our
networks behave differently. In particular, during the periods 2010-2013
and 2017-2018, a rise of the number of nodes is matched by a price surge
and viceversa; during the intermediate period 2014-2016, instead, this
correlation seems to be less evident. Analogously, for what concerns the
trend of higher-order moments of the degree distributions.
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Chapter 4

Bitcoin at the mesoscale

The content of this chapter partly overlaps with that of the paper authored by
Vallarano et al. (2020). It focuses on the description of the Bitcoin Transaction
Networks at the mesoscale, investigating the correlations between degrees, the
presence of weakly- and/or strongly-connected components, of a bow-tie struc-
tural organization as well as the statistical significance of the latter (seen as a
special case of a ‘core-periphery’ network). For what concerns this specific part
of the analysis, we have focused on the BUNs at the weekly time scale.

4.1 Assortativity

The simplest, yet most informative, non-local quantity is represented by
the assortativity, a measure quantifying the correlations between nodes.
A network is said to be assortative when the degree correlations are pos-
itive, i.e. nodes tends to connect to vertices with similar degree (loosely
speaking, ‘hubs with hubs and leaves with leaves’); on the other hand, a
network is said to be disassortative when the degree correlations are nega-
tive, i.e. nodes tends to connect to vertices with different degree (loosely
speaking, ‘hubs with leaves’, as in a star-like configuration).

Let us now consider a bunch of quantities that have been proposed,
so far, to measure assortativity. The first one is represented by the stan-
dard Pearson correlation coefficient r, computed on the ‘excess degrees’.
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Following Newman (2003), when undirected networks are considered,
one can define the coefficient

rund =

∑︁
j,k jk(ejk − qjqk)

σ2
q

(4.1)

where the sums run over the ‘excess degrees’ (intuitively, imagine to
reach a vertex by following a specific edge: the ‘excess degree’ of the
vertex equals ‘the vertex degree minus one’, i.e. k − 1), qk is the ‘excess
degree’ probability distribution, reading

qk =∝ pk+1 (4.2)

(with pk+1 being the plain degree distribution), σ2
q is its standard devia-

tion1 and ejk is the fraction of edges in the network connecting nodes of
degree j with nodes of degree k. Naturally,

∑︁
j ejk = qk.

When considering directed networks, instead, four variants of the
aforementioned Pearson coefficient can be calculated, i.e. the ones ac-
counting for the correlation between out-degrees and out-degrees, out-
degrees and in-degrees, in-degrees and out-degrees, in-degrees and in-
degrees. For example, one of thee variants reads

rout−indir =

∑︁
j,k jk(ejk − qoutj qink )

σqoutσqin
(4.3)

where ejk now represents the percentage of edges starting from nodes
whose out-degree is j and ending on nodes whose in-degree is k. Natu-
rally, it also holds true that

∑︁
j ejk = qink .

Plotting the evolution of the aforementioned coefficients on our BUNs
shows their weakly disassortative nature (see figure 11). In particular,
since rout−indir is ‘asymptotically’ zero, one can conclude that ejk ≃ qoutj qink
- and analogously for the other indices of direct assortativity (the years
until 2011 can be considered as a ‘transient’ period where the Bitcoin
ecosystem was still of reduced dimensions, hence sensitive to even small
structural changes).

1It is there to ensure that rund ∈ [−1, 1].
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Figure 11: Evolution of the four directed variants of Newman’s assor-
tativity coefficient, revealing the (weakly) disassortative character of our
BUNs. Moreover, since rout−in

dir is ‘asymptotically’ zero, one can conclude
that ejk ≃ qoutj qink (and analogously for the other indices).

If, as suggested by figure 11, the fraction of directed links ejk - from
any of the nodes whose out-degree is equal to j to any of the nodes whose
in-degree is equal to k - is assumed to be well described by the product
qoutj qink , one finds that

ejk =
Ejk

L
∝
(︃
j · nj
Nj

)︃(︃
k · nk
Nk

)︃
=

(︃
j · nj

N · L/N

)︃(︃
k · nk

N · L/N

)︃
=

=

(︃
j · nj
L

)︃(︃
k · nk
L

)︃
=⇒ Ejk

njnk
∝ j · k

L
(4.4)

i.e. that the ratio between the number of directed links from nodes whose
out-degree equals j to nodes whose in-degree equals k (i.e. Ejk) and the
total number of such pairs (given by the product njnk between the num-
ber of nodes, nj , whose out-degree is j and the number of nodes, nk,
whose in-degree is k) is proportional to the product of the two degrees.
Notice that, in a generic probabilistic framework, this result can be re-
covered upon calculating

⟨Ejk⟩ =
∑︂

l|kout
l =j

∑︂
m|kin

m =k

plm (4.5)

with plm =
kout
l kin

m

L : if this is the case2, in fact, ⟨Ejk⟩ = njnk
j·k
L .

2This model is known as Chung-Lu model - see also chapter 5.
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An alternative measure of assortativity is provided by the Average
Nearest Neighbours Degree (ANND), which is nothing else than the
arithmetic mean of the degrees of the neighbors of a node. For undi-
rected networks it reads

knni =

∑︁N
j(̸=i)=1 aijkj

ki
, ∀ i; (4.6)

when directed networks are considered, instead, four variants can be de-
fined, i.e.

kout,outi =

∑︁N
j( ̸=i)=1 aijk

out
j

kouti

, ∀ i (4.7)

kout,ini =

∑︁N
j( ̸=i)=1 aijk

in
j

kouti

, ∀ i (4.8)

kin,outi =

∑︁N
j( ̸=i)=1 ajik

out
j

kini
, ∀ i (4.9)

kin,ini =

∑︁N
j( ̸=i)=1 ajik

in
j

kini
, ∀ i (4.10)

with a clear meaning of the symbols. Scattering the ANND values ver-
sus either the in- or out-degrees provides an indication about the net-
work (dis)assortativity: whereas an increasing trend would signal the
presence of an assortative behaviour, a decreasing one would, instead,
signal the presence of a disassortative behaviour. Figure 12 shows the
trend of kout,outi and kin,ini for four different snapshots, chosen to de-
pict our BUNs before and after two large price drawdrowns, which took
place in 2012 and 2013, respectively. Overall, the disassortative charac-
ter of our BUNs is evident and can be explained by recalling that hubs
are present, i.e. very connected nodes representing exchange markets
(or similar institutions) which ‘attract’ the majority of users (and of their
transactions): as an example, let us consider the trend of kout,outi , indi-
cating that nodes with many outgoing connections (e.g. huge market
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whales) point to nodes with few outgoing connections (e.g. everyday
users) - and similarly for the other indices.

In order to say something about the statistical significance of our find-
ings, let us compare the observed trends of our ANNDs with the ex-
pected ones, computed under a suitably defined null model. To this aim
we have considered the family of maximum-entropy ones, whose mem-
bers provide recipes for randomizing a network while preserving part of
its structure.

The simplest model is the Directed Binary Random Graph Model (DBRGM),
according to which

pij =
L

N(N − 1)
≡ p (4.11)

that coincides with the link density; hence, p = d = O(N−1) and

⟨kout,outi ⟩DBRGM =

∑︁N
j(̸=i)=1 pij⟨koutj ⟩DBRGM

⟨koutj ⟩DBRGM
=
L

N
= O(1) (4.12)

since ⟨kouti ⟩DBRGM = ⟨kini ⟩DBRGM = p(N−1) = L
N = O(1) and ⟨kout,outi ⟩DBRGM =

p(N − 1) = L
N =

∑︁N
i=1 kout

i

N =
∑︁N

i=1 kin
i

N = k = O(1) as well. However, it
predicts completely flat trends, hence being not suited for reproducing
trends as the ones characterizing Bitcoin.

A similar drawback is encountered by implementing the probabilistic

model according to which pij =
kout
i kin

j

L : in this case, in fact,

⟨kout,outi ⟩CL ≃
∑︁N

j(̸=i)=1(k
out
j )2

L
, ∀ i (4.13)

i.e. the predicted trend is again flat - in fact, the closer the Newman’s
coefficient to zero, the flatter the trend predicted by the Chung-Lu model.

Thus, we have implemented the Directed Binary Configuration Model
(DBCM) that preserves the in- and out-degree sequences of a network
while randomizing everything else: the DBCM predicts values for our
ANNDs reading
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Figure 12: Scattering kout,out
i and kin,in

i versus the out- and the in-degrees,
respectively, provides an indication about the network (dis)assortativity: a
decreasing trend signals the presence of a disassortative behaviour. The
trends predicted by the DBRGM are, with no surprise, flat; however, also the
ones output by the DBCM fail to reproduce the empirical clouds of points,
predicting a network that is less disassortative than observed. As solely
enforcing the degree sequences is not enough to reproduce the degree cor-
relations of our BUNs, the observed disassortativity can be interpreted as a
genuine signal of the system self-organization.

⟨kout,outi ⟩DBCM =

∑︁N
j(̸=i)=1 pijk

out
j

kouti

, ∀ i (4.14)

⟨kout,ini ⟩DBCM =

∑︁N
j(̸=i)=1 pijk

in
j

kouti

, ∀ i (4.15)

⟨kin,outi ⟩DBCM =

∑︁N
j(̸=i)=1 pjik

out
j

kini
, ∀ i (4.16)

⟨kin,ini ⟩DBCM =

∑︁N
j(̸=i)=1 pjik

in
j

kini
, ∀ i (4.17)
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where the probability coefficients {pij}Ni,j=1 have been numerically de-
termined by solving the likelihood equations

kouti = ⟨kouti ⟩DBCM =

N∑︂
j(̸=i)=1

pij =

N∑︂
j(̸=i)=1

xiyj
1 + xiyj

, ∀ i (4.18)

kini = ⟨kini ⟩DBCM =

N∑︂
j(̸=i)=1

pji =

N∑︂
j( ̸=i)=1

xjyi
1 + xjyi

, ∀ i (4.19)

(and the degrees are reproduced by definition). For more details on the
definition of the entropy-based null models, see chapter 5.

The expected trends of kout,outi and of kin,ini , obtained via the afore-
mentioned procedure, are shown in blue, in figure 12: notice how they
fail in capturing the observed trends, predicting networks that are less
disassortative than the empirical ones. In other words, enforcing the de-
gree sequences is not enough to reproduce the degree correlations of our
BUNs; on the contrary, the DBCM would predict a configuration that is
more homogeneous than the observed one. Henceforth, Bitcoin disassor-
tativity - at the level of the weekly BUNs - can be interpreted as a genuine
signal of the system self-organization.

4.2 Connected components

Before looking at Bitcoin from a proper mesoscale perspective, let us give
some definitions that will be useful in the following (see Latora et al.
(2017)):

Definition 1 (Walks). Given a graph G(V,E), a walk W (x, y) from node x
to node y is an alternating sequence of nodes and edges that begins at x and ends
at y, i.e. W = (n0 = x, e1, v1 . . . ek, vk = y) such that ej = (vi−1, vi) ∈ E.

Definition 2 (Paths). A path is a walk in which no node is visited more than
once.

Definition 3 (Strong connectedness). Two nodes x and y in a directed graph
G are said to be strongly connected if there exist a path from x to y and a
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Figure 13: Evolution of the number of weakly connected components (top
panel) and of the size of the top five WCCs, calculated as a percentage of the
total number of nodes N (bottom panel).

path from y to x. A directed graph is said to be strongly connected if all
pairs of nodes are strongly connected. A strongly connected component of
G associated with node x is the maximal strongly connected induced subgraph
containing node x.

Definition 4 (Weak connectedness). The undirected graph Gu obtained by
removing all directions from the arcs ofG is called the underlying, undirected
graph of G. A directed graph G is said to be weakly connected if Gu is
connected. A weakly connected component ofG is a component of its under-
lying, undirected graph Gu.

Let us now inspect the evolution of the number and of the size of the
weakly connected components (WCCs) characterizing our BUNs. As fig-
ure 13 shows, although a large number of them is visible throughout the
entire Bitcoin history (there are more than 105 different WCCs in 2018), a
giant WCC emerges after 2012 - in fact, no other connected component is
comparable, in size, with the largest one after this date.
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Figure 14: Pictorial representation of a bow-tie structure. Figure from Glat-
terfelder (2019).

The large number of small WCCs may be a consequence of the mis-
classification of addresses, that have not been (correctly) assigned to the
same user(s): hence, there may be one-time transactions among indi-
viduals, transfers of money between different wallets controlled by the
same person, etc. that give origin to isolated sets of nodes. However,
transactions like these represent an overall small percentage of their to-
tal number: in fact, the vast majority of transactions contribute to shape
the largest WCC throughout the entire Bitcoin history. As we already ob-
served, the Bitcoin economy is very interconnected, thanks to the pres-
ence of large hubs ‘through’ which most of the transactions pass.

The presence and the evolution of the size of a giant strongly con-
nected component (SCCs) is, instead, related to the presence of the so-
called bow-tie structure: for this reason, we study it in a dedicated section
(the next one).
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4.3 Bow-tie structure

The definition of bow-tieness rests upon the concept of reachability: we say
that j is reachable from i if a path from i to j exists3. Mutual reachability
represents an equivalence relation on the vertices of a graph, the equiva-
lence classes being the strongly connected components of the graph itself.
Hence, the bow-tie decomposition of a graph consists of the following
sets of nodes (see Lidth de Jeude et al. (2019)):

• SCC ≡ S; it is the SCC. Each node within the SCC can be reached
by any other node within it. This means that a directed path exists
connecting each node with any other node;

• IN ≡ {i ∈ V \ S | i→ S}; each node within IN can reach S;

• OUT ≡ {i ∈ V \ S | S → i}; each node within OUT can be reached
by S;

• TUBES ≡ {i ∈ V \ S ∪ IN ∪ OUT | IN → i and i → OUT}; each
node within TUBES can be reached by IN and can reach OUT;

• IN-TENDRILS ≡ {i ∈ V \ S | IN → i and i ↛ OUT}; each node
within IN-TENDRILS can be reached by IN but cannot reach OUT;

• OUT-TENDRILS ≡ {i ∈ V \ S | IN ↛ i and i → OUT}; each node
within OUT-TENDRILS cannot be reached by IN but can reach
OUT;

• OTHERS ≡ {i ∈ V \S ∪ IN ∪ OUT ∪ TUBES ∪ IN-TENDRILS ∪
OUT-TENDRILS}.

Figure 14 provides a pictorial representation of a bow-tie structure
and figure 15 shows the evolution of the size of its components. Gen-
erally speaking, a large SCC, incorporating the vast majority of nodes,
starts emerging in 2012, ‘stabilizes’ around mid-2013 and persists until

3A directed graph is said to be strongly connected if any two nodes are mutually reach-
able: notice the similarity with the definition provided at the beginning of the previous
section.
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Figure 15: Evolution of the percentages of nodes belonging to the various
components of a bow-tie structure. During the biennium 2012-2013, the SCC
steadily rises until it reaches ≃ 30% of the network size; afterwards, it re-
mains quite constant until 2016 when it starts shrinking and the percentage
of nodes belonging to it goes back to the pre-2012 values. Moreover, during
this last period, both the SCC and the OUT-component shrink, while the
IN-component becomes the dominant portion of the network.

2016. More specifically, during the biennium 2012-2013 the SCC steadily
rises until it reaches ≃ 30% of the network size; afterwards, during the
biennium 2014-2015, it remains quite constant; then, during the last two
years covered by our data set (i.e. 2016-2018), it shrinks and the percent-
age of nodes belonging to it goes back to the pre-2012 values. While in
the biennium 2014-2016 the percentage of nodes constituting the SCC is
larger than the percentage of nodes belonging to the other subsets, since
2016 this is no longer true: in fact, while both the SCC and the OUT-
component shrink, the IN-component becomes the dominant portion of
the network.

Different results have been reported in Di Francesco Maesa et al. (2019):
however, this may be due to the different data collection and data mining
processes implemented there.

4.4 Core-periphery structure

In the previous section we have described the evolution of the bow-tie
structure of our BUNs. Let us now ask ourselves if it induces a sta-
tistically significant core-periphery structure. The latter one is a kind of
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mesoscale structure that partition the node set in two, i.e. into a core (a
densely inter-connected set of vertices) and a periphery (the remaining,
loosely inter-connected, set of vertices ); naturally, core nodes are still
connected to the periphery ones (see Rombach et al. (2014)).

In order to detect the presence of a core-periphery structure we ran a
recently proposed method (see Jeude et al. (2019)) based on the extension
of the surprise score function. Originally proposed to detect communities
(see Aldecoa et al. (2013a) and Aldecoa et al. (2013b)), surprise reads

S =

min{L,V•}∑︂
l≥l∗•

(︁
V•
l

)︁(︁
V◦
L−l
)︁(︁

V
L

)︁ (4.20)

where

• V is the total number of node pairs (in case of directed networks,
V = N(N − 1));

• V• is the number of intra-cluster node pairs (i.e. the number of node
pairs inside clusters) while V◦ is the number of inter-cluster node
pairs (i.e. the number of node pairs between clusters);

• l∗• is the number of observed intra-cluster links (i.e. the number of
links inside clusters);

• L is the total number of links in the network.

From a statistical point of view, S is the p-value of an hypergeo-
metric distribution. The latter describes the probability of observing l

intra-cluster links out of the total L ones, i.e. of obtaining l successes
out of a total number of L draws, without replacement, from a popula-
tion where V• occurrences have the desired feature: in our case, being
an intra-cluster node pair. The lower this probability, the more ‘surpris-
ing’ the partition is: if it is found to lie below a given threshold one can
conclude that the test rejects the hypothesis that links are distributed ran-
domly4.

4More precisely, according to the Directed Binary Random Graph Model.
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While traditional surprise focuses on intra-cluster and inter-cluster
links, in order to detect a core-periphery structure, the surprise score
must be extended to account for a tripartite division of links: core links,
periphery links and links between the core and the periphery. In Jeude
et al. (2019) the authors propose to minimize

S∥ =
∑︂
i≥l∗•

∑︂
j≥l∗◦

(︁
V•
i

)︁(︁
V◦
j

)︁(︁
V−(V•+V◦)
L−(i+j)

)︁(︁
V
L

)︁ (4.21)

i.e. the p-value of a multivariate hypergeometric distribution, describing
the probability of observing i + j successes out of L draws, without re-
placement, from a population where V• objects are of a first kind (in our
case, being core links) and V◦ objects are of a second kind (in our case,
being periphery links). It can be proven that minimizing the multivariate
surprise is equivalent at defining the partition which is least likely to be
explained by the Directed Binary Random Graph Model with respect to
the Directed Binary Stochastic Block Model.

The application of the multivariate surprise to the partition induced
by the bow-tie structure reveals that it indeed induces a significant core-
periphery structure (S∥ is steadily below the threshold of 5%), the core
being the SCC and the periphery being composed by all the other nodes.
Figure 16 shows the evolution of the percentage of nodes composing the
core (i.e. the SCC of the bow-tie) and the periphery (i.e. all the remaining
portions) of our BUNs. As expected from the results concerning the SCC,
the periphery contains the vast majority of nodes throughout the entire
Bitcoin history.

While inspecting the relationship between purely structural quanti-
ties and purely financial indicators as the Bitcoin price can be done by
explicitly showing the RPMA values per snapshot, another approach is
that of partitioning the Bitcoin history in time windows characterized by
the rate of growth of the BTC price, i.e. the bubbles introduced in chapter
1. As figure 16 shows, the size of the core (and that of the periphery as
well) ‘reacts’ to the transition between a period of price growth and a pe-
riod of price decrease. This is rather clear for the first two bubbles where
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Figure 16: Evolution of the percentage of nodes composing the core and the
periphery of our BUNs. Each dot is coloured according to the value of the
RPMA at that time. Shaded areas indicate periods during which the price
grows.

positive a increase of the BTC price coincides with an enlargement of the
core; during the last, and longer, bubble (of which we have highlighted
only the last six months), the behaviour seems to be somehow inverted: a
decrease of the core size coincides with a price growth of the price, while
the trend reverts just after the bubble crashes (i.e. the price decreases).

Let us now repeat the temporal analysis carried out via the z-scores
by considering X as the number of nodes belonging to the core - or, in a
complementary fashion, to the periphery. The results are shown in fig-
ure 17: from the plots, it is readily seen that values of the z-score larger
than +3 (either considering the percentage of core nodes or the one of
periphery nodes) coincide with price peaks (and are followed by a price
decrease). While this is clearly true for the first three bubbles, during the
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Figure 17: Evolution of the temporal z-score for the number of nodes com-
posing the core (top panel) and the periphery (bottom panel) of our BUNs:
the rolling window is of one week. Points are coloured according to the
value of the log-return of the Bitcoin price in USD, in that week. Shaded
areas indicate periods during which the price grows.

last one, instead, the situation changes: the z-score, in facts, exceeds the
−3 threshold several times - two during the actual last six months; three
considering the bubble in its entirety.

What emerges from our analysis is that our BUNs are characterized
by a core-periphery structure, a deeper analysis of which reveals a certain
degree of bow-tieness (i.e. the presence of an SCC, an IN- and an OUT-
component and some tendrils attached to the IN-component). Interest-
ingly, the evolution of the BUN mesoscale structure experiences fluctua-
tions that seem to be correlated with the presence of bubbles, i.e. periods
of price surge and decline observed throughout the entire Bitcoin his-
tory: our results, thus, further confirm the interplay between structural
quantities and price movements.
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4.5 Centrality and centralization

As we said at the beginning of the present work, one of the goals Bit-
coin aimed at achieving was that of decentralization: many of the early
adopters were, in fact, moved by the idea of getting rid of a central au-
thority authorizing the transactions being done. Decentralization is also
related to the concept of equality: a decentralised infrastructure is, in prin-
ciple, one where everybody plays the same role. Although the hardware
Bitcoin is built upon (i.e. the blockchain) indeed implements decentral-
ization, it is much less clear if decentralization is recovered at a topolog-
ical level as well.

Following Lin et al. (2020), we investigate Bitcoin (de)centralization
and (in)equality by considering the Gini coefficient of our degree distri-
butions. The Gini coefficient attempts to measure the unevenness of a
distribution of a certain quantity5: given a set of values {ci}Ni=1, the Gini
index is defined as

Gc =

∑︁N
i=1

∑︁N
j=1 |ci − cj |

2N
∑︁N

i=1 ci
(4.22)

and assumes values between 0 and 1; while a Gini index of 0 indicates
perfect evenness (e.g. everyone has exactly the same income), a Gini
index of 1 indicates perfect unevenness (e.g. a population whose entire
income is concentrated in the hands of a single individual). Applying
the Gini coefficient to the degrees of our BUNs aims at shedding light on
the (un)evenness of the nodes degree centralization: while a value close
to 0 would depict an ecosystem where all actors have exactly the same
number of interactions with each other, a value close to 1 would indicate
that there are nodes participating to the vast majority of transactions.

From the results in figure 18, it appears that, after a period of growth
lasted until mid-2013, during which it reached values as large as 0.75,
the Gini coefficient has decreased and is now steadily around the value of
0.5. Overall, we would like to stress that 0.5 is not a small value: in fact, it

5Usually, it is employed to measure the unevenness of the income distribution.
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Figure 18: Evolution of the Gini coefficient for the degree distribution of
the BUNs plotted versus time (top panel) and versus the total number of
nodes (bottom panel). Shaded areas indicate periods during which the price
grows. After a period of growth, during which it reached values as large as
0.7, the Gini coefficient has decreased and is now steadily around the value
of 0.5, meaning that 50% of connections are incident to the 1% of nodes.
Notice also the big leap down in 2013 maybe due to the Mt. Gox ‘loss of
prominence’ in the Bitcoin ecosystem.

describes an ecosystem6 where the 50% of connections are incident to the
1% of nodes. It is also interesting to notice the big leap down of the Gini
coefficient in 2013: during that year, Mt. Gox (which managed ≃ 70%

of transactions at the time Decker et al. (2014)) started the down-ward
spiral which eventually led to its bankruptcy in 2014: USD withdrawals
halting, financial investigations and expensive lawsuits weakened the
trading website ability to stay on the market. The final blow was the
public discovery of a huge theft of around 750.000 bitcoins, which went

6A ‘ring of hubs’, where Nh = 50 hubs are connected in a ring-like fashion and Nl =
Nh = 50 leaves are connected to each of them (see also later).
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on undetected for years.
The huge decrease of the Gini coefficient may be, thus, related to the

Mt. Gox ‘loss of prominence’ in the Bitcoin ecosystem. On the other
hand, bubble periods seem to have little correlation with the evolution
of the Gini coefficient.

The evolution of the Gini coefficient may lead us to imagine that the
Bitcoin ecosystem has become similar to a very centralized structure,
pretty much similar to a star graph, at some point during its history. In
order to answer this question, we have computed the so-called centraliza-
tion index at the weekly time scale (from Lin et al. (2020)). Centralization
indices are global measures intended to measure the centrality of the en-
tire network (instead of providing a rank of its nodes). In mathematical
terms, the centralization reads

Cc =

∑︁N
i=1(c

∗ − ci)

max
{︂∑︁N

i=1(c
∗ − ci)

}︂ (4.23)

where c∗ = max{ci}Ni=1 represents the empirical, maximum value of the
chosen centrality measure (i.e. computed on the network under consid-
eration) and the denominator is calculated over a benchmark graph, de-
fined as the one providing the maximum attainable value of the quantity∑︁N

i=1(c
∗−ci). Here we consider the degree-centralization index only, the

benchmark graph for which is nothing else than a star graph (with the
same number of nodes of the network under inspection): hence

Ck =

∑︁N
i=1(k

∗ − ki)

(N − 1)(N − 2)
(4.24)

and the degree centralization would reveal to us if (and, in case, ‘how
much’) Bitcoin has become similar to a star graph at a certain point dur-
ing its history. In eq. 4.24 ki is the degree of node i.

While during the initial phases of its life, Bitcoin was indeed quite
similar to a star graph, figure 19 reveals that the degree-centralization
has quickly stabilized around very small values. Overall, we may, thus,
conclude that Bitcoin is not evolving towards a star-like structure, where
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Figure 19: Evolution of the degree-centralization index on our BUNs. Over-
all, it is quite small, indicating that a star-like configuration indeed over-
simplifies the actual topology of our BUNs; on the other hand, a configura-
tion composed by many interconnected stars is compatible with the values
shown here. Shaded areas indicate periods during which the price grows.

a single central node participates to all transactions. However, the large
value of the Gini coefficient let us suspect that there may be several hubs:
hence, the unrealistic picture of a star-like structure may be replaced by
the more realistic one depicting several ‘locally star-like’ structures - sim-
ilarly to what is observed for the Bitcoin Lightning Network (see chapter
4). The centers of these structures are ‘local hubs’, i.e. vertices with a
large number of connections, that are crossed by a large percentage of
paths and that are connected among them.

A toy model can help understanding the two apparently contradic-
tory results provided by the Gini coefficient and the degree-centralization.
Imagine Nh hubs connected between them and Nl leaves connected to
each of them; hence, the total number of nodes is N = Nh(Nl + 1), the
degree of each hub reads kh = (Nh − 1) + Nl, the degree of each leave
reads kl = 1 and
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Gk =

∑︁N
i=1

∑︁N
j=1 |ki − kj |

2N
∑︁N

i=1 ki
=

2[(Nh − 1) +Nl − 1]N2
hNl

2N [Nh(Nh − 1) + 2NhNl]

=
[(Nh − 1) +Nl − 1]N2

hNl

Nh(Nl + 1) [Nh(Nh − 1) + 2NhNl]

=
(Nh +Nl − 2)Nl

(Nl + 1) [(Nh − 1) + 2Nl]
≃ Nh +Nl

Nh + 2Nl
;

(4.25)

now,Gk ≃ 2/3 ifNl = Nh, i.e. if each hub is linked to a number of ‘leaves’
that matches the total number of hubs and Gk → 1/2 as Nl → +∞, i.e.
if the number of leaves per hub becomes ‘very large’7. In this setting, we
have that

Ck =

∑︁N
i=1(k

∗ − ki)

(N − 1)(N − 2)
=

[(Nh − 1) +Nl − 1]NhNl

(Nh(Nl + 1)− 1)(Nh(Nl + 1)− 2)
≃ Nh +Nl

NhNl

(4.26)
which amounts at Ck ≃ 0.02 if we set Nh = Nl = 100. Hence, by
opportunely tuning the parameters of our model we can recover core-
periphery structures for which a large Gini coefficient co-exists with a
small degree-centralization.

4.6 Dyadic motifs and reciprocity

Let us now move to the analysis of network motifs, i.e. sub-graphs com-
posed by at least two nodes whose abundance is usually reflected into
some functional properties of the system under analysis. Of particular

7The ‘ring of hubs’ represents an interesting alternative: imagine Nh hubs connected
in a ring-like fashion and Nl leaves connected to each of them; although the total number
of nodes is (still) N = Nh(Nl + 1) and the degree of each leave (still) reads kl = 1,

the degree of each hub, now, reads kh = Nl + 2; hence, Gk =

∑︁N
i=1

∑︁N
j=1 |ki−kj |

2N
∑︁N

i=1 ki
=

(Nh+2−1)N2
hNl

Nh(Nl+1)[Nh(Nl+2)+NhNl]
≃ Nh

2Nl
and Gk ≃ 1/2 if Nl = Nh. In this case, half of the

connections are incident to a percentage Nh/2
Nh(Nl+1)

≃ 1
2Nl

of the nodes.
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importance are the so-called dyadic motifs: given a generic binary, di-
rected network G(V,E) and any two nodes i, j ∈ V , dyadic motifs are
defined as the following, mutually exclusive, occurrences

• a reciprocated dyad: when both (i, j) ∈ E and (j, i) ∈ E. We denote
the total number of reciprocated dyads in the network as

L↔ =

N∑︂
i=1

N∑︂
j(̸=i)=1

aijaji; (4.27)

• a non-reciprocated dyad: when either (i, j) ∈ E or (j, i) ∈ E. We
denote the total number of non-reciprocated dyads in the network
as

L→ =

N∑︂
i=1

N∑︂
j(>i)=1

[aij(1− aji) + aji(1− aij)]; (4.28)

• an empty dyad: when both (i, j) /∈ E and (j, i) /∈ E. We denote the
total number of empty dyads in the network as

L↮ =

N∑︂
i=1

N∑︂
j( ̸=i)=1

(1− aij)(1− aji). (4.29)

The definition of dyads naturally leads to the definition of reciprocity,
i.e. the ratio between the total number of reciprocated dyads and the
total number of links:

r =

∑︁N
i=1

∑︁N
j(̸=i)=1 aijaji∑︁N

i=1

∑︁N
j( ̸=i)=1 aij

=
L↔

L
. (4.30)

Figure 20 shows the evolution of the reciprocity and of its temporal z-
score: overall, the value of r is very low, meaning that our BUNs are not
so reciprocated; still, the evolution of the reciprocity shows some peaks
of activity in correspondence of the bubbles. This is further confirmed
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Figure 20: Evolution of the reciprocity (top panel) and of its temporal z-
score (bottom panel). The value of r is very low throughout the entire Bit-
coin history, meaning that our BUNs are not so reciprocated; the evolution
of its temporal z-score, instead, rises significantly in correspondence of the
bubbles. Points are coloured according to the value of the log-return of the
Bitcoin price in USD, in that week. Shaded areas indicate periods during
which the price grows.

by the calculation of the temporal z-score of reciprocity that rises signifi-
cantly in correspondence of the first three bubbles and decreases during
the last one.

Let us now study dyadic motifs by adopting a different approach
with respect to the one employed so far. Instead of using the temporal
z-score to spot ‘temporal’ outliers, i.e. values that are statistically signif-
icant with respect to a time average, let us consider an index that points
out quantities not compatible with a given null model. In order to do so,
we will employ the DBCM. In this framework, a z-score of the kind
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z[X] =
X(A∗)− ⟨X⟩

σ[X]
(4.31)

remains naturally defined, where X(A∗) is the empirical value of the
quantity of interest (i.e. observed on the original network A∗), ⟨X⟩ and
σ[X] are, respectively, its expectation value and its standard deviation,
both computed on the ensemble induced by the DBCM. The interpre-
tation of this z-score is the following one: values such that z[X] > +3

signal that the empirical value is significantly larger than expected while
values such that z[X] < −3) signal that the empirical value is signifi-
cantly smaller than expected. In both cases one may conclude that the
empirical value X(A∗) is not compatible with the specific model and
something else is required to fully account for it. On the other hand, if
−3 ≤ z[X] ≤ +3, there is no evidence of a significant deviation from
the expected value and one may conclude that X(A∗) is completely ex-
plained by the constraints defining the model at hand.

Remarkably, in the case of dyadic motifs, we are able to compute both
the expected value and the standard deviation of the number of recipro-
cal, non-reciprocal and empty dyads analytically (see chapter 5). In fig-
ure 23 we can observe the evolution of the empirical values of the dyadic
measures, computed on our BUNs, week by week: all measures have a
huge spike just before the crash of the last bubble. Overall, it is quite dif-
ficult to say how much this is related to the overall growth of the size of
our Bitcoin Transaction Networks; while the temporal z-score in figure
20 suggests that r may be affected by some kind of seasonality, it does
not tell us anything about its significance in a ‘static’ fashion - neither
about dyads.

To this aim, let us consider the z-score induced by the DBCM, provid-
ing information about the extent to which it dyadic values are compatible
with the network degree sequences. As figure 23 shows, the z-score for
the number of reciprocated dyads is very large, meaning that L↔ can-
not be explained by just enforcing the degree sequences. The reason is
intuitive: given the level of sparseness of our networks, we can expect
that observing links, pointing in opposite directions, by chance (i.e. just
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Figure 21: Top figure: absolute number of couples of nodes with no link
in between (empty dyads). Bottom figure: evolution of the empty dyads
z-score, computed over the ensemble induced by the Directed Binary Con-
figuration Model. The z-score proves that the observed empty dyads are
over-represented with respect to the randomized ensemble.

as a consequence of a randomly rewiring the nodes connections) is very
unlikely8; on the other hand, ‘reciprocal’ transactions between users9 can
happen quite often, during a week.

The interpretation of the behavior of empty and single dyads is anal-
ogous: by chance, a larger-than-observed number of non-reciprocated

8To provide a quantitative evaluation of how unlikely it is, consider, that under the
DBRGM, the reciprocity reads ⟨r⟩DBRGM = p = O(N−1). Since, for the vast majority of
the users, kouti ≃ kini = O(1), pDBCM

ij = O(N−1), the ‘local’ level of reciprocity expected
under the DBCM is similar to the one expected under the DBRGM.

9Actually, between a user and an exchange market.
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Figure 22: Top figure: absolute number of couples of nodes with exactly
one link in between (single dyads). Bottom figure: evolution of the single
dyads z-score, computed over the ensemble induced by the Directed Binary
Configuration Model.

dyads are created, whence their over-representation within the DBCM
ensemble and the negative z-score recovered by our analysis. In order
to understand why this implies that the DBCM tends to create less-than-
observed empty dyads, let us imagine to ‘destroy’ a reciprocal dyad, by
decoupling the two paired links: in order to create ‘more’ single dyads,
one of the two links mus be redirected towards a previously discon-
nected node; upon doing so, a reciprocal dyad disappears, as well as
an empty dyad, while two single dyads are created.
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Figure 23: Top figure: absolute number of couples of nodes with recipro-
cated links in between (full dyads). Bottom figure: evolution of the full
dyads z-score, computed over the ensemble induced by the Directed Binary
Configuration Model. Given the level of sparseness of our networks, we
can expect that observing links, pointing in opposite directions, as a con-
sequence of a randomly rewiring the nodes connections, is very unlikely.
Analogously for what concerns the number of empty and single dyads. In-
tuitively, we can imagine to ‘destroy’ a reciprocal dyad, by decoupling the
two paired links: upon doing so, a reciprocal dyad disappears, as well as an
empty dyad, while two single dyads are created. Dashed, gray lines signal
the values of ±2 and ±3. Points are coloured according to the value of the
log-return of the Bitcoin price in USD, in that week. Shaded areas indicate
periods during which the price grows.
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Chapter 5

The Bitcoin Lightning
Network

This chapter is devoted to the description of the Bitcoin Lightning Network
(BLN) and partly overlaps with the paper authored by Vallarano et al. (2020).
After depicting the basic properties of the BLN, studied as a network of users
at the daily time scale, it focuses on its mesoscale structure, revealing it to be
significantly centralized.

5.1 The Bitcoin Lightning Network (in brief)

Proposed in 2015 (see Poon et al. (2016)) and launched in 2018, the Bitcoin
Lightning Network (BLN hereby) is a ‘Layer 2’ protocol that can operate
on top of blockchain-based cryptocurrencies like Bitcoin. It works by
creating bilateral channels for off-chain payments which are settled con-
currently on the blockchain once the channel are closed. The aim is that
of allowing any two users to exchange money while requiring neither
transaction fees nor any confirmation - thus avoiding to burden the Bit-
coin activity with the ‘work’ required by their transaction data.

The BLN has, thus, promised to represent a solution to the Bitcoin
scalability problem that does not sacrifice the key Bitcoin features which
are 1) decentralisation (characterising its architecture, i.e. the number of
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computers constituting the network), 2) its political organisation (i.e. the
number of individuals controlling the network) and 3) its wealth distri-
bution (i.e. the number of individuals owning the actual supply), while
enhancing the circulation and the exchange of the native assets.

This chapter is devoted to verify if the promise has been fulfilled, by
analysing the structure of the BLN over a period of 18 months, ranging
from 12th January 2018 to 17th July 2019, across three different BLN rep-
resentations: the daily snapshot one, the weekly snapshot one and the
daily-block snapshot one, reviewing the data from Lin et al. (2020) and
Vallarano et al. (2020).

5.2 The Bitcoin Lightning Network: basic statis-
tics

As observed for the BANs and the BUNs considered in chapter 2, both
the number of nodes N and the number of links L of the BLN increase
steadily in time, while it becomes sparser. Interestingly, the evolution
of the BLN link density seems to point out the presence of two regimes:
as figure 24 shows, during the first phase, i.e. N ≲ 103, L increases
linearly as a function of N and the link density is well described by the
functional dependence d ∼ N−1; afterwards, the link density decrease
slows down, seemingly indicating that L has started to grow in a super-
linear fashion with respect to N . This is confirmed by plotting the link
density d = 2L

N(N−1) versus the number of nodes: the functional form
d ∼ N−1 overlaps with the empirical trend up to the value N ≃ 103;
afterwards, a different functional form appears (Lin et al. (2020)).

Let us now comment on the evolution of the cumulative density func-
tion (CDF) of the degrees, defined as

CDF(k) =
∑︂
h≥k

f(h) (5.1)

where f(h) is the fraction of nodes whose degree is h. Figure 25 shows
the CDF for eight distinct snapshots, spanning the entire BLN history:
as it can be appreciated, the degree distribution becomes broader as the
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Figure 24: Evolution of the total number of nodes N , total number of links
L and link density d = 2L

N(N−1)
for the BLN (only the daily-block snapshot

representation is considered here). As for the BANs and the BUNs con-
sidered in chapter 2, the position d ∼ N−1 well describes the link density
dependence on N , for the snapshots for which N ≲ 103. See also Vallarano
et al. (2020).

BLN evolves. Overall, it resembles a power-law, although a divergence
from this model clearly appears in the last snapshots (in fact, it bends in
the initial and the final portions of the distribution).

5.3 The Bitcoin Lightning Network: mesoscale
structure

Although blockchain-based systems are designed to get rid of the pres-
ence of a central authority that checks the validity of the exchanges be-
tween nodes - transactions, in the case of cryptocurrencies - and autho-
rizes them, it can be shown that centralization may still be recovered at a
purely structural level.

Indices measuring the centrality of a node aim at quantifying the im-
portance of a node in a network, according to some specific topological
property. Among the measures proposed so far, of particular relevance
are the degree centrality, the closeness centrality, the betweenness centrality
and the eigenvector centrality:

• degree centrality: the degree centrality kci of node i is the number
of its neighbours, normalized by the maximum number of neigh-
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Figure 25: Evolution of the degree Cumulative Density Function for the
snapshots whose LCC is characterized by a number of nodes amounting at
100, 500, 1.000, 2.000, 3.000, 4.000, 5.000 and 6.447. As the BLN evolves, the
support of the distribution becomes broader, while it progressively deviates
from a power-law.

bours, i.e. N − 1 (see Newman (2018) and Latora et al. (2017)):

kci =
ki

N − 1
; (5.2)

• closeness centrality: the closeness centrality cci of node i measures
how ‘close’ it is to all the other nodes. Nodes are closer the fewer
the number of links separating them (see Newman (2018) and La-
tora et al. (2017)):

cci =
N − 1∑︁N
j(̸=i)=1 dij

(5.3)

where dij is the topological distance between nodes i and j, i.e. the
length of the shortest path (in terms of number of links) connecting
the two nodes, and the term N − 1 normalizes it between 0 and 1.
Clearly, if a node is connected to all the other nodes in the network,
its topological distance from any of them is just 1;
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• betweenness centrality: it measures how many times node i lies ‘in
between’ the shortest paths connecting any two nodes of the net-
work and is defined as

bci =

N∑︂
s(̸=i)=1

N∑︂
t( ̸=i,s)=1

σst(i)

σst
(5.4)

where σst(i) is the number of shortest paths between s and t pass-
ing trough i;

• eigenvector centrality: is defined via the spectral properties of the ad-
jacency matrix of the network; in particular, eci is the i-th element of
the eigenvector corresponding to the largest eigenvalue of the bi-
nary adjacency matrix (whose existence is ensured by the Perron-
Frobenius theorem). Large values of eigenvector centrality point
out that the node is connected to other nodes whose eigenvector
centrality is large well - in a sense, the ‘well connected’ ones (see
Newman (2018) and Latora et al. (2017)). In this respect, its be-
haviour is similar to the PageRank centrality index.

While the analysis of the aforementioned measures is interesting per
se, here we will study them to inspect the distribution of their values. To
this aim, we will employ two measures we introduced in the previous
chapter, i.e. the Gini coefficient

Gc =

∑︁N
i=1

∑︁N
j=1 |ci − cj |

2N
∑︁N

i=1 ci
(5.5)

where ci = kci , c
c
i , b

c
i , e

c
i (see Morgan (1962)) and the centralization index

Cc =

∑︁N
i=1(c

∗ − ci)

max
{︂∑︁N

i=1(c
∗ − ci)

}︂ (5.6)

where c∗ = max{ci}Ni=1 represents the empirical, maximum value of the
chosen centrality measure and the denominator is computed over the
benchmark graph, i.e. the one maximizing the sum at the numerator. As
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shown in Lin et al. (2020), the reference network for the aforementioned
centrality measures is the star graph1. More explicitly, it can be shown
that

• degree centralization index:

Ckc =

∑︁
i(k
∗ − kci )

N − 2
; (5.7)

• closeness centralization index:

Ccc =

∑︁
i(c
∗ − cci )

(N − 1)(N − 2)/(2N − 3)
; (5.8)

• betweenness centralization index:

Cbc =

∑︁
i(b
∗ − bci )

(N − 1)2(N − 2)/2
; (5.9)

• eigenvector centralization index:

Cec =

∑︁
i(e
∗ − eci )

(
√
N − 1− 1)(N − 1)/(

√
N − 1 +N − 1)

. (5.10)

Figure 26 depicts the evolution of the Gini coefficient and of the cen-
tralization index: interestingly, whileGc increases for three measures out
of four, pointing out that the values of centrality are more and more un-
evenly distributed, the evolution of the centralisation index indicates that
the BLN is not evolving towards a star graph - indeed, a too simplistic
picture (see Lin et al. (2020)). Notice that the flat trend of the closeness
centrality can be explained by invoking the presence of nodes with large
degree that ensure that the vast majority of nodes are, in turn, easily
reachable.

In order to gain further insight into the BLN organization, it is inter-
esting to benchmark the observations concerning the evolution of cen-
trality and centralisation with the predictions, for the same quantities,

1While this is true for the degree closeness and betweenness centrality, this is not the
case for the eigenvector centrality; still, it is kept for the sake of homogeneity with the
other quantities.
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Figure 26: Evolution of the Gini coefficient and the centralization index for
the four centrality measures chosen here, calculated on the daily-block snap-
shot representation of the BLN: Gc is characterised by a rising trend, irre-
spectively from the chosen indicator, pointing out that the values of central-
ity are increasingly unevenly distributed; on the other hand, the evolution
of centralisation reveals that the picture provided by a star graph is too sim-
ple to faithfully represent the BLN structure. See also Lin et al. (2020).

output by the maximum-entropy null model known as Undirected Binary
Configuration Model (UBCM - i.e. the undirected version of the DBCM,
introduced in the previous chapter). To this aim, we have solved the
UBCM by implementing the iterative, reduced algorithm

ki(A) =

N∑︂
j( ̸=i)=1

xixj
1 + xixj

, ∀ i

=⇒ x
(n)
k =

k(A)∑︁
k′ f(k′)

[︃
x
(n−1)

k′

1+x
(n−1)
k x

(n−1)

k′

]︃
− x

(n−1)
k

1+(x2
k)

(n−1)

, ∀ k

(5.11)

a choice allowing us to solve it within tens of seconds even for configura-
tions with thousands of nodes (see Vallarano et al. (2021a) and Vallarano
et al. (2021b)). Afterwards, we have explicitly sampled the ensembles of
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Figure 27: Top panels: comparison between the observed Gini index for the
degree, closeness, betweenness and eigenvector centrality (x-axis) and their
expected value, computed under the UBCM (y-axis) for the BLN daily-block
snapshot representation. Bottom panels: comparison between the observed
degree, closeness, betweenness and eigenvector centralisation and their ex-
pected value computed under the UBCM. Once the information contained
into the degree sequence is properly accounted for, a (residual) tendency to
centralisation is still visible. See also Vallarano et al. (2020).

networks induced by the UBCM (see Park et al. (2004) and Squartini et al.
(2011)) and compared the (ensemble) average of the quantities of interest
with the corresponding empirical values.

As figure 27 shows, this comparison reveals that the UBCM tends
to overestimate the values of the Gini index for the degree, the close-
ness and the betweenness centrality and to underestimate its values for
the eigenvector centrality. This seems to point out a non-trivial (i.e. not
reproducible by just enforcing the degrees) tendency of well-connected
nodes to establish connections among themselves. Moreover, these very
connected nodes have nodes with smaller degree attached to them (see
Lin et al., 2020), thus generating a disassortative structure that explains
the less-than-expected level of unevenness characterising the other cen-
trality measures: in fact, the nodes behaving as the ‘leaves’ of the hubs
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Figure 16: (colour online) Comparison between the largest connected component of the BLN (daily-block snapshot
representation) on day 16 (left - 95 nodes and 155 links are present) and on day 34 (right - 359 nodes and 707 links
are present). A visual inspection of the network evolution suggests the presence of a core-periphery structure since its
early stages.

21

Figure 28: Core-periphery structure of the BLN daily-block snapshot repre-
sentation on day 17 (left panel) and on day 35 (right panel), with core-nodes
drawn in red and periphery-nodes drawn in green. See also Vallarano et al.
(2020).

basically have the same values of degree, closeness and betweenness cen-
trality.

For what concerns the analysis of the centralisation indices, figure
27 shows that the UBCM underestimates both the betweenness and the
eigenvector centralisation indices: in other words, a tendency to central-
isation ‘survives’ even after the information encoded into the degrees is
properly accounted for, letting the picture of a network characterised by
some kind of more-than-expected ‘star-likeness’ emerge.

This observation can be better formalised by analysing the BLN mesoscale
structure via the optimization of the surprise score function, introduced
in the previous chapter: as observed for our BUNs, a core-periphery
structural organization, whose statistical significance increases over time,
indeed emerges (see Lin et al. (2020) and figure 28).

As the network analysis reveals, the BLN is evolving towards an in-
creasingly centralised architecture (in particular, a core-periphery one)
where many star-like sub-structures, whose centers coincide with the
‘centrality hubs’ revealed by the Gini coefficient, co-exist (Lin et al. (2020)).
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These hubs act as channel-switching nodes and seem to emerge as
an unavoidable consequence of the way BLN is designed. As a route
through the network must be found and longer routes are more expen-
sive (fees are present for the ‘gateway service’ provided by intermediate
nodes), any two BLN users will search for a short(est) path: at the same
time, nodes (which can only create channels based on local information)
have the incentive to become as central as possible, within the BLN, in
order to maximize the transaction fees they may earn. Hubs may, thus,
have emerged as a consequence of the collective action of users follow-
ing the two aforementioned behaviours - and, from this perspective, it
is not surprising that central nodes have been observed since the very
beginning of the BLN history.

For what concerns hubs interconnectedness, then, previous results
have shown that mechanisms of centrality-maximizing agents yield a
core-periphery structure (regardless of the notion of centrality the agents
attempt to maximize), an evidence indicating that the presence of both
topological signatures can be compactly inspected by studying (the evo-
lution) of eigenvector centrality (see Konig et al. (2010) and Konig et al.
(2014)). As a last observation, we also notice that the presence of ‘central-
ity hubs’ seems to be at the origin of another structural BLN peculiarity,
i.e. its small-world -ness, a feature already revealed by previous studies
(see Rohrer et al. (2019)).

The tendency of the BLN architecture to become ‘less distributed’
has the undesirable consequence of making the BLN increasingly less re-
silient against random failures, malicious attacks (e.g. the so-called ‘split
ones’), etc.

5.4 The Bitcoin Lightning Network: a quick look
at its weighted structure

The empirical analysis of the BLN weighted structure can be inspected by
plotting the CDF of the weights and the strengths for the same snapshots
considered for the degrees. As figure 29 reveals, the CDF of the weights
does not resemble entirely a power-law: the initial part, in fact, seems
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Figure 29: Cumulative Density Function of the weights for the snapshots
whose LCC is characterized by a number of nodes amounting at 100, 500,
1.000, 2.000, 3.000, 4.000, 5.000 and 6.447. While its initial part seems to
obey a log-normal, the last one appears as more similar to a power law;
moreover, its support has remained quite constant throughout the entire
history of the BLN. See also Lin et al. (2020).

to obey a log-normal distribution - while the power-law behaviour ap-
pears in the last one; moreover, its support has remained quite constant
throughout the entire BLN history. For what concerns the CDF of the
strengths, instead, its agreement with a log-normal is remarkable; more-
over, its support has broadened during the last snapshots, as figure 30
reveals.

As already pointed out in Lin et al. (2020), unevenness affects the
distribution of weighted quantities as well. This is the case of the total
amount of exchanged bitcoins and of the strength sequence. For what con-
cerns the first quantity, it grows approximately with the square of the
network size; still, it has been found that the percentage of nodes hold-
ing the 80%, 90%, 95% and 99% of the total number of bitcoins at stake in
the network (intended as the fraction of top nodes whose total strength
amounts at the aforementioned percentages) is (about) 10%, 20%, 30%
and 50% of the total.

For what concerns the second quantity, the evolution of the Gini co-
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Figure 30: Cumulative Density Function of the strengths for the snapshots
whose LCC is characterized by a number of nodes amounting at 100, 500,
1.000, 2.000, 3.000, 4.000, 5.000 and 6.447. Its agreement with a log-normal
is remarkable; moreover, its support has remained quite constant for a large
portion of the BLN history, while it has broadened in the last snapshots. See
also Lin et al. (2020).

efficient

Gs =

∑︁N
i=1

∑︁N
j=1 |si − sj |

2N
∑︁N

i=1 si
, (5.12)

quantifying the unevenness of the distribution of strengths, reveals it to
rise in an almost monotonic fashion throughout the entire BLN history,
its average value amounting at ≃ 0.88 for the daily-block snapshot rep-
resentation.
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Chapter 6

Solving null models on
very large networks

Different frameworks exist to model complex networks. Our approach is based
on the Exponential Random Graphs one, that has gained increasing popularity
over the years. Rooted into statistical physics, the ERGMs workflow is defined
by two subsequent optimization steps: the first one concerns the maximization
of Shannon entropy and identifies the functional form of the ensemble proba-
bility distribution; the second one concerns the maximization of the likelihood
function induced by the latter and leads to its numerical determination. This
second step translates into the resolution of a system of O(N) non-linear, cou-
pled equations, a problem that is affected by three main issues, i.e. accuracy,
speed and scalability. The present chapter, whose content partly overlaps with
the one of the paper authored by Vallarano et al. (2021b), is devoted to address
these issues.

6.1 Exponential Random Graph Models

Let us, first, introduce the framework defining the Exponential Random
Graph Models (ERGMs hereby). It is defined by the maximization of
Shannon entropy, i.e.
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S = −
∑︂
G∈G

P (G) lnP (G) (6.1)

constrained to satisfy a set of quantities assumed to represent a mean-
ingful piece of information to be preserved. This requirement can be
formally imposed by writing down the Lagrangean function

L = S −
M∑︂
i=0

[︄∑︂
G∈G

P (G)xi(G)− ⟨xi⟩
]︄

(6.2)

where M indicates the total number of imposed constraints and x0 ≡
⟨x0⟩ ≡ 1 encodes the normalization condition. P (G) is the probability of
the configuration G ∈ G where the ensemble G can be defined as the set
of (binary or weighted, undirected or directed) networks with the same
number of nodes (say, N ). The number of links is, of course, allowed to
vary: for binary networks, it varies from 0 to the maximum (i.e. N(N−1)

2 ,
in case of undirected networks and N(N − 1), in case of directed net-
works).

The constrained maximization of Shannon entropy allows us to de-
fine a probability distribution such that the expected value, over the en-
semble, of the set of quantities {xi}Mi=1 is fixed. Following Park et al.
(2004), the ensemble distribution is defined as:

P (G|θ) = e−H(G,θ)

Z
, ∀G ∈ G; (6.3)

notice that the so-called network Hamiltonian

H(G, θ) =

M∑︂
i=1

θixi(G) (6.4)

sums up the constraints, imposed via the vector of parameters θ each of
which controls for the value of one of the measures {xi}Mi=1; Z, instead,
is the partition function, defined as

Z =
∑︂
G

e−H(G,θ) (6.5)
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and ensuring that P (G) is correctly normalized on G. Naturally,∑︂
G

P (G)xi(G) = ⟨xi⟩, i = 1 . . .M. (6.6)

While the functional form of P (G) has been determined by maximiz-
ing Shannon entropy, its numerical determination requires a different
principle. Following Garlaschelli et al. (2008) and Squartini et al. (2011),
one can invoke the likelihood maximization principle, that formalizes the
requirement that the probability of observing the actual network config-
uration G∗ must be maximum. This translates into solving the problem

max
θ

λ(G∗, θ) = max
θ

logP (G∗|θ); (6.7)

or, equivalently, the following set of equations

∂λ(G∗, θ)
∂θi

= 0, i = 1 . . .M (6.8)

also known as first-order conditions. Now, upon substituting the expres-
sion defined by equation 6.3 into equation 6.7, one finds that the likeli-
hood maximization problem translates into the resolution of the system
of equations

⟨xi⟩ = x∗i , i = 1 . . .M (6.9)

with M being the number of constraints, i.e. the number of equations to
solve as well as the dimension of the search space for the optimization
problem 6.7.

In what follows, we are going to instantiate the framework we have
described so far by considering the simplest, yet not trivial, set of con-
straints, i.e. the degree sequence for undirected networks.

6.2 The Undirected Binary Configuration Model

The Undirected Binary Configuration Model (UBCM) is defined by con-
straining the degree sequence {ki}Ni=1 for binary, undirected networks.
The model Hamiltonian reads
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HUBCM(A, θ) =

N∑︂
i=1

θiki(A) (6.10)

and induces the probability distribution

PUBCM(A|θ) = e−
∑︁N

i=1 θiki(A)∑︁
A e
−∑︁N

i=1 θiki(A)
=

=
e−

∑︁N
i=1

∑︁N
j(>i)=1(θi+θj)aij∑︁

A e
−∑︁N

i=1

∑︁N
j(>i)=1(θi+θj)aij

=

=

∏︁N
i=1

∏︁N
j(>i)=1 e

−(θi+θj)aij∏︁N
i=1

∏︁N
j(>i)=1

∑︁
aij∈{0,1} e

−(θi+θj)aij

=

=

N∏︂
i=1

N∏︂
j(>i)=1

e−(θi+θj)aij

1 + e−(θi+θj)
; (6.11)

upon renaming xi ≡ e−θi one finds the more readable result

PUBCM(A|θ) =
N∏︂
i=1

N∏︂
j(>i)=1

p
aij

ij (1− pij)
1−aij =

N∏︂
i=1

x
ki(A)
i

N∏︂
j(>i)=1

1

1 + xixj

(6.12)
where we have posed

pij ≡
xixj

1 + xixj
, ∀ i < j; (6.13)

the UBCM probability factorizes into a product of coefficients, the generic
one pij describing the probability that a link exists between nodes i and
j. Notice that we haven’t required link independence at any point: it is
one of the outcomes of the UBCM.

Using the second expression in equation (6.12), one finds that the like-
lihood optimization problem defined by equation (6.7) now reads

max
x∈RN

+

⎧⎨⎩
N∑︂
i=1

ki(A
∗) lnxi −

N∑︂
i=1

N∑︂
j(>i)=1

ln(1 + xixj)

⎫⎬⎭ (6.14)
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the search space being defined by the position xi ≡ e−θi > 0, ∀ i - obvi-
ously, we have explicitly excluded the case in which isolated nodes are
present; in fact, a degree equal to zero induces a variable which is zero as
well, i.e. ki = 0 =⇒ xi = 0. The optimization problem to solve becomes

ki(A
∗) =

N∑︂
j(̸=i)=1

xixj
1 + xixj⏞ ⏟⏟ ⏞

pij

= ⟨ki⟩, i = 1 . . .M (6.15)

and tells us that the constraints defining the UBCM ensemble are satis-
fied on average (see Garlaschelli et al. (2008) and Squartini et al. (2011)).

The system above consists of N equations, i.e. one per node. When
very large networks are considered, solving it may be unfeasible. For
this reason, we need to find a way to reduce its computational complex-
ity. In order to do so, we build upon a suggestion originally proposed
in Garlaschelli et al. (2008), moving from the evidence that a sum of in-
creasing, monotonic functions appears in equation (6.7); hence, only the
distinct values of the degrees actually matter and reduction is induced
by a shrinkage of the number of equations to solve.

Our strategy is that of rewriting HUBCM in such a way that it doesn’t
depend on the full set of degrees but only on the reduced one. In order
to do so, we need to prove that the idea behind reduction indeed works.
Let’s start with the following lemma:

Lemma 1. Given the optimization problem 6.14, ki = kj ⇔ x∗i = x∗j .

Proof. The implication ki = kj ⇐ x∗i = x∗j is immediate. Let us now focus
on the implication ki = kj ⇒ x∗i = x∗j . From equation (6.14) we know the
solution x∗ should satisfy the first order conditions above. Hence,
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ki = kl =⇒
N∑︂

j(̸=i)=1

xixj
1 + xixj

=

N∑︂
j(̸=l)=1

xlxj
1 + xlxj

N∑︂
j(̸=i,l)=1

xixj
1 + xixj

+
xixl

1 + xixl
=

N∑︂
j(̸=i,l)=1

xlxj
1 + xlxj

+
xixl

1 + xixl

N∑︂
j(̸=i,l)=1

(︃
xixj

1 + xixj
− xjxl

1 + xjxl

)︃
= 0

N∑︂
j(̸=i,l)=1

xj
xi(1 + xlxj)− xl(1 + xixj)

(1 + xixj)(1 + xlxj)
= 0

(xi − xl)

N∑︂
j(̸=i,l)=1

xj
(1 + xixj)(1 + xlxj)

= 0; (6.16)

from the last equality and the fact that xj

(1+xixj)(1+xlxj)
> 0 for at least

one j (or the problem would be a trivial one), it follows that xi = xj .

Lemma 1 confirms the intuition in Garlaschelli et al. (2008): the so-
lution space of problem 6.14 is actually smaller than RN

+ . Let us now
exploit this fact to compute x in a faster, more efficient way. First, let us
define a binary relation ∼ on the set of nodes N of our graph stating that,
given i, j ∈ N , i ∼ j ⇐⇒ ki = kj and having the following properties:

1. ∼ is reflexive: i ∼ i because ki = ki;

2. ∼ is symmetric: ki = kj implies that kj = ki as well;

3. ∼ is transitive: if ki = kj and kj = kh, then ki = kh.

Then, ∼ is an equivalence relation and we can define equivalence classes.
An equivalence class is a subset Y ⊆ N such that ∀ i, j ∈ Y , then i ∼ j;
moreover, if h /∈ Y , then i ̸∼ h. We indicate the equivalent classes as

[α] = [kα] = {i ∈ N s.t. ki = kα} , ∀ α ∈ N (6.17)
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In other words, all equivalent nodes (under ∼) are in the same class -
and only them. The collection of all equivalence classes is called the quo-
tient set and it is denoted by N/ ∼. Now, from the fundamental theorem
on equivalence relations (see Wallace (2012), page 31), we know that the
quotient set generated by ∼ induces a partition of the nodes; then, from
∼ we can define the projection π : N → N/ ∼ which maps each node in
its equivalence class, i.e. π(i) = [i]. At this point, we can define the sub-
space Xπ ⊂ RN

+ such that ∀ x ∈ Xπ , xi = xj ⇐⇒ π(i) = π(j). Lemma 1
proved that the solution x∗ of the problem 6.7 is in Xπ .

Let us define the map ϕ : Xπ ⊂ RNred

+ → RNred

+ , whereNred = |N/ ∼
| is the cardinality of the quotient set (i.e. the number of equivalence
classes), such that

ϕ(x) = (ϕ1(x) . . . ϕNred(x)) and ϕi(x) = xπ(i); (6.18)

then, ϕ is well defined only on Xπ and it’s invertible on it. Actually, we
can prove (proof is omitted) that ϕ is an omeomorphism. Finally, we can
define λredUBCM : RNred → R as the reduced log-likelihood

λredUBCM(A, x) ≡ λUBCM|Xπ (A, ϕ−1(x)), ∀ x ∈ RNred

+ (6.19)

Why is λredUBCM so important? Because we know that the solution to the
original problem x∗ is in the quotient set Xπ and the new log-likelihood
function we wrote is defined on the same quotient set and it assumes the
same values of the original log-likelihood on it (equation 6.19). The strat-
egy is, then, solving the optimization problem induced by the reduced
log-likelihood on RNred

(a space with less dimensions is usually associ-
ated with an easier problem to solve) and then recover the (full) solution
associated with the original problem 6.14, via ϕ.

The reduced optimization problem reads

max
x∈RNred

+

λredUBCM(A∗, x) (6.20)

where
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λredUBCM(A∗, x) = λUBCM|Xπ (A∗, ϕ−1(x))

=
∑︂
α

|[kα]|kα log xα

−
∑︂
α

∑︂
β(≥α)

|[kα]|(|[kβ ]| − 1α̸=β) log (1 + xαxβ)

(6.21)

where | · | is the cardinality of a set. Applying the first order conditions to
equation (6.21), we obtain a reduced version of the first order conditions
seen in equation (6.15)

0 =

∂λUBCM
∂xγ⏟ ⏞⏞ ⏟

kγ |[kγ ]|
xγ

−
(︃|[kγ ]|

2

)︃
2xγ

1 + x2γ
−
∑︂

β(̸=γ)

|[kγ ]||[kβ ]|
xβ

1 + xβxγ
(6.22)

that can be rewritten as

kγ =
∑︂

β( ̸=γ)

|[kβ ]|
xβxγ

1 + xβxγ
+ (|[kγ ]| − 1)

x2γ
1 + x2γ

. (6.23)

6.3 The Directed Binary Configuration Model

A straightforward generalization of the UBCM for binary, directed net-
works is the Directed Binary Configuration Model (DBCM). The constraints
are, now, the in- and out-degrees of each node, i.e. {kouti }Ni=1 and {kini }Ni=1.
The Hamiltonian is defined as:

HDBCM(A, θ) =

N∑︂
i=1

(︁
θini k

in
i (A) + θouti kouti (A)

)︁
(6.24)

and θ ≡ (θin, θout). As for the UBCM, the probability of generating a
graph from the DBCM ensemble reads
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PDBCM(A|θ) =
e−

∑︁N
i=1(θ

in
i kin

i (A)+θout
i kout

i (A))∑︁
A e
−∑︁N

i=1(θin
i kin

i (A)+θout
i kout

i (A))

=
e−

∑︁N
i=1

∑︁N
j(̸=i)=1(θ

out
i +θin

j )aij∑︁
A e
−∑︁N

i=1

∑︁N
j(̸=i)=1(θ

out
i +θin

j )aij

=

∏︁N
i=1

∏︁N
j( ̸=i)=1 e

−(θout
i +θin

j )aij∏︁N
i=1

∏︁N
j(̸=i)=1

∑︁
aij∈{0,1} e

−(θout
i +θin

j )aij

=

N∏︂
i=1

N∏︂
j(̸=i)=1

e−(θ
out
i +θin

j )aij

1 + e−(θ
out
i +θin

j )
; (6.25)

upon renaming xi ≡ e−θ
out
i > 0 and y ≡ e−θ

in
i > 0, we can write

PDBCM(A|θ) =

N∏︂
i=1

N∏︂
j(̸=i)=1

p
aij

ij (1− pij)
1−aij

=

N∏︂
i=1

x
kout
i (A)

i y
kin
i (A)

i

N∏︂
i=1

N∏︂
j(̸=i)=1

1

1 + xiyj
; (6.26)

where we have posed pij ≡ xiyj

1+xiyj
, ∀ i ̸= j. As for the UBCM, the prob-

ability of a graph under the DBCM can be factorized as a product of
pair-specific probability coefficients. From the Hamiltonian in equation
(6.25), the optimization problem becomes

max
x,y∈R2N

+

⎧⎨⎩
N∑︂
i=1

(︁
kini (A∗) log xi + kouti (A∗) log yi

)︁
−

N∑︂
i=1

N∑︂
j( ̸=i)=1

log (1 + xiyj)

⎫⎬⎭ ;

(6.27)
analogously to the undirected case, the first-order conditions read
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kouti (A∗) =

N∑︂
j(̸=i)=1

xiyj
1 + xiyj

(6.28)

kini (A∗) =

N∑︂
j(̸=i)=1

xjyi
1 + yixj

(6.29)

that we can reduce by proving a lemma which is analogous to the one
we proved for the UBCM.

Lemma 2. Given the optimization problem 6.27, kouti = koutl and kouti = koutl

⇐⇒ x∗i = x∗j and y∗i = y∗j .

Proof. The implication kouti = koutl and kouti = koutl ⇐= x∗i = x∗j and
y∗i = y∗j is immediate. Let us now focus on the implication kouti = koutl

=⇒ x∗i = x∗j and y∗i = y∗j . For hypothesis, let us consider two nodes i and
l such that kouti = koutl and kini = kinl ; now, from equation (6.29)

N∑︂
j(̸=i)=1

yixj
1 + yixj

−
N∑︂

j(̸=l)=1

ylxj
1 + ylxj

= 0

N∑︂
j( ̸=i,l)=1

(︃
yixj

1 + yixj
+

yixl
1 + yixl

)︃
−

N∑︂
j( ̸=i,l)=1

(︃
ylxj

1 + ylxj
+

ylxi
1 + ylxi

)︃
= 0

N∑︂
j( ̸=i,l)=1

(︃
yixj

1 + yixj
− ylxj

1 + ylxj

)︃
+

yixl
1 + yixl

− ylxi
1 + ylxi

= 0

(yi − yl)

N∑︂
j( ̸=i,l)=1

xj
(1 + yixj)(1 + ylxj)

−
(︃

ylxi
1 + ylxi

− yixl
1 + yixl

)︃
= 0

or, in a more compact notation,

(yi − yl)K −∆ = 0 (6.30)

where
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K =

N∑︂
j(̸=i,l)=1

xj
(1 + yixj)(1 + ylxj)

> 0 (6.31)

∆ =
ylxi

1 + ylxi
− yixl

1 + yixl
; (6.32)

in the same fashion, from equation (6.28) we obtain

N∑︂
j(̸=i)=1

xiyj
1 + xiyj

−
N∑︂

j(̸=l)=1

xlyj
1 + xlyj

= 0

N∑︂
j(̸=i,l)=1

(︃
xiyj

1 + xiyj
− xlyj

1 + xlyj

)︃
+

(︃
xiyl

1 + xiyl
− xlyi

1 + xlyi

)︃
= 0

(xi − xl)K
′ +∆ = 0

(6.33)

where, now

K ′ =
N∑︂

j(̸=i,l)=1

yj
(1 + xiyj)(1 + xlyj)

> 0; (6.34)

if we sum up equation (6.30) and equation (6.33) we obtain:

(xi − xl)K −∆+ (yi − yl)K
′ +∆ = 0 (6.35)

i.e.

(xi − xl)K = −(yi − yl)K
′. (6.36)

We want to prove that xi = xl and yi = yl: let us proceed by contra-
diction and assume xi ̸= xl: then, either xi > xl or xi < xl. Let us pick
the case xi > xl (the other case is analogous): now, by equation (6.36)

xi > xl ⇐⇒ yi < yl; (6.37)

let us now show that, from equation (6.37), it follows that kini ̸= kinl (to
be precise, kini > kinl ), i.e. our contradiction. First, notice that equation
(6.37) leads to the result xiyl > xlyi; then, consider the monotonically
increasing function f(z) = z

1+z , allowing us to write
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∆ =
xiyl

1 + xiyl
− xlyi

1 + xlyi
= f(xiyl)− f(xlyi) > 0 (6.38)

in turn, leading to the expression

kini − kinl = (xi − xl)⏞ ⏟⏟ ⏞
>0

K ′⏞⏟⏟⏞
>0

+ ∆⏞⏟⏟⏞
>0

> 0 (6.39)

which is the contradiction we searched for.

Now, we define the equivalence relation underlying the reduction
strategy for the DBCM. As for the UBCM, let us define the binary re-
lation ∼ on the set of nodes N , stating that, given i, j ∈ N , i ∼ j ⇐⇒
kouti = koutj and kini = kinj and having the following properties:

1. ∼ is reflexive: i ∼ i because kouti = kouti and kini = kini ;

2. ∼ is symmetric: kouti = koutj implies that koutj = kouti as well (and
analogously for the in-degree);

3. ∼ is transitive: if kouti = koutj and koutj = kouth then kouti = kouth (and
analogously for the in-degree).

Then, ∼ is an equivalence relation and we can define equivalence classes.
We indicate the equivalent classes as

[α] = [kα] =
{︁
i ∈ N s.t. kouti = koutα and kini = kinα

}︁
∀ α ∈ N ;

(6.40)
the quotient set is denoted by N/ ∼ and it’s a partition of the set of nodes
N . From ∼, we define the projection π : N → N/ ∼ that maps each
node in its equivalence class: π(i) = [i]. As for the UBCM, we define the
sub-space Xπ ⊂ R2N such that ∀ (x, y) ∈ Xπ , xi = xj and yi = yj ⇐⇒
π(i) = π(j). Lemma 2 proved that the solution (x∗, y∗) of problem 6.7 is
in Xπ .

Let us define the map ϕ : Xπ ⊂ R2Nred → R2Nred

, where Nred =

|N/ ∼ | is the cardinality of the quotient set (i.e. the number of equiva-
lence classes), such that
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ϕ(x, y) = (ϕx1(x, y) . . . ϕ
x
Nred(x, y), ϕ

y
1(x, y) . . . ϕ

y
Nred(x, y)) (6.41)

and

ϕxi (x, y) = xπ(i), ϕyi (x, y) = yπ(i); (6.42)

observe that ϕ is well-defined only on Xπ , where it is also invertible.
Moreover, it can be proven that ϕ is an omeomorphism. As in the undi-
rected case, we can define λredDBCM : R2Nred → R as the reduced log-
likelihood such that:

λredDBCM(A∗, x, y) ≡ λDBCM|Xπ (A∗, ϕ−1(x, y)), ∀x, y ∈ R2Nred

; (6.43)

following the same strategy outlined for the UBCM, we solve the op-
timization problem for the reduced log-likelihood on R2Nred

and, then,
recover the full solution of the original problem 6.14, via ϕ.

The reduced version of the log-likelihood defined by equation (6.27)
becomes

λredDBCM(A∗, x) =
∑︂
α

|[kα]|(koutα log xα + kinα log yα) +

−
∑︂
α

∑︂
β

|[kα]|(|[kβ ]| − (|[kβ ]| − 1)1α̸=β) log (1 + xαyβ)

(6.44)

applying the first-order conditions to which we found

0 =

∂λred
DBCM

∂xγ⏟ ⏞⏞ ⏟
koutγ |[kγ ]|

xγ
−
∑︂
β ̸=γ

(︃
|[kγ ]||[kβ ]|

yβ
1 + xγyβ

)︃
− |[kγ ]|(|[kγ ]| − 1)

yγ
1 + xγyγ

(6.45)
a condition that translates into
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koutγ =
∑︂

β(̸=γ)

(︃
|[kβ ]|

xγyβ
1 + xγyβ

)︃
+ (|[kγ ]| − 1)

xγyγ
1 + xγyγ

(6.46)

and analogously for the in-degree

kinγ =
∑︂

β(̸=γ)

(︃
|[kβ ]|

yγxβ
1 + yγxβ

)︃
+ (|[kγ ]| − 1)

yγxγ
1 + yγxγ

. (6.47)

6.4 Iterative resolution of the DBCM

Being able to reduce the dimensionality of a problem is a huge step to-
wards a faster resolution of it. Let us now combine the reduction of
dimensionality with an alternative method to solve coupled, non-linear
systems of equations.

As we said in section 6.1, solving an Exponential Random Graph
Model means solving an optimization problem. To this aim, many al-
gorithms exist (e.g. Newton’s method, the 4-th order Runge-Kutta one):
still they all tend to be computationally expansive. An alternative ap-
proach is represented by the method proposed in Dianati (2016) where it
is applied to bipartite networks; here, we are going to discuss a slightly
modified version of it, designed for solving the DBCM.

The idea presented in Dianati (2016) is indeed simple: rewriting the
first-order equations (6.28) and (6.29) in an iterative fashion, i.e. as to find
the fixed-point of the system of equations

xi =
kouti (A∗)∑︁N

j(̸=i)=1

(︂
yj

1+xiyj

)︂ , ∀ i (6.48)

yi =
kini (A∗)∑︁N

j(̸=i)=1

(︂
xj

1+yixj

)︂ , ∀ i (6.49)

defining the DBCM. To this aim, let’s define the maps
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xi = ψ(x, y) and yj = χj(x, y), ∀ i, j (6.50)

that represent the equations (6.48) and (6.49). The solution to the system
is, then, the fixed-point of the iterative map defined by ψi and χj , ∀ i, j.
Starting from an initial point one construct the iteration as:

xk+1
i = ψi(x

k, yk), ∀ i (6.51)

yk+1
j = χj(x

k, yk), ∀ j (6.52)

where k indicates the k-th iterative step.
For what concerns the starting point, contributions in the literature

suggest to employ xi =
kout
i (A∗)√

L
and yi =

kin
i (A∗)√

L
, ∀ i; other initial con-

ditions can be chosen by drawing the starting point from a uniform dis-
tribution between 0 and 1. The method outlined here is very simple and
can be easily adapted to solve the reduced system of equations previ-
ously introduced: we only need to recall the first-order conditions for
the reduced DBCM in equations (6.46) and (6.47) and, then, define the ad
hoc map

xα = ψred
α (x, y) =

koutα (A∗)∑︁
α(̸=β)(|[kβ ]| − 1α=β)

yβ

1+xαyβ

, ∀ α (6.53)

yγ = χred
γ (x, y) =

kinγ (A∗)∑︁
β(̸=γ)(|[kβ ]| − 1γ=β)

xβ

1+yγxβ

, ∀ γ (6.54)

whose resolution translates into finding its fixed point, i.e.

(x, y) = (ψred, χred)(x, y) (6.55)

6.5 Solving the DBCM on Bitcoin: examples

Let us now explicitly solve the DBCM on our weekly BUNs, constructed
from the data on Bitcoin transactions, across a period of time going from
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Data: z0 = (x0, y0) initialize the map to solve the reduced DBCM.
Result: z = (x, y) solution of the DBCM problem.
while ∥z − zold∥ > ϵ do

z = ϕ(z|A∗)
zold = z

end
Algorithm 1: Pseudo-code for solving the reduced version of the
DBCM via the iterative map.

2009 to mid-2018. As explained in chapter 1, nodes are users and links
are flows of bitcoins (aggreagted across weeks) between them.

To overcome the limitations encountered when implementing full nu-
merical approaches, we consider the reduced, numerical ones. This greatly
reduces the dimensionality of the problem: as shown in figure 31, the size
of the reduced system is three orders of magnitude smaller than that of
the full one: in fact, the number of nodes decreases from 4 · 106 to 6 · 103
(at its peak). To further speed up the resolution of the problem, we have
implemented the iterative algorithm - see equations (6.48) and (6.49) -
whose pseudo-code is displayed as algorithm 1. Our criterion for defin-
ing convergence has been quantified by setting the tolerated difference
between subsequent iterations at 10−6.

Figure 32 reports some analytics about the performance of our algo-
rithm. Plotting the number of steps required by our fixed-point algo-
rithm to reach convergence, as a function of the networks size, reveals,
with no surprise, that it rises with N ; however, the total amount of time
required to reach convergence is of (the order of) hundreds of seconds,
for configurations with more than one million of nodes.

Let us now inspect the goodness of our solution, by plotting the error
made by our algorithm as a function of the number of nodes. The error is
defined as the maximum of the (absolute value of the) difference between
the empirical and the expected degrees, i.e.

∆ = max
{︂
|kout,∗i − ⟨kouti ⟩|, |kin,∗i − ⟨kini ⟩|

}︂N

i=1
; (6.56)

as shown in figure 32, the error is ∆ ≳ 10−2: in other words, the largest
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Figure 31: Evolution of the dimension of the full DBCM (in black) and of
the dimension of the reduced DBCM (in red), calculated for the Bitcoin User
Networks: the latter one is three orders of magnitude smaller than the for-
mer one.

error we make is, in absolute terms, of the order of 0.01. Remarkably,
larger configurations characterized by a smaller error (with convergence
requiring some more time) exist.

6.6 Sampling the DBCM ensemble

Let us now describe how to sample the DBCM ensemble, induced by the
degrees characterizing the empirical, binary, directed graph A∗: solving
the maximum entropy problem described in section 6.3 leads us to find
the vector of solution parameters θ by means of which we can define the
numerical value of the link probabilities
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Figure 32: Resolution of the reduced version of the DBCM for the BUNs at
the weekly time scale: plotting the time (in seconds) and the error versus
the total number of nodes reveals that the total amount of time required
to reach convergence is of (the order of) hundreds of seconds, for configu-
rations with more than one million of nodes. However, a non-linear rela-
tionship between solving time and error exists: on some configurations the
DBCM has been solved in ≃ 5 seconds, with an error of ≃ 0.05; on others,
its resolution has required ≃ 200 seconds (i.e. 4 minutes), with an error of
≃ 0.01.

pDBCM
ij =

xiyj
1 + xiyj

, ∀ i ̸= j; (6.57)

since aij ∼ Ber[pDBCM
ij ], i.e. the presence of a link from node i to node j

is described by a Bernoulli probability distribution, generating an entire
graph amounts at repeating the same process for each of the N(N − 1)

entries of its adjacency matrix1. The pseudo-code for the process is the

1Diagonal entries are excluded since self-loops are usually ignored.
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Data: θ = (θout, θin) solution of the DBCM problem.
Result: adjacency matrix drawn from the DBCM ensemble

induced by θ.
for i = 1 . . . N do

for j = 1 . . . N do
if i ̸= j then

draw r from a uniform distribution defined on [0, 1]; if
r ≤ pDBCM

ij then
aij = 1;

else
aij = 0;

end
end

end
end

Algorithm 2: Pseudo-code for sampling one adjacency matrix from
the DBCM ensemble.

one shown by Algorithm 1.
While the algorithm described above is fairly simple, it quickly be-

comes computationally expensive since the number of entries to be checked
is O(N2) - to give an idea, for systems of the size of Bitcoin in 2018, i.e.
of millions of nodes, this would amount at doing 1012 checks; even more
so, this is the recipe to generate just one graph - in order to obtain a rep-
resentative sample of the DBCM ensemble, one may need to generate
thousands of graphs. Hence, while very simple, the sampling procedure
above is not appealing to provide ensemble estimates of network prop-
erties for (very) large systems.

6.7 The Delta method

Luckily, ERGMs allow one to carry out analytical calculations of the ex-
pectation value as well as of the standard deviation of a wide range of
topological properties. While formulas require some approximations,
they often represent the most viable alternative to get the searched val-
ues.
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Given a topological property X we can define the average of X over
any ensemble as

⟨X⟩ =
∑︂
G

X(G)P (G|θ) (6.58)

where ⟨X⟩ is the expected value of X on the chosen ensemble, i.e. in-
duced by the constraints defining it (see also Squartini et al. (2011)).
Comparing X(G∗) (i.e. the empirical value of the chosen property) with
the ERGM average ⟨X⟩ provides information about whether the con-
straints used to generate the ERGM are able to explain the empirical
valueX(G∗) or additional information is needed. Naturally, the value of
the topological properties used as constraints to generate the ensemble
corresponding to the chosen ERGM are reproduced once the maximum
of the likelihood principle is employed to estimate θ.

Let us focus on binary networks (hence, changing the notation from
G to A). The simplest quantity for which we can compute the ensemble
average is aij :

⟨aij⟩ =
∑︂
A

aijP (A|θ); (6.59)

when replacing the generic P (A|θ) with the probability distributions of
the UBCM and the DBCM, the result above translates into

⟨aij⟩UBCM =
xixj

1 + xixj
≡ pUBCM

ij , (6.60)

⟨aij⟩DBCM =
xiyj

1 + xiyj
≡ pDBCM

ij (6.61)

as we saw in equations (6.26) and (6.15). This simple relationship allows
us to calculate the expected value of a number of topological quantities
exactly. An example is provided by the dyadic motifs, defined in equa-
tions (4.27), (4.28) and (4.29): upon considering that, under the UBCM
and the DBCM, dyads are independent, one finds that
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⟨L↔⟩ =
N∑︂
i=1

N∑︂
j(̸=i)=1

pijpji, (6.62)

⟨L→⟩ =

N∑︂
i=1

N∑︂
j(>i)=1

[pij(1− pji) + pji(1− pij)], (6.63)

⟨L↮⟩ =

N∑︂
i=1

N∑︂
j(̸=i)=1

(1− pij)(1− pji). (6.64)

In general, however, solving the ERGM problem doesn’t ensure that
equation (6.58) can be calculated since this depends both on the model
employed and on the topological property one aims at computing. In this
cases, one needs to proceed by approximations: if we define the gradient
matrix of a topological property X(A) as ∇ijX(A) = ∂X(A)

∂aij
and denote

by ⟨A⟩ ≡ P the matrix whose generic entry reads ⟨aij⟩ ≡ pij , then the
first-order Taylor expansion of X around ⟨A⟩ reads

X(A) = X(⟨A⟩) +
∑︂
i,j

(aij − ⟨aij⟩)
∂X(A))

∂aij

⃓⃓⃓⃓
A=⟨A⟩

+ . . .

= X(⟨A⟩) + (A− ⟨A⟩) · ∇X(⟨A⟩) + . . .

= X(P) + (A−P) · ∇X(P) + . . .

(6.65)

where A · B =
∑︁

i,j
i ̸=j

aijbij is a compact notation for the matrix scalar

product. By taking the expected value of both sides we obtain

⟨X⟩ ≃ X(P) (6.66)

since the terms beyond the first-order ones disappear. This is the first
step of the so called Delta method. As we will show, the approximation
above is often a good one. To be noticed that in case a linear quantity
is considered (e.g. one of the constraints defining the models we have
considered here), substituting aij with pij provides the exact expectation
of the quantity under consideration.
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Interestingly, dyads provide another example of quantities whose ex-
pectation can be exactly recovered by replacing aij with pij ; approximate
expressions, instead, are the ones defining the expected value of the di-
rected versions of the ANND (e.g. ⟨kout,outi ⟩DBCM). The formulas above
also clarify why the computational time is reduced by analytic calcula-
tions: instead of generating thousands of graphs and averaging on the
dyadic variables of each, we just need to evaluate a single formula. How-
ever, the computational time of the formula itself cannot be reduced to
a much lesser extent; let us imagine a quantity defined by a summation
over all node pairs: its expected value will require the same number of
sums as well.

The second step of the so called Delta method concerns the computa-
tion of the standard deviation of a network topological property. First,
let’s write the variance of a topological property X as:

σ2[X] = ⟨(X − ⟨X⟩)2⟩ = ⟨X2⟩ − ⟨X⟩2 (6.67)

an expression that depends on θ as ⟨X⟩ does. By substituting the linear
approximation introduced in equation (6.65) one finds

σ2[X] =
∑︂
i,j

∑︂
t,s

σ[aij , ats]

(︃
∂X(A)

∂aij
· ∂X(A

∂ats

)︃ ⃓⃓⃓⃓
A=⟨A⟩

+ . . . (6.68)

where the covariance of aij and ats is

σ[aij , ats] = ⟨(aij − ⟨aij⟩)(ats − ⟨ats⟩)⟩ (6.69)

= ⟨aijats⟩ − ⟨aij⟩⟨ats⟩ (6.70)

(having defined ⟨aijats⟩ =
∑︁

A aijatsP (A|θ)); the standard deviation of
the topological property X , then, reads

σ[X] =

⌜⃓⃓⎷∑︂
i,j

∑︂
t,s

σ[aij , ats]

(︃
∂X(A)

∂aij
· ∂X(A

∂ats

)︃ ⃓⃓⃓⃓
A=⟨A⟩

+ . . . (6.71)
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Equation (6.71) completes the recipe for calculating the average and
the standard deviation of any network quantity of interest - in case it
were not possible to obtain an exact, analytical result. Examples are
provided by the constraints (more in general, by linear quantities) or by
quantities as the aforementioned dyadic motifs.

Once the average and the standard deviation of a quantity of interest
have been obtained, one can asses whether the empirical value X(A∗),
observed on the original network A∗, is consistent with the randomized
value ⟨X⟩: to this aim, one can compute the inequality

|X(A∗)− ⟨X⟩| (6.72)

and determine how many standard deviations X(A∗) differs from ⟨X⟩.
Alternatively, one can compute the z-score

z[X] =
X(A∗)− ⟨X⟩

σ[X]
(6.73)

whose interpretation has been provided in chapter 3.
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Chapter 7

Epilogue

Todo lo que empieza como comedia
acaba como ejercicio criptográfico.

Roberto Bolaño

In this thesis we studied several Bitcoin Transaction Networks. We
offered a different way to look at cryptocurrencies, alternative and com-
plementary to economics and computer science, adopting a large variety
of methodologies from different fields of knowledge in order to offer a
comprehensive, yet deep, analysis.

One of our main findings concerns the growing centralization of Bit-
coin Transaction Networks. As we observed, Bitcoin Transaction Net-
works become more centralized as time goes by: as an example, we no-
tice the emergence of hubs, i.e. hyper-connected nodes which are in be-
tween the majority of transactions. This results contributes to the ongo-
ing debate about cryptocurrencies and (de)centralization.

Cryptocurrencies are related to decentralization in a two-fold way:
internally and externally. From the inside, Bitcoin functioning as a cur-
rency rests upon its decentralized nature: peers store redundant copies
of the blockchain, no central institution exists but many individuals, min-
ing is a (decentralized) process substituting a (central) validator. This is
reflected on the Bitcoin goal, i.e. that of defining a decentralised finance
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via a decentralized currency which is not controlled by anyone, therefore
providing true safety against third parties (often identified as big corps
or governments) interference. The (sometimes vague) concept of decen-
tralization lies at the very core of the entire Bitcoin narrative.

On the other hand, Bitcoin increasing centralization was observed un-
der many respects. The most relevant example is represented by the in-
creasing concentration of computational power into the hands of mining
pools: as we depicted in Chapter 2, Bitcoin relies on the ever-increasing
competition among miners to ensure blockchain immutability. The emer-
gence of an actor able to control over 51% of the total computational
power would imply that such a miner could take over the blockchain
writing process - therefore, Bitcoin itself. While this is not the case (yet),
recently, miners gathered together into the so-called mining pools, to al-
low ‘small’ miners to remain competitive. Therefore, a small number of
huge actors (i.e. the mining pools) indeed control the writing process of
Bitcoin, at the moment. This is not only a ‘philosophical’ threat to Bit-
coin ideas but represents a physical threat for the existence of the Bitcoin
ecosystem.

Why do Bitcoin Transaction Networks tend to be so centralized? Is
Bitcoin robustness (anonymity, resilience to external attacks, etc.) some-
how reduced because of it? Is centralization a common feature of transac-
tion networks? An infamous dilemma is whether Bitcoin is understood
as a mean to exchange value or just a vector of speculation: the observed
centralized structures would suggest the correct answer to be the latter.
In a transaction network where people are actually using tokens as a cur-
rency one would expect nodes interacting with each other1. To provide
an intuition of this, think of your everyday-life transactions: while, if we
were to track the Euro transactions network in a country like Italy, banks,
big retailers franchising, etc. would emerge as super-connected nodes,
we would also observe a large number of nodes with connectivity larger
than the average user, representing family businesses, restaurants, etc.
The share of ‘small nodes transactions’ seems to be absent in the Bitcoin

1Of course we would expect large hubs to emerge but also nodes with medium-to-small
degree to be (very) frequent.
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ecosystem, corroborating the thesis that users join Bitcoin only for specu-
lation purposes, i.e. to invest and store value instead of using it as a real
currency.

If this is a common feature of all cryptocurrencies is a question for
future work - something we are already working on. At the time this
thesis is being written, I am a member of the UZH Blockchain Observa-
tory Centre and currently working to extend the analysis presented in
this thesis to other blockchain-based cryptocurrencies. Our goal, now, is
that of looking for similarities between cryptocurrencies transaction net-
works, in order to spot the presence of general laws for the structural
growth of these entities.

Another interesting topic I’m currently moving my attention towards
is consensus in Distributed Ledger Technology (the blockchain is a dis-
tributed ledger technology): generalizing the Bitcoin consensus mech-
anism is an exciting and innovative research field lying at the basis of
future cryptocurrencies.

On the more theoretical side, research on statistical tools does not
stop with the current work as well: at the moment, I am the maintainer,
together with my co-authors, of the Python 3 module ‘NEMtropy’ (the
acronym standing for Network Entropy Maximization: a toolbox run-
ning on Python2) that implements the null models employed for the
present analysis - together with many others. We hope to be able to keep
improving the code for a long time - maybe providing other PhD stu-
dents with a platform where their own codes can be uploaded.

2https://pypi.org/project/NEMtropy/
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Glossary

address A Bitcoin address is an alphanumerical string with a unction
very similar to a physical address or an email address. It is the only
information needed to send bitcoins to a user. It is a good practice
that of using Bitcoin addresses only once. 112

Bitcoin The whole Bitcoin ecosystem, i.e. the public ledger, the trans-
action network, the digital token, the transaction protocol, etc. ix,
xiii–xv, 5, 7–24, 48, 54, 61, 65

bitcoin The digital token exchanged via the Bitcoin protocol, originally
introduced in Nakamoto (2019). 6–8, 10, 11, 17, 24, 26, 56

Bitcoin Transaction Networks The networks of monetary transactions
in bitcoins. In the present work, we distinguish between the Bit-
coin Address Network, where the nodes are Bitcoin addresses and
the links are the transactions among them, and the Bitcoin User
Network, where the nodes are users (i.e. clusters of addresses) and
the links are the aggregated transactions among the addresses that
define the users. To have a proper definition of a ‘network of trans-
actions’ one needs to set a time window to select the transactions
themselves. 24, 27, 40, 62

block Atomic element constituting the blockchain, that contains all ver-
ified transactions. A block is made of an header and a body. All
transactions are written in the body, while the header contains meta-
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information such as the timestamp, the block number, the previous
block hash, etc. 8, 11, 12, 19, 20

blockchain The public ledger on which the Bitcoin transactions are recorded.
The blockchain can be thought as a list (or a chain) of single blocks
(which are the elements containing the information on the actual
transactions) where they are ‘attached’ one by one. On average, a
new block appears every ten minutes. ix, 5, 9, 10, 12–14, 18–20, 102

DBCM The Directed Binary Configuration Model belongs to the class of
Exponential Random Graph Models. Given the in- and out-degree
sequences of a network, the model allows one to generate an en-
semble of graphs which, on average, have the same in- and out-
degrees of the empirical one. xii, xvii, 44–46, 61–64, 72, 85, 86, 89,
91, 92, 94–97

degree A local network measure. For undirected networks, the degree
of a node counts the number of (other) nodes connected to it. For
directed networks, the notions of in- and out-degrees can be intro-
duced, respectively counting the number of neighbors pointing to
it and it points to. 23, 37, 39–41, 62, 67, 71, 73, 75

Distributed Ledger Technology A distributed ledger database spread
across several devices on a peer-to-peer network. A consensus al-
gorithm is required to assure nodes information is coherent. Pure
DLTs requires no central authority to regulate themselves. The
blockchain is one example of distributed ledger design.. 103

ensemble In statistical physics, an ensemble (also statistical ensemble) is a
collection of a large number of copies (sometimes, infinitely many)
of a system, each of which represents a possible state in which a
real system can be found in. An ensemble is also the support of a
probability distribution for the states of the system. xiv, xv, 62–65,
72, 78, 79, 82, 85, 96, 97, 111, 112
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input A transaction input is the set of addresses ‘providing’ bitcoins to
the transaction. 8, 10, 18

mining pool A mining pool is a group of miners who pool together their
computational resources in order to mine and split together even-
tual rewards.. 102

output A transaction output is the set of addresses receiving bitcoins ‘as
a consequence’ of the transaction. 8–10, 14, 18

proof-of-work The proof-of-work (PoW) is a form of cryptographic zero-
knowledge proof in which one party (the prover) proves to others
(the ones who verify) that a certain amount of computational effort
has been spent, for some purpose, in a given amount of time (see
Jakobsson et al. (1999)). In the Bitcoin protocol, the proof-of-work is
used by miners to prove that they spent computational work to ver-
ify blocks (i.e. transactions). The amount of computational work
required to verify a new block is automatically adjusted to require,
on average, ten minutes. 11

Shannon entropy In information theory, the Shannon Entropy (also known
as information entropy) of a random variable is the average level
of ‘information’, ‘surprise’ or ‘uncertainty’ inherent to the variable
possible outcomes. 78–80

UBCM The Undirected Binary Configuration Model belongs to the class
of Exponential Random Graph Models. Given the degree sequence
of a network, the model allows one to generate an ensemble of
graphs which, on average, have a degree sequence equal to the em-
pirical one. 72–74, 80–82, 85, 89, 90, 97
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